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ABSTRACT

Single-cell and spatial transcriptomics have come of age in the past few years;
datasets and data analysis software packages have proliferated. With the increasing
sizes of datasets, proliferating new data collection technologies, and mainstreaming
of high-throughput technologies, the software can be improved for better speed and
memory efficiency, standardized and consistent user interface for multiple technolo-
gies, and in documentation to onboard new users. First, I collected a database of
spatial transcriptomics literature and analyzed the data on trends and sociology in
this field. Based on the database and data analyses, I wrote a comprehensive book
both qualitatively and quantitatively documenting the history of the field since the
1960s and reviewing more recent developments, which informed the software and
methods I later developed. Then, to address the challenges with the pre-processing
large datasets, we developed kallisto bustools for fast and modular pseudoalign-
ment of sequencing reads to the transcriptome in single-cell RNA-seq (scRNA-seq),
giving consistent results with the established and much more computationally de-
manding alignment method Cell Ranger. Briefly summarized are my attempt to
map dissociated cells in scRNA-seq to a spatial gene expression reference and to
build a image processing pipeline for image based spatial transcriptomics data anal-
ysis. Finally, to address the challenges in downstream analyses of spatial -omics
data, I first wrote the new SpatialFeatureExperiment (SFE) data structure to
represent and operate on geometries in spatial transcriptomics data and to organize
results from spatial analyses. Based on SFE, I wrote Voyager, which brings decades
of research in geospatial data analysis to spatial transcriptomics, to better utilize
the opportunities from spatial information to gain novel biological insights. To
reduce user learning curve, Voyager conforms to SCE styles and conventions and
has a comprehensive documentation website and consistent user interface to many
geospatial methods.
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C h a p t e r 1

INTRODUCTION

Single-cell and then spatial transcriptomics have come of age in the past few years;
datasets and data analysis software packages have proliferated. As these high-
throughput technologies have become mainstream, studies profiling gene expression
in millions of cells have been produced, and many software packages have been
written for a variety of data analysis tasks from upstream sequence alignment to
downstream data visualization. Spatial transcriptomics data analysis largely inherits
from the single-cell tradition. While many software packages have been written for
spatial analyses, many opportunities from the spatial information have not been
utilized.

Part 1 is a comprehensive review of spatial transcriptomics. Chapter 2 is adapted
from my review paper on spatial transcriptomics, and the following chapters until
Chapter 10 are the book which is the supplementary material of the paper with more
details about this field. This part is based on a database of literature on spatial
transcriptomics. First the history of this field is surveyed, including predecessors to
current technologies dating back to the 1960s and early attempts of high-throughput
gene expression profiling in space from the 1980s to the 2000s. Then current data
collection technologies and data analysis methods are reviewed. Metadata of the
database is analyzed, including the number of publications on each type of data
collection or analysis, institutions where the studies were performed, species and
tissues where the data was collected, number of genes and cells profiled, and text
mining abstracts. This gives both a qualitative and a quantitative overview of the
history and sociology of the field. While the text is about developments up until 2022
when the paper was published, the figures shown in this thesis have been updated as
the database is continuously updated. The figures should reflect the database as of
March 2023. The text is also updated if it’s inconsistent with the updated figures or
no longer true given the rapid development of this field.

Part 2 concerns my contributions to single-cell and spatial transcriptomics. Chap-
ter 11 summarizes my contributions to non-spatial single-cell RNA sequencing
(scRNA-seq) and unpublished contributions to spatial transcriptomics. First is an
attempt to map dissociated cells from scRNA-seq datasets that profile the whole
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transcriptome to a spatial references that profiles a much smaller number of genes.

Next, I describe my contributions to the kallisto bustools project. As of
writing, 10X Genomics is the company that sells the most popular scRNA-seq and
spatial transcriptomics technologies. Our lab developed kallisto bustools for
fast and modular pseudoalignment of sequencing reads to the transcriptome, much
faster and memory efficient than Cell Ranger, the standard 10X read alignment
software. We also wrote comprehensive documentation for kallisto bustools
with tutorials on downstream analysis after getting the gene count matrix from
kallisto bustools that can be run reproducibly on Google Colab. While Cell
Ranger is specific to 10X data, kallisto bustools can be used for a variety
of single-cell and spatial sequencing data. Using example datasets from the 10X
website, I showed that the output gene count matrices of kallisto bustools give
consistent downstream analysis results as those of Cell Ranger.

Next, to address the problem that image processing software is very specific to
technology, I built a pipeline that can apply across technologies going from stitching
multiple fields of views to segmenting cells and transcript spots, but found the
problem much deeper as there is no standard in file formats in the field. One would
need to devise a standard file format suitable to the field in order to solve the problem.
While I haven’t devised such a format, I point to literature on this issue.

In Chapter 12, I describe the SpatialFeatureExperiment (SFE) data structure
to represent processed spatial -omics data for downstream spatial analyses. Existing
data structures for spatial -omics data don’t fully take advantage of the spatial
information in cell morphology and geometric relations between cells and other
entities such as pathologist annotations. SFE brings Simple Features to the existing
single-cell data structure SingleCellExperiment (SCE). Simple Features is a
standard format to represent vector geometries in the geospatial field. In SFE,
Simple Features is used for efficient representation of and operations on geometries
such as cell segmentation polygons and histological regions, allowing for studies of
cell morphology and geometric relations with other geometries. In addition, SFE
organizes various spatial analysis results and link them to the genes or features for
which they were computed. SFE follows the styles and conventions of SCE, easing
adoption by users already familiar with SCE.

Finally, in Chapter 13, I describe the Voyager project that centers on my R package
Voyager, which fills a gap in exploratory spatial data analysis (ESDA). ESDA is
exploratory data analysis (EDA) specifically for spatial aspects of the data. Voy-
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ager performs the spatial analyses on SFE objects, and brings decades of geospa-
tial research to spatial transcriptomics. Because the original implementations of
some ESDA methods were written for much smaller datasets, they are not scal-
able to spatial -omics data. I have reimplemented some of these methods and
performed benchmarks to show that my implementations are many times faster and
more memory efficient than the original implementations, so can be used on larger
datasets. Visualization is essential to EDA, and Voyager implements elegant plotting
functions for the data and spatial analysis results, with colorblind friendly default
palettes. I show examples of novel biological insights gained from ESDA, including
the presence of negative spatial autocorrelation in the tissue and that the library
size, commonly treated as a technical artifact, can be biologically relevant. These
show that bringing in decades of research in ESDA has the potential for more novel
biological discoveries. In addition, Voyager addresses the following challenges in
spatial transcriptomics data analysis:

First, as shown by my database, spatial transcriptomics data analysis is largely split
between programming languages R and Python, and which language to choose is
often quite personal. For both single-cell and spatial transcriptomics, the de facto
standard EDA package in R is Seurat, and the de facto standard in Python is
scanpy. However, they give different results for some ostensibly the same tasks,
such as principal component analysis (PCA) and log-fold change of gene expression
between clusters, because of defaults most users may be unaware of or different
implementation details that are not documented, causing a personal preference to
lead to different biological conclusions. To cater to a wider community of users,
our collaborators wrote a Python implementation of Voyager. To address this
problem of inconsistency, we wrote "compatibility tests" to make sure that the
two implementations of Voyager give the same results for core functionalities, and
document defaults and implementation details even if the reason behind them is
simply convention in the field.

Second, new packages performing specific tasks often rely on syntax or data struc-
tures that are very different from other packages in the field, forcing users to learn
new syntax or to convert between data structures in order to perform additional
analyses in a workflow. The learning can be difficult when as shown in my database,
many packages have no documentation. Most are not on a standard public repos-
itory so can be more difficult to install. The Voyager R and Python packages
reuse existing standard data structures and conform to styles and conventions in the
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ecosystem around these structures, to reduce user learning curve. The R packages
Voyager and SFE are on Bioconductor, which requires packages to pass an initial
manual review, have unit tests and comprehensive documentation, and pass a daily
automated check that runs the unit tests and examples and checks for problems in
the code. The Python package is on PyPI. While PyPI does not check the packages,
with the compatibility tests, the Python package is indirectly held to Bioconductor
standards.

Stemming from the previous point, we have written a comprehensive and repro-
ducible documentation website, with tutorials using data from several spatial tran-
scriptomics technologies and introducing various ESDA methods. This goes beyond
transcriptomics, as we have included a spatial proteomics tutorial as well. To ensure
reproducibility and scalability, the website, including all the tutorials, is built from
scratch on a fresh machine on GitHub Actions with limited computational resources.



Part I

Museum of Spatial Transcriptomics

5
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C h a p t e r 2

THE MUSEUM OF SPATIAL TRANSCRIPTOMICS PAPER

1. Moses L and Pachter L. Museum of spatial transcriptomics. Nature Methods
2022; 19. doi: 10.1038/s41592-022-01409-2

2.1 Introduction
It has long been recognized that in biological systems ranging from the Drosophila
embryo to the hepatic lobule, many genes need to be properly regulated in space
for the system to function. In order to study the spatial patterns of gene expression,
many different spatial transcriptomics methods, which produce spatially localized
quantification of mRNA transcripts as proxies for gene expression, have been devel-
oped. Thanks to growing interest in the field, several reviews have been written in
the past 5 years, providing overviews of experimental techniques for data collection
[1, 2], and describing how such techniques can be applied to specific biological
systems, e.g. tumors [3], brain [4], and liver [5]. These reviews typically begin
with either laser capture microdissection (LCM) or single molecular fluorescent
in situ hybridization (smFISH) in the late 1990s, although the quest to profile the
transcriptome in space is much older.

Unlike the previous reviews, this paper presents a database of literature dating back
to 1987 comprehensively documenting the historical evolution and current develop-
ment in data collection and analysis in spatial transcriptomics. In addition, we have
analyzed the literature metadata from the database to show trends in the field. Key
highlights from the database and analyses are presented in this paper, and more de-
tails are presented in our book length supplement: https://pachterlab.github.io/LP_2021/

Section and figure numbers of the supplement in this paper refer to those in the DOI
PDF version, while those in the online HTML version are subject to change as it
is continuously updated to reflect changes in the field. This database was curated
by searching keywords such as "spatial transcriptomics" and "Visium" on PubMed
and BioRxiv and manually screening literature citing influential papers in the field.
Literature metadata collected include date published or posted and institution of the
first author. In addition, metadata for publications concerning new datasets include
species and tissue where the data was collected, experimental techniques used to

https://doi.org/10.1038/s41592-022-01409-2


7

collect the data, and programming languages used to analyze the data. Metadata for
publications concerning new data analysis methods include programming languages
used in the implementation, code repository of the implementation, and whether
the code is packaged and documented. The database is continuously updated by
manually screening RSS feeds from PubMed and BioRxiv for relevant keywords, or
by submission via a Google Form.

2.2 Prequel era

Figure 2.1: See Section 2.11 for caption.

By "spatial transcriptomics", we mean attempts to quantify mRNA expression of
large numbers of genes within the spatial context of tissues and cells. Some impor-
tant technologies enabling spatial transcriptomics date back to the 1970s (Chapter
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4). Various forms of in situ hybridization (ISH) have been used for a long time to
visualize gene expression in space. Radioactive ISH was first introduced in 1969,
visualizing ribosomal RNA [6] and DNA [7] in Xenopus laevis oocytes, and was first
used to visualize transcripts of specific genes (globin) in 1973 [8] (Figure 2.1A).
Non-radioactive fluorescent or colorimetric ISH was developed in the 1970s and
the early 1980s, improving spatial resolution, enabling 3D staining, and shortening
required exposure times [9, 10] (Fig. 2.1a). Early ISH was performed in tissue
sections, making it challenging to apply to blastulas and to reconstruct 3D tissue
structures; whole mount ISH (WMISH) was first introduced in Drosophila in 1989
[11] and was soon adapted to other species such as mice in the early 1990s [12].

Another strand of development in early spatial transcriptomics was the enhancer
and gene trap screen, which was developed in the 1980s when DNA sequencing
throughput was increasing [13] and metazoan genomes were newly opened frontiers.
The first screens in Drosophila [14] and mice [15] were performed in the late 1980s
in order to visualize expression of untargeted, and often previously unknown, genes.
With increasing throughput, enhancer and gene traps became the technology of
choice for spatial transcriptomics in the 1990s, until the rise of (WM)ISH in the late
1990s which leveraged automation. WM(ISH) also avoided the need for transgenic
lines, and was facilitated by the availability of reference genomes in the early
2000s for computational probe design. Although now eclipsed by newer methods,
enhancer trap, gene trap, and in situ reporter methods have been used to build
reference databases of gene expression and enhancer usage patterns in transgenic
lines throughout the 2000s and 2010s [16].

The foundation for many current era technologies was built in the decades between
the 1970s and the 2000s (Fig. 2.1c). For example, UV laser was first used to cut
tissue in 1976 [17]. Popular IR and UV LCM systems were first reported in 1996 [18,
19] and were soon commercialized. Some highly multiplexed smFISH technologies
such as seqFISH [20] rely on combinatorial barcoding, i.e. encoding each gene
with a combination of colors so transcripts of more genes than easily discernible
colors (up to 5) can be quantified simultaneously. Combinatorial barcoding was first
reported in immunological DNA FISH in 1989 [21] and was first used for transcripts
in 2002 [22]. The first unequivocal demonstration of smFISH showing each mRNA
molecule as a spot was reported in 1998 [23]. Highly multiplexed smFISH would
not have been possible without the development of these technologies.

(WM)ISH was the technology of choice in the late 1990s and the 2000s before the
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rise of highly multiplexed, high resolution, and more quantitative technologies, and
has been used to create gene expression atlases in embryos of several species such
as Drosophila melanogaster [24], Mus musculus, and Gallus gallus [25], in various
mouse organs such as the brain [26], genitourinary tract [27], and lung [28], and for
specific types of genes such as miRNAs [29] (Fig. 2.1b). For many species other than
mice and humans and miRNAs, the only spatial transcriptomics resources currently
available may still be (WM)ISH atlases. Model organism databases collecting the
proliferating gene expression patterns from various sources were also established in
this period, such as gene expression database (GXD) [30] and Zebrafish Information
Network (ZFIN) [31] (Fig. 2.1b). The golden age of (WM)ISH seems to have ended
in the 2010s (Fig. 2.1b), perhaps due to some of the disadvantages of (WM)ISH,
such as requiring stereotypical tissue structure, the need for thousands of animals to
generate an atlas, and the largely qualitative nature of results.

Early motivating applications for spatial transcriptomics included identification of
genes with restricted patterns which indicated function in development, identifica-
tion of novel cell type markers, and identification of novel cell types not evident
from tissue morphology [14, 15]. In the 1980s and 1990s, analyses were typically
done manually, although more recently automated methods have been developed
(Chapter 5). Convergence of strands of technologies including more powerful com-
puting infrastructure, decreasing cost of sequencing, and the generation of more
quantitative data, have mainstreamed and revolutionized spatial transcriptomics and
opened up new possibilities. However, the legacy of the prequel era still lives on,
in usage of prequel resources such as referencing the Allen Brain Atlas (ABA) [32]
and the Allen mouse Common Coordinate Framework (CCF) [33], and in institu-
tional legacy such as the Allen Brain Institute and the Jackson Laboratory which are
contributing to the current era [34, 35].

2.3 Data collection
Current era technologies broadly fall into five categories in terms of how spatial
information is acquired: region of interest (ROI) selection (Section 7.1), smFISH
(Section 7.2), in situ sequencing (ISS) (Section 7.3), next generation sequencing
(NGS) with spatial barcoding (Section 7.7), and methods not requiring a priori
spatial locations (Section 7.6). Developers of such technologies often seek to
enable a trifecta of transcriptome wide profiling, single-cell resolution, and high
gene detection efficiency. While this achievement appears to be increasingly within
reach, current era technologies are characterized by trade-offs between these goals.
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Figure 2.2: See Section 2.11 for caption.

ROI selection
Spatial locations can be obtained by selection and isolation of ROIs of known
locations and shapes, which can be performed by physical (Section 7.1) and optical
marking of ROIs for isolation (Section 7.1). The isolated ROIs can then be analyzed
with cDNA microarray or RNA-seq, or dissociated into single-cells for scRNA-seq.
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Physical microdissection includes LCM, 2000s voxelation [36], and Tomo-seq [37],
which sections a tissue with a cryotome along an axis of interest, followed by
RNA-seq on each section. Since 1999, by far the most widely used microdissec-
tion technology is LCM, which has been applied to various biological fields such
as oncology, neuroscience, immunology, developmental biology, and botany (see
Chapter 8 for topic modeling of PubMed and BioRxiv LCM literature). In LCM,
ROIs in the tissue section are dissected by either UV laser cutting (Zeiss and Leica)
or fusion of tissue with a membrane by IR laser (Arcturus, Fig. 2.2a); the two are
combined in recent versions of Arcturus where IR fusion removes the ROI cut by
UV. Combining LCM and Tomo-seq, spatial transcriptome in 3D can be profiled
as in Geo-seq [38], albeit with limited spatial resolution. An innovative physical
microdissection method is STRP-seq [39], which slices adjacent tissue sections into
stripes at different angles and reconstructs gene expression patterns in 3D with an
algorithm inspired by ray-based computerized tomography. On the other hand,
manual dissection is commonly used to profile gene expression along one spatial
axis of interest in plants [40].

Optical marking of ROIs includes Niche-seq [41], which uses two photon irradia-
tion to mark ROIs in tissue from transgenic mice expressing photoactivable GFP
(PA-GFP) and then uses fluorescence activated cell sorting (FACS) to isolate cells
with activated PA-GFP for scRNA-seq. Similar to Niche-seq but without trans-
genic mice is SPACECAT [42], which stains cultured live cells or organoids with
photocaged fluorophores and photoactivates ROIs for FACS and scRNA-seq. Also
using photocaging, ZipSeq [43] attaches anchor oligonucleotides with photocaged
overhangs to tissue with antibodies or lipid insertion, and adds spatial "zipcodes"
to photoactivated ROIs hybridizing to the overhangs. A more popular commercial
optical ROI selection technique is GeoMX digital spatial profiler (DSP) [44] and
whole transcriptome atlas (WTA) [45] of Nanostring (Fig. 2.2b), which shines UV
light on ROIs to release photo-cleavable gene barcodes for quantification with either
nCounter or with NGS. As GeoMX uses pre-defined gene panels rather than poly-A
capture, Nanostring provides the Cancer Transcriptome Atlas (CTA) gene panel
with over 1800 genes as well as human and mouse whole transcriptome panels with
over 18,000 genes.

Single Molecule FISH
Chronologically, the next technology developed in the current era is highly multi-
plexed single-molecule FISH (smFISH), which began with a 2012 prototype (seq-
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FISH) that relied on super-resolution microscopy (SRM) to simultaneously profile
32 genes in yeast by hybridizing probes with different colors to transcripts, and then
deducing relative locations of the colors present [46]. SRM is no longer needed;
in 2014 seqFISH [20] was published, in which one color per gene is visualized per
round of hybridization and the probes are stripped before the next round for the next
color in the barcode. All transcripts of the same gene have the same barcode. With
4 colors, 8 rounds of hybridization 48 = 65536 are more than enough to encode all
genes in the human or mouse genome. In practice, an error correcting round of
hybridization is performed, so that genes can still be distinguished if signal from
one round of hybridization is missing [47] (Fig. 2.2c). More recently in a version of
seqFISH based on RNA SPOTS [48], the "colors" themselves are one hot encoded
by a sequence of hybridizations, expanding the palette to 20 "colors" per channel
and enabling the profiling of 10,000 genes [49].

Another smFISH technique is multiplexed error-robust FISH (MERFISH) [50],
which uses a different barcoding strategy, in which each gene is encoded by a binary
code. The color codes in each experiment must be separated by a Hamming distance
(HD) of 4 to allow for correction of missing signal in one round, and by 2 to identify
error without the facility for correcting it (Fig. 2.2d). The length of barcodes can
be increased to encode 10,000 genes [51]. As only the fluorophores are removed
but the probes are not stripped, numerous rounds of hybridization in MERFISH are
less time consuming than those in seqFISH. Most other smFISH-based techniques,
such as HybISS [52] and split-FISH [53], use either seqFISH-like or MERFISH-like
barcoding.

SmFISH faces a number of challenges, which have been addressed by various
methods: signal-to-noise ratio can be improved with rolling circle amplification
(RCA) [52], branched DNA (bDNA) [54], hybridization chain reaction (HCR) [47],
primer exchange reaction [55], and tissue clearing [56]. With an increasing number
of genes profiled, the transcript spots are increasingly likely to overlap, causing
optical crowding. This can be mitigated by expansion microscopy (ExM) [57],
only imaging a subset of probes at a time and using computational super-resolution
[49], imaging highly expressed genes without combinatorial barcoding [50], and
computationally resolving overlapping spots [58].
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In Situ Sequencing
ISS methods yield spatial transcriptome information by sequencing, typically by
ligation (SBL), gene barcodes (targeted), or short fragments of cDNAs (untargeted)
in situ. Such methods rely on ligase only joining two pieces of DNA—a primer with
known sequence and a probe—if they match the template, with non-matching probes
washed away. The probes used are degenerate except for one or two query bases
encoded by a color. RCA is commonly used for signal amplification. The 2013 ISS
[59], later commercialized by Cartana, and BOLORAMIS [60] use one query base
per probe as in cPAL [61] to sequence gene barcodes (Fig. 2.2e). FISSEQ [62] and
a later adaptation with ExM called ExSeq [63] use SOLiD, which uses two query
bases per probe to sequence circularized and RCA amplified cDNAs. In STARmap
[64], gene barcodes are sequenced by SEDAL, in which SOLiD-like two query
bases are used to reject error, but one base encoding can also be used. BARseq also
RCA amplifies probes with gene barcodes, but uses sequencing by synthesis (SBS)
instead of SBL to sequence the barcodes [65].

NGS with spatial barcoding
Spatial locations of transcripts can also be preserved by capturing the transcripts
from tissue sections on in situ arrays. Such arrays can be manufactured by printing
spot barcodes, UMIs, and poly-T oligos on commercial microarray slides to cap-
ture polyadenylated transcripts, as in the Spatial Transcriptomics (ST) and Visium
technologies (Fig. 2.2f). They can also be Drop-seq-like beads [66] with split pool
barcodes, UMIs, and poly-T oligos spread on slides in a single layer (e.g. Slide-Seq
[67]) or confined in wells etched on the slides (e.g. HDST [68]), with bead barcodes
subsequently located using in situ SBL. Alternatively, in DBiT-seq [69], an array is
generated by microfluidic channels, which are used to deposit one type of barcode
in one direction, and then another in a perpendicular direction, with the orthogonal
barcodes ligated so each spot can be identified with a unique pairwise combina-
tion. While NGS barcoding techniques are typically designed for 3’ end Illumina
sequencing, Visium has been adapted to Nanopore long read sequencing [70].

NGS barcoding techniques have been applied to large areas of tissue [33], and
their use is increasing (Fig. 2.4b). Nevertheless, they do not have single-cell spatial
resolution. The commonly used Visium has spots in a hexagonal array with diameter
55 µm 100 µm center to center (Fig. 2.2f). Bead diameter is 10 µm in Slide-seq,
and 2 µm in HDST (Fig. 2.2f). Slide-seq and HDST use bead sizes smaller than
single-cells, but they may not always provide single-cell resolution because one
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bead can span two or more cells. Resolution of DBiT-seq is determined by channel
width (either 50, 25, or 10 µm, Fig. 2.2f). More recently, the spot size can be
reduced to below 1 µm, with RCA amplified DNA nanoballs as small as 0.22 µm
across with spot barcodes deposited in wells 0.5 or 0.715 µm apart in Stereo-seq
[71], and in Seq-Scope polonies with spatial barcodes 0.6 µm center to center
on an Illumina flow cell re-purposed to capture transcripts from tissue sections71
(Fig. 2.2f). Another polony based method PIXEL-seq achieves a spot diameter of
about 1.22 µm but unlike in the flow cell, PIXEL-seq does not have much spacing
around each polony [72]. Techniques such as XYZeq [73] and sci-Space [74] have
been developed to dissociate the single-cell or nuclei in spatially barcoded spots for
scRNA-seq, so the data has single-cell transcriptomic but not spatial resolution (Fig.
2.2f).

De novo reconstruction of spatial information
Some technologies have been developed to preserve information necessary to com-
putationally reconstruct spatial gene expression patterns without knowing or col-
lecting spatial locations. One such technology is DNA microscopy [75, 76], which
records proximity between cDNAs. This information can be used to reconstruct rel-
ative locations of transcripts. At the cellular level, gene expression in rare cell types
can be reconstructed by deliberately assaying multiplets, and then mapping them to
locations in a spatial reference based on gene expression of cells from common cell
types attached to cells from the rare cell types [77]. Variants of the term "spatial
transcriptomics" have also been used to describe techniques localizing transcripts
to organelles (e.g., APEX-seq [78]), although no spatial coordinates are recorded.

Multi-omics
The transcriptome is only one aspect of cell function. Other aspects, such as the
proteome, neuronal connectome, and 3D chromatin conformation are also important
to cell function, and some methods have been developed to profile them along with
the transcriptome in the same cells (Section 7.8). For the proteome, oligo-tagged
antibodies are used to detect proteins of interest, and the oligonucleotide signifying
the protein species can be detected with smFISH-based methods. Such antibody
panels have been combined with a variant of ST as DBiT-seq [69], SM-Omics [79],
GeoMX DSP [44], and MERFISH [56]. With the oligonucleotide barcode, over 100
antibodies can be used, such as when using all available antibody panels for GeoMX
DSP. For 3D chromatin conformation, MERFISH and seqFISH+ have been adapted
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to visualize chromatin structure, by targeting DNA genomic loci [80] or introns of
nascent transcripts [80, 81]. For the neuronal connectome, multiplexed transcript
quantification can also be combined with neuron projection tracing. For instance,
cholera toxin subunit b (CTb) retrograde tracing has been used in conjunction with
MERFISH to visualize axons [82]. Also, BARseq was originally designed to use
ISS for axon tracing by sequencing neuron specific barcodes introduced by a virus
injected into the brain, but was later adapted to sequence gene barcodes [65] as well.
In addition, while not an -ome per se, electrophysiology has been recorded prior
to transcriptome profiling in the same cells, such as with patch-clamp in explanted
human neurons followed by HCR-smFISH [83] and with extracellular electrodes in
cultured cardiomyocytes followed by STARmap in electro-seq [84].

2.4 Comparison across categories
In this section we discuss trade-offs made by different types of technologies among
high detection efficiency, transcriptome wide profiling, high spatial resolution, and
sometimes larger tissue area, as well as practical factors relevant to selection of
technology such as FFPE compatibility and cost/usability.

Detection efficiency
Detection efficiency is commonly estimated by performing non-barcoded smFISH
with near 100% sensitivity for select marker genes on the same cell type and
comparing the average number of transcripts detected for each gene per cell for
techniques where cells can be segmented, or per unit tissue area for techniques
without single-cell resolution. For NGS based techniques with UMI, sometimes the
number of UMIs and genes detected per cell or unit area is compared with that of
other techniques with UMI. Note that comparisons of efficiencies are confounded
by different tissues and methods used to estimate efficiencies in different studies and
by different sequencing depths in NGS.

Highly multiplexed smFISH techniques tend to excel in this area, with 95% for
Hamming distance 4 MERFISH [85] compared to non-barcoded smFISH; multiple
rounds of hybridization tend to decrease the efficiency in part because barcodes
with incorrigible errors are discarded. NGS barcoding techniques tend to have
lower efficiency. The efficiency of ST is estimated to be 6.9% per area compared
to smFISH for select genes in the same tissue type [86], comparable to that of
scRNA-seq. Visium’s efficiency seems to be moderately higher than that of ST, and
DBiT-seq’s is even higher, at 15.5% per area compared to smFISH [69]. Efficiencies
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of the submicron techniques, in the number of UMIs per unit area in the same tissue,
might be comparable to that of Visium [72]. ISS tends to be less efficient, in part
because of inefficiency of reverse transcription (RT) and SBL. Whereas detection
efficiency of scRNA-seq techniques is between 3% - 25%65 [66, 87, 88, 89, 90],
the detection efficiencies of Cartana ISS and FISSEQ [91] are 5% and 0.005%
respectively, with STARmap only marginally better than scRNA-seq. However,
ExSeq claims up to 62% efficiency compared to smFISH per cell for genes tested
[63]. Recent development tends to skip RT and make ligation of padlock probe
on RNA template more efficient, such as in BOLORAMIS and HybRISS [73], or
substitute SBL with seqFISH-like barcoding as in HybISS, to improve detection
efficiency.

Transcriptome wide profiling
Techniques not targeting specific gene with a panel of known probes are transcrip-
tome wide, such as ROI selection followed by NGS and NGS barcoding where
NGS is performed on poly-A captured transcripts, as well as untargeted ISS such
as FISSEQ and untargeted ExSeq. However, these transcriptome wide techniques
tend to have lower detection efficiency. It is possible to use certain techniques
that require gene probe panels to quantify transcripts of over 10,000 genes, such as
seqFISH+, MERFISH, and GeoMX WTA, though unlike in NGS, novel transcripts
not targeted by the probes cannot be detected. While GeoMX WTA has been used
in some studies outside Nanostring[92], overall the number of genes profiled with
smFISH-based techniques per dataset has not increased over time (Fig. 2.3g). In-
stead, in studies using smFISH and ISS based techniques, a smaller number of genes
are profiled and the smFISH or ISS dataset is complementary to a transcriptome
wide scRNA-seq dataset [93]. The number of genes that can be detected by highly
multiplexed smFISH is limited by optical crowding, and expansion microscopy was
used to address this issue in MERFISH and ExSeq. However, expansion reduces
the amount of tissue covered per field of view, thus limiting imaging throughput.

Spatial resolution
SmFISH and ISS based techniques have single-cell and single molecule resolution,
although cell segmentation can be challenging. In addition, smFISH and ISS based
techniques can be applied to cleared thick tissue sections [56], though the number of
genes profiled in these cases are much smaller than in most 2D highly multiplexed
smFISH studies. All other types of techniques require tissue sections and are thus
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limited to 2D, or 3D with z resolution limited to section thickness which is usually
at least 10 µm for frozen sections. While there are submicron resolution NGS
barcoding techniques and the ROIs of LCM and GeoMX can in principle be single-
cell or smaller, the most common usage of these types of techniques tend to have
lower spatial resolution, such as 55 µm for Visium and several hundred microns
across for GeoMX (e.g. 700 × 800 µm in [92] due to insufficient sensitivity of
transcript detection at the single-cell or subcellular resolution [94].

Tissue area
Overall, techniques with lower detection efficiencies tend to be better at profiling
larger tissue area, and for smFISH, there seems to be a trade-off between number of
cells and number of genes. In current era spatial transcriptomics, a tissue section
several millimeters across, such as a substantial portion of a mouse brain coronal
section, which can fit into a Visium or ST tissue capture area, is considered large,
and increasing tissue area and sequencing depth for sensitivity would increase
sequencing cost. Cartana ISS and HybISS have also been used to profile large areas
of tissue several millimeters across but only around 100 genes [95]. An advantage
of (Hyb)ISS here is the strong RCA signal and less optical crowding thanks to
lower detection efficiency facilitating lower magnification (20x, while MERFISH
uses 60x) and thus faster imaging. While most highly multiplexed smFISH datasets
remain at 100s of genes (Fig. 2.3g), among studies that reported the number of cells,
the total number of cells per study have increased (Fig. 2.3h, p< 0.001, two sided
t-test). ROI selection techniques are generally used for small numbers of ROIs as
it’s labor intensive to select very large numbers of ROIs and process them separately
without spatial barcoding. However, when high spatial resolution is not as crucial
or practical, ROIs with very low resolution can be selected to cover more tissue, as
in the LCM dataset in the Allen Human Brain Atlas [96].

Usability
While most techniques were originally developed for frozen sections, some are
compatible with FFPE, which as a common tissue archive, may at times be the only
type of tissue available. Among smFISH-based techniques, ACD RNAscope [97]
is FFPE compatible but can only profile 12 genes at a time in FFPE as opposed to
48 in frozen sections. Among NGS barcoding techniques, Visium [98] and DBiT-
seq [99] are FFPE compatible, but due to crosslinking and RNA fragmentation in
archival storage, detection efficiency in FFPE tissue in UMIs and genes detected
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Figure 2.3: See Section 2.11 for caption.

per spot is about 5 to 10 times lower than in their frozen counterparts. LCM has
long been applied to FFPE tissues, even at single-cell resolution with the sensitive
SMART-3Seq [100]. GeoMX is not only FFPE compatible but also predominantly
used on pathological human FFPE tissues (Fig. 7.8).

While many new techniques have been developed, most never spread beyond their
institutions of origin (Fig. 6.9). Among those that did spread far and wide, the
most popular ones tend to have commercial platforms, such as LCM, 10X Visium
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and its precursor ST, Cartana ISS (acquired by 10X), and Nanostring GeoMX (Fig.
2.3). In addition, many major institutions have core facilities for NGS, if not LCM,
Visium, and GeoMX (e.g. the TPCL at UCLA and the Advanced Genomics Core
at University of Michigan, Ann Arbor), reducing cost of purchasing new equip-
ment and training personnel in individual laboratories. Tomo-seq has also spread,
perhaps due to its ease of implementation with standard equipment. In contrast,
smFISH-based techniques have not spread as much thus far, perhaps due to the
complicated home built fluidic system, long imaging time, terabytes of images, and
expensive probes. However, some smFISH techniques are being commercialized,
with automated imaging and fluidic platforms, such as MERFISH commercial-
ized by Vizgen and another smFISH-based technique in Molecular Cartography of
Resolve Biosciences. In addition, Rebus Esper can be programmed to automate
different smFISH technologies and can process images online as in Illumina se-
quencing, and has been used to automate osmFISH [101]. With the new automated
commercial platforms, popularity of smFISH-based technique might rise, especially
if such platforms are adopted by core facilities.

2.5 Data analysis
The processing and analysis of high-throughput spatial transcriptomics data requires
novel methods and tools, especially for problems such as image preprocessing,
spatial reconstruction of scRNA-seq data, cell type deconvolution of NGS barcoding
data, identification of spatially variable genes, and inference of cell-cell interactions
(Fig. 2.2g).

Upstream
Upstream data analysis converts raw data into forms more amenable to biological
interpretation and is dependent on the data collection technology.

For smFISH and ISS based data, the raw data consists of images of fluorescent
spots, which must be processed to identify transcript spots, match spots to genes, and
assign spots to cells (Section 9.1). SmFISH and ISS studies often use classical image
processing tools such as top-hat filtering to remove background, translation to align
images from different rounds of hybridization, and watershed for cell segmentation
[47, 64, 85]. Machine learning in Ilastik, deep learning packages like DeepCell
[102], and alternative tools incorporating scRNA-seq data [103], can also be used for
cell segmentation. However, without visualizing the plasma membrane, accuracy
of cell segmentation is limited. Some analyses, such as identification of tissue
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regions, can be performed without cell segmentation [103]. Until 2019, image
processing was typically performed with poorly documented and technique specific
code written in the proprietary language MATLAB, but more recently such code
is increasingly written in the open source language Python. The package starfish
[104] was developed as an attempt to provide a unified and well-documented user
interface to process images from different techniques such as seqFISH, MERFISH,
and ISS, but it has not been widely adopted.

Improvements in scRNA-seq technology have inspired new methods for leveraging
the complementary nature of high-resolution transcriptome quantification with spa-
tial transcriptomics data. For smFISH and ISS data that is not transcriptome wide,
expression patterns of genes not profiled in the spatial data can be imputed with
scRNA-seq data, either by mapping dissociated scRNA-seq cells to the spatial refer-
ence or by directly imputing gene expression in space using expression profiles from
scRNA-seq (Section 9.3). Cells can be mapped to spatial locations on an existing
spatial dataset with genes shared by the two datasets, with an ad hoc score favoring
similarity between cell and location [105] or via optimal transport modeling [106].
While ad hoc scoring is simple to implement, the results tend to be qualitative.
Gene expression in space can also be imputed from scRNA-seq without explicitly
mapping scRNA-seq cells to locations. A common approach is to project the spa-
tial and scRNA-seq data into a shared low-dimensional and batch-free latent space,
and to subsequently estimate gene expression by projecting the spatial cells into
the latent space. Examples of this approach include Seurat [32] and gimVI [107].
These methods may also be used to add spatial context to single-cell multi-omics
data when spatial techniques for some of the multi-omics data are not available.

In spatial data without single-cell resolution, such as those derived from ST and
Visium, scRNA-seq data can inform cell type composition of the spots or voxels
(Section 9.4). Negative binomial models and non-negative least squares (NNLS)
are common principles underlying cell type deconvolution methods. Negative bi-
nomial models are typically parameterized with rate and dispersion, and the rate is
modeled as a weighted sum of cell type signatures from scRNA-seq, with scaling
factors for library size and technology sensitivity; the non-negative weights may be
normalized to sum up to 1 as cell type proportions per spot. Negative binomial based
methods include stereoscope [108] and cell2location [109]. Simpler than negative
binomial, gene expression is modeled as Poisson instead in RCTD [110]. Cell type
deconvolution can also be performed by modeling gene expression at each spot as a
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weighted sum of cell type signatures outside the rate parameter of negative binomial
distributions, and the weights are inferred with NNLS. For example, AdRoit [111]
uses the means of negative binomial distributions fitted to spot gene expression and
to scRNA-seq cell type signatures. The cell type signatures can be non-negative
matrix factorization (NMF) cell factors from scRNA-seq assigned to cell types, as
in NMFreg66 and SPOTlight [112]. The cell type weights can be regularized or
thresholded to limit the number of cell types assigned to each spot. Parallels can also
be drawn between cell type deconvolution and topic modeling in text mining; cell
types are analogous to topics, and genes are analogous to words. Latent Dirichlet
allocation (LDA) from topic modeling has been adapted to cell type deconvolution,
such as in STRIDE [65] and STdeconvolve [113]; the latter is unsupervised and
does not require a scRNA-seq reference.

Downstream
Downstream analyses most often apply to the gene count matrix and cell/spot loca-
tions, and are thus largely independent from data collection technologies.

Given the relevance of scRNA-seq to spatial data and how spatial data is often
analyzed like scRNA-seq data at the exploratory data analysis (EDA), popular
scRNA-seq EDA ecosystems such as Seurat [32], Scanpy (Squidpy) [114, 115],
and SingleCellExperiment (SpatialExperiment) [116] have added function-
alities for spatial data, such as updates to data containers and functions to facilitate
visualization of gene expression and cell/spot metadata at spatial locations (Section
9.2). EDA packages dedicated to spatial data with beautiful graphics and good
documentation have also been written, such as Giotto [117] and STUtility [118].
Seurat and Giotto also implement basic methods to identify spatially variable genes.
In addition, Giotto implements methods to identify cell type enrichment in ST and
Visium spots, identify gene coexpression and association between gene expression
and cell type colocalization, and to identify spatial regions [119].

Spatially variable genes are genes whose expression is associated with spatial loca-
tion (Section 9.5). Three approaches are commonly used: Gaussian process regres-
sion (GPR) [120] and its generalization to Poisson [121] and NB [122], Laplacian
score [123], and Moran’s I. The former models normalized gene expression or the
rate parameter of Poisson or NB gene expression as a GPR and finds whether the
model better describes the data with the spatial term than without. The latter ap-
proach identifies genes whose expression better reflects the structure of a spatial
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neighborhood graph. The locations of cells can also be modeled as a spatial point
process with gene expression as marks; spatially variable genes can be identified
as marks associated with locations [124]. Fitting GPR models to numerous genes
can be time consuming, especially when a Bayesian approach with Markov chain
Monte Carlo is used. Permutation testing used in Laplacian score based methods
can also be time consuming. As both GPR and Laplacian score based methods
seek to identify spatial autocorrelation, sometimes the classic spatial autocorrela-
tion metric Moran’s I is directly used to identify spatially variable genes, as in Seurat
v3 and above. MERINGUE [125] uses a local version of Moran’s I. Moran’s I and
its significance testing are implemented in established geospatial packages and are
easy and fast to run, but may have less statistical power than model based methods
[121].

Spatial information also enables identification of potential cell-cell interaction (Sec-
tion 9.8). This is commonly done with knowledge of ligand-receptor (L-R) pairs
and testing whether L-R pairs are more likely to be expressed in neighboring cells
or spots [126], or whether two cell types each expressing the ligand and the receptor
are more likely to colocalize [125]. The cross-type L function from spatial point
process can be used to find cell types that colocalize [127]. Expression of genes of
interest can also be modeled, including a term for cell-cell co-localization; the gene
is considered associated with cell-cell co-localization if the model better describes
the data with this term than without [128].

There are many other types of downstream analyses that are useful for spatial tran-
scriptomics analysis, including identification of archetypal gene patterns (Chapter
9.6), spatial regions defined by the transcriptome (Chapter 9.7), inferring gene-gene
interactions (Chapter 9.9), subcellular transcript localization (Chapter 9.10), and
gene expression imputation from H&E images (Chapter 9.11).

2.6 Trends in the spatial transcriptomics field
The quality vs. quantity trade-off inherent in existing technologies means that there
is no single "best" solution currently available, and the difficulty in implementing
methods has resulted in many technologies never spreading beyond their institutions
of origin. LCM, Visium, ST, GeoMX DSP, and Tomo-seq have been the most widely
adopted (Fig. 2.3a), and in most cases in the US and western Europe (Figs. 6.12).
In terms of tissues analyzed, multiplexed current era techniques have been used
widely to characterize human tissues [129], tumors [86] (especially breast tumors),
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Figure 2.4: Growth of the current era. a, Number of publications over time for
current-era data collection and data analysis. Bin width is 120 days; the curves
drop because the plot was made at the beginning of a new bin. Non-curated LCM
literature is excluded. b, The data collection curve in a, broken down by category of
techniques. The colors are stacked and sorted in descending order of total number
of publications using techniques in that category.

and pathological tissues that don’t necessarily have a stereotypical structure [130]
(Fig. 2.3b,c). In the SARS-CoV-2 pandemic, GeoMX DSP has been used for spatial
transcriptomic profiling in lung autopsy of COVID victims [92].

Some of the processed data, and associated spatially variable genes, can be down-
loaded and visualized from SpatialDB [131]. Excluding LCM, the vast majority of
current era studies were performed on either humans or mice (Fig. 2.3d), and the
brain is the most studied healthy organ while the lung (COVID) and breast tumor
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are also often studied in humans (Fig. 2.3b,e,f). In particular, the international
project Brain Research through Advancing Innovative Neurotechnologies (BRAIN)
Initiative - Cell Census Network (BICCN) is constructing a multi-modal atlas for
the human, mouse, and non-human primate brain, including spatial data such as
MERFISH and seqFISH.

All packages mentioned in the Data analysis section are open source and written in
languages such as R, Python, and Julia. Downstream analyses in studies primarily
concerning new data and data analysis packages predominantly use open source
programming languages such as R, Python, and C++ (Fig. 2.3i,j). While MATLAB
is still popular, its use does not rise as in R and Python (Fig. 9.12). While R is more
popular for downstream analyses and EDA, Python and C++ are more popular for
package development (Fig. 2.3i,j). Most of the packages are not hosted on standard
repositories such as the Comprehensive R Archive Network (CRAN), Bioconductor,
PyPI, or conda (Fig. 9.13). While most packages using R, Python, and C++ are
well-documented, many MATLAB packages are not (Fig. 9.12). The standard
repositories and documentation make packages more usable, and is discussed in
more details in Section 9.12.

2.7 Future perspective
While technologies of the prequel are rapidly being deprecated, the ideas and meth-
ods that underlie them are fundamental to current era spatial transcriptomics. The
field has dramatically expanded over the past 5 years (Fig. 2.4a), with a plethora of
new techniques and popularization of Visium driving growth (Fig. 2.4b, Fig 6.9,
7.37, 10.1).

What lies ahead of the rising curves? First, more can be done to improve data col-
lection techniques. For example, most current era techniques require tissue sections.
Highly multiplexed whole mount smFISH and tissue clearing protocols, and more
efficient computational tools for aligning multiple sections that may come from
multiple individuals or even developmental stages, should be developed to extend
current era techniques to 3D and to spatiotemporal analysis. Future techniques may
also extend the current era from the scale of millimeters to centimeters and across
other modalities such as epigenomics and metabolomics to give fuller pictures of
cellular function. Furthermore, smFISH and ISS techniques, with signal amplifica-
tion to reduce the number of probes per transcript, can be adapted to target isoform
specific exons or untranslated regions rather than all transcripts of a gene.
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Second, current era data has not yet been integrated into comprehensive databases.
Prequel databases such as GXD and e-Mouse Atlas and Gene Expression (EMAGE)
[132] include data from multiple sources and can be queried by gene symbol and
developmental and spatial ontologies. In addition, ABA and EMAGE aligned ISH
images to common coordinates and can be queried with expression patterns. While
some current era authors provide online interactive visualization of datasets from
their studies [33], comprehensive databases integrating, querying, and visualizing
data from multiple sources as in the prequel era have not yet been developed.
Furthermore, while prequel ontologies are still used in current era studies, such
ontologies may be improved with the transcriptome wide quantitative data from the
current era.

Third, outside of LCM, the current era is highly focused on humans and mice, with
potential spatial transcriptomics investigations of other species such as plants and
invertebrates lagging behind. Technological modernization of prequel consortia for
organisms other than humans and mice holds much promise for the development of
useful spatial transcriptomics atlases.

Fourth, an open source, well-documented, interoperable, and scalable workflow with
an integrated easy-to-use interface would greatly simplify spatial transcriptomics
data collection and analysis. At present, for tasks beyond EDA, users still often need
to learn new syntax, convert object types, and even learn new languages to use some
data analysis tools. Finally, our survey of methods shows that spatial transcriptomics
methods need to be more open and accessible so that they become adopted around
the world, and are not restricted to Western elite institutions.

2.8 Data availability
The database of spatial transcriptomics literature can be accessed here. The version
used as of writing is in the metadata.xlsx file in the frozen DOI version of the GitHub
repository to reproduce the figures in this paper and render the supplementary
website.

2.9 Code availability
All code used to generate figures in this paper and render the supplementary website
is in the GitHub repository here. The frozen DOI version of the repository as of
final submission of this paper is on Zenodo.

https://docs.google.com/spreadsheets/d/1sJDb9B7AtYmfKv4-m8XR7uc3XXw_k4kGSout8cqZ8bY/edit#gid=1363594152
https://doi.org/10.5281/zenodo.5774128
https://doi.org/10.5281/zenodo.5774128
https://github.com/pachterlab/LP_2021
https://doi.org/10.5281/zenodo.5774129
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2.11 Figure legends
Figure 2.1: Timelines of major events a, Timeline of development of prequel
era technologies. References: 1969 radioactive ISH [6, 7], 1973 goblin [8], 1977
FISH [10], 1982 immunological [9], 1982 FISH [133], 1987 enhancer trap [14],
1989 WMISH [11], 1989 ES cell [15], 1991 C. elegans [134]. b, Timeline of major
(WM)ISH atlases and gene expression pattern databases. References: 1994 WMISH
[135], 1995 mouse WMISH [136], 1998 AXelDB [137], 1999 GXD [138], 2000
Maboya Gene Expression patterns and Expression Sequence Tags (MAGEST) [139],
2001 Nematode Expression Pattern Database (NEXTDB) [140], 2001 GHOST
[141], 2002 GenePaint [142], 2002 D. melanogaster: Berkeley Drosophila Genome
Project (BDGP) [24], 2003 Medaka Expression Pattern Database (MEPD) [143],
2003 Zebrafish Information Network (ZFIN) [31], 2004 Gallus Expression In Situ
Hybridization Analysis (GEISHA) [25], 2005 miRNA [29], 2006 Allen [26], 2006
Berkeley Drosophila Transcription Network Project (BDTNP) [144], 2007 Fly-
FISH [145], 2007 Xenbase [146], 2011 mouse Genitourinary Development Molec-
ular Anatomy Project (GUDMAP) [27], 2017 LungMAP [28], 2020 Zebra finch
Expression Brain Atlas (ZEBrA) [147]. c, Timeline of development of current
era technologies and their notable precursors, colored by type of technology. Ref-
erences: 1976 LCM [17], 1988 ligase mediated single nucleotide variant (SNV)
detection [148], 1989 amplification [149, 150], 1989 FISH [21], 1995 microarray
[151], 1996 LCM [18, 19], 1998 smFISH [23], 1999 LCM [152], 2002 combina-
torial [22], 2008 RNA-seq [153], 2012 Tomo-array [154], 2013 high-throughput
RCA + ISS[59], 2014 seqFISH [20], 2015 MERFISH [50], 2016 ST [86], and 2019
GeoMX DSP [44].

Figure 2.2: Schematics of common current-era technologies. a, IR LCM. b,
GeoMX DSP. The purple circle in step 2 is the UV-illuminated ROI. c, seqFISH
barcoding and error correction scheme: if signal from one round of hybridization
is missing, the remaining rounds can still uniquely identify the gene barcoded. d,
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MERFISH Hamming distance 4 barcoding and error correction scheme: from the
design of the barcodes, if signal from one round of hybridization is missing, the
correct barcode can be recovered. If two rounds are missing, the remaining signals
are equidistant to two different barcodes so the original barcode cannot be recovered.
e, Cartana ISS with cPAL sequencing: many copies of the gene barcode are made
with RCA for signal amplification, which are then sequenced in situ with cPAL.
The orange line stands for the RCA amplicon. Short blue lines stand for the gene
barcode. Brown stands for the probe; bases not labeled are degenerate. Gray stands
for primer matching constant region. f, NGS barcoding techniques. In Visium,
the spots are arranged in a hexagonal grid, 100 µm apart center to center and 55
µm in diameter. In DBiT-seq, positional barcodes are deposited in microfluidic
channels and spatial resolution is determined by the width (down to 10 µm) and
spacing of the channels. In Slide-seq, barcoded beads 10 µm in diameter are spread
in a single layer on a slide. In XYZeq, spatial barcodes are conferred on multiple
cells in wells 500 µm in diameter, which are then dissociated for scRNA-seq. In
Seq-Scope, the tissue is mounted on a repurposed Illumina flow cell with barcoded
polony spots 0.6 µm apart on average. For Visium and Slide-seq, the lines represent
oligonucleotides attached to the slide or bead. For DBiT-seq, red and green lines
represent the flow in microfluidic channels carrying barcoding oligonucleotides.
For Seq-Scope, the tissue (pink block) is mounted on repurposed Illumina flow cell
with bridge-amplified polonies each with its own spatial barcode represented by
different colors. For XYZeq, different colors of the cells represent different spatial
barcodes in the microwells, and the cells are dissociated for scRNA-seq. t-SNE,
t-distributed stochastic neighbor embedding. g, Data-analysis workflow: upstream
analysis is technology specific, and includes image processing for smFISH and ISS-
based technologies, and FASTQ file processing, quality control of the gene count
matrix, and data normalization for NGS-based technologies. Non-spatial scRNA-
seq data can be integrated by mapping cells to locations with landmark genes in
the smFISH or ISS data or deconvolving cell types in Visium spots. Downstream
analyses tend to be technology agnostic, and include finding spatially variable
genes, transcriptionally defined spatial regions, and cell–cell interactions. Created
with BioRender.com.

Figure 2.3: Current-era metadata. a, Number of institutions that have published
papers or preprints with each technique, excluding LCM literature too vast to be
manually curated. Only techniques used by at least three institutions are shown.
b, Number of publications for each healthy organ in humans (male shown here,
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as there is no study on healthy female-specific organs in humans at present). c,
Number of publications for pathological organs in humans (female shown here, but
there are two studies on prostate cancer). d, Number of publications per species.
e, Number of publications per healthy organ in mice. f, Number of publications
for pathological organs in mice. g, Number of genes per dataset over time. Gray
ribbon in g and h stands for 95% confidence interval. The slope is not significantly
different from 0 in g (t test). In g and h, the y axis is log-transformed. h, Total
number of cells per study profiled by smFISH-based techniques over time among
studies that reported the number of cells. IceFISH, intron chromosomal expression
FISH; C-FISH, consecutive FISH; MOSAICA, multi-omic single-scan assay with
integrated combinatorial analysis; SGA, spatial genomic analysis; corrFISH, corre-
lation FISH; EASI-FISH, expansion-assisted iterative FISH; par-seqFISH, parallel
seqFISH; CISI, composite in situ imaging; SCRINSHOT, single-cell-resolution in
situ hybridization on tissue; coppaFISH, combinatorial padlock-probe-amplified
FISH. i, Number of publications for data collection using each of the fice most
popular programming languages for downstream data analysis. j, Number of publi-
cations for data analysis using each of the five most popular programming languages
for package development. In both i and j, each icon stands for 50 publications. Note
that multiple programming languages can be used in one publication.
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C h a p t e r 3

INTRODUCTION OF THE MUSEUM OF SPATIAL
TRANSCRIPTOMICS BOOK

The spatial organization of the components of biological systems is crucial for their
proper function. For instance, morphogen gradients in embryos are tightly regulated
to ensure that the right cell types differentiate at the right place. In adults, spatial
organization of cells in tissues is important to proper functions of organs. For
instance, the liver lobule is divided in labor according to distance from the portal
triad as such distance affects suitability of different tasks. Both oxygen level and
morphogen gradient regulate zonation of metabolism [1]; there is more oxidative
phosphorylation and gluconeogenesis in the more oxygenated periportal region and
more glycolysis in the more deoxygenated pericentral region. How cell types and
cellular functions vary in space can be measured by quantifying gene expression
in space. Conversely, the expression of an unknown gene in space can give clues
to its function. Gene expression is usually quantified by quantifying proteins or
transcripts encoded by the gene, and high throughput spatial methods exist for both
protein and transcripts. In other words, cellular function exemplifies the maxim that
"the whole is greater than the sum of its parts", and in large part this follows from
"location, location, location".

Here we focus on spatial transcriptomics (the field of spatial proteomics is covered
elsewhere [2, 3, 4]. Even spatial transcriptomics is a vast field, and it is useful
to begin by considering the scope of what it contains. Naïvely, one may say,
spatial transcriptomics means quantifying the complete set of RNAs encoded by the
genome in space. Usually the “in space” is at some microscopic resolution rather
than geospatial as often assumed in the term “spatial statistics”; the resolution is
usually cellular, though sometimes subcellular. The “spatial” is in contrast to other
transcriptomics methods that by virtue of the nature of their assays, lose information
of tissue structure in space. That is the case with microarray technology for bulk
tissue analysis, for bulk RNA-seq, and single-cell RNA-seq (scRNA-seq) that is
based on dissociation of tissue—the “spatial” usually means tissue structure in
space. More broadly, the “spatial” can mean knowing spatial context of samples
although the spatial context is only a label and the coordinates are not collected
or not used, such as in some laser capture microdissection (LCM) literature [5, 6,
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7], Niche-seq [8]), and APEX-seq [9]. The “spatial” can also mean preserving
spatial coordinates of samples within tissue, though the coordinates may or may
not be explicitly used in data analysis, such as in the various single molecular
fluorescent in situ hybridization (smFISH) based technologies such as seqFISH [10]
and MERFISH [11] and array based technologies such as Spatial Transciptomics
(ST) [12].

There is more complexity in defining “transcriptomics”. While some technologies
usually called “spatial transcriptomics” are indeed transcriptome-wide, such as ST,
Visium, and LCM followed by RNA-seq, many technologies that only profile a
panel of usually a few hundred genes are nevertheless considered part of “spatial
transcriptomics”. Here “transcriptomics” actually means high-throughput quan-
tification of gene expression, preferably highly multiplexed, quantifying numerous
genes within the same piece of tissue at the same time. However, what counts as
“high-throughput”? Is there a minimum number of genes required? Should 50
genes be enough? Or a hundred genes? The threshold number of genes required to
be considered “high-throughput” is difficult to define; here, by “high-throughput”,
we mean the intent to quantify expression of more genes than normally done with
fluorescent in situ hybridization (FISH) or immunofluorescence when only color
distinguishes between genes, which can mean more than about 5 genes. There is
also some complication regarding whether “highly multiplexed” should be required.
Some fairly recent studies that intended to perform high-throughput gene expression
profiling in space did not profile most genes at the same time (e.g. multiple rounds
of smFISH hybridization, each round for a different set of genes) [13, 14], or even
profiled different genes in different tissue sections [15, 16]; these papers nevertheless
claimed to be spatial transcriptomic or something similar.

When terms are to be defined by how they are used, then we rely on a generic
and inclusive definition of “spatial transcriptomics”, which can be summarized as:
Quantifying transcripts while keeping spatial context of samples within tissue or
cell, with intent to quantify transcripts of more genes than normally done with one
round of FISH or immunofluorescence when color is the only way to distinguish
between genes. This is the criterion we used in considering what methods to include
in our review.
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3.1 Database
The field of spatial transcriptomics has grown drastically in the past 5 years, during
which several reviews have already been written. These survey existing technologies
[17, 18, 19, 20, 21] or discuss how the technologies apply to specific biological
systems such as tumors [22, 23, 24]. Unlike the review papers, we aim to be more
systematic and detailed in our review of spatial transcriptomics technology. In
addition, we review existing data analysis methods in this field, a crucial aspect of
spatial transcriptomics which has not yet been comprehensively reviewed in depth.
Moreover, we present a curated database of spatial transcriptomics literature and
analyses of the literature metadata to show trends in different aspects of spatial
transcriptomics. This database is publicly available here. Similar databases have
been curated for scRNA-seq literature [25], and for scRNA-seq data analysis tools
[26], which have been analyzed to show trends in the field, although the metadata
in our database and the analyses are much more extensive.

Curation of the database was performed by searching terms “spatial transcriptomics”,
“visium”, “merfish”, “seqfish”, and “geomx dsp” on PubMed and in addition, the
term “ISS” on bioRxiv as searching “ISS” on PubMed does not yield many relevant
results. Then the search results are manually screened and publications that fit the
definition of “spatial transcriptomics” as stated above are added to the database. In
addition, publications citing well-known publications that are commonly recognized
as “spatial transcriptomics” (e.g. the original paper for MERFISH) are screened.
Such searches can find publications for spatial transcriptomics data analysis as
well. Additional criteria of inclusion for data analysis publications are discussed in
Chapter 9. If a method fitting the definition of “spatial transcriptomics” is mentioned
anywhere outside the search results, such as a review paper, the publication of that
method is also added to the database. For historical methods (i.e. prequel) loosely
fitting our definition of “spatial transcriptomics” and sharing objectives with more
recent spatial transcriptomics but are not highly multiplexed and don’t involve cDNA
microarrays or next generation sequencing (NGS), search terms such as “gene trap
screen” and “in situ hybridization atlas” were used. Review papers and protocols
are excluded.

Metadata of the publications collected include date published (or posted on bioRxiv
for preprints), title, journal, PMID if applicable, DOI URL, species and tissue the
data comes from (or the data analysis method is designed for), whether the tissue
is pathological (mouse and human only), and city and institution of the first au-

https://docs.google.com/spreadsheets/d/1sJDb9B7AtYmfKv4-m8XR7uc3XXw_k4kGSout8cqZ8bY/edit#gid=1693202466
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thor. Such metadata allow for analyses of trends in spatial transcriptomics through
time and how and where spatial transcriptomics technologies are used. In addi-
tion, for historical databases such as for in situ hybridization atlases, a metadata
column indicates whether the database is still available. Metadata for data and code
availability are also recorded. For cDNA microarray and NGS data, accessions in
Gene Expression Omnibus (GEO), Short Read Archive (SRA), database of Geno-
types and Phenotypes (dbGaP), European Nucleotide Archive (ENA), DNA Bank
of Japan, The National Omics Data Encyclopedia (China), and BIG Sub (China) are
recorded when available. For both downstream analysis and package development,
the programming languages used and code repository are recorded when available.
Other metadata specific to certain types of publications are collected as well, such
as whether the method was used to target specific histologically defined regions of
interest (ROI) or to analyze the tissue in a regular grid for microdissection based
methods, and whether the implementation of a data analysis method is packaged
and reasonably well-documented for data analysis publications.

There are some caveats to our review and database. First, while we narrate a history
of evolution of techniques and in some cases explain how one technique influenced
another, we do not present aspects of the history that are not apparent from the pub-
lications. Studying those aspects of the history of the field may require interviewing
the people who developed the techniques, as well as exploration of additional un-
published material. Second, our database was originally only meant for papers,
so relevant materials that are not in presented in that format are underrepresented.
Examples of such materials include databases and software not presented as papers
(e.g. the XDB3 database [27]. This means that the metadata analyses in this book
might not be representative of all material that exists in spatial transcriptomics.
Third, as the curation was done manually and the search engines are imperfect, the
database might not include some relevant literature unknown to us. Please contact
us or open an issue in the GitHub repo of this book if you wish to suggest new
entries to the database.

The database is continuously manually updated daily by screening RSS feeds from
the search terms in PubMed and bioRxiv mentioned above. New entries and the
associated metadata can also be submitted via the Google Form.

https://forms.gle/HjQD9x6AMjR7C62SA
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3.2 Organization of the database and this book
The database is organized as several different sheets for different types of publi-
cations. Many technologies can be classified in several different ways and some
ways are more useful in some contexts than others, and spatial transcriptomics is
no exception. Furthermore, the line between different categories can at times be
difficult to draw and there are gray areas.

Our database starts with articles published in the 1980s to provide historical con-
text of what is now commonly known as spatial transcriptomics; this literature is
summarized in Chapter 4, and historical methods of data analysis are reviewed in
Chapter 5.

The literature is broken down into the following categories, corresponding to sheets
in the database, to be defined and elaborated on in the subsequent chapters. Tech-
nologies to collect data (Chapter 6) can be broadly classified by mechanisms spatial
contexts of samples are obtained: ROI selection (Section 7.1), next generation se-
quencing with spatial barcodes (abbreviated as NGS barcoding, Section 7.4), single
molecular FISH (smFISH) (Section 7.2), in situ sequencing (ISS) (Section 7.3), and
no priori (Section 7.6). Within some of the categories, especially microdissection
and NGS barcoding, are large varieties of mechanisms and gray areas. Methods in
the gray areas and don’t fit nicely into any category are placed in the “Other” sheet.

These technologies can be classified in other ways, such as whether transcripts can
be traced back to individual cells, and whether the spatial context takes the form of
manually selected ROIs or a regular grid or both or neither. These other categories
can cut across different mechanisms to acquire spatial contexts. In addition, studies
using these technologies can be classified: demonstration of new data collection
techniques, reference atlases intended to more comprehensively characterize the
system of interest, characterization of tissues without intending to build reference
atlases, and demonstration of data analysis methods. As the purpose of this database
and book is to systematically document data collection and analysis methods in
spatial transcriptomics, the mechanisms to acquire spatial contexts are used to
structure the database and text; the other ways of categorization are mentioned in
the text to give some perspectives for potential users of data collection techniques
or users of existing datasets.

Data analysis methods (Chapter 9) are placed under the following categories: Pre-
processing (Section 9.1), exploratory data analysis (EDA) (Section 9.2), spatial
reconstruction of single-cell RNA-seq (scRNA-seq) data (Section 9.3), spatially
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variable genes (Section 9.5), archetypal gene expression patterns (Section 9.6), us-
ing transcriptome to identify spatially coherent regions in tissue (Section 9.7), cell
type deconvolution of non-single-cell resolution spatial data (Section 9.4), cell-cell
interaction (Section 9.8), and other types of analyses. These data analysis methods
can also be placed on a upstream to downstream spectrum. Upstream methods
prepare the data to be more amenable to downstream analyses, and downstream
methods aim to give biological relevant information and hypotheses. Then pre-
processing, including cell segmentation in highly multiplexed smFISH images and
obtaining a gene count matrix from fastq files, would be upstream. Quality control
of the gene count matrix and EDA would be downstream from that, followed by cell
type deconvolution, mapping cells to locations, and then spatially variable genes and
cell-cell interactions. The types of data analysis methods are introduced roughly in
the order from upstream to downstream.

In each of the following chapters, besides introducing the relevant technologies,
the literature metadata is analyzed to show relevant sociological trends such as
who is using each technology, usage trends of technologies, and the programming
languages used. The metadata analyses can be run interactively in RStudio Cloud.
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C h a p t e r 4

PREQUEL ERA

Some previous reviews on spatial transcriptomics start the history of spatial tran-
scriptomics with laser capture microdissection (LCM) followed by microarray or
RNA-seq and single molecular fluorescent in situ hybridization (smFISH) in the
late 1990s [1, 2, 3]. We will discuss these later, but note that by 1999 and the early
2000s, when the earliest LCM microarray studies were published [4, 5, 6, 7], the
quest to profile the transcriptome in space had already begun, with enhancer and
gene trap screens, in situ reporter screens, and (whole mount) in situ hybridization
((WM)ISH) atlases. Although this early literature, dating from the late 1980s, gen-
erally does not refer to itself as “spatial transcriptomics”, it fits into the definition of
spatial transcriptomics as stated in Chapter 3.

We call this body of literature “prequel”, because first, its origin predates LCM
microarray. Second, unlike most technologies covered by existing spatial transcrip-
tomics reviews, the techniques used were not multiplexed and were less quantitative,
and as a result, they have fallen out of favor. In contrast, what comes after “prequel”
will be called “current”, although the prequel and current eras chronologically over-
lap. Given what current era spatial transcriptomics is commonly perceived to be,
here “prequel” is broadly defined as methods that fulfill the more relaxed definition
of “spatial transcriptomics” in this book, but do not involve cDNA microarray, next
generation sequencing (NGS), or single molecular imaging.

There are 207 prequel papers in our database. Prequel literature is included in
the database and covered here for the following reasons. First, the legacy of the
prequel era has influenced more recent spatial transcriptomic research; the present
and future are shaped by the past. For example, spatial reconstruction of scRNA-seq
data in Seurat v1 [8], the Achim et al. Platynereis study [9], DistMap [10], and the
Zeisel et al. Mouse Brain Atlas [11] used (WM)ISH atlases as spatial references.
Recent Spatial TranscriptomicsTM (ST) mouse brain data are still compared to the
ISH atlas of Allen Brain Atlas (ABA) [12, 13]. A study on spatial reconstruction of
scATAC-seq data compared the in silico reconstruction to the FlyLight Drosophila
enhancer atlas [14, 15]. Hence prequel resources can still be useful in the current
era. We expand on this in Chapter 6. Second, some features of the prequel era
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may benefit future spatial transcriptomics studies; this will be discussed after more
recent technologies are reviewed. Third, the various quests in the current era have
already begun in the prequel era, and this history can show how the coming together
of new technologies made us better at achieving the previous generation’s dreams.

Fourth, as shown later in this book, existing current era spatial transcriptomics data
are by and large from humans and mice, and especially the brain (Figure 6.4, Figure
4.7). For other model and non-model organisms (e.g. Xenopus laevis [16, 17],
Ciona intestinalis [18], Danio rerio [19, 20], Oryzias latipes [21], Gallus gallus
[22], Taeniopygia guttata [23], and to some extent, even Drosophila melanogaster
([24, 25], some tissues other than the brain (e.g. lung [26] (prior to the increase
interest following the COVID pandemic), retina [27], genitourinary tract [28], and
miRNAs [29, 30, 31, 32, 33, 34] [34], the most comprehensive spatial transcriptomic
resources, if any are are available at all, are still (WM)ISH atlases. For plants, the
most comprehensive resources can still be enhancer and gene trap screens [35, 36].
Hence, while current era technologies may produce more quantitative and highly
multiplexed data, they have not completely superseded (WM)ISH atlases. This may
be likened to the Jet Age in the history of aviation. While massive jet airliners
made aviation available to the masses so when most people fly they fly with jets, jet
airliners have not completely superseded airplanes with reciprocating engines and
propellers; the latter are still very common in general aviation. Finally, the historical
literature is curated for the same reason why museums and libraries keep historical
maps and scientific works that have been superseded by more recent work; it is part
of our heritage.

An overall timeline for prequel techniques is shown in Figure 4.1, which will be
discussed in more detail in the rest of this chapter.

4.1 Enhancer and gene traps
Long before the advent of reference genomes for common model organisms, the
quest to characterize genes based on expression pattern in space had already be-
gun. The earliest high-throughput efforts to identify and characterize such genes
were enhancer traps. To the best of our knowledge, the first use of a reporter to
visualize gene expression in space was reported in 1983. It used lacZ fused to
sequences upstream to the hsp70 gene encoding a heat shock protein in Drosophila
melanogaster and inserted into the genome with P element to characterize the puffs
formed in polytene chromosomes and the tissue distribution of hsp70 in response to
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Figure 4.1: Timeline of prequel techniques.

heat shock [37].

The first enhancer trap screen in Drosophila melanogaster was published in 1987
[38]O’Kane and Gehring 1987. The P element is a transposable element found in
Drosophila. In an enhancer trap vector, a reporter gene, such as lacZ, here with the
polyadenylation site of the hsp70 gene, and a marker gene with its own promoter
that can be used to identify individuals and their offspring with the vector integrated
into the germline, such as rosy which can be used in Drosophila to identify the
individuals with eye color, are flanked by the 5’ and 3’ ends of the P element
necessary for transposition (Figure 4.2). The vector is injected into Drosophila
embryos before the formation of pole cells [39]. As a transposon, the construct is
randomly inserted into the genome, and since the P element promoter is so weak
that an enhancer is required for the promoter to drive transcription of the reporter
gene, the location of the reporter gene expression marks where the enhancer is
active. As the transposon is inserted into different locations of the genome in
different individuals, each individual that has the vector integrated into the germline
forms a transformant line. In Drosophila, in many cases, expression patterns of
𝛽-galactosidase do reflect expression pattern of a nearby gene [40, 41].

Since then, different vectors have been developed for better efficiency and flexibility
[43], and enhancer traps have been applied at increasing scale. The 1987 study
recovered 39 lines [38], possibly characterizing 39 genes, but already in 1989, over
3000 lines were possible in one study [44]. Enhancer trapping was also adapted to
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Figure 4.2: Illustrations of enhancer trap as described in ([38]O’Kane and Gehring
1987) and gene trap as described in ([42]Gossler et al. 1989) (Created with BioRen-
der.com).

other species, such as mouse [42, 45] and Arabidopsis thaliana [46].

Enhancer traps were not intended to be mutagenic [38], nor is it highly mutagenic
[43]. Gene trap and promoter traps were introduced to not only screen for genes
with restricted expression patterns, but also to enable functional analysis of the gene
from homozygote mutant phenotypes [47]. Like the typical enhancer trap vector,
gene trap and promoter trap vectors contain a reporter gene, such as lacZ (𝛽-gal),
to visualize gene expression, and sometimes also a marker to screen for integration,
such as the neomycin resistance gene (neo). Though often, lacZ itself, or in a fusion
with neo (𝛽-geo), was also used as the marker when screening mouse embryonic
stem (ES) cells (Figure 4.2).

Unlike the enhancer trap vector, gene trap and promoter trap vectors do not have a
promoter for the reporter, though the marker, if present, can have its own promoter.
In a promoter trap, the construct needs to be inserted in frame and in the correct
orientation into an exon of a gene to be expressed, making it very inefficient [47,
43].
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In contrast, in gene traps, a splice acceptance site is added to the 5’ end of the
reporter, so the construct can be expressed when inserted into an intron at the right
orientation; this is over 50 times more efficient than a promoter trap because introns
tend to be much longer than exons and the construct does not have to be in frame to
an exon [47, 43]. Gene traps and promoter traps are mutagenic as the reporter has a
stop codon, thus truncating the endogenous protein.

While enhancer traps are more commonly used in Drosophila, gene traps are more
commonly used in mice. In mice, in 1988, the enhancer trap vector was initially
introduced by injection into the male pronucleus in the fertilized egg [45]. The
throughput of the screen is increased by inserting the construct into genomes of ES
cells by electroporation or retroviral infection [43], screening for ES cells expressing
lacZ or the marker, injecting these ES cells into blastocysts to generate chimeric
mice to characterize gene expression patterns; chimera are especially useful for
characterizing dominant and lethal mutations [47, 42].

The first gene trap screen in mouse ES cells was reported in 1989 [42], recovering
14 lines. Again, variants of the vector emerged and gene trap screens increased in
scale. In 1995, nearly 300 mouse gene trap lines were recovered from one study
[48]. Later, smaller gene trap studies specific to particular types of genes made
possible by additional steps to screen ES cell colonies were performed, such as
genes encoding membrane and secreted proteins [49], genes responding to retinoic
acid [50], and genes expressed in hematopoitic and endothelial lineages [51]. In
2001, gene trapping was used to examine not only expression pattern of genes in
cell bodies of neurons in the mouse brain, but also axon guidance [52]. By 2001,
a number of gene trap consortia have been established as resources of gene trap
vectors and transformant mouse ES cell lines, hoping to create at least one line for
each gene in the mouse genome [43].

In the 1980s and 1990s, with increasing throughput of Sanger sequencing and the
advent of shotgun sequencing, the amount of sequencing data in GenBank exploded
[53]. With 5’ or 3’ rapid amplification of cDNA ends (RACE) PCR, the fusion
transcript of the reporter and an endogenous gene could be cloned [54], sequenced,
and potentially aligned to the existing sequences to identify the gene of interest
[51]. However, the golden age of gene trapping was soon to pass, with the rise of
ISH atlases in the late 1990s and the advent of reference genomes of Drosophila
melanogaster [55], mouse [56], and human [57, 58]Lander et al. 2001 in the early
2000s that would make it easier to design ISH probes from the reference genome
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to target annotated genes, as is done today. Nevertheless, enhancer and gene traps
were not rendered obsolete by these developments. They have been used in plants
and zebrafish through the 2000s and 2010s, as resources of gene expression patterns
[35, 36, 59, 60, 61, 62] (Figure 4.3).

4.2 In situ reporter
In enhancer, gene, or promoter trap screens, the reporter is randomly inserted into
the genome, not targeting predetermined genes. In contrast, in what we call in situ
reporter screens, the reporter is fused to predefined regulatory sequences of a gene of
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interest, with the hope that expression pattern of the reporter would recapitulate that
of the gene of interest. Chronologically, this is the second type of high throughput
method to profile gene expression patterns (Figure 4.3).

A precursor to this type of method was used in 1991, where random genomic frag-
ments were fused to a lacZ reporter lacking a transcription start signal and injected
as plasmids, screening for fragments driving lacZ expression and characterizing the
expression patterns in C. elegans [63]. To the best of our knowledge, the first time
in situ reporter with predefined regulatory sequences was used to screen for gene
expression patterns in a multicellular organism, was in 1995, in C. elegans [64]. At
that time, the C. elegans genome sequencing project was already in progress [64,
65], and the genome sequence was declared “essentially complete” in 1998 [66].
Computationally predicted upstream regulatory sequences of 35 putative genes were
fused to a promoterless lacZ as a reporter, cloned into plasmid vectors, and microin-
jected into C. elegans gonads to create transformed lines then stained with X-gal
[64].

A reliable in situ reporter was first reported in mice in 1997. It used a recombinant
bacterial artificial chromosome (BAC) with part of the full RU49 gene in the BAC
replaced by a lacZ construct and showed that the construct is heritable [67]. In
2003, a similar strategy, replacing coding sequences of genes in BACs with EGFP
reporter gene, was used to create a mouse brain gene expression atlas GENSAT
with BAC transgenic mouse lines [68]. The GENSAT lines were used again in 2009
to create a gene expression atlas for retina [69]. Again, GENSAT benefited from
the reference genome, which greatly helped with identifying BACs that include
sequences flanking a gene that may contain regulatory elements that make the
reporter better recapitulate expression pattern of the endogenous gene [68].

Through the 2000s and 2010s, in situ reporters have been used as a targeted al-
ternative to enhancer and gene trap screens informed by the reference genomes.
To address limitations of gene traps, such as inability to precisely define the allele
and favoring genes expressed in ES cells when screening for transformant colonies,
high-throughput mouse knock out resources with knock out alleles computationally
designed according to a reference genome and annotations have been established
[70, 71]. As these alleles contain a lacZ reporter, these resources have been used
to characterize gene expression in over 40 tissues in mutant mice with lacZ staining
[72, 73, 74]. However, for some tissues, only low resolution whole mount staining
was performed. Similarly, in both mouse [75] and Drosophila [14, 76], transgenic

http://www.gensat.org/index.html


64

lines with genomic fragments containing putative enhancers driving expression of
reporter genes were established as alternatives to enhancer traps. The enhancer can-
didates can be selected from sequence homology and ChIP-seq predictions [75], or
from tiles of sequences flanking genes thought to have restricted expression patterns
or within introns of such genes [14].

In situ reporter atlases exceeded the scale of enhancer and gene trap screens. The
largest such atlas in C. elegans, WormAtlas, profiled 1886 genes [77]; we are un-
aware of enhancer and gene trap screens in C. elegans because C. elegans genome
sequencing was already underway by 1992 [65], making in situ reporter screen-
ing feasible before it was so in mice and Drosophila. The largest such study in
Drosophila profiled 7705 enhancer candidates [76], which far exceeded the 3768
enhancer trap lines in 1989 [44]. In situ reporters were used in mice to profile up
to 536 genes [69] and 329 enhancer candidates [75], while the large scale gene trap
screen in 1995 only reached 279 lines [48] and later mouse gene trap screens did
not typically exceed 100 lines. However, where comparable, in situ reporter atlases
never reached the scale of (WM)ISH atlases, perhaps because of the large number
of transgenic lines required. Allen Brain Atlas (ABA) profiled over 20,000 genes
in the mouse brain, and as of April 2021, the Berkeley Drosophila Genome Project
(BDGP) WMISH atlas already has 8533 genes. However, in situ reporters might
still be a good way to profile enhancer usage in space.

4.3 ISH and WMISH atlases
In situ hybridization was first used in 1969 to visualize ribosomal RNA (rRNA) [78]
and ribosomal DNA (rDNA) [79] in Xenopus laevis oocytes with probes labeled
with radioisotope 3H (Figure 4.1). To the best of our knowledge, the earliest use
of ISH to visualize what was thought to be a specific transcript was done in 1973,
to visualize globin mRNAs in various cultured erythroid and non-erythoid cell
types by hybridization of radiolabeled cDNA to the mRNA [80]. As radioactive
ISH requires long exposure time (several weeks), has low spatial resolution and
high background, and requires handling hazardous radioactive material, alternatives
emerged in the mid 1970s and early 1980s. Among the alternatives were variants
of FISH and labeled probes detected by primary and enzyme or fluorophore labeled
secondary antibodies [81, 82]; the latter, immunological method is commonly used
in ISH and WMISH atlases. To the best of our knowledge, the first report of using
immunological fluorescent and peroxidase ISH to visualize expression of a specific
gene was published in 1982, the same year such a technique was published [82],

https://portal.brain-map.org
https://insitu.fruitfly.org/cgi-bin/ex/insitu.pl
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visualizing actin transcripts in chicken muscle tissue culture; the authors reported
puncta of cytoplasmic fluorescence which might be clumps of mRNAs or artefact,
but could possibly be individual transcripts [83].

Non-radioactive ISH not only has shorter exposure time and higher resolution than
radioactive ISH, but also made WMISH possible. WMISH was first reported in
Drosophila embryos in 1989 [84], and was adapted to other model organisms such
as mice, Xenopus laevis, and Paracentrotus lividus (purple sea urchin) in the early
1990s [85]. Advantages of WMISH compared to section ISH is preservation of 3D
structure of the tissue, ease of interpretation in blastoderm stage embryos, and ease
of performing ISH on larger number of embryos [85, 84].

Just like genome sequencing in multi-cellular organisms and in situ reporter screens,
WMISH atlases got a head start in C. elegans. The first WMISH screen with higher
throughput than typically used on select marker genes was reported in 1994, of 21
genes in C. elegans [86]. Early (WM)ISH atlases in the late 1990s typically made
probes from cDNA clones from poly-A selected RNAs in tissue or developmental
stage of interest without pre-selecting genes to stain for [24, 87, 88, 89]. Some
early atlases were intended to be improvements to enhancer and gene trapping and
in situ reporter screens, as a simpler and more direct alternative [89] or as a way
that can better capture endogenous and dynamic spatial distribution of transcripts
[88]. Since 1998, (WM)ISH has been automated, enabling staining for thousands
of probes [88, 90].

The genes from which the clones come from were often unknown, so early (WM)ISH
atlases referred to the entities stained for as “clones” (Figure 4.4), though the genes,
homology, and putative functions of the genes can be identified by aligning sequences
of the cDNA clones to existing sequences in databases [89, 88, 91]. However, again,
the first WMISH screen with probes made from cloning PCR amplified pre-defined
genomic sequences was performed in C. elegans in 1995 [92]. By the turn of the
century, the entities stained for were sometimes referred to as “clusters”, especially
in the GHOST atlas for Ciona intestinalis [18] (Figure 4.4); the sequences of the
probes were clustered by alignment and these probes might have come from the
same gene.

The rise of (WM)ISH atlases started before the completion of genome projects in
humans and common model organisms, although their later growth was transformed
by the reference genome. In the 2000s, with the availability of sequenced cDNA
collections covering increasing proportion of predicted genes and the consequent
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rise of transcriptome-wide microarray [87, 93], genes to be stained for in (WM)ISH
atlases could be pre-screened based on microarray data of the tissue of interest, with
probes made from cDNA clones readily available from such collections [94, 95].
In addition, probes could be computationally designed based on reference genome
sequences [96]. Perhaps because of these developments, since the turn of the
century, entities stained for have been predominantly referred to as “genes” (Figure
4.4). Notably, while radioactive ISH has been mostly replaced by non-radioactive
ISH by the 2000s, there is a mouse hippocampus ISH atlas published in 2004 that
used radioactive ISH to profile all of its 104 genes [95].

Also with the rise of cDNA microarray in the late 1990s and early 2000s, some
(WM)ISH atlases were made as an improvement to microarray with bulk tissue to
profile the transcriptome, not only at cellular resolution, but also preserving spatial
and sometimes temporal context [96, 22], analogous to how scRNA-seq and various
later forms of spatial transcriptomics were developed in response to bulk RNA-seq.

Since the 2000s, (WM)ISH atlases have been made for specific types of genes
and a number of mouse tissues. In 2004, locked nucleic acid (LNA) modified
oligonucleotide probes were introduced, greatly improving sensitivity of miRNA
northern blot [97] and made (WM)ISH atlases for miRNAs possible. The first
miRNA WMISH atlas was published in 2005, which profiled 115 miRNAs in
zebrafish embryos [33]. Since then, miRNA atlases were created for mice [30, 31,
98], Drosophila [32], chicken [34], and Xenopus laevis [29].

While (WM)ISH atlases are available for several species, the mouse is by far the
favored model organism (Figure 4.5). A timeline of the first (WM)ISH atlas for
each of the species and some notable atlases are shown in Figure 4.6. Especially
for mice, atlases for other specific types of genes were published in the late 2000s
and the 2010s, such as genes coding for RNA binding proteins [99], fibroblast
growth factors and their receptors [100], proteins with catalytic activities [101],
transcription factors and cofactors [102], metabolic enzymes and soluble carriers
[103], cholesterol biosynthetic enzymes [104], and ion channels (in rats) [105].
Among the mouse atlases, while the brain gets disproportionately strong interests,
with the influential ABA [96] and GenePaint [90], ISH atlases exist for the eye [106,
27], genitourinary tract (GenitoUrinary Development Molecular Anatomy Project
(GUDMAP)) [28], and lung (LungMAP) [26] (Figure 4.6, Figure 4.7).

While the vast majority of (WM)ISH atlases used bright field imaging, a few used
FISH (Figure 4.3), for advantages conferred by FISH discussed below. A notable

https://portal.brain-map.org
https://gp3.mpg.de
https://www.gudmap.org
https://www.gudmap.org
https://lungmap.net
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FISH atlas is the Berkeley Drosophila Transcription Network Project (BDTNP) from
2006 to 2008, which profiled expression patterns of 95 genes in the Drosophila em-
bryo across 6 developmental stages up to the beginning of gastrulation [107, 25].
Two genes are imaged in each embryo, and the images of 1822 embryos were
registered across both space and time to construct 3D virtual embryos on which
patterns of different genes can be quantitatively compared [107]; the 3D imaging
and penetration into the opaque yolk is made possible by two photon microscopy, in
which only the fluorophores in the region of focus are excited [25]. Another notable
FISH atlas is Fly-FISH from 2007, which profiled subcellular localization of tran-
scripts of 3370 genes in Drosophila embryos [108]. While subcellular localization
of transcripts can sometimes be discerned in bright field WMISH [24], Fly-FISH
shows higher subcellular resolution thanks to a FISH protocol using tyramide sig-
nal amplification. To our best knowledge, this is the first transcriptomic atlas of a
multi-cellular organism to profile subcellular transcript localization. While more
recent smFISH-based methods record subcellular information, such information is
typically not used in downstream analyses.

WMISH was the most commonly used technique in the prequel era, followed by

http://www.cb.uu.se/~cris/BDTNP_Imaging.html
http://fly-fish.ccbr.utoronto.ca
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ISH (Figure 4.8). In summary, advances of non-radioactive ISH and WMISH from
radioactive ISH, limitations of enhancer and gene trap and in situ reporter screens,
cDNA collections that cover most of predicted genes, limitations of bulk microarray,
reference genomes that allow for computational probe design, and ISH robots may
have been responsible for the rise of (WM)ISH atlases. Another important factor
may be the rise of digital photography and the internet in the 1990s, as developing
thousands of analogue photos is an arduous task. Moreover, online digital atlases
have been much more accessible to the wider community. Assuming that the number
of publications in a field reflects interest in that field during a period of time, and if
our collection is representative of the actual body of literature, then the golden age
of the prequel era was the 2000s and WMISH was responsible for that peak, while
section ISH and “collection”, i.e. databases of gene expression patterns curated from
publications and some (WM)ISH atlases, account for much of the interest after 2010
(Figure 4.3). The websites of many of the older (WM)ISH atlases are no longer
accessible. However, some of the atlases from that period of time still live on in
extant curated databases, which will be discussed in the next section.

The golden age declined before the rise of current era spatial transcriptomics, which
started around 2014 6.2. What contributed to the decline of the golden age? Perhaps
with proliferation of such atlases, curated databases exceeding 10,000 genes, and
especially with over 20,000 genes in ABA mapped to a high quality 3D mouse brain
model, there are already enough gene expression pattern resources for the most
commonly studied genes, tissues (especially the brain), and developmental stages
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in the most common model organisms, thus making new atlases in those systems
unnecessary. Moreover, in the last decade, the under-utilization of gene expression
atlases [109] may have reduced motivation to build new atlases. Or perhaps, more
importantly, inherent limitations of non-multiplexed (WM)ISH contributed to the
decline in interest in such methods. In these atlases, typically only one gene is
stained for in each individual embryo or tissue section. Gene expression patterns of
different genes can only be meaningfully compared and classified in tissues with a
stereotypical structure, such as wild type embryos and the brain, but not tumors and
pathological tissues, even though there is intense interest in spatial transcriptomics
in tumors as evidenced by the LCM and ST literature 8.3. A large number of
embryos or sections are required for such atlases, thus increasing cost and making
human atlases extremely difficult and costly, if ethical at all. Furthermore, since
the chromogenic reaction in bright field ISH can be prolonged to increase staining
intensity, the patterns are not quantitative and consequently, analyses of such patterns
typically involve binarization and quantitative expression levels of genes cannot be
compared. Even with a stereotypical structure, image registration can be challenging
because of biological differences between individuals [107].

4.4 Databases of the prequel era
Many of the (WM)ISH atlases discussed above, such as BDGP [24], Gallus In Situ
Hybridization Atlas (GEISHA) [22], ABA [96], BDTNP [107], GUDMAP [28], and
LungMAP [26] are stored in databases that can be queried online, typically by gene
symbol or by controlled anatomical or developmental vocabulary (i.e. ontology,
reviewed in depth in [110]. There are additional gene expression databases for
images curated from publications, some containing non-spatial data as well and
some specifically for spatial data.

The rise of the curated databases started in the 1990s. Already in 1992, the chal-
lenges of managing the increasing amount of gene expression data in developmental
biology emerged and a spatiotemporal database of mouse gene expression that
would later become the Edinburgh Mouse Atlas of Gene Expression (EMAGE)
was discussed [111]. In 1994, Jackson Laboratory proposed the Gene Expression
Database (GXD) [112], in collaboration with EMAGE to build the most compre-
hensive mouse gene expression database. In 1997, work was already in progress to
produce (WM)ISH atlases and construct the database infrastructure for mouse [113]
(GXD and EMAGE), Drosophila melanogaster [114], C. elegans [115], and ze-
brafish [116]. Curated databases of mice (GXD and EMAGE), zebrafish (Zebrafish

http://geisha.arizona.edu/geisha/
http://geisha.arizona.edu/geisha/
http://www.emouseatlas.org/emage/home.php
http://www.informatics.jax.org/menus/expression_menu.shtml
http://zfin.org
http://zfin.org
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Figure 4.9: Number of extant spatial gene expression databases per species.

Information Network (ZFIN) [117]), and Xenopus laevis (Xenbase [16]) were re-
leased in the 2000s, within a tide of (WM)ISH atlases for new species (Figure 4.6).
Some of these databases are regularly updated and the updates are responsible for
many of the “collection” publications after 2010 (Figure 4.3, Figure 4.8); our his-
torical literature collection has not only the original publications for the databases,
but also publications for later updates that involve new spatial gene expression im-
ages. Examples of other extant curated databases: for Drosophila melanogaster
FlyExpress [118], for Xenopus laevis XenMARK [119], and for ascidians Ascid-
ian Network for In Situ Expression and Embryological Data (ANISEED) [120].
Databases, curated or not, are available for several species; mice, Drosophila, and
zebrafish have the most extant databases (Figure 4.9).

Data can be exchanged between databases. For example, among mouse databases
GenePaint [90] and EMAGE now contain data from Eurexpress [31, 109], and
EMAGE uses data from GXD for the 3D gene expression models [121]. ANISEED
contains data from WMISH atlases GHOST for Ciona intestinalis [18] and MAboya
Gene Expression patterns and Sequence Tags (MAGEST) for Halocynthia roretzi
[122]. FlyExpress contains data from Drosophila atlases such as BDGP and Fly-
FISH. Data in databases that ceased to operate may still be available in extant

http://zfin.org
http://zfin.org
http://zfin.org
http://www.xenbase.org/entry/
http://www.flyexpress.net
http://genomics.crick.ac.uk/cgi-bin/search.exe
https://www.aniseed.cnrs.fr
https://www.aniseed.cnrs.fr
http://www.eurexpress.org/ee/
http://ghost.zool.kyoto-u.ac.jp
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databases. For instance, AXelDb WMISH atlas and database for Xenopus laevis
[88] has been subsumed in Xenbase while AXelDb’s own website has long been
defunct. Likewise, as of April 2021, the MAGEST website is defunct but the data
lives on in ANISEED.

Some of the databases go beyond collecting data from other databases. Databases
such as EMAGE, ANISEED, and ABA registered multiple 2D section images to
map gene expression patterns onto 3D anatomical models for better comparison
between different genes. FlyExpress also standardized the images from the atlases
and enables search for coexpressed genes by expression pattern [118]. There have
also been efforts to integrate databases from multiple model organisms. In 2007,
COMPARE [123] and 4DXpress [124] were developed to make gene expression pat-
terns and developmental stages in zebrafish, mouse, and Drosophila (also medaka
in 4DXpress) comparable. While COMPARE and 4DXpress are no longer avail-
able, interest in integrating the databases continues, so in 2016, the Alliance of
Genome Resource was founded, producing a unified user interface to genome and
gene expression databases for Saccharomyces cerevisiae, C. elegans, Drosophila
melanogaster, mouse, rat, and zebrafish [125], although spatial patterns are not its
focus.

4.5 Geography of the prequel era
Where were prequel era research conducted? Our database includes affiliation of the
first author as of publication for all papers, and the affiliations have been geocoded to
plot on maps. Around the world, most of prequel studies were performed in coastal
US and Western Europe, but a some studies were performed in Asia and Ocea-
nia, but especially Japan (Figure 4.10). Not all of the top contributing institutions
are readily recognizable “elite” institutions. Institutions include BDGP from UC
Berkeley, ZFIN from University of Oregon (UO), ABA from Allen Brain Institute
(Allen), GEISHA from University of Arizona (UofA), GXD from Jackson Labora-
tory (JAX), EMAGE from Western General Hospital (WGH), MEPD (for Oryzias
latipes) from European Molecular Biology Laboratory (EMBL), and GHOST from
Kyoto University (Kyodai), and mouse gene trap lines from Mount Sinai.

This can be better visualized by breaking the map down by species. Here we
see locations of some model organism consortia, and that GHOST is a result of
collaboration of multiple Japanese institutions (Figure 4.14).

That some institutions have disproportional contribution of one technique can also be

https://www.embl-heidelberg.de/mepd/
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Figure 4.12: Number of prequel publications in western Europe, with top contribut-
ing institutions labeled.

shown. Here it’s clear that prequel techniques are used by many different institutions
(Figure 4.15). In contrast, as will be shown in Chapter 6, most current era techniques
never spread beyond their institutions of origin. The LCM study comes from Allen
Brain Institute’s atlases for Allen’s mouse sleep deprivation atlas [126] and human
glioblastoma atlas [127]; although LCM is a current era technique, those two studies
are in the prequel sheet because they also have ISH atlases.
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C h a p t e r 5

DATA ANALYSIS IN THE PREQUEL ERA

From the earliest days of enhancer and gene traps to the (WM)ISH atlases, identify-
ing genes with spatially and temporally variable expression patterns, comparing and
classifying the patterns, identifying new marker genes of cell types and develop-
mental stages, and using gene expression to redefine cell types have been among the
goals of the studies [1, 2, 3, 4, 5, 6, 7]. In the prequel era, these were typically done
manually, which, with the growing size of atlases in the 2000s, was time consuming
and potentially inconsistent between curators. Thus, computational methods were
developed to analyze images from the (WM)ISH atlases. This chapter reviews data
analysis methods designed for (WM)ISH atlases and does not involve scRNA-seq
data; methods involving both (WM)ISH and scRNA-seq are reviewed in Chapter 9
for the current era because scRNA-seq is at present a popular and rapidly growing
field, too in vogue to be considered “prequel”. If our collection is representative,
then the rise of prequel data analysis methods arrived much later than that of data
collection (Figure 5.1).
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analysis literature. Number of publications in each time bin for each species is
highlighted in the facets.

Except for one study on Platynereis dumereilii in 2014 [8], on Xenopus tropicalis in
2018 [9], one on post mortem human brain in 2021 [10], all data analysis methods in
our collection were designed for either Drosophila melanogaster or Mus musculus
(Figure 5.2). There seem to have been two waves; the first for Drosophila, peaking
in the late 2000s, mostly concerning the BDGP in situ atlas, and the second for mice,
peaking in early 2010s, mostly concerning ABA (Figure 5.2). The apparent rise
since 2019 is in part driven by deep learning methods to annotate gene expression
patterns or infer gene interactions. Given the small number of publications in this
category and potential incompleteness of the curation, the trends should be taken
with a grain of salt.
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5.1 Gene patterns
The most common goal of these data analysis methods was to annotate and compare
gene expression patterns, especially to automate annotation of the BDGP atlas
(Figure 5.3). It seems reasonable to focus on 4 phases in this category: first,
in early to mid 2000s, after image registration, the images were binarized into
“expressed” and “not expressed” regions, and the shapes of the expressed regions
were summarized and compared. Metrics to summarize the shapes included moment
invariant [11, 12], Hamming distance [13], and a weighted score involving L1
distance between column or row histograms of two images [14]. These unsupervised
methods enabled clustering of patterns and querying genes with similar patterns to
a given gene.

Second, from the mid 2000s to mid 2010s, many supervised and unsupervised
methods for gene expression pattern annotation or comparison were developed. In
supervised methods, extensive feature engineering more sophisticated than bina-
rization was performed on registered images for image annotation with machine
learning classification. These methods were trained with existing BDGP annota-
tions and developed to automatically annotate the BDGP expression patterns with
controlled vocabulary (CV) of anatomical regions where genes were expressed. In
BDGP, a gene gets annotated with a CV if the gene was deemed expressed in the
anatomical region and developmental stage denoted by the CV, so the annotation
typically contained a list of CVs.

The feature engineering can be based on the wavelet transform [15] and Fourier
coefficients [16], but a particularly popular feature engineering method was scale-
invariant feature transform (SIFT) [17, 18, 19, 20]. A method published in 2009
that used SIFT followed by bag of words where “word” is a k means cluster (code
book) was quite influential [20]; several later methods were inspired by this method,
with improved code books [21, 22, 23, 24]. The most common classifier that take
in the features to predict annotations is support vector machine (SVM) [21, 23] or
multi-label variants of it [18, 20].

Unsupervised methods rely on clustering algorithms after images are registered on a
common mesh, such as affinity propagation clustering [25] and co-clustering (rows
and columns of matrix are clustered simultaneously) [26, 27].

Third, another notable type of the feature engineering is dimension reduction. In
2006, some methods applied dimension reduction methods such as principal com-
ponent analysis (PCA) and independent component analysis (ICA) to the registered
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https://iq.opengenus.org/manhattan-distance/
https://docs.opencv.org/master/da/df5/tutorial_py_sift_intro.html
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https://machinelearningmastery.com/gentle-introduction-bag-words-model/
https://medium.com/analytics-vidhya/k-means-clustering-explained-419ee66d095e
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/unsupervised-machine-learning-affinity-propagation-algorithm-explained-d1fef85f22c8
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99

Other

gene function

gene interaction

spatial region

gene patterns

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

Date published

N
um

be
r 

of
 p

ub
lic

at
io

ns

Mus musculus Drosophila melanogaster Homo sapiens Other

Figure 5.3: Number of publications in each time bin for each category of data
analysis is highlighted in the facets.

images to find “eigen” patterns [28, 29]. Instead of PCA or ICA, the dimension
reduction can also be sparse Bayesian factor analysis [30], sparse dictionary learn-
ing [31], and non-negative matrix factorization (NMF) [32, 33]. The dimension
reduction can be used for unsupervised clustering of genes [28, 29, 30], as well as
supervised classification methods such as SVM and logistic regression to annotate
gene expression patterns with controlled vocabulary [30, 33]. Notably, in NMF,
both the matrix for basis patterns and the coefficient matrix for the genes tend to
exhibit block structures; the blocks in the gene coefficient matrix have been used to
cluster genes [32].

Fourth, since 2015, convolutional neural networks (CNNs) have been adopted to

http://www.cs.cmu.edu/~11755/lectures/Lee_Seung_NMF.pdf
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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analyze gene expression patterns. Typically, a pre-trained model, such as ResNet50,
OverFeat, or Alexnet is used. With some modifications or retraining of the original
model, the model can be used to extract features for gene pattern annotation with
logistic regression [34], classifying new patterns [35], and predicting interactions
between genes [36].

5.2 Spatial regions
Closely related to classifying gene expression patterns are these questions: What
are the implications of gene expression patterns to traditional anatomical regions
as in the CV? Can we discover novel anatomical regions from gene expression?
How well do expression-based regions correspond to the traditional regions? A few
studies, which we call “spatial region”, tried to answer these questions in the ABA
(Figure 5.3). Clusters of expression patterns of cell type specific genes [37], or the
most localized genes [38], principal components of the patterns [39], or patterns
of coexpression modules were compared to traditional anatomy [38]. At least in
the mouse brain, with the principal components, these clusters may correspond to
traditional anatomy quite well [39]. However, when cell types are taken into account
in clustering, gene expression seems to be able to refine traditional anatomy [37,
38].

A clustering strategy for identifying spatial regions that takes the spatial neighbor-
hood into account is Markov random field (MRF). In MRFs, nearby voxels can be
made to be more likely to share a label, which can be cell type or histological region,
and the probability of a voxel taking each of the labels only depends on labels of
neighboring voxels. MRFs were used to delineate spatial regions in a 3D FISH
atlas of the developing Platynereis dumereilii brain [8], with 86 high quality genes.
The images in the atlas were aligned into a 3D model and broken into voxels 3
𝜇m per side, which is smaller than a typical single-cell; the spatial neighborhood
graph is the 3D square grid of the voxels. As FISH is not very quantitative, the
gene expression was manually binarized. Expression of each gene at each voxel is
modeled with a Bernoulli distribution, and the 86 genes are assumed to be inde-
pendent. Cluster label assignment is modeled with Potts model, a type of MRF in
which only neighboring voxels with the same label contribute to the probability dis-
tribution of the labels, thus favoring neighbors with the same label. The parameters,
such as interaction strength between neighboring voxels for the Potts model and the
probability parameter of the Bernoulli distributions are estimated with expectation
maximization (EM).

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/lec23.pdf
https://platynereis.github.io/
https://mathworld.wolfram.com/BernoulliDistribution.html
https://en.wikipedia.org/wiki/Potts_model
http://ai.stanford.edu/~chuongdo/papers/em_tutorial.pdf
http://ai.stanford.edu/~chuongdo/papers/em_tutorial.pdf
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5.3 Gene interactions
While not single-cell resolution, (WM)ISH atlases provide transcriptomes within
the tissue at a resolution far higher than that of typical bulk RNA-seq and bulk
microarray, thus opening the way to studying coexperssion and interaction between
genes within the tissue. There are a few methods that aim to decide whether two
genes interact according to (WM)ISH images, some dating published long before
the popularization of scRNA-seq. Already in 2002, an early method that compares
binarized gene expression patterns was used to identify interactions among genes
by comparing patterns from wild type and mutant backgrounds [13].

However, as mutant lines are harder to obtain than wild type images, the simplest
method is to set a threshold in Pearson correlation coefficient between two genes to
decide an edge should be drawn on the gene coexpression graph [33, 40].

Alternatively, a sparse Markov network whose nodes are genes and edges are pres-
ence of interaction can be learnt from expression profiles in each voxel [41], or a
CNN can be trained on known interactions and predict new interactions based on
gene expression patterns [36]. There are other types of analyses, such as inferring
gene function from expression pattern, identifying spatially variable genes, and gene
expression imputation at locations. The latter two are still important topics in current
era data analysis.

5.4 Decline
What contributed to the decline of the golden age of prequel data analysis? Partly a
lack of usage of the methods developed, which was exacerbated by the decline of the
golden age of (WM)ISH atlases in the 2010s so there were fewer new atlases where
the methods can be applied (Figure 4.3). While many methods to automate gene
expression pattern annotation for BDGP were developed before 2013, for the 2013
BDGP update that added images of 708 transcription factors, the BDGP annotated
the new images with human curators instead of the automated methods [42]. Nor
did BDGP use the new methods to compare and classify the new gene expression
patterns; instead, the curator assigned CV annotations were used for analysis [42,
43]. BDGP did not have a major update after 2013; as existing images have already
been annotated, there is no need to automate annotations.

There are additional possible reasons why these methods were not used: First, it is
unclear from the publications of the methods where the software implementation can
be obtained. Second, a reason why most prequel analysis methods were developed

https://www.questionpro.com/blog/pearson-correlation-coefficient/
http://ml.informatik.uni-freiburg.de/former/_media/teaching/ws1314/gm/11-markov_logic_networks.handout.pdf
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for either BDGP or ABA is that since one gene is stained for in one embryo/section
at a time, the images must be registered and standardized for different genes to
be comparable; BDGP, through FlyExpress [44], and ABA, provide images that
have already been registered and standardized, while many other atlases, such as
GEISHA, do not. Due to challenges in image registration in other organisms, the
automated gene expression pattern analysis methods can’t be applied. Third, lack of
usage of these methods can also be due to insufficient accuracy; from 2009 to 2013,
the area under the curve (AUC) of the automated annotations is typically around
0.8 and rarely exceeded 0.9 [20, 30, 23, 21], which means when using such tools to
annotate new images, extensive human review would still be required.

5.5 Geography of prequel data analysis
If our collection is representative, then contribution to prequel data analysis con-
centrates in a few institutions (Figure 5.4), not all of which are elite.

When broken down by species, it seems that distinct institutions contributed to
data analysis of Drosophila and mouse data. UC Berkeley and Lawrence Berkeley
National Laboratory (LBL) are responsible for BDGP, and Allen is responsible for
ABA. However, among the top contributors are other institutions such as Arizona
State University (ASU) and Old Dominion University (ODU) (Figure 5.6).
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C h a p t e r 6

FROM THE PAST TO THE PRESENT

6.1 Legacy of the prequel era
The current era continues many of the quests of the prequel era, such as to profile the
transcriptome in space, to identify genes with restricted expression, to classify gene
expression patterns, to build reference gene expression atlases for model systems,
and to infer anatomical regions based on gene expression. While the prequel era
also sought to identify cell type markers, this has been taken over by non-spatial
transcriptomics, which has been used to identify marker genes to stain for with
spatial transcriptomics methods not easily scalable to the whole transcriptome. As
already mentioned, (WM)ISH atlases can be understood as an improved alternative
to microarray and in situ reporter screens, and the latter can be in turn understood
as an improved alternative to enhancer and gene traps. To some extent, current era
spatial transcriptomics started as an improved alternative to (WM)ISH atlases, to
profile the whole transcriptome in the same cells [1, 2]. On the other hand, part
of current era of spatial transcriptomics can be seen as an improvement to bulk
microarray or RNA-seq [3, 1, 4, 5], and lower throughput single-cell biology [6, 7].

How does the current era relate to the prequel era in general? The current era has
undergone massive growth unseen in the prequel era (Figure 6.2). Unlike in the
prequel era, current era technologies are typically highly multiplexed to quantify
hundreds to thousands of genes if not the transcriptome within the same piece of
tissue. While cell segmentation of bright field (WM)ISH images is challenging,
in some current era technologies, transcripts can be traced back to the individual
cells of origin. Moreover, cost of NGS has greatly decreased, and the most popular
current era techniques—LCM followed by RNA-seq, and 10X Visium—rely on NGS
to quantify transcripts, thus making it much more efficient to profile transcriptomes
in space than with (WM)ISH, let alone enhancer and gene traps.

Again, we may take inspiration from histories of other technologies that have no
doubt undergone revolutions to illustrate where we are in what appears to be a
revolution in progress in part propelled by NGS and greater computing power.
The growing popularity and greatly improved efficiency of current era techniques
compared to those of prequel techniques in applications to thousands of genes may
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be akin to how the safety bicycle relates to the penny-farthing. The advances
from the former has rendered the latter virtually obsolete, and nearly all bikes we
see on the streets today are much more like the safety bicycle in both appearance
and mechanism than the penny-farthing. Since the 1890s, when the safety bicycle
became popular, bicycle technologies have drastically improved. However, most
histories of cycling do mention the penny-farthing and its ancestors such as the bone
shaker, velocipedes (where the “velo” in “velodrome” comes from), and the hobby
horse. Some histories mention bicycles propelled by treadles rather than the familiar
cranks and a 17th century four wheeled human powered vehicle propelled by pulling
ropes from within. Despite these vehicles’ drastically different mechanisms from the
modern bicycle, as these are earlier and less successful attempts to achieve the goal
of devising a human powered land vehicle that travels faster than walking, which
is still one of the primary goals of modern bicycle-related technologies. These
histories are really histories of the quest to achieve that goal.

Moreover, when you see a lightening fast high-tech aerodynamic carbon fiber time
trial bike tested in an aerospace wind tunnel, the penny-farthing is not to be forgotten,
because the former still benefits from legacies from the latter. Roads used to be
unpaved and very rough, and in the US, the paved roads, road signs guiding travelers,
and interstates originated from advocacy by the League of American Wheelmen
(LAW) since 1880, which was the penny-farthing era [8]. The same may be said
for the UK [9]. As the automobile replaced the safety bicycle as the favored mode
of transportation in the 20th century (another revolution in transportation), drivers
are not only benefiting from the better roads advocated by early cyclists but also
the pneumatic tire originally popularized by the safety bicycle. Finally, without
the legacy of LAW’s advocacy, the modern form of fast road racing for which the
high-tech carbon fiber time trial bike is built would not be possible. Today, LAW,
which has been renamed League of American Bicyclists (LAB), is still operational
as a cycling advocacy group.

On the one hand, just like the penny-farthing, which is now obsolete except in
some hobbyist niches, prequel techniques can be seen as earlier and less successful
attempts to achieve the goal to profile expression of as many genes as possible while
preserving spatial context in tissue, less successful attempts whose disadvantages
are addressed in newer and more successful attempts. While enhancer and gene
traps and ISH atlases never completely died off (Figure 4.3), there is no doubt that to
profile expression of larger number of genes in new studies, prequel techniques have
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by and large been replaced by current era techniques. On the other hand, just like
LAW/B, the legacies of prequel spatial transcriptomics directly benefit the current
era.

How has the prequel era influenced the current era? The direct influence does
not seem profound overall when considering all biological systems studied, but is
nevertheless sizable. For mouse brain studies, the Allen Brain Institute and its ABA
do seem to have a bigger influence. The most obvious institutional continuation
between the prequel and current eras is the Allen Brain Institute, which used ISH
for the mouse ISH atlases, LCM and microarray for the human and macaque atlases,
and generated bulk and scRNA-seq datasets as part of the atlases. Allen scRNA-seq
data is often used to benchmark computational methods to map dissociated scRNA-
seq cells to spatial locations in tissue and/or to impute gene expression in space (the
two related tasks are collectively called spatial reconstruction of scRNA-seq here),
with STARmap [10], osmFISH [11], MERFISH [12], and/or Visium [13] mouse
cortex data as the spatial reference [14, 15, 16, 17, 13]; this is an institutional legacy
from the prequel era. Another prequel era institutional legacy is the Jackson Lab
(JAX), home of the prequel GXD, and where many lab mice come from. JAX has
also contributed to the current era with the recent Visium mouse urinary bladder
atlas [18]. The data might soon be available for online exploration with cellxgene
on the JAX single-cell Portal but is not yet available as of writing. However, for
the most part, as shown later in this chapter, prequel and current era data collection
techniques were developed and used in distinct institutions, suggesting that the two
eras are largely sociologically distinct (Figure 6.12). This is not surprising given
that different techniques in the current era are also often developed and used in
largely distinct institutions (e.g. 7.27).

The influence is mainly usage of prequel resources in current era data analysis,
mostly in spatial reconstruction of scRNA-seq data and cross referencing to validate
or interpret computational results. As already mentioned in Chapter 4, early scRNA-
seq spatial reconstruction methods used binarized prequel style WMISH atlases for
zebrafish embryos (Seurat v1) and Platynereis and whole mount FISH atlas BDTNP
for Drosophila as spatial references. Thereafter the Seurat v1 zebrafish WMISH
atlas and BDTNP have been used to benchmark several new spatial reconstruction
methods [15, 19, 17], including methods developed for the DREAM challenge to
map cells to locations with smaller number of informative genes ([20, 21, 22].
However, such benchmarks do not seem to indicate interest in studying the biology

https://singlecell.jax.org/
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of zebrafish and Drosophila development in 3D, as the purpose of such benchmark
is more to validate computational methods than to perform biological inferences.
Furthermore, zebrafish and Drosophila only take up very small proportions of all
current era studies compared to mouse and human (Figure 6.4). For the mouse brain,
the ABA mouse ISH atlas has been used as the spatial reference to quantitatively
map scRNA-seq cell types to spatial locations [23]. The Allen developing mouse
brain ISH atlas was also used as spatial reference to map human brain organoid
scRNA-seq cells to space and mouse developmental stages for interpretation [24].
Here, unlike the WMISH atlases and BDTNP, the ABA is not binarized before
spatial mapping.

With staining for around 20,000 genes, the ABA is more frequently used to qualita-
tively confirm that the computationally imputed gene expression patterns recapitu-
late the ISH staining of the same genes [14, 25, 16, 26, 27]. EMAGE eMouseAtlas
[28] has been used to qualitative validate Geo-seq [29] and DBiT-seq [30] results,
but usage of EMAGE is rare in the current era. In current era ST and Visium, an
H&E image of the tissue accompanies the spatial transcriptome. The H&E image
of mouse brains has been used to manually or computationally align the dataset to
the Allen Mouse Brain Common Coordinate Framework (CCF) [31] to integrate
ABA’s brain anatomical ontologies to new datasets to facilitate interpretation of the
data [32, 33, 27]. Even without H&E, Allen ontologies have been used to manu-
ally annotate HybISS data from the developing mouse brain based on marker gene
expression [34]. In the mouse primary motor cortex (MOp) MERFISH atlas [12],
Allen CCF was used to select the MOp region.

There are over 15 extant mouse databases from the prequel era (Figure 4.9), yet ABA
is exceptional in its impact on the current era. We have never seen any mention
of other prequel mouse databases, such as Eurexpress [35], and GenePaint [36] in
current era literature. This may be due to the following reasons: First, the ABA
is the most comprehensive prequel atlas for the adult mouse brain, with around
20,000 genes for adult mice (P56). As of August 2021, EMAGE has ISH images
for 17,554 genes, Eurexpress has 19,440 (that’s the number of assays, but it seems
that each gene typically has one assay, so it should be close to the number of genes),
and GenePaint contains Eurexpress data and can query ISH data from several other
databases including ABA. EMAGE covers a wide range of developmental stages,
from E0.5 to E18, but not later stages and adults. Eurexpress only covers E14.5.
The Allen developing mouse brain atlas covers from E11.5 to P28, though only with
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about 2000 genes. When the ABA is used in the current era, most of the time the
adult mouse atlas is used.

Second, the ABA has much better infrastructure to facilitate quantitative analyses
of the atlas than the other prequel mouse atlases. Both EMAGE and Eurexpress
have detailed annotation of ISH results for many genes and allow searching for
genes with similar expression patterns. In addition, Eurexpress shows ISH for many
consecutive sections in 3D, and EMAGE has 3D histology models (for morphology
rather than gene expression) at different developmental stages. In addition to these
functionalities, ABA quantified ISH staining and registered the quantified ISH to the
CCF, so just like in scRNA-seq, each voxel would have a vector of gene expression
values. Usage of ABA in the current era mentioned above would not be possible
without the CCF. ABA also has an application programming interface (API) to
automate retrieval of such quantitative data for analyses suitable for the quantitative
nature of the current era. In contrast, we are unaware of such quantification,
registration, and API in other prequel mouse atlases, thus restricting their uses to
be more qualitative. A similar pattern can be seen in Drosophila prequel databases.
BDTNP registered staining from thousands of embryos stained for different genes
onto a common coordinate system. BDTNP data could also be easily downloaded
as csv-like files that can be easily parsed, though as of August 2021, the BDTNP
website is not responsive. As seen in 5, a reason why FlyExpress was commonly
used was that images for different genes were registered in FlyExpress.

6.2 Metadata of the current era
The current era started with LCM followed by microarray in 1999 [5]. Due to the
immense popularity of LCM followed by microarray or RNA-seq, the body of LCM
literature is too vast for unbiased and comprehensive manual curation, so the curated
database does not include most LCM literature, which was instead collected from a
PubMed search and text mined (Figure 8.3, Chapter 8). Because the search results—
without manual inspection and curation—may contain irrelevant entries and miss
relevant ones, they are separated from the curated database in our analyses. Current
era literature in the curated database is classified into Microdissection, smFISH,
ISS, Array, and No Imaging, to be defined in detail in their corresponding sections
below.

http://bdtnp.lbl.gov:8080/Fly-Net/
http://bdtnp.lbl.gov:8080/Fly-Net/
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Table 6.1: Summary of spatial transcriptomics techniques in
the current era

Method Date
published

Category Max #
genes

Min spot
diameter
(𝜇m)

voxelation 2002-02-01 ROI selection Tx wide NA
PA-GFP 2010-11-12 ROI selection Tx wide NA
SRM seqFISH 2012-06-03 smFISH 32 single-cell
Tomo-array 2012-09-19 ROI selection Tx wide NA
iceFISH 2013-02-17 smFISH 20 single-cell

ISS 2013-07-14 ISS 222 single-cell
Tomo-seq 2013-08-12 ROI selection Tx wide NA
bDNA-
smFISH

2013-10-06 smFISH 928 single-cell

TIVA 2014-01-12 ROI selection Tx wide NA
FISSEQ 2014-03-21 ISS 8102 single-cell

seqFISH 2014-03-28 smFISH 10421 single-cell
MERFISH 2015-04-24 smFISH 4209 single-cell
Puzzle
Imaging

2015-07-20 De novo NA NA

Geo-seq 2016-03-21 ROI selection Tx wide NA
corrFISH 2016-06-06 smFISH 10 single-cell

ST 2016-07-01 NGS barcoding Tx wide 100
HCR-seqFISH 2016-10-19 smFISH 249 single-cell
punch 2017-06-28 ROI selection Tx wide NA
SGA 2017-11-28 smFISH 35 single-cell
APEX-RIP 2017-12-14 De novo NA NA

Niche-seq 2017-12-22 ROI selection Tx wide NA
ExM-
MERFISH

2018-03-19 smFISH 10050 single-cell

STARmap 2018-07-27 ISS 1020 single-cell
Paired-cell
sequencing

2018-09-17 De novo NA NA

osmFISH 2018-10-30 smFISH 33 single-cell
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Table 6.1: Summary of spatial transcriptomics techniques in
the current era

Method Date
published

Category Max #
genes

Min spot
diameter
(𝜇m)

seqFISH+ 2019-03-25 smFISH 10000 single-cell
slide-seq 2019-03-29 NGS barcoding Tx wide 10
bDNA-
MERFISH

2019-05-25 smFISH 130 single-cell

GeoMX DSP 2019-06-21 ROI selection 2093 NA
DNA
microscopy

2019-06-27 De novo NA NA

APEX-seq 2019-07-11 De novo NA NA
INSTA-seq 2019-08-06 ISS NA single-cell
PARSIFT 2019-09-04 De novo NA NA
HDST 2019-09-09 NGS barcoding Tx wide 2
GaST-seq 2019-10-10 ROI selection Tx wide NA

BARseq 2019-10-17 ISS 107 single-cell
PIC-seq 2020-03-09 De novo NA NA
miRNA
nanowell

2020-05-09 NGS barcoding 9 300

split-FISH 2020-06-15 smFISH 317 single-cell
Visium 2020-06-22 NGS barcoding Tx wide 55

ZipSeq 2020-07-06 ROI selection Tx wide NA
SMD-seq 2020-08-11 ROI selection Tx wide NA
HybISS 2020-09-29 smFISH 199 single-cell
DBiT-seq 2020-10-19 NGS barcoding Tx wide 10
C-FISH 2020-10-23 smFISH 2 single-cell

SCRINSHOT 2020-11-20 smFISH 177 single-cell
slide-seq2 2020-12-07 NGS barcoding Tx wide 10
Stereo-seq 2021-01-19 NGS barcoding Tx wide 0.22
GeoMX WTA 2021-01-25 ROI selection 20175 NA
Seq-Scope 2021-01-27 NGS barcoding Tx wide 0.5
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Table 6.1: Summary of spatial transcriptomics techniques in
the current era

Method Date
published

Category Max #
genes

Min spot
diameter
(𝜇m)

ExSeq 2021-01-29 ISS 297 single-cell
BOLORAMIS 2021-03-08 ISS 96 single-cell
Pick-Seq 2021-03-09 ROI selection Tx wide NA
nanoneedles 2021-03-10 ROI selection 9 NA
CISI 2021-04-15 smFISH 37 single-cell

STRP-seq 2021-04-19 ROI selection Tx wide NA
XYZeq 2021-04-21 NGS barcoding Tx wide 500
electro-seq 2021-04-23 ISS 201 single-cell
BARseq2 2021-05-10 ISS 65 single-cell
ClumpSeq 2021-05-24 De novo NA NA

sci-Space 2021-07-02 NGS barcoding Tx wide 73.2
CIM-seq 2021-07-12 De novo NA NA
PIC 2021-07-20 ROI selection Tx wide NA
par-seqFISH 2021-08-13 smFISH 105 single-cell
SPACECAT 2021-08-17 ROI selection Tx wide NA

RNAscope 2021-09-29 smFISH 95 single-cell
Molecular
Cartography

2021-10-12 smFISH 100 single-cell

Visium protein 2021-10-16 NGS barcoding Tx wide 55
coppaFISH 2021-10-24 smFISH 72 single-cell
Raman2RNA 2021-12-01 smFISH 9 single-cell

EASI-FISH 2021-12-06 smFISH 29 single-cell
Halo-seq 2021-12-07 De novo NA NA
OpTAG-seq 2021-12-30 ROI selection Tx wide NA
MOSAICA 2022-01-10 smFISH 10 single-cell
LoRNA 2022-01-25 De novo NA NA
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Table 6.1: Summary of spatial transcriptomics techniques in
the current era

Method Date
published

Category Max #
genes

Min spot
diameter
(𝜇m)

manual
dissection with
velocimetry
and cell
tracking

2022-01-31 ROI selection Tx wide NA

SM-Omics 2022-02-10 NGS barcoding Tx wide 100
FUNseq 2022-02-22 ROI selection Tx wide NA
centrifugation
on 384 well
plate

2022-02-23 ROI selection Tx wide NA

Space-TREX 2022-02-24 NGS barcoding Tx wide 55

MERR
APEX-seq

2022-03-03 De novo NA NA

vCatFISH 2022-03-16 smFISH 21 single-cell
SPARC-seq 2022-03-23 NGS barcoding Tx wide 50
GPS-seq 2022-04-05 NGS barcoding Tx wide NA
scStereo-seq 2022-05-04 NGS barcoding Tx wide 0.22

Select-seq 2022-05-09 ROI selection Tx wide NA
HybRISS 2022-05-13 smFISH 175 single-cell
punch2 2022-06-17 ROI selection Tx wide NA
STARmap
PLUS

2022-06-22 ISS 2766 single-cell

STcEM 2022-06-27 smFISH 287 single-cell

PIXEL-seq 2022-07-04 NGS barcoding Tx wide 1.22
SmT 2022-07-18 NGS barcoding Tx wide 55
CosMX 2022-07-19 smFISH 1020 single-cell
SHM-seq 2022-07-19 NGS barcoding Tx wide 100
scNaST 2022-07-22 NGS barcoding Tx wide NA

PHYTOMap 2022-07-30 smFISH 28 single-cell
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Table 6.1: Summary of spatial transcriptomics techniques in
the current era

Method Date
published

Category Max #
genes

Min spot
diameter
(𝜇m)

Matrix-seq 2022-08-05 NGS barcoding Tx wide 50
xDbit 2022-09-01 NGS barcoding Tx wide 50
ARTseq-FISH 2022-09-14 smFISH 67 single-cell
EEL FISH 2022-09-22 smFISH 445 single-cell

TEMPOmap 2022-09-27 ISS 991 single-cell
CBSST-Seq 2022-10-05 NGS barcoding Tx wide 50
GeoMX SPG 2022-10-06 ROI selection 21000 NA
Light-Seq 2022-10-10 ROI selection Tx wide NA
Slide-TCR-seq 2022-10-11 NGS barcoding Tx wide 10

clampFISH
2.0

2022-10-24 smFISH 10 single-cell

Spatial-seq 2022-10-30 ROI selection Tx wide NA
sphere-seq 2022-11-01 De novo NA NA
STRS 2022-11-03 NGS barcoding Tx wide 55
Xenium 2022-11-03 smFISH 313 single-cell

SPRINTseq 2022-11-17 ISS 108 single-cell
LR-Spatial
VDJ

2022-11-24 NGS barcoding Tx wide 55

SR-Spatial
VDJ

2022-11-24 NGS barcoding Tx wide 55

mFISH3D 2022-11-24 smFISH 6 single-cell
STOmics-
GenX

2022-12-08 NGS barcoding Tx wide 0.22

Spectrum-
FISH

2022-12-13 smFISH 33 single-cell

TATTOO-seq 2022-12-14 ROI selection Tx wide NA
DRaqL 2022-12-16 ROI selection Tx wide NA
SPOTS 2023-01-02 NGS barcoding Tx wide 55
MiP-Seq 2023-01-07 ISS 217 single-cell
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Table 6.1: Summary of spatial transcriptomics techniques in
the current era

Method Date
published

Category Max #
genes

Min spot
diameter
(𝜇m)

USeqFISH 2023-01-26 smFISH 30 single-cell
SMA 2023-01-27 NGS barcoding Tx wide NA
RRST 2023-01-31 NGS barcoding Tx wide 55
IISS 2023-02-15 ISS 40 single-cell
Spatial-CITE-
seq

2023-02-23 NGS barcoding Tx wide 25

BMKMANU
S1000

2023-02-26 NGS barcoding Tx wide NA

Spatial
ATAC–RNA-
seq

2023-03-15 NGS barcoding Tx wide 20

Spatial
CUT&Tag–RNA-
seq

2023-03-15 NGS barcoding Tx wide NA

fs-LM 2023-03-16 ROI selection Tx wide NA
SiT 2023-03-17 NGS barcoding Tx wide 55

Chronologically, in the curated database, microdissection came first, with voxelation
in 2002 ([3]V. M. Brown et al. 2002), followed by smFISH, ISS, no imaging, and
NGS barcoding (Figure 6.1). Despite an early start in the midst of the (WM)ISH
golden age, if not including non-curated LCM literature, the current era did not
really take off until around 2014 (Figure 6.2). Ever since, its has seen drastic
growth, far exceeding that of the prequel era in the 1990s and 2000s (Figure 6.2).
Growth in microdissection and NGS barcoding seemed to have contributed the most
to this overall drastic growth (Figure 6.1). All techniques in the curated database,
along with their classification, maximum number of genes, spatial resolution, and
references are listed in Table 6.1.

A timeline of foundational or influential techniques in the current era is shown in
Figure 6.3. This is not meant to be a timeline of all current era techniques, but
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Figure 6.1: Number of publications over time in the current era. The gray histogram
in the background is the overall trend of all current era literature. Each facet
highlights a category, ordered chronologically in terms of first report. Bin width is
30 days. Plots in this figure include curated LCM literature, but not the non-curated
literature.
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Figure 6.2: Comparing number of publications over time in the prequel and the
current eras. Bin width is 180 days. The x-shaped points show the number of
publications from the last bin, which is not yet full.

1976 LCM

1988 Ligase SNV
detection

1989 Single cell
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combinatorial
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1995 cDNA
microarray

1996 Commercial LCM

1998 smFISH

1998 Solexa founded

1999 LCM +
microarray

2002 Combinatorial
FISH for mRNA

2008 RNA−seq
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mouse brain
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throughput RCA +
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2014 seqFISH

2015 MERFISH

2016 Spatial
Transcriptomics

2019 GeoMX DSP
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Figure 6.3: Timeline of major techniques related to the current era.

only of techniques that either laid the foundation of popular current era techniques
(e.g. Solexa, later Illumina, sequencing) or very influential within a category of
techniques (e.g. MERFISH for smFISH-based techniques, and ST for NGS barcod-
ing). Just like the “revolution” of current era spatial transcriptomics, each item in
the timeline must not be understood as works of the “solitary genius”. Rather, each
of the landmark innovations in the timeline occurred in its own historical context,
with influences from predecessors, which are not plotted in the timeline for the sake
of brevity.
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The prequel era started with untargeted screens and grew into atlases and databases
striving to be comprehensive. Screens are still a theme in the current era and spatial
transcriptomics is still used in untargeted searches for genes involved in development
of model organisms, but with highly multiplexed technology, this can also be done
for pathological and human tissues (Figure 6.4, Figure 6.5). Thanks to multiplexing,
while mouse was the most popular species in the prequel era, in the current era,
there are more studies on human tissues than those on mice and the vast majority of
studies are on either humans or mice (Figure 6.4). Furthermore, there are datasets
for a wider range of organs in mice in the current era (e.g. colon, liver, uterus, and
etc.) than in the prequel era though there still is more interest in the brain (Figure
6.6, Figure 4.7).

Drosophila is no longer as commonly used in the current era (Figure 6.4). Whole
mount smFISH has been applied Drosophila brains but without multiplexing [37],
zebrafish embryos [38], and embryonic mouse organs [39]. For Drosophila tissue
sections, while microdissection, smFISH, and ISS may be applied, the resolution
of ST and Visium may be too low to discern sufficiently fine patterns in such a
small model organism. Besides low resolution Tomo-seq along one body axis [40,
41], current era Drosophila datasets come from subcellular resolution technologies,
such as smFISH on YFP trap lines (whole mount nervous system, not multiplexed)
[37], in situ sequencing (retina) [42], ExSeq (embryo, might be whole mount with
tissue clearing and expansion) [43], and Stereo-seq (whole embryo sectioned along
the anterior-posterior axis) [44]. The reason why Drosophila is less popular may
be that the most popular commercial technologies are unsuitable, as Visium (Figure
6.7) has too low a resolution and MERFISH is not whole mount.

Atlases have been made with current era technology, such as MERFISH [12],
HybISS [34], ST [32], Visium [47], GeoMX DSP [48], and Slide-seq2 [49] described
and analyzed with similar language to that of (WM)ISH atlases. Also as in the
prequel era, the brain is still the most favored healthy organ (Figure 6.5, Figure 6.6).
Among pathological tissues, breast tumors are the most used (Figure 6.5). Note that
these anatograms only includes organs available in the R package gganatogram.
Datasets from organs unavailable in the package are not shown. For metastases, the
organ used for plotting here is the destination of metastases, so a liver metastasis of
breast cancer would be plotted in the liver. More recently, in the wake of the SARS-
CoV-2 pandemic, a number of studies using GeoMX Digital Spatial Profiler (DSP)
to profile spatial transcriptomes of lungs of COVID victims have been published

https://github.com/jespermaag/gganatogram
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 Other  (77) Drosophila melanogaster  (7)
 Rattus norvegicus  (9)

 Danio rerio  (12)

 Mus musculus  (338)

 Homo sapiens  (427)

Figure 6.4: Number of publications per species.
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Figure 6.5: A) Number of publications for each healthy organ in human (male shown
here, as there is no study on healthy female specific organs in humans at present).
B) Number of publications for pathological organs in human (female shown here,
but there are at least two studies on prostate cancer [45, 46]).
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Figure 6.6: A) Number of publications per healthy organ in the mouse. B) Number
of publications for pathological organs in mouse.

[50, 51, 48, 52].

However, unlike in the prequel era, in which older technologies were adapted to
larger scale to produce the screens and atlases, the current era has another major
theme—new techniques, due to the challenges to be discussed in the following
sections; the number of new techniques published each year has grown steadily
in the past few years (Figure 6.9). However, this difference might be due to bias
in curation and change in culture. In the prequel era, very different enhancer and
gene trap vectors were lumped together into enhancer or gene trap in our database,
and there might have been many different early non-radioactive ISH protocols not
included in our database because they were not used to profile a sufficiently large
number of genes. Furthermore, in the current era, authors like to give techniques
new names, making related techniques seem distinct rather than lumped together in
a wider category like enhancer or gene trap.

While a few techniques other than LCM have become popular, such as ISS (2013),
Tomo-seq (2013), MERFISH (2015), ST (late 2016), GeoMX DSP (2019, only
showing transcriptomics studies here), and Visium (first preprint in 2020), most
techniques never or rarely spread beyond their institutions of origin (Figures 6.7,
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6.9). Furthermore, except for Visium and LCM, prequel (WM)ISH, enhancer trap,
and gene trap have been used by more institutions than current era techniques (6.8).
This might be because there has not been enough time for recently published new
techniques to be implemented elsewhere, or if they have been implemented, there
has not been enough time for the relevant studies to be published, or that there has
been much less time for relatively new commercial techniques like MERFISH to
spread to more institutions compared to (WM)ISH. Furthermore, usage of Visium
and GeoMX DSP might have been spread by commercialization and core facilities
and usage of Tomo-seq might have been spread by relative ease of implementation
with standard lab equipment; implementing complex current era techniques that
require custom built equipment such as custom fluidics systems independently may
be more challenging, thus hampering their widespread adoption. This is analogous
to a well-tested and fool proof commercial cake mix widely available at grocery
stores that only calls for standard kitchen equipment such as the oven and the hand
mixer as opposed to a cake recipe that is not only very complicated but also requires
the home cook to build custom kitchen equipment. Even if instructions to assemble
the custom equipment is available, most people would probably prefer to buy the
pre-assembled product when feasible. The average home cook would most likely
prefer the former to the latter. Having a core facility perform a procedure is like
ordering a cake from a bakery, which is much easier than DIY trials and errors and
building custom equipment.

Protocols of WMISH (as used in GEISHA) [53], ISH (as used in GenePaint and
ABA) [36], Visium, and MERFISH [54] all have numerous steps. What (WM)ISH
and Visium seem to have in common besides that they are widely adopted is that a
significant part of the protocol is taken care of, by commercial automated systems (for
(WM)ISH) or core facilities (for Visium), so there is less DIY hassle. Commercial
automated ISH systems are commonly used by large scale (WM)ISH atlases. For
example, GEISHA used the Abimed In Situ Pro [53], and GenePaint [55], ABA
[56], and LungMap [57] used the Tecan EVO liquid handling platform (or its pre-
commercial version), to automate ISH staining of numerous sections or embryos
and genes. Several major institutions have core facilities that perform Visium [58,
59], and even if the core facility does not perform Visium as a whole, NGS core
facilities are common. Furthermore, the Visium protocol does not require custom
made equipment that cannot be purchased from 10X itself and major lab equipment
companies such as Bio-Rad and VWR. Visium involves scanning the H&E image
of the tissue section, which can be done by a histology core. As library preparation

https://assets.ctfassets.net/an68im79xiti/1ivOrdgMWRePeFqrUwj2Mk/8cb9e32ec7863c34474c230d5ce3c51a/CG000239_VisiumSpatialGeneExpression_UserGuide_RevE_.pdf
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of the forerunner of Visium, ST, can be automated [60], it would be reasonable to
say that Visium library preparation can be automated. In contrast, the MERFISH
protocol involves a custom built fluidics system to automate the imaging and liquid
handling and long imaging time that might not be appropriate for a microscopy core
facility. However, as MERFISH is getting commercialized by Vizgen and automated
with the MERSCOPE product, it might become more widely adopted in the near
future as the commercial package removes a lot of DIY hassle to independently
implement MERFISH.

While in prequel (WM)ISH atlases, the images are themselves the data, current era
data goes beyond visualization of gene expression in space. NGS based current
era data has the sequencing reads in fastq files, which can be re-processed for RNA
velocity and isoform analyses. The fastq files are often deposited in data repositories
such as GEO and ENA, where they can be downloaded for re-processing. However,
for some human data, to protect patients’ privacy, the fastq files are not available or
have controlled access. While the fastq files from around half of published papers for
NGS based current era datasets are available in a data repository (Figure 6.10), the
fastq files from most NGS based current era preprints are not available, especially
the older preprints (Figure 6.11). Sometimes preprints state that the data will be
deposited on GEO upon acceptance of the manuscript (e.g. [61]).

https://vizgen.com/products/
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Figure 6.10: Whether fastq files from published NGS based papers (no preprints)
are available on a public data repository such as GEO over time. Bin width is 180
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number of publications from that city. Gray points are sum of both prequel and
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Especially in the US, research in the current era tends to be more concentrated in a
few elite institutions despite the mainstreaming of spatial transcriptomics to many
less well-known institutions, while some top contributors in the prequel era were
some less well-known institutions (Figure 6.12, 6.13). Among the top contributing
institutions in the prequel era are those hosting databases, such as Allen Institute for
ABA, University of Oregon (UO) for ZFIN, UC Berkeley and Lawrence Berkeley
National Laboratory (LBL) for BDGP, University of Arizona (UofA) for GEISHA,
Jackson Laboratory (JAX) for GXD, Western General Hospital (WGH) for EMAGE,
and Kyoto University (Kyodai) for GHOST (Figure 6.13). By and large, in western
Europe and northeast Asia, prequel and current era research was conducted in
different institutions as well (Figure 6.14, Figure 6.15).
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Figure 6.13: Map of institutions around continental US. Area of the point is pro-
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6.3 Learning from the past
What can we learn from the history of the prequel era? We might be able to learn
something from the past, as people in the past have come up with good ideas that
have been mostly forgotten in the present era. An example of such an idea in the
history of cycling is the 1930s network of at least 280 miles of cycleways separated
from motor traffic in the UK, forgotten even by the Ministry of Transport itself; with
the new wave of bike advocacy since the 1970s, there have been recent efforts to
resurrect these old cycleways [62]. Furthermore, the past can illustrate what might
happen next and what to do to get better outcome during similar developments at
present, such as how the 1918 Spanish flu pandemic has been compared to the



132

MedUniGraz

KU Leuven

Hubrecht

KTH

Karolinska

SU

Cambridge

Wellcome

UCL

Oxford

CNRS−Montpellier

MPG
MPIBPC

MPIEE

DKFZ
EMBL

Cambridge

Wellcome

WGH

Leeds

prequel

current

 0° 20°E

35°N

40°N

45°N

50°N

55°N

60°N

65°N

35°N

40°N

45°N

50°N

55°N

60°N

65°N

31

62

93

124

Number of
publications

42

84

Figure 6.14: Map of institutions around western Europe. Area of the point is
proportional to the number of publications from that city. Gray points are sum
of both prequel and current eras for each city. Top 10 institutions in each era are
labeled.



133

BGI

SEU

CDUTCM

SCU

Peking

CAS

Fudan

Shanghai Jiaoda

Todai

SNU

HZAU Ruijin

GUASHIT

RIKEN Yokohama

Konan
Kochi

JST
Kyodai Todai

prequel

current

110°E 120°E 130°E 140°E

20°N

25°N

30°N

35°N

40°N

45°N

20°N

25°N

30°N

35°N

40°N

45°N

Number of
publications

20

40

60

15

30

45

60

Figure 6.15: Map of institutions in northeast Asia. Area of the point is proportional
to the number of publications from that city. Gray points are sum of both prequel
and current eras for each city. Top 10 institutions in each era are labeled.



134

current COVID pandemic to point to strategies (e.g. [63, 64].

First, prequel (WM)ISH atlases by nature require thousands of animals to stain for
thousands of genes, and often show photos from multiple animals stained for the
same gene, sometimes showing variability in staining and morphology (especially
in BDGP and GEISHA as the embryos are small and can be stained en masse),
giving some qualitative sense of reproducibility of the staining and pattern and how
generalizable a pattern seen in the atlas is to the wider population of the model
organism. In contrast, current era datasets and atlases from model organisms tend
to use much smaller numbers of animals thanks to multiplexing and cost and do
not tend to discuss biological differences and reproducibility of results between the
animals. For instance, in the Molecular Atlas of the Adult Mouse Brain [32], 3 male
C57BL/6 mice were used. The online viewer of the Molecular Atlas shows gene
expression in coronal sections from different mice all registered to the Allen CCF;
adjacent spots from different mice sometimes have quite different expression of the
same gene. However, such variability is not discussed in the paper. The MERFISH
MOp atlas has 32 sections from each of the 2 mice used and reproducibility of
results in the 2 mice is not discussed. The HybISS developing mouse atlas [34] only
used one E10.5 mouse embryo.

Second, while there are databases for current era data, as discussed in Section 7.9,
they do not provide the querying functionalities and systematic annotations of the
ABA, EMAGE, and Eurexpress. While SpatialDB [65] provides easy access to and
visualization of processed current era data from several different technologies, as
of August 2021, SpatialDB does not seem to have updated since 2020 and does not
contain new datasets. As of writing, the Human Cell Atlas (HCA) [66] has data
from 5 Visium studies and at least one HybISS study [67]. The Brain Research
through Advancing Innovative Neurotechnologies (BRAIN) Initiative - Cell Census
Network (BICCN) [68] has data from MERFISH, osmFISH, seqFISH, and etc.
While the studies can be queried, as of writing, in HCA and BICCN, unlike in
the prequel atlases, genes can’t be queried to open a webpage to show expression
patterns in different data sources, nor can one search for other genes with similar
expression patterns. Gene expression patterns are also not annotated. Given the
massive volume of scRNA-seq and current era spatial data in HCA and BICCN,
it would be more challenging to enable gene annotation, search, and comparison
as this would involve analyzing and comparing hundreds of scRNA-seq datasets.
However, for current era spatial data, for each organ of each species, the number

https://www.spatialomics.org/SpatialDB/
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of datasets in the order of dozens per organ seems to be more manageable for such
analyses and comparisons that would enable prequel database style gene queries
(Figures 6.5, 6.6). Specifically, mouse brain data can be registered to the CCF
to facilitate comparison between datasets, studies, and subjects within one study.
Furthermore, the massive volume of quantitative current era may be used to refine
prequel gene annotations such as ontologies of developmental stages and anatomical
regions.

Third, while most extant prequel (WM)ISH atlases, such as ABA, LungMAP, and
GUDMAP, are hosted in online databases for query and view, most current era
datasets—including those that claim to be atlases—cannot be viewed online, which
can be useful in cases such as to easily look up more information about genome wide
association study (GWAS) candidate genes associated with phenotype or expression
quantitative trait loci (eQTL) and about differentially expressed (DE) genes from
non-spatial transcriptomic or proteomic studies. Even if comparison and analysis
of current era data for gene annotation and query is challenging, a web portal that
searches multiple datasets for gene expression patterns, merely linking to the gene
expression plots in the original data visualization websites of the datasets, would still
be helpful. Besides datasets in SpatialDB, some current era datasets can be queried
and visualized online, plotting gene expression values in space (dataset description is
linked to the online data visualization portal), such as zebrafish Tomo-seq [1], mid-
gastrula mouse embryo Geo-seq [29], mouse cortex osmFISH [11], ST molecular
atlas of the adult mouse brain [32], and ST and Cartana ISS for Alzheimer’s disease
[33]. However, many other current era atlases do not provide online visualization,
such as the MERFISH MOp atlas [12] and the Visium breast cancer atlas [47].

Finally, what if another revolution in spatial genomics comes? What in the current
era will be remembered like the ABA, and what will be forgotten? We may take
clues from the impact of the ABA in the current era and how other prequel atlases
seem to be forgotten. To recap, the ABA is still relevant in the current era because of
its comprehensiveness, quantification of ISH staining, registration to the CCF, and
API to programatically query the database. Some of the hallmarks of the current
era are quantitative data and multiplexing. With quantification and the CCF, ABA
data resembles such hallmarks, although ABA’s quantification and CCF began in
2006, long before the current era really took off around the mid 2010s. The API
makes the data easier to download for analyses than the images from (WM)ISH
databases that don’t have APIs. The comprehensiveness makes the ABA relevant

http://zebrafish.genomes.nl/tomoseq/
https://www.picb.ac.cn/hanlab/itranscriptome
https://www.picb.ac.cn/hanlab/itranscriptome
https://linnarssonlab.org/osmFISH/expression/
https://www.molecularatlas.org/
https://www.molecularatlas.org/
https://alzmap.org/
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to qualitative comparisons to current era results. Furthermore, the Allen Institute
itself is participating in the current era by not only producing bulk and single-cell
RNA-seq data for the atlas but also hosting the data catalog for the BICCN. In
contrast, we are unaware of other prequel atlas consortia, such as EMAGE and
BDGP, participating in the current era. We cannot foresee what the next revolution
would be like. However, from ABA, perhaps we may say that for data, resources,
and institutions from the current era to not to be forgotten when the next era comes,
they should resemble or adapt to the hallmarks of the next era.
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C h a p t e r 7

CURRENT ERA TECHNOLOGIES

7.1 ROI selection
A simple way to preserve spatial information is to isolate the samples from known
locations in the tissue, and the act of selection and isolation is the only means to
preserve the locations. The samples can be isolated physically or by molecular
techniques. The known locations can be targeted, for cells with certain histological
characteristics, or untargeted, on a grid over the tissue.

History of LCM
Microdissection

LCM, also known as laser microdissection (LMD), is by far the most commonly used
method of microdissection. Before LCM, manual microdissection could isolate
small pieces of tissue, but the process was laborious [1]. Laser microdissection
predates ISH, though it was not used for spatial transcriptomics until it was possible
to profile the transcriptome from small quantity of tissue.

A precursor to laser microdissection is the 1912 “Strahlenstich”, which focused a
conventional light source to a spot a few micrometers in size to cut tissues [2].
Soon after the invention of the laser in 1960, ruby laser was used to manipulate
mitochondria, and a ruby laser microdissection system was commercialized by
Zeiss in 1965 [2]. UV laser was used to create chromosomal lesions in 1969 [3].
The first use of UV laser to cut tissue was in 1976 [4] (Figure 6.3).

At present, there are two main types of LCM: IR and UV. IR LCM was introduced
in 1996 [5]. It utilizes a cap with thermoplastic film which is placed over an area of
interest, and an IR laser to briefly heat select areas of tissues to 90 °C so the film
melts in the area and fuses to the area of tissue of interest [5] (Figure 7.1 A). This
was commercialized as the Arcturus PixCell II LCM System in 1997, which was
used in several early LCM studies including the first one in 1999 [6, 7, 8, 9] (Figure
6.3).

UV LCM is also known as laser microbeam microdissection (LMM) due to the
microbeam of UV laser used. A popular commercial UV LCM system is the Robot-
Microbeam (P.A.L.M. Wolfratshausen, Germany), now Zeiss PALM Microbeam. In
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Figure 7.1: A) IR LCM schematic. B) UV LCM and LPC schematic, like in Zeiss
PALM Microbeam. C) UV LCM, letting microdissected region fall by gravity, like
in Leica LMD. All schematics in this book, i.e. anything not made with ggplot2,
were created with BioRender.com

this method, a narrow UV laser beam ablates a narrow strip of tissue surrounding the
area of interest, isolating the area of interest from the rest of the section, so the area
of interest is minimally heated. Then, the area of interest is removed from the slide
into the collection vial with laser pressure catapult (LPC), avoiding physical contact
so as to prevent cross contamination (Figure 7.1 B). An early version of this system
was first used in 1996 to isolate single-cells from gastric tumors, followed by PCR
to analyze E-cadherin mutations, but the cells were removed with a needle rather
than LPC [10]. Another popular commercial UV LCM system is the Leica LMD;
unlike the PALM system, the Leica system lets the isolated tissue fall into collection
vials by gravity, still avoiding physical contact (Figure 7.1 C). UV LCM was used in
some early LCM spatial transcriptomics studies as well [11], and remains popular
in recent years while IR LCM seems to have fallen out of favor [12, 13, 14].

Recent versions of the Arcturus LCM system have both IR and UV, which can be
used in conjunction. UV can be used to cut the region of interest (ROI) and IR can
then be used to fuse the region to the film at a few points for removal [15].

Amplification

The minuscule amount of transcripts from microdissected tissues, which can be
single-cells, needs to be amplified to be detected by microarray or RNA-seq. Indeed,
RNA amplification is a part of one of the most prevalent topics in LCM related search
results (Figures 8.3, 8.4). To this day, there are two main strategies of amplification
of minuscule amount of mRNA or cDNA—in vitro transcription (IVT) of cDNA
(linear amplification) and PCR (exponential amplification), or a combination of both
[16]. These two strategies have coexisted since their beginnings in 1989 and 1990
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(Figure 6.3).

Heterogeneous cDNAs can be amplified with PCR by appending known sequences
to one or both ends of the cDNA so primers with known sequences can be used to
amplify the heterogeneous cDNAs. Early approaches meant for single-cells or small
number of cells include tailing the cDNA with poly-dA [17] or poly-dG [18] after
reverse transcription, and use as PCR primers sequences containing poly-dT (both
poly-dA tail and reverse transcription (RT) primer of poly-A mRNAs) or poly-dC
(poly-dG tail) and poly-dT (RT primer). Alternatively, lone linkers (“lone” because
they are designed to prevent linker polymerization) could be ligated to both ends of
the DNA fragments of interest to anneal to PCR primers [19]. Some of the early
single-cell (or small number of cells) transcriptomic studies used PCR amplification,
prior to quantification or differential expression analyses with Southern blot with
radiolabeled cDNA probes hybridizing to cDNA clones of interest screened from
plaque lift hybridization of a phage cDNA library [20], or with cDNA microarray
[21, 22]. LCM was used to isolate the single-cells in [22]. Before the advent of CEL-
seq, early scRNA-seq methods also used PCR amplification [23, 24]. An influential
method is switching mechanism at the 5’ end of the RNA transcript (SMART)
[25], for construction of cDNA (clone) libraries covering the full length of mRNAs,
though not originally for single-cells. The full length scRNA-seq method Smart-
seq(2) [26] is based on SMART but adapted to the minuscule amount of transcripts
from single-cells, with PCR amplification of the cDNA. Smart-seq(2) is one of the
most commonly used library preparation methods for LCM since the 2010s, and
was used for RNA-seq of LCM isolated single-cells [27].

Alternatively, transcripts can be amplified by IVT, with a T7 RNA polymerase
promoter attached to the 5’ end of the poly-dT primer, so the RNA polymerase
transcribes the cDNAs into many copies of antisense RNAs (aRNA) [28, 29]. Some
of the early single-cell (or small number of cells) transcriptomic studies used IVT
amplification. Quantification and differential expression analyses of the aRNA can
be performed with differential display [30, 31], cDNA microarray [32, 33], or with
“expression profiling” [29, 31], i.e. reverse northern blot with radiolabeled aRNAs
hybridizing to cDNA clones of interest, where the cDNA clones can be blotted onto a
Southern blot membrane in a macroarray, which may have inspired the development
of the cDNA microarray printed on glass [31]. LCM was used to isolate the
single-cells in [33]. Since the 2010s, Cell Expression by Linear amplification
and Sequencing (CEL-seq) [34] and derivatives (e.g. CEL-seq2, MARS-seq, and
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SORT-seq), which use IVT amplification, have been commonly used for library
preparation for microdissected or de facto microdissected samples such as from
LCM [35], Tomo-seq [36], and Niche-seq [37].

Usage of LCM
Usage trends of LCM as reflected in PubMed and bioRxiv search results are analyzed
in Chapter 8. LCM can be used to isolate targeted ROIs based on histology, or to
create a grid for untargeted search of gene expression patterns in space, and examples
of both are highlighted here. Moreover, the three themes of screening, atlas curation,
and new technique development, are all represented in LCM literature. In the
“screening” theme, LCM is used to isolate cell populations of interest based on
histology (targeted) to discover genes associated with pathological conditions such
as cancer metastasis [11] and cell types [38], or to discover cell type localization in
healthy tissue difficult to other spatial transcriptomics techniques such as the bone
marrow [14].

LCM can also be used to dissect the tissue in a grid, not targeting very specific
histological regions (untargeted), to identify genes associated with locations on the
grid [39, 40] or transcriptomically defined regions [13, 40], or to map cells from
scRNA-seq to spatial locations [13, 40]. The untargeted studies can also touch upon
the “atlas” theme, providing an online interface to query and explore the spatial
transcriptomes [40].

However, targeted approaches can also be used for the “atlas” theme, such as in the
human [41, 42]; [42] and macaque [43] atlases of the ABA, isolating histologically
annotated regions for microarray profiling to build systematic resources for explo-
ration. This addresses the limitation of bright field ISH that only one gene can be
stained per section thus requiring large number of brains, which is too costly for
primates; in LCM, while often not single-cell resolution, the same brain can be used
to profile the whole transcriptome. The “technique development” theme is evident
in the text mining results (Figure 8.3), and contributes to some of the advantages of
LCM as discussed below.

As shown in Chapter 8, LCM transcriptomics has spread far and wide, and has
been used on many research topics rarely featured in (WM)ISH atlases. These
include cancer and botany (Figure 8.2, Figure 8.3). The following advantages of
LCM might have contributed to its popularization: first, as already mentioned,
both IR and UV LCM systems have been commercialized prior to their use for
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transcriptomics, making setup convenient. Second, while LCM equipment can
be expensive and require specialized training to use, many institutions have core
facilities that can perform LCM [44, 45, 46, 47], reducing cost and personnel
training time in individual laboratories.

Third, in some cases, especially in the clinical setting, only archival formalin fixed,
paraffin embedded (FFPE) tissues are available. While in 2020, newer current era
technologies such as Visium [48] and GeoMX DSP [49] have been demonstrated
on FFPE tissues, LCM followed by microarray was already demonstrated on FFPE
tissues in 2007 [50] and with RNA-seq by 2014 [51]. As a result, for several years,
LCM may have been the only option to perform spatial transcriptomics on FFPE
samples. In addition, LCM might still be the only way to profile transcriptomes of
single-cells in FFPE samples. With scRNA-seq library preparation methods such
as Smart-seq2 [27], and CEL-seq [35] it is possible to profile the transcriptome in
minuscule amount of LCM isolated tissue, and even single-cells [27]. With Smart-
3SEQ, LCM single-cell transcriptomics has been made possible for FFPE tissues as
well, even for samples that are several years old [52].

Finally, despite its long history, LCM cannot yet be replaced by newer spatial tran-
scriptomics technologies. Unlike smFISH or ISS based techniques, LCM followed
by RNA-seq is not restricted to known genes and allows for transcriptome wide pro-
filing and other omics. Unlike ST and Visium, LCM can have single-cell resolution,
and unlike array based techniques with resolution of the size of a cell or higher, such
as Slide-seq(2) and HDST, LCM can more unequivocally isolate individual cells or
nuclei based on histology.

LCM has a number of disadvantages, some of which are addressed by other current
era spatial transcriptomics technologies. First, compared to droplet based scRNA-
seq and highly multiplexed barcoding, using LCM to isolate single-cells is still too
laborious, limiting its throughput. Second, LCM requires tissue sections, while
preparation of many slides to cover a 3D volume can be laborious and it can be
challenging to reconstruct 3D structures from tissue sections. To reiterate, sections
of blastoderm stage embryos are hard to interpret, which motivated WMISH. Third,
because it can be challenging to segment cells based on hematoxylin and eosin
(H&E) or immunohistochemistry (IHC) staining and parts of different cells can be
stacked within the thickness of the section even in thin sections, single-cells isolated
by LCM can have contents of other cells.
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Figure 7.2: Voxelation of human brain, as in [53].

Physical microdissection
Voxelation

LCM did not completely replace microdissection with a physical blade. Voxelation
was one of the alternatives to LCM developed to profile spatial transcriptomes in
3D and address the limitation of throughput of ISH. In voxelation, a grid of steel
blades is used to cut tissue into cubes for microarray profiling, but the resolution
is low. Human brains were first cut into 8 mm thick slabs and then a grid of 1
cm per side [53, 54], and mouse brains were first cut into 1 mm thick slabs and
then a grid of 1 mm per side [55, 54, 56] (Figure 7.2). With low resolution, it’s
easier to use voxelation to profile large 3D tissues of multiple slabs that would be
much more laborious with LCM’s thinner sections and higher resolution [55]. As
the human voxels were quite large (almost 1 ml) and corresponding voxels of 20 to
30 mice were pooled [55, 56] to get enough transcripts, the voxelation studies did
not mention T7-based PCR amplification of transcripts, unlike for LCM samples
[11]. To the best of our knowledge, voxelation never spread beyond its institution
of origin, UCLA School of Medicine, and has not been used in a publication to
generate new data since 2007 [56] and for data analysis since 2009 [57].

Tomo-seq

Another alternative to LCM is Tomo-seq/array, which has continued to be utilized
in recent years. In this approach, the tissue is sectioned with a cryotome like
tomography (hence the “Tomo”), and the transcripts in each section are extracted for
microarray (Tomo-array) or RNA-seq (Tomo-seq) profiling; the resolution is limited
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Figure 7.3: Tomo-seq, here showing C. elegans.

by section thickness, which has gone down to 8 𝜇m [58]. Three-D expression maps
can be reconstructed from sections along the anterior-posterior (AP), dorsal-ventral
(DV), and left-right (LR) axes. All three themes, namely screening, atlas curation,
and new technique development, are present in Tomo-seq/array literature.

Tomo-array was first used in 2012 to build a 3D mouse brain transcriptome atlas,
attempting to address difficulties in image registration in ISH atlases, low resolution
of voxelation, and limitation of LCM to specific regions [59] (Figure 6.3). Mouse
brains were sectioned along all three axes and 200 adjacent 5 𝜇m sections were
pooled as “fractions” for microarray; again, PCR amplification was not mentioned.
Fractions from the three axes were then used to reconstruct a 3D atlas.

Tomo-seq was first demonstrated in 2013, on Drosophila melanogaster embryos,
with 60 and 25 𝜇m sections, again in response to the difficulty to scale ISH atlases
to the whole transcriptome [60]. Genes patterned along the AP axis were identified,
and the data is stored in an online database. However, Tomo-seq is more commonly
credited to a 2014 method first demonstrated on zebrafish embryos, with 18 𝜇m
sections [36]. Gene expression patterns along the AP axis of straightened embryos
were identified, and sections along all three axes were used for 3D reconstruction
of embryos that were not straightened. The data and the 3D reconstruction are
also stored in an online database, though the 3D reconstruction algorithm produced
many artefacts.

Since then, Tomo-seq has been used in several different biological systems, typically
when one axis is of primary interest. Tomo-seq has been used in C. elegans [61],
developing zebrafish hearts [62], Drosophila embryos [63], ischemic mouse hearts

http://eisenlab.org/sliceseq/
http://zebrafish.genomes.nl/tomoseq/
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[64], and Pristionchus pacificus [65] to identify genes associated with that axis
of interest. Tomo-seq was also used on mouse [58] and human [66] gastruloids
to demonstrate the viability of this in vitro and potentially high-throughput model
for developmental biology. Again, due to the minuscule amount of tissue in each
section, library preparation methods designed for scRNA-seq, such as CEL-seq(2)
[36, 65, 61] have been adapted to Tomo-seq.

Other methods of physical microdissection

Algorithms inspired by reconstruction of ray-based computerized tomography have
been used to reconstruct spatial patterns of gene expression from Tomo-seq-like
slices cut from different angles of the same tissue with a stereotypical structure.
This was first attempted with Gene Expression Tomography (GET) [67], though
only on qPCR quantification of one gene in those slices. More recently, this kind of
idea was used in Spatial Transcriptomics by Reoriented Projections and sequencing
(STRP-seq), in response to the limited number of genes of smFISH and ISS based
techniques, degradation of RNA and technical complexity of LCM, and number of
specimens required by and inadequacy of the 2014 Tomo-seq 3D reconstruction [68].
This has been shown to perform better than the 2014 Tomo-seq 3D reconstruction
method, and was demonstrated on the brain of a non-model organism, the lizard
Pogona vitticeps.

Because of the specialized equipment and technical complexity of LCM and degra-
dation of RNA, other methods of physical microdissection have been developed.
Examples of such techniques are Cell and Tissue Acquisition System (CTAS),
which uses a disposable capillary unit connect to the vacuum to aspirate tissue [69],
and an automated micropuncch system that collects samples of tissue with diameter
of 110 𝜇m at 300 𝜇m intervals [70]. In addition, for similar reasons, manual mi-
crodissection is still used (Figure 6.7), such as to dissect leaves on a grid of distances
from a lesion to characterize response to infection [71, 72]. Manual microdissec-
tion of pre-defined anatomical regions was also used to create low resolution gene
expression atlases of Xenopus laevis [73] and Xenopus tropicalis [74] embryos, to
avoid sectioning as required for LCM and artefacts in Tomo-seq 3D reconstruction.

De facto microdissection
Some methods have been developed that do not directly cut tissues. Instead, cells,
or ROIs judged from histology, are optically and molecularly marked so that only

http://wormbook.org/chapters/www_genomesPristionchus/genomesPristionchus.html
https://en.wikipedia.org/wiki/Pogona_vitticeps
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Figure 7.4: Niche-seq schematics. Green: cells with photoactivated PA-GFP.

transcripts or cells from the marked regions are captured. Because these methods
involve selection of pre-defined ROIs within the section, we call them de facto
microdissection.

Transcriptome in vivo analysis (TIVA) from 2014 can be viewed as the first of these
methods [75]. Live cell culture is incubated with the photoactivable cage with a
poly-U sequence that captures poly-A transcripts. Select cells are photoactivated
by 405 nm laser and the captured transcripts are sequenced. TIVA is widely cited,
perhaps because it is one of the earliest single-cell resolution and transcriptome wide
methods, predating RNA-seq from LCM isolated single-cells. However, because
TIVA has only been demonstrated on fewer than a dozen cells per sample, to the
best of our knowledge it has not been used in any other publication to collect new
data.

A de facto microdissection method that has spread beyond its institution of origin
is Niche-seq, which was developed as LCM is still usually used to isolate groups of
cells rather than single-cells and involves tissue fixation [37]. Select regions of ex
vivo tissues from transgenic mice expressing photoactivable GFP (PA-GFP), here
lymph node and spleen B cell and T cell niches, are photoactivated at 820 nm with
two photon irradiation. Then the tissue is dissociated and cells with photoactivated
PA-GFP are collected from flow cytometry-based fluorescence-activated cell sorting
(FACS) for scRNA-seq with MARS-seq (Figure 7.4). This approach was originally
used in 2010 to isolate B cells from light and dark zones of the lymph node followed
by transcriptome profiling with microarray in bulk [76]; the difference in Niche-seq
is scRNA-seq of the sorted cells. After its inception, Niche-seq has been used once
more in lymph node niches [77]. However, as Niche-seq requires transgenic mice
expressing PA-GFP and living tissue, it cannot be applied to human tissues, to fixed
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Figure 7.5: GeoMX DSP schematics, inspired by figures in [78]. Black: transcripts
in tissue. Gray: probes. Green: indexing oligo.

tissues, or when a PA-GFP line is unavailable. This might limit further growth of
Niche-seq. Moreover, the spatial context of cells within the photoactivated region
is lost, limiting spatial resolution.

Another method that spread beyond its institution of origin is the commercial Ge-
oMX DSP from NanoString [78], which can be used for both high throughput
immunofluorescence and transcript quantification in FFPE tissue sections. While
GeoMX DSP does not physically isolate relevant parts of the tissue, it is discussed
in this section because like other microdissection based techniques, GeoMX DSP is
primarily ROI based, and spatial location is known from selection of the ROI. For
transcript quantification, probes are attached to indexing oligos with a UV cleavable
linker (Figure 7.5). The selected ROI is illuminated by UV to remove the index
oligos from the probes. Then the released index oligos are aspirated and quantified
with either NGS or NanoString nCounter. This can be repeated for multiple ROIs,
which can be a grid for unbiased profiling [78]. The probes tile the transcripts, and
each probe has a distinct index oligo, so in NGS, each tile is counted separately,
enabling isoform quantification [78]. The number of genes profiled by GeoMx DSP
depends on the gene panel used; the Cancer Transcriptome Atlas panel with over
1800 genes have been used in several studies (e.g. [79, 80], and with the human
or mouse Whole Transcriptome Atlas (WTA) panel, transcripts of 18190 genes can
be quantified, nearly covering the whole transcriptome [81]. In GeoMX WTA, the
UV cleaved index oligo must be sequenced with NGS to identify the gene each
transcript is from. As pre-defined probes are required, unlike in RNA-seq, novel
transcripts cannot be quantified. Ready made probe sets for oncology, immunology,
and neuroscience are sold by NanoString [82]. Although GeoMx DSP was pub-
lished in 2019, it has spread to several different institutions, and has been used on
pancreatic ductal adenocarcinoma (PDAC) [49], hepatocellular carcinoma (HCC)
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and untargeted, using each microdissection based technique plus GeoMX DSP.
Techniques used in less than two studies or two types are lumped into Other.

[83], reactive lymph nodes [84], and COVID infected lungs from autopsy [80, 85,
86, 79].

Targeted vs. untargeted
Some methods can only be used in a regular grid, such as Tomo-seq, while some
can be used either in a regular grid or in targeted ROIs, such as LCM and GeoMX
DSP (Figure 7.6. Some are primarily used for targeted ROIs, such as Niche-seq.
Sometimes a targeted ROI in the section may be chosen, which is then divided into
smaller regular parts, in between targeted and untargeted.

After LCM, GeoMX DSP/WTA is the most popular targeted ROI based technique,
and as already mentioned, GeoMX DSP has been used in several COVID autopsy
studies. GeoMX DSP is often used to profile proteins, which is beyond the scope
of this book; our database only contains metadata for GeoMX DSP transcriptomic
datasets. As of writing, all GeoMX DSP datasets in our database are from human,
and are from predominantly pathological FFPE tissues (Figures 7.7, 7.8). Because
of COVID, GeoMX DSP is more used on the lungs for transcriptomics than other
tissues (Figure 7.9).
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In an earlier version of this book, in the current era, ROI selection (formerly Mi-
crodissection) was the most widely used type of techniques. However, NGS barcod-
ing has surpassed ROI selection more recently due to the rapid growth of popularity
of Visium (Figure 7.10). Excluding LCM, GeoMX DSP and Tomo-seq are the
most popular techniques after ST and Visium (Figure 6.7). ROI selection has not
been replaced by other seemingly more sophisticated techniques such as ST and
MERFISH, and is still popular in 2020 and 2021 (Figure 6.1, Figure 8.1). ROI
selection techniques generally do not have single-cell resolution, but combined with
scRNA-seq or snRNA-seq data, cell type compositions of ROIs can be computation-
ally deconvoluted [14, 49]. The popularity may be due to availability of commercial
platforms (LCM and GeoMX DSP), core facilities (LCM, NGS, and Nanostring
nCounter for GeoMX DSP), Nanostring’s Technology Access Platform (TAP), a
commercial data collection and analysis service for GeoMX DSP [87], not requiring
specialized equipment (Tomo-seq, manual microdissection), or disadvantages of
other techniques discussed later in this chapter.
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Figure 7.8: Number of FFPE and frozen section datasets from each current era
technique in humans and mice healthy and pathological tissues; techniques used
in fewer than 10 datasets are lumped into Other. LCM is only for curated LCM
literature and does not include all search results in Chapter 6.

7.2 Single molecular FISH
One quantitative approach to transcript abundance estimation is to display individual
transcripts as distinct puncta with FISH and count them. Prior to smFISH, trans-
mission electron microscopy was used to visualize individual mRNA molecules in
fibroblasts by labeling the poly-A tail with a single large colloidal gold particle and
the in situ reverse transcribed cDNA with small gold particles [88]. That FISH can
be used to visualize single mRNA molecules was first demonstrated in 1998 [89]
(Figure 6.3). Five or more probes targeting adjacent parts of the transcript, each
about 50 nt long and labeled with 5 fluorophores were hybridized to the transcripts.
The puncta seen were shown to be likely individual mRNA molecules, as the fluo-
rescence intensity of each punctum was consistent with the number of fluorophores,
and the number of puncta for 𝛽-actin was consistent with the number of 𝛽-actin
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Figure 7.11: A) Schematic of smFISH from [89]. The long thick line stands for the
mRNA, and short think line stands for DNA oligo probe. B) smFISH with singly
labeled probes from [90].

transcripts measured by other means, and the colors of puncta seen from probes
with different colored fluorophores targeting different parts of the transcript were
consistent with organization of the fluorophores on the transcript (Figure 7.11).

The 1998 approach had a number of disadvantages, leading to development of an
alternative approach in 2008 [90]. First, probes labeled with multiple fluorophore
moieties are difficult to synthesize and purify. Second, the multiple fluorophores
on the same probe can interact with each other and self-quench. Third, out of the 5
probes per transcript, only 1 or 2 may have actually hybridized to the transcript in
most cases, making it difficult to distinguish between true signal and non-specific
binding. In the 2008 method, each 17-22 nt probe is labeled with one fluorophore at
the 3’ end, and a larger number of probes (48 or more) targeting tandem sequences
of the transcript were used to improve signal to noise ratio (Figure 7.11). The
probes were computationally designed and ordered from Biosearch Technologies.
This method influenced later highly multiplexed smFISH techniques; computational
probe design and commercial synthesis would remain crucial.

Barcoding strategies
To use smFISH to quantify transcripts transcriptome wide, there is an obvious
challenge—how to distinguish among over 20,000 genes with only about 5 easily
distinguishable colors? Various strategies using multiple colors and/or rounds of
hybridization or imaging have been devised to drastically expand the palette. The
first attempt to do so was in 1989, using 3 colors to visualize 4 chromosomes in
immunological DNA FISH [91] (Figure 6.3). Each probe can be labeled with one
or two of the 3 haptens: biotin, 2-acetyl aminofluorene (AAF), and Chemiprobe.
Red fluorophore was attached to avidin to target biotin label, and blue and green to
different secondary antibodies targeting, respectively, mouse anti-Chemiprobe and
rabbit anti-AAF primary antibodies (Figure 7.12). Then with one doubly labeled and
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Figure 7.12: A) Combinatorial barcoding in immunological DNA FISH, as de-
scribed in [91]. The line stands for the probe and the circle, triangle, and square
stand for haptens. Not to scale, and only one hapten of each kind is shown on one
probe. B) Combinatorial barcoding in [92]. Short colored lines stand for probes
with fluorophores of the color. C) Schematic of SRM seqFISH as described in [93].

3 singly labeled probes, imaged with different excitation wavelengths or channels, 3
colors can distinguish 4 chromosomes. However, with this method, the palette size
is limited by the number of haptens available and the number of their combinations.

For transcript detection, to our best knowledge, the first attempt was in 2002 [92];
fluorophore labeled probes were synthesized as in the 1998 smFISH method, and
either probes of one color or a mixture of probes of 2 colors were hybridized to the
transcript, and imaged with different channels, to visualize transcription foci in the
nucleus (Figure 7.12). This way, combinations of 2 of the 4 available colors plus
blank were used to encode 10 different transcripts.

The above mentioned historical works in smFISH and combinatorial barcoding laid
foundation to smFISH-based spatial transcriptomics. The first attempt to quantify
transcripts with combinatorial barcoding at single molecular resolution was in 2012
by Long Cai’s group, which later developed seqFISH and its variants [93]. Like in the
2008 smFISH study, singly labeled probes purchased from Biosearch were used, but
forming blocks of different colors as in the 1998 smFISH 𝛽-actin experiment. Then
the transcripts were imaged with super-resolution microscopy (SRM), in particular
stochastic optical reconstruction microscopy (STORM). In the spatial barcoding
strategy, the ordering of the colors in space would distinguish between transcripts,
but would require linearization of the transcripts and high resolution (20 nm) (Figure
7.12). To improve signal to noise ratio, cyanine dye–based photoswitchable dye
pairs [94] was used so both the activator and the emitter fluorophores must be
present and adjacent for the fluorophores to be reactivated. In the spectral barcoding
approach, the pairs of fluorophores are spread across the transcript, so the transcripts
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Figure 7.13: Probe structures of 2014 seqFISH ([95]Lubeck et al. 2014) and
seqFISH error correction.

are recognized by the pairs of fluorophores detected (Figure 7.12). The spectral
approach requires lower resolution (100 nm) and does not require linearization, but
because the ordering of the colors is not used, the number of possible barcodes from
the same number of colors is smaller than in the spatial approach. With spectral
barcoding, transcripts of 32 genes were quantified in yeast, with 3 color barcodes
chosen from 7 available colors. To the best of our knowledge, after its inception, this
SRM method has not been used to generate new data, perhaps because it requires
specialized equipment for SRM. None of the later methods in our curated database
used SRM.

Thus far, probes with fluorophores of different colors were hybridized to mRNAs at
the same time, without multiple rounds of hybridization. To obtain single molecular
resolution but without SRM, there is a challenge of needing to use multiple probes of
the same color to strengthen signal, which requires transcripts that are long enough
to accommodate probes of different colors. The more colors that are used to encode
more genes, the longer the transcripts must be.

This changed in 2014, with the advent of seqFISH [95]. Twenty four singly labeled
probes were designed for each gene, and 12 genes were encoded with 4 colors and 2
rounds of hybridization (Figure 7.13). After imaging the first round of hybridization
and DAPI staining for DNA, the probes are removed with DNase I, and then probes
for the second round are hybridized. Let 𝐹 denote the number of fluorophores or
colors, and 𝑁 denote the number of rounds of hybridization, then the number of
genes that can be barcoded is 𝐹𝑁 . However, with longer barcodes to encode more
genes, error can build up.

The most common error in multi-round smFISH is missing signal, most likely in one
round [96, 97]. If all 𝐹𝑁 barcodes are used and one round is missing for a mRNA
molecule, then the existing signal of this molecule is consistent to 𝐹 genes, so it
cannot be uniquely identified. If a small proportion of barcodes are intentionally
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Figure 7.14: Schematic of MERFISH ([97]K. H. Chen et al. 2015; [99]Jeffrey R.
Moffitt et al. 2016) and MERFISH error correction.

left out to control for false positives, as was done in this first version of seqFISH (4
out of 16), then error correction is still not guaranteed. A further defense against
errors in 2014 seqFISH was to repeat the 2 rounds of hybridization 3 times, so
6 rounds were performed. This filtered out false positives where repeated rounds
didn’t match, and barring false positives, this can recover the original 2 barcoding
rounds if up to 2 of the 6 total rounds have missing signal.

Another error correction scheme was introduced in 2016, with hybridization chain
reaction (HCR) seqFISH [96], and was used in seqFISH+ [98] as well. One more
round of hybridization than necessary to encode the number of genes of interest
was used, and the barcodes are designed so that if one of the rounds is missing, the
remaining rounds still uniquely identify the gene (Figure 7.13). For example, with
5 colors, 3 rounds are enough to encode 100 genes, as 125 barcodes are possible.
However, a fourth round is used, so missing one round can still result in 3 remaining
rounds that uniquely identify the gene.

An alternative to seqFISH was developed with error correction in mind – multiplexed
error-robust FISH (MERFISH) [97]. In MERFISH each encoding probe has a 30
nt long region that targets the transcript, and 2 or 3 20 nt [99] readout sequences to
bind to readout probes (Figure 7.14). First, the encoding probes are hybridized to
the transcripts. For each round of hybridization, readout probes, singly labeled, are
hybridized to the readout sequences on the encoding probes and imaged. Then the
fluorescence of the previous round is either photobleached (version 1) [97] or when
the fluorophore is bound to the readout probe with a disulfide bond, cleaved off with
a reducing agent such as Tris(2-carboxyethyl)phosphine (TCEP) (version 2) [99].
The readout probes are not stripped, and in the next round, new readout probes are
hybridized to new readout sequences and imaged.
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Figure 7.15: Schematic of seqFISH with pseudocolors.

The MERFISH barcodes are binary, with “1” for a round with fluorescence, and “0”
without, and must differ from other barcodes at least 4 places, i.e. with Hamming
distance of at least 4 (HD4). As missing signal is the most common error, each
barcode has 4 1’s, or Hamming weight 4. This way, when one round is missing, the
gene can still be uniquely identified, but when 2 rounds are missing, the remaining
barcode is equally distant to 2 genes, so the error cannot be corrected (Figure 7.14).
Sixteen rounds of imaging, or 16 bits, would result in 140 barcodes. In this case,
there are 16 different readout sequences, and each gene is assigned 4 of them, for
the 4 1’s in the barcode. If the code is expanded to 69 bits, then about 10,000 genes
can be encoded, and by using 3 colors to image 3 bits per round, only 23 rounds of
imaging are needed to cover the 69 bits, cutting imaging time to a third [100]. An
HD2 code, i.e. barcodes are at least hamming distance 2 away from each other, can
also be used, but errors can only be recognized but not corrected. All variants of
MERFISH use this type of binary barcoding.

More recently, a new variant of seqFISH was devised to scale up to 10,000 genes
[101]. The barcoding and hybridization scheme enabling such scale was first in-
troduced in vitro in 2017 as RNA SPOTs [102], and was then adapted to cultured
cells in 2018, targeting introns of nascent transcripts of over 10,000 genes [101]. In
2019, this scheme was used to profile mature transcripts of 10,000 genes in both
cell culture and the mouse brain, and with super-resolution [98]. Super-resolution
beyond the diffraction limit can be achieved by computationally super-resolving the
transcript spots with a radial center algorithm [103] when spot density is very high
to help with decoding barcodes; the super-resolution version is known as seqFISH+.
While this new version of seqFISH can reduce optical crowding and greatly expand
the palette, the super-resolution algorithm that can further reduce crowding does
not have to be used to locate the transcript spots when density is low. This version
of seqFISH was again used to visualize genomic loci (super-resolution) [104] and

https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Hamming_distance
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Figure 7.16: Schematic of split-FISH.

mature transcripts of a smaller number of genes (not super-resolution) [105].

This method is quite different from previous seqFISH variants, and is in some ways
reminiscent of MERFISH. Like previous versions of seqFISH, each barcode is a
series of colors, but a large number of “pseudocolors”, specifically 20 per channel
in the seqFISH+ study, are used rather than the 5 fluorophores, so 3 rounds of hy-
bridization can encode 203 or 8000 genes per channel. Any number of pseudocolors
and rounds can be used depending on the number of genes profiled. Each primary
probe has a 28 nt region targeting the transcript and 4 readout sites of 15 nt. Each
readout site has as many different sequences as there are pseudocolors, and the 4
sites correspond to the series of 4 pseudocolors in the barcode. First, 24 primary
probes are hybridized to the transcripts. Then for each place of the barcode, 20 (or
whatever number of pseudocolors) rounds of hybridization with readout probes are
performed, stripping with formamide between rounds. In these 20 rounds, each gene
should light up only once, and its place in the 20 rounds is its pseudocolor (Figure
7.15). This way, in each image, only 1 out of 20 molecules of interest imaged in the
channel fluoresce, reducing optical crowding. For the entire barcode of length 4,
there would be 80 rounds of hybridization. In contrast, in MERFISH, with the 16 bit
barcode, this would be 1 out of 4. Like in MERFISH, a larger number of real colors,
or channels, can be used to increase throughput, to image multiple pseudocolors
simultaneously. So with 3 channels, 24,000 genes can be encoded. The same error
correction method as in HCR seqFISH was used, so while a barcode of length 3 is
sufficient, length 4 was used.

Another new method, called split-FISH [106] was devised to reduce off target
hybridization, and thus background noise and some barcoding errors. For each
encoding probe or bridge probe like in MERFISH, a pair of split probes hybridize
to the transcript itself, inspired by the Z probes of RNAscope (Figure 7.16). Half
of the split probes would bind to the transcript, and the other half bind to the bridge
probe. Then as in MERFISH, the bridge probe has 2 readout sequences and singly
labeled readout probes bind to the bridge probe for imaging. This method reduces
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off target hybridization because the bridge probe can only indirectly bind to the
transcript if both of the split probes hybridize to the transcript. To encode 317
genes, 2 places out of 26 in binary barcodes are chosen to be “1”, resulting in 325
possible barcodes; 8 of them are left blank to control for false positives. Error
correction is not mentioned.

Despite the availability of the above barcoding schemes, when the number of genes
stained for is not too large, each gene can still be encoded by only one round of
hybridization and one color. When the number of genes is larger than the number
of colors, each round of hybridization stains for as many genes as there as colors,
and the probes are stripped so the next round stains for a different set of genes.
This has been done in osmFISH [107] staining for 33 genes, in a non-barcoded
adaptation of HCR-seqFISH called Spatial Genomic Analysis (SGA) [108] staining
for 35 genes, and in Expansion-Assisted Iterative Fluorescence In Situ Hybridization
(EASI-FISH) 26 genes [109].

Signal amplification
As already mentioned, in smFISH, a large number of singly labeled probes can be
used to boost signal, but not all transcripts are long enough to accommodate this
number of probes. Furthermore, isoform specific exons are often not long enough
to accommodate these probes for isoform specific staining. Without increasing the
number of probes, background reduction such as by tissue clearing, split probes
(e.g. in split-FISH), and using fluorophores with colors very different from the color
of autofluorescence [99] can increase signal to noise ratio. There are also ways to
boost signals without increasing the number of probes, the most common of which
are branched DNA (bDNA), rolling circle amplification (RCA), and HCR. All of
these methods non-covalently attach numerous fluorophores to the probe to amplify
signal. Background reduction and signal amplification can be used in conjunction.

Branched DNA

Dating back at least as far back as to 1993 [110], early use of bDNA in ISH was to
detect low copy number of viral genomes, eventually down to single copies [111].
bDNA signal amplification involves several steps of hybridization (Figure 7.17).
First, usually some sort of bridge probe binds to the transcript itself. Then the
primary amplifier binds to the bridge probe, leaving a long overhang. Then multiple
secondary amplifiers bind to the primary amplifier on the overhang of the primary
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Figure 7.17: Schematic of bDNA. The Z probes are specific to RNAscope, but the
other parts are generic to bDNA.

amplifier, and each secondary amplifier also leaves an overhang. Finally, multiple
labeled readout probes bind to each secondary amplifier. This way, space available
for hybridization of the readout probes is drastically expanded, allowing for more
fluorophores per unit transcript length.

For FISH, a particularly influential bDNA method is RNAscope, introduced in 2012
for FFPE tissues, and is now commercially available from ACD [112]. In addition
to bDNA amplification, RNAscope reduces background noise from non-specific
hybridization by using 2 bridge Z probes in between the transcript and the primary
amplifier, so the primary amplifier will only bind when both Z probes are present.
An smFISH RNAscope method has been used to profile around 1000 genes in cell
culture [113] and 49 genes in the mouse somatosensory cortex [114], although
these experiments were not highly multiplexed and only one or a handful of genes
distinguishable by fluorophore color were stained for in the same cells or sections;
numerous cells and sections were stained to cover all genes in the gene panels. ACD
RNAscope HiPlex v2 can profile 12 targets, but without barcoding. Up to 4 targets
are imaged with 4 different fluorescent channels per round of imaging, then the
fluorophores are cleaved for the next round of imaging. With fresh frozen tissue,
this can be applied to up to 48 targets. bDNA has also made its way into more
highly multiplexed smFISH, as a variant of MERFISH [115]. Here, the primary
amplifier binds to the readout regions of the MERFISH encoding probe. Like in
regular MERFISH (v2), the fluorophores are attached to the readout probes by a
disulfide bond and removed by TCEP after each round of hybridization; the bDNA
moiety is not removed. With bDNA amplification, only 16 probes per gene can
detect about as many transcripts as with 92 unamplified probes [115].

Rolling circle amplification

Chronologically, the next of the popular signal amplification method is padlock
probe RCA. Padlock probe was introduced in 1994 by Mats Nilsson as a way to

https://acdbio.com/rnascope-hiplex-assays
https://acdbio.com/rnascope-hiplex-assays
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Figure 7.18: Schematic of RCA, here shown with target priming though a separate
primer can also be used. Red segment is the gene barcode.

reduce background in ISH and to detect single nucleotide variants (SNVs) [116].
Both ends of of the padlock probe must hybridize to the target without terminal
mismatches for the ligase to connect the ends of the probe to form a circle (Figure
7.18); thus padlock probe and RCA can detect SNPs and point mutations [117, 118].
The circle encloses the target like a padlock on a string, hence the name “padlock
probe”. Then probes that are not circularized are digested by an exonuclease. RCA
was introduced in 1995 as a way to create tandem repeats and potentially point to
the origins of tandem repeats in genomes, not seeming to have signal amplification
in mind [119]. A primer anneals to circularized DNA and is then elongated by Φ29
DNA polymerase, and as the polymerase goes around the circle many times, many
copies of the complimentary sequences of the circle are made (Figure 7.18). In 1998,
padlock probes and RCA were united to create a method of signal amplification [120,
118].

In spatial transcriptomics, padlock probe and RCA were initially used for in situ
sequencing (ISS) [121], but more recently adapted to smFISH. The padlock probe
with the gene barcode is hybridized to in situ reverse transcribed cDNA as in ISS and
hybridization-based ISS (HybISS) [122], or the mRNA itself as in SCRINSHOT
[123], hybridization-based RNA ISS (HybRISS) [124], and barcoded oligonu-
cleotides ligated on RNA amplified for multiplexed and parallel in situ analyses
(BOLORAMIS) [125]. RCA can be initiated with the target cDNA itself as a primer
or with a separate primer when the target is mRNA. Then readout probes are hy-
bridized to the RCA amplified gene barcode, with [122] or without [123] a bridge
probe. In Hyb(R)ISS and SCRINSHOT, multiple rounds of readout hybridization
encode each gene with a sequence of colors as in seqFISH; although error correction
is not discussed, the seqFISH error correction scheme can be easily adapted. Perhaps
because of larger number of copies of the gene barcode sequence produced by RCA,
Hyb(R)ISS and SCRINSHOT use 5 probes per gene, each with a 30 nt (HybISS,
target sequences are proprietary information of CARTANA for HybRISS) or 40 nt
(SCRINSHOT) region to target the transcript. While we are unaware of isoform
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Figure 7.19: Schematic of HCR, showing 3 cycles, but this can continue indefinitely
until H1 and H2 are exhausted. Arrow shows 5’ to 3’ direction.

specific studies conducted with Hyb(R)ISS or SCRINSHOT, isoform specific exons
may more realistically accommodate the 5 probes.

Hybridization chain reaction

A third signal amplification method is HCR, introduced in 2004 [126], which has
been adapted to seqFISH, giving rise to HCR-seqFISH. EASI-FISH also uses HCR
for signal amplification. In singly labeled hairpins, the long stem is protected by the
short stem, but can also hybridize with short stems of other hairpins (Figure 7.19).
The long stem of H1 can hybridize to the short stem of H2, and vice versa (Figure
7.19). First, an initiator probe is hybridized to the transcript (24 per gene in the 2016
HCR-seqFISH study). Then the long stem of H1 hybridizes to the part of initiator
not hybridized to the transcript, now leaving the short stem vacant. Then the long
stem of H2 hybridizes to the vacant short stem of H1, and now the short stem of H2
is vacant for another H1. This cycle can continue indefinitely until H1 and H2 are
depleted. This way, many fluorophores are tethered to the target transcript without
increasing the number of probes bound to the transcript, thus amplifying signal.

Similarly, RCA can continue indefinitely until DNA polymerase is inhibited or
removed or when deoxynucleotides are depleted. In contrast, the bDNA moiety has
a controlled size and does not grow indefinitely until stopped. In both bDNA and
HCR, the amplified moiety is still anchored on the target transcript. In contrast,
since when the padlock probe encloses the target, the DNA polymerase is inhibited
[120], the padlock must be dissociated from the target before RCA, or in the case of
target priming, the target cDNA itself grows into the RCA hairball. As the hairball
is not anchored to the original target, it can drift away and obscure the original
location of the target. BOLORAMIS crosslinks the RCA amplicon to the cellular
matrix to prevent the amplicon from drifting away.
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Primer exchange reaction

Chronologically, a fourth signal amplification method is the primer-exchange re-
action (PER), introduced in 2017 [127]. In PER, a hairpin with an overhang of
domain A’ and double strand enclosed domain B is used. Primer A complemen-
tary to domain A’ of the hairpin anneals to the overhang, and a strand displacing
polymerase copies domain B, extending domain A, thus creating a concatenation of
A and B. Then the copied domain B competes with domain B in the hairpin until
the concatemer AB is displaced by the hairpin’s domain B. Then another hairpin
with domain B’ as the overhang can continue to extend the concatemer in the next
cycle of the PER reaction. PER is used in smFISH method signal amplification by
exchange reaction (SABER) [128] for signal amplification, where the primer is the
target sequence binding to the transcript has a domain A at the 3’ end, and the hairpin
has a domain A’ overhang and another A and A’ in double strand instead of B and
B’, so multiple copies of domain A is concatenated to the primer. Then fluorescent
readout probes anneal to the multiple copies of domain A from PER, thus greatly
increasing the number of fluorophores that can bind to the same transcript target.
Branched probes as in bDNA can be applied to the PER concatemers for additional
signal amplification. The short readout probes can be stripped without stripping the
longer primary probes binding to the transcripts for multiple rounds of hybridization
to image more genes than fluorophores.

Optical crowding
As we have seen, smFISH-based spatial transcriptomics has been scaled to around
10,000 genes and can potentially be scaled to the whole transcriptome. With
increasing number of mRNA molecules visualized, it’s also increasingly likely for
different target molecules to be so close to each other that their fluorescent spots
overlap or are even within the diffraction limit of the optical microscope and appear
as one point. This is the problem of optical crowding, and some existing ways to
mitigate this problem are summarized below.

As already mentioned, SRM is not susceptible to this problem [93], though access to
SRM is not as common as access to regular confocal or epifluorescent microscopes.
Another simple strategy is to select the most highly expressed genes from RNA-seq.
These genes are imaged separately with smFISH, with one color and one round
of hybridization per gene instead of combinatorial barcoding, as was done in the
first MERFISH study [97]. However, with increasing number of highly expressed
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genes, this method becomes increasingly laborious. Also as already mentioned,
in seqFISH+, only 1 in 60 mRNA molecules of interest light up in each channel
and round of hybridization (20 pseudocolors per channel and 3 channels), and
the transcript spots can be computationally super-resolved, thus reducing optical
crowding [98].

Another strategy is to allow transcript spots to overlap but computationally resolve
them, as in corrFISH [129], BarDensr [130], ISTDECO [131], and Composite In
Situ Imaging (CISI) [132]. In corrFISH, Transcripts of highly expressed genes
encoding ribosomal proteins were visualized with sequential hybridization and 2
colors but not every gene lights up in each round of hybridization; each gene is
encoded by one color and a sequence of 0’s (absence of fluorescence) and 1’s
(presence) of that color. Then images from different rounds of hybridization in the
same FOV are correlated to identify transcripts that are 1’s in both rounds amidst
transcripts that are not 1’s in both rounds. To the best of our knowledge, after its
conception, corrFISH has not been applied to generate any new high throughput
dataset.

A more recent method, BarDensr, models the observed brightness of potentially
mixed spots in terms of the point spread function (PSF), codebook, unknown spot
density, probe washing, background, and per round per channel gain. Then the
unknown spot density and deconvolution of barcodes at mixed spots are inferred
by maximizing sparsity of the spots in space (most voxels don’t have spots) while
keeping reconstruction loss of the observed brightness sufficiently low. BarDensr
is very recently published, and, as of writing, we are unaware of studies that used
the method. ISTDECO is similar but only uses a Gaussian PSF, codebook, and
background.

CISI uses seqFISH-like barcoding, but does not even require spot detection. Gene
abundance is computationally inferred with compressed sensing. First, an autoen-
coder is trained on composite images with different channels. Then in the latent
space inferred by the autoencoder, the channels are decompressed with compressed
sensing principles and decoded into genes with the decoder branch of the trained
autoencoder. The barcodes and genes must be carefully chosen from an existing
dataset. The genes must be described by a small number of coexpression modules
so module activity is sparse. Inferring the sparse module activity before inferring
individual gene levels at the decompression step is more tractable than directly
inferring individual gene abundances.

https://en.wikipedia.org/wiki/Compressed_sensing
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Figure 7.20: Schematic of expansion microscopy.

A strategy that has been reused is expansion microscopy (ExM). When a poly-
electrolyte gel is dialyzed in water, it expands as its polymer network changes into
extended conformations [133]. First, the tissue is infused with monomers of the
gel. Then with small molecule linkers, molecules of interest such as fluorophores
and RNAs can be covalently incorporated to the polymer network over the course of
free radical polymerization. After the gel forms, proteins in the tissue are digested
to homogenize mechanical properties of the gel and to clear the tissue to reduce
autofluorescent background. Then the gel is soaked in water to expand, linearly ex-
panding 3 to 4.5 times on each side [133, 134] (Figure 7.20). This way, transcripts
attached to the gel are physically separated, avoiding optical crowding. ExM has
thus been adapted to MERFISH for this purpose [135], as well as EASI-FISH. In
addition, EASI-FISH was used to quantify transcripts in 300 𝜇m thick brain slices
and imaging was accelerated with light sheet microscopy. However, a disadvantage
of ExM is that each FOV now covers less of the original tissue, thus increasing
imaging time. Furthermore, the expanded gel would continue to expand during the
rounds of hybridization. As the expansion is non-linear and non-isotropic, barcode
decoding is challenging as it’s difficult to match transcript spots across rounds of
hybridizations.

Usage of smFISH-based techniques
As already noted, the number of genes whose transcripts can be possibly quantified
simultaneously in the same piece of tissue with highly multiplexed smFISH-based
technology has increased over time (Figure 7.21). The number of cells that can be
imaged in one study has also increased (Figure 7.22). However, in practice, the
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Figure 7.21: Record number of genes per dataset quantified by smFISH-based
techniques over time.
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Figure 7.22: Record total number of cells per study profiled by smFISH-based
techniques over time.
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actual number of genes and cells profiled has not significantly increased (Figure
7.23, Figure 7.24). These plots only show papers that reported the number of cells
and genes in the main text; if we download and process all publicly available datasets
associated with such papers, the trends might change, although figures of papers that
do not report the number of cells (number of genes is usually reported in smFISH
and ISS studies) don’t seem to indicate that the trend would change significantly.
Moreover, as discussed in Section 7.8, some of the studies used smFISH-based
methods to visualize DNA loci and 3D chromatin structure alongside transcripts.
The number of genes here is for the transcripts, including when only introns are
targeted.

An earlier version of the plot of number of genes over time plotted the mean
number of genes for each study, due to difficulty in defining what constitutes a
dataset. However, since that version caused confusion as sometimes one study
profiled very different number of genes in different experiments, we decided to give
some definition of “dataset” and not to plot the mean. Here a “dataset” means
either a different tissue, cell type, experimental or clinical condition, or a separate
experiment profiling a different number or set of genes in the same study. One
dataset can involve multiple sections and individuals.

The trend line looks pretty flat. Although studies quantifying a very large number
of genes tend to be recent, many other studies profiling fewer genes pulled the line
down. The slope (with all data, outliers and all) is not significantly different from 0
(t-test), after log transforming the number of genes per dataset.

##

## Call:

## lm(formula = log(n_genes) ~ date_published, data = smfish)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.868 -1.196 0.033 1.042 4.735

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.566e+00 2.338e+00 1.525 0.129

## date_published 5.364e-05 1.249e-04 0.429 0.668

##
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Figure 7.23: Number of genes per datasets in each study, over time. Gray ribbon is
95% confidence interval (CI). The points are translucent; more opaque points are
multiple datasets from the same study.

## Residual standard error: 1.583 on 222 degrees of freedom

## (20 observations deleted due to missingness)

## Multiple R-squared: 0.0008302, Adjusted R-squared: -0.003671

## F-statistic: 0.1845 on 1 and 222 DF, p-value: 0.668

How total number of cells profiled in each study that reported the number of cells
in the main text is shown here. The total number across datasets is used because
sometimes number of cells per dataset is not reported.

After log transforming the total number of cells per study (when reported), whose
distribution is very right skewed, it does seem that the total number of cells increased
with time (Figure 7.24). New smFISH-based techniques in our database since 2021
are all optimized for features other than larger number of genes and are applied
to relative small numbers of genes in demonstration. For instance, EASI-FISH
is optimized for thick brain sections ([109]Y. Wang et al. 2021). par-seqFISH
is optimized for bacteria ([136]Dar et al. 2021). CISI is optimized for reducing
the number of imaging cycles and avoiding direct spot calling and has not been
demonstrated on large number of genes [132]. The distinctive feature of MOSAICA
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Figure 7.24: Total number of cells per study profiled by smFISH-based techniques
over time.

is to use both the color and the lifetime of the fluorophores and is only demonstrated
to be 10-plex [137]. Recent applications of existing techniques also tend to feature
larger number of cells but only hundreds of genes (e.g. 368 genes in [138]), where
the MERFISH dataset is complementary to scRNA-seq datasets of the same tissue,
using marker genes from scRNA-seq clusters.

##

## Call:

## lm(formula = log(n_cells) ~ date_published, data = sum_cells)

##

## Residuals:

## Min 1Q Median 3Q Max

## -4.8383 -1.6338 0.0016 1.8604 4.7738

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.951e+01 6.067e+00 -3.216 0.00233 **

## date_published 1.601e-03 3.286e-04 4.872 1.24e-05 ***
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## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 2.273 on 48 degrees of freedom

## Multiple R-squared: 0.3309, Adjusted R-squared: 0.317

## F-statistic: 23.74 on 1 and 48 DF, p-value: 1.244e-05

MERFISH is the smFISH-based technique used in the most institutions (Figure 6.7),
although most of the smFISH-based techniques barely spread beyond their institu-
tions of origin, if at all (Figure 7.26). The following advantages and disadvantages
of smFISH-based techniques may explain these trends in usage. Advantages and dis-
advantages of individual smFISH-based techniques reviewed so far are summarized
in Table 7.1.

MERFISH has been commercialized by Vizgen and has spread much more far
and wide than seqFISH and HybISS; another commercial technology, Molecular
Cartography also also spread far and wide (Figure 7.27). While MERFISH is mostly
used in the US, Molecular Cartography is mostly used in Europe, in accordance with
the location of their companies.

smFISH-based techniques have the following advantages. First, smFISH, especially
with larger number of probes, have nearly 100% detection efficiency of transcripts
[93], i.e. detecting almost all transcripts that are present. Different ways to evaluate
efficiency of spatial transcriptomics techniques have been reported. The reported
“efficiency” of MERFISH was estimated by the average ratio between the number
of transcripts per segmented cell detected by MERFISH and those detected by
smFISH in the same cell type for 10 genes. With combinatorial barcoding, however,
the efficiency is decreased. Studies for other techniques may use different ways to
estimate efficiency. Compared to smFISH, MERFISH version 2 with HD4 code
has about 95% detection efficiency on 130 genes and 92 probes per gene, although
the efficiency dropped to ~25% with the HD2 code that can encode nearly 1000
genes but can only identify but not correct errors [99, 140]. When scaled to 10,050
genes, MERFISH has around 79% detection efficiency [115]. As for HCR-seqFISH,
the efficiency is around 84% (smFISH and HCR-seqFISH were performed in the
same cell for 5 genes) [96], and for seqFISH+, around 49% (slope of line fitted
to average transcript count per cell in seqFISH+ vs. smFISH for 60 genes) [98].
Nevertheless, this is much better than the efficiency of ST, which is around 6.9%
compared to smFISH in the 2016 ST study (transcript counts for 3 genes in ST spots
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Figure 7.25: Number of publications over time, broken down by technique type.
Preprints are included, and the gray histogram in the background is the overall trend
of all smFISH-based techniques. Bin width is 90 days.
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Figure 7.26: Number of techniques that have been used by each number of institu-
tions; most techniques have only been used by 1 institution, i.e. the institution of
origin.
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points in the background is all publications using smFISH-based techniques. The
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the hidden Markov random field (HMRF) study at Dana Faber [139] and the mouse
embryo study [105] had collaboration with Long Cai’s group at Caltech, so the
dataset was most likely still collected at Caltech.
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were compared to those from smFISH of 100 𝜇m diameter discs at comparable brain
regions in an adjacent section) [141]. To put the 6.9% in context, from ERCC spike
ins and in some cases comparison to smFISH, scRNA-seq methods such as Drop-
seq, 10X, inDrop, CEL-seq, and CEL-seq2 have capture efficiency of between 3%
and 25% [142, 143, 144, 145, 146]. Thus smFISH-based spatial transcriptomics
methods can be much more efficient than scRNA-seq, though efficiency of RCA
based smFISH compared to regular smFISH has not been reported.

Second, since individual transcripts are imaged and counted, smFISH-based meth-
ods are highly quantitative and records subcellular localization of transcripts. While
most smFISH-based spatial transcriptomics studies analyze data at the cellular gene
count level, not using subcellular transcript localization, cells have been shown to
show great variation in subcellular localization of transcripts of the same set of
genes and a number of “archetypal” patterns have been described [147, 148, 149].

The following disadvantages may explain why smFISH-based spatial transcrip-
tomics has not been widely used on large number of genes (Figure 7.23), and why
MERFISH is the most used technique (Figure 7.25). First, multiple rounds of hy-
bridization and high magnification mean that data collection is time consuming.
MERFISH version 2 greatly sped up imaging, as version 1 requires higher magni-
fication and needs to photobleach fields of view (FOV) one at a time; one FOV in
version 1 is 40 𝜇m × 40 𝜇m, while one FOV in version 2 is 223 𝜇m × 223 𝜇m.
Version 2 also cut imaging time in half by using 2 colors, targeting 2 bits per round.
This way, for 130 genes and 40,000 cells, MERFISH took about 18 hours [99], while
HCR-seqFISH would take days because of overnight hybridization after probes are
stripped for each round of hybridization although the seqFISH barcode is much
shorter. When scaled to 10,000 genes, MERFISH takes 23 rounds of hybridization
[100], while seqFISH+ takes 80 rounds [98], although because ExM was used for
MERFISH in this case to reduce optical crowding, expanding the area to be images
~4 fold, the actual imaging time of ExM-MERFISH and seqFISH+ here may have
been comparable. Perhaps MERFISH has been scaled to larger number of cells and
used in more studies beyond the institution of origin (Figure 7.27) because of the
higher detection efficiency and shorter imaging time.

Second, with increasing area of tissue and number of genes covered, smFISH-based
spatial transcriptomics generates terabytes of images—for each FOV, there is an
image for each channel, z-plane, and round of hybridization. Images from the
MERFISH dataset of 40,000 cells and 130 genes took 2 to 3 days to process on a
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Figure 7.28: Number of publications using smFISH-based techniques that used
each of the 50 most common programming languages. Each icon stands for 5
publications.

multi-core server, although the number of cores was not stated [99]. In contrast, it
takes hours, or even just minutes, to process the fastq files of a scRNA-seq dataset
to get the gene count matrix [150], nor do the fastq files take up so much disk
space. So for the user, processing the most upstream form of data is much more
challenging for highly multiplexed smFISH than scRNA-seq. Until 2019, software
to process such images and to decode the combinatorial barcodes was typically
written in the proprietary programming language MATLAB (Figure 7.28), and
poorly documented, so it was difficult for people outside the lab of origin to use.

More recently, Python is replacing MATLAB as the programming language of
choice to write such image processing software. The Chan Zuckerberg Initiative
developed starfish in Python as a unified framework to process smFISH-based spatial
transcriptomics data [151]. However, image processing pipelines specific to each
technology have been developed instead, such as MERlin for MERFISH [100] and
IRIS for ISS [152], and image stitching is performed separately such as with MIST
[153] or BigStitcher [154] if needed as starfish does not directly support multiple
FOVs. starfish has been used by the HybISS group [155, 122] for spot calling,

https://spacetx-starfish.readthedocs.io/en/stable/
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decoding, and cell segmentation, and by the CISI group for spot calling [132] and
CellProfiler for cell segmentation. In contrast, for scRNA-seq, there are popular
data processing tools that apply across technologies, such as STAR (wrapped by
Cell Ranger) [156], alevin [157], and kallisto [150]. Furthermore, even with an
open source and interoperable image processing pipeline, cell segmentation, which
is essential to obtaining the gene count matrix commonly used in data analysis, is
challenging.

Third, custom fluidics systems have been used for the numerous rounds of hybridiza-
tion [98, 99, 107]. These custom fluidics and pump systems are not commercially
available and need to be built by any lab that wishes to adopt the smFISH-based
technologies. To the best of our knowledge, there are no core facilities that perform
smFISH-based spatial transcriptomics. Thus for the user, adopting an smFISH-
based spatial transcriptomics technique means not only learning a new syntax to
process images, made difficult in some cases by the cost of MATLAB and lack of
documentation, but also setting up a complex custom fluidics system integrated to
a microscope, which may not be feasible at microscopy cores. However, this is
changing with commercial Vizgen MERFISH, the Rebus Esper spatial omics plat-
form, Molecular Cartography of Resolve Biosciences, 10X Xenium, and Nanostring
CosMX, with convenient automated imaging machines and reagent kits. Rebus Es-
per was used to automate osmFISH in [158], and claims to have less than one hour
of hands on time and be able to return a gene count matrix for 100,000 cells with
spatial coordinates of the cells within 2 days. While Molecular Cartography is
smFISH-based, it’s not clear from its website how it works and it only profiles 100
genes. Aria from Fluigent can also be potentially used to automate highly multi-
plexed FISH. MERFISH and Molecular Cartography have spread far and wide after
commercialization, and we expect other commercial smFISH platforms to spread as
well.

Fourth, to profile large numbers of genes, numerous probes need to be designed,
especially when dozens of probes are used for each gene to enhance signal. Probes
with fluorophores are expensive as well and larger quantity of them are needed with
signal amplification. These probes are an expensive one time purchase, and might
not be worthwhile if a lab does not perform highly multiplexed smFISH very often.
A core facility with a good collection of probes can reduce cost to individual labs,
but to reiterate, as of writing, we are unaware of any core facility performing highly
multiplexed smFISH techniques such as MERFISH (except NeuroTechnology Studio

https://vizgen.com/
https://rebusbio.com/rebus-esper/
https://resolve-biosciences.com/
https://www.10xgenomics.com/instruments/xenium-analyzer
https://nanostring.com/products/cosmx-spatial-molecular-imager/single-cell-imaging-overview/
https://nanostring.com/products/cosmx-spatial-molecular-imager/single-cell-imaging-overview/
https://www.fluigent.com/product/microfluidic-components-3/aria/
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Table 7.1: Pros and cons of smFISH-based techniques.

Technique Pro Con

HCR-seqFISH Relatively high efficiency
(84%), fewer rounds of
hybridization, error
correction

Lower efficiency than
MERFISH, time consuming
to re-hybridize probes to
target after stripping

seqFISH+ Avoids optical crowding,
scalable

Lower efficiency (49%),
numerous rounds of
hybridization

MERFISH High efficiency (95%) with
HD4 code, error correction,
version 2 relatively fast,
scalable, commercialized

Numerous rounds of
hybridization, numerous
probes requiring long
transcripts though this is
resolved by bDNA signal
amplification

ExM-
MERFISH

Avoids optical crowding,
clears tissue

Each FOV contains less of the
original tissue

HybISS Only 5 probes per gene,
applicable to isoform specific
exons, padlock probe reduces
background, lower
magnification when imaging
(20x and 40x, while
MERFISH uses 60x), can
discern SNPs

Error correction not reported,
amplicon takes up space and
might drift away if not cross
linked

HybRISS Avoids inefficiency of reverse
transcription, better signal to
noise ratio and more
transcripts detected then
HybISS.

Padlock probe sequences are
proprietary to CARTANA

bDNA-
smFISH

Commercial RNAscope kit,
reduces background and
amplifies signal, amplified
moiety does not grow
indefinitely

Except for bDNA-MERFISH,
it has not been used in a
highly multiplexed setting

at Brigham Health for MERFISH) and seqFISH. Cost of probes could be a reason
why recent applications of highly multiplexed smFISH techniques did not profile
larger number of genes. Finally, smFISH-based techniques require a pre-defined list
of genes and probes, so unlike in RNA-seq, novel transcripts would be missed.
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So far we have reviewed studies that showcase new techniques and technical im-
provements such as signal amplification and resolving optical crowding. Some
smFISH-based techniques have been used in studies that focus on biological prob-
lems rather than new techniques. HCR-seqFISH has been used twice in biological
studies, in chicken neural tube (35 genes) [108] and mouse T cell precursors (65
genes) [159] though both were conducted within Caltech, the institution of origin.
Moreover, spatial location of cells is not necessarily a reason to use HCR-seqFISH;
Zhou et al. used HCR-seqFISH because of the high detection efficiency compared
to scRNA-seq in dissociated FACS sorted T cell progenitors, so when spatial infor-
mation is already lost. More recently, pseudocolor seqFISH was used in a mouse
embryo atlas at University of Cambridge (though Long Cai is still a coauthor), finally
moving beyond the stage of testing into new biological research [105]. Combina-
torial barcoding has also been used to profile bacterial species in the microbiome
by targeting rRNAs, though this does not profile the transcriptome, nor is it single
molecular [160, 161]. For spatial transcriptome in bacteria, a new version of se-
qFISH, par-seqFISH, was developed to profile 105 genes in the biofilm bacterium
Pseudomonas aeruginosa [136]. This may open the way to spatial transcriptomics
in not only biofilms, but in the microbiome in general.

MERFISH has been used more broadly in biological studies. Within Harvard, the
institution of origin, MERFISH has been used to create atlases of the hypothalamic
preoptic region (155 genes) [162] and the primary motor cortex (MOp) (258 genes)
[163] in mice, and adapted to stain for chromatin conformation and transcription
foci (introns) [164]. Outside Harvard (Figure 7.27), MERFISH has been used to
study how gene expression variability relates to cell state in cell culture [140] and
used in conjunction with smFISH-based chromatin tracing to study the relationships
between chromatin compartmentalization and gene expression [165].

After its inception, HybISS became part of a single-cell atlas of the developing
mouse nervous system [166]. This atlas is mostly scRNA-seq data, but 119 genes
were stained with HybISS to validate secondary organizers discovered via scRNA-
seq. As part of the HCA, HybISS has also been used for the human adult temporal
lobe [167] and fetal forebrain [155].

7.3 In situ sequencing
In contrast to smFISH-based techniques, techniques reviewed in this section de-
termine the sequences of the target transcript or the gene specific barcode by in
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situ sequencing by ligation (SBL) or sequencing by synthesis (SBS) to distinguish
between transcripts of different genes. This section reviews 3 in situ SBL strategies,
SOLiD, cPAL, and SEDAL, and the spatial transcriptomics techniques using them.

SBL relies on the specificity of the DNA ligase, so ligation only occurs when both
sequences to ligate match the template in the vicinity of the site of ligation. Prior
to SBL, this specificity was used to detect SNVs that would otherwise be missed
as ISH probes can tolerate some mismatches. A technique using ligation of two
oligonucleotides to detect SNVs was introduced in 1988 by Ulf Landegren [168],
laying the foundation of SBL (Figure 6.3). The padlock probe came in the same
tradition of SNV detection, and Mats Nilsson worked with Landergren when creating
the padlock probe [116].

Almost all spatial transcriptomics techniques based on SBL require in situ reverse
transcription of the mRNAs as ligation with RNA as template is inefficient. As
already mentioned in Section 7.1, IVT amplification of transcripts from single-
cells for expression profiling originated in the Eberwine group [28, 29], where
rather than LCM, the cDNAs from the single-cells were reverse transcribed in situ
during electrophysiological recording before the cellular content was aspirated for
IVT amplification. This was built upon the in situ reverse transcription technique
from the Eberwine group in 1988 [169], where the cDNA of proopiomelanocortin
(POMC) was radiolabeled so the spatial distribution of the mRNA was visualized on
an autoradiograph. This made most in situ SBL techniques possible, which instead
of radioactivity, use gene barcodes to locate the transcripts in a multiplexed and
safer way.

SOLiD and FISSEQ
The earliest proposal of SBL we are able to locate is a patent filed in 1995 describing
a method similar to sequencing by oligo ligation detection (SOLiD). An initiator
oligonucleotide hybridizes to the template to be sequenced, and is extended by
ligation to a 9-mer probe with a label such as a fluorophore that indicates one or two
nucleotides of the probe [170]. The probe has a blocking moiety so only one probe
is ligated in each cycle. Then the blocking moiety is removed so the initiator can be
further extended by ligation in the next cycle. As mismatches in the probe inhibit
ligation, the nucleotide of interest in the probe can be read off from the label after
probes that are not ligated are removed. This can determine every 9th nucleotide in
the template, and with 9 different initiators, each out of phase by one nucleotide, the
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Figure 7.29: Schematic of RCA in FISSEQ.

sequence of the entire template can be determined. However, this method existed
only on paper, while since 2006, Applied Biosystems (Applera) seemed to have
developed SOLiD independently from that patent after acquiring Agencourt, which
developed a sequencing by ligation method that would be the foundation of SOLiD
[171].

In 2014, single-cell resolution and transcriptome wide spatial transcriptomics was
far out of reach (Figure 7.21). An attempt to reach this goal was fluorescent in
situ sequencing (FISSEQ) [172]. A universal adapter and random hexamer reverse
transcription (RT) primer was hybridized to the mRNAs to reverse transcribe them
into cDNA (Figure 7.29). Then the cDNA, now with the adaptor on the 5’ end, is
circularized, and amplified with RCA with a primer complementary to the adaptor.
Then again, with sequencing primers receding into the adaptor, SOLiD is used to
sequence the cDNA amplicons in situ.

In SOLiD, color of the fluorophore encodes the two 3’-most bases of 8-mer probes
with other bases degenerate (Figure 7.30). Once a probe perfectly matching the
target right after the primer, the probe is ligated to the primer and the fluorescent
signal is recorded. Then the fluorophore and the nearest 3 bases of the probe are
cleaved off. In the next cycle, a new matching probe is ligated to the now extended
primer. This is continued until the end of the target, for 7 cycles per primer in the
case of FISSEQ [173]. For the first 7 cycles, the primer matches the adaptor (N).
Then the primer N, extended for 7 cycles is stripped, and a new primer receding one
nucleotide to the 5’ end of the adaptor (N-1) is added in cycle 8. Again 7 cycles
of ligation are performed and the extended primer N-1 is stripped after cycle 14 to
make room for N-2. For N-2, N-3, and N-4, a bridge oligo is used so the target with
unknown sequence, rather than the adaptor with known sequence, is interrogated by
the probes. With N through N-4, the entire target is covered. With the fluorescent
signals recorded from the rounds of ligation, and the knowledge of the last nucleotide
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Figure 7.30: Schematic of SOLiD sequencing, determining the sequence GAT-
TACA. The rows are arranged in the order of 5’ to 3’ positions of the first fluorescent
probe, but the actual hybridization and ligation can take a different order. As part
of the constant region, the ’A’ highlighted in red is known.

of the adaptor interrogated by the first ligation to primer N-1, the sequence of the
target can be determined. Figure 7.30 shows how SOLiD determines the sequence
“GATTACA”. As already mentioned in the smFISH section, with increasing number
of genes profiled, optical crowding is increasingly a problem. To mitigate optical
crowding, the primer N can have one or more degenerate bases at the 5’ end reaching
into the target; with one degenerate base, only 1/4 of the amplicons are sequenced.
With two bases, this would be 1/16. This is repeated to cover all transcripts, but
increases imaging time.

While FISSEQ may seem a promising approach to reach the goal of single-cell
resolution and transcriptome wide spatial transcriptomics that unlike smFISH-based
techniques, is not limited by pre-defined gene panels, it has been largely dormant
since its inception due to the following disadvantages. First, SOLiD has fallen out of
favor because of limited read length when used in situ (5-30 nt), propagation of errors
from previous cycles [174], and difficulty in sequencing panlindromic sequences
[175]. SOLiD was chosen for FISSEQ because it works well at room temperature;
though SBS supports longer read lengths, it requires a heated stage [173]. Second,
FISSEQ is extremely inefficient, over 20 times less sensitive than scRNA-seq and
two orders of magnitude less sensitive than 2013 Nilsson ISS (discussed later in
this section) [173], in part because of inefficiency of random RT priming [172]
and tight packing of amplicons [174]. Furthermore, as ribosomal RNA (rRNA)
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is not depleted, ~40-80% of FISSEQ reads are rRNA [172, 173]. As about 200
mRNA reads are detected per cell in FISSEQ without rRNA depletion, compared
to about 40,000 in scRNA-seq, and suppose detection efficiency of scRNA-seq is
10%, then detection efficiency of FISSEQ might be around 0.005% [173]. Third,
highly abundant genes involved in translation and splicing is depleted in FISSEQ
compared to bulk RNA-seq [172]. Finally, FISSEQ imaging is time consuming,
taking 2 to 3 weeks if performed manually [173].

With expansion microscopy, the idea of FISSEQ was revived in ExSeq [174]. Just
like in ExM-MERFISH, transcripts are incorporated into a polyelectrolyte gel, which
is expanded, so the amplicons are no longer so tightly packed. This eliminated the
depletion of highly abundant genes compared to bulk RNA-seq, and the detection
efficiency and proportion of rRNA reads of ExSeq seem on par with randomly
primed bulk RNA-seq of adjacent sections. In addition to SOLiD sequencing
as in FISSEQ, the amplicons are also sequenced ex situ with Illumina SBS. The
in situ sequences are matched to ex situ sequences and only unique matches are
kept, to more effectively align amplicons to the genome and to localize mRNA
sequence variations such as alternative splicing that are more difficult to detect with
SOLiD’s short read length. There is also a targeted version of ExSeq, in which
padlock probes with gene specific barcodes are RCA amplified and the barcodes
are sequenced in situ by either SOLiD or Illumina SBS, profiling up to 297 genes;
the detection efficiency is 62% compared to smFISH (for 4 genes in the same 60
cells to which both targeted ExSeq and HCR-smFISH were performed, the number
of transcripts detected by ExSeq is about 62% compared to HCR-smFISH), which
is high compared to ~5% for 2013 Nilsson ISS but lower than that of MERFISH
(HD4) and HCR-seqFISH [174, 176]. Eight probes were designed for each gene,
and the transcripts must be at least 960 nt long, shorter than required by MERFISH
(without bDNA) and seqFISH variants. To our best knowledge, ExSeq has yet been
used to collect new datasets after its inception. Just like ExM-MERFISH, ExSeq
has disadvantages from expansion microscopy, such as increased imaging time as
there is less tissue per unit area and that the expansion is non-isotropic and continues
through the rounds of imaging.

In INSTA-seq [177], recessed sequencing primers and multiple rounds hybridiza-
tion and sequencing like in SOLiD were used. However, unlike in SOLiD, each
fluorescent probe only queries one base, and the ligation extends the sequencing
primer on both the 5’ and 3’ ends. To select for poly-adenylated mRNAs, oligo-dT
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Figure 7.31: Schematic of cPAL as used in ISS.

is used as the primer for reverse transcription (RT), and the cDNA is circularized
and RCA amplified. Oligo-dT is then used as the sequencing primer, to sequence
RT start and stop site of the particular cDNA in situ, giving rise to a barcode of
the each amplicon. Then NGS can be used to determine the full sequence of each
amplicon and matched to the in situ sequenced barcodes and thus spatial locations.
As RT is terminated where the transcript is crosslinked to RNA binding proteins
(RBP), INSTA-seq can profile RBP motifs near the 3’ UTR in space.

cPAL and ISS
An alternative SBL scheme is combinatorial probe anchor ligation (cPAL), which
to our best knowledge, was first demonstrated in 2005 [178]. In cPAL, an anchor
primer is hybridized to a constant region immediately adjacent to the target. T4
DNA ligase requires matching base pairing up to 6 bases from the ligation junction
when ligating from 5’ to 3’ and 7 bases when ligating from 3’ to 5’. The first base
of the target 5’ to the constant region is interrogated by a 9-mer probe whose 5’
most base is represented by the color of a fluorophore and ligated to the primer if a
perfect match is present (Figure 7.31). Then the ligated construct is stripped and a
new primer is hybridized to the constant region. The second base is interrogated by
a 9-mer probe whose second 5’ most base is represented by the fluorophore. This
can carry on until the 6th base on the 5’ direction. When the constant region is 5’
to the target, bases 3’ to the constant region are interrogated in a similar fashion.
With constant regions flanking a target so primers bind in both direction, a 13 nt
target can be sequenced this way, and the read length can be somewhat increased by
adding degenerate bases to the anchor primer extending into the target [179].

The only in situ sequencing method that was reused after its inception was originally
demonstrated in 2013 by Mats Nilsson’s group [121], which we call ISS here (Figure
6.7). First, padlock probes are hybridized to in situ reverse transcribed cDNAs and
RCA amplified (Figure 7.18). The padlock probe can carry a gene specific 4 nt
barcode (barcode version), or leave a 4 nt gap between the ends of the probe after



190

it’s hybridized to the cDNA to be filled when the probe is circularized (gap filling
version). Then the barcode or the filled gap is sequenced in situ, with an anchor
primer binding 3’ to the target, with cPAL. Because of limited read length of cPAL,
short sequences uniquely identify each gene and isoform for the gap filling approach
becomes difficult to find with increasing number of genes and isoforms. In contrast,
a barcode with length 𝑛 can encode 4𝑛 genes and isoforms. As a result, the barcode
approach was repeatedly used after the inception of ISS and was commercialized by
CARTANA, which was recently acquired by 10X Genomics.

The barcode approach was initially used to profile 39 genes [121], but has been
used to profile up to 222 genes in human brains affected by Alzheimer’s disease
[180]. Although, as already mentioned, ISS has much lower detection efficiency
than smFISH-based methods, because of RCA and this low detection efficiency,
the density of imaged amplicons is lower, allowing for imaging at lower resolution
(20x; MERFISH uses 60x) and thus facilitating profiling large areas of tissues such
as whole mouse brain coronal sections [181, 182]. ISS has also been used in
conjunction with spatial transcriptomics techniques that are transcriptome wide but
lack single-cell resolution, such as ST. Panels of usually fewer than 100 genes of
interest are selected from ST and scRNA-seq data, to be profiled with ISS for more
in depth characterization of these genes [180, 183]. In addition, because of the
specificity conferred by the padlock probe and the small number of probes required
per gene (usually 5 per gene but can be fewer), ISS has been used to quantify
isoforms from isoform specific exons and exon-exon junctions [184].

cPAL sequencing has also been used in BOLORAMIS [125] to profile transcripts of
96 genes and 77 miRNAs. Efficiency of padlock probe ligation when the template
is RNA is improved with the SplintR ligase and careful placement of the ligation
junction in the target region; the inefficiency of reverse transcription in ISS is
avoided. With target sequence of 25 nt, shorter than that of STARmap (next
section), BOLORAMIS has been adapted to target miRNAs that are 18-23 nt long,
but barcode error rate for miRNAs is higher than that for mRNAs. While cPAL
was used for demonstration, in principle, hybridization and SBS may be used to
detect the barcodes. In terms of average number of spots per cell for 3 genes in
BOLORAMIS vs. smFISH, efficiency of BOLORAMIS is 11% for GAPDH, 35%
for POLR2A, and 12% for TFRC.

The number of genes that can be profiled by ISS is limited by the barcode length.
Just like in seqFISH, only a small subset of all possible barcodes given a barcode
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length is used for error correction. As a result, to profile the entire transcriptome
of over 20,000 genes, the barcode should be at least 8 nt long (65,536 barcodes),
while in one direction, cPAL can only sequence 6 or 7 nt and degenerate bases. It
is possible in theory to lengthen the barcode to up to 13 nt by sequencing from both
ends of the barcode as in the original 2005 method [178]. However, with increasing
number of transcripts comes the problem of optical crowding, which is exacerbated
by the physical size of the RCA amplicon. Perhaps ExM can be used here to mitigate
optical crowding just like in ExSeq. To address the limitation in barcode length,
HybISS, i.e. hybridization-based in situ sequencing, was devised [122] so the now
seqFISH-like barcode can be arbitrarily lengthened by increasing the number of
rounds of hybridization. HybISS has already been reviewed in Section7.2; despite
the “ISS” in its name, HybISS is classified as smFISH-based because it does not
involve SBL or SBS. HybISS also has up to 5 fold higher signal to noise ratio than
ISS, and has somewhat higher detection efficiency than ISS though the improvement
is less than 2 fold (average number of amplicons detected per cell for each channel
in HybISS compared to ISS) [122]. Comparison between HybISS and smFISH has
not been reported. Nevertheless, HybISS has not yet been scaled to more than 120
genes and ExM may still be needed for transcriptome wide profiling.

SEDAL and STARmap
Both SOLiD and cPAL have some drawbacks. As the gene specific barcode does
not have to be long to encode all genes in the genome, when the barcode is used,
limits in read length is not a major limitation. Because one color encodes two bases,
SOLiD is very accurate [185], but error in one cycle propagates to later cycles.
At least in the mouse brain, SOLiD also has high background [135]. In contrast,
cPAL does not have an inbuilt error rejection mechanism; the barcode must be
elongated to allow for error correction, much like in the error correction scheme
of seqFISH. Furthermore, in ISS, the mRNA is first reverse transcribed into cDNA
because ligation of the padlock probe is inefficient when the template is RNA [117].
However, the efficiency of RT depends on the gene of interest and the variability of
RT efficiency depends on RNA concentration [186, 187].

A new method of in situ sequencing, namely sequencing with error-reduction by
dynamic annealing and ligation (SEDAL) in spatially-resolved transcript amplicon
readout mapping (STARmap), was devised to address these shortcomings [188].
In STARmap, the specific amplification of nucleic acids via intramolecular ligation
(SNAIL) probe is a derivative of the original padlock probe that avoids RT altogether.
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Figure 7.32: Schematic of RCA of SNAIL probe and SEDAL. Also showing error
propagation and identification of 2 base encoding. As part of the constant region,
the ’G’ highlighted in red is known.

A primer partially hybridizes to the mRNA, and partially to the padlock probe
(Figure 7.32). The padlock probe carrying a 5 nt gene specific barcode hybridizes
to the mRNA adjacent to the primer, but both ends of the padlock probe hybridize
to the primer instead, so when the ends are ligated together, the template is DNA
rather than RNA, thus avoiding both RT and inefficiency of ligation with RNA
template, and then the primer is used to initiate RCA. As both the primer and
the padlock probe must match the mRNA template for RCA to occur, SNAIL
probes are specific and background of non-specific binding is eliminated. To reduce
background autofluorescence and prevent the RCA amplicons from moving, the
amplicons are crosslinked into a hydrogel and the tissue is cleared of proteins and
lipids.

Then SEDAL is used to sequence the gene specific barcodes. The sequences flanking
the gene barcode are known. In the first round an anchor or reading probe binds
to the constant region 5’ to the barcode, one base away from the barcode (Figure
7.32). The decoding probes are 8-mers labeled with a fluorophore at the 5’ end
whose color represents the 2 nucleotides at the 3’ end that interrogates the barcode;
the other bases are degenerate. If the decoding probe matches the barcode, then it is
ligated to the reading probe and the fluorescent signal is recorded. In the first round,
the decoding probe interrogates the last base of the constant region and the first
base of the barcode, as the last base of the constant region is necessary to decode
the sequence of colors. Then the reading and decoding probes are stripped. In the
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second round, the reading probe stops right where the barcode starts. In the third
round, the reading probe has a degenerate base extending into the barcode. Reading
probes of the following rounds extend further into the barcode with degenerate bases.
In the last round, the decoding probe interrogates the last base of the barcode and the
first base of the following constant region. Like in SOLiD, with 2 base encoding, an
error in a previous round propagates into later rounds; with propagation, when there
is an error when decoding, then the first base of the constant region after the barcode
would be incorrectly decoded, so the error is identified and rejected. Comparison
of detection efficiency of STARmap with that of smFISH has not been reported;
the efficiency is reported (average number of transcripts per cell for 151 cell type
marker genes) to be somewhat better, at least not worse, than that of scRNA-seq,
suggesting that STARmap is perhaps more efficient than ISS, but most likely much
less efficient than MERFISH (HD4) and seqFISH.

Sequencing by synthesis
While most in situ sequencing techniques use SBL, some use SBS, indeed with a
heated stage to perform SBS in situ. Because Illumina SBS is much more well-
known and widely used than SBL for NGS, we will not recap it here. SBS has been
tried to sequence DNA barcodes of antibodies in highly multiplexed immunofluo-
rescence [189]. BARseq [190], a method to trace neuron projections is also based
on SBS. In BARseq, the gap filling version of ISS (Section 7.3) is used and the filled
gap that is the projection tracing barcode is sequenced with Illumina SBS chemistry.
BARseq has also been adapted to profile endogenous transcripts (up to 79 genes as
of writing) and image projection barcodes in the same neurons (BARseq2) [191,
130]; gene expression and projection can be correlated in some though not all cells.
For endogenous transcripts, the mRNA is first reverse transcribed, and the barcode
version of ISS (Section 7.3) is used to amplify the barcodes (in the padlock probe
but not the cDNA) with RCA, which are then sequenced in situ with SBS. For tran-
scripts, BARseq2 detects slightly more copies of mRNAs than 10X v3 scRNA-seq
for the same gene in the same tissue.

7.4 NGS with spatial barcoding
This section reviews techniques that capture transcripts from a permeabilized tissue
section on a spatially organized array for RNA-seq. These techniques are similar
to 3’ based scRNA-seq, with amplification and sequencing handle, barcode, UMI,
and poly-T to capture polyadenylated transcripts, except that each spot in the array
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has its own barcode, rather than each droplet. As the spots are not organized in a
regular array in Slide-seq, PIXEL-seq, and Seq-scope, this section more generally
concerns techniques that pre-determine spatial locations of each spatial barcode
before capturing polyadenylated transcripts, so the spatial location is encoded by the
barcode rather than selection and isolation of ROIs. These techniques are generally
transcriptome wide, but do not have single-cell resolution; the resolution is the size
and shape of the spots and spacing between the spots. In ST and Visium, the array
is constructed by printing the capture sequences onto commercial microarray slides,
so the 5’ end of the sequences are attached to the slide; where each spatial barcode
is placed is known. In DBiT-seq, the array is constructed by depositing barcodes
specific to each microfluidic channel with orthogonal channels. Alternatively, the
capture sequences can be attached to beads like in droplet scRNA-seq, as in Slide-
seq and HDST. The beads are randomly placed on a slide in a single layer, and the
location of barcodes are determined before library preparation when the capture
sequences and transcripts are released from the slide.

ST [141] and Visium are the most popular NGS barcoding based techniques world-
wide (Figure 6.7, Figure 7.33). In ST, the printed spots have diameter of 100 𝜇m
and are 200 𝜇m apart from center to center (Figure 7.35). Multiple sections can be
mounted to the same slide, separated by a rubber mask. For each section, there are
1007 spots covering an area of 6200 × 6600 𝜇m. The 5’ end of the capture sequence
is a linker to be cleaved to release the transcripts, followed by amplification and
sequencing handle, an 18 nt spatial barcode, a 9 nt UMI, and poly-T (Figure 7.36).
For the genes quantified with smFISH, ST’s detection efficiency is around 6.9%
compared to smFISH (transcript count per area for 3 genes in corresponding regions
in adjacent sections), within the range of the efficiency of scRNA-seq techniques.
Despite the low resolution, ST is popular probably due to transcriptome wide profil-
ing, ease to apply to larger area of tissue, not requiring specialized equipment such as
SRM and custom fluidics systems, commercial kits, possible automation of library
preparation [192], availability of a documented and open source data preprocessing
pipeline called ST Pipeline [193], and the extra information from H&E staining
before library preparation.

After its inception, ST has been used in a wide range of clinical pathological tissues,
such as heart after heart failure [194], peritonitis-affected gingival tissue [195],
prostate cancer [196], breast cancer [197], arthritic joint biopsies [198], lymph
nodes affected by melanoma metastasis [199], spinal cords [200] and cerebellums
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Figure 7.35: Schematic of spot construction and size of array based techniques.

Figure 7.36: Barcode and UMI structure and lengths of array based techniques.
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[201] affected by amyotrophic lateral sclerosis (ALS), and squamous cell carcinoma
[202]. ST has also been used to construct gene expression atlases of healthy tissues
such as the developing human heart [183] and the mouse brain [203]. Common
downstream data analyses include identifying differentially expressed (DE) genes
between diseased and healthy regions, gene set enrichment analysis (GSEA) among
DE genes, and cell type deconvolution of the spots by integrating ST and scRNA-seq
data. Data analysis methods designed specifically for ST or Visium will be reviewed
in more detail in Chapter 9.

After 10X Genomics acquired ST in December 2018, the 10X Visium has quickly
gained popularity and spread to multiple institutions (Figure 6.7). Visium has
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superseded ST and has become the most popular current era technology (Figure 7.33,
Figure 7.37). While ST is still the second most popular NGS barcoding technology
in Europe (Figure ref(fig:array-europe)), usage of ST seems concentrated in Sweden,
where ST comes from. In contrast, usage of Visium is more decentralized (Figure
7.33). Visium is similar to ST and shares the advantages of ST, but with higher
spatial resolution. The spots are 100 𝜇m apart center to center, each with a diameter
of 55 𝜇m, arranged in a hexagonal configuration (Figure 7.35). After adjusting for
spot area, Visium seems to capture somewhat more transcripts and genes compared
to ST [204], but more datasets in the same tissues and accounting for sequencing
depths are needed to make a fairer comparison. In addition, Visium’s growth in
popularity may be due to core facilities at multiple institutions providing Visium
services [205, 206]. As a new version of ST, Visium was originally designed for
fresh frozen OCT embedded tissue and 3’ Illumina sequencing. However, Visium
has more recently been adapted to FFPE tissue [48] (the now commercial Visium
FFPE has a very different chemistry from [48]), as well as to Nanopore long read
sequencing to quantify isoforms [184, 207], although Visium is still predominantly
used on fresh frozen tissues for 3’ end sequencing (Add figure about FFPE for all
current era methods).

Visium studies in our database are almost exclusively on humans and mice, and
mostly on humans (Figure 7.38). For a long time, in both humans and mice, and
both the healthy and pathological cases, the brain is again the most studied organ
(Figures 7.39, 7.40), but more studies have been performed on other organs in
humans more recently. This is in stark contrast with usage of GeoMX DSP, which
was used in several COVID lung studies but not much in brain (Figure 7.9).

In response to the low resolution of ST, Slide-seq was developed to increase the
resolution of array based spatial transcriptomics [209]). Beads like those used in
Drop-seq [142] with diameter 10 𝜇m are spread on a slide in a single layer, not
necessarily in a regular grid, and bead barcodes are generated with 16 rounds of
split pool, each round adding one nucleotide, broken into 2 blocks of 8 nt (2 blocks
of 8 and 7 nt in version 2) (Figure 7.35, Figure 7.36). As the location of each barcode
is not pre-determined, the slide is imaged and the barcodes are sequenced in situ
with SOLiD. Then the OCT frozen tissue section is mounted on the layer of beads
on the slide and the beads are removed for library preparation. The first version of
Slide-seq is very inefficient; for the genes compared, the Slide-seq only detects 2
to 3 orders of magnitude fewer transcripts per cell for 3 genes than smFISH in an
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adjacent section and about 2.7% compared to Drop-seq for the same cell type from
CA1 [209].

In the second version of Slide-seq (Slide-seq2) [210], the barcodes are sequenced by
SEDAL (like in Figure 7.32, but with one color per base) rather than SOLiD, which
increased the efficiency of spatial mapping of Illumina reads, probably because
of error propagation in the 2 base encoding of SOLiD. Moreover, bead synthesis
is further optimized and a second strand synthesis step is added to the library
preparation to increase the number of cDNAs for PCR amplification. Efficiency is
improved in Slide-seq2, which is ~9.3x higher than version 1, about on par with
Drop-seq, 1 order of magnitude lower than that of smFISH, and somewhat better
than Visium in the dataset chosen. Here “efficiency” means number of UMIs or
transcripts for 3 genes from a fixed area in CA1. The official software to process the
in situ sequencing images is written in MATLAB, which is proprietary. Although
the size of the bead is close to the size of a single-cell, Slide-seq does not have
single-cell resolution as one bead can capture transcripts from more than one cells
nearby, so cell type deconvolution of beads is still needed. After its inception,
Slide-seq2 has been used on mouse and human testes, at the institution of origin
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[180].

Slide-seq is the second most popular NGS barcoding technique around the US, but
unlike Visium (the most popular), Slide-seq is still more concentrated around Broad,
Harvard, and MIT, where it was first developed (Figure 7.41).

Spatial resolution of array based techniques has been further increased with HDST,
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with a resolution of 2 𝜇m [211], which is smaller than a single-cell. Like in Slide-
seq, beads like those used in droplet scRNA-seq are used. The diameter of each
bead is 2 𝜇m, and hexagonal wells with diameter 2.05 𝜇m are carved into a slides so
each well contains one bead (Figure 7.35). The spatial barcodes are generated by 3
rounds of split-pool, each round adding 15 nt from the barcode pool (Figure 7.36).
The UMI is only 5 nt but such a small area does not contain that many transcripts.
As the beads are randomly placed in the wells, the locations of barcodes need to be
determined. Four rounds of FISH, with combinations of red, green, and no color,
encode each of the 3 barcodes on each bead. Again, HDST was originally designed
for fresh frozen OCT embedded tissue rather than FFPE. HDST is very inefficient;
for the genes compared, the detection efficiency is only ~1.3% compared to smFISH
per bead area. To our best knowledge, HDST has not been used for new datasets
after its inception.

In response to the low efficiency and complicated procedure to localize barcodes of
Slide-seq and HDST, Deterministic Barcoding in Tissue for spatial omics sequencing
(DBiT-seq) was developed, with resolution up to 10 𝜇m [204]. Let 𝑖, 𝑗 denote the
index of channel in each direction. Barcode 𝐴𝑖, attached to poly-T, is flown across
the slide in microfluidic channels and RT is performed (Figure 7.35). Then barcode
𝐵 𝑗 , attached to the UMI, PCR handle, and biotin, is flown across the slide in
microfluidic channels perpendicular to those that delivered barcode 𝐴𝑖, and barcode
𝐵 𝑗 is ligated to barcode 𝐴𝑖 and the cDNA (Figure 7.35, Figure 7.36). Then the
ligated barcodes and cDNA can be purified by streptavidin-coated magnetic beads.
Each microfluidic channel carries a different barcode, so where the channels for
barcodes 𝐴𝑖 and 𝐵 𝑗 intersect, an array is created and the location of each spot is
encoded by 𝑖, 𝑗 . The resolution is limited by the width of the channels and the
spacing between them; widths of 50, 25, and 10 𝜇m have been tested. Per unit spot
area, DBiT-seq seems to detect at least 3 times more genes and UMIs than ST and
Visium and the improvement is even starker at the 10 𝜇m resolution. For the genes
compared, DBiT-seq’s detection efficiency is ~15.5% of that of smFISH per unit
area, making it relative more sensitive among the array based methods reviewed
here. DBiT-seq has also been adapted to FFPE, although just like in Visium, RNAs
in FFPE tissues are more degraded than in fresh frozen tissues and fewer genes and
UMIs are detected per unit area in comparable tissue types [212].

The record resolution of array based techniques is ever increasing (Figure 7.42);
sub-micron techniques are appearing in 2021. The record is broken by Stereo-seq
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in January 2021, reporting a spot diameter of 220 nm although the distance between
spots is 500 or 715 nm [213]. In Stereo-seq, circularized DNA containing a random
25 nt barcode is RCA amplified and deposited into an etched grid. The barcode
is sequenced and then oligos with polyT and molecular ID are hybridized to the
barcode to capture polyA transcripts from the mounted tissue. The reported capture
efficiency is around 170 UMIs per 100 𝜇𝑚2 in mouse brain, on par with that of the
Visium mouse brain dataset from the 10X website reanalyzed in the same study.

In Northeast Asia, Visium is the most popular method and is used in many less well-
known institutions across different countries. The second most popular technology is
Stereo-seq, which has been commercialized by BGI, although its use is concentrated
around BGI Shenzhen where it was developed (Figure 7.43).

Another sub-micron array capture method is Seq-Scope [214], which creates clusters
of polyT capture sequences each with its own spatial barcode (20-32 nt) from
Illumina bridge amplification on a repurposed Illumina flow cell. The spatial
barcode is sequenced with SBS. Then the flow cell is dismantled so the tissue can
be mounted for transcript capture. The captured transcripts are then sequenced
with NGS. The clusters can have a diameter down to 0.5 𝜇m, and the clusters are
randomly seeded, not distributed in a grid. The reported capture efficiency is around
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1000 and up to 2000 UMIs per 100 𝜇𝑚2 in mouse colon, much higher than that of
Stereo-seq, although we are not sure whether colon data is comparable to brain data
here.

A more recent nearly sub-micron technique is PIXEL-seq [215]. Again, as in
the Illumina flow cell, PIXEL-seq amplifies each randomly seeded spatial barcode
(24 nt) and polyT capture sequence into polonies. However, here a crosslinked
polyacrylamide gel (rather than a linear one in Illumina) is used, to form continuous
polonies without much space between their “territories” rather than discrete clusters.
The spatial barcodes are also first sequenced with SBS before the tissue is mounted
for transcript capture. On average, the polony is around 1.17 𝜇𝑚2 in area, so
assuming it is circular, then the diameter is 1.22 𝜇m. The reported capture efficiency
is around 1000 UMIs per 𝜇𝑚2 in mouse brain, which might be comparable to that
of Seq-Scope.

While such sub-micron techniques have subcellular resolution, in practice, the data is
binned into much larger grids for standard scRNA-seq analysis, such as 36𝜇𝑚×36𝜇𝑚
in Stereo-seq and 10𝜇𝑚 × 10𝜇𝑚 or 7𝜇𝑚 × 7𝜇𝑚 or 5𝜇𝑚 × 5𝜇𝑚 in Seq-Scope. The
subcelluar information was not directly used in the analyses, although even with
binning, the resolution is still higher than that of ST and Visium.

All these array and NGS based techniques reviewed so far capture polyadenylated
transcripts. While miRNAs form a major topic in LCM literature (Figure 8.3) and
are profiled in some prequel era ISH atlases, current era techniques mostly preclude
miRNA quantification. BOLORAMIS has been demonstrated on 77 miRNAs, but
the barcode error rate is higher than in mRNAs. Without a poly-A tail, miRNAs
are precluded by NGS based techniques that rely on poly-A capture. To quantify
miRNAs in space, an array based technique was developed as an alternative to LCM
and designed for FFPE tissues [216]. The tissue is pixelated, and each pixel is 300
𝜇m × 300 𝜇m. Within each pixel is a smaller 3 × 3 array, each spot of which
has probes for one miRNA; the locations of the spots within each pixel can be
easily discerned with a fluorescent microscope. This way, up to 9 miRNAs can be
profiled in the same tissue section at the same time, although the 9 miRNAs are
from somewhat nearby cells but not the same cells.

Gray areas and single-cell resolution
In Section 7.1, the definition of “microdissection” is relaxed, so that cell sorting can
be some kind of “microdissection”, and GeoMX DSP is described there because
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like most microdissection methods, it’s primarily used for targeted ROIs rather than
regular grids and spatial location is known from selection of the ROI. Due to the
fuzziness of “microdissection”, some techniques that assign spatial barcodes to a
regular grid but dissociate each spot in the array into single-cells may or may not be
considered de facto “microdissection”. Because of the regular grid as in Visium and
DBiT-seq and that spatial location is known by pre-determined spot barcode rather
than selection of ROI, these techniques are summarized in this section.

In Visium, all cells within the same spot get the same spot barcode, so the transcrip-
tome of each spot is from mixture of different cells, often different cell types. Cell
types can be computationally deconvolved with software such as Stereoscope [217]
and CIBERSORT [218] with a reference of transcriptomes of known cell types. To
address this problem, some new array capture spatial techniques impart each spot a
spatial barcode before the cells or nuclei in the spots are dissociated and assigned
another cell specific barcode for scRNA-seq, so the transcriptomes have single-cell
resolution, though not single-cell spatial resolution as the location of each cell within
the spot is not recorded and the spatial resolution is lower than that of Visium. In
XYZeq [219], spot barcodes with UMIs and poly-T capture sequences are deposited
in microwells 500 𝜇m center to center arranged in an array. The tissue sections are
fixed with dithio-bis(succinimidyl propionate), which preserves RNA integrity for
scRNA-seq. The tissue is permeablized and incubated in an microarray hybridiza-
tion chamber for the spatial barcodes to hybridize to polyadenylated transcripts and
for reverse transcription, so the cDNA acquires the spatial barcode. Then the cells
are sorted into PCR wells and the cell barcode is added from a PCR primer. A
related method is sci-Space [220], where spatial “hashing” oligos are spotted in a
an array on a slide covered with dried agarose. The spots are on average about 73.2
𝜇m in radius and about 222 𝜇m apart center to center. The hashing oligos diffuse
into the nuclei in the tissue mounted on the slide, and the spatially hashed nuclei are
dissociated for sci-RNA-seq.

7.5 Detection efficiencies
In the previous few sections we have mentioned detection efficiency many times.
To recap, these are common methods to estimate detection efficiency of spatial
transcriptomics techniques:

1. Gold standard smFISH and the single molecule resolution technique of interest
are performed in the same cells for a small number of genes and the numbers
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of transcripts spots detected in each segmented cell from smFISH and the
technique of interest are compared. This was performed for HCR-seqFISH
and ExSeq.

2. Gold standard smFISH and the single molecule resolution technique of interest
are performed on different cells of the same type or on adjacent sections for a
relatively small number of genes. Then average transcript counts of each gene
per cell among these cells are compared between smFISH and the technique
of interest. This was performed for MERFISH and seqFISH+, and was used
to compare efficiencies of HybISS and HybRISS [124].

3. Gold standard smFISH is performed on an adjacent section for a small number
of genes. Transcript spot counts from smFISH and UMI counts from the NGS
based technique per unit area in the same tissue type are compared. The unit
area can have the same shape and size of the transcript capture spot, or can
contain multiple spots and averaged over the spots. This was performed for
ST, HDST, and Slide-seq(2).

4. UMI or transcript spot counts of select marker genes per cell in the spatial
techniques of interest are compared to those in scRNA-seq of the same cell
type. This was performed for STARmap and Slide-seq(2). In Slide-seq(2),
as the tissue section is imaged, nuclei can be segmented and counted so the
number of cells in the ROI compared is known and an equivalent number of
cells from scRNA-seq is sampled for comparison.

5. Number of all UMI and genes detected per unit area in one NGS based spatial
technique is compared to those of other NGS based spatial techniques. This
was performed for DBiT-seq, Visium (FFPE), Stereo-seq, PIXEL-seq, and
Seq-Scope. A caveat is that sequencing depth is not always considered.

6. The number of reads per cell is compared between scRNA-seq and FISSEQ.
This is only known to be performed for FISSEQ.

In summary, a putative ranking, from high to low, of capture efficiencies of current
era techniques, noting which methods above are used to estimate the efficiencies, is:

smFISH (~100%) > MERFISH (2, HD4, ~95%) > HCR-seqFISH (1, ~86%) > ExSeq
(1, targeted, 62%) > seqFISH+ (2, ~49%) > (maybe) Seq-Scope (5) ~ PIXEL-seq (5)
> (maybe) DBiT-seq (3, 5, ~15%) ~ Visium ~ Stereo-seq (5) > (maybe) HybRISS
(2 with HybISS) > HybISS (2 with ISS and HybRISS) ~ (maybe) STARmap (4) ~
(maybe) scRNA-seq ~ Slide-seq2 (3, 4) ~ ST (3, ~6.9%) ~ ISS (~5%) > HDST (3,
~1.3%) > Slide-seq1 (3, 4, ~1%) > FISSEQ (6, 0.005%)
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A percentage is not shown where it is not reported. This is putative because this is
based on reports in the main text. There are conflicting reports of capture efficiency
of Visium and DBiT-seq. Furthermore, comparison of different tissues and different
genes from those studies may be problematic. For some of the technologies, the
capture efficiency is compared to that of smFISH with only a few genes. Multiple
datasets from each technology for as similar a tissue as possible for the same set of
genes should be compared to get a better idea about the capture efficiency of each
technique. Moreover, other factors such as tissue handling, sequencing depth, and
data processing software may influence the results.

While fresh frozen tissues are predominantly used in the current era, DBiT-seq,
Visium, and LCM have been adapted to FFPE tissues. RNAscope can be used on
FFPE tissue for up to 12 targets. GeoMX DSP has been predominantly used on
FFPE tissues. FFPE is a common way to archive tissue specimen, and sometimes
the only tissues available is FFPE, sometimes years if not decades old. From
techniques that have both fresh frozen and FFPE protocols, FFPE and storage of
FFPE samples seem to significantly degrade the transcripts and reduce detection
efficiency, but there can still be enough information preserved to identify cell types
in the spots and correlation between gene expression measured in FFPE and fresh
frozen tissues is usually high. In the pre-commercial FFPE Visium mouse brain
dataset from the protocol of [48], at a sequencing depth of ~50,000 reads per tissue
covered spot, the spots have on average ~1200 genes and ~2200 UMIs detected. In
contrast, in a similar fresh frozen mouse brain section, with sequencing depth of
~115,000 reads per tissue covered spot, the spots have on average ~6000 genes and
~27200 UMIs detected [48]. While the fresh frozen sample has higher sequencing
depth, FFPE seems to reduce the number of genes and UMIs detected beyond the
impact of sequencing depth. As Visium captures the transcripts on spots printed
to a glass slide, the transcripts need to be dissociated from the tissue, and in the
case of FFPE, it means de-crosslinking. However, commercial FFPE Visium today
has a very difference chemistry from [48] and is said to be much more efficient.
In FFPE DBiT-seq, the transcripts don’t have to be de-crosslinked as the barcodes
are deposited into the tissue. FFPE reduced cDNA length from an average of
~1400 nt in PFA fixed fresh frozen tissue to about ~600 nt on average. In mouse
embryos, while DBiT-seq on PFA fixed fresh frozen tissue gives on average 2100
genes and 4688 UMIs per 25 𝜇m spot, FFPE tissue gives only 355 genes and 520
UMIs in the same sized spots on average [212]. However, sequencing depth is not
discussed. From these studies, in both Visium and DBiT-seq, FFPE might decrease
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detection efficiency in terms of number of UMIs detected per unit area by about 5
(if considering sequencing depth in the Visium study) to 10 folds.

7.6 De novo reconstruction of spatial locations
The techniques reviewed above, involve either imaging (e.g. LCM, smFISH, ISS,
Slide-seq, and HDST) or prior knowledge of locations (e.g. Tomo-seq, ST, Visium,
and DBiT-seq). Some spatial transcriptomics techniques have been developed that
require neither imaging nor prior knowledge of locations, and we review these in
this section. While techniques that deposit spatial barcodes in an array at known
locations such as Visium and DBiT-seq do not require imaging to know the location
of gene expression, the spatial barcode locations are known a priori. In contrast,
techniques reviewed in this section do not involve a priori knowledge of locations.

It is possible to reconstruct relative locations of cells or transcripts from colocal-
ization without imaging, albeit imperfectly. These techniques are reviewed in more
details in [221]; we will only briefly summarize techniques that do not require DNA
bound to a surface so they can be applied in cells and tissues. An early method
to do so is Puzzle Imaging, published in 2015 [222]. Here “colocalization” can
mean whether two neurons have axons in the same voxel or whether two neurons
are synaptically connected. The spatial reconstruction is framed as a dimension
reduction problem; each voxel is represented as a vector with 𝑛 dimensions, where
𝑛 stands for the number of neurons, and these vectors are to be projected into 2 or
3 dimensions, representing spatial dimensions, for reconstruction. Puzzle Imaging
was only demonstrated in synthetic datasets, but not real biological datasets. Such
reconstruction was made possible for transcripts with DNA microscopy [223, 224].
Transcripts are reverse transcribed in situ, and the cDNA, with an UMI added, is PCR
amplified in situ. The amplified products diffuse and encounter amplified products
from other transcripts. The nearby cDNAs are concatenated with overlap extension
PCR, with additional random sequences in the overlapping primers to encode each
concatenation event, called unique event identifier (UEI). When the concatenated
cDNAs are sequenced, the two UMIs and the UEI are recorded. Because amplified
products from two nearby transcripts are more likely to be concatenated than those
from two transcripts that are far apart, the number of UEIs between two UMIs can
be used to reconstruct relative distance between transcripts.

Techniques have also been developed to quantify transcripts from subcellular com-
partments, such as APEX-RIP [225] and APEX-seq [226]. Although these tech-
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niques do not record or reconstruct spatial coordinates, they are included in this
review because the publications describing them described them with terms such
as “spatial”, “localization”, and “spatial transcriptome”. APEX is an engineered
ascorbate peroxidase, which can be targeted to specific cellular compartments by
expressing a fusion of APEX and a protein targeted to the compartment of interest.
With substrates H2O2 and biotin-phenol (BP), APEX catalyzes formation of biotin-
phenoxyl radicals that can biotinylate nearby proteins, which can be isolated with
streptavidin. In APEX-RIP, mRNAs are cross linked to nearby proteins and thus iso-
lated after isolating biotinylated proteins. In contrast, in APEX-seq, the mRNAs are
directly biotinylated. Compared to APEX-RIP, APEX-seq better discerns transcript
localization in compartments not bound by membrane. However, both APEX-RIP
and APEX-seq were originally designed for bulk rather than single-cell samples and
was tested only on cell culture. Also, because a fusion protein is required, they
cannot be performed in human tissue sections.

Rare cell types are difficult to characterize with most spatial transcriptomics tech-
niques. ST and Visium lack single-cell resolution and signal from rare cell types may
be diluted by signal from common cell types in the same spot. LCM is still typically
not used on single-cells and rare cell types may or may not be easily discernible
with H&E. smFISH-based techniques and targeted ISS require a pre-defined panel
of genes, often selected from scRNA-seq and well-known markers, but such selec-
tion is more challenging for rare cell types, which may not be well-studied enough to
begin with due to challenges in other transcriptomics techniques. However, spatial
pattern of genes expressed in rare cell types can be characterized by deliberately cre-
ating doublets or multiplets involving both common and rare cell types, as in paired
cell sequencing [227] and ClumpSeq [228]. Earlier, RNA-seq has been performed
to cell multiplets to identify physical interactions between cell types in the mouse
bone marrow in ProximID, but reconstruction of spatial locations was not attempted
[229]. Spatial patterns of genes expressed in common cell types such as hepato-
cytes and small intestine enterocytes are already known from smFISH or LCM and
spatial reconstruction of scRNA-seq data [230, 39]. Genes expressed in the rare
cell types are identified from genes much more highly expressed in the multiplet
than in individual cells from common cell types in scRNA-seq, or markers of rare
cell types from scRNA-seq if such data exists. Then the multiplets are mapped to
spatial locations with patterned genes expressed by common cell types and existing
smFISH or LCM data as reference. Then rare cell types and their characteristic
gene programs are mapped to spatial locations as well and their patterns can be
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characterized without directly imaging these cells.

7.7 Overall comparisons
In the previous sections, we have discussed pros and cons of types of technologies,
but have not discussed relative pros and cons when comparing across types. With
so many technologies being developed, which one should an interested user choose?
Disclaimer: As we have never performed the protocols of any current era spatial
transcriptomics technology in the wet lab, we don’t know whether some steps in
some protocols are more prone to failure or require more hands on experiences
to perform well. Below are comparisons across categories or subcategories when
relevant:

ROI based
This includes when microdissection techniques are applied to targeted and histolog-
ically informed ROIs and GeoMX DSP/WTA:

Compared to techniques that neither target specific ROIs nor have single-cell spatial
resolution such as Tomo-seq, Visium, and Slide-seq(2):

Pros:

1. Cell type deconvolution of voxels at the border of different histological regions
is unnecessary, as the ROIs are selected based on histological regions.

2. LCM and GeoMX DSP/WTA are most commonly used for ROI based studies.
Both have commercial platforms. LCM followed by RNA-seq may be per-
formed by core facilities and GeoMX can be performed by Nanostring TAP.
Visium also has this advantage.

3. Both LCM + RNA-seq and GeoMX are compatible with and widely used on
FFPE tissues, which may be the only specimen available in some cases. In
contrast, Visium is predominantly used on frozen sections.

4. Though the ROIs are often larger than Visium spots, in principle the ROIs
can be chosen to be smaller if the transcriptomics method is sensitive enough.
However, the resolution might not exceed that of the new sub-micron methods
such as PIXEL-seq and Seq-Scope.

Cons:
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1. In ROI based studies, typically only a small number of ROIs are used. It
can be labor intensive to study the histological staining to manually select too
many ROIs.

2. Unlike in techniques that rely on spatial barcodes that can be pooled and later
demultiplexed, when spatial locations are only known from selection of ROIs,
scaling to larger number of ROIs becomes more challenging as samples need
to be collected ROI to ROI. This also applies to Tomo-seq.

Compared to techniques with single-cell and single molecule resolution, including
those based on smFISH and ISS:

Pros:

1. When RNA-seq or cDNA microarray is performed after ROI selection, then
it’s transcriptome wide. Even when it’s not transcriptome wide, such as with
some gene panels in GeoMX DSP, well over 1000 genes can be profiled at
a time, while smFISH and ISS based methods are typically used on fewer
than 300 genes. Furthermore, for LCM, with RNA-seq, new transcripts
and isoforms can be discovered as there are no probes confined to known
transcripts.

2. Again, existing well-established commercial platforms and core facilities for
LCM and GeoMX DSP, though this is changing with MERFISH, Rebus Esper,
Molecular Cartography, Xenium, CosMX, and commercial probe panels.

3. Because at present, the rawest data the user sees from smFISH and ISS is the
images, while the rawest data the user sees from NGS (for LCM and higher-
plexed GeoMX DSP/WTA) is fastq files, processing the raw data to get a gene
count matrix is more difficult and time consuming for smFISH and ISS.

4. Compatible with FFPE tissues, but this is also changing as CosMX is FFPE
compatible.

Cons:

1. Usually not single-cell resolution. Locations of individual cells within an ROI
is lost.

2. Subcellular localization of transcripts is lost.
3. Low z resolution for 3D profiling. EASI-FISH has been applied to cleared

300 𝜇m (pre-expansion) sections, and STARmap has been applied to 150
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𝜇m sections. For ROI based methods, the thick section would need to be first
sectioned into thinner sections for ROI selection. Also, within the thin section,
the ROI is effectively 2D while boundaries between cells vary through the z-
plane. In frozen sections, the section thickness is usually at least 10 𝜇m, and in
FFPE, the section thickness is usually at least 4 𝜇m, so the z resolution is lower
than that of confocal and light sheet microscopy. However, 3D thick sections
are also challenging for smFISH and ISS. Only relatively small numbers of
genes have been profiled in the thick sections (26 for EASI-FISH and 28 for
STARmap).

4. Lower detection efficiency than some of the smFISH-based methods, though
ISS based methods also tend to be inefficient.

NGS barcoding
In the previous subsection, cons of ROI based methods compared to NGS barcoding
would be the pros of NGS barcoding compared to ROI based methods. Compared
to smFISH and ISS:

Pros:

1. Transcriptome wide, and can discover new transcripts and isoforms. Visium
has been adapted for full length sequencing.

2. When MERFISH and seqFISH were scaled to around 10,000 genes, gene
expression was only profiled in relatively small numbers of cells (1000 some-
thing or fewer per dataset). In contrast, a coronal section of one hemisphere
of a mouse brain can fit into one tissue capture area of a Visium slide. One
Visium tissue capture area has 4992 spots, and if each spot contains 3 cells,
then when all spots are covered by tissue, transcriptomes from nearly 15,000
cells are captured. Even when the area is not fully covered, many more cells
are captured than in the 10,000 gene MERFISH and seqFISH datasets.

3. Visium is commercially available and is performed by some core facilities.
Library preparation of Visium can also be automated. While (Hyb)ISS and
Xenium are also commercialized by 10X, Visium is much more popular,
perhaps for its other advantages.

4. Thanks to the popularity of Visium and ST and their similarity with scRNA-
seq, there’s more software designed for Space Ranger output and plotting
gene expression at the spots with the H&E staining in the background, such
as Seurat, STUtility, and SpatialExperiment.
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5. The rawest form of data the users see is usually the fastq files, which are easier
to process to get a gene count matrix than the smFISH and ISS images.

Cons:

1. New techniques not yet commercialized such as PIXEL-seq and XYZeq might
also be just hard to independently implement.

2. For the most part, there is no single-cell spatial resolution. Even for the sub-
micron techniques, the spatial resolution is lower than the diffraction limit of
visible light.

3. As the tissue section is mounted onto a slide with spatial barcodes in 2D, z res-
olution is limited to section thickness. Even with the sub-micron techniques,
z positions of transcripts are lost.

4. Lower detection efficiency compared to some smFISH-based techniques. Se-
quencing cost would increase with greater sequencing depth for greater sen-
sitivity, and to cover larger areas of tissue.

smFISH
Compared to techniques without single-cell resolution:

Additional pros not already mentioned:

1. From imaging, potentially interesting information such as cell and nuclei
morphology and subcellular transcript localization is available.

2. single-cell resolution, in 3D, especially when the cell membrane is visualized
by staining for a membrane protein.

Compared to ISS:

Pros:

1. Higher detection efficiency
2. More genes profiled with high detection efficiency. FISSEQ is extremely

inefficient.

Cons:
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1. With RCA signal amplification and lower detection efficiency, ISS and HybISS
can be applied to larger areas of tissues more easily as lower magnification is
used when imaging.

2. Untargeted ExSeq and INSTA-seq coupled with NGS can be used to ex-
plore unknown transcripts and isoforms not confined to probes for known
transcripts.

Choosing the right technique
For the prospective user, which technique is right? Perhaps consider the following
questions:

1. How important is single-cell resolution to your study? Is it so important
that it justifies more labor intensive non-commercial techniques or buying
newly released commercial equipment that have not yet entered core facilities?
Would computational cell type deconvolution be satisfactory?

2. How important is high detection efficiency to your study? Lower efficiency
as in scRNA-seq can still discern more common cell types.

3. How important is profiling the whole transcriptome in space to your study?
If the spatial dataset is not transcriptome wide, then would data integration
with scRNA-seq to impute gene expression in space be satisfactory for now
given constraints of the current state of spatial transcriptomics? Moreover,
focusing on a panel of genes rather than profiling the whole transcriptome
is not necessarily a bad thing when only the panel is of interest to reduce
sequencing cost. Visium has an option to profile panels of genes rather than
the whole transcriptome.

4. How important are subcellular transcript localization and cell and nuclei
morphology to your study?

If these distinctive features of highly multiplexed smFISH are not as important, then
perhaps stick to a common commercial options such as Visium, LCM, and GeoMX
DSP.

5. What are the spatial axes of interest? If there is only one axis of interest and
the other axes are much less important for the questions asked, then perhaps
Tomo-seq is a good choice.

6. Are your samples FFPE? If so, then consider one of Visium, GeoMX DSP,
CosMX, LCM, and DBiT-seq.

https://www.10xgenomics.com/products/targeted-gene-expression
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7. Are you aiming to characterize the tissue section in an untargeted way, or are
you more focused on specific histological regions? If the latter, then perhaps
ROI based techniques.

8. Are you trying to profile the transcriptome of a relatively large area of tissue,
such as an entire coronal section of a mouse brain hemisphere?

9. How important are novel transcripts and isoforms to your study?

Note that “important” here really means what kind of trade-offs are better for the
purpose of a study, as the extra biological information in the above questions can all
be important to more fully understanding the biological system of interest. However,
at present, as discussed in the pros and cons throughout this chapter, trade-offs are
necessary among cost, convenience, detection efficiency, spatial resolution, area of
tissue covered, number of genes profiled, and FFPE compatibility. We are unaware
of any technique that excels in all these.

Furthermore, all current era techniques have limits in some of the above aspects. For
instance, in terms of tissue area, “large” means something like the size of a mouse
brain, in the scale of several mm’s per side. However, human tissues are often much
larger, in the scale of several cm’s per side. While large microscope slides for human
brain sections up to 178 mm × 127 mm are available (e.g. ClariTex Super Mega
Slides), we are unaware of current or prequel era datasets of human brain sections not
divided into smaller parts. Even the ABA human ISH atlas is from smaller parts of
the human brain and not registered to a CCF. Getting from 6.5 mm × 6.5 mm in one
Visium tissue capture area to 6.5 cm × 6.5 cm in 2D means 100 times more imaging,
which is even more time consuming with the high magnification used in smFISH
so each FOV is only about 200 𝜇m per side. As highly multiplexed smFISH studies
already report days of image processing even with multiple CPU cores (e.g. 4 days
for osmFISH of mouse cortex, which is a relatively large area compared to most other
highly multiplexed smFISH datasets [107], so 100 times more imaging would mean
months to years of image processing. While deep learning based cell segmentation
with GPU might speed up image processing, some steps in image processing do not
typically use deep learning, such as image stitching, which becomes more onerous
with 100 times more FOVs. For NGS based techniques, this means 100 times more
sequencing, with the increased cost and challenges in data processing.

https://www.tedpella.com/histo_html/slides-large.htm#260240_260378
https://www.tedpella.com/histo_html/slides-large.htm#260240_260378
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7.8 Spatial multi-omics
Some spatial transcriptomics techniques have been adapted to collect data of other
modalities, such as proteomics, neuron projection (connectomics), and 3D chro-
matin conformation. Here multi-omics means that data from different modalities
are collected from the same piece of tissue, rather than from adjacent sections.
These modalities can give a fuller picture of cell state than transcriptomics alone.

In both MERFISH [135] and GeoMx DSP [78], a panel of proteins can be quantified
with oligonucleotide tagged antibodies, and the oligo tag is detected and counted
as spots just like mRNA. In GeoMX DSP, if using all the 10-plex antibody panels
from Nanostring plus the 4 antibodies from the core panel, then 144 proteins can
be quantified at once and the barcodes need to be quantified with NGS. Antibodies
tagged with oligonucleotides with poly-A tails can also be incorporated into ST
as SM-Omics [231], and into DBiT-seq [204]. Now Visium can be performed on
immunofluorescence tissue sections, as well as with an antibody panel for proteins
[232]. We have already mentioned adaptation of MERFISH targeting introns and
genomic DNA to determine 3D chromatin conformation [165, 164], and pseudocolor
seqFISH and seqFISH+ have been used for this purpose in cell culture as well
[101, 104]. In MERFISH, traditional Nissl or poly-A based staining miss cellular
processes, but neuron projection tracing can be performed prior to MERFISH. In the
mouse motor cortex MERFISH atlas [163], axons are first visualized by injecting
cholera toxin subunit b (CTb) conjugated to 3 different dyes into 3 cortical areas
as a retrograde tracer, tracing from terminals of the axons to the cell bodies. After
imaging the axons, transcripts are imaged and quantified with MERFISH so neuronal
projection can be related to the transcriptome. Viruses can be used for anterograde
tracing, i.e. from cell bodies to axon terminals [233], and can in theory be performed
prior to MERFISH imaging. Axonal projections are traced in BARseq(2), as already
mentioned in 7.3.

Other types of measurements more sophisticated than H&E staining but are not
an -omics per se have been performed on the same tissue along with spatial tran-
scriptomics as well. The Allen Institute profiled 4 modalities in the same cells in
explanted human brain slices [234], albeit at a small scale: HCR-smFISH for up
to 9 genes, action potential recording of up to 5 neurons with multi patch-clamp,
intrinsic membrane properties by step depolarization, and morphology of axons
and dendrites by biocytin/streptavidin staining. smFISH and biocytin staining were
performed after the cells were fixed after the electrophysiological profiling. Electro-

https://www.nanostring.com/products/geomx-digital-spatial-profiler/geomx-protein-assays/
https://www.nanostring.com/products/geomx-digital-spatial-profiler/geomx-protein-assays/
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physiological recordings from cultured cardiomyocytes in space has been coupled to
STARmap (201 genes) with electro-seq; again, the recording is performed before the
cells are fixed and cleared for STARmap [235]. With soft electronics that integrates
into the cultured tissue in hydrogel, electro-seq is less invasive than patch-clamp
recording, which breaks the membrane and causes transcripts to leak.

7.9 Databases of the current era
The database holding various spatial gene expression data was proposed early in the
prequel era (1990s), when enhancer and gene trap data was proliferating and major
WMISH atlas projects were in progress. In contrast, in the current era, databases
only emerged after datasets from various techniques have already proliferated. One
of such databases is SpatialDB [236], published in late 2019, which holds gene
count matrices from ST, LCM, Tomo-seq, and etc. and spatially variable genes
identified with SpatialDE [237] and trendsceek [238]. In addition, the SpatialDB
website provides interactive visualization of gene expression in space. Data can be
queried by gene symbols, species, and data collection techniques. Unfortunately, it
seems that SpatialDB has not been updated since 2020.

Another database is the Brain Research through Advancing Innovative Neurotech-
nologies (BRAIN) Initiative - Cell Census Network (BICCN) [239]. This is an in-
ternational collaboration providing and generating multi-modal data for the mouse,
human, and non-human primate brain, collected with scRNA-seq, ATAC-seq, neu-
ron projection tracing, MRI, IHC, MERFISH [163], osmFISH, seqFISH, etc. The
database website is hosted by the Allen Institute, and thus may be considered a
continuation of the ABA. Data can be queried by species, technique, modality, and
the lab that generated the data, but not by gene symbols. Also, to recap, the HCA
has human Visium and HybISS data, though spatial transcriptomics does not seem
to be its focus.

While current era mouse brain atlases still reference the prequel ABA ontologies
[203, 180, 231, 105], data cannot be queried by ontology in the current era databases,
nor by a reference gene expression pattern as in the prequel database FlyExpress
[240]. With more quantitative and comprehensive data, the traditional ontology
may need to be revised. Unlike prequel databases such as ABA, EMAGE, and
FlyExpress, to the best of our knowledge, current era spatial data has not been
systematically registered to a 3D model for integrative analysis across datasets and
for visualization.
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C h a p t e r 8

TEXT MINING LCM TRANSCRIPTOMICS ABSTRACTS

This analysis was performed in 2021 and has not been updated. If it’s run again in
2023, the results might be different as spatial transcriptomics has evolved in the past
two years.

To analyze trends in LCM followed by microarray or RNA-seq, abstracts were down-
loaded from the PubMed API, with search term"((laser capture microdissection)
OR (laser microdissection)) AND ((microarray) OR (transcriptome)

OR (RNA-seq))". For preprints, abstracts from the search term “laser microdis-
section” were downloaded from bioRxiv. Because bioRiv’s advanced search does
not acknowledge parentheses, a more complicated search term was not used. Upon
random inspection, the retrieved abstracts mostly seem relevant. The number of
LCM transcriptomics search results dwarfs the number of publications for other
methods of spatial transcriptomics and seems to show two peaks, one around 2012,
and the other in 2020 and 2021 (Figure 8.1); the LCM corpus contains 2252 abstracts
as of March 26, 2021, while there are between 500 and 600 papers in the curated
database.

LCM transcriptomics is also more geographically diffuse and spread out into many
less well-known institutions and some developing countries, though some elite in-
stitutions are among the top contributors, such as Harvard Medical School and
Massachusetts General Hospital (Boston), Columbia University, NYU, Rockefeller,
and Sloan-Kettering (New York), NIH (Bethesda), and Cambridge University (Cam-
bridge, UK) (Figure 8.2).

After identifying common and relevant phrases in the abstracts, the abstracts were
tokenized into unigrams. We used the stm R package [1] to identify topics. The
cities in which the research was conducted, date published or posted on bioRxiv
(linear, not transformed), and journal (including bioRxiv) were used as covariates
for topic prevalence, because labs and journals may have preferred topics and city
is a proxy to institution, and it’s reasonable to assume that prevalence of at least
some topic changes through time, such as due to evolution of technology. Cities
and journals with fewer than 5 papers were lumped into “Other”. From a trade-off
between held out likelihood and residual, and between topic exclusivity and semantic
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Figure 8.2: Geographic distribution of LCM transcriptomics research, with top 10
cities labeled. Number of publications is binned over longitude and latitude.
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coherence, we chose 50 topics. Code used to find this can be found here.

Here stm stands for structural text mining. A generative model of word counts is
fitted with the word counts in each abstract as well as abstract level covariates, here
date, city, and journal. Among parameters of the model estimated are the proportion
of each topic in each abstract after accounting for covariates (𝜃), topic proportions
in the corpus (𝛾), and probability of getting each word from each topic (𝛽). See
the stm vignette for more details. stm can not only detect topics without having a
human read all the abstracts, but also find how covariates relate to topic prevalence.

8.1 Topic modeling
As already mentioned, microarray was first demonstrated on LCM samples in 1999,
profiling 477 cDNAs from rat neurons [2]. Since then, LCM transcriptomics has
been used on many research topics, such as various aspects of cancer (topics 5, 6,
8, 10, 11, 13, 16, 20, 24, 27, 34, 44, 50), botany (topics 9, 15, 21, 40, 43, 45),
developmental biology (topics 1, 3, 17, 18, 29, 35, 39), neuroscience (topics 7, 14,
19, 23, 25, 32, 33, 36, 47), immunology (topics 12, 22, 48), miRNA (topic 5), and
technical issues related to LCM (topics 4, 28, 37, 41) (Figure 8.3).

In most cases, the top 5 words in each topic give us a decent idea what the topic is
about. We can also plot the probability to get top words (𝛽) in each topic.

While in most cases, the topic is apparent from the top words, some topics are less
apparent (e.g. topic 49). From the top words and quick glances of abstracts with the
highest proportion of each topic, the 50 topics are summarized here in more human
readable terms:

1. Stem cell and fetal development
2. GWAS, genetic screens, and genetics of complex phenotypes
3. Biomechanics, ECM, eye lens, muscles, and morphogenesis
4. Data analysis, especially of RNA-seq, but also of 3D genome structure and

microarray
5. miRNAs in cancer
6. Quantitative analyses of cancer, clinical and bioinformatic
7. Hippocampus and Alzheimer’s disease, sometimes related to Down syndrome
8. Prostate cancer and other stuff in molecular biology and biochemistry, prob-

ably because some prostate cancer papers have an emphasis on molecular
biology

https://github.com/pachterlab/museumst/blob/master/data-raw/lcm_text_mining.Rmd
https://cran.r-project.org/web/packages/stm/vignettes/stmVignette.pdf
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9. Plant embryos, plant development, and some stuff about evolution and ecology
related to plants

10. Proteomics, especially in cancer
11. Cancer progression and diagnostics, especially lung cancer
12. Inflammation and immunology, especially in skin diseases
13. Breast cancer and liver cancer, with an emphasis in data analysis
14. Neural circuitry, neural plasticity, brain injury, and behavior
15. Plant gamitogenesis and reproduction
16. Spasmolytic polypeptide-expressing metaplasia (SPEM), oncogenes, KRAS
17. Endometrium and implantation. Somehow the top 2 entries are about hearing

loss. Why? Epithelium?
18. Cell cycle, also hepatic zonation and circadian rhythm (the latter is also a

cycle)
19. Neurons, especially dopaminergic
20. Tumor stroma and microenvironment
21. Plant roots
22. Intestine, especially microbiome and immune response
23. Hypothalamus, obesity, and appetite
24. PDAC, and some stuff about glioma and prostate cancer
25. ALS, and other neurodegenerative diseases affecting motor neurons
26. Epigenetics
27. Tumor single-cell profiling and cellular heterogeneity
28. Tissue isolation and preparation
29. Bone growth plate, especially recovery after radiotherapy, and some other

stuff like oocytes, glaucoma, and epithelial injury
30. Pancreas and diabetes, especially T2D
31. Lymphocytes, lymphatic and blood vessels
32. Prefrontal cortex and schizophrenia
33. Synapses, dendritic spines, neuron potentiation, sometimes related to memory
34. Cancer genomics, mutations, and phylogeny
35. Bone formation, but also some other stuff about cancer and kidneys
36. Neurodegenerative diseases, Alzheimer’s, Parkinson’s, and multiple system

atrophy
37. Spatial single-cell techniques and imaging
38. Connective tissues and ECM, and some other stuff about circadian rhythms
39. Stem cells and development
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40. Plant seed development and reproduction
41. RNA extraction and amplification, especially in microarray, but also in RNA-

seq
42. Lots of different stuff about epithelium
43. Plant leaves, but also other stuff about gamitogenesis
44. Cancer pathway analyses and molecular and cellular mechanisms
45. Plant nitrogen fixation and soil microbiome
46. Lots of different stuff related to fibrosis and fibroblasts, such as in lung diseases

and graft rejection
47. Neuron morphogenesis, axon guidance, somehow also angiogenesis, protein

signaling
48. Inflammation, immune response, especially in atherosclerosis, though there’s

some other content about blood vessels
49. Model organisms and in vitro model systems
50. Intrahepatic cholangiocarcinoma (ICC)

Some of them might not really be related to LCM (e.g. GWAS), and some seem
to be a mixture of different topics recognized by humans but seemingly united by
something else in common. There are very likely more than 50 topics present,
depending on how a topic is defined. The topics can be broadly categorized into
Botany, Cancer, Development, Immunology, Neuroscience, Technical, and Other,
though these categories can overlap. Some of the “Other” topics seem like mixtures
of multiple topics, such as topic 29, while some are very specific and relevant, such
as topic 30 (pancreas and diabetes). The broad categories will be used in further
analyses.

Clusters of related topics can be seen in the topic correlation plot. See documentation
of topicCorr in the stm package for more details. Here we use a high-dimensional
undirected graphical (HUGE) model [3] to estimate the topic correlation graph.
The topic proportions (𝜃) are assumed to be multivariate Gaussian, and HUGE
tries to identify edges connecting topics that are not independent from each other
conditioned on everything else, while trying to keep the graph sparse (few edges).
While 𝜃 is not Gaussian, the results from HUGE aren’t unreasonable.

Indeed, cancer, botany, neuroscience, and technical topics tend to cluster together,
although this is not the case for immunology and development.

https://rdrr.io/cran/stm/man/topicCorr.html
https://rdrr.io/cran/stm/man/topicCorr.html
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Figure 8.5: Correlation between topics.

8.2 Changes of word usage through time
We binned dates into years and tested for association of word proportion in each
year with the year by fitting a logistic regression model and checking significance of
the coefficient for year; word frequency per year since 2001 for the significant words
(after Benjamini-Hochberg multiple testing correction) are shown in Figure 8.6.
Because too many words are significant, only top 10 from words with decreasing
frequency and top 10 with increasing frequency are plotted.

Here we see that words and phrases associated with microarray and RNA amplifica-
tion have declined in frequency, while words associated with RNA-seq, single-cell,
as well as words discussing molecular mechanisms have increased in frequency
(Figure 8.6). While transcripts from LCM samples from recent studies were still
amplified, the relevant terms decreased in frequency probably because more recent
studies, such as ones in the curated database, tend to cite established protocols
and kits of library preparation that do the amplification such as Smart-seq2 rather
than discussing amplification directly. The “spatial” is associated with current era
techniques. Such trends can also be clustered and shown in a heatmap.

Some words have increased in frequency, especially since 2015 (Figure 8.7). Some
words sharply decreased in frequency in the early 2000s. However, some words have
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Figure 8.6: Word frequency over time since 2001 for words significantly associated
with time, sorted from the most decreasing to the most increasing in frequency in
time according to the slope in the model. The adjusted p-value of each word is
shown. Vertical line marks June 6, 2008, when the first paper about RNA-seq was
published [4].
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Figure 8.7: Heat map clustering changes in word frequency over time. The rows of
the matrix are normalized, only showing trend rather than frequency.

increased in frequency, peaking in the late 2000s and early 2010s, before declining.
Among the terms whose frequency peaked around the early 2010s are “microarray”
and “microarray analysis”, perhaps because while RNA-seq was introduced in 2008,
microarray did not immediately become obsolete, or perhaps because microarray
results are often compared to RNA-seq results, though perhaps wordings changed
through the 2000s so the “cDNA” in “cDNA microarray” was omitted (Figure 8.6).
Frequency of “real time PCR” also declined, probably because real time PCR was
often performed along side microarray but not scRNA-seq to corroborate microarray
results (e.g. [5, 6], so usage of this term declined with the decline of the cDNA
microarray. Besides microarray related terms, some of the words that decreased
in frequency are biological terms related to cancer. The “frequency” here is the
proportion of all words from all abstracts of a year taken up by a word; the decline
in proportion can either be due to decline in interest in the topics that use the word
or growth in other topics that don’t use the word. This will be explored further in
the next section.
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8.3 Changes of topic prevalence through time
We tested for association of prevalence of each of the 50 topics with time using the
estimateEffect function in the stm package. Samples of the parameters were
taken from the variational posterior of the stmmodel to estimate the variances of the
slopes of the linear model of topic prevalence vs. date published, as well as to test
whether topic prevalence is significantly associated with time. The p-values of the
slopes were corrected for multiple hypothesis testing with the Benjamini-Hochberg
method. While the linear model only captures monotonous changes, a more flexible
model, such as b-spline transform of the date, was not used because of the modest
size of this corpus; on average, each topic has only 45 abstracts, though some topics
are larger and some smaller.

As many topics have statistically significant associations with time, only the top 10
most decreasing and top 10 most decreasing topics are plotted here (that’s what I
intended, but there were only 8 significantly decreasing topics, so top 12 increasing
topics are shown). In the early 2000s, a major topic of research about LCM was
reliability of T7-based PCR amplification of the small amount of transcripts from
samples for microarray, but the prevalence of this topic (topic 41) has declined over
time (Figure 8.6, Figure 8.8). The reason for such decline can be a combination of the
following: First, other topics in neuroscience and botany emerged and grew (Figure
8.8); some of them are now among the most prevalent topics (Figure 8.3). Second,
usage of terms related to microarray and RNA amplification for microarray declined
while usage of terms related to RNA-seq increased after 2008 due to the advent
of RNA-seq because the latter replaced microarray as the transcriptomics method
of choice, so the decline is expected (Figure 8.6). Also as expected, prevalence
of topics in data analysis (topic 4) and spatial single-cell and imaging technologies
(topic 37) increased. Interestingly, cancer topics are among the most significantly
decreasing (Figure 8.7, Figure 8.8). Because unlike cDNA microarray, these topics
are still relevant today, such decline is puzzling.

Next, we checked whether whether the rise of topics not directly related to cancer
may be relevant to the decline of proportions of cancer topics. In stm, the abstracts
are not hard assigned to topics. Rather, each abstract has a proportion of each topic,
and abstracts often have over 90% of one topic. Here, for simplicity, we say an
abstract “has” a topic if the proportion of the topic in the abstract is at least 25%.

When the number of abstracts with each topic is plotted, the declines are less drastic
or reversed while the increases became much more drastic, especially after 2015,
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Figure 8.8: Topic prevalence over time since 2001 with fitted linear model. Gray
ribbon indicates 95% confidence interval (CI) of the slope, estimated from the
samples of the variational posterior of the stmmodel. Vertical line indicates advent
of RNA-seq in 2008. Light blue facet strip means decreasing trend with adjusted p
< 0.05, and pink strip means increasing.
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Figure 8.9: Number of abstracts with each topic whose proportions changed the
most in time. Gray ribbon is the 95% CI of the line fitted to the count per year.
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Figure 8.10: Correlation between topics colored by both broad categories of the
topics and whether its proportion increased, decreased, or did not significantly
change (n.s.).

perhaps due to the rise of scRNA-seq, whose library preparation methods made it
possible to quantify transcripts from small amount of tissues from LCM (Figure 8.9).
These trends don’t necessarily correspond to the overall trend across the corpus (Fig-
ure 8.1). Then we see in recent years a diversification of topics that may be related to
LCM from search results, resulting into decrease of proportion of some older topics
the interest in which might not have drastically decreased if not somewhat increased,
though not increasing as quickly as other topics. Nevertheless, it is clear that some
cancer topics have decreased even in counts. However, remember that some of the
stm topics seem to be mixtures of multiple topics recognizable by humans and these
stm topics might have picked up aspects of the abstracts less readily noticed by
humans. In other words, it might not be that interest in some cancers decreased per
se, but thanks to scRNA-seq, the way these cancers are discussed changed, using
words that contributed to other, growing topics. Furthermore, because so many
different topics are drastically growing in recent years, the increase in proportion of
each of them became less drastic.

Now return to the topic correlation graph, and all the 50 topics, along with their
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trends, are shown (Figure 8.10). Overall, cancer topics tend to be decreasing
in proportion. As already seen in Figure 8.9, this is in part due to growth in
non-cancer topics but in part due to decline in some cancer topics. Botany and
neuroscience topics tend to increase in proportion. This trend is also evident in the
topic correlations. Microarray and RNA amplification (topic 41) is correlated with
a cancer topic, while spatial single-cell and imaging (topic 37) and data analysis
(topic 4) are correlated with neuroscience topics. Topic 27, which is about single-cell
profiling of tumors, has grown, perhaps due to the growth of scRNA-seq. Possibly,
as cancer is still relevant, the decline in some cancer topics fed into topic 27 as
tumors are examined at the single-cell level.

8.4 Association of topics with city
Again, with the estimateEffects function, we identify cities associated with
certain topics. Some topics might be more spread out, while some some may be
confined to a few institutions, which are approximated by city here because it’s more
difficult to automatically extract institutions from the author address on PubMed
than cities. Some institutions might specialize in certain topics. Also note that
while for PubMed papers, the cities of the first author are used, because the first
author has greater contribution to the paper, only the address of the corresponding
author is available from the bioRxiv API. Furthermore, multiple institutions across
continents may collaborate on one paper, so the cities here only give a rough idea
where LCM related research takes place. Here only the names of the cities are used,
with the state and country they are in to distinguish between cities with the same
name, without the longitude and latitude, because we don’t expect an association
between topic and the coordinates in and of themselves, nor do we expect spatial
autocorrelation of the topics.

Here we note that Center for Dementia Research, Nathan Kline Institute in Orange-
burg has greatly contributed to research in hippocampal CA1 pyramidal neurons in
Alzheimer’s disease and Down syndrome (topic 7) (Figure 8.11). This is the first
time I heard of Nathan Kline. Department of Plant Biology at Cornell, Ithaca has
greatly contributed to study of plant development (topic 9). Topic 17 is a mixture of
topics recognizable by humans; besides the endometrium, some of the top entries
are about hearing loss, which come from University of Rochester. George Mason
University in Manassas, Virginia contributed several papers about cancer pathway
analysis (topic 44). University of Pittsburgh has disproportionate contribution to
the study of prefrontal cortex and schizophrenia (topic 32), dating back to 2007.
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Figure 8.11: Cities associated with topics (p < 0.005) shown on a map.

Centro de Biotecnologia y Genomica de Plantas (UPM-INIA), Madrid has dispro-
portionate contribution to the study of soil microbiome and nitrogen fixation (topic
45). University of Sheffield has a long history and disproportionate contribution to
the study of neurodegenerative diseases affecting motor neurons (topic 25), dating
back to 2007.

Association of a topic with an institution that used to greatly contribute to the topic
but then stopped might also explain why some topics declined in prevalence over
time although drastic growth in other topics might be a better explanation (Figure
8.8, 8.9). Topic 29 prominently features the bone growth plate though this stm
topic has entries for other biological systems as well. These bone growth plate
papers come from Upstate Medical University in Syracuse, New York, from 2005
to 2010. Decline in topic 29 might be related to cessation of study of the growth
plate at this institution after 2010, though other institutions have not picked up
this topic afterwards. Institute of Human Genetics and Anthropology, Friedrich-
Schiller-University in Jena, Germany greatly contributed to cancer proteomics (topic
10) between 2004 and 2011 but then stopped, though other institutions carried on
studying this topic. Kyushu University Beppu Hospital in Japan greatly contributed
to quantitative analyses in cancer (topic 6) from 2005 to 2014, although other
institutions continue contributing to this topic, whose paper count actually increased
over time although the topic’s proportion decreased due to drastic growth in other
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Figure 8.12: Proportion of topic 45 in each city. Error bars are 95% CI of the point
estimate.

topics (8.9). The vast majority of LCM related publications from Sendai, Japan are
about breast cancer (topic 13), from between 2007 to 2017, which is why Sendai is
associated with this city although this topic is widespread.

Association of a city with a topic can also be visualized with topic proportion in
each city from estimateEffect (Figure 8.12). Here topic 45 (soil microbiome
and nitrogen fixation) is plotted, but readers on RStudio Cloud can try other topics.

Here “disproportionate” means disproportionate within this corpus of LCM related
search results. Institutions with “disproportionate” contribution to a topic do not
necessarily dominate such topic although the topic may dominate the institution,
i.e. the topic takes up a very large proportion of abstracts from this institution
within this corpus. Nor are these institutions necessarily elite; this analysis might
be an interesting way to discover labs from not so well-known institutions that
may be outstanding in some topics. The institutions are often not elite because elite
institutions often greatly contribute to many topics, weakening the association of the
institution to the topic. Except for growth plate in Syracuse, we have not identified
topics largely confined to an institution.
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8.5 GloVe word embedding
We used global vector (GloVe) embedding to identify linear substructures in the
word vector space of the LCM transcriptomics abstract corpus and to identify
contexts [7]. In GloVe embedding, words are represented by vectors. Words with
similar meanings tend to be closer together in this vector space, and differences
between word vectors can encode meaning as well. The “meanings” come from the
context, or word co-occurrence. GloVe was devised to find a word embedding with
properties like “king” - “man” + “woman” = “queen” or “ice” - “solid” + “gas” =
“steam”, and related words like “cancer” and “tumor” are close together but both
are far from unrelated words like “flower”.

This corpus was used to train a 125 dimensional embedding, and the embeddings
of words occurring more than 30 times in the corpus were projected to lower
dimensions with principal component analysis (PCA) to find axes explaining the
most variance in the embedding, hopefully identifying dominant axes of meaning
within this corpus. The words are also Louvain clustered in the embedding space to
find clusters of words related in meaning.

The first principal component (PC) explains over 5% of the variance, and then the
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Figure 8.14: Projection of word embeddings into the first 2 PCs. Each point is
a word occuring over 30 times in the corpus. Not all words are labeled to avoid
overlaps in the labels. Words and points are colored by Louvain clusters.

“elbow” is at PC5.

Words more positive in PC1 are often gene names, parts of gene names, or acronyms,
and names of specific biological entities or processes. In contrast, words more
negative in PC1 tend to be more general and more widely used. PC2 separates
the technical (cluster 2, top) from the biological (clusters 2-4) (Figure 8.14). As
expected, “cancer”, “tumor”, and “disease” are not far from each other (bottom
left), and “malignant” and “invasive” are close (bottom center). PC1 explains more
variance than all other PCs; though it’s only 5.5%, it picked up a very important
dimension in word meanings in this corpus. PCs are arranged in decreasing order
of variance explained.

PC3 separates processes and interactions (clusters 2 and 4, left) from entities of
samples, tissues, organs, and diseases (clusters 3 and 7, right). PC4 separates the
molecular and cellular (bottom left) and the quantitative (clusters 1 and 3, bottom
right) from the qualitative (top). Some of the qualitative terms are used to discuss
implications of results of the papers (clusters 1 and 4, top left) (Figure 8.15).

Now we have seen some important axes of meanings and types of words, which are
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Figure 8.15: Projection of word embeddings into the 3rd and 4th PCs.

not surprising given familiarity with the general structure of abstracts and applica-
tions of LCM. There must be more axes of meaning, as the first 4 PCs only explain
about 12% of the total variance of word embeddings (Figure 8.13). The clusters of
words can be better visualized with UMAP, which is a non-linear dimension reduc-
tion method that tries to preserve distances between points but is most commonly
used to project into 2 dimensions.

The clusters of words are easier to discern with Uniform Manifold Approximation
and Projection (UMAP) (Figure 8.16). Cluster 1 is mostly terms used to discuss the
results and implementations of the studies. Cluster 2 is molecular terms. Cluster 3
has many terms about cancer. Cluster 4 contains terms on quantitative molecular
analyses and molecular mechanisms. Cluster 5 is biological terms. Cluster 6 is
words used to describe results of studies, with many quantitative words; “p”, “0.05”,
and “0.01” are found in this cluster rather than cluster 3 because p-values are results
of data analyses and 0.05 and 0.01 are common thresholds of significance. Cluster
7 is words in experimental procedures. Cluster 8 has some biological terms, some
quantitative terms, and numbers that are spelt out. These clusters of words give some
idea about topics of the studies, but unlike stm, these clusters also give a glimpse
into different parts of the abstract, such as summary of the results and implications
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of the results.
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C h a p t e r 9

DATA ANALYSIS IN THE CURRENT ERA

So far we have reviewed numerous techniques to collect spatial transcriptomics
data. In this chapter, we review computational methods to analyze data generated
by current era techniques and methods that, while only having WMISH, FISH,
or ISH as spatial data, involve scRNA-seq data as well. For a publication to be
included in the “Analysis” sheet of this database, it must either focus on a data
analysis method, or present alongside new data, sophisticated data analysis going
beyond using existing packages. While some data analysis methods originally not
designed for spatial data can be used for spatial data, this chapter is about methods
designed specifically with spatial data in mind. This means that the methods should
be demonstrated on a spatial transcriptomic dataset in the publication, even if not
explicitly using spatial coordinates.

Since 2019, there has been a sharp increase in interest in current era data analysis
(Figure 9.2). If our collection of prequel data analysis literature is somewhat
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Figure 9.1: Number of publications over time for current era and prequel data
analysis. Bin width is 120 days. Preprints are included for this figure. The x-shaped
points show the number of publications from the last bin, which is not yet full.
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Figure 9.2: Number of publication over time for current era data collection and
data analysis. Bin width is 120 days. The x-shaped points show the number of
publications from the last bin, which is not yet full.

representative and complete, then interest in current era data analysis dwarfs the
golden age of prequel data analysis from 2008 to 2014 (Figure 9.1). As already
shown, interests in current era data collection increased sharply since 2018 (Figure
6.2, Figure 9.2), although not as sharply as in data collection (Figure 9.2).

In contrast, in the prequel era, interest in data analysis peaked after the peak for data
collection, and eventually interest both eventually diminished but continues (Figure
9.3). There are many different types of data analysis, the ones with the most interest
are finding spatial regions, preprocessing (including image processing and quality
control), cell type inference (especially cell type deconvolution of Visium spots),
and cell-cell interaction (Figure 9.4). While mapping dissociated cells to spatial
locations on a spatial reference used to be at the top, there has been more interest in
the other topics mentioned just now.

Several methods for cell type deconvolution in array based techniques that don’t have
single-cell resolution were developed (cell type inference), but the drastic growth in
data analysis seems to be driven by multiple categories of analyses (Figure 9.5). Top
contributors to data analysis methods in the current and prequel eras are different as
well. In the current era, while many less well-known institutions have contributed to
data analysis, the top contributors are an elite club. Among the top contributors in the
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Figure 9.3: Number of publications over time for prequel data collection and data
analysis. Bin width is 365 days. The x-shaped points show the number of publica-
tions from the last bin, which is not yet full.
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prequel era are less famous institutions such as Arizona State University (ASU), Old
Dominion University (ODU), and Lawrence Berkeley National Laboratory (LBL),
which developed the BDTNP and the Fly Enhancer atlases (Figure 9.6).

In our database, we have recorded programming languages used in data analysis
or package development. All programming languages that played a major role in
the project were recorded. For downstream analysis, this includes languages of the
user interface of existing packages used and languages of new functions written for
the project. For package development, this includes any language used to write
the package essential to the functioning of the package. In publications that focus
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on data collection, R is by far the most popular programming language used in
downstream data analysis (Figure 9.10). The second most popular is Python, and
then MATLAB, which is more common in smFISH (Figure 7.28) and ISS for its
image processing functionality. Python is used for both image processing and other
types of analyses. C and C++ are not as common in downstream analysis.

The same top 5 programming languages are the most common for developing data
analysis packages (Figure 9.11). Python is the most popular, especially for packages
involving deep learning, image processing, using Torch for optimization, or are
command line tools. R follows, and is more popular for exploratory data analysis
(EDA) and data visualization, but sometimes both R and Python are used in the same
package. Other languages aren’t nearly as commonly used for packages reported
on in our database. The above observations about usage of R and Python seem to
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reflect the broader cultural differences between the R and Python communities; the
former caters more to the users and statisticians who do not specialize in computer
science, while the latter caters more to developers and computer science specialists.
MATLAB is not as commonly used for package development. While popularity
of Python and R have grown (and some others such as Julia), the popularity of
MATLAB seems more level (Figure 9.12). C and C++ are more common in package
development than in downstream analysis, but are often used in conjunction with
either R or Python or both as C and C++ are used for performance while R and Python
are for user interface. With packages such as reticulate, rpy2, basilisk, Rcpp,
and Cython, the most popular open source languages can be made interoperable to
each other to some extent, making use of the best resources from each language.

We have also recorded whether the package is well documented and whether it’s
hosted on a public repository as a loose proxy of user friendliness and quality. Here
“well documented” means at least all arguments of all functions exposed to the user
are documented, though we consider it better when examples are included. Public
repositories can to some extent indicate user friendliness and quality because the
packages need to pass some sort of checking in order to be hosted on the repositories,

https://rstudio.github.io/reticulate/
https://rpy2.github.io/doc/latest/html/introduction.html
https://bioconductor.org/packages/release/bioc/html/basilisk.html
http://rcpp.org
https://cython.org
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figure, each icon stands for 50 publications, and the x axes of both figures are
aligned. Note that multiple programming languages can be used in one publication.

though some repositories, such as Bioconductor, have stricter standards than others.
Moreover, installation of the package is easier when the package is on a public
repository. A majority of Python packages and the vast majority of R and C++
packages are well documented, while many older MATLAB packages are not though
more recent MATLAB packages are also mostly documented (Figure 9.12). Most
packages are not on a public repository such as CRAN, Bioconductor, PyPI, and
conda (Figure 9.13). For CRAN and especially Bioconductor, this might be due to
the work required to meet standards of these repositories such as to pass automated
checks, write documentation, examples, unit tests (Bioconductor), and vignettes
(Bioconductor).

Some of the most popular categories of analyses (Figure 9.4) are reviewed in the rest
of this section, arranged roughly in the order each task is performed in a data analysis
workflow, from converting raw data to something more amenable to biological
interpretations to forming biological hypotheses. The former is specific to certain
types of techniques, and includes image processing (smFISH and ISS), spatial
reconstruction (scRNA-seq and smFISH and ISS data that are not transcriptome
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wide), and cell type deconvolution (NGS barcoding data that are not single-cell
resolution). The latter can largely be applied across types of techniques if given a
gene by cell or spot matrix and cell or spot locations. Exceptions to the “largely”
include analyses of subcellular transcript location which can only be applied to single
molecule resolution data and spatial point process based methods which are more
appropriate to model the cell or transcript locations rather than the fixed Visium
spot locations. Each category will first be defined, and the common core principles
will be summarized.

9.1 Preprocessing
By “preprocessing” we mean extracting information from raw data so common
analysis methods can be applied. “Raw data” can mean any form of data, even if
processed in some ways, that still needs to have information extracted for common
analysis tasks to apply, such as PCA, clustering, and DE. Preprocessing for array
based techniques that use NGS is similar to preprocessing for scRNA-seq. The same
aligners can be used to align reads to the genome or pseudoalign to the transcriptome,
and the spot barcodes can be demultiplexed just like in scRNA-seq; indeed, ST and
Visium, the preprocessing pipelines ST Pipeline and Space Ranger wrap the STAR
aligner. In addition, the transcript spots need to be aligned to the H&E image for
visualization, interpretation, and using information from H&E for analyses. As
microdissection based techniques also use NGS, preprocessing would not be very
different from that of scRNA-seq or bulk RNA-seq data. However preprocessing of
smFISH and ISS data is very different from that of NGS based data, and this would
be the focus of this section.

The rawest data the user sees is images. As mentioned earlier, preprocessing of
images was typically performed with poorly documented MATLAB code difficult
to decipher by users. While some switched to Python recently, such as in MERlin for
MERFISH, the preprocessing tool is still often specific to the technique of interest.
The HybISS group has switched from MATLAB to Python and used starfish for
spot detection and decoding, and pciSeq from this group has been reimplemented
in Python (originally MATLAB) as well [1, 2]. Some groups used GUI based tools
such as Fĳi, ImageJ, and CellProfiler [3, 4, 5]. However, as the GUI based analyses
are not recorded and shared or are manual, it is difficult to reproduce such analyses.

To provide a free, open source, and well-documented preprocessing tool applica-
ble to data from multiple techniques, the Chan Zuckerberg Initiative developed the
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Python package starfish implementing image registration, spot calling, barcode
calling, cell segmentation, and etc. with classical image processing methods such as
thresholding, image registration by translation, top hat filtering, Laplacian of Gaus-
sian, watershed segmentation, and etc. While a good start, it’s not clear how to apply
starfish to multiple FOVs based on its tutorials. To improve starfish, another
Python pipeline, SMART-Q was developed, with more modularity and improve-
ments upon starfish such as additional parameter to mitigate over-segmentation
(individual cell or nucleus broken into too many pieces) by watershed and integra-
tion with immunofluorescence images of marker genes [6]. However, SMART-Q
was only demonstrated in RNAscope data without combinatorial barcoding, with
one FOV at a time. Another such smFISH pipeline based on classical image pro-
cessing is dotdotdot, which is written in MATLAB but the functions are well
documented [7]. Again, dotdotdot was only demonstrated on RNAscope without
combinatorial barcoding. There are other open source tools for one or more of the
preprocessing steps, but are not meant to be a comprehensive pipeline. Below we
review each step in preprocessing of smFISH and ISS raw data, how this was done
in the original papers of datasets with classical image processing, and alternative
and improved approaches such as ones based on deep learning or Bayesian statistics.

The packages mentioned in this section are summarized in the Table 9.1. The
package names link to the code repo if available, and the titles link to the paper
associated with the package. Each section in this chapter has a table like this. There
are relevant packages not mentioned in this book; they can be found in the database.

Table 9.1: Packages mentioned for smFISH and ISS image
processing

Name Language Title Date
published

corrFISH MATLAB Dense transcript profiling in
single-cells by image correlation
decoding

2016-06-06

graph-ISS Python Identification of spatial
compartments in tissue from in situ
sequencing data

2019-09-18

https://docs.google.com/spreadsheets/d/1sJDb9B7AtYmfKv4-m8XR7uc3XXw_k4kGSout8cqZ8bY/edit#gid=1424019374
https://github.com/singlecelllab/correlationFISH
https://doi.org/10.1038/nmeth.3895
https://doi.org/10.1038/nmeth.3895
https://doi.org/10.1038/nmeth.3895
https://github.com/wahlby-lab/graph-iss
https://doi.org/10.1101/765842
https://doi.org/10.1101/765842
https://doi.org/10.1101/765842


287

pciSeq MATLAB Probabilistic cell typing enables fine
mapping of closely related cell types
in situ

2019-11-18

SMART-Q Python SMART-Q: An Integrative Pipeline
Quantifying Cell Type-Specific RNA
Transcription

2020-04-29

spage2vec Python Spage2vec: Unsupervised detection
of spatial gene expression
constellations

2020-09-25

deepBlink Python deepBlink: Threshold-independent
detection and localization of
diffraction-limited spots

2020-12-15

ISTDECO Python ISTDECO: In Situ Transcriptomics
Decoding by Deconvolution

2021-03-02

BarDensr Python BARcode DEmixing through
Non-negative Spatial Regression
(BarDensr)

2021-03-08

JSTA Python; C Joint cell segmentation and cell type
annotation for spatial transcriptomics

2021-05-31

SSAM Python;
C++

Cell segmentation-free inference of
cell types from in situ
transcriptomics data

2021-06-10

Baysor Julia Bayesian segmentation of spatially
resolved transcriptomics data

2021-10-14

Image registration
First, images of each FOV from different rounds of hybridization must be aligned;
this is image registration. The images can be aligned to a reference of fiducial
beads or DAPI staining, which is especially useful when “no fluorescence” is part
of the barcode [8, 9]. If “no fluorescence” is not involved, then the reference can
be a particular round of hybridization [10, 11]. Image registration is usually affine,
i.e. images are translated, scaled, or rotated to match the reference, and often only
translation is used. However, non-linear registration has been used in case the
sample does not lie flat and chromatic aberration shifts spots in different channels
[2].

https://github.com/kdharris101/iss
https://doi.org/10.1038/s41592-019-0631-4
https://doi.org/10.1038/s41592-019-0631-4
https://doi.org/10.1038/s41592-019-0631-4
https://github.com/shenlab-ucsf/SMART-Q
https://doi.org/10.1371/journal.pone.0228760
https://doi.org/10.1371/journal.pone.0228760
https://doi.org/10.1371/journal.pone.0228760
https://github.com/wahlby-lab/spage2vec
https://doi.org/10.1111/febs.15572
https://doi.org/10.1111/febs.15572
https://doi.org/10.1111/febs.15572
https://github.com/BBQuercus/deepBlink
https://doi.org/10.1101/2020.12.14.422631
https://doi.org/10.1101/2020.12.14.422631
https://doi.org/10.1101/2020.12.14.422631
https://github.com/axanderssonuu/istdeco
https://doi.org/10.1101/2021.03.01.433040
https://doi.org/10.1101/2021.03.01.433040
https://github.com/jacksonloper/bardensr
https://doi.org/10.1371/journal.pcbi.1008256
https://doi.org/10.1371/journal.pcbi.1008256
https://doi.org/10.1371/journal.pcbi.1008256
https://github.com/wollmanlab/JSTA
https://doi.org/10.15252/msb.202010108
https://doi.org/10.15252/msb.202010108
https://github.com/eilslabs/ssam
https://doi.org/10.1038/s41467-021-23807-4
https://doi.org/10.1038/s41467-021-23807-4
https://doi.org/10.1038/s41467-021-23807-4
https://github.com/kharchenkolab/Baysor
https://doi.org/10.1038/s41587-021-01044-w
https://doi.org/10.1038/s41587-021-01044-w
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Spot and barcode calling
Then the spots representing individual transcripts are identified (spot calling). The
background of autofluorescence and non-specific hybridization is often removed
by thresholding or top hat filtering, only preserving brighter pixels. Spots can
be identified with multi-Gaussian fitting with fixed width, which can distinguish
between partially overlapping spots [8], or tightened by Lucy-Richardson deconvo-
lution [12], or by identifying local maxima in intensity after identifying potential
spots with Laplacian of Gaussian [10, 11]. The spots can also be identified with
deep learning. In Python package graph-ISS [13], a convolutional neural network
(CNN) is pretrained on manually annotated candidate signal spots from another
dataset, and probability that a new candidate obtained after top hat filtering and
h-maxima transform is a signal is returned by the last softmax layer of the CNN.
Another CNN based spot calling tool is deepBlink [14], which builds on the popular
U-net architecture.

Once spots are called in each round of hybridization, spots that most likely to
correspond to the same transcript are read as barcode and decoded to identify the
gene encoded by the barcode (barcode calling). As image registration is imperfect,
the spot coming from the same transcript may still be slightly shifted between rounds
of hybridization. To identify the barcode from the rounds of hybridization, the spot
in one round of hybridization is typically identified with a spot in another round if
the spatial distance between the two is sufficiently small, such as less than between
1 and 3 pixels, or smaller than the distance to a barcode that contains error [10, 11,
15, 9].

In graph-ISS [13], spots identified from CNN from different rounds of hybridization
are connected in a graph, with each spot in each round of hybridization a node and
the edge weight decreases with increasing distance between spots across rounds
up to a maximum distance. Edges connecting spots not from consecutive rounds
are removed. The barcode is called by maximum flow of minimum costs between
the sink and the source of the graph. Then a quality score is calculated for the
barcode according to the CNN probability of spots and distance between spots from
different rounds. Although graph-ISS was originally designed for ISS data, it might
be adapted to seqFISH, HybISS, STARmap, and SCRINSHOT as well. However,
for MERFISH and seqFISH+, in which a transcript may not have signal in some
rounds of hybridization, graph-ISS would need to be altered. Alteration would also
be required to decode STARmap’s 2 base encoding.

http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnSlides/inf2b12-learnlec09.pdf
https://en.wikipedia.org/wiki/Richardson–Lucy_deconvolution
https://en.wikipedia.org/wiki/Richardson–Lucy_deconvolution
http://fourier.eng.hmc.edu/e161/lectures/gradient/node8.html
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://micro.magnet.fsu.edu/primer/java/digitalimaging/russ/tophatfilter/index.html
https://en.wikipedia.org/wiki/H-maxima_transform
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For MERFISH specifically, transcript counts have been statistically modeled in the
Rust package MERFISHtools, which takes errors in barcode calling into account
[16]. While MERFISH’s inbuilt error correction (HD4) accounts for 1 to 0 error,
which is more common, 0 to 1 errors can still occur, and there are still barcodes
with so many errors that they can’t be matched to genes (dropout). The errors are
modeled as a multinomial distribution with event probabilities as probabilities of
identifying transcripts of a gene correctly with and without the inbuilt correction,
misidentifying transcripts of a gene as those from each other gene with and without
the inbuilt correction, and dropouts, with actual transcript counts, number of correct
and incorrect identifications, and dropouts as latent variables to be estimated by
Bayesian inference. The flat prior is used for now.

Computational methods to overcome optical crowding and to deconvolute spots
were summarized in Section 7.2: corrFISH, BarDensr, and ISTDECO. The above
mentioned spot calling methods all treat spot detection and decoding as separate
tasks. In contrast, in both BarDensr and ISTDECO, the two related tasks are
performed jointly.

Cell segmentation
To assign transcript spots to cells, the cells need to be segmented and spots within
the segmented boundary of a cell must be assigned to that cell. For neurons, Nissl
staining, which stains the cell body and dendrites but not axons, has been used for
cell segmentation [10, 11]. Without Nissl staining, total poly-A staining can be
used instead, and segmented with watershed transform, although poly-a staining
concentrates in the cell body and misses cellular processes such as dendrites [12].
This misses some interesting biological information; dendrites can have different
transcriptomes from the cell body of the same neuron, both in vitro and in vivo
[17, 18, 19]. Cell segmentation can be done manually as automated methods may
not be sufficiently reliable and would still require manual inspection and correction,
or automated with machine learning models trained by manual segmentation of
smaller number of cells such as the random forest model in Ilastik [11, 20] and CNN
models such as DeepCell [21] and CellPose [22]. Watershed segmentation is more
commonly used.

Without seeing the actual extent of the cell, the quality of manual segmentation is
questionable, especially in regions with high cell density, thus limiting the perfor-
mance of machine learning models. Sometimes problematic methods were used to

https://online.stat.psu.edu/stat504/node/40/
https://www.mathworks.com/company/newsletters/articles/the-watershed-transform-strategies-for-image-segmentation.html


290

segment cells, such as 3D Voroni tessellation [10] and convex hull of Nissl staining
based segmentation [11]. These are problematic because cells need not to take a
convex shape so such segmentation may mis-assign transcripts from other cells, or
to be conservative about mis-assigning transcripts from other cells, miss transcripts
that in fact belong to the cell of interest. However, one study did specifically stain
for membrane bound proteins for the actual extent of the plasma membrane and
accurate cell segmentation [20].

To address the challenges of cell segmentation, segmentation methods utilizing
scRNA-seq data with annotated cell types have been developed recently. One such
method is Python package JSTA [23], in which a deep neural network (DNN)
learns a segmentation and cell type annotation using the information from a scRNA-
seq reference with cell type annotations. First, watershed is used for an initial
cell segmentation, both MERFISH and scRNA-seq data are scaled and centered.
Then a DNN is trained on the scRNA-seq data to predict cell type from gene
expression. Then a separate DNN is trained to refine the cell boundaries iteratively
with expectation maximization (EM): The cell type classifier is applied on the
watershed segmented MERFISH data to classify putative cells (E). Then a random
subset of the pixels are used to train the pixel classifier, maximizing a loss function
comparing the new pixel cell type probabilities to the initial/previous assignment
(M). The new cell type probabilities are then scaled per pixel according to distance
to nuclei. Only probabilities of cell types of neighboring cells are kept and the other
cell types are assigned probability 0. The new cell type probabilities of each pixel is
then used as event probabilities of a multinomial distribution and randomly assign
a new cell type label to the pixel. Then the new cell type assignment to pixels is
used to train the pixel classifier again, until the cell type assignments converge. This
may refine boundaries between neighboring cells of different types, and the initial
watershed boundaries are kept for neighboring cells of the same type. A problem
with this package is that inhomogeneous transcript localization is not taken into
account.

Alternatives to cell segmentation
Due to the challenges in accurate cell segmentation, some analysis methods did
away with cell segmentation altogether, directly using the transcript locations. In
the Julia package Baysor [24], based on Markov random field (MRF), which en-
courages nearby transcripts to take the same label. A spatial neighborhood graph
is constructed with Delaunay triangulation with each transcript as a node. The

https://en.wikipedia.org/wiki/Voronoi_diagram
https://en.wikipedia.org/wiki/Convex_hull
http://ai.stanford.edu/~chuongdo/papers/em_tutorial.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/lec23.pdf
https://towardsdatascience.com/delaunay-triangulation-228a86d1ddad
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probability of each transcript taking each label is modeled with a MRF and initial
edge weights decrease with distance. This package first distinguishes between intra-
cellular transcripts and extracellular background. Then it can also assign transcripts
to cell types without cell segmentation, with a scRNA-seq reference with cell type
annotations; as locations of the transcripts are known, this amounts to annotating
tissue regions with cell types. It can also segment cells, with existing segmentation
and staining (e.g. Nissl, DAPI, and poly-A) as priors. Cell segmentation can also
be informed by cell type labels, so transcripts from different cell types are not as-
signed to the same cells. Each of the three functionalities, identifying intracellular
transcripts, cell type annotation of transcripts, and cell segmentation, is based on a
different MRF model. The parameters of the model, such as edge weights, labels of
other transcripts, and etc. are estimated with EM. The drawbacks of this package are
that its current implementation is limited to 2D and it does not take inhomogeneous
subcellular transcript localization into account.

Besides cell type annotation of transcripts based on MRF, another segmentation-
free method is also described in the Baysor paper [24], in which the 𝑘 nearest
neighbors of each transcript are taken to be a pseudo-cell and analyzed by standard
scRNA-seq data analysis methods such as clustering, PCA, and UMAP. For ISS,
transcripts can be probabilistically assigned to cells and cells to cell types, with
pciSeq [2]. Briefly, spatial locations of transcripts are modeled by a Poisson point
process whose intensity is scaled by a term following Gamma distribution to give the
negative binomial distribution of transcript counts in cells. The intensity for each
gene and each cell is also informed by distance between transcripts and nucleus
centroids (from DAPI), scRNA-seq data of the cell type this cell belongs to, and
the detection efficiency of ISS. The data consists of locations of transcripts and
the genes they come from. The unknown parameters, such as probability of each
transcript to come from each cell and each cell from each cell type, are estimated by
variational Bayesian inference. Cell types and spatial domains can also be identified
without scRNA-seq cell type annotations as well.

In the Python package SSAM [25], transcript density is first estimated with Gaussian
kernel density, which is then projected into a square lattice. Local maxima of
transcript density are taken as pseudo-cells and clustered to infer de novo cell types.
Then tissue domains are identified by clustering sliding windows of spatial cell type
maps. Tissue domains can also be identified without appealing to cell types.

In the Python package spage2vec [26], graphs are constructed by connecting each

https://hpaulkeeler.com/poisson-point-process/
https://hpaulkeeler.com/poisson-point-process/
https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Negative_binomial_distribution
https://omarelb.github.io/variational-bayes/
https://wiki.analytica.com/index.php/Kernel_Density_Smoothing
https://wiki.analytica.com/index.php/Kernel_Density_Smoothing
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transcript spot to its neighbors within a certain distance such that at 97% of all
transcript spot are connected to at least one neighbor. Then the transcript spots with
these graphs are projected by a graph neural network (GNN) into a 50 dimensional
space which is informed by the graphs and thus local neighborhoods of transcripts.
The transcript spots in the 50 dimensional space can then be clustered or projected
to 2 or 3 dimensions with UMAP to show tissue domains.

9.2 Exploratory data analysis

Table 9.2: Packages mentioned for EDA

Name Language Title Date
published

Spaniel R Spaniel: analysis and interactive
sharing of Spatial Transcriptomics
data

2019-05-05

Seurat3 R Comprehensive Integration of
Single-Cell Data

2019-06-13

SpatialCPie R SpatialCPie: an R/Bioconductor
package for spatial transcriptomics
cluster evaluation

2020-04-29

STUtility R Seamless integration of image and
molecular analysis for spatial
transcriptomics workflows

2020-07-16

SPATA R Inferring spatially transient gene
expression pattern from spatial
transcriptomic studies

2020-10-21

Giotto R Giotto, a pipeline for integrative
analysis and visualization of
single-cell spatial transcriptomic data

2021-03-08

Squidpy Python Squidpy: a scalable framework for
spatial single-cell analysis

2022-01-31

SpatialExperiment R SpatialExperiment: infrastructure for
spatially resolved transcriptomics
data in R using Bioconductor

2022-04-28

After data preprocessing, as described above, for array or microdissection based

https://blog.exxactcorp.com/a-friendly-introduction-to-graph-neural-networks/
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
https://github.com/RachelQueen1/Spaniel
https://doi.org/10.1101/619197
https://doi.org/10.1101/619197
https://doi.org/10.1101/619197
https://github.com/satijalab/seurat
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://github.com/jbergenstrahle/SpatialCPie
https://doi.org/10.1186/s12859-020-3489-7
https://doi.org/10.1186/s12859-020-3489-7
https://doi.org/10.1186/s12859-020-3489-7
https://github.com/jbergenstrahle/STUtility
https://doi.org/10.1186/s12864-020-06832-3
https://doi.org/10.1186/s12864-020-06832-3
https://doi.org/10.1186/s12864-020-06832-3
https://github.com/theMILOlab/SPATA
https://doi.org/10.1101/2020.10.20.346544
https://doi.org/10.1101/2020.10.20.346544
https://doi.org/10.1101/2020.10.20.346544
https://github.com/RubD/Giotto
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1186/s13059-021-02286-2
https://github.com/theislab/squidpy
https://doi.org/10.1038/s41592-021-01358-2
https://doi.org/10.1038/s41592-021-01358-2
https://bioconductor.org/packages/SpatialExperiment
https://doi.org/10.1093/bioinformatics/btac299
https://doi.org/10.1093/bioinformatics/btac299
https://doi.org/10.1093/bioinformatics/btac299
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data, we get a gene count matrix with locations of voxels, and for smFISH and ISS
based data, we get locations of transcripts, and if cell segmentation is performed, a
gene count matrix and cell boundaries as well. For scRNA-seq, Seurat [27], scanpy,
and packages surrounding SingleCellExperiment on Bioconductor such as scran
and scater implement further preprocessing of the gene count matrix, such as
data normalization and scaling, as well as basic EDA methods to inspect and create
an overview of the data, such as quality control (QC), data visualization, finding
highly variable genes, dimension reduction, and clustering, and have user friendly
tutorials, consistent user interface, and decent documentation. Such integrative EDA
packages, as well as more specialized data visualization packages, have emerged for
spatial transcriptomics as well, and are reviewed in this section.

In practice, spatial transcriptomics data is often analyzed with standard scRNA-seq
analysis at the EDA stage, with one or more of PCA, tSNE, UMAP, clustering cells
or spots, and finding marker genes for clusters, and differential expression (DE) be-
tween case and control [10, 12, 28, 29, 30]. For ST and Visium, the data is also often
normalized like in scRNA-seq with CPM or classical Seurat log normalization and
scaling [29, 31, 30]. Seurat also implements data integration, which has been used
to transfer cell type labels from scRNA-seq to Visium for cell type deconvolution
[32], and can potentially be used to impute gene expression in non-transcriptome
wide spatial data from scRNA-seq (discussed in Section 9.3). Then the clusters,
marker genes, and genes of interest from scRNA-seq are often visualized within
spatial context, and some studies proceed to other analyses that utilize the spatial
information. Due to the relevance of scRNA-seq data normalization, EDA, and data
integration to spatial data, the existing scRNA-seq ecosystems of Seurat, scanpy
(spatial part in Squidpy [33]), and SingleCellExperiment (spatial part in Spatial-
Experiment [34]) are adapting to the rise of spatial transcriptomics, with new data
structures, visualization of gene expression and cell metadata (e.g. total UMI counts,
cluster, and cell type) on the spatial coordinates, with H&E as background for ST
and Visium, and perhaps other spatial functionalities such as spatial neighborhood
graphs and spatially variable genes.

There are other EDA packages not originating from an existing scRNA-seq EDA
ecosystem as well. R packages Giotto [35], STUtility [36], and SPATA [37] not
only support basic QC and EDA functionalities like those in Seurat, but also spatial
analyses not supported by Seurat. These packages are well documented, but are not
(yet?) on CRAN or Bioconductor.

https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://reneshbedre.github.io/blog/expression_units.html
https://rdrr.io/cran/Seurat/man/NormalizeData.html
https://rdrr.io/cran/Seurat/man/ScaleData.html
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Giotto has two main parts: Giotto Analyzer and Giotto Viewer. Besides basic Seurat
functionalities and spatial data visualization, Giotto Analyzer implements several
types of spatial analyses to be reviewed in more detail in the rest of this section: cell
type enrichment in spatial data without single-cell resolution, identifying spatially
variable genes, gene co-expression patterns, cellular neighborhoods, interactions
between cell types and ligand-receptor pairs in such interactions, and genes whose
expression is associated with cell type interactions. However, the methods imple-
mented in Giotto tend to have simpler principles than those of more specialized
packages for each of the above tasks, such as hypergeometric test for cell type en-
richment and spatially coherent genes, though Giotto wraps specialized packages
such as SpatialDE [38], trendsceek [39] for spatially variable genes, and smfishhmrf
[40] to identify spatial cellular neighborhoods. Giotto Viewer provides interactive
visualization of the data. As Giotto uses its own object class to store data, interoper-
ability with other single-cell and spatial software becomes more challenging given
the popularity of Seurat and SingleCellExperiment.

In contrast, STUtility develops upon the Seurat class, so is interoperable with other
Seurat functionalities. STUtility is specific to ST and Visium, while Giotto applies
to all spatial technologies with cell or spot level data. Beyond Seurat, STUtility
enables masking the array to remove spots outside the tissue, alignment of multiple
sections, manual annotation and alignment with shiny, visualization of the aligned
sections in 3D, finding neighbors of spots of a given type, and using NMF to identify
archetypal gene expression patterns. While Giotto and STUtility might not have the
most sophisticated spatial analysis methods, their main advantage is akin to that of
Seurat and SingleCellExperiment, namely that multiple analysis tasks, often with a
variety of algorithms for each task, can be done with the same object class and user
interface, saving the time and trouble on learning new syntax and converting objects
to new classes.

SPAtial Transcriptomic Analysis (SPATA), while implementing its own class, uses
Seurat for data normalization and dimension reduction. SPATA also implements
functions to visualize spatial data and a shiny app for not only interactive data
visualization but also manually setting spatial trajectories and annotation of spatial
regions. It also wraps Monocle 3 [41] for pseudotime analysis and SPARK [42] for
finding spatially variable genes. In addition, SPATA implements its own method of
finding spatially variable genes, reviewed in Section 9.5.

Some R packages have also been written for specific visualization tasks, but not

https://shiny.rstudio.com
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the entire EDA process. Spaniel is a package that builds on Seurat and Single-
CellExperiment for interoperability and implements QC plots that help the user to
remove ST or Visium spots outside the tissue. However, Spaniel’s main difference
from STUtility is that Spaniel can create a shiny app for interactive visualization
and exploration of the data. While this may make Spaniel sound unremarkable, it
was written about a year before Seurat supported spatial data. Another specialized
package is SpatialCPie [43], which also uses shiny for interactive visualization.
SpatialCPie cluster ST or Visium data at multiple resolutions and plots a graph
showing how clusters from one resolution relates to those from other resolutions.
It also plots a pie chart at each ST or Visium spot, on top of an H&E background,
showing similarity of each spot to each cluster, to give a more nuanced view than
simply coloring the spots by cluster. Both packages are on Bioconductor.

9.3 Spatial reconstruction of scRNA-seq data
It may be fair to say that the holy grail of spatial transcriptomics is to profile
the whole transcriptome at single-cell resolution and without dropouts. We have
already seen that, with seqFISH+ and ExM-MERFISH, this goal seems to possibly
be within reach. However, the goal may be further than is seemingly the case, as the
smFISH-based techniques are still not generally applied to more than a few dozens
to a few hundreds of genes, in the order of 10,000 cells (Figure 7.23, Figure 7.24),
which only covers a small area of tissue. Meanwhile, techniques without single-cell
resolution and with lower detection efficiency but which can cover large swaths of
tissue have grown in popularity (Figure 7.37). Hence spatial transcriptomics has not
supplanted scRNA-seq—which has also grown tremendously in popularity in recent
years [44]–but remains a complement. Spatial data that is not transcriptome wide
can be complemented by scRNA-seq for information of other genes; this section
reviews computational methods that map cells from scRNA-seq to spatial locations
with a small panel of landmark genes and/or to impute gene expression not profiled
by the spatial reference in space, or in short spatial reconstruction of scRNA-seq
data. These are the most common types of data analysis(Figure 9.4). The two
tasks are related but distinct, as when cells from scRNA-seq are mapped to spatial
locations, spatial patterns of the genes expressed in the cells are also predicted.
However, gene expression can also be predicted at spatial locations without mapping
cells to the locations. Spatial data that does not have single-cell resolution can be
complemented by scRNA-seq for cell type deconvolution of the spots (Section 9.4).
In turn, spatial data complements scRNA-seq with spatial information such as gene
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expression patterns and cell neighborhoods.

Attempts at spatial reconstruction of single-cell data date back to 2014, when growth
in the popularity of scRNA-seq started to pick up pace [44]. Early (2014-2017)
methods tend to fall in three categories: direct dimension reduction with PCA,
ad hoc scoring, and pseudotime projected into space. The first two have been by
and large abandoned due to their limitations, and the third isn’t commonly used.
Another category is generative modeling, which we consider intermediate due to
its early origin and lasting legacy as some later methods involve more sophisticated
generative modeling. Later (2018-present) methods commonly involve a lower
dimensional latent space shared by the scRNA-seq and the spatial data, and many
different approaches have been tried to obtain the shared latent space and project
it back into the higher dimensional space of gene expression. However, other
principles were used as well, such as optimal transport, nonlinear direct dimension
reduction, black box machine learning, mixture of experts model, and etc.

Table 9.3: Packages mentioned for spatial reconstruction of
scRNA-seq data

Name Language Title Date
published

Seurat1 R Spatial reconstruction of single-cell
gene expression data

2015-04-13

DistMap R The Drosophila embryo at single-cell
transcriptome resolution

2017-10-13

gimVI Python A joint model of unpaired data from
scRNA-seq and spatial
transcriptomics for imputing missing
gene expression measurements

2019-05-06

Seurat3 R Comprehensive Integration of
Single-Cell Data

2019-06-13

LIGER R; C++ Single-Cell Multi-omic Integration
Compares and Contrasts Features of
Brain Cell Identity

2019-06-13

https://github.com/satijalab/seurat/tree/37b8f45db23a6564c6dfcde238ef41177c8230e8
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1038/nbt.3192
https://github.com/rajewsky-lab/distmap
https://doi.org/10.1126/science.aan3235
https://doi.org/10.1126/science.aan3235
https://github.com/YosefLab/scVI
https://arxiv.org/abs/1905.02269
https://arxiv.org/abs/1905.02269
https://arxiv.org/abs/1905.02269
https://arxiv.org/abs/1905.02269
https://github.com/satijalab/seurat
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://github.com/MacoskoLab/liger
https://doi.org/10.1016/j.cell.2019.05.006
https://doi.org/10.1016/j.cell.2019.05.006
https://doi.org/10.1016/j.cell.2019.05.006
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SPRESSO R; Python Novel computational model of
gastrula morphogenesis to identify
spatial discriminator genes by
self-organizing map (SOM)
clustering

2019-08-29

Harmony R; C; C++ Fast, sensitive and accurate
integration of single-cell data with
Harmony

2019-11-18

novoSpaRc Python Gene expression cartography 2019-11-20
sstGPLVM Python A Bayesian nonparametric

semi-supervised model for
integration of multiple single-cell
experiments

2020-01-21

SpaOTsc Python Inferring spatial and signaling
relationships between cells from
single-cell transcriptomic data

2020-04-29

st_analysis Python Molecular atlas of the adult mouse
brain

2020-06-26

GLISS NA Integrative Spatial Single-cell
Analysis with Graph-based Feature
Learning

2020-08-13

SpaGE Python SpaGE: Spatial Gene Enhancement
using scRNA-seq

2020-09-21

FIST MATLAB Imputation of Spatially-resolved
Transcriptomes by Graph-regularized
Tensor Completion

2021-04-07

LIGER R; C++ Iterative single-cell multi-omic
integration using online learning

2021-04-19

Tangram Python Deep learning and alignment of
spatially resolved single-cell
transcriptomes with Tangram

2021-10-28

Direct dimension reduction
As already mentioned in our summary of Puzzle Imaging, spatial reconstruction
of dissociated tissue can be considered a dimension reduction problem. Here with

https://github.com/tmorikuicr/spresso
https://doi.org/10.1038/s41598-019-49031-1
https://doi.org/10.1038/s41598-019-49031-1
https://doi.org/10.1038/s41598-019-49031-1
https://doi.org/10.1038/s41598-019-49031-1
https://doi.org/10.1038/s41598-019-49031-1
https://github.com/immunogenomics/harmony
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41592-019-0619-0
https://github.com/rajewsky-lab/novosparc
https://doi.org/10.1038/s41586-019-1773-3
https://github.com/architverma1/sc-manifold-alignment
https://doi.org/10.1101/2020.01.14.906313
https://doi.org/10.1101/2020.01.14.906313
https://doi.org/10.1101/2020.01.14.906313
https://doi.org/10.1101/2020.01.14.906313
https://github.com/zcang/SpaOTsc
https://doi.org/10.1038/s41467-020-15968-5
https://doi.org/10.1038/s41467-020-15968-5
https://doi.org/10.1038/s41467-020-15968-5
https://github.com/jfnavarro/st_analysis
https://doi.org/10.1126/sciadv.abb3446
https://doi.org/10.1126/sciadv.abb3446
https://doi.org/10.1101/2020.08.12.248971
https://doi.org/10.1101/2020.08.12.248971
https://doi.org/10.1101/2020.08.12.248971
https://github.com/tabdelaal/SpaGE
https://doi.org/10.1093/nar/gkaa740
https://doi.org/10.1093/nar/gkaa740
https://github.com/kuanglab/FIST
https://doi.org/10.1371/journal.pcbi.1008218
https://doi.org/10.1371/journal.pcbi.1008218
https://doi.org/10.1371/journal.pcbi.1008218
https://github.com/welch-lab/liger
https://doi.org/10.1038/s41587-021-00867-x
https://doi.org/10.1038/s41587-021-00867-x
https://github.com/broadinstitute/Tangram
https://doi.org/10.1038/s41592-021-01264-7
https://doi.org/10.1038/s41592-021-01264-7
https://doi.org/10.1038/s41592-021-01264-7
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scRNA-seq, the high-dimensional gene expression data is directly projected to 1 to
3 dimensions that correspond to the spatial dimensions.

One of the earliest reconstruction methods (2014) maps single-cell qPCR data
onto a sphere that mimics the developing mouse otocyst [45]. Ninety six genes
were profiled with qPCR in single-cells, and the gene expression profiles were
projected to the first 3 principal components (PCs), which are then projected onto
the surface of a sphere. The sphere is oriented on the dorsal-ventral (DV), anterior-
posterior (AP), and left-right (LR) axes by expression of marker genes known to
be expressed in one end of those axes. At least for the otocyst, this approach
seemed to recapitulate expression patterns of many genes, at least qualitatively, at
the resolution of octants. This approach was later adapted to reconstruct the human
[46] and mouse [47] blastocysts. A one-dimensional version of this approach was
also adapted to spatially reconstruct cells from the organ of Corti along the apical
and basal axis, though the PCA was performed only on DE genes between apical
and basal cells and 2 PCs were projected to 1 dimension [48].

Direct dimension reduction is still used after 2018, with dimension reductions other
than PCA. Another form of dimension reduction for spatial reconstruction is the
self-organinzing map (SOM) as in the package SPRESSO [49]. The Geo-seq mid-
gastrula mouse embryo data [50] was reconstructed in 3D with genes selected from
GO terms; 18 genes selected from a few GO terms could place all microdissected
samples into the correct AP/LR quadrant with SOM. However, such genes were
found by checking the SOM projections from thousands of GO combinations against
the Geo-seq ground truth and may not apply to other biological systems. Also, the
spatial reconstruction along the DV axis was not checked, though in Geo-seq, the
samples were microdissected along the DV axis with a cryotome in addition to
dissection into AP/LR quadrants with LCM.

A more recent, graph based dimension reduction is GLISS [51]. After using a
Laplacian score based method to identify landmark genes from spatial data (to be
reviewed in Section 9.5), a graph is constructed for the scRNA-seq data based on
similarity in expression profiles of the landmark genes among cells as a proxy to
spatial locations. With this graph, a new set of genes whose expression depend
on the structure of the graph, or spatially variable genes, are identified, and added
to the landmark genes. A new similarity graph is then constructed with both
the landmark genes and spatially variable genes, and the dimension reduction is
the eigenvectors of the graph Laplacian of this graph, starting from the second

https://en.wikipedia.org/wiki/Self-organizing_map
https://proceedings.neurips.cc/paper/2005/file/b5b03f06271f8917685d14cea7c6c50a-Paper.pdf
https://csustan.csustan.edu/~tom/Clustering/GraphLaplacian-tutorial.pdf
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eigenvector. One-dimensional projection would be the second eigenvector. Two-
dimensional projection would be the second and third, and so on.

Ligand-receptor (L-R) pairs have also been used for direct dimension reduction, in
CSOmap [52]. Expression of L-R pairs in scRNA-seq cells is used to construct a
cell-cell affinity matrix, with higher affinity meaning that two cells are more likely
to be close to each other. Then an algorithm similar to tSNE is used to project the
affinity matrix into 3 dimensions, corresponding to the physial dimensions. The
Kullback–Leibler (KL) divergence between the affinity and probability of the two
cells to be neighbors is minimized, with constraints of the minimum physical size
of the cell and the amount of space available.

Ad hoc scoring
The methods above tend to only capture simple spatial patterns with simple gradients
along axes, or have low resolution that is effectively restricted to octants or quadrants.
More complex patterns with higher resolution can be reconstructed qualitatively
with some score that measures similarity between each cell in scRNA-seq and each
location in a spatial reference for the genes present in both datasets and favors genes
more specific to a subset of cells. The spatial pattern of the score is the predicted
gene expression pattern. As the score is qualitative and does not utilize statistical
modeling of the data, this is called ad hoc scoring. The spatial reference is FISH
(not smFISH) data of a panel of genes, with images for different genes registered
onto a common coordinate system. As FISH is not very quantitative, both the spatial
and the scRNA-seq data are binarized into “on” and “off” for each gene, and the
predicted gene expression patterns based on the score is binarized as well since the
score is only qualitative. Such approach is simple to implement, but the binarization
misses quantitative nuances of gene expression patterns.

Ad hoc scoring has been used in Platynereis dumerilii brains; the FISH atlas was
broken into voxels 3 𝜇m on each side, smaller than the average single-cell, and 98
landmark genes in the atlas used to predict patterns of other genes in scRNA-seq
with a score [53]. A different method, DistMap, uses a score based on Matthew
correlation coefficient (MCC) was used to soft assign cells from scRNA-seq to
locations in the BDTNP atlas with 84 landmark genes and to predict expression
patterns of the other genes [54]. The latter method inspired the DREAM Single-cell
transcriptomics challenge in 2018 [55], a competition in which participants select
the most informative genes and predict cell locations with 60, 40, and 20 of the

https://en.wikipedia.org/wiki/Kullback–Leibler_divergence
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
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84 BDTNP landmark genes. At least some participating teams adapted the scoring
method used in the original DistMap after selecting genes with their own methods
[56, 57].

Generative models
Many areas in spatial transcriptomics data analysis describe the data with a plausible
statistical model and fit such a model to the data. Generative models have several
advantages. First, uncertainties in parameter estimates and model predictions can be
computed. Second, the model is more explainable, i.e. that humans may understand
contributions of variables to the fitted model. Explainability plays an important
role in models identifying spatially variable genes. As already mentioned, some
of the segmentation-free smFISH or ISS analysis packages, such as pciSeq, rely
on generative models. Generative models are used for spatial reconstruction of
scRNA-seq data as well.

The popular scRNA-seq EDA package Seurat originated from spatial reconstruction
of scRNA-seq data in 2015, to map cells from scRNA-seq to a WMISH reference
with 47 landmark genes [58]. The WMISH images were mostly obtained from ZFIN,
and divided into 128 bins, which was then collapsed into 64 due to LR symmetry. As
WMISH is not very quantitative, the WMISH reference was binarized. Due to the
sparsity of scRNA-seq data, the normalized scRNA-seq data was smoothed. Then
a mixture of 2 Gaussian distributions was fitted to each gene, for the “on” and the
“off” states. With such distributions, the posterior probability that each cell comes
from each bin can be calculated with the probability that the cell is “on” or “off” like
in the bin for the 47 genes, although cells can very well have intermediate and more
nuanced gene expression. The spatial centroid of each cell is the center of mass of
the spatial map of the posterior probabilities. So far, the landmark genes have been
assumed to be independent, which is unrealistic. Centroids that are close to actual
bins are then used to calculate a covariance matrix of a subset of the landmark genes
for each bin, with which the Gaussian mixture models and posterior probabilities
are updated. While this model seems reasonable, it is no longer used, likely because
of the advances in highly multiplexed smFISH and ISS that produced quantitative
spatial references that do no need binarization for some tissues, especially the mouse
brain. Nevertheless, the scRNA-seq part of Seurat lived on. As already mentioned,
WMISH or ISH atlases are the only spatial transcriptomics resources available for
some biological systems and most of the atlases are not transcriptome wide, so this
method can still be useful.



301

A different generative model was used to map scRNA-seq cells to a smFISH atlas in
the mouse liver [59]. Six marker genes known to be patterned in the portal-central
axis of the hepatic lobule were profiled with smFISH. Then the smFISH data was
binned into 9 zones and normalized, and each gene in each zone was modeled with
a gamma distribution, which was then multiplied by coefficients correcting for the
fact that only part of the cell is in the tissue section for the 𝜆 of a Poisson distribution
to form a negative binomial distribution. The negative binomial distribution was
sampled and normalized for the whole cells in scRNA-seq and proportion of UMIs
from the gene of interest, which would approximate the distribution of a cell in
each zone having expression levels of the gene of interest. The prior probability of a
hepatocyte originating from each zone seems to be the relative area of the concentric
ring that is each zone, centered on the central vein. With the prior and the sampled
distribution of expression of marker genes, the posterior probability of each cell
from each zone can be calculated with Bayes rule. To impute expression of genes
other than the 6 markers in each zone, the gene count matrix is multiplied to the
posterior probability matrix (after weighing the probabilities). Here the 6 markers
are assumed to be independent, which might not be realistic. The same approach is
still used by the same lab for more recent liver datasets [60, 61], although we are
unaware of its use outside that lab.

Some of the shared latent space methods are based on generative models as well,
with the latent space as part of the model. In gimVI [62], which is adapted from scVI
specifically to impute gene expression in space by integrating spatial and scRNA-
seq data, gene expression in scRNA-seq is modeled with the negative binomial
(NB) or zero inflated negative binomial (ZINB) distribution, and the spatial data
is modeled with the Poisson or NB distribution (depending on the technology and
dataset). The scRNA-seq and spatial data are modeled as coming from a shared
latent lower dimensional space, which is decoded back to the higher dimensional
gene expression space by a neural network to capture nonlinear structures as part
of the mean parameters of the NB, ZINB, or Poisson distributions. The latent
space is estimated when the model is fitted with variational Bayesian inference. To
impute gene expression in space, the latent space is sampled and passed through
the decoding neural network to get the mean parameters of the gene expression
distributions for spatial data.

Another generative model with a shared latent space is semi-supervised t-distributed
Gaussian process latent variable model (sstGPLVM) [63]. The scRNA-seq or spatial



302

data is modeled as coming from a noisy sample in high dimension from a lower
dimensional shared latent space. The latent space can be concatenated to fixed
covariates such as batch, technology used to collect data, spatial coordinates, and
etc. and is estimated with black box variational inference. Missing data in gene
expression and covariates can be estimated from the latent space, thus enabling
mapping scRNA-seq cells to spatial coordinates and imputing gene expression,
and the latent space can be collapsed across a covariate to remove its effect. The
latent space has a Gaussian prior with identity variance. The prior of the high-
dimensional noiseless space is a Gaussian process with covariance between cells
defined by a kernel that is a weighted sum of Matern 1/2 and Gaussian kernels
to allow for a non-smooth manifold that better represents data. The input to the
kernel is a weighted sum (length scales of kernel) of l1 distance between the cells in
the latent space (including the covariates). The noise added to the noiseless high-
dimensional space to model actual data is a heavy tailed Student’s t distribution, to
account for overdispersion and non-Gaussian distribution of the data. This method
is not specifically designed for spatial data, but can be used to integrate different
scRNA-seq datasets as well.

Shared latent space
There are some additional methods that project scRNA-seq and spatial data into
a shared latent space to impute gene expression in space but without generative
modeling. Some of them are designed for data integration in general, but included
here the authors demonstrated integration of scRNA-seq and spatial data, seeming
to intend their packages for such usage.

In version 3 or later of Seurat [27], the scRNA-seq and spatial datasets are projected
into a shared latent space by canonical correlation analysis (CCA), which finds
a low-dimensional space that maximizes correlation between the two dataset, or
by projecting one dataset into a low-dimensional PCA space of the other dataset.
Then anchor cells are identified, as cells in the two datasets with sufficient shared
neighborhood, and the weight of each anchor on each cell in the spatial dataset is
calculated by ad hoc scoring favoring closeness in the latent space and more similar
shared neighborhood to the anchor. Gene expression is then simply transferred from
scRNA-seq to spatial data by multiplying the normalized gene count matrix of genes
absent from the spatial data in scRNA-seq with the anchor weight matrix.

LIGER [64] is a different data integration method, of which a Seurat wrapper has

https://en.wikipedia.org/wiki/Matérn_covariance_function
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Canonical_correlation
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been implemented. The latent space is inferred by integrative NMF, which finds a set
of factors unique to the scRNA-seq or the spatial dataset, and a set of factors shared
by both. Gene expression is imputed in spatial data by averaging the expression of
genes of interest in the 𝑘 (50) nearest neighbors (kNN) from the scRNA-seq data in
the space spanned by the shared factors.

In SpaGE [65], a common latent space is inferred as such: gene shared by the spatial
dataset and scRNA-seq are used to do PCA independently for the two datasets. Then
the cosine similarity matrix of the PCs of the two dataset is passed to singular value
decomposition (SVD). Then the left and and right singular vectors are used to align
the PCs to a common latent space of principal vectors. The original data is projected
into the space spanned by the principal vectors of the scRNA-seq data. Then kNN
is used to project gene expression from scRNA-seq to spatial data.

In Harmony [66], the data, with different batches, is first PCA projected. Then
the PCA projection is clustered with an altered k-means clustering algorithm that
assigns cells probabilistically to clusters and maximizes diversity in batches in each
cluster. Then the batch correction is found by mixture of expert model. In each
cluster, the PCA projection is modeled by a linear combination of variables in
the design matrix (containing batch information), with an intercept term for batch
free variation in each cluster. The batch correction term is a weighted sum of the
linear model predictions excluding the intercept term, weighted by the probabilistic
assignment of each cell to each cluster. Then the batch correction term is subtracted
from the original PCA projection. The clustering and correction are repeated until
convergence. This way, the cells from scRNA-seq and spatial data are aligned in a
common latent space. Then gene expression is imputed in spatial data with kNN.

Other principles
Approaches that do not fall into the categories reviewed above are reviewed in this
subsection, including projecting pseudotime into space, black box machine learning,
and optimal transport.

In some biological systems, cell differentiation corresponds to physical locations
of the cells, so pseudotime, which supposedly arranges cells along differentiation
trajectories, have been mapped to space, thus placing dissociated cells in space. For
instance, in the bone growth place, cells at different stages of differentiation are
physically arranged along the length of the bone in a cylinder, so the pseudotime
trajectory of the cells was simply warped into a straight line for spatial reconstruction

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://medium.com/analytics-vidhya/k-means-clustering-explained-419ee66d095e
https://people.cs.pitt.edu/~milos/courses/cs2750-Spring04/lectures/class22.pdf
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[67]. Similarly, in Drosophila larva, cell differentiation corresponds to the proximal-
distal axis in the antenna disk and the AP axis in the eye disk, so cells from both
scRNA-seq and scATAC-seq were binned according to pseudotime and assigned
to the corresponding bins in the eye-antenna disk [68]. However, this would not
work in tissues without such neat correspondence, such as the Drosophila embryo,
in which some genes are expressed in periodic patterns to specify segments.

Deep learning libraries such as PyTorch also made it more effective to predict
locations for scRNA-seq cells without a pre-conceived statistical model of the data.
For instance, after data normalization and batch correction, a deep neural network
can be trained on ST data with annotations of spatial regions to predict spatial regions
for scRNA-seq data [69]. In addition, PyTorch’s gradient-based optimization has
been used to probabilistically map scRNA-seq cells to spatial locations in Tangram
[70]. The spatial reference is voxelated, and a mapping matrix of probability of
each cell mapping to each voxel is inferred by minimizing KL divergence between
mapped and actual cell density in each voxel and favoring stronger correlation
between mapped data and the spatial reference in expression of each gene across
voxels and gene expression profiles of each voxel.

Thus far, the reconstruction methods do not take spatial autocorrelation—i.e. that
cells physically closer to each other are more likely to have more similar gene
expression profiles—in the spatial data into account. Optimal transport, i.e. finding
a way to transport a pile of dirt from one place to others with minimum cost, has been
used to exploit spatial autocorrelation to map scRNA-seq cells to spatial locations.
In novosparc [71], neighborhood graphs are constructed for scRNA-seq in gene
expression space and for spatial reference data in physical space. Then assuming
spatial autocorrelation, optimal transport is used to place cells in locations to make
the two graphs match. This can be done without gene expression data in the spatial
grid, but can be improved with a spatial gene expression reference. In SpaOTsc
[72], first an optimal transport plan from scRNA-seq cells to spatial locations is
inferred with gene expression dissimilarity matrices between scRNA-seq cells and
between cells and locations and a spatial distance matrix between spatial locations.
Then a spatial distance matrix for scRNA-seq cells is imputed based on that optimal
transport plan. The plan can also be used to impute gene expression in space.
SpaOTsc also uses optimal transport to infer cell-cell interaction, to be reviewed in
the Cell-cell Interaction section. A drawback of this kind of method is that because
different cell types can mix in the same spatial neighborhood, such as hepatocytes

https://www.stat.cmu.edu/~larry/=sml/Opt.pdf
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and Kupffer cells in the liver, spatial autocorrelation is not absolute.

Spatial autocorrelation can also be utilized without optimal transport, but with
tensor completion in Canonical Polyadic Decomposition (CPD) form as in FIST
[73]. The spatial data can be viewed as a three-dimensional tensor, with the x and y
coordinates and gene expression at each location ((or 4 with z coordinate). CPD is
used to improve computational efficiency. In CPD, the tensor is approximated with
a sum of rank 1 tensors, i.e. cross products of 3 vectors, one for each dimension.
This decomposition, with extra dimensions for unknown gene expressions, is found
by minimizing the difference between the reconstructed tensor with the existing
tensor for known genes and by favoring spatial autocorrelation of gene expression
on a neighborhood graph and favoring similarity of expression of genes with similar
functions in a protein-protein interaction graph.

9.4 Cell type deconvolution
There is another aspect to how spatial and scRNA-seq data complement each other.
In array based techniques that do not have single-cell resolution, the cell type
composition of each spot can be estimated with scRNA-seq data. Perhaps because
of the increasing popularity of ST and Visium, several cell type deconvolution
methods have been developed in the past year, falling into four categories: negative
binomial models, packages built upon linear models but without negative binomial,
topic modeling, and packages not explicitly using statistical modeling. While any
tool designed for cell type deconvolution of bulk RNA-seq data can be used, this
section specifically focuses on cell type deconvolution tools designed with spatial
data in mind.

Table 9.4: Packages mentioned for cell type deconvolution

Name Language Title Date
published

NMFreg Python;
MATLAB

Slide-seq: A scalable technology for
measuring genome-wide expression
at high spatial resolution

2019-03-29

Seurat3 R Comprehensive Integration of
Single-Cell Data

2019-06-13

stereoscope Python Single-cell and spatial
transcriptomics enables probabilistic
inference of cell type topography

2020-10-09

https://www.tensorlab.net/doc/cpd.html
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1126/science.aaw1219
https://github.com/satijalab/seurat
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://github.com/almaan/stereoscope
https://doi.org/10.1038/s42003-020-01247-y
https://doi.org/10.1038/s42003-020-01247-y
https://doi.org/10.1038/s42003-020-01247-y
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DSTG Python DSTG: Deconvoluting Spatial
Transcriptomics Data through
Graph-based Artificial Intelligence

2021-01-22

SPOTlight R SPOTlight:Seeded NMF regression
to Deconvolute Spatial
Transcriptomics Spots with
Single-Cell Transcriptomes

2021-02-05

RCTD R Robust decomposition of cell type
mixtures in spatial transcriptomics

2021-02-18

Giotto R Giotto, a pipeline for integrative
analysis and visualization of
single-cell spatial transcriptomic data

2021-03-08

AdRoit R AdRoit is an accurate and robust
method to infer complex
transcriptome composition

2021-10-22

Tangram Python Deep learning and alignment of
spatially resolved single-cell
transcriptomes with Tangram

2021-10-28

SpatialDecon R Advances in mixed cell
deconvolution enable quantification
of cell types in spatially-resolved
gene expression data

2022-01-19

STRIDE Python STRIDE: accurately decomposing
and integrating spatial
transcriptomics using single-cell
RNA sequencing

2022-03-07

DestVI Python DestVI identifies continuums of cell
types in spatial transcriptomics data

2022-04-21

STdeconvolve R Reference-free cell-type
deconvolution of pixel-resolution
spatially resolved transcriptomics
data

2022-04-29

https://doi.org/10.1093/bib/bbaa414
https://doi.org/10.1093/bib/bbaa414
https://doi.org/10.1093/bib/bbaa414
https://github.com/MarcElosua/SPOTlight
https://doi.org/10.1093/nar/gkab043
https://doi.org/10.1093/nar/gkab043
https://doi.org/10.1093/nar/gkab043
https://doi.org/10.1093/nar/gkab043
https://github.com/dmcable/RCTD
https://doi.org/10.1038/s41587-021-00830-w
https://doi.org/10.1038/s41587-021-00830-w
https://github.com/RubD/Giotto
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1186/s13059-021-02286-2
https://github.com/TaoYang-dev/AdRoit
https://doi.org/10.1038/s42003-021-02739-1
https://doi.org/10.1038/s42003-021-02739-1
https://doi.org/10.1038/s42003-021-02739-1
https://github.com/broadinstitute/Tangram
https://doi.org/10.1038/s41592-021-01264-7
https://doi.org/10.1038/s41592-021-01264-7
https://doi.org/10.1038/s41592-021-01264-7
https://github.com/Nanostring-Biostats/SpatialDecon/
https://doi.org/10.1038/s41467-022-28020-5
https://doi.org/10.1038/s41467-022-28020-5
https://doi.org/10.1038/s41467-022-28020-5
https://doi.org/10.1038/s41467-022-28020-5
https://github.com/DongqingSun96/STRIDE
https://doi.org/10.1093/nar/gkac150
https://doi.org/10.1093/nar/gkac150
https://doi.org/10.1093/nar/gkac150
https://doi.org/10.1093/nar/gkac150
https://github.com/YosefLab/scvi-tools
https://doi.org/10.1101/2021.05.10.443517
https://doi.org/10.1101/2021.05.10.443517
https://github.com/JEFworks-Lab/STdeconvolve
https://doi.org/10.1038/s41467-022-30033-z
https://doi.org/10.1038/s41467-022-30033-z
https://doi.org/10.1038/s41467-022-30033-z
https://doi.org/10.1038/s41467-022-30033-z
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Negative binomial
Cell type deconvolution can be performed by explicitly modeling spot level gene
expression in terms of individual cell types, usually the scRNA-seq cell clusters. As
gene expression is over-dispersed compared to Poisson and is often well modeled
with negative binomial, the negative binomial distribution is often used to model
gene expression in cell type deconvolution. In stereoscope [74], a negative binomial
distribution is fit to the expression of each gene in each cell type in scRNA-seq
data. Then at each spot, gene expression is modeled as a weighted sum of the
negative binomial distributions from each cell type, and the weights are estimated
by maximum likelihood estimation (MLE).

In cell2location [75], expression of each gene at each spot is modeled as negative
binomial, parameterized with rate and dispersion. The rate is a weighted sum of
cell type gene expression signatures and the weights themselves are modeled with
factors to group cell types for similar cell type localization. The rate is also adjusted
for technology sensitivity, which can be different between scRNA-seq and the spatial
technique, and additive shifts specific to the gene and spot. The model is Bayesian
and the weights and the sensitivity scaling parameter have informative priors. The
parameters are estimated with variational inference. The weights can be interpreted
as the number of cells of each cell type at each spot.

In DestVI [76], expression of a gene in both the scRNA-seq reference and the query
spatial dataset is modeled by a negative binomial model, parameterized with rate and
dispersion, and the rate is informed by a low-dimensional cell type specific latent
embedding from a variational autoencoder. For the spatial data, the rate involves a
weighted sum of the cell type latent vectors representing average state of the cells.
These weights would be cell type proportions after normalizing so they add up to 1.
The scRNA-seq and the spatial data are modeled separately. To link the two models,
the scRNA-seq cell type latent vectors are used as priors for those for the spatial
data, and the decoder of the model trained on scRNA-seq data is used in the model
for the spatial data, as transfer learning of cell state decoding.

While not negative binomial regression per se, the negative binomial model is central
to AdRoit [77], so AdRoit is summarized in this subsection. First, genes informative
of cell types are selected, from cell type marker genes and highly variable genes.
Then for each cell type, a negative binomial distribution is fitted to expression of each
gene with MLE. Then the mean and variance of this negative binomial distribution
are computed. This fitting is also done to each sample (in bulk RNA-seq) or spot (ST

https://brilliant.org/wiki/maximum-likelihood-estimation-mle/
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and Visium), and the mean and variance are computed. Then cell type proportions
are roughly estimated in each sample with non-negative least square (NNLS), where
the mean in the sample is a weighted sum of the means in each cell type, with a
constant to make sure that the proportions add up to one. Then the log ratio between
the actual sample mean and the predicted mean from the rough proportions (without
the scaling constant) for each gene is computed as a gene specific scaling factor.
Then a similar linear model of the mean per sample and mean per cell type for each
gene is fitted with NNLS, with that gene specific scaling factor multiplied to the
cell type proportion coefficients. In the loss function, weights are added to reduce
contribution from genes not specific to a cell type or too variable across samples and
the cell type proportion coefficients are L2 regularized due to collinearity of similar
cell types. Then the cell type proportion coefficients are scaled to add up to 1.

Other (generalized) linear models
Despite the over-dispersion, the Poisson distribution is often used to model gene
expression as it captures the discrete nature of transcript counts and is simpler than
the negative binomial distribution. In Robust Cell Type Decomposition (RCTD)
[78], gene expression at each spot is modeled as a Poisson distribution, whose mean
is an expected rate scaled by total transcript count at the spot. The log rate is the
sum of the log of weighted sum of mean gene expression for each cell type from
a scRNA-seq reference, a fixed spot specific effect term, a gene specific platform
random effect, and another gene specific random effect term for overdispersion. The
parameters, including cell type weights, are then estimated with MLE.

SpatialDecon [79] is written for GeoMX DSP, and is based on log-normal regression.
As gene expression is often right skewed, log transformation is commonly used to
pull the tail in and make the data look a bit more normal for statistical methods that
assume normal distribution of the data. After log transformation, a linear model
is fitted so the observed gene expression in each ROI is a weighted sum of gene
expression signatures of each cell type, with an additive baseline as intercept. The
weights must be non-negative, and their p-values are calculated. To remove outliers,
any gene expression value below a threshold where technical noise dominates is set
to that threshold.

In both the prequel and current era, NMF is quite popular among data analysis
methods as the factors (cell embeddings) and the gene loadings tend to exhibit
block-like structures and the values of the basis and the loadings are enforced to

http://biometry.github.io/APES/LectureNotes/2016-JAGS/Overdispersion/OverdispersionJAGS.html
http://www.cs.cmu.edu/~11755/lectures/Lee_Seung_NMF.pdf
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be non-negative, corresponding to the non-negative nature of gene expression data
and making the results more interpretable. The blocks in the factors may reflect
cell types or clusters, and the blocks in gene loadings may reflect cell type marker
genes. NMF has been used for cell type deconvolution as well. To address slide-
seq (version 1)’s lack of single-cell resolution and poor efficiency, NMFreg was
developed to reconstruct the expression profile of each spot as a weighted sum of
cell type signatures from scRNA-seq [80]. First, scRNA-seq gene count matrix of
cell types of interest and cell type annotations is decomposed with NMF, and each
factor is assigned to a cell type and one cell type can have multiple factors. Then
non-negative least squares is used to compute the weights of the weighted sum of
the factors for each spot. As such weights tend not to cleanly assign spots to cell
types, perhaps due to the sparsity of scRNA-seq and slide-seq data, the weights are
then thresholded. The threshold is the maximum cell loading of cells not assigned
to the cell type of interest among in the factors of this cell type. The weights for this
cell type are only kept if the 𝑙2 norm of the weight vector for these factors exceed
the threshold. Another NMF based method, SPOTlight [81], uses a very similar
principle.

Topic modeling
In Chapter 8, we performed topic modeling of LCM related abstracts with the
stm package, a generative model of word counts in abstracts from latent topics,
and discussed proportion of each topic in each abstract, topic proportions in the
entire corpus, and the probability of getting each word from each topic. The stm
method is built upon a popular and classic topic modeling method, latent Dirichlet
allocation (LDA); beyond LDA, stm allows for covariates in portion of topics in
each abstract (e.g. discussed in Sections 8.3 and 8.4) and correlation between topics
(e.g. discussed in Figure 8.5). In both stm and LDA, a set number of topics must be
chosen before hand, and the number can be chosen based on metrics such as how
well word counts are predicted in a held out portion of the dataset. LDA has been
used in some cell type deconvolution methods, where cell type is analogous to topic
and gene is analogous to word.

In STRIDE [82], the scRNA-seq and the spatial data are assumed to be similar
enough to be projected into a shared latent space, inferred from LDA. Here topic
isn’t entirely the same as cell type. Contribution of each topic to each cell and the
probability of getting each gene from each topic are estimated, and from the former
contribution of each topic to each pre-annotated cell type can be summarized. Then

https://www.r-bloggers.com/2019/11/non-negative-least-squares/
https://mathworld.wolfram.com/L2-Norm.html
https://dl.acm.org/doi/10.5555/944919.944937
https://dl.acm.org/doi/10.5555/944919.944937
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the model trained on scRNA-seq data is used to predict contribution of each topic to
each spot in the spatial data, which can then be related to contribution of each cell
type to each spot.

In contrast, STdeconvolve [83] does not use a scRNA-seq reference and the topics
are the cell types. First, genes more likely to be informative of cell types are selected,
including genes that are over-dispersed and are neither expressed in too few spots
nor constitutively expressed in all spots. This is reminiscent of removing stop words
(e.g. the, is, to, of, so, and) and rare words in text mining, as performed for the
analyses in Chapter 8, as these words are less informative of the topics. Then with
the informative genes, LDA is performed to estimate contribution of each cell type
to each spot and the probability of getting each gene from each cell type.

Other principles without explicit statistical modeling
Some of the packages already mentioned in previous sections have cell type de-
convolution functionalities as well. For instance, Seurat’s data transfer based on
anchors between datasets can also be used to transfer cell type annotations, and the
ad hoc score for the transferred cell types has been used as a qualitative measure of
cell type composition in Visium spots [32]. Giotto implements three methods for
qualitative cell type deconvolution: First, a score based on fold change in expression
of marker genes in a spot compared to the mean across spots. Second, another score
scoring genes for specificity in both scRNA-seq cell types and ST or Visium spots
and the sum of the top 100 gene scores is the cell type enrichment score for each spot.
For these two methods, p-values are calculated from permutation testing. Third,
given a fixed set of cell type marker genes, a hypergeometric test is used to test for
enrichment of marker genes among top 5% expressed genes of the spot. In Tangram,
the cell mapping matrix from scRNA-seq to ST or Visium can be inferred as the
ground truth cell density per spot can be measured from H&E staining. When cells
from scRNA-seq are mapped to spots in ST and Visium, the cell type annotations
are also mapped.

The graph convolutional neural network (GCN) has been applied to cell type decon-
volution, in DSTG [84]. First, scRNA-seq cells are randomly assigned to “spots”
of 2 to 8 cells, forming a pseudo-ST dataset. Then the pseudo-ST and real ST data
are projected to a CCA space, and a mutual 𝑘 nearest neighbor graph is built in this
space. After that both the pseudo and real ST data and the graph are fed into a GCN,
trained to minimize cross entropy between imputed cell composition and actual cell

https://www.r-bloggers.com/2019/04/what-is-a-permutation-test/
https://brilliant.org/wiki/hypergeometric-distribution/
https://tkipf.github.io/graph-convolutional-networks/
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composition in the pseudo-ST spots. Finally, the trained model is used to predict
cell composition in real ST data.

As already mentioned in Section 9.3, some methods exploit spatial autocorrelation
in gene expression to map dissociated cells from scRNA-seq to a spatial reference
or to impute gene expression in space. Also as well be discussed in Section 9.7,
some methods that find spatial regions based on the transcriptome favor spatial
autocorrelation in cluster labels, i.e. neighboring spots or cells tend to have the
same label. Cell type colocalization is also spatially autocorrelated, but spatial
autocorrelation is generally not exploited in cell type deconvolution methods.

9.5 Spatially variable genes
Some genes, such as house keeping genes, are ubiquitously expressed. Such genes,
while highly variable at the single-cell level, may be interspersed in space so they
may not show a spatial trend. Expression of some genes depends on spatial location,
which can be due to cell type localization or variation within or independent from
cell types. One of the goals of early prequel studies was to identify spatially
variable genes, which was done manually, which can be inconsistent and labor
intensive. With more quantitative data and data analysis methods, the current era
brought identification of spatially variable genes to the next level. Simple methods
to identify such genes include dividing the extent of the tissue into a grid and use
Fisher’s exact test to test for non-random distribution of transcript counts in the
grid, or to run DE between one region—be it a grid cell or a manually annotated
histological region—and another region. Some more sophisticated methods have
been developed that avoid the potential arbitrariness of grids and manual annotation,
taking advantages of increased resolution of spatial transcriptomics. This section
reviews these computational methods that identifies genes with expression that
depends on spatial locations. Two principles are the most common. One is Gaussian
process regression and generalization to discrete distributions with the log mean
parameter modeled as Gaussian process. Another centers on Laplacian scores of
graphs. There are also some additional methods using other principles.

Table 9.5: Packages mentioned for spatially variable genes

Name Language Title Date
published

https://bookdown.org/rbg/surrogates/chap5.html
https://bookdown.org/rbg/surrogates/chap5.html
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trendsceek R Identification of spatial expression
trends in single-cell gene expression
data

2018-03-19

SpatialDE Python SpatialDE: identification of spatially
variable genes

2018-03-19

Seurat3 R Comprehensive Integration of
Single-Cell Data

2019-06-13

RayleighSelection R; C++ Clustering-independent analysis of
genomic data using spectral
simplicial theory

2019-11-22

SPARK R; C++ Statistical analysis of spatial
expression patterns for spatially
resolved transcriptomic studies

2020-01-27

GLISS NA Integrative Spatial Single-cell
Analysis with Graph-based Feature
Learning

2020-08-13

singleCellHaystack R A clustering-independent method for
finding differentially expressed genes
in single-cell transcriptome data

2020-08-28

SPATA R Inferring spatially transient gene
expression pattern from spatial
transcriptomic studies

2020-10-21

Giotto R Giotto, a pipeline for integrative
analysis and visualization of
single-cell spatial transcriptomic data

2021-03-08

MERINGUE R; C++ Characterizing spatial gene
expression heterogeneity in spatially
resolved single-cell transcriptomics
data with nonuniform cellular
densities

2021-05-13

BOOST-GP R; C++ Bayesian Modeling of Spatial
Molecular Profiling Data via
Gaussian Process

2021-06-19

https://github.com/edsgard/trendsceek
https://doi.org/10.1038/nmeth.4634
https://doi.org/10.1038/nmeth.4634
https://doi.org/10.1038/nmeth.4634
https://github.com/Teichlab/SpatialDE
https://doi.org/10.1038/nmeth.4636
https://doi.org/10.1038/nmeth.4636
https://github.com/satijalab/seurat
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://github.com/CamaraLab/RayleighSelection
https://doi.org/10.1371/journal.pcbi.1007509
https://doi.org/10.1371/journal.pcbi.1007509
https://doi.org/10.1371/journal.pcbi.1007509
https://github.com/xzhoulab/SPARK
https://doi.org/10.1038/s41592-019-0701-7
https://doi.org/10.1038/s41592-019-0701-7
https://doi.org/10.1038/s41592-019-0701-7
https://doi.org/10.1101/2020.08.12.248971
https://doi.org/10.1101/2020.08.12.248971
https://doi.org/10.1101/2020.08.12.248971
https://github.com/alexisvdb/singleCellHaystack
https://doi.org/10.1038/s41467-020-17900-3
https://doi.org/10.1038/s41467-020-17900-3
https://doi.org/10.1038/s41467-020-17900-3
https://github.com/theMILOlab/SPATA
https://doi.org/10.1101/2020.10.20.346544
https://doi.org/10.1101/2020.10.20.346544
https://doi.org/10.1101/2020.10.20.346544
https://github.com/RubD/Giotto
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1186/s13059-021-02286-2
https://github.com/JEFworks-Lab/MERINGUE
https://doi.org/10.1101/gr.271288.120
https://doi.org/10.1101/gr.271288.120
https://doi.org/10.1101/gr.271288.120
https://doi.org/10.1101/gr.271288.120
https://doi.org/10.1101/gr.271288.120
https://github.com/Minzhe/BOOST-GP
https://doi.org/10.1093/bioinformatics/btab455
https://doi.org/10.1093/bioinformatics/btab455
https://doi.org/10.1093/bioinformatics/btab455
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SOMDE Python SOMDE: A scalable method for
identifying spatially variable genes
with self-organizing map

2021-06-24

GPcounts Python Non-parametric modelling of
temporal and spatial counts data from
RNA-seq experiments

2021-07-02

scGCO Python Identification of spatially variable
genes with graph cuts

2022-09-19

singleCellHaystack R A universal differential expression
prediction tool for single-cell and
spatial genomics data

2022-11-15

Gaussian process regression
Gene expression in space can be modeled as a 2D Gaussian process. Spatial
dependence of gene expression from any finite collection of locations in space can
be modeled with a joint multivariate Gaussian distribution, whose covariance matrix
can be defined with a kernel, which is typically defined so spatially closer cells or
spots have higher covariance.

SpatialDE [38] is one of the more popular methods to identify spatially variable
genes. Spatial gene expression is modeled as a Gaussian process, in which the mean
is the mean expression level of the gene, and the covariance matrix has a spatial and
non-spatial component. The spatial component uses the Gaussian kernel, in which
the covariance decays exponentially with squared distance between cells or spots,
with rate of decay controlled by a length scale parameter. In the null model, the
gene expression follows a Gaussian distribution without covariance between cells
or spots. Then the model likelihood of the fitted full model and the null model
are compared with log likelihood ratio test. The log likelihood ratios under null
model are asymptotically 𝜒2 distributed, and this distribution is used to calculate the
p-values of the test. If a gene is found to be significantly spatially variable, then the
full model can be fitted with two other kernels, linear and periodic, and compared
to the Gaussian kernel with Bayesian Information Criterion (BIC) to discover linear
and periodic patterns. As gene expression is discrete and not Gaussian, the data
needs to be normalized before applying SpatialDE; even then, data normalization
does not make the data Gaussian.

The discrete, non-Gaussian distribution of gene expression is directly modeled by

https://pypi.org/project/somde/
https://doi.org/10.1093/bioinformatics/btab471
https://doi.org/10.1093/bioinformatics/btab471
https://doi.org/10.1093/bioinformatics/btab471
https://github.com/ManchesterBioinference/GPcounts
https://doi.org/10.1093/bioinformatics/btab486
https://doi.org/10.1093/bioinformatics/btab486
https://doi.org/10.1093/bioinformatics/btab486
https://github.com/WangPeng-Lab/scGCO
https://doi.org/10.1038/s41467-022-33182-3
https://doi.org/10.1038/s41467-022-33182-3
https://github.com/alexisvdb/singleCellHaystack
https://doi.org/10.1101/2022.11.13.516355
https://doi.org/10.1101/2022.11.13.516355
https://doi.org/10.1101/2022.11.13.516355
https://www.probabilitycourse.com/chapter8/8_4_5_likelihood_ratio_tests.php
https://en.wikipedia.org/wiki/Bayesian_information_criterion
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SPARK [42]. Gene expression is modeled by a Poisson distribution, with a rate
parameter scaled by total transcript count at the spot or cell of interest. The log rate
parameter contains a linear model for non-spatial variation in gene expression and
can include cell or spot level covariates such as cell type, with non-spatial residuals.
The spatial dependence is modeled by a zero mean Gaussian process with either
a Gaussian or cosine kernel for the covariance matrix and 5 different length scale
parameters are tried for each kernel type, so 10 kernels are tried. The model is fitted
with one kernel at a time, with a penalized quasilikelihood algorithm. The p-values
are estimated by Satterthwaite method, and the p-values from the 10 kernels are
combined with the Cauchy p-value combination rule.

Gene expression data may better be modeled with NB or ZINB, which is done in
GPcounts [85]. The log of the mean parameter of the NB or ZINB, scaled by total
transcript count at the cell or spot, is modeled with a Gaussian process with Gaussian
kernel for covariance. For ZINB, the dropout probability is related to the NB mean
by a Michaelis-Menten equation. For one sample, the null hypothesis a constant
model, a Gaussian with fixed mean and no covariance between cells or spots, i.e. gene
expression does not vary in space. Spatially variable genes are identified with the
log likelihood ratio test as in SpatialDE. For two samples, the null hypothesis is that
two samples have the same gene expression pattern, and the alternative hypothesis
is that two different Gaussian processes are required to model the two samples.
Three models are fitted, one for each sample and another fit with both samples as
replicates, and the SpatialDE likelihood ratio test is used to compare the separate
models to the shared one. The models are fitted with a sparse approximation of
variational Bayesian inference. A similar ZINB model is used in BOOST-GP [86],
but instead of using the likelihood ratio test, the model is fully Bayesian. Whether a
gene is spatially variable is a parameter in the model that indicates whether a kernel
other than white noise (covariance among the locations is the identity matrix) is
appropriate for a gene of interest, and the posterior distributions of the parameters
are sampled with Markov chain monte carlo (MCMC).

The size of the covariance matrix of the cells or spots grows quadratically with
the number of cells or spots. To speed up computation, SMODE aggregates cells
or spots into nodes with SOM, reducing the size of the covariance matrix, before
proceeding to a SpatialDE-like test [87].

https://academic.oup.com/bioinformatics/article/35/3/487/5055584
https://www.jstor.org/stable/3002019?casa_token=qXYt_raEK8IAAAAA%3A3bbUKlAh6ruVm7KRvoEpjPHfPM_qf4tnaRUadXujACmbEiXoUPINFhTMrE3m7GUTYjgPEYp1i8nIZ1ktuKs3Z5aX2alhiH0pMSnpKB5tiS8dWxA1Cg&seq=1#metadata_info_tab_contents
https://www.jstor.org/stable/43974709?casa_token=GvHZB2UWAJIAAAAA%3A4h2Wa4vbQog_b_oIXg0uFh4HJeSp-2qHllLvx9K3m6of8C86U0Be_Y8CIGyZ7q0JMl2JPMeKvX1wMHSlxKVedW2-KMzR-wx74wEyqO1Rg74piqmtaw&seq=1#metadata_info_tab_contents
https://en.wikipedia.org/wiki/Michaelis–Menten_kinetics
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Laplacian score
GLISS [51] has already been mentioned as a method to reconstruct scRNA-seq data
in space by projecting scRNA-seq data into one to three dimensions that stand for
spatial dimensions. The first step of GLISS is to identify spatially variable genes in
the spatial reference as landmark genes. In 2005, the Laplacian score was proposed
as a method of feature selection, which favors features that preserves the local
structure of the data in the feature space and has large variance [88]. In GLISS, a
spatial neighborhood graph is constructed on the spatial reference; two cells or spots
have larger edge weight if they are physically close to each other. By default, the
graph is a mutual nearest neighbor graph, in which cells or spots are nodes and an
edge connects two nodes if they are mutual 𝑘 nearest neighbors. Then for each gene,
a Laplacian score is computed using the gene of interest and the graph Laplacian
of the spatial neighborhood graph. Genes with low Laplacian scores are chosen as
landmark genes, as a low score favors similarity of gene expression in nearby cells
or spots and large variance among the spots, which means spatially coherent regions
with high and low expression of the gene. The p-value of the gene is computed by
permuting expression of the gene of interest among cells and recomputing the score.

The simplical complex is a generalization of the graph that not only includes nodes
and edges but also triangles, tetrahedrons, and their higher dimensional general-
izations. RayleighSelection implements generalizations of the Laplacian score for
simplical complexes for clustering-free DE [89]. The one-dimensional Laplacian
score, a generalization in which gene expression values are attributed to edges rather
than nodes, has been used for DE in scRNA-seq data. The nodes here are clusters
of cells and two nodes are connected by an edge when they intersect, as in topo-
logical data analysis (TDA) [90]. P-values of genes were computed by permutation
test, permuting expression of a gene of interest among cells. For spatial data, the
spatial neighborhood graph was created as the Vietoris-Rips complex. The zero-
dimensional, which is the same as the original Laplacian score, was used to identify
spatially variable genes. The graph was also created for cells from pairs of cell
types and the Laplacian score, with feature as cell type label, was used to identify
cell type colocalization.

Other principles
A spatial point pattern is the observed spatial locations of things or events, and a
point process is a stochastic mechanism that generated the point pattern. As already
mentioned, in pciSeq, transcript spot locations are modeled by a Poisson point

https://www2.cs.duke.edu/courses/fall06/cps296.1/Lectures/sec-III-1.pdf
https://medium.com/@varad.deshmukh/topological-data-analysis-a-very-short-introduction-611d3238a0bd
https://medium.com/@varad.deshmukh/topological-data-analysis-a-very-short-introduction-611d3238a0bd
https://en.wikipedia.org/wiki/Vietoris–Rips_complex
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process whose intensity itself is modeled with a Gamma distribution. Cell locations
can also be modeled as a point process, which is done in trendsceek [39]. Each
point in a spatial point process can have additional properties other than location,
such as gene expression and cell type, which are called marks. If the marks are
completely randomly distributed in space, then points with one mark would not
be more or less likely to be near points with the same (for categorical marks) or
similar (quantitative marks) marks than to points with dissimilar marks. To identify
spatial distribution of gene expression that deviates from complete randomness,
trendsceek uses 4 mark-segregation summary statistics, which are functions of
distance between two points, taking the expected value of a summary statistics on
the marks of every pair of points sepearated by the given distance: Stoyan’s mark-
correlation function (squared geometric mean of marks of two points normalize
by squared mean of marks), mean-mark function (average of marks in two points),
variance-mark function (variance of the marks given distance between points), and
mark-variogram (squared difference of marks of two points). Permutation testing
is used to calculate p-values. Regions of interest in the tissue are the regions with
𝑝 < 0.05 from the permutation testing. Perhaps due to the permutation, trendsceek
seems to be less scalable and less sensitive than SpatialDE and SPARK [42, 91].

Seurat’s spatial functionalities include finding spatially variable genes, which cur-
rently provides two methods, one of this is mark-variogram, inspired by trendsceek.
The other is Moran’s I, which is a common summary statistics of spatial autocorre-
lation, as spatially patterned genes also exhibit autocorrelation. MERINGUE uses a
local version of Moran’s I for spatially variable genes [92]. As dependence of gene
expression of spatial location means spatial autocorrelation, which both Gaussian
process models and Laplacian score of spatial neighborhood graphs aim to identify,
Moran’s I can be a simpler and hence more computationally efficient way to identify
spatially variable genes. Moran’s I is sometimes used to evaluate performance of
more sophisticated SVG methods, with higher values being better (e.g. [86, 93];
this raises the question of whether Moran’s I itself is that much worse than the
more sophisticated methods in detecting SVG. SPARK is claimed to have higher
power than Moran’s I test (spdep::moran.test() in R) due to the latter’s use of
asymptotic normality in computing the p-values [42], but this may or may not hold
for SVG methods based on other principles.

Giotto [35] implements three simple and fast methods to find spatially variable genes
in addition to wrapping SpatialDE and trendsceek. First, a spatial neighborhood

https://rdrr.io/cran/spatstat/man/markvario.html
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm
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graph is constructed, which can be mutual 𝑘 nearest neighbors graph, a graph placing
an edge when two cells are within a certain distance, or Delaunay triangulation.
Then the gene expression is binarized. The first method uses the silhouette score.
In clustering, a measure of whether each point should be assigned to its current
cluster or it should better be assigned to a neighboring cluster. The mean silhouette
score indicates how tight and segregated the cluster are. Here the clusters are cells
expressing the gene of interest and those not expressing. Then a high silhouette score
means that cells expressing the gene and those not expressing are well-segregated
in space, which means the gene is spatially variable. The second and third method
only differ in the way gene expression is binarized. The second uses k-means with
𝑘 = 2, and the third uses a threshold. Then a contingency table 𝑀 is constructed
from neighboring cells in the graph expressing or not expressing the gene; each row
is whether a cell expresses the gene, and each column is whether its neighbor also
expresses it, so 𝑀1,1 is the number of distinct pairs of cells both expressing the gene,
𝑀1,2 is the number of pairs of cells in which source cell is expressing the gene and
target cell is not, and so on. Fisher’s exact test is used to test for dependency in gene
expression on whether cells are neighbors.

The KL divergence is a measure of difference between two probability distributions.
In singleCellHaystack [94], the cell density in the tissue (or a PCA, tSNE, or UMAP
space) is estimated at grid points with Gaussian kernel density, and normalized to
form a probability distribution of locations of cells. Then the probability distribution
of whether a gene of interest is expressed at each grid point is compared to the cell
density distribution with KL divergence. P-values are computed by permuting gene
expression among cells. Again, this is a cluster-free DE method, not designed
specifically for spatial data but can be applied to spatial data.

We have already mentioned Markov random field (MRF) models for partitioning a
tissue section into cell types and cells. MRF has also been used to identify spatially
variable genes, as in scGCO (single-cell graph cuts optimization) [91]. Expression
values of a gene are binned into 2 to 10 categories with Gaussian mixture model
clustering. Then a graph connecting cells in space is constructed over the tissue
by Delaunay triangulation, and the graph, with the expression category of the gene,
is modeled with a MRF. Then as the model favors neighbors in the graph with
the same category, edges of the graph are cut to maximize the likelihood of the
model, thus identifying not only regions of tissue with an expression category of
the gene, but also genes forming such regions. As MRF enforces coherent regions

https://en.wikipedia.org/wiki/Silhouette_%28clustering%29
https://mathworld.wolfram.com/FishersExactTest.html
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of the tissue to take the same category, while when only gene expression, without
spatial information, is considered, not all cells in the region warrant the category.
Then the number of cells that truly deserve the category in each region is used to
calculate statistical significance of the gene’s spatial variability. The null hypothesis
is a homogeneous Poisson point process, in which cells (points) are completely
randomly distributed in space and the location of one cell is independent from the
location of any other cell. The smallest p-value of any category and any region is
reported for the gene of interest.

So far the methods identifying spatially variable genes based on Gaussian process
regression commonly use the Gaussian kernel for the covariance matrix, which
assumes that the gene expression modeled is weakly stationary, i.e. covariance
only depends on distance between cells or spots. This does not take into account
anisoptropy, i.e. spatial dependence of gene expression is different in different
directions, observed in tissues such as the brain cortex and the hepatic lobule in
which cell functions are primarily stratified along one direction or axis. SPATA
[37] implements a method to find spatially variable genes for such primary axis.
With the interactive shiny app, the user defines this axis, which may or may not
be a straight line, and cells within a certain distance from the axis are included
for further analysis. Then among the included cells, gene expression and cell type
annotations along the axis can be visualized in the shiny app. Then SPATA fits a
variety of functions with known forms, e.g. linear or nonlinear descent or ascend,
peaks, periodic, etc. to the gene expression along the axis. For each function,
the sum of the residuals is calculated and compared to find functions that better
represent the change in gene expression along the axis to identify patterns.

9.6 Gene patterns

Table 9.6: Packages mentioned for gene patterns

Name Language Title Date
published

SpatialDE Python SpatialDE: identification of spatially
variable genes

2018-03-19

std-nb C++ Charting Tissue Expression Anatomy
by Spatial Transcriptome
Decomposition

2018-12-28

https://arxiv.org/abs/1712.01634v2
https://github.com/Teichlab/SpatialDE
https://doi.org/10.1038/nmeth.4636
https://doi.org/10.1038/nmeth.4636
https://github.com/SpatialTranscriptomicsResearch/std-nb
https://doi.org/10.1101/362624
https://doi.org/10.1101/362624
https://doi.org/10.1101/362624
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stLearn Python stLearn: integrating spatial location,
tissue morphology and gene
expression to find cell types, cell-cell
interactions and spatial trajectories
within undissociated tissues

2020-05-31

GLISS NA Integrative Spatial Single-cell
Analysis with Graph-based Feature
Learning

2020-08-13

MERINGUE R; C++ Characterizing spatial gene
expression heterogeneity in spatially
resolved single-cell transcriptomics
data with nonuniform cellular
densities

2021-05-13

When spatially variable genes are identified, a question naturally arises: Are there
archetypal patterns among these spatially variable genes? As already reviewed in
Section 5, comparing and classifying gene expression patterns was a major topic
in the prequel era. Such interest persists in the current era, although we find no
evidence that current era gene pattern analysis is significantly influenced by the
prequel antecedents, although factor analysis and NMF have been used in both eras.

The most straightforward way to identify archetypal gene patterns is to cluster the
gene expression patterns and obtain the cluster centers to represent the cluster.
This has been used to analyze mouse brain voxelation data in 2009 [95]. Wavelet
transform was applied to the data and the Euclidean distance between the wavelet
feature vectors was used to measure gene similarity. Gene similarity between pre-
defined “typical” genes and other genes was one way to find groups of similar genes
and k-means clustering is another.

Some package already reviewed also have functionality to identify archetypal gene
patterns. In DistMap and SPARK [54, 42], the gene patterns are clustered with
hierarchical clustering, and the individual clusters are obtained by tree cut. In
MERINGUE [92], spatial cross-correlation is computed for each pair of SVG. The
spatial cross-correlation here is similar to Moran’s I, and relates to Moran’s I in a
way similar to how covariance relates to variance. Then the spatial cross-correlation
matrix is clustered with hierarchical clustering. In Giotto [35], a gene-gene correla-
tion matrix (by default Pearson) is computed, which is then hierarchically clustered.

https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.08.12.248971
https://doi.org/10.1101/2020.08.12.248971
https://doi.org/10.1101/2020.08.12.248971
https://github.com/JEFworks-Lab/MERINGUE
https://doi.org/10.1101/gr.271288.120
https://doi.org/10.1101/gr.271288.120
https://doi.org/10.1101/gr.271288.120
https://doi.org/10.1101/gr.271288.120
https://doi.org/10.1101/gr.271288.120
https://en.wikipedia.org/wiki/Wavelet_transform
https://en.wikipedia.org/wiki/Wavelet_transform
https://towardsdatascience.com/understanding-the-concept-of-hierarchical-clustering-technique-c6e8243758ec
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Then the mean or centroid of each cluster is taken to represent that cluster. Spa-
tialDE [38] also clusters gene expression patterns, in automatic expression histology
(AEH), which implements a Gaussian process generalization of Gaussian mixture
model clustering. The number of components is set by the user, and the model is
fitted to infer the mean pattern of each component. In GLISS [51], the archetypal
patterns are identified in the reconstructed latent space as gene expression in the
latent space is spline smoothed, and the spline coefficients are clustered.

Beyond clustering, a common way to identify archetypal gene patterns is factor
analysis. This has already been done in the prequel era [96], but is further developed
in the current era. Factor analysis tries to model higher dimensional data as a linear
combination of a smaller number of variables called “factors”, and PCA is a type
of factor analysis. A prostate cancer ST dataset has been modeled with Poisson
factor analysis [30]. The observed UMI counts at each spot is modeled as a sum of
factors, each of which is Poisson distributed, with its own rate parameter, which in
turn depends on Gamma distributed factor, gene, and spot level parameters that may
account for overdispersion though this model does not entirely capture the mean-
variance relationship of NB. The parameters are estimated from MCMC sampling
of the posterior of this model. Once the parameters are estimated, the individual
factors can be calculated from the parameters based on the model. The factors
seem to indicate regions in the tumor, such as cancer, stroma, and regions with
immune cell infiltration. As NB may describe gene expression better than the
Poisson distribution, a NB adaptation of the above Poisson factor analysis model
has been developed [97]. The observed UMI count at each spot is modeled as a sum
of NB factors, whose rate parameter can incorporate gene, spot, and experiment
level covariates. The package stLearn [57], which also implements methods to
identify cell-cell interactions and spatial regions, uses PCA, ICA, and factor analysis
to detect microenvironments in the tissue as again, the factors can correspond to
specific regions in the tissue.

9.7 Spatial regions
As already mentioned in trendsceek and scGCO, the problem of identifying spatially
variable genes is closely related to identifying regions in tissue defined by gene
expression. When archetypal gene patterns are identified, a related question arises:
Do the patterns define novel anatomical regions in the tissue? As seen in the previous
section, archetypal gene patterns, such as in factors, can reflect tissue regions. There
are also methods that identify such regions without first identifying spatially variable

https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e
https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e
https://en.wikipedia.org/wiki/Smoothing_spline
https://en.wikipedia.org/wiki/Factor_analysis
https://en.wikipedia.org/wiki/Factor_analysis
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
http://wwwf.imperial.ac.uk/~nsjones/TalkSlides/HyvarinenSlides.pdf
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genes and/or archetypal gene patterns. In the prequel era (Chapter 5), some studies
clustered the voxels based on gene expression to identify spatial regions in the tissue,
with either k-means clustering or co-clustering [98, 99, 100], or with Potts model
[101]. More sophisticated clustering methods have been developed in the current
era tot identify spatial regions. However, as different cell types can reside in the
same spatial neighborhood, and conversely, cells from one cell type can reside in
different regions of the tissue, MRF has been used to find spatially coherent regions
that can contain multiple cell types.

Table 9.7: Packages mentioned for spatial regions

Name Language Title Date
published

smfishHmrf R; Python;
C

Identification of spatially associated
subpopulations by combining
scRNAseq and sequential
fluorescence in situ hybridization
data

2018-10-29

stLearn Python stLearn: integrating spatial location,
tissue morphology and gene
expression to find cell types, cell-cell
interactions and spatial trajectories
within undissociated tissues

2020-05-31

MULTILAYER Python Inferring biologically relevant
molecular tissue substructures by
agglomerative clustering of digitized
spatial transcriptomes with multilayer

2021-05-07

BayesSpace R; C++ Spatial transcriptomics at subspot
resolution with BayesSpace

2021-06-03

SSAM Python;
C++

Cell segmentation-free inference of
cell types from in situ
transcriptomics data

2021-06-10

lisaClust R Spatial analysis for highly
multiplexed imaging data to identify
tissue microenvironments

2021-08-17

https://bitbucket.org/qzhudfci/smfishhmrf-py/src/default/
https://doi.org/10.1038/nbt.4260
https://doi.org/10.1038/nbt.4260
https://doi.org/10.1038/nbt.4260
https://doi.org/10.1038/nbt.4260
https://doi.org/10.1038/nbt.4260
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.05.31.125658
https://github.com/SysFate/MULTILAYER
https://doi.org/10.1016/j.cels.2021.04.008
https://doi.org/10.1016/j.cels.2021.04.008
https://doi.org/10.1016/j.cels.2021.04.008
https://doi.org/10.1016/j.cels.2021.04.008
https://github.com/edward130603/BayesSpace
https://doi.org/10.1038/s41587-021-00935-2
https://doi.org/10.1038/s41587-021-00935-2
https://github.com/eilslabs/ssam
https://doi.org/10.1038/s41467-021-23807-4
https://doi.org/10.1038/s41467-021-23807-4
https://doi.org/10.1038/s41467-021-23807-4
https://github.com/ellispatrick/lisaClust
https://doi.org/10.1101/2021.08.16.456469
https://doi.org/10.1101/2021.08.16.456469
https://doi.org/10.1101/2021.08.16.456469
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Baysor Julia Bayesian segmentation of spatially
resolved transcriptomics data

2021-10-14

SpaGCN Python SpaGCN: Integrating gene
expression, spatial location and
histology to identify spatial domains
and spatially variable genes by graph
convolutional network

2021-10-28

SC-MEB R; C++ SC-MEB: spatial clustering with
hidden Markov random field using
empirical Bayes

2021-11-25

RESEPT Python Define and visualize pathological
architectures of human tissues from
spatially resolved transcriptomics
using deep learning

2022-08-24

Clustering
SSAM [25], already reviewed in Section 9.1, also uses clustering to identify tissue
domains in smFISH or ISS data but without cell segmentation. StLearn [57] develops
further on top of clustering. First, a pretrained CNN is used to extract a 2048
dimensional feature vector from the H&E image behind each ST or Visium spot.
The cosine similarity between the feature vectors from neighboring spots is then
calculated. To normalize data, the gene expression data is smoothed in space, and
the smoothing is weighted by the cosine similarity of feature vectors between spots.
Then the spots are clustered with Louvain or k-means. A spatial 𝑘 nearest neighbor
graph is constructed, and used to refine the clustering. If a gene expression based
cluster is broken into multiple pieces in space, then those pieces would become
subclusters. Singleton spots are merged with a nearby cluster if the singletons have
enough spatial neighbors in that cluster.

In MULTILAYER, an agglomerative strategy is first used to find binarized regions
of gene overexpression compared to average. The over- and under- (i.e. differential)
expression of genes relative to the average in tissue is evaluated per spot and genes
are ranked by the number of DE spots, as SVG. Then these binarized regions are
compared with the Jaccard (Tanimoto) coefficient and the Dice coefficient, which
become edge weights of a similarity graph. Then the graph is used in Louvain
clustering to find co-expression patterns, which identifies gene expression based

https://github.com/kharchenkolab/Baysor
https://doi.org/10.1038/s41587-021-01044-w
https://doi.org/10.1038/s41587-021-01044-w
https://github.com/jianhuupenn/SpaGCN/tree/master/SpaGCN_package
https://doi.org/10.1038/s41592-021-01255-8
https://doi.org/10.1038/s41592-021-01255-8
https://doi.org/10.1038/s41592-021-01255-8
https://doi.org/10.1038/s41592-021-01255-8
https://doi.org/10.1038/s41592-021-01255-8
https://github.com/Shufeyangyi2015310117/SC.MEB
https://doi.org/10.1093/bib/bbab466
https://doi.org/10.1093/bib/bbab466
https://doi.org/10.1093/bib/bbab466
https://github.com/OSU-BMBL/RESEPT
https://doi.org/10.1016/j.csbj.2022.08.029
https://doi.org/10.1016/j.csbj.2022.08.029
https://doi.org/10.1016/j.csbj.2022.08.029
https://doi.org/10.1016/j.csbj.2022.08.029
https://en.wikipedia.org/wiki/Louvain_method
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spatial regions.

Markov random field
Technically, this still is a form of clustering, but the MRF is used to favor the same
cluster assignment of neighboring cells or spots.

BayesSpace [102] incorporates both Gaussian mixture model clustering and MRF.
The ST or Visium data is first projected to a low-dimensional space, such as by PCA.
Then for each spot, the low-dimensional projection of that spot is modeled with a
Gaussian mixture model, with a pre-defined number of components or clusters.
The spatial neighborhood graph is simply the square grid of spots for ST and the
hexagonal grid for Visium. The model has a MRF prior to encourage neighboring
spots to be assigned to the same cluster. The cluster assignment is initiated with
non-spatial clustering, and the parameters of the model are estimated by MCMC.
In addition, BayesSpace can increase the resolution of ST and Visium. Each spot
is subdivided and initiated with the dimension reduction values at the spot, and an
additional parameter is added to the model that nudges the dimension reduction
values at each sub-spot while preserving the sum at the spot level. The nudging
parameters are estimated by MCMC along with with other parameters.

As already reviewed in Section 9.1, Baysor [24] uses MRF to delineate cell type
regions in the tissue without cell segmentation. MRF is used to identify spatial
regions for cell or spot level data as well. Like in the 2014 Platynereis dumereilii
atlas [101], smfishHmrf [40] also uses Potts model for dependence of label on
neighborhood. As seqFISH data is quantitative, gene expression of each cell is
modeled with a Gaussian mixture model, with as many components as there are there
are region labels. The data needs to be normalized, although data normalization
methods don’t typically turn the distribution of gene expression Gaussian. Again,
the parameters, i.e. the label assignment, and mean and covariance matrices for each
Gaussian component, are estimated by EM, initiated with k-means clustering of the
cells.

In the SC-MEB [103] model, gene expression at each spot is Gaussian, and inde-
pendent conditioned on an unknown cluster label. The cluster label then has a Potts
model prior to encourage nearby spots to have the same label. The parameters,
including the mean and covariance of the Gaussian distributions and the cluster
labels, are estimated with an EM algorithm.
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Graph convolutional network
The spatial neighborhood graph can be integrated with gene expression at the spots
with a graph convolutional network (GCN), and some GCN based methods have
been developed since the previous version of this chapter was written. Again,
clustering is involved, but these methods are discussed in a separate subsection for
the use of GCN to incorporate spatial information.

SpaGCN [93] incorporates information from the H&E staining that usually comes
with ST and Visium datasets into the spatial neighborhood graph. In addition to
the x and y coordinates, a weighted average of the red, green, and blue channels of
the patch of H&E image behind each spot is used as a “z” coordinate. Then x, y,
and “z” coordinates are used to calculate an “Euclidean” distance between spots, so
physically close spots that are histologically different are considered further. Edge
weights in the spatial neighborhood graph is negatively associated with the distance
by a Gaussian kernel, as commonly used for the covariance matrix in Gaussian
process models. Then the first 50 PCs of the gene count matrix and this spatial
neighborhood graph are combined by a graph convolutional layer, whose output is
Louvain clustered and iteratively refined, which would be the spatial regions.

STGATE [104] and RESEPT [105] both use graph autoencoders. In STGATE, the
spatial information, in the edge weights of the spatial neighborhood graph, is learnt
by a graph attention layer in the autoencoder. The latent embedddings inferred
by the autoencoder can then be clustered with any clustering algorithm to give the
spatial regions. In RESEPT, the autoencoder infers a 3-dimensional latent space
representing the gene expression and the spatial neighborhoods, which can then be
represented with the RGB channels of a color image. The image is then segmented
with a convolutional neural network model, giving the spatial regions.

Spatial statistics
The rich tradition of spatial statistics, originally more used in the geographical scale,
has been brought to spatial transcriptomics. These are common types of geospatial
data: First, measurements at points in space, where the locations of the points are
pre-determined and only the values at each location are of interest. Second, areal
data, where there is one aggregated value for each areal unit such as a city or a
district. Third, raster, where each cell of a regular grid (without spacing between
cells) has a value. Fourth, point locations, where the locations themselves are of
interest, modeled by point process models; there can be additional values associated

https://computationalsocialnetworks.springeropen.com/articles/10.1186/s40649-019-0069-y
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with each point as well. Fifth, where values can only occur on lines in a network,
such as a road or river network; the data of interest can be values at pre-determined
locations, or the locations themselves, or both. For each type of data, there is a
well-established collection of statistical and software tools.

For spatial transcriptomics, ST and Visium data are a combination of the first two,
as the locations of the spots are known and spots are often treated as points in
analyses, but each spot is in fact an aggregated areal unit. smFISH and ISS data
with single-cell and single molecule resolution are a combination of the second
(when considering cells as areal units) and the fourth (when considering each cell as
a point and studying cell locations, or when considering locations of each transcript
spot). Voxelation, LCM in regular grid, and Tomo-seq data can be thought of as
raster or as areal. While network spatial statistics could in principle be applied
to blood vessels or axons and dendrites in the tissue, this is impractical at present
because the thin sections used in almost all current era techniques only captures a
tiny 2D slice of the 3D network, cutting through many of the edges, thus failing to
preserve its shape and topology.

Concepts already mentioned, such as Moran’s I (global and local, and the test),
Gaussian process regression (used in kriging, to interpolate values between points of
measurements), and MRF (including Potts model, related to autoregressive models
of areal units) come from the tradition of spatial statistics, though the latter two
often take on more of a machine learning sheen. More of spatial statistics has been
used to identify spatial regions in tissue.

lisaClust [106] uses the spatial point process approach. Ripley’s K function, as a
function of distance 𝑟, is the average number of points within distance 𝑟 of each
point, and is a common way to assess if the points are randomly distributed or if they
tend to be clustered with or repelled from each other. Where each cell is a point in
the point process, and there are multiple cell types, a cross type K function (average
number of cells of type 𝑗 within distance 𝑟 of each cell of type 𝑖) can be used to
see if the two cell types attract or repel each other. The L function is a variance
stabilized version of the K function. The cross type K function averages over the
contribution of each cell of type 𝑖, which is the number of cells of type 𝑗 within
distance 𝑟, so each cell has a vector of contribution, which can then be clustered
with any clustering algorithm to find spatial regions of cell type colocalizations.

Delineating spatial regions from data is not a new problem in spatial statistics. Some
methods have been developed to find spatial regions in geographical space, but have
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not been widely used for spatial transcriptomics to the best of our knowledge. For
example, ClustGeo [107] uses dissimilarity in both feature space and physical space
for hierarchical clustering, and spatialcmeans [108] performs spatially weighted
c-means fuzzy clustering and only probabilistically assigns locations to clusters.

9.8 Cell-cell interaction
Related to spatial regions is cell-cell interaction: suppose a distinct neighborhood
of the tissue has been identified with one of the methods in the previous section, and
the neighborhood contains different cell types. Then it’s natural to ask whether these
cell types interact by their spatial proximity. Such information is lost in scRNA-seq.
The composition of tissue neighborhoods can be characterized with existing tools.
For instance, in smFISH or ISS data, we can count the number of cell types within
a certain distance from each cell, as was done in the hypothalamus and the motor
cortex MERFISH studies [12, 28]. We can model the data as a marked spatial point
process, in which each point is a cell, with cell type annotations as marks, and
use cross-type K or L function to find cell types that colocalize; the cross-type L
function has been used in spicyR ([109]) for this purpose. In MERINGUE [92],
spatial cross-correlation is computed for two different cell types, one with expression
of a ligand, and the other with expression of a receptor, and permutation testing is
used to find p-values of the ligand-receptor interactions of the cell types.

For ST and Visium, we can use one of the cell type deconvolution methods to
find the number and proportion of cell types per unit area in each tissue region
and cell type colocalization. When two cell types colocalize, they might interact
with secreted ligands or ligands and receptors bound to the membrane. Expression
of ligand-receptor (L-R) pairs in neighboring cells is often used to identify cell-
cell interaction in spatial data, and the CellPhoneDB [110] database of ligands,
receptors, and their interactions is often used to identify such L-R pairs. Another
type of analysis going beyond colocalization tests for effects of cell-cell interaction
or cell type colocalization on gene expression.

Table 9.8: Packages mentioned for cell-cell interactions

Name Language Title Date
published

https://www.rdocumentation.org/packages/spatstat/versions/1.64-1/topics/Kest
https://www.rdocumentation.org/packages/spatstat/versions/1.64-1/topics/Lcross
https://www.rdocumentation.org/packages/spatstat/versions/1.64-1/topics/Lcross
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SVCA R; Python;
C; C++;
Fortran

Modeling Cell-Cell Interactions from
Spatial Molecular Data with Spatial
Variance Component Analysis

2019-10-01

SpaOTsc Python Inferring spatial and signaling
relationships between cells from
single-cell transcriptomic data

2020-04-29

stLearn Python stLearn: integrating spatial location,
tissue morphology and gene
expression to find cell types, cell-cell
interactions and spatial trajectories
within undissociated tissues

2020-05-31

GCNG Python GCNG: Graph convolutional
networks for inferring cell-cell
interactions

2020-12-10

Giotto R Giotto, a pipeline for integrative
analysis and visualization of
single-cell spatial transcriptomic data

2021-03-08

MISTy R Explainable multiview framework for
dissecting spatial relationships from
highly multiplexed data

2022-04-14

DIALOGUE R DIALOGUE maps multicellular
programs in tissue from single-cell or
spatial transcriptomics data

2022-05-05

Ligand-receptor pairs
In stLearn [57], CellPhoneDB is used to identify L-R coexpression in neighboring
spots, and the p-value of the coexpression is computed by permutation testing.
Then regions with diverse cell types (from Seurat label transferring or cell type
deconvolution) and L-R coexpression in neighboring spots are identified as regions
where cells are likely to be signaling to each other. A similar strategy is used in
Giotto. Giotto identifies cell type colocalization by labeling edges of the spatial
neighborhood graph as homo- or heterotypic and permutes cell type labels to find
whether the cell types are more or less likely to colocalize than expected from
completely random cell type localization. L-R coexpression in neighboring cells on
the spatial neighborhood graph from two cell types is identified and the p-values of

https://github.com/damienArnol/svca
https://doi.org/10.1016/j.celrep.2019.08.077
https://doi.org/10.1016/j.celrep.2019.08.077
https://doi.org/10.1016/j.celrep.2019.08.077
https://github.com/zcang/SpaOTsc
https://doi.org/10.1038/s41467-020-15968-5
https://doi.org/10.1038/s41467-020-15968-5
https://doi.org/10.1038/s41467-020-15968-5
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2020.05.31.125658
https://github.com/xiaoyeye/GCNG
https://doi.org/10.1186/s13059-020-02214-w
https://doi.org/10.1186/s13059-020-02214-w
https://doi.org/10.1186/s13059-020-02214-w
https://github.com/RubD/Giotto
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1186/s13059-021-02286-2
https://github.com/saezlab/misty/
https://doi.org/10.1186/s13059-022-02663-5
https://doi.org/10.1186/s13059-022-02663-5
https://doi.org/10.1186/s13059-022-02663-5
https://github.com/livnatje/DIALOGUE
https://doi.org/10.1038/s41587-022-01288-0
https://doi.org/10.1038/s41587-022-01288-0
https://doi.org/10.1038/s41587-022-01288-0
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the coexpression scores are computed by permutation testing, permuting locations
of cells within each cell type.

While MRF, stLearn, and Giotto only use the immediate neighbors on the spatial
neighborhood graph, there is a method that can capture higher order structures
of the graph. In GCNG [111], the spatial neighborhood graph is constructed as
an edge connects a cell to its three nearest neighbors. Then both the gene count
matrix and the normalized Laplacian of the neighborhood graph are fed into a graph
convolutional neural network (GCN), which is trained on known L-R pairs. The
GCN can then predict novel pairs of genes involved in signaling, and if trained on the
direction of interaction in the L-R pairs, it can also predict the direction of causality
in the novel pairs.

SpaOTsc has already been mentioned in Section 9.3. To recapitulate, SpaOTsc
uses optimal transport from scRNA-seq cells to spatial locations to impute a spatial
cell-cell distance matrix for scRNA-seq cells, and the optimal transport plan can
be used to impute gene expression in space. With the cell-cell distance matrix,
another optimal transport plan from ligands to receptors can be inferred, interpreted
as how likely one cell communicates with another. A disadvantage of spatial
neighborhood graph is that common ways of construction are somewhat arbitrary.
For instance, 𝑘 nearest neighbor is a common way to construct the graph, but this
𝑘 is somewhat arbitrary, although cell signaling can occur over a distance with
secreted ligands. Here no such graph is used; the length scale of interaction is
inferred by random forest. Random forest models are trained with expression of the
ligand and genes correlated with a downstream target gene within a certain distance
from the cells expressing the target gene are the input features. Receptor expression
is the sample weights, and the target gene is to be predicted by the random forest
model. Several different length scales are tried, and the one resulting into the most
feature importance of the ligand is used. When L-R information is unavailable,
interactions between genes can be inferred by partial information decomposition,
i.e. how much unique information can a source gene provide on a target gene in a
spatial neighborhood.

With a very different model, DIALOGUE [112] identifies genes that may be involved
in interactions between cell types. In a niche in a tissue, different cell types can
respond to the same environmental cue in a concerted manner though each cell
type changes gene expression in a different way. DIALOGUE aims to identify
such concerted gene programs in each cell type. First, the gene expression data

https://towardsdatascience.com/random-forest-3a55c3aca46d
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is projected into a lower dimensional space in which correlation between all pairs
of cell types across niches is maximized, and the basis of this space is ordered in
descending strength of correlation. This is similar to CCA, but with a penalty term
to enforce sparsity in gene loading. Here the niche is a patch of cells in space with a
predefined number of cells. Then each cell type has a rotation matrix that projects
cells into this lower dimensional space, and different cell types from the same niche
should be close to each other in this space. In this projection, for each dimension, a
gene is added to the multicellular program (MCP) of each cell type if its expression
among cells of this cell type correlates with the projection of this cell type in this
dimension and is significantly associated with the projection of other cell types
while accounting for cell type level and niche level covariates such as sample, age,
and gender. Thus the MCPs could be cell type specific co-regulated gene programs.
Putative signaling between cell types can be identified by finding known L-R pairs
in the MCPs: each cell type is added the L-R graph as a node, and is connected to a
gene if the gene is present in the MCP for this cell type. Then a path connecting one
cell type to a ligand to a receptor and then to another cell type suggests signaling
between the two cell types.

Genes associated with cell-cell interaction
Gene expression can be affected by several different factors, including cell type,
local environment, interaction with other cells, and so on. Some packages have
been developed to identify genes whose expression is associated with one or more
of these factors, without using L-R databases. Within one cell type, Giotto uses
classical DE (Student’s t-test, Wilcoxon rank sum test, limma, and permutation of
spatial locations) to find DE genes between neighbors of cells of another cell type
and non-neighbors. Other packages implement more complex models that account
for more of these factors associated with gene expression.

Spatial variance component analysis (SVCA) [113] models the expression of each
gene of interest among the cells as a 0 mean Gaussian process. The covariance
has the following components: First, the intrinsic variability, which can be cell
types or continuous cell states. In the latter case, the covariance matrix of this
component is the covariance between cells with genes other than the gene of interest
that is modeled. Second, the spatial neighborhood. A neighborhood graph is not
constructed, and the covariance matrix of this component is computed with the
Gaussian kernel in which covariance decreases with distance between cells. Third,
cell-cell interaction. The covariance matrix of this term is the covariance between

https://en.wikipedia.org/wiki/Mann–Whitney_U_test
https://bioconductor.org/packages/release/bioc/html/limma.html
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cells weighed by a Gaussian kernel for distance between cells, so gene expression in
nearby cells contributes more to this component. Finally, the residual has an identity
covariance matrix, so in the residual, cells are independent from each other. The
parameter to be estimated are weights of each of these components and the length
scale parameter of the Gaussian kernel, which are estimated with MLE. Significance
of the cell-cell interaction component is calculated by likelihood ratio test between
the full model and a reduced model without the cell-cell interaction component.
Again, as gene expression is modeled as Gaussian, the data needs to be normalized
before using this method.

Like SVCA, Multiview Intercellular SpaTial modeling framework (MISTy) [55]
also models expression of each gene of interest among the cells, but with ensemble
learning, in which any machine learning method that is explainable (i.e. feature
importance can be extracted) and suitable for ensemble learning can be used. In
each view, which can be intrinsic cell state, spatial neighborhood (juxtaview), or
wider tissue structure (paraview), features are extracted from gene expression that
represent the view and used in machine learning methods such as random forest
to predict expression of a gene of interest. For intrinsic cell state, the features are
expression of other genes. For juxtaview, the features are sum of expression of
other genes in neighboring cells in the spatial neighborhood graph. For paraview,
the feature are sum of expression of other genes in all cells in the tissue weighed
by distance to each cell with a Gaussian kernel. Other views, with other feature
engineering, can also be used. The full model is a linear combination of predictions
of each view. In other words, the contribution of each view is determined by linear
regression with prediction of each view as a covariate to predict the expression of
the gene of interest. For each view, the importance of each feature is assessed as the
z-score of the feature importance (e.g. from random forest) multiplied by 1 minus
the p-value of the coefficient of this view in the linear regression model, so views
that contribute significantly to the ensemble model and features in each of these
views that are more important than other features in the same views stand out. This
way, interaction among genes at different spatial scales can be identified.

9.9 Gene-gene interaction

Table 9.9: Packages mentioned for gene-gene interactions

Name Language Title Date
published

https://www.analyticsvidhya.com/blog/2015/08/introduction-ensemble-learning/
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SpaOTsc Python Inferring spatial and signaling
relationships between cells from
single-cell transcriptomic data

2020-04-29

scHOT R Investigating higher-order
interactions in single-cell data with
scHOT

2020-07-13

MESSI Python Identifying signaling genes in spatial
single-cell expression data

2020-09-04

GCNG Python GCNG: Graph convolutional
networks for inferring cell-cell
interactions

2020-12-10

MISTy R Explainable multiview framework for
dissecting spatial relationships from
highly multiplexed data

2022-04-14

Some of the packages already reviewed can also infer interactions between genes,
such as GCNG, SpaOTsc, and MISTy. GCNG and SpaOTsc predict potential
L-R pairs, and MISTy identify genes whose expression at a given spatial scale
is associated with another gene of interest. The package scHOT [114] tests for
association of correlation between genes with pseudotime or spatial locations by
permutation testing, permuting locations of cells along pseudotime or in space. The
package Mixture of Experts for Spatial Signaling genes Identification (MESSI) [73]
uses a mixture of experts model to predict expression of response genes with a set
of features. A spatial neighborhood graph of the cells is constructed with Delaunay
triangulation The features include all genes quantified in the dataset that are also
found in a L-R database, expression of genes in the L-R database in neighboring
cells, cell type of neighboring cells, and etc. The response genes are all genes
quantified other than the L-R genes used as features. Each cell is assigned to
exactly one “expert”, i.e. subtype. For each expert, expression of response genes
in each cell is modeled with linear regression with the features as covariates. The
parameters of the linear models and assignment of cells to experts are estimated
with MLE, where the log likelihood is maximized with EM. This model can be
trained in a control sample and used to predict gene expression in experimental
samples. If expression of a gene is as well predicted as in the control, then signaling
may not have changed in the experimental condition. If prediction becomes worse,
then there may be a change in signaling involving this gene, and the experts whose

https://github.com/zcang/SpaOTsc
https://doi.org/10.1038/s41467-020-15968-5
https://doi.org/10.1038/s41467-020-15968-5
https://doi.org/10.1038/s41467-020-15968-5
https://bioconductor.org/packages/release/bioc/html/scHOT.html
https://doi.org/10.1038/s41592-020-0885-x
https://doi.org/10.1038/s41592-020-0885-x
https://doi.org/10.1038/s41592-020-0885-x
https://github.com/doraadong/MESSI
https://doi.org/10.1093/bioinformatics/btaa769
https://doi.org/10.1093/bioinformatics/btaa769
https://github.com/xiaoyeye/GCNG
https://doi.org/10.1186/s13059-020-02214-w
https://doi.org/10.1186/s13059-020-02214-w
https://doi.org/10.1186/s13059-020-02214-w
https://github.com/saezlab/misty/
https://doi.org/10.1186/s13059-022-02663-5
https://doi.org/10.1186/s13059-022-02663-5
https://doi.org/10.1186/s13059-022-02663-5
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coefficients significantly differ between the control and experimental models suggest
cell populations involved in the signaling change.

9.10 Subcellular transcript localization

Table 9.10: Packages mentioned for subcellular transcript
localization

Name Language Title Date
published

FISH_quant MATLAB A computational framework to study
sub-cellular RNA localization

2018-11-02

So far, except for segmentation free data analysis methods of smFISH and ISS
images, all analysis methods are at the cellular or spot level. However, transcripts
do show inhomogeneous subcellular localization that can be biologically relevant,
such as whether the transcripts are translated in the endoplasmic reticulum (ER) or
the cytoplasm. Thirty-four lncRNAs have been manually classified into 5 types of
subcellular patterns: one or two large foci in nucleus, large foci and dispersed single
molecules in nucleus, no foci in nucleus, nucleus and cytoplasm, and cytoplasmic
[115]. The bDNA-smFISH study in 2013 that profiled 928 genes in cultured cells,
though each gene was profiled in different cells, generated features that characterize
subcellular transcript localization (mRNAs of protein coding genes) which were
used to cluster cells [116]. These features include closest distance of a transcript
spot to cell outline, distance to cell centroid, distance to nuclear centroid, radius to
include 5%, 10%, 15%, 25%, 50%, and 75% of all spots in the cell, mean distance
of a spot to other spots (related to Ripley’s K or L function), and variance of distance
to other spots. The package FISHquant [117] uses additional features derived from
Ripley’s L function of subcellular transcript localization. Then it uses these features
to simulate smFISH data, cluster cells, and classify transcript localization patterns.

Whether transcripts are located in the nucleus or in the cytoplasm has also been
used for RNA velocity in a MERFISH study [118]. In traditional RNA velocity
based on scRNA-seq [119], when there are more transcripts with intronic reads—
i.e. nascent transcripts not yet spliced—than expected from steady state in a cell,
then the gene of interest is up regulated, and conversely, if there are fewer transcripts
with intronic reads, then the gene may be down regulated. In other words, intronic
reads not yet spliced out gives a glimpse into a near future transcriptome of the cell.

https://bitbucket.org/muellerflorian/fish_quant/src/master/
https://doi.org/10.1038/s41467-018-06868-w
https://doi.org/10.1038/s41467-018-06868-w
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In this MERFISH study, instead of introns that require separate probes from exons,
transcripts inside the nucleus are taken to be nascent, i.e. not yet exported from the
nucleus, and used in lieu of intronic reads as in scRNA-seq for RNA velocity. In
this study, the ER was also stained for and segmented and genes with transcripts
enriched in the ER were also identified.

These studies analyzing subcellular transcript localization were all performed on
cultured cells rather than in tissues, so there is no highly multiplexed smFISH data
on in vivo subcellular transcript localization yet. Furthermore, as the cells cultures
used in these studies grow on a plate in single layer, while cells stack on top of
each other through the thickness of the section, cell segmentation in tissue can be
more challenging. Some of the features used to characterize subcellular transcript
localization, such as distance to cell outline and Ripley’s L function (with edge
correction), depend on accurate cell segmentation, which as already explained in
Section 9.1, is challenging. Subcellular transcript location can be modeled as a
spatial point pattern in 3D or collapsed into 2D, and analyses such as finding effects
of covariates such as whether the spot is in the nucleus, distance from the nucleus,
distance from the cell outline, and etc., and whether the pattern exhibits clustering
(e.g. foci) or inhibition (i.e. more spaced out than expected from CSR). However,
the observational window of the point process, i.e. cell segmentation, can greatly
affect results of spatial point pattern analysis. For instance, when the convex hull
of some spots are taken to be the observational window, then the point pattern may
not appear clustered. However, if the actual observational window is much larger
than the convex hull, then the point process is in fact clustered. Hence accurate cell
segmentation is important to analyses of subcellular transcript localization patterns.
Furthermore, some smFISH or ISS datasets only provide 2D cell segmentations,
and resolution in the z axis tends to be lower than that in the x and y axes. The
implications of collapsing 3D into 2D, and when 3D segmentation is available, the
lower resolution in the z axis are yet to be determined.

9.11 Gene expression imputation from H&E

Table 9.11: Packages mentioned for gene expression impu-
tation from H&E

Name Language Title Date
published

https://en.wikipedia.org/wiki/Complete_spatial_randomness
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ST-Net Python Integrating Spatial Gene Expression
and Breast Tumour Morphology via
Deep Learning

2020-06-22

PathoMCH Python Spatial transcriptomics inferred from
pathology whole-slide images links
tumor heterogeneity to survival in
breast and lung cancer

2020-11-02

Xfuse Python Super-resolved spatial
transcriptomics by deep data fusion

2021-11-29

Although ST and Visium do not have single-cell resolution, the tissue sections can
be H&E stained prior to library preparation, thus the transcriptomes of the spots
can be mapped to H&E tissue morphology. H&E is also commonly used in clinical
pathology, while ST and Visium are not used for diagnostic purposes. The package
ST-Net was developed to use a pretrained CNN to extract features from H&E images
behind the ST spots, and a dense neural net is trained on the extracted features and
ST data to predict gene expression based on H&E images from held out patients
as log normalized UMI counts [88]. Another method to predict gene expression
from H&E is PathoMCH [120]. TGCA transcriptomics data is normalized and the
corresponding H&E slides are labeled with the percentile of expression of each gene
of interest. Then the whole slide images are broken into small tiles, all of which take
the percentile label of the slide. Then the Inception v3 classification neural network
is trained with the tiles and labels with very high or very low expression, and when
predicting on held out images, it gives a score of gene expression from low to high
in each tile. Such gene expression prediction methods can give pathologists a more
nuanced view of the tissue beyond morphology.

While cell segmentation is difficult in H&E images, H&E images do have enough
resolution to exhibit subcellular details. The H&E image is used in Xfuse to
increase resolution of the spatial transcriptome from ST [36]. The H&E image and
the corresponding transcriptomes are modeled to come from a shared latent space.
Intensity of each channel at each pixel is modeled as Gaussian, and gene expression
at each pixel is modeled as NB so the observed value at each spot are the sums
of values at the pixels in the spot. Parameters of these distributions are mapped
from the latent space through a generator CNN. The parameters are estimated with
variational Bayesian inference. With the parameters, gene expression at each pixel
can be predicted, thus increasing the resolution of ST.

https://github.com/bryanhe/ST-Net
https://doi.org/10.1038/s41551-020-0578-x
https://doi.org/10.1038/s41551-020-0578-x
https://doi.org/10.1038/s41551-020-0578-x
https://github.com/alonalj/PathoMCH
https://doi.org/10.1038/s41598-020-75708-z
https://doi.org/10.1038/s41598-020-75708-z
https://doi.org/10.1038/s41598-020-75708-z
https://doi.org/10.1038/s41598-020-75708-z
https://github.com/ludvb/xfuse
https://doi.org/10.1038/s41587-021-01075-3
https://doi.org/10.1038/s41587-021-01075-3
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9.12 Prospective users
With so many existing methods, and so many being developed, a user wishing to
analyze spatial transcriptomics data would naturally ask, “Which method shall I
use?” We suggest considering the following factors:

First, benchmarks have been performed for types of data analysis that garnered more
attention (Figure reffig:analysis-cats). The benchmarking methodologies should be
read carefully, as multiple benchmarks of the same type of methods can give dif-
ferent results. For cell type deconvolution, there seems to be a consensus among
different benchmarks that cell2location, RCTD, spatialDWLS, and Tangram are top
performing methods [121, 122, 123, 124]. Cell-cell interaction methods have been
benchmarked here [125]. Data integration methods have been benchmarked here
[126]. There are also tools to make simulated data for benchmarking, some sim-
ulating spatial distributions in addition to gene expression values [127]. However,
benchmarks of spatially variable gene methods show that the different methods give
disparate results, so it’s not straightforward to say which method is the best [128,
129].

Second, suppose that the implementation is available (which is usually, but not
always, the case), then is the implementation of the method usable? Sometimes
the authors only post some scripts on GitHub that are not bundled into a package
that can be easily installed. In this case, the scripts would need to be copied to the
working directory of the analyses and into any future package using them. If the
authors decide to update the scripts, it would be more difficult for the users to update
as well or even to know about the update. In the Analysis sheet of our database, there
is a metadata column “packaged”, which indicates whether the scripts are bundled
into a package.

Third, it’s easier to learn to use a well-documented package. As shown in Figure 9.12,
most packages written in R and Python are reasonably documented, which means
that all arguments of functions exposed to the users are documented. However,
not all of those packages have usage examples. Not all packages in our database
are mentioned in this chapter; the metadata column “documented” in the database
indicates whether each package is reasonably documented.

Fourth, is the package still maintained? Take caution if the package has not been
updated for years, because updates in dependencies can break the code. This is
a reason why CRAN and Bioconductor perform daily checks of the packages and
notify the maintainer if the package fails automated checks and unit tests and if the

https://docs.google.com/spreadsheets/d/1sJDb9B7AtYmfKv4-m8XR7uc3XXw_k4kGSout8cqZ8bY/edit#gid=1424019374
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maintainer fails to correct the problem, the package will be removed from CRAN
or Bioconductor. For this reason, if your package based on other packages is aimed
for CRAN or Bioconductor, then all R dependencies must also be on CRAN or
Bioconductor, and all Python dependencies (called from basilisk) must be on PyPI
or conda. As most packages in our database are not on any of CRAN, Bioconductor,
PyPI, or conda (Figure 9.13), this requirement constrains which methods to build
upon for CRAN and Bioconductor packages. But with such requirements, the
packages are more likely to be usable. That said, GitHub only package can still have
high quality and be usable.

So far these factors are about usability of the implementation, but we look forward
to more third-party benchmarks to compare the performances, while taking into
account usability. Another factor to consider is computational speed. While there is
no systematic third-party benchmark, as a rule of thumb, packages that do MCMC
tend to take a long time to run due to the nature of MCMC. Gaussian process-based
methods also tend to take a long time to run though often it isn’t too bad. Neural
network based methods tend to take a long time to run on CPU. To try out different
packages, as no method performs the best in all datasets and all scenarios, perhaps
try on a smaller subset of data if the packages tend to take a long time to run.
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C h a p t e r 10

FROM THE PAST TO THE PRESENT TO THE FUTURE

The quest to profile the transcriptome in space with high resolution is not new. It
started with the enhancer and gene trap screens in the late 1980s and the 1990s, before
the genomes of metazoans were sequenced. However, in the prequel era, challenges
with the existing technology made the dream of profiling the transcriptome in
space hard to reach, as the technologies were not highly-multiplexed and not very
quantitative. Over 30 years later, this dream seems to be more within reach, though
with some caveats. We have come so far, because of so many strands of ideas and
technologies coming together since the late 2010s. Highly multiplexed smFISH that
can profile 10000 genes at a time would not have been possible without the reference
genome sequence to screen for off target binding, the reference transcriptome and
genome annotation with which to design the probes, the technology to synthesize
DNA oligos, smFISH, confocal microscopy, digital photography, combinatorial
barcoding, and the computing resources to store and process terabytes of images. ST
and Visium would not have been possible without microarray technology, scRNA-
seq techniques designed for small amount of RNA from each spot, NGS, and the
computing power to process the data. Some of these strands are older than others,
and each of them would not have been possible without more preceding strands
coming together. For instance, smFISH would not have been possible without the
development of non-radioactive FISH in the late 1970s and the 1980s and techniques
to synthesize fluorophore labeled probes. The field of spatial transcriptomics has
grown tremendously since the late 2010s, as this is the time when a wide array of
technologies truly started to add up to more than the sum of their parts.

Where are we right now in terms of the development of this rapidly unfolding
field? Again, we may take inspiration from and draw parallels with development
of other technologies that have much longer histories. From such comparisons,
we find that the field of spatial transcriptomics is coming of age. First, in several
fields, there have been less successful early attempts to achieve the goal of the field
that had never become very popular, and the field did not become vastly popular
until the right strands of technologies came together. In the history of cycling,
the hobby horse and the penny farthing are among such early attempts which were
more dangerous and less efficient, and the breakthrough of the safety bicycle, with
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the convergence of technologies such as the pneumatic tire, the tangent spoke,
and the chain and sprocket, as well as disadvantages of horses and immaturity
of the automobile, led to the bike boom in the 1890s, though there are many other
important advances such as derailleurs, disc brakes, clipless pedals, and carbon fiber
technology, important but not as revolutionary. In the history of elevators, there have
been the Archimedes screw and the paternoster, which are no longer commonly seen
as passenger elevators due to their disadvantages. The Archimedes screw elevator
was very slow and costly, and the paternoster was dangerous. There have also been
hand pulled elevators since the era of the Roman Empire. Convergence of several
strands of technologies and social changes led to mainstreaming of the elevator,
including urbanization, the steam engine, hydraulic propulsion, and electric motors.
Here in spatial transcriptomics, considering the drastic growth in the late 2010s,
perhaps we may say that for the purpose of profiling expression of large number of
genes in tissue, prequel techniques such as enhancer and gene traps, in situ reporters,
and (WM)ISH are among the less successful early attempts which have never seen
the popularity of some current era techniques and which have gone out of favor
due to their disadvantages. We have come to a time where the right technologies
converge to make achieving the goal of profiling the transcriptome in space efficient
enough for a much wider audience, though there are still challenges.

Second, in several fields that are no doubt mature, while many different technologies
to solve the same problem are available, a small number of such technologies, often
sold by a small number of companies, tend to dominate. This could be a sign of
maturity of the field as companies have enough time to become well-established in
the field and factors that lead to dominance such as cultural inertia and network effect
have enough time and popularity to form. That these companies get to dominate at
all means that this field is already popular enough to be profitable. The dominating
technologies are not necessarily the best in all rounds and many factors beyond
how well the technology or company currently solves the problem (e.g. historical
contributions, cost, marketing, cultural inertia, and monopolistic business practices)
led to dominance. The obvious example in our field is NGS; while there were many
sequencing start-ups and many different ways proposed to make sequencing more
efficient in the 1990s (e.g. cPAL and SOLiD as already mentioned, and sequencing
by hybridization [1]), today Illumina dominates. For scRNA-seq, while there are
Drop-seq, inDrops, CEL-seq, MARS-seq, SMART-seq, and etc., 10X Chromium
dominates and is used in most scRNA-seq studies we have come across. When we
began curating the database in January 2020, we were surprised by the common
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Figure 10.1: Number of publications (including preprints) using each technique to
collect new data in both prequel and current era. Only the top 10 in terms of number
of publications of all time are colored, and the rest are lumped into Other. Bin width
is 180 days, or about half a year. The LCM is for curated LCM literature, which
might not be representative of all LCM literature given LCM’s long term popularity.

usage of Tomo-seq and LCM, but we have witnessed the rapid rise and spread of
Visium and GeoMX DSP over the course of the past year. In the current era, from
about 2014 to 2019, a variety of techniques were used to collect new data and it
was hard to say which ones dominated. In contrast, since about 2020, a substantial
portion of publications for new data used Visium, a portion not previously seen after
the golden age of WMISH in the 2000s and since the current era began to take off
in the mid 2010s (Figures 10.1, 10.2). With many institutions using their products,
10X and Nanostring have become relatively newly well-established in the field of
spatial transcriptomics. Especially for Visium, open source developers (e.g. for
Seurat, SpatialExperiment, and BayesSpace) are catering to the output format of
Space Ranger (the official preprocessing software for Visium). This is a nod to
Visium’s establishment akin to the earlier establishment of 10X Chromium and Cell
Ranger.

Spatial transcriptomics still faces many challenges. First, there still is the trade-off
between quantity and quality. ST and Visium, which have limited resolution and
low detection efficiency, can be more easily applied to larger areas of tissue and the
whole transcriptome. ISS has been applied to whole mouse brain sections, because
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Figure 10.2: Proportion of publications per bin using each of the top 10 techniques
for data collection.

while it has lower detection efficiency than smFISH, the amplified and less crowded
signals can be detected at lower magnification. In contrast, while smFISH-based
techniques have subcellular resolution and often over 80% detection efficiency, the
efficiency is compromised when applied to 10000 genes and these techniques are
more difficult to apply to larger areas of tissue. As there are still challenges, new
techniques to collect data are constantly being developed. Second, compared to
the prequel era, the current era is more elitist. While commercial LCM, ST, and
Visium have spread far and wide, the various high quality smFISH-based techniques
mostly failed to spread beyond their usually elite institutions of origin. This might
be due to difficulty in building custom equipment, challenges in customizing the
protocols to different tissues, limits in number of genes and cells profiled, lack of
core facilities for these techniques, and lack of unified, efficient, open source, and
well documented software platform to process the data. However, with the rise of
commercial platforms for highly multiplexed smFISH such as MERFISH, Rebus
Esper, and Molecular Cartography, this might soon change.

Data analysis has also come a long way, from PCA and ICA in the early 2000s
to much more sophisticated techniques today. Many ideas that originated in other
fields such as computer vision, machine learning, and statistics, including geospa-
tial statistics, have been adapted to spatial transcriptomics in recent years. Ideas
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from computer vision include SIFT, NMF, CNN, and to some extent also PCA and
ICA. Ideas from machine learning include SVM, neural networks, bag of words,
variational autoencoders (for some cases of latent space), mixture of experts model,
𝑘 nearest neighbor, and clustering. Ideas from statistics include CCA, permutation
testing, MCMC, factor analysis, generalized linear models, and hierarchical model-
ing. Ideas from geospatial statistics include Gaussian process model (usually used
for kriging), spatial point process, and MRF. Other ideas include Laplacian score
and optimal transport. Conceivably, more ideas can be adapted to spatial transcrip-
tomics. For instance, spatiotemporal statistics can be adapted to analyze multiple
aligned sections of the same tissue to address the difference in covariance between
the z axis and the x and y axes. Well established methods in geospatial statistics,
such as the semivariogram, J function, G function, and other point process models
are also promising for spatial transcriptomics.

We have reviewed many different types of data analysis, using a diverse arsenal of
principles. However, integrated analysis pipelines like Seurat are still immature for
spatial transcriptomics; Seurat only supports the most rudimentary analyses and the
user still needs to learn different syntax and convert data to different formats to use
many of the other more specialized and advanced tools, many of which are not well
documented. However, the open source culture is flourishing and growing. Most
prequel data analysis publications did not link to a repository of the implementation
of the software, while most current era data analysis publications do. While the
proprietary MATLAB language is still in use, most, especially more recent, current
era publication use R, Python, C++, and in some cases Julia and Rust, which are
open source and free. Open source software and freely available data may enable
less privileged individuals and institutions to perform data analysis and develop new
data analysis tools.

What would an ideal future of spatial transcriptomics look like? Data collec-
tion would have subcellular resolution, be transcriptome wide, have nearly 100%
detection efficiency, and is scalable to large areas of tissues in 3D. Even better,
it’s multi-omic, profiling not only transcriptome, but also epigenome, proteome,
metabolome, etc., with equally high quality and throughput for the other omics.
Moreover, the data collection technique is easy to use, such as coming in easy to
use kits, and affordable, so it can spread far and wide into non-elite institutions.
It should also be open source and transparent, so it would be easier for others to
improve it. While we have reviewed many data analysis methods, a comprehensive
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benchmark of the methods for each analysis task and evaluation of user experience
would be helpful for users to choose a method to use and for developers to compare
their new methods to existing methods.

Data analysis would have the same user-friendly user interface for different data
types and different methods for the same task. Also, the package should be modular,
so dependencies are only installed if needed. It should also be extensible, so users
can add additional modules or additional tools for existing tasks to the integrative
framework. This would be like SeuratWrappers, which provides Seurat interfaces
to data integration and RNA velocity methods not implemented by Seurat. Or like
caret and tidymodels, which provide a uniform user interface to numerous machine
learning methods. This can be achieved with guidelines such as those used by
Bioconductor, encouraging developers to reuse existing data structures and methods
in Bioconductor rather than reinventing the wheel. It should also be effective at
its task, scalable, well documented, open source, unit tested, easy to install, and
portable, again, as enforced to some extent by the Bioconductor guideline. It should
be implemented in easy to read code, so developers can more easily fix bugs and
improve the package. In addition, it should be interoperable, so tools written in
different programming languages can be integrated, combining their strengths and
bridging cultural differences between the programming language communities. It
should have elegant data visualization, both static for publications and interactive
for data exploration and sharing. The data visualization should also be accessible,
such as using redundant encoding and colorblind friendly palettes and providing
alternatives to those who are visual impaired. Finally, it should be integrated with
a graphical user interface (GUI) like iSee so the data can be shared with colleagues
who do not code.

We don’t live in the ideal world. Then what might the actual future of spatial
transcriptomics look like given current trends? Visium might soon become to
spatial transcriptomics what Chromium is to scRNA-seq, while LCM and GeoMX
DSP live on by the side for ROI based studies. Perhaps largely with Visium, spatial
transcriptomics might soon become as mainstream as scRNA-seq is today. However,
just like the cDNA microarray, which was the transcriptomics method of choice in
the 2000s and early 2010s and was replaced by RNA-seq which is more quantitative
and sensitive, Visium might be replaced by some other technique in a few years
after more technological advances that address Visium’s drawbacks such as lack
of single-cell resolution and low detection efficiency, though we don’t know what
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that new technique would be. At present, 10X has plans for what might be based
on smFISH or ISS and have single molecule resolution and Visium HD which has
single-cell resolution. Then we anticipate 10X to hold a substantial market share of
spatial transcriptomics in the near future.

However, if 10X fails to ride the new trends, or if another company develops
something much better, then it might replace 10X as the dominant company in
spatial transcriptomics. Then what might replace Visium? If the commercial
highly multiplexed smFISH platforms take off and become adopted by core facilities
so the individual lab no longer has to invest in new equipment and the pricey
probe collection, then the possibility that they may compete with Visium can’t be
ruled out. Moreover, as Illumina sequencing also involves image processing and
matching fluorescent spots from different rounds, image processing for smFISH
might no longer be a bottleneck in the near future. Commercial probe sets for highly
multiplexed smFISH much as the probe sets on commercial cDNA microarrays
might emerge for use with the automated platforms and core facilities. Back in
the golden age of the cDNA microarray, probes of known sequences on the array
were used to profile the transcriptome. Also, at present, most scRNA-seq and
spatial transcriptomics studies only care about known genes and existing genome
annotations, so not being able to find novel isoforms might not be a significant
drawback to most users. In contrast, lack of single-cell resolution in Visium is
indeed a serious drawback, because cell type deconvolution of the spots is commonly
performed and many computational tools have been developed for this purpose. As
we don’t know how this rapidly developing field will unfold in the next few years,
these are just possibilities and we cannot make specific predictions.

In addition, realistically speaking, where are we on the way to pursue the holy grail
of low cost, convenient, high spatial resolution, high detection efficiency, larger area
of tissue, transcriptome wide profiling, 3D tissue, and multi-omics? As already
discussed in Section 7.7, trade-offs can’t be avoided at present. Considering the
more recent novel techniques, such as CISI, MOSAICA, sci-Space, BOLORAMIS,
PIXEL-seq, and etc., we don’t find the new techniques in the entire field of spatial
transcriptomics going in a single direction in what to prefer in the trade-offs.

Some areas do not seem to pursue some of the objectives of the holy grail. For
instance, we do not see smFISH-based techniques applied to an increasing number
of genes over time (Figure 7.23), while there may be more interest in profiling larger
number of cells (Figure 7.24) and novel proofs of principle (e.g. in CISI, MOSAICA,
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and SABER). Instead, highly multiplexed smFISH datasets with a smaller number
genes are complementary to scRNA-seq data from the same studies (e.g. [2, 3, 4,
5].

However, there are developments that reduce the competition between some areas
of the trade-offs without eliminating the trade-offs. So far there seems to be less
interest in in situ sequencing due to its inefficiency. ISS and HybISS were developed
by the same group and are both in Cartana, but recent atlases that could have used
either favored HybISS, which has somewhat higher detection efficiency than ISS,
and with RCA amplification and a relatively low detection efficiency, can be applied
to larger areas of tissue and imaged at lower magnification. For in situ sequencing,
there also seems to be a trend to avoid the inefficiency of reverse transcription, as in
HybRISS and BOLORAMIS.

New NGS barcoding techniques seem to have more emphasis on high resolution
(e.g. single-cell but not high spatial resolution in XYZeq), if not high spatial reso-
lution, but different studies seem to have different emphases on the other objectives
in the holy grail. For instance, while all aiming for higher spatial resolution, the
Slide-seq and Stereo-seq papers emphasize scalability to more tissue (indeed these
techniques have lower detection efficiency), while the PIXEL-seq paper empha-
sizes not compromising detection efficiency, and the Seq-Scope paper emphasizes
“easy-to-implement”. Slide-seq2 then emphasizes better detection efficiency than
the first version of Slide-seq, though the improved efficiency is still low. No NGS
based spatial technique has attempted to rival smFISH detection efficiency. Again,
the different emphases highlight the trade-offs, which will most likely stay with us
for a long time. If that is the case, then spatial transcriptomics might evolve into
different branches, with different types of techniques each with its own trade-offs
better suited to different types of studies.
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C h a p t e r 11

FROM SINGLE-CELL TO SPATIAL TRANSCRIPTOMICS

I have lived through the very history of spatial transcriptomics that I have documented
and analyzed in the previous part. This chapter summarizes my journey through this
history, from improving an early method to map dissociated cells from scRNA-seq
to a prequel spatial atlas to contributing to scalable software tools with a consistent
user interface to data from multiple technologies, to bring us one step closer to
building an "ideal" package outlined in Chapter 10.

11.1 Spatial reconstruction of Drosophila embryo
As already mentioned, 2014-2017 is a period transitioning from the prequel era
to the rise of the current era, when the then new current era methods mapping
dissociated cells from scRNA-seq data to a prequel (WM)ISH reference 9.3. One of
these early methods is DistMap [1], which maps dissociated cells Drosphila to the
BDTNP spatial reference [2], and which I tried to improve with our lab’s flagship
RNA-seq read pseudoalignment method kallisto [3]. BDTNP was created with
FISH, and has single-cell resolution.

In the most popular scRNA-seq technology 10X Chromium, as well as Visium, the
transcripts are captured by their polyA tails, reverse transcribed into cDNAs, which
are then polymerase chain reaction (PCR) amplified for sequencing. During the
course of PCR, the primer matching the polyT (from the original polyA) introduces
a cell or spatial barcode and a unique molecular identifier (UMI), so each read from a
copy of the cDNA can be traced back to the cell or Visium spot and mRNA molecule
it comes from. Read alignment methods such as Cell Ranger produce gene count
matrices, where unique molecular identifiers (UMIs) are assigned to each gene in
each cell. However, assigning UMIs to a unique gene is not trivial, as some UMIs
can map to multiple genes. Furthermore, while short read scRNA-seq capturing
transcripts with 3’ end polyA sequence loses much of the isoform information,
such information is not entirely lost. In kallisto, the reads are pseudoaligned to the
transcriptome, so the UMIs can be assigned to equivalence classes (ECs), which
are sets of known transcripts the UMI is compatible to. From the ECs, it’s possible
to infer which isoforms of a gene a transcript may have come from. The matrix
with ECs instead of genes as rows and cells or samples as columns is known as the
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transcript compatibility counts (TCC) matrix.

In [1], the gene count matrix from a Drop-seq Drosophila dataset was used, dis-
regarding isoform information. In 2018, when I was rotating in the lab, I reim-
plemented DistMap in order to understand it and get introduced to spatial tran-
scriptomics and single-cell data analysis, while using my implementation to predict
expression of ECs rather than genes in space as an improvement. kallisto was
originally designed for bulk RNA-seq. In order to run it for scRNA-seq, I used
sircel to error correct the Drop-seq cell barcodes and indirectly run kallisto to
obtain the TCC matrices. Then I used Seurat v2 to log normalize data and used
multi canonical correlation analysis (CCA) and dynamic warping [4] to correct for
batch effect in the Drop-seq data. The Drop-seq and BDTNP data have two spacies,
Drosophila melanogaster and Drosophila virilis, but I focused on the former. Cells
from the two species can be clearly separated and doublets were removed. The
Drop-seq and BDTNP data somewhat overlap in developmental stage, in stage 6 and
late stage 5 soon after cell membranes form around the nuclei in the early syncytical
stage and soon before gastrulation. The datasets also overlap by 84 genes, which was
nearly all the genes in BDTNP. To verify if my reimplementation can recapitulate
spatial patterns of genes in BDTNP, I initially collapsed the ECs into genes when all
transcripts in the EC map to the same gene. Since none of the ECs had transcripts
that all mapped to one of the genes, 83 genes were used for the mapping.

In DistMap, first the log normalized data for each gene was manually thresholded
individually so the binarized pattern matches that found in the WMISH images
on BDGP. Then the Drop-seq data was also binarized, with a threshold chosen to
maximize root mean squared error (RMSE) between the correlation matrix of the
binarized BDTNP data and that of the binarized Drop-seq data. Then the Matthews
correlation coefficient (MCC) for binary data was used to map Drop-seq cells to the
BDTNP reference. Expression values of the 83 genes were permuted in each cell 100
times and the permuted data was thresholded again to compute a null distribution
of the MCC scores. This way I obtained a pseuto-p-value at each location; nearly
all of them had 𝑝 < 0.05 after Benjamini-Hochberg correction.

Next the MCC scores were exponentiated so they are all positive. Let 𝑀 denote
this exponentiated MCC matrix with cells in columns and spatial locations in rows.
Let 𝐺 denote the TCC matrix, and 𝐵 the binarized TCC matrix where all non-zero
entries are set to 1 to normalize for the number of cells expressing a gene. Then
compute matrices 𝐷1 = 𝑀𝐺𝑇 and 𝐷2 = 𝑀𝐵𝑇 , and the normalized score matrix

https://github.com/pachterlab/sircel
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Figure 11.1: Predicted (left) expression pattern of mael and observed pattern in
BDGP (right).

𝑄 = 𝐷1/𝐷2 (element-wise division). 𝐷1 is a matrix with locations in rows and genes
in columns; its entries take higher values when the MCC is high between cells and
locations for the 83 landmark genes, or when many cells express a gene of interest,
hence the 𝐷2. The final score is 𝑆 = 𝑄/(1 + 𝑄) (element-wise division), which
is then also binarized, with default threshold of the 75% quantile. The binarized
patterns, the columns of this matrix, are the predictions of DistMap. There are many
binarization steps because of the less quantitative nature of FISH (not smFISH) data.
For gene mael which is not among the 83 landmark genes, the prediction matched
the WMISH from BDGP (Fig. 11.1).

More interestingly, when predicting for ECs outside the 83 landmark genes, some-
times different ECs that map to different isoforms of the same gene have different
predicted patterns, such as Inx2 (Fig. 11.2). I designed probes specific to some of
the isoforms and a member of the Angela Stathopoulos lab performed WMISH with
the probes to verify the predictions, although the experiment failed.

However, DistMap is not completely satisfactory for the following reasons. First,
from plotting the score prior to binarization, I found that some predicted patterns are
lost in binarization, although such patterns cannot be discerned in BDGP images,
which may be due to the less quantitative nature of colorimetric WMISH. Second,
you may feel somewhat disoriented by my discription of the DistMap procedure
above, because it is an ad hoc score, which may not apply well to more quantitative
spatial references from the current era. Hence I attempted to create a novel method
to quantitatively predict expression of genes in a non-spatial scRNA-seq dataset but
not in a spatial reference that profiles a limited number of genes. I first denoised and



366

Figure 11.2: Predicted expression patterns of different ECs of Inx2. The letters
correspond to isoforms of this gene and each combination of the letters is a set of
isoforms the EC is compatible to.

normalized the Drop-seq data with DCA [5], as the FISH data is also normalized.
Then I fitted a lasso regularized linear model with the normalized gene expression for
the 83 landmark genes as the predictor and the normalized expression for any gene
of interest as the response. Then I used this model on the BDTNP data to predict
expression of the new gene in space. In some cases, such as Alh, the prediction
seems to give the correct qualitative patterns, but in some cases, such as pyd3, the
pattern is wrong (Fig. 11.3).

A further problem is that even if the pattern prediction is correct, the numbers in
the predicted values may not make sense, because FISH and Drop-seq are different
data types, and FISH is not very quantitative. I also reasoned that the reason why
the prediction failed for some genes is that the 83 landmark gene might not be
coregulated with all the other genes, and linear regression is too simplistic a model.
Moreover, spatial information was not used in the model.

Around this time, the preprint of Seurat v3 [6] came out, with a different ad hoc
score in the shared CCA or PCA space, which gave decent qualitative pattern pre-
diction. The novosparc preprint appeared around the same time, using optimal
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Figure 11.3: Linear regression prediction of gene expression in space (left) and
BDGP WMISH images (right) for genes Alh and pyd3. In the predictions, yellow
is higher value and dark blue is lower value.

transport to exploit positive spatial autocorrelation to predict gene expression and
reconstruct spatial coordiantes even without a spatial reference [7]. In DistMap, I
found that mapping cells to locations (MCC) and predicting gene expression (the
final binarized) are different but related; it is a problem of data integration across
different modalities, because once we correct for the effects of the different modal-
ities, gene expression in the spatial dataset can be imputed from similar cells in
scRNA-seq. This is the perspective taken by packages such as Seurat v3 and gimVI,
although it does not use spatial information. While I moved on to the kalliso
bustools project (Section 11.2), new methods that either explicitly perform spatial
reconstruction or do so under the auspice of data integration have been written, and
interest in this area remains strong (Fig. 9.4), as transcriptome-wide scRNA-seq
data, smFISH-based spatial data with single-cell resolution with a few hundred
genes, and transcriptome-wide spatial data without single-cell resolution are com-
plementary in some studies [8]. Some of these methods are reviewed in Section
9.3.
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11.2 kallisto goes single-cell
While this project is on non-spatial scRNA-seq, it built skills and mindsets for my
later Voyager project (Chapter 13) in the emphasis on computational efficiency,
uniform user interface for data from multiple technologies, and comprehensive and
reproducible documentation.

The BUSpaRse package
When I ran kallisto via sircel to pseudoalign the sequencing reads from Drop-
seq in the previous section, it was not designed to scale to the increasing size of
scRNA-seq data. It took hours to run sircel on each of the batches which had about
1000 cells. Our lab devised the Barcode, UMI, Set (BUS) format, where the "set"
stands for ECs, to represent pseudoalignment for scRNA-seq data from different
technologies [9]. kallisto writes a compressed binary output for the scRNA-seq
pseudoalignment, and the first version of the bustools package sorts the binary
and converts it into a text file. To convert the text file into a gene count matrix, a
Python script was written to iterate through the file line by line and aggregate UMIs
into ECs and genes. To aggregate ECs into genes, all transcripts must match the
same gene; other transcripts were discarded. This is very efficient and only took a
few minutes to run on a laptop for a typical scRNA-seq dataset with thousands of
cells.

Because as already mentioned, this field is split between R and Python, in order to
cater to R users, I wrote an R implementation of this process converting the BUS
text file to the gene count or TCC matrix. Implementing the iteration in C++ and
calling it from R via Rcpp, this took less than a minute to run. This later became the
BUSpaRse package, now on Bioconductor [10]. Because bustools also requires a
file mapping transcripts to genes, BUSpaRse implements functions to query genome
annotations from Ensembl transcriptome FASTA file sequence names, TxDB, and
EnsemblDB; the latter two are genome annotation resources on Bioconductor. As
kallisto and bustools were later adapted to generate the spliced and unspliced
gene count matrices for RNA velocity much more efficiently [11] than the original
implementation [12], I also implemented functions to get the transcriptome FASTA
file with flanked introns by extracting the genomic ranges from the genome sequence
and the corresponding transcript to gene file in BUSpaRse.

Later, the Python prototype was translated into efficient C++ code in a newer version
of bustools, so this functionality of BUSpaRse was superseded. However, perhaps
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because the BUS format can be used for purposes outside scRNA-seq or because of
the genome annotation querying functions, or because some people used BUSpaRse
for the gene or TCC count matrix anyway, BUSpaRse has been downloaded by
around 200 distinct IP addresses per month for the past 2 years.

Comparisons with Cell Ranger
In the Museum of Spatial Transcriptomics, 10X Visium is by far the most popular
current era spatial transcriptomis technology. The 10X company started with non-
spatial scRNA-seq, and its Chromium product is very popular. The official read
alignment software for Chromium is Cell Ranger. To demonstrate that kallisto
bustools can obtain the gene count matrix much faster and using less memory
than Cell Ranger while getting similar results. We downloaded over 20 scRNA-seq
datasets from different technologies and with a wide range of number of cells, some
from the 10X website, to benchmark kallisto bustools , Cell Ranger, STARsolo,
and Alevin, and showed that kallisto bustools is the fastest and most memory
efficient for these datasets [11].

However, if the results are inaccurate, then the speed is no good. Then we compared
the kallisto bustools results to Cell Ranger results and showed that the gene
counts and dimension reductions are similar (Fig. 11.4) and that the downstream
biological analysis results were similar as well. I performed the latter, focusing on a
mouse 10k neurons Chromium dataset from the 10X website, but one analyses was
run was all datasets to show the similarity in the biological results: I concatenated the
gene count matrices from kallisto bustools and Cell Ranger for this dataset, and
performed differential expression (DE) between the two matrices with the Wilcoxon
rank sum test as is typical in scRNA-seq. Then I performed gene set enrichment
analysis (GSEA) with gene ontology (GO) terms as the gene sets on the DE genes,
to see what kind of genes tend differ in the two methods.

This is shown in Figure 11.4g: a quantile–quantile plot comparing the observed
distribution of p values of GSEA, after Bonferroni correction for multiple testing
across ontologies and datasets, with the expected distribution of a uniform distri-
bution between 0 and 1. If the observed distribution does not deviate from the
expected distribution, then the points should lie close to the diagonal line, y = x.
The gray ribbon around the line is the 95% confidence interval. Here most Gene
Ontology (GO) terms have adjusted p = 1, meaning that most GO terms are very
depleted of genes differentially expressed between the kallisto bustools and
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Figure 11.4: Reproduced from Figure 2 of [11].
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Cell Ranger matrices. GO terms above y = x are labeled. Generally, GO terms
significantly enriched among differentially expressed genes are related to ribosomal
proteins; specifically, the GO terms 1, 2, and 3 correspond to structural constituent of
ribosome, cytosolic large ribosomal subunit, and cytosolic small ribosomal subunit.
The points are colored by ontology: biological processes (BP), cellular components
(CC), and molecular functions (MF). Across datasets, the DE genes in enriched
GO terms tend to be depleted in the kallisto bustools results compared to Cell
Ranger, perhaps because kallisto bustools discards UMIs that don’t map to
a unique gene and these genes tend to have many paralogs, increasing the chance
of confusion between genes. In many other datasets, no GO term is significantly
enriched in the DE genes. Hence unless ribosomal genes are of interest, kallisto
bustools should lead to biological results equivalent to those from Cell Ranger.
Results from other datasets are shown in Supplementary Figure 3 of [11].

For the 10k neuron dataset specifically, I compared the kallisto and Cell Ranger
matrices for dimension reduction, Leiden clustering, cluster marker genes, and
slingshot pseudotime [13, 14], and showed that these biological analyses yielded
similar results between the two matrices (Supplementary Figures 6-7). For each
gene present in both matrices, I ran Pearson and Spearman correlation and found
the correlation to be well above 0.95 for most genes. I also performed pseudotime
analysis with slingshot , and found similar results (Supplementary Figure 7.4).
Finally, I compared the gene count matrices for a mixed human and mouse dataset,
and found that kallisto bustools can distinguish between cells from either
species just as well as Cell Ranger and that UMI assignment to either species is
similar (Supplementary Figure 8).

kallisto bustools tutorials
Next we wrote tutorials demonstrating usage of kallisto bustools on many
datasets and demonstrate downstream analysis tasks. In the beginning, we wrote
some tutorials and hosted one hour long in person and virtual workshops running
and explaining the tutorials live, all the way from downloading the FASTQ files
to performing downstream analyses, in both R and Python. This would not be
possible with Cell Ranger, which takes hours and many CPU cores to run for the
typical scRNA-seq dataset. I wrote the R tutorials, some of which can be found on
this website [15]. However, since these tutorials were built locally, they were not
checked to be fully reproducible.
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Later we built a more comprehensive kallisto bustools documentation website
[16]. There’s a basic tutorial running kallisto bustools and then perform basic
data filtering and normalization on a small dataset, the first thing to get started. Some
further tutorials are about advanced upstream steps in running kallisto bustools
, such as building the index for the transcritome or for RNA velocity, processing
multiple FASTQ files, and processing multi-species data. Some further tutorials
demonstrate downstream tasks such as pseudotime and RNA velocity analysis.
Former student Joseph Min wrote a Python wrapper for kallisto bustools that
greatly simplifies the upstream processing especially for human and mouse data.
The tutorials are run on Google Colab all the way from downloading the FASTQ
files to performing downstream analysis; since the free plan of Google Colab has
limited computational resources and packages need to be installed from scratch,
this show that the kallisto bustools workflow is scalable and that the tutorials
are reproducible. Most tutorials are in both R and Python. The R notebooks were
adapted from the first website I mentioned. The tutorials are organized by analysis
tasks.

Writing the kallisto bustools tutorials informed our design of the Voyager docu-
mentation website (Section 13.2), where the tutorials are very comprehensive and are
organized by data collection technology and spastial analysis method. The Voyager
tutorials are built from scratch on the cloud with limited computational resources to
ensure reproducibility and scalability, and can be run as Colab notebooks.

11.3 Cosmodrome: unified image processing pipeline for smFISH-based spa-
tial transcriptomics

Spatial point process analyses
smFISH-based spatial transcriptomics data is a treasure trove of information. While
most people base their analyses on the gene count matrix and cell centroid coordi-
nates, because each mRNA molecule is visualized as a puncta, where the molecules
are located in the cell can be interesting, as already discussed in Section 9.10. The
Voyager project (Chapter 13) began with spatial point process analysis of subcellular
transcript localization in a MERFISH mouse primary motor cortex dataset (MOp)
[17], which provides transcript spot coordinates in 3D and cell segmentation poly-
gons in one of the 7 z-planes. Spatial point processes model the locations where
certain events occur, such as where a species is observed in ecology and where
galaxies are observed in astronomy. It is the locations themselves that are studied.
We can ask whether the observations tend to cluster or if they repel each other and
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thus becoming more like a regular grid. The null hypothesis is "complete spatial
randomness" (CSR), in which the locations of observations are independent from
each other, and is formally a homogeneous Poisson point process.

In spatial point process analyses, the observational window is crucial, and cannot
be imputed as the convex hull of the observations. For example, if the observations
are only in a corner of the actual observational window, then they must be very
clustered. However, if the observational window is taken to be the convex hull,
then the clustering may not be observed. The cell segmentation can be used as
the observational window. However, since not all smFISH spatial transcriptomics
publications provide the cell segmentation masks or polygons, and those that do
only provide in one out of several z-planes, datasets suitable for such an analysis are
rare despite the proliferating publications.

Ripley’s L is a summary function to find if a point process is clustered or regular
and at which lengthscales. In a nutshell, it’s a variance normalized form of the
K function, which is the average number of points within a distance from each
other, as a function of distance. With CSR, the theoretical K function is 𝐾 = 𝜋𝑟2,
and the theoretical L function is 𝐿 = 𝑟. If the observed L function is above the
theoretical line, then it means that there are more points within a distance than
expected, indicating clusteirng. If the observed L function is below the theoretical
line, then it means that fewer points are within a distance than expected, indicating
regularity.

I have attempted to compute Ripley’s L for transcript spots of select genes in each
cell. Without a 3D cell segmentation, I pretended that the segmentation is the same
in all z-planes, as too few transcript are present in each z-plane. Transcripts of
many genes are not uniformly distributed inside the cell, and some tend to the cell
periphery, as if outside the nucleus, although this cannot be verified without nuclei
segmentation (Fig. 11.5). Overall, for one gene, across thousands of cells, the
observed L functions tend to be above the theoretical line under CSR (Fig. 11.5),
indicating clustering. Some cells have stronger clustering for this gene than others,
and it would be interesting to see if they are biologically different as well.

Unfortunately, this did not go far because transcript spots assigned to one cell based
on segmentation from one z-plane means that many of the transcripts in fact belong
to a neighboring cell. Furthermore, existing spatial point process packages, such as
spdep, may not scale to the many gigabytes of transcript spot data across hundreds
of thousands of cells. The z-plane problem motivated me to perform image process-
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Figure 11.5: Left: Locations of transcript spots of 4 genes in a cell. Right: L
functions of one gene in thousands of cells in the dataset. The red line is the
theoretical L function under CSR, 𝐿 = 𝑟 .

ing from scratch to obtain 3D cell segmentations. However, as discussed in Section
9.1, image processing software tends to be very specific to one smFISH or ISS based
technology. Inspired by kallisto bustools and the Tidymodels machine learn-
ing framework that brings many machine learning methods under a common user
interface, I decided to write Cosmodrome, an image processing pipeline for highly
multiplexed smFISH or ISS that can apply across different technologies. The name
"Cosmodrome", because "Voyager" is meant to explore space, and "Cosmodrome"
is the beginning of space exploration.

PanoTx format, extending starfish
An existing attempt to unify highly multiplexed smFISH image processing is
starfish [18], which requires the images to be organized in the SpaceTx for-
mat. The images are organized by assay, field of view (FOV), channel, round of
hybridization, and z-planes; each assay, FOV, channel, round, and z-plane has its
own TIFF file, which may or may not be the most efficient when processing the
images. Reformatting data into SpaceTx is not trivial; images in this MERFISH
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Figure 11.6: a, Schematic of highly multiplexed smFISH image processing. b,
Example top level JSON file. c, Example QC plot showing multiple FOVs, showing
pixel intensity histograms on top of the images, colored by median pixel intensity.

dataset have one TIFF stack for each FOV over all rounds of hybridization, while
images in the seqFISH study [19] are in multi-file OME-TIFF files with one stack per
FOV per round for the z-planes. Another drawback is that as of writing, starfish
has very limited support for multiple FOVs, nor was there a way to simultaneously
plot multiple FOVs in quality control (QC), whereas with the growing number of
cells of smFISH-based data (Figure 7.24), numerous FOVs is the norm.

Therefore I tried to extend the SpaceTx format into PanoTx, "Pano" for panorama,
because working with multiple FOVs should be front and center. Highly multiplexed
smFISH image processing consists of the following steps (Fig. 11.6c):

1. Image organization, such as the SpaceTx format.

2. Image registration between channels and rounds, which canbe affine or non-
linear.
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3. Preprocessing, which includes clipping, Gaussian smoothing, and top hat
filtering to make the image more amenable for spot calling.

4. Spot detection, which can use Laplacian of Gaussian, as described in Section
9.1, then the spots need to be matched across rounds of hybridization to decode
the gene barcode.

5. Cell and nuclei segmentation, so the transcript spots can be assigned to cells.

For multiple FOVs, underlying all these steps is image stitching to obtain global
coordinates in the entire tissue section, nor only in the FOV. The transformations
of each FOVs can be computed without loading all images into memory, as is
done in [20], and with the transformations, the global coordinates can be computed.
Moreover, since the JSON format is less human readable than tables, such as in CSV
files, while the top level JSON file for PanoTx is similar to that of SpaceTx, the FOV
coordinates, assays, and codebook are specified as CSV instead of JSON in PanoTx
(Figure 11.6b). I have written an R package that interacts with the PanoTx files and
plot QC metrics for multiple FOVs, such as plotting a thumbnail of the image with
their histograms arranged in space with their FOV coordinates; different z-planes
appear in different facets of the plot ((Figure 11.6c), so the users can check if the
FOVs are in the correct place.

There are different ways to do each step in Fig. 11.6, such as Laplacian of Gaussian
and deep learning methods to detect transcript spots, and multiple deep learning
packages for cell and nuclei segmentation, as discussed in Section 9.1. There are also
many different image stitching methods, including ImageJ stitching [21], BigStitch
[22], MIST [23], and ASHLAR [24]. Because any one method may not perform best
for all datasets, I wished to provide a uniform user interface to multiple methods
at each step. To do so, inspired by the proteomics image processing pipeline
MCMICRO [25], which uses Nextflow to coordinate steps of image processing
inside Docker containers, I built a Docker container for BigStitcher to use in a
similar Nextflow workflow. While MCMICRO does not decode multiple rounds of
hybridization, I would need to write a somewhat different workflow to accommodate
this.

Yet these image stitching tools themselves require input file formats different from
SpaceTx. While MIST and ASHLAR can only process one z-plane, BigStitcher can
perform image registration through time in spatiotemporal images and can process z-
stacks, making it more suitable for the kind of MERFISH image I tried to re-process.
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However, it’s not clear how BigStitcher can be hacked to register across assays and
rounds of hybridization while stitching the FOVs at the same time. Moreover,
BigStitcher resaves the images into its own type of HDF5 format, which can be time
consuming. While it may be nice to have a consistent user interface to different
image stitching methods, as one method might not perform best for all datasets, the
disparate input file format requirements of these methods and their differences with
SpaceTx make it very difficult to implement the consistent user interface, because
file format conversion can be time and disk space consuming for large datasets.

All of the image stitching tools mentioned above are ImageJ plugins except for ASH-
LAR. From using these tools, I learnt about the OME-TIFF format, an existing TIFF
format with standardized metadata to represent fluorescent microscopy images that
organizes the frames of a TIFF stack by channel and z-planes. FOV coordinates can
be stored in the metadata as well, and the metadata can govern multiple OME-TIFF
files from different FOVs. I also learnt about the well-established and performant
tool BioFormats that reads and converts between microscopy imaging file formats.
While there’s no standard in OME-TIFF on rounds of hybridization, the existing
features of OME-TIFF and BioFormats are relevant. I was trying to reinvent the
wheel.

My original interest, as expressed in the spatial point process analysis, is downstream
spatial analysis rather than image processing, so after finding the file format woe, I
set spatial point process analysis of transcript spots aside for now and moved on to
other types of spatial data analysis, which led to the last chapters of this thesis. While
my downstream spatial data analysis packages are maturing, a potential solution to
the imaging file format woe is emerging, in the OME-Zarr format [26], continuing
the OME standards but with the chunked and cloud optimized Zarr format already
used for large imaging data. One of the OME-Zarr example datasets comes from in
situ genome sequencing, with multiple rounds of in situ sequencing imaging [27].
Even better, BigStitcher will gain support for OME-Zarr[26]. Nor is Zarr the only
format for efficient operations on large image data. The geospatial field has long
been working with large raster data from remote sensing; borrowing from this field,
the Samui browser uses cloud-optimized GeoTIFF and OpenLayers to visualize large
spatial transcriptomics data [28].

The file format woe is not unique to image processing. In downstream analyses,
some packages implement their own data structures instead of reusing existing, stan-
dard ones, forcing users to convert between data structures and learn new syntaxes.
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For example, in the R ecosystem, something similar to the SpatialExperiment
class [29] has been reinvented multiple times, such as in Giotto [30] which did
not reuse the existing SingleCellExperiment (SCE) or Seurat classes, and in
semla, the successor to STUtility [31]. However, I find these existing classes in-
adequate for fully utilizing opportunities from the spatial information. So I wrote the
SpatialFeatureExperiment (SFE), which extends SpatialExperiment (SPE)
with the Simple Features represenation of geometries (Chapter 12). By extending
SCE and conforming to its styles and conventions, SFE does not create additional
file format woes.
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C h a p t e r 12

SPATIALFEATUREEXPERIMENT: BRINGING SIMPLE
FEATURES TO SPATIAL TRANSCRIPTOMICS

The SpatialFeatureExperiment (SFE) data structure is the foundation of ex-
ploratory spatial data analyses (ESDA) in the R package Voyager (Chapter 13).
SingleCellExperiment (SCE) is a data structure designed to represent scRNA-
seq data in R [1]. The raw and normalized gene count matrices are in the assays
slot, with genes in rows and cells in columns (Fig. 12.1). Any matrix-like class can
be used in the assays, including dense matrices, sparse matrices (e.g. dgCMatrix
from the Matrix R package), data frames, and DelayedArray which allows for
on-disk operations. Cell metadata is in the colData field, and row metadata is in
the rowData field. In addition, analogous to colData, cell embedding matrices
from dimension reductions are stored in the reducedDims field. PCA loadings are
stored as attributes of the PCA cell embedding matrix. SCE implements getters and
setters for these fields; getters and setters for the new fields in SFE for geometries
conform to the conventions and styles of SCE.

SpatialExperiment (SPE) is an existing class that extends SCE for spatial -omics
data, adding the spatialCoords field for spatial coordinates of cell or spot centroids,
and imgData to organize images associated with the spatial dataset [2]. The images
can be on disk or remote and are thus not loaded into memory unless necessary.
When the image is read into memory, it is a matrix of color hex codes. In addition,
there’s a special column in colData, sample_id, to distinguish between coordinates
from different tissue sections, as different sections can have overlapping numeric
values of coordinates. The SPE package also implements functions to mirror and
rotate the images. Accompanying SPE is the ggspavis package to visualize gene
expression and cell attributes in space.

The geospatial tradition is central to how SFE extends SPE. The sf package is
the R interface to Simple Features, a standard way to represent vector geometries
in the geospatial field. In sf, geometries and their attributes can be stored in a
data frame with a special column for the geometries. Furthermore, sf supports
optimized geometric IO and operations, with the GDAL and GEOS C++ libraries,
respectively. With geometric operations, the SFE object can be subsetted or cropped
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Figure 12.1: Schematic showing the structure of the SpatialFeatureExperiment
object and how it extends SpatialExperiment. Details are written in the main text.

with a geometry.

SFE adds colGeometries, analogous to colData, essentially a collection of sf data
frames, for geometries associated with columns of the gene count matrix such as
cells and Visium spots (Fig. 12.1). A cell can be associated with multiple geome-
tries, such as cell and nucleus segmentation polygons. This way, with the efficient
geometric operations, it’s possible to find problematic and likely low quality cells
and nuclei with unusual sizes or multiple pieces in quality control, and to find char-
acteristics of cells that may be associated to gene expression, such as morphological
metrics and proportion of cell area occupied by the nucleus. Furthermore, in data
visualization, the cell segmentation polygons can be plotted instead of centroids,
to visualize cell morphology and avoid overlaps between points in areas with high
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cell density. The rowGeometries field is for geometries associated with genes or
features. It is implemented although not currently used; it can potentially be used
for transcript spots from smFISH-based datasets, including those not assigned to
cells. However, the transcript spot data is often very large and would benefit from
on disk representations of geometries.

The annotGeometries field is for geometries associated with the dataset but do
not directly correspond to columns of the gene count matrix. These can be cell
segmentation polygons in a Visium dataset, the tissue boundary, or pathologist
annotated histological regions from other software such as QuPath and ImageJ.
With geometric operations, we can find the number of cells or nuclei in each Visium
spot, the histological region cells or spots belong to, and the proportion of each
Visium spot that is in the tissue or histological region. These can then be related to
gene expression in the EDA process. Voyager can also compute univariate spatial
statistics on numeric columns of colData, colGeometries, annotGeometries, and
dimension reduction cell embeddings.

The neighborhood view of spatial analyses requires a spatial neighborhood graph,
whereas SPE does not have a field to organize the graphs. In SFE, the colGraphs
field stores the spatial neighborhood graph for entities associated with columns
of the gene count matrix. The SFE package wraps all methods to find spatial
neighborhood graphs in spdep, one of the core spatial analysis packages in R,
including polygon contiguity, triangulation followed by edge pruning, k nearest
neighbors, and distance based neighbors, as well as different types of edge weights,
such as binary, row normalization, row and column normalization, and distance
based edge weights. In addition, SFE has a much faster implementation of finding
distance based edge weights after finding the k nearest neighbor or distance based
graph. The annotGraphs field is for spatial neighborhood graphs of annotation
geometries, so spatial analyses can be performed on attributes of these geometries
such as cell area. The rowGraphs field is for graphs associated with genes or
features, although it is not currently used. The sample_id is important here because
the spatial neighborhood graph only makes sense within one tissue section. The
graphs are represented as listw objects as implemented in spdep, so no conversion
is required when using the numerous spdep methods in Voyager.

Results can be organized within the SFE object to link results to features from which
they were computed and to facilitate visualization. Local spatial statistics returns one
set of results for each cell or spot. To organize the results, the localResults field
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was introduced, analogous to reducedDims. Like reducedDims, localResults
are organized by the spatial analysis method, but unlike reducedDims, the results
for each method are organized by genes or features. Univariate and bivariate local
results are stored in the localResults field, while multivariate results are stored in
reducedDims or optionally colData if they are vectors or data frames. Univariate
global results are stored in rowData for gene expression, and in the metadata or
attributes of the corresponding fields for colData, geometries, and dimension reduc-
tions. These metadata and attributes can be accessed with getter functions such as
colFeatureData(). However, bivariate global results are not currently stored in
the SFE object due to the great variability in output format.

Space Ranger is the official alignment and preprocessing software for Visium.
While the SPE package can read Space Ranger output, SFE does so somewhat
differently. Because the Space Ranger output includes spot diameter in pixels in the
full resolution image, SFE constructs Visium spot polygons from the centroids and
the diameter. In addition, the pixels can be converted to microns, based on spacing
between spots which is known to be 100 microns. Furthermore, unlike SPE, SFE
uses the terra package to manage images. The terra package is designed for
raster geospatial data which often can’t fit into memory. The images are read as
SpatRaster objects, which are pointers to the images on disk, so the images are not
loaded into memory unless necessary. When the image is plotted, it’s not entirely
loaded into memory if a lower resolution suffices. When an SPE object is converted
into SFE, the images are converted to SpatRaster. SFE can also directly read Vizgen
MERFISH output, which has fluorescent images that may not fit into memory,
benefiting from terra. Like SCE and SPE before it, SFE will continue to evolve to
meet the demands of ESDA.
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C h a p t e r 13

VOYAGER: EXPLORATORY SPATIAL DATA ANALYSIS FROM
GEOSPATIAL TO SPATIAL -OMICS

13.1 Introduction
From the developing embryo to the hepatic lobule, spatial organization of cells is
essential to the functions of many tissues. Recent years have seen a drastic rise
in interest in technology development, data collection, and development of data
analysis tools in spatial transcriptomics [1]. Overarching data analysis frameworks
for data organization and exploratory data analysis (EDA) have been developed for
spatial -omics data, such as Seurat [2], squidpy [3], Giotto [4], and semla (formerly
STUtility [5]), inheriting from the tradition of single cell RNA-seq (scRNA-seq), but
also adding some spatial visualization, basic spatial data analysis functionalities, and
implementation or wrappers for further downstream spatial analyses such as finding
spatially variable genes and cell type interactions. In addition, for the purpose of
EDA, many visualization tools have been developed for spatial -omics data. Many
of these visualization tools are designed to be scalable and interactive, for large
imaging based data such as MERFISH and imaging mass cytometry, plotting gene
expression and cell metadata in space [6, 7, 8, 9]. Some of the interactive tools
can also perform cell clustering, plot 2D scatterplots of gene expressions and cell
attributes, and analyze cell type colocalization [6]. Some utilize virtual reality for
an immersive data visualization experience [10]. Some are focused on a particular
tissue [11], or implement a very specific type of visualization [12, 13].

Existing EDA tools for spatial -omics don’t fully take advantage of the opportunities
presented by the spatial information. EDA is an approach to the data without many
preconceived ideas, theories, or hypotheses [14], and is a mindset where the analyst
asks questions, tries to answer the questions by visualization, transforming, and
modeling the data, which can lead to more refined and further questions, without
a formal process or a strict set of rules [15]. The importance of EDA is that "it is
important to understand what you CAN DO before you learn to measure how WELL
you have seem to DONE it" [16]. Exploratory spatial data analysis (ESDA) is EDA
explicitly focusing on spatial aspects of the data, especially spatial autocorrelation,
where nearby observations are not independent from each other [14]. Before the
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rise of spatial -omics, ESDA has long been used in geography, where a rich tradition
has been developed. The widely used spatial autocorrelation metrics Moran’s I
[17] and Geary’s C [18] are among the global univariate spatial statistics, which
give one set of results for the entire dataset, whose characteristics have been further
elaborated upon over the years [19, 20, 21]. In addition, there are tools to explore the
length scale of spatial autocorrelation, such as the correlogram [22] and variogram
[23]. Local versions of spatial statistics, such as local Moran’s I [24] and Getis-
Ord Gi* [25] can be used to explore local spatial heterogeneity and find spatial
clusters of high or low values, giving a set of results at each location. There are also
spatially informed global and local bivariate and multivariate statistics that account
for spatial autocorrelation and correlation between features simultaneously, such as
Lee’s L [26] and MULTISPATI PCA [27].

Much of this ESDA tradition that may benefit spatial -omics has not been utilized
in Seurat, squidpy, and Giotto. For example, while Seurat and squidpy can perform
global Moran’s I, squidpy implements Ripley’s L to analyze cell type clustering in
space, Giotto independently implemented something similar to Lee’s L for spatially
informed gene co-expression, and semla implemented Moran’s I and Getis-Ord Gi,
they have not systematically utilized much of the ESDA tradition such as many
methods to explore length scales and local spatial heterogeneity of spatial autocor-
relation. Furthermore, packages that specialize in visualization typically don’t go
in depth if at all into ESDA. Many other spatial -omics data analysis packages focus
on image processing or a specialized task such as cell type deconvolution of Visium
spots, analyzing cell-cell interactions, integrating data from different modalities or
tissue sections, and predicting gene expression from H&E image. Therefore, there
is a gap in ESDA in the field of spatial -omics data analysis to be filled.

Spatial -omics data analysis is largely split between R and Python [1]. The most
commonly used EDA framework in R is Seurat, and in Python it’s scanpy (and
squidpy for spatial). However, because of hidden defaults and implementation
details most users may be unaware of, Seurat and scanpy can give different results
that can lead to different biological conclusions, such as in log fold change in gene
expression across clusters [28]. In addition, many packages are not well-documented
and most are not on a standard repository such as CRAN, Bioconductor, PyPI, or
conda, lacking quality checks and making installation more cumbersome [1]. Some
packages have divergent syntaxes, requiring users to use a different new data structure
instead of reusing existing ones, increasing the learning curve for users while forcing
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developers to reinvent the wheel.

Here we present Voyager, an R package that systematically brings the geospatial
ESDA tradition to spatial -omics, with a consistent user interface for different spa-
tial data analysis methods. Univariate, bivariate, and multivariate global and local
methods are included. These methods can be applied to the output of any spatial
-omics technology as long as a gene count matrix and spatial coordinates of cells
or spots are available. Voyager reuses and extends the existing SingleCellExperi-
ment (SCE) [29] and SpatialExperiment (SPE) [30] data structures, with the new
SpatialFeatureExperiment (SFE) data structure that brings Simple Features [31] to
SPE to allow for geometric operations on the cells and annotation geometries and
to organize results from spatial analyses. Inheriting from SCE which some other
spatial methods such as BayesSpace [32] are based on, Voyager ESDA is meant to
complement other types of spatial and non-spatial analyses. Voyager implements
plotting functions for gene expression, cell attributes, annotation geometries, the his-
tology image, and dimension reduction colored in histological space with colorblind
friendly default palettes [33, 34, 35], as well as plotting functions for spatial anal-
ysis results. We have also implemented a Python version of Voyager with the core
functionalities of the R version and made sure that results from core functionalities
match across languages. Voyager has comprehensive documentation and tutorials
for common spatial -omics technologies and spatial analysis methods. The R pack-
ages Voyager, SpatialFeatureExperiment, and SFEData which provides example
datasets for the tutorials are available on Bioconductor. The Python implementation
is available on PyPI.

13.2 Results
The Voyager framework
Voyager brings some of the traditions of geospatial ESDA to spatial -omics. In
the R ecosystem, this is implemented in time honored packages, such as spdep
[36] for the neighborhood view [14], of spatial autocorrelation analyses based on
a spatial neighborhood graph, and gstat [37] for the distance view, in which
spatial autocorrelation is modeled based on a continuous functions of distance
between observations. Voyager wraps many of these methods from spdep and
gstat. Besides the neighborhood or distance views, ESDA methods can be broadly
categorized by the number of variables analyzed: univariate (e.g. Moran’s I),
bivariate (e.g. Lee’s L), and multivariate (e.g. MULTISPATI PCA); each of these
has a main function providing a uniform user interface to a variety of methods,
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Figure 13.1: See Section 13.7 for caption.

minimizing user learning curve (Fig. 13.1), inspired by the Tidymodels machine
learning framework [38]. These methods can also be categorized as global, where
one set of results are returned for the entire dataset, or local, where each location or
cell has its own set of results. The latter facilitate explorations of local heterogeneity
in spatial relations. Users can extend Voyager and make the uniform user interface
run custom ESDA methods to reduce redundant code and facilitate organization and
visualization of results in Voyager.

Considering that the geospatial data for which spdep and gstat were developed
tend to have a much smaller number of features and observations than modern
single cell spatial -omics datasets, Voyager implements parallel processing when
running a univariate or bivariate spatial method over a large number of genes,
and reimplements methods whose original implementations don’t scale to modern
spatial -omics data to drastically speed up computation, including MULTISPATI
PCA, Lee’s L, finding bounds of Moran’s I from spatial neighborhood graph, and
distance based edge weighting of k nearest neighbors or distance based graphs.
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Figure 13.2: See Section 13.7 for caption.
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Visualization is an essential part of the EDA process. As in Seurat, Voyager
implements static plotting functions for gene expression, cell attributes, and cell
projections along dimensions in dimension reduction plotted in histological space.
The histology image can be optionally plotted behind the cells or Visium spots.
Despite the proliferation of interactive visualization packages, static plots have their
place in publications and reports. While most existing packages plot cells as points,
Voyager can plot cell or nuclei segmentation polygons as well. For larger datasets,
the users can specify a bounding box to zoom into a smaller area. The default
palettes are designed to have color values discernible with color vision deficiencies
(Fig. 13.2). Default continuous palettes come from ColorBrewer [35], scico [34],
and viridis. A sequential palette is used by default, but a divergent palette is available
when there is a meaningful center of divergence, such as 0 in local Moran’s I and
Lee’s L; the palette is centered on the center of divergence of interest, so warm
colors denote values above the center and cool colors denote values below (full
color vision). The default categorical palette comes from dittoSeq [33], which is
designed for colorblind friendly scRNA-seq data visualization.

In addition, Voyager implements plotting functions for spatial analysis results, such
as the Moran scatter plot, correlogram, variogram, and local spatial statistics shown
in histological space (Fig. 13.1). In contrast to the plotting functions in spdep and
gstat, Voyager plotting functions are based on ggplot2 [15] to be more visually
appealing and customizable by users, and are designed to visualize results from
multiple features and tissue sections at once.

Voyager is based on the data structure SFE, which inherits from SPE and SCE
(Figs. 13.1,12.1). As a result, non-spatial scRNA-seq EDA methods and plotting
functions implemented in scater [39], the package implementing scRNA-seq data
preprocessing, quality control (QC), and EDA, can be applied as usual. We also try
to make arguments of Voyager plotting functions consistent with their counterparts
in scater, to maintain a more uniform user interface that is easier to learn.

Voyager has a comprehensive documentation website that features tutorials on apply-
ing EDA and ESDA to datasets from multiple spatial -omics technologies, including
10X Visium, Xenium [40], and Chromium, Nanostring CosMX [41], Vizgen MER-
FISH [42], Slide-seq [43], seqFISH [44], and CODEX [45] (Fig. 13.1). On the
website, each technology has a landing page with an introduction of the technology
and a table linking to vignettes using a dataset from the technology. For the most
popular technology Visium [1], we have written introductory vignettes mostly per-
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forming visualizations, as well as their advanced counterparts that delve more into
spatial analyses. Each ESDA method has a similar landing page, with an introduc-
tion to the method and a similar table, linking to sections in each vignette using the
ESDA method, some of which include further considerations on the ESDA methods
and references to the geospatial ESDA literature. While Chromium is non-spatial,
neighborhood view ESDA methods were applied to the k nearest graph in gene
expression PCA space. Example datasets used in the vignettes are available as SFE
objects in the SFEData package. In addition, there are vignettes instructing users
on constructing an SFE object and extending Voyager for custom ESDA methods.

To make sure that the vignettes are reproducible, we build the documentation website
on GitHub Actions, rendering all the vignettes on the cloud with a fresh machine.
Because the GitHub Actions runner has less computational resources than a typical
modern laptop, we can ensure that the vignettes are scalable to larger datasets, such
as a MERFISH mouse liver dataset with almost 400,000 cells. The vignettes are
also automatically converted into Google Colab notebooks to be run interactively
and allow users to experiment with different parameters.

Because the field of single cell and spatial -omics data analysis is largely split between
R and Python, we have developed a Python implementation of core functionalities
and some basic vignettes of the Voyager R package, opening the way to deep
learning and image analysis methods better supported in Python than R. At present,
the Python implementation supports univariate spatial statistics, based on PySAL
[46] and GeoPandas [47]. We have written "compatibility tests" to ensure that the R
and Python implementations give the same results for core functionalities. Because
Bioconductor requires software packages to have unit tests and pass an automated
check run daily, whereas PyPI and conda do not perform automated tests, the Python
implementation is indirectly held to the Bioconductor standard by the compatibility
tests.

Compatibility tests
In scRNA-seq, Seurat and scanpy are both commonly used EDA frameworks. How-
ever, their default settings not only give different log fold changes but also sig-
nificantly different PCA results as in a mouse olfactory bulb Visium dataset (Fig.
13.3a,c,d), which might lead to different biological conclusions. In contrast, in
Voyager, there are no visible differences in Visium spot embeddings in the first two
PCs (Fig. 13.3b). In Seurat vs. scanpy, the cosine difference (see Section 13.4)
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Figure 13.3: See Section 13.7 for caption.

between PCA eigenvectors (gene loadings) in each of the top 50 PCs is nearly 1 after
the first few PCs, which means the angles between the corresponding eigenvectors
are nearly 90 degrees (Fig 13.3c). In Voyager, this difference is much smaller, well
below epsilon (dashed line, around 1.5e-8, see Section 13.4) until PC20 (Figure
2C). While the difference sometimes rises above epsilon after PC20, it does not
exceed 1e-5. While Seurat and scanpy PCA with default parameters give sizable
differences in proportion of variance explained by each PC, these differences in the
R and Python implementations of Voyager are generally within epsilon (Fig. 13.3d).

For spatial statistics, the R and Python implementations of Voyager give consistent
results for global Moran’s I of the highly variable genes (Fig. 13.3e), with differ-
ences within epsilon. For local Moran’s I (Fig. 13.3f-g), the results are the same
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Figure 13.4: See Section 13.7 for caption.

(within epsilon) but with a non-default spdep parameter (see list below). In both
implementations, besides the different defaults in ggplot2 and matplotlib, the
plotting functions give visually similar plots with the same palettes (Fig. 13.3g).

While the R and Python implementations of Voyager may eventually diverge in
functionalities, as the two languages have better support for different types of anal-
yses, we have written compatibility tests to make sure that the core functionalities
and basic vignettes give the same results in R and Python, so language preference
does not inadvertently lead to different biological conclusions.

That Seurat and scanpy give different PCA results is largely because of their different
methods to find highly variable genes. The PCA results remain somewhat different
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while using the same set of highly variable genes because of a hidden default in
Seurat that clips scaled data to 10 while scanpy by default does not clip the scaled
data (Fig. 13.4). Seurat and scanpy give different marker gene rankings from
ostensibly the same differential expression method (e.g. t-test or Wilcoxon test)
because they rank the genes differently and even give different log fold changes
[28]; most users may be unaware of such differences. Therefore we strive to be
transparent about the defaults and the reasons why we chose them.

At present, there are two vignettes subject to compatibility tests, one using a mouse
olfactory bulb Visium dataset from 10X website, and the other applying univari-
ate spatial statistics to the k nearest neighbor graph of a human peripheral blood
mononuclear cells (PBMC) Chromium dataset. Below we list the defaults used in
the basic vignettes covered by the compatibility tests; some of the defaults come
from conventions and defaults in established packages, and are hence subject to
further research and improvement:

1. Because SFE inherits from SCE, the R vignettes use scater and scran [48]
from the SCE ecosystem for QC, data normalization, and non-spatial EDA.
Data normalization in scater computes log2

(
𝑥

𝑁/�̄� + 1
)
, where 𝑁 denotes

the total UMI count in one Visium spot, �̄� is the average total UMI count in
all spots in this dataset, and x is the UMI count of one gene in the Visium
spot of interest. The pseudocount (default to 1), library size factors (default
to 𝑁/�̄�), and transform (default to log2) can be changed. The size factor is
centered on 1 to make it easier to translate log normalized counts back to raw
counts. Log 2 is used because differences in values can be interpreted as log
fold change. The Python implementation uses the same data normalization.

2. This is how scran finds highly variable genes (HVGs): with default parame-
ters, a parametric non-linear curve 𝑦 = 𝑎𝑥

𝑥𝑛+𝑏 of variance vs. mean is fit for each
gene of the log normalized data. Then the log ratio of the actual variance to
the fitted variance from the curve is calculated, and a Lowess curve is fitted to
this log ratio vs. mean scatter plot for each gene. The "technical" component
of the variance is the fitted values from the Lowess curve. The "biological"
component is the difference between the actual log ratio and the Lowess fitted
log ratio. The top HVGs are genes with the largest biological component. The
default parameters are used in R vignettes not covered by compatibility tests.
For the basic vignettes covered by compatibility tests, because we did not find a
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Python implementation of Lowess, the Python version reimplements scran’s
HVG method when using parameter lowess = FALSE in modelGeneVar(),
i.e. omitting the Lowess step, so the fitted, "technical" values come from the
parametric curve and the "biological" component is the difference between
the actual variance and the curve. This method assumes that most genes are
not biologically interesting to the study of interest.

3. The number of top HVGs is 2000, from Seurat convention, and Seurat is the
most popular scRNA-seq EDA package. This number is also not unreasonable.

4. PCA is performed on log normalized data, with the HVGs as in Seurat con-
vention. Data is scaled before performing PCA, i.e. each gene from the log
normalized data is scaled and centered to have mean 0 and variance 1, so genes
that are more abundant but not necessarily more biologically variable don’t
drown out genes that are less abundant but more biologically variable in the
top principal components. This can happen because gene expression data is
overdispersed, so the variance not only increases with mean but also exceeds
the mean, so the variance is greater than one would expect from a Poisson
distribution. The data is scaled also because this is the Seurat convention.

5. When scaling the data, the variance is computed and the data for each gene is
divided by the variance. One can either divide by n or (n-1); the former is the
default in Numpy, as the maximum likelihood estimate of variance although
it’s biased, while the latter is the default in R and scanpy, as an unbiased
estimate. We divide by (n-1) in both implementations, to be consistent with
the R and scanpy convention.

6. The number of PCs used for non-spatial clustering is determined by the elbow
plot per the Seurat convention. In the vignette using mouse olfactory bulb
Visium data, the cell projections into the PCs are also visually inspected to
exclude PCs that appear to pick up artifacts and outliers.

7. The 𝑘 in k nearest neighbor graph used in Leiden clustering is the default in
igraph, which is 10, not including self.

8. Leiden clustering is used because both Leiden and Louvain are conventionally
used in scRNA-seq and Leiden has improved upon Louvain.

9. In Leiden clustering, the resolution parameter (0.5 in the basic vignettes) and
objective function (modularity in the basic vignettes) are chosen to give a few
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clusters that appear well-separated in the first few PCs but not so many that
their colors are difficult to tell apart when plotting. This is for visualization
purposes and may not be the best biological choice. However, we can’t
guarantee that the Leiden clustering results exactly match due to the random
nature of the Leiden algorithm. Results can differ between R and Python and
after software updates despite setting a random seed.

10. For the Chromium PBMC dataset, to find the cluster marker genes, find-
Markers() in scran was used, with Wilcoxon rank sum tests, only testing up
regulations. The most highly ranked genes are those differentially expressed
in the current cluster and all other clusters (pval.type = "all"). The top
marker gene for each cluster is the one with the smallest p-value; there were
no ties in this case. The Python package reimplemented the scranmethod to
match the results. These parameters were chosen because they are similar to
Seurat conventions.

11. In spatial statistics performed on the k nearest graph in the Chromium PBMC
dataset, 𝑘 = 10 (not including self) was chosen to be consistent with Leiden,
so the spatial statistics can be better compared to Leiden clustering.

12. "W" style edge weights are chosen for the spatial neighborhood graph, i.e.
the rows of the binary adjacency matrix are normalized to sum up to 1. For a
k nearest neighbor graph where all nodes have the same degree, all the edge
weights are the same, so will not lead to a different Moran’s I. However W
style is chosen because it’s preferable for the Moran scatter plot, which was
performed in the vignette. Using W style, the slope of the line fitted to the
Moran scatter plot is Moran’s I [14]. W style is also the default across Voyager
(except that binary style is recommended for Getis-Ord Gi*) because it is the
default in spdep, it’s not unreasonable, and it simplifies the math for some
spatial statistics such as Moran’s I, Lee’s L, and MULTISPATI PCA.

13. For local Moran’s I, such as shown in Fig. 13.3, spdep and the PySAL esda
package have different defaults. In order for the results to perfectly match,
set mlvar = FALSE in the R implementation of Voyager, which is passed to
spdep, so both implementations divide by n-1 when computing the variance.

14. The R and Python implementations use the same palettes. Choice of the
palettes has been explained in the previous section. See Fig. 13.2 on color-
blindness simulations of the default palettes.
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These are defaults specific to the R package and website at present:

1. By default, the image, if present, is not plotted behind the geometries of Visium
spots or cells, because the geometries cover up much of the image, and the
image can distort color perception of the geometries. However, plotting the
image can be useful to visually relate a value in space to histology.

2. In neighborhood view ESDA, depending on how the spatial graph is defined,
sometimes there are cells that don’t have any spatial neighbors. The argument
zero.policy in spdep determines what to do with these singleton cells.
By default, in spdep, the global option is used, and when a global option is
absent, spdep throws an error when there are singletons. Voyager generally
follows the spdep default. However, in many examples, zero.policy is
set to TRUE where singletons can occur, such as in the correlogram when
some cells or spots don’t have higher order neighbors. When zero.policy
= TRUE, spatially lagged values of singletons are set to 0, while when it’s
FALSE, the spatially lagged values are NA. TRUE is chosen to silently drop
the singletons when spatially lagged values are needed without stopping the
computation for non-singletons.

3. In vignettes for image based single cell resolution datasets, we used k nearest
neighbor graph with 𝑘 = 5 for cell centroids, found with the KMKNN algo-
rithm in BiocNeighbors (v1.18.0). We chose 𝑘 = 5 because most real world
tessellations of the 2D plane are somewhere between a square (𝑘 = 4 rook
style) and hexagonal (𝑘 = 6) tessellation, and 𝑘 = 5 seems reasonable based
on visual inspection. Furthermore, for a larger dataset with over hundreds of
thousands of cells, the k nearest neighbor graph is much faster to compute
than most other types of neighbors, such as those that require triangulation.
Although with GEOS spatial indexing, the polygon contiguity graph is fast
to compute for larger datasets, given the imperfection of cell segmentation,
many cells that don’t appear contiguous in the polygons might in fact be phys-
ically touching, resulting into many false negatives in spatial neighbors and
many singletons. As a result, we did not use the polygon contiguity graph.
Inverse distance weighting is used since k nearest neighbors may or may not
be physically interacting so further cells have less weight. W style edge weight
normalization is used, for reasons mentioned above.
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Spatial data analysis methods used in the ESDA case studies
Here we briefly introduce spatial data analysis methods necessary to understanding
the ESDA case studies in Section 13.2 .

Moran’s I

Tobler’s first law of geography states that "Everything is related to everything else.
But near things are more related than distant things." [49]. This observation moti-
vates the examination of spatial autocorrelation. Positive spatial autocorrelation is
evident when nearby things tend to be more similar, such as that weather in Pasadena
and downtown Los Angeles (as opposed to the weather in Pasadena and San Fran-
cisco). Negative spatial autocorrelation is evident when nearby things tend to be
more dissimilar, such as squares on a chessboard. Spatial autocorrelation can arise
from an intrinsic process such as diffusion or communication by physical contact,
or result from a covariate that has such an intrinsic process, or in areal data, when
the areal units of observation are smaller than the scale of the spatial process [50].

Moran’s I is one of the most commonly used statistic of spatial autocorrelation,
defined as

𝐼 =
𝑛∑𝑛

𝑖=1
∑𝑛
𝑗=1 𝑤𝑖 𝑗

·
∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑤𝑖 𝑗 (𝑥𝑖 − 𝑥)

(
𝑥 𝑗 − 𝑥

)∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥)

2 , (13.1)

where 𝑤 is the number of spots or locations, 𝑖 and 𝑗 are different locations, or spots
in the Visium context, 𝑥 is a variable with values at each location, and 𝑤𝑖 𝑗 is a
spatial weight, which can be inversely proportional to distance between spots or
an indicator of whether two spots are neighbors, subject to various definitions of
neighborhood. Moran’s I is similar to the Pearson correlation between the value
at each location and the average value at its neighbors (but not identical, see [26]).
Just like Pearson correlation, Moran’s I is generally bound between -1 and 1, where
positive value indicates positive spatial autocorrelation and negative value indicates
negative spatial autocorrelation.

Local Moran’s I is defined as

𝐼𝑖 =
(𝑥𝑖 − 𝑥)

∑𝑛
𝑗=1 𝑤𝑖 𝑗

(
𝑥 𝑗 − 𝑥

)∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥)

2 /(𝑛 − 1)
, (13.2)
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an unnormalized and disaggregated form of Moran’s I, as the contribution of each
location to global Moran’s I.

MULTISPATI PCA

The Moran’s I expression above can be rearranged as

𝐼 =
1∑𝑛

𝑖=1
∑𝑛
𝑗=1 𝑤𝑖 𝑗

·
∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑤𝑖 𝑗 (𝑥𝑖 − 𝑥)

(
𝑥 𝑗 − 𝑥

)∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥)

2 /𝑛
, (13.3)

where the denominator is the maximum likelihood estimate (MLE) of the variance
of the data. Let 𝑧 denote the scaled and centered data, whose mean is 0 and variance
(using MLE, divide by 𝑛 instead of 𝑛 − 1) is 1. Also for simplicity, suppose the
spatial weights matrix 𝑊 is scaled so its rows sum to 1, so the denominator of the
first term becomes 𝑛. Then Moran’s I can be expressed as

𝐼 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑤𝑖 𝑗 𝑧𝑖𝑧 𝑗/𝑛, (13.4)

or using matrix notation, 𝐼 = z𝑇Wz/𝑛. Let Z denote a matrix whose columns
are scaled (divided by the standard deviation, making the variance 1) and centered
(subtract the mean, thus summing to 0) variables and whose rows are observations
such as cells in space. Then this expression of Moran’s I can be generalized to
multiple variables: M = Z𝑇WZ/𝑛. The diagonal of M is Moran’s I coefficients of
the variables in Z. We can find the eigenvalues and eigenvectors (i.e. diagonalize)
of this matrix as a spatially informed form of PCA proposed by Wartenberg in 1985
[51].

This is analogous to PCA, in which the covariance matrix X𝑇X/𝑛 is diagonalized
where each variable (column) in X is centered. In non-spatial PCA, the first eigen-
vector (principal component, or PC), which has the largest eigenvalue, finds the
linear combination of the original variables that explains the most variance. The
eigenvalue is the amount of variance explained. The second PC (PC2) is found
by maximizing the variance again provided that PC2 is orthogonal to PC1, and so
on. Because the covariance matrix is symmetric and positive semidefinite, all of
its eigenvalues are real and non-negative, and it has orthonormal eigenvectors, i.e.
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orthogonal to each other and have length or more generally norm 1. However, the
interpretation of the eigenvalues and eigenvector of M is not explored in reference
number [51].

The 1985 Wartenberg method summarized above was generalized for the statistical
triplet of multivariate data analysis in the duality diagram paradigm in reference
number [27] and implemented in the adespatial R package; the interpretation of
the eigenvalues described below was also derived. With adespatial, the spatial
information can not only be used for PCA but also for other multivariate analyses with
the duality diagram such as correspondence analysis. However, for now, Voyager’s
much faster implementation of MULTISPATI only applies to PCA. See [52] for an
introduction to the duality diagram.

Let X be a data matrix with 𝑛 rows and 𝑝 columns with observations in rows and
variables in columns, and assume that each variable is centered. MULTISPATI
PCA seeks to find vector u1 of norm 1 that maximizes𝑄(u1) = u𝑇1 X𝑇WXu1/𝑛. Let
a1 = Xu1. Then MULTISPATI PCA maximizes𝑄(u1) = a𝑇1 Wa1/𝑛. Remember the
matrix expression of Moran’s I, 𝐼 = z𝑇Wz/𝑛. Because X is centered, all columns
sum to 0, so 1𝑇X = 0𝑇 , where 1 is a vector of 𝑛 1’s and 0 is a vector of 𝑝 0’s. Hence
1𝑇a1 = 1𝑇Xu1 = 0, meaning that a1 is also centered. Then we need to scale a1 so
its variance is 1 by dividing it by its standard deviation, which is square root of the
variance. The MLE of variance is

∑𝑛
𝑖=1 𝑎

2
1𝑖/𝑛 = ∥a1∥2/𝑛, so 𝐼 (a1) = a𝑇1 Wa1/∥a1∥2.

Then 𝑄(u1) = 𝐼 (a1)∥a1∥2/𝑛. Hence for PC1, MULTISPATI PCA maximizes the
product of Moran’s I of the projection of the observations onto PC1 and variance
explained by PC1.

Just like in non-spatial PCA, these maximizations are achieved by diagonalizing
the spatially weighted covariance matrix; the eigenvalues are 𝑄(u𝑖). Because W
doesn’t have to be symmetric, X𝑇WX doesn’t have to be symmetric. So in practice,
it’s preferable to diagonalize the symmetric matrix H = 1

2𝑛X𝑇 (W𝑇 + W)X instead,
which gives the same eigenvalues as X𝑇WX/𝑛; the eigenvalues are guaranteed
to be real when computed and the eigenvectors are orthonormal. However, since
asymmetric real matrices don’t have orthonormal eigenvectors, the eigenvectors of
H are different from those of X𝑇WX/𝑛. The eigenvectors can be interpreted as if a
symmetrized spatial weights matrix (W𝑇 + W)/2 is used for the spatially weighted
covariance matrix. The effects of different choices of W on the results remains to
be investigated.
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Figure 13.5: See Section 13.7 for caption.

ESDA case studies
Here we show some use cases of ESDA in spatial and non-spatial single cell tran-
scriptomics and potential insights gained from the analyses. First, we consider
a mouse skeletal muscle Visium dataset [53], two days after notexin injury (Fig.
13.5a-c). In the H&E image, the region with many leukocyte nuclei is the injury
site, the darker red strip and blocks are muscle tendon junctions, and the remain-
ing pink regions are myofibers (Fig. 13.5a). When the library size (nCounts) per
spot among spots that intersect the tissue is plotted in space, we find that different
histological regions have different library sizes. For example, the muscle tendon
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junctions tend to have smaller library sizes than myofibers and some of the injury
site, and regions with tightly packed myofibers (top and bottom left) tend to have
larger library sizes than the region with larger myofibers surrounded by leukocytes
(right). This confirms the finding that in spatial transcriptomics, library size con-
founds biology and should not be treated as a technical artifact as commonly done
for scRNA-seq [54].

Further evidence is that library size in the tissue has stronger spatial autocorrelation
than outside the tissue, as shown in a more positive Moran’s I (Fig. 13.5b). The
library size values are permuted in space for spots that intersect the tissue and those
that don’t, and Moran’s I is computed for these permutations to estimate a null
distribution. The density plot in Fig. 13.5b shows the null distribution of permuted
Moran’s I from spots intersecting tissue minus that from spots not intersecting tissue,
and the vertical line shows the actual difference, which is much larger than all the
499 simulated values. While there is no one to one correspondence between Visium
spots and myofibers, with a myofiber segmentation, geometric operations can find
the myofibers that intersect each Visium spot and their areas. QC metrics library
size and number of genes detected (nGenes) in this dataset are related to myofiber
size; spots on larger myofibers tend to have more genes detected given the same
library size than spots on smaller myofibers (Fig. 13.5c).

Next we demonstrate MULTISPATI PCA and biological relevance of negative spatial
autocorrelation in a mouse liver MERFISH dataset from the Vizgen website (Fig.
13.5d-f). While non-spatial PCA maximizes variance explained by each principal
component (PC) given that the PCs are orthogonal, MULTISPATI PCA maximizes
the product of variance explained and Moran’s I, which is the eigenvalues (Fig.
13.5d). Positive eigenvalues mean that the PCs not only explain more variance but
also are spatially coherent (large positive Moran’s I). Negative eigenvalues mean
that the PCs not only explain more variance, which is non-negative, but also have
negative spatial autocorrelation, i.e. nearby values tend to be more different. In
this dataset, the positive eigenvalues show an elbow as in non-spatial PCA, and
there is one substantial negative eigenvalue (Fig. 13.5d). In non-spatial PCA, the
PCs are not spatially structured, until PC5 which picks up zoning (Fig. 13.6b).
PC1 highlights Kupffer cells (Cdh5, Fig. 13.6a) and endothelial cells (Egfr, Fig.
13.6a), and PC2 also highlights endothelial cells. In contrast, because MULTISPATI
PCA also maximizes Moran’s I, zonation is picked up by the first 2 PCs. PC1 is
periportal and PC2 is pericentral (Fig. 13.6e). This may complement existing
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Figure 13.6: See Section 13.7 for caption.

methods to find spatially variable genes (maximize Moran’s I) that are also more
likely to be biologically relevant (maximize variance explained). Furthermore, the
more spatially coherent PCs can be used for clustering to find more spatially coherent
clusters, complementing clusters found with non-spatial PCs.

Negative spatial autocorrelation is one of the most neglected topics in spatial data
analysis [55], as there are many more examples of positive than negative spatial au-
tocorrelation. Negative spatial autocorrelation can arise from competition between
neighbors (see [55]), or from functional roles played by spatial contacts between dif-
ferent types of entities. In this dataset, the latter seems to be the case; the PC with the
most negative eigenvalue separates endothelial cells (Kdr) and Kupffer cells (Cdh5)
from hepatocytes (Hsd3b3, Fig. 13.5e-f). Existing methods of spatially informed
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dimension reduction [56, 57, 58] and methods to find spatially variable genes [59,
60, 61] tend to only consider positive spatial autocorrelation. This example here
shows that at the single cell level, negative spatial autocorrelation is relevant to
biology, and should be further investigated, as the cells—unlike Visium spots and
administrative boundaries—are meaningful and non-arbitrary units of observations
and of biological function.

Finally, we note that neighborhood view spatial methods can be applied to neigh-
borhood graphs in gene expression space rather than histological or geographical
space. We applied spatial statistics to QC metrics and gene expression in a 10X
Chromium peripheral blood mononuclear cells (PBMC) dataset, using the k nearest
neighbors graph in PCA gene expression space as the "spatial" neighborhood graph
(Fig. 13.5g-h). Moran scatter plot of library size shows further evidence that library
size is confounded by biology even in non-spatial data (Fig. 13.5g). In a Moran
scatter plot, the x axis is the value of a variable at each cell, and the y axis is spatially
lagged value (i.e. sum of values from spatial neighbors weighted by edge weights of
the spatial neighborhood graph). When the adjacency matrix of the spatial neigh-
borhood graph is row normalized, it is shown in14 that the slope of the line fitted to
the scatter plot is global Moran’s I, while the scatter plot shows local heterogeneity
in spatial autocorrelation. Here, cluster 5 (activated T cells) tends to have larger
library sizes and stronger spatial autocorrelation in library size than average (Fig.
13.5g).

Local Moran’s I is a locally disaggregated form of Moran’s I, showing contribu-
tion of each cell to Moran’s I. More positive values indicate neighborhoods more
homogeneous in the variable of interest, and more negative values indicate more
heterogeneous neighborhoods. We computed local Moran’s I (𝐼𝑖) for the top marker
gene of each cluster (Section 13.4). The marker gene has much higher 𝐼𝑖 in cells in
the cluster of interest than cells in other clusters, except for clusters 3 and 6 whose
top marker genes don’t clearly distinguish these clusters from most other clusters
and don’t seem to have cell type specific functions (Figs. 13.5h, 13.6c). When the
marker gene is very specific, cells in other clusters have 𝐼𝑖 tightly clustered around
0, such as for cluster 4 (B cells) and cluster 8 (platelets). When the marker gene
is not very specific, cells in other clusters that also express the marker gene often
also have 𝐼𝑖 higher than clusters not expressing the genes (e.g. cluster 1 T cells
and cluster 7 natural killer cells and cytotoxic T cells for IL32 and PRF1; cluster 5
activated T cells, cluster 2 monocytes, and cluster 4 B cells for HLA-DRB1; but this
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doesn’t apply to CTSS, marker gene of cluster 2 which is also somewhat expressed
in clusters 4 and 5, see Fig. 13.6c). We also see a wide range of 𝐼𝑖 values for
cells in the clusters of interest (Fig. 13.5h). As Leiden clustering is also based on
the k nearest neighbor graph and marker genes are typically found by performing a
differential expression test on one gene at a time, 𝐼𝑖 on cluster marker genes can shed
light on how well Leiden clusters match the k nearest neighbor graph and quality of
the marker genes. The downside is that 𝐼𝑖 can be computed on only one gene at a
time while a combination of multiple genes may better characterize the clusters.

13.3 Discussion
Spatial -omics has come of age. Software packages for data visualization, general
EDA frameworks, and more specialized tasks have proliferated in this field, but
much of the decades of ESDA research has not been systematically utilized. As
an EDA framework, Voyager is somewhat akin to Seurat, squidpy, Giotto, and
semla, but Voyager is unique in systematically bringing decades of ESDA research
to spatial -omics, with a consistent user interface to reduce the learning curve. By
reusing the SCE infrastructure and ecosystem, Voyager complements many other
spatial and non-spatial data analysis methods. The SFE class extends SCE and
SPE with efficient tools from the geospatial field, to represent and operate on vector
geometries and raster images. Voyager has a comprehensive, reproducible, and easy
to navigate documentation website with tutorials on data from various technologies
and ESDA methods, with references for further reading and considerations from
the ESDA tradition. With the compatibility tests to make sure the R and Python
implementations give consistent results for core functionalities and transparency on
defaults, the Voyager project also seeks to bridge the R vs. Python divide in the single
cell and spatial -omics tool where hidden defaults and undocumented divergent
implementations cause language preference to inadvertently lead to different results
that may affect biological conclusions. The case studies show that ESDA can bring
novel insights on biology and the process of data analysis. With the rich ESDA
tradition at their fingertips, researchers in spatial -omics may know more about what
they can do with the data and go further down the rabbit hole of curiosity in the
spirit of EDA.

"Tradition is the living faith of the dead, traditionalism is the dead faith of the
living."[62] While the ESDA tradition largely developed prior to the rise of spatial
-omics can help us gain insights from the spatial aspects of the data, new methods
that take into account the peculiarities of spatial -omics data, such as the larger
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size, case and control and multiple biological replica, non-normal distribution of
the data, and three-dimensional data from thick slices and multiple sections will
take us even further. Moreover the ESDA tradition continues to evolve. Voyager is
designed to be extensible by the user and developer to use the new methods with a
consistent user interface. Future versions of Voyager will address these peculiarities
of spatial -omics data, such as adapting some spatial methods to 3D and finding
better ESDA methods for multiple biological replica and across case and control.
While the SCE infrastructure already allows for on-disk gene count matrices with
DelayedArray, the geometries and spatial analysis results are currently in memory
but can get very large. A future version should also allow for on-disk geometries
and spatial results. Also, while we have documented the defaults and reasons why
we chose them so hidden defaults most users are unaware of don’t inadvertently
lead to different results in the R and Python implementations, the reasons are often
convention in the field and spdep defaults. Further research should scrutinize effects
of these parameters and find better defaults, such as the type of spatial neighborhood
graph and edge weights. The problem of choosing a spatial neighborhood graph
has long been studied and some methods to find a graph based on the data have
been devised61, but they are not currently supported by spdep and may or may
not be suitable for spatial -omics data. Finally, while we have chosen colorblind
friendly default palettes to make Voyager a little more accessible, future research
should be conducted on accessibility of spatial -omics data analysis, such as in data
sonification.

13.4 Methods
All R plots in the figures were made with R 4.3.0 with Apple vecLib BLAS,
Bioconductor 3.17, Voyager 1.2.3, SpatialFeatureExperiment 1.2.1, scater
1.28.0, spdep 1.2.8, Seurat 4.3.0, sf 1.0.12, and ggplot2 3.4.2, on MacOS
Ventura 13.3.1, 2.3 GHz Dual-Core Intel Core i5, 8 GB RAM. R package profvis
0.3.7 was used to profile time and memory usage by lines of code in the benchmarks,
and bench 1.1.2 was used for the benchmarks over different numbers of cells. When
comparing Seurat vs. scanpy and the R and Python implementations of Voyager,
the Python code was run through reticulate (v1.28) in RStudio. Python 3.10 and
scanpy 1.9.3 were used. Multipanel plots were assembled with patchwork 1.1.2
when all panels are R plots, and were otherwise assembled in LibreOffice Draw.
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Spatial methods
At present, all neighborhood view spatial methods are implemented in spdep and
wrapped by Voyager, except for Lee’s L which has a more efficient implementation
in Voyager. Defaults follow thos in spdep. All distance view spatial methods
are implemented in gstat and wrapped by Voyager. Variogram model fitting is
implemented in automap, which is a user-friendly wrapper of gstat that tries a
number of different models and selects the one with the best fit. Voyager has a more
efficient implementation of MULTISPATI PCA which is originally implemented in
adespatial, thus not importing adespatial.

Compatibility tests
Everything in the two core vignettes other than the plots themselves are subject
to compatibility tests to see if the R and Python implementations of Voyager give
the same results for core functionalities. This is typically anything that gives nu-
meric output, such as PCA and Moran’s I results. The plots can’t be quantitatively
and automatically compared because of the different default styles and mechanisms
of ggplot2 and matplotlib; visual similarity would suffice. The "epsilon", or
numeric differences that can be accounted for by machine double precision, is
sqrt(.Machine$double.eps) in R. To compare PCA eigenvectors (gene load-
ings), cosine difference is used to geometrically compare the vectors, which is
implemented as the magnitude of difference between the cosine of the angle be-
tween the two vectors and 1, i.e. cosine of 0 and 180 degrees; 180 degrees because
the eigenvectors can be flipped and remain equivalent PCA results. This comparison
was performed to each of the first 50 PCs individually for Fig. 13.3. To compare
the proportion of variance explained, the absolute value of the difference was used.

Website build
The R Voyager documentation website is built with pkgdown on GitHub Actions,
which builds function references and vignettes from the R package source code.
All imported and suggested packages are installed on a fresh machine on the cloud
and all vignettes are run on the cloud to be rendered, to ensure that they are
reproducible. The Google Colab notebooks are automatically generated from the R
Markdown vignettes with another GitHub Action. Because Bioconductor limits the
installed size of the package, which includes the rendered vignettes, the vignettes
on the documentation website are in a separate documentation branch from the
main and devel branches that sync with Bioconductor, while a shorter vignette is
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on Bioconductor. Also, there are packages suggested in the documentation branch
but not the main branch, as while they are used in vignettes on the website, they are
not used on the Bioconductor vignette. The code in the documentation branch is
synced with code from the main branch by merging from the main branch, but the
documentation branch is never merged into the main branch.

Performance improvements
In the benchmarks, a mouse liver MERFISH dataset from the Vizgen website with
over 390,000 cells after QC was used. After removing cells with high proportion of
transcripts from blank barcodes and the blank barcodes, the dataset was subsetted
with bounding boxes of different sizes to produce datasets of different sizes while
preserving spatial relationships among cells. Then the datasets of different sizes
were used in the benchmarks.

K nearest neighbors with inverse distance weighting

The spdep implementation of distance based edge weights is slow because while
spdep uses an efficient implementation of k nearest neighbors and distance neigh-
bors in dbscan, it discards the distances between neighbors returned by dbscan.
As a result, spdep has to re-compute the distances to compute the edge weights
(Fig. 13.8). The implementation in SFE uses BiocNeighbors to find the k nearest
and distance based neighbors, allowing users to choose from a number of different
algorithms. Then the distances are saved for edge weight computations, skipping
the most time consuming step. While dbscan is not much slower than BiocNeigh-
bors when finding the neighbors (Fig. 13.8a-b), we found that not recomputing the
distances speeds up finding the spatial neighborhood graph from 8 to over 30 times
and using over 25 times less memory (Fig. 13.7a-b).

MULTISPATI PCA

The adespatial implementation of MULTISPATI PCA uses base R eigen de-
composition, which always computes all eigenvalues and eigenvectors. Then
adespatial discards the remaining eigenvectors when the user specifies a small
number of eigenvectors, which is typical in single cell and spatial -omics. Fur-
thermore, adespatial in fact performs the eigen decomposition twice. The first
time is in dudi.pca, which performs non-spatial PCA, whose results are passed
to the multispati function, which takes some weights and the original data but
not the eigenvalues or eigenvectors from the dudi.pca output, and then performs
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Figure 13.7: See Section 13.7 for caption.



412

Figure 13.8: See Section 13.7 for caption.
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eigen decomposition of the spatially weighted covariance matrix (Fig. 13.8c). The
implementation in Voyager uses RSpectra for a more optimized implementation
of partial eigen decomposition of the spatially weighted covariance matrix, only
computing the eigenvectors the user requested and only once, hence avoiding a lot
of unnecessary computation, speeding up computation by 2 to 20 folds, and using
over 5 times less memory (Fig. 13.7c-d).

Lee’s L

The spdep implementation of Lee’s L computes both local and global Lee’s L for
one pair of genes at a time. As spatial transcriptomics data has hundreds (smFISH-
based) to thousands of genes (sequencing based), Voyager’s implementation uses
matrix operations to make it more efficient to compute Lee’s L for a large number of
genes than iterating through each pair. This speeds up computation over 800 folds
and using 100 times less memory, where one thread was used to iterate through
all pairs of genes in the dataset for the spdep implementation (Fig. 13.7e-f). The
inefficiency of spdep’s implementation is not only iterating through the pairwise
combinations, but also a less efficient way to compute the spatially lagged values
and the sum of edge weights (13.7e). Iterating through the pairs with the spdep
implementation is so slow that it was only run for the smallest subset with 105 cells
in the benchmark.

Moran bounds

Bounds of Moran’s I given a spatial neighborhood graph can be computed from
the largest and smallest eigenvalues of the double centered adjacency matrix of the
graph [21]. The adespatial implementation of the function finding Moran bounds,
all eigenvalues are computed. In Voyager’s implementation, RSpectra is used to
find only the largest and smallest eigenvalues of the matrix, without computing
eigenvectors or the other irrelevant eigenvalues, speeding up computation by 4 folds
and using 4 times less memory (Fig. 13.7g-h). While much of the time was spent in
the eigen decomposition in the adespatial implementation, most of the time was
spent on double centering in the Voyager implementation (Supplementary 13.7g-h).
Due to double centering, a dense matrix with as many columns and rows as the
number of cells is produced. Unless this can be avoided, this computation consumes
a lot of memory for larger datasets. As a result, neither implementation scaled
beyond around 6000 cells.
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ESDA case studies
Mouse skeletal muscle Visium data

Space Ranger processed data was downloaded from GEO accession GSE161318,
sample "Vis5A", 2 days after notexin injury. Myofiber segmentation was performed
manually with the LabKit ImageJ plugin, exported as TIFF raster, and converted
to polygons with terra. Redundant vertices of the polygons were removed when
the polygons were simplified with rmapshaper (v0.4.5). Visium spot polygons
were found from the centroids and spot diameters in pixels in the full resolution
image from the Loupe image alignment JSON file. The tissue was segmented by
thresholding the H&E image and removing small pieces. Then the thresholded mask
was converted into polygon with terra, which was used to find spots intersecting the
tissue with sf. The gene count matrix and polygons were made into an SFE object
available to download from the SFEData package. The sf package was used to find
myofiber areas and which myofibers intersect each Visium spot polygon. Only the
full resolution H&E images were available on GEO; the image was downsampled
to fit into a 1024 × 1024 pixel box for the vignettes and examples. Moran’s I
permutation tests were performed on nCounts for spots intersecting the tissue and
spots not intersecting the tissue separately, with 499 permutations. The values are
permuted in space. Then the simulated Moran’s I’s from spots not intersecting tissue
were subtracted from those from spots intersecting tissue to form a null distribution
of this difference. The observed value is the observed Moran’s I from spots not
intersecting tissue subtracted from that of spots intersecting tissue.

Mouse liver MERFISH data

The gene count matrix, cell metadata, and cell segmentation polygons were down-
loaded from Vizgen’s website, and formed into an SFE object, which is available in
the SFEData package. The scuttle package (1.10.0) was used to remove low quality
cells. Proportion of transcripts attributed to blank barcodes was computed and log2
transformed, and cells with log proportion more than 3 median absolute deviations
(MADs) higher than the median were deemed low quality and removed. Then the
filtered gene count matrix was normalized by logNormCounts() in scater, and
the genes are scaled and centered before performing non-spatial PCA with IRLBA
through scater, and MULTISPATI PCA. MULTISPATI PCA requires a spatial
neighborhood graph; see the Compatibility Tests section for reasons behind the
parameters chosen.
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Chromium PBMC data

The filtered 5k PBMC NextGem v3 data, processed with Cell Ranger 3.0.2, was
downloaded from the 10X Genomics website and loaded into R as an SCE object,
which is then converted to SFE for "spatial" analyses. Cells with at least 20% of
UMIs from mitochondrially encoded genes were removed. Highly variable genes
(HVGs) were found with the scran method, but without the Lowess fit. The 2000
genes with the highest biological component were used for PCA. The data was
normalized with logNormCounts() in scater, and the genes were scaled and
centered before performing PCA with the IRLBA algorithm. Based on the variance
explained elbow plot, the 10 PCs were used to build a k nearest neighbor graph,
with 𝑘 = 10 (not including self). For Leiden clustering, 𝑘 = 10 was also used
so the clustering results can be compared to the "spatial" results. The objective
function is "modularity" and the resolution parameter is 0.5. For the "spatial"
neighborhood graph, inverse distance weighting and W style normalization were
used, for reasons similar to those in k nearest neighbor graphs in histological space
explained in the Compatibility Tests section. Differential expression is described in
the Compatibility Tests section.

13.5 Data and code availability
The mouse skeletal muscle Visium dataset and the mouse liver MERFISH datasets
are available in the SFEData R package. The GitHub repositories and websites
related to this paper are linked below:

Voyager R package

SpatialFeatureExperiment

SFEData

Voyager Python package

Voyager R documentation website

Voyager Python documentation website

Code to reproduce figures
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13.7 Figure legends
Figure 13.1: Schematic of the Voyager framework. Voyager brings ESDA meth-
ods initially developed for geospatial data to spatial -omics, with a consistent user
interface for different methods. Voyager is based on the SpatialFeatureExperiment
object, which uses sf and terra to extend SingleCellExperiment and SpatialExper-
iment. Voyager implements plotting functions for gene expression, cell attributes,
and spatial analysis results. The documentation website has vignettes that demon-
strate ESDA on data from multiple spatial -omics technologies, including Visium,
Slide-seq, Xenium, CosMX, MERFISH, seqFISH, CODEX, and Chromium. The
website is built automatically with GitHub Actions and pkgdown for reproducibil-
ity, and Google Colab notebooks are automatically generated from the vignettes.
There is a Python implementation which uses PySAL and GeoPandas for the ESDA
and geometry operations. Compatibility tests are used to make sure that the R and
Python implementations give consistent results for core functionalities.

Figure 13.3: Comparisons between Seurat and scanpy PCA, and between Voy-
ager R and Python for PCA and Moran’s I. a, Comparison of Visium spot
embeddings in the first 2 PCs from Seurat and scanpy with default parameters. The
lines connect corresponding spots in Seurat and scanpy. b, As in A, but for Voyager
R and VoyagerPy, with parameters stated in this section. c, Cosine distances between
the first 20 PCA eigenvectors (gene loadings) from Seurat and scanpy (yellow), and
from Voyager R and Python (blue). The dashed line is the magnitude that can
be explained by machine double precision. The text part of the line is somewhat
smoothed for readability but should not affect interpretation. d, Absolute values
of differences in proportion of variance explained by each of the top 20 PCs. e,
Moran’s I from VoyagerPy vs. Voyager R. The blue line is y = x, showing that the
results are consistent. f, Same as E but for local Moran’s I for gene S100a5. g,
Plotting the local Moran’s I values in space, with the H&E image behind the spots,
from Voyager R (top) and VoyagerPy (bottom).

Figure 13.2: a, All palettes used in the Voyager R package, full color vision. b,
Deutanomaly perception of the palettes. c, Protanomaly perception of the palettes.
d, Tritanomaly perception of the palettes. e, Desatruated palettes. A dark theme is
implemented to better visualize data with a fluorescent image in the background. The
light and dark themes have different default palettes; in the light theme, darker color
denotes higher values as if staining, while in the dark theme, lighter color denotes
higher values as if glowing, so higher values stand out from the background. It is
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possible to simultaneously use two different palettes within the light or dark theme,
such as to color Visium spots by one palette and cell segmentation from the same
dataset with another in the same plot, but this should be used with caution. While
the different palettes within one theme are chosen to avoid similar colors as much
as possible, we do not suggest using two divergent palettes simultaneously, because
doing so can distort color perception of either palette. We also do not suggest people
with color vision deficiencies to use any two palettes simultaneously in one plot.

Figure 13.5: a, In a mouse skeletal muscle dataset, the total UMI counts, or library
size per spot (nCounts), are plotted in space. Only spots that intersect tissue are
plotted. The H&E image is plotted on the side as a reference. b, Simulated (density
plot) and observed (vertical line) difference between Moran’s I in nCounts of spots
that intersect tissue (in) and that of spots that don’t (out). c, Scatter plot of number
of genes detected per spot (nGenes) vs. nCounts, colored by mean area of myofibers
that intersect each spot. d, The 20 most positive and 20 most negative eigenvalues
from MULTISPATI PCA of a mouse liver MERFISH dataset. As other eigenvalues
were not computed, there’s a break after PC20 in this plot. e, A subset of the
MERFISH data showing a portal triad (near top right) and two central veins (left
and bottom right), with cell polygons colored by their projections into 2 PCs with the
most positive eigenvalues and the PC with the most negative eigenvalue ("PC40").
The first 2 PCs show zonation. f, The most positive and negative gene loadings for
PCs 1, 2, and "40". g, Moran scatter plot of nCounts in a 10X Chromium human
PBMC dataset. The spatial lags were computed with the k nearest neighbors graph
in PCA gene expression space. The line is least square fitted to the scatter plot. The
gray shade around the line is the 95% confidence interval of the fit. Contours show
point density. h, Histograms of local Moran’s I values per cell of top marker genes
of each cluster in the PBMC dataset, colored by cell cluster. The y axis (number
of cells per bin) is log transformed for better dynamic range. The histograms are
plotted as lines instead of bars to avoid overlapping bars from different clusters.

Figure 13.7: Benchmarks of time and memory use of the original implementa-
tions and the more efficient implementations in Voyager. a,b, K nearest neighbor
graph with inverse distance weighting (idw), with 𝑘 = 5, W style. c,d, MULTI-
SPATI PCA with 30 positive and 30 negative eigenvalues, using the same k nearest
graphs from a,b. e,f, Lee’s L for 347 genes. g,h, Finding bounds of Moran’s I given
spatial neighborhood graph (same as in a-b).

Figure 13.8: Screenshots from profiling original implementations (left column) and
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the more efficient implementations in Voyager (right column). Both implementa-
tions were run on the same dataset unless otherwise noted. a, Most of the time
is spent on re-finding distances between neighbors when using k nearest neighbors
(knn) in spdep with inverse distance weighting (idw). b, Voyager avoids this time
consuming step; the curve connects code in each implementation that finds the
knn. c, Much of the time is spent on preprocessing the data frame input in the
adespatial implementation of MULTISPATI PCA (“sweep” to scale and center,
and “apply” to compute spatial lag). Also note that eigen was called twice. d,
In the Voyager implementation, the direct input to the MULTISPATI function is a
matrix. Much of the time was spent on scaling and centering the matrix (sweep)
and computing the spatially weighted covariance matrix with matrix multiplication,
which are much faster than the preprocessing steps in adespatial. For this dataset
with around 1000 cells, time spent on partial eigen decomposition with RSpectra
was negligible so it didn’t show up in the profile. e, In spdep, much of the time
was spent computing the spatially lagged values (lag.listw) and computing the sum
of edge weights (lapply) when computing Lee’s L for each pair of features. f, In
Voyager, the listw spatial neighborhood graph is first converted to a sparse matrix so
it’s much faster to compute the sum of all non-zero entries and to compute the spatial
lags for many features at once with matrix multiplication. For the same 347 genes,
Voyager’s implementation run on 5785 cells was much faster than spdep’s imple-
mentation run on 105 cells in e. g, When finding Moran bounds with adespatial,
most of the time was taken up by finding all the eigenvalues even though only the
largest and smallest ones are needed. h, Most of the time and memory was spent
on creating the double centered matrix (sweep, transpose, and etc.) while time
spent finding the largest and smallest eigenvalues with RSpectra was negligible in
Voyager’s implementation of Moran bounds.

Figure 13.4: Comparisons of PCA results from Seurat and scanpy using the
same highly variable genes from Seurat. a, There’s no visible difference between
the Seurat and scanpy cell projections in the first 2 PCs. b, There are visible
differences between Seurat and scanpy cell projections in PC3 and PC4. The lines
connect corresponding cells from Seurat and scanpy. c,d, When not clipping the
scaled data in Seurat, there’s no visible difference between the Seurat and scanpy
cell projections in the first 4 PCs. e, Cosine differences in each of the top 50 PCA
eigenvectors between Seurat and scanpy. The dashed line is epsilon, or what can be
accounted for by machine double precision. f, Absolute differences in proportion of
variance explained by each PC in Seurat and scanpy. The differences are 5 orders of
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magnitude smaller without clipping than with default parameters. Without clipping,
the differences are also within epsilon after the first two PCs, indicating that Seurat’s
clipping default which differs from that of scanpy is causing the different PCA
results. e and f were made with the geomtextpath package v0.1.1.

Figure 13.6: a, Gene loadings of PCs 1, 2, and 5 from non-spatial PCA. b,
MERFISH cell polygons colored by cell projections in PCs 1, 2, and 5. c, Violin
plots of log normalized counts of the top marker gene of each Leiden cluster in the
PBMC dataset. d, Concordex heatmap for the PBMC Leiden clusters, made with
concordexR v1.0.0 [63]. High diagonal and low off diagonal values indicate high
clustering quality, or that the Leiden clusters reflect the k nearest neighbor graph
well, but cluster 6 has somewhat lower quality.
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