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ABSTRACT 

 Research in the Stoltz group is primarily focused on the total synthesis of complex, 

bioactive natural products and on the development of reaction methodologies to enable 

these synthetic endeavors. The majority of the content of this thesis focuses on 

permutations of this central goal. 

 Chapter 1 describes the development of the palladium-catalyzed decarboxylative 

asymmetric allylic alkylation of medicinally relevant 5- and 7-membered 

diazaheterocycles to afford quaternary and gem-disubstituted derivatives. This 

methodology provides a new tactic to incorporate Csp3 structural complexity into future 

lead compounds containing diazepane and imidazolidine moieties. 

 Chapter 2 discloses efforts toward the total synthesis of the cytotoxic 

pyrroloiminoquinone marine alkaloid aleutianamine. Key to the synthetic strategy are rapid 

assembly of the tricyclic pyrroloiminoquinone core in the arene oxidation state, convergent 

fragment coupling with a readily accessible aminothiophene derivative, and a powerful 

new dearomative spirocyclization. This research is ongoing. 

 Chapter 3 discusses preliminary attempts to improve the synthetic accessibility of 

minimally substituted corroles, which were conducted during a research internship in the 

laboratory of Prof. Zeev Gross at the Technion. During the course of this research, the first 

example of a β-unsubstituted free base monoazaporphyrin was isolated, and its cobalt 

complex was characterized by x-ray crystallography. 

 Finally, Appendix 8 presents a series of cationic and radical-mediated 

fragmentations of a derivative of (+)-3-Carene, a chiral pool material. These experiments 

led to the observation and mechanistic study of an unexpected rearrangement. 
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CHAPTER 1 

Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation of 

5- and 7-Membered Diazaheterocycles †  

 

1.1  INTRODUCTION 

 In 1983, Tsuji and coworkers reported the first example of a palladium-catalyzed 

decarboxylative allylic alkylation reaction (Scheme 1.1.1A).1 Treatment of cyclohexanone-

derived allyl enol carbonate 1 with catalytic Pd0 in the presence of triphenylphosphine 

provided α-quaternary ketone (±)-2. In 2004, our laboratory reported the first 

enantioselective example of such a palladium-catalyzed decarboxylative allylic alkylation,2 

employing allyl enol carbonate substrates 3 similar to those utilized in Tsuji’s seminal work 

(Scheme 1.1.1B). The Pfaltz-type chiral ligand (S)-t-BuPHOX led to consistently high ee in 

this reaction. 

In the following years, this chemistry has been extensively explored by our group,3 

the Trost group,4 and others. The use of allyl β-ketoester masked enolate synthons in place 

of allyl enol carbonates allowed the same enantioenriched products to be obtained, but 

facilitated the late-stage diversification of allylic alkylation substrates by a more divergent 

synthetic route.3a Seeking to broaden the substrate scope of the palladium-catalyzed 

decarboxylative asymmetric allylic alkylation beyond ketones, our group reported that this 
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method could also be used to access α-quaternary lactams 6 in excellent yield and 

enantioselectivity (Scheme 1.1.1C).3b 

Scheme 1.1.1. Development of the Pd-catalyzed decarboxylative asymmetric allylic 

alkylation reaction. 

 

 In addition to simple lactams, other gem-disubstituted heterocycles, such as 

substituted morpholinones, could be accessed. Access to these heterocycles presents a 

notable advantage in the context of medicinal chemistry. A higher degree of saturation and 

the presence of sp3-stereogenic centers in lead molecules are correlated with greater clinical 

success and fewer off-target effects, which can be attributed to a greater number of 

accessible 3D conformers.5 In order to explore medicinal applications, our group reported 

Me
O O

O
Pd2(dba)3•CHCl3

PPh3

DME, 0 °C

O
Me

1
(±)-2

A) Initial report by Tsuji and coworkers.

B) Pd-catalyzed decarboxylative asymmetric allylic alkylation (Stoltz, 2004).

R1
O O

O

3

R2

O
R1

4

R2
Pd2(dba)3 (5 mol %)

L1 (12.5 mol %)
THF, 25 °C

C) Pd-catalyzed decarboxylative asymmetric allylic alkylation of lactams (Stoltz, 2012).

Ph2P

(S)-t-BuPHOX (L1)

N

O

t-Bu

P

F3C 2
(S)-(CF3)3-t-BuPHOX (L2)

N

O
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CF3

BzN

O
R1

O

O
R2

BzN

O
R1

6

R2
Pd2(pmdba)3 (5 mol %)

L2 (12.5 mol %)
THF, 25 °C

5

up to 99% yield
up to 92% ee

up to 97% yield
up to 99% ee
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the incorporation of a variety of gem-disubstituted morpholine derivatives into the 

oxazolidinone antibiotic linezolid (7, Figure 1.1.2).6  Linezolid is an important treatment 

for antibiotic-resistant infections, but it possesses various side effects as a result of its off-

target inhibition of human mitochondrial protein synthesis. Furthermore, the rapid 

metabolism of linezolid by oxidation of its morpholine ring necessitates frequent 

administration, which presents issues regarding patient-compliance with the dosing 

regimen. 

Figure 1.1.2. Incorporation of a gem-disubstituted heterocycle into linezolid. 

 

Ultimately, linezolid derivative 8 was found to be the most promising of the initial 

candidates, exhibiting decreased inhibition of human mitochondrial protein synthesis, 

although a reduction in IC50 against S. aureus ATCC 43300 was also observed. 

To expand the scope of chiral heterocycles that can be prepared by palladium-

catalyzed decarboxylative asymmetric allylic alkylation, our group reported the synthesis 

of gem-disubstituted piperazin-2-ones (Scheme 1.1.3A).3d The choice of protecting group 

for the secondary amine proved key to obtaining high enantioselectivity: an electron-

withdrawing benzyl group resulted in low ee (10), which was hypothesized to be a result 

of stabilization of the palladium enolate. Our group has previously reported that stabilized 

enolates lead to low or no enantioselectivity under our reaction conditions.7 These 

compounds are thought to favor an outer-sphere mechanism of C–C bond formation that is 

N

N

FO

O

O

NHAc

N

N

FO

O

O

NHAc

O

7 8
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not well-controlled by the PHOX ligand steric environment, in contrast to the inner-sphere 

mechanism favored for less stabilized enolates.  

Scheme 1.1.3. Prior Pd-catalyzed decarboxylative asymmetric allylic alkylation of 

diazaheterocycles in the Stoltz group. 

 

Thus, the use of a benzyl group (as in 11) resulted in a dramatic boost in 

enantioselectivity. However, the presence of a basic amine presented challenges during 

substrate synthesis, limiting the scope of this transformation. Nevertheless, in addition to 

piperazinones, this report included a single example of the asymmetric allylic alkylation of 

a 7-membered diazepanone heterocycle (12), albeit in a modest 59% ee. 

A) Korch et. al., 2015:

BzN
NR3

O
R1

O

O
R2

BzN
NR3

O
R1
R2

Pd2(pmdba)3 (5 mol %)
L2 (12.5 mol %)

PhCH3, 40 °C

9
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BzN
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O
Me

10
89% yield

52% ee

BzN
NBn

O
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11
89% yield

91% ee
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89% yield

59% ee

BzN
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OMe

B) Sun et. al., 2019:

BzN
NBoc

O
R

O

O
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13 14
up to 93% yield
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O
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15 16
up to 85% yield

up to 95% ee
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 Recently, our group reported the use of an N-Boc protecting group to expand the 

scope of piperazin-2-ones (14) accessible by palladium-catalyzed decarboxylative 

asymmetric allylic alkylation (Scheme 1.1.3B).3e The more electron-rich nature of 

carbamate protecting groups, in comparison with acyl groups, enabled the allylic alkylation 

to proceed in high ee while facilitating a more general substrate synthesis. This 

methodology was applied in the same report to the preparation of the isomeric 

enantioenriched gem-disubstituted tetrahydropyrimidin-4-ones (16). 

1.2 PALLADIUM-CATALYZED DECARBOXYLATIVE ASYMMETRIC 

ALLYLIC ALKYLATION OF 1,4-DIAZEPAN-5-ONES 

Figure 1.2.1. Representative pharmaceuticals containing a diazepane-derived ring 

system. 

 

Seeking to expand the accessible chemical space of chiral gem-disubstituted 

heterocycles with potential applications in medicinal chemistry, we identified 1,4-

diazepanes as an underutilized substrate class. Diazepanes are common structural motifs 

found in a variety of pharmaceuticals (Figure 1.2.1), including the benzodiazepine 

anxiolytics,8 the antipsychotic clozapine,9 and the anti-insomnia drug suvorexant.10 

Notably, many of these compounds lack Csp3 complexity. Suvorexant is a notable 
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exception as the only FDA-approved drug to date bearing a stereodefined chiral center in 

a diazepane ring. 

The lack of stereochemically complex diazepanes in the drug landscape, especially 

those bearing all-carbon quaternary stereocenters, is likely due to a lack of asymmetric 

methods available for their synthesis, leading to a reliance on kinetic resolution, either of 

a quaternary building block or of the diazepane itself.11 The efficient and enantioselective 

incorporation of gem-disubstitution into diazepane heterocycles could enable the 

development of pharmaceutical agents with enhanced properties, due to the precedented 

benefits of increasing saturation in drug molecules.5,6 Furthermore, increasing substitution 

on the diazepane ring could potentially block metabolically labile sites, thus improving the 

pharmacokinetic profile of a drug candidate. Palladium-catalyzed decarboxylative 

asymmetric allylic alkylation represents a promising method for the synthesis of 

enantioenriched gem-disubstituted diazepane derivatives. 

Starting from the commercially available N-Boc diazepanone 17, substrates were 

readily accessible in a 3-step sequence analogous to that previously reported by our group 

(Scheme 1.2.2).3e N-Acylation of 17 with an acyl chloride, followed by C-acylation with 

allyl cyanoformate, yielded allyl esters 18a–c. It is notable that this enolate acylation 

proceeded smoothly despite the presence of a potential carbamate leaving group at the 

amide β-position. Subsequent functionalization of 18a–c was conducted with a variety of 

electrophiles, providing substrates 19a–l which bear diverse functional groups. The 

divergence put in place by late-stage functionalization of dicarbonyls 18 could enable rapid 

analoging in the context of medicinal chemistry. 
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Scheme 1.2.2. Synthetic route to diazepanone-derived allyl β-amidoesters 19a–l. 

 

We began by examining conditions for the asymmetric allylic alkylation of 

diazepanone 19a (R2 = Bn), utilizing Pd2(pmdba)3 as a palladium source and (S)-(CF3)3-t-

BuPHOX as a chiral ligand (Table 1.2.3). Polar solvents and toluene led to only modest ee 

of product 20a (entries 1−4). In prior research by our laboratory, 2:1 hexanes/toluene 

proved to be an effective solvent system for achieving high ee with a variety of lactam 

substrates.
3e

 Indeed, compound 20a was obtained in 87% ee under these conditions (entry 

6). Finally, we were pleased to discover that an even more nonpolar solvent, 

methylcyclohexane,
12

 further enhanced enantioselectivity, yielding 20a in 89% ee (entry 

9). Despite its lack of polarity, methylcyclohexane affords homogeneous reaction mixtures. 

While examining reaction conditions, we also discovered that use of the highly electron-

deficient ligand (S)-Ty-PHOX
13

 resulted in reduced ee (entry 8). This is in contrast with 

previous results indicating that more electron-deficient ligands often lead to higher 

enantioselectivity in related systems.
3b–e

 Using a more electron-rich ligand, (S)-t-BuPHOX, 

also sharply decreased the ee of the product (entry 11). 

R1N

NBoc

O
O

R2
O
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NBoc

O 1) n-BuLi, R1Cl,
THF, –78 °C
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O

O
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THF, –78 °C

2) R1N

NBoc

O
O

O
Enolate

Functionalization

17 18a–c
up to >99% yield

19a–l
up to 95% yield
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Table 1.2.3. Reaction optimization.a 

 
[a] Reaction optimization was performed on a 0.01-0.02 mmol scale. 
[b] Values determined by chiral SFC analysis. [c] Average over 4 trials, 
values consistent within 1% ee. 

 

We then applied the optimized reaction conditions to a variety of diazepanone 

substrates (Table 1.2.4). First, the effect of the electronics of the lactam protecting group 

on the reaction outcome was investigated. Switching from a benzoyl group (20b) to a more 

electron-poor p-CF3-benzoyl group (20c) had a minor effect on enantioselectivity. 

Interestingly, the use of an electron-rich p-anisoyl (An) group delivered product 20d in an 

excellent 94% ee. It is worth noting that use of the p-anisoyl protecting group was not 

beneficial to enantioselectivity in all cases (20a/20e, 20f/20g) and was often on par with 

the unsubstituted benzoyl group. A variety of functional groups at the quaternary carbon 

entry solvent eeb (%)

BzN
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6 87c(S)-(CF3)3-t-BuPHOX2:1 hexanes/PhCH3

7 88(S)-(CF3)3-t-BuPHOXcyclohexane
8 80(S)-Ty-PHOXcyclohexane
9 89c(S)-(CF3)3-t-BuPHOXmethylcyclohexane
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were tolerated, including groups bearing an alkenyl chloride (20h) and a tert-butyl 

carbamate (20l). This method also proved reliable for the formation of tertiary alkyl 

fluorides (20f, 20g). The low yield of propargyl lactam 20i and the necessity for elevated 

reaction temperatures are also noteworthy–allylic alkylation of other α-propargyl lactams 

studied by our group has proceeded smoothly.3e It is possible that the geometry of the 

diazepanone substrate promotes coordination of the alkyne to palladium, hindering the 

desired reactivity. Additionally, this method allowed for the preparation of benzoyl lactam 

20e on a 1 mmol scale, albeit in somewhat diminished yield and ee (see Table 1.2.4, 

footnote c). 

Table 1.2.4. 1,4-Diazepan-5-one substrate scope.a 

 

[a] Reactions were performed on a 0.1 mmol scale at a 0.014 M concentration. An = p-anisoyl. [b] Pd2(pmdba)3 
was used instead of Pd2(dba)3. [c] 1 mmol scale: 82% yield, 83% ee. [d] Conducted at 50 °C for 17 h. [e] 
Performed in 9:1 methylcyclohexane/PhCH3 to improve substrate solubility. 
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94% yield, 94% ee
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O Bn

AnN
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O

84% yield
90% ee

Cl
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O
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O
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 93% yield, 90% eeb
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>99% yield, 89% eec

methylcyclohexane, 40 °C, 2–24 h
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O F
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Having demonstrated the functional group tolerance of this methodology, we 

performed a short synthesis of an enantioenriched quaternary stereocenter-containing 

analogue of suvorexant, an FDA-approved sedative used to treat insomnia (Scheme 1.2.5). 

Diazepanone 20a was subjected to selective debenzoylation under basic conditions, followed 

by reduction with LiAlH4 to yield diazepane 21 bearing a free secondary amine. Then, 

nucleophilic aromatic substitution of aryl bromide 22 with 21, followed by Boc deprotection 

with in situ generated HCl furnished secondary amine 23. A final coupling with the benzoyl 

chloride derived from carboxylic acid 2414 in the same pot provided target compound 25, an 

analogue of suvorexant bearing an all-carbon quaternary stereocenter. The rapid synthesis of 

this drug analogue illustrates the ease with which gem-substituted diazepane units can be 

incorporated into pharmaceutically relevant molecules to produce new agents with 

potentially improved biological properties. 

Scheme 1.2.5. Synthesis of a suvorexant analogue. 
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23 °C, 5 h HN

NBoc

Bn N

O
Br

Cl

1)

K2CO3, MeCN, 23 °C, 24 h
2) AcCl, MeOH, 23 °C, 5 h

39% yield over 2 steps
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1.3 PALLADIUM-CATALYZED DECARBOXYLATIVE ASYMMETRIC 

ALLYLIC ALKYLATION OF 4-IMIDAZOLIDINONES 

With a robust strategy for the synthesis of quaternary-substituted 7-membered 

diazepanones by Pd-catalyzed decarboxylative asymmetric allylic alkylation having been 

developed, our attention was drawn to the related 5-membered 4-imidazolidinone substrate 

class, which also occurs in pharmaceuticals (Figure 1.3.1). Interestingly, several of these 

pharmaceuticals, such as spiperone, bear a fully substituted (albeit achiral) tertiary carbon 

atom at the 5-position of the heterocycle. 

Figure 1.3.1. Representative pharmaceuticals bearing a 4-imidazolidinone moiety. 

 

Given the prevalence of this substitution pattern, we reasoned that drug design would 

potentially benefit from a method that delivers chiral 4-imidazolidinones bearing fully 

substituted tertiary stereocenters. 4-Imidazolidinones have also been used as chiral 

auxiliaries in the preparation of artificial amino acids15 and have found applications in 

popular organic catalysts,16 but to our knowledge, preparation of these species has been 

largely restricted to processes involving the use of chiral pool materials or kinetic resolution. 

While 4-imidazolidinone is commercially available, it is prohibitively expensive 

(>$100 /g for the hydrochloride salt from Combi Blocks at the time of writing). We thus set 
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out to develop a scalable synthesis of imidazolidinone allylic alkylation substrates. Although 

these heterocycles appear trivial to prepare at first glance, the development of a practical 

synthetic route proved to be quite challenging. 

A synthetic route to unsubstituted imidazolidinone 30 was published in 1988 by 

Pinza and coworkers (Scheme 1.3.2).17 Glycinamide hydrochloride (26) was subjected to 

benzylation by reductive amination with benzaldehyde to provide secondary amine 27. 

Cyclization with formaldehyde proceeded rapidly, but over-addition was observed, and 

hemiaminal 28 was isolated. Heating under vacuum provided N-benzyl imidazolidinone 

29 in reasonable yield. Finally, removal of the undesired benzyl protecting group by 

hydrogenolysis furnished 4-imidazolidinone 30 in quantitative yield. 

Scheme 1.3.2. Pinza’s route to imidazolidinone.a 

 

[a] Reported yields were obtained in our laboratory. 

After replicating Pinza’s synthesis of 4-imidazolidinone, we set out to derivatize 

this compound and prepare substrates for Pd-catalyzed decarboxylative asymmetric allylic 

alkylation (Scheme 1.3.3). Beginning with 4-imidazolidinone 30, Boc protection 

proceeded smoothly to provide carbamate 31 in high yield. Subsequent benzoylation with 

n-BuLi and BzCl provided fully protected heterocycle 32, albeit in mediocre yield. 

Acylation of 32 proved to be challenging. The enolate of this compound is highly reactive 
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and nucleophilic, as evidenced by its putative intractable addition into the benzoyl 

protecting group of another equivalent of starting material. This pathway dominates even 

at –78 °C, precluding the isolation of desired allyl ester 33. Only by cooling the base 

solution to –116 °C and allowing the THF solvent to begin to freeze during dropwise 

addition of the starting material, followed by warming the enolate solution to –96 °C prior 

to electrophile addition, was desired product 33 produced. Unfortunately, this reaction 

exhibited highly variable yields, particularly when conducted on a larger scale. The yields 

obtained were generally in the range of 23–50%, but sometimes reached as high as 89%. 

Overall, key intermediate 33 could be obtained by this route in 8 steps from glycinamide 

hydrochloride 26 in 3–12% overall yield. 

Scheme 1.3.3. Initial synthesis of imidazolidinone allylic alkylation substrates. 

 

While this route suffered from excessive length and inconsistency, access to 33 

nevertheless enabled us to begin evaluating the Pd-catalyzed decarboxylative asymmetric 

allylic alkylation of 4-imidazolidinone substrates. Treatment of 33 with NaH or K2CO3 and 
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an appropriate electrophile enabled the expedient preparation of diverse allylic alkylation 

substrates 34a–k. 

A brief solvent evaluation (Table 1.3.4) revealed that while ethereal and aromatic 

solvents predictably led to low to moderate enantioselectivities (entries 1–4), our group’s 

conditions for the Pd-catalyzed decarboxylative asymmetric allylic alkylation of analogous 

tetrahydropyrimidin-4-ones3e employing 2:1 hexanes/PhCH3 led to 91% ee. Distinct allylic 

alkylation conditions developed by Trost and coworkers were also tested,4c but led to low 

ee and sluggish reactivity (entry 6). 

Table 1.3.4. Reaction optimization.a 

 
[a] Reaction optimization was performed on a 0.01 mmol scale at 0.014 M 
concentration. Reactions proceeded to completion unless otherwise noted. 
[b] Values determined by chiral SFC analysis. [c] Reaction incomplete after 
45 h. [d] (R,R)-ANDEN-Ph Trost ligand (12 mol %) was used in place of 
(S)-(CF3)3-t-BuPHOX. Reaction was conducted at 60 °C and 0.1 M 
concentration, and was incomplete after 38 h. 

 

We were pleased to discover that applying the optimal conditions from Table 1.3.4 

to a variety of substrates furnished chiral gem-disubstituted 4-imidazolidinones 35a–k in 

entry solvent eeb (%)

1 51THFc

2 681,4-dioxane
3 89benzene
4 87PhCH3

5 912:1 hexanes/PhCH3

6d –431,4-dioxane

Pd2(pmdba)3 (4 mol %)
(S)-(CF3)3-t-BuPHOX (10 mol %)BzN

N
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O
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O
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O
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high yields and levels of ee (Table 1.3.5). Various nonpolar side chains proved to be well-

tolerated, such as benzyl (35a), p-trifluoromethylbenzyl (35b), methyl (35c), prenyl (35d), 

and cinnamyl (35e) groups. A propargyl group was also tolerated with high 

enantioselectivity (35f), albeit with a reduction in yield. We were pleased to observe that 

the reaction proceeded smoothly with a methyl group at the 2-position of the allyl fragment 

(35g). Lastly, several polar functional groups were also well-tolerated in the allylic 

alkylation (35h–k), including an alkenyl chloride and a carbamate. In particular, nitrile 

substrate 35j was obtained in quantitative yield and an excellent 95% ee. 

Table 1.3.5. Imidazolidinone substrate scope.a 

 

[a] Reactions were performed on a 0.1 mmol scale at 0.014 M concentration. ee values were determined by chiral 
SFC analysis. [b] Conducted at 40 °C. [c] 1.86 mmol scale: 86% yield, 95% ee. [d] Pd2(dba)3 was used instead of 
Pd2(pmdba)3 to facilitate product purification. 

 
With the knowledge that 4-imidazolidinones were a competent substrate class for Pd-

catalyzed decarboxylative asymmetric allylic alkylation, we set out to shorten and improve 
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the synthetic route to these substrates. We were aware of a synthetic route to 

imidazolidinones relying on the Beckmann rearrangement of 3-azetidinones (Scheme 

1.3.6A) and hoped to use this strategy to prepare 1-Boc-4-imidazolidinone 31, thereby 

intercepting our existing synthetic route. 

Nitta and coworkers prepared O-tosyloxime 38 in 2 steps from carbamate 36 and 

found that this oxime derivative underwent a facile Beckmann rearrangement when simply 

passed through a column of neutral or basic alumina, yielding imidazolidinone 39.18 

Analogous oxime 41 was easily accessible from commercially available 3-azetidinone 40 

in 2 steps (Scheme 1.3.6B), but in our hands, a column of basic alumina was unable to 

affect rearrangement following tosylation. Incomplete conversion was observed under 

heating with basic alumina in wet acetone.  

Scheme 1.3.6. Beckmann Rearrangement strategies to access 4-imidazolidinones. 

 

We were, however, pleased to discover that free oxime 41 could undergo a 1-pot 

Beckmann rearrangement with TsCl and K2CO3 to deliver product 31 in 12% yield. This 
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set of conditions was found to be uniquely effective for the Beckmann Rearrangement of 

41, and unfortunately, the yield of this key step could not be increased—imidazolidinone 

31 degrades under the reaction conditions. Nevertheless, the low cost of N-Boc-3-

azetidinone 40 enabled the synthetic route depicted in Scheme 1.3.6B to be harnessed to 

provide enough material to evaluate most of the substrate scope depicted in Table 1.3.5. 

Given the poor results of a Beckmann Rearrangement strategy to access key 

intermediate 31, we instead began reevaluating cyclization approaches analogous to that of 

Pinza.17 Direct treatment of N-Boc glycinamide 42 with formaldehyde resulted in no 

desired cyclization product. Instead, Eschenmoser’s Salt, generated in situ from 

tetramethylmethylenediamine 43, was envisioned to be a promising formaldehyde 

equivalent (Scheme 1.3.7). In the presence of an acylating agent, Eschenmoser’s Salt B 

could form via loss of an amide from A. Nucleophilic attack by substrate 42 could produce 

intermediate C, whose only basic amine could attack another equivalent of acylating agent 

to provide charged species D. This species could eject an amide and produce N-

acyliminium E, which could undergo cyclization, and following deprotonation, yield 

desired product 31. Unfortunately, while putative intermediate C was observed by mass 

spectrometry, no desired product was observed under any of the conditions explored (Table 

1.3.8). 
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Scheme 1.3.7. Attempted cyclization employing Eschenmoser’s Salt as a 

formaldehyde equivalent. 

 

Table 1.3.8. Unsuccessful cyclization employing Eschenmoser’s Salt as a 

formaldehyde equivalent. 

 

Reluctant to abandon a cyclization approach to key intermediate 31, we began to 

explore other formaldehyde equivalents and became aware of a report that showed promise 

in our system. In 2007, Kayser and coworkers disclosed that amino alcohol 44, when 
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subjected to activated DMSO oxidation conditions, failed to deliver the desired 1,2-

dicarbonyl product, instead furnishing oxazolidine 45 in high yield (Scheme 1.3.9).19 

Phosphorous pentoxide was a uniquely effective activating agent for this transformation. 

Mechanistically, Kayser and coworkers propose that activation of DMSO with 

phosphorous pentoxide leads to intermediate F. Deprotonation with concominant loss of 

PO3– provides sulfenium ion G, a key intermediate in the Pummerer Rearrangment and the 

MTM protection of alcohols.20 Trapping of this ion by the aniline moiety of 44 is thought 

to produce methylthiomethylaniline H, which can eject methanethiolate, leading to 

iminium ion I. A final cyclization and proton transfer yields oxazolidine 45. 

Scheme 1.3.9. Cyclization of an amino alcohol with activated DMSO (Kayser). 

 

Hopeful that the sulfonium ion G derived from activated DMSO could also affect 

the cyclization of carbamate 42, we subjected this compound to the conditions reported by 
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sets of conditions for the α-methylenation of ketones resulted in only decomposition 

(entries 5, 6).20,21 Interestingly, Ac2O resulted in no reaction even at 60 °C, despite its 

precedent as a popular DMSO activating agent for the MTM protection of alcohols (entry 

3).22 Unfortunately, yields higher than 13% (entry 2) were never observed. Hence, a 

strategically different approach to access imidazolidinone 31 was necessitated. 

Table 1.3.10. Cyclization employing activated DMSO as a methylene equivalent. 

 

In 1957, Witkop and coworkers reported that when 2-thiohydantoin derivative 46 

was subjected to desulfurization conditions with Raney Nickel, the undesired 4-

imidazolidinone 47 was obtained in poor yields (Scheme 1.3.11).23 The desired 

imidazolone 48 was not detected. Pinza later reported that Witkop’s reaction was hard to 

reproduce and consistently low-yielding.17 However, aware of the success of nickel boride-

promoted reductive desulfurization of other cyclic thioureas,24 including aryl-substituted 

imidazolidinones,25 we began to develop an improved route to 4-imidazolidinones from 

thiohydantoins (Scheme 1.3.12). 
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Scheme 1.3.11. Previous desulfurization of a protected thiohydantoin (Witkop). 

 

A precedented Boc protection of inexpensive 2-thiohydantoin 49 provided 

carbamate 50, which bears similarity to Witkop’s substrate 46.26 Subjecting 50 to nickel 

boride-mediated reductive desulfurization conditions provided key 4-imidazolidinone 

intermediate 31. Direct quenching of this reaction with glacial acetic acid to dissolve 

insoluble byproducts followed by filtration and biphasic extraction enabled the preparation 

of 31 in multi-gram quantities and in excellent yield, with no chromatography. 

Scheme 1.3.12. Concise and high-yielding route to key allyl ester 33. 
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pre-mixed at –78 °C, and addition of starting material to the electrophile-base mixture 

provided target allyl ester 33 in 50% yield, which was consistent upon scale-up to produce 

4.8 g of 33. The new synthetic route depicted in Scheme 1.3.12 generates key intermediate 

33 in 25% overall yield over only 4 steps. 

Having demonstrated the broad functional group tolerance of the reported method, 

we sought to explore the feasibility of further functionalization of the 4-imidazolidinone 

products (Scheme 1.3.13). The selective removal of either protecting group would likely 

prove essential for applications in medicinal chemistry. Toward this end, treatment of chiral 

benzyl imidazolidinone 35a with TFA led to facile Boc cleavage, affording free secondary 

amine 52. Similarly, treatment of 35a with lithium hydroxide readily affected benzoyl 

group removal, providing free lactam 53. 

Scheme 1.3.13. Product transformations. 

 

At the outset of this research, we had planned to explore the conversion of 4-

imidazolidinone allylic alkylation products 35a–k to useful derivatives of biologically 

relevant and synthetically challenging α,α-disubstituted α-amino acids.27 Imidazolidinones 
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were envisioned as surrogates for these desirable compounds based on prior examples of 

imidazolidinone chiral auxiliary–based strategies to access α,α-disubstituted α-amino 

acids,15 as well as our own group’s preparation of α-quaternary substituted β-amino acids 

from the analogous tetrahydropyrimidinones.3e Unfortunately, the presence of olefinic 

functionality hampered the feasibility of converting 35a–k into amino acid derivatives due 

to the harsh conditions required for ring opening. Despite extensive experimentation, the 

highest-yielding conditions identified for the conversion of imidazolidinone 35a to amino 

ester 54 (H2SO4/MeOH) provided highly variable results, with the maximum observed 

yield of 54 being only 25%. 

1.4  CONCLUSION 

1,4-Diazepan-5-ones and 4-imidazolidinones bearing gem-disubstitution were 

prepared in moderate to high levels of yield and enantioselectivity by palladium-catalyzed 

decarboxylative asymmetric allylic alkylation. Applying this methodology to these 

nitrogen-rich substrate classes enabled access to enantioenriched diazaheterocycles bearing 

diverse functionality. As illustrated by our synthesis of suvorexant analogue 25 (Scheme 

1.2.5) and the demonstrated orthogonality of the imidazolidinone protecting groups 

(Scheme 1.3.13), the chemistry reported herein can be adapted for applications in drug 

design. 

1.5  EXPERIMENTAL SECTION 

1.5.1  MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents.  Solvents were dried 
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by passage through an activated alumina column under argon.28 Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS.  TLC was 

performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching or KMnO4 staining.  Silicycle SiliaFlash® P60 

Academic Silica gel (particle size 40–63 nm) was used for flash chromatography.  1H NMR 

spectra were recorded on Varian Inova 500 MHz, Varian 400 MHz, and Bruker 400 MHz 

spectrometers and are reported relative to residual CHCl3 (δ 7.26 ppm).  13C NMR spectra 

were recorded on a Varian Inova 500 MHz spectrometer (125 MHz), a Varian 400 MHz 

spectrometer (100 MHz), and Bruker 400 MHz spectrometers (100 MHz) and are reported 

relative to CHCl3 (δ 77.16 ppm). Data for 1H NMR are reported as follows: chemical shift 

(δ ppm) (multiplicity, coupling constant (Hz), integration).  Multiplicities are reported as 

follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = 

multiplet, br s = broad singlet, br d = broad doublet.  Data for 13C NMR are reported in 

terms of chemical shifts (δ ppm). Some reported spectra include minor solvent impurities 

of water (δ 1.56 ppm), ethyl acetate (δ 4.12, 2.05, 1.26 ppm), methylene chloride (δ 5.30 

ppm), acetone (δ 2.17 ppm), grease (δ 1.26, 0.86 ppm), and/or silicon grease (δ 0.07 ppm), 

which do not impact product assignments. Most NMR spectra are complicated by rotational 

isomerism about amide bonds. This behavior is illustrated by variable-temperature NMR 

spectra of compound 20e in DMSO (p. 183). IR spectra were obtained by use of a Perkin 

Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films 

deposited on NaCl or KBr plates and reported in frequency of absorption (cm–1).  Optical 

rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line 

(589 nm), using a 100 mm path-length cell.  Analytical SFC was performed with a Mettler 
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SFC supercritical CO2 analytical chromatography system utilizing Chiralpak (AD-H, AS-

H or IC) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from 

Daicel Chemical Industries, Ltd. High resolution mass spectra (HRMS) were obtained from 

Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray 

ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed ionization 

mode (MM: ESI-APCI+), or from the Caltech Mass Spectrometry Laboratory using a JMS-

600H High Resolution Mass Spectrometer in fast atom bombardment (FAB+) mode.  

Absolute stereochemistry is assigned by analogy to previous results by our group.3 

Reagents were purchased from commercial sources and used as received unless 

otherwise stated. Ligands (S)-(CF3)3-t-BuPHOX and (S)-Ty-PHOX were prepared 

according to literature procedures.29,13 

1.5.2  EXPERIMENTAL PROCEDURES 

1.5.2.1 General Procedure for Allylic Alkylation of Diazepanones 

 

In a N2 filled glovebox, Pd2(dba)3 (4 mol %) or Pd2(pmdba)3 (4 mol %) and (S)-

(CF3)3-t-BuPHOX (10 mol %) were suspended in methylcyclohexane (2 mL) in a 20 mL 

glass vial. After stirring for 20 minutes at 25 °C, the appropriate diazepanone (1.0 equiv) 

RN

NBoc

O R1

O
O

Pd2(dba)3 or Pd2(pmdba)3 (4 mol %)
(S)-(CF3)3-t-BuPHOX (10 mol %)

methylcyclohexane, 40 °C RN

NBoc

O R1

P N

O

t-Bu
F3C

(S)-(CF3)3-t-BuPHOX

2

CF3
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and methylcyclohexane (5.2 mL, total substrate concentration 0.014 M) were added to the 

pre-stirred catalyst solution. The vial was then sealed and heated to 40 °C. After full 

consumption of starting material, as monitored by TLC, the reaction mixture was exposed 

to air. The crude reaction mixture was loaded directly onto a flash column and the product 

was isolated by silica gel flash chromatography. 

 

tert-butyl (S)-6-allyl-4-benzoyl-6-benzyl-5-oxo-1,4-diazepane-1-carboxylate (20a) 

Prepared according to the general procedure with allyl ester 19a (51.2 mg, 0.104 

mmol, 1.0 equiv), Pd2(pmdba)3 (4.4 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %). Purified by silica gel flash chromatography (15% 

EtOAc/hexanes) to provide benzyl diazepanone 20a as a colorless oil (43.4 mg, 0.0967 

mmol, 93% yield, 90% ee); 1H NMR (400 MHz, CDCl3) δ 7.56 – 7.40 (m, 3H), 7.40 – 7.32 

(m, 2H), 7.32 – 7.19 (m, 3H), 7.19 – 7.00 (m, 2H), 5.88 (br s, 1H), 5.26 – 5.07 (m, 2H), 

4.26 – 4.03 (m, 1H), 3.94 (d, J = 15.4 Hz, 1H), 3.73 (d, J = 42.2 Hz, 1H), 3.54 (d, J = 15.3 

Hz, 1H), 3.40 (s, 2H), 3.09 (dd, J = 61.0, 13.7 Hz, 1H), 2.94 – 2.34 (m, 3H), 1.48 (s, 9H); 

13C NMR (100 MHz, CDCl3) δ 179.2, 174.8, 156.0, 155.4, 136.6, 136.4, 133.0, 131.5, 

130.8, 128.6, 128.4, 127.8, 127.1, 120.0, 119.7, 80.8, 54.3, 53.9, 49.1, 47.4, 46.9, 42.5, 

42.0, 41.5, 40.3, 28.5; IR (Neat Film, NaCl) 3062, 2975, 2928, 1693, 1682, 1601, 1452, 

1415, 1392, 1365, 1322, 1283, 1246, 1156, 1044, 978, 917, 865, 728, 697 cm–1; HRMS 

(MM: ESI-APCI): m/z calc’d for C27H33N2O4 [M+H]+: 449.2435, found 449.2429; [α]D22.4 

BzN

NBoc

O Bn
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+14.19 (c 0.66, CHCl3); SFC conditions: 20% IPA, 2.5 mL/min, Chiralpak AD-H column, 

λ = 210 nm, tR (min): major = 3.51, minor = 2.71. 

 

 

tert-butyl (R)-6-allyl-4-benzoyl-6-methyl-5-oxo-1,4-diazepane-1-carboxylate (20b) 

Prepared according to the general procedure with allyl ester 19b (39.0 mg, 0.0937 

mmol, 1.0 equiv), Pd2(pmdba)3 (4.4 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %). Purified by silica gel flash chromatography (20% 

EtOAc/hexanes) to provide methyl diazepanone 20b as a colorless, waxy solid (32.3 mg, 

0.868 mmol, 93% yield, 90% ee); 1H NMR (400 MHz, CDCl3) δ 7.54 – 7.43 (m, 3H), 7.43 

– 7.32 (m, 2H), 5.74 (ddt, J = 17.1, 9.9, 7.4 Hz, 1H), 5.19 – 5.06 (m, 2H), 4.30 – 3.89 (m, 

BzN

NBoc

OMe
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3H), 3.85 – 3.69 (m, 1H), 3.66 – 3.34 (m, 2H), 2.63 – 2.20 (m, 2H), 1.50 (s, 9H), 1.30 (s, 

3H); 13C NMR (100 MHz, CDCl3) δ 180.8, 174.5, 155.4, 155.0, 136.3, 132.9, 131.4, 128.3, 

127.5, 119.5, 80.7, 50.9, 49.9, 47.2, 46.5, 42.5, 42.1, 41.8, 28.4, 23.5, 23.1; IR (Neat Film, 

NaCl) 2976, 2933, 1694, 1450, 1418, 1392, 1366, 1323, 1284, 1246, 1146, 1057, 983, 917, 

868, 768, 729, 696 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C21H29N2O4 [M+H]+: 

373.2122, found 373.2117; [α]D22.31 –12.69 (c 1.0, CHCl3); SFC Conditions: 20% IPA, 2.5 

mL/min, Chiralpak IC column, λ = 210 nm, tR (min): minor = 4.31, major = 5.68. 
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tert-butyl (R)-6-allyl-6-methyl-5-oxo-4-(4-(trifluoromethyl)benzoyl)-1,4-diazepane-1-

carboxylate (20c) 

Prepared according to the general procedure with allyl ester 19c (55.3 mg, 0.114 

mmol, 1.0 equiv), Pd2(dba)3 (4.2 mg, 4.57 µmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX (6.7 

mg, 0.011 mmol, 10 mol %). Purified by silica gel flash chromatography (20% 

EtOAc/hexanes) to provide methyl diazepanone 20c as a colorless oil (45.1 mg, 0.102 

mmol, 90% yield, 92% ee); 1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.2 Hz, 2H), 7.55 

(d, J = 8.2 Hz, 2H), 5.71 (ddt, J = 17.2, 10.1, 7.4 Hz, 1H), 5.23 – 5.07 (m, 2H), 4.21 – 4.03 

(m, 2H), 4.02 – 3.64 (m, 2H), 3.58 – 3.38 (m, 2H), 2.59 – 2.21 (m, 2H), 1.49 (s, 9H), 1.29 

(s, 3H); 13C NMR (100 MHz, CDCl3) δ 181.0, 180.8, 173.1, 155.4, 155.1 140.0, 132.8 (q, 

JC-F = 32.9 Hz), 132.7, 127.6, 125.5 (q, JC-F = 3.7 Hz), 123.7 (q, JC-F = 272.5 Hz), 119.9, 

81.0, 50.9, 50.0, 47.2, 46.4, 42.4, 42.0, 41.8, 28.5, 23.6, 23.3; IR (Neat Film, NaCl) 3366, 

3077, 2978, 2934, 1694, 1452, 1410, 1394, 1367, 1326, 1248, 1167, 1147, 1066, 1014, 

984, 925, 852, 764 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C22H31F3N3O4 

[M+NH4]+: 458.2261, found 458.2250; [α]D22.6 –12.32 (c 1.0, CHCl3); SFC Conditions: 5% 

IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): minor = 4.49, major = 

5.86. 

(p-F3C-Bz)N

NBoc

OMe
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tert-butyl (R)-6-allyl-4-(4-methoxybenzoyl)-6-methyl-5-oxo-1,4-diazepane-1-

carboxylate (20d) 

Prepared according to the general procedure with allyl ester 19d (45.8 mg, 0.103 

mmol, 1.0 equiv), Pd2(dba)3 (3.7 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %). Purified by silica gel flash chromatography (20% 

EtOAc/hexanes) to provide methyl diazepanone 20d as a colorless oil (38.9 mg, 0.0966 

mmol, 94% yield, 94% ee); 1H NMR (400 MHz, CDCl3) δ 7.62 – 7.44 (m, 2H), 6.95 – 6.75 

(m, 2H), 5.76 (m, 1H), 5.26 – 4.99 (m, 2H), 4.24 – 3.87 (m, 3H), 3.83 (s, 3H), 3.75 (m, 

1H), 3.59 – 3.37 (m, 2H), 2.60 – 2.25 (m, 2H), 1.49 (s, 9H), 1.31 (s, 3H); 13C NMR (100 

AnN

NBoc

OMe
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MHz, CDCl3) δ 180.7, 180.6, 174.3, 162.5, 155.4, 155.0, 133.0, 130.1, 128.1, 119.4, 113.6, 

80.7, 55.4, 50.8, 49.8, 47.4, 46.6, 42.7, 42.4, 28.4, 23.5, 23.1; IR (Neat Film, NaCl) 3352, 

3076, 2975, 2932, 2841, 2568, 1690, 1605, 1579, 1542, 1511, 1458, 1420, 1392, 1366, 

1322, 1284, 1256, 1214, 1168, 1146, 1056, 1032, 984, 924, 868, 842, 807, 762, 743, 736, 

650, 633, 621, 608 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C22H31N2O5 [M+H]+: 

403.2227, found 403.2225; [α]D22.45 –40.51 (c 1.0, CHCl3); SFC Conditions: 20% MeOH, 

2.5 mL/min, Chiralpak IC column, λ = 210 nm, tR (min): minor = 5.11, major = 5.66. 
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tert-butyl (S)-6-allyl-6-benzyl-4-(4-methoxybenzoyl)-5-oxo-1,4-diazepane-1-

carboxylate (20e) 

Prepared according to the general procedure with allyl ester 19e (52.3 mg, 0.100 

mmol, 1.0 equiv), Pd2(dba)3 (3.7 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %). Purified by silica gel flash chromatography (20% 

EtOAc/hexanes) to provide benzyl diazepanone 20e as a colorless oil (48.1 mg, 0.100 

mmol, >99% yield, 89% ee); 1H NMR (400 MHz, CDCl3) δ 7.51 – 7.44 (m, 2H), 7.32 – 

7.20 (m, 3H), 7.18 – 7.09 (m, 2H), 6.87 – 6.81 (m, 2H), 5.93 (br s, 1H), 5.26 – 5.12 (m, 

2H), 4.09 – 3.88 (m, 2H), 3.84 (s, 3H), 3.78 – 2.41 (m, 8H), 1.48 (s, 9H); 13C NMR (100 

MHz, CDCl3) δ 179.0, 174.6, 162.6, 156.0, 155.4, 136.7, 133.1, 130.8, 130.5, 128.5, 128.2, 

127.0, 119.9, 119.6, 113.7, 80.9, 80.7, 55.5, 54.2, 53.8, 49.1, 47.5, 47.3, 42.4, 42.0, 41.2, 

40.9, 40.0, 28.5; IR (Neat Film, NaCl) 3374, 2974, 2927, 1694, 1604, 1581, 1510, 1454, 

1416, 1392, 1365, 1320, 1282, 1256, 1211, 1166, 1028, 979, 925, 838, 762, 742, 705, 678, 

636, 610 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C28H35N2O5 [M+H]+: 479.2540, 

found 479.2533; [α]D22.81 +19.02 (c 1.0, CHCl3); SFC Conditions: 20% IPA, 2.5 mL/min, 

Chiralpak AD-H column, λ = 210 nm, tR (min): minor = 3.94, major = 6.20. 
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tert-butyl (S)-6-allyl-4-benzoyl-6-fluoro-5-oxo-1,4-diazepane-1-carboxylate (20f) 

Prepared according to the general procedure with allyl ester 19f (43.2 mg, 0.103 

mmol, 1.0 equiv), Pd2(pmdba)3 (4.4 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %). Purified by silica gel flash chromatography (20% 

EtOAc/hexanes) to provide alkyl fluoride 20f as a white, amorphous solid (32.6 mg, 0.0866 

mmol, 84% yield, 90% ee); 1H NMR (400 MHz, CDCl3) δ 7.61 – 7.53 (m, 2H), 7.53 – 7.45 

(m, 1H), 7.45 – 7.34 (m, 2H), 5.94 – 5.72 (m, 1H), 5.34 – 5.17 (m, 2H), 4.58 – 4.38 (m, 

1H), 4.26 – 4.02 (m, 2H), 3.99 – 3.74 (m, 1H), 3.39 – 3.10 (m, 2H), 2.96 – 2.74 (m, 1H), 

2.73 – 2.43 (m, 1H), 1.47 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 173.9, 173.9 (d, JC-F = 

26.3 Hz), 155.1, 135.2, 132.1, 130.3, 128.4, 128.2, 121.0, 97.7 (dd, JC-F = 193.9, 47.2 Hz), 

81.1, 49.8 (dd, JC-F = 35.3, 23.1 Hz), 47.2, 46.6, 42.6, 39.7 (dd, JC-F = 27.6, 21.9 Hz), 28.3; 

IR (Neat Film, NaCl) 2978, 2926, 1694, 1450, 1414, 1393, 1367, 1329, 1246, 1152, 1042, 

999, 979, 926, 857, 766, 724, 694, 672, 648 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for 

BzN

NBoc
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C20H29FN3O4 [M+NH4]+: 438.2035, found 438.2040; [α]D22.85 +28.89 (c 1.0, CHCl3); SFC 

Conditions: 10% IPA, 2.5 mL/min, Chiralcel OD-H column, λ = 210 nm, tR (min): minor 

= 6.26, major = 4.99. 

 

 

 

tert-butyl (S)-6-allyl-6-fluoro-4-(4-methoxybenzoyl)-5-oxo-1,4-diazepane-1-

carboxylate (20g) 

Prepared according to the general procedure with allyl ester 19g (60 mg, 0.133 

mmol, 1.0 equiv), Pd2(dba)3 (4.9 mg, 0.0053 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(7.9 mg, 0.013 mmol, 10 mol %). Purified by automated silica gel flash chromatography 

(0→50% acetone/hexanes) to provide alkyl fluoride 20g as a colorless oil (45 mg, 0.111 

mmol, 84% yield, 83% ee); 1H NMR (400 MHz, CDCl3) δ 7.61 – 7.53 (m, 2H), 6.92 – 6.84 
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(m, 2H), 5.93 – 5.78 (m, 1H), 5.30 – 5.21 (m, 2H), 4.35 (t, J = 16.0 Hz, 1H), 4.22 – 4.02 

(m, 2H), 3.96 – 3.85 (m, 1H), 3.84 (s, 3H), 3.40 – 3.19 (m, 2H), 2.94 – 2.78 (m, 1H), 2.71 

– 2.48 (m, 1H), 1.47 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 173.9, 173.7, 163.1, 155.3, 

131.0, 130.6, 127.1, 121.0, 113.8, 97.8 (dd, JC-F = 193.7, 52.5 Hz), 81.2, 55.5, 49.8 (dd, JC-

F = 33.5, 23.3 Hz), 47.5, 46.9, 43.2, 39.8 (dd, JC-F = 32.1, 21.8 Hz), 28.3; IR (Neat Film, 

NaCl) 2977, 2932, 1696, 1603, 1578, 1511, 1448, 1413, 1366, 1327, 1256, 1169, 1152, 

1029, 1000, 977, 923, 835, 766 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for 

C21H28FN2O5 [M+H]+: 407.1977, found 407.1973; [α]D22.5 +46.99 (c 1.7, CHCl3); SFC 

conditions: 20% IPA, 2.5 mL/min, Chiralcel OD-H column, λ = 210 nm, tR (min): major = 

2.69, minor = 3.25. 
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tert-butyl (S)-6-allyl-6-(2-chloroallyl)-4-(4-methoxybenzoyl)-5-oxo-1,4-diazepane-1-

carboxylate (20h) 

Prepared according to the general procedure with allyl ester 19h (48.1 mg, 0.0949 

mmol, 1.0 equiv), Pd2(dba)3 (3.7 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %). Purified by silica gel flash chromatography (20% 

EtOAc/hexanes) to provide alkenyl chloride 20h as a colorless oil (36.7 mg, 0.0793 mmol, 

84% yield, 90% ee); 1H NMR (400 MHz, CDCl3) δ 7.55 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 

8.8 Hz, 2H), 5.93 – 5.71 (m, 1H), 5.36 – 5.07 (m, 4H), 4.36 – 3.84 (m, 4H), 3.83 (s, 3H), 

3.82 – 3.51 (m, 2H), 3.00 – 2.33 (m, 4H), 1.50 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 

178.2, 174.6, 162.7, 155.8, 155.2, 137.5, 132.9, 130.5, 128.3, 120.1, 118.2, 113.7, 81.1, 

80.9, 55.5, 52.6, 49.2, 47.7, 47.4, 47.0, 44.5, 43.8, 42.8, 42.0, 41.8, 40.3, 28.5; IR (Neat 

Film, NaCl) 2976, 2930, 1694, 1631, 1604, 1580, 1510, 1456, 1421, 1393, 1366, 1320, 

1282, 1256, 1212, 1167, 1150, 1030, 980, 928, 840, 765, 682, 636, 610 cm–1; HRMS (MM: 

ESI-APCI): m/z calc’d for C24H32ClN2O5 [M+H]+: 463.1994, found 463.2005; [α]D22.68 –

24.10 (c 0.5, CHCl3); SFC Conditions: 20% IPA, 2.5 mL/min, Chiralpak AD-H column, λ 

= 210 nm, tR (min): minor = 2.52, major = 2.77. 
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tert-butyl (S)-6-allyl-4-(4-methoxybenzoyl)-5-oxo-6-(prop-2-yn-1-yl)-1,4-diazepane-

1-carboxylate (20i) 

Prepared according to the general procedure with allyl ester 19i (70.0 mg, 0.149 

mmol, 1.0 equiv), Pd2(pmdba)3 (5.4 mg, 4.9 µmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(8.8 mg, 0.015 mmol, 10 mol %) at 50 °C. Purification by automated silica gel flash 

chromatography (Teledyne ISCO, 0→40% acetone/hexanes) provided alkyne 20i as a 

colorless oil (28.0 mg, 0.0656 mmol, 44% yield, 94% ee); 1H NMR (400 MHz, CDCl3) δ 

7.59 (d, J = 8.2 Hz, 2H), 6.89 – 6.82 (m, 2H), 5.93 – 5.63 (m, 1H), 5.30 – 5.10 (m, 2H), 

4.36 – 4.15 (m, 1H), 4.09 – 3.68 (m, 4H), 3.83 (s, 3H), 3.62 – 3.37 (m, 1H), 2.83 – 2.43 

(m, 4H), 2.20 – 1.99 (m, 1H), 1.51 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 177.5, 174.6, 

162.9, 155.6, 155.2, 132.1, 130.7, 127.9, 120.0, 113.7, 81.1, 80.9, 80.5, 72.1, 55.6, 52.7, 

49.1, 46.9, 47.7, 43.0, 42.3, 39.1, 37.5, 28.5, 26.5, 25.9; IR (Neat Film, NaCl) 3283, 2972, 

2922, 1692, 1603, 1511, 1454, 1418, 1365, 1322, 1255, 1169, 1031, 980, 926, 839, 766, 
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670 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C24H31N2O5 [M+H]+: 427.2227, found 

427.2238; [α]D22.1
 
–7.69 (c 1.0, CHCl3); SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak 

AD-H column, λ = 210 nm, tR (min): major = 10.85, minor = 10.29. 

 

 

tert-butyl (R)-6-allyl-6-(3-methoxy-3-oxopropyl)-4-(4-methoxybenzoyl)-5-oxo-1,4-

diazepane-1-carboxylate (20j) 

Prepared according to the general procedure with allyl ester 19j (51.9 mg, 0.100 

mmol, 1.0 equiv), Pd2(dba)3 (3.7 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %). Purified by silica gel flash chromatography (33% 
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EtOAc/hexanes) to provide methyl ester 20j as a white, amorphous solid (45.8 mg, 0.0965 

mmol, 96% yield, 95% ee); 1H NMR (400 MHz, CDCl3) δ 7.57 – 7.48 (m, 2H), 6.92 – 6.83 

(m, 2H), 5.80 – 5.64 (m, 1H), 5.22 – 5.09 (m, 2H), 4.21 (ddd, J = 15.7, 6.6, 2.1 Hz, 1H), 

4.13 – 3.85 (m, 3H), 3.83 (s, 3H), 3.62 (s, 3H), 3.51 (d, J = 15.2 Hz, 1H), 3.42 – 3.29 (m, 

1H), 2.64 – 2.20 (m, 4H), 2.20 – 1.86 (m, 2H), 1.49 (s, 9H); 13C NMR (100 MHz, CDCl3) 

δ 179.2, 174.7, 173.6, 173.4, 162.7, 155.4, 155.0, 132.7, 132.5, 130.3, 128.3, 120.0, 113.8, 

81.1, 80.9, 55.5, 51.8, 50.1, 48.9, 47.6, 46.8, 43.2, 42.9, 40.3, 39.7, 29.3, 28.8, 28.5; IR 

(Neat Film, NaCl) 2975, 2360, 1736, 1694, 1605, 1580, 1510, 1426, 1393, 1366, 1321, 

1283, 1254, 1167, 1031, 980, 927, 842, 811, 762, 647, 610 cm–1; HRMS (MM: ESI-APCI): 

m/z calc’d for C25H35N2O7 [M+H]+: 475.2439, found 475.2438; [α]D22.52
 
+7.73 (c 1.0, 

CHCl3); SFC conditions: 15% IPA, 2.5 mL/min, Chiralcel OD-H column, λ = 210 nm, tR 

(min): major = 5.27, minor = 4.84. 
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tert-butyl (R)-6-allyl-6-(2-cyanoethyl)-4-(4-methoxybenzoyl)-5-oxo-1,4-diazepane-1-

carboxylate (20k) 

Prepared according to the general procedure with allyl ester 19k (62.2 mg, 0.128 

mmol, 1.0 equiv), Pd2(dba)3 (4.7 mg, 0.00512 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(7.6 mg, 0.0128 mmol, 10 mol %), using 9:1 methylcyclohexane-toluene as the reaction 

solvent. Purified by silica gel flash chromatography (33% EtOAc/hexanes) to provide 

nitrile 20k as a white, amorphous solid (48.6 mg, 0.110 mmol, 86% yield, 84% ee); 1H 

NMR (400 MHz, CDCl3) δ 7.59 – 7.47 (m, 2H), 6.96 – 6.85 (m, 2H), 5.82 – 5.64 (m, 1H), 

5.30 – 5.11 (m, 2H), 4.09 – 3.93 (m, 2H), 3.93 – 3.72 (m, 2H), 3.85 (s, 3H), 3.70 – 3.38 

(m, 2H), 2.60 – 2.25 (m, 4H), 2.22 – 1.93 (m, 2H), 1.50 (s, 9H); 13C NMR (100 MHz, 

CDCl3) δ 178.0, 174.5, 163.0, 155.6, 154.9, 131.7, 130.3, 127.9, 120.7, 119.7, 113.9, 81.4, 

55.6, 52.2, 49.6, 48.0, 47.4, 46.8, 43.0, 42.6, 39.9, 39.0, 32.1, 31.5, 28.4, 12.4; IR (Neat 

Film, NaCl) 2975, 2931, 2361, 2246, 1690, 1604, 1579, 1510, 1456, 1419, 1366, 1321, 

1256, 1168, 1148, 1031, 980, 926, 840, 811, 766, 607 cm–1; HRMS (MM: ESI-APCI): m/z 

calc’d for C24H35N4O5 [M+NH4]+: 459.2602, found 459.2602; [α]D22.4
 +9.31 (c 0.5, 

CHCl3); SFC conditions: 20% IPA, 2.5 mL/min, Chiralcel OD-H column, λ = 310 nm, tR 

(min): major = 8.33, minor = 6.18. 
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tert-butyl (S)-6-allyl-4-benzoyl-6-(((tert-butoxycarbonyl)amino)methyl)-5-oxo-1,4-

diazepane-1-carboxylate (20l) 

Prepared according to the general procedure with allyl ester 19l (53 mg, 0.0997 

mmol, 1.0 equiv) and Pd2(dba)3. Purification by automated silica gel flash chromatography 

(0→50% EtOAc/hexanes) provided carbamate 20l as a white foam (37 mg, 0.0759 mmol, 

76% yield, 93% ee). 1H NMR (400 MHz, CDCl3) δ 7.55 – 7.44 (m, 3H), 7.44 – 7.35 (m, 

2H), 5.74 (ddt, J = 15.7, 10.5, 7.4 Hz, 1H), 5.35 (br s, 0.5H), 5.21 – 5.06 (m, 2H), 4.79 (br 

s, 0.5H), 4.48 – 4.28 (m, 1H), 4.14 – 3.09 (m, 7H), 2.69 – 2.18 (m, 2H), 1.50 (s, 9H), 1.44 

(s, 9H); 13C NMR (100 MHz, CDCl3) δ 179.3, 178.8, 174.5, 156.3, 155.9, 155.1, 136.3, 
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132.5, 132.1, 131.7, 128.5, 127.7, 120.1, 81.3, 81.1, 79.5, 54.8, 48.9, 47.3, 46.8, 46.3, 42.6, 

41.1, 38.7, 37.1, 28.5, 28.5; IR (Neat Film, NaCl) 2977, 1687, 1502, 1422, 1391, 1365, 

1322, 1282, 1245, 1168, 978, 916, 753 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for 

C26H37N3O6 [M+H]+: 488.2755, found 488.2747; [α]D23.2 –3.70 (c 1.85, CHCl3); SFC 

conditions: 20% IPA, 2.5 mL/min, Chiralpak IC column, λ = 254 nm, tR (min): major = 

5.85, minor = 4.65. 

 

 

Procedure for the large-scale preparation of diazepanone 20e 

To a 500 mL Schlenk flask was added Pd2(dba)3 (37 mg, 0.04 mmol, 4 mol %), (S)-

(CF3)3-t-BuPHOX (59 mg, 0.1 mmol, 10 mol %), and MeCy (20 mL). After stirring for 20 
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minutes at 25 °C, allyl ester 19e (523 mg, 1.0 mmol, 1.0 equiv) and methylcyclohexane 

(52 mL, total substrate concentration 0.014 M) were added to the pre-stirred catalyst 

solution. After stirring for 23 h at 40 °C, the reaction mixture was directly loaded onto a 

flash column and purified by silica gel flash chromatography (20% EtOAc/hexanes) to 

provide benzyl diazepanone 20e as a colorless oil (393 mg, 0.82 mmol, 82% yield, 83% 

ee); All characterization data matched those reported above for compound 20e; [α]D21.96 

+14.757 (c 1.0, CHCl3); SFC Conditions: 20% IPA, 2.5 mL/min, Chiralpak AD-H column, 

λ = 210 nm, tR (min): minor = 3.76, major = 5.90. 
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1.5.2.2 Synthesis of Diazepanone Allylic Alkylation Substrates 

 

tert-butyl 4-benzoyl-5-oxo-1,4-diazepane-1-carboxylate (55) 

To a solution of tert-butyl 5-oxo-1,4-diazepane-1-carboxylate (5.00 g, 23.3 mmol, 

1.0 equiv) in THF (230 mL, 0.1 M) at –78 °C was slowly added n-BuLi (2.18 M in hexanes, 

12.8 mL, 27.9 mmol, 1.2 equiv). The opaque mixture was allowed to warm to ambient 

temperature until the solution became homogeneous, at which point it was again cooled to 

–78 °C. Then, benzoyl chloride (3.52 mL, 30.3 mmol, 1.3 equiv) was added dropwise and 

the reaction turned light orange over several minutes. The reaction was stirred for 1 h at –

78 °C, then poured into saturated aqueous NH4Cl (200 mL) and extracted with EtOAc (3 

x 100 mL). The combined organic extracts were dried over Na2SO4 and concentrated. The 

crude product was purified by silica gel flash chromatography (20% acetone/hexanes) to 

afford benzoyl-protected lactam 55 as a white solid (7.43 g, 23.3 mmol, >99% yield); 1H 

NMR (400 MHz, CDCl3) δ 7.57 – 7.49 (m, 2H), 7.49 – 7.41 (m, 1H), 7.41 – 7.32 (m, 2H), 

4.03 – 3.96 (m, 2H), 3.71 (m, 4H), 2.82 – 2.75 (m, 2H), 1.47 (s, 9H); 13C NMR (100 MHz, 

CDCl3) δ 175.6, 173.7, 154.5, 135.9, 131.7, 128.2, 127.9, 80.7, 47.8, 47.10, 45.4, 41.6, 

41.0, 40.6, 28.3; IR (Neat Film, NaCl) 2976, 2932, 2251, 1682, 1599, 1582, 1450, 1422, 

1392, 1366,1327, 1285, 1247, 1229, 1157, 1115, 1032, 1018, 976, 954, 915,862, 793,769, 

729, 696, 647 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C17H26N3O4 [M+NH4]
+: 

336.1918, found 336.1912. 
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tert-butyl 5-oxo-4-(4-(trifluoromethyl)benzoyl)-1,4-diazepane-1-carboxylate (56) 

To a solution of tert-butyl 5-oxo-1,4-diazepane-1-carboxylate (500 mg, 2.33 mmol, 

1 equiv) in THF (25 mL, 0.1 M) at –78 °C was slowly added n-BuLi (2.5 M in hexanes, 

1.02 mL, 2.56 mmol, 1.1 equiv), and the reaction mixture was stirred at –78 °C for 15 min. 

Then, 4-trifluoromethylbenzoyl chloride (450 µL, 3.03 mmol, 1.3 equiv) was added 

dropwise, and the reaction was stirred for 30 min at –78 °C. The reaction mixture was then 

poured into saturated aqueous NH4Cl (20 mL), the layers were separated, and the aqueous 

layer was extracted with EtOAc (3 x 10 mL). The combined organic extracts were dried 

over Na2SO4 and concentrated under reduced pressure. The crude product was purified by 

silica gel flash chromatography (25% EtOAc/hexanes) to afford the title compound as a 

white solid (698 mg, 1.81 mmol, 77% yield); 1H NMR (400 MHz, CDCl3) δ 7.66 (d, J = 

8.2 Hz, 2H), 7.60 (d, J = 8.1 Hz, 2H), 4.14 – 4.02 (m, 2H), 3.84 – 3.66 (m, 4H), 2.91 – 2.77 

(m, 2H), 1.50 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 175.7, 172.5, 154.6, 139.6, 133.0 (q, 

JC-F = 32.8 Hz), 130.6, 128.0, 125.5 (q, JC-F = 3.8 Hz), 123.7 (q, JC-F = 272.6 Hz), 81.2, 

47.7 (br), 45.3, 41.4 (br), 40.8, 28.5; IR (Neat Film, NaCl) 2981, 1689, 1455, 1422, 1367, 

1326, 1301, 1249, 1230, 1159, 1127, 1066, 1028, 1015, 977, 955, 852, 832, 769 cm–1; 

HRMS (MM: ESI-APCI): m/z calc’d for C18H25F3N3O4 [M+NH4]+: 404.1742, found 

404.1797. 
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tert-butyl 4-(4-methoxybenzoyl)-5-oxo-1,4-diazepane-1-carboxylate (57) 

To a solution of tert-butyl 5-oxo-1,4-diazepane-1-carboxylate (800 mg, 3.73 mmol, 

1 equiv) in THF (37 mL, 0.1 M) at –78 °C was slowly added n-BuLi (2.5 M in hexanes, 

1.64 mL, 4.1 mmol, 1.1 equiv). The opaque mixture was allowed to warm to ambient 

temperature until the solution became homogeneous, at which point it was again cooled to 

–78 °C. Then, 4-methoxybenzoyl chloride (657 µL, 4.85 mmol, 1.3 equiv) was added 

dropwise and the reaction was stirred for 30 min at –78 °C. The reaction mixture was then 

poured into saturated aqueous NH4Cl (30 mL), the layers were separated, and the aqueous 

layer was extracted with EtOAc (3 x 10 mL). The combined organic extracts were dried 

over Na2SO4 and concentrated under reduced pressure. The crude product was purified by 

automated silica gel flash chromatography (Teledyne ISCO, 0→100% EtOAc/hexanes) to 

afford the title compound as a white solid (1.2 g, 3.44 mmol, 92% yield); 1H NMR (400 

MHz, CDCl3) δ 7.62 – 7.54 (m, 2H), 6.93 – 6.84 (m, 2H), 4.00 – 3.93 (m, 2H), 3.83 (s, 

3H), 3.78 – 3.69 (m, 4H), 2.85 – 2.78 (m, 2H), 1.48 (s, 9H); 13C NMR (100 MHz, CDCl3) 

δ 175.7, 173.4, 162.9, 154.6, 130.9, 130.6, 127.7, 113.7, 80.8, 55.5, 48.0, 47.4, 46.1, 41.9, 

41.3, 40.8, 28.5; IR (Neat Film, NaCl) 2974, 2936, 1774, 1687, 1604, 1578, 1510, 1458, 

1420, 1391, 1366, 1327, 1284, 1249, 1166, 1114, 1023, 977, 956, 916, 860, 842, 809, 767, 

632 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C18H25N2O5 [M+H]+: 349.1758, found 

349.1760. 
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6-allyl 1-(tert-butyl) 4-benzoyl-5-oxo-1,4-diazepane-1,6-dicarboxylate (18a) 

To a solution of diisopropylamine (266 µL, 1.88 mmol, 1.2 equiv) in THF (10 mL) 

at –78 °C in a flame-dried round-bottom flask was added n-BuLi (2.5 M in hexanes, 792 

µL, 1.73 mmol, 1.1 equiv), the resulting solution was stirred at –78 °C for 45 min. To this 

solution was then added lactam 55 (500 mg, 1.57 mmol, 1.0 equiv) in THF (6 mL, 0.1 M 

total concentration) dropwise while stirring at −78 °C. The reaction mixture was stirred for 

75 min at −78 °C. Allyl cyanoformate (201 μL, 1.88 mmol, 1.2 equiv) was then added 

dropwise at −78 °C. After stirring for 3 h at −78 °C, the reaction mixture was poured into 

saturated aqueous NH4Cl (10 mL) and extracted with ethyl acetate (3 x 20 mL). The 

combined organic extracts were concentrated under reduced pressure onto silica (4 g). The 

silica-adsorbed crude mixture was purified by silica gel flash chromatography (20→30% 

EtOAc/hexanes) to provide allyl ester 18a as an off-white solid (550 mg, 1.37 mmol, 87% 

yield); 1H NMR (500 MHz, CDCl3) δ 7.65 – 7.57 (m, 2H), 7.53 – 7.45 (m, 1H), 7.42 – 7.34 

(m, 2H), 5.92 (ddt, J = 17.2, 10.4, 5.9 Hz, 1H), 5.40 – 5.22 (m, 2H), 4.79 – 4.59 (m, 2H), 

4.33 – 4.03 (m, 2H), 4.02 – 3.88 (m, 3H), 3.87 – 3.66 (m, 1H), 3.55 – 3.40 (m, 1H), 1.48 

(s, 9H); 13C NMR (125 MHz, CDCl3) δ 173.7, 171.4, 167.5, 154.7, 135.3, 132.2, 131.4, 

128.4, 128.4, 119.5, 81.3, 66.6, 56.0, 46.7 (br), 44.5, 43.3 (br), 28.4; IR (Neat Film, NaCl) 

3374, 3062, 2977, 2934, 1746, 1694, 1600, 1582, 1450, 1419, 1393, 1367, 1327, 1246, 

1156, 1037, 1020, 995, 968, 939, 857, 792, 769, 727, 695, 616 cm–1; HRMS (MM: ESI-

APCI): m/z calc’d for C21H30N3O6 [M+NH4]+: 420.2129, found 420.2109. 
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6-allyl 1-(tert-butyl) 5-oxo-4-(4-(trifluoromethyl)benzoyl)-1,4-diazepane-1,6-

dicarboxylate (18b) 

To a solution of lactam 56 (500 mg, 1.29 mmol, 1.0 equiv) in THF (8 mL, 0.1 M 

total concentration) at −78 °C was added LiHMDS (303 mg, 1.81 mmol, 1.4 equiv) in THF 

(5 mL) dropwise. The resulting yellow reaction mixture was stirred for 15 min at −78 °C. 

Then, allyl cyanoformate (166 μL, 1.55 mmol, 1.2 equiv) was added dropwise at −78 °C, 

after which the solution slowly became colorless. After stirring for 1 h at −78 °C, the 

reaction was poured into 2 M HCl (20 mL) and extracted with ethyl acetate (4 x 20 mL). 

The combined organic extracts were dried over anhydrous Na2SO4 and NaHCO3, passed 

through filter paper, and concentrated under reduced pressure. The crude product was 

purified by silica gel flash chromatography (20→33% EtOAc/hexanes) to provide allyl 

ester 18b as a white solid (266 mg, 0.565 mmol, 44% yield); 1H NMR (400 MHz, CDCl3) 

δ 7.69 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 5.92 (ddt, J = 17.2, 10.4, 5.9 Hz, 1H), 

5.42 – 5.23 (m, 2H), 4.79 – 4.59 (m, 2H), 4.46 – 3.63 (m, 6H), 3.52 (m, 1H), 1.47 (s, 9H); 

13C NMR (100 MHz, CDCl3) δ 172.4, 171.4, 167.4, 154.6, 138.9, 133.3 (q, JC-F = 32.6 Hz), 

131.2, 128.3, 125.4 (q, JC-F = 3.8 Hz), 123.7 (q, JC-F = 272.5 Hz), 119.8, 81.5, 66.8, 56.0, 

47.4, 46.3, 44.2, 43.0, 28.4; IR (Neat Film, NaCl) 3377, 3083, 2980, 2935, 2463, 2358, 

1928, 1798, 1747, 1694, 1652, 1619, 1584, 1513, 1455, 1414, 1394, 1368, 1327, 1246, 

1156, 1131, 1067, 1034, 1016, 994, 970, 940, 879, 853, 824, 770, 723, 679, 639, 630, 612 
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cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C22H29F3N3O6 [M+NH4]+: 488.2003, found 

488.2022. 

 

6-allyl 1-(tert-butyl) 4-(4-methoxybenzoyl)-5-oxo-1,4-diazepane-1,6-dicarboxylate 

(18c) 

To a solution of lactam 57 (1.00 g, 2.87 mmol, 1.0 equiv) in THF (20 mL, 0.1 M 

total concentration) at −78 °C was added LiHMDS (528 mg, 3.16 mmol, 1.1 equiv) in THF 

(9 mL) dropwise. The resulting pale yellow reaction mixture was stirred for 15 min at −78 

°C. Allyl cyanoformate (368 μL, 3.44 mmol, 1.2 equiv) was then added dropwise at −78 

°C, resulting in a clear solution. After stirring for 1.5 h at −78 °C, the reaction was poured 

into 1 M HCl (10 mL) and diluted with ethyl acetate (20 mL). The layers were separated 

and the aqueous phase was extracted with ethyl acetate (3 x 30 mL). The combined organic 

extracts were dried over anhydrous Na2SO4 and NaHCO3, filtered, and concentrated under 

reduced pressure onto silica. The silica-adsorbed crude mixture was purified by silica gel 

flash chromatography (10→20% EtOAc/hexanes) to provide allyl ester 18c as a colorless 

oil (600 mg, 1.39 mmol, 48% yield); 1H NMR (400 MHz, CDCl3) δ 7.72 – 7.60 (m, 2H), 

6.91 – 6.79 (m, 2H), 5.92 (ddt, J = 17.3, 10.4, 5.9 Hz, 1H), 5.42 – 5.20 (m, 2H), 4.77 – 4.56 

(m, 2H), 4.40 – 3.92 (m, 4H), 3.92 – 3.62 (m, 2H), 3.82 (s, 3H), 3.58 – 3.24 (m, 1H), 1.46 

(s, 9H); 13C NMR (100 MHz, CDCl3) δ 173.1, 171.3, 167.6, 163.2, 154.6, 131.4, 131.2, 

127.0, 119.4, 113.7, 81.1, 66.5, 55.9, 55.4, 47.7 and 46.7, 45.1, 43.3, 42.8, 28.3; IR (Neat 

Film, NaCl) 2977, 1746, 1693, 1603, 1578, 1511, 1454, 1419, 1392, 1366, 1324, 1255, 
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1168, 1025, 995, 965, 842, 766 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C22H28N2O7 

[M+H]+: 433.1969, found 433.1966. 

 

6-allyl 1-(tert-butyl) 4-benzoyl-6-benzyl-5-oxo-1,4-diazepane-1,6-dicarboxylate (19a) 

To a flame-dried round bottom flask containing a solution of allyl ester 18a (1.00 

g, 2.49 mmol, 1.0 equiv) in THF (25 mL, 0.1 M) at 0 °C was added NaH (60% dispersion 

in mineral oil, 107 mg, 2.74 mmol, 1.1 equiv) and the mixture was stirred at 0 °C for 30 

min. BnBr (1.50 mL, 12.45 mmol, 5.0 equiv) was then added dropwise and the reaction 

mixture was warmed to 45 °C. After 16 h, the temperature was further increased to 53 °C 

due to sluggish reactivity. After another 45 min of stirring at 53 °C, the reaction mixture 

was cooled to 23 °C and poured into saturated aqueous NH4Cl (25 mL), the layers were 

separated, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The 

combined organic extracts were dried over anhydrous Na2SO4, filtered, and concentrated 

under reduced pressure. The crude product was purified by silica gel flash chromatography 

(20% EtOAc/hexanes) to provide the title compound as a colorless foam (922 mg, 1.87 

mmol, 75% yield); 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 7.6 Hz, 2H), 7.55 – 7.46 (m, 

1H), 7.37 (t, J = 7.7 Hz, 2H), 7.31 – 7.25 (m, 3H), 7.24 – 7.12 (m, 2H), 5.86 (tq, J = 22.8, 

6.5 Hz, 1H), 5.42 – 5.26 (m, 2H), 4.71 – 4.55 (m, 2H), 4.22 (dd, J = 75.3, 15.5 Hz, 1H), 

4.05 – 3.57 (m, 4H), 3.57 – 3.36 (m, 2H), 3.22 (dd, J = 68.5, 13.7 Hz, 1H), 1.45 (s, 9H); 

13C NMR (100 MHz, CDCl3) δ (174.4, 174.0, 172.2, 172.0, 170.8, 170.2, 155.5, 155.0, 

135.7, 135.6, 135.5, 132.0, 131.1, 130.9, 130.8, 130.6, 128.5, 128.5, 128.3, 127.5, 127.4, 
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120.6, 120.2, 81.2, 81.0, 67.0, 66.9, 62.6, 62.2, 47.3, 46.7, 46.2, 45.8, 42.4, 42.1, 42.0, 28.5; 

IR (Neat Film, NaCl) 3063, 3030, 2977, 2933, 1694, 1601, 1583, 1495, 1450, 1416, 1393, 

1366, 1325, 1280, 1247, 1154, 1132, 1092, 1041, 1023, 980, 939, 868, 796, 768, 728, 703, 

662 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C24H25N2O6 [M–tBu+2H]+: 437.1707, 

found 437.1697. 

 

6-allyl 1-(tert-butyl) 4-benzoyl-6-methyl-5-oxo-1,4-diazepane-1,6-dicarboxylate (19b) 

To a solution of allyl ester 18a (240 mg, 0.596 mmol, 1.0 equiv) in THF (6 mL, 0.1 

M) at 0 °C was added 60 % NaH (26 mg, 0.657 mmol, 1.1 equiv). The solution was stirred 

at 0 °C for 40 min, after which MeI (186 µL, 2.98 mmol, 5.0 equiv) was added rapidly. 

The reaction was heated to 45 °C and stirred for 16 h, cooled to 23 °C, poured into saturated 

aqueous NH4Cl (5 mL), and extracted with EtOAc (3 x 3 mL). The combined organic 

extracts were dried over Na2SO4 and concentrated onto silica gel. The silica-adsorbed crude 

product was purified by silica gel flash chromatography (20% EtOAc/hexanes) to afford 

the title compound as a light yellow oil (200 mg, 0.480 mmol, 81% yield). 1H NMR (400 

MHz, CDCl3) δ 7.78 – 7.63 (m, 2H), 7.58 – 7.43 (m, 1H), 7.38 (t, J = 7.6 Hz, 2H), 5.96 

(ddt, J = 16.6, 10.4, 6.0 Hz, 1H), 5.49 – 5.26 (m, 2H), 4.85 – 4.64 (m, 2H), 4.46 – 4.22 (m, 

1H), 4.10 (br d, J = 14.8 Hz, 1H), 3.86 – 3.42 (m, 4H), 1.57 (s, 3H), 1.45 (s, 9H); 13C NMR 

(100 MHz, CDCl3) δ 174.5 174.1, 173.0, 171.7, 155.1, 154.9, 135.7, 132.0, 131.2, 128.3, 

128.2, 120.2, 81.1, 66.9, 57.7, 49.8, 49.0, 47.1, 46.0, 43.2, 28.4, 23.6; IR (Neat Film, NaCl) 

2977, 1693, 1449, 1416, 1366, 1325, 1281, 1249, 1139, 1104, 1047, 983, 938, 768, 727, 
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694 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C22H29N2O6 [M+H]+: 417.2020, found 

417.2010. 

 

6-allyl 1-(tert-butyl) 6-methyl-5-oxo-4-(4-(trifluoromethyl)benzoyl)-1,4-diazepane-

1,6-dicarboxylate (19c) 

To a suspension of allyl ester 18b (150 mg, 0.319 mmol, 1.0 equiv) and Cs2CO3 

(208 mg, 0.638 mmol, 2.0 equiv) in acetonitrile (3.2 mL, 0.1 M) was added MeI (99 µL, 

1.59 mmol, 5.0 equiv) at 23 °C. The reaction was heated to 45 °C and stirred for 5 h, then 

cooled to 23 °C, poured into saturated aqueous NH4Cl (6 mL), and extracted with EtOAc 

(3 x 3 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered, 

and concentrated under reduced pressure. The crude product was purified by silica gel flash 

chromatography (15% EtOAc/petroleum ether) to provide the title compound as a colorless 

oil (146 mg, 0.301 mmol, 95% yield); 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 8.1 Hz, 

2H), 7.63 (d, J = 8.1 Hz, 2H), 5.97 (ddt, J = 17.3, 10.3, 6.1 Hz, 1H), 5.48 – 5.29 (m, 2H), 

4.84 – 4.68 (m, 2H), 4.49 – 4.30 (m, 1H), 4.18 – 3.98 (m, 1H), 3.90 – 3.39 (m, 4H), 1.57 

(s, 3H), 1.45 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 173.2, 172.7, 171.7, 154.9, 139.2, 

133.1 (q, JC-F = 32.5 Hz), 131.1, 128.2, 125.4, 123.8 (q, JC-F = 272.7 Hz), 120.5, 81.3, 67.0, 

57.7, 49.7, 49.0, 46.9, 45.8, 43.1, 42.9, 28.4, 23.7; IR (Neat Film, NaCl) 3384, 3083, 2979, 

2937, 1698, 1619, 1584, 1514, 1478, 1453, 1416, 1394, 1367, 1326, 1285, 1250, 1207, 

1166, 1136, 1110, 1066, 1022, 1012, 985, 938, 855, 832, 817, 790, 769, 740, 722, 680 cm–

(p-F3C-Bz)N
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1; HRMS (MM: ESI-APCI): m/z calc’d for C23H28F3N2O6 [M+H]+: 485.1894, found 

485.1907. 

 

6-allyl 1-(tert-butyl) 4-(4-methoxybenzoyl)-6-methyl-5-oxo-1,4-diazepane-1,6-

dicarboxylate (19d) 

To a suspension of allyl ester 18c (200 mg, 0.462 mmol, 1.0 equiv), Cs2CO3 (301 

mg, 0.925 mmol, 2.0 equiv) in acetonitrile (4.6 mL, 0.1 M) was added MeI (143 µL, 2.31 

mmol, 5.0 equiv) at 23 °C. The reaction was heated to 45 °C and stirred for 40 min, then 

cooled to 23 °C, poured into saturated aqueous NH4Cl (10 mL), and extracted with 

EtOAc (3 x 5 mL). The combined organic extracts were dried over anhydrous Na2SO4, 

filtered, and concentrated under reduced pressure. The crude product was purified by 

automated silica gel flash chromatography (Teledyne ISCO, 0→90% EtOAc/hexanes) to 

provide the title compound as a colorless oil (70 mg, 0.157 mmol, 34% yield). 1H NMR 

(400 MHz, CDCl3) δ 7.75 – 7.65 (m, 2H), 6.90 – 6.82 (m, 2H), 5.96 (ddt, J = 17.3, 10.4, 

6.0 Hz, 1H), 5.44 – 5.29 (m, 2H), 4.77 – 4.66 (m, 2H), 4.27 – 4.15 (m, 1H), 4.14 – 4.04 

(m, 1H), 3.83 (s, 3H), 3.80 – 3.70 (m, 1H), 3.67 – 3.58 (m, 2H), 3.56 – 3.46 (m, 1H), 1.57 

(s, 3H), 1.44 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 174.0, 173.6, 172.9, 172.0, 171.8, 

162.9, 155.2, 154.9, 131.2, 131.2, 131.0, 127.6, 120.1, 120.0, 113.6, 81.0, 66.8, 57.5, 

55.5, 49.6, 48.9, 47.2, 46.1, 43.7, 28.4, 23.7; IR (Neat Film, NaCl) 2974, 2937, 1698, 

1604, 1578, 1511, 1453, 1416, 1392, 1366, 1324, 1280, 1256, 1169, 1139, 1103, 1031, 

1001, 983, 929, 840, 768, 733 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C23H31N2O7 
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[M+H]+: 447.2126, found 447.2128. 

 

6-allyl 1-(tert-butyl) 6-benzyl-4-(4-methoxybenzoyl)-5-oxo-1,4-diazepane-1,6-

dicarboxylate (19e) 

To a flame-dried round bottom flask containing a solution of allyl ester 18c (300 

mg, 0.694 mmol, 1.0 equiv) in THF (7 mL, 0.1 M) at 0 °C was added NaH (60% dispersion 

in mineral oil, 38 mg, 0.972 mmol, 1.4 equiv) and the mixture was stirred at 0 °C for 15 

min and then allowed to warm to 23 °C over 15 min. BnBr (412 µL, 3.47 mmol, 5.0 equiv) 

was then added dropwise and the reaction mixture was heated to 50 °C. After stirring for 8 

h, the reaction mixture was allowed to cool to 23 °C and poured into saturated aqueous 

NH4Cl (5 mL), the layers were separated, and the aqueous phase was extracted with ethyl 

acetate (3 x 2 mL). The combined organic extracts were dried over anhydrous Na2SO4, 

filtered, and concentrated under reduced pressure. The crude product was purified by silica 

gel flash chromatography (20% EtOAc/hexanes) to provide the title compound as a 

colorless foam (303 mg, 0.580 mmol, 84% yield); 1H NMR (500 MHz, CDCl3) δ 7.72 (d, 

J = 8.5 Hz, 2H), 7.31 – 7.12 (m, 5H), 6.90 – 6.80 (m, 2H), 5.95 – 5.75 (m, 1H), 5.41 – 5.26 

(m, 2H), 4.69 – 4.54 (m, 2H), 4.21 – 4.05 (m, 1H), 4.02 – 3.86 (m, 2H), 3.83 (s, 3H), 3.78 

– 3.62 (m, 2H), 3.56 – 3.49 (m, 1H), 3.43 – 3.10 (m, 2H), 1.45 (s, 9H); 13C NMR (125 

MHz, CDCl3) δ 173.7, 173.4, 172.0, 171.7, 170.8, 170.2, 162.9, 155.4, 154.8, 135.7, 135.6, 

131.1, 130.9, 130.7, 130.5, 128.5, 128.3, 128.2, 127.5, 127.3, 127.0, 120.2, 119.9, 113.5, 
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80.9, 80.7, 66.6, 62.4, 62.0, 55.3, 47.1, 46.8, 46.0, 45.8, 42.8, 42.5, 41.9, 28.3; IR (Neat 

Film, NaCl) 2976, 2359, 1698, 1604, 1512, 1455, 1416, 1366, 1324, 1258, 1155, 1028, 

979, 840, 741, 703, 671, 634 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C29H35N2O7 

[M+H]+: 523.2439, found 523.2446. 

 

6-allyl 1-(tert-butyl) 4-benzoyl-6-fluoro-5-oxo-1,4-diazepane-1,6-dicarboxylate (19f) 

To a 20 mL vial containing allyl ester 18a (250 mg, 0.621 mmol, 1.0 equiv) in THF 

(7.4 mL, 0.1 M) at 23 °C was added NaH (60% dispersion in mineral oil, 27.3 mg, 0.683 

mmol, 1.1 equiv). After stirring for 12 min, Selectfluor™ (264 mg, 0.745 mmol, 1.2 equiv) 

was added in a single portion, and the reaction mixture was warmed to 50 °C and stirred 

for 24 h, after which starting material remained as judged by TLC. Additional Selectfluor™ 

(264 mg, 0.745 mmol, 1.2 equiv) was then added, and the reaction mixture was stirred for 

an additional 8 h at 50 °C. The reaction mixture was allowed to cool to 23 °C and water (5 

mL) was added. The layers were separated and the aqueous layer was extracted with EtOAc 

(3 x 5 mL). The combined organic extracts were dried over anhydrous Na2SO4, 

concentrated under reduced pressure, and purified by silica gel flash chromatography (25% 

EtOAc/hexanes) to provide the title compound (167 mg, 0.397 mmol, 64% yield); 1H NMR 

(500 MHz, CDCl3) δ 7.64 – 7.56 (m, 2H), 7.52 – 7.43 (m, 1H), 7.36 (t, J = 7.7 Hz, 2H), 

5.99 – 5.80 (m, 1H), 5.43 – 5.19 (m, 2H), 4.83 – 4.56 (m, 2H), 4.52 – 4.17 (m, 3H), 4.03 – 

3.56 (m, 2H), 3.27 – 3.08 (m, 1H), 1.47 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 173.1, 

169.6, 169.4, 164.8, 164.6, 154.9, 134.3, 132.5, 130.7, 128.5, 128.4, 119.7, 95.7 (d, J = 
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204.8 Hz), 81.5, 67.2, 47.6 (dd, JC-F = 137.5, 24.1 Hz), 47.3, 46.4, 42.8, 28.3; IR (Neat 

Film, NaCl) 2978, 2926, 1694, 1450, 1414, 1393, 1367, 1329, 1246, 1152, 1042, 999, 979, 

926, 857, 766, 724, 694, 672, 648 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for 

C21H29FN3O6 [M+NH4]+: 438.2035, found 438.2040. 

 

6-allyl 1-(tert-butyl) 6-fluoro-4-(4-methoxybenzoyl)-5-oxo-1,4-diazepane-1,6-

dicarboxylate (19g) 

To a 20 mL vial containing allyl ester 18c (320 mg, 0.740 mmol, 1.0 equiv) and 

NaH (60% dispersion in mineral oil, 32.5 mg, 0.814 mmol, 1.1 equiv) was added THF (7.4 

mL, 0.1 M) at 23 °C. After stirring for 30 min, Selectfluor™ (315 mg, 0.889 mmol, 1.2 

equiv) was added in a single portion, and the reaction mixture was warmed to 50 °C and 

stirred for 5 h. The crude reaction mixture was then concentrated under reduced pressure 

and purified by silica gel flash chromatography (30% acetone/hexanes) to provide the title 

compound (290 mg, 0.644 mmol, 87% yield); 1H NMR (400 MHz, CDCl3) δ 7.66 – 7.58 

(m, 2H), 6.90 – 6.82 (m, 2H), 5.91 (ddt, J = 16.3, 10.9, 5.7 Hz, 1H), 5.43 – 5.21 (m, 2H), 

4.84 – 4.40 (m, 3H), 4.40 – 4.16 (m, 2H), 4.00 – 3.86 (m, 1H), 3.82 (s, 3H), 3.77 – 3.56 

(m, 1H), 3.22 – 3.09 (m, 1H), 1.47 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 172.6, 169.6 

(dd, JC-F = 48.2, 25.4 Hz), 164.9 (d, JC-F = 25.8 Hz), 163.4, 155.0, 131.3, 130.8, 126.1, 

119.8, 113.9, 95.7 (dd, JC-F = 205.6, 14.6 Hz), 81.5, 67.3, 55.5, 47.5 (dd, JC-F = 109.0, 23.7 

Hz), 47.2 (d, JC-F = 92.2 Hz), 43.4, 28.3; IR (Neat Film, NaCl) 2976, 2936, 2844, 1759, 

1698, 1603, 1578, 1512, 1449, 1414, 1367, 1327, 1258, 1168, 1151, 1076, 1030, 997, 977, 
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942, 929, 841, 817, 770, 760, 730, 698 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for 

C22H28FN2O7 [M+H]+: 451.1875, found 451.1877. 

 

6-allyl 1-(tert-butyl) 6-(2-chloroallyl)-4-(4-methoxybenzoyl)-5-oxo-1,4-diazepane-1,6-

dicarboxylate (19h) 

To a suspension of allyl ester 18c (300 mg, 0.694 mmol, 1.0 equiv) and Cs2CO3 

(453 mg, 1.39 mmol, 2.0 equiv) in acetonitrile (7 mL, 0.1 M) was added 2,3-

dichloropropene (320 µL, 3.47 mmol, 5.0 equiv) at 23 °C. The reaction mixture was heated 

to 50 °C and stirred for 19 h, after which starting material remained as judged by TLC. 

Tetrabutylammonium iodide (25.6 mg, 0.0694 mmol, 0.1 equiv) was added and the 

reaction mixture was stirred at 50 °C for an additional 9 h, then allowed to cool to 23 °C. 

The mixture was filtered through a cotton plug and concentrated under reduced pressure. 

The crude product was purified by silica gel flash chromatography (20% EtOAc/petroleum 

ether) to provide the title compound as a colorless oil (196 mg, 0.387 mmol, 56% yield); 

1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.9 Hz, 2H), 6.12 – 

5.94 (m, 1H), 5.60 – 5.25 (m, 4H), 4.78 (qdt, J = 12.8, 6.0, 1.2 Hz, 2H), 4.25 (br t, J = 13.9 

Hz, 1H), 4.17 – 3.87 (m, 3H), 3.84 (s, 3H), 3.76 – 3.51 (m, 1H), 3.48 – 3.30 (m, 1H), 3.29 

– 2.99 (m, 2H), 1.43 (d, J = 16.9 Hz, 9H); 13C NMR (100 MHz, CDCl3) δ 173.9, 173.3, 

170.3, 163.1, 155.9, 155.1, 137.0, 136.7, 131.1, 127.2, 120.6, 120.3, 119.4, 118.4, 113.6, 

81.4, 81.0, 67.5, 60.0, 55.5, 47.1, 45.9, 46.0, 45.2, 45.6, 44.7, 43.1, 42.8, 28.4; IR (Neat 

Film, NaCl) 3356, 3080, 2977, 2933, 2841, 2568, 2254, 1700, 1629, 1605, 1579, 1512, 
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1456, 1417, 1393, 1367, 1326, 1281, 1257, 1217, 1196, 1153, 1029, 988, 910, 842, 811, 

780, 757, 732, 668, 634, 621 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C25H32ClN2O7 

[M+H]+: 507.1893, found 507.1902. 

 

6-allyl 1-(tert-butyl) 4-(4-methoxybenzoyl)-5-oxo-6-(prop-2-yn-1-yl)-1,4-diazepane-

1,6-dicarboxylate (19i) 

To a solution of allyl ester 18c (250 mg, 0.578 mmol, 1.0 equiv) in THF (5.8 mL, 

0.1 M) was added NaH (60% dispersion in mineral oil, 25 mg, 0.636 mmol, 1.1 equiv) at 

0 °C. After stirring for 30 min at 0 °C, propargyl bromide (80% wt/wt in toluene, 125 μL, 

1.16 mmol, 2.0 equiv) was added at 0 °C. The reaction mixture was heated to 50 °C and 

stirred for 16 h. The mixture was allowed to cool to 23 °C, quenched with aqueous NaHCO3 

(10 mL) and extracted with EtOAc (3 x 5 mL). The combined organic extracts were dried 

over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The crude 

product was purified by automated silica gel flash chromatography (Teledyne ISCO, 

0→50% acetone/hexanes) to provide propargyl allyl ester 19i as a colorless oil (220 mg, 

0.468 mmol, 81% yield). 1H NMR (500 MHz, CDCl3) δ 7.73 – 7.59 (m, 2H), 6.84 (d, J = 

8.6 Hz, 2H), 5.99 (ddt, J = 17.3, 10.4, 6.0 Hz, 1H), 5.54 – 5.27 (m, 2H), 4.85 – 4.69 (m, 

2H), 4.33 – 3.85 (m, 4H), 3.82 (s, 3H), 3.76 – 3.56 (m, 1H), 3.56 – 3.39 (m, 1H), 3.14 – 

2.90 (m, 2H), 2.08 (s, 1H), 1.42 (d, J = 14.3 Hz, 9H); 13C NMR (125 MHz, CDCl3) δ 173.7, 

173.2, 170.5, 170.3, 169.7, 169.3, 163.0, 155.6, 154.9, 131.2, 131.0, 127.1, 120.3, 120.0, 

113.6, 81.1, 81.0, 78.9, 78.6, 72.3, 67.3, 60.7, 60.4, 55.5, 47.1, 46.5, 46.2, 46.0, 43.0, 28.3, 
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27.0, 26.9; IR (Neat Film, NaCl) 3280, 2975, 2936, 1737, 1694, 1604, 1579, 1547, 1512, 

1454, 1416, 1393, 1366, 1326, 1280, 1258, 1156, 1134, 1030, 994, 980, 841, 778, 770, 

737, 706, 677, 634, 622 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C25H31N2O7 

[M+H]+: 471. 2126, found 471.2130. 

 

6-allyl 1-(tert-butyl) 6-(3-methoxy-3-oxopropyl)-4-(4-methoxybenzoyl)-5-oxo-1,4-

diazepane-1,6-dicarboxylate (19j) 

To a 20 mL vial containing allyl ester 18c (300 mg, 0.694 mmol, 1.0 equiv) and 

K2CO3 (480 mg, 3.47 mmol, 5.0 equiv) was added acetone (2.8 mL, 0.25 M) and methyl 

acrylate (126 µL, 1.39 mmol, 2.0 equiv) at 23 °C. The vessel was sealed and heated to 50 

°C. After stirring for 5 h, additional methyl acrylate (126 µL, 1.39 mmol, 2.0 equiv) was 

added and the reaction was stirred for an additional 14 h. The reaction mixture was then 

filtered through a plug of cotton, concentrated under reduced pressure, and purified by 

silica gel flash chromatography (33% EtOAc/petroleum ether) to provide diester 19j as a 

colorless, waxy solid (185 mg, 0.357 mmol, 51% yield); 1H NMR (500 MHz, CDCl3) δ 

7.77 – 7.65 (m, 2H), 6.92 – 6.79 (m, 2H), 5.96 (ddt, J = 17.2, 10.3, 6.1 Hz, 1H), 5.48 – 5.27 

(m, 2H), 4.82 – 4.63 (m, 2H), 4.32 – 3.84 (m, 3H), 3.83 (s, 3H), 3.81 – 3.66 (m, 1H), 3.62 

(s, 3H), 3.58 – 3.40 (m, 2H), 2.56 – 2.13 (m, 4H), 1.44 (s, 9H); 13C NMR (125 MHz, 

CDCl3) δ 173.8, 173.5, 173.0, 171.9, 170.9, 170.6, 163.0, 155.1, 154.8, 131.1, 131.0, 127.5, 

120.6, 113.6, 81.2, 67.0, 60.4, 55.5, 51.7, 48.7, 47.8, 47.0, 46.0, 43.4, 31.4, 29.8, 28.3; IR 

AnN

NBoc

O
O

O

CO2Me



Chapter 1 – Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation of 5- and 7-
Membered Diazaheterocycles 

 

60 

(Neat Film, NaCl) 3354, 2976, 2843, 2568, 2255, 2044, 1694, 1605, 1579, 1556, 1513, 

1416, 1393, 1367, 1260, 1168, 1030, 982, 916, 843, 811, 782, 766, 732, 648, 634 cm–1; 

HRMS (MM: ESI-APCI): m/z calc’d for C26H38N3O9 [M+NH4]+: 536.2603, found 

536.2603. 

 

6-allyl 1-(tert-butyl) 6-(2-cyanoethyl)-4-(4-methoxybenzoyl)-5-oxo-1,4-diazepane-1,6-

dicarboxylate (19k) 

To a 20 mL vial containing allyl ester 18c (300 mg, 0.694 mmol, 1.0 equiv) and 

K2CO3 (480 mg, 3.47 mmol, 5.0 equiv) was added acetone (2.8 mL, 0.25 M) and 

acrylonitrile (182 µL, 2.78 mmol, 4.0 equiv) at 23 °C. The vessel was sealed and heated to 

50 °C. After 17 h of stirring, the reaction mixture was filtered through a plug of cotton, 

concentrated under reduced pressure, and purified by silica gel flash chromatography (33% 

EtOAc/petroleum ether) to provide 19k as a colorless foam (176 mg, 0.362 mmol, 52% 

yield); 1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 

6.01 (ddt, J = 16.7, 10.3, 6.3 Hz, 1H), 5.51 – 5.36 (m, 2H), 4.89 – 4.75 (m, 2H), 4.32 – 3.88 

(m, 3H), 3.86 (s, 3H), 3.84 – 3.34 (m, 3H), 2.71 – 2.09 (m, 4H), 1.53 – 1.34 (m, 9H); 13C 

NMR (100 MHz, CDCl3) δ 170.8, 170.3, 163.2, 155.3, 131.0, 130.6, 127.1, 121.4, 121.1, 

119.1, 113.7, 81.4, 67.5, 60.2, 55.5, 47.5, 46.8, 43.6, 32.9, 28.3, 13.6; IR (Neat Film, NaCl) 

2975, 2934, 2250, 1694, 1605, 1579, 1512, 1455, 1419, 1393, 1367, 1326, 1255, 1164, 

1031, 1000, 979, 941, 916, 842, 813, 781, 762, 733, 648, 634 cm–1; HRMS (MM: ESI-

APCI): m/z calc’d for C25H35N4O7 [M+NH4]+: 503.2500, found 503.2505. 
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6-allyl 1-(tert-butyl) 4-benzoyl-6-(((tert-butoxycarbonyl)amino)methyl)-5-oxo-1,4- 

diazepane-1,6-dicarboxylate (19l) 

A solution of allyl ester 18a (200 mg, 0.497 mmol, 1.0 equiv) and tert-butyl 

((phenylsulfonyl)methyl)carbamate30,31 (162 mg, 0.597 mmol, 1.2 equiv) in CH2Cl2 (2.5 

mL, 0.2 M) at 23 °C was stirred for 5 min, after which time Cs2CO3 (405 mg, 1.24 mmol, 

2.5 equiv) was added at the same temperature. After an additional 30 min of stirring, 

saturated aqueous NH4Cl (1 mL) was added, and the biphasic mixture was vigorously 

stirred for 20 min. The layers were separated, and the aqueous phase was extracted with 

CH2Cl2 (3 x 3 mL). The combined organic extracts were dried over anhydrous Na2SO4, 

filtered, and concentrated under reduced pressure onto silica gel (2 g). The silica-adsorbed 

crude reaction mixture was purified by automated silica gel flash chromatography 

(Teledyne ISCO, 10→40% acetone/hexanes) to provide carbamate 19l as a white foam 

(200 mg, 0.376 mmol, 76% yield): 1H NMR (400 MHz, CDCl3) δ 7.83 – 7.71 (m, 2H), 

7.59 – 7.46 (m, 1H), 7.46 – 7.36 (m, 2H), 6.00 (ddt, J = 16.6, 10.3, 6.1 Hz, 1H), 5.51 – 5.25 

(m, 2H), 5.17 (br s, 1H), 4.79 – 4.64 (m, 2H), 4.48 – 4.23 (m, 1H), 4.14 – 3.20 (m, 7H), 

1.44 (s, 9H), 1.42 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 174.1, 173.8, 172.7, 170.1, 169.6, 

156.0, 155.2, 154.7, 135.5, 132.2, 131.4, 128.5, 128.4, 120.2, 81.4, 79.6, 67.4, 62.7, 47.1, 

46.8, 45.9, 43.2, 28.5, 28.4; IR (Neat Film, NaCl) 3457, 2977, 2934, 2253, 1704, 1600, 

1503, 1450, 1417, 1392, 1367, 1325, 1283, 1248, 1158, 1042, 980, 913,77 860, 767, 729, 

693, 663 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C27H38N3O8 [M+H]+: 532.2653, 
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found 532.2664. 

1.5.2.3 Derivatization of Diazepane Allylic Alkylation Products 

 

2-bromo-5-chlorobenzo[d]oxazole (22) 

Prepared according to the literature procedure by Mangion and coworkers14 and 

used directly in the synthesis of 23. 

 

5-methyl-2-(2H-1,2,3-triazol-2-yl)benzoic acid (24) 

Prepared according to the literature procedure by Mangion and coworkers.14 All 

characterization data matched those reported in the literature. 

 

tert-butyl (S)-6-allyl-6-benzyl-5-oxo-1,4-diazepane-1-carboxylate (58) 

To a flask containing benzoyl-protected diazepanone 20a (460 mg, 1.03 mmol, 1.0 

equiv) was added isopropyl alcohol (100 mL, 0.01 M) and water (10 mL), followed by 

LiOH·H2O (61 mg, 1.45 mmol, 1.5 equiv) at 23 °C. After stirring for 4 h at 23 °C, the 

isopropyl alcohol was removed under reduced pressure and the resulting aqueous mixture 

extracted with EtOAc (4 x 50 mL). The combined organic extracts were dried with sodium 
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sulfate, filtered, and concentrated under reduced pressure to yield a crude oil (400 mg) that 

was used without further purification. 

tert-butyl (R)-6-allyl-6-benzyl-1,4-diazepane-1-carboxylate (21) 

 Crude lactam 58 (350 mg [theoretical maximum 310 mg lactam], 0.903 mmol, 1 

equiv) was dissolved in THF (10.2 mL, 0.1 M) and cooled to 0 °C. LiAlH4 (77 mg, 2.03 

mmol, 2.25 equiv) was then added, and the reaction mixture was stirred at 0 °C for 4 h, 

over the course of which an additional 3.37 equiv (116 mg, 3.05 mmol) of LiAlH4 were 

added in total (77 mg, followed by 39 mg, at equal intervals). The reaction mixture was 

then diluted with diethyl ether (10 mL) and water (300 µL) was added. After gas generation 

subsided, 15% aqueous NaOH (300 µL) was added, followed by additional water (900 µL). 

After stirring at 0 °C for 15 min, anhydrous MgSO4 was added, and the mixture was stirred 

for an additional 10 min, whereafter it was filtered through celite and concentrated under 

reduced pressure. Purification by automated silica gel flash chromatography (Teledyne 

ISCO, 0→20% MeOH/CH2Cl2) provided the product as a light yellow oil (130 mg, 0.393 

mmol, 44% yield); 1H NMR (400 MHz, CDCl3) δ 7.40 – 7.14 (m, 5H), 6.01 (dq, J = 17.1, 

7.8 Hz, 1H), 5.18 (d, J = 15.9 Hz, 2H), 3.67 – 3.30 (m, 4H), 2.97 (m, 2H), 2.88 – 2.48 (m, 

4H), 2.30 – 2.06 (m, 3H), 1.50 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 155.8, 138.1, 134.6, 

130.7, 128.0, 126.2, 118.2, 79.8, 79.5, 57.9, 57.2, 55.3, 54.2, 50.9, 49.8, 49.3, 43.5, 41.3, 

39.8, 39.4, 28.5; IR (Neat Film, NaCl) 3357, 3066, 3028, 2976, 2928, 1694, 1602, 1464, 

1455, 1416, 1391, 1365, 1334, 1302, 1248, 1166, 1031, 996, 952, 912, 866, 771, 733, 703, 

685, 672, 659, 644, 612 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C20H31N2O2 

[M+H]+: 331.2380, found 331.2399; [α]D22.24 –6.496 (c 2.0, CHCl3). 
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tert-butyl (R)-6-allyl-6-benzyl-4-(5-chlorobenzo[d]oxazol-2-yl)-1,4-diazepane-1-

carboxylate (59) 

To a 1-dram vial containing diazepane 21 (9.5 mg, 0.0287 mmol, 1.0 equiv), aryl 

bromide 22 (10.0 mg, 0.0431 mmol, 1.5 equiv), and K2CO3 (7.9 mg, 0.0574 mmol, 2 equiv) 

was added MeCN (0.3 mL, 0.1 M) at 23 °C. After stirring for 24 h at 23 °C, saturated 

aqueous NH4Cl (1 mL) was added, and the mixture was extracted with EtOAc (3 x 1 mL). 

The combined organic extracts were dried over anhydrous Na2SO4 and concentrated under 

reduced pressure. The crude material (15.4 mg) thus obtained was carried forward without 

further purification. 

(S)-2-(6-allyl-6-benzyl-1,4-diazepan-1-yl)-5-chlorobenzo[d]oxazole (23) 

Crude carbamate 59 was dissolved in MeOH (0.3 mL, 0.1 M) and AcCl (20.5 µL, 

0.288 mmol, 10 equiv) was added at 23 °C. After stirring for 5 h at 23 °C, the reaction 

mixture was concentrated under reduced pressure and purified by silica gel flash 

chromatography (66% EtOAc/benzene + 1% Et3N) to provide 23 as a beige, amorphous 

solid (4.3 mg, 0.0113 mmol, 39% yield from 21) of sufficient purity for use in the next 

reaction, however, further purification was possible by silica gel flash chromatography 

with 2% Et3N in Et2O; 1H NMR (400 MHz, CDCl3) δ 7.34 – 7.27 (m, 3H), 7.25 – 7.17 (m, 

3H), 7.12 (d, J = 8.4 Hz, 1H), 6.94 (dd, J = 8.4, 2.3 Hz, 1H), 5.99 (ddt, J = 14.5, 10.4, 7.2 
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Hz, 1H), 5.30 (d, J = 3.1 Hz, 1H), 5.20 – 5.10 (m, 1H), 3.87 – 3.61 (m, 3H), 3.15 – 3.00 

(m, 2H), 2.90 – 2.66 (m, 3H), 2.57 (d, J = 13.9 Hz, 1H), 2.22 – 2.10 (m, 3H); 13C NMR 

(100 MHz, CDCl3) δ 147.5, 137.8, 134.1, 130.8, 129.4, 128.2, 126.4, 120.1, 118.8, 116.2, 

109.2, 57.8, 56.5, 53.3, 49.2, 43.8, 41.3, 39.8; IR (Neat Film, NaCl) 2922, 1638, 1570, 

1458, 1249, 1167, 921, 792, 710 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for 

C22H25ClN3O [M+H]+: 382.1681, found 382.1695; [α]D21.89 +7.524 (c 0.07, CHCl3). 

 

(R)-(6-allyl-6-benzyl-4-(5-chlorobenzo[d]oxazol-2-yl)-1,4-diazepan-1-yl)(5-methyl-2-

(2H-1,2,3-triazol-2-yl)phenyl)methanone (25) 

To a vial containing carboxylic acid 24 (35 mg, 0.172 mmol, 1.0 equiv) in CH2Cl2 

(1.8 mL) at 23 °C was added DMF (4 µL, 0.0517 mmol, 0.3 equiv) and oxalyl chloride (18 

µL, 0.207 mmol, 1.2 equiv). After stirring for 1 h, Et3N (48 µL, 0.344 mmol, 2.0 equiv) 

was added, followed by amine 23 (60 mg, 0.155 mmol, 0.9 equiv) in CH2Cl2 (1.8 mL, 0.05 

M total concentration). After stirring for an additional 1 h at 23 °C, the reaction mixture 

was quenched with saturated aqueous NaHCO3 (3 mL), the layers were separated, and the 

aqueous layer was extracted with CH2Cl2 (3 x 2 mL). The combined organic extracts were 

dried over anhydrous Na2SO4, concentrated under reduced pressure, and purified by 

automated silica gel flash chromatography (Teledyne ISCO, 0→40% Et2O/hexanes) to 

provide amide 25 as a beige oil (29.6 mg, 0.0522 mmol, 34% yield); 1H NMR (400 MHz, 
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CDCl3) δ 7.73 (s, 1H), 7.55 (s, 1H), 7.34 – 7.27 (m, 6H), 7.20 – 7.09 (m, 3H), 7.04 – 6.92 

(m, 2H), 6.11 (ddt, J = 17.6, 10.4, 7.3 Hz, 1H), 5.26 – 5.12 (m, 2H), 4.24 – 4.07 (m, 1H), 

3.96 (dd, J = 17.1, 14.4 Hz, 1H), 3.90 – 3.75 (m, 1H), 3.70 – 3.40 (m, 4H), 3.38 – 3.12 (m, 

2H), 2.99 – 2.80 (m, 2H), 2.43 – 2.38 (m, 2H), 2.38 – 2.33 (m, 2H); 13C NMR (100 MHz, 

CDCl3) δ 170.7, 170.5, 170.0, 163.0, 147.2, 144.4, 138.7, 138.6, 138.5, 136.9, 135.9, 135.8, 

135.8, 135.7, 135.7, 135.6, 135.6, 134.2, 133.9, 133.8, 133.6, 133.5, 133.2, 132.9, 130.9, 

130.8, 130.6, 130.6, 130.4, 130.4, 129.9, 129.5, 129.5, 129.0, 129.0, 128.3, 128.3, 128.2, 

128.2, 128.2, 128.1, 128.1, 126.6, 126.6, 122.2, 122.0, 121.9, 120.5, 120.5, 119.2, 119.1, 

119.0, 116.3, 116.3, 109.3, 109.2, 56.2, 56.1, 55.5, 54.3, 52.9, 52.2, 49.5, 49.3, 49.2, 48.9, 

47.6, 45.0, 43.5, 43.1, 42.4, 42.2, 42.0, 41.8, 39.5, 39.5, 37.6, 21.0, 21.0, 20.9; IR (Neat 

Film, NaCl) 3431, 2923, 2854, 2356, 1644, 1634, 1574, 1568, 1538, 1505, 1462, 1454, 

1428, 1372, 1308, 1251, 1216, 1172, 1054, 952, 921, 852, 822, 794, 737, 704 cm–1; HRMS 

(MM: ESI-APCI): m/z calc’d for C32H32ClN6O2 [M+H]+: 567.2270, found 567.2294; 

[α]D22.24 +41.90 (c 1.0, CHCl3). 

1.5.2.4 General Procedure for Allylic Alkylation of Imidazolidinones 

 

In a N2 filled glovebox, Pd2(dba)3 (4 mol %) or Pd2(pmdba)3 (4 mol %) and (S)-

Pd2(dba)3 or Pd2(pmdba)3 (4 mol %)
(S)-(CF3)3-t-BuPHOX (10 mol %)
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(CF3)3-t-BuPHOX (10 mol %) were suspended in 2:1 hexanes:PhMe (2 mL) in a 20 mL 

glass vial. After stirring for 20 minutes at 25 °C, the appropriate imidazolidinone (1.0 

equiv) and 2:1 hexanes:PhMe (5.1 mL, total substrate concentration 0.014 M) were added 

to the pre-stirred catalyst solution. The vial was then sealed and heated to the appropriate 

temperature in a heating block. After full consumption of starting material, as monitored 

by TLC, the reaction mixture was exposed to air. The crude reaction mixture was loaded 

directly onto a flash column and the product was isolated by silica gel flash 

chromatography.  

 

tert-butyl (R)-5-allyl-3-benzoyl-5-benzyl-4-oxoimidazolidine-1-carboxylate (35a) 

Prepared according to the general procedure with allyl ester 34a (49.0 mg, 0.105 

mmol, 1.0 equiv), Pd2(pmdba)3 (4.4 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %) at 40 °C for 50 h. Purified by silica gel flash 

chromatography (10% EtOAc/hexanes) to provide benzyl imidazolidinone 35a as a 

colorless oil (33.7 mg, 0.0801 mmol, 76% yield, 92% ee); 1H NMR (400 MHz, CDCl3; 

compound exists as a 2:1 mixture of rotamers. For fully resolved peaks, the major rotamer 

is denoted by *, and the minor rotamer by #) δ 7.52 (dtd, J = 9.6, 6.5, 2.5 Hz, 1H), 7.44 – 

7.30 (m, 4H), 7.31 – 7.23 (m, 3H), 7.12 (ddt, J = 8.8, 7.2, 2.0 Hz, 2H), 5.77 – 5.56 (m, 1H), 

5.27 – 5.13 (m, 2H), 4.93 (d, J = 7.6 Hz, 1H#), 4.85 (d, J = 7.4 Hz, 1H*), 4.31 (d, J = 7.6 

Hz, 1H#), 4.18 (d, J = 7.4 Hz, 1H*), 3.62 (d, J = 13.4 Hz, 1H*), 3.40 (d, J = 13.5 Hz, 1H#), 

3.27 (dd, J = 13.6, 7.7 Hz, 1H*), 3.02 (dd, J = 13.8, 7.4 Hz, 1H#), 2.95 (dd, J = 13.5, 4.4 

BzN

N
Boc

O

Bn



Chapter 1 – Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation of 5- and 7-
Membered Diazaheterocycles 

 

68 

Hz, 1H), 2.69 – 2.52 (m, 1H), 1.65 (s, 9H#), 1.54 (s, 9H*); 13C NMR (100 MHz, CDCl3) δ 

171.5, 171.4, 168.4, 168.1, 152.6, 151.9, 135.9, 135.3, 133.3, 133.3, 132.6, 132.5, 131.9, 

131.5, 130.0, 129.9, 128.9, 128.9, 128.8, 128.6, 127.9, 127.9, 127.8, 127.6, 120.6, 120.5, 

82.2, 81.3, 71.5, 71.1, 61.3, 61.3, 41.7, 40.9, 40.6, 39.7, 28.8, 28.5; IR (Neat Film, NaCl) 

2927, 1758, 1707, 1390, 1368, 1295, 1167, 702, 660 cm–1; HRMS (MM: ESI-APCI): m/z 

calc’d for C25H29N2O4 [M+H]+: 421.2122, found 421.2108; [α]D21.7 +19.50 (c 1.0, CHCl3); 

SFC (AD-H, IPA/CO2 = 7/93, flow rate = 2.5 mL/min, λ = 210 nm) tR = 5.13 min (major), 

6.29 min (minor). 
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tert-butyl (R)-5-allyl-3-benzoyl-4-oxo-5-(4-(trifluoromethyl)benzyl)imidazolidine-1-

carboxylate (35b) 

Prepared according to the general procedure with allyl ester 34b (53.8 mg, 0.101 

mmol, 1.0 equiv), Pd2(pmdba)3 (4.4 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %) at 60 °C for 23 h. Purified by silica gel flash 

chromatography (10% EtOAc/hexanes) to provide 4-trifluorobenzyl imidazolidinone 35b 

as a colorless oil (37.7 mg, 0.0772 mmol, 76% yield, 89% ee); 1H NMR (400 MHz, CDCl3; 

compound exists as a 3:1 mixture of rotamers. For fully resolved peaks, the major rotamer 

is denoted by *, and the minor rotamer by #) δ 7.60 – 7.52 (m, 3H), 7.47 – 7.37 (m, 3H), 

7.36 – 7.22 (m, 3H), 5.82 – 5.59 (m, 1H), 5.31 – 5.19 (m, 2H), 4.96 (d, J = 7.7 Hz, 1H#), 

4.89 (d, J = 7.5 Hz, 1H*), 4.42 (d, J = 7.7 Hz, 1H#), 4.34 (d, J = 7.5 Hz, 1H*), 3.72 (d, J = 

13.4 Hz, 1H*), 3.48 (d, J = 13.5 Hz, 1H#), 3.29 (ddt, J = 13.7, 7.8, 1.0 Hz, 1H), 3.05 (dd, J 

= 13.3, 1.8 Hz, 1H), 2.72 – 2.55 (m, 1H), 1.67 (s, 9H#), 1.56 (s, 9H*); 13C NMR (100 MHz, 

CDCl3) δ 171.1, 171.1, 168.3, 168.0, 152.5, 152.0, 140.2, 139.6, 133.1, 133.1, 132.8, 132.8, 

131.5, 131.1, 130.4, 130.4, 130.0, 129.7, 128.9, 128.0, 128.0, 125.7, 125.7, 125.6, 125.5, 

125.5, 125.4, 125.4, 122.9, 121.1, 121.0, 82.5, 81.7, 71.3, 70.9, 61.4, 61.4, 41.4, 41.1, 40.3, 

39.9, 28.8, 28.5; IR (Neat Film, NaCl) 2977, 1754, 1707, 1391, 1369, 1326, 1294, 1263, 

1226, 1165, 1126, 1068, 1019, 858, 700, 662 cm–1; HRMS (MM: ESI-APCI): m/z calc’d 

for C26H31F3N3O4 [M+NH4]+: 506.2261, found 506.2254; [α]D21.5 +25.45 (c 1.0, CHCl3); 

SFC (OJ-H, IPA/CO2 = 10/90, flow rate = 2.5 mL/min, λ = 254 nm) tR = 1.55 min (major), 
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1.71 min (minor). 

 

 

 

tert-butyl (S)-5-allyl-3-benzoyl-5-methyl-4-oxoimidazolidine-1-carboxylate (35c) 

Prepared according to the general procedure with allyl ester 34c (40.7 mg, 0.105 

mmol, 1.0 equiv), Pd2(pmdba)3 (4.4 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %) at 60 °C for 19 h. Purified by silica gel flash 

chromatography (15% EtOAc/hexanes) to provide methyl imidazolidinone 35c as a 

colorless oil (31.3 mg, 0.0909 mmol, 88% yield, 86% ee); 1H NMR (400 MHz, CDCl3; 

compound exists as a 4:3 mixture of rotamers. For fully resolved peaks, the major rotamer 

is denoted by *, and the minor rotamer by #) δ 7.65 – 7.50 (m, 3H), 7.43 (t, J = 7.6 Hz, 2H), 
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5.70 (ddt, J = 17.3, 9.9, 7.5 Hz, 1H), 5.25 – 5.13 (m, 3H), 5.07 (dd, J = 13.8, 7.7 Hz, 1H), 

3.16 (dd, J = 13.7, 7.8 Hz, 1H*), 2.90 (dd, J = 13.8, 7.2 Hz, 1H#), 2.56 – 2.38 (m, 1H), 1.63 

– 1.48 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 172.7, 168.8, 168.6, 152.8, 151.7, 133.3, 

132.7, 132.1, 131.9, 129.1, 128.1, 120.5, 81.8, 81.3, 66.2, 65.8, 60.9, 60.8, 41.3, 40.0, 28.6, 

28.5, 23.6, 22.7; IR (Neat Film, NaCl) 3076, 2977, 2931, 1759, 1702, 1602, 1477, 1450, 

1388, 1368, 1297, 1263, 1227, 1168, 1124, 1059, 998, 965, 928, 906, 879, 859, 823, 792, 

774, 733, 704, 662, 614 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C19H25N2O4 

[M+H]+: 345.1809, found 345.1805; [α]D21.6 +4.82 (c 1.0, CHCl3); SFC (AD-H, IPA/CO2 

= 7/93, flow rate = 2.5 mL/min, λ = 210 nm) tR = 3.40 min (major), 3.04 min (minor). 
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tert-butyl (R)-5-allyl-3-benzoyl-5-(3-methylbut-2-en-1-yl)-4-oxoimidazolidine-1-

carboxylate (35d) 

Prepared according to the general procedure with allyl ester 34d (42.2 mg, 0.0954 

mmol, 1.0 equiv), Pd2(pmdba)3 (4.4 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %) at 60 °C for 24 h. Purified by silica gel flash 

chromatography (10% EtOAc/hexanes) to provide prenyl imidazolidinone 35d as a 

colorless oil (30.3 mg, 0.0760 mmol, 80% yield, 80% ee); 1H NMR (400 MHz, CDCl3; 

compound exists as a 3:2 mixture of rotamers. For fully resolved peaks, the major rotamer 

is denoted by *, and the minor rotamer by #) δ 7.62 – 7.50 (m, 3H), 7.42 (td, J = 7.7, 4.8 

Hz, 2H), 5.75 – 5.58 (m, 1H), 5.24 – 4.96 (m, 5H), 3.17 (dd, J = 13.6, 7.8 Hz, 1H*), 3.06 

(dd, J = 14.3, 7.9 Hz, 1H*), 2.90 (dd, J = 13.8, 7.2 Hz, 1H#), 2.78 (dd, J = 14.4, 6.9 Hz, 

1H#), 2.58 – 2.36 (m, 2H), 1.73 (d, J = 1.5 Hz, 3H), 1.64 (d, J = 1.4 Hz, 3H), 1.56 (s, 9H#), 

1.51 (s, 9H*); 13C NMR (100 MHz, CDCl3) δ 172.1, 168.7, 168.5, 152.7, 151.7, 137.3, 

137.2, 133.3, 132.7, 132.7, 132.1, 131.7, 129.1, 129.1, 128.0, 128.0, 120.4, 120.3, 117.3, 

117.0, 81.8, 81.2, 70.4, 70.0, 61.7, 61.6, 40.6, 39.4, 35.3, 34.3, 28.6, 28.5, 26.4, 26.3, 18.3, 

18.2; IR (Neat Film, NaCl) 2976, 1758, 1702, 1449, 1396, 1368, 1305, 1264, 1223, 1168, 

1143, 924, 858, 772, 702, 665 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C23H30N2O4 

[M+H]+: 399.2278, found 399.2275; [α]D21.7 –3.75 (c 1.0, CHCl3); SFC (OJ-H, IPA/CO2 = 

1/99, flow rate = 2.5 mL/min, λ = 254 nm) tR = 2.98 min (major), 3.34 min (minor). 
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tert-butyl (R)-5-allyl-3-benzoyl-5-cinnamyl-4-oxoimidazolidine-1-carboxylate (35e) 

Prepared according to the general procedure with allyl ester 34e (47.6 mg, 0.0970 

mmol, 1.0 equiv), Pd2(pmdba)3 (4.4 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %) at 40 °C for 48 h. Purified by silica gel flash 

chromatography (10% EtOAc/hexanes) to provide cinnamyl imidazolidinone 35e as a 

colorless oil (41.9 mg, 0.0938 mmol, 97% yield, 85% ee); 1H NMR (400 MHz, CDCl3; 

compound exists as a 1.8:1 mixture of rotamers. For fully resolved peaks, the major rotamer 

is denoted by *, and the minor rotamer by #)  δ 7.61 – 7.48 (m, 3H), 7.42 – 7.35 (m, 2H), 

7.35 – 7.29 (m, 4H), 7.25 (dtd, J = 6.6, 3.5, 1.5 Hz, 1H), 6.60 – 6.48 (m, 1H), 6.14 – 6.00 
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(m, 1H), 5.79 – 5.64 (m, 1H), 5.27 – 5.17 (m, 2H), 5.17 – 4.99 (m, 2H), 3.30 (ddd, J = 13.7, 

7.6, 1.3 Hz, 1H*), 3.18 (dd, J = 13.6, 7.8 Hz, 1H*), 3.05 (ddd, J = 13.8, 6.8, 1.4 Hz, 1H#), 

2.93 (dd, J = 13.8, 7.4 Hz, 1H#), 2.71 – 2.45 (m, 2H), 1.62 (s, 9H#), 1.53 (s, 9H*); 13C NMR 

(100 MHz, CDCl3) δ 171.8, 168.6, 168.4, 152.7, 151.8, 137.0, 136.7, 135.6, 135.5, 133.2, 

132.8, 132.7, 131.8, 131.4, 129.1, 129.1, 128.9, 128.8, 128.0, 128.0, 127.9, 126.4, 126.3, 

122.8, 122.3, 120.8, 120.7, 82.0, 81.4, 70.4, 70.0, 61.6, 61.6, 40.7, 40.1, 39.5, 38.9, 28.7, 

28.5; IR (Neat Film, NaCl) 2974, 1755, 1703, 1398, 1296, 1172, 703 cm–1; HRMS (MM: 

ESI-APCI): m/z calc’d for C27H34N3O4 [M+NH4]+: 464.2544, found 464.2521; [α]D21.6 

+30.48 (c 1.0, CHCl3); SFC (AD-H, IPA/CO2 = 10/90, flow rate = 2.5 mL/min, λ = 210 

nm) tR = 5.15 min (major), 4.77 min (minor). 
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tert-butyl (R)-5-allyl-3-benzoyl-4-oxo-5-(prop-2-yn-1-yl)imidazolidine-1-carboxylate 

(35f) 

Prepared according to the general procedure with allyl ester 34f (43.8 mg, 0.106 

mmol, 1.0 equiv), Pd2(pmdba)3 (4.7 mg, 0.00425 mmol, 4 mol %), and (S)-(CF3)3-t-

BuPHOX (6.3 mg, 0.0106 mmol, 10 mol %) at 60 °C for 45 h. Purified by silica gel flash 

chromatography (20% EtOAc/hexanes) to provide propargyl imidazolidinone 35f as a 

colorless oil (18.1 mg, 0.0491 mmol, 46% yield, 91% ee); 1H NMR (400 MHz, CDCl3; 

compound exists as a 1.8:1 mixture of rotamers. For fully resolved peaks, the major rotamer 

is denoted by *, and the minor rotamer by #) δ 7.75 – 7.61 (m, 2H), 7.60 – 7.50 (m, 1H), 

7.49 – 7.38 (m, 2H), 5.81 – 5.59 (m, 1H), 5.32 – 5.03 (m, 4H), 3.39 – 2.75 (m, 2H), 2.66 

(dd, J = 16.7, 2.6 Hz, 1H#), 2.59 (dd, J = 16.7, 2.6 Hz, 1H*), 2.52 – 2.36 (m, 1H), 2.09 (t, 

J = 2.6 Hz, 1H#), 2.06 (t, J = 2.6 Hz, 1H*), 1.57 (s, 9H#), 1.53 (s, 9H*); 13C NMR (100 

MHz, CDCl3) δ 171.0, 170.9, 168.6, 168.4, 152.4, 151.8, 133.1, 132.8, 132.8, 131.4, 131.1, 

129.3, 129.2, 128.1, 128.1, 121.0, 120.9, 116.2, 82.2, 81.7, 79.1, 78.3, 72.0, 71.3, 69.6, 

69.1, 62.2, 62.1, 40.1, 39.9, 38.7, 38.6, 28.6, 28.5, 28.5, 27.2, 25.9; IR (Neat Film, NaCl) 

3276, 2980, 2930, 1760, 1704, 1642, 1602, 1478, 1449, 1392, 1369, 1306, 1266, 1228, 

1172, 1091, 1015, 928, 878, 857, 768, 739, 704, 664 cm–1; HRMS (MM: ESI-APCI): m/z 

calc’d for C21H28N3O4 [M+NH4]+: 386.2074, found 386.2066; [α]D21.4 –14.43 (c 1.0, 

CHCl3); SFC (OJ-H, IPA/CO2 = 7/93, flow rate = 2.5 mL/min, λ = 210 nm) tR = 2.43 min 

(major), 2.11 min (minor). 
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tert-butyl (R)-3-benzoyl-5-benzyl-5-(2-methylallyl)-4-oxoimidazolidine-1-carboxylate 

(35g) 

Prepared according to the general procedure with allyl ester 34g (48.1 mg, 0.101 

mmol, 1.0 equiv), Pd2(pmdba)3 (4.4 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %) at 60 °C for 26 h. Purified by silica gel flash 

chromatography (10% EtOAc/hexanes) to provide benzyl imidazolidinone 35g as a 

colorless oil (36.4 mg, 0.0838 mmol, 83% yield, 89% ee); 1H NMR (400 MHz, CDCl3; 

compound exists as a 2.5:1 mixture of rotamers. For fully resolved peaks, the major rotamer 

is denoted by *, and the minor rotamer by #) δ 7.57 – 7.48 (m, 1H), 7.40 (d, J = 4.4 Hz, 

3H), 7.35 – 7.22 (m, 4H), 7.16 – 7.08 (m, 2H), 4.98 – 4.75 (m, 3H), 4.36 (d, J = 7.7 Hz, 
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1H#), 4.21 (d, J = 7.5 Hz, 1H*), 3.66 (d, J = 13.3 Hz, 1H*), 3.45 (d, J = 13.4 Hz, 1H#), 3.22 

(d, J = 13.5 Hz, 1H*), 3.01 – 2.88 (m, 1H), 2.62 (d, J = 13.7 Hz, 1H#), 2.56 (d, J = 13.5 

Hz, 1H*), 1.72 (s, 3H), 1.66 (s, 9H#), 1.54 (s, 9H*); 13C NMR (100 MHz, CDCl3) δ 171.5, 

171.3, 168.5, 168.2, 152.6, 152.0, 140.7, 140.3, 135.8, 135.2, 133.5, 133.4, 132.5, 132.5, 

130.0, 130.0, 128.9, 128.8, 128.6, 127.9, 127.9, 127.8, 127.6, 116.6, 116.4, 82.3, 81.3, 71.6, 

71.1, 61.2, 61.1, 43.6, 42.5, 42.2, 41.1, 28.8, 28.6, 23.9, 23.8; IR (Neat Film, NaCl) 2974, 

1755, 1708, 1450, 1397, 1368, 1295, 1216, 1171, 1141, 1076, 901, 703 cm–1; HRMS (MM: 

ESI-APCI): m/z calc’d for C26H30N2NaO4 [M+Na]+: 457.2098, found 457.2083; [α]D21.8 

+26.68 (c 1.5, CHCl3); SFC (OD-H, IPA/CO2 = 10/90, flow rate = 2.5 mL/min, λ = 254 

nm) tR = 3.79 min (major), 3.47 min (minor). 
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tert-butyl (R)-5-allyl-3-benzoyl-5-(2-chloroallyl)-4-oxoimidazolidine-1-carboxylate  

(35h) 

Prepared according to the general procedure with allyl ester 34h (44.6 mg, 0.0994 

mmol, 1.0 equiv), Pd2(pmdba)3 (4.4 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %) at 40 °C for 5.5 h. Purified by silica gel flash 

chromatography (10% EtOAc/hexanes) to provide alkenyl chloride 35h as a colorless oil 

(37.4 mg, 0.0924 mmol, 93% yield, 86% ee); 1H NMR (400 MHz, CDCl3; compound exists 

as a 2.7:1 mixture of rotamers. For fully resolved peaks, the major rotamer is denoted by 

*, and the minor rotamer by #) δ 7.64 (ddt, J = 8.5, 2.9, 1.7 Hz, 2H), 7.55 (ddt, J = 7.6, 6.9, 

1.3 Hz, 1H), 7.46 – 7.38 (m, 2H), 5.75 – 5.60 (m, 1H), 5.38 – 5.28 (m, 2H), 5.27 – 5.08 

(m, 4H), 3.40 (d, J = 14.3 Hz, 1H), 3.20 – 3.06 (m, 1H), 2.94 – 2.76 (m, 1H), 2.54 – 2.38 

(m, 1H), 1.57 (s, 9H#), 1.50 (s, 9H*); 13C NMR (100 MHz, CDCl3) δ 170.9, 170.9, 168.4, 

168.1, 152.2, 151.6, 136.7, 136.7, 133.2, 133.2, 132.6, 132.6, 131.1, 130.7, 129.0, 129.0, 

127.9, 121.1, 121.0, 117.9, 117.8, 82.0, 81.3, 68.8, 68.6, 61.6, 61.5, 44.8, 44.1, 41.0, 39.6, 

28.5, 28.3; IR (Neat Film, NaCl) 2976, 1758, 1707, 1394, 1368, 1295, 1266, 1140, 704 

cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C21H29ClN3O4 [M+NH4]+: 422.1841, found 

422.1825. [α]D21.7 –3.52 (c 1.0, CHCl3); SFC (OJ-H, IPA/CO2 = 7/93, flow rate = 2.5 

mL/min, λ = 210 nm) tR = 2.19 min (major), 1.99 min (minor). 
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tert-butyl (R)-5-allyl-3-benzoyl-5-((((benzyloxy)carbonyl)amino)methyl)-4-

oxoimidazolidine-1-carboxylate (35i) 

Prepared according to the general procedure with allyl ester 34i (53.7 mg, 0.0100 

mmol, 1.0 equiv), Pd2(dba)3 (3.7 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %) at 40 °C for 22 h. Purified by silica gel flash 

chromatography (25% EtOAc/hexanes) to provide carbamate 35i as a colorless foam (37.2 

mg, 0.0754 mmol, 75% yield, 85% ee); 1H NMR (400 MHz, CDCl3; compound exists as a 

2:1 mixture of rotamers. For fully resolved peaks, the major rotamer is denoted by *, and 

the minor rotamer by #) δ 7.73 – 7.59 (m, 2H), 7.55 (td, J = 7.3, 1.4 Hz, 1H), 7.42 (q, J = 
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7.4 Hz, 2H), 7.36 – 7.27 (m, 5H), 5.75 – 5.55 (m, 1H), 5.26 – 4.97 (m, 6H), 3.80 – 3.62 

(m, 2H), 3.02 (dd, J = 13.5, 8.0 Hz, 1H*), 2.85 (dd, J = 13.7, 7.3 Hz, 1H#), 2.51 (dd, J = 

13.8, 7.5 Hz, 1H#), 2.41 (dd, J = 13.5, 7.0 Hz, 1H*), 1.58 (s, 9H#), 1.50 (s, 9H*); 13C NMR 

(100 MHz, CDCl3) δ 171.2, 170.8, 168.5, 168.2, 156.4, 156.3, 152.4, 152.2, 136.5, 136.2, 

133.1, 133.0, 132.8, 132.7, 131.0, 130.7, 129.3, 129.2, 128.7, 128.4, 128.3, 128.0, 121.2, 

82.6, 81.8, 69.5, 67.3, 67.2, 61.6, 61.5, 45.7, 45.5, 37.9, 37.1, 28.6, 28.4; IR (Neat Film, 

NaCl) 3347, 2977, 1704, 1519, 1449, 1392, 1369, 1304, 1166, 1073, 927, 858, 733, 698, 

662 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C27H31N3NaO6 [M+Na]+: 516.2105, 

found 516.2087; [α]D21.8 –18.93 (c 1.0, CHCl3); SFC (AD-H, IPA/CO2 = 20/80, flow rate 

= 2.5 mL/min, λ = 210 nm) tR = 6.15 min (major), 3.52 min (minor). 
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tert-butyl (S)-5-allyl-3-benzoyl-5-(2-cyanoethyl)-4-oxoimidazolidine-1-carboxylate  

(35j) 

Prepared according to the general procedure with allyl ester 34j (41.4 mg, 0.0970 

mmol, 1.0 equiv), Pd2(dba)3 (3.7 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %) at 40 °C for 22 h. Purified by silica gel flash 

chromatography (20% EtOAc/hexanes) to provide nitrile 35j as a colorless oil (37.2 mg, 

0.0970 mmol, >99% yield, 95% ee); 1H NMR (400 MHz, CDCl3; compound exists as a 

2.5:1 mixture of rotamers. For fully resolved peaks, the major rotamer is denoted by *, and 

the minor rotamer by #) δ 7.69 – 7.61 (m, 2H), 7.61 – 7.54 (m, 1H), 7.49 – 7.38 (m, 2H), 

5.74 – 5.60 (m, 1H), 5.30 – 5.18 (m, 3H), 5.17 – 5.06 (m, 1H), 3.11 (dd, J = 13.6, 8.1 Hz, 

1H*), 2.86 (dd, J = 13.7, 7.4 Hz, 1H#), 2.63 (dt, J = 13.8, 6.8 Hz, 1H*), 2.53 – 2.14 (m, 

4H), 1.57 (s, 9H#), 1.53 (s, 9H*); 13C NMR (100 MHz, CDCl3) δ 170.7, 170.6, 168.2, 168.0, 

152.2, 151.9, 133.0, 132.9, 132.8, 132.7, 130.5, 130.1, 129.0, 129.0, 128.0, 121.7, 121.6, 

118.4, 118.2, 82.7, 82.1, 68.6, 68.3, 61.5, 61.5, 41.1, 39.7, 31.6, 30.4, 28.5, 28.3, 12.9, 12.7; 

IR (Neat Film, NaCl) 2976, 1756, 1705, 1390, 1295, 1164, 704 cm–1; HRMS (MM: ESI-

APCI): m/z calc’d for C21H29N4O4 [M+NH4]+: 401.2183, found 401.2182; [α]D21.7 –33.24 

(c 1.0, CHCl3); SFC (IC, IPA/CO2 = 15/85, flow rate = 2.5 mL/min, λ = 210 nm) tR = 5.49 

min (major), 4.78 min (minor). 
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tert-butyl (S)-5-allyl-3-benzoyl-4-oxo-5-(3-oxobutyl)imidazolidine-1-carboxylate 

(35k) 

Prepared according to the general procedure with allyl ester 34k (44.4 mg, 0.010 

mmol, 1.0 equiv), Pd2(dba)3 (3.7 mg, 0.004 mmol, 4 mol %), and (S)-(CF3)3-t-BuPHOX 

(5.9 mg, 0.01 mmol, 10 mol %) at 60 °C for 19 h. Purified by silica gel flash 

chromatography (25% EtOAc/hexanes) to provide ketone 35k as a colorless oil (31.4 mg, 

0.0784 mmol, 79% yield, 93% ee); 1H NMR (400 MHz, CDCl3; compound exists as a 1.3:1 

mixture of rotamers. For fully resolved peaks, the major rotamer is denoted by *, and the 

minor rotamer by #) δ 7.67 – 7.60 (m, 2H), 7.59 – 7.52 (m, 1H), 7.44 (t, J = 7.7 Hz, 2H), 
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5.76 – 5.60 (m, 1H), 5.25 – 5.17 (m, 2H), 5.13 – 5.02 (m, 2H), 3.15 (dd, J = 13.6, 8.0 Hz, 

1H*), 2.89 (dd, J = 13.8, 7.2 Hz, 1H#), 2.59 – 2.27 (m, 4H), 2.21 – 2.00 (m, 4H), 1.54 (s, 

9H#), 1.51 (s, 9H*); 13C NMR (100 MHz, CDCl3) δ 207.3, 206.6, 171.7, 171.6, 168.6, 

168.3, 152.6, 151.7, 133.2, 133.1, 132.8, 132.7, 131.5, 131.2, 129.1, 129.1, 128.1, 121.0, 

121.0, 82.3, 81.6, 69.0, 68.7, 61.5, 61.4, 41.2, 39.6, 39.0, 38.2, 30.5, 30.1, 29.6, 28.5, 28.5; 

IR (Neat Film, NaCl) 2974, 1755, 1708, 1450, 1397, 1368, 1295, 1216, 1171, 1141, 1076, 

901, 703 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C22H32N3O5 [M+NH4]+: 418.2336, 

found 418.2347; [α]D21.7 +3.65 (c 1.0, CHCl3); SFC (IC, IPA/CO2 = 20/80, flow rate = 2.5 

mL/min, λ = 210 nm) tR = 2.42 min (major), 3.23 min (minor). 
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Procedure for the large-scale preparation of compound 35a 

In a N2 filled glovebox, Pd2(pmdba)3 (82 mg, 0.0744 mmol, 4 mol %) and (S)-

(CF3)3-t-BuPHOX (110 mg, 0.186 mmol, 10 mol %) were suspended in 2:1 hexanes:PhMe 

(45 mL) in a 500 mL Schlenk flask. After stirring for 20 minutes at 25 °C, imidazolidinone 

34a (864 mg, 1.86 mmol, 1.0 equiv) and 2:1 hexanes:PhMe (90 mL, total substrate 

concentration 0.014 M) were added to the pre-stirred catalyst solution. The flask was then 

sealed and heated at 40 °C in an oil bath for 64 h. The reaction mixture was then cooled to 

23 °C and exposed to air. The crude reaction mixture was loaded directly onto a flash 

column and the product was isolated by silica gel flash chromatography (10% 

EtOAc/hexanes) to provide 35a as a colorless oil (674 mg, 1.60 mmol, 86% yield, 95% 

ee); All characterization data matched those reported above for compound 35a; [α]D22.1 

+21.69 (c 1.0, CHCl3); SFC (AD-H, IPA/CO2 = 7/93, flow rate = 2.5 mL/min, λ = 210 nm) 

tR = 5.07 min (major), 6.31 min (minor). 
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1.5.2.5 Synthesis of Imidazolidinone Allylic Alkylation Substrates 

 

tert-butyl 3-(hydroxyimino)azetidine-1-carboxylate (41) 

Prepared from tert-butyl 3-oxoazetidine-1-carboxylate according to the literature 

procedure of Xiang, Yang, and coworkers, substituting i-PrOH for MeOH.32 All 

characterization data matched those reported in the literature. 

 

tert-butyl 4-oxo-2-thioxoimidazolidine-1-carboxylate (50) 

Prepared from 2-thiohydantoin according to the literature procedure of Tatibouët 

under an atmosphere of air.26 All characterization data matched those reported in the 

literature. 
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tert-butyl 4-oxoimidazolidine-1-carboxylate (31) 

Compound 50 (10.43 g, 48.23 mmol, 1.0 equiv) and anhydrous NiCl2 (31.25 g, 

241.1 mmol, 5.0 equiv) were added to a round-bottom flask, MeOH (dried by distillation 

over 3 Å molecular sieves, 480 mL, 0.1 M) was added, and the mixture was subjected to 

rapid magnetic stirring to form a suspension. This suspension was cooled to 0 °C in an ice 

bath, and NaBH4 (27.37 g, 723.4 mmol, 15 equiv) was added portionwise. Care should be 

taken, as this step is highly exothermic and results in the rapid generation of a large volume 

of gas. Following complete addition of NaBH4, the reaction mixture was removed from the 

ice bath and allowed to warm to 23 °C. After 1 h of stirring, glacial acetic acid (10 mL) 

was added, and the reaction mixture was filtered through a plug of celite under pressurized 

air. A steel rod was periodically used to break up the plug of nickel salts and accelerate 

filtration. The resulting bright green solution was concentrated under reduced pressure. The 

resulting solids were dissolved in a mixture of deionized water (500 mL), EtOAc (300 mL), 

and glacial acetic acid (20 mL). The organic phase was separated, and the aqueous phase 

was extracted with ethyl acetate (4x200 mL). The combined organic phases were washed 

with a solution of NaHCO3 and NaCl (100 mL, equal parts saturated NaHCO3 and NaCl 

solutions), dried over Na2SO4, and concentrated under reduced pressure to afford the title 

compound as an off-white solid (8.58 g, 46.08 mmol, 96% yield) of sufficient purity for 

use in the next step; an analytically pure sample could be obtained by silica gel flash 

chromatography (90% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) δ 7.25 – 7.01 (m, 

HN
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1H), 4.78 (d, J = 11.6 Hz, 2H), 3.89 (d, J = 15.2 Hz, 2H), 1.48 (s, 9H); 13C NMR (100 

MHz, CDCl3) δ 172.3, 153.1, 152.7, 81.2, 59.1, 58.9, 47.6, 47.1, 28.4; IR (Neat Film, KBr) 

3213, 3120, 2978, 2934, 1714, 1456, 1414, 1366, 1326, 1294, 1257, 1171, 1128, 1080, 

898, 855, 771, 700, 575, 491, 461 cm–1; HRMS (FAB+): m/z calc’d for C8H15N2O3 

[M+H]+: 187.1083, found 187.1086. 

 

tert-butyl 3-benzoyl-4-oxoimidazolidine-1-carboxylate (32) 

To a solution of 31 (8.58 g, 46.08 mmol, 1.0 equiv) in CH2Cl2 (400 mL, 0.12 M) at 

23 °C was added Et3N (11.6 mL, 82.94 mmol, 1.8 equiv) followed by BzCl (8.03 mL, 

69.12 mmol, 1.5 equiv). After 9 h of stirring, the reaction mixture was washed with water 

(200 mL) and brine (100 mL) and the combined aqueous washes were extracted with 

CH2Cl2 (2x50 mL). The combined organic phases were dried over Na2SO4 and 

concentrated under reduced pressure. The crude product was purified by silica gel flash 

chromatography (25% EtOAc/hexanes) to afford the title compound as a white solid (7.47 

g, 25.73 mmol, 56% yield); 1H NMR (400 MHz, CDCl3) δ 7.68 – 7.60 (m, 2H), 7.59 – 7.52 

(m, 1H), 7.49 – 7.39 (m, 2H), 5.29 (s, 2H), 4.17 (s, 2H), 1.51 (s, 9H); 13C NMR (100 MHz, 

CDCl3) δ 168.6, 167.5, 152.6, 133.1, 132.8, 129.2, 128.1, 81.9, 61.8, 49.9, 49.4, 28.4; IR 

(Neat Film, NaCl) 2980, 1763, 1708, 1477, 1448, 1411, 1368, 1305, 1212, 1163, 1127, 

895, 858, 768, 727, 704, 662 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C15H22N3O4 

[M+NH4]+: 308.1600, found 308.1605. 
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5-allyl 1-(tert-butyl) 3-benzoyl-4-oxoimidazolidine-1,5-dicarboxylate (33) 

To a solution of LiHMDS (9.43 g, 56.38 mmol, 2.2 equiv) in THF (150 mL) at –78 

°C in a flame-dried round-bottom flask was added allyl 1H-imidazole-1-carboxylate33 

(4.68 g, 30.76 mmol, 1.2 equiv) by syringe with rapid stirring. Immediately thereafter, a 

solution of imidazolidinone 32 (7.44 g, 25.63 mmol, 1.0 equiv) in THF (100 mL, 0.1 M 

total concentration) was added over 15 min by cannula while stirring at −78 °C. After an 

additional 13 min of stirring, the reaction mixture was poured into 1 N aqueous HCl (200 

mL) and extracted with ethyl acetate (3 x 50 mL). The combined organic extracts were 

dried over a mixture of NaHCO3 and Na2SO4 and concentrated under reduced pressure. 

The crude product was purified by silica gel flash chromatography (20→35% 

Et2O/hexanes) to provide allyl ester 33 as a viscous oil that solidified upon standing to form 

a white solid (4.80 g, 12.82 mmol, 50% yield); 1H NMR (400 MHz, CDCl3; compound 

exists as a 1.1:1 mixture of rotamers. For fully resolved peaks, the major rotamer is denoted 

by *, and the minor rotamer by #) δ 7.61 (dd, J = 8.3, 1.3 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 

7.42 (t, J = 7.8 Hz, 2H), 5.98 – 5.80 (m, 1H), 5.43 – 5.18 (m, 4H), 4.96 (s, 1H#), 4.88 (s, 

1H*), 4.81 – 4.62 (m, 2H), 1.52 (s, 9H#), 1.46 (s, 9H*); 13C NMR (100 MHz, CDCl3) δ 

168.4, 168.2, 165.7, 165.6, 163.5, 163.2, 152.1, 151.9, 133.0, 132.6, 131.0, 130.9, 129.2, 

128.1, 119.8, 119.2, 82.8, 82.6, 67.2, 63.5, 63.0, 61.5, 28.3, 28.2; IR (Neat Film, NaCl) 

2977, 1748, 1716, 1449, 1405, 1369, 1302, 1250, 1167, 1135, 987, 939, 770, 725, 696, 668 
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cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C19H26N3O6 [M+NH4]+: 392.1816, found 

392.1822. 

 

1-(tert-butyl) 5-(2-methylallyl) 3-benzoyl-4-oxoimidazolidine-1,5-dicarboxylate (60) 

To a solution of methallyl 1H-imidazole-1-carboxylate34 (286 mg, 1.72 mmol, 2 

equiv) in THF (5.2 mL) at –78 °C in a flame-dried round-bottom flask was added LiHMDS 

solution (1 M in THF, 1.89 mL, 1.89 mmol, 2.2 equiv) by syringe. Immediately thereafter, 

a solution of imidazolidinone 32 (250 mg, 0.861 mmol, 1.0 equiv) in THF (3.4 mL, 0.1 M 

total concentration) was added dropwise by syringe with rapid stirring at −78 °C. After an 

additional 10 min of stirring, the reaction mixture was poured into 1 N aqueous HCl (20 

mL) and extracted with ethyl acetate (4 x 15 mL). The combined organic extracts were 

dried over a mixture of NaHCO3 and Na2SO4 and concentrated under reduced pressure. 

The crude product was purified by silica gel flash chromatography (40% Et2O/hexanes) to 

provide methallyl ester 60 as a viscous oil that solidified upon standing to form a white 

solid (149 mg, 0.384 mmol, 45% yield); 1H NMR (400 MHz, CDCl3; compound exists as 

a 1:1 mixture of rotamers. Fully resolved rotamer peaks are denoted by *) δ 7.65 – 7.59 

(m, 2H), 7.59 – 7.53 (m, 1H), 7.43 (t, J = 7.8 Hz, 2H), 5.48 – 5.27 (m, 2H), 5.06 – 4.84 (m, 

3H), 4.75 – 4.51 (m, 2H), 1.75 (s, 3H), 1.52 (s, 9H*), 1.46 (s, 9H*); 13C NMR (100 MHz, 

CDCl3) δ 168.5, 168.3, 165.7, 165.6, 163.5, 163.3, 152.1, 151.9, 138.9, 138.8, 133.0, 132.7, 

132.7, 129.2, 128.2, 114.5, 114.1, 82.8, 82.7, 69.8, 63.5, 63.1, 61.5, 28.4, 28.3, 19.6, 19.5, 

19.5, 19.5; IR (Neat Film, KBr) 3064, 2978, 2934, 1772, 1750, 1716, 1602, 1583, 1477, 
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1449, 1406, 1369, 1303, 1251, 1170, 1137, 1085, 1027, 1000, 964, 908, 858, 787, 770, 

726, 699, 665, 629, 591, 519, 411 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for 

C27H30N2NaO6 [M+Na]+: 411.1527, found 411.1544; 

 

5-allyl 1-(tert-butyl) 3-benzoyl-5-benzyl-4-oxoimidazolidine-1,5-dicarboxylate (34a) 

To a solution of lactam 33 (500 mg, 1.34 mmol, 1.0 equiv) in DMF (13.4 mL, 0.1 

M) at 23 °C was added NaH (60% dispersion in mineral oil, 64 mg, 1.60 mmol, 1.2 equiv). 

The reaction mixture was stirred for 25 min, resulting in a bright yellow solution. BnBr 

(477 μL, 4.02 mmol, 3.0 equiv) was then added and the reaction mixture was stirred at 23 

°C for 55 min. The reaction mixture was poured into water (20 mL) and extracted with 

ethyl acetate (4x15 mL). The combined organic extracts were washed with saturated aq. 

LiCl (2x10 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. 

The crude product was purified by silica gel flash chromatography (7.5→15% 

acetone/hexanes) to provide the title compound as a colorless oil (291 mg, 0.626 mmol, 

47% yield); 1H NMR (400 MHz, CDCl3; compound exists as a 1.2:1 mixture of rotamers. 

For fully resolved peaks, the major rotamer is denoted by *, and the minor rotamer by #) δ 

7.59 – 7.49 (m, 1H), 7.47 – 7.26 (m, 7H), 7.21 – 7.14 (m, 2H), 6.02 – 5.80 (m, 1H), 5.42 – 

5.26 (m, 2H), 5.24 (d, J = 7.1 Hz, 1H*), 5.16 (d, J = 7.0 Hz, 1H#), 4.83 – 4.61 (m, 2H), 

4.46 (d, J = 7.2 Hz, 1H#), 4.40 (d, J = 7.0 Hz, 1H*), 3.86 – 3.50 (m, 2H), 1.56 (s, 9H#), 

1.56 (s, 9H*); 13C NMR (100 MHz, CDCl3) δ 168.2, 168.0, 166.7, 166.6, 166.2, 166.1, 

152.0, 151.8, 134.7, 134.1, 132.8, 132.8, 132.6, 132.6, 131.2, 130.9, 130.3, 130.2, 128.9, 
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128.9, 128.8, 128.6, 128.0, 127.9, 127.9, 127.7, 119.7, 119.1, 82.9, 82.4, 72.9, 72.8, 67.2, 

67.2, 61.2, 61.2, 38.0, 37.1, 28.4, 28.3; IR (Neat Film, NaCl) 2977, 1771, 1712, 1602, 1450, 

1393, 1294, 1230, 1147, 1075, 1010, 768, 701 cm–1; HRMS (MM: ESI-APCI): m/z calc’d 

for C26H32N3O6 [M+NH4]+: 482.2286, found 482.2284. 

 

5-allyl 1-(tert-butyl) 3-benzoyl-4-oxo-5-(4-(trifluoromethyl)benzyl)imidazolidine-1,5-

dicarboxylate (34b) 

To a solution of lactam 33 (128.4 mg, 0.343 mmol, 1.0 equiv) in DMF (3.4 mL, 0.1 

M) at 23 °C was added NaH (60% dispersion in mineral oil, 16.5 mg, 0.412 mmol, 1.2 

equiv). The reaction mixture was stirred for 15 min, resulting in a bright yellow solution. 

4-trifluoromethylbenzyl bromide (159 μL, 1.03 mmol, 3.0 equiv) was then added and the 

reaction mixture was stirred at 23 °C for 35 min. The reaction mixture was poured into 

water (5 mL) and extracted with ethyl acetate (4x5 mL). The combined organic extracts 

were washed with saturated aq. LiCl (2x3 mL), dried over anhydrous Na2SO4, and 

concentrated under reduced pressure. The crude product was purified by silica gel flash 

chromatography (15% EtOAc/hexanes) to provide the title compound as a colorless oil 

(122 mg, 0.229 mmol, 67% yield); 1H NMR (400 MHz, CDCl3) δ 7.64 – 7.51 (m, 3H), 

7.44 – 7.27 (m, 6H), 5.99 – 5.84 (m, 1H), 5.43 – 5.15 (m, 3H), 4.84 – 4.63 (m, 2H), 4.55 

(dd, J = 7.2, 2.8 Hz, 1H), 3.92 – 3.59 (m, 2H), 1.56 (s, 9H); 13C NMR (100 MHz, CDCl3) 

δ 168.3, 168.0, 166.6, 166.5, 165.9, 165.7, 152.4, 152.0, 139.2, 138.6, 133.1, 132.6, 131.2, 
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130.8, 130.3, 129.9, 129.0, 128.2, 128.1, 125.8, 125.7, 125.6, 125.5, 120.1, 119.5, 83.4, 

82.9, 72.8, 72.7, 67.5, 67.5, 61.5, 61.4, 37.8, 37.0, 28.5, 28.4; IR (Neat Film, NaCl) 2977, 

1772, 1710, 1389, 1325, 1291, 1228, 1164, 1068, 1019, 857, 697, 665 cm–1; HRMS (MM: 

ESI-APCI): m/z calc’d for C27H31F3N3O6 [M+NH4]+: 550.2159, found 550.2139. 

 

5-allyl 1-(tert-butyl) 3-benzoyl-5-methyl-4-oxoimidazolidine-1,5-dicarboxylate (34c) 

To a suspension of NaH (60% dispersion in mineral oil, 32 mg, 0.801 mmol, 1.2 

equiv) in THF (6.7 mL, 0.1 M) at −78 °C was added lactam 33 (250 mg, 0.668 mmol, 1.0 

equiv). The reaction mixture was warmed to 0 °C and stirred for 45 min, resulting in a 

bright yellow solution. MeI (208 μL, 3.34 mmol, 5.0 equiv) was then added and the reaction 

mixture was stirred at 23 °C for 2 h. The reaction mixture was poured into saturated aq. 

NaHCO3 (10 mL) and extracted with ethyl acetate (3x6 mL). The combined organic 

extracts were dried over anhydrous Na2SO4 and concentrated under reduced pressure. The 

crude product was purified by automated silica gel flash chromatography (Telodyne ISCO, 

0→50% acetone/hexanes) to provide the title compound as a colorless oil (90 mg, 0.232 

mmol, 35% yield); 1H NMR (400 MHz, CDCl3; compound exists as a 1.2:1 mixture of 

rotamers. For fully resolved peaks, the major rotamer is denoted by *, and the minor 

rotamer by #) δ 7.63 – 7.52 (m, 3H), 7.42 (t, J = 7.6 Hz, 2H), 5.96 – 5.80 (m, 1H), 5.41 – 

5.19 (m, 4H), 4.75 – 4.57 (m, 2H), 1.83 (s, 3H#), 1.78 (s, 3H*), 1.50 (s, 9H#), 1.46 (s, 9H*); 

13C NMR (100 MHz, CDCl3) δ 168.6, 168.4, 167.5, 167.2, 152.3, 152.2, 133.0, 132.7, 

131.3, 131.0, 129.1, 128.1, 119.6, 119.1, 82.6, 82.4, 68.4, 68.2, 67.1, 61.1, 61.0, 28.4, 28.2, 
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20.5, 19.9; IR (Neat Film, NaCl) 2979, 1773, 1740, 1714, 1602, 1477, 1450, 1386, 1370, 

1305, 1244, 1162, 1124, 1067, 913, 859, 770, 732, 702, 667 cm–1; HRMS (MM: ESI-

APCI): m/z calc’d for C20H28N3O6 [M+NH4]+: 406.1973, found 406.1975. 

 

5-allyl 1-(tert-butyl) 3-benzoyl-5-(3-methylbut-2-en-1-yl)-4-oxoimidazolidine-1,5-

dicarboxylate (34d) 

To a solution of lactam 33 (300 mg, 0.801 mmol, 1.0 equiv) in DMF (8 mL, 0.1 M) 

at 23 °C was added NaH (60% dispersion in mineral oil, 38.5 mg, 0.962 mmol, 1.2 equiv). 

The reaction mixture was stirred for 13 min, resulting in a bright yellow solution. Prenyl 

bromide (280 μL, 2.40 mmol, 3.0 equiv) was then added and the reaction mixture was 

stirred at 23 °C for 1 h. The reaction mixture was poured into water (20 mL) and extracted 

with ethyl acetate (4x15 mL). The combined organic extracts were washed with saturated 

aq. LiCl (2x10 mL), dried over anhydrous Na2SO4, and concentrated under reduced 

pressure. The crude product was purified by silica gel flash chromatography (15% 

EtOAc/hexanes) to provide the title compound as a colorless oil (230 mg, 0.520 mmol, 

65% yield); 1H NMR (400 MHz, CDCl3; compound exists as a 1.1:1 mixture of rotamers. 

For fully resolved peaks, the major rotamer is denoted by *, and the minor rotamer by #) δ 

7.61 – 7.51 (m, 3H), 7.45 – 7.37 (m, 2H), 5.98 – 5.76 (m, 1H), 5.43 – 5.19 (m, 3H), 5.16 – 

4.99 (m, 2H), 4.77 – 4.52 (m, 2H), 3.26 – 2.93 (m, 2H), 1.77 (s, 3H), 1.67 (d, J = 1.4 Hz, 

3H*), 1.66 (d, J = 1.5 Hz, 3H#), 1.51 (s, 9H#), 1.47 (s, 9H*); 13C NMR (100 MHz, CDCl3) 

δ 168.6, 168.4, 166.9, 166.9, 166.8, 166.7, 152.1, 152.1, 138.5, 138.4, 133.0, 132.8, 131.4, 
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131.0, 129.1, 129.1, 128.1, 128.1, 119.6, 119.1, 116.1, 115.8, 82.6, 82.3, 72.1, 72.0, 67.1, 

67.0, 61.7, 31.7, 30.8, 28.4, 28.3, 26.4, 26.3, 18.3, 18.2; IR (Neat Film, NaCl) 2978, 2931, 

1771, 1746, 1713, 1601, 1450, 1388, 1293, 1228, 1167, 1030, 993, 940, 859, 792, 772, 

701, 665 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C24H30N2NaO6 [M+Na]+: 

465.1996, found 465.1984; 

 

5-allyl 1-(tert-butyl) 3-benzoyl-5-cinnamyl-4-oxoimidazolidine-1,5-dicarboxylate 

(34e) 

To a solution of lactam 33 (157.2 mg, 0.420 mmol, 1.0 equiv) in DMF (4.2 mL, 0.1 

M) at 23 °C was added NaH (60% dispersion in mineral oil, 20.2 mg, 0.504 mmol, 1.2 

equiv). The reaction mixture was stirred for 14 min, resulting in a bright yellow solution. 

Cinnamyl bromide (186 μL, 1.26 mmol, 3.0 equiv) was then added and the reaction mixture 

was stirred at 23 °C for 20 min. The reaction mixture was poured into water (10 mL) and 

extracted with ethyl acetate (4x6 mL). The combined organic extracts were washed with 

saturated aq. LiCl (2x5 mL), dried over anhydrous Na2SO4, and concentrated under 

reduced pressure. The crude product was purified by silica gel flash chromatography (15% 

EtOAc/hexanes) to provide the title compound as a colorless oil (154 mg, 0.314 mmol, 

75% yield); 1H NMR (400 MHz, CDCl3; compound exists as a 1.1:1 mixture of rotamers. 

For fully resolved peaks, the major rotamer is denoted by *, and the minor rotamer by #) δ 

7.55 – 7.49 (m, 3H), 7.41 – 7.30 (m, 6H), 7.28 – 7.24 (m, 1H), 6.61 (dd, J = 15.9, 2.9 Hz, 
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1H), 6.16 – 6.02 (m, 1H), 5.98 – 5.82 (m, 1H), 5.42 – 5.12 (m, 4H), 4.81 – 4.58 (m, 2H), 

3.53 – 3.42 (m, 1H*), 3.29 (ddd, J = 14.3, 6.5, 1.5 Hz, 1H#), 3.23 – 3.10 (m, 1H), 1.54 (s, 

9H*), 1.52 (s, 9H#); 13C NMR (100 MHz, CDCl3) δ 168.6, 168.3, 166.7, 166.7, 166.5, 

166.2, 152.3, 152.2, 136.8, 136.5, 136.4, 136.3, 133.0, 133.0, 132.7, 131.3, 131.0, 129.2, 

128.9, 128.8, 128.2, 128.1, 128.1, 128.0, 126.4, 121.7, 121.2, 119.8, 119.2, 82.9, 82.6, 72.3, 

72.1, 67.2, 61.7, 36.5, 35.6, 29.8, 28.4, 28.4; IR (Neat Film, NaCl) 2975, 1772, 1709, 1388, 

1290, 1226, 1168, 752, 694 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C28H34N3O6 

[M+NH4]+: 508.2442, found 508.2426. 

 

5-allyl 1-(tert-butyl) 3-benzoyl-4-oxo-5-(prop-2-yn-1-yl)imidazolidine-1,5-

dicarboxylate (34f) 

To a solution of lactam 33 (250 mg, 0.668 mmol, 1.0 equiv) in THF (6.7 mL, 0.1 

M) at 23 °C was added NaH (60% dispersion in mineral oil, 32 mg, 0.801 mmol, 1.2 equiv). 

The reaction mixture was stirred for 15 min, resulting in a bright yellow solution. Propargyl 

bromide (80% in PhMe, 252 μL, 2.67 mmol, 4.0 equiv) was then added and the reaction 

mixture was stirred at 23 °C for 1 h. The reaction mixture was poured into saturated aq. 

NaHCO3 (10 mL) and extracted with ethyl acetate (3x6 mL). The combined organic 

extracts were dried over anhydrous Na2SO4 and concentrated under reduced pressure. The 

crude product was purified by automated silica gel flash chromatography (Telodyne ISCO, 

0→30% acetone/hexanes) to provide the title compound as a colorless oil (158 mg, 0.383 

mmol, 57% yield); 1H NMR (400 MHz, CDCl3; compound exists as a 1:1 mixture of 
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rotamers. Fully resolved rotamer peaks are denoted by *) δ 7.72 – 7.63 (m, 2H), 7.59 – 

7.52 (m, 1H), 7.48 – 7.37 (m, 2H), 5.96 – 5.75 (m, 1H), 5.44 (d, J = 7.1 Hz, 1H*), 5.40 (d, 

J = 6.9 Hz, 1H*), 5.36 – 5.20 (m, 3H), 4.76 – 4.53 (m, 2H), 3.46 (dd, J = 17.2, 2.7 Hz, 

1H*), 3.27 (dd, J = 17.3, 2.7 Hz, 1H*), 3.23 – 3.15 (m, 1H), 2.12 (dt, J = 5.4, 2.6 Hz, 1H), 

1.52 (s, 9H*), 1.47 (s, 9H*); 13C NMR (100 MHz, CDCl3) δ 168.4, 168.1, 165.9, 165.8, 

165.6, 165.6, 151.9, 151.5, 133.0, 132.5, 131.0, 130.7, 129.2, 128.1, 119.9, 119.3, 82.9, 

82.7, 78.2, 77.5, 72.3, 71.8, 71.1, 70.8, 67.3, 67.3, 62.0, 28.3, 28.2, 24.2, 23.3; IR (Neat 

Film, NaCl) 3280, 2977, 1771, 1747, 1714, 1602, 1450, 1392, 1370, 1296, 1229, 1152, 

1059, 1019, 858, 790, 770, 740, 701, 665 cm–1; HRMS (MM: ESI-APCI): m/z calc’d for 

C22H28N3O6 [M+NH4]+: 430.1973, found 430.1969. 

 

1-(tert-butyl) 5-(2-methylallyl) 3-benzoyl-5-benzyl-4-oxoimidazolidine-1,5-

dicarboxylate (34g) 

To a solution of lactam 60 (76.1 mg, 0.196 mmol, 1.0 equiv) in THF (2 mL, 0.1 M) 

at 23 °C was added NaH (60% dispersion in mineral oil, 9.4 mg, 0.235 mmol, 1.2 equiv). 

The reaction mixture was stirred for 5 min, resulting in a bright yellow solution. BnBr (93 

μL, 0.784 mmol, 4.0 equiv) was then added and the reaction mixture was stirred at 23 °C 

for 5 h. The reaction mixture was poured into saturated aq. NaHCO3 (5 mL) and extracted 

with ethyl acetate (4x3 mL). The combined organic extracts were dried over anhydrous 

Na2SO4 and concentrated under reduced pressure. The crude product was purified by silica 

gel flash chromatography (15% EtOAc/hexanes) to provide the title compound as a 

colorless oil (50.6 mg, 0.106 mmol, 54% yield); 1H NMR (500 MHz, CDCl3; compound 

BzN
NBoc

O
Bn

O

O Me
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exists as a 4:3 mixture of rotamers. For fully resolved peaks, the major rotamer is denoted 

by *, and the minor rotamer by #) δ 7.58 – 7.51 (m, 1H), 7.43 – 7.36 (m, 3H), 7.36 – 7.29 

(m, 4H), 7.20 – 7.15 (m, 2H), 5.24 (d, J = 7.2 Hz, 1H#), 5.16 (d, J = 7.1 Hz, 1H*), 5.03 – 

4.94 (m, 2H), 4.76 – 4.56 (m, 2H), 4.48 (d, J = 7.2 Hz, 1H#), 4.41 (d, J = 7.0 Hz, 1H*), 

3.84 (d, J = 14.0 Hz, 1H*), 3.63 (d, J = 14.1 Hz, 1H#), 3.59 – 3.54 (m, 1H), 1.77 (s, 3H), 

1.57 (s, 9H#), 1.56 (s, 9H*); 13C NMR (125 MHz, CDCl3) δ 168.2, 168.0, 166.6, 166.6, 

166.2, 166.1, 152.0, 151.8, 139.1, 138.6, 134.7, 134.1, 132.8, 132.8, 132.6, 130.2, 128.9, 

128.9, 128.8, 128.6, 128.0, 127.9, 127.9, 127.7, 114.4, 114.0, 82.9, 82.4, 72.9, 69.9, 69.8, 

61.3, 61.2, 37.9, 37.1, 28.4, 28.3, 19.6, 19.5; IR (Neat Film, NaCl) 2977, 1770, 1714, 1453, 

1392, 1294, 1223, 1168, 1075, 1008, 857, 703, 665 cm–1; HRMS (MM: ESI-APCI): m/z 

calc’d for C27H34N3O6 [M+NH4]+: 496.2442, found 496.2423. 

 

5-allyl 1-(tert-butyl) 3-benzoyl-5-(2-chloroallyl)-4-oxoimidazolidine-1,5-

dicarboxylate (34h) 

To a vial containing lactam 33 (250 mg, 0.668 mmol, 1.0 equiv), NaH (60% 

dispersion in mineral oil, 32 mg, 0.802 mmol, 1.2 equiv), and TBAI (25 mg, 0.0668 mmol, 

0.1 equiv) was added THF (6.7 mL, 0.1 M) at 23 °C. The reaction mixture was stirred for 

20 min, resulting in a bright yellow solution. 2,3-dichloropropene (246 μL, 2.67 mmol, 4.0 

equiv) was then added and the reaction mixture was stirred at 23 °C for 27 h. The mixture 

was then heated to 40 °C using a heating block and stirred for an additional 4 h, then poured 

into saturated aq. NaHCO3 (10 mL) and extracted with ethyl acetate (4x5 mL). The 

BzN

N
Boc

O
O

O

Cl
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combined organic extracts were dried over anhydrous Na2SO4 and concentrated under 

reduced pressure. The crude product was purified by silica gel flash chromatography (15% 

EtOAc/hexanes) to provide the title compound as a colorless oil (163.9 mg, 0.365 mmol, 

55% yield); 
1
H NMR (400 MHz, CDCl3; compound exists as a 1.2:1 mixture of rotamers. 

For fully resolved peaks, the major rotamer is denoted by *, and the minor rotamer by 
#
) δ 

7.66 – 7.61 (m, 2H), 7.59 – 7.53 (m, 1H), 7.46 – 7.39 (m, 2H), 5.97 – 5.80 (m, 1H), 5.48 – 

5.19 (m, 6H), 4.81 – 4.56 (m, 2H), 3.67 (d, J = 14.8 Hz, 1H*), 3.43 (d, J = 14.9 Hz, 1H
#
), 

3.36 – 3.23 (m, 1H), 1.50 (s, 9H*), 1.47 (s, 9H
#
); 
13

C NMR (100 MHz, CDCl3) δ 168.3, 

168.1, 166.5, 166.4, 166.0, 165.8, 151.9, 151.6, 136.0, 135.9, 132.9, 132.8, 132.6, 132.6, 

131.0, 130.7, 129.1, 128.0, 120.0, 119.3, 118.4, 82.8, 82.5, 70.6, 70.6, 67.4, 67.3, 61.6, 

61.5, 41.5, 41.0, 31.0, 28.2; IR (Neat Film, NaCl) 3062, 2980, 2931, 2909, 2360, 1770, 

1747, 1714, 1694, 1651, 1634, 1602, 1583, 1477, 1450, 1392, 1370, 1322, 1295, 1231, 

1172, 1145, 1099, 1050, 1013, 989, 936, 888, 857, 792, 769, 724, 703, 682, 665, 634 cm
–

1
; HRMS (MM: ESI-APCI): m/z calc’d for C22H29ClN3O6 [M+NH4]+: 466.1739, found 

466.1750. 

 

5-allyl 1-(tert-butyl) 3-benzoyl-5-((((benzyloxy)carbonyl)amino)methyl)-4-

oxoimidazolidine-1,5-dicarboxylate (34i) 

To a vial containing lactam 33 (199 mg, 0.532 mmol, 1.0 equiv), and benzyl 

((phenylsulfonyl)methyl)carbamate
31

 (195 mg, 0.638 mmol, 1.2 equiv) was added CH2Cl2 

(2.7 mL, 0.2 M). Cs2CO3 (433 mg, 1.33 mmol, 2.5 equiv) was then added in a single portion 

BzN

N
Boc

O
O

O

NHCbz



Chapter 1 – Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation of 5- and 7-
Membered Diazaheterocycles 

 

99 

and the reaction mixture was stirred at 23 °C for 4 h. Saturated aq. NH4Cl (3 mL) was then 

added, and the resulting mixture was stirred vigorously for 30 min. The layers were then 

separated, and the aqueous layer was extracted with CH2Cl2 (3 x 3 mL). The combined 

organic extracts were dried over anhydrous Na2SO4 and concentrated under reduced 

pressure. The crude product was purified by silica gel flash chromatography (20% 

EtOAc/hexanes) to provide the title compound as a colorless oil (149 mg, 0.341 mmol, 

64% yield); 1H NMR (400 MHz, CDCl3) δ 7.82 – 7.58 (m, 2H), 7.54 (td, J = 7.0, 1.6 Hz, 

1H), 7.40 (q, J = 7.9 Hz, 2H), 7.32 (q, J = 2.3 Hz, 5H), 5.99 – 5.73 (m, 1H), 5.46 – 4.82 

(m, 7H), 4.76 – 4.53 (m, 2H), 4.17 – 3.95 (m, 2H), 1.49 (d, J = 5.9 Hz, 9H); 13C NMR (100 

MHz, CDCl3) δ 168.4, 168.1, 166.2, 166.1, 165.5, 165.1, 156.8, 156.6, 152.5, 151.8, 136.4, 

136.2, 132.9, 132.9, 132.6, 132.5, 131.0, 130.7, 129.4, 129.3, 128.7, 128.6, 128.4, 128.3, 

128.2, 128.0, 120.0, 119.3, 83.1, 82.8, 71.2, 70.7, 67.2, 67.2, 67.1, 61.5, 61.3, 43.2, 43.0, 

29.8, 28.3, 28.2; IR (Neat Film, NaCl) 3380, 3066, 2978, 1714, 1601, 1519, 1454, 1393, 

1304, 1166, 1068, 989, 941, 855, 737, 698, 666 cm–1; HRMS (MM: ESI-APCI): m/z calc’d 

for C28H31N3NaO8 [M+Na]+: 560.2003, found 560.1998. 

 

5-allyl 1-(tert-butyl) 3-benzoyl-5-(2-cyanoethyl)-4-oxoimidazolidine-1,5-

dicarboxylate (34j) 

To a vial containing lactam 33 (250 mg, 0.668 mmol, 1.0 equiv) and K2CO3 (462 

mg, 3.34 mmol, 5 equiv) were added acetone (2.7 mL, 0.25 M) and acrylonitrile (175 µL, 

2.67 mmol, 4 equiv). The vial was sealed and the reaction mixture was heated to 50 °C 

BzN

N
Boc

O
O

O

CN
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using a heating block, stirred for 20 h, and allowed to cool to 23 °C. The crude mixture 

was filtered through cotton and concentrated under reduced pressure. The product was 

purified by silica gel flash chromatography (25% EtOAc/hexanes) to provide the title 

compound as a colorless oil (94.6 mg, 0.221 mmol, 33% yield); 1H NMR (400 MHz, 

CDCl3; compound exists as a 1.7:1 mixture of rotamers. For fully resolved peaks, the major 

rotamer is denoted by *, and the minor rotamer by #) δ 7.70 – 7.61 (m, 2H), 7.61 – 7.54 (m, 

1H), 7.44 (t, J = 7.7 Hz, 2H), 5.96 – 5.78 (m, 1H), 5.48 – 5.21 (m, 4H), 4.78 – 4.56 (m, 

2H), 2.94 – 2.59 (m, 2H), 2.53 – 2.34 (m, 2H), 1.52 (s, 9H*), 1.47 (s, 9H#); 13C NMR (100 

MHz, CDCl3) δ 168.4, 168.1, 166.4, 165.5, 165.3, 152.9, 152.2, 133.1, 132.6, 130.9, 130.6, 

129.3, 128.2, 120.4, 119.7, 118.5, 118.2, 83.7, 83.4, 70.9, 70.8, 67.6, 67.6, 61.8, 61.8, 28.3, 

28.3, 27.6, 12.7, 12.5; IR (Neat Film, NaCl) 3065, 2979, 2936, 2343, 2249, 1770, 1745, 

1714, 1698, 1651, 1602, 1582, 1477, 1449, 1386, 1372, 1301, 1245, 1225, 1173, 1154, 

1114, 1081, 1048, 1028, 994, 939, 894, 858, 845, 793, 781, 770, 733, 701, 672, 664, 621 

cm–1; HRMS (MM: ESI-APCI): m/z calc’d for C22H29N4O6 [M+NH4]+: 445.2082, found 

445.2085. 

 

5-allyl 1-(tert-butyl) 3-benzoyl-4-oxo-5-(3-oxobutyl)imidazolidine-1,5-dicarboxylate 

(34k) 

To a vial containing lactam 33 (250 mg, 0.668 mmol, 1.0 equiv) and K2CO3 (462 

mg, 3.34 mmol, 5 equiv) were added acetone (3 mL, 0.25 M) and methyl vinyl ketone (223 

BzN

N
Boc

O
O
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µL, 2.67 mmol, 4 equiv). The vial was sealed, and the reaction mixture was heated to 50 

°C using a heating block, stirred for 6 h, and allowed to cool to 23 °C. The crude mixture 

was filtered through cotton and concentrated under reduced pressure. The product was 

purified by silica gel flash chromatography (33% EtOAc/hexanes) to provide the title 

compound as a colorless oil (228 mg, 0.513 mmol, 77% yield); 1H NMR (400 MHz, CDCl3; 

compound exists as a 1.1:1 mixture of rotamers. For fully resolved peaks, the major rotamer 

is denoted by *, and the minor rotamer by #) δ 7.62 (d, J = 7.7 Hz, 2H), 7.55 – 7.48 (m, 

1H), 7.39 (t, J = 7.7 Hz, 2H), 5.95 – 5.75 (m, 1H), 5.41 – 5.05 (m, 4H), 4.73 – 4.52 (m, 

2H), 2.75 – 2.35 (m, 4H), 2.11 (d, J = 3.0 Hz, 3H), 1.47 (s, 9H*), 1.43 (s, 9H#); 13C NMR 

(100 MHz, CDCl3) δ 207.5, 206.7, 168.4, 168.2, 166.9, 166.8, 166.4, 166.2, 152.5, 152.2, 

132.8, 132.8, 132.7, 132.7, 131.1, 130.8, 129.1, 128.0, 119.7, 119.1, 82.9, 82.6, 70.9, 67.1, 

67.1, 61.4, 61.3, 38.5, 37.8, 29.8, 29.4, 28.2, 28.1, 27.8, 26.9; IR (Neat Film, NaCl) 3074, 

2977, 2931, 1757, 1703, 1642, 1602, 1583, 1478, 1448, 1393, 1368, 1304, 1226, 1168, 

1091, 1061, 999, 970, 928, 880, 858, 826, 795, 768, 731, 701, 664 cm–1; HRMS (MM: ESI-

APCI): m/z calc’d for C23H32N3O7 [M+NH4]+: 462.2235, found 462.2251. 

1.5.2.6 Derivatization of Imidazolidinone Allylic Alkylation Products 

 

(R)-5-allyl-3-benzoyl-5-benzylimidazolidin-4-one (52) 

To a solution of benzyl imidazolidinone 35a (15 mg, 0.0357 mmol, 1.0 equiv) in 

CH2Cl2 (0.36 mL, 0.1 M) was added trifluoroacetic acid (41 µL, 0.536 mmol, 15 equiv), 

and the reaction mixture was stirred in a sealed vial at 23 °C for 22 h. The resulting solution 

was concentrated under reduced pressure and the residue taken up in Et2O (0.5 mL), 

BzN
NH

O
Bn
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washed with 5% aq. K2CO3 (1 mL), dried with Na2SO4, and concentrated under reduced 

pressure. The crude product was purified by silica gel flash chromatography (33% 

EtOAc/hexanes) to provide free amine 52 as a white solid (9.3 mg, 0.0290 mmol, 81% 

yield); 1H NMR (400 MHz, CDCl3) δ 7.58 – 7.49 (m, 3H), 7.46 – 7.40 (m, 2H), 7.38 – 7.29 

(m, 3H), 7.29 – 7.22 (m, 2H), 5.85 (dddd, J = 17.0, 10.2, 8.6, 6.2 Hz, 1H), 5.31 – 5.17 (m, 

2H), 4.71 (d, J = 9.6 Hz, 1H), 4.32 (d, J = 9.6 Hz, 1H), 3.15 (d, J = 13.6 Hz, 1H), 2.76 (d, 

J = 13.6 Hz, 1H), 2.63 (ddt, J = 14.0, 6.1, 1.4 Hz, 1H), 2.32 (ddt, J = 13.9, 8.5, 0.9 Hz, 1H), 

2.21 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 176.0, 169.7, 135.6, 133.4, 132.5, 132.1, 

130.5, 129.3, 128.8, 128.0, 127.6, 120.9, 68.4, 61.9, 42.1, 41.1; IR (Neat Film, NaCl) 2921, 

1743, 1674, 1494, 1449, 1380, 1306, 1235, 922, 796, 732, 700 cm–1; HRMS (MM: ESI-

APCI): m/z calc’d for C20H21N2O2 [M+H]+: 321.1598, found 321.1590; [α]D21.7 +69.27 (c 

0.5, CHCl3). 

 

tert-butyl (R)-5-allyl-5-benzyl-4-oxoimidazolidine-1-carboxylate (53) 

To a solution of benzyl imidazolidinone 35a (15 mg, 0.0357 mmol, 1.0 equiv) in 

50% MeOH/H2O (0.36 mL, 0.1 M) was added LiOH·H2O (22 mg, 0.536 mmol, 15 equiv) 

and the reaction mixture was heated with stirring in a sealed vial at 70 °C for 1 h using a 

heating block. MeOH was removed under reduced pressure and the solution was diluted 

with H2O (0.5 mL) and extracted with ethyl acetate (4 x 0.5 mL). The combined organic 

extracts were dried over Na2SO4 and concentrated under reduced pressure. The crude 

product was purified by silica gel flash chromatography (40% EtOAc/hexanes) to provide 

HN
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free lactam 53 as a colorless film (9.0 mg, 0.0284 mmol, 80% yield); 1H NMR (400 MHz, 

CDCl3; compound exists as a 1.1:1 mixture of rotamers. For fully resolved peaks, the major 

rotamer is denoted by *, and the minor rotamer by #) δ 7.26 – 7.12 (m, 5H), 6.38 (d, J = 

32.9 Hz, 1H), 5.74 – 5.53 (m, 1H), 5.24 – 5.04 (m, 2H), 4.41 (d, J = 5.5 Hz, 1H#), 4.32 (d, 

J = 5.4 Hz, 1H*), 3.79 (d, J = 5.5 Hz, 1H#), 3.68 (d, J = 5.3 Hz, 1H*), 3.50 (d, J = 13.3 Hz, 

1H*), 3.27 (d, J = 13.4 Hz, 1H#), 3.16 (dd, J = 13.6, 8.4 Hz, 1H#), 3.01 (dd, J = 13.3, 1.7 

Hz, 1H), 2.93 (dd, J = 13.8, 8.2 Hz, 1H*), 2.71 – 2.54 (m, 1H), 1.64 (s, 9H#), 1.49 (s, 9H*); 

13C NMR (100 MHz, CDCl3) δ 174.4, 174.2, 152.9, 151.9, 136.5, 135.9, 132.4, 132.0, 

130.0, 129.9, 128.5, 128.3, 127.1, 126.9, 119.7, 119.6, 81.7, 80.5, 68.6, 68.4, 58.1, 57.9, 

41.1, 40.0, 38.8, 28.8, 28.5; IR (Neat Film, NaCl) 3242, 2976, 2930, 1708, 1454, 1402, 

1368, 1341, 1257, 1174, 1143, 1078, 996, 920, 768, 702 cm–1; HRMS (MM: ESI-APCI): 

m/z calc’d for C18H25N2O3 [M+H]+: 317.1860, found 317.1852; [α]D21.8 –67.38 (c 0.5, 

CHCl3). 

 

methyl (R)-2-amino-2-benzylpent-4-enoate (54) 

To a solution of benzyl imidazolidinone 35a (10 mg, 0.0238 mmol, 1.0 equiv) in 

MeOH (0.4 mL, 0.06 M) was added concentrated H2SO4 (85 µL). The reaction vessel was 

sealed, and the reaction mixture was stirred at 70 °C in a heating block for 3 days. Care 

should be taken, as gas pressure is generated over the course of the reaction. The crude 

mixture was then added to saturated aq. NaHCO3 (10 mL, gas evolution) and extracted 

with ethyl acetate (4 x 4 mL). The combined organic extracts were dried with Na2SO4 and 

concentrated under reduced pressure. The crude product was purified by silica gel flash 

Bn

O

H2N
MeO
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chromatography (20% EtOAc/hexanes + 0.1% Et3N) to provide amino ester 11 as a 

colorless film (1.3 mg, 0.00593 mmol, 25% yield). 1H NMR (500 MHz, CDCl3) δ 7.31 – 

7.26 (m, 2H), 7.26 – 7.22 (m, 1H), 7.18 – 7.08 (m, 2H), 5.77 – 5.64 (m, 1H), 5.24 – 5.11 

(m, 2H), 3.71 (s, 3H), 3.19 (d, J = 13.2 Hz, 1H), 2.80 (dd, J = 13.2, 6.9 Hz, 1H), 2.73 (ddt, 

J = 13.3, 6.4, 1.3 Hz, 1H), 2.33 (dd, J = 13.5, 8.4 Hz, 1H). All characterization data matched 

those reported in the literature.35 
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1.5.3  DETERMINATION OF ENANTIOMERIC EXCESS 

Table 1.5.3.1. Determination of enantiomeric excess. 

  

entry compound % eeassay conditions tR of major
isomer (min)

tR of minor
isomer (min)

BzN

NBoc

O Bn

20a

1
SFC

Chiralpak AD-H
20% IPA

isocratic, 2.5 mL/min
3.51 2.71 90

BzN

NBoc

OMe

20b

2
SFC

Chiralpak IC
20% IPA

isocratic, 2.5 mL/min
5.68 4.31 90

20c

3
SFC

Chiralpak AD-H
5% IPA

isocratic, 2.5 mL/min
5.86 4.49 92(p-F3C-Bz)N

NBoc

OMe

AnN

NBoc

OMe

20d

4
SFC

Chiralpak IC
20% MeOH

isocratic, 2.5 mL/min
5.66 5.11 94

AnN

NBoc

O Bn

20e

5
SFC

Chiralpak AD-H
20% IPA

isocratic, 2.5 mL/min
6.20 3.94 89

BzN

NBoc

O F

20f

6
SFC

Chiralpak AD-H
20% IPA

isocratic, 2.5 mL/min
4.99 6.26 90

AnN

NBoc

O F

20g

7
SFC

Chiralcel OD-H
20% IPA

isocratic, 2.5 mL/min
2.69 3.25 83
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Table 1.5.3.2. Determination of enantiomeric excess (continued). 

 

entry compound % eeassay conditions tR of major
isomer (min)

tR of minor
isomer (min)

20h

8
SFC

Chiralpak AD-H
20% IPA

isocratic, 2.5 mL/min
2.77 2.52 90AnN

NBoc

O
Cl

BzN

NBoc

O

20i

9
SFC

Chiralpak AD-H
10% IPA

isocratic, 2.5 mL/min
10.85 10.29 94

10
SFC

Chiralcel OD-H
15% IPA

isocratic, 2.5 mL/min
5.27 4.84 95AnN

NBoc

O

CO2Me

20j

11
SFC

Chiralcel OD-H
20% IPA

isocratic, 2.5 mL/min
8.33 6.18 84AnN

NBoc

O

CN

20k

12
SFC

Chiralpak IC
20% IPA

isocratic, 2.5 mL/min
5.85 4.65 93AnN

NBoc

O
BocHN

20l

35a

13
SFC

Chiralpak AD-H
7% IPA

isocratic, 2.5 mL/min
5.13 6.29 92

BzN

N
Boc

O

Bn

35b

14
SFC

Chiralcel OJ-H
10% IPA

isocratic, 2.5 mL/min
1.55 1.71 89

BzN

N
Boc

O p-CF3-Ph
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Table 1.5.3.3. Determination of enantiomeric excess (continued). 

 

entry compound % eeassay conditions tR of major
isomer (min)

tR of minor
isomer (min)

35c

15
SFC

Chiralpak AD-H
7% IPA

isocratic, 2.5 mL/min
3.40 3.04 86

BzN

N
Boc

O

Me

35d

16
SFC

Chiralcel OJ-H
1% IPA

isocratic, 2.5 mL/min
2.98 3.34 80BzN

N
Boc

O

Me

Me

35e

17
SFC

Chiralpak AD-H
10% IPA

isocratic, 2.5 mL/min
5.15 4.77 85BzN

N
Boc

O

Ph

35f

18
SFC

Chiralcel OJ-H
7% IPA

isocratic, 2.5 mL/min
2.43 2.11 91BzN

N
Boc

O

35g

19
SFC

Chiralcel OD-H
10% IPA

isocratic, 2.5 mL/min
3.79 3.47 89BzN

N
Boc

O

Bn
Me

35h

20
SFC

Chiralcel OJ-H
7% IPA

isocratic, 2.5 mL/min
2.19 1.99 86

BzN

N
Boc

OCl
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Table 1.5.3.4. Determination of enantiomeric excess (continued). 

 

 

entry compound % eeassay conditions tR of major
isomer (min)

tR of minor
isomer (min)

35i

21
SFC

Chiralpak AD-H
20% IPA

isocratic, 2.5 mL/min
6.15 3.52 85

BzN

N
Boc

O NHCbz

35j

22
SFC

Chiralpak IC
15% IPA

isocratic, 2.5 mL/min
5.49 4.78 95

BzN

N
Boc

O CN

35k

23
SFC

Chiralpak IC
20% IPA

isocratic, 2.5 mL/min
2.42 3.23 93BzN

N
Boc

O

O

Me
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Figure A1.2. Infrared spectrum (Thin Film, NaCl) of compound 20a. 
 

Figure A1.3. 13C NMR (100 MHz, CDCl3) of compound 20a. 
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Figure A1.5. Infrared spectrum (Thin Film, NaCl) of compound 20b. 
 

Figure A1.6. 13C NMR (100 MHz, CDCl3) of compound 20b. 
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Figure A1.8. Infrared spectrum (Thin Film, NaCl) of compound 20c. 
 

Figure A1.9. 13C NMR (100 MHz, CDCl3) of compound 20c. 
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Figure A1.11. Infrared spectrum (Thin Film, NaCl) of compound 20d. 
 

Figure A1.12. 13C NMR (100 MHz, CDCl3) of compound 20d. 
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Figure A1.14. Infrared spectrum (Thin Film, NaCl) of compound 20e. 
 

 Figure A1.15. 13C NMR (100 MHz, CDCl3) of compound 20e. 
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Figure A1.17. Infrared spectrum (Thin Film, NaCl) of compound 20f. 
 

Figure A1.18. 13C NMR (100 MHz, CDCl3) of compound 20f. 
 



Appendix 1 – Spectra Relevant to Chapter 1 

 

129 

 

  

0
1

2
3

4
5

6
7

8
9

p
p
m

Fi
gu

re
 A

1.
1 9

. 1
H

 N
M

R
 (4

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 
20

g.
 

 

An
N

NB
oc

O
F



Appendix 1 – Spectra Relevant to Chapter 1 

 

130 

020406080100120140160180200

ppm

 
  

Figure A1.20. Infrared spectrum (Thin Film, NaCl) of compound 20g. 
 

Figure A1.21. 13C NMR (100 MHz, CDCl3) of compound 20g. 
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Figure A1.24. 13C NMR (100 MHz, CDCl3) of compound 20h. 
 

Figure A1.23. Infrared spectrum (Thin Film, NaCl) of compound 20h. 
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Figure A1.26. Infrared spectrum (Thin Film, NaCl) of compound 20i. 
 

Figure A1.27. 13C NMR (100 MHz, CDCl3) of compound 20i. 
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Figure A1.29. Infrared spectrum (Thin Film, NaCl) of compound 20j. 
 

Figure A1.30. 13C NMR (100 MHz, CDCl3) of compound 20j. 
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Figure A1.32. Infrared spectrum (Thin Film, NaCl) of compound 20k. 
 

Figure A1.33. 13C NMR (100 MHz, CDCl3) of compound 20k. 
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Figure A1.35. Infrared spectrum (Thin Film, NaCl) of compound 20l. 
 

Figure A1.36. 13C NMR (100 MHz, CDCl3) of compound 20l. 
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Figure A1.38. Infrared spectrum (Thin Film, NaCl) of compound 55. 
 

 Figure A1.39. 13C NMR (100 MHz, CDCl3) of compound 55. 
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Figure A1.41. Infrared spectrum (Thin Film, NaCl) of compound 56. 
 

Figure A1.42. 13C NMR (100 MHz, CDCl3) of compound 56. 
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Figure A1.44. Infrared spectrum (Thin Film, NaCl) of compound 57. 
 

Figure A1.45. 13C NMR (100 MHz, CDCl3) of compound 57. 
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Figure A1.47. Infrared spectrum (Thin Film, NaCl) of compound 18a. 
 

Figure A1.48. 13C NMR (125 MHz, CDCl3) of compound 18a. 
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Figure A1.50. Infrared spectrum (Thin Film, NaCl) of compound 18b. 
 

Figure A1.51. 13C NMR (100 MHz, CDCl3) of compound 18b. 
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Figure A1.53. Infrared spectrum (Thin Film, NaCl) of compound 18c. 
 

Figure A1.54. 13C NMR (100 MHz, CDCl3) of compound 18c. 
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Figure A1.56. Infrared spectrum (Thin Film, NaCl) of compound 19a. 
 

Figure A1.57. 13C NMR (100 MHz, CDCl3) of compound 19a. 
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Figure A1.59. Infrared spectrum (Thin Film, NaCl) of compound 19b. 
 

Figure A1.60. 13C NMR (100 MHz, CDCl3) of compound 19b. 
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Figure A1.62. Infrared spectrum (Thin Film, NaCl) of compound 19c. 
 

Figure A1.63. 13C NMR (100 MHz, CDCl3) of compound 19c. 
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Figure A1.65. Infrared spectrum (Thin Film, NaCl) of compound 19d. 
 

Figure A1.66. 13C NMR (100 MHz, CDCl3) of compound 19d. 
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Figure A1.68. Infrared spectrum (Thin Film, NaCl) of compound 19e. 
 

Figure A1.69. 13C NMR (125 MHz, CDCl3) of compound 19e. 
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Figure A1.71. Infrared spectrum (Thin Film, NaCl) of compound 19f. 
 

Figure A1.72. 13C NMR (125 MHz, CDCl3) of compound 19f. 
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Figure A1.74. Infrared spectrum (Thin Film, NaCl) of compound 19g. 
 

Figure A1.75. 13C NMR (100 MHz, CDCl3) of compound 19g. 
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Figure A1.77. Infrared spectrum (Thin Film, NaCl) of compound 19h. 
 

Figure A1.78. 13C NMR (100 MHz, CDCl3) of compound 19h. 
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Figure A1.80. Infrared spectrum (Thin Film, NaCl) of compound 19i. 
 

Figure A1.81. 13C NMR (125 MHz, CDCl3) of compound 19i. 
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Figure A1.83. Infrared spectrum (Thin Film, NaCl) of compound 19j. 
 

 Figure A1.84. 13C NMR (125 MHz, CDCl3) of compound 19j. 
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Figure A1.86. Infrared spectrum (Thin Film, NaCl) of compound 19k. 
 

Figure A1.87. 13C NMR (100 MHz, CDCl3) of compound 19k. 
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Figure A1.89. Infrared spectrum (Thin Film, NaCl) of compound 19l. 
 

 Figure A1.90. 13C NMR (100 MHz, CDCl3) of compound 19l. 
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Figure A1.92. Infrared spectrum (Thin Film, NaCl) of compound 21. 
 

 Figure A1.93. 13C NMR (100 MHz, CDCl3) of compound 21. 
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Figure A1.95. Infrared spectrum (Thin Film, NaCl) of compound 23. 
 

Figure A1.96. 13C NMR (100 MHz, CDCl3) of compound 23. 
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Figure A1.98. Infrared spectrum (Thin Film, NaCl) of compound 25. 
 

Figure A1.99. 13C NMR (100 MHz, CDCl3) of compound 25. 
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Figure A1.102. 13C NMR (100 MHz, DMSO-d6, 80 °C) of compound 20e. 
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Figure A1.104. Infrared spectrum (Thin Film, NaCl) of compound 35a. 
 

Figure A1.105. 13C NMR (100 MHz, CDCl3) of compound 35a. 
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Figure A1.107. Infrared spectrum (Thin Film, NaCl) of compound 35b. 
 

Figure A1.108. 13C NMR (100 MHz, CDCl3) of compound 35b. 
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Figure A1.110. Infrared spectrum (Thin Film, NaCl) of compound 35c. 
 

Figure A1.111. 13C NMR (100 MHz, CDCl3) of compound 35c. 
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Figure A1.113. Infrared spectrum (Thin Film, NaCl) of compound 35d. 
 

Figure A1.114. 13C NMR (100 MHz, CDCl3) of compound 35d. 
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Figure A1.116. Infrared spectrum (Thin Film, NaCl) of compound 35e. 
 

Figure A1.117. 13C NMR (100 MHz, CDCl3) of compound 35e. 
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Figure A1.119. Infrared spectrum (Thin Film, NaCl) of compound 35f. 
 

Figure A1.120. 13C NMR (100 MHz, CDCl3) of compound 35f. 
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Figure A1.122. Infrared spectrum (Thin Film, NaCl) of compound 35g. 
 

Figure A1.123. 13C NMR (100 MHz, CDCl3) of compound 35g. 
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Figure A1.125. Infrared spectrum (Thin Film, NaCl) of compound 35h. 
 

Figure A1.126. 13C NMR (100 MHz, CDCl3) of compound 35h. 
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Figure A1.128. Infrared spectrum (Thin Film, NaCl) of compound 35i. 
 

Figure A1.129. 13C NMR (100 MHz, CDCl3) of compound 35i. 
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Figure A1.131. Infrared spectrum (Thin Film, NaCl) of compound 35j. 
 

Figure A1.132. 13C NMR (100 MHz, CDCl3) of compound 35j. 
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Figure A1.134. Infrared spectrum (Thin Film, NaCl) of compound 35k. 
 

Figure A1.135. 13C NMR (100 MHz, CDCl3) of compound 35k. 
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Figure A1.137. Infrared spectrum (Thin Film, KBr) of compound 31. 
 

Figure A1.138. 13C NMR (100 MHz, CDCl3) of compound 31. 
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Figure A1.140. Infrared spectrum (Thin Film, NaCl) of compound 32. 
 

Figure A1.141. 13C NMR (100 MHz, CDCl3) of compound 32. 
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Figure A1.143. Infrared spectrum (Thin Film, NaCl) of compound 33. 
 

Figure A1.144. 13C NMR (100 MHz, CDCl3) of compound 33. 
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Figure A1.146. Infrared spectrum (Thin Film, KBr) of compound 60. 
 

 Figure A1.147. 13C NMR (100 MHz, CDCl3) of compound 60. 
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Figure A1.149. Infrared spectrum (Thin Film, NaCl) of compound 34a. 
 

Figure A1.150. 13C NMR (100 MHz, CDCl3) of compound 34a. 
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Figure A1.152. Infrared spectrum (Thin Film, NaCl) of compound 34b. 
 

Figure A1.153. 13C NMR (100 MHz, CDCl3) of compound 34b. 
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Figure A1.155. Infrared spectrum (Thin Film, NaCl) of compound 34c. 
 

Figure A1.156. 13C NMR (100 MHz, CDCl3) of compound 34c. 
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Figure A1.158. Infrared spectrum (Thin Film, NaCl) of compound 34d. 
 

Figure A1.159. 13C NMR (100 MHz, CDCl3) of compound 34d. 
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Figure A1.161. Infrared spectrum (Thin Film, NaCl) of compound 34e. 
 

Figure A1.162. 13C NMR (100 MHz, CDCl3) of compound 34e. 
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Figure A1.164. Infrared spectrum (Thin Film, NaCl) of compound 34f. 
 

Figure A1.165. 13C NMR (100 MHz, CDCl3) of compound 34f. 
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Figure A1.167. Infrared spectrum (Thin Film, NaCl) of compound 34g. 
 

Figure A1.168. 13C NMR (125 MHz, CDCl3) of compound 34g. 
 



Appendix 1 – Spectra Relevant to Chapter 1 

 

230 

  

0
1

2
3

4
5

6
7

8
9

p
p
m

Bz
N

N Bo
c

O
O O

Cl

Fi
gu

re
 A

1.
16

9.
 1

H
 N

M
R

 (4
00

 M
H

z,
 C

D
C

l 3
) o

f c
om

po
un

d 
34

h.
 

 



Appendix 1 – Spectra Relevant to Chapter 1 

 

231 

020406080100120140160180200

ppm

  

Figure A1.170. Infrared spectrum (Thin Film, NaCl) of compound 34h. 
 

Figure A1.171. 13C NMR (100 MHz, CDCl3) of compound 34h. 
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Figure A1.173. Infrared spectrum (Thin Film, NaCl) of compound 34i. 
 

Figure A1.174. 13C NMR (100 MHz, CDCl3) of compound 34i. 
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Figure A1.176. Infrared spectrum (Thin Film, NaCl) of compound 34j. 
 

Figure A1.177. 13C NMR (100 MHz, CDCl3) of compound 34j. 
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Figure A1.179. Infrared spectrum (Thin Film, NaCl) of compound 34k. 
 

Figure A1.180. 13C NMR (100 MHz, CDCl3) of compound 34k. 
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Figure A1.182. Infrared spectrum (Thin Film, NaCl) of compound 52. 
 

Figure A1.183. 13C NMR (100 MHz, CDCl3) of compound 52. 
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Figure A1.185. Infrared spectrum (Thin Film, NaCl) of compound 53. 
 

Figure A1.186. 13C NMR (100 MHz, CDCl3) of compound 53. 
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APPENDIX 2 

Attempts to Effect the Allylic Alkylation of Additional Diazepanone 

Substrates †  

 

A2.1  INTRODUCTION 

 Having developed a tolerant Pd-catalyzed decarboxylative asymmetric allylic 

alkylation approach to enantioenriched gem-disubstituted 1,4-diazepan-5-ones (Chapter 1), 

we sought to apply this methodology to structurally related diazepane heterocycles (Figure 

A2.1.1). 

Figure A2.1.1. Scope of diazepanone derivatives discussed herein. 

 

We had hoped to revisit the allylic alkylation of isomeric 1,4-diazepan-2-ones. Our 

group had previously reported a single example of the allylic alkylation of a 1,4-diazepan-

2-one substrate bearing an N-benzyl amine protecting group, which resulted in a modest 

59% ee.1 Additionally, the allylic alkylation of benzo-fused derivatives of both 1,4-
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diazepan-5-ones and 1,4-diazepan-2-ones is a desirable transformation, as both of these 

motifs have found medicinal applications.2 

A2.2 ATTEMPTS TO ACCESS A 1,4-DIAZEPAN-2-ONE ALLYLIC 

ALKYLATION SUBSTRATE 

Compared to our group’s previous isolated example of a N-benzyl 1,4-diazepan-

2-one substrate, replacement of the N-benzyl group with an N-Boc group was expected to 

ease substrate synthesis. Thus, synthesis of this related substrate was attempted by a 

method analogous to the synthesis of 1,4-diazepan-5-ones 19a–l (see Chapter 1, Scheme 

1.2.2). 

Commercial Boc-protected 1,4-diazepan-2-one 61 smoothly underwent 

deprotonation with n-BuLi and benzoylation to afford protected diazepanone 62 (Scheme 

A2.2.1). C-acylation under our standard conditions resulted in a mixture of 1,3-dicarbonyl 

63 and unreacted starting material. 

Scheme A2.2.1. Unsuccessful synthesis of a 1,4-diazepan-2-one allylic alkylation 

substrate. 

 

Unfortunately, all attempts to prepare allylic alkylation substrates 64 were 

unsuccessful in our hands, resulting in either no reaction or putative O-alkylation to provide 
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products which hydrolyzed back to 63 upon aqueous workup. Direct alkylation of 62 also 

resulted in putative O-alkylation. This behavior may be due to the proximity of the bulky 

tert-butyl carbamate to the nucleophilic enolate carbon, coupled with the substrate 

geometry. This undesired reactivity stands in stark contrast to the facile preparation of 

analogous piperazin-2-ones 13 (Chapter 1).3 

A2.3 ATTEMPTS TO ACCESS BENZODIAZEPANE-DERIVED ALLYLIC 

ALKYLATION SUBSTRATES 

Seeking to remove the steric bulk of the Boc protecting group while maintaining 

medicinal relevance, we reasoned that close derivatives of the benzodiazepine anxiolytics 

could themselves be competent substrates for Pd-catalyzed decarboxylative asymmetric 

allylic alkylation. In 1981, Wolfe and coworkers reported that the FDA-approved 

anxiolytic diazepam (65) could be lithiated with 2 equivalents of LDA and acylated by 

treatment with ethyl acetate to provide dicarbonyl 66, albeit in poor yield (Scheme 

A2.3.1).4 Treatment of diazepam with fewer than 2 equivalents of LDA resulted in 

incomplete deprotonation—the enolate may be destabilized by antiaromaticity. 

Scheme A2.3.1. C–Acylation of diazepam (Wolfe). 

 

While conjugated enolates generally result in poor enantioselectivity in our group’s 

Pd-catalyzed decarboxylative asymmetric allylic alkylation,5 we were interested in testing 

whether the destabilized enolate of a benzodiazepine would result in a higher ee. Toward 

this end, benzodiazepine 67 was prepared in two steps by a literature procedure (Scheme 
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A2.3.2).6 This compound was subjected to routine benzoylation to yield protected 

benzodiazepine 68, but 1,3-dicarbonyl 69 was not observed under any of the acylation 

conditions tested. The use of LDA or LiHMDS as a base led to unidentified decomposition 

products, while LiTMP resulted in recovery of starting material. 

Scheme A2.3.2. Unsuccessful synthesis of a benzodiazepine allylic alkylation 

substrate. 

 

Finally, isomeric tetrahydrobenzodiazepanones 71 were evaluated as a potential 

substrate class due to their demonstrated applications in medicinal chemistry (Scheme 

A2.3.3).2b 

Scheme A2.3.3. Unsuccessful synthesis of a tetrahydro[1,4]benzodiazepanone 

allylic alkylation substrate. 
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Treatment of 1,2-phenylenediamine 70 with acrylic acid provided cyclized product 

71,7 and both nitrogen atoms could be protected over two steps to furnish carbamate 72. 

However, ester 77 was discovered not to be accessible by enolate acylation of 72. Instead, 

the highly fluorescent benzimidazole side-product 76 was isolated in 14% yield. This 

material probably arises from β-elimination of the carbamate from enolate 73, facilitated 

by the altered electronics of the aniline moiety. The resulting intermediate 74 can then 

undergo 5-exo-trig ring closure with the N-benzoyl group, leading to intermediate alkoxide 

75. Finally, during aqueous workup, aromatization with loss of acrylate provides the 

observed product 76. 

A2.4  CONCLUSION 

Attempts were made to prepare several additional diazepane-derived allylic 

alkylation substrates but were unsuccessful. In two cases (1,4-diazepan-2-ones and 

benzodiazepines), the necessary prefunctionalization of the enolate was thwarted by steric 

or electronic factors. In the third case (benzo-fused 1,4-diazepan-5-ones), an unexpected 

fragmentation of the ring system precluded the synthesis of allylic alkylation substrates. 

A2.5  EXPERIMENTAL SECTION 

A2.5.1  MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents.  Solvents were dried 

by passage through an activated alumina column under argon.8 Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS.  TLC was 

performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching or KMnO4 staining.  Silicycle SiliaFlash® P60 
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Academic Silica gel (particle size 40–63 nm) was used for flash chromatography.  1H NMR 

spectra were recorded on Varian Inova 500 MHz and Bruker 400 MHz spectrometers and 

are reported relative to residual CHCl3 (δ 7.26 ppm). 13C NMR spectra were recorded on a 

Bruker 400 MHz spectrometer (100 MHz) and are reported relative to CHCl3 (δ 77.16 

ppm). Data for 1H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, 

coupling constant (Hz), integration).  Multiplicities are reported as follows: s = singlet, d 

= doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad 

singlet, br d = broad doublet. Many NMR spectra are complicated by rotational isomerism 

about amide bonds. Reagents were purchased from commercial sources and used as 

received unless otherwise stated. 

A2.5.2  EXPERIMENTAL PROCEDURES 

 

tert-butyl 4-benzoyl-3-oxo-1,4-diazepane-1-carboxylate (62) 

 To a flame-dried round bottom flask containing lactam 61 (300 mg, 1.40 mmol, 1.0 

equiv) was added THF (14 mL). The flask was cooled to –78 °C and n-BuLi (2.5 M in 

hexanes, 0.59 mL, 1.47 mmol, 1.05 equiv) was added dropwise with stirring. Immediately 

following addition, BzCl (211 µL, 1.82 mmol, 1.3 equiv) was added dropwise. The reaction 

mixture was stirred at –78 °C for 20 min, whereafter it was quenched with saturated aq. 

NaHCO3. The resulting suspension was extracted with EtOAc (3x). The combined organic 

extracts were dried over Na2SO4, concentrated under reduced pressure, and purified by 

silica gel flash chromatography (40% EtOAc/hexanes) to afford the title compound (403 

mg, 1.27 mmol, 91% yield); 1H NMR (500 MHz, CDCl3) δ 7.65 – 7.53 (m, 2H), 7.52 – 

HN
NBoc

O
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7.43 (m, 1H), 7.42 – 7.33 (m, 2H), 4.21 (s, 2H), 4.17 – 4.03 (m, 2H), 3.81 – 3.61 (m, 2H), 

2.01 – 1.88 (m, 2H), 1.55 (d, J = 8.2 Hz, 9H). 

 

2-allyl 1-(tert-butyl) 4-benzoyl-3-oxo-1,4-diazepane-1,2-dicarboxylate (63) 

 To a flame-dried 20 mL glass vial were added imide 62 (150 mg, 0.471 mmol, 1.0 

equiv) and THF (3 mL). The vial was cooled to –78 °C and a freshly prepared solution of 

LiHMDS (87 mg, 0.52 mmol, 1.1 equiv) in THF (1.7 mL) was added dropwise with 

stirring. The reaction mixture was stirred at –78 °C for 25 min, after which allyl 

cyanoformate (65 µL, 0.61 mmol, 1.3 equiv) was added dropwise. After 1 h at –78 °C, 

additional allyl cyanoformate (50 µL, 0.47 mmol, 1.0 equiv) was added. Following an 

additional 2 h of stirring, the reaction mixture was quenched by addition to 2 N aq. HCl. 

The solution was extracted with EtOAc (3x). Na2SO4 was added to the aqueous layer to 

accelerate separation between the phases. The combined organic extracts were dried over 

a mixture of Na2SO4 and NaHCO3 and concentrated under reduced pressure. The crude 

product was purified by silica gel flash chromatography (33% EtOAc/hexanes) to afford 

recovered starting imide 62 (102 mg, 0.320 mmol, 68%) and the title compound as a white 

solid (35.7 mg, 0.0887 mmol, 19% yield); 1H NMR (500 MHz, CDCl3) δ 7.58 (d, J = 7.8 

Hz, 2H), 7.54 – 7.44 (m, 1H), 7.42 – 7.35 (m, 2H), 5.91 (ddq, J = 16.4, 11.5, 5.6 Hz, 1H), 

5.77 (s, 1H, first rotamer), 5.56 (s, 1H, second rotamer), 5.40 – 5.32 (m, 1H), 5.27 (t, J = 

10.7 Hz, 1H), 4.78 – 4.67 (m, 2H), 4.40 – 4.15 (m, 1H), 4.15 – 3.77 (m, 2H), 3.32 – 3.13 

(m, 1H), 2.05 – 1.92 (m, 2H), 1.52 (d, J = 16.1 Hz, 9H). 
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1-benzoyl-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (68) 

 To a flame-dried 100 mL round bottom flask were added benzodiazepine 676 (462 

mg, 1.96 mmol, 1.0 equiv) and THF (20 mL). The flask was cooled to –78 °C and n-BuLi 

(2.5 M in hexanes, 0.86 mL, 2.15 mmol, 1.1 equiv) was added dropwise. Immediately 

following addition, BzCl (296 µL, 2.55 mmol, 1.3 equiv) was added dropwise. The cooling 

bath was then removed, and the flask was allowed to warm to 23 °C over 30 min. Then, 

the reaction mixture was quenched with saturated aq. NH4Cl, and the resulting suspension 

was extracted with EtOAc (3x). The combined organic extracts were dried over Na2SO4 

and concentrated under reduced pressure. The crude product was combined with material 

from an earlier 0.212 mmol batch and purified by silica gel flash chromatography (33% 

EtOAc/hexanes) to afford the title compound as a pastel yellow solid (427 mg, 1.25 mmol, 

58% combined yield); 1H NMR (400 MHz, CDCl3) δ 7.76 – 7.62 (m, 4H), 7.55 – 7.42 (m, 

6H), 7.41 – 7.29 (m, 4H), 4.87 (d, J = 11.0 Hz, 1H), 4.02 (d, J = 11.1 Hz, 1H). 

 

1,3,4,5-tetrahydro-2H-benzo[b][1,4]diazepin-2-one (71) 

Prepared according to a patent procedure.7 All characterization data matched those 

reported in the patent. 
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tert-butyl 5-benzoyl-4-oxo-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepine-1-

carboxylate (72) 

To a flame-dried 500 mL round bottom flask were added benzodiazepanone 71 (5 

g, 31 mmol, 1.0 equiv), Boc2O (7.39 g, 33.9 mmol, 1.1 equiv), and THF (310 mL). The 

reaction mixture was stirred at 50 °C for 5 h, after which TLC analysis indicated no 

conversion. DMAP (379 mg, 3.1 mmol, 0.1 equiv) was then added, followed by additional 

Boc2O (3.9 g, 18 mmol, 0.6 equiv). Following cessation of reaction conversion as judged 

by TLC analysis, the reaction mixture was concentrated under reduced pressure and 

purified by automated silica gel flash chromatography (Teledyne ISCO, 0→20→100% 

acetone/CH2Cl2) to provide an intermediate carbamate containing an isomeric impurity. 

6.3 g (24.0 mmol, 1.0 equiv) of this intermediate were dissolved in THF (130 mL) 

in a flame-dried 250 mL round bottom flask. The flask was cooled to –78 °C and n-BuLi 

(2.5 M in hexanes, 11.5 mL, 28.8 mmol, 1.2 equiv) was added dropwise with stirring. After 

5 min, BzCl (3.6 mL, 31.0 mmol, 1.3 equiv) was added dropwise. After an additional 20 

min at –78 °C, the reaction mixture was quenched with aq. NaH2PO4 and extracted with 

EtOAc (3x). The combined organic extracts were dried over Na2SO4, concentrated under 

reduced pressure, and purified by automated silica gel flash chromatography (Teledyne 

ISCO, 0→100% EtOAc/hexanes) to afford the title compound. 1H NMR (400 MHz, 

CDCl3) δ 7.82 (dd, J = 8.1, 1.3 Hz, 1H), 7.69 – 7.64 (m, 2H), 7.50 – 7.45 (m, 1H), 7.43 – 

7.38 (m, 2H), 7.30 (ddd, J = 8.2, 6.8, 2.1 Hz, 1H), 7.20 – 7.13 (m, 2H), 3.70 (t, J = 4.6 Hz, 

2H), 3.01 (t, J = 4.6 Hz, 2H), 1.20 (s, 9H). 

N
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tert-butyl 2-phenyl-1H-benzo[d]imidazole-1-carboxylate 

 To a flame-dried 1-dram glass vial were added THF (0.4 mL) and TMP (27.5 µL, 

0.163 mmol, 1.2 equiv). The vial was cooled to –78 °C and n-BuLi (2.5 M in hexanes, 65.2 

µL, 0.163 mmol, 1.2 equiv) was added. The vial was then warmed to 0 °C in an ice bath. 

 To a second flame-dried 1-dram glass vial were added benzodiazepanone 72 (50 

mg, 0.136 mmol, 1.0 equiv) and THF (1 mL). The vial was cooled to –78 °C and the freshly 

prepared LiTMP solution was added dropwise. The reaction mixture was stirred for 15 min 

at –78 °C, whereafter allyl cyanoformate (18.9 µL, 0.177 mmol, 1.3 equiv) was added. 

After an additional hour of stirring, the reaction mixture was quenched with saturated aq. 

NH4Cl and extracted with EtOAc (3x). The combined organic extracts were dried over 

Na2SO4 and concentrated under reduced pressure. The crude product was combined with 

material from a second 0.136 mmol scale reaction conducted with LDA in place of LiTMP 

and purified by silica gel flash chromatography (15% EtOAc/hexanes) to provide the title 

compound as a fluorescent yellow film (11 mg, 0.037 mmol, 14% combined yield); 1H 

NMR (400 MHz, CDCl3) δ 8.07 – 8.02 (m, 1H), 7.82 – 7.77 (m, 1H), 7.66 – 7.60 (m, 2H), 

7.50 – 7.44 (m, 3H), 7.42 – 7.35 (m, 2H), 1.40 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 

154.0, 148.7, 142.7, 134.0, 132.6, 129.7, 129.3, 128.1, 125.1, 124.6, 120.3, 114.8, 85.4, 

27.7. 

N
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CHAPTER 2 

Progress Toward the Total Synthesis of Aleutianamine†  

 

2.1  INTRODUCTION 

 In 2019, Hamann and coworkers reported the isolation of the pyrroloiminoquinone 

alkaloid aleutianamine (78, Scheme 2.1.1) from the sea sponge Latrunculia (Latrunculia) 

austini found off the coast of the Aleutian Islands.1 

Scheme 2.1.1. Aleutianamine and examples of related natural products. 
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This compound was found to possess potent cytotoxicity against several human solid 

tumor cell lines, with exceptional selectivity for pancreatic cancer (25 nM IC50 against 

PANC-1). The structure of aleutianamine was elucidated by a combination of spectroscopic 

and density functional theory methods. Structurally, aleutianamine bears a highly fused 

heptacyclic ring system, which consists of a planar pyrroloiminoquinone unit, a bridged 

[3.3.1]bicycle, and another bridging thioaminal linkage. The pyrroloiminoquinone moiety of 

aleutianamine is shared with related natural products including the discorhabdins and 

makaluvamines. Specifically, discorhabdins A (79) and B (80) are proposed to have a 

biosynthetic relationship to aleutianamine (vide infra), as they also share the alkenyl bromide 

and thioaminal linkage. Makaluvamine F (81), which bears a tethered aryl bromide, may also 

be a biosynthetic precursor. Aleutianamine also bears some structural resemblance to 

atkamine (82) and other discorhabdins (e.g 83, 84). Pyrroloiminoquinones have been 

longstanding targets for total synthesis.2,3 

The congested tertiary sulfide at C(5) of aleutianamine is a unique structural motif 

and presents a considerable synthetic challenge. The multi-bridged ring system of the natural 

product bears two stereocenters in addition to the tertiary sulfide and is highly strained due 

to extensive unsaturation. The unusual structure of aleutianamine, coupled with its potent 

biological activity, makes this compound an attractive synthetic target of considerable 

challenge.  

Aleutianamine is proposed to biosynthetically arise from makaluvamine F (81) by 

oxidation to p-quinone methide 85, which could then cyclize to hemiaminal 86 (Scheme 

2.1.2).1 Reduction would lead to aleutianamine (78). Alternatively, either S-bromination of 

discorhabdin A (79) followed by HBr elimination or protonation of discorhabdin B (80) 
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would lead to sulfenium intermediate 87. Then, enamine-like reactivity (blue) would lead to 

cyclopropane 88, or a σ-bond shift (red) would afford tertiary carbocation 89. Both 88 and 

89 could finally undergo an elimination reaction, which following cyclization would lead to 

common intermediate 86, one biosynthetic step away from aleutianamine (78). 

Scheme 2.1.2. Proposed biosynthetic routes to aleutianamine. 

 

 We set out to develop a synthetic route to aleutianamine that was orthogonal to these 

biosynthetic proposals, as this exercise was expected to provide a unique opportunity for 

organic methods development and would lead to new strategies that could be applied to the 

synthesis of other pyrroloiminoquinone alkaloids. 
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2.2  INITIAL RETROSYNTHETIC ANALYSIS 

 In designing a total synthesis of aleutianamine, we recognized the need to 

orchestrate the introduction of reactive functional groups to minimize the potential for 

deleterious reactivity. The alkenyl bromide was identified as one such reactive moiety, and 

the introduction of this functional group was therefore planned for the latest possible stage. 

Additionally, while syntheses of the related discorhabdins have often involved early 

oxidation of an arene precursor to the quinone oxidation state,2 we imagined that delaying 

this oxidation would enable more diverse strategies for functionalizing the 6-membered 

core. 

Thus, retrosynthetically, aleutianamine (78) was expected to arise from keto-arene 

90 by arene oxidation, enol triflate formation, and late stage triflate-halogen exchange.4 An 

olefination of vinylogous ester 91 followed by intramolecular thioaminal formation could 

produce 90. Primary aniline 91 could be disconnected by arene C–H amination—the 

relatively late-stage introduction of this electron-donating group would render earlier arene 

intermediates more stable and more easily accessible, although we recognized that the 

requisite amination would present a challenge. Additionally, we planned to construct the 

remaining bridged bicycle at this stage by a formal γ-amination of the vinylogous ester, 

inspired by a related sequence used to access Securinega alkaloids.5 These disconnections 

lead back to secondary aniline 92. The aryl C–N bond could be disconnected by a second 

C–H amination, now intramolecular, and tryptophol precursor 93 could be prepared by an 

asymmetric α-arylation of vinylogous ester 95 with aryl bromide 94. 
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Scheme 2.2.1. Initial retrosynthetic analysis of aleutianamine. 
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Table 2.3.1. Investigation of the α-arylation of model vinylogous ester 96.a 

 
[a] Unless otherwise indicated, reactions were conducted at 0.1 M concentration with 1 equiv 96, 1 equiv Ar–
X, 1 equiv base, and 10 mol % Pd. Reactions with (R)-SEGPHOS were conducted with 12 mol % ligand. All 
yields were determined by 1H NMR analysis with 1,3,5-trimethoxybenzene as an internal standard. [b] 3 equiv 
PhBr. [c] 2 equiv NaOt-Bu. d 20 mol %. 

In order to circumvent the deleterious effect of the sulfur atom on α-arylation, an 

alternative order of events involving sulfide installation subsequent to α-arylation was 

envisioned. Corey reported an enantioselective phase transfer-catalyzed addition of 

nucleophiles to α-bromooximes,8 including an example of the addition of a sulfur 

nucleophile (Scheme 2.3.2). Treatment of oxime 100 with base led to intermediate 
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PPh2
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entry solvent temp (°C) Pd source added
ligand Ph–X base % SM % 97

1 1,4-dioxane 80 — NaHMDS 34 16Pd(Pt-Bu3)2 PhBr
2 1,4-dioxane 80 — NaHMDS 31 10Pd(Pt-Bu3)2 PhBrb

3 1,4-dioxane 60 — NaHMDS 19 6.5Pd(Pt-Bu3)2 PhBr
4 1,4-dioxane 100 — NaHMDS 19 6.3Pd(Pt-Bu3)2 PhBr
5 1,4-dioxane 80 — LiHMDS 28 11Pd(Pt-Bu3)2 PhBr
6 1,4-dioxane 80 — LDA 26 21Pd(Pt-Bu3)2 PhBr
7 1,4-dioxane 80 — KHMDS 5.7 1Pd(Pt-Bu3)2 PhBr
8 1,4-dioxane 80 — 4.9 1.6Pd(Pt-Bu3)2 PhBr NaH
9 60 99 0Pd(dba)2 PhOTf NaOt-BucPhCH3 ND
10 60 99 0Pd(dba)2 PhOTf LDAPhCH3 ND
11 1,4-dioxane 80 — LDA 0Pd(Pt-Bu3)2 PhOTf ND
12 1,4-dioxane 80 — LDA 0Pd(Pt-Bu3)2 PhCl ND
13 1,4-dioxane 80 — LDA 15Pd(Pt-Bu3)2 PhI 11
14 60 99 0Pd(dba)2 PhBr NaOt-BucPhCH3 ND

15 60 99 0Pd(dba)2 PhBr LDAPhCH3 ND
16 80 — LDA 29 9.4Pd(Pt-Bu3)2 PhBrPhCH3

17 80 — LDA 22 8Pd(Pt-Bu3)2 PhBr2:1 hexanes/PhCH3

18 80 — LDA 27 3.3Pd(Pt-Bu3)2 PhBrDMF
19 80 — LDA 27 12Pd(Pt-Bu3)2 PhBr2-MeTHF
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21 80 — LDA 21 6.9Pd(Pt-Bu3)2 PhBrCPME
22 80 99 LDA 0Pd(dba)2 PhBr1,4-dioxane ND
23 80 LDA 13Pd(dba)2 PhBr1,4-dioxane 28Pt-Bu3
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unsaturated nitrosamine 102, which underwent addition of PhCOS– catalyzed by chiral 

ammonium salt 101 to afford enantioenriched α-thioketone 103. 

Scheme 2.3.2. Corey’s addition of a sulfur nucleophile to an α-bromooxime. 

 

An appropriate tryptophol-derived aryl bromide was necessary for the α-arylation 

reaction toward a substrate to which Corey’s chemistry could be applied. The Bartoli 

indolization was first examined as a method to prepare indole 105, which could potentially 

be advanced to a tryptamine (Scheme 2.3.3A). Aryl fluoride 104 underwent a precedented 

SNAr reaction with NaOMe,9 but subjection of the product to Bartoli indolization 

conditions led only to nonspecific decomposition despite its similarity to known 

substrates.10 
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Scheme 2.3.3. Synthesis of an indole-derived aryl bromide coupling partner. 

 

Satisfyingly, treatment of aryl bromide 107 with known vinylogous ester 108,13 

base, and Pd(Pt-Bu3)2 led to the formation of α-arylated product 109 in 43% yield (Scheme 

2.3.4).14 The silyl-protected indole was found to be optimal for this transformation—a tosyl 

indole led to a complex reaction profile, while a Boc-protected indole led to acylation of 

the enolate of vinylogous ester 108. Unfortunately, α-bromination of arylated ketone 109 

could not be effected under any conditions tested, with aromatized or γ-brominated 

products being isolated. 

Scheme 2.3.4. Enolate acylation and subsequent unsuccessful bromination. 
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As access to bromoketone 110 would be necessary in order to install the sulfide by 

Corey’s method, the synthetic plan depicted in Scheme 2.2.1 was abandoned at this 

relatively early stage. The challenges encountered with Pd-catalyzed arylation of sulfide-

containing substrate 96 and the facile nature of the aromatization of the cyclohexenone 

moiety of 109, did, however, inform later synthetic plans—the sulfide installation was 

delayed to a later stage, and care was taken to introduce/construct the 6-membered 

carbocycle in a lower oxidation state to prevent aromatization.  

2.4  2ND-GENERATION RETROSYNTHESIS 

 At this stage, a revised retrosynthetic analysis of aleutianamine that would 

circumvent the issues encountered with enolate arylation strategies was envisioned 

(Scheme 2.4.1). As in the first retrosynthesis, aleutianamine was planned to arise from 

keto-arene 90, which could be prepared by olefination of vinylogous ester 91 and 

thioaminal formation. In contrast to the earlier synthetic plan, however, vinylogous ester 

91 was disconnected to saturated hydroxyketone 111 by sulfide installation via bridgehead 

carbocation chemistry (demonstrated in a model system, see Appendix 5) and oxidation. 

This approach would enable a wider array of strategies for construction of the bridged 

bicycle, including methods that would not tolerate a sulfide. Additionally, as the feasibility 

of installing N(9) (aleutianamine numbering), the protected aniline group of pentacycle 

111, by late-stage arene amination was uncertain, strategies involving precursors both with 

and without this nitrogen atom were investigated. 

The bridged bicyclic ketone of pentacycle 111 could be traced back either to 4-

quinolone 112 by a formal [3+3] cycloaddition approach,15 or to a protected derivative of 
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1,2-diketone 113 by halogenation and an intramolecular Barbier–type addition. Both of 

these intermediates would arise from tricyclic aniline 114. 

Scheme 2.4.1. Revised retrosynthetic analysis of aleutianamine. 

 

2.5  PREPARATION OF A VERSATILE TRICYCLIC ANILINE 

 As aniline 114 is essentially a reduced and protected variant of tricyclic 
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vanillin (115) via dimethoxyindole 116 (Scheme 2.5.1A).2b Unfortunately, addition of 

phthalimide to afford derivative 118, which would obviate later aniline protection, was 

unsuccessful (Scheme 2.5.1B). Instead, a substitution reaction with ammonium chloride 

afforded known aminopyrroloiminoquinone 119, previously accessed by White.16 While 
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methylation of the resulting putative phenoxide could not be effected, and the reduced 

intermediate was not stable to air. 

Scheme 2.5.1. Attempts to reduce a pyrroloiminoquinone to aniline 120.  

 

 Due to the challenges associated with reducing known pyrroloiminoquinone 119 to 
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Scheme 2.5.2. Strategies envisioned for the construction of aniline 114. 

 

Investigation of the Larock indolization of 123 led to the development of a powerful 

cascade cyclization that afforded a derivative of tricycle 114 in a single step. While the 

advancement of the resulting dianiline intermediate did not bear fruit in the context of the 
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thesis chapter. 
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would circumvent the intermediacy of a potentially explosive arenediazonium salt. The 

Fischer indolization of benzophenone arylhydrazones was reported by Buchwald,18 but 

treatment of hydrazone 125 with 2,3-dihydrofuran and acid led to nonspecific 

decomposition. Desired tryptophol 126 was not detected. Indeed, Buchwald and coworkers 

noted that the C(2)-unsubstituted indoles derived from aldehydes were unstable under their 

reaction conditions.18b 
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Scheme 2.5.3. Attempted Fischer indolization of a hydrazone derivative. 

 

Fischer indolization was instead performed on a free arylhydrazine (Scheme 

2.5.4A). Hydrochloride salt 127 was available in 1 step (diazotization and reduction) by a 

patent procedure.19 Satisfyingly, treatment with 2,3-dihydrofuran and excess acid in a 

mixture of water and dimethylacetamide afforded desired tryptophol product 126. While 

the 29% yield of tryptophol 126 from 127 could not be increased, our attention was drawn 

to Schmidt’s report that terminal methylation of arylhydrazines could facilitate Fischer 

indolization (Scheme 2.5.4B).20 Copper-catalyzed cross coupling of aryl bromide 128 with 

hydrazine derivative 129 was accomplished under the conditions developed by Singer and 

successfully employed by Schmidt using ligand 130,21 and Boc cleavage yielded 

methylated arylhydrazine salt 131. Interestingly, while the Fischer indolization of 131 now 

proceeded to afford tryptophol 126 at ambient temperature, the yield of the product was 

not improved. Moving forward, we opted to continue employing the classical Fischer 

indolization of arylhydrazine salt 127, since no chromatography was required in this 

sequence prior to indolization. Thus, despite the low indolization yield, tryptophol 126 

could be prepared in the multigram quantities necessary for synthetic route development. 
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Scheme 2.5.4. Access to desired tryptophol 126 by Fischer indolization. 

 

 Advancement of tryptophol 126 to a derivative of key tricyclic aniline 114 would 

require protection of the indole and conversion of the tryptophol to a tryptamine (Scheme 

2.5.5A). Simultaneous tosylation of the indole and primary alcohol was followed by SN2 

displacement of the primary tosylate with Boc2NH to afford protected tryptamine 132. 

Biphasic tosylation conditions with a tetrabutylammonium phase transfer catalyst were 

uniquely effective for the bis-tosylation of 126; NaH in THF led to monotosylation of the 

indole while Et3N and DMAP in CH2Cl2 led to monotosylation of the alcohol. Other sets 

of conditions tested led only to nonspecific decomposition. Treatment of imide 132 with 

TFA led to deprotection to afford free tryptamine 133. 

While this sequence enabled access to sufficient quantities of 133 for the 

investigation of downstream chemistry, the yield of the bis-tosylation step was inconsistent 

and dropped sharply at a higher scale. An improved sequence to access tryptamine 133 was 
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therefore developed (Scheme 2.5.5B). Azidation of tryptophol 126 by a Mitsunobu reaction 

provided an intermediate azide, the indole was tosylated under biphasic conditions, and a 

final Staudinger reduction provided primary amine 133 in moderate yield over 3 steps. 

Scheme 2.5.5. Advancement of tryptophol 126 to a protected tryptamine. 

 

 Conditions for the intramolecular C–N coupling of the amine and aryl chloride of 

133 were then evaluated (Table 2.5.6). The array of methods at our disposal was limited by 

the challenge associated with oxidative addition into an aryl chloride rather than a more 

reactive aryl bromide or iodide. Buchwald–Hartwig coupling using LiHMDS as a base 

provided only trace product (entry 1).22 Other nickel-23 or copper-catalyzed24 methods 

failed to deliver an appreciable quantity of the desired product (entries 2/3). Control 

experiments revealed that heating tryptamine 133 with NaOt-Bu led to detosylation, while 

heating with LiHMDS led to tosyl group migration to the primary amine. Optimization 

efforts were thereafter limited to the use of weak bases. Buchwald–Hartwig coupling in 

dioxane using either K3PO4 or Cs2CO3 as the base led to slow formation of tricycle 134, 

but the sluggish nature of the reactions (a likely result of low inorganic base solubility in 
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dioxane) precluded their use (entries 4/5). Satisfyingly, the copper-catalyzed Ullman-type 

coupling of aryl chlorides developed by Ma afforded 134 in 51% yield with the use of 

oxalamide ligand 135 (entry 6).25  

Table 2.5.6. Evaluation of the intramolecular C–N coupling of 133.a 

 
[a] All reported yields are isolated yields unless otherwise noted. [b] Slight conversion to the desired product was 
observed by LC–MS analysis of the crude reaction mixture after 18 h, but the reactions were not driven to 
completion. [c] Yield on a 0.396 mmol scale. Yield decreased to 38% on a 1.50 mmol scale. 

Unfortunately, this yield decreased at higher scales, so optimization efforts were 

continued. Addition of 18-crown-6 to a Buchwald–Hartwig coupling employing K3PO4 did 

accelerate the reaction, but 134 was obtained in only 33% yield (entry 7). Instead, to 

improve base solubility, t-BuOH was tested as a solvent. The reaction did not proceed at 

70 °C (entry 8) but conducting the coupling at 100 °C in a sealed tube afforded 134 in 

synthetically useful yields (entries 9/10), with K3PO4 slightly outcompeting Cs2CO3 as a 

base. Raising the palladium loading to 5 mol % improved the consistency of the reaction 

and increased the yield to 90%. 
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2.6  STRATEGIES FOR BRIDGED BICYCLE FORMATION 

Now enabled by a scalable route to tricyclic aniline 134, the formation of the 

bridged [3.3.1]bicycle of the natural product was investigated. First, we set out to advance 

aniline 134 to a tetracyclic quinolone that could undergo a formal [3+3] cycloaddition 

(Scheme 2.6.1). Aniline 134 was condensed with trimethyl orthoformate and Meldrum’s 

Acid to yield bright yellow adduct 136. The cyclization of related adducts by pyrolysis is 

known to afford 4-quinolones.26 Pyrolysis of 136 led only to nonspecific decomposition, 

while treatment with TiCl4 led to inefficient reversion to aniline 134. 

 Aniline 134 was instead heated with methyl propiolate, inducing an aza-Michael 

reaction to yield “push-pull” olefin 138 in high yield. Ultimately, cyclization did proceed 

in Eaton’s Reagent at 60 °C, but concomitant migration of the indole tosyl group to the 

C(2) position was observed and the product was only isolated in 34% yield. To our 

knowledge, the migration of a tosyl group from an indole nitrogen to C(2) is not 

precedented. Other indole protecting groups that were expected to be less likely to migrate 

were briefly evaluated (see Appendix 5). A Piv group spontaneously migrated to the 

primary amine of the Piv-protected derivative of 133, while an N-allyl indole derivative of 

“push-pull” olefin 138 did not survive the harsh conditions of the cyclization. This formal 

[3+3] approach was therefore abandoned in favor of a ketone 1,2-addition strategy for the 

construction of the [3.3.1]bicycle. 
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Scheme 2.6.1. Advancement of tricycle 134 to a tetracyclic quinolone. 

 

 Early model studies revealed that assembly of a 1,2-diketone system and Friedel–

Crafts-type addition of the arene into one of the ketones was not feasible. A strategy 

involving intramolecular Barbier-type addition was therefore pursued. This strategy would 

necessitate tethering a 6-membered ketone to the aniline nitrogen. The aza-Michael 

reaction was identified as an optimal tactic for this C–N bond formation. 

Reports of the aza-Michael addition of secondary anilines into α,β-unsaturated 

carbonyl compounds bearing β-substitution are relatively scare. Cyclohexene (140) was 

used as a model enone for this addition, as it was anticipated that some optimization would 

be necessary. While heating aniline 134 with enone 140 in DCE did lead to trace product 

(by LC–MS analysis), we were unable to drive this reaction to a higher degree of 

conversion (Table 2.6.2, entry 1). The addition of Lewis acids also failed to promote the 

reaction (entries 2–4). While HFIP is known to promote the addition of anilines into acyclic 

Michael acceptors,27 it did not effect the coupling of 134 and 140 (entry 5). A set of DMAP-
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catalyzed conditions utilized for aza-Michael additions of indoline also failed to promote 

the desired reaction (entry 6).28 

Table 2.6.2. Unsuccessful aza-Michael addition of aniline 134 into cyclohexenone.a 

 
[a] Reaction outcomes were determined by LC–MS analysis. [b] Reaction led to a complex mixture containing 
unreacted 134 and nonspecific decomposition products. 

Realizing that additional optimization would be necessary, we directed our efforts 

to a model system, utilizing tetrahydroquinoline (142) as a nucleophile in order to preserve 

valuable material (Table 2.6.3). Conducting the reaction at elevated temperature in aqueous 

Na2CO3 led to only slight conversion but did enable the isolation and characterization of 

an authentic standard of product 143 in 4% yield (entry 1). Interestingly, heating 142 and 

140 in AcOH, with or without a CuI additive, led to the formation of a different major 

product (entries 2/3). This product was not fully characterized, although LC–MS analysis 

indicated that it may be an isomer of desired product 143. Lee reported an aza-Michael 

addition of anilines to acyclic Michael acceptors catalyed by CuCl and NHC or phosphine 

ligands.29 Although 5 ligands were tested (entry 4, 144–148, Scheme 2.6.4), no reactivity 

was observed in the system at hand.  
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Table 2.6.3. A model system for aza-Michael addition.a 

 
[a] Reaction outcomes were determined by LC–MS analysis unless otherwise noted. [b] Isolated yields. [c] 7 
mol % CuCl, 7 mol % ligand, 14 mol % KOt-Bu. 

Scheme 2.6.4. Ligands tested in entry 4 of Table 2.6.3. 

 

The RuCl3-catalyzed reaction conditions reported by Wang led to only trace product 

(entry 5). Finally, to our delight, when 142 and 140 were combined in a mixture of 

triethylamine and acetic acid, as described for basic amines and primary anilines by Verma 

et al., the desired tertiary aniline 143 was obtained in 41% isolated yield (entry 6).30 

 Intriguingly, this model aza-Michael addition appeared qualitatively to proceed to 

a higher degree of conversion at lower reaction temperatures, and an excess of 
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equilibrium nature of related aza-Michael additions of π-excessive heterocycles into β-

substituted unsaturated esters catalyzed by base.31 The reactions reported by Condakes 

appear to exhibit a similar thermodynamic profile to the formation of 143 –– increasing the 

reaction temperature led to a more reactant-favored equilibrium. 

 The ionic liquid-promoted aza-Michael reaction to form model compound 143 

translated well to tricycle 134 (Scheme 2.6.5). Aza-Michael reaction with cyclohexenone 

was followed by selective ortho-bromination of the aniline with NBS to afford model 

cyclization substrate 149. 

Scheme 2.6.5. Preparation of a model Barbier addition substrate. 

 

 With model substrate 149 in hand, we evaluated conditions for a Barbier-type 

addition of the aryl bromide into the cyclic ketone (Table 2.6.6). Lithium-halogen exchange 

did not provide the desired tertiary alcohol 150––we hypothesize that the generated 

aryllithium species could be protonated intramolecularly to form an enolate (entry 1). 

Formation of an aryl Grignard species could not be effected (entries 2–3). While the 

Nozaki–Hiyama–Kishi reaction is generally selective for addition into aldehydes, the use 

of forcing reaction conditions was anticipated to provide an opportunity to achieve the 

desired ketone addition. Subjecting bromide 149 to standard NHK conditions at elevated 

temperature led to the formation of trace amounts of desired alcohol 150, but primarily led 

to retro-aza-Michael fragmentation to tricycle 134 with accompanying protodebromination 

(entry 4). The use of neocuproine as a ligand for nickel was hypothesized to promote 
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reactivity under milder conditions,32 but only protodebromination was observed in this case 

(entry 5). Switching the catalyst from nickel to palladium and employing a stoichiometric 

variant of Yamamoto’s conditions for the intramolecular addition of aryl bromides to 

ketones resulted, satisfyingly, in the formation of desired alcohol 150 (entry 6).33 This 

reaction was then conducted at a larger scale with catalytic palladium (entry 7)—while the 

low yield obtained suggests poor or no catalyst turnover despite the addition of 1-hexanol 

(used by Yamamoto as a stoichiometric reductant), a sufficient quantity of 150 was 

obtained to confirm the structure of the product. We therefore decided to move forward 

with a Pd-mediated approach to construction of the azabicyclononane moiety and set out 

to prepare an analogue of cyclization substrate 149 in a higher oxidation state. 

Table 2.6.6. Barbier-type addition into a model ketone.a 

 
[a] Reaction outcomes were determined by LC–MS analysis unless otherwise noted. [b] Isolated yields. 

An additional functional handle could be introduced in the desired oxidation state 

as a ketal, which would obviate later redox manipulations. Toward this aim, 1,2-dione 151 

was subjected to known monoketalization (Scheme 2.6.7).34 Subsequent desaturation of 

ketone 152 was complicated by the propensity of desired enone 153 to undergo 
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aromatization by elimination of methanol. While IBX oxidation, selenide installation and 

selenoxide elimination, and Saegusa–Ito oxidation all failed to deliver the desired enone, 

the copper-catalyzed method developed by Dong provided enone 153 in modest yield.35 

Desaturation with N-t-butylbenzenesulfinimidoyl chloride also provided the desired 

product, but Dong’s conditions were favored due to the ready availability of the reagents. 

Scheme 2.6.7. Preparation of a ketal-bearing Michael acceptor. 

 

 Subsequent aza-Michael addition of aniline 134 and bromination proceeded 

smoothly to afford Barbier addition substrate 154 (Scheme 2.6.8). Unfortunately, 

Yamamoto’s conditions failed to provide tertiary alcohol 155 despite the successful 

application of this method toward the cyclization of model substrate 149. 

Scheme 2.6.8. Preparation of an oxidized intramolecular Barbier addition substrate. 

 

While several additional sets of Ni-catalyzed conditions were tested, providing only 

trace cyclized product,36 the simple conditions developed by Reissig for Pd-catalyzed 

addition of aryl iodides to ketones led to efficient cyclization of aryl bromide 154 (Scheme 

2.6.9).37 Interestingly, however, the major product of this cyclization was found to be 

azabicyclo[3.2.2]nonane 156, arising from formal addition of the arene to the ketal instead 

of the ketone. It is uncertain if this addition occurs directly to the ketal or if 156 is formed 
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by addition of an arylpalladium species to the ketone with concomitant semipinacol 

rearragement of a [3.2.1]bicycle. In any case, allowing ketone 156 to stand overnight in 

CDCl3 (likely containing catalytic acid formed by decomposition, and concievably 

containing at least 1 equivalent of water) effected complete rearrangement to desired 

bicyclic ketone 157 bearing a bridgehead alcohol. Alternatively, rearrangement of 156 to 

bicyclic ketal 155 was promoted by acidic methanol. Finally, employing a stoichiometric 

quantity of Pd(PPh3)4 in the Barbier-type addition rather than using Et3N as a 

stoichiometric reductant directly afforded bicyclic ketal 155, the initially anticipated 

product. The structure of 155 was confirmed by x-ray crystallography. 

Scheme 2.6.9. Cyclization of bromoarene 154 and unexpected rearrangements. 
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With desired pentacyclic intermediate 155 in hand, strategies were evaluated for 

the installation of the 1,3-dicarbonyl equivalent (e.g., 158, Scheme 2.6.10A) that would be 

required for eventual formation of the alkenyl bromide of aleutianamine. In general, 

elaboration of a saturated ketone or enone to a 1,3-dicarbonyl equivalent is challenging to 

perform directly, with Wacker-type oxidations failing in all but the simplest cases (see 

Appendix 5 for preliminary evaluation of a relevant oxidation). 

 We first imagined that a vinylogous ester could be installed by allylic oxidation of 

an enol ether (Scheme 2.6.10B).38 Thus, ketal 155 was treated with TMSOTf and i-Pr2NEt, 

leading to silylation of the tertiary alcohol and elimination of the ketal to afford methyl 

enol ether 160. Unfortunately, under selenium- or hypervalent iodine-mediated allylic 

oxidation conditions, nonspecific decomposition was observed with no detectable trace of 

the desired compound 161. 

Scheme 2.6.10. Attempted allylic oxidation of pentacycle 160. 
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for this sequence was reported by d’Angelo (Scheme 2.6.11A), wherein sulfide 162 was 

converted to vinylogous thioester 163 with NCS, and subsequent treatment with NaOMe 

and acidic hydrolysis afforded 1,3-diketone 164.39 Similarly, Kakisawa reported the 

desaturation of sulfide 165 with concomitant ketal hydrolysis (Scheme 2.6.11B).40 The 

product 166 underwent direct alkaline hydrolysis to diketone 167. In our system, ketal 155 

underwent hydrolysis to the ketone under biphasic conditions, double silylation to afford 

an intermediate TMS enol ether that was surprisingly stable to silica, and Saegusa–Ito 

oxidation to afford enone 168 (Scheme 2.6.11C). 

Scheme 2.6.11. Attempted β-oxidation by a thiol conjugate addition approach. 
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Conjugate addition of PhSH afforded sulfide 169. Unfortunately, treatment of 169 

or the derived ethylene ketal with various halogenating reagents did not effect the necessary 

desaturation to vinylogous thioester 170, unlike in the systems of d’Angelo and Kakisawa.

 While the evaluation of further reaction conditions could indeed lead to a 

synthetically useful derivative of 1,3-dicarbonyl 158, at this point, we had several concerns 

about the synthetic route leading up to sulfide 169. Namely, the route was highly linear, 

proceeding in a longest linear sequence of 13 steps. Although the feasibility of bridgehead 

sulfide installation had been demonstrated in a model system (see Appendix 5), we realized 

that the plan to subject a late-stage intermediate to the harsh carbocation chemistry 

necessary for this transformation bore excessive risk. Additionally, having already required 

13 steps to access an intermediate lacking both the bridgehead sulfide and the alkenyl 

bromide of the natural product, the synthetic sequence would probably become inelegantly 

lengthy over the course of the installation of these challenging motifs. We therefore 

conceived of a 3rd-generation retrosynthetic analysis of aleutianamine. 

2.7  3rd-GENERATION RETROSYNTHESIS 

 An ideal synthesis of aleutianamine would: 1) be convergent and enable rapid 

assembly of structural complexity, 2) provide a robust strategy for the construction of the 

tertiary bridgehead sulfide moiety of the natural product, and 3) take advantage of the 

scalable early-stage chemistry already developed during our previous synthetic efforts. 

 A retrosynthetic analysis that would meet all of these requirements could, like our 

previous strategies, invoke a late-stage arene oxidation, but now, aleutianamine would be 

tracked back to doubly unsaturated thiolactone 171, which could undergo reduction and 

ring closure (Scheme 2.7.1). 
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Structural simplification of hexacycle 171 by disconnection of the acyclic aniline 

and alkenyl bromide leads back to thiobutenolide precursor 172—while we aimed to install 

the bromide in a selective fashion, carrying a functional handle R1 through the synthetic 

sequence was envisioned as an alternative strategy. From this point, in a highly simplifying 

disconnection, 172 could arise from haloarene 173 by an unprecedented cyclization 

reaction involving dearomatization of the thiophene ring. This cyclization would establish 

the full carbon skeleton of the natural product as well as the bridgehead sulfide in a single 

step. Tertiary aniline 173 would arise from a convergent fragment coupling of tricyclic 

aniline 134 and keto-thiophene 174 by reductive amination followed by arene 

halogenation. Rapid access to material to test the key cyclization step would be facilitated 

by the access to tricycle 134 already enabled by our previous synthetic efforts and by facile 

preparation of 2-aminothiophenes by the Gewald reaction. 

Scheme 2.7.1. 3rd-generation retrosynthetic analysis of aleutianamine. 
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Gewald aminothiophene synthesis in the presence of ethyl cyanoacetate to afford 2-

aminothiophene 176 under published conditions.41 Saponification and TFA-promoted 

decarboxylation then served to remove the ester group, and the resulting amine was readily 

acetylated to provide amide 177. Finally, the ketal could undergo acidic hydrolysis to 

provide desired ketone 178. As ketone 178 was found to undergo oxidation in air, this 

compound was prepared just prior to use or stored in the glovebox. Syntheses of analogues 

of 178 bearing functional handles for alkenyl bromide installation were also attempted (see 

Appendix 5), but each functional handle tested presented its own synthetic obstacles and 

these approaches were eventually abandoned in favor of planned late-stage alkenyl 

bromide installation. 

Scheme 2.8.1. Construction of an acetamidothiophene coupling partner. 

 

 Now with access to both fragments, the key reductive amination was tested. While 
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products prior to complete consumption of the starting material. The use of THF as the 

reaction solvent was crucial to maximally (albeit not completely) suppress this undesired 

reactivity, allowing for the preparation of key bromoarene cyclization substrate 179. Note 

that bromination of tricycle 134 prior to coupling completely shut down the reductive 

amination. 

Scheme 2.8.2. Fragment coupling to prepare a dearomative cyclization substrate. 

 

 While Pd-catalyzed dearomative Heck-type transformations of furans have been 

reported,43 related transformations of thiophenes are scarce and have not been performed 

by transition metal catalysis. A possible explanation for the lack of reports of thiophene 

dearomatization by Heck-type reactivity is the high degree of aromaticity of thiophenes 

compared to other π-excessive heterocycles.44 We therefore opted to model the desired 

transformation on reported dearomative intramolecular arylations of phenols 180, which 

lead to ketones 181 (Scheme 2.8.3). Buchwald’s initial report of this transformation has 

inspired further development by other groups45 and synthetic applications.46 Examples 

exist of related dearomative transformations of anilines, albeit with a limited scope.47 

Based on this combined precedent, we envisioned that the dearomative arylation of 

aminothiophenes 182 to access thioimidates 183 would be feasible, driven by 

deprotonation of the aminothiophene to render the heterocycle more electron-rich and by 

the formation of an additional C=N π-bond. 
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Scheme 2.8.3. Known dearomative arylation and desired transformation of 

thiophenes. 

 

 Indeed, gratifyingly, treatment of brominated acetamide 179 with Pd0, ligand, and 

base under conditions derived from those used by Buchwald for the dearomative arylation 

of phenols provided desired cyclized thioimidate 184 on the first attempt with 

protodebromination as the primary side product (Scheme 2.8.4).45a The successful 

application of this transformation completes the carbon skeleton of the natural product. 

Scheme 2.8.4. Key dearomative cyclization of aminothiophene 179. 
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 Interestingly, attempts to effect acidic or basic hydrolysis of acetylthioimidate 184 

to thiolactone 185 led only to deacetylation with no further reactivity (Scheme 2.8.5). 

Under acidic conditions, prolonged heating led to nonspecific decomposition after 

deacetylation. This behavior was rather surprising given the generally facile hydrolysis of 

imines. Deacetylated thioimidate 186 (prepared independently, vide infra) was exposed to 

several electrophilic nitrogen sources in an attempt to render the nitrogen a better leaving 

group, unsuccessfully. 

Scheme 2.8.5. Attempts to access a thiolactone from acetylthioimidate 184. 

 

 We imagined that a derivative of thioimidate 184 bearing a more electron-
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Scheme 2.8.6. Synthesis of a TFA-protected aminothiophene. 

 

 Coupling of tricycle 134 and ketone 188 proceeded smoothly by reductive 

amination, and bromination provided cyclization substrate 189 (Scheme 2.8.7A). Ortho-

brominated product 189 was the only product isolated from the reaction mixture, with the 

more electron-deficient TFA-protected aminothiophene not undergoing competitive 
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possibly due to adventitious water originating from the hygroscopic base. It was thus clear 

that the TFA group would not facilitate hydrolysis. Instead, free thioimidate 186 was 

sulfonylated with TsCl to provide tosyl-protected derivative 190. 
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Scheme 2.8.7. Improved thioimidate synthesis and subsequent tosylation. 

 

Subjecting tosylthioimidate 190 to basic hydrolysis led to desired thiolactone 185 

in 68% yield with 11% recovered starting material (Scheme 2.8.8). Notably, the yield of 

185 varied significantly depending on the solvent ratio (excluding THF led to inconsistent 

results due to low solubility), temperature (a low yield was obtained at 60 °C, with LC–

MS evidence for partial hydrolysis products that did not convert to 185 upon further 

subjection to alkali), and air exposure (the electron-rich arene appears to undergo 

nonspecific decomposition by an oxidative pathway). 

Scheme 2.8.8. Successful hydrolysis of thioimidate 190. 
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Prior to studying alkenyl bromide installation or arene amination, a test reaction 

was conducted to determine the feasibility of condensation to form the thioaminal moiety 

of the natural product (Scheme 2.8.9). Thiolactone 185 was treated with DIBAL to afford 

an intermediate thiolactol as a mixture of diastereomers. Heating this intermediate with p-

anisidine, a model aniline, formed a trace amount of putative thioaminal 191, as detected 

by LC–MS. 

Scheme 2.8.9. Demonstration of the feasibility of thioaminal formation. 

 

Following this promising result, installation of the final nitrogen atom of the natural 

product was attempted (Scheme 2.8.10). Reactions of thioimidate 184 studied at an earlier 
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Scheme 2.8.10. Installation of the final nitrogen atom by azidation and reduction. 

 

 While further optimization may enable access to thiolactol 193, we instead directed 
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Stahl’s Pd/diazafluorenone (197) conditions,53 reported to lead to rapid aromatization of 

cyclohexanone, did not lead to any reactivity (entry 8). 

Table 2.8.11. Conditions tested for direct desaturation of thiobutenolide 185. 
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efforts will be made in the future to circumvent the requirement of this process for 

stoichiometric palladium. 

Scheme 2.8.12. Desaturation of thiolactone 185 to diene 195. 
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recalcitrant to sulfide displacement by a variety of nucleophiles, and the phenyl sulfide did 

not undergo selective oxidation to render it a better leaving group. 

Scheme 2.8.13. Thioester δ-functionalization and unsuccessful downstream 

chemistry. 

 

 Around the same time, we discovered that unlike thiobutenolide 185, diene 195 was 

not an efficient substrate for oxidative arene azidation (Scheme 2.8.14). Putative aryl azide 

203 was detected in the reaction mixture by LC–MS, but a low yield was obtained upon 

isolation. As desaturation of the thiobutenolide following azidation may present a 

functional group compatibility challenge, we reevaluated the synthetic plan for arene 

amination and bromide installation. 

Scheme 2.8.14. Inefficient azidation of dienone 195. 
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synthetic sequence in the arene oxidation state enabled aniline alkylation by reductive 

amination, dearomative thiophene functionalization, and subsequent transformations, we 

realized that it could be beneficial to oxidize the arene to the quinone oxidation state prior 

to installation of the final nitrogen atom and the alkenyl bromide (Scheme 2.8.15). The 

electrophilic nature of pyrroloiminoquinone 204 could facilitate direct amination and 

circumvent the low-yielding azidation step. Additionally, the thiolactone could be reduced 

to a thiolactol, altering the diene electronics and potentially enabling direct bromination at 

the desired position. Although the exploration of backup strategies for earlier installation 

of the alkenyl bromide is ongoing, we have begun to explore this strategy. 

Scheme 2.8.15. Benefits of an early oxidation event. 
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Scheme 2.8.16. Proof-of-concept for an oxidative strategy. 
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regioselectivity. Finally, detosylation of the electron-poor heterocycle by mild ammonia-

mediated conditions16 and formation of the TFA salt could provide aleutianamine (78). 

Scheme 2.8.18. Planned completion of synthesis. 

 

2.9  CONCLUSION 

 Efforts toward the first total synthesis of the marine alkaloid aleutianamine have 

been conducted. Our strategy has evolved through three distinct major synthetic plans. To 

date, a hexacyclic intermediate bearing the entire carbon skeleton and all three nitrogen 

atoms of aleutianamine has been prepared by a strategy involving Pd-catalyzed 

dearomative spirocyclization of an aminothiophene intermediate. Efforts to advance this 

intermediate to the natural product are ongoing.  

2.10  EXPERIMENTAL SECTION 

2.10.1  MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by 

passage through an activated alumina column under argon.56 NBS was recrystallized from 

boiling water prior to use, amines and TMSCl were distilled under nitrogen prior to use, 
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and K2CO3 was flame-dried under vacuum and stored in a nitrogen-filled glovebox prior 

to use. All other reagents were purchased from commercial sources and used as received 

unless otherwise indicated. Reaction progress was monitored by thin-layer 

chromatography (TLC) or Agilent 1290 UHPLC-MS.  TLC was performed using E. Merck 

silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence 

quenching or KMnO4 staining.  Silicycle SiliaFlash® P60 Academic Silica gel (particle 

size 40–63 nm) was used for flash chromatography. Preparative HPLC was performed on 

an Agilent 1100 Series HPLC system using a 9.4 x 250 mm Agilent Eclipse XDB-C18 

column, or on an Agilent 1200 Series HPLC system using a 9.4 x 250 mm Agilent Zorbax 

Rx-SIL column. 1H NMR spectra were recorded on Varian Inova 500 MHz, Varian 600 

MHz, and Bruker 400 MHz spectrometers and are reported relative to residual CHCl3 (δ 

7.26 ppm), C6D6 (δ 7.16 ppm), DMSO-d6 (δ 2.50 ppm), CD2Cl2 (δ 5.32 ppm), or CD3OD 

(δ 3.31 ppm).  13C NMR spectra were recorded on a Bruker 400 MHz spectrometer (100 

MHz) and are reported relative to CHCl3 (δ 77.16 ppm), C6D6 (δ 128.06 ppm), DMSO-d6 

(δ 39.52 ppm), CD2Cl2 (δ 53.84 ppm), or CD3OD (δ 49.00 ppm). Data for 1H NMR are 

reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), 

integration).  Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = 

quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet.  

Data for 13C NMR are reported in terms of chemical shifts (δ ppm). Some reported spectra 

include minor solvent impurities of water, ethyl acetate, diethyl ether, methylene chloride, 

acetone, grease, and/or silicon grease, which do not impact product assignments. IR spectra 

were obtained by use of a Perkin Elmer Spectrum BXII spectrometer using thin films 

deposited on NaCl plates and reported in frequency of absorption (cm–1). High resolution 
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mass spectra (HRMS) were obtained from an Agilent 6230 LC/TOF with an Agilent Jet 

Stream ion source in electrospray ionization (ESI+ or ESI–) mode, or from the Caltech 

Mass Spectrometry Laboratory using a JEOL JMS-T2000GC AccuTOF™ GC-Alpha in 

field desorption (FD+) mode. 

2.10.2  EXPERIMENTAL PROCEDURES 

 

3-methoxy-6-(methylthio)cyclohex-2-en-1-one (96) 

To a 20 mL glass vial equipped with a septum cap were added THF (8 mL) and i-

Pr2NH (0.29 mL, 2.1 mmol, 1.3 equiv). The solution was cooled to –78 °C and n-BuLi (2.5 

M in hexanes, 0.76 mL, 1.9 mmol, 1.2 equiv) was added slowly with stirring. The mixture 

was then allowed to warm to 23 °C and cooled back to –78 °C. A solution of 3-

methoxycyclohex-2-en-1-one (213, 200 mg, 1.59 mmol, 1.0 equiv)57 in THF (1 mL) was 

then added dropwise and the resulting light-yellow solution was stirred at –78 °C for 5 min. 

Subsequently, a solution of methyl thiotosylate58 (384 mg, 1.90 mmol, 1.2 equiv) in THF 

(1 mL) was added slowly. After stirring for an additional 5 min at –78 °C, the reaction 

mixture was warmed to 0 °C in an ice bath, resulting in a pink, milky suspension. Saturated 

aq. NH4Cl (5 mL) was then added, and the resulting biphasic suspension was extracted 

with EtOAc. The combined organic phases were dried over Na2SO4 and concentrated under 

reduced pressure. The crude product was purified by silica gel flash chromatography (33% 

EtOAc/hexanes) to afford the title compound as a yellow solid (210 mg, 1.22 mmol, 77% 

yield); 1H NMR (400 MHz, CDCl3) δ 5.29 (d, J = 0.97 Hz, 1H), 3.69 (s, 3H), 3.25 (t, J = 

4.3 Hz, 1H), 2.75 – 2.61 (m, 1H), 2.40 – 2.24 (m, 2H), 2.16 (s, 3H), 2.16 – 2.06 (m, 1H); 
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13C NMR (100 MHz, CDCl3) δ 195.5, 177.2, 100.0, 55.8, 48.4, 27.1, 26.0, 14.6; IR (Neat 

Film, NaCl) 2920, 2851, 1651, 1607, 1446, 1381, 1317, 1228, 1185, 1075, 1002, 837, 786 

cm–1; HRMS (ESI+): m/z calc’d for C8H13O2S [M+H]+: 173.0631, found 173.0629. 

 

6-methoxy-3-(methylthio)-2,3-dihydro-[1,1'-biphenyl]-4(1H)-one (97) 

 To a 20 mL glass vial in a nitrogen-filled glovebox were added Pd(t-Bu3)2 (15 mg, 

0.029 mmol, 10 mol %) and 1,4-dioxane (1.5 mL). The mixture was stirred at 28 °C to 

dissolve the palladium complex. PhI (32.5 µL, 0.290 mmol, 1.0 equiv) was then added 

rapidly. Separately, a solution of sulfide 96 (50 mg, 0.290 mmol, 1.0 equiv) in 1,4-dioxane 

(1 mL) was prepared in a 1-dram glass vial. Solid LDA (31 mg, 0.290 mmol, 1.0 equiv) 

was then added and the mixture was shaken to effect dissolution. The resulting enolate 

solution was then added to the 20 mL vial containing the Pd/PhI mixture, and additional 

dioxane (0.4 mL) was used to quantitatively transfer the enolate. The vial was sealed with 

a PTFE-lined cap, removed from the glovebox, and stirred at 80 °C in a metal heating block 

for 20 h. The reaction mixture was allowed to cool to 23 °C, saturated aq. NaHCO3 (5 mL) 

was added, and the biphasic mixture was extracted with Et2O (4x3 mL). The combined 

organic phases were dried over Na2SO4 and concentrated under reduced pressure. The 

crude product was purified by silica gel flash chromatography (33% EtOAc/hexanes) to 

afford the title compound as a yellow solid (12.1 mg, 0.0487 mmol, 17% yield); 1H NMR 

(400 MHz, CDCl3) δ 7.37 – 7.31 (m, 2H), 7.31 – 7.27 (m, 1H), 7.20 – 7.13 (m, 2H), 5.53 

(d, J = 1.1 Hz, 1H), 3.96 (dd, J = 8.5, 5.6 Hz, 1H), 3.67 (s, 3H), 3.33 (t, J = 5.1 Hz, 1H), 
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2.46 – 2.34 (m, 2H), 2.18 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.5, 177.1, 140.1, 

128.9, 128.2, 127.4, 101.8, 56.3, 47.6, 43.4, 37.1, 14.7; IR (Neat Film, NaCl) 3027, 2918, 

1651, 1602, 1454, 1358, 1220, 1076, 1011, 838, 750, 704 cm–1; HRMS (ESI+): m/z calc’d 

for C14H17O2S [M+H]+: 249.0944, found 249.0942. 

 

Silyl indole 107 

 To a 20 mL glass vial was added (4-bromo-2-methoxyphenyl)hydrazine11 (106, 832 

mg, 3.83 mmol, 1.0 equiv), DMA (5 mL), deionized water (3.6 mL), and 25% (v/v) aq. 

H2SO4 (1.85 mL, 8.62 mmol, 2.25 equiv). 2,3-dihydrofuran (290 µL, 3.83 mmol, 1.0 equiv) 

was then added and the vial was sealed and heated to 60 °C in a metal heating block. After 

4 h of stirring at 60 °C, the reaction mixture was transferred to a separatory funnel 

containing 1:1 saturated aq. NaHCO3/brine. The resulting suspension was extracted with 

EtOAc (4x5 mL). The combined organic extracts were washed with water, dried over 

Na2SO4, and concentrated under reduced pressure. The crude product was purified by silica 

gel flash chromatography (50% EtOAc/hexanes) to afford an intermediate tryptophol as a 

viscous brown oil (351 mg, 1.30 mmol, 34% yield); 1H NMR (400 MHz, CDCl3) δ 8.27 

(br s, 1H), 7.36 (dd, J = 1.5, 0.6 Hz, 1H), 7.05 (d, J = 2.2 Hz, 1H), 6.75 (d, J = 1.5 Hz, 1H), 

3.94 (s, 3H), 3.88 (t, J = 6.3 Hz, 2H), 2.96 (td, J = 6.3, 0.8 Hz, 2H). 

 The intermediate tryptophol (320 mg, 1.18 mmol, 1.0 equiv) was transferred to a 

20 mL glass vial. Traces of water were azeotropically removed by addition of three portions 

of benzene followed by rotary evaporation, the headspace of the vial was evacuated and 
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flushed with nitrogen, and THF (10 mL) was added. The solution was cooled to –78 °C. n-

BuLi (2.5 M in hexanes, 0.47 mL, 1.18 mmol, 1.0 equiv) was added slowly and the reaction 

mixture was subsequently allowed to warm to 23 °C. Then, TBSCl (187 mg, 1.24 mmol, 

1.05 equiv) in THF (1 mL) was added and the reaction mixture was allowed to stir at 23 

°C for 15 min. After cooling back to –78 °C, additional n-BuLi (2.5 M in hexanes, 0.47 

mL, 1.18 mmol, 1.0 equiv) was added slowly and the reaction mixture was subsequently 

allowed to warm back to 23 °C. Additional TBSCl (187 mg, 1.24 mmol, 1.05 equiv) in 

THF (1 mL) was then added. After an additional 1 h of stirring, the reaction mixture was 

concentrated under reduced pressure and purified by silica gel flash chromatography (5% 

EtOAc/hexanes) to afford the title compound as a colorless oil (183 mg, 0.367 mmol, 31% 

yield); 1H NMR (400 MHz, CDCl3) δ 7.31 (d, J = 1.7 Hz, 1H), 7.04 (s, 1H), 6.69 (d, J = 

1.7 Hz, 1H), 3.87 (s, 3H), 3.83 (t, J = 7.0 Hz, 2H), 2.87 (td, J = 7.0, 0.9 Hz, 2H), 0.89 (s, 

9H), 0.85 (s, 9H), 0.51 (s, 6H), 0.01 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 147.6, 134.6, 

131.1, 129.9, 115.0, 114.4, 112.8, 105.6, 63.7, 54.5, 29.0, 26.9, 26.1, 19.7, 18.5, –1.5, –

5.2; IR (Neat Film, NaCl) 2927, 2856, 1572, 1462, 1367, 1300, 1254, 1104, 992, 911, 824, 

683 cm–1; HRMS (ESI+): m/z calc’d for C23H41BrNO2Si2 [M+H]+: 498.1854, found 

498.1844. 
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Vinylogous ester 109 

 To a 20 mL glass vial were added silyl indole 107 (173 mg, 0.347 mmol, 1.0 equiv) 

and 3-isobutoxycyclohex-2-en-1-one13 (108, 58 mg, 0.347 mmol, 1.0 equiv). Traces of 

water were azeotropically removed by addition of three portions of benzene followed by 

rotary evaporation and the vial was transferred to a nitrogen-filled glovebox. Pd(t-Bu3)2 

(8.9 mg, 0.0174 mmol, 5 mol %) was added followed by PhCH3 (3.5 mL). A solution of 

LiHMDS (116 mg, 0.694 mmol, 2.0 equiv) in PhCH3 (1 mL) was added dropwise with 

manual swirling. Additional PhCH3 (0.2 mL) was used to quantitatively transfer the 

remaining base. The vial was sealed with a PTFE-lined cap, removed from the glovebox, 

and heated to 70 °C in a metal heating block for 75 min. The reaction mixture was 

subsequently cooled to 23 °C and saturated aq. NH4Cl (5 mL) was added. The layers were 

separated, and the aqueous layer was extracted with EtOAc (3x2 mL). The combined 

organic phases were washed with water, dried over Na2SO4, and concentrated under 

reduced pressure. The crude product was purified by silica gel flash chromatography (20% 

EtOAc/hexanes) to afford the title compound as a colorless film (87.5 mg, 0.149 mmol, 

43% yield); 1H NMR (400 MHz, CDCl3) δ 7.02 (s, 1H), 6.98 (s, 1H), 6.44 (s, 1H), 5.54 (s, 

1H), 3.86 (s, 3H), 3.86 – 3.82 (m, 2H), 3.66 (d, J = 6.5 Hz, 2H), 3.64 – 3.58 (m, 1H), 2.91 

(t, J = 7.3 Hz, 2H), 2.55 (t, J = 6.1 Hz, 2H), 2.33 (q, J = 6.6 Hz, 2H), 2.11 – 2.02 (m, 1H), 

1.00 (d, J = 6.7 Hz, 6H), 0.91 (s, 9H), 0.90 (s, 9H), 0.51 (s, 6H), 0.05 (s, 6H); 13C NMR 
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(100 MHz, CDCl3) δ 200.2, 177.6, 147.1, 133.3, 131.8, 130.2, 130.1, 114.8, 110.7, 103.4, 

102.7, 74.9, 63.8, 54.0, 52.4, 29.9, 29.2, 28.3, 27.8, 26.9, 26.1, 19.6, 19.2, 18.4, –1.5, –5.1; 

IR (Neat Film, NaCl) 2927, 2856, 1654, 1609, 1469, 1382, 1313, 1252, 1177, 1098, 994, 

910, 838, 682 cm–1; HRMS (ESI+): m/z calc’d for C33H56NO4Si2 [M+H]+: 586.3742, found 

586.3752. 

 

Pyrroloiminoquinone 119 

 Conditions for the preparation of 119 were adapted from a procedure for the 

synthesis of a related compound by Tokuyama.59 To a 1-dram glass vial containing 

pyrroloiminoquinone 1172c (24.8 mg, 0.0696 mmol, 1.0 equiv) and NH4Cl (37 mg, 0.696 

mmol, 10 equiv) was added degassed MeOH (2.3 mL). The vial was sealed with a PTFE-

lined cap and stirred at 23 °C for 21 h. The reaction mixture was concentrated under 

reduced pressure and purified by silica gel flash chromatography (10% MeOH/CH2Cl2) to 

afford the title compound as a dark purple solid (11.6 mg, 0.0340 mmol, 49% yield). All 

characterization data matched those reported by White and coworkers.16 
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Arylhydrazone 125 

 Conditions for the synthesis of 125 were adapted from those reported for a related 

compound by Eilbracht.17 To a 20 mL glass vial in a nitrogen-filled glovebox were added 

Pd(OAc)2 (17 mg, 0.075 mmol, 5 mol %), rac-BINAP (93 mg, 0.15 mmol, 10 mol %), and 

PhCH3 (3.5 mL). The vial was sealed with a PTFE-lined cap and heated to 100 °C in a 

metal block for 5 min, followed by cooling to 28 °C. To a separate 20 mL glass vial in the 

glovebox were added aryl iodide 124 (403 mg, 1.50 mmol, 1.0 equiv), NaOt-Bu (202 mg, 

2.10 mmol, 1.4 equiv), and PhCH3 (0.8 mL). The Pd/BINAP solution was then added to 

the aryl iodide/base mixture, the vial was sealed and removed from the glovebox, and the 

reaction mixture was stirred at 100 °C in a metal heating block for 14 h. The vial was then 

allowed to cool to 23 °C. The resulting dark orange suspension was diluted with Et2O (3 

mL), filtered through a short SiO2 plug with EtOAc, and concentrated under reduced 

pressure. The crude product was purified by silica gel flash chromatography (10% 

Et2O/hexanes, dry-loaded with Celite) to afford the title compound as a light-yellow solid 

(273 mg, 0.811 mmol, 54% yield); 1H NMR (400 MHz, CDCl3) δ 7.95 (s, 1H), 7.66 – 7.48 

(m, 6H), 7.38 – 7.28 (m, 5H), 6.73 (dd, J = 8.5, 2.6 Hz, 1H), 6.64 (d, J = 8.5 Hz, 1H), 3.66 

(s, 3H); 13C NMR (100 MHz, CDCl3) δ 146.1, 144.0, 138.2, 135.1, 132.8, 129.6, 129.3, 

128.9, 128.3, 128.2, 126.9, 126.7, 118.3, 112.3, 110.8, 55.8; IR (Neat Film, NaCl) 3345, 
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3057, 2937, 2835, 2352, 1598, 1514, 1422, 1322, 1254, 1217, 1133, 1026, 857, 767, 695 

cm–1; HRMS (ESI+): m/z calc’d for C20H18ClN2O [M+H]+: 337.1102, found 337.1099. 

 

Tryptophol 126 

 To a 250 mL round bottom flask were added (5-chloro-2-methoxyphenyl)hydrazine 

hydrochloride19 (127, 8.60 g, 41.1 mmol, 1.0 equiv), DMA (65 mL), H2O (65 mL), and 

25% (v/v) aq. H2SO4 (11.0 mL, 51.4 mmol, 1.25 equiv). 2,3-dihydrofuran (3.42 mL, 45.2 

mmol, 1.1 equiv) was added slowly with stirring, resulting in a slow color change to yellow, 

whereafter the flask was equipped with an air-cooled reflux condenser and heated to 60 °C 

in an oil bath for 6 h. The reaction mixture was then allowed to cool to 23 °C and transferred 

to a separatory funnel containing 1:1 saturated aq. NaHCO3/brine (250 mL). The mixture 

was then extracted with EtOAc (4x100 mL), and the combined organic extracts were 

washed with water, dried over Na2SO4, and concentrated under reduced pressure. The 

crude product was purified by silica gel flash chromatography (60% EtOAc/hexanes) to 

afford the title compound as a thick, red-brown syrup that slowly crystallized upon storage 

at –20 °C (2.66 g, 11.79 mmol, 29% yield); 1H NMR (400 MHz, CDCl3) δ 8.54 (br s, 1H), 

7.00 (d, J = 2.2 Hz, 1H), 6.96 (d, J = 8.2 Hz, 1H), 6.50 (d, J = 8.2 Hz, 1H), 3.94 (t, J = 6.4 

Hz, 2H), 3.91 (s, 3H), 3.23 (td, J = 6.4, 0.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 145.2, 

128.4, 124.8, 123.8, 120.2, 118.2, 113.1, 102.4, 63.7, 55.7, 29.5; IR (Neat Film, NaCl) 

3416, 2935, 2580, 1786, 1703, 1626, 1571, 1494, 1452, 1339, 1230, 1115, 1052, 937, 789, 
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736, 694, 628 cm–1; HRMS (FD+): m/z calc’d for C11H13ClNO2 [M+H]+: 225.0557, found 

225.0552. 

 

N-methylarylhydrazine hydrochloride 131 

 Conditions for the synthesis of 131 were adapted from those reported for related 

compounds by Schmidt.20 To a 20 mL glass vial in a nitrogen-filled glovebox were added 

CuI (34 mg, 0.179 mmol, 5 mol %), hydroxypicolinamide ligand 13021 (53 mg, 0.22 mmol, 

6 mol %), K2CO3 (762 mg, 5.51 mmol, 1.5 equiv), aryl bromide 128 (0.50 mL, 3.67 mmol, 

1.0 equiv), and carbazate 129 (0.68 mL, 4.59 mmol, 1.25 equiv), followed by DMSO (3.7 

mL). The vial was sealed with a PTFE cap and removed from the glovebox. The reaction 

mixture was stirred at 80 °C for 17 h, whereafter the resulting gray suspension was filtered 

through a Celite plug with EtOAc and transferred to a separatory funnel containing pH 7 

phosphate buffer (20 mL). The layers were shaken and separated, the aqueous phase was 

extracted with EtOAc (10 mL), and the combined organic phases were washed with water, 

then brine, and finally dried over Na2SO4. The crude product was purified by silica gel 

flash chromatography (15% EtOAc/hexanes) to afford an intermediate aryl carbazate as an 

off-white solid (902 mg, 3.15 mmol, 86% yield); 1H NMR (500 MHz, CDCl3) δ 6.77 (dd, 

J = 8.5, 2.4 Hz, 1H), 6.70 (d, J = 8.5 Hz, 1H), 6.65 (d, J = 2.5 Hz, 1H), 6.44 (br s, 1H), 

3.83 (s, 3H), 3.23 (s, 3H), 1.45 (s, 9H). 

 This intermediate carbazate (900 mg, 3.15 mmol, 1.0 equiv) was added to a 20 mL 

glass vial, followed by MeOH (1.8 mL). Upon complete dissolution of the intermediate 
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compound, the solution was cooled to 0 °C and the headspace of the vial was purged with 

nitrogen. TMSCl (0.64 mL, 5.05 mmol, 1.60 equiv) was added dropwise over 6 min, 

whereafter the reaction mixture was allowed to warm to 23 °C. After stirring for 19 h, 

PhCH3 (3.6 mL) was added, and the solvent was removed under reduced pressure. The 

resulting solid was suspended in additional PhCH3 (5 mL) and placed in a –20 °C freezer 

for 2 h. The solid was collected by vacuum filtration, washed with PhCH3, and dried under 

high vacuum to afford the title compound as a beige solid (612 mg, 2.74 mmol, 87% yield); 

1H NMR (400 MHz, DMSO-d6) δ 11.31 (br s, 2H), 8.07 (br s, 1H), 7.39 (q, J = 1.1 Hz, 

1H), 7.02 (d, J = 1.3 Hz, 2H), 3.82 (s, 3H), 2.78 (s, 3H); 13C NMR (100 MHz, DMSO-d6) 

δ 147.1, 133.5, 124.3, 122.1, 115.5, 112.6, 56.0, 34.0; IR (Neat Film, NaCl) 3180, 3028, 

2928, 2653, 2469, 2350, 2244, 2093, 1919, 1822, 1695, 1587, 1494, 1414, 1336, 1220, 

1126, 1022, 952, 874, 792, 748, 670 cm–1; HRMS (ESI+): m/z calc’d for C8H12ClN2O 

[M+H]+: 187.0633, found 187.0627. 

 

Protected tryptamine 132 

 To a 50 mL round bottom flask under air were added tryptophol 126 (500 mg, 2.22 

mmol, 1.0 equiv), Bu4NHSO4 (75 mg, 0.222 mmol, 10 mol %), and CH2Cl2 (9 mL), 

followed by 50% w/v aq. NaOH (2 mL). After stirring for 5 min, TsCl (1.69 g, 8.88 mmol, 

4.0 equiv) was added in a single portion. The reaction mixture was subjected to vigorous 

magnetic stirring for 20 min, then diluted with H2O (15 mL) and CH2Cl2 (10 mL). The 

layers were separated, and the aqueous phase was extracted with CH2Cl2 (3x10 mL). The 
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combined organic phases were washed with brine, dried over Na2SO4, and concentrated 

under reduced pressure. The crude product was purified by silica gel flash chromatography 

(33% EtOAc/hexanes) to afford an intermediate tosylate as an orange solid (0.80 g, 1.50 

mmol, 67% yield); 1H NMR (500 MHz, CDCl3) δ 7.73 – 7.64 (m, 4H), 7.62 (s, 1H), 7.28 

(d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 8.5 Hz, 1H), 6.54 (d, J = 8.5 Hz, 

1H), 4.36 (t, J = 6.6 Hz, 2H), 3.65 (s, 3H), 3.28 (t, J = 6.6 Hz, 2H), 2.41 (s, 3H), 2.35 (s, 

3H). 

 This intermediate (0.80 g, 1.50 mmol, 1.0 equiv) was transferred to a 20 mL glass 

vial. Traces of water were azeotropically removed by addition of three portions of benzene 

followed by rotary evaporation. Boc2NH (391 mg, 1.8 mmol, 1.2 equiv) and Cs2CO3 (586 

mg, 1.8 mmol, 1.2 equiv) were added, and the headspace of the vial was evacuated and 

backfilled with nitrogen. DMF (7.5 mL) was added, and the reaction mixture was stirred 

at 23 °C for 11 h, after which TLC analysis indicated no conversion. The vial was sealed 

with a PTFE cap and stirred vigorously at 80 °C in a metal heating block for 2 h, after 

which TLC analysis indicated complete consumption of the starting material. The reaction 

mixture was cooled to 23 °C, diluted with H2O (50 mL), and extracted with EtOAc (4x15 

mL). The combined organic extracts were washed twice with water, dried over Na2SO4, 

and concentrated under reduced pressure. The crude product was purified by silica gel flash 

chromatography (25% EtOAc/hexanes) to afford the title compound as a peach solid (751 

mg, 1.30 mmol, 87% yield); 1H NMR (400 MHz, CDCl3) δ 7.73 – 7.66 (m, 2H), 7.62 (s, 

1H), 7.26 (dd, J = 7.4, 1.4 Hz, 2H), 7.05 (d, J = 8.5 Hz, 1H), 6.56 (d, J = 8.5 Hz, 1H), 4.00 

(t, J = 6.8 Hz, 2H), 3.62 (s, 3H), 3.28 – 3.18 (m, 2H), 2.39 (s, 3H), 1.38 (s, 18H); 13C NMR 

(100 MHz, CDCl3) δ 152.5, 146.5, 144.3, 137.4, 129.9, 129.5, 128.1, 127.3, 126.3, 124.5, 
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118.7, 117.1, 107.6, 82.3, 55.9, 46.7, 28.0, 25.7, 21.7; IR (Neat Film, NaCl) 3120, 2978, 

1740, 1698, 1574, 1488, 1368, 1250, 1173, 1000, 854, 813, 661 cm–1; HRMS (ESI+): m/z 

calc’d for C28H35ClN2NaO7S [M+Na]+: 601.1746, found 601.1758. 

 

Tryptamine 133 

Method A: 

 To a 250 mL round bottom flask was added tryptophol 126 (3.36 g, 14.89 mmol, 

1.0 equiv). Traces of water were azeotropically removed by addition of three portions of 

benzene followed by rotary evaporation. PPh3 (4.69 g, 17.87 mmol, 1.2 equiv) was added, 

and the headspace of the flask was evacuated and backfilled with nitrogen. THF (60 mL) 

was added, and the reaction mixture was cooled to 0 °C. Then, DIAD (3.52 mL, 17.87 

mmol, 1.2 equiv) was added dropwise over 4 min. The reaction mixture was stirred at 0 °C 

for an additional 15 min, after which DPPA (3.85 mL, 17.87 mmol, 1.2 equiv) was added 

rapidly and the reaction mixture was allowed to warm to 23 °C. The reaction mixture 

became cloudy over several minutes. TLC analysis after 16 h indicated a high degree of 

conversion to product. Stirring for another 24 h led to no change in the reaction profile by 

TLC analysis. The reaction mixture was concentrated under reduced pressure and purified 

by automated silica gel flash chromatography (Teledyne ISCO, 0→40% EtOAc/hexanes) 

to afford an intermediate azide as an orange-brown solid (2.50 g, 9.97 mmol, 67% yield); 

1H NMR (500 MHz, CDCl3) δ 8.32 (br s, 1H), 7.06 (d, J = 2.4 Hz, 1H), 6.97 (d, J = 8.2 
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Hz, 1H), 6.53 (d, J = 8.2 Hz, 1H), 3.94 (s, 3H), 3.59 (t, J = 7.1 Hz, 2H), 3.27 (td, J = 7.1, 

0.8 Hz, 2H). 

 To a 250 mL round bottom flask under air were added this intermediate azide (5.11 

g, 20.4 mmol, 1.0 equiv), CH2Cl2 (41 mL), and Bu4NHSO4 (69 mg, 0.204 mmol, 1 mol 

%), followed by 50% w/v aq. NaOH (14 mL). After stirring for 5 min, TsCl (7.78 g, 40.8 

mmol, 2.0 equiv) was added in a single portion. The reaction mixture was subjected to 

vigorous magnetic stirring for 10 min, then diluted with H2O (100 mL) and CH2Cl2 (30 

mL). The layers were separated, and the aqueous phase was extracted with CH2Cl2 (3x50 

mL). The combined organic phases were washed with brine, dried over Na2SO4, and 

concentrated under reduced pressure. The crude product was purified by automated silica 

gel flash chromatography (Teledyne ISCO, 0→45% EtOAc/hexanes) to afford an 

intermediate tosyl indole as a white solid (6.77 g, 16.7 mmol, 82% yield); 1H NMR (400 

MHz, CDCl3) δ 7.74 (t, J = 1.0 Hz, 1H), 7.73 – 7.67 (m, 2H), 7.30 – 7.26 (m, 2H), 7.08 (d, 

J = 8.5 Hz, 1H), 6.58 (d, J = 8.5 Hz, 1H), 3.64 (s, 3H), 3.65 – 3.59 (m, 2H), 3.26 (td, J = 

7.1, 0.9 Hz, 2H), 2.40 (s, 3H). 

 To a 500 mL round bottom flask under air were added this intermediate tosyl indole 

(11.73 g, 28.97 mmol, 1.0 equiv), PPh3 (9.88 g, 37.66 mmol, 1.3 equiv), and THF (190 

mL). The reaction mixture was stirred at 23 °C for 15 h, whereafter deionized water (9.5 

mL) was added. After an additional 30 h, the reaction mixture was concentrated under 

reduced pressure and purified by silica gel flash chromatography (10% MeOH/CH2Cl2 + 

1% Et3N) to afford the title compound as a white solid (10.41 g, 27.48 mmol, 95% yield); 

1H NMR (400 MHz, CDCl3) δ 7.72 – 7.65 (m, 3H), 7.29 – 7.23 (m, 2H), 7.05 (d, J = 8.5 

Hz, 1H), 6.56 (d, J = 8.5 Hz, 1H), 3.62 (s, 3H), 3.14 – 3.00 (m, 4H), 2.39 (s, 3H); 13C NMR 
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(100 MHz, CDCl3) δ 146.5, 144.4, 137.4, 129.7, 129.5, 127.4, 127.2, 126.5, 124.6, 118.5, 

118.1, 107.5, 55.8, 42.9, 30.7, 21.7; IR (Neat Film, NaCl) 2938, 2686, 2595, 2515, 2363, 

1574, 1487, 1366, 1290, 1237, 1171, 1092, 1052, 997, 937, 809, 662 cm–1; HRMS (ESI+): 

m/z calc’d for C18H20ClN2O3S [M+H]+: 379.0878, found 379.0877. 

Method B: 

 To a 50 mL round bottom flask under air were added imide 132 (750 mg, 1.30 

mmol, 1.0 equiv), CH2Cl2 (13 mL), and TFA (1.5 mL, 19.4 mmol, 15 equiv). The reaction 

mixture was stirred at 23 °C for 11 h, then transferred to a separatory funnel containing aq. 

K2CO3 (20 mL). The funnel was shaken, the layers were separated, and the aqueous phase 

was extracted with CH2Cl2 (3x10 mL). The combined organic phases were dried over 

Na2SO4 and concentrated under reduced pressure. The crude product was purified by silica 

gel flash chromatography (10% MeOH/CH2Cl2 + 1% Et3N) to afford the title compound 

as a white solid (341 mg, 0.90 mmol, 69% yield). For characterization data, see above. 

 

Tricycle 134 

 A 20 mL glass vial containing tryptamine 133 (1.0 g, 2.64 mmol, 1.0 equiv) was 

brought into a nitrogen-filled glovebox. To this vial were added BrettPhos Pd G4 (121 mg, 

0.132 mmol, 5 mol %), BrettPhos (71 mg, 0.132 mmol, 5 mol %), and K3PO4 (784 mg, 

3.70 mmol, 1.4 equiv), followed by t-BuOH (6.6 mL). The vial was sealed with a PTFE-

lined cap, removed from the glovebox, and stirred at 100 °C in a metal heating block. After 

3 days, the reaction mixture was partitioned between CH2Cl2 and water and the layers were 

Ts
N

OMe

H2N

Cl

BrettPhos Pd G4 (5 mol %),
BrettPhos (5 mol %), K3PO4

t-BuOH, 100 °C
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separated. The aqueous phase was extracted with CH2Cl2 (3x), and the combined organic 

phases were concentrated under reduced pressure. The crude product was purified by silica 

gel flash chromatography (40% EtOAc/hexanes) to afford the title compound as a beige 

foam (816 mg, 2.38 mmol, 90% yield); 1H NMR (400 MHz, CDCl3) δ 7.83 – 7.76 (m, 2H), 

7.33 (d, J = 1.4 Hz, 1H), 7.25 – 7.20 (m, 2H), 6.56 (d, J = 8.1 Hz, 1H), 6.27 (d, J = 8.1 Hz, 

1H), 3.70 (s, 3H), 3.37 (t, J = 5.9 Hz, 2H), 2.91 (ddd, J = 6.9, 5.5, 1.4 Hz, 2H), 2.36 (s, 

3H); 13C NMR (100 MHz, CDCl3) δ 144.1, 140.5, 137.1, 135.8, 129.4, 127.7, 124.0, 122.6, 

120.2, 115.2, 110.7, 105.0, 57.5, 43.0, 22.8, 21.7; IR (Neat Film, NaCl) 3384, 2956, 2834, 

1595, 1512, 1421, 1356, 1260, 1170, 1103, 1035, 977, 937, 795, 664 cm–1; HRMS (ESI+): 

m/z calc’d for C18H19N2O3S [M+H]+: 343.1111, found 343.1127. 

 

Diester 136 

 To a ½ dram vial were added tricycle 134 (10 mg, 0.0292 mmol, 1 equiv) and 

Meldrum’s acid (5.0 mg, 0.035 mmol, 1.2 equiv). The headspace of the vial was evacuated 

and backfilled with nitrogen. Then, DMF (0.06 mL) and trimethyl orthoformate (6.4 µL, 

0.0584 mmol, 2 equiv) were added. The vial was sealed with a PTFE-lined cap and stirred 

at 80 °C in a metal heating block. Upon heating, the reaction mixture slowly turned from 

beige to yellow to dark red. After 2 h, the reaction mixture was allowed to cool to 23 °C, 

diluted with H2O (1 mL), and extracted with EtOAc (5x0.5 mL). The combined organic 
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TsN

NH
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phases were washed with water (2x0.5 mL), dried over Na2SO4, and concentrated under 

reduced pressure. The crude product was purified by silica gel flash chromatography (50% 

EtOAc/hexanes) to afford the title compound as an intensely yellow foam (10.5 mg, 0.0211 

mmol, 72% yield); 1H NMR (400 MHz, CDCl3) δ 8.63 (s, 1H), 7.82 – 7.76 (m, 2H), 7.57 

(t, J = 1.3 Hz, 1H), 7.30 – 7.27 (m, 2H), 6.95 (d, J = 8.4 Hz, 1H), 6.67 (d, J = 8.4 Hz, 1H), 

4.23 (t, J = 6.1 Hz, 2H), 3.80 (s, 3H), 3.17 – 3.06 (m, 2H), 2.40 (s, 3H), 1.78 (s, 6H); 13C 

NMR (100 MHz, CDCl3) δ 165.9, 160.9, 154.7, 146.7, 144.9, 136.5, 129.7, 127.9, 127.8, 

125.6, 123.3, 122.8, 112.7, 111.9, 107.9, 103.5, 88.4, 56.2, 52.3, 27.1, 22.6, 21.8; IR (Neat 

Film, NaCl) 2939, 1688, 1567, 1511, 1438, 1359, 1278, 1190, 1108, 967, 785, 660 cm–1; 

HRMS (ESI+): m/z calc’d for C25H24N2NaO7S [M+Na]+: 519.1196, found 519.1192. 

 

“Push-pull” olefin 138 

 To a 1-dram glass vial were added tricycle 134 (43.5 mg, 0.127 mmol, 1.0 equiv), 

DMF (0.25 mL), and methyl propiolate (113 µL, 1.27 mmol, 10 equiv). The vial was sealed 

with a PTFE-lined cap and stirred at 80 °C in a metal heating block for 15 h. The reaction 

mixture was then diluted with water (2 mL) and extracted with EtOAc (5x0.5 mL). The 

combined organic extracts were washed with water, dried over Na2SO4, and concentrated 

under reduced pressure. The crude product was purified by automated silica gel flash 

chromatography (Teledyne ISCO, 0→100% EtOAc/hexanes) to afford the title compound 

as a yellow foam (47.6 mg, 0.112 mmol, 88% yield); 1H NMR (400 MHz, CDCl3) δ 8.05 

(d, J = 13.3 Hz, 1H), 7.82 – 7.73 (m, 2H), 7.46 (t, J = 1.4 Hz, 1H), 7.28 – 7.24 (m, 2H), 
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6.81 (d, J = 8.4 Hz, 1H), 6.65 (d, J = 8.4 Hz, 1H), 5.17 (d, J = 13.3 Hz, 1H), 3.75 (s, 3H), 

3.72 (s, 3H), 3.72 – 3.68 (m, 2H), 3.02 (td, J = 6.1, 1.4 Hz, 2H), 2.39 (s, 3H); 13C NMR 

(100 MHz, CDCl3) δ 169.8, 145.0, 144.4, 143.3, 136.7, 129.4, 129.1, 127.7, 124.0, 123.2, 

121.6, 113.0, 108.9, 107.7, 90.0, 56.5, 51.0, 44.9, 21.8, 21.6; IR (Neat Film, NaCl) 2948, 

1695, 1605, 1511, 1440, 1359, 1275, 1171, 1108, 998, 801, 662 cm–1; HRMS (ESI+): m/z 

calc’d for C22H23N2O5S [M+H]+: 427.1322, found 427.1322. 

 

Quinolone 139 

 To a 1-dram glass vial were added ester 138 (25.6 mg, 0.060 mmol, 1.0 equiv) and 

Eaton’s reagent (0.6 mL). The vial was sealed with a PTFE-lined cap and stirred at 60 °C 

in a metal heating block for 2 h. The reaction mixture was then quenched with saturated 

aqueous K2CO3. The resulting solution was extracted with 1:1 EtOAc/CH2Cl2 (2x3 mL) 

and CH2Cl2 (2x3 mL). The combined organic extracts were dried over Na2SO4 and 

concentrated under reduced pressure. The crude product was purified by silica gel flash 

chromatography (10% MeOH/CH2Cl2) to afford the title compound as a light brown solid 

(8.1 mg, 0.0205 mmol, 34% yield); 1H NMR (400 MHz, CD2Cl2) δ 10.05 (br s, 1H), 7.93 

– 7.84 (m, 2H), 7.51 (d, J = 7.5 Hz, 1H), 7.37 – 7.31 (m, 3H), 6.29 (d, J = 7.5 Hz, 1H), 

4.27 (t, J = 6.6 Hz, 2H), 3.93 (s, 3H), 3.50 (t, J = 6.6 Hz, 2H), 2.38 (s, 3H); 13C NMR (100 

MHz, CD2Cl2) δ 176.9, 145.4, 145.2, 139.2, 139.0, 130.9, 130.5, 128.2, 127.8, 127.5, 

120.1, 118.9, 116.1, 112.3, 100.1, 56.4, 50.4, 22.5, 21.7; An IR spectrum could not be 
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obtained due to the difficulty associated with depositing a thin film of this compound; 

HRMS (ESI+): m/z calc’d for C21H19N2O4S [M+H]+: 395.1060, found 395.1067. 

 

Model aza-Michael adduct 143 

 To a 1-dram glass vial under air were added 1:1 (v/v) Et3N/HOAc (0.65 mL), 

tetrahydroquinoline (142, 0.07 mL, 0.52 mmol, 1.0 equiv), and cyclohexenone (140, 0.25 

mL, 2.58 mmol, 5.0 equiv). After stirring at 23 °C for 19 h, the reaction mixture was diluted 

with water (7 mL), extracted with EtOAc (3x3 mL), dried over Na2SO4, and concentrated 

under reduced pressure. The crude product was purified by automated silica gel flash 

chromatography (Teledyne ISCO, 0→50% EtOAc/hexanes) to afford the title compound 

as a colorless oil that crystallized upon standing to form a white solid (49.1 mg, 0.214 

mmol, 41% yield); 1H NMR (400 MHz, CDCl3) δ 7.09 – 7.01 (m, 1H), 7.01 – 6.93 (m, 

1H), 6.68 – 6.57 (m, 2H), 4.09 – 3.95 (m, 1H), 3.29 (ddd, J = 11.5, 7.4, 4.3 Hz, 1H), 3.19 

(ddd, J = 11.2, 7.1, 4.3 Hz, 1H), 2.75 (t, J = 6.4 Hz, 2H), 2.62 – 2.54 (m, 2H), 2.49 – 2.38 

(m, 1H), 2.29 (td, J = 13.9, 6.4 Hz, 1H), 2.16 – 2.08 (m, 1H), 2.03 (dddd, J = 11.8, 8.2, 4.3, 

2.3 Hz, 1H), 2.00 – 1.84 (m, 3H), 1.72 – 1.57 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 

210.0, 144.6, 129.5, 127.3, 123.6, 116.4, 110.9, 56.2, 45.1, 41.6, 41.1, 28.8, 28.4, 22.7, 

22.6; IR (Neat Film, NaCl) 2939, 2861, 1709, 1601, 1496, 1456, 1303, 1271, 1219, 1192, 

1058, 745 cm–1; HRMS (ESI+): m/z calc’d for C15H20NO [M+H]+: 230.1539, found 

230.1546. 
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Aza-Michael adduct 141 

To a 1/2-dram glass vial under air were added tricycle 134 (40 mg, 0.117 mmol, 

1.0 equiv), 1:1 (v/v) Et3N/HOAc (0.23 mL), and cyclohexenone (140, 0.11 mL, 1.17 mmol, 

10 equiv). After stirring at 23 °C for 30 h, the reaction mixture was quenched with saturated 

aq. NaHCO3 (7 mL). The resulting suspension was extracted with EtOAc (3x2 mL), dried 

over Na2SO4, and concentrated under reduced pressure. The crude product was purified by 

automated silica gel flash chromatography (Teledyne ISCO, 40→100% Et2O/hexanes) to 

afford the title compound as a beige foam (30 mg, 0.0684 mmol, 58% yield); 1H NMR 

(400 MHz, CDCl3) δ 7.82 – 7.73 (m, 2H), 7.33 (d, J = 1.4 Hz, 1H), 7.23 (d, J = 8.1 Hz, 

2H), 6.58 (d, J = 8.3 Hz, 1H), 6.25 (d, J = 8.3 Hz, 1H), 3.92 (tt, J = 11.8, 4.0 Hz, 1H), 3.69 

(s, 3H), 3.36 – 3.28 (m, 1H), 3.20 – 3.12 (m, 1H), 2.98 – 2.91 (m, 2H), 2.61 (ddt, J = 13.3, 

4.3, 1.9 Hz, 1H), 2.58 – 2.50 (m, 1H), 2.44 (ddq, J = 14.3, 4.3, 2.0 Hz, 1H), 2.36 (s, 3H), 

2.29 (td, J = 13.8, 6.3 Hz, 1H), 2.17 – 2.02 (m, 2H), 1.90 (qd, J = 12.5, 3.5 Hz, 1H), 1.66 

(tdt, J = 12.4, 8.4, 3.6 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 209.9, 144.2, 140.2, 137.1, 

135.5, 129.4, 127.7, 124.1, 123.2, 119.8, 115.2, 110.2, 102.9, 57.2, 55.8, 44.7, 41.9, 41.2, 

28.5, 23.3, 22.8, 21.7; IR (Neat Film, NaCl) 2936, 2835, 1709, 1596, 1509, 1357, 1281, 

1171, 1106, 914, 780, 733, 661 cm–1; HRMS (ESI+): m/z calc’d for C24H27N2O4S [M+H]+: 

439.1686, found 439.1692. 
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Bromoarene 149 

 To a 1-dram glass vial under air were added tertiary aniline 141 (21.8 mg, 0.0497 

mmol, 1.0 equiv) and CH2Cl2 (2 mL). Recrystallized NBS (9.3 mg, 0.0522 mmol, 1.05 

equiv) was added rapidly with stirring, resulting in a brown color. After 15 mins, the 

reaction mixture was concentrated under reduced pressure and purified by silica gel flash 

chromatography (40% EtOAc/hexanes) to afford the title compound as a beige foam (18.8 

mg, 0.0363 mmol, 73% yield); 1H NMR (400 MHz, CDCl3) δ 7.78 – 7.73 (m, 2H), 7.41 (t, 

J = 1.4 Hz, 1H), 7.28 – 7.23 (m, 2H), 6.77 (s, 1H), 3.88 (tdd, J = 12.0, 4.9, 3.6 Hz, 1H), 

3.71 (s, 3H), 3.43 – 3.29 (m, 2H), 2.84 – 2.70 (m, 2H), 2.67 – 2.53 (m, 2H), 2.38 (s, 3H), 

2.38 – 2.32 (m, 1H), 2.23 (td, J = 14.0, 6.5 Hz, 1H), 2.11 (dtd, J = 11.3, 3.2, 1.8 Hz, 1H), 

2.04 – 1.98 (m, 1H), 1.86 (qd, J = 12.4, 3.6 Hz, 1H), 1.49 (qt, J = 13.4, 4.0 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ 209.9, 144.5, 142.7, 136.8, 133.3, 129.6, 127.7, 127.3, 122.3, 

122.2, 114.5, 113.4, 106.2, 61.5, 56.7, 48.0, 43.0, 40.9, 30.8, 22.5, 22.2, 21.8; IR (Neat 

Film, NaCl) 2939, 2863, 1709, 1596, 1490, 1439, 1344, 1284, 1229, 1174, 1111, 1032, 

993, 804, 735, 665, 608 cm–1; HRMS (ESI+): m/z calc’d for C24H26BrN2O4S [M+H]+: 

517.0791, found 517.0806. 

OMe

TsN

N

141

O

NBS
CH2Cl2, 23 °C

OMe

TsN

N

149

O
Br



Chapter 2 – Progress Toward the Total Synthesis of Aleutianamine  

 
317 

 

Tertiary alcohol 150 

 To a 1-dram glass vial was added bromoarene 149 (12 mg, 0.0232 mmol, 1.0 

equiv). Traces of water were azeotropically removed by addition of three portions of 

benzene followed by rotary evaporation. The vial was transferred to a nitrogen-filled 

glovebox. K2CO3 (6.4 mg, 0.0464 mmol, 2 equiv), Pd(OAc)2 (1.4 mg, 0.00624 mmol, 0.3 

equiv), and PCy3 (2.6 mg, 0.00927 mmol, 0.4 equiv) were added to the vial. Then, DMF 

(1.15 mL) and 1-hexanol (14 µL, 0.116 mmol, 5.0 equiv) were added, the vial was sealed 

with a PTFE-lined cap and removed from the glovebox, and the reaction mixture was 

stirred at 135 °C in a metal heating block. After 25 h, the reaction mixture was allowed to 

cool to 23 °C, diluted with water (10 mL), and extracted with EtOAc (4x3 mL). The 

combined organic extracts were washed with water (2x3 mL), dried over Na2SO4, and 

concentrated under reduced pressure. The crude product was purified by silica gel flash 

chromatography (50% EtOAc/hexanes) to afford tricycle 134 (2.3 mg, 0.00672 mmol, 29% 

yield) and the title compound as a brown film (1.7 mg, 0.00388 mmol, 17% yield); 1H 

NMR (400 MHz, CDCl3) δ 7.83 – 7.79 (m, 2H), 7.29 (t, J = 1.5 Hz, 1H), 7.25 – 7.21 (m, 

2H), 6.74 (s, 1H), 3.71 (d, J = 1.9 Hz, 3H), 3.60 – 3.56 (m, 1H), 3.28 – 3.19 (m, 1H), 3.18 

– 3.08 (m, 1H), 2.99 – 2.94 (m, 2H), 2.37 (s, 3H), 2.20 – 2.13 (m, 1H), 2.09 (d, J = 2.7 Hz, 

1H), 1.95 (dd, J = 11.7, 2.9 Hz, 1H), 1.74 – 1.69 (m, 2H), 1.36 (tdd, J = 13.8, 4.9, 2.7 Hz, 

1H), 1.11 (dtt, J = 17.5, 6.4, 3.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 144.1, 139.5, 

137.2, 133.2, 129.4, 129.4, 127.9, 122.9, 120.8, 120.2, 114.6, 105.8, 70.0, 57.5, 56.1, 47.0, 
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40.8, 40.8, 29.0, 23.2, 21.7, 20.4; IR (Neat Film, NaCl) 3385, 2930, 2851, 1596, 1505, 

1450, 1404, 1360, 1286, 1225, 1170, 1105, 978, 814, 735, 662 cm–1; HRMS (ESI+): m/z 

calc’d for C24H27N2O4S [M+H]+: 439.1686, found 439.1689. 

 

Ketal 152 

 Prepared according to the procedure of Caubere starting with 1.0 g (8.92 mmol) of 

dione 151.34 Purification by silica gel flash chromatography (20% EtOAc/hexanes, 

fractions were analyzed by TLC with DNP staining) afforded ketal 152 as a colorless, 

fragrant oil (619 mg, 3.91 mmol, 44% yield). All characterization data matched those 

reported in the literature.34 

 

Enone 153 

 Conditions for the synthesis of 153 were adapted from those reported for related 

compounds by Dong.35 To a 20 mL glass vial in a nitrogen-filled glovebox were added 

CuTC (24 mg, 0.126 mmol, 20 mol %), CyPPh2 (34 mg, 0.126 mmol, 20 mol %), benzene 

(6.3 mL), and a magnetic stir bar. The vial was sealed with a septum cap and removed from 

the glovebox. Ketal 152 (100 mg, 0.632 mmol, 1.0 equiv) and di-tert-butyl peroxide (0.17 

mL, 0.948 mmol, 1.5 equiv) were added by injection. The reaction mixture was then heated 

to 80 °C in a metal heating block, resulting in a deep green solution. After 23 h, the reaction 

mixture was allowed to cool to 23 °C, concentrated under reduced pressure, and purified 

O
O TMSCl
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by silica gel flash chromatography (33% EtOAc/hexanes) to afford the title compound as 

a colorless oil (38.1 mg, 0.244 mmol, 39% yield); 1H NMR (400 MHz, C6D6) δ 6.2 – 6.1 

(m, 1H), 5.8 (dtd, J = 10.0, 2.0, 0.9 Hz, 1H), 3.1 (d, J = 1.0 Hz, 6H), 1.9 – 1.8 (m, 2H), 1.8 

– 1.7 (m, 2H); 13C NMR (100 MHz, C6D6) δ 192.1, 148.9, 128.1, 97.0, 49.6, 31.1, 24.6; IR 

(Neat Film, NaCl) 2940, 2834, 1694, 1623, 1437, 1388, 1310, 1231, 1160, 1117, 1060, 

916, 850, 801 cm–1; HRMS (ESI+): m/z calc’d for C8H12NaO3 [M+Na]+: 179.0679, found 

179.0678. 

 

Bromoarene 154 

 To a 1-dram glass vial under air were added tricycle 134 (50 mg, 0.146 mmol, 1.0 

equiv), enone 153 (114 mg, 0.730 mmol, 5.0 equiv), and 1:1 (v/v) Et3N/HOAc (0.15 mL). 

The reaction mixture was stirred at 23 °C for 21 h, then partitioned between water and 

EtOAc. The layers were separated, and the aqueous phase was extracted with EtOAc (3x). 

The combined organic phases were washed with brine, dried over Na2SO4, and 

concentrated under reduced pressure. The crude product was purified by silica gel flash 

chromatography (80% Et2O/hexanes) to afford an intermediate tertiary aniline as a beige 

foam (59 mg, 0.118 mmol, 81% yield); 1H NMR (400 MHz, CDCl3) δ 7.81 – 7.76 (m, 2H), 

7.33 (t, J = 1.4 Hz, 1H), 7.25 – 7.21 (m, 2H), 6.58 (d, J = 8.3 Hz, 1H), 6.27 – 6.21 (m, 1H), 

3.90 (tt, J = 11.8, 3.7 Hz, 1H), 3.69 (s, 3H), 3.41 – 3.37 (m, 1H), 3.36 (s, 3H), 3.22 (s, 3H), 

3.15 (dt, J = 11.2, 6.3 Hz, 1H), 2.98 – 2.87 (m, 3H), 2.61 (ddd, J = 12.0, 3.9, 2.3 Hz, 1H), 
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2.41 (dt, J = 14.3, 3.7 Hz, 1H), 2.37 (s, 3H), 2.17 (qd, J = 13.1, 4.0 Hz, 1H), 1.95 – 1.85 

(m, 1H), 1.60 – 1.55 (m, 1H). 

 To a sample of this intermediate aniline (19.5 mg, 0.0391 mmol, 1.0 equiv) also 

containing secondary aniline 134 as a major impurity (7.6 mg, 0.0222 mmol) in a 1-dram 

glass vial was added CH2Cl2 (2.5 mL). Recrystallized NBS (11 mg, 0.0613 mmol, 1.0 equiv 

w.r.t. combined total aniline) was added rapidly with stirring, resulting in a brown color. 

After 10 mins, the reaction mixture was concentrated under reduced pressure and purified 

by silica gel flash chromatography (80% Et2O/hexanes) to afford the title compound as an 

off-white foam (21.1 mg, 0.0365 mmol, 93% yield); 1H NMR (400 MHz, C6D6) δ 7.84 – 

7.78 (m, 2H), 7.47 (t, J = 1.5 Hz, 1H), 6.70 (s, 1H), 6.66 – 6.60 (m, 2H), 3.99 (tt, J = 12.4, 

4.0 Hz, 1H), 3.28 (s, 3H), 3.18 (s, 3H), 2.97 (s, 3H), 2.96 – 2.91 (m, 1H), 2.88 (ddd, J = 

6.6, 5.3, 2.8 Hz, 2H), 2.77 (ddd, J = 11.7, 4.2, 2.2 Hz, 1H), 2.23 – 2.10 (m, 2H), 1.94 (dt, 

J = 14.5, 3.4 Hz, 1H), 1.86 – 1.76 (m, 1H), 1.75 (s, 3H), 1.57 (dq, J = 13.0, 3.4 Hz, 1H), 

1.18 (td, J = 14.0, 4.0 Hz, 1H); 13C NMR (100 MHz, C6D6) δ 202.6, 144.0, 143.1, 137.9, 

133.8, 129.4, 127.4, 123.0, 122.5, 114.8, 114.1, 106.2, 100.9, 62.0, 56.3, 49.9, 48.5, 45.8, 

42.8, 30.6, 27.4, 22.2, 21.1; IR (Neat Film, NaCl) 2936, 2835, 1732, 1692, 1597, 1490, 

1360, 1285, 1222, 1172, 1111, 1057, 992, 933, 806, 666 cm–1; HRMS (ESI+): m/z calc’d 

for C26H30BrN2O6S [M+H]+: 577.1002, found 577.1015. 
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Aza[3.2.2]bicyclononene 156 

 To a flame-dried 1-dram glass vial was added bromoarene 154 (5 mg, 0.00866 

mmol, 1.0 equiv) as a stock solution in benzene. Traces of water were azeotropically 

removed by addition of two additional portions of benzene followed by rotary evaporation. 

The vial was transferred to a nitrogen-filled glovebox and Pd(PPh3)4 (1.5 mg, 0.0013 mmol, 

15 mol %), DMF (0.22 mL), and Et3N (12 µL, 0.0866 mmol, 10 equiv) were added. The 

vial was sealed with a PTFE-lined cap, removed from the glovebox, and stirred at 110 °C 

in a metal heating block for 18 h. The reaction mixture was diluted with water (2 mL) and 

extracted with EtOAc (4x0.5 mL). The combined organic extracts were washed with water, 

dried over Na2SO4, and concentrated under reduced pressure. The crude product was 

purified by preparative TLC on basic alumina (60% EtOAc/hexanes) to afford the title 

compound as a beige film (2.5 mg, 0.00536 mmol, 62% yield); 1H NMR (400 MHz, 

CDCl3) δ 7.76 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 1.3 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 6.84 

(s, 1H), 3.68 (d, J = 1.0 Hz, 3H), 3.56 – 3.50 (m, 1H), 3.43 (d, J = 1.1 Hz, 3H), 3.32 (qdd, 

J = 11.1, 6.7, 5.1 Hz, 2H), 3.01 – 2.86 (m, 3H), 2.71 – 2.62 (m, 1H), 2.55 (td, J = 11.6, 4.7 

Hz, 1H), 2.42 (dd, J = 10.0, 4.9 Hz, 1H), 2.37 (s, 3H), 2.32 (dd, J = 5.2, 2.6 Hz, 1H), 2.04 

– 1.95 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 204.3, 144.2, 140.7, 137.0, 132.0, 129.4, 

127.8, 124.0, 123.6, 120.3, 116.8, 115.0, 106.6, 82.8, 56.8, 56.6, 51.9, 51.8, 44.2, 31.2, 

26.3, 23.5, 21.7; IR (Neat Film, NaCl) 2926, 2851, 1727, 1494, 1366, 1285, 1171, 1108, 
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1019, 807, 670 cm–1; HRMS (ESI+): m/z calc’d for C25H27N2O5S [M+H]+: 467.1635, found 

467.1636. 

 

Bicyclic ketal 155 

To a 1-dram glass vial was added bromoarene 154 (53.7 mg, 0.0930 mmol, 1.0 

equiv). Traces of water were azeotropically removed by addition of three portions of 

benzene followed by rotary evaporation. The vial was transferred to a nitrogen-filled 

glovebox, and Pd(PPh3)4 (125 mg, 0.108 mmol, 1.16 equiv) and DMF (2.4 mL) were 

added. The vial was sealed with a PTFE-lined cap, removed from the glovebox, and heated 

to 110 °C in a metal heating block. After stirring for 17 h, the reaction mixture was allowed 

to cool to 23 °C, diluted with water and brine, and extracted with EtOAc (3x). The 

combined organic extracts were dried over Na2SO4, concentrated under reduced pressure, 

and purified by silica gel flash chromatography (45% EtOAc/hexanes) to afford the desired 

product as a beige film (40 mg, 0.0802 mmol, 86% yield); 1H NMR (400 MHz, C6D6) δ 

7.97 – 7.91 (m, 2H), 7.47 (s, 1H), 7.19 (s, 1H), 6.62 – 6.57 (m, 2H), 3.63 (s, 3H), 3.34 (s, 

3H), 3.04 (s, 3H), 2.99 (q, J = 2.4 Hz, 1H), 2.79 (td, J = 9.8, 4.1 Hz, 1H), 2.65 (ddd, J = 

15.2, 4.8, 1.8 Hz, 1H), 2.58 – 2.46 (m, 2H), 2.11 (dd, J = 11.8, 2.9 Hz, 1H), 1.98 (ddd, J = 

11.9, 3.5, 2.2 Hz, 1H), 1.73 (s, 3H), 1.59 – 1.50 (m, 2H), 1.28 – 1.11 (m, 2H); 13C NMR 

(100 MHz, C6D6) δ 143.4, 139.6, 138.1, 133.7, 129.4, 124.3, 121.1, 120.3, 118.0, 114.9, 

110.5, 102.7, 75.7, 58.2, 54.7, 51.3, 48.8, 46.7, 38.2, 27.4, 27.0, 23.3, 21.1 (an additional 
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13C resonance associated with the tosyl group is likely obscured by the solvent signal); IR 

(Neat Film, NaCl) 2934, 2832, 1504, 1451, 1406, 1360, 1283, 1227, 1169, 1103, 967, 913, 

813, 663 cm–1; HRMS (ESI+): m/z calc’d for C26H31N2O6S [M+H]+: 499.1897, found 

499.1890. 

 

α-Hydroxyketone 157 

 To a 1-dram glass vial under air were added ketal 155 (10 mg, 0.020 mmol, 1.0 

equiv), CH2Cl2 (1 mL), water (0.1 mL), and TFA (6.0 µL, 0.078 mmol, 3.9 equiv). The 

reaction mixture was stirred at 23 °C for 40 min, then neutralized with saturated aq. 

NaHCO3 (1 mL) and stirred for an additional 10 min. The layers were separated, and the 

aqueous phase was extracted with CH2Cl2 (3x0.5 mL). The combined organic phases were 

dried over Na2SO4 and concentrated under reduced pressure to afford the title compound 

as a beige film (9.0 mg, 0.020 mmol, >99% yield); 1H NMR (400 MHz, C6D6) δ 7.72 – 

7.67 (m, 2H), 7.29 (t, J = 1.3 Hz, 1H), 6.66 (s, 1H), 6.44 – 6.36 (m, 2H), 4.55 (s, 1H), 3.20 

(s, 3H), 2.61 (td, J = 3.6, 1.8 Hz, 1H), 2.55 – 2.46 (m, 1H), 2.45 – 2.33 (m, 1H), 2.32 – 

2.23 (m, 2H), 2.15 (dt, J = 12.5, 3.4 Hz, 1H), 1.89 – 1.72 (m, 2H), 1.52 (s, 3H), 1.47 (dd, J 

= 12.4, 2.8 Hz, 2H), 0.84 (tdd, J = 13.8, 6.0, 2.8 Hz, 1H); 13C NMR (100 MHz, C6D6) δ 

209.9, 143.7, 140.4, 138.0, 133.2, 129.4, 124.3, 121.8, 120.9, 116.3, 114.2, 107.0, 75.9, 

57.2, 54.6, 46.8, 39.6, 33.5, 32.3, 23.1, 21.1 (an additional 13C resonance associated with 

the tosyl group is obscured by the solvent signal); IR (Neat Film, NaCl) 3466, 2925, 2853, 
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1712, 1596, 1505, 1462, 1435, 1367, 1285, 1223, 1171, 1105, 1010, 970, 892, 816, 735, 

665 cm–1; HRMS (ESI+): m/z calc’d for C24H25N2O5S [M+H]+: 453.1479, found 453.1472. 

 

Methyl enol ether 160 

 To a 1-dram glass vial was added ketal 155 (5 mg, 0.010 mmol, 1.0 equiv). Traces 

of water were azeotropically removed by addition of three portions of benzene followed 

by rotary evaporation. The headspace of the vial was evacuated and backfilled with 

nitrogen. CH2Cl2 (1 mL) and i-Pr2NEt (27 µL, 0.16 mmol, 16 equiv) were added, followed 

by the addition of TMSOTf (18 µL, 0.10 mmol, 10 equiv). The reaction mixture was stirred 

at 23 °C for 30 min, then quenched with aq. NaOH (0.3 mL). The layers were separated, 

and the aqueous phase was extracted with CH2Cl2 (1x). The combined organic phases were 

dried over Na2SO4 and concentrated under reduced pressure. The crude product was 

purified by preparative TLC on silica gel (50% EtOAc/hexanes) to afford the title 

compound as a beige film (3.7 mg, 0.00687 mmol, 69% yield); 1H NMR (400 MHz, C6D6) 

δ 7.94 – 7.87 (m, 2H), 7.40 (t, J = 1.7 Hz, 1H), 7.27 (s, 1H), 6.58 (d, J = 8.2 Hz, 2H), 4.15 

(dd, J = 4.9, 2.4 Hz, 1H), 3.63 (s, 3H), 3.20 (dt, J = 4.6, 2.9 Hz, 1H), 2.94 (s, 3H), 2.91 – 

2.84 (m, 1H), 2.68 – 2.55 (m, 2H), 2.53 – 2.43 (m, 1H), 2.20 – 1.99 (m, 4H), 1.73 (s, 3H), 

0.29 (s, 9H); 13C NMR (100 MHz, C6D6) δ 159.3, 143.2, 139.5, 138.2, 131.5, 129.3, 123.8, 

121.5, 121.4, 120.3, 114.8, 109.0, 90.9, 71.6, 58.3, 54.1, 53.6, 47.3, 38.5, 30.3, 23.2, 21.1, 

2.1 (an additional 13C resonance associated with the tosyl group is likely obscured by the 

solvent signal); IR (Neat Film, NaCl) 2932, 2834, 1657, 1597, 1505, 1463, 1406, 1361, 

OMe

TsN

N

OH

155

OMe
OMe

OMe

TsN

N

OTMS

160

CH2Cl2, 23 °C OMe
TMSOTf, i-Pr2NEt



Chapter 2 – Progress Toward the Total Synthesis of Aleutianamine  

 
325 

1285, 1249, 1172, 1104, 1024, 932, 843, 682 cm–1; HRMS (ESI+): m/z calc’d for 

C28H35N2O5SSi [M+H]+: 539.2030, found 539.2028. 

 

Enone 168 

 To a 1-dram glass vial was added ketone 157 (9 mg, 0.020 mmol, 1.0 equiv). Traces 

of water were azeotropically removed by addition of three portions of benzene followed 

by rotary evaporation. The headspace of the vial was evacuated and backfilled with 

nitrogen. CH2Cl2 (0.5 mL) and i-Pr2NEt (40 µL, 0.23 mmol, 11 equiv) were added, 

followed by the addition of TMSOTf (28 µL, 0.15 mmol, 7.5 equiv). The reaction mixture 

was stirred at 23 °C for 1 h, after which LC–MS analysis indicated incomplete conversion. 

Additional i-Pr2NEt (14 µL, 0.080 mmol, 4 equiv) and TMSOTf (10 µL, 0.055 mmol, 2.8 

equiv) were therefore added, and stirring was continued for an additional 40 min, after 

which LC–MS analysis indicated complete conversion. The reaction mixture was loaded 

directly onto a silica gel preparative TLC plate. Elution with 25% EtOAc/hexanes afforded 

a silyl enol ether that was used directly in the following step. 

 This intermediate was transferred to a 20 mL glass vial and brought into a nitrogen-

filled glovebox. Pd(OAc)2 (9 mg, 0.040 mmol, 2.0 equiv) and DMSO (1.2 mL) were added. 

The reaction mixture was stirred at 28 °C for 4 days, whereafter the vial was removed from 

the glovebox and the reaction mixture diluted with water and extracted with CH2Cl2 (4x). 

The combined organic extracts were washed with 1 M aq. LiCl, dried over Na2SO4, and 

concentrated under reduced pressure. The crude product was purified by preparative TLC 
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on silica gel (70% EtOAc/hexanes) to afford the title compound as a yellow solid (7 mg, 

0.013 mmol, 65% yield over 2 steps); 1H NMR (400 MHz, C6D6) δ 7.87 – 7.78 (m, 2H), 

7.47 (d, J = 1.6 Hz, 1H), 7.04 (s, 1H), 6.57 (d, J = 8.0 Hz, 2H), 5.87 (d, J = 9.9 Hz, 1H), 

5.81 (ddd, J = 10.0, 5.1, 1.8 Hz, 1H), 3.43 (s, 3H), 3.32 (td, J = 4.4, 2.8 Hz, 1H), 2.65 – 

2.57 (m, 2H), 2.41 – 2.29 (m, 1H), 2.23 (ddd, J = 12.0, 2.7, 1.8 Hz, 1H), 2.15 – 1.99 (m, 

2H), 1.71 (s, 3H), 0.37 (s, 9H); 13C NMR (100 MHz, C6D6) δ 196.0, 143.7, 142.0, 141.0, 

137.9, 130.8, 129.6, 129.4, 124.5, 123.0, 121.1, 115.7, 114.0, 107.3, 77.0, 56.8, 54.6, 47.2, 

38.6, 23.1, 21.1, 2.7 (an additional 13C resonance associated with the tosyl group is likely 

obscured by the solvent signal); IR (Neat Film, NaCl) 2925, 2854, 1693, 1504, 1463, 1352, 

1263, 1173, 1107, 1024, 963, 932, 844, 759, 666 cm–1; HRMS (ESI+): m/z calc’d for 

C27H31N2O5SSi [M+H]+: 523.1717, found 523.1718. 

 

Phenyl sulfide 169 

 To a 1-dram glass vial was added enone 168 (12.4 mg, 0.024 mmol, 1.0 equiv), 

CCl4 (0.1 mL), thiophenol (6 µL, 0.059 mmol, 2.5 equiv), and Et3N (2.0 µL, 0.014 mmol, 

0.6 equiv). The reaction mixture was stirred at 23 °C for 35 min, during which time the 

yellow color of the starting material disappeared. The reaction mixture was loaded directly 

onto a silica gel preparative TLC plate. Elution with 40% EtOAc/hexanes afforded the title 

compound as a colorless film (15.6 mg, 0.024 mmol, >99% yield); 1H NMR (400 MHz, 

C6D6) δ 7.92 – 7.86 (m, 2H), 7.49 (d, J = 1.3 Hz, 1H), 7.30 – 7.25 (m, 2H), 7.02 – 6.87 (m, 

4H), 6.63 – 6.58 (m, 2H), 3.67 (dq, J = 6.1, 2.1 Hz, 1H), 3.46 (s, 3H), 3.31 (dt, J = 4.9, 2.3 
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Hz, 1H), 2.94 (dd, J = 12.5, 2.9 Hz, 1H), 2.72 – 2.61 (m, 1H), 2.56 – 2.42 (m, 4H), 2.37 

(dt, J = 15.8, 1.8 Hz, 1H), 2.09 (ddd, J = 12.5, 3.4, 2.3 Hz, 1H), 1.72 (s, 3H), 0.51 (s, 9H); 

13C NMR (100 MHz, C6D6) δ 204.7, 143.8, 140.7, 137.9, 134.1, 132.7, 131.2, 129.5, 129.4, 

127.9, 124.3, 121.8, 121.0, 117.3, 114.0, 107.4, 79.4, 58.3, 57.2, 50.2, 46.8, 40.2, 35.2, 

23.1, 21.1, 3.0 (an additional 13C resonance associated with the tosyl group is likely 

obscured by the solvent signal); IR (Neat Film, NaCl) 2934, 2847, 1725, 1502, 1358, 1285, 

1249, 1172, 1106, 963, 845, 665 cm–1; HRMS (ESI+): m/z calc’d for C33H37N2O5S2Si 

[M+H]+: 633.1908, found 633.1895. 

 

Aminothiophene 176 

 Prepared according to the procedure of Andersen, Møller, and coworkers from 1,4-

cyclohexandione monoethylene ketal (175).41 All characterization data matched those 

reported in the literature. 

 

Amino acid hydrochloride 214 

 To a 350 mL glass pressure vessel under air were added aminothiophene 176 (22.2 

g, 78.35 mmol, 1.0 equiv), KOH (17.6 g, 313.4 mmol, 4.0 equiv), EtOH (165 mL), and 

water (33 mL). The flask was sealed, and the reaction mixture was stirred at 75 °C in an 

oil bath for 12 h. The reaction mixture was subsequently transferred to an Erlenmeyer flask 

and cooled to 0 °C in an ice bath. The solution was acidified with 1 N aq. HCl (375 mL), 
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resulting in the formation of a thick precipitate. The product was collected by vacuum 

filtration and washed with water. The resulting clay-like material was transferred to a round 

bottom flask with MeOH. The solvent was removed under reduced pressure and the 

product was dried under high vacuum to afford the title compound as a cream-colored 

powder (17.95 g, 61.53 mmol, 79% yield assuming complete conversion to hydrochloride); 

1H NMR (400 MHz, DMSO) δ 11.81 (br s, 1H), 7.20 (br s, 2H), 3.90 (s, 4H), 2.72 (t, J = 

6.4 Hz, 2H), 2.59 (s, 2H), 1.75 (t, J = 6.5 Hz, 2H); 13C NMR (100 MHz, DMSO) δ 166.7, 

163.4, 130.9, 112.4, 107.6, 102.6, 63.9, 34.3, 31.0, 25.1; IR (Neat Film, NaCl) 3409, 2890, 

1635, 1580, 1474, 1451, 1353, 1294, 1267, 1105, 1054, 1036, 926, 642 cm–1; HRMS (ESI–

): m/z calc’d for C11H12NO4S [M–H]–: 254.0493, found 254.0494. 

 

Acetamidothiophene 177 

 To a 500 mL round bottom flask containing hydrochloride salt 214 (10.78 g, 37.0 

mmol, 1.0 equiv) were added CH2Cl2 (186 mL) and TFA (8.6 mL, 111 mmol, 3.0 equiv). 

After stirring for 2 h at 23 °C, DMAP (230 mg, 1.86 mmol, 5 mol %) and Et3N (26 mL, 

185 mmol, 5.0 equiv) were added rapidly, followed by acetic anhydride (5.25 mL, 56.0 

mmol, 1.5 equiv). After an additional 4 h, the reaction mixture was concentrated under 

reduced pressure and purified by silica gel flash chromatography (35% acetone/hexanes) 

to afford a crude product. Repurification by silica gel flash chromatography (30% 

acetone/hexanes) provided the title compound as a cream-colored solid (6.95 g, 27.4 mmol, 

74% yield); 1H NMR (400 MHz, C6D6) δ 6.64 (br s, 1H), 6.14 (s, 1H), 3.52 – 3.40 (m, 4H), 

2.85 (s, 2H), 2.74 (tt, J = 6.5, 1.6 Hz, 2H), 1.86 (t, J = 6.5 Hz, 2H), 1.39 (s, 3H); 13C NMR 
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(100 MHz, C6D6) δ 165.7, 137.5, 130.9, 125.4, 111.7, 108.9, 64.5, 35.1, 34.9, 32.5, 32.4, 

24.4, 22.7; IR (Neat Film, NaCl) 3260, 3089, 3046, 2931, 2892, 1650, 1583, 1434, 1370, 

1301, 1263, 1114, 1060, 986, 946, 837, 737 cm–1; HRMS (ESI+): m/z calc’d for 

C12H16NO3S [M+H]+: 254.0845, found 254.0847. 

 

Bromoarene 179 

 To a 40 mL glass vial were added ketal 177 (500 mg, 1.97 mmol, 1.0 equiv). The 

vial was sealed with a PTFE/silicone septum, and the headspace was evacuated and 

backfilled with nitrogen. THF (13 mL) and 4 N aq. HCl (1.98 mL, 7.92 mmol, 4.0 equiv) 

were added and the vial was sealed and stirred at 66 °C in a metal heating block. After 1.5 

h, the reaction mixture was allowed to cool to 23 °C, neutralized with saturated aq. 

NaHCO3, and extracted with CH2Cl2 (3x). The combined organic extracts were 

concentrated under reduced pressure and dried under high vacuum with a P4O10 trap to 

remove water, providing 420 mg of crude ketone 178 containing ~10% of an unknown 

impurity, but that was sufficiently pure to use in the next step. 

 To a 20 mL glass vial were added tricycle 134 (182 mg, 0.532 mmol, 1.0 equiv), 

the crude ketone prepared from ketal 177 (144 mg, 0.692 mmol, 1.3 equiv assuming a pure 

compound), and InCl3 (235 mg, 1.06 mmol, 2.0 equiv). The headspace of the vial was 

evacuated and backfilled with nitrogen. Dry MeOH (3.6 mL) and triethylsilane (0.26 mL, 

1.6 mmol, 3.0 equiv) were added by syringe and the reaction mixture was allowed to stir 
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at 23 °C for 19 h. At this point, additional triethylsilane (0.26 mL, 1.6 mmol, 3.0 equiv) 

was added. After 2 more days, additional triethylsilane (0.26 mL, 1.6 mmol, 3.0 equiv) and 

intermediate ketone 178 (50 mg, 0.24 mmol, 0.45 equiv assuming a pure compound) were 

added. After stirring for an additional 21 h at 23 °C, the reaction mixture was diluted with 

saturated aq. NaHCO3 and extracted with CH2Cl2 (3x). The combined organic extracts 

were dried over Na2SO4, concentrated under reduced pressure, and purified by silica gel 

flash chromatography (35% acetone/hexanes) to afford an intermediate tertiary aniline as 

an off-white foam (231 mg, 0.431 mmol, 81% yield); 1H NMR (400 MHz, C6D6) δ 7.95 – 

7.87 (m, 2H), 7.48 (s, 1H), 6.64 (d, J = 8.1 Hz, 2H), 6.50 (d, J = 8.3 Hz, 1H), 6.19 (s, 1H), 

6.04 (d, J = 8.4 Hz, 1H), 3.90 – 3.74 (m, 1H), 3.56 (s, 3H), 2.79 – 2.61 (m, 3H), 2.57 – 2.40 

(m, 5H), 1.73 (s, 3H), 1.71 – 1.64 (m, 1H), 1.62 – 1.56 (m, 1H), 1.55 (s, 3H). 

 To a 50 mL round bottom flask was added this intermediate tertiary aniline (103.4 

mg, 0.193 mmol, 1.0 equiv), and the headspace of the flask was evacuated and backfilled 

with nitrogen. THF (5 mL) was added, and the flask was cooled to –78 °C. Subsequently, 

a solution of NBS (34.3 mg, 0.193 mmol, 1.0 equiv) was added by syringe pump over a 

period of 1 h with rapid stirring. After completion of the addition, the cooling bath was 

removed, and the reaction mixture was allowed to warm to 23 °C. The reaction mixture 

was concentrated under reduced pressure and purified by silica gel flash chromatography 

(30% acetone/hexanes) to afford the title compound as an off-white foam of sufficient 

purity for use in the next step (70 mg, 0.114 mmol, 59% yield); a nearly pure sample for 

analysis was obtained by preparative HPLC (SiO2 column, 30→100% acetone/hexanes 

over 18 min at 12 mL/min). 1H NMR (400 MHz, C6D6) δ 7.86 – 7.80 (m, 2H), 7.52 (s, 1H), 

7.35 (s, 1H), 6.75 (s, 1H), 6.65 (d, J = 8.1 Hz, 2H), 6.28 (s, 1H), 4.24 (ddq, J = 13.9, 7.9, 



Chapter 2 – Progress Toward the Total Synthesis of Aleutianamine  

 
331 

2.6 Hz, 1H), 3.21 (s, 3H), 3.05 – 2.91 (m, 2H), 2.86 (ddd, J = 13.9, 7.8, 4.9 Hz, 1H), 2.72 

(ddd, J = 14.5, 11.3, 2.4 Hz, 1H), 2.55 – 2.36 (m, 2H), 2.35 – 2.18 (m, 2H), 1.87 – 1.69 (m, 

1H), 1.76 (s, 3H), 1.59 – 1.49 (m, 1H), 1.56 (s, 3H); 13C NMR (100 MHz, C6D6) δ 166.1, 

144.0, 142.8, 137.9, 137.6, 134.8, 131.1, 129.5, 128.0, 127.7, 126.8, 123.1, 122.3, 115.4, 

114.3, 112.2, 106.1, 59.9, 56.4, 43.1, 29.6, 28.8, 26.3, 22.8, 22.6, 21.1. Additional peaks in 

the 1H NMR spectrum at 1.60 ppm and in the 13C NMR spectrum at 29.2 and 176.8 ppm 

arise from an unknown impurity; correlations to the resonances of bromoarene 179 are not 

observed in a 1H/13C HMBC experiment; IR (Neat Film, NaCl) 3256, 2932, 2842, 1713, 

1582, 1487, 1347, 1288, 1228, 1169, 1112, 804, 684 cm–1; HRMS (ESI+): m/z calc’d for 

C28H29BrN3O4S2 [M+H]+: 614.0777, found 614.0786. 

 

Thioimidate 184 

 To a 1-dram glass vial in a nitrogen-filled glovebox were added bromoarene 179 

(18 mg, 0.0293 mmol, 1.0 equiv), 1,4-dioxane (0.3 mL), and K2CO3 (6.1 mg, 0.0441 mmol, 

1.5 equiv). Pd(dba)2 (2.5 mg, 0.0043 mmol, 0.15 equiv) and XPhos (3.5 mg, 0.0132 mmol, 

0.45 equiv) were added as a stock solution in 1,4-dioxane (0.44 mL, prestirred for 10 min 

at 28 °C). The vial was sealed with a PTFE-lined cap, removed from the glovebox, and 

stirred at 120 °C in a metal heating block for 6 h. Then, the reaction mixture was allowed 

to cool to 23 °C and concentrated under reduced pressure. The crude product was purified 

by preparative TLC on silica gel (100% EtOAc) to afford the title compound as a brown 
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solid (11.2 mg of material containing 10 wt % EtOAc by 1H NMR analysis, 0.0189 mmol, 

65% yield); 1H NMR (400 MHz, C6D6) δ 7.87 – 7.82 (m, 2H), 7.47 (s, 1H), 6.86 (s, 1H), 

6.62 – 6.56 (m, 2H), 6.11 (d, J = 1.4 Hz, 1H), 3.24 (s, 3H), 2.74 (p, J = 2.9 Hz, 1H), 2.72 

– 2.55 (m, 2H), 2.51 – 2.42 (m, 2H), 2.38 (dt, J = 12.3, 2.7 Hz, 1H), 2.33 (s, 3H), 1.91 (dt, 

J = 13.9, 6.5 Hz, 1H), 1.72 (s, 3H), 1.69 – 1.58 (m, 3H), 0.84 – 0.70 (m, 1H); 13C NMR 

(100 MHz, C6D6) δ 184.5, 183.6, 175.0, 143.8, 140.1, 137.9, 133.4, 129.4, 124.3, 123.2, 

121.9, 120.9, 114.4, 112.4, 109.1, 63.5, 57.2, 52.9, 47.1, 40.3, 31.5, 27.6, 25.1, 23.0, 21.1 

(an additional 13C resonance associated with the tosyl group is likely obscured by the 

solvent signal); IR (Neat Film, NaCl) 2924, 1665, 1503, 1362, 1285, 1234, 1172, 1106, 

1004, 672 cm–1; HRMS (ESI+): m/z calc’d for C28H28N3O4S2 [M+H]+: 534.1516, found 

534.1524. 

 

Trifluoroacetamidothiophene 187 

 To a 500 mL round bottom flask was added hydrochloride salt 214 (14.29 g, 48.98 

mmol, 1.0 equiv). Traces of water were azeotropically removed by addition of three 

portions of benzene followed by rotary evaporation. Then, the headspace of the flask was 

evacuated and backfilled with nitrogen, and CH2Cl2 (150 mL) and TFA (11.2 mL, 146.9 

mmol, 3.0 equiv) were added. After 15 min, additional CH2Cl2 (50 mL) was added to 

reduce the viscosity of the mixture. The reaction mixture was stirred for 2.5 h at 23 °C, 

whereafter it was cooled to 0 °C in an ice bath and pyridine (19.7 mL, 244.9 mmol, 5.0 

equiv) was added rapidly. TFAA (10.2 mL, 73.47 mmol, 1.5 equiv) was then added, and 

the ice bath was removed. After stirring for an additional 16 h at 23 °C, silica gel was 
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added, and the reaction mixture was concentrated under reduced pressure and purified by 

silica gel flash chromatography (33% EtOAc/hexanes) to afford the title compound as an 

orange solid (9.67 g, 31.47 mmol, 64% yield); 1H NMR (400 MHz, CDCl3) δ 8.72 (s, 1H), 

6.59 (s, 1H), 4.06 – 3.98 (m, 4H), 2.91 (d, J = 1.5 Hz, 2H), 2.74 (tt, J = 6.5, 1.6 Hz, 2H), 

1.94 (t, J = 6.5 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 154.2, 153.8, 153.4, 153.0, 133.4, 

131.8, 127.9, 120.1, 117.2, 116.1, 114.4, 111.5, 108.5, 64.8, 34.9, 31.7, 24.0; IR (Neat 

Film, NaCl) 3248, 3097, 2894, 1713, 1589, 1434, 1362, 1250, 1169, 1060, 946, 905, 842, 

739 cm–1; HRMS (ESI+): m/z calc’d for C12H13F3NO3S [M+H]+: 308.0563, found 

308.0561. 

 

Tertiary aniline 215 

 To a 100 mL round bottom flask containing thiophene-ketal 187 (1.64 g, 5.34 

mmol, 1.5 equiv) under nitrogen and equipped with a reflux condenser were added THF 

(27 mL) and 4 N aq. HCl (5.3 mL, 21.2 mmol, 4.0 equiv w.r.t. ketal). The reaction mixture 

was heated to reflux and stirred for 1.5 h, then allowed to cool to 23 °C and quenched with 

saturated aq. NaHCO3 (100 mL). The resulting mixture was extracted with CH2Cl2 (3x40 

mL). The combined organic extracts were washed with brine, and the brine phase was 

back-extracted once with CH2Cl2. The combined organic phases were dried over a mixture 

of Na2SO4 and MgSO4 and concentrated under reduced pressure to afford crude ketone 188 

as an orange solid that was used directly without further purification. 
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 To a 50 mL round bottom flask were added tricyclic aniline 134 (1.22 g, 3.56 mmol, 

1.0 equiv), the crude ketone resulting from hydrolysis of ketal 187 (5.34 mmol assuming 

pure compound), and InCl3 (1.57 g, 7.12 mmol, 2.0 equiv). The headspace of the flask was 

evacuated and backfilled with nitrogen. MeOH (12 mL) and Et3SiH (5.7 mL, 35.6 mmol, 

10 equiv) were added and the reaction mixture was stirred at 23 °C for 24 h, whereafter it 

was transferred to a separatory funnel containing saturated aq. NaHCO3 (200 mL). The 

resulting suspension was extracted with CH2Cl2 (3x70 mL). The combined organic extracts 

(still containing a significant quantity of water and indium salts) were dried over Na2SO4, 

concentrated under reduced pressure, and purified by automated silica gel flash 

chromatography (Teledyne ISCO, 0→60% EtOAc/hexanes) to afford the title compound 

as a golden-colored foam of sufficient purity for use in the next step (1.80 g, 3.05 mmol, 

86% yield). A sample for analysis was obtained by preparative TLC on silica gel (33% 

EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) δ 8.40 (br s, 1H), 7.82 – 7.75 (m, 2H), 7.34 

(t, J = 1.5 Hz, 1H), 7.26 – 7.21 (m, 2H), 6.60 (s, 1H), 6.58 (d, J = 8.3 Hz, 1H), 6.30 (d, J = 

8.8 Hz, 1H), 4.15 – 4.01 (m, 1H), 3.68 (s, 3H), 3.33 (dt, J = 11.0, 5.4 Hz, 1H), 3.21 (dt, J 

= 11.5, 6.2 Hz, 1H), 2.99 – 2.92 (m, 3H), 2.91 – 2.66 (m, 3H), 2.37 (s, 3H), 2.07 – 1.98 (m, 

2H); 13C NMR (100 MHz, CDCl3) δ 153.8, 153.4, 144.2, 140.0, 137.1, 136.3, 133.2, 132.4, 

129.5, 129.4, 127.7, 124.2, 123.2, 119.7, 117.2, 116.5, 115.4, 114.4, 110.3, 102.7, 57.3, 

53.5, 42.2, 27.0, 26.0, 25.9, 23.5, 21.7; IR (Neat Film, NaCl) 3281, 3126, 3058, 2935, 2841, 

1714, 1588, 1510, 1442, 1356, 1251, 1169, 1108, 1056, 996, 903, 739, 663 cm–1; HRMS 

(ESI+): m/z calc’d for C28H27F3N3O4S2 [M+H]+: 590.1390, found 590.1404. 
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Bromoarene 189 

 To a 250 mL round bottom flask was added tertiary aniline 215 (1.78 g, 3.02 mmol, 

1.0 equiv). Traces of water were azeotropically removed by addition of three portions of 

benzene followed by rotary evaporation, and the headspace of the flask was evacuated and 

backfilled with nitrogen. The starting material was taken up in THF (50 mL), and the flask 

was cooled to –78 °C and protected from light. A solution of NBS (484 mg, 2.72 mmol, 

0.9 equiv) in THF (50 mL) was added as a slow stream with rapid stirring. Following 

addition, the reaction mixture was allowed to stir at –78 °C for 5 additional min, whereafter 

the cooling bath was removed and the reaction mixture allowed to warm to 23 °C. The 

reaction mixture was concentrated under reduced pressure and purified by automated silica 

gel flash chromatography (Teledyne ISCO, 0→50% EtOAc/hexanes) to afford the title 

compound as a brown foam (1.16 g, 1.74 mmol, 57% yield from tertiary aniline 215 or 

64% from NBS); 1H NMR (400 MHz, C6D6) δ 7.86 – 7.80 (m, 2H), 7.54 (t, J = 1.5 Hz, 

1H), 6.75 (s, 1H), 6.67 – 6.57 (m, 2H), 6.01 (s, 1H), 4.17 (dddd, J = 13.7, 11.3, 5.3, 2.6 Hz, 

1H), 3.19 (s, 3H), 2.99 – 2.75 (m, 3H), 2.58 (tdd, J = 11.7, 3.9, 2.0 Hz, 1H), 2.36 – 2.09 

(m, 4H), 1.80 – 1.71 (m, 1H), 1.76 (s, 3H), 1.45 (tdd, J = 12.2, 10.7, 6.7 Hz, 1H); 13C NMR 

(100 MHz, C6D6) δ 153.6, 153.2, 144.1, 143.0, 137.8, 134.6, 133.6, 131.9, 129.6, 129.5, 

128.0, 127.7, 123.1, 122.4, 117.7, 116.6, 116.2, 115.2, 114.2, 106.2, 59.5, 56.3, 43.0, 29.5, 

28.5, 26.0, 22.6, 21.1; IR (Neat Film, NaCl) 3295, 2931, 1714, 1588, 1490, 1438, 1347, 
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1251, 1172, 1111, 908, 804, 737, 665 cm
–1

; HRMS (ESI+): m/z calc’d for 

C28H26BrF3N3O4S2 [M+H]
+
: 668.0495, found 668.0502. 

 

Thioimidate 186 

 To a 40 mL glass vial was added bromoarene 189 (331 mg, 0.495 mmol, 1.0 equiv). 

Traces of water were azeotropically removed by addition of three portions of benzene 

followed by rotary evaporation and the vial was transferred to a nitrogen-filled glovebox. 

Solid K2CO3 (96 mg, 0.695 mmol, 1.4 equiv) was added to the vial. In a separate vial, a 

stock solution of Pd(dba)2 (46.2 mg) and XPhos (64.2 mg) in 1,4-dioxane (13.3 mL) was 

prepared and stirred at 28 °C for 10 min. Then, 12.4 mL of this solution were transferred 

to the vial containing bromoarene 189 (for 43 mg Pd(dba)2 [0.0748 mmol, 15 mol %] and 

59.1 mg XPhos [0.124 mmol, 25 mol %]). The vial was sealed with a PTFE/silicone septum 

cap, removed from the glovebox, and stirred at 100 °C for 6 h. The reaction mixture was 

then allowed to cool to 23 °C and passed through a PTFE syringe filter, which was 

subsequently rinsed with EtOAc. The solution was concentrated under reduced pressure 

and purified by silica gel flash chromatography (100% EtOAc → 100% acetone) to afford 

the title compound as an off-white solid (145 mg, 0.295 mmol, 60% yield); 
1
H NMR (400 

MHz, CD2Cl2) δ 7.81 – 7.72 (m, 2H), 7.32 – 7.24 (m, 3H), 6.81 (s, 1H), 5.78 (d, J = 1.7 

Hz, 1H), 3.64 (s, 3H), 3.59 (p, J = 2.7 Hz, 1H), 3.35 (ddd, J = 11.1, 9.7, 5.7 Hz, 1H), 3.25 

(ddd, J = 11.1, 4.8, 3.5 Hz, 1H), 3.04 – 2.94 (m, 2H), 2.65 (dt, J = 12.5, 2.9 Hz, 1H), 2.54 
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– 2.47 (m, 1H), 2.40 (qd, J = 5.3, 3.1 Hz, 1H), 2.37 (s, 3H), 2.33 (dd, J = 12.5, 2.9 Hz, 1H), 

2.06 – 1.97 (m, 1H), 1.61 (tdd, J = 13.7, 5.3, 2.9 Hz, 1H); 13C NMR (100 MHz, CD2Cl2) δ 

178.5, 168.3, 144.9, 139.3, 137.2, 133.5, 129.7, 128.0, 123.5, 122.3, 121.7, 120.6, 115.2, 

114.5, 109.1, 63.5, 57.4, 47.6, 41.9, 31.9, 24.8, 23.2, 21.7 (the bridgehead methine 13C 

resonance is obscured by the solvent peak); IR (Neat Film, NaCl) 2925, 2851, 1595, 1503, 

1462, 1349, 1284, 1226, 1174, 1106, 1011, 898, 808, 738, 704, 672 cm–1; HRMS (ESI+): 

m/z calc’d for C26H26N3O3S2 [M+H]+: 492.1410, found 492.1416. 

 

N-tosylthioimidate 190 

 To a 1-dram glass vial containing TsCl (16 mg, 0.0814 mmol, 2.0 equiv) under 

nitrogen was added thioimidate 186 (20 mg, 0.0407 mmol, 1.0 equiv) as a stock solution 

in CH2Cl2 (1 mL), followed by pyridine (10 µL, 0.122 mmol, 3.0 equiv). The reaction 

mixture was stirred at 23 °C for 3 days, after which it was concentrated under reduced 

pressure and purified by silica gel flash chromatography (50% EtOAc/hexanes) to afford 

the title compound as an orange film (23.7 mg, 0.0367 mmol, 90% yield); 1H NMR (400 

MHz, CDCl3) δ 7.93 (d, J = 8.1 Hz, 2H), 7.83 – 7.74 (m, 2H), 7.36 – 7.28 (m, 3H), 7.28 – 

7.22 (m, 2H), 6.49 (s, 1H), 5.97 (d, J = 1.6 Hz, 1H), 3.65 – 3.61 (m, 1H), 3.59 (s, 3H), 3.37 

(dt, J = 10.9, 7.6 Hz, 1H), 3.27 (dt, J = 11.1, 4.2 Hz, 1H), 3.06 – 2.97 (m, 2H), 2.83 (dt, J 

= 12.6, 2.8 Hz, 1H), 2.68 – 2.58 (m, 1H), 2.49 – 2.44 (m, 1H), 2.43 (s, 3H), 2.38 (s, 3H), 

2.21 – 2.04 (m, 2H), 1.59 – 1.51 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 184.5, 175.3, 

144.4, 144.0, 139.4, 137.3, 136.9, 133.1, 129.6, 129.5, 127.9, 127.6, 123.6, 122.7, 121.6, 
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120.7, 114.2, 111.1, 107.8, 65.4, 57.2, 53.0, 47.4, 40.4, 31.7, 25.4, 23.0, 21.7; IR (Neat 

Film, NaCl) 2924, 2850, 1596, 1519, 1449, 1286, 1228, 1167, 1107, 1010, 867, 813, 734, 

664 cm–1; HRMS (ESI+): m/z calc’d for C33H32N3O5S3 [M+H]+: 646.1499, found 

646.1500. 

 

Procedure for the direct preparation of N-tosylthioimidate 190 from bromoarene 189 

 To a 500 mL Schlenk bomb in a nitrogen-filled glovebox was added bromoarene 

189 (3.88 g, 5.80 mmol, 1.0 equiv) as a solution in a minimal amount of benzene. The 

benzene was removed under reduced pressure, and K2CO3 (1.12 g, 8.12 mmol, 1.4 equiv) 

and 1,4-dioxane (110 mL) were added. In a separate vial, Pd(dba)2 (500 mg, 0.870 mmol, 

15 mol %) and XPhos (691 mg, 1.45 mmol, 25 mol %) were combined. 1,4-dioxane (35 

mL) was added and the mixture was stirred at 28 °C for 10 min. Then, the Pd/ligand 

solution was transferred by pipette to the Schlenk bomb. The vessel was sealed, removed 

from the glovebox, and stirred at 100 °C for 7 h. The reaction mixture was allowed to cool 

to 23 °C, filtered through a Celite plug with EtOAc, and concentrated under reduced 

pressure. 

The residue was taken up in CH2Cl2 (70 mL). 1 N aq. NaOH was added, and the 

biphasic mixture was subjected to vigorous magnetic stirring for 1 h. The layers were 

separated, and the aqueous phase was extracted with CH2Cl2 (3x20 mL). The combined 
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organic phases were dried over Na2SO4 and concentrated under reduced pressure in a 500 

mL round bottom flask. 

Traces of water were azeotropically removed by addition of three portions of 

PhCH3 followed by rotary evaporation. DMAP (71 mg, 0.58 mmol, 10 mol %) was added 

and the headspace of the flask was evacuated and backfilled with nitrogen. CH2Cl2 (115 

mL) was added, followed by pyridine (1.4 mL, 17.4 mmol, 3.0 equiv). TsCl (2.21 g, 11.6 

mmol, 2.0 equiv) was added in a single portion under a stream of nitrogen. The reaction 

mixture was stirred at 23 °C for 58 h, then concentrated under reduced pressure. The crude 

product was purified by automated silica gel flash chromatography (Teledyne ISCO, 

0→40→75% EtOAc/hexanes) to afford N-tosylthioimidate 190 as an orange foam that 

crystallized upon standing (2.66 g, 4.12 mmol, 71% yield). For characterization data, see 

above. 

 

Thiolactone 185 

 To a 20 mL glass vial containing thioimidate 190 (200 mg, 0.310 mmol, 1.0 equiv) 

under nitrogen were added THF (2.5 mL), a degassed mixture of water (2 mL) and ethanol 

(10 mL), and 2 N aq. NaOH (0.62 mL, 1.24 mmol, 4.0 equiv). The vial was opened and 

sealed with a PTFE/silicone septum under a stream of argon. The reaction mixture was 

stirred at 80 °C at 490 rpm in a metal heating block for 25 min, after which the solution 

was nearly homogenous. The vial was immediately removed from the heating block and 

allowed to cool to approximately 35 °C, at which point the reaction mixture was quenched 
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with glacial acetic acid (0.3 mL) and diluted with water (40 mL), leading to the formation 

of a beige precipitate. The suspension was extracted with EtOAc (4x30 mL), and the 

combined organic phases were dried over Na2SO4 concentrated under reduced pressure. 

The crude product was purified by silica gel flash chromatography (2.5% EtOAc/CH2Cl2) 

to afford recovered thioimidate 190 (23.5 mg of material containing 10 wt % TsNH2 by 1H 

NMR analysis, 0.0328 mmol, 11% yield) and the title compound (104 mg, 0.211 mmol, 

68% yield); 1H NMR (400 MHz, C6D6) δ 7.86 (d, J = 8.2 Hz, 2H), 7.47 (d, J = 1.6 Hz, 1H), 

6.89 (t, J = 1.3 Hz, 1H), 6.67 – 6.59 (m, 2H), 5.50 (d, J = 1.7 Hz, 1H), 3.32 (s, 3H), 2.87 – 

2.78 (m, 1H), 2.78 – 2.59 (m, 2H), 2.59 – 2.45 (m, 2H), 2.40 (dt, J = 12.4, 2.8 Hz, 1H), 

1.91 – 1.81 (m, 1H), 1.81 – 1.76 (m, 1H), 1.74 (s, 3H), 1.73 – 1.66 (m, 1H), 1.66 – 1.56 

(m, 1H), 0.97 – 0.81 (m, 1H); 13C NMR (100 MHz, C6D6) δ 196.3, 177.3, 143.9, 140.0, 

137.8, 133.5, 129.4, 124.2, 121.9, 121.7, 121.0, 114.6, 112.8, 108.9, 60.8, 60.8, 57.0, 53.0, 

47.1, 40.9, 31.4, 24.8, 23.0, 21.1 (an additional 13C resonance associated with the tosyl 

group is likely obscured by the solvent signal); IR (Neat Film, NaCl) 2931, 2851, 1682, 

1504, 1348, 1284, 1227, 1169, 1107, 1011, 897, 851, 814, 738, 662 cm–1; HRMS (ESI+): 

m/z calc’d for C26H25N2O4S2 [M+H]+: 493.1250, found 493.1251. 

 

Primary aniline 192 

 To a 1-dram glass vial containing thiolactone 185 (22.6 mg, 0.0459 mmol, 1.0 

equiv) under nitrogen were added CH2Cl2 (2.3 mL) and TMSN3 (30 µL, 0.23 mmol, 5.0 

equiv). The reaction mixture was cooled to –78 °C and a solution of PIFA (18.8 mg, 0.0437 
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mmol, 0.95 equiv) in CH2Cl2 (0.5 mL) was added dropwise. After stirring for 10 min at –

78 °C, the reaction mixture was allowed to warm to 23 °C, concentrated under reduced 

pressure, and purified by preparative TLC on silica gel (90% Et2O/hexanes, eluted twice) 

to afford an intermediate aryl azide as a brown film (15.3 mg, 0.0287 mmol, 62% yield); 

1H NMR (600 MHz, C6D6) δ 7.95 – 7.91 (m, 2H), 7.34 (s, 1H), 6.56 (d, J = 8.2 Hz, 2H), 

5.66 (d, J = 1.6 Hz, 1H), 3.81 (s, 3H), 2.61 – 2.56 (m, 2H), 2.53 – 2.46 (m, 1H), 2.41 – 2.32 

(m, 2H), 2.24 (dt, J = 12.7, 2.8 Hz, 1H), 1.82 – 1.77 (m, 1H), 1.63 (dd, J = 12.7, 3.1 Hz, 

1H), 1.58 (s, 3H), 1.54 – 1.43 (m, 2H), 0.79 (tdd, J = 13.0, 5.7, 3.2 Hz, 1H). 

 To a ½-dram glass vial under air was added this intermediate aryl azide (7.3 mg, 

0.0137 mmol, 1.0 equiv) as a stock solution in CH2Cl2. The solvent was removed by 

blowing a stream of nitrogen over the surface of the solution. Then, PhCH3 (0.36 mL), 

tris(trimethylsilyl)silane (21 µL, 0.0684 mmol, 5.0 equiv), tert-dodecanethiol (1.6 µL, 

0.0069 mmol, 0.5 equiv), and triethylborane (1 M in hexanes, 41 µL, 0.0411 mmol, 3.0 

equiv) were added under air. After 5 min, the reaction mixture was concentrated under 

reduced pressure and purified by preparative TLC on silica gel (100% EtOAc) to afford 

the title compound as a brown film (5.5 mg, 0.0108 mmol, 79% yield); 1H NMR (400 MHz, 

C6D6) δ 8.02 – 7.97 (m, 2H), 7.26 (d, J = 1.6 Hz, 1H), 6.59 – 6.54 (m, 2H), 5.60 (d, J = 1.5 

Hz, 1H), 4.53 (s, 2H), 3.77 (s, 3H), 2.63 – 2.50 (m, 3H), 2.42 – 2.34 (m, 3H), 1.75 – 1.67 

(m, 2H), 1.65 (s, 3H), 1.58 – 1.53 (m, 2H), 0.75 – 0.63 (m, 1H); 13C NMR (100 MHz, 

C6D6) δ 194.9, 175.9, 143.9, 139.9, 136.8, 136.6, 129.6, 127.5, 127.2, 122.7, 117.8, 116.5, 

112.2, 100.0, 60.3, 60.3, 52.8, 48.0, 44.0, 30.9, 25.2, 22.9, 21.0 (an additional 13C resonance 

associated with the tosyl group is likely obscured by the solvent signal); IR (Neat Film, 

NaCl) 3440, 3347, 2921, 2854, 1682, 1486, 1367, 1294, 1177, 1136, 1094, 967, 828, 738, 
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683 cm–1; HRMS (ESI+): m/z calc’d for C26H26N3O4S2 [M+H]+: 508.1359, found 

508.1374. 

 

Deconjugated olefin 198 

 To a 1-dram glass vial was added thiolactone 185 (50 mg, 0.102 mmol, 1.0 equiv). 

Traces of water were azeotropically removed by addition of three portions of benzene 

followed by rotary evaporation, and the headspace of the vial was evacuated and flushed 

with nitrogen. The starting material was taken up in CH2Cl2 (1 mL), and i-Pr2NEt (0.18 

mL, 1.02 mmol, 10 equiv) and TMSOTf (0.13 µL, 0.714 mmol, 7.0 equiv) were injected. 

The reaction mixture was stirred at 23 °C for 20 h, then loaded directly onto a silica gel 

flash column and eluted (hexanes → 30% EtOAc/hexanes) to afford the title compound as 

a beige solid containing starting material as a minor impurity (47.3 mg, 0.0960 mmol, 94% 

yield); 1H NMR (400 MHz, C6D6) δ 7.92 – 7.85 (m, 2H), 7.43 (s, 1H), 7.04 (s, 1H), 6.62 

(d, J = 8.2 Hz, 2H), 4.83 (q, J = 3.2 Hz, 1H), 3.46 (s, 3H), 3.12 – 3.00 (m, 2H), 2.77 – 2.67 

(m, 1H), 2.66 – 2.49 (m, 3H), 2.48 – 2.39 (m, 1H), 2.07 (dd, J = 11.7, 3.8 Hz, 1H), 1.96 – 

1.86 (m, 2H), 1.78 (q, J = 3.9 Hz, 1H), 1.72 (s, 3H); 13C NMR (100 MHz, C6D6) δ 202.0, 

143.8, 139.6, 139.0, 137.9, 131.5, 129.4, 124.1, 121.9, 120.8, 119.0, 116.4, 114.6, 109.0, 

58.1, 56.3, 52.2, 47.3, 45.8, 35.6, 31.4, 22.9, 21.1 (an additional 13C resonance associated 

with the tosyl group is likely obscured by the solvent signal); IR (Neat Film, NaCl) 2928, 

2836, 1713, 1596, 1504, 1361, 1285, 1172, 1108, 895, 811, 731, 667, 616 cm–1; HRMS 

(ESI+): m/z calc’d for C26H25N2O4S2 [M+H]+: 493.1250, found 493.1248. 
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Diene 195 

 To a 20 mL glass vial was added deconjugated thiolactone 198 (19.9 mg, 0.0404 

mmol, 1.0 equiv). Traces of water were azeotropically removed by addition of three 

portions of benzene followed by rotary evaporation, the vial was transferred to a nitrogen-

filled glovebox, and Pd(OAc)2 (9.5 mg, 0.0424 mmol, 1.05 equiv) and DMSO (2.4 mL) 

were added. The vial was sealed with a PTFE/silicone septum and stirred at 28 °C for 24 

h, then removed from the glovebox and stirred at 23 °C for an additional 24 h. Then, the 

reaction mixture was diluted with water (30 mL) and extracted with EtOAc (4x15 mL). 

The combined organic extracts were washed with brine (2x15 mL), dried over Na2SO4, and 

concentrated under reduced pressure. The crude product was purified by preparative TLC 

(100% Et2O, eluted twice) to afford the title compound as a bright orange film (8.0 mg, 

0.0163 mmol, 40% yield); 1H NMR (400 MHz, C6D6) δ 7.83 – 7.78 (m, 2H), 7.44 (d, J = 

1.6 Hz, 1H), 6.92 (s, 1H), 6.62 – 6.53 (m, 2H), 5.87 (ddd, J = 9.7, 1.9, 0.9 Hz, 1H), 5.52 

(s, 1H), 5.46 – 5.38 (m, 1H), 3.29 (s, 3H), 3.19 (dtt, J = 4.7, 3.3, 2.0 Hz, 1H), 2.67 – 2.55 

(m, 3H), 2.40 – 2.32 (m, 2H), 1.93 (dd, J = 12.3, 3.9 Hz, 1H), 1.71 (s, 3H); 13C NMR (100 

MHz, C6D6) δ 196.1, 171.8, 143.8, 141.3, 137.8, 132.8, 131.8, 129.4, 128.0, 125.1, 124.1, 

123.4, 121.6, 121.2, 114.3, 113.6, 108.7, 58.2, 56.8, 53.0, 47.9, 37.6, 23.0, 21.1; IR (Neat 

Film, NaCl) 3060, 2934, 2841, 1681, 1622, 1504, 1347, 1287, 1226, 1177, 1106, 1016, 

967, 898, 856, 813, 732, 662, 623 cm–1; HRMS (ESI+): m/z calc’d for C26H23N2O4S2 

[M+H]+: 491.1094, found 491.1098. 
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Doubly vinylogous dithiocarbonate 201 

 To a ½-dram glass vial containing diene 195 (5.0 mg, 0.0102 mmol, 1.0 equiv) 

under nitrogen were added benzene (0.2 mL), thiophenol (5.2 µL, 0.051 mmol, 5.0 equiv), 

and Et3N (14.2 µL, 0.102 mmol, 10 equiv). The reaction mixture was stirred at 23 °C for 

75 min, whereafter it was loaded directly onto a silica gel flash column. Elution (10 → 

25% EtOAc/hexanes) provided an intermediate sulfide as a colorless film (4.7 mg, 0.00782 

mmol, 77% yield); 1H NMR (600 MHz, C6D6) δ 7.86 (d, J = 8.0 Hz, 2H), 7.47 (s, 1H), 

7.21 (d, J = 7.6 Hz, 2H), 7.04 – 6.94 (m, 3H), 6.90 (s, 1H), 6.62 (d, J = 8.0 Hz, 2H), 5.66 

(d, J = 1.7 Hz, 1H), 3.62 – 3.52 (m, 1H), 3.31 (s, 3H), 3.14 (q, J = 3.1 Hz, 1H), 2.79 (dd, J 

= 12.8, 2.8 Hz, 1H), 2.67 – 2.60 (m, 1H), 2.51 – 2.38 (m, 3H), 2.33 (d, J = 14.8 Hz, 1H), 

2.19 (dt, J = 12.5, 2.4 Hz, 1H), 2.10 (ddd, J = 14.8, 6.0, 1.8 Hz, 1H), 1.72 (s, 3H). 

 To a 1-dram glass vial containing this intermediate sulfide (3.2 mg, 0.00533 mmol, 

1.0 equiv) under nitrogen was added CH2Cl2 (133 µL), and the vial was cooled to 0 °C in 

an ice bath. m-CPBA (77 wt %, 1.2 mg, 0.00535 mmol, 1.0 equiv) was added dropwise as 

a solution in CH2Cl2 (133 µL) and the reaction mixture was allowed to stir at 0 °C for 100 

min. The solution was then diluted with EtOAc (1 mL), washed with saturated aq. K2CO3 

(3x), dried over Na2SO4, and concentrated to provide a crude sulfoxide that was used 

directly in the next step. 

 To a ½-dram glass vial was added the crude sulfoxide as a solution in dry CH2Cl2 

(0.25 mL). The vial was cooled to 0 °C, and pyridine (7.0 µL, 0.087 mmol, 16 equiv) and 
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TFAA (7.5 µL, 0.054 mmol, 10 equiv) were added. The reaction mixture was stirred for 5 

min at 0 °C, then allowed to warm to 23 °C and stirred for an additional 14 h. MeOH (7 

µL) was then added to quench excess TFAA, and the reaction mixture was loaded directly 

onto a silica gel flash column and eluted (25% EtOAc/hexanes). The product was combined 

with the product of another reaction conducted on a 0.0118 mmol scale to provide the title 

compound as an orange-red film (5.0 mg, 0.00835 mmol, 49% combined yield); 1H NMR 

(400 MHz, C6D6) δ 7.83 – 7.76 (m, 2H), 7.47 (d, J = 1.7 Hz, 1H), 7.08 – 7.01 (m, 2H), 6.96 

– 6.86 (m, 4H), 6.55 (d, J = 8.1 Hz, 2H), 5.80 (s, 1H), 5.11 (s, 1H), 3.54 (t, J = 3.2 Hz, 1H), 

3.46 (td, J = 11.6, 3.9 Hz, 1H), 3.25 (s, 3H), 2.93 (ddd, J = 11.1, 4.9, 2.6 Hz, 1H), 2.68 – 

2.57 (m, 1H), 2.53 (dt, J = 15.6, 3.3 Hz, 1H), 2.34 (dd, J = 12.2, 2.6 Hz, 1H), 2.00 (dd, J = 

12.3, 3.8 Hz, 1H), 1.72 (s, 3H); 13C NMR (100 MHz, C6D6) δ 195.4, 171.3, 145.0, 143.7, 

141.4, 137.8, 134.4, 130.1, 129.8, 129.6, 129.3, 124.2, 123.0, 121.3, 118.5, 118.4, 114.3, 

112.9, 108.8, 57.1, 56.8, 56.8, 50.1, 37.8, 23.2, 21.1 (2 additional aryl 13C resonances are 

likely obscured by the solvent signal); IR (Neat Film, NaCl) 2924, 2853, 1678, 1593, 1503, 

1348, 1281, 1173, 1108, 1022, 897, 810, 675 cm–1; HRMS (ESI+): m/z calc’d for 

C32H27N2O4S3 [M+H]+: 599.1127, found 599.1120. 

 

Pyrroloiminoquinone 206 

 To a 1-dram glass vial containing thiolactone 185 (7.0 mg, 0.014 mmol, 1.0 equiv) 

was added MeCN (0.42 mL). The solution was cooled to 0 °C and CAN (15.6 mg, 0.0284 

mmol, 2.0 equiv) was added dropwise as a solution in water (0.28 mL). The solution 
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became deep purple during addition, and the color rapidly faded to bright orange upon 

completion of the addition. After stirring for 3 min at 0 °C, concentrated aq. NH4OH (50 

µL) was added rapidly, leading to a dark purple color and a brown precipitate. The reaction 

mixture was stirred for an additional 30 min at 0 °C, then diluted with water (1 mL) and 

extracted with EtOAc (3x0.5 mL). The combined organic extracts were dried over Na2SO4 

and concentrated under reduced pressure. The crude product was purified by preparative 

HPLC (C18 column, 40→100% MeCN/H2O with 0.1% TFA over 10 min at 5 mL/min) to 

afford the title compound as a purple film (5.3 mg, 0.0090 mmol, 64% yield); 1H NMR 

(400 MHz, CD3OD) δ 8.14 – 8.07 (m, 2H), 7.94 (t, J = 1.0 Hz, 1H), 7.49 – 7.40 (m, 2H), 

6.19 (d, J = 1.3 Hz, 1H), 4.31 – 4.20 (m, 2H), 3.99 (ddd, J = 13.9, 5.9, 4.3 Hz, 1H), 3.17 – 

3.09 (m, 2H), 2.97 (dt, J = 13.1, 2.8 Hz, 1H), 2.85 (dd, J = 13.6, 4.7 Hz, 1H), 2.56 – 2.46 

(m, 2H), 2.44 (s, 3H), 2.34 (dd, J = 13.1, 2.5 Hz, 1H), 2.07 – 1.93 (m, 1H); 13C NMR (100 

MHz, CD3OD) δ 194.0, 173.7, 164.9, 155.0, 150.1, 147.4, 133.2, 129.8, 128.9, 128.5, 

127.4, 124.3, 122.6, 118.3, 94.2, 57.7, 56.6, 51.5, 42.2, 31.5, 23.4, 20.3, 18.3; 19F NMR 

(376 MHz, CD3OD) δ –77.2 (s); IR (Neat Film, NaCl) 3416, 3296, 3146, 2955, 1728, 1693, 

1607, 1556, 1510, 1438, 1407, 1379, 1338, 1292, 1195, 1179, 1168, 1141, 1123, 1093, 

1068, 991, 955, 785, 706, 666, 642, 626 cm–1; HRMS (ESI+): m/z calc’d for C25H22N3O4S2 

[M+H]+: 492.1046, found 492.1057. 
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Thiolactol 207 

 To a 1-dram glass vial was added diene 195 (2.0 mg, 0.00408 mmol, 1.0 equiv). 

Traces of water were azeotropically removed by addition of three portions of benzene 

followed by rotary evaporation, the headspace of the vial was evacuated and flushed with 

nitrogen, and the starting material was taken up in CH2Cl2 (200 µL). The vial was cooled 

to –78 °C, and freshly prepared DIBAL solution (0.4 M in CH2Cl2, 0.10 mL, 0.040 mmol, 

10 equiv) was added dropwise. A dark brown color initially formed and slowly faded to 

yield a colorless solution. After 5 min, 0.5 mL saturated aq. Rochelle’s salt was injected at 

–78 °C. The cooling bath was then removed at the mixture stirred vigorously at 23 °C for 

30 min. The layers were separated, and the aqueous phase was extracted with EtOAc (3x). 

The combined organic phases were dried over Na2SO4 and concentrated under reduced 

pressure to provide the title compound as a 5:1 mixture of diastereomers of sufficient purity 

for use in the next step (1.9 mg, 0.00386 mmol, 95% yield); 1H NMR (400 MHz, C6D6) δ 

7.91 – 7.86 (m, 2H), 7.57 (s, 1H), 7.45 (s, 1H), 6.59 (dd, J = 8.3, 4.3 Hz, 2H), 6.03 (d, J = 

9.8 Hz, 1H, major diastereomer), 5.98 (d, J = 9.8 Hz, 1H, minor diastereomer), 5.84 – 5.79 

(m, 1H), 5.55 – 5.45 (m, 1H), 5.25 (d, J = 3.2 Hz, 1H, major diastereomer), 5.16 (d, J = 2.1 

Hz, 1H, minor diastereomer), 3.64 (s, 3H), 3.35 (ddd, J = 5.1, 3.9, 2.3 Hz, 1H), 2.73 – 2.62 

(m, 3H), 2.55 (dt, J = 12.0, 1.7 Hz, 1H), 2.46 – 2.36 (m, 1H), 2.02 (dd, J = 12.0, 3.9 Hz, 

1H), 1.95 – 1.84 (m, 1H), 1.71 (s, 3H); 13C NMR (100 MHz, C6D6) δ 151.2, 143.5, 141.1, 

138.1, 130.7, 129.4, 129.4, 129.0, 125.6, 124.0, 123.1, 122.5, 120.9, 119.4, 115.0, 112.1, 
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84.1, 59.6, 57.2, 53.9, 48.1, 38.8, 23.1, 21.1; IR (Neat Film, NaCl) 2927, 2856, 1684, 1500, 

1460, 1361, 1285, 1225, 1173, 1107, 970, 897, 813, 755, 663 cm–1; HRMS (ESI+): m/z 

calc’d for C26H25N2O4S2 [M+H]+: 493.1250, found 493.1250. 
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Scheme A3.1. Synthesis of tricyclic aniline 134. 

 

Scheme A3.2. Synthesis of hydroxyketone 157. 

 

Scheme A3.3. Synthesis of aminothiophene 188. 
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Scheme A3.3. Synthesis of thiolactol 207. 
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Figure A4.2. Infrared spectrum (Thin Film, NaCl) of compound 96. 
 

Figure A4.3. 13C NMR (100 MHz, CDCl3) of compound 96. 
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Figure A4.5. Infrared spectrum (Thin Film, NaCl) of compound 97. 
 

Figure A4.6. 13C NMR (100 MHz, CDCl3) of compound 97. 
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Figure A4.8. Infrared spectrum (Thin Film, NaCl) of compound 107. 
 

Figure A4.9. 13C NMR (100 MHz, CDCl3) of compound 107. 
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Figure A4.11. Infrared spectrum (Thin Film, NaCl) of compound 109. 
 

Figure A4.12. 13C NMR (100 MHz, CDCl3) of compound 109. 
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Figure A4.14. Infrared spectrum (Thin Film, NaCl) of compound 125. 
 

Figure A4.15. 13C NMR (100 MHz, CDCl3) of compound 125. 
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Figure A4.17. Infrared spectrum (Thin Film, NaCl) of compound 126. 
 

Figure A4.18. 13C NMR (100 MHz, CDCl3) of compound 126. 
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Figure A4.20. Infrared spectrum (Thin Film, NaCl) of compound 131. 
 

Figure A4.21. 13C NMR (100 MHz, DMSO-d6) of compound 131. 
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Figure A4.23. Infrared spectrum (Thin Film, NaCl) of compound 132. 
 

Figure A4.24. 13C NMR (100 MHz, CDCl3) of compound 132. 
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Figure A4.26. Infrared spectrum (Thin Film, NaCl) of compound 133. 
 

Figure A4.27. 13C NMR (100 MHz, CDCl3) of compound 133. 
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Figure A4.29. Infrared spectrum (Thin Film, NaCl) of compound 134. 
 

Figure A4.30. 13C NMR (100 MHz, CDCl3) of compound 134. 
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Figure A4.32. Infrared spectrum (Thin Film, NaCl) of compound 136. 
 

Figure A4.33. 13C NMR (100 MHz, CDCl3) of compound 136. 
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Figure A4.35. Infrared spectrum (Thin Film, NaCl) of compound 138. 
 

Figure A4.36. 13C NMR (100 MHz, CDCl3) of compound 138. 
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Figure A4.38. 13C NMR (100 MHz, CD2Cl2) of compound 139. 
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Figure A4.40. Infrared spectrum (Thin Film, NaCl) of compound 143. 
 

Figure A4.41. 13C NMR (100 MHz, CDCl3) of compound 143. 
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Figure A4.43. Infrared spectrum (Thin Film, NaCl) of compound 141. 
 

Figure A4.44. 13C NMR (100 MHz, CDCl3) of compound 141. 
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Figure A4.46. Infrared spectrum (Thin Film, NaCl) of compound 149. 
 

Figure A4.47. 13C NMR (100 MHz, CDCl3) of compound 149. 
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Figure A4.49. Infrared spectrum (Thin Film, NaCl) of compound 150. 
 

Figure A4.50. 13C NMR (100 MHz, CDCl3) of compound 150. 
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Figure A4.52. Infrared spectrum (Thin Film, NaCl) of compound 153. 
 

Figure A4.53. 13C NMR (100 MHz, C6D6) of compound 153. 
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Figure A4.55. Infrared spectrum (Thin Film, NaCl) of compound 154. 
 

Figure A4.56. 13C NMR (100 MHz, C6D6) of compound 154. 
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Figure A4.58. Infrared spectrum (Thin Film, NaCl) of compound 156. 
 

Figure A4.59. 13C NMR (100 MHz, CDCl3) of compound 156. 
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Figure A4.61. Infrared spectrum (Thin Film, NaCl) of compound 155. 
 

Figure A4.62. 13C NMR (100 MHz, C6D6) of compound 155. 
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Figure A4.64. Infrared spectrum (Thin Film, NaCl) of compound 157. 
 

Figure A4.65. 13C NMR (100 MHz, C6D6) of compound 157. 
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Figure A4.67. Infrared spectrum (Thin Film, NaCl) of compound 160. 
 

Figure A4.68. 13C NMR (100 MHz, C6D6) of compound 160. 
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Figure A4.70. Infrared spectrum (Thin Film, NaCl) of compound 168. 
 

Figure A4.71. 13C NMR (100 MHz, C6D6) of compound 168. 
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Figure A4.73. Infrared spectrum (Thin Film, NaCl) of compound 169. 
 

Figure A4.74. 13C NMR (100 MHz, C6D6) of compound 169. 
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Figure A4.76. Infrared spectrum (Thin Film, NaCl) of compound 214. 
 

Figure A4.77. 13C NMR (100 MHz, DMSO-d6) of compound 214. 
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Figure A4.79. Infrared spectrum (Thin Film, NaCl) of compound 177. 
 

Figure A4.80. 13C NMR (100 MHz, C6D6) of compound 177. 
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Figure A4.82. Infrared spectrum (Thin Film, NaCl) of compound 179. 
 

Figure A4.83. 13C NMR (100 MHz, C6D6) of compound 179. 
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Figure A4.85. Infrared spectrum (Thin Film, NaCl) of compound 184. 
 

Figure A4.86. 13C NMR (100 MHz, C6D6) of compound 184. 
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Figure A4.88. Infrared spectrum (Thin Film, NaCl) of compound 187. 
 

Figure A4.89. 13C NMR (100 MHz, CDCl3) of compound 187. 
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Figure A4.91. Infrared spectrum (Thin Film, NaCl) of compound 215. 
 

Figure A4.92. 13C NMR (100 MHz, CDCl3) of compound 215. 
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Figure A4.94. Infrared spectrum (Thin Film, NaCl) of compound 189. 
 

Figure A4.95. 13C NMR (100 MHz, C6D6) of compound 189. 
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Figure A4.97. Infrared spectrum (Thin Film, NaCl) of compound 186. 
 

Figure A4.98. 13C NMR (100 MHz, CD2Cl2) of compound 186. 
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Figure A4.100. Infrared spectrum (Thin Film, NaCl) of compound 190. 
 

Figure A4.101. 13C NMR (100 MHz, CDCl3) of compound 190. 
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Figure A4.103. Infrared spectrum (Thin Film, NaCl) of compound 185. 
 

Figure A4.104. 13C NMR (100 MHz, C6D6) of compound 185. 
 



Appendix 4 – Spectra Relevant to Chapter 2 434 

   

0
1

2
3

4
5

6
7

8
9

p
p
m

N

Ts
N

O
M
e

S
O

N
H
2

 F
ig

ur
e 

A
4.

10
5.

 1
H

 N
M

R
 (4

00
 M

H
z,

 C
6D

6)
 o

f c
om

po
un

d 
1 9

2.
 

 



Appendix 4 – Spectra Relevant to Chapter 2 435 

020406080100120140160180200

ppm

 
  

Figure A4.106. Infrared spectrum (Thin Film, NaCl) of compound 192. 
 

Figure A4.107. 13C NMR (100 MHz, C6D6) of compound 192. 
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Figure A4.109. Infrared spectrum (Thin Film, NaCl) of compound 198. 
 

Figure A4.110. 13C NMR (100 MHz, C6D6) of compound 198. 
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Figure A4.112. Infrared spectrum (Thin Film, NaCl) of compound 195. 
 

Figure A4.113. 13C NMR (100 MHz, C6D6) of compound 195. 
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Figure A4.115. Infrared spectrum (Thin Film, NaCl) of compound 201. 
 

Figure A4.116. 13C NMR (100 MHz, C6D6) of compound 201. 
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Figure A4.118. Infrared spectrum (Thin Film, NaCl) of compound 206. 
 

Figure A4.119. 13C NMR (100 MHz, CD3OD) of compound 206. 
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Figure A4.120. 19F NMR (376 MHz, CD3OD) of compound 206. 
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Figure A4.123. 13C NMR (100 MHz, C6D6) of compound 207. 
 

Figure A4.122. Infrared spectrum (Thin Film, NaCl) of compound 207. 
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APPENDIX 5 

Additional Strategies and Tactics Toward the Total Synthesis of 

Aleutianamine†  

 

A5.1  INTRODUCTION 

 Over the course of our synthetic studies toward aleutianamine, several strategies 

were briefly pursued and abandoned at a relatively early stage, and several synthetic tactics 

were studied in simplified systems to demonstrate their applicability prior to pursuit of a 

synthetic strategy. These strategies and tactics are reported in this appendix. 

A5.2  BRIDGEHEAD SULFIDE INSTALLATION: MODEL STUDIES 

 Upon conceiving of our 2nd-generation retrosynthesis of aleutianamine, we 

recognized that installation of the bridgehead tertiary sulfide of the natural product would 

represent a synthetic challenge (Scheme A5.2.1). Ideally, hydroxyketone intermediate 111 

would undergo a short synthetic sequence involving a substitution reaction, establishing 

bridgehead α-thioketone 216 which could be advanced to the natural product. Many 

strategies for tertiary sulfide construction from alcohols involve either harsh, acidic 

conditions necessary to ionize the alcohol and effect an SN1 reaction,1 rely on an SN2 

reaction at the α-position of a carbonyl compound,2,3 or employ conjugate addition 

strategies.3 An SN2 approach for the synthesis of sulfide 216 would be rendered ineffective 
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by the constrained nature of the bicyclic system. We therefore planned to utilize an SN1-

type approach employing a mild Lewis acid such as the method reported by Baba for 

indium-catalyzed substitution of alkyl acetates with silyl thioethers.4 

Scheme A5.2.1. Planned bridgehead sulfide installation toward aleutianamine. 

 

Streuff reported an elegant method for the synthesis of a relevant model system 

(Scheme A5.2.2A).5 4-quinolone 217 (and related substrates) underwent Ti(III)-catalyzed 

single-electron reductive coupling with acrylonitrile to afford keto-nitrile 218. This 

intermediate then underwent a related reductive coupling, now intramolecularly, to afford 

α-hydroxyketone 219. After replicating Streuff’s synthesis of bridgehead alcohol 219, the 

alcohol was acetylated to afford ester 220 (Scheme A5.2.2B). Then, encouragingly, Baba’s 

conditions for acetate-sulfide exchange provided desired sulfide 222, presumably via 

tertiary carbocation 221. This cation may be somewhat stabilized by resonance donation 

from the aniline. Although this donation would increase the ring strain of 221, related 

strained bicyclo[3.3.1]octenes have been implicated as reactive intermediates.6 
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Scheme A5.2.2. A model system for bridgehead sulfide installation. 

 

Although the yield for sulfide installation in this model system was only 28%, this 

proof-of-concept provided impetus to proceed with the synthesis of a bridgehead alcohol 

substrate in the real system. Simultaneously, however, an alternative method for sulfide 

installation that would obviate carbocation chemistry was briefly explored (Scheme 

A5.2.3A). Tetracylic quinolone 137, which would also be the substrate for Streuff’s 

bicyclization method, could undergo conjugate addition of a ketone equivalent, 

homologation to a nitrile, and installation of the sulfide prior to bicyclization to afford 

ketone 223. Bicyclization could then occur by a Dieckmann-type reaction to directly afford 

1,3-diketone 224. 

Again using 4-quinolone 217 as a model substrate, lithiated 1,3-dithiane underwent 

conjugate addition by a literature procedure to yield saturated ketone 225.7 Unfortunately, 

homologation of 225 by the van Leusen reaction was unsuccessful in our hands. Ketone 

226 may simply be too electron-rich to undergo the desired reaction. 
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Scheme A5.2.3. Alternative strategy for sulfide installation. 

 

 Further efforts to access nitrile 226 or derivatives thereof may be merited, but we 

planned to continue the synthetic sequence with the goal of utilizing Streuff’s bicyclization 

and Baba’s sulfide exchange, not yet realizing the synthetic challenge associated with 

accessing tetracyclic quinolone 137. 

A5.3  EARLY STRATEGIES TOWARD A TRICYLIC AMINOINDOLE 

 Uncertain if the retrosynthetic disconnection of dianiline 91 to tertiary aniline 227 

was indeed feasible (Scheme A5.3.1A), we invested considerable synthetic efforts into 

developing an alternative synthetic route that would incorporate the final nitrogen atom of 

the natural product at an early stage via nitrogen-rich tricycle 228 (Scheme A5.3.1B). 
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Scheme A5.3.1. Late-stage arene amination disconnection. 

 

 In our initial approach (Scheme A5.3.2), known brominated salicylic acid 

derivative 2298 underwent precedented nitration to afford nitroarene 230.9 DPPA-mediated 

Curtius rearrangement in t-BuOH and cleavage of the resulting t-butyl carbamate afforded 

nitroaniline 231, an anticipated precursor to tricycle 228. Unfortunately, attempted 

conversion to arylhydrazine 232 by diazotization and reduction was unsuccessful in our 

hands, thwarting access to necessary tryptophol 233. The electron-poor nature of the arene 

may accelerate side reactions of the diazonium salt. 

Scheme A5.3.2. Preparation of nitroaniline 231 and failed Fischer Indolization. 
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 While tricycle 228 was ultimately synthesized via Larock indolization, the need for 

this nitrogen-rich intermediate was obviated by the discovery that late-stage formal arene 

C–H amination is indeed a facile process (see Chapter 2). 

 We also briefly investigated a route to simplified derivatives of this tricyclic 

intermediate relying on intramolecular Rh-catalyzed C–H amination. A catalytic system 

for this transformation was reported by Falck and found to enable both inter- and 

intramolecular C–N bond formation (Scheme A5.3.3).10 In the intramolecular sense, O-

sulfonylhydroxylamines such as 234 could cyclize to afford anilines such as 142. Falck’s 

report did not include examples of substrates bearing heterocycles. 

Scheme A5.3.3. Intramolecular aryl C–H amination (Falck, 2016). 

 

 Toward an analogous indolyl system, tryptophol (235) underwent a Mitsunobu 

reaction with known hydroxycarbamate derivative 23611 to afford tryptamine 237 (Scheme 

A5.3.4). Subsequent tosylation was attempted but using triethylamine as a base failed to 

effect the reaction, and the O-sulfonyl hydroxycarbamate did not survive NaH. The indole 

was instead protected as pivaloyl amide 239. Unfortunately, neither 239 nor free indole 

237 underwent Falck’s Rh-catalyzed C–H amination, instead undergoing unproductive 

side reactions. Following these observations, a route toward a tosyl-protected tricycle 

involving a Buchwald–Hartwig amination was developed (see Chapter 2). 
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Scheme A5.3.4. Attempts to access tricyclic aminoindoles by intramolecular C–H 

amination. 

 

A5.4  ADDITIONAL EFFORTS TOWARD KEY TETRACYCLIC QUINOLONE 

As discussed in Chapter 2, attempts to cyclize methyl ester 138 to afford a 

tetracyclic quinolone led to concomitant tosyl group migration, yielding unexpected 

product 139 (Scheme A5.4.1). Given the low yield of this cyclization, rather than 

incorporating additional steps to remove and reinstall the tosyl group, we evaluated 

alternative indole protecting groups. 
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Scheme A5.4.1. Unexpected tosyl group migration during quinolone synthesis. 

 

First, azide 242 was N-allylated to afford azide 243, which underwent a Staudinger 

reduction to tryptamine 244 (Scheme A5.4.2). Ma’s Cu-catalyzed C–N coupling 

employing oxalamide ligand 135 provided desired tricycle 245, albeit in low yield.12 This 

tricycle was found to be oxidatively unstable, particularly on silica gel, due to its electron-

rich nature. Aza-Michael reaction with methyl propiolate afforded “push-pull” olefin 246, 

but this substrate did not survive acidic conditions, likely also due to the electron-rich 

nature of the indole. 

Scheme A5.4.2. Attempted preparation of N-allyl tetracycle 247. 
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Realizing that an electron-withdrawing indole protecting group would be 

necessary, we evaluated the use of a Piv group (Scheme A5.4.3). Azide 242 underwent 

efficient pivaloylation, but subsequent Staudinger reduction of azidoindole 248 lead to 

concomitant migration of the Piv group from the indole to the unveiled primary amine to 

yield amide 249. Following this result, the direct cyclization approach to a tetracylic 

quinolone intermediate was abandoned, and a sulfonyl indole protecting group was 

recognized as essential. 

Scheme A5.4.3. Evaluation of a pivaloyl indole protecting group. 

 

Finally, a strategically distinct approach to a tetracyclic quinolone structurally 

related to 139 was envisioned (Scheme A5.4.4). Diketojulolidine derivative 250 could be 

advanced to diaminoquinolone 251 by nitration, reduction, and desaturation. The latter 

transformation proceeds readily for a related compound simply by heating in the presence 

of Pd/C.13 Finally, installation of an additional methine could establish the indole moiety 

of 252. This synthetic route would also have the advantage of enabling early incorporation 

of the final nitrogen atom of the natural product. 

Scheme A5.4.4. A julolidine desymmetrization approach to quinolone 252. 
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 Toward the requisite diketojulolidine starting material 250, p-anisidine (253) 

underwent known double aza-Michael addition into acrylonitrile to afford dinitrile 254 

(Scheme A5.4.5).14 Treatment of 254 with several Brønsted and Lewis acids failed to effect 

the desired cyclization. Bromination was attempted in order to access 255, a substrate for 

an anionic cyclization, but concomitant loss of acrylonitrile was observed. This retro-aza-

Michael fragmentation was not suppressed by the addition of base. Finally, the cyclization 

of known diacid 256 was attempted under the conditions of Kantminene et al.15 Desired 

tricycle 250 was not detected, with retro-aza-Michael fragmentation again being observed. 

At this point, we abandoned the quinolone cyclization approach to aleutianamine, shifting 

our efforts instead to the intramolecular Barbier approach outlined in Chapter 2.  

Scheme A5.4.5. Unsuccessful preparation of diketojulolidine 250. 
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A5.5  PRELIMINARY EVALUATION OF A WACKER OXIDATION OF 

INTERNAL α,β-UNSATURATED CARBONYL COMPOUNDS 

Toward the installation of the alkenyl bromide moiety of aleutianamine, the 

synthetic transformation of enone 257 or a derivative thereof to a 1,3-diketone equivalent 

(e.g., ketal 258 or vinylogous ester 259) was identified as desirable (Scheme A5.5.1A). 

Existing methods to effect this transformation are outlined in Chapter 2, generally requiring 

around 3 steps. A potential alternative one-step transformation is the Wacker oxidation. 

While Pd-catalyzed Wacker oxidation leads to efficient oxidation of terminal α,β-

unsaturated esters to acetals,16 oxidation of β-substituted unsaturated esters is typically 

slow and low-yielding. Interestingly, Sturgess reported that while unsaturated ester 260 

undergoes Pd-catalyzed oxidative ketalization to afford 261 in only 20% yield in 14 days, 

substrate 262, which bears a tethered alcohol group, undergoes Wacker oxidation to ketal 

263 in improved yield in only 22 hours.17 This result suggests that the slow rate of the 

oxidation of β-substituted unsaturated esters is due to slow conjugate addition of the 

alcohol to afford an intermediate than can undergo further oxidation. We therefore 

hypothesized that the addition of an appropriate Lewis-acidic additive could accelerate 

oxa-Michael addition and promote faster oxidation of relevant substrates. 
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Scheme A5.5.1. Desired enone β-oxidation and challenging Wacker oxidation of 

internal α,β-unsaturated carbonyl compounds. 

 

 Acyl oxazolidinones were identified as a desirable substrate class for the evaluation 

of reaction conditions due to their crystallinity and lack of volatility. Acryloyl substrate 

264 was synthesized by a reported procedure as a positive control and a brief solvent screen 

was conducted (Table A5.5.2).18 Among solvents tested, DME (entries 1, 2) was found to 

perform well, in line with previous research,16,17 but dioxane provided an optimal yield 

(entry 4). HFIP (entry 5) led to a slightly higher yield but required a longer reaction time 

(the reaction was conducted at a lower temperature due to the high volatility of the solvent). 
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Table A5.5.2. Evaluation of solvents for positive control substrate 264.a 

 
[a] Reactions were conducted at 0.035 mmol scale at 0.25 M using 0.3 equiv PdCl2, 1.0 equiv CuCl, and 25 
equiv MeOH. Yields were determined by 1H NMR analysis with 1,3,5-trimethoxybenzene as an internal standard 
unless otherwise noted. [b] Isolated yield on a 0.142 mmol scale with 10 mol % PdCl2. [c] Conducted at 23 °C 
for 3 days. 

Having validated acyloxazolidinones as a competent substrate class, β-substituted 

substrate 266 was also prepared and tested (Table A5.5.3). Unfortunately, all additives 

tested either failed to improve the reaction outcome (trace product, entry 1) or resulted in 

nonspecific decomposition. Indium triflate led to putative oxa-Michael addition without 

oxidation (entry 5). 

Table A5.5.3. Evaluation of Lewis-acidic additives.a 

 
[a] Reactions were conducted at 0.035 mmol scale at 0.25 M using 0.3 equiv PdCl2, 1.0 equiv CuCl, and 25 
equiv MeOH. Reaction progress was monitored by LC–MS. [b] 2.0 equiv unless otherwise noted. 
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At this stage, development of the Wacker oxidation of unsaturated imide 266 was 

shelved in favor of development of other aspects of the total synthesis. Nevertheless, 

further development of the Wacker oxidation of electron-poor internal olefins could 

facilitate future synthetic studies. 

A5.6  ALKENYL BROMIDE INSTALLATION VIA A FUNCTIONAL HANDLE 

 In parallel to efforts toward late-stage alkenyl bromide installation, which have thus 

far proved unfruitful, we have evaluated early incorporation of a functional handle R1 into 

thiophene coupling fragment 174 (Scheme A5.6.1). Advancement to functionalized 

thiobutenolide 172 would enable installation of the alkenyl bromide moiety of 268 without 

selective δ-oxidation chemistry. 

Scheme A5.6.1. A functional handle approach to alkenyl bromide installation. 

 

A suitable functional handle should be stable to the conditions for reductive 

amination and be a sufficiently poor leaving group to prevent aromatization of ketone 174. 

Given these constraints, a nitrile was first tested as a potential functional handle. 

Known ketal 26919 was subjected to precedented allylic oxidation to enone 270 (Scheme 

A5.6.2).20 Conjugate addition of cyanide in the presence of triethylamine hydrochloride 

led to a complex mixture of intermediates suspected to contain cyanohydrins, which 
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intermediate as a coupling fragment toward the synthesis of aleutianamine. Previous 

experiments examining the hydrolytic cleavage of the ester led to competitive hydrolysis 

of the nitrile, so alternative anionic decarboxylation conditions were tested. Treatment with 

NaCl at elevated temperature in DMSO led to nonspecific decomposition, while milder 

conditions employing NaCN in HMPA21 led to no reaction. The challenge of selective 

methyl ester removal coupled with the low yield and unselective synthesis of nitrile 271 

led us to abandon this route. 

Scheme A5.6.2. Evaluation of a cyanide functional handle. 

 

 Instead, a cyclopentadiene Diels–Alder adduct was anticipated to be a suitable 

removable handle, as this bulkier group could result in a more selective Gewald reaction 

and no potentially problematic leaving group would be present. Diketone 273 was prepared 

by a literature procedure22 and underwent precedented monoketalization to afford ketal 274 

(Scheme A5.6.3A).23 Unfortunately, Gewald thiophene synthesis of aminothiophene 275 

could not be effected. Significant recovery of starting material was observed at 75 °C, and 

the desired product was not generated even at 90 °C. Likely, the initial Knoevenagel 

condensation of 274 with ethyl cyanoacetate is thwarted by the increase in strain of 

condensation product 277 relative to initial adduct 276, as the bridgehead methine would 

sterically clash with the cyano group (Scheme A5.6.3B). 
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Scheme A5.6.3. Attempted Gewald reaction of a cyclopentadiene Diels–Alder 

adduct. 

 

A5.7  SPIROCYCLE-FIRST APPROACH TO δ-OXIDIZED THIOIMIDATE 

 As an alternative strategy to circumvent a challenging late-stage δ-oxidation of a 

thiobutenolide, it was anticipated that 2-aminoketone 278 could undergo the dearomative 

cyclization previously developed during the course of our synthetic efforts to provide 

spirocyclic thioimidate 279 (Scheme A5.7.1). Then, the installation of an oxidation handle 
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Scheme A5.7.1. A spirocyclization–Michael addition approach to the oxidized ring 

system of aleutianamine. 

 

 A strategy to prepare aminoketone 280 was not immediately clear due to the 

dissonant oxidation pattern of this species, but a potential SN2 approach was identified. 

Thus, commercially available aldehyde 281 underwent Horner–Wadsworth–Emmons 

olefination with phosphonate 282 to afford enone 283 (Scheme A5.7.2). The 

hydrosilylation-bromination reaction developed by Toy afforded bromoketone electrophile 

284.24 

Scheme A5.7.2. Access to a 2-bromoketone electrophile. 

 

 Unfortunately, SN2 displacement of the bromide with secondary aniline 134 could 

not be effected in our hands (Scheme A5.7.3A)—undesired elimination of the bromide was 

observed, and aminoketone 285 was not detected. As an alternative, epoxyketone 287 was 
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TsN

OMe

N

SAcHN

O

Me

Br [Pd]
TsN

OMe

N

S
NAc

O Me

1. epoxidation or bromination
TsN

OMe

N

S
NAc

O

2. Michael addition or
    epoxide opening

278 279 280
δ-oxidation in place

SO2N O
Me

O
P
O

OMe
OMe , NaH

THF, 0→23 °C

85% yield

SO2N
O

Me

Cl3SiH, Ph3PO (20 mol %)
then NBS SO2N

O

Me

Br

CH2Cl2, 23 °C

27% yield281 283

282

284



Appendix 5 – Additional Strategies and Tactics Toward the Total Synthesis of Aleutianamine 
 

464 

Scheme A5.7.3. Attempts to access a spirocyclization substrate. 

 

 The spirocyclization-first synthetic route was abandoned at this stage due to the 

difficulty associated with accessing aminoketone 285. 
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precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching or KMnO4 

staining.  Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40–63 nm) was used 

for flash chromatography.  1H NMR spectra were recorded on Varian Inova 500 MHz and 

Bruker 400 MHz spectrometers and are reported relative to residual CHCl3 (δ 7.26 ppm). 

Data for 1H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling 

constant (Hz), integration).  Multiplicities are reported as follows: s = singlet, d = doublet, 

t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d 

= broad doublet. 

A5.8.2  EXPERIMENTAL PROCEDURES 

 

Tertiary acetate 220 

 To a 1-dram glass vial under air were added tertiary alcohol 2195 (25 mg, 0.115 

mmol, 1.0 equiv), DMAP (1.6 mg, 0.013 mmol, 0.12 equiv), and CH2Cl2 (0.6 mL), 

followed by Et3N (36 µL, 0.26 mmol, 2.25 equiv) and Ac2O (24 µL, 0.26 mmol, 2.25 

equiv). The reaction mixture was stirred at 23 °C for 46 h, then washed with water (2x). 

The combined aqueous phases were extracted once with CH2Cl2, and the combined organic 

phases were dried over Na2SO4 and concentrated under reduced pressure. The crude 

product was purified by silica gel flash chromatography (60% Et2O/hexanes) to afford the 

title compound (27 mg, 0.10 mmol, 91% yield); 1H NMR (400 MHz, CDCl3) δ 7.36 (dd, J 

= 7.8, 1.7 Hz, 1H), 7.21 (ddd, J = 8.2, 7.3, 1.7 Hz, 1H), 6.72 – 6.63 (m, 2H), 3.77 (tt, J = 

N
Me

HO
O

Ac2O, Et3N, DMAP

N
Me

AcO
O

219 220
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4.5, 3.1 Hz, 1H), 3.22 (dd, J = 12.0, 2.8 Hz, 1H), 3.09 (s, 3H), 2.52 – 2.43 (m, 1H), 2.41 – 

2.35 (m, 1H), 2.35 – 2.26 (m, 1H), 2.24 (s, 3H), 2.23 – 2.19 (m, 1H), 2.05 – 1.94 (m, 1H). 

 

Tertiary sulfide 222 

 To a 1-dram glass vial in a nitrogen-filled glovebox were added InI3 (2 mg, 0.004 

mmol, 0.2 equiv), PhCH3 (0.2 mL), and PhSTMS (7.3 µL, 0.0386 mmol, 2.0 equiv). Then, 

acetate 220 (5.0 mg, 0.0193 mmol, 1.0 equiv) was added as a solution in PhCH3 (0.25 mL), 

the vial was sealed with a PTFE/silicone septum and removed from the glovebox, and the 

reaction mixture was stirred at 90 °C in a metal heating block for 3 h. Then, the reaction 

mixture was allowed to cool to 23 °C and saturated aq. NaHCO3 (1 mL) was added. The 

resulting suspension was extracted with Et2O (4x0.5 mL) and the combined organic 

extracts were dried over Na2SO4. The crude product was purified by preparative TLC on 

silica gel (33% EtOAc/hexanes) to afford the crude product as a brown film (1.7 mg, 0.0055 

mmol, 28% yield); 1H NMR (400 MHz, CDCl3) δ 7.86 (dd, J = 7.8, 1.7 Hz, 1H), 7.37 – 

7.32 (m, 2H), 7.24 – 7.13 (m, 4H), 6.69 (ddd, J = 7.8, 7.3, 1.2 Hz, 1H), 6.57 (dd, J = 8.3, 

1.2 Hz, 1H), 3.53 (ddd, J = 3.8, 2.8, 1.1 Hz, 1H), 3.01 (s, 3H), 2.46 – 2.32 (m, 3H), 2.23 – 

2.11 (m, 2H), 1.90 – 1.75 (m, 1H). 
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Nitroarene 230 

 Prepared according to the procedure of Hofmann and Sanjayan.9 All 

characterization data matched those reported in the literature. 

 

Nitroaniline 231 

 To a 20 mL glass vial containing nitroarene 230 under nitrogen were added t-BuOH 

(0.72 mL) and Et3N (76 µL, 0.54 mmol, 3.0 equiv) followed by DPPA (59 µL, 0.27 mmol, 

1.5 equiv). The vial was sealed with a PTFE/silicone septum and stirred at 80 °C in a metal 

heating block for 3 h. The reaction mixture was then cooled to 23 °C, concentrated under 

reduced pressure, and purified by silica gel flash chromatography (10% EtOAc/hexanes) 

to afford an intermediate carbamate (36 mg, 0.10 mmol, 58% yield); 1H NMR (400 MHz, 

CDCl3) δ 8.61 (d, J = 2.4 Hz, 1H), 7.63 (d, J = 2.4 Hz, 1H), 7.14 (br s, 1H), 3.91 (s, 3H), 

1.54 (s, 9H). 

 To a 1-dram glass vial were added this intermediate carbamate (20 mg, 0.0576 

mmol, 1.0 equiv), CH2Cl2 (0.6 mL), and TFA (66 µL, 0.86 mmol, 15 equiv). The reaction 

mixture was stirred at 23 °C. Upon complete conversion as judged by TLC analysis, the 

reaction mixture was concentrated under reduced pressure and Et3N (1 drop) was added to 

neutralize any remaining TFA. The crude product was purified by silica gel flash 
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chromatography (60% Et2O/hexanes) to afford the title compound as a yellow film (10.4 

mg, 0.0421 mmol, 73% yield); 1H NMR (400 MHz, CDCl3) δ 7.31 (d, J = 2.3 Hz, 1H), 

7.06 (d, J = 2.3 Hz, 1H), 4.16 (br s, 2H), 3.89 (s, 3H). 

 

O-tosylhydroxylamine 237 

 To a flame-dried 20 mL vial containing PPh3 (294 mg, 1.12 mmol, 1.2 equiv) under 

nitrogen was added THF (2 mL). The vial was cooled to 0 °C and DIAD (0.22 mL, 1.1 

mmol, 1.2 equiv) was added dropwise, whereafter additional THF (1 mL) was added to 

reduce the viscosity of the heterogeneous mixture and the reaction mixture was stirred at 0 

°C for 30 min. Then a solution of tryptamine (235, 150 mg, 0.930 mmol, 1.0 equiv) and 

nucleophile 23611 (322 mg, 1.12 mmol, 1.2 equiv) in THF (1.7 mL) was added dropwise 

and additional THF (1 mL) was used to quantitatively transfer the residual nucleophile 

solution. The reaction mixture was stirred at 0 °C for 1 h, then allowed to warm to 23 °C 

and stirred for an additional 20 h. The reaction mixture was concentrated under reduced 

pressure and purified twice by silica gel flash chromatography (50% Et2O/hexanes, then 

CH2Cl2) to afford the title compound as a white foam (177 mg, 0.411 mmol, 44% yield); 

1H NMR (400 MHz, CDCl3) δ 7.96 (br s, 1H), 7.89 – 7.85 (m, 2H), 7.60 – 7.55 (m, 1H), 

7.35 – 7.29 (m, 3H), 7.18 (ddd, J = 8.2, 7.0, 1.3 Hz, 1H), 7.11 (ddd, J = 8.1, 7.1, 1.1 Hz, 

1H), 7.03 (d, J = 2.4 Hz, 1H), 3.94 (br s, 2H), 3.10 (td, J = 7.5, 0.8 Hz, 2H), 2.43 (s, 3H), 

1.05 (s, 9H). 

H
N

HO

PPh3, DIAD
THF, 0→23 °C

H
N

N
OTs

Boc

N
H

BocTsO

236

235
237



Appendix 5 – Additional Strategies and Tactics Toward the Total Synthesis of Aleutianamine 
 

469 

 

N-pivaloyltryptamine 239 

 To a flame-dried 1-dram glass vial were added O-tosylhydroxylamine 237 (10 mg, 

0.0232 mmol, 1.0 equiv) and DMAP (0.3 mg, 0.002 mmol, 0.1 equiv). The vial was 

evacuated and backfilled with nitrogen. CH2Cl2 (0.23 mL) and Et3N (5.0 µL, 0.035 mmol, 

1.5 equiv) were added and the vial was cooled to 0 °C. PivCl (3.4 µL, 0.028 mmol, 1.2 

equiv) was added dropwise with stirring and the reaction mixture was allowed to warm to 

23 °C and sealed with a PTFE-lined cap. After stirring for 15 h, the reaction mixture was 

warmed to 45 °C and stirring was continued. After an additional 24 h, the reaction mixture 

was allowed to cool to 23 °C, diluted with CH2Cl2 (0.5 mL), and washed once with water. 

The aqueous phase was extracted once with CH2Cl2, and the combined organic phases were 

dried over Na2SO4 and concentrated under reduced pressure. The crude product was 

purified by silica gel flash chromatography (15% EtOAc/hexanes) to afford the title 

compound as a colorless film (6.3 mg, 0.0122 mmol, 53% yield); 1H NMR (500 MHz, 

CDCl3) δ 8.48 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.4 Hz, 2H), 7.57 (s, 1H), 7.50 (d, J = 7.3 

Hz, 1H), 7.36 – 7.27 (m, 4H), 3.99 (br s, 2H), 3.06 (t, J = 7.2 Hz, 2H), 2.43 (s, 3H), 1.51 

(s, 9H), 1.02 (s, 9H). 
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Azide 242 

 Prepared according to the procedure described in Chapter 2 for the synthesis of 

tryptamine 133 by a Mitsunobu reaction without subsequent tosylation and reduction. 1H 

NMR (500 MHz, CDCl3) δ 8.32 (br s, 1H), 7.06 (d, J = 2.4 Hz, 1H), 6.97 (d, J = 8.2 Hz, 

1H), 6.53 (d, J = 8.2 Hz, 1H), 3.94 (s, 3H), 3.59 (t, J = 7.1 Hz, 2H), 3.27 (td, J = 7.1, 0.8 

Hz, 2H). 

 

N-allylindole 243 

 To a flame-dried 1-dram glass vial containing azide 242 (50 mg, 0.199 mmol, 1.0 

equiv) under nitrogen was added DMF (1 mL) followed by NaH (60% dispersion in 

mineral oil, 9.6 mg, 0.24 mmol, 1.2 equiv) at 23 °C. The reaction mixture was stirred for 1 

h, after which allyl iodide (22 µL, 0.24 mmol, 1.2 equiv) was added. After 4 h, the reaction 

mixture was diluted with saturated aq. NaHCO3 (7 mL) and extracted with EtOAc 

(4x2mL). The combined organic extracts were washed twice with water, dried over 

Na2SO4, and concentrated under reduced pressure. The crude product was purified by 

automated silica gel flash chromatography (Teledyne ISCO, 0→20% EtOAc/hexanes) to 

afford the title compound (39.5 mg, 0.136 mmol, 68% yield); 1H NMR (400 MHz, CDCl3) 
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δ 6.93 (d, J = 8.2 Hz, 1H), 6.88 (s, 1H), 6.51 (d, J = 8.3 Hz, 1H), 6.07 – 5.92 (m, 1H), 5.13 

– 5.07 (m, 1H), 4.99 – 4.92 (m, 3H), 3.88 (s, 3H), 3.56 (t, J = 7.2 Hz, 2H), 3.24 (t, J = 7.2 

Hz, 2H). 

 

N-allyltryptamine 244 

 To a 1-dram vial under air were added PPh3 (47 mg, 0.179 mmol, 1.5 equiv), THF 

(0.2 mL), and a solution of azide 243 (34.7 mg, 0.119 mmol, 1.0 equiv) in THF (0.6 mL) 

followed by H2O (40 µL, 5% v/v). The reaction mixture was stirred at 23 °C for 18 h, then 

concentrated under reduced pressure. Excess water was removed azeotropically with 

benzene under reduced pressure. The crude product was purified by silica gel flash 

chromatography (10% MeOH/CH2Cl2 + 1% Et3N) to afford the title compound (27.1 mg, 

0.102 mmol, 86% yield); 1H NMR (400 MHz, CDCl3) δ 6.91 (d, J = 8.2 Hz, 1H), 6.87 (s, 

1H), 6.49 (d, J = 8.3 Hz, 1H), 6.05 – 5.93 (m, 1H), 5.11 – 5.06 (m, 1H), 4.98 – 4.90 (m, 

3H), 3.88 (s, 3H), 3.16 – 3.11 (m, 2H), 3.07 (td, J = 6.2, 1.5 Hz, 2H). 

 

Secondary aniline 245 

 To a ½-dram glass vial in a nitrogen-filled glovebox were added CuI (0.9 mg, 

0.0048 mmol, 0.05 equiv), oxalamide 13512 (2.0 mg, 0.0048 mmol, 0.05 equiv), and K3PO4 
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(20.3 mg, 0.0956 mmol, 1.0 equiv), followed by a solution of tryptamine 244 (25.3 mg, 

0.0956 mmol, 1.0 equiv) in DMSO (0.2 mL). The vial was sealed with a PTFE-lined cap, 

removed from the glovebox, and heated to 120 °C in a metal heating block. After stirring 

for 24 h, the reaction mixture was cooled to 23 °C, diluted with EtOAc (2 mL), and washed 

twice with brine. The combined brine phases were extracted once with EtOAc, and the 

combined organic phases were dried over Na2SO4 and concentrated under reduced 

pressure. The crude product was purified by flash chromatography on basic alumina 

(10→20% EtOAc/hexanes) to afford the title compound as an impure, oxidatively unstable 

brown film (7.6 mg, NMR analysis indicates 0.025 mmol, 26% yield desired product); 1H 

NMR (400 MHz, CDCl3) δ 6.58 (s, 1H), 6.43 (d, J = 7.8 Hz, 1H), 6.14 – 5.92 (m, 2H), 5.13 

– 5.00 (m, 2H), 4.92 (dt, J = 5.6, 1.7 Hz, 2H), 3.84 (s, 3H), 3.43 (t, J = 5.6 Hz, 2H), 2.98 – 

2.93 (m, 2H). 

 

“Push-Pull” olefin 246 

 To a 1-dram vial was added impure aniline 245 (7.6 mg, 0.033 mmol assuming pure 

material, 1.0 equiv). Traces of water were azeotropically removed by addition of three 

portions of benzene followed by concentration under reduced pressure, and the vial was 

evacuated and backfilled with nitrogen. DMF (0.33 mL) and methyl propiolate (30 µL, 

0.33 mmol, 10 equiv) were added, and the vial was sealed with a PTFE-lined cap and stirred 

at 80 °C in a metal heating block. After 18 h, the reaction mixture was cooled to 23 °C, 

diluted with water (2 mL), and extracted with EtOAc (3x0.5 mL). The combined organic 
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extracts were washed twice with water, dried over Na2SO4, and concentrated under reduced 

pressure. The crude product was purified by silica gel flash chromatography (20% 

EtOAc/hexanes) to afford the title compound as a yellow film (6.6 mg, 0.021 mmol, 22% 

yield over 2 steps); 1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 13.3 Hz, 1H), 6.68 (t, J = 

1.2 Hz, 1H), 6.65 (d, J = 8.2 Hz, 1H), 6.54 (d, J = 8.2 Hz, 1H), 6.03 (ddt, J = 17.0, 10.1, 

5.6 Hz, 1H), 5.17 (d, J = 13.2 Hz, 1H), 5.12 (dq, J = 10.3, 1.5 Hz, 1H), 5.03 (dq, J = 17.0, 

1.6 Hz, 1H), 4.94 (dt, J = 5.5, 1.5 Hz, 2H), 3.89 (s, 3H), 3.75 – 3.71 (m, 5H), 3.03 (td, J = 

6.1, 1.2 Hz, 2H). 

 

N-Pivaloyl indole 248 

 To a flame-dried 1-dram glass vial were added azide 242 (50 mg, 0.199 mmol, 1.0 

equiv) and DMAP (2.4 mg, 0.020 mmol, 0.1 equiv). The vial was evacuated and backfilled 

with nitrogen. CH2Cl2 (2 mL) and Et3N (42 µL, 0.30 mmol, 1.5 equiv) were added followed 

by the addition of PivCl (29 µL, 0.24 mmol, 1.2 equiv). The vial was sealed with a PTFE-

lined cap and stirred at 45 °C in a metal heating block. After 1 day, the reaction mixture 

was allowed to cool to 23 °C, washed twice with water, dried over Na2SO4, and 

concentrated under reduced pressure. The crude product was purified by automated silica 

gel flash chromatography (Teledyne ISCO, 0→25% EtOAc/hexanes) to afford the title 

compound as a white solid (52.7 mg, 0.157 mmol, 79% yield); 1H NMR (400 MHz, CDCl3) 

δ 7.18 (t, J = 0.9 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.65 (d, J = 8.4 Hz, 1H), 3.89 (s, 3H), 

3.59 (t, J = 7.0 Hz, 2H), 3.23 (td, J = 7.0, 0.9 Hz, 2H), 1.43 (s, 9H). 
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Secondary amide 249 

 To a 1-dram glass vial under air were added PPh3 (60 mg, 0.23 mmol, 1.5 equiv) 

and a solution of azide 248 (51.3 mg, 0.153 mmol, 1.0 equiv) in THF (1 mL) followed by 

water (50 µL). The reaction mixture was stirred at 23 °C for 22 h, then concentrated under 

reduced pressure and purified by automated silica gel flash chromatography (Teledyne 

ISCO, 0→40→100% EtOAc/hexanes) to afford the title compound as a white solid (31.5 

mg, 0.102 mmol, 67% yield); 1H NMR (400 MHz, CDCl3) δ 8.34 (br s, 1H), 7.00 (br d, J 

= 2.4 Hz, 1H), 6.97 (d, J = 8.3 Hz, 1H), 6.53 (d, J = 8.2 Hz, 1H), 5.76 (br s, 1H), 3.93 (s, 

3H), 3.60 (td, J = 6.7, 5.6 Hz, 2H), 3.18 (t, J = 6.7 Hz, 2H), 1.13 (s, 9H). 

 

Dimethyl acetal 265 

 To a flame-dried 1-dram glass vial was added imide 26418 (20 mg, 0.142 mmol, 1.0 

equiv). The vial was transferred to a nitrogen-filled glovebox and PdCl2 (2.5 mg, 0.014 

mmol, 0.1 equiv), CuCl (14 mg, 0.142 mmol, 1.0 equiv), and DME (0.57 mL) were added. 

The vial was sealed with a PTFE/silicone septum and removed from the glovebox. MeOH 

(0.14 mL, 3.55 mmol, 25 equiv) was injected, whereafter the reaction mixture was sparged 

with O2, heated to 50 °C in a metal vial block, and stirred under a positive pressure of O2 

from a balloon. After 16 h, the reaction mixture was cooled to 23 °C, filtered through a 
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plug of basic alumina with EtOAc, concentrated under reduced pressure, and purified by 

silica gel flash chromatography (67% EtOAc/hexanes) to afford the title compound as a 

white solid (14.9 mg, 0.0733 mmol, 52% yield); 1H NMR (400 MHz, CDCl3) δ 4.94 (t, J 

= 5.6 Hz, 1H), 4.41 (dd, J = 8.7, 7.5 Hz, 2H), 4.02 (dd, J = 8.7, 7.5 Hz, 2H), 3.37 (s, 6H), 

3.30 (d, J = 5.7 Hz, 2H). 

 

Crotonoyl imide 266 

 To a flame-dried 40 mL vial containing 2-oxazolidinone (289, 1.0 g, 11.5 mmol, 

1.0 equiv) under nitrogen were added THF (20 mL) and Et3N (4.0 mL, 28.8 mmol, 2.5 

equiv). The vial was cooled to 0 °C and crotonoyl chloride (2.2 mL, 23.0 mmol, 2.0 equiv) 

was added dropwise with stirring. After 30 min, the reaction mixture was allowed to warm 

to 23 °C and stirring was continued. After 22 h, the reaction mixture was partitioned 

between saturated aq. NH4Cl and CH2Cl2. The layers were separated, and the aqueous 

phase was extracted once with CH2Cl2 and washed once with 1 N aq. HCl. The HCl phase 

was back-extracted once with CH2Cl2, and the combined organic phases were dried over a 

mixture of NaHCO3 and Na2SO4 and concentrated under reduced pressure. The crude 

product was purified twice by automated silica gel flash chromatography (Teledyne ISCO, 

0→60% EtOAc/hexanes, then 0→80% EtOAc/hexanes) to afford the title compound as a 

white solid (159 mg, 1.02 mmol, 9% yield). All characterization data matched those 

reported in the literature.27 
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Enone 270 

 Prepared according to the procedure of Shing.20 All characterization data matched 

those reported in the literature. 

 

Nitrile 271 

 To a 2-dram glass vial were added KCN (201 mg, 3.09 mmol, 1.17 equiv), 

Et3N•HCl (429 mg, 3.12 mmol, 1.18 equiv), water (0.59 mL) and methanol (0.73 mL). 

Enone 270 (407 mg, 2.64 mmol, 1.0 equiv) was added dropwise with stirring as a solution 

in methanol (1.3 mL). After 27 h, the reaction mixture was diluted with water and extracted 

with CH2Cl2 (3x). The combined organic extracts were dried over Na2SO4 and purified by 

silica gel flash chromatography (50% EtOAc/hexanes) to afford an uncharacterized 

complex mixture of nitrile adducts (207 mg) as a waxy substance. 

 To a 20 mL glass vial were added this mixture (192 mg, 0.922 mmol, 1.0 equiv 

assuming mass of cyanohydrin), S8 (30 mg, 0.115 mmol, 0.125 equiv), and MeOH (1.8 

mL), followed by methyl cyanoacetate (82 µL, 0.92 mmol, 1.0 equiv) and morpholine (80 

µL, 0.92 mmol, 1.0 equiv). The vial was sealed with a PTFE/silicone septum and the 

reaction mixture was stirred at 60 °C in a metal heating block for 20 h, resulting in a deep 
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red color. After 20 h, the reaction mixture was concentrated under reduced pressure and 

purified by automated silica gel flash chromatography (Teledyne ISCO, 0→90% 

EtOAc/hexanes) to afford the title compound as a mixture of constitutional isomers (117 

mg, 0.398 mmol, 16% yield over 2 steps); 1H NMR (400 MHz, CDCl3) δ 4.29 – 4.21 (m, 

3H), 4.16 – 3.98 (m, 5H), 3.96 – 3.85 (m, 2H), 3.81 (s, 3H), 3.36 (ddt, J = 17.1, 5.9, 1.3 

Hz, 1H), 3.24 – 3.15 (m, 1H), 3.09 (dd, J = 9.1, 5.8 Hz, 1H), 2.99 – 2.89 (m, 1H), 2.87 – 

2.77 (m, 2H). 

 

Ketal 274 

 Prepared according to the procedure of Liao.23 All characterization data matched 

those reported in the literature. 

 

Enone 283 

 To a flame-dried 250 mL round bottom flask containing NaH (60% dispersion in 

mineral oil, 611 mg, 15.3 mmol, 1.2 equiv) under nitrogen was added THF (25 mL). The 

flask was cooled to 0 °C and phosphonate 282 (3.5 mL, 25.5 mmol, 2.0 equiv) was added 

rapidly with stirring. Gas evolution was accompanied by the formation of a thick white 

precipitate. After 15 min, aldehyde 281 (2.0 g, 12.7 mmol, 1.0 equiv) was added as a 

solution in THF (25 mL) by cannula, whereafter the reaction mixture was allowed to warm 
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to 23 °C and stirred for 1.5 h. Then, the reaction mixture was quenched with saturated aq. 

NH4Cl (100 mL), the layers were separated, and the aqueous phase was extracted with 

EtOAc (2x20mL). The combined organic phases were dried over Na2SO4, concentrated 

under reduced pressure, and purified by silica gel flash chromatography (40% 

EtOAc/hexanes) to afford the title compound as a yellow solid (2.13 g, 10.8 mmol, 85% 

yield); 1H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 4.3 Hz, 1H), 7.51 (dd, J = 16.0, 0.7 Hz, 

1H), 7.22 (dt, J = 4.3, 0.5 Hz, 1H), 6.68 (d, J = 16.0 Hz, 1H), 2.38 (s, 3H). 

 

Bromoketone 284 

 To a flame-dried 1-dram glass vial were added enone 283 (200 mg, 1.01 mmol, 1.0 

equiv) and PPh3O (56 mg, 0.202 mmol, 0.2 equiv). The vial was evacuated and backfilled 

with nitrogen, and CH2Cl2 (2 mL) was added followed by Cl3SiH (0.15 mL, 1.52 mmol, 

1.5 equiv). The reaction mixture was stirred at 23 °C for 7 h, then transferred by syringe 

into a separate 2-dram glass vial containing a suspension of NBS (270 mg, 1.52 mmol, 1.5 

equiv) in CH2Cl2 (3 mL). The reaction mixture quickly became dark red and an exotherm 

occurred. After stirring for 13 h, the reaction mixture was quenched with saturated aq. 

Na2CO3 (50 mL). The resulting suspension was extracted with CH2Cl2 (2x20 mL), and the 

combined organic extracts were dried over Na2SO4 and concentrated under reduced 

pressure. The crude product was purified by automated silica gel flash chromatography 

(Teledyne ISCO, 0→50% EtOAc/hexanes) to afford the title compound as a thick yellow 

oil (75 mg, 0.27 mmol, 27% yield); 1H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 4.2 Hz, 1H), 
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6.87 (dt, J = 4.2, 0.9 Hz, 1H), 4.46 (t, J = 7.0 Hz, 1H), 3.65 (ddd, J = 15.5, 6.8, 1.0 Hz, 

1H), 3.38 (ddd, J = 15.5, 7.1, 0.9 Hz, 1H), 2.41 (s, 3H). 

 

Epoxyketone 287 

 To a flame-dried 100 mL round bottom flask under nitrogen were added CH2Cl2 

(12.5 mL) and DBU (1.4 mL, 9.5 mmol, 3.0 equiv). The flask was cooled to –20 °C in an 

ice/NaCl bath. Then, a solution of aldehyde 281 (500 mg, 3.18 mmol, 1.0 equiv) and 

chloroacetone (286, 0.29 mL, 3.5 mmol, 1.1 equiv) in CH2Cl2 (12.5 mL) was added 

dropwise over 8 min with stirring, resulting in a color change to deep purple. After stirring 

for 1 h at –20 °C, the reaction mixture was combined with water (50 mL) and the layers 

were separated. The aqueous phase was extracted with CH2Cl2 (2x15 mL). The combined 

organic phases were washed with diluted brine, dried over Na2SO4, and concentrated under 

reduced pressure. The crude product was purified by silica gel flash chromatography (33% 

EtOAc/hexanes) to afford the title compound as a light brown solid (169 mg, 0.793 mmol, 

25% yield); 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 4.3 Hz, 1H), 7.10 (dd, J = 4.2, 0.6 

Hz, 1H), 4.23 (dd, J = 1.8, 0.5 Hz, 1H), 3.62 (d, J = 1.8 Hz, 1H), 2.21 (s, 3H). 
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CHAPTER 3 

Synthetic Strategies Toward Minimally Substituted Corroles and 

Azaporphyrins†  

 

3.1  INTRODUCTION 

Porphyrinoids and their transition metal complexes have demonstrated numerous 

applications in catalysis (including electrocatalysis),1 as sensitizers for photodynamic 

therapy,2 and as drugs.3 Corroles are a class of aromatic, ring-contracted porphyrinoid 

heterocycles that differ from the parent porphyrins by the absence of one meso carbon atom 

(Figure 3.1.1). The carbon skeleton of corroles is shared with the corrin moiety of vitamin 

B12. Compared to L2X2 porphyrins, LX3 corroles have been found to stabilize high metal 

oxidation states and often preferentially bind to trivalent metals.4 

Figure 3.1.1. Introduction to the corrole ring system. 
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The first corroles (290, Figure 3.1.2) were prepared in 1965 by Johnson and Kay.5,6 

These compounds were unsubstituted at the meso positions but fully substituted at the ortho 

positions. Later research by Paolesse in 1993 demonstrated the synthesis of meso-

substituted corroles such as 291.7 In 1999, Gross8 and Paolesse9 simultaneously reported 

dramatically simplified synthetic procedures toward corroles, wherein pyrrole and an 

aromatic aldehyde could undergo direct condensation followed by oxidation in a modified 

Rothemund reaction to afford meso-substituted, β-unsubstituted corroles 292. This 

architecture, analogous to that of meso-tetrasubstituted porphyrins,10 is attractive due to its 

smaller geometric size, electronic tunability, and potential for further functionalization.  

Figure 3.1.2. Select milestones toward the synthesis of minimally substituted corroles. 

 

The reports by Gross and Paolesse prompted a renaissance in the field of corrole 

synthesis and applications, and numerous syntheses of corrole derivatives and their 
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transition and main group metal complexes have since been reported: the “periodic table 

of corroles” continues to expand.11 

In 2011, moving toward smaller corrole derivatives, Ghosh reported the synthesis 

of tris(trifluoromethyl)corrole 293 from pyrrole and trifluoroacetaldehyde hydrate.12 A 

single example of a rhenium complex of this corrole had previously been reported by a 

unique porphyrin ring contraction,13 but Ghosh’s report represented the first synthesis of 

the free base and of other metal complexes. The synthesis of this corrole was later improved 

upon by Gross, Gray, and Virgil.14 Corrole 293 is somewhat unique due to its small size 

and the fully sp3-hybridized nature of the meso substituents. 

Most recently, in 2021, the Gross group succeeded in synthesizing corrole 294, the 

fully unsubstituted parent heterocycle.15 While the electron-rich nature of the free 

heterocycle was found to render it unstable, several metal complexes of corrole 294 were 

prepared and characterized. 

Gross’s synthesis of unsubstituted corrole 294 could proceed by two methods.15 

First, tris(trifluoromethyl)corrole 293 underwent basic hydrolysis to tricarboxylate 

derivative 295 (Scheme 3.1.3A).16 Interestingly, esters of 295 were not competent 

precursors to the triacid. Thermolysis of triacid 295 in decalin led to efficient 

decarboxylation. The free corrole was isolated as Mo or Re oxo complexes to circumvent 

the unstable nature of the heterocycle. 

In a more rapid fashion, complexes of 294 could be prepared by a pyrrole 

oligomerization approach (Scheme 3.1.3B). Similar approaches have achieved wide 

adoption by the community for the synthesis of meso-substituted corroles from pyrrole and 

aryl aldehydes.6a Combination of excess pyrrole (296) with formaldehyde afforded a 
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statistical mixture of oligomers, from which tetrapyrromethane (or “bilane”) 297 was 

isolated in 12% yield. Lastly, oxidation with PIFA in the presence of a suitable metal salt 

directly afforded corrole complexes 294. 

Scheme 3.1.3. Approaches to complexes of unsubstituted corrole 294 (Gross, 2021). 

 

Excitingly, the Co(PPh3) complex of 294 was found to undergo sublimation at 

220 °C and 40 mTorr, a property unique among porphyrinoid metal complexes, which are 

generally much more challenging to sublimate. Furthermore, the molybdenum oxo 

complex efficiently underwent adsorption to Vulcan XC72R carbon and was shown to be 

an excellent electrocatalyst for proton reduction to H2. 

Given the unique properties of corrole complexes 294, an efficient and scalable 

synthetic route is desirable as it would enable further exploration of the potential 

applications of these complexes. Unfortunately, the cyclooligomerization approach to 294 

proceeds in only up to 1.8% yield over 2 steps. We therefore set out to develop an improved 

procedure for the synthesis of these compounds and other minimally substituted corroles. 
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3.2  ATTEMPTS TO IMPROVE BILANE SYNTHESIS 

The two key factors complicating the synthesis of bilane 297 are low chemical yield 

and a slow and laborious chromatographic separation. We first attempted to solve the latter 

problem, aiming to replace chromatography with sublimation. The volatilities of pyrrole 

(296) and isolated dipyrrane 298, tripyrrane 299, and desired tetrapyrrane 297, each 

chromatographically isolated from a statistical oligomerization reaction of pyrrole and 

formaldehyde, were therefore compared (Scheme 3.2.1). 

Scheme 3.2.1. Evaluation of sublimation as a means for oligopyrrane separation. 
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sublimated in an efficient manner, tripyrrane 299 and tetrapyrrane 297 could not be 
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 We then directed our efforts to improving the chemical process for the synthesis of 

bilane 297. In addition to the low yield of 297, the existing procedure (Scheme 3.1.3B) is 

inherently limited in scale as the oligomerization must be conducted in a microwave vessel 

to enable rapid, brief heating. The use of paraformaldehyde as a less reactive formaldehyde 

surrogate was envisioned as a possible method to improve the robustness and scalability of 

the oligomerization. 

 To our delight, applying a modified version of Bruce’s conditions for the synthesis 

of dipyrromethane 298 enabled the isolation of tetrapyrromethane 297 in 13% yield 

(Scheme 3.2.2).17 

Scheme 3.2.2. AcOH-promoted oligomerization of pyrrole and paraformaldehyde. 
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yield of the reaction. While the use of fewer equivalents was expected to favor the 
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formation of putative polymeric material. 
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tetrapyrrane precipitates out of solution upon formation, minimizing the formation of 

longer oligomers.18 Unfortunately, the higher aqueous solubility of bilane 297 would 

prevent the use of such a method to control the oligomerization. 

 We instead took inspiration from well-established controlled bilane formations used 

to synthesize A2B corroles. Specifically, in 2015, Tanaka and Osuka reported that diol 300, 

which bears an unsubstituted meso-methylene linker, could undergo Lewis acid-promoted 

substitution with pyrrole to afford tetrapyrrane 301 in excellent yield (Scheme 3.2.3).19 

This compound could be oxidized to a trans-A2B-type corrole. 

Scheme 3.2.3. A tetrapyrrane from a meso-free dipyrrane (Tanaka and Osuka, 2015). 
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in well-known in the porphyrin literature, occurring to a greater extent in systems with 

small substituents.20 

Scheme 3.2.4. Attempted controlled assembly of tetrapyrrane 297. 

 

 As a final resort, the dimerization of dipyrrane 298 was attempted (Scheme 3.2.4D). 

While the standard conditions with paraformaldehyde led to formation of tetrapyrrane 297, 
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Further evaluation of reaction conditions could result in a procedure for the 

synthesis of tetrapyrrane 297 in higher yield, but at this stage, we refocused our efforts 

toward the synthesis of additional minimally substituted porphyrinoids. 

3.3  UNEXPECTED SYNTHESIS OF A MONOAZAPORPHYRIN 

 Over the course of previous synthetic efforts toward minimally substituted corroles 

by the Gross group, PIFA was consistently demonstrated to be the most robust oxidant for 

cyclization of the bilane intermediate.14b,15 We embarked on a campaign to evaluate further 

chemical oxidants, both with and without metal templating agents, in order to maximize 

the yields for bilane cyclization. During this campaign, our attention was drawn to an early 

report from the corrole literature wherein K3Fe(CN)6 was used to oxidize acyclic biladienes 

(e.g., 304) to corroles (e.g., 290a, Scheme 3.3.1).21 

Scheme 3.3.1. Corrole synthesis by oxidation with K3Fe(CN)6 (Dolphin et al., 1966). 
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reported example of a monoazaporphyrin lacking β-substituents, and the first example of 

such a compound as the free base. 

Scheme 3.3.2. Unexpected oxidation of a bilane to a monoazaporphyrin. 

 

Examination of the 1H NMR spectrum of 306-H2 in CDCl3 (Figure 3.3.3A) 

revealed the presence of 3 multiplets and one clean doublet (J = 5.1 Hz) in the aromatic 

region, consistent with the expected 2-fold symmetry of the molecule and similar to the 

spectra of corroles. The 2 N-H ring protons appear upfield at –2.41 ppm. Compared to the 

analogous corrole 293 (Figure 3.3.3B), the aryl C–H protons appear somewhat 

downshifted. 

Figure 3.3.3. Comparison of the 1H NMR spectra of A) azaporphyrin 306-H2 and B) 

corrole 293. 
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 The preparation of monoazaporphyrins was reported as early as 1936,22 and since 

then, several targeted syntheses of these macrocycles have been developed.23,24 While 

related diazaporphyrins have been used in catalysis,25 monoazaporphyrins have not found 

applications, and nearly all reported examples of these compounds are fully alkylated at 

the pyrrole β positions. Compared to porphyrins, monoazaporphyrins possess a red-shifted 

Q-band and a blue-shifted Soret band and their copper complexes are more prone to 

reduction and less prone to oxidation.26 An iron(III) monoazaporphyrin complex was 

shown to have a different electronic ground state than the corresponding porphyrin.27 In 

2011, Palmer, Gross, and Gray reported the first example of a β-unsubstituted 

monoazaporphyrin as an iridium complex (308) by oxidative nitrogen insertion into a 

corrole ring (Scheme 3.3.4).28 This compound was isolated as a mixture with mono- and 

dibrominated derivatives. 

Scheme 3.3.4. Previous synthesis of a β-free monoazaporphyrin complex (Palmer, 

Gross, and Gray, 2011). 

 

 We were therefore thrilled to have discovered a procedure to prepare a β-free 

monoazaporphyrin as the free base, as access to this material would enable the preparation 

of metalated derivatives and their characterization and comparison with similar classic 

porphyrins. 
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 Heating monoazaporphyrin 306-H2 in methanol/chloroform solution in the 

presence of cobalt(II) acetate tetrahydrate led to formation of the corresponding cobalt(II) 

monoazaporphyrin complex 306-Co (Scheme 3.3.5).29 An x-ray quality crystal of this 

complex was grown by slow evaporation from a THF/heptane mixture. The crystal 

structure of 306-Co revealed considerable ruffling, similar to the reported structure of an 

analogous 4-fold symmetric copper porphyrin. The average Co–N bond distance was 1.928 

Å, compared to 1.971 Å for (octaethylporphyrinato)cobalt(II).30 

Scheme 3.3.5. Metallation of monoazaporphyrin 306-H2. 

 

 Future research will involve the synthesis of additional metal complexes of 

monoazaporphyrin 306, the study of these complexes’ photophysical and electrochemical 

properties, and the exploration of potential catalytic applications. 
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3.4  CONCLUSION 

 Studies toward improved syntheses of minimally substituted corrole macrocycles 

were performed, primarily focusing on optimization of the synthetic procedure toward 

bilane (tetrapyrrane) macrocyclization substrates. Although the synthesis of these 

substrates was not substantially improved in our hands, we inadvertently prepared the first 

known example of a free base β-free monoazaporphyrin. The cobalt complex of this ligand 

was prepared and characterized by x-ray crystallography. Future studies will involve the 

preparation of additional metal monoazaporphyrin complexes and characterization of their 

photo- and electrochemical properties and potential applications in catalysis. 

3.5  EXPERIMENTAL SECTION 

3.5.1  MATERIALS AND METHODS 

Unless otherwise noted, reagents and solvents were purchased from commercial 

sources and used as received. Pyrrole was passed through a column of basic alumina 

immediately prior to use. Reaction progress was monitored by thin-layer chromatography 

(TLC).  TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 

mm) and visualized by UV fluorescence quenching or Br2 staining.  Silicycle SiliaFlash® 

P60 Academic Silica gel (particle size 40–63 nm) was used for flash chromatography. 1H 

and 19F NMR spectra were recorded on Bruker Avance III 400 spectrometer (400 MHz for 

1H and 377 MHz for 19F). Data for 1H NMR are reported as follows: chemical shift (δ ppm) 

(multiplicity, coupling constant (Hz), integration).  Multiplicities are reported as follows: 

s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, 

br s = broad singlet, br d = broad doublet. High-resolution mass spectra were recorded on 

a Bruker MaXis Impact mass spectrometer. 
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3.5.2  EXPERIMENTAL PROCEDURES 

 

Procedure for the oligomerization of pyrrole (296) with paraformaldehyde 

 To a 250 mL round bottom flask were added paraformaldehyde (541 mg, 18.0 

mmol [calculated for monomer], 1.0 equiv), pyrrole (25.0 mL, 360 mmol, 20 equiv), glacial 

acetic acid (75 mL), and methanol (25 mL). The reaction mixture was sparged with 

nitrogen for 25 min, then sealed and stirred for 17 h at 23 °C. After 17 h, the reaction 

mixture was diluted with CH2Cl2 (250 mL), washed once with water and twice with dilute 

aq. KOH, dried over Na2SO4, and concentrated under reduced pressure. Pyrrole (9.3 mL, 

134 mmol, 37% recovery) was recovered by distillation under high vacuum. The residue 

was subjected to silica gel flash chromatography (5→10→15→20% EtOAc/hexanes) to 

afford dipyrrane 298 (780 mg, 5.34 mmol, 30% yield), tripyrrane 299 (390 mg, 1.73 mmol, 

19% yield), and tetrapyrrane 297 (244 mg, 0.802 mmol, 13% yield). All characterization 

data matched those reported in the literature.31 

 

Tetrapyrrane 297 by dimerization of dipyrrane 298 

 To a 2-dram glass vial were added dipyrrane 298 (50 mg, 0.342 mmol, 2.0 equiv) 

and paraformaldehyde (5 mg, 0.171 mmol, 1.0 equiv) followed by glacial acetic acid (0.75 

mL) and methanol (0.25 mL). The reaction mixture was stirred at 23 °C for 23 h, then 

NH

NH HN

HN

H
N (CH2O)n
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HNNH HN
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diluted with CH2Cl2, washed with water (2x) and saturated aq. KOH (1x), and dried over 

Na2SO4. The solution was concentrated under reduced pressure and purified by silica gel 

flash chromatography (10→20% EtOAc/hexanes) to afford recovered dipyrrane 298 (11 

mg, 0.075 mmol, 22% recovery) and tetrapyrrane 297 (3.3 mg, 0.011 mmol, 6% yield). All 

characterization data matched those reported in the literature.31 

 

Dialdehyde 303 

 To a flame-dried 25 mL round bottom flask under nitrogen in an ice bath were 

added DMF (0.26 mL, 3.37 mmol, 9.9 equiv) and POCl3 (0.32 mL, 3.43 mmol, 10 equiv). 

The ice bath was removed, and after 10 min, CH2Cl2 (1 mL) was added. Dipyrrane 298 (50 

mg, 0.342 mmol, 1.0 equiv) was added as a solution in CH2Cl2 (2.4 mL), and the reaction 

mixture was allowed to stir for 28 h. Then, the reaction mixture was quenched with 5% aq. 

NaOH (30 mL). The resulting biphasic suspension was stirred for 15 min at 23 °C, then 

diluted with water and extracted with CH2Cl2 (3x). The combined organic extracts were 

dried over Na2SO4 and concentrated under reduced pressure. The crude product was 

purified by silica gel flash chromatography (50% EtOAc/hexanes) to afford the title 

compound as a white solid (34 mg, 0.168 mmol, 49% yield). All characterization data 

matched those reported in the literature.32 

NH HN
298

POCl3, DMF
CH2Cl2, 23 °C NH HN

303O
O
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10,15,20-tris(trifluoromethyl)-5-azaporphyrin (306-H2): 

To a solution of tetrapyrromethane 30514b (247 mg, 0.486 mmol, 1.0 equiv) in 

methanol (49 mL) was added a solution of potassium hexacyanoferrate(III) (1.28 g, 3.89 

mmol, 8.0 equiv) in 25% aq. NH3 (99 mL) rapidly with magnetic stirring. The reaction 

mixture was placed in a hot water bath and heated to reflux. After 1.5 h, the reaction 

mixture was cooled to 23 °C, diluted with water (50 mL), extracted with dichloromethane 

(3x50 mL), dried over solid Na2SO4, and filtered. The solvent was removed by rotary 

evaporation and the crude product was purified by silica gel flash chromatography (10% 

EtOAc/hexanes, pink fractions collected) to afford monoazaporphyrin 306-H2 as a dark 

brown solid (9.9 mg, 0.0192 mmol, 4.0% yield); 1H NMR (400 MHz, CDCl3) δ 9.81 – 9.67 

(m, 4H), 9.65 – 9.55 (m, 2H), 9.32 (d, J = 5.1 Hz, 2H), –2.41 (s, 2H); 19F NMR (377 MHz, 

CDCl3) δ –36.44 (s, 3F), –38.18 (t, J = 2.8 Hz, 6F); HRMS (APCI–): m/z calc’d for 

C22H10F9N5 [M–]: 515.0792, found 515.0802. 

 

10,15,20-tris(trifluoromethyl)-5-azaporphyrin cobalt(II) (306-Co): 

To a solution of monoazaporphyrin 306-H2 (7.8 mg, 0.0151 mmol, 1.0 equiv.) in CHCl3 

(2.2 mL) in a 25 mL round-bottom flask was added a solution of cobalt(II) acetate 
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tetrahydrate (38 mg, 0.151 mmol, 10.0 equiv.) in methanol (0.3 mL) rapidly with stirring. 

The reaction mixture was heated to a gentle reflux and stirred for 16 h, then cooled to 23 

°C. The solvent was removed under reduced pressure and the crude reaction mixture was 

purified by silica gel flash chromatography (CHCl3) to afford 306-Co as a black solid (8.2 

mg, 0.0143 mmol, 95% yield); NMR data was not collected due to the paramagnetic nature 

of cobalt(II). HRMS (APCI–): m/z calc’d for C22H8CoF9N5 [M–]: 571.9968, found 

571.9973. 
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Figure A6.2. 19F NMR (377 MHz, CDCl3) of compound 306-H2. 
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A7.1  GENERAL EXPERIMENTAL INFORMATION 

 A single crystal was immersed in Paratone–N oil and mounted on a Rigaku Oxford 

Diffraction XtaLAB Synergy-S at 100 K. Data collection was performed using 

monochromated Mo Kα radiation,  l = 0.71073 Å, using φ and ω scans to cover the Ewald 

sphere. Accurate cell parameters were obtained with the amount of indicated reflections.  

Using Olex2,1 the structure was solved with the olex2.solve2 structure solution program 

using Charge Flipping and refined with the ShelXL3 refinement package using Least 

Squares minimization. All non-hydrogen atoms were refined with anisotropic displacement 

parameters. The hydrogen atoms were refined isotropically on calculated positions using a 

riding model with their Uiso values constrained to 1.5 times the Ueq of their pivot atoms for 

terminal sp3 carbon atoms and 1.2 times for all other carbon atoms. Software used for 

molecular graphics: Mercury 4.3.1.4 

A7.2  X-RAY CRYSTAL STRUCTURE ANALYSIS OF COBALT 

AZAPORPHYRIN 306-Co 

 Co(II) azaporphyrin 306-Co was recrystallized by slow evaporation from 

THF/heptane (liquid/liquid diffusion) at 23 °C to provide suitable crystals for X-ray 

analysis. 
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Figure A7.2.1. X-ray crystal structure of azaporphyrin complex 306-Co. 

 

Table A7.2.2. Crystal data and structure refinement for complex 306-Co. 

Empirical formula C22H8CoF9N5 
Formula weight 572.26 
Temperature/K 140.15 
Crystal system triclinic 
Space group P-1 
a/Å 12.2205(2) 
b/Å 13.5302(2) 
c/Å 14.1720(3) 
α/° 115.4873(18) 
β/° 110.9276(18) 
γ/° 90.5835(15) 
Volume/Å3 1938.02(7) 
Z 4 
ρcalcg/cm3 1.961 
μ/mm-1 0.997 
F(000) 1132.0 
Crystal size/mm3 0.24 × 0.15 × 0.15 
Radiation MoKα (λ = 0.71073) 
2Θ range for data collection/° 4.47 to 59.468 
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Index ranges -16 ≤ h ≤ 16, -17 ≤ k ≤ 18, -18 ≤ l ≤ 18 

Reflections collected 28085 

Independent reflections 8920 [Rint = 0.0364, Rsigma = 0.0377] 

Data/restraints/parameters 8920/772/667 

Goodness-of-fit on F2 1.059 

Final R indexes [I>=2σ (I)] R1 = 0.0335, wR2 = 0.0785 

Final R indexes [all data] R1 = 0.0421, wR2 = 0.0826 

Largest diff. peak/hole / e Å–3 0.44/-0.41 

 

Table A7.2.3. Fractional Atomic Coordinates (×104) and Equivalent Isotropic 

Displacement Parameters (Å2×103) for 306-Co. U(eq) is defined as 1/3 of the trace 

of the orthogonalized UIJ tensor. 

Atom x y z U(eq) 
Co1 3868.3(2) 3311.6(2) 9273.0(2) 15.29(7) 

F1 934.9(12) 4085.3(13) 11690.6(12) 43.6(4) 

F2 1955.9(15) 5720.5(11) 12381.4(12) 42.5(4) 

F3 2688.4(12) 4571.1(10) 12982.5(10) 31.0(3) 

F4 -640.2(14) 1524.0(13) 5645.0(14) 57.8(5) 

F5 394.3(13) 2399.6(12) 5204.8(11) 40.9(3) 

F6 -353.2(14) 3309.8(13) 6376.1(12) 46.4(4) 

F7 6119.8(14) 1446.3(12) 6274.2(12) 42.8(4) 

F8 5259.6(12) 24.1(10) 6229.7(11) 36.1(3) 

F9 6947.8(12) 941.5(11) 7566.7(11) 36.8(3) 

N1 2236.7(14) 3285.3(12) 9137.1(13) 17.8(3) 

N2 3359.9(14) 2295.0(12) 7670.4(13) 17.5(3) 

N3 5506.6(14) 3373.8(12) 9438.4(13) 15.7(3) 

N4 4416.0(14) 4313.6(12) 10879.7(13) 16.5(3) 

N5 6463.2(15) 4981.2(13) 11302.8(13) 20.1(3) 

C1 2558.9(18) 4225.6(15) 11154.7(16) 20.2(4) 

C2 1817.9(17) 3653.2(15) 9992.0(17) 20.3(4) 

C3 537.4(19) 3515.6(17) 9489.1(18) 27.0(4) 

C4 199.7(19) 3139.8(17) 8363.5(18) 27.0(4) 

C5 1256.8(17) 2983.6(15) 8134.1(17) 20.7(4) 

C6 1292.3(17) 2529.0(15) 7054.7(16) 21.3(4) 
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Atom x y z U(eq) 
C7 2249.7(17) 2103.9(15) 6828.2(16) 20.2(4) 
C8 2234.3(19) 1347.0(16) 5731.8(17) 24.7(4) 
C9 3312.5(19) 1064.5(16) 5909.1(17) 25.2(4) 
C10 4036.9(18) 1690.9(15) 7117.0(15) 18.9(4) 
C11 5277.2(18) 1816.4(15) 7631.2(16) 19.1(4) 
C12 5978.1(17) 2691.6(15) 8691.5(16) 17.9(4) 
C13 7250.5(18) 3112.7(16) 9146.3(17) 21.0(4) 
C14 7530.3(18) 4044.7(16) 10131.2(17) 21.1(4) 
C15 6453.0(17) 4183.1(15) 10329.7(16) 17.9(4) 
C16 5528.1(17) 4976.3(14) 11561.5(15) 18.0(4) 
C17 5594.1(19) 5713.7(15) 12689.3(16) 22.3(4) 
C18 4530.6(19) 5475.1(15) 12694.2(16) 22.1(4) 
C19 3773.3(18) 4611.4(15) 11556.6(15) 18.0(4) 
C20 2023(2) 4637.5(17) 12037.5(18) 26.3(4) 
C21 177.8(19) 2431.5(17) 6069.8(18) 27.8(4) 
C22 5903(2) 1060.5(17) 6933.5(17) 26.3(4) 
Co1A 4461.3(2) 1675.2(2) 700.9(2) 15.82(7) 
F1A 75.5(11) -906.8(10) -2612.1(11) 31.7(3) 
F2A 312.8(11) 286.2(10) -3178.6(10) 32.2(3) 
F3A -465.4(11) 671.8(12) -1965.3(11) 39.8(3) 
F4A 2680(2) 3235.5(14) 4121.0(17) 71.8(6) 
F5A 4153.1(14) 2479.5(13) 4646.4(12) 49.9(4) 
F6A 2481.4(13) 1466.3(12) 3395.5(11) 39.0(3) 
F7A 8250.9(12) 5113.5(10) 3871.0(12) 39.2(3) 
F8A 8999.0(12) 4211.0(11) 2683.3(12) 41.2(3) 
F9A 9096.9(13) 3766.4(13) 3988.3(14) 51.5(4) 
N1A 2896.0(14) 1623.6(12) 733.3(13) 18.1(3) 
N2A 5201.8(14) 2700.9(12) 2308.6(13) 18.1(3) 
N3A 6011.3(14) 1685.8(12) 644.6(13) 16.7(3) 
N4A 3754.2(14) 675.0(12) -909.6(13) 16.6(3) 
N5A 5521.5(15) 90.6(13) -1205.2(14) 21.4(3) 
C1A 1638.8(17) 663.3(15) -1313.2(16) 20.0(4) 
C2A 1793.2(17) 1217.7(15) -163.2(17) 20.6(4) 
C3A 874.9(19) 1275.0(17) 261.5(18) 26.5(4) 
C4A 1424.5(19) 1641.7(17) 1393.2(19) 27.2(4) 
C5A 2686.4(18) 1880.1(15) 1701.7(17) 21.3(4) 
C6A 3571.4(19) 2367.2(15) 2806.3(17) 22.0(4) 
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Atom x y z U(eq) 
C7A 4722.3(18) 2863.9(15) 3096.8(16) 21.6(4) 
C8A 5557(2) 3662.7(17) 4215.4(17) 27.3(4) 
C9A 6527(2) 3987.7(16) 4102.2(17) 27.0(4) 
C10A 6329.6(18) 3357.4(15) 2916.3(16) 20.7(4) 
C11A 7205.0(17) 3272.8(15) 2476.5(16) 21.2(4) 
C12A 7086.4(17) 2406.8(15) 1439.4(16) 19.5(4) 
C13A 8033.9(18) 2034.9(16) 1059.4(18) 23.4(4) 
C14A 7537.5(18) 1093.3(16) 65.7(18) 23.1(4) 
C15A 6279.2(17) 902.1(15) -205.6(16) 18.9(4) 
C16A 4353.7(17) 49.0(15) -1539.0(16) 18.8(4) 
C17A 3536.4(19) -690.0(16) -2693.5(16) 22.5(4) 
C18A 2445.4(18) -490.8(16) -2776.3(16) 23.0(4) 
C19A 2561.4(17) 339.0(15) -1652.3(16) 19.6(4) 
C20A 392.9(18) 193.4(17) -2253.2(18) 25.3(4) 
C21A 3226(2) 2401.3(17) 3743.4(18) 30.0(5) 
C22A 8389(2) 4086.7(17) 3251.8(18) 28.9(5) 
 

Table A7.2.4. Anisotropic Displacement Parameters (Å2×103) for 306-Co. The 

Anisotropic displacement factor exponent takes the form: 

–2π2[h2a*2U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 
Co1 16.77(13) 15.14(12) 11.42(12) 4.42(9) 5.15(10) 2.18(9) 
F1 31.2(8) 67.3(10) 32.6(7) 17.8(7) 19.9(6) 3.0(7) 
F2 68.6(10) 36.7(7) 44.9(8) 23.0(7) 41.2(8) 33.5(7) 
F3 39.2(7) 40.0(7) 22.6(6) 17.3(6) 18.1(6) 12.1(6) 
F4 38.9(9) 59.6(10) 47.5(9) 33.6(8) -21.7(7) -23.7(7) 
F5 44.8(8) 58.1(9) 24.4(7) 24.8(7) 11.6(6) 19.9(7) 
F6 43.8(9) 61.6(9) 31.7(7) 23.1(7) 10.7(7) 30.4(7) 
F7 60.1(10) 46.7(8) 39.3(8) 20.9(7) 37.5(8) 18.4(7) 
F8 39.2(8) 23.2(6) 31.0(7) -1.5(5) 15.7(6) 7.8(5) 
F9 30.9(7) 35.9(7) 31.6(7) 5.7(6) 11.9(6) 17.4(6) 
N1 20.1(8) 15.5(7) 15.0(7) 4.8(6) 6.8(6) 2.6(6) 
N2 19.6(8) 16.3(7) 15.2(7) 6.3(6) 6.7(6) 2.5(6) 
N3 19.8(8) 15.1(7) 12.6(7) 6.6(6) 6.6(6) 4.2(6) 
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Atom U11 U22 U33 U23 U13 U12 
N4 19.1(8) 16.3(7) 14.0(7) 7.0(6) 6.5(6) 4.6(6) 
N5 22.5(8) 18.9(8) 16.4(8) 6.8(6) 6.9(7) 3.0(6) 
C1 26.9(10) 19.4(9) 18.8(9) 9.9(7) 12.6(8) 8.2(7) 
C2 21.7(10) 19.1(9) 22.6(10) 10.1(8) 10.9(8) 6.0(7) 
C3 22.1(10) 30.7(11) 27.6(11) 10.2(9) 13.3(9) 6.7(8) 
C4 17.4(10) 30.9(11) 25.0(10) 8.8(9) 5.6(8) 3.3(8) 
C5 19.9(10) 18.0(9) 19.8(9) 7.1(7) 5.3(8) 2.9(7) 
C6 20.0(10) 19.7(9) 17.7(9) 6.9(7) 2.9(8) 0.1(7) 
C7 22.3(10) 17.8(9) 15.2(9) 6.7(7) 3.3(8) -0.5(7) 
C8 25.4(11) 25.6(10) 13.2(9) 4.4(8) 3.1(8) -1.0(8) 
C9 31.1(11) 23.2(10) 15.7(9) 3.5(8) 10.2(8) 3.7(8) 
C10 26.9(10) 15.5(8) 13.6(9) 5.4(7) 9.1(8) 3.2(7) 
C11 24.9(10) 18.6(9) 16.3(9) 8.3(7) 10.7(8) 6.9(7) 
C12 22.1(10) 17.5(8) 17.8(9) 10.0(7) 9.5(8) 8.0(7) 
C13 20.5(10) 23.4(9) 22.8(10) 12.6(8) 10.1(8) 7.3(7) 
C14 19.2(10) 22.5(9) 22.3(10) 11.7(8) 7.6(8) 3.5(7) 
C15 20.5(9) 17.2(8) 15.7(9) 8.6(7) 5.7(7) 3.0(7) 
C16 22.4(10) 16.0(8) 13.4(9) 7.0(7) 4.6(7) 3.8(7) 
C17 29.2(11) 18.8(9) 13.4(9) 4.7(7) 6.3(8) 2.5(7) 
C18 31.2(11) 20.6(9) 12.6(9) 6.1(7) 8.8(8) 6.8(8) 
C19 25.1(10) 16.9(8) 13.6(9) 7.9(7) 8.2(8) 7.9(7) 
C20 29.4(11) 28.8(10) 24.1(10) 11.8(9) 15.0(9) 10.1(8) 
C21 25.5(11) 30.1(11) 21.1(10) 10.3(9) 4.2(9) 4.0(8) 
C22 30.7(11) 25.7(10) 20.0(10) 6.6(8) 12.8(9) 7.5(8) 
Co1A 15.88(13) 15.50(12) 12.32(12) 5.01(10) 3.49(10) 1.15(9) 
F1A 27.4(7) 27.2(6) 29.0(7) 10.4(5) 2.8(5) -8.6(5) 
F2A 25.9(7) 38.6(7) 24.3(6) 18.3(5) -2.7(5) -2.0(5) 
F3A 19.3(7) 48.2(8) 33.5(7) 10.0(6) 2.2(6) 8.3(6) 
F4A 142.6(19) 53.7(10) 80.5(13) 42.2(10) 95.1(14) 58.5(11) 
F5A 51.5(9) 66.3(10) 21.9(7) 21.2(7) 4.1(6) -18.4(8) 
F6A 38.5(8) 47.8(8) 32.2(7) 21.1(6) 13.1(6) -5.8(6) 
F7A 37.4(8) 22.8(6) 36.3(7) 0.8(5) 8.9(6) -9.8(5) 
F8A 33.5(8) 35.8(7) 41.3(8) 7.5(6) 14.7(6) -13.4(6) 
F9A 32.2(8) 51.0(9) 50.1(9) 30.6(8) -14.4(7) -8.6(6) 
N1A 19.8(8) 15.7(7) 15.7(8) 5.5(6) 5.9(6) 2.5(6) 
N2A 20.6(8) 14.8(7) 15.8(7) 6.2(6) 5.2(6) 2.3(6) 
N3A 18.8(8) 15.1(7) 14.1(7) 7.0(6) 4.1(6) 1.4(6) 
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Atom U11 U22 U33 U23 U13 U12 
N4A 17.6(8) 16.3(7) 13.9(7) 7.2(6) 4.0(6) 0.3(6) 
N5A 24.0(9) 20.5(8) 19.1(8) 8.5(7) 8.8(7) 4.1(6) 
C1A 18.8(9) 17.9(9) 18.1(9) 8.8(7) 1.4(7) 0.3(7) 
C2A 19.4(10) 19.0(9) 21.6(10) 9.1(8) 6.7(8) 3.1(7) 
C3A 18.9(10) 28.5(10) 29.7(11) 12.8(9) 8.0(9) 3.8(8) 
C4A 25.4(11) 30.1(11) 29.5(11) 13.1(9) 15.5(9) 7.2(8) 
C5A 24.5(10) 18.0(9) 21.7(10) 8.2(8) 10.9(8) 5.3(7) 
C6A 28.9(11) 17.6(9) 18.8(9) 6.1(7) 11.8(8) 5.1(7) 
C7A 27.4(10) 19.4(9) 14.5(9) 6.8(7) 6.3(8) 4.2(7) 
C8A 33.6(12) 24.1(10) 15.3(9) 4.9(8) 5.8(9) -1.1(8) 
C9A 32.0(12) 21.7(9) 16.2(9) 5.0(8) 2.8(8) -2.6(8) 
C10A 23.7(10) 16.9(9) 16.1(9) 6.8(7) 3.6(8) 0.6(7) 
C11A 19.7(10) 18.9(9) 18.6(9) 8.8(7) 0.8(8) -1.9(7) 
C12A 17.6(9) 20.3(9) 20.3(9) 13.3(7) 2.6(7) 0.1(7) 
C13A 17.7(10) 27.9(10) 28.8(11) 18.2(9) 7.3(8) 3.1(7) 
C14A 21.8(10) 25.8(10) 26.8(10) 14.9(8) 11.7(8) 6.3(8) 
C15A 21.7(10) 18.8(9) 18.1(9) 10.7(7) 7.5(8) 4.2(7) 
C16A 23.0(10) 16.5(8) 16.7(9) 7.8(7) 7.4(8) 2.1(7) 
C17A 29.5(11) 19.1(9) 14.9(9) 5.5(7) 7.8(8) 0.9(7) 
C18A 25.5(11) 22.2(9) 12.9(9) 6.6(7) 1.0(8) -3.1(7) 
C19A 20.3(10) 17.4(9) 16.3(9) 7.6(7) 2.6(7) -1.5(7) 
C20A 19.1(10) 27.7(10) 23.5(10) 11.4(8) 3.1(8) 1.2(8) 
C21A 40.3(13) 26.8(10) 23.9(11) 10.0(9) 16.3(10) 5.3(9) 
C22A 25.6(11) 27.1(10) 24.6(11) 10.9(9) 1.5(9) -2.9(8) 
 

Table A7.2.5. Bond Lengths for 306-Co. 

Atom Atom Length/Å   Atom Atom Length/Å 
Co1 N1 1.9319(16)   Co1A N1A 1.9310(16) 
Co1 N2 1.9293(15)   Co1A N2A 1.9277(15) 
Co1 N3 1.9273(16)   Co1A N3A 1.9244(16) 
Co1 N4 1.9253(15)   Co1A N4A 1.9226(15) 
F1 C20 1.328(3)   F1A C20A 1.349(2) 
F2 C20 1.345(2)   F2A C20A 1.340(2) 
F3 C20 1.338(2)   F3A C20A 1.333(2) 
F4 C21 1.333(3)   F4A C21A 1.325(3) 
F5 C21 1.327(3)   F5A C21A 1.334(3) 
F6 C21 1.340(2)   F6A C21A 1.338(3) 
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F7 C22 1.345(2)   F7A C22A 1.338(3) 
F8 C22 1.339(2)   F8A C22A 1.333(3) 
F9 C22 1.331(3)   F9A C22A 1.333(3) 
N1 C2 1.381(2)   N1A C2A 1.376(2) 
N1 C5 1.377(2)   N1A C5A 1.383(2) 
N2 C7 1.379(2)   N2A C7A 1.378(3) 
N2 C10 1.376(2)   N2A C10A 1.378(2) 
N3 C12 1.382(2)   N3A C12A 1.385(2) 
N3 C15 1.368(2)   N3A C15A 1.368(2) 
N4 C16 1.370(2)   N4A C16A 1.371(2) 
N4 C19 1.383(2)   N4A C19A 1.385(2) 
N5 C15 1.332(2)   N5A C15A 1.332(2) 
N5 C16 1.320(3)   N5A C16A 1.325(3) 
C1 C2 1.399(3)   C1A C2A 1.407(3) 
C1 C19 1.387(3)   C1A C19A 1.382(3) 
C1 C20 1.516(3)   C1A C20A 1.516(3) 
C2 C3 1.440(3)   C2A C3A 1.439(3) 
C3 C4 1.342(3)   C3A C4A 1.345(3) 
C4 C5 1.437(3)   C4A C5A 1.435(3) 
C5 C6 1.399(3)   C5A C6A 1.394(3) 
C6 C7 1.388(3)   C6A C7A 1.389(3) 
C6 C21 1.517(3)   C6A C21A 1.514(3) 
C7 C8 1.440(3)   C7A C8A 1.439(3) 
C8 C9 1.342(3)   C8A C9A 1.345(3) 
C9 C10 1.444(3)   C9A C10A 1.443(3) 
C10 C11 1.399(3)   C10A C11A 1.401(3) 
C11 C12 1.387(3)   C11A C12A 1.384(3) 
C11 C22 1.515(3)   C11A C22A 1.518(3) 
C12 C13 1.452(3)   C12A C13A 1.452(3) 
C13 C14 1.338(3)   C13A C14A 1.343(3) 
C14 C15 1.439(3)   C14A C15A 1.436(3) 
C16 C17 1.446(3)   C16A C17A 1.442(3) 
C17 C18 1.339(3)   C17A C18A 1.337(3) 
C18 C19 1.453(3)   C18A C19A 1.454(3) 

 

Table A7.2.6. Bond Angles for 306-Co. 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 
N2 Co1 N1 91.72(7)   N2A Co1A N1A 91.74(7) 
N3 Co1 N1 178.62(6)   N3A Co1A N1A 178.53(6) 
N3 Co1 N2 89.48(6)   N3A Co1A N2A 89.33(7) 
N4 Co1 N1 89.67(7)   N4A Co1A N1A 89.56(7) 
N4 Co1 N2 178.48(7)   N4A Co1A N2A 178.35(7) 
N4 Co1 N3 89.13(6)   N4A Co1A N3A 89.39(6) 
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Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 
C2 N1 Co1 128.67(13)   C2A N1A Co1A 129.02(13) 
C5 N1 Co1 124.77(13)   C2A N1A C5A 106.09(16) 
C5 N1 C2 106.27(16)   C5A N1A Co1A 124.47(13) 
C7 N2 Co1 126.00(13)   C7A N2A Co1A 125.96(13) 
C10 N2 Co1 127.93(13)   C7A N2A C10A 106.08(15) 
C10 N2 C7 105.86(15)   C10A N2A Co1A 127.83(13) 
C12 N3 Co1 129.27(13)   C12A N3A Co1A 129.52(13) 
C15 N3 Co1 125.31(12)   C15A N3A Co1A 125.17(13) 
C15 N3 C12 105.30(15)   C15A N3A C12A 105.21(16) 
C16 N4 Co1 125.25(13)   C16A N4A Co1A 125.28(13) 
C16 N4 C19 105.62(15)   C16A N4A C19A 105.28(15) 
C19 N4 Co1 128.80(13)   C19A N4A Co1A 129.13(13) 
C16 N5 C15 120.48(17)   C16A N5A C15A 120.67(16) 
C2 C1 C20 120.27(18)   C2A C1A C20A 120.12(18) 
C19 C1 C2 122.86(17)   C19A C1A C2A 123.32(18) 
C19 C1 C20 115.98(17)   C19A C1A C20A 115.58(17) 
N1 C2 C1 123.65(18)   N1A C2A C1A 123.21(18) 
N1 C2 C3 109.02(17)   N1A C2A C3A 109.61(17) 
C1 C2 C3 126.58(18)   C1A C2A C3A 126.33(18) 
C4 C3 C2 107.72(18)   C4A C3A C2A 107.18(19) 
C3 C4 C5 107.21(19)   C3A C4A C5A 107.57(19) 
N1 C5 C4 109.65(17)   N1A C5A C4A 109.40(17) 
N1 C5 C6 124.41(18)   N1A C5A C6A 124.37(18) 
C6 C5 C4 125.82(18)   C6A C5A C4A 126.09(19) 
C5 C6 C21 117.19(18)   C5A C6A C21A 117.37(18) 
C7 C6 C5 123.93(18)   C7A C6A C5A 123.79(18) 
C7 C6 C21 118.75(18)   C7A C6A C21A 118.76(18) 
N2 C7 C6 123.20(17)   N2A C7A C6A 123.37(17) 
N2 C7 C8 109.75(17)   N2A C7A C8A 109.76(18) 
C6 C7 C8 126.88(18)   C6A C7A C8A 126.75(19) 
C9 C8 C7 107.40(18)   C9A C8A C7A 107.28(18) 
C8 C9 C10 107.08(17)   C8A C9A C10A 107.29(18) 
N2 C10 C9 109.78(17)   N2A C10A C9A 109.48(17) 
N2 C10 C11 124.05(16)   N2A C10A C11A 124.24(17) 
C11 C10 C9 125.41(17)   C11A C10A C9A 125.46(18) 
C10 C11 C22 118.42(17)   C10A C11A C22A 117.39(18) 
C12 C11 C10 123.03(17)   C12A C11A C10A 122.79(17) 
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Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 
C12 C11 C22 117.98(18)   C12A C11A C22A 119.32(18) 
N3 C12 C11 122.81(18)   N3A C12A C13A 109.64(17) 
N3 C12 C13 109.50(16)   C11A C12A N3A 122.82(18) 
C11 C12 C13 127.40(17)   C11A C12A C13A 127.25(18) 
C14 C13 C12 107.43(17)   C14A C13A C12A 107.13(17) 
C13 C14 C15 106.65(17)   C13A C14A C15A 106.81(18) 
N3 C15 C14 111.02(16)   N3A C15A C14A 111.11(17) 
N5 C15 N3 127.67(18)   N5A C15A N3A 127.66(18) 
N5 C15 C14 121.22(17)   N5A C15A C14A 121.11(17) 
N4 C16 C17 110.67(17)   N4A C16A C17A 110.84(17) 
N5 C16 N4 128.15(17)   N5A C16A N4A 127.77(17) 
N5 C16 C17 121.18(17)   N5A C16A C17A 121.37(17) 
C18 C17 C16 106.76(17)   C18A C17A C16A 106.95(17) 
C17 C18 C19 107.46(17)   C17A C18A C19A 107.30(17) 
N4 C19 C1 124.05(17)   N4A C19A C18A 109.54(17) 
N4 C19 C18 109.45(17)   C1A C19A N4A 123.57(17) 
C1 C19 C18 126.10(17)   C1A C19A C18A 126.47(18) 
F1 C20 F2 107.01(18)   F1A C20A C1A 111.06(17) 
F1 C20 F3 105.57(17)   F2A C20A F1A 105.89(16) 
F1 C20 C1 114.69(18)   F2A C20A C1A 112.30(17) 
F2 C20 C1 111.15(17)   F3A C20A F1A 106.42(17) 
F3 C20 F2 105.67(17)   F3A C20A F2A 105.68(16) 
F3 C20 C1 112.16(17)   F3A C20A C1A 114.88(17) 
F4 C21 F6 106.76(19)   F4A C21A F5A 107.17(19) 
F4 C21 C6 112.76(17)   F4A C21A F6A 106.3(2) 
F5 C21 F4 106.75(18)   F4A C21A C6A 113.23(18) 
F5 C21 F6 104.62(17)   F5A C21A F6A 104.46(17) 
F5 C21 C6 113.31(18)   F5A C21A C6A 113.18(19) 
F6 C21 C6 112.05(17)   F6A C21A C6A 111.91(17) 
F7 C22 C11 111.64(17)   F7A C22A C11A 112.32(18) 
F8 C22 F7 106.39(16)   F8A C22A F7A 105.40(16) 
F8 C22 C11 112.66(17)   F8A C22A F9A 107.09(19) 
F9 C22 F7 106.73(18)   F8A C22A C11A 113.10(17) 
F9 C22 F8 105.51(16)   F9A C22A F7A 106.74(18) 
F9 C22 C11 113.40(17)   F9A C22A C11A 111.73(17) 
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Table A7.2.7. Torsion Angles for 306-Co. 

A B C D Angle/˚   A B C D Angle/˚ 
Co1 N1 C2 C1 6.5(3)   Co1A N1A C2A C1A 5.7(3) 
Co1 N1 C2 C3 177.16(13)   Co1A N1A C2A C3A 175.69(13) 
Co1 N1 C5 C4 -175.78(13)   Co1A N1A C5A C4A -174.07(13) 
Co1 N1 C5 C6 7.9(3)   Co1A N1A C5A C6A 10.0(3) 
Co1 N2 C7 C6 -8.3(3)   Co1A N2A C7A C6A -6.0(3) 
Co1 N2 C7 C8 176.19(13)   Co1A N2A C7A C8A 177.72(13) 
Co1 N2 C10 C9 -177.94(13)   Co1A N2A C10A C9A -179.16(13) 
Co1 N2 C10 C11 -7.5(3)   Co1A N2A C10A C11A -9.1(3) 
Co1 N3 C12 C11 1.4(3)   Co1A N3A C12A C11A 1.6(3) 
Co1 N3 C12 C13 175.63(12)   Co1A N3A C12A C13A 175.77(12) 
Co1 N3 C15 N5 9.4(3)   Co1A N3A C15A N5A 9.8(3) 
Co1 N3 C15 C14 -174.02(12)   Co1A N3A C15A C14A -174.28(12) 
Co1 N4 C16 N5 -7.7(3)   Co1A N4A C16A N5A -7.5(3) 
Co1 N4 C16 C17 173.53(12)   Co1A N4A C16A C17A 174.30(12) 
Co1 N4 C19 C1 -1.2(3)   Co1A N4A C19A C1A -2.7(3) 
Co1 N4 C19 C18 -174.42(12)   Co1A N4A C19A C18A -175.77(12) 
N1 C2 C3 C4 -3.8(2)   N1A C2A C3A C4A -4.0(2) 
N1 C5 C6 C7 14.5(3)   N1A C5A C6A C7A 14.0(3) 
N1 C5 C6 C21 -169.72(17)   N1A C5A C6A C21A -169.24(17) 
N2 C7 C8 C9 1.3(2)   N2A C7A C8A C9A 0.6(2) 
N2 C10 C11 C12 -11.5(3)   N2A C10A C11A C12A -10.0(3) 
N2 C10 C11 C22 177.44(17)   N2A C10A C11A C22A 178.13(17) 
N3 C12 C13 C14 -1.6(2)   N3A C12A C13A C14A -1.3(2) 
N4 C16 C17 C18 1.5(2)   N4A C16A C17A C18A 1.8(2) 
N5 C16 C17 C18 -177.34(18)   N5A C16A C17A C18A -176.48(18) 
C1 C2 C3 C4 166.6(2)   C1A C2A C3A C4A 165.65(19) 
C2 N1 C5 C4 -1.5(2)   C2A N1A C5A C4A -0.9(2) 
C2 N1 C5 C6 -177.77(18)   C2A N1A C5A C6A -176.78(18) 
C2 C1 C19 N4 -11.7(3)   C2A C1A C19A N4A -10.6(3) 
C2 C1 C19 C18 160.39(18)   C2A C1A C19A C18A 161.31(19) 
C2 C1 C20 F1 24.0(3)   C2A C1A C20A F1A -97.6(2) 
C2 C1 C20 F2 -97.5(2)   C2A C1A C20A F2A 144.06(18) 
C2 C1 C20 F3 144.45(18)   C2A C1A C20A F3A 23.2(3) 
C2 C3 C4 C5 2.8(2)   C2A C3A C4A C5A 3.3(2) 
C3 C4 C5 N1 -0.9(2)   C3A C4A C5A N1A -1.6(2) 
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A B C D Angle/˚   A B C D Angle/˚ 
C3 C4 C5 C6 175.36(19)   C3A C4A C5A C6A 174.21(19) 
C4 C5 C6 C7 -161.2(2)   C4A C5A C6A C7A -161.26(19) 
C4 C5 C6 C21 14.6(3)   C4A C5A C6A C21A 15.6(3) 
C5 N1 C2 C1 -167.56(18)   C5A N1A C2A C1A -167.10(17) 
C5 N1 C2 C3 3.1(2)   C5A N1A C2A C3A 2.9(2) 
C5 C6 C7 N2 -14.3(3)   C5A C6A C7A N2A -16.1(3) 
C5 C6 C7 C8 160.4(2)   C5A C6A C7A C8A 159.5(2) 
C5 C6 C21 F4 -82.2(2)   C5A C6A C21A F4A -81.3(2) 
C5 C6 C21 F5 156.37(18)   C5A C6A C21A F5A 156.49(18) 
C5 C6 C21 F6 38.3(3)   C5A C6A C21A F6A 38.8(3) 
C6 C7 C8 C9 -174.04(19)   C6A C7A C8A C9A -175.5(2) 
C7 N2 C10 C9 -3.0(2)   C7A N2A C10A C9A -3.1(2) 
C7 N2 C10 C11 167.45(18)   C7A N2A C10A C11A 166.91(18) 
C7 C6 C21 F4 93.8(2)   C7A C6A C21A F4A 95.7(3) 
C7 C6 C21 F5 -27.6(3)   C7A C6A C21A F5A -26.5(3) 
C7 C6 C21 F6 -145.73(19)   C7A C6A C21A F6A -144.24(19) 
C7 C8 C9 C10 -3.0(2)   C7A C8A C9A C10A -2.5(2) 
C8 C9 C10 N2 3.9(2)   C8A C9A C10A N2A 3.6(2) 
C8 C9 C10 C11 -166.42(19)   C8A C9A C10A C11A -166.3(2) 
C9 C10 C11 C12 157.54(19)   C9A C10A C11A C12A 158.43(19) 
C9 C10 C11 C22 -13.6(3)   C9A C10A C11A C22A -13.4(3) 
C10 N2 C7 C6 176.67(18)   C10A N2A C7A C6A 177.90(18) 
C10 N2 C7 C8 1.1(2)   C10A N2A C7A C8A 1.6(2) 
C10 C11 C12 N3 14.5(3)   C10A C11A C12A N3A 13.8(3) 
C10 C11 C12 C13 -158.69(19)   C10A C11A C12A C13A -159.36(19) 
C10 C11 C22 F7 83.0(2)   C10A C11A C22A F7A -39.6(3) 
C10 C11 C22 F8 -36.6(3)   C10A C11A C22A F8A -158.76(18) 
C10 C11 C22 F9 -156.41(18)   C10A C11A C22A F9A 80.3(2) 
C11 C12 C13 C14 172.34(19)   C11A C12A C13A C14A 172.59(19) 
C12 N3 C15 N5 -174.22(18)   C12A N3A C15A N5A -173.47(18) 
C12 N3 C15 C14 2.3(2)   C12A N3A C15A C14A 2.4(2) 
C12 C11 C22 F7 -88.6(2)   C12A C11A C22A F7A 148.28(18) 
C12 C11 C22 F8 151.80(17)   C12A C11A C22A F8A 29.1(3) 
C12 C11 C22 F9 32.0(3)   C12A C11A C22A F9A -91.8(2) 
C12 C13 C14 C15 2.9(2)   C12A C13A C14A C15A 2.7(2) 
C13 C14 C15 N3 -3.4(2)   C13A C14A C15A N3A -3.3(2) 
C13 C14 C15 N5 173.44(17)   C13A C14A C15A N5A 172.89(18) 
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A B C D Angle/˚   A B C D Angle/˚ 
C15 N3 C12 C11 -174.76(17)   C15A N3A C12A C11A -174.93(17) 
C15 N3 C12 C13 -0.53(19)   C15A N3A C12A C13A -0.7(2) 
C15 N5 C16 N4 -9.5(3)   C15A N5A C16A N4A -9.6(3) 
C15 N5 C16 C17 169.11(17)   C15A N5A C16A C17A 168.37(17) 
C16 N4 C19 C1 172.40(17)   C16A N4A C19A C1A 171.15(18) 
C16 N4 C19 C18 -0.8(2)   C16A N4A C19A C18A -1.9(2) 
C16 N5 C15 N3 8.6(3)   C16A N5A C15A N3A 8.4(3) 
C16 N5 C15 C14 -167.64(17)   C16A N5A C15A C14A -167.12(18) 
C16 C17 C18 C19 -1.9(2)   C16A C17A C18A C19A -2.9(2) 
C17 C18 C19 N4 1.8(2)   C17A C18A C19A N4A 3.1(2) 
C17 C18 C19 C1 -171.26(18)   C17A C18A C19A C1A -169.71(19) 
C19 N4 C16 N5 178.37(18)   C19A N4A C16A N5A 178.31(18) 
C19 N4 C16 C17 -0.4(2)   C19A N4A C16A C17A 0.2(2) 
C19 C1 C2 N1 9.0(3)   C19A C1A C2A N1A 9.1(3) 
C19 C1 C2 C3 -160.02(19)   C19A C1A C2A C3A -159.24(19) 
C19 C1 C20 F1 -166.47(17)   C19A C1A C20A F1A 71.5(2) 
C19 C1 C20 F2 72.0(2)   C19A C1A C20A F2A -46.9(2) 
C19 C1 C20 F3 -46.1(2)   C19A C1A C20A F3A -167.72(17) 
C20 C1 C2 N1 177.77(17)   C20A C1A C2A N1A 177.24(17) 
C20 C1 C2 C3 8.7(3)   C20A C1A C2A C3A 8.9(3) 
C20 C1 C19 N4 179.11(17)   C20A C1A C19A N4A -179.23(17) 
C20 C1 C19 C18 -8.8(3)   C20A C1A C19A C18A -7.3(3) 
C21 C6 C7 N2 169.99(17)   C21A C6A C7A N2A 167.11(18) 
C21 C6 C7 C8 -15.3(3)   C21A C6A C7A C8A -17.3(3) 
C22 C11 C12 N3 -174.40(17)   C22A C11A C12A N3A -174.53(17) 
C22 C11 C12 C13 12.5(3)   C22A C11A C12A C13A 12.3(3) 
 

Table A7.2.8. Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement 

Parameters (Å2×103) for 306-Co. 

Atom x y z U(eq) 
H3 24 3664 9883 32 
H4 -591 3003 7820 32 
H8 1581 1094 5015 30 
H9 3554 550 5346 30 
H13 7786 2786 8807 25 
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Atom x y z U(eq) 
H14 8292 4522 10607 25 
H17 6263 6262 13308 27 
H18 4311 5809 13326 26 
H3A 37 1089 -176 32 
H4A 1046 1727 1897 33 
H8A 5445 3914 4906 33 
H9A 7214 4531 4693 32 
H13A 8851 2391 1442 28 
H14A 7941 641 -373 28 
H17A 3735 -1218 -3283 27 
H18A 1727 -829 -3445 28 
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APPENDIX 8 

Some Unusual Transformations of a 

Highly Reactive α-Bromocaranone† 

 

A8.1  INTRODUCTION 

 The advent of asymmetric catalysis has greatly increased the number and variety of 

synthetically accessible chiral building blocks.1 Nevertheless, the syntheses of many 

natural products and consumer commodities continue to rely on starting materials from the 

readily available chiral pool and derivatives thereof.2,3 As such, strategies for the 

derivatization of chiral building blocks remain vital in organic synthesis. (+)-3-Carene 

(309, Scheme A8.1.1) is one such building block: the defining dimethylcyclopropane 

moiety of this molecule coupled with its widespread availability and conveniently rigid 

structure have made it a popular chiral feedstock.2,4 

Scheme A8.1.1. Carene and the desired transformation. 
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However, among the numerous syntheses beginning from 309, most feature the 

presence of the intact dimethylcyclopropane moiety in the target. This is due in part to the 

lack of mild and selective methods for the fragmentation of the strained ring. Although 

such fragmentations have been performed on carene (309) and related 

dimethylcyclopropane-containing compounds, the vast majority rely on strongly acidic 

conditions.5 

In the course of a total synthesis effort, we identified the fragmentation of a β-

ketodimethylcyclopropane (310) as a valuable transformation for revealing a reactive γ-

isopropenyl group (311) from the relatively unreactive, “protected” cyclopropane. 

Furthermore, we aimed to develop a method to trap the species immediately after ring 

fragmentation to access the challenging γ-gem-dimethyl synthon (312). 

A8.2  SYNTHESIS AND FRAGMENTATIONS OF A BROMOCARANONE 

We realized that in order to affect this transformation in a mild and efficient fashion, 

a synthetic handle would be necessary at the α-position. α-Bromocaranone 313 was 

selected as a promising model system to study the feasibility of this synthetic 

transformation due to its straightforward synthesis from carene (Scheme A8.2.1). 

Hydroboration of commercially available (+)-3-carene (309) followed by oxidation 

afforded (–)-4-caranone (310) in modest yields on a >10 g scale.6,7 Enolization of (–)-310 

with LiHMDS and direct bromination with NBS led to the production of several 

inseparable side products,8 however, formation of the silyl enol ether with LDA and 

TMSCl followed by quenching with NBS led to diminished side product formation, 

affording (–)-313.9 Although bromide (–)-313 decomposes rapidly on silica, purification 

was possible via chromatography on neutral alumina. While this compound can be stored 
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for at least several weeks at –15 °C as a solution in benzene, neat samples of bromide (–)-

313 stored at ambient temperature undergo spontaneous, exothermic decomposition to 

isocarvacrol (314), with the release of HBr, after several hours. Despite the unstable nature 

of bromide (–)-313, it was possible to manipulate neat samples of this intermediate for 

short periods of time. 

Scheme A8.2.1. Synthesis of a reactive α-bromocaranone. 

 

We began by treating bromide (–)-313 with AgI reagents in order to effect a 

carbocation-mediated fragmentation. Treatment of (–)-313 with AgClO4 or AgOTf in THF 

afforded dienone (+)-315 (Table A8.2.2, entries 1 and 2) in modest yields. Trace quantities 

of the desired compound featuring an isopropenyl group ((–)-311) were also observed. 

Attempts to favor the formation of (–)-311 by performing the reaction in the presence of a 

bulky base were not successful. The rapid elimination of tertiary carbocation 314 toward 

(+)-315 would appear to impede formation of (–)-311 or trapping with nucleophiles.  

Despite this, we were surprised to observe tertiary fluoride (–)-316 as the major product 

when AgBF4 was used as a AgI source (entry 3). 
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Table A8.2.2. AgI-mediated reactions of 313. 

 

The lack of control observed in carbocation-mediated reactions led us to study 

radical-mediated fragmentations next. Treatment of (–)-313 with AIBN and Bu3SnH 

afforded isopropyl enone (–)-317 (Scheme A8.2.3) in excellent yield. Allyltributylstannane 

(318) was used in place of Bu3SnH in an attempt to prepare the allylated product (–)-320.10 

Pleasingly, (–)-320 was observed, though in moderate yields (<40%), with the tertiary 

bromide (–)-319 instead being the major product. Using catalytic amounts of 318 led to 

high yields of (–)-319, which could then be isolated and subjected to similar conditions, 

albeit with an excess of 318, to afford the desired allylated species (–)-320. It is noteworthy 

that treatment of dienone (+)-315 with 318 and AIBN did not afford (–)-320, suggesting 

(+)-315 is not an intermediate en route to (–)-320. The presence of catalytic stannane 

radicals proved vital for the production of (–)-319. Indeed, a control experiment performed 

by simply heating a solution of (–)-313 in benzene provided racemic carvone derivative 

(±)-321 in high yields, with phenol 314 being observed as a minor product. To explain this 

surprising divergence in reactivity between (–)-319 and (±)-321, further mechanistic 

studies were performed. 
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Scheme A8.2.3. Radical-mediated cyclopropane fragmentation of 313. 

 

We initially suspected that the mechanism to form (±)-321 may be radical-

mediated, perhaps through the homolysis of the carbon-bromine bond followed by 1,4-

HAT. However, such a mechanism would not explain a racemic product. Furthermore, 

DFT calculations11,12,13 suggested that the barriers for such a transformation are kinetically 

inaccessible (>31 kcal/mol). Instead, we propose a polar mechanism (Scheme A8.2.4) that, 

through elimination of the bromide through enol 322, could afford diene 323. Such a 

system is precedented to rapidly racemize through an electrocyclic reaction via 

cycloheptatriene 324.14 Ultimately, 323 may be protonated in its keto form (325), 

eventually leading to tertiary cation 326, which is trapped by bromide, affording (±)-321. 
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Scheme A8.2.4. Proposed mechanism for the formation of racemic 321. 

 

The conversion of (–)-313 to (±)-321 is likely catalyzed by HBr formed via the 

decomposition of (–)-313 to 314. Interestingly, despite the formation of (–)-319 requiring 

longer reaction times (4 h vs. 25 min), carvone derivative (±)-321 is not observed. Indeed, 

heating bromide (–)-313 in PhH in the presence of allylstannane 318 with no radical 

initiator entirely suppressed the formation of (±)-321. We propose that this observation is 

due to the quenching of HBr by 318. Another reaction performed with (–)-313 and 

bis(tributylstannane), which exists in equilibrium with two tributyltin radicals,15 also 

suppressed the formation of (±)-321 whilst producing (–)-319, albeit in lower yields. No 

reaction was observed when (–)-313 was heated in hexanes, but (±)-321 was produced 

rapidly in dioxane or 1,2-dichloroethane with greater quantities of phenol 314, further 

implicating a polar mechanism. 

Finally, control compound (–)-328 (Scheme A8.2.5), featuring an additional gem-

dimethyl group, was prepared in two steps from (–)-310. This compound was found to be 

significantly more stable than (–)-313, decomposing neither on silica nor spontaneously as 

a solid compound. Importantly, only clean starting material was observed when (–)-328 
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was heated in benzene for extended periods of time, providing further evidence that the 

reaction leading to (±)-321 proceeds via the mechanism proposed in Scheme A8.2.4. 

Scheme A8.2.5. Synthesis of bromide 328 and control reaction in benzene. 

 

A8.3  CONCLUSION 

Over the course of this study, readily available (+)-3-carene was derivatized into an 

array of useful chiral building blocks through a highly reactive α-bromocaranone as a 

synthetic branching point. These chiral products are expected to be useful in future 

synthetic efforts, and we believe that the convenient fragmentation of β-cyclopropyl 

ketones will also find applications outside of carene-derived systems. 

A8.4  EXPERIMENTAL SECTION 

A8.4.1  MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by 

passage through an activated alumina column under argon.16 (+)-3-Carene was purchased 

from TCI and used as received, N-bromosuccinimide (NBS) was recrystallized from 

boiling water prior to use, trimethylsilyl chloride (TMSCl) was distilled under argon prior 

to use, all other reagents and solvents were purchased from various commercial suppliers 
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and used as received. Reaction progress was monitored by thin-layer chromatography 

(TLC) or Agilent 1290 UHPLC-MS. TLC was performed using E. Merck silica gel 60 

F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching or p-

anisaldehyde staining. Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40–63 

µm) or Sigma-Aldrich aluminum oxide (activated, neutral, Brockmann Activity I) were 

used for flash chromatography. Preparative HPLC was performed on an Agilent 1200 

preparative HPLC system using a 9.4 x 250 mm Eclipse XDB-C18 column. A water/MeCN 

gradient was used as the mobile phase and the compounds were detected at 230.8 nm and 

254.4 nm. Analytical SFC was performed with a Mettler SFC supercritical CO2 analytical 

chromatography system utilizing a Chiralpak AD-H column (4.6 mm x 25 cm) obtained 

from Daicel Chemical Industries, Ltd. 1H NMR spectra were recorded on Varian Inova 500 

MHz, Varian 400 MHz, and Bruker 400 MHz spectrometers and are reported relative to 

residual CHCl3 (δ 7.26 ppm). 13C NMR spectra were recorded on a Varian Inova 500 MHz 

spectrometer (125 MHz), a Varian 400 MHz spectrometer (100 MHz), and Bruker 400 

MHz spectrometers (100 MHz) and are reported relative to CHCl3 (δ 77.16 ppm). Data for 

1H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant 

(Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, 

q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad 

doublet. Data for 13C NMR are reported in terms of chemical shifts (δ ppm) Some reported 

spectra include minor solvent impurities of water (δ 1.56 ppm), ethyl acetate (δ 4.12, 2.05, 

1.26 ppm), methylene chloride (δ 5.30 ppm), acetone (δ 2.17 ppm), grease (δ 1.26, 0.86 

ppm), and/or silicon grease (δ 0.07 ppm), which do not impact product assignments. IR 

spectra were obtained by use of a Perkin Elmer Spectrum BXII spectrometer using thin 
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films deposited on NaCl plates and reported in frequency of absorption (cm–1). Optical 

rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line 

(589 nm), using a 100 mm path-length cell. High-resolution mass spectrometry was 

performed by the Multi User Mass Spectrometry Laboratory at the California Institute of 

Technology using a JMS-T200 GC AccuTOF GC-Alpha mass spectrometer. 

A8.4.2  EXPERIMENTAL PROCEDURES 

 

(1R,3R,4R,6S)-4,7,7-trimethylbicyclo[4.1.0]heptan-3-ol (330) 

The procedure was adapted from the literature:6 To a dried 500 mL round bottom 

flask was added NaBH4 (6.94 g, 183 mmol, 1.0 equiv), THF (60 mL), and (+)-3-carene (25 

g, 180 mmol, 1.0 equiv). The reaction flask was cooled to 0 °C in an ice bath, and BF3•OEt2 

(26 g, 160 mmol, 1.0 equiv) was added dropwise over 30 min. The reaction was stirred at 

this temperature for 4 h, after which the reaction was cooled to –10 °C and aq. NaOH (3 

M, 60 mL) was added dropwise over 40 min. H2O2 (30 wt %, 100 mL) was then added 

dropwise over 1 h, and the reaction allowed to warm to 20 °C. The solution was 

concentrated under reduced pressure to remove THF, and the aqueous layer was extracted 

with CH2Cl2 (3 x 40 mL). The combined organic layers were washed with water (100 mL) 

and brine (100 mL), dried over Na2SO4, and filtered. Concentration under reduced pressure 

afforded an oil that was distilled under vacuum (0.5 mmHg, 150 °C) to afford the title 

compound (22 g, 78%) as a colorless oil that solidified upon cooling. 1H NMR (CDCl3, 

400 MHz): δ = 3.07 (ddd, J = 10.3, 9.3, 6.6 Hz, 1H), 2.10 (ddd, J = 14.1, 6.6, 0.9 Hz, 1H), 
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2.01 – 1.92 (m, 1H), 1.61 – 1.51 (m, 1H), 1.29 – 1.17 (m, 1H), 0.97 (s, 3H), 0.93 (d, J = 

6.4 Hz, 3H), 0.90 (s, 3H), 0.86 – 0.77 (m, 1H), 0.75 – 0.67 (m, 2H). Spectral data are in 

agreement with previously reported values.17 

 

(1R,4R,6S)-4,7,7-trimethylbicyclo[4.1.0]heptan-3-one (310) 

A procedure from the literature7 was modified as follows: To a 1 L round bottom 

flask was added alcohol 330 (20 g, 130 mmol, 1.0 equiv) and Et2O (280 mL). The solution 

was cooled in an ice bath, and Brown–Garg (BG) reagent18,19 (70 mL) was added dropwise 

over 20 min with vigorous stirring, maintaining the reaction temperature below 20 °C. The 

ice bath was then removed, and the solution stirred for 1 h. Additional BG reagent (70 mL) 

was added slowly, and the reaction was left to stir for 18 h. The organic layer was then 

separated, and the aqueous layer was extracted with Et2O (2 x 50 mL). The combined 

organic layers were washed with brine (100 mL), dried over Na2SO4, filtered, and 

concentrated under reduced pressure. The residual oil was distilled under vacuum (0.5 

mmHg, 130 °C) to yield the title compound (12.8 g, 65%) as a fragrant, yellow oil. 1H 

NMR (CDCl3, 400 MHz): δ = 2.52 (ddd, J = 18.0, 8.4, 0.9 Hz, 1H), 2.41 – 2.32 (m, 1H), 

2.32 – 2.25 (m, 2H), 1.31 – 1.19 (m, 1H), 1.07 (m, 1H), 1.04 (s, 3H), 1.02 – 0.97 (m, 1H), 

0.95 (d, J = 6.4 Hz, 3H), 0.84 (s, 3H). Spectral data are in agreement with previously 

reported values.7  
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(1R,2R,4R,6S)-2-bromo-4,7,7-trimethylbicyclo[4.1.0]heptan-3-one (313) 

To a flame-dried 250 mL Schlenk flask was added THF (29 mL) and 

diisopropylamine (1.59 g, 15.8 mmol, 1.2 equiv). The solution was cooled to –78 °C and 

n-butyllithium (2.5 M in hexanes, 5.5 mL, 13.8 mmol, 1.05 equiv) was added dropwise 

over 8 min. After stirring for 30 min, a solution of ketone 310 (2 g, 13.1 mmol, 1.0 equiv) 

in THF (2 mL) was added dropwise over 5 min and the reaction mixture allowed to stir at 

–78 °C for 1.5 h. TMSCl (2.14 g, 19.7 mmol, 1.5 equiv) was added and the reaction was 

allowed to warm to 0 °C in an ice bath, and further stirred at 0 °C for 1 h. The reaction 

flask was then wrapped in Al foil to exclude light and NBS (3.5 g, 19.7 mmol, 1.5 equiv) 

was added in a single portion. After stirring for a further 30 min in the dark, the reaction 

was quenched* with saturated aq. NaHCO3 (50 mL) and extracted with Et2O (2 x 20 mL). 

The combined organic layers were washed with water (2 x 40 mL) and brine (40 mL), dried 

over Na2SO4, and filtered. The solution was concentrated under reduced pressure to yield 

2.1 g of residue. A small amount of this residue (255 mg) was purified via flash 

chromatography on neutral alumina (hexanes) to yield 313 (173 mg, extrapolated to 48% 

overall yield) as an unstable straw-colored oil which crystallized when pure. 313 was used 

immediately or stored as a frozen solution in benzene. 1H NMR (CDCl3, 400 MHz): δ = 

4.37 (d, J = 1.2 Hz, 1H), 3.22 (ddq, J = 13.0, 7.7, 6.5 Hz, 1H), 2.45 (ddd, J = 14.7, 9.7, 7.6 

Hz, 1H), 1.52 (dd, J = 8.6, 1.3 Hz, 1H), 1.40 (ddd, J = 14.8, 13.0, 4.3 Hz, 1H), 1.18 (td, J 

= 8.9, 4.2 Hz, 1H), 1.07 (s, 3H), 1.00 (d, J = 6.5 Hz, 3H), 0.84 (s, 3H); 13C{1H} NMR 
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(CDCl3, 100 MHz): δ = 209.7, 48.2, 36.2, 33.7, 30.7, 28.2, 22.2, 20.5, 14.7, 14.1; IR (Neat 

Film, NaCl) 2933, 1719, 1455, 1378, 1162, 848, 776, 622 cm–1; HRMS (FI+): m/z calc’d 

for C10H15OBr [M]+: 230.0301 found, 230.0308; [α]D 22.16 –278.99 (c 1.0, CHCl3). *Due to 

the light-sensitivity of the product, it is recommended to perform the work-up in the dark. 

 

(4R,6R)-4-isopropyl-6-methylcyclohex-2-en-1-one (317) 

AIBN (20 mg, 0.121 mmol, 0.2 equiv) was loaded into a 20 mL vial with septum 

cap. A solution of bromide 313 (140 mg, 0.606 mmol, 1.0 equiv) and Bu3SnH (353 mg, 

1.21 mmol, 2.0 equiv) in anhydrous benzene (6 mL) was added. The reaction mixture was 

stirred at 86 °C for 1 h, after which the solvent was removed under reduced pressure. The 

residue was purified by flash chromatography on silica (0–10% EtOAc in hexanes) to 

afford the title compound (82 mg, 89%) as a colorless oil. The resulting product is pure 

enough for most purposes, but a sample of higher purity for analysis was obtained by 

distillation. 1H NMR (CDCl3, 400 MHz): δ = 6.82 (dt, J = 10.2, 2.2 Hz, 1H), 6.01 (dd, J = 

10.2, 3.0 Hz, 1H), 2.39 (m, 2H), 1.96 (dtd, J = 13.0, 4.5, 2.0 Hz, 1H), 1.80 (pd, J = 6.9, 4.8 

Hz, 1H), 1.54 – 1.49 (ddd, J = 13.9, 13.0, 11.4 Hz, 1H), 1.15 (d, J = 6.6, 3H), 0.96 (d, J = 

7.1, 3H), 0.94 (d, J = 6.9, 3H); 13C{1H} NMR (CDCl3, 100 MHz): δ = 202.7, 153.5, 129.7, 

43.5, 41.7, 34.2, 31.8, 19.6, 19.3, 15.2; IR (Neat Film, NaCl) 2959, 2872, 1684, 1458, 1386, 

1219, 803 cm–1; HRMS (FI+): m/z calc’d for C10H16O [M]+: 152.1196 found, 152.1198; 

[α]D 22.31 –35.30 (c 1.0, CHCl3). 
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(4S,6R)-4-(2-bromopropan-2-yl)-6-methylcyclohex-2-en-1-one (319). 

To a 4 mL vial was added bromide 313 (36 mg, 0.156 mmol, 1.0 equiv) in 

anhydrous benzene (1.5 mL). To this solution was added allyltributyltin (21 mg, 0.062 

mmol, 0.4 equiv) and AIBN (5 mg, 0.03 mmol, 0.2 equiv). The vial was sealed, and the 

reaction mixture stirred at 86 °C for 4 h. The reaction was then allowed to cool to 20 °C 

and concentrated under reduced pressure. The residue was purified via flash 

chromatography on silica (5–10% EtOAc in hexanes) to afford the title compound (26 mg, 

72%) as a colorless oil. 1H NMR (CDCl3, 400 MHz): δ = 7.09 (dt, J = 10.3, 2.1 Hz, 1H), 

6.09 (dd, J = 10.3, 2.8 Hz, 1H), 2.85 (dddd, J = 11.4, 4.6, 2.9, 2.0 Hz, 1H), 2.41 (dqd, J = 

13.4, 6.7, 4.5 Hz, 1H), 2.24 (dtd, J = 12.7, 4.4, 2.2 Hz, 1H), 1.89 (s, 3H), 1.74 (s, 3H), 1.67 

– 1.58 (m, 1H), 1.17 (d, J = 6.7 Hz, 3H); 13C{1H} NMR (CDCl3, 100 MHz): δ = 201.3, 

150.1, 130.2, 68.3, 50.5, 41.0, 34.2, 32.9, 30.9, 15.1; IR (Neat Film, NaCl) 2967, 1682, 

1455, 1372, 1213, 1125, 803, 644, 601 cm–1; HRMS (FI+): m/z calc’d for C10H15OBr [M]+: 

230.0301, found 230.0300; [α]D 22.13 –62.67 (c 1.0, CHCl3). 
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(4S,6R)-6-methyl-4-(2-methylpent-4-en-2-yl)cyclohex-2-en-1-one (320). 

To a 20 mL vial was added bromide 319 (45 mg, 0.195 mmol, 1.0 equiv) in 

anhydrous benzene (4 mL). To this was added allyltributyltin (390 mg, 1.17 mmol, 6.0 

equiv) and AIBN (6.4 mg, 0.039 mmol, 0.2 equiv). The vial was sealed, and the reaction 

mixture stirred at 86 °C for 48 h. The solution was concentrated under reduced pressure 

and the residue purified via flash chromatography on silica (5% EtOAc in hexanes) to 

afford the title compound (24 mg, 63%) as a colorless oil. The compound is pure enough 

for most purposes, but a sample of higher purity for analysis was obtained by preparative 

HPLC (60–80% MeCN in H2O over 5 min at 12 mL/min). 1H NMR (CDCl3, 400 MHz): δ 

= 6.96 (dt, J = 10.3, 2.1 Hz, 1H), 6.03 (dd, J = 10.3, 3.0 Hz, 1H), 5.83 (ddt, J = 16.8, 10.2, 

7.4 Hz, 1H), 5.13 – 5.02 (m, 2H), 2.36 (m, 2H), 2.11 – 2.06 (m, 2H), 2.03 (ddq, J = 11.0, 

4.4, 2.2 Hz, 1H), 1.55 – 1.46 (m, 1H), 1.15 (d, J = 6.7 Hz, 3H), 0.95 (s, 3H), 0.92 (s, 3H); 

13C{1H} NMR (CDCl3, 100 MHz): δ = 202.4, 151.7, 134.7, 130.0, 118.0, 45.7, 44.5, 41.8, 

35.7, 33.1, 24.9, 24.6, 15.3; IR (Neat Film, NaCl) 2961, 1683, 1385, 1222, 914, 802 cm–1; 

HRMS (FI+): m/z calc’d for C13H20O [M]+: 192.1509, found 192.1509; [α]D 22.49 –25.44 (c 

0.25, CHCl3). 
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(S)-5-(2-bromopropan-2-yl)-2-methylcyclohex-2-en-1-one (321) 

To a 4 mL vial was added bromide 313 (86 mg, 0.372 mmol, 1.0 equiv) in 

anhydrous benzene (1.6 mL). The vial was sealed, and the reaction mixture stirred at 86 °C 

for 25 min. The solution was concentrated under reduced pressure and the residue was 

purified by flash chromatography on neutral alumina (5% EtOAc in hexanes) to afford the 

title compound (63 mg, 73%) as a colorless oil. 1H NMR (CDCl3, 400 MHz): δ = 6.75 (ddq, 

J = 5.4, 2.8, 1.4 Hz, 1H), 2.74 (ddd, J = 16.0, 3.7, 1.8 Hz, 1H), 2.59 (dddt, J = 18.2, 6.2, 

4.6, 1.5 Hz, 1H), 2.41 (m, 2H), 2.05 (dddd, J = 13.5, 11.1, 4.6, 3.7 Hz, 1H), 1.79 (m, 3H), 

1.79 (s, 3H), 1.77 (s, 3H); 13C{1H} NMR (CDCl3, 100 MHz): δ = 199.2, 144.3, 135.4, 70.1, 

48.3, 41.2, 32.5, 32.2, 29.2, 15.7; IR (Neat Film, NaCl) 2972, 1674, 1451, 1370, 1254, 

1103, 1062, 904, 690 cm–1; HRMS (FI+): m/z calc’d for C10H15OBr [M]+: 230.0301, found 

230.0302. 321 was determined to be racemic by chiral SFC analysis (AD-H, EtOH/CO2 = 

5/95, flow rate = 3.5 mL/min,  l = 210 nm) tR = 3.39, 3.95.  

 

Me
O

Me
Me

Br

(±)-321



Appendix 8 – Some Unusual Transformations of a Highly Reactive α-Bromocaranone 
 

539 

Procedure for the AgI–mediated fragmentation of bromide 313. 

To a solution of the indicated silver salt (0.182 mmol, 2.1 equiv) in THF (0.6 mL) was 

added a solution of bromoketone 313 (20 mg, 0.0865 mmol, 1.0 equiv) in THF (0.3 mL, 

0.1 M total concentration) dropwise over 1 min with stirring at 20 °C. In all cases, a thick 

precipitate immediately formed. Stirring was continued for an additional 20 min, after 

which the reaction mixture was quenched with saturated aq. NaHCO3 (1 mL) and filtered 

through a plug of celite with EtOAc. The layers were separated and the organic layer was 

dried with Na2SO4, filtered, and concentrated under reduced pressure to provide a crude 

product that was purified by silica gel flash chromatography (5% EtOAc in hexanes). 

 

(R)-6-methyl-4-(propan-2-ylidene)cyclohex-2-en-1-one (315) 

8.7 mg (67%) yield with AgClO4; 7.1 mg (55%) yield with AgOTf; 1H NMR 

(CDCl3, 400 MHz): δ = 7.42 (dd, J = 10.1, 0.9 Hz, 1H), 5.80 (d, J = 10.0 Hz, 1H), 2.84 

(dd, J = 14.6, 5.4 Hz, 1H), 2.48 (dqd, J = 10.9, 6.8, 5.4 Hz, 1H), 2.39 – 2.27 (m, 1H), 1.93 

(dd, J = 1.6, 0.8 Hz, 3H), 1.90 (s, 3H), 1.14 (d, J = 6.8 Hz, 3H); 13C{1H} NMR (CDCl3, 

100 MHz): δ = 203.0, 143.1, 139.4, 126.7, 124.0, 40.9, 34.1, 21.9, 20.8, 15.9; IR (Neat 

Film, NaCl) 2927, 1672, 1623, 1453, 1216, 812 cm–1; HRMS (FI+): m/z calc’d for C10H14O 

[M]+: 150.1039, found 150.1039; [α]D 21.95 +137.36 (c 0.5, CHCl3). 
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(4S,6R)-6-methyl-4-(prop-1-en-2-yl)cyclohex-2-en-1-one (311) 

Isopropenyl enone 311 was observed in trace quantities in the AgI-mediated 

fragmentation of bromide 313. 0.7 mg (5% yield) with AgBF4. A sample suitable for 

characterization, albeit containing a minor impurity, could be obtained by automated silica 

gel flash chromatography (Teledyne ISCO, 0→10% EtOAc in hexanes) on a 100 mg scale. 

1H NMR (CDCl3, 400 MHz): δ = 6.81 (dt, J = 10.1, 2.0 Hz, 1H), 6.03 (dd, J = 10.1, 3.0 

Hz, 1H), 4.86 (p, J = 1.5 Hz, 1H), 4.81 (dq, J = 1.6, 0.8 Hz, 1H), 3.21 – 3.12 (m, 1H), 2.42 

(dqd, J = 13.5, 6.7, 4.5 Hz, 1H), 2.13 (dtd, J = 13.0, 4.5, 2.0 Hz, 1H), 1.77 (dd, J = 1.4, 0.9 

Hz, 3H), 1.72 – 1.61 (m, 1H), 1.15 (d, J = 6.6 Hz, 3H); 13C{1H} NMR (CDCl3, 100 MHz): 

δ = 202.0, 152.5, 146.9, 129.6, 112.0, 45.2, 41.8, 37.7, 20.8, 15.1; IR (Neat Film, NaCl) 

2964, 2934, 2862, 1683, 1649, 1454, 1376, 1215, 1188, 1118, 895, 804 cm–1; HRMS (FI+): 

m/z calc’d for C10H14O [M]+: 150.1039, found 150.1030; [α]D 21.23 –92.59 (c 0.33, CHCl3). 

 

(4S,6R)-4-(2-fluoropropan-2-yl)-6-methylcyclohex-2-en-1-one (316) 

6.6 mg of a 3.4:1 (w/w) mixture of fluoride 316 and dienone 315 was isolated, 

corresponding to a 35% yield of fluoride 316. While this mixture was inseparable by silica 

gel flash chromatography, an analytical sample of 316 was isolated by reverse-phase 
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preparative HPLC (50–70% MeCN in H2O over 3.5 min at 10 mL/min); 1H NMR (CDCl3, 

400 MHz): δ = 6.96 (dt, J = 10.3, 2.0 Hz, 1H), 6.09 (dd, J = 10.3, 3.0 Hz, 1H), 2.88 – 2.75 

(m, 1H), 2.41 (dqd, J = 13.5, 6.7, 4.6 Hz, 1H), 2.08 (dtdd, J = 12.8, 4.5, 2.1, 0.9 Hz, 1H), 

1.53 – 1.45 (m, 1H), 1.42 (d, J = 22.0 Hz, 3H), 1.32 (d, J = 22.0 Hz, 3H), 1.16 (d, J = 6.7 

Hz, 3H); 13C{1H} NMR (CDCl3, 100 MHz): δ = 201.6, 148.9, 148.8, 130.5, 97.3, 95.6, 

47.4, 47.2, 41.3, 33.4, 33.4, 25.6, 25.4, 23.7, 23.4, 15.1; IR (Neat Film, NaCl) 2930, 1682, 

1453, 1376, 1219, 878, 812, 522 cm–1; HRMS (FI+): m/z calc’d for C10H15FO [M]+: 

170.1101, found 170.1099; [α]D 21.82 –37.10 (c 0.167, CHCl3). 

 

(1R,6S)-4,4,7,7-tetramethylbicyclo[4.1.0]heptan-3-one (327) 

To a rapidly stirred suspension of NaH (60% dispersion in mineral oil, 289 mg, 

7.23 mmol, 1.1 equiv) in THF (5.6 mL, 1 M final substrate concentration) in a 50 mL 2-

neck flask equipped with a reflux condenser was added ketone 310 (1.00 g, 6.57 mmol, 1.0 

equiv) through the top of the condenser. Additional THF (1 mL) was used to rinse the 

ketone into the reaction mixture. The suspension was then heated to reflux in an oil bath 

and stirred for 1.5 h. Then, HMDS (0.21 mL, 0.986 mmol, 0.15 equiv) was added through 

the top of the condenser and the reaction mixture was stirred under reflux for an additional 

25 min. The flask was then cooled to 0 °C in an ice bath, and the reflux condenser was 

replaced with a septum. MeI (0.45 mL, 7.23 mmol, 1.1 equiv) was added dropwise, after 

which the ice bath was removed. After stirring at 20 °C for 17 h, the reaction mixture was 

quenched with H2O (20 mL), the layers were separated, and the aqueous layer was 
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extracted with Et2O (4x10 mL). The combined organic layers were dried over MgSO4, 

concentrated under reduced pressure, and purified via silica gel flash chromatography 

(10% Et2O in hexanes). The resulting oil was purified again by automated silica gel flash 

chromatography (Teledyne ISCO, 0→10% EtOAc in hexanes) to provide dimethyl ketone 

327 (361 mg, 29% yield desired isomer) as a fragrant, colorless oil containing 11% of an 

inseparable isomeric impurity; 1H NMR (CDCl3, 400 MHz): δ = 2.65 – 2.52 (m, 1H), 2.19 

– 2.07 (m, 1H), 1.94 (ddt, J = 14.9, 9.3, 1.4 Hz, 1H), 1.39 (ddt, J = 14.9, 6.2, 0.9 Hz, 1H), 

1.22 (s, 3H), 1.11 – 1.06 (m, 1H), 1.04 (s, 3H), 0.94 (s, 3H), 0.90 – 0.80 (m, 4H); 13C{1H} 

NMR (CDCl3, 100 MHz): δ = 218.9, 42.4, 35.1, 34.6, 28.0, 24.8, 24.3, 22.4, 19.5, 18.2, 

14.9; IR (Neat Film, NaCl) 2930, 2867, 1709, 1460, 1412, 1379, 1111, 1051, 986, 808 cm–

1; m/z calc’d for C11H18O [M]+: 166.1352, found 166.1358; [α]D 21.48 –68.91 (c 1.0, CHCl3). 

 

(1R,2S,6S)-2-bromo-4,4,7,7-tetramethylbicyclo[4.1.0]heptan-3-one (328) 

To a solution of diisopropylamine (0.10 mL, 0.722 mmol, 1.2 equiv) in THF (1.3 

mL, 0.45 M substrate concentration) was added n-butyllithium (2.5 M in hexanes, 0.25 

mL, 0.632 mmol, 1.05 equiv) dropwise at –78 °C. The solution was allowed to warm to 0 

°C and immediately cooled back to –78 °C, whereafter ketone 327 (100 mg, 0.602 mmol, 

1.0 equiv) was added dropwise and the solution stirred at –78 °C for 1 h. TMSCl (0.11 mL, 

0.903 mmol, 1.5 equiv) was added and the reaction was allowed to warm to 0 °C in an ice 

bath and stirred for an additional 45 min. The reaction was then protected from light and 

NBS (161 mg, 0.903 mmol, 1.5 equiv) was added in one portion. After stirring for a further 

Me
Me

O
Me

Me
Br

(–)-328



Appendix 8 – Some Unusual Transformations of a Highly Reactive α-Bromocaranone 
 

543 

30 min in the dark, the reaction was quenched with saturated aq. NaHCO3 (1 mL), the 

layers were separated, and the aqueous layer was extracted with Et2O (1 mL). The 

combined organic layers were washed with water (1 mL), dried over Na2SO4, and 

concentrated under reduced pressure. The crude product was purified via silica gel flash 

chromatography to afford α-bromoketone 328 (126 mg, 89% yield desired isomer) as a 

white crystalline solid containing 8% of an inseparable isomeric impurity; 1H NMR 

(CDCl3, 400 MHz): δ = 4.23 (dd, J = 6.0, 0.8 Hz, 1H), 1.91 (ddd, J = 15.1, 8.3, 0.9 Hz, 

1H), 1.44 (ddd, J = 15.0, 8.4, 0.8 Hz, 1H), 1.40 – 1.35 (m, 4H), 1.13 (s, 3H), 1.11 – 1.05 

(m, 4H), 1.03 (s, 3H); 13C{1H} NMR (CDCl3, 100 MHz): δ = 209.2, 49.2, 44.4, 33.7, 30.4, 

27.7, 26.6, 26.0, 21.8, 21.5, 14.2; IR (Neat Film, NaCl) 2954, 2869, 1721, 1462, 1376, 

1244, 1054, 911, 742 cm–1; m/z calc’d for C11H17OBr [M]+: 244.0457, found 244.0459; 

[α]D 21.55 –148.50 (c 1.0, CHCl3). 

 

4-isopropyl-2-methylphenol (314) 

313 (39 mg, 0.17 mmol) was left in a sealed 4 mL vial under ambient conditions 

for 24 h. During this time, the oil was found to spontaneously decompose with notable 

exotherm20 and change in consistency. The blackened tar was purified via flash 

chromatography on silica (5% EtOAc in hexanes) to afford 314 (8 mg, 32%) as a colorless 

oil. 1H NMR (CDCl3, 400 MHz): δ = 6.99 (d, J = 2.3 Hz, 1H), 6.94 (dd, J = 8.1, 2.2 Hz, 

1H), 6.71 (d, J = 8.1 Hz, 1H), 4.62 (s, 1H), 2.83 (hept, J = 7.0 Hz, 1H), 2.26 (s, 3H), 1.23 

(d, J = 6.9 Hz, 6H). Spectral data are in agreement with previously reported values.21 

314

OH
Me

MeMe
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Table A9.1. Notebook cross-reference for Chapter 1. 

 

compound 1H NMR (instrument) 13C NMR (instrument) yield/procedure

20a AWS-XII-77 (Florence) AWS-XII-77 (Florence) ZPS-III-115

20b AWS-XII-65 (Florence) AWS-XII-65 (Florence) ZPS-III-117

20c ZPS-I-297 (Florence) ZPS-I-297 (Florence) ZPS-III-119

20d ZPS-I-279 (Florence) ZPS-I-279 (Florence) ZPS-I-279

20e ZPS-II-83 (Florence) ZPS-II-83 (Florence) ZPS-II-83

20h ZPS-II-65 (Florence) ZPS-II-65 (Florence) ZPS-III-121

20f ZPS-II-13 (Florence) ZPS-II-13 (Florence) ZPS-II-13

20g AWS-XIV-61 (Florence) AWS-XIV-61 (Florence) AWS-XIV-61

20i AWS-XIV-63 (Florence) AWS-XIV-63 (Florence) AWS-XIV-63

20j ZPS-II-67 (Florence) ZPS-II-67 (Florence) ZPS-II-67

20k ZPS-II-69 (Florence) ZPS-II-69 (Florence) ZPS-II-101

20l AWS-XIV-13 (Florence) AWS-XIV-13 (Florence) AWS-XIV-13

55 AWS-XII-47 (Florence) AWS-XII-47 (Florence) AWS-XII-47

56 ZPS-I-287 (Florence) ZPS-I-287 (Florence) ZPS-I-287

57 AWS-XII-287 (Florence) AWS-XII-287 (Florence) AWS-XII-287

18a KY81 (Indy, zsercel2 folder) KY81 (Indy, zsercel2 folder) AWS-XII-49, 51, 67

18b ZPS-I-289 (Florence) ZPS-I-289 (Florence) ZPS-I-289

18c AWS-XII-289 (Florence) AWS-XII-289 (Florence) AWS-XII-289

19a AWS-XII-55 (Florence) AWS-XII-55 (Florence) ZPS-I-241

19b AWS-XII-53 (Florence) AWS-XII-53 (Florence) AWS-XII-53, 59

19c ZPS-I-293 (Florence) ZPS-I-293 (Florence) ZPS-I-293

19d AWS-XII-291 (Florence) AWS-XII-291 (Florence) AWS-XII-291

19e ZPS-II-75 (Indy) ZPS-II-75 (Indy) ZPS-II-75

19h ZPS-II-51 (Florence) ZPS-II-51 (Florence) ZPS-II-51

19f ZPS-III-111 (Indy) ZPS-III-111 (Indy) ZPS-III-111

19g AWS-XIV-55 (Florence) AWS-XIV-55 (Florence) AWS-XIV-55

19i AWS-XIV-53 (Indy) AWS-XIV-53 (Indy) AWS-XIV-53

19j ZPS-II-53 (Indy) ZPS-II-53 (Indy) ZPS-II-53

19k ZPS-II-61 (Florence) ZPS-II-61 (Florence) ZPS-II-61

19l AWS-XII-57 (Florence) AWS-XII-57 (Florence) AWS-XII-57

21 AWS-XIV-171 (Florence) AWS-XIV-171 (Florence) AWS-XIV-171
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Table A9.2. Notebook cross-reference for Chapter 1 (continued). 

 

compound 1H NMR (instrument) 13C NMR (instrument) yield/procedure

23 ZPS-III-127 (Florence) ZPS-III-127 (Florence) ZPS-III-127

25 AWS-XIV-199 (Florence) AWS-XIV-199 (Florence) AWS-XIV-199

35a ZPS-III-159 (Florence) ZPS-III-159 (Florence) ZPS-III-159

35b ZPS-III-69 (Florence) ZPS-III-69 (Florence) ZPS-III-69

35c AWS-XIV-123 (Florence) AWS-XIV-123 (Florence) ZPS-IV-65

35d ZPS-III-155 (Florence) ZPS-III-155 (Florence) ZPS-III-155

35e ZPS-III-97 (Florence) ZPS-III-97 (Florence) ZPS-III-97

35f ZPS-III-287 (Florence) ZPS-III-287 (Florence) ZPS-III-287

35g ZPS-III-141 (Florence) ZPS-III-141 (Florence) ZPS-III-141

35h ZPS-II-191 (Florence) ZPS-II-191 (Florence) ZPS-II-191

35i ZPS-V-43 (Florence) ZPS-V-43 (Florence) ZPS-V-43

35j ZPS-II-239 (Florence) ZPS-II-239 (Florence) ZPS-II-239

35k ZPS-III-303 (Florence) ZPS-III-303 (Florence) ZPS-III-303

31 ZPS-III-199 (Florence) ZPS-III-259B (Florence) ZPS-III-285

32 AWS-XIV-23 (Florence) AWS-XIV-23 (Florence) ZPS-III-289

33 AWS-XIV-115 (Florence) AWS-XIV-115 (Florence) ZPS-IV-25

60 ZPS-V-277 (Florence) ZPS-V-277 (Florence) ZPS-V-277

34a AWS-XIV-125 (Florence) AWS-XIV-125 (Florence) ZPS-IV-83

34b ZPS-III-43 (Florence) ZPS-III-43 (Florence) ZPS-III-43

34c AWS-XIV-85 (Florence) AWS-XIV-85 (Florence) AWS-XIV-85

34d ZPS-III-79 (Florence) ZPS-III-79 (Florence) ZPS-III-79

34e ZPS-II-203 (Florence) ZPS-II-203 (Florence) ZPS-III-45

34f AWS-XIV-127 (Florence) AWS-XIV-127 (Florence) AWS-XIV-127

34g ZPS-II-193 (Indy) ZPS-II-193 (Indy) ZPS-II-193

34h ZPS-II-129 (Florence) ZPS-II-129 (Florence) ZPS-II-129

34i ZPS-IV-205 (Florence) ZPS-IV-205 (Florence) ZPS-IV-205

34j ZPS-II-141 (Florence) ZPS-II-141 (Florence) ZPS-II-141

34k ZPS-III-163 (Florence) ZPS-III-163 (Florence) ZPS-III-163

52 ZPS-V-109 (Florence) ZPS-V-109 (Florence) ZPS-V-109

53 ZPS-V-111 (Florence) ZPS-V-111 (Florence) ZPS-V-111
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Table A9.3. Notebook cross-reference for Chapter 2. 

 

compound 1H NMR (instrument) 13C NMR (instrument) yield/procedure

96 ZPS-II-229 (Florence) ZPS-II-229 (Florence) ZPS-II-229

97 ZPS-VIII-251 (Florence) ZPS-VIII-251 (Florence) ZPS-V-203

107 ZPS-IV-215 (Florence) ZPS-IV-215 (Florence) ZPS-IV-231

109 ZPS-IV-243 (Florence) ZPS-IV-243 (Florence) ZPS-IV-243

125 ZPS-VI-13 (Florence) ZPS-VI-13 (Florence) ZPS-VI-13

126 ZPS-IX-127 (Florence) ZPS-IX-127 (Florence) ZPS-VI-89

131 ZPS-VI-169 (Florence) ZPS-VI-169 (Florence) ZPS-VI-169

132 ZPS-VI-113 (Florence) ZPS-VI-113 (Florence) ZPS-VI-125

133 ZPS-VIII-59 (Florence) ZPS-VIII-59 (Florence) ZPS-VIII-59
(from 132: ZPS-VI-129)

134 ZPS-IX-65 (Florence) ZPS-IX-65 (Florence) HY-III-213

136 ZPS-VI-153 (Florence) ZPS-VI-153 (Florence) ZPS-VI-153

138 ZPS-VI-193 (Florence) ZPS-VI-193 (Florence) ZPS-VI-211

139 ZPS-VI-261 (Florence) ZPS-VI-261 (Florence) ZPS-VI-261

141 ZPS-IX-117 (Florence) ZPS-IX-117 (Florence) ZPS-IX-117

143 ZPS-IX-115 (Florence) ZPS-IX-115 (Florence) ZPS-VII-69A

149 ZPS-VII-93 (Florence) ZPS-VII-93 (Florence) ZPS-VII-93

150 ZPS-VII-129 (Florence) ZPS-VII-129 (Florence) ZPS-VII-129

153 ZPS-VII-141 (Florence) ZPS-VII-141 (Florence) ZPS-VII-141

154 HY-I-83 (Florence, zsercel folder) HY-I-83 (Florence, zsercel folder) ZPS-VII-155

155 HY-I-221 (Florence, zsercel folder) HY-I-221 (Florence, zsercel folder) HY-I-107
(from 156: HY-I-81)

156 ZPS-VII-193 (Florence) ZPS-VII-193 (Florence) ZPS-VII-193

157 ZPS-VII-197 (Florence) ZPS-VII-197 (Florence) HY-I-121

160 HY-I-111 (Florence, zsercel folder) HY-I-111 (Florence, zsercel folder) HY-I-111

168 HY-I-251 (Florence, zsercel folder) HY-I-251 (Florence, zsercel folder) HY-I-251

169 HY-I-163 (Florence, zsercel folder) HY-I-163 (Florence, zsercel folder) HY-I-163

214 ZPS-VIII-301 (Florence) ZPS-VIII-301 (Florence) ZPS-VIII-301

177 HY-II-10 (Florence) HY-II-10 (Florence) HY-II-25

179 ZPS-IX-125 (Florence) ZPS-IX-125 (Florence) HY-II-187

184 ZPS-VIII-185 (Florence) ZPS-VIII-185 (Florence) HY-I-239

187 ZPS-VIII-303 (Florence) ZPS-VIII-303 (Florence) ZPS-VIII-303
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Table A9.4. Notebook cross-reference for Chapter 2 (continued). 

 

Table A9.5. Notebook cross-reference for Appendix 2. 

 

compound 1H NMR (instrument) 13C NMR (instrument) yield/procedure

215 ZPS-IX-91 (Florence) ZPS-IX-91 (Florence) ZPS-VIII-209

189 ZPS-IX-123 (Florence) ZPS-IX-123 (Florence) ZPS-VIII-215

186 HY-III-281 (Florence) HY-III-281 (Florence) HY-III-303

190 ZPS-VIII-199 (Florence) ZPS-VIII-199 (Florence) ZPS-IX-111

185 HY-V-29 (Florence) HY-V-29 (Florence) ZPS-IX-131

192 HY-IV-61 (Florence) SPR-VII-17 (Florence, zsercel folder) SPR-VII-17

198 ZPS-IX-71 (Florence) ZPS-IX-71 (Florence) HY-IV-243

195 HY-IV-97 (Florence) HY-IV-97 (Florence) ZPS-IX-73

201 HY-IV-147 (Florence) HY-IV-147 (Florence) HY-IV-147

206 ZPS-IX-133 (Florence) ZPS-IX-133 (Florence) ZPS-IX-133

207 ZPS-IX-103 (Florence) ZPS-IX-103 (Florence) HY-IV-271

compound yield/procedure NMR instrument

62 ZPS-II-163 Indy

63 ZPS-II-167 Indy

68 ZPS-II-95 Florence

72 AWS-XIV-33 Florence

76 ZPS-II-109 Florence
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Table A9.6. Notebook cross-reference for Appendix 5. 

 

compound yield/procedure NMR instrument

220 ZPS-V-69 Florence

222 ZPS-V-79 Florence

231 ZPS-IV-241 Florence

237 ZPS-VI-41 Florence

239 ZPS-VI-55 Indy

243 ZPS-VI-277 Florence

244 ZPS-VI-279 Florence

245 ZPS-VI-281 Florence

246 ZPS-VI-287 Florence

248 ZPS-VI-283 Florence

249 ZPS-VI-289 Florence

265 ZPS-VII-51 Florence

271 ZPS-VIII-43 Florence

283 ZPS-VIII-97 Florence

284 ZPS-VIII-115 Florence

287 ZPS-VIII-157 Florence
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