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ABSTRACT

Low-rank matrix recovery problems are prevalent in modern data science,
machine learning, and artificial intelligence, and the low-rank property of
matrices is widely exploited to extract the hidden low-complexity structure
in massive datasets. Compared with Burer-Monteiro factorization in the
Euclidean space, using the low-rank matrix manifold has its unique advan-
tages, as it eliminates duplicated spurious points and reduces the polyno-
mial order of the objective function. Yet a few fundamental questions have
remained unanswered until recently. We highlight two problems here in
particular, which are the global geometry of the manifold and the global
convergence guarantee.

As for the global geometry, we point out that there exist some spurious
critical points on the boundary of the low-rank matrix manifoldM𝑟 , which
have rank smaller than 𝑟 but can serve as limit points of iterative sequences
in the manifoldM𝑟 . For the least squares loss function, the spurious critical
points are rank-deficient matrices that capture part of the eigen spaces of
the ground truth. Unlike classical strict saddle points, their Riemannian
gradient is singular and their Riemannian Hessian is unbounded.

We show that randomly initialized Riemannian gradient descent almost
surely escapes some of the spurious critical points. To prove this result, we
first establish the asymptotic escape of classical strict saddle sets consisting
of non-isolated strict critical submanifolds on Riemannian manifolds. We
then use a dynamical low-rank approximation to parameterize the mani-
foldM𝑟 and map the spurious critical points to strict critical submanifolds
in the classical sense in the parameterized domain, which leads to the de-
sired result. Our result is the first to partially overcome the nonclosedness of
the low-rank matrix manifold without altering the vanilla gradient descent
algorithm. Numerical experiments are provided to support our theoretical
findings.

As for the global convergence guarantee, we point out that earlier approaches
to many of the low-rank recovery problems only imply a geometric conver-
gence rate toward a second-order stationary point. This is in contrast to the
numerical evidence, which suggests a nearly linear convergence rate start-
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ing from a global random initialization. To establish the nearly linear con-
vergence guarantee, we propose a unified framework for a class of low-rank
matrix recovery problems including matrix sensing, matrix completion, and
phase retrieval. All of them can be considered as random sensing problems
of low-rank matrices with a linear measurement operator from some ran-
dom ensembles. These problems share similar population loss functions
that are either least squares or its variant.

We show that under some assumptions, for the population loss function,
the Riemannian gradient descent starting from a random initialization with
high probability converges to the ground truth in a nearly linear conver-
gence rate, i.e., it takes O(log 1

𝜖
+ log 𝑛) iterations to reach an 𝜖-accurate so-

lution. The key to establishing a nearly optimal convergence guarantee is
closely intertwined with the analysis of the spurious critical points S# on
M𝑟 . Outside the local neighborhoods of spurious critical points, we use
the fundamental convergence tool by the Łojasiewicz inequality to derive a
linear convergence rate. In the spurious regions in the neighborhood of spu-
rious critical points, the Riemannian gradient becomes degenerate and the
Łojasiewicz inequality could fail. By tracking the dynamics of the trajectory
in three stages, we are able to show that with high probability, Riemannian
gradient descent escapes the spurious regions in a small number of steps.

After addressing the two problems of global geometry and global conver-
gence guarantee, we use two applications to demonstrate the broad ap-
plicability of our analytical tools. The first is the robust principal compo-
nent analysis problem on the manifoldM𝑟 with the Riemannian subgradi-
ent method. The second application is the convergence rate analysis of the
Sobolev gradient descent method for the nonlinear Gross-Pitaevskii eigen-
value problem on the infinite dimensional sphere manifold. These two ex-
amples demonstrate that the analysis of manifold first-order algorithms can
be extended beyond the previous framework, to nonsmooth functions and
subgradient methods, and to infinite dimensional Hilbert manifolds. This
exemplifies that the insights gained and tools developed for the low-rank
matrix manifoldM𝑟 can be extended to broader scientific and technological
fields.
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C h a p t e r 1

INTRODUCTION

Low-rank matrix recovery problems are prevalent in modern data science,
machine learning, and artificial intelligence. The low-rank property of ma-
trices is widely exploited to extract the hidden low-complexity structure
in massive datasets from machine learning, signal processing, imaging sci-
ence, advanced statistics, information theory, and quantum mechanics. Some
excellent overviews of the low-rank recovery problems can be found in the
survey papers [39, 68, 80, 116]. Below are a few specific examples.

Matrix sensing. The problem of matrix sensing is one of the canonical
model problems for low-rank matrix recovery [39] and has its background
in linear matrix equations [30, 116]. The problem can be formulated as fol-
lows. Suppose the unknown ground truth matrix is 𝑋 ∈ F𝑛1×𝑛2 , where F
can be either R or C, and 𝑋 is a low-rank matrix satisfying rank(𝑋) = 𝑟 ≪
min{𝑛1, 𝑛2}. We know the measurement matrices {𝐴 𝑗 }𝑚𝑗=1 ⊂ F

𝑛1×𝑛2 , whose
entries are drawn i.i.d. from a standard normal distribution, i.e., N(0, 1), if
F = R; or

√
2

2 N(0, 1)+𝑖
√

2
2 N(0, 1), if F = C. Usually we require that𝑚 is at least

O(min{𝑛1, 𝑛2}). Let 𝑦 = 1√
𝑚
(⟨𝐴1, 𝑋⟩, . . . , ⟨𝐴𝑚, 𝑋⟩)⊤. The goal is to recover 𝑋

from 𝑦 and {𝐴 𝑗 }𝑚𝑗=1.

Matrix completion. The problem of matrix completion has a long history
since [31, 32]. It is still widely used in collaborative filtering for recom-
mendation systems [18], where the goal is to predict users’ preferences for
unseen items given their reactions to the items they have already seen. In
mathematical terms, the problem can be formulated as follows. Suppose
𝑋 ∈ R𝑛1×𝑛2 is the unknown ground truth matrix, and we assume rank(𝑋) =
𝑟 ≪ min{𝑛1, 𝑛2}. The information we have is the value of 𝑋 at a small
proportion of the entries, whose indices are denoted as Ω. Usually we as-
sume that the index set Ω is generated by a uniform sampling of indices and
|Ω| ≪ 𝑛1𝑛2. The goal is to recover 𝑋 from the values of Ω only.

Phase retrieval. The Fourier phase retrieval problem originated from optics
[56, 81], where it is used in diffraction imaging. More recently, Gaussian
phase retrieval has been studied in [34, 122]. The problem can be formu-
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lated as a low-rank recovery problem as follows. Suppose 𝑥 ∈ C𝑛 is the un-
known ground truth vector. The measurement vectors are {𝑎 𝑗 }𝑚𝑗=1, whose
entries are i.i.d. Gaussian. We only have the magnitude information of
the measurements {|⟨𝑎 𝑗 , 𝑥⟩|}𝑚𝑗=1, but not the phase. Denote 𝐴 𝑗 = 𝑎 𝑗𝑎

∗
𝑗

and
𝑋 = 𝑥𝑥∗, then the problem can be seen as recovering a rank-1 matrix 𝑋 from
(⟨𝐴1, 𝑋⟩, . . . , ⟨𝐴𝑚, 𝑋⟩)⊤, which is a low-rank recovery problem.

Robust principal component analysis. This problem is used in image in-
painting [113] and video processing [35] and has long been studied in low-
rank matrix recovery [33]. We are given a matrix 𝑀 ∈ F𝑛1×𝑛2 which is the
sum of a rank-𝑟 ground truth 𝐿∗ and a sparse noise 𝑆∗. The goal is to re-
cover 𝐿∗ and 𝑆∗ from 𝑀 = 𝐿∗ + 𝑆∗.

Neural networks. Because of the rapid development of machine learning
in recent years, it is impossible to identify the single most important ap-
plication of low-rank recovery in neural networks. Here we just look at
one example from the fine-tuning of large language models and generative
art models. In a recent work named LoRA [79], it is proposed that large
models can be fine-tuned with low-rank updates. Suppose 𝑊 is the weight
matrix consisting of tunable parameters, the goal is to find the best Δ𝑊 with
rank(Δ𝑊) = 𝑟 such that 𝑊′ = 𝑊 + Δ𝑊 optimizes the objective of the neu-
ral network. Empirical study [4] shows that the intrinsic dimensionality of
large models is actually low, implying that a low-rank approximation of the
weight matrices could recover most of the capabilities of the model. LoRA
makes the training of large models significantly cheaper and is now widely
used in generative models.

The low-rank matrix manifold [70, 71] is a useful tool for solving low-
rank recovery problems like those above. It has gained popularity in recent
years since it gives a neat description of low-rank matrices. Let F = R or
C, and consider the set of all matrices of size 𝑛1 × 𝑛2 with the same rank
𝑟 ≤ min{𝑛1, 𝑛2}. Then this set is a Riemannian manifold, which is a classical
result, see for example [91, Example 8.14]. We call it the low-rank matrix
manifold1 and denote it as

M𝑟 =
{
𝑋 ∈ F𝑛1×𝑛2 : rank(𝑋) = 𝑟

}
,

1In some literature it is called the fixed rank matrix manifold.
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where the subscript 𝑟 denotes the rank of the matrices in the manifold, and
the dimension of the matrices is usually evident from the context. Some-
times we are only interested in the set of 𝑛 × 𝑛 symmetric positive semi-
definite (SPSD) matrices S+𝑛 or Hermitian positive semi-definite (HPSD) ma-
trices H+𝑛 , and we can define the corresponding low-rank SPSD/HPSD ma-
trix manifold as

M𝑟 =
{
𝑋 ∈ S+𝑛 or H+𝑛 : rank(𝑋) = 𝑟

}
.

See Chapter 2, Section 2.1 for more details.

As a Riemannian manifold, M𝑟 is nonconvex and is locally isomorphic to
the Euclidean space. Thus, many nonconvex optimization techniques can
be transferred toM𝑟 without much difficulty. Among them, the most com-
mon one is the Riemannian gradient descent, which is the manifold ver-
sion of the vanilla gradient descent in the Euclidean space. For a function
𝑓 : M𝑟 → R, starting from an initial guess 𝑍0 ∈ M𝑟 , the Riemannian gra-
dient descent (RGD) generates a sequence of matrices {𝑍𝑘 }∞𝑘=0 ⊂ M𝑟 as fol-
lows:

𝑍𝑘+1 = 𝑅(𝑍𝑘 − 𝛼𝑘 · grad 𝑓 (𝑍𝑘 )).

Here grad 𝑓 is the Riemannian gradient of the function 𝑓 onM𝑟 , and 𝛼𝑘 is
the 𝑘th step size. For more details see Section 2.2. This algorithm demon-
strates nearly optimal convergence rate and practical flexibility in a number
of problems, see e.g., [26, 39, 118, 125, 127] and our work [77].

Compared with the Burer-Monteiro factorization method (the parameteri-
zation 𝑋 = 𝑈𝑉∗, 𝑈 ∈ F𝑛1×𝑟 , 𝑉 ∈ F𝑛2×𝑟 , or 𝑋 = 𝑈𝑈∗, 𝑈 ∈ F𝑛×𝑟) in the Euclidean
space, using the low-rank matrix manifold has a few advantages. One ob-
vious advantage is that it avoids the duplication of spurious points in the
Burer-Monteiro factorization. For example, if 𝑍∗ = 𝑈𝑉∗ is a saddle point or
local minima, then any (𝑈𝑄, 𝑉𝑄) with a unitary 𝑄 ∈ O𝑟×𝑟 is also a saddle
point or local minima in the factorized space, but there is no such problem
on the manifoldM𝑟 because we are looking at 𝑍∗ itself directly.

Another advantage is that the function of 𝑍 is a lower-order polynomial
compared with the function of 𝑈 or (𝑈,𝑉). For example, with the least
squares loss function, 𝑓 (𝑍) is a quadratic polynomial while 𝑓 (𝑈) is a quartic
(4th order) polynomial. When using the Łojasiewicz inequality (Chapter 5,
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Section 5.3) to analyze the convergence rate, it is easier to prove a linear
convergence rate for quadratic functions.

In addition to the above immediate advantages, a perhaps more remote as-
pect is the potential extension fromM𝑟 to other Riemannian manifolds. Ex-
tracting low-complexity features from high-complexity models is a recur-
ring theme in applied mathematics. Manifold learning [124] has long be-
come a standard technique in modern machine learning. We hope that the
insights gained and tools developed for the low-rank matrix manifoldM𝑟

can be extended to other manifolds in broader scientific and technological
fields.

The past few years have seen great progress in the study of the low-rank ma-
trix manifold, yet a few fundamental questions have remained unanswered
until recently. In particular, we highlight two problems in this thesis, which
are the global geometry of the manifold and the global convergence guar-
antee.

The problem with global geometry lies in the fact that the setM𝑟 = {𝑋 ∈
F𝑛1×𝑛2 : rank(𝑋) = 𝑟} orM𝑟 = {𝑋 ∈ S+𝑛 or H+𝑛 : rank(𝑋) = 𝑟} is not a closed
set. As we will see in Chapter 2, Section 2.1, the boundary ofM𝑟 consists of
matrices with rank less than 𝑟. Closedness of the domain is useful in non-
convex optimization because when using an iterative algorithm to optimize
a function on the manifold, closedness is necessary to guarantee that the
limit point of the iterative sequence is still in the manifold. Indeed, because
M𝑟 is not closed, examples (like Example 2.3.2) demonstrate that some ma-
trices inM𝑠 with rank 𝑠 < 𝑟 can be the limit points of the iterative sequences
inM𝑟 . We call them the spurious critical points. When the objective function
is the least squares function 𝑓 (𝑍) = 1

2 ∥𝑍 − 𝑋 ∥
2
F, the set of spurious critical

points is denoted as S# and can be characterized as follows:

S# := {𝑍∗ : 𝑍∗ = 𝑈1𝐷1𝑉
∗
1 , where𝑈1, 𝑉1 and 𝐷1 are submatrices of𝑈𝑋 , 𝑉𝑋 and

𝐷𝑋 satisfying𝑈𝑋 = (𝑈1,𝑈2), 𝑉𝑋 = (𝑉1, 𝑉2), 𝐷𝑋 = diag{𝐷1, 𝐷2}, 𝑍∗ ≠ 𝑋}.

Here 𝑋 = 𝑈𝑋Σ𝑋𝑉
∗
𝑋

is the singular value decomposition (SVD) of 𝑋 . Section
2.3 gives a more detailed description of these spurious critical points.

Our work [76–78] is among the first to give a thorough analysis of the spu-
rious critical points and their influence on the Riemannian gradient descent



5

algorithm. We discover that the Riemannian gradient becomes singular at
the spurious critical points or in the spurious regions in their local neigh-
borhoods. We show that Riemannian gradient descent almost surely es-
capes some of the spurious critical points. Moreover, with high probability,
Riemannian gradient descent avoids these spurious critical points in nearly
linear time.

The problem with global convergence rate lies in the fact that earlier anal-
ysis of the aforementioned low-rank recovery problems only implies a ge-
ometric convergence rate toward a second-order stationary point. This is
in contrast to the numerical evidence, which suggests a nearly linear con-
vergence rate starting from a global random initialization, see e.g., Figure
1.1.

In our work [77], we show that the key to establishing a nearly optimal
convergence guarantee is in fact closely intertwined with the analysis of
the spurious critical points S# onM𝑟 . The spurious regions are where the
Riemannian gradient becomes degenerate and the Łojasiewicz inequality
might fail. Careful treatment is needed to bound the probability that the
randomly initialized gradient descent is attracted to the spurious critical
points and the number of steps it takes to avoid the spurious regions. We
show that using the Riemannian gradient descent to minimize the popula-
tion loss function for a class of low-rank recovery problems on the manifold
M𝑟 , it takes O(log 𝑛 + log 1

𝜖
) time to converge to an 𝜖-accurate solution.

In the following, we discuss each of the results in this thesis in more detail.

1.1 Asymptotic escape of strict saddle sets in manifold optimization

In nonconvex optimization, it is a classical result that first-order algorithms
like gradient descent escape from strict saddle points and converge to lo-
cal minima. This holds true not only in the Euclidean space [89, 90, 112],
but also on Riemannian manifolds [41, 123]. Combined with the fact that
many low-rank recovery problems actually do not have spurious local min-
ima apart from the ground truth solution [55, 64, 98], this has facilitated the
global analysis of first-order algorithms for many applications.

Before our work [76], however, previous analysis on strict saddles mostly
focuses on isolated saddle points [89, 90]. There is a lack of explicit treat-
ment for non-isolated continuous saddle sets, despite their prevalence. This
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motivates us to develop a more general analytic tool for such case.

In Chapter 3, we present a systematic analysis for the asymptotic escape
of non-isolated and possibly continuous saddle sets with complicated ge-
ometry. We prove that Riemannian gradient descent is able to escape strict
critical submanifolds under certain conditions.

An important implication of this saddle analysis is that it paves the way for
the asymptotic escape of spurious critical points in Chapter 4. The spurious
critical points are different from the classical strict saddle points in that the
Riemannian gradient is singular around a spurious critical point 𝑍∗ ∈ S#.
But with a parameterization of the manifoldM𝑟 and a rescaling of the gra-
dient flow, a spurious critical point can be mapped to a classical strict saddle
set in the parameterized manifold. In this way, the saddle set analysis serves
as an intermediate tool that tackles a much less understood question about
the low-rank matrix manifold.

1.2 Asymptotic escape of spurious critical points

Next, we look at the global geometry of the low-rank matrix manifoldM𝑟

and tackle the fundamental problem of nonclosedness ofM𝑟 . As we have
mentioned before, there exist some matrices with rank smaller than 𝑟 that
can be the limit points of the iterative sequences inM𝑟 . In the SPSD/HPSD
case, for the least squares loss function 𝑓 (𝑍) = 1

2 ∥𝑍−𝑋 ∥
2
𝐹

, the set of spurious
critical points is S# = ∪𝑟−1

𝑠=0S𝑠, where each S𝑠 can be characterized as

S𝑠 =
{
𝑍# : 𝑍# = 𝑈1𝐷1𝑈

∗
1 , 𝑈1 ∈ F𝑛×𝑠, 𝐷1 ∈ F𝑠×𝑠}.

Here 𝑋 = 𝑈𝑋𝐷𝑋𝑈
∗
𝑋

is an eigenvalue decomposition of 𝑋 ,𝑈𝑋 = (𝑈1,𝑈2),𝑈1 ∈
F𝑛×𝑠, 𝑈2 ∈ F𝑛×(𝑟−𝑠) is a block decomposition of 𝑈𝑋 , and 𝐷𝑋 = diag{𝐷1, 𝐷2},
𝐷1 ∈ R𝑠×𝑠, 𝐷2 ∈ R(𝑟−𝑠)×(𝑟−𝑠) is a block decomposition of 𝐷𝑋 .

To see why each matrix in S# can be a limit point of an iterative sequence,
one can construct examples explicitly. In Example 2.3.2, using the RGD al-
gorithm 𝑍𝑘+1 = 𝑅(𝑍𝑘 − 𝛼 · 𝑃𝑇𝑍𝑘 (𝑍𝑘 − 𝑋)) to minimize the least squares loss
function 𝑓 (𝑍) = 1

2 ∥𝑍 − 𝑋 ∥
2
F on the manifoldM2 = {𝑍 : 𝑍 ∈ S3, rank(𝑍) = 2},

where 𝑋 = diag{2, 1, 0}, starting from 𝑍0 = diag{2, 0, 1}, the sequence
{𝑍𝑘 }∞𝑘=0 converges to 𝑍# = diag{2, 0, 0}, rather than 𝑋 .

However, with a slightly perturbed initialization, the RGD alogrithm almost
always escapes 𝑍# and converges to 𝑋 instead. In fact, when the initial point
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𝑍0 is sampled onM𝑟 according to some general random sampling scheme,
we observe that convergence to spurious critical points almost never hap-
pens. This motivates us to conjecture that their basins of attraction actually
have zero measure, and gradient descent almost surely avoids them.

In Chapter 4, we give a partial confirmatory answer to the above conjec-
ture. Our results on the asymptotic escape of spurious critical points can be
summarized as follows. We show that when minimizing the least squares
loss function, the Riemannian gradient flow and the Riemannian gradient
descent with varying stepsize asymptotically escape the rank-(r-1) spurious
critical points on the rank-𝑟 SPSD or HPSD manifold. More specifically, we
have the following informal theorem:

Theorem (Informal version of Theorems 4.2.1 and 4.3.1). The gradient flow 𝑍𝑡

of the least squares loss function and the gradient descent sequence {𝑍𝑘 }∞𝑘=0

with step size 𝛼𝑘 ∼ 𝜎𝑟 (𝑍𝑘 ) almost surely escapes the rank-(r-1) spurious crit-
ical points, i.e., Prob (lim𝑡→∞ 𝑍𝑡 ∈ S𝑟−1) = 0 and Prob (lim𝑘→∞ 𝑍𝑘 ∈ S𝑟−1) =
0.

Many previous attempts have been made to deal with the rank-deficient
critical points, also called apocalyptic points in some literature2. One way
is to replaceM𝑟 withM𝑟 and replace tangent space projection with tangent
cone projection [118]. Another direction is to modify the algorithm to help
it converge to stationary points, for example by using a smooth lift [92] or
using numerical rank information [109].

Empirically, however, the original Riemannian gradient descent seems to
be robust enough. Even though the spurious critical points can be the limit
points of the Riemannian gradient descent algorithm, the required initial-
ization is so special that it is almost impossible under random initialization.
In Example 2.3.2 on M2, from a slightly perturbed initial point with arbi-
trarily small perturbation, {𝑍𝑘 }∞𝑘=0 converges to 𝑋 instead of the spurious
𝑍#.

To understand this phenomenon, it helps to compare it with the asymptotic
escape of strict saddle points by gradient descent [89]. The two are remark-

2In [92], the set of apocalyptic points on M𝑟 is ∪𝑠<𝑟M𝑠 . We remark that the set of
spurious critical points here in Definition 4.1.1 is a subset the apocalyptic points described
in [92], i.e., for each 𝑠, S𝑠 ⊊ M𝑠 . This is because each element in S𝑠 is not only rank-𝑠, but
matches 𝑠 out of 𝑟 of 𝑋’s eigen components. If 𝑋 has distinct singular values, then S𝑠 is a
finite set.
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ably similar, except that the spurious critical points in our context are not
strict saddle points. Instead, the spurious critical points are singular points
where the Riemannian Hessian gets unbounded in certain directions.

To deal with the singularity of the spurious critical points, we propose us-
ing the dynamical low-rank approximation [85] to parameterize the gradi-
ent flow on the low-rank matrix manifold. We then introduce a rescaled
gradient flow to remove the singularity of the ODE system. After rescaling,
each spurious critical point becomes a strict critical submanifold in the pa-
rameterized domain. Classical saddle escape theorems can then be applied
to derive the desired result.

1.3 Fast global convergence for low-rank matrix recovery

The central result of this thesis is the global convergence guarantee for a
class of low-rank matrix recovery problems under a unified framework. In
Chapter 5, We show that for the population least squares loss function, un-
der certain assumptions, with high probability the Riemannian gradient de-
scent on the manifoldM𝑟 starting from a global random initialization con-
verges to the ground truth in a nearly linear convergence rate, i.e., it takes
O

(
log 1

𝜖
+ poly(log 𝑛)

)
iterations to reach an 𝜖-accurate solution.

We propose a unified framework for a class of low-rank recovery problems,
expressed as the following optimization problem over the low-rank matrix
manifoldM𝑟 :

min
𝑍∈M𝑟

𝑓 (𝑍) = 1
2
∥𝑇 (𝑍) − 𝑦∥22, (1.1)

where 𝑇 : M𝑟 → R𝑚 is a linear operator, 𝑇 (𝑍) = 1√
𝑚
(⟨𝐴1, 𝑍⟩, . . . , ⟨𝐴𝑚, 𝑍⟩)⊤,

and 𝑦 ∈ R𝑚 with 𝑦 𝑗 = 1√
𝑚
⟨𝐴 𝑗 , 𝑋⟩. The formulation is general and covers

many different low-rank matrix recovery problems that we have discussed.
Here are a few examples.

(1) Matrix sensing: 𝑇 : M𝑟 → R𝑚, where {𝐴 𝑗 }𝑚𝑗=1 ⊂ F
𝑛1×𝑛2 have entries

drawn i.i.d. from N(0, 1), if F = R; or
√

2
2 N(0, 1) + 𝑖

√
2

2 N(0, 1), if F = C.

(2) Matrix completion: 𝑇 : M𝑟 → R𝑚, where {𝐴 𝑗 }𝑚𝑗=1 ⊂ F
𝑛1×𝑛2 are gen-

erated by a uniform sampling of indices Ω ⊂ [𝑛1] × [𝑛2] of an 𝑛1 × 𝑛2

matrix. The matrix 𝐴 𝑗 is the indicator matrix of the 𝑗-th sampled entry,
which has value 1 at the sampled index and 0 at other indices.
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(3) Gaussian phase retrieval: 𝑇 : M1 → R𝑚, whereM1 is the symmetric
rank-1 matrix manifold, and {𝐴 𝑗 }𝑚𝑗=1 ⊂ F

𝑛×𝑛 are rank-1 matrices. In the
real case, 𝐴 𝑗 = 𝑎 𝑗𝑎

⊤
𝑗
, where 𝑎 𝑗 ∈ R𝑛 and their entries are drawn i.i.d.

from N(0, 1); in the complex case, 𝐴 𝑗 = 𝑎 𝑗𝑎∗𝑗 , where 𝑎 𝑗 ∈ C𝑛 and their

entries are drawn i.i.d. from
√

2
2 N(0, 1) + 𝑖

√
2

2 N(0, 1).

All the above examples can be considered as random sensing problems of
low-rank matrices, where 𝑇 is a linear operator and {𝐴 𝑗 }𝑚𝑗=1 are drawn from
some random distribution. Despite the difference in problem settings and
the distributions of {𝐴 𝑗 }𝑚𝑗=1, their population loss functions share some com-
mon properties. Thus we focus on the global convergence behavior of the
population loss functions. More specifically, the population loss of matrix
sensing and matrix completion is E 𝑓 (𝑍) = 𝑐∥𝑍 − 𝑋 ∥2

𝐹
with some positive

constant 𝑐 > 0, while the population loss of the phase retrieval problem is
E 𝑓 (𝑍) = 𝑐∥𝑍 − 𝑋 ∥2

𝐹
+ 1

2 (∥𝑍 ∥𝐹 − ∥𝑋 ∥𝐹)
2 with 𝑐 = 1 or 1

2 (see Theorem 5.7.2).

min
𝑍∈M𝑟

𝐹1(𝑍) =
1
2
∥𝑍 − 𝑋 ∥2𝐹 , (1.2)

or min
𝑍∈M𝑟

𝐹2(𝑍) =
1
2
(∥𝑍 ∥𝐹 − ∥𝑋 ∥𝐹)2 + 𝑐∥𝑍 − 𝑋 ∥2𝐹 . (1.3)

We are interested in the population loss functions 𝐹1 or 𝐹2 because they
can be seen as model problems for the finite sample loss functions. The
behavior of the algorithms on the population loss functions to some extent
predicts the behavior on the finite-sample loss functions, which can be seen
from subsequent chapters. A similar strategy is also employed in [38] and
[47]. In Chapter 5, we mostly focus on analyzing Problem (1.2), as it lays
the foundation for other population losses. We then briefly discuss Problem
(1.3).

Let the sequence {𝑍𝑘 }∞𝑘=0 be generated by randomly initialized3 Riemannian
gradient descent algorithm:

𝑍𝑘+1 = R
(
𝑍𝑘 − 𝛼𝑘𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))

)
,

where 𝑃𝑇𝑍𝑘 is the projection onto the tangent space ofM at point 𝑍𝑘 , 𝛼𝑘 is
the 𝑘-th stepsize, and R : 𝑇𝑍 → M is a retraction operator. Below is the
main result.

3Randomly initialized means the initialization is drawn from the general random dis-
tribution (defined in Definition 5.5.1).
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Theorem (Informal version of Theorem 5.1.3). For the population loss (1.2), with
high probability no less than 1 − 1

poly(𝑛) , the sequence generated by a randomly
initialized Riemannian gradient descent needs O(poly(log 𝑛) + log 1

𝜖
) iterations to

reach an 𝜖-accurate solution of 𝑋 , i.e., to reach ∥𝑍 − 𝑋 ∥𝐹 ≤ 𝜖 ∥𝑋 ∥𝐹 .

The above result provides a partial explanation for the mechanism behind
the nearly linear convergence rate of vanilla first-order methods and re-
veals the shared mechanism behind such low-rank matrix recovery prob-
lems. The O(log 𝑛) or O(poly(log 𝑛)) term in the number of iterations is
mainly because these problems have spurious critical points, and the se-
quence needs this many iterations to escape these spurious points and their
local regions. Our results imply that the randomly initialized Riemannian
first-order scheme with high probability converges to the second-order sta-
tionary points at a nearly linear rate that is essentially independent of the
dimensionality.

Figure 1.1 gives some numerical results obtained using the randomly initial-
ized Riemannian gradient descent to minimize the least squares loss func-
tion (1.1) for the three problems. We observe nearly linear convergence in
all three experiments. This is consistent with the theoretical results stated
above. Our contribution lies in bridging the gap between theory and prac-
tice by analyzing the mathematical mechanism behind the fast convergence
rate.

(a) Least squares function
with 𝐹1(𝑍) = 1

2 ∥𝑍 − 𝑋 ∥
2
𝐹

,
n=200, r=10.

(b) Matrix sensing with
𝑓 (𝑍) = 1

2 ∥𝑇 (𝑍) − 𝑦∥22,
n=100, r=5, m=2500.

(c) Phase retrieval with
𝑓 (𝑍) = 1

2 ∥𝑇 (𝑍) − 𝑦∥22,
n=100, m=1000.

Figure 1.1: The randomly initialized Riemannian gradient descent. Each
log-error band stands for the results from 100 independent experiments.

To further highlight the unique challenges that we overcome, in the follow-
ing, we review some related works in the literature by topic, and discuss
their connection and comparison with our work.
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Burer-Monteiro factorization. Earlier approaches to the low-rank matrix
recovery problems use convex relaxation [30–32, 34, 116]. Later ones shift
focus to nonconvex methods due to their lighter computational cost, and
these nonconvex methods mainly rely on the Burer-Monteiro factorization
(the parameterization 𝑋 = 𝑈𝑈∗, 𝑈 ∈ F𝑛×𝑟 in the Hermitian case) and the
global landscape analysis of the corresponding nonconvex objective func-
tion [11, 20, 55, 63–65, 98, 122]. In some applications, it has been shown
that the landscape does not have spurious local minima [55, 64, 65, 98].
This property, combined with the convergence guarantee of nonconvex op-
timization [63, 82], leads to a convergence guarantee for second-order sta-
tionary points.

However, the convergence rate results obtained by those nonconvex meth-
ods are largely sub-linear, in sharp contrast to numerical observations indi-
cating faster, nearly linear convergence. Instead of Burer-Monteiro factor-
ization, we look at the low-rank matrices as a whole on M𝑟 . As we have
discussed at the beginning of this chapter, using the manifold M𝑟 instead
of the Burer-Monteiro factorization eliminates duplicated spurious points
and reduces the polynomial order of the objective function. Eventually, it
enables us to obtain a better convergence guarantee.

Rank-1 versus rank-r. Quite a few previous works explore the asymptotic
landscape and exact convergence rate for rank-1 problems, see e.g., [38, 133].
Our results differ from these previous works in that we provide a unified
framework of analysis that applies to the general rank-r problem (Theorem
5.1.3) from the low-rank matrix manifold perspective. It is important to
note that the general rank-r case is much more challenging than the rank-1
problem. To see the main technical challenge for general rank-r problems,
note that while for the rank-1 problem, the core matrix is an 1 × 1 matrix
(a scalar), for the general rank-r problem, it becomes an 𝑟 × 𝑟 matrix. The
closed form solutions of some quantities (e.g., the angles between the col-
umn spaces) are no longer available, which adds considerable difficulty to
the convergence analysis.

Convergence rate. Earlier landscape analysis on the low-rank matrix recov-
ery [20, 55, 64, 65, 98, 122], combined with the convergence guarantee for
the nonconvex optimization [63, 82], only implies a geometric convergence
rate toward a second-order stationary point. As we have seen in Figure 1.1,
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numerical evidences suggest a linear convergence rate, and it is common
among many low-rank recovery problems. Recent work [38] proves nearly
linear convergence rate for the rank-1 phase retrieval problem. This result
is consistent with ours, but we extend beyond rank-1 to the general rank-
𝑟 case. We intend to explore the common mechanism for the linear con-
vergence rate behind many low-rank recovery problems by studying them
under a shared framework.

The power of randomness. First-order schemes are widely used in large-
scale computation due to their light computational cost. Under certain as-
sumptions, first-order schemes are shown to have fast local convergence
to the neighborhood of stationary points [106, 107]. A common problem
with first-order schemes is that undesirable critical points, including saddle
points and local maxima, could occur. Due to the lack of geometry informa-
tion around critical points, first-order schemes with bad initialization could
get trapped around the undesirable critical points instead of converging to
the local minima. However, when augmented with randomness, the first-
order schemes work well and have some provable guarantees. Below we
discuss two ways of incorporating randomness: the randomly perturbed
first-order schemes and the randomly initialized first-order schemes.

1. Perturbed first-order schemes. Convergence of perturbed first-order schemes
toward second-order stationary points has been studied both in the Eu-
clidean and the Riemannian settings, see [41, 51, 63, 82, 123]. These results
show that the general global convergence rate is polynomial and almost
dimension-free. Whereas perturbations help perturbed schemes escape the
saddles better than non-perturbed first-order schemes in the worst case [51],
the perturbations also prevent a very accurate approximation of the ground
truth without further (and sometimes complicated) modification.

2. Randomly initialized first-order schemes. Though it has been proved that
randomly initialized gradient descent asymptotically escapes saddles and
only converges to the local minima [76, 89, 90, 112], its convergence rate is
much less clear. In the worst case, when the initialization is close to the
stable manifold of saddle points, the convergence toward the local minima
slows down substantially. Indeed, the authors of the previous work [51]
show that, in the worst case, the randomly initialized gradient descent can
take exponential time to escape from the saddles. Despite such worst case
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scenario, the optimal efficiency of saddle escape behavior in a more general
sense remains unclear. A recent answer to this question is given by [38],
where it is shown that for the rank-1 phase retrieval problem, gradient de-
scent with random initialization has a nearly linear and almost dimension-
free convergence rate, improving upon the previous algebraic convergence
rate. This motivates us to investigate the underlying mechanism and es-
tablish a similar fast convergence rate for general rank-r matrix recovery
problems.

We point out that an alternative way to avoid saddle points is to use Hessian-
based schemes and second-order geometric information around the critical
points. However, the computational costs of such methods are much higher,
and the implementation can be complicated.

Apocalypse-free algorithms. Recent works [92, 109] study the escape of
spurious critical points (called apocalyptic points in those works) from a dif-
ferent perspective. They describe the apocalypse event where the sequence of
iterative points is inM𝑟 but the limit point has rank less than 𝑟 and is not sta-
tionary. Along this line, it is proposed that a second-order algorithm using
a smooth lift [92] or a numerical rank reduction step [109] could avoid spu-
rious critical points and guarantee convergence to the stationary points. We
remark that both approaches require major modifications to the first-order
algorithm, while we focus on establishing a guarantee for the Riemannian
gradient descent algorithm without modification.

1.4 Robust principal component analysis on the manifold

In Chapter 6, we discuss an application of the low-rank matrix manifoldM𝑟

that is beyond the framework of linear measurements and smooth loss func-
tions. We study the Robust Principal Component Analysis (RPCA) prob-
lem, whose goal is to recover an unknown low-rank matrix 𝐿∗ and an un-
known sparse matrix 𝑆∗ from their sum 𝑀 :

Find 𝐿∗ ∈ M𝑟 , 𝑆∗ sparse, such that 𝑀 = 𝐿∗ + 𝑆∗.

The problem of RPCA is interesting for a couple of reasons. One reason
comes from our choice of the objective function to promote sparsity. We
minimize the (vectorized) 𝑙1 norm as our loss function:

𝑓 (𝐿) = ∥𝑀 − 𝐿∥𝑙1 , where ∥𝑋 ∥𝑙1 :=
∑︁
𝑖, 𝑗

|𝑋𝑖 𝑗 |.
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The 𝑙1 norm is a nonsmooth function, but it has a well-defined subgradient
(the generalized sign function), which enables us to define its Riemannian
subgradient. We thus use the Riemannian subgradient descent algorithm to
minimize 𝑓 (𝐿):

𝑍𝑘+1 = 𝑅(𝑍𝑘 − 𝛼𝑘𝑃𝑇𝑍𝑘 (𝜕 𝑓 (𝑍𝑘 ))),

where 𝑃𝑇𝑍𝑘 (𝜕 𝑓 (·)) is the Riemannian subgradient of 𝑓 . We develop a tool
for the convergence guarantee of the Riemannian subgradient method on
the manifold M𝑟 , which is based on the sharpness and the weak convex-
ity conditions [45]. We show that the Riemannian subgradient method for
the 𝑙1 loss function satisfies the sharpness and weak convexity conditions
in the local neighborhood of the ground truth 𝐿∗. Combined with a spec-
tral initialization that is guaranteed to be in the local neighborhood, we are
able to establish the linear convergence rate of the Riemannian subgradient
algorithm.

Another reason why RPCA is worth our attention is that the incoherence
property of the low-rank matrix 𝐿∗ is heavily involved in this problem. As-
suming the SVD of 𝐿∗ is 𝐿∗ = 𝑈Σ𝑉∗, the incoherence parameter is defined
as the positive constant ` satisfying

∥𝑈∥2,∞ := max
1≤𝑖≤𝑚

∥𝑈 (𝑖, :)∥2 ≤
`
√
𝑟

√
𝑚
, ∥𝑉 ∥2,∞ := max

1≤𝑖≤𝑛
∥𝑉 (𝑖, :)∥2 ≤

`
√
𝑟

√
𝑛
.

This gives us the opportunity to take a deep dive into the incoherence of
the tangent space of M𝑟 near 𝐿∗ and gain some interesting insights. We
use concentration tools to show that most elements in the tangent space at
an incoherent matrix on M𝑟 are also incoherent. We also use incoherence
to show that when 𝑟 = 1, 𝐿∗ is guaranteed to be the local minimizer of
𝑓 (𝐿) = ∥𝑀 − 𝐿∥𝑙1 on the manifoldM1.

1.5 Sobolev gradient descent for a class of nonlinear eigenproblems

In Chapter 7, we discuss another application that further extends beyond
the low-rank matrix manifold, as it is posed on an infinite dimensional
Hilbert manifold. We explore how the insights gained and tools developed
for the low-rank matrix manifold M𝑟 can be extended to other manifolds
in broader scientific and technological fields. Specifically, we demonstrate
that the Łojasiewicz inequality tool can be used to derive the convergence
guarantee for the manifold gradient descent method here.
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The problem of interest is the Gross-Pitaevskii eigenproblem, a well-known
example of the nonlinear Schrödinger eigenproblem, which seeks _ ∈ R and
𝑣 ∈ 𝐻1

0 (Ω) that satisfy Equation (7.1):

−Δ𝑣 +𝑉𝑣 + 𝛽 |𝑣 |2𝑣 = _𝑣 on Ω ⊂ R𝑑 ,

where Ω is a bounded region in R𝑑 , 𝑉 (𝑥) ≥ 0 is an external trapping poten-
tial, and 𝛽 ≥ 0 is a parameter describing the repulsive interaction between
particles. To find the ground state 𝑣 is equivalent to solving minimization
problem (7.2):

min
∥𝑢∥

𝐿2=1, 𝑢∈𝐻1
0 (Ω)

𝐸 (𝑢) :=
∫
Ω

(
|∇𝑢 |2 +𝑉 |𝑢 |2 + 𝛽

2
|𝑢 |4

)
d𝑥.

The constraint set {𝑢 ∈ 𝐻1
0 (Ω) : ∥𝑢∥𝐿2 = 1} is the unit sphere in 𝐻1

0 (Ω). It can
be seen as an infinite dimensional Hilbert manifold. Thus many manifold
optimization methods on the Riemannian manifold are readily applicable
to this problem, with diverse techniques and rich theories.

In Chapter 7, we use a manifold gradient descent method named the Sobolev
projected gradient descent (Sobolev PGD) first proposed in [72]:

𝑢𝑛+1 = 𝑅

(
(1 − 𝜏𝑛) 𝑢𝑛 + 𝜏𝑛 ·

(𝑢𝑛, 𝑢𝑛)𝐿2

(G𝑢𝑛𝑢𝑛,G𝑢𝑛𝑢𝑛)𝑎𝑢𝑛
G𝑢𝑛𝑢𝑛

)
,

where 𝑅 is the retraction onto the manifold, 𝜏𝑛 is the 𝑛-th step size, (·, ·)𝑎𝑢𝑛 is
an adaptive inner product in the tangent space ofM, and G𝑢𝑛 is the Greens
operator associated with (·, ·)𝑎𝑢𝑛 . Their definitions can be found in Section
7.3. The main result is as follows.

Theorem (Informal version of Theorem 7.3.14). If initialized with a positive
initial guess 𝑢0, the 𝑎𝑢-Sobolev gradient descent which is given by (7.3) con-
verges to the ground state of the eigenproblem (7.1) exponentially fast.

To prove the convergence rate, we introduce the Łojasiewicz inequality tool
to this problem. The Łojasiewicz inequality has been discussed in Section
1.3 where it serves as a fundamental convergence tool for low-rank recovery
on the low-rank matrix manifold. We rewrite it in a slightly different form
in Section 7.2. Using the Łojasiewicz inequality tool, we reveal that the key
to exponential convergence is the quadratic nature of the objective energy
functional. In other words, regarded as a polynomial, the objective func-
tional should behave like a degree-2 polynomial under the given manifold
metric.
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The Łojasiewicz inequality tool also makes the Sobolev gradient descent
easily applicable to general optimization of high-degree objective or eigen-
value problems other than the Gross-Pitaevskii eigenvalue problem. Its in-
teresting property of making a high-degree polynomial behave like a quadratic
one is not specific to a certain problem, but is general. Examples include the
biharmonic Schrödinger, the nonlinear Schrödinger with a different order
or extra interaction terms, and potentially some general manifold optimiza-
tion problems. We analyze an example of nonlinear Schrödinger eigenprob-
lem from [17] at the end of the chapter. Extension to more general manifold
optimization problems would be of interest in future research.

1.6 Organization of the thesis

The remainder of this thesis is organized as follows.

In Chapter 2, we give a self-contained overview of the low-rank matrix
manifold M𝑟 . We introduce the basic properties of the manifold and the
basic operations on it. We discuss two Riemannian first-order algorithms
on the manifold, i.e., the Riemannian gradient descent and the Riemannian
subgradient descent. We give a detailed description of the spurious critical
points on the boundary of the manifold. We also include some auxiliary
lemmas at the end.

The next few chapters each discuss the results of one section in the intro-
duction. Specifically:

In Chapter 3, we discuss the asymptotic escape of non-isolated strict saddle
sets in manifold optimization.

In Chapter 4, we discuss the global geometry of the low-rank matrix man-
ifoldM𝑟 , and show the asymptotic escape of Riemannian gradient descent
from some of the spurious critical points for the SPSD/HPSD low-rank ma-
trix manifold.

In Chapter 5, we discuss the global convergence guarantee of Riemannian
gradient descent on the low-rank matrix manifold M𝑟 . We establish the
nearly optimal global convergence rate of RGD for the population loss of
a class of low-rank recovery problems. We show that starting from a gen-
eral random initialization, Riemannian gradient descent converges to the
ground truth in a nearly linear convergence rate.
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In Chapter 6, we discuss solving the robust principal component analysis
problem on the manifoldM𝑟 with the Riemannian subgradient method.

In Chapter 7, we discuss the convergence rate of the Sobolev gradient de-
scent method for the nonlinear Gross-Pitaevskii eigenvalue problem on the
infinite dimensional sphere manifold.
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C h a p t e r 2

LOW-RANK MATRIX MANIFOLD: AN OVERVIEW

The purpose of this chapter is to give a self-contained overview of the low-
rank matrix manifold and related topics. In Section 2.1, we present the def-
inition of the manifold and some basic constructions on the manifold. In
Section 2.2, we discuss the Riemannian first-order algorithms that we use.
In Section 2.3, we introduce the spurious critical points on the manifold, an
important concept that will show up in both asymptotic escape and conver-
gence rate analysis in upcoming chapters.

2.1 Low-rank matrix manifold

The low-rank matrix manifold is defined asM𝑟 := {𝑋 ∈ F𝑚×𝑛 : rank(𝑋) = 𝑟},
where F = R or C, and 𝑟 ∈ {0, . . . ,min{𝑚, 𝑛}}. Sometimes we consider the
manifold of real symmetric positive semi-definite (SPSD) or Hermitian pos-
itive semi-definite (HPSD) matrices, which can be defined as M𝑟 := {𝑋 ∈
S+𝑛 or H+𝑛 : rank(𝑋) = 𝑟}, where S+𝑛 or H+𝑛 denote the set of 𝑛 by 𝑛 SPSD or
HPSD matrices respectively.1 The manifold is slightly different with differ-
ent F and with or without symmetry. We use the same notationM𝑟 through-
out the thesis, but clarify its meaning in each chapter. Below we summarize
the basic properties of the manifold in each case.

Lemma 2.1.1 (Real, asymmetric case). LetM𝑟 = {𝑍 ∈ R𝑚×𝑛 : rank(𝑍) = 𝑟}.
LetM𝑟 be its closure. The following is true aboutM𝑟 andM𝑟 :

(1) M𝑟 = {𝑍 ∈ R𝑚×𝑛 : rank(𝑍) ≤ 𝑟};

(2) M𝑟 is dense inM𝑟 ;

(3) M𝑟 is connected;

(4) The local dimension ofM𝑟 is (𝑚 + 𝑛 − 𝑟)𝑟;

(5) The boundary ofM𝑟 isM𝑟 \M𝑟 = ∪0≤𝑠<𝑟M𝑠.
1In some literature, the notation is S+ (𝑟, 𝑛) for the SPSD fixed rank manifold, and

H+ (𝑟, 𝑛) for the HPSD fixed rank manifold. see e.g., [105].
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Proof.

(2) For each 𝑍 ∈ M𝑟 \ M𝑟 , it can be approached by a sequence of rank-𝑟
matrices {𝑍𝑘 } ⊂ M𝑟 such that lim𝑘→∞ 𝑍𝑘 = 𝑍 .

(3) Consider

Φ̃𝑟 : SO(𝑚,R) × R𝑟+ × SO(𝑛,R) → R𝑚×𝑛

(𝑈,σ𝑟 , 𝑉) ↦→ 𝑈Σ̃𝑉⊤,

where SO(𝑚,R) is the real orthogonal group in dimension 𝑚, 𝑋 =

𝑈Σ̃𝑉⊤ is the full singular value decomposition of 𝑋 , σ𝑟 ∈ R𝑟 , σ𝑟 (𝑖) ≠ 0,
𝑖 = 1, · · · , 𝑟, and

Σ̃ =

(
diag(𝜎𝑟)

0(𝑚−𝑟)×(𝑛−𝑟)

)
.

Since SO(𝑚,R) × R𝑟+ × SO(𝑛,R) is connected and Φ̃𝑟 is continuous, its
orbitM𝑟 is connected.

(4) Consider the compact singular value decomposition 𝑋 = 𝑈diag(σ𝑟)𝑉⊤,
where𝑈 ∈ R𝑚×𝑟 , 𝑉 ∈ R𝑛×𝑟 , and σ𝑟 is in descending order. The local di-
mension is 𝑟 + (2𝑚−𝑟−1)𝑟

2 + (2𝑛−𝑟−1)𝑟
2 = (𝑚 + 𝑛 − 𝑟)𝑟 .

(5) It is obviously true.

□

Lemma 2.1.2 (Complex, non-Hermitian case). LetM𝑟 = {𝑍 ∈ C𝑚×𝑛 : rank(𝑍) =
𝑟}, and letM𝑟 be its closure. The following is true aboutM𝑟 andM𝑟 :

(1) M𝑟 = {𝑍 ∈ C𝑚×𝑛 : rank(𝑍) ≤ 𝑟};

(2) M𝑟 is dense inM𝑟 ;

(3) M𝑟 is connected;

(4) The local dimension ofM𝑟 is (2𝑚 + 2𝑛 − 𝑟)𝑟 ;

(5) The boundary ofM𝑟 isM𝑟 \M𝑟 = ∪0≤𝑠<𝑟M𝑠.

Proof.
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(4) Consider the compact singular value decomposition 𝑋 = 𝑈diag(σ𝑟)𝑉∗.
The local dimension is 𝑟 + (4𝑚−𝑟−1)𝑟

2 + (4𝑛−𝑟−1)𝑟
2 = (2𝑚 + 2𝑛 − 𝑟)𝑟.

□

Lemma 2.1.3 (Real symmetric case). LetM𝑟 = {𝑍 ∈ S𝑛 : rank(𝑍) = 𝑟} and let
M𝑟 be its closure. Then

(1) M𝑟 = {𝑍 ∈ S𝑛 : rank(𝑍) ≤ 𝑟};

(2) M𝑟 is dense inM𝑟 ;

(3) M𝑟 has 𝑟 + 1 disjoint branches and each branch is connected;

(4) The local dimension ofM𝑟 is (2𝑛−𝑟+1)𝑟2 ;

(5) The boundary ofM𝑟 isM𝑟 \M𝑟 = ∪0≤𝑠<𝑟M𝑠.

Proof.

(3) Consider the set of matrices that has 𝑝 positive eigenvalues and 𝑞 neg-
ative eigenvalues, 𝑝 + 𝑞 = 𝑟. Define

Ψ𝑝,𝑞 : GL+(𝑛,R) → S𝑛

𝑃 ↦→ 𝑃𝐼𝑝,𝑞𝑃
∗

where GL+(𝑛,R) is the real positive-determinant group in dimension
𝑛, and

𝐼𝑟 =
©«
𝐼𝑝

−𝐼𝑞
0(𝑛−𝑟)×(𝑛−𝑟)

ª®®¬ .
Thus, the orbit of each Ψ𝑝,𝑞 is connected. The tuple (𝑝, 𝑞) is called
the signature of the matrix. However, matrices with different signa-
tures are not path-connected on M𝑟 (they are path-connected only
on M𝑟). So M𝑟 has 𝑟 + 1 branches corresponding to the orbits of
Ψ𝑟,0,Ψ𝑟−1,1, · · · ,Ψ0,𝑟 .
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(4) Consider 𝑋 ∈ M𝑟 and let 𝑋 = 𝑈𝐷𝑈⊤ be its compact eigenvalue de-
composition with descending eigenvalues. Consider the mapping

Φ𝑠 : (𝑈,σ𝑟) ↦→ 𝑈𝐷𝑈∗.

The local dimension is 𝑟 + (2𝑛−𝑟−1)𝑟
2 =

(2𝑛−𝑟+1)𝑟
2 .

□

Lemma 2.1.4 (Complex Hermitian case). LetM𝑟 = {𝑍 ∈ H𝑛 : rank(𝑍) = 𝑟}
and letM𝑟 be its closure. Then

(1) M𝑟 = {𝑍 ∈ H𝑛 : rank(𝑍) ≤ 𝑟};

(2) M𝑟 is dense inM𝑟 ;

(3) M𝑟 has 𝑟 + 1 disjoint branches and each branch is connected;

(4) The local dimension ofM𝑟 is (4𝑛−𝑟+1)𝑟2 ;

(5) The boundary ofM𝑟 isM𝑟 \M𝑟 = ∪0≤𝑠<𝑟M𝑠.

Proof.

(4) Consider 𝑋 ∈ M𝑟 and let 𝑋 = 𝑈𝐷𝑈∗ be its compact eigenvalue decom-
position with descending eigenvalues. Consider the mapping

Φ𝑠 : (𝑈,σ𝑟) ↦→ 𝑈𝐷𝑈∗.

The local dimension is 𝑟 + (4𝑚−𝑟−1)𝑟
2 =

(4𝑚−𝑟+1)𝑟
2 .

□

The tangent space of M𝑟 is defined as follows, see [125] for further refer-
ences.

Definition 2.1.5 (Tangent space, non-Hermitian case). Let 𝑋 ∈ M𝑟 , 𝑋 =

𝑈Σ𝑉⊤ (or 𝑋 = 𝑈Σ𝑉∗). LetU = Col(𝑈),V = Col(𝑉) be the column spaces of
𝑈 and 𝑉 respectively. Then the tangent space ofM𝑟 at 𝑋 is

𝑇𝑋M𝑟 = (U ⊗ V) ⊕ (U ⊗ V⊥) ⊕ (U⊥ ⊗ V).
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We use the abbreviation 𝑇𝑋 instead of 𝑇𝑋M𝑟 when the manifoldM𝑟 is clear
from context. The projection operator onto the tangent space can be charac-
terized as:

𝑃𝑇𝑋 (𝑌 ) = 𝑃𝑈 · 𝑌 + 𝑌 · 𝑃𝑉 − 𝑃𝑈 · 𝑌 · 𝑃𝑉 ,

where 𝑃𝑈 = 𝑈𝑈∗ and 𝑃𝑉 = 𝑉𝑉∗ are the projections onto the subspaces U
andV respectively.

Definition 2.1.6 (Tangent space, Hermitian case). Let 𝑋 ∈ M𝑟 , 𝑋 = 𝑈𝐷𝑈⊤

(or 𝑋 = 𝑈𝐷𝑈∗),U = Col(𝑈). Then the tangent space ofM𝑟 at 𝑋 is

𝑇𝑋M𝑟 = (U ⊗ U) ⊕ (U ⊗ U⊥) ⊕ (U⊥ ⊗ U).

The projection operator onto the tangent space can be characterized as

𝑃𝑇𝑋 (𝑌 ) = 𝑃𝑈 · 𝑌 + 𝑌 · 𝑃𝑈 − 𝑃𝑈 · 𝑌 · 𝑃𝑈 ,

where 𝑃𝑈 = 𝑈𝑈∗ is the projection onto the subspaceU.

We are sometimes interested in the closureM𝑟 instead ofM𝑟 itself. A few
reasons might come into play as to why people might favor M𝑟 over M𝑟 .
First,M𝑟 itself is not a closed set. Iterative algorithms for nonconvex opti-
mization generate a sequence that converges to a solution, but closedness is
necessary for the sequence to have a limit. Second, a sequence might simply
cross the boundary ofM𝑟 at a certain iterate and the rank might fall below
𝑟. For these reasons, M𝑟 are sometimes used. Since M𝑟 is constructed by
“gluing together” all lower-rank matrix manifolds, it needs some special
treatment atM𝑠 (𝑠 < 𝑟) in order to make up for the deficient dimension. In
addition to the classical tangent space, we can define tangent cone at these
lower-dimensional sets. A reference on this is [118].

Definition 2.1.7 (Tangent cone, non-Hermitian case). Let 𝑋 ∈ M𝑠 ⊂ M𝑟

where 𝑠 < 𝑟, 𝑋 = 𝑈Σ𝑉⊤ (or 𝑋 = 𝑈Σ𝑉∗), U = Col(𝑈), V = Col(𝑉). Then the
tangent cone of 𝑀𝑟 at 𝑋 is

𝑇𝑋M𝑟 = 𝑇𝑋M𝑠 ⊕ {[ : [ ∈ U⊥ ⊗ V⊥, rank([) = 𝑟 − 𝑠}.

The projection onto the tangent cone is the projection onto the tangent space
plus a rank (r-s) principal component, i.e.

𝑃
𝑇𝑋M𝑟

(𝑌 ) = 𝑃𝑇𝑋M𝑠
(𝑌 ) + 𝑌𝑟−𝑠,
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where 𝑌𝑟−𝑠 is a best rank (r-s) approximation of 𝑌 − 𝑃𝑇𝑋M𝑠
(𝑌 ) in the Frobe-

nious norm.

Definition 2.1.8 (Tangent cone, Hermitian case). Let 𝑋 ∈ M𝑠 ⊂ (M𝑟) where
𝑠 < 𝑟 , 𝑋 = 𝑈𝐷𝑈⊤ (or 𝑋 = 𝑈𝐷𝑈∗), U = Col(𝑈). Then the tangent cone of 𝑀𝑟

at 𝑋 is
𝑇𝑋𝑀𝑟 = 𝑇𝑋M𝑠 ⊕ {[ : [ ∈ U⊥ ⊗ U⊥, rank([) = 𝑟 − 𝑠}.

The projection onto the tangent cone is

𝑃
𝑇𝑋M𝑟

(𝑌 ) = 𝑃𝑇𝑋M𝑠
(𝑌 ) + 𝑌𝑟−𝑠,

where 𝑌𝑟−𝑠 is a best rank (r-s) approximation of 𝑌 − 𝑃𝑇𝑋M𝑠
(𝑌 ) in the Frobe-

nious norm.

WhenM𝑟 is involved, we use 𝑃𝑇𝑧 for both 𝑃𝑇𝑧M𝑟
and 𝑃

𝑇𝑧M𝑟
as long as there

is no confusion.

Next, we define the retraction operation. It is also called the projection onto
the manifold in some literature. The retraction operation is not unique, but
we usually require that it satisfies the following first-order retraction prop-
erty.

Definition 2.1.9 (First-order retraction). LetM be an arbitrary Riemannian
manifold and let ∥ · ∥ be the norm of the ambient Banach space ofM. Let 𝑇𝑍
be the tangent space (or tangent cone) ofM at 𝑍 . We say that R satisfies the
first-order retraction property, if for any 𝑍 ∈ M, b ∈ 𝑇𝑍 ,

lim
𝛼→0+

∥R(𝑍 + 𝛼b) − (𝑍 + 𝛼b)∥
𝛼

= 0. (2.1)

The above definition applies to any manifoldM and not justM𝑟 . When it
comes to the low-rank matrix manifold M𝑟 , a natural retraction on M𝑟 is
the following best rank-𝑟 approximation under the Frobenius norm:

R𝑁 (𝑍 + b) = arg min
𝑌∈M𝑟

∥𝑍 + b − 𝑌 ∥𝐹 .

We use R𝑁 as our R forM𝑟 in the rest of the thesis. It not only satisfies the
first-order retraction property, but is actually second order, see also [110,
118, 125]:

R(𝑍 + 𝛼b) = 𝑍 + 𝛼b + 𝛼2[ + O(𝛼3).



24

Vandereycken [125] provides an explicit second-order approximation R (2)
𝑁

to this second-order retraction R(·) and shows that R(𝑍 + b) = R (2)
𝑁
(𝑍 + b) +

O(∥b∥3).

To define and analyze Riemannian nonconvex optimization methods on the
manifold M𝑟 , we need to define the Riemannian gradient and Hessian.
They are different from their Euclidean counterparts because Riemannian
manifolds are only locally isomorphic to an Euclidean space, and careful
treatment is needed to find out what corresponds to the Euclidean gradi-
ents on the manifold. We first introduce the concepts in their most general
form, then look at the special case that is actually used in practical compu-
tation.

Definition 2.1.10 (Levi-Civita connection). The Levi-Civita connection ∇̃b[,
acting on two vectors or vector fields [, b in the tangent bundle 𝑇M of a
Riemannian manifold M, is the unique affine connection on M that pre-
serves the metric and is torsion-free.

Note that the notation ∇̃ is not to be confused with ∇, which we use to
denote the gradient in the ambient space.

Definition 2.1.11 (Riemannian gradient). Given 𝑓 :M → R whereM is an
arbitrary Riemannian manifold, the Riemannian gradient of 𝑓 is the vector
field grad 𝑓 , such that for any vector field 𝑌 onM,

⟨grad 𝑓 , 𝑌⟩ = 𝑌 ( 𝑓 ),

where ⟨·, ·⟩ is the metric onM and 𝑌 (·) is the vector field action, i.e., 𝑌 ( 𝑓 ) =∑
𝑖 𝑌𝑖

𝜕 𝑓

𝜕𝐸𝑖
for a basis {𝐸𝑖}.

The good news is that Riemannian gradient is equivalent to the tangent
space projection of the embedded gradient in the ambient space if they exist,
i.e.,

grad 𝑓 (𝑍) = 𝑃𝑇𝑍 (∇ 𝑓 (𝑍)). (2.2)

Furthermore, if the metric ofM is inherited from the ambient space, then
the Levi-Civita connection onM is the tangent space projection of the Levi-
Civita connection (natural gradient) of the ambient space. In other words,
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for [, b ∈ 𝑇M, we have

∇̃b[ = 𝑃𝑇𝑍 (∇[[b]).

Therefore, if we letM𝑟 inherit the metric from its ambient Euclidean space,
i.e., ⟨𝐴, 𝐵⟩ = trace(𝐴∗𝐵) and ∥𝐴∥ = ∥𝐴∥𝐹 , then the Levi-Civita connection be-
comes the Euclidean derivative and the Riemannian gradient is just the pro-
jected gradient. Because of this, the Riemannian gradient descent method
is sometimes called the projected gradient descent method [76]. Equation
(2.2) is how we calculate the Riemannian gradient onM𝑟 in practice.

Definition 2.1.12 (Riemannian Hessian). Given a function 𝑓 : M → R, the
Riemannian Hessian of 𝑓 at point 𝑍 is Hess 𝑓 (𝑍) : 𝑇𝑍M → 𝑇𝑍M defined by

Hess 𝑓 (𝑍) [b] = ∇̃bgrad 𝑓 (𝑍), (2.3)

where ∇̃(·) (·) is the Levi-Civita connection onM.

Proposition 2.1.13. If the retraction is second-order, i.e.,

𝑃𝑇𝑍

(
d2

d𝛼2R𝑍 (𝛼b) |𝛼=0

)
= 0,

then
Hess 𝑓 (𝑍) = Hess ( 𝑓 ◦ R𝑍 ) (0). (2.4)

In particular, (2.4) is true for the low-rank matrix manifold, and this can
sometimes make the Riemannian Hessian easier to compute, see also [125].
It is proved in [2] that in the case of the low-rank matrix manifold, (2.4)
recovers Definition 2.1.12.

2.2 Riemannian first-order algorithms

In this subsection, we discuss two nonconvex optimization algorithms on
the low-rank matrix manifold, namely the Riemannian gradient descent
method and the Riemannian subgradient descent method.

Riemannian gradient descent

This Riemannian gradient descent (RGD) method is the gradient descent
on the Riemannian manifold, and it has long been studied in data science
and machine learning problems [24, 118, 125, 127]. Assume we are given
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a differentiable objective function 𝑓 : M → R to be minimized, where M
can be a general Riemannian manifold. We start from an initial guess 𝑍0 ∈
M. Using the Riemannian gradient descent method, the iterative sequence
{𝑍𝑘 }𝐾𝑘=0 is generated as follows:

𝑍𝑘+1 = R
(
𝑍𝑘 − 𝛼𝑘grad 𝑓 (𝑍𝑘 )

)
, (2.5)

where grad 𝑓 (𝑍𝑘 ) is the Riemannian gradient of the function 𝑓 at 𝑍𝑘 ∈ M
as defined in Definition 2.1.11, 𝛼𝑘 is the 𝑘-th stepsize, and R : 𝑇𝑍 → M is a
retraction operator.

When the manifold is embedded in an ambient space and its Riemannian
metric is inherited from the inner product in the ambient space, by (2.2), the
Riemannian gradient descent can be written as follows:

𝑍𝑘+1 = R
(
𝑍𝑘 − 𝛼𝑘𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))

)
. (2.6)

Here ∇ is the derivative in the ambient space of the manifold and 𝑃𝑇𝑍𝑘 is the
projection onto the tangent space (or tangent cone at a rank-deficient point)
ofM at point 𝑍𝑘 .

It is worth mentioning that there exists other manifold optimization tech-
niques. For example, when it comes to M𝑟 , some manifold optimization
methods skip the projection step 𝑃𝑇𝑍𝑘 and compute the eigenvalue decom-
position directly. This is also called the “hard retraction”. We choose the
current Riemannian gradient descent algorithm with “soft retraction” mainly
due to two reasons:

1) The projected gradient is the true Riemannian gradient, as is evident
from (2.2);

2) The projected gradient is also cheaper in computation. Namely, solv-
ing R(𝑍𝑘 − 𝛼𝑘grad 𝑓 (𝑍𝑘 )) involves calculating SVD of a 𝑛1 × 𝑛2 matrix,
while R(𝑍𝑘 −𝛼𝑘𝑃𝑇𝑍𝑘 (grad 𝑓 (𝑍𝑘 ))) only involves that of a 2𝑟×2𝑟 matrix,
as mentioned in the previous literature [127]. Since 𝑟 ≪ min{𝑛1, 𝑛2},
the soft retraction is of lighter computational cost.

More specifically, to see why RGD has light computational cost, assume that
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the SVD of 𝑍𝑘 is 𝑍𝑘 = 𝑈𝑘Σ𝑘𝑉∗𝑘 and denote𝑊𝑘 := grad 𝑓 (𝑍𝑘 ) ∈ F𝑛1×𝑛2 , we have

𝑍𝑘+1 = R(𝑍𝑘 − 𝛼𝑃𝑇𝑍𝑘 (𝑊𝑘 ))
= R

(
𝑈𝑘Σ𝑘𝑉

∗
𝑘 − 𝛼(𝑈𝑘𝑈

∗
𝑘𝑊𝑘 +𝑊𝑘𝑉𝑘𝑉

∗
𝑘 −𝑈𝑘𝑈

∗
𝑘𝑊𝑘𝑉𝑘𝑉

∗
𝑘 )

)
= R

(
𝑈𝑘 (Σ𝑘 − 𝛼𝑈∗𝑘𝑊𝑘𝑉𝑘 )𝑉∗𝑘 − 𝛼𝑈𝑘 ((𝐼 −𝑉𝑘𝑉

∗
𝑘 )𝑊

∗
𝑘𝑈𝑘 )

∗

− 𝛼((𝐼 −𝑈𝑘𝑈∗𝑘 )𝑊𝑘𝑉𝑘 )𝑉∗𝑘
)

= R
((
𝑈𝑘 𝑄𝑘,2

) (
Σ𝑘 − 𝛼𝑈∗𝑘𝑊𝑘𝑉𝑘 −𝛼𝑅∗𝑘,1
−𝛼𝑅𝑘,2 0

) (
𝑉∗
𝑘,1

𝑄∗
𝑘,1

))
.

Assume (𝐼 − 𝑉𝑘𝑉∗𝑘 )𝑊
∗
𝑘
𝑈𝑘 = 𝑄𝑘,1𝑅𝑘,1 and (𝐼 − 𝑈𝑘𝑈∗𝑘 )𝑊𝑘𝑉𝑘 = 𝑄𝑘,2𝑅𝑘,2 are the

QR factorizations of the respective matrices. Notice that 𝑄∗
𝑘,2𝑈𝑘 = 0𝑟×𝑟 ,

𝑄∗
𝑘,1𝑉𝑘 = 0𝑟×𝑟 . Therefore, to compute SVD of 𝑍𝑘 − 𝛼𝑃𝑇𝑍𝑘 (𝑊𝑘 ) it only in-

volves solving the SVD of

(
Σ𝑘 − 𝛼𝑈⊤𝑘𝑊𝑘𝑉𝑘 −𝛼𝑅∗𝑘,1
−𝛼𝑅𝑘,2 0

)
, which is only a 2𝑟 × 2𝑟

matrix. The symmetric/Hermitian versions of the algorithm can also be
derived similarly by replacing SVD with eigenvalue decomposition.

Riemannian subgradient descent

The Riemannian subgradient method is a variant of the Riemannian gra-
dient descent method for nonsmooth functions with generalized gradient.
Assume that 𝑓 : M → R is a Lipschitz function and has generalized gra-
dient 𝜕 𝑓 , andM inherits its Riemannian metric from the inner product of
ambient space, then the Riemannian subgradient method can be written as

𝑍𝑘+1 = 𝑅(𝑍𝑘 − 𝛼𝑘𝑃𝑇𝑍𝑘 (𝜕 𝑓 (𝑍𝑘 ))). (2.7)

A common case where the subgradient is needed is when the objective func-
tion contains 𝑙1 norm. The 𝑙1 norm is differentiable almost everywhere ex-
cept when an entry is zero. The generalized gradient of the 𝑙1 norm is the
entrywise generalized sign function. An example can be found in Chapter 6,
where we solve the Robust Principal Component Analysis (RPCA) problem
by minimizing the vectorized 𝑙1 norm using the Riemannian subgradient
method onM𝑟 .

2.3 Spurious critical points

One of the important findings in our work is the existence of some singular
critical points for the Riemannian first-order algorithms on the manifold



28

M𝑟 , which we call the spurious critical points. Our study of the spurious
critical points was motivated by an analysis of the population loss of a class
of low-rank recovery problems on the manifold.

We have seen in Section 2.1 that M𝑟 is not a closed set, and the boundary
of M𝑟 consists of matrices with rank smaller than 𝑟, which are not in M𝑟

themselves. In other words,M𝑟\M𝑟 = ∪𝑟−1
𝑠=0M𝑠 ⊄M𝑟 . For this reason, there

is no guarantee that the limit point of an iterative sequence will converge
to a rank-𝑟 ground truth instead of being stuck at some lower-rank spuri-
ous points. In particular, when minimizing the least squares loss function
𝑓 (𝑍) = 1

2 ∥𝑍 − 𝑋 ∥
2
F with 𝑋 ∈ M𝑟 , there exist some points with rank smaller

than 𝑟 which could also serve as the limit points of minimizing sequences.
These spurious critical points are lower-rank matrices that captures part of
the eigen components of the ground truth. This phenomenon was first re-
ported in [71] and later attracted more research interest.

The following lemma tells us that the critical points of 𝑓 (𝑍) = 1
2 ∥𝑍 − 𝑋 ∥

2
𝐹

in Riemannian optimization consist of the ground truth 𝑋 and the set of
spurious critical points denoted as S#, and each matrix in S# is a lower-rank
matrix that captures part of the eigen components of the ground truth.

Lemma 2.3.1 (Spurious critical points). Consider the Riemannian gradient de-
scent for the function 𝑓 (𝑍) = 1

2 ∥𝑍 − 𝑋 ∥
2
𝐹

with fixed step size 𝛼𝑘 ≡ 𝛼. Let
𝑋 = 𝑈𝐷𝑉∗ be the SVD of 𝑋 ∈ F𝑛1×𝑛2 , where 𝐷 ∈ R𝑟×𝑟 is a non-singular diagonal
matrix (here the diagonals are not necessarily in descending order) and 𝑈 ∈ F𝑛1×𝑟 ,
𝑉 ∈ F𝑛2×𝑟 are orthonormal. Then,

1) There are two types of fixed points: one is the ground truth 𝑍 = 𝑋 , and the
other consists of the set

S# := {𝑍∗ : 𝑍∗ = 𝑈1𝐷1𝑉
∗
1 , where𝑈1, 𝑉1 and 𝐷1 are submatrices of𝑈𝑋 , 𝑉𝑋 and

𝐷𝑋 satisfying𝑈𝑋 = (𝑈1,𝑈2), 𝑉𝑋 = (𝑈1, 𝑉2), 𝐷𝑋 = diag{𝐷1, 𝐷2}, 𝑍∗ ≠ 𝑋};

2) Specifically, if 𝑋 has distinct eigenvalues2, thenS# has cardinality |S# | = 2𝑟−
1. Assume that 𝑋 =

∑𝑟
𝑖=1 𝑑𝑖𝑢𝑖𝑣

∗
𝑖
, thenS# = {𝑍∗ : 𝑍∗ =

∑𝑟
𝑖=1 𝑑𝑖[𝑖𝑢𝑖𝑣

∗
𝑖
,with [ ∈

{0, 1}𝑟 and [ ≠ (1, 1, . . . , 1)∗}.
2Which means that the eigenvalues of 𝑋 all have algebraic multiplicity equal to 1.
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In the SPSD/HPSD case, let 𝑋 = 𝑈𝐷𝑈∗ be the eigenvalue decomposition of 𝑋
where 𝐷 ∈ R𝑟×𝑟 is a non-singular diagonal matrix and 𝑈 ∈ F𝑛×𝑟 is orthonormal.
Then the set of spurious critical points is

S# :=
{
𝑍∗ : 𝑍∗ = 𝑈1𝐷1𝑈

∗
1 , where𝑈 = (𝑈1,𝑈2), 𝐷 = diag{𝐷1, 𝐷2}, 𝑍∗ ≠ 𝑋

}
.

If 𝑋 has distinct eigenvalues, then S# = {𝑍∗ : 𝑍∗ =
∑𝑟
𝑖=1 𝑑𝑖[𝑖𝑢𝑖𝑢

∗
𝑖
,with [ ∈

{0, 1}𝑟 and [ ≠ (1, 1, . . . , 1)∗}.

Proof. We only prove it for the general non-Hermitian case. The proof for
the SPSD/HPSD case is similar and we omit the details here.

1) It is obvious that 𝑍 is a fixed point of 𝑍𝑘+1 = R(𝑍𝑘 − 𝛼𝑃𝑍𝑘 (grad 𝑓 (𝑍𝑘 )))
if and only if 𝑃𝑇𝑧 (grad𝐹1(𝑍)) = 0. Denote 𝑍 = 𝑈𝑧Σ𝑧𝑉

∗
𝑧 and 𝑋 = 𝑈𝐷𝑉∗,

then for any b ∈ 𝑇𝑍 , there exists Δ1 ∈ F𝑛1×𝑟 and Δ2 ∈ F𝑛2×𝑟 , such that
b = 𝑈𝑧Δ

∗
1 + Δ2𝑉

∗
𝑧 . Simple calculation gives

𝑃𝑇𝑧 (grad𝐹1(𝑍)) = 0⇐⇒ ⟨𝑃𝑇𝑧 (𝑍 − 𝑋), b⟩ = 0, for all b ∈ 𝑇𝑍
⇐⇒⟨𝑍 − 𝑋,𝑈𝑧Δ∗1 + Δ2𝑉

∗
𝑧 ⟩ = 0, for all b = 𝑈𝑧Δ∗1 + Δ2𝑉

∗
𝑧 ∈ 𝑇𝑍

⇐⇒tr((𝑉𝑧Σ𝑧 −𝑉𝐷𝑈∗𝑈𝑧)Δ∗1 + (Σ𝑧𝑈
∗
𝑧 −𝑉∗𝑧𝑉𝐷𝑈∗)Δ2), for all Δ1 ∈ F𝑛1×𝑟 ,Δ2 ∈ F𝑛2×𝑟

⇐⇒𝑉𝑧Σ𝑧 −𝑉𝐷𝑈∗𝑈𝑧 = Σ𝑧𝑈
∗
𝑧 −𝑉∗𝑧𝑉𝐷𝑈∗ = 0

⇐⇒𝑈∗𝑧 𝑋 = Σ𝑧𝑉
∗
𝑧 and𝑈𝑧Σ𝑧 = 𝑋𝑉𝑧 .

This implies 𝑃𝑈𝑧
(𝑋) = 𝑃𝑈𝑧

(𝑍) = 𝑍 and 𝑃𝑉𝑧 (𝑍∗) = 𝑍∗ = 𝑃𝑉𝑧 (𝑋∗). As-
sume

𝑋 =

(
𝑈𝑧 𝑈𝑧

) (
𝑋11 𝑋12

𝑋21 𝑋22

) (
𝑉∗𝑧
𝑉∗𝑧

)
.

Then we get 𝑋11 = Σ𝑧, 𝑋12 = 0 and 𝑋21 = 0. Therefore, we have

𝑍 = 𝑈1𝐷1𝑉
∗
1 , with𝑈 =

(
𝑈1 𝑈2

)
, 𝐷 = diag {𝐷1, 𝐷2} and 𝑉 =

(
𝑉1 𝑉2

)
.

2) If 𝑋 has distinct eigenvalues, thenS consists of the points 𝑍∗ =
∑𝑟
𝑖=1 𝑑𝑖[𝑖𝑢𝑖𝑣

∗
𝑖
,

where [ ∈ {0, 1}𝑟 and [ is not (1, 1, ..., 1)∗ ∈ R𝑟 . So |S| = 2𝑟 − 1.

□
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The set S# consists of 2𝑟 − 1 points (including 𝑍∗ = 0) if the eigenvalues
of 𝑋 are distinct, or contains some submanifolds of M𝑟 when at least one
eigenvalue has multiplicity more than one. We call them “spurious” critical
points because they are not stable, and when the tangent cone is taken into
consideration they are not true fixed points. More importantly, it is very un-
likely that the sequence generated by the randomly initialized Riemannian
gradient descent will converge to any one of these spurious fixed points.
Below is an example.

Example 2.3.2. Assume that 𝑛 = 3, 𝑟 = 2. Let

𝑋 =
©«
2 0 0

0 1 0

0 0 0

ª®®¬ , 𝑍0 =
©«
2 0 0

0 0 0

0 0 1

ª®®¬ .
Then the {𝑍𝑘 }∞𝑘=0 generated by the Riemannian gradient descent and their
limit point are given by

𝑍𝑘 =
©«
2 0 0

0 0 0

0 0 (1 − 𝛼)𝑘

ª®®¬ , 𝑍∗ := lim
𝑘→∞

𝑍𝑘 =
©«
2 0 0

0 0 0

0 0 0

ª®®¬ .
We see that 𝑍∗ is a spurious critical point. Note that even though each 𝑍𝑘 is
inM2, their limit is inM1.

Figure 2.1 is a visualization of the gradient ∥𝑃𝑇𝑍 (𝑍 − 𝑋)∥𝐹 in the neighbor-
hood of a spurious 𝑍∗. We can see that the gradient is essentially singular
near 𝑍∗. There is only one direction in which the sequence converges to
𝑍∗. Along other directions, the Riemannian gradient remains large and the
RGD diverges from 𝑍∗. We point out that such property of these spurious
fixed points is very similar to that of strict saddle points in many nonconvex
optimization problems, although they are not exactly the same because the
gradient of the spurious critical point is singular.

Example 2.3.2 demonstrates that we cannot assume that the sequence gen-
erated by the Riemannian gradient descent always stays in the interior of
M𝑟 and converges to a minimum. However, numerical evidence shows
that the Riemannian gradient descent almost always escapes the spurious
critical points S# and converges to the global minimum. In Chapter 4, we
will establish the asymptotic escape of Riemannian gradient descent from
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Figure 2.1: Magnitude of the gradient in the neighborhood of a spurious
fixed point

some of these spurious critical points; in Chapter 5, we will further establish
the nearly linear rate in which Riemannian gradient descent escapes from
spurious critical points and converges to the local minima.

2.4 Auxiliary lemmas

Here we list some auxiliary lemmas about matrix analysis that come in
handy in future chapters.

Lemma 2.4.1 (The SinΘ Theorem, [44]). Let 𝐴 be a Hermitian operator. Assume
that

𝐴 =

(
𝐸0 𝐸1

) (
𝐴0 0
0 𝐴1

) (
𝐸∗0
𝐸∗1

)
is an invariant subspace decomposition (i.e., a generalized eigenvalue decomposi-
tion) of 𝐴. Let

𝐵 = 𝐴 + Δ, 𝐵 =

(
𝐹0 𝐹1

) (
𝐵0 0
0 𝐵1

) (
𝐹∗0
𝐹∗1

)
.

Let Θ0 be the angle matrix between subspaces 𝐸0 and 𝐹0. Define the residual as

𝑅 := 𝐵𝐸0 − 𝐸0𝐴0.

If there is an interval [𝛽, 𝛼] and 𝛿 > 0, such that the spectrum of 𝐴0 lies entirely
in [𝛽, 𝛼], while that of 𝐵1 lies entirely in (−∞, 𝛽 − 𝛿] ∪ [𝛼 + 𝛿, +∞), then for every
unitary-invariant norm ∥ · ∥, we have

𝛿∥sinΘ0∥ ≤ ∥𝑅∥.

In particular, this holds true for the matrix 2-norm and the Frobenius norm.
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Lemma 2.4.2 (Hoffman-Wielandt Theorem).

1) Assume 𝑍, 𝑍′ ∈ R𝑛×𝑛 or C𝑛×𝑛 are normal matrices, and their corresponding
ordered spectra are {_ 𝑗 } and {_̃ 𝑗 }. Then, we have√√√ 𝑛∑︁

𝑗=1

|_̃ 𝑗 − _ 𝑗 |2 ≤ ∥𝑍′ − 𝑍 ∥𝐹 .

2) Assume 𝑍 , 𝑍′ ∈ R𝑚×𝑛 or C𝑚×𝑛, and denote their eigenvalues in descending
order as {𝜎𝑗 } and {�̃�𝑗 }. Then, we have√√√ 𝑛∑︁

𝑗=1

|�̃�𝑗 − 𝜎𝑗 |2 ≤ ∥𝑍′ − 𝑍 ∥𝐹 .
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C h a p t e r 3

ASYMPTOTIC ESCAPE OF STRICT SADDLE SETS IN
MANIFOLD OPTIMIZATION

In this chapter, we present some analysis on the asymptotic escape of strict
saddle sets in manifold optimization using Riemannian gradient descent.
The main contribution here is that we extend previous analysis on the es-
cape of strict saddles to include non-isolated and possibly continuous sad-
dle sets with complicated geometry. We prove that Riemannian gradient
descent is able to escape strict critical submanifolds under certain condi-
tions on the geometry and the distribution of the saddle point sets. We also
show that the Riemannian gradient descent may fail to escape strict saddles
under weaker assumptions even if the saddle point set has zero measure.

As examples of this saddle set analysis, we apply it to the phase retrieval
problem on the low-rank matrix manifold, prove that there is only a fi-
nite number of saddles, and that in a specific region, they are strict saddles
with high probability. We also apply this saddle set analysis to a variational
eigenvalue problem on the sphere manifold, which is a special case of the
Gross-Pitaevskii eigenvalue problem in Chapter 7.

Beyond the above examples, a more important implication of this saddle
analysis is that it paves the way for the asymptotic escape of spurious crit-
ical points in Chapter 4. As has been discussed in Section 2.3, the spuri-
ous critical points are significantly different from the classical strict saddle
points in that the Riemannian gradient is singular around a spurious critical
point 𝑍∗ ∈ S#. It is important to keep in mind that any result on classical
strict saddle points cannot be directly applied to the spurious critical points
because of their singularity. Interestingly, with a parameterization of the
manifoldM𝑟 and a rescaling of the gradient flow, a spurious critical point
can be mapped to a strict saddle set in the parameterized manifold. In this
way, the saddle set analysis in this chapter acts as an intermediate tool that
tackles a much less understood question about the low-rank matrix mani-
fold.

Organization of this chapter. We have given a brief introduction of this
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problem in Section 1.1. The rest of this chapter is organized as follows.
In Section 3.1, we further elaborate on the background of the problem and
related works. Section 3.2 contains the result on the asymptotic escape of
Riemannian gradient descent from isolated strict saddle points, and Section
3.3 contains the result for non-isolated strict saddle sets and strict critical
submanifolds. In Section 3.4, phase retrieval is analyzed as an example of
asymptotic escape of saddles on M𝑟 . We extend the application to other
manifolds and a broader scope of problems in Section 3.5. We make some
final discussion in Section 3.6.

3.1 Background

As has been discussed in Section 1.1, in this chapter, we provide a systematic
analysis for the asymptotic escape of non-isolated and possibly continuous
saddle sets with complicated geometry. This is motivated by the fact that be-
fore this work (published in [76]), previous analysis on strict saddles mostly
focuses on isolated saddle points, while non-isolated continuous saddle sets
have not been thoroughly studied.

Specifically, we prove that Riemannian gradient descent is able to escape
strict critical submanifolds under certain conditions. These conditions are
concerned with some geometric properties of the saddle set or the distribu-
tion of these saddle points. These conditions are necessary to guarantee the
asymptotic escape of the strict saddles by the RGD in manifold optimiza-
tion. However, these conditions are not stringent and are usually satisfied
by common applications. We compare our conditions with those of the re-
cent work [112], and point out that these two are consistent. We also give
some examples that violate the conditions and result in failures of asymp-
totic escape, for the purpose of theoretical interest.

What lies at the core of this asymptotic analysis is an interesting interplay of
dynamical systems and nonconvex optimization, and a translation of lan-
guages from the Morse theory [12, 13, 40] into gradient flows and further
into gradient descents. Although these tools were initially developed to
study homology, they have provided invaluable insight into the converg-
ing/escaping sets of strict saddle points with nontrivial geometry. We draw
inspiration from them and propose a new unified tool to analyze asymptotic
convergence and escape from saddle points.
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We are aware that there is a parallel line of research on stochastic/perturbed
gradient descent, as well as Riemannian stochastic gradient descent. A few
works including [41, 63, 82, 123] show that the stochastic/perturbed gradi-
ent descent is a powerful tool to avoid saddles and does not impose any
constraint on the geometry of saddle sets as we do. The reason our analy-
sis focuses on the unperturbed gradient descent is that only by eliminating
the perturbation effect can we single out the essential property of gradient
descent itself. The development of a thorough asymptotic theory for this
vanilla RGD algorithm is crucial toward the understanding of why vanilla
RGD works sufficiently well in many applications.

As an application of our asymptotic escape analysis for strict saddles, we
consider the phase retrieval problem [56, 66, 81, 119] that has received con-
siderable attention in the recent years. We combine the perspectives of Rie-
mannian manifold optimization [24] and landscape analysis [98, 122] to de-
rive new results. We analyze the saddle points of the phase retrieval prob-
lem on the low-rank matrix manifold. Surprisingly, there are only a finite
number of saddles and they are all strict saddles with very high probabil-
ity. Our analysis provides an explanation for the robust performance of
the RGD in solving the phase retrieval problem as a low-rank optimization
problem, a phenomenon that has been observed in previous applications
reported in the literature [98].

Although our primary focus is the low-rank matrix manifold, the asymp-
totic convergence to the minimum and the escape of strict saddles or strict
critical submanifolds are valid on any finite dimensional Riemannian man-
ifold. In particular, the properties of the RGD are well preserved if the man-
ifold is embedded in a Banach space and inherits the Riemannian metric
from its ambient space. Common examples of manifold optimization in-
clude optimization problems on the sphere, the Stiefel manifold, the Grass-
mann manifold, the Wasserstein statistical manifold [94], the flag manifold
for multiscale analysis [130], and the low-rank tensor manifold [74, 102].
Applications can be found in many fields including physics, statistics, quan-
tum information, and machine learning.

To illustrate this, we consider the eigenvalue problems as minimization
problems on the unit sphere and the Stiefel manifold. In the examples, the
eigenstates of the linear/nonlinear eigenvalue problems are strict saddle
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sets on the sphere manifold or Stiefel manifold. This can either be proved
analytically or verified numerically. We apply the saddle set escape theo-
rem to these problems. We demonstrate that RGD can act as an acceleration
method by formulating a simultaneous eigen-solver on the Stiefel manifold.
We observe a considerable speedup in the convergence of the RGD method
on the Stiefel manifold.

3.2 Asymptotic escape of isolated saddle points

This section is a self-contained overview of the classical results for the asymp-
totic escape of strict saddle points by gradient flow and gradient descent.
Note that we only intend to include the results for the vanilla gradient de-
scent. We do not cover the perturbed or stochastic gradient descent, as they
are less relevant to our problem.

We emphasize that the spurious critical points in Lemma 2.3.1 are not clas-
sical strict saddle points. It is because the Riemannian gradient at the spu-
rious critical points is singular. Therefore, the theorems and lemmas in this
section are not directly applicable to the spurious critical points. Neverthe-
less, these theorems and lemmas will be used in an indirect manner, on a
rescaled system where the singularity is removed, see Chapter 4.

Assume we are given a function 𝑓 : M → R where M can be a general
manifold. We start from a proper initial guess 𝑍0 ∈ M. Consider the Rie-
mannian gradient descent (RGD) method with a fixed step size 𝛼. Let 𝜑 be
the iteration operation:

𝑍𝑛+1 = 𝜑(𝑍𝑛) := 𝑅(𝑍𝑛 − 𝛼𝑃𝑇𝑍𝑛 (∇ 𝑓 (𝑍𝑛))).

Here ∇ 𝑓 is the embedded gradient of 𝑓 in its ambient Banach space , 𝑃𝑇𝑍𝑛 is
the projection onto the tangent space of M at point 𝑍𝑛, 𝛼𝑛 is the 𝑛-th step
size, and R : 𝑇𝑍 → M is a first-order retraction as defined in Definition
2.1.9.

When max𝑛{𝛼𝑛} → 0, the limit of the gradient descent is the gradient flow,
characterized as

d
d𝑡
𝑍𝑡 = −∇ 𝑓 (𝑍𝑡), 𝑍𝑡 ∈ M .

We first look at the result on the stable and unstable manifolds of the gradi-
ent flow at a hyperbolic point.
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Theorem 3.2.1 ([114, The Center Manifold Theorem]). Let 𝜌 ∈ 𝐶𝑎 (𝐸) where 𝐸
is an open subset of R𝑛 containing the origin and 𝑎 ≥ 1. Let 𝑥(𝑡) = 𝜙𝑡 (𝑥0) be the
gradient flow of the system ¤𝑥 = 𝜌(𝑥). Suppose that 𝜌(0) = 0 and that 𝐷𝜌(0) has
𝑘 eigenvalues with negative real part, 𝑗 eigenvalues with positive real part, and
𝑚 = 𝑛 − 𝑘 − 𝑗 eigenvalues with zero real part. Then there exist

(1) A 𝑘-dimensional stable manifold𝑊 𝑠 (0) of class 𝐶𝑎 tangent to the stable sub-
space 𝐸 𝑠 at 0, where for all 𝑥0 ∈ 𝑊 𝑠 (0),

lim
𝑡→+∞

𝜙𝑡 (𝑥0) = 0;

(2) A 𝑗-dimensional unstable manifold𝑊𝑢 (0) of class𝐶𝑎 tangent to the unstable
subspace 𝐸𝑢 at 0, where for all 𝑥0 ∈ 𝑊𝑢 (0),

lim
𝑡→−∞

𝜙𝑡 (𝑥0) = 0;

(3) And an 𝑚-dimensional center manifold 𝑊𝑐 (0) of class 𝐶𝑎 tangent to the
center subspace 𝐸𝑐 at 0.

Furthermore,𝑊𝑐 (0),𝑊 𝑠 (0) and𝑊𝑢 (0) are invariant under the gradient flow.

Next, we introduce the counterpart of the previous results for the gradient
descent. The strict saddle point is defined as follows. It basically says that a
strict saddle point is a hyperbolic point of the iteration function.

Definition 3.2.2 (Strict saddle point). Consider a function 𝑓 : M → R de-
fined on a manifoldM. We call 𝑍 ∈ M a strict saddle point of 𝑓 , if

1. 𝑃𝑇𝑍 (∇ 𝑓 (𝑍)) = 0;

2. Hess 𝑓 (𝑍) has at least one negative eigenvalue.

The result on the Riemannian gradient descent (RGD) and the strict saddles
points is as follows.

Theorem 3.2.3 (RGD asymptotically only converges to a local minimum).
Let 𝑓 : M → R be a 𝐶2 function onM. Let {𝑍𝑘 }∞𝑘=0 be the sequence generated
by the Riemannian gradient descent algorithm on M. Suppose that 𝑓 has either
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finitely many saddle points, or countably many saddle points in a compact subman-
ifold ofM, and all saddle points of 𝑓 are strict saddles as is defined in Definition
3.2.2. Let A denote the set of strict saddles. Then we have

Prob( lim
𝑘→∞

𝑍𝑘 ∈ A) = 0.

In other words, the RGD with a random initialization almost never con-
verges to a saddle point 𝑍∗ as long as 𝑍∗ is a strict saddle.

To prove this result, the main tool is the stable manifold theorem on low-
rank matrix manifolds, which is an extension of similar results in the Eu-
clidean spaces.

Theorem 3.2.4. Let 𝜑 : M → M be a smooth diffeomorphism of a finite dimen-
sional smooth manifoldM, and 𝑝 is a fixed point of 𝜑. Assume that

𝑇𝑝M = 𝑇 𝑠𝑝M ⊕ 𝑇 𝑐𝑝M ⊕ 𝑇𝑢𝑝M, (3.1)

which is the invariant splitting of 𝑇𝑝M into contracting, centering, and expand-
ing subspaces corresponding to eigenvalues of magnitude less than, equal to, and
greater than 1. Let

𝑇 𝑐𝑠𝑝 M := 𝑇 𝑠𝑝M ⊕ 𝑇 𝑐𝑝M .

Then we have
𝑊 𝑠
𝑝 (𝜑) := {𝑥 ∈ M| lim

𝑛→∞
𝜑𝑛 (𝑥) = 𝑝}

is an immersed submanifold ofM and 𝑇𝑝𝑊 𝑠
𝑝 (𝜑) ⊆ 𝑇 𝑐𝑠𝑝 M. We call it the (general-

ized) stable manifold of 𝑝 with respect to 𝜑.

For those who are interested in the proof, a detailed one for the Euclidean
case can be found in Theorem III.7 in [120], and the extension to the mani-
fold is similar to [13, Theorem 4.15].

Proof of Theorem 3.2.3. From Theorem 3.2.4, if 𝜑 is a diffeomorphism, and
𝑇𝑍∗M has an invariant splitting as in (3.1) with a nonempty expanding sub-
space 𝑇𝑢

𝑍∗
M, then 𝑊 𝑠

𝑍∗
(𝜑), the stable set of 𝑍∗, will be a lower dimensional

submanifold inM. Then, the converging set of 𝑍∗ will have measure 0 with
respect to the manifold, and any random initialization of RGD will escape
such a strict saddle point almost surely.
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We now look at the splitting of 𝑇𝑍∗M. The diffeomorphic property of 𝜑 is
actually contained in the proof of the former.

Given b ∈ 𝑇𝑍∗M, for any b̃ that satisfies 𝑍∗ + b̃ ∈ M, 𝑃𝑇𝑍∗ (b̃) = b, we have

Hess 𝑓 (𝑍∗) [b] + O(∥b∥2) = ∇̃b grad 𝑓 (𝑍∗)
= 𝑃𝑇𝑍∗ (∇grad 𝑓 (𝑍∗) [b])
= 𝑃𝑇𝑍∗ (grad 𝑓 (𝑍∗ + b̃) − grad 𝑓 (𝑍∗)) + O(∥b∥2)
= 𝑃𝑇𝑍∗ (grad 𝑓 (𝑍∗ + b̃)) + O(∥b∥2).

Note that grad 𝑓 (𝑍∗) = 0 since 𝑍∗ is a critical point. Therefore, for 𝜑(𝑍𝑛) =
𝑅(𝑍𝑛 − 𝛼𝑃𝑇𝑍𝑛 (∇ 𝑓 (𝑍𝑛))),

𝐷𝜑𝑍∗ [b] = 𝑃𝑇𝑍∗ (𝜑(𝑍∗ + b̃) − 𝜑(𝑍∗)) + o(∥b∥)
= 𝑃𝑇𝑍∗ (𝑅(𝑍∗ + b̃ − 𝛼 grad 𝑓 (𝑍∗ + b̃)) − 𝑍∗) + o(∥b∥)
= 𝑃𝑇𝑍∗ (𝑍∗ + b̃ − 𝛼 grad 𝑓 (𝑍∗ + b̃) + o(∥b∥) − 𝑍∗)
= 𝑃𝑇𝑍∗ (b̃ − 𝛼 grad 𝑓 (𝑍∗ + b̃)) + o(∥b∥)
= b − 𝛼 Hess 𝑓 (𝑍∗) [b] + o(∥b∥).

We have

𝐷𝜑𝑍∗ [b] = b − 𝛼Hess( 𝑓 ) (𝑍∗) [b],

i.e.
𝐷𝜑𝑍∗ = 𝐼 − 𝛼 Hess( 𝑓 ) (𝑍∗).

Thus 𝑍∗ being strict saddle implies that, by choosing 𝛼 sufficiently small
(but depending on the eigenvalues of Hess 𝑓 (𝑍∗)), 𝐷𝜑𝑍∗ has at least one
expanding subspace coresponding to an eigenvalue whose magnitude is
greater than 1.

Now, 𝜑 is a diffeomorphism at 𝑍∗ because, if we choose 𝛼 small enough
so that ∥Hess 𝑓 (𝑍∗)∥ < 1

𝛼
, then 𝐷𝜑 is always invertible and bounded. If

there are only finitely many strict saddle points, or there are countably in-
finite number of them in a compact region, ∥Hess( 𝑓 ) (𝑍∗)∥ shall be upper
bounded, and such an 𝛼 is always attainable.

Using Theorem 3.2.4, the set of points onM that converge to 𝑍∗ is a lower
dimensional submanifold inM, which has measure 0. We could safely de-
duce that, by randomly sampling a start point 𝑍0 inM, the probability of
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converging to a strict saddle point is 0, i.e.

Prob( lim
𝑘→∞

𝑍𝑘 = 𝑍∗) = 0.

Since there are only countably many strict saddle points, ∪𝑍∗∈𝑆𝑊𝑆
𝑍∗
(𝜑) still

has measure 0. So the RGD with a randomly sampled starting point con-
verges to any point in 𝑆 with probability 0. This proves the first argument.

As for the second argument, since the step size is a constant 𝛼, the only
stationary points of the algorithm are first-order critical points of the loss
function. The local maximizers are ruled out by the descent property of
gradient descent. So if the limit point exists, it is a local minimizer with
probability 1. □

3.3 Non-isolated strict saddle sets and strict critical submanifolds

As is mentioned in Section 3.1, it is very common that there are more than
a countable number of strict saddle points, e.g., when they form a subman-
ifold, or a more complicated set, with Lebesgue measure 0. Empirical ev-
idences show satisfactory convergence of the RGD to its minimum, which
indicates successful escape from these strict saddles. But there is a lack of
theoretical analysis to confirm this observation. In the following, we will
use some further results from the Morse theory and its extensions to pro-
vide an analytical tool for this purpose.

Definition 3.3.1 (Critical submanifold). For 𝑓 : M ↦→ R, a connected sub-
manifold N ⊂ M is called a critical submanifold of 𝑓 if every point 𝑍 in N is
a critical point of 𝑓 , i.e., grad 𝑓 (𝑍) = 0 for any 𝑍 ∈ N .

Definition 3.3.2 (Strict critical submanifold). A critical submanifold N of 𝑓
is called a strict critical submanifold, if ∀𝑍 ∈ N ,

_min(Hess 𝑓 (𝑍)) ≤ 𝑐 < 0,

where _min(·) takes the smallest eigenvalue, and 𝑐 = 𝑐(N) is a uniform con-
stant for all 𝑍 ∈ N depending only on N .

Analogous to the stable/unstable manifolds of critical points in Theorem
3.2.4, we may define stable/unstable manifolds of critical submanifolds.1

1The reader shall be careful while distinguishing different “manifolds”: the domain of
the function 𝑓 is a manifold, and the critical set of 𝑓 is now a submanifold, but the names
of stable/unstable manifolds are given regardless of the domain of 𝑓 .
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Definition 3.3.3 (Generalized stable/unstable manifold). Let 𝜑 : M → M
be a smooth diffeomorphism ofM. Then for a submanifold of N ⊂ M, the
stable manifold and unstable manifold of N with respect to 𝜑 are defined as

𝑊 𝑠
N (𝜑) := {𝑥 ∈ M| lim

𝑛→∞
𝜑𝑛 (𝑥) ∈ N},

𝑊𝑢
N (𝜑) := {𝑥 ∈ M| lim

𝑛→−∞
𝜑𝑛 (𝑥) ∈ N}.

Given a nontrivial strict critical submanifold N of 𝑓 , at every point 𝑝 ∈ N ,
the tangent space is split as

𝑇𝑝M = 𝑇𝑝N ⊕ a𝑝N ,

where a𝑝N is the normal space of N at 𝑝 immersed inM. Similar to Equa-
tion (3.1), it is further split into

𝑇𝑝M = 𝑇𝑝N ⊕ (a𝑠𝑝M ⊕ a𝑐𝑝M ⊕ a𝑢𝑝M).

To arrive at a result similar to that stated in Theorem 3.2.4, it suffices to
define

𝑇 𝑐𝑠𝑝 M := 𝑇𝑝N ⊕ (a𝑠𝑝M ⊕ a𝑐𝑝M),

and notice that 𝑇𝑝𝑊 𝑠
N (𝜑) ⊆ 𝑇

𝑐𝑠
𝑝 M for any 𝑝 ∈ N . Since 𝑇 𝑐𝑠𝑝 M is dimension

deficient by the definition of strict critical submanifold, any random initial-
ization still falls into the converging set of N with probability 0. Because
the union of a finite number of 0-measure sets still has measure 0, the above
result works well with countably many critical submanifolds. To sum up,
we have the following theorem.

Theorem 3.3.4. Let 𝑓 : M → R be a 𝐶2 function on M. Let {𝑍𝑘 }∞𝑘=0 denote
the sequence generated by the Riemannian gradient algorithm (2.6). Suppose that
𝑓 : M → R has either finitely many critical submanifolds, or countably many
critical submanifolds in a compact region ofM, and all of them are strict critical
submanifolds as defined in Definition 3.3.3. LetA denote the union of strict critical
submanifolds. Then we have

Prob( lim
𝑘→∞

𝑍𝑘 ∈ A) = 0.

We remark that the results on the asymptotic escape of saddle points in
the Euclidean space, e.g., the results in [89], can be seen as special cases of
Theorem 3.3.4.
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For situations that are even more complicated than those stated in the above
theorem, it is conjectured that the transversality relationship of submani-
folds can be exploited to find out the succession relationship of critical sets.
We refer the reader to Section 3.7 for some useful tools and interesting in-
sights in this direction.

Finally, we point out that the number of critical submanifolds being count-
able is an essential condition, but not a binding one. Of course, one rea-
son of this statement is that it is often satisfied in practice. Namely, in the
known applications with very complicated saddle geometries, e.g. matrix
factorization and nonlinear eigenproblems, the saddles can still be grouped
into countably many points or submanifolds. In those cases, either Theorem
3.2.3 or Theorem 3.3.4 is applicable.

But even from a purely theoretical point of view, the number of strict criti-
cal submanifolds being uncountable is unlikely to happen. This is in accor-
dance with the result of a recent work [112]. The result explicitly includes
the case of “uncountably many critical points”, but from the viewpoint of
submanifolds, such result belongs to the case of “countably many submani-
folds” in our Theorem 3.3.4. (A submanifold can contain uncountably many
points, but is still a single object to escape.) This can also be inferred from
the use of a countable subcover in Theorem 10 of [112] and the subsequent
proof of the main theorem, where the convergence set to any saddle is cate-
gorized into a countable number of stable manifolds.

To further illustrate this point, here we give some interesting examples. The
saddle sets in Example 3.3.5 occupy a zero measure set in the whole man-
ifold. They cannot be assembled into countably many connected submani-
folds. We will analyze and see why they cannot be almost surely avoided.

Example 3.3.5. Let M = [−1, 2] × [−1, 1] ⊂ R2 be a rectangular region,
viewed as a 2-dimensional submanifold of R2. Then the tangent space 𝑇M
equals M. To construct the function 𝑓 on M, we need the 1-dimensional
Smith-Volterra-Cantor (“fat Cantor”) set 𝑉 in [0, 1]. The construction is as
follows:

1) Remove the middle interval of length 1
4 from [0, 1], and the remaining

set is [0, 3
8 ] ∪ [

5
8 , 1];
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2) Remove 2 middle subintervals of length 1
42 from the 2 remaining inter-

vals, and the remaining set is [0, 5
32 ] ∪ [

7
32 ,

3
8 ] ∪ [

5
8 ,

25
32 ] ∪ [

27
32 , 1];

3) Remove 4 middle subintervals of length 1
43 from the 4 remaining inter-

vals;

4) . . .

A visualization of the construction is given in Figure 3.1a. The construc-
tion is different from that of the classical Cantor set in that we remove pro-
portionally shorter subintervals, instead of subintervals proportional to the
mother interval. Therefore, 𝑉 has positive measure in R, 𝑚𝑒𝑎𝑠(𝑉) = 1

2 , while
the classical Cantor set has zero measure. Still, 𝑉 is nowhere dense.

We look for a synthetic objective function onM in the form

𝑓 :M → R, 𝑓 (𝑥, 𝑦) = −𝑝(𝑥) + 𝑦2,

where 𝑝(𝑥) is a function of certain regularity on the 1D interval 𝑥 ∈ [−1, 2].
Consider two examples:

(A) Define 𝑝𝐴 (𝑥) = 0 for 𝑥 ∈ 𝑉 . As 𝑉 is a closed set, write 𝑉 𝑐 = [−1, 2]\𝑉 =

(⋃𝛼 (𝑎𝛼, 𝑏𝛼))∪ [−1, 0)∪ (1, 2] as the disjoint union of intervals. On each
interval (𝑎, 𝑏), let

𝑝𝐴 (𝑥) =


(𝑥 − 𝑎)2, for 𝑎 < 𝑥 ≤ 𝑎 + (𝑏−𝑎)4 ;

𝐶1(𝑥 − 𝑎+𝑏
2 )

4 + 𝐶2(𝑥 − 𝑎+𝑏
2 )

2 + 𝐶3, for 𝑎 + (𝑏−𝑎)4 < 𝑥 ≤ 𝑏 − (𝑏−𝑎)4 ;

(𝑏 − 𝑥)2, for 𝑏 − (𝑏−𝑎)4 < 𝑥 < 𝑏,

where 𝐶1 = 8
(𝑏−𝑎)2 , 𝐶2 = −2, 𝐶3 =

5(𝑏−𝑎)2
32 . See a visualization in Figures

3.1b and 3.1c.

(B) Similar to (A), but on each interval (𝑎, 𝑏), let

𝑝𝐵 (𝑥) =


(𝑥 − 𝑎)4, for 𝑎 < 𝑥 ≤ 𝑎 + (𝑏−𝑎)4 ;

𝐶1(𝑥 − 𝑎+𝑏
2 )

6 + 𝐶2(𝑥 − 𝑎+𝑏
2 )

4 + 𝐶3, for 𝑎 + (𝑏−𝑎)4 < 𝑥 ≤ 𝑏 − (𝑏−𝑎)4 ;

(𝑏 − 𝑥)4, for 𝑏 − (𝑏−𝑎)4 < 𝑥 < 𝑏,

where 𝐶1 = 512
3(𝑏−𝑎)4 , 𝐶2 = − 24

(𝑏−𝑎)2 , 𝐶3 =
11(𝑏−𝑎)2

96 .
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It is easy to see that both functions 𝑝𝑖 (𝑥), 𝑖 = 𝐴 or 𝐵, satisfy 𝑝(𝑥) ≥ 0 and
𝑝(𝑥) = 0 if and only if 𝑥 ∈ 𝑉 . Thus for 𝑓𝑖 (𝑥, 𝑦) = −𝑝𝑖 (𝑥) + 𝑦2, the saddle set of
𝑓 is 𝑆 = 𝑉 × [0]. Viewed in the 2-dimensional manifold, it has zero measure.
But the converging set of 𝑆 is𝑊 𝑠

𝑆
(𝜑) = 𝑉 × [−1, 1]. It has positive measure in

M: 𝑚𝑒𝑎𝑠(𝑊 𝑠
𝑆
(𝜑)) = 1. If we start the RGD algorithm with a uniform random

initialization, the probability that {𝑍𝑛}∞𝑛=0 end up toward a saddle is

𝑃𝑟 ( lim
𝑛→∞

𝑍𝑛 ∈ 𝑆) =
1
6
> 0.

So what happens? The reason that gradient descent fails to escape such a
saddle set is well hidden. Specifically, in Example (A), 𝑝𝐴 (𝑥) is only 𝐶1 but
not 𝐶2. For each 𝑥 ∈ 𝑉 , the second derivatives of 𝑝𝐴 (𝑥) on two sides are
not equal. One side of 𝑥 is an open interval in 𝑉 𝑐, so the second derivative
is 2; while on the other side 𝑥 is the limit point of a sequence {𝑥 𝑗 }∞𝑗=1 ⊂ 𝑉 ,
and the second derivative is not well-defined. As for Example (B), 𝑝𝐵 (𝑥) is
𝐶3 over [−1, 2] and thus 𝑓𝐵 (𝑥, 𝑦) satisfies the regularity requirements. How-
ever, 𝑝′′

𝐵
(𝑥) = 0 ∀𝑥 ∈ 𝑉 , so 𝑥 ∈ 𝑉 are not strict saddles.

A loosely relevant discussion of the above constructions can be found in
[117], Exercise 5.21. This example is purely synthetic, but it raises a healthy
warning as to how much the assumptions can be relaxed while the escape
from saddle sets is still valid.

(a) Construction of Smith-
Volterra-Cantor set for the
first 5 steps.

(b) Example of 𝑝𝐴(𝑥) on a
single interval.

(c) Visualization of 𝑓 (𝑥, 𝑦) = −𝑝𝐴(𝑥) + 𝑦2,
where saddle set is the middle of the
“plateaus”.

Figure 3.1: Illustration of Example 3.3.5.
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3.4 Example of asymptotic escape on the low-rank matrix manifold

In this section, we consider the phase retrieval problem [24, 98, 122] on the
rank-1 matrix manifold. This serves both as an application of our asymp-
totic escape analysis for strict saddles, and as a demonstration of the possi-
bility of treating such a problem rigorously on the manifold as opposed to
the Euclidean space.

Since the phase retrieval problem involves a large number of stochastic
measurements (i.e., random coefficient matrices {𝐴 𝑗 (𝜔)} that constitute the
objective function 𝑓𝜔, 𝜔 indicating the random event), we will approach
this problem in two steps. First, a crude analysis will be performed on its
expectation E𝜔 𝑓 . In this case we will locate a strict critical submanifold in
the shape of a “hyper ring”. Then, for the non-expectation case 𝑓 = 𝑓(𝜔) ,
we will prove a rather surprising result that it almost surely has only a fi-
nite number of saddle points. We will then show that with high probabil-
ity, these saddles are strict saddles, and we know they are located near the
above “hyper ring”, so our asymptotic escape analysis is also applicable.
The asymptotic escape is further supported by numerical experiments.

Phase retrieval on manifold: the expectation

The problem of phase retrieval in the case of real values aims to retrieve the
information about 𝑥 ∈ R𝑛, from the phaseless measurements

𝑦 𝑗 = |𝑎⊤𝑗 𝑥 |2, 𝑗 = 1, . . . 𝑚,

where the entries of {𝑎 𝑗 (𝜔)}𝑚𝑗=1 are drawn from i.i.d. Gaussian. Usually a
large 𝑚 is needed to ensure successful recovery of 𝑥.

Let 𝑋 = 𝑥𝑥⊤, 𝐴 𝑗 = 𝑎 𝑗𝑎⊤𝑗 , then 𝑦 𝑗 = ⟨𝐴 𝑗 , 𝑋⟩. The problem can be posed on the
rank-1 matrix manifoldM1 as

min
𝑍∈M1

𝑓 (𝑍) :=
1

2𝑚

𝑚∑︁
𝑗=1

|⟨𝐴 𝑗 , 𝑍 − 𝑋⟩|2.

We can apply the Riemannian gradient descent to solve this problem on
M1. We refer the reader to [24] in which the authors discussed the practical
aspects of the RGD algorithm applied to phase retrieval. It is easily seen that
𝑍 = 𝑋 is the unique global minimizer. To ensure asymptotic convergence
of the RGD to the global minimizer, it remains to rule out local minimizers
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and identify other critical points as strict saddles. Previous works [98, 122]
have shown that phase retrieval has no spurious local minimum at least
with high probability in the Euclidean setting. The analysis of saddle has
been more complicated because of the stochasticity and Euclidean space
parameterization.

It helps to take the expectation of 𝑓 (𝑍) and look into its landscape on the
manifold. Note that

𝑓 (𝑍) := E𝜔 𝑓 (𝑍) =
3
2
∥𝑍 ∥2𝐹 +

3
2
∥𝑋 ∥2𝐹 − ∥𝑍 ∥𝐹 ∥𝑋 ∥𝐹 − 2⟨𝑍, 𝑋⟩,

and the Riemannian gradient (i.e., projected gradient) is

grad 𝑓 (𝑍) = 𝑃𝑇𝑍 (∇ 𝑓 (𝑍)) = 𝑃𝑇𝑍 ((3 −
∥𝑋 ∥𝐹
∥𝑍 ∥𝐹

)𝑍 − 2𝑋).

The first-order condition is satisfied if either 𝑍 = 𝑋 , or

∥𝑍 ∥𝐹 =
1
3
∥𝑋 ∥𝐹 , ⟨𝑍, 𝑋⟩ = 0.

The latter are spurious critical points, and they form a (𝑛-2)-dimensional
submanifold on M1. To see whether they are strict saddles, we look into
their Hessian.

Let 𝑍 = 𝑧𝑧⊤, 𝑢 = 𝑧/∥𝑧∥2, then 𝑢 ⊥ 𝑥. Any element b ∈ 𝑇𝑍 can be represented
as b = 𝑤𝑢𝑢⊤ + 𝑢𝑣⊤ + 𝑣𝑢⊤, where 𝑤 ∈ R, 𝑣 ∈ R𝑛 and 𝑣 ⊥ 𝑢. From [125],
𝑅𝑁 (𝑍 + b) = 𝑍 + b + [ + O(∥b∥3) where [ = 𝑣𝑣⊤/∥𝑍 ∥𝐹 . Using the formula that
Hess 𝑓 (𝑍) = Hess( 𝑓 ◦ R𝑍 ) (𝑡b) |𝑡=0, we have

𝑓 ◦ R𝑍 (b) = 𝑓 (𝑍 + b + [) + O(∥b∥3)

= 𝑓 (𝑍) + ⟨∇ 𝑓 (𝑍), b⟩ + ⟨∇ 𝑓 (𝑍), [⟩ + 1
2
⟨∇2 𝑓 (𝑍) [b], b⟩ + O(∥b∥3),

and collecting the second-order terms gives

⟨Hess 𝑓 (𝑍) [b], b⟩ = 2⟨∇ 𝑓 (𝑍), [⟩ + ⟨∇2 𝑓 (𝑍) [b], b⟩

= (6 − 2
∥𝑋 ∥𝐹
∥𝑍 ∥𝐹

)⟨𝑍, [⟩ − 4⟨𝑋, [⟩ + (3 − ∥𝑋 ∥𝐹∥𝑍 ∥𝐹
)∥b∥2𝐹 +

∥𝑋 ∥𝐹
∥𝑍 ∥3

𝐹

⟨𝑍, b⟩2

= −4⟨𝑋, [⟩ + 3
∥𝑍 ∥2

𝐹

⟨𝑍, b⟩2

= −4
|𝑥⊤𝑣 |2
∥𝑍 ∥𝐹

+ 3𝑤2.



47

Let b = 𝑢𝑥⊤ + 𝑥𝑢⊤, then ⟨Hess 𝑓 (𝑍) [b], b⟩ = −12∥𝑋 ∥𝐹 < 0. Therefore these
spurious critical points are strict saddles. In fact they form a strict critical
submanifold N = {𝑍 ∈ M | ∥𝑍 ∥𝐹 = 1

3 ∥𝑋 ∥𝐹 , ⟨𝑍, 𝑋⟩ = 0}. For 𝑝 ∈ N ,
𝑇𝑝M = 𝑑𝑖𝑚(𝑇𝑝N) = 𝑛 − 2, 𝑑𝑖𝑚(a𝑠𝑝M) = 𝑑𝑖𝑚(a𝑢𝑝M) = 1. RGD will escape the
strict critical submanifold and converge to the minimum of 𝑓 almost surely
by Theorem 3.3.4.

Note that although we focus on the real case (i.e., M1(R)) here, the above
results can be generalized to the complex case easily, and the only change is
in the constants concerning Gaussian moments.

Phase retrieval: Dive into specific realizations

Specific realizations of phase retrieval may have much more complicated
landscape than the expectation case. However, in the previous work [98]
the authors have shown that for a slightly modified objective function, with
high probability, the saddles of a specific realization of phase retrieval lie in
the neighborhood of the above N , what we call the “hyper ring”.

Consider

𝑓 (𝑍) = 1
2𝑚

𝑚∑︁
𝑗=1

|⟨𝐴 𝑗 , 𝑍 − 𝑋⟩|2

for a specific realization of {𝐴 𝑗 (𝜔)}𝑚𝑗=1. The Riemannian gradient is

grad 𝑓 (𝑍) = 𝑃𝑇𝑍 (∇ 𝑓 (𝑍)) =
1
𝑚

𝑚∑︁
𝑗=1

⟨𝐴 𝑗 , 𝑍 − 𝑋⟩𝑃𝑇𝑍 (𝐴 𝑗 ).

And the Riemannian Hessian is

⟨Hess 𝑓 (𝑍) [b], b⟩ = 2⟨∇ 𝑓 (𝑍), [⟩ + ⟨∇2 𝑓 (𝑍) [b], b⟩

=
1
𝑚

𝑚∑︁
𝑗=1

(2⟨𝐴 𝑗 , 𝑍 − 𝑋⟩⟨𝐴 𝑗 , [⟩ + ⟨𝐴 𝑗 , b⟩2).

The first result is a rather surprising one showing the finite number of criti-
cal points for phase retrieval.

Lemma 3.4.1. When 𝑚 ≥ 𝑛, the above 𝑓 (𝑍) almost surely has only finite number
of critical points on the manifoldM1.

The proof of Lemma 3.4.1 is quite neat using the following result from [62]
and restated in [93].
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Lemma 3.4.2. For a polynomial system 𝑃(𝑥) = (𝑝1(𝑥), . . . , 𝑝𝑛 (𝑥)) with 𝑥 =

(𝑥1, . . . 𝑥𝑛) and 𝑑𝑖 = degree 𝑝𝑖 (𝑥), let 𝑝𝑖 (𝑥) = 𝑝1
𝑖
(𝑥) + 𝑝2

𝑖
(𝑥) where 𝑝1

𝑖
(𝑥) con-

sists of all the terms of 𝑝𝑖 (𝑥) with degree 𝑑𝑖. If the homogeneous polynomial system
𝑃1(𝑥) = (𝑝1

1(𝑥), . . . , 𝑝
1
𝑛 (𝑥)) = 0 has only the trivial solution 𝑥 = 0, then the origi-

nal system 𝑃(𝑥) = 0 only has a finite number of solutions. Moreover, the number
of solutions is exactly Π𝑛

𝑖=1𝑑𝑖.

Proof of Lemma 3.4.1. The first-order condition grad 𝑓 (𝑍) = 0 is equivalent to

1
𝑚

𝑚∑︁
𝑗=1

⟨𝐴 𝑗 , 𝑍 − 𝑋⟩𝑃𝑇𝑍 (𝐴 𝑗 ) = 0.

Let �̃� ∈ R𝑛×(𝑛−1) be the orthonormal complement of 𝑢. Then we have that

𝑃𝑇𝑍 (𝐴 𝑗 ) = 𝑢𝑢⊤𝐴 𝑗𝑢𝑢⊤ + 𝑢𝑢⊤𝐴 𝑗�̃��̃�⊤ + �̃��̃�⊤𝐴 𝑗𝑢𝑢⊤

= 𝑢(𝑎⊤𝑗 𝑢)2𝑢⊤ + 𝑢(𝑎⊤𝑗 𝑢 · 𝑎⊤𝑗 �̃�)�̃�⊤ + �̃� (𝑎⊤𝑗 𝑢 · �̃�⊤𝑎 𝑗 )𝑢⊤.

Applying a basis transform (𝑢, �̃�) to the first-order condition, by symmetry,
it is equivalent to 

1
𝑚

∑𝑚
𝑗=1⟨𝐴 𝑗 , 𝑍 − 𝑋⟩ · 𝑎⊤𝑗 𝑢 · 𝑎⊤𝑗 𝑢 = 0,

1
𝑚

∑𝑚
𝑗=1⟨𝐴 𝑗 , 𝑍 − 𝑋⟩ · 𝑎⊤𝑗 𝑢 · 𝑎⊤𝑗 �̃� = 0,

which is equivalent to
∑𝑚
𝑗=1⟨𝐴 𝑗 , 𝑍 − 𝑋⟩(𝑎⊤𝑗 𝑢)𝑎 𝑗 = 0, i.e., finding 𝑧 ∈ R𝑛 such

that
𝑚∑︁
𝑗=1

( |𝑎⊤𝑗 𝑧 |2 − |𝑎⊤𝑗 𝑥 |2) (𝑎⊤𝑗 𝑧)𝑎 𝑗 = 0. (3.2)

This is a third-order heterogeneous polynomial system of 𝑛 equations for 𝑛
unknowns. The homogeneous part of the system is

𝑚∑︁
𝑗=1

|𝑎⊤𝑗 𝑧 |2(𝑎⊤𝑗 𝑧)𝑎 𝑗 = 0.

This system almost surely only has the trivial solution 𝑧 = 0. To see this,
note that it requires

∑𝑚
𝑗=1 |𝑎⊤𝑗 𝑧 |4 = 0, i.e.

𝑎⊤𝑗 𝑧 = 0, 𝑗 = 1, . . . , 𝑚.

Since {𝑎 𝑗 } are i.i.d. Gaussian, when 𝑚 ≥ 𝑛 this linear system is almost
surely nondegenerate. Now we can apply Lemma 3.4.2 and deduce that the
original system only has finite number of solutions, i.e., 𝑓 (𝑍) only has finite
number of critical points on the manifold. □
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Remark 3.4.3. From Equation (3.2), we can see that the first-order condition
on the manifold M1 is equivalent to that in the parameterized Euclidean
space. This means that their critical points match. Still, a critical point
𝑍 = 𝑧𝑧⊤ corresponds to at least two critical points ±𝑧 in the parameterized
Euclidean space. Also, their Hessian can be very different.

Remark 3.4.4. The result of Lemma 3.4.1 only applies to the case 𝑧 ∈ R𝑛.
In the case 𝑧 ∈ C𝑛, we conjecture that there would be a finite number of of
critical submanifolds instead. Each critical submanifold consists of {𝑒𝑖\𝑧∗ :
\ ∈ [0, 2𝜋)}, the family of phaseless vectors. To see this, we can impose
the constraints 𝑎𝐻

𝑗
𝑧 ∈ R to the above equations (this is always possible by

letting 𝑎 𝑗 absorb the phase information, which does not alter 𝐴 𝑗 ). Now we
can replace | · | with (·) and again get a polynomial system. Lemma 3.4.2
is still applicable, and we get the finiteness of solutions on this constrained
subset. To remove the constraints, we put the phase information back and
obtain the submanifolds.

The Hessians of saddle points in phase retrieval are treated in the next
lemma. Note that the condition 𝑚 ≥ 𝑛 in Lemma 3.4.1 only ensures the
finite number of saddles. To make sure that saddles are strict, we need
𝑚 ≳ 𝑛 log 𝑛, which is consistent with recovery guarantees from previous
works (see e.g., [24] and references therein).

Theorem 3.4.5. Given 𝛿0, 𝛿1 > 0. If 𝑚 ≥ 𝐶 (𝛿1)𝑛 log 𝑛, then with high probability
no less than 1 − 𝐶1

𝑚
− 𝑒−𝐶2𝑛, for all 𝑍 that satisfy the following conditions

⟨𝑍, 𝑋⟩ ≤ 𝛿0∥𝑍 ∥𝐹 ∥𝑋 ∥𝐹 ,
1
3 − 𝛿0 ≤ ∥𝑍 ∥𝐹∥𝑋 ∥𝐹 ≤

1
3 + 𝛿0,

𝑃𝑇𝑍 (∇ 𝑓 (𝑍)) = 0,

we have
_𝑚𝑖𝑛 (Hess 𝑓 (𝑍)) ≤ Λ(𝛿0, 𝛿1) < 0.

Here 𝐶1, 𝐶2 are absolute constants, 𝐶 (𝛿1) depend only on 𝛿1, and Λ depend only
on 𝛿0 and 𝛿1. If we further require 𝛿0 <

1
6 , 𝛿1 <

5
36 , then _𝑚𝑖𝑛 (Hess 𝑓 (𝑍)) < −1.

Proof of Theorem 3.4.5. The construction of a negative curvature direction is
similar to that in the previous subsection. Let b = 𝑥𝑢⊤ + 𝑢𝑥⊤, then b ∈ 𝑇𝑍 .
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Since now 𝑥 and 𝑧 are not orthogonal, b = 𝑤𝑢𝑢⊤ + 𝑢𝑣⊤ + 𝑣𝑢⊤, where 𝑤 = 2𝑢⊤𝑥
and 𝑣 = 𝑥 − 𝑢𝑢⊤𝑥. The Hessian is

⟨Hess 𝑓 (𝑍) [b], b⟩ = 1
𝑚

𝑚∑︁
𝑗=1

(2⟨𝐴 𝑗 , 𝑍 − 𝑋⟩⟨𝐴 𝑗 , [⟩ + ⟨𝐴 𝑗 , b⟩2)

=
1
𝑚

𝑚∑︁
𝑗=1

(2⟨𝐴 𝑗 , 𝑍 − 𝑋⟩⟨𝐴 𝑗 ,
𝑥𝑥⊤

∥𝑍 ∥𝐹
+ ([ − 𝑥𝑥⊤

∥𝑍 ∥𝐹
)⟩ + ⟨𝐴 𝑗 , b⟩2).

An important observation is

1
𝑚

𝑚∑︁
𝑗=1

(2⟨𝐴 𝑗 , 𝑍 − 𝑋⟩⟨𝐴 𝑗 , ([ −
𝑥𝑥⊤

∥𝑍 ∥𝐹
)⟩ = 0.

This is because

[ · ∥𝑍 ∥𝐹 − 𝑥𝑥⊤ = 𝑣𝑣⊤ − 𝑥𝑥⊤ = (𝑥 − 𝑢𝑢⊤𝑥) (𝑥 − 𝑢𝑢⊤𝑥)⊤ − 𝑥𝑥⊤

= −𝑢𝑢⊤𝑥𝑥⊤ − 𝑥𝑥⊤𝑢𝑢⊤ + 𝑢𝑢⊤𝑥𝑥⊤𝑢𝑢⊤ ∈ 𝑇𝑍 ,

and the first-order condition gives 1
𝑚

∑𝑚
𝑗=1⟨𝐴 𝑗 , 𝑍 − 𝑋⟩⟨𝐴 𝑗 , Z⟩ = 0 for any Z ∈

𝑇𝑍 .

Therefore, we have

⟨Hess 𝑓 (𝑍) [b], b⟩
∥b∥2

𝐹

=

1
𝑚

∑𝑚
𝑗=1(2⟨𝐴 𝑗 , 𝑍 − 𝑋⟩⟨𝐴 𝑗 ,

𝑥𝑥⊤

∥𝑍 ∥𝐹 ⟩ + ⟨𝐴 𝑗 , b⟩
2)

∥b∥2
𝐹

=

1
𝑚

∑𝑚
𝑗=1(2( |𝑎⊤𝑗 𝑧 |2 − |𝑎⊤𝑗 𝑥 |2) |𝑎⊤𝑗 𝑥 |2 + 4|𝑎⊤

𝑗
𝑧 |2 |𝑎⊤

𝑗
𝑥 |2)

2(∥𝑧∥2∥𝑥∥2 + ⟨𝑥, 𝑧⟩2)

=

1
𝑚

∑𝑚
𝑗=1(3|𝑎⊤𝑗 𝑧 |2 |𝑎⊤𝑗 𝑥 |2 − |𝑎⊤𝑗 𝑥 |4)
∥𝑧∥2∥𝑥∥2 + ⟨𝑥, 𝑧⟩2

.

Using the concentration inequalities from Section 4 in [77], with high prob-
ability no less than 1 − 𝐶1

𝑚
− 𝑒−𝐶2𝑛, we have

⟨Hess 𝑓 (𝑍) [b], b⟩
∥b∥2

𝐹

≤
3(1 + 𝛿1) (∥𝑍 ∥𝐹 ∥𝑋 ∥𝐹 + 2⟨𝑋, 𝑍⟩) − (3 − 𝛿1)∥𝑋 ∥2𝐹

∥𝑍 ∥𝐹 ∥𝑋 ∥𝐹 + ⟨𝑋, 𝑍⟩

≤
3(1 + 𝛿1) ( 13 + 𝛿0 + 2𝛿0( 13 + 𝛿0)) − (3 − 𝛿1)

( 13 + 𝛿0) + 𝛿0( 13 + 𝛿0)
:= Λ(𝛿0, 𝛿1).

If 𝛿0 <
1
6 , 𝛿1 <

5
36 , then we get Λ(𝛿0, 𝛿1) < −1. □

The above results give us a good idea of the critical points in the “hyper
ring” region { 1

3 − 𝛿0 ≤ ∥𝑍 ∥𝐹∥𝑋 ∥𝐹 ≤
1
3 + 𝛿0} on the manifold. Specifically, Lemma
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3.4.1 tells us that there are only a finite number of critical points, and The-
orem 3.4.5 asserts that these critical points are all strict saddles on the man-
ifold since they have a common negative curvature direction. We are par-
ticularly interested in the “hyper ring” region because Theorem 2.2 of [98]
shows (with a slightly modified objective function) that all the critical points
lie in this region with high probability, except the unique global minimum.
From Theorem 3.2.3, we now know that the RGD will avoid saddles and
converge to the global minimum.

(a) 𝑙𝑜𝑔10 error for the expectation case. (b) 𝑙𝑜𝑔10 error for a specific realization.

Figure 3.2: Convergence (visualized as error band) of RGD for phase re-
trieval.

Figure 3.2 shows the 𝑙𝑜𝑔10 error convergence of the RGD for phase retrieval
on the manifoldM1. The left figure is about the expectation case, also called
the population problem, while the right one is a specific realization with a
certain group of {𝐴 𝑗 }𝑚𝑗=1, where 𝑚 = 12𝑛. In both experiments, we take
𝑛 = 256, learning rate 𝛼 = 1

3 , draw 100 𝑧0 from i.i.d. Gaussian distribution
(𝑍0 = z0z

⊤
0 ), and minimize E 𝑓 (𝑍) or 𝑓 (𝑍) starting from these random ini-

tializations. The darker central line is the average, and the band shows the
deviation. In general, it can be seen that the RGD is hardly affected by the
possible existence of saddle points and converges to the minimum.

This experiment has also demonstrated the curious phenomenon mentioned
at the beginning of Section 2.1, namely a first-order method such as RGD
converges exponentially fast (i.e., linearly), even though in the Euclidean
space it does not (i.e., only sublinearly). This will be explained in upcoming
Chapter 5.
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3.5 Example of applications on other Riemannian manifolds

Although our primary setting is the low-rank matrix manifoldM𝑟 , the asymp-
totic convergence to the minimum and escape of strict saddles (strict critical
submanifolds) is valid on arbitrary finite dimensional Riemannian manifold
M. In particular, the properties of the RGD are well preserved if the man-
ifold is embedded in a Banach space and inherits the Riemannian metric
from this ambient space. Below we discuss the optimization on the unit
sphere and the Stiefel manifold as two examples of applications.

Variational eigenproblem on a sphere

Consider M = S𝑛−1, the sphere embedded in the Euclidean space R𝑛. We
consider the following eigenvalue problem:

𝑔(𝑧) = _𝑧, 𝑧 ∈ R𝑛,

where 𝑔(𝑧) is a function of 𝑧 that may or may not be linear in 𝑧. Assume
that it has eigenpairs (_1, 𝑣1), (_2, 𝑣2), . . . , (_𝑘 , 𝑣𝑘 ), 0 < _1 < _2 ≤ . . . ≤ _𝑘 .
If 𝑔(𝑧) = ∇ 𝑓 (𝑧) for some function 𝑓 (𝑧), then to find (_1, 𝑣1) is to solve the
following optimization problem:

min
𝑧

𝑓 (𝑧) s.t. 𝑧 ∈ M = S𝑛−1.

Viewed as an embedded Riemannian manifold, the tangent space, tangent
space projection, and retraction onM = S𝑛−1 are given as follows:

𝑇𝑧 = {b ∈ R𝑛 : b⊤𝑧 = 0},
𝑃𝑇𝑧 = 𝐼 − 𝑧𝑧⊤,

𝑅(𝑦) = 𝑦

∥𝑦∥2
.

Note that 𝑅(𝑦) is a second-order retraction, because for any 𝑧 ∈ M, b ∈ 𝑇𝑧,
we have

𝑅(𝑧 + 𝛼b) = 𝑧 + 𝛼b
∥𝑧 + 𝛼b∥2

= (𝑧 + 𝛼b) (1 + 𝛼2∥b∥22)
− 1

2 = 𝑧 + 𝛼b + O(𝛼2).

The Levi-Civita connection on M is the projection of the Levi-Civita con-
nection of the ambient space (which is the derivative in R𝑛)

∇̃b𝑧[ = 𝑃𝑇𝑧 (∇b𝑧[) = (𝐼 − 𝑧𝑧⊤) (∇b𝑧[), [ ∈ 𝑇M , b𝑧 ∈ 𝑇𝑧 .
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The Riemannian gradient onM is

grad 𝑓 (𝑧) = 𝑃𝑇𝑧 (∇ 𝑓 (𝑧)).

So 𝑧 is a critical point onM if and only if 𝑧 is an eigenvector of the eigen-
problem 𝑔(𝑧) = _𝑧. The Riemannian Hessian onM is

Hess 𝑓 (𝑧) [b] = 𝑃𝑇𝑧 (∇2 𝑓 (𝑧) [b]) − (𝑧⊤∇ 𝑓 (𝑧))b.

If 𝑔(𝑧) is linear in 𝑧, then 𝑓 (𝑧) is quadratic. With the positiveness assump-
tion, we have 𝑓 (𝑧) = 𝑧⊤𝐴𝑧, where 𝐴 is an SPD matrix. Then 𝑓 (𝑥𝑖) = _𝑖,
grad 𝑓 (𝑧) = 𝐴𝑧 − (𝑧⊤𝐴𝑧)𝑧, and b⊤Hess 𝑓 (𝑧) [b] = b⊤𝐴b − (𝑧⊤𝐴𝑧)b⊤b. It is easy
to see that 𝑣1 is the unique (up to sign) global minimum with a positive
Hessian, and 𝑣𝑠 (𝑠 > 1) are all strict saddles whose Hessian has at least one
negative curvature direction b = 𝑣𝑠.

It is interesting to look at the case where a non-minimal eigenvalue has mul-
tiplicity greater than 1. Assume that _𝑠 = _𝑠+1 = . . . = _𝑠+𝑡 , then the subman-
ifoldN = {𝑦 ∈ R𝑛 | 𝑦 = 𝑐𝑠𝑣𝑠+ . . .+𝑐𝑠+𝑡𝑣𝑠+𝑡 , 𝑐2

𝑠 + . . .+𝑐2
𝑠+𝑡 = 1} is an immersed

submanifold ofM, and it is a strict critical submanifold of 𝑓 if 𝑠 ≥ 2. Since
the number of such submanifolds is finite, escape from these submanifolds
toward 𝑥1 is ensured by the tools in Section 3.3.

When 𝑔(𝑧) is not linear in 𝑧, as 𝑓 (𝑧) now contains non-quadratic terms, it is
not immediately clear from the algebraic expression whether Hess 𝑓 (𝑥𝑠), 𝑠 >
1 has negative curvature direction, though it can be verified numerically.

The first numerical example is from the discretized 1D Schrödinger eigen-
problem −Δ𝑢 +𝑉 (𝑥)𝑢 = _𝑢 with periodic boundary condition, where 𝑉 (𝑥) is
taken to be the smoothed 1D Kronig-Penney (KP) potential describing free
electrons in 1D crystal [87, 111]. Figure 3.3a shows the profile of the KP po-
tential defined on 𝐷 = [0, 50] with 5 energy wells and periodic BC. Figure
3.3b shows the first 30 eigenvalues of the operator −Δ + 𝑉 (𝑥). We can see
that the first 5 eigenvalues are clustered (but not identical).

We discretize 𝐷 into 𝑛 = 27 grids and solve the discretized problem on
M = S𝑛−1 with the RGD starting from a random initialization. The step
size is 𝛼 = 0.01. In Figure 3.3c, we observe that the generated sequence
first seems to “stagnate” near a non-minimal eigenstate, but then escapes
and converges toward the minimum. Figure 3.3d shows the profile of the
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computed ground energy state 𝑣1, which is quite close to the true ground
state but slightly deformed. An improvement will be proposed in the next
subsection.

(a) Profile of 𝑉 (𝑥). (b) First 30 eigenvalues of −Δ +
𝑉 (𝑥).

(c) Error decay in RGD. (d) Profile of the first eigenstate
𝑣1.

Figure 3.3: Solving the linear Schrödinger eigenproblem on the sphere.

The second example is the nonlinear Schrödinger eigenproblem−Δ𝑢+𝑉 (𝑥)𝑢+
𝛽 |𝑢 |2𝑢 = _𝑢, or the so-called Gross-Pitaevskii eigenvalue problem for the
Bose-Einstein Condensate (BEC) [115]. It gives a more accurate description
of the dynamics of Bosonic gases at ultra-low temperature. With the pres-
ence of the nonlinear term 𝛽 |𝑢 |2𝑢, linear eigensolvers would fail, and the
optimization of its variational form becomes the state-of-art solver, see e.g.,
[72]. Apart from the RGD based on the 𝐿2 metric, there can be other RGD
algorithms based on other types of metrics and with different convergence
theories, whose analysis is beyond the scope of this chapter.

We use the same potential function 𝑉 (𝑥) and discretization size as above.
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The nonlinear term has the weight 𝛽 = 1. The objective function is

𝑓 (𝑧) = 1
2
𝑧⊤𝐴𝑧 + 𝛽

4

𝑛∑︁
𝑗=1

𝑧( 𝑗)4, 𝐴 = −𝐿 +𝑉.

For an eigenstate 𝑣𝑠, the eigenvalue associated to it is

_𝑠 = 2 𝑓 (𝑠) + 𝛽
2

𝑛∑︁
𝑗=1

𝑧( 𝑗)4.

We compute the first two eigenstates of the nonlinear Schrödinger problem
using the RGD with stepsize 𝛼 = 0.01. Figure 3.4c shows their profiles.
Figures 3.4a and 3.4b demonstrate the convergence of the RGD toward the
computed eigenvalues.

To verify that 𝑣2 is a strict saddle point, we numerically compute the small-
est eigenvalue of Hess 𝑓 (𝑣2) and _min(Hess 𝑓 (𝑣2)) = −0.0024 < 0. Figure
3.4d shows a profile of the corresponding eigenvector bmin, i.e., a negative
curvature direction.

(a) Error decay of RGD when
computing 𝑣1.

(b) Error decay of RGD when
computing 𝑣2.

(c) Profile of eigenstates 𝑣1 and
𝑣2.

(d) A negative curvature direc-
tion.

Figure 3.4: Solving the nonlinear Schrödinger eigenproblem on the sphere.
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Apart from physical problems like BEC eigenstates, linear and nonlinear
eigenproblems also find applications in image processing and machine learn-
ing. For example, the MaxCut problem corresponds to a linear eigenprob-
lem, while the optimization of the Ginzburg-Landau type functional in im-
age segmentation and learning tasks corresponds to a nonlinear eigenprob-
lem, see e.g., [19, 75]. Although there are many algorithms tailored for linear
eigenproblems, their nonlinear relatives often lack a rigorous convergence
guarantee. Manifold optimization thus provides a more versatile point of
view for them.

Simultaneous eigensolver on the Stiefel manifold

Subspace iteration is a common technique for accelerating the convergence
of smallest eigenstates in linear eigenproblems, especially when the ground
states are clustered, as is in the previous examples.

From the viewpoint of manifold optimization, to solve the first 𝑚 eigen-
states simultaneously can be posed as the optimization on the Stiefel mani-
foldM = {𝑍 ∈ R𝑛×𝑚 : 𝑍⊤𝑍 = 𝐼𝑚}:

min
𝑍

trace( 𝑓 (𝑍)) s.t. 𝑍 ∈ M = {𝑍 ∈ R𝑛×𝑚 : 𝑍⊤𝑍 = 𝐼𝑚}.

The Stiefel manifold [53, 83] is the set of all 𝑚-frames in R𝑛. When 𝑚 = 1,
it reduces to the sphere S𝑛−1. With the Euclidean metric, its tangent space,
tangent space projection and retraction are given as follows:

𝑇𝑍 = {b ∈ R𝑛×𝑚 : b⊤𝑍 + 𝑍⊤b = 0},
𝑃𝑇𝑍 (𝑌 ) = 𝑌 − 𝑍 sym(𝑍⊤𝑌 ),
𝑅(𝑌 ) = qf (𝑌 ),

where sym(·) takes the symmetric part and qf(·) takes the 𝑄 factor of QR
decomposition. Similar to the case of the sphere manifold, the Rieman-
nian connection and gradient are defined by the projection onto the tangent
space. When 𝑓 (𝑍) = 𝑍⊤𝐴𝑍 , we have

grad 𝑓 (𝑍) = 𝑃𝑇𝑍 (𝐴𝑍),
⟨b,Hess 𝑓 (𝑍) [b]⟩ = tr(b⊤𝐴b − (b⊤b) (𝑍⊤𝐴𝑍)).

It is easily verified that the minimum is achieved when span𝑍 = span{𝑣1, . . . , 𝑣𝑚},
and all 𝑍 that span other eigen subspaces are strict saddles if all the eigen-
values are distinct.
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We compute the first 5 eigenstates simultaneously for the linear Schrödinger
eigenproblem with the same potential as in Figure 3.3a. The step size is
𝛼 = 0.01. Figures 3.5a and 3.5b compare the computed eigenstates extracted
from 𝑍 and the true eigenstates, which are almost identical. In Figure 3.5c,
we can see that the subspace iteration on the Stiefel manifold achieves much
better convergence in fewer steps than the optimization on the sphere.

(a) Computed eigenstates. (b) True eigenstates.

(c) Error decay of RGD. (d) Accumulated energy of the
first 5 eigenstates.

Figure 3.5: Simultaneously solving the first 5 eigenstates of the linear
Schrödinger problem on the Stiefel manifold.

Application of the Stiefel manifold optimization can also be extended to
data science, e.g., frame construction and dictionary learning [25, 121], if
the frame/dictionary satisfies orthonormal assumptions.

3.6 Discussion

We have studied the asymptotic escape of strict saddles points of the RGD
on the Riemannian manifolds. The first main contribution of this chapter is
that it pushes the boundary of current analysis to non-isolated saddle sets,
proving when the RGD can escape and indicating when it cannot. As a
general tool, it can be applied to various settings as long as the manifold
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of interest satisfies certain smoothness conditions. This is demonstrated by
several representative examples from different fields.

The saddle analysis of phase retrieval on the low-rank matrix manifold
serves as an application of the above asymptotic escape result, but it also
stands as an insightful result by itself. We have shown that it always has a
finite number of critical points, and the saddles are strict saddles with high
probability. Essentially, the low-rank matrix manifold sheds light on the
intrinsic quadratic (instead of quartic) structure of this problem.

In addition to the asymptotic convergence behavior of the RGD, the con-
vergence rate is also an important issue. Empirical linear convergence rates
in many low-rank matrix recovery problems are already observed but are
yet to be explained. This is the topic of Chapter 5, where we prove the lin-
ear convergence rate using the quadratic nature of those problems on the
manifoldM𝑟 .

3.7 Appendix

As we mentioned in Section 3.3, when there are a bunch of self-connected
critical submanifolds (generalization of critical points), the escape of strict
critical submanifolds (generalized strict saddles) and convergence to a min-
imum rely on the number or the structure of such critical submanifolds.
When the number is uncountable, the situation can be quite complicated.

In this appendix, we discuss some structural properties of critical subman-
ifolds that may help untangle their successive relations. We introduce the
concepts of index and transversality, point out the transversality properties
of certain functions and their consequences, and link the stable manifolds
of the gradient flow to that of the gradient descent.

Definition 3.7.1 (Index). For 𝑓 : M ↦→ R, let 𝑝 be a critical point of 𝑓 , then
the index of 𝑝 is

_𝑝 := dim 𝑇𝑢𝑝M .

Remark 3.7.2. All critical points in the same connected critical submanifold
N have the same index, and we define it as the index _N of the submanifold
N . An equivalent way to define strict critical submanifold is _N > 0.

Definition 3.7.3 (Transversality). (1) For smooth maps 𝑓 : N1 ↦→ M and
𝑔 : N2 ↦→ M, we say that 𝑓 is transverse to 𝑔, iff for any 𝑋1, 𝑋2 such that
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𝑓 (𝑋1) = 𝑔(𝑋2) = 𝑌 ,

𝑑𝑓 (𝑇𝑋1N1) + 𝑑𝑔(𝑇𝑋2N2) = 𝑇𝑌M,

where 𝑑𝑓 and 𝑑𝑔 are gradient vector fields of 𝑓 and 𝑔;
(2) If N1 and N2 are immersed submanifolds ofM, then N1 is transverse to
N2 iff for any 𝑋 ∈ N1 ∩ N2,

𝑇𝑋N1 + 𝑇𝑋N2 = 𝑇𝑋M .

Two immersed submanifolds vacuously transverse if they do not intersect.

Remark 3.7.4. A function 𝑓 : M ↦→ R is called Morse-Bott if all its criti-
cal points lie in some disjoint union of connected and nondegenerate crit-
ical submanifolds; 𝑓 is called Morse-Smale if it satisifies the Morse-Smale
transversality condition, i.e., for any two critical submanifolds N1, N2, their
stable and unstable manifolds intersect transversally.

The transversality condition for immersed manifolds simply means that
two manifolds “cross” each other and do not “overlap”. Figure 3.6 is a vivid
illustration of transversality on a 2-dimensional manifold. If the objective
function 𝑓 is a Morse-Smale function, transversality implies more favorable
properties.

Figure 3.6: An illustration of transversality.

Theorem 3.7.5 (Corollary 6.27 in [13]). For a Morse-Smale function 𝑓 , any crit-
ical point 𝑝 of 𝑓 satisfies

𝑊𝑢 (𝑝) =
⋃
𝑝⪰𝑞

𝑊𝑢 (𝑞),

𝑊 𝑠 (𝑝) =
⋃
𝑟⪰𝑝

𝑊 𝑠 (𝑟),

where 𝑊 𝑠 (𝑝) (resp. 𝑊𝑢 (𝑝)) is the stable (resp. unstable) manifold of 𝑝 defined by
gradient flow, and 𝑝 ⪰ 𝑞 means𝑊𝑢 (𝑝) ∩𝑊 𝑠 (𝑞) ≠ ∅.
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Theorem 3.7.6. For a Morse-Smale function 𝑓 , if two critical submanifolds N1

andN2 have the same index, then they vacuously transverse, i.e.,𝑊𝑢 (N1)∩𝑊 𝑠 (N2) =
∅.

Proof. By Proposition 6.2 in [13], if𝑊𝑢 (N1) ∩𝑊 𝑠 (N2) ≠ ∅, then their intersec-
tion is an embedded submanifold of dimension (_N1−_N2). But _N1−_N2 = 0,
which is a contradiction. □

Both Theorem 3.7.5 and Theorem 3.7.6 are helpful when taking the union
of stable manifolds of infinitely many critical submanifolds. Theorem 3.7.5
shows that the closure of the stable/unstable manifold of one critical set is
the union of the stable/unstable manifolds of the sets that have successive
relations with it. On the other hand, Theorem 3.7.6 shows that the succes-
sive relations are strictly limited by the indices (i.e., negative curvature di-
mensions) of the critical sets. This successive relation simply cannot happen
between sets of the same index.

It should be stressed that the above results are on the stable/unstable man-
ifold of gradient flows, not gradient descents. Whether this can be generalized
to gradient descents is still unclear. We know that with first-order retrac-
tion property, as 𝛼 → 0, the Riemannian gradient descent on the manifold
approximates the gradient flow trajectory. It can be proved that the respec-
tive stable/unstable manifolds also converge, as long as the retraction is
at least first-order and the domain is compact. However, the transversal-
ity concerns the “angles” at the intersection of these submanifolds. Even
the uniform convergence of submanifolds cannot ensure the preservation
of their intersection angles along the convergence.

What lies at the core of the asymptotic analysis is an interesting interplay of
dynamical systems and nonconvex optimization, and a translation of lan-
guages from the Morse theory [12, 13, 40] into gradient flows and further
into gradient descents. Although these tools were initially developed to
study homology, they have provided invaluable insight into the converg-
ing/escaping sets of strict saddle points with nontrivial geometry. This dis-
cussion aims to draw interest to the vast possibilities that Morse theory has
to offer. They point out a way to deal with complex geometries of critical
point sets. It would be interesting to further pursue this direction to quan-
tify the above relations.
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C h a p t e r 4

ASYMPTOTIC ESCAPE OF SPURIOUS CRITICAL POINTS
ON THE LOW-RANK MATRIX MANIFOLD

This chapter is focused on a fundamental problem that has long remained
open in the analysis of the low-rank matrix manifold M𝑟 . It concerns the
spurious critical points (Section 2.3), an intriguing phenomenon that is not
present in the Euclidean space or other Riemannian manifolds. The spu-
rious critical points S# are some rank-deficient matrices that capture part
(but not all) of the eigen components of the ground truth. Unlike classical
strict saddle points, they are singular and their Riemannian Hessian is un-
bounded. For a long time, people have used the low-rank matrix manifold
M𝑟 without realizing their existence. But we have seen in Section 2.3 that
they could serve as limit points of certain minimizing sequences.

In this chapter, we show that the Riemannian gradient flow and the Rieman-
nian gradient descent with a particular step size almost surely escape some
spurious critical points on the boundary of M𝑟 . Our result is the first to
partly overcome the non-closedness of the low-rank matrix manifold with-
out changing the vanilla Riemannian gradient descent algorithm. Numeri-
cal experiments are provided to support our theoretical findings.

One important feature of the spurious critical points is that the Riemannian
gradient around a spurious critical point is singular and the Riemannian
Hessian is unbounded, see Figure 2.1 for an illustration. Because of this
singularity, no asymptotic escape theorem in Chapter 3 can be applied di-
rectly to S#. This poses a significant challenge to any attempt aiming at an
asymptotic escape result.

To tackle this problem, the main technique we use is the dynamical low-
rank approximation, which parameterizes the gradient flow on M𝑟 . By
rescaling the gradient flow system in the parameterized domain, we are
able to map a spurious critical point 𝑍∗ to a strict critical submanifold in the
classical sense. This allows us to apply the result in Chapter 3 and show that
Riemannian gradient descent and Riemannian gradient flow asymptotically
escape rank-(r-1) spurious critical points.
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The results in this chapter are purely asymptotic, in the sense that even
though the algorithm escapes the spurious critical points, it is still unclear
how long it takes to converge to the local minima. This question will be
answered in Chapter 5, which establishes the linear convergence rate guar-
antee.

Organization of this chapter. We have given a brief introduction of the
problem in Section 1.2. The rest of this chapter is organized as follows.
In Section 4.1, we further elaborate on the background of the problem and
related work. In Section 4.2 we present and prove the main result of this
chapter, which is the asymptotic escape of the rank-(r-1) spurious critical
points by the gradient flow. Specifically, we introduce the dynamical low-
rank approximation as a primary tool, propose the rescaled gradient flow,
prove its 𝐶0- and 𝐶1-extension to the rank-(r-1) spurious critical points, and
show that these points are strict saddle points under the rescaled flow. In
Section 4.3 we present the corresponding result for the gradient descent.
In Section 4.4, some numerical experiments are performed to illustrate our
theoretical results. Finally, Section 4.5 is devoted to some discussion.

Notations. Unless otherwise specified, upper-case letters stand for matri-
ces, lower-case letters stand for vectors or scalars, and calligraphic letters
stand for manifolds or sets. The field F can be either R or C. The low-rank
matrix manifold is denoted by M𝑟 , defined in Section 2.1. The Hermitian
transpose is denoted by (·)∗. The set of 𝑛 × 𝑛 real symmetric matrices is
denoted by S𝑛, while the set of 𝑛 × 𝑛 Hermitian matrices is denoted by H𝑛.
The Stiefel manifold is St(𝑛, 𝑟) = {𝑈 ∈ F𝑛×𝑟 : 𝑈∗𝑈 = 𝐼𝑟}. The orthogonal
group is SO(𝑛) = St(𝑛, 𝑛). The subscript (·)# is reserved for the spurious crit-
ical points. We use grad and Hess to denote the Riemannian gradient and
Hessian, and ∇ to denote the Euclidean derivative.

4.1 Background and related work

We focus on the symmetric positive semi-definite (SPSD) or Hermitian pos-
itive semi-definite (HPSD) manifold. In Section 2.3, we have introduced the
spurious critical points that emerge when minimizing the least squares loss
function 𝑓 (𝑍) = ∥𝑍 − 𝑋 ∥2F onM𝑟 . When it comes to the SPSD/HPSD case,
one can define the spurious critical points as follows:

Definition 4.1.1 (Spurious critical points). Assume that 𝑋 = 𝑈𝑋𝐷𝑋𝑈
∗
𝑋

is an
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eigenvalue decomposition of 𝑋 ∈ M𝑟 . Then the set of spurious critical
points with respect to 𝑓 (𝑍) = 1

2 ∥𝑍 − 𝑋 ∥
2
F onM𝑟 is S# = ∪𝑟−1

𝑠=0S𝑠, where each
S𝑠 can be characterized as

S𝑠 =
{
𝑍# : 𝑍# = 𝑈1𝐷1𝑈1

∗, 𝑈1 ∈ F𝑛×𝑠, 𝐷1 ∈ F𝑠×𝑠}.

Here 𝑈𝑋 = (𝑈1,𝑈2), 𝑈1 ∈ F𝑛×𝑠, 𝑈2 ∈ F𝑛×(𝑟−𝑠) is a block decomposition of 𝑈𝑋 ;
similarly for 𝐷𝑋 .

The contribution of this chapter is to show that when minimizing the least
squares loss function, the Riemannian gradient flow and the Riemannian
gradient descent with varying step size asymptotically escape the rank-(r-
1) spurious critical points on the rank-𝑟 SPSD or HPSD manifold, see Theo-
rems 4.2.1 and 4.3.1.

In Section 1.2, we have introduced the motivation of our work. Below, we
further review some related works in the literature and discuss their con-
nection and comparison with our work.

Nonclosedness of the low-rank matrix manifold. The fact thatM𝑟 is not a
closed set is first reported in [125] in the context of matrix completion, and
later in [86] with low Tucker-rank tensor completion. To guarantee that the
iterative sequence of the proposed algorithm stays inside a compact sub-
set ofM𝑟 , the author of [125] proposes to add a regularization term to the
objective function 𝑓 :

𝑔(𝑍) = 𝑓 (𝑍) + `2(∥𝑍 ∥2F + ∥𝑍
†∥2F),

where 𝑍† is the pseudo-inverse of 𝑍 , and ` is a parameter. In particular, the
term `2∥𝑍†∥2F guarantees that ∥𝑍†∥F will not go to infinity, i.e., the rank of 𝑍
will not drop below 𝑟.

However, the author also comments that `2 can be chosen very small, in
fact as small as 10−16. In numerical experiments, one can simply neglect this
term and use the original function 𝑓 instead of the regularized function 𝑔.
In other words, the author has observed that even without regularization,
the iterative sequence of the vanilla Riemannian gradient descent almost
surely avoids the rank-deficient points and stays insideM𝑟 .

Apocalypses from a geometric point of view. Concurrent with our paper,
the authors of [92] propose a similar concept. They use the term apocalypse
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to describe the event where the sequence of iterative points is in M𝑟 but
the limit point has rank less than 𝑟 and is not stationary. This is exactly
what happens in Example 2.3.2. They observe that apocalypse occurs when
the tangent cone at the limit is not contained in the limit of the tangent
cones. A more detailed discussion on the relation between tangent cones
and optimality conditions can be found in [97].

Along this line of research, two remedies have been proposed to fix the
apocalypse. The first is a second-order algorithm [92], which uses a smooth
lift (similar to the Burer-Monteiro factorization) and the trust-region method.
Another is a first-order algorithm proposed in [109], which uses the numer-
ical rank to perform suitable rank reductions.

We remark that although both approaches avoid apocalyptic points, they
require major modification to the gradient descent algorithm. In contrast,
we focus on understanding why gradient descent needs no modification
in practice, and we give a partial answer for the minimization of the least
squares loss function.

Asymptotic escape of classical strict saddle points. We have discussed in
Section 1.1 that gradient descent with random initialization almost surely
escapes strict saddles and converges to minimizers. Results on the asymp-
totic escape of non-isolated strict saddle sets and strict critical submanifolds
in the most general form are given in Chapter 3. The important observation
is that the spurious critical points in M𝑟\M𝑟 are fundamentally different
from, but subtly related to, the classical strict saddle points. The spurious
critical points have singular local neighborhoods as illustrated in Figure 2.1.
Their asymptotic escape behavior cannot be directly explained by Theorem
3.3.4. However, using a rescaled gradient flow, we can eliminate the singu-
larity, and apply the saddle escape results to the rescaled system.

Implicit regularization in low-rank matrix factorization. The concept of
implicit regularization is often used to describe the emergence of favorable
structures without explicit regularization terms. In deep matrix factoriza-
tion and deep neural networks, this describes a tendency toward low-rank
solutions and better generalization [7]. In statistical estimation, this could
mean a tendency to promote incoherence and accelerate convergence [39,
103]. As we have seen, the phenomenon that iterative sequences on the
nonclosed manifold M𝑟 stay inside the manifold does not rely on an ex-
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plicit regularization term `2∥𝑍†∥2F. Thus it can also be seen as a form of
implicit regularization.

Matrix decomposition and its continuity. Our analysis crucially relies on
finding a low-rank decomposition that is sufficiently continuous along the
whole gradient flow trajectory. The dynamical low-rank approximation
(DLRA), first proposed in [85], is a decomposition that suits our purpose.
In contrast, the singular value decomposition will lose its differentiability
whenever singular values coalesce [49]. A variant called the analytic SVD
[22] could fix this issue, but it requires analyticity of the gradient function.
It cannot be applied to functions onM𝑟 as the Riemannian gradient is not
analytic because of the spurious critical points. We remark that the success
of DLRA is still limited to the rank-(r-1) spurious critical points. Extension
of the current analysis to general spurious critical points is left for future
work.

4.2 Main result

Recall that by Definition 4.1.1, the set of spurious critical points of the least
squares loss function onM𝑟 is S# = ∪𝑟−1

𝑠=0S𝑠, where each S𝑠 (0 ≤ 𝑠 ≤ 𝑟 − 1)
contains the rank-𝑠 spurious critical points, i.e.,

S𝑠 =
{
𝑍# : 𝑍# = 𝑈1𝐷1𝑈1

∗, 𝑈1 ∈ F𝑛×𝑠, 𝐷1 ∈ F𝑠×𝑠}.

The first main result of this chapter is as follows.

Theorem 4.2.1 (Asymptotic escape ofS𝑟−1: gradient flow). Let 𝑓 (𝑍) = 1
2 ∥𝑍 − 𝑋 ∥

2
F,

where 𝑋 ∈ M𝑟 has distinct eigenvalues. Let 𝑍𝑡 : 𝑡 ≥ 0 be the gradient flow of 𝑓 on
M𝑟 starting from a random initialization 𝑍0. Then we have that 𝑍𝑡 ∈ M𝑟 , ∀ 0 ≤
𝑡 < +∞, and

Prob ( lim
𝑡→∞

𝑍𝑡 ∈ 𝑆𝑟−1) = 0.

In the next few sections, we introduce some technical tools that eventually
constitute the proof of Theorem 4.2.1 at the end of Section 4.2.

Dynamical low-rank approximation

The dynamical low-rank approximation was first proposed in [85] and soon
gained popularity as a discretization method for the computation of low-
rank evolution systems. It gives a neat description of the column space and
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core matrix of the low-rank matrix along the evolution. The decomposi-
tion enjoys better smoothness than SVD and other classical decompositions.
While a smooth version of SVD is only available when the gradient func-
tion is analytic, the dynamical low-rank approximation always preserves
the smoothness of the gradient function. Below we first recall the general
version of DLRA.

Lemma 4.2.2 (Dynamical low-rank approximation1, [85]). Consider the gra-
dient flow of a function 𝑓 : F𝑚×𝑛𝑟 → R, where F𝑚×𝑛𝑟 is the set of 𝑚×𝑛 matrices with
rank 𝑟. Assume 𝑍 = 𝑈𝑆𝑉∗, where 𝑈, 𝑉 ∈ F𝑛×𝑟 are orthonormal, and 𝑆 ∈ R𝑟×𝑟 is
nonsingular. Let 𝑀 := −grad 𝑓 (𝑍) = −𝑃𝑇𝑍 (∇ 𝑓 (𝑍)) denote the negative Rieman-
nian gradient of 𝑓 at 𝑍 ∈ M𝑟 . Impose the constraints ¤𝑈∗𝑈 = ¤𝑉∗𝑉 = 0. Then the
gradient flow of 𝑓 can be described by the following ODE system:

¤𝑈 = 𝑃⊥
𝑈
𝑀𝑉𝑆−1,

¤𝑉 = 𝑃⊥
𝑉
𝑀∗𝑈 (𝑆−1)∗,

¤𝑆 = 𝑈∗𝑀𝑉.

(4.1)

Here, 𝑃⊥
𝑈
= 𝐼 −𝑈𝑈∗ and 𝑃⊥

𝑉
= 𝐼 −𝑉𝑉∗.

More specifically, in the SPSD or HPSD setting, for the least squares function
𝑓 (𝑍) = 1

2 ∥𝑍 − 𝑋 ∥
2
F, we have the following result.

Lemma 4.2.3 (Existence of gradient flow). Consider the manifold of SPSD or
HPSD matricesM𝑟 = {𝑍 ∈ S𝑛 or H𝑛, 𝑍 ≽ 0, rank(𝑍) = 𝑟}. Consider the least
squares loss function 𝑓 (𝑍) = 1

2 ∥𝑍 − 𝑋 ∥
2
F. Let 𝑀 := −grad 𝑓 (𝑍) denote its negative

Riemannian gradient. Let 𝑍0 ∈ M𝑟 be the initialization of the gradient flow at time
𝑇 = 0, and𝑈0 ∈ St(𝑛, 𝑟), 𝑆0 ∈ S𝑟 nonsingular such that 𝑍0 = 𝑈0𝑆0𝑈

⊤
0 . Then there

exists a unique gradient flow satisfying
¤𝑈 = 𝑃⊥

𝑈
𝑀𝑈𝑆−1,

¤𝑆 = 𝑈∗𝑀𝑈,

for all 0 ≤ 𝑇 < ∞.

Proof. The Riemannian gradient of the objective function 𝑓 (𝑍) = 1
2 ∥𝑍 − 𝑋 ∥

2
F

is 𝑃𝑇𝑍 (𝑍 − 𝑋). Plugging in 𝑀 = −𝑃𝑇𝑍 (𝑍 − 𝑋), and noticing that 𝑃⊥
𝑈
𝑍 = 0 and

1Strictly speaking, our ODE system is not an “approximation” but an exact characteri-
zation of the gradient flow. We stick to this terminology for ease of reference.
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𝑃𝑈𝑈 = 𝑈, we get the following ODE system:
¤𝑈 = 𝑃⊥

𝑈
𝑋𝑈𝑆−1,

¤𝑆 = −𝑆 +𝑈∗𝑋𝑈.

It suffices to show that the ODE system does not blow up in finite time. We
prove that for any 𝑇1 > 0, 𝜎min(𝑆) is bounded from below for all 𝑇 ∈ [0, 𝑇1],
where 𝜎min(𝑆) is the smallest eigenvalue of 𝑆 ∈ 𝑆𝑟 .

At 𝑇 = 0, we have 𝜎min(𝑆) > 0. At a given time 𝑇 , let the multiplicity
of 𝜎min(𝑆) be 𝑗 , i.e., 𝜎𝑟− 𝑗 (𝑆) > 𝜎𝑟− 𝑗+1(𝑆) = . . . = 𝜎𝑟 (𝑆). Denote 𝑃𝑈(𝑟− 𝑗+1) to 𝑟

as the projection onto the corresponding eigen subspace. Using a similar
argument as in [104], one can show that

d
d𝑡

©«
𝑟∑︁

𝑙=𝑟− 𝑗+1
𝜎𝑙 (𝑆)ª®¬ = tr

(
𝑃𝑈(𝑟− 𝑗+1) to 𝑟

· d
d𝑡
𝑆

)
.

In particular, when 𝜎𝑟 (𝑆) is a simple eigenvalue and 𝑢𝑟 is its eigenvector,
this reduces to the classical result

d
d𝑡
𝜎𝑟 (𝑆) = 𝑢∗𝑟

(
d
d𝑡
𝑆

)
𝑢𝑟 .

Note that d
d𝑡 𝑆 = −𝑆 +𝑈∗𝑋𝑈 and 𝑋 is positive semi-definite. Thus d

d𝑡 𝑆 ≽ −𝑆,
and we have

d
d𝑡

©«
𝑟∑︁

𝑙=𝑟− 𝑗+1
𝜎𝑙 (𝑆)ª®¬ ≥ tr

(
𝑃𝑈(𝑟− 𝑗+1) to 𝑟

· (−𝑆)
)
= −

𝑟∑︁
𝑙=𝑟− 𝑗+1

𝜎𝑙 (𝑆).

In particular, when 𝜎𝑟 (𝑆) is a simple eigenvalue, one has

d
d𝑡
𝜎𝑟 (𝑆) ≥ −𝜎𝑟 (𝑆).

By Grönwall’s inequality, 𝜎min(𝑆) decays no faster than exponentially fast.
Thus it is bounded from below in any finite time interval. □

The dynamical low-rank approximation introduces a multiple-to-one map-
ping as a parameterization ofM𝑟 . Let St(𝑛, 𝑟) denote the 𝑛 by 𝑟 Stiefel man-
ifold, i.e., St(𝑛, 𝑟) = {𝑈 ∈ F𝑛×𝑟 : 𝑈∗𝑈 = 𝐼𝑟}. Then we have that for 𝑆 nonsin-
gular,

St(𝑛, 𝑟) ⊕ S𝑟 → M𝑟

(𝑈, 𝑆) ↦→ 𝑍 = 𝑈𝑆𝑈∗.
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Since 𝑆 is not required to be diagonal, there are infinitely many tuples of
(𝑈, 𝑆) corresponding to the same 𝑍 , and these tuples are not equivalent un-
der permutations. However, after we impose the constraint ¤𝑈∗𝑈 = 0, from
any initial tuple (𝑈0, 𝑆0) there is a unique path in St(𝑛, 𝑟) ⊕ S𝑟 that describes
the gradient flow of 𝑓 according to Lemma 4.2.3. In other words, as long
as the initial decomposition 𝑍0 = 𝑈0𝑆0𝑈

∗
0 is given, the decomposition that

satisfies the dynamical low-rank relation is uniquely determined along the
whole trajectory.

The advantage of the dynamical low-rank approximation lies in the fact that
the ODE system generically stays continuous. This is especially remarkable
for the eigenvector matrix 𝑈. In comparison, SVD might enjoy uniqueness
to some extent, but it is known to lose its differentiability when singular
values coalesce [49], and that could only be fixed with the unrealistic as-
sumption of analyticity [22].

Under the above parameterization, any isolated critical point 𝑍# onM𝑟 cor-
responds to a critical set on St(𝑛, 𝑟) ⊕ S𝑟 consisting of infinitely many points,
denoted by N𝑍# :

N𝑍# := {(𝑈#, 𝑆#) : 𝑈#𝑆#𝑈
∗
# = 𝑍#}.

Some constraints need to be imposed on the above decomposition to make
it a valid parameterization for a spurious critical point. We will discuss it in
more detail in Section 4.2.

In the following, we do not distinguish between the parameterized gradient
flow on St(𝑛, 𝑟) ⊕ S𝑟 and the original gradient flow onM𝑟 when there is no
confusion. To prove the asymptotic escape of spurious critical points onM𝑟 ,
then, is to prove the asymptotic escape of spurious critical submanifolds on
St(𝑛, 𝑟) ⊕ S𝑟 .

Parameterization ofM𝑟

As is mentioned in the previous subsection, using the parameterization
St(𝑛, 𝑟) ⊕ S𝑟 → M𝑟 , each single critical point 𝑍# corresponds to a submani-
fold N𝑍# . In this subsection, we formally establish this result.

In order to use the dynamical low-rank approximation from Section 4.2, we
decompose a rank-𝑟 matrix 𝑍 ∈ S𝑛 into 𝑍 = 𝑈𝑆𝑈∗, where 𝑈 ∈ St(𝑛, 𝑟) and
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𝑆 ∈ S𝑟 . This decomposition differs from the eigenvalue decomposition in
that 𝑆 is not necessarily a diagonal matrix.

Consider a spurious critical point 𝑍# = 𝑈1𝐷1𝑈1
∗ ∈ M𝑠 ⊂ M𝑟\M𝑟 , where

𝑈1 ∈ F𝑛×𝑠 represents the 𝑠 eigenvectors that are also eigenvectors of 𝑋 . We
would like to determine a submanifold N𝑍# ⊂ St(𝑛, 𝑟) ⊕ S𝑟 that corresponds
to 𝑍#. Assume that

𝑍# = 𝑈#𝑆#𝑈
∗
# ,

where
𝑆# = 𝑃#Σ#𝑃

∗
#

is the eigenvalue decomposition of 𝑆#. Then there exists𝑈3 ⊥ 𝑈1, such that

𝑈# = (𝑈1,𝑈3)𝑃∗#, Σ# =

(
𝐷1 0
0 0

)
.

In addition, for 𝑍# to be a critical point of 𝑓 (𝑍) = 1
2 ∥𝑍 − 𝑋 ∥

2
F onM𝑟 , we need

grad 𝑓 (𝑍#) = 0, i.e., 𝑃𝑇𝑍#
(𝑍# − 𝑋) = 0. One can show that this gives

𝑈3 ⊥ 𝑈𝑋 = (𝑈1,𝑈2).

In other words, 𝑈3, the 𝑛 × (𝑟 − 𝑠) matrix that makes up for the missing
rank, should be chosen to be perpendicular to the missing component 𝑈2.
This also gives us lim𝑍→𝑍# grad 𝑓 (𝑍) = 0, a property that will be useful in
upcoming computation.

To sum up, a spurious critical point 𝑍# ∈ S# can be parameterized as

N𝑍# =

{
(𝑈#, 𝑆#) : 𝑈# = (𝑈1,𝑈3)𝑃∗#, 𝑆# = 𝑃#

(
𝐷1 0
0 0

)
𝑃∗#, 𝑈3 ⊥ 𝑈𝑋

}
,

where 𝑃# ∈ SO(𝑟) is an orthonormal matrix.

Lemma 4.2.4. N𝑍# is an embedded submanifold of the manifoldM := St(𝑛, 𝑟)⊕S𝑟 .

Proof. The proof of this lemma is very technical and is deferred to Section
4.6. The main idea is to invoke the definition of a submanifold directly and
construct chart functions on N𝑍# . □
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Rescaled gradient flow

Consider the dynamical low-rank description of the gradient flow in Lemma
4.2.3: 

¤𝑈 = 𝐹 (𝑈, 𝑆) := 𝑃⊥
𝑈
𝑋𝑈𝑆−1,

¤𝑆 = 𝐻 (𝑈, 𝑆) := −𝑆 +𝑈∗𝑋𝑈.
(DLRA)

The main tool for the proof of asymptotic escape is the following rescaled
gradient flow ODE system:

¤𝑈 = 𝐹 (𝑈, 𝑆) := 𝑃⊥
𝑈
𝑋𝑈𝑆−1 · 𝜎min(𝑆),

¤𝑆 = 𝐻 (𝑈, 𝑆) := (−𝑆 +𝑈∗𝑋𝑈) · 𝜎min(𝑆).
(DLRA*)

Here 𝜎min(𝑆) denotes the smallest eigenvalue of the 𝑟 × 𝑟 matrix 𝑆. In other
words, the rescaled system (DLRA*) is just the original system (DLRA)
times a scalar 𝜎min(𝑆).

We first show that the rescaled system (DLRA*) is well-defined.

Lemma 4.2.5 (Continuity). The functions 𝐹 (𝑈, 𝑆) and 𝐻 (𝑈, 𝑆) are 𝐶0 inM𝑟 .

Proof. InsideM𝑟 , the matrix inverse 𝑆−1 is well-defined, so are the functions
𝐹 (𝑈, 𝑆) and 𝐻 (𝑈, 𝑆). Then use the fact that the smallest eigenvalue 𝜎min(𝑆)
is 𝐶0 with respect to 𝑆. □

Lemma 4.2.6 (𝐶0-extension). The functions 𝐹 (𝑈, 𝑆) and 𝐻 (𝑈, 𝑆) can be ex-
tended continuously to S𝑟−1.

Proof. Take any 𝑍# ∈ S𝑟−1 with parameterization 𝑍# = 𝑈#𝑆#𝑈
∗
# . It suffices

to show that lim𝑍→𝑍# 𝐹 (𝑈, 𝑆) and 𝐻 (𝑈, 𝑆) exist, and are independent of the
specific choices of parameterization.

Let 𝑆 = 𝑃Σ𝑃∗ and 𝑆# = 𝑃#Σ#𝑃
∗
# be the eigenvalue decompositions of 𝑆 and

𝑆# respectively. Denote 𝑝𝑖 = 𝑃(:, 𝑖), and 𝑝#,𝑖 = 𝑃#(:, 𝑖). Assume that 𝑋 =

𝑈𝑋𝐷𝑋𝑈
∗
𝑋
=

∑𝑟
𝑖=1 𝑑𝑖𝑢𝑖𝑢

∗
𝑖
. Since 𝑍# ∈ S𝑟−1, from the previous subsection, we

know that

Σ# =

(
𝐷1 0
0 0

)
,
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where 𝐷1 is an (𝑟 − 1) × (𝑟 − 1) diagonal matrix, 𝐷1 = diag{𝑑1, . . . , 𝑑𝑟−1}.
Moreover, when ∥𝑆 − 𝑆#∥F < 𝜖 for small enough 𝜖 , by the sinΘ theorem
(Lemma 2.4.1), we have

Σ = diag{𝜎1, . . . , 𝜎𝑟−1, 𝜎𝑟},

where

𝜎𝑗 > min{𝑑1. . . . , 𝑑𝑟−1} − 𝜖, 1 ≤ 𝑗 ≤ 𝑟 − 1;

0 ≤ 𝜎𝑟 < 𝜖.

In other words, 𝜎𝑟 and the rest of the eigenvalues of 𝑆 are well-separated.
Thus, when 𝜖 is small enough, we always have 𝜎min(𝑆) = 𝜎𝑟 .

Consider 𝜑(𝑆) := 𝑆−1𝜎min(𝑆). When ∥𝑆 − 𝑆#∥F < 𝜖 , we have

𝜑(𝑆) = 𝑃 · diag{𝜎−1
1 , . . . , 𝜎−1

𝑟−1, 𝜎
−1
𝑟 } · 𝑃∗ · 𝜎𝑟

= 𝑃 · diag
{
𝜎𝑟

𝜎1
, . . . ,

𝜎𝑟

𝜎𝑟−1
, 1

}
· 𝑃∗

= 𝑃 · diag
{
𝜎𝑟

𝜎1
, . . . ,

𝜎𝑟

𝜎𝑟−1
, 0

}
· 𝑃∗ + 𝑝𝑟 𝑝∗𝑟 .

Thus,

lim
𝑆→𝑆#

𝜑(𝑆) = lim
𝑆→𝑆#

(
𝑃 · diag

{
𝜎𝑟

𝜎1
, . . . ,

𝜎𝑟

𝜎𝑟−1
, 0

}
· 𝑃∗ + 𝑝𝑟 𝑝∗𝑟

)
= 0 + 𝑝#,𝑟 𝑝

∗
#,𝑟

= 𝑝#,𝑟 𝑝
∗
#,𝑟 .

In other words, 𝜑(𝑆) can be continuously extended to 𝑆#.

We can now compute the limits of 𝐹 and 𝐻. Note that

𝐹 (𝑈, 𝑆) = 𝑃⊥𝑈𝑋𝑈 · 𝜑(𝑆).

Using the parameterization

𝑍# = 𝑈#𝑆#𝑈
∗
# : 𝑈# = (𝑈1,𝑈3)𝑃∗#, 𝑆# = 𝑃#

(
𝐷1 0
0 0

)
𝑃∗#,
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we have

lim
(𝑈,𝑆)→(𝑈#,𝑆#)

𝐹 (𝑈, 𝑆) = 𝑃⊥𝑈#
𝑋𝑈# · lim

𝑆→𝑆#
𝜑(𝑆)

= 𝑃⊥𝑈#
𝑋𝑈# · 𝑝#,𝑟 𝑝

∗
#,𝑟

= (𝐼 − 𝑃𝑈1 − 𝑃𝑈3) · (𝑈1𝐷1𝑈
∗
1 +𝑈2𝐷2𝑈

∗
2) · (𝑈1,𝑈3)𝑃∗# · 𝑝#,𝑟 𝑝

∗
#,𝑟

= 𝑈2𝐷2𝑈
∗
2 · (𝑈1,𝑈3) · 𝑃∗# · 𝑝#,𝑟 𝑝

∗
#,𝑟

= 0.

As for 𝐻 (𝑈, 𝑆), since 𝐻 (𝑈, 𝑆) is bounded and 𝜎min(𝑆) converges to zero, we
have

lim
(𝑈,𝑆)→(𝑈#,𝑆#)

𝐻 (𝑈, 𝑆) = lim
(𝑈,𝑆)→(𝑈#,𝑆#)

𝐻 (𝑈,𝑉, 𝑆) · 𝜎min(𝑆) = 0.

Thus, 𝐹 (𝑈, 𝑆) and 𝐻 (𝑈, 𝑆) can both be extended continuously to S𝑟−1, inde-
pendent of the parameterization. □

Limit points of the rescaled system

In this subsection, we show that the ODE systems (DLRA) and (DLRA*)
have the same limit points.

Lemma 4.2.7 (Existence of rescaled gradient flow). Consider the rescaled ODE
system (DLRA*). Let 𝑍0 ∈ M𝑟 be the initialization of the gradient flow at time
𝑇 = 0, and𝑈0 ∈ St(𝑛, 𝑟), 𝑆0 ∈ S𝑟 nonsingular such that 𝑍0 = 𝑈0𝑆0𝑈

⊤
0 . Then there

exists a unique gradient flow that satisfies (DLRA*) for all 𝑇 ∈ [0,∞).

Proof. The proof follows the same idea as that of Lemma 4.2.3. We show that
within finite time, (𝑈, 𝑆) remains in a region where 𝐹 and 𝐻 are Lipschitz
continuous. Note that ∇𝑆𝑖 𝑗 (𝑆−1) = −𝑆−1𝐸𝑖 𝑗𝑆

−1 where 𝐸𝑖 𝑗 is the indicator
matrix of the (𝑖, 𝑗)-entry. Note also that the smallest eigenvalue 𝜎min(𝑆) is
Lipschitz continuous with respect to 𝑆 [84]. Thus the Lipschitz continuity
of 𝐹 and 𝐻 holds if 𝑆−1 is bounded. This is true if 𝜎min(𝑆) is bounded from
below.

At a given time𝑇 , let the multiplicity of𝜎min(𝑆) be 𝑗 , i.e., 𝜎𝑟− 𝑗 (𝑆) > 𝜎𝑟− 𝑗+1(𝑆) =
. . . = 𝜎𝑟 (𝑆). Denote 𝑃𝑈(𝑟− 𝑗+1) to 𝑟

as the projection onto the corresponding
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eigen subspace. Using a similar argument as in [104], we now have

d
d𝑡

©«
𝑟∑︁

𝑙=𝑟− 𝑗+1
𝜎𝑙 (𝑆)ª®¬ = tr

(
𝑃𝑈(𝑟− 𝑗+1) to 𝑟

· d
d𝑡
𝑆

)
= tr

(
𝑃𝑈(𝑟− 𝑗+1) to 𝑟

· (−𝑆 +𝑈∗𝑋𝑈) · 𝜎min(𝑆)
)

≥ tr
(
𝑃𝑈(𝑟− 𝑗+1) to 𝑟

· (−𝑆)
)
· 𝜎min(𝑆)

= − ©«
𝑟∑︁

𝑙=𝑟− 𝑗+1
𝜎𝑙 (𝑆)ª®¬ · 𝜎min(𝑆).

In particular, when 𝜎𝑟 (𝑆) is a simple eigenvalue, this reduces to

d
d𝑡
𝜎𝑟 (𝑆) ≥ −𝜎𝑟 (𝑆)2.

Thus 𝜎min(𝑆) decays no faster than geometrically due to Grönwall’s in-
equality. Thus it is bounded from below in any finite time interval. □

Lemma 4.2.8 (Limit points). Let 𝑍0 ∈ M𝑟 . Then the limit points of the ODE
system (DLRA*) are the same as those of (DLRA). Moreover, the gradient flows
starting from the same initial point always converge to the same limit point.

Proof. Observe that the rescaled system (DLRA*) is just the original system
(DLRA) multiplied by a scalar:

𝐹 (𝑈, 𝑆) = 𝐹 (𝑈, 𝑆) · 𝜎min(𝑆),
𝐻 (𝑈, 𝑆) = 𝐻 (𝑈, 𝑆) · 𝜎min(𝑆).

Thus the gradient flow of the rescaled system follows the same path as the
original system. In other words, let 𝑍𝑡 (𝑡 ≥ 0) and 𝑍𝑡 (𝑡 ≥ 0) be the solutions
of (DLRA) and (DLRA*) starting from the same initial point 𝑍0, then for any
time 𝑡 ≥ 0, there exists a corresponding time 𝑤 ≥ 0 such that 𝑍𝑡 = 𝑍𝑤.

When the time goes to infinity, both flows have limit points because both
are minimizing flows of a coercive and lower-bounded function 𝑓 . Denote
them as 𝑍∞ and 𝑍∞ respectively. Then either 𝑍∞ = 𝑍∞, or there exists a finite
𝑇 such that 𝑍∞ = 𝑍𝑇 .

We now argue that only 𝑍∞ = 𝑍∞ is possible. Looking at the ODE sys-
tem (DLRA*), a critical point has to satisfy either 𝐹 (𝑈, 𝑆) = 𝐻 (𝑈, 𝑆) = 0, or
𝜎min(𝑆) = 0. In the former case, 𝐹 (𝑈, 𝑆) = 𝐻 (𝑈, 𝑆) = 0 means such (𝑈, 𝑆)
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is stationary for (DLRA), so 𝑍∞ = 𝑍∞. In the latter case, such (𝑈, 𝑆) has
to be 𝑍∞ because we know that 𝜎min(𝑆) cannot be zero at any finite time
from Lemma 4.2.3. So either way, 𝑍∞ = 𝑍∞. Therefore, the limit points of
(DLRA*) could only be those of (DLRA). □

By Lemma 4.2.8, if we can prove that gradient flows of (DLRA*) starting
from random initializations almost surely avoid the spurious critical points
in S𝑟−1, we immediately have that the same results apply to (DLRA). In
the next subsection, we will show that this is much easier to prove for the
rescaled system than for the original system, because the points in S𝑟−1 are
now strict saddle points in the classical sense.

Landscape around the spurious critical points

We now analyze the landscape of (DLRA*) around the spurious critical
points. In fact, we will show that the𝐶0-extension that we proved in Lemma
4.2.6 can be improved to a 𝐶1-extension.

Lemma 4.2.9 (𝐶1-extension). Assume that the eigenvalues of the ground truth
matrix 𝑋 are all distinct. The functions 𝐹 (𝑈, 𝑆) and 𝐻 (𝑈, 𝑆) can be 𝐶1-extended
to S𝑟−1.

Proof. We first compute ∇𝐹 and ∇𝐻 in the interior ofM𝑟 . In this region, 𝑆
is non-singular, and all the derivatives are well defined. Let b = (b1, b2) be
a placeholder for the directional derivative, where b1 and b2 correspond to
the direction of𝑈 and 𝑆 respectively. Direct computation gives

∇𝐹 (𝑈, 𝑆) [b] =
(
−(𝑈b∗1 + b1𝑈

∗)𝑋𝑈𝑆−1 + 𝑃⊥
𝑈
𝑋b1(𝑆−1)∗

−𝑃⊥
𝑈
𝑋𝑈𝑆−1b2𝑆

−1

)
,

∇𝐻 (𝑈, 𝑆) [b] =
(
b∗1𝑋𝑈 +𝑈

∗𝑋b1

−b2

)
.

To extend ∇𝐹 and ∇𝐻 themselves to S𝑟−1 is impossible: 𝑆−1 is singular near
S𝑟−1, causing the derivatives to explode. We aim to show that it becomes
possible with the rescaled system (DLRA*).

For this purpose, we define the following function, which is the directional
derivative of 𝜑(𝑆) along the direction [:

𝜓(𝑆, [) := ∇𝜑(𝑆) [[] = ∇(𝑆−1𝜎min(𝑆)) [[] .
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We follow the same notations as before. Direct computation gives

lim
𝑆→𝑆#

𝜓(𝑆, [) = lim
𝑆→𝑆#

(
−𝑆−1[𝑆−1𝜎min(𝑆) + 𝑆−1 · ∇𝜎min(𝑆) [[]

)
.

We know from the proof of Lemma 4.2.6 that when ∥𝑆 − 𝑆#∥F < 𝜖 for small
enough 𝜖 , the larger eigenvalues 𝜎1 to 𝜎𝑟−1 and the smallest eigenvalue 𝜎𝑟
are well-separated. In fact, assuming that the eigenvalues of 𝑋 are distinct,
for small enough 𝜖 , all the eigenvalues of 𝑆 are well-separated, and the cor-
responding eigenvectors are continuous with respect to the change of 𝑆. In
this case, we know from [104] that

∇𝜎𝑟 (𝑆) [[] = 𝑝∗𝑟[𝑝𝑟 .

Thus, we have

lim
𝑆→𝑆#

𝜓(𝑆, [) = lim
𝑆→𝑆#

(
−𝑆−1[𝑆−1𝜎𝑟 + 𝑆−1𝑝∗𝑟[𝑝𝑟

)
.

For simplicity, we focus on the real case F = R. Since {𝑝𝑖𝑝∗𝑗 }𝑟𝑖, 𝑗=1 form a
complete orthogonal basis of R𝑟×𝑟 , we can write

[ =
∑︁

1≤𝑖, 𝑗≤𝑟
𝑐𝑖 𝑗 𝑝𝑖𝑝

∗
𝑗 .

Such decomposition is continuous around 𝑆#, since all𝜎𝑖’s are well-separated
and all 𝑝𝑖’s are continuous with respect to the change of 𝑆.

It now suffices to compute lim𝑆→𝑆# 𝜓(𝑆, [) for [ = 𝑝𝑖𝑝
∗
𝑗
, as 𝜓(𝑆, [) is linear in

[. This comes in the following cases:

(1) If 𝑖, 𝑗 < 𝑟:

lim
𝑆→𝑆#

𝜓(𝑆, 𝑝𝑖𝑝∗𝑗 ) = lim
𝑆→𝑆#

(
−𝑆−1𝑝𝑖𝑝

∗
𝑗𝑆
−1𝜎𝑟 + 𝑆−1𝑝∗𝑟 𝑝𝑖𝑝

∗
𝑗 𝑝𝑟

)
= lim
𝑆→𝑆#

(
−𝑃Σ−1𝑒𝑖𝑒

∗
𝑗Σ
−1𝜎𝑟𝑃

∗ + 𝑆−1 · 0
)

= lim
𝑆→𝑆#

(−𝑃 · 0 · 𝑃∗ + 0)

= 0.

(2) If 𝑖 < 𝑟, 𝑗 = 𝑟:

lim
𝑆→𝑆#

𝜓(𝑆, 𝑝𝑖𝑝∗𝑟 ) = lim
𝑆→𝑆#

(
−𝑆−1𝑝𝑖𝑝

∗
𝑟𝑆
−1𝜎𝑟 + 𝑆−1𝑝∗𝑟 𝑝𝑖𝑝

∗
𝑟 𝑝𝑟

)
= lim
𝑆→𝑆#

(
−𝑃Σ−1𝑒𝑖𝑒

∗
𝑟Σ
−1𝜎𝑟𝑃

∗ + 𝑆−1 · 0
)

= 𝑑−1
𝑖 𝑝𝑖𝑝

∗
𝑟 .
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(3) If 𝑖 = 𝑟, 𝑗 < 𝑟: Similar to the previous case,

lim
𝑆→𝑆#

𝜓(𝑆, 𝑝𝑟 𝑝∗𝑗 ) = 𝑑−1
𝑗 𝑝𝑟 𝑝

∗
𝑗 .

(4) If 𝑖 = 𝑗 = 𝑟:

lim
𝑆→𝑆#

𝜓(𝑆, 𝑝𝑟 𝑝∗𝑗 ) = lim
𝑆→𝑆#

(
−𝑆−1𝑝𝑟 𝑝

∗
𝑟𝑆
−1𝜎𝑟 + 𝑆−1𝑝∗𝑟 𝑝𝑟 𝑝

∗
𝑟𝑣𝑟

)
= lim
𝑆→𝑆#

(
−𝑃Σ−1𝑒𝑟𝑒

∗
𝑟Σ
−1𝜎𝑟𝑃

∗ + 𝑆−1
)

= lim
𝑆→𝑆#

(
𝑃 · diag

{
𝜎−1

1 , . . . , 𝜎−1
𝑟−1,−𝜎

−1
𝑟 + 𝜎−1

𝑟

}
· 𝑃∗

)
= lim
𝑆→𝑆#

(
𝑃 · diag

{
𝜎−1

1 , . . . , 𝜎−1
𝑟−1, 0

}
· 𝑃∗

)
= 𝑃# · diag

{
𝜎−1

1 , . . . , 𝜎−1
𝑟−1, 0

}
· 𝑃∗#.

Therefore, 𝜓(𝑆, [) can be continuously extended to 𝑆# for any [.

We now compute the derivatives of 𝐹 and 𝐻 at 𝑍#. The directional deriva-
tive in𝑈 only involves 𝜑(𝑆#), and we have

lim
𝑍→𝑍#

∇𝑈𝐹 (𝑈, 𝑆) [b1] = lim
𝑍→𝑍#

(
−(𝑈b∗1 + b1𝑈

∗)𝑋𝑈𝑆−1𝜎min(𝑆) + 𝑃⊥𝑈𝑋b1𝑆
−1𝜎min(𝑆)

)
= −(𝑈#b

∗
1 + b1(𝑈#)∗)𝑋𝑈# · 𝜑(𝑆#) + 𝑃⊥𝑈#

𝑋b1 · 𝜑(𝑆#)
= −(𝑈#b

∗
1 + b1(𝑈#)∗)𝑋𝑈# · 𝑝𝑟 𝑝∗𝑟 + 𝑃⊥𝑈#

𝑋b1𝑝𝑟 𝑝
∗
𝑟 .

As for the directional derivative in 𝑆, we now make use of 𝜓(𝑆#, [):

lim
𝑍→𝑍#

∇𝑆𝐹 (𝑈, 𝑆) [b2] = lim
𝑍→𝑍#

∇𝑆
(
𝑃⊥𝑈𝑋𝑈𝑆

−1
)
[b2]

= lim
𝑍→𝑍#

(
𝑃⊥𝑈𝑋𝑈𝜓(𝑆, b2)

)
= 𝑃⊥𝑈#

𝑋𝑈# · 𝜓(𝑆#, b2).

Since 𝑃⊥
𝑈#
𝑋𝑈# = 0 and 𝜓(𝑆#, b2) is bounded, we have

lim
𝑍→𝑍#

∇𝑆𝐹 (𝑈, 𝑆) [b2] = 0 · 𝜓(𝑆#, b2) = 0.

Thus, the derivatives of 𝐹 can be extended continuously to 𝑍#, and we have

lim
𝑍→𝑍#

∇𝐹 (𝑈, 𝑆) =
(
−(𝑈#b

∗
1 + b1(𝑈#)∗)𝑋𝑈# · 𝑝𝑟 𝑝∗𝑟 + 𝑃⊥𝑈#

𝑋b1 · 𝑝𝑟 𝑝∗𝑟
0

)
.
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As for the derivative of 𝐻, we have

lim
𝑍→𝑍#

∇𝐻 (𝑈, 𝑆) [b] = lim
𝑍→𝑍#

(
(b∗1𝑋𝑈 +𝑈

∗𝑋b1) · 𝜎min(𝑆)
−b2 · 𝜎min(𝑆) + (−𝑆 +𝑈∗𝑋𝑈)∇𝑆𝜎min(𝑆) [b2]

)
=

(
0
0

)
.

Thus, we have shown that the derivatives of 𝐹 (𝑈, 𝑆) and 𝐻 (𝑈, 𝑆) can both
be extended continuously to such 𝑍#, which is equivalent to saying that the
functions themselves can be 𝐶1-extended to such 𝑍#. □

The 𝐶1-extension is crucial to the landscape analysis of the system (DLRA*)
at the submanifolds corresponding to the rank-(r-1) spurious critical points.
It enables us to compute the Jacobian right at those submanifolds, and de-
termine its eigenvalues. We now show that those submanifolds are actually
strict critical submanifolds of the system (DLRA*).

Lemma 4.2.10 (Strict critical submanifold). Assume that the eigenvalues of the
ground truth matrix 𝑋 are all distinct. Given a point 𝑍# ∈ S𝑟−1, let N𝑍# =

{(𝑈#, 𝑆#) : 𝑈#𝑆#𝑈
∗
# = 𝑍#} be the submanifold after parameterization that corre-

sponds to 𝑍#. Then N𝑍# is a strict critical submanifold of the system (DLRA*) in
the sense of Definition 3.3.3.

Proof. The goal is to show that for any (𝑈#, 𝑆#) ∈ N𝑍# , it is a hyperbolic point
of the gradient flow with at least one escape direction, and all these points
in N𝑍# share a common escape direction perpendicular to the submanifold
itself with a uniformly bounded eigenvalue. We will determine this escape
direction by construction, using the results from the proof of Lemma 4.2.9.

Recall that 𝑆 = 𝑃Σ𝑃∗, 𝑆# = 𝑃#Σ#𝑃
∗
#, and 𝑋 = 𝑈𝑋𝐷𝑋𝑈

∗
𝑋
=

∑𝑟
𝑖=1 𝑑𝑖𝑢𝑖𝑢

∗
𝑖
. Let

b = (b1, b2), b1 = 𝑢𝑟 𝑝
∗
#,𝑟 , b2 = 0.

Note that 𝑋 = 𝑈1𝐷1𝑈
∗
1 +𝑈2𝐷2𝑈

∗
2 , where𝑈2 = 𝑢𝑟 , 𝐷2 = 𝑑𝑟 , and𝑈2𝐷2𝑈

∗
2 is the

missing component in this spurious critical point 𝑍#. In other words, we
construct b exactly along the direction of this missing component. Using
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this property, we have that

∇𝑈𝐹 (𝑈, 𝑆) [b1] | (𝑈,𝑆)=(𝑈#,𝑆#)

= −(𝑈#b
∗
1 + b1𝑈

∗
#)𝑋𝑈# · 𝑝#,𝑟 𝑝

∗
#,𝑟 + 𝑃

⊥
𝑈#
𝑋b1 · 𝑝#,𝑟 𝑝

∗
#,𝑟

= −(𝑈#𝑝#,𝑟𝑢
∗
𝑟 + 𝑢𝑟 𝑝∗#,𝑟𝑈

∗
#)𝑋𝑈# · 𝑝#,𝑟 𝑝

∗
#,𝑟 + (𝐼 − 𝑃

⊥
𝑈1
− 𝑃⊥𝑈3

)𝑋 · 𝑢𝑟 𝑝∗#,𝑟 · 𝑝#,𝑟 𝑝
∗
#,𝑟

= −
(
(0,𝑈3)𝑢∗𝑟 + 𝑢𝑟 (0,𝑈3)∗

) (
𝑈1𝐷1𝑈

∗
1 +𝑈2𝐷2𝑈

∗
2
)
·𝑈#𝑝#,𝑟 𝑝

∗
#,𝑟 +𝑈2𝐷2𝑈

∗
2 · 𝑢𝑟 𝑝

∗
#,𝑟

= 0 + 𝑑𝑟𝑢𝑟𝑢∗𝑟 · 𝑢𝑟 𝑝∗#,𝑟
= 𝑑𝑟𝑢𝑟 𝑝

∗
#,𝑟 ,

and

∇𝑆𝐹 (𝑈, 𝑆) [b2] | (𝑈,𝑆)=(𝑈#,𝑆#)= 0.

Thus,

∇𝐹 (𝑈, 𝑆) [b] | (𝑈,𝑆)=(𝑈#,𝑆#)= 𝑑𝑟𝑢𝑟 𝑝
∗
#,𝑟 + 0 = 𝑑𝑟𝑢𝑟 𝑝

∗
#,𝑟 .

Meanwhile,

∇𝐻 (𝑈, 𝑆) [b] | (𝑈,𝑆)=(𝑈#,𝑆#)= 0.

Putting everything together, we have

∇(𝐹, 𝐻) [b] = 𝑑𝑟 · (𝑢𝑟 𝑝∗#,𝑟 , 0)
= 𝑑𝑟 · b.

This means that b = (𝑢𝑟 𝑝∗#,𝑟 , 0) is an eigenvector of the Jacobian ∇(𝐹, 𝐻)with
eigenvalue 𝑑𝑟 , which is positive.

Thus, for every tuple (𝑈#, 𝑆#) inN𝑍# , we have found an escape direction with
uniform eigenvalue. So N𝑍# is a strict critical submanifold as desired. □

Proof of the main result

We now prove Theorem 4.2.1 using the results from previous subsections.

Proof of Theorem 4.2.1. By Lemma 2.3.1, there are only finitely many spuri-
ous critical points that belong to S𝑟−1. By Lemma 4.2.10, for each 𝑍# ∈ S𝑟−1,
in the parameterized domain St(𝑛, 𝑟) ⊕ S𝑟 , the corresponding submanifold
N𝑍# is a strict critical submanifold for the rescaled gradient flow. Since there
are only finitely many of them, we can apply Theorem 3.2.1. This implies
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that the rescaled gradient flow in the parameterized domain almost never
converges to ∪𝑍#∈S𝑟−1N𝑍# . Thus the rescaled gradient flow in the original
domainM𝑟 also almost never converges to S𝑟−1. By Lemma 4.2.8, the origi-
nal gradient flow has the same limit as the rescaled gradient flow. Thus the
original gradient flow enjoys the same result, i.e., Prob (lim𝑡→∞ 𝑍𝑡 ∈ 𝑆𝑟−1) =
0. □

4.3 Main result for the gradient descent

The previous section has focused on the gradient flow. In this section we
derive the result for the gradient descent, namely the asymptotic escape of
the Riemannian gradient descent algorithm from the spurious critical points
in S𝑟−1.

Theorem 4.3.1 (Asymptotic escape ofS𝑟−1: gradient descent). Consider 𝑓 (𝑍) =
1
2 ∥𝑍 − 𝑋 ∥

2
F where 𝑋 ∈ M𝑟 has distinct eigenvalues. Let 𝑍0 ∈ M𝑟 be a random ini-

tialization, and {𝑍𝑘 }∞𝑘=0 be the sequence generated by the following Riemannian
gradient descent algorithm with varying step size:

𝑍𝑘+1 = 𝑅

(
𝑍𝑘 − 𝛼 · 𝜎𝑟 (𝑍𝑘 ) · 𝑃𝑇𝑍𝑘

(
∇ 𝑓 (𝑍𝑘 )

) )
, (4.2)

i.e., 𝛼𝑘 = 𝛼 ·𝜎𝑟 (𝑍𝑘 ), where 𝜎𝑟 (𝑍𝑘 ) is the 𝑟-th eigenvalue of 𝑍𝑘 , and 𝛼 > 0. Assume
that 𝑍𝑘 ∈ M𝑟 for any 𝑘 < +∞, i.e., the sequence stays insideM𝑟 at any finite step.
Then we have

Prob ( lim
𝑘→∞

𝑍𝑘 ∈ 𝑆𝑟−1) = 0.

In particular, this holds true for arbitrarily large 𝛼 > 0.

Remark 4.3.2. A few remarks are in order.

(1) The step size 𝛼𝑘 = 𝛼 · 𝜎𝑟 (𝑍𝑘 ) is varying but not necessarily diminish-
ing. As long as the sequence eventually escapes the spurious critical
points, 𝜎𝑟 (𝑍𝑘 ) converges to 𝜎𝑟 (𝑋) and 𝛼𝑘 = 𝛼 · 𝜎𝑟 (𝑍𝑘 ) does not dimin-
ish. See Figure 4.2b for a numerical illustration.

(2) The reason for the choice 𝛼𝑘 = 𝛼 · 𝜎𝑟 (𝑍𝑘 ) is similar to the rescaling of
the ODE system (DLRA*) in the previous section. Namely, this makes
the Jacobian of the iteration function 𝐶1-extendable to the rank-(r-1)
spurious critical points in S𝑟−1, using the same techniques as in the
proof of Lemma 4.2.9.
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Proof of Theorem 4.3.1. We use the same notations as before, namely 𝑍 =

𝑈𝑆𝑈∗, 𝑆 = 𝑃Σ𝑃∗, 𝑆# = 𝑃#Σ#𝑃
∗
#, and 𝑋 = 𝑈𝑋𝐷𝑋𝑈

∗
𝑋
=

∑𝑟
𝑖=1 𝑑𝑖𝑢𝑖𝑢

∗
𝑖
. We also let

𝑍 = 𝑈𝑍Σ𝑈
∗
𝑍

denote the eigen decomposition of 𝑍 , which implies𝑈𝑍 = 𝑈 ·𝑃∗.
We let 𝑈 ∈ St(𝑛, 𝑛 − 𝑟) be the orthogonal complement of 𝑈. It is also the
orthogonal complement of𝑈𝑍 . Since𝑈 = (𝑈1,𝑈3), where𝑈3 ⊥ 𝑈2, we know
that span{𝑈2} ⊂ span{𝑈}. Without loss of generality, we let 𝑈2 be the first
column of𝑈.

Consider the iteration function

𝜙(𝑍) = 𝑅
(
𝑍 − 𝛼 · 𝜎𝑟 (𝑍) · 𝑃𝑇𝑍 (∇ 𝑓 (𝑍))

)
= 𝑅

(
𝑍 − 𝛼 · 𝜎𝑟 (𝑍) · grad 𝑓 (𝑍)

)
.

(4.3)

Here grad 𝑓 (𝑍) is the Riemannian gradient. The Jacobian of the iteration
function is

𝐷𝜙(𝑍) = 𝐼 − 𝛼 ·
(
𝜎𝑟 (𝑍) ·Hess 𝑓 (𝑍) + 𝐷𝜎𝑟 (𝑍) · grad 𝑓 (𝑍)

)
.

It has been shown in [125] that

Hess 𝑓 (𝑍) [b] = b + 𝑃⊥𝑈𝑍
(𝑍 − 𝑋)𝑈𝑁Σ−1𝑈∗𝑍 +𝑈𝑍Σ−1𝑁∗𝑈∗(𝑍 − 𝑋)𝑃⊥𝑈𝑍

, (4.4)

where the vector b is parameterized as

b = 𝑈𝑍𝑀𝑈
∗
𝑍 +𝑈𝑍𝑁𝑈∗ +𝑈𝑁∗𝑈∗𝑍 , 𝑀 ∈ F𝑟×𝑟 , 𝑁 ∈ F𝑟×(𝑛−𝑟) .

In particular, when F = R, the degree of freedom of b is 𝑟 (2𝑛−𝑟+1)
2 . It is equal

to the dimension of the tangent space that b lies in, which is the same as the
dimension of the manifold.

Consider lim𝑍→𝑍# 𝐷𝜙(𝑍) for 𝑍# ∈ S𝑟−1. Note that the parameterization from
Section 4.2 ensures that span{𝑈3} ⊥ span{𝑈1,𝑈2}, so that 𝑍# is a valid crit-
ical point, i.e., grad 𝑓 (𝑍#) = 0. Plugging Equation (4.4) into Equation (4.3),
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we have

𝐷𝜙(𝑍#) [b] := lim
𝑍→𝑍#

𝐷𝜙(𝑍) [b]

= b − 𝛼 ·
(

lim
𝑍→𝑍#
(𝜎𝑟 (𝑍) ·Hess 𝑓 (𝑍) [b]) + 𝐷𝜎𝑟 (𝑍) [b] · grad 𝑓 (𝑍#)

)
= b − 𝛼 ·

(
lim
𝑍→𝑍#

(𝜎𝑟 (𝑍) ·Hess 𝑓 (𝑍) [b])
)

= b − 𝛼 ·
(

lim
𝑍→𝑍#

(
𝜎𝑟 (𝑍) · b − 𝑃⊥𝑈 (𝑍 − 𝑋)𝑈𝑁Σ−1𝑈∗ −𝑈Σ−1𝑁∗𝑈∗(𝑍 − 𝑋)𝑃⊥𝑈

))
= b − 𝛼 ·

(
0 · b −𝑈2𝐷2𝑈2

⊤𝑈𝑁2

(
lim
Σ→Σ#

Σ−1𝜎𝑟

)
𝑈∗# −𝑈#

(
lim
Σ→Σ#

Σ−1𝜎𝑟

)
𝑁∗𝑈∗𝑈2𝐷2𝑈2

⊤
)

= b + 𝛼 ·
(
𝑈2𝐷2𝑈2

⊤𝑈𝑁2

(
lim
Σ→Σ#

Σ−1𝜎𝑟

)
𝑈∗# +𝑈#

(
lim
Σ→Σ#

Σ−1𝜎𝑟

)
𝑁∗𝑈∗𝑈2𝐷2𝑈2

⊤
)
.

Here, similar to the proof of Lemma 4.2.6, we have

lim
Σ→Σ#

Σ−1𝜎𝑟 = diag{0, . . . , 0, 1} = 𝑒𝑟𝑒∗𝑟 .

Thus, it follows that

𝐷𝜙(𝑍#) [b] = b + 𝛼 ·
(
𝑈2𝐷2𝑈2

⊤𝑈𝑁𝑒𝑟𝑒
∗
𝑟𝑈
∗
# +𝑈#𝑒𝑟𝑒

∗
𝑟𝑁
∗𝑈∗𝑈2𝐷2𝑈2

⊤
)
.

Note that without loss of generality, we have let𝑈2 be the first column of𝑈.
Thus we have

𝐷𝜙(𝑍#) [b] = b + 𝛼 ·
(
𝑈2𝐷2(1, 0, . . . , 0) (𝑁𝑒𝑟)

©«
𝑈2
⊤

0
...

0

ª®®®®®¬
+ (𝑈2, 0, . . . , 0) (𝑒∗𝑟𝑁∗)

©«
1
0
...

0

ª®®®®®¬
𝐷2𝑈2

⊤
)

= b + 𝛼 · 2𝑁 (1, 1) ·𝑈2𝐷2𝑈2
⊤.

We can immediately read the eigenvalues and eigenvectors of 𝐷𝜙(𝑍#) from
the above expression. Specifically, when F = R, 𝐷𝜙(𝑍#) has

(1) One eigenvector b = 𝑈𝑁𝑈∗ + 𝑈𝑁𝑈∗ with 𝑁 =

©«
1 0 . . . 0
0 0 . . . 0
...
...

...

0 0 . . . 0

ª®®®®®¬
, whose

corresponding eigenvalue is _ = 1 + 2𝛼 · 𝐷2 > 1;

(2) ( 𝑟 (2𝑛−𝑟+1)2 − 1) eigenvectors with eigenvalues _ = 1.
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The complex case F = C is similar except that the dimensionality is different.

Now that 𝐷𝜙(𝑍#) has one eigenvalue greater than 1, while the rest of the
eigenvalues are equal to 1. By [120, Theorem III.7], there is an unstable
manifold and a center manifold in the neighborhood of 𝑍#, which can be
extended globally. The existence of the unstable manifold ensures that 𝑍# is
an asymptotic unstable fixed point of the iteration function 𝜙(𝑍#). Thus, the
Riemannian gradient descent algorithm with varying step size (4.2) almost
surely escapes S𝑟−1.

In particular, 𝐷𝜙(𝑍#) is always a local diffeomorphism independent of the
choice of 𝛼, as its only eigenvalues are 1 and 1 + 𝛼𝐷2. Therefore, the result
of Theorem 4.3.1 holds true for arbitrarily large 𝛼 > 0. □

4.4 Numerical experiments

In this section, we present some numerical experiments to illustrate our the-
oretical results in Theorem 4.2.1 and 4.3.1. We also provide some evidence
in support of conjectures beyond the previous theorem and lemma.

In all experiments, we consider the real SPSD case F = R, and let 𝑛 = 100, 𝑟 =
5, and we use the same ground truth matrix 𝑋 ∈ M𝑟 with distinct singular
values. We use the Riemannian gradient descent algorithm to minimize
𝑓 (𝑍) = 1

2 ∥𝑍 − 𝑋 ∥
2
F. The experiments only differ by the sampling rule and

the choice of the step sizes 𝛼𝑘 . Each figure is generated by repeating the
experiment 100 times. The shaded area represents the range of the data and
the solid line represents the median.

(a) Local escape near S𝑟−1. (b) Local escape near S𝑟−2.

Figure 4.1: Escape of spurious critical points.

The first experiment is performed near a rank-(r-1) spurious critical point
𝑍
(1)
# ∈ S𝑟−1. The initial points are randomly sampled in the local neighbor-
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hood of 𝑍 (1)# . The step size is fixed to be 𝛼𝑘 ≡ 𝛼 = 0.2. Figure 4.1a shows
the log10 distance between 𝑍𝑘 and 𝑋 . It can be seen that in all the repeated
experiments, the sequence always succeeds to escape 𝑍 (1)# and converge to
𝑋 .

To verify whether S𝑠 (𝑠 < 𝑟 − 1) incurs the same behavior, we repeat the
experiment with 𝑍

(2)
# ∈ S𝑟−2. It can be seen in Figure 4.1b that the phe-

nomenon is indeed the same. Thus we conjecture that a similar result as
Theorem 4.2.1 holds for those S𝑠 with 𝑠 < 𝑟 − 1 as well. Proof of such result
is left for future work.

(a) log10(∥𝑍𝑘 − 𝑋 ∥F), fixed step
size.

(b) log10(𝜎𝑟 (𝑍𝑘)), fixed step size.

(c) log10(∥𝑍𝑘 − 𝑋 ∥F), varying
step size.

(d) log10(𝜎𝑟 (𝑍𝑘)), varying step
size.

Figure 4.2: Comparison of fixed and varying step sizes.

Next, we investigate Theorem 4.3.1 and the varying step size 𝛼𝑘 = 𝛼 ·𝜎𝑟 (𝑍𝑘 ).
Figures 4.2a and 4.2b are the results with a fixed step size 𝛼𝑘 ≡ 0.2. Figures
4.2c and 4.2d are the results with varying step sizes 𝛼𝑘 = 2𝜎𝑟 (𝑍𝑘 ). The left
are the distances to the ground truth 𝑋 . The right are the log values of𝜎𝑟 (𝑍𝑘 )
along the iterative path. We can see that first of all, the iterative sequences
always escape all spurious critical points and converge to the ground truth.
Moreover, the value of 𝜎𝑟 (𝑍𝑘 ) is never too small, but soon converges to the
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smallest eigenvalue of 𝑋 . This helps illustrate that the varying step size
𝛼𝑘 = 𝛼 · 𝜎𝑟 (𝑍𝑘 ) is not a diminishing step size in practice, but is rather always
above a certain value.

4.5 Discussion

In this chapter, we discuss the asymptotic escape of the spurious critical
points on the low-rank matrix manifold. The goal is to shed some light
on the nonclosedness of the low-rank matrix manifold M𝑟 and justify the
global use of Riemannian gradient descent on the manifold. To this end, we
first point out the existence of a set of spurious critical points S# ⊂ M𝑟\M𝑟

and discuss its singularity. We then use a rescaled gradient flow combined
with the dynamical low-rank approximation to describe the local landscape,
which enables us to eliminate the singularity and prove the asymptotic es-
cape result. We also present a corresponding result for the gradient descent.
Numerical experiments are provided to illustrate the theoretical results.

Though this study is focused on S𝑟−1, the asymptotic escape is empirically
observed for S𝑠 with 𝑠 ≤ 𝑟 − 2 as well. In fact, all spurious critical points
in S# are observed to be asymptotically unstable in practice, which can be
seen from the numerical experiments. The current rescaled gradient flow
(DLRA*) loses both 𝐶0- and 𝐶1-extensions at S𝑠 with 𝑠 ≤ 𝑟 − 2. This is be-
cause the continuity of eigenvalues and eigenvectors are only possible when
only one of the eigenvalues is approaching zero. Extension of the result to
the case 𝑠 ≤ 𝑟 − 2 is left for future work. On the other hand, the assumption
that the eigenvalues of 𝑋 are distinct is not an essential assumption, and can
easily be removed.

Even though the result for the gradient descent calls for a step size 𝛼 ·𝜎𝑟 (𝑍),
this is not a diminishing step size. As long as the sequence eventually es-
capes the apocalyptic points, 𝜎𝑟 (𝑍) converges to 𝜎𝑟 (𝑋) and 𝛼𝑘 does not di-
minish. This is supported by numerical observations.

In addition to the asymptotic result in this chapter, a non-asymptotic result
on the number of steps needed to escape the spurious critical points can be
found in Chapter 5. There it is shown that the converging set of the spurious
critical points can be upper bounded by a small positive measure. With high
probability, one has nearly linear convergence rate toward the ground truth.
The two sides of the story complement each other and provide a complete
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picture of the unique structure of the low-rank matrix manifold.

4.6 Proof of Lemma 4.2.4

We recall the previous lemma below.

Lemma 4.2.4. Define

N𝑍# :=

{
(𝑈#, 𝑆#) : 𝑈# = (𝑈1,𝑈3)𝑃∗#, 𝑆# = 𝑃#

(
𝐷1 0
0 0

)
𝑃∗#, 𝑈3 ⊥ 𝑈𝑋

}
.

Then N𝑍# is an embedded submanifold of the manifoldM := St(𝑛, 𝑟) ⊕ S𝑟 .

The intuition behind Lemma 4.2.4 is that the set N𝑍# is a subset ofM char-
acterized by some algebraic constraints, namely 𝑈#𝑆#𝑈

∗
# = 𝑍# and 𝑈3 ⊥ 𝑈𝑋 .

As is often the case, one would expect such algebraic constraints to give an
embedded submanifold. We will make this intuition rigorous in this sec-
tion.

We note that traditionally, embedded submanifold is proved by the submer-
sion theorem, i.e., by showing that the set is the preimage of a regular value
of a submersive mapping. But this approach does not work here because
𝑍# is not a regular value. Instead, we need to go back to the definition of a
submanifold and construct chart functions on N𝑍# directly.

Below are some auxiliary results from the literature.

Lemma 4.6.1 ([1, Proposition 3.3.2]). A subset N of a manifold M is a 𝑑-
dimensional embedded submanifold ofM if and only if, around each point 𝑥 ∈ N ,
there exists a chart (U, 𝜑) ofM such thatN ∩U is a 𝜑-coordinate slice ofU, i.e.,

N ∩U = {𝑥 ∈ U : 𝜑(𝑥) ∈ R𝑑 × 0}.

In this case, the chart (N ∩U, 𝜑), where 𝜑 is seen as a mapping into R𝑑 , is a chart
of the embedded submanifold N .

By Lemma 4.6.1, if we can construct an atlas ofM and an atlas of N𝑍# , such
that the charts in the latter atlas are coordinate slices of the charts in the
former atlas, then N𝑍# is an embedded submanifold of M. This approach
is less common than the traditional submersion theorem approach, but is
necessary for our problem.



86

Lemma 4.6.2 ([57]). For the real Stiefel manifold St(𝑛, 𝑘), there exists an atlas
∪𝑄 (U𝑄 , 𝜑𝑄) of the Stiefel manifold. Namely, for each chart (U𝑄 , 𝜑𝑄),𝑄 is a matrix
in St(𝑛, 𝑘), and the function 𝜑𝑄 can be expressed as

𝜑𝑄 : U𝑄 → Skew(𝑘) ⊕ R(𝑛−𝑘)×𝑘 ,
𝑈 ↦→ (Ω11,Ω21),

where

Ω11 = (𝑈⊤1 +𝑄
⊤
1 )
−1 (

𝑄⊤1𝑈1 +𝑈⊤2 𝑄2 −𝑈⊤1 𝑄1 −𝑄⊤2𝑈2
)
(𝑈1 +𝑄1)−1, Ω11 = −Ω⊤11,

Ω21 = (𝑈2 −𝑄2) (𝑈1 +𝑄1)−1,

and𝑈 =

(
𝑈1

𝑈2

)
, 𝑄 =

(
𝑄1

𝑄2

)
are the block forms of𝑈 and 𝑄 respectively. Such a chart

function is defined on the subset U𝑄 ⊂ St(𝑛, 𝑘) which covers all of the manifold
St(𝑛, 𝑘) except a zero-measure set.

In particular, if 𝑄 =

(
𝐼𝑘

0

)
, then

Ω11 = (𝑈⊤1 + 𝐼𝑘 )
−1 (

𝑈1 −𝑈⊤1
)
(𝑈1 + 𝐼𝑘 )−1,

Ω21 = 𝑈2(𝑈1 + 𝐼𝑘 )−1.

Lemma 4.6.2 provides a neat construction of charts on the Stiefel manifold.
In fact, we only need two charts to cover the whole manifold, if we choose
any two 𝑄’s that do not share any left singular vector. We will use this
construction frequently in the proof of Lemma 4.2.4.

We are now ready to prove Lemma 4.2.4.

Proof of Lemma 4.2.4. We restrict our attention to the real case F = R. The
complex case F = C is very similar except that the dimensionalities of some
manifolds in the subsequent proof are slightly different.

We aim to construct explicit charts ofM = St(𝑛, 𝑟) ⊕ S𝑟 , and explicit charts
ofN𝑍# , such that the latter are the coordinate slices of the former. For clarity,
we will first write out the charts ofN𝑍# , and then express them as coordinate
slices of charts ofM.

Step 1: Construct charts of N𝑍# .
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For any (𝑈, 𝑆) ∈ N𝑍# , we rewrite𝑈 and 𝑆 as the following:

𝑈 = 𝑈1𝑃
⊤
1 +𝑈3𝑃

⊤
2 , 𝑆 = 𝑃1𝐷1𝑃

⊤
1 ,

where 𝑃1 ∈ R𝑟×𝑠, 𝑃2 ∈ R𝑟×(𝑟−𝑠) , 𝑃 = (𝑃1, 𝑃2) ∈ SO(𝑟).

We argue that there exists a mapping from every 𝑃1 to a unique 𝑃2. An
intuitive explanation is that 𝑃2 can always be uniquely determined by a
Gram-Schmidt process starting from the identity matrix. Thus we can write
𝑃2 = P2(𝑃1) where P2 : R𝑟×𝑠 → R𝑟×(𝑟−𝑠) is a function. Therefore, any
(𝑈, 𝑆) ∈ N𝑍# can be re-parameterized using only (𝑃1,𝑈3). We write this
re-parameterization as a function 𝑓 :

𝑓 : N𝑍# → St(𝑟, 𝑠) ⊕ S̃t(𝑛, 𝑟 − 𝑠; 𝑈𝑋);
(𝑈, 𝑆) ↦→ (𝑃1,𝑈3).

Here St(𝑟, 𝑠) is a Stiefel manifold, and S̃t(𝑛, 𝑟 − 𝑠; 𝑈𝑋) is a constrained Stiefel
manifold:

S̃t(𝑛, 𝑟 − 𝑠; 𝑈𝑋) := {𝑈3 : 𝑈3 ∈ St(𝑛, 𝑟 − 𝑠), 𝑈3 ⊥ 𝑈𝑋 } , where𝑈𝑋 = (𝑈1,𝑈2).

We now construct charts for 𝑃1 and 𝑈3 respectively. The domain of 𝑃1 is
the Stiefel manifold St(𝑟, 𝑠). By Lemma 4.6.2, there exists an atlas where
every chart function maps to Skew(𝑠) ⊕ R(𝑟−𝑠)×𝑠. Let 𝑔(1) be one such chart
function:

𝑔(1) : St(𝑟, 𝑠) → Skew(𝑠) ⊕ R(𝑟−𝑠)×𝑠

𝑃1 ↦→ (Ω11,Ω21).

The domain of 𝑈3 is the constrained Stiefel manifold S̃t(𝑛, 𝑟 − 𝑠; 𝑈𝑋). Here
𝑈𝑋 ∈ St(𝑛, 𝑟) is the eigenvectors matrix of the ground truth 𝑋 , which is
fixed. To construct a chart of S̃t(𝑛, 𝑟 − 𝑠; 𝑈𝑋), we first construct a mapping
𝑔(2) according to Lemma 4.6.2, such that

𝑔(2) : S̃t(𝑛, 𝑟 − 𝑠; 𝑈𝑋) → Skew(𝑟 − 𝑠) ⊕ R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) ,
𝑈3 ↦→ (Λ11,Λ21).

The domain of Λ21 is R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) , which is a constrained set. To express

the constraints 𝑈3 ⊥ 𝑈𝑋 in terms of constraints on Λ21, we write 𝑈3 =

(
𝑈3,1

𝑈3,2

)
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and 𝑈𝑋 =

(
𝑈𝑋,1

𝑈𝑋,2

)
. Assume without loss of generality that 𝑔(2) is constructed

by picking 𝑄 = (𝐼𝑟−𝑠, 0)⊤ in Lemma 4.6.2. Then

Λ21 = 𝑈3,2(𝑈3,1 + 𝐼𝑟−𝑠)−1.

Since𝑈3 ⊥ 𝑈𝑋 , we have

𝑈⊤𝑋𝑈3 = 𝑈⊤
𝑋,1𝑈3,1 +𝑈⊤𝑋,2𝑈3,2 = 0.

Thus,

𝑈⊤𝑋,2𝑈3,2 = −𝑈⊤
𝑋,1𝑈3,1.

This gives us

𝑈⊤𝑋,2Λ21 = −𝑈⊤
𝑋,1𝑈3,1(𝑈3,1 + 𝐼𝑟−𝑠)−1.

These are linear constraints on Λ21.

Let 𝑔 be the concatenation of 𝑔(1) and 𝑔(2) , then we have a re-parameterization
of (𝑃1,𝑈3) as follows:

𝑔 : St(𝑟, 𝑠) ⊕ S̃t(𝑛, 𝑟 − 𝑠) → Skew(𝑠) ⊕ R(𝑟−𝑠)×𝑠 ⊕ Skew(𝑟 − 𝑠) ⊕ R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) ;
(𝑃1,𝑈3) ↦→ (Ω11,Ω21,Λ11,Λ21).

Here R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) is the submanifold of R(𝑛−(𝑟−𝑠))×(𝑟−𝑠) defined by the lin-
ear constraints that we derived:

R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) :=
{
Λ21 ∈ R(𝑛−(𝑟−𝑠))×(𝑟−𝑠) : 𝑈⊤𝑋,2Λ21 = −𝑈⊤

𝑋,1𝑈3,1(𝑈3,1 + 𝐼𝑟−𝑠)−1
}
.

Let Λ◦21 be an arbitrary solution to the equation 𝑈⊤
𝑋,2Λ21 = −𝑈⊤

𝑋,1𝑈3,1(𝑈3,1 +
𝐼𝑟−𝑠)−1. Then

R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) = Λ◦21 + Ker(𝑈⊤𝑋,2).

By finding an orthogonal basis for Ker(𝑈⊤
𝑋,2), it is easy to construct a chart

function

ℎ : R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) → R(𝑛−(𝑟−𝑠)) (𝑟−𝑠)−𝑟 (𝑟−𝑠)

Λ21 ↦→ Γ.
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Putting everything together, we have that

𝜑 := (id, ℎ) ◦ 𝑔 ◦ 𝑓 : N𝑍# → Skew(𝑠) ⊕ R(𝑟−𝑠)×𝑠 ⊕ Skew(𝑟 − 𝑠) ⊕ R(𝑛−(𝑟−𝑠)) (𝑟−𝑠)−𝑟 (𝑟−𝑠) ;
(𝑈, 𝑆) ↦→ (Ω11,Ω21,Λ11, Γ).

This is a chart function for the wholeN𝑍# except a zero-measure set. Varying
𝑔(1) and 𝑔(2) as needed, we have the atlas for the whole N𝑍# .

Step 2: Express the charts of N𝑍# as coordinate slices of charts ofM.

To express things into coordinate slices, we will work the other way around:
we extend the chart function 𝜑 into a chart function 𝜑 defined on M =

St(𝑛, 𝑟) ⊕ S𝑟 .

For any (𝑈, 𝑆) ∈ M = St(𝑛, 𝑟) ⊕ S𝑟 , we construct a re-parameterization as
follows:

𝑈 =

(
(𝑈1𝑅1, 0) + (𝑀4,𝑈3𝑅2)

) (
𝑃⊤1
𝑃⊤2

)
, 𝑆 = (𝑃1, 𝑃2)𝑆

(
𝑃⊤1
𝑃⊤2

)
,

where 𝑃1 ∈ R𝑟×𝑠, 𝑃2 ∈ R𝑟×(𝑟−𝑠) , 𝑃 = (𝑃1, 𝑃2) ∈ SO(𝑟),
𝑈3 ∈ S̃t(𝑛, 𝑟 − 𝑠; 𝑈1), 𝑀4 ∈ R̃𝑛×𝑠, 𝑆 ∈ S𝑟 ,
𝑅1 ∈ upper(𝑠, 𝑠), 𝑅2 ∈ �upper(𝑟 − 𝑠, 𝑟 − 𝑠).

The domain of 𝑃1 is St(𝑟, 𝑠). 𝑃2 is still uniquely determined by 𝑃1 as be-
fore. The domain of 𝑈3 is the constrained Stiefel manifold S̃t(𝑛, 𝑟 − 𝑠; 𝑈1) :=
{𝑈3 : 𝑈3 ∈ St(𝑛, 𝑟 − 𝑠), 𝑈3 ⊥ 𝑈1}. Note that the constraints are only in terms
of𝑈1 instead of𝑈𝑋 = (𝑈1,𝑈2). The domain of 𝑀4 is the linearly constrained
subspace R̃𝑛×𝑠 := {𝑀4 ∈ R𝑛×𝑠, 𝑀4 ⊥ 𝑈1}. The domain of 𝑆 is S𝑟 . The domain
of 𝑅1 is the subspace of 𝑠 × 𝑠 upper triangular matrices. The domain of 𝑅2

is the subspace of (𝑟 − 𝑠) × (𝑟 − 𝑠) upper triangular matrices, but with some
constraints that will be specified later. We define the following mapping:

�̃� : St(𝑛, 𝑟) ⊕ S𝑟 → St(𝑟, 𝑠) ⊕ S̃t(𝑛, 𝑟 − 𝑠; 𝑈1) ⊕ R̃(𝑛, 𝑠) ⊕ �upper(𝑟 − 𝑠, 𝑟 − 𝑠) ⊕ S𝑟 ⊕ upper(𝑠, 𝑠);

(𝑈, 𝑆) ↦→
(
𝑃1,𝑈3, 𝑀4, 𝑅2 − 𝐼𝑟−𝑠, 𝑆 −

(
𝐷1 0
0 0

)
, 𝑅1 − 𝐼𝑠

)
.

The mapping �̃� is written in such a way because, if (𝑈, 𝑆) ∈ N𝑍# , then the
last few components are all zero, and 𝑓 is just a coordinate slice of �̃� :

�̃� (𝑈, 𝑆) = (𝑃1,𝑈3, 0, 0, 0, 0) .
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For the first part of the image of �̃� , we apply 𝑔 as before:

𝑔 : St(𝑟, 𝑠) ⊕ S̃t(𝑛, 𝑟 − 𝑠) → Skew(𝑠) ⊕ R(𝑟−𝑠)×𝑠 ⊕ Skew(𝑟 − 𝑠) ⊕ R̂(𝑛−(𝑟−𝑠))×(𝑟−𝑠) ;
(𝑃1,𝑈3) ↦→ (Ω11,Ω21,Λ11,Λ21).

However, the set R̂(𝑛−(𝑟−𝑠))×(𝑟−𝑠) is different from the R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) before,
because the constraints only contain 𝑈1 but does not contain 𝑈2. Fewer
constraints mean a larger subspace, and we have

R̂(𝑛−(𝑟−𝑠))×(𝑟−𝑠) =
{
Λ21 ∈ R(𝑛−(𝑟−𝑠))×(𝑟−𝑠) : 𝑈⊤1,2Λ21 = −𝑈⊤1,1𝑈3,1(𝑈3,1 + 𝐼𝑟−𝑠)−1

}
= R̃(𝑛−(𝑟−𝑠))×(𝑟−𝑠) +

(
Ker(𝑈⊤1,2)\Ker(𝑈⊤𝑋,2)

)
= Λ◦21 + Ker(𝑈⊤𝑋,2) +

(
Ker(𝑈⊤1,2)\Ker(𝑈⊤𝑋,2)

)
.

Let ℎ(2) be the chart function for the extra subspace, then

(ℎ, ℎ(2)) : R̂(𝑛−(𝑟−𝑠))×(𝑟−𝑠) → R(𝑛−(𝑟−𝑠)) (𝑟−𝑠)−𝑟 (𝑟−𝑠) ⊕ R(𝑟−𝑠) (𝑟−𝑠) ,
Λ21 ↦→ (Γ, Γ(2)).

Putting them together, we have

(id, ℎ, ℎ(2)) ◦ 𝑔 ◦ 𝑓 : (𝑃1,𝑈3) ↦→ (Ω11,Ω21,Λ11, Γ, Γ
(2)).

The chart function 𝜑 is a coordinate slice of the above mapping.

It suffices to find the chart functions for the remaining components of �̃� (𝑈, 𝑆),
i.e., the components 𝑀4, 𝑆, 𝑅1, 𝑅2. For 𝑆 ∈ S𝑟 and 𝑅1 ∈ upper(𝑠, 𝑠), the do-
mains are Euclidean spaces with natural bases. We now look at 𝑀4 and 𝑅2.

Decompose 𝑀4 into parts that are parallel to and perpendicular to the sub-
space of𝑈3:

𝑀4 = 𝑀
∥
4 + 𝑀

⊥
4 , where 𝑀 ∥4 = 𝑃𝑈3𝑀4, 𝑀⊥4 = 𝑃⊥𝑈3

𝑀4.

Let 𝑀⊥4 = 𝑈4𝑅4 be the QR decomposition of 𝑀⊥4 . Then the whole 𝑀4 could
be written as

𝑀4 = (𝑈3,𝑈4)
(
𝑅3

𝑅4

)
, 𝑅3 ∈ R(𝑟−𝑠)×(𝑟−𝑠) , 𝑅4 ∈ upper(𝑠, 𝑠).

In this way, we can re-parameterize (𝑀4, 𝑅2) using (𝑈4, 𝑅2, 𝑅3, 𝑅4):

𝑝 : (𝑀4, 𝑅2 − 𝐼𝑟−𝑠) ↦→ (𝑈4, 𝑅2, 𝑅3, 𝑅4).
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The domain of 𝑈4 is the constrained Stiefel manifold S̃t(𝑛, 𝑠;𝑈1,𝑈3). Just as
before, we can construct a composite function for this constrained Stiefel
manifold:

𝑔(3) : S̃t(𝑛, 𝑠;𝑈1,𝑈3) → Skew(𝑠) ⊕ R̃(𝑛−𝑠)×𝑠,
𝑈4 ↦→ (Π11,Π21);

ℎ(3) : R̃(𝑛−𝑠)×𝑠 → R(𝑛−𝑠)𝑠−𝑟𝑠,
Π21 ↦→ Ξ;

(id, ℎ(3)) ◦ 𝑔(3) : S̃t(𝑛, 𝑠;𝑈1,𝑈3) → Skew(𝑠) ⊕ R(𝑛−𝑠)𝑠−𝑟𝑠,
𝑈4 ↦→ (Π11,Ξ).

The remaining components are 𝑅2, 𝑅3, and 𝑅4. The constraints for them
come from the requirement that𝑈 as a whole is in St(𝑛, 𝑟). This gives

𝑈⊤𝑈 =

(
(𝑈1𝑅1, 0) + (𝑀4,𝑈3𝑅2)

)⊤ (
(𝑈1𝑅1, 0) + (𝑀4,𝑈3𝑅2)

)
=

(
𝑅⊤1𝑈

⊤
1 𝑈1𝑅1 0
0 0

)
+

(
(𝑈4,𝑈3)

(
𝑅4 0
𝑅3 𝑅2

))⊤ (
(𝑈4,𝑈3)

(
𝑅4 0
𝑅3 𝑅2

))
=

(
𝑅⊤1 𝑅1 0

0 0

)
+

(
𝑅4 0
𝑅3 𝑅2

)⊤ (
𝑅4 0
𝑅3 𝑅2

)
=

(
𝑅⊤1 𝑅1 + 𝑅⊤3 𝑅3 + 𝑅⊤4 𝑅4 𝑅⊤3 𝑅2

𝑅⊤2 𝑅3 𝑅⊤2 𝑅2

)
= 𝐼𝑟 .

Denote

𝑅0 :=

(
𝑅2 𝑅3

0 𝑅4

)
∈ upper(𝑟, 𝑟).

Then the 𝑟 × 𝑟 upper-triangular matrix 𝑅0 should satisfy

𝑅⊤0 𝑅0 =

(
𝐼𝑟−𝑠 0
0 𝐼𝑠 − 𝑅⊤1 𝑅1

)
.

Such 𝑅0 is uniquely determined. Therefore, we get the following chart func-
tion for the components (𝑀4, 𝑅2):

(id, ℎ(3)) ◦ 𝑔(3) ◦ 𝑝 : R̃(𝑛, 𝑠) ⊕ �upper(𝑟 − 𝑠, 𝑟 − 𝑠) → Skew(𝑠) ⊕ R(𝑛−𝑠)𝑠−𝑟𝑠,
(𝑀4, 𝑅2 − 𝐼𝑟−𝑠) ↦→ (Π11,Ξ).
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Putting everything together, we get the following chart function for the
manifoldM:

𝜑 :=
(
(id, ℎ, ℎ(2)) ◦ 𝑔, (id, ℎ(3)) ◦ 𝑔(3) ◦ 𝑝, id

)
◦ �̃� :

M →
(
Skew(𝑠) ⊕ R(𝑟−𝑠)𝑠 ⊕ Skew(𝑟 − 𝑠) ⊕ R(𝑛−2𝑟+𝑠) (𝑟−𝑠) ⊕ R(𝑟−𝑠) (𝑟−𝑠)

)
⊕

(
Skew(𝑠) ⊕ R(𝑛−𝑠−𝑟)𝑠

)
⊕ S𝑟 ⊕ upper(𝑠, 𝑠),

(𝑈, 𝑆) ↦→
((
Ω11,Ω21,Λ11, Γ, Γ

(2)
)
,

(
Π11,Ξ

)
, 𝑆 −

(
𝐷1 0
0 0

)
, 𝑅1 − 𝐼𝑠

)
.

The chart function 𝜑 is a coordinate slice of the chart function 𝜑. Hence,N𝑍#

is an embedded submanifold ofM. □
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C h a p t e r 5

FAST GLOBAL CONVERGENCE FOR LOW-RANK MATRIX
RECOVERY

This chapter presents the central result of this thesis, which is the global con-
vergence guarantee for a class of low-rank matrix recovery problems under
a unified framework. We show that for the population least squares loss
function, under certain assumptions, with high probability the Riemannian
gradient descent on the manifoldM𝑟 starting from a global random initial-
ization converges to the ground truth in a nearly linear convergence rate,
i.e., it takes O(log 1

𝜖
+ log 𝑛) iterations to reach an 𝜖-accurate solution.

Our result is the first to establish a nearly optimal and almost dimension-
free convergence rate for general rank-𝑟 problems. In this sense, it fully
explains the behavior of the Riemannian gradient descent trajectory ob-
served in numerical experiments. This is in contrast to previous works on
the global convergence guarantee with random initialization for such low-
rank recovery problems, which either only obtains a geometric convergence
rate that is slower than ours, or only tackles the case where the rank 𝑟 = 1,
see the comparison in Section 1.3.

By analyzing the low-rank recovery problems on the low-rank matrix man-
ifoldM𝑟 , it brings about unique benefits and challenges at the same time.
On the one hand, the Łojasiewicz inequality can be satisfied on the mani-
fold, and this naturally leads to linear convergence. On the other hand, the
spurious critical points S# (Section 2.3) and their local neighborhoods pose
significant challenges to the analysis because the spurious critical points
have singular Riemannian gradient and the Łojasiewicz inequality can be
violated near them.

To tackle this difficulty, we conduct a careful analysis of the spurious re-
gions near the spurious critical points. We divide the trajectory into three
stages, and show the preservation of the concentration results of the ini-
tialization throughout the trajectory. We show that with high probability,
the trajectory either avoids the spurious regions, or enters and escapes from
them in a small number of iterations.
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Organization of this chapter. We have given a detailed introduction of the
problem setting and related work in Section 1.3. The rest of this chapter is
organized as follows. In Section 5.1, we present the main result of this chap-
ter, namely the nearly linear convergence guarantee for the randomly ini-
tialized Riemannian gradient descent toward the ground truth when min-
imizing the population least squares loss function. The next few sections
are devoted to the proof of the main result. More specifically, Section 5.2
outlines the key intermediate steps to describe the trajectory. Section 5.3
introduces the Łojasiewicz convergence tool as a fundamental convergence
guarantee. Section 5.4 discusses the spurious regions around the spurious
critical points. Section 5.5 gives some technical lemmas about the dynam-
ics of the trajectory behavior. Section 5.6 presents the proofs for the main
result in Section 5.1. The next few sections discuss a different population
loss function that stems from the phase retrieval problem. Section 5.7 gives
the main results for this loss function, and Section 5.8 presents the proofs.
Finally, in Section 5.9, we make some concluding remarks.

5.1 Main results

In this section, we introduce the main results of this chapter. The optimiza-
tion problems we are looking at are (1.2) and (1.3), namely we minimize ei-
ther 𝐹1(𝑍) = 1

2 ∥𝑍 − 𝑋 ∥
2
𝐹

or 𝐹2(𝑍) = 1
2 (∥𝑍 ∥𝐹 − ∥𝑋 ∥𝐹)

2 + 𝑐∥𝑍 − 𝑋 ∥2
𝐹

on the low-
rank matrix manifold M𝑟 . The analysis focuses on the case of symmetric
positive semi-definite (SPSD) or Hermitian positive semi-definite (HPSD)
matrices, and one may refer to [65] for potential extension to the asymmet-
ric case.

Preliminaries

We first introduce the necessary notations, optimization techniques, and as-
sumptions for the statement of our main results.

Notations. Throughout the chapter, F = R or C, and we use (·)∗ to denote
the real transpose when F = R and the Hermitian transpose when F = C.
Denote M𝑟 as the fixed rank manifold {𝑍 ∈ F𝑛1×𝑛2 : rank(𝑍) = 𝑟}. In the
SPSD/HPSD case,M𝑟 = {𝑍 ∈ S𝑛 or H𝑛 : rank(𝑍) = 𝑟}, where S𝑛 or H𝑛 de-
notes the set of 𝑛 by 𝑛 real symmetric or Hermitian matrices. LetM𝑟 denote
the closure ofM𝑟 . We always use 𝑋 to denote the ground truth matrix of
size 𝑛 × 𝑛 and rank 𝑟 , while we use 𝑍∗ to denote any fixed point or limit
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point. Let 𝑋 = 𝑈𝐷𝑈∗ be the eigenvalue decomposition of the ground truth
matrix 𝑋 , where 𝐷 = diag{𝑑1, . . . , 𝑑𝑟} is in descending order unless other-
wise specified. Let 𝑍 = 𝑉𝑧Σ𝑧𝑉

∗
𝑧 be the eigenvalue decomposition of a matrix

𝑍 , where Σ𝑧 = diag{𝜎1, . . . , 𝜎𝑟} is also in descending order unless otherwise
specified. In general, we use 𝜎𝑗 (·) to denote the 𝑗-th largest eigenvalue of
a matrix. Let ^ := 𝑑1

𝑑𝑟
denote the condition number of the ground truth 𝑋 .

For an integer 𝑠 > 0, let [𝑠] = {1, 2, ..., 𝑠}. For any 𝑗 ∈ [𝑟], let \ 𝑗 := [𝑟] \ { 𝑗}.
The vector norm we use is ∥ · ∥2 and the matrix norm is ∥ · ∥𝐹 unless oth-
erwise specified. We use 0 < 𝑐, 𝐶 < ∞ to denote any absolute constant
independent of 𝑛 in our statement. These constants may vary in different
contexts. The symbol Ω(𝑛) means that there exist constants 𝐶 ≥ 𝑐 > 0 such
that 𝑐 · 𝑁 ≤ Ω(𝑛) ≤ 𝐶 · 𝑛, and O(𝑛) means that there exist a constant 𝐶 > 0
such that O(𝑛) ≤ 𝐶 · 𝑛. In this chapter, we focus on the large 𝑛 regime, and
other quantities including 𝑟, 𝜎𝑟 and 𝑑𝑟 will be treated as constants and will
be ignored in the O(·) and Ω(·) notations. The symbol poly(𝑎) stands for a
nonnegative quantity upper bounded by 𝐶 · 𝑎𝑘 for some 𝐶 > 0 and 𝑘 ∈ N+.

Assumptions 5.1.1. The following assumptions are necessary for the main re-
sults:

Assumption 1: Assume 𝛼 > 0 is a small constant such that the discretized system
can be well approximated by the continuous system. In other words, let 𝐴(𝑡) denote
a continuous system of interest and {𝐴𝑘 } be its time discretization, then we assume
that 𝐴𝑘+1 = 𝐴𝑘 + 𝛼 ¤𝐴𝑘 + 𝑜(𝛼 ¤𝐴𝑘 ).

Assumption 2: Assume that the eigenvalues of 𝑍 are always simple and do not cross
one another along the whole gradient flow or gradient descent trajectory. More-
over, the smallest eigenvalue gap is lower bounded along the whole trajectory, i.e.,
|𝜎𝑖 (𝑍) − 𝜎𝑗 (𝑍) | ≥ 𝑐𝑔 max{𝜎𝑖 (𝑍), 𝜎𝑗 (𝑍)} for any 𝑖, 𝑗 ∈ [𝑟] and 𝑖 ≠ 𝑗 .

Remark 5.1.2. The gradient flow of 𝑍 with non-crossing singular values is
common in practice. In fact, it is generic1 as is proved in [49]. However, gra-
dient flows with crossing singular values have also been observed in some
experiments. Assumption 2 is mainly for the purpose of simplifying the
presentation of our technical analysis, as crossing singular values would
introduce additional difficulties. These additional difficulties can be poten-

1A property of a topological space is called generic if it holds for a subset of the space
which is of the second Baire category.
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tially overcome by considering subspaces of singular vectors as a whole.
This is left for future work.

Statement of main result

We will prove that the randomly initialized Riemannian gradient descent
for 𝐹1(𝑍) = 1

2 ∥𝑍 − 𝑋 ∥
2
𝐹

with high probability escapes the set of spurious
critical points S# (defined in (5.1)) and converges to the global minimum
𝑋 . With high probability, the convergence rate is nearly linear and almost
dimension-free and condition number free. By choosing a small enough
constant step size, for any 𝜖 > 0, with high probability it only takes O(log 𝑛+
log 1

𝜖
) iterations to get an 𝜖-accurate solution. More specifically, we have the

following theorem.

Theorem 5.1.3. Consider 𝐹1(𝑍) = 1
2 ∥𝑍 − 𝑋 ∥

2
𝐹

, and let {𝑍𝑘 }∞𝑘=0 be the sequence
generated by the Riemannian gradient descent initialized at 𝑍0 which is drawn
from the general random distribution (as defined in Definition 5.5.1). Under As-
sumptions 5.1.1, there exists constant stepsize 𝛼, such that with high probability
no less than 1 − 1

poly(log 𝑛) , we have lim𝑘→∞ 𝑍𝑘 = 𝑋 . Furthermore, there exists an
integer K = O( 1

𝛼
log 𝑛) such that:

∥𝑍𝑘 − 𝑋 ∥2𝐹 ≤ 𝑒
−𝑐𝑘 , for all 𝑘 ≥ K .

Here 𝑐 = Ω(𝛼) > 0. In other words, it takes no more than O( 1
𝛼
· (log 1

𝜖
+ log 𝑛))

iterations to get an 𝜖-accurate solution (i.e., ∥𝑍 − 𝑋 ∥ ≤ 𝜖 ∥𝑋 ∥𝐹) via the randomly
initialized Riemannian gradient descent.

The proof of Theorem 5.1.3 consists of three stages, described by Theorem
5.2.1, Theorem 5.2.2, and Theorem 5.2.3 respectively. We will provide more
details of the proof strategy in the next few sections. Below we give some
high-level explanation of what happens in those three stages.

Sketch of proof

Here we highlight a few high-level ideas of our proofs for the main theo-
rem stated in the previous subsection. A more comprehensive and detailed
presentation of the proof strategy and intermediate results can be found in
the next few sections.

Fundamental convergence guarantee by the Łojasiewicz inequality. The
Łojasiewicz inequality [3, 9, 21, 118] has long been studied as a fundamen-
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tal tool for convergence analysis. It is especially useful in proving the linear
convergence rate of first-order optimization methods. In Section 5.3, we
derive a version of this tool tailored for the Riemannian gradient descent
method, stated in Theorem 5.3.1. Using this theorem, the task of checking
the convergence rate for a specific problem is reduced to checking condi-
tions (D) and (L) for the objective function. We then observe that for prob-
lems (1.2) and (1.3), these conditions are satisfied except for some small re-
gions on the manifold. Such regions are later dubbed spurious regions, illus-
trated by the blue balls in Figure 5.1. The spurious regions lead to the next
important result on the geometry of the low-rank matrix manifold.

Geometry of spurious regions overM𝑟 . We have discussed in Section 2.3
that for the simple least squares loss function 𝐹1(𝑍) = 1

2 ∥𝑍 −𝑋 ∥
2
𝐹

, apart from
the ground truth solution 𝑍 = 𝑋 , there are some spurious critical points in
M𝑟\M𝑟 , which we denote as S#:

S# :=
{
𝑍∗ : 𝑍∗ = 𝑈1𝐷1𝑈

∗
1 , where𝑈 = (𝑈1,𝑈2) , 𝐷 = diag {𝐷1, 𝐷2}, 𝑍∗ ≠ 𝑋

}
.

(5.1)

See Lemma 2.3.1 for more details about the derivation of spurious critical
points. If 𝑋 has distinct eigenvalues, then |S# | = 2𝑟 − 1. In particular, every
point in S# has local geometry somewhat similar to that of a saddle point,
except that the Riemannian gradient is singular. Formally, the Riemannian
Hessian has a −∞ direction, which indicates that the curvature is singular
at such point.

In the local neighborhoods of these spurious critical points, there are cer-
tain spurious regions where Condition (L) could fail. In other words, a linear
convergence rate is guaranteed outside the spurious regions, while the con-
vergence rate slows down inside the spurious regions. It then becomes im-
portant to characterize how the Riemannian gradient descent may escape
these regions and converge to the ground truth. A full description of the
spurious regions, along with examples and illustrations, is given in Section
5.4.

Three-stage description of the trajectory behavior. It now remains to study
how the trajectory of the randomly initialized gradient descent sequence es-
capes the spurious regions and converges to the ground truth on the mani-
fold. In Section 5.2, we divide the whole trajectory into three stages. In the
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worst case, the sequence is dragged toward 𝑍∗ = 0 in the first stage, then
escapes 𝑍∗ = 0 and approaches some other 𝑍∗ ∈ S# \ {0} in the second stage,
and finally escapes such 𝑍∗ in the third stage. We show that by throwing out
a small probability measure, the total number of iterations needed to reach
the 𝜖-neighborhood of 𝑋 is bounded by O(log 1

𝜖
+ log 𝑛), as stated in the

main theorems. This worst case is, however, rarely observed in numerical
experiments; usually, the sequence generated by the Riemannian gradient
descent simply avoids all spurious critical points quickly and converges to
the ground truth. Proofs of the three-stage behavior are stated in Theorem
5.2.1, Theorem 5.2.2, Theorem 5.2.3, and they further depend on a series of
technical lemmas detailed in Section 5.5.

More specifically, from Lemma 5.5.3, the “angle” (the product of the two
column vector matrices) between the randomly initialized column space
and the ground truth column space is of order Ω(arccos 1√

𝑛
). If the angle

remains less than Ω(arccos 1
poly(𝑛) ) when the sequence enters the spurious

region B(S#, 𝛿) (defined in Lemma 5.4.1) and it grows exponentially fast, it
only takes O(log 𝑛) iterations for the angle to become Ω(1), which means
the sequence has escaped the spurious region. Note that the spurious crit-
ical point 𝑍∗ differs from a classical strict saddle in that the Hessian of 𝑍∗
has −∞ directions. Still, we can bound the number of iterations needed to
escape from B(S#, 𝛿) by throwing out a small probability measure. Details
can be found in the proof of Theorem 5.2.3.

Figure 5.1: Illustration of the trajectory of the Riemannian gradient descent
onM𝑟 .

5.2 Key intermediate steps for Theorem 5.1.3

This section and the upcoming sections are primarily devoted to the proof
of Theorem 5.1.3. This theorem is the central result of this chapter and fully
describes the trajectory behavior of the Riemannian gradient descent for the
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least squares loss function on the rank-𝑟 matrix manifoldM𝑟 .

To prove Theorem 5.1.3, we divide the trajectory of the Riemannian gradient
descent on the manifold into three stages.

Stage 1: The iterative sequence generated by the Riemannian gradient de-
scent starts from a random initialization point. Then, with high probability,
the sequence will enter the spurious region of 𝑍∗ = 0, where the radius of
the spurious region 𝛿 is a constant satisfying 𝛿 = Ω(1).

Stage 2: Following stage 1, as the sequence reaches the 𝛿-spurious region
of 𝑍∗ = 0, it further takes O(log 𝑛) iterations to escape this spurious region,
and enters stage 3. The sequence then stays away from the spurious region
B(0, 𝛿).

Stage 3: The sequence either enters the 𝛿-local region of the ground truth
𝑋 without entering any spurious region of 𝑍∗ ∈ S# \ {0}, or reaches a 𝛿-
spurious region of some 𝑍∗ ∈ S# \ {0}. If it enters the 𝛿-local region of the
ground truth 𝑋 , then it takes O(log 1

𝜖
) iterations to reach an 𝜖-accurate so-

lution. On the other hand, if it reaches a 𝛿-spurious region of some 𝑍∗ ∈
S# \ {0}, then with high probability, after O(poly(log 𝑛)) iterations the se-
quence will escape the 𝛿-spurious region.

The following three theorems state the above three stages in mathematical
terms respectively. Their proofs are given in Section 5.6.

Theorem 5.2.1. Under the setting of Theorem 5.1.3, for the sequence initialized at
𝑍0 and generated by the Riemannian gradient descent, there exists 𝐾0 = Ω(1) such
that with high probability exceeding 1− 1

poly(𝑛) , we have∪𝑘≤𝐾0𝑍𝑘 ∉ ∪𝑍∗∈S#\{0}B(𝑍∗, 𝛿)
and 𝑍𝐾0 ∈ B(0, 𝛿), i.e., the sequence enters B(0, 𝛿) at step 𝐾0. Here, 𝛿 = Ω(1) is
a constant that depends only on 𝑋 , the constants 𝐶1 and 𝐶2 in the general random
distribution (Definition 5.5.1), and the step size 𝛼, and 𝐾0 = O(log 𝛿) = Ω(1).

Theorem 5.2.2. Under the setting of Theorem 5.1.3 and following the first stage
in Theorem 5.2.1, suppose 𝐾0 = Ω(1) is the positive integer such that (∪𝑘≤𝐾0𝑍𝑘 ) ∩
B(0, 𝛿) = ∅ and 𝑍𝐾0 ∈ B(0, 𝛿), i.e., the sequence enters B(0, 𝛿) at step 𝐾0. Then
there exists an absolute constant 𝐶1 = O(1) > 0 such that with high probability
exceeding 1 − 1

poly(𝑛) , we have ∪∞
𝑘≥𝐾1

𝑍𝑘 ∩ B(0, 𝛿) = ∅. Here, 𝐾1 = 𝐾0 + O(log 𝑛).

Theorem 5.2.3. Under the setting of Theorem 5.1.3 and following the first and
second stages in Theorem 5.2.1 and Theorem 5.2.2, assume there exists a positive
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integer 𝐾1 and some 𝑍∗ ∈ S#\{0} such that 𝑍𝐾1 ∈ B(𝑍∗, 𝛿) and 𝑍𝑘≤𝐾1∩B(𝑍∗, 𝛿) =
∅, i.e., the sequence enters the local neighborhood 𝐵(𝑍∗, 𝛿) of a nonzero spurious
critical point 𝑍∗ at step 𝐾1. Then, with high probability exceeding 1− 1

poly(log 𝑛) , we
have ∥𝑍𝑘 − 𝑋 ∥𝐹 ≤ 𝜖 ∥𝑋 ∥𝐹 for 𝑘 ≥ 𝐾2. Here, 𝐾2 = 𝐾1 + O( 1

𝛼
· (log 𝑛 + log 1

𝜖
)) and

𝑐∗ > 0 is a constant.

Proof of Theorem 5.1.3

Trajectory: Three main intermediate stages, Theorem 5.2.1, 5.2.2, 5.2.3
(Proofs are given in Section 5.6)

Spurious regions
(Section 5.4)

Łojasiewicz convergence
tool (Section 5.3)

Technical lemmas
(Section 5.5)

Proof of Theorem 5.1.3. Let the stepsize 𝛼 and 𝛿 be small constants that meet
the requirements in Theorem 5.2.1, Theorem 5.2.2, and Theorem 5.2.3. The-
orem 5.1.3 can be proved by combining the result of Theorem 5.2.1, The-
orem 5.2.2 and Theorem 5.2.3. Note that if the sequence does not enter
∪𝑍∗∈S#B(𝑍∗, 𝛿) in stage 3, then ∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥ ≥ 𝛿 always holds true af-
ter the end of stage 2, and by Lemma 5.4.5, we have that {𝑍𝑘 }𝑘=0 converges
to 𝑋 directly in a linear rate. Otherwise, if the sequence does enter some
spurious region in stage 3, we can bound the number of steps needed to
converge to 𝑋 by Theorem 5.2.3. □

The proofs of Theorems 5.2.1-5.2.3 follow the roadmap laid out in Section
5.1. In particular, from Section 5.3 to 5.5, each subsection introduces a group
of technical results corresponding to a main idea in Section 5.1. They are the
fundamental convergence tool by the Łojasiewicz inequality, the geometry
of spurious regions onM𝑟 , and the technical lemmas describing the dynam-
ics of the trajectory behavior. We then use those technical results to prove
Theorems 5.2.1–5.2.3 in Section 5.6.

5.3 Fundamental convergence guarantee of the Riemannian gradient de-
scent

The Łojasiewicz inequality, which is named after S. Łojasiewicz [100, 101], is
a powerful tool for analyzing the convergence rate of gradient-based meth-
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ods. Previous works have used the Łojasiewicz inequality to prove the con-
vergence rate in many Euclidean optimization problems as well as Rieman-
nian optimization problems, see for example [3, 8–10, 21, 118, 128].

The following theorem serves as a primary tool to determine the conver-
gence rate of the Riemannian gradient descent when minimizing a differen-
tiable function 𝑓 :M → R. We assume that {𝑍𝑘 } generated by the Rieman-
nian gradient descent is bounded for the rest of the chapter.

Theorem 5.3.1. LetM be a Riemannian manifold, 𝑓 :M → R be a differentiable
loss function to be minimized, {𝑍𝑘 }∞𝑘=0 be a sequence generated by the Riemannian
gradient descent algorithm (2.6). Assume that the following conditions hold:

1) (Descent Inequality) There exists 𝐶𝑑 > 0 such that

𝑓 (𝑍𝑘 ) − 𝑓 (𝑍𝑘+1) ≥ 𝐶𝑑 ∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥∥𝑍𝑘+1 − 𝑍𝑘 ∥; (D)

2) (Łojasiewicz Gradient Inequality) There exists 0 < 𝐶𝑙 < +∞ such that

| 𝑓 (𝑍𝑘 ) − 𝑓 (𝑍∗) |1−𝜔 ≤ 𝐶𝑙 ∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥, (L)

with 0 < 𝜔 ≤ 1
2 . Here, 𝑍∗ is the accumulating point of {𝑍𝑘 }.

Then, if the learning rate 𝛼 satisfies 0 < 𝛼 <
2𝐶2

𝑙

𝐶𝑑
, the sequence {𝑍𝑘 } converges to

its accumulating point 𝑍∗ with the following convergence rate:

∥𝑍𝑘 − 𝑍∗∥ ≤

𝑒−𝑐𝑘 , if 𝜔 = 1

2 ;

𝑘−
𝜔

1−2𝜔 , if 0 < 𝜔 < 1
2 .

When 𝜔 = 1
2 , linear convergence rate can be guaranteed with 𝑐 = − log(1− 𝛼𝐶𝑑

2𝐶2
𝑙

) >
0. Here ∥ · ∥ is an arbitrary norm under which there is a first-order retraction on
the manifold.

Proof. Since { 𝑓𝑘 }∞𝑘=0 is a monotone and lower bounded sequence, Condition
(D) and continuity of 𝑓 (·) implies convergence of {𝑍𝑘 } to some fixed point
𝑍∗. Without loss of generality we assume that 𝑓 (𝑍∗) = 0. By Conditions (D)
and (L), we have

∥𝑍𝑘+1 − 𝑍𝑘 ∥𝐹 ≤
1

𝐶𝑑 ∥𝑃𝑇𝑧 (∇ 𝑓 (𝑍𝑘 ))∥𝐹
( 𝑓𝑘 − 𝑓𝑘+1) ≤

𝐶𝑙

𝐶𝑑
𝑓 𝜔−1
𝑘 ( 𝑓𝑘 − 𝑓𝑘+1)

≤ 𝐶𝑙

𝐶𝑑

∫ 𝑓𝑘

𝑓𝑘+1

𝜙𝜔−1𝑑𝜙 =
𝐶𝑙

𝜔𝐶𝑑
( 𝑓 𝜔𝑘 − 𝑓

𝜔
𝑘+1).
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Since { 𝑓𝑘 }∞𝑘=0 is a monotone and lower bounded sequence, { 𝑓𝑘 } is conver-
gent. Therefore, {𝑍𝑘 } is convergent, and the limit point is 𝑍∗.

Consider 𝑠𝑘 :=
∑∞
𝑖=𝑘 ∥𝑍𝑖+1−𝑍𝑖∥𝐹 ≤

𝐶𝑙

𝜔𝐶𝑑
𝑓 𝜔
𝑘

. Combined with Condition (L), we
get

𝑠
1−𝜔
𝜔

𝑘
≤ ( 𝐶𝑙

𝜔𝐶𝑑
) 1−𝜔

𝜔 𝑓 1−𝜔
𝑘 ≤ 𝐶𝑙 (

𝐶𝑙

𝜔𝐶𝑑
) 1−𝜔

𝜔 ∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥𝐹 .

Let b𝑘 = −𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 )) and 𝛼b̃𝑘 = 𝑍𝑘+1 − 𝑍𝑘 = R(𝑍𝑘 + 𝛼b𝑘 ) − 𝑍𝑘 . By the
first-order retraction property, 𝛼b̃𝑘 = 𝛼b𝑘 + 𝑜(𝛼∥b∥). This gives us

𝑠
1−𝜔
𝜔

𝑘
≤ 𝐶𝑙 (

𝐶𝑙

𝜔𝐶𝑑
) 1−𝜔

𝜔 ∥b𝑘 ∥𝐹 = 𝐶𝑙 (
𝐶𝑙

𝜔𝐶𝑑
) 1−𝜔

𝜔
1
𝛼
(∥𝑍𝑘+1 − 𝑍𝑘 ∥𝐹 + 𝑜(∥𝑍𝑘+1 − 𝑍𝑘 ∥𝐹)).

Let 𝜌 = 𝜌(𝛼) := 𝛼
𝐶𝑙
(𝜔𝐶𝑑

𝐶𝑙
) 1−𝜔

𝜔 , i.e., 𝜌 is a constant depending only on 𝐶𝑙 , 𝐶𝑑
and 𝜔. Then we have

𝜌(𝛼)𝑠
1−𝜔
𝜔

𝑘
= ∥𝑍𝑘+1 − 𝑍𝑘 ∥𝐹 + 𝑜(∥𝑍𝑘+1 − 𝑍𝑘 ∥𝐹).

This implies

𝜌(𝛼)𝑠
1−𝜔
𝜔

𝑘
≤ (1 + 𝑜(1)) (𝑠𝑘 − 𝑠𝑘+1).

By choosing 𝛼 to be a small enough constant, there exists 𝜌 ∈ (0, 1) such that

𝜌𝑠
1−𝜔
𝜔

𝑘
≤ 𝑠𝑘 − 𝑠𝑘+1. (5.2)

In the case of 𝜔 = 1
2 , the above inequality gives 𝑠𝑘+1 ≤ (1 − 𝜌)𝑠𝑘 for some

𝜌 ∈ (0, 1). This implies ∥𝑍𝑘 − 𝑍∗∥𝐹 ≤ 𝑠𝑘 ≤ (1 − 𝜌)𝑘 𝑠0 = 𝑠0𝑒
−𝑐𝑘 , where

𝑐 = − log(1− 𝜌) = − log(1− 𝛼𝐶𝑑

2𝐶2
𝑙

) > 0, which implies linear convergence rate.

On the other hand, in the case of 0 < 𝜔 < 1
2 , assuming there exists 𝑝 such

that 𝑠𝑘 = 𝑐1𝑘
−𝑝, we solve for 𝑝 as follows:

𝑠𝑘+1 = 𝑐1
1

(𝑘 + 1)𝑝 = 𝑐1
1
𝑘 𝑝
(1 + 1

𝑘
)−𝑝

= 𝑐1
1
𝑘 𝑝
(1 − 𝑝

𝑘
) +𝑂 ( 1

𝑘 𝑝+2
)

= 𝑠𝑘 (1 − 𝑝𝑠
1
𝑝

𝑘
𝑐
− 1

𝑝

1 ) +𝑂 (
1
𝑘 𝑝+2
)

≤ 𝑠𝑘 (1 − 𝜌𝑠
1−2𝜔
𝜔

𝑘
),

where the last inequality follows from Equation (5.2). Choose 𝑐1 a proper
constant, then the above inequality holds with 𝑝 = 𝜔

1−2𝜔 . Thus, we obtain
∥𝑍𝑘 − 𝑍∗∥𝐹 ≤ 𝑠𝑘 ≤ 𝑐1𝑘

− 𝜔
1−2𝜔 . This implies polynomial convergence rate. □
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Remark 5.3.2. A few remarks are in order.

1) This theorem explores the convergence rate of the Riemannian gradi-
ent descent to an accumulating point. This convergence rate depends
on the property of the function 𝑓 (reflected in the exponent 𝜔), the
constants 𝐶𝑑 and 𝐶𝑙 , and the learning rate 𝛼 > 0.

2) With Theorem 5.3.1, the task of checking the convergence rate is re-
duced to checking conditions (D) and (L) and determining the respec-
tive constants.

3) This theorem only requires 𝑍∗ to be an accumulating point, but 𝑍∗ is
not necessarily a local minimum. It can also be other types of critical
points such as saddle points.

4) From this result, we can see that the convergence rate is faster with
a larger stepsize 𝛼, or a larger Riemannian gradient ∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥𝐹
(which makes 𝐶𝑙 smaller).

5) An extension of this theorem has been proposed in [134], which allows
for mixed norms in (D) and (L), see also Chapter 7.

Lemma 5.3.3. Let 𝑓 (𝑍) = 𝐹1(𝑍) or 𝐹2(𝑍). Assume that 𝑍𝑘 satisfies Conditions
(D) and (L) in Theorem 5.3.1 only for 𝑘 = 1, . . . , 𝐾 , with 𝐾 < +∞. Then, we have

𝑓𝑘+1 < (1 − 𝜌) 𝑓𝑘 , 𝑘 = 1, . . . , 𝐾,

where 𝑓𝑘 := 𝑓 (𝑍𝑘 ). Furthermore, if 𝛼 > 0 is small enough, we have ∥𝑍𝑘 − 𝑋 ∥𝐹 ≲
𝑒−𝑐𝑘 , where 𝜌 = Ω(𝛼𝐶𝑑

𝐶2
𝑙

) ∈ (0, 1) and 𝑐 = −1
2 log(1 − 𝜌) > 0.

Proof. For any finite 𝑘 ∈ [𝐾], from Conditions (D) and (L), by the first-order
retraction property, we have:

𝑓𝑘+1 ≤ 𝑓𝑘 − 𝐶𝑑 ∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥∥𝑍𝑘+1 − 𝑍𝑘 ∥
≤ 𝑓𝑘 −Ω(𝛼)𝐶𝑑 ∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥

2

≤
(
1 −Ω(𝛼)𝐶𝑑

𝐶2
𝑙

)
𝑓𝑘 .

Since for both 𝐹1(𝑍) and 𝐹2(𝑍), we have ∥𝑍𝑘−𝑋 ∥2𝐹 ≲ 𝑓𝑘 , we have ∥𝑍𝑘−𝑋 ∥𝐹 ≲
𝑒−𝑐𝑘 , with 𝜌 = Ω(𝛼𝐶𝑑

𝐶2
𝑙

) and 𝑐 = −1
2 log(1 − 𝜌). If 𝛼 > 0 is properly small, we

have 𝑐 > 0. □
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The two conditions stated in Theorem 5.3.1 are satisfied in a large part of the
manifoldM𝑟 for the loss functions that we consider, including the neighbor-
hood of the ground truth 𝑋 . The fast convergence rate in most parts of the
manifold is thus easy to derive. In some regions of the manifold, though,
Condition (L) could fail and the convergence rate could deteriorate. As we
will see in the next section, these regions are the spurious regions near the
spurious critical points on the manifold. Special analysis is needed to study
how the Riemannian gradient descent escapes these spurious regions.

We also mention that another version of Theorem 5.3.1 is given in Section
5.8, specially tailored for the objective functions with weak isometry, which
will be used in our convergence study of the Riemannian gradient descent
for phase retrieval.

5.4 Geometry of the spurious regions on the low-rank matrix manifold

The spurious critical points play an important role in the analysis of the
convergence guarantee for 𝐹1(𝑍) = 1

2 ∥𝑍 − 𝑋 ∥
2
𝐹

. In addition to the spurious
critical points themselves, here we need to look at some local regions in their
𝛿-neighborhoods, which we call the spurious regions and denote as B(S#, 𝛿).
This is where Condition (L) of Theorem 5.3.1 is violated. In the next two
sections, we show that with high probability, the trajectory either avoids
the spurious regions, or escapes from them in a small number of steps.

Spurious regions in the neighborhood of spurious fixed points

As is mentioned in Section 5.3, there are some regions onM𝑟 that violate the
conditions for fast convergence guarantee in Theorem 5.3.1. These are the
regions near the spurious critical points. We have discussed the motivation
and definition of the spurious critical points in Section 2.3. In this subsec-
tion, we take a detailed look at the spurious regions near those spurious
critical points.

To ensure that Condition (L) holds with 𝜔 = 1
2 , what we essentially need is

∥𝑃𝑇𝑧 (𝑍 − 𝑋)∥𝐹 ≥ 𝐶𝐿 , 𝐶𝐿 > 0.

However, for some special 𝑍 which occupies a small part of the whole do-
main, the Riemannian gradient 𝑃𝑇𝑧 (𝑍 − 𝑋) becomes so small that this lower
bound is violated. We use spurious regions to refer to the regions where 𝑍
violates this lower bound.
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The following results show that the spurious regions are in the neighbor-
hoods of the spurious fixed points.

Lemma 5.4.1 (Spurious regions). The spurious regions onM𝑟 can be character-
ized as follows:

B(S#, 𝛿) := ∪𝑍∗∈S#B(𝑍∗, 𝛿) = {𝑍 : ∥𝑃𝑇𝑧 (𝑍 − 𝑋)∥𝐹 ≤ 𝛿}.

More specifically, each B(𝑍∗, 𝛿) can be characterized as follows. In the general
non-Hermitian case, assume 𝑋 = 𝑈𝐷𝑉∗ is the SVD of 𝑋 , then

B(𝑍∗, 𝛿) =
{
𝑍 : 𝑍 =

(
𝐵, 𝐵

) (
𝐷1 + Δ1 0

0 Δ2

) (
𝐶∗

𝐶∗

)
,

∥Δ1∥, ∥Δ2∥, ∥𝑃𝐵 − 𝑃𝑈1 ∥, ∥𝑃𝐵 − 𝑃𝑈 ∥, ∥𝑃𝐶 − 𝑃𝑉1 ∥, ∥𝑃𝐶 − 𝑃𝑉 ∥ ≤ O(𝛿)
}
,

where 𝑃𝐵 = 𝐵𝐵∗ is the projection onto the subspace of 𝐵 (similar for 𝑃𝑈1 , 𝑃
𝐵

,
𝑃
𝑈

, and those of 𝐶 and 𝑉); 𝑈 = (𝑈1,𝑈2) is an (𝑠, 𝑟 − 𝑠) dimensional splitting
for some 0 < 𝑠 < 𝑟 (similar for 𝑉); 𝑈 satisfies �̃� ⊂ 𝑐𝑜𝑙 (𝑈)⊥ and 𝑈∗𝑈 = 𝐼𝑟−𝑠,
𝐷 = diag(𝐷1, 𝐷2) where 𝐷1 and 𝐷2 are diagonal matrices, and Δ1, Δ2 are also
diagonal matrices.

In the SPSD/HPSD case, assume that 𝑋 = 𝑈𝐷𝑈∗ is the eigenvalue decomposition
of 𝑋 , then

B(𝑍∗, 𝛿) =
{
𝑍 : 𝑍 =

(
𝐵, 𝐵

) (
𝐷1 + Δ1 0

0 Δ2

) (
𝐵∗

𝐵∗

)
,

∥Δ1∥, ∥Δ2∥, ∥𝑃𝐵 − 𝑃𝑈1 ∥, ∥𝑃𝐵 − 𝑃𝑈 ∥ ≤ O(𝛿)
}
.

Proof. We only prove it for the general non-Hermitian case. The proof of the
SPSD/HPSD case is very similar and we omit the details here.

Assume 𝑍 = 𝑈𝑧Σ𝑧𝑉
∗
𝑧 , and let𝑈𝑧,𝑉𝑧 ∈ F𝑛×(𝑛−𝑟) be the orthogonal complements

of 𝑈𝑧 and 𝑉𝑧. We can express 𝑋 in the following block form under this new
basis:

𝑋 =

(
𝑈𝑧 𝑈𝑧

)
𝑋

(
𝑉∗𝑧
𝑉∗𝑧

)
=

(
𝑈𝑧 𝑈𝑧

) (
𝑋11 𝑋12

𝑋21 𝑋22

) (
𝑉∗𝑧
𝑉∗𝑧

)
,

where

𝑋 =

(
𝑋11 𝑋12

𝑋21 𝑋22

)
= 𝑄𝐿 · 𝐷 · 𝑄∗𝑅 .
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Then we have

𝑃𝑇𝑧 (𝑋) =
(
𝑈𝑧 𝑈𝑧

) (
𝑋11 𝑋12

𝑋21 0

) (
𝑉∗𝑧
𝑉∗𝑧

)
, 𝑈 =

(
𝑈𝑧 𝑈𝑧

)
𝑄𝐿 , 𝑉 =

(
𝑉𝑧 𝑉𝑧

)
𝑄𝑅 .

Assume that ∥𝑃𝑇𝑧 (𝑍 − 𝑋)∥𝐹 ≤ 𝛿, then

∥𝑃𝑇𝑧 (𝑍 − 𝑋)∥𝐹 =


(
𝑋11 − Σ𝑧 𝑋12

𝑋21 0

)
𝐹

=

𝑋 −
(
Σ𝑧 0
0 𝑋22

)
𝐹

≤ 𝛿.

Let

𝑆 :=

(
Σ𝑧 0
0 𝑋22

)
=

(
𝐼𝑟 0
0 𝑃𝐿

) (
Σ𝑧 0
0 Σ22

) (
𝐼𝑟 0
0 𝑃∗

𝑅

)
,

where the second equality gives the eigenvalue decomposition of the matrix
𝑆. Then ∥𝑋 − 𝑍 ∥𝐹 ≤ 𝛿.

Using Lemma 2.4.2, we have that the eigenvalues of 𝑆 are 𝛿-perturbations
of those of 𝑋 . Note that the eigenvalues of 𝑋 are the same as those of 𝑋 ,
which are {𝑑1, . . . , 𝑑𝑟} ∪ {0}. On the other hand, the eigenvalues of 𝑆 are
{𝜎1, . . . , 𝜎𝑟} ∪ {�̃�1, . . . , �̃�𝑛−𝑟}, where {𝜎𝑖} and {�̃�𝑖} are the diagonal entries of
Σ𝑧 and Σ22 respectively. Thus, for each 𝜎𝑖, 𝑖 ∈ [𝑟], either |𝜎𝑖 − 𝑑 𝑗 | = O(𝛿)
for some 𝑗 ∈ [𝑟], or 𝜎𝑖 = O(𝛿). In other words, each 𝜎𝑖 either captures a
eigenvalue of 𝑋 , or is close to zero.

Now let I denote the set of indices of {𝑑𝑖} captured by {𝜎𝑖}, and I𝑐 = [𝑟]\I.
Without loss of generality, assume |𝜎𝑖 − 𝑑𝑖 | = O(𝛿) for 𝑖 ∈ I, i.e., their indices
also match. Let 𝑈1 = 𝑈 (:,I), 𝑈2 = 𝑈 (:,I𝑐), 𝑉1 = 𝑉 (:,I), 𝑉2 = 𝑉 (:,I𝑐),
and 𝐷1 = 𝐷 (I,I), 𝐷2 = 𝐷 (I𝑐,I𝑐). Then ∥Σ𝑧 (I,I) − 𝐷1∥ = O(𝛿), and
∥Σ𝑧 (I𝑐,I𝑐)∥ = O(𝛿).

By Lemma 2.4.1, the singular subspaces of 𝑋 and 𝑆 corresponding to indices
I are 𝛿-close. In mathematical terms, we have

∥𝑃𝐼 (:,I) − 𝑃𝑄𝐿 (:,I) ∥ = O(𝛿), ∥𝑃𝐼 (:,I) − 𝑃𝑄𝑅 (:,I) ∥ = O(𝛿),

where 𝐼 denotes the identity matrix and 𝑃 denotes the projection onto the
space spanned by the column vectors. Using the relations 𝑈 = (𝑈𝑧,𝑈𝑧)𝑄𝐿 ,
and 𝑉 = (𝑉𝑧, 𝑉𝑧)𝑄𝑅, we have

∥𝑃𝑈𝑧 (:,I) − 𝑃𝑈1 ∥ = O(𝛿), ∥𝑃𝑉𝑧 (:,I) − 𝑃𝑉1 ∥ = O(𝛿).
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Let 𝐵 = 𝑈𝑧 (:,I) and 𝐶 = 𝑉𝑧 (:,I) and we have the results regarding 𝐵 and 𝐶
in the lemma.

Similarly, the singular subspaces of 𝑍 corresponding to I𝑐 are 𝛿-close to
some singular subspaces perpendicular to 𝑈 and 𝑉 . Denote them as 𝑈 and
𝑉 respectively. Then we obtain

∥𝑃𝑈𝑧 (:,I𝑐) − 𝑃𝑈1 ∥ = O(𝛿), ∥𝑃𝑉𝑧 (:,I𝑐) − 𝑃𝑉1 ∥ = O(𝛿).

Let 𝐵 = 𝑈𝑧 (:,I𝑐) and 𝐶 = 𝑉𝑧 (:,I𝑐) and we have the full result. Note that
by Lemma 2.4.1, the constant in the O(·) notation only depends on the gap
between the two groups of eigenvalues, which in our case is determined by
the smallest eigenvalue of 𝑋 . □

Remark 5.4.2. The intuition behind Lemma 5.4.1 is that an 𝑠-dimensional
principal part of 𝑍 is “almost aligned” with an 𝑠-dimensional principal
part of 𝑋 , and their eigenvalues are close to each other; while the other
(𝑟 − 𝑠)-dimensional part of 𝑍 is “almost perpendicular” to the other (𝑟 − 𝑠)-
dimensional part of 𝑋 , and the eigenvalues of that part of 𝑍 is very small.

Lemma 5.4.3. Let 𝑋 = 𝑈𝐷𝑈∗ and 𝑍 = 𝑉𝑧Σ𝑧𝑉
∗
𝑧 be the eigenvalue decompositions

of 𝑋 and 𝑍 respectively (here the diagonals of Σ𝑧 are not required to be in descending
order). Assume that 𝑈 = 𝑉𝑧𝑅 + 𝑉𝑧𝑆, with 𝑉𝑧 ∈ 𝐶𝑜𝑙 (𝑉𝑧)⊥. If 𝑍 ∈ B(S#, 𝛿), where
rank(𝑍∗) = 𝑠, then we have

𝑅 =

(
𝐼𝑠 + 𝐸1 𝐸2

𝐸3 𝐸4

)
,

with ∥𝐸1∥, ∥𝐸2∥, ∥𝐸3∥, and ∥𝐸4∥ ≤ O(𝛿), rank(𝑍∗) = 𝑠, 0 < 𝑠 < 𝑟 , and 𝑆 ∈ F𝑟×𝑟 .

Proof. Since 𝑈 = 𝑉𝑧𝑅 + 𝑉𝑧𝑆, we have 𝑅 = 𝑉∗𝑥𝑈. By Lemma 5.4.1, for 𝑍 ∈
B(S#, 𝛿), 𝑍 can be decomposed as

𝑍 =

(
𝐵, 𝐵

) (
𝐷1 + Δ1 0

0 Δ2

) (
𝐵∗

𝐵∗

)
, i.e., 𝑉𝑧 =

(
𝐵, 𝐵

)
,

and there exists a block form 𝑈 = (𝑈1,𝑈2) and a 𝑈 ⊥ (𝑈1,𝑈2) such that
∥𝑃𝐵 − 𝑃𝑈1 ∥ < O(𝛿) and ∥𝑃

𝐵
− 𝑃

𝑈
∥ < O(𝛿).

We now look at the block form of 𝑅:

𝑅 = 𝑉∗𝑧𝑈 =

(
𝐵∗

𝐵∗

)
(𝑈1,𝑈2) =

(
𝐵∗𝑈1 𝐵∗𝑈2

𝐵∗𝑈1 𝐵∗𝑈2

)
.
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Let 𝑅 =

(
𝐼𝑠 + 𝐸1 𝐸2

𝐸3 𝐸4

)
, then 𝐸1 = 𝐵∗𝑈1 − 𝐼𝑠, 𝐸2 = 𝐵∗𝑈2, 𝐸3 = 𝐵∗𝑈1, 𝐸4 = 𝐵∗𝑈2.

For 𝐸2, we have that

∥𝐸2∥2𝐹 = ∥𝐵∗𝑈2∥2𝐹 = tr(𝐵∗𝑈2𝑈
∗
2𝐵) = tr(𝐵𝐵∗𝑈2𝑈

∗
2)

= tr(𝑃𝐵𝑃𝑈2) = tr(𝑃2
𝐵𝑃

2
𝑈2
) = ∥𝑃𝐵𝑃𝑈2 ∥2𝐹 ≤ O(𝛿

2).

Thus ∥𝐸2∥𝐹 ≤ O(𝛿). Similar results hold for 𝐸3 and 𝐸4. As for 𝐸1, we have

∥𝐸1∥2𝐹 = ∥𝐵∗𝑈1∥2𝐹 .

Note that if 𝑋 has distinct eigenvalues and 𝛿 is small enough, then the eigen
perturbation result (Lemma 2.4.2) applies to each eigenvector. In other
words, for 𝑖 = 1, . . . , 𝑠,

∥𝑃𝐵(:,𝑖) − 𝑃𝑈1 (:,𝑖) ∥𝐹 ≤ O(𝛿).

Thus it can be shown that

∥𝐸1∥2𝐹 = ∥𝐵∗𝑈1∥2𝐹 =
∑︁

1≤𝑖, 𝑗≤𝑠
|𝐵(:, 𝑖)∗𝑈1(:, 𝑗) |2 ≤ O(𝛿2).

As a result, ∥𝐸1∥𝐹 ≤ O(𝛿). □

Remark 5.4.4. In the case where the eigenvalues of 𝑋 are not distinct, one
can simply let 𝑈1 be the basis of the best subspace that 𝑉𝑧 can capture, and
the above result still holds.

Convergence rate outside the spurious regions

We now show that as long as the spurious regions are excluded, we can
establish the linear convergence rate of the RGD, using Conditions (D) and
(L) in Theorem 5.3.1.

Figure 5.2: Convergence guarantee on the main part ofM𝑟 .
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Lemma 5.4.5. Let 𝐹1(𝑍) = 1
2 ∥𝑍 − 𝑋 ∥

2
𝐹

, 𝑋, 𝑍 ∈ M𝑟 . Let {𝑍𝑘 }𝑘=0 be the sequence
generated by the RGD with a small enough constant step size 𝛼 = O(1). Assume
that {𝑍𝑘 }𝑘=0 remains in a bounded subset ofM𝑟 , and stay in the set {𝑍 : ∥𝑃𝑇𝑧 (𝑍 −
𝑋)∥𝐹 ≥ 𝐶𝐿} ∪ {𝑍 : ∥𝑍 − 𝑋 ∥𝐹 ≤ 𝑑𝑟

2 }. Then we have:

1) ∥𝑃𝑇𝑧 (∇ 𝑓 (𝑍𝑘 ))∥𝐹 ≥ 𝐶1∥𝑍𝑘 − 𝑋 ∥𝐹 , for all 𝑘 , with 𝐶1 ≥ Ω(𝐶𝐿) > 0. That is,
Condition (L) holds with 𝜔 = 1

2 ;

2) There exists some absolute constant 𝐶2 > 0 such that

𝑓𝑘 − 𝑓𝑘+1 ≥ 𝐶2∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥𝐹 ∥𝑍𝑘+1 − 𝑍𝑘 ∥𝐹 .

Thus, by Theorem 5.3.1, there exists 𝛼 > 0 such that the sequence {𝑍𝑘 } generated
by the RGD (2.6) converges to 𝑋 in a linear convergence rate:

∥𝑍𝑘 − 𝑋 ∥𝐹 ≤ 𝑒−𝑐𝑘 .

Here, 𝑐 = − log(1 − 𝛼 ·min(Ω(𝐶2
𝐿
), 1
^2 )).

Proof. The proof is a direct consequence of Theorem 5.3.1 and Lemma 5.5.6.
Specifically, to make use of Theorem 5.3.1, it suffices to check Condition (L)
with 𝜔 = 1

2 and Condition (D).

As stated at the beginning of Section 5.3, we assume {𝑍𝑘 } is bounded, i.e.,
∥𝑍 ∥𝐹 ≤ 𝐶. In the region {𝑍 : ∥𝑃𝑇𝑧 (𝑍 − 𝑋)∥ ≥ 𝐶𝐿}, we have ∥𝑃𝑇𝑧 (𝑍−𝑋)∥𝐹∥𝑍−𝑋 ∥𝐹 ≥
𝐶𝐿

𝐶+∥𝑋 ∥𝐹 ; on the other hand, in the region {𝑍 : ∥𝑍−𝑋 ∥𝐹 ≤ 𝑑𝑟
2 }, by Lemma 2.4.2

and Lemma 5.5.6, ∥𝑃𝑇𝑧 (𝑍−𝑋)∥
2
𝐹

∥𝑍−𝑋 ∥2
𝐹

≥ 𝑑2
𝑟

𝑑2
𝑟+4∥𝑋 ∥2𝐹

. One can take𝐶1 = min
{

𝐶𝐿

𝐶+∥𝑋 ∥𝐹 ,

√︂
𝑑2
𝑟

𝑑2
𝑟+4∥𝑋 ∥2𝐹

}
>

0. In other words, in the region {𝑍 : ∥𝑃𝑇𝑧 (𝑍−𝑋)∥ ≥ 𝐶𝐿}∪{𝑍 : ∥𝑍−𝑋 ∥𝐹 ≤ 𝑑𝑟
2 },

for 𝐹1(𝑍) = 1
2 ∥𝑍 − 𝑋 ∥

2
𝐹

, we have Condition (L) holds with 𝜔 = 1
2 and

𝐶𝑙 = max

{
𝐶+∥𝑋 ∥𝐹
𝐶𝐿

,

√︂
1 + 4∥𝑋 ∥2

𝐹

𝑑2
𝑟

}
.

For Condition (D), we consider

𝑓𝑘 − 𝑓𝑘+1 =
1
2
∥𝑍𝑘 − 𝑋 ∥2𝐹 −

1
2
∥𝑍𝑘+1 − 𝑋 ∥2𝐹

=
1
2

tr((𝑍𝑘 + 𝑍𝑘+1 − 2𝑋) (𝑍𝑘 − 𝑍𝑘+1))

= tr((𝑋 − 𝑍𝑘 ) (𝑍𝑘+1 − 𝑍𝑘 )) −
1
2
∥𝑍𝑘+1 − 𝑍𝑘 ∥2𝐹 .
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Let 𝑍𝑘+1 = 𝑍𝑘 + 𝛼b̃𝑘 and b𝑛 = −𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 )), then by first-order retraction
property we have b̃𝑘 = b𝑘 + 𝑜(∥b𝑘 ∥𝐹). So the left- and right-hand side of
Condition (D) are

LHS = 𝑓𝑘 − 𝑓𝑘+1

= tr(−∇ 𝑓 (𝑍𝑘 )𝛼b̃𝑘 ) −
𝛼2

2
∥b̃𝑘 ∥2𝐹

= tr(−∇ 𝑓 (𝑍𝑘 ) (−𝛼𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 )) + 𝑜(𝛼∥b𝑘 ∥𝐹))) −
𝛼2

2
∥b̃𝑘 ∥2𝐹

= 𝛼∥b𝑘 ∥2𝐹 + 𝑜(𝛼∥b𝑘 ∥𝐹),
RHS = 𝐶𝑑 ∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥𝐹 ∥𝑍𝑘+1 − 𝑍𝑘 ∥𝐹

= 𝐶𝑑 ∥b𝑘 ∥𝐹 ∥𝛼b̃𝑘 ∥𝐹
= 𝐶𝑑𝛼∥b𝑘 ∥2𝐹 + 𝑜(𝛼∥b𝑘 ∥

2
𝐹).

By choosing a proper 𝐶𝑑 > 0 and a small enough step size 𝛼, one can get

𝑓𝑘 − 𝑓𝑘+1 ≥ 𝐶𝑑 ∥𝑃𝑇𝑧𝑘 (∇ 𝑓 (𝑍𝑘 ))∥𝐹 ∥𝑋𝑘+1 − 𝑋𝑘 ∥𝐹 ,

which is Condition (D). The results now follow from Theorem 5.3.1. And
the constant in the exponent for the linear convergence rate is 𝑐 = − log(1 −
Ω( 𝛼

𝐶2
𝑙

)) = − log(1 − 𝛼 ·min(Ω(𝐶2
𝐿
), 1
^2 )). □

Lemma 5.4.5 ensures linear convergence to 𝑋 in the main part of the man-
ifold outside of the spurious regions. The rest of the analysis thus evolves
around how the trajectory of the Riemannian gradient descent escapes the
spurious regions.

5.5 Dynamics of the trajectory behavior

In Section 5.2, we have outlined how the trajectory of the Riemannian gra-
dient descent is divided into three stages, corresponding to Theorem 5.2.1,
Theorem 5.2.2, and Theorem 5.2.3. In this section, we introduce a few tech-
nical lemmas describing the dynamics of the trajectory behavior, which will
be used for the proofs of Theorems 5.2.1–5.2.3.

We first define the general random distribution on the low-rank manifold.

Definition 5.5.1 (General random distribution). 𝑍 is said to be drawn from
a general random initialization, if 𝑍 = 𝑉1Σ𝑉

∗
2 where 𝑉1 and 𝑉2 are drawn from

a uniform distribution on the Stiefel manifold V𝑟 (R𝑛), and the entries of Σ
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are drawn independently from a uniform distribution over [𝐶1, 𝐶2] with
𝐶2 > 𝐶1 ≥ 0.

Remark 5.5.2. 1) The simplest example of a general random distribution
is the following symmetric rank-1 Gaussian sampling. One can con-
struct 𝑍0 = 𝑐𝑢0𝑢

∗
0 ∈ F

𝑛×𝑛, where 𝑐 > 0 is a constant and 𝑢0 is drawn
from 1√

𝑛
N(0, 1)𝑛 for F = R, or 1√

2𝑛
N(0, 1)𝑛 + 𝑖 1√

2𝑛
N(0, 1)𝑛 for F = C. It

is equivalent to 𝑍0 = 𝜌𝑣0𝑣
∗
0 with 𝑣0 drawn from V1(R𝑛) or V1(C𝑛) and

𝜌 drawn from Ω( 1
𝑛
)𝜒2(𝑛) or Ω( 1

2𝑛 )𝜒
2(2𝑛). Here, 𝜒2(𝑠) :=

∑𝑠
𝑖=1 𝑛

2
𝑖

where
𝑛𝑖, 𝑖 = 1, 2, ..., 𝑠 are i.i.d. standard normal variables.

2) In practical computation, a uniform distribution on the Stiefel mani-
fold can be easily constructed as follows. For F = R, let 𝐺 be drawn
from 1√

𝑛
N(0, 1)𝑛×𝑟 , and construct 𝑉 = 𝐺 (𝐺∗𝐺)− 1

2 . For F = C, change

the law of 𝐺 to 1√
2𝑛
(N (0, 1) + 𝑖 · N (0, 1))𝑛×𝑟 .

3) The density functions of the sampling laws of𝑉 and Σ can be extended
from constants to more general ones. In fact, it suffices to require that
𝜌(𝑉) ∈ [𝑐, 𝐶] for any 𝑉 ∈ V𝑟 (R𝑛), where 𝐶 > 𝑐 > 0. This allows more
flexibility in the initialization.

For any given 𝑖 ∈ [𝑟], the marginal distribution of 𝑉𝑖 := 𝑉 (:, 𝑖) is a uniform
distribution on S𝑛−1. Therefore, for any given 𝑢 that satisfies ∥𝑢∥2 = 1, we
have ∥𝑉∗

𝑖
𝑢∥ ≳ 1

poly(𝑛) with high probability. More specifically, we have the
following lemma.

Lemma 5.5.3. Assume 𝑊 = (𝑊1,𝑊2, ...,𝑊𝑟) ∼ Uniform (𝑉𝑟 (R𝑛)). For any 𝑢0 ∈
F𝑛 such that ∥𝑢0∥2 = 1, we have:

1) E(∥𝑢∗0𝑊 ∥
2
2) =

𝑟
𝑛
;

2) Prob( |𝑢∗0𝑊𝑖 |2 ≥ Ω( 1
𝑛 log𝑝

𝑛
)) ≥ 1 − 𝑒−Ω(𝑛) − O( 1

log𝑝
𝑛
), 𝑖 ∈ [𝑟];

3) Prob( |𝑢∗0𝑊𝑖 |2 ≥ Ω( log 𝑛
𝑛
)) ≤ 1

poly(𝑛) + 𝑒
−Ω(𝑛) , 𝑖 ∈ [𝑟];

4) Prob( |𝑢∗0𝑊𝑖 |2 ≥ Ω( 1
𝑛𝑝+1
)) ≥ 1 − 𝑒−Ω(𝑛) − O( 1

𝑛𝑝
), 𝑖 ∈ [𝑟].

Proof. Since the marginal distribution of 𝑊 (:, 𝑖) (𝑖 = 1, 2, . . . , 𝑟) is the uni-
form distribution on S𝑛−1 and the distribution of 𝑊 is right-rotational in-
variant, we assume unitary 𝑈 ∈ F𝑛×𝑛 such that 𝑈𝑢0 = 𝑒1 and 𝑈𝑊 = 𝑊 and
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use the distribution of 𝑊 to replace that of 𝑊 . We first look at the real case
F = R. Consider the marginal distribution of𝑊𝑖, and write𝑊𝑖 =

𝑔

∥𝑔∥ where 𝑔
is drawn fromN(0, 𝐼𝑛). Then, by the Bernstein-type inequality, we have the
following estimation:

Prob
(��∥𝑔∥2 − E(∥𝑔∥2)�� > 𝑡E(∥𝑔∥2)) ≤ 2 exp

(
−𝑐min

(
𝑡2E(∥𝑔∥2)2

𝐾2𝑛
,
𝑡E(∥𝑔∥2)

𝐾

))
.

This implies Prob(∥𝑔∥2 ∈ ( 12𝑛,
3
2𝑛)) ≥ 1 − 𝑒−Ω(𝑛) . On the other hand, we have

Prob( |𝑔(1) |2 − 1 > 𝑡) = Prob( |𝑔(1) | >
√

1 + 𝑡)

= 2
∫ ∞

√
1+𝑡

1
√

2𝜋
𝑒−

𝑥2
2 𝑑𝑥 =:

√︂
2
𝜋
𝐴,

where 𝐴2 =

∫ ∞

√
1+𝑡

∫ ∞

√
1+𝑡
𝑒−

𝑥2+𝑦2
2 𝑑𝑥𝑑𝑦 =

𝜋

2
𝑒−

1+𝑡
2 .

Taking 𝑡 = −1 + 𝑐1
1

log𝑝
𝑛
, we have

Prob
(
|𝑔(1) |2 > 𝑐1

1
log𝑝 𝑛

)
= 𝑒−𝑐1/(4 log𝑝

𝑛) ≥ 1 − O( 1
log𝑝 𝑛

).

Therefore, we have |𝑢∗0𝑊𝑖 |2 ≳ 1
𝑛 log 𝑛 with the fail probability controlled by

𝑒−Ω(𝑛) + O( 1
log 𝑛 ). By taking 𝑡 = 𝑐1 log 𝑛 − 1, with 𝑐1 = Ω(1), we have:

Prob( |𝑔(1) |2 ≥ 𝑐1 log 𝑛) ≤ 𝑒−𝑐1 log(𝑛)/4 =
1

𝑛𝑐1/4
.

Therefore, we have |𝑢∗0𝑊𝑖 |2 ≲ log 𝑛
𝑛

holds, with the fail probability controlled
by 𝑒−Ω(𝑛) + 1

poly(𝑛) . Taking 𝑡 = −1 + 𝑐2/𝑛𝑝, we have that

|𝑔(1) |2

∥𝑔∥2
≳

1
𝑛𝑝+1

holds with fail probability controlled by 𝑒−Ω(𝑛) + O( 1
𝑛𝑝
). For the complex

case, the proof is very similar and we omit the details here. □

Lemma 5.5.3 shows that the general random distribution with high proba-
bility captures weak information of a given column space. The following
lemma is an important technical result that describes the dynamics of the
eigenvalues and column spaces of the iterative sequence.
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Lemma 5.5.4. Consider the gradient flow of 𝐹1(𝑍) = 1
2 ∥𝑍 − 𝑋 ∥

2
𝐹

. Assume 𝑍 =

𝑉𝑧Σ𝑧𝑉
∗
𝑧 and 𝑋 = 𝑈𝐷𝑈∗ are the eigenvalue decompositions of the SPSD/HPSD

matrices 𝑍 and 𝑋 respectively. Denote 𝑈 = 𝑉𝑧𝑅 + 𝑉𝑧𝑄 with 𝑉𝑧 ∈ 𝐶𝑜𝑙 (𝑉𝑧)⊥. We
have:

d
d𝑡

𝑟∑︁
𝑖=1

∥𝐷 1
2 𝑅∗𝑒𝑖∥2 =

𝑟∑︁
𝑖=1

2
Σ𝑧 (𝑖, 𝑖)

∥𝑄𝐷𝑅∗𝑒𝑖∥2.

Furthermore, denote the spectra of 𝑅∗𝑅 and 𝑅𝑅∗ by

Σ𝑅𝑅 = diag{𝑟1, 𝑟2, ..., 𝑟𝑟}, 𝑟1 ≥ . . . ≥ 𝑟𝑟 , (5.3)

then we have
d
d𝑡
(
𝑟∑︁
𝑖=1

𝑟𝑖) ≳
𝑟∑︁
𝑖=1

(1 − 𝑟𝑖)𝑟𝑖, (5.4)

d
d𝑡
(Σ𝑧 (𝑖, 𝑖)) = (𝑅𝐷𝑅∗) (𝑖, 𝑖) − Σ𝑧 (𝑖, 𝑖). (5.5)

Moreover, Ω( 1
𝜎1

∑𝑟
𝑖=1(1 − 𝑟𝑖)𝑟𝑖) ≤

d
d𝑡

∑𝑟
𝑖=1 𝑟𝑖 ≤ Ω( 1

𝜎𝑟

∑𝑟
𝑖=1(1 − 𝑟𝑖)𝑟𝑖). If 𝜎𝑖 = Ω(1)

for all 𝑖 ∈ [𝑟], then we have

d
d𝑡

𝑟∑︁
𝑖=1

𝑟𝑖 = Ω(
𝑟∑︁
𝑖=1

(1 − 𝑟𝑖)𝑟𝑖). (5.6)

Proof. 1) Let 𝑍 = 𝑈𝑧𝑆𝑧𝑈
∗
𝑧 be an alternative decomposition of 𝑍 with𝑈∗𝑧𝑈𝑧 =

𝐼𝑟 and 𝑆𝑧 ∈ R𝑟×𝑟 . Assume 𝑃 ∈ O(𝑟) such that 𝑉𝑧 = 𝑈𝑧𝑃 and 𝑃∗𝑆𝑧𝑃 = Σ𝑧.
Denote 𝑈 = 𝑈𝑧𝑅♯ + 𝑈𝑧𝑄♯ = 𝑉𝑧𝑅 + 𝑉𝑧𝑄. By applying the dynamical
low-rank approximation from [85] (see also Lemma 4.2.2), we have:

d
d𝑡
𝑈𝑧 = 𝑈𝑧𝑄♯𝐷𝑅

∗
♯
𝑆−1
𝑧

d
d𝑡
𝑆𝑧 = 𝑅♯𝐷𝑅

∗
♯
− 𝑆𝑧 .

Therefore, we obtain
d
d𝑡
𝑅♯ =

d
d𝑡
(𝑈∗𝑧𝑈) = 𝑆−1

𝑧 𝑅♯𝐷𝑄
∗
♯
𝑄♯.

Using 𝑅 = 𝑉∗𝑧𝑈 = 𝑃∗𝑈∗𝑧𝑈 = 𝑃∗𝑅♯, we have

d
d𝑡
𝑅 =

d
d𝑡
(𝑃∗𝑅♯)

=
d
d𝑡
(𝑃)∗𝑅♯ + 𝑃∗

d
d𝑡
(𝑅♯)

=
d
d𝑡
(𝑃)∗𝑃𝑅 + 𝑃∗𝑆−1

𝑧 𝑃𝑅𝐷𝑄
∗
♯
𝑄♯

=

(
d
d𝑡
(𝑃)∗𝑃

)
𝑅 + Σ−1

𝑧 𝑅𝐷𝑄
∗𝑄.

(5.7)
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The last equation follows from 𝑃∗𝑆−1
𝑧 𝑃 = Σ−1

𝑧 and 𝑄∗𝑄 = 𝐼𝑟 − 𝑅∗𝑅 =

𝐼𝑟 − 𝑅∗𝑃∗𝑃𝑅 = 𝑄∗
♯
𝑄♯. Then, we have

d
d𝑡
(𝑅𝐷𝑅∗) = Σ−1

𝑧 𝑅𝐷𝑄
∗𝑄𝐷𝑅∗ + 𝑅𝐷𝑄∗𝑄𝐷𝑅∗Σ−1

𝑧

+
(

d
d𝑡
(𝑃)∗𝑃

)
𝑅𝐷𝑅∗ + 𝑅𝐷𝑅∗

(
𝑃∗

d
d𝑡
(𝑃)

)
.

(5.8)

Due to the fact that 𝑃∗𝑃 = 𝐼𝑟 , we have d
d𝑡 (𝑃)

∗𝑃 + 𝑃∗ d
d𝑡 (𝑃) = 0. Denote

𝑀 = 𝑃∗ d
d𝑡 (𝑃), then 𝑀 is an antisymmetric matrix and satisfies 𝑀+𝑀∗ =

0. Therefore, we have

d
d𝑡
(𝑅𝐷𝑅∗) = 𝑀∗𝑅𝐷𝑅∗ + 𝑅𝐷𝑅∗𝑀 + Σ−1

𝑧 𝑅𝐷𝑄
∗𝑄𝐷𝑅∗ + 𝑅𝐷𝑄∗𝑄𝐷𝑅∗Σ−1

𝑧 .

On the other hand, we have

d
d𝑡
(Σ𝑧) =

d
d𝑡
(𝑃∗𝑆𝑧𝑃)

=
d
d𝑡
(𝑃)∗𝑆𝑧𝑃 + 𝑃∗

d
d𝑡
(𝑆𝑧)𝑃 + 𝑃∗𝑆𝑧

d
d𝑡
(𝑃)

= 𝑃∗(𝑅♯𝐷𝑅∗♯ − 𝑆𝑧)𝑃 +
(

d
d𝑡
(𝑃)∗𝑃

)
Σ𝑧 + Σ𝑧

(
𝑃∗

d
d𝑡
(𝑃)

)
= 𝑅𝐷𝑅∗ − Σ𝑧 +

(
d
d𝑡
(𝑃𝑧)∗𝑃𝑧

)
Σ𝑧 + Σ𝑧

(
𝑃∗𝑧

d
d𝑡
(𝑃𝑧)

)
.

Thus, we arrive at

d
d𝑡
(Σ𝑧 (𝑠, 𝑠)) = (𝑅𝐷𝑅∗) (𝑠, 𝑠) − Σ𝑧 (𝑠, 𝑠). (5.9)

Since d
d𝑡 (offdiag(Σ𝑧)) = 0, we have

offdiag(𝑅𝐷𝑅∗) = −𝑀∗Σ𝑧 − Σ𝑧𝑀 = 𝑀Σ𝑧 + Σ𝑧𝑀∗. (5.10)

By substitution, we get

d
d𝑡
(𝑅𝐷𝑅∗) (𝑖, 𝑖) = 𝑒∗𝑖 (2𝑀Σ𝑧𝑀 − Σ𝑧𝑀𝑀 − 𝑀𝑀Σ𝑧)𝑒𝑖 +

2
𝜎𝑖 (𝑍)

∥𝑄𝐷𝑅∗𝑒𝑖∥22

= 2
𝑟∑︁
𝑘=1

(𝜎𝑖 (𝑍) − 𝜎𝑘 (𝑍))𝑀 (𝑘, 𝑖)2 +
2

𝜎𝑖 (𝑍)
∥𝑄𝐷𝑅∗𝑒𝑖∥22

(5.11)

= 2
∑︁
𝑘≠𝑖

1
𝜎𝑖 − 𝜎𝑘

(𝑅𝐷𝑅∗) (𝑘, 𝑖)2 + 2
𝜎𝑖 (𝑍)

∥𝑄𝐷𝑅∗𝑒𝑖∥22.
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Note that
𝑟∑︁
𝑖=1

𝑟∑︁
𝑘=1

(𝜎𝑖 (𝑍) − 𝜎𝑘 (𝑍))𝑀 (𝑘, 𝑖)2 = −
𝑟∑︁
𝑘=1

𝑟∑︁
𝑖=1

(𝜎𝑘 (𝑍) − 𝜎𝑖 (𝑍))𝑀 (𝑘, 𝑗)2

= −
𝑟∑︁
𝑘=1

𝑟∑︁
𝑖=1

(𝜎𝑖 (𝑍) − 𝜎𝑘 (𝑍))𝑀 (𝑘, 𝑖)2.

Thus, we obtain

d
d𝑡
(
𝑟∑︁
𝑖=1

∥𝐷 1
2 𝑅∗𝑒𝑖∥2) =

𝑟∑︁
𝑖=1

2
𝜎𝑖 (𝑍)

∥𝑄𝐷𝑅∗𝑒𝑖∥2. (5.12)

2) Recall that we define the spectra of 𝑅∗𝑅 and 𝑅𝑅∗ as Σ𝑅𝑅 = diag{𝑟1, . . . , 𝑟𝑟}.
Let 𝑅∗𝑅 = 𝑇1Σ𝑅𝑅𝑇

∗
1 be the eigenvalue decomposition of 𝑅∗𝑅. Since

𝑅∗𝑅 +𝑄∗𝑄 = 𝐼, we have 𝑄∗𝑄 = 𝑇1Σ𝑄𝑄𝑇
∗
1 with Σ𝑅𝑅 +Σ𝑄𝑄 = 𝐼𝑟 . Consider

𝑟∑︁
𝑖=1

(𝑅𝐷𝑅∗) (𝑖, 𝑖) = trace(𝑅𝐷𝑅∗) = trace(𝐷𝑅∗𝑅) = trace(𝑇∗1𝐷𝑇1Σ𝑅𝑅).

Define

𝑡𝑖 := ∥𝐷 1
2𝑇1𝑒𝑖∥2 = Ω(1), 𝑖 ∈ [𝑟], (5.13)

then we have
𝑟∑︁
𝑖=1

(𝑅𝐷𝑅∗) (𝑖, 𝑖) =
𝑟∑︁
𝑖=1

𝑡𝑖𝑟𝑖 .

Now, for a bounded trajectory {𝑍𝑡}, we have

𝑟∑︁
𝑖=1

2
𝜎𝑖
∥𝑄𝐷𝑅∗𝑒𝑖∥2 ≳ trace(𝑅𝐷𝑄∗𝑄𝐷𝑅∗)

= trace(𝑇∗1𝐷𝑇1Σ𝑄𝑄𝑇
∗
1𝐷𝑇1Σ𝑅𝑅).

Denote 𝑁 = 𝑇∗1𝐷𝑇1, then 𝑁 = Ω(1) because 𝐷 is the spectra of 𝑋 and 𝑇1

is orthonormal. We obtain the following estimate:

𝑟∑︁
𝑖=1

2
𝜎𝑖
∥𝑄𝐷𝑅∗𝑒𝑖∥2 ≳

𝑟∑︁
𝑖=1

𝑟𝑖 (1 − 𝑟𝑖)𝑁 (𝑖, 𝑖)2

≳
𝑟∑︁
𝑖=1

𝑟𝑖 (1 − 𝑟𝑖).
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This gives

d
d𝑡
(
𝑟∑︁
𝑖=1

𝑟𝑖) ≳
𝑟∑︁
𝑖=1

𝑟𝑖 (1 − 𝑟𝑖).

More specifically, we have Ω
(

1
𝜎1

∑𝑟
𝑖=1(1 − 𝑟𝑖)𝑟𝑖

)
≤ d

d𝑡
∑𝑟
𝑖=1 𝑟𝑖 ≤ Ω

(
1
𝜎𝑟

∑𝑟
𝑖=1(1 − 𝑟𝑖)𝑟𝑖

)
.

If 𝜎𝑖 = Ω(1), for all 𝑖 ∈ [𝑟], by Equation (5.12), we have

d
d𝑡
(
𝑟∑︁
𝑖=1

∥𝐷 1
2 𝑅∗𝑒𝑖∥2) = Ω

(
𝑟∑︁
𝑖=1

∥𝑄𝐷𝑅∗𝑒𝑖∥2
)

= Ω(trace(𝑇∗1𝐷𝑇1Σ𝑄𝑄𝑇
∗
1𝐷𝑇1Σ𝑅𝑅))

= Ω

(
𝑟∑︁
𝑖=1

𝑟𝑖 (1 − 𝑟𝑖)
)
.

Thus we have d
d𝑡

∑𝑟
𝑗=1 𝑟𝑖 = Ω

(∑𝑟
𝑖=1(1 − 𝑟𝑖)𝑟𝑖

)
.

□

The values of {𝑟𝑖}𝑟𝑖=1 describe the angle between the column spaces of 𝑍 and
𝑋 . From (5.4), we can conclude that

∑𝑟
𝑖=1 𝑟𝑖 is non-decreasing. The quantity∑𝑟

𝑖=1 𝑟𝑖 can be used to describe whether 𝑍 is close to a spurious critical point.

The following lemma gives a more detailed description of the dynamics of
𝑅 defined above.

Lemma 5.5.5. Under the same setting as Lemma 5.5.4 and defining 𝑀 = 𝑃∗ d
d𝑡 (𝑃),

we have the following:

d
d𝑡
𝑅 = 𝑀∗𝑅 + Σ−1

𝑧 𝑅𝐷𝑄
∗𝑄, (5.14)

𝑀 ( 𝑗 , 𝑖) = 𝑅𝐷𝑅∗( 𝑗 , 𝑖)
𝜎𝑖 − 𝜎𝑗

, 𝑗 ≠ 𝑖, (5.15)

∥𝑀𝑒𝑖∥ ≲
1
𝜎𝑖
∥𝑅∗𝑒𝑖∥. (5.16)

Proof. Equation (5.14) can be deduced from (5.7), and (5.15) can be deduced
from (5.10) directly.

To prove (5.16), by (5.14), we have

d
d𝑡
𝑅(𝑖, 𝑘) = 1

𝜎𝑖
· 𝑑𝑘 (1 − ∥𝑅𝑒𝑘 ∥2) · 𝑅(𝑖, 𝑘) −

1
𝜎𝑖
·
∑︁
𝑠≠𝑘

𝑑𝑠𝑅(𝑖, 𝑠)⟨𝑅𝑒𝑠, 𝑅𝑒𝑘⟩ + 𝑒∗𝑖𝑀∗𝑅𝑒𝑘 .
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By (5.15), 𝑀 (𝑖′, 𝑖) = 𝑅𝐷𝑅∗ (𝑖′,𝑖)
𝜎𝑖−𝜎𝑖′ , and we have

d
d𝑡
𝑅(𝑖, 𝑘) = 1

𝜎𝑖
· 𝑑𝑘 (1 − ∥𝑅𝑒𝑘 ∥2) · 𝑅(𝑖, 𝑘) −

1
𝜎𝑖
·
∑︁
𝑠≠𝑘

𝑑𝑘𝑅(𝑖, 𝑠)⟨𝑅𝑒𝑠, 𝑅𝑒𝑘⟩ ± O(
1
𝜎𝑖
)∥𝑅∗𝑒𝑖∥∥𝑅𝑒𝑘 ∥).

By Assumption 2, we have

∥𝑀𝑒𝑖∥ ≲
1
𝑐𝑔
∥𝑅∗𝑒𝑖∥ · max

𝑖′∈[𝑟]\{𝑖}
min( 1

𝜎𝑖′
,

1
𝜎𝑖
)∥𝑅∗𝑒𝑖′ ∥ ≲

1
𝜎𝑖
∥𝑅∗𝑒𝑖∥.

Therefore, |𝑒∗
𝑖
𝑀∗𝑅𝑒𝑘 | ≤ O(1)𝜎𝑖

∥𝑅∗𝑒𝑖∥∥𝑅𝑒𝑘 ∥. □

Finally, the following lemma gives the local Łojasiewicz inequality in the
neighborhood of the ground truth 𝑋 as well as the local convergence rate.

Lemma 5.5.6 (Local convergence). For 𝐹1(𝑍) = 1
2 ∥𝑍 − 𝑋 ∥

2
𝐹

, let 𝑍 = 𝑈𝑧Σ𝑉
∗
𝑧

and 𝑋 = 𝑈𝐷𝑉∗. Denote 𝜎𝑗 and 𝑑 𝑗 as the 𝑗-th largest eigenvalue of 𝑍 and 𝑋

respectively.

1) We have

𝜎2
𝑟

𝜎2
𝑟 + ∥𝑋 ∥2𝐹

∥𝑍 − 𝑋 ∥2𝐹 ≤ ∥𝑃𝑇𝑧 (𝑍 − 𝑋)∥
2
𝐹 ≤ ∥𝑍 − 𝑋 ∥

2
𝐹 ;

2) In the local region around the ground truth {𝑍 : rank(𝑍) = 𝑟, ∥𝑍 − 𝑋 ∥𝐹 <
𝑑𝑟
2 }, we have 𝜎𝑟 > 𝑑𝑟

2 > 0 and ∥𝑃𝑇𝑧 (𝑍−𝑋)∥𝐹∥𝑍−𝑋 ∥𝐹 ≳ 𝑑𝑟 . Furthermore, with a small
enough constant step size 𝛼, we have ∥𝜙𝛼 (𝑍) − 𝑋 ∥𝐹 ≤ 𝑒−𝑐∥𝑍 − 𝑋 ∥𝐹 with
𝑐 = − log(1 −Ω(𝛼𝑑2

𝑟 )) > 0.

Proof. For simplicity, the following proof is based on the symmetric case
where 𝑍 = 𝑈𝑧Σ𝑈

∗
𝑧 and 𝑋 = 𝑈𝐷𝑈∗.

1) Let𝑈𝑧 ∈ F𝑛×(𝑛−𝑟) be the orthogonal complement of𝑈𝑧, and

𝑋 = (𝑈𝑧,𝑈𝑧)𝑋 (𝑈𝑧,𝑈𝑧)∗ = (𝑈𝑧,𝑈𝑧)
(
𝑋11 𝑋12

𝑋21 𝑋22

) (
𝑈∗𝑧
𝑈∗𝑧

)
.

Then we have

∥𝑃𝑇𝑧 (𝑍 − 𝑋)∥𝐹 =


(
𝑋11 − Σ𝑧 𝑋12

𝑋21 0

)
𝐹

= ∥𝑋11 − Σ𝑧∥2𝐹 + ∥𝑋12∥2𝐹 + ∥𝑋21∥2𝐹 ,

∥𝑍 − 𝑋 ∥2𝐹 = ∥𝑃𝑇𝑧 (𝑍 − 𝑋)∥2𝐹 + ∥𝑋22∥2𝐹 .
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We also assume that 𝑈 = 𝑈𝑧𝑅 + 𝑈𝑧𝑆, where 𝑅 ∈ F𝑟×𝑟 and 𝑆 ∈ F(𝑛−𝑟)×𝑟 .
Then, we obtain

𝑋11 = 𝑅𝐷𝑅∗, 𝑋12 = 𝑅𝐷𝑆∗, 𝑋21 = 𝑆𝐷𝑅∗, 𝑋22 = 𝑆𝐷𝑆∗.

The goal is to find lower and upper bounds for

𝑠 =
∥𝑃𝑇𝑧 (𝑍 − 𝑋)∥2𝐹
∥𝑍 − 𝑋 ∥2

𝐹

.

It is obvious that 𝑠 ≤ 1. To identify the lower bound we consider

𝜙 =
∥𝑍 − 𝑋 ∥2

𝐹

∥𝑋22∥2𝐹
.

Then we have 𝑠 = 𝜙−1
𝜙

. Note that 𝜙 ≥ 1 because ∥𝑍 − 𝑋 ∥2
𝐹
= ∥𝑃𝑇𝑧 (𝑍 −

𝑋)∥2
𝐹
+ ∥𝑋22∥2𝐹 ≥ ∥𝑋22∥2𝐹 . For fixed Σ and 𝐷, 𝜙 can be seen as a function

of 𝑅. We express 𝜙(𝑅) in terms of 𝜙1 and 𝜙2 defined below:

𝜙(𝑅) = 𝜙1(𝑅)
𝜙2(𝑅)

, 𝑅 ∈ D ⊂ F𝑟×𝑟 , D = {𝑅 : 0 ≼ 𝑅∗𝑅 ≼ 𝐼𝑟}, (5.17)

where

𝜙1(𝑅) = ∥𝑋 ∥2𝐹 + ∥Σ∥
2
𝐹 − 2⟨Σ, 𝑋11⟩ = ∥𝐷∥2𝐹 + ∥Σ∥

2
𝐹 − 2tr(Σ𝑅𝐷𝑅∗),

𝜙2(𝑅) = tr
(
(𝑆𝐷𝑆∗)2

)
= tr

(
(𝐷𝑆∗𝑆)2

)
= tr

(
(𝐷 (𝐼 − 𝑅∗𝑅))2

)
.

To minimize 𝜙 for given 𝐷 and Σ, the first-order condition is obtained
by taking derivative of 𝜙 over 𝑅:

𝜕𝜙

𝜕𝑅
=

1
𝜙2

2

( 𝜕𝜙1

𝜕𝑅
𝜙2 −

𝜕𝜙2

𝜕𝑅
𝜙1)

=
1
𝜙2

2

(−4𝜙2Σ𝑅𝐷 + 4𝜙1𝑅𝐷 (𝐼 − 𝑅∗𝑅)𝐷)

=
4
𝜙2

2

(−𝜙2Σ𝑅𝐷 + 𝜙1𝑅𝐷𝑆
∗𝑆𝐷).

Imposing 𝜕𝜙

𝜕𝑅
= 0 gives

Σ𝑅𝐷 = 𝜙 · 𝑅𝐷𝑆∗𝑆𝐷. (5.18)

We now claim that this first-order condition cannot be satisfied in the
interior of the domain D. To see this, note that the above equation
(5.18) gives

Σ𝑅𝐷𝑅∗ = 𝜙 · 𝑅𝐷𝑆∗𝑆𝐷𝑅∗, i.e., ⟨Σ, 𝑋11⟩ = 𝜙∥𝑋12∥2𝐹 = 𝜙∥𝑋21∥2𝐹 .



119

Thus, we have

𝜙 =
∥𝑍 − 𝑋 ∥2

𝐹

∥𝑋22∥2𝐹
=
∥Σ∥2

𝐹
+ ∥𝑋11∥2𝐹 − 2⟨Σ, 𝑋11⟩ + ∥𝑋12∥2𝐹 + ∥𝑋21∥2𝐹 + ∥𝑋22∥2𝐹

∥𝑋22∥2𝐹

=
∥Σ∥2

𝐹
+ ∥𝑋11∥2𝐹 − (2 − 2/𝜙)⟨Σ, 𝑋11⟩

∥𝑋22∥2𝐹
+ 1

=
∥𝑋11 − (1 − 1/𝜙)Σ∥2

𝐹

∥𝑋22∥2𝐹
+ ( 2

𝜙
− 1
𝜙2 )
∥Σ∥2

𝐹

∥𝑋22∥2𝐹
+ 1

≥ ( 2
𝜙
− 1
𝜙2 )
∥Σ∥2

𝐹

∥𝑋22∥2𝐹
+ 1.

Note that when 𝑅 ∈ int(D), 𝑅 is full-rank. Since 𝐷, Σ are also full-rank,
(5.18) gives 𝜙2 = ∥Σ∥2

𝐹
/∥𝑋22∥2𝐹 by some simple matrix manipulation:

Σ𝑅𝐷 = 𝜙 · 𝑅𝐷𝑆∗𝑆𝐷
⇒ 𝑅−1Σ𝑅 = 𝜙 · 𝐷𝑆∗𝑆

⇒ tr
(
(𝑅−1Σ𝑅)2

)
= 𝜙2tr

(
(𝐷𝑆∗𝑆)2

)
⇒ tr

(
Σ2

)
= 𝜙2tr

(
(𝑆𝐷𝑆∗)2

)
⇒ ∥Σ∥2𝐹 = 𝜙2∥𝑋22∥2𝐹 .

Hence, we obtain

𝜙 ≥ ( 2
𝜙
− 1
𝜙2 )𝜙

2 + 1 = 2𝜙 − 1 + 1 = 2𝜙,

which contradicts the fact that 𝜙 ≥ 1.

Therefore, either the extreme values of 𝜙 are only achieved on 𝜕D, or
the full-rankness of 𝐷 is violated. In either case, the RHS of (5.18) is
rank-deficient. So the LHS of (5.18) (and thus 𝑅 and 𝑋11) is also rank-
deficient. Therefore, we conclude that

𝜙 − 1 ≥
∥𝑋11 − Σ∥2𝐹
∥𝑋22∥2𝐹

≥
∥𝑋11 − Σ∥2𝐹
∥𝑋 ∥2

𝐹

≥ 𝜎2
𝑟

∥𝑋 ∥2
𝐹

,

where 𝜎𝑟 is the smallest nonzero eigenvalue of 𝑍 . Finally, we obtain

𝑠 ≥ 𝜎2
𝑟

𝜎2
𝑟 + ∥𝑋 ∥2𝐹

.

Now we have ∥𝑃𝑇𝑧 (𝑍 − 𝑋)∥2𝐹 ≥ 𝑠∥𝑍 − 𝑋 ∥2
𝐹

for 𝑠 > 0 as long as 𝑍 is
of rank 𝑟 and the smallest nonzero eigenvalue of 𝑍 is bounded away
from 0.
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2) By Lemma 2.4.2, when ∥𝑍 − 𝑋 ∥𝐹 < 𝑑𝑟
2 , we have 𝜎𝑟 > 𝑑𝑟

2 . Furthermore,
by (1) we have ∥𝑃𝑇𝑧 (𝑍−𝑋 ∥𝐹∥𝑍−𝑋 ∥𝐹 ≳ 𝑑𝑟 . By Lemma 5.4.5, we have the locally
linear convergence toward 𝑋 with 𝑐 = − log

(
1 −Ω(𝛼𝑑2

𝑟 )
)
. To prove the

result for single-step convergence, we consider

𝑓𝑘+1 ≤ 𝑓𝑘 − 𝐶2∥𝑃𝑇𝑧 (𝑍𝑘 − 𝑋)∥𝐹 ∥𝑍𝑘+1 − 𝑍𝑘 ∥𝐹
≤ 𝑓𝑘 − 𝐶2(𝛼 + 𝑜(𝛼)) · ∥𝑃𝑇𝑧 (𝑍𝑘 − 𝑋)∥2𝐹
≤ (1 −Ω(𝛼)𝐶2

1𝐶2) 𝑓𝑘 .

Here, 𝑓𝑘 := 1
2 ∥𝑍𝑘 − 𝑋 ∥

2
𝐹

. The first inequality is from Condition (D).
The second inequality is by the first-order retraction, and the third
inequality is from Condition (L). Therefore, we have

∥𝑍𝑘+1 − 𝑋 ∥𝐹 ≤
√︃

1 −Ω(𝛼)𝐶2
1𝐶2∥𝑍𝑘 − 𝑋 ∥𝐹 .

That is, ∥𝑍𝑘+1 − 𝑋 ∥𝐹 ≤ 𝑒−𝑐∥𝑍𝑘 − 𝑋 ∥𝐹 , with 𝑐 = − log(1 −Ω
(
𝛼𝑑2

𝑟 )
)
.

□

5.6 Proofs of Theorem 5.2.1–Theorem 5.2.3

In this section, we give the detailed proofs of Theorems 5.2.1-5.2.3 using the
technical results from the previous three subsections.

Proof of Theorem 5.2.1. Our goal is to show that with high probability, the
sequence starting from randomly initialized 𝑍0 will not reach∪𝑍∗∈S#\{0}B(𝑍∗, 𝛿)
(the spurious regions near any other nonzero spurious critical points) within
𝐾0 = Ω(1) steps, and will reach B(0, 𝛿) (the spurious region near 0) at step
𝐾0.

Without loss of generality, assume ∥𝑋 ∥𝐹 = 1. Recall that 𝑋 = 𝑈𝐷𝑈∗ and
𝑍 = 𝑉𝑧Σ𝑧𝑉

∗
𝑧 are the eigenvalue decompositions of 𝑋 and 𝑍 respectively, and

𝑈 = 𝑉𝑧𝑅+𝑉𝑧𝑄. By Lemma 5.5.3, with fail probability controlled by 1
poly(𝑛) , we

have ∥𝑅∥𝐹 ≲
√︃

log 𝑛
𝑛

. This implies
∑𝑟
𝑖=1 𝑟𝑖 ≲

√︃
log 𝑛
𝑛

. By (5.6) in Lemma 5.5.4,
we have d

d𝑡
∑𝑟
𝑖=1 𝑟𝑖 = Ω(∑𝑟

𝑖=1 𝑟𝑖 (1−𝑟𝑖)) = Ω(∑ 𝑟𝑖). Combined with Assumption
1, within 𝑘 ≤ 𝐾0 = Ω(1) steps, with high probability exceeding 1− 1

poly(𝑛) , we

have
∑𝑟
𝑖=1 𝑟𝑖 ≲

√︃
log 𝑛
𝑛

< Ω(1). By Lemma 5.4.3, it implies that the sequence
will not reach any spurious region B(𝑍∗, 𝛿) where 𝑍∗ is a nonzero spurious
critical point and 𝛿 = Ω(1).
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Meanwhile, since 𝑍0 is drawn from the general random distribution, for
all 𝑖 ∈ [𝑟] we have 𝜎𝑖 = Ω(1), where the constant depends on 𝐶1 and 𝐶2

in Definition 5.5.1. By (5.5) in Lemma 5.5.4, within Ω(1) time, for every 𝑖,
d
d𝑡𝜎𝑖 = 𝑅𝐷𝑅

∗(𝑖, 𝑖) −𝜎𝑖 = −Ω(𝜎𝑖). Therefore, there exists 𝐾0 = Ω(1) depending
only on 𝐶1, 𝐶2, 𝛿, such that within 𝐾0 steps, 𝜎𝑖 = Ω(1) for all 𝑖 ∈ [𝑟]. After 𝐾0

steps, we have
∑
𝑖 𝜎𝑖 = 𝑒−Ω(𝐾0) · Ω(1) ≤ 𝛿 and

∑
𝑖 𝑟𝑖 < Ω(

√︃
log 𝑛
𝑛
) < 𝛿 = Ω(1).

By Lemma 5.4.3, the sequence enters B(0, 𝛿). □

Proof of Theorem 5.2.2. From the proof of the previous stage, at 𝑘 = 𝐾0,

𝑍𝑘 is in the spurious region B(0, 𝛿) and
∑
𝑖 𝑟𝑖 < Ω(

√︃
log 𝑛
𝑛
). Moreover, by

Lemma 5.5.3, with fail probability controlled by 1
poly(𝑛) , we have ∥𝑅∥𝐹 ≳

1
poly(𝑛) . Thus, 1

poly(𝑛) ≲
∑
𝑖 𝑟𝑖 ≲

√︃
log 𝑛
𝑛

. By (5.5) in Lemma 5.5.4, we have
d
d𝑡

∑𝑟
𝑖=1 𝑟𝑖 ≳

∑𝑟
𝑖=1 𝑟𝑖. This implies

∑𝑟
𝑖=1 𝑟𝑖 increases at least exponentially fast.

Therefore,
∑𝑟
𝑖=1 𝑟𝑖 ≳ 𝛿 = Ω(1) at step 𝐾′1 = 𝐾0+𝐶′1 log 𝑛with some𝐶′1 = O(1) >

0. By Lemma 5.4.3, it implies that the sequence has escaped from B(0, 𝛿).
Since

∑𝑟
𝑖=1 𝑟𝑖 is non-decreasing,

∑𝑟
𝑖=1 𝑟𝑖 ≳ 𝛿 for all 𝑘 ≥ 𝐾′1. This implies the

sequence will not come back to B(0, 𝛿), i.e., ∪∞
𝑘≥𝐾 ′1

𝑍𝑘 ∩ B(0, 𝛿) = ∅. □

Proof of Theorem 5.2.3. Under the setting of Theorem 5.1.3 and following
Theorem 5.2.2, we consider the case that in stage 3, the sequence enters
spurious region B(𝑍∗, 𝛿) near a spurious critical point 𝑍∗. We now look at
how the iterative sequence escapes from this spurious region by looking at
the change of 𝑅 from one step to the next. We introduce a few shorthand
notations:

𝑑𝑖 := 𝑑𝑖 (1 − ∥𝑅𝑒𝑖∥2), (5.19)

∥𝑅𝑒 𝑗 ∥\ 𝑗 :=
√︄∑︁

𝑙≠ 𝑗

𝑅(𝑙, 𝑗)2, (5.20)

∥𝑅∗𝑒 𝑗 ∥ :=
√︄∑︁

𝑙

𝑅( 𝑗 , 𝑙)2. (5.21)

Now, we consider the behavior of 𝑅( 𝑗 , 𝑗) and 𝑅(𝑖, 𝑗). By (5.14), (5.16), and
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the Cauchy-Schwarz inequality, we have

d
d𝑡
𝑅( 𝑗 , 𝑗) = 1

𝜎𝑗
· 𝑑 𝑗 (1 − ∥𝑅𝑒 𝑗 ∥2) · 𝑅( 𝑗 , 𝑗) −

1
𝜎𝑗
·
∑︁
𝑘≠ 𝑗

𝑑𝑘𝑅( 𝑗 , 𝑘)⟨𝑅𝑒𝑘 , 𝑅𝑒 𝑗 ⟩ + 𝑒∗𝑗𝑀∗𝑅𝑒 𝑗

=
1
𝜎𝑗
· 𝑑 𝑗 (1 − ∥𝑅𝑒 𝑗 ∥2) · 𝑅( 𝑗 , 𝑗) −

1
𝜎𝑗
·
∑︁
𝑘≠ 𝑗

𝑑𝑘𝑅( 𝑗 , 𝑘)⟨𝑅𝑒𝑘 , 𝑅𝑒 𝑗 ⟩ ± O(
1
𝜎𝑗
)∥𝑅∗𝑒 𝑗 ∥∥𝑅𝑒 𝑗 ∥).

Similarly,

d
d𝑡
𝑅(𝑖, 𝑗) = 1

𝜎𝑖
· 𝑑 𝑗 (1 − ∥𝑅𝑒 𝑗 ∥2) · 𝑅(𝑖, 𝑗) −

1
𝜎𝑖

∑︁
𝑘≠ 𝑗

𝑑𝑘 · 𝑅(𝑖, 𝑘)⟨𝑅𝑒𝑘 , 𝑅𝑒 𝑗 ⟩ ±
1
𝜎𝑖
O(∥𝑅∗𝑒𝑖∥∥𝑅𝑒 𝑗 ∥),

d
d𝑡
𝑅( 𝑗 , 𝑖) = 1

𝜎𝑗
· 𝑑𝑖 (1 − ∥𝑅𝑒𝑖∥2) · 𝑅( 𝑗 , 𝑖) −

1
𝜎𝑗

∑︁
𝑘≠𝑖

𝑑𝑘 · 𝑅( 𝑗 , 𝑘)⟨𝑅𝑒𝑘 , 𝑅𝑒𝑖⟩ ±
1
𝜎𝑗
O(∥𝑅∗𝑒 𝑗 ∥∥𝑅𝑒𝑖∥).

The dynamics can be further simplified as

d
d𝑡
𝑅( 𝑗 , 𝑗) = 1

𝜎𝑗
· 𝑑 𝑗 (1 − ∥𝑅𝑒 𝑗 ∥2) · 𝑅( 𝑗 , 𝑗) ±

1
𝜎𝑗
O(∥𝑅∗𝑒 𝑗 ∥∥𝑅𝑒 𝑗 ∥), (5.22)

d
d𝑡
𝑅(𝑖, 𝑗) = 1

𝜎𝑖
· 𝑑 𝑗 (1 − ∥𝑅𝑒 𝑗 ∥2) · 𝑅(𝑖, 𝑗) ±

1
𝜎𝑖
O(∥𝑅∗𝑒𝑖∥∥𝑅𝑒 𝑗 ∥), (5.23)

d
d𝑡
𝑅( 𝑗 , 𝑖) = 1

𝜎𝑗
· 𝑑𝑖 (1 − ∥𝑅𝑒𝑖∥2) · 𝑅( 𝑗 , 𝑖) ±

1
𝜎𝑗
O(∥𝑅∗𝑒 𝑗 ∥∥𝑅𝑒𝑖∥). (5.24)

We will make use of the dynamics equations (5.22)–(5.24) frequently in the
proof.

In stage 1 and stage 2 and within O(log log log 𝑛) time, by (5.5) we have
that all {𝜎𝑖} are in the range of [Ω( 1

log log 𝑛 ),Ω(1)]. By (5.5) in Lemma 5.5.4,
d
d𝑡𝜎𝑟 = 𝑅𝐷𝑅∗(𝑟, 𝑟) − 𝜎𝑟 = −Ω(𝜎𝑟). Thus within Ω(log log log 𝑛) time, 𝜎𝑟 ≳
Ω( 1

log log 𝑛 ).

By Lemma 5.5.3, initially with high probability no less than 1 − 1
poly(log 𝑛) ,

we have that 𝑅( 𝑗 , 𝑗), 𝑅(𝑖, 𝑗), 𝑅( 𝑗 , 𝑖) are in the range of ( 1√
𝑛poly(log 𝑛) ,

√
log 𝑛
√
𝑛
).

Using (5.22)–(5.24), one can show that

d
d𝑡
∥𝑅𝑒 𝑗 ∥2 ≲

1
𝜎𝑟
∥𝑅∗𝑒 𝑗 ∥2,

d
d𝑡
∥𝑅∗𝑒 𝑗 ∥2 ≲

1
𝜎𝑟
∥𝑅∗𝑒 𝑗 ∥2. (5.25)

Therefore, within Ω(log log log 𝑛) time, we have that 𝑅( 𝑗 , 𝑗), 𝑅(𝑖, 𝑗), 𝑅( 𝑗 , 𝑖) =
O( poly(log 𝑛)√

𝑛
). As a consequence, through all the time within O(log log log 𝑛),

in (5.22)–(5.24), the first term dominates the right-hand side.

Meanwhile, for 𝑗 > 𝑖 we have that

d
d𝑡
𝑅( 𝑗 , 𝑗)
𝑅(𝑖, 𝑗) = Ω(1) · ( 1

𝜎𝑗
− 1
𝜎𝑖
) · 𝑑 𝑗 ·

𝑅( 𝑗 , 𝑗)
𝑅(𝑖, 𝑗) ≳

𝑐𝑔𝑑 𝑗

𝜎𝑗
· 𝑅( 𝑗 , 𝑗)
𝑅(𝑖, 𝑗) . (5.26)
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By Lemma 5.5.3, at initialization, with high probability exceeding 1− 1
poly(log 𝑛) ,

for 𝑗 = 𝑟 we have 𝑅(𝑟,𝑟)
𝑅(𝑖,𝑟) ≥

1
poly(log 𝑛) for all 𝑖 ≠ 𝑟. Within O(log log log 𝑛)-

time, we have 𝑅𝐷𝑅∗(𝑟, 𝑟) = Ω(∥𝑅∗𝑒𝑟 ∥2) ≤ O( poly(log 𝑛)
𝑛

). On the other hand,
we have seen above that 𝜎𝑟 ≳ Ω( 1

log log 𝑛 ). Again, by (5.5) in Lemma 5.5.4,
d
d𝑡𝜎𝑟 = 𝑅𝐷𝑅∗(𝑟, 𝑟) − 𝜎𝑟 = −Ω(𝜎𝑟). This implies d

d𝑡
𝑅(𝑟,𝑟)
𝑅(𝑖,𝑟) ≳ 𝑒Ω(1)·𝑡 𝑅(𝑟,𝑟)

𝑅(𝑖,𝑟) . Us-
ing Grönwall’s inequality, from (5.26), it takes O(log log log 𝑛)-time to get
𝑅(𝑟,𝑟)
𝑅(𝑖,𝑟) ≥ Ω(1).

In the following, beyond O(log log log 𝑛) time, using (5.22)–(5.23), we write
out the exact dynamics of the ratio for 𝑗 = 𝑟 as follows:

d
d𝑡
𝑅(𝑟, 𝑟)2

∥𝑅𝑒𝑟 ∥2\𝑟
=

2
𝜎𝑟
·
(
𝑑𝑟 ·

𝑅(𝑟, 𝑟)2

∥𝑅𝑒𝑟 ∥2\𝑟
± O( ∥𝑅

∗𝑒𝑟 ∥∥𝑅𝑒𝑟 ∥
∥𝑅𝑒𝑟 ∥\𝑟

) · 𝑅(𝑟, 𝑟)∥𝑅𝑒𝑟 ∥\𝑟
·
)

± O
(

1
𝜎𝑟−1

· 𝑅(𝑟, 𝑟)
2

∥𝑅𝑒𝑟 ∥2\𝑟
· ∥𝑅𝑒𝑟 ∥∥𝑅𝑒𝑟 ∥\𝑟

)
=
Ω(1)
𝜎𝑟
· 𝑅(𝑟, 𝑟)

2

∥𝑅𝑒𝑟 ∥2\𝑟
± O(1) · 1

𝜎𝑟−1
· 𝑅(𝑟, 𝑟)

2

∥𝑅𝑒𝑟 ∥2\𝑟
·
√√

1 + 𝑅(𝑟, 𝑟)
2

∥𝑅𝑒𝑟 ∥2\𝑟

=
𝑅(𝑟, 𝑟)2

∥𝑅𝑒𝑟 ∥2\𝑟
· ©«Ω(1)𝜎𝑟

± O(1)
𝜎𝑟−1

·
√√

1 + 𝑅(𝑟, 𝑟)
2

∥𝑅𝑒𝑟 ∥2\𝑟
ª®¬ .

The first equality holds because���� d
d𝑡
∥𝑅𝑒 𝑗 ∥2\ 𝑗

���� =
������2 ∑︁
𝑘≠ 𝑗

𝑅(𝑘, 𝑗) · d
d𝑡
𝑅(𝑘, 𝑗)

������ ≤ 2∥𝑅𝑒 𝑗 ∥\ 𝑗

√√√∑︁
𝑘≠ 𝑗

(
d
d𝑡
𝑅(𝑘, 𝑗)

)2

≤ 2∥𝑅𝑒 𝑗 ∥\ 𝑗 ·
√
𝑟 − 1 ·max

𝑘≠ 𝑗

���� d
d𝑡
𝑅(𝑘, 𝑗)

����
= 2∥𝑅𝑒 𝑗 ∥\ 𝑗 ·

√
𝑟 − 1 ·max

𝑘≠ 𝑗

���� 𝑑 𝑗𝜎𝑘 𝑅(𝑘, 𝑗) ± 1
𝜎𝑘
· O(∥𝑅𝑒 𝑗 ∥)

����
≤ O( 1

𝜎𝑟−1
∥𝑅𝑒 𝑗 ∥∥𝑅𝑒 𝑗 ∥\ 𝑗 ).

By Assumption 2, 𝜎𝑟−1
𝜎𝑟
≥ 1

1−𝑐𝑔 = Ω(1). Therefore, beyond O(log log log 𝑛)
time, we have that 𝑅(𝑟,𝑟)

∥𝑅𝑒𝑟 ∥\𝑟 ≥ Ω(1).

Using (5.22), we then have that

d
d𝑡
𝑅(𝑟, 𝑟) ≳ 1

𝜎𝑟
· (𝑑𝑟 − ∥𝑅𝑒𝑟 ∥2)𝑅(𝑟, 𝑟) −

1
𝜎𝑟
· O(𝑅(𝑟, 𝑟)) · ∥𝑅∗𝑒𝑟 ∥. (5.27)
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If ∥𝑅𝑒𝑟 ∥ and ∥𝑅∗𝑒𝑟 ∥ are smaller than a Ω(1)-constant 𝛿′, we have d
d𝑡 𝑅(𝑟, 𝑟) ≳

1
𝜎𝑟
·Ω(1)𝑅(𝑟, 𝑟). This means that within a spurious region, when 𝜎𝑟 is small,

𝑅(𝑟, 𝑟) grows exponentially fast. It takes at most O(log 𝑛) steps for 𝑅(𝑟, 𝑟)
to grow from Ω( 1

poly(𝑛) ) to 𝛿𝑐 = Ω(1). By Lemma 5.4.3, this means that 𝑍
escapes the spurious regions B(S# \ {0}, 𝛿).

Assume that at stage 3 there exists some 𝐾 = (𝐾1 + O(1)) · 1
𝛼

and some 𝑍∗ ∈
S#\{0} such that 𝑍𝐾 ∈ B(𝑍∗, 𝛿) and 𝑍𝑘≤𝐾∩B(𝑍∗, 𝛿) = ∅, i.e., 𝑍 enters another
spurious region again. From (5.22), we have d

d𝑡 𝑅(𝑟, 𝑟) ≥ −
O(1)
𝜎𝑟
𝑅(𝑟, 𝑟). Let 𝑅+

denote the 𝑅 at the next step and Δ𝑅 denote the change in 𝑅 in one step.
When 𝛼 · 𝜎𝑟 is smaller than some constant 𝑐, combined with Assumption
1, we have Δ𝑅(𝑟, 𝑟) ≥ −𝛼 · O(1) 1

𝜎𝑟
𝑅(𝑟, 𝑟) ≥ −2

3𝑅(𝑟, 𝑟). This gives 𝑅+(𝑟, 𝑟) ≥
1
3𝑅(𝑟, 𝑟). In other works, 𝑅(𝑟, 𝑟) never decreases too fast. Thus, with high
probability exceeding 1− 1

poly(𝑛) , 𝑅(𝑟, 𝑟) ≥
1

poly(𝑛) · 1 · (
1
3 )
O(1) , at 𝑘 = 𝐾 . When

inside this spurious region, we again use d
d𝑡 𝑅(𝑟, 𝑟) ≳

1
𝜎𝑟
𝑅(𝑟, 𝑟) to deduce

that it takes O(log 𝑛) · 1
𝛼

steps to escape this spurious region.

Outside of spurious regions, using Łojasiewicz inequality from Lemma 5.4.5,
𝑍 converges to 𝑋 exponentially fast. This implies that the sequence enters
spurious regions at most O(1) times. Overall, it takes O(log 1

𝜖
) · 1

𝛼
steps to

reach an 𝜖-accurate solution. □

5.7 Results for the weak isometry case

In this section, we present the results for the weak isometry case (1.3):

min
𝑍∈M𝑟

𝐹2(𝑍) =
\

2
(∥𝑍 ∥𝐹 − ∥𝑋 ∥𝐹)2 + ∥𝑍 − 𝑋 ∥2𝐹 .

Global convergence for least squares onM1

The following result can be regarded as a special case of Theorem 5.1.3 re-
stricted to 𝑟 = 1. However, the analysis is simpler. We list this as one of
the main results because the trajectory behavior in this result may help us
understand the trajectory behavior of phase retrieval in the next subsection.
Specifically, when 𝑟 = 1, by Lemma 2.3.1, we only have one spurious crit-
ical point S# = {0}. In addition, we can directly write out the closed form
formula of gradient descent or gradient flow. We now state the result in the
following theorem.

Theorem 5.7.1. Assume 𝑋 satisfies rank(𝑋) = 1, ∥𝑋 ∥𝐹 = 1. We consider 𝐹1(𝑍) =
1
2 ∥𝑍 − 𝑋 ∥

2
𝐹

with 𝑍 ∈ M1. Let {𝑍𝑘 } be the sequence generated by the Riemannian



125

gradient descent (the RGD) initialized at 𝑍0 which is drawn from the general ran-
dom distribution. Denote 𝑍 = 𝑧𝑧∗ and 𝑋 = 𝑥𝑥∗, ℎ = ∥𝑍 ∥𝐹 and 𝜌 =

⟨𝑋,𝑍⟩
∥𝑋 ∥𝐹 ∥𝑍 ∥𝐹 . Then

we have the following:

1) The continuous evolution dynamics of the gradient flow can be described by
the following ODE system:

d
d𝑡
ℎ = −ℎ + 𝜌,

d
d𝑡
𝜌 = 2

𝜌

ℎ
(1 − 𝜌).

Consequently, with high probability no less than 1 − 1
poly(𝑛) , the Riemannian

gradient flow only converges to 𝑍∗ = 𝑋 , and it takes O(log 𝑛 + log 1
𝜖
) time to

generate an 𝜖-accurate solution, i.e., to get ∥𝑍 − 𝑋 ∥𝐹 ≤ 𝜖 ∥𝑋 ∥𝐹 .

2) In addition, the discrete evolution dynamics can be described by the following
discrete system:

ℎ𝑘+1 = ℎ𝑘 + 𝛼(−ℎ𝑘 + 𝜌𝑘 ) + O(𝛼2),

𝜌𝑘+1 = 𝜌𝑘 + 2𝛼
𝜌𝑘

ℎ𝑘
(1 − 𝜌𝑘 ) + O(𝛼2).

Under Assumption 1, there exists constant stepsize 𝛼 > 0 such that with
high probability no less than 1 − 1

poly(𝑛) , the Riemannian gradient descent
only converges to the equilibrium with 𝜌∗ = ℎ∗ = 1, meaning lim𝑘→∞ 𝑍𝑘 =

𝑋 . Moreover, it takes O(log 1
𝜖
+ log 𝑛) iterations to generate an 𝜖-accurate

solution, i.e., to get ∥𝑍 − 𝑋 ∥𝐹 ≤ 𝜖 ∥𝑋 ∥𝐹 .

Theorem 5.7.1 is in preparation for the next result on the global convergence
for phase retrieval. As we will see below, the population loss function 𝐹2 of
phase retrieval and its generalization differs from 𝐹1 in that it only satisfies
a weak isometry property. A detailed proof of Theorem 5.7.1 and its connec-
tion with Theorem 5.7.2 can be found in Section 5.8. We again emphasize
that the techniques for Theorem 5.7.1 cannot be directly applied to Theorem
5.1.3 because the case 𝑟 > 1 is significantly more difficult and closed form
formulas are not available.

Global convergence for the population phase retrieval problem

Isometry properties weaker than the RIP (Restricted Isometry Property) are
also common in various real-world applications. An example is the phase
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retrieval problem, whose loss function is as follows:

𝑓 (𝑍) = 1
2
∥𝑇 (𝑍) − 𝑦∥22 =

1
2𝑚

𝑚∑︁
𝑗=1

⟨𝐴 𝑗 , 𝑍 − 𝑋⟩2. (5.28)

Here, 𝑋 = 𝑥𝑥∗ is the ground truth, 𝑦 = 𝑇 (𝑋), 𝑍 = 𝑧𝑧∗, and 𝐴 𝑗 = 𝑎 𝑗𝑎
∗
𝑗
, where

{𝑎 𝑗 }𝑚𝑗=1 are i.i.d. drawn from N(0, 𝐼𝑛) (if F = R) or 1√
2
(N (0, 𝐼𝑛) + 𝑖 · N (0, 𝐼𝑛))

(if F = C). To simplify the analysis, we only establish the result for the
population loss function here. We focus on studying the problem on the
Riemannian manifold and revealing its connection to the rank-1 isometry
case (Theorem 5.7.1). Our proof complements that of [38], which establishes
a complete proof for random measurements from a different viewpoint.

Theorem 5.7.2. For the Gaussian phase retrieval problem (5.28), we have the fol-
lowing results:

1) Let 𝐹2(𝑍) := E 𝑓 (𝑍) be the population loss of (5.28). Then, we have 𝐹2(𝑍) =
\
2 (∥𝑍 ∥𝐹 − ∥𝑋 ∥𝐹)

2 + 𝑐 · ∥𝑍 − 𝑋 ∥2
𝐹

, where \ = 1, and 𝑐 = 1 when F = R, or
𝑐 = 1

2 when F = C.

2) Without loss of generality, consider 𝐹2(𝑍) = ∥𝑇 (𝑍) − 𝑇 (𝑋)∥22 = \
2 (∥𝑍 ∥𝐹 −

∥𝑋 ∥𝐹)2 + ∥𝑍 − 𝑋 ∥2𝐹 , with 0 < \ < Ω(1). Denote 𝑍 = 𝑧𝑧∗, 𝑋 = 𝑥𝑥∗,
ℎ = ∥𝑍 ∥𝐹 and 𝜌 =

⟨𝑋,𝑍⟩
∥𝑋 ∥𝐹 ∥𝑍 ∥𝐹 . Let the initial point 𝑍0 be sampled from the

general random distribution. Then, the continuous evolution dynamics of
the gradient flow can be described by the following ODE system:

d
d𝑡
ℎ = \ − (2 + \)ℎ + 2𝜌,

d
d𝑡
𝜌 =

4𝜌
ℎ
(1 − 𝜌).

Consequently, with high probability no less than 1 − 1
poly(𝑛) , the Riemannian

gradient flow only converges to 𝑍∗ = 𝑋 , and it takes O(log 𝑛 + log 1
𝜖
) time to

generate an 𝜖-accurate solution, i.e., to achieve ∥𝑍 − 𝑋 ∥𝐹 ≤ 𝜖 ∥𝑋 ∥𝐹 .

3) Let {𝑍𝑘 } be the sequence generated by the Riemannian gradient descent ini-
tialized at 𝑍0 which is drawn from the general random distribution. Then the
discrete evolution dynamics can be described by the following discrete system:

ℎ𝑘+1 = ℎ𝑘 + 𝛼(\ − (2 + \)ℎ𝑘 + 2𝜌𝑘 ) + O(𝛼2),

𝜌𝑘+1 = 𝜌𝑘 + 𝛼
4𝜌𝑘
ℎ𝑘
(1 − 𝜌𝑘 ) + O(𝛼2).
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Under Assumption 1, there exists constant stepsize 𝛼 > 0 such that with
high probability no less than 1 − 1

poly(𝑛) , the Riemannian gradient descent
converges to the equilibrium with 𝜌∗ = ℎ∗ = 1 only, meaning lim𝑘→∞ 𝑍𝑘 =

𝑋 . Moreover, it takes O(log 1
𝜖
+ log 𝑛) iterations to generate an 𝜖-accurate

solution, i.e., ∥𝑍 − 𝑋 ∥𝐹 ≤ 𝜖 ∥𝑋 ∥𝐹 .

The proof of Theorem 5.7.2 is built upon Theorem 5.7.1, as 𝐹2 satisfies a
weaker isometry property than that of 𝐹1. The detailed proof is given in
Section 5.8.

The proofs of Theorem 5.7.1 and Theorem 5.7.2 in Section 5.8 are much sim-
pler than that of Theorem 5.1.3, but they also follow the idea of tracking
dynamics of the trajectory. They also make use of the technical results in
Sections 5.3 and 5.5.

5.8 Analysis of the weak isometry case

In this section we prove Theorem 5.7.1 and Theorem 5.7.2. Theorem 5.7.1
is a special case of Theorem 5.1.3 restricted to 𝑟 = 1, and its proof is much
simpler. Theorem 5.7.2 builds upon the previous theorem, but extends the
analysis to the case of weak isometry. Finally, we provide some insights on
the connections between Theorem 5.7.1 and Theorem 5.7.2.

We first introduce Theorem 5.8.1, a variant of Theorem 5.3.1, as a fundamen-
tal tool for analyzing the convergence rate for functions with weak isome-
try as in Theorem 5.7.2. Using this theorem, we can show that if the mea-
surement sampling operator preserves the distances of points on the man-
ifold to the ground truth 𝑋 to some extent (indicated by 𝐶1 and 𝐶2 in the
distance-preserving condition below), and the projection operator satisfies
a similar property as before, then with this 𝑇 (·) operator, the loss function
𝑓 (𝑍) = 1

2 ∥𝑇 (𝑍) − 𝑇 (𝑋)∥
2
𝐹

still preserves the nice properties of the original
least squares loss function 𝐹1(𝑍) = 1

2 ∥𝑍 − 𝑋 ∥
2
𝐹

. As a result, the sequences
generated by the Riemannian gradient descent still converge to the ground
truth in a linear rate on the manifold as long as they stay outside of the
spurious regions.

Theorem 5.8.1. Assume 𝑇 :M𝑟 → R𝑚 is a linear operator, and 𝑓 (𝑍) = 1
2 ∥𝑇 (𝑍)−

𝑇 (𝑋)∥22. If the following conditions hold:
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1. (Distance-preserving condition) 𝐶1∥𝑍𝑘 − 𝑋 ∥𝐹 ≤ ∥𝑇 (𝑍𝑘 ) − 𝑇 (𝑋)∥2 ≤
𝐶2∥𝑍𝑘−𝑋 ∥𝐹 and𝐶1∥𝑍𝑘+1−𝑍𝑘 ∥𝐹 ≤ ∥𝑇 (𝑍𝑘+1)−𝑇 (𝑍𝑘 )∥2 ≤ 𝐶2∥𝑍𝑘+1−𝑍𝑘 ∥𝐹 ,
where 𝐶1, 𝐶2 > 0 are uniform constants for all 𝑘 ;

2. (Critical ratio condition) ∥𝑍𝑘 −𝑋 ∥𝐹 ≤ 𝐶3∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥𝐹 , where 𝐶3 > 0
is a positive constant for all 𝑘 .

Then, Conditions (D) and (L) hold with 𝜔 = 1
2 . As a consequence, by Theorem

5.3.1, there exists a small enough 𝛼 > 0 such that the sequence {𝑍𝑘 } generated by
the Riemannian gradient descent converges to 𝑋 in a linear rate: ∥𝑍𝑘−𝑋 ∥𝐹 ≤ 𝑒−𝑐𝑘 ,
with 𝑐 = − log(1 −Ω( 𝛼

𝐶2
2𝐶

2
3
)).

Proof. The proof of Theorem 5.8.1 can be reduced to proving Conditions (L)
and (D) from Conditions (1) and (2) in the assumptions. Note that with the
linear operator 𝑇 : M → R𝑚, 𝑇 (𝑍) = 1√

𝑚
(⟨𝐴1, 𝑍⟩, ⟨𝐴2, 𝑍⟩, . . . , ⟨𝐴𝑚, 𝑍⟩)⊤ and

the loss function 𝑓 (𝑍) = 1
2 ∥𝑇 (𝑍) − 𝑇 (𝑋)∥

2
2, Conditions (L) and (D) can be

formulated as follows.

1) Condition (L): Łojasiewicz gradient inequality(
1

2𝑚

∑︁
𝑗

⟨𝐴 𝑗 , 𝑍 − 𝑋⟩2
)1−𝜔

≤ 𝐶𝑙 ∥𝑃𝑇𝑧 (
1
𝑚

∑︁
𝑗

⟨𝐴 𝑗 , 𝑍 − 𝑋⟩𝐴 𝑗 )∥𝐹

holds with 𝜔 = 1
2 .

2) Condition (D):

𝑓𝑘 − 𝑓𝑘+1 ≥ 𝐶𝑑 ∥𝑃𝑇𝑍𝑘 (
1
𝑚

∑︁
𝑗

⟨𝐴 𝑗 , 𝑍𝑘 − 𝑋⟩𝐴 𝑗 )∥𝐹 ∥𝑍𝑘+1 − 𝑍𝑘 ∥𝐹 .

The proof now goes as follows.

1) To prove Condition (L), by Conditions (1) and (2) we have

∥𝑃𝑇𝑧 (∇ 𝑓 (𝑍))∥𝐹 ≥
1
𝐶3
∥𝑍 − 𝑋 ∥𝐹

≥ 1
𝐶2𝐶3

∥𝑇 (𝑍) − 𝑇 (𝑋)∥

=

√
2

𝐶2𝐶3
| 𝑓 (𝑍) − 𝑓 (𝑋) |

1
2 ,

which implies that (L) holds with 𝜔 = 1
2 and 𝐶𝑙 =

√
2𝐶2𝐶3

2 > 0 is an
absolute constant.
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2) To prove Condition (D), we first consider

𝑓𝑘 − 𝑓𝑘+1 =
1
2
∥𝑇 (𝑍𝑘 ) − 𝑇 (𝑋)∥22 −

1
2
∥𝑇 (𝑍𝑘+1) − 𝑇 (𝑋)∥22

=
1
2
⟨𝑇 (𝑍𝑘 + 𝑍𝑘+1 − 2𝑋), 𝑇 (𝑍𝑘 − 𝑍𝑘+1)⟩

= ⟨𝑇∗𝑇 (𝑋 − 𝑍𝑘 ), 𝑍𝑘+1 − 𝑍𝑘⟩ −
1
2
∥𝑇 (𝑍𝑘+1 − 𝑍𝑘 )∥2𝐹 .

Assume that 𝑍𝑘+1 = 𝑍𝑘 +𝛼b̃𝑘 , and −𝛼𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 )) = 𝛼b𝑘 . By first-order
retraction property and Condition (1), we get

𝑓𝑘 − 𝑓𝑘+1 ≥ ⟨−∇ 𝑓 (𝑍𝑘 ), 𝛼b̃𝑘⟩ −
𝐶2

2𝛼
2

2
∥b̃𝑘 ∥2

= ⟨−∇ 𝑓 (𝑍𝑘 ), 𝛼b𝑘⟩ + 𝑜(𝛼∥b𝑘 ∥2𝐹)
= ⟨−∇ 𝑓 (𝑍𝑘 ),−𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))⟩ + 𝑜(𝛼∥b𝑘 ∥

2
𝐹)

= 𝛼∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥
2
𝐹 + 𝑜(𝛼∥b𝑘 ∥

2
𝐹).

On the other hand, we also obtain

𝐶𝑑 ∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥𝐹 ∥𝑍𝑘+1 − 𝑍𝑘 ∥𝐹 = 𝐶𝑑 ∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥𝐹 ∥𝛼b̃𝑘 ∥𝐹
= 𝐶𝑑𝛼∥𝑃𝑇𝑍𝑘 (∇ 𝑓 (𝑍𝑘 ))∥

2
𝐹 + 𝑜(𝛼∥b𝑘 ∥

2
𝐹).

By choosing 𝐶𝑑 > 0 small enough, we have

𝑓𝑘 − 𝑓𝑘+1 ≥ 𝐶𝑑 ∥𝑃𝑇𝑍𝑘 (
1
𝑚

∑︁
𝑗

⟨𝐴 𝑗 , 𝑍𝑘 − 𝑋⟩𝐴 𝑗 )∥𝐹 ∥𝑍𝑘+1 − 𝑍𝑘 ∥𝐹 ,

i.e., Condition (D) holds.

From Theorem 5.3.1, we conclude that Riemannian gradient descent for the
least squares loss function 𝑓 (𝑍) = 1

2 ∥𝑇 (𝑍) − 𝑇 (𝑋)∥
2
2 converges to its global

minimum linearly. Since ∥𝑍 − 𝑋 ∥𝐹 ≤ 1
𝐶1
∥𝑇 (𝑍) − 𝑇 (𝑋)∥2 with constant 𝐶1 >

0, this implies that the sequence converge to the target point 𝑋 in a linear
rate. □

By throwing out a controllable failure probability, many random sensing
applications potentially have such a distance-preserving property. Some
examples are mentioned in Section 1.3. The RIP (Restricted Isometry Prop-
erty) can also be seen as a special case of this distance-preserving condition.
Instead of checking the descent inequality and the Łojasiewicz inequality in
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Theorem 5.3.1, we use the above conditions as a more user-friendly version
for such distance-preserving cases.

We are now ready to prove Theorems 5.7.1 and 5.7.2, using Theorem 5.8.1
and following a similar but simpler strategy compared to the one for Theo-
rem 5.1.3.

Proof of Theorem 5.7.1. Let 𝑍+ denote the next iterate of RGD from 𝑍 , and
𝜙𝛼 (·) denote the iteration function with step size 𝛼, 𝑍+ = 𝜙𝛼 (𝑍). Since 𝑍+ is
SPSD/HPSD and rank-1, we let 𝑍+ = 𝑧+𝑧∗+. Recall that 𝑍 = 𝑧𝑧∗ and 𝑋 = 𝑥𝑥∗,
ℎ = ∥𝑍 ∥𝐹 and 𝜌 =

⟨𝑋,𝑍⟩
∥𝑋 ∥𝐹 ∥𝑍 ∥𝐹 . Let 𝑢𝑧 = 𝑧

∥𝑧∥ and 𝑢𝑧,+ =
𝑧+
∥𝑧+∥ . Then

√
𝜌 = ⟨𝑢𝑧, 𝑥⟩.

By Lemma 4.2.2, we have

d
d𝑡
ℎ = 𝑢∗𝑧 (𝑋 − 𝑍)𝑢𝑧 = 𝜌 − ℎ,

d
d𝑡
𝑢𝑧 =

1
ℎ
· (𝐼 − 𝑢𝑧𝑢∗𝑧) (𝑋 − 𝑍)𝑢𝑧 =

1
ℎ
· (√𝜌𝑥 − 𝜌𝑢𝑧),

d
d𝑡
𝜌 =

2
ℎ
· 𝜌(1 − 𝜌).

Assume 𝛿 > 0 is a small constant. Since 𝑟 = 1, by Lemma 5.4.1, the only spu-
rious region is B(0, 𝛿). Since 𝑍0 is drawn from the general random distribu-
tion, with high probability no less than 1− 1

poly(𝑛) , we have 𝜌 |𝑡=0 ≥ 1
poly(𝑛) . Ob-

serve from the third equation above that 𝜌 is non-decreasing, and d
d𝑡 𝜌 ≳ 𝜌

until 𝜌 approaches 1. Thus we have 𝜌 ≳ 𝛿 = Ω(1) within O(log 𝑛) time. As 𝜌
is non-decreasing, the Riemannian gradient flow arrives inM \ B(0, 𝛿) and
remains there. By Theorem 5.8.1 and Lemma 5.3.3, it further takes no more
than O(log 1

𝜖
) time to generate an 𝜖-accurate solution. Combining all the

above, to generate an 𝜖-accurate solution, i.e., ∥𝑍𝑘 − 𝑋 ∥𝐹 ≤ 𝜖 ∥𝑋 ∥𝐹 , it takes
O(log 1

𝜖
+ log 𝑛) time for the gradient flow.

For the Riemannian gradient descent, by Assumption 1, we have

ℎ𝑘+1 = ℎ𝑘 + (𝛼 + 𝑜(𝛼)) · (−ℎ𝑘 + 𝜌𝑘 ),

𝜌𝑘+1 = 𝜌𝑘 + 2(𝛼 + 𝑜(𝛼)) · 𝜌𝑘
ℎ𝑘
(1 − 𝜌𝑘 ).

Using an argument similar to the continuous case, we can prove it only
takes O(log 1

𝜖
+ log 𝑛) iterations to generate an 𝜖-accurate solution, i.e., ∥𝑍𝑘 −

𝑋 ∥𝐹 ≤ 𝜖 ∥𝑋 ∥𝐹 . □
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Proof of Theorem 5.7.2. Recall that 𝑍 = 𝑧𝑧∗ and 𝑋 = 𝑥𝑥∗, ℎ = ∥𝑍 ∥𝐹 and 𝜌 =
⟨𝑋,𝑍⟩

∥𝑋 ∥𝐹 ∥𝑍 ∥𝐹 ∈ [0, 1]. If F = R, the population loss of (5.28) is

E 𝑓 (𝑍) = 3
2
∥𝑍 ∥2𝐹 +

3
2
∥𝑋 ∥2𝐹 − ∥𝑍 ∥𝐹 ∥𝑋 ∥𝐹 − 2⟨𝑍, 𝑋⟩

=
1
2
(∥𝑍 ∥𝐹 − ∥𝑋 ∥𝐹)2 + ∥𝑍 − 𝑋 ∥2𝐹 .

Since 0 ≤ (∥𝑍 ∥𝐹 − ∥𝑋 ∥𝐹)2 ≤ ∥𝑍 − 𝑋 ∥2𝐹 , we have

∥𝑍 − 𝑋 ∥2𝐹 ≤ 𝐹 (𝑍) ≤
3
2
∥𝑍 − 𝑋 ∥2𝐹 .

If F = C, the population loss of (5.28) is

E 𝑓 (𝑍) = ∥𝑍 ∥2𝐹 + ∥𝑋 ∥
2
𝐹 − ∥𝑍 ∥𝐹 ∥𝑋 ∥𝐹 − ⟨𝑍, 𝑋⟩

=
1
2
(∥𝑍 ∥𝐹 − ∥𝑋 ∥𝐹)2 +

1
2
∥𝑍 − 𝑋 ∥2𝐹 .

And 1
2 ∥𝑍 − 𝑋 ∥

2
𝐹
≤ 𝐹2(𝑍) ≤ ∥𝑍 − 𝑋 ∥2𝐹 .

We still let 𝑍+ denote the next iterate of RGD from 𝑍 . Assume 𝑍 = 𝑧𝑧∗, and
𝑍+ = 𝑧+𝑧∗+. Let 𝑢𝑧 = 𝑧

∥𝑧∥ and 𝑢𝑧,+ = 𝑧+
∥𝑧+∥ . By Lemma 4.2.2, we have

d
d𝑡
ℎ = 𝑢∗𝑧

(
2𝑋 −

(
\ + 2 − \

ℎ

)
𝑍

)
𝑢𝑧 = 2𝜌 − (2 + \)ℎ + \,

d
d𝑡
𝑢𝑧 = (𝐼 − 𝑢𝑧𝑢∗𝑧)

(
2𝑋 −

(
\ + 2 − \

ℎ

)
𝑍

)
𝑢𝑧 ·

1
ℎ
=

2
ℎ
· (√𝜌𝑥 − 𝜌𝑢𝑧),

d
d𝑡
𝜌 =

4
ℎ
· 𝜌(1 − 𝜌). (5.29)

Note that in this case, in addition to the spurious region B(0, 𝛿), there is
another region B(𝑍∗, 𝛿) := {𝑍 : 𝜌 ≲ 𝛿, |\ + 2 − \

ℎ
| ≲ 𝛿} where the Riemannian

gradient is 𝛿-small, because the Riemannian gradient is now

∇M𝐹2(𝑍) =
(
\ + 2 − \

ℎ

)
𝑍 − 2𝑃𝑇𝑧 (𝑋).

Similar to Lemma 5.4.1, we have

∥𝑃𝑇𝑧 (∇M𝐹2(𝑍)) ∥ ≤ 𝛿 ⇐⇒ 𝑍 ∈ B(0, 𝛿) ∪ B(𝑍∗, 𝛿) ⇒ 𝜌 ≲ 𝛿. (5.30)

Since 𝑍0 is drawn from the general random distribution, with high proba-
bility no less than 1− 1

poly(𝑛) , we have 𝜌 |𝑡=0 ≥ 1
poly(𝑛) . Observe from (5.29) that
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d
d𝑡 𝜌 ≳ 𝜌 when 𝜌 < 1

2 and ℎ is bounded. The boundedness of ℎ can be easily
concluded from the first equation using 0 ≤ 𝜌 ≤ 1 and 0 < \ < Ω(1). Thus
we have 𝜌 ≳ 𝛿 = Ω(1) within O(log 𝑛) time. Using the non-decreasing prop-
erty of 𝜌 and the relation (5.30), we conclude that the Riemannian gradient
flow arrives inM \ B(0, 𝛿) ∪ B(𝑍∗, 𝛿) and remains there. By Theorem 5.8.1
and Lemma 5.3.3, it further takes no more than O(log 1

𝜖
) time to generate

an 𝜖-accurate solution. Combining all the above, to generate an 𝜖-accurate
solution, i.e., ∥𝑍𝑘 − 𝑋 ∥𝐹 ≤ 𝜖 ∥𝑋 ∥𝐹 , it needs O(log 1

𝜖
+ log 𝑛) time.

For the Riemannian gradient descent, by Assumption 1, we have

ℎ𝑘+1 = ℎ𝑘 + (𝛼 + 𝑜(𝛼)) · (\ − (2 + \)ℎ𝑘 + 2𝜌𝑘 ),

𝜌𝑘+1 = 𝜌𝑘 + 4(𝛼 + 𝑜(𝛼)) · 𝜌𝑘
ℎ𝑘
(1 − 𝜌𝑘 ).

Similar to the argument for continuous case, we can prove it only takes
O(log 1

𝜖
+log 𝑛) iterations to generate an 𝜖-accurate solution, i.e., ∥𝑍𝑘−𝑋 ∥𝐹 ≤

𝜖 ∥𝑋 ∥𝐹 .

□

Comparison of Theorem 5.7.1 and Theorem 5.7.2

Dynamics. The dynamical low-rank approximation (Lemma 4.2.2) shows
that the evolution of the column space is given by

¤𝑈𝑧 = 𝑃⊥𝑈𝑧
(−∇𝐹 (𝑍))𝑈𝑧𝑆−1.

For 𝐹1(𝑍) = 1
2 ∥𝑍 − 𝑋 ∥

2
𝐹

, we have that ∇𝐹1(𝑍) = 𝑍 − 𝑋 , while for 𝐹2(𝑍) =
\
2 (∥𝑍 ∥𝐹 − ∥𝑋 ∥𝐹)

2 + ∥𝑍 − 𝑋 ∥2
𝐹

we have ∇𝐹2(𝑍) = (2 + \ − \
ℎ
)𝑍 − 2𝑋 . Although

𝐹2(𝑍) only satisfies the weak isometry property, direct computation shows
that ¤𝑈𝑧 for 𝐹1(𝑍) and 𝐹2(𝑍) are similar, because 𝑃⊥

𝑈𝑧
on the right cancels out

the 𝑍 terms and leaves only the 𝑋 terms. That explains why the dynamics
of 𝐹1(𝑍) is similar to that of 𝐹2(𝑍).

Stationary points. Theorem 5.7.1 is a special case of Theorem 5.1.3, there-
fore 𝑍∗ = 0 is the only spurious critical point and has a saddle-like geometry
(see Section 5.4). On the other hand, for the phase retrieval problem in The-
orem 5.7.2, it has two groups spurious critical points, which are 𝑍∗ = 0 and
{𝑍∗ : ∥𝑍∗∥𝐹 = \

2+\ ∥𝑋 ∥𝐹 , ⟨𝑍, 𝑋⟩ = 0}. Still, the upper bound for the num-
ber of iterations that the sequence is trapped by the spurious region can be
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estimated in a similar way. This can be seen by comparing the proofs of
Theorem 5.7.1 and Theorem 5.7.2.

Numerical illustration. To demonstrate the similarity between the evolu-
tion behavior in solving the rank-1 matrix recovery and the phase retrieval
problem, we give some numerical experiments in Figure 5.3 and Figure 5.4
for a comparison. We can see that the curves of the evolution of ℎ and 𝜌

have similar shapes in both problems.

(a) Log-error (b) The evolution of ℎ (c) The evolution of 𝜌

Figure 5.3: Solving the rank-1 matrix recovery by the randomly initialized
Riemannian gradient descent (RGD), with 𝑛 = 1024, 𝛼 = 1

3 . Each band
stands for the results from 100 independent experiments.

(a) Log-error (b) The evolution of ℎ (c) The evolution of 𝜌

Figure 5.4: Solving the population phase retrieval problem by the randomly
initialized Riemannian gradient descent (RGD), with 𝑛 = 1024, 𝛼 = 1

3 . Each
band stands for the results from 100 independent experiments.

5.9 Discussion

In this chapter, we have established a unified framework for the analysis of
a class of low-rank matrix recovery problems. We have shown that using
the Riemannian gradient descent (RGD) algorithm on the low-rank matrix
manifold, there is a rigorous theoretical guarantee for the fast convergence
rate in low-rank matrix recovery problems.

For this purpose, we first performed an extensive analysis of the low-rank
matrix manifoldM𝑟 itself by analyzing the simple least squares loss func-
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tion 𝐹1(𝑍) = 1
2 ∥𝑍 − 𝑋 ∥

2
𝐹

where 𝑋 is the ground truth. Our focus is on
the symmetric positive semi-definite (SPSD) or Hermitian positive semi-
definite (HPSD) setting, which is common in practice. Our results on the
rank-r manifold with 𝑟 > 1 are original and much more complicated than
the corresponding results for the rank-1 case.

We showed that there is a ground truth and several spurious critical points
on the manifold. The spurious critical points are of independent interest
themselves, as they behave like strict saddle points, but their Hessian has
singular eigen directions. In this chapter, we proved that the gradient de-
scent or gradient flow starting from an initial guess drawn from the general
random distribution converges to the ground truth with high probability.
The initializations that might lead to the spurious critical points only have a
small probability measure on the manifold. This result and the almost-sure
escape result in Chapter 4 complement each other.

The convergence rate of the Riemannian gradient descent toward the ground
truth is nearly linear and is essentially independent of the dimensionality
of the problem. The main difficulty when analyzing the convergence rate
comes from estimating the upper bound for the number of iterations that
the sequence is trapped by the spurious regions. Our primary tool is the it-
eration function of the column space derived from the dynamical low-rank
approximation. We showed that with high probability, the square of the ini-
tial angle between the column spaces of the ground truth and the random
initialization point is between Ω( 1

𝑛 log𝑝
𝑛
) and Ω( log 𝑛

𝑛
). Moreover, by ana-

lyzing the dynamics of the trajectory, we showed that the angle grows fast
in spurious regions. Thus, we showed that with high probability, the se-
quence generated by the randomly initialized Riemannian gradient descent
escapes from the spurious regions quickly. When the sequence is outside of
the spurious regions, we use the Łojasiewicz inequality tool to derive linear
convergence.

The above analysis offers a general framework for a class of inverse prob-
lems that share a desirable structure, namely those problems whose for-
ward problem is a linear mapping from a low-rank matrix to a vector and
preserves the isometry property to some extent. The well-known RIP en-
semble is a special case, but other applications with only weak isometry
properties also fall into this category. We analyzed the phase retrieval prob-
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lem as an example of weak isometry problems, and established its nearly
optimal (nearly linear) convergence rate by invoking its connection with
the rank-1 simple least squares problem.

The global analysis for population loss functions could potentially be ex-
tended to finite-sample problems. The finite-sample loss function is the sum
of the population loss function plus some small deviations. One can control
the magnitude of the deviations and show that the loss function still sat-
isfies some weak isometry conditions. Thus the fundamental convergence
guarantee by the Łojasiewicz inequality is readily applicable on the main
part of the manifold. On the other hand, the geometry of the spurious re-
gions, as well as the escape from these spurious regions, could be different
from the population case. We leave the detailed analysis of finite-sample
cases to future work.
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C h a p t e r 6

ROBUST LOW-RANK MATRIX RECOVERY BY
RIEMANNIAN SUBGRADIENT METHOD

In this chapter, we discuss an application on the low-rank matrix mani-
fold M𝑟 that is different from the previous random linear measurements
framework. The problem of interest is Robust Principal Component Anal-
ysis (RPCA), whose goal is to recover a low-rank 𝐿∗ and a sparse 𝑆∗ from
their sum 𝑀 = 𝐿∗+𝑆∗. We minimize the 𝑙1-norm loss function (6.1) overM𝑟 ,
and we use Riemannian subgradient descent to minimize this nonsmooth
function.

To establish the convergence guarantee for the Riemannian subgradient de-
scent algorithm, we first analyze the local optimality of 𝐿∗ for the 𝑙1 loss
function on the manifold. We discuss the incoherence of the tangent ele-
ment at 𝐿∗. We show that when the rank 𝑟 = 1, 𝐿∗ is the local minimizer of
𝑓 (𝐿) onM𝑟 in a local neighborhood. We then use the sharpness and weak
convexity conditions to show that starting from a spectral initialization, the
Riemannian subgradient algorithm converges to 𝐿∗ at a linear convergence
rate.

Organization of this chapter. We have given a brief introduction of the
problem in Section 1.4. The rest of this chapter is organized as follows. Sec-
tion 6.1 gives some preliminary information, including the problem setting
and the subgradient algorithm to be used. In Section 6.2, we discuss some
related work and compare their approaches with ours. In Section 6.3, we
look at incoherence in the tangent space. In Section 6.4, we show the lo-
cal optimality of 𝐿∗ for 𝑓 (𝐿) onM1. In Section 6.5, we establish the linear
convergence rate of the subgradient algorithm toward the ground truth. Fi-
nally, we make some concluding discussion in Section 6.6

6.1 Preliminaries

In this section, we introduce the problem setting and the subgradient algo-
rithm to be used.
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Notations

LetM𝑟 = {𝑋 ∈ R𝑚×𝑛 : rank(𝑋) = 𝑟} denote the low-rank matrix manifold.
Let 𝑀 denote the matrix to be decomposed, 𝑀 = 𝐿∗ + 𝑆∗, where 𝐿∗ and 𝑆∗

are unknown low-rank and sparse ground truth factors to be recovered. Let
Ω(·) denote the support of a matrix, and Ω∗ = Ω(𝑆∗) denote the support of
the ground truth 𝑆∗. We use ∥ · ∥𝑝 to denote the usual 𝑝 norm for vectors
and operator 𝑝-norm for matrices. We use ∥ · ∥𝑙𝑝 to denote the vectorized
𝑝-norm for matrices, e.g., ∥𝑋 ∥𝑙1 =

∑
𝑖, 𝑗 |𝑋𝑖 𝑗 |. Let 𝜎𝑖 (·) denote the 𝑖th largest

singular value of a matrix, and 𝜎𝑖 specifically denotes the 𝑖th singular value
of the ground truth 𝐿∗. For an integer 𝑠 > 0, let [𝑠] = {1, 2, ..., 𝑠}.

Problem setting

The problem of Robust PCA can be formulated in mathematical terms as
follows. Given 𝑀 = 𝐿∗ + 𝑆∗, where 𝐿∗ is a low-rank matrix, 𝑆∗ is a sparse
matrix, and both 𝐿∗ and 𝑆∗ are unknown, the goal is to recover 𝐿∗ and 𝑆∗

from 𝑀 .

It is well recognized that the problem of RPCA is only uniquely solvable
when 𝐿∗ and 𝑆∗ satisfy some incoherence and sparsity assumptions. In this
work, we adopt the following assumptions.

Assumptions 6.1.1. Assume that we have 𝑀 = 𝐿∗ + 𝑆∗, where 𝐿∗ and 𝑆∗ are
unknown low-rank and sparse matrices satisfying the following properties:

(a) Rank(𝐿∗) = 𝑟, and 𝑟 ≪ min{𝑚, 𝑛}. Moreover, 𝐿∗ is an incoherent matrix
with incoherence parameter `(𝐿∗) ≤ `, namely, 𝐿∗ = 𝑈Σ𝑉⊤, where 𝑈 ∈
R𝑚×𝑟 , 𝑉 ∈ R𝑛×𝑟 , and

∥𝑈∥2,∞ := max
1≤𝑖≤𝑚

∥𝑈 (𝑖, :)∥2 ≤
`
√
𝑟

√
𝑚
,

∥𝑉 ∥2,∞ := max
1≤𝑖≤𝑛

∥𝑉 (𝑖, :)∥2 ≤
`
√
𝑟

√
𝑛
.

(b) 𝑆∗ is a sparse matrix in the sense that for each 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛], we have

∥𝑆(𝑖, :)∥0 ≤ 𝑝𝑛, ∥𝑆(:, 𝑗)∥0 ≤ 𝑝𝑚.

Let Ω∗ denote the support of 𝑆∗. Moreover, the sparsity constant 𝑝 satisfies

𝑝 ≤ 1
36`2𝑟

.
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Remark 6.1.2. We emphasize that here we do not assume the ground truth
matrices 𝐿∗ and 𝑆∗ are generated by any underlying random model. Thus
our assumptions are weaker than the assumptions using random models
(e.g., the Bernoulli random sampling model). Still, they suffice to imply
rich structural properties under the 𝑙1 minimization regime.

Subgradient algorithm

In this work, we propose solving the following minimization problem on
the low-rank matrix manifoldM𝑟 :

𝑓 (𝐿) = ∥𝑀 − 𝐿∥𝑙1 . (6.1)

We propose using the Riemannian subgradient algorithm to minimize (6.1)
overM𝑟 . The subgradient algorithm has been briefly mentioned in Section
2.2, and we provide more details here for the specific problem.

The Riemannian subgradient algorithm proceeds as follows. Let 𝐿0 be the
initialization for 𝐿, and let 𝐿𝑘 denote the 𝑘th iterate, {𝐿𝑘 }𝑘=0 ⊂ M𝑟 . At the
𝑘th step, consider the subgradient of the loss function (6.1):

𝜕 𝑓 (𝐿𝑘 ) = −s̃ign(𝑀 − 𝐿𝑘 ).

Here s̃ign(·) is the entrywise generalized sign function:

s̃ign(𝑥) =


−1 if 𝑥 < 0;

𝑡 ∀ 𝑡 ∈ [−1, 1] if 𝑥 = 0;

1 if 𝑥 > 0.

In other words, any value in [−1, 1] can be chosen if the variable is 0.

The Riemannian subgradient on the manifoldM𝑟 is the projected subgradi-
ent in the tangent space ofM𝑟 :

𝑃𝑇𝐿𝑘
(𝜕 𝑓 (𝐿𝑘 )) = 𝑃𝑇𝐿𝑘

(
s̃ign(𝐿𝑘 − 𝑀)

)
.

At each iteration, the Riemannian subgradient algorithm moves one step in
the direction of the Riemannian subgradient. Denote the 𝑘th step size as 𝛼𝑘 ,
then the next iterate is generated as follows:

𝐿𝑘+1 = 𝑅

(
𝐿𝑘 − 𝛼𝑘 · 𝑃𝑇𝐿𝑘

(
s̃ign(𝐿𝑘 − 𝑀)

))
. (6.2)
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To sum up, we have the Riemannian subgradient method in Algorithm 1.
Similar to what has been discussed in Section 2.2 for the Riemannian gradi-
ent descent method, because the tangent space projection is of rank at most
2𝑟, each step of the Riemannian algorithm only involves a size 2𝑟 × 2𝑟 SVD,
and is fast when 𝑟 ≪ min{𝑚, 𝑛}.

Algorithm 1: Riemannian subgradient algorithm
Input : Sparse noise corrupted low-rank matrix observation 𝑀 , rank

estimation 𝑟 , initial low-rank matrix estimation 𝐿0, step size
scheme 𝛼𝑘 , maximum number of iterations 𝐾 .

1 for 𝑘 = 0, 1, 2, . . . , 𝐾 do
2 𝐿𝑘+1 = 𝑅

(
𝐿𝑘 − 𝛼𝑘 · 𝑃𝑇𝐿𝑘

(
s̃ign(𝐿𝑘 − 𝑀)

))
;

3 If 𝑓 (𝐿𝑘 ) < 𝜖 , break.
4 end for
5 Truncate 𝑀 − 𝐿𝑘 to obtain a sparse matrix 𝑆.

Output: Recovered low-rank matrix �̂� = 𝐿𝑘 and sparse noise matrix 𝑆.

To find a good initial 𝐿0, we use the same spectral initialization method as
[131]. This method finds the initial guess for 𝑆 by truncating 𝑀 and keeping
only the largest entries in each row and each column. More specifically,
𝑆 = T𝑝 (𝑀), where the truncation operator T𝑝 (·) is defined as

T𝑝 (𝑀) =

𝑀 (𝑖, 𝑗), if |𝑀 (𝑖, 𝑗) | ≥ |𝑀 (𝑖, :) | [𝑝𝑛] and |𝑀 (𝑖, 𝑗) | ≥ |𝑀 (:, 𝑗) | [𝑝𝑚] ;

0, otherwise.

Here |𝑀 (𝑖, :) | [𝑝𝑛] denotes the (𝑝𝑛)th largest entry in the row |𝑀 (𝑖, :) |; simi-
larly for |𝑀 (:, 𝑗) | [𝑝𝑚] . We then let �̃� = 𝑀 − 𝑆. Finally we take the best rank-𝑟
approximation 𝐿0 = 𝑅( �̃�) as the initial 𝐿0. The initialization algorithm is
summarized in Algorithm 2.

Note that other local initialization methods are also used in literature, with
similar construction and effect. For example, truncation by ranking can be
replaced with truncation by a certain threshold Z .

The following condition comes in handy when we analyze the convergence
of the algorithm.
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Algorithm 2: Initialization
Input : Sparse noise corrupted low-rank matrix observation 𝑀 , matrix

size [𝑚, 𝑛], rank estimation 𝑟 , and truncation parameter 𝑝.
1 Compute thresh𝑖 = sort(abs(𝑀), 1,descend), thresh𝑖 ← thresh𝑖 (𝑝𝑚, :).;
2 Compute thresh 𝑗 = sort(abs(𝑀), 2,descend), thresh 𝑗 ← thresh 𝑗 (𝑝𝑛, :).;
3 Compute 𝑆 = (abs(𝑀) > thresh𝑖). ∗ (abs(𝑀) > thresh 𝑗 ). ∗ 𝑀 ;
4 Compute �̄� = 𝑀 − 𝑆;
5 Compute the SVD of �̃�: [𝑈0, Σ0, 𝑉0] = lansvd( �̄�, 𝑟).;
6 𝐿0 = 𝑈0Σ0𝑉

′
0.;

Output: Initialization 𝐿0.

Condition 6.1.3. For all 𝑘 = 0, 1, . . ., we always have that (𝐿𝑘 − 𝐿∗) is incoherent
in the sense that

∥𝐿𝑘 − 𝐿∗∥𝑙1
∥𝐿𝑘 − 𝐿∗∥𝐹

≥ 𝑐
√
𝑚𝑛

for some uniform constant 𝑐 ∈ (0, 1] independent of 𝑘 .

One way to interpret the ratio
∥·∥𝑙1
∥·∥𝐹 in Condition 6.1.3 is to take it as a neces-

sary condition for incoherence. Namely, if a matrix 𝑋 = 𝑈Σ𝑉∗ is incoherent
in terms of 𝑈 and 𝑉 , then each entry of 𝑋 must be O( 1√

𝑚𝑛
), which implies

that the ratio
∥𝑋 ∥𝑙1
∥𝑋 ∥𝐹 is of order

√
𝑚𝑛.

We also remark that much of the results in this chapter does not depend
crucially on Condition 6.1.3. We clearly distinguish those results that need
Condition 6.1.3 and those that do not in the upcoming sections. The pur-
pose of Condition 6.1.3 is to improve some constants, which results in faster
convergence rate and larger local convergence neighborhood. Numerical
evidence shows that this condition is consistently satisfied in practical ap-
plications.

6.2 Related work

Below we discuss some related work and compare their approaches with
ours.

Convex formulations and alternating methods for RPCA. Early approaches
to the Robust PCA problem mainly rely on the nuclear norm relaxation. The
work [33] first proposes the Principal Component Pursuit method, which
solves the RPCA problem by minimizing the weighted combination of the
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nuclear norm and the 𝑙1 norm. This nuclear norm relaxation has since be-
come a standard heuristic. Concurrent with this work, the authors of [36]
develop the theory of rank-sparsity incoherence that lays the foundation
for a class of low-rank recovery problems. In [37], the authors further estab-
lish a unified performance guarantee for the convex optimization approach
using the nuclear norm and the 𝑙1 norm based on the assumption of joint
incoherence. However, with the growth of the dimension of the real-world
problems, convex optimization methods gradually grew out of favor due to
high computational cost.

An important class of nonconvex methods for the RPCA problem is the al-
ternating projection methods. The work [108] first proposes the alternating
projection algorithm that performs low-rank projection on the 𝐿 variable
and hard thresholding on the 𝑆 variable alternatively, and establishes the
linear convergence rate of this algorithm. It is worth noting that in their
assumptions, no randomness is required for the support of the sparse noise
𝑆, in contrast to [37] which requires joint incoherence. Later, the algorithm
is further improved by [23] for more efficient computation. In [131], the
authors propose an alternating 𝑙2 gradient descent method for RPCA, and
establish its linear convergence guarantee under spectral initialization.

Manifold algorithms for RPCA. The low-rank matrix manifold M𝑟 [70,
71] has recently gained attention as a useful tool for low-rank recovery
problems including RPCA. Among existing work that usesM𝑟 for RPCA,
the one closest to us in spirit is [26], in which they essentially solve the
same problem min𝐿∈M𝑟

𝑓 (𝐿) = ∥𝑀 − 𝐿∥𝑙1 overM𝑟 . This formulation uses
𝑙1 minimization to promote sparsity in the 𝑆 factor. However, the work
[26] differs from our work in that, to tackle nonsmoothness, they solve

min𝑋∈M𝑟

∑
(𝑖, 𝑗)∈Ω

√︃
𝛿2 + (𝑋𝑖 𝑗 − 𝑀𝑖 𝑗 )2 for successively smaller 𝛿. For each 𝛿,

the approximate problem is solved by Riemannian conjugate gradient. More-
over, the work [26] left a few questions unanswered, including the justifica-
tion for the ground truth 𝐿∗ being a local minima, and the convergence rate
of the algorithm. In contrast, our work establishes the local optimality of 𝐿∗
and a linear convergence guarantee under certain conditions.

Apart from the low-rank matrix manifold, some works have formulated
the RPCA problem on different manifolds, usually the Grassmannian. For
example, in [69], the authors propose the so-called Grassmannian robust
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adaptive subspace tracking (GRASTA) method, which is an alternating min-
imization method on the Grassmannian. In [129], the authors essentially
solve min𝑈,𝑉 ∥𝑃Ω(𝑈𝑉⊤ − 𝑀)∥𝑙2 , where 𝑈 and 𝑉 are on Grassmannians, and
the mask Ω is adaptively updated at each iteration to determine the support
of the outliers.

Convergence of subgradient method. The Riemannian subgradient algo-
rithm is the counterpart of Riemannian gradient algorithm for nonsmooth
functions with generalized gradients. A few works have used subgradient
methods on various manifolds to solve low-rank recovery problems, includ-
ing orthogonal dictionary learning [11], Gaussian phase retrieval problem
[46], dual principal component pursuit [135], and robust low-rank recovery
[96]. The work [96] essentially studies the Gaussian matrix sensing with a
gross sparse noise, and aims to recover 𝑈𝑈⊤ from 𝑦 = A(𝑈𝑈⊤) + 𝑆, where
A is Gaussian ensemble, but the problem is posed on the Stiefel manifold.
We stress that no previous work has studied the Riemannian subgradient
method on the low-rank matrix manifoldM𝑟 or established a provable con-
vergence guarantee on this manifold.

When it comes to the convergence rate, it is first proposed in [45] that the
sharpness condition and weak convexity condition (Conditions (S) and (C)
in Lemma 6.5.2) imply linear convergence rate. The work [45] focuses on
the Euclidean algorithms, and proves the convergence rate for a number
of different step size schemes, including the Polyak stepsize, the constant
step length, and the geometrically decaying stepsize that we use in our
work. Later, the conditions (S) and (C) are extended to manifold subgra-
dient methods by [95], where they study the Riemannian subgradient on
the Stiefel manifold. In this work, we extend these conditions to the low-
rank matrix manifold M𝑟 , which has a very different structure compared
with other manifolds.

6.3 Incoherence

In this section, we take a deep dive into the incoherence property on the
low-rank matrix manifold M𝑟 . When working with M𝑟 , one often deals
with the tangent space. We discuss some results on the incoherence proper-
ties in the tangent space that have not been reported in previous literature.

Theorem 6.3.1. Under Assumptions 6.1.1, a randomly sampled matrix b in the
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tangent space 𝑇𝐿∗ at 𝐿∗ ∈ M𝑟 is incoherent with high probability. More specifically,
write b as

b =

(
𝑈, 𝑈

) (
𝑀 𝑁1

𝑁2 0

) (
𝑉⊤

𝑉⊤

)
, (6.3)

and let 𝑈, 𝑉 be sampled uniformly from the Stiefel submanifolds St(𝑚, 𝑟;𝑈) =

{𝑈 ∈ R𝑚×𝑟 : 𝑈∗𝑈 = 𝐼𝑟 , 𝑈 ⊥ 𝑈} and St(𝑛, 𝑟;𝑉) = {𝑉 ∈ R𝑛×𝑟 : 𝑉⊤𝑉 = 𝐼𝑟 , 𝑉 ⊥ 𝑉}.
Then with high probability no less than 1 − 𝑐𝑁−3 log 𝑁 , where 𝑁 = min{𝑚, 𝑛},
b is incoherent with incoherence parameter bounded by 𝐶 + `, where 𝑐 and 𝐶 are
absolute constants.

Proof. Assume that the SVD of b is b = 𝑈bΣb𝑉
⊤
b

. Then there exist orthonor-
mal matrices 𝑂1, 𝑂2 ∈ O2𝑟 , such that

𝑈b = (𝑈, 𝑈)𝑂1, 𝑉b = (𝑉, 𝑉)𝑂2, Σb = 𝑂
⊤
1

(
𝑀 𝑁1

𝑁2 0

)
𝑂2.

Observe that the (2,∞)-norm of𝑈b is equal to that of (𝑈, 𝑈). This is because

∥𝑈b ∥2,∞ = max
1≤𝑖≤𝑚

∥𝑈b (𝑖, :)∥2 = max
1≤𝑖≤𝑚

∥𝑒⊤𝑖 · (𝑈, 𝑈)𝑂1∥2 = max
1≤𝑖≤𝑚

∥𝑒⊤𝑖 · (𝑈, 𝑈)∥2 = ∥(𝑈, 𝑈)∥2,∞.

The same applies to 𝑉b . Thus it suffices to bound the (2,∞)-norms of (𝑈, 𝑈)
and (𝑉, 𝑉).

Using the same trick, we can assume that we first sample 𝑈 and 𝑉 from the
Stiefel manifold St(𝑚, 𝑟) and St(𝑛, 𝑟) directly and re-orthogonalize them to
get𝑈 and𝑉 . So we only need to bound the (2,∞)-norms of (𝑈,𝑈) and (𝑉,𝑉)
because they are still the same.

Since𝑈 and𝑉 are incoherent with incoherence parameter ` by Assumptions
6.1.1, we focus on 𝑈 and 𝑉 . Following the same idea as in the proof of [31,
Lemma 2.2], one can show that there exist absolute constants 𝑐 and 𝐶, such
that with probability no less than 1 − 𝑐𝑚−3 log𝑚, we have

max
1≤𝑖≤𝑚

∥𝑃
𝑈
𝑒𝑖∥22 ≤ 𝐶

2𝑟/𝑚.
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This implies that

∥𝑈b ∥2,∞ = ∥(𝑈,𝑈)∥2,∞ = max
1≤𝑖≤𝑚

∥(𝑈 (𝑖, :), 𝑈 (𝑖, :))∥2

≤ max
1≤𝑖≤𝑚

√︃
∥(𝑈 (𝑖, :)∥22 + ∥(𝑈 (𝑖, :)∥

2
2

≤
√︂

max
1≤𝑖≤𝑚

∥(𝑈 (𝑖, :)∥22 + max
1≤𝑖≤𝑚

∥(𝑈 (𝑖, :)∥22

≤
√︃
`2𝑟/𝑚 + 𝐶2𝑟/𝑚

= (` + 𝐶)
√︂
𝑟

𝑚
.

Similarly, with high probability no less than 1 − 𝑐𝑛−3 log 𝑛, we have

∥𝑉b ∥2,∞ ≤ (` + 𝐶)
√︂
𝑟

𝑛
.

Therefore, with high probability no less than 1 − 𝑐𝑁−3 log 𝑁 , where 𝑁 =

min{𝑚, 𝑛}, b is incoherent with incoherence parameter bounded by𝐶+`. □

Theorem 6.3.1 can be interpreted as follows. Intuitively, when 𝐿∗ is incoher-
ent, any tangent element b ∈ 𝑇𝐿∗ is at least somewhat incoherent, because b
can be written as b = 𝑈𝐴⊤ + 𝐵𝑉⊤ for some 𝐴 ∈ R𝑛 ×𝑟 and 𝐵 ∈ R𝑚×𝑟 and it
seems that 𝑈𝐴⊤ and 𝐵𝑉⊤ are one-sided incoherent. Theorem 6.3.1 tells us
that a one-sided incoherent matrix is with high probability truly incoherent.

The next theorem is a deterministic result on the incoherence in the tangent
space, expressed in terms of the tangent space projection.

Theorem 6.3.2. Let 𝑃𝑇∗ be the shorthand for the tangent space projection 𝑃𝑇𝐿∗ at
the ground truth 𝐿∗, and let 𝑃Ω∗ be the projection onto the support of ground truth
𝑆∗. Under Assumptions 6.1.1, we have

∥𝑃𝑇∗𝑃Ω∗𝑃𝑇∗ ∥2 ≤
√︃

2𝑝`2𝑟 ∥𝑃𝑇∗ ∥2.

Proof. To prove the theorem is equivalent to proving that for any b in the
tangent space 𝑇𝐿∗ ,

∥𝑃Ω∗ (b)∥2𝐹 ≤ 2𝑝`2𝑟 ∥b∥2𝐹 .

Note that each b can be expressed as b = 𝑈𝐴⊤ + 𝐵𝑉⊤ with 𝐴 and 𝐵 satisfying

∥𝑈𝐴⊤ + 𝐵𝑉⊤∥2𝐹 = ∥𝑈𝐴⊤∥2𝐹 + ∥𝐵𝑉
⊤∥2𝐹 .
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To see this, consider the decomposition

b =

(
𝑈, 𝑈

) (
𝑀 𝑁1

𝑁2 0

) (
𝑉⊤

𝑉⊤

)
,

and let 𝐴 = (𝑀, 𝑁1)
(
𝑉⊤

𝑉⊤

)
and 𝐵 = (𝑈, 𝑈)𝑁2. Thus, it suffices to prove that

∥𝑃Ω∗ (b)∥2𝐹 ≤ 2𝑝`2𝑟 (∥𝑈𝐴⊤∥2𝐹 + ∥𝐵𝑉
⊤∥2𝐹).

We first compare ∥𝑈𝐴⊤∥2
𝐹

and ∥𝑃Ω∗ (𝑈𝐴⊤)∥2𝐹 . Write

𝐴 =


𝑎⊤1
...

𝑎⊤𝑛

 .
Then

∥𝑈𝐴⊤∥2𝐹 =

𝑛∑︁
𝑖=1

∥𝑈𝑎𝑖∥22 =

𝑛∑︁
𝑖=1

∥𝑎𝑖∥22.

On the other hand,

∥𝑃Ω∗ (𝑈𝐴⊤)∥2𝐹 =

𝑛∑︁
𝑖=1

∥𝑃Ω(:,𝑖) (𝑈𝑎𝑖)∥22.

Since

∥𝑈𝑎𝑖∥∞ ≤ ∥𝑈∥2,∞∥𝑎𝑖∥2 ≤ `
√︂
𝑟

𝑚
∥𝑎𝑖∥2,

we have

∥𝑃Ω(:,𝑖) (𝑈𝑎𝑖)∥22 ≤ (𝑝𝑚)
(
`

√︂
𝑟

𝑚
∥𝑎𝑖∥2

)2

= 𝑝`2𝑟 ∥𝑎𝑖∥22.

Putting all columns together, we get

∥𝑃Ω∗ (𝑈𝐴⊤)∥2𝐹 ≤ 𝑝`
2𝑟 ∥𝑈𝐴⊤∥2𝐹 .

Similarly,

∥𝑃Ω∗ (𝐵𝑉⊤)∥2𝐹 ≤ 𝑝`
2𝑟 ∥𝐵𝑉⊤∥2𝐹 .
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Thus,

∥𝑃Ω∗ (b)∥2𝐹 = ∥𝑃Ω∗ (𝑈𝐴⊤ + 𝐵𝑉⊤)∥2𝐹
≤ 2

(
∥𝑃Ω∗ (𝑈𝐴⊤)∥2𝐹 + ∥𝑃Ω∗ (𝐵𝑉

⊤)∥2𝐹
)

≤ 2𝑝`2𝑟
(
∥𝑈𝐴⊤∥2𝐹 + ∥𝐵𝑉

⊤∥2𝐹
)

≤ 2𝑝`2𝑟 ∥𝑈𝐴⊤ + 𝐵𝑉⊤∥2𝐹 .

This gives us the desired result. □

We emphasize that Theorem 6.3.2 is a deterministic result. There is no lower
bound for 𝑃𝑇∗𝑃Ω∗𝑃𝑇∗ , and counterexamples are easy to construct, so it is not
a concentration result. We include this result here because Assumptions
6.1.1 are also deterministic without any underlying probabilistic construc-
tions, and a corresponding incoherence theorem might be of theoretical in-
terest.

6.4 Local optimality

In this section, we present the first main result of the chapter, which gives
that 𝐿∗ is a local minimizer of the function 𝑓 (𝐿) on the low-rank matrix
manifoldM𝑟 .

The main theorem of this section is as follows.

Theorem 6.4.1 (Local optimality). For 𝑟 = 1, under Assumptions 6.1.1, 𝐿∗ is a
local minimizer of 𝑓 (𝐿) onM1 in the sense that

1) For all 𝐿 such that ∥𝐿 − 𝐿∗∥𝑙1 ≤
𝜎2
𝑟

120𝑟𝜎1
√
𝑚𝑛

, we have that 𝑓 (𝐿) − 𝑓 (𝐿∗) > 0;

2) Furthermore, if Condition 6.1.3 is satisfied, then for all 𝐿 such that ∥𝐿 −
𝐿∗∥𝑙1 ≤

𝑐2𝜎2
𝑟

√
𝑚𝑛

120𝑟𝜎1
and ∥𝐿 − 𝐿∗∥2 ≤ 𝜎𝑟

2 , we have that 𝑓 (𝐿) − 𝑓 (𝐿∗) > 0.

Here 𝜎 is the singular value of 𝐿∗ and 𝐶 is an independent constant.

We remark that while Theorem 6.4.1 only applies to 𝑟 = 1, in numerical
experiments, the local optimality seems to hold true for 𝑟 > 1 as well. Es-
tablishing this result for general 𝑟 is left for future work. Also, the depen-
dence on 𝑚 and 𝑛 could be improved if expressed in other norms, but we
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use the 𝑙1 norm because this is the measure of distance for convergence in
our Riemannian subgradient algorithm.

The proof of Theorem 6.4.1 relies on the following lemmas, and is deferred
to the end of this subsection.

Lemma 6.4.2. A convex function on a bounded convex polytope C achieves its
maximum at the extreme points of C.

The proof is obvious by definition of convex functions and convex poly-
topes.

Lemma 6.4.3 (adapted from [61, Theorem 3.14]). Let C ⊂ R𝑛 be a closed con-
vex polytope. Then there exists 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝐴′ ∈ R×𝑛, 𝑏′ ∈ R×𝑛, such
that

C = {𝑥 ∈ R𝑛 : 𝐴𝑥 + 𝑏 ≤ 0, 𝐴′𝑥 + 𝑏′ = 0} ,

where the inequality holds in a componentwise sense. Moreover, every face1 F of
the convex polytope C can be represented by forcing some inequality constraints of
C into equality constraints, i.e., there exist 𝐴1 ∈ R𝑘×𝑛, 𝐴2 ∈ R(𝑚−𝑘)×𝑛 and 𝑏1 ∈ R𝑘 ,
𝑏2 ∈ R𝑚−𝑘 , such that

F = {𝑥 ∈ R𝑛 : 𝐴1𝑥 + 𝑏1 ≤ 0, 𝐴2𝑥 + 𝑏2 = 0, 𝐴′𝑥 + 𝑏′ = 0} ,

where

[
𝐴1 𝑏1

𝐴2 𝑏2

]
= Π

[
𝐴 𝑏

]
and Π is a permutation matrix.

Using the lemma, we can determine the representation of the vertices of
a convex polytope by making as many inequality constraints into equality
constraints as possible. We will show the local optimality of 𝐿∗ by finding
the vertices of the polytope C1 := {b : b ∈ 𝑇𝐿∗ , ∥b∥𝑙1 ≤ 1} and finding an
upper bound for

∥𝑃Ω∗ (b)∥𝑙1
∥b∥𝑙1

there. More specifically,
∥𝑃Ω∗ (b)∥𝑙1
∥b∥𝑙1

< 1
3 .

Lemma 6.4.4. The set C1 = {b : b ∈ 𝑇𝐿∗ , ∥b∥𝑙1 ≤ 1} is a convex polytope.

Proof. The inequality constraint ∥b∥𝑙1 ≤ 1 is equivalent to the following con-
straints: ∑︁

𝑖, 𝑗

𝜖𝑖, 𝑗b𝑖, 𝑗 ≤ 1, ∀ 𝜖 = (𝜖𝑖, 𝑗 )𝑚×𝑛 ∈ {±1}𝑚×𝑛.

1Vertices are seen as zero-dimensional faces.
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Thus C1 is a subset of R𝑚×𝑛 described by a set of equality and inequality con-
straints. So C1 is a convex polyhedron. Moreover, it is a bounded polyhe-
dron due to the constraint ∥b∥𝑙1 ≤ 1. Therefore, C1 is a convex polytope. □

Denote C0 := {b : b ∈ 𝑇𝐿∗ , ∥b∥𝑙1 = 1}, where rank(𝐿∗) = 1. One can see
that C0 is the boundary of C1, and is itself a collection of convex polytopes.
Moreover, the vertices of C0 are the same as those of C1.

Proof of Lemma 6.4.6

The following two lemmas describe the structure of a vertex b and the be-
havior of 𝑃Ω∗ (b) there. We first prove the following intermediate lemma
about a property of the zero patterns of the vertices of the polytope C1.

Lemma 6.4.5. Let b be a vertex of the polytope C1, and let Ω𝑐 (b) denote the index
set of the zero entries in b. Then b is a matrix that contains as many zeros as
possible, in the sense that there does not exist another vertex b′ such that Ω𝑐 (b) ⊊
Ω𝑐 (b′).

Proof. By Lemma 6.4.3, the faces of C1 are determined by forcing some in-
equality constraints of C1 into equality constraints. The vertices are the zero-
dimensional faces of C1, and they can be determined through the same pro-
cedure. We now study the equality constraints created in this way. It is easy
to see that there must be at least two such equalities. Let 𝑘 = (𝑖, 𝑗) denote
the indices. Let 𝐾 denote the index set of 𝜖 that flip signs between these two
equalities. Then ∑︁

𝑘∈𝐾
𝜖𝑘b𝑘 +

∑︁
𝑘∈𝐾𝑐

𝜖𝑘b𝑘 = 1,∑︁
𝑘∈𝐾
(−𝜖𝑘 )b𝑘 +

∑︁
𝑘∈𝐾𝑐

𝜖𝑘b𝑘 = 1.
(6.4)

Therefore, ∑︁
𝑘∈𝐾

𝜖𝑘b𝑘 = 0,
∑︁
𝑘∈𝐾𝑐

𝜖𝑘b𝑘 = 1.

We now look at all the inequality constraints with the same choices of signs
in 𝐾𝑐, but different choice of signs in 𝐾 . They are∑︁

𝑘∈𝐾
𝜖′𝑘b𝑘 +

∑︁
𝑘∈𝐾𝑐

𝜖𝑘b𝑘 ≤ 1, ∀(𝜖′𝑘 )𝑘∈𝐾 ∈ {±1} |𝐾 | .
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This implies ∑︁
𝑘∈𝐾

𝜖′𝑘b𝑘 ≤ 0, ∀(𝜖 ′𝑘 )𝑘∈𝐾 ∈ {±1} |𝐾 | .

Since the signs (𝜖′
𝑘
)𝑘∈𝐼 are arbitrary, we let 𝜖′

𝑘
= sign(b𝑘 ). This gives∑︁

𝑘∈𝐾
|b𝑘 | ≤ 0,

which implies

b𝑘 = 0, ∀𝑘 ∈ 𝐾.

In other words, the effect of forcing inequalities constraints into equalities
is inducing zeros in b.

On the other hand, one can show that all the zeros in b are induced by
equality constraints. To see this, let 𝐽 denote the index set of zeros that are
not in the previous index set 𝐾 . In other words, 𝐽 = Ω𝑐 (b)\𝐾 . Rewrite the
previous pair of equalities (6.4) as∑︁

𝑘∈𝐾
𝜖𝑘b𝑘 +

∑︁
𝑘∈𝐽

𝜖𝑘b𝑘 +
∑︁

𝑘∈Ω(𝐿∗)
𝜖𝑘b𝑘 = 1,∑︁

𝑘∈𝐾
(−𝜖𝑘 )b𝑘 +

∑︁
𝑘∈𝐽

𝜖𝑘b𝑘 +
∑︁

𝑘∈Ω(𝐿∗)
𝜖𝑘b𝑘 = 1.

(6.5)

Since b𝑘 = 0 ∀𝑘 ∈ 𝐽, we immediately have∑︁
𝑘∈𝐾
(−𝜖𝑘 )b𝑘 +

∑︁
𝑘∈𝐽
(−𝜖𝑘 )b𝑘 +

∑︁
𝑘∈Ω(𝐿∗)

𝜖𝑘b𝑘 = 1. (6.6)

Therefore, Equation (6.6) and the first equation of (6.5) make a pair, and
𝐾 ∪ 𝐽 can be interpreted as zeros induced by a pair of equality constraints.
To conclude, we have shown that all the zero entries in b are induced by
pairs of equality constraints as above.

Moreover, it can be shown that more zeros always imply a lower-dimensional
face. In fact, let the index set of the zeros be Ω∗(𝐿∗), then the equality con-
straints are exactly the following:∑︁

𝑘∈Ω∗ (𝐿∗)
𝜖𝑘b𝑘 +

∑︁
𝑘∈Ω(𝐿∗)

sign(b𝑘 )b𝑘 = 1.

The other inequality constraints are strict inequalities because one cannot
flip the sign before a b𝑘 that is nonzero.
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Now suppose we have two points in two faces

b ∈ F , b′ ∈ F ′,

and suppose the zero pattern of b is a subset of the zero pattern of b′, i.e.,

Ω𝑐 (b) ⊊ Ω𝑐 (b′),

then we must have F ′ ⊊ F , i.e., F ′ is a sub-face of the face F . This means
that F cannot be a zero-dimensional face, so b cannot be a vertex. □

We are now ready to show that the vertices actually have a block form under
permutations.

Lemma 6.4.6. LetV be the set of vertices of the convex polytope C1 (equivalently,
C0). Then every vertex in V satisfies a certain block form up to permutations.
Specifically,

V ⊂
{
b : b = Π1

(
0 b (1)

b (2) 0

)
Π2, where Π1,Π2 are permutation matrices

}
.

Proof of Lemma 6.4.6. Let 𝐿∗ = 𝑢𝜎𝑣⊤ be the SVD of 𝐿∗, where 𝑢 ∈ R𝑚 and
𝑣 ∈ R𝑛 are vectors in the case rank(𝐿∗) = 1. Then every b in the tangent
space can be expressed as b = 𝑢𝑎⊤ + 𝑏𝑣⊤, where 𝑎 ∈ R𝑛 and 𝑏 ∈ R𝑚. Let 𝑢𝑖
denote the 𝑖th entry of the vector 𝑢, and similarly for other vectors. Let b𝑖 𝑗
denote the (𝑖, 𝑗) entry of b. Then b𝑖 𝑗 = 𝑢𝑖𝑎 𝑗 + 𝑏𝑖𝑣 𝑗 .

First assume for simplicity that 𝑢𝑖 ≠ 0 for all 𝑖 = 1, . . . , 𝑚 and 𝑣 𝑗 ≠ 0 for all
𝑗 = 1, . . . , 𝑛. We will prove the following claim:

If b𝑖 𝑗 = b𝑘 𝑗 = b𝑖𝑙 = 0, then b𝑘𝑙 = 0.

To see this, note that b𝑖 𝑗 = b𝑘 𝑗 = b𝑖𝑙 = 0 implies

𝑢𝑖𝑎 𝑗 + 𝑏𝑖𝑣 𝑗 = 0,

𝑢𝑖𝑎𝑙 + 𝑏𝑖𝑣𝑙 = 0,

𝑢𝑘𝑎 𝑗 + 𝑏𝑘𝑣 𝑗 = 0.

Since 𝑢𝑖, 𝑢𝑘 , 𝑣 𝑗 and 𝑣𝑙 are nonzero, either 𝑎 𝑗 = 𝑏𝑖 = 𝑎𝑙 = 𝑏𝑘 = 0, or 𝑎 𝑗

𝑎𝑙
=

𝑣 𝑗
𝑣𝑙

. In
either case, b𝑘𝑙 = 𝑢𝑘𝑎𝑙 + 𝑏𝑘𝑣𝑙 = 0.
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Essentially, the above claim guarantees that the zeros in b always come in
blocks under permutation.

Next, we show that for any b, there exists another b′ in the form of b′ =

Π1

(
0 b′(1)

b′(2) 0

)
Π2, such that the zero set of b is a subset of the zero set of b′,

i.e., Ω𝑐 (b) ⊂ Ω𝑐 (b′).

To see this, we show that we can construct b′ = Π1

(
0 b′(1)

b′(2) 0

)
Π2 for any

block division. In fact, denote the indices of the upper-left block after per-
mutation as 𝐼 × 𝐽, and let

�̃� = Π−1
1 𝑢, �̃� = Π−⊤2 𝑣, �̃� =

(
�̃�𝐽

0

)
Π2, �̃� = Π1

(
−�̃�𝐼

0

)
,

then

b̃ = 𝑢�̃�⊤ + �̃�𝑣⊤ = Π1

(
�̃�

(
�̃�⊤
𝐽
, 0

)
+

(
−�̃�𝐼

0

)
�̃�⊤

)
Π2 = Π1

(
0 −�̃�𝐼 �̃�⊤𝐽𝑐

�̃�𝐼𝑐 �̃�
⊤
𝐽

0

)
Π2.

Take the normalization b′ = b̃/∥b̃∥𝑙1 and b′ is an element in C0 that satisfies
the block form after permutation.

By Lemma 6.4.3, the vertices of C1 are found by forcing as many of the in-
equality constraints in C1 into equality constraints as possible, until there
is a unique solution. By Lemma 6.4.2, this translates to forcing there to be
as many zeros as possible. Since for b that are not in the block form, there
always exists b′ that has more zeros and are in the block form, we conclude
that any vertex must have the block form.

In the case where 𝑢 or 𝑣 has zero entries, simply let the corresponding entries
in 𝑏 or 𝑎 be zero. For example, if 𝑢𝑖 = 0, we let 𝑏𝑖 = 0 so that b𝑖 𝑗 = 0 for any 𝑗 .
This construction can max out the zeros in b. It is easy to see that the same
block form still applies, and the conclusion in Lemma 6.4.6 holds true. □

Proof of Lemma 6.4.7

Lemma 6.4.7. For 𝑟 = 1, under Assumptions 6.1.1, we have that for all b ∈ 𝑇𝐿∗ ,

∥𝑃Ω∗ (b) ∥𝑙1
∥b∥𝑙1

≤ 1
3
.
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The proof of this lemma is very technical. To build up some intuition, we
can look at the cases when b only has the𝑈𝐴⊤ part or the 𝐵𝑉⊤ part.

Example 6.4.8. If b = 𝑈𝐴⊤, since 𝑈 is incoherent, b = 𝑈𝐴⊤ is row-wise
spread-out. As the sparse support set Ω∗ is row-wise sparse, it is intuitively
correct that ∥𝑃Ω∗ (b)∥𝑙1 only takes up a small portion of ∥b∥𝑙1 .

Example 6.4.9. If b = 𝐵𝑉⊤, since 𝑉 is incoherent, b = 𝐵𝑉⊤ is column-wise
spread-out. As the sparse support set Ω∗ is column-wise sparse, it is also
intuitively correct that ∥𝑃Ω∗ (b)∥𝑙1 only takes up a small portion of ∥b∥𝑙1 .

When it comes to the case when b = 𝑈𝐴⊤ + 𝐵𝑉⊤, the proof still follows the
same basic idea. It makes use of the incoherent structure of 𝑈 and 𝑉 , and
proves a delicate balancing of the entries of two nonzero blocks.

Proof of Lemma 6.4.7. To prove the lemma, it suffices to solve the following
maximization problem

max
b∈𝑇𝐿∗ , ∥b∥𝑙1=1

∥𝑃Ω∗ (b)∥𝑙1

and show that the maximum value is upper bounded by 1
3 .

By Lemma 6.4.2, a convex function on a convex set takes its maximum at
the extreme points of the convex set. Since ∥𝑃Ω∗ (b)∥𝑙1 is a convex function
in b, and the constraint set is C0 which is a collection of convex polytopes
with vertex setV, we only need to evaluate ∥𝑃Ω∗ (b)∥𝑙1 at b ∈ V.

From Lemma 6.4.6, we know that every vertex b in the vertex set V must

take the form Π1

(
0 b (1)

b (2) 0

)
Π2, where Π1, Π2 are permutation matrices. In

the proof of Lemma 6.4.6, we have constructed some b′ that takes such block
form, where each b′ is a normalization of the following b̃:

b̃ = 𝑢�̃�⊤ + �̃�𝑣⊤ = Π1

(
�̃�

(
�̃�⊤
𝐽
, 0

)
+

(
−�̃�𝐼

0

)
�̃�⊤

)
Π2 = Π1

(
0 −�̃�𝐼 �̃�⊤𝐽𝑐

�̃�𝐼𝑐 �̃�
⊤
𝐽

0

)
Π2.

We now prove that in fact every b̃ that takes this block form must follow
this construction. For simplicity assume that Π1 = Π2 = id, then �̃� = 𝑢 and

�̃� = 𝑣. Suppose that b̃ = 𝑢𝑎⊤ + 𝑏𝑣⊤ =

(
0 b (1)

b (2) 0

)
. Denote the indices of the
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upper left block after permutation as 𝐼 × 𝐽. Then

𝑢 =

(
𝑢𝐼

𝑢𝐼𝑐

)
, 𝑣 =

(
𝑣𝐽

𝑣𝐽𝑐

)
, 𝑎 =

(
𝑎𝐽

𝑎𝐽𝑐

)
, 𝑏 =

(
𝑏𝐼

𝑏𝐼𝑐

)
,

𝑢𝐼𝑎
⊤
𝐽 + 𝑏𝐼𝑣⊤𝐽 = 0, 𝑢𝐼𝑐𝑎

⊤
𝐽𝑐 + 𝑏𝐼𝑐𝑣⊤𝐽𝑐 = 0.

More specifically, we have

𝑢𝑖𝑎 𝑗 + 𝑏𝑖𝑣 𝑗 = 0, ∀(𝑖, 𝑗) ∈ (𝐼 × 𝐽) ∪ (𝐼𝑐 × 𝐽𝑐).

Suppose that all entries of 𝑢 and 𝑣 are nonzero. If |𝐼 | ≥ 2 and |𝐽 | ≥ 2, it can
be deduced that 𝑎 𝑗

𝑎𝑙
=
𝑣 𝑗
𝑣𝑙

for any 𝑗 , 𝑙 ∈ 𝐽, and 𝑏𝑖
𝑏𝑘

=
𝑢𝑖
𝑢𝑘

for any 𝑖, 𝑘 ∈ 𝐼. In other
words, 𝑎𝐽 is just a rescaling of 𝑣𝐽 and 𝑏𝐼 is just a rescaling of 𝑢𝐼 . Moreover, 𝑏𝐼
is determined by 𝑎𝐽 because they are linked by the relation 𝑢𝑖𝑎 𝑗 + 𝑏𝑖𝑣 𝑗 = 0.
We can thus let 𝑎𝐽 = 𝐶1 · 𝑣𝐽 , and we have 𝑏𝐼 = −𝐶1 · 𝑢𝐼 . The same thing
applies to the 𝐼𝑐 × 𝐽𝑐 block, and we have 𝑎𝐽𝑐 = 𝐶2 · 𝑣𝐽𝑐 and 𝑏𝐽𝑐 = −𝐶2 · 𝑢𝐼𝑐 .
Thus,

b̃ = 𝑢𝑎⊤ + 𝑏𝑣⊤ =

(
0 (𝐶2 − 𝐶1)𝑢𝐼𝑣⊤𝐽𝑐

(𝐶1 − 𝐶2)𝑢𝐼𝑐𝑣⊤𝐽 0

)
.

The constant 𝐶2 − 𝐶1 can be determined by the normalization constraint
∥b∥𝑙1 = 1. This means that the b that takes this block form is unique. Since
we have already found an explicit form in the proof of Lemma 6.4.6, this is
the unique solution.

When |𝐼 | = 1, we still have 𝑎 𝑗

𝑎𝑙
=

𝑣 𝑗
𝑣𝑙

for any 𝑗 , 𝑙 ∈ 𝐽, and 𝑏𝐼 is still a rescaling
of 𝑢𝐼 because both are scalars. When an entry of 𝑢 or 𝑣 is zero, from the
proof of Lemma 6.4.6, we let the corresponding entry of 𝑏 or 𝑎 be zero, and
the rescaling relation still holds. Thus, the previous conclusion is still valid.

We now look at the block form that we have found, and study the value
of ∥𝑃Ω∗ (b)∥𝑙1 where Ω∗ is the support of 𝐿∗. For simplicity we still assume
Π1 = Π2 = id, and rewrite a vertex candidate b as

b = 𝐶 ·
(

0 𝑢𝐼𝑣
⊤
𝐽𝑐

𝑢𝐼𝑐𝑣
⊤
𝐽

0

)
.

We are interested in the following ratio

∥𝑃Ω∗ (b)∥𝑙1
∥b∥𝑙1

=
∥𝑃Ω∗ (𝑢𝐼𝑣⊤𝐽𝑐 )∥𝑙1 + ∥𝑃Ω∗ (𝑢𝐼𝑐𝑣⊤𝐽 )∥𝑙1

∥𝑢𝐼𝑣⊤𝐽𝑐 ∥𝑙1 + ∥𝑢𝐼𝑐𝑣⊤𝐽 ∥𝑙1
.
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By Assumptions 6.1.1, 𝑢 and 𝑣 are incoherent and Ω∗ is sparse. We look at
what this implies for the mass distribution of 𝑢𝐼𝑣⊤𝐽𝑐 , 𝑢𝐼𝑐𝑣

⊤
𝐽

, and their projec-
tion onto the support set Ω∗.

Let us look at 𝑢 as an example. Since 𝑢 is incoherent, |𝑢𝑖 | ≤ `√
𝑚

for each 𝑖. On
the other hand, ∥𝑢∥2 = 1, i.e.,

∑
𝑖 |𝑢𝑖 |2 = 1. Therefore, we know that there are

at least 𝑚

`2 nonzero entries in 𝑢, and ∥𝑢∥1 ≥
√
𝑚

`
.

For any index division 𝐼 ∪ 𝐼𝑐, either there are many nonzeros in 𝐼, or there
are many in 𝐼𝑐. For any 𝛾 ≤ 1

2 , either
∑
𝑖∈𝐼 |𝑢𝑖 | ≥ 𝛾

√
𝑚

`
or

∑
𝑖∈𝐼𝑐 |𝑢𝑖 | ≥ 𝛾

√
𝑚

`
must

be true. The same thing applies to 𝑣 as well. In the following, we discuss
the cases determined by the above criterion, and look into what that implies
for 𝑃Ω∗ (b) and b. We take 𝛾 = 1

3 .

(1) If
∑
𝑖∈𝐼 |𝑢𝑖 | ≥ 𝛾

√
𝑚

`
and

∑
𝑗∈𝐽 |𝑣𝑖 | ≥ 𝛾

√
𝑛

`
:

In this case, 𝑢 has large mass in 𝐼 and 𝑣 has large mass in 𝐽. Consider
the upper-right block 𝑢𝐼𝑣⊤𝐽𝑐 in b. For the 𝑗th column in this block,

∥b𝐼, 𝑗 ∥𝑙1 =
∑︁
𝑖∈𝐼
|𝑢𝑖𝑣 𝑗 | ≥ 𝛾

√
𝑚

`
|𝑣 𝑗 |.

On the other hand, since Ω∗ is sparse, Ω∗ takes up at most 𝑝𝑚 entries in
this column. In each entry, |𝑢𝑖 | is upper bounded by `√

𝑚
due to incoher-

ence. Thus

∥𝑃Ω∗ (b𝐼, 𝑗 )∥𝑙1 =
∑︁

𝑖∈𝐼: (𝑖, 𝑗)∈Ω∗
|𝑢𝑖𝑣 𝑗 | ≤ 𝑝𝑚

`
√
𝑚
|𝑣 𝑗 | = 𝑝`

√
𝑚 |𝑣 𝑗 |.

Therefore,

∥𝑃Ω∗ (b𝐼, 𝑗 )∥𝑙1
∥b𝐼, 𝑗 ∥𝑙1

≤
𝑝`
√
𝑚 |𝑣 𝑗 |

𝛾
√
𝑚

`
|𝑣 𝑗 |

=
𝑝`2

𝛾
.

Since this applies to every column, for the whole upper-right block, we
have

∥𝑃Ω∗ (𝑢𝐼𝑣⊤𝐽𝑐 )∥𝑙1
∥𝑢𝐼𝑣⊤𝐽𝑐 ∥𝑙1

≤ 𝑝`2

𝛾
.

For the lower-left block, we can derive the same bound by looking at
each row and using the fact that 𝑣 has large mass in 𝐽. This gives

∥𝑃Ω∗ (𝑢𝐼𝑐𝑣⊤𝐽 )∥𝑙1
∥𝑢𝐼𝑐𝑣⊤𝐽 ∥𝑙1

≤ 𝑝`2

𝛾
.
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Therefore,

∥𝑃Ω∗ (b)∥𝑙1
∥b∥𝑙1

≤ 𝑝`2

𝛾
≤ 1

12
<

1
3
.

(2) If
∑
𝑖∈𝐼 |𝑢𝑖 | ≥ 𝛾

√
𝑚

`
and

∑
𝑖∈𝐼𝑐 |𝑢𝑖 | ≥ 𝛾

√
𝑚

`
, while

∑
𝑗∈𝐽 |𝑣𝑖 | < 𝛾

√
𝑛

`
:

In this case, we must have
∑
𝑗∈𝐽𝑐 |𝑣𝑖 | ≥ 𝛾

√
𝑛

`
. Therefore this case can be

proved in the same way as case (1), except that for the upper-right block
we calculate by row and for the lower-left block we calculate by column.

(3) If
∑
𝑖∈𝐼𝑐 |𝑢𝑖 | < 𝛾

√
𝑚

`
, and

∑
𝑗∈𝐽 |𝑣𝑖 | < 𝛾

√
𝑛

`
:

In this case, 𝑢 has very large mass in 𝐼 and 𝑣 has very large mass in
𝐽𝑐. This means that the upper-right block 𝑢𝐼𝑣⊤𝐽𝑐 has very large mass and
dominates over the lower-left block 𝑢𝐼𝑐𝑣⊤𝐽 . For the upper-right block, we
use the same technique as case (1) to derive that

∥𝑃Ω∗ (𝑢𝐼𝑣⊤𝐽𝑐 )∥𝑙1
∥𝑢𝐼𝑣⊤𝐽𝑐 ∥𝑙1

≤ 𝑝`2

𝛾
.

For the lower-left block, we now show that its mass is so small that it
does not tweak the ratio too much. More specifically,

∥𝑢𝐼𝑐𝑣⊤𝐽 ∥𝑙1 =
(∑︁
𝐼𝑐

|𝑢𝑖 |
) (∑︁

𝐽

|𝑣 𝑗 |
)
≤ 𝛾
√
𝑚

`
· 𝛾
√
𝑛

`
= 𝛾2
√
𝑚𝑛

`2 .

On the other hand,

∥𝑢𝐼𝑣⊤𝐽𝑐 ∥𝑙1 =
(∑︁
𝐼

|𝑢𝑖 |
) (∑︁

𝐽𝑐

|𝑣 𝑗 |
)
≥ (1 − 𝛾)

√
𝑚

`
· (1 − 𝛾)

√
𝑛

`
= (1 − 𝛾)2

√
𝑚𝑛

`2 .

Therefore, we have

∥𝑃Ω∗ (b)∥𝑙1
∥b∥𝑙1

=
∥𝑃Ω∗ (𝑢𝐼𝑣⊤𝐽𝑐 )∥𝑙1 + ∥𝑃Ω∗ (𝑢𝐼𝑐𝑣⊤𝐽 )∥𝑙1

∥𝑢𝐼𝑣⊤𝐽𝑐 ∥𝑙1 + ∥𝑢𝐼𝑐𝑣⊤𝐽 ∥𝑙1
≤
∥𝑃Ω∗ (𝑢𝐼𝑣⊤𝐽𝑐 )∥𝑙1 + ∥𝑢𝐼𝑐𝑣⊤𝐽 ∥𝑙1

∥𝑢𝐼𝑣⊤𝐽𝑐 ∥𝑙1

≤ 𝑝`2

𝛾
+ 𝛾2

(1 − 𝛾)2
≤ 1

12
+ 1/9

4/9 =
1
3
.

(4) If
∑
𝑖∈𝐼 |𝑢𝑖 | < 𝛾

√
𝑚

`
, while

∑
𝑗∈𝐽 |𝑣𝑖 | ≥ 𝛾

√
𝑛

`
and

∑
𝑗∈𝐽𝑐 |𝑣𝑖 | ≥ 𝛾

√
𝑛

`
:

This case is the same as case (2).

(5) If
∑
𝑖∈𝐼 |𝑢𝑖 | < 𝛾

√
𝑚

`
, and

∑
𝑗∈𝐽𝑐 |𝑣𝑖 | < 𝛾

√
𝑛

`
:

This case is the same as case (3), except that now the lower-left block
𝑢𝐼𝑐𝑣

⊤
𝐽

has very large mass and the upper-right block has small mass.
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(6) If
∑
𝑖∈𝐼 |𝑢𝑖 | < 𝛾

√
𝑚

`
and

∑
𝑗∈𝐽 |𝑣𝑖 | < 𝛾

√
𝑛

`
:

This case is the same as case (2).

To conclude, for all b ∈ 𝑇𝐿∗ , we have
∥𝑃Ω (b)∥𝑙1
∥b∥𝑙1

≤ 1
3 . □

Proof of Theorem 6.4.1

We are now ready to prove the local optimality of 𝐿∗ on the manifoldM𝑟 .

Proof of Theorem 6.4.1. For any rank-r matrix 𝐿,

𝑓 (𝐿) − 𝑓 (𝐿∗) = ∥𝑀 − 𝐿∥𝑙1 − ∥𝑀 − 𝐿∗∥𝑙1
= ∥𝑆∗ + 𝐿∗ − 𝐿∥𝑙1 − ∥𝑆∗∥𝑙1 .

Recall that the support of 𝑆∗ is Ω∗, which is 𝑝-sparse. Separating the entries
in Ω∗ and (Ω∗)𝑐, we have

∥𝑆∗ + 𝐿∗ − 𝐿∥𝑙1 − ∥𝑆∗∥𝑙1
=∥𝑃Ω∗ (𝑆∗ + 𝐿∗ − 𝐿)∥𝑙1 + ∥𝑃(Ω∗)𝑐 (𝑆∗ + 𝐿∗ − 𝐿)∥𝑙1 − ∥𝑆∗∥𝑙1
≥ − ∥𝑃Ω∗ ((𝑆∗ + 𝐿∗ − 𝐿) − 𝑆∗)∥𝑙1 + ∥𝑃(Ω∗)𝑐 (𝑆∗ + 𝐿∗ − 𝐿)∥𝑙1
= − ∥𝑃Ω∗ (𝐿∗ − 𝐿)∥𝑙1 + ∥𝑃(Ω∗)𝑐 (𝐿∗ − 𝐿)∥𝑙1 .

It remains the show that ∥𝑃(Ω∗)𝑐 (𝐿∗−𝐿)∥𝑙1 is consistently larger than ∥𝑃Ω∗ (𝐿∗−
𝐿)∥𝑙1 . This is intuitively correct because Ω∗ is much sparser than (Ω∗)𝑐 when
𝑝 is small. To show this, let b = 𝑃𝑇𝐿∗ (𝐿 − 𝐿∗) be the tangent space projection
of 𝐿 − 𝐿∗. Then

∥𝑃Ω∗ (𝐿∗ − 𝐿)∥𝑙1
∥𝑃Ω∗ (𝐿∗ − 𝐿)∥𝑙1 + ∥𝑃(Ω∗)𝑐 (𝐿∗ − 𝐿)∥𝑙1

=
∥𝑃Ω∗ (𝐿∗ − 𝐿)∥𝑙1
∥𝐿 − 𝐿∗∥𝑙1

≤
∥𝑃Ω∗ (b)∥ + ∥(𝐿 − 𝐿∗) − b∥𝑙1
∥b∥𝑙1 − ∥(𝐿 − 𝐿∗) − b∥𝑙1

.

(6.7)

We now show ∥(𝐿 − 𝐿∗) − b∥𝑙1 is sufficiently small when 𝐿 is sufficiently
close to 𝐿∗. Specifically, for arbitrary 𝐿, we have

∥(𝐿 − 𝐿∗) − b∥𝑙1 = ∥(𝐿 − 𝐿∗) − 𝑃𝑇𝐿∗ (𝐿 − 𝐿∗)∥𝑙1
= ∥𝐿 − 𝑃𝑇𝐿∗ (𝐿)∥𝑙1
= ∥𝑃⊥𝑇𝐿∗ (𝐿)∥𝑙1
≤
√
𝑚𝑛∥𝑃⊥𝑇𝐿∗ (𝐿)∥𝐹

≤
√
𝑚𝑛∥𝑃𝑈𝐿

− 𝑃𝑈𝐿∗ ∥2 · ∥𝑃𝑉𝐿 − 𝑃𝑉𝐿∗ ∥2 · ∥𝐿∥𝐹 .

(6.8)
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It is known [126] that for any unitary invariant norm (including operator 2-
norm and Frobenius norm), the following SVD perturbation bound holds:

∥𝑃𝑈𝐿
− 𝑃𝑈𝐿∗ ∥

2 + ∥𝑃𝑉𝐿 − 𝑃𝑉𝐿∗ ∥
2 ≤ 2

𝛿2 ∥𝐿 − 𝐿∗∥
2, where 𝛿 = min{𝜎𝑟 (𝐿∗), 𝜎𝑟 (𝐿)}.

(6.9)

Note that in both cases (with or without Condition 6.1.3), we always have
∥𝐿 − 𝐿∗∥2 ≤ 𝜎𝑟

2 . This is because in the first case without Condition 6.1.3,

given ∥𝐿 − 𝐿∗∥𝑙1 ≤
𝜎2
𝑟

120𝑟𝜎1
√
𝑚𝑛

, we have

∥𝐿 − 𝐿∗∥2 ≤ ∥𝐿 − 𝐿∗∥𝐹 ≤ ∥𝐿 − 𝐿∗∥𝑙1 ≤
𝜎𝑟

2
· 𝜎𝑟

60𝑟𝜎1
√
𝑚𝑛

<
𝜎𝑟

2
.

Since ∥𝐿 − 𝐿∗∥2 ≤ 𝜎𝑟
2 , we have 𝛿 = min{𝜎𝑟 (𝐿∗), 𝜎𝑟 (𝐿)} ≥ 𝜎𝑟 (𝐿∗)

2 . Thus

∥𝑃𝑈𝐿
− 𝑃𝑈𝐿∗ ∥

2 + ∥𝑃𝑉𝐿 − 𝑃𝑉𝐿∗ ∥
2 ≤ 8

𝜎2
𝑟

∥𝐿 − 𝐿∗∥2.

Using the Frobenius norm and plugging the above into (6.7), we have

∥(𝐿 − 𝐿∗) − b∥𝑙1 ≤
8
√
𝑚𝑛

𝜎2
𝑟

∥𝐿 − 𝐿∗∥2𝐹 ∥𝐿∥𝐹 . (6.10)

Since ∥𝐿∥𝐹 ≤ ∥𝐿∗∥𝐹 + 𝑟 𝜎𝑟2 ≤
3
2𝑟𝜎1, and ∥𝐿 − 𝐿∗∥𝐹 ≤ ∥𝐿 − 𝐿∗∥𝑙1 , we have

∥(𝐿 − 𝐿∗) − b∥𝑙1 ≤
12𝑟𝜎1

√
𝑚𝑛

𝜎2
𝑟

∥𝐿 − 𝐿∗∥2𝑙1 . (6.11)

Thus, in the first case, if ∥𝐿 − 𝐿∗∥𝑙1 <
𝜎2
𝑟

120𝑟𝜎1
√
𝑚𝑛

, we then have

∥(𝐿 − 𝐿∗) − b∥𝑙1 <
12𝑟𝜎1

√
𝑚𝑛

𝜎2
𝑟

· 𝜎2
𝑟

120𝑟𝜎1
√
𝑚𝑛
∥𝐿 − 𝐿∗∥𝑙1

≤ 1
10
∥𝐿 − 𝐿∗∥𝑙1

≤ 1
10

(
∥(𝐿 − 𝐿∗) − b∥𝑙1 + ∥b∥𝑙1

)
.

This implies

∥(𝐿 − 𝐿∗) − b∥𝑙1 <
1
9
∥b∥𝑙1 .

By Lemma 6.4.7,
∥𝑃Ω (b)∥𝑙1
∥b∥𝑙1

≤ 1
3 . Plugging both of them into (6.7), we have

∥𝑃Ω∗ (𝐿∗ − 𝐿)∥𝑙1
∥𝑃Ω∗ (𝐿∗ − 𝐿)∥𝑙1 + ∥𝑃(Ω∗)𝑐 (𝐿∗ − 𝐿)∥𝑙1

<
1/3 + 1/9
1 − 1/9 =

1
2
.
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Thus, ∥𝑃Ω∗ (𝐿∗ − 𝐿)∥𝑙1 < ∥𝑃(Ω∗)𝑐 (𝐿∗ − 𝐿)∥𝑙1 , which implies 𝑓 (𝐿) − 𝑓 (𝐿∗) > 0.

When Condition 6.1.3 holds, i.e., when [(𝐿 − 𝐿∗) =
∥𝐿−𝐿∗∥𝑙1
∥𝐿−𝐿∗∥𝐹 ≥ 𝑐

√
𝑚𝑛, we can

deduce from (6.10) that

∥(𝐿 − 𝐿∗) − b∥𝑙1 ≤
12𝑟𝜎1

√
𝑚𝑛

𝜎2
𝑟

1
𝑐2𝑚𝑛

∥𝐿 − 𝐿∗∥2𝑙1 =
12𝑟𝜎1

𝑐2𝜎2
𝑟

√
𝑚𝑛
∥𝐿 − 𝐿∗∥2𝑙1 .

In this case, we only need ∥𝐿 − 𝐿∗∥𝑙1 <
𝑐2𝜎2

𝑟

√
𝑚𝑛

120𝑟𝜎1
to obtain the same result.

This proves the theorem. □

6.5 Linear convergence of the subgradient method

Having established the local optimality of 𝐿∗ on the manifold M𝑟 , in this
section, we establish the linear convergence rate of the Riemannian subgra-
dient algorithm (6.2) toward 𝐿∗. The main theorem is as follows. Note that
this result holds for all 𝑟 and is not restricted to 𝑟 = 1.

Theorem 6.5.1 (Linear convergence). Let 𝐿0 be the spectral initialization gen-
erated by Algorithm 2. Let {𝐿𝑘 }𝑘=0 be the sequence generated by the Riemannian
subgradient algorithm (6.2) with stepsize 𝛼𝑘 = 𝛼0 · 𝛽𝑘 , where 𝛼0 and 𝛽 < 1 are
small enough positive constants. Assume that 𝐿∗ is the local minima of (6.1). Let
Condition 6.1.3 hold for all 𝑘 ≥ 0. Assume further that

𝑝 ≤ 𝑐2𝜎2
𝑟

1344`𝑟3𝜎2
1

.

Then {𝐿𝑘 }𝑘=0 converges linearly to 𝐿∗, i.e., there exists 𝐶, 𝑐 > 0 such that ∥𝐿𝑘 −
𝐿∗∥𝑙1 ≤ 𝐶𝑒−𝑐𝑘 for large enough 𝑘 .

The proof of Theorem 6.5.1 is deferred to the end of this section. The ma-
jor tool of the proof is the following lemma which establishes that sharpness
and weak convexity imply the linear convergence rate of subgradient meth-
ods.

Lemma 6.5.2 ([45, Theorem 5.1]). Assume 𝑓 (𝑥) : M → R is 𝐿-Lipschitz with
respect to a norm ∥ · ∥. Let 𝑥 be the local minimizer of 𝑓 (𝑥) in a subset of the
manifold B ⊆ M. If 𝑓 (𝑥) satisfies the following two conditions:

• (Sharpness) For any 𝑥 ∈ B,

𝑓 (𝑥) − 𝑓 (𝑥) ≥ 𝜔 · ∥𝑥 − 𝑥∥. (S)
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• (Weak Convexity) For any 𝑥, 𝑦 ∈ B,

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨𝜕 𝑓 (𝑥), 𝑦 − 𝑥⟩ − 𝜌
2
∥𝑦 − 𝑥∥2. (C)

Let the stepsize in Algorithm 1 be 𝛼𝑘 = _ · 𝑞𝑘 , where _ =
𝛾𝜔2

𝜌𝐿
, 𝑞 =

√︁
1 − (1 − 𝛾)𝜏2,

where 𝜏 = 𝜔
𝐿

, and 𝛾 ∈ (0, 1) is a fixed constant. Then we have

∥𝑧𝑘 − 𝑥∥2 ≤
𝛾2𝜔2

𝜌2

(
1 − (1 − 𝛾)𝜏2

) 𝑘
.

The constants 𝜔 in (S) and 𝜌 in (C) are called the sharpness and weak convexity
constants.

The constants 𝜔 and 𝜌 can be interpreted as follows. A larger sharpness
parameter 𝜔 implies that the function is “sharper”, and the convergence is
faster. In the convergence rate result, we have (1 − (1 − 𝛾)𝜏2), where 𝜏 = 𝜔

𝐿
.

Thus a larger 𝜔 allows us to let the stepsize decay more aggressively, which
gives us faster convergence rate. On the other hand, a smaller weak convex-
ity parameter 𝜌 implies that the function is “more convex”, and the linear
convergence rate is guaranteed in a larger local region. This is because the
previous convergence rate only holds in a region 𝑇𝛾 := {𝑥 ∈ B ⊆ M :
∥𝑥 − 𝑥∥ ≤ 𝛾𝜔

𝜌
} for some 𝛾 ∈ (0, 1). A smaller 𝜌 allows for a larger 𝑇𝛾. In fact,

when 𝜌 = 0, 𝑓 is globally convex, and we have global convergence.

We also note that there are other types of stepsize schemes which also give
linear convergence, such as the Polyak step size or the constant step length
[45]. The geometric step size that we use is the most popular and suffices
for our purpose.

Lemma 6.5.3. The sharpness condition (S) is satisfied in the local region near 𝐿∗
onM𝑟 . More specifically,

1) For all 𝐿 ∈ M𝑟 such that ∥𝐿 − 𝐿∗∥𝑙1 ≤
𝜎2
𝑟

168𝑟𝜎1
√
𝑚𝑛

and ∥𝐿 − 𝐿∗∥2 ≤ 𝜎𝑟
2 , the

sharpness condition is satisfied with the ∥ · ∥𝑙1 norm and 𝜔 = 1
9 ;

2) Furthermore, if Condition 6.1.3 is satisfied, then for all 𝐿 ∈ M𝑟 such that
∥𝐿−𝐿∗∥𝑙1 ≤

𝑐2𝜎2
𝑟

√
𝑚𝑛

168𝑟𝜎1
and ∥𝐿−𝐿∗∥2 ≤ 𝜎𝑟

2 , the sharpness condition is satisfied
with 𝜔 = 1

9 .



160

Proof. We have shown with (6.11) in the proof of Theorem 6.4.1 that when
∥𝐿 − 𝐿∗∥2 ≤ 𝜎𝑟

2 , we have

∥(𝐿 − 𝐿∗) − b∥𝑙1 ≤
12𝑟𝜎1

√
𝑚𝑛

𝜎2
𝑟

∥𝐿 − 𝐿∗∥2𝑙1 .

Thus, if ∥𝐿−𝐿∗∥𝑙1 ≤
𝜎2
𝑟

168𝑟𝜎1
√
𝑚𝑛

, similar to the proof of Theorem 6.4.1, we have

∥(𝐿 − 𝐿∗) − b∥𝑙1 <
12𝑟𝜎1

√
𝑚𝑛

𝜎2
𝑟

· 𝜎2
𝑟

168𝑟𝜎1
√
𝑚𝑛
∥𝐿 − 𝐿∗∥𝑙1 ≤

1
14

(
∥(𝐿 − 𝐿∗) − b∥𝑙1 + ∥b∥𝑙1

)
.

This implies

∥(𝐿 − 𝐿∗) − b∥𝑙1 ≤
1

13
∥b∥𝑙1 ,

which further gives us

∥𝑃Ω∗ (𝐿∗ − 𝐿)∥𝑙1
∥𝐿∗ − 𝐿∥𝑙1

=
∥𝑃Ω∗ (𝐿∗ − 𝐿)∥𝑙1

∥𝑃Ω∗ (𝐿∗ − 𝐿)∥𝑙1 + ∥𝑃(Ω∗)𝑐 (𝐿∗ − 𝐿)∥𝑙1
≤ 1/3 + 1/13

1 − 1/13
=

4
9
.

Thus,

𝑓 (𝐿) − 𝑓 (𝐿∗) ≥ −∥𝑃Ω∗ (𝐿∗ − 𝐿)∥𝑙1 + ∥𝑃(Ω∗)𝑐 (𝐿∗ − 𝐿)∥𝑙1 ≥
1
9
∥𝐿 − 𝐿∗∥𝑙1 .

In other words, (S) is satisfied with 𝜔 = 1
9 . The case with Condition 6.1.3 can

be proved similarly. □

Lemma 6.5.4. The weak convexity (C) is satisfied in the local region near 𝐿∗ on
M𝑟 . Specifically, for all 𝐿 ∈ M𝑟 such that ∥𝐿 − 𝐿∗∥2 ≤ 𝜎𝑟

2 , f(L) satisfies weak
convexity (C) with constant 𝜌 =

12𝑟𝜎1
√
𝑚𝑛

𝜎2
𝑟

. Furthermore, under Condition 6.1.3,

this can be improved to 𝜌 =
12𝑟𝜎1

𝑐2𝜎2
𝑟

√
𝑚𝑛

.

Proof. Consider 𝑋 , 𝑌 ∈ M𝑟 . We have

𝑓 (𝑋) − 𝑓 (𝑌 ) − ⟨𝜕𝑅 𝑓 (𝑌 ), 𝑋 − 𝑌⟩
=∥𝑀 − 𝑋 ∥𝑙1 − ∥𝑀 − 𝑌 ∥𝑙1 − ⟨𝑃𝑇𝑌 (𝜕 𝑓 (𝑌 )) , 𝑋 − 𝑌⟩
=∥𝑀 − 𝑋 ∥𝑙1 − ∥𝑀 − 𝑌 ∥𝑙1 − ⟨𝜕 𝑓 (𝑌 ), 𝑋 − 𝑌⟩ + ⟨𝑃⊥𝑇𝑌 (𝜕 𝑓 (𝑌 )) , 𝑋 − 𝑌⟩.

The first part ∥𝑀 − 𝑋 ∥𝑙1 − ∥𝑀 − 𝑌 ∥𝑙1 − ⟨𝜕 𝑓 (𝑌 ), 𝑋 − 𝑌⟩ ≥ 0 because ∥ · ∥𝑙1 is
convex in the ambient space. Now consider the second part which is the
term ⟨𝑃⊥

𝑇𝑌
(𝜕 𝑓 (𝑌 )) , 𝑋 − 𝑌⟩. We have

⟨𝑃⊥𝑇𝑌 (𝜕 𝑓 (𝑌 )) , 𝑋 − 𝑌⟩ = ⟨𝜕 𝑓 (𝑌 ), 𝑃
⊥
𝑇𝑌
(𝑋 − 𝑌 )⟩ ≥ − ∥𝜕 𝑓 (𝑌 )∥𝑙∞ · ∥𝑃⊥𝑇𝑌 (𝑋 − 𝑌 )∥𝑙1 .
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It is easy to see that

∥𝜕 𝑓 (𝑌 )∥𝑙∞ = ∥s̃ign(𝑌 − 𝑀)∥𝑙∞ ≤ 1.

Thus, we have

𝑓 (𝑋) − 𝑓 (𝑌 ) − ⟨𝜕𝑅 𝑓 (𝑌 ), 𝑋 − 𝑌⟩ ≥ −∥𝑃⊥𝑇𝑌 (𝑋 − 𝑌 )∥𝑙1 .

To establish the weak convexity condition, it now suffices to compare ∥𝑃⊥
𝑇𝑌
(𝑋−

𝑌 )∥𝑙1 with ∥𝑋 −𝑌 ∥2
𝑙1

. Similar to the proof of (6.11), for any 𝑋 , 𝑌 in the region
{𝐿 ∈ M𝑟 : ∥𝐿 − 𝐿∗∥ ≤ 𝜎𝑟

2 },

∥𝑃⊥𝑇𝑌 (𝑋 − 𝑌 )∥𝑙1 ≤
12𝑟𝜎1

√
𝑚𝑛

𝜎2
𝑟

∥𝑋 − 𝑌 ∥2𝑙1 .

Therefore, (C) is satisfied with

𝜌 =
12𝑟𝜎1

√
𝑚𝑛

𝜎2
𝑟

.

When Condition 6.1.3, is satisfied, we have

∥𝑃⊥𝑇𝑌 (𝑋 − 𝑌 )∥𝑙1 ≤
12𝑟𝜎1

𝑐2𝜎2
𝑟

√
𝑚𝑛
∥𝑋 − 𝑌 ∥2𝑙1 .

This gives

𝜌 =
12𝑟𝜎1

𝑐2𝜎2
𝑟

√
𝑚𝑛

,

which is a smaller weak convexity constant. □

Theorem 6.5.5 (Local linear convergence). In the local neighborhood {𝐿 ∈ M𝑟 :
∥𝐿 − 𝐿∗∥𝑙1 ≤

𝜎2
𝑟

168𝑟𝜎1
√
𝑚𝑛
}, we have that 𝐿𝑘 converges linearly to 𝐿∗. If Condition

6.1.3 is satisfied, the local neighborhood can be extended to {𝐿 ∈ M𝑟 : ∥𝐿−𝐿∗∥𝑙1 ≤
𝑐2𝜎2

𝑟

√
𝑚𝑛

168𝑟𝜎1
, ∥𝐿 − 𝐿∗∥2 ≤ 𝜎𝑟

2 }.

Proof. This is a direct consequence of Lemma 6.5.3, Lemma 6.5.4, and Lemma
6.5.2. □

The question remains as to whether the initialization is in the local region
required in Theorem 6.5.5. When it comes to the initialization, we first have
the following lemma characterizing the distance between the initial point
and the ground truth.
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Lemma 6.5.6 ([131, Theorem 1]). Under Assumptions 6.1.1, the initialization
𝐿0 is close to 𝐿∗ in the spectral norm. Specifically,

∥𝐿0 − 𝐿∗∥2 ≤ 8𝑝`𝑟 · 𝜎1.

We are now ready to prove Theorem 6.5.1, which is the linear convergence
of Algorithm 1 with the initialization as in Algorithm 2

Proof of Theorem 6.5.1. To prove the linear convergence of the Riemannian
subgradient using the spectral initialization, it remains to show that under
the assumptions of Theorem 6.5.1, the spectral initialization 𝐿0 is in the lo-
cal neighborhood of Theorem 6.5.5, and remains in there along the whole
trajectory.

We first show that the spectral initialization 𝐿0 is in the desired local neigh-
borhood. Since 𝑝 ≤ 𝑐2𝜎2

𝑟

1344`𝑟3𝜎2
1
, we have

∥𝐿0 − 𝐿∗∥𝑙1 ≤
√
𝑚𝑛∥𝐿0 − 𝐿∗∥𝐹 ≤ 𝑟

√
𝑚𝑛∥𝐿0 − 𝐿∗∥2

≤ 𝑟
√
𝑚𝑛 · 8𝑝`𝑟𝜎1

≤ 8`𝑟2𝜎1
√
𝑚𝑛 · 𝑐2𝜎2

𝑟

1344`𝑟3𝜎2
1

≤ 𝑐
2𝜎2

𝑟

√
𝑚𝑛

168𝑟𝜎1
.

We also have

∥𝐿0 − 𝐿∗∥2 ≤ 8𝑝`𝑟𝜎1 ≤ 8`𝑟𝜎1 ·
𝑐2𝜎2

𝑟

1344`𝑟3𝜎2
1

=
𝑐2𝜎2

𝑟

168𝑟2𝜎1
<
𝜎𝑟

2
.

Thus 𝐿0 is in the local neighborhood {𝐿 ∈ M𝑟 : ∥𝐿 − 𝐿∗∥𝑙1 ≤
𝑐2𝜎2

𝑟

√
𝑚𝑛

168𝑟𝜎1
, ∥𝐿 −

𝐿∗∥2 ≤ 𝜎𝑟
2 }.

Next, we prove that the whole trajectory {𝐿𝑘 }𝑘=0 is in this neighborhood as
well. From the proof of [45, Theorem 5.1], iteratively, the sequence satisfies
∥𝐿𝑘−𝐿∗∥2𝑙1 ≤

𝛾2𝜔2

𝜌2

(
1 − (1 − 𝛾)𝜏2) 𝑘 , which is bounded by 𝛾2𝜔2

𝜌2 . In other words,

if 𝐿𝑘 , 𝑘 = 0, 1, . . . , 𝐾 is in the local neighborhood, then ∥𝐿𝑘 − 𝐿∗∥2𝑙1 ≤
𝛾2𝜔2

𝜌2

for 0 ≤ 𝑘 ≤ 𝐾 . Here 𝜔 and 𝜌 are sharpness and weak convexity constants.
When Condition 6.1.3 is satisfied, we have 𝜔 = 1

9 and 𝜌 =
12𝑟𝜎1

𝑐2𝜎2
𝑟

√
𝑚𝑛

. Thus,

𝛾𝜔

𝜌
= 𝛾 · 𝑐

2𝜎2
𝑟

√
𝑚𝑛

108𝑟𝜎1
.
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With a small enough constant 𝛾, we have ∥𝐿𝑘 − 𝐿∗∥𝑙1 ≤
𝛾𝜔

𝜌
≤ 𝑐2𝜎2

𝑟

√
𝑚𝑛

168𝑟𝜎1
. In

addition, using Condition 6.1.3, we have

∥𝐿𝑘 − 𝐿∗∥2 ≤ ∥𝐿𝑘 − 𝐿∗∥𝐹 ≤
1

𝑐
√
𝑚𝑛
∥𝐿𝑘 − 𝐿∗∥𝑙1 ≤

𝛾𝜔

𝑐𝜌
√
𝑚𝑛

= 𝛾 · 𝑐
2𝜎2

𝑟

108𝑟𝜎1
.

With a small enough 𝛾 that only depends on 𝑐, 𝜎1, 𝜎𝑟 and 𝑟, one can have
∥𝐿𝑘 − 𝐿∗∥2 ≤ 𝜎𝑟

2 . Combined with the bound on ∥𝐿𝑘 − 𝐿∗∥𝑙1 , 𝐿𝑘 is in the
local neighborhood. Using Theorem 6.5.5, we have linear convergence of
Riemannian subgradient along the whole trajectory. □

6.6 Discussion

In this chapter, we have discussed the RPCA problem as an application of
the low-rank matrix manifoldM𝑟 . We solved the RPCA problem by mini-
mizing the 𝑙1 loss function 𝑓 (𝐿) = ∥𝑀−𝐿∥𝑙1 over 𝐿 ∈ M𝑟 , and used Rieman-
nian subgradient descent method since 𝑓 (𝐿) is a nonsmooth function with
well-defined subgradient. We investigated the incoherence property of the
tangent space of the manifold near the ground truth 𝐿∗, and used incoher-
ence to show that 𝐿∗ is a local minimizer of 𝑓 (𝐿) when the rank 𝑟 = 1. We
then looked at the convergence rate of the Riemannian subgradient algo-
rithm, and showed that under certain assumptions, Riemannian subgradi-
ent converges to the ground truth in a linear convergence rate. In particular,
under a mild condition, the spectral initialization suffices to guarantee lin-
ear convergence of the algorithm.

Our work differs from other works in the literature in that we are the first
to use Riemannian subgradient for the 𝑙1 loss function onM𝑟 . This demon-
strates the flexibility of the low-rank matrix manifoldM𝑟 for different low-
rank recovery problems outside of the framework in Chapter 5. Our analy-
sis of the Conditions (S) and (C) for the linear convergence of Riemannian
subgradient algorithms could potentially be extended to other problems on
the manifold.

Although the local optimality result is restricted to 𝑟 = 1, numerical evi-
dence suggests that this is true for 𝑟 > 1 as well. Analysis of incoherence in
the tangent space is more complicated for rank 𝑟 > 1 since the SVD factors
become nontrivial. Extension of local optimality to 𝑟 > 1 is left for future
work. Another restriction on our results is Condition 6.1.3, which, though
not stringent in practice, is hard to prove in theory. It would be interesting
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to either remove this condition or prove that it holds true with the subgra-
dient algorithm.
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C h a p t e r 7

SOBOLEV GRADIENT DESCENT FOR A CLASS OF
NONLINEAR EIGENPROBLEMS

In this chapter, we consider an application of the convergence guarantee for
manifold first-order algorithms that extends beyond the low-rank matrix
manifold, as it is posed on an infinite dimensional Hilbert manifold. We ex-
plore how the insights gained and tools developed for the low-rank matrix
manifoldM𝑟 can be extended to other manifolds in broader scientific and
technological fields.

Our contribution is that we establish the linear convergence rate of the
Sobolev projected gradient descent (Sobolev PGD) algorithm that has been
observed in numerical experiments [72]. To show this, we propose to use
the Łojasiewicz inequality as a general tool for analyzing the convergence
rate of gradient descent on a Hilbert manifold. Using this tool, we show
that a Sobolev gradient descent method with adaptive inner product con-
verges exponentially fast to the ground state for the Gross-Pitaevskii eigen-
problem. This method can be extended to a class of general high-degree
optimizations or nonlinear eigenproblems under certain conditions. We
demonstrate this generalization using several examples, in particular a non-
linear Schrödinger eigenproblem with an extra high-order interaction term.
Numerical experiments are presented for these problems.

Organization of the chapter. We have given a brief introduction of the
problem setting in Section 1.5. The rest of the chapter is organized as fol-
lows. In Section 7.1, we discuss the background of the problem and com-
parison with related work in more detail. In Section 7.2, we introduce the
Łojasiewicz inequality tool with mixed norms on the Hilbert manifold as
an abstract convergence theorem. In Section 7.3, we establish the main re-
sult about the exponential convergence of the 𝑎𝑢-Sobolev gradient descent
method applied to the Gross-Pitaevskii eigenproblem. Section 7.4 is de-
voted to the analysis of spatial discretization. In Section 7.5, we introduce
several extensions of the Sobolev gradient descent to other nonlinear eigen-
problems. Some numerical results are presented in Section 7.6. Finally, we
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make some concluding remarks in Section 7.7.

7.1 Background

The problem of interest here is the Gross-Pitaevskii eigenproblem, which
seeks _ ∈ R and 𝑣 ∈ 𝐻1

0 (Ω) that satisfy the following equation

−Δ𝑣 +𝑉𝑣 + 𝛽 |𝑣 |2𝑣 = _𝑣 on Ω ⊂ R𝑑 , (7.1)

where Ω is a bounded region in R𝑑 , 𝑉 (𝑥) ≥ 0 is an external trapping poten-
tial, and 𝛽 ≥ 0 is a parameter describing the repulsive interaction between
particles. In physics, this describes the Bose-Einstein condensate when the
temperature is close to absolute zero. The eigenstate 𝑣 corresponding to the
smallest _ describes the ground state of this system. It has long been studied
both in experiments [5] and in numerical analysis [28, 52, 73, 99].

To find the ground state 𝑣 is equivalent to solving the following minimiza-
tion problem:

min
∥𝑢∥

𝐿2=1, 𝑢∈𝐻1
0 (Ω)

𝐸 (𝑢) :=
∫
Ω

(
|∇𝑢 |2 +𝑉 |𝑢 |2 + 𝛽

2
|𝑢 |4

)
d𝑥. (7.2)

The constraint set {𝑢 ∈ 𝐻1
0 (Ω) : ∥𝑢∥𝐿2 = 1} is the unit sphere in 𝐻1

0 (Ω). It can
be seen as an infinite dimensional Hilbert manifold. Such a manifold (with
additional 𝐿∞(Ω) constraints) will be denoted asM in subsequent sections.

In this chapter, we focus on a special manifold gradient descent method
named the Sobolev projected gradient descent (Sobolev PGD), first proposed in
[72]. This method has the following iteration formula:

𝑢𝑛+1 = 𝑅

(
(1 − 𝜏𝑛) 𝑢𝑛 + 𝜏𝑛 ·

(𝑢𝑛, 𝑢𝑛)𝐿2

(G𝑢𝑛𝑢𝑛,G𝑢𝑛𝑢𝑛)𝑎𝑢𝑛
G𝑢𝑛𝑢𝑛

)
. (7.3)

A detailed discussion of Algorithm (7.3) can be found in Section 7.3.

The idea of using a discretized normalized gradient flow (DNGF) to solve
Problem (7.2) can be traced back to [15]. Following this seminal work there
have been a number of variants, see e.g., [42, 43, 54] and the review paper
[14]. The viewpoint of (Riemannian) manifold optimization has also been
explicitly adopted in [43]. Based on those methods with fixed inner prod-
ucts, the adaptive version of 𝑎𝑢-Sobolev gradient descent has recently been
proposed in [72]. Despite its popularity, quantitative convergence analy-
sis of the DNGF family has been quite lacking. The convergence rate has
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been either unavailable, or only proved for the gradient flow [72]. Another
popular choice is the self-consistent field iteration (SCF), see e.g., [27], but
rigorous global convergence rate is also difficult to establish. There are also
second-order methods like the Riemannian Newton method, but they re-
quire second-order information which can be expensive to obtain.

We highlight the main differences between our work and [72]. The authors
of [72] first propose the Sobolev gradient descent method (7.3). They estab-
lish the exponential convergence rate of the time-continuous gradient flow.
But the important question of whether the time-discrete gradient descent also
achieves optimal exponential convergence rate remains open. Our main
contribution is to give a confirmatory answer to this question.

To prove the convergence rate, we introduce the Łojasiewicz inequality tool
to this problem. The Łojasiewicz inequality has been discussed in Section
1.3 where it serves as a fundamental convergence tool for low-rank recovery
on the low-rank matrix manifold. We rewrite it in a slightly different form
in Section 7.2. Using the Łojasiewicz inequality tool, we reveal that the key
to exponential convergence is the quadratic nature of the objective energy
functional. In other words, regarded as a polynomial, the objective func-
tional should behave like a degree-2 polynomial under the given manifold
metric.

Although the degree of polynomial of the objective function in Problem
(7.2) is formally higher than quadratic, Algorithm (7.3) changes the situ-
ation by using an adaptive inner product 𝑎𝑢 (·, ·) instead of a fixed inner
product. As a comparison, using a fixed inner product, the Łojasiewicz ex-
ponent (the \ in Theorem 7.2.1) calculated in [132] is 1/4; while in our work,
using an adaptive inner product, we have \ = 1/2. The latter is more desir-
able according to Theorem 7.2.1. Thus, in Section 7.3, using the Łojasiewicz
inequality tool, we are able to prove the exponential convergence rate of
discrete time gradient descent directly.

The Łojasiewicz inequality tool also makes the Sobolev gradient descent
easily applicable to general optimization of high-degree objective or eigen-
value problems other than the Gross-Pitaevskii eigenvalue problem. Its in-
teresting property of making a high-degree polynomial behave like quadratic
is not specific to a certain problem, but is general. Examples include the bi-
harmonic Schrödinger, the nonlinear Schrödinger with a different order or
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extra interaction terms, and potentially some general manifold optimization
problems.

In addition to the necessary regularity conditions, the only essential re-
quirement is that the global ground state of the nonlinear problem is also
the unique ground state of its linearized version, what we call the “double
ground state” property.1 For Problem (7.1), this property will be rigorously
proved in Section 7.3. For many other problems, it is either provable, or a
reasonable assumption according to numerical evidence.

Specifically, an example of nonlinear Schrödinger eigenproblem from [17]
is rigorously discussed in Section 7.5. This example has an extra high-order
interaction term −𝛿Δ( |𝑣 |2)𝑣 where 𝛿 ≥ 0. Classical methods that work for
(7.1) could become inefficient or unstable for this problem. A density func-
tion reformulation 𝜌 := |𝑢 |2 was proposed in [16], but it has to treat the
lack of continuity of ∇√𝜌 near 0+ with extra regularization. Therefore the
adaptive Sobolev gradient descent is advantageous for its simplicity and
fast convergence.

We remark that if the domain is convex, an alternative approach to derive
local linear convergence rate2 of gradient descent methods is to use strong
convexity (SC). This is especially popular in the finite dimensional data sci-
ence problems [39]. Attempts have also been made to extend it to noncon-
vex settings like manifolds. Some works in this direction can be found in
[1, 29]. We emphasize that our approach using the Łojasiewicz inequality
has its advantages over SC, namely it applies to degenerate critical points
where SC could fail, and it allows more freedom in the choice of iterative al-
gorithms and convergence measures. A more detailed comparison of these
two approaches would be of interest in future research.

7.2 Abstract convergence theorem using the Łojasiewicz inequality

In this section, we introduce the Łojasiewicz inequality tool as an abstract
convergence theorem. We show that one can deduce the convergence of
an iteration algorithm from a triplet of conditions (L), (D), and (S). Further-

1This property is nontrivial. Although an eigenstate of the nonlinear problem is always
an eigenstate of the linearized problem, it is not always the lowest energy eigenstate (i.e.,
ground state) of the linearized problem.

2Both exponential and linear convergence refer to the case where err𝑘 ≤ 𝑐𝑘 · err0 for some
0 < 𝑐 < 1. We sometimes use both terms interchangeably. The term linear convergence is
more popular in the optimization community.
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more, whether the convergence rate is exponential (linear) or polynomial
(sublinear) is determined by the exponent in the (L) inequality.

Theorem 7.2.1. Assume that the domainM is a Hilbert manifold. Let ∥ · ∥𝑋 be a
norm on TM, the tangent bundle ofM, and ∥ · ∥𝑌 be a norm in the ambient space
ofM which is complete. Here ∥ · ∥𝑋 and ∥ · ∥𝑌 can be either same or different. Let
{𝑢𝑛}∞𝑛=0 ⊂ M be a sequence generated by some iterative algorithm. Assume that
𝐸 (𝑢) is differentiable onM and let grad 𝐸 (𝑢) be the manifold gradient of 𝐸 (𝑢). If
𝐸 (𝑢) and {𝑢𝑛}∞𝑛=0 satisfy the following conditions for all 𝑛 ∈ Z+:

• (Łojasiewicz Gradient Inequality) There exists 𝑢∗ that is a cluster point of
{𝑢𝑛}, and there exists 0 < 𝐶𝐿 < +∞, 0 < \ ≤ 1

2 , such that for large enough
𝑛,

|𝐸 (𝑢𝑛) − 𝐸 (𝑢∗) |1−\ ≤ 𝐶𝐿 ∥grad 𝐸 (𝑢𝑛)∥𝑋 ; (L)

• (Descent Inequality) There exists 𝐶𝐷 > 0 such that for large enough 𝑛,

𝐸 (𝑢𝑛) − 𝐸 (𝑢𝑛+1) ≥ 𝐶𝐷 ∥grad 𝐸 (𝑢𝑛)∥𝑋 ∥𝑢𝑛+1 − 𝑢𝑛∥𝑌 ; (D)

• (Step-size Condition) There exists 𝐶𝑆 > 0 such that for large enough 𝑛,

∥𝑢𝑛+1 − 𝑢𝑛∥𝑌 ≥ 𝐶𝑆∥grad 𝐸 (𝑢𝑛)∥𝑋 . (S)

Then 𝑢∗ is the unique limit point of {𝑢𝑛}∞𝑛=0 w.r.t. ∥·∥𝑌 . Moreover, {𝑢𝑛}∞𝑛=0 converge
to 𝑢∗ with the following asymptotic convergence rate:

∥𝑢𝑛 − 𝑢∗∥𝑌 ≲

𝑒−𝑐𝑛, if \ = 1

2 ,

𝑛−
\

1−2\ , if \ ∈ (0, 1
2 ),

where 𝑐 := log (1 − 𝐶𝐷𝐶𝑆

2𝐶2
𝐿

).

Proof. {𝐸 (𝑢𝑛)} is monotonically decreasing from Condition (D). Since 𝑢∗ is a
cluster point of {𝑢𝑛}, 𝐸 (𝑢𝑛) ≥ 𝐸 (𝑢∗) for any 𝑛. We also have lim𝑛→∞ 𝐸 (𝑢𝑛) =
𝐸 (𝑢∗) by continuity of 𝐸 (·). Without loss of generality, assume that 𝐸 (𝑢∗) =
0. By Conditions (D) and (L), we have

∥𝑢𝑛+1 − 𝑢𝑛∥𝑌 ≤
𝐸 (𝑢𝑛) − 𝐸 (𝑢𝑛+1)
𝐶𝐷 ∥grad 𝐸 (𝑢𝑛)∥𝑋

≤ 𝐶𝐿
𝐶𝐷
(𝐸 (𝑢𝑛) − 𝐸 (𝑢𝑛+1))𝐸 (𝑢𝑛)\−1

≤ 𝐶𝐿
𝐶𝐷

∫ 𝐸 (𝑢𝑛)

𝐸 (𝑢𝑛+1)
𝑦\−1 d𝑦 =

𝐶𝐿

\𝐶𝐷
(𝐸 (𝑢𝑛)\ − 𝐸 (𝑢𝑛+1)\).
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Using a bootstrapping argument, we have that for any 𝑚 > 𝑛,

∥𝑢𝑛 − 𝑢𝑚 ∥𝑌 ≤
𝐶𝐿

\𝐶𝐷
(𝐸 (𝑢𝑛)\ − 𝐸 (𝑢𝑚)\) ≤

𝐶𝐿

\𝐶𝐷
𝐸 (𝑢𝑛)\ . (7.4)

Since 𝐸 (𝑢𝑛) is convergent, we deduce that 𝑢𝑛 is convergent, and the limit
point is 𝑢∗.

To estimate the convergence rate, let 𝑟𝑛 :=
∑∞
𝑘=𝑛 ∥𝑢𝑘+1−𝑢𝑘 ∥𝑌 , then ∥𝑢𝑛−𝑢∗∥𝑌 ≤

𝑟𝑛. It suffices to estimate the convergence rate of 𝑟𝑛. By Conditions (L) and
(S), for large enough 𝑛,

|𝐸 (𝑢𝑛) − 𝐸 (𝑢∗) |1−\ ≤ 𝐶𝐿 ∥grad 𝐸 (𝑢𝑛)∥𝑋 ≤
𝐶𝐿

𝐶𝑆
∥𝑢𝑛+1 − 𝑢𝑛∥𝑌 .

Since we have made the assumption that 𝐸 (𝑢∗) = 0, we obtain

𝐸 (𝑢𝑛) ≤
(
𝐶𝐿

𝐶𝑆
∥𝑢𝑛+1 − 𝑢𝑛∥𝑌

) 1
1−\

. (7.5)

Thus, we have

𝑟𝑛 =

∞∑︁
𝑘=𝑛

∥𝑢𝑘+1 − 𝑢𝑘 ∥𝑌 ≤
∞∑︁
𝑘=𝑛

𝐶𝐿

\𝐶𝐷
(𝐸 (𝑢𝑘 )\ − 𝐸 (𝑢𝑘+1)\) =

𝐶𝐿

\𝐶𝐷
𝐸 (𝑢𝑛)\

≤ 𝐶𝐿

\𝐶𝐷

(
𝐶𝐿

𝐶𝑆
∥𝑢𝑛+1 − 𝑢𝑛∥𝑌

) \
1−\

=
𝐶𝐿

\𝐶𝐷

(
𝐶𝐿

𝐶𝑆
(𝑟𝑛 − 𝑟𝑛+1)

) \
1−\

,

where the first inequality is due to (7.4) and the second inequality is due to
(7.5). This gives

𝑟𝑛+1 ≤ 𝑟𝑛 − 𝐶𝑟
1−\
\

𝑛 , 𝐶 := 𝐶−
1
\

𝐿
(\𝐶𝐷)

1−\
\ 𝐶𝑆 .

Note that here 0 < 𝐶 < 1, otherwise the sequence would have converged in
finite steps.

If \ ∈ (0, 1
2 ), let 𝑠𝑛 := 𝑠0𝑛

−𝛾, 𝛾 = \
1−2\ , and 𝑠0 ≥ max{𝑟0, (𝐶/𝛾)−𝛾}. Then

𝑠𝑛+1 = 𝑠𝑛

(
1 + 1

𝑛

)−𝛾
≥ 𝑠𝑛

(
1 − 1

𝑛
· 𝛾

)
= 𝑠𝑛

(
1 − 𝛾𝑠−1/𝛾

0 𝑠
1/𝛾
𝑛

)
≥ 𝑠𝑛 − 𝐶𝑠

𝛾+1
𝛾

𝑛 = 𝑠𝑛 − 𝐶𝑠
1−\
\
𝑛 .

Combining 𝑠0 ≥ 𝑟0, 𝑟𝑛+1 ≤ 𝑟𝑛 − 𝐶𝑟
1−\
\

𝑛 , and 𝑠𝑛+1 ≥ 𝑠𝑛 − 𝐶𝑠
1−\
\
𝑛 , by induction,

𝑟𝑛 ≤ 𝑠𝑛 = 𝑠0𝑛
− \

1−2\ ∀𝑛,

which is polynomial (or sub-linear) convergence.
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If \ = 1
2 , then 𝑟𝑛+1 ≤ (1 − 𝐶)𝑟𝑛, and

𝑟𝑛 ≤ 𝑟0𝑒
𝑐𝑛, 𝑐 := ln(1 − 𝐶),

which is exponential (or linear) convergence. □

The above result can be seen as a generalization of Theorem 2.3 in [118] to
the Hilbert space/manifold. Another work in this direction is [59]. What is
new in our version is that one has the freedom to choose mixed norms (∥ · ∥𝑋
and ∥ · ∥𝑌 ), as long as the conditions (L), (D), and (S) can be satisfied under
these norms. One example is the ∥ · ∥𝑎𝑢 in this chapter, which varies with 𝑢.

The advantage of the Łojasiewicz inequality approach is that instead of
dealing with the time discretization of the gradient flow, it gives the con-
vergence of the gradient descent directly. The triplet of conditions (L), (D),
and (S) in Theorem 7.2.1 all have clear and intuitive meanings. In fact, it
is easier to deduce the convergence property of the gradient flow from that
of the gradient descent, since we only need to take the limit 𝜏 → 0+; while
the reverse direction from gradient flow to gradient descent can be more
difficult.

An important observation is that the exponent \ in Łojasiewicz gradient
inequality indicates the degree of polynomial of the objective function. For ex-
ample, consider 𝑥 ∈ R, let 𝑓 (𝑥) = 𝑥𝑘 for a positive integer 𝑘 , then Łojasiewicz
gradient inequality holds with \ = 1/𝑘 . From this viewpoint, exponential
convergence is closely related to certain quadratic-like behavior of the ob-
jective functional. It is thus unusual for a quartic-quadratic functional 𝐸 (·)
(i.e., a functional which is the sum of nonnegative quartic and quadratic
terms) to have exponential convergence rate. What the Sobolev gradient
does is to force the quartic term to behave like quadratic. This is the idea
behind the proof of Theorem 7.3.9.

7.3 Exponential convergence of Sobolev gradient descent

In this section, we establish the convergence rate of the 𝑎𝑢-Sobolev gradient
descent for Problems (7.1) and (7.2). In Section 7.3, we introduce the set-
ting of manifold optimization and derive the 𝑎𝑢-Sobolev gradient descent
method. In Section 7.3, using the Łojasiewicz inequality tool from the pre-
vious section, we prove the exponential convergence rate by checking con-
ditions (L), (D) and (S) for this specific method.
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Manifold setting and derivation of 𝑎𝑢-Sobolev gradient descent.

The following assumptions on Ω, 𝑉 and 𝛽 will be required throughout this
section.

Assumptions 7.3.1. Let Ω, 𝑉 and 𝛽 be chosen such that the following assump-
tions hold:

• Ω is a bounded domain in R𝑑 , 𝑑 = 1, 2, or 3, and Ω is either convex Lipschitz
or has a smooth boundary;

• 𝑉 ≥ 0 and 𝑉 ∈ 𝐿∞(Ω), 𝑉 is a trapping potential, and 𝛽 ≥ 0.

Remark 7.3.2. 𝑉 is chosen as a trapping potential so that the eigenstates of
interest are localized. It is then natural to impose zero Dirichlet boundary
conditions on 𝜕Ω. Examples of a trapping potential include the well model
in the classical Anderson localization where lim|𝑥 |→∞𝑉 (𝑥) = +∞, and the
fully disordered model with high contrast and small interaction length.

Define the infinite dimensional Hilbert manifoldM as

M := {𝑢 ∈ 𝐻1
0 (Ω) : ∥𝑢∥𝐿2 (Ω) = 1, ∥𝑢∥𝐿∞ (Ω) ≤ 𝑀0 for some global constant 𝑀0}.

ThenM is a submanifold in 𝐻1
0 (Ω) ∩𝐿

∞(Ω). Note that although the original
problem (7.1) allows 𝑣(𝑥) ∈ C, we restrict our search to 𝑢(𝑥) ∈ R, as we will
see that the existence of a real and positive ground state is ensured by The-
orem 7.3.4. We also remark that ∥𝑢∥𝐿∞ (Ω) ≤ 𝑀0 is not directly guaranteed
by the iterative algorithm, but is rather left as an assumption. It is a plausi-
ble assumption because we will see that the ground state 𝑣 is in 𝐿∞(Ω) by
Hölder continuity in Theorem 7.3.4.

For simplicity we drop Ω in norm and inner product notations when there
is no confusion. The tangent space ofM at point 𝑢 ∈ M is defined as

T𝑢M = {b ∈ 𝐻1
0 (Ω) ∩ 𝐿

∞(Ω) : (b, 𝑢)𝐿2 = 0}. (7.6)

We need an inner product in the tangent space, denoted as (·, ·)𝑋 . On the fi-
nite dimensional Riemannian manifold, this is dubbed the Riemannian met-
ric. It can be easily generalized to the infinite dimensional Hilbert manifold.

For 𝑢 ≠ 0, the retraction of 𝑢 ontoM is given by

𝑅(𝑢) = 𝑢/∥𝑢∥𝐿2 .
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Note that the retraction operation itself is independent of the choice of the
inner product (·, ·)𝑋 , but its approximation property is not. When the inner
product (·, ·)𝑋 is introduced, it is usually required that the retraction is at
least first-order, i.e., 𝑅(𝑧 + b) = 𝑧 + 𝑜(∥b∥𝑋) for 𝑧 ∈ M and b ∈ T𝑢M.

Given an inner product (·, ·)𝑋 , let G be its associated Greens operator, i.e.,

(𝑧,G𝑤)𝑋 = (𝑧, 𝑤)𝐿2 , ∀ 𝑧, 𝑤 ∈ 𝑋.

For an arbitrary element b in the ambient space, the projection onto the tangent
space at point 𝑢 ∈ M is given by

𝑃T𝑢M (b) = b −
(b, 𝑢)𝐿2

(G𝑢,G𝑢)𝑋
G𝑢.

Given a differentiable function 𝐸 (𝑢) defined on M, the Sobolev gradient of
𝐸 (𝑢) with respect to the inner product (·, ·)𝑋 is the unique element ∇𝑋𝐸 (𝑢) ∈
𝑋 such that

(∇𝑋𝐸 (𝑢), 𝑤)𝑋 = (∇𝐸 (𝑢), 𝑤)𝐿2 , ∀𝑤 ∈ 𝑋.

The manifold gradient of 𝐸 (𝑢) onM, denoted as grad𝐸 (𝑢), is the projection
of the Sobolev gradient onto the tangent space with respect to the inner
product (·, ·)𝑋 . Thus we have

grad 𝐸 (𝑢) = 𝑃T𝑢M (∇𝑋𝐸 (𝑢)) = ∇𝑋𝐸 (𝑢) −
(∇𝑋𝐸 (𝑢), 𝑢)𝐿2

(G𝑢,G𝑢)𝑋
G𝑢.

It can be inferred from the above expression that grad 𝐸 (𝑢) = 0 implies
∇𝐸 (𝑢) = _𝑢 for some scalar _. If 𝐸 (𝑢) is as in (7.2), then 𝑢 is an eigenstate of
(7.1). This fact is independent of the choice of inner product (·, ·)𝑋 .

The choice of the inner product in the tangent space plays an important role
in the analysis of manifold optimization algorithms as different inner prod-
ucts give different forms of gradient flow and gradient descent algorithms.
Popular choices include 𝐿2, 𝐻1, and the 𝑎0 inner product defined as follows:

(𝑧, 𝑤)𝑎0 :=
∫
Ω

∇𝑧∇𝑤 +𝑉𝑧𝑤, ∀ 𝑧, 𝑤 ∈ T𝑢M, 𝑢 ∈ M .

All the above inner products are fixed everywhere on the manifold. Things
become interesting when the inner product becomes adapted to 𝑢. Specifi-
cally, we are interested in the following inner product

(𝑧, 𝑤)𝑎𝑢 :=
∫
Ω

∇𝑧∇𝑤 +𝑉𝑧𝑤 + 𝛽 |𝑢 |2𝑧𝑤, ∀ 𝑧, 𝑤 ∈ T𝑢M, 𝑢 ∈ M, (7.7)
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and we define

A𝑢 := −Δ +𝑉 + 𝛽 |𝑢 |2, (7.8)

such that (A𝑢𝑧, 𝑤)𝐿2 = (𝑧, 𝑤)𝑎𝑢 for any 𝑧, 𝑤. This new inner product (·, ·)𝑎𝑢
can be seen as the linearization of the Gross-Pitaevskii energy functional. A
desirable property of this inner product is that the Sobolev gradient of 𝐸 (𝑢)
is 𝑢 itself, i.e.,

∇𝑎𝑢𝐸 (𝑢) = 𝑢. (7.9)

This inner product has the associated Greens operator G𝑢 whose properties
have been explored in [72].

Lemma 7.3.3. Under the adaptive inner product (·, ·)𝑎𝑢 , the retraction 𝑅 is second-
order.

Proof. For 𝑢 ∈ M and for any b ∈ T𝑢M,

∥𝑅(𝑢 + b) − (𝑢 + b)∥𝑎𝑢
∥𝑢 + b∥𝑎𝑢

=
∥(1 − 1/∥𝑢 + b∥𝐿2) (𝑢 + b)∥𝑎𝑢

∥𝑢 + b∥𝑎𝑢
=

����1 − 1
∥𝑢 + b∥𝐿2

���� .
Note that b is a tangent vector of the manifold at 𝑢. By (7.6), ∥𝑢 + b∥2

𝐿2 =

∥𝑢∥2
𝐿2 + ∥b∥2𝐿2 + 2(b, 𝑢)𝐿2 = 1 + ∥b∥2

𝐿2 . Thus we have

∥𝑅(𝑢 + b) − (𝑢 + b)∥𝑎𝑢
∥𝑢 + b∥𝑎𝑢

=

���1 − (1 + ∥b∥2
𝐿2)−1/2

��� = 1
2
∥b∥2

𝐿2 + O(∥b∥4𝐿2).

By the Poincaré inequality, when 𝑉 ≥ 0 and 𝛽 ≥ 0,

∥b∥2
𝐿2 ≤ 𝐶𝑃∥∇b∥2𝐿2 ≤ 𝐶𝑃∥b∥2𝑎𝑢

for some domain constant 𝐶𝑃 > 0. Thus we have

∥𝑅(𝑢 + b) − (𝑢 + b)∥𝑎𝑢 = O(∥b∥2𝑎𝑢),

where the constant in O(·) is independent of b. □

Using the inner product (·, ·)𝑎𝑢 , the manifold gradient becomes

grad 𝐸 (𝑢) = 𝑢 − (𝑢, 𝑢)𝐿2

(G𝑢𝑢, G𝑢𝑢)𝑎𝑢
G𝑢𝑢. (7.10)

We now have the Sobolev projected gradient descent (Sobolev PGD) as in
(7.3):

𝑢𝑛+1 = 𝑅
(
𝑢𝑛 − 𝜏𝑛 · grad 𝐸 (𝑢𝑛)

)
= 𝑅

(
(1 − 𝜏𝑛) 𝑢𝑛 + 𝜏𝑛 ·

(𝑢𝑛, 𝑢𝑛)𝐿2

(G𝑢𝑛𝑢𝑛,G𝑢𝑛𝑢𝑛)𝑎𝑢𝑛
G𝑢𝑛𝑢𝑛

)
.

(7.11)
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Asymptotic convergence and exponential rate.

Throughout the rest of the chapter, let 𝑣 always denote the global minimizer
of 𝐸 (𝑢), i.e., the ground state of the nonlinear eigenproblem. Let _ always
denote its corresponding eigenvalue. We have the following basic observa-
tions about the ground state 𝑣.

Theorem 7.3.4. There is a ground state 𝑣 that satisfies 𝑣(𝑥) > 0 everywhere on
Ω. It is the only strictly positive eigenstate of (7.1) up to scaling. Moreover, it is
both the unique ground state of the nonlinear eigenproblem (7.1) and the unique
ground state of the linearized operator A𝑣 up to the sign. Moreover, 𝑣 has Hölder
regularity 𝑣 ∈ 𝐶0,𝛼 (Ω̄) for some 0 < 𝛼 < 1.

Proof. This theorem is a consequence of Lemma 2 in [28] and Lemmas 5.3
and 5.4 in [72]. We only outline the main idea of the proof here to make this
chapter self-contained.

The idea is that the existence of at least one global minimizer 𝑣 is ensured
by the convexity of 𝐸 (𝑢). The Hölder continuity of 𝑣 is ensured by ellip-
tic regularity, see e.g., [67, Theorem 8.24]. This 𝑣 can always be chosen to
be nonnegative because 𝐸 (𝑢) = 𝐸 ( |𝑢 |). This nonnegativity can be made into
positivity by applying the Harnack inequality to (𝐴𝑣−_), see e.g., [67, Corol-
lary 8.21]. Thus, there exists a ground state of the nonlinear problem that is
positive. The same argument shows that the ground state eigenfunction of
the linearized operatorA𝑣 is also positive and is unique. Since 𝑣 is an eigen-
function of A𝑣 and is positive, it is exactly that ground state. Thus we have
the “double ground state” property. Finally, the uniqueness of any positive
eigenstate of the original nonlinear eigenproblem can be established by con-
tradiction. This can be done either by the Picone identity as in [72], or by
showing that as long as some 𝑢 itself is the ground state of the linearized
operator A𝑢, it must be the ground state of the original problem. □

It turns out in subsequent results that 𝑣 being the “double” ground state in
Theorem 7.3.4 is essential to the exponential convergence rate.

Lemma 7.3.5. If the initial point 𝑢0 of the Sobolev PGD satisfies 𝑢0 > 0 every-
where on Ω, then {𝑢𝑛}∞𝑛=0 generated by the Sobolev PGD with step size 𝜏min ≤ 𝜏𝑛 ≤
𝜏max for some 0 < 𝜏𝑚𝑖𝑛 ≤ 𝜏max ≤ 1 converges to the ground state 𝑣 strongly in
𝐻1(Ω).
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Proof. The proof is originally developed in [72] and we only outline its main
idea here to make this chapter self-contained. The key idea is to show that
𝑢𝑛 (𝑥) ≥ 0 for all 𝑛 by induction. Assume that 𝑢𝑛 ≥ 0, we will show that this
implies G𝑢𝑛𝑢𝑛 ≥ 0, and with 𝜏𝑛 ≤ 1 this implies 𝑢𝑛+1 ≥ 0.

Specifically, observe that G𝑢𝑛𝑢𝑛 is the unique minimizer of

𝜙(𝑦) := (𝑦, 𝑦)𝑎𝑢𝑛 − 2(𝑦, 𝑢𝑛)𝐿2 .

Since 𝑢𝑛 ≥ 0, we have that 𝜙( |𝑦 |) ≤ 𝜙(𝑦) ∀𝑦. This implies that the minimizer
of 𝜙(·) is nonnegative because we can always take the absolute value of the
variable without increasing the functional value. Thus, G𝑢𝑛𝑢𝑛 ≥ 0. We then
use the fact that 𝑢𝑛+1 is the scaled weighted average of two nonnegative
quantities:

�̃�𝑛+1 = (1 − 𝜏𝑛)𝑢𝑛 + 𝜏𝑛𝛾𝑛G𝑢𝑛𝑢𝑛, 𝛾𝑛 =
(𝑢𝑛, 𝑢𝑛)𝐿2

(G𝑢𝑛𝑢𝑛,G𝑢𝑛𝑢𝑛)𝑎𝑢𝑛
≥ 0, 𝑢𝑛+1 = �̃�𝑛+1/∥�̃�𝑛+1∥𝐿2 .

Thus, we establish that 𝑢𝑛 ≥ 0 implies 𝑢𝑛+1 ≥ 0. Since 𝑢0 > 0, we have that
𝑢𝑛 ≥ 0 for all 𝑛.

The existence of a cluster point 𝑢∗ for {𝑢𝑛} can be ensured by energy decay.
This convergence to 𝑢∗ is in the sense of weak convergence in 𝐻1

0 (Ω). From
the above induction, 𝑢∗ is nonnegative, and following an argument similar
to that in Theorem 7.3.4 we can show that it is all positive.

Since the step size is lower-bounded, 𝑢∗must be a fixed point of 𝐸 (𝑢), where
grad 𝐸 (𝑢∗) = 0. As we mentioned above, grad 𝐸 (𝑢∗) = 0 implies ∇𝐸 (𝑢∗) =
_𝑢∗ for some scalar _, i.e., 𝑢∗ is an eigenstate of the eigenvalue problem (7.1).
From the uniqueness result of positive eigenstate in Theorem 7.3.4 we know
that it could only be the ground state 𝑣. Therefore, {𝑢𝑛} converges to 𝑣 itself.

Finally, the weak convergence in𝐻1
0 (Ω) implies strong convergence in 𝐿𝑝 (Ω)

for 𝑝 < 6 by the Rellich-Kondrachov embedding. This would give the
convergence of energy {𝐸 (𝑢𝑛)}, and consequently strong convergence in
𝐻1(Ω). □

Before proceeding to the proof of Conditions (L), (D), and (S), we first need
some technical lemmas.
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Lemma 7.3.6 (Norm equivalence). Under Assumptions 7.3.1, there exist posi-
tive constants 𝐶𝐸 , 𝐶𝐸 depending only on 𝛽, 𝑀0, 𝑉 , and the domain Ω, such that

𝐶𝐸 ∥ · ∥𝑎𝑢 ≤ ∥ · ∥𝑎0 ≤ 𝐶−1
𝐸 ∥ · ∥𝑎𝑢 ,

𝐶𝐸 ∥ · ∥𝑎𝑢 ≤ ∥ · ∥𝐻1 ≤ 𝐶𝐸
−1∥ · ∥𝑎𝑢 .

Proof. As for the equivalence between ∥ · ∥𝑎0 and ∥ · ∥𝑎𝑢 , the second part of
the inequality holds for all 0 < 𝐶𝐸 ≤ 1 since 𝑢2 is nonnegative. For the
first part, by Poincaré inequality, ∥𝑧∥2

𝐿2 ≤ 𝐶𝑃 |𝑧 |2𝐻1 for some domain constant
𝐶𝑃 = 𝐶𝑃 (Ω). Thus, we have

∥𝑧∥2𝑎0
− 𝐶𝐸 ∥𝑧∥2𝑎𝑢 = (1 − 𝐶𝐸 ) |𝑧 |

2
𝐻1 +

∫
Ω

((1 − 𝐶𝐸 )𝑉 − 𝐶𝐸 𝛽𝑢2)𝑧2

≥ (1 − 𝐶𝐸 ) |𝑧 |2𝐻1 − 𝐶𝐸 𝛽
∫
Ω

𝑢2𝑧2

≥ (1 − 𝐶𝐸 − 𝐶𝐸 𝛽𝑀2
0𝐶𝑃) |𝑧 |

2
𝐻1 , ∀𝑧 ∈ 𝐻1

0 (Ω), 𝐶𝐸 ≤ 1.

Take 0 < 𝐶𝐸 ≤ 1/(1 + 𝛽𝑀2
0𝐶𝑃), then 𝐶𝐸 ∥𝑧∥2𝑎𝑢 ≤ ∥𝑧∥

2
𝑎0

.

As for the equivalence between ∥ · ∥𝑎𝑢 and ∥ · ∥𝐻1 , we have

∥𝑧∥2
𝐻1 − 𝐶𝐸 ∥𝑧∥2𝑎𝑢 = ∥𝑧∥

2
𝐻1 − 𝐶𝐸 |𝑧 |2𝐻1 − 𝐶𝐸

∫
Ω

(𝑉 + 𝛽𝑢2)𝑧2

≥
(
1 − 𝐶𝐸 − 𝐶𝐸𝐶𝑃 (∥𝑉 ∥𝐿∞ + 𝛽𝑀2

0 )
)
|𝑧 |2

𝐻1 , ∀𝑧 ∈ 𝐻1
0 (Ω), 𝐶𝐸 ≤ 1.

Take 0 < 𝐶𝐸 ≤ 1/(1 +𝐶𝑃 (∥𝑉 ∥𝐿∞ + 𝛽𝑀2
0 )), then 𝐶𝐸 ∥𝑧∥2𝑎𝑢 ≤ ∥𝑧∥

2
𝐻1 . On the other

hand,

𝐶𝐸
−1∥𝑧∥2𝑎𝑢 − ∥𝑧∥

2
𝐻1 = (𝐶𝐸

−1 − 1) |𝑧 |2
𝐻1 + 𝐶𝐸

−1
∫
Ω

(𝑉 + 𝛽𝑢2)𝑧2 − ∥𝑧∥𝐿2

≥
(
𝐶−1
𝑃 (𝐶𝐸

−1 − 1) + 𝐶𝐸
−1
𝛽𝑀2

0 − 1
)
∥𝑧∥𝐿2 .

Take 0 < 𝐶𝐸 ≤ (1 + 𝐶𝑃𝛽𝑀2
0 )/(1 + 𝐶𝑃), then ∥𝑧∥2

𝐻1 ≤ 𝐶𝐸
−1∥𝑧∥2𝑎𝑢 . The final

choice of 𝐶𝐸 is the smaller of the two. □

In the next two lemmas, let _𝑖 and `𝑖 be the 𝑖th smallest eigenvalues of A𝑣

and A𝑢 respectively, and 𝑣𝑖 and 𝑤𝑖 be their corresponding eigenfunctions
satisfying ∥𝑣𝑖∥𝐿2 = 1 and ∥𝑤𝑖∥𝐿2 (so that 𝑣 = 𝑣1, _ = _1). Theorem 7.3.4 has
ensured the uniqueness of the ground state. The fact thatA𝑣 only has point
spectrum ensures that there is a positive gap 𝐶𝑣 between _1 and _2.
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Lemma 7.3.7 (Perturbation of eigenvalues and eigenfunctions). Under As-
sumptions 7.3.1, there exists a positive constant 𝐶 = 𝐶 (𝛽,𝑉, 𝑀0,Ω, _1, 𝐶𝑣), such
that for all 𝑢 ∈ M satisfying ∥𝑢 − 𝑣∥𝐻1 ≤ 𝐶, we have that ∥𝑢 −𝑤1∥𝐿2 ≤ 𝑠 for some
𝑠 < 1.

Proof. For notational simplicity, we allow the constants𝐶, 𝐶′ to change their
meanings through the proof. We also denote

𝑡 := ∥𝑢 − 𝑣∥𝐻1 .

Using the variational form of the eigenvalues, we have

`1 = min
𝑧∈𝐻1

0 (Ω),
∥𝑧∥

𝐿2=1

(𝑧, 𝑧)𝑎𝑢 ≤ (𝑣, 𝑣)𝑎𝑢 ,

_1 = min
𝑧∈𝐻1

0 (Ω),
∥𝑧∥

𝐿2=1

(𝑧, 𝑧)𝑎𝑣 ≤ (𝑤1, 𝑤1)𝑎𝑣 ,

_1 + _2 = min
𝑧1,𝑧2∈𝐻1

0 (Ω),
∥𝑧1∥𝐿2=∥𝑧2∥𝐿2=1,

𝑧1⊥𝑧2

(𝑧1, 𝑧1)𝑎𝑣 + (𝑧2, 𝑧2)𝑎𝑣 ≤ (𝑤1, 𝑤1)𝑎𝑣 + (𝑤2, 𝑤2)𝑎𝑣 .

We will use the above relations to bound the gap between `1 and _1, and _2

and `2. First, we have

`1 ≤ (𝑣, 𝑣)𝑎𝑢 = (𝑣, 𝑣)𝑎𝑣 +
∫
Ω

𝛽(𝑢2𝑣2 − 𝑣4)

= _1 +
∫
Ω

𝛽𝑣2(𝑢 + 𝑣) (𝑢 − 𝑣)

≤ _1 + 2𝛽𝑀3
0

∫
Ω

|𝑢 − 𝑣 |

≤ _1 + 𝐶 (𝛽, 𝑀0,Ω) · 𝑡.

Therefore, there exists 𝐶 = 𝐶 (𝛽, 𝑀0,Ω) such that when 𝑡 ≤ 𝐶,

`1 ≤ _1 +
1
6
𝐶𝑣 . (7.12)

Next, we note that

_1 + _2 ≤ (𝑤1, 𝑤1)𝑎𝑣 + (𝑤2, 𝑤2)𝑎𝑣

= (𝑤1, 𝑤1)𝑎𝑢 + (𝑤2, 𝑤2)𝑎𝑢 +
∫
Ω

𝛽(𝑣2 − 𝑢2) (𝑤2
1 + 𝑤

2
2)

= `1 + `2 +
∫
Ω

𝛽(𝑣 + 𝑢) (𝑣 − 𝑢) (𝑤2
1 + 𝑤

2
2).

(7.13)
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To estimate ∥𝑤1∥𝐿∞ , note that it is the weak solution of

−Δ𝑤1 +𝑉𝑤1 + 𝛽𝑢2𝑤1 = `1𝑤1.

Since 𝑉, 𝑢 ∈ 𝐿∞(Ω), by elliptic regularity, we get

∥𝑤1∥𝐻2 ≤ 𝐶 (𝛽,𝑉, 𝑀0,Ω) (∥𝑤1∥𝐻1 + `1∥𝑤1∥𝐿2)
≤ 𝐶 (𝛽,𝑉, 𝑀0,Ω) + 𝐶′(𝛽,𝑉, 𝑀0,Ω) · `1.

When 𝑑 ≤ 3, using Sobolev embedding, we obtain

∥𝑤1∥𝐿∞ ≤ 𝐶 (Ω)∥𝑤1∥𝐻2 .

Since we have shown that `1 ≤ _1 + 𝐶 · 𝑡, putting them together we have

∥𝑤1∥𝐿∞ ≤ 𝐶 (𝛽,𝑉, 𝑀0,Ω, _1) + 𝐶′(𝛽,𝑉, 𝑀0,Ω, _1) · 𝑡.

Similarly, we can prove that3

∥𝑤2∥𝐿∞ ≤ 𝐶 (𝛽,𝑉, 𝑀0,Ω, _1, _2) + 𝐶′(𝛽,𝑉, 𝑀0,Ω, _1, _2) · 𝑡.

Plugging them back into (7.13), we have

(𝑤1, 𝑤1)𝑎𝑣 + (𝑤2, 𝑤2)𝑎𝑣 ≤ `1 + `2 + (𝐶 (𝛽,𝑉, 𝑀0,Ω, _1, _2) + 𝐶′(𝛽,𝑉, 𝑀0,Ω, _1, _2) · 𝑡)2 · 𝑡.

Therefore, there exists 𝐶 = 𝐶 (𝛽,𝑉, 𝑀0,Ω, _1, _2), such that when 𝑡 ≤ 𝐶,

_1 + _2 ≤ `1 + `2 +
1
6
𝐶𝑣 . (7.14)

Combining (7.12) and (7.14), we have

`1 ≤ _1 +
1
6
𝐶𝑣, `2 ≥ _2 −

1
3
𝐶𝑣, `2 − `1 ≥

1
2
𝐶𝑣 . (7.15)

Next, note that

_1 ≤ (𝑤1, 𝑤1)𝑎𝑣 = (𝑤1, 𝑤1)𝑎𝑢 +
∫
Ω

𝛽(𝑣2 − 𝑢2)𝑤2
1

≤ `1 + 𝐶 (𝛽,𝑉, 𝑀0,Ω)∥𝑤0∥2𝐿∞ · 𝑡
≤ `1 + (𝐶 (𝛽,𝑉, 𝑀0,Ω) + 𝐶′(𝛽,𝑉, 𝑀0,Ω) · 𝑡)2 · 𝑡.

3We omit the details of showing `2 ≤ _2 +𝐶 · 𝑡 by showing `1 + `2 ≤ _1 + _2 +𝐶 · 𝑡 using
the variational form.
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Therefore, there exists 𝐶 = 𝐶 (𝛽,𝑉, 𝑀0,Ω, _1) such that when 𝑡 ≤ 𝐶,

_1 ≤ `1 +
1
6
𝐶𝑣 . (7.16)

Equations (7.12), (7.15), and (7.16) contain all the relations between _1, _2, `1,
and `2 that we will need.

Since {𝑤𝑖}∞𝑖=1 forms an orthonormal basis of 𝐻1
0 (Ω), in order to estimate ∥𝑢 −

𝑤1∥𝐿2 , it suffices to bound (𝑢, 𝑢)𝑎𝑢 − `1. Note that

(𝑢, 𝑢)𝑎𝑢 − _1 = (𝑢, 𝑢)𝑎𝑢 − (𝑣, 𝑣)𝑎𝑣

= (𝑢, 𝑢)𝑎𝑢 − (𝑣, 𝑣)𝑎𝑢 +
∫
Ω

𝛽(𝑢2𝑣2 − 𝑣4)

≤ (∥𝑢∥𝑎𝑢 + ∥𝑣∥𝑎𝑢) · ∥𝑢 − 𝑣∥𝑎𝑢 +
∫
Ω

𝛽𝑣2(𝑢 + 𝑣) (𝑢 − 𝑣)

≤ 𝐶 (𝛽,𝑉, 𝑀0,Ω) (∥𝑢∥𝐻1 + ∥𝑣∥𝐻1) · ∥𝑢 − 𝑣∥𝐻1 +
∫
Ω

𝛽𝑣2(𝑢 + 𝑣) (𝑢 − 𝑣)

≤ 𝐶 (𝛽,𝑉, 𝑀0,Ω) · 𝑡.

The fourth inequality uses the norm equivalence in Lemma 7.3.6. Thus,
there exists 𝐶 = 𝐶 (𝛽,𝑉, 𝑀0,Ω), such that when 𝑡 ≤ 𝐶,

(𝑢, 𝑢)𝑎𝑢 − _1 ≤
1

12
𝐶𝑣 . (7.17)

Combining (7.15), (7.16), and (7.17), we have

(𝑢, 𝑢)𝑎𝑢 − `1 ≤
1
4
𝐶𝑣 ≤

1
2
(`2 − `1).

Assume that 𝑢 =
∑∞
𝑖=1 𝑐𝑖𝑤𝑖, where

∑∞
𝑖=1 𝑐

2
𝑖
= 1. Then we get

(𝑢, 𝑢)𝑎𝑢 − `1 =

∞∑︁
𝑖=1

𝑐2
𝑖 `𝑖 − `1 ≥ 𝑐2

1`1 +
∞∑︁
𝑖=2

𝑐2
𝑖 `2 − `1 = (1 − 𝑐2

1) (`2 − `1).

Since (𝑢, 𝑢)𝑎𝑢 − `1 ≤ 1
2 (`2 − `1), we have

1 − 𝑐2
1 ≤

1
2
, |𝑐1 | ≥

1
√

2
.

If 𝑐1 ≤ −1/
√

2, we can use −𝑤1 to replace 𝑤1. Thus, we always have 𝑐1 ≥
1/
√

2. This gives

∥𝑢 − 𝑤1∥𝐿2 =
√︁

2 − 2𝑐1 ≤
√︃

2 −
√

2 < 1.

In other words, 𝑠 ≤
√︁

2 −
√

2. The constant 𝐶 in the statement of the lemma
is the smallest of all the constants 𝐶, 𝐶′ in the proof. Since _2 = _1 + 𝐶𝑣, the
dependence on _2 is the dependence on 𝐶𝑣. □
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Lemma 7.3.8 (Condition (L) for the linearized operator). LetA : 𝑋 → 𝑋 be a
symmetric and positive definite linear operator on the Hilbert space with a bounded
Greens operator G. Let `𝑖 denote the 𝑖-th smallest eigenvalue of A, and 𝑤𝑖 be its
corresponding (normalized) eigenfunction. Assume that `2 > `1. Then for any 𝑢
such that ∥𝑢∥𝐿2 = 1 and ∥𝑢 − 𝑤1∥𝐿2 ≤ 𝑠 < 1, we have

(𝑢, 𝑢)A − (𝑤1, 𝑤1)A ≤ 𝐶𝐿
(
(𝑢, 𝑢)A −

1
(𝑢,G𝑢)𝐿2

)
for some constant 𝐶𝐿 that depends only on 𝑠, `1, and `2.

Proof. Since `2 is strictly greater than `1, we can split A and 𝑢 as

A = A (1) + A (2) , A (1) = A𝑃𝑤1 , A (2) = A𝑃⊥𝑤1
,

𝑢 = 𝑢(1) + 𝑢(2) , 𝑢(1) = 𝑃𝑤1𝑢, 𝑢(2) = 𝑃⊥𝑤1
𝑢.

Here 𝑃𝑤1 is the orthogonal projection onto the subspace of 𝑤1 under the 𝐿2

inner product, and 𝑃⊥𝑤1
= 𝑖𝑑−𝑃𝑤1 . ThenA (1)𝑢(1) = `1𝑢

(1) , and (𝑢(2) , 𝑢(2))A (2) ≥
`2∥𝑢(2) ∥2𝐿2 since 𝑢(2) ⊥ 𝑤1. By definition of G, (𝑢,G𝑣)A = (𝑢, 𝑣)𝐿2 for any
𝑢, 𝑣 ∈ 𝑋 . We have

(𝑢,G𝑢(1))𝐿2 = `−1
1 ∥𝑢

(1) ∥2
𝐿2 ,

(𝑢,G𝑢(2))𝐿2 = (𝑢(1) ,G𝑢(2))𝐿2 + (𝑢(2) ,G𝑢(2))𝐿2 = (𝑢(2) ,G𝑢(2))𝐿2 ,

(𝑢(2) ,G𝑢(2))𝐿2 = (G𝑢(2) ,G𝑢(2))A ≥ `2∥G𝑢(2) ∥2𝐿2

= `2∥𝑢(2) ∥−2
𝐿2 · (∥G𝑢(2) ∥2𝐿2 ∥𝑢(2) ∥2𝐿2) ≥ `2∥𝑢(2) ∥−2

𝐿2 · (𝑢(2) ,G𝑢(2))2𝐿2 ,

i.e., (𝑢,G𝑢(2))𝐿2 ≤ `−1
2 ∥𝑢

(2) ∥2
𝐿2 .

Therefore, the objective inequality is transformed into

𝐶𝐿

(
(𝑢, 𝑢)A −

1
(𝑢,G𝑢)𝐿2

)
− ((𝑢, 𝑢)A − (𝑤1, 𝑤1)A)

= (𝐶𝐿 − 1) (𝑢, 𝑢)A −
𝐶𝐿

(𝑢,G𝑢)𝐿2
+ `1

= (𝐶𝐿 − 1) ((𝑢(1) , 𝑢(1))A (1) + (𝑢(2) , 𝑢(2))A (2) ) −
𝐶𝐿

(𝑢,G𝑢(1))𝐿2 + (𝑢,G𝑢(2))𝐿2
+ `1

≥ (𝐶𝐿 − 1) (`1∥𝑢(1) ∥2𝐿2 + `2∥𝑢(2) ∥2𝐿2) −
𝐶𝐿

`−1
1 ∥𝑢(1) ∥

2
𝐿2 + `−1

2 ∥𝑢(2) ∥
2
𝐿2

+ `1

= (𝐶𝐿 − 1) (`1 + (`2 − `1)∥𝑢(2) ∥2𝐿2) −
𝐶𝐿`1`2

`2 + (`1 − `2)∥𝑢(2) ∥2𝐿2

+ `1

= (`2 − `1)
((𝐶𝐿 − 1)`2 − 𝐶𝐿`1)∥𝑢(2) ∥2𝐿2 − (𝐶𝐿 − 1) (`2 − `1)∥𝑢(2) ∥4𝐿2

`2 + (`1 − `2)∥𝑢(2) ∥2𝐿2

.
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We look for 𝐶𝐿 and 𝑢 such that the above is greater than or equal to 0. In
fact, for any 𝐶𝐿 > 1, if

0 ≤ ∥𝑢(2) ∥2
𝐿2 ≤

(𝐶𝐿 − 1)`2 − 𝐶𝐿`1

(𝐶𝐿 − 1) (`2 − `1)
,

then this is satisfied. Note that ∥𝑢 − 𝑣1∥𝐿2 ≤ 𝑠 implies ∥𝑢(2) ∥2
𝐿2 ≤ 𝑠2. So the

requirement on 𝐶𝐿 is

𝐶𝐿 ≥ 1 + `2

(`2 − `1) (1 − 𝑠2)
.

□

Using the above technical lemmas, we are now ready to prove the following
theorems. They show that the sequence {𝑢𝑛} generated by (7.3) satisfies
Conditions (L), (D), and (S).

The first theorem is on Condition (L) near the ground state 𝑣 of the nonlinear
eigenproblem. It is the central one of the three theorems.

Theorem 7.3.9. Under Assumptions 7.3.1, Condition (L) is satisfied for ∥ · ∥𝑋 =

∥ · ∥𝑎𝑢 and \ = 1
2 near the ground state 𝑣. In other words, there exists some constant

𝐶 > 0, such that for any 𝑢 in {𝑢 : 𝑢 ∈ M, 𝐸 (𝑢) ≥ 𝐸 (𝑣), ∥𝑢 − 𝑣∥𝐻1 ≤ 𝐶}, we have

|𝐸 (𝑢) − 𝐸 (𝑣) |
1
2 ≤ 𝐶𝐿 ∥grad 𝐸 (𝑢)∥𝑎𝑢 .

Proof. First notice that for any 𝑢 in the constraint set of the theorem, 𝐸 (𝑢) −
𝐸 (𝑣) ≤ 𝑎𝑢 (𝑢, 𝑢) − 𝑎𝑢 (𝑣, 𝑣). This is because

𝐸 (𝑢) − 𝐸 (𝑣) −
(
(𝑢, 𝑢)𝑎𝑢 − (𝑣, 𝑣)𝑎𝑢

)
= − 𝛽

2

∫
Ω

𝑢4 − 𝛽
2

∫
Ω

𝑣4 + 𝛽
∫
Ω

𝑢2𝑣2

= − 𝛽
2

∫
Ω

(𝑢2 − 𝑣2)2 ≤ 0.

Let 𝑤1 be the eigenfunction corresponding to the smallest eigenvalue ofA𝑢,
then

(𝑢, 𝑢)𝑎𝑢 − (𝑣, 𝑣)𝑎𝑢 ≤ (𝑢, 𝑢)𝑎𝑢 − (𝑤1, 𝑤1)𝑎𝑢 .

On the other hand, by (7.10), we have

∥grad 𝐸 (𝑢)∥2𝑎𝑢 =
𝑢 − (𝑢, 𝑢)𝐿2

(G𝑢𝑢, G𝑢𝑢)𝑎𝑢
G𝑢𝑢

2

𝑎𝑢

=

𝑢 − G𝑢𝑢
(𝑢,G𝑢𝑢)𝐿2

2

𝑎𝑢

= (𝑢, 𝑢)𝑎𝑢 −
1

(𝑢,G𝑢𝑢)𝐿2
.
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It suffices to show that

(𝑢, 𝑢)𝑎𝑢 − (𝑤1, 𝑤1)𝑎𝑢 ≤ 𝐶𝐿
(
(𝑢, 𝑢)𝑎𝑢 −

1
(𝑢,G𝑢𝑢)𝐿2

)
, (7.18)

which only involves the inner product (·, ·)𝑎𝑢 .

Using Lemma 7.3.7, we have that there exists 𝐶 > 0 such that when ∥𝑢 −
𝑣∥𝐻1 < 𝐶, we have ∥𝑢 − 𝑤1∥𝐿2 ≤ 𝑠 for some constant 𝑠 < 1. Thus, Lemma
7.3.8 is applicable to (·, ·)𝑎𝑢 . This gives the above inequality on (·, ·)𝑎𝑢 , with
a constant 𝐶𝐿 depending only on 𝛽, 𝑉, 𝑀0, Ω, _1, and 𝐶𝑣. The Łojasiewicz
inequality can thus be achieved. □

Remark 7.3.10. The above proof of Condition (L) depends crucially on Lemma
7.3.8. Lemma 7.3.8 can be seen as the version of the Łojasiewicz inequality
with \ = 1

2 for a linear operator A. So its primary consequence is the linear
convergence rate of the proposed algorithm to the ground state of a linear
operator A.

The key idea of the proof Theorem 7.3.9, then, is to reduce it to the inequality
(7.18). The inequality (7.18) only involves the operator A𝑢, which is bilin-
ear. Although A𝑢 formally depends on 𝑢, the inequality (7.18) itself is not
affected by nonlinearity. So Lemma 7.3.8 can be applied to prove (7.18).

Thus, one way to interpret the proof of Theorem 7.3.9 is to view it as lin-
earizing the nonlinear eigenproblem (7.1) using the adaptive inner product
(·, ·)𝑎𝑢 , so that it preserves the Łojasiewicz property with \ = 1

2 .

The next theorem is on Condition (D) for the sequence generated by the
proposed algorithm.

Theorem 7.3.11. Under Assumptions 7.3.1, Condition (D) is satisfied for ∥ · ∥𝑋 =

∥ · ∥𝑎𝑢 , ∥ · ∥𝑌 = ∥ · ∥𝑎0 if {𝑢𝑛} is generated by the Sobolev projected gradient descent
with step size 0 < 𝜏𝑛 ≤ 𝜏max for some 𝜏max > 0, i.e.,

𝐸 (𝑢𝑛) − 𝐸 (𝑢𝑛+1) ≥ 𝐶𝐷 ∥grad 𝐸 (𝑢𝑛)∥𝑎𝑢𝑛 ∥𝑢𝑛 − 𝑢𝑛+1∥𝑎0 .

Proof. It is obvious that ∥𝑢𝑛−𝑢𝑛+1∥𝑎0 ≤ ∥𝑢𝑛−𝑢𝑛+1∥𝑎𝑢𝑛 . Since {𝑢𝑛} is generated
by the Sobolev projected gradient descent algorithm, we have

𝑢𝑛+1 = 𝑅
(
𝑢𝑛 − 𝜏𝑛 · grad 𝐸 (𝑢𝑛)

)
,

grad 𝐸 (𝑢𝑛) = 𝑢𝑛 −
(𝑢𝑛, 𝑢𝑛)𝐿2

(G𝑢𝑛𝑢𝑛,G𝑢𝑛𝑢𝑛)𝑎𝑢𝑛
G𝑢𝑛𝑢𝑛 = 𝑢𝑛 −

G𝑢𝑛𝑢𝑛
(𝑢𝑛,G𝑢𝑛𝑢𝑛)𝐿2

.
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The second-order retraction property implies that

𝑢𝑛 − 𝑢𝑛+1 = 𝜏𝑛

(
𝑢𝑛 −

G𝑢𝑛𝑢𝑛
(𝑢𝑛,G𝑢𝑛𝑢𝑛)𝐿2

)
+ O(𝜏2

𝑛 ).

Thus, we obtain

𝐸 (𝑢𝑛) − 𝐸 (𝑢𝑛+1) =
(
𝑢𝑛 − 𝑢𝑛+1, ∇𝑎𝑢𝑛𝐸 (𝑢𝑛)

)
𝑎𝑢𝑛
+ O(∥𝑢𝑛 − 𝑢𝑛+1∥2)

= (𝑢𝑛 − 𝑢𝑛+1, 𝑢𝑛)𝑎𝑢𝑛 + O(∥𝑢𝑛 − 𝑢𝑛+1∥
2)

= 𝜏𝑛

(
𝑢𝑛 −

G𝑢𝑛𝑢𝑛
(𝑢𝑛,G𝑢𝑛𝑢𝑛)𝐿2

, 𝑢𝑛

)
𝑎𝑢𝑛

+ O(𝜏2
𝑛 )

= 𝜏𝑛

(
(𝑢𝑛, 𝑢𝑛)𝑎𝑢𝑛 −

1
(𝑢𝑛,G𝑢𝑛𝑢𝑛)𝐿2

)
+ O(𝜏2

𝑛 ).

On the other hand, we have

∥grad 𝐸 (𝑢𝑛)∥𝑎𝑢𝑛 =

(
(𝑢𝑛, 𝑢𝑛)𝑎𝑢𝑛 −

1
(𝑢𝑛,G𝑢𝑛𝑢𝑛)𝐿2

) 1
2

,

and

∥𝑢𝑛 − 𝑢𝑛+1∥𝑎𝑢𝑛 = 𝜏𝑛

𝑢𝑛 − G𝑢𝑛𝑢𝑛
(𝑢𝑛,G𝑢𝑛𝑢𝑛)𝐿2


𝑎𝑢𝑛

+ O(𝜏2
𝑛 )

= 𝜏𝑛

(
(𝑢𝑛, 𝑢𝑛)𝑎𝑢𝑛 −

1
(𝑢𝑛,G𝑢𝑛𝑢𝑛)𝐿2

) 1
2

+ O(𝜏2
𝑛 ).

This implies that

∥grad 𝐸 (𝑢𝑛)∥𝑎𝑢𝑛 ∥𝑢𝑛 − 𝑢𝑛+1∥𝑎0 ≤ 𝜏𝑛
(
(𝑢𝑛, 𝑢𝑛)𝑎𝑢𝑛 −

1
(𝑢𝑛,G𝑢𝑛𝑢𝑛)𝐿2

)
+ O(𝜏2

𝑛 ).

Therefore, there exists a 𝜏max > 0 such that when 𝜏 ≤ 𝜏max, there exists
𝐶𝐷 such that Condition (D) holds. This 𝐶𝐷 only depends on 𝜏max, but is
independent of 𝑢𝑛. □

Next, we have the theorem is on Condition (S) for the sequence generated
by the proposed algorithm.

Theorem 7.3.12. Under Assumptions 7.3.1, Condition (S) is satisfied for for ∥ ·
∥𝑋 = ∥ · ∥𝑎𝑢 , ∥ · ∥𝑌 = ∥ · ∥𝑎0 if {𝑢𝑛} is generated by the Sobolev projected gradient
descent with step size 0 < 𝜏min ≤ 𝜏𝑛 ≤ 𝜏max for some 0 < 𝜏min ≤ 𝜏max, i.e.,

∥𝑢𝑛+1 − 𝑢𝑛∥𝑎0 ≥ 𝐶𝑆∥grad 𝐸 (𝑢𝑛)∥𝑎𝑢𝑛 .
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Proof. By Lemma 7.3.6, we have ∥𝑢𝑛+1 − 𝑢𝑛∥𝑎0 ≥ 𝐶𝐸 ∥𝑢𝑛+1 − 𝑢𝑛∥𝑎𝑢𝑛 for some
constant 𝐶𝐸 . Note that in the previous proof we have shown that

∥grad 𝐸 (𝑢𝑛)∥𝑎𝑢𝑛 =

(
(𝑢𝑛, 𝑢𝑛)𝑎𝑢𝑛 −

1
(𝑢𝑛,G𝑢𝑛𝑢𝑛)𝐿2

) 1
2

and

∥𝑢𝑛 − 𝑢𝑛+1∥𝑎𝑢𝑛 = 𝜏𝑛

(
(𝑢𝑛, 𝑢𝑛)𝑎𝑢𝑛 −

1
(𝑢𝑛,G𝑢𝑛𝑢𝑛)𝐿2

) 1
2

+ O(𝜏2
𝑛 ).

Therefore, when 𝜏min ≤ 𝜏𝑛 ≤ 𝜏max for some 0 < 𝜏min ≤ 𝜏max, there exists a
constant 𝐶𝑆 depending only on 𝐶𝐸 , 𝜏min and 𝜏max, such that

∥𝑢𝑛+1 − 𝑢𝑛∥𝑎0 ≥ 𝐶𝑆∥grad 𝐸 (𝑢𝑛)∥𝑎𝑢𝑛 .

□

Finally, we deduce the following results on the exponential convergence.

Theorem 7.3.13 (Convergence rate of Sobolev PGD). If the Sobolev projected
gradient descent for 𝐸 (𝑢) converges to the ground state 𝑣, and the step size {𝜏𝑛}
satisfies 0 < 𝜏min ≤ 𝜏𝑛 ≤ 𝜏max, then it converges in the 𝑎0-norm with an asymptotic
exponential convergence rate.

Proof. The proof follows directly from Theorems 7.2.1, 7.3.9, 7.3.11, and
7.3.12. □

Theorem 7.3.14 (Global convergence to ground state). If the initial state 𝑢0

satisfies 𝑢0 ≥ 0 everywhere on Ω, and the step size {𝜏𝑛} satisfies 0 < 𝜏min ≤ 𝜏𝑛 ≤
𝜏max, then the Sobolev projected gradient descent for 𝐸 (𝑢) converges in the 𝑎0-norm
to the unique ground state with an asymptotic exponential convergence rate.

Proof. Since the initial state is nonnegative, Lemma 7.3.5 ensures the strong
convergence of {𝑢𝑛} to the ground state 𝑣 in 𝐻1

0 (Ω). By Theorem 7.3.13, the
asymptotic convergence rate in the 𝑎0-norm is exponentially fast. □

Note that since the domain Ω is bounded, this convergence rate in the 𝑎0-
norm implies the exponential convergence rate in the 𝐻1 or 𝐿2 norm. We
also remark that the optimal step size with theoretical guarantee depends
on the values 𝜏min and 𝜏max, which in turn depend on some properties of the
ground state that are not known beforehand, but some practical choices of
𝜏 are demonstrated in the numerical experiments in Section 7.6.
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7.4 Spatial discretization

To solve the eigenproblem numerically using the computational procedure
in the previous sections, we need to discretize the problem in the spatial
domain Ω. Let Ωℎ be a spatial discretization with grid size ℎ. Note that we
only require Ωℎ to be a convergent discretization, i.e., the solution to the
discrete problem converges to that of the continuous problem as ℎ → 0+,
and the following analysis applies to general discretization schemes. The
discretized problem can be written as

min
∥𝑢ℎ ∥𝐿2

ℎ

=1, 𝑢ℎ∈R𝑁
𝐸ℎ (𝑢ℎ) := ∥𝑢ℎ∥2Lℎ

+ ∥𝑢ℎ∥2𝑉ℎ +
𝛽

2
∥𝑢ℎ∥4𝐿4

ℎ

, (7.19)

where

∥𝑢ℎ∥2Lℎ
= 𝑢⊤ℎ (−Lℎ)𝑢ℎ · ℎ

𝑑 , ∥𝑢ℎ∥2𝑉ℎ =
𝑁∑︁
𝑖=1

𝑉ℎ (𝑖)𝑢ℎ (𝑖)2ℎ𝑑 , ∥𝑢ℎ∥𝑝
𝐿
𝑝

ℎ

=

𝑁∑︁
𝑖=1

𝑢ℎ (𝑖)𝑝ℎ𝑑 .

Here 𝑁 denotes the total number of grid points, (𝑖) is an indexing of the grid
points, i.e., 𝑢ℎ (𝑖) is the 𝑖-th entry of the vectorized 𝑢ℎ, 𝑑 is the dimension
of the physical space, and Lℎ is the discretized Laplacian. The linearized
operator A𝑢,ℎ now has a matrix representation in R𝑁×𝑁 :

A𝑢,ℎ = −Lℎ + diag{𝑉ℎ + 𝛽𝑢 [2]ℎ },

where 𝑢 [2]
ℎ
(𝑖) := 𝑢ℎ (𝑖)2, i.e., 𝑢 [2]

ℎ
is the componentwise squared vector of 𝑢ℎ.

The respective norm is defined as ∥𝑦∥2A𝑢,ℎ
:= 𝑦⊤A𝑢,ℎ𝑦. We have the following

results.

Theorem 7.4.1 (Discrete version of Theorem 7.3.4). There is a ground state
𝑣ℎ of the discretized problem that satisfies 𝑣ℎ > 0 everywhere on Ωℎ. It is the
unique positive eigenstate of (7.19). Moreover, it is both the unique ground state
of the nonlinear eigenproblem (7.19) and the unique ground state of the linearized
operator A𝑣,ℎ up to the sign.

Proof. The existence of the ground state follows from the compactness of the
constraint set {𝑢ℎ : 𝑢ℎ ∈ R𝑁 , ∥𝑢ℎ∥𝐿2

ℎ
= 1} and the boundedness of 𝐸ℎ (𝑢ℎ).

Thus it suffices to prove its uniqueness and positivity. The proofs for the
continuous version, i.e., Lemma 2 in [27] and Lemmas 5.3 and 5.4 in [72],
need to be slightly modified to suit the discrete case. This is because the
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Harnack inequality and the Picone identity are only valid for continuous
functions, and we need to establish their discrete counterparts.

One way to do this is to look at the convergence of the discretized eigenvec-
tor to its continuous counterpart at the small grid size limit ℎ→ 0+, see e.g.,
[88]. This is always possible no matter what kind of discretization we use.
We do not present the details here.

Another way is to observe that the discretized Laplacian,Lℎ, is an M-matrix4

under some typical discretizations. Examples include finite difference dis-
cretization, and some P1-finite element discretizations. When Lℎ is an M-
matrix, the proof can be simplified and the small ℎ constraint can be re-
leased. In this case, the proof takes the following steps:

(1) For anyA𝑢,ℎ, its eigenvector corresponding to the smallest eigenvalue can be
chosen to be all positive, and is unique up to the sign.

Since −Lℎ has positive diagonals and non-positive off-diagonals, so
doesA𝑢,ℎ. Let 𝑦 be the ground state eigenvector ofA𝑢,ℎ, then |𝑦 |⊤A𝑢,ℎ |𝑦 | ≤
𝑦⊤A𝑢,ℎ𝑦. This is becauseA𝑢,ℎ (𝑖, 𝑖)𝑦(𝑖)2 = A𝑢,ℎ (𝑖, 𝑖) |𝑦(𝑖) |2 for any 1 ≤ 𝑖 ≤
𝑁 , and A𝑢,ℎ (𝑖, 𝑗)𝑦(𝑖)𝑦( 𝑗) ≥ A𝑢,ℎ (𝑖, 𝑗)· |𝑦(𝑖) | |𝑦( 𝑗) | for any 𝑖 ≠ 𝑗 . As 𝑦 is
the ground state eigenvector, this implies 𝑦 = |𝑦 |, i.e., 𝑦 is nonnegative.
We now show that 𝑦 is all positive. If this is not true, then 𝑦 has some
positive and some zero entries. So we can always find a zero entry 𝑦(𝑖)
that is spatially next to a nonzero one, say 𝑦( 𝑗), i.e., 𝑦(𝑖) = 0, 𝑦( 𝑗) > 0,
and −Lℎ (𝑖, 𝑗) < 0. Then

0 = _𝑦(𝑖) = (A𝑢,ℎ𝑦) (𝑖) = (−Lℎ𝑦) (𝑖) +𝑉ℎ (𝑖)𝑦(𝑖) + 𝛽𝑦(𝑖)3

= (−Lℎ𝑦) (𝑖) =
∑︁
𝑘

−Lℎ (𝑖, 𝑘)𝑦(𝑘) =
∑︁
𝑘≠𝑖

−Lℎ (𝑖, 𝑘)𝑦(𝑘) ≤ −Lℎ (𝑖, 𝑗)𝑦( 𝑗) < 0,

which is a contradiction. Thus 𝑦 is all positive and is unique up to the
sign.

(2) If 𝑢ℎ itself is the smallest eigenvector ofA𝑢ℎ,ℎ, then it is also the unique global
minimizer of 𝐸ℎ (𝑢).

4An M-matrix is a matrix with nonnegative diagonal entries and nonpositive off-
diagonal entries, with eigenvalues whose real parts are nonnegative.
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For any other 𝑤ℎ ≠ ±𝑢ℎ, we have

𝐸ℎ (𝑤ℎ) − 𝐸ℎ (𝑢ℎ) = ∥𝑤ℎ∥2A𝑢,ℎ
− ∥𝑢ℎ∥2A𝑢,ℎ

+ 𝛽
2

𝑁∑︁
𝑖=1

(
(𝑤 (𝑖)

ℎ
)4 + (𝑢(𝑖)

ℎ
)4 − 2(𝑤 (𝑖)

ℎ
)2(𝑢(𝑖)

ℎ
)2

)
ℎ𝑑

=

(
∥𝑤ℎ∥2A𝑢,ℎ

− ∥𝑢ℎ∥2A𝑢,ℎ

)
+ 𝛽

2

𝑁∑︁
𝑖=1

(
(𝑤 (𝑖)

ℎ
)2 − (𝑢(𝑖)

ℎ
)2

)2
ℎ𝑑 > 0.

Thus 𝑢ℎ is the unique global minimizer of 𝐸ℎ (𝑢).

(3) There is a unique positive eigenstate of (7.19), which is the ground state of
(7.19) and the ground state of the linearized operator.

Any positive iteration sequence stays positive with gradient descent
iteration. The compactness of the constraint set ensures the existence
of a sub-sequential limit point 𝑣ℎ, which is nonnegative. The fact that
𝑣ℎ is the minimizer of 𝐸ℎ (𝑢) implies that it is an eigenstate of A𝑣,ℎ. By
Step (1), this eigenstate is all positive and is thus the smallest eigen-
state of A𝑣,ℎ. By Step (2), it is also the unique global minimizer of
𝐸ℎ (𝑢).

□

Theorem 7.4.2 (Discrete version of Theorem 7.3.13). If the Sobolev PGD for
𝐸ℎ (𝑢) converges to the ground state 𝑣ℎ, and the step size {𝜏𝑛} satisfies 0 < 𝜏min ≤
𝜏𝑛 ≤ 𝜏max, then it converges with an asymptotic exponential convergence rate.

Proof. Theorem 7.4.1 ensures that 𝑣ℎ is still the “double” ground state of
both 𝐸ℎ (𝑢) and A𝑣ℎ,ℎ. Thus, Theorems 7.3.9, 7.3.11, and 7.3.12 can all be
generalized to the discretized case in the same way. The exponential con-
vergence rate follows from the master theorem 7.2.1. □

Theorem 7.4.3 (Discrete version of Theorem 7.3.14). If the initial state 𝑢0 sat-
isfies 𝑢0(𝑖) ≥ 0 ∀𝑖, and the step size {𝜏𝑛} satisfies 0 < 𝜏min ≤ 𝜏𝑛 ≤ 𝜏max, then the
Sobolev PGD for 𝐸ℎ (𝑢) converges to the unique ground state 𝑣ℎ with an asymptotic
exponential convergence rate.

Proof. The proof follows similarly from the nonnegativity and uniqueness
results of Theorem 7.4.1 and the exponential convergence result of Theorem
7.4.2. □
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7.5 Generalization to other nonlinear eigenproblems

The Sobolev PGD points out a new direction for first-order fast solvers of
nonlinear eigenproblems and higher (than quadratic) order optimization
problems. Its application is thus well beyond the Gross-Pitaevskii eigen-
value problem. The operator class and the form of the objective function
can be generalized. For example, consider

−Δ𝑣 +𝑉𝑣 + 𝛽 |𝑣 |2𝛼𝑣 = _𝑣 (7.20)

for general 𝛼 > 0. This ground state equation and the corresponding time-
dependent nonlinear Schrödinger equation are locally well-posed in 𝐻1(R𝑑)
as long as 2𝛼 + 2 < 2𝑑

max{𝑑−2,0+} , see e.g., [58] and references therein. The
previous Gross-Pitaevskii eigenvalue problem corresponds to the case 𝛼 =

1.

In general, Theorem 7.3.13 holds true for any 𝛼 > 0. The adaptive inner
product remains well-posed and the ground state remains a “double” eigen-
state. The change of inner product from 𝑎𝑣 (·) to 𝑎𝑢 (·) in the proof of Theo-
rem 7.3.9 essentially relies on the convexity of the last term

∫
| · |2𝛼+2 in the

energy functional 𝐸 (·). Therefore, extensions of the previous results in both
spatially continuous and discretized cases are easy. We do not present the
details here.

It is also common in physics that the diffusion is not homogeneous in all
spatial directions. For example, it can be stronger in two physical directions
and weaker in the third one. More generally, we have

−∇ · (𝐴(𝑥)∇𝑣) +𝑉𝑣 + 𝛽 |𝑣 |2𝛼𝑣 = _𝑣, (7.21)

where the coefficient 𝐴(𝑥) ∈ 𝐿∞(Ω)𝑑×𝑑 , 𝐴(𝑥) is symmetric and coercive. An
interesting discrete counterpart to this is the nonlinear Schrödinger equa-
tion on metric trees (e.g. [50]), where the Laplacian is replaced by a graph
Laplacian on a tree-graph G.

When restricted to a bounded domain, so that the lowest part of the spec-
trum is always point spectrum, our previous arguments still hold. In the
elliptic case, the discretized Aℎ may or may not be an M-matrix, but one
can always turn to the small grid size limit ℎ→ 0+ limit when necessary.

For an even broader class of nonlinear eigenproblems or constrained op-
timization problems, the Sobolev gradient descent may still be applicable,
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but it is not clear whether exponential convergence is still true. It can be seen
from previous sections that the convergence rate relies on the (L) condition,
which in turn relies on the ground state 𝑣 being the ground state of the lin-
earized operator A𝑣 at 𝑣, i.e., the so-called “double ground state” property.
This is a nontrivial property in general, although it can be true for some
operators like the biharmonic operator under certain conditions.

We discuss here one specific generalization of nonlinear Schrödinger eigen-
problem, and demonstrate that the Sobolev PGD indeed has the potential
of tackling previously formidable problems. The problem of interest is

−Δ𝑣 +𝑉𝑣 + 𝛽 |𝑣 |2𝑣 − 𝛿Δ( |𝑣 |2)𝑣 = _𝑣, (7.22)

where 𝛿 ≥ 0. In other words, we add a higher-order interaction term−𝛿Δ( |𝑣 |2)
to the Gross-Pitaevskii problem. The corresponding energy functional is

𝐸 (𝑢) =
∫
|∇𝑢 |2 +𝑉 |𝑢 |2 + 𝛽

2
|𝑢 |4 + 𝛿

2

��∇|𝑢 |2��2 . (7.23)

The above eigenproblem and its variational form are analyzed in [17]. More-
over, in [16] the authors propose to minimize the energy functional (7.23) by
reformulating it as 𝐸 (𝜌) =

∫
|∇√𝜌 |2+𝑉𝜌+ 𝛽2 𝜌

2+ 𝛿2 |∇𝜌 |
2, where 𝜌 := |𝑢 |2. This

reformulation facilitates the minimization, but it also suffers from the lack
of continuity of |∇√𝜌 | near 𝜌 → 0+. This has to be treated with extra care,
and a regularization term has to be added, which complicates the analysis.
Therefore, instead of replacing |𝑢 |2 with 𝜌, we propose to minimize 𝐸 (𝑢)
with respect to 𝑢 directly with the Sobolev PGD.

Assume that Assumptions 7.3.1 still hold. Define the manifoldM with an
extra constraint:

M :=
{
𝑧 ∈ 𝐻1

0 (Ω) : ∥𝑢∥𝐿2 = 1, ∥𝑢∥𝐿∞ ≤ 𝑀0, ∥∇𝑢∥𝐿∞ ≤ 𝑀1
}
.

Define the adaptive linearized operator and the respective inner products
as follows:

(𝑧, 𝑤)𝑎𝑢 :=
∫
Ω

∇𝑧∇𝑤 +𝑉𝑧𝑤 + 𝛽𝑢2𝑧𝑤 + 𝛿∇(𝑢𝑧)∇(𝑢𝑤),

(𝑧,A𝑢𝑤)𝐿2 := (𝑧, 𝑤)𝑎𝑢 ,

(𝑧, 𝑤)𝑎0 :=
∫
Ω

∇𝑧∇𝑤 +𝑉𝑧𝑤, ∀ 𝑧, 𝑤 ∈ T𝑢M, 𝑢 ∈ M .

Then we have the following results.
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Lemma 7.5.1. The ground state 𝑣 of (7.22) satisfies 𝑣 > 0 everywhere on Ω. It is
the unique positive eigenstate of (7.22). It is also both the unique ground state of
(7.22) and that of the linearized operator A𝑣 up to the sign.

Proof. Following the same arguments as in Lemma 2 in [28], the extended
𝐸 (𝑢) as in (7.23) still admits a nonnegative minimizer 𝑣. According to [17,
Theorem 2.2], we know that 𝑣 ∈ 𝐶1,1(Ω̄). This implies that 𝑣, ∇𝑣 ∈ 𝐿∞(Ω).
Thus, the nonnegative 𝑣 can still be made positive by the Harnack inequal-
ity. Also, the linearized operatorA𝑣 still has a unique positive ground state,
which is exactly the above 𝑣. Thus the “double ground state” property re-
mains true.

We now show that (7.22) has a unique positive eigenstate by a contradic-
tion argument. Suppose instead that there is a different positive eigenstate
�̃� > 0 with its eigenvalue _̃, and 𝐸 (�̃�) > 𝐸 (𝑣). Using the Picone identity,∫
∇�̃�∇( 𝑣2

�̃�
) ≤

∫
(∇𝑣)2. We have

_̃ − _ = _̃(𝑣, 𝑣)𝐿2 − (𝑣, 𝑣)𝑎𝑣 = _̃
(
�̃�,
𝑣2

�̃�

)
𝐿2
− (𝑣, 𝑣)𝑎𝑣 =

(
�̃�,
𝑣2

�̃�

)
𝑎�̃�

− (𝑣, 𝑣)𝑎𝑣

=

∫
∇�̃� · ∇

(
𝑣2

�̃�

)
+𝑉𝑣2 + 𝛽�̃�2𝑣2 + 𝛿∇(�̃�2)∇(𝑣2) −

∫
(∇𝑣)2 +𝑉𝑣2 + 𝛽𝑣4 + 𝛿(∇(𝑣2))2

≤
∫
(∇𝑣)2 +𝑉𝑣2 + 𝛽

2
(𝑣4 + �̃�4) + 𝛿

2

(
(∇(𝑣2))2 + (∇(�̃�2))2

)
−

∫
(∇𝑣)2 +𝑉𝑣2 + 𝛽𝑣4 + 𝛿(∇(𝑣2))2

=

∫
𝛽

2
�̃�4 + 𝛿

2
(∇(�̃�2))2 −

∫
𝛽

2
𝑣4 + 𝛿

2
(∇(𝑣2))2 = (_̃ − 𝐸 (�̃�)) − (_ − 𝐸 (𝑣)),

i.e.,

𝐸 (�̃�) ≤ 𝐸 (𝑣).

This contradicts our assumption that 𝐸 (�̃�) > 𝐸 (𝑣). □

The next lemma shows that the eigenvalue and eigenfunction perturbation
results stated in Lemma 7.3.7 hold similarly for (7.22).

Lemma 7.5.2. Let _𝑖 and `𝑖 be the 𝑖th smallest eigenvalues of A𝑣 and A𝑢 respec-
tively, and 𝑣𝑖 and 𝑤𝑖 be their corresponding eigenvectors (so that 𝑣 = 𝑣1). Let
𝐶𝑣 := _2 − _1 denote the eigenvalue gap. Then there exists a positive constant
𝐶 = 𝐶 (𝛽, 𝛿,𝑉, 𝑀0, 𝑀1,Ω, _1, 𝐶𝑣), such that for all ∥𝑢−𝑣∥𝐻1 < 𝐶, 𝑢 ∈ M, we have
∥𝑢 − 𝑤1∥𝐿2 ≤ 𝑠 for some 𝑠 < 1.
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Proof. The main idea of the proof is the same as that of Lemma 7.3.7 so we
only point out their differences here. For example, to estimate `1 − _1, we
have

`1 ≤ (𝑣, 𝑣)𝑎𝑢 = (𝑣, 𝑣)𝑎𝑣 +
∫
Ω

𝛽(𝑢2𝑣2 − 𝑣4) +
∫
Ω

𝛿

(
(∇(𝑢𝑣)2 − ∇(𝑣2)2)

)
= _1 +

∫
Ω

𝛽𝑣2(𝑢 + 𝑣) (𝑢 − 𝑣) +
∫
Ω

𝛿(∇(𝑢𝑣) + ∇(𝑣2)) (∇(𝑢𝑣) − ∇(𝑣2)).

The second term is bounded in the same way as the proof of Lemma 7.3.7.
Only the third term containing high-order interaction is new. To bound the
third term, we note that∫

Ω

𝛿(∇(𝑢𝑣) + ∇(𝑣2)) (∇(𝑢𝑣) − ∇(𝑣2))

= 𝛿

∫
Ω

(𝑣∇𝑢 + 𝑢∇𝑣 + 2𝑣∇𝑣) (𝑣∇𝑢 + 𝑢∇𝑣 − 2𝑣∇𝑣)

≤ 4𝛿𝑀0𝑀1

∫
Ω

|𝑣∇𝑢 + 𝑢∇𝑣 − 2𝑣∇𝑣 |

= 4𝛿𝑀0𝑀1

∫
Ω

|𝑣(∇𝑢 − ∇𝑣) + (𝑢 − 𝑣)∇𝑣 |

≤ 𝐶 (𝛿, 𝑀0, 𝑀1,Ω)∥𝑢 − 𝑣∥𝐻1 .

Similar bounds can be obtained in the estimation of (_1 + _2) − (`1 + `2),
_1 − `1, and (𝑢, 𝑢)𝑎𝑢 − `1. The dependence of the constant 𝐶 only has two
additional dependencies which are 𝛿 and 𝑀1. □

Theorem 7.5.3. If the initial state satisfies 𝑢0 ≥ 0 everywhere on Ω, then {𝑢𝑛}∞𝑛=0

generated by the Sobolev PGD with step size 0 < 𝜏min ≤ 𝜏𝑛 ≤ 𝜏max converges to the
unique ground state 𝑣 of (7.22) with an asymptotic exponential convergence rate.

Proof. First, the Sobolev PGD sequence starting from a positive initial value
remains positive as before, and convexity ensures convergence to a nonneg-
ative local minimizer of 𝐸 (𝑢), which must also be the global minimizer and
the ground state of (7.22). This convergence can be proved to be a strong 𝐻1

convergence by the Sobolev embedding and the convergence of energy.

In order to establish exponential convergence, it suffices to show that Con-
ditions (L), (D), and (S) all hold for {𝑢𝑛}∞𝑛=0. The nonnegativity of 𝛿 ensures
the equivalence of 𝑎0 and 𝑎𝑢 norms. Thus Conditions (D) and (S) hold. Con-
dition (L) follows from Lemma 7.5.2 and Lemma 7.3.8. □
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The above results establish the exponential convergence of the Sobolev PGD
for problem (7.22) for any 𝛿 ≥ 0. Numerical evidence shows that the Sobolev
PGD for this problem converges very well just as the original Gross-Pitaevskii
eigenproblem. This is a demonstration that the Sobolev gradient descent
has the potential to be generalized to study some continuous or discrete
high-degree optimization problems. We believe that this method has the
potential to be extended to a broader class of problems as long as certain
assumptions are satisfied, which is left for our future work.

7.6 Numerical experiments

In this section, we demonstrate the convergence of the Sobolev PGD method
using some numerical examples. We show that exponential convergence
rate is attained both for the original eigenproblem (7.1) and for its extension
(7.22). We also observe and discuss some interesting phenomena that one
may encounter in numerical experiments.

Gross-Pitaevskii eigenproblem in 2D.

We first look at the Gross-Pitaevskii eigenproblem (7.1) in two dimensions.
Let the domain be Ω = [−1, 1]2 ⊂ R2 with Dirichlet boundary condition. The
problems are discretized with P1 Lagrange finite element method. The grid
is a uniform grid with fixed size ℎ = 2 · 2−8 throughout this section.

The first example is a single well potential𝑉 (𝑥) = 1
2 |𝑥 |

2. It is well known that
the Anderson localization [6] is present in this setting. We set 𝛽 = 1. The
initial guess 𝑧0 is chosen as the eigenvector corresponding to the smallest
eigenvalue of A0. It is strictly positive over the whole domain Ω. The step
size is 𝜏 = 1.

Figure 7.1a shows the profile of the potential 𝑉 (𝑥). Figure 7.1b is the profile
of the computed ground state with 𝛽 = 1. Figure 7.1c displays the log 𝐻1-
error convergence log10(∥𝑢𝑛 − 𝑣∥𝐻1/∥𝑣∥𝐻1). It can be seen that the Sobolev
PGD converges in just a few steps with an exponential (linear) convergence
rate.

By increasing 𝛽, there is a greater nonlinearity in the problem. When 𝛽 ≫ 1,
the quartic term 𝛽

2 |𝑢 |
4 would dominate the energy functional (7.2). This

would be a significant barrier to some traditional methods. Yet the Sobolev
PGD remains stable and fast. Figures 7.2a to 7.2d show the log 𝐻1-error con-
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(a) Single well potential
𝑉 (𝑥) = 1

2 |𝑥 |
2

(b) Ground state when 𝛽 =

1

(c) Log 𝐻1-error conver-
gence

Figure 7.1: Example of (7.1) with single well potential 𝑉 = 1
2 |𝑥 |

2 and 𝛽 = 1.

vergence and the profiles of the respective ground states with 𝛽 = 10 and
𝛽 = 100 respectively. With the Sobolev PGD, there is only a mild increase
in the computational complexity, and the iteration still converges exponen-
tially fast as predicted.

(a) Ground state when 𝛽 =

10

(b) Convergence when
𝛽 = 10

(c) Ground state when 𝛽 =

100

(d) Convergence when
𝛽 = 100

Figure 7.2: Example of (7.1) with single well potential 𝑉 = 1
2 |𝑥 |

2 and 𝛽 = 10
or 100.

Localization under the disordered potential.

The second example is a disordered potential 𝑉 . Its fully discrete coun-
terpart, the randomized potential on the lattice Z𝑑 , has been extensively
studied for its rich behaviour in spectral gaps, exponential localization of
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eigenstates near the bottom of the spectrum, and implications about the
“mobility edge” conjecture in quantum physics and random matrix theory
[48, 60].

In our semi-lattice example, the localization of the ground state is also present.
In the experiment,𝑉 (𝑥) is generated as follows. The extent of disorder is de-
termined by a parameter 𝐾 = 50. This means that the domain Ω is divided
into 𝐾 × 𝐾 cells. The value of V(x) in each cell is either 1 or 1/𝐾2, randomly
chosen with equal probability.

Figure 7.3a shows the profile of 𝑉 (𝑥). Figure 7.3b displays the computed
ground state with 𝛽 = 0.5. It can be seen that the ground state is concen-
trated in a small region whose diameter is about a few times the interac-
tion length of the disorder. Figure 7.3c shows the convergence rate of the
Sobolev PGD iteration for this example.

To facilitate convergence, we have chosen 𝜏 = 1.5. Although Theorem 7.3.14
requires a small 𝜏, in the numerical experiments we find that choosing 𝜏 > 1
results in significantly faster convergence. This is in accordance with the
empirical findings of [72].

(a) Profile of the disor-
dered potential

(b) Profile of the ground
state

(c) Log 𝐻1-error conver-
gence

Figure 7.3: Example of (7.1) with a disordered potential and 𝛽 = 0.5.

Asymptotic escape of Sobolev PGD from saddle states.

It is interesting to look at the asymptotic behaviour of the Sobolev gradient
descent method if starting from a non-positive initial value. Recall that The-
orem 7.3.14 only ensures exponential convergence to the global ground state
from 𝑢0 ≥ 0. When this condition is violated, it is a priori unknown what
the iteration will converge to. It is possible that there are other spurious
fixed points, including local minimizers and saddle points. The first-order
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condition ensures that all these spurious fixed points are eigenstates. But
the convergence rate to such points is unknown.

As for the spatially discretized case, the Hilbert manifoldM becomes a Rie-
mannian manifold, and the spectra of the operators become finite. As is
proved in Chapter 3 and references therein, a random initialization almost
surely avoids saddles and converges only to local or global minimizers. It
means that if an excited state is a strict saddle point, then a random ini-
tialization is very unlikely to converge to that state. As for the spatially
continuous case, it is reasonable to expect the same phenomenon, although
the analysis could be more difficult due to the infinite dimension ofM and
the infinite number of eigenstates.

In the subsequent numerical experiments, we let 𝑉 (𝑥) = 1
2 |𝑥 |

2 and 𝛽 = 100.
We will use an example to show that for an excited state that is a strict
saddle, it has a very thin converging set close to measure zero. Thus, using
Sobolev PGD to compute excited states could be unstable. The accuracy of
the computed excited states could be limited.

First, we let the initialization 𝑢0 be the second-smallest eigenvector of A0.
This 𝑢0 is positive on half of Ω and negative on the other half. It is displayed
in Figure 7.4a. We then let Sobolev PGD iterate a few steps. Figure 7.4b
displays the computed state 𝑢∗ when the algorithm stops. Figure 7.4c shows
the decrease of the log 𝐿2 error with respect to 𝑢∗. We also compute the
manifold Hessian at 𝑢∗ and find that it has at least one negative eigenvalue.
Thus 𝑢∗ is a strict saddle state.

(a) Profile of initial state 𝑢0 (b) Profile of computed
state 𝑢∗

(c) Log 𝐻1-error conver-
gence

Figure 7.4: Behavior of Sobolev PGD for (7.1) with 𝑢0 ̸≥ 0.

Next, we add a small perturbation to 𝑢0: we let �̂�0 = 𝑢0 + 𝜖 · [, where [ is a
random noise that is of the same order as 𝑢0, and the parameter 𝜖 controls
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(a) Noise level 𝜖 = 10−2 (b) Noise level 𝜖 = 10−3 (c) Noise level 𝜖 = 10−4

(d) Profile of �̂�0 = 𝑢0 +
10−4[

(e) Profile of computed
state starting from �̂�0

Figure 7.5: Asymptotic escape from saddle state under small perturbations.
Figures (a)–(c) displays the distances to the saddle state 𝑢∗ starting from
�̂�0 = 𝑢0 + 𝜖 · [.

the magnitude of noise. We let Sobolev PGD start from �̂�0 and trace its
evolution. What we observe is that, as long as there is a small perturbation,
Sobolev PGD escapes from the previous saddle state and converges to the
ground state. The parameter 𝜖 can be chosen as small as 10−4 and this effect
is still present.

Specifically, Figures 7.5a to 7.5c demonstrate the evolution of the log-distance
to the precomputed closest excited state 𝑢∗. We choose 𝜖 = 10−2, 10−3, and
10−4, respectively. Saddle escape behavior can be observed in all three cases.
We can see that the distance to the excited state first goes down, then goes
up. Figure 7.5e show the computed state starting from �̂�0, and it is the
ground state.

In general, first-order optimization methods, including Sobolev PGD as
well as other methods in the gradient descent family, are not good choices
for the computation of excited states. They rely on a good enough initial-
ization (like the above 𝑢0 without noise) and could suffer from numerical
instability issues. One has to resort to other methods if the goal is to obtain
high accuracy. This would be an interesting topic for future research.
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High-order interaction.

We now look at Problem (7.22) with an extra high-order interaction term.
This adds additional nonlinearity to the problem. Consider the same do-
main Ω = [−1, 1]2 ⊂ R2 and spatial discretization size ℎ = 2 · 2−8. Let
𝑉 (𝑥) = 1

2 |𝑥 |
2 still be the single well potential. The first example is 𝛽 = 10

and 𝛿 = 1. Figure 7.6a shows the log error convergence. The iteration con-
verges in a few steps and shows a good convergence rate.

In the second example, we increase 𝛿 and look at the problem with strong
high-order interaction. We choose 𝛽 = 100 and 𝛿 = 100. Figure 7.6b shows
the log error convergence. The convergence rate is slower but stable.

(a) Convergence when 𝛽 =

10, 𝛿 = 1
(b) Convergence when 𝛽 =

100, 𝛿 = 100

Figure 7.6: Examples of (7.22) with different nonlinear effects

7.7 Discussion

In this chapter, we analyzed the exponential convergence of the 𝑎𝑢-Sobolev
gradient descent method without resorting to the time-continuous gradient
flow. To this purpose, we introduced a general convergence tool using the
Łojasiewicz inequality, and adapted it to the setting of infinite dimensional
Hilbert manifold and mixed norms. By proving the (L), (D), and (S) condi-
tions for the Sobolev PGD, we were able to unveil the mechanism behind
the good performance of the Sobolev PGD for the Gross-Pitaevskii eigen-
problem (7.1), which was only empirically observed in previous works.

The success of the Sobolev PGD on the Gross-Pitaevskii eigenproblem in-
spires us to further explore alternative fast solvers for more general nonlin-
ear eigenproblems and optimizations with high-degree objective functions.
Our analysis revealed that the essential condition is the “double ground
state” property, namely the ground state of the nonlinear problem is also
the unique ground state of the linearized operator at that point. This can be



199

rigorously proved in some cases and seems to be true in a number of phys-
ical applications of interest based on empirical evidence. Specifically, we
showed that this condition is satisfied for a nonlinear Schrödinger eigen-
problem with extra high-order interaction term. Thus the Sobolev PGD
works well for this problem and has superiority over previous methods.
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