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ABSTRACT

The renormalization group (RG) is an essential technique in statistical physics and
quantum field theory, which considers scale-invariant properties of physical theories
and how these theories’ parameters change with scaling. Deep learning is a powerful
computational technique that uses multi-layered neural networks to solve a myriad of
complicated problems. Previous research suggests the possibility that unsupervised
deep learning may be a form of RG flow, by being a layer-by-layer coarse graining
of the original data. We examined this connection on a more rigorous basis for the
simple example of Kadanoff block renormalization of the 2D nearest-neighbor Ising
model, with our deep learning accomplished via Restricted Boltzmann Machines
(RBMs). We developed extensive renormalization techniques for the 1D and 2D
Ising model to provide a baseline for comparison. For the 1D Ising model, we
successfully used Adam optimization on a correlation length loss function to learn
the group flow, yielding results consistent with the analytical model for infinite N.
For the 2D Ising model, we successfully generated Ising model samples using the
Wolff algorithm, and performed the group flow using a quasi-deterministic method,
validating these results by calculating the critical exponent a. We then examined
RBM learning of the Ising model layer by layer, finding a blocking structure in the
learning that is qualitatively similar to RG. Lastly, we directly compared the weights
of each layer from the learning to Ising spin renormalization, but found quantitative
inconsistencies for the simple case of nearest-neighbor Ising models.
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C h a p t e r 1

INTRODUCTION

Within quantum field theory and statistical physics, it is often necessary to change
parameters within a theory in order to treat infinities and correct for the effects of self-
interactions. This technique is called renormalization. In general, renormalization
arises when there are problems of scale, where parameters describing a process at
short-distance scales may disagree with those describing a process at long-distance
scales. This idea can be generalized, forming the concept of the renormalization
group (RG): the apparatus which allows us to deal with multi-scale features in
physics.

Most phenomena have features that are characterized by multiple scales, and near
certain critical points, the dynamics of these phenomena become scale-invariant.
This implies that we can take a theory with some parameters when examined at
small scales near a critical point, and instead examine it at coarser scale with
new, "renormalized" parameters. Usually, this results in fewer relevant parameters
being needed to describe the dynamics. This process is called an "RG flow". RG
flows show that even systems that are microscopically different can have similar
macroscopic behaviors. Due to this, we can define a class of systems consisting of
all systems with the same renormalization parameters: the "universality class" of
a model. Models in the same class can apply to any number of fields, including
statistical mechanics, quantum behavior, social dynamics, or even the stock market
[15].

Deep learning is another useful technique used in all areas of physics. It uses multiple
layers of representations to learn features directly from training data, allowing for
massive improvements in image processing [11], language modeling [14], and more
[16]. In particular, we focus on algorithms known as Deep Neural Networks (DNNs),
graphical statistical models where each layer receives inputs from the layer before
them. DNNs have shown massive success, but it is still not completely theoretically
understood why they work so well.

In a 2014 paper [16], Mehta and Schwab argued that one reason DNNs work so
well is because they perform an effective coarse-graining of the training data, in the
same way that an RG flow does. In particular, they claimed that an exact mapping
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exists between the RG flow of the one and two dimensional Ising models and a
DNN comprised of stacks of "Restricted Boltzmann Machines" (RBMs) (one of the
simplest possible DNNs). This claim was controversial [13, 19], warranting further
discussion.

The Ising model was chosen because it is a simple model to which renormalization
group flows can be applied. It is a classical model that is directly solvable in
the one-dimensional case, with a simple Hamiltonian that only depends on spins,
interaction strength, and magnetic field. Because the model is simple, we are able
to more easily prove results for the Ising model, results which can be generalized to
the entire Ising universality class. This includes models not just in physics, but also
models in medicine, sociology, and economics [2, 4].

The one dimensional Ising Model RG flow can be solved exactly using easy formulas,
although the model does not contain any non-trivial critical behavior. One can use
this exact solution to show mathematically that RG flow has a one-to-one mapping
with stacks of RBMs. One may also apply RBM learning to the 2D Ising model,
yielding a weight plot that gives results similar to the two dimensional Ising RG
flow [16] .

The existence of a connection between RG flow and deep learning could be a
paradigm shift in not just the field of physics, but also in other data-driven fields that
rely on similar renormalization or learning techniques. The work showing that there
is a mapping between RBMs and RG flow in the one dimensional Ising model is
promising, and the similarities in deep learning in the 2D Ising model to renormal-
ization group flow is compelling. Other studies in group theory, renormalization,
and deep learning also suggest a compelling connection [3, 17].

We thus re-examine the claims of [16] in detail, providing a "deep dive" into the
qualitative and quantitative nature of this question. To do so, for the remainder
of this chapter, we discuss in greater detail the specifics of RG flows and RBM
learning to provide the necessary background for the rest of the work. Then, we
develop techniques for renormalization group flows in the 1D and 2D Ising models to
provide a baseline to which we compare our RBM models, with the 1D Ising model
discussed in Chapter 2 and the 2D Ising model discussed in Chapter 3. Following
this, we use RBM learning to reconstruct the Ising model, and perform a qualitative
analysis of the weight structure in Chapter 4. Lastly, we combine the RG structure
and RBM structures to perform a quantitative analysis in Chapter 5 and reach our
general conclusions in Chapter 6. In addition, we include additional figures in
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Appendices A and B.

1.1 Renormalization Group Techniques

For a general renormalization group flow, we have some set of couplings { } that
fully characterize the system for one scale. Then, in applying the renormalization
group transformation, we receive a new set of couplings { 0} which preserve some
properties of the system. In order to perform a renormalization group flow, we must
be able to find all of the couplings { 0} as functions of the old couplings { }. These
new couplings will define a new, renormalized model.

Within the universality class of the 3-dimensional Ising model, we apply renor-
malization group flows via a block spin procedure: grouping spins together and
assigning a new spin to them based on the old ones. These groups of spins each
have a respective size 1. Within the group flow, we expect the free energy of the
system to follow the inhomogeneous transformation law

5 ({ }) = 6({ }) + 1�3 5 ({ 0}) (1.1)

and the correlation length of the system to follow the transformation law

b ({ 0}) = 1�1b ({ }), (1.2)

either of which can be used to calculate the new coupling constants { 0} [5].

We attempt to use these equations to perform accurate RG flows, in order to compare
the group flow results we get to RBM learning results. We apply some basic learning
techniques to perform accurate RG flows, first learning the 1D Ising model to check
the method’s validity, and then using it to calculate the RG flow of the 2D Ising
model. We run the learning in TensorFlow, a Python package for machine learning
[1], attempting to calculate the new coupling constants { 0} in terms of the old
ones, { }. To do so, we provide a loss function using either the free energy or the
correlation length, then provide the original free energy or correlation length of the
system, along with the original coupling constants and guesses for the new coupling
constants. Then, the machine learns how the coupling constant runs through Adam
optimization, a standard machine learning optimization algorithm [10, 18].

We also can run our method in reverse: inputting into the machine the running of
the coupling constant, and having it determine the Hamiltonian from this coupling
constant. This will allow us to see if the basic learning algorithm can learn locality
properties we consider essential to nature. We only did a simple exploration of this
for the 1D Ising model, however.
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1.2 The Restricted Boltzmann Machine

We use simple energy-based models called Restricted Boltzmann Machines (RBMs)
to analyze the connection between the RG and deep learning. Our following discus-
sion follows closely to that in [9, 16].

We consider RBMs that act on simple binary data drawn from a probability distri-
bution %({E8)}) with {E8} a set of # binary "visible" spins indexed by 8 = 1, ..., # .
For example, the data could consists of a black and white picture, with black pixels
being denoted as 1 and white pixels being denoted as 0. Similarly, the data could be
Ising spins.

RBMs model the data by introducing a new set of "hidden" spins, {⌘ 9 }, a set of "
binary spins indexed by 9 = 1, ...," . These spins couple to the visible spins through
the following energy function:

⇢ ({E8}, {⌘ 9 }) =
’
9

1 9 ⌘ 9 +
’
8 9

E8F8 9 ⌘ 9 +
’
8

E808, (1.3)

where _ = {1 9 ,F8 9 , 08} forms the variational parameters of the model, with F8 9
falling between �1 and 1. The joint distribution for a given set of {E8} and {⌘ 9 } is
then given in the expected form from statistical mechanics:

?_ ({E8}, {⌘ 9 }) =
exp(�⇢ ({E8}, {⌘ 9 }))

/
, (1.4)

where / denotes the relevant partition factor. We can thus define marginal distribu-
tions for both visible spins,

?_ ({E8}) = Tr⌘ 9
⇢exp(�⇢ ({E8}, {⌘ 9 }))

/

�
, (1.5)

and hidden spins

?_ ({⌘ 9 }) = TrE8
⇢exp(�⇢ ({E8}, {⌘ 9 }))

/

�
. (1.6)

From this, we can define new variational Hamiltonians as follows for the visible
spins,

?_ ({E8}) =
exp(��'⌫" ({E8}))

/
, (1.7)

and the hidden spins

?_ ({E8}) =
exp(��'⌫" ({⌘ 9 }))

/
. (1.8)
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For unsupervised learning, RBM parameters are generally chosen to minimize
the Kullback-Leibler divergence between the actual distribution %({E8}) and the
estimated one ?_ ({E8}):

⇡ ! (%({E8}) | |?_ ({E8})) = TrE8
⇢
%({E8}) log

✓
%({E8})
?_ ({E8})

◆�
. (1.9)

Of course, when the RBM reproduces the visible data exactly,

⇡ ! (%({E8}) | |?_ ({E8})) = 0. (1.10)

However, minimizing ⇡ ! (%({E8}) | |?_ ({E8})) cannot be done analytically in most
cases. Instead, we minimize the Contrastive Divergence, the difference between two
Kullback-Leibler functions, given by

⇠⇡1 = ⇡ ! (%({E8}) | |?_ ({E8})) � ⇡ ! (%({E8}) | |?_,1({E8})), [6, 8] (1.11)

where ?_,1({E8}) is a sample of the distribution ?_ ({E8}). We minimize this equation
because it is easier to approximate the gradient of this function than just the Kullback-
Leibler function. Then, we can minimize the function using stochastic gradient
descent with momentum, another standard machine learning optimization algorithm
[18].

To do so, we convert our weight tensors to to binary spins. It suffices to generate
64 numbers =8 9 between 0 and 1, then convert =8 9 > .5 to 1 and the rest to 0. In
particular, we convert the weight tensor values to the range [0, 1] via the logistic
function:

f(F) = 1
1 + 4�F (1.12)

Thus, a large positive weight is close to 1, a large negative weight is close to 0, and
a zero weight is .5.

We can thus construct a probability distribution from the hidden variables using

pHid 9 = f(⌘ 9 ), (1.13)

and take a random sample from this distribution, denoted sampHid 9 . We can then
define a new reconstructed lattice of

vReco8 =
’
9

F)8 9 · sampHid 9 (1.14)
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and reconstructed hidden weights of

pHidReco 9 =
’
8

f(F8 9 · vReco8). (1.15)

From these distributions, the approximate gradient used in learning is given by

rF8 9 ⇡ hE8 ⌦ pHid 9 � vReco8 ⌦ pHidReco 9 i. (1.16)

To make this learning "deep", these RBMs are stacked upon one another, such that
the hidden layer of the first RBM is the visible layer of the second RBM, and so
on. To do so, one maps a visible spin configuration to a hidden configuration using
pHid 9 . Then, the hidden spins’ response to the visible spins can be treated as a new
layer, and the cycle continues.
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C h a p t e r 2

PRELIMINARY CONNECTIONS IN THE ONE DIMENSIONAL
ISING MODEL

2.1 Methods

In the one dimensional Ising model, the renormalization group flow is exactly
solvable. In particular, this model contains #0 classical spins, with each spin taking
a value of either 1 or -1. The Hamiltonian is a nearest-neighbor Hamiltonian, given
by

�0 = � 
#0�1’
:=0

B:0 B
:+1
0 . (2.1)

Here, we take  = 1 without loss of generality, absorbing it into the inverse
temperature V0. We assume periodic boundary conditions, in which B00 = B#0 . [5]

From the Hamiltonian, we may calculate the partition function

/ (V0) = TrB04
�V0�0 . (2.2)

We may then calculate the free energy

50(V0) = � 1
#0

log(/ (V0)), (2.3)

which has an analytical value of

50(V0) = � 1
#0

log
⇣
(2 cosh V0)#0 + (2 sinh V0)#0

⌘
. (2.4)

We can also derive an analytical expression for the correlation length of the model,
given by

b0(V0) =
2

log tanh V0
, (2.5)

where 2 = �1 for simplicity (this constant does not affect the group flow).

In applying the renormalization flow using blocks of 1 spins, we yield a new system
with #1 = #0/1 sites and a new inverse temperature V1(V0). Similarly to Equations
2.1-2.4, we may define for these new parameters a new Hamiltonian

�1 = � 
#1�1’
:=0

B:1 B
:+1
1 , (2.6)
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a new free energy

51(V1) = � 1
#1

log((2 cosh(V1)#1 + (2 sinh V1)#1), (2.7)

and a new correlation length

b1(V1) =
2

log tanh V1
, (2.8)

where 2 = �1 for consistency.

We thus have a way to calculate free energies and correlation lengths directly from
the temperatures, allowing for them to be calculated in loss functions. To create a
free energy loss function, we note that equation 1.1 becomes

50(V0) = 61(V0) + 51(V1)/1, (2.9)

and we can minimize the loss function

! (V1) = 50(V0) � 61(V0) � 51(V1)/1. (2.10)

Alternatively, we also know that

b1(V1) = 1�1b0(V0), (2.11)

and we can thus minimize a loss function defined by

! (V1) = 1 ·
�1

log tanh V1
+ 1

log tanh V0
, (2.12)

This running of the coupling constant is analytically solvable, so we can validate
our results. We have that:

V1(V0) = tanh�1(tanh(V0)1) (2.13)

and

61(V0) =
log(cosh(V1))

1
� log(cosh(V0)) �

1 � 1
1

log(2) [5]. (2.14)

The main loss function we use for the 1D Ising model is the correlation length loss
function, equation 2.12. We use equations 2.5 and 2.8 to attempt to learn equation
2.13 through this loss function. Alternatively, we may also use equation 2.10 as a
free energy loss function. Then, we’d use equations 2.4, 2.7 to attempt to derive
equations 2.13 and 2.14. In addition, we also use the analytical forms of equation
2.4, 2.7, 2.13 and 2.14, along with an L1 regularization loss function, to attempt to
learn the Hamiltonian couplings in equation 2.6. Due to the fact that all of these
cases have analytical solutions, we can then check our results against the analytical
solutions to see how well or how poorly the learning has done.
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(a) 1 = 2 (b) 1 = 5 (c) 1 = 25

Figure 2.1: Comparison of the analytical results and learned results from RG flow
for different 1 values, using the correlation length loss function given in Equation
2.12. Graphs on the top indicate the difference between the real correlation lengths
and the learned ones: a measure of how well the loss function is minimized. The
bottom graph compares the actual running of the coupling constant V1 to the learned
value. We successfully learn the running of the coupling constant for each 1 value,
while running into a few problems at low V0.

2.2 Results

The results using the correlation length loss function given in Equation 2.12 are
shown in Figure 2.1. For the most part, our learning model works perfectly, with no
way to tell the difference between the learned function and the analytical function.
The running of the coupling constant is successfully learned and this works for 1
values up to 100.

There are a couple of minor problems in this model, however. For whatever reason,
the loss function has trouble with learning on the lower values of V, with the function
returning undefined values instead of actual numbers. This is likely a computing
issue. Additionally, the correlation length model only applies to infinite systems, as
the analytical correlation length value is defined for a infinite system. Given that all
our 2D Ising model results deal with finite systems, it would be useful to also have
a model using a finite system.

We attempted to do this using the free energy loss function Equation 2.10, finding
estimations for equations 2.13 and 2.14. We are able to do it for V0 values between
.2 and 2, for up to #0 = 1024. Higher than that, we run into overflow problems in
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Figure 2.2: Comparison of the analytical results and learned results from RG flow
for 1D Ising using the free energy loss function Equation 2.10 at #0 = 32. We let
#0 = 32, 1 = 2, evaluated the loss function over four iterations of the renormalization
group, guessed V1 = .2, 61 = 0, and ran over 1000 epochs at a learning rate of .005.
The results for both V1 and 61 seem to match the analytical results very well, and so
the learning is working successfully in this case.

the analytical solutions.

For the case of low #0, we were able to yield learning results that were good. In
Figure 2.2, we let #0 = 32, 1 = 2, evaluated the loss function over four iterations of
the renormalization group, guessed V1 = .2, 61 = 0, and ran over 1000 epochs at a
learning rate of .005. As can be seen here, the results for both V1 and 61 seem to
match the analytical results very well, and so the learning is working successfully
in this case.

However, for most other cases, these results are less good, and are instead highly
dependent on our starting values for V1, 61. In Figure 2.3, we let #0 = 512, 1 =

2, evaluating the loss function over five iterations of the renormalization group,
guessing V1 = .2, 61 = 0, and running over 1000 epochs at a learning rate of .005.
These results are quite poor, with the model over-predicting V1 and under-predicting
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Figure 2.3: Comparison of the analytical results and learned results from RG flow
for 1D Ising using the free energy loss function Equation 2.10 at #0 = 512, a poor
fit. The case where we let #0 = 512, 1 = 2, evaluated the loss function over five
iterations of the renormalization group, guessed V1 = .2, 61 = 0, and ran over 1000
epochs at a learning rate of .005. These results are quite poor, with the model over-
predicting V1 and under-predicting 60, even though the free energy is minimized.

60, even though the free energy is minimized. Other results in other parameter
spaces show similar patterns, with one of the parameters overestimated and the
other underestimated. This usually means that very precise guesses are needed to
properly learn the functions. For example, in the #0 = 512 case, we can change our
initial guesses to V1 = .833(V0 � .2) + .1 and 61 = .444(V0 � .2) + .4, yielding the
results in 2.4.

These results suggest a general under-constraining of our learning that seems to be
resultant from trying to calculate two values, V1, 61 from our singular loss function.
This is, of course to be expected when using a single inhomogeneous equation to
determine two functions. It is yet unclear as to how to resolve such an issue. Perhaps
this method could be combined with using the correlation length method in order to
learn both functions successfully.
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Figure 2.4: Comparison of the analytical results and learned results from RG flow
for 1D Ising using the free energy loss function Equation 2.10 at #0 = 512, a good fit.
The case where we let#0 = 512, 1 = 2, evaluated the loss function over five iterations
of the renormalization group, guessed V1 = .833(V0� .2)+ .1, 61 = .444(V0� .2)+ .4,
and ran over 1000 epochs at a learning rate of .005. These results are much better
than those in Figure 2.3, showing the importance of good starting guesses to resolve
under-constraining problems.

In addition, we also performed a method where we learned the renormalized Hamil-
tonian from the running of the coupling constant, letting the Hamiltonian be any
possible coupling of the spin pairs and using the same free energy loss function as
in equation 2.10. This was only run for the #0 = 16 case, as higher spin values
lead to computational problems that have not yet been resolved, due to the high
amount of coupling constants. Here, we let V0 go from .2 to 2, and initialize with a
random coupling matrix with standard deviation of .2. We run for 2000 epochs with
a learning rate of .001 and a L1 value of 5. The results of the learning are shown in
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Figure 2.5: Learning the renormalized Hamiltonian. Here, we let V0 go from .2
to 2, and initialize with a random coupling matrix with standard deviation of .2.
Although the couplings aren’t fully correct (they are given in equation 2.15), the
resultant Hamiltonian does have an average non-zero correlation number of 2 and 8
total couplings, just like the 1D Ising model should.

Figure 2.5. The recovered coupling matrix is given by

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0. 0. 0. 0. 0. 0. 0. 1.07
0. 0. 0.84 0. 0. 0.84 0. 0.
0. 0. 0. 0. 0. 0.85 1.23 0.
0. 0. 0. 0. 0.97 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.63 0.9
0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

(2.15)

Obviously, this result is not the same as the correct coupling matrix, but it does have
an average non-zero correlation number of 2 and 8 total couplings, just like the 1D
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Ising model. Thus, results seem promising to at least derive some dynamics from
renormalization group flows, but more work should be done in this topic. Once
again, perhaps this method could be combined with using the correlation length
method in order to learn the coupling successfully.

Additionally, current progress in using the free energy loss function is hampered
by overflow errors in the analytical solutions, making it impossible to reasonably
calculate systems with #0 > 1024 when we learn the group flow. Additionally,
when we attempt to learn the Hamiltonian from the group flow, we run into larger
scaling errors, as the number of parameters needed gets absurdly high for #0 > 16.
Further efforts may be done to expand the learning to as large of finite models as
possible.
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C h a p t e r 3

RENORMALIZATION TECHNIQUES IN THE TWO
DIMENSIONAL ISING MODEL

3.1 Methods

For the 2-dimensional Ising model, we consider a model with #2 classical spins on
an # by # lattice, where each spin B[8, 9] takes on a value +1 or �1. Using nearest
neighbor couplings, we get a Hamiltonian of the form

�0 = � 1

#�1’
8=0

#�1’
9=0

’
h==i

B[8, 9]B[==], (3.1)

where h==i means to sum over all nearest neighbors such that each possible spin-spin
coupling only occurs in the sum once. The overall coupling constant  1 we take to
be 1, as we absorb it into the inverse temperature V = 1/) . We also assume periodic
boundary conditions.

Unfortunately, for the two dimensional Ising model, there are not analytical solu-
tions for the free energy, correlation length, or the general transformation laws in
equation 1.1. This presents us with two main questions we must answer to per-
form the group flow: namely, how to create and validate accurate computational
samples of the nearest-neighbor 2D Ising model and how to actually accomplish
the renormalization. To generate samples, we use an algorithm known as the Wolff
algorithm [12] and we use the critical exponent a to validate it. We then perform
the renormalization directly by changing the spins of each 1 by 1 block according
to an algorithm, and then using either an analytical or machine learning method to
yield V1(V0). These two techniques are discussed below.

Wolff Algorithm

There are multiple Monte Carlo methods that are used in the generation of rep-
resentative Ising model samples. Away from the critical temperature, the typical
Metropolis algorithm works well for the Ising model. Here, a random spin is flipped,
and then the algorithm either accepts or rejects the new spin with probability

? = min(1,�4�V�⇢ ). (3.2)

Over many epochs, the algorithm gives representative results at temperatures away
from the critical temperature.
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However, near the critical temperature, this algorithm is extremely slow and in-
efficient. Instead, we use a cluster algorithm called the Wolff algorithm, which is
specifically designed for dealing with Ising model critical behaviors. This algorithm
begins by choosing a random spin within the lattice, and then establishing bonds
between nearest neighbors with the same spin with a probability of

? = 1 � 4�2V� . (3.3)

It then proceeds to do this for each nearest neighbor spins, adding them to a stack
and flipping their signs to avoid repeats. This proceeds until there are no more
nearest neighbors or a stack maximum is hit. Over many epochs, this can quickly
produce effective samples near the critical temperature for the 2D Ising model. [12]

In order to confirm that our models are representative of the 2D Ising model,
we calculate the model’s critical exponent a from the data’s correlation lengths.
The correlation length is defined by computing the 2-point spin-spin correlator
hB(0)B(A)i, where B(0) is defined as B(0) = B[0, 0] and B(A) is a distance A away,
where A is the shortest distance between the two spins. To find the correlation length,
we then fit to the form

hB(0)B(A)i =
⇣ 0

0 + A
⌘1/4

4�A/b , (3.4)

where 0 is a parameter on the order of the lattice spacing, included to ensure
hB(0)B(A)i = 1. We choose 0 = .2 for a 64 by 64 grid, as we determined this value
to fit the best empirically.

For the infinite nearest neighbor Ising model, we expect this correlation length to
diverge at a critical temperature )2 = 2.269 or V2 = .44. As we approach this critical
temperature, b ! 1, and for A >> 0 (as expected), we thus have

lim
)!)2

hB(0)B(A)i = 1
A1/4 , (3.5)

which describes the universal behavior of the universality class of the 2D Ising
model.

In order to then calculate the critical exponent a, we can then fit the temperature
dependence of the correlation length to the form

b ()) = 2() � )2)�a, (3.6)

where simulated results show that 2 ⇡ 1. The critical exponent a here should be 1
in the critical limit: where # ! 1 and ) ! )2. [5]
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By fitting to these critical exponent functions, we are able to see if the Wolff
algorithm produces samples as expected; while noting that the effective critical
temperature )2 may be slightly different due to the finiteness of our model.

Renormalization Group Flow

For the renormalization group flow, we take Ising models at temperatures slightly
higher than )2, such that we are still in the critical limit. We then proceed using
block spinning of our # by # lattice, where we replace blocks of 1 by 1 spins with
a single spin. The model thus becomes a lattice of #/1 by #/1 spins.

There are two methods we use for this block spinning algorithm. The first is a
quasi-deterministic method, determined by the average of the spins in the 1 by 1
block. If the average is positive, we set the spin to 1. If it is negative, we set the spin
to -1. If it is 0, we set it to 1 or -1 with equal probability.

The second method is called a "Hinton-like" method, as it is structured to be
analogous to Hinton’s RBM networks. In this method, for a given block, we define
B0E as the average spin, and F as some nonnegative parameter. We then set the block
spin to 1 with probability

% =
1

1 + 4�B0E ·F , (3.7)

and to -1 otherwise. If we let F ! 1, this "Hinton-like" method then becomes
the quasi-deterministic one. Due to this, we actually only implement the Hinton-
method, but take F large to test out this quasi-deterministic method.

With this step complete, we must also calculate the running of the coupling constant
V. However, this presents us with a problem. In the 2D Ising model, the nearest-
neighbor Hamiltonian 3.1 does not, in general, block spin into a nearest-neighbor
Hamiltonian. Instead, it block-spins into a model with next-to-nearest neighbor
couplings. This new Hamiltonian is given by

�0 = � 1

#�1’
8=0

#�1’
9=0

’
h==i

B[8, 9]B[==] �  2

#�1’
8=0

#�1’
9=0

’
h===i

B[8, 9]B[===], (3.8)

where h===i means to sum over all next-to-nearest neighbors such that each possible
spin-spin coupling only occurs in the sum once. This means we’re actually in a 2D-
space, with the running of V ·  1 and V ·  2. We choose to assume V ·  2 << V ·  1

and pay attention only to the running of  1 · V, but this does not include the full
picture.
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In order to calculate the running of the coupling constant, we consider two possible
methods. The first method is using an analytical function developed by Maris and
Kadanoff. For 1 = 2, we have that

V1 =
U

4
log cosh(4V0), [7] (3.9)

where U = 1.604521.

A second method to calculate V1 is to use a method akin to that in Section 2.1, in
which we minimize a loss function based on the correlation lengths. Using critical
behavior described in equation 3.6, along with noting that equation 2.11 also holds
in 2D, we can define a loss function given by

! (V1) = 1 ·
1

1/V1 � )2
� 1

1/V0 � )2
, (3.10)

and minimize it using Adam optimization to produce the running of the coupling
constant.

From here, we can generate new Ising models that have gone through RG flow, and
we can validate them through calculating the critical exponent a as described in
Section 3.1. We can use this to compare the different methods of block spinning
and the different methods of calculating V, to find which is the most accurate.

3.2 Results

Wolff Algorithm

For the Wolff algorithm, we started by using Python code from Github that suc-
cessfully generates 2D Ising model examples using the Wolff algorithm [20], later
switching to C code that does the same thing but faster. One example of output
provided by such code is given in Figure 3.1, which has V = .395 and is run over
10000 epochs. As seen in the figure, the Ising model keeps its macroscopic proper-
ties after 10000 epochs. Running the algorithm longer will not change the behavior,
suggesting that 10000 epochs is enough to successfully train this value near the
critical point. This is true for all examined V, except V > .42, which must run over
20000 epochs. Running over this many epochs is essential as it allows us to train
many representative samples of the Ising model successfully.

For the validation of our model, we use a 64 by 64 Ising model. We first check that
the results are consistent with the Ising model, calculating the critical exponent a.
The results are given in Figure 3.2. The results are good, yielding a a value of 1.028



19

Figure 3.1: Generated example of the 2D Ising model from the Wolff algorithm
for V = .395. The Ising model keeps its macroscopic properties after these 10000
epochs. Running the algorithm longer will not change the behavior, suggesting that
10000 epochs is enough to successfully train this value near the critical point. This
is consistent for all V, except V > .42 must run for 20000 epochs.

Figure 3.2: Fitting the temperature dependence of the correlation length, allowing
for the calculation of a. The fit here is good, yielding a a value of 1.028 and a V2
value of .4388. The exact finite volume is calculated using the fitted value of V2
while the exact large volume uses the true value of V2 = .44. Results suggest a lower
critical temperature due to finiteness, but seem to validate the model.

and a V2 value of .4388. This seems reasonably consistent with the true a value of
1 and V2 value of .44.

However, models near criticality took much longer to run than expected for a critical
temperature of .44. This suggests to us that the effective critical inverse temperature
of the finite model is lower than .44, and is instead closer to .435. This is supported
further by the fact that values of the correlation length in the data are larger than 32
for V = .435, and that our fit yields a value smaller than .44. This could suggest an
effective critical temperature closer to .435, which we will find essential to note for
Section 3.2.
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(a) Optimization Method with V2 = .44 (b) Optimization Method with V2 = .435

Figure 3.3: Results of using Adam optimization for V1 compared to the Maris-
Kadanoff method. The optimization seems to fit to the loss function well in both
cases, as we would expect from Adam optimization. However, it is closer to Maris-
Kadanoff when we take a lower inverse critical temperature of V2 = .435 than
V2 = .44, yet is still very different.

Renormalization Group Flow

We proceeded using the validated model from Section 3.2 and performed four steps
(64 to 4) of a 1 = 2 RG flow on it for values of F = 20, F = 5 and F = 1. There are
several conclusions we can draw from the results of our flow, which are summarized
below.

The first conclusion we reach is that the best method for calculating the running of the
coupling constant V is given via optimization using the effective critical temperature
of the finite case. When we went through the first step of the group flow, we
compared fit results using three different values of V1: those calculated via the
Maris-Kadanoff equation, Equation 3.9, those using Adam optimization assuming
V2 = .44, and those using Adam optimization assuming V2 = .435 (as suggested by
results from Section 3.2). Comparisons of the V1 values are shown in Figure 3.3 and
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(a) Maris-Kadanoff Method (b) Optimization Method with V2 = .44

(c) Optimization Method with V2 = .435

Figure 3.4: Fitting the temperature dependence of the correlation length of renor-
malized data, allowing for the calculation of a, by method of calculating V1 values.
All figures are calculated for # = 64 and F = 20. The a value for Figure 3.4a
is a = .986, for Figure 3.4b is a = 1.107, and for Figure 3.4c is a = 0.999. The
fits seem to be best when we use learning methods with a lower critical inverse
temperature of V2 = .435, and worst when we use it with V2 = .44. Maris-Kadanoff
is in the middle of the two, suggesting the importance of accounting for finiteness
lowering the inverse effective critical temperature.
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the actual fits of these values are shown in Figure 3.4, where we assume F = 20.
The a value for Maris-Kadanoff is a = .986, for V2 = .44 optimization is a = 1.107,
and for V2 = .435 optimization is a = 0.999. The fits seem to be best when we
use learning methods with a lower critical inverse temperature of V2 = .435, and
worst when we use it with V2 = .44. Maris-Kadanoff is in the middle of the two.
This suggests that the finite nature of our Ising model pushes the effective critical
temperature closer to V2 = .435 than V2 = .44

The second conclusion we reach is that block spinning in the pseudo-deterministic
limit is more accurate than Hinton-like block spinning. When we went through the
first step of the group flow, we compared fit results using three different values of
F: F = 20, F = 5, F = 1. These results for using V2 = .435 optimization are
shown in Figure 3.5. The a value for Figure 3.5a is a = .999, for Figure 3.5b is
a = .987, and Figure 3.5c is a = 0. The fits seem to be best when we use methods
in the pseudo-deterministic limit, and that they get worse as we get more and more
Hinton-like. This can lead to dramatic problems in the fit for low F; F = 1 is not a
valid renormalization group flow for the Ising model. This suggests problems with
RBM learning, if it is more similar to low F Hinton learning than high F Hinton
learning.

Lastly, we can conclude that the renormalization group flow is pretty accurate for the
first two steps, assuming F = 20 and we use V2 = .435 optimization to calculate the
V1 values. After that, the renormalization group flow seems to get less reasonable.
This can be seen in Figure 3.6 both visually and numerically, as the a value for
Figure 3.6a is a = .999, for Figure 3.6b is a = 0.93, for Figure 3.6c is a = .857, and
for Figure 3.6d is a = .698. As the renormalization group flow continues, the fits
get worse and worse, with a reasonable renormalization group flow for 2 iterations,
but not for the last two.

This of course, is expected, as we are working in a one-dimensional parameter
space when we should be working with a higher dimensional one. Allowing for
next-to-nearest neighbors, or changing critical temperatures in the optimization for
each layer may fix this.
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(a) F = 20 (b) F = 5

(c) F = 1

Figure 3.5: Fitting the temperature dependence of the correlation length of renor-
malized data, allowing for the calculation of a, by value of F. All figures are
calculated for # = 64 and using optimization with V2 = .435. The a value for
Figure 3.5a is a = .999, for Figure 3.5b is a = .987, and Figure 3.5c is a = 0. The
fits seem to be best when we use methods in the pseudo-deterministic limit, and
that they get worse as we get more and more Hinton-like. This can lead to dramatic
problems in the fit for low F; F = 1 is not a valid renormalization group flow for
the Ising model.
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(a) # = 32 (b) # = 16

(c) # = 8 (d) # = 4

Figure 3.6: Fitting the temperature dependence of the correlation length of renormal-
ized data after multiple renormalization group flow steps, allowing for the calculation
of a, by value of # . All figures are calculated for F = 20 and using optimization
with V2 = .435. The a value for Figure 3.6a is a = .999, for Figure 3.6b is a = 0.93,
for Figure 3.6c is a = .857, and for Figure 3.6d is a = .698. As the renormalization
group flow continues, the fits get worse and worse, but this is expected as we are
restricting the RG flow to one dimension. We have a reasonable RG flow for 2 iter-
ations, with it getting a bit worse after that. Allowing for next-to-nearest neighbors,
or double-checking critical temperatures may fix this.
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C h a p t e r 4

ANALYSIS OF THE DEEP LEARNING OF THE TWO
DIMENSIONAL ISING MODEL

4.1 Introduction

We now leave our discussion of the renormalization group to discuss the coarse-
graining of the Ising model through RBM learning. To do so, we implemented a
three-layer stack of Restricted Boltzmann Machines as described in Section 1.2, the
same way as in [16]. For simplicity and speed, we made these RBMs in TensorFlow.

We made 20,000 instantiations of a 64x64 = 4096 spin Ising model for varying V
values, produced by the Wolff algorithm discussed in 3.1. The first layer of the
RBM had 32x32 = 1024 nodes, the second had 16x16=256 nodes, and the third had
8x8=64 nodes. In this way, we mirrored the renormalization procedure as discussed
in Chapter 3.

The parameters of the learning are given in Table 4.1, chosen to match standard
deep learning procedures and the procedures in [16] to effectively learn the coarse-
graining of the Ising model. In particular, we use a non-zero L1 penalty on the
weights to sparsify the results and penalize over-fitting. Some authors consider this
to bias the results towards learning locality [13], but our goal is to more rigorously

Parameter Value(s)
V Values {.395, .4, 45, .41, .415, .42,

.425, .43}
Number of Lattices 20000
Epochs in Wolff Algorithm 10000 if V  .42, 20000 if

V � .425
Epochs in Learning 1500
Learning Rate .004
Learning Rate Reduction .998
L1 Regularization Weight .0008
Batch Size 200
Momentum .9

Table 4.1: Deep learning parameters for the RBM stacks. Parameters were chosen
to best reproduce the learning in [16]. In particular, we apply an L1 regulator to
penalize over-fitting, as is done in [16].
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examine the claims made in [16] with the regularization, so we continue to use the
regulator.

For the remainder of this chapter, we will discuss the results of this coarse-graining
on its own, in detail. Then, in Chapter 5, we discuss the results via numerical
comparisons to the previously discussed renormalization results.

In this chapter, we first discuss the reproduction of plots from [16] in detail in 4.2.
We then discuss the structure of the trained weights and how they can form blocks
in 4.3, followed by a deeper analysis of distances between spins in these blocks in
4.4. We conclude by using these results to analyze the use of the RBM network
as an autoencoder in 4.5. In the following analysis, we only present plots from our
V = .41 results, as this is the closest to the V = .408 used in [16]. However, we will
discuss how these results vary across V values. We also present the full set of plots
in Appendix A.

4.2 Receptive Field Analysis

Figure 4.1: Layer 1 receptive field plot for V = .41. Each individual plot represents a
node in Layer 1 and the values on the plot represents the full set of absolute weights
corresponding to that node. The clustering of non-zero weights next to each other
suggests the model is qualitatively learning some form of locality.

One of the main qualitative results from [16] were the "receptive field plots", which
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we have reproduced in Figures 4.1 and 4.2 for V = .41. To understand what these
plots represent, consider Layer 1. Each of the 32x32 = 1024 hidden nodes has an
associated tensor of 64x64= 4096 weights, one for each Ising spin input, with each
weight falling between �1 and 1. Figure 4.1 is a color map of the absolute values
of these weights for the first 36 nodes. Most of the 4096 weights are close to zero,
with a few O(1) weights that are clustered together in terms of the original lattice.

To yield a similar map for other layers, we define a tensor similar to that from
Layer 1: one which contains information on which of the original Ising spins fed
information to each Layer 3 hidden spin. To do so, we denote the Layer 3 weights
by F!3

83 93;82 92 where indices 83, 93 run 1, ...8 and 82, 92 run 1, ...16. In a similar vein,
we denote the Layer 2 weights by F!2

82 92;81 91 and the Layer 1 weights by F!2
81 91;8 9 , where

81, 91 run 1, ...32 and 8, 9 run 1, ...64. We can thus define the Layer 3 "receptive field
tensor" as

rec!3
83 93;8 9 =

’
82, 92,81, 91

F!3
83 93;82 92 · F

!2
82 92;81 91 · F

!1
81 91;8 9 . (4.1)

Similarly, we can define the Layer 2 and Layer 1 receptive field tensors as

rec!2
82 92;8 9 =

’
81, 91

F!2
82 92;81 91 · F

!1
81 91;8 9 , (4.2)

and
rec!1

81 91;8 9 = F
!1
81 91;8 9 . (4.3)

Thus, we can define receptive field maps for every layer. In particular, we examine
the Layer 3 receptive field, which is given for all Layer 3 spins, in Figure 4.2. The
Layer 3 receptive field plot is similar in structure to the Layer 1 receptive field plot,
except with larger weight clusters. This structure is similarly found for receptive
field plots of all the tested V values, as shown in Appendix A.1.

These figures form the basis of the argument in [16] that the trained network is
accomplishing a variation of Kadanoff block spinning layer by layer. In this inter-
pretation, each cluster of spins in the receptive field maps corresponds to a block in
the Ising lattice, and each RBM node can be converted into a form equivalent to an
Ising block-spinning.

We further clarify this argument by considering what an analogous plot would look
like using RG techniques instead of the RBM. To do so, we take our renormalization
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Figure 4.2: Layer 3 receptive field plot for V = .41. Each individual plot represents
a node in Layer 3 and the values on the plot are those of a tensor representing the
original Ising spins that fed information to the node. The clustering of non-zero
values next to each other suggests the model is qualitatively learning some form of
locality.

procedure from Chapter 3 and block spin the results from an initial 64 by 64 lattice
to a 4 by 4 lattice. We then determine how the initial 64 by 64 spins affect a given
spin in the final 4 by 4 model as follows: if an initial spin is both part of the block
that determines the final spin and the same as the final spin, it gets a value of 1,
otherwise it gets a value of 0; then, we average over all samples. These results for
V = .41 averaged over 1000 samples with F = 20 and using optimization techniques
are shown in Figure 4.3.

In this plot, we see a situation similar to that in Figures 4.1 and 4.2. Each node is
only determined by a small block of the original 64 by 64 lattice, as expected from
block spinning. In this way, we find that qualitatively, RBM learning looks like
block spinning. Additionally, this qualitative connection holds for all the V values
we tested, outside of just the V = .408 used in [16].

In some ways, this result is already surprising, given that the RBM network only
uses 1D vector representations of the tensors, but seems to derive locality in the
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Figure 4.3: Plot for RG analogous to an RBM receptive field plot. We let V = .41
averaged over 1000 samples with F = 20 and using optimization techniques. We
determined how the initial 64 by 64 spins affected a given spin in the final 4 by 4
model as follows: if an initial spin is both part of the block that determines the final
spin and the same as the final spin, it gets a value of 1, otherwise it gets a value of
0; then, we average over all samples.

receptive fields. We further examine this locality qualitatively in the next sections.

4.3 Structure of Weights

To better understand the structure of this derived locality, we look at the weight
tensor structure directly. We first note that the bias weights 08, 1 9 , as described in
Section 1.2, are 0 in our learning. This means that we only need to examine the
properties of the weight tensors F for each layer. For layers 2 and 3, we consider
the properties of both the weight tensor and the receptive field tensor separately, as
we should consider the weight properties both alone and in the context of the layers
above them.

For layer 1, we take each of the 64x64 = 4096 spin locations, examine the 32x32=1024
layer 1 weights connected to it, and calculate how many of these nodes have a pos-
itive spin or a negative spin greater than a given magnitude. We do the same thing
for the layer 2 and 3 receptive field tensors so that for each of the 64x64 = 4096
weights, we examine the 16x16=256 layer 2 receptive field tensors and 8x8=64
layer 3 receptive field tensors. In addition, we can also consider the layer 2 and 3
weights instead of the receptive field tensors, so that for each of the 32x32=1024
spins fed into layer 2, we examine the 16x16=256 layer 2 weights and for each of
the 16x16=256 spins fed into layer 3, we examine the 8x8=64 layer 3 weights. In
each case, we then average over all the lattices to reach the plots in Figure 4.4.
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(a) Layer 1 Weights (b) Layer 2 Weights (c) Layer 2 Receptive

(d) Layer 3 Weights (e) Layer 3 Receptive

Figure 4.4: Average number of trained positive/negative weights with magnitude
above a given value connected to a given spin location in input lattices. Results are
given for both weight tensors and receptive field tensors for V = .41. The results
suggest that we can think of each node in the RBM architecture being associated
with two spins: a positive and negative.

From these results, we find that the structure of the weights and receptive tensors
for all three layers are similar. (The receptive tensors have lower magnitude, but
that’s because there are more weights multiplied together). We find that we may
approximate the weight tensor and receptive field plots as assigning only a single
large positive weight and a single large negative weight to each spin, significantly
lowering the number of relevant weight tensor components.

The results match for all V, as shown in Appendix A.2. This seems to suggest two
things. First, it suggests that that models can be reconstructed using only the largest
positive and negative weight, instead of the full weight tensor, which we examine in
4.5. Secondly, it further qualitatively connects the RBM’s coarse-graining algorithm
to that of 2D Ising model RG flow. Each node in the machine learning architecture
can be thought qualitatively as corresponding to two spins: positive and negative,
just as the renormalized Ising lattice "nodes" correspond to one spin. Thus, the
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(a) Layer 1 Weights (b) Layer 2 Weights (c) Layer 2 Receptive

(d) Layer 3 Weights (e) Layer 3 Receptive

Figure 4.5: Average number of spin locations connected to each weight with mag-
nitudes above a given value, such that all locations connect to at least two weights.
Results are given for both weight tensors and receptive field tensors for V = .41.
They show that we can approximate the RBM coarse-graining as a block spinning
technique.

structure of the two systems are qualitatively much more similar than at first glance,
with 2 weights per node instead of hundreds to thousands.

This viewpoint of the weights as spins allows us to do another analysis on the weight
tensors. Now, instead of taking each Ising spin, and calculating how many weights
are connected to each spin, we do the opposite: we take a magnitude and calculate
how many spins are connected to a weight larger than that magnitude. These results
are shown in Figure 4.5.

We find for both the weight tensors and the receptive field tensors that as we increase
the magnitude of the weights, the number of spins connected to the weight drops off
quickly. The higher magnitude weights are connected to only a few spins, forming
"blocks". As discussed, these few high magnitude weights consist of the majority
of the weights coupled to the RBM nodes. Thus, to some approximation, the RBM
coarse-grains by creating blocks of nodes and connecting each block to two weights.
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(a) Layer 1 (b) Layer 2 Weights (c) Layer 3 Weights

(d) Layer 2 Receptive (e) Layer 3 Receptive

Figure 4.6: Histograms for the number of spins per block for all three layers’ weight
and receptive field tensors for V = .41. Results are highly consistent with Kadanoff
1 = 2 block spinning, as the blocks are about the size we’d expect for block spinning
with two weights.

These results are consistent for all V, as shown in Appendix A.2,

4.4 Block Analysis

From the analysis in Section 4.3, we have shown that large weights in the RBMs
only have a small number of nodes connected to them, forming blocks similar to
those found in Kadanoff block spinning. In this section, we further examine the
properties of these blocks to characterize the qualitative behavior of the model. We
once again consider the properties of both the weight tensors and the receptive field
tensors for all three layers.

To start, we plot the number of spins per block averaged over in each layer in 4.6.
The results we find are quite similar to what we would expect from 1 = 2 block
spinning. For the weight tensors of all three layers, we find that the block size
peaks at slightly less than 8 spins per block. This is in line with what we expect for
Kadanoff block spinning, in which there are 4 spins per block, and we multiply by
2 to account for both the positive and negative weights. The same result is seen in
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(a) Layer 1 (b) Layer 2 Weights (c) Layer 3 Weights

(d) Layer 2 Receptive (e) Layer 3 Receptive

Figure 4.7: Histogram of average maximum distance per block for V = .41. Results
are shown for both weight tensors and receptive field tensors. For layer 1, it seems
that the system successfully learns locality. However, in layers 2 and 3, the individual
weights contain nearly no information about locality, most blocks having a max 32
spins apart. The locality information is instead shown in the receptive field tensors,
with about half of the layer 2 tensors and about a quarter of the layer 3 tensors
learning locality.

the receptive field tensors, with the number of spins per block peaking slightly less
than 32 for Layer 2 and around 128 for Layer 3. This is consistent with the blocks
of 16 and 64 expected from block renormalization, once again multiplied by 2 for
both signs of spin. These results are consistent for all V, as shown in Appendix A.3.

From here, we examine the distances between spins in the blocks. We start by
plotting the maximum distance between spins in a block in Figure 4.7. We find that
for the weight tensor in layer 1, the distribution peaks around a maximum distance of
3 spins between spins in a block. These short range distances imply that the blocks
in layer 1 are formed from short range correlations, as expected in the Ising model.
We find that this pattern breaks for the weight tensors in layers 2 and 3, with the
maximum distance between spins in blocks almost always reaching its maximum of
32 spins. This implies that the weight tensors themselves do not contain information



34

(a) Layer 1 (b) Layer 2 Weights (c) Layer 3 Weights

(d) Layer 2 Receptive (e) Layer 3 Receptive

Figure 4.8: Histogram of distance between all spins, averaged over all lattices. We
analyze both the weight tensors and receptive field tensors. We find that locality is
mostly learned for all three tensors, with most of the receptive tensors being close
together, and only a couple far away. This is not true for the individual weights,
which do not learn locality for layers 2 and 3.

about Ising locality, as blocks hold over long distances. The receptive field tensors,
however, do contain some information about locality, with about half the layer 2
tensors learning some form of locality (with a distance of about 7 to 8 between
spins), and a quarter of the layer 3 tensors learning locality (with a distance of about
12 to 16 between spins).

We can further examine the structure of our block spinning via examining all
distances between spins, instead of just the maximums. These results are shown in
Figure 4.8. We find similar results to our previous analysis. In particular, we find
that the weight tensor for layer 1 learns locality that peaks with an average distance
of 2 between nearby spins. We also find that the layer 2 and 3 weight tensors contain
no indication of such locality, almost uniformly distributed throughout the distances.
The receptive field tensors contain some information about locality, with the vast
majority of the distances between spins in layer 2 and layer 3 being lower than 10
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distances apart.

These results suggest that while the spin size of the blocks from the RBM’s are
highly consistent with 1 = 2 renormalization group flow, they also slightly struggle
with learning locality. The results also imply that weight tensors from layers 2 and
3 do not characterize the system well, but the receptive field tensors characterize the
system better, as expected from our receptive field plots. We find from our results
that the receptive field tensor for layer 1 contains blocks that are entirely local (only
6 spins wide). On the other hand, layers 2 and 3 contain blocks in which most spins
are close to each other with a few spins up to 32 spins away.

We further note from plots in Appendix A.3 that the average distance between spins
typically does not change as V changes, though as V reaches the critical point less
and less locality is learned (likely due to diverging correlation lengths). This lack
of peak change is different than what we’d expect from direct comparison of the
weights to Ising model spins, due to correlation length changing with temperature.
Even though block spinning is a useful model for the RBM, this suggests a deeper
numerical analysis is needed to continue to connect the two concepts past this
qualitative level. This numerical analysis is discussed in Chapter 5.

4.5 Model Reconstructions

In addition to analyzing the weights of the model, we also consider how it works as
an auto-encoder to reconstruct the training data. To do so, we consider the hidden
weight probabilities pHid8= 9= as defined in 1.13, where = is the layer number, to
create a reconstructed lattice

vReco!=8 9 =
’
8=, 9=

f(rec!=8 9 ;8= 9= · pHid8= 9=), (4.4)

where f is Equation 1.12. We also consider the results of replacing rec8 9 ;8= 9 in
Equation 4.4 with just the two large weights. These results are shown in Figure 4.9
with the first row consisting of the original lattices, the next three rows consisting
of the reconstructions from each layer in numerical order, and the last three rows
consisting of the reconstructions with just using the large weights.

We find that the reconstructions are quite good for V = .41, with just the finer detail
disappearing as we go down the layers, reproducing a result from [16]. We also find
that by only including the large positive weights, the reconstructions are slightly
better than the ones without them, keeping together some of the finer detail lost in
the other reconstructions. These results are qualitatively consistent with the idea that
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Figure 4.9: Reconstructed model plot for V = .41. The first row consisting of the
original lattices, the next three rows consisting of the reconstructions from each
layer in numerical order, and the last three rows consisting of the reconstructions
with just using the large weights. The reconstructions are accurate, with the ones
using only the large weights more accurate.

the majority of the RBM’s information in stored in only two weights. In addition,
it is consistent with the idea that the RBM coarse-grains in a similar manner to RG
flow, keeping the data’s macroscopic structure, but not its the microscopic structure.

However, these results are not consistent for all values of V. We find from plots
in Appendix A.4 that the reconstructions get worse as we approach criticality,
suggesting that the network fails as an autoencoder in these cases, likely due to the
excess of one spin over another. However, the large weight reconstructions are more
consistent across all the V values (though they still get worse near criticality). This
implies that [16]’s argument that the RBM’s make a good autoencoder does not
apply as one gets closer to criticality, meaning the RG flow connection may fail at
these temperatures. However, it also implies that most of the important information
in the RBM is encoded within the two large weights, giving us an interesting view
on the structure of the RBM learning.



37

Figure 4.10: Another reconstructed model plot for V = .41. We consider the case
in which we only use large weights to calculate the hidden spins and reconstructed
spins, shown in row 2. Row 1 consists of original lattices while rows 3-5 consist of
the reconstructed lattices using full weights for all three layers. The reconstruction
that changes the hidden weights failed, suggesting that the full weight tensors are
needed in the calculation of hidden weights, instead of just two large weights.

We also attempted to reconstruct the model by using only the two large weights to
create the hidden weights used in calculating ?�838= 9= , along with using the two
large weights in the receptive field tensor. We did this only for the first layer at
V = .41. These results are shown in Figure 4.10, where the first row is the original
lattice, the second row is the reconstruction with only the large weights, and the last
three row are the reconstructions from all three layers for comparison. Obviously,
from the figure, the reconstruction where we changed the hidden weights to only
consider large weights does not work well, implying that the full weight tensor is
needed when creating the hidden weights. In this sense, the smaller weights have an
effect on the outcome of the model: they are needed to get correct hidden weights.
We thus conclude that the two weight model is a good approximation of how the
RBM learns, but is nowhere near the full extent of the RBM learning. We did not
run this test for other layers or other values of V because of the drastic failure of the
reconstruction.
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C h a p t e r 5

CONNECTING RENORMALIZATION TECHNIQUES AND
DEEP LEARNING

In the previous sections, we discussed the renormalization group and machine
learning separately, focusing on the validation of our renormalization techniques
in Chapters 2 and 3, and a qualitative analysis of the deep learning of RBMs in
Chapter 4. It is now time to put the two concepts together by creating direct Ising
representations from the RBMs based on our qualitative analysis, feeding them into
the renormalization group validation, and comparing results. We do this in two
different ways: running the learning in reverse and generating 64 by 64 lattices from
renormalized 8 by 8 lattices, and creating a direct Ising spin representation from our
RBM weights.

5.1 Generative Models

In examining the quantitative success of the deep learning infrastructure as a renor-
malization group flow, we first used the learning weights as a way to generate new 64
by 64 lattice models from 8 by 8 lattice models. We then compared these generated
models to those derived from the Wolff algorithm.

To do so, for each value of V in the 64 by 64 lattice, we find the 8 by 8 V value it
flows to in the RG flow in Chapter 3. These results are shown in Table 5.1. We then
generate 8 by 8 lattices for each of these 8 by 8 V values using the Wolff algorithm,

64x64 V Value 8x8 V Value
.395 .241
.4 .256
.405 .274
.41 .291
.415 .315
.42 .338
.425 .367
.43 .397

Table 5.1: V values for the 64 by 64 Ising modes and the corresponding V values
for the 8 by 8 Ising models the original values flow to. The 8 by 8 Ising models are
used to generate new 64 by 64 models by running the learning backwards.
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Figure 5.1: Generative model for V = .41. The first row contains the original 8 by
8 lattice models and the second row contains the 64 by 64 generated model.

which we denote here as G!3
83 93

. From here, we generate the model by taking:

G!2
82 92 = 2f

 ’
83, 93

F!3
82 92;83 93 · G83 93

!
� 1, (5.1)

then

G!1
81 91 = 2f

 ’
82, 92

F!2
81 91;82 92 · G82 92

!
� 1, (5.2)

and lastly,

E64=8 9 = 2f

 ’
81, 91

F!1
8 9 ;81 91 · G81 91

!
� 1. (5.3)

We do this for 20,000 lattices for all V. The result of this procedure for V = .41 is
shown in Figure 5.1. The first row contains the original 8 by 8 lattice models and
the second row contains the 64 by 64 generated models. At first glance, there seems
to be little relation between the original lattices and the generated model, seeming
to throw out the idea of the connection. However, this is not a problem. The
RBM takes in our lattices as one dimensional and uses this information to rederive
the spin connections. Due to this, the spin blocks get "mixed-up" and moved to
different locations, and sometimes all the blocks get flipped. We deal with this more
effectively in Section 5.2. However, the generative model results are still useful, as
the quantitative information, including the correlations, stays the same. This means
that these generative models should accurately reflect the Ising model quantitatively.
These general results hold for all V, as shown in Appendix B.1.

After doing this for all of our values of V, we proceed with numerically analyzing our
results, in the same manner that we analyzed the Wolff algorithm in Chapter 3. Some
results of this analysis are shown in Figure 5.2, including the correlation length fit for
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(a) Correlation length for V = .41. (b) Generative Model

(c) Generative Model and Wolff Algorithm
Comparison

(d) Generative Model and Wolff Algorithm
Comparison

Figure 5.2: Comparing the Wolff algorithm with the generative model. The genera-
tive model tends to have a higher correlation function than expected for 0 < A < 10
and a lower correlation function for 10 < A < 20, for all V. For the correlation
length temperature dependence, we find that a = 0.763 for the generative model,
as opposed to the Wolff algorithm value of a = 0.973. The generative model only
somewhat matches the fit at ) > 2.35, and does not for ) < 2.35.

V = .41 for both the Wolff algorithm and generative models, the generative model
correlation length data and fits, and comparisons between the generative model and
Wolff model. The rest of the correlation length fits are shown in Appendix ⌫.1.

We find that the correlation length fits to the generative models tend to have higher
correlation functions than expected for 0 < A < 10 and a lower correlation function
for 10 < A < 20. This suggests that the reproductions do not perfectly match that
of the Ising model, and on some level, the RBM fails to reproduce the Ising model
due to these offsets. However, we still proceed with the analysis assuming that these
over-estimations and under-estimations cancel out.

When we calculate the temperature dependence of these correlation lengths, we find
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Figure 5.3: RBM coarse graining for V = .41. The first row consists of the
original Wolff-generated Ising lattices and the next three rows consist of Ising spin
representations of the RBM learning layers. We find that the first two layers are
qualitatively similar to the renormalization group.

that the data only somewhat matches the fit at ) > 2.35, and does not for the data
point at ) < 2.35. The fit suggests that a = 0.763 for the generative model, as
opposed to the Wolff algorithm value of a = 0.973. These results imply that the
generative models forms a poor approximation of the nearest-neighbor Ising model,
with a few qualitative connections (such as the fit going in the correct direction), but
little quantitative connections.

While this data weakens the idea of a naive connection between the learning and the
renormalization group, it does not rule out the connection completely. The models
here were generating assuming that the group flow could be approximated using
only the nearest-neighbor Ising models and only the coupling V. To further rule out
a quantitative connection between RBM generative models and RG flow, this extra
parameter space must be explored.

5.2 From Weights to Ising Spins

Using generative models, however, is not the only way to connect the RBM learning
to the Ising spins. Instead, we can sample from our probability distributions pHid
from Equation 1.13 for each layer, and then convert the binary spins of those layers
to spins of ±1.

As stated in Section 5.1, the locations of these new lattices do not have a simple
relationship to the locations of the original lattices. We fix this by taking the
receptive field tensors rec!=8 9 ;8= 9= and finding which of the entries 8, 9 have the largest
absolute value for each of the 8=, 9=. This is the location of the original spin that the
weight is most connected to. We then coarse grain and define this as the location of
the corresponding spin.
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The results of this coarse graining procedure for V = .41 are given in Figure 5.3.
The first row consists of the original Wolff lattices, while the next 3 rows consist of
the 3 layers of coarse graining in order. We do this for all V as shown in Appendix
B.2.

The results here qualitatively show a coarse graining that is similar to Kadanoff-
block spinning in some ways, with the large scale structure of the system being
most strongly preserved in the second layer. The first layer of the coarse graining
still preserves large scale structure, but not as well as the second layer, having extra
noise. The last layer of the coarse graining, however, loses most of the macroscopic
structure. This result is similar throughout all V values. This strengthens the idea
of a qualitative connection between the renormalization group and deep learning in
the first two layers, while the third layer loses this qualitative connection.

We further examine this quantitatively by running the RBM coarse-grained models
through the validation procedure from Chapter 3, and comparing these results with
both our traditional renormalization results and the Wolff algorithm. In our plots,
we also include a correlation length fit for V = .41 for reference. The remaining
correlation length plots are given in Appendix B.2.

For layer 1, our results are shown in Figure 5.4. We have that most of our correlation
function data matches the fits decently well, with the exception of a couple of points,
like V = .415 and V = .43. In particular, when we fit the data, we get a = 1.178 for
the Wolff algorithm, a = 0.983 for the RG flow and a = 1.174 for the RBM training.
Looking only at the fits, the three cases seem to match quantitatively!

However, the RBM data does not match up with its fit very well. The overestimates
and underestimates cancel to make the fit work, but the data and fit mismatch prevent
us from concluding the first layer as qualitatively equivalent to the renormalization
group results.

For layer 2, our results are shown in Figure 5.5. As in layer 1, the correlation lengths
tend to match their fitting function, with the exception of V = .415. When we fit the
correlation length temperature dependence, we found the value of a = 1.452 for the
Wolff algorithm, a = 0.969 for block spinning, and a = 0.729 for the RBM training.
All three fits are close together above criticality, but diverge from one another as
criticality is approached. This causes some quantitative mismatching.

Additionally, the same issue of a mismatch between data and fit appears here. The
fit we use is rather restrictive, and our data undershoots it. The renormalization does
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(a) Correlation length comparison for V =
.41. (b) RBM Results

(c) RG Blocks (d) Wolff Algorithm

Figure 5.4: Analysis of layer 1 RBM Ising representation. The fits for the RBM
correlation function are consistent with the data for most V. For the correlation
length temperature dependence, we find that a = 1.178 for the Wolff algorithm,
a = 0.983 for the RG flow and a = 1.174 for the RBM training. The RBM data,
however, does not match this fit well.

appear to be going in the right direction, qualitatively, however.

For layer 3, our results are shown in Figure 5.6. Here, even the qualitative results
seem to change. Fits of the correlation function start being more inconsistent with
the fits, and correlation lengths are all close to zero. For temperature dependence,
we get a = 0.972 for the RG flow, a = 1.933 for the Wolff algorithm and a = 0.0 for
the RBM. Here, even the qualitative results suggesting that the RBM is connected to
RG completely fall apart, reinforcing the earlier qualitative conclusion we had from
looking at the coarse-graining directly. We also have discrepancies near criticality
for the Woolf algorithm and RG flow, suggesting that the 8 by 8 model may be too
small to effectively do work with.
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(a) Correlation length for V = .41. (b) RBM Results

(c) RG Blocks (d) Wolff Algorithm

Figure 5.5: Analysis of layer 2 RBM Ising representation. The fits for the RBM
correlation function are consistent with the data for most V. For the correlation
length temperature dependence, we find that a = 1.452 for the Wolff algorithm,
a = 0.969 for block spinning, and a = 0.729 for the RBM training. The RBM data
does not match this fit well.
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(a) Correlation length for V = .41. (b) RBM Results

(c) RG Blocks (d) Wolff Algorithm

Figure 5.6: Analysis of layer 3 RBM Ising representation. The fits for the RBM
correlation function are often inconsistent with the data and correlation lengths
are close to zero. For the correlation length temperature dependence, we find that
a = 0.972 for the RG flow, a = 1.933 for the Wolff algorithm and a = 0.0 for the
RBM. The RBM data is not numerically consistent with RG flow at all for this layer.
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C h a p t e r 6

CONCLUSIONS AND FURTHER WORK

6.1 General Conclusions

Throughout this work, we have considered applications of basic machine learning
techniques to renormalization in the one dimensional and two dimensional Ising
models (in Chapters 2 and 3), discussed the qualitative results of deep learning
using RBMs of the the two dimensional Ising model (in Chapter 4), and attempted
to connect the two paradigms quantitatively (in Chapter 5). What, then, can we
conclude?

Our first conclusion is that machine learning techniques through Adam optimization
can be successfully applied in renormalizing both the 1D and 2D Ising models.
These optimization techniques work best when using correlation lengths as loss
functions, and when paying close attention to how finiteness affects criticality. We
found better renormalization results using optimization techniques than we did using
accepted analytical techniques, like the Maris-Kadanoff equation.

Our second conclusion is that there are strong qualitative connections between
deep learning through RBMs and RG flow, just as Mehta and Schwab argued in
[16]. This is shown through the reproduction of layer 1 and 3 receptive field
plots and model reconstruction for 8 V values. In addition, we discovered the
emergence of a two-weight blocking structure similar to the Ising model one-weight
blocking structure, and found that most of these blocks contain some sense of
locality. Furthermore, when converting these blocks to Ising spin representations,
layer 1 and 2 had correlation function structures that match how they should look in
the Ising model. In addition, the layer 1 fit a value is very close to its expected value,
and layer 2 correlation lengths tend to go in the correct direction for renormalization.

Our third conclusion, however, is that we do not have enough evidence to rule in favor
of this connection existing on a quantitative level. In particular, the layer 3 model
failed to produce results that looked like the Ising model, even qualitatively, with
a = 0. Similarly, the generative model had trouble with deriving the correlation
lengths due to fitting issues. Models for layers 1 and 2 had data that did not
necessarily correspond to their fits, preventing us from establishing a qualitative
connection there. Only 8 data points were used, some with poor reconstructions,
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and we have yet to examine the case of RBMs without L1 regularization.

That being said, these quantitative discrepancies do not imply that the connection is
non-existent either. As discussed in Chapter 3, the nearest-neighbor renormalization
is just a subspace of the total parameter space. It is possible that our results here
tell only part of the story because we only accomplish the group flow in V. This is
discussed more in the next section.

6.2 Future Quantitative Work

To make a more solid conclusion about the quantitative connection between the
renormalization group and deep learning, further developments need to be made on
both renormalization group and deep learning structures.

For the renormalization group, extending the group flow to be a two parameter
flow using the next-to-nearest neighbor Hamiltonian would provide more parameter
space to examine the RBM flow in, getting a clearer picture on why the numerical
connections are not present in the 1D space. In addition, criticality issues from
using finite systems likely also played a role in the quantitative disconnect. Using
larger systems should help prevent these criticality issues.

In addition, the layer 3 failure could have just been an issue of the 8 by 8 system being
too small. Changing the entire system to start at 128 by 128 or 256 by 256 would
allow us to ignore this as a possible problem. In addition, running the numerical
analysis for more V values would give us clearer data points on the connection
between the two, and make our fits clearer.

Lastly, our results here only considered what happens when we use an L1 penalty
for learning. Removing this penalty would allow us to see how much the penalty
affects how clearly and quickly the system is learning locality.

6.3 Further Extensions

If these numerical issues are resolved and the connection made clearer, one could
extend the work further using other renormalization models and more modern
machine learning methods.

In particular, one could extend the work from the 2D Ising model to the Ising model
in 3 or more dimensions. Similarly, one could look at Ising variations, such as the
quantum Ising model or the tricritical Ising model. One could also extend it to other
O(N) models, like the XY or Heisenberg models.
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Similarly, one could use more modern deep learning techniques, instead of the
simple case of RBMs. One example in particular could be the use of variational
autoencoders.

All in all, though the examination of a possible connection between machine learning
and renormalization has been greatly expanded on in our work here, there still
remains plenty of work to be done to fully understand the extent of such a connection.
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A p p e n d i x A

TWO DIMENSIONAL ISING LAYER-BY-LAYER ANALYSIS
PLOTS

A.1 Receptive Field Plots

Each individual plot represents a node in a given layer and the values on the plot
represent the full set of receptive field tensors corresponding to that node. The
clustering of non-zero tensors next to each other suggests the model is qualitatively
learning some form of locality. This is discussed in depth in Section 4.2.

Figure A.1: Layer 1 receptive field plot for V = .395.
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Figure A.2: Layer 1 receptive field plot for V = .4.

Figure A.3: Layer 1 receptive field plot for V = .405.
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Figure A.4: Layer 1 receptive field plot for V = .41.

Figure A.5: Layer 1 receptive field plot for V = .415.
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Figure A.6: Layer 1 receptive field plot for V = .42.

Figure A.7: Layer 1 receptive field plot for V = .425.
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Figure A.8: Layer 1 receptive field plot for V = .43.

Figure A.9: Layer 3 receptive field plot for V = .395.



55

Figure A.10: Layer 3 receptive field plot for V = .4.

Figure A.11: Layer 3 receptive field plot for V = .405.
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Figure A.12: Layer 3 receptive field plot for V = .41.

Figure A.13: Layer 3 receptive field plot for V = .415.
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Figure A.14: Layer 3 receptive field plot for V = .42.

Figure A.15: Layer 3 receptive field plot for V = .425.



58

Figure A.16: Layer 3 receptive field plot for V = .43.
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A.2 Weight Analysis Plots

The plots starting on the next page analyze the weight structure for each value of V,
analyzing both the weight tensors and receptive field tensors. Each tensor has two
plots. The first is the average number of trained positive/negative weights with a
magnitude above a given value connected to a given spin location in an input lattice.
The second is the average number of spin locations connected to each weight with
magnitudes above a given value, such that all locations connect to at least two
weights. More information about this analysis and its results are in Section 4.3.
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(a) Layer 1 Weights (b) Layer 1 Weights (c) Layer 2 Weights

(d) Layer 2 Weights (e) Layer 2 Receptive (f) Layer 2 Receptive

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Receptive

(j) Layer 3 Receptive

Figure A.17: Weight analysis plot for V = .395.
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(a) Layer 1 Weights (b) Layer 1 Weights (c) Layer 2 Weights

(d) Layer 2 Weights (e) Layer 2 Receptive (f) Layer 2 Receptive

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Receptive

(j) Layer 3 Receptive

Figure A.18: Weight analysis plot for V = .4.
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(a) Layer 1 Weights (b) Layer 1 Weights (c) Layer 2 Weights

(d) Layer 2 Weights (e) Layer 2 Receptive (f) Layer 2 Receptive

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Receptive

(j) Layer 3 Receptive

Figure A.19: Weight analysis plot for V = .405.
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(a) Layer 1 Weights (b) Layer 1 Weights (c) Layer 2 Weights

(d) Layer 2 Weights (e) Layer 2 Receptive (f) Layer 2 Receptive

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Receptive

(j) Layer 3 Receptive

Figure A.20: Weight analysis plot for V = .41.
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(a) Layer 1 Weights (b) Layer 1 Weights (c) Layer 2 Weights

(d) Layer 2 Weights (e) Layer 2 Receptive (f) Layer 2 Receptive

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Receptive

(j) Layer 3 Receptive

Figure A.21: Weight analysis plot for V = .415.
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(a) Layer 1 Weights (b) Layer 1 Weights (c) Layer 2 Weights

(d) Layer 2 Weights (e) Layer 2 Receptive (f) Layer 2 Receptive

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Receptive

(j) Layer 3 Receptive

Figure A.22: Weight analysis plot for V = .42.
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(a) Layer 1 Weights (b) Layer 1 Weights (c) Layer 2 Weights

(d) Layer 2 Weights (e) Layer 2 Receptive (f) Layer 2 Receptive

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Receptive

(j) Layer 3 Receptive

Figure A.23: Weight analysis plot for V = .425.
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(a) Layer 1 Weights (b) Layer 1 Weights (c) Layer 2 Weights

(d) Layer 2 Weights (e) Layer 2 Receptive (f) Layer 2 Receptive

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Receptive

(j) Layer 3 Receptive

Figure A.24: Weight analysis plot for V = .43.
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A.3 Block Analysis Histograms

The plots starting on the next page analyze the blocking structure for each value of V,
analyzing the structure for both the weight tensors and receptive field tensors. Each
tensor has three histograms. The first histogram is the number of spins per block
averaged over all the lattices. The second is the maximum distance between spins
per block averaged over all the lattices. The third is just all the distances between
spins averaged over all the lattices. These plots are discussed in detail in Section
4.4.
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(a) Layer 1 (b) Layer 1 (c) Layer 1

(d) Layer 2 Weights (e) Layer 2 Weights (f) Layer 2 Weights

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Weights

(j) Layer 2 Receptive (k) Layer 2 Receptive (l) Layer 2 Receptive

(m) Layer 3 Receptive (n) Layer 3 Receptive (o) Layer 3 Receptive

Figure A.25: Block analysis plot for V = .395.
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(a) Layer 1 (b) Layer 1 (c) Layer 1

(d) Layer 2 Weights (e) Layer 2 Weights (f) Layer 2 Weights

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Weights

(j) Layer 2 Receptive (k) Layer 2 Receptive (l) Layer 2 Receptive

(m) Layer 3 Receptive (n) Layer 3 Receptive (o) Layer 3 Receptive

Figure A.26: Block analysis plot for V = .4.
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(a) Layer 1 (b) Layer 1 (c) Layer 1

(d) Layer 2 Weights (e) Layer 2 Weights (f) Layer 2 Weights

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Weights

(j) Layer 2 Receptive (k) Layer 2 Receptive (l) Layer 2 Receptive

(m) Layer 3 Receptive (n) Layer 3 Receptive (o) Layer 3 Receptive

Figure A.27: Block analysis plot for V = .405.
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(a) Layer 1 (b) Layer 1 (c) Layer 1

(d) Layer 2 Weights (e) Layer 2 Weights (f) Layer 2 Weights

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Weights

(j) Layer 2 Receptive (k) Layer 2 Receptive (l) Layer 2 Receptive

(m) Layer 3 Receptive (n) Layer 3 Receptive (o) Layer 3 Receptive

Figure A.28: Block analysis plot for V = .41.
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(a) Layer 1 (b) Layer 1 (c) Layer 1

(d) Layer 2 Weights (e) Layer 2 Weights (f) Layer 2 Weights

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Weights

(j) Layer 2 Receptive (k) Layer 2 Receptive (l) Layer 2 Receptive

(m) Layer 3 Receptive (n) Layer 3 Receptive (o) Layer 3 Receptive

Figure A.29: Block analysis plot for V = .415.
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(a) Layer 1 (b) Layer 1 (c) Layer 1

(d) Layer 2 Weights (e) Layer 2 Weights (f) Layer 2 Weights

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Weights

(j) Layer 2 Receptive (k) Layer 2 Receptive (l) Layer 2 Receptive

(m) Layer 3 Receptive (n) Layer 3 Receptive (o) Layer 3 Receptive

Figure A.30: Block analysis plot for V = .42.
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(a) Layer 1 (b) Layer 1 (c) Layer 1

(d) Layer 2 Weights (e) Layer 2 Weights (f) Layer 2 Weights

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Weights

(j) Layer 2 Receptive (k) Layer 2 Receptive (l) Layer 2 Receptive

(m) Layer 3 Receptive (n) Layer 3 Receptive (o) Layer 3 Receptive

Figure A.31: Block analysis plot for V = .425.
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(a) Layer 1 (b) Layer 1 (c) Layer 1

(d) Layer 2 Weights (e) Layer 2 Weights (f) Layer 2 Weights

(g) Layer 3 Weights (h) Layer 3 Weights (i) Layer 3 Receptive

(j) Layer 2 Receptive (k) Layer 2 Receptive (l) Layer 2 Receptive

(m) Layer 3 Receptive (n) Layer 3 Receptive (o) Layer 3 Receptive

Figure A.32: Block analysis plot for V = .43.
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A.4 Reconstruction Plots

This section contains plots made by using the deep learning network as an autoen-
coder to reconstruct the original Ising model. For various values of V In each plot,
the first row consists of the original Ising input, rows 2-4 consist of the reconstructed
Ising models using 1, 2, and 3 layers respectively, and rows 5-7 do the same thing
but only using the largest two receptive field values to calculate the reconstruction.
These results are discussed in detail in Section 4.5.

Figure A.33: Reconstructed model for V = .395.
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Figure A.34: Reconstructed model for V = .4.

Figure A.35: Reconstructed model for V = .405.
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Figure A.36: Reconstructed model for V = .41.

Figure A.37: Reconstructed model for V = .415.
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Figure A.38: Reconstructed model for V = .42.

Figure A.39: Reconstructed model for V = .425.
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Figure A.40: Reconstructed model for V = .43.
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A p p e n d i x B

RENORMALIZATION TECHNIQUES AND DEEP LEARNING
PLOTS

B.1 Generative Model Plots

This section contains plots showing the generative models as discussed in Section
5.1. The first set of plots contains plots of the models themselves, with the first row
containing the original 8 by 8 lattice models and the second row containing the 64
by 64 generated model. The second set of plots consists of fits to the correlation
function for each model, in order to derive the correlation lengths.

Figure B.1: Generative model for V = .395.

Figure B.2: Generative model for V = .4.

Figure B.3: Generative model for V = .405.



83

Figure B.4: Generative model for V = .41.

Figure B.5: Generative model for V = .415.

Figure B.6: Generative model for V = .42.

Figure B.7: Generative model for V = .425.

Figure B.8: Generative model for V = .43.
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(a) V = .395. (b) V = .4.

(c) V = .405. (d) V = .41.

(e) V = .415. (f) V = .42.

(g) V = .425. (h) V = .43.

Figure B.9: Correlation length comparisons for generative model.
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B.2 Ising Spin Plots

This section contains plots showing the RBM spin models as discussed in Sec-
tion 5.2. The first set of plots contains the models themselves, with the first row
containing the original Wolff generated model, and the next three rows consisting
of the RBM coarse-grained modes. The second set of plots consists of fits to the
correlation function for each model, in order to derive the correlation lengths.

Figure B.10: RBM coarse graining for V = .395.

Figure B.11: RBM coarse graining for V = .4.

Figure B.12: RBM coarse graining for V = .405.
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Figure B.13: RBM coarse graining for V = .41.

Figure B.14: RBM coarse graining for V = .415.

Figure B.15: RBM coarse graining for V = .42.

Figure B.16: RBM coarse graining for V = .425.
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Figure B.17: RBM coarse graining for V = .43.
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(a) V = .395. (b) V = .4.

(c) V = .405. (d) V = .41.

(e) V = .415. (f) V = .42.

(g) V = .425. (h) V = .43.

Figure B.18: Correlation length comparisons for Layer 1.
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(a) V = .395. (b) V = .4.

(c) V = .405. (d) V = .41.

(e) V = .415. (f) V = .42.

(g) V = .425. (h) V = .43.

Figure B.19: Correlation length comparisons for Layer 2.
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(a) V = .395. (b) V = .4.

(c) V = .405. (d) V = .41.

(e) V = .415. (f) V = .42.

(g) V = .425. (h) V = .43.

Figure B.20: Correlation length comparisons for Layer 3.
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