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ABSTRACT

Thin-shell structures are becoming increasingly popular for space missions due to
their high stiffness-to-mass ratio, easy folding and coiling, and self-deployment us-
ing stored strain energy. Broadly, two deployment strategies exist: 1) controlled
or deterministic, and 2) unconstrained. Controlled deployment involves carefully
orchestrated events using control or guidance systems, while in unconstrained de-
ployment, the structure is simply allowed to self-deploy with minimal guidance.
Unconstrained deployment offers lighter deployment mechanisms and better pack-
aging efficiency but the unpredictability of this process has been a significant obstacle
to its adoption.

This study focuses on demonstrating the predictability of unconstrained dynamic
deployment of thin-shell structures, using the Caltech Space Solar Power Project
(SSPP) structures as a case study. The Caltech SSPP uses composite triangu-
lar rollable and coilable longerons as the primary building blocks to create large
bending-stiff structures. The specific objective is to improve the predictability and
robustness of the unconstrained dynamic deployment of the Caltech SSPP structures.
Deployment is influenced by the initial conditions and the interaction between the
structure and the mechanism during the deployment. To understand these effects,
high-fidelity numerical simulations are developed and validated against experiments.
The study also examines the sensitivity of deployment characteristics to various de-
sign parameters and external influences to ensure the robustness of deployment.

This research demonstrates that the interaction between the structure and the de-
ployment mechanism must be minimal to ensure the predictability of deployment,
as thin-shell structures can self-deploy using stored strain energy. This study’s
sensitivity analysis will inform the design of future SSPP deployment mechanisms
and structures. Additionally, the numerical simulation techniques developed have
broader applicability beyond this specific case study to any deployable thin-shell
structure.

Due to the large aspect ratios of thin-shell structures, a very fine finite element mesh
is required to model them accurately. A dense finite element mesh is also required
to model the contact interactions between the structure and the rigid components
of the deployment mechanism. As large spacecraft structures become increas-
ingly complex, full-scale numerical modeling becomes impractical, necessitating
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the search for more computationally efficient finite element methods. In this study,
NURBS-based isogeometric analysis is explored, and it is shown that it is not yet
worth switching to NURBS-based elements for the analysis of thin-shell deployable
structures. In addition, h-adaptive meshing for quadrilateral shell elements is inves-
tigated, and more efficient refinement indicators and solution mapping techniques
for nonlinear analyses are proposed and their superior performance is demonstrated
using a test case of quasi-static folding of a tape spring.

This thesis fills a gap in the literature on unconstrained dynamic deployment of
space structures, providing crucial insights and numerical modeling tools for fur-
ther research. It establishes a knowledge and resource foundation to advance space
structure design and promote more frequent use of unconstrained deployment, mark-
ing a pivotal contribution to the field and enabling safe and efficient space structure
deployment. Furthermore, the study provides insights into more computationally
efficient finite element methods, such as h-adaptive meshing. These insights are
broadly applicable and can inform the design of future deployable structures beyond
the tested cases.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation

Deployable structures are designed to be compact and easy to transport, but can

unfold and expand to create a large and stable structure. The concept of deployable

structures has been around for many centuries and has been used extensively in a

wide range of applications, both on the ground and in space.

Deployable structures are particularly useful for space applications because they

o�er a practical solution to the challenges of weight and volume. They can be

e�ciently packed for launch and then deployed in space to form large structures that

would otherwise be impossible to launch in their fully assembled states. This helps

to reduce the cost and complexity of launching payloads into space.

While majority of the deployable spacecraft �own to space used rigid elements such

as trusses or panels to support lightweight surfaces, the more recent deployable

space structures utilize thin-shell components due to their lightweight and �exible

nature. Thin-shell structures are better than their rigid counterparts because they

o�er a higher sti�ness-to-mass ratio, higher packaging e�ciency, and simpli�ed

actuation. Their curved cross-sections provide high moments of inertia, resulting

in high bending sti�ness despite their thin walls. Additionally, the shape of their

cross-section allows them to be elastically collapsed and often coiled into compact

volumes. Some examples of space missions utilizing thin-shell deployable compo-

nents include the Roll-Out Solar Array (ROSA) [2], NASA's Advanced Composite

Solar Sail System [3], and MARSIS radar antenna consisting of �attenable and

foldable tubes [4].

There are two main types of deployment strategies for thin-shell deployable struc-

tures: controlled or deterministic deployment and unconstrained deployment. Con-

trolled deployment involves a carefully orchestrated sequence of events to deploy

the structure, typically using motors or other actuators. This approach ideally allows

for a high degree of predictability and accuracy in the deployment process, ensuring

that the structure unfolds exactly as planned. However, the required deployment

mechanism for controlled deployment would be complex and the complexity may

increase with the size of the structure. This results in lower packaging e�ciency and
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higher launch costs. Examples of space missions that use this type of deployment

are plenty. James-Webb Space Telescope, NASA's Advanced Composite Solar Sail

System are a few examples.

On the other hand, in unconstrained deployment, the structure is simply released

and allowed to deploy on its own by releasing the stored strain energy. The deploy-

ment may, however, be guided by pulling the structure outward at speci�c points.

Unconstrained deployment has been rarely used in space missions as it can be

less predictable and more di�cult to control once the deployment process begins.

However, since unconstrained deployment does not require extensive control and

guidance systems to guide the deployment at every step, it can potentially lead to

lighter and more e�cient deployable spacecraft. Also for this reason, such a de-

ployment can be quite complex and challenging to predict. An example of a space

mission that uses unconstrained dynamic deployment is the Caltech Space Solar

Power Project (SSPP).

The majority of the space structures that use thin-shell deployable components use

them as antennas [5], hinges [6]�[8], deployable booms [9]�[11], and compression

elements to support and pretension thin membranes ([2], [12]). This means that

only a small part or a small percentage of the overall spacecraft has stored strain

energy in the stowed con�guration. On the other hand, the innovative architecture of

Caltech Space Solar Power Project (SSPP) utilizes thin-shell foldable and coilable

components as the primary building blocks to create large bending-sti� structures

(Figure 1.1. A signi�cant percentage of the overall spacecraft has stored strain

energy when stowed and hence an unconstrained deployment is the ideal choice.

The Caltech SSPP conceptualizes a constellation of spacecraft that host functional

elements to collect solar energy in space and wirelessly transmit them to a receiving

stating on the Earth. The modular structural architecture of each spacecraft (Figures

1.1 1.2, and 1.3) consists of bending-sti� trapezoidal strips built from two foldable

composite longerons with a TRAC cross-section [13] each that are connected by

battens. The strips form structurally independent modules and are attached to

diagonal cords suspended between the tips of four diagonal booms and a central

mechanism.

Studies of the fundamentals of unconstrained deployment are relatively rare. Major-

ity of the structural design approaches in the current literature only consider stowed

and deployed con�gurations [14]. However, it is crucial to consider the intermedi-

ate dynamics of deployment to optimize the design of the structures as well as the
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