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ABSTRACT

This thesis is about numerical methods for scientific computing and scientific ma-
chine learning, with a focus on solving partial differential equations (PDEs) and
inverse problems (IPs). The design of numerical algorithms usually encompasses a
spectrum that ranges from specialization to generality. Classical approaches based
on finite element methods (FEMs) and contemporary scientific machine learning
approaches based on neural networks (NNs) can be viewed as lying at relatively
opposite ends of this spectrum. In this thesis, we address mathematical challenges
associated with both ends of the spectrum through advancing rigorous multiscale
and statistical numerical methods.

In the first part of the thesis, we study multiscale methods for solving challenging
PDEs with rough coefficients and high frequency, where standard FEMs often fail.
The key is to construct specialized basis functions to incorporate the microscale
structures of the equation. We present the following two contributions in Chapters
II and III:

1. We introduce the exponentially convergent multiscale finite element method
(ExpMsFEM) for solving general elliptic and Helmholtz’s equations, which
achieves nearly exponentially convergent accuracy regarding the number of ba-
sis functions. Notably, ExpMsFEM applies to Helmholtz’s equations. Com-
pared to pre-existing approaches, ExpMsFEM does not rely on any partition
of unity functions and can lead to more localized basis functions with better
“orthogonality” properties.

2. We analyze a multiscale method that reveals mathematical connections be-
tween numerical coarse-graining of elliptic PDEs and scattered data approx-
imation. We introduce a new concept of subsampled lengthscale into the
coarse variables, and highlight a novel tradeoff between efficiency and accu-
racy induced by the choice of this lengthscale.

The second part of the thesis explores the interplay between numerical approx-
imation and statistical inference for algorithm design, with a primary focus on
automation of algorithms, as advocated in the scientific machine learning paradigm.
More specifically, we investigate using Gaussian processes (GPs) and kernel meth-
ods to build a simple yet flexible and more interpretable (than NNs) computational
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pipeline to automate solving general PDEs/IPs. In Chapters IV, V, and VI, we make
the following three contributions regarding methodology, efficiency, and adaptivity:

1. We introduce GPs and kernel methods to solve general nonlinear PDEs and
IPs. By assigning a GP prior to the unknown functions and observing PDE in-
formation at certain collocation points, we performBayes inference to learn the
solution. The method combines the theoretical rigor of traditional numerical
algorithms with the flexible design of machine learning solvers, generalizing
radial basis function-based approaches.

2. In GP and kernel-based methodology, the presence of dense kernel matrices
can limit scalability. In the case of PDE problems, these matrices may also
involve partial derivatives of the kernel. Fast algorithms for such matrices
are less developed compared to the derivative-free counterparts. We present
a sparse Cholesky factorization algorithm based on the near-sparsity of the
Cholesky factor under a multiscale reordering of Diracs and derivative mea-
surements. The algorithm is motivated by a probabilistic interpretation of
factorization. We rigorously analyze the exponentially convergent accuracy
of the algorithm. This enables us to compute approximate inverse Cholesky
factors of kernel matrices with a state-of-the-art near-linear complexity in
space and time.

3. We analyze the use of hierarchical learning for enhancing the expressivity
and adaptivity of GPs and kernel methods. We investigate two paradigms
for learning hierarchical parameters: one from a probabilistic perspective,
using the empirical Bayes approach, and the other from an approximation-
theoretic view, using the kernel flow algorithm. We prove the consistency
of these paradigms in the large data limit and identify their implicit bias in
parameter learning for a Matérn-like model. Our results also highlight the
better robustness of approximation-theoretic-based approaches compared to
Bayesian approaches in model misspecification.

Finally, in Chapter VII, we discuss other related and prospective works concerning
fast randomized numerical linear algebra for Gaussian processes/kernel methods in
high dimensional scientific problems and gradient flow based sampling algorithms
for uncertainty quantification, thus enriching rigorous and efficient numerical meth-
ods that are based on ideas in probability and statistics.
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0 (a,u); lower left: eh,H,l
1 (a,u); lower right: eh,H,l

0 (a,u). . . . 83
3.5 1D example, localized solution l = 4. Upper left: ẽh,H,l
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C h a p t e r 1

INTRODUCTION

This thesis is about designing numerical algorithms for scientific computing and
scientific machine learning, with a particular emphasis on solving partial differential
equations (PDEs) and inverse problems (IPs).

A shared challenge in these fields is the numerical approximation of infinite-
dimensional objects using finite-dimensional information. In scientific computing,
we compute functions that are solutions of continuous PDEs using a finite number of
arithmetic operations. In scientific machine learning, we learn and infer a continu-
ous function given a finite amount of data. These challenges are typically addressed
through building suitable finite dimensional approximation space of the function,
such as by finite element methods (FEMs) in traditional scientific computing and
neural networks (NNs) in contemporary machine learning.

When designing numerical approximations, there is a fundamental concern about
whether the primary focus should be on generality or specialization. Such a focus
can result in algorithms with different properties, which, in turn, can lead to diverse
paths for developing the algorithms further. FEMs and NNs can be seen as lying
at relatively opposite ends of the generality-versus-specialty spectrum. There are
challenges associated with both ends. For instance, FEMs may not be specialized
enough for problemswith rough coefficients and high frequency, as they can perform
arbitrarily poorly [17, 19]. NNs, on the other hand, may sometimes be too general
for low-dimensional PDEs and IPs that we often encounter, as the existing training
tricks are enormous [150, 282, 284, 64, 299] and relevant theories are elusive.

In this thesis, we investigate both ends of the spectrum between generality and
specialization, making progress in developing numerical algorithms with enhanced
accuracy, efficiency, and robustness. To that end, we study multiscale and sta-
tistical numerical methods, addressing their associated mathematical challenges.
Specifically, we advance exponentially convergent multiscale algorithms for solv-
ing challenging PDEs with rough coefficients or high frequency, while developing
general yet rigorous and interpretable Gaussian processes and kernel methods for
automatic learning of solutions of nonlinear PDEs and IPs. This chapter will discuss
multiscale methods in Section 1.1 and statistical numerical methods in Section 1.2.
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1.1 Multiscale Numerical Methods
Mathematically, solving PDEs is a function approximation problem. All numerical
methods aim to find a finite-dimensional approximation of the solution. Multiscale
methods are designed to take advantage of the microscale structure of the equation
to construct the approximation space. Such consideration is beneficial because
the equation’s structure plays a critical role in determining the coarse and fine-scale
behaviors of the solution, which, in turn, impacts the accuracy of the approximation.
In fact, without taking these structures into account, standard numerical methods
such as FEMs struggle to address many challenging problems in rough media [17]
and high-frequency wave propagation [19].

Approximating a function involves finding a coarse scale representation of the func-
tion, which can be approached from either a primal or dual perspective. The former
focuses on coarse function spaces, while the latter concerns coarse measurements or
variables that belong to the dual space of the function space. The two perspectives
lead to different paths of incorporating the microscale information1.

This thesis contributes to progress in both perspectives. For the former, we aim at
coarse spaces that achieve exponentially convergent approximation accuracy even
when the solution is rough. Methods with such convergence rates have been pio-
neered in the work of optimal basis [15] for elliptic equations using local spectral
basis and partition of unity functions in an overlapped domain decomposition; see
also some recent developments in [253, 35, 41, 16, 243, 178, 179]. We general-
ize the analysis to high-frequency Helmholtz’s equations and provide an alternative
multiscale framework based on non-overlapped domain decompositions that lead to
more localized basis functions. In the latter perspective, exemplified by methods
such as Local Orthogonal Decomposition (LOD) [181] and Gamblets [203], the
selected coarse variables resemble the sampled data in scattered data approximation
and machine learning. Building on this connection, we contribute to a line of anal-
ysis that characterizes the accuracy-efficiency tradeoff exhibited by a new concept
of subsampled lengthscale, which we introduce into these coarse variables.

In Sections 1.1.1 and 1.1.2, we provide the necessary background on the prototypical
equations and how solving PDEs can be viewed as a function approximation problem
through Galerkin’s methods. In Sections 1.1.3 and 1.1.4, we discuss, at a high level,

1We categorize multiscale methods based on primal and dual perspectives, which may be
unconventional in the literature. Nevertheless, we found this view to be convenient and insightful;
see our detailed discussions in Sections 1.1.3 and 1.1.4. The readers can also refer to [5] for a
comprehensive review of history of multiscale methods.



3

the context and our contributions to the primal and dual perspectives. Section 1.1.5
provides a summary of these discussions.

1.1.1 Prototypical Equations
To provide clear explanations of multiscale methods, we consider a model problem
in a bounded domain Ω ⊂ Rd with a Lipschitz boundary. The equation is

− ∇ · (A∇u) + Vu = f . (1.1.1)

We ignore boundary conditions for simplicity. Here, A, V are functions in L∞(Ω);
they can be rough, leading to oscillations in ∇u and resulting in a difficult-to-solve
solution u. We do not assume any scale separation or periodicity in A,V .

We assume f ∈ L2(Ω),0 < Amin ≤ A(x) ≤ Amax < ∞. When V = 0, the equation
reduces to a standard elliptic equation. On the other hand, if Vu = −k2u, the
boundary conditions are suitably chosen, and u is a complex-valued, we obtain the
Helmholtz equation with wavenumber k.

1.1.2 Solving PDEs as Function Approximation
One common approach for solving (1.1.1) is to use Galerkin’s method, which in-
volves selecting a finite-dimensional space S of basis functions and combining it
with the weak form of the equation [32]. The high-level theory of Galerkin’s method
implies that once functions in S can approximate the solution well, such that

η(S) := sup
f ∈L2(Ω)

inf
v∈S

‖u − v‖H(Ω)
‖ f ‖L2(Ω)

is small , (1.1.2)

where u, f satisfies (1.1.1) and ‖ · ‖H(Ω) is the energy norm:

‖w‖2
H(Ω)

:= (A∇w,∇w)Ω + (|V |w,w)Ω , (1.1.3)

then the Galerkin solution will have quasi-optimality, meaning that its error will be
of the same order as the optimal approximation accuracy infv∈S ‖u − v‖H(Ω), which
is small thanks to (1.1.2).

The failure ofmany FEMs in elliptic equations with rough coefficients [17] and high-
frequency Helmholtz’s equations [19] is due to a large η(S) caused either by the
roughness of the solution or the indefiniteness of the equation. Multiscale methods
aim to find better S that can capture the coarse scale behavior of the solution by
incorporating the structure of the equation.
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1.1.3 Primal Perspective: Constructing Coarse Spaces
Multiscale methods classified into the primal perspective focus on directly building
the coarse approximation space for u. Since localized basis functions are more
favorable for the sake of computation, these approaches often involve dividing the
domain Ω into smaller subdomains and constructing local approximation spaces
that accurately capture the solution behavior within each subdomain. These local
spaces are then coupled to form a global approximation space S. Many multi-
scale methods, including the Generalized Finite Element Method (GFEM) [18], the
Multiscale Finite Element Method (MsFEM) [129, 130, 73], and the Generalized
Multiscale Finite Element Methods (GMsFEM) [74], can be interpreted in this way.
Initially studied in periodic media with a scale separation, these methods were later
generalized to handle the case of rough coefficients; see [128, 52, 160, 89] and also
the approach based on harmonic coordinates [209]. Most existing results concern
approximation accuracy of order comparable to the size of the subdomains; the
convergence rate is at most algebraic.

We discuss related results on achieving more remarkable exponential convergence
in Section 1.1.3.1 and then present the key of our contribution in Section 1.1.3.2.
More details are in Chapter II.

1.1.3.1 On Exponential Convergence of Accuracy

Conceptually, the most desirable approximation for a function may be the one that
leads to exponentially convergent accuracy. This is possible when the function is
smooth, and we use polynomial basis functions for approximations, thanks to the
Taylor expansion. However, smoothness may not be necessary for such fast conver-
gence. Babuška and Lipton showed in [15] that nearly exponential convergence can
be achieved for A-harmonic functions, even when A ∈ L∞(Ω).

Exponential convergence for approximating A-harmonic functions Consider
two concentric cubesω ⊂ ω∗with side lengthsH < H∗, and the space of A-harmonic
functions in ω∗ (and similarly for ω) defined by

U(ω∗) := {v ∈ H1(ω∗) : −∇ · (A∇v) = 0, in ω∗}/R . (1.1.4)

We introduce the notation ‖ · ‖H1
A
(ω∗) = ‖A

1/2∇ · ‖L2(ω∗). Then, via an iterative
argument of Caccioppoli’s inequality [15, 179], one can show that the singular
values σm(R) of the restriction operator

R : (U(ω∗), ‖ · ‖H1
A
(ω∗)) → (U(ω), ‖ · ‖H1

A
(ω))
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decays exponentially fast:

σm(R) ≤ C exp
(
−bm

1
d+1

)
(1.1.5)

for some C, b independent of H and m. Equivalently, it implies that we can find m

functions vk ∈ U(ω),1 ≤ k ≤ m (which are left singular vectors of R), such that

‖u −
m∑

i=1
civi‖H1

A
(ω) ≤ C exp

(
−bm

1
d+1

)
‖u‖H1

A
(ω∗) , (1.1.6)

for any u ∈ H1
A(ω

∗). We can interpret the above result as

The restriction of A-harmonic functions is of low approximation complexity.

Remark 1.1.1. The above interpretation is fairly general. The choice of ω,ω∗ to be
cubes is for simplicity of analysis only. The decay will still hold when the two cubes
are not concentric but share some boundary face if one further assumes functions in
U(ω∗) satisfy some corresponding homogeneous boundary condition in that face.

In the initial work [15], the bound is σm(R) ≤ Cε exp
(
−m

1
d+1−ε

)
for any positive ε ,

where Cε depends on ε . Later, the work [179] removes such ε to get (1.1.5).

Multiscale methods based on the partition of unity functions Building on the
above fact, the works [15, 16, 179] develop exponentially convergent multiscale
methods for solving elliptic equations with rough coefficients. The method uses
the low complexity of A-harmonic functions locally and applies partition of unity
functions [184] to connect local and global scales. More precisely, for the equation
(1.1.1) with V = 0, one can write the solution in the form

u =
∑

i

ηiu =
∑

i

ηiuh
ωi
+

∑
i

ηiub
ωi
, (1.1.7)

where {ηi}i are partition of unity functions subordinate to an overlapped domain
decomposition {ωi}i and uh

ωi
,ub
ωi

are obtained by the harmonic-bubble splitting in
the local domain ωi: {

−∇ · (A∇uh
ωi
) = 0, in ωi

uh
ωi
= u, on ∂ωi ,{

−∇ · (A∇ub
ωi
) = f , in ωi

ub
ωi
= 0, on ∂ωi .

(1.1.8)

The part ub
ωi

is locally solvable since we know both the right-hand side and the
boundary condition. The part uh

ωi
is A-harmonic so ηiuh

ωi
can be seen as a restriction
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of A-harmonic functions. Thus, similar arguments using Caccioppoli’s inequality
imply that ηiuh

ωi
can be approximated by local basis functions with a nearly exponen-

tial convergence rate. Pre-computing these basis functions by solving related local
spectral problems once, one can combine them with Galerkin’s method to obtain an
exponentially convergent solver for

∑
i ηiuh

ωi
. Adding back the term

∑
i ηiub

ωi
leads

to exponential convergence of accuracy for solving u.

1.1.3.2 Our Contributions: Helmholtz’s Equations and Non-overlapped
Domain Decomposition

We extend results in Section 1.1.3.1 to solve Helmholtz’s equations and develop our
alternative multiscale framework based on non-overlapped domain decomposition,
which can lead to more localized subdomains and basis functions with better “or-
thogonality” properties. We describe our idea briefly here, and details are presented
in Chapter II, based on our works [46, 48, 47].

Extension to Helmholtz’s equations The crucial step of the exponential conver-
gence result in Section 1.1.3.1 is the low complexity of the restriction of A-harmonic
functions, proved by an iterative argument of Caccioppoli’s inequality. However,
Caccioppoli’s inequality holds for more general second-order elliptic equations,
which allows us to generalize the result beyond A-harmonic functions.

Consider the prototypical equation (1.1.1) with Vu = −k2u, which represents the
Helmholtz equation. Locally, on a mesh of size H = O(1/k), the operator

u→ −∇ · (A∇u) − k2u

becomes positive definite. To see this, using the scaling transformation x → x/H,
the operator transforms to u→ 1

H2 (−∇ · (A∇u) − H2k2u) in a domain of size O(1).
Once kH = O(1), the strong ellipticity of −∇ · (A∇·) dominates due to Poincaré’s
inequality, and thus the overall operator is elliptic and positive definite. This fact has
been explored by Peterseim to obtain a provable multiscale method for Helmholtz’s
equations under the framework of Local Orthogonal Decomposition (LOD) [214].

We will use the above observation to design exponentially convergent multiscale
methods for Helmholtz’s equations. We define

U(ω∗) := {v ∈ H1(ω∗) : −∇ · (A∇v) − k2v = 0, in ω∗}/R .

Consider two concentric cubes ω ⊂ ω∗ with side lengths H < H∗ = O(1/H), which
is the same set-up as in Section 1.1.3.1. Using an iterative argument of Caccioppoli’s
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inequality and the fact that the local equation is elliptic and positive definite, we can
show that, for the operator

R : (U(ω∗), ‖ · ‖H(ω∗)) → (U(ω), ‖ · ‖H(ω)) ,

where the definitions of ‖ · ‖H(ω), ‖ · ‖H(ω∗) follow from (1.1.3), its singular values
decay exponentially fast similar to that in Section 1.1.3.1; see our work [48] and a
contemporary work [177] with more refined analysis. This fact allows us to extend
the exponentially convergent methodology to general Helmholtz’s equations [48,
177], under the mesh constraint H = O(1/k) for the local subdomains.

Remark 1.1.2. It is worth noting that, for the Helmholtz equation, even in the case
of a smooth A, the mesh size in a standard FEM needs to satisfy conditions like
H = O(1/k2) to obtain accurate solutions due to the indefiniteness of the Helmholtz
operator. This phenomenon is known as pollution effects [19]. Thus the condition
H = O(1/k) in the multiscale method is sufficient to overcome the pollution effect.

Multiscale methods based on non-overlapped domain decomposition In Sec-
tion 1.1.3, the multiscale method relies on formula (1.1.7) to localize the approx-
imation problem, using partition of unity functions. While this method is general
and leads to conformal basis functions, it adds a tuning parameter for choosing
the partition of unity functions. It can result in large subdomain sizes due to the
overlapping. Since we need to compute local spectral problems and solve local
equations frequently, it is desirable to have smaller subdomains.

We propose an alternative framework that utilizes non-overlapped domain decom-
position to couple local and global scales. Instead of partition of unity functions,
we use indicator functions in non-overlapped subdomains {Ti}i; we represent the
solution u as

u =
∑

i

1Tiu =
∑

i

1Tiu
h
Ti +

∑
i

1Tiu
b
Ti , (1.1.9)

where uh
Ti
,ub

Ti
satisfy (1.1.8) with ωi replaced by Ti and the PDE part replaced by

−∇ · (A∇v) − k2v. The component
∑

i 1Tiu
h
Ti

is fully determined by its value on
interface edges since it satisfies the homogeneous PDE in each Ti. We rely on
carefully constructed basis functions on the interfaces to communicate the local
and global approximation. The geometric structure on the interface adds design
complexity and analysis efforts, but the resulting basis functions are more localized.
Moreover, the lack of overlapping provides better orthogonality for sub-components
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in (1.1.9); this orthogonality is useful when assembling the stiffness and mass
matrices in Galerkin’s method.

In summary, our work studies fundamentally multiscale methods based on non-
overlapped domain decomposition. We demonstrate for the first time its potential
to achieve exponential convergence without any partition of unity functions. We
present the details of the method in Chapter II.

Remark 1.1.3. The decomposition in (1.1.9) dates back to the MsFEM [129, 128]
and approximate component mode synthesis [123, 122], without provable expo-
nential convergence. We achieve exponential convergence for solving elliptic and
Helmholtz’s equations with rough coefficients and term our approach the Exponen-
tially Convergent Multiscale Finite Element Method (ExpMsFEM) [46, 48, 47].

1.1.4 Dual Perspective: Selecting Coarse Variables
Multiscale methods classified into the dual perspective feature a primary focus on
coarse scale variables, in contrast to the primal perspective whose focus is on coarse
scale spaces. Examples of methods that may be interpreted via the dual perspective
include the Variational Multiscale Method (VMS) [133], the Heterogeneous Multi-
scale Method (HMM) [1], and in the case of rough coefficients, Local Orthogonal
Decomposition (LOD) [181, 121, 148, 117, 180] and Gamblets related approaches
[208, 210, 201, 203, 131, 204, 45].

We will illustrate a very successful multiscale approach that underlies LOD and
Gamblets. Consider the elliptic equation (1.1.1), where V = 0, u ∈ H1

0 (Ω) and
f ∈ L2(Ω) in Ω = [0,1]d . We denote L = −∇ · (A∇·). Suppose we want to obtain
the following coarse variables: [u, φi], where i ∈ I, and φi is some measurement
function in H−1(Ω). Here I is an index set, and [·, ·] denotes the standard L2 inner
product.

Remark 1.1.4. As an example, we can take [u, φi], i ∈ I to be local cell averages
of u. Intuitively, these quantities can represent the coarse-scale behavior of the
solution and are thus suitable as coarse variables.

Given the PDE information Lu = f , an ideal approach to obtain these coarse
variables is to multiply the equation with a set of basis functions {ψi}i∈I that satisfy

span {ψi}i∈I = span {L−1φi}i∈I . (1.1.10)

In this case, after integration by parts, we obtain the information of [u, φi], i ∈ I.



9

Remark 1.1.5. A particularly useful representation of ψi that satisfies (1.1.10) can
be obtained by the following optimization problem:

ψi = argminψ∈H1
0 (Ω)

∫
Ω

A|∇ψ |2

subject to [ψ, φ j] = δi,j for j ∈ I .
(1.1.11)

A Bayesian interpretation of the formula is presented in [203, 204], which shows
that

ψi = E[ξ |[ξ, φ j] = δi,j for j ∈ I] ,

where ξ is a Gaussian process with mean 0 and covariance operator L−1.

We can think of span{ψi}i∈I as the test space in Galerkin’s method since we multiply
the equation by them. One must still select a trial space S to solve the problem. At
this stage, the problem is similar to scattered data approximation, where one also
needs to find an approximation space S to interpolate the scattered data [u, φi], i ∈ I.

In solving PDEs, it is common to choose the same trial and test space S =

span{ψi}i∈I . Under this setting, if we specifically select φi to be piecewise lin-
ear tent functions, we can recover the LOD method proposed in [181]. On the other
hand, setting φi to be piecewise constant functions leads to the Gamblets method in
[203]. They can handle rough coefficients provably.

The basis functions ψi described in (1.1.11) may have global support, which requires
further localization for practical computations. The localization is first achieved in
[181] then generalized in [203] by showing that ψi exhibits exponential decay in
physical space. This allows one to replace the space H1

0 (Ω) in (1.1.11) by H1
0 (ωi)

with a local domain ωi, resulting in a localized approximation for ψi.

1.1.4.1 Our Contribution: Subsampled Lengthscale in the Coarse Variables

We contribute to a new line of analysis [44, 45], summarized in Chapter III, for the
multiscale approach illustrated in Section 1.1.4. Our analysis reveals an overlooked
accuracy-efficiency tradeoff in this methodology, providing insights for the selection
of coarse variables in multiscale PDEs, as well as data collection in scattered data
approximation and machine learning.

Our idea is to choose φi as subsampled measurement functions. To illustrate we
decompose the domain Ω = [0,1]d uniformly into cubes with side length H. Let
I be the index set of these cubes with cardinality |I | = 1/Hd . For each i ∈ I, the
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measurement function φh,H
i is set to be the indicator function of a cubeωh,H

i with side
length 0 < h ≤ H, centered in the corresponding cube ωH

i with side length H; see
Figure 1.1 for a 2D example2. We refer to H as the coarse lengthscale and h as the
subsampled lengthscale. When h = H, φh,H

i is the same as themeasurement function
in Gamblets [203], while h = 0 leads to Diracs-type measurement. Subsampled
measurement functions interpolate between the two.

H

h

0 1

1

ωH
i

ωh,H
i

Figure 1.1: Illustration of Subsampled Measurements: H = 1/4, h = 1/10

The subsampled measurement function is a natural concept in scattered data approx-
imation and machine learning, leading to cell-average-type data. Understanding the
effect of h is helpful in guiding the data collection procedure. In the context of
solving PDEs, we have the freedom to choose the coarse variables. It is interesting
to understand how the value of h influences the accuracy and efficiency of the multi-
scale method, which can provide a guiding principle for numerical coarse-graining
in general multiscale problems.

Intuitively, decreasing h may reduce the information content but can potentially
make (1.1.11) decay faster as the information is more localized, resulting in better
localization and faster computation ofψi. Our analysis characterizes the dependence
of accuracy and exponential decay rate on the parameter h. We demonstrate that a
non-monotonic behavior exists in the dependence of the exponential decay rate on
h. Our theory and numerical experiments show that, given any localization radius,
there exists a “sweet spot” of h that achieves the best accuracy, both in scattered data
approximation and in solving multiscale PDEs. Thus, the results provide hints on

2Note that the choice of ωH
i and ωh,H

i being cubes here is for convenience of analysis only.
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choosing the measurement functions to maximize performance. We also study the
limit case of h→ 0 and connect it to the degeneracy issue in graph Laplacian-based
methods. The detailed study is presented in Chapter III.

1.1.5 Summary
Section 1.1 provides an overview of the topics in multiscale numerical methods cov-
ered in this thesis. Multiscale methods have been a successful and active field in ap-
plied and computational mathematics. This thesis contributes to understanding ex-
ponentially convergent methods for Helmholtz’s equations based on non-overlapped
domain decomposition without partition of unity functions. Additionally, this thesis
contributes to understanding the influence of subsampled lengthscale on accuracy
and efficiency in multiscale methods and scattered data approximation.

As discussed, multiscale methods are specialized approaches designed to tackle
very challenging problems, and they are powerful in their targeted problem class.
However, they often require a case-by-case study for different equations, and most
theoretical work is limited to solving linear PDEs. In practice, there is also a desire
for general solvers with an automatic flavor that can be used to test a wide range
of problems in PDE models and data science. This leads to our discussion about
scientific machine learning and statistical numerical methods in the next section.

1.2 Statistical Numerical Methods
In recent years, there has been a growing trend toward automating the solution of
computational problems throughmachine learningmethods, particularly those based
on neural networks (NNs). The success of NNs in applications such as computer
vision, natural language processing, and game-playing has inspired researchers to
explore the potential of machine learning in scientific computing.

One popular research direction is the automation of solving PDEs and inverse prob-
lems (IPs). Researchers have developed various physics-informed machine learning
methods by viewing PDEs as sampled data at collocation points and integrating them
into NNs-based statistical machine learning pipelines, for instance, the Physics In-
formed Neural Networks (PINNs) [222]. These methods are automatic and easy
to implement, thanks to the well-developed auto-differentiation platforms such as
PyTorch and JAX. We also note there is another line of research focusing on using
NNs to approximate the input-to-solution map, leading to operator learning [163,
29, 196, 172].
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While the NN-based approach has demonstrated empirical success in solving PDEs
and inverse problems, it may need more rigor, efficiency, and accuracy. Indeed,
the theoretical study of NNs is limited to specific cases [249, 174, 67], and their
training often requires significant tuning and takes longer than traditional solvers
[106]. Consequently, significant research efforts have been devoted to stabilizing
and accelerating the training process to enhance efficiency and accuracy [150, 282,
284, 64, 299].

The second part of this thesis aims to investigate a more interpretable (machine
learning) approach to automate the solution of general PDEs and IPs based on
Gaussian processes. The design of the methodology is in line with the idea of
statistical numerical methods: using statistical inference for numerical computation.

1.2.1 Statistical Inference for Numerical Computation
While using NNs to solve PDEs as a statistical machine learning problem has gained
popularity mainly in the last few years, it is important to note that applying statistical
inference to computational problems is not a new concept. As surveyed in the review
paper [205]:

Although numerical approximation and statistical inference are tradi-
tionally seen as entirely separate subjects, they are intimately connected
through the common purpose of making estimations with partial infor-
mation. This shared purpose is currently stimulating a growing interest
in statistical inference/machine-learning approaches to solving PDEs
[201, 223], in the use of randomized algorithms in linear algebra [113],
and in the merging of numerical errors with modeling errors in uncer-
tainty quantification [120]. While this interest might be perceived as a
recent phenomenon, interplays between numerical approximation and
statistical inference are not new. Indeed, they can be traced back to
Poincaré’s course in probability theory (1896) and to the pioneering
investigations of Sul’din [263], Palasti and Renyi [212], Sard [237],
Kimeldorf and Wahba [142] (on the correspondence between Bayesian
estimation and spline smoothing/interpolation), and Larkin [157] (on
the correspondence betweenGaussian process regression and numerical
approximation). Although their study initially “attracted little attention
among numerical analysts” [157], it was revived in information-based
complexity (IBC) [268], Bayesian numerical analysis [69], and more
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recently in probabilistic numerics [120].

In accordance with the principles of statistical inference for numerical approxima-
tions, in this thesis we adopt Gaussian process regression and Bayes inference to
solve nonlinear PDEs and IPs. We address the associated mathematical questions
regarding consistency, efficiency, adaptivity, and more in a general and rigorous
way.

Remark 1.2.1. The reason to use GPs is that they are generally easier to interpret
and optimize than NNs. In the meanwhile, GPs emerge in the infinite-width limit
[194, 158] (and neural tangent kernel limit [134]) of NNs, so they also closely
connect to NN-based approaches. Theoretically, GP-based methods share deep
connections with kernel methods, which are linked to radial basis function-based
approaches in numerical analysis, making them amenable to rigorous analysis. See
also Remark 1.2.5.

We outline our contributions in Sections 1.2.2-1.2.5, covering methodology, effi-
ciency, adaptivity, and others (including high dimensional data science applications
and posterior sampling). Notably, all our contributions use probability and statistics
in specific ways. One may think they result in a probabilistic pipeline for com-
putations in scientific machine learning, from function representation to numerical
solvers and uncertainty quantification. We summarize the discussions in Section
1.2.6.

1.2.2 Methodology: Solving Nonlinear PDEs and IPs with GPs
In Chapter IV, we introduce GPs to solve nonlinear PDEs and IPs, based on our
work [43]. As noted in Section 1.2.1, this concept is not new, and pre-existing works
have mainly focused on linear PDEs. Our goal is to establish a more comprehensive
framework covering nonlinear problems and address the newmathematical questions
that have arisen.

Our approach involves assigning a GP prior distribution to the solution and com-
puting the Maximum A Posterior (MAP) estimator conditioned on both the PDE at
collocation points and data observations (if there are any). To illustrate, consider
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the following nonlinear elliptic PDE3:{
−∆u + τ(u) = f in Ω ,

u = g on ∂Ω ,
(1.2.1)

where τ is a nonlinear scalar function and Ω is a bounded open domain in Rd with
a Lipschitz boundary. We assume the equation has a strong solution in the classical
sense.

We sample MΩ collocation points in the interior and M∂Ω on the boundary such that

xΩ = {x1, ...,xMΩ} ⊂ Ω and x∂Ω = {xMΩ+1, ...,xM} ⊂ ∂Ω ,

where M = MΩ + M∂Ω. Then, by assigning a GP prior to the unknown function u

with mean 0 and covariance kernel function K : Ω × Ω → R, the method aims to
compute the MAP estimator of the GP given the sampled PDE data, which leads to
the following optimization problem:

minimize
u∈U

‖u‖

s.t. − ∆u(xm) + τ(u(xm)) = f (xm), for m = 1, . . . ,MΩ ,

u(xm) = g(xm), for m = MΩ + 1, . . . ,M .

(1.2.2)

Here, ‖ · ‖ is the Reproducing Kernel Hilbert Space (RKHS) norm corresponding
to the kernel/covariance function K , andU is the corresponding RKHS.

Remark 1.2.2. For ease of understanding, one can conceptually think:

• The RKHS norm ‖u‖2 = [u,K−1u]whereK is the integral operator associated
with k such that (Kv)(x) =

∫
K(x,y)v(y)dy, and [·, ·] is the L2 inner product;

• The “density” of the GP is proportional to exp
(
−1

2 ‖u‖
2
)
.

Maximizing the density is equivalent to minimizing the norm, which justifies the
“MAP” interpretation of the optimization problem.

3While the example for illustration does not involve data observations (for simplicity of pre-
sentation), the framework we outline can be applied directly to cases where data observations are
present, such as IPs.
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We can separate the linear differential operators and the nonlinear relationship in
the PDE by rewriting the optimization problem into a nested one:

minimize
z(1)∈RM ,z(2)∈RMΩ


minimize

u∈U
‖u‖

s.t. u(xm) = z(1)m and ∆u(xm) = z(2)m , for m = 1, . . . ,M,

s.t. − z(2)m + τ(z
(1)
m ) = f (xm), for m = 1, . . . ,MΩ ,

z(1)m = g(xm), for m = MΩ + 1, . . . ,M .

Here, z(1) ∈ RM , z(2) ∈ RMΩ are slack variables. We write z ∈ RN with N = M+MΩ
as a concatenation of z(1) and z(2).

The constraint in the inner minimization problem is linear. By the linear theory
of Gaussian process regression, we know the optimal solution attains an explicit
formula:

u(x) = K(x,φ)K(φ,φ)−1z . (1.2.3)

Remark 1.2.3. We will elaborate more on the notations K(x,φ) and K(φ,φ) in
Chapter IV; for this specific example, we can write down K(x,φ) and K(φ,φ)

explicitly:

K(x,φ) =
(
K(x,xΩ),K(x,x∂Ω),∆yK(x,xΩ)

)
∈ R1×N ,

K(φ,φ) =
©­­«

K(xΩ,xΩ) K(xΩ,x∂Ω) ∆yK(xΩ,xΩ)
K(x∂Ω,xΩ) K(x∂Ω,x∂Ω) ∆yK(x∂Ω,xΩ)
∆xK(xΩ,xΩ) ∆xK(xΩ,x∂Ω) ∆x∆yK(xΩ,xΩ)

ª®®®¬ ∈ R
N×N .

(1.2.4)

Here, ∆x,∆y are the Laplacian operator for the first and second arguments of k,
respectively. We adopt the convention that if the variable inside a function is a set,
it means that this function is applied to every element in this set; the output will be
a vector or a matrix, e.g., K(xΩ,xΩ) ∈ RMΩ×MΩ .

It remains to solve the outer optimization problem, which is finite dimensional:
minimize

z∈RN
zT K(φ,φ)−1z

s.t. − z(2)m + τ(z
(1)
m ) = f (xm), for m = 1, . . . ,MΩ ,

z(1)m = g(xm), for m = MΩ + 1, . . . ,M .

(1.2.5)

Remark 1.2.4. From (1.2.3), (1.2.4), and (1.2.5), we can understand the method-
ology as a generalization of radial basis functions based meshless methods [239].
Specifically, it is the same as the symmetric collocation method for solving linear
PDEs, e.g., when τ = 0.
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More generally, for any PDEs, our methodology leads to the optimization problem
min
u∈U

‖u‖

s.t. PDE constraints at {x1, . . . ,xM} ∈ Ω ,
(1.2.6)

and the equivalent finite dimensional problem
min
z∈RN

zT K(φ,φ)−1z

s.t. F(z) = y ,
(1.2.7)

where φ is the concatenation of measurements of u induced by the PDE at the
sampled points; we will explain them in detail in Chapter IV. The function F

encodes the PDE, and the vector y encodes the right hand side and boundary data.

Theoretically, we prove that the methodology converges in the large data limit if the
exact solution lives in the RKHS of the covariance kernel of the GP. Convergence
rates can be further obtained if the stability of the PDE is assumed [23]. Numerically,
we solve the above quadratic programming problem with nonlinear constraints via
sequential quadratic programming. This is equivalent to a Gauss-Newton-type
algorithm in the case of (1.2.5). In Chapter IV, we present numerical results,
showing that 2 − 10 iterations suffice to converge for a wide array of problems such
as nonlinear elliptic PDEs, Burgers’ equation, a regularized Eikonal equation, and
the Darcy flow inverse problem.

Remark 1.2.5. From formulas (1.2.6) and (1.2.7), we see the methodology is quite
general and has a similar flavor to NN-based machine learning solvers: the selec-
tion of kernels resemble that of NNs, and the solution is obtained by solving an
optimization problem for any PDEs and IPs. However, the GP/kernel method is
simpler, more interpretable, and amenable to analysis. In Section 1.2.3, we show
another advantage of GP-based methods for low-dimensional PDEs: we can use
fast solvers for dense kernel matrices to accelerate the optimization process. Ad-
ditionally, we point out that the GP methodology provides a natural pipeline for
uncertainty quantification due to its probabilistic interpretation.

On the other hand, the function representation provided by the GP methodology is
essentially linear, as the function space is the linear span of kernel functions. This
is a disadvantage, as NNs are known to be successful partly because of their high
expressivity. In Section 1.2.4, we discuss ways of using hierarchical learning to
make GPs more adaptive and expressive.
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1.2.3 Efficiency: Sparse Cholesky Factorization for GP-PDEs
The complexity bottleneck of GP-based methods lies in computing with dense
kernel matrices. In the case of PDE problems, these matrices may also involve
partial derivatives of the kernels (e.g., (1.2.4)), and fast algorithms for such matrices
are less developed [81, 211, 66] compared to the derivative-free counterparts.

In Chapter V, we present a sparse Cholesky factorization algorithm for such kernel
matrices, based on our work [50]. The algorithm relies on the near-sparsity of the
Cholesky factor under a multiscale ordering of the pointwise and derivative-type
entries of the matrices. In fact, it is known as a common practice that reordering
the columns of a positive definite matrix may lead to better sparsity in its Cholesky
factor. Recently in [241, 240], the authors provide a rigorous analysis of such
phenomenon for a kernel matrix with derivative-free entries when the kernel is
the Green function of some differential operators. Based on the analysis, they
propose a sparse Cholesky factorization algorithm to factorize the inverse of the
kernel matrix in near-linear time. The contribution of our work is to generalize
the analysis and algorithms to kernel matrices with derivative entries, providing a
rigorous algorithmic framework for scaling up computations in GPs for PDEs.

Central to the methodology is the interplay between linear algebra, Gaussian process
conditioning, screening effects, and numerical homogenization. More precisely,
consider a kernel matrix Θ ∈ RN×N , and a Gaussian random variable Y ∼ N(0,Θ).
Suppose Θ−1 = U?U?T where U? is the upper Cholesky factor, then we have the
following relation:

U?
i j

U?
j j
= (−1)i, j Cov[Yi,Yj |Y1: j−1\{i}]

Var[Yi |Y1: j−1\{i}]
, i ≤ j . (1.2.8)

Here we used the MATLAB notation such that Y1: j−1\{i} corresponds to {Yq : 1 ≤
q ≤ j − 1,q , i}.

The formula (1.2.8) links the values ofU? to the conditional covariance of aGaussian
variable. Note that in the GP picture, this Gaussian variable is a subsampling of a
continuous GP. In spatial statistics, it is empirically well-known that conditioning a
GP on coarse-scale measurements results in very small covariance values between
finer-scale measurements. This phenomenon, known as screening effects, has been
discussed in works such as [259, 256]. The implication is that conditioning on
coarse scales screens out fine-scale interactions. Thus, based on this observation,
one expects U? to become approximately sparse if we reorder the columns of the



18

kernel matrix so that coarse scale measurements come before finer ones. This is
the rationale behind the works of sparse Cholesky factorization [241, 240] when the
kernel matrix does not contain derivatives of the kernel.

Our work’s key contribution is figuring out how to order the derivative entries in the
matrix to achieve similar sparsity. To that end, we point out a remarkable relation
that connects the conditional covariance to conditional expectations:�����U?

i j

U?
j j

����� = ����Cov[Yi,Yj |Y1: j−1\i]

Var[Yi |Y1: j−1\i]

���� = ��E[Yj |Yi = 1,Y1: j−1\i = 0]
�� .

The last term in the above identity connects to the Bayes interpretation of basis
functions (Gamblets) in multiscale methods; see Remark 1.1.5. This allows us
to use analytic results in multiscale methods4 to show the exponential decay of���U?

i j/U
?
j j

���. The analysis suggests that we need to treat derivative entries as finer
scales compared to pointwise entries in the kernel matrix. Under such ordering, we
rigorously identify the sparsity pattern and quantify the exponentially convergent
accuracy of the corresponding Vecchia approximation [278, 140] of the GP, which
provides a sparse approximation of Cholesky factors of Θ−1. This enables us to
compute ε-approximate inverse Cholesky factors of the kernel matrices with a state-
of-the-art complexity O(N logd(N/ε)) in space and O(N log2d(N/ε)) in time, for
d-dimensional PDE problems.

With the sparse factors, gradient-based optimization methods become scalable. Fur-
thermore, we can use the often more efficient Gauss-Newton method for solving the
optimization problem. In such case, we can apply the conjugate gradient algorithm
with the sparse factor of a reduced kernel matrix as a preconditioner to solve the
linear system. Our numerical experiments in Chapter V illustrate the algorithm’s
near-linear space/time complexity for a broad class of nonlinear PDEs such as the
nonlinear elliptic, Burgers, and Monge-Ampère equations.

1.2.4 Adaptivity: Hierarchical Learning and Consistency Analysis
Compared to NNs, the function representation provided by the GP methodology is
essentially linear since the function space is the linear span of kernel functions. To
improve the expressivity and adaptivity of GP-based methods, hierarchical learning
can be applied. In fact, a crucial aspect of the success of Gaussian processes, in

4Note that the works [241, 240] also employ the connection to multiscale methods and numer-
ical homogenization to provide rigorous analysis of the sparse Cholesky factorization algorithms.
However, their analysis relies additionally on operator-valued wavelets and the matrix algebra of
exponential decay matrices. Our proof is much simpler and applies to the case of derivative entries.
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a wide range of applications to complex and real-world problems, is hierarchical
modeling and learning of hyperparameters. We contribute to some analysis of
hierarchical learning in Chapter VI, based on our work [51].

To illustrate, consider amodel problemof learning a functionu† : D ⊂ Rd → R from
pointwise observed data: u(xi) = yi,1 ≤ i ≤ N . Given a family of positive definite
covariance/kernel functions Kθ : D × D → R where θ ∈ Θ is a hyperparameter,
Gaussian process regression approximates u† with the conditional expectation

u(·, θ,X) := E [ξ(·, θ) | ξ(X, θ) = u†(X)] = Kθ(·,X)[Kθ(X,X)]
−1u†(X) , (1.2.9)

where ξ(·, θ) ∼ GP(0,Kθ) is a centered Gaussian process with covariance function
Kθ . We have used the following compressed notation:

X := (x1, . . . ,xN )
T and u†(X) := (u†(x1), . . . ,u†(xN ))

T .

Moreover, Kθ(X,X) denotes the N × N dimensional Gram matrix with (i, j)th entry
Kθ(xi,x j), and Kθ(·,X) is a function mapping D to RN with ith component Kθ(·,xi) :
D 7→ R. Note that the notation used here is slightly different from that in previous
sections, as it pertains to a different setting.

Hierarchical learning the GP/kernel aims to select a good θ. In general, we have
two paradigms for learning the kernels: the Bayes approach intrinsic to GPs and
the approximation-theoretic approach centered around Monte Carlo (e.g., cross-
validation) and numerical approximations (e.g., Kernel Flow [206]).

Bayes approach The empirical Bayes (EB) approach addresses the question by
assuming that θ is sampled from a prior distribution and ξ is then sampled from the
conditional distribution of ξ |θ; then, it finds the posterior distribution of the pair
(ξ, θ) conditioned on ξ(X) = u†(X), and selects the parameter θ that maximizes the
marginal probability of θ under this posterior. If we work with uninformative priors,
we get the following objective function:

LEB(θ,X,u†) = u†(X)T[Kθ(X,X)]
−1u†(X) + log det Kθ(X,X) . (1.2.10)

This is also twice the negative marginal log likelihood of θ given the data u†(X).
Then, EB will choose θ by minimizing this objective function, namely

θEB(X,u†) := arg min
θ∈Θ

LEB(θ,X,u†) . (1.2.11)
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Approximation theoretic approach On the other hand, considerations from ap-
proximation theory offer a different approach without proposing statistical models.
This methodology involves finding an ideal θ that minimizes d(u†,u(·, θ,X)), where
d is a cost function. Although u† is not available in practice, ideas from cross-
validation can split X into training and validation data and use the approximation
error in the validation data to estimate the exact error. Inspired by this idea, one
could optimize the following objective function:

d(u(·, θ,X),u(·, θ, πX)) . (1.2.12)

Here, πX represents a subset of X obtained by subsampling a proportion, such as
one-half, ofX. We will focus on a particular choice of d originating from the Kernel
Flow (KF) approach [206]. To describe it, we denote by (Hθ, ‖ · ‖Kθ ) the associated
RKHS for the kernel Kθ; note that ‖Kθ(·, x)‖2Kθ = Kθ(x, x). The objective function
in KF is chosen as

LKF(θ,X, πX,u†) :=
‖u(·, θ,X) − u(·, θ, πX)‖2Kθ

‖u(·, θ,X)‖2Kθ
. (1.2.13)

This measures the discrepancy in the RKHS norm between the Gaussian Process
Regression solution using the whole data X and using a subset of the data πX,
normalized by the RKHS norm of the former. It is natural to expect a good θ will
make the discrepancy small so the KF estimator is defined as

θKF(X, πX,u†) := arg min
θ∈Θ

LKF(θ,X, πX,u†) . (1.2.14)

Consistency analysis and robustness In Chapter VI, we provide the first rigorous
analysis for Kernel Flow (and new analysis results for Empirical Bayes), character-
izing the large data consistency (i.e., what is limN→∞ θ

EB, θKF) and implicit bias
(i.e., how these limits reflect the structure of the problem) in learning a Matérn-like
Gaussian process. These results are of interest to statistical learning theory and
spatial statistics. In addition, our study illustrates that the Bayes approach is more
accurate for well-specifiedmodels and approximation-theoretic approaches aremore
favorable regarding robustness to model misspecification.

1.2.5 Additional Topics: Randomized Numerics and Posterior Sampling
This thesis also covers some other related and prospective topics pertaining to nu-
merical methods based on probability and statistics. Specifically, we study random-
ized numerical linear algebra to scale up kernel computations in high dimensional
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applications and use probability flows to sample posterior distributions in Bayes
inference.

1.2.5.1 High Dimensional Problems through Randomized Numerics

The sparse Cholesky factorization algorithm discussed in Section 1.2.3 achieves
near-linear complexity and is highly efficient and scalable. However, it is primarily
suited for low-dimensional problems where dense neighboring data can screen out
far-field interactions, leading to near-sparsity in the Cholesky factors. This sparsity
structure enables a full-scale approximation of the dense matrix.

For high-dimensional scientific applications, such as in chemistry, where the data
could not sufficiently fill the space, such a sparse Cholesky factorization algorithm
may not be performative. Indeed, in high-dimensional problems, it is more rea-
sonable to aim for a low-rank approximation of the kernel matrix. To derive an
accurate low-rank approximation, we usually need to find low-complexity structures
in the data. For this purpose, randomized numerical linear algebra [183] provides
a promising and widely recognized tool.

In the first part of Chapter VII, we briefly describe our work on a randomized
algorithm, Randomly Pivoted Cholesky (RPCholesky), which provides a provable
and efficient low-rank approximation for dense kernel matrices. RPCholesky can
be understood as an adaptive Cholesky factorization or Nyström approximation of
the kernel matrix with specific pivoting rules. More precisely, the column Nyström
approximation approximates K ∈ RN×N via

K̂S = K (:,S)K (S,S)†K (S, :) ,

where S = {s1, ..., sk} ⊂ {1, ...,N} is a carefully chosen set of columns. In this
expression, K (:,S) is the submatrix with the selected columns, K (S, :) is the subma-
trix with the selected rows, and A(S,S)† is the Moore–Penrose pseudoinverse of the
submatrix with the selected rows and columns.

RPCholesky selects the columns progressively in a probabilistic way: having se-
lected an index set Sm, the next index sm+1 is sampled according to the probability

P{sm+1 = i} = R(m)ii /trR
(m) ,

where R(m) = K − K̂Sm is the Schur complement at the m-step.

Compared to the greedy selection sm+1 = argmaxiR
(m)
ii that has been widely used

in experimental design based on posterior variances of Gaussian processes [94]
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and numerical linear algebra (known as complete pivoting [124]), RPCholesky
strikes a better balance between exploring small diagonal entries and exploiting
large ones. This balance of exploration-exploitation is crucial for a robust and
accurate approximation of the kernel matrix. We support our intuition through
in-depth theoretical and numerical studies [42], which shows RPCholesky matches
or improves alternative algorithms in the literature, such as uniform sampling [291]
and ridge leverage score sampling [3, 36, 192, 232].

This study highlights the efficacy of randomness in scaling up kernel methods,
showcasing their powerful potential in high-dimensional scientific computing.

1.2.5.2 Posterior Sampling through Gradient Flows

Although we adopted the principle of statistical numerical methods to solve PDEs
and inverse problems in Section 1.2.2, we only focused on the MAP estimator and
did not explore the posterior distributions. As a result, we did not fully harness the
potential of a Bayesian perspective.

In Bayesian inference, generating samples from the posterior distributions is often
of interest, which can be helpful for uncertainty quantification. The sampling of
posterior distributions has primarily been addressed by MCMC. However, while
MCMC is guaranteed to converge to the true posterior in the limit, it is typically
very slow for large-scale problems.

Recently, gradient flows in the density space based on optimal-transport-type met-
rics have been influential in generating interacting particle dynamics for sampling
distributions [271]. These methods converge to the true posterior in the asymp-
totic limit and may be faster than pre-existing MCMC. Meanwhile, many MCMC
methods in the continuous-time limit can be formulated as gradient flows in the
density space; an example is the Langevin dynamics. The optimization perspective
of gradient flows also leads to more amenable analysis. These motivate us to study
gradient flows as a systematic methodology for sampling.

In the second part of Chapter VII, we briefly describe our work [49], which makes
progress in understanding several questions regarding the canonical choice of gra-
dient flows for sampling from the perspective of invariance.

We need to choose an energy functional and metric to describe any gradient flow.
Formally, let P be the probability space in Rd , E be an energy functional on P that
maps to R, and gρ be a Riemannian metric on P at ρ, where TρP is the tangent
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space consisting of measures with zero means. The metric can also be expressed
as gρ(σ1, σ2) = 〈σ1,M(ρ)σ2〉L2 , where M(ρ) is an operator that acts on TρP. The
gradient flow equation is given by:

∂ρt

∂t
= −∇gE(ρt) = −M(ρt)

−1 δE

δρ
|ρ=ρt ,

where ∇g is the Riemannian gradient operator and δE
δρ is the first variation of E. We

can think M(ρ)−1 as a preconditioner for the “Euclidean gradient” δE
δρ . Numerical

simulation of the flow can lead to sampling algorithms. Some examples of gradient
flows and their corresponding numerical scheme include

• Wasserstein gradient flow [135, 200] and Langevin’s dynamics;

• Stein variational gradient flow [168] and Stein variational gradient descent
[169];

• Wasserstein-Fisher-Rao gradient flow [175] and birth-death dynamics;

• Kalman-Wasserstein gradient flow [95] and interacting Langevin’s dynamics.

These gradient flows are based on choosing E as the Kullback–Leibler (KL) diver-
gence

E(ρ) = KL[ρ‖ρpost] =

∫
ρ log

( ρ

ρpost

)
with different metric gρ. See also [271] for a recent review on gradient flow for
sampling.

Our work identifies canonical choices of E and gρ that result in favorable flow prop-
erties, contributing to the fundamental understanding of gradient flow for sampling.
Specifically, we have achieved the following:

• We prove that, out of all f -divergences, the KL divergence is the only one
that, up to scaling, has a first variation invariant to the normalization constant
of the posterior distribution ρpost. This property is highly desirable because it
means the flow can be implemented without knowledge of the normalization
constant. Our result demonstrates that this property is uniquely possessed by
the KL divergence, validating its widespread use.

• We focus on the Fisher-Rao metric, which has been shown to be the only
metric, up to scaling, that is invariant under any diffeomorphism of the state
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space [40, 11, 24]. Along with other concurrent research [176], our work
establishes the unconditional and uniformly exponential convergence of the
Fisher-Rao gradient flow. This property is remarkable, as the convergence
behavior of other gradient flows, such as the Wasserstein gradient flow, de-
pends crucially on ρpost, particularly its log-Sobolev constant. As a result,
the Fisher-Rao gradient flow is ideal for sampling arbitrary posterior distribu-
tions, as it offers excellent convergence properties irrespective of the specific
posterior distribution.

However, simulating the Fisher-Rao gradient flows requires extra effort. Particle
methods based on birth-death dynamics have been employed in previous studies
[175, 176], but their effectiveness depends on the quality of the density estimator
for particle distributions. As a result, these methods may deteriorate when applied
to high-dimensional problems, necessitating the use of many particles.

We investigate parametric approximations of the Fisher-Rao gradient flows. Specif-
ically, we demonstrate the equivalence between the Gaussian projection of the flow
and natural gradient methods in variational inference. Additionally, we explore the
use of Kalman methodology to obtain a derivative-free approximation of the Fisher-
Rao gradient flow, recovering a recently proposed Kalman-type sampler [132] that
has demonstrated success in large-scale Bayes inverse problems. Wewill continue to
work towards enhancing these approximations to create efficient and robust samplers
for posterior distributions in Bayes inference.

1.2.6 Summary
In Section 1.2, we overview statistical numerical methods for PDEs and inverse
problems covered in this thesis. By modeling solutions as Gaussian processes (GPs)
and performing Bayes inference based on the PDE and observational data, one gets a
rigorous and automatic solverwith scientificmachine learning flavors. Ourworks lay
out the theoretical underpinning of the methodology, design efficient algorithms to
scale up the computation with dense kernel matrices, analyze the use of hierarchical
learning for enhanced adaptivity, and contribute to gradient flows based sampling
algorithms for uncertainty quantification. By combining these components, we
have developed a probabilistic pipeline for solving PDEs and inverse problems with
Gaussian processes, which is particularly effective for problems in low-dimensional
physical space and can also apply to high-dimensional problems very flexibly.

The GP-based method is a versatile approach that can be applied to general PDEs
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and inverse problems at an algorithmic level. This complements the multiscale
methods presented in Section 1.1, which are specialized to tackle difficult PDEs
with rough coefficients. We note that, without a more targeted design of kernel
functions, the GP-based method may not be able to handle such challenging PDEs
with rough coefficients effectively.

For high-dimensional scientific computing problems, randomness can help identify
potential low-dimensional structures. In kernel computations, this involves con-
structing an efficient and accurate low-rank approximation of dense kernel matrices.
We show that using the randomly pivoted Cholesky algorithm achieves a favorable
balance between exploration and exploitation in high-dimensional space.

Overall, the second part of this thesis demonstrates the efficacy of using probabilistic
and statistical approaches to address scientific computing problems in an automated,
efficient, and robust manner.
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C h a p t e r 2

EXPONENTIALLY CONVERGENT MULTISCALE FINITE
ELEMENT METHOD

In this chapter, we present the exponentially convergentmultiscalemethods (ExpMs-
FEM) that we have proposed in a series of works [46, 48, 47]. Specifically, our
discussion centers on solving general high-frequency Helmholtz equations, and is
based on the work [48] (to appear in SIAM Multiscale Modeling & Simulation).

2.1 Introduction
We focus on solving the Helmholtz equation in heterogeneous media and high
frequency regimes. We consider the model problem in a bounded polygonal domain
Ω ⊂ Rd with a Lipschitz boundary Γ. For generality, the boundary can contain three
disjoint parts Γ = ΓD ∪ ΓN ∪ ΓR where ΓD,ΓN and ΓR correspond to the Dirichlet,
Neumann and Robin type conditions, respectively. Given positive constants Amin,
Amax, βmin, βmax, Vmin, Vmax and functions A, β,V : Ω → R that satisfy Amin ≤

A(x) ≤ Amax, βmin ≤ β(x) ≤ βmax and Vmin ≤ V(x) ≤ Vmax, the Helmholtz equation
with homogeneous boundary conditions1 is formulated as follows:

−∇ · (A∇u) − k2V2u = f , in Ω

u = 0, on ΓD

A∇u · ν = Tku, on ΓN ∪ ΓR .

(2.1.1)

Here, ν is the outer normal to the boundary. The boundary operator satisfies
Tku = 0 for x ∈ ΓN and Tku = ikβu for x ∈ ΓR, where i denotes the imaginary
number. The wavenumber k is real and positive, and functions u and f are complex-
valued. Our aim is to design a multiscale method for solving (2.1.1) that achieves a
nearly exponential rate of convergence with respect to the computational degrees of
freedom. This is a challenging problem due to combined difficulties of heterogeneity
and high frequency. We review the related literature of this research field in Section
2.1.1 and discuss our methodology as well as its motivations and related work in
Section 2.1.2.

1For simplicity of presentation, homogeneous boundary conditions are considered here. Gener-
alization to non-homogeneous data is straightforward; see Section 2.5.3 or [46] (Section 5.3).
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2.1.1 Literature for Solving Helmholtz Equations
The Helmholtz equation has been widely used in studying wave propagation in
complex media. Numerical simulation of this equation still remains a challenging
task, especially in the regime where the wavenumber k is large. The main numerical
difficulty lies in the highly oscillatory pattern of the solution. Furthermore, the
operator in the equation is indefinite, which leads to severe instability issues for
standard numerical solvers such as the finite element method (FEM). Indeed, a
well-known pre-asymptotic effect called the pollution effect [19] can occur—that
is, in order to get a reasonably accurate solution, the mesh size H in the FEM
needs to be much smaller than 1/k. For example, for a standard P1-FEM approach,
the mesh size needs to satisfy H = O(1/k2) for quasi-optimality of the solution
[13, 19]. This constraint on H is much stronger than the typical condition in the
approximation theory for representing an oscillatory function with frequency k,
where H = O(1/k), i.e., a fixed number of grid points per wavelength, would suffice
for an accurate approximate solution.

In the literature, there have beenmany attempts to overcome or alleviate the difficulty
associated with the pollution effect, so that a mesh size of H = O(1/k) can be used.
We highlight two classes of methods, namely the hp-FEM and multiscale methods,
which can theoretically deal with the pollution effect under their respective model
assumptions. The hp-FEM is proposed in [185, 186], which is a FEM using
local high order polynomials. It is shown that by choosing the degrees of local
polynomials p = O(log k), the pollution effect can be suppressed in principle for
the Helmholtz equation with constant A,V and β. Nevertheless, to the best of our
knowledge, there have been no theoretical results for this methodology when these
coefficients become rough. There have been some recent developments for hp-FEM
methods when piecewise regularity of the coefficients is assumed [26, 154]. In
general, it is well-known that polynomials might behave arbitrarily badly even for
elliptic equations with rough coefficients [17].

Multiscale methods, on the other hand, have long been developed to address the
difficulty associated with rough coefficients in elliptic equations. In particular, we
mention the LODandGamblets related approaches [181, 121, 210, 203, 204, 44, 45],
variants of the multiscale finite element method (MsFEM) [129, 74, 128, 52, 89, 46]
and generalized finite element methods based on partition of unity methods (PUM)
[15, 253, 35, 41, 16, 243, 178, 179], which are most related to our work. Recently,
the LOD method has been generalized to the case of Helmholtz equations with high
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wavenumber and heterogeneous media [214, 93, 34, 215]. They show that with a
coarse mesh of size O(H) and localized multiscale basis functions of support size
O(H log(1/H) log k), the pollution effect can be overcome once the stability constant
of the solution operator of the Helmholtz equation is of at most polynomial growth.
An error of at mostO(H) is established. Very recently, there is also a super-localized
version of LOD-type method for the Helmholtz equations, proposed in [86], where
the support of basis functions is further reduced to O(H log(d−1)/d(k/H)).

From the perspective of MsFEM methodology, the authors in [91] introduce WMs-
FEM to address the pollution effect successfully. Their basis functions are all of
local support size O(H). On the theoretical side, they require O(k) number of
basis functions in each element in order to achieve O(H) accuracy. In contrast,
our method, which can be viewed as a generalization of MsFEM, only requires
O(logd+1 k) number of basis function of support size O(H) in each element to
handle the pollution effect and to achieve O(H) accuracy. More importantly, our
method yields an overall exponential rate of convergence regarding the number of
basis functions, thanks to a systematic decomposition and treatment of coarse and
fine scale parts of the solution.

In the literature, multiscale methods with exponential convergence for elliptic equa-
tions with rough media first appeared in [15], which is based on local optimal
basis approximation combined with the partition of unity method (PUM). There
has been a number of recent papers that are actively working on improving the
methodology [253, 35, 41, 16, 243, 178, 179], aiming for more refined continu-
ous and discrete analysis, randomized computation, efficient implementation, and
generalization beyond elliptic equations. Our initial work [46] on exponentially
convergent multiscale methods for elliptic equations draws many motivations from
these results, especially the Caccioppoli-type inequality that is essential for proving
the exponential convergence. Different from the PUM based approach, our method
is based on non-overlapped domain decomposition. More comparisons will be dis-
cussed in Subsection 2.1.2. In a concurrent work [177], the authors also proposed an
exponentially convergent method for the Helmholtz equations using the PUM-based
optimal local approximation methodology.

In addition to those methods mentioned above, there have also been several algo-
rithms based on the MsFEM methodology [198, 90] or the HMM methodology
[199] with particular empirical success for solving the Helmholtz equation. It is
also worth noting that, in conjunction with designing a good discretization scheme



29

as above, one could also consider fast solvers for the discrete linear system. See, for
example, the method of sweeping preconditioners [77, 78, 218], where a precondi-
tioning matrix is constructed to compute approximations of the Schur complements
successively. Very recently, the LOD approach has also been combined with the hi-
erarchical approach of Gamblets [116] to get a multiresolution solver for the discrete
system.

2.1.2 Main Contributions and Motivations
We propose a multiscale framework for solving the Helmholtz equation in rough
media and high frequency regimes, specifically in dimension d = 2 where the mesh
geometry of the non-overlapped domain decomposition is simplest to describe.
Our idea is based on a multiscale method in our previous work [46] for solving
elliptic equations with rough coefficients in an exponentially convergent manner.
We aim to extend this framework to the more challenging Helmholtz equation
where the operator is non-Hermitian and indefinite. It is perhaps surprising that
the techniques in multiscale methods for elliptic equations can be systematically
adapted to the Helmholtz equation. Indeed, it has been proved in [79] that the Green
function of the Helmholtz equations requires a polynomial in k number of degrees
of freedom to approximate, where they consider basis functions independent of
the right hand side. Here, our results demonstrate that one can actually compress
the solution operator exponentially efficiently by adding a number of local basis
functions that depend on the local information of the right hand side. This shows
that one can still achieve significant compression of the high frequency Helmholtz
solution operator with rough coefficients by developing a data-driven compression
operator adapted to the right hand side.

We outline our main contributions:

1. In studying the solution behavior of the Helmholtz equation (2.1.1), we intro-
duce a coarse-fine scale decomposition of its solution space. This decompo-
sition is adapted to the coarse mesh structure; a mesh size of O(1/k) suffices
to make this coarse-fine scale decomposition well defined. Moreover, the
decomposition is adapted to the coefficients A,V, β and the wavenumber k.

2. Analytically, we show the fine scale part is of O(H) in the energy norm,
and it can be computed efficiently by solving the Helmholtz equations locally.
Meanwhile, we prove that the space of the coarse scale part is of low complex-
ity, such that there exist local multiscale basis functions that can approximate
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this part in a nearly exponentially convergent manner. These serve as the
cornerstone of our multiscale numerical method.

3. Numerically, we propose a multiscale framework that solves the two parts
separately. The nearly exponential rate of convergence in the energy norm
and L2 norm is theoretically proved.

4. Experimentally, we conduct a number of numerical tests and observe con-
sistently that our multiscale methods give a nearly exponential rate of con-
vergence, even for problems with high-contrast media. Based on these nu-
merical studies, several recommendations for efficient implementations of
our methods are provided, especially on how to design the offline and online
computation to handle multiple right hand sides efficiently.

To the best of our knowledge, this multiscale framework is the first one that can
be proved rigorously to achieve a nearly exponential rate of convergence in solving
(2.1.1) with rough A, β,V and large k, especially for d = 2. It generalizes our
previous work on exponential convergence for solving rough elliptic equations [46],
which is motivated by the PUM approach using optimal local approximation spaces
for elliptic equations [15].

Different from the PUM that uses an overlapped domain decomposition, our method
relies on non-overlapped domain decomposition and an edge coupling approach to
combine local basis functions as in MsFEM. Our coarse-fine scale decomposition
of the solution space is built on this non-overlapped edge coupling. For elliptic
equations, this decomposition is the same as the orthogonal decomposition in pre-
vious work of MsFEM [128, 46] and approximate component mode synthesis [123,
122]. Under this line of methodology, we contribute a principled framework for
obtaining nearly exponentially convergent basis functions for multiscale Helmholtz
equations.

There are many differences between the multiscale methods based on PUM and
edge coupling. Basically, the support of basis functions in PUMs is usually larger
than that of MsFEMs since non-overlapped domain decomposition leads to smaller
decomposed domains than its overlapped counterpart. There is no need to introduce
additional freedom of partition of unity functions as well. On the other hand, in 2D,
the number of local edges could be twice as many as the number of local domains,
leading to more work in constructing the basis functions. Moreover, there will be
an increasing design complexity for the non-overlapped edge coupling approach
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for higher-dimensional problems since the boundaries of high dimensional local
domains become more complicated. This is why we dedicate specifically to 2D
Helmholtz equations for detailed analysis and numerical experiments.

We are not going to dive very deeply about the fundamental comparison between
overlapped and non-overlapped decomposition in multiscale methods. Our aim
is to demonstrate that one could achieve a nearly exponential convergence rate
theoretically using the non-overlapped edge coupling framework in a principled way
and show that this method is very competitive numerically. A number of technical
difficulties, such as the appropriate approximation space for the edge functions and
the spectral analysis of the local restriction operator, are carefully addressed to lay
out this framework. We believe this work could help future researchers understand
and analyze multiscale methods that are built on different local decomposition and
global coupling approaches.

Lastly, we remark that in principle, our multiscale algorithm can be applied to
general Helmholtz equations numerically, while most of our theoretical results rely
on analytical properties of the solution to equation (2.1.1), related to the well-
posedness, stability and Cα estimates. Therefore, typical conditions (usually very
mild) of these analytical properties will be assumed here, in order to get a rigorous
theory. We will mention several references to these results. Some numerical
examples in which these assumptions are violated will be also presented to illustrate
the effectiveness of our algorithm in a general context.

2.1.3 Organization
The rest of this chapter is organized as follows. In Section 2.2, we review preliminary
results for the Helmholtz equation, including the well-posedness, stability, adjoint
problems, and Hölder Cα estimates. Section 2.3 is devoted to analyzing the solution
space based on a coarse-fine scale decomposition. Moreover, the computational
properties of the coarse and fine parts are rigorously studied in detail. Building upon
these properties, in Section 2.4 we develop the multiscale computational framework
and prove the nearly exponential rate of convergence for our multiscale methods.
The detailed numerical algorithms are discussed and implemented in Section 2.5
for several Helmholtz equations. To improve the readability, some technical proofs
of theorems and propositions will be deferred to Section 2.6. Some concluding
remarks are made in Section 2.7.
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2.2 Preliminaries on Helmholtz’s Equation
Our multiscale algorithm relies on an in-depth understanding of the solution space
of (2.1.1). To achieve this, we first present several analytic results for (2.1.1),
which will serve as preliminaries for our subsequent discussions. We cover the
weak formulation, the well-posedness of the equation, the stability estimates of the
solution, and Hölder estimates.

2.2.1 Notations
We use H1(Ω) to denote the standard complex Sobolev space in Ω, containing L2

functions with L2 first order derivatives. We write (u, v)D :=
∫

D uv̄ for any domain
D. We use C as a generic constant, and its value can change from place to place;
we will state explicitly the parameters that this constant may or may not depend on.

2.2.2 Analytic Results
For the model problem (2.1.1), we consider the complex Sobolev space H(Ω) :=
{u ∈ H1(Ω) : u|ΓD = 0} in which functions have zero trace on the Dirichlet
boundary. This space is equipped with the norm ‖ · ‖H(Ω) such that

‖u‖H(Ω) :=
∫
Ω

A|∇u|2 + k2V2 |u|2 .

The dual space ofH(Ω) is denoted byH−1(Ω) equipped with the norm ‖ · ‖H−1(Ω);
by definition one has

‖ f ‖H−1(Ω) := sup
v∈H(Ω)

|( f , v)Ω |
‖v‖H(Ω)

.

Now, we present several analytic results pertaining to theHelmholtz equation (2.1.1).

Weak formulation. The weak formulation of (2.1.1) is given by

a(u, v) := (A∇u,∇v)Ω − k2(V2u, v)Ω − (Tku, v)ΓN∪ΓR = ( f , v)Ω, ∀v ∈ H(Ω) .

(2.2.1)

Continuity estimate. By the Cauchy-Schwarz and trace inequalities (see Lemma
3.1 of [185]), the sesquilinear form a(·, ·) is bounded on H(Ω) with a constant Cc

independent of k, i.e., for any u, v ∈ H(Ω), one has the continuity estimate:

|a(u, v)| ≤ Cc‖u‖H(Ω)‖v‖H(Ω) . (2.2.2)

Well-posedness and stability. If ΓR has positive d − 1 dimensional measure, then
under somemild conditions (seeAssumption 2.3 andTheorem2.4 in [103]), problem
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(2.2.1) admits a unique solution given the right hand side f ∈ L2(Ω). Wewill assume
these conditions. Let the solution operator be Nk , so that u = Nk f . Under the same
conditions, this operator is stable (Theorem 2.4 in [103]) in the sense that

Cstab(k) := sup
f ∈L2(Ω)\{0}

‖Nk f ‖H(Ω)
‖ f ‖L2(Ω)

< ∞ . (2.2.3)

To avoid getting into detailed discussions of these assumptions and for simplicity of
presentation, we will base most of our arguments on assuming (2.2.3) holds.

The stability constant Cstab(k) will depend on k in general, and obtaining an explicit
characterization of this dependence has been a hard task; see [27, 34, 104, 190,
238]. A prevalent and reasonable assumption on the constant is that of polynomial
growth, namely Cstab(k) ≤ C(1 + kγ) for some constants γ and C; see for example
[153]. We are not going into detailed discussions on this assumption here, while
we mention that the final error estimate of our numerical solution will depend on
Cstab(k) explicitly; thus, those estimates on Cstab(k) in the literature can be readily
applied to our context.

In addition, stability for f ∈ L2(Ω) can yield well-posedness and stability for
f ∈ H−1(Ω). According to Lemma 2.1 in [214] and also [82], one has

sup
f ∈H−1(Ω)\{0}

‖Nk f ‖H(Ω)
‖ f ‖H−1(Ω)

≤ kCstab(k) . (2.2.4)

Adjoint problems. Due to the presence of the Robin boundary condition, a(·, ·) is
not Hermitian. Its adjoint sesquilinear form is defined as a∗(u, v) = a(v,u). The
adjoint problem for (2.2.1) is given by a∗(u, v) = ( f , v)Ω for any v ∈ H(Ω). It also
corresponds to the following PDE:

−∇ · (A∇u) − k2V2u = f , on Ω

u = 0, in ΓD

A∇u · ν = T∗k u, on ΓN ∪ ΓR ,

where T∗k u := Tku = −Tku. The adjoint solution operator is denoted by N∗k . One
can readily check that N∗k f = Nk f . Therefore, the adjoint problem admits the same
stability constant as the original problem; namely it holds

Cstab(k) = sup
f ∈L2(Ω)\{0}



N?
k f




H(Ω)

‖ f ‖L2(Ω)

< ∞ .
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The adjoint problem will play a valuable role when we analyze the convergence
property of our multiscale methods for the Helmholtz equation.

Cα Hölder regularity. We will need the Cα estimates of the solution in order to
demonstrate the theoretical properties of our multiscale methods.

Proposition 2.2.1. Suppose d ≤ 3 and (2.2.3) holds. If f ∈ L2(Ω), then the solution
u ∈ Cα(Ω) for some α ∈ (0,1).

We defer the proof of this proposition to Subsection 2.6.1.

Remark 2.2.2. The global regularity estimate may depend on the wavenumber k.
Nevertheless, we only use it to show qualitatively that our solution is continuous, so
that the nodal interpolation in Subsection 2.3.4.2 is mathematically rigorous. Later,
when we derive error estimates of our methods, we will only use the local version of
the regularity estimate, where the constant is independent of the wavenumber; see
Lemma 2.6.2.

Wehave presented several critical analytic results for the Helmholtz equation. Based
on these results, we are now ready to study the solution space of (2.1.1) in the next
section. The key is a coarse-fine scale decomposition of the solution space, which
will play an essential role in designing our multiscale algorithms.

2.3 Coarse-Fine Scale Decomposition
In this section, we develop a coarse-fine scale operator-adapted decomposition of
the solution space. This decomposition is adaptive to the mesh structure, and a
mesh of size H = O(1/k) suffices to make this coarse-fine scale decomposition
well defined. We discuss the setting of the mesh structure in Subsection 2.3.1,
followed by introducing the coarse-fine scale decomposition in Subsection 2.3.2.
In Subsection 2.3.3 we show the fine scale part is local and small up to O(H) in
the H(Ω) norm. In Subsection 2.3.4 we show the coarse-scale component can be
approximated via local edge basis functions in a nearly exponentially convergent
manner.

2.3.1 Mesh Structure
We begin by discussing related concepts of the mesh structure. The focus here is on
d = 2. In the mesh structure, we discuss two dimensional elements in Subsection
2.3.1.1, one dimensional edges and zero dimensional nodes, and their neighborship
in Subsection 2.3.1.2. See also Figure 2.1 for illustrations.
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2.3.1.1 Elements

We consider a shape regular and uniform partition of the domain Ω into finite
elements, such as triangles and quadrilaterals. The collection of elements is denoted
by TH = {T1,T2, ...,Tr}. For simplicity, we assume that each connected component
of the domain is at least partitioned into two elements.

The mesh size is H, i.e., maxT∈TH diam(T) = H. The uniformity of the mesh implies
minT∈TH diam(T) ≥ c0H for some 0 < c0 ≤ 1 that is independent of H and T . The
shape regularity property implies there is a constant c1 > 0 independent of H and
T , such that maxT∈TH diam(T)d/|T | ≤ c1, where |T | is the volume of T .

In this mesh, by using a scaling argument, the following Poincaré inequality will
hold uniformly for T ∈ TH . This inequality will be used frequently later.

Proposition 2.3.1 (The Poincaré inequality). For any T ∈ TH and a function v ∈

H1(T) that vanishes on one of the edges of T , it holds that

‖v‖L2(T) ≤ CPH‖∇v‖L2(T) , (2.3.1)

where CP depends on c0, c1 and d.

2.3.1.2 Nodes, Edges, and Their Neighbors

LetNH = {x1, x2, ..., xp} be the collection of interior nodes, and EH = {e1, e2, ..., eq}

be the collection of edges except those fully on the boundary of Ω. An edge e ∈ EH

is defined such that there exists two different elements Ti,Tj with e = T i
⋂

T j that
has co-dimension 1 in Rd . We will use EH =

⋃
e∈EH e ⊂ Ω to denote the edges as a

whole set.

We use the symbol ∼ to describe the neighbourship between nodes, edges, and
elements. More precisely, if we consider a node x ∈ NH , an edge e ∈ EH , and an
element T ∈ TH , then, (1) x ∼ e denotes x ∈ e; (2) e ∼ T denotes e ⊂ T ; (3) x ∼ T

denotes x ∈ T . The relationship ∼ is symmetric.

We use N(·, ·) to describe the union of neighbors as a set. For example, N(x,EH) =⋃
{e ∈ EH : e ∼ x} ⊂ EH , N(x,TH) =

⋃
{T ∈ TH : T ∼ x} ⊂ Ω, and N(e,TH) =⋃

{T ∈ TH : T ∼ e} ⊂ Ω.

2.3.2 Decomposition of Solution Space
With themesh structure defined, we now discuss the coarse-fine scale decomposition
of the solution space. We first discuss decomposition in the local element T in
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Figure 2.1: Geometry of the mesh

Subsection 2.3.2.1 and then the global decomposition in Subsection 2.3.2.2.

2.3.2.1 Local decomposition

A crucial requirement for the decomposition to be well defined is that the mesh
size is order O(1/k); see Assumption 2.3.2. As we will see later, this bound on
H ensures that local Helmholtz problems in each element have properties that are
similar to those of elliptic problems; thus, techniques in elliptic equations can then
be applied.

Assumption 2.3.2. The mesh size satisfies H ≤ A1/2
min/(
√

2CPVmaxk), where CP is
the constant in Proposition 2.3.1.

Given Assumption 2.3.2, we decompose2 u into two parts u = uh
T + ub

T in each
element T ∈ TH . The two components satisfy:

−∇ · (A∇uh
T ) − k2V2uh

T = 0, in T

uh
T = u, on ∂T \ (ΓN ∪ ΓR)

A∇uh
T · ν = Tkuh

T, on ∂T ∩ (ΓN ∪ ΓR) ,
−∇ · (A∇ub

T ) − k2V2ub
T = f , in T

ub
T = 0, on ∂T \ (ΓN ∪ ΓR)

A∇ub
T · ν = Tkub

T, on ∂T ∩ (ΓN ∪ ΓR) .

(2.3.2)

In short, the part uh
T incorporates the boundary value of u, while ub

T contains
information of the right hand side. Both equations in (2.3.2) should be understood

2This decomposition is inspired by that in the elliptic case [46].
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in the standard weak sense using the following local sesquilinear form aT (·, ·) in T :

aT (v,w) := (A∇v,∇w)T − k2(V2v,w)T − (Tkv,w)∂T∩(ΓN∪ΓR) for v,w ∈ H(T) ,
(2.3.3)

where H(T) := H(Ω)|T , the restriction of H(Ω) in the domain T . The well-
posedness of the two problems is due to the following proposition:

Proposition 2.3.3. Under Assumption 2.3.2, for v ∈ H(T) that vanishes on one of
the edges of T , the corresponding sesquilinear form is coercive such that

Re aT (v, v) ≥
1
2
‖A1/2∇v‖2L2(T) .

Proof. Using the Poincaré inequality (2.3.1) and Assumption 2.3.2, we get

Re aT (v, v) = ‖A1/2∇v‖2L2(T) − ‖kVv‖2L2(T)

≥ (1 − C2
PH2k2V2

max A−1
min)‖A

1/2∇v‖2L2(T) ≥
1
2
‖A1/2∇v‖2L2(T) .

(2.3.4)

�

Since both equations in (2.3.2) contain Dirichlet’s boundary condition on at least
one of the edges of T , the coercivity implied by Proposition 2.3.3 suffices for the
well-posedness. Consequently, the solutions uh

T and ub
T are well-defined.

Remark 2.3.4. An important property is that uh
T is “left-orthogonal” to ub

T inT with
respect to the local sesquilinear form aT (·, ·) in T , in the sense of aT (uh

T,u
b
T ) = 0,

according to the weak form of the equation. Note that we might not have aT (ub
T,u

h
T ) =

0 for T near the boundary (i.e., ∂T ∩ (ΓN ∪ ΓR) , ∅) due to the fact that aT (·, ·) is
not Hermitian here.

2.3.2.2 Global decomposition

In this subsection, we define a global decomposition u = ub + uh, such that for each
T , it holds that uh(x) = uh

T (x) and ub(x) = ub
T (x) when x ∈ T . Both uh and ub

are well-defined and belong to H(Ω) due to the continuity across edges. Here, the
component uh

T (resp. uh) is called the local (resp. global) Helmholtz-harmonic part
and ub

T (resp. ub) is the local (resp. global) bubble part, of the solution u.

We further introduce the function space for the Helmholtz-harmonic part

Vh := {v ∈ H(Ω) : − ∇ · (A∇v) − k2V2v = 0 in each T ∈ TH,

A∇v · ν = Tkv, on ΓN ∪ ΓR} ,
(2.3.5)
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so that uh ∈ Vh, and the space for the bubble part

Vb := {v ∈ H(Ω) : v = 0 on EH} , (2.3.6)

such that ub ∈ Vb. In this way, the solution space of (2.1.1) can be decomposed
to Vh + Vb. Furthermore, for any v ∈ Vh and w ∈ Vb, it holds that a(v,w) = 0 by
summing up local sesquilinear forms aT (·, ·) and using Remark 2.3.4.

We will treat Vb as the fine scale or microscopic space, and refer to Vh as the coarse
scale or macroscopic space. The idea of our multiscale framework is to compute
the two parts separately by exploring their own structures.

In the next two subsections, we will study the computational properties of uh ∈ Vh

and ub ∈ Vb, respectively. These properties serve as the cornerstone of designing
our multiscale algorithm.

2.3.3 Local and Small Bubble Part
In this subsection, we analyze the bubble part ub. This part depends locally on f in
each T . Thus, it can be computed efficiently in a parallel manner. Moreover, it is
small and can be ignored if the target accuracy is O(H); see Proposition 2.3.5.

Proposition 2.3.5. Under Assumption 2.3.2, it holds that

ub


H(Ω)

≤
3CP

A1/2
min

H‖ f ‖L2(Ω) . (2.3.7)

Proof. By definition, inside each patch T , it holds that aT (ub,ub) = ( f ,ub)T . The
coercivity estimate in (2.3.4) implies the inequality ‖kVub‖2

L2(T)
≤ 1

2 ‖A
1/2∇ub‖2

L2(T)
.

Using the estimate, we get

Re aT (ub,ub) = ‖A1/2∇ub‖2L2(T) − ‖kVub‖2L2(T)

≥
1
3
(‖A1/2∇ub‖2L2(T) + ‖kVub‖2L2(T)) =

1
3
‖ub‖2

H(T) .

Combining the above estimate with the Cauchy-Schwarz inequality, we arrive at

‖ub‖2
H(T) ≤ 3 Re aT (ub,ub) = 3( f ,ub)T ≤ 3‖ f ‖L2(T)‖u

b‖L2(T) .

Meanwhile, by the Poincaré inequality (2.3.1), we get

‖ub‖L2(T) ≤ CPH‖∇ub‖L2(T) ≤
CPH

A1/2
min

‖ub‖H(T) .

Combining all the above inequalities gives ‖ub‖H(T) ≤ 3(CPH/A1/2
min)‖ f ‖L2(T) for

each element T . Summing them up for all elements T yields the desired conclusion.
�
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2.3.4 Low Complexity of the Helmholtz-Harmonic Part
Now, we turn to the study of the Helmholtz-harmonic part uh. The goal is to show
that uh can be approximated via local basis functions in an exponentially efficient
manner. To achieve this, our approximation framework3 contains three steps: (1)
reducing the approximation of uh to that of edge functions in Subsection 2.3.4.1,
(2) localizing the approximation to every single edge in Subsection 2.3.4.2, and
(3) realizing local approximation via oversampling and SVD in Subsection 2.3.4.3.
Combining all these three steps, we establish the low complexity in approximation
of uh in Subsection 2.3.4.4.

2.3.4.1 Approximation via Edge Functions

We start with the first step of approximating uh. By definition, uh belongs to Vh. A
key observation is that any function in Vh is determined entirely by its value on the
edge set EH . Thus, define

Ṽh := {ψ̃ : EH → R, there exists a function ψ ∈ Vh, such that ψ̃ = ψ |EH } ;

then under Assumption 2.3.2, there is a one to one correspondence ψ̃ ∈ Ṽh ↔ ψ ∈

Vh. More precisely, in each T , it holds that
−∇ · (A∇ψ) − k2V2ψ = 0, in T

ψ = ψ̃, on ∂T \ (ΓN ∪ ΓR)

A∇ψ · ν = Tkψ, on ∂T ∩ (ΓN ∪ ΓR) .

(2.3.8)

Indeed, we have Ṽh = H1/2(EH) by the trace theory since the local equation is elliptic.
Using the above identification, approximating uh corresponds to approximating ũh,
which is a function defined on edges and of lower complexity. We need to pay
attention to the norm we use when approximating ũh so that we can use the error
bound of the approximation to control the error of uh in the energy norm. This will
be the focus of the next section.

Remark 2.3.6. In the remaining part of this chapter, we will frequently use the
correspondence between Vh and Ṽh. Conventionally, when we write a tilde on the
top of a function in Vh, it refers to its corresponding part in Ṽh.

3It is similar to that in our previous work for elliptic equations [46].
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2.3.4.2 Localization of Approximation

We discuss how to approximate the edge function ũh, whose domain is EH , which
is nonlocal. Since it is often preferable to have localized basis functions for ap-
proximation and numerical algorithms, our second step is to localize the task of
approximating ũh to every single edge.

To achieve localization, we study the geometry of the edge set EH first. Observing
that different edges only communicate with each other along their shared nodes,
we can use nodal interpolation to localize the approximation. More precisely, we
proceed with the following steps:

1. Interpolation: for each node xi ∈ NH , choose ψ̃i to be the piecewise linear
tent function on EH , satisfying ψ̃i(x j) = δi j for each x j ∈ NH . This defines an
interpolation operator for v ∈ Vh ∩ C(Ω):

IHv :=
∑

xi∈NH

v(xi)ψi(x) .

Note that ψi(x) is the same as the basis function constructed via the multiscale
finite element method (MsFEM [129]). The interpolation residual v − IHv

vanishes on each xi ∈ NH . Set4 v = ũh and let IH ũh be one part of the
approximation for ũh. Then, it remains to approximate the residue ũh − IH ũh.

2. Localization: we wish to explore the fact that ũh − IH ũh vanishes on nodes
to localize the subsequent approximation task. To achieve so, define Reũh =

Pe(ũh − IH ũh) := (ũh − IH ũh)|e. The goal is to find some basis functions on
each e to approximate Reũh. To make this problem precise, we need to specify
the function space of Reũh, and the norm for approximation.

It turns out that the natural function space Reũh is the Lions-Magenes space;
see the following Proposition 2.3.7.

Proposition 2.3.7. Let d = 2. Suppose f ∈ L2(Ω) and (2.2.3) holds. For each
e ∈ EH , it holds that Reũh ∈ H1/2

00 (e), the Lions-Magenes space which contains
functions v ∈ H1/2(e) such that

v(x)
dist(x, ∂e)

∈ L2(e) .

Here dist(x, ∂e) is the Euclidean distance from x to the boundary of e.
4Note that we can apply IH to ũh due to the Cα estimate of u in Proposition 2.2.1.
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It might seem unclear at this stage why we should consider such a complicated
function space. In fact, this is related to the zero extension of functions. According
to Chapter 33 of [266], H1/2

00 (e) can also be characterized as the space of functions in
H1/2(e), such that their zero extensions to EH is still in H1/2(EH). This is the key and
in fact the only property that we will use for H1/2

00 (e). The zero extension allows us
to connect local approximation and global approximation. In the following we will
not distinguish ψ̃ ∈ H1/2

00 (e) and its zero extension to EH that belongs to H1/2(EH).

For any function in H1/2
00 (e), we define a norm to measure approximation accuracy.

Definition 2.3.8. Let d = 2. TheH1/2(e) norm of a function ψ̃ ∈ H1/2
00 (e) is defined

as:
‖ψ̃‖2

H1/2(e) :=
∫
Ω

A|∇ψ |2 + k2 |Vψ |2 , (2.3.9)

where we have used the one to one correspondence ψ̃ ∈ Ṽh ↔ ψ ∈ Vh. Here we
identify ψ̃ as the zero extension of its value on the edge e to EH .

The H1/2(e) norm in Definition 2.3.8 is the natural one to consider here since
eventually, we aim for approximation accuracy in the energy norm.

The following theorem is the cornerstone for the above localization strategy. It states
that a local accuracy guarantee can be seamlessly coupled to form a global accuracy
guarantee.

Theorem 2.3.9 (Global error estimate). Let d = 2. Suppose for each edge e, there
exists an edge function ṽe ∈ H1/2

00 (e) that satisfies

‖Reũh − ṽe‖H1/2(e) ≤ εe . (2.3.10)

Let ve ∈ Vh be the corresponding part of ṽe ∈ Ṽh. Then, it holds that

‖uh − IHuh −
∑

e∈EH

ve‖
2
H(Ω)

≤ Cmesh
∑

e∈EH

ε2
e , (2.3.11)

where Cmesh is a constant depending on the number of edges for the elements only,
e.g., for quadrilateral mesh Cmesh = 4.

Given this theorem, to approximate uh it suffices to find local edge basis functions
that satisfy (2.3.10) for some desired εe. This is a localized task for each e.

The proofs for Propositions 2.3.7 and Theorem 2.3.9 are similar to that in the setting
of elliptic equations [46]. However, for completeness, we will also present them
here in Subsections 2.6.2 and 2.6.3.
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2.3.4.3 Local Approximation via Oversampling

The last step of approximation is to find local edge basis functions for each e so
that (2.3.10) is satisfied. In this subsection, we discuss how to achieve this via
oversampling and SVD, which can yield exponentially decaying εe. The general
idea is to explore the fact that for a coarse scale function, its behavior on e can
be controlled very well by that in an oversampling domain due to the compactness
property of the restriction operator.

More precisely, for a given edge e, consider an oversampling domain ωe associated
with the edge. In general, any domain containing e in the interior can serve as a
candidate. Here, for simplicity of presentation and as an illustrative example, we set

ωe =
⋃
{T ∈ TH : T ∩ e , ∅} . (2.3.12)

For interior edges and edges connected to the boundary, an illustration of this choice
(2.3.12) for a quadrilateral mesh is given in Figure 2.2.

e

ωe

interior edge edge connected to boundary

e

ωe

Figure 2.2: Illustration of oversampling domains. On the right, we use an edge
connected to the upper boundary as an illustrating example.

The key idea is to treat the residue Reũh as a restriction of a coarse scale function in
ωe and explore the compactness property of such restriction operators. By an abuse
of notation via the correspondence of Vh and Ṽh, for any H(Ω) in V , we identify
Rev as Reṽ

h. As a first step, we write

Reũh = Reu = Reuh
ωe
+ Reub

ωe
, (2.3.13)

where we decompose u in ωe into its coarse and fine scale components, via (2.3.2)
with T replaced by ωe, and we shall use uh

ωe
and ub

ωe
to denote the corresponding

local Helmholtz-harmonic and bubble part respectively. Then, to approximate Reũh,
we could approximate the two terms in (2.3.13) separately. Wewill show that the first
term can be approximated in an exponentially efficient manner due to a compactness
property, and the second term can be computed locally and is very small.
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Remark 2.3.10. One may ask whether the decomposition (2.3.13) in the oversam-
pling domain is still well-defined. Indeed, similar to (2.3.1), we have a uniform
Poincaré inequality for every ωe: for any edge e and H1(ωe) function v vanishing
on any one of the edge boundaries of ωe, it holds that

‖v‖L2(ωe)
≤ C′PH‖∇v‖L2(ωe)

, (2.3.14)

where C′P is a constant that only depends on c0, c1, d and our choice of oversampling
domain. For the particular choice (2.3.12), C′P is a constant multiple of CP; without
loss of generality we assume C′P ≥ CP. Based on this observation, we will choose
a small H so that Assumption 2.3.11 holds, which guarantees that local Helmholtz
operators in the oversampling domain behave in a manner similar to that of elliptic
case; this is similar to Proposition 2.3.3.

Assumption 2.3.11. The mesh size satisfies H ≤ A1/2
min/(
√

2C′PVmaxk), where C′P is
the constant in (2.3.14).

Note that Assumption 2.3.11 implies Assumption 2.3.2. Now, we discuss in detail
how to deal with the two terms in (2.3.13).

1. For the first term, we consider the following function space in ωe:

U(ωe) := {v ∈ H(ωe) : − ∇ · (A∇v) − k2V2v = 0, in ωe

A∇v · ν = Tkv, on (ΓN ∪ ΓR) ∩ ∂ωe} .
(2.3.15)

Functions in this space are fully determined by their trace on ∂ωe\(ΓN ∪ ΓR).
By definition, uh

ωe
belongs to U(ωe). Under Assumption 2.3.11, (U(ωe), ‖ ·

‖H(ωe)) is a Hilbert space, since the Helmholtz operator inωe is elliptic. Then,
by abuse of notation, consider the operator

Re : (U(ωe), ‖ · ‖H(ωe)) → (H
1/2
00 (e), ‖ · ‖H1/2(e)) ,

such that Rev = Pe(v − IHv) for v ∈ U(ωe). A critical property is that the
singular values of Re decay nearly exponentially fast; see Theorem 2.3.12. Its
proof is deferred to Subsection 2.6.4.

Theorem 2.3.12. Let d=2. Under Assumption 2.3.11, the operator Re is
compact for each e ∈ EH . Denote the pairs of its left singular vectors and
singular values by {ṽm,e, λm,e}m∈N, where ṽm,e ∈ H1/2

00 (e) and the sequence
{λm,e}m∈N is in a descending order. Then, for any ε > 0, it holds that

λm,e ≤ Cε exp
(
−m(

1
d+1−ε)

)
, (2.3.16)
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where Cε is a constant that is independent of k,H and may depend on ε, d and
the mesh parameters c0, c1.

Remark 2.3.13. As we can see from the proof, we actually show that (2.3.16)
still holds by setting Cε to be 1 and requiring for m > Nε with Nε depending
on k and H. But we can also make the above inequality hold for all m by
introducing the constant Cε .

We discuss the implication of this theorem. By definition of singular values,
if we set Wm,e = span {ṽ j,e}

m−1
j=1 , then Theorem 2.3.12 implies that

min
ṽe∈Wm,e

‖Rev − ṽe‖H1/2(e) ≤ Cε exp
(
−m(

1
d+1−ε)

)
‖v‖H(ωe) . (2.3.17)

Applying this result to v = uh
ωe
∈ U(ωe) leads to

min
ṽe∈Wm,e

‖Reuh
ωe
− ṽe‖H1/2(e) ≤ Cε exp

(
−m(

1
d+1−ε)

)
‖uh

ωe
‖H(ωe) . (2.3.18)

Thus, there is a nearly exponential efficiency in approximating the first term
Reuh

ωe
.

2. For the second term in (2.3.13), the oversampling bubble part ub
ωe

can be
efficiently computed by solving local Helmholtz problems. Moreover, under
Assumption 2.3.11 this term is small in the H(Ω) norm as shown in the
following proposition.

Proposition 2.3.14. Under Assumption 2.3.11, for each e ∈ EH the following
estimate holds for the oversampling bubble part:

‖Reub
ωe
‖H1/2(e) ≤ CH‖ f ‖L2(ωe)

,

where C is a constant independent of k and H.

The proof is deferred to Subsection 2.6.5.

We further define a special Helmholtz-harmonic function us ∈ Vh, such that
that its restriction on each edge e ∈ EH equals Reub

ωe
. Namely this special

Helmholtz-harmonic function accounts for the second term in (2.3.13) for
each edge. By the previous proposition, we immediately have the estimate

‖us‖H(Ω) ≤ CH‖ f ‖L2(Ω) ,
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where C is a constant independent of k and H. Along with Proposition 2.3.5,
we conclude that there is a constant Cs independent of k and H such that

‖us‖H(Ω) + ‖ub‖H(Ω) ≤ CsH‖ f ‖L2(Ω) . (2.3.19)

Now consider the following space of basis functions:

Ṽ (1)H,m,e := Wm,e .

In practice, this space can be computed locally by an SVD of Re. Due to (2.3.13)
and (2.3.18), we have the following error estimate on each e:

min
ṽe∈Ṽ

(1)
H ,m,e

‖Reuh − us − ṽe‖H1/2(e) ≤ Cε exp
(
−m(

1
d+1−ε)

)
‖uh

ωe
‖H(ωe) . (2.3.20)

Remark 2.3.15. The operator Re involves nodal interpolation, which is in general
not stable for H1 functions if the dimension is greater than 1. However, in Theorem
2.3.12, we take the domain of the operator to be U(ωe), which contains Helmholtz-
harmonic functions that are Hölder continuous, due to the standard Cα estimates
for elliptic equations. More specifically, Lemma 2.6.2 implies the stability of Re in
this space.

Remark 2.3.16. If we follow the proof of Lemma 3.13 in [179], it is be possible to
remove the small parameter ε in Theorem 2.3.12 to get a better asymptotic bound
O(exp

(
−m

1
d+1

)
).

2.3.4.4 Low Complexity in Approximation

Finally, define the collection of edge basis functions

Ṽ (1)H,m = span {
⋃

e

Ṽ (1)H,m,e} ,

and denote by Ṽ (0)H the span of the nodal interpolation basis used earlier, i.e. Ṽ (0)H :=
span {ψ̃i}. Define the overall edge approximation ṼH,m = span {Ṽ (0)H

⋃
Ṽ (1)H,m}. Let

VH,m ⊂ Vh be the corresponding part of ṼH,m ⊂ Ṽh, via (2.3.8). Then, using
(2.3.20) and Theorem 2.3.9, we get a nearly exponentially decaying error estimate
for approximating uh; see Theorem 2.3.17.

Theorem 2.3.17. Let d = 2. Under Assumption 2.3.11 and (2.2.3), it holds that

min
v∈VH ,m

‖uh − us − v‖H(Ω) ≤ Cd(Cstab(k) + H) exp
(
−m(

1
d+1−ε)

)
‖ f ‖L2(Ω) ,

where Cd is a generic constant independent of k,m,H.
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Proof. By Theorem 2.3.12 and the global error estimate in Theorem 2.3.9, we get

min
v∈VH ,m

‖uh − us − v‖2
H(Ω)

≤ CmeshC2
ε exp

(
−2m(

1
d+1−ε)

) ∑
e∈EH

‖uh
ωe
‖2
H(ωe)

. (2.3.21)

Due to Assumption 2.3.11, we have the elliptic estimate for the oversampling bubble
part:

‖ub
ωe
‖H(ωe) ≤

3C′P
A1/2

min

H‖ f ‖L2(ωe)
. (2.3.22)

This is similar to Proposition 2.3.5, which is a consequence of Assumption 2.3.2.
Then, using uh

ωe
= u − ub

ωe
, it follows that

‖uh
ωe
‖2
H(ωe)

≤ 2(‖u‖2
H(ωe)

+ ‖ub
ωe
‖2
H(ωe)

) ≤
18C′2P
Amin

H2‖ f ‖2L2(ωe)
+ 2‖u‖2

H(ωe)
.

(2.3.23)
Note that by our choice of oversampling domains, every element T can only be
covered by {ωe}e∈EH at most C1 times for a fixed C1. Therefore it holds that∑

e∈EH

‖ f ‖2L2(ωe)
≤ C1‖ f ‖2L2(Ω)

, (2.3.24)

as well as ∑
e∈EH

‖u‖2
H(ωe)

≤ C1‖u‖2H(Ω) ≤ C1C2
stab(k)‖ f ‖2L2(Ω)

, (2.3.25)

where the last inequality is due to the a priori estimate (2.2.3). Combining (2.3.21),
(2.3.23), (2.3.24), and (2.3.25) completes the proof. �

Clearly, Theorem 2.3.17 implies the low complexity property of the part uh − us.
Each edge contains at most m basis functions, so the space VH,m is of dimension
O(m/Hd), while the approximation accuracy is of order exp

(
−m(

1
d+1−ε)

)
. We will

use the space VH,m in our multiscale framework for approximating uh − us.

Remark 2.3.18. VH,m does not depend on the right hand side f or the solution u.
Therefore, we can use the same VH,m for different right-hand sides.

2.4 The Multiscale Methods
In this section, we discuss the multiscale methods for solving (2.1.1), based on the
coarse-fine scale decomposition established in the last section.

By the nature of a multiscale algorithm, we will handle the “coarse part” uh−us and
the “fine part” ub + us separately. Conceptually, the locality and small magnitude
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of ub + us imply that it can be computed efficiently or ignored without affecting
the accuracy much, and the low complexity of uh − us indicates that we can use a
Galerkinmethodwith a small number of basis functions to approximate it accurately.

In Subsection 2.4.1, we outline our general multiscale computational framework.
Depending on how the trial and test spaces in the Galerkin method are selected, we
get two categories of algorithms, namely the Ritz-Galerkin approach and Petrov-
Galerkin approach that we will make precise in Subsections 2.4.2 and 2.4.3, respec-
tively.

2.4.1 The Multiscale Framework
The bubble part ub and the special function us are first computed locally. Given
these parts, we form an effective equation for uh − us as

a(uh − us, v) = ( f , v)Ω − a(ub + us, v) , (2.4.1)

for any v ∈ H(Ω).

Remark 2.4.1. The right hand side in (2.4.1) can be seen as a bounded linear
functional on v ∈ H(Ω). By the estimate in (2.2.4), this equation for uh − us (given
fixed ub + us) is well-posed.

Numerically, we solve the equation (2.4.1) for uh − us using a Galerkin method.
That is, we choose a trial space S and a test space Stest to find a numerical solution
uS ∈ S that satisfies

a(uS, v) = ( f , v)Ω − a(ub + us, v) , (2.4.2)

for any v ∈ Stest. If Stest = S, then it is called a Ritz-Galerkin method, otherwise it
is a Petrov-Galerkin method. Here since the equation is formulated in the complex
domain, we specifically refer to the choice Stest = S as the Petrov-Galerkin method.

In Subsection 2.4.2, we formulate our Ritz-Galerkin method and present theories for
the well-posedness of the discrete problem, as well as the error estimate in both the
energy norm and the L2 norm. In Subsection 2.4.3, we discuss the Petrov-Galerkin
method, which is more straightforward and appears more convenient in practical
computation.

2.4.2 The Ritz-Galerkin Method
First, we establish a general strategy for analyzing the Ritz-Galerkin method in
solving (2.4.1). We start with a definition of the approximation accuracy of S.
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Definition 2.4.2. For S ⊂ Vh, the approximation accuracy of S is defined as

η(S) := sup
f ∈L2(Ω)\{0}

inf
v∈S

‖u − v‖H(Ω)
‖ f ‖L2(Ω)

, (2.4.3)

where u and f are related via the Helmholtz equation in (2.1.1).

For the Ritz-Galerkin method, it turns out that η(S) is critical in analyzing the
solution errors of uS.

Theorem 2.4.3. Suppose (2.2.3) holds and kη(S) ≤ 1/(4CcVmax) as well as S = S.
Then, the following statements hold for the Ritz-Galerkin method:

1. The Galerkin solution uS is a quasi-optimal approximation in the sense that

‖uh − us − uS‖H(Ω) ≤ 2Cc inf
v∈S
‖uh − us − v‖H(Ω) ,

‖uh − us − uS‖L2(Ω) ≤ Ccη(S)‖uh − us − uS‖H(Ω) .

2. If we further assume Hk ≤ 1/(8CsCcVmax), for constantCs defined in (2.3.19),
the discrete problem satisfies the discrete inf-sup stability condition:

inf
v∈S

sup
v′∈S\{0}

|a(v, v′)|
‖v‖H(Ω)‖v′‖H(Ω)

≥
1

4 + 3C−1
c + 8kVmaxCstab(k)

.

The proof of this theorem is deferred to Subsection 2.6.6. It is inspired by the
standard Gårding-type inequality for a posteriori estimate; see for example [185].
However, our proofs are slightly different since only the part uh−us is approximated
via the basis functions.

The above theorem implies that once η(S) is small, the discrete problem is well-
posed, and the Galerkin solution approximates the exact solution accurately.

Given Theorem 2.4.3, we can choose S = VH,m + VH,m where VH,m is defined in
Theorem 2.3.17 independent of the right hand side. For the quantity η(S), we have
the following estimate using its subspace VH,m:

η(S) ≤ η(VH,m) ≤ max(Cd,Cs)

(
(Cstab(k) + H) exp

(
−m(

1
d+1−ε)

)
+ H

)
. (2.4.4)

Here we have used (2.3.19) for the small parts ub and us of size O(H), and Theorem
2.3.17 for the approximation error for uh − us. Invoking Theorems 2.4.3 and
2.3.17, we get the following error analysis for the Galerkin solution:
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Theorem 2.4.4. Let d = 2. Suppose Assumption 2.3.11 and (2.2.3) hold, and

max(Cd,Cs)k
(
(Cstab(k) + H) exp

(
−m(

1
d+1−ε)

)
+ H

)
≤ 1/(4CcVmax) ,

where Cs, Cd are generic constants defined in (2.3.19) and Theorem 2.3.17 respec-
tively. Then using S = VH,m + VH,m in the Ritz-Galerkin method leads to a solution
uS that satisfies:

‖uh − us − uS‖H(Ω) ≤ 2CcCd(Cstab(k) + H) exp
(
−m(

1
d+1−ε)

)
‖ f ‖L2(Ω) . (2.4.5)

For the ε that satisfies 1
d+1 − ε =

1
d+2 , we can take m ∼ O(logd+2(kCstab(k)). Then

the condition in Theorem 2.4.4 holds, provided that the mesh size H satisfies the
following Assumption 2.4.5:

Assumption 2.4.5. The mesh size satisfies H ≤ 1/(8 max(Cd,Cs)CcVmaxk).

Furthermore, if Cstab(k) ≤ C(1+ kγ) for some constants γ and C, then the condition
m ∼ O(logd+2(kCstab(k)) reduces to m ∼ logd+2(k). This implies that once m is
moderately large, i.e., logarithmic in k, the nearly exponential convergence of the
Galerkin solution shown in Theorem 2.4.4 will become effective. As in Remark
2.3.16, we can improve the index d + 2 to d + 1.

We provide several additional remarks of the Ritz-Galerkin method below.

Remark 2.4.6. In the Ritz-Galerkin method, the trial and test spaces are S =

VH,m + VH,m. One can intuitively understand that VH,m is needed to represent the
desired solution, and VH,m is used for the approximation of the adjoint problem,
which is required in the numerical analysis of the Helmholtz equation. There can
be a lot of overlap between VH,m and VH,m: on each interior edge, since the singular
vectors of Re are real, these edge basis functions are real-valued. Thus, VH,m and
VH,m can only differ on the edges connected to the boundary, where the presence of
the Robin boundary condition makes the operator non-Hermitian.

Remark 2.4.7. Combining (2.4.5) with the local computation of the fine parts will
yield the overall error estimate for u, which is nearly exponentially convergent.

2.4.3 The Petrov-Galerkin Method
In this subsection, we introduce the Petrov-Galerkin method. We choose S = VH,m

and Stest = VH,m. We give the following remarks on this method.
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Remark 2.4.8. The trial and test spaces in the Petrov-Galerkin method often have
smaller dimensions than their Ritz-Galerkin counterpart, since we do not put the
complex conjugate VH,m in S. This can save computational efforts.

Remark 2.4.9. Our current theory does not address the stability of the discrete
system and theH(Ω) error estimate for the Petrov-Galerkin method. This is left for
our future work. We note that our numerical experiments in the next section imply
that these properties also hold for the Petrov-Galerkin method.

2.5 Numerical Experiments
In this section, we will outline and discuss our numerical algorithms in detail based
on the established theoretical analysis. Several Helmholtz equations are solved
using our algorithm, which confirm our theoretical results. We also consider some
examples in which our theoretical assumptions are not satisfied. Even for these
examples, our methods still give a nearly exponential rate of convergence. This
provides further evidence for the robustness of our methods.

2.5.1 Set-up
We consider the domain Ω = [0,1] × [0,1] and discretize it by a uniform two-level
quadrilateral mesh; see a fraction of this mesh in Figure 2.3, where we also show
an edge e and its oversampling domain ωe in solid lines. The coarse and fine mesh

e

ωe

coarse mesh

fine mesh

Figure 2.3: Two level mesh: a fraction

sizes are denoted by H and h, respectively.

For a given Helmholtz equation, we compute the reference solution uref using the
classical FEM on the fine mesh; with a sufficiently small h, it is reasonable to treat
uref as the ground truth u. We remark that via a posteriori estimates, we can check
that the fine mesh indeed resolve the corresponding problems; thus the associated
fine mesh solutions could serve as good reference solutions, for all of our numerical
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examples. To be precise, we check that the relative error between the solutions using
fine mesh of size h and h/2 are small, such that it is of order 10−2 in energy norm
and 10−4 in L2 norm.

The accuracy of a numerical solution usol is computed by comparing it with the
reference solution uref on the fine mesh. The accuracy will be measured both in the
L2 norm and energy norm:

eL2 =
‖uref − usol‖L2(Ω)

‖uref‖L2(Ω)

,

eH =
‖uref − usol‖H(Ω)

‖uref‖H(Ω)
.

(2.5.1)

2.5.2 Multiscale Algorithms
We outline our numerical algorithms for obtaining usol. There are offline and online
stages, depending on whether the steps involve the information of the right hand
side.

2.5.2.1 Offline Stage

For each edge e ∈ EH and its associated oversampling domain ωe, the key step in
the offline stage is to construct the discretized version of the operator

Re : (U(ωe), ‖ · ‖H(ωe)) → (H
1/2
00 (e), ‖ · ‖H1/2(e)) ,

which is defined by Rev = (v − IHv)|e. Here U(ωe) is defined in (2.3.15), ‖ · ‖H(ωe)

is the energy norm in ωe, while H1/2
00 (e) is the Lions-Magenes space, and ‖ · ‖H1/2(e)

is defined in (2.3.9).

We note that functions in U(ωe) are fully determined by their traces on ∂ωe\(ΓN ∪

ΓR). Thus, we can take the discretized matrix version of Re as a linear mapping from
Dirichlet’s data on ∂ωe\(ΓN ∪ ΓR) to the image of Re, which contains functions on
the edge e. The discretization of the ‖ · ‖H(ωe) and ‖ · ‖H1/2(e) norms leads to positive
definite matrices on the discretized domains ∂ωe\(ΓN ∪ ΓR) and e. To obtain these
positive definite matrices, we construct the Helmholtz-harmonic extension operators
both on e and ∂ωe\(ΓN ∪ΓR), which maps boundary data to the Hemholtz-harmonic
function in the domain. Based on this operator, we can calculate the energy norms
of the extended Hemholtz-harmonic function. This leads to the required norms as
well as the positive definite matrices defining these norms5.

5See also the implementation in Subsection 4.2 of [46] on how these matrices are constructed
for elliptic problems.
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With the discretized matrices constructed, the next step is to compute the top m left
singular vectors of Re for some selected m ∈ N. This SVD problem turns out to be
a generalized eigenvalue problem for these discrete matrices. For each e, denote the
singular vectors by ṽ1,e, ..., ṽm,e ∈ H1/2

00 (e). Their Helmholtz-harmonic extensions to
the domain are denoted by v1,e, ..., vm,e ∈ H(Ω), obtained via the correspondence
(2.3.8). The basis function space formed by the collection of all v j,e,1 ≤ j ≤ m

and e ∈ EH , together with the interpolation part {ψi}xi∈NH , are denoted by VH,m and
will constitute the Galerkin basis as defined in Subsection 2.3.4.4. Note that here
{ψi}xi∈NH are the same as the basis functions in the MsFEM.

We are now in a position to construct our Galerkin basis and the associated stiffness
matrix. The construction depends on how to choose the trial and test spaces in the
Galerkin method. We will outline two possible choices below:

• Ritz-Galerkin: S = VH,m + VH,m and Stest = S.

• Petrov-Galerkin: S = VH,m and Stest = VH,m.

2.5.2.2 Online Stage

In the online stage, we solve the coarse and fine scales separately. Firstly we solve
for ub and us, and then we use the effective equation (2.4.1) to solve for uh − us.

For the bubble part ub, we solve the local Hemholtz problem in each elementT ∈ TH ,
which leads to ub

T defined in (2.3.2). Gluing them together leads to ub.

For us, on each e ∈ EH and ωe, we construct the oversampling bubble part ub
ωe

via
solving a local Helmholtz equation. Then, we get an edge function Reub

ωe
for each

edge. We solve locally the Helmholtz-harmonic extension of these edge functions
and add them together to obtain us.

Now we can form the right-hand side vector in our effective equation (2.4.1), and
use the offline-assembled stiffness matrix to obtain the Galerkin solution for the part
uh − us.

This construction yields a practical numerical algorithm that efficiently handles
multiple right-hand sides.

We note that all the above algorithms consider a uniform number of basis functions,
namely m, for each edge e ∈ EH . It is also possible to make this number vary
with edges, so it is thus fully adaptive to the problem’s local properties such as the
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approach in [128]. Consequently, this will lead to an adaptive algorithm where the
truncated singular values serve as local error indicators. We do not pursue this in
detail here and will leave this to our future work.

In the following, we will test our algorithms for different model problems. Our
general set-up is to fix a reasonable coarse scale H and then study how the errors
behave as m changes, for the two choices outlined above.

Remark 2.5.1. Our numerical experience implies that in the Ritz-Galerkin method,
one does not need to add the conjugate space VH,m into S while still obtaining an
exponential rate of convergence.

2.5.3 A High Wavenumber Example: Planar Wave
We start with an example of planar wave where the coefficients are constant and
the wavenumber is high. More precisely, we set A = V = β = 1 and f = 0. The
wavenumber k = 27. We take the exact solution to be

u(x1, x2) = exp(−ik(0.6x1 + 0.8x2)) .

Using this solution, we are able to specify the Robin boundary condition on ∂Ω.
Note that this is an inhomogeneous boundary condition, so it is beyond our previous
discussion. In this case, the inhomogeneous data are incorporated to the equation
of the bubble part ub, while the treatment for the Helmholtz-harmonic part remains
the same as that in the homogeneous case. To be specific, now our decomposition
on each element T is u = uh

T +ub
T +up

T where up
T stands for a particular solution. The

part ub
T + up

T satisfies

−∇ · (A∇(ub
T + up

T )) − k2V2(ub
T + up

T ) = f , in T

ub
T + up

T = 0, on ∂T \ (ΓN ∪ ΓR)

A∇(ub
T + up

T ) · ν = Tk(ub
T + up

T ) + g, on ∂T ∩ (ΓN ∪ ΓR) .

We will use ub + up to replace ub on the right-hand side of the effective equation
for Galerkin solution (2.4.1). Similarly, when we compute the special Helmholtz-
harmonic function us to account for the oversampling bubble part, its restriction
on each edge equals Re(ub

ωe
+ up

ωe
) instead of Reub

ωe
. In this way we can take

care of the boundary data via local particular problems and still obtain the desired
accuracy. The error analysis in such case remains the same once we replace ub

T in
the homogeneous data case by ub

T + up
T ; in the bound we will also have the norm of

g.
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We set the fine mesh h = 2−10, coarse mesh H = 2−5. We vary the number of edge
basis functions in each e ∈ EH , choosing m = 1,2, ...,7 and implementing the two
algorithms outlined in Subsection 2.5.2.2. The results are shown in Figure 2.4. We
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Figure 2.4: Numerical results for the high wavenumber example. Left: eH versus
m; right: eL2 versus m.

observe that the online basis approaches achieve nearly exponential decaying errors
with respect to m. The difference between the Ritz-Galerkin and Petrov-Galerkin
approaches is almost negligible. We can see that a few basis per edge suffice for
very high accuracy.

Furthermore, we make some comparison between our edge coupling approach (the
Ritz-Galerkin version) and the PUM approach reported in [177]. We adopt the same
setting there with k = 100, H = 1/20, h = 1/1000 and vary the number of edge
basis functions in each e ∈ EH , choosing m = 2,3, ...,7. We present the results in
Figure 2.5. We see that both errors decay very fast, and in particular, the error in
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Figure 2.5: Numerical results for the high wavenumber example with k = 100,
H = 1/20, h = 1/1000.

our method for m = 7 is smaller than the error in [177] with oversampling ratio
H∗/H = 2 and 35 local basis per patch. With the same wavenumber and number
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of coarse patches, our method uses a slightly larger oversampling domain, while
reducing the number of multiscale basis by a factor of around 35/(2 × 7) = 2.5.
Here, we have used the fact that the number of edges is twice as many as domains
in 2D. Nevertheless, the support of basis functions in our approach and PUM
approach could be different by a factor of 2, and the size of the overlapped domain
decomposition in the PUM approach could also influence the result, leading to
additional complexities for comparison. More detailed numerical study of the two
approaches could be of future interest.

2.5.4 A High Contrast Example: Mie resonances
In this example, we consider an A(x) with high contrast channels. More precisely,
define the domain

Ωε = (0.25,0.75)2 ∩
⋃
j∈Z2

ε
(
j + (0.25,0.75)2

)
, (2.5.2)

and the coefficient is defined as

A(x) =

{
1, x < Ωε

ε2, x ∈ Ωε .

Here, ε is a parameter controlling the contrast. We choose ε = 2−4 and visualize
log10 A(x) in the left plot of Figure 2.6.

Figure 2.6: Left: the contour of log10 A for the high contrast example; right: the
contour of A for the rough media example.

We take β = 1,V = 1, k = 9. For such a choice of k, the model exhibits an unusual
behavior induced by Mie resonances in the small inclusions; see [199, 215]. An
accurate numerical solution for this model would be hard to compute and it serves
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as a proper benchmark for our method. The right hand side is

f (x1, x2) =


10000 exp

(
−

1
1 − 400 × dist(x, z)2

)
, dist(x, z)2 <

1
400

0, otherwise ,

where z = (0.125,0.5) and dist(x, z)2 = (x1 − 0.125)2 + (x2 − 0.5)2. We impose the
homogeneous Robin boundary condition on ∂Ω. We take the fine mesh h = 2−9

and the coarse mesh H = 2−5. As before we take m = 1,2, ...,7 and the numerical
results are shown in Figure 2.7. A nearly exponential rate of convergence is observed
consistently, and in this particular example, the Ritz method slightly outperforms
the Petrov method.
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Figure 2.7: Numerical results for the high contrast example. Left: eH versus m;
right: eL2 versus m.

2.5.5 An Numerical Example with Mixed Boundary and Rough Field
In the last example, we consider a mixed boundary problem. We impose the
homogeneous Dirichlet boundary condition on (x1,0), x1 ∈ [0,1], the homogeneous
Neumann boundary condition on (x1,1), x1 ∈ [0,1], and the homogeneous Robin
boundary condition on the other two parts of ∂Ω. We choose A(x) to be a realization
of some random field; more precisely,

A(x) = |ξ(x)| + 0.5 , (2.5.3)

where the field ξ(x) satisfies

ξ(x) = a11ξi,j + a21ξi+1,j + a12ξi,j+1 + a22ξi+1,j+1, if x ∈ [
i

27 ,
i + 1

27 ) × [
j

27 ,
j + 1
27 ) .

Here, {ξi,j,0 ≤ i, j ≤ 27} are i.i.d. unit Gaussian random variables. In addition,
a11 = (i + 1 − 27x1)( j + 1 − 27x2), a21 = (27x1 − i)( j + 1 − 27x2), a12 = (i + 1 −
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27x1)(27x2− j), a22 = (27x1− i)(27x2− j) are interpolating coefficients to make ξ(x)
piecewise linear. A sample from this field is displayed in the right plot of Figure
2.6.

Moreover, we also take V(x) and β(x) as independent samples drawn from this
random field. We choose the wavenumber k = 25, the right hand side f (x1, x2) =

x4
1 − x3

2 + 1, the fine mesh h = 2−10 and the coarse mesh H = 2−5. Again we take
m = 1,2, ...,7 and present the numerical results in Figure 2.8. A nearly exponential
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Figure 2.8: Numerical results for the mixed boundary and rough field example.
Left: eH versus m; right: eL2 versus m.

rate of convergence is still observed for this challenging example. The differences
between the Ritz-Galerkin method and Petrov-Galerkin method is very mild.

It is worth noting that this example is constructed artificially, mixing different
kinds of boundary conditions and rough coefficients, without taking into account
the analytical properties of this combination. Thus, the numerical results for this
example demonstrate the effectiveness of our multiscale methods in a more general
setting. Moreover, our right hand side f is global, so most oversampling bubble
parts would be non-zero.

2.5.6 Summary
We summarize what we have observed in these numerical examples. Both algo-
rithms lead to a nearly exponential rate of convergence with respect to m, and we
are able to use the offline-computed Galerkin basis to solve for multiple right-hand
sides.

Moreover, it is observed that the difference between theRitz-Galerkin and the Petrov-
Galerkin approaches is verymild inmost cases, but sometimesRitz-Galerkinmethod



58

can have better performances. Therefore, we recommend using the Ritz-Galerkin
approach in practice.

2.6 Proofs
This section presents the theoretical proofs. Some proofs are similar to those in
the elliptic case. We will refer these proofs to the corresponding proofs in the
elliptic case [46], while we will make relevant remarks on possible changes and
modifications.

2.6.1 Proof of Proposition 2.2.1
In this subsection, we provide the proof of the qualitative version of Cα estimate. It
is a direct application of related results for elliptic equations.

Proof. We note that the Helmholtz PDE (2.1.1) is equivalent to
−∇ · (A∇u) = f + k2V2u, in Ω

u = 0, on ΓD

A∇u · ν = Tku, on ΓN ∪ ΓR .

(2.6.1)

Since f ∈ L2(Ω), we know by the a priori estimate of the Helmholtz equation that
u ∈ H1(Ω). Therefore we can regard (2.6.1) as an elliptic PDE with k2V2u known
as a part of the right hand side. This PDE has its right hand side in L2(Ω) and has
u as its solution. We can invoke the result in Remark 6.5 of [105], which concludes
that u lies in some Hölder space Cα(Ω) such that

‖u‖Cα(Ω) ≤ C(‖ f ‖L2(Ω) + k2‖u‖L2(Ω)) ,

for some Hölder exponent α ∈ (0,1) and C. �

2.6.2 Proof of Proposition 2.3.7
The proof relies on the fact that any function v on e belonging to H1/2(e)

⋂
Cα(e)

and vanishing at ∂e will be in the space H1/2
00 (e); see Proposition 2.1 in [46] for

detailed arguments of this fact. Then, Reũh ∈ H1/2(e)
⋂

Cα(e) and vanishes at ∂e,
so it belongs to H1/2

00 (e).

2.6.3 Proof of Theorem 2.3.9
We decompose the energy norm into the contribution from each element T ∈ TH:

‖uh − IHuh −
∑

e∈EH

ve‖
2
H(Ω)

=
∑

T∈TH

‖uh − IHuh −
∑
e∼T

ve‖
2
H(T) ,
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where we have used the fact that ve = 0 in T if e and T are not neighbors.

Let us fix an elementT . For each e ∼ T , the trace of the function uh− IHuh−
∑

e∈T ve

on e is ũh − IH ũh − ṽe ∈ H1/2
00 (e). We can extend this trace to ∂T\e by 0 to

get an H1/2(∂T) boundary data. Then, this boundary data can be used to define
a Helmholtz-harmonic function in T , via the correspondence (2.3.8). Using the
triangle inequality and the Cauchy-Schwarz inequality, we get

‖uh − IHuh −
∑
e∼T

ve‖
2
H(T) ≤ Cmesh

∑
e∼T

‖Pe(ũh − IH ũh) − ṽe‖
2
H

1/2
T (e)

,

where theH1/2
T (e) norm of a function ψ̃ ∈ H1/2

00 (e) is defined as

‖ψ̃‖2
H

1/2
T (e)

:=
∫

T
A|∇ψ |2 + k2 |Vψ |2 . (2.6.2)

The constant Cmesh depends on the mesh type only; for example Cmesh = 4 for the
quadrilateral mesh and Cmesh = 3 for the triangular mesh. Then, we sum the above
inequality over all T ∈ TH , which yields

‖uh − IHuh −
∑

e∈EH

ve‖
2
H(Ω)

≤ Cmesh
∑

T∈TH

∑
e∼T

‖Pe(ũh − IH ũh) − ṽe‖
2
H

1/2
T (e)

= Cmesh
∑

e∈EH

‖Pe(ũh − IH ũh) − ṽe‖
2
H1/2(e)

≤ Cmesh
∑

e∈EH

ε2
e .

(2.6.3)

The proof is completed.

2.6.4 Proof of Theorem 2.3.12
This is the key theorem underlying the exponential convergence for approximating
uh. To prove it, we need to analyze the spectrum of the operator Re for each edge e.
The treatments for interior edges and edges connected to the boundary are slightly
different, due to the different boundary conditions involved. We will explain the
proof for interior edges in detail and comment on the changes needed to be made
for edges connected to the boundary.

Since this theorem is stated for all edges, we start by discussing some geometric
relations that hold uniformly for all interior edges.
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2.6.4.1 Geometric Relation: Interior Edges

Suppose e is an interior edge, so that e lies strictly in the interior domain of ωe; see
Figure 2.2. We describe some geometric relation6 between e and ωe that will be
needed in our analysis. Figure 2.9 illustrates our ideas for a uniform quadrilateral
mesh. For each interior edge e, there exists two concentric rectangles ω ⊂ ω∗ with
center being the midpoint me of e, such that e ⊂ ω ⊂ ω∗ ⊂ ωe; the center me is the
center of gravity of ω and ω∗. We require ω∗ ∩ ∂Ω = ∅. Moreover, one side of ω
and ω∗ should be parallel to e. We introduce three parameters l1, l2, l3 to specify and
describe the geometry:

e

ωe

interior edge edge connected to boundary

e

ωe

ωω∗
ω∗

ω

Figure 2.9: Geometric relation e ⊂ ω ⊂ ω∗ ⊂ ωe

1. With respect to the center me, the two rectangles ω and ω∗ are scaling equiv-
alent, such that there exists l1 > 1, ω∗ − me = l1 · (ω − me). Here we use the
notation that t · X := {t x : x ∈ X} for a set X and a scalar t. For our choice of
ωe, the parameter l1 can be selected to only depend on c0 and c1 in Subsection
2.3.1.1.

2. The ratio of ω’s larger side length over the smaller side length is bounded by
a uniform constant l2 > 1 that depends on c0 and c1 only.

3. There is a constant l3 > 1 depending on c0 and c1 only such that l3 · e ⊂ ω.

We note that l1, l2, l3 are universal constants for all interior edges. All three parame-
ters depend on c0, c1 only. We introduce these parameters in order to get a uniform
treatment for every interior edge. Indeed, several constants in our estimates depend
on l1, l2, l3, but not on k and H, uniformly for all interior edges.

6It is similar to that in Subsection 3.3.1 of [46].
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2.6.4.2 Main Idea of the Proof

In the following, we explain the main ideas of our proof. Recall the target is to
show the left singular values of Re decays nearly exponentially fast. Similar to the
rationale behind (2.3.17), it suffices to show there exists an m− 1 dimensional space
Wm,e ⊂ H1/2

00 (e) such that

min
ṽe∈Wm,e

‖Rev − ṽe‖H1/2(e) ≤ Cε exp
(
−m(

1
d+1−ε)

)
‖v‖H(ωe) , (2.6.4)

for any v ∈ U(ωe). We also use U(ω′) to denote the function space in ω′ defined via
(2.3.15) withωe replaced by anyω′. Our proof contains twomain steps, summarized
in the following two lemmas.

Lemma 2.6.1. For d > 0 and any v ∈ U(ω∗), there exists an m − 1 dimensional
space Φm,e ⊂ U(ω) such that

min
χ∈Φm,e

‖v − χ‖H(ω) ≤ Cε exp
(
−m(

1
d+1−ε)

)
‖v‖H(ω∗) , (2.6.5)

for some Cε independent of k and H.

Lemma 2.6.2. For d = 2 and any v ∈ H1(ω) and ∇ · (A∇v) ∈ L2(ω), it holds that

‖Rev‖H1/2(e) ≤ C
(
‖v‖H(ω) + H‖∇ · (A∇v) + k2V2v‖L2(ω)

)
, (2.6.6)

for some C independent of k and H.

Remark 2.6.3. Here in Lemma 2.6.1 and 2.6.2, the constants are independent of k

because in the local domain the operator behaves similarly to an elliptic operator.
Moreover, for edges connected to the boundary that we will discuss in Subsection
2.6.4.7, the boundary condition is of order 1 after rescaling due to the assumption
on our mesh size Hk . 1. Thus, eventually no k-dependence will be involved for
our estimates in the local domain. This is different from the global Cα regularity
estimate in the proof of Proposition 2.2.1. See Subsection 2.6.4.6 for details, where
we only use Cα estimate of an elliptic equation.

We will defer the proofs of the two lemmas to Subsections 2.6.4.3 and 2.6.4.6, and
describe how to prove Theorem 2.3.12 using them here.

Proof of Theorem 2.3.12. From the above discussion, it remains to show (2.6.4).
For v ∈ H(ωe), we have v ∈ H(ω∗) and ‖v‖H(ω∗) ≤ ‖v‖H(ωe). By Lemma 2.6.1,
we get

min
χ∈Φm,e

‖v − χ‖H(ω) ≤ Cε exp
(
−m(

1
d+1−ε)

)
‖v‖H(ωe) .
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Now since v − χ satisfies the condition in Lemma 2.6.2 and v and χ both vanish
under the operator v → ∇ · (A∇v) + k2V2v, we obtain

min
χ∈Φm,e

‖Rev − Re χ‖H1/2(e) ≤ CCε exp
(
−m(

1
d+1−ε)

)
‖v‖H(ωe) .

Thus, taking Wm,e = ReΦm,e completes the proof. �

2.6.4.3 Proof of Lemma 2.6.1

The proof of this lemma is inspired by Theorem 3.3 in [15], which states a similar
result but for elliptic equations only. We generalize it here for the Helmholtz
equation.

First, by our geometric construction, ω∗ −me = l1 · (ω−me). We denote a sequence
of domains ω = ω0 ⊂ ω1 ⊂ · · · ⊂ ωN−1 ⊂ ωN = ω

∗ such that they are concentric
and that ω j −me = (1 + t)(ω j−1 −me) for j = 1,2, · · · ,N . Here t = l1/N

1 − 1. Then,
there are two important lemmas, whose proofs are presented in Subsections 2.6.4.4
and 2.6.4.5.

Lemma 2.6.4. For each 0 ≤ j ≤ N and any n ∈ N, there is an n-dimensional space
Wn(ω j) ⊂ U(ω j), such that for all v ∈ U(ω j), it holds that

inf
w∈Wn(ωj)

‖v − w‖L2(ωj) ≤ CHn−1/d ‖v‖H(ωj) , (2.6.7)

where C is a generic constant independent of k,H, t, and n.

Lemma 2.6.5. For each 1 ≤ j ≤ N and every v ∈ U(ω j), it holds that

‖v‖H(ωj−1) ≤ C/(tH)‖v‖L2(ωj )
, (2.6.8)

where C is a generic constant independent of k,H, and t.

With the two lemmas, we are ready to prove Lemma 2.6.1.

Proof of Lemma 2.6.1. Choose n = bm/Nc. The proof relies on an iteration argu-
ment. We start from j = N . By (2.6.7) and (2.6.8), we get an n dimensional space
Wn(ωN ) ⊂ U(ωN ) and a function wN ∈ Wn(ωN ) such that

‖v − wN ‖H(ωN−1) ≤ C/(tH)‖v − wN ‖L2(ωN )
≤ Ct−1n−1/d ‖v‖H(ωN ) ,

where we have used the fact that the infimum in (2.6.7) is attained since it is a
finite dimensional optimization problem. Here by abuse of notation the value of the
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constant C varies in different places. It is a generic constant independent of k,H, t,

and n.

Now, we iterate the above process. The function v − wN ∈ U(ωN−1), so again by
(2.6.7) and (2.6.8), we get an n dimensional space Wn(ωN−1) ⊂ U(ωN−1) and a
function wN−1 ∈ Wn(ωN−1) such that

‖v − wN − wN−1‖H(ωN−2) ≤ Ct−1n−1/d ‖v − wN ‖H(ωN−1) ≤ (Ct−1n−1/d)2‖v‖H(ωN ) .

Repeating the above procedure, we get

‖v −

N∑
j=1

w j ‖H(ω) ≤ (Ct−1n−1/d)N ‖v‖H(ω∗) ,

where each w j ∈ U(ω j) ⊂ U(ω0) = U(ω). Therefore, there exists an nN ≤ m

dimensional space Φm,e ⊂ U(ω) such that

inf
w∈Φm,e

‖v − w‖H(ω) ≤ (Ct−1n−1/d)N ‖v‖H(ω∗) .

For a paramter q to be determined later, choose N =
⌊
m

q
q+1

⌋
, then we obtain

(Ct−1n−1/d)N ≤
(
Ct−1(

m
N
)−1/d

)N
= exp

(
N

(
1
d

log
(

N
m

)
+ log C − log t

))
. (2.6.9)

Using N ≤ m
q

q+1 and t = l1/N
1 − 1 = exp

(
1
N log l1

)
− 1 ≥ 1

N log l1 ≥ m−
q

q+1 log l1, we
can bound the right hand side of (2.6.9) as

(Ct−1n−1/d)N ≤ exp
(
−m

q
q+1

(
(
1
d
− q)

1
q + 1

log m − log C + log log l1

))
≤ Cq exp

(
−m

q
q+1

)
,

(2.6.10)

for some constant Cq that depends on q, d,C, l1, if q < 1/d. Here in the last
inequality, we used the fact that when q < 1/d, there exists an Mq such that if
m ≥ Mq then

(
1
d
− q)

1
q + 1

log m − log C + log log l1 ≥ 1 ,

and thus (Ct−1n−1/d)N ≤ exp
(
−m

q
q+1

)
for m ≥ Mq. By choosing

Cq = max
1≤m<Mq

exp
(
−m

q
q+1

(
(
1
d
− q)

1
q + 1

log m − log C + log log l1

))
exp

(
m

q
q+1

)
+ 1

we can prove that (2.6.10) is valid.
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Now, we choose q < 1/d and denote q
q+1 =

1
d+1 − ε for some ε > 0. There is a

one-to-one correspondence between q and small positive ε , so we can also write the
error estimate in (2.6.10) in terms of ε as

(Ct−1n−1/d)N ≤ Cε exp
(
−m

1
d+1−ε

)
.

This completes the proof. �

2.6.4.4 Proof of Lemma 2.6.4

First, using the spectrum of the Laplacian operator with Neumann’s boundary condi-
tion, there exists an n dimensional space Sn ⊂ H1(ω j) such that for any v ∈ H1(ω j),

inf
w∈Sn
‖v − w‖L2(ωj) ≤ CHn−1/d ‖v‖H1(ωj) ≤ CHn−1/d ‖v‖H(ωj) , (2.6.11)

whereC is a generic constant independent of k,H, t and n. Equivalently, this implies
the identity embedding operator Q : (H(ω j), ‖ · ‖H(ωj )) → (L

2(ω j), ‖ · ‖L2(ωj )
) such

that Qv = v is compact and the its n-th largest left singular value µn ≤ CHn−1/d .

Now, since U(ω j) is a closed subspace of (H(ω j), ‖ · ‖H(ωj )), we can view Q as an
operator from (U(ω j), ‖ · ‖H(ωj )) to (L2(ω j), ‖ · ‖L2(ωj )

). Denote its singular values
in a non-increasing order by {µ′n}. Using the max-min theorem for singular values,
we obtain

µ′n = max
Sn⊂U(ωj ),dim(Sn)=n

min
v∈Sn,‖v‖H(ωj )

=1
‖Qv‖L2(ωj )

≤ max
Sn⊂H(ωj ),dim(Sn)=n

min
v∈Sn,‖v‖H(ωj )

=1
‖Qv‖L2(ωj )

= µn .

Thus, µ′n ≤ CHn−1/d . Therefore, there is an n-dimensional space Wn(ω j) ⊂ U(ω j),
such that for all v ∈ U(ω j), it holds that

inf
w∈Sn
‖v − w‖L2(ωj) ≤ CHn−1/d ‖v‖H1(ωj) ≤ CHn−1/d ‖v‖H(ωj) .

The proof is completed.

2.6.4.5 Proof of Lemma 2.6.5

We introduce a cutoff function η ∈ C1(ω j) such that 0 ≤ η ≤ 1, and η = 1 in ω j−1,
as well as |∇η(x)| ≤ C/(tH) for some constant C independent of k,H, and t.

For any v ∈ U(ω j), we use the test function η2v and the weak form to get

(A∇v,∇(η2v))ωj − k2(Vv,Vη2v)ωj = 0 , (2.6.12)
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wherewe have used the definition ofU(ω j) (see the beginning of Subsection 2.6.4.2),
and the property of our construction that ∂ω j ∩ (ΓN ∪ ΓR) = ∅.

Using the relation ‖A1/2η∇v‖2
L2(ωj )

= (A∇v, η2∇v)ωj and the above formula, we
obtain

‖A1/2η∇v‖2L2(ωj )
= −2(A1/2η∇v, A1/2v∇η)ωj + k2(Vv,Vη2v)ωj ,

≤
1
2
‖A1/2η∇v‖2L2(ωj )

+ 2‖A1/2v∇η‖2L2(ωj )
+ k2V2

max‖v‖
2
L2(ωj )

,

(2.6.13)
which leads to ‖A1/2η∇v‖2

L2(ωj )
≤ 4‖A1/2v∇η‖2

L2(ωj )
+2k2V2

max‖v‖
2
L2(ωj )

. Therefore,
using the fact that η = 1 in ω j−1, we have

‖v‖2
H(ωj−1)

≤ ‖A1/2η∇v‖2L2(ωj )
+ k2V2

max‖v‖
2
L2(ωj )

≤ 4‖A1/2v∇η‖2L2(ωj )
+ 3k2V2

max‖v‖
2
L2(ωj )

≤

(
4C2

(tH)2
+ 3k2V2

max

)
‖v‖2L2(ωj )

≤
C′2

(tH)2
‖v‖2L2(ωj )

,

(2.6.14)

for some C′ independent of k,H and t, where we have used Assumption 2.3.2 such
that kVmaxH ≤ C′′ for C′′ = A1/2

min/(
√

2CP). This completes the proof.

2.6.4.6 Proof of Lemma 2.6.2

We use Lemma 3.10 of [46], which implies that

‖Rev‖H1/2(e) ≤ C
(
‖A1/2∇v‖L2(ω) + H‖∇ · (A∇v)‖L2(ω)

)
, (2.6.15)

for some C independent of k,H. Indeed, Lemma 3.10 of [46] implies that C can
depend on the Cα estimate constant of v in ω. The discussion in Remark 2.6.3
implies that this constant is independent of k.

By a triangular inequality, we have

H‖∇ · (A∇v)‖L2(ω) ≤ H‖k2V2v‖L2(ω) + H‖∇ · (A∇v) + k2V2v‖L2(ω)

≤ C′‖kVv‖L2(ω) + H‖∇ · (A∇v) + k2V2v‖L2(ω) ,

wherewehave usedAssumption 2.3.2 such that kVmaxH ≤ C′ forC′ = A1/2
min/(
√

2CP).
Now, using the definition of theH(ω) norm, we have

‖A1/2∇v‖L2(ω) + C′‖kVv‖L2(ω) ≤ C′′‖v‖H(ω) ,

for some generic constant C′′ that does not depend on anything else. Combining the
above inequalities concludes the proof.
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2.6.4.7 For Edges Connected to the Boundary

The above proofs are for interior edges. For edges connected to the boundary, we
need a different geometric relation, as depicted in the right of Figure 2.9. The
quantitative characterization of this geometric relation is the same as that in Subsec-
tion 3.3.2 of [46], which introduces three other parameters l4, l5, l6 to describe the
geometry associated with edges, similar to l1, l2, l3 for interior edges.

The main idea of the proof for this case is the same as that for the interior edges.
We need to prove Lemmas 2.6.1 and 2.6.2 for edges connected to the boundary.
The proof of Lemma 2.6.2 remains nearly the same. A technical part is that the
constant in the inequality depends on the local Cα estimate. According to the
discussion in Remark 2.6.3, the local Cα constant is independent of k for edges
connected to the boundary. To prove Lemma 2.6.1, we again use the same strategy
in Subsection 2.6.4.3, by establishing Lemmas 2.6.4 and 2.6.5 and then using an
iteration argument. The iteration argument and the proof for Lemma 2.6.4 remain
unchanged. For Lemma 2.6.5, the only slight change is (2.6.12), which becomes

(A∇v,∇(η2v))ωj − k2(Vv,Vη2v)ωj = (Tkv, η
2v)∂ωj∩(ΓN∪ΓR) , (2.6.16)

due to the boundary conditions involved. However, since Re(Tkv, η
2v)∂ωj∩(ΓN∪ΓR) ≤

0, the conclusion of Lemma 2.6.5 still holds.

Therefore, the result also holds for edges connected to the boundary.

Remark 2.6.6. We have assumed that Ω is a polygonal domain, so the shape of
the local domains around the boundary is well-behaved. In particular, a uniform
Poincaré inequality will hold for these domains (in general, the constant in the
Poincaré inequality depends on the shape of the domain). This guarantees that we
can obtain a uniform constant in Theorem 2.3.12 for both interior edges and edges
connected to the boundary.

2.6.5 Proof of Proposition 2.3.14
First we have the bound on the oversampling bubble part in (2.3.22):

‖ub
ωe
‖H(ωe) ≤

3C′P
A1/2

min

H‖ f ‖L2(ωe)
. (2.6.17)

Applying Lemma 2.6.2 and the definition of ub
ωe

leads to

‖Reub
ωe
‖H1/2(e) ≤ C

(
‖ub

ωe
‖H(ω) + H‖∇ · (A∇ub

ωe
) + k2V2ub

ωe
‖L2(ω)

)
≤ C′H‖ f ‖L2(ωe)

,
(2.6.18)
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where C′ is a constant independent of k and H.

2.6.6 Proof of Theorem 2.4.3
Proof. Define eS = uh − us − uS ∈ Vh. Take ψ = N?

k (eS). It holds that

‖eS‖
2
L2(Ω)

= a(eS,ψ) = a(eS,ψ − v) ,

for any v ∈ S, due to the property of the Galerkin solution. Thus, using the
boundedness of a(·, ·), we obtain that

‖eS‖
2
L2(Ω)

≤ Cc‖eS‖H(Ω)‖ψ − v‖H(Ω) = Cc‖eS‖H(Ω)‖ψ − v‖H(Ω) . (2.6.19)

As ψ = Nk eS according to the definition of the adjoint problem in Subsection 2.2.2,
we can take infimum of v over S, using the fact that S = S, the definition (2.4.3), the
inequality (2.6.19), to get

‖eS‖
2
L2(Ω)

≤ Cc‖eS‖H(Ω) · η(S)‖eS‖L2(Ω) ,

which leads to the desired L2(Ω) error estimate: ‖eS‖L2(Ω) ≤ Ccη(S)‖eS‖H(Ω).

For the H(Ω) error, the property of Galerkin’s solution implies that for any v ∈ S,
we have

‖eS‖
2
H(Ω)

= Re a(eS, eS) + {‖eS‖
2
H(Ω)
− Re a(eS, eS)}

= Re a(eS,uh − us − v) + 2‖kV(x)eS‖
2
L2(Ω)

+ Re(Tk eS, eS)ΓN∪ΓR

≤ Cc‖eS‖H(Ω)‖uh − us − v‖H(Ω) + 2(kVmaxCcη(S))2‖eS‖
2
H(Ω)

,

(2.6.20)
where we have used the fact that Re(Tk eS, eS)ΓN∪ΓR ≤ 0 and the L2(Ω) error estimate
that we established earlier.

By the assumption kηh(S) ≤ 1/(2CcVmax), the last term in (2.6.20) is bounded by
1
2 ‖eS‖

2
H(Ω)

. Thus due to the arbitrariness of v, we arrive at

‖eS‖H(Ω) ≤ 2Cc inf
v∈S
‖uh − v‖H(Ω) .

This completes the proof for the first part. Next, we move to the proof for the
discrete inf-sup stability. For any v ∈ S, set z = 2N?

k (k
2V2v) ∈ H(Ω) so that

a(v, z) = 2k2(V2v, v)Ω. Plugging v and v + z into the sesquilinear form yields

a(v, v + z) = a(v, v) + a(v, z)

= (A∇v,∇v)Ω − k2(V2v, v)Ω − (Tkv, v)ΓN∪ΓR + 2k2(V2v, v)Ω

= ‖v‖2
H(Ω)
− (Tkv, v)ΓN∪ΓR .
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By the definition of Tk , Re(Tkv, v)ΓN∪ΓR ≤ 0, so it holds that

Re a(v, v + z) ≥ ‖v‖2
H(Ω)

.

Now, by the definition of the adjoint problem, we have z = 2Nk(k2V2v). Let zS ∈ S

achieve the best approximation in (2.4.3) for f = 2k2V2v, so that

‖zh
− zs
− zS‖H(Ω) ≤ η(S)‖2k2V2v‖L2(Ω) ≤ 2kVmaxη(S)‖v‖H(Ω) . (2.6.21)

We can choose v′ = v + zS ∈ S to compute

Re a(v, v+ zS) = Re a(v, v+ z)−Re a(v, z− zS) ≥ ‖v‖
2
H(Ω)
−Cc‖v‖H(Ω)‖z− zS‖H(Ω) .

We use the bound in (2.6.21) and the triangle inequality to get

|a(v, v + zS)| ≥ ‖v‖
2
H(Ω)
(1 − 2CckVmaxη(S)) − Cc‖v‖H(Ω)(‖zs‖H(Ω) + ‖zb‖H(Ω)) .

Meanwhile, by a triangle inequality, we get

‖v + zS‖H(Ω) ≤ ‖v‖H(Ω) + ‖zh − zs − zS‖H(Ω) + ‖z‖H(Ω) + ‖zs‖H(Ω) + ‖zb‖H(Ω) .

Finally we are left to estimate the energy norm of z and its fine scale parts. By the
stability estimate in (2.2.3), we have

‖z‖H(Ω) ≤ Cstab(k)‖2k2V2v‖L2(Ω) ≤ 2Cstab(k)kVmax‖v‖H(Ω) ,

and by the bound on the fine part as given by (2.3.19), it holds that

‖zs‖H(Ω) + ‖zb‖H(Ω) ≤ CsH‖2k2V2v‖L2(Ω) ≤ 2CsHkVmax‖v‖H(Ω) .

Therefore, we obtain

sup
v′∈S\{0}

|a(v, v′)|
‖v‖H(Ω)‖v′‖H(Ω)

≥
|a(v, v + zS)|

‖v‖H(Ω)‖v + zS‖H(Ω)

≥
(1 − 2η(S)CckVmax − 2CcCsHkVmax)‖v‖

2
H(Ω)

(1 + 2η(S)kVmax + 2Cstab(k)kVmax + 2CsHkVmax)‖v‖
2
H(Ω)

.

Using the assumptions that η(S)kVmax ≤ 1/(4Cc) and CsHkVmax ≤ 1/(8Cc), we
obtain the desired estimate. �
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2.7 Conclusions
We have developed a multiscale framework for solving the Helmholtz equation in
heterogeneous media and high frequency regimes. The coarse-fine scale decom-
position of the solution space is motivated by the MsFEM. In our algorithm, the
coarse scale Helmholtz-harmonic part and the fine scale bubble part are computed
separately. Their own structures are carefully explored, such as the low complexity
of the coarse part and the locality of the fine part. A nearly exponential rate of
convergence is proved rigorously and is confirmed numerically for a wide range of
the Helmholtz equations with rough coefficients, high contrast, and mixed boundary
conditions.

Perhaps surprisingly, our framework implies that designing an accurate multiscale
method for the Helmholtz equation is not much more different from that for the
elliptic equation. Many techniques in the elliptic case can be successfully adapted
once the mesh size satisfies H = O(1/k), a condition that does not suffer from
the pollution effect. This work also demonstrates the broad applicability of our
exponentially convergent multiscale framework proposed originally in [46].

Most discussions in this chapter are concerned with dimension d = 2. In our future
work, we will generalize the methodology to dimension d = 3, where we can use
nodal, edge, and face basis to approximate the local solution in the non-overlapped
domain decomposition.

It is also of future interest to extend this methodology systematically to other equa-
tions such as the Schrodinger equation, where the problem is time-dependent and
the potential function could introduce indefiniteness into the system. On the other
hand, developing a better theoretical understanding of the behavior of the multiscale
framework with respect to high contrast in the media is also an exciting direction
for further exploration.
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C h a p t e r 3

ANALYSIS OF SUBSAMPLED LENGTHSCALES IN
MULTISCALE METHODS

There is an intimate connection between numerical coarse-graining of multiscale
PDEs and scattered data approximation of heterogeneous functions: the coarse
variables selected for deriving an upscaled equation (in the former) correspond
to the sampled information used for approximation (in the latter). As such, both
problems can be thought of as recovering a target function based on some coarse
data that are either artificially chosen by an upscaling algorithm or determined by
some physical measurement process. In this chapter, we study, under such a setup
and for a specific elliptic problem, how the lengthscale of the coarse data, which we
refer to as the subsampled lengthscale, influences the accuracy of recovery, given
limited computational budgets. Our analysis and experiments identify that reducing
the subsampling lengthscale may improve the accuracy, implying a guiding criterion
for coarse-graining or data acquisition in this computationally constrained scenario,
especially leading to direct insights for the implementation of the Gamblets method
in the numerical homogenization literature. Moreover, reducing the lengthscale to
zero may lead to a blow-up of approximation error if the target function does not
have enough regularity, suggesting the need for a stronger prior assumption on the
target function to be approximated. We introduce a singular weight function to deal
with it, both theoretically and numerically. This work sheds light on the interplay of
the lengthscale of coarse data, the computational costs, the regularity of the target
function, and the accuracy of approximations and numerical simulations.

The exposition of this chapter is based on our work [44], published in SIAM Multi-
scale Modeling & Simulation, 20(1):188–219, 2022.

3.1 Introduction
We are interested in studying a common approach for solving the following two
categories of problems.

3.1.1 Problem 1: Numerical Upscaling
The aim of this problem is to identify the coarse scale solution of a multiscale
PDE via solving an upscaled equation for coarse variables. As a prototypical
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example, in Ω = [0,1]d , consider the elliptic equation for u ∈ H1
0 (Ω), f ∈ L2(Ω)

and L = −∇ · (a∇·): {
Lu = f , in Ω

u = 0, on ∂Ω ,
(3.1.1)

where the rough coefficient a(x) satisfies 0 < amin ≤ a(x) ≤ amax < ∞ for x ∈ Ω.
Suppose we select the upscaled data of the solution: [u, φi], i ∈ I where φi is some
measurement function that is often localized in space, I is an index set and [·, ·]
denotes the standard L2 inner product. Then, the task is to derive an effective model
for these upscaled variables and use them to approximate the solution of the PDE.

3.1.2 Problem 2: Scattered Data Approximation
This problem aims to recover a function u (assume it has an underlying PDE model
as (3.1.1)) based on sampled data [u, φi], i ∈ I. Here we intentionally use the same
notation for the sampled data as that of the upscaled data in Problem 1 to make
an explicit connection. We will also often call [u, φi], i ∈ I the coarse data in both
problems.

3.1.3 A Common Approach
Problem 1 is a standard task in multiscale PDEs computations, while Problem
2 has more of its backgrounds from data scientific investigations. Despite their
distinguished origins, there is an approach that solves and connects the two; studying
of this method is the focus of the present chapter.

To motivate the method, we start from Problem 1: a natural and ideal approach for
getting the coarse data is to multiply the equation with the set of basis functions:

span {ψi}i∈I = span {L−1φi}i∈I ,

so that [ψi, f ], i ∈ I, after an integration by part, matches the target [u, φi], i ∈ I.

Phrased in the language of Galerkin’s method, {ψi}i∈I will constitute the test space;
furthermore, one needs to select a trial space V (with the same dimension) in
order to get the ultimate numerical approximation of u. As such, this viewpoint
has interpreted Problem 1 as a special case of Problem 2, of recovering u, from
[u, φi], i ∈ I, via choosing a space V . Often and conveniently, the trial space
V = span {ψi}i∈I is chosen to be the same as the test space. Under such a choice
and after selecting a suitable representative basis {ψi}i∈I of the linear space V so



72

that [ψi, φ j] = δi j , we can write the final solution in a concise form:

uideal :=
∑
i∈I

[u, φi]ψi . (3.1.2)

It is the ideal solution (here, “ideal” means that we have not accounted for the
computational cost yet) in this setting, both to numerical upscaling and scattered
data approximation. In practice, the basis function ψi can have global support, and
we need a localization step for efficient computation.

As a special case in numerical upscaling, if we choose φi to be piecewise linear
tent functions, then we get the ideal LOD method [181]; if φi is set to be piecewise
constant functions, then we obtain the Gamblet method in [203]. In their contexts,
localization of {ψi}i∈I is achieved via an exponential decay property, and a provable
accuracy guarantee has been established by controlling the coarse-graining error
of using uideal to approximate u and the localization error of computing {ψi}i∈I ,
respectively.

3.1.4 Our Goals
The purposes of this chapter are twofold.

• On the numerical upscaling side, we contribute a further discussion to this
family of upscaling methods, concentrating on the fundamental role of a
subsampled lengthscale (defined in the next subsection) in choosing {φi}i∈I ,
with its highly non-trivial consequence on the localization of {ψi}i∈I and the
solution accuracy of u. We will get a novel trade-off between approximation
and localization regarding the subsampled scale.

• On the function approximation side, the above recovery method takes advan-
tage of the underlying physical model (3.1.1), combining the merits of data
and physics. In addition to contributing a detailed analysis of accuracy and
comparisons to numerical upscaling, we will pay close attention to the regime
where the subsampled lengthscale is small and approaches zero, in which we
provide some numerical evidence that exemplifies, and extends our earlier
work on function approximation via subsampled data [44].

Our detailed contributions are outlined in Subsection 3.1.7.
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Figure 3.1: Illustration of Subsampled Data: H = 1/4, h = 1/10

3.1.5 Subsampled Lengthscales
We begin by introducing the concept of subsampled data. For a demonstration of
ideas, we work on the domain Ω = [0,1]d , and it is decomposed uniformly into
cubes with side length H; this becomes our coarse grid. Let I be the index set of
these cubes such that its cardinality |I | = 1/Hd . The measurement function φh,H

i

(we use superscripts now for notational convenience) for each i ∈ I is set to be the
(L1 normalized) indicator function of a cube with side length 0 < h ≤ H, centered
in the corresponding cube with side length H; see Figure 3.1 for a two dimensional
example1. For each i ∈ I, these two cubes are denoted by ωH

i and ωh,H
i respectively;

we assume they are closed sets, i.e., their boundaries are included. We will call H

the coarse lengthscale, and h is the subsampled lengthscale.

The consideration of this subsampled lengthscale is natural both from the perspec-
tives of function approximation and numerical upscaling. In the former scenario, the
measurement data of a field function in physics is often the macroscopic averaged
quantity, taking a similar form as [u, φh,H

i ] for some h ≤ H. In the latter problem,
we have the freedom to choose the upscaled information of the multiscale PDEs, so
taking a free parameter h in the approach enables us to analyze the algorithm’s be-
havior more thoroughly. Later on, we will see that the parameter h has a non-trivial
influence on the subsequent localization and accuracy of the approximation.

1For illustration, the cube ωh,H
i in the figure is centered in ωH

i . However, the relative position of
the two cubes is not important in our analysis; see the proofs of Theorem 3.2.1 and 3.2.3. The key is
that the subsampled Poincaré inequality developed in [44] does not depend on the relative position
of the subdomain and the domain.
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Note that the choice of ωH
i and ωh,H

i being cubes here is for convenience of analysis
only; results in this chapter will generalize easily to regular domains with other
shapes.

3.1.6 Basis Functions and Localization
Before outlining our main contributions (which are in the next subsection), we make
precise here the definition of the basis functions and their localization. Per the
discussion in Subsection 3.1 and especially the formula (3.1.2), the basis function
ψh,H

i (we add the superscripts for notational clarity) is the solution of the following
variational problem:

ψh,H
i = argminψ∈H1

0 (Ω)
‖ψ‖2

H1
a(Ω)

subject to [ψ, φh,H
j ] = δi,j for j ∈ I ,

(3.1.3)

where, we have used the notation ‖ψ‖2
H1
a(Ω)

:=
∫
Ω

a|∇ψ |2. This formulation is a
consequence of the two properties that are mentioned in Subsection 3.1:

(I) span {ψh,H
i }i∈I = span {L−1φh,H

i }i∈I and (II) [ψh,H
i , φh,H

j ] = δi j .

For ease of computation, in practice we will solve a localized version of (3.1.3)
instead:

ψh,H,l
i = argminψ∈H1

0 (N
l(ωH

i ))
‖ψ‖2

H1
a(Nl(ωH

i ))

subject to [ψ, φh,H
j ] = δi,j for j ∈ I ,

(3.1.4)

where l ∈ N is called the oversampled layer. We have N0(ωH
i ) = ω

H
i , and recur-

sively:
Nl(ωH

i ) :=
⋃
{ωH

j , j ∈ I : ωH
j ∩ Nl−1(ωH

i ) , ∅} . (3.1.5)

Then, the level-l localized solution for Problem 2 is

uloc,l :=
∑
i∈I

[u, φh,H
i ]ψ

h,H,l
i . (3.1.6)

By abuse of notation, we will equate uloc,∞ = uideal. The energy error and L2 error
of this localized solution are written as

eh,H,l
1 (a,u) = ‖u − uloc,l ‖H1

a(Ω)
,

eh,H,l
0 (a,u) = ‖u − uloc,l ‖L2(Ω) .

(3.1.7)

For Problem 1, we also get a solution ũloc,l by using the localized basis functions
{ψh,H,l

i }i∈I and the Galerkin method. This solution is different from uloc,l in general,
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unless l = ∞, i.e., in the ideal case. The corresponding energy error and L2 error of
ũloc,l are denoted by ẽh,H,l

1 (a,u) and ẽh,H,l
0 (a,u).

We call uloc,l the recovery solution of Problem 2, and ũloc,l the Galerkin solution of
Problem 1. The computation costs of the two solutions are different—the former
only requires solving the basis functions, while the latter also needs to solve an
upscaled equation. Their errors in the solution are called the recovery error and
Galerkin error, respectively.

Under the above setup, our precise goal in this chapter is to understand how the
recovery error and Galerkin error depend on the following three factors:

1. The coarse scale H and subsampled lengthscale h;

2. The oversampled layer l (corresponded to the computational budget);

3. The regularity of function u (in function approximation, it is given as prior
information; in multiscale PDEs, it is influenced by the right-hand side f ).

Note that the regularity of a function is also intimately connected to the dimension
parameter d.

3.1.7 Our Contributions
In the first part of this work, we consider the finite regime of the subsampled
lengthscale, i.e., h is a strictly positive number.

• We provide numerical experiments and theoretical analysis of these recovery
and Galerkin errors. We show that for a fixed h/H, if l = O(log(1/H)), then
both energy errors are of O(H) and both L2 errors are of O(H2).

• Further, we decompose the error into two parts: the approximation error of
the ideal solution and the localization error. We demonstrate that there is a
competition between the two. Roughly, reducing h worsens the former, while
improving the latter, for a fixed H and l. This leads to a novel trade-off that
was not investigated before—choosing an appropriate h can benefit the final
accuracy.

• Moreover, there appears a fundamental difference between eh,H,l
0 (a,u) and the

other three errors, when d ≥ 2. For a fixed l and h/H, the former remains
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bounded as H → 0, while the other three blow up. We characterize this
phenomenon both theoretically and numerically.

In the second part of this work, we consider the small limit regime of h. When d ≥ 2,
the error estimates in the first part blow up as h → 0. To remedy this issue in the
context of scattered data approximation, we propose to use a singular weight function
in the algorithm. The weight function puts more importance on the subsampled data
and avoids the degeneracy, given the target function has improved regularity property
around these data. Numerical experiments and theoretical analysis are presented to
offer a quantitative explanation of this phenomenon.

3.1.8 Related Works
We review the related works below.

3.1.8.1 Numerical Upscaling

There have been vast literature on numerical upscaling of multiscale PDEs. For
our context, i.e., elliptic PDEs with rough coefficients, rigorous theoretical results
include Generalized Finite Element Methods (GFEM) [14, 15], Harmonic Coordi-
nates [209], Local Orthogonal Decomposition (LOD) [181, 121, 148, 80, 117, 180],
Gamblets related approaches [208, 210, 201, 203, 131, 204], and generalizations
of Multiscale Finite Element Methods (MsFEM) [128, 52, 160, 89, 46, 48], etc.
Among them, the ones most related to this chapter are LOD and Gamblets; the
connection has been explained in Subsection 3.1.3. Indeed, in Gamblets [203, 204],
the author has formulated the framework in the perspective of optimal recovery,
bridging numerical upscaling to game-theoretical approaches and Gaussian process
regressions for function recovery. This formulation connects our Problem 1 and
Problem 2 in Subsection 3.1.

A main component in LOD and Gamblets is the localization problem – the ideal
multiscale basis functions need to be localized for efficient computation. In this
chapter, our localization strategy, as outlined in Subsection 3.1.6, follows from
the one in [181, 203]. The main difference is that our measurement function
φh,H

i contains a subsampled lengthscale parameter, which makes the analysis more
delicate. Moreover, in addition to showing a trade-off between approximation errors
and localization errors regarding the oversampling parameter l, our setup allows us
to discover another trade-off regarding the subsampled lengthscale h: a good choice
of h can improve the algorithm in [181, 203]. We also remark that the work [161]
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has considered a similar algorithm for convection-dominated diffusion equations,
where h is fixed to be the small scale grid size, but the analysis there did not reveal
the trade-off here.

3.1.8.2 Function Approximation

Function approximation via scattered data is a classical problem in numerical anal-
ysis (interpolation), statistics (non-parametric regression), and machine learning
(supervised learning). For the type of scattered data, the most frequently considered
one is the pointwise data [288]. The subsampled data introduce an additional small
scale parameter h, and are generalizations to pointwise data. Our earlier work [44]
performed some analysis on this aspect, and provides some theoretical foundation
for this work. The multiscale basis functions constructed for the subsampled data
allow us to capture the heterogeneous behaviors of the target function.

Themethod in Subsection 3.1.3 connects to the graph Laplacian approach in semisu-
pervised learning. In the machine learning literature, the degeneracy issue of graph
Laplacians has long been studied, and various approaches have been proposed to
remedy this issue. Among them, the one that is most related to our work is the
weighted graph Laplacian method [248, 38], which puts more weights around the
labeled data to avoid degeneracy. The second part of this work presents some
analysis for this type of idea in the context of numerical analysis.

3.1.9 Organization
The rest of this chapter is organized as follows. In Section 3.2 we discuss the
regime that 0 < h ≤ H. We present numerical experiments and theoretical analysis
of these Galerkin errors in numerical upscaling, and recovery errors in function
approximation. In Section 3.3, we consider the regime h→ 0, a case that degeneracy
may occur. We use a singularweight function to deal with this issue both numerically
and theoretically. Section 3.4 contains all the proofs. We summarize, discuss, and
conclude this chapter in Section 3.5.

3.2 Finite Regime of Subsampled Lengthscales
In this section, we study the finite regime of h, i.e., 0 < h ≤ H. We start with the
ideal solution uideal, or equivalently uloc,∞, and then move to the localized solution
uloc,l and ũloc,l for finite l. Experiments are presented first, followed with theoretical
analysis. Special attention is paid to the dependence of accuracy on the coarse
scale H, subsampled lengthscale h and when in the localized case, the oversampling
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parameter l.

3.2.1 Experiments: Ideal Solution
In this subsection, we perform a numerical study of the effect of h in eh,H,∞

1 (a,u)

and eh,H,∞
0 (a,u), for d = 1 and 2 respectively.

In this ideal case, the recovery solution and Galerkin solution are the same, and
in our computation, we directly solve a PDE to get these solutions. Theoretical
analysis of these numerical results is given in Subsection 3.2.2.

3.2.1.1 One Dimensional Example

We consider the domain Ω = [0,1]. The rough coefficient a(x) is a sample drawn
from the random field

ξ = 1 + 0.5 × sin

( 100∑
k=1

ηk cos(k x) + ζk sin(k x)

)
, (3.2.1)

where ηk, ζk,1 ≤ k ≤ 100 are i.i.d. random variables uniformly distributed in
[−0.5,0.5]; see the upper left of Figure 3.2 for a single realization. The right-hand
side f is drawn from the Gaussian process N(0, (−∆)−0.5−δ) for δ = 10−2; this
guarantees f ∈ Ht(Ω) for any t < δ but not t ≥ δ; see the upper right of Figure
3.2 for a single realization of this process. Note that this set-up of f ensures that
it is roughly an element in L2(Ω) and has no apparent higher regularity. This is
important because we do not want f to be too regular to influence the results, as our
focus is on f ∈ L2(Ω).

In the lower part of Figure 3.2, we output the energy errors and L2 errors of the ideal
solution, eh,H,∞

1 (a,u) and eh,H,∞
0 (a,u), for H = 2−2,2−3, ...,2−7 and the subsampled

ratio h/H = 1,1/2,1/4,1/8. The grid size we use to discretize the operator is set to
be 2−11. These two figures lead to the following observations:

• For the ideal solution, the energy error decays linearly with respect to the
coarse scale H, while the L2 error decays quadratically.

• Decreasing h leads to a decrease of accuracy.

In the next subsection, we move to a two dimensional example to further confirm
these observations.
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Figure 3.2: 1D example, ideal solution. Upper left: a(x); upper right: f (x); lower
left: energy error; lower right: L2 error.

3.2.1.2 Two Dimensional Example

We consider Ω = [0,1]2. The coefficient a(x) is chosen as

a(x) =
1
6

(
1.1 + sin (2πx1/ε1)

1.1 + sin (2πx2/ε1)
+

1.1 + sin (2πx2/ε2)

1.1 + cos (2πx1/ε2)
+

1.1 + cos (2πx1/ε3)

1.1 + sin (2πx2/ε3)

+
1.1 + sin (2πx2/ε4)

1.1 + cos (2πx1/ε4)
+

1.1 + cos (2πx1/ε5)

1.1 + sin (2πx2/ε5)
+ sin

(
4x2

1 x2
2

)
+ 1

)
,

(3.2.2)
where ε1 = 1/5, ε2 = 1/13, ε3 = 1/17, ε4 = 1/31, ε5 = 1/65. For the right-hand
side, we sample two independent one-dimensional process in the last subsection,
denoted by f1(x1) and f2(x2), and we set f (x) = f1(x1) f2(x2). This guarantees
f ∈ Ht(Ω) for any t < δ but not t ≥ δ in two dimensions.

In the upper part of Figure 3.3, we output a(x) and a single realization of f (x).
The lower part depicts eh,H,∞

1 (a,u) and eh,H,∞
0 (a,u), for H = 2−2,2−3, ...,2−6 and the

subsampled ratio h/H = 1,3/4,1/2,1/4. The grid size we use to discretize the
operator is set to be 2−8. These two figures yield the same conclusions as those in
the one dimensional case.
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Figure 3.3: 2D example, ideal solution. Upper left: a(x); upper right: f (x); lower
left: energy error; lower right: L2 error.

3.2.2 Analysis: Ideal Solution
In this subsection, we move to the theoretical analysis of the ideal solution, to
understand better of the above empirical observations.

For this purpose, we use our earlier results in function approximation via subsampled
data [44]. Especially, Theorem 3.3 in [44] implies the following result:

Theorem 3.2.1. For the ideal solution, it holds that

eh,H,∞
1 (a,u) ≤

1
√

amin
C1(d)Hρ2,d(

H
h
)‖Lu‖L2(Ω) ; (3.2.3)

eh,H,∞
0 (a,u) ≤

1
amin

C1(d)2H2
(
ρ2,d(

H
h
)

)2
‖Lu‖L2(Ω) , (3.2.4)

where, C1(d) is a constant that depends on the dimension d only, and for p, d ≥ 1,
the function ρp,d : R+ → R+ is defined as:

ρp,d(t) =


1, d < p

(log(1 + t))
d−1
d , d = p

t
d−p
p , d > p .

(3.2.5)
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In Theorem 3.2.1, we get the upper bound of eh,H,∞
1 (a,u) and eh,H,∞

0 (a,u). The
dependence of this upper bound on h is determined by the function ρ2,d . Note
that it is a non-decreasing function, so as h decreases, for a fixed H, the ratio H/h

increases, and the upper bound will also increase. One exception is when d = 1,
the upper bound remains constant when h changes, and it is still finite even when h

approaches 0. This phenomenon is in sharp contrast with the case d ≥ 2, where as
h→ 0, the upper bound blows up to infinity.

The above theoretical implicationsmatchwhatwe have observed in the experiments—
reducing h leads to a decrease of accuracy, both in d = 1 and d = 2; moreover, the
deterioration of accuracy is more severe in d = 2 than d = 1.

Therefore, if one is adopting the ideal solution, without considering computational
costs, then we would recommend choosing h = H, which achieves the best of both
worlds with a theoretical guarantee and practical performance.

Remark 3.2.2. Applying the above recommendation (h = H) is straightforward in
the context of numerical upscaling—we can choose the suitable upscaled coarse
variables. Nevertheless, for scattered data approximation, the data acquisition step
also matters. Our analysis suggests that for the sake of accuracy (in the case there is
no burden of computational costs), it could be a good idea to make the lengthscale of
the coarse data larger; this provides guidance for data collection in such a scenario.

3.2.3 Experiments: Localized Solution
Solving the ideal solution can be computationally expensive due to the global opti-
mization problem (3.1.3). This is also why we stop at H = 2−6 and do not decrease
H further in the previous 2D experiments. For better practical algorithms, in this
subsection, we move to the localized solution. We start with the numerical exper-
iments for 1D and 2D, followed by theoretical analysis. In these experiments, we
use the same functions a(x) and f (x) as in the ideal case.

In the localized scenario, the Galerkin solution in numerical upscaling and the
recovery solution in scattered data approximation are different. Thus, we will
compute them separately and compare the results. More precisely, for the Galerkin
solution, we use the localized basis functions in the Galerkin framework to solve the
PDE; for the recovery solution, it is simpler – once the basis functions are computed,
we readily get the recovery solution by using the available subsampled data and the
formula (3.1.6). For both cases, the ground truth solution u is given as a solution to
a PDE.
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3.2.3.1 One Dimensional Example

We consider the 1D model in Subsection 3.2.1.1. We compute the Galerkin errors
ẽh,H,l

1 (a,u) and ẽh,H,l
0 (a,u) and the recovery errors eh,H,l

1 (a,u) and eh,H,l
0 (a,u), for

H = 2−2,2−3, ...,2−7, h/H = 1,1/2,1/4,1/8 and l = 2,4. The grid size we use to
discretize the operator is set to be 2−11.

In Figure 3.4, the oversampling parameter l = 2. The upper part depicts the energy
and L2 errors of the Galerkin solution, while the lower part corresponds to that of
the recovery solution. From the figure, we observe the following facts:

• Due to localization, the error line of h/H = 1,1/2,1/4 finally turns up as
we make H very small, deviating from what we have observed in the ideal
solution. This implies the localization error matters a lot.

• Among the four choices, the case h/H = 1/8 that corresponds to the smallest
h, behaves the best for small H. It appears that decreasing h may suppress the
localization error to certain extent.

• The L2 error of the recovery solution is more stable and accurate compared
to the Galerkin solution, when H is small. Especially, there is no obvious
blow-up as H becomes small.

Next, we increase the oversampling parameter to l = 4, and output the same set of
observables in Figure 3.5. Now, only the case h/H = 1 leads to a turning up of the
error line, while the other three cases lead to similar error lines as the ideal solution.
The best choice among the four becomes h/H = 1/2. Thus, as l increases, the
localized solution is approaching the ideal one, and choosing a larger h would be
good.

3.2.3.2 Two Dimensional Example

In this subsection, we move to a two dimensional example that corresponds to the
the ideal case in Subsection 3.2.1.2. As before, we compute the Galerkin errors
ẽh,H,l

1 (a,u) and ẽh,H,l
0 (a,u) and the recovery errors eh,H,l

1 (a,u) and eh,H,l
0 (a,u), for

H = 2−2,2−3, ...,2−8, h/H = 1,3/4,1/2,1/4 and l = 2,4. The grid size we use to
discretize the operator is set to be 2−10.

We start with l = 2, in Figure 3.6. Our observations are as follows:
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Figure 3.4: 1D example, localized solution l = 2. Upper left: ẽh,H,l
1 (a,u); upper

right: ẽh,H,l
0 (a,u); lower left: eh,H,l

1 (a,u); lower right: eh,H,l
0 (a,u).
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Localized (l=4): scattered data approx

h/H=1
h/H=1/2
h/H=1/4
h/H=1/8
O(H)

10-2 10-1

H

10-6

10-5

10-4

10-3

10-2

L2  e
rr

or

Localized (l=4): scattered data approx

h/H=1
h/H=1/2
h/H=1/4
h/H=1/8

O(H2)

Figure 3.5: 1D example, localized solution l = 4. Upper left: ẽh,H,l
1 (a,u); upper

right: ẽh,H,l
0 (a,u); lower left: eh,H,l

1 (a,u); lower right: eh,H,l
0 (a,u).
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• All the error lines deviate from the desiredO(H) orO(H2) line to some extent,
and among the four choices, the ratio h/H = 1/2 performs the best when H

is small.

• Compared to the 1D example, the localization errors in 2D are larger, since
the deviation from the desired O(H) or O(H2) line is more apparent.

• The error line exhibits a turning up behavior even for very small h/H = 1/4.
That means in the 2D case, small h can also lead to large overall errors. This
observation indeed matches our theory for the ideal solution, as ρ2,d(H/h) in
Theorem 3.2.1 will blow up as h→ 0, when d = 2.

• When H is small, the L2 error of the recovery solution in the scattered
data approximation is more accurate than the Galerkin solution in numerical
upscaling. This phenomenon has also been observed in the 1D example.

Then, we increase the oversampling parameter to l = 4. The results are output in
Figure 3.7. We observe a better accuracy and more stable behavior of the error
lines compared to l = 2. Now the best among the four ratios becomes h/H = 3/4.
Moreover, the relative behaviors of the three cases h/H = 3/4,1/2,1/4 are very
similar to that in the ideal solution, indicating that when l = 4, the localization error
may be small compared to the approximation error of the ideal solution.

3.2.4 Analysis: Localized Solution
In this subsection, we provide some theoretical analysis for the localized solution.
To begin with, we summarize the main observations in the numerical experiments
that we want to understand more deeply in our theoretical study.

1. The error lines of the localized solution, eh,H,l
1 (a,u), ẽh,H,l

1 (a,u) and also ẽh,H,l
0 (a,u),

turn up when H is small, if l is fixed;

2. The localization error appears to become smaller as h decreases; for the overall
error of the localized solution, there seems to be a competition between the
approximation error of the ideal solution (which increases as h decreases),
and the localization error (which decreases as h decreases). The strength of
the competition depends on the oversampling parameter l;

3. The L2 error of the recovery solution is smaller compared to that of the
Galerkin solution, i.e., ẽh,H,l

0 (a,u) appears to be larger than eh,H,l
0 (a,u), and for

the latter, it does not blow up as H becomes small.
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Figure 3.6: 2D example, localized solution l = 2. Upper left: ẽh,H,l
1 (a,u); upper

right: ẽh,H,l
0 (a,u); lower left: eh,H,l

1 (a,u); lower right: eh,H,l
0 (a,u).
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Localized (l=4): scattered data approx
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Figure 3.7: 2D example, localized solution l = 4. Upper left: ẽh,H,l
1 (a,u); upper

right: ẽh,H,l
0 (a,u); lower left: eh,H,l

1 (a,u); lower right: eh,H,l
0 (a,u).
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We will provide reasonable theoretical explanation of these observations. First, we
introduce several useful notations.

3.2.4.1 Notations

For any function v ∈ H1
0 (Ω), we write

Ph,H,lv =
∑
i∈I

[v, φh,H
i ]ψ

h,H,l
i . (3.2.6)

Moreover, we use the convention Ph,Hv =
∑

i∈I [v, φ
h,H
i ]ψ

h,H
i . These definitions

lead to the relation Ph,H,lψh,H
i = ψh,H,l

i , which connects the ideal and localized basis
functions.

Since we are mainly interested in how the error depends on h,H, l and u, we use
A . B (resp. A & B) to denote the condition A ≤ CB (resp. A ≥ CB) for some
constant C independent of h,H, l and u. If we have both A . B and A & B, then we
will write A ' B. We use 〈·, ·〉a to denote the a-weighted inner product in H1

0 (Ω),
i.e., 〈u, v〉a :=

∫
Ω

a∇u · ∇v.

3.2.4.2 Analysis

To analyze the error of localized solutions, we first use the triangle inequality:

eh,H,l
1 (a,u) = ‖u − Ph,H,lu‖H1

a(Ω)

≤ ‖u − Ph,Hu‖H1
a(Ω)
+ ‖Ph,Hu − Ph,H,lu‖H1

a(Ω)

. Hρ2,d(
H
h
)‖Lu‖L2(Ω) + ‖Ph,Hu − Ph,H,lu‖H1

a(Ω)
,

(3.2.7)

where in the last inequality, we have used the estimate for the ideal solution. The
second part ‖Ph,Hu − Ph,H,lu‖H1

a(Ω)
is the localization error. Our main goal is to

estimate this part of error. For this purpose, we have Theorem 3.2.3 below.

Theorem 3.2.3. The following results hold:

1. (Inverse estimate) For any v ∈ span {ψh,H
i }i∈I and in each ωh,H

j , j ∈ I, we
have the estimate:

‖∇ · (a∇v)‖L2(ωh,H
j )
≤

√
amaxC2(d)

h
‖v‖H1

a(ω
h,H
j )

,

where C2(d) is a constant that depends on d only.
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2. (Exponential decay) For each i ∈ I and k ∈ N, we have

‖ψh,H
i ‖

2
H1
a(Ω\Nk (ωH

i ))
≤ (β(h,H))k ‖ψh,H

i ‖
2
H1
a(Ω)

, (3.2.8)

where

β(h,H) =
C0(d)

√
amax
amin

(
C1(d)ρ2,d(

H
h ) + C1(d)C2(d) h

H

)
C0(d)

√
amax
amin

(
C1(d)ρ2,d(

H
h ) + C1(d)C2(d) h

H

)
+ 1

. (3.2.9)

Here, C0(d) is a universal constant dependent on d, C1(d) is the constant in
Theorem 3.2.1 while C2(d) is the constant in the inverse estimate.

3. (Norm estimate) Suppose for each i ∈ I, φh,H
i is L1 normalized in the sense

that ‖φh,H
i ‖L1(ωh,H

i )
= 1, then the following estimate holds:

‖ψh,H
i ‖H1

a(Ω)
.

1
ρ2,d(

H
h )

Hd/2−1 . (3.2.10)

4. (Localization error per basis function) For each i ∈ I, it holds that

‖ψh,H
i − ψh,H,l

i ‖H1
a(Ω)

. Hd/2−1 min

{
(β(h,H))l/2 ,

1
ρ2,d(

H
h )

}
.

(3.2.11)

5. (Overall localization error) The following error estimate holds:

‖Ph,Hu − Ph,H,lu‖H1
a(Ω)

.min
{
(β(h,H))l/2 ρ2,d(

H
h
),1

}
×min

{
ld/2

H
,

1
Hd/2+1ρ2,d(

H
h )

}
‖u‖L∞(Ω) .

(3.2.12)

6. (Overall recovery error) Suppose d ≤ 3. For the energy recovery error, we
have

eh,H,l
1 (a,u) .

(
Hρ2,d(

H
h
)+min

{
(β(h,H))l/2 ρ2,d(

H
h
),1

}
×min

{
ld/2

H
,

1
Hd/2+1ρ2,d(

H
h )

} )
‖Lu‖L2(Ω) ,

(3.2.13)
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and for the L2 recovery error, we have

eh,H,l
0 (a,u) .

(
(Hρ2,d(

H
h
))2+min

{
1,Hρ2,d(

H
h
)

}
×min

{
(β(h,H))l/2 ρ2,d(

H
h
),1

}
×min

{
ld/2

H
,

1
Hd/2+1ρ2,d(

H
h )

} )
‖Lu‖L2(Ω) .

(3.2.14)

7. (Overall Galerkin error) Suppose d ≤ 3. The energy Galerkin error is upper
bounded by the energy recovery error: ẽh,H,l

1 (a,u) ≤ eh,H,l
1 (a,u). For the L2

Galerkin error, we have

ẽh,H,l
0 (a,u) .

(
Hρ2,d(

H
h
)+min

{
(β(h,H))l/2 ρ2,d(

H
h
),1

}
×min

{
ld/2

H
,

1
Hd/2+1ρ2,d(

H
h )

} )2
‖Lu‖L2(Ω) .

(3.2.15)

3.2.4.3 Implications

Before wemove to the proof part, let us first discuss the implications of this theorem.
We focus on the localization error in the final estimates.

• Fix an l and the ratio H/h. Due to (3.2.13) and (3.2.15), the localization error
parts in eh,H,l

1 (a,u), ẽh,H,l
1 (a,u) and ẽh,H,l

0 (a,u) will blow up as H goes to 0. In
contrast, due to (3.2.14), the localization error in eh,H,l

0 (a,u) remains bounded
in this limit. Indeed, it is bounded by

Hρ2,d(
H
h
) × (β(h,H))l/2 ρ2,d(

H
h
) ×

ld/2

H
‖Lu‖L2(Ω)

≤ ld/2 (β(h,H))l/2
(
ρ2,d(

H
h
)

)2
‖Lu‖L2(Ω) ,

which does not blow up as H → 0. This reveals a distinguished behavior of
eh,H,l

0 (a,u) compared to the other three errors, which have been observed in
our experiments. Our analysis explains this phenomenon.

• For eh,H,l
1 (a,u), our analysis shows that there is a competition between the

approximation error of the ideal solution, Hρ2,d(
H
h ) (we omit ‖Lu‖L2(Ω) for
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simplicity), and the localization error

min
{
(β(h,H))l/2 ρ2,d(

H
h
),1

}
×min

{
ld/2

H
,

1
Hd/2+1ρ2,d(

H
h )

}
.

Fix an H and l. When d ≥ 2, since limh→0 ρ2,d(
H
h ) = ∞, we have that as

h → 0, the approximation error goes to infinity, while the localization error
goes to zero. When d = 1, both two parts of errors remain bounded as
h → 0, and thus the competition is less pronounced; this matches what we
have observed in our 1D experiments—the effect of reducing h is not as large
as in our 2D example.

The existence of competition implies that in general, there should be a value
of h that leads to the best error for the fixed H and l. Because the localization
error decreases as l increases, this optimal value would also increase for a
larger l, as observed in our experiments.

The above phenomenon also applies to other errors, i.e., the recover L2 error
eh,H,l

0 (a,u) and the Galerkin errors ẽh,H,l
1 (a,u) and ẽh,H,l

0 (a,u).

• If we fix H/h, and want to have an overall error of O(H) (for energy error) or
O(H2) (for the L2 error), then our estimates show that

l = O(
log H

log β(h,H)
)

suffices for this goal. Note that β(h,H) can be treated as a constant (less than
1) when H/h is fixed, so generally l = O(log(1/H)) is enough. Moreover, our
experiments demonstrate that we could domuch better in practice—a constant
value of l = 2 or 4 behaves well for a wide range of H and h.

The three points above explain the questions that we raised at the beginning of
Subsection 3.2.4.

Remark 3.2.4. Though the presence of ‘min’ in many places of our estimates
complicates the formula, they play critical roles in the above explanations, since we
need to choose the correct term inside the ‘min’ to get the desired conclusion.

Remark 3.2.5. In Theorem 3.2.3, the basis function ψh,H
i has an exponential decay

property; see (3.2.8). The localization error should heavily depend on the decay
rate, so obtaining a tight bound of this rate is important here. In our analysis, we
get the rate β(h,H), which contains a term ρ2,d(H/h) that increases as h decreases



90

(when d ≥ 2), and a term h/H that decreases while h decreases. The two mixed
components may suggest a non-monotone behavior of the decay rate. Moreover,
when h→ 0, we get β(h,H) → 1, so the decay appears to deteriorate eventually for
small h. On the other hand, it seems intuitive that once h is small, the measurement
region ωh,H

i becomes more localized, and then the decay shall be amplified. To
understand this problem better, we conduct a numerical experiment as follows. For
the coefficient a(x) in (3.2.2) and H = 2−5, we compute the relative localization

error
‖ψh,H

i −ψh,H ,l
i ‖2

H1
a (Ω)

‖ψh,H
i ‖2

H1
a (Ω)

for h = 2−5,2−6, ...,2−10 and l = 0,1,2, ...,5. The index i is

selected so that ωH
i is centered in the domain Ω. The result is shown in Fig. 3.8.
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Figure 3.8: Relative localization error per basis function

From the figure, we observe that there is indeed a non-monotone behavior with
respect to h in the relative localization error. Among these choices of h and l, we
only see a monotone tendency for l = 0. For other l, the value h that leads to
the minimal relative localization error increases as l increases. For the a(x) and
H considered, we can see h/H = 1/2,1/4 lead to small errors in general, which
also explains that this choice of h works quite well in our previous experiments.
Overall, the above investigation suggests that our bound on the exponential decay
and localization error can reasonably predict the behavior in practice. The decay is
truly subtle regarding the small parameter h.
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Remark 3.2.6. Our current result does not provide explicit clues on how to choose
h according to l and H to achieve the best accuracy. Nonetheless, our experiments
have shown that usually h/H = 3/4 or 1/2 behaves well, across a wide range of
H = 2−8,2−7, ...,2−2 and l = 2,4, in the two dimensional problems. Providing more
guidance on this aspect, either numerically or theoretically, is left as future work.

3.2.4.4 Proof Strategy

The results in Theorem 3.2.3 are presented progressively. Our proofs will start from
the first and move forward one by one to the seventh. We summarize the main
ideas below, together with their connections to existing results in the literature. The
detailed proof is in Subsection 3.4.1.

1. The inverse estimate is obtained due to a scaling argument—that is why the
subsampled scale h appeared. (Subsection 3.4.1.1)

2. Based on the inverse estimate and the subsampled Poincaré inequality (see
Proposition 2.5 in [44]), we can establish the exponential decay property via
a Caccioppoli type of argument. The logical line of our proof here is similar
to that of the original LOD method (Lemma 3.4 in [181]) and Gamblets
(Theorem 3.9 in [203]), while now we need to be careful to make every
estimate adaptive to the small scale parameter h. (Subsection 3.4.1.2)

3. For the norm estimate, we construct critical examples whose energy norm
leads to a desired upper bound. The critical example here is similar to the one
we used before to prove the optimality of the subsampled Poincaré inequality
(see Proposition 2.6 in [44]). This type of profile has also been studied in
the context of semi-supervised learning; see Theorem 2 in [193]. (Subsection
3.4.1.3)

4. The localization error per basis function is established by combining the
exponential decay estimate and the norm estimate. Our results contain two
parts inside the ‘min’ operation. The idea of proving the first part is similar to
that of Lemma 3.4 in [181]. The second part is a direct application of the norm
estimate. Both parts are important. The first part captures the exponential
decay property, while the second part captures the behavior with respect to
small h – when d ≥ 2, this estimate implies the localization error per basis
function vanishes as h goes to 0. (Subsection 3.4.1.4)
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5. To move from the localization error per basis function to the overall localiza-
tion error, we also proceed in two directions. The first one follows the idea of
proving Lemma 3.5 in [181], leading to an upper bound of O(ld/2/H), which
remains bounded as h→ 0. On the other hand, we can use simple triangle in-
equality, which yields an estimate of O

(
1/

(
Hd/2+1ρ2,d(

H
h )

))
, which is worse

in the power of H than the first one, but can capture the limit as h → 0, i.e.,
it vanishes as h→ 0. The combination of the two leads to the final estimate.
(Subsection 3.4.1.5)

6. It is straightforward to go from overall localization error to the energy recov-
ery error by a triangle inequality. For the L2 recovery error, we can bound
it through the energy error in two ways, with or without using the subsam-
pled Poincaré inequality. This leads to a further ‘min’ operation in the final
estimate. (Subsection 3.4.1.6)

7. The energy Galerkin error is upper bounded by the energy recover error
according to the Galerkin orthogonality. The L2 Galerkin error is obtained
by the standard Aubin-Nitsche trick. (Subsection 3.4.1.7)

3.3 Small Limit Regime of Subsampled Lengthscales
In the last section, we have made a detailed study of the recovery error and Galerkin
error with respect to h,H, and l. We observe that there is a deterioration of accuracy
as h becomes small, especially for d ≥ 2–the benefit of small localization errors by
a very small h is overwhelmed by the curse of induced large approximation errors.
Due to this reason, in our experiments, we choose the ratio h/H to be not too small:
we select h/H ≥ 1/8 in 1D and h/H ≥ 1/4 in 2D. Our theoretical analysis also
collaborates with these observations, as the function ρ2,d(H/h) that appears in the
error estimate will blow up as h/H → 0 for d ≥ 2.

Therefore, we are advised not to use a very small h. While this is a practical
suggestion in the problem of numerical upscaling, since we have the freedom of
choosing the upscaled variables and thus can avoid this pathological phenomenon,
in the problem of scattered data approximation, we may not have such flexibility due
to the prevalent physical constraints for data measurements. As we often encounter
recovery problems in high dimensions with scattered data that possibly have a very
small lengthscale, e.g., pointwise data, it is natural to ask that whether we could get
an accurate recovery even in the h→ 0 regime. The analysis above implies that this
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goal is not achievable in general for the model problem we have considered. Thus,
we need to put stronger assumptions on the function u to be approximated.

Since the degeneracy of accuracy for d ≥ 2 can be partially attributed to the low
regularity of the target function u, that is, when d ≥ 2, functions in H1(Ω) may not
have a well-defined pointwise value (according to the Sobolev embedding theorem
[83]), a natural idea is to assume u to be more regular. There has been some work
in which u is assumed to be in W k,2(Ω) for some larger k [302]; this assumption
ensures the continuity of the function. Alternatively, one can assume u ∈ W1,p(Ω)

and increase p – when p > d, the degeneracy issue disappears; see [75, 252, 151,
37].

The above assumptions of better regularity on u, either via increasing k or p, require
to modify the recovery algorithm substantially; in the former, the basis functions
are obtained by replacing the H1

a (Ω) norm in (3.1.3) by a high order norm, similar
to the polyharmonic splines and their rough version [210]; in the latter, the recovery
function is obtained by minimizing the W1,p(Ω) norm subject to the observed data.

Here, to stick to the formulation (3.1.3) and thus the main theme of this chapter,
we consider to improve the regularity via choosing a singular weight function a(x).
Naturally, in order to make the recovery non-degenerate regarding a vanishing h,
we need to put more importance on the coarse data of a small lengthscale h. Thus,
we could assume the function is “nearly flat” around the data location by using a
singular a(x) such that

∫
Ω

a|∇u|2 < ∞ – this guarantees the information content of
coarse data even for very small h. We will make this intuition more quantitative in
this section.

3.3.1 Numerical Experiment
As before, we start with some numerical experiment. We choose d = 2 and
Ω = [0,1]2. The ground truth function u is depicted in the upper-left of Figure 3.9.
The coarse scale H = 2−2, and suppose for now we collect subsampled data with
lengthscale h = H/2 = 2−3; the grid size hg is set to be 2−7. In the upper-right of
Figure 3.9, we plot the ideal recovery solution by using a(x) = 1, the subsampled
data [u, φh,H

i ], i ∈ I and the ideal basis functions {ψh,H
i }i∈I . We observe that to

certain extent, the recovery solution can capture the large scale property of u.

Then, we decrease the subsampled lengthscale – we choose h = 2−4 · H = 2−6.
The recovery solution obtained by solving (3.1.3) with a(x) = 1 is in the lower-left
of Figure 3.9. The degeneracy issue becomes apparent – there are many spikes in
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the recovery solution, and the locations of these spikes are the data positions. This
confirms our understanding that a small h leads to a degenerate recovery.

Now, we define a weight function as follows. For each local patch ωH
i , i ∈ I, its

center is denoted by xi ∈ ωH
i . We write XH =

⋃I
i=1{x

H
i } and d(x,XH) is the

Euclidean distance from x to the set XH . The weight function is defined as

W(x) =
(

H
d(x,XH)

)
log2

(
1 +

H
d(x,XH)

)
. (3.3.1)

It is singular at the center of our subsampled data; see Figure 3.10. In the lower-right
of Figure 3.9, we construct the recovery solution by solving (3.1.3)with a(x) = W(x).
To avoid numerical instability in the experiment, we use a regularized version of the
singular weight as follows:

W(x; hg) =
(

H
max{hg,d(x,XH)}

)
log2

(
1 +

H
max{hg,d(x,XH)}

)
, (3.3.2)

where hg is the grid size. From the figure, we observe that the recovery solution
appears much better than the one based on a(x) = 1. It captures most of the
large scale behaviors. Moreover, it is visually smoother; due to the singular weight
function, the impact of the subsampled data does propagate to other points in the
domain.

Remark 3.3.1. The idea of function recovery based on a weight function that puts
more importance around the data regions has been used in semisupervised learning
and image processing [248], through using a weighted graph Laplacian. Recently,
the work [38] proposed a properly weighted Laplacian that attains a well-defined
continuous limit. Our earlier work [44] also discussed a similar weighted discovery.
In the next subsection, we will provide some theoretical analysis of this recovery
based on results in [44], assuming u(x) belongs to a weighted function space.

3.3.2 Analysis: Weighted Inequality
For simplicity, in dimension d ≥ 2, we consider the following class of weight
functions:

Wγ,H(x) =
(

H
d(x,XH)

)d−2+γ
, (3.3.3)

where γ > 0. Indeed, the additional log term in (3.3.1) only makes the problem
easier, since it makes the function blow up even faster.

We use the same notation as in Subsection 3.2.4.1. Then, we have the following
theorem:
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Figure 3.9: Upper left: u(x); upper right: recovery solution, h/H = 1/2 and
a(x) = 1; lower left: recovery solution, h/H = 1/24 and a(x) = 1; lower right:
recovery solution, h/H = 1/24 and a(x) = W(x).

Figure 3.10: Left: figure of W(x); right: contour of W(x)

Theorem 3.3.2. Let d ≥ 2 and γ > 0. Fix an H, and we choose a(x) = Wγ,H(x).
Then the following results hold:

1. If ‖u‖H1
a(Ω)

< ∞, then the L2 error of the ideal solution satisfies

eh,H,∞
0 (a,u) . C(γ)H‖u‖H1

a(Ω)
. (3.3.4)

2. If −∇ · (a∇u) = f ∈ L2(Ω), then the energy error of the ideal solution satisfies

eh,H,∞
1 (a,u) . C(γ)H‖ f ‖L2(Ω) , (3.3.5)
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and the L2 error satisfies

eh,H,∞
0 (a,u) . C(γ)H2‖ f ‖L2(Ω) . (3.3.6)

Here, C(γ) represents a positive constant that depends on γ only, and can vary its
value from place to place.

The proof is deferred to Subsection 3.4.2. We observe from the theorem that the
upper bound of the accuracy is independent of the subsampled scale h, which implies
that it is still valid in the small h limit. This is in sharp contrast with the estimates in
Theorem 3.2.1, where the upper bound blows up as h→ 0. The key here is the use
of a singular weight function that puts more importance on the subsampled data.

We also use a numerical experiment to demonstrate this theorem. We choose d = 2,
Ω = [0,1]2 and H = 2−2. The parameter γ = 1. We use the mechanism in
Subsection 3.2.1.2 to generate a right-hand side f ∈ L2(Ω), and u solves

−∇ · (Wγ,H∇u) = f .

The grid size is set to be 2−8. We choose h = 2−3,2−4, ...,2−7. For each h, we
collect the data [u, φh,H

i ], i ∈ I and compute the ideal recovery solutions by solving
(3.1.3) with a(x) = 1 and a(x) = Wγ,H(x) respectively. We output the H1

0 (Ω) and
L2(Ω) error of these recovery solutions in Figure 3.11. From this figure, we observe

10-2 10-1

h

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

H
01  e

rr
or

10-3 H=2-2

a(x)=W(x)
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Figure 3.11: The H1
0 (Ω) and L2(Ω) errors for different h, using constant a(x) or

singular weighted a(x). Left: H1
0 (Ω) error; right: L2(Ω) error

that the recovery errors using a(x) = 1 will increase as h decrease, while those
using a(x) = Wγ,H(x) lead to a flattened curve with respect to h. This matches our
theoretical predictions. Since in this example the dimension d = 2, the blow-up rate
predicted by Theorem 3.2.1 is only logarithmic, so even though h is very small, the
overall accuracy is still not too bad.
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3.4 Proofs
This section provides all the proofs in this chapter.

3.4.1 Proof of Theorem 3.2.3
There are seven sub-results in this theorem. We prove them one by one.

3.4.1.1 Inverse Estimate

In the domain ωh,H
j , we have ∇ · (a∇v) = ciφ

h,H
i for some ci ∈ R. Let v = v1 + v2

such that

∇ · (a∇v1) = ∇ · (a∇v) = ciφ
h,H
i in ωh,H

j , v1 |∂ωh,H
j
= 0 ,

and for the second part,

∇ · (a∇v2) = 0 in ωh,H
j , v2 |∂ωh,H

j
= v |

∂ωh,H
j

.

We have the orthogonality:
∫
ωh,H

j

a∇v1 · ∇v2 = 0. Thus, it holds that

‖v‖H1
a(ω

h,H
j )
≥ ‖v1‖H1

a(ω
h,H
j )

. (3.4.1)

For v1, we use the elliptic estimate:

‖v1‖H1
a(ω

h,H
j )
≥

1
√

amax
‖∇ · (a∇v1)‖H−1(ωh,H

j )
=

1
√

amax
‖c jφ

h,H
j ‖H−1(ωh,H

j )
.

By a scaling argument, we obtain

‖φh,H
j ‖L2(ωh,H

j )
≤

C2(d)
h
‖φh,H

j ‖H−1(ωh,H
j )

,

for a constant C2(d) dependent on d. Then, it follows that

‖v1‖H1
a(ω

h,H
j )
≥

h
√

amaxC2(d)
‖c jφ

h,H
j ‖L2(ωh,H

j )
=

h
√

amaxC2(d)
‖∇ · (a∇v)‖L2(ωh,H

j )
.

(3.4.2)
Combining (3.4.1) and (3.4.2), we arrive at the desired result:

‖∇ · (a∇v)‖L2(ωh,H
j )
≤

√
amaxC2(d)

h
‖v‖H1

a(ω
h,H
j )

.

3.4.1.2 Exponential Decay

Fix i ∈ I. For ease of notations, we will write ψh,H
i by ψ, and Nk(ωH

i ) by Sk in this
proof.
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First, we choose a cut-off function η with value 0 in Sk and value 1 in Sc
k+1 such

that it satisfies η ≥ 0 and ‖∇η‖∞ ≤ C0(d)/H for some universal constant C0(d)

dependent on d. An example of η could be

η(x) =
dist(x,Sk)

dist(x,Sk) + dist(x,Sc
k+1)

.

Then, we obtain the relation:

‖ψ‖2
H1
a(Ω\Sk+1)

=

∫
Ω\Sk+1

∇ψ · a∇ψ ≤
∫
Ω

η∇ψ · a∇ψ . (3.4.3)

Using some algebra, we have

η∇ψ · a∇ψ = ∇(ηψ) · a∇ψ − (∇η) · aψ∇ψ

= ∇ · (ηψa∇ψ) − ηψ∇ · (a∇ψ) − (∇η) · aψ∇ψ .

Integrating the above formula in Ω and applying the divergence theorem yields∫
Ω

η∇ψ · a∇ψ ≤
����∫
Ω

−ηψ∇ · (a∇ψ)
���� + ����∫

Ω

(∇η) · ψa∇ψ
���� . (3.4.4)

For the first term in (3.4.4), we have∫
Ω

−ηψ∇ · (a∇ψ)
(a)
=

∑
ωH

j ⊂Sk+1\Sk

∫
ωH

j

−ηψ∇ · (a∇ψ)

(b)
=

∑
ωH

j ⊂Sk+1\Sk

∫
ωh,H

j

−ηψ∇ · (a∇ψ)

(c)
=

∑
ωH

j ⊂Sk+1\Sk

∫
ωh,H

j

−
(
η − η(x j)

)
ψ∇ · (a∇ψ)

(d)
≤

∑
ωH

j ⊂Sk+1\Sk

C0(d)h
H
‖ψ‖L2(ωh,H

j )
‖∇ · (a∇ψ)‖L2(ωh,H

j )
,

(3.4.5)

where

• in (a), we have used the fact that η is supported inΩ\Sk ; moreover, inΩ\Sk+1,
η = 1 and ∇ · (a∇ψ) =

∑
j c jφ

h,H
j for some c j ∈ R, and we have relied on the

property
∫
ωH

j

φh,H
j ψ = 0 for ωH

j ∈ Ω\Sk+1;

• in (b), we have used the fact that φh,H
j is supported in ωh,H

j ;

• in (c), we have relied on the fact
∫
ωh,H

j

φh,H
j ψ = 0 for ωh,H

j ∈ Ω\Sk so we can

subtract η by the constant η(x j) for x j being the center of ωh,H
j ;
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• in (d)we have used the gradient bound on η and the Cauchy-Schwarz inequal-
ity.

For the term ‖∇ · (a∇ψ)‖L2(ωh,H
j )

, we apply the inverse estimate established earlier,
which leads to

(3.4.5) ≤
C0(d)h

H

√
amaxC2(d)

h

∑
ωH

j ⊂Sk+1\Sk

‖ψ‖L2(ωh,H
j )
‖ψ‖H1

a(ω
h,H
j )

(e)
≤

C0(d)h
H
√

amaxC2(d)C1(d)
∑

ωH
j ⊂Sk+1\Sk

‖∇ψ‖L2(ωh,H
j )
‖ψ‖H1

a(ω
h,H
j )

( f )
≤

C0(d)C1(d)C2(d)h
√

amax

H
‖∇ψ‖L2(Sk+1\Sk )‖ψ‖H1

a(Sk+1\Sk )

≤
C0(d)C1(d)C2(d)h

H

√
amax
amin
‖ψ‖2

H1
a(Sk+1∩Sc

k
)
,

where in (e), we have used the Poincaré inequality, based on the fact
∫
ωh,H

j

ψφh,H
j = 0.

The constant in the Poincaré inequality can be chosen the same as the one in Theorem
3.2.1, i.e., C1(d); for details see Proposition 2.5 and Theorem 3.3 in [44]. The step
( f ) is by the Cauchy-Schwarz inequality.

For the second term in (3.4.4), we have∫
Ω

(∇η) · ψa∇ψ =
∫

Sk+1\Sk
(∇η) · ψa∇ψ

=
∑

ωH
j ⊂Sk+1\Sk

∫
ωH

j

(∇η) · ψa∇ψ

≤
C0(d)

√
amax

H

∑
ωH

j ⊂Sk+1\Sk

‖ψ‖L2(ωH
j )
‖ψ‖H1

a(ω
H
j )

(g)
≤

C0(d)
√

amax

H

∑
ωH

j ⊂Sk+1\Sk

Hρ2,d(
H
h
)C1(d)‖∇ψ‖L2(ωH

j )
‖ψ‖H1

a(ω
H
j )

≤ C0(d)C1(d)ρ2,d(
H
h
)

√
amax
amin
‖ψ‖2

H1
a(Sk+1\Sk )

,

where in step (g), we have used the subsampled Poincaré inequality (Proposition
2.5 in [44]) and the fact

∫
ωH

j

φh,H
j ψ = 0.

Combining the estimates of the two terms and (3.4.3), we get

‖ψ‖2
H1
a(Ω\Sk+1)

≤ C0(d)(C1(d)ρ2,d(
H
h
) + C1(d)C2(d)

h
H
)

√
amax
amin
‖ψ‖2

H1
a(Sk+1\Sk )

.
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Writing ‖ψ‖2
H1
a(Sk+1\Sk )

= ‖ψ‖2
H1
a(Ω\Sk )

− ‖ψ‖2
H1
a(Ω\Sk+1)

, we then arrive at

‖ψ‖2
H1
a(Ω\Sk+1)

≤ β(h,H)‖ψ‖2
H1
a(Ω\Sk )

≤ ... ≤ (β(h,H))k+1 ‖ψ‖2
H1
a(Ω)

,

where

β(h,H) =
C0(d)

√
amax
amin

(
C1(d)ρ2,d(

H
h ) + C1(d)C2(d) h

H

)
C0(d)

√
amax
amin

(
C1(d)ρ2,d(

H
h ) + C1(d)C2(d) h

H

)
+ 1

.

3.4.1.3 Norm Estimate

Let us recall the definition of ψh,H
i and ψh,H,l

i for l = 0:

ψh,H
i = argminψ∈H1

0 (Ω)
‖ψ‖2

H1
a(Ω)

subject to [ψ, φh,H
j ] = δi,j for j ∈ I .

(3.4.6)

ψh,H,0
i = argminψ∈H1

0 (ω
H
i )
‖ψ‖2

H1
a(ω

H
i )

subject to [ψ, φh,H
i ] = 1 .

(3.4.7)

Clearly, ‖ψh,H
i ‖H1

a(Ω)
≤ ‖ψh,H,0

i ‖H1
a(ω

H
i )

so it suffices to estimate the latter. Without
loss of generality, we can assume ωH

i is centered at 0, so that ωh,H
i = [−h/2, h/2]d

and ωH
i = [−H/2,H/2]d .

First, we choose v ∈ H1
0 (ω

H
i ) to be a cut-off function that equals 1 in [−H/4,H/4]d

and equals 0 outside ωH
i . Moreover, v ≥ 0 and ‖∇v‖∞ . 1/H. Then, we have

[v, φh,H
i ] =

1
hd

∫
[−h/2,h/2]d

v ' 1 ,

and
‖v‖2

H1
a(ω

H
i )
.

∫
ωH
i

|∇v |2 . Hd ·
1

H2 . Hd−2 .

Define w = v/[v, φh,H
i ], then w satisfies the constraint in (3.4.7), and ‖w‖H1

a(ω
H
i )
.

Hd/2−1, which leads to ‖ψh,H,0
i ‖H1

a(ω
H
i )
. Hd/2−1. Thus, the case d = 1 is proved.

Second, we deal with the case d = 2. Suppose h ≤ H/2, and we choose

v(x) =


1 −

log
(
1 + 4|x |

h

)
log

(
1 + H

h

) , |x | ≤ H
4

0, |x | >
H
4
.
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We have v(x) ≤ 1, and for |x | ≤ h/4, v(x) ≥ 1 − log(2)
log(3) & 1. Therefore, it holds that

[v, φh,H
i ] =

1
hd

∫
[−h/2,h/2]d

v ' 1 .

Then, we calculate the energy norm of v as follows:

‖v‖2
H1
a(ω

H
i )
.

1
log2(1 + H

h )

∫
B(0,H/4)

(
1

h + 4|x |

)2
dx

.
1

log2(1 + H
h )

∫ H/4

0

r
(4r + h)2

dr .

Wewrite
∫ H/4

0
r

(4r+h)2 dr =
∫ h/2

0
r

(4r+h)2 dr +
∫ H/4

h/2
r

(4r+h)2 dr .
∫ h/2

0
1
h dr +

∫ H/4
h/2

1
r dr

. log
(
1 + H

h

)
. Thus, it follows that

‖v‖H1
a(ω

H
i )
.

(
1

log
(
1 + H

h

) )1/2

=
1

ρ2,d(
H
h )
.

This concludes the proof for the case h ≤ H/2. When h > H/2, we use the result
in the first step ‖v‖H1

a(ω
H
i )
. Hd/2−1 . 1 . 1

ρ2,d(
H
h )
. The case d = 2 is proved.

Finally, when d ≥ 3, we choose v in a similar fashion as in the first step, such
that v = 1 in [−h/4, h/4]d and v = 1 outside [−h/2, h/2]d . Moreover, v ≥ 0 and
‖∇v‖∞ . 1/h. Following the same argument in the first step, we will arrive at

‖ψh,H,0
i ‖H1

a(ω
H
i )
. hd/2−1 =

1
ρ2,d(

H
h )

Hd/2−1 ,

which completes the proof.

3.4.1.4 Localization Per Basis Function

We define a space

V h,H := {v ∈ H1
0 (Ω) : [v, φh,H

j ] = 0, j ∈ I} .

Then, by the optimality of ψh,H
i and ψh,H,l

i in their corresponding optimization
problems, we have

〈
ψh,H

i , v
〉

a
= 0 for any v ∈ V h,H and

〈
ψh,H,l

i , v
〉

a
= 0 for any v ∈

V h,H ⋂
H1

0 (N
l(ωH

i )). Thus,
〈
ψh,H

i − ψh,H,l
i , v

〉
a
= 0 for any v ∈ V h,H ⋂

H1
0 (N

l(ωH
i )).

Then, we define χh,H
i = ψh,H

i − ψh,H,0
i and χh,H,l

i = ψh,H,l
i − ψh,H,0

i . We have
ψh,H

i − ψh,H,l
i = χh,H

i − χh,H,l
i and χh,H,l

i ∈ V h,H ⋂
H1

0 (N
l(ωH

i )).
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Based on the above fact and the orthogonality, we get

‖ψh,H
i − ψh,H,l

i ‖2
H1
a(Ω)
= ‖ χh,H

i − χh,H,l
i ‖2

H1
a(Ω)

≤ ‖ χh,H
i − v‖2

H1
a(Ω)

,
(3.4.8)

for any v ∈ V h,H ⋂
H1

0 (N
l(ωH

i )). We take

v = ηχh,H
i − Ph,H,0(ηχh,H

i ) ,

where η is a cut-off function that equals 1 in Nl−1(ωH
i ) and equals 0 outside Nl(ωH

i ).
Moreover, η ≥ 0 and ‖∇η‖∞ . 1/H. This v belongs to V h,H ⋂

H1
0 (N

l(ωH
i ))

because both ηχh,H
i and Ph,H,0(ηχh,H

i ) belong to H1
0 (N

l(ωH
i )), and by definition,

[ηχh,H
i − Ph,H,0(ηχh,H

i ), φ
h,H
j ] = 0, j ∈ I. Then, it follows that

‖ χh,H
i − v‖2

H1
a(Ω)
= ‖(1 − η)χh,H

i − Ph,H,0
(
ηχh,H

i

)
‖2

H1
a(Ω)

= ‖(1 − η)χh,H
i − Ph,H,0

(
(1 − η)χh,H

i

)
‖2

H1
a(Ω)

,
(3.4.9)

where we have used the fact Ph,H,0χh,H
i = 0. To move further, we need to use the

following Lemma:

Lemma3.4.1. The operatorPh,H,0 is stable under the norm ‖·‖H1
a(Ω)

. More precisely,
we have for any w ∈ H1

0 (Ω), it holds

‖Ph,H,0w‖H1
a(Ω)
. ‖w‖H1

a(Ω)
.

Proof of Lemma 3.4.1. By definition, ψh,H,0
i is supported in ωH

i , and Ph,H,0w =∑
i∈I[w, φ

h,H
i ]ψ

h,H,0
i . Thus, we have

‖w − Ph,H,0w‖2
H1
a(Ω)
=

∑
i∈I

∫
ωH
i

a
���∇(w − [w, φh,H

i ]ψ
h,H,0
i )

���2
≤

∑
i∈I

∫
ωH
i

a |∇w |2 = ‖w‖2
H1
a(Ω)

,

(3.4.10)

where we have used the fact that in each ωH
i , it holds∫

ωH
i

a∇(w − [w, φh,H
i ]ψ

h,H,0
i ) · ∇ψh,H,0

i = 0 ,

according to the definition of ψh,H,0
i . Equation (3.4.10) implies Ph,H,0 is stable. �
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Using Lemma 3.4.1, we proceed as follows:

(3.4.9) . ‖(1 − η)χh,H
i ‖

2
H1
a(Ω)

=

∫
Sl\Sl−1

a2 |(∇η)χh,H
i |

2 +

∫
Sl\Sl−1

a2 |η∇χh,H
i | + ‖ χ

h,H
i ‖

2
H1
a(Ω\Sl)

,
(3.4.11)

where we have used the notation Sl = Nl(ωH
i ). For the first term in (3.4.11), we

have∫
Sl\Sl−1

a2 |(∇η)χh,H
i |

2 =
∑

ωH
j ⊂Sl\Sl−1

∫
ωH

j

a2 |(∇η)χh,H
i |

2

.
∑

ωH
j ⊂Sl\Sl−1

1
H2 · H

2
(
ρ2,d(

H
h
)

)2
‖ χh,H

i ‖
2
H1
a(ω

H
j )

=

(
ρ2,d(

H
h
)

)2
‖ χh,H

i ‖
2
H1
a(Sl\Sl−1)

.

(3.4.12)

In the above inequality, we have used the gradient bound of η, the subsampled
Poincare inequality (due to the property [χh,H

i , φh,H
j ] = 0). Therefore, we obtain

(3.4.11) . (1 +
(
ρ2,d(

H
h
)

)2
)‖ χh,H

i ‖
2
H1
a(Sl\Sl−1)

+ ‖ χh,H
i ‖

2
H1
a(Ω\Sl)

. (1 +
(
ρ2,d(

H
h
)

)2
)‖ χh,H

i ‖
2
H1
a(Ω\Sl−1)

.

(3.4.13)

Using the fact ‖ χh,H
i ‖

2
H1
a(Ω\Sl−1)

= ‖ψh,H
i ‖

2
H1
a(Ω\Sl−1)

, the exponential decay property

and norm estimate of ψh,H
i , we finally obtain

‖ψh,H
i − ψh,H,l

i ‖H1
a(Ω)
. Hd/2−1 (β(h,H))l/2

(
1 +

1
ρ2,d(

H
h )

)
.

On the other hand, we have

‖ψh,H
i − ψh,H,l

i ‖H1
a(Ω)
≤ ‖ψh,H

i ‖H1
a(Ω)
+ ‖ψh,H,l

i ‖H1
a(Ω)
. Hd/2−1 1

ρ2,d(
H
h )
,

due to the norm estimate established before. Thus, finally we obtain

‖ψh,H
i − ψh,H,l

i ‖H1
a(Ω)
. Hd/2−1 ·min

{
(β(h,H))l/2

(
1 +

1
ρ2,d(

H
h )

)
,

1
ρ2,d(

H
h )

}
.

Note that 1 ≤ 1+ 1
ρ2,d(

H
h )
≤ 1+ 1

ρ2,d(1) , we could further simplify the the upper bound
by

‖ψh,H
i − ψh,H,l

i ‖H1
a(Ω)
. Hd/2−1 ·min

{
(β(h,H))l/2 ,

1
ρ2,d(

H
h )

}
.
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3.4.1.5 Overall Localization Error

Let w = Ph,Hu − Ph,H,lu, then

‖w‖2
H1
a(Ω)
=

∑
i∈I

[u, φh,H
i ]

〈
w,ψh,H

i − ψh,H,l
i

〉
a
. (3.4.14)

For each i, to deal with the term
〈
w,ψh,H

i − ψh,H,l
i

〉
a
, we introduce a cut-off function

η that equals 0 in Nl(ωH
i ) and equals 1 in Ω\Nl+1(ωH

i ); moreover, η ≥ 0 and
‖∇η‖∞ . 1/H. We define

v =
∑

ωH
j ⊂Ω\Nl(ωH

i )

[ηw, φh,H
j ]ψ

h,H,0
j ∈ H1

0 (Ω\N
l(ωH

i )) .

Then ηw − v ∈ V h,H ⋂
H1

0 (Ω\N
l(ωH

i )). Thus, we have
〈
ηw − v,ψh,H

i − ψh,H,l
i

〉
= 0

because ηw− v has a different support with that of ψh,H,l
i , and

〈
ψh,H

i , v
〉

a
= 0 for any

v ∈ V h,H; see the first paragraph in Subsection 3.4.1.4, Therefore, we get〈
w,ψh,H

i − ψh,H,l
i

〉
a

=
〈
w − ηw + v,ψh,H

i − ψh,H,l
i

〉
a

≤

(
‖(1 − η)w‖H1

a(Nl(ωH
i ))
+ ‖v‖H1

a(Nl+1(ωH
i )\Nl(ωH

i ))

)
‖ψh,H

i − ψh,H,l
i ‖H1

a(Ω)
,

(3.4.15)

where we have used the fact that v is supported in Nl+1(ωH
i )\N

l(ωH
i ). Then, by

construction of v, we have ‖v‖H1
a(Nl+1(ωH

i )\Nl(ωH
i ))
. ‖ηw‖H1

a(Nl+1(ωH
i )\Nl(ωH

i ))
; the

proof of this property is similar to that of Lemma 3.4.1. Now, by using the fact
[w, φh,H

j ] = 0 and the subsampled Poincare inequality, we obtain

‖(1 − η)w‖H1
a(Nl(ωH

i ))
+ ‖ηw‖H1

a(Nl+1(ωH
i )\Nl(ωH

i ))
. ρ2,d(

H
h
)‖w‖H1

a(Nl+1(ωH
i ))

.

Therefore,
〈
w,ψh,H

i − ψh,H,l
i

〉
a
. ρ2,d(

H
h )‖w‖H1

a(Nl+1(ωH
i ))
‖ψh,H

i − ψh,H,l
i ‖H1

a(Ω)
. Then

combining this estimate with (3.4.14), we arrive at

‖w‖2
H1
a(Ω)
. ρ2,d(

H
h
)
∑
i∈I

[u, φh,H
i ]‖w‖H1

a(Nl+1(ωH
i ))
‖ψh,H

i − ψh,H,l
i ‖H1

a(Ω)

. ρ2,d(
H
h
)‖u‖L∞(Ω)l

d/2‖w‖H1
a(Ω)

(∑
i∈I

‖ψh,H
i − ψh,H,l

i ‖2
H1
a(Ω)

)1/2

,

(3.4.16)

where the last step is by the Cauchy-Schwarz inequality. Combining the above
estimate with the result in the last subsection (notice that the cardinality of I is
1/Hd), we get

‖w‖H1
a(Ω)
. min

{
(β(h,H))l/2 ρ2,d(

H
h
),1

}
·

ld/2

H
‖u‖L∞(Ω) . (3.4.17)
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On the other hand, we can also bound

‖w‖H1
a(Ω)
≤

∑
i∈I

|[u, φh,H
i ]| · ‖ψ

h,H
i − ψh,H,l

i ‖H1
a(Ω)

. ‖u‖L∞(Ω)H−d · Hd/2−1 ·min

{
(β(h,H))l/2 ,

1
ρ2,d(

H
h )

}
. min

{
(β(h,H))l/2 ρ2,d(

H
h
),1

}
·

1
Hd/2+1ρ2,d(

H
h )
‖u‖L∞(Ω) .

(3.4.18)

Therefore, we can write

‖w‖H1
a(Ω)
. min

{
(β(h,H))l/2 ρ2,d(

H
h
),1

}
·min

{
ld/2

H
,

1
Hd/2+1ρ2,d(

H
h )

}
‖u‖L∞(Ω) .

(3.4.19)

3.4.1.6 Overall Recovery Error

When d ≤ 3, we have ‖u‖L∞(Ω) . ‖Lu‖L2(Ω); for details see Theorems 8.22 and
8.29 in [99]. Combining the estimates in (3.2.7) and (3.2.12) leads to the estimate
of the energy recovery error. For the L2 recovery error, similar to (3.2.7), we have

eh,H,l
0 (a,u) . (Hρ2,d(

H
h
))2‖Lu‖L2(Ω) + ‖Ph,Hu − Ph,H,lu‖L2(Ω) . (3.4.20)

The second term ‖Ph,Hu − Ph,H,lu‖L2(Ω) is the L2 localization error. We can simply
bound it by

‖Ph,Hu − Ph,H,lu‖L2(Ω) ≤ ‖Ph,Hu − Ph,H,lu‖H1
a(Ω)

. (3.4.21)

On the other hand, notice that [Ph,Hu − Ph,H,lu, φh,H
i ] = 0 for any i ∈ I, we can use

the subsampled Poincaré inequality so that

‖Ph,Hu − Ph,H,lu‖2L2(Ω)
=

∑
i∈I

∫
ωH
i

|Ph,Hu − Ph,H,lu|2

. (Hρ2,d(
H
h
))2

∫
ωH
i

a|∇(Ph,Hu − Ph,H,lu)|2

= (Hρ2,d(
H
h
))2‖Ph,Hu − Ph,H,lu‖2

H1
a(Ω)

.

(3.4.22)

Therefore, we obtain

‖Ph,Hu − Ph,H,lu‖L2(Ω) ≤ min
{
1,Hρ2,d(

H
h
)

}
‖Ph,Hu − Ph,H,lu‖H1

a(Ω)
. (3.4.23)

Using the estimate of the energy error, we arrive at the final estimate.
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3.4.1.7 Overall Galerkin Error

The estimate for the energy Galerkin error is straightforward due to the Galerkin
orthogonality. The L2 error is estimated using the standard Aubin-Nitsche trick in
finite element theory, which leads to square of the energy error. This completes the
proof.

3.4.2 Proof of Theorem 3.3.2
We start with the first case, i.e., ‖u‖H1

a(Ω)
< ∞. By definition,

eh,H,∞
0 (a,u) = ‖u − Ph,Hu‖L2(Ω) .

We have the relation [u − Ph,Hu, φh,H
j ] = 0 for any j ∈ I. Thus, using the weighted

Poincaré inequality in [44] (Theorem 4.3 and Example 1), we can estimate the error
as follows:

‖u − Ph,Hu‖2L2(Ω)
=

∑
i∈I

‖u − Ph,Hu‖2L2(ωH
i )

. C(γ)2H2
∑
i∈I

‖u − Ph,Hu‖2
H1
a(ω

H
i )

. C(γ)2H2‖u‖2
H1
a(Ω)

,

(3.4.24)

where in the last step, we have used the fact that ‖u − Ph,Hu‖H1
a(Ω)
≤ ‖u‖H1

a(Ω)
due

to the energy orthogonality. The first case is proved.

For the second case, by energy orthogonality of the recovery, we get

eh,H,∞
1 (a,u) ≤ ‖u − v‖H1

a(Ω)
, (3.4.25)

for any v ∈ span {ψh,H
i }i∈I . We can write v = L−1(

∑
i∈I ciφ

h,H
i ) for some ci. Then,

it holds that
‖u − v‖2

H1
a(Ω)
= [u − v,L(u − v)]

= [u − v, f −
∑
i∈I

ciφ
h,H
i ]

=
∑
i∈I

∫
ωH
i

(u − v)( f − ciφ
h,H
i ) .

(3.4.26)

We choose ci =
∫
ωH
i

f , so that∑
i∈I

∫
ωH
i

(u − v)( f − ciφ
h,H
i ) =

∑
i∈I

∫
ωH
i

(
u − v −

∫
ωH
i

(u − v)φh,H
i

)
f

. C(γ)
∑
i∈I

H‖u − v‖H1
a(ω

H
i )
‖ f ‖L2(ωH

i )

≤ C(γ)H‖u − v‖H1
a(Ω)
‖ f ‖L2(Ω) ,

(3.4.27)
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where in the second inequality, we use the Cauchy-Schwarz inequality and the
weighted Poincaré inequality (Theorem 4.3 and Example 1 in [44]). Thus, finally
we get ‖u − v‖H1

a(Ω)
. C(γ)H‖ f ‖L2(Ω), which implies the desired energy error

estimate. The L2 error estimate is obtained by using the standard Aubin-Nitsche
trick in the finite element theory.

3.5 Conclusions
We summarize, discuss, and conclude this chapter in this section.

3.5.1 Summary
We performed a detailed study of a specific approach that connects the problem
of numerical upscaling and function approximation, in the context that the target
function is a solution to some multiscale elliptic PDEs with rough coefficients. Our
main focus is on a subsampled lengthscale that appears in the coarse data of both
problems. We investigated, both numerically and theoretically, the effect of h on
the recovery errors (for function approximation) and Galerkin errors (for numerical
upscaling), given no computational constraints (ideal solution) or limited compu-
tational budgets (localized solution with a finite l), and given different regularity
assumptions on the target function (a(x) ∈ L∞(Ω) or a singular a(x)). Our results
imply that

• There is a trade-off between approximation errors (of ideal solutions) and
localization errors (due to finite l) regarding the subsampled lengthscale h, in
addition to the oversampling parameter l.

• Due to the finite l caused by our limited computational budget, the Galerkin
solution and recovery solution are different in general. The former behaves
better in the energy accuracy, while the latter stands out in the L2 accuracy.

• When the target function is “nearly flat” around the data locations, the subsam-
pled data with a very small h can still contain much coarse scale information.
Thus, we would recommend to take our measurements there as a first choice.

The more quantitative descriptions of these main results are established by our
numerical experiments and analytic studies based on tools such as the finite element
theory, the subsampled Poincaré inequality, and weighted inequalities.
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3.5.2 Discussions
There could be multiple future directions:

• A better understanding of the trade-off regarding h and l: how to choose
optimal l and h adaptively with respect to u or f . Our current results do not
address this question fully.

• Other localization strategies: our localization in Subsection 3.1.6 follows from
that in [181, 203], and there are other possibilities, for example, the one in
[121] or [148], which leads to error estimates that does not blow up as H → 0.
It is of interest to understand how the subsampled lengthscale influences the
accuracy in that context.

• Other measurement functions: as we mentioned earlier in Subsection 3.1.5,
the choice of φh,H

i to be indicator functions in subsampled cubes is only for
simplicity of analysis. Thus, results in this paper could be generalized to other
types of subsampled measurement functions, for example, subsampled finite
element tent functions.

• Generalization to high order models: the approach in Subsection 3.1.3 applies
to a general operator L that can be high order elliptic operators. This also
connects to our discussion in Subsection 3.3 regarding a high order model
to avoid the degeneracy issues. It is of interest to study the effect of h, l and
also the order of the operator L simultaneously on the recovery and Galerkin
errors.

• Coupling of two problems: we have considered a common approach that
connects two class of problems. A natural question is about a hybrid model:
suppose we have the domain Ω split into two smaller domains Ω1 and Ω2. In
Ω1, we have a multiscale PDE Lu = f with known f , and in Ω2 we have
some subsampled data [u, φi], i ∈ I. How shall we take the advantages of the
PDE model in Ω1 and the measured data in Ω2 to recover an accurate u? This
can be a very fundamental problem in combining physics and data science.

3.5.3 Conclusions
Overall, we have explored the connection between numerical upscaling for multi-
scale PDEs and scattered data approximation for heterogeneous functions, focusing
on the roles of a subsampled lengthscale h and the localization parameter l. We
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believe it sheds light on the interplay of the lengthscale of coarse data, the computa-
tional costs, the regularity of the target function, and the accuracy of approximations
and numerical simulations.
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C h a p t e r 4

GAUSSIAN PROCESSES FOR SOLVING AND LEARNING
PDES AND INVERSE PROBLEMS

In this chapter, we discuss how to use Gaussian processes to solve and learn PDEs
and inverse problems. The exposition is based on our work [43] published in Journal
of Computational Physics, 447:110668, 2021.

4.1 Introduction
Two hundred years ago, modeling a physical problem and solving the underlying
differential equations would have required the expertise of Cauchy or Laplace, and
it would have been done by hand through a laborious process of discovery. Sixty
years ago, the resolution of the underlying differential equation would have been
addressed using computers, but modeling and design of the solver would have still
been done by hand. Nowadays, there is increasing interest in automating these
steps by casting them as machine learning problems. The resulting methods can
be divided into two main categories: (1) methods based on variants of artificial
neural networks (ANNs) [101], and (2) methods based on kernels and Gaussian
Processes (GPs) [290, 246]. In the context of (1) there has been recent activity
toward solving nonlinear PDEs, whilst the systematic development of methods of
type (2) for nonlinear PDEs has remained largely open. However, methods of type
(2) hold potential for considerable advantages over methods of type (1), both in
terms of theoretical analysis and numerical implementation. In this work, our goal
is to develop a simple kernel/GP framework for solving nonlinear PDEs and related
inverse problems (IPs); in particular themethodologywe introduce has the following
properties:

• the proposed collocation setting for solving nonlinear PDEs and IPs is a direct
generalization of optimal recovery kernel methods for linear PDEs [201, 203,
204], and a natural generalization of radial basis function collocation methods
[301, 288], and of meshless kernel methods [239];

• theoretically, the proposed method is provably convergent and amenable to
rigorous numerical analysis, suggesting new research directions to generalize
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the analysis of linear regression methods [288] to the proposed collocation
setting for solving nonlinear PDEs;

• computationally, it inherits the complexity of state-of-the-art solvers for dense
kernel matrices, suggesting new research to generalize the work of [240],
which developed optimal approximate methods for linear regression, to the
proposed collocation setting for solving nonlinear PDEs and IPs;

• for IPs the methodology is closely aligned with methodologies prevalent in the
PDE-constrained optimization literature [125] and suggests the need for new
computational and theoretical analyses generalizing the standard optimization
and Bayesian approaches found in [62, 76, 136].

Since ANN methods can also be interpreted as kernel methods with kernels learned
from data [134, 202, 292], our framework could also be used for theoretical analysis
of such methods.

In Subsection 4.1.1 we summarize the theoretical foundations and numerical im-
plementation of our method in the context of a simple nonlinear elliptic PDE. In
Subsection 4.1.2 we give a literature review, placing the proposed methodology in
the context of other research at the intersection of machine learning and PDEs. The
outline of this chapter is given in Subsection 4.1.3.

4.1.1 Summary of the Proposed Method
For demonstration purposes, we summarize the key ideas of our method for solving a
nonlinear second-order elliptic PDE. This PDE will also serve as a running example
in Section 4.3 where we present an abstract framework for general nonlinear PDEs.

Let d ≥ 1 and Ω be a bounded open domain in Rd with a Lipschitz boundary ∂Ω.
Consider the following nonlinear elliptic equation for u?:{

−∆u?(x) + τ
(
u?(x)

)
= f (x), ∀x ∈ Ω ,

u?(x) = g(x), ∀x ∈ ∂Ω ,
(4.1.1)

where f : Ω → R,g : ∂Ω→ R and τ : R → R are given continuous functions.
We assume that f ,g, τ are chosen appropriately so that the PDE has a unique
classical solution (for abstract theory of nonlinear elliptic PDEs see for example
[220, 254]). In Subsection 4.1.1.4 we will present a concrete numerical experiment
where τ(u) = u3 and g(x) = 0.
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4.1.1.1 Optimal Recovery

Our proposed method starts with an optimal recovery problem that can also be
interpreted as maximum a posterior (MAP) estimation for a GP constrained by a
PDE. More precisely, consider a nondegenerate, symmetric, and positive definite
kernel function K : Ω×Ω→ RwhereΩ := Ω∪∂Ω. LetU be the RKHS associated
with K and denote the RKHS norm by ‖ · ‖. Let 1 ≤ MΩ < M < ∞ and fix M

points in Ω such that x1, . . . ,xMΩ ∈ Ω and xMΩ+1, . . . ,xM ∈ ∂Ω. Then, our method
approximates the solution u? of (4.1.1) with a minimizer u† of the following optimal
recovery problem:

minimize
u∈U

‖u‖

s.t. − ∆u(xm) + τ
(
u(xm)

)
= f (xm), for m = 1, . . . ,MΩ ,

u(xm) = g(xm), for m = MΩ + 1, . . . ,M .

(4.1.2)

Here, we assume K is chosen appropriately so that U ⊂ C2(Ω) ∩ C(Ω), which
ensures the pointwise PDE constraints in (4.1.2) are well-defined.

A minimizer u† can be interpreted as a MAP estimator of a GP ξ ∼ N(0,K)1(where
K is the integral operator with kernel K) conditioned on satisfying the PDE at the
collocation points xm,1 ≤ m ≤ M . Such a view has been introduced for solving
linear PDEs in [201, 203] and a closely related approach is studied in [55, Sec. 5.2];
the methodology introduced via (4.1.2) serves as a prototype for generalization
to nonlinear PDEs. Here it is important to note that in the nonlinear case the
conditioned GP is no longer Gaussian in general; thus the solution of (4.1.2) is a
MAP estimator only and is not the conditional expectation, except in the case where
τ(·) is a linear function.

In the next subsections, we show equivalence of (4.1.2) and a finite dimensional
constrained optimization problem (4.1.5). This provides existence of a minimizer
to (4.1.2), as well as the basis for a numerical method to approximate the minimizer,
based on solution of an unconstrained finite-dimensional optimization problem
(4.1.6).

4.1.1.2 Finite-Dimensional Representation

The key to our numerical algorithm for solving (4.1.2) is a representer theorem that
characterizes u† via a finite-dimensional representation formula. To achieve this we

1This Gaussian prior notation is equivalent to the GP notation GP(0,K), where K is the covari-
ance function. See further discussions in Subsection 4.3.4.1.
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first reformulate (4.1.2) as a two level optimization problem:
minimize

z(1)∈RM ,z(2)∈RMΩ


minimize

u∈U
‖u‖

s.t. u(xm) = z(1)m and − ∆u(xm) = z(2)m , for m = 1, . . . ,M,

s.t. z(2)m + τ(z
(1)
m ) = f (xm), for m = 1, . . . ,MΩ ,

z(1)m = g(xm), for m = MΩ + 1, . . . ,M .
(4.1.3)

Denote φ(1)m = δxm and φ
(2)
m = δxm ◦ (−∆), where δx is the Dirac delta function

centered at x. We further use the shorthand notation φ(1) and φ(2) for the M

and MΩ-dimensional vectors with entries φ(1)m and φ(2)m respectively, and φ for the
(M + MΩ)-dimensional vector obtained by concatenating φ(1) and φ(2). Similarly,
we write z for the (M + MΩ)-dimensional vector concatenating z(1) and z(2).

For a fixed z, we can solve the first level optimization problem explicitly due to the
representer theorem2 (see [204, Sec. 17.8]), which leads to the conclusion that

u(x) = K(x,φ)K(φ,φ)−1z ; (4.1.4)

hereK(·,φ) denotes the (M+MΩ)-dimensional vector fieldwith entries
∫

K(·,x′)φm(x′) dx′

andK(φ,φ) is the (M+MΩ)×(M+MΩ)-matrixwith entries
∫

K(x,x′)φm(x)φ j(x′) dx dx′

with the φm denoting the entries of φ. For this solution, ‖u‖2 = zT K(φ,φ)−1z, so
we can equivalently formulate (4.1.3) as a finite-dimensional optimization problem:

minimize
z∈RM+MΩ

zT K(φ,φ)−1z

s.t. z(2)m + τ(z
(1)
m ) = f (xm), for m = 1, . . . ,MΩ ,

z(1)m = g(xm), for m = MΩ + 1, . . . ,M .

(4.1.5)

Moreover, using the equation z(2)m = f (xm) − τ(z
(1)
m ) and the boundary data, we can

further eliminate z(2) and rewrite it as an unconstrained problem:

minimize
z(1)
Ω
∈RMΩ

(
z(1)
Ω
,g(x∂Ω), f (xΩ) − τ(z(1)Ω )

)
K(φ,φ)−1 ©­­«

z(1)
Ω

g(x∂Ω)
f (xΩ) − τ(z(1)Ω )

ª®®®¬ , (4.1.6)

where we used xΩ and x∂Ω to denote the interior and boundary points respectively,
z(1)
Ω

denotes the MΩ-dimensional vector of the zi for i = 1, . . . ,MΩ associated to the
2This is not the standard RKHS/GP representer theorem [290, Sec. 2.2] in the sense that

measurements include the pointwise observation of higher order derivatives of the underlying GP.
See [143] and [280, p. xiii] for related spline representation formulas with derivative information.
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interior points xΩ while f (xΩ),g(x∂Ω) and τ(z(1)Ω ) are vectors obtained by applying
the corresponding functions to entries of their input vectors. For brevity we have
suppressed the transpose signs in the row vector multiplying the matrix from the left
in (4.1.6).

The foregoing considerations lead to the following existence result which underpins
our numerical method for (4.1.1); furthermore (4.1.6) provides the basis for our
numerical implementations. We summarize these facts:

Theorem 4.1.1. The variational problem (4.1.2) has a minimizer of the form
u†(x) = K(x,φ)K(φ,φ)−1z†, where z† is a minimizer of (4.1.5). Furthermore u†(x)
may be found by solving the unconstrained minimization problem (4.1.6) for z(1)

Ω
.

Proof. Problems (4.1.2), (4.1.3) and (4.1.5) are equivalent. It is therefore sufficient
to show that (4.1.5) has a minimizer. Write z? for the vector with entries z?(1)m =

u?(xm) and z?(2)m = −∆u?(xm). Since u? solves the PDE (4.1.1), z? satisfies the
constraints on z in (4.1.5). It follows that theminimization in (4.1.5) can be restricted
to the set C of z that satisfies zT K(φ,φ)−1z ≤ (z?)T K(φ,φ)−1z? and the nonlinear
constraints. The set C is compact and non-empty: compact because τ is continuous
and so the constraint set is closed as it is the pre-image of a closed set, and the
intersection of a closed set with a compact set is compact; and nonempty because it
contains z∗. Thus the objective function zT K(φ,φ)−1z achieves its minimum in the
set C. Once z(1)

Ω
is found we can extend to the boundary points to obtain z(1), and

use the nonlinear relation between z(1) and z(2) to reconstruct z(2). This gives z†. �

4.1.1.3 Convergence Theory

The consistency of our method is guaranteed by the convergence of u† towards u?

as M , the total number of collocation points, goes to infinity. We first present this
result in the case of the nonlinear PDE (4.1.1) and defer a more general version to
Subsection 4.3.2. We also give a simple proof of convergence here as it is instructive
in understanding why the method works and how the more general result can be
established. Henceforth we use | · | to denote the standard Euclidean norm and write
U ⊆ H to denoteU being continuously embedded in Banach spaceH .

Theorem 4.1.2. Suppose that K is chosen so thatU ⊆ Hs(Ω) for some s > 2+ d/2
and that (4.1.1) has a unique classical solution u? ∈ U. Write u†M for a minimizer
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of (4.1.2) with M distinct collocation points x1, . . . ,xM . Assume that, as M →∞,

sup
x∈Ω

min
1≤m≤MΩ

|x − xm | → 0 and sup
x∈∂Ω

min
MΩ+1≤m≤M

|x − xm | → 0 .

Then, as M → ∞, u†M converges towards u? pointwise in Ω and in Ht(Ω) for any
t < s.

Proof. The proof relies on a simple compactness argument togetherwith the Sobolev
embedding theorem [2, 33]. First, as u? satisfies the constraint in (4.1.2) and u†M is
the minimizer, it follows that ‖u†M ‖ ≤ ‖u

?‖ for all M ≥ 1. This implies ‖u†M ‖Hs(Ω) ≤

C‖u?‖ because U is continuously embedded into Hs(Ω). Let t ∈ (2 + d/2, s) so
that Ht(Ω) embeds continuously into C2(Ω) ∩ C(Ω) [2, Thm. 4.12]. Since Hs(Ω)

is compactly embedded into Ht(Ω), we deduce that there exists a subsequence
{Mp, p ≥ 1} ⊂ N and a limit u†∞ ∈ Ht(Ω) such that u†Mp

converges towards u†∞ in
the Ht(Ω) norm, as p → ∞. This also implies convergence in C2(Ω) due to the
continuous embedding of Ht(Ω) into C2(Ω) ∩ C(Ω).

We now show that u†∞ satisfies the desired PDE in (4.1.1). Denote by v = −∆u†∞ +

τ
(
u†∞

)
− f ∈ C(Ω) and vp = −∆u†Mp

+τ
(
u†Mp

)
− f ∈ C(Ω). For any x ∈ Ω and p ≥ 1,

use of the triangle inequality shows that

|v(x)| ≤ min
1≤m≤Mp,Ω

(
|v(x) − v(xm)| +

��v(xm) − vp(xm)
��)

≤ min
1≤m≤Mp,Ω

|v(x) − v(xm)| + ‖v − vp‖C(Ω) ,
(4.1.7)

where we have used the fact that vp(xm) = 0, and Mp,Ω is the number of inte-
rior points associated with the total Mp collocation points. Since v is continu-
ous in a compact domain, it is also uniformly continuous. Thus, it holds that
limp→∞min1≤m≤Mp,Ω |v(x) − v(xm)| = 0 since the fill-distance converges to zero by
assumption. Moreover, we have that vp converges to v in the C(Ω) norm due to the
C2(Ω) convergence from u†Mp

to u†∞. Combining these facts with (4.1.7), and taking
p → ∞, we obtain v(x) = 0, and thus −∆u†∞(x) + τ

(
u†∞(x)

)
= f (x), for x ∈ Ω.

Following a similar argument, we get u†∞(x) = g(x) for x ∈ ∂Ω. Thus, u†∞ is a
classical solution to (4.1.1). By assumption, the solution is unique, so we must have
u†∞ = u?. As the limit u†∞ is independent of the particular subsequence, the whole
sequence u†M must converge to u? in Ht(Ω). Since t ∈ (2 + d/2, s), we also get
pointwise convergence and convergence in Ht(Ω) for any t < s. �

We note that this convergence theorem requires K to be adapted to the solution space
of the PDE so that u? belongs to U. In our numerical experiments, we will use a



116

Gaussian kernel. However, if f or the boundary ∂Ω are not sufficiently regular, then
the embedding conditions u? ∈ U ⊆ Hs(Ω) may be satisfied by using kernel as the
Green’s function of some power of the Laplacian, instead of a Gaussian kernel; the
latter induces smoothness on U which may be incompatible with the regularity of
u? for irregular f and ∂Ω.
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Figure 4.1: L2 and L∞ error plots for numerical approximations of u?, the solution
to (4.1.1), as a function of the number of collocation points M . Left: τ(u) = 0; both
the kernel collocation method using Gaussian kernel with σ = 0.2 and M−1/4 and
the finite difference (FD) method were implemented. Right: τ(u) = u3; the kernel
collocation method using Gaussian kernel with σ = 0.2 and M−1/4 were used. In
both cases, an adaptive nugget term with global parameter η = 10−13 was used to
regularize the kernel matrix Θ (see Appendix A.1.1 for details).

4.1.1.4 Numerical Framework

The representation of u† via the optimization problem (4.1.6) is the cornerstone of
our numerical framework for solving nonlinear PDEs. Indeed, efficient solution
of (4.1.6), and in turn construction and inversion of the matrix K(φ,φ), are the
most costly steps of our numerical implementation. We summarize several main
ingredients of our algorithm below:

• We propose an efficient variant of the Gauss–Newton algorithm in Section
4.3.4.2. Although, in general, (4.1.6) is a nonconvex problem, our algorithm
typically converges in between 2 and 10 steps in all the experiments we have
conducted.
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• In practice we perturb K(φ,φ) to improve its condition number, and hence the
numerical stability of the algorithm, by adding a small diagonal matrix; this
perturbation is adapted to the problem at hand, as outlined in Appendix A.1.1;
the approach generalizes the idea of a “nugget” as widely used in GP regres-
sion.

• To evaluate the cost function in (4.1.6), we pre-compute the Cholesky fac-
torization of the (perturbed) kernel matrix and store it for multiple uses.
State-of-the-art linear solvers for dense kernel matrices can be used for this
step.

As a demonstration, we present here a simple experiment to show the convergence
of our method. We take d = 2, Ω = (0,1)2 and τ(u) = 0 or u3 together with ho-
mogeneous Dirichlet boundary conditions g(x) = 0. The true solution is prescribed
to be u?(x) = sin(πx1) sin(πx2) + 4 sin(4πx1) sin(4πx2) and the corresponding right
hand side f (x) is computed using the equation.

We choose the Gaussian kernel

K(x,y;σ) = exp
(
−
|x − y|2

2σ2

)
,

with lengthscale parameter σ; we will fix this parameter, but note that the frame-
work is naturally adapted to learning of such hyperparameters. We set M =

64,256,1024,4096, sampling the collocation points on a uniform grid of points
within Ω. We apply our algorithm to solve the PDEs and compute the L2 and L∞

errors to u?. In the case τ(u) = 0, which corresponds to a linear PDE, we also
compare our algorithm with a second-order finite difference (FD) method. For the
nonlinear case τ(u) = u3, we observe that the Gauss–Newton algorithm only needs
2 steps to converge. The errors versus M are depicted in Figure 4.1. The following
observations can be made from this figure:

• In the linear case τ(u) = 0, where the corresponding optimization problem
(4.1.6) is convex, our algorithm outperforms the FD method in terms of
accuracy and rate of convergence. This can be attributed to the fact that
the true solution is very smooth, and the Gaussian kernel allows for efficient
approximation.

• The choice of the kernel parameter σ has a profound impact on the accuracy
and rate of convergence of the algorithm, especially when M is not very large.
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This implies the importance of choosing a “good kernel” that is adapted to the
solution space of the PDE, and highlights the importance of hyperparameter
learning.

• In the nonlinear setting, our algorithm demonstrates similar convergence be-
havior to the linear setting. Once again, an appropriate choice of σ leads to
significant gains in solution accuracy.

4.1.2 Relevant Literature
Machine learning and statistical inference approaches to numerical approximation
have attracted a lot of attention in recent years thanks to their remarkable success
in engineering applications. Such approaches can be broadly divided into two
categories: (1) GP/Kernel-based methods, and (2) ANN-based methods.

GPs and kernel-based methods have long been used in function approximation,
regression, and machine learning [290]. As surveyed in [205]:

“[kernel approaches can be traced back to] Poincaré’s course in Proba-
bility Theory [217] and to the pioneering investigations of Sul’din [263],
Palasti and Renyi [212], Sard [237], Kimeldorf and Wahba [141] (on
the correspondence between Bayesian estimation and spline smooth-
ing/interpolation) and Larkin [157] (on the correspondence between
Gaussian process regression and numerical approximation). Although
their study initially attracted little attention among numerical analysts
[157], it was revived in Information Based Complexity (IBC) [270],
Bayesian numerical analysis [69], and more recently in Probabilistic
Numerics [119] and Bayesian numerical homogenization [201].”

For recent reviews of the extensive applications of GP/kernel methods see [54,
205, 264] and [204, Chap. 20]. In particular, they have been introduced to mo-
tivate novel methods for solving ordinary differential equations (ODEs) [251, 39,
245] and underlie the collocation approach advocated for parameter identification
in ODEs as described in [226]. For PDEs, the use of kernel methods can be traced
back to meshless collocation methods with radial basis functions [301, 288, 239].
Furthermore, a recent systematic development towards solving PDEs was initiated
in [201, 203, 207, 204] and has lead to the identification of fast solvers for elliptic
PDEs and dense kernel matrices [241, 240] with state-of-the-art complexity versus
accuracy guarantees. The effectiveness of these methods has been supported by
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well-developed theory [204] residing at the interfaces between numerical approx-
imation [280, 288], optimal recovery [188], information-based complexity [270],
and GP regression [30], building on the perspective introduced in [69, 157, 188,
269, 280]. In particular there is a one to one correspondence [204, 241] between
(1) the locality of basis functions (gamblets) obtained with kernel methods and the
screening effect observed in kriging [259], (2) Schur complementation and con-
ditioning Gaussian vectors, and (3) the approximate low-rank structure of inverse
stiffness matrices obtained with kernel methods and variational properties of Gaus-
sian conditioning. Furthermore, although the approach of modeling a deterministic
function (the solution u? of a PDE) as a sample from a Gaussian distribution may
seem counterintuitive, it can be understood (in the linear setting [204]) as an optimal
minimax strategy for recovering u? from partial measurements. Indeed, as in Von
Neumann’s theory of games, optimal strategies are mixed (randomized) strategies
and (using quadratic norms to define losses) GP regression (kriging) emerges as an
optimal minimax approach to numerical approximation [188, 204].

On the other hand, ANNmethods can be traced back to [70, 155, 156, 229, 272] and,
although developed for ODEs several decades ago [53, 229], with some of the work
generalized to PDEs [149], their systematic development for solving PDEs has been
initiated only recently. This systematic development includes the Deep Ritz Method
[287], Physics Informed Neural Networks [222] (PINNs), DGN [250], and [115]
which employs a probabilistic formulation of the nonlinear PDE via the Feynman-
Kac formula. Although the basic idea is to replace unknown functions with ANNs
and minimize some loss with respect to the parameters of the ANN to identify
the solution, there are by now many variants of ANN approaches, and we refer to
[137] for a recent review of this increasingly popular topic at the interface between
scientific computing and deep learning. While ANN approaches have been shown
to be empirically successful on complex problems (e.g., machine learning physics
[225]), they may fail on simple ones [284, 275] if the architecture of the ANN is not
adapted to the underlying PDE [283]. Moreover, the theory of ANNs is still in its
infancy; most ANN-based PDE solvers lack theoretical guarantees and convergence
analyses are often limited to restricted linear instances [249, 284]. Broadly speaking,
in comparison with kernel methods, ANN methods have both limited theoretical
foundations and unfavorable complexity vs accuracy estimates. We also remark
that ANN methods are suitable for the learning of the parametric dependence of
solutions of differential equations [303, 29, 163, 164, 31]; however, GP and kernel
methods may also be used in this context, and the random feature method provides
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a natural approach to implementing such methods in high dimensions [196].

Regardless, the theory and computational framework of kernel methods may nat-
urally be extended to ANN methods to investigate3 such methods and possibly
accelerate them by viewing them as ridge regression with data-dependent kernels
and following [241, 240]. To this end, ANN methods can be interpreted as kernel
methods with data-dependent kernels in two equivalent ways: (1) as solving PDEs
in an RKHS space spanned by a feature map parameterized by the initial layers of
the ANN that is learned from data, or, (2) as kernel-based methods with kernels
that are parameterized by the inner layers of the network. For instance, [202] shows
that Residual Neural Networks [118] (ResNets) are ridge regressors with warped
kernels [233, 213]. Given the notorious difficulty of developing numerical methods
for nonlinear PDEs [265], it is to some degree surprising that (as suggested by our
framework) (A) this difficulty can universally be decomposed into three parts: (1)
the compression/inversion of dense kernel matrices, (2) the selection of the kernel,
and (3) the minimization of the reduced finite-dimensional optimization problem
(4.3.10), and (B) a significant portion of the resulting analysis can be reduced to that
of linear regression [204].

Beyond solving PDEs, ANN methods have also been used in data-driven discretiza-
tions, and discovery of PDEs that allow for the identification of the governing model
[222, 171, 22]; this leads to applications in IPs. Our method, viewed as a GP con-
ditioned on PDE constraints at collocation points, can be interpreted as solving an
IP with Bayesian inference and a Gaussian prior [261]. Indeed, if we relax the PDE
constraints as in Subsection 4.3.3.2 then a minimizer u† coincides with a MAP esti-
mator of a posterior measure obtained by viewing the PDE constraints as nonlinear
pointwise measurements of a field u with a Gaussian prior N(0,K). Bayesian IPs
with Gaussian priors have been studied extensively (see [62, 57, 261] and references
therein). The standard approach for their solution is to discretize the problem using
spectral projection or finite element methods, and compute posterior MAP estima-
tors [61] or employMarkov chain Monte Carlo algorithms [58] to simulate posterior
samples. Our abstract representation theorem outlined in Section 4.2.1 completely
characterizes the MAP estimator of posterior measures with Gaussian priors in set-
tings where the forward map is written as the composition of a nonlinear map with
bounded linear functionals acting on the parameter. Indeed, this is precisely the
approach that we employ in Section 4.4 to solve IPs with PDE constraints. However,

3Beyond the infinite width neural tangent kernel regime [134, 284].
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the main difference between our methodology and existing methods in the literature
is that we pose the IP as that of recovering the solution of the PDE u† simultane-
ously with learning the unknown PDE parameter with independent Gaussian priors
on both unknowns.

We now turn to motivation for the GP interpretation. The PDE solvers obtained
here are deterministic and could be described from an entirely classical numerical
approximation perspective. However we emphasize the GP interpretation for two
reasons: (i) it is integral to the derivation of the methods, and (ii) it allows the
numerical solution of the PDE to be integrated into a larger engineering pipeline
and, in that context, the posterior distribution of the GP conditioned on the PDE at
collocation points provides a measure of uncertainty quantification. Using the GP
perspective as a pathway to the discovery of numerical methods, was the motivation
for the work in [201, 203]. Indeed, as discussed in [201], while the discovery of
numerical solvers for PDEs is usually based on a combination of insight and guess-
work, this process can be facilitated to the point of being automated, using this GP
perspective. For instance, for nonsmooth PDEs, basis functions with near optimal
accuracy/localization tradeoff and operator valued wavelets can be identified by
conditioning physics informed Gaussian priors on localized linear measurements
(e.g., local averages or pointwise values). Physics informed Gaussian priors can, in
turn, be identified by (a) filtering uninformed Gaussian priors through the inverse
operator [201], or (b) turning the process of computing fast with partial information
into repeated zero-sum games with physics informed losses (whose optimal mixed
strategies are physics informed Gaussian priors) [203]. The paper [224] generalized
(a) to time-dependent PDEs by filtering uninformed priors through linearized PDEs
obtained via time stepping. The paper [55] emphasized the probabilistic interpre-
tation of numerical errors obtained from this Bayesian perspective. In particular
[55, Sec. 5.2] describes a method identical to the one considered here (and [201])
for linear problems; in the setting of semi-linear PDEs, it is suggested in [55] that
latent variables could be employed to efficiently sample from posterior/conditional
measures (see also [202] where latent variables were employed to reduce nonlinear
optimal recovery problems via two-level optimization as in 4.1.3). Although the
methodology proposed in our work agrees with that in [55] for linear problems,
the methodology we propose appears to be more general, and differs in the case of
nonlinear problems to which both approaches apply.
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4.1.3 Outline
The remainder of this chapter is organized as follows. We give an overview of the
abstract theory of GPs on Banach spaces in Section 4.2; we establish notation, and
summarize basic results and ideas that are used throughout the remainder of the
chapter. Section 4.3 is dedicated to the development of our numerical framework
for solving nonlinear PDEs with kernel methods; we outline our assumptions on the
PDE, present a general convergence theory, discuss our approach to implementation,
and present numerical experiments. In Section 4.4 we extend our nonlinear PDE
framework to IPs and discuss the implementation differences between the PDE
and IP settings, followed by numerical experiments involving a benchmark IP in
subsurface flow. Finally, we present additional discussions, results, and possible
extensions of our method in Section 4.5. Appendix A.1 is devoted to the small
diagonal regularization of kernel matrices (“nugget” term) and outlines general
principles as well as specifics for the examples considered in this chapter.

4.2 Conditioning GPs on Nonlinear Observations
In this section, we outline the abstract theory of RKHSs/GPs and their connection
to Banach spaces endowed with quadratic norms; this forms the framework for the
proposedmethodology to solve PDEs and IPs. We start by recalling some basic facts
aboutGPs in Subsection 4.2.1. This is followed in Subsection 4.2.2 by general results
pertaining to conditioning of GPs on linear and nonlinear observations, leading to
a representer theorem that is the cornerstone of our numerical algorithms. Some of
these results may be known to experts, but to the best of our knowledge, they are
not presented in the existing literature with the coherent goal of solving nonlinear
problems via the conditioning of GPs; hence this material may be of independent
interest to the reader.

4.2.1 GPs and Banach Spaces Endowed with a Quadratic Norm
Consider a separable Banach space U and its dual Ut with their duality pairing
denoted by [·, ·]. We further assume thatU is endowedwith a quadratic norm ‖·‖, i.e.,
there exists a linear bijection K : Ut → U that is symmetric ([Kφ, ϕ] = [Kϕ, φ]),
positive ([Kφ, φ] > 0 for φ , 0), and such that

‖u‖2 = [K−1u,u], ∀u ∈ U .
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The operator K endowsU andUt with the following inner products:

〈u, v〉 := [K−1u, v], u, v ∈ U ,

〈φ, ϕ〉t := [φ,Kϕ], φ, ϕ ∈ Ut .

Note that the 〈·, ·〉t inner product defines a norm on Ut that coincides with the
standard dual norm ofUt , i.e.,

‖φ‖t = sup
u∈U,u,0

[φ,u]
‖u‖

=
√
[φ,Kφ] .

As in [204, Chap. 11], although U,Ut are also Hilbert spaces under the quadratic
norms ‖ · ‖ and ‖ · ‖t , we will keep using the Banach space terminology to emphasize
the fact that our dual pairings will not be based on the inner product through the
Riesz representation theorem, but on a different realization of the dual space. A
particular case of the setting considered here isU = Hs

0(Ω) (writing Hs
0(Ω) for the

closure of the set of smooth functions with compact support in Ω with respect to
the Sobolev norm ‖ · ‖Hs(Ω)), with its dual Ut = H−s(Ω) defined by the pairing
[φ, v] :=

∫
Ω
φu obtained from the Gelfand triple Hs(Ω) ⊂ L2(Ω) ⊂ H−s(Ω). Here

K can be defined as solution map of an elliptic operator4mapping Hs
0(Ω) to H−s(Ω).

We say that ξ is the canonical GP [204, Chap. 17.6] onU and write ξ ∼ N(0,K),
if and only if ξ is a linear isometry from Ut to a centered Gaussian space (a
closed linear space of scalar valued centered Gaussian random variables). The word
canonical indicates that the covariance operator of ξ coincides with the bijection K
defining the norm onU. Write [φ, ξ] for the image of φ ∈ Ut under ξ and note that
the following properties hold:

E[φ, ξ] = 0 and E[φ, ξ][ϕ, ξ] = [φ,Kϕ], ∀φ, ϕ ∈ Ut .

The spaceU coincides with the Cameron–Martin space of the GP N(0,K). In the
settingwhereK is defined through a covariance kernelK (such as in Subsection 4.1.1
and later in Subsection 4.3.4.2) thenU coincides with the RKHS space of the kernel
K [276, Sec. 2.3].

4.2.2 Conditioning GPs with Linear and Nonlinear Observations
Let φ1, . . . , φN be N non-trivial elements ofUt and define

φ := (φ1, . . . , φN ) ∈ (U
t)⊗N . (4.2.1)

4Given s > 0, we call an invertible operator L : Hs
0 (Ω) → H−s(Ω) elliptic, if it is positive and

symmetric in the sense that
∫
Ω

uLu ≥ 0 and
∫
Ω

uLv =
∫
Ω
vLu ≥ 0.
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Now consider the canonical GP ξ ∼ N(0,K), then [φ, ξ] is an RN -valued Gaussian
vector and [φ, ξ] ∼ N(0,Θ) where

Θ ∈ RN×N, Θi,n = [φi,Kφn], 1 ≤ i,n ≤ N . (4.2.2)

The following proposition characterizes the conditional distribution of GPs under
these linear observations; to simplify the statement it is useful to write K(φ, ϕ) for
the vector with entries [φi,Kϕ]. This type of vectorized notation is used in [204].

Proposition 4.2.1. Consider a vector y ∈ RN and the canonical GP ξ ∼ N(0,K).
Then ξ conditioned on [φ, ξ] = y is also Gaussian. Moreover if Θ is invert-
ible then Law[ξ |[φ, ξ] = y] = N(u†,Kφ) with conditional mean defined by u† =

yTΘ−1Kφ and conditional covariance operator defined by [ϕ,Kφϕ] = [ϕ,Kϕ] −
K(ϕ,φ)Θ−1K(φ, ϕ),∀ϕ ∈ Ut .

Proposition 4.2.1 gives a finite representation of the conditional mean of the GP
constituting a representer theorem [204, Cor. 17.12]. Let us define the elements

χi :=
N∑

n=1
Θ
−1
i,nKφn , (4.2.3)

referred to as gamblets in the parlance of [203] which can equivalently be charac-
terized as the minimizers of the variational problem

minimize
χ∈U

‖ χ‖

s.t. [φn, χ] = δi,n, n = 1, . . . ,N .
(4.2.4)

This fact further enables the variational characterization of the conditional mean u†

directly in terms of the gamblets χn.

Proposition 4.2.2. Let u† = E [ξ |[φ, ξ] = y] as in Proposition 4.2.1. Then u† =∑N
n=1 ynχn is the unique minimizer of

minimize
u∈U

‖u‖

s.t. [φn,u] = yn, n = 1, . . . ,N .

Proposition 4.2.2 is the cornerstone of our methodology for solution of nonlinear
PDEs. It is also useful for the solution of IPs. For this purpose consider nonlinear
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functions G : RN → RI and F : RN → RM and vectors o ∈ RI and y ∈ RM and
consider the optimization problem:

minimize
u∈U

‖u‖2 +
1
γ2 |G([φ,u]) − o|2

s.t. F([φ,u]) = y ,
(4.2.5)

where γ ∈ R is a parameter. We will use this formulation of IPs in PDEs, with u

concatenating the solution of the forward PDE problem and the unknown parameter;
the nonlinear constraint on F enforces the forward PDE and G the observed noisy
data. Then a representer theorem still holds for a minimizer of this problem stating
that the solution has a finite expansion in terms of the gamblets χn:

Proposition 4.2.3. Suppose (o,y) ∈ RI × RM are fixed and Θ is invertible5. Then
u† ∈ U is a minimizer of (4.2.5) if and only if u† =

∑N
n=1 z†n χn and the vector z† is

a minimizer of 
minimize

z∈RN
zT
Θ
−1z +

1
γ2 |G(z) − o|2

s.t. F(z) = y .
(4.2.6)

Proof. The proof is nearly identical to the derivation of (4.1.5) presented in Sec-
tion 4.1.1.2. Simply observe that minimizing (4.2.5) is equivalent to minimizing

minimize
z∈RN : F(z)=y


minimize

u∈U
‖u‖2 +

1
γ2 |G(z) − o|2

s.t. [φ,u] = z .
(4.2.7)

Then solve the inner optimization problem for a fixed z and apply Proposition 4.2.1.
�

We note that this model assumes independent and identically distributed (i.i.d.) ob-
servation noise for the vector o and can easily be extended to correlated observation
noise by replacing the misfit term 1

γ2 |G(z) − o|2 in (4.2.5) with an appropriately
weighted misfit term of the form |Σ−1/2(G(z) − o)|2 where Σ denotes the covariance
matrix of the observation noise.

Remark 4.2.4. It is intuitive that a minimizer of the optimization problem we intro-
duce and solve in this work corresponds to a MAP point for the GP ξ ∼ N(0,K)

5Relaxing the interpolation constraints renders the invertibility assumption on Θ unnecessary.
Nevertheless we keep it for ease of presentation.
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conditioned on PDE constraints at the collocation points. To prove this will require
extension of the approach introduced in [61], for example, and is left for future
work. Here we describe this connection informally in the absence of the equality
constraints. Consider the prior measure µ0 = N(0,K) and consider the measure-
ments o = G([φ,u]) + η,y = F([φ,u]) + η′, η ∼ N(0, γ2I), η′ ∼ N(0, β2I). It then
follows from Bayes’ rule [261] that the posterior measure of u given the data (o,y)
is identified as the measure

dµ(o,y)

dµ0
(u) =

1
Z (o,u)

exp
(
−

1
2γ2 |G([φ,u]) − o|2 −

1
2β2 |F([φ,u]) − y|2

)
,

Z (o,y) := Eu∼µ0 exp
(
−

1
2γ2 |G([φ,u]) − o|2 −

1
2β2 |F([φ,u]) − y|2

)
.

The article [61] showed that the MAP estimators of µ(o,y) are solutions to

minimize
u∈U

‖u‖2 +
1
γ2 |G([φ,u]) − o|2 +

1
β2 |F([φ,u]) − y|2.

Letting β→ 0 then yields (4.2.5).

4.3 Solving Nonlinear PDEs
In this section, we present our framework for solution of nonlinear PDEs by condi-
tioning GPs on nonlinear constraints. In Subsection 4.3.1 we outline our abstract
setting as well as our assumptions on PDEs of interest; this leads to Corollary 4.3.2
which states an analogue of Proposition 4.2.3 in the PDE setting. We analyze the
convergence of our method in Subsection 4.3.2 and discuss two strategies for dealing
with the nonlinear PDE constraints in Subsection 4.3.3. Next, we present the details
pertaining to numerical implementations of our method, including the choice of
kernels and a Gauss–Newton algorithm in Subsection 4.3.4. Finally, we present a
set of numerical experiments in Subsection 4.3.5 that demonstrate the effectiveness
of our method in the context of prototypical nonlinear PDEs.

4.3.1 Problem Setup
Let us consider a bounded domain Ω ⊆ Rd for d ≥ 1 and a nonlinear PDE of the
form {

P(u?)(x) = f (x), ∀x ∈ Ω ,

B(u?)(x) = g(x), ∀x ∈ ∂Ω .
(4.3.1)

HereP is a nonlinear differential operator andB is an appropriate boundary operator
with data f ,g. Throughout this section and for brevity, we assume that the PDE
at hand is well-defined pointwise and has a unique strong solution; extension of
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our methodology to weak solutions is left as a future research direction. We then
considerU to be an appropriate quadratic Banach space for the solution u? such as
a Sobolev space Hs(Ω) with sufficiently large regularity index s > 0.

We propose to solve the PDE (4.3.1) by approximating u? by a GP conditioned
on satisfying the PDE at a finite set of collocation points in Ω and proceed to
approximate the solution by computing the MAP point of such a conditioned GP.
More precisely, let {xi}

M
i=1 be a collection of points in Ω ordered in such a way

that x1, . . . xMΩ ∈ Ω are in the interior of Ω while xMΩ+1, . . . ,xM ∈ ∂Ω are on
the boundary. Now let U be a quadratic Banach space with associated covariance
operator K : Ut →U and consider the optimization problem:

minimize
u∈U

‖u‖

s.t. P(u)(xm) = f (xm), for m = 1, . . . ,M ,

B(u)(xm) = g(xm), for m = MΩ + 1, . . . ,M .

(4.3.2)

In other words, we wish to approximate u? with the minimum norm element of the
Cameron–Martin space of N(0,K) that satisfies the PDE and boundary data at the
collocation points {xi}

M
i=1. In what follows we write L(U;H) to denote the space

of bounded and linear operators fromU to another Banach spaceH . We make the
following assumption regarding the operators P,B:

Assumption 4.3.1. There exist bounded and linear operators L1, . . . , LQ ∈ L(U; C(Ω))

in which L1, . . . , LQb
∈ L(U; C(∂Ω)) for some 1 ≤ Qb ≤ Q, and there are maps

P : RQ → R and B : RQb → R, which may be nonlinear, so that P(u)(x) and
B(u)(x) can be written as

P(u)(x) = P
(
L1(u)(x), . . . , LQ(u)(x)

)
, ∀x ∈ Ω ,

B(u)(x) = B
(
L1(u)(x), . . . , LQb

(u)(x)
)
, ∀x ∈ ∂Ω .

(4.3.3)

For prototypical nonlinear PDEs the Lq for 1 ≤ q ≤ Q are linear differential
operators such as first or second order derivatives while the maps P and B are often
simple algebraic nonlinearities. Furthermore, observe that for ease of presentation
we are assuming fewer linear operators are used to define the boundary conditions
than the operators that define the PDE in the interior.

Example NE (Nonlinear Elliptic PDE). Recall the nonlinear elliptic PDE (4.1.1)
and consider the linear operators and nonlinear maps

L1 : u 7→ u, L2 : u 7→ ∆u, P(v1, v2) = −v2 + τ(v1), B(v1) = v1 ,
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where we took Q = 2 and Qb = 1. Then this equation readily satisfies Assump-
tion 4.3.1 whenever the solution is sufficiently regular so that L2(u) is well-defined
pointwise within Ω. ^

Under Assumption 4.3.1 we can then define the functionals φ(q)m ∈ U
t by setting

φ
(q)
m := δxm ◦ Lq, where

{
1 ≤ m ≤ M, if 1 ≤ q ≤ Qb,

1 ≤ m ≤ MΩ, if Qb+1 ≤ q ≤ Q.
(4.3.4)

We further use the shorthand notation φ(q) to denote the vector of dual elements φ(q)m

for a fixed index q. Observe that φ(q) ∈ (Ut)⊗M if q ≤ Qb while φ(q) ∈ (Ut)⊗MΩ if
q > Qb. We further write

N = MQb + MΩ(Q −Qb) (4.3.5)

and define
φ := (φ(1), . . . ,φ(Q)) ∈ (Ut)⊗N . (4.3.6)

To this end, we define the measurement vector y ∈ RM by setting

ym =

{
f (xm), if m ∈ {1, . . . ,MΩ} ,

g(xm), if m ∈ {MΩ + 1, . . . ,M} ,
(4.3.7)

as well as the nonlinear map

(
F([φ,u])

)
m :=

{
P([φ(1)m ,u], . . . , [φ(Q)m ,u]) if m ∈ {1, . . . ,MΩ},

B([φ(1)m ,u], . . . , [φ(Qb)
m ,u]) if m ∈ {MΩ + 1, . . . ,M}.

(4.3.8)

We can now rewrite the optimization problem (4.3.2) in the same form as (4.2.5):
minimize

u∈U
‖u‖

s.t. F([φ,u]) = y.
(4.3.9)

Then a direct appliction of Proposition 4.2.3 yields the following corollary.

Corollary 4.3.2. Suppose Assumption 4.3.1 holds, K and Θ are invertible, and
defineφ,F,y as above. Then u† is aminimizer of (4.3.2) if and only if u† =

∑N
n=1 z†n χn

where the χn are the gamblets defined according to (4.2.4) and z† is a minimizer of
minimize

z∈RN
zT
Θ
−1z

s.t. F(z) = y.
(4.3.10)
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The above corollary is the foundation of our numerical algorithms for approximation
of the solution u†, as Θ−1 and the gamblets χn can be approximated offline while
the coefficients z†n can be computed by solving the optimization problem (4.3.10).

To solve (4.3.10) numerically, we will present two different approaches that trans-
form it to an unconstrained optimization problem. Before moving to that in Subsec-
tion 4.3.3, we discuss the convergence theory first in the next section.

4.3.2 Convergence Theory
We state and prove a more general version of Theorem 4.1.2 for our abstract setting
of PDEs on Banach spaces with quadratic norms stating that a minimizer u† of
(4.3.2) converges to the true solution u? under sufficient regularity assumptions and
for appropriate choices of the operator K.

Theorem 4.3.3. Consider the PDE (4.3.1) and suppose that U ⊂ H ⊂ Ct(Ω) ∩

Ct ′(Ω) where H is a Banach space such that the first inclusion from the left is
given by a compact embedding and t ≥ t′ ≥ 0 are sufficiently large so that all
derivatives appearing in the PDE are defined pointwise for elements of Ct(Ω) ∩

Ct ′(Ω). Furthermore assume that the PDE has a unique classical solution u? ∈ U

and that, as M →∞,

sup
x∈Ω

min
1≤m≤MΩ

|x − xm | → 0 and sup
x∈∂Ω

min
MΩ+1≤m≤M

|x − xm | → 0.

Write u†M for a minimizer of (4.3.2) with M distinct collocation points. Then, as
M → ∞, the sequence of minimizers u†M converges towards u? pointwise in Ω and
inH .

Proof. The method of proof is similar to that of Theorem 4.1.2. Indeed, by the
same argument as in the first paragraph of the proof for Theorem 4.1.2, there exists a
subsequence uMp that converges to u†∞ inH . This also implies convergence inCt(Ω)

and Ct ′(Ω) due to the assumed continuous embedding of H into Ct(Ω) ∩ Ct ′(Ω).
Since t ≥ t′ ≥ 0 are sufficiently large so that all derivatives appearing in the PDE are
defined pointwise for elements of Ct(Ω) ∩ Ct ′(∂Ω), we get that PuMp converges to
Pu†∞ in C(Ω) and Pu†∞ ∈ C(Ω). As Ω is compact, u†∞ is also uniformly continuous
in Ω.
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For any x ∈ Ω and p ≥ 1, the triangle inequality shows that

|P(u†∞)(x) − f (x)| ≤ min
1≤m≤Mp,Ω

(
|P(u†∞)(x) − P(u†)(xm)| + |P(u†)(xm) − P(uMp )(xm)|

)
≤ min

1≤m≤Mp,Ω

|P(u†∞)(x) − P(u†∞)(xm)| + ‖Pu†∞ − PuMp ‖C(Ω) ,

(4.3.11)
where in the first inequality we have used the fact that P(uMp )(xm) = f (xm). Here
Mp,Ω is the number of interior points associated with the total Mp collocation points.
Taking p→∞ and using the uniform continuity of Pu†∞ and the C(Ω) convergence
from PuMp to Pu†∞, we derive that P(u†∞)(x) = f (x). In a similar manner we can
derive B(u†∞)(x) = g(x). Thus, the limit u†∞ is a classical solution to the PDE. By
the uniqueness of the solution we must have u†∞ = u?. Finally, as the limit u†∞ is
independent of the choice of the subsequence, the whole sequence u†M must converge
to u? pointwise and inH . �

Wenote that while this theorem does not provide a rate for convergence of u† towards
u? it relies on straightforward conditions that are readily verifiable for prototypical
PDEs. Typically we choose t, t′ > 0 large enough so that the PDE operators P,B are
pointwise defined for the elements of Ct(Ω) ∩Ct ′(Ω) (e.g., t > order of PDE +d/2)
and take the space H to be a Sobolev-type space of appropriate regularity for the
inclusionH ⊂ Ct(Ω)∩Ct ′(∂Ω) to hold; also see the conditions of Theorem 4.1.2 and
the subsequent discussion. The compact embedding U ⊂ H can then be ensured
by an appropriate choice of the covariance operator K (or the associated kernel K).
However, this choice should result in a sufficiently large space U that includes the
solution u? of the PDE. Our conditions on the collocation points {xm}

M
m=1 simply

ensure that these points form a dense subset of Ω as M →∞.

4.3.3 Dealing with the Constraints
Now, we turn our attention to the equality constraints in (4.3.10) and present two
strategies for elimination or relaxation of these constraints; these transform the
optimization problem to an unconstrained one. They are crucial preliminary steps
before introducing our numerical framework.

4.3.3.1 Eliminating the Equality Constraints

The equality constraints in (4.3.10) can be eliminated under slightly stronger as-
sumptions on the maps P,B. In particular, suppose that the following assumption
holds:
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Assumption 4.3.4. The equations

P(v1, . . . , vQ) = y, B(v1, . . . , vQb
) = y ,

can be solved as finite-dimensional algebraic equations, i.e., there exist P : RQ−1 →

R and B : RQb−1 → R so that

v j = P(v1, . . . , v j−1, v j+1, . . . , vQ, y), vk = B(v1, . . . , vk−1, vk+1, . . . , vQb
, y) ,

(4.3.12)
for selected indices j ∈ {1, . . . ,Q} and k ∈ {1, . . . ,Qb}. Then for integer N defined
by (4.3.5), and using the solution maps P,B, we can then define a new solution map
F : RN−M × RM → RN so that

F(z) = y if and only if z = F(w,y), for a unique w ∈ RN−M .

With this new solutionmapwe can rewrite (4.3.10) as an unconstrained optimization
problem.

Corollary 4.3.5. Let Assumption 4.3.4 and the conditions of Corollary 4.3.2 hold.
Then u† is a minimizer of (4.3.2) if and only if u† =

∑N
n=1 z†n χn with z† = F′(w†,y)

and w† ∈ RN−M is a minimizer of

minimize
w∈RN−M

F(w,y)TΘ−1F(w,y) . (4.3.13)

Example NE. Let us recall that we already eliminated the equality constraints in
the context of the PDE (4.1.1) through the calculations leading to the unconstrained
minimization problem (4.1.6). In that example, we used the calculation

P(v1, v2) = −v2 + τ(v1) = y ⇔ v2 = τ(v1) − y = P(v1, y) ,

that is, we solved ∆u in terms of τ(u) and the source term in the interior of the
domain in order to eliminate the PDE constraint. We further imposed the boundary
conditions exactly since the boundary map B is simply the pointwise evaluation
function in that example.

Alternatively, we could eliminate v1 by setting v1 = τ
−1(y + v2), assuming that τ−1

has closed form. While both elimination strategies are conceptually valid they may
lead to very different optimization problems. The former corresponds to solving for
the values of u at the collocation points while the latter solves for the values of ∆u at
the interior points under Dirichlet boundary conditions at the boundary collocation
points. ^
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4.3.3.2 Relaxing the Equality Constraints

The choice of the solution maps P,B in (4.3.12), i.e., the choice of the variable
which the equations are solved for, has an impact on the conditioning of (4.3.13);
it is not a priori clear that poor conditioning can always be avoided by choice of
variables to solve for. Moreover, for certain nonlinear PDEs Assumption 4.3.4 may
not hold. In such cases it may be useful to relax the equality constraints in (4.3.9)
and instead consider a loss of the following form:

minimize
u∈U

‖u‖2 +
1
β2 |F([φ,u]) − y|2 , (4.3.14)

where β2 > 0 is a small positive parameter. Likewise (4.3.10) can be relaxed to
obtain

minimize
z∈RN

zT
Θ
−1z +

1
β2 |F(z) − y|2 . (4.3.15)

Then a similar argument to the proof of Theorem 4.3.3 can be used to show that a
minimizer of the relaxed optimization problem for u converges to the solution u?

of the PDE as the number of collocation points M increases and the parameter β
vanishes.

Proposition 4.3.6. Fix β > 0. Then the optimization problem (4.3.14) has minimizer
u†β,M which (assuming Θ to be invertible) may be expressed in the form

u†β,M :=
N∑

n=1
z†β,nχn ∈ U ,

where z†β denotes aminimizer of (4.3.15). Under the assumptions of Theorem 4.3.3 it
follows that, as (β,M−1) → 0, the relaxed estimator u†β,M converges to u? pointwise
and inH .

Proof. By the arguments used in Proposition 4.2.3 theminimizer of (4.3.15) delivers
a minimizer of (4.3.14) in the desired form. Since u? satisfies F([φ,u?]) − y = 0
we must have ‖u†β,M ‖ ≤ ‖u

?‖. Then a compactness argument similar to that used
in the proof of Theorem 4.3.3, noting that taking β → 0 as M → ∞ delivers exact
satisfaction of the constraints in the limit, yields the desired result. �

Example NE. When only part of the constraints F(z) = y can be explicitly solved,
as is often the case for boundary values, we can also combine the elimination and
relaxation approach. Employing the relaxation approach for the interior constraint
and the elimination approach for the boundary constraints in (4.1.1) amounts to



133

replacing the optimization problem (4.1.5), which is the analogue of (4.3.10) for
our running example, with the following problem for a small parameter β2 > 0:

minimize
z∈RM+MΩ

zT K(φ,φ)−1z +
1
β2

[
MΩ∑
m=1

���z(2)m + τ(z
(1)
m ) − f (xm)

���2]
s.t. z(1)m = g(xm), for m = MΩ + 1, ...,M .

(4.3.16)

We will numerically compare the above approach with the full elimination approach
(4.1.6) in Subsection 4.3.5.1. ^

4.3.4 Implementation
We now outline the details of a numerical algorithm for solution of nonlinear PDEs
based on the discussions of the previous subsection and in particular Corollary 4.3.2.
We discuss the construction of the matrix Θ in Subsection 4.3.4.1 followed by
a variant of the Gauss–Newton algorithm in Subsection 4.3.4.2 for solving the
unconstrained or relaxed problems outlined in Subsections 4.3.3. We also note that
strategies for regularizing the matrix Θ by adding small diagonal (“nugget”) terms
are collected in Appendix A.1.

4.3.4.1 Constructing Θ

We established through Corollary 4.3.2 that a solution to (4.3.2) can be completely
identified by z† a minimizer of (4.3.10) as well as the gamblets χn. Since here we
are concerned with the strong form of the PDE (4.3.1) it is reasonable to assume
that at the very leastU ⊂ C(Ω); although we often require higher regularity so that
the PDE constraints can be imposed pointwise. This assumption suggests that our
GP model for u? can equivalently be identified via a covariance kernel function as
opposed to the covariance operator K. To this end, given a covariance operator K
define the covariance kernel K (equivalently Green’s function of K−1) as

K : Ω ×Ω 7→ R, K(x,x′) := [δx,Kδx′] . (4.3.17)

It is known that the kernel K completely characterizes the GP N(0,K) under mild
conditions [276]; that is N(0,K) ≡ GP(0,K). Let us now consider the matrix Θ in
block form

Θ =


Θ(1,1) Θ(1,2) · · · Θ(1,Q)

Θ(2,1) Θ(2,2) · · · Θ(2,Q)

...
...

. . .
...

Θ(Q,1) Θ(Q,2) · · · Θ(Q,Q)


.
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Using the L2(Ω) duality pairing betweenU andUt we can identify the blocks

Θ
(q,j) = K(φ(q),φ( j)) ,

where we used the shorthand notation of Subsection 4.1.1 for the kernel matrix,
with the φ(q) defined as in (4.3.4) and the subsequent discussion. To this end the
entries of the Θ(q,j) take the form

Θ
(q,j)
m,i = Lx

q Lx′
j K(x,x′)

��
(x,x′)=(xm,xi) ,

where we used the superscripts x,x′ to denote the variables with respect to which the
differential operators Lq, L j act. Note that Θ ∈ RN×N with N = MQb+MΩ(Q−Qb)

following the definition of φ(q) in Subsection 4.3.1.

4.3.4.2 A Gauss–Newton Algorithm

Here we outline a variant of the Gauss–Newton algorithm [197, Sec. 10.3] for
solution of the unconstrained optimization problem (4.3.13). Recall our definition
of the maps P,B in (4.3.12) and in turn the map F. We then propose to approximate
a minimizer w† of (4.3.13) with a sequence of elements w` defined iteratively via
w`+1 = w` + α`δw`, where α` > 0 is an appropriate step size while δw` is the
minimizer of the optimization problem

minimize
δw∈RN−M

(
F(w`,y) + δwT∇F(w`,y)

)T
Θ
−1

(
F(w`,y) + δwT∇F(w`,y)

)
,

and the gradient of F is computed with respect to the w variable only. 6

This approach can be applied also to solve the relaxed problem (4.3.6) where this
time we consider the sequence of approximations z`+1 = z` + α`δz`, where δz` is
the minimizer of

minimize
δz∈RN

(
z` + δz

)T
Θ
−1

(
z` + δz

)
+

1
β2

��F(z`) + δzT∇F(z`) − y
��2 .

Since (4.3.4.2) and (4.3.4.2) are both quadratic in δw and δz respectively, they can
be solved exactly and efficiently at each step and the step-size parameters α` can be
fixed or computed adaptively using standard step-size selection techniques [197].
However, in our experiments in Section 4.3.5, we find that both algorithms converge
quickly simply by setting α` = 1.

6Note that our proposedmethod is nothingmore than the standard Gauss–Newton algorithmwith
Euclidean norm | · | defining the least-squares functional replaced with the weighted norm |Θ−1/2 · |
[197, Sec. 10.3].
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Example NE. Let us return once more to the nonlinear elliptic PDE considered in
Subsection 4.1.1. Observe that (4.1.6) is precisely in the form of (4.3.13) and so
in order to formulate our Gauss–Newton iterations we need to linearize the vector
valued function

w 7→
(
w,g(x∂Ω), f (xΩ) − τ(w)

)
,

which can easily be achieved by linearizing τ. To this end, we solve (4.3.13) via the
iteration w`+1 = w` + α`δw` where δw` is the minimizer of the functional

(
w`+δw,g(x∂Ω), f (xΩ)−τ(w`)−δwT∇τ(w`)

)
K(φ,φ)−1 ©­­«

w` + δw
g(x∂Ω)

f (xΩ) − τ(w`) − δwT∇τ(w`)

ª®®®¬ .
We also note that the sequence of approximations obtained by the above implementa-
tion of Gauss–Newton coincides with successive kernel collocation approximations
of the solution of the following particular linearization of the PDE,

− ∆u + uτ′(un) = f − τ(un) + unτ′(un) , (4.3.18)

subject to the Dirichlet boundary conditions. ^

4.3.4.3 Computational Bottlenecks

The primary computational cost of our method lies in the approximation of the
matrix Θ−1. Efficient factorizations and approximations of Θ−1 have been studied
extensively in the GP regression literature [219] as well as spatial statistics, Kriging
and numerical analysis (see [240, 241] and the discussions within). In this work, we
do not employ these algorithms and choose instead to use standardO(N3) algorithms
to factorize Θ.

The algorithm introduced in [240] is particularly interesting as it directly approxi-
mates the Cholesky factors of Θ−1 by querying a subset of the entries of Θ. In fact,
that algorithm alleviates the need for a small diagonal regularization (“nugget”) term
by directly computing the Cholesky factors ofΘ−1 from the entries ofΘ. This could
be done by extending the algorithm introduced and analyzed in [240]. This algo-
rithm is based on the identification of an explicit formula for computing approximate
Cholesky factors L minimizing the Kullback-Leibler divergence betweenN(0,Θ−1)

andN(0, LLT ) given a sparsity constraint on the entries of L. The proposed formula
is equivalent to the Vecchia approximation [278] (popular in geostatistics). The
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resulting algorithm outlined in [240] computes ε approximate Cholesky factors of
Θ−1 in O(N log2d(N/ε)) complexity by accessing O(N logd(N/ε)) entries of Θ.

Another possible bottleneck is the computation of the gamblets χn. The articles
[204, 241] show that the gamblets can be approximated with compactly supported
functions in complexity O(N log2d+1(N/ε)). We also note that the complexity-vs-
accuracy guarantees of [204, 240, 241] have only been established for functionals
φn that are Dirac delta functions and kernels K that are the Green’s functions of
arbitrary elliptic differential operators (mapping Hs(Ω) to H−s(Ω)). Extension of
those results to functionals φn considered here is an interesting future direction.

4.3.5 Numerical Experiments for Nonlinear PDEs
In this subsection, we implement our algorithm to solve several nonlinear PDEs,
including the nonlinear elliptic equation in Subsection 4.3.5.1, Burgers’ equation in
Subsection 4.3.5.2 and the regularized Eikonal equation in Subsection 4.3.5.3. For
all of these equations, we will start with a fixed M and demonstrate the performance
of our algorithm by showing the pattern of collocation points, the loss function
history of the Gauss–Newton iteration, and contours of the solution errors. Then,
we vary the value of M and study how the errors change with respect to M . We also
compare the elimination and relaxation approaches for dealing with the nonlinear
constraints.

All the experiments are conducted using Python with the JAX package for auto-
matic differentiation7. In particular, we use automatic differentiation to form the
kernel matrix Θ that involves derivatives of the kernel function, and to optimize
the loss function via the Gauss–Newton method. Details on the choice of small
diagonal regularization (“nugget”) terms for these experiments are presented in
Appendices A.1.2 through A.1.4.

Remark 4.3.7. In all of the numerical experiments in this section we used a set
of collocation points that are drawn randomly from the uniform distribution over
the domain Ω, as opposed to the deterministic uniform grid used in Subsection
4.1.1.4. The choice of the random collocation points was made to highlight the
flexibility of our methodology. Furthermore, random collocation points are often
used in other machine learning algorithms for solution of PDEs such as PINNs [222]
and so adopting this approach allows direct comparison with such methods. We

7We use JAX for convenience and all derivatives in our methodology can be computed using
standard techniques such as symbolic computation or adjoint methods.
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observed empirically that the random grids had similar accuracy to the deterministic
uniform grid in all experiments except for Burgers’ equation in Subsection 4.3.5.2,
where random collocation points outperformed the uniform grid. Understanding
this surprising performance gap is an interesting problem related to active learning
and the acquisition of collocation points; we do not address this issue here.

Remark 4.3.8. Float64 data type was employed in the experiments below. This
allows the use of small diagonal regularization (“nugget”) terms (see Appendix A.1
for details) which do not affect accuracy in the computations described in this work.
In contrast, if Float32 data type (the default setting in JAX) is used, we found the
need to regularize Θ with larger diagonal terms, leading to an observable accuracy
floor.

4.3.5.1 A Nonlinear Elliptic PDE

We revisit again the nonlinear elliptic equation in (4.1.1). As in Subsection 4.1.1.4,
we take d = 2, Ω = (0,1)2 and τ(u) = u3 together with homogeneous Dirichlet
boundary conditions g(x) = 0. The true solution is prescribed to be u?(x) =
sin(πx1) sin(πx2) + 4 sin(4πx1) sin(4πx2) and the corresponding right hand side
f (x) is computed using the equation. We choose the Gaussian kernel K(x,y;σ) =
exp

(
−
|x−y|2
2σ2

)
with a lengthscale parameter σ.
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Figure 4.2: Numerical results for the nonlinear elliptic PDE (4.1.1): (a) a sample of
collocation points and contours of the true solution; (b) convergence history of the
Gauss–Newton algorithm; (c) contours of the solution error. An adaptive nugget
term with global parameter η = 10−13 was employed (see Appendix A.1.2)

.

First, for M = 1024 and MΩ = 900, we randomly sample collocation points in
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Ω as shown in Figure 4.2(a). We further show an instance of the convergence
history of the Gauss–Newton algorithm in Figure 4.2(b) where we solved the un-
constrained optimization problem (4.1.6) after eliminating the equality constraints.
We used kernel parameter σ = M−1/4 and appropriate nugget terms as outlined in
Appendix A.1.2. We initiated the algorithm with a Gaussian random initial guess.
We observe that only 3 steps sufficed for convergence. In Figure 4.2(c), we show
the contours of the solution error. The error in the approximate solution is seen
to be fairly uniform spatially, with larger errors observed near the boundary, when
M = 1024. We note that the main difference between these experiments and those
in Subsection 4.1.1.4 is that here we used randomly distributed collocation points
while a uniform grid was used previously.

Next, we compare two approaches for dealing with the PDE constraints as outlined
in Subsection 4.3.3. We applied both the elimination and relaxation approaches,
defined by the optimization problems (4.3.13) and (4.3.15) respectively, for different
choices of M . In the relaxation approach, we set β2 = 10−10. Here we set
M = 300,600,1200,2400 and MΩ = 0.9 × M . The L2 and L∞ errors of the
converged Gauss–Newton solutions are shown in Table 4.1. Results were averaged
over 10 realizations of the random collocation points. From the table we observe that
the difference in solution errors was very mild and both methods were convergent as
M increases. We note that in the relaxed setting, convergence is closely tied to our
choice of β, and choosing an inadequate value, i.e. too small or too large, can lead
to inaccurate solutions. In terms of computational costs, the elimination approaches
take 2-3 steps of Gauss–Newton iterations on average, while the relaxation approach
needs 5-8 steps. Thus while the elimination strategy appears to be more efficient,
we do not observe a significant difference in the order of complexity of the methods
for dealing with the constraints, especially when the number of collocation points
becomes large.

4.3.5.2 Burgers’ Equation

We consider numerical solution of the viscous Burgers equation:

∂tu + u∂su − ν∂2
s u = 0, ∀(s, t) ∈ (−1,1) × (0,1] ,

u(s,0) = − sin(πx) ,

u(−1, t) = u(1, t) = 0 .

(4.3.19)
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M 300 600 1200 2400
Elimination: L2 error 4.84e-02 6.20e-05 2.74e-06 2.83e-07
Elimination: L∞ error 3.78e-01 9.71e-04 4.56e-05 5.08e-06
Relaxation: L2 error 1.15e-01 1.15e-04 1.87e-06 1.68e-07
Relaxation: L∞ error 1.21e+00 1.45e-03 3.38e-05 1.84e-06

Table 4.1: Comparison between the elimination and relaxation approaches to deal
with the equality constraints for the nonlinear elliptic PDE (4.1.1). Uniformly ran-
dom collocation points were sampled with different M and MΩ = 0.9M . Adaptive
nugget terms were employed with the global nugget parameter η = 10−12 (see Ap-
pendix A.1.2). The lengthscale parameter σ = 0.2. Results were averaged over
10 realizations of the random collocation points. The maximum Gauss-Newton
iteration was 10.

We adopt an approach in which we solve the problem by conditioning a Gaussian
process in space-time8. In our experiments we take ν = 0.02 and consider x = (s, t).
We write this PDE in the form of (4.3.3) with Q = 4 and Qb = 1 with linear
operators L1(u) = u, L2(u) = ∂tu, L3(u) = ∂su, L4(u) = ∂2

s u and the nonlinear map
P(v1, v2, v3, v4) = v2 + v1v3 − νv

2
4 . The boundary part is simply B(v1) = v1. We

then eliminate the equality constraints in our optimization framework following the
approach of Subsection 4.3.3.1 using the equation v2 = νv

2
4 − v1v3.

We randomly sampled M = 2400 with MΩ = 2000 points in the computational
domain Ω = [−1,1] × [0,1] see Figure 4.3(a), where we also plot contours of
the true solution u. The Gauss–Newton algorithm was then applied to solve the
unconstrained optimization problem. We computed the true solution from the
Cole–Hopf transformation, together with the numerical quadrature. Since the time
and space variability of the solution to Burgers’ equation are significantly different,
we chose an anisotropic kernel

K
(
(s, t), (s′, t′);σ

)
= exp

(
−σ−2

1 (s − s′)2 − σ−2
2 (t − t′)2

)
with σ = (1/20,1/3) together with an adaptive diagonal regularization (“nugget”)
as outlined in Appendix A.1.3.

We plot the Gauss–Newton iteration history in Figure 4.3(b) and observe that 10
steps sufficed for convergence. We compare the converged solution to the true
solution and present the contours of the error in Figure 4.3(c). The maximum errors

8It would also be possible to look at an incremental in time approach, for example using backward
Euler discretization, in which one iteratively in time solves a nonlinear elliptic two point boundary
value problem by conditioning a spatial Gaussian process; we do not pursue this here and leave it as
a future direction.
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occured close to the (viscous) shock at time 1 as expected. In Figure 4.3(d–f),
we also compare various time slices of the numerical and true solutions at times
t = 0.2,0.5,0.8 to further highlight the ability of ourmethod in capturing the location
and shape of the shock.
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Figure 4.3: Numerical results for Burgers equation (4.3.19): (a) an instance of
uniformly sampled collocation points in space-time over contours of the true so-
lution; (b) Gauss–Newton iteration history; (c) contours of the pointwise error of
the numerical solution; (d–f) time slices of the numerical and true solutions at
t = 0.2,0.5,0.8. An adaptive nugget term with global parameter η = 10−10 was
employed (see Appendix A.1.3).

Next, we studied the convergence properties of our method as a function of M

as shown in Table 4.2. Here, we varied M with a fixed ratio of interior points,
MΩ/M = 5/6. For each experiment we ran 10 steps of Gauss–Newton starting from
a Gaussian random initial guess. Results were averaged over 10 realizations of the
random collocation points. From the table, we observe that the error decreases very
fast as M increases, implying the convergence of our proposed algorithm.

Finally, we note that the accuracy of our method is closely tied to the choice of the
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viscosity parameter ν and choosing a smaller value of ν, which in turn results in
a sharper shock, can significantly reduce our accuracy. This phenomenon is not
surprising since a sharper shock corresponds to the presence of shorter length and
time scales in the solution; these in turn, require a more careful choice of the kernel,
as well as suggesting the need to carefully choose the collocation points.

M 600 1200 2400 4800
L2 error 1.75e-02 7.90e-03 8.65e-04 9.76e-05
L∞ error 6.61e-01 6.39e-02 5.50e-03 7.36e-04

Table 4.2: Space-time L2 and L∞ solution errors for the Burgers’ equation (4.3.19)
for different choices of M with kernel parameters σ = (20,3) and global nugget
parameter η = 10−5 if M ≤ 1200 and η = 10−10 otherwise (see Appendix A.1.3).
Results were averaged over 10 realizations of the random collocation points. The
maximum Gauss-Newton iteration was 30.

4.3.5.3 Eikonal PDE

We now consider the regularized Eikonal equation in Ω = [0,1]2:{
|∇u(x)|2 = f (x)2 + ε∆u(x), ∀x ∈ Ω ,

u(x) = 0, ∀x ∈ ∂Ω ,
(4.3.20)

with f = 1 and ε = 0.1. We write this PDE in the form of (4.3.3) with Q = 4
and Qb = 1 and linear operators L1(u) = u, L2(u) = ∂x1u, L3(u) = ∂x2u, L4(u) = ∆u

and nonlinear map P(v1, v2, v3, v4) = v2
2 + v2

3 − εv4 in the interior of Ω and define
the boundary operator identically to Subsection 4.3.5.2. We further eliminate the
nonlinear constraints, as outlined in Subsection 4.3.3.1, by solving v4 in terms of
v2, v3. To obtain a “true” solution, for the purpose of estimating errors, we employ
the transformation u = −ε log v, which leads to the linear PDE f v − ε2∆v = 0; we
solve this by a highly-resolved FD method, and we used 2000 uniform grid points
in each dimension of the domain leading to the finest mesh that our hardware could
handle.

As before, we began with M = 2400 collocation points with MΩ = 2160 interior
points. An instance of these collocation points along with contours of the true
solution are shown in Figure 4.4(a). We employed a nugget term as outlined
in Appendix A.1.4 and used the Gaussian kernel, as in Subsection 4.3.5.1 with
σ = M−1/4. Finally we used the Gauss–Newton algorithm to find the minimizer.
We show the convergence history of Gauss–Newton in Figure 4.4(b), observing
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that six iterations were sufficient for convergence. In Figure 4.4(c) we show the
error contours of the obtained numerical approximation, which appeared to be
qualitatively different to Figure 4.2(c) in that the errors were larger in the middle of
the domain as well as close to the boundary.
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Figure 4.4: Numerical results for the regularized Eikonal equation (4.3.20): (a) an
instance of uniformly sampled collocation points over contours of the true solution;
(b) Gauss–Newton iteration history; (c) contour of the solution error. An adaptive
nugget term with η = 10−10 was used (see Appendix A.1.4).

Next we performed a convergence study by varying M and computing L2 and
L∞ errors as reported in Table 4.3 by choosing the lengthscale parameter of the
kernel σ = M−1/4. We used the same nugget terms as in the Burgers’ equation
(see Appendix A.1.4). Results were averaged over 10 realizations of the random
collocation points. Once again we observe clear improvements in accuracy as the
number of collocation points increases.

M 300 600 1200 2400
L2 error 1.01e-01 1.64e-02 2.27e-04 7.78e-05
L∞ error 3.59e-01 7.76e-02 3.22e-03 1.61e-03

Table 4.3: Numerical results for the regularized Eikonal equation (4.3.20). Uni-
formly random collocation points were sampled with different M and with fixed
ratio MΩ = 0.9M . An adaptive nugget term was used with global nugget parameter
η = 10−5 if M ≤ 1200 and η = 10−10 otherwise (see Appendix A.1.4), together with
a Gaussian kernel with lengthscale parameter σ = M−1/4. Results were averaged
over 10 realizations of the random collocation points. The maximumGauss-Newton
iteration was 20.
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4.4 Solving Inverse Problems
We now turn our attention to solution of IPs and show that the methodology of
Subsections 4.3.1–4.3.4 can readily be extended to solve such problems with small
modifications. We descibe the abstract setting of our IPs in Subsection 4.4.1 leading
to Corollary 4.4.4 which is analogous to Proposition 4.2.3 and Corollary 4.3.2 in
the setting of IPs. Subsection 4.4.2 outlines our approach for dealing with PDE
constraints in IPs and highlights the differences in this setting in comparison to the
PDE setting described in Subsection 4.3.3. Subsection 4.4.3 further highlights the
implementation differences between the PDE and IP settings while Subsection 4.4.4
presents a numerical experiment concerning an IP in subsurface flow governed by
the Darcy flow PDE.

4.4.1 Problem Setup
Consider our usual setting of a nonlinear parameteric PDE in strong form{

P(u?; a?)(x) = f (x), ∀x ∈ Ω ,

B(u?; a?)(x) = g(x), ∀x ∈ ∂Ω .
(4.4.1)

As before we assume the solution u? belongs to a quadratic Banach spaceU while
a? is a parameter belonging to another quadratic Banach space A. Our goal in this
subsection is to identify the parameter a? from limited observations of the solution
u?. To this end, fix ψ1, . . . ,ψI ∈ U

t and define

ψ := (ψ1, . . . ,ψI) ∈ (U
t)⊗I , (4.4.2)

then our goal is to recover a? given the noisy observations

o = [ψ,u] + ε, ε ∼ N(0, γ2I) . (4.4.3)

We propose to solve this inverse problem bymodelling both u? and a?with canonical
GPs on the spaces U,A with invertible covariance operators K : Ut → U and
K̃ : At → A respectively. We then condition these GPs to satisfy the PDE on
collocation points x1, . . . ,xM ∈ Ω as before and propose to approximate u?,a?

simultaneously via the optimization problem:
minimize
(u,a)∈U×A

‖u‖2
U
+ ‖a‖2A +

1
γ2

��[ψ,u] − o
��2

s.t. P(u; a)(xm) = f (xm), for m = 1, . . . ,MΩ ,

B(u; a)(xm) = g(xm), for m = MΩ + 1, . . . ,M ,

(4.4.4)
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where we used subscripts to distinguish the quadratic norms on the spaces U and
A.

Remark 4.4.1. In light of Remark 4.2.4 we observe that (4.4.4) corresponds to
imposing a prior measure on u,a which assumes they are a priori independent. It is
straightforward to introduce correlations between the solution u and the parameter
a by defining the prior measure directly on the product spaceU×A. This perspec-
tive will then lead to an analogous optimization problem to (4.4.4) with the same
constraints but with the functional

‖(u,a)‖2
U×A

+
1
γ2 |[ψ,u] − o|2,

where we used ‖ · ‖U×A to denote the RKHS norm of the GP associated withU×A.

Remark 4.4.2. We also note that the Bayesian interpretation of (4.4.4) can be
viewed as an extension of gradient matching [39, 165] from ODEs to PDEs. Indeed,
gradient matching simultaneously approximates the unknown parameters and the
solution of an ODE system using a joint GP prior and imposes the ODE as a
constraint at finitely many time steps.

We make analogous assumptions on the form of the operators P,B as in Assump-
tion 4.3.1 but this time also involving the parameters a:

Assumption 4.4.3. There exist bounded and linear operators L1, . . . , LQ ∈ L(U; C(Ω))

in which L1, . . . , LQb
∈ L(U; C(∂Ω)) for some 1 ≤ Qb ≤ Q, and L̃1, . . . , L̃J ∈

L(A; C(Ω)) together with maps P : RQ+J → R and B : RQb+J → R, which may be
nonlinear, so that P(u; a)(x) and B(u; a)(x) can be written as

P(u; a)(x) = P
(
L1(u)(x), . . . , LQ(u)(x); L̃1(a)(x), . . . L̃J(a)(x)

)
, ∀x ∈ Ω ,

B(u; a)(x) = B
(
L1(u)(x), . . . , LQb

(u)(x); L̃1(a)(x), . . . L̃J(a)(x)
)
, ∀x ∈ ∂Ω .

(4.4.5)

Similarly to the Lq, the L̃ j operators are also linear differential operators in case of
prototypical PDEs while the maps P,B remain as simple algebraic nonlinearities.
Let us briefly consider an IP in subsurface flow and verify the above assumption.

Example DF (Darcy flow IP). Let Ω = (0,1)2 and consider the Darcy flow PDE
with Dirichlet boundary conditions{

−div (exp(a)∇u) (x) = f (x), x ∈ Ω ,

u(x) = 0, x ∈ ∂Ω .
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We wish to approximate a ∈ C1(Ω) given noisy pointwise observations of u at a set
of points x̃1, . . . , x̃I . Thus, we take ψi = δx̃i . By expanding the PDE we obtain

−div (exp(a)∇u) = − exp(a) (∇a · ∇u + ∆u) ,

and so we simply choose Q = 3, Qb = 1 and J = 2 with the linear operators

L1(u) = u, L2(u) = ∇u, L3(u) = ∆u, L̃1(a) = a, L̃2(a) = ∇a .

We can then satisfy Assumption 4.4.5 by taking

P(v1,v2, v3; v4,v5) = − exp(v4) (v5 · v2 + v3) , B(v1; v4,v5) = v1 , (4.4.6)

wherewe have slightly abused notation by letting L2, L̃2 be vector valued and defining
P,B to take vectors as some of their inputs. ^

As in Subsection 4.3.1 we now define the functionals φ(q)m ∈ U
t for m = 1, . . . ,M

and q = 1, . . . ,Q according to (4.3.4) and (4.3.6) with N = MQb + MΩ(Q − Qb).
Similarly we define the functionals φ̃( j)m ∈ A

t as

φ̃
( j)
m := δxm ◦ L̃ j, for m = 1, . . . ,M, and j = 1, . . . , J , (4.4.7)

together with the vectors

φ̃
( j)
= (φ̃

( j)
1 , . . . φ̃

( j)
M ) ∈ (A

t)⊗M and φ̃ = (φ̃
(1)
, . . . , φ̃

(J)
) ∈ (At)⊗Ñ , (4.4.8)

where Ñ := M J. Similarly to (4.3.8) define the map(
F([φ,u]U ; [φ̃,a]A)

)
m :={

P([φ(1)m ,u]U, . . . , [φ
(Q)
m ,u]U ; [φ̃(1)m ,a]A, . . . , [φ̃

(J)
m ,a]A) if m ∈ {1, . . . ,MΩ} ,

B([φ(1)m ,u]U, . . . , [φ
(Qb)
m ,u]U ; [φ̃(1)m ,a]A, . . . , [φ̃

(J)
m ,a]A) if m ∈ {MΩ + 1, . . . ,M} ,

where we used subscripts to distinguish the duality pairings betweenU,Ut and the
pairing between A,At . With this new notation we can finally rewrite (4.4.4) in the
familiar form 

minimize
(u,a)∈U×A

‖u‖2
U
+ ‖a‖2A +

1
γ2 |ψ(u) − o|2

s.t. F
(
[φ,u]U ; [φ̃,a]A

)
= y,

(4.4.9)

with the PDE data vector y ∈ RM defined in (4.3.7).
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We can now apply Proposition 4.2.3 with the canonical GP defined on the product
space U × A and with a block diagonal covariance operator K ⊗ K̃ to obtain a
representer theorem forminimizer of (4.4.9). We state this result as a corollary below
after introducing some further notation. Define the vector ϕ = (ϕ1, . . . , ϕN+I) ∈

(Ut)⊗(I+N),with entries 9

ϕn :=

{
ψn, if n = 1, . . . , I,

φn−I, if n = I + 1, . . . , I + N,

as well as the matrices Θ ∈ R(I+N)×(I+N) and Θ̃ ∈ RÑ×Ñ with entries

Θi,n = [ϕi,Kϕn]U and Θ̃i,n = [φ̃i, K̃ φ̃n]A .

As in (4.2.3) we define the gamblets

χi =

N+I∑
n=1
Θ
−1
i,nKϕn, and χ̃i =

Ñ∑
n=1
Θ̃
−1
i,n K̃ φ̃n.

Then Proposition 4.2.3 yields the following corollary.

Corollary 4.4.4. Suppose Assumption 4.4.3 holds and that the covariance operators
K and K̃ as well as the matrices Θ and Θ̃ are invertible. Then (u†,a†) ∈ U × A is
a minimizer of (4.3.2) if and only if

u† =
I+N∑
n=1

z†n χn, and a† =
Ñ∑

n=1
z̃†n χ̃n,

where the vectors z†, z̃† are minimizers of
minimize

(z,̃z)∈(RI+N×RÑ )

zT
Θ
−1z + z̃T

Θ̃
−1̃z +

1
γ2 |Π

Iz − o|2

s.t. F(ΠNz; z̃) = y,
(4.4.10)

where ΠI : RI+N → RI is the projection that extracts the first I entries of a vector
while ΠN : RI+N → RN is the projection that extracts the last N entries.

4.4.2 Dealing with the Constraints
The equality constraints in (4.4.10) can be dealt with using the same strategies as
in Subsection 4.3.3. Indeed, as in Subsection 4.3.3.2, we can readily relax these

9Note that we are concatenating the I measurement functionals defining the data for the IP with
the N functionals used to define the PDE at the collocation points.
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constraints to obtain the optimization problem

minimize
(z,̃z)∈(RI+N×RÑ )

zT
Θ
−1z + z̃T

Θ̃
−1̃z +

1
γ2 |Π

Iz − o|2 +
1
β2 |F(ΠNz; z̃) − y|2 ,

(4.4.11)
for a small parameter β2 > 0. Elimination of the constraints as in Subsection 4.3.3.1
is slightly more delicate, but is sometimes possible. Suppose there exists a solution
map F : RN+Ñ−M × RM → RN+Ñ so that

F(ΠNz; z̃) = y if and only if (ΠNz, z̃) = F(w,y) for a unique w ∈ RN+Ñ−M .

Then solving (4.4.10) is equivalent to solving the unconstrained problem

minimize
(v,w)∈RI×RN+Ñ−M

(v,F(w,y))

[
Θ−1 0

0 Θ̃−1

] (
v

F(w,y)

)
+

1
γ2 |v − o|2, (4.4.12)

and setting ΠIz† = v† and (ΠNz†, z̃) = F(w†,y).

4.4.3 Implementation
Both of the problems (4.4.11) and (4.4.12) can be solved using the same techniques
outlined in Subsection 4.3.4 except that we now have a higher dimensional solution
space. Below we briefly describe the main differences between the implementation
of the PDE and IP solvers.

4.4.3.1 Constructing Θ and Θ̃

We propose to construct the matricesΘ, Θ̃ using appropriate kernels K , for the solu-
tion u of the PDE, and K̃ , for the parameter a identically to Subsection 4.3.4.1. Our
minimum requirements on K, K̃ is sufficient regularity for the pointwise constraints
in (4.4.4) to be well-defined. Since we have limited and noisy data in the inverse
problem setting, it is not possible for us to recover the exact solution (u?,a?) in
general and so the kernels K, K̃ should be chosen to reflect our prior assumptions
on the unknown parameter and the solution of the PDE at that parameter value.

4.4.4 Numerical Experiments for Darcy Flow
In this subsection, we apply our method to an IP involving the Darcy flow PDE. We
consider the IP outlined in Example DF with the true coefficient a?(x) satisfying

exp
(
a?(x)

)
= exp

(
sin(2πx1) + sin(2πx2)

)
+ exp

(
− sin(2πx1) − sin(2πx2)

)
,

and the right hand side source term is f = 1. We randomly sampled M = 500
collocation points with MΩ = 400 in the interior. From these 400 interior points,
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Figure 4.5: Numerical results for the inverseDarcy flow: (a) an instance of uniformly
sampled collocation points and data points; (d) Gauss–Newton iteration history; (b)
true a; (e) recovered a; (c) true u; (f) recovered u. Adaptive diagonal regularization
(“nugget”) terms were added to the kernel matrix, with parameters η = η̃ = 10−5 as
outlined in Appendix A.1.5.

we randomly chose I = 40 points and observed the values of u(x) at those points
as the data for the IP. The values of u(x) for this purpose were generated by first
solving the equation with the true coefficient on a uniform grid and then using
linear interpolation to get the solution at the observation points. We further added
independent Gaussian noise N(0, γ2I) with noise standard deviation γ = 10−3 to
these observations. In dealing with the nonlinear constraint shown in Example DF,
we eliminated the variable v3 using the relation in (4.4.6).

We chose Gaussian kernels for both u and a with the same lengthscale parameter
σ = 0.2 and adaptive diagonal (“nugget”) terms were added to the kernel matrices,
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with parameters η = η̃ = 10−5, to regularizeΘ and Θ̃ as outlined in Appendix A.1.5.
In Figure 4.5 we show the experimental results for recovering both a and u. From
the figure, we observe that the Gauss–Newton iterations converged after 6 steps.
Moreover, the recovered a and u are reasonably accurate, i.e. they capture the shape
of the truth, given the limited amount of observation information available.

4.5 Conclusions
We have introduced a kernel/GP framework for solving nonlinear PDEs and IPs
centered around the idea of approximating the solution of a given PDE with a
MAP estimator of a GP conditioned on satisfying the PDE at a set of collocation
points. Theoretically, we exhibited a nonlinear representer theorem which finite-
dimensionalizes the MAP estimation problem and proved the convergence of the
resulting solution towards the truth as the number of collocation points goes to
infinity, under some regularity assumptions. Computationally, we demonstrated
that the solution can be found by solving a finite-dimensional optimization problem
with quadratic loss and nonlinear constraints. We presented twomethods for dealing
with the nonlinear constraints, namely the elimination and relaxation approaches.
An efficient variant of the Gauss–Newton algorithm was also proposed for solving
the resulting unconstrained optimization problem, where an adaptive nugget term
was employed for regularization together with offline Cholesky factorizations of the
underlying kernel matrices. We demonstrated that the proposed algorithm performs
well in a wide range of prototypical nonlinear problems such as a nonlinear elliptic
PDE, Burgers’ equation, a regularized Eikonal equation, and the identification of
the permeability field in Darcy flow.
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C h a p t e r 5

SPARSE CHOLESKY FACTORIZATION FOR SOLVING PDES
VIA GAUSSIAN PROCESSES

In this chapter, we introduce a sparse Cholesky factorization algorithm to scale up
the GP method for solving PDEs. The exposition is based on our work [50].

5.1 Introduction
Machine learning and probabilistic inference [191] have become increasingly popu-
lar due to their ability to automate the solution of computational problems. Gaussian
processes (GPs) [290] are a promising approach for combining the theoretical rigor
of traditional numerical algorithms with the flexible design of machine learning
solvers [201, 203, 224, 54, 43]. They also have deep connections to kernel meth-
ods [247, 239], neural networks [194, 158, 134], and meshless methods [239,
301]. This chapter studies the computational efficiency of GPs in solving nonlinear
PDEs, where we need to deal with dense kernel matrices with entries obtained from
pointwise values and derivatives of the covariance kernel function of the GP. The
methodology developed here may also be applied to other contexts where derivative
information of a GP or function is available, such as in Bayes optimization [294].

5.1.1 The problem
The GPmethod in [43] transforms every nonlinear PDE into the following quadratic
optimization problem with nonlinear constraints:

min
z∈RN

zT K(φ,φ)−1z

s.t. F(z) = y ,
(5.1.1)

where F and y encode the PDE and source/boundary data. K(φ,φ) ∈ RN×N is a
positive definite kernel matrix whose entries are k(xi,x j) or (a linear combination
of) derivatives of the kernel function such as ∆xk(xi,x j). Here xi,x j ∈ R

d are
some sampled collocation points in space. Entries like k(xi,x j) arise from Diracs
measurements while entries like ∆xk(xi,x j) come from derivative measurements of
the GP. For more details of the methodology, see Section 5.2. Computing with the
dense matrix K(φ,φ) naïvely results in O(N3) space/time complexity.
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5.1.2 Contributions
This chapter presents an algorithm that runs with complexity O(N logd(N/ε)) in
space and O(N log2d(N/ε)) in time, which outputs a permutation matrix Pperm and
a sparse upper triangular matrix U with O(N logd(N/ε)) nonzero entries, such that

‖K(φ,φ)−1 − PT
permUUT Pperm‖Fro ≤ ε , (5.1.2)

where ‖ · ‖Fro is the Frobenius norm. We elaborate the algorithm in Section 5.3.

Our error analysis, presented in Section 5.4, requires sufficient Diracs measurements
to appear in the domain. The setting of the rigorous result is for a class of kernel
functions that are Green functions of differential operators such as the Matérn-like
kernels, although the algorithm is generally applicable. The analysis is based on the
interplay between linear algebra, Gaussian process conditioning, screening effects,
and numerical homogenization, which shows the exponential decay/near-sparsity
of the inverse Cholesky factor of the kernel matrix after permutation.

To solve (5.1.1), one efficient method is to linearize the constraint and solve a
sequential quadratic programming problem. This leads to a linear system that
involves a reduced kernel matrix K(φk,φk) := DF(zk)K(φ,φ)(DF(zk))T at each
iterate zk ; see Section 5.5. For this reduced kernel matrix, there are insufficient
Diracs measurements in the domain, and we no longer have the above theoretical
guarantee for its sparse Cholesky factorization. Nevertheless, we can still apply the
algorithm with a slightly different permutation and couple it with preconditioned
conjugate gradient (pCG) methods to solve the linear system. Our experiments
demonstrate that nearly constant steps of pCG suffice for convergence.

For many nonlinear PDEs, we observe that the above sequential quadratic program-
ming approach converges in O(1) steps. Consequently, our algorithm leads to a
near-linear space/time complexity solver for general nonlinear PDEs, assuming it
converges. The assumption of convergence depends on the selection of kernels and
the property of the PDE, and we demonstrate it numerically in solving nonlinear
elliptic, Burgers, and Monge-Ampère equations; see Section 5.6.

5.1.3 Related work
5.1.3.1 Machine learning PDEs

Machine learning methods, such as those based on neural networks (NNs) and GPs,
have shown remarkable promise in automating scientific computing, for instance in
solving PDEs. Recent developments in this field include operator learning using
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prepared solution data [163, 29, 196, 172] and learning a single solution without
any solution data [115, 222, 43, 138]. This work focuses on the latter. NNs provide
an expressive function representation. Empirical success has been widely reported
in the literature. However, the training of NNs often requires significant tuning and
takes much longer than traditional solvers [106]. Considerable research efforts have
been devoted to stabilizing and accelerating the training process [150, 282, 284, 64,
299].

GP and kernel methods are based on amore interpretable and theoretically grounded
function representation rooted in the Reproducing Kernel Hilbert Space (RKHS)
theory [288, 25, 204]; with hierarchical kernel learning [292, 206, 51, 60], these
representations can be made expressive as well. Nevertheless, working with dense
kernel matrices is common, which often limits scalability. In the case of PDE
problems, these matrices may also involve partial derivatives of the kernels [43],
and fast algorithms for such matrices are less developed compared to the derivative-
free counterparts.

5.1.3.2 Fast solvers for kernel matrices

Approximating dense kernel matrices (denoted by Θ) is a classical problem in
scientific computing and machine learning. Most existing methods focus on the case
whereΘ only involves the pointwise values of the kernel function. These algorithms
typically rely on low-rank or sparse approximations, as well as their combination
and multiscale variants. Low-rank techniques include Nyström’s approximations
[291, 192, 42], rank-revealing Cholesky factorizations [107], inducing points via a
probabilistic view [219], and random features [221]. Sparsity-basedmethods include
covariance tapering [92], local experts (see a review in [167]), and approaches
based on precision matrices and stochastic differential equations [166, 230, 236,
235]. Combining low-rank and sparse techniques can lead to efficient structured
approximation [293] and can better capture short and long-range interactions [234].
Multiscale and hierarchical ideas have also been applied to seek for a full-scale
approximation of Θ with a near-linear complexity. They include H matrix [110,
112, 111] and variants [162, 9, 10, 152, 189] that rely on the low-rank structure of
the off-diagonal blockmatrices at different scales; wavelets-basedmethods [28, 100]
that use the sparsity of Θ in the wavelet basis; multiresolution predictive processes
[139]; and Vecchia approximations [278, 140] and sparse Cholesky factorizations
[241, 240] that rely on the approximately sparse correlation conditioned on carefully
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ordered points.

For Θ that contains derivatives of the kernel function, several work [81, 211, 66]
has utilized structured approximation to scale up the computation; no rigorous
accuracy guarantee is proved. The inducing points approach [295, 187] has also
been explored; however since this method only employs a low-rank approximation,
the accuracy and efficiency can be limited.

5.1.3.3 Screening effects in spatial statistics

Notably, the sparse Cholesky factorization algorithm in [240], formally equiva-
lent to Vecchia’s approximation [278, 140], achieves a state-of-the-art complexity
O(N logd(N/ε)) in space and O(N log2d(N/ε)) in time for a wide range of kernel
functions, with a rigorous theoretical guarantee. This algorithm is designed for
kernel matrices with derivative-free entries and is connected to the screening ef-
fect in spatial statistics [259, 256]. The screening effect implies that approximate
conditional independence of a spatial random field is likely to occur, under suitable
ordering of points. The line of work [203, 204, 241] provides quantitative expo-
nential decay results for the conditional covariance in the setting of a coarse-to-fine
ordering of data points, laying down the theoretical groundwork for [240].

A fundamental question is how the screening effect behaves when derivative infor-
mation of the spatial field is incorporated, and how to utilize it to extend sparse
Cholesky factorization methods to kernel matrices that contain derivatives of the
kernel. The screening effect studied within this new context can be useful for
numerous applications where derivative-type measurements are available.

5.2 Solving Nonlinear PDEs via GPs
In this section, we review the GP framework in [43] for solving nonlinear PDEs.
We will use a prototypical nonlinear elliptic equation as our running example to
demonstrate themain ideas, followed bymore complete recipes for general nonlinear
PDEs.

Consider the following nonlinear elliptic PDE:{
−∆u + τ(u) = f in Ω ,

u = g on ∂Ω ,
(5.2.1)

where τ is a nonlinear scalar function and Ω is a bounded open domain in Rd with
a Lipschitz boundary. We assume the equation has a strong solution in the classical
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sense.

5.2.1 The GP framework
The first step is to sample MΩ collocation points in the interior and M∂Ω on the
boundary such that

xΩ = {x1, ...,xMΩ} ⊂ Ω and x∂Ω = {xMΩ+1, ...,xM} ⊂ ∂Ω ,

where M = MΩ + M∂Ω. Then, by assigning a GP prior to the unknown function u

with mean 0 and covariance function K : Ω ×Ω→ R, the method aims to compute
the maximum a posterior (MAP) estimator of the GP given the sampled PDE data,
which leads to the following optimization problem

minimize
u∈U

‖u‖

s.t. − ∆u(xm) + τ(u(xm)) = f (xm), for m = 1, . . . ,MΩ ,

u(xm) = g(xm), for m = MΩ + 1, . . . ,M .

(5.2.2)

Here, ‖ · ‖ is the Reproducing Kernel Hilbert Space (RKHS) norm corresponding
to the kernel/covariance function K .

Regarding consistency, once K is sufficiently regular, the above solution will con-
verge to the exact solution of the PDE when MΩ,M∂Ω → ∞; see Theorem 1.2 in
[43]. The methodology can be seen as a nonlinear generalization of many radial
basis function based meshless methods [239] and probabilistic numerics [201, 54].

5.2.2 The finite dimensional problem
The next step is to transform (5.2.2) into a finite-dimensional problem for computa-
tion. We first introduce some notations:

• Notations for measurements: We denote the measurement functions by

φ
(1)
m = δxm,1 ≤ m ≤ M and φ

(2)
m = δxm ◦ ∆,1 ≤ m ≤ MΩ ,

where δx is the Dirac delta function centered at x. They are inU∗, the dual space
ofU, for sufficiently regular kernel functions.

Further, we use the shorthand notationφ(1) andφ(2) for the M and MΩ-dimensional
vectors with entries φ(1)m and φ(2)m respectively, and φ for the N-dimensional vector
obtained by concatenating φ(1) and φ(2), where N = M + MΩ.
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• Notations for primal dual pairing: We use [·, ·] to denote the primal dual pairing,
such that for u ∈ U, φ(1)m = δxm ∈ U

∗, it holds that [u, φ(1)m ] = u(xm). Similarly
[u, φ(2)m ] = ∆u(xm) for φ(2)m = δxm ◦ ∆ ∈ U

∗. For simplicity of presentation, we
oftentimes abuse the notation to write the primal-dual pairing in the L2 integral
form: [u, φ] =

∫
u(x)φ(x) dx.

• Notations for kernel matrices: We write K(φ,φ) as the N × N-matrix with entries∫
K(x,x′)φm(x)φ j(x′) dx dx′ where φm denotes the entries of φ. Here, the integral

notation shall be interpreted as the primal-dual pairing as above.

Similarly, K(x,φ) is the N dimensional vector with entries
∫

K(x,x′)φ j(x′) dx′.
Moreover, we adopt the convention that if the variable inside a function is a set, it
means that this function is applied to every element in this set; the output will be
a vector or a matrix. As an example, K(xΩ,xΩ) ∈ RMΩ×MΩ .

Then, based on a generalization of the representer theorem [43], the minimizer of
(5.2.2) attains the form

u†(x) = K(x,φ)K(φ,φ)−1z† ,

where z† is the solution to the following finite dimensional quadratic optimization
problem with nonlinear constraints

minimize
z∈RM+MΩ

zT K(φ,φ)−1z

s.t. − z(2)m + τ(z
(1)
m ) = f (xm), for m = 1, . . . ,MΩ ,

z(1)m = g(xm), for m = MΩ + 1, . . . ,M .

(5.2.3)

Here, z(1) ∈ RM , z(2) ∈ RMΩ and z is the concatenation of them. For this specific
example, we can write down K(x,φ) and K(φ,φ) explicitly:

K(x,φ) =
(
K(x,xΩ),K(x,x∂Ω),∆yK(x,xΩ)

)
∈ R1×N ,

K(φ,φ) =
©­­«

K(xΩ,xΩ) K(xΩ,x∂Ω) ∆yK(xΩ,xΩ)
K(x∂Ω,xΩ) K(x∂Ω,x∂Ω) ∆yK(x∂Ω,xΩ)
∆xK(xΩ,xΩ) ∆xK(xΩ,x∂Ω) ∆x∆yK(xΩ,xΩ)

ª®®®¬ ∈ R
N×N .

(5.2.4)

Here, ∆x,∆y are the Laplacian operator for the first and second arguments of k,
respectively. Clearly, evaluating the loss function and its gradient requires us to deal
with the dense kernel matrix K(φ,φ) with entries comprising derivatives of k.
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5.2.3 The general case
For general PDEs, the methodology leads to the optimization problem

min
u∈U

‖u‖

s.t. PDE constraints at {x1, . . . ,xM} ∈ Ω ,

and the equivalent finite dimensional problem
min
z∈RN

zT K(φ,φ)−1z

s.t. F(z) = y ,
(5.2.5)

where φ is the concatenation of Diracs measurements and derivative measurements
of u; they are induced by the PDE at the sampled points. The function F encodes
the PDE, and the vector y encodes the right hand side and boundary data. Again, it
is clear that the computational bottleneck lies in the part K(φ,φ)−1.

Remark 5.2.1. Here, we use “derivative measurement” to mean a functional inU∗

whose action on a function in U leads to a linear combination of its derivatives.
Mathematically, suppose the highest order of derivatives is J, then the corresponding
derivative measurement at point xm can be written as φ =

∑
|γ |≤J aγδxm ◦Dγ with the

multi-index γ = (γ1, ..., γd) ∈ N
d and |γ | :=

∑d
k=1 γk ≤ J. Here Dγ := Dγ1

x(1) · · ·D
γd
x(d)

is a |γ |-th order differential operator, and we use the notation x = (x(1), ...,x(d)).
We require linear independence between these measurements to ensure K(φ,φ) is
invertible. ♦

5.3 The Sparse Cholesky Factorization Algorithm
In this section, we present a sparse Cholesky factorization algorithm for K(φ,φ)−1.
Theoretical results will be presented in Section 5.4 based on the interplay between
linear algebra, Gaussian process conditioning, screening effects in spatial statistics,
and numerical homogenization.

In Subsection 5.3.1, we summarize the state-of-the-art sparse Cholesky factorization
algorithm for kernel matrices with derivative-free measurements. In Subsection
5.3.2, we discuss an extension of the idea to kernel matrices with derivative-type
measurements, which are the main focus of this chapter. The algorithm presented in
Subsection 5.3.2 leads to near-linear complexity evaluation of the loss function and
its gradient in the GP method for solving PDEs. First-order methods thus become
scalable. We then extend the algorithm to second-order optimization methods (e.g.,
the Gauss-Newton method) in Section 5.5.
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5.3.1 The case of derivative-free measurements
We start the discussion with the case where φ contains Diracs-type measurements
only.

Consider a set of points {xi}i∈I ⊂ Ω, where I = {1,2, ...,M} as in Subsection 5.2.1.
We assume the points are scattered; to quantify this, we have the following definition
of homogeneity:

Definition 5.3.1. The homogeneity parameter of the points {xi}i∈I ⊂ Ω conditioned
on a set A is defined as

δ({xi}i∈I ; A) =
minxi,xj∈I dist(xi, {x j} ∪ A)
maxx∈Ω dist(x, {xi}i∈I ∪ A)

.

When A = ∅, we also write δ({xi}i∈I) := δ({xi}i∈I ; ∅).

Throughout this chapter, we assume δ({xi}i∈I) > 0. One can understand that a larger
δ({xi}i∈I) makes the distribution of points more homogeneous in space. It can also
be useful to consider A = ∂Ω if one wants the points not too close to the boundary.

Let φ be the collection of δxi,1 ≤ i ≤ M; all of them are Diracs-type measure-
ments and thus derivative-free. In [240], a sparse Choleksy factorization algo-
rithm was proposed to factorize K(φ,φ)−1. We summarize this algorithm (with a
slight modification1) in the following three steps: reordering, sparsity pattern, and
Kullback-Leibler (KL) minimization.

5.3.1.1 Reordering

The first step is to reorder these points from coarse to fine scales. It can be achieved
by the maximum-minimum distance ordering (maximin ordering) [108]. We define
a generalization to conditioned maximin ordering as follows:

Definition 5.3.2 (Conditioned Maximin Ordering). The maximin ordering condi-
tioned on a set A for points {xi, i ∈ I} is obtained by successively selecting the point
xi that is furthest away from A and the already picked points. If A is an empty set,
then we select an arbitrary index i ∈ I as the first to start. Otherwise, we choose
the first index as

i1 = arg maxi∈I dist(xi,A) .
1The method in [240] was presented to get the lower triangular Cholesky factors. We present the

method for solving the upper triangular Cholesky factors since it gives a more concise description.
As a consequence of this difference, in the reordering step, we are led to a reversed ordering compared
to that in [240].
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For the first q indices already chosen, we choose

iq+1 = arg maxi∈I\{i1,...,iq} dist(xi, {xi1, ...,xiq } ∪ A) .

Usually we set A = ∂Ω or ∅. We introduce the operator P : I → I to map the order
of the measurements to the index of the corresponding points, i.e., P(q) = iq. One
can define the lengthscale of each ordered point as

li = dist(xP(i), {xP(1), ...,xP(i−1)} ∪ A) . (5.3.1)

Let Θ = K(φ̃, φ̃) ∈ RN×N be the kernel matrix after reordering the measurements
in φ to φ̃ = (φP(1), ..., φP(M)); we have N = M in this setting. An important
observation is that the Cholesky factors of Θ and Θ−1 could exhibit near-sparsity
under the maximin ordering. Indeed, as an example, suppose Θ−1 = U?U?T where
U? is the upper Cholesky factor. Then in Figure 5.1, we show the magnitude of
U?

i j, i ≤ j for a Matérn kernel, where j = 1000,2000; the total number of points is
M = 512. It is clear from the figure that the entries decay very fast when the points
move far away from the current jth ordered point.
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Figure 5.1: Demonstration of screening effects in the context of Diracs measure-
ments using the Matérn kernel with ν = 5/2 and lengthscale 0.3. The data points
are equidistributed in [0,1]2 with grid size h = 0.02. In the left figure, we display
the 1000th point (the big point) in the maximin ordering with A = ∅, where all
points ordered before it (i.e., i < 1000) are colored with intensity according to the
corresponding |U?

i j |. The right figure is generated in the same manner but for the
2000th point in the ordering.

Remark 5.3.3. One may wonder why such a coarse-to-fine reordering leads to
sparse Cholesky factors. In fact, we can interpret entries of U? as the conditional
covariance of some GP. More precisely, consider the GP ξ ∼ GP(0,K). Then, by
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definition, the Gaussian random variables Yi := [ξ, φ̃i] ∼ N(0,K(φ̃i, φ̃i)). We have
the following relation:

U?
i j

U?
j j
= (−1)i, j Cov[Yi,Yj |Y1: j−1\{i}]

Var[Yi |Y1: j−1\{i}]
, i ≤ j . (5.3.2)

Here we used the MATLAB notation such that Y1: j−1\{i} corresponds to {Yq : 1 ≤
q ≤ j − 1,q , i}. Proof of this formula can be found in Appendix B.4.3.

Formula (5.3.2) links the values of U? to the conditional covariance of a GP. In
spatial statistics, it is well-known from empirical evidence that conditioning a GP
on coarse-scale measurements results in very small covariance values between
finer-scale measurements. This phenomenon, known as screening effects, has been
discussed in works such as [259, 256]. The implication is that conditioning on
coarse scales screens out fine-scale interactions.

As a result, one would expect the corresponding Cholesky factor to become sparse
upon reordering. Indeed, the off-diagonal entries exhibit exponential decay. A rig-
orous proof of the quantitative decay can be found in [241], where the measurements
consist of Diracs functionals only, and the kernel function is the Green function of
some differential operator subject to Dirichlet boundary conditions. The proof of
Theorem 6.1 in [241] effectively implies that

|U?
i j | ≤ C1lC2

M exp
(
−

dist(xP(i),xP( j))

C1l j

)
(5.3.3)

for some generic constants C1,C2 depending on the domain, kernel function, and
homogeneity parameter of the points. We will prove such decay also holds when
derivative-type measurements are included, in Section 5.4 under a novel ordering.
It is worth mentioning that our analysis also provides a much simpler proof for
(5.3.3). ♦

5.3.1.2 Sparsity pattern

With the ordering determined, our next step is to identify the sparsity pattern of the
Cholesky factor under the ordering.

For a tuning parameter ρ ∈ R+, we select the upper-triangular sparsity set SP,l,ρ ⊂

I × I as
SP,l,ρ = {(i, j) ⊂ I × I : i ≤ j, dist(xP(i),xP( j)) ≤ ρl j} . (5.3.4)

The choice of the sparsity pattern is motivated by the quantitative exponential decay
result mentioned in Remark 5.3.3. Here in the subscript, P stands for the ordering, l
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is the lengthscale parameter associated with the ordering, and ρ is a hyperparameter
that controls the size of the sparsity pattern. We sometimes drop the subscript to
simplify the notation when there is no confusion. We note that the cardinality of the
set SP,l,ρ is bounded by O(Nρd), through a ball-packing argument (see Appendix
B.2).

Remark 5.3.4. The maximin ordering and the sparsity pattern can be constructed
with computational complexity O(N log2(N)ρd) in time and O(Nρd) in space; see
Algorithm 4.1 and Theorem 4.1 in [240]. ♦

5.3.1.3 KL minimization

With the ordering and sparsity pattern identified, the last step is to use KL mini-
mization to compute the best approximate sparse Cholesky factors given the pattern.

Define the set of sparse upper-triangular matrices with sparsity pattern SP,l,ρ as

SP,l,ρ := {A ∈ RN×N : Ai j , 0⇒ (i, j) ∈ SP,l,ρ} . (5.3.5)

For each column j, denote s j = {i : (i, j) ∈ SP,l,ρ}. The cardinality of the set s j is
denoted by #s j .

The KL minimization step seeks to find

U = arg minÛ∈SP,l,ρ KL
(
N(0,Θ) ‖ N(0, (ÛÛT )−1)

)
. (5.3.6)

It turns out that the above problem has an explicit solution

Usj,j =
Θ−1

sj,sje#sj√
eT

#sj
Θ−1

sj,sje#sj

, (5.3.7)

where e#sj is a standard basis vector in R#sj with the last entry being 1 and other
entries equal 0. Here, Θ−1

sj,sj := (Θsj,sj )
−1. The proof of this explicit formula follows

a similar approach to that of Theorem 2.1 in [240], with the only difference being
the use of upper Cholesky factors. A detailed proof is provided in Appendix B.3. It
is worth noting that the optimal solution is equivalent to the Vecchia approximation
used in spatial statistics; see discussions in [240].

With the KL minimization, we can find the best approximation measured in the KL
divergence sense, given the sparsity pattern. The computation is embarrassingly
parallel, noting that the formula (5.3.7) are independent for different columns.
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Remark 5.3.5. For the algorithm described above, the computational complexity is
upper-bounded by O(

∑
1≤i≤N (#s j)

3) in time and O(#S + max1≤i≤N (#s j)
2) in space

when using dense Cholesky factorization to invert Θsj,sj .

When using the sparsity pattern SP,l,ρ, we can obtain #s j = O(ρd) and #S =

O(Nρd) via a ball-packing argument (see Appendix B.2). This yields a complexity
of O(Nρ3d) in time and O(Nρd) in space. ♦

Remark 5.3.6. The concept of supernodes [240], which relies on an extra parameter
λ, can be utilized to group the sparsity pattern of nearbymeasurements and create an
aggregate sparsity pattern SP,l,ρ,λ. This technique reduces computation redundancy
and improves the arithmetic complexity of the KL minimization to O(Nρ2d) in time
(see Appendix B.1). In this chapter, we consistently employ this approach. ♦

Remark 5.3.7. In [240], it was shown in Theorem 3.4 that ρ = O(log(N/ε)) suffices
to get an ε-approximate factor for a large class of kernel matrices, so the complexity
of the KL minimization is O(N log2d(N/ε)) in time and O(N logd(N/ε)) in space.
Note that the ordering and aggregate sparsity pattern can be constructed in time
complexity O(N log2(N)ρd) and space complexity O(Nρd); the complexity of this
construction step is usually of a lower order compared to that of the KLminimization.
Moreover, this step can be pre-computed. ♦

5.3.2 The case of derivative measurements
The last subsection discusses the sparse Cholesky factorization algorithm for kernel
matrices that are generated by derivative-free measurements. When using GPs to
solve PDEs and inverse problems, φ can contain derivative measurements, which
are the main focus of this chapter. This subsection aims to deal with such scenarios.

5.3.2.1 The nonlinear elliptic PDE case

To begin with, we will consider the example in Subsection 5.2.2, where we have
Diracs measurements φ(1)m = δxm for 1 ≤ m ≤ M , and Laplacian-type measurements
φ
(2)
m = δxm ◦ ∆ for 1 ≤ m ≤ MΩ. Our objective is to extend the algorithm discussed

in the previous subsection to include these derivative measurements.

An important question we must address is the ordering of these measurements.
Specifically, shouldwe consider theDiracsmeasurements before or after the derivative-
type measurements? To explore this question, we conduct the following experiment.
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First, we order all derivative-type measurements, φ(2)m for 1 ≤ m ≤ MΩ, in an arbi-
trary manner. We then follow this ordering with any Diracs measurement, labeled
MΩ + 1 in the order. For this measurement, we plot the magnitude of the corre-
sponding Cholesky factor of Θ−1, i.e., |U?

i j | for i ≤ j and j = MΩ + 1, similar to the
approach taken in Figure 5.1. The results are shown in the left part of Figure 5.2.

Unfortunately, we do not observe an evident decay in the left of Figure 5.2. This
may be due to the fact that, even when conditioned on the Laplacian-type measure-
ments, the Diracs measurements can still exhibit long-range interactions with other
measurements. This is because there are degrees of freedom of harmonic functions
that are not captured by Laplacian-type measurements, and thus, the correlations
may not be effectively screened out.
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Figure 5.2: Demonstration of screening effects in the context of derivative-type
measurements using the Matérn kernel with ν = 5/2 and lengthscale 0.3. The data
points are equidistributed in [0,1]2 with grid size h = 0.02. In the left figure, we
order the Laplacian measurements first and then select a Diracs measurement which
is the big point. The points are colored with intensity according to |U?

i j |. In the
right figure, we order the Dircas measurements first and then select a Laplacian
measurement; we display things in the same manner as the left figure.

Alternatively, we can order the Dirac measurements first and then examine the same
quantity as described above for any Laplacian measurement. This approach yields
the right part of Figure 5.2, where we observe a fast decay as desired. This indicates
that the derivative measurements should come after the Dirac measurements, or
equivalently, that the derivative measurements should be treated as finer scales
compared to the pointwise measurements.

With the above observation, we can design our new ordering as follows. For the non-
linear elliptic PDE example in Subsection 5.2.2, we order the Diracs measurements
φ
(1)
m = δxm,1 ≤ m ≤ M first using the maximin ordering with A = ∅ mentioned
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earlier. Then, we add the derivative-type measurements δxm ◦ ∆,1 ≤ m ≤ MΩ in
arbitrary order to the ordering.

Again, for our notations, we use P : IN → I to map the index of the ordered
measurements to the index of the corresponding points. Here IN := {1,2, ...,N},
N = M+MΩ and the cardinality of I is M . We define the lengthscales of the ordered
measurements to be

li =


dist(xP(i), {xP(1), ...,xP(i−1)} ∪ A), if i ≤ M,

lM, otherwise.
(5.3.8)

We will justify the above choice of lengthscales in our theoretical study in Section
5.4.

With the ordering and the lengthscales determined, we can apply the same steps in
the last subsection to identify sparsity patterns:

SP,l,ρ = {(i, j) ⊂ IN × IN : i ≤ j, dist(xP(i),xP( j)) ≤ ρl j} ⊂ IN × IN . (5.3.9)

Then, we can use KL minimization as in Subsection 5.3.1.3 (see (5.3.5), (5.3.6),
and (5.3.7)) to find the optimal sparse factors under the pattern. This leads to our
sparse Cholesky factorization algorithm for kernel matrices with derivative-type
measurements.

Remark 5.3.8. Similar to Remark 5.3.6, the above KL minimization step (with the
idea of supernodes to aggregate the sparsity pattern) can be implemented in time
complexity O(Nρ2d) and space complexity O(Nρd), for a parameter ρ ∈ R+ that
determines the size of the sparsity set. ♦

We present some numerical experiments to demonstrate the accuracy of such an
algorithm. In Figure 5.3, we show the error measured in the KL divergence sense,
namely KL

(
N(0,Θ) ‖ N(0, (UρUρT )−1)

)
where Uρ is the computed sparse factor.

The figures show that the KL error decays exponentially fast regarding ρ. The rate
is faster for less smooth kernels, and for the same kernel, the rate remains the same
when there are more physical points. In the left of Figure 5.4, we show the CPU
time of the algorithm, which scales nearly linearly regarding the number of points.

5.3.2.2 General case

We present the algorithm discussed in the last subsection for general PDEs. In the
general case (5.2.5), we need to deal with K(φ,φ) where φ is the concatenation
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Figure 5.3: Demonstration of the accuracy of the sparse Cholesky factorization
for K(φ,φ)−1 in the nonlinear elliptic PDE example. In the left figure, we choose
Matérn kernels with ν = 5/2,7/2,9/2 and lengthscale l = 0.3; the physical points
are fixed to be equidistributed in [0,1]2 with grid size h = 0.05; we plot the error
measured in the KL sense with regard to different ρ. In the right figure, we fix
the Matérn kernels with ν = 5/2 and lengthscale l = 0.3. We vary the number of
physical points, which are equidistributed with grid size h = 0.04,0.02,0.01; thus
Ndomain = 625,2500,10000 correspondingly.
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Figure 5.4: In the left figure, we choose Matérn kernels with ν = 5/2,7/2,9/2 and
lengthscale l = 0.3; the physical points are equidistributed in [0,1]2 with different
grid sizes; we plot the CPU time of the factorization algorithm for K(φ,φ)−1, using
the personal computer MacBook Pro 2.4 GHz Quad-Core Intel Core i5. In the right
figure, we study the sparse Cholesky factorization for the reduced kernel matrix
K(φk,φk)−1. We fix the Matérn kernels with ν = 5/2 and lengthscale l = 0.3.
We vary the number of physical points, which are equidistributed with grid size
h = 0.04,0.02,0.01. We plot the KL error with regard to different ρ.

of Diracs measurements and derivative-type measurements that are derived from
the PDE. Suppose the number of physical points is M; they are {x1, ...,xM} and
the index set is denoted by I = {1, ...,M}. Without loss of generality, we can
assume φ contains Diracs measurements δxm at all these points and some derivative
measurements at these points up to order J ∈ N. See the definition of derivative
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measurements in Remark 5.2.1. The reasonwe can assumeDiracsmeasurements are
in φ is that one can always add 0u(x) to the PDE if there are no terms involving u(x).
The presence of these Diracs measurements is the key to get provable guarantee of
the algorithm; for details see Section 5.4.

Denote the total number of measurements by N , as before. We order the Diracs
measurements δxm,1 ≤ m ≤ M first using the maximin ordering with A = ∅. Then,
we add the derivative-type measurements in an arbitrary order to the ordering.

Similar to the last subsection, we use the notation P : IN → I to map the index
of the ordered measurements to the index of the corresponding points; here IN :=
{1,2, ...,N}. The lengthscales of the ordered measurements are defined via (5.3.8).
With the ordering, one can identify the sparsity pattern as in (5.3.9) (and aggregate
it using supernodes as discussed in Remark 5.3.6) and use the KL minimization
(5.3.5)(5.3.6)(5.3.7) to compute ε-approximate factors the same way as before. We
outline the general algorithmic procedure in Algorithm 1.

Algorithm 1 Sparse Cholesky factorization for K(φ,φ)−1

1: Input: Measurements φ, kernel function K , sparsity parameter ρ, supernodes
parameter λ

2: Output: Uρ,Pperm s.t. K(φ,φ)−1 ≈ PT
permUρUρT Pperm

3: Reordering and sparsity pattern: we first order the Diracs measurements using
the maximin ordering. Next, we order the derivative measurements in an
arbitrary order. This process yields a permutation matrix denoted by Pperm,
such that Ppermφ = φ̃, and lengthscales l for each measurement in φ̃. Under the
ordering, we construct the aggregate sparsity pattern SP,l,ρ,λ based on the chosen
values of ρ and λ.

4: KL minimization: solve (5.3.6) with Θ = K(φ̃, φ̃), by (5.3.7), to obtain Uρ

5: return Uρ,Pperm

The complexity is of the same order as in Remark 5.3.8; the hidden constant in
the complexity estimate depends on J, the maximum order of the derivative mea-
surements. We will present theoretical analysis for the approximation accuracy in
Section 5.4, which implies that ρ = O(log(N/ε)) suffices to provide ε-approximation
for a large class of kernel matrices.

5.4 Theoretical Study
In this section, we perform a theoretical study of the sparse Cholesky factorization
algorithm in Subsection 5.3.2 for K(φ,φ)−1.
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5.4.1 Set-up for rigorous results
We present the setting of kernels, physical points, and measurements for which we
will provide rigorous analysis of the algorithm.

Kernel

We first describe the domains and the function spaces. Suppose Ω is a bounded
convex domain in Rd with a Lipschitz boundary. Without loss of generality, we
assume diam(Ω) ≤ 1; otherwise, we can scale the domain. Let Hs

0(Ω) be the
Sobolev space in Ω with order s ∈ N derivatives in L2 and zero traces. Let the
operator

L : Hs
0(Ω) → H−s(Ω)

satisfy Assumption 5.4.1. This assumption is the same as in Section 2.2 of [204].

Assumption 5.4.1. The following conditions hold for L : Hs
0(Ω) → H−s(Ω):

(i) symmetry: [u,Lv] = [v,Lu];

(ii) positive definiteness: [u,Lu] > 0 for ‖u‖Hs
0 (Ω)

> 0;

(iii) boundedness:

‖L‖ := sup
u

‖Lu‖H−s(Ω)
‖u‖Hs

0 (Ω)
< ∞, ‖L−1‖ := sup

u

‖L−1u‖Hs
0 (Ω)

‖u‖H−s(Ω)
< ∞ ;

(iv) locality: [u,Lv] = 0 if u and v have disjoint supports.

We assume s > d/2 so Sobolev’s embedding theorem shows that Hs
0(Ω) ⊂ C(Ω),

and thus δx ∈ H−s(Ω) for x ∈ Ω. We consider the kernel function to be the Green
function K(x,y) := [δx,L

−1δy]. An example of L could be (−∆)s; we use the zero
Dirichlet boundary condition to define L−1, which leads to a Matérn-like kernel.

Physical points

Consider a scattered set of points {xi}i∈I ⊂ Ω, where I = {1,2, ...,M} as in Subsec-
tion 5.3.1; the homogeneity parameter of these points is assumed to be positive:

δ({xi}i∈I ; ∂Ω) =
minxi,xj∈I dist(xi, {x j} ∪ ∂Ω)

maxx∈Ω dist(x, {xi}i∈I ∪ ∂Ω)
> 0 .

This condition ensures that the points are scattered homogeneously. Here we set
A = ∂Ω since we consider zero Dirichlet’s boundary condition and no points will
be on the boundary. The accuracy in our theory will depend on δ({xi}i∈I ; ∂Ω).
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Measurements

The setting is the same as in Subsection 5.3.2.2. We assume φ contains Diracs
measurements at all of the scattered points, and it also contains derivative-type
measurements at some of these points up to order J ∈ N. We require J < s − d/2
so that the Sobolev embedding theorem guarantees these derivative measurements
are well-defined.

For simplicity of analysis, we assume all the measurements are of the type δxi ◦ Dγ

with the multi-index γ = (γ1, ..., γd) ∈ N
d and |γ | :=

∑d
k=1 γk ≤ J; here Dγ =

Dγ1
x(1) · · ·D

γd
x(d); see Remark 5.2.1. Note that when |γ | = 0, δxi ◦ Dγ corresponds to

Diracs measurements. The total number of measurements is denoted by N .

Note that the aforementioned assumption does not apply to the scenario of Laplacian
measurements in the case of a nonlinear elliptic PDE example. This exclusion is
solely for the purpose of proof convenience, as it necessitates linear independence of
measurements. However, similar proofs can be applied to Laplacian measurements
once linear independence between the measurements is ensured.

5.4.2 Theory
Under the setting in Subsection 5.4.1, we consider the ordering P : {1,2, ...,N} →
{1,2, ...,M} described in Subsection 5.3.2.2. Recall that for this P, we first order the
Diracs measurements using the maximin ordering conditioned on ∂Ω (since there
are no boundary points); then, we follow the ordering with an arbitrary order of the
derivative measurements. The lengthscale parameters are defined via

li =


dist(xP(i), {xP(1), ...,xP(i−1)} ∪ ∂Ω), if i ≤ M,

lM, otherwise.

We write Θ = K(φ̃, φ̃) ∈ RN×N , which is the kernel matrix after reordering the
measurements in φ to φ̃ = (φP(1), ..., φP(N)).

Theorem 5.4.2. Under the setting in Subsection 5.4.1 and the above given ordering
P, we consider the upper triangular Cholesky factorization Θ−1 = U?U?T . Then,
for 1 ≤ i ≤ j ≤ N , we have�����U?

i j

U?
j j

����� ≤ Cl−2s
j exp

(
−

dist(xP(i),xP( j))

Cl j

)
and |U?

j j | ≤ Cl−s+d/2
M ,

where C is a generic constant that depends onΩ, δ({xi}i∈I ; ∂Ω), d, s, J, ‖L‖, ‖L−1‖.
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The proof for Theorem 5.4.2 can be found in Appendix B.4.1. The proof relies on
the interplay between GP regression, linear algebra, and numerical homogenization.
Specifically, we use (5.3.2) to represent the ratio U?

i j/U
?
j j as the normalized condi-

tional covariance of a GP. Our technical innovation is to connect this normalized
term to the conditional expectation of the GP, leading to the identity�����U?

i j

U?
j j

����� = ����Cov[Yi,Yj |Y1: j−1\i]

Var[Yi |Y1: j−1\i]

���� = ��E[Yj |Yi = 1,Y1: j−1\i = 0]
�� ,

where Y ∼ N(0,Θ). This conditional expectation directly connects to the operator-
valuedwavelets, orGamblets, in the numerical homogenization literature [203, 204].
We can apply PDE tools to establish the decay result of Gamblets. Remarkably,
the connection to the conditional expectation simplifies the analysis for general
measurements, compared to the more lengthy proof based on exponential decay
matrix algebra in [241] for Diracs measurements only.

In our setting, we need additional analytic results regarding the derivative measure-
ments to prove the exponential decay of the Gamblets, which is one of the technical
contributions of this work. Finally, for |U?

j j |, we obtain the estimate by bounding
the lower and upper eigenvalues of Θ. For details, see Appendix B.4.1 and B.5.1.

With Theorem 5.4.2, we can establish that |U?
i j | is exponentially small when (i, j)

is outside the sparsity set SP,l,ρ. This property enables us to show that the sparse
Cholesky factorization algorithm leads to provably accurate sparse factors when
ρ = O(log(N/ε)). See Theorem 5.4.3 for details.

Theorem 5.4.3. Under the setting in Theorem 5.4.2, suppose Uρ is obtained by
the KL minimization (5.3.6) with the sparsity parameter ρ ∈ R+. Then, there
exists a constant depending on Ω, δ({xi}i∈I ; ∂Ω), d, s, J, ‖L‖, ‖L−1‖, such that if
ρ ≥ C log(N/ε), we have

KL
(
N(0,Θ) ‖ N(0, (UρUρT

)−1)
)
+ ‖Θ−1 −UρUρT

‖Fro + ‖Θ− (UρUρT
)−1‖Fro ≤ ε ,

where ε < 1 and ‖ · ‖Fro is the Frobenius norm.

The proof can be found in Appendix B.4.2. It is based on the KL optimality of Uρ

and a comparison inequality between KL divergence and Frobenious norm shown
in Lemma B.8 of [240].

Remark 5.4.4. Theorem 5.4.3 will still hold when the idea of supernodes in Remark
5.3.6 is used since it only makes the sparsity pattern larger. ♦
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5.5 Second Order Optimization Methods
Using the algorithm in Subsection 5.3.2, we get a sparse Cholesky factorization for
K(φ,φ)−1, and thus we have a fast evaluation of the loss function in (5.2.3) (and
more generally in (5.2.5)) and its gradient. Therefore, first-order methods can be
implemented efficiently.

In [43], a second-order Gauss-Newton algorithm is used to solve the optimization
problem and is observed to converge very fast, typically in 3 to 8 iterations. In this
subsection, we discuss how to make such a second-order method scalable based on
the sparse Cholesky idea. As before, we first illustrate our ideas on the nonlinear
elliptic PDE example (5.2.2) and then describe the general algorithm.

5.5.1 Gauss-Newton iterations
For the nonlinear elliptic PDE example, the optimization problem we need to solve
is (5.2.3). Using the equation z(2)m = τ(z

(1)
m ) − f (xm) and the boundary data, we can

eliminate z(2) and rewrite (5.2.3) as an unconstrained problem:

minimize
z(1)
Ω
∈RMΩ

(
z(1)
Ω
,g(x∂Ω), f (xΩ) − τ(z(1)Ω )

)
K(φ,φ)−1 ©­­«

z(1)
Ω

g(x∂Ω)
f (xΩ) − τ(z(1)Ω )

ª®®®¬ , (5.5.1)

where z(1)
Ω

denotes the MΩ-dimensional vector of the zi for i = 1, . . . ,MΩ associated
to the interior points xΩ while f (xΩ),g(x∂Ω) and τ(z(1)Ω ) are vectors obtained by
applying the corresponding functions to entries of their input vectors. To be clear,
the expression in (5.5.1) represents a weighted least-squares optimization problem,
and the transpose signs in the rowvectormultiplying thematrix have been suppressed
for notational brevity. In [43], a Gauss-Newton method has been proposed to solve
this problem. This method linearizes the nonlinear function τ at the current iteration
and solves the resulting quadratic optimization problem to obtain the next iterate.

We present the Gauss-Newton algorithm in a slightly different but equivalent way
that is more convenient for exposition. To that end, we consider the general formula-
tion in (5.2.5). In the nonlinear elliptic PDE example, we haveφ = (δxΩ,δx∂Ω,δxΩ◦∆)

where δxΩ denotes the collection of Diracs measurements (δx1, ...,δxMΩ
); the def-

inition of δx∂Ω and δxΩ ◦ ∆ follows similarly. We also write correspondingly
z = (zΩ,z∂Ω,z∆Ω) ∈ R

N with N = M + MΩ. Then F(z) = (−z∆
Ω
+ τ(zΩ),z∂Ω) ∈ RM

and y = ( f (xΩ),g(x∂Ω)) ∈ RM , such that F(z) = y.

The Gauss-Netwon iterations for solving (5.5.1) is equivalent to the following se-
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quential quadratic programming approach for solving (5.2.5): for k ∈ N, assume zk

obtained, then zk+1 is given by

zk+1 = arg min
z∈RN

zT K(φ,φ)−1z

s.t. F(zk) + DF(zk)(z − zk) = y ,
(5.5.2)

where DF(zk) ∈ RM×N is the Jacobian of F at zk . The above is a quadratic
optimization with a linear constraint. Using Lagrangian multipliers, we get the
explicit formula of the solution: zk+1 = K(φ,φ)(DF(zk))Tγ, where γ ∈ RM solves
the linear system(

DF(zk)K(φ,φ)(DF(zk))T
)
γ = y − F(zk) + DF(zk)zk . (5.5.3)

Now, we introduce the reduced set of measurements φk = DF(zk)φ. For the
nonlinear elliptic PDE, we have

φk = (−δxΩ ◦ ∆ + τ(z
k
Ω
) · δxΩ,δx∂Ω) ,

where τ(zk
Ω
) ·δxΩ := (τ(zk

1)δx1, ..., τ(zk
MΩ
)δxMΩ

). Then, we can equivalently write the
solution as zk+1 = K(φ,φ)(DF(zk))Tγ where γ satisfies

K(φk,φk)γ = y − F(zk) + DF(zk)zk . (5.5.4)

Note that K(φk,φk) ∈ RM×M , in contrast to K(φ,φ) ∈ RN×N . The dimension is
reduced. The computational bottleneck lies in the linear system with the reduced
kernel matrix K(φk,φk).

5.5.2 Sparse Cholesky factorization for the reduced kernel matrices
As K(φk,φk) is also a kernel matrix with derivative-type measurements, we hope
to use the sparse Cholesky factorization idea to approximate its inverse. The first
question, again, is how to order these measurements.

To begin with, we examine the structure of the reduced kernel matrix. Note that as
F(z) = y encodes the PDE at the collocation points, the linearization of F in (5.5.2) is
also equivalent to first linearizing the PDE at the current solution and then applying
the kernel method. Thus, φk will typically contain MΩ interior measurements
corresponding to the linearized PDE at the interior points and M − MΩ boundary
measurements corresponding to the sampled boundary condition. For problems
with Dirichlet’s boundary condition, which are the main focus of this chapter, the
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boundary measurements are of Diracs type. It is worth noting that, in contrast to
K(φ,φ), we no longer have Diracs measurements at every interior point now.

We propose to order the boundary Diracs measurements first, using the maximin
ordering on ∂Ω. Then, we order the interior derivative-type measurements using
the maximin ordering in Ω, conditioned on ∂Ω. We use numerical experiments to
investigate the screening effects under such ordering. Suppose Θ is the reordered
version of the reduced kernel matrix K(φk,φk), then similar to Figures 5.1 and 5.2,
we show the magnitude of the corresponding Cholesky factor of Θ−1 = U?U?T ,
i.e., we plot |U?

i j | for i ≤ j; here j is selected to correspond to some boundary and
interior points. The result can be found in Figure 5.5.
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Figure 5.5: Demonstration of screening effects for the reduced kernel matrix. We
choose the Matérn kernel with ν = 5/2; the lengthscale parameter is 0.3. The data
points are equidistributed in [0,1]2 with grid size h = 0.02. In the left figure, we
show a boundary point, and all the points ordered before are marked with a color
whose intensity scales with the entry value |U?

i j |. The right figure is obtained in the
same manner but for an interior measurement.

From the left figure, we observe a desired screening effect for boundary Diracs mea-
surements. However, in the right figure, we observe that the interior derivative-type
measurements still exhibit a strong conditional correlation with boundary points.
That means that the correlation with boundary points is not screened thoroughly.
This also implies that the presence of the interior Diracs measurements is the key to
the sparse Choleksy factors for the previous K(φ̃, φ̃)−1.

The right of Figure 5.5 demonstrates a negative result: one cannot hope that the
Cholesky factor ofΘ−1 will be as sparse as before. However, algorithmically, we can
still apply the sparse Cholesky factorization to the matrix. We present numerical
experiments to test the accuracy of such factorization. In the right of Figure 5.4, we
show the KL errors of the resulting factorization concerning the sparsity parameter
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ρ. Even though the screening effect is not perfect, as we discussed above, we still
observe a consistent decay of the KL errors when ρ increases.

In addition, although we cannot theoretically guarantee the factor is as accurate as
before, we can use it as a preconditioner to solve linear systems involving K(φk,φk).
In practice, we observe that this idea works very well, and nearly constant steps of
preconditioned conjugate gradient (pCG) iterations can lead to an accurate solution
to (5.5.4). As a demonstration, in Figure 5.6, we show the pCG iteration history
when the preconditioning idea is employed. The stopping criterion for pCG is that
the relative tolerance is smaller than 2−26 ≈ 10−8, which is the default criterion in
Julia. From the figures, we can see that pCG usually converges in 10-40 steps, and
this fast convergence is insensitive to the numbers of points. When ρ is large, the
factor is more accurate, and the preconditioner is better, leading to smaller number
of required pCG steps. Among all the cases, the number of pCG steps required to
reach the stopping criterion is of the same magnitude, and is not large.
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Figure 5.6: Demonstration of the convergence history of the pCG iteration. We
choose the Matérn kernel with ν = 5/2; the lengthscale parameter is 0.3. In the
left figure, we choose the data points to be equidistributed in [0,1]2 with different
grid sizes; ρ = 4.0. We show the equation residue norms of the iterates in each
pCG iteration. In the right figure, we choose the data points to be equidistributed in
[0,1]2 with grid size 0.0025 so that Ndomain = 160000. We plot the pCG iteration
history for ρ = 2.0,3.0,4.0.

It is worth noting that since K(φk,φk) = DF(zk)K(φ,φ)(DF(zk))T and we have
a provably accurate sparse Cholesky factorization for K(φ,φ)−1, the matrix-vector
multiplication for K(φk,φk) in each pCG iteration is efficient.

5.5.3 General case
The description in the last subsection applies directly to general nonlinear PDEs,
which correspond to general φ and F in (5.2.5). We use the maximin ordering on
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the boundary, followed by the conditioned maximin ordering in the interior. We
denote the ordering by Q : I → I. The lengthscale is defined by

li = dist(xQ(i), {xQ(1), ...,xQ(i−1)} ∪ A) , (5.5.5)

where for a boundary measurement, A = ∅ and for an interior measurement A = ∂Ω.
With the ordering and lengthscales, we create the sparse pattern through (5.3.4) (and
aggregate it using the supernodes idea) and apply the KLminimization in Subsection
5.3.1 to obtain an approximate factor for K(φk,φk)−1. The general algorithmic
procedure is outlined in Algorithm 2. We now denote the sparsity parameter for the
reduced kernel matrix by ρr.

Algorithm 2 Sparse Cholesky factorization for K(φk,φk)−1

1: Input: Measurements φk , kernel function K , sparsity parameter ρr, supernodes
parameter λ

2: Output: Uρr
r ,Qperm

3: Reordering and sparsity pattern: we first order the boundary measurements
using the maximin ordering. Next, we order the interior measurements using
the maximin ordering conditioned on ∂Ω. This process yields a permutation
matrix denoted by Qperm such that Qpermφ

k = φ̃
k , and lengthscales l for each

measurement in φ̃k . Under the ordering, we construct the aggregate sparsity
pattern SQ,l,ρr,λ based on the chosen values of ρr and λ.

4: KL minimization: solve (5.3.6) with Θ = K(φ̃k
, φ̃

k
), by (5.3.7), to obtain Uρr

r
5: return Uρr

r ,Qperm

Now, putting all things together, we outline the general algorithmic procedure for
solving the PDEs using the second-order Gauss-Newton method, in Algorithm 3.

For the choice of parameters, we usually set t to be between 2 to 10. Setting
ρ = O(log(N/ε)) suffices to obtain an ε-accurate approximation of K(φ,φ)−1. We
do not have a theoretical guarantee for the factorization algorithm applied to the
reduced kernel matrix K(φk,φk)−1. Still, our experience indicates that setting
ρr = ρ or a constant such as ρr = 3 works well in practice. We note that a larger ρr

increases the factorization time while decreasing the necessary pCG steps to solve
the linear system, as demonstrated in the right of Figure 5.6. There is a trade-off
here in general.

The overall complexity of Algorithm 3 for solving (5.5.2) is O(N log2(N)ρd +

Nρ2d +Mtρ2d
r +TpCG) in time and O(Nρd +Mρd

r ) in space, where O(N log2(N)ρd)

is the time for generating the ordering and sparsity pattern, O(Nρ2d) is for the
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Algorithm 3 Sparse Cholesky accelerated Gauss-Newton for solving (5.2.5)
1: Input: Measurements φ, data functional F, data vector y, kernel function

K , number of Gauss-Newton steps t, sparsity parameters ρ, ρr, supernodes
parameter λ

2: Output: Solution zt

3: Factorize K(φ,φ)−1 ≈ PT
permUρUρT Pperm using Algorithm 1

4: Set k = 0, zk = 0 or other user-specified initial guess
5: while k < t do
6: Form the reduced measurements φk = DF(zk)φ

7: Factorize K(φk,φk)−1 to get QT
permUρr

r Uρr
r

TQperm using Algorithm 2
8: Use pCG to solve (5.5.4) with the preconditioner QT

permUρr
r Uρr

r
TQperm

9: zk+1 = (PT
permUρUρT Pperm)\((DF(zk))Tγ)

10: k = k + 1
11: end while
12: return zt

factorization, and O(Mtρ2d
r ) is for the factorizations in all the GN iterations, TpCG

is the time that the pCG iterations take.

Based on empirical observations, we have found that TpCG scales nearly linearly
with respect to Nρd . This is because a nearly constant number of pCG iterations
are sufficient to obtain an accurate solution, and each pCG iteration takes at most
O(Nρd) time, as explained in the matrix-vector multiplication mentioned at the
end of Subsection 5.5.2. Additionally, it is worth noting that the time required
for generating the ordering and sparsity pattern (O(N log2(N)ρd)) is negligible in
practice, compared to that for the KL minimization. Furthermore, the ordering and
sparsity pattern can be pre-computed once and reused for multiple runs.

5.6 Numerical Experiments
In this section, we use Algorithm 3 to solve nonlinear PDEs. The numerical
experiments are conducted on the personal computer MacBook Pro 2.4 GHz Quad-
Core Intel Core i5. In all the experiments, the physical data points are equidistributed
on a grid; we specify its size in each example. We always set the sparsity parameter
for the reduced kernel matrix ρr = ρ, the sparsity parameter for the original matrix.
We adopt the supernodes ideas in all the examples and set the parameter λ = 1.5.

Our theory guarantees that once the Diracs measurements are ordered first by the
maximin ordering, the derivative measurements can be ordered arbitrarily. In prac-
tice, for convenience, we order them from lower-order to high-order derivatives, and
for the same type of derivatives, we order the corresponding measurements based



175

on their locations, in the same maximin way as the Diracs measurements.

Our codes are in https://github.com/yifanc96/PDEs-GP-KoleskySolver.

5.6.1 Nonlinear elliptic PDEs
Our first example is the nonlinear elliptic equation{

−∆u + τ(u) = f in Ω ,

u = g on ∂Ω ,
(5.6.1)

with τ(u) = u3. Here Ω = [0,1]2. We set

u(x) =
600∑
k=1

1
k6 sin(kπx1) sin(kπx2)

as the ground truth and use it to generate the boundary and right hand side data. We
set the number of Gauss-Newton iterations to be 3. The initial guess for the iteration
is a zero function. The lengthscale of the kernels is set to be 0.3.

We first study the solution error and the CPU time regarding ρ. We choose the
number of interior points to be Ndomain = 40000; or equivalently, the grid size
h = 0.005. In the left side of Figure 5.7, we observe that a larger ρ leads to a smaller
L2 error of the solution. For the Matérn kernel with ν = 5/2,7/2, we observe
that such accuracy improvement saturates at ρ = 2 or 4, while when ν = 7/2. the
accuracy keeps improving until ρ = 10. This high accuracy for large ν is because the
solution u is fairly smooth. Using smoother kernels can lead to better approximation
accuracy. On the other hand, smoother kernels usually need a larger ρ to achieve
the same level of approximation accuracy, as we have demonstrated in the left of
Figure 5.3.

In the right side of Figure 5.7, we show the CPU time required to compute the
solution for different kernels and ρ. A larger ρ generally leads to a longer CPU time.
But there are some exceptions: for the Matérn kernel with ν = 5/2,7/2, the CPU
time for ρ = 3 is longer than that for ρ = 2. Again, the reason is that these smoother
kernels often require a larger ρ for accurate approximations. When ρ is very small,
although the sparse Cholesky factorization is very fast, the pCG iterations could
take long since the preconditioner matrix does not approximate the matrix well.

We then study the L2 errors and CPU time regarding the number of physical points.
We fix ρ = 4.0. In the left of Figure 5.8, we observe that the accuracy improves
when Ndomain increases. For the smoother Matérn kernels with ν = 7/2,9/2, they

https://github.com/yifanc96/PDEs-GP-KoleskySolver


176

2 4 6 8 10
10 8

10 7

10 6

10 5

10 4

L2  e
rro

r Matern5/2
Matern7/2
Matern9/2

2 4 6 8 10

102

CP
U 

Ti
m

e 
(s

)

Matern5/2
Matern7/2
Matern9/2

Figure 5.7: Nonlinear elliptic PDE example. The left figure concerns the L2 errors
of the solution, while the right figure concerns the CPU time. Both plots are with
regard to ρ. We set Ndomain = 40000.

will hit an accuracy floor of 10−7. This is because we only have a finite number
of Gauss-Newton steps and a finite ρ. In the right of Figure 5.8, a near-linear
complexity in time regarding the number of points is demonstrated.
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Figure 5.8: Nonlinear elliptic PDE example. The left figure concerns the L2 errors
of the solution, while the right figure concerns the CPU time. Both plots are with
regard to the number of physical points in the domain. We set ρ = 4.0.

5.6.2 Burgers’ equation
Our second example concerns the time-dependent Burgers equation:

∂tu + u∂xu − 0.001∂2
x u = 0, ∀(x, t) ∈ (−1,1) × (0,1] ,

u(x,0) = − sin(πx) ,

u(−1, t) = u(1, t) = 0 .

(5.6.2)

Rather than using a spatial-temporal GP as in [43], we first discretize the equation
in time and then use a spatial GP to solve the resulting PDE in space. This reduces
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the dimensionality of the system and is more efficient. More precisely, we use the
Crank–Nicolson scheme with time stepsize ∆t to obtain

û(x, tn+1) − û(x, tn)
∆t

+
1
2
(û(x, tn+1)∂xû(x, tn+1) + û(x, tn)∂xû(x, tn))

=
0.001

2

(
∂2

x û(x, tn+1) + ∂
2
x û(x, tn)

)
,

(5.6.3)

where û(tn, x) is an approximation of the true solution u(tn, x) with tn = n∆t. When
û(·, tn) is known, (5.6.3) is a spatial PDE for the function û(·, tn+1). We can solve
(5.6.3) iteratively starting from n = 0. We use two steps of Gauss-Newton iterations
with the initial guess as the solution at the last time step.

We set ∆t = 0.02 and compute the solution at t = 1. The lengthscale of the kernels
is chosen to be 0.02. We set ρ = 4.0 in the factorization algorithm. In the left of
Figure 5.9, we show our numerical solution by using a grid of size h = 0.001 and
the true solution computed by using the Cole-Hopf transformation. We see that they
match very well, and the shock is captured. This is possible because we use a grid
of small size so that the shock is well resolved. With a very small grid size, we need
to deal with many large-size dense kernel matrices, and we use the sparse Cholesky
factorization algorithm to handle such a challenge.

In the right of Figure 5.9, we show the CPU time of our algorithm regarding different
Ndomain. We clearly observe a near-linear complexity in time. The total CPU time
is less than 10 seconds to handle 50 dense kernel matrices (since 1/∆t = 50) of size
larger than 104 (the dimension of K(φ,φ) is around 3 × Ndomain since we have three
types of measurements) sequentially.
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Figure 5.9: Burgers’ equation example. The left figure is a demonstration of the
numerical solution and true solution at t = 1. The right figure concerns the CPU
time regarding the number of physical points. We set ρ = 4.0.

We also show the accuracy of our solutions in the following Table 5.1. We observe
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Ndomain 1000 2000 4000
L2 error 1.729e-4 6.111e-5 7.453e-5
L∞ error 1.075e-3 2.745e-4 1.075e-4

Table 5.1: Burgers’ equation example. The L2 and L∞ errors of the computed
solution at t = 1. We use the Matérn kernel with ν = 7/2. The sparsity parameter
ρ = 4.0.

high accuracy, O(10−5) in the L2 norm and O(10−4) in the L∞ norm. The L2 errors
do not decrease when we increase the number of points from 2000 to 4000. It is
because we use a fixed time stepsize ∆t = 0.02 and a fixed ρ = 4.0.

5.6.3 Monge-Ampère equation
Our last example is the Monge-Ampère equation in two dimensional space.

det(D2u) = f , x ∈ (0,1)2 . (5.6.4)

Here, we choose u(x) = exp
(
0.5((x1 − 0.5)2 + (x2 − 0,5)2)

)
to generate the bound-

ary and right hand side data. To ensure uniqueness of the solution, some convexity
assumption is usually needed. Here, to test the wide applicability of our method-
ology, we directly implement Algorithm 3. We adopt 3 steps of Gauss-Newton
iterations with the initial guess u(x) = 1

2 ‖x‖
2. We choose the Matérn kernel with

ν = 5/2. The lengthscale of the kernel is set to be 0.3.
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Figure 5.10: The Monge-Ampère equation example. The left figure concerns the
L2 errors, while the right figure concerns the CPU time. Both are with respect to the
number of physical points in space, and in both figures, we consider ρ = 2.0,3.0,4.0.
We choose the Matérn kernel with ν = 5/2 in this example.

In Figure 5.10, we present the L2 errors of the solution and the CPU time with
respect to Ndomain. Once again, we observe a nearly linear complexity in time.
However, since det

(
D2u

)
involves several partial derivatives of the function, we
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need to differentiate our kernels accordingly; we use auto-differentiation in Julia for
convenience, which is slightly slower than the hand-coded derivatives used in our
previous numerical examples. Consequently, the total CPU time is longer compared
to the earlier examples, although the scaling regarding Ndomain remains similar.

As Ndomain increases, the L2 solution errors decrease for ρ = 2.0,3.0,4.0. This
indicates that our kernel method is convergent for such a fully nonlinear PDE.
However, since we do not incorporate singularity into the solution, this example
may not correspond to the most challenging setting. Nonetheless, the success of
this simple methodology combined with systematic fast solvers demonstrates its
potential for promising automation and broader applications in solving nonlinear
PDEs.

5.7 Conclusions
We have investigated a sparse Cholesky factorization algorithm that enables scaling
up the GP method for solving nonlinear PDEs. Our algorithm relies on a novel
ordering of the Diracs and derivative-type measurements that arise in the GP-PDE
methodology. With this ordering, the Cholesky factor of the inverse kernel matrix
becomes approximately sparse, andwe can use efficientKLminimization, equivalent
to Vecchia approximation, to compute the sparse factors. We have provided rigorous
analysis of the approximation accuracy by showing the exponential decay of the
conditional covariance of GPs and the Cholesky factors of the inverse kernel matrix,
for a wide class of kernel functions and derivative measurements.

When using second-order Gauss-Newton methods to solve the nonlinear PDEs,
a reduced kernel matrix arises, in which many interior Dirac measurements are
absent. In such cases, the decay is weakened, and the accuracy of the factorization
deteriorates. To compensate for this loss of accuracy, we use pCG iterations with
this approximate factor as a preconditioner. In our numerical experiments, our
algorithm achieves high accuracy, and the computation time scales near-linearly
with the number of points. This justifies the potential of GPs for solving general
PDEs with automation, efficiency, and accuracy. We anticipate extending our
algorithms to solving inverse problems and our theories to more kernel functions
and measurement functionals in the future.
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C h a p t e r 6

CONSISTENCY OF HIERARCHICAL LEARNING FOR
GAUSSIAN PROCESSES

In this chapter, we study and analyze the use of hiearchical learning for Gaussian
processes to improve the adaptivity of the algorithm. The exposition is based on our
work [51] published in Mathematics of Computation, 90(332):2527–2578, 2021.

6.1 Introduction
6.1.1 Background and Context
Gaussian process regression (GPR) is important in its own right, and as a pro-
totype for more complex inverse problems in which there is a possibly indirect,
nonlinear set of observations. An important reason for the success of GPR in appli-
cations is its ability to learn hyperparameters, entering through a hierarchical prior,
from data. Learning of these hyperparameters is typically achieved through fully
Bayesian (sampling) or empirical Bayesian (optimization) methods. However, new
approaches suggested in the machine learning literature, particularly the kernel flow
method [206], rely on approximation theoretic criteria that can be traced back to the
classical idea of cross-validation for model selection. The primary goal of this work
is to study and compare these two approaches. Special attention will be paid to their
large data consistency, implicit bias, and robustness to model misspecification.

6.1.2 Gaussian Process Regression
We start with a brief introduction to GPR; for simplicity, we focus on the noise-free
scenario. The target is to recover a function u† : D 7→ R from pointwise data
yi = u†(xi) for 1 ≤ i ≤ N , where xi ∈ D ⊂ Rd and D is a compact domain. This
problem often appears in fields such as supervised learning in machine learning,
non-parameteric regression in statistics, and interpolation in numerical analysis.

The GPR solution to this problem is as follows. Given a family of positive definite
covariance/kernel functions Kθ : D × D → R where θ ∈ Θ is a hyperparameter,
GPR approximates u† with the conditional expectation

u(·, θ,X) := E [ξ(·, θ) | ξ(X, θ) = u†(X)] = Kθ(·,X)[Kθ(X,X)]
−1u†(X) , (6.1.1)



181

where ξ(·, θ) ∼ GP(0,Kθ) is a centered Gaussian process1(GP) with covariance
function Kθ . We have used the following compressed notation:

X := (x1, . . . , xN )
T and u†(X) := (u†(x1), . . . ,u†(xN ))

T .

Moreover, Kθ(X,X) denotes the N × N dimensional Gram matrix with (i, j)th entry
Kθ(xi, x j), and Kθ(·,X) is a function mapping D to RN with ith component Kθ(·, xi) :
D 7→ R.

Normally, every θ ∈ Θ produces a solution u(·, θ,X) that agrees with u† on X.
Nevertheless, different choices may yield distinct out-of-sample errors, known as
generalization errors in the machine learning context. Therefore, it is of paramount
importance to learn a good hierarchical parameter θ adaptively from data.

6.1.3 Two Approaches
In this chapter, we study two approaches to the question posed above, both based on
selecting θ as the optimizer of a variational problem.

6.1.3.1 Empirical Bayes Approach

The empirical Bayes (EB) approach addresses the question by proposing a statistical
model. It formulates a prior distribution on the pair (ξ, θ) by assuming that θ is
sampled from a prior distribution and ξ is then sampled from the conditional distri-
bution of ξ |θ; then, it finds the posterior distribution of the pair (ξ, θ) conditioned on
ξ(X) = u†(X), and selects the parameter θ that maximizes the marginal probability
of θ under this posterior. For simplicity, we work with uninformative priors, which
lead to the following objective function:

LEB(θ,X,u†) = u†(X)T[Kθ(X,X)]
−1u†(X) + log det Kθ(X,X) . (6.1.2)

This is also twice the negative marginal log likelihood of θ given the data u†(X).
Then, EB will choose θ by minimizing this objective function, namely

θEB(X,u†) := arg min
θ∈Θ

LEB(θ,X,u†) . (6.1.3)

1Recall that the covariance function Kθ of a Gaussian process GP(0,Kθ ) is the kernel of the
integral operator representation of Cθ in the covariance operator notation N(0,Cθ ). Connections
between these perspectives are reviewed in Subsection 6.2.1. We will use the covariance operator
notation more frequently later in this chapter.
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6.1.3.2 Approximation Theoretic Approach

Approximation theoretic considerations, on the other hand, provide a different an-
swer without proposing statistical models. This methodology proceeds by asking
for an ideal θ that minimizes d(u†,u(·, θ,X)) for some cost function d. Though
in practice u† is not available, there are ideas in cross-validation that split X into
training data and validation data, and use the approximation error in validation data
to estimate the exact error. Inspired by this idea, we could turn to optimize the
following objective function:

d(u(·, θ,X),u(·, θ, πX)) , (6.1.4)

where we write πX for a subset of X obtained by subsampling a proportion, say
one-half, of X.

In this work, we focus on a particular choice of d that originates from the Ker-
nel Flow (KF) approach [206]. To describe it, we denote by (Hθ, ‖ · ‖Kθ ) the
associated Reproducing Kernel Hilbert Space (RKHS) for the kernel Kθ; note that
‖Kθ(·, x)‖2Kθ = Kθ(x, x). The objective function in KF is chosen as

LKF(θ,X, πX,u†) :=
‖u(·, θ,X) − u(·, θ, πX)‖2Kθ

‖u(·, θ,X)‖2Kθ
. (6.1.5)

This measures the discrepancy in the RKHS norm between the GPR solution using
the whole data X and using a subset of the data πX, normalized by the RKHS norm
of the former.

Remark 6.1.1. As explained above, we understand the numerator as an estimation
of the error ‖u† − u(·, θ,X)‖2Kθ . Such error estimate, based on comparing solutions
obtained via different data resolutions, is a widely used idea in numerical analysis.

Based on Garlerkin orthogonality (see [206]), the objective function admits a finite
dimensional representation formula that is convenient for numerical computation:

LKF(θ,X, πX,u†) = 1 −
u†(πX)T[Kθ(πX, πX)]

−1u†(πX)
u†(X)T[Kθ(X,X)]−1u†(X)

. (6.1.6)

Then, the KF estimator is defined as

θKF(X, πX,u†) := arg min
θ∈Θ

LKF(θ,X, πX,u†) . (6.1.7)

Remark 6.1.2. The existence of the finite-sample formula (6.1.6) is attributed to the
choice of the RKHS norm in comparing solutions. It is essentially a consequence of
the standard representer theorem. Additional motivations for using the RKHS norm
will be reviewed in Subsection 6.1.5.2.
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6.1.3.3 Guiding Observations and Goals

The EB and KF algorithms estimate the parameter θ from the observed data, the
number of which can vary considerably. Thus, a basic question to ask is whether
the estimators attain meaningful limits as data accumulate:

(1) Consistency: how do θEB and θKF behave in the large data limit, i.e., as the
number of data N goes to infinity?

Meanwhile, since we have two estimators, it is natural to compare their performance.
Indeed, we observe that EB and KF have distinct objectives: EB seeks to estimate
the most likely parameters of the distribution assumed to generate the data, while
KF chooses parameters to minimize an estimate of the approximation error in a
parameter-dependent RKHS norm, targeting at the approximation efficiency of the
underlying function. Moreover, EB is always probabilistic, while KF need not be.

These differencesmotivate the implicit bias question that has been popular in thema-
chine learning community, and the model misspecification question that is common
in mathematical modeling:

(2) Implicit bias: what are the selection bias of EB and KF, or, how should the
obtained estimators θEB and θKF be interpreted in practice?

(3) Model misspecification: how do θEB and θKF behave when there is a mis-
match between the data-generating mechanism and the model used to regress
the data?

The precise goal of this work is to address these questions for certain concrete
models, either theoretically or experimentally.

6.1.4 Our Contributions
Our contributions in this chapter are twofold and explained in the following two
subsections.

6.1.4.1 Consistency and Implicit Bias

The first part of this work is devoted to the questions of consistency and implicit bias.
We study a Matérn-like model on the torus, in which u† is a sample drawn from the
Matérn-like Gaussian process, with three parameters θ = (σ,τ, s) that quantify the
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amplitude, inverse lengthscale and regularity of the process. The detailed definition
is in Subsection 6.2.1.

Our main analysis concerns learning the regularity parameter s using EB and KF.
When the sampled points X are equidistributed, we achieve the following contribu-
tions:

• Consistency: we prove that the EB estimator converges to s in the large data
limit, while the KF estimator converges to s−d/2

2 , so that s is also determined.
Their variances are also computed and compared.

• Implicit bias: we characterize the selection bias of EB and KF algorithms,
in terms of the L2 error between u† and the GPR solution using learned
parameters — this is the so-called generalization error. It is found that
EB selects the parameter that achieves the minimal L2 error in expectation,
while KF selects the minimal parameter that suffices for the fastest rate of
convergence of the L2 error to 0 as the data density increases.

We can interpret these contributions from two perspectives. From the machine
learning side, we are able to show that KF, as a machine learning method, has
a well-defined large data limit for the Matérn-like model. Furthermore we can
characterize clearly its implicit bias in terms of L2 generalization errors. Thus, this
work leads to a first theory for the KF learning algorithm.

From the spatial statistics side, our analysis contributes to a novel consistency theory
for estimating the regularity parameter of Matérn-like fields in general dimensions.
Such results are scarce in the spatial statistics literature; the techniques we use to
prove consistency may be of independent interest and applicable beyond the setting
considered here.

We also include numerical studies concerning the learning of the amplitude pa-
rameter σ and the inverse lengthscale parameter τ; these experiments contribute
to a more complete picture of GPR using the Matérn-like field with hierarchical
parameters. Moreover, we provide numerical experiments for several other well-
specified models beyond the Matérn-like model, thus further extending the scope of
discussions.
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6.1.4.2 Model Misspecification

The second part of this work considers model misspecification: the data generating
model for u† and the model Kθ used for regression do not match. We adopt the
following setting:

• We model the truth u† either as a GP, using a variety of covariance functions,
or as a deterministic function which solves a PDE.

• The kernel Kθ is chosen to be Green’s function of various differential oper-
ators, where θ encodes information beyond the amplitude, lengthscale, and
regularity of the field. For example we choose θ to be the location of a
discontinuity within a conductivity field.

In this setting we observe distinct behavior distinguishing EB and KF. This raises
the discussion of how to choose which algorithm to use when solving practical
problems where misspecification is to be expected. Our numerical study explores
several misspecification possibilities, showing that KF could be competitive with
EB in certain scenarios.

6.1.5 Literature Review
In this subsection, we review the related literature. Several fields are of relevance,
so we label them to help organize the review.

6.1.5.1 Regression and Inverse Problems

Regression is a form of inverse problem [63], and if formulated in a Bayesian
fashion, it falls within the scope of Bayesian nonparametric estimation [98, 126].
In the paper [145] a simple class of linear inverse problems was studied from the
perspective of posterior consistency, and itwas demonstrated that the rate of posterior
convergence depends sensitively on the relationship between regularity of the true
function being sought, and the regularity of draws from the prior. This motivates the
need for hierarchical procedures that adapt, on the basis of the data, the regularity
of draws from the prior. In [144] the work in [145] was extended to cover the
data-adapted learning of the regularity parameter in the prior; as the authors note:
theoretical work “that supports the preference for empirical or hierarchical Bayes
methods does not exist at the present time, however. It has until now been unknown
whether these approaches can indeed robustify a procedure against prior mismatch.
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In this paper, we answer this question in the affirmative.” This analysis, however,
requires simultaneous diagonalization of a self-adjoint operator formed from the
forward model and the covariance operator, for all values of the hyper-parameter.
Consistency is studied without this assumption in [288], and extended to the study of
emulation within Bayesian inversion in [262] and to empirical Bayesian procedures
in [267]. The papers [144] and [267] also use the EB loss function (6.1.2). In
[71] estimation of hyper-parameters in Gaussian priors is discussed in the context
of MAP estimators.

6.1.5.2 Kernel Flow and Cross-validation

The KF loss function in (6.1.6) was originally derived in [206] and motivated from
the perspective of optimal recovery theory. It can be interpreted, from a numerical
homogenization perspective [204], as the relative energy contained in the fine scales
(in the unresolved part) of u†. In the paper [206], the proposed loss function to be
optimized (via SGD) has the form

Eπ1Eπ2LKF(θ, π1X, π2π1X,u†) , (6.1.8)

where π1X is a subsampling ofX, and π2π1X is a further subsampling of π1X. This
choice reduces the dimension of the kernel matrix and enables fast computation
per iteration. Although the KF loss appears to be new, it can be seen as a variant
of cross-validation (CV), which is a commonly used model selection/parameter
estimation criteria [4, 97, 146]. A theoretical understanding of the consistency
of CV “is very much of interest” [296] since its convergence rate can be shown
to be asymptotically minimax [260] or near minimax optimal [274, 273] while
having a lower computational complexity [300] than MLE (maximum likelihood
estimation). The consistency of parameter estimation for the Ornstein-Uhlenbeck
process has been studied in [297] for MLE, and [21] for CV.

In the setting of hyperparameters estimation of GPs, comparing MLE with CV can
be traced back to Wahba [281] and Stein [257] who compared variants of these
procedures2 for choosing the smoothing parameter of a smoothing spline; they ob-
served that whileMLE is optimal when themodel is well-specified, CVmay perform
better (than MLE) under misspecification (see also [20] for theoretical analysis and
[286] for a practical example involving real data) and has a comparable rate of con-
vergence when the model is correct (Stein [257] observed that “both estimates are

2modified maximum likelihood estimation and generalized cross validation.
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asymptotically normal with the CV estimate having twice the asymptotic variance
of the MLE estimate” and suggested that “The penalty for using CV instead of MLE
when the stochastic model is correct is greater for higher-order smoothing splines,
both in terms of the efficiency in estimating the smoothing parameter and the im-
pact on subsequent predictions”). We also refer to [147] for a detailed numerical
comparison between MLE and CV for estimating spline smoothing parameters. As
observed in [242], these comparisons “are relevant for both numerical analysts and
statisticians” since kernel interpolation can be interpreted as both approximating a
deterministic unknown function from quadrature points or as estimating a sample
from a Gaussian process from pointwise measurements.

6.1.5.3 Machine Learning and Kernel Learning

Kernel methods and GPs have long been used in machine learning [127, 228].
Learning a good kernel for a given task is very important in practice. Many works
have tried to learn a kernel from data based on different criteria; for example, in [8],
the kernel is modified to make the model have a large margin in classification, and
in [56], the kernel is selected to have a small local Rademacher complexity. EB and
KF loss functions have also been used in [228, 292, 206].

The recent discovery of the neural tangent kernel regime for overparameterized
models [134] and the identification [202] of warping kernels [233, 213, 244, 206]
as the infinite depth limit of residual neural networks [118] also suggest that a
theoretical understanding of kernel selections may lead to important insights for
neural network based machine learning. This line of work suggests that it may
be fruitful to consider machine learning directly as the problem of selecting an
underlying kernel (by minimizing nonlinear functionals of the empirical distribution
such as (6.1.2) or (6.1.6)) and learning based on this kernel; in this perspective one
has hierarchical GPR with kernel itself as the hyperparameter. This may be more
effective than simply fitting the data by minimizing a generalized moment, i.e., a
linear functional, of the empirical distribution, which is popularly used in empirical
risk minimization. Numerical experiments presented in [298] and [114], based on
the KF methodology in [206], provide evidence that (1) this point of view could
improve test errors, generalization gaps, and robustness to distribution shifts in the
training of of ANNs, and (2) kernel methods can be a simple and effective approach
for learning dynamical systems and surrogate models, with the underlying kernel
also learned from data (using KF and its variants). This further motivates the desire
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to understand the KF-based estimation of θ.

6.1.6 Organization
The rest of this chapter is organized as follows. Section 6.2 is devoted to learning
the regularity parameter of the Matérn-like model, where the large data consistency
is proved and implicit bias is characterized. Most of the detailed proofs are deferred
to Section C.1, and concise intuitive ideas are presented in Section 6.2 for the sake
of readability. Section 6.3 considers other well-specified models, including the
learning of the lengthscale and amplitude parameters in the Matérn-like model, or
beyond the Matérn-like model. Experiments are provided concerning consistency
and variance of these EB and KF estimators. Section 6.4 covers discussions on
model misspecification through numerical studies. The purpose of the numerical
experiments is twofold: (i) to demonstrate the extent to which the ideas learned
through the analysis of consistency, which focuses primarily on the regularity pa-
rameter, extends to other parameters; (ii) to compare the performance of the EB and
KF estimators quantitatively, since use of the latter is somewhat new in this area and
its potential pros and cons need to be evaluated. Finally, we conclude this chapter
in Section 6.5.

6.2 Regularity Parameter Learning for the Matérn-like Model
In this section, we study a Matérn-like model on the torus. We start with definitions
of this model in Subsection 6.2.1, followed with definitions of EB and KF estimators
in this context in Subsection 6.2.2. Then, in Subsection 6.2.3, we present our theory
for the consistency of EB and KF estimators in learning the regularity parameter,
with experiments included to demonstrate the correctness and implications of the
theory. In particular, the implicit bias of these two estimators is explained. We
outline the sketch of proofs for the theoretical result in Subsections 6.2.4, 6.2.5 and
6.2.6, and summarize several observations in Subsection 6.2.7. Subsection 6.2.8
provides additional experiments discussing the variance of these estimators.

6.2.1 The Matérn-like Model
We follow the general set-up in Subsections 6.1.2 and 6.1.3, where we have men-
tioned all the abstract ingredients such as the physical domain D, the truth u†, the
kernel Kθ , and the data location X. In the current and next subsections, we will
specify the exact meaning of these terms for a Matérn-like model on the torus. We
will also make remarks to explain its connection to the standard Whittle-Matérn
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process in the whole domain; see Remark 6.2.2.

6.2.1.1 The Physical Domain

We set D to be Td = [0,1]dper, the d dimensional unit torus; this will be the domain
that we use for all our analysis. We need to introduce some mathematical concepts
related to functions defined on this torus Td . First, the space of square integrable
functions on Td with mean 0 is denoted by

ÛL2(Td) :=
{
v : Td → R :

∫
Td
|v(x)|2 dx < ∞,

∫
Td

v(x) dx = 0
}
. (6.2.1)

The L2 inner product and norm are denoted by [·, ·] and ‖ · ‖0 respectively.

In order both to define covariance operators and Sobolev spaces it is convenient
to introduce the Laplacian operator. Let −∆ be the negative Laplacian equipped
with periodic boundary conditions on Td and restricted to functions with zero mean.
This operator has orthonormal eigenfunctions φm(x) = e2πi〈m,x〉 with corresponding
eigenvalues λm = 4π2 |m|2, for every m ∈ Zd\{0}, where Zd denotes the d-fold
tensor product of Z, the set of non-negative integers. Here, i is the imaginary
number, and 〈m, x〉 denotes the Euclidean inner product between m, x ∈ Rd .

Now, we can write functions in ÛL2(Td) as Fourier series:

v(x) =
∑

m∈Zd
v̂(m)e2πi〈m,x〉 , (6.2.2)

where v̂ : Zd → R is the Fourier coefficient that satisfies v̂(0) = 0 and v̂(m) = [v, φm]

for m ∈ Zd\{0}. This representation can be used to define useful Sobolev-like
spaces. For every t > 0, the Sobolev-like space ÛHt(Td) ⊂ ÛL2(Td) consists of
functions with bounded ‖ · ‖t norm:

‖v‖2t :=
∑

m∈Zd
(4π2 |m|2)t |v̂(m)|2 < ∞ . (6.2.3)

We note that ÛH0(Td) = ÛL2(Td). For t < 0, the space ÛHt(Td) is defined through
duality. The Hilbert scale of function spaces defined through varying t serves as the
basic ingredient to model the regularity of a function on Td .

6.2.1.2 The Matérn-like Kernel and Process

The Matérn-like covariance operator on the torus is defined by

Cθ = σ
2(−∆ + τ2I)−s , (6.2.4)
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where the parameter θ = (σ,τ, s). The roles of the three parameters are reviewed in
Remark 6.2.2. The orthonormal eigenfunctions of this operator are φm(x) = e2πi〈m,x〉

with corresponding eigenvalues σ2(4π2 |m|2 + τ2)−s, for m ∈ Zd\{0}.

The Matérn-like kernel function Kθ is related to the operator Cθ via

Kθ(x, y) = [δ(· − x),Cθδ(· − y)] , (6.2.5)

where δ(·−x) is the Dirac function centered at x. Equivalently, Kθ can be understood
as the Green function of the differential operator C−1

θ . Note that by Sobolev’s
emdedding theorem, s > d/2 is required to make Kθ(x, y) pointwise well-defined
(See Section 7.1.3 and Lemma 7.2 in [63]): Kθ(·, y) then lies in the space of
continuous functions for any y ∈ Td .

Remark 6.2.1. We also have the Mercer decomposition of the kernel function:

Kθ(x, y) =
∑

m∈Zd\{0}

σ2(4π2 |m|2 + τ2)−sφm(x)φ∗m(y) , (6.2.6)

where φ∗m is the complex conjugate of φm.

Given these function spaces and operators, we can define the Matérn-like process
using the Gaussian measure notation:

ξ ∼ N
(
0, σ2(−∆ + τ2I)−s

)
. (6.2.7)

This covariance operator viewpoint could be understood as follows: for any f ∈
ÛL2(Td), the quantity [ f , ξ] is a Gaussian random variable with mean 0 and vari-
ance [ f , σ2(−∆ + τ2I)−s f ]. We note that (6.2.7) is equivalent to the GP notation
ξ ∼ GP(0,Kθ). For more details on how to define Gaussian measures using op-
erators we refer to [30, 204]. A sample from this process can be realized by the
Karhunen–Loève expansion

ξ(x) =
∑

m∈Zd\{0}

σ(4π2 |m|2 + τ2)−s/2φm(x)ξm , (6.2.8)

where ξm (m ∈ Zd\{0}) are i.i.d. standard normal random variables; we have
E ξ(x)ξ(y) = Kθ(x, y). Numerically, we can draw a sample by truncating this series
and restricting to a grid of values on the torus. Alternatively it is possible to
discretize the differential operator C−1

θ on a grid first, and then compute the discrete
eigenfunctions to draw a sample. Such an idea is useful when the eigenvalues and
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eigenfunctions ofC−1
θ are not analytically known a priori. Indeed, when the operator

is discretized into a matrix, the infinite dimensional Gaussian measure becomes a
finite dimensional one with the covariance matrix being the discretization of Cθ .
Drawing samples is then straightforward. In this section, however, we work on
the torus and so the eigenvalues and eigenfunctions are known explicitly and the
truncated Karhunen–Loève expansion could be employed.

Remark 6.2.2. The three parameters σ,τ and s quantify the amplitude, inverse
lengthscale, and regularity of the process, respectively. This setting is similar to
that of the standard Matérn process [258, 109], defined on the whole space Rd ,
whose kernel function and associated covariance operator are both characterized
by three parameters; see [166] for links to the solution of stochastic PDEs, an
approach attributable to Whittle [289, 109]. The Matérn kernel function is

Kσ,l,ν(x, y) = σ2 21−ν

Γ(ν)

(
|x − y |

l

)ν
Bν

(
|x − y |

l

)
,

for x, y ∈ Rd , where Bν is the modified Bessel function of the second kind of order
ν. On Rd , this kernel function corresponds to the covariance operator

Cσ,l,ν =
σ2ldΓ(ν + d/2)(4π)d/2

Γ(ν)
(I − l2

∆)−ν−d/2 .

From this formula, the connection between the Matérn covariance operator in Rd

and the Matérn-like kernel operator (6.2.4) on Td becomes apparent. We restrict
our analysis to the torus to exploit powerful Fourier series techniques. We will
also comment on other boundary conditions in Subsection 6.2.7. For related results
regarding the Matérn process in Rd or other bounded domains, we recommend the
book [258]. We note that [258, Sec. 6.7] also considers a periodic version of the
Matérn model and discusses (via the Fisher information matrix) the fixed domain
asymptotics of themaximum likelihood estimate of the three parameters. By using the
Mercer decomposition (6.2.6), the periodic case there is mathematically equivalent
to the Matérn-like model on the torus that is considered in this chapter. In the
next subsection, we prove the consistency of estimators for the regularity parameter,
providing a rigorous theory for this periodic model. It would be interesting, in future
work, to combine this consistency with the properties of the Fisher information
matrix established in [258, Sec. 6.7] to obtain Bernstein-von-Mises type theorems
characterizing asymptotic normality of the estimator.
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6.2.2 Regularity Parameter Learning
With the Matérn-like kernel and process defined, we move to discuss the parameter
learning problem in this subsection. We fix σ = 1 and τ = 0 in the Matérn-like
model and focus on the regularity parameter only. To proceed, we need to make
precise the ground truth u†, the kernel, and the data location X, of the learning
problem.

6.2.2.1 The Ground Truth

Our theoretical results regarding the consistency of EB and KF estimators will
be based on the assumption that u† is drawn from the GP N(0, (−∆)−s) for some
s > d/2.

Remark 6.2.3. We note some regularity properties of this GP here. The Cameron-
Martin space for ξ ∼ N(0, (−∆)−s) is ÛHs(Td) (for readers not familiar with the
Cameron-Martin space, see Theorem 7.33 in [63]). However, ξ is not an element
of this space, almost surely. Indeed, it holds that ξ belongs to ÛHs−d/2−η(Td) for
any η > 0 almost surely (and to Hölder spaces with the same number of fractional
derivatives; see Theorem2.12 in [63]). Furthermore, since the Laplacian operator is
homogeneous and thus the covariance operator is stationary in space, the regularity
of the path is spatially homogeneous (the measure is space translation-invariant).
Here, we refer, for this phenomenon, to ξ (as a function) having homogeneous
critical regularity s − d/2 across Td . If we drop the term “homogeneous”, we mean
the property holds without the requirement of spatial homogeneity. Such behavior
may occur for functions with spatial singularities.

Remark 6.2.4. We always require s > d/2, which ensures the continuity of the
sample path of ξ almost surely and guarantees that ÛHs(T) is a RKHS, according to
discussions in Remark 6.2.3. Thus, the pointwise value of ξ makes sense.

6.2.2.2 The Equidistributed Data

We observe equidistributed pointwise values of u† over the torus, i.e., the data lie
on a lattice. To describe the data locations we introduce a level parameter q ∈ N

such that, for a given q, we have the data locations Xq := {x j : j ∈ Jq}, where x j =

( j1, j2, ..., jd) · 2−q and Jq := {( j1, j2, ..., jd) ∈ N
d : 0 ≤ jk ≤ 2q − 1,∀ 1 ≤ k ≤ d}.

We also use the simplified notation x j = j2−q throughout the chapter.
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6.2.2.3 The EB and KF Estimators

We follow the definitions in Subsection 6.1.3. Here, the kernel function for the
regularity learning problem will be

Kθ(x, y) = [δ(· − x), (−∆)−tδ(· − y)] ,

where the parameter θ = {t}. Similar to Remark 6.2.1, it has the following Mercer
decomposition

Kθ(x, y) =
∑

m∈Zd\{0}

(4π2 |m|2)−sφm(x)φ∗m(y) . (6.2.9)

Numerically, we can compute it by truncating this infinite series. Fast Fourier
Transform could be applied to speed up computation of the kernel matrix.

We adapt several notations from Subsection 6.1.3 to this specific problem, bywriting
t instead of θ, and q instead ofXq, andK(t,q) instead ofKθ(Xq,Xq). These simplified
notations make the analysis cleaner to present. Under such convention, the EB
estimator for the regularity parameter is

sEB(q,u†) = arg min
t∈[d/2+δ,1/δ]

LEB(t,q,u†), LEB(t,q,u†) := ‖u(·, t,q)‖2t + log det K(t,q) .

(6.2.10)

Here, u(·, t,q) is the GPR solution using the kernel function Kt and the observational
data of u† at Xq.

Remark 6.2.5. The formula (6.2.10) is the continuous formulation of the EB loss
function, which is more convenient for theoretical analysis of consistency. The
finite-sample formula (6.1.2) is more useful in numerical computation, and it can
be derived from (6.2.10) by using the representer theorem.

Remark 6.2.6. As in Remark 6.2.4, we require the regularity parameter t > d/2.
Here, furthermore, we introduce a number δ > 0 and select the domain of the
parameter to be t ∈ [d/2 + δ,1/δ]; δ can be any arbitrary positive number, and
this compactification of the parameter domain will simplify the subsequent analysis.
The reader should not confuse real number δ with Dirac delta function δ.

For the KF loss function, we fix the subsampling operator to be equidistributed
subsampling so that πXq = Xq−1; for this choice, we can omit the dependence of the
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estimator on the subsampling operator π in the notation and write:

sKF(q,u†) = arg min
t∈[d/2+δ,1/δ]

LKF(t,q,u†), LKF(t,q,u†) :=
‖u(·, t,q) − u(·, t,q − 1)‖2t

‖u(·, t,q)‖2t
.

(6.2.11)

6.2.3 Consistency and Implicit Bias
In this subsection, we present our theory of consistency and characterize the implicit
bias via numerical experiments. The sketch of proofs is given in the next subsections.

6.2.3.1 Main Theorem

We have the following theorem regarding the consistency of the two statistical
estimators in the large data limit:

Theorem6.2.7. Fix δ > 0. Suppose u† is a sample drawn from theGaussian process
N(0, (−∆)−s). If s ∈ [d/2 + δ,1/δ] then, for the Empirical Bayesian estimator,

lim
q→∞

sEB(q,u†) = s ;

if s−d/2
2 ∈ [d/2 + δ,1/δ] then for the Kernel Flow estimator,

lim
q→∞

sKF(q,u†) =
s − d/2

2
.

In both cases the convergence is in probability with respect to randomly chosen u†.

Remark 6.2.8. Strictly speaking this theorem shows that EB consistently estimates
the regularity parameter, whilst KF does not. However we make two observations
about this. Firstly, the true value of s can be recovered from the KF estimator by
a simple linear transformation. And, secondly, the value selected by KF is optimal
with respect to minimizing a specific measure of generalization error (as we will
show in the discussion of implicit bias in Subsection 6.2.3.3), and is of clear interest
from this perspective.

Remark 6.2.9. The use of δ in the proof (and hence statement) of this theorem helps
by compactifying the parameter space. In practice, numerics demonstrate that it is
not intrinsic to the problem. We leave for future work the problem of a more refined
theorem, and proof, which does not rely on it.
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Remark 6.2.10. For economy of notation we will drop explicit reference to the
dependence of the loss functions and the estimators on u† in what follows; we will
simply write LEB(t,q), LKF(t,q), sEB(q), sKF(q).

The remainder of this subsection is devoted to numerical experiments illustrating
the theory, discussion of the implications of the theory (i.e. implicit bias), and an
overview of the proof techniques we adopt.

6.2.3.2 Numerical Illustration of Theory

We present a numerical example to demonstrate the main theorem, and its conse-
quences for regression. Consider the one dimensional case, i.e., d = 1. We set the
ground truth s = 2.5 and so s−d/2

2 = 1. The domain is discretized with N = 210

equidistributed grid points. For our first set of experiments we fix the resolution
level of the data points to be q = 9, i.e., we have 29 equidistributed observations of
the unknown function u†. In what follows the Laplacian is as defined in Subsection
6.2.1.2. Given a sample of u† from N(0, (−∆)−s), we form the loss function for
the EB and the KF estimators. We draw this sample using the formula (6.2.8) with
σ = 1 and τ = 0; we truncate the series to the grid resolution. A single realization
of these loss functions is then shown in Figure 6.1.
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Figure 6.1: Left: EB loss; right: KF loss

We observe that the minimizer of the EB loss function is very close to t = 2.5, while
the minimizer of the KF loss function is very close to t = 1, matching the predictions
of Theorem 6.2.7. Furthermore, the loss functions exhibit some interesting features.
Specifically, the EB loss function behaves as a linear function of t, for t less than
s, and then blows up rapidly when t exceeds s. The KF loss function is more
symmetric with respect to the minimizer t = s−d/2

2 in the logarithmic scale. We will
make remarks that explain these observations in our theoretical analysis.



196

6.2.3.3 Implicit Bias

We present here a second set of numerical experiments looking at the effect of the
parameter value s selected by EB and KF on the approximation of the function
u†, which is (typically) the primary goal of hierarchical parameter estimation. The
experimental set-up is the same, but now we vary the resolution of the data points
q = 3,4, ...,9. We focus on the L2 error between u† and the GPR solution using
learned parameters, i.e.,

‖u†(·) − u(·, t,q)‖20 .
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Figure 6.2: L2 error: averaged over the GP.

We start, in Figure 6.2, by considering the error as a function of q, for different
t. As we increase t, the regularity of the GP used for regression increases. In
order to illustrate clear trends, the L2 error is averaged over the random draw of
u† ∼ N(0, (−∆)−s), so the effective error is Eu† ‖u†(·) − u(·, t,q)‖20 . From the figure,
we can see that when t increases from 0.5 to 1, the convergence rate of the L2

approximation error increases. Then, if we increase t further from 1 to 3, the
slope of the convergence curve remains nearly the same. This demonstrates the fact
that 1 = s−d/2

2 is the minimal t that suffices to achieve the fastest rate of L2 error
convergence. We have observed that this phenomenon is very stable with respect to
the specific random draw: the general shape of the curves seen in Figure 6.2 is still
observed when one specific draw of the true random process is used, although the
resulting figure contains fluctuations and is not as clear as the average case that we
show.
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On the other hand, we can compute Eu† ‖u†(·) − u(·, t,q)‖20 for q = 9 as a function of
t; see Figure 6.3. The optimality of the value s = 2.5 is clear. However, unlike the
experiments in Figure 6.2, this result is not stable with respect to the random instance
of the GP: the minimizer of the L2 error fluctuates wildly in our experiments.
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Figure 6.3: L2 error: averaged over the GP, for q = 9

In summary, the second set of numerical experiments indicates the following im-
plications for the regression accuracy of the EB and KF approaches to hierarchical
parameter estimation. The KF estimator selects the minimal t that suffices to achieve
the fastest rate of approximation error in the L2 norm for a given fixed truth; in con-
trast, the EB estimator converges to the t that achieves theminimal L2 error, averaged
over the draw u† ∈ N(0, (−∆)−s). Note that KF is based on purely approximation
theoretic considerations whilst EB is founded on statistical considerations—they
attain very different implicit bias in selecting parameters.

6.2.3.4 Further Discussion of The Theory

We provide some further discussions of the implications of Theorem 6.2.7 in this
subsection. The theory shows that the EB estimator recovers the ground truth
parameter s of the statistical model. This is in line with expectations since the
methodology is designed to recover the most likely value of s, given the data, and
since the Gaussian measures occurring for different s are mutually singular. In
the literature, such consistency results are primarily for observational data in the
Fourier domain; thus, the observation operator commutes with the prior. Here, our
data model is in the physical domain, which leads to the need for considerably more
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sophisticated analysis, due to the noncommutativity of the observation operator
and the prior operator, and yet is a much more practically useful setting, justifying
the investment in the somewhat involved analysis. Our proof provides a novel
sharp upper and lower bound on the terms ‖u(·, t,q)‖2t and log det K(t,q), based on
techniques in approximation theory and the multiresolution analysis developed in
[204]. Our techniques may have broader applications in analyzing the observational
model in the physical domain.

Another interesting phenomenon shown in Theorem 6.2.7 is that the KF estimator,
first proposed in [206] as a method to learn kernels for machine learning tasks,
achieves a rather different consistency behavior, with the large data limit being
s−d/2

2 . This fact has the following consequence: if the ground truth function u† has
homogeneous critical regularity s− d/2, then the KF estimator will converge to half
the critical regularity in the large data limit.

To understand the mechanism behind this effect, we observe that the KF loss is a
surrogate for the (relative) ‖ · ‖t-norm approximation error between u† and u(·, t,q).
Furthermore, approximation theory implies that the GP regressor u(·, t,q) is also
the optimal ‖ · ‖t-norm approximant of u† in the linear span of the basis functions
{(−∆)−tδ(x − x j)} j∈Jq . Under this perspective, we see the KF loss incorporates
two competing factors in the approximation: increasing t improves the approxima-
tion error by increasing the regularity of the basis functions while worsening the
measurement of that approximation error by using a stronger norm. The balance
between these two competing factors is achieved when t is half the critical regular-
ity, which is the parameter that KF eventually picks. Our proof provides a detailed
demonstration of this phenomenon.

In short, EB learns hierarchically based on statistical principles, whilst KF learns
based on approximation theoretic ones. The consistency results presented here
provide evidence that the interplay between statistical estimation and numerical
approximation can be very useful for parameter estimation and kernel learning in
general, thus suggesting new ways of thinking hierarchically. This perspective is
one of the main messages that we convey in this work.

6.2.3.5 Proof Strategy

The following Subsections 6.2.4, 6.2.5, and 6.2.6 are devoted to proving the above
Theorem 6.2.7. For the sake of understanding, we provide a high-level view of our
proof strategies in this subsection. Fourier analysis plays an important role in the
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proof. It allows us to analyze the approximation error in a very precise way under
this equidistributed design setting.

In our proof, we begin by establishing tight bounds on the terms that appear in the
objective functions, i.e., ‖u(·, t,q)‖2t , log det K(t,q) and ‖u(·, t,q) − u(·, t,q − 1)‖2t ,
using the toolkit we develop in Subsection 6.2.4. The norms ‖u(·, t,q)‖2t and
‖u(·, t,q) − u(·, t,q − 1)‖2t are expressed as random (as a function of u†) series and
we carefully analyze the dependencies of the random variables to establish the con-
vergence in probability. For log det K(t,q), we employ the multiresolution approach
introduced in [204] to establish a tight estimate of the spectrum of the Gram matrix
from below and above. Given these estimates, we provide an intuitive understanding
of how the loss functions behave and how the minimizers converge in Subsections
6.2.5, 6.2.6. In the rigorous treatment, the sharp bounds on the different components
of the objective functions will be combined with the uniform convergence result of
random series in [277] to obtain the convergence of minimizers.

6.2.3.6 Notations

In many parts of the analysis, we need to develop tight estimates on the terms
appearing in the loss functions. Some useful notation for comparing different terms
are introduced here. We write A ' B if there exists a constant C independent of q, t

such that
1
C

B ≤ A ≤ CB .

The constant may depend on the dimension d and on δ. Correspondingly, if we use
A & B or A . B, then only one side of the above inequality holds.

Fourier analysis plays a critical role in the analysis. We always use u† for the ground
truth function, while we omit the † symbol for ease of notation when discussing its
Fourier transform, and write û; we will also use û, with more arguments, to denote
the Fourier transform of the Gaussian process mean; see the discussion following
Theorem 6.2.13. In the Fourier domain, we let Bq := {m ∈ Z : −2q−1 ≤ m ≤

2q−1 − 1} and Bd
q = Bq ⊗ Bq ⊗ · · · ⊗ Bq be the tensor product of d multiples of Bq.

We have that Bd
q is a box concentrating around the origin, so only the low-frequency

part of the Fourier coefficients are considered.

6.2.4 Toolkit: Fourier Series Characterization
In this subsection, we prepare the necessary tools that are used to prove the main
theorem of this chapter.
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We start by establishing a Fourier series characterization for u(·, t,q). This is a
key ingredient in expressing the terms in the loss functions as random series. Our
approach, using Fourier series, is motivated by the papers [65, 231], where the
approximation power of shift-invariant subspaces of L2(Rd) is studied; in our case
we use related ideas in the ÛL2(Td) setting.

To find the representation of the term u(·, t,q), we invoke its definition, i.e. u(·, t,q) is
obtained by GP regression with the q-level data and the covariance function (−∆)−t .
We use the representer theorem from GPR. Concretely, let the set of basis functions
be

Ft,q = span j∈Jq {(−∆)
−tδ(· − x j)} ,

then, u(·, t,q) is the best approximation in Ft,q to the true function under the ‖ · ‖t
norm. Let us define

F̂t,q := {g : Zd → C, there exists an f ∈ Ft,q such that g = f̂ },

the Fourier coefficients of functions in Ft,q. A quick observation is that for every
g ∈ F̂t,q, we must have g(0) = 0 because of the mean zero property of f ∈ Ft,q.
The following proposition gives a complete characterization of the basis functions
in F̂t,q, for t > d/2.

Proposition 6.2.11. For any g ∈ F̂t,q, there exists a 2q-periodic function p on Zd ,
such that

g(m) =

|m|−2t p(m), m , 0

0, m = 0 .

The proof is in Subsection C.1.1. Next, we define a 2q-periodization operator, which
will be used to compute the representation of û(m, t,q).

Definition 6.2.12. The operator Tq is defined as a mapping from the space of
functions on Zd to itself, such that

(Tqg)(m) :=
∑
β∈Zd

g(m + 2qβ), m ∈ Zd ,

whenever the right hand side series converges for the function g : Zd → R. We also
define

M t
q(m) :=


∑
β∈Zd\{0} |2qβ |−2t, if m = j · 2q for some j ∈ Zd∑
β∈Zd |m + 2qβ |−2t, else .

(6.2.12)
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BothTqg and M t
q are 2q-periodic functions on Zd . Based on this definition, Theorem

6.2.13 presents the explicit form of the Fourier transform of u(·, t,q); the proof is
in Subsection C.1.2. The proof relies on the Galerkin orthogonality property of
u(·, t,q) due to its being the optimal approximate solution.

Theorem 6.2.13. Let û(·, t,q) be the Fourier coefficients of u(·, t,q), then for m ∈ Zd ,
we have

û(m, t,q) =


0, if m = 0

|m|−2t (Tq û)(m)
M t

q(m)
, else

where û denotes the Fourier coefficients of u†.

This above representation is very useful for analyzing the terms ‖u(·, t,q)‖2t and
‖u(·, t,q) − u(·, t,q − 1)‖2t . As well as studying the Fourier coefficients of u(·, t,q),
which we denote by û(·, t,q), we will also need to study the Fourier coefficients of
u†(·) which, for ease of notation we will denote by û(·), henceforth, omitting the †
symbol. It is thus important to look at the number of arguments of û to determine
which object it is the Fourier transform of. Note also that u(·, t,q) is determined by
u†; hence if u† is random, so is u(·, t,q).

We will use the above Fourier analysis toolkit to study the consistency of EB and
KF in the following two subsections.

6.2.5 Proof for the Empirical Bayesian Estimator
In this subsection, we prove the consistency of the EB estimator. As explained
before, our roadmap is to give a tight estimate of the loss functions first and then
analyze the minimizers. For the norm term ‖u(·, t,q)‖2t , we invoke Theorem 6.2.13,
based on which this term is expressed as a random series:

Proposition 6.2.14. The ÛHt(Td) norm of u(·, t,q) has the representation

‖u(·, t,q)‖2t = (4π2)t
∑

m∈Bd
q

|Tqû(m)|2

M t
q(m)

.

Moreover, suppose u† ∼ N(0, (−∆)−s) for s > d
2 , then

‖u(·, t,q)‖2t = (4π2)t−s
∑

m∈Bd
q

M s
q(m)

M t
q(m)

ξ2
m ,

where {ξm}m∈Bd
q
are independent unit scalar Gaussian random variables.
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Proof. Using Theorem 6.2.13, we get

‖u(·, t,q)‖2t =
∑

m∈Zd\{0}

(4π2)t |m|2t |û(m, t,q)|2

=(4π2)t
∑

m∈Zd\{0}

|m|−2t |Tqû(m)|2

|M t
q(m)|2

=(4π2)t
∑

m∈Bd
q

M t
q(m)
|Tqû(m)|2

|M t
q(m)|2

=(4π2)t
∑

m∈Bd
q

|Tqû(m)|2

M t
q(m)

,

where in the third equality, we use the periodicity of the function |Tq û(m)|2

|M t
q(m)|2

.

If we further assume u† ∼ N(0, (−∆)−s), then û(m) ∼ N(0, (4π2)−s |m|−2s). For
different m, these Gaussian random variables are independent. Thus, for different
m ∈ Bd

q , we have Tqû(m) ∼ N(0, (4π2)−s M s
q(m)), and they are independent. So we

can write ∑
m∈Bd

q

|Tqû(m)|2

M t
q(m)

= (4π2)−s
∑

m∈Bd
q

M s
q(m)

M t
q(m)

ξ2
m ,

where {ξm}m∈Bd
q
are independent unit scalar Gaussian random variables. �

The independence of the random variables established in the preceding representa-
tion is crucial for the analysis. The terms M s

q(m),M
t
q(m) appear in the preceding; to

analyze them we present a useful lemma below. The proof is in Subsection C.1.3.

Lemma 6.2.15. For t ∈ [d/2 + δ,1/δ] and q ≥ 0, we have

M t
q(m) '


2−2qt, if m = 0

|m|−2t, if m ∈ Bd
q\{0}

Moreover, for m ∈ Bd
q\{0}, we have M t

q(m) − |m|
−2t ' 2−2qt .

Now, we are ready to get the estimates of the loss function. The following proposition
shows an upper and lower bound on the norm term.

Proposition 6.2.16 (Bound on the norm term). Suppose u† is a sample drawn from
the Gaussian process N(0, (−∆)−s) for d/2 + δ ≤ s ≤ 1/δ, then

‖u(·, t,q)‖2t ' 2−q(2s−2t)ξ2
0 +

∑
m∈Bd

q \{0}

|m|2t−2sξ2
m ,
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where {ξm}m∈Bd
q
are independent unit scalar Gaussian random variables.

Proof. According to Lemma 6.2.15, for m ∈ Bd
q\{0}, we have M t

q(m) ' |m|
−2t ; for

m = 0, we have M t
q(m) ' 2−2tq. Thus,

‖u(·, t,q)‖2t = (4π2)t−s
∑

m∈Bd
q

M s
q(m)

M t
q(m)

ξ2
m

= (4π2)t−s ©­«
∑

m∈Bd
q \{0}

M s
q(m)

M t
q(m)

ξ2
m +

M s
q(0)

M t
q(0)

ξ2
0
ª®®¬

' 2−q(2s−2t)ξ2
0 +

∑
m∈Bd

q \{0}

|m|2t−2sξ2
m .

This completes the proof. �

Proposition 6.2.16 states that the behavior of the norm term is nothing but a weighted
sum of squares of independent Gaussian random variables, which is amenable to
analysis. With this in mind, we state a lemma useful in the analysis of such random
series, with proof deferred to Subsection C.1.4.

Lemma 6.2.17. Suppose {ξm}m∈Zd are independent unit Gaussian random vari-
ables.

• For r > 0, define the random series

α(r,q) = 2−qr
∑

m∈Bd
q \{0}

|m|r−dξ2
m .

Fix ε > 0, then there exists a function γ(r) > 0 such that limq→∞ α(r,q) =

γ(r) > 0 uniformly for r ∈ [ε,1/ε], where the convergence is in probability.

• For r = 0, define
α(0,q) =

1
q

∑
m∈Bd

q \{0}

|m|−dξ2
m ,

then there exists γ(0) ∈ (0,∞) such that limq→∞ α(0,q) = γ(0) in probability.

We then move to the second term in the loss function, i.e., the log determinant term.
It is deterministic and to study it we need a way of analyzing the spectrum of the
Gram matrix. The following Proposition 6.2.18 gives upper and lower bounds on
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this term. The proof is in Subsection C.1.5 and is motivated by analysis developed
in the paper [204]. The idea is to use the Schur complement of the Gram matrix
and rely on the variational characterization of the Schur complement to get a tight
control on the spectrum. This technique is quite general and has been used in [204]
to characterize the spectrum of heterogeneous Laplacian operators; here we adapt it
to fractional operators. On the other hand, for the homogeneous fractional Laplacian
operators in this chapter, it is also possible to calculate an explicit formula for the
spectrum of K(t,q), as has been used in Section 6.7 of [258]. We describe this
simple proof in Subsection C.1.5 but retain the proof employing the more general
methodology as it may be useful for other problems.

Proposition 6.2.18 (Bound on the log det term). For d/2 + δ ≤ t ≤ 1/δ, we have

(2t − d)g1(q) −Cg2(q)+K(t,0) ≤ log det K(t,q) ≤ (2t − d)g1(q)+Cg2(q)+K(t,0) ,

where g1(q) =
∑q

k=1(2
kd − 2(k−1)d)(−k log 2) and g2(q) = (2qd − 1)(2t − d). The

constant C is independent of t,q. Moreover, g1(q) ' −q2qd .

With the loss function analyzed by the above results, the consistency of the EB
estimator is readily stated as follows.

Theorem6.2.19 (Consistency ofEmpiricalBayesian estimator). Fix δ > 0. Suppose
u† is a sample drawn from the Gaussian processN(0, (−∆)−s). If s ∈ [d/2+ δ,1/δ]
then

lim
q→∞

sEB(q) = s in probability .

The detailed proof is in Subsection C.1.6. We can understand the theorem intuitively
by using the established results above. Recall there are two terms in the loss function:
(1) the norm term ‖u(·, t,q)‖2t ; (2) the log det term. For the norm term, from
Proposition 6.2.16 and Lemma 6.2.17, its behavior for q→∞ is roughly

• Growing like 2q(2t−2s+d) if t > s − d/2;

• Growing like q if t = s − d/2;

• Remaining bounded if t < s − d/2.

The log det term decreases like −(2t − d)q2qd according to Proposition 6.2.18.
Noticing that the EB loss function has the form

LEB(t,q) = ‖u(·, t,q)‖2t + log det K(t,q) ,
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we arrive at the following intuitive observations:

• When t < s, the dominant behavior of LEB(t,q) is controlled by the log deter-
minant term, since the growth rate of the norm term 2q(2t−2s+d) = o(q2qd). As a
consequence, LEB(t,q) exhibits the overall behavior −(2t−d)q2qd . Therefore,
the loss function decreases linearly with t in this regime. This is consistent
with what is observed in Figure 6.1.

• When t ≥ s, the increasing speed of the norm term beats the decreasing rate
of the log det term, so the norm term dominates the behavior of LEB(t,q).
Overall, it is like 2q(2t−2s+d), which increases exponentially with t; again this
is consistent with what is observed in Figure 6.1.

According to the above observations, the minimizer of LEB(t,q) will converge to s.
To make the intuition leading to this conclusion rigorous, we need to use techniques
of uniform convergence for random series. For details we refer to Subsection C.1.6.

6.2.6 Proof for the Kernel Flow Estimator
In this subsection, we establish the consistency of the KF estimator. As before, we
start by estimating the growth behavior of terms that appear in the loss function. We
begin with the interaction term ‖u(·, t,q) − u(·, t,q − 1)‖2t . Similar to the analysis of
the norm term in the preceding subsection, we represent it by using Fourier series.

Proposition 6.2.20. The ÛHt(Td) norm of u(·, t,q)−u(·, t,q−1) has the representation

‖u(·, t,q) − u(·, t,q − 1)‖2t = (4π2)t
∑

m∈Bd
q

M t
q(m)

(
Tqû(m)
M t

q(m)
−

Tq−1û(m)
M t

q−1(m)

)2

. (6.2.13)

Proof. By Theorem 6.2.13, we have

û(m, t,q) − û(m, t,q − 1) =


0, if m = 0

|m|−2t
(

Tq û(m)
M t

q(m)
−

Tq−1û(m)
M t

q−1(m)

)
, else .
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Thus,

‖u(·, t,q) − u(·, t,q − 1)‖2t =(4π2)t
∑

m∈Zd\{0}

|m|2t |û(m, t,q) − û(m, t,q − 1)|2

=(4π2)t
∑

m∈Zd\{0}

|m|−2t

(
Tqû(m)
M t

q(m)
−

Tq−1û(m)
M t

q−1(m)

)2

=(4π2)t
∑

m∈Bd
q

M t
q(m)

(
Tqû(m)
M t

q(m)
−

Tq−1û(m)
M t

q−1(m)

)2

.

�

By carefully studying the correlation between the random variables appearing in
the preceding proposition, we obtain lower and upper bounds in the following two
propositions; proofs can be found in Subsections C.1.7 and C.1.8.

Proposition 6.2.21 (Lower bound on the interaction term). Suppose u† is a sample
drawn from the Gaussian process N(0, (−∆)−s) for d/2 + δ ≤ s ≤ 1/δ, then

‖u(·, t,q) − u(·, t,q − 1)‖2t &
∑

m∈Bd
q−1\{0}

2−2tq |m|4t−2sξ2
m ,

where {ξm}m∈Bd
q−1\{0}

are independent unit scalar Gaussian random variables.

The upper bound has a more complex form. We introduce the notation Zd
2 = {0,1}

d

comprising d dimensional vectors with each component being in {0,1}. In the
following proposition, we also use the convention that |m|α = 0 for m = 0 and any
α ∈ R to make the notation more compact.

Proposition 6.2.22 (Upper bound on the interaction term). Suppose u† is a sample
drawn from the Gaussian process N(0, (−∆)−s) for d/2 + δ ≤ s ≤ 1/δ, then

‖u(·, t,q) − u(·, t,q − 1)‖2t .
∑
k∈Zd2

∑
m∈Bd

q−1

(2−q(2s−2t) + 2−2tq |m|4t−2s)ξ2
k,m ,

where for a fixed k ∈ Zd
2 , {ξk,m}m∈Bd

q−1
are independent unit scalar Gaussian random

variables.

We remark that in the upper bound, the random variables for different k may exhibit
correlation. However, since the term

∑
m∈Bd

q−1
(2−q(2s−2t) + 2−2tq |m|4t−2s)ξ2

k,m has the
same form for each k, and the number of different k is finite, it suffices to analyze
the random series for a single k, in which we have the independence of random
variables. The theorem is stated below.
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Theorem 6.2.23 (Consistency of the Kernel Flow estimator). Fix δ > 0. Suppose u†

is a sample drawn from the Gaussian processN(0, (−∆)−s). If s−d/2
2 ∈ [d/2+δ,1/δ]

then for the Kernel Flow estimator,

lim
q→∞

sKF(q) =
s − d/2

2
in probability .

The idea behind the proof of the theorem is to combine Propositions 6.2.21, 6.2.22
and Lemma 6.2.17. Together they imply the growth behavior of the loss function

LKF(t,q) =
‖u(·, t,q) − u(·, t,q − 1)‖2t

‖u(·, t,q)‖2t

as follows:

• When t < s−d/2
2 , the numerator decays like 2−2tq since 4t − 2s < −d, in which

case the summation
∑

m∈Bd
q \{0} |m|

4t−2sξ2
m remains bounded. The denominator

remains bounded. So the overall behavior is 2−2tq.

• When s−d/2
2 < t < s − d/2, the numerator decays like 2−2tq × 2q(4t−2s+d) =

2q(2t−2s+d) according to Lemma 6.2.17. The denominator remains bounded,
The overall behavior is 2q(2t−2s+d).

• When t > s − d/2, the numerator behaves like 2q(2t−2s+d), while the denomi-
nator behaves like 2q(2t−2s+d). The overall behavior is of order 1.

These observations are consistent with what is observed in Figure 6.1. Based on
them we deduce that the minimizer converges to s−d/2

2 . The loss function exhibits
symmetric behavior with respect to s−d/2

2 for t ∈ (d/2, s − d). The detailed rigorous
treatment is presented in Subsection C.1.9.

6.2.7 Discussions
In the preceding three subsections, we have presented the consistency theory, its
implication for implicit bias, as well as the tools and strategies underlying our proofs.
This subsection adds to several discussions on the theory and proofs.

First, our theory applies to the torus domain. One may wonder whether these
techniques can be applied to boundary conditions beyond the periodic ones. The
main tool used in the proofs is Fourier’s series (based on the eigenfunctions of the
Laplacian operator). These are used to characterize the norm term and determinant
term. We expect these techniques to generalize to other problems, such as the
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box with Dirichlet or Neumann boundary conditions in which the Fourier sine or
cosine series are natural; the detailed analysis is left as future work. However,
we need to point out that the limitation of this proof idea is that it requires a
clear analytic understanding of the spectral properties of the kernel operator, i.e., its
eigenfunctions. In Subsection 6.3.2.1, we present numerical experiments beyond this
setting, which involves more challenging Laplacians with discontinuous coefficients
that can model more complicated heterogeneous random fields.

Second, this section considers the regularity parameter only. In spatial statistics
literature, consistency results on this parameter (for general Matérn type model) are
very scarce and difficult. Here, we obtain a proof for the torus model, which is
the main technical contribution of this work. We will discuss the learning of other
parameters in the next section, to make the story of the Matérn-like model on the
torus more complete.

Finally, as we get two algorithms that can “consistently” learn the information of
the regularity parameter when the number of data is large, a natural question is
when to choose which. To answer this question, we presents numerical study of the
variances of both estimators for the Matérn-like model in the next subsection.

6.2.8 Variance of Regularity Parameter Estimation
In this subsection, we compare the variance of the two estimators for recovering the
regularity parameter s. We return to the experimental set-up in Subsection 6.2.3.2.
We form the EB and KF estimators for 50 instances of different draws of the GP,
normalized by the limiting optimum values s and s−d/2

2 respectively. The statistics
of the two estimators are summarized in the histogram (see Figure 6.4). Clearly, EB
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Figure 6.4: Histogram of the regularity estimators for the Matérn-like process. Left:
EB; right: KF.

exhibits smaller variance than KF. We compute the estimated variance using the 50
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instances. Finally we get
Var(sEB)

s2 ≈ 1.44 × 10−5 and
Var(sKF)

((s − d/2)/2)2
≈ 3.6 × 10−3 .

Since the variance of EB is smaller, if our target is to estimate s for the exact GP
model, then this suggests that the EB method is preferable.

6.3 More Well-specified Examples
The setting in Section 6.2 concerns regularity parameter of the Matérn-like model
only. This section aims to extend this discussion to awider range of settings bymeans
of numerical experiments. First, we study the learning of lengthscale and amplitude
parameters in the Matérn-like model in Subsection 6.3.1; these experiments lead to
a more complete story for the Matérn-like model on the torus. Then, in Subsection
6.3.2, we consider other well-specified models, extending beyond the Matérn-like
process example. In Subsection 6.3.3, we also discuss some computational aspects
of the EB and KF approaches.

6.3.1 Recovery of Amplitude and Lengthscale
We start with the learning of amplitude and lengthscale parameters in the Matérn-
like model, via either EB or KF method.

In spatial statistics, an important general principle in looking at the recovery of
hyperparameters via EB is to determine whether or not the family of measures
are mutually singular with respect to changes in the parameter to be estimated;
learning parameters which give rise to mutually singular families is usually easy,
since different almost sure properties can often be used to distinguish measures and
this can be achieved without an abundance of data; in contrast those parameters
that do not give rise to mutually singular measures typically require an abundance
of realizations to be accurately learned. We illustrate this issue in the context of
estimating one parameter by EB, the changing of which leads to mutually singular
measures, and estimating two parameters by EB, changing one of which leads to
mutual singularity, and the other to equivalence, for the Matérn-like process. We
also study analogous questions about identifiability for the KF method. In all cases
we work with loss functions that are natural generalizations of (6.2.10), (6.2.11).

6.3.1.1 Recovery of σ

A first observation is that the KF loss function is invariant under change of σ,
so it cannot recover this parameter. We also note that measures are mutually
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singular with respect to changes in σ, and so we do expect to be able to recover
σ by EB. For the EB estimator, we design the experiment as follows. We study
whether the EB method can recover σ while s, τ are fixed. In detail, we consider
a problem with domain the one dimensional torus T1. The Matérn-like kernel
has regularity s = 2.5, amplitude σ = 1 and lengthscale τ = 0. We assume the
values of s, τ are known, but not σ. We want to recover σ by seeing a single
discretized realization u† ∼ N(0, σ2(−∆ + τ2I)−s). The domain T1 is discretized
into N = 210 equidistributed grid points. The data we observe is the values of u† in
29 equidistributed points. We build the EB loss function (see equation (6.3.1)) and
plot the figure for a single instance; see Figure 6.5. We introduce ς as the variable
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Figure 6.5: EB loss function for recovering σ

to be maximized over to determine our estimate of σ. In our experiments we work
with the parameterization ς = exp(ς′) in order to ensure that the estimated σ is
positive. Hence, the x-axis of Figure 6.5 is ς′. The figure shows that the minimizer
of the loss function is close to the point ς′ = 0 (ς = 1), so the estimator σEB is close
to the ground truth σ.

We can theoretically analyze the convergence. The same set-up in Subsection 6.2.1
is adopted, except now we assume the function is drawn from N(0, σ2(−∆)−s) with
s known and we want to recover σ by seeing the equidistributed spatial samples on
the torus. After calculating the likelihood in such a case, we get the EB estimator
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below. Here we abuse the notation to write

σEB(q,u†) = arg min
ς>0

LEB(ς,q,u†),

LEB(ς,q,u†) :=
σ2‖u(·, s,q)‖2s

ς2 + log det K(s,q) + 2qd log ς2 .

(6.3.1)

The definition of u(·, s,q),K(s,q) is the same as in Subsection 6.2.1. Recall that
u(·, s,q) is the mean of the GP found by conditioning a prior measure N(0, (−∆)−s)

on observations of u† at the observation data with level q. The definition of ‖ · ‖s
also follows from Subsection 6.2.1. We abuse notation to write LEB(ς,q,u†) for
the EB loss function used in the estimation of σ; the reader should not confuse
this with LEB(t,q,u†) in Subsection 6.2.1 which is used for recovering the regularity
parameter s.

In this setting we have the following consistency result:

Theorem 6.3.1. Fix δ > 0. Suppose u† is a sample drawn from the Gaussian
process N(0, σ2(−∆)−s) for some s ∈ [d/2 + δ,1/δ]. Then, for the Empirical
Bayesian estimator of σ, it holds that

lim
q→∞

σEB(q,u†) = σ ,

where the convergence is in probability with respect to randomly chosen u†.

Proof. By taking the derivative of LEB(ς,q,u†) with respect to ς and setting it to 0,
we get the explicit formula:

σEB(q,u†) = σ

√
‖u(·, s,q)‖2s

2qd . (6.3.2)

Due to Proposition 6.2.14, we get our ‖u(·, s,q)‖2s =
∑

m∈Bd
q
ξ2

m. By the Law of Large
Numbers, we have

lim
q→∞

‖u(·, s,q)‖2s
2qd = 1 ,

from which the consistency follows. �

Remark 6.3.2. We note that consistency results for the amplitude parameter have
been well studied in the literature; see [258]. The purpose of this subsection is to
tie those results to the rather explicit setting of our result. One important feature
of the torus model is that we are able to get an explicit and simple formula for
σEB, so the consistency results are very clear. Moreover, since σEB is the average
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of i.i.d. Gaussian random variables, one can also easily read off other statistical
properties of this estimator (although the result of asymptotic distribution is also
not completely new; see for example the discussion on page 201 in [258]).

6.3.1.2 Recovery of s, σ simultaneously

We now build on the previous experiment to study whether the EB method can
recover s, σ simultaneously when τ is fixed. We reemphasize that since themeasures
are mutually singular with respect to changes in σ and s we do expect to be able to
recover (σ, s) by EB. The basic set-up is the same as the last subsection, and now
we minimize the EB loss function to recover s, σ where, again, σ = exp(σ′). We
run 50 instances (each instance corresponds to a random draw of ξ), and collect the
estimators (sEB, logσEB) of the EB loss function for each instance. We present the
histogram of the two values obtained in the experiments as follows (Figure 6.6).
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Figure 6.6: Left: histogram of the sEB; right: histogram of the logσEB

From the figure, we observe that in the 50 runs, the minimizer (sEB, σEB) is close
to the ground truth (2.5,1). We conclude that the EB method can recover the two
parameters simultaneously in such a context.

6.3.1.3 Recovery of τ

Weconsiderwhether EB andKF can recover the inverse lengthscale parameter τ. We
assume that σ is fixed at 1, s is chosen to be 2.5, and sample u† ∼ N(0, (−∆+τ2I)−s)

with τ = 1. As in the preceding experiments we consider the one dimensional torus
example, and the same discretization precision and data acquisition setting as before.
We draw 50 instances of u†, and for each of them, calculate the minimizers of the
EB and KF loss function. We write τ = exp(τ′) and the estimator is log τEB for τ′,
which we constrain to be in the interval [−2,2]. In the EB loss function we fix t = s
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within the loss function; for the KF method, we select t = s (case 1) and t = s−d/2
2

(case 2) respectively within the loss function. The histogram of the minimizers of
the resulting EB loss function and KF loss functions (in both cases) are presented
in Figure 6.7, expressed in terms of log τEB and log τKF. In the 50 runs, the EB
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Figure 6.7: Histogram of the log τEB or log τKF. Upper left: EB loss; upper right:
KF loss (case 1); bottom: KF loss (case 2).

estimator takes many different values with no apparent pattern. For both case 1 and
case 2, the KF estimator of τ′ takes the value 2 very often, which is the maximal
value of the constrained decision variable. None of the estimators recover the true
τ′ = 0.

The behavior of the KF estimator can be explained by the observation that when
τ increases, the function drawn from the Gaussian prior becomes smoother, and
hence the subsampling step in the KF loss does not sacrifice too much information.
Therefore, the KF loss exhibits a tendency to get smaller as τ increases. We can
understand why EB cannot recover τ by studying the equivalence of Gaussian
measures. As shown in [71], when dimension d ≤ 3, the Gaussian measures
N(0, (−∆ + τ2I)−s) for different τ are equivalent; thus one cannot expect to recover
τ using the information from one sample.

We can also consider the problem of recovering s, τ simultaneously, i.e., we solve
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a joint minimization problem to get sEB, log τEB and sKF, log τKF. The set-up is
the same as above, with the sample drawn from N(0, (−∆ + τ2I)−s) for τ = 1 and
s = 2.5. We form the EB and KF loss for 50 instances of different draws and find
the minimizers as corresponding estimators. The histograms of the estimators are
shown in Figure 6.8 and 6.9. These figures show that in this joint optimization,
the EB method picks the correct value sEB = 2.5 for estimating s, and exhibit no
patterns for log τEB; the KF method finds values close to 1 for sKF, as it would in the
absence of simultaneous estimation of τ′, and selects the largest possible value in
the constraint for log τKF, here being 2. The conclusion is that the fact that τ′ cannot
be learned accurately does not influence the estimation of the regularity parameter
s in a context in which the two are learned simultaneously. Indeed, this conclusion
also holds when we are recovering the three parameters (s, σ, τ) simultaneously.
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Figure 6.8: EB approach. Left: histogram of the sEB; right: histogram of the
log τEB.
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Figure 6.9: KF approach. Left: histogram of sKF; right: histogram of the log τKF.

6.3.2 Other Well-specified Examples
In this subsection, we consider numerical examples for recovering parameters of a
random field in the well-specified case, going beyond the Matérn process studied
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thus far.

6.3.2.1 Recovery of regularity parameter for variable coefficient elliptic
operator

Set D = [0,1] so that d = 1. The theoretical result in Section 6.2 assumes the
function observed u† is drawn from N(0, (−∆)−s) on a torus. In this subsection, we
assume u† is drawn fromN(0, (−∇ · (a∇·))−s) for some non-constant function a, and
that the elliptic operator implicit in this defintion of a Gaussian measure is equipped
with homogeneous Dirichlet boundary condition on D. We observe its values on
the 29 equidistributed points of the total 210 grid points used for discretization.

Here we select a coefficient a(x) that exhibits a discontinuity at x = 1/2:

a(x) =


1 x ∈ [0,1/2]

2 x ∈ (1/2,1] .
(6.3.3)

As a consequence the induced operator is not the Laplacian. We pick s = 2.5 to
draw a sample u†.

In the well-specified case, the GP used in defining the EB and KF estimators is
parameterized byN(0, (−∇ · (a∇·))−t) and we aim to learn parameter t given a data
calculated using a draw from the same measure with t = s. We consider the well-
specified case here (the misspecified case will be considered in Subsection 6.4.1.)
We output the histogram of the EB and KF estimators for 50 different draws of u† in
Figure 6.10. The experiments show that for the variable coefficient elliptic operator
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Figure 6.10: Histogram of the regularity estimators for the variable coefficient
covariance case. Left: EB; right: KF.

model, EB and KF succeed in converging to the correct limits. We can calculate the
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(normalized) variance of the two estimators based on the histograms:

Var(sEB)
s2 ≈ 7.8 × 10−5 and

Var(sKF)
((s − d/2)/2)2

≈ 4 × 10−3 .

The relative magnitude is similar to the one in Subsection 6.2.8.

6.3.2.2 Recovery of discontinuity position for conductivity field

Define the conductivity field aθ : [0,1] 7→ R, and parameterized by θ ∈ [0,1], via

aθ(x) =


1 x ∈ [0, θ]

2 x ∈ (θ,1] .
(6.3.4)

In this subsection, we assume that our data u† is obtained by solving the SPDE

−∇ · (a1/2∇u†) = ξ ,

subject to a homogeneous Dirichlet boundary condition on [0,1].We choose ξ as a
random draw fromN(0, (−∆)−1). We can view u† is a sample drawn fromN(0,Ca)

where
Ca = (−∇ · (a1/2∇·))

−1(−∆)−1(−∇ · (a1/2∇·))
−1. (6.3.5)

We observe the value of u† on the 29 equidistributed points of the total 210 grid
points used for discretization. We use EB and KF to estimate θ from the partial
observation of the function u† based on the GP model N(0,Ca,s) where

Ca,s = (−∇ · (aθ∇·))−1(−∆)−s(−∇ · (aθ∇·))−1. (6.3.6)

The model is well-specified for s = 1 and misspecified for s , 1. Here consider the
well-specified case in this subsection, i.e., s = 1, and Ca,s = Ca; the misspecified
case is covered in Subsection 6.4.2.

We let the domain for θ be [0.3,0.7] in the definition of EB and KF estimators. We
compute the estimators for 50 different draws of u†. The histograms of the EB and
KF estimators are shown in Figure 6.11. The loss functions for one random instance
are shown in Figure 6.12.

Our experiments show that both EB and KF can recover θ = 1/2, and the recovery
is very stable with respect to different draws of u† from the SPDE. We conclude that
the EB and KF can go beyond the Matérn-like kernel model in practice; recovering
the point of discontinuity of the conductivity field is an example of this fact.
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Figure 6.11: Histogram of the discontinuity position estimators (well-specified).
Left: EB; right: KF.
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Figure 6.12: Loss function for recovering the discontinuity (well-specified). Left:
EB; right: KF.

6.3.3 Computational Aspects
In this subsection, we add some discussions about the computational aspects. We
start by remarking on how to compute the kernel function and sample the GP
realization generally. Every kernel operator we consider involves certain differential
operators. We discretize these differential operators and perform an eigenfunction
decomposition of the obtained matrix. Then we use these eigenfunctions and
eigenvalues to compute approximation of the kernel matrix, and draw samples from
the GP with the covariance matrix being the kernel matrix; see also discussions
above Remark 6.2.2. This is similar to the spectral expansion of a kernel function
and the Mercer decomposition of a GP.

Practical applications of hierarchical GPR require weighting statistical efficiency
against computational complexity. Although the regularity models covered in this
chapter appear to produce well-behaved EB and KF loss functions with easily iden-
tifiable global minimizers, models with high dimensional parameter space typically
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require using algorithms such as gradient descent which do not come with theoret-
ical guarantees on the identification of global minimizers. Furthermore, when the
size of the data is large, computation becomes a limiting factor, and subsampling
offers a traditional remedy when combined with gradient descent, but again theoret-
ical guarantees are not typically to be expected. The stochastic algorithm presented
in [206] for KF can be interpreted as an SGD algorithm aimed at minimizing the
average loss

Eπ1Eπ2LKF(θ, π1X, π2π1X,u†) ,

via draws from the distribution of π1 and π2 (π1X is a random subsampling of X,
and π2π1X is a further random subsampling of π1X). The efficacy of an analogous
strategy for EB remains unclear due to the presence of the log determinant term in
the loss. It is of future interest to explore further the computational aspects of the
EB and KF approaches to hierarchical learning.

6.4 Model Misspecification
All our preceding experiments are focused on the well-specified case: the function
u† is drawn from the GP model assumed in the estimation, or equivalently, the
model for u† and for the kernel family Kθ in defining the loss functions are matched.
This subsection studies model misspecification. We consider two possible ways to
misspecify the model: (1) the function u† is drawn from aGPwhich is different from
that used in defining the loss function; (2) the function u† is a fixed deterministic
function. The second case may arise, for example, if the function comes from a
solution of a PDE with some physical data, and there is no natural stochastic context
for its provenance. The aim of this subsection is to study the behavior of the EB and
KF estimators to compare their robustness to model misspecification.

6.4.1 Stochastic model misspecification for recovering regularity
In this subsection, we assume u† is drawn from N(0, (−∇ · (a∇·))−s), while the GP
used in defining the EB and KF estimators is still N(0, (−∆)−t). This results in
a model misspecification corresponding to the well-specified model in Subsection
6.3.2.1. As in Subsection 6.3.2.1, we select a as in (6.3.3) and we set s = 2.5 to
draw the sample u†. Figure 6.13 shows the histograms of the minimizers of the
EB and KF loss functions obtained from 50 independent draws from the Gaussian
Process. Despite misspecification, the EB and KF estimators are still concentrated
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around 2.5 and 1, respectively. We also calculate the variance:

Var(sEB)
s2 ≈ 5.9 × 10−4 and

Var(sKF)
((s − d/2)/2)2

≈ 6.8 × 10−4 .

In this example, the (normalized) variance of KF of EB are of similar magnitude.
This is different from thewell-specified case in Subsection 6.3.2.1where the variance
of EB is much smaller than KF.
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Figure 6.13: Histogram of the regularity estimators under model misspecification.
Left: EB; right: KF.

6.4.2 Stochastic model misspecification for recovering discontinuity
In this subsection, we consider the model misspecifications that correspond to the
well-specified case in Subsection 6.3.2.2. For the GP defining the EB and KF
estimators we use the centred Gaussian with covariance operator given by (6.3.6)
with s = 5; meanwhile u† is drawn from the centred Gaussian with covariance
operator given by (6.3.5); thus we are in a misspecified version of the setting arising
in Subsection 6.3.2.2 and, as there, our aim is to recover the point of discontinuity.
We illustrate the loss functions for a single draw of u† in Figure 6.14. These plots
are not sensitive to the particular draw of u† and illustrate the robustness of KF (and
the lack of robustness of EB) to this misspecification. Indeed, the EB estimator
gives 0.3 which is the lower boundary of the compact parameter space used in the
minmization, while the KF estimator picks the true parameter 0.5. The loss function
of KF, shown in Figure 6.14, exhibits a sharp global minimizer at θ = 0.5.

6.4.3 Deterministic model
In this subsection, we consider the EB and KF estimators for the parameter t in the
GP modelN(0, (−∆)−t)where ∆ is equipped with homogeneous Dirichlet boundary
conditions on [0,1]. However, rather than choosing u† that is drawn from the GP
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Figure 6.14: Loss function for estimating the discontinuity parameter under model
misspecification. Left: EB; right: KF.

N(0, (−∆)−s) for some s (as we did in Section 6.2), we choose it be the solution to
the equation (−∆)su†(·) = δ(· − 1/2), i.e., u† is the Green function corresponding to
the differential operator (−∆)s and evaluated at y = 1/2. Since u† has no stochastic
background, we understand this situation as a deterministic model misspecification.

We observe the value of u† on the 29 equidistributed points of the total 210 grid
points used for discretization. We conduct numerical experiments to find the value
of the EB and KF estimators. Our experiments show that the EB estimator returns 2s

and the KF estimator returns s for this one dimensional example. The loss function
in the case s = 1.2 is shown in Figure 6.15.
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Figure 6.15: Loss function for estimating the regularity parameter under determin-
istic u†. Left: EB; right: KF.

We now describe some regularity considerations in order to understand the observed
phenomenon. In this one dimensional example, δ(· − 1/2) belongs to Hη([0,1]) for
any η < −1/2, so the solution u ∈ H2s+η([0,1]) for any η < −1/2. It is of critical
regularity 2s − 1/2, but this criticality is not homogeneous: it is caused by the
presence of a singularity induced by the Dirac function.
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The discussion in Section 6.2 implies KF will recover s − 1/4 while EB recovers
2s for a function with homogeneous critical regularity 2s − 1/2. However, the
experiments here show that KF recovers s while EB recovers 2s, for this function
with critical regularity 2s − 1/2; unlike the setting in Section 6.2, here the ground
truth lacks spatial homogeneity. This suggests that theKF estimator for the regularity
parameter is sensitive to whether the regularity of the target function is spatially
homogeneous or not. This fact is not surprising, considering the vast literature on
adaptive approximation for functions with singularities, which implies the presence
of a singularitywill exert considerable influence on the approximation error resulting
from minimizing the KF loss function. In this example, the optimal approximation
in KF error comes at t = s. We can understand this phenomenon as follows. Recall
u† = (−∆)−sδ(· − 1/2). Using N(0, (−∆)−t) in the GPR is equivalent to using the
basis functions span j∈Jq {(−∆)

−tδ(·− x j)} (as in Section 6.2.1) with xi being the data
points indexed by j ∈ Jq, to approximate u†. When t = s and one of the x j = 1/2,
the ground truth will just be in the basis functions set, so it is straightforward to
imagine t = s leads to the smallest approximation error, and KF picks this value.

Weunderstand the fact that EB still picks t = 2s bymaking the following observation:
there are only two terms in the EB loss function. The log determinant term remains
the same for each t when u† changes. For the norm term ‖u(·, t,q)‖2t , the blow-up
rate depends on the regularity of u†. Here, it makes no difference whether the
regularity of u† is spatially homogeneous or not.

6.4.4 Discussions
The above numerical experiments reveal complicated behavior of EB and KF with
respect to model misspecification. In the second experiment, we found that KF is
robust while EB is not, for a certain type of GPmodel misspecification. This appears
natural since EB is based on probabilistic modeling whilst KF is purely based on
approximation theoretic criteria. In Subsection 6.4.2 the prior used in EB ismutually
singular with respect to the GP that u† is drawn from and it is not suprising that
EB is fragile. On the other hand, KF does not require probabilistic modeling to
motivate it, and so its robustness to misspecifications behaves differently. Indeed,
in the second experiment, the discontinuity point influences the approximation
accuracy significantly, and even the kernel used in defining KF is misspecified, KF
still succeeds in selecting the correct parameter, as it focuses on the approximation
accuracy rather than statistical inference.
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In the well-specified cases, e.g. experiments in Section 6.2, EB outperforms KF in
terms of the variance of estimators. Therefore, if u† is a random object and we know
the prior correctly, then EB should be a preferable choice for estimating parameters.
If this is not the case and misspecification occurs, EB might be vulnerable and KF
could be a potential alternative.

6.5 Conclusions
Wehave studied the Empirical Bayes andKernel Flow approaches to hyperparameter
learning. The first approach is based on statistical considerations, while the second
approach originates from an approximation theoretic viewpoint. Their distinct
objectives lead them to different behaviors and different interpretations of optimality.

For the Matérn-like process model, we made a detailed theoretical study of the
recovery of the regularity parameter. We proved the EB estimator converges to s,
while the KF estimator converges to s−d/2

2 , both results holding in probability in the
large data limit if the regularity of the GP that u† draws from is s. Our experiments
illustrate that, in terms of the L2 error ‖u(·, t,q) − u†‖20 , the parameter t = s−d/2

2
relates to the minimal t that achieves the fast error rate while t = s relates to the
t that achieves the smallest error, averaged over the GP u† ∼ N(0, (−∆)−s). This
demonstrates the different drivers that guide the EB and KF methods in selecting
the parameters. The statistical and approximation theoretic principles behind them
lead to the differences between them.

In the theoretical study, we developed a Fourier analysis toolkit for this problem,
and as a byproduct, we showed the consistency of recovering σ in the Matérn-like
process for the EB method. Recovery of the lengthscale parameter and recovery of
several parameters simultaneously was studied via numerical experiments. It is of
future interest to perform theoretical studies explaining these empirically observed
phenomena. Furthermore, the theory in this chapter is based on an equidistributed
design for the data location, and the generalization to randomized design remains
a potential further direction. Also, our focus in this work is on the noiseless
observation setting, and an extension to the noisy case is of future theoretical
interest.

Our numerical experiments for additional well-specified and misspecified models
extend the scope of this work beyond the Matérn-like kernels. Both the two es-
timators work very well in the well-specified models we consider; we would like
to explore this more in the future, both theoretically and numerically, potentially
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in more complex models that are present in machine learning. The variance and
robustness of the estimators behave differently for the misspecified models. The
variabilities in robustness are in line with our expectation since these estimators
follow from different decision rules; these rules can vary considerably in sensitivity
to model mismatches of different kinds. In practice, users should choose the correct
approach to avoid high sensitivity to likely model errors present.

As a summary, this work demonstrates some basic aspects of the difference between
Bayesian and approximation theoretic approaches for hierarchical learning. Gener-
ally, it is of interest to study EB and KF for other types of models and to study other
parameter selection criteria based on the two principles beyond EB and KF, such as
a fully Bayesian approach or another choice of d for the approximation, and identify
their pros and cons under different scenarios. We are interested in exploring the
theoretical and practical performance of methods under such a framework, and we
believe that a diversity in such methods will enable users to deal with the model
misspecification that is to be expected in many applications.
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C h a p t e r 7

ADDTIONAL TOPICS IN RANDOMIZED NUMERICS AND
POSTERIOR SAMPLING

This chapter covers additional topics related to using probability and statistics for
scientific computing, extending beyond previous chapters.

In the first part, which is based on our work [42], we address the computational chal-
lenges of Gaussian processes and kernel methods, particularly in high-dimensional
problems such as chemistry, where the screening effects explored by the sparse
Cholesky factorization in Chapter V may not be substantial. Our goal is to construct
an accurate low rank approximation of the dense kernel matrix, and we achieve this
by using randomized numerical linear algebra. Our approach strikes a favorable
balance between exploration and exploitation, allowing us to efficiently discover
low rank structures through randomness.

In the second part, which is based on our work [49], we investigate the use of
gradient flows for posterior sampling in Bayes inference. Specifically, we focus on
identifying canonical choices of gradient flows that can lead to favorable properties
in sampling. This research contributes to the basic understanding of gradient flows
and their applications in Bayesian inference, thus helping harness the uncertainty
quantification power of the Gaussian process based approach presented in Sections
IV, V, and VI. .

7.1 Randomly Pivoted Cholesky for Scalable Kernel Methods
Suppose we have a collection of points X = {x1, ..., xN } ⊂ Ω ⊂ R

d . The interaction
between these points is encoded in a kernel function k : Ω × Ω → R, using which
we get a kernel matrix K := [k(xi, x j)]1≤i,j≤N . This matrix plays a central role in
Gaussian processes and kernel methods for prediction and inference, as we have
seen in Section IV, V, and VI.

The algorithm we developed in Section V computes a sparse Cholesky factorization
of K−1 based on screening effects in spatial statistics. The screening effect is most
effective in low-dimensional physical space since it requires many neighboring
points to present. Here we deal with problems where d can be large. In such a high
dimensional setting, it is more reasonable to aim for a low-rank approximation of K
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rather than a full-scale approximation as in the sparse Cholesky factorization.

The column Nyström approximation is a popular technique for constructing a low-
rank psd approximation of a kernel matrix K . More precisely, it approximates
K ∈ RN×N via

K̂S = K (:,S)K (S,S)†K (S, :) ∈ RN×N ,

where S = {s1, ..., sk} ⊂ {1, ...,N} is a carefully chosen set of columns. In this
expression, K (:,S) is the submatrix with the selected columns, K (S, :) is the sub-
matrix with the selected rows, and K (S,S)† is the Moore–Penrose pseudoinverse of
the submatrix with the selected rows and columns.

Many methods exist in the literature for selecting S. A classical approach in
experimental design and numerical linear algebra is to select each si sequentially in
a greedy manner [84]. Having selected an index set Sm with cardinality m, the next
index sm+1 is selected according to sm+1 = argmaxiR

(m)
ii where R(m) = K − K̂Sm

is the Schur complement at the m-step. Thus the greedy approach exploits large
diagonal entries sequentially to form S.

Remark 7.1.1. The greedy approach is known as the sequential maximum uncer-
tainty design under a Gaussian process model [94], as the diagonals of the Schur
complement represent the posterior variances of the Gaussian process. Nyström
approximation is also mathematically equivalent to Cholesky factorization in nu-
merical linear algebra, and in this context, the greedy approach is known as complete
pivoting [124].

Another popular approach is to sample points uniformly at random [291] to form S.
This method is simple, and the sampled points can explore the space freely.

Although the greedy and uniform sampling approaches are widely used, they may
not always be effective at identifying the most important columns in a matrix. The
greedy method selects the column with the largest diagonal entry in the residual
matrix at each step, but it may overlook columns with smaller diagonal entries
that could significantly contribute to approximating the target matrix. Conversely,
the uniform sampling selects columns randomly, which can include irrelevant or
redundant columns, while missing significant columns that may have large diagonal
entries.
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Remark 7.1.2. More specifically, we can construct the following failure mode for
the greedy approach

A =

(
1
21N−N1/21T

N−N1/2

IN1/2

)
where 1m is an all one vector in Rm, and Im is the identity matrix in Rm×m. In
this example, the greedy approach will keep selecting columns corresponding to the
lower-right block until N1/2 columns; with each additional column, the trace norm
error will decrease by 1. However, selecting only one column corresponding to the
upper-left block can decrease the approximation error (measured in the trace norm)
by (N − N1/2)/2. The greedy approach exploits too much and does not explore the
upper-left block.

Given the potential failures of the greedy and uniform sampling, we consider instead
a randomized approach, Randomly Pivoted Cholesky (RPCholesky), that balances
exploration and exploitation. Having selected an index set Sm, the next index sm+1

is sampled according to the probability

P{sm+1 = i} = R(m)ii /trR
(m) ,

where R(m) = K − K̂Sm is the Schur complement at the m-step. The sampling
probability scales with the values of diagonal entries in the residue matrix, so
RPCholesky exploits the large diagonal entries. On the other hand, the randomness
allows RPCholesky to explore small diagonal entries.

In [42], we provide theoretical results showing that RPCholesky is provably accurate.
See the following theorem. Here K r is the best possible rank-r approximation of K .

Theorem 7.1.3. Fix r ∈ N and ε > 0, and let K be a psd matrix. The column
Nyström approximation K̂Sk

produced by RPCholesky attains the bound

E tr(K − K̂Sk
) ≤ (1 + ε) · tr(K − K r),

provided that the number k of columns satisfies

k ≥
r
ε
+min

{
r log+

(
1
εη

)
,r + r log+

(
2r

ε

)}
.

The relative error η is defined by η := tr(K − K r)/tr(K ). As usual, log+(x) :=
max{log x,0} for x > 0 and the logarithm has base e.

For more details of the analysis and numerical experiments, we refer to [42].
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7.2 Gradient Flow for Sampling: Energy, Metric, and Numerics
In this section, we describe more concretely the topic introduced in Section 1.2.5.2
and provide a mathematical description of the theoretical results we have proven.
More comprehensive information can be found in our paper [49].

We remind the reader of the definition of gradient flows on probability space. To
describe any gradient flow, we must first specify an energy functional and a metric.
Let P be the probability space in Rd , E be an energy functional on P that maps
to R, and gρ be a Riemannian metric on P at ρ, where TρP is the tangent space
consisting of measures with zero means. The metric can also be expressed as
gρ(σ1, σ2) = 〈σ1,M(ρ)σ2〉L2 , where M(ρ) is an operator that acts on TρP. The
gradient flow equation takes the form:

∂ρt

∂t
= −∇gE(ρt) = −M(ρt)

−1 δE

δρ
|ρ=ρt ,

where ∇g is the Riemannian gradient operator and δE
δρ is the first variation of E.

In the following, we discuss the choices of energy functionals and metrics that can
lead to favorable properties for sampling ρpost, which we know up to a normalization
constant. For simplicity, we focus on densities which are supported in a compact set
Ω, positive, and smooth. For these densities, the differential structure can be made
mathematically precise. But many of our results apply to more general densities;
for details see [49].

Energy Functionals A popular choice of E is the Kullback–Leibler (KL) diver-
gence

E(ρ) = KL[ρ‖ρpost] =

∫
ρ log

( ρ

ρpost

)
dθ .

Its first variation is

δE

δρ
= log ρ − log ρpost −

∫
(log ρ − log ρpost)dθ ,

where we impose
∫

δE
δρdθ = 0. A remarkable property of the KL divergence is that,

δE
δρ remains unchanged if we scale ρpost by any positive constant c > 0, i.e. if we
change ρpost to cρpost. This property eliminates the need to know the normalization
constant of ρpost in order to calculate the first variation. It is common in Bayesian
inference for the normalization to be unknown and indeed the fact that MCMC
methods do not need the normalization constant is central to their widespread use;
it is desirable that the methodology presented here has the same property.
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A natural question is whether there are any other energy functionals satisfying the
same invariant property with respect to the normalization constant. The answer
is no. We show that this property of the KL divergence is unique: among all f -
divergences with continuously differentiable f defined on the positive reals it is the
only one to have this property.

Here the f -divergence between two continuous density functions ρ and ρpost, positive
everywhere, is defined as

D f [ρ‖ρpost] =

∫
ρpost f (

ρ

ρpost
)dθ.

For convex f with f (1) = 0, Jensen’s inequality implies that D f [ρ‖ρpost] ≥ 0.
In what follow we view this f -divergence as a function of probability measure
ρ, parameterized by ρpost; in particular we observe that this parameter-dependent
function of probability density ρ makes sense if ρpost is simply a positive function:
it does not need to be a probability density; we may thus scale ρpost by any positive
real.

Proposition 7.2.1. Assume that f : (0,∞) → R is continuously differentiable and
f (1) = 0. Then the KL divergence is the only f -divergence (up to scalar factors)
whose first variation is invariant with respect to ρpost 7→ cρpost, for any c ∈ (0,∞)
and for any ρpost ∈ P.

Proof. First, note that we already know that the KL divergence satisfies the desired
property by direct calculation. To show the uniqueness, we consider ρ and ρpost

continuous density functions, positive everywhere. We start by calculating the first
variation of the f -divergence:

δD f

δρ
= f ′

( ρ

ρpost

)
−

∫
f ′

( ρ

ρpost

)
dθ.

We assume that this first variation is invariant under scaling of ρpost by a positive
real c in order to determine constraints that this imposes on f . We thus have that

f ′
( ρ(θ)

ρpost(θ)

)
−

∫
f ′

( ρ

ρpost

)
dθ = f ′

( cρ(θ)
ρpost(θ)

)
−

∫
f ′

( cρ
ρpost

)
dθ,

and hence that

f ′
( ρ(θ)

ρpost(θ)

)
− f ′

( cρ(θ)
ρpost(θ)

)
=

∫
f ′

( ρ

ρpost

)
dθ −

∫
f ′

( cρ
ρpost

)
dθ, (7.2.1)
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for any θ ∈ Rd and c > 0. Because ρ and ρpost integrate to 1 and they are continuous,
there exists θ† such that ρ(θ†)/ρpost(θ

†) = 1. Setting θ = θ† in the above identity,
we obtain

g(c) := f ′(1) − f ′(c) =
∫

f ′
( ρ

ρpost

)
dθ −

∫
f ′

( cρ
ρpost

)
dθ. (7.2.2)

Combining (7.2.1), (7.2.2) to eliminate the integrated terms we obtain

f ′
( ρ(θ)

ρpost(θ)

)
− f ′

( cρ(θ)
ρpost(θ)

)
= g(c), (7.2.3)

where c is an arbitrary positive number. Note, furthermore, that g(c) is continuous
since f is continuously differentiable. Since ρ and ρpost are arbitrary, we can write
(7.2.3) equivalently as

f ′(y) − f ′(cy) = g(c), (7.2.4)

for any y, c ∈ R+. Let h : R → R such that h(z) = f ′(exp(z)). Then, we can
equivalently formulate (7.2.4) as

h(z1) − h(z2) = r(z1 − z2), (7.2.5)

for any z1, z2 ∈ R and r : R→ R such that r(t) = g(exp(−t)).

We can show r is a linear function. Setting z1 = z2 in (7.2.5) shows that r(0) = 0.
Note also that, again by (7.2.5),

r(z1 − z2) + r(z2 − z3) = h(z1) − h(z3) = r(z1 − z3).

Hence, since z1, z2 and z3 are arbitrary, we deduce that for any x, y ∈ R, it holds that

r(x) + r(y) = r(x + y). (7.2.6)

Furthermore r is continuous since f is assumed continuously differentiable. With
the above conditions, it is a standard result in functional equations that r(x) is linear.
Indeed, as a sketch of proof, by (7.2.6) we can first deduce r(n) = nr(1) for n ∈ Z.
Then, by setting x, y to be dyadic rationals, we can deduce r( i

2k ) =
i

2k r(1) for any
i, k ∈ Z. Finally, using the continuity of the function r , we get r(x) = xr(1) for any
x ∈ R. For more details, see [87].

Using the fact that r is linear and the equation (7.2.5), we know that h is an affine
function and thus f ′(exp(z)) = az + b for some a, b ∈ R. Equivalently, f ′(y) =
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a log(y)+ b. Using the condition f (1) = 0, we get f (y) = ay log(y)+ (b− a)(y−1).
Plugging this f into the formula for D f , we get

D f [ρ| |ρpost] = aKL[ρ| |ρpost],

noting that the affine term in f (y) has zero contributions in the formula for D f . The
proof is complete. �

Our result justifies that the KL divergence is a unique energy functional ideal for
sampling tasks in Bayesian inference.

Metrics As noted in Section 1.2.5.2, many different metrics have been proposed
in the literature. Some examples include (here formally, we describe the metric
using M(ρ)):

• Wasserstein metric [135, 200]: M(ρ)−1ψ = −∇ · (ρ∇ψ);

• Stein metric [168]:

M(ρ)−1ψ = −∇θ ·
(
ρ(θ)

∫
κ(θ, θ′, ρ)ρ(θ′)∇θ ′ψ(θ

′)dθ′
)

where κ is a kernel function;

• Wasserstein-Fisher-Rao metric [175]: M(ρ)−1ψ = −∇·(ρ∇ψ)+ ρ(ψ−Eρ[ψ]);

• Kalman-Wasserstein metric [95]: M(ρ)−1ψ = −∇ · (ρC(ρ)∇ψ) where C(ρ) is
the covariance matrix of ρ.

All the above metrics involve an elliptic operator −∇ · (ρ∇·) or its variants. This
operator has its origin in optimal transport [135, 200, 279]. In general, the con-
vergence rate of the gradient flows under such transport-type metrics depend on
the property of ρpost, particularly its log-Sobolev constant. One exception is the
Wasserstein-Fisher-Rao gradient flow, where the part ρ(ψ−Eρ[ψ]) introduces some
nonlocality in the flow equation, which accelerates the dynamics.

In fact, we can consider the Fisher-Rao metric directly

M(ρ)−1ψ = ρ(ψ − Eρ[ψ]) ,

which is a fundamental subject in statistics.
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Remark 7.2.2. The Fisher-Rao metric was introduced by C.R. Rao [227] via the
Fisher information matrix. The original definition is in parametric density spaces,
and the corresponding Fisher-Rao gradient flow in the parameter space leads to nat-
ural gradient descent [6]. The Fisher-Rao metric in infinite dimensional probability
spaces was discussed in [88, 255]. The concept underpins information geometry
[7, 12].

With this metric, we can write down the gradient flow equation (with the energy
functional to be the KL divergence):

∂ρt

∂t
= ρt

(
log ρpost − log ρt

)
− ρtEρt [log ρpost − log ρt] .

A remarkable property of the above flow is it is invariant to any diffeomorphism of
the parameter space. In fact, consider any diffeomorphism ϕ : Rd → Rd , we define
ρ̃t = ϕ#ρt and ρ̃post = ϕ#ρpost where # is the push-forward operator such that

ρ̃t(θ) = ρt(ϕ
−1(θ))| det∇ϕ−1 |

ρ̃post(θ) = ρpost(ϕ
−1(θ))| det∇ϕ−1 | .

Then, using the above formula, one can derive that
∂ρ̃t

∂t
= ρ̃t

(
log ρ̃post − log ρ̃t

)
− ρ̃tEρ̃t [log ρ̃post − log ρ̃t] .

Thus, the flow equation remains invariant upon any transformation. Since for
any reasonable ρpost, it is possible to find a ϕ such that ϕ#ρpost is a Gaussian
distribution, the convergence property of the Fisher-Rao gradient flows will be the
same for Gaussian posteriors and general posteriors. Naturally, we may wonder if
such invariance property could be beneficial for the convergence of the flow.

In [49], alongwith some contemporarywork [176], we show the uniform exponential
convergence of the Fisher-Rao gradient flow:

Proposition 7.2.3. Let ρt solve the Fisher-Rao gradient flow. Assume also that there
exist constants K,B > 0 such that the initial density ρ0 satisfies

e−K(1+|θ |2) ≤
ρ0(θ)

ρpost(θ)
≤ eK(1+|θ |2), (7.2.7)

and both ρ0, ρpost have bounded second moment∫
|θ |2ρ0(θ)dθ ≤ B,

∫
|θ |2ρpost(θ)dθ ≤ B. (7.2.8)

Then, for any t ≥ log
(
(1 + B)K

)
,

KL[ρt ‖ρpost] ≤ (2 + B + eB)Ke−t . (7.2.9)
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The convergence rate is uniform irrespective of the posterior distribution ρpost, which
is remarkable.

As mentioned above, this strong result could be related to the invariance property of
the Fisher-Rao gradient flows. In [49], we describe the mathematical equivalence
between the invariance of the flow and the invariance of the metric. In the literature,
it has been shown that the Fisher-Rao metric is the only metric, up to scaling, that
is invariant under any diffeomorphism of the state space [40, 11, 24]. This justifies
the speciality of the Fisher-Rao metric.

Remark 7.2.4. We note that if we instead assume a weaker condition of “invariance
under any invertible affine transformations”, namely affine invariance, more metrics
can be found to satisfy the property. Examples include the Kalman-Wasserstein
metric [95], which is affine invariant.

Indeed, the idea of affine invariance has been introduced forMCMCmethods in [102,
85], motivated by the empirical success of the Nelder-Mead simplex algorithm [195]
in optimization. The numerical studies presented in [102] demonstrate that affine-
invariantMCMCmethods offer significant performance improvements over standard
MCMC methods. This idea has been further developed to enhance sampling algo-
rithms in more general contexts. Preconditioning strategies for Langevin dynamics
to achieve affine-invariance were discussed in [159]. And in [95], the Kalman-
Wasserstein metric was introduced, gradient flows in this metric were advocated
and in [96] the methodology was shown to achieve affine invariance. Moreover, the
authors in [95, 96, 216] used the empirical covariance of an interacting particle ap-
proximation of the mean-field limit, leading to a family of derivative-free sampling
approaches in continuous time. Similarly, the work [170] employed the empiri-
cal covariance to precondition second-order Langevin dynamics. Affine invariant
samplers can also be combined with the pCN (preconditioned Crank–Nicolson)
MCMC method [58], to boost the performance of MCMC in function space [59,
72]. Another family of affine-invariant sampling algorithms is based on Newton
or Gauss-Newton since using the Hessian matrix as the preconditioner in Newton’s
method induces the affine invariance property. Such methods include stochastic
Newton MCMC [182], and the Newton flow with different metrics [68, 285].

Numerics To get implementable algorithms, we need to simulate the flow numer-
ically. Despite the favorable theoretical property of the Fisher-Rao gradient flow, its
numerical simulation requires extra effort. Particle methods based on birth-death
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dynamics have been employed in previous studies [175, 176], but their effectiveness
depends on the quality of the density estimator for particle distributions. These
methods may deteriorate when applied to high-dimensional problems because of
the need for many particles.

In [49], we investigate parametric approximations of the Fisher-Rao gradient flows.
Specifically, we demonstrate the equivalence between the Gaussian projection
(through moment closures) of the flow and natural gradient methods in variational
inference. We provide convergence analysis in such cases. We refer to [49] for these
discussions, including approximations of other gradient flows.

Additionally, we explore using Kalman methodology to obtain a derivative-free
approximation of the Fisher-Rao gradient flow. This approach recovers a recently
proposed Kalman-type sampler [132] that has demonstrated success in large-scale
Bayes inverse problems.

Our ultimate goal is to enhance these approximations to create provable, efficient,
and robust samplers for posterior distributions in Bayes inference. We will continue
to work towards this goal.



234

BIBLIOGRAPHY

[1] Assyr Abdulle, E Weinan, Björn Engquist, and Eric Vanden-Eijnden. The
heterogeneous multiscale method. Acta Numerica, 21:1–87, 2012.

[2] Robert A Adams and John JF Fournier. Sobolev Spaces. Elsevier, 2003.

[3] Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge
regression with statistical guarantees. In Advances in Neural Information
Processing Systems, volume 28, 2015.

[4] David M Allen. The relationship between variable selection and data agu-
mentation and amethod for prediction.Technometrics, 16(1):125–127, 1974.

[5] Robert Altmann, Patrick Henning, and Daniel Peterseim. Numerical ho-
mogenization beyond scale separation. Acta Numerica, 30:1–86, 2021.

[6] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural
computation, 10(2):251–276, 1998.

[7] Shun-ichi Amari. Information Geometry and its Applications, volume 194.
Springer, 2016.

[8] Shun-ichi Amari and Si Wu. Improving support vector machine classifiers
by modifying kernel functions. Neural Networks, 12(6):783–789, 1999.

[9] Sivaram Ambikasaran and Eric Darve. An O(N log N) fast direct solver
for partial hierarchically semi-separable matrices: with application to radial
basis function interpolation. Journal of Scientific Computing, 57:477–501,
2013.

[10] Sivaram Ambikasaran, Daniel Foreman-Mackey, Leslie Greengard, David
W Hogg, and Michael O’Neil. Fast direct methods for Gaussian processes.
IEEE transactions on pattern analysis and machine intelligence, 38(2):252–
265, 2015.

[11] Nihat Ay, Jürgen Jost, Hông Vân Lê, and Lorenz Schwachhöfer. Information
geometry and sufficient statistics. Probability Theory and Related Fields,
162(1):327–364, 2015.

[12] Nihat Ay, Jürgen Jost, Hông V. Lê, and Lorenz Schwachhöfer. Information
Geometry, volume 64. Springer, 2017.

[13] Abdul Kadir Aziz, R Bruce Kellogg, and Arthur Brooke Stephens. A
two point boundary value problem with a rapidly oscillating solution. Nu-
merische Mathematik, 53(1):107–121, 1988.

[14] Ivo Babuška, Gabriel Caloz, and John E Osborn. Special finite element
methods for a class of second order elliptic problemswith rough coefficients.
SIAM Journal on Numerical Analysis, 31(4):945–981, 1994.



235

[15] Ivo Babuška and Robert Lipton. Optimal local approximation spaces for
generalized finite element methods with application to multiscale problems.
Multiscale Modeling & Simulation, 9(1):373–406, 2011.

[16] Ivo Babuška, Robert Lipton, Paul Sinz, and Michael Stuebner. Multiscale-
spectral GFEM and optimal oversampling. Computer Methods in Applied
Mechanics and Engineering, 364:112960, 2020.

[17] Ivo Babuška and John Osborn. Can a finite element method perform arbi-
trarily badly? Mathematics of Computation, 69(230):443–462, 2000.

[18] Ivo Babuška and John Osborn. Generalized finite element methods: their
performance and their relation to mixed methods. SIAM Journal on Numer-
ical Analysis, 20(3):510–536, 1983.

[19] Ivo Babuška and Stefan Sauter. Is the pollution effect of the fem avoidable
for the Helmholtz equation considering high wave numbers? SIAM Journal
on numerical analysis, 34(6):2392–2423, 1997.

[20] François Bachoc. Cross validation and maximum likelihood estimations
of hyper-parameters of Gaussian processes with model misspecification.
Computational Statistics & Data Analysis, 66:55–69, 2013.

[21] François Bachoc, Agnès Lagnoux, and Thi Mong Ngoc Nguyen. Cross-
validation estimation of covariance parameters under fixed-domain asymp-
totics. Journal of Multivariate Analysis, 160:42–67, 2017.

[22] Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner.
Learning data-driven discretizations for partial differential equations. Pro-
ceedings of the National Academy of Sciences, 116(31):15344–15349, 2019.

[23] Pau Batlle, Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew
M Stuart. Error analysis of kernel/GP methods for nonlinear and parametric
PDEs. arXiv preprint arXiv:2305.04962, 2023.

[24] Martin Bauer, Martins Bruveris, and Peter W Michor. Uniqueness of the
Fisher–Rao metric on the space of smooth densities. Bulletin of the London
Mathematical Society, 48(3):499–506, 2016.

[25] Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert
spaces in probability and statistics. Springer Science & Business Media,
2011.

[26] Maximilian Bernkopf, Théophile Chaumont-Frelet, and Jens Markus Me-
lenk. Wavenumber-explicit stability and convergence analysis of hp finite
element discretizations of helmholtz problems in piecewise smooth media.
arXiv preprint arXiv:2209.03601, 2022.

[27] Timo Betcke, Simon N Chandler-Wilde, Ivan G Graham, Stephen Langdon,
and Marko Lindner. Condition number estimates for combined potential
integral operators in acoustics and their boundary element discretisation.
Numerical Methods for Partial Differential Equations, 27(1):31–69, 2011.



236

[28] Gregory Beylkin, Ronald Coifman, and Vladimir Rokhlin. Fast wavelet
transforms and numerical algorithms I. Communications on pure and ap-
plied mathematics, 44(2):141–183, 1991.

[29] Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew
M Stuart. Model reduction and neural networks for parametric PDEs. The
SMAI journal of computational mathematics, 7:121–157, 2021.

[30] Vladimir Igorevich Bogachev.Gaussian measures. AmericanMathematical
Society, 1998.

[31] Gabriele Boncoraglio and Charbel Farhat. Active manifold and model re-
duction for multidisciplinary analysis and optimization. In AIAA Scitech
2021 Forum, page 1694, 2021.

[32] Susanne C Brenner, L Ridgway Scott, and L Ridgway Scott. The mathemat-
ical theory of finite element methods, volume 3. Springer, 2008.

[33] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential
Equations. Springer Science & Business Media, 2010.

[34] Donald L Brown, Dietmar Gallistl, and Daniel Peterseim.Multiscale Petrov-
Galerkin method for high-frequency heterogeneous Helmholtz equations.
In Meshfree methods for partial differential equations VIII, pages 85–115.
Springer, 2017.

[35] Andreas Buhr and Kathrin Smetana. Randomized local model order reduc-
tion. SIAM journal on scientific computing, 40(4):A2120–A2151, 2018.

[36] Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Distributed
adaptive sampling for kernel matrix approximation. In Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, vol-
ume 54 of Proceedings of Machine Learning Research, pages 1421–1429,
2017.

[37] Jeff Calder. Consistency of lipschitz learning with infinite unlabeled data
and finite labeled data. SIAM Journal on Mathematics of Data Science,
1(4):780–812, 2019.

[38] Jeff Calder and Dejan Slepčev. Properly-weighted graph laplacian for semi-
supervised learning. Applied Mathematics & Optimization:1–49, 2019.

[39] BenCalderhead,MarkGirolami, andNeilDLawrence.AcceleratingBayesian
inference over nonlinear differential equations with Gaussian processes. In
Advances in Neural Information Processing Systems, pages 217–224, 2009.

[40] Nikolai Nikolaevich Cencov. Statistical decision rules and optimal infer-
ence. American Mathematical Soc., 2000.

[41] Ke Chen, Qin Li, Jianfeng Lu, and Stephen J Wright. Randomized sam-
pling for basis function construction in generalized finite element methods.
Multiscale Modeling & Simulation, 18(2):1153–1177, 2020.



237

[42] YifanChen, EthanNEpperly, Joel ATropp, andRobert JWebber. Randomly
pivoted Cholesky: practical approximation of a kernel matrix with few entry
evaluations. arXiv preprint arXiv:2207.06503, 2022.

[43] Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M. Stuart.
Solving and learning nonlinear PDEs with Gaussian processes. Journal of
Computational Physics, 447:110668, 2021. doi: https://doi.org/10.
1016/j.jcp.2021.110668.

[44] Yifan Chen and ThomasYHou. Function approximation via the subsampled
Poincaré inequality. Discrete and Continuous Dynamical Systems-A, 2020.
doi: http://dx.doi.org/10.3934/dcds.2020296. url: https:
//www.aimsciences.org/article/doi/10.3934/dcds.2020296.

[45] Yifan Chen and Thomas YHou.Multiscale elliptic PDE upscaling and func-
tion approximation via subsampled data.MultiscaleModeling& Simulation,
20(1):188–219, 2022. doi: https://doi.org/10.1137/20M1372214.
url: https://epubs.siam.org/doi/10.1137/20M1372214.

[46] YifanChen, ThomasYHou, andYixuanWang. Exponential convergence for
multiscale linear elliptic PDEs via adaptive edge basis functions.Multiscale
Modeling & Simulation, 19(2):980–1010, 2021. doi: https://doi.org/
10.1137/20m1352922. url: https://epubs.siam.org/doi/10.
1137/20M1352922.

[47] Yifan Chen, Thomas Y Hou, and Yixuan Wang. Exponentially convergent
multiscale finite element method.Communications on Applied Mathematics
and Computation:1–17, 2023. url: https://link.springer.com/
article/10.1007/s42967-023-00260-2.

[48] Yifan Chen, Thomas Y Hou, and Yixuan Wang. Exponentially conver-
gent multiscale methods for 2d high frequency heterogeneous Helmholtz
equations. To appear in Multiscale Modeling & Simulation, arXiv preprint
arXiv:2105.04080, 2021.

[49] Yifan Chen, Daniel Zhengyu Huang, Jiaoyang Huang, Sebastian Reich, and
Andrew M Stuart. Gradient flows for sampling: mean-field models, Gaus-
sian approximations and affine invariance. arXiv preprint arXiv:2302.11024,
2023.

[50] Yifan Chen, Houman Owhadi, and Florian Schäfer. Sparse Cholesky factor-
ization for solving nonlinear PDEs via Gaussian processes. arXiv preprint
arXiv:2304.01294, 2023.

[51] Yifan Chen, Houman Owhadi, and Andrew M Stuart. Consistency of em-
pirical Bayes and kernel flow for hierarchical parameter estimation.Mathe-
matics of Computation, 2021. url: https://www.ams.org/journals/
mcom/2021-90-332/S0025-5718-2021-03649-2/.

https://doi.org/https://doi.org/10.1016/j.jcp.2021.110668
https://doi.org/https://doi.org/10.1016/j.jcp.2021.110668
https://doi.org/http://dx.doi.org/10.3934/dcds.2020296
https://www.aimsciences.org/article/doi/10.3934/dcds.2020296
https://www.aimsciences.org/article/doi/10.3934/dcds.2020296
https://doi.org/https://doi.org/10.1137/20M1372214
https://epubs.siam.org/doi/10.1137/20M1372214
https://doi.org/https://doi.org/10.1137/20m1352922
https://doi.org/https://doi.org/10.1137/20m1352922
https://epubs.siam.org/doi/10.1137/20M1352922
https://epubs.siam.org/doi/10.1137/20M1352922
https://link.springer.com/article/10.1007/s42967-023-00260-2
https://link.springer.com/article/10.1007/s42967-023-00260-2
https://www.ams.org/journals/mcom/2021-90-332/S0025-5718-2021-03649-2/
https://www.ams.org/journals/mcom/2021-90-332/S0025-5718-2021-03649-2/


238

[52] Eric T Chung, Yalchin Efendiev, and Wing Tat Leung. Constraint energy
minimizing generalized multiscale finite element method. Computer Meth-
ods in Applied Mechanics and Engineering, 339:298–319, 2018.

[53] A Cochocki and Rolf Unbehauen. Neural networks for optimization and
signal processing. John Wiley & Sons, Inc., 1993.

[54] Jon Cockayne, Chris Oates, Tim Sullivan, and Mark Girolami. Bayesian
probabilistic numerical methods. SIAM Review, 61(4):756–789, 2019.

[55] Jon Cockayne, Chris Oates, Tim Sullivan, and Mark Girolami. Probabilistic
numerical methods for PDE-constrained Bayesian inverse problems. In AIP
Conference Proceedings, volume 1853 of number 1, page 060001, 2017.

[56] Corinna Cortes, Marius Kloft, and Mehryar Mohri. Learning kernels using
local rademacher complexity. In Advances in neural information processing
systems, pages 2760–2768, 2013.

[57] SimonLCotter,MasoumehDashti, andAndrewMStuart. Approximation of
Bayesian inverse problems for PDEs. SIAM Journal on Numerical Analysis,
48(1):322–345, 2010.

[58] Simon L Cotter, Gareth O Roberts, Andrew M Stuart, and David White.
MCMC methods for functions: modifying old algorithms to make them
faster. Statistical Science:424–446, 2013.

[59] Jeremie Coullon and Robert J Webber. Ensemble sampler for infinite-
dimensional inverse problems. Statistics and Computing, 31(3):1–9, 2021.

[60] Matthieu Darcy, Boumediene Hamzi, Giulia Livieri, Houman Owhadi, and
Peyman Tavallali. One-shot learning of stochastic differential equations with
data adapted kernels. Physica D: Nonlinear Phenomena, 444:133583, 2023.

[61] Masoumeh Dashti, Kody JH Law, Andrew M Stuart, and Jochen Voss.
MAP estimators and their consistency in Bayesian nonparametric inverse
problems. Inverse Problems, 29(9):095017, 2013.

[62] Masoumeh Dashti and Andrew M Stuart. The Bayesian approach to inverse
problems. In R. Ghanem, D. Higdon, and H. Owhadi, editors, Handbook of
Uncertainty Quantification, pages 1–118. Springer International Publishing,
2016.

[63] Masoumeh Dashti and Andrew M Stuart. The Bayesian approach to inverse
problems. arXiv preprint arXiv:1302.6989, 2013.

[64] Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Re-
thinking the importance of sampling in physics-informed neural networks.
arXiv preprint arXiv:2207.02338, 2022.

[65] Carl De Boor, Ronald A DeVore, and Amos Ron. Approximation from shift-
invariant subspaces of L2(Rd). Transactions of the American Mathematical
Society, 341(2):787–806, 1994.



239

[66] Filip De Roos, Alexandra Gessner, and Philipp Hennig. High-dimensional
Gaussian process inference with derivatives. In International Conference on
Machine Learning, pages 2535–2545. PMLR, 2021.

[67] Tim De Ryck and Siddhartha Mishra. Error analysis for physics-informed
neural networks (pinns) approximating kolmogorov pdes. Advances in Com-
putational Mathematics, 48(6):1–40, 2022.

[68] Gianluca Detommaso, Tiangang Cui, Youssef Marzouk, Alessio Spantini,
and Robert Scheichl. A Stein variational Newton method. Advances in Neu-
ral Information Processing Systems, 31, 2018.

[69] Persi Diaconis. Bayesian numerical analysis. Statistical decision theory and
related topics IV, 1:163–175, 1988.

[70] Badis Djeridane and John Lygeros. Neural approximation of PDE solutions:
an application to reachability computations. InProceedings of the 45th IEEE
Conference on Decision and Control, pages 3034–3039. IEEE, 2006.

[71] Matthew M Dunlop, Marco A Iglesias, and Andrew M Stuart. Hierarchical
bayesian level set inversion. Statistics and Computing, 27(6):1555–1584,
2017.

[72] Matthew M Dunlop and Georg Stadler. A gradient-free subspace-adjusting
ensemble sampler for infinite-dimensional Bayesian inverse problems. arXiv
preprint arXiv:2202.11088, 2022.

[73] Yalchin R Efendiev, Thomas Y Hou, and Xiao-Hui Wu. Convergence of a
nonconforming multiscale finite element method. SIAM Journal on Numer-
ical Analysis, 37(3):888–910, 2000.

[74] Yalchin Efendiev, Juan Galvis, and Thomas Y Hou. Generalized multi-
scale finite elementmethods (GMsFEM). Journal ofComputational Physics,
251:116–135, 2013. issn: 0021-9991.

[75] Ahmed El Alaoui, Xiang Cheng, Aaditya Ramdas,Martin JWainwright, and
Michael I Jordan. Asymptotic behavior of lp-based laplacian regularization
in semi-supervised learning. InConference on Learning Theory, pages 879–
906, 2016.

[76] Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. Regularization
of inverse problems, volume 375. Springer Science&BusinessMedia, 1996.

[77] BjörnEngquist andLexingYing. Sweeping preconditioner for theHelmholtz
equation: hierarchical matrix representation. Communications on pure and
applied mathematics, 64(5):697–735, 2011.

[78] BjörnEngquist andLexingYing. Sweeping preconditioner for theHelmholtz
equation: moving perfectly matched layers.Multiscale Modeling & Simula-
tion, 9(2):686–710, 2011.



240

[79] Björn Engquist and Hongkai Zhao. Approximate separability of the green’s
function of the helmholtz equation in the high frequency limit. Communi-
cations on Pure and Applied Mathematics, 71(11):2220–2274, 2018.

[80] Christian Engwer, Patrick Henning, Axel Målqvist, and Daniel Peterseim.
Efficient implementation of the localized orthogonal decompositionmethod.
Computer Methods in Applied Mechanics and Engineering, 350:123–153,
2019.

[81] David Eriksson, Kun Dong, Eric Lee, David Bindel, and Andrew GWilson.
Scaling Gaussian process regression with derivatives. Advances in neural
information processing systems, 31, 2018.

[82] Sofi Esterhazy and Jens M Melenk. On stability of discretizations of the
Helmholtz equation. InNumerical analysis ofmultiscale problems, pages 285–
324. Springer, 2012.

[83] Lawrence CEvans.Partial Differential Equations. Graduate studies inmath-
ematics. American Mathematical Society, 2010. isbn: 978-0-8218-4974-3.

[84] Shai Fine and Katya Scheinberg. Efficient SVM training using low-rank
kernel representations. Journal of Machine Learning Research, 2:243–264,
2002. issn: 1532-4435.

[85] Daniel Foreman-Mackey, DavidWHogg, Dustin Lang, and Jonathan Good-
man. EMCEE: The MCMC hammer. Publications of the Astronomical So-
ciety of the Pacific, 125(925):306, 2013.

[86] Philip Freese, Moritz Hauck, and Daniel Peterseim. Super-localized orthog-
onal decomposition for high-frequency helmholtz problems. arXiv preprint
arXiv:2112.11368, 2021.

[87] David Friedman. The functional equation f (x+ y)= g (x)+ h (y). The Amer-
ican Mathematical Monthly, 69(8):769–772, 1962.

[88] Thomas Friedrich. Die fisher-information und symplektische strukturen.
Mathematische Nachrichten, 153(1):273–296, 1991. doi: https://doi.
org/10.1002/mana.19911530125.

[89] Shubin Fu, Eric Chung, and Guanglian Li. Edge multiscale methods for
elliptic problemswith heterogeneous coefficients. Journal of Computational
Physics, 396:228–242, 2019.

[90] Shubin Fu and Kai Gao. A fast solver for the Helmholtz equation based
on the generalized multiscale finite-element method. Geophysical Journal
International, 211(2):797–813, 2017.

[91] Shubin Fu,GuanglianLi, RichardCraster, andSebastienGuenneau.Wavelet-
based edge multiscale finite element method for Helmholtz problems in
perforated domains. arXiv preprint arXiv:1906.08453, 2019.

https://doi.org/https://doi.org/10.1002/mana.19911530125
https://doi.org/https://doi.org/10.1002/mana.19911530125


241

[92] Reinhard Furrer, Marc GGenton, and Douglas Nychka. Covariance tapering
for interpolation of large spatial datasets. Journal of Computational and
Graphical Statistics, 15(3):502–523, 2006.

[93] Dietmar Gallistl and Daniel Peterseim. Stable multiscale Petrov–Galerkin
finite element method for high frequency acoustic scattering. Computer
Methods in Applied Mechanics and Engineering, 295:1–17, 2015.

[94] Tingran Gao, Shahar Z Kovalsky, and Ingrid Daubechies. Gaussian process
landmarking on manifolds. SIAM Journal on Mathematics of Data Science,
1(1):208–236, 2019.

[95] Alfredo Garbuno-Inigo, Franca Hoffmann, Wuchen Li, and Andrew M
Stuart. Interacting Langevin diffusions: Gradient structure and ensemble
Kalman sampler. SIAM Journal on Applied Dynamical Systems, 19(1):412–
441, 2020.

[96] AlfredoGarbuno-Inigo, Nikolas Nüsken, and Sebastian Reich. Affine invari-
ant interacting Langevin dynamics for Bayesian inference. SIAM Journal on
Applied Dynamical Systems, 19(3):1633–1658, 2020.

[97] Seymour Geisser. The predictive sample reuse method with applications.
Journal of the American statistical Association, 70(350):320–328, 1975.

[98] Jayanta KGhosh and RVRamamoorthi.Bayesian Nonparametrics. Springer
Science & Business Media, 2003.

[99] David Gilbarg and Neil S Trudinger. Elliptic partial differential equations
of second order. springer, 2015.

[100] D Gines, G Beylkin, and J Dunn. LU factorization of non-standard forms
and direct multiresolution solvers. Applied and Computational Harmonic
Analysis, 5(2):156–201, 1998.

[101] IanGoodfellow,YoshuaBengio, AaronCourville, andYoshuaBengio.Deep
learning, volume 1 of number 2. MIT press, 2016.

[102] Jonathan Goodman and Jonathan Weare. Ensemble samplers with affine in-
variance. Communications in applied mathematics and computational sci-
ence, 5(1):65–80, 2010.

[103] I Graham and S Sauter. Stability and finite element error analysis for the
Helmholtz equationwith variable coefficients.Mathematics of Computation,
89(321):105–138, 2020.

[104] Ivan G Graham, Owen R Pembery, and Euan A Spence. The Helmholtz
equation in heterogeneous media: a priori bounds, well-posedness, and res-
onances. Journal of Differential Equations, 266(6):2869–2923, 2019.

[105] JensAGriepentrog and Lutz Recke. Linear elliptic boundary value problems
with non–smooth data: normal solvability on Sobolev–Campanato spaces.
Mathematische Nachrichten, 225(1):39–74, 2001.



242

[106] Tamara G Grossmann, Urszula Julia Komorowska, Jonas Latz, and Carola-
Bibiane Schönlieb. Can physics-informed neural networks beat the finite
element method? arXiv preprint arXiv:2302.04107, 2023.

[107] Ming Gu and LuizaMiranian. Strong rank revealing Cholesky factorization.
Electronic Transactions on Numerical Analysis, 17:76–92, 2004.

[108] Joseph Guinness. Permutation and grouping methods for sharpening Gaus-
sian process approximations. Technometrics, 60(4):415–429, 2018.

[109] Peter Guttorp and Tilmann Gneiting. Studies in the history of probability
and statistics xlix on the matérn correlation family. Biometrika, 93(4):989–
995, December 2006. issn: 0006-3444. doi: 10.1093/biomet/93.4.989.

[110] Wolfgang Hackbusch. A sparse matrix arithmetic based on H-matrices. Part
I: introduction to H-matrices. Computing, 62(2):89–108, 1999.

[111] Wolfgang Hackbusch and Steffen Börm. Data-sparse approximation by
adaptive H 2-matrices. Computing, 69:1–35, 2002.

[112] Wolfgang Hackbusch and Boris N Khoromskij. A sparse H-matrix arith-
metic, part II: application tomulti-dimensional problems.Computing, 64(1):21–
47, 2000.

[113] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure
with randomness: probabilistic algorithms for constructing approximate ma-
trix decompositions. SIAM review, 53(2):217–288, 2011.

[114] Boumediene Hamzi and Houman Owhadi. Learning dynamical systems
from data: a simple cross-validation perspective, part i: parametric kernel
flows. Physica D: Nonlinear Phenomena, 421:132817, 2021.

[115] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional par-
tial differential equations using deep learning. Proceedings of the National
Academy of Sciences, 115(34):8505–8510, 2018.

[116] Moritz Hauck and Daniel Peterseim. Multi-resolution localized orthogonal
decomposition for Helmholtz problems. arXiv preprint arXiv:2104.11190,
2021.

[117] Moritz Hauck andDaniel Peterseim. Super-localization of ellipticmultiscale
problems. arXiv preprint arXiv:2107.13211, 2021.

[118] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[119] P. Hennig, M. A. Osborne, and M. Girolami. Probabilistic numerics and un-
certainty in computations.Proceedings of theRoyal SocietyA, 471(2179):20150142,
2015. issn: 1364-5021.

https://doi.org/10.1093/biomet/93.4.989


243

[120] Philipp Hennig, Michael A Osborne, and Mark Girolami. Probabilistic nu-
merics and uncertainty in computations. Proceedings of the Royal Society
A:Mathematical, Physical andEngineering Sciences, 471(2179):20150142,
2015.

[121] Patrick Henning and Daniel Peterseim. Oversampling for the multiscale
finite element method. Multiscale Modeling & Simulation, 11(4):1149–
1175, 2013.

[122] Ulrich Hetmaniuk and Axel Klawonn. Error estimates for a two-dimensional
special finite elementmethod based on componentmode synthesis.Electron.
Trans. Numer. Anal, 41:109–132, 2014.

[123] Ulrich Hetmaniuk and Richard Lehoucq. A special finite element method
based on component mode synthesis. ESAIM: Mathematical Modelling and
Numerical Analysis, 44(3):401–420, 2010.

[124] Nicholas JHigham.Accuracy and Stability ofNumerical Algorithms. Society
for Industrial and Applied Mathematics, Philadelphia, 2nd ed edition, 2002.
doi: 10.1137/1.9780898718027.

[125] Michael Hinze, René Pinnau, Michael Ulbrich, and Stefan Ulbrich. Opti-
mization with PDE constraints, volume 23. Springer Science & Business
Media, 2008.

[126] Nils LidHjort, Chris Holmes, PeterMüller, and StephenGWalker.Bayesian
Nonparametrics, volume 28. Cambridge University Press, 2010.

[127] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel
methods in machine learning. The Annals of Statistics:1171–1220, 2008.

[128] Thomas Y Hou and Pengfei Liu. Optimal local multi-scale basis functions
for linear elliptic equations with rough coefficient. Discrete and Continuous
Dynamical Systems, 36(8):4451–4476, 2016.

[129] Thomas Y Hou and Xiao-Hui Wu. A multiscale finite element method
for elliptic problems in composite materials and porous media. Journal of
Computational Physics, 134(1):169–189, 1997. issn: 0021-9991.

[130] Thomas Y Hou, Xiao-Hui Wu, and Zhiqiang Cai. Convergence of a mul-
tiscale finite element method for elliptic problems with rapidly oscillating
coefficients. Mathematics of computation, 68(227):913–943, 1999.

[131] Thomas Y Hou and Pengchuan Zhang. Sparse operator compression of
higher-order elliptic operators with rough coefficients.Research in theMath-
ematical Sciences, 4:1–49, 2017.

[132] Daniel Zhengyu Huang, Jiaoyang Huang, Sebastian Reich, and Andrew M
Stuart. Efficient derivative-free bayesian inference for large-scale inverse
problems. Inverse Problems, 38(12):125006, 2022.

https://doi.org/10.1137/1.9780898718027


244

[133] Thomas JR Hughes, Gonzalo R Feijóo, Luca Mazzei, and Jean-Baptiste
Quincy. The variational multiscale method—a paradigm for computational
mechanics. Computer Methods in Applied Mechanics and Engineering,
166(1):3–24, 1998. issn: 0045-7825.

[134] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent ker-
nel: convergence and generalization in neural networks. Advances in neural
information processing systems, 31, 2018.

[135] Richard Jordan, David Kinderlehrer, and Felix Otto. The variational for-
mulation of the Fokker–Planck equation. SIAM journal on mathematical
analysis, 29(1):1–17, 1998.

[136] Jari Kaipio and Erkki Somersalo. Statistical and computational inverse
problems, volume 160. Springer Science & Business Media, 2006.

[137] G. Karniadakis, I. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang.
Physics-informed machine learning. Nature Reviews Physics, 2021.

[138] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris,
Sifan Wang, and Liu Yang. Physics-informed machine learning. Nature
Reviews Physics, 3(6):422–440, 2021.

[139] Matthias Katzfuss. A multi-resolution approximation for massive spatial
datasets. Journal of the American Statistical Association, 112(517):201–
214, 2017.

[140] Matthias Katzfuss, Joseph Guinness, Wenlong Gong, and Daniel Zilber.
Vecchia approximations of Gaussian-process predictions. Journal of Agri-
cultural, Biological and Environmental Statistics, 25:383–414, 2020.

[141] G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian esti-
mation on stochastic processes and smoothing by splines. Annals of Mathe-
matical Statistics, 41:495–502, 1970. issn: 0003-4851.

[142] George S Kimeldorf and GraceWahba. A correspondence between bayesian
estimation on stochastic processes and smoothing by splines. The Annals of
Mathematical Statistics, 41(2):495–502, 1970.

[143] George Kimeldorf and GraceWahba. Some results on Tchebycheffian spline
functions. Journal of mathematical analysis and applications, 33(1):82–95,
1971.

[144] Bartek T Knapik, BT Szabó, Aad W Van Der Vaart, and JH Van Zanten.
Bayes procedures for adaptive inference in inverse problems for the white
noise model. Probability Theory and Related Fields, 164(3-4):771–813,
2016.

[145] Bartek T Knapik, Aad W Van Der Vaart, and J Harry van Zanten. Bayesian
inverse problemswithGaussian priors. The Annals of Statistics, 39(5):2626–
2657, 2011.



245

[146] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estima-
tion andmodel selection. In Ijcai, volume 14 of number 2, pages 1137–1145.
Montreal, Canada, 1995.

[147] Robert Kohn, Craig F Ansley, and David Tharm. The performance of cross-
validation and maximum likelihood estimators of spline smoothing param-
eters. Journal of the american statistical association, 86(416):1042–1050,
1991.

[148] Ralf Kornhuber, Daniel Peterseim, and Harry Yserentant. An analysis of a
class of variational multiscale methods based on subspace decomposition.
Mathematics of Computation, 87(314):2765–2774, 2018.

[149] K Krischer, R Rico-Martinez, IG Kevrekidis, HH Rotermund, G Ertl, and
JL Hudson. Model identification of a spatiotemporally varying catalytic
reaction. AIChE Journal, 39(1):89–98, 1993.

[150] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and
Michael W Mahoney. Characterizing possible failure modes in physics-
informed neural networks. Advances in Neural Information Processing Sys-
tems, 34:26548–26560, 2021.

[151] Rasmus Kyng, Anup Rao, Sushant Sachdeva, and Daniel A Spielman. Algo-
rithms for lipschitz learning on graphs. In Conference on Learning Theory,
pages 1190–1223, 2015.

[152] Kenneth L. Ho and Lexing Ying. Hierarchical interpolative factorization for
elliptic operators: integral equations. Communications on Pure and Applied
Mathematics, 69(7):1314–1353, 2016.

[153] David Lafontaine, Euan A Spence, and JaredWunsch. For most frequencies,
strong trapping has a weak effect in frequency-domain scattering. arXiv
preprint arXiv:1903.12172, 2019.

[154] David Lafontaine, Euan A Spence, and JaredWunsch.Wavenumber-explicit
convergence of the hp-fem for the full-space heterogeneous helmholtz equa-
tion with smooth coefficients.Computers &Mathematics with Applications,
113:59–69, 2022.

[155] Isaac E Lagaris, Aristidis C Likas, and Dimitrios I Fotiadis. Artificial neu-
ral networks for solving ordinary and partial differential equations. IEEE
transactions on Neural Networks, 9(5):987–1000, 1998.

[156] Isaac E Lagaris, Aristidis C Likas, and Dimitris G Papageorgiou. Neural-
network methods for boundary value problems with irregular boundaries.
IEEE Transactions on Neural Networks, 11(5):1041–1049, 2000.

[157] FMLarkin. Gaussian measure in hilbert space and applications in numerical
analysis. The Rocky Mountain Journal of Mathematics:379–421, 1972.



246

[158] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey
Pennington, and Jascha Sohl-Dickstein. Deep neural networks as Gaussian
processes. arXiv preprint arXiv:1711.00165, 2017.

[159] Benedict Leimkuhler, Charles Matthews, and Jonathan Weare. Ensemble
preconditioning for markov chain monte carlo simulation. Statistics and
Computing, 28(2):277–290, 2018.

[160] Guanglian Li. On the convergence rates of GMsFEMs for heterogeneous
elliptic problems without oversampling techniques.Multiscale Modeling &
Simulation, 17(2):593–619, 2019.

[161] Guanglian Li, Daniel Peterseim, and Mira Schedensack. Error analysis of a
variationalmultiscale stabilization for convection-dominated diffusion equa-
tions in two dimensions. IMA Journal of Numerical Analysis, 38(3):1229–
1253, 2018.

[162] Shengguo Li, Ming Gu, Cinna Julie Wu, and Jianlin Xia. New efficient
and robust HSS Cholesky factorization of SPD matrices. SIAM Journal on
Matrix Analysis and Applications, 33(3):886–904, 2012.

[163] ZongyiLi,NikolaKovachki,KamyarAzizzadenesheli, BurigedeLiu,Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural oper-
ator for parametric partial differential equations. arXiv preprint arXiv:2010.08895,
2020.

[164] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, An-
drew Stuart, Kaushik Bhattacharya, and Anima Anandkumar. Multipole
graph neural operator for parametric partial differential equations. Advances
in Neural Information Processing Systems, 2020.

[165] Hua Liang and Hulin Wu. Parameter estimation for differential equation
models using a framework of measurement error in regression models.
Journal of the American Statistical Association, 103(484):1570–1583, 2008.

[166] Finn Lindgren, Håvard Rue, and Johan Lindström. An explicit link between
Gaussian fields and Gaussian Markov random fields: the stochastic par-
tial differential equation approach. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 73(4):423–498, 2011.

[167] Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When gaussian
process meets big data: a review of scalable GPs. IEEE transactions on
neural networks and learning systems, 31(11):4405–4423, 2020.

[168] Qiang Liu. Stein variational gradient descent as gradient flow. Advances in
neural information processing systems, 30, 2017.

[169] Qiang Liu and Dilin Wang. Stein variational gradient descent: a general
purpose Bayesian inference algorithm. Advances in neural information pro-
cessing systems, 29, 2016.



247

[170] Ziming Liu, Andrew M Stuart, and Yixuan Wang. Second order ensem-
ble langevin method for sampling and inverse problems. arXiv preprint
arXiv:2208.04506, 2022.

[171] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-net: learn-
ing PDEs from data. In International Conference on Machine Learning,
pages 3208–3216. PMLR, 2018.

[172] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em
Karniadakis. Learning nonlinear operators via DeepONet based on the uni-
versal approximation theorem of operators. Nature machine intelligence,
3(3):218–229, 2021.

[173] Tzon-Tzer Lu and Sheng-Hua Shiou. Inverses of 2× 2 block matrices. Com-
puters & Mathematics with Applications, 43(1-2):119–129, 2002.

[174] Yiping Lu, Haoxuan Chen, Jianfeng Lu, Lexing Ying, and Jose Blanchet.
Machine learning for elliptic pdes: fast rate generalization bound, neural scal-
ing law and minimax optimality. arXiv preprint arXiv:2110.06897, 2021.

[175] Yulong Lu, Jianfeng Lu, and James Nolen. Accelerating Langevin sampling
with birth-death. arXiv preprint arXiv:1905.09863, 2019.

[176] Yulong Lu, Dejan Slepčev, and Lihan Wang. Birth-death dynamics for
sampling: global convergence, approximations and their asymptotics. arXiv
preprint arXiv:2211.00450, 2022.

[177] Chupeng Ma, Christian Alber, and Robert Scheichl. Wavenumber explicit
convergence of a multiscale gfem for heterogeneous helmholtz problems.
arXiv preprint arXiv:2112.10544, 2021.

[178] Chupeng Ma and Robert Scheichl. Error estimates for fully discrete gen-
eralized fems with locally optimal spectral approximations. arXiv preprint
arXiv:2107.09988, 2021.

[179] ChupengMa, Robert Scheichl, and Tim Dodwell. Novel design and analysis
of generalized fe methods based on locally optimal spectral approximations.
arXiv preprint arXiv:2103.09545, 2021.

[180] Roland Maier. A high-order approach to elliptic multiscale problems with
general unstructured coefficients. SIAM Journal on Numerical Analysis,
59(2):1067–1089, 2021.

[181] Axel Målqvist and Daniel Peterseim. Localization of elliptic multiscale
problems. en.Mathematics of Computation, 83(290):2583–2603, June 2014.
issn: 0025-5718, 1088-6842. (Visited on 08/23/2019).

[182] James Martin, Lucas C Wilcox, Carsten Burstedde, and Omar Ghattas. A
stochastic Newton MCMC method for large-scale statistical inverse prob-
lems with application to seismic inversion. SIAM Journal on Scientific Com-
puting, 34(3):A1460–A1487, 2012.



248

[183] Per-Gunnar Martinsson and Joel A. Tropp. Randomized numerical linear
algebra: Foundations and algorithms. Acta Numerica, 29:403–572, 2020.
doi: 10.1017/S0962492920000021.

[184] Jens M Melenk and Ivo Babuška. The partition of unity finite element
method: basic theory and applications. Computer methods in applied me-
chanics and engineering, 139(1-4):289–314, 1996.

[185] Jens M Melenk and Stefan Sauter. Convergence analysis for finite ele-
ment discretizations of the Helmholtz equation with Dirichlet-to-Neumann
boundary conditions. Mathematics of Computation, 79(272):1871–1914,
2010.

[186] Jens M Melenk and Stefan Sauter. Wavenumber explicit convergence anal-
ysis for Galerkin discretizations of the Helmholtz equation. SIAM Journal
on Numerical Analysis, 49(3):1210–1243, 2011.

[187] Rui Meng and Xianjin Yang. Sparse Gaussian processes for solving nonlin-
ear PDEs. arXiv preprint arXiv:2205.03760, 2022.

[188] Charles A Micchelli and Theodore J Rivlin. A survey of optimal recovery.
Springer, 1977.

[189] Victor Minden, Kenneth L Ho, Anil Damle, and Lexing Ying. A recur-
sive skeletonization factorization based on strong admissibility. Multiscale
Modeling & Simulation, 15(2):768–796, 2017.

[190] AndreaMoiola andEuanASpence.Acoustic transmission problems:wavenumber-
explicit bounds and resonance-free regions.MathematicalModels andMeth-
ods in Applied Sciences, 29(02):317–354, 2019.

[191] Kevin PMurphy.Machine learning: a probabilistic perspective. MIT press,
2012.

[192] Cameron Musco and Christopher Musco. Recursive sampling for the Nys-
tröm method. Advances in neural information processing systems, 30, 2017.

[193] Boaz Nadler, Nathan Srebro, and Xueyuan Zhou. Semi-supervised learning
with the graph laplacian: the limit of infinite unlabelled data. In Advances
in neural information processing systems 22, pages 1330–1338, 2009.

[194] Radford M Neal. Priors for infinite networks. Bayesian learning for neural
networks:29–53, 1996.

[195] John A Nelder and Roger Mead. A simplex method for function minimiza-
tion. The computer journal, 7(4):308–313, 1965.

[196] Nicholas H Nelsen and Andrew M Stuart. The random feature model for
input-outputmaps betweenBanach spaces. SIAMJournal on Scientific Com-
puting, 43(5):A3212–A3243, 2021.

[197] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Sci-
ence & Business Media, 2006.

https://doi.org/10.1017/S0962492920000021


249

[198] Assad A Oberai and Peter M Pinsky. A multiscale finite element method
for the Helmholtz equation. Computer Methods in Applied Mechanics and
Engineering, 154(3-4):281–297, 1998.

[199] Mario Ohlberger and Barbara Verfurth. A new heterogeneous multiscale
method for the Helmholtz equation with high contrast.Multiscale Modeling
& Simulation, 16(1):385–411, 2018.

[200] Felix Otto. The geometry of dissipative evolution equations: the porous
medium equation.Comm. Partial Differential Equations, 26:101–174, 2001.

[201] Houman Owhadi. Bayesian numerical homogenization. Multiscale Model-
ing & Simulation, 13(3):812–828, 2015.

[202] Houman Owhadi. Do ideas have shape? plato’s theory of forms as the con-
tinuous limit of artificial neural networks. arXiv preprint arXiv:2008.03920,
2020.

[203] Houman Owhadi. Multigrid with rough coefficients and multiresolution
operator decomposition from hierarchical information games. SIAMReview,
59(1):99–149, 2017.

[204] HoumanOwhadi andClint Scovel.Operator-AdaptedWavelets, Fast Solvers,
and Numerical Homogenization: From a Game Theoretic Approach to Nu-
merical Approximation and Algorithm Design, volume 35. Cambridge Uni-
versity Press, 2019.

[205] Houman Owhadi, Clint Scovel, and Florian Schäfer. Statistical numerical
approximation. Notices of the AMS, 2019.

[206] Houman Owhadi and Gene Ryan Yoo. Kernel flows: from learning kernels
from data into the abyss. Journal of Computational Physics, 389:22–47,
2019.

[207] Houman Owhadi and Lei Zhang. Gamblets for opening the complexity-
bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs
with rough coefficients. Journal of Computational Physics, 347:99–128,
2017.

[208] Houman Owhadi and Lei Zhang. Localized bases for finite-dimensional
homogenization approximations with nonseparated scales and high contrast.
Multiscale Modeling & Simulation, 9(4):1373–1398, 2011.

[209] Houman Owhadi and Lei Zhang. Metric-based upscaling. Communications
on Pure and Applied Mathematics, 60(5):675–723, 2007.

[210] Houman Owhadi, Lei Zhang, and Leonid Berlyand. Polyharmonic homoge-
nization, rough polyharmonic splines and sparse super-localization. ESAIM:
Mathematical Modelling and Numerical Analysis, 48(2):517–552, 2014.



250

[211] Misha Padidar, Xinran Zhu, Leo Huang, Jacob Gardner, and David Bindel.
Scaling Gaussian processes with derivative information using variational
inference. Advances in Neural Information Processing Systems, 34:6442–
6453, 2021.

[212] I. Palasti and A. Renyi. On interpolation theory and the theory of games.
MTA Mat. Kat. Int. Kozl, 1:529–540, 1956.

[213] O Perrin and P Monestiez. Modelling of non-stationary spatial structure
using parametric radial basis deformations. In GeoENV II—Geostatistics
for Environmental Applications, pages 175–186. Springer, 1999.

[214] Daniel Peterseim. Eliminating the pollution effect in Helmholtz problems
by local subscale correction. Mathematics of Computation, 86(305):1005–
1036, 2017.

[215] Daniel Peterseim and Barbara Verfürth. Computational high frequency scat-
tering from high-contrast heterogeneous media. Mathematics of Computa-
tion, 89(326):2649–2674, 2020.

[216] Jakiw Pidstrigach and Sebastian Reich. Affine-invariant ensemble transform
methods for logistic regression. arXiv preprint arXiv:2104.08061, 2021.

[217] H. Poincaré. Calcul des probabilités. Georges Carrés, 1896.

[218] Jack Poulson, Bjorn Engquist, Siwei Li, and Lexing Ying. A parallel sweep-
ing preconditioner for heterogeneous 3D Helmholtz equations. SIAM Jour-
nal on Scientific Computing, 35(3):C194–C212, 2013.

[219] Joaquin Quinonero-Candela and Carl Edward Rasmussen. A unifying view
of sparse approximate Gaussian process regression. The Journal of Machine
Learning Research, 6:1939–1959, 2005.

[220] Vicenţiu D Rădulescu. Qualitative analysis of nonlinear elliptic partial dif-
ferential equations: monotonicity, analytic, and variational methods. Hin-
dawi Publishing Corporation, 2008.

[221] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel
machines. Advances in neural information processing systems, 20, 2007.

[222] MaziarRaissi, Paris Perdikaris, andGeorgeEKarniadakis. Physics-informed
neural networks: a deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. Journal of Com-
putational physics, 378:686–707, 2019.

[223] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Inferring so-
lutions of differential equations using noisy multi-fidelity data. Journal of
Computational Physics, 335:736–746, 2017.

[224] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Numerical
Gaussian processes for time-dependent and nonlinear partial differential
equations. SIAM Journal on Scientific Computing, 40(1):A172–A198, 2018.



251

[225] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid
mechanics: learning velocity and pressure fields from flow visualizations.
Science, 367(6481):1026–1030, 2020.

[226] Jim O Ramsay, Giles Hooker, David Campbell, and Jiguo Cao. Parameter
estimation for differential equations: a generalized smoothing approach.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),
69(5):741–796, 2007.

[227] C Radhakrishna Rao. Information and the accuracy attainable in the estima-
tion of statistical parameters. Reson. J. Sci. Educ, 20:78–90, 1945.

[228] Carl Edward Rasmussen. Gaussian processes in machine learning. In Sum-
mer School on Machine Learning, pages 63–71. Springer, 2003.

[229] RamiroRico-Martinez and IoannisGKevrekidis. Continuous timemodeling
of nonlinear systems: a neural network-based approach. In IEEE Interna-
tional Conference on Neural Networks, pages 1522–1525. IEEE, 1993.

[230] Lassi Roininen, Markku S Lehtinen, Sari Lasanen, Mikko Orispää, and
Markku Markkanen. Correlation priors. Inverse problems and imaging,
5(1):167–184, 2011.

[231] AmosRon. The L2-ApproximationOrders of Principal Shift-Invariant Spaces
Generated by a Radial Basis Function. en. In Numerical Methods in Approx-
imation Theory, Vol. 9, pages 245–268. Birkhäuser Basel, Basel, 1992. isbn:
978-3-0348-8619-2. doi: 10.1007/978-3-0348-8619-2_14. (Visited on
09/23/2019).

[232] AlessandroRudi,DanieleCalandriello, LuigiCarratino, andLorenzoRosasco.
On fast leverage score sampling and optimal learning. In Advances in Neural
Information Processing Systems, volume 31, 2018.

[233] Paul D Sampson and Peter Guttorp. Nonparametric estimation of nonsta-
tionary spatial covariance structure. Journal of the American Statistical
Association, 87(417):108–119, 1992.

[234] Huiyan Sang and Jianhua ZHuang. A full scale approximation of covariance
functions for large spatial data sets. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 74(1):111–132, 2012.

[235] Daniel Sanz-Alonso and Ruiyi Yang. Finite element representations of gaus-
sian processes: balancing numerical and statistical accuracy. SIAM/ASA
Journal on Uncertainty Quantification, 10(4):1323–1349, 2022.

[236] Daniel Sanz-Alonso and Ruiyi Yang. The SPDE approach to Matérn fields:
graph representations. Statistical Science, 37(4):519–540, 2022.

[237] Arthur Sard. Linear approximation, number 9. American Mathematical
Soc., 1963.

https://doi.org/10.1007/978-3-0348-8619-2_14


252

[238] Stefan Sauter and Céline Torres. Stability estimate for the Helmholtz equa-
tion with rapidly jumping coefficients. Zeitschrift für angewandte Mathe-
matik und Physik, 69(6):139, 2018.

[239] Robert Schaback and Holger Wendland. Kernel techniques: from machine
learning to meshless methods. Acta numerica, 15:543–639, 2006.

[240] Florian Schäfer, Matthias Katzfuss, and Houman Owhadi. Sparse cholesky
factorization by Kullback–Leibler minimization. SIAM Journal on Scientific
Computing, 43(3):A2019–A2046, 2021.

[241] Florian Schäfer, Timothy John Sullivan, and Houman Owhadi. Compres-
sion, inversion, and approximate PCA of dense kernel matrices at near-linear
computational complexity. Multiscale Modeling & Simulation, 19(2):688–
730, 2021.

[242] Michael Scheuerer, Robert Schaback, and Martin Schlather. Interpolation
of spatial data–a stochastic or a deterministic problem? European Journal
of Applied Mathematics, 24(4):601–629, 2013.

[243] Julia Schleuß and Kathrin Smetana. Optimal local approximation spaces for
parabolic problems. arXiv preprint arXiv:2012.02759, 2020.

[244] Alexandra M Schmidt and Anthony O’Hagan. Bayesian inference for non-
stationary spatial covariance structure via spatial deformations. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 65(3):743–
758, 2003.

[245] M Schober, D Duvenaud, and P Hennig. Probabilistic ODE solvers with
Runge-Kutta means. In 28th Annual Conference on Neural Information
Processing Systems, pages 739–747, 2014.

[246] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support
vectormachines, regularization, optimization, and beyond.MITPress, 2018.

[247] Bernhard Schölkopf, Alexander J Smola, and Francis Bach. Learning with
kernels: support vector machines, regularization, optimization, and beyond.
MIT press, 2002.

[248] Zuoqiang Shi, Stanley Osher, and Wei Zhu. Weighted nonlocal laplacian
on interpolation from sparse data. Journal of Scientific Computing, 73(2-
3):1164–1177, 2017.

[249] Yeonjong Shin, JeromeDarbon, andGeorge EmKarniadakis. On the conver-
gence of physics informed neural networks for linear second-order elliptic
and parabolic type pdes. arXiv preprint arXiv:2004.01806, 2020.

[250] Justin Sirignano and Konstantinos Spiliopoulos. DGM: a deep learning al-
gorithm for solving partial differential equations. Journal of Computational
Physics, 375:1339–1364, 2018.



253

[251] John Skilling. Bayesian solution of ordinary differential equations. In C. R.
Smith, G. J. Erickson, and P. O. Neudorfer, editors, Maximum entropy and
Bayesian methods, pages 23–37. Springer, 1992.

[252] Dejan Slepcev and Matthew Thorpe. Analysis of p-laplacian regulariza-
tion in semisupervised learning. SIAM Journal on Mathematical Analysis,
51(3):2085–2120, 2019.

[253] Kathrin Smetana andAnthony T Patera. Optimal local approximation spaces
for component-based static condensation procedures. SIAM Journal on Sci-
entific Computing, 38(5):A3318–A3356, 2016.

[254] Joel Smoller. Shock Waves and Reaction—Diffusion Equations. Springer
Science & Business Media, 2012.

[255] Anuj Srivastava, Ian Jermyn, and Shantanu Joshi. Riemannian analysis of
probability density functions with applications in vision. In 2007 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE,
2007.

[256] Michael L Stein. 2010 Rietz lecture: when does the screening effect hold?
The Annals of Statistics, 39(6):2795–2819, 2011.

[257] Michael L Stein. A comparison of generalized cross validation and modified
maximum likelihood for estimating the parameters of a stochastic process.
The Annals of Statistics:1139–1157, 1990.

[258] Michael L Stein. Interpolation of spatial data: some theory for kriging.
Springer Science & Business Media, 1999.

[259] Michael L Stein. The screening effect in kriging. The Annals of Statistics,
30(1):298–323, 2002.

[260] Charles J Stone et al. An asymptotically optimal window selection rule for
kernel density estimates. The Annals of Statistics, 12(4):1285–1297, 1984.

[261] AndrewMStuart. Inverse problems: a Bayesian perspective. Acta numerica,
19:451–559, 2010.

[262] Andrew Stuart and Aretha Teckentrup. Posterior consistency for Gaussian
process approximations of Bayesian posterior distributions.Mathematics of
Computation, 87(310):721–753, 2018.

[263] Al’bert Valentinovich Sul’din. Wiener measure and its applications to ap-
proximation methods. i. Izvestiya Vysshikh Uchebnykh Zavedenii. Matem-
atika, (6):145–158, 1959.

[264] Laura P Swiler, Mamikon Gulian, Ari L Frankel, Cosmin Safta, and John D
Jakeman. A survey of constrained Gaussian process regression: approaches
and implementation challenges. Journal of Machine Learning for Modeling
and Computing, 1(2), 2020.



254

[265] Eitan Tadmor. A review of numerical methods for nonlinear partial differen-
tial equations. Bulletin of the American Mathematical Society, 49(4):507–
554, 2012.

[266] Luc Tartar. An introduction to Sobolev spaces and interpolation spaces,
volume 3. Springer Science & Business Media, 2007.

[267] Aretha L Teckentrup. Convergence of Gaussian process regression with
estimated hyper-parameters and applications in Bayesian inverse problems.
arXiv preprint arXiv:1909.00232, 2019.

[268] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. Information-based
complexity. Computer Science and Scientific Computing. Academic Press,
Inc., Boston, MA, 1988, pages xiv+523. isbn: 0-12-697545-0. With contri-
butions by A. G. Werschulz and T. Boult.

[269] Joseph F Traub, Grzegorz W. Wasilkowski, and H Woźniakowski. Average
case optimality for linear problems. Theoretical Computer Science, 29(1-
2):1–25, 1984.

[270] Joseph F Traub, GW Wasilkowski, H Wozniakowski, and Erich Novak.
Information-based complexity. SIAM Review, 36(3):514–514, 1994.

[271] N. García Trillos, B. Hosseini, and D. Sanz-Alonso. From optimization to
sampling through gradient flows. arXiv preprint arXiv:2302.11449, 2023.

[272] Tadasu Uchiyama and Noboru Sonehara. Solving inverse problems in non-
linear PDEs by recurrent neural networks. In IEEE International Conference
on Neural Networks, pages 99–102, 1993.

[273] AadWVan der Vaart, Sandrine Dudoit, andMark J van der Laan. Oracle in-
equalities for multi-fold cross validation. Statistics & Decisions, 24(3):351–
371, 2006.

[274] Mark J van der Laan, Sandrine Dudoit, and AadW van der Vaart. The cross-
validated adaptive epsilon-net estimator. Statistics & Decisions, 24(3):373–
395, 2006.

[275] Remco van der Meer, Cornelis Oosterlee, and Anastasia Borovykh. Opti-
mally weighted loss functions for solving PDEs with neural networks. arXiv
preprint arXiv:2002.06269, 2020.

[276] Aad W van der Vaart and J Harry van Zanten. Reproducing kernel Hilbert
spaces of Gaussian priors. In Pushing the limits of contemporary statistics:
contributions in honor of Jayanta K. Ghosh, pages 200–222. Institute of
Mathematical Statistics, 2008.

[277] Aad van der Vaart and Jon A Wellner. Weak Convergence And Empirical
Processes. 1996.



255

[278] Aldo V Vecchia. Estimation and model identification for continuous spatial
processes. Journal of the Royal Statistical Society: Series B (Methodologi-
cal), 50(2):297–312, 1988.

[279] Cédric Villani.Optimal transport: old and new, volume 338. Springer, 2009.

[280] Grace Wahba. Spline models for observational data. SIAM, 1990.

[281] Grace Wahba and James Wendelberger. Some new mathematical methods
for variational objective analysis using splines and cross validation.Monthly
weather review, 108(8):1122–1143, 1980.

[282] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigat-
ing gradient flow pathologies in physics-informed neural networks. SIAM
Journal on Scientific Computing, 43(5):A3055–A3081, 2021.

[283] SifanWang, HanwenWang, and Paris Perdikaris. On the eigenvector bias of
Fourier feature networks: from regression to solving multi-scale PDEs with
physics-informed neural networks.ComputerMethods inAppliedMechanics
and Engineering, 384:113938, 2021.

[284] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail to
train: a neural tangent kernel perspective. Journal of Computational Physics,
449:110768, 2022.

[285] Yifei Wang and Wuchen Li. Information Newton’s flow: second-order op-
timization method in probability space. arXiv preprint arXiv:2001.04341,
2020.

[286] JJWarnes andBDRipley. Problemswith likelihood estimation of covariance
functions of spatial Gaussian processes. Biometrika, 74(3):640–642, 1987.

[287] EWeinan and Bing Yu. The deep ritz method: a deep learning-based numer-
ical algorithm for solving variational problems. Communications in Mathe-
matics and Statistics, 6(1):1–12, 2018.

[288] Holger Wendland. Scattered data approximation, volume 17. Cambridge
university press, 2004.

[289] Peter Whittle. On stationary processes in the plane. Biometrika:434–449,
1954.

[290] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes
for machine learning, volume 2. MIT press Cambridge, MA, 2006.

[291] Christopher Williams and Matthias Seeger. Using the Nyström method to
speed up kernel machines. Advances in neural information processing sys-
tems, 13, 2000.

[292] AndrewGordonWilson, ZhitingHu,RuslanSalakhutdinov, andEric PXing.
Deep kernel learning. InArtificial intelligence and statistics, pages 370–378.
PMLR, 2016.



256

[293] Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable
structured Gaussian processes (KISS-GP). In International conference on
machine learning, pages 1775–1784. PMLR, 2015.

[294] Jian Wu, Matthias Poloczek, Andrew GWilson, and Peter Frazier. Bayesian
optimization with gradients. Advances in neural information processing
systems, 30, 2017.

[295] Ang Yang, Cheng Li, Santu Rana, Sunil Gupta, and Svetha Venkatesh.
Sparse approximation for Gaussian process with derivative observations.
In AI 2018: Advances in Artificial Intelligence: 31st Australasian Joint
Conference,Wellington, NewZealand, December 11-14, 2018, Proceedings,
pages 507–518. Springer, 2018.

[296] YuhongYang et al. Consistency of cross validation for comparing regression
procedures. The Annals of Statistics, 35(6):2450–2473, 2007.

[297] Zhiliang Ying. Asymptotic properties of a maximum likelihood estima-
tor with data from a gaussian process. Journal of Multivariate Analysis,
36(2):280–296, 1991.

[298] Gene Ryan Yoo and Houman Owhadi. Deep regularization and direct train-
ing of the inner layers of neural networks with kernel flows. arXiv preprint
arXiv:2002.08335, 2020.

[299] Qi Zeng, Yash Kothari, Spencer H Bryngelson, and Florian Tobias Schae-
fer. Competitive physics informed networks. In The Eleventh International
Conference on Learning Representations, 2023.

[300] Hao Zhang, Yong Wang, et al. Kriging and cross-validation for massive
spatial data. Environmetrics, 21(3/4):290–304, 2010.

[301] Xiong Zhang, Kang Zhu Song, MingWan Lu, and X Liu. Meshless methods
based on collocation with radial basis functions. Computational mechanics,
26:333–343, 2000.

[302] Xueyuan Zhou and Mikhail Belkin. Semi-supervised learning by higher
order regularization. In Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics, pages 892–900, 2011.

[303] Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–
decoder networks for surrogate modeling and uncertainty quantification.
Journal of Computational Physics, 366:415–447, 2018.



257

A p p e n d i x A

APPENDIX TO CHAPTER IV

A.1 Diagonal Regularization of Kernel Matrices
In the context of GP regression it is common to regularize the kernel matrices by
addition of a small diagonal term; in that context, doing so has the interpretation of
assuming small Gaussian noise on top of the observations. This diagonal regular-
ization is sometimes referred to as a “nugget”. Here we discuss a related approach
to regularizing kernel matrices (Θ and Θ̃) by perturbing them slightly; for brevity we
use the terminology “nugget” throughout. In Appendix A.1.1 we present an adap-
tive approach to constructing a family of nugget terms that is tailored to our kernel
matrices. Appendices A.1.2 through A.1.4 gather the detailed choices of nugget
terms for the experiments in Subsections 4.3.5.1 through 4.3.5.3. Appendix A.1.5
contains the same details for the experiments in Subsection 4.4.4.

A.1.1 An Adaptive Nugget Term
One of the main computational issues in implementing our methodology is that
the kernel matrix Θ is ill-conditioned. As a consequence, we need to regularize
this matrix to improve the stability of these algorithms. This regularization may
introduce an accuracy floor, so it is important to choose the regularization term so
that it has a small effect on accuracy—there is thus an accuracy-stability tradeoff.
A traditional strategy for achieving this goal is to add a nugget term ηI to Θ, where
η > 0 is a small number, and I is the identity matrix. By choosing a suitable η,
the condition number of Θ + ηI can be improved significantly. However, there is
an additional level of difficulty in our method since the matrix Θ contains multiple
blocks whose spectral properties can differ by orders of magnitude, since they can
involve different orders of derivatives of the kernel function K . This observation
implies that adding ηI, which is uniform across all blocks, may be suboptimal in
terms of the accuracy-stability tradeoff.

In what follows we adopt the same notation as Subsection 4.3.4.1. To address the
ill-conditioning of Θ, we consider adding an adaptive block diagonal nugget term.
More precisely, without loss of generality we can assume Θ(1,1) corresponds to the
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pointwise measurements, i.e., Lx
1 = δx, then, we construct a block diagonal matrix

R =



I
tr(Θ(2,2))
tr(Θ(1,1))

I

. . .
tr(Θ(Q,Q))
tr(Θ(1,1))

I


,

where we reweight the identity matrix in each diagonal block by a factor of the trace
ratio between Θ(q,q) and Θ(1,1). With this matrix, the adaptive nugget term is defined
as ηR with a global nugget parameter η > 0. We find that once the parameter η is
chosen suitably, then our Gauss–Newton algorithm converges quickly and in a stable
manner. During computations, we can compute the Cholesky factors of Θ + ηR

offline and use back-substitution to invert them in each iteration of Gauss–Newton.

Example NE. For the numerical experiments in Subsection 4.1.1.4 pertaining to
the nonlinear elliptic PDE (4.1.1), we observed that Θ has two distinct diagonal
blocks, i.e., one block corresponding to the pointwise evaluation functions and
with entries K(xm,xi) and another block corresponding to pointwise evaluations
of the Laplacian operator and with entries ∆x∆x′K(x,x′)|(xm,xi). With M = 1024
collocation points, the trace ratio between these blocks was of order 4000. Thus,
the difference between I and R is significant. Our experiments also showed that if
we only add ηI to regularize the matrix, then choosing η as large as O(10−4) was
needed to get meaningful results, while using the nugget term ηR, we could choose
η = 10−9 which leads to significantly improved results. We further explore these
details below and in particular in Table A.1.2. ^

A.1.2 Choice of Nugget Terms for the Nonlinear Elliptic PDE
Below we discuss the choice of the nugget term in the numerical experiments
of Subsection 4.3.5.1. The results in Figure 4.2 and Table 4.1 were obtained by
employing the adaptive nugget term of Appendix A.1.1 with global parameters
η = 10−13 and η = 10−12 respectively.

We also compared our adaptive nugget term to more standard choices, i.e., nugget
terms of the form ηI against our adaptive nugget term ηR with the nonlinearity
τ(u) = u3. Cholesky factorization was applied to the regularized matrix and the
subsequent Gauss–Newton iterations were employed to obtain the solutions. The
L2 and L∞ errors of the converged solutions are shown in Table A.1.2. The results
were averaged over 10 instances of a random sampling of the collocation points.
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Here, “nan” means the algorithm was unstable and diverged. To obtain these results
we terminated all Gauss-Newton iterations after 5 steps. Due to randomness in the
initial guess, and in examples where random collocation points were used due to this
too, we observed that some random trials did not converge in 5 steps. This variation
also explains the non-monotonic behavior of the error in Table A.1.2 as η decreases.
These effects were more profound for the standard nugget term. Besides these small
variations our results clearly demonstrate the superior accuracy and stability that is
provided by our adaptive nugget term versus the standard nugget choice.

η 10−1 10−2 10−3 10−4 10−5 10−6

Θ + ηI: L2 error 7.77e-02 4.46e-02 2.65e-02 1.56e-02 1.32e-02 1.46e-02
Θ + ηI: L∞ error 6.43-01 3.13e-01 1.99e-01 1.47e-01 1.33e-01 1.43e-01
Θ + ηR: L2 error 8.49e-02 9.29e-03 9.10e-03 3.34e-03 1.01e-03 3.36e-04
Θ + ηR: L∞ error 4.02e-01 7.86e-02 5.58e-02 2.21e-02 7.17e-03 3.87e-03
η 10−7 10−8 10−9 10−10 10−11 10−12

Θ + ηI: L2 error 1.37e-02 8.623-03 1.01e-02 1.92e-02 nan nan
Θ + ηI: L∞ error 1.81e-01 8.28e-02 1.07e-01 3.05e-01 nan nan
Θ + ηR: L2 error 1.55e-04 7.05e-05 4.56e-05 6.30e-06 1.73e-06 8.31e-07
Θ + ηR: L∞ error 2.41e-03 1.07e-03 7.66e-04 8.92e-05 2.62e-05 1.17e-05

Table A.1: Comparison of solution errors between standard nugget terms and our
adaptive nugget terms for the nonlinear elliptic PDE (4.1.1). Collocation points are
uniformly sampled with M = 1024 and MΩ = 900 with a Gaussian kernel with
lengthscale parameter σ = 0.2. Results are averaged over 10 realizations of the
random collocation points. The maximum Gauss-Newton iteration was 5.

A.1.3 Choice of Nugget Terms for Burger’s Equation
For the numerical experiments in Subsection 4.3.5.2 we primarily used our adaptive
nugget term as outlined in Appendix A.1.1. For the results in Figure 4.3 we used a
global nugget parameter η = 10−10. For the convergence analysis in Table 4.2 we
varied η for different number of collocation points to achieve better performance.
More precisely, for M ≤ 1200 we used a larger nugget η = 10−5 and for M ≥ 2400
we used η = 10−10. Choosing a smaller nugget for small values of M would still
yield equally accurate results but required more iterations of the Gauss-Newton
algorithm.

A.1.4 Choice of Nugget Terms for the Eikonal Equation
Our numerical experiments in Subsection 4.3.5.3 also used the adaptive nugget of
Appendix A.1.1. Indeed, we followed a similar approach to choosing the global
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parameter η as in the case of Burger’s equation outlined in Appendix A.1.3 above.

For the results in Figure 4.4 we used η = 10−10. For the convergence analysis in
Table 4.3 we varied η for different values of M , i.e., we chose η = 10−5 for M ≤ 1200
and η = 10−10 for M ≥ 2400. Analogously to the Burger’s experiment we observed
that smaller values of η for smaller choices of M cause the Gauss-Newton iterations
to converge more slowly. Thus varying η with M improved the efficiency of our
framework.

A.1.5 Choice of Nugget Terms for Darcy Flow
Both of the matrices Θ, Θ̃ outlined in Subsection 4.4.1 are dense and ill-conditioned
in the IP setting and so an appropriate nugget term should be chosen to regularize
them. In the IP setting we propose to add adaptive nuggets for both Θ, Θ̃ using
the same strategy as in Appendix A.1.1, except that the nuggets are constructed
independently for each matrix. To this end we set Θ← Θ + ηR and Θ̃← Θ̃ + η̃R̃,
where the η̃, R̃ denote the global nugget parameter and the re-weighted identity
matrix corresponding to Θ̃. For the numerical experiments in Figure 4.5 we used
η = η̃ = 10−5.
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A p p e n d i x B

APPENDIX TO CHAPTER V

B.1 Supernodes and Aggregate Sparsity Pattern
The supernode idea is adopted from [240], which allows to re-use the Cholesky
factors in the computation of (5.3.7) to update multiple columns at once.

We group the measurements into supernodes consisting of measurements whose
points are close in location and have similar lengthscale parameters li. To do
this, we select the last index j ∈ I of the measurements in the ordering that has
not been aggregated into a supernode yet and aggregate the indices in {i : (i, j) ∈

SP,l,ρ, li ≤ λl j} that have not been aggregated yet into a common supernode, for some
λ > 1. We repeat this procedure until every measurement has been aggregated into
a supernode. We denote the set of all supernodes as Ĩ and write i { ĩ for i ∈ I and
ĩ ∈ Ĩ if ĩ is the supernode to which i has been aggregated.

The idea is to assign the same sparsity pattern to all the measurements of the same
supernode. To achieve so, we define the sparsity set for a supernode as the union
of the sparsity sets of all the nodes it contains, namely sĩ := { j : ∃i { ĩ, j ∈ si}.
Then, we introduce the aggregated sparsity pattern

SP,l,ρ,λ :=
⋃̃

j

⋃
j{ j̃

{(i, j) ⊂ I × I : i ≤ j, i ∈ s j̃} .

Under mild assumptions (Theorem B.5 in [240]), one can show that there are
O(N/ρd) number of supernodes and each supernode contains O(ρd)measurements.
The size of the sparsity set for a supernode #s j̃ = O(ρd). For a visual demonstration
of the grouping and aggregate sparsity pattern, see Figure B.1, which is taken from
Figure 3 in [240].

Now, we can compute (5.3.7) with the aggregated sparsity pattern more efficiently.
Let s∗j = {i : (i, j) ∈ SP,l,ρ,λ} be the individual sparsity pattern for j in the aggregated
pattern SP,l,ρ,λ. In (5.3.7), we need to compute matrix-vector products forΘ−1

s∗j ,s
∗
j
. For

that purpose, one can apply the Cholesky factorization to Θs∗j ,s
∗
j
. Naïvely computing

Cholesky factorizations of everyΘs∗j ,s
∗
j
will result inO(Nρ3d) arithmetic complexity.

However, due to the supernode construction, we can factorize Θs j̃,s j̃ once and then
use the resulting factor to obtain the Cholesky factors ofΘs∗j ,s

∗
j
directly for all j { j̃.
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Figure B.1: The figure on the left illustrates the original pattern SP,̀ ,ρ. For each
orange point j, its sparsity pattern s j includes all points within a circle with a radius
of ρ. On the right, all points j that are located close to each other and have similar
lengthscales are grouped into a supernode j̃. The supernode can be represented by a
list of parents (the orange points within an inner sphere of radius ≈ ρ, or all j { j̃)
and children (all points within a radius ≤ 2ρ, which correspond to the sparsity set
s j̃). Figure reproduced from [240] with author permission.

This is because our construction guarantees that

Θs∗j ,s
∗
j
= Θs j̃,s j̃ [1 : #s∗j ,1 : #s∗j ] ,

where we used the MATLAB notation. The above relation shows that sub-Cholesky
factors of Θs j̃,s j̃ become the Cholesky factors of Θs∗j ,s

∗
j
for j { j̃.

Therefore, one step of Cholesky factorization works for all O(ρd) measurements in
the supernode. In total, the arithmetic complexity is upper bounded by O(ρ3d ×

N/ρd) = O(Nρ2d). For more details of the algorithm, we refer to section 3.2, in
particular Algorithm 3.2, in [240].

It was shown that the aggregate sparsity pattern could be constructed with time
complexity O(N log(N) + Nρd) and space complexity O(N); see Theorem C.3 in
[240]. They are of a lower order compared to the time complexity O(N log2(N)ρd)

and space complexity O(Nρd) for generating the maximin ordering and the original
sparsity pattern SP,l,ρ (see Remark 5.3.4).

B.2 Ball-packing Arguments
The ball-packing argument is useful to bound the cardinality of the sparsity pattern.

Proposition B.2.1. Consider the maximin ordering (Definition 5.3.2) and the spar-
sity pattern defined in (5.3.4). For each column j, denote s j = {i : (i, j) ∈ SP,l,ρ}.
The cardinality of the set s j is denoted by #s j . Then, it holds that #s j = O(ρd).
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Proof. Fix a j. For any i ∈ s j , we have dist(xP(i),xP( j)) ≤ ρl j . Moreover, by the
definition of the maximin ordering, we know that for i, i′ ∈ s j and i , i′, it holds that
dist(xP(i),xP(i′)) ≥ l j . Thus, the cardinality of si is bounded by the number of disjoint
balls of radius l j that the ball B(xP(i),2ρl j) can contain. Clearly, #si = O(ρd). The
proof is complete. �

B.3 Explicit Formula for the KL Minimization
By direct calculation, one can show the KLminimization attains an explicit formula.
The proof of this explicit formula follows a similar approach to that of Theorem 2.1
in [240], with the only difference being the use of upper Cholesky factors.

Proposition B.3.1. The solution to (5.3.6) is given by (5.3.7).

Proof. We use the explicit formula for the KL divergence between two multivariate
Gaussians:

KL
(
N(0,Θ) ‖ N(0, (UUT )−1)

)
=

1
2
[− log det

(
UT
ΘU

)
+ tr(UT

ΘU) − N] .
(B.3.1)

To identify the minimizer, the constant and scaling do not matter, so we focus on
the − log det

(
UTΘU

)
and tr(UTΘU) parts. By writing U = [U:,1, ...,U:,M], we get

−log det
(
UT
ΘU

)
+tr(UT

ΘU) =
M∑

j=1
[−2 log U j j+tr(UT

:,jΘU:,j)]−log detΘ . (B.3.2)

Thus the minimization is decoupled to each column of U. Due to the choice of
the sparse pattern, we have UT

:,jΘU:,j = UT
sj,j
Θsj,sjUsj,j . We can further simplify the

formula
tr(UT

:,jΘU:,j) = tr(UT
sj,jΘsj,sjUsj,j) . (B.3.3)

It suffices to identify the minimizer of −2 log U j j + tr(UT
sj,j
Θsj,sjUsj,j). Taking the

derivatives, we get the optimality condition:

−
2

U j j
e#sj + 2Θsj,sjUsj,j = 0 , (B.3.4)

where e#sj is a standard basis vector in R#sj with the last entry being 1 and other
entries equal 0.

Solving this equation leads to the solution

Usj,j =
Θ−1

sj,sje#sj√
eT

#sj
Θ−1

sj,sje#sj

. (B.3.5)

The proof is complete. �
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B.4 Proofs of the Main Theoretical Results
B.4.1 Proof of Theorem 5.4.2
Proof of Theorem 5.4.2. We rely on the interplay between GP regression, linear
algebra, and numerical homogenization to prove this theorem. Consider the GP
ξ ∼ N(0,L−1). For each measurement functional, we define the Gaussian random
variables Yi = [ξ, φ̃i] ∼ N(0, [φ̃i,L

−1φ̃i]) = N(0,Θii). As mentioned in Remark
5.3.3 and proved in Proposition B.4.4, we have a relation between the Cholesky
factor and the GP conditioning, as

U?
i j

U?
j j
= (−1)i, j Cov[Yi,Yj |Y1: j−1\{i}]

Var[Yi |Y1: j−1\{i}]
, i ≤ j .

�

Moreover, by Proposition B.4.5, one can connect the conditional covariance of GPs
with conditional expectation, such that

Cov[Yi,Yj |Y1: j−1\{i}]

Var[Yi |Y1: j−1\{i}]
= E[Yj |Yi = 1,Y1: j−1\{i} = 0] . (B.4.1)

The above conditional expectation is related to the Gamblets introduced in the
numerical homogenization literature. Indeed, using the relationYi = [ξ, φ̃i], we have

E[Yj |Yi = 1,Y1: j−1\{i} = 0] = [E[ξ |Yi = 1,Y1: j−1\{i} = 0], φ̃ j] = [ψ
i
j, φ̃ j] , (B.4.2)

where ψi
j(x) := E[ξ(x)|Yi = 1,Y1: j−1\{i} = 0]; it is named Gamblets in [203, 204].

Importantly, for the conditional expectation, by Proposition B.4.6, we have the
following variational characterization [203, 204]:

ψi
j = argminψ∈Hs

0 (Ω)
[ψ,Lψ]

subject to [ψ, φ̃k] = δi,k for 1 ≤ k ≤ j − 1 .
(B.4.3)

A main property of the Gamblets is that they can exhibit an exponential decay
property under suitable assumptions, which can be used to prove our theorem. We
collect the related theoretical results in Appendix B.4.4; we will use them in our
proof.

Our proof for the theorem consists of two steps. The first step is to bound |U?
i j/U

?
j j |,

and the second step is to bound |U∗j j |.

For the first step, we separate the cases j ≤ M and j > M . Indeed, the case j ≤ M

has been covered in [241, 240]. Here, our proof is simplified.
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For 1 ≤ i ≤ j ≤ M , by the discussions above, we have the relation:�����U?
i j

U?
j j

����� = ���[ψi
j, φ̃ j]

��� = |ψi
j(xP( j))| , (B.4.4)

where we used the fact that φ̃ j = δxP(j)
because all the Diracs measurements are

ordered first. To bound |ψi
j(xP( j))|, we will use the exponential decay results for

Gamblets that we prove in Proposition B.4.13. More precisely, to apply Proposition
B.4.13 to this context, we need to verify its assumptions, especially Assumption
B.4.7.

In our setting, we can construct a partition of the domain Ω by using the Voronoi
diagram. Denote X j−1 = {xP(1), ...,xP( j−1)}. We note that XM will consist of all the
physical points. We define τk , for 1 ≤ k ≤ j − 1, to be the Voronoi cell, which
contains all points in Ω that is closer to xP(k) than to any other in X j−1. Since we
assume Ω is convex, τk is also convex. And bounded convex domains are uniform
Lipschitz.

Furthermore, to verify the other parts in Assumption B.4.7, we analyze the homo-
geneity parameter of X j−1. By definition,

δ(X j−1; ∂Ω) =
minx,y∈Xj−1 dist(x, {y} ∪ ∂Ω)
maxx∈Ω dist(x,X j−1 ∪ ∂Ω)

. (B.4.5)

By definition of the maximin ordering, we have

min
x,y∈Xj−1

dist(x, {y} ∪ ∂Ω) = l j−1 . (B.4.6)

Then, by the triangle inequality, it holds that

max
x∈Ω

dist(x,X j−1 ∪ ∂Ω) ≤ max
x∈XM

dist(x,X j−1 ∪ ∂Ω) +max
x∈Ω

dist(x,XM)

≤ l j + lM/δ(XM ; ∂Ω) ≤ (1 + 1/δ(XM ; ∂Ω))l j ,
(B.4.7)

where in the second inequality, we used the definition of the lengthscales l j and the
homogeneity assumption of XM (i.e., δ(XM ; ∂Ω) > 0). Combining the above two
estimates, we get δ(X j−1; ∂Ω) ≥ 1/(1 + 1/δ(XM ; ∂Ω)) > 0 where we used the fact
that l j ≤ l j−1. So X j−1 is also homogeneously distributed with δ(X j−1; ∂Ω) > 0.

We are ready to verify Assumption B.4.7. Firstly, the balls B(x, l j/2),x ∈ X j−1 do
not intersect, and thus inside each τk , there is a ball of center xP(k) and radius l j/2.
Secondly, since maxx∈Ω dist(x,X j−1 ∪ ∂Ω) ≤ (1 + 1/δ(XM ; ∂Ω))l j , we know that
τi is contained in a ball of center xP(k) and radius (1 + 1/δ(XM ; ∂Ω))l j . Therefore,
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Assumption B.4.7 holds with h = l j/2, δ = min(1/(2 + 2/δ(XM ; ∂Ω)),1) and
Q = j − 1. Assumption B.4.8 readily holds by our choice of measurements.

Thus, applying Proposition B.4.13, we then get�����U?
i j

U?
j j

����� = |ψi
j(xP( j))| ≤ Cl−2s

j exp
(
−

dist(xP(i),xP( j))

Cl j

)
, (B.4.8)

whereC is a constant depending onΩ, δ, d, s, ‖L‖, ‖L−1‖. We obtain the exponential
decay of |U?

i j/U
?
j j | for j ≤ M .

For j > M and i ≤ j, we have�����U?
i j

U?
j j

����� = ���[ψi
j, φ̃ j]

��� ≤ max
0≤|γ |≤J

���DJψi
j(xP( j))

��� , (B.4.9)

where we used the fact that φ̃ j is of the form δxP(j)
◦ Dγ. Now, for ψi

j , the set
of points we need to deal with is XM . Similar to the case j ≤ M , we define τk ,
for 1 ≤ k ≤ M , to be the Voronoi cell of these points in Ω. Then, using the
same arguments in the previous case, we know that Assumption B.4.7 holds with
h = lM/2, δ = min(δ(XM ; ∂Ω)/2,1) and Q = M . Assumption B.4.8 readily holds
by our choice of measurements. Therefore Proposition B.4.13 implies that

max
0≤|γ |≤J

���DJψi
j(xP( j))

��� ≤ Cl−2s
M exp

(
−

dist(xP(i),xP( j))

ClM

)
, (B.4.10)

where C is a constant depending on Ω, δ, d, s, ‖L‖, ‖L−1‖, J.

Summarizing the above arguments, we have obtained that�����U?
i j

U?
j j

����� ≤ Cl−2s
j exp

(
−

dist(xP(i),xP( j))

Cl j

)
, (B.4.11)

for any 1 ≤ i ≤ j ≤ N , noting that by our definition l j = lM for j > M .

Now, we analyze |U∗j j |. Note that Θ = K(φ̃, φ̃) ∈ RN×N and Θ−1 = U?U?T . By the
arguments above, we know that the assumptions in Proposition B.5.1 are satisfied
with h = lM/2, δ = min(δ(XM ; ∂Ω)/2,1) and Q = M . Thus, for any vector w ∈ RN ,
by Proposition B.5.1, we have

wT
Θ
−1w ≤ Cl−2s+d

M |w |2 ,

for some constant C depending on δ(XM), d, s, ‖L‖, J. This implies that

|U?T
w |2 ≤ Cl−2s+d

M |w |2 .
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Taking w to be the standard basis vector e j , we get

N∑
k= j

|U?
j k |

2 ≤ Cl−2s+d
M ,

which leads to |U?
i j | ≤ Cl−s+d/2

M for some C depending on δ(XM ; ∂Ω), d, s, ‖L‖, J.

B.4.2 Proof of Theorem 5.4.3
We need the following lemma, which is taken from Lemma B.8 in [240].

LemmaB.4.1. Let λmin, λmax be theminimal andmaximal eigenvalues ofΘ ∈ RN×N ,
respectively. Then there exists a universal constant η > 0 such that for any matrix
M ∈ RN×N , we have

• If λmax‖Θ
−1 − M MT ‖Fro ≤ η, then

KL
(
N(0,Θ) ‖ N(0, (M MT )−1)

)
≤ λmax‖Θ

−1 − M MT ‖Fro ;

• If KL
(
N(0,Θ) ‖ N(0, (M MT )−1)

)
≤ η, then

‖Θ−1 − M MT ‖Fro ≤ λ
−1
min KL

(
N(0,Θ) ‖ N(0, (M MT )−1)

)
.

With this lemma, we can prove Theorem 5.4.3. The proof is similar to that of
Theorem B.6 in [240].

Proof of Theorem 5.4.3. First, by a covering argument, we know lM = O(M−1/d) =

O(N−1/d). By Proposition B.5.1 with h = lM/2, we know that

λmax(Θ) ≤ C1N and λmin(Θ) ≥ C1N−2s/d+1 (B.4.12)

for some constant C1 depending on δ({xi}i∈I ; ∂Ω), d, s, ‖L‖, ‖L−1‖, J.

Theorem 5.4.2 implies that for (i, j) < SP,l,ρ, it holds that

|U?
i j | ≤ Cl−s+d/2

M l−2s
j exp

(
−

dist(xP(i),xP( j))

Cl j

)
≤ CNα exp

(
−
ρ

C

)
,

for some α depending on s, d, where C is a generic constant that depends on Ω,
δ({xi}i∈I ; ∂Ω), d, s, J, ‖L‖, ‖L−1‖. Moreover, from the proof in the last subsection,
we know that |U∗i j | ≤ CN s/d−1/2 for all 1 ≤ i ≤ j ≤ N .
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Now, consider the upper triangular Cholesky factorization Θ−1 = U?U?T . Define
M ρ ∈ RN×N such that

M ρ
i j =


U?

i j, if (i, j) ∈ SP,l,ρ

0, otherwise .
(B.4.13)

Then, by using the above bounds on U?
i j , we know that there exists a constant β

depending on s, d, such that

‖Θ−1 − M ρM ρT
‖Fro ≤ CN β exp

(
−
ρ

C

)
. (B.4.14)

Since λmax(Θ) ≤ C1N , we know that there exists a constant C′, such that when
ρ ≥ C′ log(N),

λmax(Θ)‖Θ
−1 − M ρM ρT

‖Fro ≤ η ,

for the η defined in Lemma B.4.1. Using Lemma B.4.1, we get

KL
(
N(0,Θ) ‖ N(0, (M ρM ρT

)−1)
)
≤ λmax(Θ)‖Θ

−1 − M ρM ρT
‖Fro .

By the KL optimality, the optimal solution Uρ will satisfy

KL
(
N(0,Θ) ‖ N(0, (UρUρT

)−1)
)
≤ λmax(Θ)‖Θ

−1 − M ρM ρT
‖Fro . (B.4.15)

Again by Lemma B.4.1, we get

‖Θ−1 −UρUρT
‖Fro ≤

λmax(Θ)

λmin(Θ)
‖Θ−1 − M ρM ρT

‖Fro . (B.4.16)

Moreover,

‖Θ − (UρUρT
)−1‖Fro ≤ ‖Θ

−1‖Fro‖Θ
−1 −UρUρT

‖Fro‖UρUρT
‖Fro . (B.4.17)

Using (B.4.14), (B.4.15), (B.4.16), and (B.4.17), and the fact that λmax(Θ), λmin(Θ)

are of polynomial growth in N according to (B.4.12), we know that there exists
a constant C depending on Ω, δ({xi}i∈I ; ∂Ω), d, s, J, ‖L‖, ‖L−1‖, such that when
ρ ≥ C log(N/ε), it holds that

KL
(
N(0,Θ) ‖ N(0, (UρUρT

)−1)
)
+ ‖Θ−1−UρUρT

‖Fro+ ‖Θ− (UρUρT
)−1‖Fro ≤ ε .

The proof is complete. �
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B.4.3 Connections between Cholesky factors, conditional covariance, condi-
tional expectation, and Gamblets

We first present two lemmas.

The first lemma is about the inverse of a block matrix [173].

Lemma B.4.2. For a positive definite matrix Θ ∈ RN×N , if we write it in the block
form

Θ =

(
ΘYY ΘZY

ΘY Z ΘZ Z

)
, (B.4.18)

then, Θ−1 equals(
(ΘYY − ΘY ZΘ

−1
Z ZΘZY )

−1 −Θ−1
YYΘY Z (ΘZ Z − ΘZYΘ

−1
YYΘY Z )

−1

−Θ−1
Z ZΘZY (ΘYY − ΘY ZΘ

−1
Z ZΘZY )

−1 (ΘZ Z − ΘZYΘ
−1
YYΘY Z )

−1

)
.

(B.4.19)

The second lemma is about the relation between the conditional covariance of a
Gaussian random vector and the precision matrix.

Lemma B.4.3. Let N ≥ 3 and X = (X1, ...,XN ) be a N(0,Θ) Gaussian vector in
RN . Let Y = (X1,X2) and Z = (X3, ...,XN ). Then,

Cov(Y1,Y2 |Z) =
−A12

A11 A22 − A2
12
, (B.4.20)

and
Var(Y1 |Z) =

A22

A11 A22 − A2
12
, (B.4.21)

where A = Θ−1. Therefore

Cov(Y1,Y2 |Z)
Var(Y1 |Z)

=
−A12
A22

. (B.4.22)

Proof. First, we know that Cov(Y |Z) = ΘYY − ΘY ZΘ
−1
Z ZΘZY . By Lemma B.4.2, we

have

ΘYY − ΘY ZΘ
−1
Z ZΘZY =

(
A11 A12

A21 A22

)−1

. (B.4.23)

Inverting this matrix leads to the desired result. �

With these lemmas, we can show the connection between the Cholesky factors and
the conditional covariance as follows.
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Proposition B.4.4. Consider the positive definite matrix Θ ∈ RN×N . Suppose the
upper triangular Cholesky factorization of its inverse is U, such that Θ−1 = UUT .
Let Y be a Gaussian vector with law N(0,Θ). Then, we have

Ui j

U j j
= (−1)i, j Cov[Yi,Yj |Y1: j−1\{i}]

Var[Yi |Y1: j−1\{i}]
, i ≤ j . (B.4.24)

Proof. We only need to consider the case i , j. We consider j = N first. Denote
A = Θ−1. By the definition of the Cholesky factorization A = UUT , we know that
U:,N = A:,N/

√
ANN . Thus,

UiN

UNN
=

AiN

ANN
.

For i , N , by Lemma B.4.3, we have

Cov[Yi,YN |Y1:N−1\{i}]

Var[Yi |Y1:N−1\{i}]
=
−AiN

ANN
. (B.4.25)

By comparing the above two identities, we obtain the result holds for j = N .

For j < N , we can use mathematical induction. Note that U1:N−1,1:N−1 is also the
upper triangular Cholesky factor of (Θ1:N−1,1:N−1)

−1, noting the fact (by applying
Lemma B.4.2 to the matrix A) that

(Θ1:N−1,1:N−1)
−1 = A1:N−1,1:N−1 − A1:N−1,N A−1

NN AN,1:N−1

is the Schur complement, which is exactly the residue block in the Cholesky fac-
torization. Therefore, applying the result for j = N to the matrix Θ1:N−1,1:N−1, we
prove (B.4.24) holds for j = N − 1 as well. Iterating this process to j = 1 finishes
the proof. �

Furthermore, the conditional covariance is related to the conditional expectation, as
follows.

Proposition B.4.5. For a Gaussian vector Y ∼ N(0,Θ), we have

Cov[Yi,Yj |Y1: j−1\{i}]

Var[Yi |Y1: j−1\{i}]
= E[Yj |Yi = 1,Y1: j−1\{i} = 0] . (B.4.26)

Proof. We show that for any Gaussian vector Z in dimension d, and any vectors
v,w ∈ Rd (such that Var[Zw] , 0), it holds that

Cov[Zv, Zw]

Var[Zw]
= E[Zv |Zw = 1] , (B.4.27)
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where Zv = 〈Z, v〉 and Zw = 〈Z,w〉. Indeed this can be verified by direct calcula-
tions. We have

Cov(Zv −
Cov[Zv, Zw]

Var[Zw]
Zw, Zw) = 0 ,

which implies they are independent since they are joint Gaussians. This yields

E[Zv −
Cov[Zv, Zw]

Var[Zw]
Zw |Zw = 1] = 0 ,

which then implies (B.4.27) holds.

Now, we set Z to be the Gaussian vectors Y conditioned on Y1: j−1\{i} = 0. It is still
a Gaussian vector (with a degenerate covariance matrix). Applying (B.4.27) with
v = e j,w = ei, we get the desired result. �

Finally, the conditional expectation is connected a variational problem. The fol-
lowing proposition is taken from [203, 204]. One can understand the result as the
maximum likelihood estimator for the GP conditioned on the constraint coincides
with the conditional expectation since the distribution is Gaussian. Mathematically,
it can be proved by writing down the explicit formula for the two problems directly.

Proposition B.4.6. For a Gaussian process ξ ∼ N(0,L−1) where L : Hs
0(Ω) →

H−s(Ω) satisfies Assumption 5.4.1. Then, for some linearly independent measure-
ments φ1, ..., φl ∈ H−s(Ω), the conditional expectation

ψ?(x) := E [ξ(x)|[ξ, φi] = ci,1 ≤ i ≤ l]

is the solution to the following variational problem:

ψ? = argminψ∈Hs
0 (Ω)

[ψ,Lψ]

subject to [ψ, φi] = ci for 1 ≤ i ≤ l .
(B.4.28)

The solution of the above variational problem is termed Gamblets in the literature;
see Definition B.4.9.

B.4.4 Results regarding the exponential decay of Gamblets
We collect and organize some theoretical results of the exponential decay property of
Gamblets from [204]. And we provide some new results concerning the derivative
measurements which are not covered in [204].

The first assumption is about the domain and the partition of the domain.
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AssumptionB.4.7 (Domain and partition: fromConstruction 4.2 in [204]). Suppose
Ω is a bounded domain in Rd with a Lipschitz boundary. Consider δ ∈ (0,1) and
h > 0. Let τ1, ..., τQ be a partition of Ω ⊂ Rd such that the closure of each τi is
convex, is uniformly Lipschitz, contains a ball of center xi and radius δh, and is
contained in the ball of center xi and radius h/δ.

The second assumption is regarding the measurement functionals related to the
partition of the domain.

Assumption B.4.8 (Measurement functionals: from Construction 4.12 in [204]).
Let Assumption B.4.7 holds. For each 1 ≤ i ≤ Q, let φi,α, α ∈ Ti (where Ti is an
index set) be elements of H−s(Ω) that the following conditions hold:

• Linear independence: φi,α, α ∈ Ti are linearly independent when acting on
the subset Hs

0(τi) ⊂ Hs
0(Ω).

• Locality: [φi,α,ψ] = 0 for every ψ ∈ C∞0 (Ω\τi) and α ∈ Ti.

With the measurement functionals, we can define Gamblets as follows via a vari-
ational problem. Note that according to Proposition B.4.6, Gamblets are also
conditional expectations of some GP given the measurement functionals.

Definition B.4.9 (Gamblets: from Section 4.5.2.1 in [204]). Let Assumptions B.4.7
and B.4.8 hold, and the operator L : Hs

0(Ω) → H−s(Ω) satisfies Assumption
5.4.1. The Gamblets ψi,α,1 ≤ i ≤ Q, α ∈ Ti associated with the operator L and
measurement functionals φi,α,1 ≤ i ≤ Q, α ∈ Ti are defined as

ψi,α = arg min
ψ∈Hs

0 (Ω)
[ψ,Lψ]

subject to [ψ, φk,β] = δikδαβ for 1 ≤ k ≤ Q, β ∈ Tk .

(B.4.29)

A crucial property of Gamblets is that they exhibit exponential decay; see the
following Theorem B.4.11.

Remark B.4.10. Exponential decay results regarding the solution to optimization
problems of the type (B.4.29) are first established in [181], where the measurement
functionals are piecewise linear nodal functions in finite element methods and the
operator L = −∇ · (a∇·). Then, the work [203] extends the result to piecewise
constant measurement functionals and uses it to develop a multigrid algorithm for
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elliptic PDEs with rough coefficients. Later on, the work [131] extends the analysis
to a class of strongly elliptic high-order operators with piecewise polynomial-type
measurement functionals, and the work [44, 45] focuses on detailed analysis re-
garding the subsampled lengthscale for subsampled measurement functionals. All
these results rely on similar mass-chasing arguments, which are difficult to extend
to general higher-order operators.

The paper [148] presents a simpler and more algebraic proof of the exponential
decay in [181] based on the exponential convergence of subspace iteration meth-
ods. Then, the work [204] extends this technique (by presenting necessary and
sufficient conditions) to general arbitrary integer order operators and measurement
functionals. Specifically, the authors in [241] use the conditions in [204] to show
the desired exponential decay when the operator L satisfies Assumption 5.4.1, and
the measurement functionals are Diracs.

In Theorem B.4.11, we present the sufficient conditions in [204] that ensure the
exponential decay and verify that the derivative-type measurements considered in
this paper indeed satisfy these conditions; see Propositions B.4.12 and B.4.13. ♦

TheoremB.4.11 (Exponential decay ofGamblets). Let Assumptions B.4.7 and B.4.8
hold. We define the function space

Φ
⊥ := { f ∈ Hs

0(Ω) : [ f , φi,α] = 0 for any α ∈ Ti,1 ≤ i ≤ Q} .

Assume, furthermore the following conditions hold:

| f |Ht (Ω) ≤ C0hs−t ‖ f ‖Hs
0 (Ω)

for any 0 ≤ t ≤ s and f ∈ Φ⊥; (B.4.30)∑
1≤i≤Q,α∈Ti

[ f , φi,α]
2 ≤ C0

s∑
t=0

h2t | f |2Ht (Ω)
for any f ∈ Hs

0(Ω); (B.4.31)

|y | ≤ C0h−s‖
∑
α∈Ti

xαφi,α‖H−s(τi) for any 1 ≤ i ≤ Q and y ∈ R|Ti | . (B.4.32)

Here, | · |Ht (Ω) is the Sobolev seminorm in Ω of order t.

Then, for the Gamblets in Definition B.4.9, we have

|Dγψi,α(x)| ≤ Ch−s exp
(
−

dist(x,xi)

Ch

)
,

for any 1 ≤ i ≤ Q, α ∈ Ti and multi-index γ satisfying |γ | < s − d/2. Here C is a
constant depending on C0,Ω, δ, d, s, ‖L‖, ‖L−1‖.
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Proof. Weuse results in the book [204]. Conditions (B.4.30), (B.4.31), and (B.4.32)
are equivalently Condition 4.15 in [204]. Let

Ωi = int ©­«
⋃

j:dist(τi,τj )≤δh

τj
ª®¬ ⊂ B(xi,3h/δ) . (B.4.33)

Then, by Theorem 4.16 in [204], there exists a constant C that depends on C0, δ, d, s,
‖L‖, ‖L−1‖ such that

‖ψi,α − ψ
n
i,α‖Hs

0 (Ω)
≤ Ch−s exp(−n/C) , (B.4.34)

where ψn
i,α is the minimizer of (B.4.29) after replacing the condition ψ ∈ Hs

0(Ω)

by ψ ∈ Hs
0(Ω

n
i ). Here, Ωn

i is the collection of Ω j whose graph distance to Ωi is
not larger than n; see the definition of graph distance in Definition 4.13 of [204].
Intuitively, one can understand Ωn

i as the n-layer neighborhood of Ωi. We have
Ω0

i = Ωi.

By the definition of Ωn
i and Assumption B.4.7, we know that

B(xi, (n + 1)δh) ∩Ω ⊂ Ωn
i ⊂ B(xi,9(n + 1)h/δ) ∩Ω . (B.4.35)

Now, using the Sobolev embedding theorem and the fact that ψn
i,α is supported in

Ωn
i , we get

‖Dγψi,α‖L∞(Ω\B(xi,9nh/δ)) ≤ ‖Dγψi,α‖L∞(Ω\Ωn
i )

≤ ‖Dγψi,α − Dγψn
i,α‖L∞(Ω)

≤ C1‖ψi,α − ψ
n
i,α‖Hs

0 (Ω)

≤ C1Ch−s exp(−n/C) ,

(B.4.36)

where C1 is a constant depending on Ω, d, J that satisfies

sup
0≤|γ |≤J

‖Dγu‖L∞(Ω) ≤ C1‖u‖Hs
0 (Ω)

,

for any u ∈ Hs
0(Ω).

The result (B.4.36) implies that for any n ∈ N, once dist(x,xi) ≥ 9(n + 1)h/δ, it
holds that

|Dγψi,α(x)| ≤ Ch−s exp
(
−

n
C

)
,

where C is some constant depending on C0,Ω, δ, d, s, ‖L‖, ‖L−1‖. Here we used the
fact that the function C → Ch−s exp

(
− n

C

)
is increasing.
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In particular, the above inequality holdswhen 9(n+1)h/δ ≤ dist(x,xi) ≤ 9(n+2)h/δ;
the relation yields n ∼ dist(x,xi)/h. By replacing n in terms of dist(x,xi)/h, we
obtain that there exists a constant C depending on the same set of variables, such
that

|Dγψi,α(x)| ≤ Ch−s exp
(
−

dist(x,xi)

Ch

)
.

The proof is complete. �

In the following, we show that conditions (B.4.30), (B.4.31), and (B.4.32) are
satisfied by the derivative measurements that we are focusing on in the paper. We
need to scale each derivative measurement by a power of h; this will only change
the resulting Gamblets by a corresponding scaling, which would not influence the
exponential decay result; see Proposition B.4.13.

Proposition B.4.12. Let Assumptions B.4.7 and B.4.8 hold. Consider J ∈ N and
J < s − d/2. For each 1 ≤ i ≤ Q, we choose {hd/2δxi } ⊂ {φi,α, α ∈ Ti} ⊂

{hd/2+|γ |δxi ◦ Dγ,0 ≤ |γ | ≤ J}. Then, Conditions (B.4.30), (B.4.31), (B.4.32) hold
with the constant C0 depending on δ, d, s and J only.

Proof. We will verify the conditions one by one.

Condition (B.4.30) follows from Section 15.4.5 of the book [204], where the case
of {φi,α, α ∈ Ti} = {hd/2δxi } is covered. More precisely, in our case, we have more
measurement functionals compared to these Diracs, and thus the spaceΦ⊥ is smaller
than that considered in Section 15.4.5 of the book [204]. This implies that their
results directly apply and (B.4.30) readily holds in our case.

For Conditions (B.4.31) and (B.4.32), we can assume {φi,α, α ∈ Ti} = {hd/2+|γ |δxi ◦

Dγ,0 ≤ |γ | ≤ J} since this could only make the constant C0 larger. We start with
Condition (B.4.31). We note that in our proof, C represents a generic constant and
can vary from place to place; we will specify the variables it can depend on.

Consider the unit ball B(0,1) ⊂ Rd . Since J < s − d/2, the Sobolev embedding
theorem implies that ∑

0≤|γ |≤J

‖Dγ f ‖L∞(B(0,1)) ≤ C‖ f ‖Hs(B(0,1)) , (B.4.37)

for any f ∈ Hs(B(0,1)), where C is a constant depending on d and s. This implies
that ∑

0≤|γ |≤J

|Dγ f (0)|2 ≤ C
s∑

t=0
| f |2Ht (B(0,1)) , (B.4.38)
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where C depends on d, s, and J. Consequently, using the change of variables
x = xi + δhx′, we get∑

0≤|γ |≤J

δd hd+2|γ | |Dγ f (xi)|
2 ≤ C

s∑
t=0

δ2t h2t | f |2Ht (B(xi,δh)) . (B.4.39)

We can absorb δ into C and obtain∑
0≤|γ |≤J

hd+2|γ | |Dγ f (xi)|
2 ≤ C

s∑
t=0

h2t | f |2Ht (B(xi,δh)) , (B.4.40)

where C depends on δ, d, s, and J, for any f ∈ Hs(B(xi, δh)). Now, using the fact
that Hs(B(xi, δh)) ⊂ Hs

0(Ω) and {φi,α, α ∈ Ti} = {hd/2−|γ |δxi ◦ Dγ,0 ≤ |γ | ≤ J}, we
arrive at ∑

α∈Ti

[ f , φi,α]
2 ≤ C

s∑
t=0

h2t | f |2Ht (B(xi,δh)) , (B.4.41)

for any f ∈ Hs
0(Ω). Summing the above inequalities for all xi, we get∑

1≤i≤Q,α∈Ti

[ f , φi,α]
2 ≤ C

s∑
t=0

h2t | f |2Ht (Ω)
for any f ∈ Hs

0(Ω) , (B.4.42)

where C depends on δ, d, s and J. This verifies Condition (B.4.31).

For Condition (B.4.32), we have

‖
∑
α∈Ti

yαφi,α‖H−s(τi) ≥ ‖
∑
α∈Ti

yαφi,α‖H−s(B(xi,δh))

= ‖
∑

0≤|γ |≤J

yγhd/2+|γ |δxi ◦ Dγ ‖H−s(B(xi,δh)) ,
(B.4.43)

where we abuse the notations to write yα by yγ.

Now, by definition, we get

‖
∑

0≤|γ |≤J

yγhd/2+|γ |δxi ◦ Dγ ‖H−s(B(xi,δh))

= sup
v∈Hs

0 (B(xi,δh))

∑
0≤|γ |≤J yγDγv(xi)hd/2+|γ |

‖v‖Hs
0 (B(xi,δh))

= sup
v∈Hs

0 (B(0,1))

∑
0≤|γ |≤J yγDγv(0)hd/2+|γ |(δh)−|γ |

‖v‖Hs
0 (B(0,1))(δh)d/2−s

≥ Ch−s‖
∑

0≤|γ |≤J

yγδ0 ◦ Dγ ‖H−s(B(0,1)) ,

(B.4.44)
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whereC is a constant that depends on δ, s. In the second identity, we used the change
of coordinates x = xi + δhx′.

Now, since δ0 ◦ Dγ,0 ≤ |γ | ≤ J are linearly independent, we know that there exists
C′ depending on d, J, such that

‖
∑

0≤|γ |≤J

yγδ0 ◦ Dγ ‖H−s(B(0,1)) ≥ C′C |y | (B.4.45)

holds for any y. Let C0 = C′C, then Condition (B.4.32) is verified. �

By Proposition B.4.12 and rescaling, we can obtain the following results for the
unscaled measurements.

Proposition B.4.13. Let Assumptions B.4.7 and B.4.8 hold. Consider J ∈ N and
J < s− d/2. For each 1 ≤ i ≤ Q, we choose {δxi } ⊂ {φi,α, α ∈ Ti} ⊂ {δxi ◦Dγ,0 ≤
|γ | ≤ J}. Then, for the Gamblets in Definition B.4.9, we have

|Dγψi,α(x)| ≤ Ch−2s exp
(
−

dist(x,xi)

Ch

)
,

for any 1 ≤ i ≤ Q, α ∈ Ti and multi-index γ satisfying |γ | < s − d/2. Here C is a
constant depending on Ω, δ, d, s, ‖L‖, ‖L−1‖, J.

Proof. Based on Theorem B.4.11 and Proposition B.4.12, we know that

|Dγψi,α(x)| ≤ Ch−s exp
(
−

dist(x,xi)

Ch

)
holds if ψi,α is the Gamblet corresponding to the measurement functionals satisfying
{hd/2δxi } ⊂ {φi,α, α ∈ Ti} ⊂ {hd/2+|γ |δxi ◦ Dγ,0 ≤ |γ | ≤ J}. Using the fact that
|γ | + d/2 ≤ s and the definition of Gamblets, we know that when the measurement
functionals change to {δxi } ⊂ {φi,α, α ∈ Ti} ⊂ {δxi ◦ Dγ,0 ≤ |γ | ≤ J}, the
corresponding Gamblets will satisfy

|Dγψi,α(x)| ≤ Ch−2s exp
(
−

dist(x,xi)

Ch

)
.

The proof is complete. �

B.5 Eigenvalue Bounds on the Kernel Matrices
This section is devoted to the lower and upper bounds of the eigenvalues of the
kernel matrix.
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Proposition B.5.1. Let Assumptions B.4.7 and B.4.8 hold. Consider J ∈ N and
J < s− d/2. For each 1 ≤ i ≤ Q, we choose {δxi } ⊂ {φi,α, α ∈ Ti} ⊂ {δxi ◦Dγ,0 ≤
|γ | ≤ J}. Let φ be the collection of all φi,α,1 ≤ i ≤ Q, α ∈ Ti. Let the operator
L : Hs

0(Ω) → H−s(Ω) satisfies Assumption 5.4.1 and assume the kernel function to
be the Green function K(x,y) := [δx,L

−1δy]. Then, for the kernel matrix K(φ,φ),
we have

Cmaxh−dI � K(φ,φ) � Cminh2s−dI , (B.5.1)

whereCmin is a constant that depends on δ, d, s, ‖L‖, ‖L−1‖, J, andCmax additionally
depends on Ω. And I is the identity matrix.

Proof. It suffices to consider the case {φi,α, α ∈ Ti} = {δxi ◦ Dγ,0 ≤ |γ | ≤ J};
the kernel matrix in other cases can be seen as a principal submatrix of the case
considered here. The eigenvalues of the principal submatrix can be lower and upper
bounded by the smallest and largest eigenvalues of the original matrix, respectively.

Suppose K(φ,φ) ∈ RN×N . For any y ∈ RN , by definition, we have

yT K(φ,φ)y = [
∑

1≤i≤Q

∑
0≤|γ |≤J

yi,γδxi ◦ Dγ,L−1(
∑

1≤i≤Q

∑
0≤|γ |≤J

yi,γδxi ◦ Dγ)] . (B.5.2)

We first deal with the largest eigenvalue. By (B.5.2), we get

yT K(φ,φ)y ≤ ‖L−1‖‖
∑

1≤i≤Q

∑
0≤|γ |≤J

yi,γδxi ◦ Dγ ‖2H−s(Ω) .

Due to the assumption J < s − d/2, there exists a constant C1 depending on Ω, d, J
such that

sup
0≤|γ |≤J

‖Dγu‖L∞(Ω) ≤ C1‖u‖Hs
0 (Ω)

,

for any u ∈ Hs
0(Ω). This implies that for any 0 ≤ |γ | ≤ J and xi ∈ Ω, it holds

‖δxi ◦ Dγ ‖H−s(Ω) = sup
u∈Hs

0 (Ω)

|Dγu(xi)|

‖u‖Hs
0 (Ω)
≤ C1 .

Therefore, we get

‖
∑

1≤i≤Q

∑
0≤|γ |≤J

yi,γδxi ◦ Dγ ‖H−s(Ω)

≤
∑

1≤i≤Q

∑
0≤|γ |≤J

|yi,γ | · ‖δxi ◦ Dγ ‖H−s(Ω)

≤C1
∑

1≤i≤Q

∑
0≤|γ |≤J

|yi,γ |

≤C1CJ

∑
1≤i≤Q

|yi | ≤ C1CJ
√

Q |y | ,

(B.5.3)
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where in the inequality, we used the triangle inequality. In the third and fourth
inequalities, we used the Cauchy-Schwarz inequality, and CJ is a constant that
depends on J. Here, we abuse the notation and write yi to be the vector collecting
yi,γ,0 ≤ |γ | ≤ J.

Now, by a covering argument, we know that Q = O(h−d). Therefore, combining
(B.5.3) and (B.5.2), we arrive at

yT K(φ,φ)y ≤ ‖L−1‖C2
1C2

JQ |y |2 ≤ Cmaxh−d |y |2 ,

whereCmax is a constant that depends onΩ, δ, d, s, ‖L‖, ‖L−1‖, J. We have obtained
the upper bound for the largest eigenvalue of K(φ,φ) as desired.

For the smallest eigenvalue, using (B.5.2) again, we have

yT K(φ,φ)y ≥ ‖L‖−1‖
∑

1≤i≤Q

∑
0≤|γ |≤J

yi,γδxi ◦ Dγ ‖2H−s(Ω) .

Now, using the Fenchel duality, we get

‖
∑

1≤i≤Q

∑
0≤|γ |≤J

yi,γδxi ◦ Dγ ‖2H−s(Ω) = sup
v∈Hs

0 (Ω)
2

∑
1≤i≤Q

∑
0≤|γ |≤J

yi,γDγv(xi) − ‖v‖
2
Hs

0 (Ω)
.

(B.5.4)
By restricting v ∈ Hs

0(Ω) to v =
∑

1≤i≤Q vi with each vi ∈ Hs
0(B(xi, δh)), we obtain

sup
v∈Hs

0 (Ω)
2

∑
1≤i≤Q

∑
0≤|γ |≤J

yi,γDγv(xi) − ‖v‖
2
Hs

0 (Ω)

≥
∑

1≤i≤Q

©­« sup
vi∈Hs

0 (B(xi,δh))
2

∑
0≤|γ |≤J

yi,γDγvi(xi) − ‖vi‖Hs
0 (B(xi,δh))

ª®¬
=

∑
1≤i≤Q

‖
∑

0≤|γ |≤J

yi,γδxi ◦ Dγ ‖2H−s(B(xi,δh) ,

(B.5.5)

where in the first inequality, we used the fact that the balls B(xi, δh),1 ≤ i ≤ Q are
disjoint.

By (B.4.44) and (B.4.45), we know that

‖
∑

0≤|γ |≤J

yi,γhd/2+|γ |δxi ◦ Dγ ‖H−s(B(xi,δh)) ≥ Chs |yi | , (B.5.6)

for some constant C depending on δ, d, s, J. Here again, we write yi to be the vector
collecting yi,γ,0 ≤ |γ | ≤ J. By change of variables, the above inequality implies
that

‖
∑

0≤|γ |≤J

yi,γδxi ◦ Dγ ‖H−s(B(xi,δh)) ≥ Chs−d/2 |yi | , (B.5.7)
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for some constant C depending on δ, d, s, J.

Combining (B.5.4), (B.5.5), (B.5.7), we obtain

‖
∑

1≤i≤Q

∑
0≤|γ |≤J

yi,γδxi ◦ Dγ ‖2H−s(Ω) ≥ Ch2s−d |y |2 . (B.5.8)

With (B.5.2), we obtain

yT K(φ,φ)y ≥ C‖L‖−1h2s−d |y |2 . (B.5.9)

The proof is complete. �
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A p p e n d i x C

APPENDIX TO CHAPTER VI

C.1 Appendix: Proofs
C.1.1 Proof of Proposition 6.2.11
Proof. Let ϕ j(x) = (−∆)−tδ(x − x j) and in particular ϕ0(x) = (−∆)−tδ(x). We have
for m ∈ Zd ,

ϕ̂0(m) =

(4π2)−t |m|−2t, m , 0

0, m = 0 .

We introduce the translation operator τj2−q which acts on function u : Td → R and
is defined by

(τj2−qu)(x) = u(x1 − j12−q, x2 − j22−q, ..., xd − jd2−q)

for j = ( j1, j2, ..., jd) ∈ Z
d and x = (x1, x2, ..., xd) ∈ R

d . Then, for j ∈ Jq, we have
the relation δ(· − x j) = τj2−qδ(·). Using the property of the Fourier coefficients, we
obtain

ϕ̂ j(m) = ϕ̂0(m)e−2πi〈 j2−q,m〉 =


(4π2)−t |m|−2te−2πi〈 j2−q,m〉, m , 0

0, m = 0 .

By definition, F̂t,q is the span of such ϕ̂ j for j ∈ Jq. Hence, for any g ∈ F̂t,q, it can
be written as a linear combination of these functions. Equivalently, there exists a
2q-periodic function p such that

g(m) =

|m|−2t p(m), m , 0

0, m = 0 .

This gives the desired representation of g. �

C.1.2 Proof of Theorem 6.2.13
Proof. By Proposition 6.2.11, there exists a 2q-periodic function p1(m) on Zd , such
that

û(m, t,q) =

|m|−2t p1(m), m , 0

0, m = 0 .
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By the definition of GPR, we have [u†(·) − u(·, t,q),δ(· − x j)] = 0 for every data
point x j . In the Fourier domain, according to the characterization of F̂t,q, this
orthogonality leads to ∑

m∈Zd
(û(m) − û(m, t,q))p(m) = 0 (C.1.1)

for p : Zd → C being any 2q-periodic function. Recalling Definition 6.2.12, we
have

(Tqû)(m) =
∑
β∈Zd

û(m + 2qβ) . (C.1.2)

The fact that the above sum converges may be seen as a consequence of the
Cauchy–Schwarz inequality and the regularity of u (recall t ≥ d/2 + δ). Using
(C.1.2) and the representation of û(m, t,q), we reformulate (C.1.1) as∑

m∈Bd
q

(
(Tqû)(m) − M t

q(m)p1(m)
)

p(m) = 0 .

The above formula holds for any 2q-periodic function p. Let g(m) = (Tqû)(m) −

M t
q(m)p1(m), then we get that g is a 2q-periodic function on Zd and that∑

m∈Bd
q

g(m)p(m) = 0

holds for any 2q-periodic function p. This implies that g(m) = 0. Hence, we get

p1(m) =
(Tqû)(m)
M t

q(m)
.

Plugging this expression into the above representation formula for û(m, t,q) leads to

û(m, t,q) =


0, if m = 0

|m|−2t (Tq û)(m)
M t

q(m)
, else .

This completes the proof. �

C.1.3 Proof of Lemma 6.2.15
Proof. Recall the definition

M t
q(m) :=


∑
β∈Zd\{0} |2qβ|−2t, if m = j · 2q for some j ∈ Zd∑
β∈Zd |m + 2qβ |−2t, else .

Because of the periodicity of M t
q, we need only to study m ∈ Bd

q . We split it into
two cases.
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1. If m = 0, then M t
q(m) =

∑
β∈Zd\{0} |2qβ |−2t = 2−2qt ∑

β∈Zd\{0} |β |
−2t ' 2−2qt .

2. If m ∈ Bd
q\{0}, then M t

q(m) =
∑
β∈Zd |m + 2qβ|−2t = |m|−2t +

∑
β∈Zd\{0} |m +

2qβ|−2t . Since Bd
q = [−2q−1,2q−1 − 1]⊗d , each component of m ∈ Bd

q is
bounded by 2q−1 in amplitude, and therefore each component of 2−qm is
bounded by 1/2 in amplitude. So, it follows that∑

β∈Zd\{0}

|m + 2qβ|−2t = 2−2qt
∑

β∈Zd\{0}

|2−qm + β |−2t ' 2−2qt .

Then, we get |m|−2t ≤ M t
q(m) . |m|

−2t + 2−2qt . |m|−2t where we have used
the fact that |m| . 2q. Therefore, it holds that M t

q(m) ' |m|
−2t .

As a byproduct of the above proof, we also get M t
q(m) − |m|

−2t ' 2−2qt . �

C.1.4 Proof of Lemma 6.2.17

Proof. First, we prove the pointwise convergence (i.e., for each fixed r), then move
on to prove uniform convergence. To achieve this, we calculate the variance:

Var(α(r,q)) ' 2−2rq
∑

m∈Bd
q \{0}

|m|2r−2d

. 2−2rq
∫ 2q

1
x2r−2d+d−1 dx = 2−2rq

∫ 2q

1
x2r−d−1 dx .

For r = d/2, the integral gives log(2q) = q log 2; for r , d/2, it is 1
2r−d (2

q(2r−d)−1).
In both cases, we have limq→∞Var(α(r,q)) = 0. Thus, α(r,q) converges in L2 to
the limit of its expectation, which we may calculate as follows:

lim
q→∞
Eα(r,q) = lim

q→∞

∑
m∈Bd

q \{0}

(2−q)d |2−qm|r−d =

∫
[−1/2,1/2]d

|y |r−d dy := γ(r) > 0 .

Hence, we get limq→∞ α(r,q) = γ(r) > 0 in L2 for every r ∈ [ε,1/ε], and the
convergence also holds in probability. We may now proceed to show uniform
convergence. We rely on Exercise 3.2.3 in [277]. Based on that, it suffices to prove
α(r,q) is uniformly Lipschitz continuous as a function of r for q ∈ N. Pick any
r1,r2 ∈ [ε,1/ε], then

|α(r1,q) − α(r2,q)|

=
∑

m∈Bd
q \{0}

2−qd |(|2−qm|r1−d − |2−qm|r2−d)|

≤
∑

m∈Bd
q \{0}

2−qd |r1 − r2 |(|2−qm|ε−d + |2−qm|1/ε−d)| log(2−qm)|ξ2
m ,
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where in the last step we have used the fact that | |2−qm|r1−d − |2−qm|r2−d | =

| |2−qm|η−d log(2−qm)(r1− r2)| for some η that lies between r1 and r2, and we use the
bound r1,r2 ∈ [ε,1/ε]. Now, we define the random series:

L(q) := 2−qd
∑

m∈Bd
q \{0}

(|2−qm|ε−d + |2−qm|1/ε−d)| log(2−qm)|ξ2
m .

We calculate its variance as follows:

Var(L(q)) ' 2−2dq
∑

m∈Bd
q \{0}

(|2−qm|2ε−2d + |2−qm|2/ε−2d) log2 |2−qm|

. 2−qd
(∫ 1

2−q
t2ε−2d+d−1 log2 t dt +

∫ 1

2−q
t2/ε−2d+d−1 log2 t dt

)
= 2−qd

∫ 1

2−q
(t2ε−d−1 + t2/ε−d−1) log2 t dt ,

. 2−qd
∫ 1

2−q
(tε−d−1 + t1/ε−d−1) dt . 2−qε .

The last term will go to 0 as q goes to infinity. Thus, L(q) converges in L2 (and thus
in probability) to L∗ = limq→∞ EL(q), which is

lim
q→∞
EL(q) = lim

q→∞
2−qd

∑
m∈Bd

q \{0}

(|2−qm|ε−d + |2−qm|1/ε−d) log2 |2−qm|

=

∫
[−1/2,1/2]d

(|y |ε−d + |y |1/ε−d) log2 |y | dy

.

∫
[−1/2,1/2]d

(|y |ε/2−d + |y |1/(2ε)−d) dy < ∞ .

Using Markov’s inequality we deduce that, for any ε′ > 0, it holds that

P(|L(q) − L∗ | ≥ ε′) ≤
E|L(q) − L∗ |2

(ε′)2
≤

2−qε

(ε′)2
.

Thus,
∞∑

q=1
P(|L(q) − L∗ | ≥ ε′) ≤

∞∑
q=1

2−qε

(ε′)2
< ∞ .

From the Borel-Cantelli lemma it follows that limq→∞ L(q) = L∗ almost surely, and
therefore L(q) is bounded uniformly for q almost surely. Since |α(r1,q) −α(r2,q)| ≤

L(q)|r1 − r2 |, it follows that α(r,q) is uniformly Lipschitz continuous as a function
of r for q ∈ N. Invoking Exercise 3.2.3 in [277] concludes this case.
For the case r = 0, we follow the same strategy as in the previous case. First, we
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calculate the corresponding variance:

Var(α(0,q)) '
1
q2

∑
m∈Bd

q \{0}

|m|−2d

.
1
q2

∫ 2q

1
x−2d+d−1 dx .

1
q2 ,

where the last term goes to 0 as q goes to infinity. Then, we calculate the expectation:

Eα(0,q) =
1
q

∑
m∈Bd

q \{0}

|m|−d .

The limit when q→∞ is identified through the following calculations:

lim
q→∞

1
q

∑
m∈Bd

q \{0}

|m|−d = lim
q→∞

∑
m∈Bd

q+1\B
d
q

|m|−d

= lim
q→∞

2−qd
∑

m∈Bd
q+1\B

d
q

|2−qm|−d

=

∫
[−1,1]d\[−1/2,1/2]d

|x |−d dx < ∞;

here we have used the definition of the Riemann integral. Finally, we conclude that
limq→∞ α(0,q) = γ(0) in probability for γ(0) ∈ (0,∞). �

C.1.5 Proof of Proposition 6.2.18
Proof. First, we have the relation

log det K(t,q) = log det K(t,q − 1) + log det(K(t,q)/K(t,q − 1)) ,

where K(t,q)/K(t,q − 1) is the Schur complement of K(t,q − 1) in K(t,q). Due
to the variational property of the Schur complement (see Lemma 13.24 in [204]),
the smallest and largest eigenvalues of K(t,q)/K(t,q − 1) satisfy (in the dual norm
‖ · ‖−t)

λmin(K(t,q)/K(t,q − 1)) ≥ inf
y∈R |Jq |

‖
∑

j∈Jq y jδ(x − x j)‖
2
−t

|y |2
, and

λmax(K(t,q)/K(t,q − 1))

= sup
y∈R |Jq |

inf
z∈R |Jq−1 |

‖
∑

j∈Jq y jδ(x − x j) −
∑

j ′∈Jq−1 z j ′δ(x − x j ′)‖
2
−t

|y |2
.

(C.1.3)

These two formulae will be crucial in the subsequent analysis. We start by
estimating the smallest and largest eigenvalues of the Schur complement. Let
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w = (−∆)−t ∑
j∈Jq y jδ(x − x j), whose Fourier coefficients are

ŵ(m) =


0, if m = 0

(4π2)−t |m|−2tg(m), else ,
(C.1.4)

where, the function g(m) is defined by

g(m) =
∑
j∈Jq

y j exp(2πi〈 j2−q,m〉) . (C.1.5)

For the smallest eigenvalue, we write

‖
∑
j∈Jq

y jδ(x − x j)‖
2
−t = ‖w‖

2
t = (4π2)t

∑
m∈Zd\{0}

|m|2t |ŵ(m)|2

= (4π2)−t
∑

m∈Zd\{0}

|m|−2t |g(m)|2.

Notice that∑
m∈Zd\{0}

|m|−2t |g(m)|2 =
∑

m∈Bd
q

M t
q(m)|g(m)|

2 & 2−2tq
∑

m∈Bd
q

|g(m)|2

and ∑
m∈Bd

q

|g(m)|2 =
∑

m∈Bd
q

|
∑
j∈Jq

y j exp(2πi〈 j2−q,m〉)|2

=
∑

m∈Bd
q

∑
j∈Jq

∑
l∈Jq

y j yl exp(2πi〈( j − l)2−q,m〉)

=
∑
j∈Jq

∑
l∈Jq

y j yl

∑
m∈Bd

q

exp(2πi〈( j − l)2−q,m〉)

' 2qd |y |2 .

(C.1.6)

In the last line we have used the fact that∑
m∈Bd

q

exp(2πi〈( j − l)2−q,m〉) =


0, if j − l , 0∑
m∈Bd

q
1 ' 2qd, if j − l = 0 .

Thus, combining the above results, we obtain the bound on the smallest eigenvalue

λmin(K(t,q)/K(t,q − 1)) & 2−q(2t−d) .

We then move to consider the largest eigenvalue. First, notice that

inf
z∈R |Jq−1 |

‖
∑
j∈Jq

y jδ(x − x j) −
∑

j ′∈Jq−1

z j ′δ(x − x j ′)‖
2
−t = inf

v∈Ft ,q−1
‖w − v‖2t .
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Naturally, one can express the optimal v in the above variational formulation using
the Fourier series representation explained before. However, this will lead to many
interactions between different frequencies. To make the analysis cleaner, we adopt
another strategy. We first approximate the function w by a band-limited function,
whose projection into Ft,q−1 will be more concise. Precisely, define a band limited
version of w, written as wh, by

ŵh(m) =

ŵ(m), if m ∈ Bd

q−1

0, if m ∈ (Bd
q−1)

c .
(C.1.7)

To estimate infv∈Ft ,q−1 ‖w − v‖
2
t , we follow the two steps below:

Step 1: we prove ‖w − wh‖
2
t . 2−q(2t−d) |y |2. Let us calculate the quantity directly:

‖w − wh‖
2
t = (4π2)−t

∑
m∈(Bd

q−1)
c

|m|−2t |g(m)|2

= (4π2)−t
©­­«

∑
m∈Zd\{0}

|m|−2t |g(m)|2 −
∑

m∈Bd
q−1

|m|−2t |g(m)|2
ª®®¬

= (4π2)−t
©­­«
∑

m∈Bd
q

M t
q(m)|g(m)|

2 −
∑

m∈Bd
q−1

|m|−2t |g(m)|2
ª®®¬

. 2−2qt
∑

m∈Bd
q

|g(m)|2 . 2−q(2t−d) |y |2.

Here we have used the fact that M t
q(m) − |m|

−2t . 2−2qt for m ∈ Bd
q−1 and M t

q(m) .

2−2qt for m ∈ Bd
q\B

d
q−1, according to the results in Lemma 6.2.15. In the last line,

the bound (C.1.6) is applied.

Step 2: We prove infv∈Ft ,q−1 ‖wh − v‖2t . 2−q(2t−d) |y |2. Based on Theorem 6.2.13,
we know the optimal v for this variational problem has the Fourier coefficients

v̂(m) =


0, if m = 0

|m|−2t (Tq−1ŵh)(m)
M t

q−1(m)
, else .
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Then, using the Fourier representation of the norm, we get

‖wh − v‖
2
t

'
∑

m∈Zd\{0}

|m|2t |ŵh(m) − v̂(m)|2

=
∑

m∈Bd
q−1\{0}

|m|−2t |g(m) −
(Tq−1ŵh)(m)

M t
q−1(m)

|2 +
∑

m∈(Bd
q−1)

c

|m|−2t |
(Tq−1ŵh)(m)

M t
q−1(m)

|2 .

For the first term, since wh is band-limited, we know if m ∈ Bd
q−1\{0}, then

(Tq−1ŵh)(m) = |m|−2tg(m). Thus, we can write this term as∑
m∈Bd

q−1\{0}

|m|−2t |g(m)|2
(
1 −

|m|−2t

M t
q−1(m)

)2

=
∑

m∈Bd
q−1\{0}

|m|−2t |g(m)|2
( M t

q−1(m) − |m|
−2t

M t
q−1(m)

)2

a)
.

∑
m∈Bd

q−1\{0}

|m|−2t |g(m)|2
( 2−4tq

|m|−4t

)
b)
.

∑
m∈Bd

q−1\{0}

2−2tq |g(m)|2 . 2−q(2t−d) |y |2 ,

where in a)wehave used the fact that M t
q−1(m)−|m|

−2t ' 2−2tq and M t
q−1(m) ' |m|

−2t

for m ∈ Bd
q−1\{0} based on Lemma 6.2.15. In b), we have used |m| . 2q. The last

inequality is obtained by recalling (C.1.6).
For the second term, we write∑

m∈(Bd
q−1)

c

|m|−2t |
(Tq−1ŵh)(m)

M t
q−1(m)

|2

=
∑

m∈Zd\{0}

|m|−2t |
(Tq−1ŵh)(m)

M t
q−1(m)

|2 −
∑

m∈Bd
q−1\{0}

|m|−2t |
(Tq−1ŵh)(m)

M t
q−1(m)

|2

c)
=

∑
m∈Bd

q−1\{0}

(M t
q−1(m) − |m|

−2t)|
(Tq−1ŵh)(m)

M t
q−1(m)

|2

=
∑

m∈Bd
q−1\{0}

(M t
q−1(m) − |m|

−2t)|
|m|−2tg(m)
M t

q−1(m)
|2

. 2−2tq
∑

m∈Bd
q−1\{0}

|g(m)|2 . 2−q(2t−d) |y |2 ,
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where in c), we have used the periodicity of the function (Tq−1ŵh)(m)
M t

q−1(m)
.

Now, combining Step 1 and 2 leads to the conclusion

inf
v∈Ft ,q−1

‖w − v‖2t . 2−q(2t−d) |y |2 ,

and in particular, it implies

λmax(K(t,q)/K(t,q − 1)) . 2−q(2t−d) .

As a consequence of the upper and lower bounds for the eigenvalues of the matrix
K(t,q)/K(t,q − 1), we deduce that they are all on the scale of 2−q(2t−d). Let C

be a constant independent of t,q such that C−12−q(2t−d) � K(t,q)/K(t,q − 1) �
C2−q(2t−d). Then,

(2qd − 2(q−1)d)((2t − d)(−q) log 2 − C) ≤ log det K(t,q)/K(t,q − 1)

≤ (2qd − 2(q−1)d)((2t − d)(−q) log 2 + C) .

Using the implied bounds on the recursion relation, we get

(2t − d)g1(q) −Cg2(q)+K(t,0) ≤ log det K(t,q) ≤ (2t − d)g1(q)+Cg2(q)+K(t,0) ,

where g1(q) =
∑q

k=1(2
kd−2(k−1)d)(−k log 2) and g2(q) = (2qd−1)(2t−d). Summing

the series in g1(q) leads to g1(q) ' −q2qd log 2 ' −q2qd . The proof of Proposition
6.2.18 is completed.

RemarkC.1.1. The above technique of using the Schur complements is quite general
and could be potentially applied to other operators such as heterogeneous Lapla-
cians; see [204]. However, for the homogeneous Laplacian on the torus in this
paper, we may also prove the result via a simpler approach. The key observation
is that there is an explicit formula for the spectrum of K(t,q), as also exploited in
[258, Sec. 6.7]. Indeed, using the formula for the spectrum given in Lemma C.1.2
below, we get

log det K(t,q) =
∑

m∈Bd
q

log
(
2qd(4π2)−t M t

q(m)
)

= qd2qd log 2 − 2qdt log
(
4π2

)
+

∑
m∈Bd

q

log M t
q(m) .

By Lemma 6.2.15, it holds that

M t
q(m) '


2−2qt, if m = 0

|m|−2t, if m ∈ Bd
q\{0} .
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That is, there exists a constant C independent of t such that

−2t log |m| − log C ≤ log M t
q(m) ≤ −2t log |m| + log C

for m ∈ Bd
q\{0}, and −2qt log 2 − log C ≤ log M t

q(0) ≤ −2qt log 2 + log C. Since∑
m∈Bd

q \{0}

log |m| '
∫ 2q

0
rd−1 log r dr ' q2qd ,

and 2qd = o(q2qd), we get

−(2t − d)q2qd − C2qd . log det K(t,q) . −(2t − d)q2qd + C2qd .

This completes the alternative proof of Proposition 6.2.18.

�

Lemma C.1.2. The eigenvalues of K(t,q) are 2qd(4π2)−t M t
q(m) for m ∈ Bd

q , where
M t

q(m) is defined in (6.2.12), with the corresponding eigenfunctions φm(Xq) ∈ R
2qd .

Proof. We can prove this claim using Mercer’s decomposition as follows. First, for
xi, x j ∈ Xq, it holds that

K(t,q)i,j =
∑

m∈Zd\{0}

(4π2)−t |m|−2tφm(xi)φ
∗
m(x j)

=
∑

m∈Bd
q

(4π2)−t M t
q(m)φm(xi)φ

∗
m(x j) ,

where we have used the fact that φm+2qβ(xi) = φm(xi) for any β ∈ Zd and xi ∈ Xq.
Thus, for every n ∈ Bd

q , we get∑
xj∈Xq

K(t,q)i,jφn(x j) =
∑

m∈Bd
q

(4π2)−t M t
q(m)φm(xi)

∑
xj∈Xq

φ∗m(x j)φn(x j)

=
∑

m∈Bd
q

(4π2)−t M t
q(m)φm(xi)2qdδmn

= 2qd(4π2)−t M t
q(m)φn(xi) ,

where in the second equality we used the property of Fourier series. This implies
φn(Xq) is an eigenfunction. The proof of the lemma is completed. �
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C.1.6 Proof of Theorem 6.2.19
Proof. Recall the definition,

sEB(q) = arg min
t

LEB(t,q) := ‖u(·, t,q)‖2t + log det K(t,q) .

Define a rescaled version of the loss function by

L̃EB(t,q) =
1

|g1(q)|
LEB(t,q) =

1
|g1(q)|

‖u(·, t,q)‖2t︸                 ︷︷                 ︸
1

+
1

|g1(q)|
log det K(t,q)︸                     ︷︷                     ︸
2

.

We note that by Proposition 6.2.18, we have |g1(q)| ∼ q2qd . Now, we estimate the
growth rate of 1 and 2 separately. From Proposition 6.2.16 and 6.2.18, we get

1 '
1
q

2−q(2s−2t+d)ξ2
0︸             ︷︷             ︸

3

+
1
q

2−q(2s−2t)
∑

m∈Bd
q \{0}

2−q(2t−2s+d) |m|2t−2sξ2
m︸                                                 ︷︷                                                 ︸

4

,

and for the log det part, it holds that

d − 2t +
−Cg2(q) + K(t,0)

|g1(q)|
≤ 2 ≤ d − 2t +

Cg2(q) + K(t,0)
|g1(q)|

.

It follows that limq→∞ 2 = d − 2t. Thus, our remaining task is to analyze terms
3 , 4 in 1 . We split the problem into four cases.
Case 1: t = s. It is easy to see limq→∞ 3 = 0 and

4 =
1
q

2−qd
∑

m∈Bd
q \{0}

ξ2
m =

1
q
α(d,q) ,

so that limq→∞ 4 = 0. Here we use the definition of α in Lemma 6.2.17. Therefore,
limq→∞ L̃EB(s,q) = d − 2s.
Case 2: 1/δ ≥ t ≥ s + ε . We have 3 ≥ 0. The term 4 can be written as

4 =
1

q2−q(2t−2s)
α(2t − 2s + d,q) ,

where we recall the definition of the function α in Lemma 6.2.17. According to this
lemma, we get the uniform convergence

lim
q→∞

α(2t − 2s + d,q) = γ(2t − 2s + d) > 0
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in probability. In the meantime, limq→∞ q2−q(2t−2s) = 0. So, limq→∞ 4 = ∞ in
probability, and uniformly in 1/δ ≥ t ≥ s+ε . In terms of L̃EB(t,q), this corresponds
to limq→∞ L̃EB(t,q) = ∞.
Case 3: s − ε ≥ t ≥ s − d/2 + ε . In this case, 2t − 2s + d ≥ ε so Lemma 6.2.17 can
be applied. We write the term

4 =
2−q(2s−2t)

q
α(2t − 2s + d,q) .

This will converge to 0 as q goes to infinity, since limq→∞
2−q(2s−2t)

q = 0 and
limq→∞ α(2t − 2s + d,q) = γ(2t − 2s + d) ∈ (0,∞). The term 3 also con-
verges to 0. Thus, limq→∞ L̃EB(t,q) = d − 2t in probability, and uniformly for
s − ε ≥ t ≥ s − d/2 + ε .
Case 4: s − d/2 + ε ≥ t ≥ d/2 + δ. We still have that 3 converges to 0. For term
4 , we have

4 =
2−qd

q

∑
m∈Bd

q \{0}

|m|2t−2sξ2
m ≤

2−qd

q

∑
m∈Bd

q \{0}

|m|2(s−d/2+ε)−2sξ2
m ,

where we have used the monotonicity of the function |m|2t−2s with respect to t.
Then, it reduces to the case t = s − d/2+ δ, which is covered by Case 3. Hence, we
have limq→∞ 4 = 0 uniformly for s − d/2 + δ ≥ t ≥ d/2 + δ. Therefore, we get
limq→∞ L̃EB(t,q) = d−2t in probability, and uniformly for s−d/2+δ ≥ t ≥ d/2+δ.

Let us make a summary of the arguments above. We have established that, for
any small ε > 0, limq→∞ L̃EB(t,q) = ∞ uniformly for 1/δ ≥ t ≥ s + ε , and
limq→∞ L̃EB(t,q) = d−2t uniformly for s−ε ≥ t ≥ d/2+δ, and limq→∞ L̃EB(s,q) =

d − 2s. All the convergence is in probability. Note that sEB is the minimizer of
LEB(t,q), hence also of L̃EB(t,q). The above convergence results for L̃EB(t,q) imply
that sEM ∈ (s − ε, s + ε) with probability 1 as q goes to infinity, for any ε > 0. Thus,
we must have

lim
q→∞

sEB(q) = s .

The proof is complete. �

C.1.7 Proof of Proposition 6.2.21
Proof. In order to write the interaction terms as a random series with some desired
independence pattern for the random variables involved, we need to consider the
geometry of the lattice carefully. We introduce another set Sq := {m ∈ Z : −2q−2 ≤
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m ≤ 3 × 2q−2 − 1} and let Sd
q = Sq ⊗ Sq ⊗ · · · ⊗ Sq denote the tensor product of d

multiples of Sq. The set Sq is a shift of Bq, and Sd
q is a shift of Bd

q .

Define the set Bd
q−1 + 2q−1k := {m + 2q−1k : m ∈ Bd

q−1} for k ∈ Zd . We have the
relation

Sd
q =

⋃
k∈Zd2

(Bd
q−1 + 2q−1k) ,

where Zd
2 = {0,1}

d . Note that for k1 , k2, the intersection between Bd
q−1 + 2q−1k1

and Bd
q−1 + 2q−1k2 is empty.

Using (6.2.13) and the periodicity of the functions involved, we get

‖u(·, t,q) − u(·, t,q − 1)‖2t

=(4π2)t
∑

m∈Bd
q

M t
q(m)

(
Tqû(m)
M t

q(m)
−

Tq−1û(m)
M t

q−1(m)

)2

=(4π2)t
∑

m∈Sd
q

M t
q(m)

(
Tqû(m)
M t

q(m)
−

Tq−1û(m)
M t

q−1(m)

)2

=(4π2)t
∑
k∈Zd2

∑
m∈(Bd

q−1+2q−1k)

M t
q(m)

(
Tqû(m)
M t

q(m)
−

Tq−1û(m)
M t

q−1(m)

)2

.

Recall the relation
Tq−1û(m) =

∑
l∈Zd2

Tqû(m + 2q−1l) ,

based on which we get

Tqû(m)
M t

q(m)
−

Tq−1û(m)
M t

q−1(m)

=(
1

M t
q(m)

−
1

M t
q−1(m)

)Tqû(m) −
1

M t
q−1

∑
l∈Zd2 \{0}

Tqû(m + 2q−1l) .

Since u† ∼ N(0, (−∆)−s), it holds û(m) ∼ N(0, (4π2)−s |m|−2s). Moreover, for
different m, these Gaussian random variables are independent from each other.
Thus, for a fixed k and for m ∈ (Bd

q−1 + 2q−1k), the Gaussian random variables

Tqû(m)
M t

q(m)
−

Tq−1û(m)
M t

q−1(m)
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are independent from each other. Furthermore, by calculating their variance, we
can write

M t
q(m)

(
Tqû(m)
M t

q(m)
−

Tq−1û(m)
M t

q−1(m)

)2

=(4π2)−s
(

1
M t

q(m)
−

1
M t

q−1(m)
)2M t

q(m)M
s
q(m) +

M t
q(m)

(M t
q−1(m))

2

∑
l∈Zd2 \{0}

M s
q(m + 2q−1l)

 ξ2
k,m

=(4π2)−s


M s
q(m)(M

t
q(m) − M t

q−1(m))
2

M t
q(m)(M t

q−1(m))
2 +

M t
q(m)

(M t
q−1(m))

2

∑
l∈Zd2 \{0}

M s
q(m + 2q−1l)

 ξ2
k,m

= : Ak,mξ
2
k,m ,

where {ξk,m}m are independent unit scalar Gaussian random variables. Clearly, we
have the lower bound

Ak,m ≥ (4π2)−s
M t

q(m)

(M t
q−1(m))

2 M s
q(m − 2q−1k) .

Thus, denoting e1 = (1,0, ...,0) ∈ Zd , we get

‖u(·, t,q) − u(·, t,q − 1)‖2t

≥(4π2)t−s
∑
k∈Zd2

∑
m∈(Bd

q−1+2q−1k)

M t
q(m)

(M t
q−1(m))

2 M s
q(m − 2q−1k)ξ2

k,m

≥(4π2)t−s
∑

m∈(Bd
q−1+2q−1e1)

M t
q(m)

(M t
q−1(m))

2 M s
q(m − 2q−1e1)ξ

2
e1,m

=(4π2)t−s
∑

m∈(Bd
q−1+2q−1e1)

M t
q(m)

(M t
q−1(m − 2q−1e1))2

M s
q(m − 2q−1e1)ξ

2
e1,m

&
∑

m∈(Bd
q−1\{0}+2q−1e1)

2−2qt

|m − 2q−1e1 |−4t |m − 2q−1e1 |
2sξ2

e1,m

=
∑

m∈Bd
q−1\{0}

2−2qt |m|4t−2sξ2
e1,m+2q−1e1

.

In the above derivation, we have used the fact that for m ∈ Bd
q−1, it holds that

M s
q(m) ' |m|

−2s,M t
q−1(m) ' |m|

−2t , and in particular, M t
q(m) ' |m|

−2t ' 2−2qt for
m ∈ (Bd

q−1\{0} + 2q−1e1). Renaming the subscripts in ξe1,m+2q−1e1 completes the
proof. �
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C.1.8 Proof of Proposition 6.2.22
Proof. We need to upper bound Ak,m for k ∈ Zd

2,m ∈ Bd
q−1+2q−1k, which is defined

in the proof of Proposition 6.2.21. First, we have∑
l∈Zd2 \{0}

M s
q(m + 2q−1l) = M s

q−1(m) − M s
q(m) ,

and the estimate 0 ≤ M t
q−1(m) − M t

q(m) ≤ M t
q−1(m) for any d/2 + δ ≤ t ≤ 1/δ.

Based on this observation, for k ∈ Zd\{0} and m ∈ Bd
q−1\{0} + 2q−1k, we have the

bound

Ak,m .
M s

q(m)

M t
q(m)

+ M t
q(m)

M s
q−1(m)

(M t
q−1(m))

2

. 2−q(2s−2t) + 2−2tq |m − 2q−1k |4t−2s ,

where we have used the fact that for m ∈ Bd
q−1\{0} + 2q−1k, it holds that M s

q(m) '

2−2sq,M t
q(m) ' 2−2tq,M s

q−1(m) ' |m − 2q−1k |−2s,M t
q−1(m) ' |m − 2q−1k |−2t , ac-

cording to Lemma 6.2.15. For m = 2q−1k, we get Ak,m . 2−q(2s−2t). So in general,
we can write Ak,m . 2−q(2s−2t) + 2−2tq |m − 2q−1k |4t−2s for m ∈ Bd

q−1 + 2q−1k where
we use the convention that |m|α = 0 for m = 0 and any α ∈ R to make the notation
more compact.

When k = 0, using Lemma 6.2.15 again, we get for m ∈ Bd
q−1\{0},

Ak,m .
M s

q(m)(M
t
q(m) − M t

q−1(m))
2

M t
q(m)(M t

q−1(m))
2 +

M t
q(m)

(M t
q−1(m))

2 (M
s
q−1(m) − M s

q(m))

.
|m|−2s2−4tq

|m|−6t
+
|m|−2t

|m|−4t 2−2sq

= |m|6t−2s2−4tq + |m|2t2−2sq

. 2−2tq |m|4t−2s + 2−q(2s−2t) ,

where in the last line we used the relation |m| . 2q. For m = 0, based on the
above calculation, we can get Ak,m . 2−q(2s−2t). Thus, generally, we can write
Ak,m . 2−2tq |m|4t−2s + 2−q(2s−2t) for m ∈ Bd

q−1 by using the notational convention
above.
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Combining these estimates, we arrive at

‖u(·, t,q) − u(·, t,q − 1)‖2t
.

∑
k∈Zd2

∑
m∈(Bd

q−1+2q−1k)

Ak,mξ
2
k,m

.
∑
k∈Zd2

∑
m∈(Bd

q−1+2q−1k)

(2−q(2s−2t) + 2−2tq |m − 2q−1k |4t−2s)ξ2
k,m

=
∑
k∈Zd2

∑
m∈Bd

q−1

(2−q(2s−2t) + 2−2tq |m|4t−2s)ξ2
k,m+2q−1k .

After a change of notation, we get the desired estimate. �

C.1.9 Proof of Theorem 6.2.23
Proof. Recall

sKF(q) = arg min
t∈[d/2+δ,1/δ]

LKF(t,q) :=
‖u(·, t,q) − u(·, t,q − 1)‖2t

‖u(·, t,q)‖2t
.

We analyze the denominator and numerator separately. We start with the numerator.
Let

V1(t,q) =
1
q

2q(s−d/2)‖u(·, t,q) − u(·, t,q − 1)‖2t .

Case 1: t = s−d/2
2 . We derive an upper bound on V1. By Proposition 6.2.22,

‖u(·, t,q) − u(·, t,q − 1)‖2t .
∑
k∈Zd2

∑
m∈Bd

q−1

(2−q(2s−2t) + 2−2tq |m|4t−2s)ξ2
k,m .

Take t = s−d/2
2 . For each k ∈ Zd

2 , consider the term

V k
1 (t,q) =

1
q

2q(s−d/2)
∑

m∈Bd
q−1

(2−q(2s−2t) + 2−2tq |m|4t−2s)ξ2
k,m

=
1
q

2q(s−d/2)
∑

m∈Bd
q−1

(2−q(s+d/2) + 2−q(s−d/2) |m|−d)ξ2
k,m

=
1
q

∑
m∈Bd

q−1

(2−qd + |m|−d)ξ2
k,m

.
1
q

∑
m∈Bd

q−1

|m|−dξ2
k,m .

By Lemma 6.2.17, limq→∞
1
q
∑

m∈Bd
q−1
|m|−dξ2

k,m = γ(0) ∈ (0,∞). Thus, V k
1 (t,q)

remains bounded for q ∈ N. Since V1(t,q) =
∑

k∈Zd2
V k

1 (t,q), it follows that V1(t,q)
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remains bounded for q ∈ N, in the case t = s−d/2
2 .

Case 2: 1/δ ≥ t ≥ s−d/2
2 + ε . We provide a lower bound of V1 here. Using

Proposition 6.2.21, we get

V1(t,q) &
1
q

2q(s−d/2)
∑

m∈Bd
q−1\{0}

2−2tq |m|4t−2sξ2
m

=
1
q

2q(s−d/2−2t)
∑

m∈Bd
q−1\{0}

|m|4t−2sξ2
m

=
1
q

2q(s−d/2−2t)2(q−1)(4t−2s+d) ·
©­­«2−(q−1)(4t−2s+d)

∑
m∈Bd

q−1\{0}

|m|4t−2sξ2
m

ª®®¬
=

1
q

2(q/2−1)(4t−2s+d)α(4t − 2s + d,q − 1) .

By Lemma 6.2.17, limq→∞ α(4t − 2s + d,q − 1) = γ(4t − 2s + d) > 0 uniformly for
1/δ ≥ t ≥ s−d/2

2 + ε . Since limq→∞
1
q 2(q/2−1)(4t−2s+d) = ∞, we get limq→∞V1(t,q) =

∞ and its growth rate is & 1
q 2(q/2−1)(4t−2s+d).

Case 3: s−d/2
2 − ε ≥ t ≥ d/2 + δ. We provide a lower bound on V1 here. Similarly

to our analysis in Case 2, we have

V1(t,q) &
1
q

2q(s−d/2−2t)
∑

m∈Bd
q−1\{0}

|m|4t−2sξ2
m

&
1
q

2q(s−d/2−2t)ξ2
1 .

Then, it holds that

P(
1
q

2q(s−d/2−2t)ξ2
1 ≥ 2q(s−d/2−2t)/2) = P(ξ2

1 ≥ q2−q(s−d/2−2t)/2) → 1

as q → ∞. Thus, we get limq→∞V1(t,q) = ∞ uniformly for this range of t and the
growth rate is & 2q(s−d/2−2t)/2. We have finished the analysis of the numerator. Now
we proceed to analyze the denominator, which comprises the norm term. From
Proposition 6.2.16, we have

‖u(·, t,q)‖2t ' 2−q(2s−2t)ξ2
0 +

∑
m∈Bd

q \{0}

|m|2t−2sξ2
m , (C.1.8)

where {ξm}m∈Bd
q
are independent unit scalar Gaussian random variables. Recall that

our final target in this theorem is to show that, for any ε > 0,

lim
q→∞
P[sKF(q) ∈ (

s − d/2
2

− ε,
s − d/2

2
+ ε)] = 1 .
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Let Iε = [d/2 + δ,1/δ]/[ s−d/2
2 − ε, s−d/2

2 + ε]. By rewriting the loss function, it
suffices to show

lim
q→∞
P[

V1(
s−d/2

2 ,q)

‖u(·, s−d/2
2 ,q)‖2s−d/2

2

≥ inf
t∈Iε

V1(t,q)
‖u(·, t,q)‖2t

] = 0 .

Let us write

r(t,q) =
V1(t,q)

V1(
s−d/2

2 ,q)
·

‖u(·, s−d/2
2 ,q)‖2s−d/2

2

‖u(·, t,q)‖2t
, (C.1.9)

then all we need is to show

lim
q→∞
P[inf

t∈Iε
r(t,q) ≤ 1] = 0 .

For t ∈ I1
ε = [d/2 + δ,

s−d/2
2 − ε], according to the analysis for the numerator, we

have that for some constant C independent of q,

lim
q→∞
P[inf

t∈I1
ε

V1(t,q)
2q(s−d/2−2t)/2 ≥ C] = 1 , (C.1.10)

and also, V1(
s−d/2

2 ,q) remains uniformly bounded for q ∈ N. Furthermore, the
equation (C.1.8) implies the following relation:

inf
t∈I1

ε

‖u(·, s−d/2
2 ,q)‖2s−d/2

2

‖u(·, t,q)‖2t
& 1 , (C.1.11)

due to the inequality t ≤ s−d/2
2 − ε . Combining the above two estimates in

(C.1.10)(C.1.11), and recalling the expression for r(t,q) in (C.1.9), we get

lim
q→∞
P[inf

t∈I1
ε

r(t,q) ≤ 1] = 0 . (C.1.12)

Then, let I2
ε = [

s−d/2
2 + ε,1/δ]. We also need to show limq→∞ P[inft∈I2

ε
r(t,q) ≤

1] = 0, or equivalently,

lim
q→∞
P[

‖u(·, s−d/2
2 ,q)‖2s−d/2

2

V1(
s−d/2

2 ,q)
≤ sup

t∈I2
ε

‖u(·, t,q)‖2t
V1(t,q)

] = 0 .

Since V1(
s−d/2

2 ,q) remains bounded according to the result in the above Case 1, it
suffices to show

lim
q→∞

sup
t∈I2

ε

‖u(·, t,q)‖2t
V1(t,q)

= 0
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in probability. Using the estimate ofV1(t,q) inCase 2 thatV1(t,q) & 1
q 2(q/2−1)(4t−2s+d),

it suffices to show

lim
q→∞

sup
t∈I2

ε

q2−(q/2−1)(4t−2s+d)‖u(·, t,q)‖2t = 0 .

To achieve this, we recall the expression of the norm term and write

q2−(q/2−1)(4t−2s+d)‖u(·, t,q)‖2t

'q2−q(s+d)+4t−2s+dξ2
0 + q2−(q/2−1)(4t−2s+d)

∑
m∈Bd

q \{0}

|m|2t−2sξ2
m

Clearly, the first term on the right hand side converges to 0, so we only need to deal
with the second term. Let

β(t,q) = q2−(q/2−1)(4t−2s+d)
∑

m∈Bd
q \{0}

|m|2t−2sξ2
m .

Consider t ∈ [s − d/2 + ε′,1/δ] where ε′ is a parameter to be tuned. We have
2t − 2s + d ≥ ε′ > 0 so we are able to write

β(t,q) = q2−(q/2−1)(4t−2s+d)2q(2t−2s+d)α(2t − 2s + d,q)

= q2−q(s−d/2)+4t−2s+dα(2t − 2s + d,q) .

By Lemma 6.2.17, limq→∞ α(2t−2s+d,q) = γ(2t−2s+d) in probability uniformly
for t ∈ [s − d/2 + ε′,1/δ]. Since limq→∞ q2−(q/2−1)(4t−2s+d)2q(2t−2s+d) = 0, we get
limq→∞ supt∈[s−d/2+ε ′,1/δ] β(t,q) = 0.
For t ∈ [ s−d/2

2 + ε, s − d/2 + ε′], we have the estimate

q2−(q/2−1)(4t−2s+d) ≤

(
q2−(q/2−1)(4t−2s+d)

)
t= s−d/2

2 +ε
= q2−2qε+4ε ,

and ∑
m∈Bd

q \{0}

|m|2t−2sξ2
m ≤

∑
m∈Bd

q \{0}

|m|−d+2ε ′ξ2
m

where we have used the fact that t is upper bounded by s − d/2 + ε′. Hence,

sup
t∈[ s−d/22 +ε,s−d/2+ε ′]

β(t,q) ≤ q2−2qε+4ε
∑

m∈Bd
q \{0}

|m|−d+2ε ′ξ2
m

= q2−2qε+4ε22qε ′α(2ε′,q) .

Now, we set ε′ = ε/2 such that limq→∞ q2−2qε+4ε22qε ′ = 0. Lemma 6.2.17 leads to
limq→∞ α(2ε′,q) = γ(2ε′) < ∞, fromwhichwe can conclude limq→∞ supt∈I2

ε
β(t,q) =

0. Therefore, we get
lim

q→∞
P[inf

t∈I2
ε

r(t,q) ≤ 1] = 0 . (C.1.13)
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Combining (C.1.12) and (C.1.13) gives

lim
q→∞
P[inf

t∈Iε
r(t,q) ≤ 1] = 0 . (C.1.14)

Based on the definition of r(t,q) in (C.1.9) and the arguments therein, we obtain

lim
q→∞
P[sKF(q) ∈ (

s − d/2
2

− ε,
s − d/2

2
+ ε)] = 1 ,

from which the consistency of the KF estimator follows. �
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