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ABSTRACT

Crystalline materials inevitably exhibit inelastic deformation when applied to large
enough loads. The behavior in this inelastic regime is a coupling of physics across
several length scales: from initiating as defects at the atomic scale, interacting with
crystal defects, and finally spanning multiple grains and influencing macroscopic
stress behavior. These length-scale interactions make predicting material response
an open challenge and an avenue for leveraging microscale physics for material de-
sign. This thesis examines developing physics-based and data-driven computational
models to capture complex inelastic behavior at appropriate length scales.

First, we present a mesoscale model for capturing deformation twinning physics
at the polycrystal scale. Mechanical twinning is a form of inelastic deformation
observed in low-symmetry crystals, such as magnesium and other hexagonal close-
packed (hcp) metals. Twinning, unlike slip, forms as bands collectively across grains
with complex local morphology propagating into bulk behavior, drastically affecting
strength and ductility. We, thus, propose a model where twinning is treated using
a phase-field approach, while dislocation slip is considered using crystal plastic-
ity. Lattice reorientation, length-scale effects, interactions between dislocations and
twin boundaries, and twin and slip interactions with grain boundaries are all care-
fully considered. We first outline the model and its implementation using a novel
approach of accelerated computational micromechanics in a two-dimensional, sin-
gle twin-slip system, polycrystal case to demonstrate its capabilities. Finally, we
consider multiple twin-slip systems and conduct three-dimensional simulations of
polycrystalline magnesium. We summarize the insights gained from these studies
and the implications on the macroscale behavior of hcp materials.

The second part of the thesis focuses on data-driven models for capturing micro-
scopic history-dependent phenomena for multiscale modeling applications. The
multiscale modeling framework has seen increased usage over the last few decades
for its ability to capture complex material behavior over a range of time/length
scales by solving a macroscale problem directly with a constitutive relation defined
implicitly by the solution of a microscale problem. However, this implementation
is computationally expensive — needing to solve a microscale problem at each
point and time of the macroscopic calculation. In this study, we examine the use
of machine learning by utilizing data generated through repeated solutions of a
microscale problem to: (i) gain insights into the history dependent macroscopic
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internal variables that govern the response and (ii) create a computationally efficient
surrogate. We do so by introducing a recurrent neural operator, which can provide
accurate approximations of the stress response and insights into the physics of the
macroscopic problem. We illustrate these capabilities on a laminate composite and
polycrystal made of elasto-viscoplastic materials, summarize insights on the learned
internal variables, and accuracy of stress predictions.
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C h a p t e r 1

INTRODUCTION

1.1 Inelastic behavior of metals
Metals subjected to small forces respond elastically — upon removal of the force, the
metal recovers its original shape. However, larger loads lead to inelastic deforma-
tions involving permanent (irrecoverable) shape changes. Such inelastic deforma-
tions significantly affect engineering materials’ stress response and ultimate failure
[31, 56]. The observed macroscopic inelastic response of metals is heavily dictated
by complex interactions of smaller scale physics [35, 137]. Firstly, different inelastic
deformations initiate through nucleation of crystallographic defects, such as dislo-
cations or deformation twinning, which depend on the crystal structure for relative
activation thresholds. Secondly, dislocations, twins, or other defects create strain
localization that interacts with other preexisting defects such as vacancies, grain
boundaries, or dislocations and twins themselves. Lastly, the resulting collection
of interacting crystal imperfections leads to stress concentrations, local hardening,
and further inelastic strains across the single-grain and polycrystal scale. Thus, the
resulting material behavior heavily depends on microscale crystal structure, texture
information, strain history, and loading conditions, requiring an understanding of
defects in crystalline materials and their connection to controllable factors in metals
to better tailor materials for complex engineering loading conditions. The two main
inelastic deformation mechanisms of importance for this thesis are dislocation slip
and deformation twinning, which encompass a wide range of complex behavior
observed in engineering materials.

1.1.1 Dislocation slip
The plastic deformation most commonly observed in metals occurs through the ac-
cumulated motion of dislocations. Dislocations are linear defects, where a portion
of the lattice slides relative to another (seen in Figure 1.1 (a) – (c)), and nucleates
in order to accommodate large macroscopic stress [137]. The lattice translation
occurs through the breaking and reforming of bonds, leading to a permanent de-
formation confined to specific slip directions and planes. The directions associated
with dislocation slip are along densely packed directions/planes since the threshold
for reforming bonds is lowest in these directions. Thus, the directions and nucle-



2

crystal structure slip plane slip direction
face centered cubic {111} ⟨110⟩

body centered cubic
{110} ⟨111⟩
{112} ⟨111⟩
{123} ⟨111⟩

hexagonal close packed
{0001} ⟨112̄0⟩
{11̄00} ⟨112̄0⟩
{112̄2} ⟨1̄1̄23⟩

Table 1.1: Dislocation slip directions and planes of various common crystal struc-
tures [82].

ation thresholds for dislocation slip depend on the crystal structure, with the slip
planes/directions (given using Miller indices) in a few crystal structures shown in
Table 1.1.

The reforming of bonds in a dislocation slip means that a single defect occurs at
atomic scales. The accumulation/motion of several dozens to hundreds of these
defects form slip systems (or slip bands) that appear at the single crystal scale
[1, 4, 8, 18, 21, 81, 100, 101]. For example, using high-resolution SEM, slip
bands can be found inside a single grain, Figure 1.1 (d) [10]. The interaction
of several slip systems forms dislocation patterns at the sub-grain scale, which
form heterogeneous strain patterns that interact with other defects inside a crystal.
Finally, at the polycrystal scale, the collection of different crystal orientations and
slip’s directional dependence leads to differing dislocation patterns across multiple
grains. Figure 1.2 depicts the hierarchy of length-scales for plasticity, from the
nucleation of discrete dislocations at the atomistic scale to the presence of slip
bands/patterns across single and multiple grains.

Observed macroscopic inelastic behavior, such as yielding or strain hardening of
metals, occurs through the motion of several (often hundreds or more) of these
dislocation slips coupled with their interactions with lattice defects or impurities at
several length scales. For example, the yielding of a metal is the nucleation and
motion of several new dislocations across a large portion of the material. While
hardening effects such as grain refinement, solid solutions, precipitation, or cold
working, work to impede the movement of dislocations by introducing defects (in
the form of grain boundaries, impurities, or dislocations) where significant stresses
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Figure 1.1: Dislocation slip. (a) – (c) Dislocation slip motion through a crystalline
material with red dislocation showing slip plane normal and slip direction — follow-
ing [137]. (d) Slip band motion and arrest at a grain boundary [10]. (e) Hall-Petch
effect — yield stress dependence on grain size (𝐷) [75, 147]. Figures (d) and (e)
are adapted (with permission) from [10, 147].

Figure 1.2: Length-scale of dislocation slip. From left to right atomistic view of
a single dislocation slip, several dislocation slips forming a slip band, slip bands
creating strain heterogeneity inside a single crystal, and collection of slip bands
across polycrystal domain.
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crystal structure twin plane twin direction twinning shear
face centered cubic {111} ⟨112⟩ 0.707
body centered cubic {112} ⟨111⟩ 0.707

hexagonal close packed
{101̄2} ⟨1̄011⟩ 0.129
{101̄1} ⟨1̄012⟩ 1.066

Table 1.2: Twin directions, planes, and shear magnitude of various common crystal
structures [49].

are necessary to allow further dislocation propagation [13, 137]. Figure 1.1 (d)
shows examples of the pinning of dislocation slip bands at a grain boundary, and
Figure 1.1 (e) shows the effect grain size (known as the Hall-Petch effect) has on the
material yield stress and hardening [74, 133].

1.1.2 Deformation twinning
Deformation twinning is an alternative inelastic deformation that occurs profusely
in low-symmetry metals such as hcp magnesium or zirconium, where dislocation
slip cannot fully activate due to high nucleation thresholds [118]. Despite seeming
similar to dislocation slip, deformation twinning has several differences creating
unique material responses. Twinning is a planar defect that occurs from the coordi-
nate shearing of a portion of the lattice to create an identical but rotated, “twinned”
lattice, see Figure 1.3 (a). Like slip, twinning is confined to specific shear directions
and twin planes that are crystal structure dependent and well tabulated for various
crystalline materials; see Table 1.2 for a few examples of twinning shear magnitudes
and twin planes/directions given in Miller indices.

The nucleation of deformation twins occurs at the atomic scale where preexisting
dislocations, either inside the lattice [39, 51, 84, 118, 121, 135] or at grain boundaries
[17, 22, 25], dissociate into twin partials. These twin partials form into a sub-micron
size twin band whose boundaries propagate under stress inside a single grain.
Eventually, the twins span the entire crystal, terminating at grain boundaries where
they can promote twin transmission into neighboring grains. Finally, twin bands can
be seen several microns thick at the polycrystal scale, spanning multiple grains. For
example, Figure 1.3 (b) shows electron-back scattering diffraction (EBSD) scans of
an hcp zirconium specimen under compression, where different colors are related
to the relative orientation of the local lattice. From the EBSD scan, we can see
sharp, bright twin bands present within and across multiple grains [103]. These
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Figure 1.3: Deformation twinning. (a) Schematic showing twin reorientation of
a lattice and a slip system (⊥) rotation across the twin plane. (b) Electron back-
scattering diffraction (EBSD) orientation mapping of zirconium under compression
showing twin bands [103]. (c) Twinning frequency versus grain area size showing
Hall-Petch effect for twinning [23]. (d) Tension-compression asymmetry of AZ31B
magnesium alloy [73]. Figures (b) – (d) are adapted (with permission) from [23,
73, 103].

twin bands at the multiple grain scale introduce a twinning length scale that interacts
in polycrystal specimens ([15, 17, 20, 40, 152]). Figure 1.4 summarizes the different
length scales involved in the nucleation, propagation, growth, and transmission of
deformation twinning. Lastly, unlike slip, twinning has a specific sense, i.e., it can
nucleate under shear in one direction but not the other, leading to an asymmetric
response under loading. While dislocation slip is symmetric, it can nucleate due to
shear in either direction, leading to a contrast in material response dependent on the
presence of dislocation slip or deformation twinning.

Finally, the rich microscale of twin morphology interacts with local defects, lead-
ing to drastic material responses. For example, twinning is reversible in isolation,
known as detwinning; however, dislocation slip can pin twin bands preventing un-
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Figure 1.4: Length-scale of deformation twinning. From left to right atomistic view
of the formation of a twin plane, twin band propagating from grain boundary, twin
band encompassing length of a single grain, and complex twin transmission across
a polycrystal domain.

loading and leaving permanent deformation. Additionally, the presence of twinning
often promotes further slip activity. The sharp twin bands that often appear at
the polycrystal scale lead to a heterogeneous stress state, which, coupled with the
new rotated slip directions in the twin lattice, allow an increase in dislocation slip
propagation and possible nucleation of high threshold slip systems. These twin-slip
interactions increase inelastic deformations leading to a complex hardening response
that is heavily load dependent. For example, Figure 1.3 (d) shows the well-known
tension-compression asymmetry of an hcp magnesium alloy, which is a result of
complex twin-slip interactions [73]. Lastly, the hardening techniques used to delay
slip nucleation hold, to an extent, for preventing twin yielding. Figure 1.3 (c) shows
experimental data of twin nucleation frequency in magnesium grains, where we can
see a grain size dependence, i.e., smaller grains have decreased twins per grain [23].

1.2 Research objectives
Here we present two different research studies on developing accurate and efficient
computational models to capture inelastic deformations in crystalline materials at
the mesoscale. The goal of these studies are to create tools necessary for describing
complex physics that dictates material behavior at large-scales. The first study
focuses on modeling complex twin-slip interactions through detailed incorporation
of both dislocation slip and deformation twinning. For several decades, there has
been significant interest in correctly modeling and simulating twinning along with
plasticity due to the complex mesoscale interaction of these defects’ significant
effects on material response. However, the main challenge of modeling twinning
is its complex band morphology, lattice rotation, and asymmetry in nucleation,
which typical dislocation slip models need to include. Hence, we propose a detailed
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phase-field model for deformation twinning to adequately capture twin-specific
features, modify a classic crystal plasticity model to include dislocation slip coupling
with twin activity and utilize an operator splitting method for an efficient parallel
implementation of high-resolution polycrystal simulations. We split the study into
two parts. The first part aims to showcase the power of our phase field model to
efficiently illustrate detailed twin-slip interactions by conducting two-dimensional
single-crystal and polycrystal simulations with a single twin and slip system. The
second part of the work examines the extension of the model to three dimensions
with multiple twin and slip systems and illustrates its capabilities to capture realistic
twin morphology and interactions by applying it to hcp magnesium polycrystal
specimens.

The second study explores machine learning techniques for creating efficient and
accurate surrogate models of mesoscale inelastic simulations for application in mul-
tiscale modeling. Recent years have seen an increase in using multiscale modeling
to adequately capture complex microscale and mesoscale features that greatly affect
the behavior of materials. For example, consider a polycrystalline solid with grains
significantly smaller than the overall dimensions of the solid, subjected to macro-
scopic loads. Each grain is governed by dislocation slip (and possibly deformation
twinning) with heterogeneous strain and strain-rate distributions forming a complex
history dependence. Existing multiscale models/simulations methods can properly
couple microscopic unit cell and macroscopic simulations; however, these methods
are extremely computationally expensive since the unit cell problem must be solved
at each time step and material point. Hence, we examine the use of machine learning
neural networks, motivated by internal variable theories in continuum modeling, to
efficiently generate a surrogate model for the unit cell problem. We first illustrate
the method’s accuracy for a simple laminate elasto-viscoplastic composite and a
more complex two-dimensional polycrystal comprised of an elasto-viscoplastic ma-
terial. Secondly, we emphasize the insights the surrogate model can provide on
macroscopic internal variables governing the material response and their possible
connection to microscopic variables.

The remainder of the dissertation is organized as follows.

In Chapter 2, we first review common computational approaches for mesoscale
modeling of dislocation slip, deformation twinning, and both. This overview ex-
plains the crystal plasticity model utilized repeatedly throughout the dissertation
and the standard twin-slip model, pseudo-slip, which we contrast to our phase field
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approach.

In Chapter 3, we introduce the phase field approach to describe twinning in the
context of two-dimensional single twin-slip system materials. We use this simplified
case to explore and emphasize the details of the phase field model: twin-slip
interactions, nucleation barriers from twin surface energy, and texture influence
from twin asymmetry.

In Chapter 4, we extend the model developed in Chapter 3 to include multiple twin
and slip systems in three dimensions. In addition, we apply the model to polycrystal
magnesium specimens to emphasize the model’s capabilities to capture texture’s
and non-local twin-slip interaction’s influence on twin transmission and inelastic
response.

In Chapter 5, we outline the machine learning approach, coined recurrent neural
operator (RNO), to fit a surrogate model for a microscale unit cell problem. We
showcase detailed studies on the capabilities of the RNO for two problems: a
laminate elasto-viscoplastic composite and a polycrystal elasto-viscoplastic metal.
The first problem is a simpler case, where we can verify the RNO results and the fitted
internal variables. The second problem is much more involved and computationally
expensive, so we focus on showcasing the accuracy of the RNO model and hints
the fitted internal variables provide. We conclude with a discussion of findings and
further work explored.

In Chapter 6, we conclude with a summary of results and contributions toward
modeling inelastic deformations. Lastly, we provide some suggestions for future
work on the discussed approaches.
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C h a p t e r 2

OVERVIEW OF INELASTIC MODELS

This chapter briefly summarizes the common mesoscale computational models used
to describe dislocation slip, deformation twinning, and both twin and slip. These
approaches will serve as background information used throughout the dissertation.

2.1 Dislocation slip models: crystal plasticity
The computational approaches for describing dislocation slip in mesoscale simu-
lations have long been established and developed since the first implementations
by Peirce et al. [132]. These mesoscale approaches aim to predict the stress-
strain response and capture local strain localization and texture information as-
suming dislocation slip is the only plastic deformation. Here we will outline the
phenomenological-based variational approach, crystal plasticity, which allows in-
corporating grain, crystal structure, and dislocation information in a continuum
model.

2.1.1 Flow kinematics
The local deformation of the body will be governed by a deformation mapping y(x),
which maps the reference (stress-free) configuration to the deformed configuration
based on the loading conditions. Assuming finite strains, covered here since the
case of infinitesimal strains would be a linearized simplification, the deformation
gradient F = ∇y is multiplicatively decomposed, following Rice [140] and other
researchers [76, 106], into

F = F eF p, (2.1)

where, F e and F p denote the elastic and plastic (dislocation slip related) deformation
gradients. The plastic deformation gradient evolution is governed through the
spatial velocity gradient L = ∇v = ¤FF−1, which simplifying using the gradient
decomposition leads to,

L = L e + L p with L e = ¤F eF e, L p = F eL̃ pF e−1, and L̃ p = ¤F pF p (2.2)

where L e and L p are the deformed elastic and plastic contributions to the velocity
gradient and L̃ p is the plastic velocity gradient in the reference configuration.
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To complete the plastic deformation update, we define a plastic flow rule, moti-
vated by the fact that at the crystal scale, dislocation slip occurs along specific slip
directions and planes,

L̃ p = ¤F pF p =

𝑁∑︁
𝛼=1
¤𝛾𝛼b̂ p

𝛼 ⊗ n̂ p
𝛼 , (2.3)

where ¤𝛾 p
𝛼 is the plastic slip rate on system 𝛼, characterized by slip direction b̂ p

𝛼 and
normal n̂ p

𝛼 on 𝑁 slip systems [99, 140]. The additive decomposition of the flow
rule in equation 2.3 uses a linearization of the nonlinear plastic deformations along
different dislocation slips (F p = F p(𝑛)F p(𝑛−1) · · ·F p(1) where each F p(𝑘) represents
the plastic deformation associated with a single dislocation slip). For the context
of grain-scale simulations, the first-order approximation holds since the individual
deformations on slip systems are at the atomic scale. Lastly, note that since the slip
direction and normal are perpendicular, the flow rule keeps the plastic deformations
volume preserving,

tr
(
L̃ p) = 𝑁∑︁

𝛼=1
¤𝛾𝛼b̂ p

𝛼 · n̂ p
𝛼 = 0, (2.4)

as is commonly observed.

2.1.2 Energy and evolution equations
The variational approach to crystal plasticity relies on introducing energy and power
terms to compactly represent the stress equilibrium and evolution of the internal
variable, 𝛾 p. The Helmholtz free energy density is postulated in the following
additive decomposition,

𝑊 (F e, 𝜖 p) = 𝑊 e(F e) +𝑊 p(𝜖 p), (2.5)

where 𝑊 e is the elastic strain energy density dependent on the elastic deformation
and𝑊 p is the plastic hardening energy dependent on the accumulated plastic strains
𝜖𝛼 =

∫
| ¤𝛾 p
𝛼 | 𝑑𝑡 [54]. The power term introduced is the dissipation potential Ψ∗( ¤𝛾 p)

([130]) and captures any rate dependence to plastic evolution. Finally, using the
principle of minimum dissipation potential ([41, 53, 130]), the evolution of the
plastic strain variable is given from the stationary point of the total stress power,

𝜕

𝜕 ¤𝛾 p

(
¤𝑊 + Ψ∗

)
∋ 0. (2.6)

Note that the equation is written with a differential inclusion to account for rate-
independent cases.
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Simplifying the stationary point using equation 2.5, we obtain a typical plastic
evolution form,

−𝜏 p
𝛼 +

𝜕𝑊 p

𝜕 ¤𝛾 p +
𝜕Ψ∗

𝜕 ¤𝛾 p ∋ 0 with 𝜏
p
𝛼 = 𝜎M : (b̂ p

𝛼 ⊗ n̂ p
𝛼) (2.7)

where 𝜏 p
𝛼 is the resolved shear stress for the 𝛼 slip system and 𝜎M is the Mandel

stress tensor. The resolved shear stress indicates the local driving force for slip
nucleation/propagation, while the Mandel stress is the local stress measure that is
the work conjugate of the plastic strain. The remaining derivatives in equation
2.7 correspond to hardening terms the resolved shear stress must overcome for slip
nucleation or propagation. Specifically, 𝜕𝑊 p

𝜕 ¤𝛾 p will contribute a strain hardening to
both nucleation and propagation and 𝜕Ψ∗

𝜕 ¤𝛾 p will add a strain rate hardening effect only
to the propagation of dislocation slip.

2.2 Deformation twinning models: phase field
Several computational approaches have been explored over the last several decades
to describe deformation twinning and its resulting morphology. One of which we
build off in the proceeding chapters is phase field modeling of twinning. The
pioneering studies of heterogeneous materials through the use of phase field models
were proposed by Cahn and Hilliard [37] and Allen and Cahn [9], while its specific
use for twinning with elasticity was developed by Hu et al. and other researchers
[50, 78, 79, 116]. Here we outline an introductory phase field model for one twin
system with finite elasticity in the absence of plasticity. The formulation can capture
twin morphology in single-crystal or polycrystal domains and describes its coupling
with finite strain elasticity.

2.2.1 Kinematics
We assume the existence of a phase field variable, 𝜂 ∈ 𝐻2, which distinguishes
whether a material point is in the parent lattice (𝜂 = 0), the twinned lattice (𝜂 = 1),
or an interface region (𝜂 ∈ (0, 1)). The parameter, 𝜂, will define the twinned related
deformation gradient as an interpolation of a simple shear [85, 109],

F t = I + 𝜂𝛾 t
0ŝ ⊗ m̂ (2.8)

where 𝛾 t
0, ŝ, and m̂ are the twin shear, shear direction, and normal of the twin plane

specific to the crystalline structure. The total deformation gradient can then be split
into elastic and twinning parts in the multiplicative decomposition,

F = F eF t. (2.9)
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2.2.2 Energy and evolution equations
Classical phase field models make an ansatz [9] that a material system will evolve
towards a state of minimum free energy. Thus, here we follow this by postulating
that the Helmholtz free energy is decomposed additively to,

𝑊 (F e, 𝜂,∇𝜂) = 𝑊 e(F e, 𝜂) +𝑊 t(𝜂,∇𝜂), (2.10)

where𝑊 e is the elastic strain energy density dependent on the twinning parameter,
𝜂, in the case of an anisotropic elastic model where the twin-related lattice rotations
affect the stiffness tensor. 𝑊 t is the twinning interfacial energy taking the form,

𝑊 t(𝜂) = 𝑀

2
𝜂2(𝜂 − 1)2 + 𝛼

2
| |∇𝜂 | |2, (2.11)

following Cahn-Hilliard [37], with 𝑀 and 𝛼 being the double-well and surface
energy parameters. Note the form of the surface energy term, the second term in
equation 2.11, assumes isotropic interfacial energy with anisotropic generalizations
possible; see [50] for example.

Finally, the evolution equation for twinning is obtained by following the time-
dependent Ginzburg–Landau formalization [124]. For this, we assume mechanical
equilibrium is reached much faster than twinning’s equilibrium leading to a kinetic
equation to describe twinning’s time-dependent evolution,

¤𝜂 = −𝐿 𝛿𝜂𝑊 (F e, 𝜂,∇𝜂) (2.12)

where 𝛿𝜂 represents a variational derivative, and 𝐿 is a kinetic coefficient related to
twin boundary mobility.

2.3 Combined twinning and dislocation models: pseudo-slip
Pseudo-slip is the main computational approach for coupling deformation twinning
and dislocation slip in mesoscale simulations. This approach dates back to Kalidindi
[91] and borrows ideas from crystal plasticity to track average twin volume fractions
rather than fully resolving individual twins. Although this removes morphology
details specific to twinning, it allows the quick and easy inclusion of twinning
into existing full-field crystal plasticity models [7, 42, 43, 60, 61, 68, 148, 159].
Here we briefly explain the pseudo-slip model, adapted from Chang and Kochmann
[42], which will be similar to the crystal plasticity model from Section 2.1 with
slight modifications to include twinning. Finally, we will conclude the section by
discussing alternative mesoscale computational models for capturing dislocation
slip and deformation twinning.
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2.3.1 Flow kinematics
The pseudo-slip model tracks the evolution of twin volume fractions through the
variable 0 ≥ 𝜆 ≥ 1, which will take a similar role to the plastic slip shear, 𝛾, in
crystal plasticity. The deformation gradient is multiplicatively decomposed into

F = F eF in, (2.13)

where now F in is the inelastic deformation gradient with combined contributions
from plastic slip and deformation twinning. This decomposition assumes the order
of twinning versus slip is unknown but instead occurs simultaneously [91], limiting
the kinematic interactions between the two.

Modifying, the plastic velocity gradient from Section 2.1 we arrive at,

L̃ in = ¤F inF in = L̃ p + L̃ t, (2.14)

where the inelastic velocity gradient is split into slip and twinning contributions.
This split in the velocity further relies on the assumption that at the mesoscale,
slip and twinning occur simultaneously. The plastic slip velocity gradient, L̃ p, is
modified from equation 2.3 to account for dislocation activity on both the original,
parent, slip systems and any twinned re-orientated slip systems (following concepts
from Kalidindi [136] and Zhang and Joshi [159]),

L̃ p =

𝑁𝑠∑︁
𝛼=1
¤𝛾 p
𝛼

[(
1 −

𝑁𝑡∑︁
𝛽=1

𝜆𝛽

)
b̂ p
𝛼 ⊗ n̂ p

𝛼 +
𝑁𝑡∑︁
𝛽=1

𝜆𝛽b̂′p𝛼𝛽 ⊗ n̂′p
𝛼𝛽

]
, (2.15)

where 𝑁𝑠 and 𝑁𝑡 are the number of slip and twin systems (respectively) present
in the material, (b̂ p

𝛼 , n̂ p
𝛼) are the slip systems on the parent lattice, and (b̂′p𝛼 , n̂′p𝛼 )

are the twinned rotated slip systems. From crystallographic theory on deformation
twinning (see Christian and Mahajan [49]), we can compute the twin-rotated slip
systems as,

b̂′p
𝛼𝛽

= Q𝛽b̂ p
𝛼 , n̂′p

𝛼𝛽
= Q𝛽n̂ p

𝛼 , with Q𝛽 = 2n̂ t
𝛽 ⊗ n̂ t

𝛽 − I, (2.16)

using the twin plane normal n̂ t
𝛽
, which along with the twin shear direction, b̂ t

𝛽
, and

shear magnitude 𝛾 t
𝛽
, describe the 𝛽 twin system. Treating deformation twinning as

a slip system, we can also arrive at its velocity gradient,

L̃ t =

𝑁𝑡∑︁
𝛽=1

¤𝜆𝛽𝛾 tb̂ t
𝛽 ⊗ n̂ t

𝛽. (2.17)

Finally, combining equations 2.14, 2.15, and 2.17, we arrive at the full inelastic
deformation update.
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2.3.2 Energy and evolution equations
The equilibrium and evolution equations follow the crystal plasticity formulation,
with the only difference being the augmentation of the twin energy and power terms.
Here, we introduce the terms we amend and the resulting equations. The free energy
will again be decomposed additively into,

𝑊 (F e, 𝜖 p, 𝜆) = 𝑊 e(F e) +𝑊 p(𝜖 p) +𝑊 t(𝜆), (2.18)

with the same elastic strain and plastic hardening energy and an additional twin
hardening energy,𝑊 t(𝜆). The dissipation potential will now have rate contributions
for both slip and twinning, Ψ∗ = Ψ∗ p( ¤𝛾 p) + Ψ∗ t( ¤𝜆). The stationary point will now
be with respect to both sets of internal variables leading to evolution equations,

𝜕

𝜕 ¤𝛾 p
𝛼

(
¤𝑊 + Ψ∗

)
∋ 0 and

𝜕

𝜕 ¤𝜆𝛽

(
¤𝑊 + Ψ∗

)
∋ 0 (2.19)

− 𝜏 p
𝛼 +

𝜕𝑊 p

𝜕 ¤𝛾 p
𝛼

+ 𝜕Ψ
∗

𝜕 ¤𝛾 p
𝛼

∋ 0 and −𝜏 t
𝛽 +

𝜕𝑊 t

𝜕 ¤𝜆𝛽
+ 𝜕Ψ

∗ t

𝜕 ¤𝜆𝛽
∋ 0, (2.20)

where 𝜏 p
𝛼 and 𝜏 t

𝛽
are the slip and twin resolved shear stresses on the 𝛼 and 𝛽 slip and

twin system, respectively. Again, the evolution equations have a balance between
the driving force (resolved shear stress) and strain/strain-rate hardening terms to
determine the nucleation and propagation of each inelastic deformation mode.

2.3.3 Other approaches for combined twin and slip
The above pseudo-slip model aims to use efficient crystal plasticity implementations
to describe twinning using average twin volume fractions within grains. Several
crystal plasticity studies have aimed to expand the basic pseudo-slip model by includ-
ing more necessary microscale physics to capture twin-slip interactions accurately.
However, twinning’s length scale is one major hurdle that needs to be added in
most crystal plasticity-based twinning models. Although the physics of both twin
and slip are discrete by nature, the characteristic size of deformation twins are much
greater than that of dislocations [69, 71] and are often at the grain scale, as discussed
in Section 1.1. This larger twin length scale means that although the length scale
of dislocations allows for a homogenized representation within crystal plasticity
methods, applying the same homogenized approximate representation for twinning
is difficult. Thus, extensions to the crystal plasticity framework have been explored
to account for an evolving twin interface, a few of which will be briefly mentioned
here.
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The first approach is a discrete twin evolution model, formulated by Ardelĳan and
Knezevic [12] and extended by several researchers [11, 47, 48]. The approach
builds off of the classical crystal plasticity model to describe dislocation slip, with a
separate twin model included to insert discrete twins. The twin model uses atomistic
understandings of dislocation dissociation mechanisms to obtain an energy criterion
for the nucleation of these discrete twins, along with stress-governed twin growth and
propagation evolution equations. The second alternative approach is an embedded
deformation twinning approach which uses weak discontinuities again in conjunction
with a crystal plasticity model for dislocation slip. Jin et al. [87] developed the
discrete twin model by building off existing shear band representations. Twin bands
are inserted by assuming a jump in the velocity gradient (while continuity in velocity
and displacement — motivated by velocity gradient flow rules in classical crystal
plasticity models [99, 140]) and solving the resulting equilibrium equations across
the interface to determine the local stress. A stochastic version of the resolved shear
stress nucleation criteria, developed by Wang et al. [151], is utilized to dictate when
discrete twins are embedded, along with length and thickness evolution equations.
Both approaches’ implementations can capture distinct twin bands in polycrystal
specimens though at the cost of complex mesh manipulation, high computational
costs during the insertion of rapidly forming twin bands, and a neglect of the twin
surface energy.

A final extension explored for a few decades has been the phase field model for
twinning, outlined in Section 2.2. Researchers have explored coupling phase field
twinning with dislocation slip described using crystal plasticity. However, most early
studies have focused on the single crystal scale or small strain limit. Only recently
have studies focusing on the polycrystal scale with finite strains and complex twin-
slip interactions [80, 97, 115, 139] been explored. These implementations can
capture the complex twin morphology across several grains and explore texture
influence. However, all these studies have only considered the presence of a single
twin system, with the extension to multiple twin systems, by including several phase
field variables left as a future a topic of interest.
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C h a p t e r 3

PHASE FIELD APPROACH TO TWINNING

3.1 Motivation
In recent decades there has been an increased interest in improving the performance
of metallic alloys for various transportation, structural, and ballistic applications.
Low symmetry metals, such as magnesium (Mg), zirconium (Zr), or titanium (Ti),
exhibit excellent strength-to-weight ratios, making them ideal candidates for use
in weight-crucial usages. While other classes of metals, such as cubic structured
materials, for example, iron (Fe) or aluminum (Al), have high ultimate strengths,
aiding their continual use in high-stress-strain situations. The first set of metals, Mg,
Zr, and Ti, are under the class of hexagonal-close packed crystalline solids, which
under even moderate deformation, exhibit complex inelastic deformations. The
complex mechanisms result from the common inelastic deformation, dislocation slip,
being less favorable when compared to deformation twinning. On the other hand,
the second set of metals, Fe and Al, exhibit similar complex inelastic deformations in
extreme strain or strain rate situations, where deformation twinning comes coupled
with plastic slip. In either case, the successful implementation and improvement of
many crystalline solids require suitable models to accurately describe, analyze and
predict the complex inelastic material response.

The origin of these complex responses lies in the presence of deformation twinning,
which adds several microscale complexities. Unlike slip, which involves the sliding
of one plane of atoms over the other and is carried by dislocations or line defects,
twins are planar defects across which a shear restores the lattice. Thus, unlike
slip, which is typically more diffuse, twins manifest themselves as bands at the
polycrystal scale, leading to length-scale effects distinct from slip. Further, twins
involve a lattice rotation that interacts with anisotropic elasticity and dislocation
slip’s directional dependence. Finally, the shear in twinning has a specific sense
(i.e., it can shear in one direction but not the other), while slip does not. Therefore,
twinning can lead to an asymmetric response to imposed loading. We refer the reader
to Mahajan and Christian [49] for a comprehensive introduction to twinning. The
complexity is compounded by the interaction between slip and twinning, especially
in polycrystal domains. Therefore, the interaction between twinning and slip in



17

crystalline materials has been a subject of interest in recent decades.

One line of work has focused on the atomistic scale where the energetics of twinning,
nucleation of twins, the structure of twin boundaries, and the interaction of individual
dislocations with a twin boundary are determined [38, 86, 110, 149, 156]. While
these studies provide important insights and inputs to larger-scale models, they are
insufficient to describe deformation morphology and overall macroscopic response.

There is also a large body of work at the polycrystalline scale. Since Kalidindi [91],
various researchers [7, 42, 60, 61, 68, 148, 159] have studied the interaction between
slip and twinning by treating twinning as a “pseudo-slip.” Briefly, pseudo-slip does
not seek to describe the morphology of individual twins but only an average twin
volume fraction, allowing the incorporation of twins into full-field crystal plasticity
or self-consistent studies of polycrystalline behavior. These studies have been
invaluable in understanding the relationship between texture and the strength of
the material. However, a detailed comparative study by Abdolvand and Daymond
[2] on twinning in Zircaloy-2 between electron back-scatter diffraction (EBSD)
observations and pseudo-slip based crystal plasticity simulations showed significant
differences in the evolution of twins. Further, these models do not describe twins’
morphology, which plays a critical role in material failure. The role of morphology,
especially through the cooperative actions of grains, has been emphasized by several
researchers [22, 129].

Phase-field models have long been used to study morphology in phase transitions
(e.g., [14]). However, this has largely been in the context of small (geometrically
linear) strains, which are inappropriate for deformation twins involving large shears
and lattice rotations. Therefore, the phase-field approaches have also been extended
to finite deformation in the context of twinning (e.g., [50]) and separately slip-based
plasticity (e.g., [21]). Recently, Liu et al. [115] proposed a phase-field model
that combines deformation twinning and plastic slip and used it to study single
crystals in three dimensions and polycrystals in two dimensions. They emphasized
the role of grain boundaries in twin nucleation and transmission into neighboring,
poorly oriented grains. However, their model still uses an incremental update for
the twinning deformation, borrowing from the pseudo-slip models. An alternate
approach, by Jin et al. [87], inserted fully twinned regions (via strain disconti-
nuities) when appropriate stochastic nucleation and propagation conditions were
met. Two-dimensional polycrystal simulations correctly captured twin nucleation
and propagation from grain boundaries under dynamic loading conditions. How-
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ever, this model does not fully capture the nucleation and growth of twins and
thus misses the full interaction with dislocations. Ardeljan and M. Knezevic [12]
addressed this shortcoming by explicitly inserting discrete twin lamella based on
total accumulated twin activity from pseudo-slip models while locally modifying
the deformation history to account for the twinning shear. Several researchers have
extended the model [11, 47, 48]; in particular, Cheng et al. [48] introduce discrete
twin evolution with dislocation-motivated criteria and models for twin nucleation,
propagation, and growth. However, all of these introduce twins in a discreet manner.

In this work, we develop a phase-field model to investigate the interactions between
twinning and slip at the scale of multiple grains. We follow Mahajan and Christian
[49] to describe deformation twinning and combine it with plastic slip. We incor-
porate general energetic and kinetic laws to describe nucleation barriers, surface
energy, propagation drag, and rate hardening of twins and slip. We propose an
implementation that is massively parallel and allows the use of graphical processing
units (GPUs) to conduct large-scale studies. We first verify the implementation and
subtle details of the phase field model through single crystal simulation. We then
use the model and its implementation to conduct detailed studies in two-dimensional
polycrystals with a single twin and slip system to provide insights into the interaction
between the two deformation mechanisms. This work focuses on understanding the
interaction and the resulting consequences of localized twin morphology on poly-
crystalline media in two dimensions, motivating future work in three dimensions
with multiple twin and slip systems.

3.2 Model
We first describe the model for a single crystal with only one twin and slip system.
At the end of the section, we will extend it to polycrystal domains, and in Chapter
4, we will further extend the model to include multiple twin and slip systems.

3.2.1 Kinematics
Consider a single crystal undergoing a deformation y from a stress-free reference
configuration. We assume that the deformation gradient (F = ∇y) is multiplicatively
decomposed into elastic, plastic (related to slip), and twinning parts,

F = F eF pF t. (3.1)

This decomposition naturally handles the situation where slip follows twinning at
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Figure 3.1: Twinning schematic. Parent and twinned lattice are shown with the
respective dislocation slips in red.

any material point and matches the common decomposition within literature [60,
61, 87]. The other scenario, where twinning follows slip, requires the incorporation
of transmutations and is ignored in this current work.

We assume that we have one twin system and one slip system. The twin system is
characterized by a phase field variable 𝜂, twinning shear magnitude 𝛾 t

0, twinning
shear direction b̂ t, twin plane normal n̂ t, and twinning rotation R. In this work, we
consider a type I twin, so R = 2n̂ t ⊗ n̂ t − I is a two-fold rotation about the twin
plane. The resulting twinning deformation is

F t(𝜂) = I + 𝜂 𝛾 t
0 b̂ t ⊗ n̂ t, (3.2)

where 𝜂 = 0 in the untwinned region and 𝜂 = 1 in the twinned region. We assume that
𝜂 ∈ 𝐻1 is smooth and changes from 0 to 1 in a narrow region with a corresponding
interpolation of the twinning deformation. The slip system is characterized by the
slip activity 𝛾 p, slip direction b̂ p (respectively R̂b̂ p), and glide plane normal n̂ p

(respectively R̂n̂ p) in the untwinned (respectively twinned) region, see Figure 3.1.
The resulting plastic deformation evolves according to the classical flow rule; see
[130] for example,

¤F p =
(
¤𝛾 pb̂ p(𝜂) ⊗ n̂ p(𝜂)

)
F p, (3.3)
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where b̂ p(𝜂) and n̂ p(𝜂) are unified descriptions of the plastic slip directions to
capture the lattice dependence — i.e., whether the material point lies in the parent,
twinned, or interface lattice.

The twin and slip directions description will be presented here for a simple two-
dimensional case and extended to general three-dimensions later in Chapter 4. For
the twin systems, we define the angle, 𝜃 t, the shear direction b t makes with the
horizontal and use trigonometry to then define b t and n t. Similarly, we define
𝜃 p(𝜂 = 0) as the angle b p makes with the horizontal in the untwinned region.
Rotating 𝜃 p(0) into the twinned domain we obtain 𝜃 p(1) and use the interpolation,

𝜃 p(𝜂) = 𝜂𝜃 p(1) + (1 − 𝜂)𝜃 p(0) (3.4)

to obtain an unified description for b p(𝜂) and n p(𝜂).

Finally, we introduce the accumulated slip activity, 𝜖 p, which evolves according to
¤𝜖 p = | ¤𝛾 p |, and is used to govern plastic strain hardening. Note that 𝜂 ≥ 0 since
twinning shear has a specific sense while 𝛾 p can be both negative and positive since
slip can lead to shear in either sense.

3.2.2 Free energy and stress
To derive evolution and equilibrium laws for the material, we postulate the free
energy density to have the decomposition

𝑊 (F e, 𝜂,∇𝜂, 𝜖 p) = 𝑊 e(F e, 𝜂) + 𝛼
2
∥∇𝜂∥2 +𝑊 t(𝜂) +𝑊 p(𝜖 p), (3.5)

where

𝑊 e(F e, 𝜂) = 1
2

E e : C(𝜂) : E e (3.6)

is the elastic energy density with non-linear strain measure E e = ((F e)⊺F e − I)/2
and (phase-dependent anisotropic) elastic modulus C(𝜂).

𝑊 t(𝜂) =
𝑀

2
𝜂2(𝜂 − 1)2 (3.7)

is a standard double-well potential and
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𝛼

2
∥∇𝜂∥2 (3.8)

is an interfacial twin surface energy [50, 157]. The double-well parameter, 𝑀 , and
isotropic surface energy parameter, 𝛼, govern the phase-field variable, as described
in Section 3.2.4.

𝑊 p(𝜖 p) = 𝜎 p
∞

[
𝜖 p + 𝜎

p
∞
ℎ

exp
(
−ℎ 𝜖

p

𝜎
p
∞

)]
(3.9)

describes the plastic self-hardening, similar to the Voce hardening law [7, 68], where
𝜎

p
∞ is the ultimate stress and ℎ is the hardening rate.

The first Piola-Kirchhoff stress is given by

P =
𝜕𝑊 e

𝜕F
=
𝜕𝑊 e

𝜕F e (F
pF t)−⊺ . (3.10)

3.2.3 Equilibrium and evolution
Mechanical equilibrium requires

∇ · P = 0. (3.11)

The evolution of the internal variables, 𝛾 p and 𝜂, requires the introduction of a dual
dissipation potential, Ψ∗( ¤𝜂, ¤𝛾 p), and the use of the principle of minimum dissipation
potential [53] to obtain kinetic relations:

0 ∈ −𝜏 p +
𝜕𝑊 p

𝜕𝜖 p + 𝜕 ¤𝜖 pΨ∗ (3.12)

0 ∈ −𝜏 t + 𝜕𝑊 e
𝜕𝜂
+ 𝜕𝑊 t
𝜕𝜂
− 𝛼∇2𝜂 + 𝜕 ¤𝜂Ψ∗, (3.13)

where 𝜏 p and 𝜏 t are the plastic and twin resolved shear stresses, respectively, defined
as,

𝜏 p = σ p : (b̂ p ⊗ n̂ p), σ p = (F e) ⊺P
(
F pF t)⊺, (3.14)

𝜏 t = σ t : (b̂ t ⊗ n̂ t), σ t = 𝛾 t
0
(
F eF p)⊺P, (3.15)
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and physically correspond to driving forces for each inelastic mechanism, the re-
maining terms in Equations 3.12 – 3.13 correspond to different hardening terms
contributing to the slip and twin yield stresses.

The dual potential accounts for the rate dependence of slip and twinning, which we
postulate to be

Ψ∗
(
¤𝛾 p, ¤𝜂

)
=

[
𝜏

p
0 | ¤𝛾

p | +
𝜏

p
0 ¤𝛾

p
0

𝑚 p + 1

(
| ¤𝛾 p |
¤𝛾 p

0

)𝑚 p+1]
+

[
𝜏 t

0 | ¤𝜂 | +
𝜏 t

0 ¤𝛾
t
0

𝑚 t + 1

(
| ¤𝜂 |
¤𝛾 t

0

)𝑚 t+1]
, (3.16)

based on the common approach within crystal plasticity literature [42, 43]. 𝜏 p
0 and

𝜏 t
0 are the critical resolved shear stresses, ¤𝛾 p

0 and ¤𝛾 t
0 the reference shear rates, and

𝑚 p and 𝑚 t are power rate hardening parameters for slip and twinning, respectively.

Note the dissipation potential Ψ∗ is not continuously differentiable when ¤𝛾 p = 0
or ¤𝜂 = 0 and therefore (3.12), (3.13) are formulated as differential inclusions. In
particular, it means no evolution of the inelastic internal variables unless the resolved
shear stress exceeds the critical yield values.

3.2.4 Twin interface thickness
The dependence of the twin interface thickness on material parameters is necessary
to ensure sufficient mesh refinement is taken in simulations to match experimental
observations of interfaces spanning a few atomic distances. The double-well energy,
𝑊 𝑡 , and gradient energy follow the Allen-Cahn model [9] and lead to a twin boundary
whose thickness is on the order of

√︁
𝛼/𝑀 and whose energy density is on the order

of
√
𝛼𝑀 per unit area.

We conduct several two-dimensional single-crystal simulations without dislocation
slip (twinning is the only inelastic deformation present), with the values of 𝛼/𝑀
varying between simulations to determine the exact dependence of the interface
thickness on material parameters. We find the interface thickness for each of these
simulations by computing the distance over which 𝜂 increases from 0.01 to 0.99 in
a twin band. Figure 3.2 shows a linear trend between the computed twin interface
thickness versus

√︁
𝛼
𝑀

. The resulting linear fit is also shown in Figure 3.2 and provides
an estimate for the twin interface and resulting mesh refinement necessary for given
material parameters.
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Figure 3.2: Twin interface thickness versus
√︁
𝛼
𝑀

for displacement control simulations
on a single crystals in the absence of plastic slip.

3.2.5 Twin nucleation and propagation
The twin evolution equation (3.13) becomes the equilibrium equation of [50] if we
alternatively choseΨ∗ = Ψ∗( ¤𝛾 p) and the time-dependent Landau Ginzburg equation
of [124] if we take Ψ∗ = Ψ∗p( ¤𝛾 p) + 𝜈/2| ¤𝜂 |2. We chose the form (3.16) because it
provides both a critical stress 𝜏 t

0 for the propagation of an existing twin boundary
and a critical stress of 𝜏 t

0 +𝑀/(6
√

3) for twin nucleation. To see the latter, consider
a material in the parent (untwinned) state, with a uniform 𝜂 = 0, subjected to
extremely slow loading. According to (3.13), 𝜂 will evolve only when the resolved
shear stress matches

𝜏 t = 𝑀𝜂(𝜂 − 1) (2𝜂 − 1) + 𝜏 t
0 . (3.17)

Thus, the nucleation of a twin, 𝜂→ 1, requires the resolved shear stress to overcome
the maximum value of the first term (which is 𝑀/(6

√
3)), in addition to 𝜏 t

0 .

We have confirmed this numerically by running several two-dimensional single-
crystal simulations, again with plastic slip suppressed, the twinning rate hardening
neglected (𝜏 t

0 = 0), and only 𝑀 is varied. To explore the nucleation of twinning, the
resolved shear stress (RSS), the driving force for twinning nucleation and growth, is
computed at each load increment. Figure 3.3a shows the computed twinning RSS
versus applied strain for different 𝑀 parameters. We see that as the applied strain
increases, the RSS increases until reaching a maximum point and then dropping.
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Figure 3.3: Twin resolved shear stress (RSS) (a) Twin RSS versus applied shear for
varying 𝑀 . (b) Twin length scale related critical RSS versus 𝑀 .

The increasing RSS regime corresponds to 𝜂 increasing uniformly throughout the
domain. The sudden drop in the resolved shear stress corresponds to the complete
formation of a twin band, i.e., 𝜂 ≈ 0 or 𝜂 ≈ 1 throughout the domain leading to the
hardening term dropping to near 0. Hence, the maximum RSS corresponds to the
nucleation stress required to overcome the length scale, i.e., 𝜏 t

𝑙
. Figure 3.3b shows

the maximum RSS versus 𝑀 and through fitting we determine 𝜏 t
𝑙
= 𝑀

6
√

3
consistent

with our analysis.

In short, our twinning model provides a twin boundary energy
√
𝛼𝑀 per unit area,

critical stress for nucleation 𝜏 t
0 + 𝑀/(6

√
3), and a critical stress for propagation 𝜏 t

0 .

3.2.6 Polycrystal domains
The polycrystal is an assemblage of grains made of the same material but whose
orientation differs from each other. We describe the texture of the polycrystal us-
ing the orientation function Q(X), that is, the rotation that takes the grain at X
to a fiducial grain. The slip and twin systems in the grain X are now described
by Q(X)b̂ p,Q(X)n̂ p,Q(X)b̂ t,Q(X)n̂ t and the free energy density is similarly de-
scribed as,𝑊 (F e, 𝜂,∇𝜂, 𝜖 p,X) = 𝑊 (F eQ(X), 𝜂,∇𝜂Q(X), 𝜖 p).

3.3 Implementation
We consider a periodic domain and prescribe a time-dependent average deformation
gradient F̄(𝑡). So, y = ỹ + F̄X where ỹ is periodic, as are the rest of the kinematic
quantities. We discretize the equilibrium equation (3.11) and evolution equations
(3.12 and 3.13) in time using an implicit time discretization and rewrite them as
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an incremental variational principle (e.g., [130]). We obtain the increment in the
deformation gradient, twin, and slip as the solution to the variational problem,

y n+1, 𝜂 n+1, 𝛾
p
n+1 = arg min

∫
Ω

(
𝑊 (∇y, 𝜂,∇𝜂, 𝜖 p,X) + Δ𝑡Ψ∗

(
Δ𝛾 p

Δ𝑡
,
Δ𝜂

Δ𝑡

))
𝑑Ω,

(3.18)

and the increment in plastic strain is

F p
n+1 =

1
𝐽𝑑p

(
I + Δ𝛾 pb̂ p ⊗ n̂ p)F p

n. (3.19)

where 𝐽 p = det
(
I + Δ𝛾 pb̂ p ⊗ n̂ p) is used to normalize for an isochoric plastic

deformation, 𝑑 is the dimension (2 or 3), and subscripts 𝑛+1 and 𝑛 represent current
and previous time steps values of variables.

We solve the variational problem following the accelerated computation microme-
chanics approach [160]. The basic idea is to use both deformation y and its gradient
F as independent variables and to similarly use both the twin phase-field, relabeled
𝛽, and its gradient ∇𝜂 as independent variables. We then treat the compatibility
between the deformation/twin phase field and their respective gradients as a con-
straint that is implemented using an augmented Lagrangian. So we consider the
augmented functional

∫
Ω

(
𝑊 (F, 𝛽,∇𝜂, 𝜖 p,X) +𝑊𝜆 (F,∇y, 𝛽, 𝜂) + Δ𝑡Ψ∗

(
Δ𝛾 p

Δ𝑡
,
Δ𝛽

Δ𝑡

))
𝑑Ω, (3.20)

where

𝑊𝜆 (F, y, 𝜂, 𝛽) = 𝜆𝐹 : (F−∇y) +𝜆𝜂 (𝛽−𝜂) +
𝜌𝐹

2
∥F − ∇y∥2 +

𝜌𝜂

2
∥𝛽 − 𝜂∥2 . (3.21)

Here, 𝜌𝐹 > 0, 𝜌𝛽 > 0 are fixed penalty constants and 𝜆𝐹 and 𝜆𝜂 are Lagrange
multipliers. We now have a saddle point problem where we minimize the functional
over F, y, 𝜂, 𝛽 and maximize over the Lagrange multipliers 𝜆𝐹 , 𝜆𝜂. We use the
alternating direction method of minimizers (ADMM), shown in Algorithm 1, to
update our variables each time step.

A brief outline of the algorithm and reasoning is given here. We first use ADMM to
update the twinning phase field variables (∇𝜂, 𝛽) until twin dual and prime conver-
gence. We then update the deformation variables (y, F) and the slip magnitude 𝛾 p.
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Finally, we alternate updating the twin phase field (inside a sub-ADMM algorithm),
deformation gradient, and slip variables until the deformation prime and dual norms
converge. We separately update the twin variables to resolve it before updating
the total deformation and plastic slip. Although we can include the twinning sub-
algorithm in the main loop, we found better convergence and behavior with this
split, particularly when the phase parameter rapidly evolves.

The algorithm is known to converge for sufficiently large 𝜌𝐹 , 𝜌𝛽, though too large
values slow down the convergence. We use periodic boundary conditions and
fast Fourier transforms (FFT) to solve the Helmholtz projections (steps 1ii and 3).
This algorithm is known to perform well relative to other FFT-based algorithms
but has the significant benefit of an easy parallel implementation. Steps 1i, 2,
and 5 are local nonlinear problems solved in parallel using the steepest gradient
descent or Newton-Raphson methods. Steps 1ii and 3 are Helmholtz projections
for which there are efficient parallel algorithms. Finally, steps 1iii, 1iv, 4, and 6
are simple updates. Thus the entire iterative algorithm is implemented in parallel
using Graphical Processing Units (GPUs), with Central Processing Units (CPUs)
only necessary for initialization and saving data after each time step. GPUs provide
thousands of cores for accelerated computations, allowing us to sufficiently refine
the twin morphology while running simulations across several grains.

Finally, we discretize the domain using a uniform spacial grid to implement the
method. The grid must be fine enough that we sufficiently resolve the details of the
twin boundary and the deformation within individual grains, i.e., 𝐿√

𝑁𝑔

≫ 8
√︁
𝛼
𝑀
≫ 𝐿

𝑁

where 𝐿 is the size of the domain, 𝑁 is the spatial discretization, and 𝑁𝑔 is the number
of grains.

3.4 Model verification and exploration
The model presented in Section 3.2 and our numerical implementation were tested
extensively in incremental levels of complexity, i.e., exploring the presence of a
single inelastic deformation in either single crystal or polycrystal domains. We
compared the nucleation and propagation of each inelastic deformation for each
case with our theoretical understanding.
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Algorithm 1: Alternating direction method of minimizers (ADMM) algorithm
for phase field twin and slip updates
Data: F𝑛, y𝑛, 𝜂𝑛, 𝛽𝑛, 𝛾𝑛, 𝜆𝐹𝑛, 𝜆𝜂𝑛, and F̄𝑛+1
Result: F𝑛+1, y𝑛+1, 𝜂𝑛+1, 𝛽𝑛+1, 𝛾𝑛+1, 𝜆𝐹𝑛+1, 𝜆𝜂𝑛+1
F(0) ← F𝑛, y(0) ← y𝑛, 𝛾 p,(0) ← 𝛾

p
𝑛 , 𝜆(0)

𝐹
← 𝜆𝐹𝑛;

𝑖 ← 0;
while 𝑟𝐹,𝑝 ≥ 𝑟 tol

𝐹,𝑑
or 𝑟𝐹,𝑝 ≥ 𝑟 tol

𝐹,𝑑
do

𝛽(0) ← 𝛽𝑛, 𝜂(0) ← 𝜂𝑛, 𝜆(0)𝜂 ← 𝜆𝜂𝑛;
𝑗 ← 0;
1. ADMM for twinning phase field;
while 𝑟𝜂,𝑝 ≥ 𝑟 tol

𝜂,𝑑
or 𝑟𝜂,𝑝 ≥ 𝑟 tol

𝜂,𝑑
do

i. Solve for 𝛽( 𝑗+1) from the local problem:
𝜕𝛽𝑊 (F(𝑖) , 𝛽( 𝑗+1) ,∇𝜂( 𝑗) , 𝜖 p,(𝑖)) + Δ𝑡𝜕𝛽Ψ∗(𝛽( 𝑗+1)) + 𝜆( 𝑗)𝜂 + 𝜌𝜂 (𝛽( 𝑗+1) −
𝜂( 𝑗)) = 0;

ii. Solve for 𝜂( 𝑗+1) from Helmholtz projection of twin phase field
variable: ∇2𝜂( 𝑗+1) − 𝜌𝜂

𝛼
𝜂( 𝑗+1) = − 1

𝛼

(
𝜆
( 𝑗)
𝜂 + 𝜌𝜂𝛽( 𝑗+1)

)
;

iii. Update twin lagrange multiplier (𝜆( 𝑗+1)𝜂 ):
𝜆
( 𝑗+1)
𝜂 = 𝜆

( 𝑗)
𝜂 + 𝜌𝜂 (𝛽( 𝑗+1) − 𝜂( 𝑗+1));

iv. Compute twinning primal and dual feasibility:
𝑟𝜂, 𝑝 =



𝛽 𝑗+1 − 𝜂 𝑗+1

𝐿2 , 𝑟𝜂, 𝑑 = 𝜌𝜂/𝑀


𝜂 𝑗+1 − 𝜂 𝑗

𝐿2;

𝑗 ← 𝑗 + 1
end
2. Solve for F(𝑖+1) from deformation local problem
𝜕𝐹𝑊 (F(𝑖+1) , 𝛽( 𝑗+1) ,∇𝜂( 𝑗+1) , 𝜖 p,(𝑖)) + 𝜆(𝑖)

𝐹
+ 𝜌𝐹 (F(𝑖+1) − ∇y(𝑖)) = 0;

3. Solve for y(𝑖+1) from Helmholtz projection of deformation variables:

∇2y(𝑖+1) = ∇ ·
(
F(𝑖+1) +

𝜆
(𝑖)
𝐹

𝜌𝐹

)
;

4. Update deformation lagrange multiplier (𝜆(𝑖+1)
𝐹

):
𝜆
(𝑖+1)
𝐹

= 𝜆
(𝑖)
𝐹
+ 𝜌𝜂 (F(𝑖+1) − ∇y(𝑖+1));

5. Update slip shear magnitude 𝛾 p,(𝑖+1):
𝜕𝛾 p𝑊 (F(𝑖+1) , 𝛽( 𝑗+1) ,∇𝜂(𝑖) , 𝜖 p,( 𝑗+1)) + Δ𝑡𝜕𝛾 pΨ∗(𝛾 p,(𝑖+1)) = 0;

6. Compute deformation primal and dual feasibility:
𝑟𝐹, 𝑝 = ∥F𝑖+1 − ∇y𝑖+1∥𝐿2 , 𝑟𝐹, 𝑑 = 𝜌𝐹/𝜇 ∥∇y𝑖+1 − ∇y𝑖∥𝐿2 .;
𝑖 ← 𝑖 + 1

end
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Figure 3.4: Monocrystal twinning simulations. Average shear stress (dotted red
line) and twin volume fraction (solid black line) versus applied strain for simple
shear along (a) vertical and horizontal unit cell axes and (b) 𝜋/8 rotated axes of the
unit cell. Twin microstructure plots are shown for a few representative times.

3.4.1 Single crystal simulations
Deformation twinning

First, we considered only elasticity and twinning with the plastic slip internal variable
suppressed, i.e., the evolution law was prevented from activating. We selected a
single crystal domain of size 𝐿 = 20 𝜇m with a simple shear deformation applied
along different directions. The twinning parameters used are 𝑀 = 1 GPa, 𝛼 =

4× 10−7 Pa·m2, 𝜏 t
0 = 2 MPa, and 𝛾 t

0 = 0.129, which following Section 3.2.5, would
indicate a nucleation threshold stress of 98.2 MPa and propagation threshold of 2
MPa. Figure 3.4 shows the resulting stress-strain response (dashed red) and the
twin volume fraction (solid black) for the case of (a) applied shear aligned with twin
shear direction and (b) applied shear and twin shear direction rotated by 22.5◦. We
show representative twin microstructure snapshots above each plot.

We observe that both Figure 3.4 (a) and (b) have a significant linear elastic region
since slip is suppressed and twinning has a large nucleation threshold until twin bands
form, after which there is a stress drop due to the formation of a twin band. As
the shear increases, the twin bands grow until the entire crystal has fully twinned,
and the material begins to behave elastically again. Focusing on Figure 3.4 (a),
where the applied shear and twin direction are aligned, we measure the point of twin
nucleation to correspond to 𝑃nuc = 758 MPa shear stress and 𝛾nuc = 0.1164 shear
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strain. From these nucleation values, we can compute the twin resolved shear stress
for this simple single crystal case as,

𝜏 t = 𝛾 t
0𝑃nuc = 97.8 MPa, (3.22)

which closely matches the theoretical nucleation threshold discussed in Section
3.2.4. Lastly, looking at Figure 3.4 (b), we measure a slightly larger nucleation
stress (𝑃nuc = 779 MPa) due to the slight misalignment between the shear and twin
directions.

Plasticity Second, the plastic slip was activated while suppressing twinning evo-
lution. Simple shear deformations along different directions were applied to a single
crystal domain of size 𝐿 = 20 𝜇m again. The slip parameters used for the simula-
tions were 𝜏 p

0 = 50 MPa and 𝜎 p
∞ = 50 MPa which would correspond to an initial

yield stress 50 MPa and a final yield stress 100 MPa. Figure 3.5 shows the resulting
slip resolved shear stress versus applied shear for simulations with different loading
directions (0, 𝜋8 , 𝜋4 , 3𝜋

8 , and 𝜋
2 ). We plot each simulation case’s final slip magnitude

distribution next to the RSS plot in Figure 3.5 with the border matching the specific
simulation.

From Figure 3.5, we observe that each slip-resolved shear stress approaches ∼ 100
MPa as expected based on the parameters. Furthermore, we see that simulations
𝜓 = 0 and 𝜋

2 reach the final yield stress first since they correspond to the best
alignment between the slip applied shear direction, while the 𝜓 = 𝜋

4 takes the
longest since it is the least aligned requiring large rotations to occur before yielding.
Lastly, we observe nearly uniform plastic slip magnitudes in each crystal since no
heterogeneity is introduced from elasticity or twinning.

Twinning and plasticity Finally, a combination of one slip and twin system, with
an angle of 45◦ between the two systems, was tested in single crystals for various
load alignments. The twin and slip parameters are the same as the previous sets
of simulations. Figure 3.6 shows the average stress, slip magnitude, and twin
volume fraction versus applied shear along (a) the twin system, (b) between the
twin and slip system, and (c) the slip system. Twin volume fraction and slip
magnitude microstructure snapshots are shown at a few time steps above and below
(respectively) the stress-strain curves.
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Figure 3.5: Monocrystal plasticity simulations. Plastic resolved shear stress versus
strain for different crystal orientations, 𝜓 is the relative angle between slip system
and shear directions. Slip morphology at the final loading step are shown with
border color and line type matching the stress curves.

Focusing on Figure 3.6 (b), when the applied shear is aligned between the twin and
slip systems, we observe two regions. Region 1 corresponds to the early strains
before twinning nucleates and slip is dominant. We see this with a gradually
increasing slip magnitude and no twin volume fraction. In Region 2, twinning
has nucleated in the form of thick bands; note that thick bands form due to the
misalignment of the twin and loading. Incorporating a twinning rotation and sharp
interfaces leads to slip arrest in the twin bands due to a now less favorable rotated
slip system and slip accumulation outside the bands due to stress concentrations
from the interface allowing slip propagation. We can also see this with a jump in
the slip magnitude and the slip microstructure images showing bright spots in the
untwinned regions. The other load cases, twin aligned in Figure 3.6 (a) and slip
aligned in Figure 3.6 (c), show similar trends with now earlier twin (slip) nucleation
and less slip (twin) deformations, respectively.

3.5 Twin-slip interactions in 2D polycrsytal material
We now present results highlighting various aspects of microstructure evolution and
the interplay between slip and twinning in a model two-dimensional polycrystalline
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Figure 3.6: Monocrystal twin-slip simulations. Average stress (dotted red curve),
slip magnitude (dashed blue curve), and twin volume fraction (solid black curve)
versus applied shear strain for loading along (a) the unit cell axes (aligned with twin
directions), (b) 𝜋/8 rotated axes of the unit cell (aligned with neither) and (c) 𝜋/4
rotated axes of the unit cell (aligned with slip).
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Parameter Value Significance Reference
Elastic Parameters

𝜆1 25 GPa Stiffness 𝐶1111 [150]
𝜆2 15 GPa Stiffness 𝐶1122 [150]
𝜇 15 GPa Stiffness 𝐶1212 [150]

Twinning Parameters
𝑀 80 MPa Double well –
𝛼 8 × 10−8 Pa· m2 Surface energy [98, 109, 151]
𝛾 t

0 0.129 Shear magnitude [150]
¤𝛾 t

0 1.0 1/𝑠 Reference shear rate [150]
𝑚 t 1.0 Rate hardening [150]
𝜏 t

0 1 MPa Critical RSS [43]
𝜃 t − 𝜋8 Twin shear angle –

Plasticity Parameters
𝑚 p 0.05 Rate hardening [42]
¤𝛾 p

0 1.0 1/𝑠 Reference shear rate [42]
𝜏

p
0 4 MPa Critical RSS [42]
𝜎∞ 2 MPa Ultimate stress [42]
ℎ 7.1 GPa Hardening rate [42]
𝜃 p 𝜋

8 Slip shear angle –

Table 3.1: Material parameters used for two-dimensional polycrystal simulations.

system. Material parameters are given in Table 3.1, unless otherwise specified, and
are motivated by basal slip and tension twinning in magnesium, which is known to
have profuse twinning. We conduct calculations on a 1024× 1024 grid on a domain
of length, 𝐿 = 80𝜇m, allowing us to resolve our twin boundaries to a size of ∼ 150
nm.

3.5.1 Typical results
We consider a polycrystal of 30 grains, shown in Figure 3.7(a), obtained by Voronoi
tessellation [64] from random seeds and sample the orientations from a uniform
distribution between ± 𝜋2 . We have verified that the results are typical for this texture
by considering other samples. We apply a boundary condition corresponding to a
simple shear along the horizontal axis at a strain rate of 1.0× 10−2 until a maximum
shear strain of 0.1. The stress-strain behavior, bulk slip activity, and twin volume
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Figure 3.7: Deformation of polycrystalline specimen subjected to simple shear. (a)
The polycrystalline specimen. The grayscale shows the propensity for twinning and
slip. The darker grains are favorably oriented for slip and lighter grains for twinning,
while the numbers indicate the grain orientation. (b) Stress-strain behavior and
evolution of average slip magnitude and twin volume fraction. Vertical dashed lines
indicate points at which microstructure is shown. (c–f) Snapshot of twin volume
fraction (𝜂) at strains of 𝛾 = 0.01, 0.044, 0.07, 0.1. Gray and white arrows show
twin and reciprocal twin directions, respectively. (g–j) Snapshots of accumulated
slip magnitude (𝜖 p) at strains of 𝛾 = 0.01, 0.044, 0.07, 0.1.

fraction are shown in Figure 3.7(b). Snapshots of the spatial evolution of twinning
and slip are shown in Figure 3.7(c–f) and 3.7(g–j), respectively.

As loading begins, the response is initially elastic till the applied strain reaches a
value of about 𝛾 = 0.01. At this point, plastic slip initiates across several grains —
Figure 3.7(g) — and is accompanied by stress softening. The intensity of plastic
activity increases with bands forming across grains till an applied strain of 𝛾 = 0.04,
at which point twinning begins to nucleate — Figure 3.7(d). As the loading continues
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Figure 3.8: Nucleation. (a) Slip nucleation at 𝛾 = 0.01. (b) Twin nucleation at
𝛾 = 0.04.

increasing, existing twins grow, new twins appear, and the slip intensity grows.
This twinning propagation is accompanied by further softening. Note that there
are multiple minor load drops as micro-twins nucleate, but these quickly recover
as the twins are pinned by either grain boundaries or plastic zones. Importantly
both slip and twinning proceed as bands within favorable grains. Further, the twin
boundaries are oriented according to the expected twin and reciprocal twin boundary
orientations (indicated by gray and white arrows, respectively, in Figure 3.7(f)).

Propensity for slip and twinning The propensity, 𝑝, of the inelastic deformations
is computed using the applied average deformation, F̄, local twin shear and normal
directions, b̂ t and n̂ t, and local slip shear and normal directions, b̂ p and n̂ p, as
follows:

𝑝 =

[
F̄ : sym(b̂ t ⊗ n̂ t)

]
+
−

��F̄ : sym(b̂ p ⊗ n̂ p)
�� . (3.23)

The operation [·]+ projects to the positive real axis, which is required to capture the
asymmetry of twinning. The absolute value for the slip term captures its bidirec-
tional behavior. The resulting values of 𝑝 ∈ (−1, 1) are plotted in Figure 3.7(a),
with −1 indicating alignment with slip and 1 corresponding to alignment with twin-
ning. Comparing the propensity values in Figure 3.7(a) to the final twin and slip
configuration, Figure 3.7(f) and (j), we observe both slip and twinning dominating
in the respective dark and light grains. However, there are still instances where the
less preferable system is present inside a grain, indicating the highly heterogeneous
interaction between the inelastic and anisotropic elasticity.
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Nucleation The anisotropy of elastic moduli in each grain gives rise to a hetero-
geneous distribution of elastic moduli across the polycrystalline specimen. Con-
sequently, the state of stress in the initial elastic phase is highly heterogeneous,
with stress concentrations at grain boundaries. These stress concentrations lead to
small amounts of slip occurring early in the loading. We see the first emergence
of macroscopically significant slip at 𝛾 = 0.01; this is highlighted in Figure 3.8(a),
which reproduces the results of Figure 3.7(g) with a magnified scale. We notice
that higher levels of slip are concentrated at triple junctions of grains with a high
degree of reorientation between the grains. In other words, slip nucleates near the
triple junctions. This is also true for twinning, as seen in Figure 3.8(b), which shows
results with a magnified scale at a strain of 𝛾 = 0.04, a time shortly before Fig-
ure 3.7(d). Thus, the elastic anisotropy leads to stress risers that enable nucleation
at triple junctions.

Bridging Twinning can provide a bridge for a slip band to extend across a grain
poorly oriented for slip activity. We highlighted this bridge by a circle in Fig-
ure 3.7(a), (f), and (j), which provides further evidence of the nonlocal nature of
morphology and the interplay between inelastic deformation mechanisms.

Geometrically necessary dislocations The cooperative bridging of inelastic de-
formations across grains points to the role of kinematic compatibility of the inelastic
deformations in driving the cooperative interaction between grains. In plasticity,
Nye’s dislocation tensor or the curl of the plastic deformation gradient describes
the geometrically necessary dislocations — dislocations that are necessary to over-
come the incompatibility of the plastic deformation [90, 127]. Figure 3.9 shows the
magnitude of the curl of the slip, twinning, and combined inelastic deformations
— we may regard them as geometrically necessary slip, twinning, and inelastic
dislocations. We see a large density at grain boundaries where twin/slip bands kink
or where dislocations bridge twin bands. We also see some twinning dislocations
along twin boundaries as they may not be perfectly aligned.

Fluctuations The role of heterogeneity or fluctuations in slip and twin evolution
is illustrated in Figure 3.10. Figure 3.10(a–c) displays heat maps of twin and slip
activity versus local orientation, with the colors indicating the number of points
active at that orientation and level of activity. We see large twin volume fractions
and slip activity centered around favorable orientations, 22.5◦ for twinning and
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Figure 3.9: Geometrically necessary dislocation density. Magnitude of the curl of
(a) twinning, (b) plastic slip, and (c) inelastic (plastic and twinning) deformations.

both 22.5◦ and −22.5◦ for slip. However, the activation for both spread across to
more unfavorable grains. Additionally, we see a range of twin fraction and slip
activity present at each orientation, indicating that the twin and slip activity can
differ drastically in similarly orientated grains. Figure 3.10(d) and (e) show the
cumulative histogram of the active inelastic systems versus the nominal driving
force, computed by projecting the macroscopic load onto the local orientation. The
histograms illustrate that the activation of slip and twinning is centered “near” their
critical values, ±4MPa for slip and 9MPa for twinning. However, the peaks are
shifted due to the rate dependence, hardening, and stress fluctuations. Further, we
see the activation of twin/slip at various driving force values, even those close to
zero or negative. These results illustrate that average values of micro-mechanical
fields are insufficient to describe the complex behavior shown here.

Comparison with experimental observations The implementation presented in
this work is in two dimensions; therefore, we can only compare the results of these
simulations to experiments in a qualitative manner. Nonetheless, several qualitative
results agree with experimental observations in hcp materials. First, Figure 3.7
shows that the current model predicts twins nucleating and propagating in sharp
sub-granular bands as observed in experiments ([2] for example). Secondly, the
current model predicts load drops as twins nucleate and grow, consistent with
experiments. Both of these behaviors are not found in pseudo-slip models showing
the importance of including a length scale, as done here.

Lastly, the cooperative behavior of inelastic deformations is captured in our phase-
field model. Recently, Orozco-Caballero et al. [129] experimentally found, using
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Figure 3.10: Statistical features of inelastic deformations for the Figure 3.7 case.
(a–c) Heat map showing the distribution of twin volume fraction and plastic activity
as a function of grain orientation at strains of 𝛾 = 0.01, 0.044, 0.1, respectively.
Blue represents little activation at that orientation and inelastic value, while red
represents a larger number of material points with that orientation and inelastic
value. (d–e) Cumulative histogram of twin and slip activity v.s. nominal driving
force.



38

Figure 3.11: Asymmetry of response. Deformation of polycrystalline specimen
subjected to reversed simple shear loading compared to Figure 3.7. (a) The poly-
crystalline specimen. The grayscale shows Schmidt factors for twinning and slip.
Darker grains are favorably oriented for slip and lighter grains for twinning, while
the numbers indicate the grain orientation. (b) Stress-strain behavior and evolution
of average slip magnitude and twin volume fraction. (c) Snapshot of twin volume
fraction (𝜂) and slip magnitude (𝛾 p) at the final strain of 𝛾 = −0.1.

high-resolution digital image correlation and EBSD imaging of polycrystal mag-
nesium alloys, that the activation of twinning and unfavorable slip systems help
accommodate strain incompatibility at grain boundaries between drastically differ-
ing grains. Our observations of specimen-spanning deformation bands dominating
the morphology and slip-twin bridging are in agreement with the experimentally
observed behavior. These qualitative agreements motivate our current full three-
dimensional implementation of this model and a detailed comparison with experi-
ments.

3.5.2 Asymmetry of response
Starting with the same specimen as in Figure 3.7, we apply a shear in the opposite
direction. The resulting twin and slip morphology, stress-strain curve, and average
inelastic values are in Figure 3.11. Compared to the forward loading direction, we
see much less twin activity and differing locations of twinning. Similarly, the slip
activity changes drastically, with different grains exhibiting large plastic deforma-
tion. Finally, the changes in local inelastic deformations result in a macroscopic
stress-strain curve with more stress hardening and stress drops. All of this is the
analog in shear of the well-known tension-compression anisotropy in hcp materials.
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Figure 3.12: Proportional forward-reverse deformation. (a) Average twin volume
fraction and slip magnitude versus shear strain. (b) Average stress-strain plot with
markers indicating points at which microstructure plots are obtained. (c–f) Twin
volume fractions at points during the reverse loading. (g–j) Slip magnitudes at
points during the reverse loading.

3.5.3 Proportional loading-unloading-reverse loading
Once again, starting with the same specimen as in Figure 3.7, we apply a shear in
the forward direction and then reverse the direction of shear till we have sheared
it in the opposite direction. The results are shown in Figure 3.12. The forward
shearing is as before. As the shear direction is reversed, we see significant residual
strains. Further, there is a small amount of detwinning, though it is not complete,
while the slip intensity continues increasing. Note that the detwinning would be
more significant if we did not have slip. Thus, slip-induced deformation pins twins
in place. As the applied shear goes through zero and eventually increases in the
reverse direction, the twin volume fraction morphology remains relatively constant
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till a large reverse shear, while the slip continues growing. We also see significant
hardening. In particular, comparing Figures 3.11 and 3.12 at an applied shear of
−0.1, we see that the stress is significantly higher and twin and slip morphology are
drastically different as a result of the prior deformation. Thus, the interplay between
slip and twinning provides a significant complexity in the role of prior deformation.

3.5.4 Non-proportional loading
Non-proportional loading is a crucial loading case for the failure analysis of materials
and more closely matches applications. We consider two strain directions — shear
I + û0 ⊗ ŵ0 along 0◦ and shear I + û45 ⊗ ŵ45 along 45◦ where

û0 = {1, 0}, ŵ0 = {0, 1}; û45 = 1/
√

2{1, 1}, ŵ45 = 1/
√

2{1,−1}. (3.24)

We consider three strain paths — first shearing along 0◦ and then along 45◦, first
shearing along 45◦ and then along 0◦, and a combined shear path — where the end
macroscopic strain states are the same. The results are shown in Figure 3.13. We
see that the end state of stress is different, as are the twin and slip morphologies.
Interestingly, load paths 1 and 3 lead to a similar (though distinct) state of stresses,
though the slip and twin morphologies are different. Path 2 leads to significantly
higher hardening. This example again shows the complex history dependence of the
state of stress and morphology.

3.5.5 Twin and slip activity
We explore the variation of twin and slip activity for differing nucleation threshold
values by varying the parameters, 𝜏 p

0 , 𝜏 t
0 , and 𝑀 , all of which impact the nucleation

and propagation of twinning and slip. To isolate the effect of these material param-
eters, we fix the grain structure from Figure 3.7a. The resulting average stress, slip
magnitude, and twin volume fraction, along with microstructure snapshots at the
end of loading, are shown below in Figures 3.14, 3.15, and 3.16 for varying 𝑀 , 𝜏 t

0 ,
and 𝜏 p

0 , respectively.

Surface energy As mentioned in Section 3.2.4, the double-well parameter, 𝑀 ,
controls twin nucleation and is supported by earlier non-zero twin volume fractions
for smaller 𝑀 in Figure 3.14 (a). This earlier twin nucleation leads to larger final
twin volume fractions and a smaller final slip magnitude for small 𝑀 . The stress-
strain curves exhibit an earlier twin yield and more stress softening for small 𝑀
values. For larger values of 𝑀 , the opposite is found, less (essentially negligible)
twin volume fractions, more slip activity, and more stress hardening, as seen in
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Figure 3.13: Non-proportional loading. Three macroscopic strain paths (a) are
simulated with identical final strain. (b) Shear stress paths for each loading. Average
twin volume fraction and slip magnitude and final twin and slip morphology for path
1 (c–e), path 2 (f–h), and path 3 (i–k).
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Figure 3.14 (g). Finally, the twin morphology (and slip magnitudes) match these
observations, with several twin bands present (and decreased slip) for the low 𝑀

case and fewer twinned grains (and increased slip activity) as 𝑀 increases.

Figure 3.14: Role of surface energy. Average stress, twin volume fraction and slip
magnitude, final twin, and slip microstructure for (a–c) 𝑀 = 8 MPa (d–f) 𝑀 = 80
MPa and (g–i) 𝑀 = 800 MPa. All other parameters as before.

Twin rate hardening The rate hardening parameter, 𝜏 t
0 , affects both twin nucle-

ation and propagation. Comparing Figure 3.15 (a), (d), and (g) as 𝜏 t
0 decreases, the

twin nucleation change is relatively minor, compared to changing the surface energy
parameter. However, there is a more noticeable increase in the final twin volume
fraction. Consequently, with the decreasing 𝜏 t

0 , the slip magnitude decreases due to
the higher presence of twinning. The stress-strain curve exhibits a slightly earlier
twin yield and more stress softening for lower values of 𝜏 t

0 . For larger values of 𝜏 t
0 ,

we find the opposite, more slip activity, smaller average twin volume fraction, and
more stress hardening. Lastly, looking at the twin morphology (and slip magnitude),
we again see matching results — the presence of more and larger twin bands (and
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Figure 3.15: Effect of twin rate hardening. Average stress, twin volume fraction
and slip magnitude, final twin, and slip microstructure for (a–c) 𝜏 t

0 = 0.1 MPa, (d–f)
𝜏 t

0 = 1 MPa and (g–i) 𝜏 t
0 = 10 MPa.

decreased slip magnitudes) for lower 𝜏 t
0 .

Slip rate hardening The rate hardening parameter, 𝜏 p
0 , affects both slip nucleation

and propagation. Looking at Figure 3.16 (a), (d), and (g), we observe for smaller
𝜏

p
0 values, the average slip magnitude shows earlier nucleation and higher final

slip activity, while there is a decrease in the average twin volume fraction. The
stress-strain curve exhibits an earlier slip yield point and larger hardening due to the
suppression of twins for smaller 𝜏 p

0 . For larger values of 𝜏 p
0 , we find the opposite,

less slip activity, more twinning activity, and a delayed slip yield point. Finally,
looking at the final morphology, we again observe a clear coupling between slip and
twinning. Despite the slip parameter varied, there is a noticeable effect on the twin
volume fraction, which accommodates the applied strain when slip is less able to
for the high 𝜏 p

0 case.
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Figure 3.16: Effect of slip rate hardening. Average stress, twin volume fraction and
slip magnitude, final twin, and slip microstructure for (a–c) 𝜏 p

0 = 0.4 MPa, (d–f)
𝜏

p
0 = 4 MPa and (g–i) 𝜏 p

0 = 40 MPa.

3.5.6 Texture
We consider the same grain structure, material parameters, and loading as Section
3.5.1 but with different grain orientations.

Twin centered texture The grain angles are now sampled from a Gaussian cen-
tered around the twin direction — seen in Figure 3.17(a). The resulting final twin
and slip morphology, stress-strain curves, and average inelastic deformations are
shown in Figure 3.17(c–e). Compared to the original case, we see more twin ac-
tivity and its presence in different grains due to the change in favorable grains.
Similarly, the slip activity changes drastically, with differing grains exhibiting large
plastic deformation. Finally, the increased presence of twin bands leads to more
stress drops in the stress-strain curve.
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Figure 3.17: Role of texture. Deformation of the different polycrystalline specimens
subjected to simple shear. Polycrystalline specimen for twin centered (a) and slip
centered (b) grain angles. The grayscale shows Schmidt factors for twinning and
slip. Darker grains are favorably oriented for slip and lighter grains for twinning,
while the numbers indicate the grain orientation. Stress-strain behavior and average
inelastic deformations for twin centered (c) and slip centered (f) grains. Final twin
volume fraction (𝜂) and slip magnitude (𝛾 p) at a final strain of 𝛾 = 0.1 for twin
centered (d–e) and slip centered (g–h) grains.

Slip centered texture The grain angles are now sampled from a Gaussian about
the slip direction — seen in Figure 3.17(b). The resulting final twin and slip
morphology, stress-strain curve, and average inelastic deformations are shown in
Figure 3.17(e–h). Compared to the original case, we see less twin activity and its
presence in different grains due to the change in favorable grains. Similarly, the slip
activity changes drastically, with more grains exhibiting large plastic deformation.
Finally, the decrease in twin bands leads to more hardening in the stress-strain curve.
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3.5.7 Comparison with the results of a pseudo-slip model
We now compare the results above with those obtained from a pseudo-slip model
following [42]. The model details are provided in Chapter 2 with a computational
implementation similar to that used for the phase field model. Briefly, pseudo-slip
borrows ideas from crystal plasticity to obtain average twin volume fractions rather
than resolving the specific morphology.

Figure 3.18 compares the results of the two models under identical parameters, initial
microstructure, and loading. Figure 3.18(b) shows the pseudo-slip stress-strain curve
has only one yield point due to slip and twinning now having identical nucleation
criteria. Comparing the evolution of the average volume fractions and slip activity
(Figure 3.18(a) and (b)), we see that twinning nucleates early and dominates the
deformation in the pseudo-slip model compared to our model. Indeed, comparing
Figure 3.18(c–f) to Figure 3.18(g–j), we see early and extensive twinning in the
pseudo-slip model with drastically different morphology. Our model predicts well-
defined twin bands, while the pseudo-slip model predicts diffuse twinning extending
across the grains. All of this is expected since the pseudo-slip model does not seek
to define thin twins, does not account for twin boundary energy that sets a length
scale, and does not have any nucleation barrier. Finally, Figure 3.18(k–m) and
Figure 3.18(n–q) show that slip is greatly suppressed in the pseudo-slip model. This
slip reduction is due to twinning accommodating a more significant portion of the
deformation and diffuse twins contributing smaller incompatibilities.

3.6 Discussion
In this work, we have presented a model that describes deformation twins and plastic
dislocation slip at the scale of multiple grains, their morphology, their interaction,
and their implications on macroscopic behavior. We start with the detailed kine-
matics of twinning following Mahajan and Christian [49] and implement it using
a phase-field framework to incorporate detailed morphology, nucleation barrier,
surface energy, propagation drag, and rate hardening. We treat dislocation plastic-
ity in the framework of crystal plasticity. We implement the model on graphical
processing units following [160]. This work aims to understand various aspects
of the interaction between deformation twinning and dislocation slip in polycrystal
domains. Therefore we use detailed simulations in two dimensions to study the
nucleation and growth of twins, the evolution of slip, the cooperative mechanism
of bridging across grains, geometrically necessary dislocations, and the role of
fluctuations.
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Figure 3.18: Comparison with pseudo-slip model. Stress strain curve and average
slip magnitude and twin volume fraction for phase-field (a) and pseudo slip (b). The
gray dashed lines correspond to points where the microstructure is plotted. Phase-
field’s twin volume fraction (c–f) and pseudo slip’s twin volume fraction (g–j) at
strains of 𝛾 = 0.01, 0.044, 0.07, 0.1. Phase-field’s slip magnitude (k–n) and pseudo
slip’s twin volume fraction (o–r) at strains of 𝛾 = 0.01, 0.044, 0.07, 0.1.
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We observe that macroscopic quantities like propensity for twinning and slip, and
nominal driving force (Schmid factor) are suggestive but not predictive of the pres-
ence of twinning and slip in a grain. Grains well-oriented for slip were more likely
to slip, and those oriented for twinning were more likely to twin (see Figure 3.7).
However, grains with a similar orientation may behave differently, and one can ob-
serve twinning and slip even when the nominal driving force or Schmidt factor is
negative (Figure 3.10). This is in agreement with observations in magnesium and
its alloys [20, 67, 88], and zirconium and its alloys [2, 27, 40, 112].

There are two notable reasons for this non-Schmid behavior. The first is the
anisotropy of the elastic modulus that leads to a heterogeneous state of stress. In
particular, we have significant amounts of stress concentrations at triple junctions,
which in turn leads to heterogeneous nucleation (see Figure 3.8). The second is an
incompatibility between neighboring grains. This is evident both during nucleation,
where it tends to occur in multiple grains, and during growth, where deformation
mechanisms can bridge poorly oriented grains to connect well-oriented grains (see
the circled regions in Figure 3.7). This is highlighted by examining the geometrically
necessary dislocations (Figure 3.9). These are again in qualitative agreement with
experimental observations. In situ electron backscatter diffraction (EBSD) obser-
vations of Guo et al. [70] in magnesium emphasize the simultaneous nucleation of
twins in multiple grains and the formation of twin chains. Combined high-resolution
digital image correlation (HRDIC) and EBSD observations of Orozco-Caballero et
al. [129] in the magnesium alloy AZ31 show the heterogeneous nature of defor-
mation at the sub-granular and multi-granular scales, and how hard slip can be
activated to bridge deformation across grains. Similarly, EBSD observations of
AZ31 of Jonas et al. [88] confirmed that twins formed in low Schmidt factor grains
to bridge those formed in high Schmidt factor grains.

We also used simulations to study the asymmetric deformation response due to twin-
ning and the history dependence in both proportional and non-proportional loading.
Importantly, note that our simple model includes self-hardening slip, but neither
self-hardening in twinning nor cross-hardening between twin-slip are considered.
Still, we see that the deformation history significantly affects the response in propor-
tional, shear direction change, and non-proportional loading. In other words, these
examples show that the systems can interact through the microstructure and residual
strain even in the absence of cross-hardening. All of these provide insights into the
deformation behavior of low symmetry crystals where both deformation twinning
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and dislocation slip are significant.

We then compare our model with previous work that treated twinning as a “pseudo-
slip” in the crystal plasticity framework. A key observation is that the pseudo-
slip removes the nucleation barrier from surface energy leading to the earlier and
easier creation of twins. This is consistent with the detailed comparative study
between (EBSD) observations and pseudo-slip based crystal plasticity simulations
by Abdolvand and Daymond [2]; this study showed that the pseudo-slip model
significantly over-predicted the extent of twinning. Additionally, Figure 3.18 shows
that the current model predicts twins nucleating and propagating in sharp sub-
granular bands as observed in experiments (for example, [14]). In contrast, the
pseudo-slip model predicts pervasive twinning on the granular scale. Lastly, the
current model predicts load drops as twins nucleate and grow, consistent with
experiments, while the pseudo-slip model predicts a smooth yield. The pseudo-slip
approach ignores twin-boundary energy and thus lacks a length scale leading to an
under-prediction of the nucleation barrier.
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C h a p t e r 4

DEFORMATION TWINNING AND DISLOCATION SLIP
INTERACTIONS IN POLYCRYSTALLINE MAGNESIUM

4.1 Motivation
Recent decades have seen increased interest in alloys with low symmetry, specifically
hexagonal close-packed crystal structures, for structural applications due to their
high strength-to-weight ratio. For example, magnesium alloys have amongst the
highest strength-to-weight ratio (with a density of 1.8 g/cm3 and yield strength
exceeding 100 MPa) of known metals and have been explored for automotive,
biomedical, and other engineering applications. However, these alloys often have
limited ductility and suffer sudden, almost brittle-like failure. We refer the reader to
recent reviews [46, 89, 102, 104] on magnesium for a comprehensive background.

The high strength-to-weight ratio and limited ductility originate from the low sym-
metry crystals’ anisotropic elasticity and the resulting complexity in deformation
modes (e.g., [94]). For example, magnesium, which is hexagonal close-packed, has
an easy basal slip system and relatively easy tension twins but hard pyramidal and
prismatic slip systems. Unfortunately, the basal slip and tension twin systems are
deficient, i.e., they cannot accommodate an arbitrary deviatoric strain. Therefore,
a polycrystal of these materials needs to engage the hard slip systems resulting in
high strength. However, the mismatch between the strength of these systems leads
to strain localization and other related phenomena that cause easy failure. This is in
contrast with face-centered cubic crystals, where the slip systems are complete and
of identical yield strength. Additionally, the easy presence of twinning adds several
complexities. Unlike slip, twinning leads to a rotation of the lattice, experimentally
appears as sharp bands, and has an asymmetric nucleation. Finally, the coexistence
of twinning and slip in magnesium leads to rich microstructural phenomena and
complex macroscopic responses.

Various approaches to understanding twinning within magnesium have been ex-
plored over the years, from atomistic to continuum-mechanics descriptions. Our
focus here is on the latter in the context of mesoscale modeling, with the incor-
poration of as much microscale physics as necessary. Early models on describing
twinning borrowed concepts from crystal plasticity and included twins as an addi-
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tional slip system (often referred to as pseudo slip systems) [91, 132]. However,
these first models did not account for the lattice reorientation. Thus, subsequent
pseudo-slip models accounted for twin’s lattice reorientation [7, 42, 43, 136]. In
recent years, the importance of twin morphology has also been shown experimen-
tally. For example, Abdolvand and Daymond [2] showed significant differences
in twin evolution in Zircaloy-2 between electron back-scatter diffraction (EBSD)
observations and pseudo-slip based crystal plasticity simulations. Thus, a focus on
the role of morphology, especially through the cooperative actions of grains, has
been emphasized by several researchers recently [22, 129]. Jin et al. [87] developed
a model for inserting fully twinned regions (via strain discontinuities) when appro-
priate stochastic conditions were met. However, this model does not fully capture
the nucleation and growth of twins and thus misses the interaction with dislocations.
Several researchers addressed these shortcomings, for example, [11, 12, 47, 48],
by explicitly inserting discrete twin lamella based on total accumulated twin ac-
tivity from pseudo-slip models (modified with dislocation disassociation motivated
criteria for nucleation, propagation, and growth), while locally modifying the defor-
mation history to account for the twinning shear. However, all of these approaches
introduce twins discreetly, removing the benefits of a continuous variable describing
the twin morphology and surface energy specifics on twin nucleation.

Phase-field models have long been used to study morphology in the context of phase
transitions (e.g., [14]) due to their natural evolution laws through a smooth variable to
describe twinning. However, past studies have primarily been in the context of small
(geometrically linear) strains, without complex twin-slip interactions (e.g., [50]), or
limited to describing single twin systems [115]. Recently, Liu et al. [115] proposed
a phase-field model that combines deformation twinning and plastic slip, and used
it to study single crystals in three dimensions and polycrystals in two dimensions.
However, their model still used an incremental update for the twinning deformation,
borrowing from the pseudo-slip models. Hence, we plan to extend our phase-field
model for twinning introduced in Chapter 3. We previously showed the model’s
capabilities to capture twinning’s length scale and the resultant complex twin-slip
interactions in two-dimensional single-crystal and polycrystal simulations. We now
propose to follow crystal plasticity models to account for multiple of magnesium’s
slip systems, include multiple phase field variables to track the evolution of several
twin systems, and finally adopt the massively parallel implementation by [160] to
conduct high-resolution studies. The focus of this work is to showcase the model’s
capabilities and implementation to conduct detailed simulations capturing complex
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twin-slip interactions in real polycrystal magnesium samples and conclude with
proposed future works.

4.2 Extension of model
We now extend the model from Section 3.2 to include both multiple slip and twin
systems. Suppose the material exhibits 𝑁𝑠 slip systems and 𝑁𝑡 twin systems, each
with slip/shear and normal directions given by (b̂ p

𝛼 , n̂ p
𝛼) and (b̂ t

𝛽
, n̂ t

𝛽
), respectively.

We can track the evolution of the slip systems through a vector of plastic slip activity,
γ p ∈ R𝑁𝑠 with components acting on each slip system. We evolve multiple twin
systems through multiple phase variables, η = {𝜂1, · · · 𝜂𝑁𝑡

}, with their specific
combination describing the lattice state of any material point.

4.2.1 Kinematics
We, again, assume the body is undergoing a deformation with a gradient (F = ∇y)
decomposed into elastic, plastic, and twinning parts as,

F = F eF pF t. (4.1)

The twinning deformation will be decomposed into an additive form, i.e., a sum of
shears from each twin system,

F t = I +
𝑁𝑡∑︁
𝛽=1

𝜂𝛽𝛾
t
0 𝛽 b̂ t

𝛽 ⊗ n̂ t
𝛽, (4.2)

where 𝛾 t
0 𝛽 is the twin shear for twin system 𝛽. The plastic deformation in the parent

(untwinned) lattice will follow classical crystal plasticity models [99, 140] with a
rate update contributed from each slip system,

¤F p =

[ 𝑁𝑠∑︁
𝛼=1
¤𝛾 p
𝛼 b̂ p

𝛼 ⊗ n̂ p
𝛼

]
F p in parent lattice. (4.3)

To arrive at a unified description across twinned and untwinned regions, we introduce
slip and normal directions in each twinned region as, b̂′p

𝛼𝛽
and n̂′p

𝛼𝛽
, respectively,

which represents slip system 𝛼 in the 𝛽 twinned lattice. The slip systems in the
twinned lattice are defined using the parent slip systems as,

b̂′p
𝛼𝛽

= R𝛽b̂ p
𝛼 , n̂′p

𝛼𝛽
= R𝛽n̂ p

𝛼 with R𝛽 = 2n̂ t
𝛽 ⊗ n̂ t

𝛽 − I (no sum). (4.4)
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Thus, the plastic deformation is modified from the conventional crystal plasticity to
account for dislocation activity on both the parent and twinned lattices [136, 159],

¤F p =

𝑁𝑠∑︁
𝛼=1
¤𝛾 p
𝛼

[
(1 −

𝑁𝑡∑︁
𝛽=1

𝜂𝛽)b̂ p
𝛼 ⊗ n̂ p

𝛼 +
𝑁𝑡∑︁
𝛽=1

𝜂𝛽b̂′p𝛼𝛽 ⊗ n̂′p
𝛼𝛽

]
F p. (4.5)

Note that this form differs from the two-dimensional case in Section 3.2 — where
we used linear combinations of slip angles — and instead, we work directly with
the parent and twin lattice slip directions. The main motivation for this change is
to more easily evolve the slip directions without having to track three-dimensional
rotations, whose derivatives would increase the computation complexity.

Finally, we include the accumulated slip for each slip system, ϵ p
𝛼 , in order to dictate

strain hardening. The accumulated slip of each system evolves identical to Section
3.2, as ¤𝜖 p

𝛼 = | ¤𝛾 p
𝛼 |.

4.2.2 Free energy
We again postulate a free energy density with a similar decomposition and form as
the single twin and slip system case,

𝑊 (F e,η,∇η, 𝜖 p) = 𝑊 e(F e,η) +𝑊 t(η) +
𝛼

2
∥∇η∥2 +𝑊 p(ϵ p). (4.6)

𝑊 e is the elastic energy,

𝑊𝑒 (F e,η) = 1
2

E𝑒 : C(η) : E𝑒, (4.7)

with a non-linear strain measure and a weighted phase field average of the anisotropic
modulus,

C(η) =
(
1 −

𝑁𝑡∑︁
𝛽=1

𝜂𝛽
)
C(η = 0) +

𝑁𝑡∑︁
𝛽=1

𝜂𝛽C(𝜂𝛽 = 1), (4.8)

to account for reorientation from each twin lattice. 𝑊 t is now a multi-well energy
for twinning,

𝑊 t(η) =
𝑀𝑠

2

𝑁𝑡∑︁
𝛽=1

𝜂2
𝛽 (1 − 𝜂𝛽)2 +𝑊 t, lat(η), (4.9)
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with 𝑀𝑠 being the multi-well parameter. The first term in equation 4.9 enforces
𝜂𝛽 ∈ [0, 1], while the second term is a twin-latent hardening term to penalize the
activation of multiple twin systems at any location at the same time. 𝛼

2 ∥∇η∥ is the
isotropic twin surface energy, which now includes the gradient of the entire vector
of phase field variables, with surface energy parameter 𝛼. Together 𝑀𝑠 and 𝛼 will
dictate the twin surface energy, interface thickness, and nucleation threshold as was
discussed in Section 3.2.5. 𝑊 p is the plastic work hardening,

𝑊𝑝 (ϵ p) = 𝑊 p, self(ϵ p) +𝑊 p, lat(ϵ p). (4.10)

The first term describes plastic self-hardening, which will be a sum of the exponential
Voce hardening utilized prior [7, 42, 68],

𝑊 p, self(ϵ p) =
𝑁𝑠∑︁
𝛼=1

𝜎∞𝛼

[
𝜖

p
𝛼 +

𝜎∞𝛼
ℎ𝛼

exp
(
− ℎ𝛼𝜖𝛼
𝜎∞𝛼

)]
, (4.11)

and the second term is a plastic latent hardening term accounting for the penalization
of multiple slip systems present at one material point,

𝑊 p, lat(ϵ p) = 1
2
ϵ p · Kϵ p, (4.12)

whereK is a symmetric matrix containing the hardening moduli on the off-diagonal
entries and zeros along the diagonal.

4.2.3 Equilibrium and evolution
We, again, obtain the equilibrium and internal variable evolution through the use of
the principle of minimum dissipation potential, which requires the use of the dual
dissipation potential, Ψ∗( ¤η, ¤γ p). We assume the contributions to the dual potential
are additive for each system [42],

Ψ∗( ¤η, ¤γ p) =
𝑁𝑠∑︁
𝛼=1

Ψ∗p( ¤𝛾
p
𝛼 ) +

𝑁𝑡∑︁
𝛽=1

Ψ∗t ( ¤𝜂𝛽), (4.13)

with the individual twin and slip contributions following the forms,

Ψ∗
(
·
)
=

[
𝜏0 | · | +

𝜏0 ¤𝛾0
𝑚 + 1

(
| · |
¤𝛾0

)𝑚+1]
. (4.14)
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The resulting mechanical equilibrium is,

∇ · P = 0, with P =
𝜕𝑊 e

𝜕F
=
𝜕𝑊 e

𝜕F e (F
pF t)−⊺, (4.15)

while the evolution of the internal variables γ p and η is,

0 ∈ −𝜏 p
𝛼 +

𝜕𝑊 p

𝜕𝜖𝛼
+ 𝜕 ¤𝜖𝛼Ψ∗p ∀𝛼 ∈ [1, 𝑁𝑠], (4.16)

0 ∈ −𝜏 t
𝛽 +

𝜕𝑊 e
𝜕𝜂𝛽
+ 𝜕𝑊 t
𝜕𝜂𝛽
+ 𝛼∇2𝜂𝛽 + 𝜕 ¤𝜂𝛽Ψ∗t ∀𝛽 ∈ [1, 𝑁𝑡], (4.17)

where 𝜏 p
𝛼 and 𝜏 t

𝛽
are the slip and twin resolved shear stress, respectively, for the 𝛼

slip system and 𝛽 twin system,

𝜏
p
𝛼 = σ p :

[(
1 −

𝑁𝑡∑︁
𝛽=1

𝜂𝛽

)
b̂ p
𝛼 ⊗ n̂ p

𝛼 +
𝑁𝑡∑︁
𝛽=1

𝜂𝛽b̂′p𝛼𝛽 ⊗ n̂′p
𝛼𝛽

]
, σ p = F e𝑇P(F pF t)𝑇

(4.18)

𝜏 t
𝛽 = σ t : b̂ t

𝛽 ⊗ m̂ t
𝛽, σ

t = 𝛾 t
0 𝛽 (F

eF p)𝑇P. (4.19)

Note that the slip-resolved shear stress form differs from Section 3.2 due to the
change in the parent and twin lattice dislocation formulation in equation 4.5.

4.2.4 Twinning latent hardening
Here we mention the significance of the twin latent hardening energy,𝑊 t, lat(η), as
well as comment on the forms explored. 𝑊 t, lat(η) represents a twin latent hardening
term which would penalize the coalescence of different twin variants at the same
material point and time. Although experiments show evidence of higher-order twin
patterns, i.e., the nucleation of a second (or more) twin in an already twinned region
(see, e.g., Hong et al. [77] or other researchers [24, 59, 108]), details on the exact
order of evolution and forming of the double twins is not clear. Hence, the only
criteria we choose for𝑊 t, lat(η) is to increasingly penalize the formation of a second
twin system during the formation of a first twin band.

The common phase-field approach for the latent hardening term is,

𝑊
(1)
t, lat(η) =

𝑀𝑙

2

( 𝑁𝑡∑︁
𝛽=1

𝜂𝛽

)2 (
1 −

𝑁𝑡∑︁
𝛽=1

𝜂𝛽

)2

, (4.20)

which would have a zero energy state when a material point is in the parent or a
twin lattice. However, an additional, undesirable, zero energy state is

∑𝑁𝑡

𝛽=1 𝜂𝛽 = 1,
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such as 𝜂𝛽 = 1/𝑁𝑡 , which would allow regions where a material point is at the
interface of multiple twin regions, rather than entirely in one. Practically from
numerical experiments, this led to regions where twin band formation was delayed,
or completely stopped, in favor of multiple twin interfaces.

As an alternative, we explored the form of𝑊 t, lat(η),

𝑊
(2)
t, lat(η) = 𝑀𝑙

𝑁𝑡∑︁
𝛽=1

𝜂𝛽
[
1 − (1 −

𝑁𝑡∑︁
𝜁=1,𝜁≠𝛽

𝜂𝜁 )3
]
. (4.21)

The goal of this form is to non-linearly increase the yield stress for a twin system
based on the activation of the other twin systems, i.e., if a region is twinning by one
variant, then a hardening term forms for all other twin systems. This hardening term
non-linearly increases from 0 (in the case of no twin band 𝜂1 ≈ 0) up to 4𝑀𝑠 when
the first twin band has fully formed (𝜂1 ≈ 1). Thus, we can control the penalization
of second (or more) twins but still allow their formation through the parameter 𝑀𝑠.

In short, a twin latent energy of the form in equation 4.21 improves twin bands fully
forming and is applied in subsequent simulations.

4.2.5 Implementation
The numerical implementation will closely follow Chapter 3 with only a few modi-
fications we mention here. First, after the time discretization of the plastic flow rule,
its update at the new time step (𝑛 + 1) is now,

F p
𝑛+1 =

1
𝐽𝑑p

(
I +

𝑁𝑠∑︁
𝛼=1

Δ𝛾
p
𝛼

[
(1 −

𝑁𝑡∑︁
𝛽=1

𝜂𝛽)b̂ p
𝛼 ⊗ n̂ p

𝛼 +
𝑁𝑡∑︁
𝛽=1

𝜂𝛽 𝑛b̂′p𝛼𝛽 ⊗ n̂′p
𝛼𝛽

] )
F p
𝑛 , (4.22)

where 𝐽 p normalizes the plastic update to preserve an isochoric deformation and 𝑑 is
the dimension. Second, we need to introduce ADMM variables (auxiliary variables
and Lagrange multipliers) for each twin phase field variable, 𝜂𝛽, to decouple the
non-linear and non-local problems in each twin evolution equation. This decoupling
will lead to 𝑁𝑡 local non-linear problems, which are solved using Newton-Raphson,
and 𝑁𝑡 linear non-local problems, solved using FFT, to update the phase field
variables and their gradients. Lastly, solving mechanical equilibrium and twin/slip
evolution is done using the ADMM in Chapter 3 (and discussed in detail by Zhou
and Bhattacharya [160]), however now the ordered solution of the different slip/twin
systems could lead to differing microstructure — and consequently large effects on
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𝐶11 𝐶33 𝐶44 𝐶66 𝐶12 𝐶13 Units
59.72 57.26 17.28 16.96 25.81 21.93 GPa

Table 4.1: Experimentally-determined transversely-isotropic elastic constants of
pure Mg at 280 K (Slutsky and Garland, 1957).

the stress-strain response. To mitigate this, we solve the twin and slip systems in
order of most violated yield criteria [54, 123].

4.3 Magnesium material parameters
For a full three-dimensional simulation of magnesium we must carefully consider
all relevant inelastic systems present, along with the proper anisotropic elasticity,
twin/slip hardening, propagation, and phase field variables.

4.3.1 Anisotropic elasticity
Pure magnesium has been shown to have a transverse-isotropic response which we
match here by defining the elastic stiffness tensor components, following Slutsky
and Garland’s [146] experimental measurements, shown in Table 4.1.

4.3.2 Plastic slip
Here we will consider three slip systems: basal, prismatic, and pyramidal ⟨𝑎 + 𝑐⟩.
The first system, basal slip, is magnesium’s most dominant plastic system due to
significantly lower critical resolved shear stresses. The second plastic slip system,
prismatic, is frequently observed when activation of basal slip is suppressed [36,
138]. The last system, pyramidal ⟨𝑎 + 𝑐⟩, accommodates compression along the
𝑐-axis since the earlier slip systems lie along the basal plane and cannot activate
along the 𝑐-axis. There are additional slip systems, such as pyramidal ⟨𝑎⟩, that can
be included; however, it has been found that its effects are similar to the prismatic
ones but at considerably higher resolved shear stresses [3, 44]. Additionally, using
only basal, prismatic, and pyramidal ⟨𝑎 + 𝑐⟩ slip systems, Agnew et al. [5, 6]
have already provided realistic results for alloy AZ31B magnesium and reproduced
experimental results [7]. Therefore, we choose only to include the basal, prismatic,
and pyramidal ⟨𝑎 + 𝑐⟩ systems, shown in Figure 4.1 with directions and planes
given using Miller indices. Finally, each system’s plastic slip hardening/dissipation
parameters are given in Table 4.2 with values motivated from the literature [42, 43].
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Figure 4.1: Magnesium inelastic systems accounted for in simulations. (a) – (c) are
the dislocation slip systems and (d) is the deformation twinning system.

4.3.3 Deformation twinning
Deformation twinning is the most common inelastic mode in magnesium (when
considering 𝑐-axis loading), with a considerably lower activation threshold than
the non-basal slip systems and the ability to accommodate 𝑐-axis deformations.
The two types of twin systems are tension and compression, activated under 𝑐-axis
tension and compression, respectively. Tension twins are the more dominant system
of the two due to easier nucleation thresholds and higher mobility. In contrast,
compression twins are difficult to nucleate due to their much higher critical resolved
shear stress and larger shear strain, as seen experimentally by Brown et al. [34] and
understood through differences in twinning structures [49]. Thus, we only consider
tension twins here, shown in Figure 4.1 along with directions and planes given in
Miller indices.

The parameters for tensile twins are motivated by a combination of experimen-
tal/atomistic understanding. First, the twinning hardening and dissipation parame-
ters (𝛾 t

0, ¤𝛾 t
0, 𝜏 t

0 , 𝑚 t) are motivated from literature on twin structures and propagation
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𝑚 p ¤𝛾 p
0 𝜏

p
0 𝜎∞ ℎ 𝑘

Basal Slip
0.05 1 1/s 4 MPa 2 MPa 7.1 GPa 0 MPa

Prismatic Slip
0.05 1 1/s 4 MPa 85 MPa 9 GPa 2 MPa

Pyramidal ⟨𝑎 + 𝑐⟩ Slip
0.05 1 1/s 4 MPa 150 MPa 30 GPa 25 MPa

Table 4.2: Plastic slip hardening and dissipation parameters for magnesium simula-
tions [42, 43].

kinetics [42, 43, 49]. Second, the phase field double well parameter, 𝑀𝑠, is esti-
mated based on surface energy contributions from our model compared to atomistic
simulation values for tensile twin boundaries in magnesium.

Assume we have a single twin interface in equilibrium under a stress-free state with
no plastic slip history. The twin surface energy, Γ, simplifies to an integration of
the twin energy over the interface thickness, 𝑙,

Γ =

∫ 𝑙

0

𝑀s
2
𝜂2(𝜂 − 1)2 + 𝛼

2
∥∇η∥2 𝑑𝑦̂, (4.23)

where 𝑦̂ is along the normal to the twin interface. Since the twin interface thickness
is much smaller than any characteristic lengths, we can approximate the surface
energy using a linear form of 𝜂( 𝑦̂) and a finite difference of ∇𝜂 to arrive at,

Γ =
𝑀s𝑙

60
+ 𝛼

2𝑙
. (4.24)

Using the fitted twin thickness relationship, 𝑙 = 8
√︃

𝛼
𝑀s

, from Section 3.2.4 we can
remove the 𝛼 dependence to arrive at,

𝑀s =
480Γ
47𝑙

. (4.25)

Finally, using atomistic results for typical twin boundary surface energies (Γ = 70
mJ/m2 [125, 151, 153, 158]) and twin interface thickness (chosen to be 𝑙 = 7 nm —
motivated by the fact that twin boundaries can be up to several twin plane distances
thick [98, 109]) in magnesium. Combining the experimental and atomistic results,
we arrive at 𝑀 s = 100 MPa.

We will use the surface energy parameter, 𝛼, to define a non-dimensional length
scale used for implementation. Finally, the latent twin hardening parameter, 𝑀𝐿 ,
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𝛾 t
0 𝑀𝑠 𝑀𝐿 𝛼 ¤𝛾 t

0 𝜏 t
0 𝑚 t

Tension Twin
0.129 100 MPa 5 MPa 5 × 10−7 Pa·m2 1 1/s 1 MPa 1

Table 4.3: Twin hardening and dissipation parameters for magnesium simulations
from [42, 43, 49, 118], phase field parameters informed from simulations and theory
[50, 98, 109, 125, 151, 153, 158].

is kept small to avoid large effects on the nucleation of individual twins. The final
twin-related phase-field, hardening, and dissipation parameters are given in Table
4.3.

4.4 Results
Here we present magnesium simulations with multiple twin and slip systems to
explore twin-slip interactions. For all simulations, we consider the full 12 slip
systems discussed in Section 4.3 and two of the tension twin systems, i.e., 𝑁𝑠 = 12
and 𝑁𝑡 = 2. Note that we only consider two tension twins instead of the full six to
emphasis the capabilities of the phase field model while keeping the computational
cost minimal. Calculations are conducted on a 1283 grid on a cubic domain of side
lengths, 𝐿 = 30 𝜇m and a strain rate of 5 × 10−3 s−1.

4.4.1 Bi-crystal twin transmission
First, we explore twin transmission across misorientated grains by conducting sim-
ulations on a bicrystal sample, shown in Figure 4.2. For all simulations, we keep

Figure 4.2: Bicrystal sample.

the bottom (blue) grain fixed, with its 𝑐-axis aligned with the 𝑧-axis, and rotate the
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top (red) grain by varying amounts (15◦, 30◦, and 45◦) about the 𝑥-axis to arrive
at the starting texture. Then, we apply 𝑧-axis tension while allowing lateral direc-
tions to contract freely to ensure tensile twins dominate the bottom grain’s inelastic
deformation. Table 4.4 shows the macroscopic Schmid factors for both grains.

x-axis rotation Schmid Factors
Angle Tensile twin Basal slip Prismatic slip Pyramidal slip
0◦ 0.499 0 0 0.446
15◦ 0.465 0.217 0.029 0.492
30◦ 0.357 0.375 0.108 0.420
45◦ 0.203 0.433 0.217 0.251

Table 4.4: Twin and slip Schmid factors for bicrystal simulations.

From the Schmid factors, we expect tensile twinning and pyramidal slip to be the
dominant inelastic systems at low angles of grain reorientation, with little to no
basal or prismatic slip. Conversely, basal slip becomes the most favorable system
at high angles, with the remaining systems being roughly equal. Hence, from a
macroscopic Schmid factor perspective, we expect that twins can no longer transmit
across the grains as we increase the rotation angle, leaving basal and prismatic slip
to accommodate the strains in the top grain.

We conduct tension simulations for each rotation case with an initial twin seed of
radius 2.2 𝜇m, inserted in each crystal to assist in twin nucleation. The resulting
twin-slip morphology at a strain of 6%, corresponding to shortly after twin nucle-
ation, is shown in Figure 4.3. We see twin bands forming in the bottom grain for
all misalignment cases. However, we see bulkier twins forming for higher angles.
For low grain misalignment, Figure 4.3 (a) – (d), we see twin bands can transmit
to the top grain (though are not able to span the entire grain) with plastic slip hot
spots from all systems present near twin interfaces and inside twin bands. As we
increase the grain rotation, we see that twin bands can no longer form in the top
grain. However, we observe areas near the grain boundary where twins attempt to
transmit. Further, the plastic slip becomes more uniform with increasing angle since
the bulkier twinned regions decrease the heterogeneity from the twin bands.

To further emphasize the arrest of deformation twinning near the grain boundary,
we show the twin configuration at the same instance for the 30◦ and 45◦ cases (with
a zoomed-in axis) in Figure 4.4. From Figure 4.4 (a), we see that at the intermediate
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Figure 4.3: Twin-slip configurations for twin transmission through x-axis rotated
bicrystal. The twin configuration (a, e, i), basal slip (b, f, j), prismatic slip (c, g, k),
and prismatic slip (d, h, l) are shown at a strain of 𝜀 = 0.06 for the angles listed.

angle, twin bands (of low twin volume fraction) are propagating from the grain
boundary where neighboring twins terminate. These twin spots indicate areas of
relatively high twin-resolved shear stress due to the stress heterogeneity created by
the grain boundary and twin bands. However, if we look at Figure 4.4 (b), we see
a more uniform zero twin activity due to the poor twin alignment mitigating the
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effects of stress concentrations in the resolved shear stress.
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Figure 4.4: Twin arrest at grain a boundary with (a) 30◦ and (b) 45◦ rotation at a
strain of 𝜀 = 0.06.

Lastly, we compute the average stress and inelastic deformations versus applied strain
in Figure 4.5. Looking at the stress-strain curves, Figure 4.5 (c, f, i), we observe
a linear elastic region until plastic yielding, after which there is a continued stress
increase until twin bands can nucleate, leading to a stress drop. Next, comparing
the different misalignment cases, we see a more significant stress drop with an
angle increase due to bulkier twin bands forming in the bottom grain. Lastly,
for lower misalignment cases, we see the basal slip magnitude (and, to a lesser
degree, prismatic and pyramidal) rapidly increasing shortly after twin nucleation.
However, as we increase the angle, this rapid slip increase becomes less evident
since the bulkier twin bands decrease the twin surface area and the resulting twin-
slip interactions at interfaces.

Finally, identical simulations were conducted for 𝑦-axis rotations with similar
Schmid factor, twin transmission, and slip interaction trends observed.

4.4.2 Twin-slip evolution in polycrystal magnesium specimens
We now present results highlighting the complex microstructure evolution and the
interplay between slip and twinning for a polycrystal magnesium sample. Material
parameters are given in Section 4.3 unless otherwise specified. We consider a
polycrystal of nine grains, shown in Figure 4.6, obtained by Voronoi tessellation
from random seeds and angle (axis) of rotation sampled from a uniform distribution
between ± 𝜋2 (𝑥−, 𝑦 − 𝑧− axis). We apply a boundary condition corresponding to a
𝑧−axis tension (with lateral directions free to contract) up to a strain of 6%.

Note, the orientation mapping in Figure 4.6 is plotting the propensity for slip and
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Figure 4.5: Bulk response for bicrystal study. (a, d, g) Average twin volume fraction,
(b, e, h) bulk slip magnitudes, and (c, f, i) stress-strain response for misalignment
angles shown.

twin, 𝑝, computed following Section 3.5.1 as,

𝑝 = max𝛽∈𝑁𝑡

[
F̄ : sym(ŝ𝛽 ⊗ m̂𝛽)

]
+
−max𝛼∈𝑁𝑠

��F̄ : sym(b̂ p
𝛼 ⊗ n̂ p

𝛼)
�� , (4.26)

where F̄ is the applied deformation, (ŝ𝛽, m̂𝛽) the 𝛽 th local twin system, (b̂ p
𝛼 , n̂

p
𝛼) the

𝛼 th local slip system, and the maximum used to determine the most favorable twin
and slip system. The resulting values of −1 ≤ 𝑝 ≤ 1 indicate alignment with a slip
(or twin) system if 𝑝 = −1 (or 𝑝 = 1). Although this measure of alignment loses
the details of which slip or twin system is most favorable, it provides an easy way to
differentiate between slip or twin alignment.

The stress-strain behavior, bulk slip activity, and twin volume fraction are shown in
Figure 4.7 along with snapshots of twin and slip evolution in Figure 4.8 for increasing
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Figure 4.6: Polycrystal (nine grains) sample with color mapping showing propensity
for slip (blue) or twinning (red).

strain (left to right). At low strains, 𝜀 = 0.02, plasticity is the dominant inelastic
mechanism; basal and prismatic slip initiated across several grains –– Figure 4.8 (g)
and (j) — while the pyramidal slip is concentrated near grain boundaries — Figure
4.8 (m). This slip nucleation is confirmed with bulk slip magnitudes increasing in
Figure 4.7 (b) and stress softening in Figure 4.7 (c). The plastic activity increases
relatively uniform across grains, with only hot spots near triple grain junctions, until
a strain of 𝜀 = 0.0325, at which point twinning nucleates — Figure 4.8 (b) and (e).
This twin nucleation is again confirmed with an increase in twin volume fraction
and a stress drop in Figure 4.7. As the loading continues until the final strain,
𝜀 = 0.06, twin bands nucleate/propagate across grains leading to increased plastic
heterogeneity — confirmed with a rapid basal (and to a lesser degree prismatic and
pyramidal) slip increase after twin bands form.
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Figure 4.7: Bulk response for nine grain sample. (a) Average twin volume fraction,
(b) bulk slip magnitudes, and (c) stress-strain response.

Twin-slip interactions The highly heterogeneous response of slip after twin nu-
cleation, in both favorable and unfavorable grains, points to the cooperation of
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twin-slip activity. To explore this interaction, we take a two-dimensional slice of
the polycrystal sample and show the basal slip and twin activity at a few strains.
Figure 4.9 (a) shows the texture, with labels given for grains of interest, which have
a reorientation of 30◦ and 60◦ across grains 1 − 2 and 1 − 3, respectively. Figure
4.9 (b) shows the basal slip magnitude, at a strain of 3% (corresponding to shortly
before twin nucleation), with concentrated plastic activity near grain boundaries and
inside the slip favored grains 2 and 3. Figure 4.9 (c) shows the twin volume fraction,
at a strain of 3.25%, with a twin nucleating at the grain boundary and inside the 1
and 3 grains. Lastly, Figure 4.9 (d) and (e) shows the basal and twin configuration
at a strain of 3.5%, where we can see a fully formed twin band and a rapid increase
in basal activity inside the twinned domain.

All these points to the cooperation of slip and twinning to address local strain incom-
patibility. Orozco-Caballero et al. has recently experimentally shown the activation
of twinning and unfavorable slip near grain boundaries to accommodate drastically
different grains. Although we alluded to this in our previous two-dimensional study
of phase field twinning (Chapter 3), here, we can show this for a three-dimensional
magnesium specimen. Specifically, the activation of both twinning and basal slip
at the triple grain junction occurs to accommodate the strain incompatibility intro-
duced by the grain misalignment coupled with the anisotropic elasticity. Lastly, the
increase of the basal slip inside and near the twin band (even into the unfavorable
grain 1) provides an example of the complex coupling between the twin morphology
and plastic deformation.

4.4.3 Texture influence
Starting with the grain configuration from Section 4.4.2, we conduct separate uni-
axial tension simulations with different starting textures. The initial textures con-
sidered are for fixed angles with (1) grain rotations about the x-axis and (2) grain
rotations about the y-axis. These alignments of the grains about an external direction
are similar to texture results from cold rolling [145].

The final inelastic configuration and average stress response are shown in Figure
4.10 and 4.7, respectively, for each case (along with the case from Section 4.4.2
repeated). Looking at the twin-slip morphology for each texture, we see complex
twin bands that span through/across several grains and plastic slip with peaks near
grain and twin interfaces. Comparing the different textures, we see drastically
different twin/slip responses due to the grain orientation changes. For 𝑥-axis and
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𝑦-axis rotations, we see more bulky twin bands and only one tensile twin active
(rather than both). Both result from the texture aligning more with one of the tensile
twins. We also observed higher concentrations of pyramidal slip in the 𝑥 and 𝑦
texture cases for similar reasons as twinning. Comparing the stress-strain curves,
we observe similar trends across all textures. However, we see slightly more stress
softening and fewer stress drops in the 𝑥 or 𝑦 texture than the random texture —
both are due to an overall smaller twin volume fraction since only one tensile twin
actives. Comparing the bulk slip magnitudes, we see a more rapid slip increase after
twin nucleation for the random texture; this is due to only one twin system (with
bulkier bands) nucleating in the 𝑥 and 𝑦 texture cases.

4.5 Discussion and conclusion
In this study, we have extended the phase field model introduced in detail in Chapter 3
to describe multiple twin and slip systems at the scale of multiple grains. We start by
accounting for multiple slip systems through classical crystal plasticity theories and
twin systems through multiple phase field variables. Then, we carefully consider
detailed twin morphology, nucleation barriers, surface energy, propagation drag,
cross hardening, and rate hardening. Finally, we implement the model on graphical
processing units following [160] to achieve accelerated computations. This study
aims to understand various aspects of the interaction between deformation twinning
and dislocation slip observed from the phase field model in polycrystal magnesium
specimens. Therefore we use detailed simulations in three dimensions to study twin
transmission/arrest at grain boundaries, cooperation of twin-slip to accommodate
strain incompatibility and the influence of texture.

We first observe a non-local nature of twinning (and plastic slip) to accommodate
grain heterogeneity. This non-local interaction is observed through neighboring
grains affecting twin/slip nucleation and morphology. For the bicrystal case, despite
the bottom grain remaining unchanged, we observe a transition from lamella-like
twin bands to bulkier, grain-spanning twins. The transition is in response to the
increased incompatibility across the grains, requiring larger inelastic deformations
that eventually slip fails to accommodate. Similarly, the polycrystal case illustrated
the same phenomenon, with twin nucleation observed within seemingly less fa-
vorable grains. We emphasized the non-local interaction in Figure 4.9 where we
see grain boundaries between highly misaligned grains initially promoting basal
slip until twinning begins to nucleate to accommodate high strain incompatibilities.
These observations qualitatively match studies on the effect neighboring grains and
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their plastic deformation have on twin behavior. Orozco-Caballero et al. [129]
were able to use DIC and EBSD observations to show slip activity in one grain can
allow for twin nucleation in the same or neighboring grain. While Lind et al. [112]
utilized high energy x-ray diffraction microscopy to show that both the nucleation
and morphology of twins are highly dependent on neighboring grains, with higher
twin volume fraction found inside grains with a higher number of neighbors —
effectively increasing the likelihood of cross grain interactions.

Second, we clearly observe the benefits of explicitly computing the twin morphology
through increased slip activity at twin interfaces and inside twin bands. In the
bicrystal study, during low misalignment, where twins are lamella-like, we notice
a highly heterogeneous basal and prismatic slip that disappears as we transition
to bulkier twins. This observation indicates that the loss of twin interfaces in the
bulkier case leads to a more homogeneous state and diminished high slip areas.
While in the polycrystal case, we captured instances of high slip magnitude bands
forming inside twin bands, and growing alongside twinning, see Figure 4.9. Both
of these observations indicate the highly non-local nature of twin and slip evolution
that the phase field model is able to capture near both grains and twin interfaces.

Lastly, we also explored the influence of texture on twin morphology and bulk
response through a simple study of three starting microstructures. A key observation
is the forming of bulkier twins when the texture is biased to one tensile twin,
which leads to different stress and bulk responses. For example, the 𝑥-axis rotated
polycrystal exhibited bulkier twins, leading to a softer behavior and less rapid
changes in slip activity after nucleation. These initial texture studies match studies
by Beyerlein et al. [22] where thicker (bulkier) twins were observed in grains (or
textures) more favorably aligned to a twin variant. However, the influence of texture
on twin morphology and resulting stress hardening/softening is a complex topic
with many factors affecting observed bulk behaviors (such as grain sizes, grain
orientations, plastic history, and loading/boundary conditions). Thus, this study
only illustrates the model’s capabilities to capture detailed microstructure evolution.
We leave more detailed texture studies and quantitative experimental comparisons
of the model as future work.
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Figure 4.8: Polycrystal magnesium simulation. The configuration for both twin
systems (a – c) and (d – f), basal slip (g – i), prismatic slip (j – l), and pyramidal
slip (m – n) are shown for strains of 𝜀 = 0.02, 0.0325, 0.06.
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Figure 4.9: Twin-slip nucleation in slice of polycrystal magnesium specimen. (a)
Grain texture with grain misalignment across grains 1− 2 : 30◦ and 1− 3 : 61◦. (b)
and (d) Basal slip magnitude at strains of 𝜀 = 0.03 and 𝜀 = 0.035, respectively. (c)
and (e) Twin volume fraction at strains of 𝜀 = 0.0325 and 𝜀 = 0.035, respectively.
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Figure 4.11: Polycrystal texture bulk response. (a, d, g) Average twin volume
fractions, (b, e, h) average slip magnitudes, and (c, f, i) stress strain response for the
listed initial texture cases.
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C h a p t e r 5

LEARNING MACROSCOPIC INTERNAL VARIABLES AND
HISTORY DEPENDENCE FROM MICROSCOPIC MODELS

The work presented in this chapter has been adapted from the following publication:

[1] B. Liu, E. Ocegueda, M. Trautner, A. M. Stuart, and K. Bhattacharya.
“Learning macroscopic internal variables and history dependence from mi-
croscopic models”. In: Journal of the Mechanics and Physics of Solids
(2023), p. 105329. issn: 0022-5096. doi: https://doi.org/10.1016/
j.jmps.2023.105329. url: https://www.sciencedirect.com/
science/article/pii/S0022509623001333.

5.1 Introduction
The engineering properties of materials are determined through complex interactions
of mechanisms that operate over a range of time and length scales (e.g., [134]). Over
the last few decades, the multiscale modeling framework has emerged, providing
means of understanding this complexity. The entire range of material behavior
is divided into a hierarchy of scales, the relevant phenomenon is identified and
modeled at each scale, and the hierarchy is reassembled assuming a pair-wise
interaction between the scales (e.g., [66]). Statistical mechanics and the theory of
homogenization provide the basis for this pair-wise reassembly: the coarser scale
regulates the finer scale while observing the averaged or filtered response from the
smaller scale.

Of particular interest in this work is the link between two continuum scales where
the physics is specified on a significantly smaller scale than the application scale.
Consider, for example, a polycrystalline solid with grains significantly smaller than
the overall dimensions, where each grain is governed by crystal plasticity while the
solid is subjected to macroscopic loads. The theory of homogenization [19, 131]
states that we may solve the balance laws at the application or macroscopic or coarse
scale using a constitutive relation that is determined implicitly by solving a problem
on a unit cell or representative volume at the microscopic or fine-scale at which the
physics is specified. Unfortunately, implementing this framework is prohibitively
computationally expensive since one needs to solve a microscopic scale unit cell

https://doi.org/https://doi.org/10.1016/j.jmps.2023.105329
https://doi.org/https://doi.org/10.1016/j.jmps.2023.105329
https://www.sciencedirect.com/science/article/pii/S0022509623001333
https://www.sciencedirect.com/science/article/pii/S0022509623001333
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problem at each point and time of the macroscopic calculation. This computational
cost provides the first motivation for this study.

Also of interest in this work are history and rate-dependent phenomena (like crystal
plasticity with hardening and rate dependence). While the history dependence
is specified at the microscopic scale, the process of homogenization or averaging
over the unit cell adds significant complexity. In particular, heterogeneous strain
and strain-rate distributions within the unit cell mean that phenomena at distinct
rates interact. Thus, the history dependence at the macroscopic scale can be very
different. For example, it is easy to show that a composite material made of
constituents governed by a linear Kelvin-Voigt model, where the stress depends only
on strain and strain rate, can have infinite memory (i.e., the stress depends on the
entire history of strain) at the macroscopic scale (e.g., [63, 144]). In fact, Brenner
and Suquet [33] provide examples where the macroscopic response can only be
described using a fractional time derivative of the strain. The situation in nonlinear
history-dependent phenomena like plasticity is far more complex, and very little is
known theoretically. This provides the second motivation for our work.

These issues have motivated a growing body of work in computational mechan-
ics that seeks to use machine learning in multiscale modeling. In an early work,
Lefik, Boso, and Shrefler [107] apply machine learning to the multiscale modeling
of composite materials. More recently, various researchers have used a recurrent
neural network (RNN) to approximate history-dependent behavior. Ghavamian and
Simone [65] suggested that an RNN with long short-term memory (LSTM) can
be used to describe effective plastic behavior of a representative volume and then
be used in FE2 calculations. They demonstrated it in an “academic example” of
a bar governed by isotropic Perzyna viscoplasticity with a periodic line of holes.
Mozaffar et al. [126] showed that an RNN with gated recurrent units (GRUs) is
able to approximate the homogenized behavior of a composite medium consisting
of isotropic elastic inclusions in an isotropic rate-independent plastic matrix. Wu
et al. [154] used an RNN to approximate the overall unit cell behavior of a partic-
ulate composite consisting of dilute circular elastic particles in an isotropic matrix
undergoing J2 plasticity, isotropic hardening, and no rate-effects, and then used the
trained macroscopic (GRU) RNN in macroscopic simulations. Wu and Noels [155]
seek to predict macroscopic response and microscopic strain distribution using a
(GRU) RNN combined with principal component analysis (PCA) of the strain field.
They again apply it to a particulate composite consisting of dilute circular elastic
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particles in an isotropic matrix undergoing J2 plasticity, isotropic hardening, and
no rate effects. There is a similar study of plasticity in particulate composites by
Logarzo, Capuano, and Rimoli [117]. There is also emerging literature on using
RNNs to accelerate large-scale finite element calculations (e.g., [28, 83]). One issue
in this approach is the complexity of the LSTM/GRU architecture, with a very large
number of parameters (e.g., millions in [126]).

In this Chapter, we examine the use of machine learning and, specifically, deep neural
networks to harness data generated by repeatedly solving the finer scale model: (i) to
gain insights into the history dependence and the macroscopic internal variables that
govern the overall response; and (ii) to create a computationally efficient surrogate
of its solution operator, that can directly be used at the coarser scale with no further
modeling.

We draw inspiration from the established literature on the use of internal or state
variable theories in continuum mechanics [72, 141] (and more broadly, the use of
order parameters in physics) to develop the architecture for our machine-learned
approximation. These theories postulate that all prior deformation history can be
represented through state or internal variables that evolve with the deformation.
So the stress at any point at any instant of time is determined locally from the
deformation gradient and the state variable at that point at that instant using a
“stress-strain” relation. Further, the rate of change of the state variable at any point
at any instant of time again depends locally on the deformation gradient and state
variable at that point at that instant through a “kinetic relation” or “evolution law.”
Therefore, we introduce two feed-forward neural networks, one for the stress-strain
relation and one for the kinetic relation. Importantly, the internal variables are not
specified a priori but are discovered through training using macroscopic data.

Further, we formulate the approximation in continuous time, and therefore this
architecture represents a functional that maps the history of the deformation gradient
to the stress. In practice, both the training data and the application involve discretized
data, so one could formulate the architecture for the discrete data. However, in such
situations, the architecture and the training embed the discretization, providing
poor approximation when applied to other discretizations. This is problematic
because the training and application of the approximation may involve different
time discretizations. This is indeed the case in multiscale modeling since the
coarse-scale time step is dictated by the application and the coarse-scale numerical
method. We overcome this by formulating the approximation in a time-continuous
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manner and then discretizing it as necessary during training and application. An
alternate approach in the context of LSTM-based RNNs has recently been proposed
by Bonatti and Mohr [28].

We describe the resulting architecture as a recurrent neural operator (RNO). We use
the same feed-forward networks at every instant of time, and therefore, we regard
this architecture as “recurrent.” Further, we use the word “operator” to emphasize
the time-continuous formulation. Once discretized in time, the resulting architecture
is similar to an RNN. However, it differs from the usual standard LSTM or gated
RNNs in how it introduces history. In fact, our architecture is much simpler and
requires a significantly smaller number of parameters and, thus, less training data.

Here, we focus on elasto-viscoplastic polycrystals. The behavior of the single crystal
is governed by crystal plasticity and, therefore, can be highly anisotropic with rate-
dependent evolution. Therefore, we expect the macroscopic behavior to be complex
with non-trivial history dependence. We use repeated solutions of the unit cell
problem subject to various average deformation gradient trajectories to generate
the data in the form of average deformation gradient trajectory and average stress
pairs. We use this data to train our approximation and show that the proposed RNO
provides an accurate and efficient representation. We examine the insights the RNO
can provide into hidden physics from data about the deformation gradient and stress.
As already noted, we anticipate a highly complex history dependence, and there is
no established method to identify the macroscopic internal variable (or even its
dimensionality) either through homogenization theory or experimentally. So even
identifying the number of internal variables required to represent the data can be
meaningful. In some cases, it is also possible to obtain further insight.

The remainder of the Chapter is organized as follows. Section 5.2 provides the
background, proposed architecture, and training procedure. We study an academic
example of three-dimensional laminates in Section 5.3. We show that the RNO
and training lead to an accurate approximation but with fewer internal variables
than that suggested by theory. We explore this with a detailed study of the RNO
trained with the macroscopic response and the micromechanical internal variables.
Next, we turn to polycrystals in Section 5.4. We study a two-dimensional example
where each grain has two slip systems and use data generated by full-field numerical
simulations. We show that the RNO can provide a highly accurate surrogate and
that the internal variables can provide some insights into the underlying physics. We
conclude in Section 5.5 with a discussion on the current work and further studies.
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5.2 Background, proposed architecture, and training
We are interested in problems where there is a separation of scales between the scale
at which the physics is specified (e.g., the crystal plasticity model at the scale of an
individual grain) and the scale of the application (e.g., an impact problem). The
theory of homogenization [19, 131] states that we may solve the balance laws at the
application scale using a constitutive relation,

Ψ : {𝐹 (𝜏) : 𝜏 ∈ (0, 𝑡)} ↦→ 𝜎(𝑡), (5.1)

that links the macroscopic deformation gradient history to the macroscopic Cauchy
stress. This constitutive relation is determined implicitly by solving the fine-scale
problem at which the physics is specified on a unit cell or representative volume.
The macroscopic deformation gradient history provides the boundary condition for
the unit cell problem; the returned macroscopic stress is the average of the stress in
the unit cell. See [114] for additional details.

This framework raises two issues. The first concerns the implementation of the
framework: the evaluation of this map Ψ is expensive in most problems of interest
since the unit cell problem has to be solved at each instant of time (numerically
at each time step) at each material point (numerically at each quadrature point).
Therefore, it would be useful to have an accurate and inexpensive approximation to
evaluate. The second concerns an understanding of the underlying physics. Since
the unit cell problem involves solving a complex system of equations, the nature of
the dependence of the stress on strain history at the macroscopic scale and whether
such history can be encoded into an internal variable is unclear.

In this work, we address these two issues by seeking to approximate the map Ψ using
a recurrent neural operator (RNO). Specifically, we consider an RNO approximation
of the form, 

𝜎(𝑡) = 𝑓 (𝐹 (𝑡), {𝜉𝛼 (𝑡)}𝑘𝛼=1),
¤𝜉𝑖 (𝑡) = 𝑔𝑖 (𝐹 (𝑡), {𝜉𝛼 (𝑡)}𝑘𝛼=1) 𝑖 = 1, . . . 𝑘

(5.2)

where 𝑓 : R𝑑×𝑑 × R𝑘 → R𝑑×𝑑symm and 𝑔𝑖 : R𝑑×𝑑 × R𝑘 → R are neural networks.
We call {𝜉𝛼 (𝑡)}𝑘𝛼=1 the internal variables, and these encapsulate the history. We
do not identify the internal variables a priori; instead, they are identified as a
part of the training process. Note that while the architecture maps trajectories to
trajectories, the architecture is local and identifies the stress simply on the value of
the deformation gradient and internal variable at that instance, making the proposed
architecture causal.
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We now make a series of comments about the RNO and its training.

Discretization and discretization independence The RNO (5.2) is an operator
that maps functions (deformation gradient history over a time interval) to a matrix
(stress). However, in practice, both training and application data are discretized
in time, although they do not necessarily have the same discretization/resolution.
In order to construct an architecture that is independent of the time discretization,
we use the following forward Euler discretization: for a time-discretization with
time-steps {(Δ𝑡)𝑛}, we evaluate the RNO at the 𝑛th time step to be

𝜎𝑛 = 𝑓 (𝐹𝑛, {𝜉𝑛𝛼}𝑘𝛼=1),

𝜉𝑛
𝑖
= 𝜉𝑛−1

𝑖
+ (Δ𝑡)𝑛 𝑔𝑖 (𝐹𝑛, {𝜉𝑛−1

𝛼 }𝑘𝛼=1) 𝑖 = 1, . . . 𝑘 .
(5.3)

In this work, we use uniform discretization so that (Δ𝑡)𝑛 = (Δ𝑡) is independent of
𝑛. For this approximation to be meaningful, it should be independent of the time
discretization. In other words, we should be able to train it at one time discretization
and use it at another time discretization without any loss of accuracy. This is also
important in practice because the training data may need to be generated at smaller
time steps due to the underlying microscale physics compared to that used in a
macroscale application.

RNO architecture and training We train the RNO, i.e., identify the parameters
of the neural networks 𝑓 , 𝑔𝑖 and the internal variables {𝜉𝛼}𝑘𝛼=1, using data generated
by the numerical solution of the unit cell problem. Specifically, we repeatedly solve
the unit cell problem to obtain various realizations of the map

Ψ𝑇 : {𝐹 (𝑡) : 𝜏 ∈ (0, 𝑇)} ↦→ {𝜎(𝑡) : 𝑡 ∈ (0, 𝑇)}. (5.4)

for some fixed 𝑇 > 0.

We use fully connected neural networks [105] to model the feed-forward functions 𝑓
and 𝑔. By default, we assume that each of 𝑓 and 𝑔 is comprised of four intermediate
linear layers, each with 200 nodes, with a nonlinear activation function applied
using the scaled exponential linear unit (SELU) [96]. The networks are trained with
the ADAM optimization algorithm [95] with an error corresponding to a mean of
relative 𝐿2 norms over the time interval,

error =
1
𝑆

𝑆∑︁
𝑠=1

©­«
∫ 𝑇

0 |𝜎
truth
𝑠 (𝑡) − 𝜎approx

𝑠 (𝑡) |2𝑑𝑡∫ 𝑇
0 |𝜎

truth
𝑠 (𝑡) |2𝑑𝑡

ª®¬
1/2

(5.5)
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where “truth” and “approx” refers to the unit cell solution and RNO prediction,
respectively, 𝑆 indexes over the considered strain paths, and | · | is a Frobenius norm
of the stress tensor.

Training data A crucial issue in generating numerical data is to balance the cost
of generating the data with the need to sample sufficient input (average deforma-
tion gradient histories) to provide an accurate enough approximation for the inputs
encountered in application. This leads to the question of identifying an optimal dis-
tribution of input data, which remains an active area of research. In our planned ap-
plication to impact problems, we anticipate encountering trajectories of macroscopic
deformation gradients that vary smoothly with time but change directions arbitrar-
ily. To this end, we divide (0, 𝑇) into 𝑀 intervals (Δ𝑡)𝑚 = 𝑡𝑚 − 𝑡𝑚−1, 𝑚 = 1, . . . 𝑀
where 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑀 = 𝑇 and set (𝐹𝑖 𝑗 )𝑚 = (𝐹𝑖 𝑗 )𝑚−1 + (𝜈𝑖 𝑗 )𝑚𝐹max

√︁
(Δ𝑡)𝑚,

𝑖, 𝑗 = 1, . . . , 𝑑, 𝑖 ≤ 𝑗 where (𝜈𝑖 𝑗 )𝑚 ∈ {−1, 1} follow a Rademacher distribution for
each 𝑖, 𝑗 . We take 𝐹𝑖 𝑗 (𝑡) to be the cubic Hermite interpolation of {(𝑡𝑚, (𝐹𝑖 𝑗 )𝑚)}.
We take 𝑇 = 1, 𝑀 = 100, and random time intervals drawn from a uniform distri-
bution. We clarify that the subintervals (Δ𝑡)𝑚 used here to determine loading paths
are distinct from the time step (Δ𝑡) we use to train or use the RNO.

Internal variables In our formulation, we have to decide a priori the number 𝑘
of internal variables (though not the internal variable themselves). Our approach is
to train the neural network separately for various numbers of internal variables and
then test the resulting approximation over a set of test data. We find that the test error
initially decreases with increasing 𝑘 but then saturates beyond a particular value. In
fact, we find that the transition from decrease to saturation is sharp. We take the
value of 𝑘 at this sharp transition as the number of internal variables present.

As already noted, the internal variables have no inherent meaning. In fact, it is
easily verified from (5.2) that any reparametrization or smooth one-to-one and onto
change of variables {𝜉𝛼} → {𝜂𝛼} of the form

𝜂𝑖 = 𝜑𝑖 ({𝜉𝛼}) (5.6)

yields an equivalent RNO:
𝜎(𝑡) = 𝑓 (𝐹 (𝑡), {𝜂𝛼 (𝑡)}𝑘𝛼=1),

¤𝜂𝑖 (𝑡) = 𝑔̂𝑖 (𝐹 (𝑡), {𝜂𝛼 (𝑡)}𝑘𝛼=1) 𝑖 = 1, . . . 𝑘
(5.7)
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where

𝑓 (𝐹, {𝜂𝛼})𝑘𝛼=1) = 𝑓 ((𝐹, {𝜑−1
𝛼 ({𝜂𝛽}𝑘𝛽=1)})

𝑘
𝛼=1),

𝑔̂𝑖 (𝐹, {𝜂𝛼})𝑘𝛼=1) =
𝑘∑︁
𝑗=1

𝜕𝜑𝑖

𝜕𝜉 𝑗
({𝜂𝛼}𝑘𝛼=1)𝑔 𝑗 ((𝐹, {𝜑

−1
𝛼 ({𝜂𝛽}𝑘𝛽=1)})

𝑘
𝛼=1).

This invariance also has implications on the training: the same data can produce
different (but equivalent) choices of the internal variable depending on the initial-
ization.

Internal or state variable theories The form of the RNO (5.2) is similar to the
internal or state variable theories that are widely used to describe inelastic behavior
in continuum mechanics and physics [72, 141]. We may regard the learned internal
variables as those representing the state of the material; we take the first of the two
equations to be the stress-strain relation and the second to be the kinetic relation for
the evolution of the state variables. However, the choice of state variables postulated
in theories of mechanics reflects physical intuition, while those in the RNO reflect
the behavior of the training data and are not unique due to the invariance under
reparametrization (5.6).

Thermodynamic and symmetry restrictions In this work, we do not impose any
thermodynamic or material symmetry restrictions on the functions 𝑓 , 𝑔𝑖 in (5.2).
Physical laws and mathematical well-posedness require the constitutive relations to
satisfy some thermodynamic restrictions. In our setting, we expect the constitutive
stress function, 𝑓 , to be the derivative of a quasiconvex strain energy functional,
while we expect the evolution laws, 𝑔𝑖, to be dissipative (or the derivative of a
non-negative and convex dissipation potential). Similarly, in some problems, we
may know a priori the overall material symmetry. For example, in the polycrystals,
we study in Section 5.4, we expect the overall behavior to be isotropic. It is possible
to build architectures with these conditions (e.g., [119] for dissipative processes
and [16] for hyperelasticity). We do not do so here. However, since our data
is generated from numerical solutions of well-posed problems, we anticipate the
model automatically learning such restrictions from the data. For example, Liu et
al. demonstrated in [114] that a PCA-Net automatically learns isotropy from the
data. We discuss this further in Section 5.5.
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Figure 5.1: A laminate composite and the unit cell domain.

5.3 Elasto-viscoplastic laminated composite
We first start with a study of a laminated composite with alternating layers of equal
width of two different elasto-viscoplastic materials at the microscopic scale. We
postulate a plasticity model in infinitesimal strain limit at the microscopic scale,
solve these equations repeatedly over a unit cell subjected to various (average)
strain trajectories as the boundary condition, and calculate the corresponding stress
trajectory. We then use the resulting pairs of average strain and average stress
trajectories to train the RNO.

The governing equations in the unit cell are

𝜀 =
1
2
(∇𝑢 + ∇𝑢𝑇 ), ∇ · 𝜎 = 0, (5.8)

𝜎 = C(𝜀 − 𝜀𝑝), ¤𝜀𝑝 = 3
2
𝑠

𝑠
¤𝑞, (5.9)

−𝑠 + 𝜎0

(
𝐻 (𝑞) +

(
¤𝑞
¤𝑞0

)𝑚)
≥ 0, ¤𝑞 ≥ 0, (5.10)(

−𝑠 + 𝜎0

(
𝐻 (𝑞) +

(
¤𝑞
¤𝑞0

)𝑚))
¤𝑞 = 0 (5.11)

where 𝑢 is the displacement, 𝜀 the strain, 𝜎 the stress, C the elastic modulus
(assumed to be isotropic with Lamé and shear modulus 𝜆 and 𝜇 respectively, and
homogeneous), 𝜀𝑝 the plastic strain, 𝑞 the accumulated plastic strain, 𝑠 the deviatoric
stress, 𝑠 =

√︃
3
2 |𝑠 | the effective stress (| · | denoting Frobenius norm), 𝜎0 the yield

strength, 𝐻 (𝑞) is the isotropic strain hardening function,

𝐻 (𝑞) =


1 no strain hardening

1 − exp
(
−ℎ 𝑞

𝜎0

)
exponential strain hardening

(5.12)
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for some hardening coefficient ℎ, ¤𝑞0 the reference plastic strain rate, and 𝑚 the
rate-hardening exponent. The first line describes the strain-displacement and the
equilibrium equation, the second line the stress-strain and evolution of the accumu-
lated plastic work, the third line the yield criterion and the flow rule, and the fourth
line the Kuhn-Tucker conditions (rewritten from line three). We further assume
plane stress conditions,

𝜎𝑖3 = 0, (5.13)

and prescribe the history of the in-plane average strain 𝜀(𝑡). We solve the gov-
erning equations subject to the prescribed history of the in-plane average strain
⟨𝜀inplane(𝑥, 𝑡)⟩𝑥 = 𝜀(𝑡), and find the average in-plane stress 𝜎̄(𝑡) = ⟨𝜎inplane(𝑥, 𝑡)⟩𝑥 .
We are interested in understanding the map

{𝜀(𝜏) : 𝜏 ∈ [0, 𝑡]} ↦→ 𝜎̄(𝑡). (5.14)

For our laminate, the unit cell consists of two layers shown in Figure 5.1. All the
parameters of the model in each of the two layers (such as rate-hardening 𝑚, for
example) are distinguished by the use of ± (𝑚± for example). We look for a solution
to the governing equations (5.8-5.11) that is uniform in the strain, plastic strain,
stress, and accumulated plastic strain in each region (𝜀±,𝜀𝑝±, 𝜎±, 𝑞±, respectively).
The first two equations (5.8) are automatically satisfied in the interior of each region
and reduce to the jump conditions on the interface

𝜀+ − 𝜀− = 𝑎 ⊗ 𝑒1 + 𝑒1 ⊗ 𝑎, (𝜎+ − 𝜎−)𝑒1 = 0. (5.15)

We can use this condition along with the plane-stress condition to conclude that

𝑎1 =
𝜇

𝜆 + 2𝜇
(
𝜀

p+
11 − 𝜀

p−
11

)
, 𝑎2 = 𝜀

p+
12 − 𝜀

p−
12 , 𝑎3 = 𝜀

p+
13 − 𝜀

p−
13 = 0. (5.16)

Given the average strain history 𝜀(𝑡), we can now solve (5.9 – 5.11) to obtain the
average stress history 𝜎̄(𝑡) and obtain the map (5.14). Note that we have four state
variables in each region (𝜀𝑝,±11 , 𝜀

𝑝,±
12 , 𝜀

𝑝,±
22 , 𝑞

±) for a total of eight state variables.

5.3.1 No strain hardening
Looking at the no strain hardening case first, we only have six internal variables
(𝜀𝑝,±11 , 𝜀

𝑝,±
12 , 𝜀

𝑝,±
22 ) in the formulation, i.e., no accumulated plastic strain 𝑞±. We

consider various combinations of material parameters representing both small and
large plastic contrast; the values are given in Table 5.1. We generate data by picking
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Elasticity:
𝜇 = 24 GPa, 𝜇 = 25 GPa

Plasticity:
Case 𝜎+0 (MPa) 𝜎−0 (MPa) 𝑚+ 𝑚− ¤𝑞±0 (s−1)
MH (green) 500 500 0.2 0.2 1
M1 (blue) 250 500 0.1 0.2 1
M2 (red) 100 500 0.04 0.2 1
M3 (yellow) 50 500 0.02 0.2 1
M4 (purple) 250 500 0.4 0.2 1

Table 5.1: Material parameters used for laminates along with labels (and colors)
used for plotting.
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Figure 5.2: Approximating an elasto-viscoplastic laminate with no-strain hardening
with a recurrent neural operator. (a) Training RNOs with various numbers of
internal variables. In each case, we train the homogeneous material (MH) and then
use transfer learning. The notation 𝐴 (← 𝐵) indicates the case 𝐴 was trained using
transfer learning from 𝐵. (b) Comparison of the ground truth and RNO prediction
of the stress for eight arbitrarily chosen test strain trajectories for the case M3 with
three internal variables. (c–f) Training RNOs with various numbers of internal
variables both directly and with transfer learning.

average strain histories (applying the approach described in Section 5.2 to each
strain component with a maximum strain of 33%) and computing the resulting
stress histories. We generate 800 trajectories, using 640 for training and 160 for
testing.
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Figure 5.2 describes the results of training an RNO for the various cases. Figure
5.2(a) shows the test error as a function of the number of internal variables for each
of the choices of material parameters. Here, we fix the number of internal variables,
train the homogeneous material (MH), and then use transfer learning — defined as
using the trained RNO for MH as a starting point for training other models — for
the four cases (M1–M4) corresponding to different material parameters. In each
case, we see a sharp decline in error at two internal variables and a further (often
more modest) drop in error when we increase from two to three internal variables.
Increasing the number of internal variables beyond three has little effect. Further,
the relative test error is small, approximately 1-1.5% relative error in each case.
Figure 5.2(b) compares the “truth” versus the predictions of the trained RNO with
three internal variables for the high contrast case M3. Again, we see that the errors
are very small. The results are similar in other cases.

Figure 5.2(c–f) studies the ability to train an RNO with and without transfer learning.
In each of the cases, M1–M4, we train the RNO with a fixed number of internal
variables and then apply transfer learning from the other material cases. In each
case, direct training suggests the need for four internal variables. However, transfer
learning from the homogeneous case (MH) always leads to three internal variables.
This shows that the training can get stuck in local minima, a phenomenon which is
not uncommon in neural networks in general, and may have a more marked effect
when data volume is low [57, 92, 111, 142, 143]. Starting from the homogeneous
case (MH) puts the RNO in a suitable basin and leads, in the experiments we have
conducted, to a better local minimizer.

The approximation of the elasto-viscoplastic behavior by an RNO with three internal
variables as demonstrated in Figure 5.2(a) (or four as seen in Figure 5.2(c–f)) is
surprising in a system with six internal variables. The possibility that the training
process gets stuck in a local minimum would lead to a larger, not a smaller, number
of internal variables. Instead, the good approximation suggests that the equations
of the system force the six state variables in the model ({𝜀𝑝,±

𝑖 𝑗
(𝑡)} which we refer

to as model variables in this section to distinguish them from the learned internal
variables of the RNO) to close proximity of a three dimensional manifold. Similarly,
notice that the test error decreases with the contrast MH–M3. This is also surprising
as one would expect larger fluctuations with higher contrast.

We examine the range of values the model variables take using an auto-encoder to
gain insight into these observations. Briefly, an auto-encoder is a deep neural net-
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Figure 5.3: Reducing the number of the model variables using an auto-encoder.
(a) The error of approximating the model variables (state variables in the original
laminate model) with an auto-encoder for various reduced dimensions. (b) Compar-
ison between the computed values of the model variables and the recovered values
from the trained auto-encoder for eight arbitrarily chosen trajectories in the test
data for the case M3 with three reduced variables. (c) The computed values of the
model variables in the the two layers for eight arbitrarily chosen trajectories in the
test data for the case M3. (d) Comparison of the computed stress response (solid)
with the learnt stress response (dashed) for a typical test trajectory for the case M3.
(e) Comparison of the computed plastic strains model variables (solid) with the
reconstructed plastic strain (dashed) for a typical test trajectory for the case M3. (f)
Comparison of the computed stress with the learnt stress for eight test trajectories
for the case M3.

work approach to dimension reduction. It is a deep neural network approximation of
the identity map on some data inR𝑛; it has a symmetric structure and an intermediate
layer with a small latent dimension 𝑚 < 𝑛. In other words, we may think of the
auto-encoder as a map 𝐴 : R𝑛 → R𝑛 such that 𝐴 = 𝜓AE ◦ 𝜙AE ≈ 𝑖𝑑 on some set of
data where 𝜙AE : R𝑛 → R𝑚, 𝜓AE : R𝑚 → R𝑛 are neural networks. For any 𝑥 ∈ R𝑛,
we call 𝜙AE(𝑥) ∈ R𝑚 the reduced variables. If we are able to successfully train
an auto-encoder on the data, it means that for any data point, 𝑥 ≈ 𝜓AE(𝜙(AE(𝑥));
the reduced variable 𝜙(𝑥) “encodes” all the information in the data [105]. In other
words, the 𝑛-dimensional data lives on a 𝑚-dimensional manifold.

We take each of the trajectories and take the values of the model variables at each
computed instant 𝑡, {𝜀𝑝,±(𝑡)}, as a six-dimensional data point. Since we generate
800 trajectories, each with 100 time steps, we have a rich data set of 8 × 104 data
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points. We use 6.4 × 104 (corresponding to 640 trajectories) of these for training
an auto-encoder, consisting of one layer with 50 nodes in both the encoding and
decoding portions, and 1.6 × 104 for testing. We train auto-encoders with varying
reduced dimensions. The results are shown in Figure 5.3. We see that in Figure
5.3(a) that for all cases, the results are well approximated with a reduced dimension
of three using a relative reconstruction error,

error =
1
𝑆

𝑆∑︁
𝑠=1

���𝜀𝑝±,model
𝑠 − 𝜀𝑝, learned

𝑠

������𝜀𝑝±,model
𝑠

��� (5.17)

where 𝑠 indexes the 8 × 104 data points and |·| denotes an 𝑙2 norm of the six-
dimensional data points {𝜀𝑝,±(𝑡)}. Figure 5.3(b) compares the actual values of the
model variables and those that are reconstructed from the reduced variables. We
observe good reconstruction, indicating that the auto-encoder is able to correctly
encode the model variables. All of this leads us to the conclusion that the equations
of the system force the six model variables to (the close proximity) of a three-
dimensional manifold in all cases. This agrees with what we anticipated from the
RNO.

We explore this further in Figure 5.3(c) by comparing the values of the model
variables (plastic strain) in the + layer with that in the − layer. Figure 5.3(c) shows
that the 11 and 22 components of the plastic strain are almost equal in both layers
while the 12 component in the (harder) − remains relatively small. This observation
provides a heuristic insight into why we only need three internal variables in the
RNO approximation. When the imposed strain is small, the response is largely
elastic, and therefore one does not need internal variables. When the imposed
strain is large (so that the plastic strain is much larger than the elastic strain), the
strain compatibility (5.15)1 forces the 22 and 33 components of plastic strain to
be approximately equal, 𝜀𝑝,+22 ≈ 𝜀

𝑝,−
22 , 𝜀

𝑝,+
33 ≈ 𝜀

𝑝,−
33 . Since the plastic strain is trace-

free (isochoric), 𝜀𝑝,±33 = −𝜀𝑝,±11 − 𝜀
𝑝,±
22 , and we conclude that the 11 component of

the plastic strains are also equal, 𝜀𝑝,+11 ≈ 𝜀
𝑝,−
11 . Furthermore, the stress continuity

condition (5.15)2 means that the 11, 12 components are the same and that the stress
can only differ in the 22 component. This limits the fluctuation in the deviatoric
stress, and we expect plastic yield in the softer layer (+ layer) to dominate over the
other. Since only the 12 components of plastic strain can differ from one another,
we expect the value in the softer + material to be significantly larger than that
in the harder − material, 𝜀𝑝,+12 >> 𝜀

𝑝,−
12 . In short, at large strains, we only need
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Figure 5.4: Reconstructing the micromechanical model variables from the macro-
scopic internal variables for the case M3. Comparison between the computed values
of the model variables and the recovered values from the RNO internal variables for
(a) an arbitrarily chosen trajectory and (b) eight arbitrarily chosen trajectories.

information from the softer layer, and thus only three internal variables. Further,
this approximation improves when we have higher contrast.

The fact that the reduced variables encode the model variables suggests that they
can be used as internal variables in an RNO. So we again train an RNO of the
form (5.2) with three internal variables (𝑘 = 3) set to be the reduced variables
learned by the auto-encoder. To elaborate, let 𝜙AE : 𝜀𝑝,± → 𝜁 denote the trained
auto-encoder from the model variables 𝜀𝑝,± ∈ R6 to the reduced variables 𝜁 ∈ R3.
So, for any trajectory, at any instant, we use {𝜀(𝑡), 𝜙AE(𝜀𝑝,±) (𝑡)} as input and
{𝜎̄(𝑡), ¤

𝜙AE(𝜀𝑝,±) (𝑡)} as outputs to train a neural network approximation for the map

Φ :

𝜎 = 𝑓 (𝜀, 𝜁),
¤𝜁 = 𝑔(𝜀, 𝜁).

(5.18)

We train this map on a training data set consisting of 100 time steps across 800
trajectories, with an architecture of 6 layers and 400 nodes, and test it against a
test data set consisting of 100 time steps across 200 trajectories. The overall error
is 2.39%. Figure 5.3(d) compares the actual computed stress response (solid line)
with the learned response (dashed line) for a typical test trajectory. Figure 5.3(e)
compares model variables (solid line) with those reconstructed from the learned
map (5.18) and the auto-encoder for a typical test trajectory. Specifically, for a given
strain trajectory, we predict the stress 𝜎 and 𝜁 using the learned map (5.18) and then
reconstruct the plastic strains from the learned auto-encoder 𝜓AE(𝜁). Figure 5.3(f)
repeats the stress comparison for eight trajectories chosen arbitrarily from the test
data.

Recall from Section 5.2 that the internal variables have no inherent meaning and
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that reparametrization can lead to an equivalent set of internal variables. In the
passage above, we identified one set of internal variables by training the RNO
purely from the macroscopic strain trajectory to the stress trajectory map and an
alternate set by reducing the dimension of the microscopic or model variables
using an auto-encoder. The fact that both sets can approximate the macroscopic
response suggests that they are equivalent sets of internal variables. We conclude
this section by studying the converse. Figure 5.4 shows that the internal variables,
learned by training the RNO purely from the macroscopic strain trajectory to stress
trajectory, can reconstruct the micromechanical model variables. We train a neural
network from the internal variables to the model variables. Figure 5.4 shows that
it provides a good representation. We should note, however, that this ability of
the internal variables to learn the model variables may be very particular to the
case of the laminate — in general, the map from the micromechanical variables in
high dimension to the macroscopic internal variables in low dimension may not be
invertible.

5.3.2 Exponential strain hardening
We repeat the analysis conducted in Section 5.3.1 for the exponential strain hardening
case. Figure 5.5(a–c) shows the results of training an RNO for the homogeneous
case (MH) and the case M3 with an exponential hardening coefficient of ℎ = 1
(MH–EH and M3–EH). We see in Figure 5.5(a) that we need four internal variables
(in contrast to the case of no hardening, where we needed only three). Furthermore,
we observe that the final error is still low, 1 − 1.5% for both cases. Figure 5.5(b)
shows that transfer learning (as defined in the preceding subsection) starting from
the homogeneous material with no hardening leads to a better approximation even
for the homogeneous case. Figure 5.5(c) compares the ground truth and RNO output
for eight test trajectories for the case (M3–EH) with four internal variables. Figure
5.5(d–f) explores using an auto-encoder to learn the reduced variables from the eight
model variables. We see in Figure 5.5(d) we need four reduced variables consistent
with the RNO, and in Figure 5.5(e) that these are able to correctly recover the model
variables for the (M3–EH) case with a reduced dimension of four. Figure 5.5(f)
compares the model variables in one layer with that in the other for the (M3–EH)
case. As before, we see that the 11 and 22 components of the plastic strain are
almost equal, and the 12 component in the + layer dominates over that in the − layer
(the same argument holds). The hardening variable 𝑞 in the + layer also dominates,
but not as much; still, the values in the two layers are proportional to each other,
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Figure 5.5: Approximating an elasto-viscoplastic laminate with exponential strain
hardening. (a–c) Learning the strain history to stress history map with a recurrent
neural operator: (a) Training RNOs with various numbers of internal variables. In
each case, we train the homogeneous material with no hardening (MH–NH) and
then use transfer learning. (b) Training RNOs with various numbers of internal
variables both directly and with transfer learning. (c) Comparison of the ground
truth and RNO output for eight test strain trajectory for the case M3-EH with four
internal variables. (d–f) Reducing the number of the internal variables using an auto-
encoder: (d) The error of approximating the model variables (state variables in the
original laminate model) with an auto-encoder for various reduced dimensions. (e)
Comparison between the computed values of the model variables and the recovered
values from the trained auto-encoder for eight arbitrarily chosen trajectories in the
test data for the case M3–EH with a reduced dimension of four. (f) The computed
values of the model variables in the the two layers for eight arbitrarily chosen
trajectories in the test data for the case M3–EH.

meaning that we need only one value to describe the overall behavior.

In summary, we find that the RNO trained only on macroscopic stress-strain data
provides an accurate approximation of the actual response of a laminated composite.
Further, the training process shows that we require half the number of internal
variables than one would expect, and an analysis of the micromechanical fields
shows that the governing equations force the micromechanical variables to the
proximity of a low dimensional manifold.
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5.4 Elasto-viscoplastic polycrystals
We now consider a two-dimensional polycrystalline medium comprising 32 ran-
domly oriented grains generated using periodic Voronoi tessellation [64]. We
assume that each grain is an elasto-viscoplastic material with two slip systems. We
adopt the two-scale framework introduced in Section 5.2, generate data using a unit
cell problem, and then use this data to train the RNO approximation.

The data is generated according to the microscopic model (crystal plasticity) de-
scribed in Section 2.1 with two slip systems, i.e., 𝑁𝑠 = 2. The elastic energy density,
𝑊 e, of each grain will follow a compressible neo-Hookean, which in two dimensions
is,

𝑊e(F e) = 𝜇

2

(
tr F e 𝑇F e

det F e − 2

)
+ 𝜅

2
(det F e − 1)2. (5.19)

While the plastic work hardening 𝑊 p, that depends on the accumulated plastic
activity in the slip systems 𝜖 p

𝑖
, will take the form

𝑊p =

𝑁𝑠∑︁
𝑖=1

𝜎∞𝑖

(
𝜖

p
𝑖
+
𝜎∞
𝑖

ℎ𝑖
exp

(
−
ℎ𝑖𝜖

p
𝑖

𝜎∞
𝑖

))
+ 1

2

𝑁𝑠∑︁
𝑖, 𝑗=1

𝜖
p
𝑖
K𝑖 𝑗𝜖 p

𝑗
, (5.20)

where the first term is associated with self-hardening and the second term is latent
hardening. Above, 𝜇 and 𝜅 are the shear and bulk moduli; 𝜎∞

𝑖
is the ultimate

strength and ℎ𝑖 the hardening parameter on the 𝑖th slip system; and 𝐾𝑖 𝑗 is the latent
hardening matrix with zero diagonal entries.

The evolution of the slip activity is governed by the dissipation potential

Ψ∗(𝛾) =
𝑁𝑠∑︁
𝑖=1

𝜏
p

0, 𝑖 ¤𝛾
p
0, 𝑖

𝑚𝑖 + 1

( | ¤𝛾 p
𝑖 |
¤𝛾 p

0, 𝑖

)𝑚𝑖+1
(5.21)

where 𝜏 p
0, 𝑖 is the critical resolved shear stresses, ¤𝛾 p

0, 𝑖 the reference shear rate, and 𝑚𝑖
the power rate hardening parameter for the 𝑖th slip system.

Finally, the governing equations follow that described in Section 2.1 with implemen-
tation following the accelerated computational micromechanics framework [160].
We consider several material cases with various rate hardening or strain hardening
parameters shown in Table 5.2 and generate independent data sets of deformation
gradient and stress pairs.

The compressible neo-Hookean elasticity model used (equation 5.19) at the mi-
croscale leads to a natural decomposition of the Cauchy stress into hydrostatic and
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Elastic: all cases
𝜇 = 19 GPa, 𝜅 = 48 GPa

Slip system 1
Case 𝑏1 𝑛1 𝜏

p
0,1 (MPa) ¤𝛾p

0,1 (s−1) 𝑚1 𝜎∞1 (MPa) ℎ1 (MPa)
PH,P1,P2 (1, 0) (0, 1) 100 1 0.05 2 7100

P3 (1, 0) (0, 1) 100 1 0.05 50 100
P4 (1, 0) (0, 1) 100 1 0.05 100 100
P5 (1, 0) (0, 1) 100 1 0.05 100 100

Slip system 2
Case 𝑏2 𝑛2 𝜏

p
0,2 (MPa) ¤𝛾p

0,2 (s−1) 𝑚2 𝜎∞2 (MPa) ℎ2 (MPa)
PH (1, 1) (-1, 1) 100 1 0.05 2 7100
P1 (1, 1) (-1, 1) 100 1 0.25 2 7100
P2 (1, 1) (-1, 1) 100 1 0.5 2 7100
P3 (1, 1) (-1, 1) 100 1 0.05 50 100
P4 (1, 1) (-1, 1) 100 1 0.05 100 100
P5 (1, 1) (-1, 1) 500 1 0.25 500 100

Table 5.2: Material parameter cases used for polycrystals unit cell simulations in
two dimensions.

deviatoric components

𝜎𝜇 (𝐹𝜇, 𝐹 𝑝,𝜇) = −𝑝(det 𝐹𝜇)𝐼 + 𝜎dev,𝜇 (𝐹𝜇, 𝐹 𝑝,𝜇) (5.22)

where we use the superscript 𝜇 to emphasize that this holds at the microscopic scale,
and the fact that det 𝐹 𝑝,𝜇 = 1. It follows that at the macroscopic scale,

𝜎 = −⟨−𝑝(det 𝐹𝜇)⟩𝐼 + ⟨𝜎dev,𝜇 (𝐹𝜇, 𝐹 𝑝,𝜇)⟩ = −𝑝𝐼 + 𝜎dev. (5.23)

Now, since det 𝐹 𝑝,𝜇 = 1, the pressure at any point in the unit cell is independent
of the plastic strain at that point. So, it is independent of the history of that
point. However, the overall stress distribution and, therefore, the overall hydrostatic
pressure can depend on the distribution of the plastic strain in the unit cell. Therefore,
the overall hydrostatic pressure can develop history dependence from the evolution
of the plastic strain distribution. Still, we expect the deviatoric stress to be much
more sensitive to history. Therefore, we fit the hydrostatic pressure and deviatoric
stress separately: in other words, we train an RNO to learn the hydrostatic pressure
and another independent RNO to learn the deviatoric stress — or, we can think of
them as one RNO with two disjoint parts.
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Figure 5.6: Approximating two dimensional polycrystalline elasto-viscoplasticity
with a recurrent neural operator. (a) Training RNOs with various numbers of
internal variables with increasing epochs. (b) Test error of the trained RNOs of the
deviatoric stress with various number of internal variables and rate hardening cases.
(c) Test error of the trained RNOs of the hydrostatic pressure with various number
of internal variables and rate hardening cases. (d) A typical average deformation
gradient history input from the test data. (e) Comparison of the resulting deviatoric
stress history for the test data (solid) and the prediction of the RNO with two internal
variables (dashed) for case PH. (f) Test error of the trained RNOs of the deviatoric
stress with various number of internal variables and strain hardening cases.

We generate data associated with 500 trajectories for various combinations of mate-
rial parameters. We use 400 trajectories for training and 100 trajectories for testing.
Again, for each case, we train the model with various numbers of internal variables.
The results are shown in Figure 5.6. Figure 5.6(a) shows the decrease of the training
error for the deviatoric stress with the number of training epochs for case PH. We
see that the error decreases rapidly, and we obtain convergence with about 1500
epochs. The results are similar in other cases.

Figure 5.6(b) shows the test error in learning the deviatoric stress for the PH and
P1–P2 material cases shown in Table 5.2. In each case, we see that the RNO with no
internal variables has a large error, but the error reduces with one and two internal
variables. Increasing the number of internal variables beyond two does not reduce
the error. Moreover, the relative error is small, 3 − 5%. Thus, we conclude that
the data is well-represented with two internal variables. Figure 5.6(c) shows the
corresponding results for the hydrostatic pressure: we see no dependence of the



93

error on the number of internal variables, and the error is small (0.6%). Therefore,
we conclude that the hydrostatic pressure has no history dependence. Figure 5.6(d)
shows a typical deformation gradient trajectory, and Figure 5.6(e) compares the
‘truth’ (solid line) and the learned (dashed line) stress trajectory for the PH material
case. Note that the stress shown is only the deviatoric component. Again, the
learned response provides a very good approximation for the data. Finally, we study
the effect of strain hardening in Figure 5.6(f): we again observe that we obtain a
good approximation with two internal variables; increasing the number of internal
variables beyond two does not provide any better approximation.

In summary, the RNO is able to provide a highly accurate surrogate for 2D crystal
plasticity. Further, we only require two state variables for various choices of pa-
rameters. In two dimensions, deviatoric stresses and isochoric stretches associated
with plasticity lie on a two-dimensional manifold. Therefore, the fact that we can
represent the strain vs. stress trajectory with two hidden variables is significant. At
the same time, we do not know how general this is and discuss this further in Section
5.5.

5.5 Discussion
In this study, we have proposed exploiting a recurrent neural operator (RNO) of the
form (5.2) as a surrogate for a fine-scale model in multi-scale modeling of history
dependent materials. The architecture of the RNO builds in causality in that the
stress at any instant of time depends only on the prior history of the deformation.
The history is represented using an internal variable; thus, the stress can be evaluated
locally in space and time. The architecture of the RNO is consistent with the common
formulation of constitutive relations using internal variables or state variables in
continuum mechanics [72, 141]. We may regard the internal variables to be those
variables that describe the state of the continuum, (5.2)1 as the stress-strain relation
for a given state of the continuum, and (5.2)2 as the kinetic relation that describes
the evolution of the state of the continuum. However, a crucial point is that we do
not specify a priori what the internal variables are but seek to learn them from the
stress-strain data.

Although we have explored multi-scale modeling problems in the context of elasto-
viscoplasticity with crystal plasticity as the fine-scale model, the framework and the
methodology are broader and can be used in other settings where we have (numerical
or experimental) information about the map from the history of deformation to the
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stress. Therefore, we can use it in other two-scale settings like atomic-continuum
transitions and granular materials. Further, it can also be used to identify constitu-
tive behavior from experimental data provided we have a sufficiently rich data set
concerning the map from the history of deformation to the stress.

In formulating this study, we recognize that the macroscopic behavior can be an
operator from one function space (deformation gradient over an interval of time)
to a tensor (though there may be examples where this is also a function space).
This means we want the trained model to be independent of the resolution (time
step) at which the training data is presented and the trained model is used. In other
words, the training data can be at one resolution, but we can use the trained model
accurately at every resolution. This is crucial for using this model in multiscale
modeling since we may generate training data from the microscopic model at one
(generally fine) resolution but may want to use the trained model in macroscopic
calculations at different (generally coarse) resolutions. Separate calculations have
been conducted to illustrate the resolution-independence of the RNO architecture
(5.2) in [113] as well as how this independence results from careful consideration
on the choice of architecture.

An important and interesting question concerns the number of state or internal
variables one should use. In the case of elasto-viscoplastic laminates, Section 5.3, the
theory suggests six (eight with hardening) internal variables are necessary. However,
we empirically find that we need three (four with hardening) internal variables, i.e.,
we trained RNOs with various numbers of internal variables and found that three
(four, respectively) is the smallest number that gives rise to a good approximation.
We, therefore, studied the state variables in the micromechanical model and learned
that the governing equations forced the six (respectively eight) model variables
to be confined close to a three (respectively four) dimensional manifold. In the
case of elasto-viscoplastic polycrystals, we find empirically through our training
procedure that the number of internal variables is related to the dimension of the
isochoric manifold — two in two-dimensional example shown here and five in a
three-dimensional example explored in [113]. This is somewhat unexpected. A
typical empirical elasto-viscoplastic law in two dimensions has two variables for the
plastic strain, one for the isotropic hardening and two for the kinematic hardening.
The fact that we are able to fit complex loading paths, exhibiting both isotropic and
kinematic hardening and using only two variables, suggests that either there is some
redundancy in classical empirical models or that there are particular simplifying
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aspects of the crystal plasticity single crystal model that we use to generate the data.

Another research topic is the connection between the field variables in the mi-
cromechanical calculations and the internal variables learned from the macroscopic
response. Here, we train our RNO using only macroscopic stress-strain data fol-
lowing the framework of homogenization or multiscale modeling where the large
scale provides the control and the small scale returns the average. However, our
micromechanical simulations have a lot more information, and this information is
discarded. The question of whether this information can be used is a very interesting
question, one that is an active topic of our research. In the example of laminates,
Section 5.3, we find that the six (eight with strain hardening) dimensional microme-
chanical (field) variables can be encoded using only three (respectively four) internal
variables. This is very much in the spirit of reduced order modeling. Further, these
encoding variables can be used as internal variables. So it is possible that adding
the micromechanical fields can lead to identifying internal variables with less data
(fewer trajectories). The converse, reconstructing the micromechanical field from
the macroscopically learned internal variable, is subtler. Since the macroscale re-
sponse is averaged, many different micromechanical fields may give rise to the same
incremental macroscale response. In other words, the map from the micromechan-
ical field to incremental macroscopic response is unique, but the converse may not
be. The analogous question over a trajectory over long periods of time is not clear
since the flow may collapse the micromechanical fields. All of this is a topic of
current research.

Lastly, an interesting topic concerns thermodynamic and symmetry restrictions. In
this work, we have not required any thermodynamic or material symmetry restric-
tions on the functions 𝑓 , 𝑔𝑖 in (5.2). Instead, we expect the models to learn such
restrictions from the data. It is possible to build architectures with such conditions
(e.g., [119] for dissipative processes and [16] for hyperelasticity). We do not do so
for two reasons. Thermodynamic and symmetry conditions often restrict the consti-
tutive relations to certain (nonlinear) manifolds, breaking the linear space structure
useful for neural networks. Further, we believe the ability to learn such non-trivial
conditions from data is a very useful check on the ability of these otherwise black-
box over-parametrized models to approximate the data. So there is an intriguing
balance between building in all known physics on the one hand and maintaining a
relevant mathematical structure to learn physics from the data. This is a topic of
current research.



96

Finally, our studies could be enhanced by two further explorations. First, for the
polycrystal example, the single-crystal model we use to generate our data uses an
isotropic “compressible neo-Hookean” elastic model. This choice in the model
means the polycrystal is elastically homogeneous, removing possible microstruc-
ture coupling between elasticity and plasticity. Second, our approach does not
address the starting microstructure, and we have to train an RNO for each initial
microstructure. However, the internal variables incorporate some information about
the microstructure during its evolution. Therefore, it may be possible to incorporate
starting microstructure into this RNO framework. Both of these remain topics for
the future.
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C h a p t e r 6

CONCLUSIONS AND FUTURE WORKS

6.1 Summary of findings
The complex material behavior observed due to inelastic deformations makes ma-
terials fascinating to study. Their dependence on defects, microstructure, history,
loading conditions, etc., provides a breadth of avenues for engineering materials
research and improvements. This thesis presents two computational approaches
developed as tools to study these aspects in crystalline materials at the mesoscale.

Chapter 3 and 4 explored a phase-field approach to study deformation twinning,
coupled with dislocation slip described through crystal plasticity, at the several grain
scale. Specifically, in Chapter 3, we started by providing a detailed outline of the
phase-field model to capture twinning’s length-scale, coupled with classical crystal
plasticity for dislocation slip and anisotropic elasticity. By focusing on simpler
two-dimensional single-crystal samples with a single twin/slip system, we explored
contributions from the phase-field surface energy to a twin thickness, separate twin
nucleation and propagation thresholds, and twin-slip coupling. Next, through novel
GPU accelerated computations, we explored two-dimensional polycrystal samples,
which successfully captured complex twin bands and associated stress drops, often
observed experimentally but lacking in previous “pseudo-slip” work. Further studies
illustrated the model’s complex history dependence and asymmetry in response, in
the absence of cross-hardening, indicating the twin/slip systems interact solely
through the kinematics. Chapter 4 built off the previous phase field study and
focused on its application to describing low-symmetry metals such as magnesium.
Appropriate extensions were made to account for three-dimensional materials with
multiple twin and slip systems. Detailed twin transmission studies were conducted
on a bicrystal sample, which showed twin promotion/arrest at grain boundaries
and slip hot spots near twin boundaries. Finally, polycrystal simulations captured
complex twin bands, texture influences, and non-local slip-twin interactions at grain
boundaries.

The final study, in Chapter 5, explored developing an efficient surrogate model for
predicting the average stress response of history dependent microscale problems.
A deep neural network approach, recurrent neural operator (RNO), was developed
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(with motivation from established internal variable theories in continuum models)
in continuous time to map the history of the deformation gradient to the stress.
The RNO was first applied to a laminate composite of elasto-viscoplastic materials,
providing an accurate fitting with fewer state variables predicted than expected
from theory. However, this simple model provides access to the low-dimension
unit cell internal variables. Applying an auto-encoder on the model variables and
more closely inspecting the governing equations allow us to confirm why the RNO
model was able to use fewer variables. Secondly, the RNO model was applied to
a more complex two-dimensional polycrystal elasto-viscoplastic material with two
slip systems and varying plastic strain/rate hardening parameters. For all cases, we
capture the need for two state variables to predict the deviatoric stress and none
for the hydrostatic pressure since the history-dependent plasticity is solely in the
deviatoric component of stress. Finally, additional studies were applied to three-
dimensional magnesium specimens [113], where it provided an accurate surrogate,
demonstrated resolution independence, and efficiency in multiscale simulations.

6.2 Future directions
This thesis presents physics-based and data-driven computational approaches to
capture the inelastic deformation of materials; however, there are still several areas
where continued development is possible.

The final phase field model developed and explored in Chapters 3 and 4 was applied
in the context of twelve relevant slip systems, but only two of the six tensile twins.
Although this simplification allowed us to keep the number of phase field variables
manageable for this first study, several extensions can be made to include more
inelastic mechanisms. First, including all tensile twins will allow for more quan-
titative investigation of the micro-structural details and experimental comparison,
such as of polycrystal magnesium specimens conducted by Kelley and Hosford [93].
Second, although our simulations did not include compression twins due to their
high nucleation threshold, studies by Li et al. [110] have found that the activation of
compression twins is essential for certain loading situations. Thus, a simple model
extension to include compression twins, would allow explorations of the competi-
tion between twins and pyramidal slip in 𝑐-axis compression. Both cases will also
benefit from valid experimental data and atomistic simulations on the hardening
behavior of these inelastic systems to fit cross-hardening energies, dissipation po-
tentials, and phase field surface energies. For example, in Section 4.3, we discussed
the matching of phase field parameters with first principle or density functional
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theory simulations of twin surface energy calculations; however, this will be highly
dependent on twin systems considered, material/alloying compositions, and other
microstructure details, requiring calculations of energies for different applications.
The inclusion of all relevant inelastic systems will allow for detailed microstructure
studies of magnesium (and other hcp materials) where the competition or coopera-
tion of twin and slip can be systematically explored in its connection to texture and
loading conditions.

Another consideration for the phase-field modeling study is to account for dynamic
loading and rate effects in these inelastic systems since twinning has been shown
to have increased presence under high strain rate situations. The extent of rate
dependency in the above studies is modeled through the dissipation potentials for
twinning and dislocation slip. However, elastic rate dependence, inertia effects, and
wave propagation are necessary to adequately capture dynamic material behavior.
Lastly, the twin-slip interactions were based on our kinematic assumptions (i.e.,
order of the deformation gradients — plastic slip following twining), but the reverse
order could be incorporated through slip transmutations. For this, detailed surveys of
experimental and atomistic simulations on the transmutation/absorption of existing
dislocations across a twin interface would be necessary [45, 58, 128] due to the high
dependence on specific slip/twin systems and material considered. These additional
considerations can develop accurate and versatile simulations to capture microscale
details of magnesium, or other crystalline solids with deformation twinning and
dislocation slip as their main inelastic mechanisms. By exploring these materials
under complex loading conditions, we can motivate the design of material texture,
composition, cold hardening, or other hardening mechanisms for increased strength,
ductility, or impact resistance.

For the machine learning approach for surrogate models in Chapter 5, the accuracy
and learned state variables were explored for the laminate composite and polycrystal
cases with elasto-viscoplastic materials. Through the laminate composite studies we
were able to directly connect the RNO learned internal variables to the model vari-
ables, leaving the future question on achieving the same for the polycrystal material.
For the polycrystal case we have a significantly larger number of internal variables
causing concerns on the uniqueness of the mapping between model and learned
internal variables; nonetheless, obtaining a physical interpretation of the internal
variable is of interest and could be explored following the laminate case. A second
question of interest for the polycrystal case is why only two learned RNO internal
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variables are necessary; and if any model assumptions cause these reduced vari-
ables. For example, in the studies, we considered only anisotropic behavior through
plasticity. However, at the single crystal level, metals have anisotropic elasticity
that could add additional texture information within the state variables. A second
example would be to ensure the deformation gradient paths are a sufficient sampling
of the input space and explore how varying the strain rates (or other sampling con-
stants) may change results. Finally, the approach studied does not account for the
starting microstructure of the polycrystalline samples. This would require training
a separate RNO for each starting texture, which, although this training would be
offline in the context of multiscale modeling, would add computations if exploring
cases with several different local textures. Hence, a study of interest would be to
incorporate starting microstructure into the RNO in the form of initialization of the
RNO. The studies have shown that the learned internal variables hold information
on the microstructure evolution, so it is reasonable that we can feed in the starting
texture as an additional input.

Further natural extensions of the surrogate modeling studies would be to utilize the
methodology and insights gained from the simpler laminate composite and poly-
crystal cases to explore other physics. The breadth of internal variable formulations
for continuum problems provides several applications of the RNO structure to other
physical phenomena beyond the elasto-viscoplastic case, such as deformation twin-
ning, damage/fracture [29, 30, 32, 62, 122], liquid crystal elastomers [26, 52, 55,
120], etc. For the first case, deformation twinning, the phase field model for de-
formation twinning discussed in the previous studies, Chapter 3 and 4, along with
its GPU accelerated computations can be utilized to efficiently generate data for the
RNO framework. Utilizing the RNO fitting we will gain both an accurate stress
prediction and learned internal variables. The high degree of anisotropy introduced
by twinning and its length scale should require more state variables, which we could
analyze and connect to inelastic variables or texture. The stress prediction can
then be utilized within a multiscale framework to accurately predict the response
and failure of materials with both twin and slip modes of inelastic deformation.
The coupling of the phase-field twinning model with the RNO framework would
be invaluable for describing the response of materials, such as Magnesium, at the
application scale. By exploring these materials, at the macroscale, we can under-
stand the effect of starting texture, material geometry, or hardening mechanisms for
increased strength, ductility, or impact resistance for various dynamic applications.
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All these enhancements will further contribute to the understanding and designing
of failure-resilient engineering materials for complex loading.
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