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ABSTRACT

In this thesis, we explore various topics in gravitational wave physics, including
black hole spectroscopy, dynamical tides of neutron stars, numerical relativity, and
modified theories of gravity.

In our study of black hole spectroscopy, we develop a novel framework for identi-
fying quasinormal modes in ringdown signals. We apply this method to numerical-
relativity waveforms of binary black hole systems and find second-order and ret-
rograde quasinormal modes in the ringdown regime. We also apply this method
to GW150915, resulting in new insights into the existence of the first overtone.
On the other hand, we explore how the excitation of quasinormal modes encodes
information about binaries’ parameters. Focusing on superkick configurations, we
find universal dependence of the mode amplitudes and phases on the binary’s con-
figurations.

Tidal effects have significant imprints on gravitational waves emitted during the
final stage of the coalescence of binaries involving neutron stars. We examine how
dynamical tides can be significant when neutron stars’ characteristic oscillations
become resonant with orbital motion, and we investigate their impact on measuring
neutron-star parameters with gravitational waves. Specifically, we conduct system-
atic studies on the tidal excitation of fundamental and Rossby modes of spinning
neutron stars and find that their effects may be significant and detectable in the era
of third-generation gravitational-wave detectors, which in turn could lead to more
stringent constraints on the properties of neutron stars.

Regarding numerical relativity, we implement a fully relativistic three-dimensional
Cauchy-characteristic matching algorithm to establish a more accurate boundary
condition for numerical-relativity simulations. We justify the correctness of the
algorithm by nonlinearly propagating gravitational-wave pluses and find that the new
boundary condition does reduce spurious numerical reflection at outer boundaries
and improves the accuracy of the generated waveforms. The second part focuses
on the initial data of binary black holes for numerical simulations. We extend
the superposed harmonic initial data, which breaks down for high-spin black holes
(dimensionless spin > 0.7), to higher spins by introducing a new spatial coordinate
system: superposed modified harmonic. We find that the new initial data preserves a
nice property of the superposed harmonic system: the suppression of junk radiation.
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Furthermore, we find that the volume-weighted constraint violations for the new
initial data converge with numerical resolution during the junk stage, which means
there are fewer high-frequency components at outer spacetime regions.

Finally, we investigate the features of gravitational waves within theories beyond
general relativity, focusing on two specific aspects. First, we present a numerical-
relativity simulation of a black hole-neutron star merger in scalar-tensor gravity with
binary parameters consistent with the gravitational wave event GW200115. We
consider the Damour-Esposito-Farèse extension to Brans-Dicke theory and find that
the scalar-tensor system evolves faster than its general-relativity counterpart due to
dipole radiation, merging a full gravitational-wave cycle before the GR counterpart.
We also compare the numerical waveforms with post-Newtonian theory and find
good agreement during the inspiral. Second, we propose a new approach, based
on numerical-relativity waveforms, for reconstructing the late-time near-horizon
geometry of merging binary black holes and computing gravitational-wave echoes
from exotic compact objects. We use a physically-motivated way to impose boundary
conditions near the horizon and apply the Boltzmann reflectivity to compute the
quasinormal modes of non-rotating ECOs, as well as gravitational-wave echoes.
Additionally, we investigate the detectability of these echoes in current and future
detectors and prospects for parameter estimation.
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spherical-spheroidal mixing modes from original waveforms (black
curves), filtered waveforms (red curves) contain oscillations that are
consistent with the sum tone of 2𝜔220 or 𝜔220 + 𝜔330 (green dashed
curves). As for the harmonics ℎ55 and ℎ54, the comparison is done
in the superrest frame to avoid other mixing modes. . . . . . . . . . . 51
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2.8 Leakage of the 𝜔220 mode into the ℎ21 harmonic due to the grav-
itational recoil. After removing 𝜔21,𝑛=0...2 and 𝜔31,𝑛=0,1 from the
original ℎ21 waveform (black curve), the red curve exhibits the pres-
ence of the 𝜔220 mode (yellow dashed curve). If we transform the
waveform to the superrest frame (blue curve) and repeat our filtering
process, the mixing mode 𝜔220 will be completely removed (green
curve). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.9 Retrograde mode −𝜔∗2−20 in the ringdown of SXS:BBH:1936. Top
panel: after removing the𝜔22,𝑛=0...3 modes and the spherical-spheroidal
mixing mode 𝜔320 from the original harmonic ℎ22 (black curve), we
reveal the presence of −𝜔∗2−20 (green dashed curve) in the residual
waveform (red curve). Bottom panel: the phase evolution of the
original waveform (black curve) and the filtered waveform (the red
curve). The phase of the original waveform decreases monotonically,
indicating that the prograde modes are dominant. However, the phase
of the filtered waveform starts to grow at the same time as the resid-
ual oscillations in the top panel appear, which demonstrates that the
residual oscillations are retrograde modes. . . . . . . . . . . . . . . . 55

2.10 Same as Fig. 2.9, the retrograde mode−𝜔∗2−20 in the ℎ22 of SXS:BBH:1107. 56
2.11 The up-mode solution of an ECO. We assume that a GW emerges

from the horizon (𝑟∗ = −∞) and its amplitude is unity. It bounces
back and forth within the cavity formed by the ECO surface and the
BH potential. The GW seen by an observer at infinity consists of the
main transmissive wave 1/𝐷out

𝑙𝑚
and a series of echoes. . . . . . . . . 57

2.12 The filter F 𝐷 ECO
𝑙𝑚

of a nonspinning ECO in the time domain. In the
top panel, we set 𝑏 to 200𝑀 𝑓 (blue) and 300𝑀 𝑓 (red), while fixing the
value of 𝜖 to 10−1. They are compared with that of a Schwarzschild
BH (black). In the bottom panel, we choose 𝜖 = 10−1, 10−2, 10−3

(blue, red and yellow) and set 𝑏 to 200𝑀 𝑓 . In both cases, the original
signal (around 𝑡 ∼ 0) remains unchanged. The perturbation appears
as periodic echoes with the time interval 2𝑏. The amplitude of the
𝑛th echo is proportional to 𝜖𝑛. . . . . . . . . . . . . . . . . . . . . . 58

2.13 Same as Fig. 2.12. The real part of F 𝐷22 in the frequency domain. . . 59
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2.14 The ringdown RSS of the filtered waveform as a function of 𝜒 𝑓 .
The SXS:BBH:0207 waveform is used. The six panels correspond
to different choices of the start time, i.e., 𝑡0 in Eq. (2.30). In each
panel, different colors indicate the results from removing different
numbers of overtones. When 𝑡0 is large (∼ 50𝑀 𝑓 ), the true value
of the spin 𝜒true

𝑓
= 0.692 leads to the smallest RSS no matter how

many overtones are removed. However, if we push 𝑡0 to an early time,
enough overtones need to be removed to obtain the true value. On the
other hand, the RSS depends strongly on 𝜒 𝑓 : a 2% change in 𝜒 𝑓 can
result in around two orders of magnitude change in the RSS, when 𝑡0
and 𝑁 are fixed to their true values. . . . . . . . . . . . . . . . . . . 62

2.15 Continuation of Fig. 2.14, except that the onset of the ringdown
window 𝑡0 is set to −10𝑀 𝑓 . . . . . . . . . . . . . . . . . . . . . . . 63

2.16 Contours of RSS with varying 𝑀 𝑓 and 𝜒 𝑓 . To avoid redundancy, we
set 𝑡0 to 0 and choose 𝑁 = 2 (left panels) and 𝑁 = 7 (right panels).
In the top row, we explore the parameter space near the true remnant
properties, whereas in the bottom row we investigate a larger area.
The true remnant mass and spin are marked with a cross. The effects
of 𝑀 𝑓 and 𝜒 𝑓 are degenerate—their difference is more constrained
than their sum. In addition, we find there is a second local minimum
in Fig. 2.16c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.17 An explanation for the second local minimum in Fig. 2.16c. The blue
dashed line corresponds to the original harmonic ℎ22 of SXS:BBH:0207.
Using the true remnant properties, the corresponding QNMs are re-
moved (red curve). However, it has a larger amplitude at around
0. This is because adjacent overtones contribute destructively to the
original waveform. Fewer QNMs reduce this cancellation and lead to
a larger amplitude. On the contrary, using the remnant properties at
the second local minimum (black curve), the amplitude of the origi-
nal waveform diminishes even though the corresponding QNMs are
not filtered away. As a result, two systems lead to similar RSS. . . . . 65

2.18 Same as Fig. 2.16, except that the real and imaginary parts of the
fundamental mode are used as two independent variables. The start
time 𝑡0 is set to 50𝑀 𝑓 . Similar to Fig. 2.16c, there is a second local
minimum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.19 Same as Fig. 2.12, but for a spinning ECO with 𝜒 𝑓 = 0.692. . . . . . 70
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2.20 Same as Fig. 2.13, but for a spinning ECO with 𝜒 𝑓 = 0.692. . . . . . 71
2.21 Same as Fig. 2.14, but with varying 𝑀 𝑓 and fixed 𝜒 𝑓 . . . . . . . . . . 72
3.1 Poles of the filtered waveform [Eq. (3.10)] on the complex plane.

Two poles are in the lower half-plane (blue crosses), contributed by
the original waveform in Eq. (3.9). The other two (yellow stars)
are in the upper half-plane, coming from the filter F𝑙𝑚𝑛. The red
dashed curve corresponds to the time regime of 𝑡 > 𝑡0. Before
𝑡0, the time-domain signal is contributed by the two ring-up modes
𝑓 = ± 𝑓𝑙𝑚𝑛 + 𝑖/(2𝜋𝜏𝑙𝑚𝑛) outside the closed region. After 𝑡0, the two
ringdown modes 𝑓 = ± 𝑓𝑙′𝑚′𝑛′ − 𝑖/(2𝜋𝜏𝑙′𝑚′𝑛′) contribute. . . . . . . . 95

3.2 Comparison of the one-sided PSDs of the filtered and unfiltered noise.
The top panels show results in (a) band-limited white noise∼ N(0, 1)
and (b) simulated Hanford noise. The filtered and unfiltered PSDs
of the raw data are shown in black and red, respectively. The bottom
panels show results in (c) LIGO Hanford and (d) LIGO Livingston
data around the event time of GW150914. The filtered (black) and
unfiltered (red) PSDs are in perfect agreement. After conditioning
the raw data, the filtered (dashed orange) and unfiltered (dashed blue)
PSDs also overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3 Joint posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 evaluated with Eq. (3.25).
The GW150914-like NR waveform is injected into band-limited
white noise. The top and bottom panels represent Δ𝑡0 = 0 and
0.77 ms, respectively. The left and right panels show results from
applying the filter for the fundamental mode only, F220, and the filter
F221F220, respectively. The red-dashed contours display the 90%
credible region by integrating our new joint posterior in Eq. (3.25);
and the joint distribution is projected to the individual 1D space of
𝜒 𝑓 and 𝑀 𝑓 (red curves in side panels) using Eq. (3.26). The white
plus signs stand for the true value of 𝑀 𝑓 and 𝜒 𝑓 obtained from NR.
The white dashed contours show the 90% credible region from the
full-RD MCMC approach. The MCMC results are marginalized to
the 1D distributions of 𝑀 𝑓 and 𝜒 𝑓 , shown as the gray-shaded regions
in side panels. The value of the matched filter (MF) SNR is also
provided. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4 Joint posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 . Fig. 3.3 continued; more
values of Δ𝑡0 are tested. . . . . . . . . . . . . . . . . . . . . . . . . 103



xvi

3.5 Joint posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 . Fig. 3.3 continued; more
values of Δ𝑡0 are tested. . . . . . . . . . . . . . . . . . . . . . . . . 104

3.6 Model comparison at different Δ𝑡0 for a GW150914-like NR wave-
form injected in band-limited white noise. Top: Model evidence
as a function of Δ𝑡0, evaluated by Eq. (3.36). The blue and red
curves indicate the results after applying F220 (clean the fundamen-
tal mode only) and F22{0,1} (clean the fundamental mode and the
first overtone), respectively. The corresponding results computed
with off-source noise are shown in green and black (almost indis-
tinguishable). Middle: Bayes factor (𝐾221) of the existence of the
first overtone over fundamental mode only (red curve), calculated by
Eq. (3.37). As a comparison, the green curve shows the Bayes factor
evaluated with the off-source noise. We take 𝐾221 = 1 as a bench-
mark, indicated by the horizontal dashed line. Bottom: Distance (𝜖)
of the MAP values of 𝑀 𝑓 and 𝜒 𝑓 to the true values, calculated by
Eq. (3.38). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.7 Joint posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 for GW150914 (data col-
lected by the two Advanced LIGO detectors are used). Similar to
Fig. 3.3. The top and bottom panels represent Δ𝑡0 = 0 and 0.77 ms,
respectively. The left and right panels show results from applying
the filter for the fundamental mode only, F220, and the filter F221F220,
respectively. The red-dashed contours display the 90% credible re-
gion by integrating our new joint posterior in Eq. (3.25); and the joint
distribution is projected to the individual 1D space of 𝜒 𝑓 and 𝑀 𝑓

(red curves in side panels), using Eq. (3.26). The white plus signs
stand for the parameters estimated from the whole IMR waveform.
The white dashed contours show the 90% credible region from the
full-RD MCMC approach. The MCMC results are marginalized to
the 1D distributions of 𝑀 𝑓 and 𝜒 𝑓 , shown as the gray-shaded regions
in side panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.8 Joint posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 for GW150914. Fig. 3.7
continued; more values of Δ𝑡0 are tested. . . . . . . . . . . . . . . . 109

3.9 Joint posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 for GW150914. Fig. 3.7
continued; more values of Δ𝑡0 are tested. . . . . . . . . . . . . . . . 110
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3.10 Model comparison at differentΔ𝑡0 for GW150914. Similar to Fig. 3.6.
Top: Model evidence as a function of Δ𝑡0. The blue and red curves
indicate the results for applying F220 (clean the fundamental mode
only) and F22{0,1} (clean the fundamental mode and the first over-
tone), respectively. Middle: Bayes factor (𝐾221) of the existence of
the first overtone over fundamental mode only (red curve). The hor-
izontal dashed and dash-dotted green lines indicate the mean value
and the standard deviation within the regime of Δ𝑡0 ∈ [15, 100]ms,
respectively. The red Bayes factor curve intersects the “1𝜎+mean”
line at a time of Δ𝑡0 = 1.9 ms, indicating the time when the first over-
tone becomes negligible (vertical dashed line). Bottom: Distance (𝜖)
of the MAP values of 𝑀 𝑓 and 𝜒 𝑓 to the values estimated from the
whole IMR signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
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3.11 Estimates of the mode amplitudes and BH properties for the injected
signal using the mixed approach. The top panels display the posterior
distributions of (a) the fundamental mode amplitude 𝐴0, and (b) the
first overtone amplitude 𝐴1, evaluated at Δ𝑡0 = 1.5 ms under various
filtering conditions. The blue-shaded distributions are obtained via
the full-RD MCMC method (without applying the filter). The green
dashed curves correspond to removing the 𝜔220 mode using F220

first and fitting the data with a two-QNM (𝜔220 and 𝜔221) signal
template. The same F220-filtered data are also fitted with the one-
QNM (𝜔221) signal template, resulting in the 𝐴1 distribution shown
in yellow in (b). Similarly, the black dashed curves correspond to
removing the 𝜔221 mode using F221 first and fitting the data with a
two-QNM (𝜔220 and𝜔221) signal template. The F221 filtered data are
then fitted with the one-QNM (𝜔220) signal template, resulting in the
𝐴0 distribution shown in red in (a). The two vertical lines indicate
the true values of 𝐴0 = 148 and 𝐴1 = 143, computed from the NR
waveform. The bottom panels show the posterior distributions of
𝑀 𝑓 and 𝜒 𝑓 estimated at (c) Δ𝑡0 = 1.5 ms, and (d) Δ𝑡0 = 1.0 ms.
The yellow curves indicate the results obtained by fitting the 𝜔220-
cleaned data with a𝜔221-only template. The red curves are the results
obtained by fitting the 𝜔221-cleaned data with a 𝜔220-only template.
The blue dashed curves are the results from the full-RD MCMC
analysis without applying any filter. The two contours in each color
correspond to the 90% and 10% credible intervals. . . . . . . . . . . 116

3.12 Ratio between the cumulative SNRs of the first overtone and the
fitting residual as a function of Δ𝑡0. The 𝑙 = 𝑚 = 2 harmonic of
the GW150914-like NR waveform is fitted with a two-QNM model
(𝜔220+𝜔221) at different starting times. The residual is the difference
between the 𝑙 = 𝑚 = 2 harmonic in the NR waveform and the fitted
two-QNM model template. At early times, the residual corresponds
to the systematic bias due to the missing higher overtones in the
model template. The cumulative SNRs are computed via Eq. (3.39). . 119
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3.13 Estimates of the mode amplitudes and BH properties for GW150914
using the mixed approach. Similar to Fig. 3.11. See Fig. 3.11 caption
for detailed descriptions. Note that different start times are used here:
Δ𝑡0 = 0.77 ms in Fig. 3.13a, 3.13b and 3.13c, and Δ𝑡0 = 0.1 ms in
Fig. 3.13d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.14 Posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 for GW150914 estimated at
Δ𝑡0 = 0.77 ms. The gray contours are obtained from the conventional
full-RD MCMC analysis, where the unfiltered data (without mode
cleaning) are fitted with the fundamental-mode-only template. The
red contours are the same as the ones in Fig. 3.13c, where we first
apply the filter F221 to remove the first overtone, and then fit the
filtered data with the template of the fundamental mode. . . . . . . . 121

3.15 Posterior distributions of 𝑀 𝑓 (top) and 𝜒 𝑓 (bottom) solely inferred
from the first overtone in the ringdown of GW150914, at differentΔ𝑡0
times. We first apply the filter F220 to remove the fundamental mode,
and then fit the filtered data with the template of the first overtone.
We set uniform priors in the ranges of 𝑀 𝑓 ∈ [35𝑀⊙, 140𝑀⊙] and
𝜒 𝑓 ∈ [0, 0.99] (as shown in the horizontal axes in the plot). The
vertical dashed lines indicate the estimates obtained from the full
IMR signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.16 Reproduce the estimates of 𝑀 𝑓 and 𝜒 𝑓 in Figs. 3.11c and 3.11d,
using the filters. The top and bottom panels are for Δ𝑡0 = 1.5 ms (cf.
Fig. 3.11c) and 1.0 ms (cf. Fig. 3.11d), respectively. The left and
right columns correspond to analyzing the fundamental mode only
(cf. red contours in Fig. 3.11) and analyzing the first overtone only
(cf. yellow contours in Fig. 3.11), respectively. The filters used to
clean either the first overtone in the left panels or the fundamental
mode in the right panels are built with the true values of 𝑀 𝑓 and 𝜒 𝑓
for the injected system. The red and yellow contours in Figs. 3.11c
and 3.11d are shown as white dashed contours in this figure. . . . . . 128
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3.17 Reproduce the estimates of 𝑀 𝑓 and 𝜒 𝑓 in Figs. 3.13c and 3.13d,
using the filters, for GW150914. Similar to Fig. 3.16. See Fig. 3.16
caption for detailed descriptions. The top and bottom panels are for
Δ𝑡0 = 0.77 ms and 0.1 ms, respectively. The filters used to remove
either the first overtone in the left panels or the fundamental mode
in the right panels are built with the estimated 𝑀 𝑓 and 𝜒 𝑓 from the
IMR signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.18 Contours of likelihoods as a function of fractional deviations in the
frequency (Δ 𝑓221/ 𝑓221) and decay rate (Δ𝜏221/𝜏221) of the first over-
tone after the fundamental mode is removed from GW150914 [dif-
ferent Δ𝑡0 times from (a) to (d)]. The F220 filter used to clean the
fundamental mode is built using the IMR-estimated 𝑀 𝑓 and 𝜒 𝑓 . The
fiducial values to evaluate the fractional deviations are set to the IMR
results. The red-dashed contours enclose the 2D 90% credible region.
The cyan-shaded regions on the side stand for the 1D 90%-credible
ranges of Δ 𝑓221/ 𝑓221 and Δ𝜏221/𝜏221. . . . . . . . . . . . . . . . . . . 130

4.1 Sketches for a SKu (a) and a SKd (b) system. Two arrows (in different
colors) represent two individual spins. The letter “u” and “d” refer to
the up- and down-state for the red arrow. Both SKu and SKd systems
have equal mass BHs with the same dimensionless spin magnitude
𝜒init. For SKd, two individual spins are anti-parallel, whereas for
SKu, only the orbital-plane components are opposite. SKd and SKu
are fully characterized by three parameters: (𝜒init, 𝜃init, 𝜙init), where
𝜃init stands for the polar angle of one of the holes (relative to the
orbital angular momentum), and 𝜙init the azimuthal angle of the in-
plane spin measured from the line of two BHs. Three parameters are
specified at a reference time in the inspiral regime (labeled by the
subscript ‘init’). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
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4.2 QNM magnitudes versus 𝜙init for mass (𝒜 (𝐼)) and current (𝒜 (𝑆))
quadrupole waves. Data are from 12 of our NR simulations listed in
Table 4.1. All BBH systems are in the SKd configuration. Fig. 4.2
(a) corresponds to 𝒜

(𝐼) , where the left eight panels are the zoom-in
plot for each overtone. The overtone index 𝑛 is in descending order.
Similarly, Fig. 4.2 (b) corresponds to 𝒜

(𝑆) . The spectra peak at
𝑛 = 4 (because the n=4 amplitude is largest), and patterns are roughly
periodic with a period 2𝜋. Examining the zoomed in plots, it can be
seen that approximately, the patterns are the same for all 𝑛 (up to a
scaling factor). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.3 The dependence of 𝜑(𝐼)𝑛 , 𝜑(𝑆)𝑛 , as well as their difference, on 𝜙init.
It turns out that 𝜑(𝐼)𝑛 is roughly insensitive to 𝜙init, whereas 𝜑(𝑆)𝑛 is
approximately linear in 𝜙init. . . . . . . . . . . . . . . . . . . . . . . 146

4.4 An illustration for the EMRI-parameterization (𝐼, 𝜃fin) and the SKd-
parameterization (𝜃init, 𝜙init). The origin is chosen to be one of the
BHs. Following the discussion of Hughes et al. [105–107], 𝐼 is
defined to be the angle between L (the red arrow) and S (the purple
arrow), while 𝜃fin is the angle between the S (the purple arrow) and
the orbital separation vector (the blue dashed line). For the SKd-
parameterization, 𝜙init is the angle between the in-plane spin (the red
dashed horizontal line) and the orbital separation vector (the blue
dashed line), whereas 𝜃init is the angle between L (the red arrow) and
S (the purple arrow). The connection between two parameterizations
is given by Eq. (4.8). . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.5 The fundamental mode amplitude and phase versus initial spin con-
figuration (𝐼, cos 𝜃fin). Those two independent variables are cho-
sen since they coincide with the variables used in Ref. [105] [see
Eq. (4.8)]. Data are obtained from NRSur7dq4. All BBH systems
are in the SKd configuration with 𝜒init = 0.4. Points are drawn
with two colors, where blue stands for sin 𝜙init < 0 while red for
sin 𝜙init > 0. The second and fourth rows are results of ℎ2,2 for some
𝐼−slices, while the third and fifth rows correspond to ℎ2,−2. . . . . . . 148

4.6 The overtone mode amplitudes A2,+2𝑛 (𝑛 = 1 − 6) versus cos 𝜃fin,
with the same convention as Fig. 4.5. The data are from our SKd4
runs listed in Table 4.1, which corresponds to 𝐼 = 𝜋/2. . . . . . . . 149
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4.7 The integrand of Eq. (4.17) for the SKd4–‘06’ system. The majority
kick velocity is accumulated around 𝑡 ∼ 0𝑀 , and the final kick is
4.75 × 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.8 The time evolution of 𝐼22 (upper row) and 𝑆22 (bottom row) for
the SKd4–‘03’ system, where 𝑡 = 0𝑀 stands for the peak of strain
amplitude. The mass (𝐼22) and current (𝑆22) quadrupole waves are
compared to PN formulas [Eq. (4.18)] during the inspiral stage, and
to QNMs (7 overtones) in the ringdown regime. . . . . . . . . . . . 153

4.9 Parity inversion of a SKd BBH system. We use arrows to represent the
spin direction of BHs, and wavy lines to stand for the GW propagating
direction. The complex strain of a SKd system is totally determined
by two extrinsic parameters (𝜄, 𝛽), and three intrinsic parameters
(𝜒init, 𝜃init, 𝜙init). Here the intrinsic parameters are the spin of the left
BH. The properties of the right BH are determined based on the SKd
condition. Figs. 4.9 (a) and (b) are related by a parity inversion: two
BHs exchange their locations while having their own spins fixed. As
a result, the GW propagation direction and both spins change sign,
i.e., (𝜄, 𝛽) ←→ (𝜋 − 𝜄, 𝜋 + 𝛽) and (𝜃init, 𝜙init) ←→ (𝜋 − 𝜃init, 𝜋 +
𝜙init). Figs. 4.9 (b) and (c) are related by a 𝜋-rotation about the
orbital angular momentum. Thus we have (𝜄, 𝛽) ←→ (𝜄, 𝜋 + 𝛽) and
(𝜃init, 𝜙init) ←→ (𝜋 − 𝜃init, 𝜙init). . . . . . . . . . . . . . . . . . . . . 154

4.10 The time evolution of the real part of the normalized 𝑆22 (upper
row), the real part of the normalized 𝐼22 (middle row), as well as
ΔΦIS − 𝜙init (bottom row), using the SKd BBH configuration from
NRSur7dq4. The imaginary part is similar. We sample in total of
180 cases with different 𝜃init ∈ [0, 𝜋] (left column), 𝜒init ∈ [0, 0.8]
(middle column), and 𝜙init ∈ [0, 2𝜋] (right column), and plot them
on top of each other. ‘Max Residual’ is defined to be the maximum
difference of all cases at each time step. The normalized 𝐼22 and 𝑆22

are insensitive to (𝜒init, 𝜃init, 𝜙i𝑛𝑖𝑡), to the level of ∼ 0.1% − 30%. . . . 156
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4.11 The peak value of mass quadrupole wave 𝐼𝑚22 as a function of 𝜙init. We
use SKd4 systems listed in Table 4.1. The black curve is from NR-
Sur7dq4, whereas points are from NR simulations. Colors (labeled
by Lev) correspond to numerical resolutions, where “Lev 1” stands
for the lowest resolution. Predictions of NRSur7dq4 are consistent
with NR results: 𝐼𝑚22 oscillates with 𝜙init on the level of ∼ 0.36%,
around a base value ∼ 0.557. . . . . . . . . . . . . . . . . . . . . . 159

4.12 The peak value of mass quadrupole wave 𝐼𝑚22 as a function of (𝜃init, 𝜙init),
with 𝜒init = 0.8 (SKd configuration). Results are from NRSur7dq4.
The pattern is symmetric about 𝜃init = 𝜋/2, and has a period 𝜋 in the
𝜙init-direction, consistent with Eq. (4.27). The contours with dashed
lines are the prediction of the PN-inspired counterpart in Eq. (4.33). . 160

4.13 The peak value of current quadrupole wave 𝑆𝑚22 as a function of
(𝜃init, 𝜙init), with 𝜒init = 0.8 (SKd configuration). The data are from
NRSur7dq4, while dashed lines are the prediction of the PN-inspired
counterpart in Eq. (4.38). . . . . . . . . . . . . . . . . . . . . . . . . 162

4.14 The time evolution of ΔΦIS for the SKd4–‘03’ system (orange curve).
It is compared to NRSur7dq4 (blue curve) with the same initial
condition. As expected, their results are close. Within the inspiral
regime, PN theory predicts ΔΦIS = 𝜙pre − 𝜙, which is shown as the
green curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.15 The evolution of ΔΦIS for SKd4 systems (Table 4.1). Eight runs
start with different 𝜙init, and their ΔΦIS are finally locked to different
values. The bottom panel is sinΔΦIS. One can directly estimate
the kick velocity from the final value of sinΔΦIS, since the kick is
roughly proportional to the integration of sinΔΦIS [Eq. (4.17)]. As
for high-kick cases, their ΔΦIS change slowly during the late post-
merger stage. This is due to the Doppler shift. . . . . . . . . . . . . . 165

4.16 The final kick velocity as a function of (𝜃init, 𝜙init), predicted by
NRSur7dq4Remnant. The component spin 𝜒init is chosen to be 0.76.
The contours with dashed lines are from Eq. (4.43) . . . . . . . . . . 166
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4.17 The BOB model for ¤ℎ22, ¤ℎ2,−2, ¤𝐼22 and ¤𝑆22 (the left and middle
columns). They are compared to the ringdown portion of SKd4–
‘03’. We also fit data with QNMs. The residuals of BOB for four
variables are all on the order of ∼ 10−3, an order of magnitude worse
than the fitting of QNMs. The right column corresponds to the
distribution of mismatch [top panel, see Eq. (4.53)], and parameter
deviation [bottom panel, see Eq. (4.55)] for QNM decomposition and
BOB, using our NR simulations listed in Table 4.1 and 4.5. BOB is
always worse than QNM fitting. . . . . . . . . . . . . . . . . . . . . 167

4.18 The SNR of an optimally oriented GW event with varying total
(detector-frame) mass 𝑀 and mass ratio 𝑞, assuming the system
is at redshift 𝑧 = 1 (6.7 Gpc) and using 𝑆𝑛 ( 𝑓 ) of the CE. . . . . . . . 171

4.19 The error ellipses of 𝜒1𝑧 and 𝜒2𝑧 (the left column), as well as 𝑀 and 𝑞
(the right column), using the data from NRSur7dq4. Two individual
spins are both aligned with the orbital angular momentum, and other
parameters are 𝑞 = 2.3, 𝜒1𝑧 = 0.1, 𝜒2𝑧 = 0.6, 𝜄 = 3𝜋/10, 𝛽 =

𝜋/2, 𝜒1𝑝 = 𝜒2𝑝 = 0. The total mass is chosen to be 160𝑀⊙ (the
upper row), 250𝑀⊙ (the middle row) and 340𝑀⊙ (the bottom row).
Three colors stand for the ringdown (black), inspiral (blue), and full
sector (red), respectively. The numbers in parentheses are SNRs,
where we normalize the total SNR of each event to 200 for comparison.172

4.20 The noise spectral density of Cosmic Explorer. . . . . . . . . . . . . 173
4.21 Similar to Fig. 4.19, the error ellipses of 𝜒1𝑧 and 𝜒2𝑧 (the first row),

and 𝜒1𝑝 and 𝜒2𝑝 (the second row), with different 𝜄 (each column).
The green dashed lines stand for the original value of each parameter.
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if the error ellipse is within the dashed lines. The BBH systems
have parameters 𝑀 = 300𝑀⊙, 𝑞 = 3.5, 𝜒1𝑧 = 0.05, 𝜒1𝑝 = 0.086,
𝜒2𝑧 = 0.606, 𝜒2𝑝 = 0.35, 𝜙1 = 𝜋/13, 𝜙2 = 43𝜋/52, 𝛽 = 𝜋/2.
The error ellipses of ringdown and inspiral portions are not in the
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including the information of ringdown, the measurement accuracy of
𝜒𝑧 is improved by a factor of ∼ 4 − 5, whereas 𝜒𝑝 is improved by a
factor of ∼ 1.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.22 Same as Fig. 4.21, except 𝑞 = 1.2. . . . . . . . . . . . . . . . . . . . 174
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4.23 Parity inversion of a SKd BBH binary system within the detector
frame. The arrow stands for the direction of incoming GW. The
system undergoes a parity inversion from (a) to (b). We further rotate
the whole system around the vertical dash line by 𝜋, which leads
to (c). Comparing (a) and (c), the polar angle of sky location 𝜃𝑆
becomes supplementary under the transformation. . . . . . . . . . . 181

5.1 The dependence of 𝑓 -mode frequencies (in the co-rotating frame) on
the spin for NS with mass 1.4𝑀⊙, following our prescription. The
H4 EoS, represented by solid lines, gives 𝜔0, |𝜔2± | = 2𝜋 × 1.51Hz
for non-spinning NS, while Γ = 2 polytrope gives 2𝜋 × 1.55Hz. The
frequencies of prograde (black line) and retrograde (blue line) modes
split due to spin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.2 The resonant GW frequency (2Ω𝑟) as functions of spin frequency for
two EoS. We also plot the contact GW frequency as a red dashed line
for comparison. The retrograde mode frequency is shifted by spin to
a smaller value, which makes DT possible during the inspiral. . . . . 212

5.3 Dimensionless quadrupole moments [normalized by 𝑅3
NS in Eq. (5.56)]

induced by DT as functions of time. Red curves are results from fully
numerical evolution and black curves are from Eqs. (5.53). The ver-
tical dashed blue line denotes the time of resonance. Eqs. (5.53) are
accurate in the pre-resonance regime, but fail to describe the phasing
of post-resonance oscillation. . . . . . . . . . . . . . . . . . . . . . 214

5.4 Time evolution of dimensionless quadrupole moment �̃�. The black
line represents the formula in Eq. (5.53a) with 𝑡2 that appears in
trigonometric functions replaced by Θ [Eq. (5.59)], while the red line
is from numerical integrations. The vertical dashed line is the time
of resonance. This modification gives the correct post-resonance
phasing, but does not give accurate post-resonance amplitude nor
adiabatic evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.5 Same as Fig. 5.3, but the numerical solutions are compared with Eqs.
(5.60) and (5.61). The formula of �̃� is already accurate enough to fit
the numerical results. While the formula of �̃� without higher order
correction (blue dots) predicts a larger value near 𝑡𝑟 . The problem is
fixed after the inclusion of Eq. (5.61), which we plot as black triangles.216
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5.6 The seperation 𝑟, orbital frequency Ω/(2𝜋) and the eccentricity 𝑒
as functions of time. The initial time 𝑡 = 0 represents the location
of resonance and the endpoint corresponds to the contact separation.
Red lines are from fully numerical solutions and blue lines are the
results of osculating equations Eqs. (5.74). The spin of the upper
panel is 300Hz, and the bottom one is 550Hz. We keep both the
leading and the sub-leading terms in Eq. (5.75) in the low spin case
while only the leading term in the high spin case. . . . . . . . . . . . 226

5.7 The time evolution of effective Love number based on the PP orbit.
The red line is from our new formulae of 𝐴 and 𝐵 while the black one
is from H+16 [54, 55]. As represented by the horizontal dash line,
the effective 𝑘 asymptotically approaches 𝑘2 = 0.104 in the adiabatic
regime. The dotted vertical line represents the real resonant time and
the dash-dotted vertical line is from the pre-resonance PP orbit. . . . 228

5.8 The orbital dynamics near the resonance, by means of effective Love
number. The blue line is the result of fully numerical integration. The
red line is from our new formulae of DT, while the black one is from
H+16 [54, 55]. Same as Fig. 5.7, the dotted line and dash-dotted
line represent the resonance condition of numerical and PP evolution,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

5.9 The orbital separation as a function of time, with NS spinning at
550Hz. The vertical dashed lines indicate the time of resonance,
and the horizontal dashed lines represent the actual separation of the
system at resonance. The red curves are from numerical integrations,
while the blue curves are predictions of PP orbits. The upper blue
curves have the same initial conditions as the system we study. They
intersect with the vertical and horizontal dashed lines at “a” and “d.”
The lower blue curves are predictions of FR07 [53] (upper panel) and
our new method (lower panel), which intersect with the vertical and
horizontal dash lines at “b” and “c.” To connect the pre- and post-
resonance PP orbits, FR07 [53] proposed the time jump Δ𝑡 from “d”
to “c” at the fixed separation, while we use the angular momentum
jump (or equivalently, the separation jump) from “a” to “b” at the
fixed time 𝑡𝑟 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
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5.11 The mismatches as functions of spin frequency. We only use the
signals with frequency higher than 2Ω𝑟/(2𝜋) because we only focus
on the post-resonance dynamics. The fully numerical integrations
are compared with four models, effective Love number with H+16
[54, 55] (blue dashed line), effective Love number with our new
DT formulae (red line), our new averaged PP orbit (green line), and
osculating equations (black line). The mismatches of osculating
equations are lower than 10−3, while the method of the effective Love
number gives ∼ 0.1− 0.2 for spin higher than 370Hz. This approach
is insensitive to which DT model we use. Our new averaged PP orbit,
on the other hand, is in the middle of two other approaches. The
worst mismatch is around 3 × 10−2. . . . . . . . . . . . . . . . . . . 235

5.12 The SNRs from the resonant part of GW signals, with frequency
higher than 2Ω𝑟/(2𝜋). The faster the NS spins, the higher the SNR.
The SNR is around 0.3-3 for current detectors, but ∼ 10 − 50 for 3G
detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

5.13 Relative errors of �̃�3, �̃�4, 𝜔2 and Ω𝑠 as functions of spin from Fisher
analyses. The GW waveform is at the Newtonian order. The vertical
dotted line stands for the location where resonance happens. The
system is optimally oriented at 100Mpc, with component masses
(1.4𝑀⊙, 1.4𝑀⊙). The H4 EoS is used. . . . . . . . . . . . . . . . . 237

5.14 Same as Fig. 5.13, except the polytropic EoS is used. . . . . . . . . . 237
6.1 A BNS system𝑚1−𝑚2 with two spin vectors ®𝑆1 and ®𝑆2. The neutron

stars’ spin axis are tilted by angles 𝜓1,2 with respect to the direction
of the orbital angular momentum ®𝐿. Here the azimuthal angle of the
spins are unimportant, because the effect of precession is negligible. . 260

6.2 A co-moving coordinate system (𝑥, 𝑦, 𝑧) that centers at 𝑚1. The
companion NS 𝑚2 orbits around 𝑚1, whose orbital plane intersects
with the 𝑥 − 𝑧 plane at ®𝑁 , and intersects with the 𝑥 − 𝑦 plane at the
𝑦-axis. The orbital phase 𝜙(𝑡) is the angle between ®𝑁 and the location
of 𝑚2, ®𝑧. The orbital angular momentum ®𝐿 is in the 𝑥 − 𝑧 plane, with
polar angle 𝜓1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
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6.3 The orbital dynamics near the 𝑟-mode resonance. The BNS system
has individual masses (1.4, 1.4)𝑀⊙. One of them spins at Ω𝑠1 =

30Hz with the inclination angle 𝜓1 = 𝜋/3, whereas the other one is
non-spinning. The EoS is Γ = 2 polytrope with radius 𝑅NS = 13km.
The vertical dashed line represents for the time of resonance 𝑡𝑟 . The
pre-resonance PP orbit ¤𝜙(pre)

PP (𝑡), which has the same initial condition
as the numerical one, is compared with the numerical integration,
as shown by black curve. Before the resonance, |Δ ¤𝜙tid | is below ∼
2𝜋×10−4 Hz, which is mainly caused by the adiabatic 𝑟-mode. After
the resonance, there are some oscillatory features, which are from the
𝑟-mode oscillation. Eq. (6.38) gives the new orbital frequency after
the 𝑟-mode is excited, which is labeled by “P” in the figure. Using
“P” as a new initial condition, we obtain the other PP orbit ¤𝜙(post)

PP (𝑡).
The difference between ¤𝜙(pre)

PP (𝑡) and ¤𝜙(post)
PP (𝑡) is shown as red dashed

line, which tracks the averaged numerical result very well. . . . . . . 271
6.4 Time evolution of 𝑟-mode amplitudes, 𝐴 (upper panel) and 𝐵 (lower

panel). Black curves are from the numerical integration of Eqs.
(6.29), and red dots are from our analytic approximations in Eqs.
(6.46). The vertical dashed line is the time of resonance from numer-
ical simulation. Our analytic results agree with numerical ones to
high accuracies. Unlike 𝑓 -mode, the variable 𝐴 diverges as two NSs
become close to each other, this is caused by differences in adiabatic
tide. [see first line of Eq. (6.46a)]. . . . . . . . . . . . . . . . . . . . 274

6.5 Several EoS for NSs used in this chapter. . . . . . . . . . . . . . . . 275
6.6 NS mass-radius relation with different EoS. . . . . . . . . . . . . . . 275
6.7 The I-Love and 𝐼𝑟-Love universal relations for several EoS, as well as

the fitting formulae in Eq. (6.52). The bottom two plots are fractional
errors between true values and fitted results; errors of both relations
are within 10−2 for �̄� 𝑓 ranging from O(1) to O(104). . . . . . . . . 276

6.8 The GW phase difference induced by the 𝑟-mode DT versus GW
frequency. It is compared with the expression of Ψ𝑟 in Eq. (6.63).
The BNS system is the same as the one we used in Fig. 6.3, except
that Ω𝑠1 = 80 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
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6.10 SNR of pre- and post-resonance GW signals as functions of spin
frequency. The BNS system is (1.4, 1.35)𝑀⊙, optimally oriented
at 100Mpc. EoS is GM1. As a comparison, the horizontal dash
line is the SNR of the entire in-band signals. There is no pre-
resonance signals when 3/4𝐹0 = 3.38 Hz, because our frequency
band starts from there. Recalling that the resonant orbital frequency
is proportional to the spin frequency, then the SNR of pre-resonance
signal increases with the spin frequency. . . . . . . . . . . . . . . . . 282

6.11 Case I: relative errors of I1 (left) and Ω𝑠1 (right) as functions of 𝜓1

andΩ𝑠1, i.e., the spin configuration of𝑚1. The errorbar is in log scale.
For 𝑚2, we fix its spin configuration as Ω𝑠2 = 40 Hz, 𝜓2 = 7𝜋/18.
The EoS is GM1. Eq. (6.68) shows that both ΔI1/I1 annd ΔΩ𝑠1/Ω𝑠1

have 𝜓1 dependence: sin−2 𝜓1 cos−4 𝜓1/2. Therefore they diverge to
infinite as 𝜓1 → 0, 𝜋, and become the best when 𝜓 = 𝜋/3. In the
best scenario, the constraint on Ω𝑠1 is around 6%, and the one on I1
is 21.7%. I1 is less constrained because 𝜕ℎ/𝜕I1 is suppressed by the
factor (1 − 𝑓 / 𝑓𝑟) as 𝑓 ∼ 𝑓𝑟 [Eq. (6.64a)]. Constraints get bad when
Ω𝑠1 ∼ Ω𝑠2 = 40 Hz, because two resonances are degenerated in GW. . 283

6.12 Fractional errors of Ω𝑠1 and I1 as functions of Ω𝑠1, with different
values of 𝐹0. We set the spin configuration for 𝑚2 to be the same as
Fig. 6.11, and 𝜓1 = 𝜋/3. Fractional errors first decrease withΩ𝑠1, be-
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bad as Ω𝑠1 ∼ Ω𝑠2, since two resonances are not distinguishable. The
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place initially (at orbital frequency 𝐹0). We cannot get constraints on
I1 and Ω𝑠1 if we further decrease the spin frequency. Those curves
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6.13 Case II: fractional errors as functions of Ω𝑠1 after incorporating uni-
versal relations. The spin configuration for 𝑚2 is same as Fig. 6.11,
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𝑓
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6.14 The error ellipses of (Δ�̄�𝑎
𝑓
,Δ�̄�𝑠

𝑓
) and (Δ𝜒(𝑧)𝑎 ,Δ𝜒

(𝑧)
𝑠 ), with Ω𝑠1 = 80

Hz, Ω𝑠2 = 40 Hz, 𝜓1 = 𝜋/3 and 𝜓2 = 7𝜋/18. The black curve is
the result of PN effects (including adiabatic tidal effect and spin-orbit
coupling). The red curve is the result after including 𝑟-mode reso-
nances (with universal relations). For those ellipses, both directions
are improved by resonances. . . . . . . . . . . . . . . . . . . . . . . 287

6.15 Same as Fig. 6.14. The error ellipses between Ξ − �̄�𝑠
𝑓
− 𝜒(𝑧)𝑠 . . . . . . 288

6.16 Case II: constraints on inclination angles 𝜓𝑖 as functions of Ω𝑠1. Spin
configurations are same as Fig. 6.11 and 𝜓1 = 3𝜋/10. Generally
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6.17 Similar to the top panel of Fig. 6.14. But with only one in-band
𝑟-mode resonance. For the binary system, we choose Ω𝑠1 = 40 Hz,
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𝑟-mode of 𝑚2 is not excited in-band. The degeneracy between �̄�𝑠(𝑎)

𝑓

can still be reduced a lot. . . . . . . . . . . . . . . . . . . . . . . . . 292
6.18 Case III: constraints on several parameters in the case of BHNS

system. We choose Ω𝑠1 = 30 Hz and 𝜒(𝑧)2 = 0.1. The EoS is GM1,
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mass of BH to be 10𝑀⊙; whereas in the right panel, we study their
dependence on the mass of BH 𝑚2, with 𝜓1 = 𝜋/3. Using universal
relations, the degeneracy of parameters is totally broken, where Δ𝜓

is ∼ 1 rad, and the relative errors of 𝜒(𝑧)2 are ∼ 1%. . . . . . . . . . . 293
6.19 Mismatch between a precessing waveform 𝜒p ≠ 0 and an a non-
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6.21 Same as Fig. 6.11, but with FPS EoS. The constraints are worse than

those for GM1 by factors of ∼ 2.6 − 2.7 . . . . . . . . . . . . . . . . 303
6.22 Same as Fig. 6.13, but with FPS EoS. . . . . . . . . . . . . . . . . . 304
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7.1 Coordinate systems used in the code. The Cauchy coordinates are

used by the interior GH evolution, whereas the exterior characteristic
system adopts the partially flat Bondi-like coordinates. To achieve
their communication, two intermediate coordinate systems (the right
column) are introduced. . . . . . . . . . . . . . . . . . . . . . . . . 323



xxxi

7.2 Summary of the matching procedures discussed in Sec. 7.4. Since
one can compute the relevant characteristic quantities in either the
partially flat Bondi-like coordinates {𝑟, 𝑥 �̂�, �̂�} (top), or in the Bondi-
like coordinates {𝑟, 𝑥𝐴, 𝑢} (bottom), there are two choices to perform
the matching. In practice, Choice 2 is preferred since it is easier to
implement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

7.3 The propagation of an outgoing Teukolsky wave on a flat background,
and the corresponding numerical setup. The horizontal black line
stands for the radial direction of the spatial domain for the Cauchy
grid. The initial center of the Teukolsky wave is at 𝑟′𝑐 = 20, with a
width of 𝜏 = 2. The radius of the inner boundary 𝑟′in is always set to
1.9 to avoid the divergence at 𝑟′ = 0. The outer boundary is placed
at 𝑟′out = 41. We evolve the system with both CCE and CCM. As
for the reference solution, we put its outer boundary 𝑟′ref at 200 so
that it is causally disconnected from the system throughout the entire
simulation. The worldtube (vertical blue dashed line) is always at
𝑟′wt = 41 for wave extraction. . . . . . . . . . . . . . . . . . . . . . 340

7.4 Various waveform quantities for a Teuskolsky wave, with an ampli-
tude of 𝑋 = 10−5. In the top panel of each subfigure, we plot the
analytic results [Eq. (7.102)] in blue, the CCE results in green, and the
CCM results in red. In each bottom panel, the difference between the
waveforms is provided. The numerical error of the CCM system is
computed by taking the difference between two numerical resolutions. 342

7.5 Continuation of Fig. 7.4. More waveforms are provided. . . . . . . . 343
7.6 (Similar to Fig. 7.4) Various waveform quantities for a Teuskolsky

wave, with an amplitude of 𝑋 = 2. The top panel of each subfigure
displays the reference results (blue), the CCE results (green), and the
CCM results (red). The bottom panel shows the difference between
the waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

7.7 Continuation of Fig. 7.6. More waveforms are provided. . . . . . . . 347
7.8 Numerical setup of our second test, where a pulse is initialized on the

characteristic grid and is injected into the inner Cauchy region. The
worldtube locates at the outer boundary of the Cauchy grid (𝑟′out = 100).348
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7.9 The (𝑙 = 2, 𝑚 = 0) harmonic of 𝜓′0 using for matching (top), and 𝜓4

extracted at null infinity (bottom). The GW pulse is initialized on the
characteristic grid; and evolved with CCM (red) and CCE (green).
The black dashed line (𝑡1) is at the first trough of 𝜓′0,(𝑙=2,𝑚=0) , which
can be treated as the time that the pulse hits the outer boundary of
the Cauchy domain. The yellow dashed line (𝑡2 = 𝑡1 + 2𝑅) refers to
the crossing time of the Cauchy domain after 𝑡1. . . . . . . . . . . . 350

7.10 The time evolution of the Bondi mass, using the same system as
Fig. 7.9. We evolve the system with both CCM (red), and CCE
(green). The black dashed line (𝑡1) stands for the time that the pulse
hits the outer boundary of the Cauchy domain, and the yellow dashed
line (𝑡2 = 𝑡1 + 2𝑅) represents the crossing time of the Cauchy grid
after 𝑡1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

8.1 The function 𝑏𝑧 in KSHS [Eq. (8.13)], harmonic [Eq. (8.17)] and
MH [Eq. (8.23)] coordinates with 𝛼 = 0.7. Solid lines represent 𝑏𝑧,
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8.5 Computational efficiency of evolutions of SMH (𝛼 = 0.9) and SKS
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than for SKS. The lower panel is the accumulated CPU hours versus
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8.6 The time step as a function of evolution time. The resolution is Lev
3. Initially, the time step for evolutions of SKS initial data is larger
than for SMH. However, after several jumps due to the shell-dropping
algorithm, SMH eventually has a larger time step than SKS. . . . . . 375

8.7 The evolution of irreducible mass (left) and dimensionless spin (right)
of the first BH for Case I, with three resolutions. The quantities shown
are deviations from their values at 𝑡 = 0. Evolutions of SMH initial
data have fewer oscillations than SKS. Deviations of three parameters
for both initial data sets are on the same order. . . . . . . . . . . . . 376
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8.9 The ℎ22 and ℎ44 modes for the highest resolution of Case IV, an
equal-mass BBH system with larger spins. The spins for both BHs
are (0, 0, 0.9), which we have not been able to run with SH initial
data. We can still see that the junk radiation for SMH is less than SKS. 379
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methods to evolve the Einstein-frame metric and scalar field, while
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into the Einstein equations in Eqs. (9.6). . . . . . . . . . . . . . . . 394

9.2 The scalar charge of a NS as a function of 𝑚J
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9.3 The evolution of the volume-weighted constraint energy for the met-
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9.4 GW diagnostics for the GR systems. Upper panels: The GW har-
monic ℎ̃22 of the BHNS system evolved with GR, using a low (in
orange) and high resolution (in blue). Two BHNS waveforms are
compared to that of the BBH system (in black) which has the same
mass ratio and spins. We align the three waveforms by minimizing
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black). Lower panels: the GW phase difference between the BBH
and the BHNS system (in black). It is compared to the numerical
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9.9 GW diagnostics for the ST systems. Upper panel: The ST waveforms
with a low (in red) and high (in green) resolution. They are compared
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9.10 Comparing the numerical waveforms (in green and blue) to the PN
model (in magenta). Fig. 9.10a shows the ST tensor harmonic ℎ̃22

(top) and the scalar modes Ψ11 (middle) and Ψ22 (bottom). Note that
the modes Ψ𝑙𝑚 are defined in Eq. (9.36). Fig. 9.10b provides the GR
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9.11 The mismatch of theSEOBNRv4Tmodel with the ST waveform (green)
and the GR result (blue), as a function of tidal deformability Λ2. For
the sake of comparison, we also compute the mismatch between two
resolutions for ST (green dashed line) and GR (blue dashed line). . . 412
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10.1 The space-time of a BBH merger event. The hybrid method divides
space-time into an inner PN region (III) and an outer BHP region
(I+II). The two regions communicate via boundary conditions at the
worldtube ΣShell (the blue curve), which was assumed to track the
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determined by gauge conditions. The CLA focuses exclusively on
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initial data needs to be provided on Σinit, whereas the hybrid method
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10.2 The coefficients𝐶in
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10.3 A diagram summarizing relations between BHP quantities on the
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, and those at infinity, 𝑍∞
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10.8 Mismatch as a function of the start time (in the unit of remnant
mass) for different models [Eq. (10.17)]. Each model includes up
to 𝑛max overtones. The left panel corresponds to the strain ℎ∞22 at
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C h a p t e r 1

INTRODUCTION

Gravitational wave (GW) astronomy has been flourishing since the groundbreaking
detection of GW150914 [1, 2]. Nowadays, GWs have become a powerful tool for
probing the properties of compact binaries, and the neutron stars (NSs) and black
holes (BHs) they contain. Detecting GWs is a challenging task because astrophysical
gravitational waves become very weak when they arrive at the vicinity of the earth.
Therefore, the success of GW astrophysics requires close collaborations between
different fields, including accurate modeling of the merging of compact objects with
analytical and numerical tools, as well as efficient data analysis methods to extract
astrophysical information from noise. This thesis, comprising ten research papers,
aims to contribute to these ongoing efforts in GW measurements by discussing some
of the techniques involved.

The thesis covers four aspects. Part I (Chapters 2-4) focuses on the development of a
new tool for BH spectroscopy to explore the nature of BHs and their corresponding
GW emissions. Part II (Chapters 5-6) investigates the dynamical tides of neutron
stars (NSs) and their imprints on GWs. Part III (Chapters 7-8) delves into numerical
relativity (NR). Part IV (Chapters 9-10) explores beyond-general relativity (GR)
theories. In the rest of this chapter, I will provide background information on these
aspects separately.

1.1 Black hole spectroscopy
The ringdown stage of a GW event emitted by a binary black hole (BBH) corre-
sponds to the oscillation of the remnant BH, which encodes rich information about
the remnant black hole, as well as the binary that produced it. At the linear order, a
ringdown waveform is dominated by a superposition of a set of quasinormal modes
(QNMs), with complex eigenfrequencies [3–6], labeled by two angular numbers
(𝑙, 𝑚) and one overtone index 𝑛. Within GR, the mode frequencies are fully deter-
mined by the mass, spin, and charge of the corresponding BH due to the no-hair
theorem [7–10]. Thus measuring the frequency and decay rate of a single QNM
from a ringdown signal can already lead to the estimates of the properties of the
remnant BH [11]. If additional modes are also detected from the same event, we
can then use them to test the no-hair theorem [12–14]. This method is known as BH
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spectroscopy [15–41].

With an increasing number of GW events [42–45] observed by ground-based de-
tectors [46–48], comprehensive studies of the ringdown signal and its rich features
become crucial to understanding the geometry of extreme spacetimes and testing
GR. An important theoretical foundation of BH spectroscopy is to understand which
QNMs are present in the ringdown of a NR waveform [49–66] and when they start
[67–69]. To address these questions, a common method is to fit the NR waveform
after the merger, starting at, say, 𝑡0, using a ringdown template that consists of a
group of QNMs via linear combination, and explore when the mismatch between
the NR waveform and the QNM template can be minimized by varying the QNMs
and the fitting start time 𝑡0. In particular, Giesler et al. [64] demonstrated that the
ringdown of a GW150914-like NR waveform [70] starts as early as when the strain
amplitude reaches its peak, if seven overtones are included. Motivated by this result,
Isi et al. [28, 32] extended the initial ringdown analyses [31, 71] of GW150914 [1]
and explored earlier start times for fitting. A significance of 3.6𝜎 was found for the
existence of the first overtone. However, these conclusions have been challenged.
Baibhav et al. [72] and Nee et al. [73] revisited some numerical waveforms and
found that the evidence for overtones was weak, implying that the conclusion by
Giesler et al. [64] could be a result of overfitting. Cotesta et al. [30] also challenged
the results by Isi et al. [32] and argued that the early (ringdown) signal of GW150914
could be noise dominated, and thus the existence of the first overtone might not be
reliable.

QNMs do not form a complete or orthogonal basis, posing difficulties in decom-
posing a ringdown waveform. This task becomes even more challenging when
overtones decay rapidly. Therefore, the current QNM fitting techniques, such as
least-square fit, may not be robust enough to reveal the existence of overtones—the
poor fit results presented in [72, 73] do not necessarily mean that overtones lack
physical significance in the ringdown of the waveforms. In response, we propose
a complementary tool to analyze a ringdown waveform in Chapters 2 and 3. Our
approach defines two frequency-domain filters that can remove specific QNMs from
the ringdown. By filtering out the dominant mode, we can provide new insights
into the presence of a QNM in the waveform. This approach has the potential to
overcome challenges associated with the least-square technique.
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1.2 Dynamical tides of neutron stars
NSs are fascinating objects in our universe governed by laws of physics from multi-
ple disciplines, ranging from macroscopic magnetohydrodynamics to microscopic
Quantum Chromodynamics, from electromagnetic emissions to GWs. The study of
NSs provides valuable information about the properties of dense matter in extreme
gravity environments [74–76]. The detection of GW170817 and its electromagnetic
counterparts [77–80] has opened a new era of multimessenger astrophysics and
has allowed for more precise constraints on NS properties. Since then, subsequent
events such as GW190425 [81], GW200105, and GW200115 [82] have provided
additional information on tidal deformabilities [83–86], the maximum mass [84,
87–90], radii [83, 86] and 𝑓 -mode frequencies [91] of NSs. With improved detector
sensitivity, we expect more detections of binary neutron star (BNS) and black hole-
neutron star (BHNS) mergers in the near future [92–95]. Additionally, 3G detectors
like the Einstein Telescope [96, 97] and the Cosmic Explorer [98] are planned to be
operational in the 2030s and may increase BHNS and BNS detection rates by 3-4
orders of magnitude [99]. This highlights the need for more accurate modeling of
the imprints of NSs in corresponding GW signals [100–105].

Mass, radius, and tidal deformability are three important macroscopic observables
that can be learned from the multimessenger detections [106]. They provide insights
into the equation of state of a NS and serve as a critical link to understanding their
internal structure and dense matter microphysics [107, 108]. Specifically, the tidal
deformability measures the response of the NS to the tidal gravitational field induced
by its binary companion during orbital motion [109–111]: The tidal gravitational
field causes deformation in the NS and induces multipole moments. The coupling
between these moments and the tidal field alters the binding energy of the binary
system and increases the rate of energy dissipation [110, 112], which in turn hastens
the evolution of the binary.

In general, tidal effects can be divided into two categories. In the early inspiral
stage [110], the NS is in a quasi-equilibrium state, and the tidal response can be
approximated using a quasi-equilibrium approach, known as the adiabatic tide [109,
110, 112–119]. As the evolution progresses towards the final few minutes, the tidal
driving frequency from the companion may approach a normal mode frequency
of the NS. This can lead to resonant excitation of stellar internal fluid motion,
causing energy and angular momentum exchanges with the orbital motion. This
phenomenon is known as the dynamical tide [120–126].
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In contrast to a BH’s QNM spectra, which are fully characterized by two angular
indices (𝑙, 𝑚) and an overtone index 𝑛, a NS’s characteristic oscillation exhibits
much richer structures [127]. The 𝑓−mode, which is driven by pressure, represents
the lowest-order, fundamental, zero-radial-node oscillation of the NS. Its overtones
are called 𝑝−modes, which have more radial nodes and higher frequencies. The
𝑔−modes are another branch, and their restoring force is mainly determined by buoy-
ancy resulting from thermal or compositional gradients. Typically, their frequencies
are lower than that of the 𝑓−mode. As the 𝑓−mode, 𝑔−modes, and 𝑝−modes pos-
sess even parity, they are collectively referred to as polar modes. On the other hand,
axial modes emerge when the NS rotates, such as 𝑟−modes and 𝑖−modes. These
modes are mainly sustained by the Coriolis force [128–130] and have odd parity.

If some of the characteristic modes of the NS are excited during the inspiral stage, the
imprints in the corresponding GW emissions could provide new channels to probe
the stellar inner structure in addition to the adiabatic tide. Below in Chapters 5 and
6, we will focus on the excitability of the 𝑓−mode and 𝑟−modes and investigate how
these two new channels can be used to put tighter constraints on the properties of
NSs.

1.3 Numerical relativity
NR is to use computer simulations to perform numerical experiments for GR and
beyond-GR theories. To date, NR still remains the only ab initio method to simulate
highly dynamic gravitational processes, such as the coalescence of BBH systems.
Generally speaking, the formulations of NR can be classified into two groups:
Cauchy [131, 132] and characteristic [133–140] formalisms, depending on how
spacetime is foliated.

The Cauchy approach to NR involves decomposing 4-dimensional spacetime into
3-dimensional space and 1-dimensional time, and splitting Einstein’s equations into
constraint and evolution parts. This method converts Einstein’s equations into an
initial-boundary value problem, which is also known as the Cauchy problem. To
begin a simulation, initial data are constructed by solving the constraint equations on
the first space-like hypersurface. These data are then propagated using the evolution
equations. A drawback of the Cauchy method is that it cannot be used to simulate
the entire unbounded spacetime due to the limit of computational resources. As a
result, the spatial domain is typically truncated at a finite distance from the source
to create a finite computational domain. Suitable boundary conditions need to be
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specified at the artificial boundary, and proper waveform extraction methods [139–
142] must be used to compute GWs at future null infinity, where GW detectors are
approximately located.

In contrast, the characteristic formalism is a different formulation of GR and is
capable of overcoming some of Cauchy method’s limitations. With this approach,
spacetime is sliced into a sequence of null hypersurfaces that extend to future null
infinity. Einstein’s equations are formulated in terms of the unambiguous geomet-
ric treatment of gravitational radiation in curved spacetimes due to Bondi et al.
[143] Sachs [144] and Penrose [145]. Meanwhile, future null infinity is rigorously
encompassed on the characteristic grid via a compactified coordinate system and
treated as a perfect absorbing outer boundary. In this way, the characteristic formal-
ism offers the most natural and correct way to extract faithful GWs at future null
infinity without any ambiguity [141, 142, 146–148]. However, the characteristic
method cannot evolve the near-field region of BBHs when caustics of null rays are
present. Therefore, the Cauchy and characteristic systems can be used jointly in
practice to simulate both near-zone and wave-zone. This procedure is known as
Cauchy-characteristic evolution [133–140, 149].

The initial data and boundary conditions are crucial components of a Cauchy simu-
lation as they provide all the necessary information about the physical system under
investigation. To ensure a high-accuracy NR simulation, it is imperative that the
initial data and boundary conditions capture the correct and precise information
about the system. Failure to achieve this can lead to systematic errors, which can
significantly affect the quality of the produced results. For instance, when simulating
a BBH system, the initial data should correspond to a quasi-equilibrium state of the
inspiral that started at an infinite time in the past. If the initial data fails to recover
the full tidal distortion of a BH or the gravitational radiation that is already present,
the system will relax into a quasi-equilibrium state once the evolution begins, re-
sulting in junk radiation during the evolution. This junk transient can contaminate
the quality of the produced gravitational waveforms, and affect the accuracy of the
adaptive mesh refinement algorithm [150] to control numerical errors. Similarly,
perfect boundary conditions should make the artificial boundary as transparent as
possible so that the numerical solution is identical to one that would be evolved on
an infinite domain. In particular, outgoing GW radiation at arbitrarily far distances
can backscatter off the spacetime curvature due to the nonlinear feature of GR. Ideal
boundary conditions should include this nonlinear backscattering. If poor boundary
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conditions are prescribed, not only will the effect of backscattering be incorrectly
implemented, but spurious reflections can also be introduced at the boundary and
contaminate the whole simulation.

Below we will analyze the boundary-value and initial-data problems individually.
Chapter 7 will focus on the boundary-value problem, where we will explore how the
characteristic system can be employed to create more precise boundary conditions
for the Cauchy system. In Chapter 8, we will discuss the initial-data problem and
introduce a new gauge that can generate weaker junk radiation, which will assist in
establishing Cauchy’s initial data.

1.4 Beyond general relativity
Einstein’s famous quote, “I would feel sorry for the good Lord. The theory is
correct,” succinctly summarizes the elegant foundations of GR. To date, GR has
successfully passed many tests [151, 152] and remains the best description of gravity.
However, it is not renormalizable and is ultraviolet-incomplete, which suggests that
it may not be correct at all scales. Therefore, non-negligible corrections to GR
might arise in extreme conditions; probing these environments can help us search
for such deviations, which can place stringent constraints on both GR and beyond-
GR theories.

The collision of two BHs creates one of the most curved spacetime environments
in the universe, making their GW emissions a crucial tool for this purpose [75,
151–171]. To rigorously test GR, accurate predictions of GWs are necessary for
both GR and modified theories of gravity. To date, numerous extensions to GR have
been proposed [152], and their resulting GW emissions exhibit diverse features.
In this thesis, we mainly focus on two specific aspects: scalar-tensor (ST) theory,
which modifies Einstein’s Equations; and GW echoes, which arise from direct
modifications of the geometries of spacetime near the horizons of BHs.

1.4.1 Scalar-tensor theory
ST theory [172–175] is the simplest alternative theory of gravity, where the strength
of gravity is modulated by scalar field(s). An important feature of ST theory is
scalar radiation, an extra energy dissipation channel in addition to the usual tensor
radiation in GR. The leading scalar radiation is dipolar, and thus more important
at low frequencies than the quadrupolar waves that control a GR inspiral [154,
176–190]. Under this effect, the evolution of some strong-gravity systems can
deviate from the prediction of GR and leave imprints on observables. For instance,
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binary-pulsar systems have been shown to be a good laboratory [167, 176, 184,
190–209] since the celebrated Hulse-Taylor PSR B1913+16 [210]. By measuring
the orbital decay rate of the systems, one can examine and constrain ST theory via
the parametrized post-Keplerian formalism [203–205, 211].

The deviation could be even more amplified if the system is a BH-NS binary, and
the NS undergoes spontaneous scalarization [212–221]. As pointed out by Damour
and Esposito-Farèse [205, 222], for certain variants of the ST theory, the equilibrium
solutions for a NS’s structure bifurcates into several branches at some critical central
density, and the GR branch becomes unstable [223, 224]. The most stable solution
corresponds to a scalarized NS with a much larger scalar charge [185, 195, 222,
225]. Therefore, the dipole radiation and consequential deviations from GR are
significantly amplified in such a scalarized BHNS system, which makes it, if exists,
an ideal environment for studying ST theory.

In Chapter 9 we will use NR to simulate a BHNS merger in ST theory, with a
particular focus on how GW emission is impacted by spontaneous scalarization.

1.4.2 GW echoes
GW echoes are the repeating and delayed pulses that follow the primary GWs emitted
by binary mergers [226–229]. These echoes could be indicative of several phenom-
ena, including deviations from the laws of gravity described by GR [230, 231], the
presence of near-horizon quantum structures surrounding BHs [232–241], or the
existence of horizonless Exotic Compact Objects (ECOs) [242–246]. Regardless of
the underlying cause, all of these scenarios share the common characteristic that the
remnant object resulting from the merger has the same geometry as a BH described
by GR, except in a small region near the horizon (i.e., with size ≪ 𝑀 , where 𝑀 is
the BH mass) [247–249]. This non-GR zone acts as a reflective surface, forming a
cavity with the light ring, which consequently traps GWs and causes them to bounce
back and forth within it. During this process, portions of the trapped GWs escape to
infinity, resulting in the echoes observed by observers at future null infinity. There-
fore, the detection of GW echoes, if they exist, could provide compelling evidence
of Planck-scale structures near horizons and ECOs. In Chapter 10, we will discuss
how to build an approximate GW echo model using NR simulations.

1.5 Organization of the thesis
Here is a list of brief summaries of Chapters 2 to 10 of this thesis.
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1.5.1 Chapter 2: Quasinormal-mode filters: A new approach for black-hole
spec- troscopy

We propose two frequency-domain filters to analyze ringdown signals of BBH
mergers. The first rational filter is constructed based on a set of (arbitrary) QNMs
of the remnant BHs, whereas the second full filter comes from the transmissivity of
the remnant BHs. The two filters can remove corresponding QNMs from original
time-domain ringdowns, while changing early inspiral signals in a trivial way—
merely a time and phase shift. After filtering out dominant QNMs, we can visualize
the existence of various subdominant effects. For example, by applying our filters
to a GW150914-like NR waveform, we find second-order effects in the (𝑙 = 4, 𝑚 =

4), (𝑙 = 5, 𝑚 = 4) and (𝑙 = 5, 𝑚 = 5) harmonics; the spherical-spheroidal mixing
mode in the (𝑙 = 2, 𝑚 = 2) harmonic; and a mixing mode in the (𝑙 = 2, 𝑚 =

1) harmonic due to a gravitational recoil. In another NR simulation where two
component spins are anti-aligned with the orbital angular momentum, we also find
retrograde modes. Furthermore, we investigate the stability of the full filter. Its
connection to the instability of QNM spectra is discussed.

1.5.2 Chapter 3: Black hole spectroscopy by mode cleaning
We formulate a Bayesian framework to analyze ringdown GWs from colliding BBHs
and test the no-hair theorem. The idea hinges on mode cleaning—revealing subdom-
inant oscillation modes by removing dominant ones using newly proposed rational
filters. By incorporating the filter into Bayesian inference, we construct a likelihood
function that depends only on the mass and spin of the remnant BH (no dependence
on mode amplitudes and phases) and implement an efficient pipeline to constrain
the remnant mass and spin without Markov chain Monte Carlo (MCMC). We test
ringdown models by cleaning combinations of different modes and evaluating the
consistency between the residual data and pure noise. The model evidence and
Bayes factor are used to demonstrate the presence of a particular mode and to infer
the mode starting time. In addition, we design a hybrid approach to estimate the
remnant BH properties exclusively from a single mode using MCMC after mode
cleaning. We apply the framework to GW150914 and demonstrate more definitive
evidence of the first overtone by cleaning the fundamental mode.
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1.5.3 Chapter 4: Universal features of gravitational waves emitted by super-
kick binary black hole systems

We use NR to study the merger and ringdown stages of “superkick” BBH systems
(those with equal mass and anti-parallel spins). We find a universal way to describe
the mass and current quadrupole GWs emitted by these systems during the merger
and ringdown stage: (i) The time evolutions of these waves are insensitive to the
progenitor’s parameters (spins) after being normalized by their own peak values.
(ii) The peak values, which encode all the spin information of the progenitor, can
be consistently fitted to formulas inspired by post-Newtonian theory. We find that
the universal evolution of the mass quadrupole wave can be accurately modeled by
the so-called Backwards One-Body (BOB) model. However, the BOB model, in its
present form, leads to a lower waveform match and a significant parameter-estimation
bias for the current quadrupole wave. We also decompose the ringdown signal into
seven overtones, and study the dependence of mode amplitudes on the progenitor’s
parameters. Such dependence is found to be insensitive to the overtone index (up
to a scaling factor). Finally, we use the Fisher matrix technique to investigate how
the ringdown waveform can be at least as important for parameter estimation as
the inspiral stage. Assuming the Cosmic Explorer, we find the contribution of the
ringdown portion dominates as the total mass exceeds ∼ 250𝑀⊙. For massive BBH
systems, the accuracy of parameter measurement is improved by incorporating the
information of ringdown—the ringdown sector gives rise to a different parameter
correlation from the inspiral stage, hence the overall parameter correlation is reduced
in the full signal.

1.5.4 Chapter 5: Excitation of 𝑓 -modes during mergers of spinning binary
neutron star

We use semi-analytic methods to carry out a systematic study on the tidal excitation
of 𝑓 -modes of spinning NSs in coalescing binaries, focusing on the case when the NS
spin is anti-aligned with the orbital angular momentum – where the tidal resonance
is most likely to take place. We first expand NS oscillations into stellar eigenmodes,
and then obtain a Hamiltonian that governs the tidally coupled orbit-mode evolution.
We then find a new approximation that can lead to analytic expressions of tidal
excitations to high accuracy, and are valid in all regimes of the binary evolution:
adiabatic, resonant, and post-resonance. Using the method of osculating orbits,
we obtain semi-analytic approximations of the orbital evolution and GW emission;
their agreements with numerical results give us confidence in our understanding of
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the system’s dynamics. In particular, we recover both the averaged post-resonance
evolution, which differs from the pre-resonance point-particle orbit by shifts in
orbital energy and angular momentum, as well as instantaneous perturbations driven
by the tidal motion. Finally, we use the Fisher matrix technique to study the effect
of dynamical tides on parameter estimation.

1.5.5 Chapter 6: Detecting resonant tidal excitations of Rossby modes in
coalescing neutron-star binaries with third-generation gravitational-
wave detectors

We study NSs’ 𝑟-mode excitation by the gravitomagnetic forces in coalescing binary
systems, and explore its impact on measuring NS parameters in the era of 3G
detectors. We incorporate two universal relations among NS properties predicted by
different equations of state: (i) the well-known I-Love relation between momentum
of inertia and ( 𝑓 -mode) tidal Love number, and (ii) a relation between the 𝑟-mode
overlap and tidal Love number, which is newly explored in this paper. We find
that 𝑟-mode dynamical tide will provide rich information about slowly rotating
NSs with frequency 10 − 100 Hz and spin inclination angle 18◦ − 110◦. For a
BNS system (with a signal-to-noise ratio ∼ 1500 in the Cosmic Explorer), the spin
frequency of each individual NS can be constrained to 6% (fractional error) in
the best-case scenario. The degeneracy between the Love numbers of individual
NSs is dramatically reduced: each individual Love number can be constrained to
around 20% in the best case, while the fractional error for both symmetric and anti-
symmetric Love numbers are reduced by factors of around 300. Furthermore, the
dynamical tide also allows us to measure the spin inclination angles of the NSs, to
0.09 rad in the best case, and thus place constraints on NS natal kicks and supernova
explosion models.

1.5.6 Chapter 7: Fully relativistic 3D Cauchy-characteristic matching
We implement a fully relativistic 3D Cauchy-characteristic matching (CCM) algo-
rithm in a NR code SpECTRE. The stability of the algorithm is demonstrated by
propagating a GW pulse on a flat background nonlinearly. We consider two physi-
cal systems (a) the (ingoing) pulse is put on the characteristic grid initially (b) the
(outgoing) pulse is put on the Cauchy grid initially. The former case verifies that
our CCM algorithm can send the pulse from the exterior characteristic grid to the
interior Cauchy grid accurately. It is also shown that the interface between two grids
is transparent to the GW since spurious reflection is reduced. In the second case, we
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illustrate that the matching algorithm leads to better boundary conditions for the in-
ner Cauchy evolution by precisely modeling the back-scattering of GWs. Compared
with a run without the matching, the CCM system exhibits better agreement with a
reference simulation whose outer boundary is put far away to ensure it is causally
disconnected from the system.

1.5.7 Chapter 8: Extending superposed harmonic initial data to higher spin
Numerical simulations of BBHs are accompanied by an initial spurious burst of
gravitational radiation (called ‘junk radiation’) caused by a failure of the initial data
to describe a snapshot of an inspiral that started at an infinite time in the past. A
previous study showed that the superposed harmonic (SH) initial data gives rise to
significantly smaller junk radiation. However, it is difficult to construct SH initial
data for black holes with dimensionless spin 𝜒 ≳ 0.7. We here provide a class of
spatial coordinate transformations that extend SH to higher spin. The new spatial
coordinate system, which we refer to as superposed modified harmonic (SMH),
is characterized by a continuous parameter — Kerr-Schild and harmonic spatial
coordinates are only two special cases of this new gauge. We compare SMH with
the superposed Kerr-Schild (SKS) initial data by evolving several BBH systems
with 𝜒 = 0.8 and 0.9. We find that the new initial data still leads to less junk
radiation and only small changes in BH parameters (e.g., mass and spin). We also
find that the volume-weighted constraint violations for the new initial data converge
with resolution during the junk stage (𝑡 ≲ 700𝑀), which means there are fewer
high-frequency components in waveforms at outer regions.

1.5.8 Chapter 9: Numerical simulations of black hole–neutron star mergers
in scalar-tensor gravity

We present a numerical-relativity simulation of a BHNS merger in ST gravity with
binary parameters consistent with the GW event GW200115. In this exploratory
simulation, we consider the Damour-Esposito-Farèse extension to Brans-Dicke the-
ory, and maximize the effect of spontaneous scalarization by choosing a soft equation
of state and ST theory parameters at the edge of known constraints. We extrapolate
the GWs, including tensor and scalar (breathing) modes, to future null-infinity. The
numerical waveforms undergo ∼ 22 wave cycles before the merger, and are in good
agreement with predictions from post-Newtonian theory during the inspiral. We
find the ST system evolves faster than its GR counterpart due to dipole radiation,
merging a full GW cycle before the GR counterpart. This enables easy differen-
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tiation between the ST waveforms and GR in the context of parameter estimation.
However, we find that dipole radiation’s effect may be partially degenerate with the
NS tidal deformability during the late inspiral stage, and a full Bayesian analysis is
necessary to fully understand the degeneracies between ST and binary parameters
in GR.

1.5.9 Chapter 10: Gravitational-wave echoes from numerical-relativity wave-
forms via space-time construction near merging compact objects

We propose a new approach toward reconstructing the late-time near-horizon ge-
ometry of merging BBHs, and toward computing GW echoes from ECOs. A BBH
merger spacetime can be divided by a time-like hypersurface into a Black-Hole
Perturbation (BHP) region, in which the space-time geometry can be approximated
by homogeneous linear perturbations of the final Kerr BH, and a nonlinear region.
At late times, the boundary between the two regions is an infalling shell. The BHP
region contains late-time GWs emitted toward the future horizon, as well as those
emitted toward future null infinity. In this region, by imposing no-ingoing wave
conditions at past null infinity, and matching out-going waves at future null infinity
with waveforms computed from NR, we can obtain waves that travel toward the
future horizon. In particular, the Newman-Penrose 𝜓0 associated with the in-going
wave on the horizon is related to tidal deformations measured by fiducial observers
floating above the horizon. We further determine the boundary of the BHP region
on the future horizon by imposing that 𝜓0 inside the BHP region can be faith-
fully represented by QNMs. Using a physically-motivated way to impose boundary
conditions near the horizon, and applying the so-called Boltzmann reflectivity, we
compute the QNMs of non-rotating ECOs, as well as GW echoes. We also investi-
gate the detectability of these echoes in current and future detectors, and prospects
for parameter estimation.
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C h a p t e r 2

QUASINORMAL-MODE FILTERS: A NEW APPROACH FOR
BLACK-HOLE SPECTROSCOPY

[1] Sizheng Ma et al. “Quasinormal-mode filters: A new approach to analyze
the gravitational-wave ringdown of binary black-hole mergers.” Phys. Rev.
D 106.8 (2022), p. 084036. doi: 10.1103/PhysRevD.106.084036. arXiv:
2207.10870 [gr-qc].

2.1 Introduction
Ringdown is the final stage of a gravitational wave (GW) signal emitted by a bi-
nary black hole (BBH) coalescence. It is associated with the oscillations of the
remnant black hole (BH), and contains rich information of the system. With an
increasing number of GW events [1–4] observed by ground-based detectors [5–7],
comprehensive studies of the ringdown signal and its rich features become crucial
to understanding the geometry of extreme spacetimes and testing General Relativity
(GR).

A standard description of the ringdown comes from the BH perturbation (BHP)
theory. The perturbation of a single BH has been an important topic for decades
[8–11]. GWs emitted by the BH during ringdown are characterized by a set of
quasinormal modes (QNMs) 1, which are complex and dissipative by their nature. As
a consequence, the time-domain evolution of each QNM is a damped sinusoid. Due
to the no-hair theorem [14–17], QNMs predicted by GR are completely determined
by the mass and spin of the BH. Therefore, measuring the frequency and decay
rate of a QNM from a ringdown signal would allow people to infer the mass and
spin of the BH, as pointed out by Echeverria [18]. This method is dubbed BH
spectroscopy. The idea was then generalized by Dreyer et al. [19] and Berti et al.
[20, 21], and they showed that one could test the no-hair theorem if multiple modes
are observed at the same time. Later on, a lot of effort has been made to investigate
BH spectroscopy under different scenarios [22–41]. In particular, the studies by
Cardoso et al. [10, 42, 43], Foit et al. [44] and Laghi et al. [45] implied that QNMs
could reflect the quantum nature of BHs or other exotic compact objects (ECOs);

1Except for the late gravitational tail [12, 13].

https://doi.org/10.1103/PhysRevD.106.084036
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hence one can use this fact to test GR and constrain modified gravity [46–49]. Since
the detection of GW150914 [50], BH spectroscopy with real observational data has
become available. Carullo et al. [51] studied the late-time portion of the ringdown
of GW150914 and found no evidence for the presence of more than one QNM. Then
Isi et al. [52] extended the analysis to the peak of the strain and showed evidence of
at least one overtone, with 3.6𝜎 confidence. This led to a test of the no-hair theorem
at the ∼ 20% level. Recently, Cotesta et al. [53] raised an opposing viewpoint that
the search for the first overtone in the ringdown of GW150914 might be impacted
by noises, therefore the conclusion still remains controversial [54, 55]. On the other
hand, Capano et al. [56] studied the QNM spectrum of GW190521 [57] and found
the 𝑙 = 𝑚 = 3 harmonic. More GW events were used to perform BH spectroscopy
in Refs. [58–60].

The inspiral-merger-ringdown (IMR) consistency test is another important extension
of BH spectroscopy. One can infer the properties of binaries separately from the
inspiral waves and the ringdown waves, and check whether they are consistent with
the predictions of GR. The idea was proposed originally by Hughes et al. [61], and
more careful analyses were carried out later [62–65]. So far, no deviation from GR
has been found in observational data [66–69]. In addition, Refs. [70, 71] used this
method to test Hawking’s area law [72].

An essential ingredient for BH spectroscopy is to understand how QNMs are excited
at merger [73–86] and when the ringdown starts [87–89]. An accurate investigation
for a BBH system during a highly nonlinear regime was not available until the
numerical relativity (NR) breakthrough was made in 2005 by Pretorius [90]. Since
then, a usual method to study the ringdown of a numerical waveform has been fitting
it to the prediction of BHP theory. For example, Buonanno et al. [91] decomposed
the ringdown signal into a sum of the fundamental mode and several overtones.
Berti et al. [92, 93] and Kamaretsos et al. [84] fit the ringdown of unequal-mass,
nonspinning systems with only the fundamental mode. London et al. [94] carried
out a more systematic study for various nonspinning BBHs and identified overtones
within the NR waveforms. On the other hand, the fitting was also an important step
to calibrate the effective one-body model [95–99]. Later, given the motivation of
BH spectroscopy with real observational data, Thrane et al. [100] fit the ringdown
of a GW150914-like NR simulation without any overtone, and they found some
inconsistency between the QNM model (with fundamental modes only) and NR
waveform. This puzzle was resolved by Giesler et al. [101], where the authors found



38

that the inclusion of overtones could extend the linear regime to the peak strain
amplitude. This work sparked another wave for ringdown modeling, including
the study for multimode ringdown fitting [102], and the impacts of other effects
on ringdown signals, such as retrograde modes 2 [103], more overtones [104],
precessing systems [105], angular emission patterns [106], and the Bondi-van der
Burg-Metzner-Sachs freedom [107].

It is surprising to see that the linear BHP theory is good enough to explain the
waveform beyond the peak of the strain, given that the dynamics at the merger are
believed to still be violent. Okounkova [89] provided a possible explanation based
on previous Kerrness tests [87]: most of the near-zone nonlinearities 3 are absorbed
by the event horizon and barely escape to infinity. Nonetheless, it still seems elusive
to draw an incontrovertible conclusion, since recent studies [110, 111] showed that
multipole moments of dynamical horizon are also compatible with the superposition
of linear QNMs soon after the formation of the common horizon. Furthermore, it
was shown that applying second-order BHP theory to the close-limit approximation
could improve the agreement between the ringdown model and the full numerical
waveform—the improvement was not only limited to the regime near the peak, but
also extended to the late portion of the ringdown signal [112]. Then it is natural to
ask: where are the second-order effects? In the past, the second-order perturbation
of a Schwarzschild BH was used by Tomita et al. [113, 114] in the process of a
gravitational collapse to investigate the stability of the horizon. Cunningham et
al. [115] treated the spin as a small perturbation during the Oppenheimer-Snyder
collapse and studied its second-order effect. Later on, second-order perturbation
theory was motivated by the close-limit approximation [116], including the metric
perturbation of a Schwarzschild BH [112, 117–122] and the perturbation of a Kerr
BH within the Newman-Penrose formalism [123]. Recently, more comprehensive
treatments were used to deal with the perturbation of a Kerr BH and its metric
reconstruction [124–126]. An important feature of second-order BHP theory is that
the master equation has the same potential as the first-order theory, while the source
term is quadratic in terms of the first-order perturbations. Accordingly, the time
evolution of the second-order perturbations can be influenced by the second-order
QNMs, known as “sum tones” and “difference tones” [127–131]. For instance,
Nakano et al. [129] found the existence of a component twice the (𝑙 = 2, 𝑚 = 2)

2The author of Ref. [103] used the name “mirror mode” instead. In this work we will always use
“retrograde mode.”

3Here we do not consider the wave-zone nonlinearities, say the memory effect, which has been
obtained from NR [108, 109].
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QNM in the (𝑙 = 4, 𝑚 = 4) harmonic by looking at a perturbed Schwarzschild BH. So
far, very few studies have been done on the second-order effects within the ringdown
of a BBH waveform. London et al. [94] investigated 68 NR waveforms and presented
the evidence of the second-order mode (𝑙1, 𝑚1, 𝑛1)×(𝑙2, 𝑚2, 𝑛2) = (2, 2, 0)×(2, 2, 0)
in the (𝑙 = 4, 𝑚 = 4) harmonic via time-domain fitting. Beyond the second-order
effect, Sberna et al. [132] showed that the growth of BH mass due to the absorption
of the linear QNMs can induce a third-order secular effect.

The time-domain fitting proves to be powerful to extract the physics from ringdown
signals. However, one always has to be careful of overfitting—more QNMs in-
cluded (e.g., overtones or retrograde modes) may act as additional basis functions
to misinterpret other effects. Taking this caveat into consideration, in this chapter
we propose a complementary tool to analyze a ringdown waveform—we define
two frequency-domain filters that are able to remove any particular QNM from the
ringdown. After the dominant mode is filtered out, we can visualize the existence of
subdominant effects, including mode mixing, second-order modes, and retrograde
modes.

This chapter is organized as follows. In Sec. 2.2, we introduce two types of filters and
show their properties. Then in Sec. 2.3, we apply the two filters to NR waveforms
and discuss the results. Section 2.4 focuses on the stability of the filter under
perturbations. Next, in Sec. 2.5, we discuss how the filter depends on the remnant
BH’s mass and spin. We also investigate the possibility to use the filter for parameter
estimation. Finally, we summarize the results in Sec. 2.6.

Throughout this chapter, we use the geometric units with𝐺 = 𝑐 = 1. We always use
the notation 𝜔𝑙𝑚𝑛 to refer to the (𝑙, 𝑚, 𝑛) QNM.

2.2 QNM filters
In this section, we introduce two types of filters for QNMs. In Sec. 2.2.1 we
first review briefly the QNM decomposition model of a ringdown signal. Then in
Sec. 2.2.2 we describe a rational filter, which can remove any particular QNM from
a ringdown signal. Two toy models are used to explore the effect of this filter. After
understanding the effects of the rational filter, in Sec. 2.2.3 we argue that the inverse
of the remnant BH’s transmissivity can also serve as a filter. Remarkably, we find
that the waveform filtered by this filter has a physical meaning.
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2.2.1 Decomposing late waveforms into QNMs
It has been widely accepted that the late part of the GW emitted by binary black-hole
mergers can be described as a linear combination of QNMs and a power-law tail,
which arise from different features of the retarded gravitational Green’s function
𝐺 𝑙𝑚: the QNMs correspond to poles of 𝐺 𝑙𝑚, while the power-law tail arises from
integrating along a branch-cut 𝐺 𝑙𝑚 [133].

In the special case of a high-mass-ratio merger, which can be modeled as an orbiting
and then plunging particle, QNM excitations at late times have been computed [82,
83, 85] and further analyzed in terms of multipole and overtone excitations [74, 76,
77, 134]. As an example, in linear perturbation theory, the gravitational waveform
at infinity sourced by the particle can be described by

ℎ(𝑡, 𝑟∗) =
∑︁
𝑙𝑚

∫
𝑑𝜔

2𝜋
𝑒−𝑖𝜔𝑡

∫
𝑑𝑦𝐺 𝑙𝑚 (𝑟∗, 𝑦, 𝜔)𝑆𝑙𝑚 (𝑦, 𝜔), (2.1)

where 𝑆𝑙𝑚 (𝑦, 𝜔) is the source term, and it has the general form of

𝑆𝑙𝑚 (𝑦, 𝜔) = 𝑒𝑖𝜔𝑇 (𝑦)𝑃(𝜔, 𝑦) (2.2)

where (𝑇 (𝑦), 𝑦) parametrizes the radial trajectory of the particle, and 𝑃(𝜔, 𝑦) is a
rational function of 𝜔. For each 𝑦, as long at 𝑡 > 𝑇 (𝑦) one can close the 𝜔-contour
from the lower-half complex plane, hence only collect the poles of the Green’s
function 𝐺 𝑙𝑚 and a branch-cut contribution which corresponds to power-law tails.
Even though the particle’s 𝑇 (𝑦) becomes infinity for 𝑦 → −∞, the source term
𝑃(𝜔, 𝑦) exponentially decays to zero, soon after 𝑦 becomes negative, i.e., when the
particle plunges across the light ring and approaches the horizon.

Gravitational waveforms from collapsing stars and merging comparable-mass BHs
were argued to have similar late-stage properties [18, 115, 135–139]. The regime of
QNM decomposition is often referred to as the “linear regime,” although the decom-
position requires both linearity and homogeneity (i.e., the QNMs are homogeneous
solutions to the linearized Einstein’s equations).

Now assuming that a ringdown signal ℎ(𝜃, 𝜙, 𝑡) is a linear combination of QNMs,
starting from 𝑡0, namely

ℎ(𝜃, 𝜙, 𝑡) = (ℎ+ − 𝑖ℎ×) (𝜃, 𝜙, 𝑡)

=
∑︁
𝑘𝑚𝑛

[
𝐴𝑘𝑚𝑛𝑒

−𝑖𝜔𝑘𝑚𝑛 (𝑡−𝑡0) 𝑆−2 𝑘𝑚𝑛 (𝑎𝜔𝑘𝑚𝑛, 𝜃, 𝜙)

+𝐴′𝑘𝑚𝑛𝑒
𝑖𝜔∗

𝑘𝑚𝑛
(𝑡−𝑡0) 𝑆∗𝑘𝑚𝑛−2 (𝑎𝜔𝑘𝑚𝑛, 𝜋 − 𝜃, 𝜙)

]
, (2.3)
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where ×, + refer two polarization states of the GW, 𝑎 is the dimensional spin of the
BH, 𝜔𝑘𝑚𝑛 are the frequencies of QNMs, 𝑆−2 𝑘𝑚𝑛

(𝑎𝜔𝑘𝑚𝑛, 𝜃, 𝜙) are the spin-weighted
spheroidal harmonics [140], and (𝐴𝑘𝑚𝑛, 𝐴′𝑘𝑚𝑛) are the mode amplitudes. It is usually
more convenient to decompose the waveform in terms of spin-weighted spherical
harmonics 𝑌−2 𝑙𝑚

(𝜃, 𝜙)

ℎ(𝜃, 𝜙, 𝑡) =
∑︁
𝑙𝑚

ℎ𝑙𝑚 (𝑡) 𝑌−2 𝑙𝑚 (𝜃, 𝜙) (2.4)

with ℎ𝑙𝑚 being the (𝑙, 𝑚) spherical multipole harmonic. The mode mixing between
the two bases: 𝑆−2 𝑘𝑚𝑛

(𝑎𝜔𝑙𝑚𝑛, 𝜃, 𝜙) and 𝑌−2 𝑙𝑚
(𝜃, 𝜙), is given by [141, 142]

𝑆−2 𝑘𝑚𝑛 (𝑎𝜔𝑙𝑚𝑛, 𝜃, 𝜙) =
∑︁
𝑙

𝜇∗𝑚𝑙𝑘𝑛 (𝑎𝜔𝑙𝑚𝑛) 𝑌−2 𝑙𝑚 (𝜃, 𝜙). (2.5)

By combining Eqs. (2.3), (2.4) and (2.5), we obtain the QNM decomposition model
for ℎ𝑙𝑚:

ℎ𝑙𝑚 =
∑︁
𝑘,𝑛

[
𝐶𝑚𝑙𝑘𝑛𝑒

−𝑖𝜔𝑘𝑚𝑛 (𝑡−𝑡0) + 𝐶′𝑚𝑙𝑘𝑛𝑒
𝑖𝜔∗

𝑘−𝑚𝑛
(𝑡−𝑡0)

]
. (2.6)

Explicit relations between 𝐶𝑚𝑙𝑘𝑛 and 𝐴𝑘𝑚𝑛 [Eq. (2.3)] can be found in Ref. [77].
Note that the second term in Eq. (2.6) corresponds to the retrograde modes, which
are also dubbed “mirror modes” in Refs. [103, 143].

2.2.2 The rational filter and two toy models
For simplicity’s sake we consider a single QNM signal in the time domain:

ℎ(𝑡) = 𝑒−𝑖𝜔𝑙𝑚𝑛 (𝑡−𝑡0)Θ(𝑡 − 𝑡0), (2.7)

where 𝜔𝑙𝑚𝑛 is the complex frequency of a specific QNM, Θ(𝑡 − 𝑡0) is the Heaviside
step function, and 𝑡0 refers to the start time of the mode. If we are interested in the
regime of 𝑡 > 𝑡0 and want to annihilate the mode content 𝜔𝑙𝑚𝑛 therein, a natural
choice is to use a time-domain operator(

𝑑

𝑑𝑡
+ 𝑖𝜔𝑙𝑚𝑛

)
ℎ(𝑡) = 𝛿(𝑡 − 𝑡0), (2.8)

with 𝛿(𝑡−𝑡0) being the Dirac function. However, this operation can lead to additional
numerical noises. Instead, we first transform the signal ℎ(𝑡) in Eq. (2.7) to the
frequency domain

ℎ̃(𝜔) = 1
√

2𝜋

∫
ℎ(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡, (2.9)



42

t > t0

ωlmn

ω*lmn

ℱlmn

h̃(ω)

Re

Im

Figure 2.1: The pole of the original waveform ℎ̃(𝜔) (in blue) and the filtered one
ℎ̃filter(𝜔) (in orange). The contour is closed from the upper (lower) plane when
𝑡 < 𝑡0 (𝑡 > 𝑡0).

and obtain

ℎ̃(𝜔) = 𝑖
√

2𝜋
𝑒𝑖𝜔𝑡0

𝜔 − 𝜔𝑙𝑚𝑛
. (2.10)

Then we define a frequency-domain filter F𝑙𝑚𝑛:

F𝑙𝑚𝑛 =
𝜔 − 𝜔𝑙𝑚𝑛
𝜔 − 𝜔∗

𝑙𝑚𝑛

, (2.11)

where ∗ represents the complex conjugate. We remark that the numerator of F𝑙𝑚𝑛
corresponds to the annihilation operator [Eq. (2.8)] in the frequency domain, while
the denominator is introduced to make |F𝑙𝑚𝑛 | = 1 (when 𝜔 is real-valued) and
therefore ensure that the filter does not diverge at high frequency. Finally, we
impose the filter via

ℎ̃filter(𝜔) = F𝑙𝑚𝑛 ℎ̃(𝜔), (2.12)
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and transform the filtered signal to the time domain again

ℎfilter(𝑡) = 1
√

2𝜋

∫
ℎ̃filter(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔, (2.13)

which yields

ℎfilter(𝑡) = −𝑒−𝑖𝜔∗𝑙𝑚𝑛
(𝑡−𝑡0)Θ(𝑡0 − 𝑡). (2.14)

Notice that the sign of the argument in the Heaviside step function Θ has changed.
This can be understood in terms of the impact of the filter on the pole of the
waveform, as shown in Fig. 2.1. The pole of the original waveform ℎ̃(𝜔) (in blue)
lies in the lower half plane, implying its excitation after 𝑡0. After imposing the
rational filter F𝑙𝑚𝑛, the pole is lifted to the upper panel (in orange). Therefore,
the filtered waveform becomes a ring-up signal prior to 𝑡0, whereas the original
ringdown is removed after that moment.

40 20 0 20 40
t

1.0

0.5

0.0

0.5

1.0 Re e−iωtΘ(t)

After filter

Figure 2.2: The effect of the frequency-domain filter in Eq. (2.11) on a single QNM
signal. The mode is chosen to be the fundamental (𝑙 = 2, 𝑚 = 2) QNM of a Kerr
BH with dimensionless spin 0.69. The signal starts at 𝑡 = 0, and it is padded with 0
for 𝑡 < 0. After applying the filter, the original signal (its real part is shown as the
black curve) is removed from the regime of interest (𝑡 > 0), whereas an undesired
“flipped ringdown” is introduced for 𝑡 < 0 (red curve). This “flipped ringdown”
resembles the original signal, but decays backward in time.

To be specific, we consider a toy model in Fig. 2.2 to illustrate the effect of the filter.
We pick the fundamental (𝑙 = 2, 𝑚 = 2) QNM of a Kerr BH with dimensionless
spin 𝜒 = 0.69. The QNM frequencies are obtained from the PYTHON package
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qnm [144]. The start time 𝑡0 is set to 0. Indeed, we can see that within our interested
regime 𝑡 > 𝑡0, the filter is able to remove the mode content 𝜔𝑙𝑚𝑛 completely.
Meanwhile, the ring-up signal (“flipped ringdown”) is introduced before 𝑡0. As
we will see, this feature can contaminate GWs at merger, but it will not affect our
analysis as long as we focus on the regime 𝑡 > 𝑡0. As for an early, low-frequency
inspiral signal, since its frequency 𝜔 is small compared to 𝜔𝑙𝑚𝑛, we can perform a
Taylor expansion around 𝜔 = 0

F𝑙𝑚𝑛 = exp[−𝑖𝜙𝑙𝑚𝑛 − 𝑖𝜔𝑡𝑙𝑚𝑛 + O(𝜔2)], (2.15)

where the two real constants 𝑡𝑙𝑚𝑛 and 𝜙𝑙𝑚𝑛 are given by

𝜙𝑙𝑚𝑛 = −2 tan−1 𝜔
i
𝑙𝑚𝑛

𝜔r
𝑙𝑚𝑛

, 𝑡𝑙𝑚𝑛 = −
2𝜔i

𝑙𝑚𝑛

|𝜔𝑙𝑚𝑛 |2
, (2.16)

with 𝜔r
𝑙𝑚𝑛

and 𝜔i
𝑙𝑚𝑛

being the real and imaginary part of 𝜔𝑙𝑚𝑛 = 𝜔r
𝑙𝑚𝑛
+ 𝑖𝜔i

𝑙𝑚𝑛
,

respectively. Consequently, imposing the filter F𝑙𝑚𝑛 to the low-frequency inspiral
signal is equivalent to shifting the original signal in phase and backward in time4.
For a Kerr BH with 𝜒 = 0.69, the (𝑙 = 2, 𝑚 = 2) fundamental mode leads to
𝑡𝑙𝑚𝑛 ∼ 0.57𝑀 𝑓 , which can be neglected for most of ringdown analyses. However, if
we want to remove a series of QNMs, we need to apply:

Ftot =
∏
𝑙𝑚𝑛

F𝑙𝑚𝑛, (2.17)

where 𝑛 stands for the overtone index. Then the time shift 𝑡𝑙𝑚𝑛 may not be negligible
anymore.

We then switch our attention to a more realistic case: a Schwarzschild BH perturbed
by an even-parity Gaussian pulse. The Zerilli equation [145] is solved numerically.
Figure 2.3 shows the waveform ℎ22 at future null infinity. We see ℎ22 (the black
curve) consists of the excitation, ringdown, and tail regime. After applying the filter
F220 (the red curve), the ringdown oscillations are completely removed from the tail
beyond a certain time around the merger, yet a few wiggles appear prior to that time.
This is due to the nonphysical “flipped ringdown” (see the red curve in Fig. 2.2). The
difference between the original ℎ22 and the filtered waveform, as shown in the lower
panel of Fig. 2.3, corresponds to the combination of the “flipped ringdown” and
the real ringdown (namely the combination of the black and red curves in Fig. 2.2).

4Strictly speaking, Eq. (2.16) is for zero frequency components. An accurate estimation for
other low frequencies is not needed in this chapter.
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Note that here we have undone the time shift induced by the filter by aligning two
waveforms in the early regime. The peak of the difference (the vertical green dashed
line) represents the start time of the ringdown 𝑡0 [see Eq. (2.7)]. In addition, we see
a generic feature: a new damped sinusoid that decays backward in time shows up
before the onset of the original signal. For a BBH waveform, it appears before the
entire inspiral regime, thus it does not impact our analysis.
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Figure 2.3: The impact of the filter F220 on the GW emitted by a single, perturbed
Schwarzschild BH. In the upper panel, the real part of the filtered waveform (red
curve) is compared with the original ℎ22 (black curve). Note that here we have
undone the time shift induced by the filter by aligning two waveforms in the early
regime. In the lower panel, the difference between the two waveforms corresponds
to the combination of the “flipped ringdown” and the real ringdown (see the black
and red curves in Fig. 2.2). Its peak (the vertical dashed line) represents the start
time of the ringdown.

2.2.3 The full filter: The inverse of BH transmissivity
Following Teukolsky’s approach for the linear perturbation of a Kerr BH with
dimensional spin 𝑎 [146, 147], we first write

Ψ = 𝜌−4𝜓4 = 𝑅𝑙𝑚 (𝑟, 𝜔) 𝑆−2 𝑙𝑚 (𝑎𝜔, 𝜃, 𝜙)𝑒
𝑖𝜔𝑡 , (2.18)

where 𝜌 = −(𝑟−𝑖𝑎 cos 𝜃)−1, (𝑡, 𝑟, 𝜃, 𝜙) is the Boyer-Lindquist coordinate system, and
𝜓4 is the Weyl scalar. The radial function 𝑅𝑙𝑚 (𝑟, 𝜔) satisfies the radial Teukolsky
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Figure 2.4: The physical meaning of F 𝐷
𝑙𝑚

based on the hybrid approach. The
spacetime is split by a time-like world tube ΣShell (red line) into an inner PN regime
II and an outer BHP regime I. During the spacetime reconstruction, we take a
waveform from NR at null infinity ℐ

+, and evolve it backward into the bulk using
BHP theory as if ΣShell were not there. The result is proportional to the up-mode
solution to the homogeneous Teukolsky equation. In particular, an image wave
ℎ̃𝐷out

𝑙𝑚
needs to appear at the past horizon ℋ

−, and it is proportional to the filtered
waveform. The image wave is spurious since the entireℋ− lies inside the PN regime
II, where the BHP theory does not apply. It exists there as a source to drive the wave
in regime I. During the ringdown phase of ℎ̃, the linear QNMs are free ringing of
the remnant BH and hence can be annihilated by 𝐷out

𝑙𝑚
, whereas nonlinear pieces are

driven by some sources and thus cannot be removed.

equation [146, 147]. The up-mode solution 𝑅
up
𝑙𝑚

to the homogeneous Teukolsky
equation is of particular interest to us. Its asymptotic behavior near future null
infinity and the horizon is given by [148]

𝑅
up
𝑙𝑚
∼


𝑟3𝑒𝑖𝜔𝑟∗ , 𝑟∗ → +∞,

𝐷out
𝑙𝑚
𝑒𝑖𝜔𝑟∗ + Δ2𝐷in

𝑙𝑚
𝑒−𝑖𝜔𝑟∗ , 𝑟∗ → −∞,

(2.19)

with Δ = 𝑟2 − 2𝑟 + 𝑎2 and 𝑟∗ being the tortoise radius. Fig. 2.4 exhibits the physical
meaning of the up-mode—a wave is emitted from the past horizon ℋ

− and it gets
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Figure 2.5: The effect of the filter F𝑙𝑚𝑛 on ℎ22 of SXS:BBH:0207. Here we
have aligned the early inspiral portion between the original signal ℎ22 (black) and
the filtered waveforms. After removing 𝜔220 from the original waveform, the
oscillation in the ringdown of the filtered waveform (red) is consistent with the
QNM 𝜔221 (blue). If we further remove 𝜔22,𝑛=1...7, the residual shows the existence
of the QNM 𝜔320 (cyan), which is caused by the spherical-spheroidal mixing. For
comparison, we evaluate the numerical error of this waveform (gray) by taking the
difference between two adjacent numerical resolutions.

reflected and transmitted by the BH potential. The transmissivity and reflectivity
are given by 1/𝐷out

𝑙𝑚
and 𝐷in

𝑙𝑚
/𝐷out

𝑙𝑚
, respectively. As for a QNM of the BH, its mode

frequency 𝜔𝑙𝑚𝑛 satisfies

𝐷out
𝑙𝑚 (𝜔𝑙𝑚𝑛) = 0. (2.20)
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Therefore, we can write

𝐷out
𝑙𝑚 ∼

∏
𝑛

(𝜔 − 𝜔𝑙𝑚𝑛). (2.21)

Comparing Eq. (2.21) with the filter in Eq. (2.17) [also Eq. (2.11)], we see 𝐷out
𝑙𝑚

serves the same role as Ftot: it can remove all 𝜔𝑙𝑚𝑛’s that are associated with the
indices (𝑙, 𝑚) at once. In practice, since 𝐷out

𝑙𝑚
diverges as 𝜔 → 0 [149], we instead

define a filter

F 𝐷𝑙𝑚 =
𝐷out
𝑙𝑚

𝐷out∗
𝑙𝑚

, (2.22)

which is a direct analogue of Eq. (2.11) to ensure |F 𝐷
𝑙𝑚
| = 1 when 𝜔 is real-valued.

Below we will call F 𝐷
𝑙𝑚

the full filter.

Interestingly, unlike the filter in Eq. (2.11) that was introduced purely phenomeno-
logically, the current filtered waveform ℎ̃ 𝐷out

𝑙𝑚
bears a physical meaning. To be

concrete, in Ref. [150], some use the hybrid approach [137, 138] to reconstruct
the spacetime near merging compact objects based on NR waveforms at future null
infinity ℐ

+. Below we give a brief introduction and refer the interested readers to
Refs. [137, 138, 150] for more details. The hybrid method is an approximated, ab
initio waveform mode. For a BBH merger spacetime in Fig. 2.4, the spacetime is
split by a time-like world tube ΣShell into an inner strong-gravity region II and an
outer weak-gravity region I, where the strong-gravity metric in II is given by the
post-Newtonian (PN) theory while the one in I is provided by BHP theory. The
hybrid method evolves two metrics jointly and they communicate via boundary con-
ditions on the world tube ΣShell. Note that close to the merger, the PN theory may
break down, but the errors stay within the BH potential as long as the shell ΣShell

falls rapidly enough into the future horizon ℋ
+. As a result, the hybrid method was

able to predict a reasonable inspiral-merger-ringdown waveform for a BBH system
[137, 138].

In Ref. [150], on the other hand, we reversed the process—we started with a NR
waveform at ℐ+ and evolved it backward into the bulk (the region I) using BHP
theory. This process allows us to construct the entire spacetime as if the worldtube
were not there. It turns out that the solution is proportional to the up-mode solution
in Eq. (2.19), and the coefficient is determined by the NR waveform ℎ̃ at ℐ+.
As shown in Fig. 2.4, the process leads to an outgoing wave ℎ̃ 𝐷out

𝑙𝑚
at the past

horizon ℋ
−, although it is not real because the entire ℋ

− lies inside the strong-
gravity region, where BHP theory does not apply. Nevertheless, we can think of



49

the filtered waveform ℎ̃ 𝐷out
𝑙𝑚

as an image wave, which is akin to the image charge in
electrodynamics. The image wave exists there to drive the signal in region I—acting
as a source—by providing a desired boundary condition on ΣShell. In particular,
during the ringdown phase of ℎ̃, a linear QNM corresponds to the free ringing of
the BH, and thus there is no corresponding source term. Consequently, it can be
annihilated by 𝐷out

𝑙𝑚
, which is consistent with our phenomenological construction

in Sec. 2.2.2. In contrast, second-order effects (during the ringdown phase) [117,
125, 126] are driven by sources, and hence cannot be removed by 𝐷out

𝑙𝑚
. The filtered

waveform ℎ̃ 𝐷out
𝑙𝑚

represents the image wave (an effective source) for the second-order
effects.

Table 2.1: A list of NR simulations (nonprecessing) used in this chapter. The first
column is the SXS identifier [151]. The second column is the mass ratio 𝑞 > 1. The
third column gives the number of quasicirular orbits that the systems undergo before
the merger. The fourth and fifth columns correspond to the initial spin components
along the direction of the orbital angular momentum (the 𝑧−axis). The remnant
mass (𝑀 𝑓 ), as a fraction of the total system mass 𝑀tot, and spin (𝜒 𝑓 ) are in the final
two columns. The waveform SXS:BBH:0207 is a GW150914-like system.

ID
𝑞 𝑁cycle 𝜒𝑧1 𝜒𝑧2

𝑀 𝑓

𝑀tot
𝜒 𝑓SXS:BBH:

0305 1.2 15.2 0.33 −0.44 0.952 0.692
1107 10.0 30.4 ∼ 10−6 ∼ 10−8 0.992 0.261
1936 4.0 16.5 −0.8 −0.8 0.985 0.022

2.3 Applications of the filters
In this section, we use three NR simulations, SXS:BBH:0305, 1107 and 1936, in the
Simulating eXtreme Spacetimes (SXS) catalog [151] as examples to demonstrate
the applications of the filters. As summarized in Table 2.1, these three waveforms
are for nonprecessing systems: the initial individual spins 𝜒𝑧1,2 are (anti-)aligned
with the orbital angular momentum (along the 𝑧-axis), and the mass ratio between
the primary BH and the secondary BH is denoted by 𝑞, i.e., 𝑞 > 1. The systems
undergo 𝑁cycle quasicircular orbits before the merger. The remnants are Kerr BHs
with mass 𝑀 𝑓 and spin 𝜒 𝑓 . In particular, SXS:BBH:0207 is a GW150914-like
system [50]. We want to emphasize again that our rational filter leads to a time
shift backwards in time. For the sake of comparison, in this section we always undo
the time shift by aligning the early portions of waveforms (i.e., minimizing their
mismatch).
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2.3.1 The GW150914-like system: SXS:BBH:0207
In this subsection, we investigate several (𝑙, 𝑚) harmonics of SXS:BBH:0305. We
first focus on ℎ22, where we show that the 𝜔320 QNM mixes into ℎ22 due to the
spherical-spheroidal mixing [141, 143, 152]. Then we investigate second-order
effects in ℎ44, ℎ54 and ℎ55 contributed by the quadratic couplings ℎ2

22 and ℎ22ℎ33,
respectively. Finally, we study the leakage of the 𝜔220 mode into the harmonic ℎ21

due to the gravitational recoil [152, 153].
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Figure 2.6: A comparison between the full filter F 𝐷
𝑙𝑚

[Eq. (2.22)] and the rational
filter Ftot [Eq. (2.17)] associated with 𝜔22,𝑛=0...7. The latter one is more accurate to
reveal the existence of the QNM 𝜔320 in ℎ22 of SXS:BBH:0207. We attribute the
inaccuracy of the full filter to the numerical noise when we interpolate the value of
𝐷out
𝑙𝑚

from the Black Hole Perturbation Toolkit.

2.3.1.1 ℎ22: the spherical-spheroidal mixing

It was found that the harmonic ℎ22 of SXS:BBH:0207 can be modeled as a su-
perposition of 𝜔22,𝑛=0...7 up to the peak strain amplitude [101]. To compare our
analysis results using the new method with theirs, we first apply a filter F𝑙=2,𝑚=2,𝑛=0

[Eq. (2.11)] to ℎ22. As shown in Fig. 2.5, the filtered waveform (the red curve) has
a smaller amplitude than ℎ22 in the late ringdown regime, and we see that the main
residual oscillation is consistent with the frequency and the decay rate of the first
overtone 𝜔221 (blue). Here the blue dashed curve is obtained by fitting the filtered
waveform within the window of [12, 28] 𝑀 𝑓 ; and the mode amplitude and phase of
the first overtone are 0.08 and −0.57 rad at 𝑡 = 12𝑀 𝑓 . We note that the amplitude
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(b) SXS:BBH:0305: Re ℎ54
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Figure 2.7: Second-order modes in ℎ44 (top), ℎ54 (bottom left), ℎ55 (bottom right)
of SXS:BBH:0207. After removing linear QNMs and relevant spherical-spheroidal
mixing modes from original waveforms (black curves), filtered waveforms (red
curves) contain oscillations that are consistent with the sum tone of 2𝜔220 or 𝜔220 +
𝜔330 (green dashed curves). As for the harmonics ℎ55 and ℎ54, the comparison is
done in the superrest frame to avoid other mixing modes.

of the first overtone is reduced by F220 [154, 155]. One needs to take the reduction
factor into account while comparing with the original amplitude, and we leave this
comparison for future work. On the other hand, the result serves as strong evidence
to support that F𝑙𝑚𝑛 is indeed able to annihilate the corresponding (𝑙, 𝑚, 𝑛) QNM.

Next we continue to remove 𝜔22,𝑛=1...7 based on the conclusion in Ref. [101], and
obtain the green curve in Fig. 2.5. We can see that the oscillation is consistent
with 𝜔320 (cyan) in the window of [16, 65] 𝑀 𝑓 , whose amplitude and phase are
∼ 4.4 × 10−4 and −0.79 rad at 𝑡 = 16𝑀 𝑓 after the filters. To ensure the oscillation
is physical rather than numerical artifacts, we compute the numerical (truncation)
error of this NR simulation by taking the difference between two adjacent numerical
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resolutions. We see that the residual in the filtered waveform is still above the numer-
ical noise floor. Therefore, this piece of the dominant residual signal corresponds
to the spherical-spheroidal mixing in the remnant Kerr spacetime5 [141, 143, 152].
Meanwhile, we find the filter shifts the waveform backward in time by ∼ 14.1𝑀 𝑓 ,
close to the prediction given by Eq. (2.16)

𝑛=7∑︁
𝑛=0

𝑡𝑙=2,𝑚=2,𝑛 ∼ 12.9𝑀 𝑓 . (2.23)

In Fig. 2.5 we have aligned the early inspiral portion between the original signal ℎ22

(the black curve) and the filtered waveforms for comparisons.

Then in Fig. 2.6 we investigate the effect of the full filter F 𝐷
𝑙𝑚

[Eq. (2.22)], where
the value of 𝐷out

𝑙𝑚
is obtained from the Black Hole Perturbation Toolkit [158]. The

result is almost identical to that of the rational filter Ftot up to 𝑡 ∼ 10𝑀 𝑓 , but it is
less accurate to reveal the spherical-spheroidal mixing. We attribute the inaccuracy
to the numerical noise when we interpolate the value of 𝐷out

𝑙𝑚
from the Black Hole

Perturbation Toolkit, and we leave a more precise calculation of 𝐷out
𝑙𝑚

for future
studies. In addition, we find a nice property of the full filter F 𝐷

𝑙𝑚
: it does not give

rise to any time shift, as opposed to the rational filter. One could benefit from this
feature in real data analyses.

2.3.1.2 ℎ44, ℎ55, ℎ54: the second-order QNMs

London et al. [94] found evidence for the second-order mode in the ℎ44 harmonic,
contributed by a quadratic coupling ∼ ℎ2

22. Therefore, it is expected to see the sum
tone 2𝜔220 in the ringdown of ℎ44. In the upper panel of Fig. 2.7, we first remove
the linear QNMs 𝜔44,𝑛=0...3 from ℎ44, and then fit the filtered waveform with 2𝜔220

in the window of [12, 30] 𝑀 𝑓 . We can see a decent agreement. The corresponding
mode amplitude and phase are 7.9×10−4 and 3.1 rad at 𝑡 = 12𝑀 𝑓 after the filters. In
addition, the signal is larger than the numerical (truncation) error, which is evaluated
by computing the difference between two adjacent numerical resolutions. This result
shows that the second-order mode does exist in the ringdown regime. Furthermore,
we find evidence for the presence of 𝜔220 + 𝜔221 and 2𝜔221 in the ringdown of ℎ44

as well, and we leave more discussions in our follow-up work [159]. On the other
5The supertranslation can also make ℎ32 leak into ℎ22, e.g., Eq. (8) of Ref. [152]. We have checked

that the presence of the mode 𝜔320 is due to the spherical-spheroidal mixing by transforming the
waveform to the superrest frame using the technique presented in Ref. [156]. For more on this, see
Ref. [107, 156, 157].
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hand, while we are preparing our manuscript, we notice that Ref. [160] also carries
out comprehensive studies on the second-order modes with a different approach, so
we refer the interested reader to Ref. [160] for more details.

In addition, it is also expected that ℎ55, ℎ54 can be sourced by ℎ22ℎ33 and ℎ2
22,

respectively. In this case, we find that one has to map the waveforms to the superrest
frame [107, 157] to reveal these second-order effects. We do this using the technique
presented in Ref. [156], based on the SpECTRE code [161, 162]. In the bottom left
panel of Fig. 2.7, after removing the linear QNMs 𝜔54,𝑛=0...3, as well as 𝜔44,𝑛=0...3

and𝜔64,𝑛=0...3 caused by the spherical-spheroidal mixing, we find the residual signal
of ℎ54 is consistent with the sum tone 2𝜔220 in the window of [10, 40] 𝑀 𝑓 , with
an amplitude of 1.2 × 10−5 and a phase of −2.9 rad at 𝑡 = 10𝑀 𝑓 . As for ℎ55, the
bottom right panel of Fig. 2.7 shows the existence of 𝜔220 + 𝜔330 in [8, 28] 𝑀 𝑓 ,
whose amplitude and phase are 1.9× 10−5 and −1.96 rad at 𝑡 = 8𝑀 𝑓 . Nevertheless,
we see the amplitudes of these two second-order effects are on the same order of the
numerical noise, therefore their existence is not conclusive.

Finally, we want to remark again that the amplitudes of the second-order effects are
reduced by the filters. In consequence, the amplitudes obtained from our approach
are smaller than their original values.

2.3.1.3 ℎ21: the mode mixing due to a gravitational recoil

We repeat our process for the harmonic ℎ21 of SXS:BBH:0207. As shown in
Fig. 2.8, after removing the linear QNMs 𝜔21,𝑛=0...2 and the spherical-spheroidal
mixing modes 𝜔31,𝑛=0,1, we find the remaining oscillation is consistent with the
mode 𝜔220 (the red and yellow dashed curves). We then use 𝜔220 to fit the filtered
waveform in the window of [55, 92] 𝑀 𝑓 . The result is shown as the yellow dashed
curves. The corresponding mode amplitude and phase are 9.5 × 10−6 and −0.62
rad at 𝑡 = 55𝑀 𝑓 . This leakage is caused by a boost in the orbital plane, and this
phenomenon has been discussed by Kelly et al. [152] and Boyle [153]. To verify
this, we transform the waveform to the superrest frame (the blue curve) [107, 157],
where the remnant BH is in the center-of-mass frame. After applying the same
filter, we can see the mixing is completely removed (the green curve), while the
other portion of the waveform remains unchanged.

We note that the leakage of 𝜔220 into ℎ21 is a common phenomenon, especially for
high mass-ratio events whose kick velocities are relatively large. Failing to take
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Figure 2.8: Leakage of the 𝜔220 mode into the ℎ21 harmonic due to the gravitational
recoil. After removing 𝜔21,𝑛=0...2 and 𝜔31,𝑛=0,1 from the original ℎ21 waveform
(black curve), the red curve exhibits the presence of the 𝜔220 mode (yellow dashed
curve). If we transform the waveform to the superrest frame (blue curve) and repeat
our filtering process, the mixing mode 𝜔220 will be completely removed (green
curve).

this effect into account may misinterpret the mixing mode 𝜔220 as retrograde modes
[103, 143]. We will explain more details in Sec. 2.3.2.

2.3.2 The retrograde modes
It was found that taking into account the retrograde modes [e.g., the second term
of Eq. (2.6)] would expand the linear perturbation regime. To partially address the
debate on overfitting, we use our rational filter as a complementary tool to visualize
the presence of the retrograde modes.

We first take SXS:BBH:1936 with non-negligible retrograde modes (see Sec. 10.8).
In the top panel of Fig. 2.9, we remove the prograde modes 𝜔22,𝑛=0...3 and the
spherical-spheroidal mixing mode 𝜔320 from the original harmonic ℎ22 (the black
curve), then the red curve shows the existence of −𝜔∗2−20 in the residual. In the plot,
the green dashed curve is obtained by fitting the filtered waveform with −𝜔∗2−20 in
the window of [28, 60] 𝑀 𝑓 . Its mode amplitude and phase are 3.9×10−4 and 2.6 rad
at 𝑡 = 28𝑀 𝑓 . To further support our result, we investigate the phase evolution of the
waveforms. For a prograde mode, its phase should decrease monotonically over time
due to the term 𝑒−𝑖𝜔𝑙𝑚𝑛𝑡 [see the first term of Eq. (2.6)], whereas a retrograde mode’s
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Figure 2.9: Retrograde mode−𝜔∗2−20 in the ringdown of SXS:BBH:1936. Top panel:
after removing the 𝜔22,𝑛=0...3 modes and the spherical-spheroidal mixing mode 𝜔320
from the original harmonic ℎ22 (black curve), we reveal the presence of −𝜔∗2−20
(green dashed curve) in the residual waveform (red curve). Bottom panel: the phase
evolution of the original waveform (black curve) and the filtered waveform (the red
curve). The phase of the original waveform decreases monotonically, indicating
that the prograde modes are dominant. However, the phase of the filtered waveform
starts to grow at the same time as the residual oscillations in the top panel appear,
which demonstrates that the residual oscillations are retrograde modes.

phase should increase due to the term 𝑒𝑖𝜔
∗
𝑙−𝑚𝑛

𝑡 [see the second term in Eq. (2.6)]. In
the bottom panel of Fig. 2.9, we see the phase of the original waveform (the black
curve) decreases with time, indicating that the progrades are more dominant. After
applying the filter, the decreasing trend terminates at ∼ 16𝑀 𝑓 after the peak and the
phase starts to grow at the same time that the residual oscillations in the top panel
appear. This observation confirms the physical origin of the residual oscillations.

Then we look into the case of SXS:BBH:1107 investigated by Dhani [103]. As
shown in Fig. 2.10, there are a few cycles in the filtered residual waveform ℎ22

(the red curve) that are consistent with the retrograde mode −𝜔∗2−20. Meanwhile,
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Figure 2.10: Same as Fig. 2.9, the retrograde mode −𝜔∗2−20 in the ℎ22 of
SXS:BBH:1107.

the phase of the filtered waveform also grows within that regime, which serves as
more evidence. Nevertheless, the retrograde mode in this case is weaker and noisier
than that of SXS:BBH:1936. Furthermore, we find applying retrograde filters (not
only the fundamental mode but also overtones) has little impact on the early portion
(𝑡 ≲ 0) of the red curve in Fig. 2.10, meaning there is no strong evidence for the
existence of retrograde modes within that regime. As for the harmonic ℎ21, we find
it has a mixing component from the mode 𝜔220 due to the gravitational recoil. This
effect was not taken into consideration by Dhani [103], so we speculate that this
could be the cause for the crests and troughs in the mismatch of ℎ21, e.g., Fig. 3 of
Ref. [103].

Finally, we want to note that the vertical dashed lines in Figs. 2.9 and 2.10 do
not necessarily correspond to the start time of the retrograde mode −𝜔∗2−20 in the
original waveforms (the black curves), because of the time shift induced by our
rational filter. To undo the time shift, here we simply align the early inspiral portion
of the filtered waveforms with the original ones.
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Figure 2.11: The up-mode solution of an ECO. We assume that a GW emerges from
the horizon (𝑟∗ = −∞) and its amplitude is unity. It bounces back and forth within
the cavity formed by the ECO surface and the BH potential. The GW seen by an
observer at infinity consists of the main transmissive wave 1/𝐷out

𝑙𝑚
and a series of

echoes.

2.4 The stability of the full filter F 𝐷
𝑙𝑚

The QNM spectra of BHs have been found to be unstable [163–167]. In partic-
ular, Cheung et al. [167] classified the instability into two categories: “migration
instability” and “overtaking instability.” For migration instability, the fundamental
QNM drifts drastically from its unperturbed value when the perturbation is distant
from the BH. This kind of instability is related to the asymptotic behavior of the
eigenfunction near the horizon (𝑒−𝑖𝜔𝑙𝑚𝑛𝑟∗) and infinity (𝑒𝑖𝜔𝑙𝑚𝑛𝑟∗). Recalling that
Im 𝜔𝑙𝑚𝑛 < 0, the eigenfunction of the QNM increases exponentially as |𝑟∗ | → ∞.
Any small perturbation of the BH potential at a large |𝑟∗ | will lead to a significant
change of 𝜔𝑙𝑚𝑛. For overtaking instability, a family of new modes appears near a
bumpy BH, trapped between two potential barriers 6. One of the new modes might
have a smaller decay rate than the unperturbed fundamental mode when the pertur-
bation is at a large distance. Consequently, this new mode overtakes the original
fundamental mode.

The spectral instability, however, may have a limited effect on observational results
(e.g., time-domain responses of a BH), as discussed in Refs. [43, 163–165, 168,
169]. Nollert [163] and Barausse et al. [164, 165] showed that the prompt time-

6They are called “matter-driven” modes by Barausse et al. [164, 165].
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Figure 2.12: The filter F 𝐷 ECO
𝑙𝑚

of a nonspinning ECO in the time domain. In the
top panel, we set 𝑏 to 200𝑀 𝑓 (blue) and 300𝑀 𝑓 (red), while fixing the value of 𝜖 to
10−1. They are compared with that of a Schwarzschild BH (black). In the bottom
panel, we choose 𝜖 = 10−1, 10−2, 10−3 (blue, red and yellow) and set 𝑏 to 200𝑀 𝑓 . In
both cases, the original signal (around 𝑡 ∼ 0) remains unchanged. The perturbation
appears as periodic echoes with the time interval 2𝑏. The amplitude of the 𝑛th echo
is proportional to 𝜖𝑛.

domain response is independent of perturbations when the perturbations are far from
the system, even though the QNMs of the perturbed system are completely different
from the ones of an isolated BH. Cardoso et al. [43] drew a similar conclusion while
considering near-horizon perturbations. In fact, as pointed out by Hui et al. [170]
and Berti et al. [168], despite the nonlocality of QNMs, one needs to appreciate the
causal structure of the system while considering the time-domain signals—a time
response reflects the nature of each single potential bump that is causally connected
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Figure 2.13: Same as Fig. 2.12. The real part of F 𝐷22 in the frequency domain.

to the observer, e.g., the prompt ringdown of a regular BH. The QNMs of the
perturbed system do not show up until very late times as “echoes” [171] when the
initial Cauchy data travels and experiences the entire potential7. Therefore, the time-
domain signal is stable in the sense that the original waveform remains unchanged,
whereas the additional perturbation appears only as echoes that are well separated

7We note that QNMs can become complete under some conditions [172–174] (see also Refs. [163,
175] for relevant discussions). In particular, Beyer [172] showed the completeness of QNMs of the
Poeschl-Teller potential at a late time—a regime where solutions can be expanded with respect to its
QNMs.
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from the original signal in time.

The instability of the QNM spectra implies that QNMs may not be the most natural
basis for ringdowns. One might need to rearrange QNMs into new subsets and
sum each subset to form a new basis, in either time or frequency domain. In fact,
the Backwards One-Body (BOB) model [176] is an inspiring example, where the
contributions of overtones associated with the same (𝑙, 𝑚) harmonic are rearranged
and summed into a single time-domain function ∼ sech𝛾𝑡, where 𝛾 is a constant.
One may further postulate that the time-domain function could be treated as the
leading term of a new set of basis and the term ∼ sech𝛾𝑡 provided by the BOB
model contains most power of the ringdown. Another relevant time-domain basis
was discussed by some of us for superkick systems [177]: it was found that the time-
domain basis can even be extended to the inspiral regime for the superkick systems.
A direct consequence is the collective excitation of QNMs—the amplitudes of
different QNMs are correlated as a result of the time-domain basis being projected
to the QNM basis. In fact, such a correlation (universality) has been found in not
only the superkick systems [177], but also extreme mass-ratio inspirals [74–77,
134].

Based on the above discussions, we want to ask: Do the filters reflect the nature
of the system? Can we distinguish a BH from other objects (e.g., a bumpy BH or
an exotic compact object) using our filters? In particular, since the full filter F 𝐷

𝑙𝑚

contains a collection of the corresponding QNMs 𝜔𝑙𝑚𝑛’s as a result of Eq. (2.21),
is the filter stable or not under perturbations in the BH potential, given the spectral
instability? In fact, a similar topic has been investigated recently by Kyutoku et al.
[169]. The “phase shift” introduced by the authors is essentially the phase of our full
filter in Eq. (2.22), and they showed that the phase shift of a Schwarzschild BH is
stable when it is perturbed by a small Pöschl-Teller bump. In this work, we continue
their studies and adopt another simple model to provide a qualitative answer. More
sophisticated discussions are left for future work.

In Fig. 2.11, we consider an exotic compact object (ECO) whose surface is close to
the would-be horizon. The surface can partially reflect GWs and the reflectivity R
is given by

R = 𝜖𝑒−2𝑖𝑏, (2.24)

where 𝜖 is a constant, and 𝑟∗ = −𝑏 is the location of the ECO surface with the factor
of two representing the round trip between the ECO surface and the BH potential.
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By imposing a physical boundary condition based on the membrane paradigm at the
ECO surface [178], we obtain the up-mode solution [in parallel with Eq. (2.19)]:

𝑅
up ECO
𝑙𝑚

∼


𝑟3𝑒𝑖𝜔𝑟∗ , 𝑟∗ → +∞,

�̃�out
𝑙𝑚
𝑒𝑖𝜔𝑟∗ + Δ2�̃�in

𝑙𝑚
𝑒−𝑖𝜔𝑟∗ , 𝑟∗ → −∞,

(2.25)

with

�̃�out
𝑙𝑚 = 𝐷out

𝑙𝑚

[
1 − (−1)𝑙+𝑚+1R 𝐷 𝑙𝑚

4𝐶𝑙𝑚
𝐷in
𝑙𝑚

𝐷out
𝑙𝑚

]
, (2.26)

where the factor𝐷 𝑙𝑚/𝐶𝑙𝑚 comes from the Teukolsky-Starobinsky (TS) relation [148,
179]. We refer interested readers to Sec. 2.9 for derivation. Note that Eq. (2.26)
takes a similar form to the Wronskian in Eq. (5.2) of Ref. [170].

We then define the filter F 𝐷 ECO
𝑙𝑚

for the ECO system:

F 𝐷 ECO
𝑙𝑚 =

�̃�out
𝑙𝑚

�̃�out *
𝑙𝑚

. (2.27)

To transform the filter to the time domain, we first need to apply the Planck-taper
filter F (𝜔) [180] to remove the high-frequency contribution:

F (𝜔;𝜔1, 𝜔1) =


0, 𝜔 < 𝜔1,

1
𝑒𝑧 + 1

, 𝜔1 < 𝜔 < 𝜔2,

1, 𝜔 > 𝜔2,

(2.28)

with

𝑧 =
𝜔2 − 𝜔1
𝜔 − 𝜔2

+ 𝜔2 − 𝜔1
𝜔 − 𝜔1

. (2.29)

Figure 2.12 shows a nonspinning ECO case. The filters for a spinning ECO have the
same qualitative feature so we refer readers to Sec. 2.7 for results. In the absence
of perturbations, we see that the black curve assembles the Dirac function 𝛿(𝑡) near
𝑡 = 0 because of the fact that |F 𝐷 ECO

22 (𝜔) | = 1. Most of the signals (i.e., the damped
sinusoids) lie on the left side of the Dirac function (𝑡 < 0), and the reason is exactly
the same as the flipped ringdown in Fig. 2.2. We also see the tail-like feature at an
earlier time.

Next, we turn on the perturbation. Since Cheung et al. [167] found the spectral
instability with 𝑏 varied, in Fig. 2.12a, we first compute the filter with two choices
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Figure 2.14: The ringdown RSS of the filtered waveform as a function of 𝜒 𝑓 . The
SXS:BBH:0207 waveform is used. The six panels correspond to different choices of
the start time, i.e., 𝑡0 in Eq. (2.30). In each panel, different colors indicate the results
from removing different numbers of overtones. When 𝑡0 is large (∼ 50𝑀 𝑓 ), the
true value of the spin 𝜒true

𝑓
= 0.692 leads to the smallest RSS no matter how many

overtones are removed. However, if we push 𝑡0 to an early time, enough overtones
need to be removed to obtain the true value. On the other hand, the RSS depends
strongly on 𝜒 𝑓 : a 2% change in 𝜒 𝑓 can result in around two orders of magnitude
change in the RSS, when 𝑡0 and 𝑁 are fixed to their true values.

of 𝑏, while fixing 𝜖 = 0.1. We find the modification to the original signal is
negligible. The major change is a series of echoes with an interval of Δ𝑡 ∼ 2𝑏—well



63

0.15 0.10 0.05 0.00 0.05 0.10 0.15
∆χf/χ

true
f

10-1

100

R
SS

 o
f R

D

t0 = − 10Mf

N= 0
N= 1
N= 2
N= 3

N= 4
N= 5
N= 6
N= 7

Figure 2.15: Continuation of Fig. 2.14, except that the onset of the ringdown window
𝑡0 is set to −10𝑀 𝑓 .

separated from the original signal (in the plot we only show the first one or two
echoes). Meanwhile the amplitude of the echo is independent of 𝑏. We remark that
the 𝛿-function is removed from echoes since the TS coefficient |𝐷 𝑙𝑚/𝐶𝑙𝑚 | → 0 as
𝜔 → ∞. Then in Fig. 2.12b, we fix the value of 𝑏 to 200𝑀 𝑓 but vary 𝜖 . Again,
the perturbation has little impact on the original signal, and the amplitude of the
echo scales linearly with 𝜖 . Compared to the recent work by Berti et al. [168], our
studies include not only the fundamental mode, as Berti et al. [168] did, but also
more overtones. Nevertheless, the qualitative features in our results are the same
as theirs. Finally, Figure 2.13 shows the real part of F 𝐷 ECO

22 (𝜔) in the frequency
domain for completeness.

2.5 Inferring remnant properties from the rational filter
We have shown that our rational filter F𝑙𝑚𝑛 is able to remove a specific QNM 𝜔𝑙𝑚𝑛

from the ringdown regime and reduce the root sum square (RSS) of the ringdown.
In particular, the ringdown signal can be almost completely removed if we apply a
filter with a series of corresponding modes. Since the mode frequencies 𝜔𝑙𝑚𝑛 are
determined by the mass 𝑀 𝑓 and spin 𝜒 𝑓 of the remnant BH, in this section, we
investigate how the ringdown RSS decreases depending on the choices of 𝑀 𝑓 and
𝜒 𝑓 .
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(d) 𝑡0 = 0, 𝑁 = 7 (zoom out)

Figure 2.16: Contours of RSS with varying 𝑀 𝑓 and 𝜒 𝑓 . To avoid redundancy, we
set 𝑡0 to 0 and choose 𝑁 = 2 (left panels) and 𝑁 = 7 (right panels). In the top row,
we explore the parameter space near the true remnant properties, whereas in the
bottom row we investigate a larger area. The true remnant mass and spin are marked
with a cross. The effects of 𝑀 𝑓 and 𝜒 𝑓 are degenerate—their difference is more
constrained than their sum. In addition, we find there is a second local minimum in
Fig. 2.16c.

We define the RSS of a filtered harmonic ℎ 𝑓
𝑙𝑚
(𝑡) within a time interval [𝑡0, 𝑡1] to be

RSS =

√︄∫ 𝑡1

𝑡0

|ℎ 𝑓
𝑙𝑚
(𝑡) |2𝑑𝑡. (2.30)
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Figure 2.17: An explanation for the second local minimum in Fig. 2.16c. The
blue dashed line corresponds to the original harmonic ℎ22 of SXS:BBH:0207.
Using the true remnant properties, the corresponding QNMs are removed (red
curve). However, it has a larger amplitude at around 0. This is because adjacent
overtones contribute destructively to the original waveform. Fewer QNMs reduce
this cancellation and lead to a larger amplitude. On the contrary, using the remnant
properties at the second local minimum (black curve), the amplitude of the original
waveform diminishes even though the corresponding QNMs are not filtered away.
As a result, two systems lead to similar RSS.
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We still take the GW150914-like waveform SXS:BBH:0207 as an example. We fix
𝑡1 to 100𝑀 𝑓 and let 𝑡0 vary. Then we apply a filter:

F𝑁 (𝑀 𝑓 , 𝜒 𝑓 ) = F320(𝑀 𝑓 , 𝜒 𝑓 )
𝑁∏
𝑛=0
F22𝑛 (𝑀 𝑓 , 𝜒 𝑓 ), (2.31)

to the harmonic ℎ22. The filter F𝑁 is a function of remnant mass 𝑀 𝑓 and spin 𝜒 𝑓 . It
also depends on how many (𝑙 = 2, 𝑚 = 2) overtones we want to remove. We want to
emphasize that our rational filter leads to a time shift, and in Sec. 2.3 we undid it by
aligning early inspiral waveforms. However, in this case we find the alignment can
pull some non-ringdown signals into the regime that we are interested in (𝑡 > 𝑡0)
and make our analyses fail. To avoid this, here we do not perform this alignment.
A caveat of this compromise is that the time shift itself can reduce the RSS, even
though it is a subdominant effect. In this chapter, we ignore the contribution due to
this time shift, and leave more self-contained studies for future work.

In Fig. 2.14, we vary the value of 𝜒 𝑓 with different choices of 𝑁 and 𝑡0 while
keeping 𝑀 𝑓 fixed at the true value. When 𝑡0 is large (∼ 50𝑀 𝑓 ), we see the true
value 𝜒true

𝑓
= 0.692 leads to the smallest RSS (namely the ringdown is mostly

removed) regardless of the value of 𝑁 . This is because in the regime of 𝑡 ≳ 50𝑀 𝑓 ,
the signal is dominated by the fundamental mode 𝜔220, and removing 𝜔220 alone is
enough to reduce the RSS down to roughly the numerical noise level. However, if
we push 𝑡0 to an early time, failing to filter out enough modes will result in incorrect
values of 𝜒 𝑓 when RSS achieves its local minimum—the value 𝜒 𝑓 is degenerate with
the choice of 𝑡0. Especially, in the first panel of Fig. 2.14, we see that the ringdown
RSS depends monotonically on 𝜒 𝑓 when 𝑡0 = 0 and 𝑁 = 0; but the local minimum
of the RSS does converge to the true value of 𝜒 𝑓 after we include enough overtones.
If we continue to go to an earlier regime, such as 𝑡0 = −10𝑀 𝑓 in Fig. 2.15, we
can see that the inferred spin is biased even when enough overtones are included,
because of the presence of non-ringdown signals (e.g., late inspiral and merger). On
the other hand, we also investigate the effect of 𝑀 𝑓 . We find that varying the value
of 𝑀 𝑓 (with 𝜒 𝑓 fixed to the true value) leads to a similar impact on the ringdown
RSS, and the results are summarized in Appendix 2.8.

Our results shown in Figs. 2.14 and 2.21 are closely related to Fig. 7 of Ref. [88], in
which the authors show how the mismatch varies with deviations from GR and the
start time of analyses. Similarly, our results indicate that the residual RSS depends
strongly on the choice of (𝑀 𝑓 , 𝜒 𝑓 ). In our case, a 2% change in 𝜒 𝑓 can result in
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around two orders of magnitude change in the RSS, when 𝑡0 and 𝑁 are fixed to their
“true” values.
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(a) 𝑡0 = 50𝑀 𝑓 , 𝑁 = 0

Figure 2.18: Same as Fig. 2.16, except that the real and imaginary parts of the
fundamental mode are used as two independent variables. The start time 𝑡0 is set to
50𝑀 𝑓 . Similar to Fig. 2.16c, there is a second local minimum.

After studying the effects of 𝑀 𝑓 and 𝜒 𝑓 separately, in Fig. 2.16 we provide contours
of RSS with varying them together. To avoid redundancy, we set 𝑡0 to 0 and focus on
two cases: 𝑁 = 2 and 𝑁 = 7, respectively. If we restrict ourselves to the region near
the true remnant properties (Figs. 2.16a and 2.16b), the 𝑁 = 2 one leads to biases
in extracting 𝑀 𝑓 and 𝜒 𝑓 , whereas the latter one can recover the remnant properties
(marked with a cross) accurately. In addition, we notice that the effects of 𝑀 𝑓 and
𝜒 𝑓 are partially degenerated—their difference ∼ 𝑀 𝑓 − 𝜒 𝑓 is more constrained than
their sum ∼ 𝑀 𝑓 + 𝜒 𝑓 . This is consistent with Figs. 10 and 11 of Ref. [101]. On
the other hand, if we explore a larger parameter space (zoom out), we find there
is a second local minimum in Fig. 2.16c. To explore the reason, in Fig. 2.17 we
compare two filtered waveforms with 𝜒 𝑓 and 𝑀 𝑓 chosen at their true values (red
curve) and at the second local minimum (black curve), respectively. Recall that the
amplitudes of adjacent overtones are out of phase, e.g., Refs. [101] and [177], they
contribute destructively to the final ringdown waveform. Removing some overtones
can increase the value of the filtered waveform at an early stage. On the contrary,
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when 𝜒 𝑓 and 𝑀 𝑓 are at the second local minimum, even though the corresponding
QNMs are not removed, the amplitude of the filtered waveform is reduced by around
one order of magnitude. As a result, both cases lead to comparable RSS.

So far, we take (𝑀 𝑓 , 𝜒 𝑓 ) as two independent variables. The QNM frequencies
are obtained by assuming Kerr BHs with GR gravity. In Fig. 2.18, we relax this
assumption and use the real and imaginary parts of a QNM as two independent
variables. Here we restrict ourselves to the fundamental mode alone for simplicity,
and take 𝑡0 = 50𝑀 𝑓 . We find the qualitative feature remains the same—there is a
second local minimum, and the reason is exactly the same as that of Fig. 2.16c.

Our discussions indicate that the filter could serve as a new tool to infer the remnant
properties from actual detection data, and we refer the interested reader to our
follow-up work in Chapter 3 for more discussions.

2.6 Conclusion
We have proposed two types of frequency-domain filters that are able to remove
QNM(s) from ringdown signals. Our new method serves as a complementary tool
to previous studies where the ringdown was analyzed in terms of time-domain fitting
(e.g., Ref. [101])—it allows visualizing the existence of subdominant modes without
the risk of overfitting. By applying our filter to the waveform of SXS:BBH:0207,
we find the spherical-spheroidal mixing mode 𝜔320 in harmonic ℎ22, the presence
of 𝜔220 in ℎ21 due to the gravitational recoil, and second-order effects in ℎ44, ℎ54

and ℎ55 due to the quadratic coupling ℎ2
22 and ℎ22ℎ33. We also find the existence

of retrograde modes in waveform SXS:BBH:1936. Our filter leads to an unphysical
flipped ringdown prior to the start time of the real ringdown. Consequently, the
late-inspiral and merger signals are contaminated.

Although the rational filter in Eq. (2.17) is constructed purely empirically, the full
filter F 𝐷

𝑙𝑚
in Eq. (2.22) reflects the nature of the BH, and the filtered waveform

corresponds to the image wave on the past horizon (Fig. 2.4). Furthermore, in spite
of the unstable nature of QNM spectra [166, 167], we find that the filter F 𝐷

𝑙𝑚
is

stable in the time domain under the perturbations of the BH potential, in the sense
that the original response remains unmodified, while the major correction appears
as periodic echoes well-separated from the original BH response. The time interval
and amplitude of the echoes depend linearly on the parameters of the perturbation.

Additionally, the rational filter takes the mass and spin of the remnant BH as free
parameters. The residual ringdown RSS depends strongly on the choice of these
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two parameters. The true remnant properties could be recovered accurately from
the ringdown of ℎ22 as long as one consider a proper number of overtones and the
start time of the analysis.

In this chapter, we demonstrate that this new approach is powerful in ringdown
analyses and outline a few applications. Future studies could be focused on:

(i) Nonlinearity due to the quadratic couplings. We focused exclusively on a few
harmonics of SXS:BBH:0207, and exhibited the existence of second-order effects
only qualitatively. A more systematic study [159] is needed to investigate quadratic
couplings in other BBH systems. We also refer the interested reader to Ref. [160]
for relevant discussions.

(ii) Second-order effects in the multipole moments of dynamical horizons. Although
Refs. [110, 111] have shown that the multipole moments might be consistent with
the superposition of linear QNMs soon after the formation of the common horizon,
it is expected that a majority of nonlinearities are swallowed by horizons [89], which
in turn should leave imprints on dynamical horizons. It is interesting to study these
cases by applying our filters.

(iii) The stability of the two filters. In this work, we considered the stability of
the full filter under a simple scenario: the perturbation arising only through a
reflective boundary condition at the ECO surface that is very close to the would-be
horizon. More sophisticated perturbations, e.g., the ones in Ref. [166, 167], could
be investigated. In addition, it might also be interesting to study the (in)stability of
the rational filter. This requires high-precision calculations of QNMs of the new
system. The goal of this trend is to answer: How to distinguish a BH from its
mimicker via our filters? And how do the filters reflect the nature of the system?

(iv) Inferring remnant properties from real observational data. Here we restricted
ourselves to a particular harmonic ℎ22 and found that the remnant properties could
be recovered accurately. A possible avenue for future work is to investigate the
impact of our filters on the strain that is emitted toward a single angular direction.
More importantly, one could apply our filter to real BBH events [154, 155] and see
whether we could place a tighter constraint on the remnant mass, spin, and also the
no-hair theorem [52].

(v) Other filters. In this work, we have studied two related filters. One undesired
feature of the rational filter is that it leads to a backward time-shift, which makes it
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Figure 2.19: Same as Fig. 2.12, but for a spinning ECO with 𝜒 𝑓 = 0.692.

difficult to define the start time of the ringdown in the filtered waveform8. The full
filter does not have this problem but is more computationally expensive to obtain.
Therefore it might be interesting to look for other new filters with better properties.

2.7 Appendix: F 𝐷 ECO
22 for a spinning ECO

Figures 2.19 and 2.20 show the filter F 𝐷 ECO
22 in the time and frequency domain.

The spin of the ECO is 𝜒 𝑓 = 0.692. It has the same qualitative features as that of
8We show that the choice of the start time has a large impact on inferring remnant properties.
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Figure 2.20: Same as Fig. 2.13, but for a spinning ECO with 𝜒 𝑓 = 0.692.

the nonspinning ECO (Fig. 2.12).

2.8 Appendix: 𝑀 𝑓 and RSS
In Fig. 2.21, we plot the ringdown RSS of the filtered waveform as a function of the
remnant mass 𝑀 𝑓 , using waveform SXS:BBH:0207.

2.9 Appendix: The up-mode solution of an ECO
Near the ECO surface, Chen et al. [178] proposed a physical boundary condition via
a family of zero-angular-momentum fiducial observers (FIDOs). The tidal tensor
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Figure 2.21: Same as Fig. 2.14, but with varying 𝑀 𝑓 and fixed 𝜒 𝑓 .

field within the rest frame of the FIDOs is given by [181]

E𝑖 𝑗 = ℎ𝑎𝑖 ℎ𝑐𝑗𝐶𝑎𝑏𝑐𝑑𝑈𝑏𝑈𝑑 , (2.32a)

where 𝐶𝑎𝑏𝑐𝑑 is the Weyl tensor, 𝑈𝑏 is the four-velocity of the FIDOs, and ℎ𝑎
𝑖
=

𝛿𝑎
𝑖
+ 𝑈𝑎𝑈𝑖 is the projection operator. Chen et al. argues that the tidal response of

the ECO, namely the reflection of incident GWs, is proportional to the transverse
component of the tidal field:

Etransverse ∼ −
Δ

4𝑟2𝜓0 −
𝑟2

Δ
𝜓∗4, (2.32b)
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where 𝜓0 and 𝜓4 are the Weyl scalars. The coefficient depends on the nature of the
ECO, such as the reflectivity R in Eq. (2.24). By adopting this type of boundary
condition, Xin et al. [182] shows that the ratio between the reflective wave and the
incident wave reads 9 [Eq. (56) of [182]]:

Reflective wave
Incident wave

=
(−1)𝑙+𝑚+1

4
R𝐷 𝑙𝑚

𝐶𝑙𝑚
, (2.32c)

with

𝐷 𝑙𝑚 = 64(2𝑟+)4𝑖𝑘 (𝑘2 + 4𝜖2)
(
−𝑖𝑘 +

√︁
1 − 𝜒2

𝑟+

)
, (2.32d)

|𝐶𝑙𝑚 |2 = (𝑄2 + 4𝜒𝜔𝑚 − 4𝜒2𝜔2) [(𝑄 − 2)2 + 36𝜒𝜔𝑚 − 36𝜒2𝜔2] + 144𝜔2(1 − 𝜒2)
+ (2𝑄 − 1) (96𝜒2𝜔2 − 48𝜒𝜔𝑚), (2.32e)

Im 𝐶𝑙𝑚 = 12𝜔, (2.32f)

𝑄 = 𝜆 + 𝑠(𝑠 + 1) = 𝜆 + 2, (2.32g)

𝜖 =

√︁
1 − 𝜒2

4𝑟+
, (2.32h)

𝑘 = 𝜔 − 𝑚Ω+, (2.32i)

where 𝜆 is the eigenvalue of spin-weighted spheroidal harmonics and Ω+ = 𝜒/(2𝑟+)
is the horizon frequency.

As shown in Fig. 2.11, if we consider a GW emerging from the horizon with a unity
amplitude (ignoring any 𝑟∗ dependent coefficient), it will bounce back and forth
within the cavity formed by the ECO surface and the BH potential. In particular,
the observer at infinity will see a main transmissive wave with amplitude 1/𝐷out

𝑙𝑚
,

followed by a series of echoes. Using the boundary condition in Eq. (2.32c), it is
straightforward to obtain the amplitude of the 𝑛th echo:

1
𝐷out
𝑙𝑚

[
(−1)𝑙+𝑚+1

4
R𝐷 𝑙𝑚

𝐶𝑙𝑚

𝐷in
𝑙𝑚

𝐷out
𝑙𝑚

]𝑛
. (2.33)

By summing them together, we obtain the total transmissive amplitude:∑︁
𝑛

1
𝐷out
𝑙𝑚

[
(−1)𝑙+𝑚+1

4
R𝐷 𝑙𝑚

𝐶𝑙𝑚

𝐷in
𝑙𝑚

𝐷out
𝑙𝑚

]𝑛
=

1
𝐷out
𝑙𝑚

1

1 − (−1)𝑙+𝑚+1
4 R 𝐷𝑙𝑚

𝐶𝑙𝑚

𝐷in
𝑙𝑚

𝐷out
𝑙𝑚

. (2.34)

The inverse of the total amplitude corresponds to �̃�out
𝑙𝑚

in Eq. (2.25).
9The additional factor (−1)𝑙 is due to the assumption that the system is invariant under reflection

across the 𝑥-𝑦 plane [183].
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C h a p t e r 3

BLACK HOLE SPECTROSCOPY BY MODE CLEANING

[1] Sizheng Ma, Ling Sun, and Yanbei Chen. “Black hole spectroscopy by
mode cleaning.” Phys. Rev. Lett. 130.14 (2023), p. 141401. doi: 10.1103/
PhysRevLett.130.141401. arXiv: 2301.06705 [gr-qc].

[2] Sizheng Ma, Ling Sun, and Yanbei Chen. “Using rational filters to uncover
the first ringdown overtone in GW150914.” Phys. Rev. D 107.8 (2023),
p. 084010. doi: 10.1103/PhysRevD.107.084010. arXiv: 2301.06639
[gr-qc].

3.1 Introduction
The ringdown stage of a gravitational wave (GW) emitted by a binary black hole
(BBH) corresponds to the oscillation of the remnant BH, which encodes rich infor-
mation about the system. At the linear order, a ringdown waveform is given by a
superposition of a set of complex-valued quasinormal modes (QNMs) [1–4], labeled
by two angular numbers (𝑙, 𝑚) and one overtone index 𝑛. Within the general theory
of relativity, they are fully determined by the mass and spin of the corresponding
BH due to the no-hair theorem [5–8]. Thus measuring the frequency and decay rate
of a QNM from a ringdown signal can lead to the estimates of the mass and spin of
the remnant BH [9]. Alternatively, if multiple modes are detected at the same time,
we can use them to test the no-hair theorem [10–12]. This method is known as BH
spectroscopy [13–39].

An important topic of BH spectroscopy is to understand which QNMs are present in
the ringdown of a numerical relativity (NR) waveform [40–57] and when they start
[58–60]. To address these questions, a common method is to fit the waveform after
the merger using a ringdown template that consists of a group of QNMs, and explore
when the mismatch between the two can be minimized by varying the QNMs and
the fitting start time. In particular, Giesler et al. [55] demonstrated that the ringdown
of a GW150914-like NR waveform [61] starts as early as when the strain amplitude
reaches its peak, if seven overtones are included. Motivated by this result, Isi et al.
[30] (and also [26]) extended the initial ringdown analyses [29, 62] of GW150914
[63] and explored earlier start times for fitting. A significance of 3.6𝜎 was found
for the existence of the first overtone. However, the conclusion was later challenged

https://doi.org/10.1103/PhysRevLett.130.141401
https://doi.org/10.1103/PhysRevLett.130.141401
https://arxiv.org/abs/2301.06705
https://doi.org/10.1103/PhysRevD.107.084010
https://arxiv.org/abs/2301.06639
https://arxiv.org/abs/2301.06639
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by Cotesta et al. [28], who argued that the early (ringdown) signal could be noise
dominated, and thus the existence of the first overtone might not be reliable. The
claim by Cotesta et al. [28] was then disputed by a subsequent response by Isi et
al. [26] who found the impact of noise was not reproducible; Finch and Moore [27]
also showed that the noise fluctuations might be overestimated. On the other hand,
Bustillo et al. [21] and Finch et al. [27] tackled the problem via different approaches;
tentative evidence was found.

The lack of a definitive conclusion over the ringdown modes of GW150914 leaves
unresolved issues for BH spectroscopy, posting questions for the ringdown analysis
in the upcoming LIGO-Virgo-KAGRA fourth observing run (O4). Here we pro-
pose a new framework for BH spectroscopy and revisit the issues from a different
perspective. Recently, we proposed a new methodology, the so-called “QNM fil-
ters” [64]. The method includes the use of two filter classes: a rational filter and
a full filter. The rational filter is constructed via a QNM frequency, whereas the
full filter is constructed from the BH transmissivity, based on the hybrid approach
[65–67]. They were originally designed to remove QNM(s) from the ringdown
when studying NR waveforms. After filtering out some dominant modes, we were
able to show the existence of subdominant effects confidently, such as the mixing of
modes, retrograde modes, and also the second-order QNMs [47–49]. In our recent
paper [68], a novel framework for BH spectroscopy is outlined: by incorporating
the rational filter into Bayesian inference, a new scheme is developed to analyze the
ringdown of real GW events, independent of the usual Markov chain Monte Carlo
(MCMC) method. In this chapter, we extend the discussions therein and provide full
details to demonstrate the efficacy and efficiency of this framework. In particular,
we demonstrate the existence of the first overtone in the ringdown of GW150914
with detailed evidence.

This chapter is organized as follows. In Sec. 3.2, we introduce the properties of
the rational filter. In Sec. 3.3, we use the filter to construct a two-dimensional (2D)
ringdown likelihood function in the time domain that depends only on the mass and
spin of the remnant BH (independent of mode amplitudes and phases). Based on the
likelihood function, we define a new method to compute model evidence and Bayes
factor for QNM(s). Detailed case studies of a simulated signal using a NR waveform
and the real event GW150914 are also given in the same section. Next, in Sec. 3.4,
we carry out a mixed BH spectroscopy analysis by combining our new approach with
the usual MCMC treatment. Again, the NR simulation (Sec. 3.4.1) and GW150914
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(Sec. 3.4.2) are discussed as detailed examples. Finally, we summarize the results
in Sec. 3.5.

Throughout this chapter, we use geometric units with 𝐺 = 𝑐 = 1. We always use
the notation 𝜔𝑙𝑚𝑛 = 2𝜋 𝑓𝑙𝑚𝑛 − 𝑖/𝜏𝑙𝑚𝑛 to refer to the (𝑙, 𝑚, 𝑛) QNM, with 2𝜋 𝑓𝑙𝑚𝑛 and
−1/𝜏𝑙𝑚𝑛 being its real and imaginary parts. All of our analyses are in the detector
frame.

3.2 Rational filter and real GW data
To start with, let us consider two complex GW harmonics ℎ𝑙,±𝑚 (𝑡). Below, we
always assume 𝑚 > 0; thus ℎ𝑙,𝑚 (ℎ𝑙,−𝑚) represents the harmonic component that is
emitted towards the north (south) with respect to the system. Within the ringdown
regime, their time evolution reads

ℎ𝑙𝑚 (𝑡) =
∑︁
𝑛

𝐴𝑙𝑚𝑛𝑒
−𝑖𝜔𝑙𝑚𝑛 (𝑡−𝑡0)+𝑖𝜙𝑙𝑚𝑛 , (3.1a)

ℎ𝑙,−𝑚 (𝑡) =
∑︁
𝑛

𝐴′𝑙𝑚𝑛𝑒
𝑖𝜔∗

𝑙𝑚𝑛
(𝑡−𝑡0)+𝑖𝜙′𝑙𝑚𝑛 , (3.1b)

where 𝑛 stands for the overtone index, and 𝐴𝑙𝑚𝑛’s and 𝜙𝑙𝑚𝑛’s are the amplitudes and
phases of the QNMs, respectively. Note that𝜔𝑙𝑚𝑛 on the right-hand side of Eq. (3.1)
refers to prograde modes, and we always neglect the contribution of retrograde
modes in the rest of this chapter.

As discussed in Ref. [64], to clean a mode 𝜔𝑙𝑚𝑛 from ℎ𝑙𝑚 (𝑡), we can apply a rational
filter:

𝜔 − 𝜔𝑙𝑚𝑛
𝜔 − 𝜔∗

𝑙𝑚𝑛

.

Similarly, we need to apply another filter:

𝜔 + 𝜔∗
𝑙𝑚𝑛

𝜔 + 𝜔𝑙𝑚𝑛
,

to eliminate the same mode 𝜔𝑙𝑚𝑛 from ℎ𝑙,−𝑚 (𝑡). For an actual GW event, its
time-domain real strain ℎ𝑡 consists of both the complex harmonics ℎ𝑙,±𝑚 (𝑡). In
consequence, the final form of the filter F𝑙𝑚𝑛 that is associated with the QNM 𝜔𝑙𝑚𝑛

is given by

F𝑙𝑚𝑛 ( 𝑓 ;𝑀 𝑓 , 𝜒 𝑓 ) =
𝜔 − 𝜔𝑙𝑚𝑛
𝜔 − 𝜔∗

𝑙𝑚𝑛

𝜔 + 𝜔∗
𝑙𝑚𝑛

𝜔 + 𝜔𝑙𝑚𝑛

=
𝑓 − 𝑓𝑙𝑚𝑛 + 𝑖

2𝜋𝜏𝑙𝑚𝑛

𝑓 − 𝑓𝑙𝑚𝑛 − 𝑖
2𝜋𝜏𝑙𝑚𝑛

×
𝑓 + 𝑓𝑙𝑚𝑛 + 𝑖

2𝜋𝜏𝑙𝑚𝑛

𝑓 + 𝑓𝑙𝑚𝑛 − 𝑖
2𝜋𝜏𝑙𝑚𝑛

, (3.2)
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where 𝜔 = 2𝜋 𝑓 ; 𝑓𝑙𝑚𝑛 and 𝜏𝑙𝑚𝑛 corresponds to the real and imaginary parts of 𝜔𝑙𝑚𝑛:

𝜔𝑙𝑚𝑛 = 2𝜋 𝑓𝑙𝑚𝑛 −
𝑖

𝜏𝑙𝑚𝑛
. (3.3)

According to the no-hair theorem [5–8], 𝑓𝑙𝑚𝑛 and 𝜏𝑙𝑚𝑛 are fully determined by the
mass 𝑀 𝑓 and spin 𝜒 𝑓 of the remnant BH. We obtain 𝑓𝑙𝑚𝑛 and 𝜏𝑙𝑚𝑛 using the Python
package qnm [69]. To apply the filter F𝑙𝑚𝑛 to real GW data, we first transform the
time-domain data 𝑑𝑡 to the frequency domain via fast Fourier transform (FFT)

𝑑 𝑓 =

∫
𝑑𝑡𝑒

2𝜋𝑖 𝑓 𝑡𝑑𝑡. (3.4)

Note that the length of 𝑑𝑡 needs to be at least comparable to the entire inspiral-
merger-ringdown (IMR) signal to avoid spectral leakage. Then the filtered data
read

𝑑𝐹𝑡 =

∫
𝑑𝑓 𝑑 𝑓F𝑙𝑚𝑛 ( 𝑓 )𝑒−𝑖2𝜋 𝑓 𝑡 . (3.5)

In practice, multiple filters could be applied simultaneously via a total filter

Ftot =
∏
𝑙𝑚𝑛

F𝑙𝑚𝑛. (3.6)

Since each filter F𝑙𝑚𝑛 ( 𝑓 ) satisfies

F𝑙𝑚𝑛 (− 𝑓 ) = [F𝑙𝑚𝑛 ( 𝑓 )]∗ , (3.7)

the filtered data 𝑑𝐹𝑡 is still real-valued.

Because we apply the filter to the entire IMR signal, different portions of the signal
have distinct responses. As discussed in Ref. [64], the early low-frequency inspiral
signal is shifted backward in time by the filter, which does not impact the ringdown
analysis. Here we continue the discussion therein and investigate the impact of the
filter on two other aspects. In Sec. 3.2.1, we study the effect of F𝑙𝑚𝑛 on a different
QNM 𝜔𝑙′𝑚′𝑛′ , namely (𝑙 ≠ 𝑙′ or𝑚 ≠ 𝑚′ or 𝑛 ≠ 𝑛′). Then in Sec. 3.2.2, the impact of
the filter on detector noise is discussed.

3.2.1 Impact on a different QNM
To investigate the impact of F𝑙𝑚𝑛 on 𝜔𝑙′𝑚′𝑛′ , let us consider a toy model for the
excitation of 𝜔𝑙′𝑚′𝑛′

ℎ𝑡 =𝑒
−(𝑡−𝑡0)/𝜏𝑙′𝑚′𝑛′
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× cos [2𝜋 𝑓𝑙′𝑚′𝑛′ (𝑡 − 𝑡0) + 𝜙𝑙′𝑚′𝑛′] Θ(𝑡 − 𝑡0), (3.8)

where Θ(𝑡 − 𝑡0) is the Heaviside step function, meaning that the QNM is excited at
𝑡0. The Fourier transformation of ℎ𝑡 reads

ℎ̃ 𝑓 =
𝑖

2
𝑒𝑖𝜔𝑡0

[
𝑒𝑖𝜙𝑙′𝑚′𝑛′

2𝜋 𝑓 − 2𝜋 𝑓𝑙′𝑚′𝑛′ + 𝑖/𝜏𝑙′𝑚′𝑛′

+ 𝑒−𝑖𝜙𝑙′𝑚′𝑛′

2𝜋 𝑓 + 2𝜋 𝑓𝑙′𝑚′𝑛′ + 𝑖/𝜏𝑙′𝑚′𝑛′

]
. (3.9)

The two poles 𝑓 = ± 𝑓𝑙′𝑚′𝑛′ − 𝑖/(2𝜋𝜏𝑙′𝑚′𝑛′) of ℎ̃ 𝑓 are plotted in Fig. 2.1. Both
of them lie in the lower half of the complex plane, indicating the fact that there
is no 𝜔𝑙′𝑚′𝑛′ signal before 𝑡 = 𝑡0. After applying the filter F𝑙𝑚𝑛, two new poles
𝑓 = ± 𝑓𝑙𝑚𝑛 + 𝑖/(2𝜋𝜏𝑙𝑚𝑛) appear in the upper half of the plane. This implies that the
𝜔𝑙𝑚𝑛 component of the filtered waveform exists before 𝑡0. On the other hand, the
two original poles in the lower plane remain unchanged, and the start time of the
𝜔𝑙′𝑚′𝑛′ component remains at 𝑡0. This is different from the situation where the early
inspiral signal is shifted to an earlier time [64]. However, the amplitude and phase
of the 𝜔𝑙′𝑚′𝑛′ component in the filtered waveform are changed. We can calculate the
changes quantitatively by computing the following integral

ℎ𝐹𝑡 =

∫
𝑑𝑓 ℎ̃ 𝑓F𝑙𝑚𝑛 ( 𝑓 )𝑒−𝑖2𝜋 𝑓 𝑡 , (3.10)

and obtain

ℎ𝐹𝑡 = 𝐵𝑙
′𝑚′𝑛′

𝑙𝑚𝑛 𝑒−(𝑡−𝑡0)/𝜏𝑙′𝑚′𝑛′

× cos
[
2𝜋 𝑓𝑙′𝑚′𝑛′ (𝑡 − 𝑡0) + 𝜙𝑙′𝑚′𝑛′ + 𝜑𝑙

′𝑚′𝑛′

𝑙𝑚𝑛

]
, 𝑡 > 𝑡0, (3.11)

where

𝐵𝑙
′𝑚′𝑛′

𝑙𝑚𝑛 𝑒𝑖𝜑
𝑙′𝑚′𝑛′
𝑙𝑚𝑛 ≡ F𝑙𝑚𝑛 (𝜔𝑙′𝑚′𝑛′). (3.12)

It is straightforward to show that

𝐵𝑙
′𝑚′𝑛′

𝑙𝑚𝑛 = 𝐵𝑙𝑚𝑛𝑙′𝑚′𝑛′ . (3.13)

Eq. (3.11) shows that the amplitude of the 𝜔𝑙′𝑚′𝑛′ mode is reduced by a factor of
𝐵𝑙
′𝑚′𝑛′

𝑙𝑚𝑛
. As for a Kerr BH with 𝜒 𝑓 = 0.692, we have 𝐵221

220 = 0.487, meaning that
the amplitude of the first overtone (fundamental mode) is reduced by a factor of
two after applying the filter that cleans the fundamental mode (first overtone). For
completeness, we also provide the expression of ℎ𝐹𝑡 when 𝑡 < 𝑡0,

ℎ𝐹𝑡 =
1

𝜋 𝑓𝑙𝑚𝑛𝜏𝑙𝑚𝑛
𝑒(𝑡−𝑡0)/𝜏𝑙𝑚𝑛Φ𝑙′𝑚′𝑛′

𝑙𝑚𝑛 (𝑡), 𝑡 < 𝑡0, (3.14)
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with

Φ𝑙′𝑚′𝑛′

𝑙𝑚𝑛 (𝑡) = −Im 𝑒2𝜋𝑖 𝑓𝑙𝑚𝑛 (𝑡−𝑡0)

×
(

𝑒𝑖𝜙𝑙′𝑚′𝑛′

1 + 𝜔𝑙′𝑚′𝑛′/𝜔𝑙𝑚𝑛
+ 𝑒−𝑖𝜙𝑙′𝑚′𝑛′

1 − 𝜔∗
𝑙′𝑚′𝑛′/𝜔𝑙𝑚𝑛

)
. (3.15)

The term 𝑒(𝑡−𝑡0)/𝜏𝑙𝑚𝑛 in Eq. (3.14) shows that ℎ𝐹𝑡 is a “ring-up” component at 𝑡 < 𝑡0.

t > t0
2πfl′ m′ n′ − i

τl′ m′ n′ 

2πflmn + i
τlmn

−2πflmn + i
τlmn

ℱlmn

h̃f

Re

Im

−2πfl′ m′ n′ − i
τl′ m′ n′ 

Figure 3.1: Poles of the filtered waveform [Eq. (3.10)] on the complex plane.
Two poles are in the lower half-plane (blue crosses), contributed by the original
waveform in Eq. (3.9). The other two (yellow stars) are in the upper half-plane,
coming from the filter F𝑙𝑚𝑛. The red dashed curve corresponds to the time regime
of 𝑡 > 𝑡0. Before 𝑡0, the time-domain signal is contributed by the two ring-up modes
𝑓 = ± 𝑓𝑙𝑚𝑛 + 𝑖/(2𝜋𝜏𝑙𝑚𝑛) outside the closed region. After 𝑡0, the two ringdown modes
𝑓 = ± 𝑓𝑙′𝑚′𝑛′ − 𝑖/(2𝜋𝜏𝑙′𝑚′𝑛′) contribute.

3.2.2 Impact on detector noise
For a noise series 𝑛𝑡 , its covariance matrix is given by

𝐶𝑡,𝑡+𝜏 = 𝐸 [𝑛𝑡𝑛𝑡+𝜏] − 𝐸 [𝑛𝑡]𝐸 [𝑛𝑡+𝜏], (3.16)
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where 𝐸 denotes expectation. By assuming stationarity and 𝐸 [𝑛𝑡] = 0, 𝐶𝑡,𝑡+𝜏 takes
a simple form

𝐶𝑡,𝑡+𝜏 = 𝜌(𝜏), (3.17)

where 𝜌(𝜏) is the autocovariance function (ACF). In the frequency domain, Eq. (3.17)
becomes (known as the Wiener–Khinchin theorem)

𝐸 [�̃� 𝑓 �̃�∗𝑓 ′] =
1
2
𝛿( 𝑓 − 𝑓 ′)𝑆( 𝑓 ), (3.18)

with 𝑆( 𝑓 ) being the one-sided noise power spectral density (PSD)

𝑆( 𝑓 ) = 2
∫

𝑒2𝜋𝑖 𝑓 𝜏𝜌(𝜏)𝑑𝜏. (3.19)

Then we apply the rational filter F𝑙𝑚𝑛 to �̃� 𝑓 . Since the modulus of F𝑙𝑚𝑛 is unity, we
can write

F𝑙𝑚𝑛 ( 𝑓 ) = 𝑒𝑖𝛿𝑙𝑚𝑛 ( 𝑓 ) , (3.20)

and the filtered noise writes

�̃�𝐹𝑓 = 𝑒
𝑖𝛿𝑙𝑚𝑛 ( 𝑓 ) �̃� 𝑓 , (3.21)

which still remains stationary. In addition, after plugging Eq. (3.21) into Eq. (3.18),
we find that the one-sided PSD is not impacted by the filter.

To support our conclusion, we generate two noise series with a sampling rate of
8192 Hz and a total length of 4 s. One is band-limited white noise ∼ N(0, 1) and the
other is simulated Hanford noise, generated by the Bilby library [70, 71]. Next we
use the Python package ringdown [23, 72] to estimate their one-sided PSDs with the
Welch method [73]. On the other hand, we apply a rational filter F220 to both noise
series and obtain the time-domain filtered data. Then we repeat the Welch method
and obtain the PSDs of the filtered data. The results are plotted in Figs. 3.2a and
3.2b for comparison. We find the filtered PSDs are always identical to the unfiltered
PSDs (the black curves completely overlap the red ones), no matter what the values
of 𝑀 𝑓 and 𝜒 𝑓 are used to generate F220.

We then move on to two more realistic cases: LIGO Hanford and Livingston data
[74–77] around GW150914 [78–80]. We estimate the corresponding PSDs of 32-
s raw time-series data with a sampling rate of 16384 Hz. Again, we apply the
rational filter F220 to the frequency-domain data, convert them back to time series,
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Figure 3.2: Comparison of the one-sided PSDs of the filtered and unfiltered noise.
The top panels show results in (a) band-limited white noise ∼ N(0, 1) and (b)
simulated Hanford noise. The filtered and unfiltered PSDs of the raw data are shown
in black and red, respectively. The bottom panels show results in (c) LIGO Hanford
and (d) LIGO Livingston data around the event time of GW150914. The filtered
(black) and unfiltered (red) PSDs are in perfect agreement. After conditioning the
raw data, the filtered (dashed orange) and unfiltered (dashed blue) PSDs also overlap.

and compute the filtered PSDs. The PSDs of the filtered and unfiltered data are
shown as black and red curves in Figs. 3.2c and 3.2d, which fully agree with each
other. Furthermore, we condition both the Hanford and Livingston raw data by
(a) removing frequency components that are below 20 Hz using a high-pass filter
and (b) downsampling the data to 2048 Hz. The filtered and unfiltered PSDs of
the conditioned data are plotted as dashed orange and blue curves, respectively, in
Figs. 3.2c and 3.2d. We see that they are also in perfect agreement.
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3.3 A new likelihood function
Suppose we have a BBH GW signal in observational time-series data 𝑑𝑡 . After
applying rational filters with enough QNMs to 𝑑𝑡 1 to remove all the QNMs, we
expect that the filtered data 𝑑𝐹𝑡 should be consistent with pure noise in the ringdown
regime, with a likelihood function given by

ln 𝑃 (𝑑𝑡 |𝑀 𝑓 , 𝜒 𝑓 , 𝑡0, Ftot) = −
1
2

∑︁
𝑖, 𝑗>𝐼0

𝑑𝐹𝑖 𝐶
−1
𝑖 𝑗 𝑑

𝐹
𝑗 , (3.22)

where 𝑑𝐹
𝑖
≡ 𝑑𝐹𝑡𝑖 are the samples of the filtered data after the ringdown starts (𝑡𝑖 > 𝑡0),

𝐼0 is the index associated with 𝑡0, and 𝐶𝑖 𝑗 is the covariance matrix. Note that here
we compute the likelihood in the time domain, closely following [23]. Let us then
recall what the formula of ln 𝑃 looks like in Ref. [23]:

ln 𝑃 (𝑑𝑡 |𝐴𝑙𝑚𝑛, 𝜙𝑙𝑚𝑛, 𝑀 𝑓 , 𝜒 𝑓 , 𝑡0)

= −1
2

∑︁
𝑖, 𝑗>𝐼0

(𝑑𝑖 − ℎ𝑖)𝐶−1
𝑖 𝑗 (𝑑 𝑗 − ℎ 𝑗 ), (3.23)

where ℎ𝑡 is a multiple-QNM ringdown waveform template

ℎ𝑡 =
∑︁
𝑙𝑚𝑛

𝐴𝑙𝑚𝑛𝑒
−(𝑡−𝑡0)/𝜏𝑙𝑚𝑛 cos [2𝜋 𝑓𝑙𝑚𝑛 (𝑡 − 𝑡0) + 𝜙𝑙𝑚𝑛] , (3.24)

with 𝐴𝑙𝑚𝑛’s and 𝜙𝑙𝑚𝑛’s being the amplitudes and phases of the QNMs, respectively.
We can see that Eq. (3.22) is similar to Eq. (3.23) in the aspect of computing the
likelihood of the data being pure noise after removing the GW signals. However,
the underlying approaches of the two are quite different. In the usual unfiltered
approach, one needs to build a ringdown template in terms of a set of QNMs, based
on the amplitude 𝐴𝑙𝑚𝑛 and phase 𝜙𝑙𝑚𝑛 of each mode, and then subtract the template
ℎ𝑡 from the data 𝑑𝑡 . On the contrary, our approach does not need 𝐴𝑙𝑚𝑛’s and
𝜙𝑙𝑚𝑛’s—the rational filters can completely remove the relevant complex-frequency
component corresponding to each QNM from the ringdown no matter what the
amplitude and phase are. A direct analogy is that a constant can be eliminated by a
derivative no matter what its value is. In the Supplemental Material of our recent
paper [68], we explicitly show that the rational filter eliminates the dependency
on mode amplitudes and phases through a new maximum likelihood estimator and
relates to the usual time-domain approach [23] via an approximate marginalization.
As a result, the new likelihood function implicitly depends on 𝑀 𝑓 and 𝜒 𝑓 only,
given that the rational filter is built using a given set of 𝑀 𝑓 and 𝜒 𝑓 [see Eq. (3.2)].

1Again, 𝑑𝑡 needs to be long enough to avoid spectral leakage.
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In this chapter, we treat 𝑀 𝑓 and 𝜒 𝑓 as the parameters of the filtered data, whereas the
ringdown start time 𝑡0 and the choice of the set of QNMs included in the filter Ftot

as hyperparameters. Therefore, we can convert the likelihood to the joint posterior
of 𝑀 𝑓 and 𝜒 𝑓 via

ln 𝑃 (𝑀 𝑓 , 𝜒 𝑓 |𝑑𝑡 , 𝑡0, Ftot) = ln 𝑃 (𝑑𝑡 |𝑀 𝑓 , 𝜒 𝑓 , 𝑡0, Ftot)
+ lnΠ (𝑀 𝑓 , 𝜒 𝑓 ) + constant, (3.25)

where lnΠ (𝑀 𝑓 , 𝜒 𝑓 ) is the prior. In our following discussions for the injection
study and GW150914, we always place uniform priors on the final mass and
spin in the ranges of 𝑀 𝑓 ∈ [35𝑀⊙, 140𝑀⊙] and 𝜒 𝑓 ∈ [0, 0.99]. In addition,
𝑃 (𝑀 𝑓 , 𝜒 𝑓 |𝑑𝑡 , 𝑡0, Ftot) can be marginalized by integrating over one dimension (1D)
to obtain the distribution of the other dimension:

𝑃 (𝜒 𝑓 |𝑑𝑡 , 𝑡0, Ftot) =
∫

𝑃 (𝑀 𝑓 , 𝜒 𝑓 |𝑑𝑡 , 𝑡0, Ftot)𝑑𝑀 𝑓 , (3.26a)

𝑃 (𝑀 𝑓 |𝑑𝑡 , 𝑡0, Ftot) =
∫

𝑃 (𝑀 𝑓 , 𝜒 𝑓 |𝑑𝑡 , 𝑡0, Ftot)𝑑𝜒 𝑓 . (3.26b)

Since this new ln 𝑃 is simply a two-dimensional function, it is computationally cheap
enough to directly compute the distribution of 𝑀 𝑓 and 𝜒 𝑓 without using techniques
like MCMC.

3.3.1 NR waveform injection
We first take the GW150914-like NR waveform [61] from the SXS catalog [81, 82]
and build a complex strain ℎ from the (𝑙, 𝑚) harmonics ℎ𝑙𝑚 in the NR waveform,
given by

ℎ = ℎ+ − 𝑖ℎ× =
∑︁
𝑙𝑚

𝑌−2 𝑙𝑚 (𝜄, 𝛽)ℎ𝑙𝑚, (3.27)

where 𝑌−2 𝑙𝑚
(𝜄, 𝛽) denotes the spin-weighted spherical harmonics, and angles (𝜄, 𝛽)

stand for the angular coordinates of an observer within the source frame. Here we
choose (𝜄 = 𝜋, 𝛽 = 0) to simulate the orientation of GW150914 (face-off) [30]. For
simplicity, we include only the two most dominant modes ℎ2,±2 in Eq. (3.27) and
inject the “+” polarization state to band-limited white noise. To mimic GW150914,
we set the total initial mass of the system (detector frame) to 72𝑀⊙ so that the
mass of the remnant BH 𝑀 𝑓 = 68.5𝑀⊙ agrees with that inferred from the full IMR
waveform [30]. The length of the full NR waveform is 1.38 s. We pad zeros on both
ends of the waveform to prolong the length to 4 s.2 The data 𝑑𝑖 ≡ 𝑑𝑡𝑖 (including

2Since we can control the simulated noise in this case, a relatively short signal is chosen for
efficiency.
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white noise and simulated signal) are sampled at 16384 Hz. We also adjust the
relative amplitude of the NR waveform so that the ringdown matched filter SNR
is ∼ 15, as measured after the peak of the strain. We then condition 𝑑𝑖 to remove
contents that are below 20 Hz and downsample the data to 4096 Hz.

To calculate ln 𝑃 in Eq. (3.22), we need to estimate the covariance matrix 𝐶𝑖 𝑗 first,
which has an exact expression for the given band-limited white noise. We further
verify this by estimating the PSD 𝑆( 𝑓 ) from 4 s of the off-source white noise the
Welch method, as described in Sec. 3.2.2. We then inverse Eq. (3.19) to obtain the
value of ACF 𝜌(𝜏)

𝜌𝑘 ≡ 𝜌(𝑡𝑘 ) =
1

2𝑇

𝑁−1∑︁
𝑗=0

𝑆 𝑗𝑒
2𝜋𝑖 𝑗 𝑘/𝑁 , (3.28)

where 𝑆 𝑗 ≡ 𝑆( 𝑓 𝑗 ) is the PSD value at 𝑓 = 𝑓 𝑗 , 𝑁 is the total number of frequency bins
in 𝑆( 𝑓 ), and 𝑇 = 4 s is the total length of the noise. Finally, we get the covariance
matrix 𝐶𝑖 𝑗 via

𝐶𝑖 𝑗 = 𝜌( |𝑖 − 𝑗 |). (3.29)

On the other hand, to apply the rational filter to the data 𝑑𝑖, we transform the full
length of 𝑑𝑖 into the frequency domain via FFT

𝑑 𝑗 = Δ𝑡

𝑁−1∑︁
𝑘=0

𝑑𝑘𝑒
−2𝜋𝑖 𝑗 𝑘/𝑁 , (3.30)

with Δ𝑡 = 𝑡𝑘+1 − 𝑡𝑘 . Then the filtered data read [see Eq. (3.6) for Ftot]

𝑑𝐹𝑗 = Ftot( 𝑓 𝑗 )𝑑 𝑗 , (3.31)

and the corresponding time-domain data are given by

𝑑𝐹𝑘 =
1
𝑇

𝑁−1∑︁
𝑗=0

𝑑𝐹𝑗 𝑒
−2𝜋𝑖 𝑗 𝑘/𝑁 . (3.32)

Next, we select the filtered time-series data 𝑑𝐹
𝑘

that lie within the time interval of
[𝑡0, 𝑡0 + 𝑤], which we refer to as a ringdown window with window width 𝑤. Here
we fix 𝑤 = 0.08 s while letting 𝑡0 be a free parameter. We discuss the impact of
𝑡0 later in this section. Finally, we substitute the value of 𝐶𝑖 𝑗 [Eq. (3.29)] and 𝑑𝐹

𝑘

[Eq. (3.32)] within the ringdown window into Eq. (3.22) to compute the likelihood.
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For a given start time 𝑡0, we build Ftot by choosing a set of remnant black hole
parameters, 𝑀 𝑓 and 𝜒 𝑓 [Eq. (3.2)], and a set of QNMs [Eq. (3.6)]. We can calculate
the posterior distribution of 𝑀 𝑓 and 𝜒 𝑓 using Eq. (3.25) for a given set of QNMs
and infer which QNMs are more likely to be present in the signal. On the other
hand, for a fixed filter Ftot (built with a given choice of 𝑀 𝑓 , 𝜒 𝑓 and QNMs), we can
slide the ringdown window [𝑡0, 𝑡0 +𝑤] by varying 𝑡0. The 𝑡0 value corresponding to
the maximum posterior probability indicates the start time of the QNM(s) included
in Ftot. In this example, it is found that the 𝑙 = 𝑚 = 2 harmonic can be modeled
with multiple overtones 𝜔22𝑛’s right after the time when the strain reaches its peak
amplitude [55], denoted by 𝑡peak. Therefore, we set the form of the total filter to

Ftot =

𝑋∏
𝑛=0
F22𝑛, (3.33)

where 𝑋 is the highest overtone included, and focus on the regime ofΔ𝑡0 = 𝑡0−𝑡peak ≳

0.

Figs. 3.3, 3.4, and 3.5 show the joint posterior of 𝑀 𝑓 and 𝜒 𝑓 evaluated at different
start times (parameterized by Δ𝑡0), for the injected signal. Here we display a 2D grid
of 𝑀 𝑓 ∈ [35𝑀⊙, 100𝑀⊙] and 𝜒 𝑓 ∈ [0, 0.95] for better readability. Other regions
of the parameter space do not provide extra features. The left and right columns
correspond to having 𝑋 = 0 (“one QNM,” 220) and 𝑋 = 1 (“two QNMs,” 220 and
221), respectively, in Ftot. Adding more overtones does not further improve the
likelihoods, given the ringdown SNR level at the current stage. The true values of
the remnant mass 𝑀 𝑓 = 68.5𝑀⊙ and spin 𝜒 𝑓 = 0.692085 are marked by white
plus signs. We compute the 90% credible region by integrating the joint posterior
evaluated with our filter [Eq. (3.25)] over the 𝑀 𝑓 − 𝜒 𝑓 parameter space. The results
are shown as red-dashed contours. In the meantime, the marginalized posterior
distributions of 𝑀 𝑓 and 𝜒 𝑓 are plotted as 1D histograms (red curves) in the side
panels, calculated by Eq. (3.26). For comparison purposes, we also use the Python
package ringdown [23, 72] to perform a conventional time-domain full-ringdown
Bayesian analysis via MCMC (hereafter “full-RD MCMC”), in which the likelihoods
are evaluated by Eq. (3.23). To build the ringdown template ℎ𝑡 in Eq. (3.24), we
include the same QNM(s) as the one(s) used in the filter Ftot. The 90% credible
interval joint posteriors evaluated by MCMC are shown as the regions enclosed by
white dashed contours. Similarly, we plot the 1D histograms for𝑀 𝑓 and 𝜒 𝑓 , obtained
via MCMC, as gray-shaded regions. For reference, we compute the matched-filter
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Figure 3.3: Joint posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 evaluated with Eq. (3.25).
The GW150914-like NR waveform is injected into band-limited white noise. The
top and bottom panels represent Δ𝑡0 = 0 and 0.77 ms, respectively. The left and
right panels show results from applying the filter for the fundamental mode only,
F220, and the filter F221F220, respectively. The red-dashed contours display the 90%
credible region by integrating our new joint posterior in Eq. (3.25); and the joint
distribution is projected to the individual 1D space of 𝜒 𝑓 and 𝑀 𝑓 (red curves in side
panels) using Eq. (3.26). The white plus signs stand for the true value of 𝑀 𝑓 and
𝜒 𝑓 obtained from NR. The white dashed contours show the 90% credible region
from the full-RD MCMC approach. The MCMC results are marginalized to the 1D
distributions of 𝑀 𝑓 and 𝜒 𝑓 , shown as the gray-shaded regions in side panels. The
value of the matched filter (MF) SNR is also provided.
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Figure 3.4: Joint posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 . Fig. 3.3 continued; more
values of Δ𝑡0 are tested.

SNRs (SNRMF) from the posterior samples via

SNRMF =
⟨ℎ𝑡 |𝑑𝑡⟩√︁
⟨ℎ𝑡 |ℎ𝑡⟩

, (3.34)

with

⟨ℎ𝑡 |𝑑𝑡⟩ =
∑︁
𝑖, 𝑗>𝐼0

ℎ𝑖𝐶
−1
𝑖 𝑗 𝑑 𝑗 . (3.35)

Now let us look at the first row of Fig. 3.3, with Δ𝑡0 = 0 ms. In both the left and
right panels, the contours obtained from our filters largely agree with the full-RD
MCMC results. The true remnant properties lie within the 90% credible region
when we include both the fundamental mode and the first overtone in the filter. On
the contrary, there is a strong bias when the first overtone is excluded. Next, in the
second row of Fig. 3.4, namely Δ𝑡0 = 4.1 ms = 12.2𝑀 true

𝑓
, the true remnant mass
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Figure 3.5: Joint posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 . Fig. 3.3 continued; more
values of Δ𝑡0 are tested.

and spin can be recovered with the fundamental mode alone, whereas the constraints
of 𝑀 𝑓 and 𝜒 𝑓 get worse after adding the filter of the first overtone F221. The reason
is as follows: since the first overtone has decayed to a small value at Δ𝑡0 = 4.1 ms,
the major impact of the rational filter F221 on the signal is to reduce the amplitude
of the fundamental mode by a factor of 𝐵221

220 = 2.053 [Eq. (3.11)], making it harder
to infer the remnant properties from the filtered data.

After qualitatively discussing the posteriors obtained using Eq. (3.22), we propose
some more quantitative quantities to evaluate the significance of the first overtone.
First, given the hyperparameter Δ𝑡0 and the filter model Ftot, we can compute model
evidence (marginal likelihood) via

𝑃(𝑑𝑡 |Δ𝑡0, Ftot) =
∬

𝑃 (𝑑𝑡 |𝑀 𝑓 , 𝜒 𝑓 ,Δ𝑡0, Ftot)Π(𝑀 𝑓 , 𝜒 𝑓 )𝑑𝑀 𝑓 𝑑𝜒 𝑓 . (3.36)

where Π(𝑀 𝑓 , 𝜒 𝑓 ) is the prior distribution of 𝑀 𝑓 and 𝜒 𝑓 . Here we simply assume a
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flat prior in 𝑀 𝑓 ∈ [35𝑀⊙, 140𝑀⊙] and 𝜒 𝑓 ∈ [0, 0.99]. By comparing the evidence
across different choices of Ftot, one could figure out which QNMs are more likely
to be present in the signal. In the top panel of Fig. 3.6, we plot 𝑃(𝑑𝑡 |F220,Δ𝑡0)
and 𝑃(𝑑𝑡 |F22{0,1},Δ𝑡0) as functions of Δ𝑡0, for the same simulation data set with the
injected signal. As a comparison, we also show the results obtained from the off-
source noise (green and black curves). The boundary between the yellow and cyan
regions stands for the time when the strain reaches its peak, i.e., Δ𝑡0 = 0. We can see
both the red and blue curves surge rapidly within the regime of [−5, 0]ms, implying
the onset of the ringdown stage. The evidence of the QNMs starts to grow even before
the peak time Δ𝑡0 = 0 because the width of our window 𝑤 = 0.08 s = 237𝑀 true

𝑓

is longer than the ringdown duration—the full ringdown signal already falls in
the window when Δ𝑡0 ∈ [−5, 0]ms. Consequently, the QNM model evidence
continues to increase as the inspiral-merger part of the signal slides out of the
window. Additionally, the evidence of the “two-QNM” model (F22{0,1}) is greater
than the “one-QNM” one (F220) near the peak time (Δ𝑡0 ∼ 0), indicating that the
“two-QNM” filter is preferred in the early stage of ringdown. To provide a more
quantitative evaluation, we compute the Bayes factor by taking the ratio between the
marginal likelihoods of a QNM model with and without the first overtone:

𝐾221(Δ𝑡0) =
𝑃(𝑑𝑡 |F22{0,1},Δ𝑡0)
𝑃(𝑑𝑡 |F220,Δ𝑡0)

. (3.37)

The middle panel of Fig. 3.6 shows 𝐾221 as a function of Δ𝑡0. We also show the
off-source results (green dash-dot curve). As expected, 𝐾221 drops sharply near the
peak time Δ𝑡0 ∼ 0 and gradually converges to the off-source result at later times. In
the absence of the GW signal, the Bayes factor simply oscillates around unity across
the entire time tested, which is also expected.

On the other hand, to characterize how well we can recover the remnant properties
by applying our filters, we look for the maximum a posteriori (MAP) estimates of
(𝑀 𝑓 , 𝜒 𝑓 ). Following Ref. [55], we define a dimensionless quantity 𝜖 to describe the
distance of the MAP values (𝑀MAP

𝑓
, 𝜒MAP

𝑓
) to the true values (𝑀 true

𝑓
, 𝜒true

𝑓
), given

by

𝜖 (Δ𝑡0) =

√√√√(
𝜒MAP
𝑓
(Δ𝑡0) − 𝜒true

𝑓

)2
+

(
𝑀MAP
𝑓
(Δ𝑡0) − 𝑀 true

𝑓

𝑀 true
𝑓

)2

. (3.38)

The bottom panel of Fig. 3.6 shows the resulting 𝜖 (Δ𝑡0). For both QNM models, 𝜖
starts to decrease before the peak time Δ𝑡0 = 0, for the same reason that the analysis
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Figure 3.6: Model comparison at different Δ𝑡0 for a GW150914-like NR waveform
injected in band-limited white noise. Top: Model evidence as a function of Δ𝑡0,
evaluated by Eq. (3.36). The blue and red curves indicate the results after applying
F220 (clean the fundamental mode only) and F22{0,1} (clean the fundamental mode
and the first overtone), respectively. The corresponding results computed with
off-source noise are shown in green and black (almost indistinguishable). Middle:
Bayes factor (𝐾221) of the existence of the first overtone over fundamental mode only
(red curve), calculated by Eq. (3.37). As a comparison, the green curve shows the
Bayes factor evaluated with the off-source noise. We take 𝐾221 = 1 as a benchmark,
indicated by the horizontal dashed line. Bottom: Distance (𝜖) of the MAP values of
𝑀 𝑓 and 𝜒 𝑓 to the true values, calculated by Eq. (3.38).
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window we use is wider than the span of the ringdown signal. At Δ𝑡0 = 0 and right
after, 𝜖 obtained by using the filter F22,{1,2} is smaller than that using F220, indicating
the existence of the first overtone. After ∼ 5 ms, 𝜖 from the filter F22,{1,2} starts to
increase as the first overtone decays away. By contrast, the fundamental mode still
shows significance at Δ𝑡0 ∼ 5.5 ms = 16.3𝑀 true

𝑓
, which leads to a much smaller 𝜖 .

Beyond Δ𝑡0 = 7 ms = 20.8𝑀 true
𝑓

, no precise parameter information can be extracted
from the fundamental mode anymore. Therefore we plot a boundary between the
cyan and gray regions in the figure at Δ𝑡0 = 7 ms = 20.8𝑀 true

𝑓
to indicate the time

around which the whole ringdown signal fades away.

3.3.2 GW150914
After studying the injected signal, we now apply our method to analyzing GW150914
using the data collected in the first observing run of the two Advanced LIGO
detectors (Hanford and Livingston) [78–80]. We adopt the same procedure described
in Sec. 3.2.2 to condition the data, and the PSDs are evaluated with 32 s of the
conditioned data (see Figs. 3.2c and 3.2d). Then, the PSDs are converted to the
covariance matrix 𝐶𝑖 𝑗 via Eqs. (3.28) and (3.29). Following [23, 30, 72], we
take the inferred GPS time when the signal strain reaches its peak at geocenter,
𝑡start = 1126259462.4083, and parameterize the analysis start time viaΔ𝑡0 = 𝑡0−𝑡start.
The information on antenna patterns, polarization, and inclination angles are not
needed within our framework, but we do need to time-shift the data to align the
signals at the two detectors, based on the sky location of the event, right ascension
𝛼 = 1.95 rad and declination 𝛿 = −1.27 rad [30]. To compute the joint posteriors of
(𝑀 𝑓 , 𝜒 𝑓 ) in Eq. (3.25), we fix the width of the ringdown window to 𝑤 = 0.2 s, and
we consider two types of the rational filter: F221F220 and F220.

The posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 at various Δ𝑡0 are shown in Figs. 3.7, 3.8
and 3.9. The parameter estimation results obtained from the whole IMR signal,
𝑀 IMR
𝑓

= 68.5𝑀⊙ and 𝜒IMR
𝑓

= 0.69 [30], are marked by the white plus signs. Again,
the red-dashed contours show the 90% credible region evaluated by integrating
Eq. (3.25), and the marginalized posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 are shown
as 1D histograms (red curves in side panels). The results are qualitatively similar
to the previous injection study. At the early stage of ringdown, the “two-QNM”
results are more consistent with those from the whole IMR analysis, demonstrating
the existence of the first overtone. At Δ𝑡0 = 0.77 ms, the constraints obtained with
𝑋 = 1 [Eq. (3.33)] start to degrade because of the first overtone decays. Meanwhile,
there still exists a bias in the estimates of (𝑀 𝑓 , 𝜒 𝑓 ) in the case of 𝑋 = 0. This
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Figure 3.7: Joint posterior distributions of𝑀 𝑓 and 𝜒 𝑓 for GW150914 (data collected
by the two Advanced LIGO detectors are used). Similar to Fig. 3.3. The top and
bottom panels represent Δ𝑡0 = 0 and 0.77 ms, respectively. The left and right panels
show results from applying the filter for the fundamental mode only, F220, and the
filter F221F220, respectively. The red-dashed contours display the 90% credible
region by integrating our new joint posterior in Eq. (3.25); and the joint distribution
is projected to the individual 1D space of 𝜒 𝑓 and 𝑀 𝑓 (red curves in side panels),
using Eq. (3.26). The white plus signs stand for the parameters estimated from the
whole IMR waveform. The white dashed contours show the 90% credible region
from the full-RD MCMC approach. The MCMC results are marginalized to the 1D
distributions of 𝑀 𝑓 and 𝜒 𝑓 , shown as the gray-shaded regions in side panels.
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Figure 3.8: Joint posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 for GW150914. Fig. 3.7
continued; more values of Δ𝑡0 are tested.

discrepancy between 𝑋 = 1 and 𝑋 = 0 becomes less significant as we move to
Δ𝑡0 = 2.5 ms, indicating that the contribution from the first overtone becomes
negligible. From this time onward, the constraints of (𝑀 𝑓 , 𝜒 𝑓 ) are worse when we
apply F221 in addition to F220, since there is nearly none first overtone contribution
and the extra filter of F221 reduces the amplitude of the fundamental mode. We can
see the constraints keep degrading as the ringdown signal decays away.
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Figure 3.9: Joint posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 for GW150914. Fig. 3.7
continued; more values of Δ𝑡0 are tested.
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On the other hand, we also use MCMC to repeat the Bayesian analyses presented in
[30], in which we assume the system is face-off [30], namely 𝜄 = 𝜋. The 90% credible
interval joint posterior distributions are enclosed by the white dashed contours. The
corresponding 1D histograms for 𝑀 𝑓 and 𝜒 𝑓 are represented by the gray-shaded
regions. Similar to the previous injection study, the MCMC results are consistent
with what we obtain from the rational filter.

For more quantitative conclusions, we use Eq. (3.36) to compute the model evidence
𝑃(𝑑𝑡 |F220,Δ𝑡0) and 𝑃(𝑑𝑡 |F22{0,1},Δ𝑡0) as functions of Δ𝑡0 and show results in the
top panel of Fig. 3.10. Similar to the injection study, the two evidence curves surge
quickly before the time when the signal strain reaches the peak, Δ𝑡0 = 0, indicating
the onset of the ringdown. The ratio 𝐾221 [Eq. (3.37)], shown in the middle panel
of Fig. 3.10, reveals the relative importance of the first overtone. At the peak time
Δ𝑡0 = 0, the Bayes factor 𝐾221 is as high as 600. Then its value drops steeply
within the first 2 ms. In the case of analyzing this real event, we take the window
of Δ𝑡0 ∈ [15, 100] ms, a duration when the whole ringdown signal should have
decayed, for background estimation. The mean value (∼ 4.5) and the mean plus
one standard deviation (∼ 13.8) of 𝐾221 computed in the noise-only window are
plotted as dashed and dash-dotted horizontal green lines, respectively, in the middle
panel of Fig. 3.10. The curve of 𝐾221 intersects with the “mean +1𝜎” and “mean”
lines at Δ𝑡0 = 1.9 ms and 2.3 ms, respectively. Therefore we can conclude that the
first overtone has become negligible around Δ𝑡0 ∼ 2 ms. Indeed, in the first row of
Fig. 3.8, we see the remnant properties inferred from the fundamental mode alone
are consistent with the IMR results at Δ𝑡0 = 2.5 ms, a time when the first overtone
is deemed vanishing.

Finally, we use Eq. (3.38) to evaluate the MAP estimations of (𝑀 𝑓 , 𝜒 𝑓 ) and the
distance to the IMR results (𝑀 IMR

𝑓
= 68.5, 𝜒IMR

𝑓
= 0.69). As shown in the bottom

panel of Fig. 3.10, the results from the “two-QNM” filter are better than those from
the fundamental-mode-only filter by one order of magnitude right after the peak
time Δ𝑡0 ∼ 0. Beyond the time when the first overtone mostly decays (Δ𝑡0 ∼ 2 ms),
the accuracy of parameter estimation using the F22{0,1} filter significantly degrades.
Regarding the results from using the “one-QNM” filter F220, 𝜖 surges after Δ𝑡0 ∼ 6
ms, indicating the time when the fundamental mode also disappears.
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Figure 3.10: Model comparison at different Δ𝑡0 for GW150914. Similar to Fig. 3.6.
Top: Model evidence as a function of Δ𝑡0. The blue and red curves indicate the
results for applying F220 (clean the fundamental mode only) and F22{0,1} (clean
the fundamental mode and the first overtone), respectively. Middle: Bayes factor
(𝐾221) of the existence of the first overtone over fundamental mode only (red curve).
The horizontal dashed and dash-dotted green lines indicate the mean value and
the standard deviation within the regime of Δ𝑡0 ∈ [15, 100]ms, respectively. The
red Bayes factor curve intersects the “1𝜎+mean” line at a time of Δ𝑡0 = 1.9 ms,
indicating the time when the first overtone becomes negligible (vertical dashed line).
Bottom: Distance (𝜖) of the MAP values of 𝑀 𝑓 and 𝜒 𝑓 to the values estimated from
the whole IMR signal.

3.4 A mixed approach to black-hole spectroscopy
We have demonstrated that the rational filter provides a powerful tool for black-hole
spectroscopy by cleaning any given QNMs from the data and evaluating a simple and
efficient likelihood function for remnant mass and spin [Eq. (3.22)]. One limitation
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of this new method is that we do not obtain information of mode amplitudes and
phases in the analysis. By combining our filters with the conventional MCMC
method, we could take advantage of both and build another mixed approach for BH
spectroscopy: after removing a subset of the QNMs using the rational filters, we
analyze the filtered data with a ringdown model that consists of the uncleaned QNMs,
using the MCMC approach. The advantage of this hybrid approach is as follows.
The conventional full-RD MCMC analysis (without filter) for subdominant QNMs is
likely to be biased when the strongest mode is present, especially at low-SNR regime.
The mixed approach allows us to clean the most dominant mode and thus eliminate
potential impacts from it when carrying out parameter estimations using the MCMC
method. In addition, we can carry out a consistency check by comparing the mode
amplitudes and remnant properties inferred from the subdominant QNMs (after the
strongest mode is cleaned by the filter) to those obtained from the unfiltered data
(when the strongest mode is present). When we observe events with high ringdown
SNRs, we can even clean a set of stronger modes and study the remaining weak
ones. In this way, we are able to test the no-hair theorem from a new perspective.

Below, we detail the analysis procedure and results using this mixed approach. In
Sec. 3.4.1, we study the NR signal injected into Gaussian noise. In Sec. 3.4.2, we
analyze GW150914.

3.4.1 NR waveform injection
We first analyze the injection of the NR waveform, focusing on the estimates of
mode amplitudes and the remnant properties. Further discussion about the features
seen in the mixed approach is provided afterwards.

3.4.1.1 Estimate mode amplitudes

With the NR signal injected into Gaussian noise, we first choose a start time for the
analysis, Δ𝑡0 = 1.5 ms = 4.2𝑀 𝑓 , and use the conventional full-RD MCMC method
to fit the unfiltered simulation data with a two-QNM (𝜔220 and 𝜔221) ringdown
template. The analysis is performed with the Python package ringdown [23, 72].
The posterior distributions of the amplitudes of the fundamental mode, 𝐴0, and
the first overtone, 𝐴1, are plotted as the blue shaded regions in Figs. 3.11a and
3.11b. Meanwhile, we compute what the values of 𝐴0 and 𝐴1 should be in the
injected signal by decomposing the NR waveform (the 𝑙 = 𝑚 = 2 harmonic) into
a superposition of the fundamental mode and the first overtone with a least-square
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fit. Here we include up to the first overtone for the least-square fit, to be consistent
with the templates used in the MCMC analysis, even though Giesler et al. [55]
points out more overtones are needed to model ringdown at such an early stage
(Δ𝑡0 = 1.5 ms = 4.2𝑀 𝑓 ). The lack of higher overtones in the least-square fit leads to
a bias in the estimates of the mode amplitudes. Nevertheless, it is a fair comparison
between the MCMC results and the “should-be” values (vertical dash-dotted lines
in Figs. 3.11a and 3.11b) obtained from the least-square fit. We find the MCMC
posteriors are consistent with the values indicated by the vertical lines, 𝐴0 = 148
and 𝐴1 = 143. In fact, the same feature has been pointed out by Finch and Moore
(see Fig. 7 and discussions in Sec. III B in [27]).

Table 3.1: Combinations of filters and fitting templates for the mixed approach.
We have two choices of the filter: F220 and F221, and two choices of the fitting
template: two-QNM (𝜔220&𝜔221) template, ignorant of mode cleaning, and one-
QNM template for the remaining mode.

Filter
Template

two-QNM one-QNM

F220 𝜔220 &𝜔221 𝜔221

F221 𝜔220 &𝜔221 𝜔220

We then use the mixed approach. There are four options from the combinations of
the two choices of the filters and two choices of the fitting templates (see Table 3.1).
We can choose to clean the fundamental mode (the first overtone) by applying the
filter F220 (F221). After the filtering, we also have two choices of the ringdown
template to fit the data and run MCMC: we can (a) continue to use the two-QNM
model, assuming both modes exist in the data and we have no knowledge of the
mode cleaning (b) use a single-mode template for the remaining QNM. We first
apply the filter F220, built from the true remnant mass and spin, to remove the
fundamental mode. Then we use the two-QNM template to run MCMC against the
filtered data. The posteriors of 𝐴0 and 𝐴1 are plotted as the green dashed curves in
Figs. 3.11a and 3.11b, respectively. After applying F220, it is expected that there is
no 𝜔220 component left in the filtered data. Indeed, we see the distribution of 𝐴0 is
pushed close to 0, demonstrating that the fundamental mode no longer exists in the
data. By contrast, the posterior distribution of 𝐴1 is only slightly impacted by the
filtering (compare the green dashed curve to the blue-shaded region in Fig. 3.11b).
We emphasize that, as discussed in Sec. 3.2.1, the amplitude of the first overtone is
reduced by the filter F220 by a factor of 𝐵221

220 = 2.053 [Eq. (3.11)]. In Fig. 3.11b,
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the green dashed curve is obtained by multiplying the original 𝐴1 distribution from
MCMC by a factor of 𝐵220

221 = 2.053, so that we can make a fair comparison to the
blue distribution. On the other hand, we also fit the filtered data (𝜔220 component
is cleaned) with the single-QNM model, composed of the first overtone alone,
which gives the distribution shown in yellow in Fig. 3.11b. The estimate is more
constrained than that from the two-QNM model, and the MAP value is closer to the
“injected,” although biased, mode amplitude (the vertical dash-dotted line).

Similarly, we apply F221 to the original simulation data to clean the first overtone.
Fitting with the two-QNM template, the posteriors of 𝐴0 and 𝐴1 are plotted as
black dashed curves in Figs. 3.11a and 3.11b. This time, 𝐴1 is consistent with 0, as
expected; whereas the MAP value of 𝐴0 is mildly impacted [again, after multiplying
the reduction factor 𝐵221

220 = 2.053 to the original distribution output by MCMC;
see Eq. (3.11)]. If we use the one-QNM template of the fundamental mode, the
estimated 𝐴0 (the red shaded region in Fig. 3.11a) is more constrained, and the MAP
value is closer to the injected mode amplitude (the vertical dash-dotted line).

3.4.1.2 Estimate remnant properties

We now estimate the remnant properties (𝑀 𝑓 and 𝜒 𝑓 ) after a certain mode is cleaned.
Here we use the one-QNM template to fit the filtered data and show the parameter
estimation results obtained from MCMC in Fig. 3.11c (at Δ𝑡0 = 1.5 ms = 4.2𝑀 𝑓 ,
to be consistent with Figs. 3.11a and 3.11b), i.e., we fit for the first overtone after
applying F220 (yellow) and fit for the fundamental mode after applying F221 (red).
The two contours for each case correspond to the 90% and 10% credible intervals.
For comparison, the estimates obtained by the full-RD MCMC method without
applying the filters are plotted as blue dashed contours. The green plus sign stands
for the true values. The posterior distributions obtained solely from the first overtone
(yellow) are still informative, consistent with the results from the fundamental mode
(red) and the full-RD MCMC approach (blue), albeit less constrained.

As we show previously, there is inevitably a bias in the estimates of the mode
amplitudes at an early time of ringdown (Δ𝑡0 = 1.5 ms = 4.2𝑀 𝑓 ) due to the lack
of higher overtones in the model. In Fig. 3.11c, however, we see the remnant mass
and spin inferred from the fundamental mode (red), the first overtone (yellow), and
both modes (blue) are all consistent with the true NR values, indicating that the
constraints of 𝑀 𝑓 and 𝜒 𝑓 are less impacted by the residuals contributed by higher
overtones and even the merger signal (if there is any). On the other hand, as shown
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(a) Fundamental mode (𝜔220), Δ𝑡0 = 1.5 ms
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(b) First overtone (𝜔221), Δ𝑡0 = 1.5 ms
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Figure 3.11: Estimates of the mode amplitudes and BH properties for the injected
signal using the mixed approach. The top panels display the posterior distributions
of (a) the fundamental mode amplitude 𝐴0, and (b) the first overtone amplitude
𝐴1, evaluated at Δ𝑡0 = 1.5 ms under various filtering conditions. The blue-shaded
distributions are obtained via the full-RD MCMC method (without applying the
filter). The green dashed curves correspond to removing the 𝜔220 mode using F220
first and fitting the data with a two-QNM (𝜔220 and 𝜔221) signal template. The
same F220-filtered data are also fitted with the one-QNM (𝜔221) signal template,
resulting in the 𝐴1 distribution shown in yellow in (b). Similarly, the black dashed
curves correspond to removing the 𝜔221 mode using F221 first and fitting the data
with a two-QNM (𝜔220 and 𝜔221) signal template. The F221 filtered data are then
fitted with the one-QNM (𝜔220) signal template, resulting in the 𝐴0 distribution
shown in red in (a). The two vertical lines indicate the true values of 𝐴0 = 148 and
𝐴1 = 143, computed from the NR waveform. The bottom panels show the posterior
distributions of 𝑀 𝑓 and 𝜒 𝑓 estimated at (c) Δ𝑡0 = 1.5 ms, and (d) Δ𝑡0 = 1.0 ms.
The yellow curves indicate the results obtained by fitting the 𝜔220-cleaned data with
a 𝜔221-only template. The red curves are the results obtained by fitting the 𝜔221-
cleaned data with a 𝜔220-only template. The blue dashed curves are the results from
the full-RD MCMC analysis without applying any filter. The two contours in each
color correspond to the 90% and 10% credible intervals.



117

in Fig. 3.11d, we do see the remnant properties are less consistent with the true value
at an earlier time Δ𝑡0 = 1.0 ms = 2.8𝑀 𝑓 . In particular, the constraints from the first
overtone (yellow) deviate more significantly from the true value than the other two
estimates.

Finally, we note that in terms of estimating the remnant properties (𝑀 𝑓 and 𝜒 𝑓 )
using the filtered waveform when certain modes are cleaned, e.g., Figs. 3.11c and
3.11d, the results can also be obtained by purely using the filters, instead of running
the MCMC analysis. We provide the details in Appendices 3.7 and 3.8.

3.4.1.3 Further discussions

We have demonstrated the statistical significance of the first overtone in the injected
ringdown signal. Given that our two-QNM fitting is carried out at an early time
(Δ𝑡0 = 1.5 ms = 4.2𝑀 𝑓 ), criticisms might be raised since we do not include higher
overtones at such an early time close to the signal strain peak [55]. How do we know
the results are not biased by other residual effects? We discuss this from two aspects:
(a) estimates of the remnant properties, and (b) estimates of the mode amplitudes.

First, the measurement of a mode frequency (or equivalently, the estimates of
𝑀 𝑓 and 𝜒 𝑓 ) needs sufficient mode cycles (duration) to accumulate a high-enough
SNR. A missing mode does not bias the measurement when its cumulative SNR is
small. To quantify the impact of the residual, we carry out a least-square fit to the
𝑙 = 𝑚 = 2 harmonic of the GW150914-like NR waveform using a two-QNM model
(𝜔220 + 𝜔221). At an early starting time, the fitting residual comes from the modes
that are not included in the template (higher overtones). We compute the cumulative
SNRs of the constructed first overtone and the fitting residual via

SNR (Δ𝑡0) =

√︄∫ 90𝑀 𝑓

Δ𝑡0

|ℎ(𝑡) |2𝑑𝑡. (3.39)

The ratio between the SNR of the first overtone and that of the residual as a function
of Δ𝑡0 is shown in Fig. 3.12. We see the cumulative SNR of the first overtone is ∼ 5
times larger than that of the residual even starting from the peak of the waveform
(Δ𝑡0 = 0). The ratio continues to grow when Δ𝑡0 < 17𝑀 𝑓 , because the residual
modes decay faster and the waveform becomes more consistent with the two-QNM
model. After 17𝑀 𝑓 , the residual hits the error floor of the NR simulation and
remains at that level. Thus, starting from 17𝑀 𝑓 , the ratio decreases exponentially
as the first overtone decays away. Note that the maximum at Δ𝑡0 = 17𝑀 𝑓 is close
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to the starting time of the two-QNM regime at Δ𝑡0 = 19𝑀 𝑓 estimated by Giesler et
al. (see the second row of Table I in [55]). Here we convert the mass unit from the
total binary mass 𝑀tot in [55] to the remnant mass 𝑀 𝑓 using 𝑀 𝑓 = 0.95𝑀tot.

In Bayesian analysis, the fact that the cumulative SNR of the first overtone is a
few factors stronger than the residual modes allows us to perform a two-QNM
MCMC analysis and infer the remnant properties from the first overtone right
after the signal peak, when the full ringdown waveform has a low SNR and the
systematic error caused by the residual modes is smaller than the uncertainties of
the inferred parameters. In such a low-SNR regime, we might want to push our
analysis as early as possible to increase the cumulative SNR of the first overtone,
as long as the SNR contribution from the residual modes stays low, e.g., Fig. 3.11c
(Δ𝑡0 = 1.5 ms = 4.2𝑀 𝑓 ). However, as Fig. 3.12 suggests, the residual modes play
a stronger role at earlier times, and thus we should be careful and avoid conducting
the analysis too close to the signal peak, otherwise the residual modes can lead to
systematic bias, such as the results shown in Fig. 3.11d. On the other hand, if we
detect a high-SNR ringdown signal, the contribution of the residual modes becomes
more significant, and leads to a bias non-negligible compared to the parameter
uncertainty range. In that case, following Fig. 3.12, the analysis should be moved
to later times (although still earlier than what the pure NR waveform suggests) to
reduce the systematic bias caused by the residual modes. In an extreme case, when
the ringdown signal becomes strong enough, the analysis reduces to the least-square
fitting of the NR waveform. Then we can choose the maximum point in Fig. 3.12
as the starting time to perform the two-QNM fit, just as what Giesler et al. [55] did.
In summary, the starting time of the analysis using a two-QNM model should be
chosen based on the signal SNR; the higher the SNR, the later the starting time (in
the range from Δ𝑡0 = 0 to the maximum point in Fig. 3.12).

That said, in Figs. 3.11a and 3.11b, the mode amplitudes inferred from the Bayesian
analysis are still biased, as mentioned by Finch and Moore [27]. This is because the
measurement of a mode amplitude depends more heavily on the first mode cycle than
the whole cumulative SNR. Therefore, the estimate of the mode amplitude is more
sensitive to the existence of the residual modes at an early stage. Nevertheless, the
consistency among the “F220 + one-QNM” test, the conventional full-RD analysis,
and the NR least-square fit (Figs. 3.11b) implies that after cleaning the fundamental
mode, the remaining signal is stably consistent with the first overtone3. In other

3This is not to be confused with the noise fluctuations raised by Cotesta et al. [28].
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words, at a relatively early time, e.g., Δ𝑡0 = 1.5 ms = 4.2𝑀 𝑓 in Fig. 3.11b, the
data-driven analysis leads to a measurement of an effective first overtone, with a
correct mode frequency and decay rate albeit a biased mode amplitude [27].
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Figure 3.12: Ratio between the cumulative SNRs of the first overtone and the fitting
residual as a function of Δ𝑡0. The 𝑙 = 𝑚 = 2 harmonic of the GW150914-like NR
waveform is fitted with a two-QNM model (𝜔220 +𝜔221) at different starting times.
The residual is the difference between the 𝑙 = 𝑚 = 2 harmonic in the NR waveform
and the fitted two-QNM model template. At early times, the residual corresponds to
the systematic bias due to the missing higher overtones in the model template. The
cumulative SNRs are computed via Eq. (3.39).

3.4.2 GW150914
We now apply the mixed approach to GW150914. Similar to the NR simulation, the
full-RD MCMC fitting and the four filtering scenarios listed in Table 3.1 are tested;
the results are shown in Fig. 3.13. For mode cleaning, we use the BH properties
estimated from the IMR signal [30], 𝑀 IMR

𝑓
= 68.5, 𝜒IMR

𝑓
= 0.69, to build the filter.

The MCMC fitting is conducted at a start time of Δ𝑡0 = 0.77 ms and the window
length of 𝑤 = 0.2 s. In Figs. 3.13a and 3.13b, the estimates of 𝐴0 and 𝐴1 under
all scenarios qualitatively agree with the injection study in Sec. 3.4.1 (Fig. 3.11).
These results demonstrate: (1) the fundamental mode or the first overtone can be
successfully cleaned from the ringdown of GW150914 by the filters, and (2) the 𝑀 𝑓

and 𝜒 𝑓 values obtained from the IMR signal are consistent with the evolution of the
QNMs in ringdown (so that the modes can be correctly cleaned).
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(a) Fundamental mode (𝜔220), Δ𝑡0 = 0.77 ms
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(b) First overtone (𝜔221), Δ𝑡0 = 0.77 ms
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(c) Δ𝑡0 = 0.77 ms
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Figure 3.13: Estimates of the mode amplitudes and BH properties for GW150914
using the mixed approach. Similar to Fig. 3.11. See Fig. 3.11 caption for detailed
descriptions. Note that different start times are used here: Δ𝑡0 = 0.77 ms in
Fig. 3.13a, 3.13b and 3.13c, and Δ𝑡0 = 0.1 ms in Fig. 3.13d.
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Figure 3.14: Posterior distributions of 𝑀 𝑓 and 𝜒 𝑓 for GW150914 estimated at
Δ𝑡0 = 0.77 ms. The gray contours are obtained from the conventional full-RD
MCMC analysis, where the unfiltered data (without mode cleaning) are fitted with
the fundamental-mode-only template. The red contours are the same as the ones in
Fig. 3.13c, where we first apply the filter F221 to remove the first overtone, and then
fit the filtered data with the template of the fundamental mode.

In Fig. 3.13c, we show the estimates of 𝑀 𝑓 and 𝜒 𝑓 at the start time Δ𝑡0 = 0.77 ms
under the three scenarios, similar to the injection case shown in Fig. 3.11c. The
constraints obtained from the unfiltered and the filtered data generally agree, and
are consistent with the estimates obtained from the IMR signal. In particular, we
note that for the chosen start time, one needs to include both modes 𝜔220 and 𝜔221

to perform the usual full-RD MCMC analysis (blue-dashed contours), fitting with
only the fundamental mode 𝜔220 leads to a strong bias in the inferred 𝑀 𝑓 and 𝜒 𝑓 .
The gray contours in Fig. 3.14 display the corresponding joint posterior of 𝑀 𝑓 and
𝜒 𝑓 when the first overtone is omitted from the MCMC analysis (also see Fig. 3 of
Ref. [30]). But the discrepancy with the IMR results is reduced if we first apply the
filter F221 to clean the first overtone 𝜔221 (red contours in Fig. 3.14).

On the other hand, the yellow contours in Fig. 3.13c represent the posterior inferred
from the first overtone alone. We see the estimates are still informative, although
less constrained than the “F221+one-QNM” case. If we start the analysis at an
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earlier time, e.g., Δ𝑡0 = 0.1 ms (Fig. 3.13d), the constraints obtained from the first
overtone alone deviate more from the IMR results, despite the fact that the contour
of the 90% credible intervals is still consistent with the IMR result. Presumably,
the shift is caused by the existence of other signal features in addition to the first
overtone (e.g., higher overtones, similar to Fig. 3.11d), although no evidence for the
existence of higher overtones is found in the ringdown of GW150914. For more
choices of Δ𝑡0, we focus on the marginalized posteriors of 𝑀 𝑓 and 𝜒 𝑓 obtained from
the “F220+one-QNM” scenario. As shown in Fig. 3.15, the posterior distribution
of 𝑀 𝑓 gradually shifts toward smaller values and moves closer to the IMR result
(the vertical dashed line) when Δ𝑡0 ∈ [0, 1] ms. For later times (Δ𝑡0 ≳ 1 ms), the
distribution widens and becomes less informative. On the other hand, the posterior
distribution of 𝜒 𝑓 flattens quickly as Δ𝑡0 increases and becomes consistent with the
prior.

3.5 Conclusion
In this chapter, we incorporate the novel rational filter [64] into a Bayesian framework
(outlined in our companion paper [68]), and obtain several pieces of evidence
for the existence of the first overtone in the ringdown of GW150914. We first
demonstrate that the rational filter has no impact on the statistical properties of
the noise (Gaussianity, stationarity, and PSDs). We then construct a 2D likelihood
function that depends only on the mass and spin of the remnant BH and implement
an efficient algorithm to obtain the posteriors of mass and spin without running
MCMC. We use an NR injection and the GW150914 event to demonstrate that the
posteriors obtained using our method are consistent with those from the full-RD
MCMC approach. By applying our method to the data of GW150914 near the
peak of the strain, we confirm the conclusion of Ref. [30]: The inferred remnant
BH properties are more consistent with the IMR results when the first overtone is
included; the contribution from the first overtone gradually fades away at later times.

Next, we compute the model evidence for filters built with different sets of QNM(s)
by integrating the new likelihood function over the 2D parameter space. The
evidence depends on the fitting start time, showing a sharp rise around the onset
of a ringdown signal, which in turn agnostically reflects the starting time of the
corresponding QNM(s). The ratio between two evidence values from two filters
with different sets of QNM(s) indicates the Bayes factor for a QNM model. For
GW150914, we find a Bayes factor of 600 for the model with the first overtone over
the fundamental-mode-only model at the inferred strain peak. This Bayes factor



123

40 60 80 100 120 140
Mf/M¯

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
en

si
ty

0.0 ms
0.2 ms
0.4 ms
0.6 ms

0.8 ms
1.0 ms
1.2 ms
1.4 ms

0.0 0.2 0.4 0.6 0.8

χf

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
en

si
ty

0.0 ms
0.2 ms
0.4 ms
0.6 ms

0.8 ms
1.0 ms
1.2 ms
1.4 ms

Figure 3.15: Posterior distributions of 𝑀 𝑓 (top) and 𝜒 𝑓 (bottom) solely inferred
from the first overtone in the ringdown of GW150914, at different Δ𝑡0 times. We
first apply the filter F220 to remove the fundamental mode, and then fit the filtered
data with the template of the first overtone. We set uniform priors in the ranges of
𝑀 𝑓 ∈ [35𝑀⊙, 140𝑀⊙] and 𝜒 𝑓 ∈ [0, 0.99] (as shown in the horizontal axes in the
plot). The vertical dashed lines indicate the estimates obtained from the full IMR
signal.

decreases and levels off at later times.

Finally, we combine the mode-cleaning procedure using the rational filter with
the usual MCMC method to build a mixed approach for BH spectroscopy. After
cleaning the fundamental mode in the GW150914 data and fitting the filtered data
using MCMC, we find the posterior of the fundamental mode amplitude gets close to
zero, confirming the successful subtraction of the fundamental mode. On the other



124

hand, the amplitude of the first overtone is barely impacted. We also use the mixed
approach to infer the remnant BH mass and spin from only the fundamental mode and
only the first overtone. The results from the first overtone alone are still informative,
showing consistent constraints on𝑀 𝑓 with the full-IMR and fundamental-mode-only
analyses. The recovery of the remnant BH properties (mass and mode amplitudes)
from the first overtone alone serves as a more direct piece of evidence supporting
the existence of the first overtone, in addition to other indicators (e.g., the Bayes
factor).

This novel framework is not only powerful at revealing subdominant QNMs; it also
has superior computational efficiency compared to the existing MCMC approach.
In the GW150914 analysis, it takes ∼ 8 seconds on a general laptop to produce a
low-resolution 2D 𝑀 𝑓 –𝜒 𝑓 posterior distribution for the remnant BH that is good
enough to reveal the key features (the evaluation of the likelihood function in
Eq. (3.22) for each pair of 𝑀 𝑓 and 𝜒 𝑓 takes milliseconds). For a production run
with a high resolution, e.g., a panel in Fig. 3.7, it takes ∼ 3 minutes on a cluster
(a single node with 24 cores). The performance can be further improved by fully
parallelizing the calculation, since the likelihood evaluation for each pair of mass and
spin is completely independent. In addition, the code’s efficiency is not impacted
by including more QNMs, given that multiple filters can be applied simultaneously
[Eq. (3.6)]. On the contrary, including more QNMs significantly increases the
computing cost of the full-RD MCMC calculation, because the dimension of the
parameter space is largely increased.

With this framework, the ringdown analysis can be easily extended to investigate
more subdominant modes in addition to overtones. Future work is being planned to
investigate another controversial event, GW190521 [31, 32], and new detections in
the upcoming O4 run. In addition, here we combine and align the data at two LIGO
detectors based on the constraint of the event sky location. It is worth studying
whether we could analyze the data from each detector individually and use the
common features in the results, e.g., the time when the evidence rises sharply (see
Fig. 3.10), to help constrain the sky position of an event.

3.6 Appendix: Comparison between the new and conventional full-RD MCMC
likelihoods in a high-SNR limit

In this section, we discuss the relationship between our new and full-RD MCMC
likelihoods. For simplicity, we assume there is only one complex-valued QNM
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component in time-series data
𝑑 = 𝑛 + ℎ0, (3.40)

with 𝑛 being additive noise. The ringdown signal ℎ0 is given by

ℎ0 = 𝐴0𝑒
−𝑖𝜔0𝑡Θ(𝑡), (3.41)

where 𝜔0 is a QNM frequency, 𝐴0 is a complex-valued amplitude, and Θ(𝑡) is the
Heaviside step function. Then we use a QNM template,

ℎ𝑥 = 𝐴𝑥𝑒
−𝑖𝜔𝑥 𝑡 , (3.42)

to fit the data. After inserting Eqs. (3.40) and (3.42) into Eq. (3.23), the full-RD
MCMC likelihood reads

ln 𝑃Trad (𝑑 |𝐴𝑥 , 𝜔𝑥) = −
1
2
⟨𝑑 − ℎ𝑥 |𝑑 − ℎ𝑥⟩

= −1
2
⟨𝑛 + ℎ0 − ℎ𝑥 |𝑛 + ℎ0 − ℎ𝑥⟩. (3.43)

On the other hand, we apply the filter

F𝑙𝑚𝑛 (𝜔;𝜔𝑥) =
𝜔 − 𝜔𝑥
𝜔 − 𝜔∗𝑥

, (3.44)

to construct the new likelihood. Based on our discussions in Sec. 3.2, the filtered
ringdown signal ℎ0 reads

ℎ𝐹0 = 𝐵0
𝑥ℎ0, when 𝑡 > 0 (3.45)

with

𝐵0
𝑥 =

𝜔0 − 𝜔𝑥
𝜔0 − 𝜔∗𝑥

. (3.46)

In consequence, our new likelihood in Eq. (3.22) becomes

ln 𝑃𝐹 (𝑑 |𝜔𝑥) = −
1
2
⟨𝑛𝐹 + ℎ𝐹0 |𝑛

𝐹 + ℎ𝐹0 ⟩. (3.47)

3.6.1 Expectation values
In a high-SNR limit, the leading order corresponds to the expectation values of the
two likelihoods. For the full-RD MCMC likelihood in Eq. (3.43), we obtain

ln 𝑃Trad (𝑑 |𝐴𝑥 , 𝜔𝑥) = −
1
2
⟨ℎ0 − ℎ𝑥 |ℎ0 − ℎ𝑥⟩. (3.48)
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To evaluate the inner product ⟨·|·⟩, we set the autocovariance𝐶𝑖 𝑗 to 𝛿𝑖 𝑗 for simplicity,
which leads to

ln 𝑃Trad (𝑑 |𝐴𝑥 , 𝜔𝑥)

=

[
|𝐴0 |2

4Im𝜔0
+ |𝐴𝑥 |

2

4Im𝜔𝑥
− Im

𝐴0𝐴
∗
𝑥

𝜔∗𝑥 − 𝜔0

]
. (3.49)

Marginalizing 𝑃Trad over 𝐴𝑥

𝑃Trad
𝑚 =

∫
𝑃Trad𝑑Re 𝐴𝑥𝑑Im 𝐴𝑥 , (3.50)

yields

ln 𝑃Trad
𝑚 (𝑑 |𝜔𝑥) =

|𝐴0 |2
4Im𝜔0

(
1 − 4Im𝜔0Im𝜔𝑥

|𝜔0 − 𝜔∗𝑥 |2

)
. (3.51)

On the other hand, the leading order of the filtered likelihood is given by [Eq. (3.47)]

ln 𝑃𝐹 (𝑑 |𝜔𝑥) = −
1
2
⟨ℎ𝐹0 |ℎ

𝐹
0 ⟩ =

|𝐴0 |2
4Im𝜔0

|𝐵0
𝑥 |2

=
|𝐴0 |2

4Im𝜔0

����𝜔0 − 𝜔𝑥
𝜔0 − 𝜔∗𝑥

����2 . (3.52)

The equivalence between ln 𝑃Trad
𝑚 (𝑑 |𝜔𝑥) and ln 𝑃𝐹 (𝑑 |𝜔𝑥) can be established via an

identity

1 − 4Im𝜔0Im𝜔𝑥
|𝜔0 − 𝜔∗𝑥 |2

≡
����𝜔0 − 𝜔𝑥
𝜔0 − 𝜔∗𝑥

����2 . (3.53)

3.6.2 Cramér–Rao bound
We now estimate the Cramér–Rao bound in terms of the Fisher matrix. For a
complex template ℎ𝑥 , the Fisher matrix of the full-RD MCMC approach is given by

𝑀𝑖 𝑗 = Re⟨𝜕𝑖ℎ𝑥 |𝜕𝑗ℎ𝑥⟩|𝑥=0, (3.54)

with 𝑖 ∈ [Re 𝐴𝑥 , Im 𝐴𝑥 ,Re𝜔𝑥 , Im𝜔𝑥]. More explicitly, we write

M =

(
B C
C𝑇 D

)
, (3.55)

where the block matrices B, C, and D read

C =

(
−Im𝐴0 −Re𝐴0

Re𝐴0 −Im𝐴0

)
(3.56)
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B = − 1
2Im𝜔0

I, D = − 1
4(Im𝜔0)3

I. (3.57)

Here I is a 2 × 2 identity matrix. We then marginalize M over the subspace of
[Re𝐴𝑥 , Im𝐴𝑥], which yields4

M𝑚 = D − C𝑇B−1C = − |𝐴0 |2
8(Im𝜔0)3

I, (3.58)

or equivalently, M𝑚 = 𝜌2/(2Im𝜔0)2× Iwith 𝜌 being SNR of the original ringdown
signal.

On the other hand, the Fisher matrix of our new approach is given by

𝑀𝐹
𝑖 𝑗 = Re⟨ℎ0𝜕𝑖𝐵

0
𝑥 |ℎ0𝜕𝑗𝐵

0
𝑥⟩|𝑥=0

= − |𝐴0 |2
2Im𝜔0

Re
(
𝜕𝑖𝐵

0
𝑥𝜕𝑗𝐵

0
𝑥

)
, (3.59)

with 𝑖, 𝑗 ∈ [Re𝜔𝑥 , Im𝜔𝑥]. After inserting Eq. (3.46), we obtain

M 𝐹 = − |𝐴0 |2
8(Im𝜔0)3

I. (3.60)

By comparing Eqs. (3.58) and (3.60), we see the two approaches lead to the same
Cramér–Rao bound.

3.7 Appendix: Reproducing posteriors of 𝑀 𝑓 and 𝜒 𝑓 in Sec. 3.4 via a varying
filter

In Sec. 3.4, we discussed a mixed approach for BH spectroscopy, namely fitting the
filtered data with MCMC. We have demonstrated that this hybrid method yields more
information than either the full-RD MCMC or the pure filter method: Compared to
the full-RD MCMC approach, the filter allows us to study subdominant QNMs by
excluding the impact from dominant modes; compared to the pure filter method, we
can still obtain the information about mode amplitudes.

With this mixed approach, we can infer the remnant properties (𝑀 𝑓 and 𝜒 𝑓 ) exclu-
sively from every single mode, e.g., Figs. 3.11c, 3.11d, 3.13c and 3.13d. According
to our discussions in Sec. 3.3 and the Supplemental Material of our recent paper
[68], the posteriors of 𝑀 𝑓 and 𝜒 𝑓 obtained via MCMC can be reproduced by purely
using the rational filter. To demonstrate the equivalence between MCMC and pure
filtering, here we use a fixed filter (built with the true values of 𝑀 𝑓 and 𝜒 𝑓 ) to

4E.g., see Eq. (35) of [83]
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(a) Reproduce the red contours in Fig. 3.11c.
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(b) Reproduce the yellow contours in Fig. 3.11c.
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(c) Reproduce the red contours in Fig. 3.11d.
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(d) Reproduce the yellow contours in Fig. 3.11d.

Figure 3.16: Reproduce the estimates of 𝑀 𝑓 and 𝜒 𝑓 in Figs. 3.11c and 3.11d, using
the filters. The top and bottom panels are for Δ𝑡0 = 1.5 ms (cf. Fig. 3.11c) and
1.0 ms (cf. Fig. 3.11d), respectively. The left and right columns correspond to
analyzing the fundamental mode only (cf. red contours in Fig. 3.11) and analyzing
the first overtone only (cf. yellow contours in Fig. 3.11), respectively. The filters
used to clean either the first overtone in the left panels or the fundamental mode in
the right panels are built with the true values of 𝑀 𝑓 and 𝜒 𝑓 for the injected system.
The red and yellow contours in Figs. 3.11c and 3.11d are shown as white dashed
contours in this figure.

remove one mode while varying (𝑀 𝑓 , 𝜒 𝑓 ) in the other filter to find the best fit for
the remaining mode—this is different from the study in Sec. 3.3, where all the filters
are built from the same set of (𝑀 𝑓 , 𝜒 𝑓 ). For example, in Figs. 3.16a and 3.16c
we reproduce the “F221+one-QNM” results in Figs. 3.11c and 3.11d (red contours),
where we vary F220 while fixing F221 to the injected true value. We can see the
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(a) Reproduce the red contours in Fig. 3.13c.
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(b) Reproduce the yellow contours in Fig. 3.13c.
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(c) Reproduce the red contours in Fig. 3.13d.
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(d) Reproduce the yellow contours in Fig. 3.13d.

Figure 3.17: Reproduce the estimates of 𝑀 𝑓 and 𝜒 𝑓 in Figs. 3.13c and 3.13d,
using the filters, for GW150914. Similar to Fig. 3.16. See Fig. 3.16 caption for
detailed descriptions. The top and bottom panels are for Δ𝑡0 = 0.77 ms and 0.1 ms,
respectively. The filters used to remove either the first overtone in the left panels or
the fundamental mode in the right panels are built with the estimated 𝑀 𝑓 and 𝜒 𝑓
from the IMR signal.

colored contours obtained by varying the filter are in agreement with the MCMC
one (white dashed contours). Similarly, we vary F221 but fix F220 to reproduce the
“F220+one-QNM” results (yellow contours in Figs. 3.11c and 3.11d) in Figs. 3.16b
and 3.16d. The comparisons for GW150914 are similar and the results can be found
in Fig. 3.17.



130

1.00 0.75 0.50 0.25 0.00 0.25 0.50
∆f221/f221

0.5

0.0

0.5

1.0

∆
τ 2

21
/
τ 2

2
1

Fixing F220; Varing F221

-392

-388

-383

-379

-375

lo
g

10
 li

ke
lih

oo
d

(a) Δ𝑡0 = 0.0 ms
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(b) Δ𝑡0 = 0.1 ms
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(c) Δ𝑡0 = 0.4 ms
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(d) Δ𝑡0 = 0.77 ms

Figure 3.18: Contours of likelihoods as a function of fractional deviations in the
frequency (Δ 𝑓221/ 𝑓221) and decay rate (Δ𝜏221/𝜏221) of the first overtone after the
fundamental mode is removed from GW150914 [different Δ𝑡0 times from (a) to (d)].
The F220 filter used to clean the fundamental mode is built using the IMR-estimated
𝑀 𝑓 and 𝜒 𝑓 . The fiducial values to evaluate the fractional deviations are set to the
IMR results. The red-dashed contours enclose the 2D 90% credible region. The
cyan-shaded regions on the side stand for the 1D 90%-credible ranges of Δ 𝑓221/ 𝑓221
and Δ𝜏221/𝜏221.
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Table 3.2: The measurements of Δ 𝑓221/ 𝑓221 and Δ𝜏221/𝜏221 (68% credible intervals)
with different choices of Δ𝑡0, based on the “F220+one-QNM” scheme and the results
in Fig. 3.18. The fiducial values are set to the IMR results.

Δ𝑡0 (ms) 0.0 0.1 0.4 0.77
Δ 𝑓221/ 𝑓221 −0.17+0.17

−0.13 −0.18+0.18
−0.17 −0.17+0.22

−0.17 −0.18+0.25
−0.22

Δ𝜏221/𝜏221 0.38+0.48
−0.39 0.20+0.52

−0.42 0.40+0.64
−0.53 0.33+0.76

−0.64

3.8 Appendix: Deviation from the Kerr assumption
The “F220+one-QNM” study in Appendix 3.7 (Figs. 3.17b and 3.17d) is closely
related to the beyond-Kerr fit discussed in Refs. [27, 30], where the frequency
and decay rate of the first overtone are allowed to differ from the no-hair values.
Here we could do a similar thing by replacing the parameters, 𝑀 𝑓 and 𝜒 𝑓 , with
fractional deviations, Δ 𝑓221/ 𝑓221 and Δ𝜏221/𝜏221, while varying F221. We still build
a fixed filter F220 using the IMR-estimated 𝑀 𝑓 and 𝜒 𝑓 , and use these IMR results
as the fiducial values. The resulting posterior distributions are shown in Fig. 3.18,
evaluated at different Δ𝑡0 times. The measurements of Δ 𝑓221/ 𝑓221 and Δ𝜏221/𝜏221

are summarized in Table 3.2, with 68% credibility.
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C h a p t e r 4

UNIVERSAL FEATURES OF GRAVITATIONAL WAVES
EMITTED BY SUPERKICK BINARY BLACK HOLE SYSTEMS

[1] Sizheng Ma et al. “Universal features of gravitational waves emitted by
superkick binary black hole systems.” Phys. Rev. D 104.8 (2021), p. 084003.
doi: 10.1103/PhysRevD.104.084003. arXiv: 2107.04890 [gr-qc].

4.1 Introduction
The recently detected gravitational wave (GW) signal, GW190521, is consistent
with the merger of two black holes (BHs) with masses of 85𝑀⊙ and 66𝑀⊙ [1,
2]. The detection of this event, together with its candidate optical counterpart
ZTF19abanrhr [3], indicates the potential existence of BHs in the mass gap predicted
by (pulsational) pair-instability supernova theory [2, 4, 5]. A few studies also suggest
that this system could admit a extremely eccentric [2, 6], hyperbolic [7], or a head-on
[2, 8] merger interpretation, placing possible constraints on the binary’s formation
channel [6, 7, 9]. For such an event, most of the GW detected by the Advanced LIGO
[10], VIRGO [11] and KAGRA [12, 13] network is dominated by the merger and
ringdown portions. This demonstrates the importance of understanding ringdowns
for detecting more GW190521-like cases in the near future [14].

The ringdown signal can be treated as a superposition of damped sinusoids, cor-
responding to the quasi-normal modes (QNMs) of the final BH [15]. Due to the
no-hair theorem [16], the QNM frequencies and damping time for a spinning BH
in general relativity (GR) are fully determined by its mass and angular momentum.
Therefore, measuring a QNM from a GW event can allow us to determine the prop-
erties of the final BH. Alternatively, if multiple modes are observed at the same
time, we can use them to test the no-hair theorem and general relativity [17–36],
and also constrain modified gravity [24, 25, 37–39].

In addition to measuring QNM frequencies, extensive studies have also been car-
ried out to explore the relationship between progenitor’s parameters and addi-
tional ringdown signatures. For instance, the spin (magnitude and direction) and
mass of the remnant BH were fitted to progenitor’s spins (χ1,2) and mass ratio
(𝑞 = 𝑚heavy/𝑚light > 1) [40–55], as well as the peak amplitude of GW strain [56],
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using numerical relativity (NR) [29], the effective-one-body (EOB) approach [57],
and also a hybrid way that involves multi-timescale post-Newtonian integrations
and numerical-relativity surrogate models [58]. The gravitational wave frequency
at peak amplitude [45, 59] and the peak GW luminosity [42, 45, 60] were both found
to have a clean dependence on the progenitor’s parameters. The above facts clearly
imply that the initial conditions (e.g., at merger) for the progenitor are encoded in
the ringdown portion of GW, including QNM frequencies and amplitudes. There-
fore it’s not surprising that the ringdown can be used to learn about the component
properties.

Apart from conveying the importance of ringdown studies, the detection of the
candidate optical counterpart of GW190521 has also provided us with a new scheme
to measure the gravitational recoil [3]. General relativity predicts that a system is
kicked after merger due to the linear momentum carried away by GW [61–63].
By applying various methods, including NR, post-Newtonian (PN) theory [64–66],
EOB [67], and the close-limit approximation [68], several studies showed that the
kick velocity is a result of the asymmetry between different GW modes [69], or
alternatively, the beating between the mass and current quadrupole waves [70, 71],
caused by the unequal mass [72–76] and spins [75–83]. In particular, the superkick
(SK) [78, 80, 84–86] configurations lead to relatively large kick velocities. In this
work, we adopt two types of SK configurations: SKu and SKd, whose sketches are
shown in Fig. 4.1. Both systems have equal mass, spin magnitude, and tilt angles.
As for SKd, two individual spins are anti-parallel, whereas for SKu, only the spin
components in the orbital plane are opposite. SKu and SKd are fully characterized
by (𝜒init, 𝜙init, 𝜃init), where the subscript refers to a reference time in the inspiral
regime: 𝜒init is the magnitude of the dimensionless spin; 𝜃init is the polar angle of
one of the holes (relative to the orbital angular momentum ®𝐿); 𝜙init is the azimuthal
angle between the in-(orbital)plane spin and the separation vector pointing from the
lighter to the heavier BH.

During the evolution, the effect of frame-dragging from two anti-parallel in-plane
spins move the center of mass up and down in the inertial frame [87]. This process is
halted as the common horizon forms [88–90], and the kick is imparted. In addition,
the SKu system usually emits more energy and linear angular momentum than SKd
because of the orbital hang-up effect, which arises due to the need to radiate way
additional angular momentum before the binary can merge [84], and leads to a larger
kick. Recently simulations showed that the kick for the SKu system could be as
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large as 5000 km/s (if extrapolated to the maximal spin) [85, 86]. Such a large
kick will lead to important astrophysical consequences [91–94], as well as Doppler
shifts in GWs [95], which could be detected by current and future detectors [96, 97].
Numerous studies have been implemented to fit kick velocities to progenitor’s spins
and mass ratio [40–42, 45, 79, 80, 98]. In particular, the development of numerical
relativity surrogate model [46, 47, 99–102] has allowed a systematic study to explore
much larger parameter space [103].

Interestingly, GW190521 was found to be consistent with a large in-plane spin
configuration. Its kick posterior is much broader and is consistent with 0 − 3500
km/s [2]. Meanwhile, its potential optical counterpart was predicted to have a kick
velocity of ∼ 200 km/s [3]. In the future, it is still likely to detect GW events with
non-negligible gravitational recoils, and even SK-like binaries [104]. Accordingly,
in this chapter, we aim to explore the features of ringdown for SKd binaries carefully
and relate them to the phenomenon of gravitational recoil. Specifically, we shall
focus on the amplitudes of QNMs [105–107], as well as mass and current quadrupole
waves [70], and study how those features depend on the progenitor’s parameters.
Comparing to a generic BBH system, a SKd system has several advantages that
can ease the difficulty of analysis. (i) The parameter space for a SKd binary is 3D,
i.e., (𝜒init, 𝜙init, 𝜃init), instead of generally 7D. (ii) SKd configurations have a high
level of symmetry. Subsequently, the orbital angular momentum is non-precessing,
and the spin direction of the remnant BH is fixed during the merger. This allows
us to conveniently choose coordinates in which only the (2, 2) and (2,−2) modes
dominate. (iii) The mass and spin of the remnant BH are not impacted by varying
(𝜒init, 𝜙init, 𝜃init), nor are the QNM frequencies. Hence we can study the mode
excitation (complex) amplitudes exclusively while avoiding changes in the mode
frequencies.

In our study, we use waveforms generated by the Spectral Einstein Code (SpEC)
[108], and two NR surrogate models, also based on SpEC: NRSur7dq4, NR-
Sur7dq4Remnant [46, 47]. In particular, NRSur7dq4 is a waveform model valid for
mass ratio< 4 and dimensionless spin magnitudes< 0.8, while NRSur7dq4Remnant
is a model that predicts the mass, spin, and kick velocity of the remnant BH from
the parameter of individual merging BHs. Meanwhile, we have in total 35 NR
simulations where systems are either in the SKd (Table 4.1) or the SKu (Table 4.5)
configuration. The dimensionless spin of BH ranges from 0.4 to 0.95. Those runs
will be available in the Simulating eXtreme Spacetimes (SXS) Collaboration cat-
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alog [109, 110]. We have checked that our NR runs agree with the predictions of
NRSur7dq4, with mismatches ∼ 10−5 − 10−4. For each simulation, we evolve with
three numerical resolutions. Among those cases, the largest kick is ∼ 4050 km/s
(Table 4.5).

This chapter is organized as follows. In Sec. 4.2, we decompose ringdown into
QNMs (7 overtones) and explore the dependence of mode amplitudes on the pro-
genitor’s parameters. In Sec. 4.3, we study the phenomenon of radiative mass and
current quadrupole waves and relate them to kick velocity. Then in Sec. 4.4, we
apply the backward-one-body (BOB) model, conceived recently by McWilliams
[111], to SK binaries. Sec. 4.5 focuses on parameter estimation, where we use the
Fisher information matrix formalism to discuss the parameter correlations in the
ringdown signal. Finally, in Sec. 4.6 we summarize our results.

Throughout this chapter we use the geometric units with 𝐺 = 𝑐 = 1. We use 𝑀 to
refer to the initial total mass of the binary system. All GW waveforms are aligned
in the time domain such that 𝑡 = 0𝑀 corresponds to the time of the peak of the total
amplitude
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Figure 4.1: Sketches for a SKu (a) and a SKd (b) system. Two arrows (in different
colors) represent two individual spins. The letter “u” and “d” refer to the up- and
down-state for the red arrow. Both SKu and SKd systems have equal mass BHs
with the same dimensionless spin magnitude 𝜒init. For SKd, two individual spins
are anti-parallel, whereas for SKu, only the orbital-plane components are opposite.
SKd and SKu are fully characterized by three parameters: (𝜒init, 𝜃init, 𝜙init), where
𝜃init stands for the polar angle of one of the holes (relative to the orbital angular
momentum), and 𝜙init the azimuthal angle of the in-plane spin measured from the
line of two BHs. Three parameters are specified at a reference time in the inspiral
regime (labeled by the subscript ‘init’).
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Table 4.1: A summary of 12 of our NR simulations with SpEC. All systems are in the
SKd configuration, with the individual dimensionless spin 𝜒init = 0.4, 𝜃init = 𝜋/2,
and 𝜙init ∈ [−𝜋, 𝜋]. The reference (initial) orbital frequency is chosen to be 0.0175
(in the unit of total mass). The first and second columns are the name of runs used
in this chapter, while the third column corresponds to the name in the Simulating
eXtreme Spacetimes Collaboration catalog. The fourth column gives 𝜙init. The last
three columns correspond to the mass, kick velocity, and spin of the final BH. A
summary of SKu configurations is in Table 4.5.

Run label
𝜙init (rad) 𝑚 𝑓 /𝑀

𝑣𝑧
𝑓 𝜒 𝑓This chapter SXS:BBH (×10−3)

SKd4

‘01’ 2451 2.25 0.952 2.36 0.686
‘02’ 2452 -3.04 0.951 −4.73 0.684
‘03’ 2453 -1.70 0.951 1.71 0.685
‘04’ 2454 0.66 0.951 −4.45 0.683
‘05’ 2455 1.30 0.951 −1.68 0.685
‘06’ 2456 2.88 0.951 4.75 0.684
‘07’ 2457 -2.58 0.951 4.47 0.683
‘08’ 2458 -1.07 0.952 −2.11 0.686
‘09’ 2459 -2.93 0.951 4.94 0.683
‘10’ 2460 -1.78 0.951 1.24 0.686
‘11’ 2461 -1.36 0.952 −1.41 0.686
‘12’ 2462 0.21 0.951 −4.93 0.683

4.2 Multipole decomposition of the waveform and quasi-normal mode excita-
tions

In this section, we decompose the ringdown signal into QNMs and study how each
mode is excited.

4.2.1 Multipole decomposition of the waveform
In a spherical polar coordinate system, with an observer located at the (𝜄, 𝛽) direction,
following the widely used convention for defining the + and × polarizations of the
gravitational wave [112], one can define a complex strain

ℎ(𝑡, 𝜄, 𝛽) = ℎ+(𝑡, 𝜄, 𝛽) − 𝑖ℎ×(𝑡, 𝜄, 𝛽), (4.1)

and further decompose it into a sum over a set of spin-weighted spherical harmonics
𝑌−2 ℓ𝑚
(𝜄, 𝛽):

ℎ(𝑡, 𝜄, 𝛽) = ℎ+(𝑡, 𝜄, 𝛽) − 𝑖ℎ×(𝑡, 𝜄, 𝛽)

=

∞∑︁
ℓ=2

ℓ∑︁
𝑚=−ℓ

1
𝐷
ℎℓ𝑚 (𝑡) 𝑌−2 ℓ𝑚 (𝜄, 𝛽), (4.2)
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where 𝐷 is the distance between the source and the observer. Meanwhile, it is
also natural to group ℎℓ,𝑚 and ℎℓ,−𝑚 into mass and current quadrupole waves [71],
writing

𝐼ℓ𝑚 =
1
√

2
[ℎℓ𝑚 + (−1)𝑚ℎ∗ℓ,−𝑚], (4.3a)

𝑆ℓ𝑚 =
𝑖
√

2
[ℎℓ𝑚 − (−1)𝑚ℎ∗ℓ,−𝑚] . (4.3b)

Here 𝐼ℓ𝑚 (𝑆ℓ𝑚) is the mass (current) quadrupole wave, proportional to the ℓ-th order
time derivative of the mass (current) ℓ-pole moment. For the SKd configuration,
ℎ2,±2 always dominate over other modes, hence we shall primarily focus on these
two modes.

4.2.2 QNM excitation in multipolar modes
As discussed in Ref. [22], the ringdown portion of ℎ2,±2 of a non-precessing system
can be modeled as a sum of QNMs, as early as 𝑡 = 0𝑀 , which is defined as the
moment of time at which

√︃∑
𝑙,𝑚 |ℎ𝑙𝑚 |2 peaks. The expansion reads:

ℎ22 =

𝑁∑︁
𝑛=0
A22𝑛𝑒

𝑖𝜓22𝑛𝑒−𝑖𝜔22𝑛𝑡 ,

ℎ2,−2 =

𝑁∑︁
𝑛=0
A2,−2𝑛𝑒

𝑖𝜓2,−2𝑛𝑒𝑖𝜔
∗
22𝑛𝑡 ,

𝑡 ≥ 0𝑀, (4.4)

whereA22𝑛𝑒
𝑖𝜓22𝑛 andA2,−2𝑛𝑒

𝑖𝜓2,−2𝑛 are the complex amplitudes of the 𝑛-th overtone,
while 𝜔22𝑛 and −𝜔∗22𝑛 are the mode frequencies. Note that 𝜔22𝑛 and −𝜔∗22𝑛 have
opposite real parts and equal imaginary parts; both correspond to the prograde ℓ = 2
quasi-normal mode. In Eq. (4.4) we have adopted the approximation that the angular
wavefunction of the (2, 2) mode is given by the spin-weighted spherical harmonics
instead of the spin-weighted spheroidal harmonics—the spheroidal-spherical mixing
[113, 114] can be ignored because of the moderate spin of final BHs (∼ 0.68) studied
in this chapter. In this way, both the prograde, 𝜔22, and the retrograde, 𝜔2,−2, modes
share the same angular wavefunction. Meanwhile, the retrograde modes 𝜔2,−2𝑛 and
−𝜔∗2,−2𝑛 [see Eq.(3.6) of Ref. [107]], are negligible in our case.

Inserting Eqs. (4.4) to Eqs. (4.3) we have

𝐼22 =

𝑁∑︁
𝑛=0

𝒜
(𝐼)
𝑛 𝑒𝑖𝜑

(𝐼 )
𝑛 𝑒−𝑖𝜔22𝑛𝑡 ,

𝑆22 =

𝑁∑︁
𝑛=0

𝒜
(𝑆)
𝑛 𝑒𝑖𝜑

(𝑆)
𝑛 𝑒−𝑖𝜔22𝑛𝑡 ,

𝑡 ≥ 0𝑀, (4.5)
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Figure 4.2: QNM magnitudes versus 𝜙init for mass (𝒜 (𝐼)) and current (𝒜 (𝑆))
quadrupole waves. Data are from 12 of our NR simulations listed in Table 4.1.
All BBH systems are in the SKd configuration. Fig. 4.2 (a) corresponds to 𝒜

(𝐼) ,
where the left eight panels are the zoom-in plot for each overtone. The overtone
index 𝑛 is in descending order. Similarly, Fig. 4.2 (b) corresponds to 𝒜

(𝑆) . The
spectra peak at 𝑛 = 4 (because the n=4 amplitude is largest), and patterns are roughly
periodic with a period 2𝜋. Examining the zoomed in plots, it can be seen that ap-
proximately, the patterns are the same for all 𝑛 (up to a scaling factor).

with

𝒜
(𝐼)
𝑛 𝑒𝑖𝜑

(𝐼 )
𝑛 =

1
√

2
(A22𝑛𝑒

𝑖𝜓22𝑛 + A2,−2𝑛𝑒
−𝑖𝜓2,−2𝑛), (4.6a)

𝒜
(𝑆)
𝑛 𝑒𝑖𝜑

(𝑆)
𝑛 =

𝑖
√

2
(A22𝑛𝑒

𝑖𝜓22𝑛 − A2,−2𝑛𝑒
−𝑖𝜓2,−2𝑛). (4.6b)

To give an example, we fit the ringdown portion of SKd4 set of NR simulations (Table
4.1) with 7 overtones, following the procedure of Ref. [22]. We use unweighted
linear least squares to fit the mode amplitudes and use nonlinear least squares to
fit the final spin and mass. The mode frequency 𝜔22𝑛 is obtained from a Python
package qnm [115].

First focusing on 𝐼22 and 𝑆22, we plot 𝒜 (𝐼)𝑛 (mass) and 𝒜
(𝑆)
𝑛 (current) as functions

of 𝜙init in Fig. 4.2. We can see 𝒜
(𝐼)
𝑛 > 𝒜

(𝑆)
𝑛 for any 𝑛, and both of them peak at

𝑛 = 4. Patterns have a rough period 𝜋. An interesting feature is that the dependence
on 𝜙init is similar for all overtones (up to a scaling factor). The analogous universal
feature for EMRI was explored by Lim et al. [107]. After a proper normalization
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Figure 4.3: The dependence of 𝜑(𝐼)𝑛 , 𝜑(𝑆)𝑛 , as well as their difference, on 𝜙init. It turns
out that 𝜑(𝐼)𝑛 is roughly insensitive to 𝜙init, whereas 𝜑(𝑆)𝑛 is approximately linear in
𝜙init.

[see their Eq. (5.1)], the angular dependence of mode amplitudes is insensitive to
the mode indices [see their Fig. 12]. Similarly, for the phase of mode amplitude 𝜑(𝐼)𝑛
and 𝜑(𝑆)𝑛 , as shown in Fig. 4.3, their dependence on 𝜙init is also insensitive to the
overtone index 𝑛.

The features of 𝒜𝑛 and 𝜑𝑛 allow us to conclude that the dependence of QNM
amplitudes for 𝐼22 and 𝑆22 on 𝜙init can be factored out from the temporal sector, i.e.,

𝐼22(𝜙init, 𝑡) ∼ 𝐼𝑚22(𝜙init)𝑇𝐼 (𝑡), (4.7a)

𝑆22(𝜙init, 𝑡) ∼ 𝑆𝑚22(𝜙init)𝑒−𝑖𝜙init𝑇𝑆 (𝑡), (4.7b)

where 𝑇𝐼 (𝑡) and 𝑇𝑆 (𝑡) are two complex functions, corresponding to the temporal
evolution of the mass and current quadrupole waves, respectively. Since 𝑇𝐼 (𝑡) and
𝑇𝑆 (𝑡) do not depend on 𝜙init, they represent the common features of all SKd binaries.
We will explore the features of 𝑇𝐼 (𝑡) and 𝑇𝑆 (𝑡) in Sec. 4.4.

On the other hand, the progenitor configuration, at least 𝜙init, is encoded mainly in
two functions 𝐼𝑚22(𝜙init) and 𝑆𝑚22(𝜙init). Figure 4.3 exhibits that to the leading order,
𝜑
(𝐼)
𝑛 is insensitive to 𝜙init, while 𝜑(𝑆)𝑛 ∝ −𝜙init. As a result, 𝐼𝑚22(𝜙init) and 𝑆𝑚22(𝜙init)

can be regarded approximately as two real functions. Thus the phase difference
between 𝐼22 and 𝑆22, ΔΦIS, is roughly linear in 𝜙init. We will explore Eq. (4.7) more
carefully later in Sec. 4.3, as well as extending to the full (𝜒i𝑛𝑖𝑡 , 𝜃init, 𝜙init) parameter
space.
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Figure 4.4: An illustration for the EMRI-parameterization (𝐼, 𝜃fin) and the SKd-
parameterization (𝜃init, 𝜙init). The origin is chosen to be one of the BHs. Following
the discussion of Hughes et al. [105–107], 𝐼 is defined to be the angle between L
(the red arrow) and S (the purple arrow), while 𝜃fin is the angle between the S
(the purple arrow) and the orbital separation vector (the blue dashed line). For the
SKd-parameterization, 𝜙init is the angle between the in-plane spin (the red dashed
horizontal line) and the orbital separation vector (the blue dashed line), whereas 𝜃init
is the angle between L (the red arrow) and S (the purple arrow). The connection
between two parameterizations is given by Eq. (4.8).

4.2.3 Full (𝜃init, 𝜙init) dependence and correspondence with the extreme mass-
ratio case

In the case of EMRI, Hughes et al. [105–107] investigated the ringdown spectra of
ℎ2,±2 modes rather than 𝐼22 and 𝑆22. In order to make a connection to their studies,
we now turn our attention to ℎ2,±2.

4.2.3.1 Mapping between SKd and EMRI system parameters

Hughes et al. [105–107] parameterized EMRIs with two geometric quantities 𝜃fin

and 𝐼 [see Fig. 1 of Ref. [105]], where 𝐼 ∈ [0, 𝜋] is the angle between the spin of
the primary BH and the orbital angular momentum, while 𝜃fin is the angle between
the spin of primary BH and the orbital separation vector (at the moment of plunge),
satisfying | cos 𝜃fin | ≤ sin 𝐼. For SKd systems, we can find the counterparts of
(𝐼, 𝜃fin) if we treat one of the BHs as the “primary” object. Below we still use the
same notation, namely (𝐼, 𝜃fin), to refer to these two angles. As shown in Fig. 4.4,
we pick the primary BH to be the center of the coordinates. 𝐼 is still defined to be
the angle between L (the red arrow) and S (the purple arrow), while 𝜃fin remains to
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Figure 4.5: The fundamental mode amplitude and phase versus initial spin configu-
ration (𝐼, cos 𝜃fin). Those two independent variables are chosen since they coincide
with the variables used in Ref. [105] [see Eq. (4.8)]. Data are obtained from NR-
Sur7dq4. All BBH systems are in the SKd configuration with 𝜒init = 0.4. Points are
drawn with two colors, where blue stands for sin 𝜙init < 0 while red for sin 𝜙init > 0.
The second and fourth rows are results of ℎ2,2 for some 𝐼−slices, while the third and
fifth rows correspond to ℎ2,−2.

be the angle between the S (the purple arrow) and the orbital separation vector (the
blue dashed line). The relations between (𝐼, 𝜃fin) and our parameterization (namely
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Figure 4.6: The overtone mode amplitudes A2,+2𝑛 (𝑛 = 1 − 6) versus cos 𝜃fin, with
the same convention as Fig. 4.5. The data are from our SKd4 runs listed in Table 4.1,
which corresponds to 𝐼 = 𝜋/2.

𝜃init and 𝜙init, see Fig. 4.1) read

𝐼 = 𝜃init, cos 𝜃fin = sin 𝜃init cos 𝜙init. (4.8)

We want to emphasize there are two major differences in the parameterization of
EMRIs and SKds. First, the parameters for EMRIs are defined at the moment of
plunge, whereas in our case, it becomes difficult to find well-defined quantities at
the merger, thus we use the initial geometry instead (at a reference time during the
inspiral stage). Second, for EMRIs, 𝜋 > 𝐼 > 𝜋/2 represents the retrograde motion
of the small body, and hence the retrograde QNMs dominate in the ringdown signal.
By contrast, only the prograde QNMs are excited for SKd systems [see Eq. (4.4)].

With the purpose of exploring the full parameter space of 𝐼 and 𝜃fin, we now
use the surrogate model NRSur7dq4. Comparing against NR ringdowns, even
though NRSur7dq4 has mismatches of order ∼ 3 × 10−4, we find that it is not
accurate enough to reproduce the correct final mass and spin, in agreement with
Ref. [116]. Mismatches of order 10−6 in the ringdown may be necessary to achieve
this. Therefore we fix the values of the final mass and spin to the NR values (coming
from NRSur7dq4Remnant) while fitting the mode amplitudes to NRSur7dq4. In
addition, we consider only the fundamental mode (𝑛 = 0).

The results for A220 and 𝜓220 are shown in the first row of Fig. 4.5. Similar to
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Refs. [105, 107], we use two colors to stand for the sign of ¤𝜃fin, which was used in
the EMRI case to represent the moving direction at the plunge ( ¤𝜃fin > 0 means that
the small particle moves toward the south pole of the Kerr BH, and vice versa). In
our case, ¤𝜃fin is determined by the sign of sin 𝜙init. Comparing to Fig. 3 of Ref. [105],
we can see the dependence is similar, although the absolute value of A220 differs.

In the second and third rows of Fig. 4.5, we present how mode amplitudes depend on
cos 𝜃fin for several 𝐼 slices [Eq. (4.8)]. Those are direct analogs Fig. 4 of Ref. [107].
It is interesting to note that A2,+20 and A2,−20 are symmetric about the axis of
cos 𝜃fin = 0, so are the patterns for 𝜓2,+20 and −𝜓2,−20. The other intriguing feature
is that the patterns for 𝐼 and 𝜋 − 𝐼 are similar.

For overtones A2,+2𝑛 (𝑛 > 0), NRSur7dq4 is not accurate enough to provide any
prediction, so we use our SKd4 runs instead (see Table 4.1), which corresponds to
the 𝐼 = 𝜋/2 slice. We translate our previous results in Fig. 4.2 and 4.3 to the cases
of ℎ2,±2 based on Eq. (4.6). Results are shown in Fig. 4.6. We can see the patterns
for high-𝑛 are more distorted.

4.2.3.2 Understanding the QNM excitation of ℎ2,±2 in terms of (𝐼22, 𝑆22)

It turns out that the features in the amplitudes A2,±2,0 that we discussed previously
can be understood based on what we have learned about (𝐼22, 𝑆22). In order to
translate our previous results about (𝐼22, 𝑆22) to ℎ2,±2, we use the inverse of Eq. (4.6)

A2,±2𝑛𝑒
±𝑖𝜓2,±2𝑛 =

1
√

2

[
𝒜
(𝐼)
𝑛 𝑒𝑖𝜑

(𝐼 )
𝑛 ∓ 𝑖𝒜 (𝑆)𝑛 𝑒𝑖𝜑

(𝑆)
𝑛

]
, (4.9)

and hence

A2
2,±2𝑛 =

1
2

[
𝒜
(𝐼)2
𝑛 +𝒜 (𝑆)2𝑛 ∓ 2𝒜 (𝐼)𝑛 𝒜

(𝑆)
𝑛 sin(𝜑(𝐼)𝑛 − 𝜑(𝑆)𝑛 )

]
. (4.10)

As we shall explore later in Secs. 4.3.4 and 4.3.5 [see Eqs. (4.33) and (4.38)], we
have two dependencies

𝒜
(𝐼)
𝑛 (𝐼, 𝜃fin) ∼ const. + O(𝑣4), 𝒜

(𝑆)
𝑛 (𝐼, 𝜃fin) ∼ 𝑣2 sin 𝐼 + O(𝑣4) (4.11)

where we have omitted specific numerical coefficients that are independent of 𝐼
and 𝜃fin, and 𝑣2 is a parameter to keep track of the order of approximation (In fact,
as we shall show in Sec. 4.3.4, 𝑣 is the orbital velocity that is widely used in the
post-Newtonian theory). Furthermore, we have

𝜑
(𝐼)
𝑛 − 𝜑(𝑆)𝑛 ∼ 𝜙init + const. (4.12)



151

Using the above simple dependences of [𝒜 (𝐼)𝑛 ,𝒜
(𝑆)
𝑛 , 𝜑

(𝐼)
𝑛 − 𝜑(𝑆)𝑛 ] on 𝐼 and 𝜙init, we

obtain:

A2,±2𝑛 ∼ const. ± 𝑣2 sin 𝐼 sin(𝜙init + const.) + O(𝑣4). (4.13)

As a result, for each 𝐼-slice (i.e., 𝜃init-slice), the A2,±20 − cos 𝜃fin pattern is an
approximate Lissajous-like curve (with identical frequencies), distorted by the higher
order term containing 𝑣4. The variation depends on 𝐼, which vanishes when 𝐼 = 0, 𝜋,
and is maximal when 𝐼 = 𝜋/2. Physically speaking, A2,±2𝑛 depends sensitively on
𝜙init when the spins of two BHs lie entirely in the orbital plane [see Fig. 4.1], but
does not change with 𝜙init as the spins are (anti-)parallel with the orbital angular
momentum.

In addition, Eq. (4.13) implies thatA220 andA2,−20 are related by a transformation
𝜙init → 𝜙init + 𝜋, i.e., cos 𝜃fin → − cos 𝜃fin [see Eq. (4.8)]. This transformation
represents the interchange of the in-plane spins for two BHs [see Fig. 4.1]. In fact,
as we shall study in Sec. 4.3.2, this conclusion can be generalized to the entire
evolution regime (not only the ringdown phase). The symmetry of the SKd system
results in [see Eq. (4.26)]

ℎℓ𝑚 (𝜋 − 𝐼, 𝜙init) = (−1)𝑚ℎℓ𝑚 (𝐼, 𝜙init),
ℎℓ𝑚 (𝐼, 𝜙init + 𝜋) = (−1)ℓℎ∗ℓ,−𝑚 (𝐼, 𝜙init),

i.e., A2,±2𝑛 remains unchanged when 𝐼 → 𝜋 − 𝐼 (two BHs interchange their 𝑧-
component spins), and A2,+2𝑛 → A2,−2𝑛 and 𝜓2,+20 → −𝜓2,−20 when 𝜙init →
𝜙init + 𝜋 (two BHs interchange their in-plane spins)1. In Fig. 4.5, we can clearly
see the patterns for A220 and A2,−20, as well as the patterns for 𝜓2,+20 and −𝜓2,−20,
are symmetric about the cos 𝜃fin = 0 axis. Meanwhile, the patterns for A2±20 are
symmetric about the 𝐼 = 𝜋/2 axis.

4.3 The feature of mass and current quadrupole waves
In the last section, we explored how QNMs are excited with different initial parame-
ters (𝜃init, 𝜙init). We now aim to study the features of ringdown more quantitatively.
In particular, we focus on the mass (𝐼22) and current (𝑆22) quadrupole waves of
SKd systems, and relate their features to (𝜒init, 𝜃init, 𝜙init). Moreover, since kick
velocity is one of the important quantities that reflects SKd systems' properties, we
also include it in our study.

1Equivalently, cos 𝜃fin → − cos 𝜃fin.
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4.3.1 A brief review
This subsection briefly reviews some facts about gravitational recoil. In particular,
we relate the kick velocity to the radiative mass and current quadrupole waves.
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Figure 4.7: The integrand of Eq. (4.17) for the SKd4–‘06’ system. The majority
kick velocity is accumulated around 𝑡 ∼ 0𝑀 , and the final kick is 4.75 × 10−3.

It has been shown that for a SKd system, the kick magnitude can be estimated with
a simple formula [78–80]

𝑣 𝑓 ∼ 𝜒init sin(𝜙init − 𝜙(0)init) sin 𝜃init, (4.14)

where 𝜙(0)init is a constant. Eq. (4.14) is based on the computation of linear momentum
carried away by GW [117]

¤𝑃𝑧 = lim
𝐷→∞

1
24𝜋
( ¤ℎ22 ¤ℎ∗22 − ¤ℎ2,−2 ¤ℎ∗2,−2), (4.15)

where ∗ stands for complex conjugate, 𝐷 is the distance between the source and the
observer, and the 𝑧-axis is in the direction of orbital angular momentum. Here we
have ignored the effects of other modes since they are negligible.

In terms of 𝐼22 and 𝑆22 [Eq. (4.3)], Eq. (4.15) can also be written as

¤𝑃𝑧 = −
1

12𝜋
Im ¤𝐼22 ¤𝑆∗22, (4.16)

and the final kick velocity is given by

𝑚 𝑓 𝑣 𝑓 =
1

12𝜋
Im

∫
¤𝐼22 ¤𝑆∗22𝑑𝑡 =

1
12𝜋

Im
∫
| ¤𝐼22 | | ¤𝑆22 |𝑒𝑖Φ ¤𝐼 ¤𝑆𝑑𝑡, (4.17)
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Figure 4.8: The time evolution of 𝐼22 (upper row) and 𝑆22 (bottom row) for the
SKd4–‘03’ system, where 𝑡 = 0𝑀 stands for the peak of strain amplitude. The mass
(𝐼22) and current (𝑆22) quadrupole waves are compared to PN formulas [Eq. (4.18)]
during the inspiral stage, and to QNMs (7 overtones) in the ringdown regime.

withΦ ¤𝐼 ¤𝑆 the phase difference between ¤𝐼22 and ¤𝑆22. Note that the change of sign from
Eq. (4.16) to (4.17) is a result of linear momentum conservation. In Fig. 4.7, we
show the time evolution of the above-mentioned integrand for SKd4–‘06’ (cf. Table
4.1). We can see that most of the kick velocity is accumulated around 𝑡 ∼ 0𝑀 .

During the inspiral stage, it was shown that 𝐼22 and 𝑆22 are related to the source
quadrupole moments2. At the leading order, from Refs. [70, 118], we write

𝐼22(𝑡) = −
𝑀

2

√︂
2𝜋
5
𝑑2

𝑑𝑡2
𝑟 (𝑡)2𝑒−2𝑖𝜙(𝑡) , (4.18a)

𝑆22(𝑡) =
√︂

2𝜋
5
𝜒 sin 𝜃 (𝑡) 𝑑

2

𝑑𝑡2
𝑟 (𝑡)𝑒−𝑖𝜙(𝑡)−𝑖𝜙pre (𝑡) , (4.18b)

where 𝑀 is the total mass of the BBH system; 𝜒 is the dimensionless spin of an
individual BH; 𝜙(𝑡) and 𝑟 (𝑡) are the orbital phase and separation, respectively; 𝜃 (𝑡)
is the polar angle of the spin; and 𝜙p𝑟𝑒 (𝑡) is the precession angle (the azimuthal

2Hereafter we shall not distinguish the source quadrupole moment and the (radiative) quadrupole
wave since it will not cause any confusion.
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Figure 4.9: Parity inversion of a SKd BBH system. We use arrows to represent the
spin direction of BHs, and wavy lines to stand for the GW propagating direction. The
complex strain of a SKd system is totally determined by two extrinsic parameters
(𝜄, 𝛽), and three intrinsic parameters (𝜒init, 𝜃init, 𝜙init). Here the intrinsic parameters
are the spin of the left BH. The properties of the right BH are determined based
on the SKd condition. Figs. 4.9 (a) and (b) are related by a parity inversion: two
BHs exchange their locations while having their own spins fixed. As a result, the
GW propagation direction and both spins change sign, i.e., (𝜄, 𝛽) ←→ (𝜋 − 𝜄, 𝜋 + 𝛽)
and (𝜃init, 𝜙init) ←→ (𝜋 − 𝜃init, 𝜋 + 𝜙init). Figs. 4.9 (b) and (c) are related by a
𝜋-rotation about the orbital angular momentum. Thus we have (𝜄, 𝛽) ←→ (𝜄, 𝜋 + 𝛽)
and (𝜃init, 𝜙init) ←→ (𝜋 − 𝜃init, 𝜙init).

angle of the in-plane spin component). Note that at the initial time 𝑡init

𝜃init B 𝜃 (𝑡init), 𝜙init B 𝜙(𝑡init).

For instance, we choose SKd4–‘03’ (see Table 4.1) and compare its radiative multi-
polar waves 𝐼22 and 𝑆22 to PN formulas in Eq. (4.18). We read off the values of 𝑟 (𝑡),
𝜃 (𝑡), and 𝜙(𝑡) directly from the outputs of NR simulation. The results are shown in
Fig. 4.8. For comparison, we also fit the ringdown signal with QNMs (7 overtones),
starting from 𝑡 = 0𝑀 . We can see the Newtonian formulas can accurately model
the phase evolution up to 𝑡 ∼ −250𝑀 . Meanwhile, both 𝐼22 and 𝑆22 are described
by 7 overtones accurately from 𝑡 = 0𝑀 .

In the rest of this section, we shall discuss how 𝐼22 and 𝑆22 depend on (𝜒init, 𝜃init, 𝜙init),
and apply our understanding to the gravitational recoil.

4.3.2 Symmetry properties of 𝐼22 and 𝑆22

Before exploring the detailed relations between (𝐼22, 𝑆22) and (𝜒init, 𝜃init, 𝜙init), we
first take advantage of the symmetry of SKd systems, and study its implication on
(𝐼22, 𝑆22). As shown in Fig. 4.9, there are three SKd binaries, where (a) and (b) are
related by a parity transformation, i.e., two BHs interchange their locations while
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having their spin directions fixed, recalling that spin is an axial vector, which is
not changed by the parity transformation. On the other hand, we rotate the whole
system in (b) about the orbital angular momentum by 𝜋, and obtain (c). We use wavy
lines to stand for the GW propagating direction, and (𝜄, 𝛽) are the coordinates of the
observer in (b), as defined in Eq. (4.2). The coordinates of observers in (a) and (c)
are transformed accordingly. As discussed in Eq. (4.2), ℎ(𝑡, 𝜄, 𝛽) can be decomposed
into the extrinsic part 𝑌−2 ℓ𝑚

(𝜄, 𝛽) and the intrinsic part ℎℓ𝑚 (𝜃init, 𝜙init) 3. Here we
omit 𝜒init in the argument of ℎℓ𝑚 since it has no impact on the transformation in
question.

Fig. 4.9 (a) and (b) are related by a parity transformation, hence we have (see Sec. 4.9
for more details)

ℎ(𝑎) = ℎ(𝑏)∗, (4.19)

i.e.,

ℎℓ𝑚 (𝜃init, 𝜙init) 𝑌−2 ℓ𝑚 (𝜄, 𝛽)
= ℎ∗ℓ𝑚 (𝜋 − 𝜃init, 𝜙init + 𝜋) 𝑌−2 ℓ𝑚

∗(𝜋 − 𝜄, 𝜋 + 𝛽). (4.20)

Using the fact that

𝑌−2 ℓ𝑚
∗(𝜋 − 𝜄, 𝜋 + 𝛽) = (−1)ℓ+𝑚 𝑌−2 ℓ,−𝑚 (𝜄, 𝛽), (4.21)

we obtain

ℎℓ𝑚 (𝜃init, 𝜙init) = (−1)ℓ+𝑚ℎ∗ℓ,−𝑚 (𝜋 − 𝜃init, 𝜙init + 𝜋). (4.22)

On the other hand, Fig. 4.9 (b) and (c) are related by a global rotation. Therefore,
the observable ℎ(𝑡, 𝜄, 𝛽) should not be affected

ℎ(𝑏) = ℎ(𝑐) , (4.23)

i.e.,

ℎℓ𝑚 (𝜃init, 𝜙init) 𝑌−2 ℓ𝑚 (𝜄, 𝛽)
= ℎℓ𝑚 (𝜋 − 𝜃init, 𝜙init) 𝑌−2 ℓ𝑚 (𝜄, 𝜋 + 𝛽). (4.24)

Recalling that

𝑌−2 ℓ𝑚 (𝜄, 𝜋 + 𝛽) = (−1)𝑚 𝑌−2 ℓ𝑚 (𝜄, 𝛽), (4.25)
3We use (𝜃init, 𝜙init) to stand for the spin of BH on the left. The other spin is determined uniquely

by the SKd condition.
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Figure 4.10: The time evolution of the real part of the normalized 𝑆22 (upper
row), the real part of the normalized 𝐼22 (middle row), as well as ΔΦIS − 𝜙init
(bottom row), using the SKd BBH configuration from NRSur7dq4. The imaginary
part is similar. We sample in total of 180 cases with different 𝜃init ∈ [0, 𝜋] (left
column), 𝜒init ∈ [0, 0.8] (middle column), and 𝜙init ∈ [0, 2𝜋] (right column), and
plot them on top of each other. ‘Max Residual’ is defined to be the maximum
difference of all cases at each time step. The normalized 𝐼22 and 𝑆22 are insensitive
to (𝜒init, 𝜃init, 𝜙i𝑛𝑖𝑡), to the level of ∼ 0.1% − 30%.

we then have

ℎℓ𝑚 (𝜋 − 𝜃init, 𝜙init) = (−1)𝑚ℎℓ𝑚 (𝜃init, 𝜙init), (4.26a)

ℎℓ𝑚 (𝜃init, 𝜙init + 𝜋) = (−1)ℓℎ∗ℓ,−𝑚 (𝜃init, 𝜙init), (4.26b)

where the first line is the result of Eqs. (4.24) and (4.25), and the second line comes
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from the combination of Eq. (4.22) and (4.26a). Eqs. (4.26) give the transformation
of ℎℓ𝑚 under 𝜃init → 𝜋 − 𝜃init (two BHs interchange their 𝑧-component spins) and
𝜙init → 𝜙init + 𝜋 (two BHs interchange their in-plane spins). As we discussed in
Sec. 4.2.3, Eq. (4.26) directly leads to several features revealed in Fig. 4.5: the
patterns for A2±20, as well as 𝜓2,+20 and −𝜓2,−20, have a reflective symmetry about
the cos 𝜃fin = 0 axis; and the patterns for A2±20 are symmetric about the 𝐼 = 𝜋/2
axis.

We then apply Eqs. (4.26) to the case of 𝐼ℓ𝑚 and 𝑆ℓ𝑚, [see Eqs. (4.3)]

𝐼ℓ𝑚 (𝜋 − 𝜃init, 𝜙init) = (−1)𝑚 𝐼ℓ𝑚 (𝜃init, 𝜙init), (4.27a)

𝑆ℓ𝑚 (𝜋 − 𝜃init, 𝜙init) = (−1)𝑚𝑆ℓ𝑚 (𝜃init, 𝜙init), (4.27b)

𝐼ℓ𝑚 (𝜃init, 𝜙init + 𝜋) = (−1)ℓ+𝑚 𝐼ℓ𝑚 (𝜃init, 𝜙init), (4.27c)

𝑆ℓ𝑚 (𝜃init, 𝜙init + 𝜋) = (−1)ℓ+𝑚+1𝑆ℓ𝑚 (𝜃init, 𝜙init), (4.27d)

One can find the counterpart of Eqs. (4.27) for EMRIs in Eq. (4.6) of Ref. [107].
Those relations imply that the dependence of 𝐼22 and 𝑆22 on 𝜃init is symmetric about
𝜃init = 𝜋/2 axis, whereas the dependence of |𝐼22 | and |𝑆22 | on 𝜙init have a period 𝜋4.
We shall see these features shortly from numercal results.

4.3.3 Time dependence of 𝐼22 and 𝑆22

After the study of (𝐼22, 𝑆22)−(𝜒init, 𝜃init, 𝜙init) dependence enforced by the symmetry,
we are in a position to carry out more detailed analyses. Based on the discussion
around Eq. (4.7), for the post-merger evolution of 𝐼22 and 𝑆22, their 𝜙init dependence
can be factored out. In particular, the spin sector of 𝐼22 is described by a function
𝐼𝑚22(𝜙init), and that of 𝑆22 is given by 𝑆𝑚22(𝜙init)𝑒−𝑖𝜙init . In fact, those features are also
consistent with PN predictions, as shown in Eqs. (4.18): To the leading PN order,
𝐼22 is independent of (𝜒init, 𝜃init, 𝜙init), whereas 𝑆22 ∼ 𝜒init sin 𝜃init𝑒

−𝑖𝜙init . In light of
the facts, it is reasonable to conjecture that the separability between the spin sector
(including 𝜒init, 𝜃init, 𝜙init) and the temporal sector is preserved throughout the entire
process, i.e.,

𝐼22(𝑡, 𝜒init, 𝜃init, 𝜙init) = 𝐼𝑚22(𝜒init, 𝜃init, 𝜙init)𝑇𝐼 (𝑡), (4.28a)

𝑆22(𝑡, 𝜒init, 𝜃init, 𝜙init) = 𝑆𝑚22(𝜒init, 𝜃init, 𝜙init)𝑒−𝑖𝜙init𝑇𝑆 (𝑡), (4.28b)

where 𝑇𝐼 (𝑡) and 𝑇𝑆 (𝑡) are two complex functions of time, which are normalized
such that they each is equal to 1 at the moment when its magnitude is at maximum.

4Here we use the absolute value for future convenience.



158

As a result, 𝐼𝑚22 and 𝑆𝑚22 are in fact the peak values of 𝐼22 and 𝑆22, respectively, i.e.,

𝐼𝑚22(𝜒init, 𝜃init, 𝜙init) = max
𝑡
|𝐼22(𝑡, 𝜒init, 𝜃init, 𝜙init) |, (4.29a)

𝑆𝑚22(𝜒init, 𝜃init, 𝜙init) = max
𝑡
|𝑆22(𝑡, 𝜒init, 𝜃init, 𝜙init) |. (4.29b)

We want to emphasize that Eq. (4.29) is an approximation based on the observation
we made in Fig. 4.3, namely to the leading order 𝜑(𝐼)𝑛 is insensitive to 𝜙init, while
𝜑
(𝑆)
𝑛 ∝ −𝜙init. This fact allows us to treat 𝐼𝑚22 and 𝑆𝑚22 as two real functions [see the

context below Eq. (4.7)]. The higher order corrections will lead to additional phase
factors for both 𝐼𝑚22 and 𝑆𝑚22. This is beyond the scope of this work.

To test the accuracy of Eqs. (4.28) and (4.29), we use NRSur7dq4 to obtain 𝐼22

and 𝑆22 with different initial spin configurations. They are normalized by 𝐼𝑚22 and
𝑆𝑚22𝑒

−𝑖𝜙init , respectively. The results are shown in the first two rows of Fig. 4.10. To
avoid redundancy, we present only the real part since the imaginary part is similar.
As we can see, the normalized 𝐼22 with different (𝜒init, 𝜃init, 𝜙init) evolves in a similar
way, so does the normalized 𝑆22. The residuals imply that Eqs. (4.28) are accurate
to ∼ 0.1% − 30% throughout the entire evolution. We remark that the accuracy is
limited by the approximation adopted in Eq. (4.29), where 𝐼𝑚22 and 𝑆𝑚22 are treated
as two real functions and their phases (higher order effects) are not included. If we
omit these additional phase terms that are functions of (𝜒init, 𝜃init, 𝜙init), there will
be a non-negligible increase in the residual. In fact, if we consider only the absolute
value of the normalized 𝐼22 and 𝑆22, the residual can be decreased by a factor of
1.6 ∼ 100.

Nevertheless, the progenitor’s information is primarily described by the peak value
of mass and current quadrupole waves, 𝐼𝑚22 and 𝑆𝑚22. On the other hand, the temporal
evolution,𝑇𝐼 (𝑡) and𝑇𝑆 (𝑡), encode the common feature of SKd systems. In particular,
as we discussed in Sec. 4.3.1, the phase difference between 𝑇𝐼 (𝑡) and 𝑇𝑆 (𝑡)𝑒−𝑖𝜙init ,
denoted by ΔΦIS

ΔΦIS ≡ arg(𝑇𝐼) − arg(𝑇𝑆𝑒−𝑖𝜙init) ≡ arg(𝐼22) − arg(𝑆22), (4.30)

is closely related to gravitational recoil.

We have introduced three quantities, 𝐼𝑚22, 𝑆𝑚22 and ΔΦIS, which are important char-
acteristics of SKd systems. In the rest of this section, we aim to study 𝐼𝑚22, 𝑆𝑚22 and
ΔΦIS more carefully and more quantitatively. In particular, we will show that 𝐼𝑚22
and 𝑆𝑚22 are subject to the periodic condition in both 𝜃init− and 𝜙init− directions, as
enforced by the symmetry in Eqs. (4.27).
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Figure 4.11: The peak value of mass quadrupole wave 𝐼𝑚22 as a function of 𝜙init.
We use SKd4 systems listed in Table 4.1. The black curve is from NRSur7dq4,
whereas points are from NR simulations. Colors (labeled by Lev) correspond to
numerical resolutions, where “Lev 1” stands for the lowest resolution. Predictions
of NRSur7dq4 are consistent with NR results: 𝐼𝑚22 oscillates with 𝜙init on the level
of ∼ 0.36%, around a base value ∼ 0.557.

4.3.4 The peak of mass quadrupole wave 𝐼𝑚22

We saw that 𝐼𝑚22 is an important characteristic quantity for SKd systems. In fact, it
was shown that the remnant BH spin is already encoded in the peak amplitude of the
gravitational wave strain [56]. Therefore, it is instructive to study how 𝐼𝑚22 depends
on (𝜒init, 𝜃init, 𝜙init).

We first look at our SKd4 NR runs listed in Table 4.1. Fig. 4.11 shows 𝐼𝑚22 as
a function of 𝜙init. We can see that 𝐼𝑚22 does depend weakly on 𝜙init for all three
numerical resolutions, which verifies that the dependence is not a numerical artifact.
For comparison purposes, we also show the prediction of NRSur7dq4 with the same
BBH system but varying 𝜙ini. Two results are close. With different 𝜙init, 𝐼𝑚22 varies
on the level of ∼ 0.36%, around a base value ∼ 0.557. As discussed earlier,
𝐼𝑚22 − 𝜙init relation is expected to have a period of 𝜋 [Eq. (4.27)]. However, the
black curve is slightly asymmetric. We attribute this to the numerical error of
NRSur7dq4. Furthermore, the change of 𝐼𝑚22 is much smaller than the base value,
which is qualitatively consistent with PN predictions, because the variation caused
by spin is 2PN [118] smaller than the leading contribution from the orbital mass
quadrupole moment [Eq. (4.18a)].

To explore a larger parameter space, we use NRSur7dq4 and plot 𝐼𝑚22 as a function of
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Figure 4.12: The peak value of mass quadrupole wave 𝐼𝑚22 as a function of (𝜃init, 𝜙init),
with 𝜒init = 0.8 (SKd configuration). Results are from NRSur7dq4. The pattern is
symmetric about 𝜃init = 𝜋/2, and has a period 𝜋 in the 𝜙init-direction, consistent with
Eq. (4.27). The contours with dashed lines are the prediction of the PN-inspired
counterpart in Eq. (4.33).

(𝜃init, 𝜙init) in Fig. 4.12, with 𝜒init = 0.8. The pattern exhibits quadrupolar structure,
i.e., symmetric about 𝜃init = 𝜋/2, and has a period 𝜋 in the 𝜙init-direction. This is
consistent with what we obtained in Eq. (4.27).

To have a better understanding of 𝐼𝑚22, we use PN prediction of mass quadrupole
wave during the inspiral stage [118]

I22 = Iorb + I𝑆1 + I𝑆2, (4.31)

where

Iorb = −𝑀
2

√︂
2𝜋
5
𝑟2𝑒𝑖𝜙, (4.32a)

I𝑆1 =

√︂
2𝜋
5
𝑀3

16
𝜒2

init sin2 𝜃init𝑒
−2𝑖𝜙init , (4.32b)

I𝑆2 = −
√︂

2𝜋
5
𝑀3

16
𝜒2

init𝑣
2, (4.32c)

with 𝑣 ∼
√︁
𝑀/𝑟 the velocity of an individual BH. In Eq. (4.31), the leading contri-

bution from the orbital sector Iorb is modified by the spin sector I𝑆1,2. As discussed
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Table 4.2: The coefficients in Eq. (4.33) by fitting to the NRSur7dq4 data. The
values of 𝑄orb/𝑄𝑆1 and 𝑄𝑆2/𝑄𝑆1 are close to the PN predictions in Eqs. (4.34).

𝑄orb 𝑄𝑆2 𝑄𝑆1 tan 2𝜙0 𝑄orb/𝑄𝑆1 𝑄𝑆2/𝑄𝑆1
0.557 2.72 × 10−3 12.2 × 10−3 −0.98 45.7 0.22

in Ref. [119, 120], the amplitudes of ringdown waveforms in different (ℓ, 𝑚) modes
are related to those of the corresponding modes during the inspiral stage. Therefore,
we can write down a fitting formula for the relation 𝐼𝑚22 − (𝜒init, 𝜃init, 𝜙init), inspired
by Eq. (4.31) and the definition of 𝐼22 in Eq. (4.3),

𝐼𝑚22 = 𝑄orb +𝑄𝑆1𝜒
2
init sin2 𝜃init sin 2(𝜙init + 𝜙0)

+𝑄𝑆2𝜒
2
init, (4.33)

where𝑄orb, 𝑄𝑆1, 𝑄𝑆2 are constants. Their fitted values are listed in Table 4.2, and the
contours of Eq. (4.33) are plotted as dashed lines in Fig. 4.12. We note that Eq. (4.33)
was applied to understand the features of 𝒜 (𝐼)𝑛 in Sec. 4.2.3 [see Eq. (4.11)], where
we used the fact that 𝒜 (𝐼)𝑛 is insensitive to the overtone index 𝑛 and we ignored the
mixing between overtones.

Three terms in Eq. (4.33) correspond to Iorb, I𝑆1 and I𝑆2, respectively. They imply
that

𝑄orb/𝑄𝑆1 ∼ |Iorb |𝜒2
init/|I𝑆1 | ∼ 8

𝑟2

𝑀2 ∼ 72, (4.34a)

𝑄𝑆2/𝑄𝑆1 ∼ |I𝑖 𝑗𝑆2 | sin2 𝜃init/|I𝑖 𝑗𝑆1 | ∼ 𝑣
2 ∼ 0.3, (4.34b)

where the formula is evaluated at 𝑟 = 3𝑀 , i.e., the radius of the light ring. In
fact, values in Eq. (4.34) are close to the fitted result listed in Table 4.2. Therefore,
the peak of mass quadrupole momentum 𝐼𝑚22, as an important characteristic of the
ringdown phase, is still qualitatively consistent with the prediction of PN theory.

Although Eq. (4.33) can predict the major pattern of 𝐼𝑚22 − (𝜃init, 𝜙init) relation, a
correction term

∼ 𝜒4
init sin4 𝜃init 𝑓 (sin 𝜙init, cos 𝜙init), (4.35)

is still needed if one wants to further recover sub-leading features. Here 𝑓 (sin 𝜙init, cos 𝜙init)
is a function of 𝜙init, corresponding to higher PN correction.

4.3.5 The peak of current quadrupole wave 𝑆𝑚22

We now turn our attention to 𝑆𝑚22. In Fig. 4.13, we use NRSur7dq4 and plot
𝑆𝑚22 − (𝜃init, 𝜙init) with 𝜒init = 0.8. The pattern is still symmetric about 𝜃init = 𝜋/2
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and has a period 𝜋 in the 𝜙init-direction, consistent with Eq. (4.27). We repeat our
previous process and use PN predictions to understand the pattern. With PN theory,
we have [118]

S22 = S (1)22 + S
(2)
22 , (4.36)

where

S (1)22 ∼ 𝜒init sin 𝜃init𝑟𝑒
−𝑖𝜙init , (4.37a)

S (2)22 ∼ −𝜒init𝑟𝑣
2 sin 𝜃init cos 𝜙init. (4.37b)

Eqs. (4.37) lead to a fitting formula

𝑆𝑚2
22 = 𝜒2

init sin2 𝜃init [𝑄 (1) +𝑄 (2) sin 2(𝜙init + 𝜙𝑆)], (4.38)

where 𝑄 (1) and 𝑄 (1) correspond to S (1)22 and S (2)22 , respectively. The fitted value of
𝑄 (2) and 𝑄 (1) are 9.43 × 10−3 and 4.28 × 10−2. The ratio, 𝑄 (2)/𝑄 (1) ∼ 0.22, is
close to 𝑣2 at the light ring (0.33), which is again consistent with the PN prediction
𝑄 (2)/𝑄 (1) ∼ 𝑣2. Therefore, the peak of the current quadrupole wave 𝑆𝑚22 also inherits
information from the PN regime.
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Figure 4.13: The peak value of current quadrupole wave 𝑆𝑚22 as a function of
(𝜃init, 𝜙init), with 𝜒init = 0.8 (SKd configuration). The data are from NRSur7dq4,
while dashed lines are the prediction of the PN-inspired counterpart in Eq. (4.38).
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4.3.6 The phase difference ΔΦIS

We finally study the phase difference between the mass and current quadrupole
waves ΔΦIS, which is the key factor that determines the final kick velocity. Fig. 4.14
is ΔΦIS of the SKd4–‘03’ system (Table 4.1). During the inspiral stage, ΔΦIS

accumulates monotonically over time. It then gradually settles down to a constant
after the merger. In fact, one can use PN theory to understand the evolution of ΔΦIS.
Before the merger, we have [cf. Eqs. (4.18)]

ΔΦIS = 𝜙pre − 𝜙. (4.39)

Here 𝜙pre is the precession phase of the spins, and is obtained by measuring the spins
of each individual BH; 𝜙 is the orbital phase. In Fig. 4.14, we compare Eq. (4.39) to
the NR result. Two results agree pretty well until 𝑡 ∼ −50𝑀 . Near the merger, 𝜙pre

is thought to be locked to 𝜙 [121], in order for the accumulation ofΔΦIS to be halted.
An alternative way to think of this is based on the QNM decomposition. For the
ringdown portion of 𝐼22 and 𝑆22, they must both be decomposed into (2, 2) QNMs.
After higher overtones decay away (𝑡 > 20𝑀), we are left with the fundamental
mode [see Eq. (4.5) for more details]

𝐼22 ∼ 𝒜
(𝐼)
0 𝑒𝑖𝜑

(𝐼 )
0 𝑒−𝑖𝜔220𝑡 , 𝑆22 ∼ 𝒜

(𝑆)
0 𝑒𝑖𝜑

(𝑆)
0 𝑒−𝑖𝜔220𝑡 , (4.40)

which leads to ΔΦIS = 𝜑
(𝐼)
0 − 𝜑

(𝑆)
0 , i.e., a constant. The fact that both 𝐼22 and 𝑆22

have the same QNM frequency is a consequence of the isospectrality feature of
black holes.

Then we study how ΔΦIS depends on the progenitor’s parameters. We first choose
eight NR runs in Table 4.1, whose 𝜙init are different. As shown in Fig. 4.15,
ΔΦIS with different 𝜙init are finally locked to different values. The bottom panel is
sinΔΦIS. Recalling that the kick velocity can be roughly estimated by integrating
sinΔΦIS [Eq. (4.17)], the final value of sinΔΦIS is a strong signature for the final
kick velocity. For instance, one can directly read that SKd4–‘07’ leads to a positive
largest kick, consistent with NR results (Table 4.1). Interestingly, ΔΦIS of several
runs (e.g., ‘03’) do not settle into a constant. Instead, there are slow changes over
time. This is because the final BHs are boosted with relatively large kick velocities.
As a result, there is a Doppler shift between the mode frequency of ℎ22 and of ℎ2,−2,
recalling that ℎ22 is dominantly emitted upward, while ℎ2,−2 downward [96]. To
test our statement, we pick four of SKu systems that are listed in Table 4.5. Here
we choose SKu systems since they lead to larger kicks, thus the comparison is less
impacted by numerical noises. The results are summarized in Table 4.3. We can
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Figure 4.14: The time evolution of ΔΦIS for the SKd4–‘03’ system (orange curve).
It is compared to NRSur7dq4 (blue curve) with the same initial condition. As
expected, their results are close. Within the inspiral regime, PN theory predicts
ΔΦIS = 𝜙pre − 𝜙, which is shown as the green curve.

see relative mass differences are close to the kick of final BHs. A slight difference
in mass leads to a deviation between the mode frequency of ℎ22 and ℎ2,−2, i.e., [see
Eq. (4.4)]

ℎ22 ∼ A220𝑒
𝑖𝜓220𝑒−𝑖𝜔220 (1+𝛿)𝑡 , (4.41a)

ℎ∗2,−2 ∼ A2,−20𝑒
−𝑖𝜓2,−20𝑒−𝑖𝜔220 (1−𝛿)𝑡 , (4.41b)

where 𝛿 is a small parameter, and is proportional to the kick velocity. In the late
time regime, Eq. (4.41) implies

sinΔΦIS = sin[𝜑(𝐼)0 − 𝜑
(𝑆)
0 ]

+
4(A2

220 − A
2
2,−20)A220A2,−20

|A2
220𝑒

−𝑖(𝜓220+𝜓2,−20) − A2
2,−20𝑒

𝑖(𝜓220+𝜓2,−20) |2

× cos(𝜓220 + 𝜓2,−20)𝜔220𝑡𝛿 + O(𝛿2). (4.42)

The new term above gives rise to a linear change in time, and it is consistent with
the feature which we observe in Fig. 4.15.

We then use NRSur7dq4 to explore more parameter space of SKd systems, by
varying three free parameters 𝜒init, 𝜃init and 𝜙init, respectively. Results are shown
in the bottom row of Fig. 4.10. We can see that 𝜒init and 𝜃init do not affect ΔΦIS,
even near and after the merger. Meanwhile, 𝜙init gives rise to only a constant phase
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Figure 4.15: The evolution of ΔΦIS for SKd4 systems (Table 4.1). Eight runs start
with different 𝜙init, and their ΔΦIS are finally locked to different values. The bottom
panel is sinΔΦIS. One can directly estimate the kick velocity from the final value
of sinΔΦIS, since the kick is roughly proportional to the integration of sinΔΦIS
[Eq. (4.17)]. As for high-kick cases, their ΔΦIS change slowly during the late post-
merger stage. This is due to the Doppler shift.

shift for ΔΦIS, consistent with what we obtained in Sec. 4.3.3 [Eq. (4.30)]. In fact,
if we subtract 𝜙init from ΔΦIS, the rest of time dependence is still insensitive to 𝜙init,
although not as good as the cases of 𝜒init and 𝜃init.

Recalling that the final kick velocity is given by [Eqs. (4.17) and (4.28)]

𝑣 𝑓 ∼ Im
∫
¤𝐼22 ¤𝑆∗22𝑑𝑡 ∼ 𝐼

𝑚
22𝑆

𝑚
22Im 𝑒𝑖𝜙init

∫
¤𝑇𝐼 (𝑡) ¤𝑇∗𝑆 (𝑡)𝑑𝑡

∼ 𝜒init sin 𝜃init sin(𝜙init − 𝜙(0)init), (4.43)

where we have used the leading terms in Eq. (4.33) and (4.38). This result is
the same as Eq. (4.14), as discussed in [78–80]. To offer an illustration, we use
NRSur7dq4Remnant to plot 𝑣 𝑓 as a function of (𝜃init, 𝜙init) in Fig. 4.16, with 𝜒init =

0.76. Meanwhile, we use Eq. (4.43) to fit the 𝑣 𝑓 − (𝜒init, 𝜃init, 𝜙init) dependence,
and the result is shown as dashed lines in Fig. 4.16. We can see Eq. (4.43) works
properly.
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Figure 4.16: The final kick velocity as a function of (𝜃init, 𝜙init), predicted by
NRSur7dq4Remnant. The component spin 𝜒init is chosen to be 0.76. The contours
with dashed lines are from Eq. (4.43)

Table 4.3: The mass of remnant BHs inferred from ℎ22 and ℎ2,−2, by fitting with
QNMs (7 overtones, see Sec. 4.2 for more details). Four runs below are in the SKu
configuration (Table 4.5) with 𝜒init = 0.8 and different 𝜙init. Among them, SKu8–
‘02’ and SKu8–‘04’ are high-kick cases. The masses inferred from ℎ22 and ℎ2,−2
are quite different, and the relative difference are close to the final kick velocity.

Runs (SKu8) ‘01’ ‘02’ ‘03’ ‘04’
Mass from NR 0.941 0.939 0.941 0.939
Mass from ℎ2,2 0.940 0.945 0.941 0.931
Mass from ℎ2,−2 0.940 0.931 0.940 0.945
Relative mass −7.8 × 10−5 −0.015 3.3 × 10−4 0.015difference between ℎ2,±2

Final kick −1.6 × 10−3 −0.011 1.3 × 10−3 0.011

4.4 Backwards One-Body model
In this section, we shall focus on the time evolution of the mass and current
quadrupole waves, 𝑇𝐼 (𝑡) and 𝑇𝑆 (𝑡), as defined in Eq. (4.28). In particular, we
use an analytic phenomenological model BOB, conceived by McWilliams [111],
to model the ringdown evolution. We first give a brief introduction to BOB in
Sec. 4.4.1, and then compare it to NR results in Sec. 4.4.2.
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BOB ḧ22
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Figure 4.17: The BOB model for ¤ℎ22, ¤ℎ2,−2, ¤𝐼22 and ¤𝑆22 (the left and middle columns).
They are compared to the ringdown portion of SKd4–‘03’. We also fit data with
QNMs. The residuals of BOB for four variables are all on the order of ∼ 10−3, an
order of magnitude worse than the fitting of QNMs. The right column corresponds
to the distribution of mismatch [top panel, see Eq. (4.53)], and parameter deviation
[bottom panel, see Eq. (4.55)] for QNM decomposition and BOB, using our NR
simulations listed in Table 4.1 and 4.5. BOB is always worse than QNM fitting.

4.4.1 A brief review of BOB
The BOB model is an accurate, fully analytical GW waveform model for the late
inspiral, merger and ringdown of BBH [111], which is able to match the waveform ∼
20𝑀 before the peak of strain. This feature enables people to avoid the extrapolation
of inspiral models beyond their domain of validity. Here we restrict our attention to
the ringdown portion.

As discussed in Refs. [111, 122], the amplitude of the News | ¤ℎℓ𝑚 | is related to its
frequency Ωℓ𝑚 by

| ¤ℎℓ𝑚 |2 ∝
𝑑

𝑑𝑡
Ω2
ℓ𝑚, (4.44)

where the coefficient remains (approximately) constant throughout the merger and
ringdown phase. It was found5 that either |ℎ2,±2 |, | ¤ℎ2,±2 | or | ¥ℎ2,±2 | can be modeled

5In Ref. [111], the author pointed out that this phenomenological formula works best for | ¥ℎℓ𝑚 |.
For now, we try to make our statement general, and make comparisons later.
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by

𝑋 sech[𝛾(𝑡 − 𝑡𝑝)], (4.45)

with two free variables 𝑋 and 𝑡𝑝, where 𝛾 = −Im 𝜔220 is the decay rate of the fun-
damental mode, determined by the final mass 𝑚 𝑓 and spin 𝜒 𝑓 . Applying Eq. (4.45)
to | ¥ℎ2,±2 |, | ¤ℎ2,±2 |, and |ℎ2,±2 | leads to three classes of BOB. Below we shall discuss
the model for ¤ℎ2,±2, and refer the interested reader to Sec. 4.8 for ¥ℎ2,±2 and ℎ2,±2.

We first write the News ¤ℎ22 as

¤ℎ22 = 𝑋 sech[𝛾(𝑡 − 𝑡𝑝)]𝑒−𝑖𝜙22 (𝑡) (4.46)

where 𝑋 is essentially the peak value of | ¤ℎ22 |, and 𝑡𝑝 (> 0𝑀) is its peak time. Using
the relation in Eq. (4.44), we obtain

¤𝜙22(𝑡) = Ω22(𝑡) =
{
Ω2

0 +
𝜔2

0 −Ω
2
0

2
[
tanh 𝛾(𝑡 − 𝑡𝑝) + 1

]}1/2

, (4.47)

where Ω0 is an integration constant and 𝜔0 = Re 𝜔220. Eq. (4.47) indicates that

lim
𝑡→∞

¤𝜙22(𝑡) = 𝜔0, (4.48)

i.e., ¤ℎ22 oscillates at the fundamental QNM frequency during the late time of post-
merger portion. Integrating Eq. (4.47) again gives

𝜙22 =
1
𝛾

(
𝜔0 arctanh

¤𝜙22
𝜔0
−Ω0 arctanh

Ω0
¤𝜙22

)
− 𝜙0, (4.49)

where 𝜙0 is another integration constant. We can see that ¤ℎ22 depends on 6 param-
eters

𝑋, 𝑚 𝑓 , 𝜒 𝑓 , 𝑡𝑝,Ω0, 𝜙0. (4.50)

Similarly, Eqs. (4.46)–(4.49) can also be applied to ¤ℎ∗2,−2, ¤𝐼22 and ¤𝑆22.

As 𝑡 ≫ 𝑡𝑝, we obtain an asymptotic expansion for ¤ℎ22

¤ℎ22 = (2𝑋𝑒𝛾𝑡𝑝 )𝑒𝑖𝜓0𝑒−𝑖𝜔220𝑡 , (4.51)

where

𝜓0 = 𝜔0𝑡𝑝 + 𝜙0 +
Ω0
𝛾

arctanh
Ω0
𝜔0
− 𝜔0
𝛾

1
2

log
4𝜔2

0

𝜔2
0 −Ω

2
0
. (4.52)

By comparing Eq. (4.51) with the overtone decomposition [e.g., Eq. (4.4)], (2𝑋𝑒𝛾𝑡𝑝 )
is supposed to be equal to |𝜔220A220 |.
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Table 4.4: Fitting ¤ℎ22, ¤ℎ2,−2, ¤𝐼22, ¤𝑆22 to the BOB model, respectively. The original
data is the ringdown portion of SKd4–‘03’. The first four rows are the free param-
eters of BOB: peak magnitude 𝑋 , peak time 𝑡𝑝, final spin 𝜒 𝑓 , and final mass 𝑚 𝑓 .
Comparing with the NR prediction of final spin (0.685) and final mass (0.951), the
BOB for ¤𝐼22 and ¤ℎ22 are more accurate to recover the final properties than the other
two. The model for ¤𝑆22 is the worst. Using the BOB’s asymptotic expansion in
the late time limit [Eq. (4.51)], 2𝑋𝑒𝛾𝑡𝑝 (the sixth row) is expected to be equal to
|𝜔220A220 | (the seventh row). The agreement for ¤𝑆22 is the worst. The last row is
the mismatch between BOB and the original NR data.

¤ℎ22 ¤ℎ2,−2 ¤𝐼22 ¤𝑆22
𝑋 0.153 0.171 0.227 0.035

𝑡𝑝/𝑀 5.13 7.31 6.21 12.53
𝜒 𝑓 0.684 0.681 0.686 0.559

𝑚 𝑓 /𝑀 0.954 0.944 0.951 0.857
2𝑋𝑒𝛾𝑡𝑝 0.474 0.644 0.771 0.247
|𝜔220A220 | 0.470 0.622 0.759 0.175

Mismatch (×10−5) 2.6 9.9 3.1 204.0

4.4.2 Numerical comparisons
In this subsection, we use our NR simulations (Tables 4.1 and 4.5) to study the
accuracy of BOB. To begin with, we take the ringdown portion of SKd4–‘03’
(Tables 4.1), and fit ¤ℎ2,±2, ¤𝐼22, ¤𝑆22 to Eq. (4.46), respectively. Similar to the previous
QNM fitting algorithm (Sec. 4.2), we fit 𝑋 and 𝜙0 with unweighted linear least
squares, and fit 𝑚 𝑓 , 𝜒 𝑓 , 𝑡𝑝, Ω0 with nonlinear least squares. To give a comparison,
we also fit the ringdown sector with QNMs. As shown in Fig. 4.17, the BOB can
capture the major feature of ¤ℎ2,±2, ¤𝐼22, ¤𝑆22. Their residuals are all on the order of
∼ 10−3, an order of magnitude worse than the fitting of QNMs. Note that there are
fewer free parameters for the fitting of BOB than the QNM decomposition, a fairer
comparison would be restricting to only 2 QNMs (so that there are 6 free parameters
for both models) and studying the late ringdown portion6. This is beyond the scope
of this chapter, and we leave the relevant discussions for future study. Table 4.4 is
a summary for the fitting results, where the last row is the mismatch between BOB
and NR, defined by

Mismatch = 1 − (ℎB, ℎNR)√︁
(ℎNR, ℎNR) (ℎB, ℎB)

, (4.53)

6Based on TABLE I of Ref. [22], it corresponds to ∼ 20𝑀 after the peak of strain.
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with

(ℎB, ℎNR) = Re
∫ 100𝑀

0𝑀
ℎBℎ

∗
NR𝑑𝑡, (4.54)

where ℎB and ℎNR are the complex strains of BOB and NR in the time domain,
respectively. The integration limit is taken to be the ringdown sector. We can
see that the BOB for ¤𝐼22 and ¤ℎ22 lead to smaller mismatches than the other two.
Meanwhile, the BOB behaves worst for ¤𝑆22: even though the mismatches can reach
2 × 10−3, this is much higher than those achievable by ¤𝐼22 and ¤ℎ22; furthermore,
the recovered estimations for spin and mass of the final black hole are substantially
biased.

We then use Eq. (4.51) to make a connection between BOB and QNM decomposition,
i.e., expanding BOB for the late-time ringdown (𝑡 ≫ 𝑡𝑝). The value of (2𝑋𝑒𝛾𝑡𝑝 ) is
expected to be close to |𝜔220A220 |, so we make such a comparison in the sixth and
seventh rows of Table 4.4. We can see that ¤ℎ22 leads to the best agreement, while
¤𝑆22 the worst.

As we mentioned earlier, 𝑋 sech[𝛾(𝑡−𝑡𝑝)] can also be used to describe the magnitude
of ¥ℎ2,±2 or ℎ22. Each of them leads to a class of BOB model (see Sec. 4.8 for more
details). We study their accuracy by fitting our simulations (cf. Table 4.1 and 4.5) to
those three classes of BOB, and showing the distribution of mismatches (with NR
waveforms) in the third column of Fig. 4.17. Generally speaking, the mismatches of
BOB are 10−5 − 10−2, which are worse than those of QNM decomposition. Among
the three classes, ¥ℎ22 gives the smallest mismatch, while ℎ22 the largest.

Another way to quantify the accuracy of BOB is to compare the inferred spin and
mass (from the fitting) to NR predictions. Similar to Ref. [22], we define a parameter
deviation

𝜖 =

√︃
(𝛿𝑀 𝑓 /𝑀)2 + (𝛿𝜒 𝑓 )2, (4.55)

and plot its distribution in Fig. 4.17. We can see 𝜖 for BOB is also worse than the
QNM decomposition. In addition, the distribution of 𝜖 show that the BOB works
worst for ℎ22, and best for ¤ℎ22.

4.5 Parameter-estimation contributions from inspiral and ringdown stages
In this section, we demonstrate, with a few example sources, the impact of the
ringdown portion of the waveforms—as well as the correlation between the ringdown
and the inspiral phases—to parameter estimation errors. To do this, we will apply
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the Fisher-matrix formalism to the NRSur7dq4 surrogate waveforms (for BBHs with
1 < 𝑞 < 4 and individual dimensionless spin 𝜒 < 0.8) [46, 47].

In Sec. 4.5.1, we will give a brief review of the Fisher-matrix formalism. In
Sec. 4.5.2, we discuss non-precessing BBH systems with varying total mass, il-
lustrating how information contribution from the ringdown stage gains more im-
portance for more massive systems. Finally, in Sec. 4.5.3, we study parameter
estimation errors of precessing systems, illustrating how estimations of individual
spin components will benefit from information from the ringdown stage.
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Figure 4.18: The SNR of an optimally oriented GW event with varying total
(detector-frame) mass 𝑀 and mass ratio 𝑞, assuming the system is at redshift 𝑧 = 1
(6.7 Gpc) and using 𝑆𝑛 ( 𝑓 ) of the CE.

4.5.1 The Fisher-Matrix Formalism and Waveform Models
For a gravitational waveform ℎ(𝜃 𝑗 ) that depends on a list of parameters 𝜃 𝑗 , the
Fisher matrix is given by

Γ𝑖 𝑗 =

(
𝜕ℎ

𝜕𝜃𝑖

���� 𝜕ℎ𝜕𝜃 𝑗 ) . (4.56)

Here the inner product between two waveforms (ℎ |𝑔) is defined as

(ℎ|𝑔) = 4Re
∫

ℎ̃∗( 𝑓 )�̃�( 𝑓 )
𝑆𝑛 ( 𝑓 )

𝑑𝑓 , (4.57)
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Figure 4.19: The error ellipses of 𝜒1𝑧 and 𝜒2𝑧 (the left column), as well as 𝑀
and 𝑞 (the right column), using the data from NRSur7dq4. Two individual spins
are both aligned with the orbital angular momentum, and other parameters are
𝑞 = 2.3, 𝜒1𝑧 = 0.1, 𝜒2𝑧 = 0.6, 𝜄 = 3𝜋/10, 𝛽 = 𝜋/2, 𝜒1𝑝 = 𝜒2𝑝 = 0. The total
mass is chosen to be 160𝑀⊙ (the upper row), 250𝑀⊙ (the middle row) and 340𝑀⊙
(the bottom row). Three colors stand for the ringdown (black), inspiral (blue), and
full sector (red), respectively. The numbers in parentheses are SNRs, where we
normalize the total SNR of each event to 200 for comparison.

with the superscript ∗ standing for complex conjugation, and 𝑆𝑛 ( 𝑓 ) the spectral
density of the noise when detecting ℎ. In terms of this inner product, the signal-to-
noise ratio (SNR) of a signal ℎ is given by

√︁
(ℎ |ℎ).

The covariance matrix for the estimated values of 𝜃 𝑗 , in presence of noise, is given
by the inverse of the Fisher matrix,

Var(𝜃𝑖, 𝜃 𝑗 ) =
(
Γ−1

)
𝑖 𝑗
. (4.58)

From this, we obtain the individual estimation error for 𝜃 𝑗 ,

Δ𝜃𝑖 =
√︁
(Γ−1)𝑖𝑖 . (4.59)
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and the correlation coefficient between 𝜃𝑖 and 𝜃 𝑗 ,

Corr(𝜃𝑖, 𝜃 𝑗 ) =
(Γ−1)𝑖 𝑗√︃

(Γ−1)𝑖𝑖 (Γ−1) 𝑗 𝑗
. (4.60)

Waveforms described by the NRSur7dq4 surrogate model are parametrized by 13
parameters:

𝜒1𝑧, 𝜒1𝑝, 𝜙1, 𝜒2𝑧, 𝜒2𝑝, 𝜙2, 𝑀, 𝑞, 𝜄, 𝛽, 𝑡𝑐, 𝜙𝑐, 𝐷,

Correspondingly, we have a 13-dimensional Fisher matrix. Here, the subscripts ‘1’
and ‘2’ stand for the two individual black holes in the binary system, 𝜒𝑧 is the spin
component in the direction of orbital angular momentum, 𝑀 is the total mass in
the detector frame, 𝑞 > 1 is the mass ratio, 𝐷 is the luminosity distance between
the source and the detector, and 𝜄 and 𝛽 describe the wave emission direction in the
frame of the source. The spin component in the orbital plane is parameterized by
the magnitude 𝜒𝑝 and the azimuthal angle 𝜙. Finally, 𝑡𝑐 and 𝜙𝑐 are the coalescence
time and phase, respectively.
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Figure 4.20: The noise spectral density of Cosmic Explorer.

Throughout this chapter, we adopt the Ansatz that the two gravitational-wave polar-
izations, ℎ+ and ℎ×, can be individually measured, both with the noise spectrum 𝑆𝑛.
This simplification allows us not to explicitly include the sky location and orienta-
tion of the source; it can be justified in the situation of a three-detector network that
can provide good source localization. In this way, the results given in this section
should be more optimistic than the actual situation.
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Figure 4.21: Similar to Fig. 4.19, the error ellipses of 𝜒1𝑧 and 𝜒2𝑧 (the first row),
and 𝜒1𝑝 and 𝜒2𝑝 (the second row), with different 𝜄 (each column). The green dashed
lines stand for the original value of each parameter. Thus we have a meaningful
measurement (<100%) on a parameter if the error ellipse is within the dashed lines.
The BBH systems have parameters 𝑀 = 300𝑀⊙, 𝑞 = 3.5, 𝜒1𝑧 = 0.05, 𝜒1𝑝 = 0.086,
𝜒2𝑧 = 0.606, 𝜒2𝑝 = 0.35, 𝜙1 = 𝜋/13, 𝜙2 = 43𝜋/52, 𝛽 = 𝜋/2. The error ellipses
of ringdown and inspiral portions are not in the same direction, which implies
different parameter correlations. After including the information of ringdown, the
measurement accuracy of 𝜒𝑧 is improved by a factor of ∼ 4 − 5, whereas 𝜒𝑝 is
improved by a factor of ∼ 1.4.
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Figure 4.22: Same as Fig. 4.21, except 𝑞 = 1.2.

4.5.2 Inspiral versus Ringdown: Non-precessing Binaries
In this section, we will focus mainly on the Cosmic Explorer (CE) [123], whose
𝑆𝑛 ( 𝑓 ) is shown in Fig. 4.20. Using this sensitivity, in Fig. 4.18, we show the SNR
of an optimally oriented BBH with varying total (detector-frame) mass 𝑀 and mass
ratio 𝑞, assuming the system is at redshift 𝑧 = 1 (𝐷𝐿 = 6.7 Gpc). Note that the
intrinsic total mass 𝑀• is given by 𝑀/(1 + 𝑧). The high SNR shown in this figure
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indicates that in the 3G era, we will be most frequently be detecting binaries at
cosmological distances of around 1 <∼ 𝑧 <∼ 3. Correspondingly, we will be observing
these binaries with higher detector-frame masses, with factor 2 to 4. In this way,
events like GW150914 can be redshifted to around ∼ 130–260𝑀⊙, while heavy
binaries like GW190521 can be shifted to 302–604𝑀⊙. In the rest of this section,
we shall study BBH systems with increasing total mass, in order to observe the
increased importance of information contribution from the ringdown stage.

In order to study the ringdown and the inspiral portions individually, we separate
two sectors (in the frequency domain) with the instantaneous ℎ22 frequency at
𝑡 = 0𝑀 (where

√︃∑
𝑙,𝑚 |ℎ𝑙𝑚 |2 is maximum). For non-precessing binaries, we will fix

𝑞 = 2.3, 𝜒1𝑧 = 0.1, 𝜒2𝑧 = 0.6, 𝜒1𝑝 = 𝜒2𝑝 = 0, 𝜄 = 3𝜋/10, 𝛽 = 𝜋/2, and consider
𝑀/𝑀⊙ = 160, 250, 340. For comparison purposes, we normalize all waveforms so
that the SNR of the entire waveform is 200. We consider joint parameter estimations
errors of (𝜒1𝑧, 𝜒2𝑧) and (𝑀, 𝑞), with results shown in Fig. 4.19 (blue for inspiral
alone, black for ringdown alone, and red for combined). As a reference, we also list
the SNR of each sector in the figure (cf. numbers in parentheses).

Regarding the overall size of the error ellipses, for the BBH system with total mass
𝑀 = 160𝑀⊙, constraints from the ringdown sector are worse than those from the
inspiral portion. As 𝑀 increases to 250𝑀⊙, constraints from the two sectors become
comparable. For more massive systems, the ringdown portion begins to dominate.
It is remarkable that substantial parameter estimation can already be obtained from
ringdown alone: this means not only the quasi-normal mode frequency, but also the
excitation amplitudes, are providing the information [35, 119, 120, 124, 125]. We
also note that detector-frame mass of 250𝑀⊙ corresponds to intrinsic total mass
of ∼ 125𝑀⊙ at 𝑧 = 1, which will not be a rare type of event in third-generation
detectors.

For spin measurements, both ringdown and inspiral sectors lead to somewhat de-
generate measurement of 𝜒1𝑧 and 𝜒2𝑧. In particular, the inspiral stage accurately
measures the ∼ [𝑞𝜒1𝑧 + (1 − 𝑞)𝜒2𝑧] direction (as can be argued from PN treat-
ments [126]), while the ringdown has a less degenerate measurement, although with
a most accurately measured combination similar to that from the inspiral. As for
mass measurements, the ringdown and inspiral sectors lead to 𝑀 − 𝑞 error ellipses
with different directions, but no substantial degeneracy breaking.
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4.5.3 Precessing BBH systems
We now turn our attention to precessing systems. We set the total mass of the systems
to 300𝑀⊙, in order to make the contribution of the ringdown sector comparable to
the inspiral portion. Meanwhile, we choose 𝜒1𝑧 = 0.05, 𝜒2𝑧 = 0.606, 𝜒1𝑝 =

0.086, 𝜒2𝑝 = 0.35, 𝜙1 = 𝜋/13, 𝜙2 = 43𝜋/52. The observation is made at 𝛽 = 𝜋/2,
with varying 𝜄.

We first study a BBH system with 𝑞 = 3.5. The results are shown in Figs. 4.21.
We can see the relative size of ringdown and inspiral ellipses change with 𝜄. This
is because the weights of different GW modes ℎℓ𝑚, i.e., 𝑌−2 ℓ𝑚

(𝜄, 𝛽), are functions
of 𝜄. At different observational locations, the contributions from different GW
modes ℎℓ𝑚 are different. Secondly, the 𝜒1𝑧 − 𝜒2𝑧 error ellipse computed from the
ringdown portion is tilted relative to that of the inspiral sector, which implies that
the parameter correlation of these two sectors is different. After combining the
information of ringdown and inspiral, the measurement accuracy of 𝜒𝑧 is around
30%, improved by a factor of ∼ 4 − 5 compared with using the inspiral signal
only. This result agrees qualitatively with the discussion in Ref. [14]. We note
that SNR is 1.14 times greater after incorporating the ringdown signal. Hence
most of the improvement is contributed by the correlation between the inspiral and
ringdown, which leads to a reduction of parameter degeneracy. On the other hand,
the measurement accuracy of 𝜒𝑝 is only improved by a factor of ∼ 1.4, not as good
as the one of 𝜒𝑧. Nevertheless, the fractional error of 𝜒𝑝 is smaller than 100%,
hence we can still put meaningful constraints on 𝜒𝑝.

We want to remark that the values mentioned above depend heavily on the properties
of the BBH system in question. For instance, for a low-mass-ratio BBH system with
𝑞 = 1.2, as shown in Fig. 4.22, the 𝜒1𝑧− 𝜒2𝑧 error ellipses computed from individual
inspiral and ringdown sectors point along more similar directions. This leads to
much less degeneracy breaking between 𝜒1𝑧 and 𝜒2𝑧 than in the 𝑞 = 3.5 case above,
in particular making the measurement errorΔ𝜒1𝑧 greater than the value of 𝜒1𝑧. Even
so, incorporating ringdown, in addition to inspiral improves Δ𝜒𝑧/𝜒𝑧 a factor of 2.8,
substantially greater than the SNR improvement factor of around 1.16.

4.6 Conclusions
In this chapter, we studied the gravitational waveforms of SKd systems, using both
NR simulations (SpEC) and surrogate models (NRSur7dq4, NRSur7dq4Remnant).
We first decomposed the ringdown portion of GW signal into QNMs, and explored



177

how mode amplitudes of overtones depend on the progenitor’s parameters (for 𝐼22,
𝑆22, as well as ℎ2±2 contents). We then studied the features of the mass and current
quadrupole waves, focusing on their time evolutions and peak values. This leads
to a qualitative understanding of kick velocity. Next, we fitted the evolution of
𝐼22(𝑡) and 𝑆22(𝑡) to the Backward-One-Body (BOB) model. Finally, we used Fisher
information matrix to study the role of the ringdown state in parameter correlation.
Here we summarize our main results:

(i) For SKd systems, the dependences of 𝐼22 and 𝑆22 on angular parameters (𝜒init, 𝜃init, 𝜙init)
can be separated from their temporal dependences [Eq. (4.28)].

(ii) Similar to the case of EMRI [105], the QNM amplitudes of SKd systems encode
the information of progenitors’ parameters. As an extension to Ref. [105], we
included more overtones to the QNM decomposition. We found that the spectra
peak at the fourth overtone, and that the dependence of mode magnitudes on 𝜙init

is insensitive to the overtone index 𝑛 (up to a scaling factor). We found that the
dependence of mode amplitudes on progenitor parameters is more easily understood
when decomposed into mass and current quadrupole waves, instead of (2, 2) and
(2,−2) modes.

(iii) Peak values of mass (𝐼𝑚22) and current (𝑆𝑚22) quadrupole waves encode the
information of progenitors’ spin. Enforced by the parity symmetry, the (𝐼𝑚22, 𝑆

𝑚
22) −

(𝜒init, 𝜃init, 𝜙init) pattern is symmetric about 𝜃init = 𝜋/2 axis and has a period of 𝜋 in
the direction of 𝜙init−axis. Quantitatively speaking, the (𝐼𝑚22, 𝑆

𝑚
22) − (𝜒init, 𝜃init, 𝜙init)

dependence are consistent with the PN-inspired formulas.

(iv) The phase difference between mass and current quadrupole wavesΔΦIS can lead
to a qualitative understanding of kick velocity. Its time evolution can be anticipated
from PN and black-hole perturbation theories: in the inspiral regime, ΔΦIS is equal
to the difference between the orbital and precession phases; near the merger, the
spin precession rate is gradually locked to the orbital frequency—until well into
the ringdown regime, when ΔΦIS should become constant since both 𝐼22 and 𝑆22

oscillate at the fundamental QNM frequency. However, we found that ΔΦIS does
not always settle down to a constant value during the post-merger stage, especially
for high-kick cases. Instead, there is a slow change over time. This is due to the
Doppler shift caused by the kick. The QNM frequency of ℎ22 (emitted upwards) is
slightly different from the one of ℎ2,−2 (emitted downwards), which leads to a slow
time evolution. In fact, the relative frequency difference is on the same order as the
kick velocity.
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(v) We verified that the BOB phenomenological model is accurate for the ringdown
evolution of ¤ℎ2,±2, ¥ℎ2,±2 and 𝐼22, but much less so for 𝑆22 and ℎ2,±2. This calls
for further, qualitative improvements of the current-quadrupole sector of the BOB
model.

(vi) We found that in 3G detectors, the contribution of the ringdown part dominates
over the inspiral part as the total detector-frame mass exceeds ≳ 250 − 300𝑀⊙. We
found that, as we combine both parts, the improvement in parameter estimation error
is larger than the increase in SNR, indicating that the reduction of degeneracy due
to the additional ringdown signal is the main reason for such improvement. As for
𝜒𝑧, in our examples, incorporating the information from ringdown signal can lead
to ∼ 4− 5 times improvement on the measurement accuracy, while the accuracy for
𝜒𝑝 is improved by a factor of ∼ 1.4.

Our results indicate that the ringdown sector of a BBH event encodes plenty of
information about the progenitor. It also plays a complementary role to PN theory
in the study of BBH evolution. In our study, we primarily focused on the SKd
configuration. Future work could include more generic BBH systems and other
GW modes, which can lead to more comprehensive understanding of the ringdown
signals. Another possible avenue for future work is to increase the precision of
NR surrogate models for the ringdown sector, since our work has revealed that the
current NR surrogate models are not accurate enough for BH spectroscopy. A more
accurate ringdown surrogate model will be beneficial for both data analysis and
theoretical studies.

Meanwhile, as revealed in Fig. 4.5, as well as Eqs. (4.7) and (4.10), it might
also be interesting for future work to investigate the features of mass and current
quadrupole waves of EMRIs, which may turn out to be simpler than features found
in Refs. [105–107]. Those further explorations could potentially provide us a more
physical understanding of EMRI ringdown spectra.

4.7 Appendix: SpEC runs—SKu configuration
We summarize our NR simulations of SKu BBHs in Table 4.5. We remark that the
SKu condition is not well preserved after the junk-radiation regime. Nevertheless,
the maximum recoil velocity 𝑣𝑧

𝑓
is 4050 km s−1, and it is roughly proportional to

𝜒init.
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Table 4.5: A summary for SKu configurations. The convention is the same as the
one used in Table 4.1, except that the fifth and sixth columns are the components
of individual spin in the Cartesian coordinates, where the 𝑧-axis is in the direction
of orbital angular momentum; the line of two BHs determines the 𝑥-axis; and the
right-handed rule determines the 𝑦-axis. The dimensionless spin ranges from 0.6 to
0.95, specified at the orbital frequency Ωorb.

Run label Ωorb
𝜒1 𝜒2 |𝜒1 | = |𝜒2 | 𝑚 𝑓

𝑣𝑧
𝑓 𝜒 𝑓This chapter SXS:BBH (×10−2) (×10−3)

SKu6

‘01’ 2428 1.63 (0.378,−0.378, 0.273) (−0.413, 0.389, 0.200) 0.6 0.944 −1.46 0.754
‘02’ 2429 1.62 (0.390, 0.359, 0.281) (−0.402,−0.398, 0.199) 0.6 0.942 −8.04 0.749
‘03’ 2430 1.63 (−0.374, 0.383, 0.271) (0.406,−0.395, 0.199) 0.6 0.944 −0.34 0.754
‘04’ 2431 1.62 (−0.386,−0.364, 0.281) (0.397, 0.402, 0.201) 0.6 0.942 8.03 0.749
‘05’ 2432 1.63 (0.254, 0.465, 0.282) (−0.254,−0.504, 0.202) 0.6 0.942 −7.54 0.749
‘06’ 2448 1.63 (0.533,−0.0207, 0.275) (−0.568, 2.00 × 10−3, 0.193) 0.6 0.944 −6.80 0.752
‘07’ 2449 1.63 (−4.75 × 10−3, 0.531, 0.279) (0.0218,−0.564, 0.203) 0.6 0.942 −6.01 0.750
‘08’ 2450 1.63 (0.0120,−0.531, 0.280) (−0.0312, 0.564, 0.202) 0.6 0.942 5.91 0.750

SKu8

‘01’ 2433 1.63 (0.666, 0.308, 0.320) (−0.667,−0.314, 0.311) 0.8 0.941 −1.58 0.773
‘02’ 2434 1.63 (−0.352, 0.647, 0.312) (0.360,−0.649, 0.300) 0.8 0.939 −11.0 0.767
‘03’ 2435 1.63 (−0.669,−0.306, 0.316) (0.667, 0.309, 0.316) 0.8 0.941 1.31 0.773
‘04’ 2436 1.63 (0.382,−0.629, 0.315) (−0.390, 0.630, 0.301) 0.8 0.939 11.0 0.766

SKu95

‘01’ 2437 1.63 (−0.793,−0.437, 0.284) (0.792, 0.437, 0.290) 0.95 0.942 2.43 0.765
‘02’ 2438 1.62 (0.422,−0.803, 0.280) (−0.423, 0.804, 0.279) 0.95 0.938 13.5 0.752
‘03’ 2439 1.63 (0.800, 0.423, 0.288) (−0.800,−0.426, 0.283) 0.95 0.942 −4.29 0.765
‘04’ 2440 1.63 (−0.428, 0.802, 0.277) (0.425,−0.801, 0.283) 0.95 0.938 −13.5 0.753
‘05’ 2441 1.63 (−0.826,−0.377, 0.277) (0.824, 0.376, 0.284) 0.95 0.941 10.6 0.760
‘06’ 2442 1.62 (0.390,−0.821, 0.275) (−0.390, 0.822, 0.2733) 0.95 0.938 13.5 0.750
‘07’ 2443 1.62 (−0.358, 0.837, 0.272) (0.355,−0.836, 0.278) 0.95 0.938 −13.5 0.751
‘08’ 2444 1.64 (0.293,−0.820, 0.380) (−0.301, 0.825, 0.363) 0.95 0.936 −2.80 0.785
‘09’ 2445 1.65 (0.826, 0.279, 0.375) (−0.829,−0.281, 0.368) 0.95 0.933 13.0 0.776
‘10’ 2446 1.64 (−0.229, 0.842, 0.376) (0.239,−0.850, 0.351) 0.95 0.936 3.35 0.784
‘11’ 2447 1.65 (−0.836,−0.252, 0.372) (0.837, 0.251, 0.372) 0.95 0.933 −12.4 0.776

4.8 Appendix: BOB for ℎ22 and ¥ℎ22

In this section, we discuss the BOB model for ℎ22 and ¥ℎ22.

4.8.1 ¥ℎ22

Let us start from ¥ℎ22. As discussed in Ref. [111]

¥ℎ22 =
𝑑

𝑑𝑡
¤ℎ22 =

𝑑

𝑑𝑡
| ¤ℎ22 |𝑒−𝑖𝜙22 (𝑡) ∼ −𝑖 ¤𝜙22 | ¤ℎ22 |𝑒−𝑖𝜙22 (𝑡)

= −𝑖Ω22 | ¤ℎ22 |𝑒−𝑖𝜙22 (𝑡) , (4.61)

where we have assumed that | ¤ℎ22 | changes much slower than 𝜙22. The above equation
implies that the frequency of ¥ℎ22 and ¤ℎ22 are roughly the same. Therefore, below
we do not distinguish the frequency of ¥ℎ22 from that of ¤ℎ22, and use Ω22 to stand for
both frequencies. Combining Eqs. (4.44) with (4.61), we obtain

| ¤ℎ22 |2 ∼ | ¥ℎ22 |2/Ω2
22 ∝

𝑑

𝑑𝑡
Ω2

22. (4.62)

Then applying Eq. (4.45) to | ¥ℎ22 |7, i.e.,

| ¥ℎ22 | = 𝑋 sech[𝛾(𝑡 − 𝑡𝑝)], (4.63)
7We use the same notation as Eq. (4.46) since this will not cause any confusion.
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which leads to

Ω22 =

{
Ω4

0 +
𝜔4

0 −Ω
4
0

2
[
tanh 𝛾(𝑡 − 𝑡𝑝) + 1

]}1/4

. (4.64)

The above equation implies

lim
𝑡→∞

Ω
(2)
22 = 𝜔0, (4.65)

which is the same as the case of ¤ℎ22 [Eq. (4.48)]. Integrating Eq. (4.64) again gives
the time dependence of 𝜙22, i.e., the phase of ¥ℎ22

𝜙22 =
1
𝛾

{
𝜔0

(
arctanh

Ω

𝜔0
+ arctan

Ω

𝜔0

)
−Ω0

(
arccoth

Ω0
Ω
+ arccot

Ω0
Ω

)}
− 𝜙0. (4.66)

This is the original form of BOB model [cf. Eq. (10) of Ref. [111]]. Clearly,
Eq. (4.66) is different from Eq. (4.49).

4.8.2 ℎ22

Following the same line of reasoning, the frequency of ℎ22 is also approximately
equal to Ω22. Therefore

| ¤ℎ22 |2 ∼ |ℎ22 |2Ω2
22 ∝

𝑑

𝑑𝑡
Ω2

22. (4.67)

Then using the assumption

|ℎ22 | = 𝑋 sech[𝛾(𝑡 − 𝑡𝑝)], (4.68)

we obtain

Ω22 = Ω0𝑋𝛾
−1/2 [tanh 𝛾(𝑡 − 𝑡𝑝) + 1]1/2. (4.69)

Integrating the above equation again can lead to a tedious expression of 𝜙22, we do
not show it here.

The BOB model for ℎ22, ¥ℎ22, together with the one for ¤ℎ22 [Eq. (4.46)], are used
to fit NR results, and are compared to QNMs in Fig. 4.17. We can see the model
works the worst for ℎ22.
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4.9 Appendix: The parity transformation of a complex strain
In this section, we show that the complex strain ℎ = ℎ+ − 𝑖ℎ× is transformed to the
complex conjugate if the whole system undergoes a parity transformation (including
the BBH system and observer).

According to Fig. 4.9, under the parity transformation two BHs exchange their
locations, while having their individual spin fixed, since axial vectors are not changed
by the parity transformation. Meanwhile, within the detector frame, the orientation
of detector arms and the propagation direction are flipped simultaneously, as shown
in Fig. 4.23 (a) and (b). We want to emphasize that the GW detector is a 2D plane
(formed by two arms). Its parity transformation can be equivalently achieved by
a 𝜋-rotation about the axis that is perpendicular to the detector plane. Therefore,
we further rotate the whole system about the vertical dash line by 𝜋, as shown in
Fig. 4.23 (c). We can see that the detector configuration changes back to the one
of (a), while the sky location of GW source changes from (𝜃𝑆, 𝜙𝑆) (the northern
hemisphere) to (𝜋 − 𝜃𝑆, 𝜙𝑆) (the southern hemisphere).

1

(a) (b) (c)

Arm x

Arm y

Arm x

Arm y

Arm x

Arm y

Parity π-rotation

(θS , φS ) (π − θS , φS )

Figure 4.23: Parity inversion of a SKd BBH binary system within the detector frame.
The arrow stands for the direction of incoming GW. The system undergoes a parity
inversion from (a) to (b). We further rotate the whole system around the vertical
dash line by 𝜋, which leads to (c). Comparing (a) and (c), the polar angle of sky
location 𝜃𝑆 becomes supplementary under the transformation.

Since GR preserves the parity, the strain ℎobs observed by a detector:

ℎobs = ℎ+𝐹+ + ℎ×𝐹×,

is not affected by the abovementioned transformations. The antenna patterns 𝐹+,×
have forms [127]

𝐹+ =
1
2
(1 + cos2 𝜃𝑆) cos 2𝜙𝑆, 𝐹× = cos 𝜃𝑆 sin 2𝜙𝑆,
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with (𝜃𝑆, 𝜙𝑆) the sky location of GW source relative to the detector. Under the
transformation from Fig. 4.23 (a) to (c), i.e., (𝜃𝑆, 𝜙𝑆) → (𝜋 − 𝜃𝑆, 𝜙𝑆) the antenna
patterns 𝐹+,× transform as

𝐹+ → 𝐹+, 𝐹× → −𝐹×.

Recalling that the ℎobs of Fig. 4.23 (a) and (c) are the same, we then have

ℎ+ → ℎ+, ℎ× → −ℎ×.

As a result,

ℎ = ℎ+ − 𝑖ℎ× → ℎ∗ = ℎ+ + 𝑖ℎ×. (4.70)
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C h a p t e r 5

EXCITATION OF 𝑓 -MODES DURING MERGERS OF SPINNING
BINARY NEUTRON STAR

[1] Sizheng Ma, Hang Yu, and Yanbei Chen. “Excitation of f-modes during
mergers of spinning binary neutron star.” Phys. Rev. D 101.12 (2020),
p. 123020. doi: 10.1103/PhysRevD.101.123020. arXiv: 2003.02373
[gr-qc].

5.1 Introduction
The detection of gravitational waves (GWs) and their electromagnetic counterparts
from binary neutron star (BNS) coalescence GW170817 [1–4], as well as the recent
event GW190425 [5], has started a new approach to study the physics of NSs. The
observations have already provided new constraints on tidal deformabilities [6–9],
the maximum mass [7, 10–13], radii [6, 9] and 𝑓 -mode frequencies [14] of NSs.
With the improvement of detector sensitivity, more BNS coalescence detections are
expected for the near future [15–18]. Furthermore, 3G detectors, like the Einstein
Telescope (ET) [19, 20] and the Cosmic Explorer (CE) [21], are being planned for
operation in the 2030s. These 3G detectors may increase neutron star black-hole
(NSBH) and BNS detection rates by 3-4 orders of magnitude [22]. As a result,
accurately modeling NSs in binary systems is necessary and timely.

During the inspiral process, NSs in binaries are distorted due to the tidal field
of their companions. Tidal coupling between compact objects in binaries allows
the equation of state (EoS) of these objects to leave an imprint on GW signals,
both during the early inspiral stage [23] and during the late inspiral stage [24,
25]. Under the equilibrium-tide approximation, the effect of tidal interaction can
be characterized by the relativistic tidal Love number. Hinderer et al. studied the
effect of equilibrium tide on gravitational waveforms, both using polytropic [23, 26]
and more realistic EoS [27]. They found that 3G detectors are likely able to probe
the clean tidal signatures from the early stage of inspirals. The post-Newtonian
(PN) [28–32] tidal effects were studied by Vines and Flanagan [33], who explicitly
obtained equations of motion with quadrupolar tidal interactions up to 1PN order.
They pointed out that spin-orbit coupling must be included at this order in order to

https://doi.org/10.1103/PhysRevD.101.123020
https://arxiv.org/abs/2003.02373
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conserve angular momentum. The spin-tidal couplings and higher PN orders were
studied later by Abdelsalhin et al. [34].

In the late stage of an inspiral, the binary’s orbital frequency sweeps through from
hundreds of Hz to thousands of Hz. As the tidal driving frequency comes close to
a normal mode frequency of the NS, internal stellar oscillations can be excited—
giving rise to dynamical tide (DT). Exchanges of energy and angular momentum
between orbital motion and stellar oscillations cause changes in orbital motion,
leading to additional features in the gravitational waveform.

The tidal excitation of 𝑓 -modes of stars was first investigated by Cowling [35]. Later,
several authors studied the DTs of non-spinning stars in the context of Newtonian
physics [36–38], and in the context of general relativity (incorporating gravitational
radiation reaction and treating the NS relativistically) [39–42]. In particular, Lai
(hereafter L94) [36] split the whole process into three regimes: the adiabatic,
resonant, and post-resonance regimes. The first one is described by the well-known
adiabatic approximation to high accuracy. At the post-resonance stage, they assumed
that each stellar mode oscillates mainly at its own eigenfrequency; by factoring out
the eigenfrequency, the motion can then be described by a slowly varying amplitude.
This allowed them to obtain a simple form of post-resonance tidal amplitude with
the stationary-phase approximation (SPA), which further leads to changes in the
orbital separation, energy, angular momentum and the phase of GWs. They found
that the amount of energy transfer due to resonance and the induced GW phase shift
are negligible, since the coupling between 𝑔-mode and tidal potential is weak. They
also pointed out that 𝑓 -mode frequency is too high for resonance to take place.

As it turns out, the effect of DT can be strengthened by stellar rotation1 [43, 44] and
orbital eccentricity [45–48]. In this chapter, we mainly focus on the significance of
stellar rotation. It is conventionally believed that a high rotation rate is unlikely when
binaries which enter the LIGO band, since such systems usually have had enough
time to evolve and spin down. For example, recent events GW170817 [1] and
GW190425 [5] are all consistent with low spin configurations. The fastest spinning
pulsar observed in BNS is PSR J0737-3039A, which spins at 44Hz [49]. Andersson
et al. [50] estimated that it will spin down to 35 Hz as it enters the LIGO band.
However, a high spin rate is still physically allowed. In such systems, retrograde
rotation (with respect to the orbit) drags the mode frequency to a lower value in the

1In the inertial frame, mode frequencies are shifted by the spin frequency to a lower value. As a
result, those modes become easier to be excited. See Fig. 5.2 for more details.
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inertial frame. This makes the tidal resonance take place earlier. The energy and
angular momentum transfers due to DTs in spinning stars were calculated in Ref.
[43]. Ho and Lai [44] found that the resonance of the dominant 𝑔-mode is enhanced
by spin if the star rotates faster than 100Hz, it can induce a phase shift of ∼0.05 rad
in the waveform. Additionally, 𝑓 -mode resonance can produce a significant phase
shift if the spin frequency is higher than 500Hz (depending on the EoS).

However, Ref. [43] was based on a configuration-space decomposition of the stellar
oscillation, which does not use an orthonormal basis for a spinning star. This
problem can be fixed by a phase-space mode expansion method [51]. Within this
formalism, Lai and Wu [52] investigated the effect of the inertial modes2, and found
that the phase shift is of order 0.1 rad when the spin frequency is lower than 100Hz.
The exception is 𝑚 = 1 mode, which can be excited at tens of Hz for nonvanishing
spin-orbit inclinations, and hence, generate a large phase shift in GW phase.

Accurate theoretical templates are needed in order to extract tidal information from
GWs. Although extensive work has been done on adiabatic tide (AT), the study
on DTs still requires improvements. For example, L94 [36] only estimated the
changes of several parameters due to DTs. Their work did not explicitly treat the
effect of tidal back-reaction on the orbit. The treatment did not provide detailed
time evolution near the resonance, either. One approximate model was provided by
Flanagan and Racine (hereafter FR07) [53]. They approximated the post-resonance
orbit by a point particle (PP) trajectory, since the energy and angular momentum
transfers only take place near the resonance. After that, the NS is treated as freely
oscillating without interacting with the orbit. This model averages the dynamics
over the tide-oscillation timescale, therefore does not describe the tidal perturbation
at shorter timescales.

More recently, Hinderer et al. (hereafter, H+16) [54, 55] incorporated DT, in partic-
ular, the resonance of the 𝑓 -mode in non-spinning NS, into the Effective-One-Body
(EOB) formalism. A frequency domain model was developed later in Ref. [56]. In
these works, DT is described by effective Love number

𝜆eff = −
𝐸𝑖 𝑗𝑄

𝑖 𝑗

𝐸𝑘𝑙𝐸
𝑘𝑙
, (5.1)

where 𝐸𝑖 𝑗 is the tidal field induced by the companion and 𝑄𝑖 𝑗 is the quadrupole
moment of the NS. To evaluate this quantity, they expanded the NS’s response

2Inertial modes, or generalized 𝑟-modes, are a class of modes in spinning NSs who are not purely
axial when spin frequency goes to 0, whereas 𝑟-modes are axial in this limit.
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function near resonance; and described the evolution of DT by Fresnel functions
in the resonant regime. They then used asymptotic analyses to piece adiabatic
expressions and Fresnel functions together to obtain a single formula. The formula
is precise prior to resonance. But it does not describe the phasing of the post-
resonance regime. This is not a big issue for slowly spinning NSs, since in this case
the mode is not excited until the end of coalescence, and post-resonance dynamics is
extremely short. Furthermore, because current detections are all consistent with low
spin configuration [1, 5], this model is accurate enough for current data analysis.
However, this method cannot describe rapidly spinning NSs [57]; given the fact
that rapidly spinning NSs are physically allowed, an accurate GW model for these
systems is still necessary. In this chapter, we extend H+16 [54, 55] to arbitrary spin,
by deriving new analytic formulae to describe the entire process of DT, accurate
throughout the adiabatic, resonant and post-resonance regimes. The formulae agree
with numerical integrations to high accuracies. We then carry out a systematic study
on the post-resonance dynamics, by using the tidal response formulae and the method
of osculating orbits. Finally, we analyze the impact of DT on parameter estimations
by Fisher information matrices formalism. In order to more optimistically illustrate
a best-case scenario in which 𝑓 -mode DT might bring more information, we will be
assuming high NS spin frequencies and stiff EoS. However, as we will discuss later,
the qualitative features of DT shown in this chapter do not depend on the specific
properties of NSs.

This chapter is organized as follows. In Sec. 5.2.1, we introduce the EoS used in
this chapter, and construct approximations for the spin’s effect on mode frequencies
using the Maclaurin spheroid model. In Sec. 5.2.2 we derive equations of motion
using the phase-space mode expansion method and a Hamiltonian approach. With
these at hand, we give a comprehensive discussion on DT in Secs. 5.3 and 5.4. In
Sec. 5.3, we mainly work on the stellar part. We first review previous studies on DT
in Sec. 5.3.1 and propose our new approach in Sec. 5.3.2, where we also compare
these models with numerical integrations. In Sec. 5.4, we use our new formulae and
the method of osculating orbits to study post-resonance orbital dynamics. We get a
set of first-order differential equations to describe the time evolution of osculating
variables (e.g., Runge-Lenz vector, angular momentum, and orbital phase). These
equations can provide rich information of the orbit near resonance, as discussed in
Sec. 5.4.3. Then in Sec. 5.4.4, we compare our osculating equations with numerical
integrations and provide a new way to obtain the post-resonance averaged orbit over
the tide-oscillation timescale, which agrees with FR07 [53] to the leading order in
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of tidal interaction. By combining our new method and FR07 [53], we obtain an
analytic expression for the time of resonance. Sec. 5.5 mainly focuses on GWs.
We first quantify the accuracy of several models by mismatch between waveforms.
Then in Sec. 5.5.2 we use the Fisher information matrix formalism to discuss the
influence of DT on parameter estimation. Finally, in Sec. 5.6 we summarize our
results.

Throughout this chapter we use the following conventions unless stated otherwise.
We use the geometric units with 𝐺 = 𝑐 = 1. We use Einstein summation notation,
i.e., summation over repeated indexes.

5.2 Basic equations of dynamical tides
This section will provide equations of motion of the system undergoing DT. In
Sec. 5.2.1, we construct approximations on spin’s influence on 𝑓 -mode frequencies,
based on the Maclaurin spheroid model. In Sec. 5.2.2 we use the phase-space mode
expansion method and a Hamiltonian approach to obtain the coupled equations of
motion.

5.2.1 Neutron star equations of state and properties
In this chapter, we shall use, as input for our studies, properties of spinning neutron
stars such as values of 𝑓 -mode frequencies and tidal Love numbers.

The properties of non-spinning NSs have been studied extensively. In this chapter,
we use two of them for comparison purposes. One is the H4 model [27], which
gives dimensionless Love number 𝑘2 = 0.104 for a NS with mass 𝑀NS = 1.4𝑀⊙
and radius 𝑅NS = 13.76km. Here 𝑘2 is defined as [23]

𝑘2 =
3
2
𝜆

𝑅5
NS
, (5.2)

where 𝜆 is the value of 𝜆eff in the equilibrium limit [Eq. (5.1)]. The other one is a
Γ = 2 polytrope with 𝑀NS = 1.4𝑀⊙ and 𝑅NS = 14.4km, which has 𝑘2 = 0.07524.
The latter model is the same as the one used in H+16 [54, 55]. Their 𝑓 -mode
frequencies are 2𝜋 × 1.51kHz and 2𝜋 × 1.55kHz, respectively, consistent with the
universal relation of NS properties [58–61]. We want to note that H4 is a stiff EoS
that is not favored by GW170817 [7], yet our focus is on exploring what information
DT might bring, hence the H4 EoS will be more “optimistic,” since it leads to
stronger tidal features than the softer, more compact EoS.
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For spinning NSs, 𝑓 -mode frequencies will split, and the Love number will also
change. Unlike the non-spinning case, there is not yet a systematic parameterization
of spinning NS properties, depending on EoS. For Love number, we shall simply use
their non-spinning values; we will justify the validity of this treatment later [below
Eq. (5.35)]. On the other hand, since the 𝑓 -mode frequency split is important for
bringing down the orbital frequency required for resonance, we will need more
accurate input. Oscillation of spinning NS has been studied extensively in different
limits, such as the (post-)Newtonian limit [62–68], the slow-rotation limit [69–73]
and the Cowling approximation [74–77] (see Sec. 8.6.1 of Ref. [78] and references
therein). The case of full relativistic NS with arbitrary high rotation rate has also
been studied, for example, by Zink et al. [79], by using nonlinear time-evolution
code. In this chapter, for simplicity, we shall use the features of Maclaurin spheroid
to construct an approximation on how spin influences 𝑓 -mode frequencies.

The Maclaurin spheroid describes a self-gravitating, rigidly rotating body of uniform
density in Newton’s theory. In the coordinate system (𝑥′, 𝑦′, 𝑧′) which co-rotates
with the NS, the NS surface in hydrostatic equilibrium is described by [80]

𝑥′2 + 𝑦′2

𝑎2
1
+ 𝑧
′2

𝑎2
3
= 1, (5.3)

where we assume that the spin vector is along the 𝑧′-axis. The spheroid’s semi-axes
in the 𝑥′(𝑦′)- and 𝑧′-directions are denoted by 𝑎1 and 𝑎3, respectively. They are
related to the eccentricity 𝑒𝑠 of the star by

𝑒𝑠 =

√√
1 −

𝑎2
3

𝑎2
1
. (5.4)

Note that the NS surface is oblate due to the spin (𝑎3 < 𝑎1), so the stellar eccentricity
is always smaller than 1. Hydrostatic equilibrium lead to a one-to-one mapping
between the spin angular frequency Ω𝑠 and the stellar eccentricity 𝑒𝑠 [80]

Ω2
𝑠 =

2𝜋𝜌
𝑒3
𝑠

[
(1 − 𝑒2

𝑠 )1/2(3 − 2𝑒2
𝑠 ) sin−1 𝑒𝑠 − 3𝑒𝑠 (1 − 𝑒2

𝑠 )
]
, (5.5)

where 𝜌 is the mass density of the star. For a Maclaurin spheroid, 𝑓 -mode frequen-
cies are specified in terms of the stellar eccentricity 𝑒𝑠, which is further determined by
𝜌 and Ω𝑠. In this chapter we mainly focus on the ( 𝑗 = 2, 𝑘 = ±2) and ( 𝑗 = 2, 𝑘 = 0)
modes. Here ( 𝑗 , 𝑘) are the angular quantum numbers of multipole expansion. Their
mode frequencies (in the co-rotating frame) are given by [see Eq. (32) of Ref. [81]
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and Eqs. (12)–(13) of Ref. [82]]

𝜔2
0

Ω2
𝑠

=
1 + 𝜁2

0

1 + 3𝜁2
0

[
(1 − 9𝜁2

0 ) +
12𝜁0(1 − 𝜁0arccot𝜁0)
(1 + 3𝜁2

0 )arccot𝜁0 − 3𝜁0

]
, (5.6a)

𝜔2±
Ω𝑠

= −1 ±
[
1 −

4𝑒2
𝑠𝑅2

(3 − 2𝑒2
𝑠 ) sin−1 𝑒𝑠 − 3𝑒𝑠 (1 − 𝑒2

𝑠 )1/2

]1/2
, (5.6b)

where 𝜁0 =
√︁

1 − 𝑒2
𝑠/𝑒𝑠 and

𝑅2 =
3(1 − 𝑒2

𝑠 )1/2
8𝑒𝑠

∞∑︁
𝑝=3

(2𝑝 − 2)!!
(2𝑝 − 1)!!𝑒

2(𝑝−2)
𝑠 +

1 − 𝑒2
𝑠

𝑒2
𝑠

[
arcsin 𝑒𝑠 −

𝑒𝑠

(1 − 𝑒2
𝑠 )1/2

]
,

=
10𝑒4

𝑠 − 7𝑒2
𝑠 − 3

8𝑒3
𝑠

√︁
1 − 𝑒2

𝑠

+
3 + 8𝑒2

𝑠 − 8𝑒4
𝑠

8𝑒4
𝑠

arcsin 𝑒𝑠 . (5.7)

It is straightforward to see that each mode has two frequencies with opposite signs.
The positive (negative) one corresponds to the prograde (retrograde) mode. The
absolute value of two (2, 2) mode eigenfrequencies split due to the spin. This is an
analog to the Zeeman split.

Eqs. (5.5)–(5.7) are valid for any 0 ≤ 𝑒𝑠 < 13. In the small-eccentricity (low-
rotation) regime, we have

Ω𝑠 =

√︂
8𝜋𝜌
15

𝑒𝑠 + O(𝑒3
𝑠 ), 𝑅2 = − 2

15
𝑒𝑠 + O(𝑒3

𝑠 ). (5.8)

As a result,𝜔0,2±/Ω𝑠 in Eqs. (5.6) diverge when 𝑒𝑠 → 0. However, mode frequencies
𝜔0,2± themselves converge to finite values, which are given by

𝜔2± = ±
√︂

16𝜋𝜌
15
−

√︂
8𝜋𝜌
15

𝑒𝑠 + O(𝑒2
𝑠 ), (5.9a)

𝜔0 =

√︂
16𝜋𝜌

15
+ O(𝑒2

𝑠 ), (5.9b)

where the leading term
√︁

16𝜋𝜌/15 is the mode frequency of a non-spinning NS. But
it turns out that this prediction differs from the true 𝑓 -mode frequencies for a realistic
EoS, if we use the mean density of the star as 𝜌. This is due to the assumption of
homogeneity and incompressibility in the Maclaurin case. We refer the interested
readers to Ref. [69] for a comprehensive comparison between the Maclaurin spheroid
and the relativistic NS in the slow-rotation limit. Therefore, one should not directly

3Maclaurin spheroids become unstable as 𝑒𝑠 > 0.813, corresponds to ∼ 900 Hz. Such a high
rotation rate, however, is not of our interest.
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use Eqs. (5.6). To obtain 𝑓 -mode frequency for a NS with generic spin, we define an
effective density 𝜌eff, such that

√︁
16𝜋𝜌eff/15 coincides with 𝑓 -mode frequency of a

non-spinning NS with realistic EoS (H4 EoS or Γ = 2 polytropic EoS). Meanwhile,
we still assume the functional dependence of the mode frequencies 𝜔0,2± on Ω𝑠 and
𝜌eff to be the same as Eqs. (5.6). With such approximation, 𝑓 -mode frequencies for
non-spinning NSs can be extended to NSs with generic spins. In Fig. 5.1, we plot
𝜔0, |𝜔2± | as functions of Ω𝑠 with both H4 EoS and Γ = 2 polytropic EoS. Results
agree qualitatively with previous studies [see Fig. 5 of Ref. [79]].
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Figure 5.1: The dependence of 𝑓 -mode frequencies (in the co-rotating frame) on the
spin for NS with mass 1.4𝑀⊙, following our prescription. The H4 EoS, represented
by solid lines, gives 𝜔0, |𝜔2± | = 2𝜋 × 1.51Hz for non-spinning NS, while Γ = 2
polytrope gives 2𝜋×1.55Hz. The frequencies of prograde (black line) and retrograde
(blue line) modes split due to spin.

5.2.2 Equations of motion
Using the same convention as Ref. [44], we consider a BNS system with individual
masses 𝑀1 and 𝑀2 moving in the 𝑥 − 𝑦 plane, whose orbital angular momentum
is along the 𝑧-axis. For simplicity, we assume that only 𝑀1 is tidally deformed.
We still use (𝑥′, 𝑦′, 𝑧′) as the body coordinate system that co-rotates with 𝑀1. Two
coordinate planes 𝑥′ − 𝑦′ and 𝑥 − 𝑦 intersect at the line ℓ. The angle between the
𝑧-axis and the 𝑧′-axis is 𝛽 and the angle between ℓ and the 𝑦-axis is 𝛼. And let 𝛾 be
the angle that the star rotates about 𝑧′-axis. Therefore two coordinate systems are
related by Euler angles (𝛼, 𝛽, 𝛾 = Ω𝑠𝑡).
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5.2.2.1 The evolution of stellar oscillation

In the co-rotating frame, the oscillation of the rotating star is governed by4 [44, 51]

𝜕2ξ

𝜕𝑡2
+ 2𝛀𝑠 ×

𝜕ξ

𝜕𝑡
+C · ξ = −∇𝑈, (5.10)

where ξ is the Lagrangian displacement of fluid elements, andC is a self-adjoint op-
erator. The external gravitational potential𝑈 can be expanded in terms of spherical
harmonics

𝑈 = −𝐺𝑀2
∑︁
𝑙𝑚

𝑊𝑙𝑚𝑟
𝑙
𝑠

𝑟 𝑙+1
𝑒−𝑖𝑚𝜙(𝑡)𝑌𝑙𝑚 (𝜃, 𝜄),

= −𝐺𝑀2
∑︁
𝑙𝑚𝑚′

𝑊𝑙𝑚𝑟
′𝑙
𝑠

𝑟 𝑙+1
𝑒−𝑖𝑚𝜙(𝑡)+𝑖𝑚

′Ω𝑠𝑡𝑌𝑙𝑚′ (𝜃′, 𝜄′)D (𝑙)𝑚′𝑚 (𝛼, 𝛽), (5.11)

where 𝑟 is the separation between the two stars, 𝜙(𝑡) is the orbital phase, and
𝑟𝑠 = 𝑟

′
𝑠 =

√︁
𝑥2 + 𝑦2 + 𝑧2 is the distance of fluid element to the origin. Here (𝑙, 𝑚)

are the angular quantum numbers of multipole expansion; for example 𝑙 = 0, 1 are
the monopole and dipole pieces, which do not couple to NS internal oscillations,
while tidal effects start from 𝑙 = 2. Variables 𝜃, 𝜄 are the angular coordinates of
fluid elements in the inertial (unprimed) coordinate system; and 𝜃′, 𝜄′ are in the
co-rotating (primed) coordinate system. We should note that Ω𝑠 is always positive
in our convention. The quantity𝑊𝑙𝑚 is given by [86]

𝑊𝑙𝑚 = (−1) (𝑙+𝑚)/2
[

4𝜋
2𝑙 + 1

(𝑙 + 𝑚)!(𝑙 − 𝑚)!
]1/2 [

2𝑙
(
𝑙 + 𝑚

2

)
!
(
𝑙 − 𝑚

2

)
!
]−1

, (5.12)

which is non-vanishing only when 𝑙 + 𝑚 = even. We have used the Wigner D-
functions to transform spherical harmonics between the unprimed and primed coor-
dinate systems.

Using the phase-space mode expansion method developed in Ref. [51], the La-
grangian displacement and its time derivative can be expressed as(

ξ

ξ

)
=

∑︁
𝜎

𝑐𝜎 (𝑡)
(

ξ𝜎

−𝑖𝜔𝜎ξ𝜎

)
, (5.13)

4Throughout this chapter we ignore the effect of dissipation. For 𝑓 -modes, the most significant
dissipation comes from the GW radiation of the mode itself, with a damping timescale of∼ 0.03 s [83],
which is much longer than the mode period in the co-rotating frame. Shear and bulk viscosity due
to electron scattering [36], as well as Urca reactions [84] have even more negligible effects on the
dynamics. Therefore, we also assume that the background star’s spin is unaffected by the tidal
interaction (see also Ref. [85]).
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where modes are labeled by 𝜎 = ( 𝑗 , 𝑘, 𝜈 = ±). The angular quantum numbers 𝑗
and 𝑘 are integers with 𝑘 = ± 𝑗 ,±( 𝑗 − 1) . . . 0. In our case the mode functions with
negative 𝑘 are related to the positive ones by complex conjugate (up to a constant),
therefore we restrict ourselves to 𝑘 ≥ 0. The label 𝜈 stands for the propagation
direction of modes, as mentioned in Sec. 5.2.1.

The modes in Eq. (5.13) are normalized by the condition

⟨ξ𝛼, ξ𝛼⟩ = 1 (5.14)

where the inner product is defined by

⟨ξ𝜎, ζ𝜏⟩ =
∫

𝑑3x′𝜌(𝑥′)ξ∗𝜎 · ζ𝜏 . (5.15)

The amplitudes 𝑐𝜎 (𝑡) satisfy the equation

¤𝑐𝜎 (𝑡) + 𝑖𝜔𝜎𝑐𝜎 (𝑡) = −
𝑖

𝑏𝜎
⟨ξ𝜎,∇𝑈⟩ , (5.16)

where 𝑏𝜎 depends on the structure of the star

𝑏𝜎 = ⟨ξ𝜎, 2𝑖𝛀𝑠 × ξ𝜎⟩ + 2𝜔𝜎 ⟨ξ𝜎, ξ𝜎⟩ . (5.17)

Henceforth we restrict our discussions to systems where the spin is anti-aligned
with the orbital angular momentum, with (𝛼, 𝛽) = (0, 𝜋). In this case, the Wigner
D-functions reduce to D (2)

𝑚′𝑚 = 𝛿𝑚′,−𝑚, and Eq. (5.11) becomes

𝑈 = −𝐺𝑀2
∑︁
𝑙𝑚

𝑊𝑙𝑚𝑟
𝑙
𝑠

𝑟 𝑙+1
𝑒−𝑖𝑚(𝜙+Ω𝑠𝑡)𝑌𝑙,−𝑚 (𝜃′, 𝜄′). (5.18)

Here we focus on ( 𝑗 = 2, 𝑘 = 2, 0) modes coupled to the gravitational fields labeled
by (𝑙 = 2, 𝑚 = −2, 0), since they are the leading order terms in 𝑅NS/𝑟, and give the
strongest effects.

The amplitudes of these modes are denoted by 𝑐0, 𝑐2,+ and 𝑐2,−, where we have
suppressed the mode index 𝑗 . The equations of motion of these amplitudes are
given by

¤𝑐0 + 𝑖𝜔0𝑐0 = 𝑓0, (5.19a)

¤𝑐2,𝜈 + 𝑖𝜔2,𝜈𝑐2,𝜈 = 𝑓2,𝜈, (5.19b)

with the driving force 𝑓2,𝜈 and 𝑓0 given by the RHS of Eq. (5.16). In particular, for
the 𝑓 -mode of Maclaurin spheroid we know [44, 81]

ξ2,2 =
1√︁
2𝐼 𝑠𝑥𝑦
[(𝑥′ + 𝑖𝑦′), 𝑖(𝑥′ + 𝑖𝑦′), 0], (5.20a)
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ξ2,0 = 𝑖𝑉

[
−𝑥′ − 2

𝑖Ω𝑠

𝜔0
𝑦′,−𝑦′ + 2

𝑖Ω𝑠

𝜔0
𝑥′, 2𝑧′

]
, (5.20b)

where the coefficients 𝑉 and 𝐼 𝑠𝑥𝑦 = 𝐼𝑥𝑥 + 𝐼𝑦𝑦 are determined by the normalization
condition Eq. (5.14). Here 𝐼𝑥𝑥 and 𝐼𝑦𝑦 are the components of the moment of inertia
𝐼𝑖 𝑗 =

∫
𝜌𝑥′

𝑖
𝑥′
𝑗
𝑑V′. We do not provide the expressions of 𝑉 and 𝐼 𝑠𝑥𝑦 since they are not

needed in the future—in the final equations of motion, these quantities will absorbed
into tidal Love number and 𝑓 -mode frequency of the NS, see Eq. (5.34), (5.35) and
text around them. Then we get

𝑓2,± =
𝑖
√︁
𝐼 𝑠𝑥𝑦

𝜔2,± +Ω𝑠

3𝑀2

4
√

2𝑟3
𝑒2𝑖(𝜙+Ω𝑠𝑡) , (5.21a)

𝑓0 =
−𝑖𝑀2

𝑟3
Ω𝑠

4𝑉𝜔2
0
. (5.21b)

In fact, Eqs. (5.21) are not limited to Maclaurin spheroid. For a non-Maclaurin NS
with low spin, we have [based on the definition of ( 𝑗 = 2, 𝑘 = 2) mode]

ξ22 = ℎ22(𝑟𝑠)∇𝑌22(𝜃′, 𝜄′), (5.22)

where ℎ22(𝑟𝑠) depends on the EoS. This always leads to

𝑓2,± ∼
1
𝑟3 𝑒

2𝑖(𝜙+Ω𝑠𝑡) , (5.23)

with the coefficient eventually absorbed into tidal Love numbers. For larger spins,
the NS’s 𝑗 = 2 modes will couple to 𝑗 ≠ 2 tidal gravity field (which are weaker),
we ignore this coupling in this chapter.

5.2.2.2 Orbital evolution

By coupling the orbital motion to the NS modes, one can write the Hamiltonian of
the whole system as [53]

𝐻 =
𝑝2
𝑟

2𝜇
+

𝑝2
𝜙

2𝜇𝑟2 −
𝜇𝑀𝑡

𝑟
+ 𝑏0(𝜔0 |𝑐0 |2 + 𝑖 𝑓0𝑐∗0 − 𝑖 𝑓

∗
0 𝑐0)

+
∑︁
𝜈=±

𝑏2,𝜈 (𝜔2,𝜈 |𝑐2,𝜈 |2 + 𝑖 𝑓2,𝜈𝑐∗2,𝜈 − 𝑖 𝑓
∗
2,𝜈𝑐2,𝜈), (5.24)

where 𝜇 is the reduced mass and 𝑀𝑡 is the total mass. The generalized coordinates
of the system consists of (𝑟, 𝜙, 𝑐0, 𝑐2,±), and the conjugate momenta (𝑝𝑟 , 𝑝𝜙, 𝑖𝑏0𝑐

∗
0,

𝑖𝑏2,±𝑐∗2,±). From Hamilton’s equations we obtain the equations of motion

¥𝑟 − 𝑟 ¤𝜙2 = −𝑀𝑡

𝑟2 +
3𝑖𝑏0
𝜇𝑟
(𝑐∗0 𝑓0 − 𝑐0 𝑓

∗
0 )
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+
∑︁
𝜈=±

3𝑖𝑏2,𝜈

𝜇𝑟
(𝑐∗2,𝜈 𝑓2,𝜈 − 𝑐2,𝜈 𝑓

∗
2,𝜈), (5.25a)

𝑟 ¥𝜙 + 2 ¤𝑟 ¤𝜙 =
∑︁
𝜈=±

2𝑏2,𝜈

𝜇
(𝑐∗2,𝜈 𝑓2,𝜈 + 𝑐2,𝜈 𝑓

∗
2,𝜈). (5.25b)

Equations (5.19), together with Eqs. (5.25), are a complete set of equations that
describe the conservative evolution of the inspiraling BNS system. To include the
effect of gravitational radiation, we add the Burke-Thorne dissipation term to the
orbital evolution [23]

𝑎𝑖 = −
2
5
𝑥 𝑗
𝑑5QTotal

ĳ

𝑑𝑡5
, (5.26)

where𝑄Total
𝑖 𝑗

is the total quadrupole moment of the system in the inertial frame, which
consists of the orbital part and the stellar part, i.e., 𝑄Total

𝑖 𝑗
= 𝑄𝑖 𝑗 + 𝜇(𝑥𝑖𝑥 𝑗 − 𝑟2𝛿𝑖 𝑗/3).

For simplicity, we neglect the effect of radiation reaction on the mode evolution.

To express 𝑄𝑖 𝑗 in terms of the mode amplitudes, we start from the definition of the
stellar quadrupole moment in the co-rotating frame

𝑄′𝑖 𝑗 =

∫
𝑑3x′𝜌

(
x′ix′j − 1

3
r′2𝛿ĳ

)
. (5.27)

The unperturbed quadrupole moment vanishes under the axisymmetric assumption.
To linear order in perturbation, we get5 [87]

𝛿𝑄′𝑖 𝑗 =

∫
𝑑3x′𝛿𝜌

(
x′ix′j − 1

3
r′2𝛿ij

)
+

∫
𝑑3x′∇ ·

[
𝜌ξ

(
x′ix′j − 1

3
r′2𝛿ĳ

)]
=

∫
𝑑3x′𝜌

(
x′i𝜉′j + x′j𝜉′i − 2r′

3
𝜉′r𝛿

ĳ
)
, (5.28)

where we have used 𝛿𝜌 = −∇ · (𝜌ξ) to simplify the expression. The tensorial
components of symmetric tracefree tensors are related to their harmonic components
𝑞′
𝑙𝑚

through Clebsch-Gordan coefficients. The transformation can be expressed in
a compact form [88]

𝛿𝑄′𝑖 𝑗 = 𝐽𝑖 𝑗𝑚 𝑞
′
𝑚, (5.29a)

𝑞′𝑚 = (𝐽𝑖 𝑗𝑚 )∗𝛿𝑄′𝑖 𝑗 , (5.29b)

where we suppress the index 𝑙 of 𝑞′ since we only consider 𝑙 = 2 components, and

𝐽∗−2 = 𝐽2 =
1
2

©«
1 𝑖 0
𝑖 −1 0
0 0 0

ª®®¬ , 𝐽0 =
1
√

6

©«
−1 0 0
0 −1 0
0 0 2

ª®®¬ .
5The symbol 𝛿 on the RHS represents Eulerian perturbation, however, the symbol on the LHS

only means the perturbation of the integral.
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Combining Eqs. (5.20), (5.28) and (5.29b), we obtain

𝑞′∗−2 = 𝑞′2 =

√︃
2𝐼 𝑠𝑥𝑦 (𝑐2,+ + 𝑐2,−), (5.30a)

𝑞′0 =

√︂
2
3
𝑉𝜔0
Ω𝑠

(
𝑐0,+ + 𝑐∗0,+

)
. (5.30b)

Note that the harmonic component 𝑞′2 is a linear combination of retrograde and
prograde modes, which oscillates at two different mode frequencies. So one can
expect that 𝑞′2 satisfies a second order differential equation.

So far the expressions are in the co-rotating frame; to transform them to the inertial
coordinate system, one can use the relationship between tensor components in the
two frames

𝑄𝑖 𝑗 = 𝑅𝑖𝑚𝑅
𝑗
𝑛𝑄
′𝑚𝑛,

where the operator 𝑅 first rotates𝑄′𝑚𝑛 along the 𝑧′-axis by −Ω𝑠𝑡, and does the other
rotation along the new 𝑥-axis by 𝜋, i.e.,

𝑅 =
©«

cosΩ𝑠𝑡 − sinΩ𝑠𝑡 0
− sinΩ𝑠𝑡 − cosΩ𝑠𝑡 0

0 0 −1

ª®®¬ .
This results in

𝑞2 = 𝑒2𝑖Ω𝑠𝑡𝑞′−2, (5.31a)

𝑞0 = 𝑞′0. (5.31b)

Plugging Eqs. (5.30) and (5.31) into Eqs. (5.25), we finally get

¥𝑟 − 𝑟 ¤𝜙2 = −𝑀𝑡

𝑟2 +
3𝑀2

2𝜇𝑟4

√︂
3
2
𝑞′0 −

9𝑀2

2𝜇𝑟4 𝐴 +
1
5

√︂
2
3
𝑑5q′0
𝑑t5

𝑟

− 2𝑟
5

Re
[
𝑒−2𝑖𝜙 𝑑

5

𝑑t5
(q′2𝑒

−2𝑖Ω𝑠𝑡)
]
− 𝜇

15
𝑑5r2

𝑑t5
𝑟 − 𝜇𝑟

5
Re

[
𝑒−2𝑖𝜙 𝑑

5

𝑑t5
(𝑟2𝑒2𝑖𝜙)

]
, (5.32a)

𝑟 ¥𝜙 + 2 ¤𝑟 ¤𝜙 =
3𝑀2

𝜇𝑟4 𝐵 −
2𝑟
5

Im
[
𝑒−2𝑖𝜙 𝑑

5

𝑑t5
(𝑞′2𝑒

−2𝑖Ω𝑠𝑡)
]
− 𝜇𝑟

5
Im

[
𝑒−2𝑖𝜙 𝑑

5

𝑑t5
(𝑟2𝑒2𝑖𝜙)

]
,

(5.32b)

¥𝑞′2 − 2𝑖𝜔3 ¤𝑞′2 + 𝜔
2
2𝑞
′
2 =

3
2
𝜔2

2𝜆2𝑀2

𝑟3 𝑒2𝑖𝜙+2𝑖Ω𝑠𝑡 − 3𝑀2

2𝑟3 𝑒
2𝑖𝜙+2𝑖Ω𝑠𝑡

×
𝜔2

2𝜆2(Ω𝑠 − 𝜔3)
Ω2
𝑠 − 2Ω𝑠𝜔3 − 𝜔2

2

(
2 ¤𝜙 + 2Ω𝑠 − 𝜔3 + 3𝑖

¤𝑟
𝑟

)
, (5.32c)
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¥𝑞′0 + 𝜔
2
0𝑞
′
0 = −

√︂
3
2
𝜔2

0𝜆0𝑀2

𝑟3 , (5.32d)

where we have defined two real variables 𝐴 and 𝐵 as

𝑞′2𝑒
−2𝑖𝜙−2𝑖Ω𝑠𝑡 = 𝐴 + 𝑖𝐵. (5.33)

In Eqs. (5.32), 𝐴 is proportional to the radial force while 𝐵 to the azimuthal torque.
We have also defined

𝜆2 = 𝐼 𝑠𝑥𝑦/𝜔2
2, (5.34)

𝜆0 = (𝐼 𝑠𝑥𝑦 + 4𝐼𝑧𝑧)/(3𝜔2
0). (5.35)

It is straightforward to identify these two quantities as the Love numbers of the (2, 2)
and (2, 0) modes, respectively.

When deriving Eqs. (5.32), we have assumed the star is described as a Maclaurin
spheroid. Nonetheless, this affects only the values of the coupling constants, 𝜆0 and
𝜆2. The form of Eqs. (5.32) holds generically [as we discussed in Eqs. (5.22) and
(5.23)]. To generailize the result to a realistic EoS, one only needs to replace the
values of𝜆0 and𝜆2 accordingly—our equation of motion is an effective theory for the
evolution of binary system (without relativistic corrections). Under the assumption
of homogeneity and incompressibility, the Love numbers become 𝜆0 = 𝜆2 = 𝑅5

NS/2
for a non-spinning NS. This leads to 𝑘2 = 3/4 [see Eq. (5.2) and Ref. [89]].
However, this value differs significantly from those obtained from more realistic
EoS (cf. numbers provided in Sec. 5.2.1). Hence in this chapter, we obtain values of
𝜆0 and 𝜆2 by inserting values of 𝑅NS and 𝑘2 from H4 and Γ = 2 polytropic EoS into
Eq. (5.2); and we ignore the spin corrections to them. As a result, our calculations
do not rely on the expressions of the auxiliary variables we introduced in Eq. (5.20).

The two frequency parameters 𝜔2 and 𝜔3 in Eqs. (5.32) are given by

𝜔2
2 = −𝜔2+𝜔2−, (5.36)

𝜔3 = −𝜔2+ + 𝜔2−
2

. (5.37)

The minus sign appears in Eq. (5.36) because𝜔2± have opposite signs. As discussed
in the last subsection, we assume the mode frequencies dependence on Ω𝑠, given in
Eqs. (5.6), is still valid, which implies

𝜔3 = Ω𝑠, (5.38)
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and the second term on the RHS of Eq. (5.32c) vanishes in our case.

We can see that Eqs. (5.32) reduce to the conventional mode-orbit equations when
Ω𝑠 → 0 [cf. Eq. (6) of Ref. [23]]. As discussed by Ref. [23], high order time
derivatives in the radiation reaction terms can be lowered by repeatedly replacing
the second time derivatives by contributions from the conservative part alone. In
this way, Eqs. (5.32) become a set of second-order ordinary differential equations.

5.3 Model of DT: Stellar oscillations
As we have discussed in the introduction, both L94 [36] and FR07 [53] focused
on the total change in the orbital phase when the system evolves through a DT
resonance. This is because for 𝑔- and/or 𝑟-modes that have weak tidal couplings,
only the resonant regime plays a significant role in affecting the orbital evolution.
On the other hand, H+16 [54, 55] proposed an EOB formalism to study the strongly
tidal-coupled 𝑓 -mode by introducing an effective Love number, which works well
when the driving frequency is comparable yet still less than the eigenfrequency of
the 𝑓 -mode. In this and the next sections, we will use semi-analytic methods to
carry out a systematic study of DT, and provide an alternative way to describe the
full dynamics of DT, including both stellar and orbital evolutions. This section
mainly focuses on the stellar part, where we extend H+16 [54, 55] and find analytic
solutions of stellar evolution that are valid in all regimes (adiabatic, resonant and
post-resonance) and for arbitrary spins. With the new analytic expressions, we can
have a better understanding on DT. We first review the approximations presented in
L94 [36] and H+16 [54, 55] in Sec. 5.3.1, and then in Sec. 5.3.2 we propose our new
approximations and compare them with numerical integrations. In the next section
(Sec. 5.4), we will apply our approximation to describe tidal back-reaction.

5.3.1 Previous studies on DT
As studied in L94 [36], the (2, 2) mode 𝑞′2 in a non-spinning NS can be treated as a
harmonic oscillator driven by tidal force

¥𝑞′2 + 𝜔
2
2𝑞
′
2 =

3
2
𝜔2

2𝜆2𝑀2

𝑟3 𝑒2𝑖𝜙. (5.39)

When the orbital frequency Ω ≪ 𝜔2, the NS adiabatically follows the tidal driving,
with its main time dependence given by 𝑒2𝑖𝜙. Therefore it is appropriate to define a
variable 𝑏 = 𝑞′2𝑒

−2𝑖𝜙, which satisfies

¥𝑏 + 4𝑖Ω ¤𝑏 + (𝜔2
2 − 4Ω2)𝑏 =

3
2
𝜔2

2𝜆2𝑀2

𝑟3 . (5.40)
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Here we have ignored time derivative of orbital frequency since its rate of change due
to GW radiation is small compared with other variables. Note that the quantity 𝐴+𝑖𝐵
we defined in the last section reduces to 𝑏 when the spin vanishes. Since the major
time dependence 𝑒−2𝑖𝜙 has been factored out, we have ¥𝑏 ≪ 4Ω ¤𝑏 ≪ (𝜔2

2 − 4Ω2)𝑏, it
is safe to ignore ¥𝑏 and ¤𝑏, leading to the well-known adiabatic approximation

𝑏 =
3𝜔2

2𝜆2𝑀2

2𝑟3
1

𝜔2
2 − 4Ω2

. (5.41)

As Ω approaches 𝜔2/2, the mode gets resonantly excited. L94 [36] assumed that
near resonance, the mode mainly oscillates at its natural frequency 𝜔2, so they
defined a slowly varying complex amplitude 𝑐 = 𝑞′2𝑒

−𝑖𝜔2𝑡 , which satisfies6

¥𝑐 + 2𝑖𝜔2 ¤𝑐 =
3
2
𝜔2

2𝜆2𝑀2

𝑟3 𝑒2𝑖𝜙−𝑖𝜔2𝑡 . (5.42)

Similarly, by neglecting ¥𝑐, this equation can be solved as

𝑐 =
3

4𝑖𝜔2

∫ 𝑡 𝜔2
2𝜆2𝑀2

𝑟′3
𝑒2𝑖𝜙′−𝑖𝜔2𝑡

′
𝑑t′, (5.43)

which can in turn be evaluated with SPA, giving the post-resonance amplitude:

|𝑐 | = 3
4𝜔2

𝜔2
2𝜆2𝑀2

𝑟3
𝑟

√︂
𝜋

¤Ω𝑟
. (5.44)

Hereafter we use the subscript 𝑟 to refer to the point of resonance. As we can see, the
treatment in L94 [36] is piecewise: they separated out distinct time dependence in
different regimes. This is enough for evaluating the energy and angular momentum
transfers from orbital motion to NS mode since they only depend on the post-
resonance amplitude. However, neither the detailed time evolution of the mode, nor
the orbital dynamics in the resonant regime were provided.

L94 [36] was improved by H+16 [54, 55], who solved Eq. (5.39) with the Green
function, obtaining

𝑞′2(𝑡) =
3

2𝜔2

∫ 𝑡 𝜔2
2𝜆2𝑀2

𝑟′3
𝑒2𝑖𝜙′ sin𝜔2(𝑡 − 𝑡′)𝑑t′. (5.45)

Near resonance, Eq. (5.45) reduces to Eq. (5.43) if one writes sin𝜔2(𝑡 − 𝑡′) =
1
2𝑖 [𝑒

2𝑖𝜔2 (𝑡−𝑡′) − 𝑒−2𝑖𝜔2 (𝑡−𝑡′)] and neglects the term that does not contribute to SPA.
However, Eq. (5.45) is exact in all regimes. This lays the foundation to obtain a

6The other term proportional to 𝑞′2𝑒
𝑖𝜔2𝑡 doesn’t contribute to SPA in Eq. (5.44)
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single continuous function to represent the stellar motion during DT. Instead of using
SPA to get the final amplitude of the mode, H+16 [54, 55] expanded the integrand
in Eq. (5.43) near resonance

𝑐 =
3

4𝑖𝜔2

𝜔2
2𝜆2𝑀2

𝑟3
𝑟

∫ 𝑡

𝑒𝑖
¤Ω𝑟 (𝑡′−𝑡𝑟 )2t′, (5.46)

which becomes a Fresnel function. This approximation is accurate within the
duration of the resonance 𝑇dur

|𝑡 − 𝑡𝑟 | ≪ 𝑇dur, (5.47)

where𝑇dur =
√︃

𝜋
¤Ω𝑟

. They then asymptotically matched Eq. (5.46) to Eq. (5.41). More

specifically, they first observed that Eq. (5.41) diverges as (𝑡 − 𝑡𝑟)−1 as Ω→ 𝜔2/2

𝑏𝑒2𝑖𝜙−𝑖𝜔2𝑡 ∼ −𝑀2𝜆2𝜔
2
2

3
8𝜔2𝑟

3
𝑟

𝑒2𝑖𝜙𝑟−𝑖𝜔2𝑡

¤Ω𝑟 (𝑡 − 𝑡𝑟)
. (5.48)

H+16 [54, 55] used the RHS of Eq. (5.48) as a counterterm: they added the adiabatic
solution in Eq. (5.41) and the resonant one in Eq. (5.46) up and then subtracted the
counterterm. In this way, the divergence is cured, and the sum has the correct
asymptotic behavior in both the adiabatic and resonant regimes. This new solution
cannot describe the post-resonance evolution, as is expected because the asymptotic
behavior in that regime was not yet considered. As pointed out in the introduction,
this approximation is sufficient for non-spinning NS if the post-resonance regime
is short. However, for highly spinning systems, we must extend this method to the
post-resonance regime.

5.3.2 New approximation and numerical comparisons
Let us start from the equation that governs the (2, 2) mode [Eq. (5.32c)]. By
defining 𝑥 = 𝑞′2𝑒

−𝑖Ω𝑠𝑡 , it becomes

¥𝑥 + 𝜁2𝑥 =
3
2
𝜔2

2𝜆2𝑀2

𝑟3 𝑒2𝑖𝜙+𝑖Ω𝑠𝑡 , (5.49)

where

𝜁2 = Ω2
𝑠 + 𝜔2

2. (5.50)

Note that the second term on the RHS of Eq. (5.32c) vanishes because 𝜔3 = Ω𝑠

[Eq. (5.38)]. The resonance is determined by the condition

¤𝜙 = Ω𝑟 =
𝜁 −Ω𝑠

2
. (5.51)
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Under the assumed 𝜔2 − Ω𝑠 relation, 𝜁 can be simplified to (𝜔+ − 𝜔−)/2, then we
have

¤𝜙 = Ω𝑟 = −Ω𝑠 −
𝜔2−

2
, (5.52)

but here we keep 𝜁 for generality. Eq. (5.52) shows that only the retrograde mode is
excited. The dependence of Ω𝑟 on Ω𝑠 is shown in Fig. 5.2.
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Figure 5.2: The resonant GW frequency (2Ω𝑟) as functions of spin frequency for two
EoS. We also plot the contact GW frequency as a red dashed line for comparison.
The retrograde mode frequency is shifted by spin to a smaller value, which makes
DT possible during the inspiral.

By incorporating spin into procedures discussed in the previous subsection, H+16’s
result [54, 55] can be written as

𝐴(𝑡) =
3𝑀2𝜆2𝜔

2
2

2𝑟3
1

𝜁2 − (Ω𝑠 + 2Ω)2
+

3𝑀2𝜆2𝜔
2
2

8
√︁
¤Ω𝑟𝜁𝑟3

𝑟

1
𝑡

+
3𝑀2𝜆2𝜔

2
2

4𝑟3
𝑟 𝜁

√︂
𝜋

2 ¤Ω𝑟

[
− 1
√

2
sin

(
𝑡2 − 𝜋

4

)
− FC

(√︂
2
𝜋
𝑡

)
sin 𝑡2 + FS

(√︂
2
𝜋
𝑡

)
cos 𝑡2

]
,

(5.53a)

𝐵(𝑡) =
3𝑀2𝜆2𝜔

2
2

4𝑟3
𝑟 𝜁

√︂
𝜋

2 ¤Ω𝑟

[
− 1
√

2
sin

(
𝑡2 + 𝜋

4

)
− FC

(√︂
2
𝜋
𝑡

)
cos 𝑡2 − FS

(√︂
2
𝜋
𝑡

)
sin 𝑡2

]
,

(5.53b)

where variables 𝐴 and 𝐵 are defined in Eq. (5.33). We can see that the phase of 𝐴
and 𝐵’s oscillations is governed by:

𝑡 =

√︃
¤Ω𝑟 (𝑡 − 𝑡𝑟). (5.54)
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FC and FS in Eqs. (5.53) are Fresnel functions defined as
∫ 𝑡

−∞ sin 𝑠2𝑑s =
√︁
𝜋/8[1 +

2FS(𝑡
√︁

2/𝜋)] and
∫ 𝑡

−∞ cos 𝑠2𝑑s =
√︁
𝜋/8[1 + 2FC(𝑡

√︁
2/𝜋)].

To check the accuracies of these formulae, we compare them with numerical in-
tegrations of Eqs. (5.32). We choose the H4 EoS and spin frequency of 550Hz.
This gives 𝑒0 = 0.63, 𝜔0 = 2𝜋 × 1.71kHz, 𝜔+ = 2𝜋 × 0.59kHz and 𝜔− =

−2𝜋 × 1.69kHz. Eq. (5.51) indicates that resonance happens at the orbital angular
frequency 2𝜋 × 0.30kHz. Using these numbers, we solve Eqs. (5.32) numerically
with the following initial conditions:

¤𝜙(0) = 2𝜋𝐹0 = 2𝜋 × 18Hz, 𝑟 (0) =
(
𝑀𝑡

¤𝜙(0)2

)1/3
,

¤𝑟 (0) = −64
5
𝜂

(
𝑀𝑡

𝑟 (0)

)3
, 𝑞
(0)
0 = −𝑀2𝜆0

√︂
3
2

1
𝑟3

0
,

¤𝑞 (0)0 = −3
¤𝑟 (0)𝑟
𝑟
(0)
𝑟

𝑞
(0)
0 , 𝐴(0) =

3𝑀2𝜆2𝜔
2
2

2𝑟 (0)3
1

𝜁2 − (2 ¤𝜙(0) +Ω𝑠)2
,

¤𝐴(0) = 0, 𝐵(0) = 0, ¤𝐵(0) = 0. (5.55)

The evaluation of Eq. (5.53) requires the information of orbital evolution, like 𝑟 (𝑡),
Ω(𝑡), and ¤Ω𝑟 . Here we take them from the numerical integrations (with tidal back-
reaction). In Fig. 5.3, we plot the numerical solutions (red) versus predictions of
Eqs. (5.53) (black). Dimensionless variables �̃� and �̃� are defined by

�̃� =
3
2
𝐴

𝑅3
NS
, �̃� =

3
2
𝐵

𝑅3
NS
. (5.56)

The vertical dashed line labels the time of resonance. We can see that Eqs. (5.53)
can describe pre-resonance evolutions of 𝐴 and 𝐵 to high accuracy, despite a
small discrepancy in �̃� at 𝑡𝑟 . They smoothly connect the adiabatic and resonant
regimes. In the post-resonance regime, the formulae give the correct amplitude
of mode oscillation, same as L94 [36], but do not predict the correct phasing of
post-resonance oscillation. Let us attempt to improve the treatment in H+16 [54,
55], in several steps.

The post-resonance oscillation can be viewed as trigonometric functions modulated
by Fresnel functions FC and FS. In this regime, FC and FS both approach 1/2 when
𝑡 →∞, Eqs. (5.53) then predict

𝐴 ∼
3𝑀2𝜆2𝜔

2
2

4𝑟3
𝑟 𝜁

√︂
𝜋

¤Ω𝑟
cos(𝑡2 + 𝜋

4
), (5.57a)
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Figure 5.3: Dimensionless quadrupole moments [normalized by 𝑅3
NS in Eq. (5.56)]

induced by DT as functions of time. Red curves are results from fully numerical
evolution and black curves are from Eqs. (5.53). The vertical dashed blue line
denotes the time of resonance. Eqs. (5.53) are accurate in the pre-resonance regime,
but fail to describe the phasing of post-resonance oscillation.

𝐵 ∼ −
3𝑀2𝜆2𝜔

2
2

4𝑟3
𝑟 𝜁

√︂
𝜋

¤Ω𝑟
sin(𝑡2 + 𝜋

4
), (5.57b)

which lead to

𝑥 ∼
3𝑀2𝜆2𝜔

2
2

4𝑟3
𝑟 𝜁

√︂
𝜋

¤Ω𝑟
𝑒−𝑖𝑡

2−𝑖𝜋/4+2𝑖𝜙+𝑖Ω𝑠𝑡 . (5.58)

However, as pointed out by L94 [36], 𝑥 should oscillate at its eigenfrequency 𝜁 in the
post-resonance regime. Re-writing the phase of 𝑥 in Eq. (5.58) as (2𝜙 − 𝜁𝑡 +Ω𝑠𝑡 −
𝑡2) + 𝜁𝑡 − 𝜋/4, it is straightforward to see that the term in the bracket is supposed to
vanish in order to meet this requirement. Therefore we can attempt to replace all 𝑡2

in trigonometric functions in Eq. (5.53) by

Θ = −𝜒𝑟 − 𝜁𝑡 + 2𝜙 +Ω𝑠𝑡, (5.59)

where 𝜒𝑟 = 2𝜙𝑟 − 𝜁𝑡𝑟 +Ω𝑠𝑡𝑟 . The constant 𝜒𝑟 is chosen so that Θ is 0 at 𝑡𝑟 to match
𝑡. Note that 𝑡2 is the leading order of Taylor expansion of Θ around 𝑡𝑟 . Figure 5.4
shows the result of our new approximation, which gives the correct phasing in the
post-resonance regime, but still fails to explain the amplitude of the first cycle as
well as the evolution in the adiabatic regime.

These undesired features can be cured by making a further change to the counterterm
Eq. (5.48) and adding a new term to 𝐵, resulting in:

𝐴 =
3𝑀2𝜆2𝜔

2
2

2𝑟3
1

𝜁2 − (2Ω +Ω𝑠)2
+

3𝑀2𝜆2𝜔
2
2

8
√︁
¤Ω𝑟𝜁𝑟3

𝑟

cos(𝑡2 − Θ)
𝑡
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Figure 5.4: Time evolution of dimensionless quadrupole moment �̃�. The black line
represents the formula in Eq. (5.53a) with 𝑡2 that appears in trigonometric functions
replaced by Θ [Eq. (5.59)], while the red line is from numerical integrations. The
vertical dashed line is the time of resonance. This modification gives the correct
post-resonance phasing, but does not give accurate post-resonance amplitude nor
adiabatic evolution.

+
3𝑀2𝜆2𝜔

2
2

4𝑟3
𝑟 𝜁 ¤Ω𝑟

√︂
𝜋

2 ¤Ω𝑟

[
− 1
√

2
sin(Θ − 𝜋

4
) − FC

(√︂
2
𝜋
𝑡

)
sinΘ + FS

(√︂
2
𝜋
𝑡

)
cosΘ

]
,

(5.60a)

𝐵 =
3𝑀2𝜆2𝜔

2
2

8𝑟3
𝑟 𝜁

√︁
¤Ω𝑟

sin(𝑡2 − Θ)
𝑡

+
3𝑀2𝜆2𝜔

2
2

4𝑟3
𝑟 𝜁

√︂
𝜋

2 ¤Ω𝑟

[
− 1
√

2
sin(Θ + 𝜋

4
)

−FC

(√︂
2
𝜋
𝑡

)
cosΘ − FS

(√︂
2
𝜋
𝑡

)
sinΘ

]
. (5.60b)

We refer interested readers to Sec. 5.7 for detailed derivations. The new expressions
still need orbital information as input. For example, one cannot obtain 𝐴(𝑡) and
𝐵(𝑡) without the knowledge of ¤Ω𝑟 , 𝑡𝑟 , and so on. In the next section, we will
combine our new formulae with orbital evolutions to give analytic estimations on
these parameters.

Results from Eq. (5.60) are plotted as blue dots in Fig. 5.5, and compared with
numerical solutions (red lines). We can see that our new results are more accurate.
In comparison with H+16 [54, 55], the second term in the first line of Eq. (5.60a)
is multiplied by cos(𝑡2 − Θ). The modification can be understood as follows. The
adiabatic term, i.e., the first term in Eq. (5.60a), diverges as the system reaches the
resonance point. H+16 [54, 55] chose Eq. (5.48) as the counterterm to cancel the
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Figure 5.5: Same as Fig. 5.3, but the numerical solutions are compared with Eqs.
(5.60) and (5.61). The formula of �̃� is already accurate enough to fit the numerical
results. While the formula of �̃� without higher order correction (blue dots) predicts
a larger value near 𝑡𝑟 . The problem is fixed after the inclusion of Eq. (5.61), which
we plot as black triangles.

undesired infinity. Our better counterterm, cos(𝑡2 − Θ)/𝑡, not only diverges as 1/𝑡,
but also has the correct oscillatory behavior. This cures the problems shown in Fig.
5.4. In 𝐵, we have a new term ∼ sin(𝑡2 − Θ)/𝑡 [the first line in Eq. (5.60b)], which
vanishes both as |𝑡𝑟 | → ∞ and at 𝑡𝑟 (recall that lim

𝑥→0
sin 𝑥3/𝑥 = 0, hence no infinity

issue at 𝑡𝑟), therefore does not modify the asymptotic behaviors of 𝐵 in the adiabatic
or in the post-resonance regimes.

In comparison with Fig. 5.4, changes in Fig. 5.5 not only cancel the undesired
features in the adiabatic regime, but also move the first cycle of post-resonance
evolution downward to match the amplitude. Prior to resonance, 𝐴 gradually grows
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while 𝐵 remains 0. Approximately, the resonance time is the local maximum of 𝐴,
but the value of 𝐴 on resonance is less than its final amplitude, only reaching it after
one cycle. The evolution of 𝐵 is similar but lags behind 𝐴. Although Eq. (5.60a)
predicts slightly larger 𝐴 in the resonant regime, they are accurate enough for the
purpose of studying the tidal back-reaction onto the orbital motion, as we shall see
in the next section.

If one wants to obtain more accurate expressions, especially to remove the discrep-
ancy near resonance, a higher order correction can be made by adding

Δ𝐴(𝑡) =
3𝑀2𝜆2𝜔

2
2

16𝜁𝑟3
𝑟

√︁
¤Ω𝑟

sin(𝑡2 − Θ)
𝑡3

, (5.61)

into Eq. (5.60a). Readers can find derivations in Sec. 5.7. The result is shown
in Fig. 5.5 with black triangles, where we can see the formula with higher order
correction gives a more accurate description on 𝐴 near 𝑡𝑟 .

To quantify the accuracies of the analytic results, we calculate the values of 𝐴 and
𝐵 at 𝑡𝑟

𝐴𝑟 =
3𝑀2𝜆2𝜔

2
2
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(√︂
𝜋

2 ¤Ω𝑟
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+ 1
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, (5.62a)

𝐵𝑟 = −
3𝑀2𝜆2𝜔

2
2

8𝜁𝑟3
𝑟

√︂
𝜋

2 ¤Ω𝑟
, (5.62b)

where the last term in 𝐴𝑟 comes from the higher order correction Eq. (5.61). It is
interesting to see that 𝐵𝑟 is equal to half of the final amplitude [cf. Eq. (5.57b)]. For
completeness, we also list 𝑞0 below

𝑞0 = −𝑀2𝜆0

√︂
3
2

1
𝑟3 , (5.63)

which comes from the adiabatic approximation. These values are compared with
numerical results in Table 5.1, which shows that our analytic results of 𝐴with higher
order correction and 𝐵 only differ from numerical results by several percent. We can
see the error decreases as spin rises. We also compare the formula of 𝐴 without the
higher correction Eq. (5.61), errors are around tens of percent. Hence the correction
is important if we require high accuracy around the resonance.

Finally, we want to note that discussions in this subsection may not be useful
in practice, because one can get tidal evolution by directly integrating Eqs. (5.32).
However, the structure of Eqs. (5.60) helps us gain more physical insights, especially
after combining with orbital dynamics in the next section.
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Table 5.1: Relative errors of Eqs. (5.62) and (5.63) for different spins, where ’High’
and ’Low’ means including and not including the higher order correction Eq. (5.61),
respectively.

Ω𝑠/(2𝜋) |Δ𝑞0 |/𝑞0 |Δ𝐴|/𝐴 (×1%) |Δ𝐵 |/𝐵
(Hz) (×0.1%) High Low (×1%)
550 0.2 0.2 13.1 1.4
450 1.3 1.1 14.0 0.6
350 4.0 2.2 14.4 0.1
250 8.7 3.2 14.4 0.8
150 15.1 4.0 14.4 1.4

5.4 Model of DT: Orbital dynamics near resonance
In this section we will discuss the post-resonance orbital dynamics. As we will
review in Sec. 5.4.1, currently there are mainly two analytic approximations to DTs:
the method of averaged PP orbit in FR07 [53] and the method of effective Love
number in H+16 [54, 55]. Here we provide an alternative way to describe the post-
resonance dynamics. In Sec. 5.4.2, we derive a set of first order differential equations
for osculating variables: the Runge-Lenz vector (whose magnitude is proportional
to the eccentricity of the orbit), angular momentum and the orbital phase. These
equations, with our new formulae for 𝐴 and 𝐵 [Eq. (5.60)], are self-contained except
that they need ¤Ω𝑟 as input. But as we will discuss in Sec. 5.4.3, osculating equations
lead to an analytic expression (or more accurately, a quintic equation) for ¤Ω𝑟 , which
is accurate for the systems we study. Therefore we do not need to use non-tidal
orbit as a prior knowledge to feed into the formulae of 𝐴 and 𝐵. Then in Sec.
5.4.4, we compare our analyses and the method of effective Love number with fully
numerical results. Finally in Sec. 5.4.5, we propose an alternative way to obtain
the post-resonance PP orbit, which turns out to agree with FR07 [53] to the leading
order in tidal interaction. By combining our approach and FR07 [53], we derive an
analytic expression for 𝑡𝑟 , i.e., the time of resonance.

5.4.1 Review of previous works
The model in FR07 [53] is based on the fact that the DT only causes significant
energy and angular momentum transfers to the star near resonance, within the time

Δ𝑡 =
Δ𝐿

¤𝐿GW
, (5.64)
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where Δ𝐿 is the angular momentum transfer from the orbit to the star due to
resonance and ¤𝐿GW is the rate at which angular momentum radiated in GWs [90]

¤𝐿GW =
32
5
𝜇2𝑀𝑡

5/2

𝑟
7/2
𝑟

. (5.65)

We note that 𝑟𝑟 in Eq. (5.65) should be the actual separation of the star at 𝑡𝑟 , instead
of the one predicted by pre-resonance PP orbit. After resonance, the NS is treated
as freely oscillating, with the interaction between the star and the orbit neglected,
and the post-resonance orbit is another PP trajectory. The pre- and post-resonance
orbital separations are related by the time shift Δ𝑡

𝑟 (𝑡) =

𝑟PP(𝑡) 𝑡 − 𝑡𝑟 ≪ 𝑇dur,

𝑟PP(𝑡 + Δ𝑡) 𝑡 − 𝑡𝑟 ≫ 𝑇dur,
(5.66)

where 𝑇dur comes from the same reasoning that leads to Eq. (5.47). We can see that
this method is based on the estimation of time shift Δ𝑡 due to resonance, where the
non-tide ¤𝐿GW is used. We will discuss these in details in Sec. 5.4.5.

A more detailed model was developed in H+16 [54, 55], where the authors incor-
porated DT to the EOB formalism by introducing an effective Love number 𝜆eff, as
defined in Eq. (5.1). This quantity is based on the non-tidal orbit as a prior knowl-
edge, and does not incorporate the imaginary part of 𝑞′2𝑒

−2𝑖𝜙−2𝑖Ω𝑠𝑡 . In fact, with the
help of Eqs. (5.29a), the effective Love number can be written in our notation as

𝜆eff = − 𝑟3

2𝑀2
ℜ(𝑞′2𝑒

−2𝑖𝜙−2𝑖Ω𝑠𝑡) = − 𝑟3

2𝑀2
𝐴. (5.67)

This term does not contain the full information of the NS oscillation, since 𝐵 is
missing. By comparing this term with the RHS of Eq. (5.32a), one can find that the
effective Love number only describes the radial force due to the star’s deformation.
The ignored part, which characterizes the torque between the star and the orbit,
actually plays an important role, as we shall see in Sec. 5.4.4. Furthermore, their
calculations of effective Love number were obtained from non-tidal orbital evolution.
This will cause inaccuracy when the spin is large.

5.4.2 Osculating equations
Since the traditional method of osculating orbits (cf. Ref. [90]) is singular for
vanishing orbital eccentricity, we need to adopt a special perturbation method here
[91]. This method uses specific angular momentum h, the Runge-Lenz vector ϵ and
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the orbital phase 𝜙 as osculating variables. Assume that the perturbation force F is
described by

F

𝜇
=Wn + 𝑆λ, (5.68)

where n is the unit vector along the radial direction and λ the unit vector along the
azimuthal direction. W and 𝑆 are the components of the acceleration. Equations
of motion in terms of the osculating variables are given by

𝑑h
𝑑t

= r × F ,
𝑑ϵ

𝑑t
= F × h + r × h,

𝑑𝜙

𝑑t
=
ℎ

𝑟2 .

(5.69)

Note that the magnitude of ϵ is proportional to the orbital eccentricity. In our case,
only the 𝑧 component of h, denoted by ℎ, and in-plane components of ϵ=(𝜖𝑟 , 𝜖𝜙)
matter. The orbital separation 𝑟 , and its rate of change ¤𝑟, can be expressed as

𝑟 =
ℎ2

𝑀𝑡 + 𝜖𝑟
, (5.70a)

¤𝑟 = −
𝜖𝜙

ℎ
. (5.70b)

Equations of motion of the osculating variables can then be re-written as

𝑑𝜙

𝑑t
=
ℎ

𝑟2 , (5.71a)

𝑑h
𝑑t

= 𝑟𝑆, (5.71b)

𝑑𝜖𝑟

𝑑t
=
ℎ

𝑟2 𝜖𝜙 + 2𝑆ℎ, (5.71c)

𝑑𝜖𝜙

𝑑t
= − ℎ

𝑟2 𝜖𝑟 −Wℎ − ¤𝑟𝑟𝑆. (5.71d)

The perturbation forces 𝑆 andW can be separated into radiation and tidal parts. The
former comes from the Burke-Thorne radiation reaction potential. By neglecting
tidal corrections, they are given by

Worb =
2
5
𝜇

(
32𝑀𝑡

2 ¤𝑟
3𝑟4 + 48𝑀𝑡 ¤𝑟 ¤𝜙2

𝑟
+ 8𝑀𝑡 ¤𝑟3

𝑟3

)
, (5.72a)

𝑆orb =
2
5
𝑀𝑡𝜇

(
8𝑀𝑡
¤𝜙

𝑟3 + 36 ¤𝑟2 ¤𝜙
𝑟2 − 24 ¤𝜙3

)
. (5.72b)
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The tidal perturbation forcesWtid and 𝑆tid are given by

Wtid =
3𝑀2
2𝜇
(𝑀𝑡 + 𝜖𝑟)4

ℎ8

(√︂
3
2
𝑞0 − 3𝐴

)
, (5.73a)

𝑆tid =
3𝑀2
𝜇
𝐵
(𝑀𝑡 + 𝜖𝑟)4

ℎ8 . (5.73b)

For the time evolution of 𝑞0, 𝐴, and 𝐵 we use our analytic formulae, as shown in
Eqs. (5.60) and (5.63). Here we do not include the higher order correction to 𝐴

in Eq. (5.61) since the leading order already turns out to be accurate enough. By
plugging Eqs. (5.70) into equations above we get

𝑑𝜙

𝑑t
=
(𝑀𝑡 + 𝜖𝑟)2

ℎ3 , (5.74a)

𝑑h
𝑑t

=
2
5
𝑀𝑡𝜇
(𝑀𝑡 + 𝜖𝑟)3

ℎ7

[
8𝑀𝑡 (𝑀𝑡 + 𝜖𝑟) + 36𝜖2

𝜙 − 24(𝑀𝑡 + 𝜖𝑟)2
]
+ ℎ2

𝑀𝑡 + 𝜖𝑟
𝑆tid,

(5.74b)
𝑑𝜖𝑟

𝑑t
= 2ℎ𝑆tid +

(𝑀𝑡 + 𝜖𝑟)2
ℎ3 𝜖𝜙 +

4
5
𝑀𝑡𝜇
(𝑀𝑡 + 𝜖𝑟)4

ℎ8 [8𝑀𝑡 (𝑀𝑡 + 𝜖𝑟) + 36𝜖2
𝜙 − 24(𝑀𝑡 + 𝜖𝑟)2],

(5.74c)
𝑑𝜖𝜙

𝑑t
= −ℎWtid +

ℎ𝜖𝜙

𝑀𝑡 + 𝜖𝑟
𝑆tid − 𝜖𝑟

(𝑀𝑡 + 𝜖𝑟)2
ℎ3

+ 2
5
𝜇𝑀𝑡𝜖𝜙

(𝑀𝑡 + 𝜖𝑟)3
ℎ8

[
56𝑀𝑡

3
(𝑀𝑡 + 𝜖𝑟) + 24(𝑀𝑡 + 𝜖𝑟)2 + 44𝜖2

𝜙

]
, (5.74d)

Eqs. (5.72)—(5.74) are a complete set of equations of 𝜙, ℎ, 𝜖𝑟 and 𝜖𝜙, except that
we are missing the value of ¤Ω𝑟 that appears in the formulae of 𝐴 and 𝐵, this will
be determined in Sec. 5.4.3. With these at hand, one can obtain the post-resonance
orbital dynamics without solving tidal variables (e.g., 𝑞0, 𝐴, and 𝐵) simultaneously.

In practice, we numerically evolve the system slightly after the resonance point,
i.e., 𝑡𝑟 + 𝛿, to get rid of the numerical infinity due to the term sin(𝑡2 − Θ)/𝑡 in 𝐵.
In our code, 𝛿 = 10−8s. Two infinities in 𝐴 (adiabatic term and the counterterm)
needs more care. The cancellation of these two infinities requires they have the
exact the same behavior near the resonance point, this is difficult to achieve in
practice, especially when there are osculating variables in 𝐴. In our simulations, we
approximate the first divergence term by the following formula

3𝑀2𝜆2𝜔
2
2

2𝑟3
1

𝜁2 − (2Ω +Ω𝑠)2
= −

3𝑀2𝜆2𝜔
2
2

8
√︁
¤Ω𝑟𝜁𝑟3𝑡

, (5.75)
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where the denominator is expanded around 𝑡𝑟 . In this manner, both divergence
terms go to infinity as 1/𝑡, so they cancel each other nicely. In order to improve
the accuracy, one can include more terms of the Taylor expansion. However, this
only works well for low spin, since the time for post-resonance evolution should be
short enough such that the series converges. For high spin we only keep the leading
term7.

We should note that one can evolve the post-resonance system without knowing the
value of 𝑡𝑟 , of which our analytic estimations are not very accurate in some regimes
of spin (we will discuss the estimation on it in Sec. 5.4.4), since the formulae of
𝐴(𝑡) and 𝐵(𝑡) only depend on 𝑡. One can shift the time of resonance to 𝑡 = 0
and simultaneously set 𝑡𝑟 = 0. Similarly, the orbital phase of the resonance 𝜙𝑟
in Eq. (5.59) can be eliminated by an appropriate initial condition for 𝜙, here we
choose 𝜙𝑟 = 0 and 𝜙(0) = 0, where 𝜙(0) is the initial value of 𝜙. Correspondingly,
the constant 𝜒𝑟 becomes 0. What remains unknown in the osculating equations
are ¤Ω𝑟 and the initial conditions for (𝜖𝑟,𝜙, ℎ, 𝜙). We will address them in the next
subsection.

5.4.3 The applications of osculating equations
In this subsection, we will discuss the applications of osculating equations introduced
in the previous subsection.

5.4.3.1 Orbit at resonance

Let us first derive algebraic equations for ¤Ω𝑟 , ¤𝑟𝑟 and the initial conditions of Eqs.
(5.74). The basic idea is that variables like ¤Ω𝑟 and ¤𝑟𝑟 at resonance are determined
by the tidal variables 𝐴 and 𝐵 through the osculating equations. Conversely, 𝐴 and
𝐵 are governed by ¤Ω𝑟 in Eqs. (5.62). The relationship allows us to write down
equations of ¤Ω𝑟 and ¤𝑟𝑟 .

To calculate ¤𝑟, we start with Eq. (5.70a). In our cases, the value of 𝜖𝑟 rises as the
spin of the NS decrease, but it remains a small number. So we can approximate 𝑟
by ℎ2/𝑀𝑡 . Using the equation of ¤ℎ [Eq. (5.74b)], we get

𝑑r
𝑑𝑡

= 2

√︄
𝑟3

𝑀𝑡

𝑆. (5.76)

7As we shall see in Sec. 5.4.4, the orbital frequency is oscillatory for high spin in the post-
resonance regime. Under this situation, the leading term alone is more accurate than including higher
order corrections.
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For a quasicircular orbit, the radius and orbtial frequency approximately satisfy:

𝑟𝑟 =

(
𝑀𝑡

Ω2
𝑟

)1/3
. (5.77)

In Table 5.2 we verify that the error of Eq. (5.77) is less than 0.4% within the regime
we concern. With this observation, together with 𝐵𝑟 in Eqs. (5.62), one can simplify
the expression of 𝑆 into

𝑆 = 𝑆tid + 𝑆orb = −3𝑀2
2𝜆2

𝜇𝜁

3𝜔2
2

8𝑟7
𝑟

√︂
𝜋

2 ¤Ω𝑟

+ 4
5
𝑀𝑡𝜇Ω𝑟

(
18 ¤𝑟2

𝑟

𝑟2
𝑟

− 8Ω2
𝑟

)
, (5.78)

which is completely determined by ¤𝑟𝑟 and ¤Ω𝑟 . Substituting this into Eq. (5.76) leads
to a equation for ¤𝑟𝑟 and ¤Ω𝑟

¤𝑟𝑟 = −
3𝑀2

2𝜆2
Ω𝑟𝜇𝜁

3𝜔2
2

4𝑟7
𝑟

√︂
𝜋

2 ¤Ω𝑟
+ 8

5
𝑀𝑡𝜇

(
18 ¤𝑟2

𝑟

𝑟2
𝑟

− 8Ω2
𝑟

)
. (5.79)

In order to solve for these two variables, one can use Eqs. (5.71a) and (5.71b) to
establish another equation

¤Ω𝑟 =
¤ℎ
𝑟2
𝑟

− 2
¤𝑟𝑟
𝑟3
𝑟

ℎ =
𝑆

𝑟𝑟
− 2Ω𝑟

¤𝑟𝑟
𝑟𝑟
, (5.80)

which gives

2𝑟𝑟 ¤Ω𝑟 = −3Ω𝑟 ¤𝑟𝑟 . (5.81)

This relation can also be directly obtained by differentiating Eq. (5.77). Plugging
Eq. (5.81) back into Eq. (5.79) gives a quintic function for ¤Ω𝑟 . The calculation can
be simplified by the approximation ¤𝑟𝑟/𝑟𝑟 ≪ Ω𝑟 , so that the first term in the bracket
of Eq. (5.79) can be neglected. In this manner, we obtain an explicit expression for
¤Ω𝑟 :

¤Ω𝑟 =
(
𝑢

2
+

√︂
𝑢2

4
− 𝑣

3

27

)1/3

+
(
𝑢

2
−

√︂
𝑢2

4
− 𝑣

3

27

)1/3

, (5.82)

where

𝑢 =
27𝑀2

2𝜆𝜔2
2

8𝑟8
𝑟 𝜁 𝜇

√︂
𝜋

2
, 𝑣 =

96𝑀𝑡𝜇

5𝑟𝑟
Ω3
𝑟 =

3
𝜇𝑟2
𝑟

¤𝐿 (𝑟)GW. (5.83)
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Table 5.2: Comparisons between results from our formulae for ¤Ω𝑟 , ¤𝑟, 𝜖𝜙, 𝑟 and
numerical integrations, where “Num.” of Δ ¤Ω𝑟/ ¤Ω𝑟 are the results by numerical
solving Eqs. (5.79) and (5.81); “Appr.” are the results of Eq. (5.85). The parameters
of NSs are still the H4 EoS with component masses (1.4, 1.4)𝑀⊙. The relative error
becomes large when the spin decreases. The last column is the ratio of the non-tidal
¤Ω𝑟 to the realistic ¤Ω𝑟 when the orbital frequencies satisfy the resonance condition
in Eq. (5.51).

Ω𝑠/(2𝜋) Δ ¤Ω𝑟/ ¤Ω𝑟 (×10−2) Δ ¤𝑟/¤𝑟 Δ𝜖𝜙/𝜖𝜙 Δ𝑟/𝑟 ¤Ωnon
𝑟

¤Ωtide
𝑟(Hz) Num. Appr. (×10−2) (×10−2) (×10−2)

550 0.9 0.8 0.4 0.1 0.1 0.56
450 2.7 2.7 1.6 1.8 0.2 0.53
350 4.4 4.5 2.7 2.2 0.3 0.52
250 5.9 6.1 3.7 3.0 0.4 0.52
150 7.1 7.3 4.5 3.6 0.4 0.52

Eq. (5.82) can be further simplified by Taylor expanding in 𝑤, defined by

𝑤 =
21/3𝑣

3𝑢2/3 , (5.84)

leading to

¤Ω𝑟 = 𝑢2/3
[
1 + 22/3𝑤 + 𝑤2 − 𝑤

3

3
+ O(𝑤4)

]
. (5.85)

Recall that the duration of the resonance is 𝑇dur =
√︁
𝜋/ ¤Ω𝑟 [Eqs. (5.47) and (5.66)],

Eq. (5.85) is in fact an analytic relation between 𝑇dur and the orbital time shift Δ𝑡 due
to resonance. The variable ¤𝑟𝑟 is determined once ¤Ω𝑟 is known. Finally, the initial
value of 𝜖𝜙 is related to ¤𝑟𝑟 through its definition in Eq. (5.70b). With the values
of ¤Ω𝑟 and ¤𝑟𝑟 , Eq. (5.60) for 𝐴(𝑡) and 𝐵(𝑡) does not require input from numerical
integrations.

In Table 5.2, we compare predictions of our formulae with numerical results. The
parameters of NSs are the H4 EoS with component masses (1.4, 1.4)𝑀⊙. Results
show that the accuracies of our analyses are higher than 93%. We can also see
that accuracy is lower for low spins. Since H+16 [54, 55] used non-tidal ¤Ω𝑟 in the
effective Love number, we compare ¤Ω𝑟 of non-tide orbits with realistic ones. The
ratios of two quantities are shown in the last column of Table 5.2, we can see that
¤Ωnon
𝑟 is only half of ¤Ωtide

𝑟 , hence the use of ¤Ωnon
𝑟 will cause inaccuracies.
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5.4.3.2 Angular momentum and energy transfers

Another application of the osculating equations is to calculate the angular momen-
tum and energy exchange between the star and the orbit. The transfer in 𝐿 can be
directly calculated from Eq. (5.71b). Following the procedure in Ref. [36], we get

Δ𝐿 = −𝜇ℎ𝑡 = −
∫

𝜇𝑟𝑆tid𝑑t = −
∫

3𝑀2
B
r3 𝑑t

= −Im
∫

3𝑀2
𝑞′2𝑒
−2𝑖𝜙−2𝑖Ω𝑠𝑡

𝑟3 𝑑t

= − 2
𝜇𝜔2

2𝜆2
Im

∫
𝑞′2( ¥𝑞

′
−2 + 2𝑖Ω𝑠 ¤𝑞′−2 + 𝜔

2
2𝑞
′
−2)𝑑t

= − 2
𝜇𝜔2

2𝜆2

[ ¤𝐴𝐵 − ¤𝐵𝐴 − (𝐴2 + 𝐵2) (Ω𝑠 + 2Ω)
]
, (5.86)

where we have used Eq. (5.32c). Assuming the deformation of the star is small
initially, this exact formula gives the angular momentum deposited in the star. In
fact, the quantity is the generalization of the “tidal spin,” defined by (up to a constant)
𝜖𝑖 𝑗 𝑠𝑄

𝑚𝑖 ¤𝑄 𝑗𝑚 for a non-spinning star [54].

By combining our formulae for 𝐴 and 𝐵 with the Δ𝐿 shown above, one can obtain
a lengthy expression of angular momentum transfer as a function of time, but little
can be learned from it. To give a more useful description, we follow the idea of
FR07 [53], who assumed the net transfer only takes place near resonance. Within
the post-resonance regime, Δ𝐿 is periodic and the net transfer is zero. In fact, we
can see this clearly with the asymptotic behavior of 𝐴 and 𝐵. From Eqs. (5.60) we
know

𝐴 ∼
3𝑀2𝜆2𝜔

2
2

4𝑟3
𝑟 𝜁

√︂
𝜋

¤Ω𝑟
cos(𝜒𝑟 + 𝜁𝑡 − 2𝜙 −Ω𝑠𝑡 −

𝜋

4
), (5.87a)

𝐵 ∼
3𝑀2𝜆2𝜔

2
2

4𝑟3
𝑟 𝜁

√︂
𝜋

¤Ω𝑟
sin(𝜒𝑟 + 𝜁𝑡 − 2𝜙 −Ω𝑠𝑡 −

𝜋

4
), (5.87b)

where we have used the fact that the Fresnel functions go to 1/2 as 𝑡 →∞. Plugging
the above equations into Eq. (5.86) and averaging over orbital phase, we get the net
angular momentum transfer as

Δ𝐿 =
9𝑀2

2𝜋𝜆2𝜔
2
2

8 ¤Ω𝑟𝑟6
𝑟 𝜁

. (5.88)

This formula reduces to the result in L94 [36] when spin vanishes. The energy
transfer is related to the angular momentum transfer by

Δ𝐸 = Ω𝑟Δ𝐿. (5.89)
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Figure 5.6: The seperation 𝑟, orbital frequency Ω/(2𝜋) and the eccentricity 𝑒 as
functions of time. The initial time 𝑡 = 0 represents the location of resonance and the
endpoint corresponds to the contact separation. Red lines are from fully numerical
solutions and blue lines are the results of osculating equations Eqs. (5.74). The spin
of the upper panel is 300Hz, and the bottom one is 550Hz. We keep both the leading
and the sub-leading terms in Eq. (5.75) in the low spin case while only the leading
term in the high spin case.

By the expression of Δ𝐿 in Eq. (5.88), variables 𝑢 and 𝑤 defined in Eqs. (5.83) and
(5.84) can be expressed as:

𝑢 =
9Ω2

𝑟√
2𝜋

Δ𝐿

𝐿𝑟

¤𝐿 (𝑟)GW
𝐿𝑟

, 𝑤 =

(
2

81
𝑇orb
Δ𝑡

𝐿𝑟

Δ𝐿

)1/3
, (5.90)

with 𝑇orb = 2𝜋Ω𝑟 and 𝐿𝑟 the orbital angular momentum at resonance.

5.4.4 Comparisons with numerical results
In this subsection we will compare our approximations, as well as the method of
effective Love number in H+16 [54, 55], with fully numerical results, in the post-
resonance regime. We still choose the H4 EoS with spin frequencies 300Hz and
550Hz.

5.4.4.1 Validating osculating equations

We numerically solve Eqs. (5.74) starting from 𝑡 = 𝛿 = 10−8s, where we have shifted
the resonance time to 0 and set 𝑡𝑟 = 0. The initial values of ℎ, 𝜖𝑟 and 𝜖𝜙 are from
Eqs. (5.70b), (5.71a), (5.77), (5.79) and the resonance condition in Eq. (5.51). In
the absence of analytic estimations for 𝜖𝑟 , we assume 𝜖𝑟 is 0 in Eq. (5.77), since it
remains small within the domain we are interested in.
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In Fig. 5.6, we plot orbital separation 𝑟 (left panels), orbital frequency Ω/(2𝜋)
(middle panels), and eccentricity 𝑒 (right panels) as functions of time, for NS
spins 300Hz (upper panels) and 550Hz (lower panels). For the low spin case, we
approximate the adiabatic term in Eq. (5.75) by both the leading and sub-leading
terms, while for the high spin case we only keep the leading term. Predictions of our
osculating equations agree well with the real post-resonance orbital dynamics. This
again verifies that our formulae for 𝐴(𝑡) and 𝐵(𝑡) are accurate enough to describe the
star’s oscillation and its back reaction on the orbit. Furthermore, in our osculating
equations we have only included the orbital part of the radiation-reaction force. The
comparison confirms that the other part, i.e., the stellar radiation-reaction force, can
be safely ignored. One interesting feature of the post-resonance dynamics is the
eccentricity of the orbit. Once the oscillations of NSs are excited, the tidal torque
and the radial tidal force lead to energy and angular momentum exchanges between
the orbit and the star periodically. As a result, the eccentricity of the orbit increases
and oscillates. Results show that the final eccentricities are nearly 0.08 for both
cases.

5.4.4.2 Deficiency of the method of effective Love number

According to the definition of effective Love number in Eq. (5.67), we first construct
the non-tidal binary orbit with the same initial conditions in Eq. (5.55)

𝜙(𝑡) = 1
32𝜂

1
(2𝜋𝑀𝑡𝐹0)5/3

{
1 −

[
1 − 256

5
𝑡𝑀𝑡

2/3𝜇(2𝜋𝐹0)8/3
]5/8

}
, (5.91a)

𝑟 (𝑡) =
(
𝑟 (0)4 − 256𝜂𝑀𝑡

3

5
𝑡

)1/4
, (5.91b)

with initial value 𝑟 (0) obtained from Eq. (5.55). Following the procedure in H+16
[54, 55], we use the PP orbit’s time of resonance 𝑡(PP)

𝑟 and the time derivative of
angular frequency as the true 𝑡𝑟 and ¤Ω𝑟 . Substituting them and the formulae of 𝐴
and 𝐵 into the equation of the effective Love number in Eq. (5.67) gives the time
evolution of the effective Love number. In Fig. 5.7, we plot the results by using
both H+16 [54, 55] and our new formulae of 𝐴 and 𝐵. The dotted one represents
the resonance time from the full numerical integrations, and the dash-dotted line is
from the PP orbit. We can see that the true resonance time is earlier than that of the
PP orbit. This is expected because the mode excitation extracts energy and angular
momentum from the orbit, accelerating the inspiraling process. The amplitude of
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the two models decays at the same rate but has different phases. Our formulae
predict more oscillation cycles.
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Figure 5.7: The time evolution of effective Love number based on the PP orbit. The
red line is from our new formulae of 𝐴 and 𝐵 while the black one is from H+16
[54, 55]. As represented by the horizontal dash line, the effective 𝑘 asymptotically
approaches 𝑘2 = 0.104 in the adiabatic regime. The dotted vertical line represents
the real resonant time and the dash-dotted vertical line is from the pre-resonance PP
orbit.

By feeding 𝑘eff(𝑡) into the orbital dynamics, we obtain the evolution of orbital
separation 𝑟 (𝑡) in Fig. 5.8. We can see that neither formula could capture the feature
of post-resonance dynamics. The similarity between the two results shows that it is
the formalism of the effective love number itself that is inaccurate. Such inaccuracy
mainly comes from the fact that the torque is missing, and the orbit does not shrink
as fast as it should, as we have discussed around Eq. (5.67).

5.4.5 The averaged orbit in the post-resonance regime
As discussed in FR07 [53], there are three timescales in the system’s dynamics,
although their values in our case may not be well-separated. The shortest one is
orbital timescale, characterized by the orbital angular frequency Ω; the middle one
is the tidal timescale, characterized by the angular frequency ∼ ¤Θ = 2Ω + Ω𝑠 − 𝜁
[Eq. (5.59)]; and the final one is the gravitational radiation reaction timescale,
characterized by the frequency ¤𝐿GW/𝐿. The separation between tidal and radiation
reaction timescales is shown more clearly in Fig. 5.9, where we plot 𝑟 (𝑡) near
resonance with Ω𝑠 = 2𝜋 × 550Hz. Let us first focus on the upper panel, which is
from FR07 [53]. The vertical dashed line indicates the time of resonance, and the
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Figure 5.8: The orbital dynamics near the resonance, by means of effective Love
number. The blue line is the result of fully numerical integration. The red line is
from our new formulae of DT, while the black one is from H+16 [54, 55]. Same as
Fig. 5.7, the dotted line and dash-dotted line represent the resonance condition of
numerical and PP evolution, respectively.

horizontal dashed line represents the actual separation of the system at resonance.
Both quantities are obtained from the numerical integration. In the radiation-
reaction timescale, the system evolves as PP. The upper blue curve corresponds to
the non-tidal quasi-circular orbit with the same initial conditions as our system. It
intersects with the vertical and horizontal dashed lines at “a” and “d.” We can see
that there is little difference between full orbit and the PP orbit in the adiabatic
regime. After resonance, the actual separation oscillates around another PP orbit
in the tidal timescale, which is determined by Eq. (5.66) and shown as the lower
blue curve; this curve intersects with the vertical and horizontal dash lines at “b”
and “c.” The pre- and post-resonance PP orbits are related by an instantaneous time
shift Δ𝑡 [see Eq. (5.64)] when the pre-resonance PP orbit satisfies the resonance
condition Eq. (5.51), i.e., the horizontal line between “c” and “d.” We should note
that the regimes between “ad” and “cb” are not real evolution stages that the system
undergoes. This is only an effective way to describe the resonance between two PP
orbits. The time of “d,” 𝑡𝑑 , is actually 𝑡(PP)

𝑟 that we used to construct the effective
Love number in Sec. 5.4.4.2, it is larger than the actual resonance time 𝑡𝑟 because
the tide effect accelerates the inspiral process and makes resonance earlier. We can
see that FR07 [53] can track the post-resonance PP orbit to a high accuracy.
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Figure 5.9: The orbital separation as a function of time, with NS spinning at 550Hz.
The vertical dashed lines indicate the time of resonance, and the horizontal dashed
lines represent the actual separation of the system at resonance. The red curves are
from numerical integrations, while the blue curves are predictions of PP orbits. The
upper blue curves have the same initial conditions as the system we study. They
intersect with the vertical and horizontal dashed lines at “a” and “d.” The lower
blue curves are predictions of FR07 [53] (upper panel) and our new method (lower
panel), which intersect with the vertical and horizontal dash lines at “b” and “c.” To
connect the pre- and post-resonance PP orbits, FR07 [53] proposed the time jump
Δ𝑡 from “d” to “c” at the fixed separation, while we use the angular momentum
jump (or equivalently, the separation jump) from “a” to “b” at the fixed time 𝑡𝑟 .
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Here we provide an additional description of the averaged orbit. As shown in
the lower panel of Fig. 5.9, instead of evolving the pre-resonance PP orbit to “d”
and making a jump in time at a fixed separation, we propose that the orbit has an
immediate jump in angular momentum (or equivalently, separation) at the fixed time
𝑡𝑟 , i.e., the vertical line between “ab.” The jump can be determined as follows. The
orbital angular momentum at “a” is given by

𝐿
(𝑎)
PP = 𝜇𝑀𝑡

1/2𝑟 (𝑎)1/2PP , (5.92)

while at “b” the angular momentum is determined by the angular momentum transfer
in Eq. (5.88),

𝐿
(𝑏)
PP = 𝐿

(𝑎)
PP − Δ𝐿, (5.93)

which leads to the orbital separation 𝑟 (𝑏)PP

𝑟
(𝑏)
PP = 𝑟

(𝑎)
PP

(
1 − Δ𝐿

𝐿
(𝑎)
PP

)2

. (5.94)

Evolving the PP orbit with the above initial condition gives the lower panel of Fig. 5.9.
This method is very similar to FR07 [53]. However, it also has a disadvantage: since
so far we do not have an independent analytic estimation on the time of resonance,
we cannot know the value of 𝑟 (𝑎)PP without solving the full equations. Nevertheless,
this method provide us an alternative understanding on the post-resonance PP orbit,
i.e., it is related to the pre-resonance PP orbit by an instantaneous jump in a angular
momentum, by contrast to a time shift Δ𝑡 at a fixed separation. In fact, one can prove
that two methods agree with each other to the leading order in Δ𝑡. By expanding
Eq. (5.94), we find the jump between “a” and “b” to be

𝑟
(𝑎)
PP − 𝑟

(𝑏)
PP =

2Δ𝐿
𝐿
(𝑎)
PP

𝑟
(𝑎)
PP = ¤𝑟 (𝑎)PP Δ𝑡, (5.95)

where the last equality comes from the fact that 𝐿 ∝ 𝑟1/2 and the relation between
Δ𝐿 and Δ𝑡 in Eq. (5.64). The result is exactly the jump predicted by Eq. (5.66)
if one expands 𝑟 (𝑡𝑟 + Δ𝑡) − 𝑟 (𝑡𝑟) to the leading order in Δ𝑡. In fact, we can work
conversely. By imposing that the two methods predict the same orbital separation
for the post-resonance PP orbit at resonance, we get an analytic equation for 𝑡𝑟

𝑟
(𝑏)
PP = 𝑟 (𝑡𝑟 + Δ𝑡) = 𝑟 (𝑡𝑟)

(
1 − Δ𝐿

𝐿𝑟

)2
, (5.96)
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Table 5.3: The comparisons between our analytic estimates for 𝑡𝑟 in Eq. (5.96) and
full numerical integrations. For reference, the errors of results are compared with
|𝑡𝑑 − 𝑡𝑟 |, i.e., the time difference between “d” and “a” in Fig. 5.9.

Ω𝑠/(2𝜋)(Hz) 550 450 350 250 150
|Δ𝑡𝑟 |
|𝑡𝑟−𝑡𝑎 | (×10−2) 20.3 5.3 5.4 13.6 20

where

𝐿𝑟 = 𝜇𝑀𝑡
1/2𝑟 (𝑡𝑟)1/2, (5.97)

and 𝑟 (𝑡) is shown in Eq. (5.91b). Eq. (5.96) is an algebraic equation for 𝑡𝑟 . In
Table 5.3, we show the accuracies of results by calculating the ratio between Δ𝑡 and
|𝑡𝑑 − 𝑡𝑟 |, where Δ𝑡 is the difference between 𝑡𝑟 obtained from Eq. (5.96) and the true
𝑡𝑟 ; and |𝑡𝑑 − 𝑡𝑟 | is the time difference between “a” and “d” in Fig. 5.9. The ratios are
between 5%—20%.

From the above discussion, we can see the method of the averaged orbit is qualita-
tively accurate. By connecting two PP orbits with a jump, one can already extract
some information about the system (e.g., 𝑡𝑟) without solving fully coupled differen-
tial equations. However, this method has two disadvantages. The first one is that it
ignores the oscillation on the top of the averaged orbit in the post-resonance regime,
which carries the information of 𝑓 -mode. Secondly, averaging is only valid when
the spin is large. As shown in Fig. 5.6, since the system does not undergo a full
tidal oscillation cycle when spin is 300Hz or below, it is not appropriate to discuss
the averaged orbit in this case.

5.5 Gravitational waveforms and extraction of parameters
In the last two sections, we mainly discussed near-zone dynamics. We obtained
new formulae Eqs. (5.60) for the tidal deformation amplitudes 𝐴 and 𝐵; obtained
osculating equations Eqs. (5.74) for the orbit; and developed analytic treatments that
coupled stellar and orbital motions and carried out comparisons between analytic
and numerical results.

In this section, we will go to the far zone to study GWs. We first quantify the
accuracy of the method of effective Love number and the method of averaged PP
orbit in the framework of match filtering. We then compute the SNR of GWs emitted
during and after resonance. Results show that post-resonance GWs may be strong
enough to be observed by future GW detectors. We finally show that DT can provide
more precise estimations on the parameters of NSs. We want to emphasize again
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that the major goal of this section is to provide a qualitative feature of the impact of
DT on GW observations. As we have discussed above, the EoS we used, as well as
the high spin rate, might be unlikely in realistic scenarios.

5.5.1 Accuracies of DT models
To the lowest order, GW emitted by a system is related to the near-zone dynamics
through [90]

ℎTT
𝑖 𝑗 =

2
𝐷𝐿

¥𝑄TT
𝑖 𝑗 , (5.98)

where 𝐷𝐿 is the distance between the detector and the source, which we choose
as 100Mpc. 𝑄𝑖 𝑗 is the quarupole moment of the system. The superscript “TT”
stands for the transverse-traceless components of the tensor. Amplitudes of the two
polarizations of the GW are given by [90]

ℎ+ = −
1
4
𝑠2
𝑖 (𝑄𝑥𝑥 +𝑄𝑦𝑦) +

1
4
(1 + 𝑐2

𝑖 )𝑐2𝛽 (𝑄𝑥𝑥 −𝑄𝑦𝑦) +
1
2
(1 + 𝑐2

𝑖 )𝑠2𝛽𝑄𝑥𝑦

− 𝑠𝑖𝑐𝑖𝑐𝛽𝑄𝑥𝑧 − 𝑠𝑖𝑐𝑖𝑠𝛽𝑄𝑦𝑧 +
1
2
𝑠2
𝑖𝑄𝑧𝑧, (5.99a)

ℎ× = −
1
2
𝑐𝑖𝑠2𝛽 (𝑄𝑥𝑥 −𝑄𝑦𝑦) + 𝑐𝑖𝑐2𝛽𝑄𝑥𝑦 + 𝑠𝑖𝑠𝛽𝑄𝑥𝑧 − 𝑠𝑖𝑐𝛽𝑄𝑦𝑧, (5.99b)

where 𝑐𝑖 = cos 𝜄, 𝑠𝑖 = sin 𝜄, 𝑐2𝛽 = cos 2𝛽, and 𝑠2𝛽 = sin 2𝛽. The angle 𝜄 is the
inclination of the orbital plane with respect to the line of sight toward the detector,
and 𝛽 is azimuthal angle of the line of nodes. The detector measures the linear
combination of the two polarizations

ℎ(𝑡) = 𝐹+ℎ+ + 𝐹×ℎ×, (5.100)

where the detector antenna pattern functions 𝐹+ and 𝐹× are given by

𝐹+ =
1
2
(1 + cos2 𝜃) cos 2𝜙 cos 2𝜓 − cos 𝜃 sin 2𝜙 sin 2𝜓, (5.101a)

𝐹× =
1
2
(1 + cos2 𝜃) cos 2𝜙 sin 2𝜓 + cos 𝜃 sin 2𝜙 cos 2𝜓, (5.101b)

with 𝜃 and 𝜙 the angular location of the source relative to the detector, 𝜓 the
polarization angle [90].

In order to measure the similarity between two waveforms ℎ and 𝑔, we define their
match [92]

O[ℎ, 𝑔] = max
𝑡𝑐 ,𝜙𝑐

(ℎ |𝑔)√︁
(ℎ |ℎ) (𝑔 |𝑔)

, (5.102)



234

and mismatch 1− O. The inner product (ℎ |𝑔) between two waveforms is defined as

(ℎ |𝑔) = 4ℜ
∫

ℎ̃∗( 𝑓 )�̃�( 𝑓 )
𝑆𝑛 ( 𝑓 )

𝑑f, (5.103)

with the superscript ∗ standing for complex conjugation, and 𝑆𝑛 ( 𝑓 ) the noise spectral
density of the detector. In Fig. 5.10, we plot the noise spectral densities of aLIGO
[93, 94], aVirgo [94, 95], KAGRA [94, 96], Voyager [97], CE [98], and ET [99].
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Figure 5.10: The noise spectral densities of several ground-based detectors.

The fully numerical simulated waveforms can be computed in the following way.
We first numerically solve the equations of motion Eqs. (5.32), which gives the
total quarupole moment of the system 𝑄Total

𝑖 𝑗
= 𝑄𝑖 𝑗 + 𝜇𝑥𝑖𝑥 𝑗 − 𝜇𝑟2𝛿𝑖 𝑗/3 by Eq.

(5.29a). We then obtain the waveform ℎ(𝑡) from Eq. (5.98). In this chapter, we
choose 𝜄 = 𝛽 = 𝜃 = 𝜙 = 𝜓 = 0 for simplicity. We then sample the solutions in
the time domain with the rate 1/8192s, and use the fast Fourier Transform (FFT)
algorithm to perform the discrete Fourier transform on the sampled data. Following
the procedure of Ref. [100], we zero-pad the strain data on both sides to satisfy
periodic boundary condition before FFT. Our choice of sample rate already ensures
that the Nyquist frequency is larger than the contact frequency. We define the
frequency-domain waveform within the frequency band [2𝐹0, 2𝐹contact] as the full
signal and [2Ω𝑟/(2𝜋), 2𝐹contact] as post-resonance signal. Here 𝐹contact is the orbital
contact frequency, the factor of 2 comes from the correspondence between the orbital
frequency and GW frequency at quadrupole order.

In Fig. 5.11, we plot the mismatch between post-resonance waveforms obtained from
different DT models, as functions of spin frequency. One waveform is calculated
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Figure 5.11: The mismatches as functions of spin frequency. We only use the signals
with frequency higher than 2Ω𝑟/(2𝜋) because we only focus on the post-resonance
dynamics. The fully numerical integrations are compared with four models, effective
Love number with H+16 [54, 55] (blue dashed line), effective Love number with our
new DT formulae (red line), our new averaged PP orbit (green line), and osculating
equations (black line). The mismatches of osculating equations are lower than 10−3,
while the method of the effective Love number gives ∼ 0.1−0.2 for spin higher than
370Hz. This approach is insensitive to which DT model we use. Our new averaged
PP orbit, on the other hand, is in the middle of two other approaches. The worst
mismatch is around 3 × 10−2.

from the fully numerical integration; against this target waveform, we compare
waveforms obtained from 4 different models: effective Love number with H+16
[54, 55] (blue dashed line), effective Love number with our new formulae Eqs.
(5.60) (red line), our new post-resonance averaged PP orbit defined in Eq. (5.94)
(green line), and osculating equations (black line). Here we do not include the
averaged orbit model in FR07 [53] because it is very close to our model. Since the
match depends weakly on detector noise curve, we shall use that of aLIGO. One
can see that the mismatches of all models are smaller that 10−3 for spins below
370Hz, since in this case the post-resonance signals are very short, such that the
phase mismatches does not accumulate with frequency. The mean mismatches
of our osculating equations are around 10−4, with the worst one still below 10−3.
Accordingly, this approach describes the post-resonance dynamics accurately. This
confirms that our new formulae of 𝐴 and 𝐵 are precise enough to describe the tidal
back-reaction on the orbit. Methods that use the effective Love number, on the
other hand, give a large mismatch of around 0.2 when the spin frequency reaches
∼ 450Hz. The fact that both versions lead to similar mismatches, even with our
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Table 5.4: The SNRs of full GW signals within the band [2𝐹0, 2𝐹contact] for different
detectors. The spin frequency of NS is 300Hz.

aLIGO aVIRGO KAGRA Voyager ET-D CE
31.6 25.4 31.4 135.1 305.7 884.0

accurate formulae for 𝐴 and 𝐵, shows that the formalism itself is imprecise. The
mismatch of our averaged PP-orbit treatment is less than 0.03 within the entire
regime we study. Therefore this approach gives a fairly accurate description of
post-resonance GW signals.

5.5.2 Detectability and Fisher analyses
In Fig. 5.12, we plot the signal-to-noise ratios (SNRs) of post-resonance GW (within
the band [2Ω𝑟/(2𝜋), 2𝐹contact]) as functions of spin frequency Ω𝑠. As expected, it
grows with spin frequency. For aLIGO, Ω𝑠 needs to be above ∼ 425Hz to lead to
SNR > 1. For 3G detectors, SNRs are around 4 for spin ∼ 300Hz; It can reach 50
if the spin is around 500Hz. For comparison, we also calculate the SNRs of full
signals within the band [2𝐹0, 2𝐹contact] in Table 5.4. Since the full SNRs depend
weakly on the spin frequency, here we choose Ω𝑠 = 2𝜋 × 300Hz.
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Figure 5.12: The SNRs from the resonant part of GW signals, with frequency higher
than 2Ω𝑟/(2𝜋). The faster the NS spins, the higher the SNR. The SNR is around
0.3-3 for current detectors, but ∼ 10 − 50 for 3G detectors.

These results of SNRs show the potential to detect post-resonance signals with 3G
detectors. This allows us to extract more information from GW signals than AT. As
pointed out in Ref. [23], the Love number of non-spinning NS is degenerate with
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Figure 5.13: Relative errors of �̃�3, �̃�4, 𝜔2 and Ω𝑠 as functions of spin from Fisher
analyses. The GW waveform is at the Newtonian order. The vertical dotted line
stands for the location where resonance happens. The system is optimally oriented
at 100Mpc, with component masses (1.4𝑀⊙, 1.4𝑀⊙). The H4 EoS is used.
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Figure 5.14: Same as Fig. 5.13, except the polytropic EoS is used.
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mass ratio Ξ = 𝑀2/𝑀𝑡 at leading order in the adiabatic regime. Only the effective
�̃� = 𝜆Ξ(11Ξ+1) can be constrained by GWs8. This degeneracy persists for spinning
NSs in AT. In this case, the phase of GW during AT (up to leading tidal order of the
Love number) is given by

Ψ = 2𝜋 𝑓 𝑡𝑐 − 𝜙𝑐 −
𝜋

4
+ 3

128
(𝜋M 𝑓 )−5/3

{
1 − 24(𝜋 𝑓 )10/3

M5/3

×
[
11
4
Ξ2𝜆0 +

𝜆2Ξ

1 − 2Ω2
𝑠/𝜔2

2

(
1 + 33

4
Ξ

)]}
. (5.104)

Hence the tidal term is governed by the effective Love number

�̃�3 =
11
4
Ξ2𝜆0 +

𝜆2Ξ

1 − 2Ω2
𝑠/𝜔2

2

(
1 + 33

4
Ξ

)
. (5.105)

It is straightforward to see that �̃�3 reduces to �̃� in the non-spinning limit. Note that
our notation of �̃�3 differs from Ref. [23] by a factor of 𝜂 = 𝜇/𝑀𝑡 , since they used
total mass 𝑀𝑡 while we use the chirp mass M here. As Ω increases, the motion
of (2, 2) mode is resonantly getting excited while (2, 0) mode is not, their different
reactions to the tidal driving from the orbit lead to distinct effects on GW emission,
therefore the degeneracy is broken. To describe this effect, we introduce another
parameter

�̃�4 =
𝜆2Ξ

1 − 2Ω2
𝑠/𝜔2

2

(
1 + 33

4
Ξ

)
, (5.106)

i.e., the second part of Eq. (5.105). Accordingly, the numerical waveforms are
determined by a 9-dimensional parameter θ = {𝑡𝑐, 𝜙𝑐, 𝐷𝐿 ,M,Ξ,Ω𝑠, 𝜔2, �̃�3, �̃�4}.
Here we ignore 𝜔0, the mode frequency of (2, 0) mode, since this mode does not
have DT and its mode frequency is almost degenerate with other parameters.

Let us now turn to parameter estimation, using the Fisher information matrix formal-
ism. Suppose random noise 𝑛(𝑡) in observed signal 𝑠(𝑡) is stationary and Gaussian,
the conditional likelihood function of 𝑠 given parameters θ can be written as

𝑝(𝑠 |θ) ∝ 𝑒−(𝑠−ℎ |𝑠−ℎ)/2, (5.107)

where ℎ(θ, 𝑡) stands for the true waveform for parameter θ. In the large-SNR
approximation, the likelihood function becomes Gaussian,

𝑝(𝑠 |θ) ∝ 𝑒−Γ𝑖 𝑗Δ𝜃𝑖Δ𝜃 𝑗/2, (5.108)
8We still assume only 𝑀1 is tidally deformed.
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where Fisher matrix Γ𝑖 𝑗 is given by

Γ𝑖 𝑗 =

(
𝜕ℎ

𝜕𝜃𝑖

���� 𝜕ℎ𝜕𝜃 𝑗 ) . (5.109)

Since waveforms are numerically calculated in our case (from algorithms discussed
in the previous subsection), derivatives are computed numerically using the symmet-
ric difference quotient method. The inverse of the Fisher matrix gives the covariance
matrix. In particular, the diagonal components are the variances of the estimated
parameters

Δ𝜃𝑖 =
√︁
(Γ−1)𝑖𝑖, (5.110)

which are the projected constraints that we can put on parameters from the observa-
tion.

We still use the H4 and the Γ = 2 polytropic EoS, with 𝑀1 = 𝑀2 = 1.4𝑀⊙. The
system is at 𝐷𝐿 = 100Mpc and optimally oriented. Projected constraints on several
parameters as functions of spin frequency are shown in Figs. 5.13 and 5.14, where
the vertical lines stand for values of spins for which resonance takes place right on
contact. We can see that the two EoS give similar results. The constraints change
with detectors since we have fixed the distance of the source, and 3G detectors can
benefit from large SNRs. Among the six detectors, CE provides the best parameter
estimations because it is the most sensitive in the high-frequency band, where DT
takes place. To quantify the effect of DT, we list the projected constraints on
several parameters in Table 5.5 under two situations: (i) results evaluated with spin
frequencies when resonance takes place right on contact and (ii) constraints with
spin frequencies 500Hz. The improvement factor, which is the ratio of estimation
accuracies between two situations, characterizes the effect of DT.

Let us discuss each parameter more specifically. First, we can see that for different
detectors the relative errors on �̃�3 are of order ∼ 0.4−20, which depend most weakly
on spins when compared to other parameters. The estimation error even becomes
worse when spins are high. This is because this parameter is mainly estimated from
AT, and the constraints do not benefit from DT. When spins are high, adiabatic
waveforms become relatively short, hence the project constraints become worse. By
contrast, the estimation error of the other Love number �̃�4, which describes the (2, 2)
mode, improves with spin. This is expected since DT introduces the dependence of
waveforms on �̃�4. The constraints on this quantity can be improved by a factor of
3 − 5, depending on EoS and detectors. In the CE case, the relative error of �̃�4 can
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final decrease to ∼ 0.8 as spins are around 500Hz. However, this parameter is still
degenerate with the mass ratio Ξ. One need to take into account PN corrections to
break such degeneracy.

DT also helps us put more stringent constraints on the (2, 2) mode frequency, since
the oscillations of NSs can react back to orbits and influence GW waveforms. As
shown in Table 5.5, the averaged improvement factors are around 6.6 − 6.9 for the
polytropic EoS, while ∼ 5 for the H4 EoS. The current detector, like aLIGO, cannot
constrain this parameter well, giving relative errors ∼ 5. However, it is improved
to 0.2 in the CE case. We have also calculated the effect of DT on constraining
spin frequencies. The improvements on spin are the largest among parameters
we discuss, since this parameter determines the location of resonance in the time
(frequency) domain. The improvements are around 20 − 27 for both EoSs. In the
CE case, the relative errors are ∼ 0.7 − 1 when spins reach 500Hz.

5.6 Conclusions and discussion
We have systematically studied the (2, 2) 𝑓 -mode DT of spinning NSs in coalescing
binaries. In particular, the spin is assumed to be anti-aligned with the orbital
angular momentum, in which case the effect of DT is the most pronounced. We
began by deriving a complete set of coupled equations for mode oscillation and
orbital evolution, with the aid of the phase-space mode expansion method and
the Hamiltonian approach. We then extended H+16’s model [54, 55] for 𝑓 -mode
excitation to spinning NSs and obtained a new approximation which can describe the
full dynamics of systems to a high accuracy. One application of this approximation
is to study the post-resonance orbital dynamics, where we used the method of
osculating orbits and obtained the time evolution of the osculating variables. This
framework allowed us to obtain analytic estimations on the orbital information at
resonance (e.g., ¤𝑟𝑟 , ¤Ω𝑟). We also obtained a simple formula of angular momentum
transfer due to DT, which is an extension of L94 [36] to the spinning case. Based on
this result, we derived the averaged post-resonance orbits over the tide-oscillation
timescale in an alternative way. The result of our averaged treatment turns out to
agree with that of FR07 [53], to the leading order in angular momentum transfer
time Δ𝑡 [Eq. (5.64)]. By combining the two treatments, we obtained an algebraic
equation for 𝑡𝑟 . We then compared several DT models by computing the mismatches
of waveforms. Finally, we carried out a Fisher matrix analysis to estimate the effect
of DT on parameter estimation, with current and 3G detectors.
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Table 5.5: Projected constraints on �̃�3, �̃�4, 𝜔2 and Ω𝑠 with two EoS for six different
detectors. Here we compare two situations: (i) constraints with spins when reso-
nance takes place right on contact (Res) and (ii) constraints with NSs spinning at
500Hz (Ω𝑚

𝑠 ). The improvement factor is the ratio of Ω𝑚
𝑠 to Res, which characterizes

the effect of DT.

H4

Detectors aVirgo KAGRA aLIGO Voyager ET-D CE

Δ�̃�3
�̃�3

Res 18.4 13.4 5.7 2.1 0.6 0.4
Ω𝑚
𝑠 22.4 21.0 14.1 4.3 1.5 0.8

Imp 0.8 0.6 0.4 0.5 0.4 0.5

Δ�̃�4
�̃�4

Res 81.8 72.4 41.6 13.5 4.3 2.5
Ω𝑚
𝑠 23.0 21.1 14.1 4.3 1.4 0.8

Imp 3.6 3.4 3.9 3.1 3.0 3.2

Δ𝜔2
𝜔2

Res 43.2 41.2 27.0 8.2 2.8 1.4
Ω𝑚
𝑠 8.6 7.8 5.1 1.6 0.5 0.4

Imp 5.0 5.3 5.2 5.2 5.2 4.0

ΔΩ𝑠

Ω𝑠

Res 575.7 542.9 346.6 106.4 35.6 19.4
Ω𝑚
𝑠 29.9 27.1 17.7 5.4 1.8 1.0

Imp 19.3 20.1 19.6 19.6 19.5 19.9

Poly

Δ�̃�3
�̃�3

Res 17.9 14.0 6.3 2.3 0.7 0.4
Ω𝑚
𝑠 18.1 17.2 11.4 3.5 1.2 0.6

Imp 1.0 0.8 0.6 0.7 0.6 0.6

Δ�̃�4
�̃�4

Res 95.8 81.6 46.8 15.1 4.9 2.8
Ω𝑚
𝑠 19.5 18.1 11.6 3.6 1.2 0.7

Imp 4.9 4.5 4.0 4.2 4.1 4.2

Δ𝜔2
𝜔2

Res 39.7 36.5 24.8 7.3 2.5 1.3
Ω𝑚
𝑠 6.0 5.6 3.6 1.1 0.4 0.2

Imp 6.6 6.6 6.9 6.6 6.9 6.6

ΔΩ𝑠

Ω𝑠

Res 533.4 496.0 332.5 99.2 33.9 18.1
Ω𝑚
𝑠 20.2 18.7 12.0 3.7 1.2 0.7

Imp 26.4 26.5 27.8 26.7 27.6 26.5

We summarize our main conclusions as follows. (i) The (2, 2) 𝑓 -mode in the
spinning NS, by defining a new variable 𝑥 [Eq. (5.49)], can still be treated as
a harmonic oscillator, which is oscillating at its eigenfrequency 𝜁 in the post-
resonance regime. (ii) The reason that H+16 [54, 55] cannot describe the post-
resonance evolution are two folds. The first is that their phasing 𝑡2 is not accurate
and should be replaced by Θ [Eq. (5.59)]. Second, their counterterm Eq. (5.48)
does not contain phase information. (iii) The picture of averaged orbit over the tide-
oscillation timescale is accurate: the true pre- and post-resonance orbital motion
can be tracked accurately by PP orbits. These PP orbits are related by energy
and angular momentum transfers, and hence a jump in the orbital separation at 𝑡𝑟 .
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Within the spin range we studied, the match of GW signals between the prediction
using the averaged orbit and numerical integration (post-resonance part) is as high
as 99%. Therefore the additional tidal perturbation is a small effect. However, such
a description requires that the post-resonant signal is long enough (i.e., large spin)
so that the system can undergo several tidal oscillation cycles. Looking at the full
orbit, we found that there is an extra oscillation on top of the averaged trajectory.
We also found that the eccentricity of the orbit is induced by the tidal interaction
and can grow to ∼ 0.08 at the end of inspiral, the numbers depend weakly on the
spin. (iv) The method of effective Love number is not accurate to describe 𝑓 -mode
when spin is large and when DT is significant: this method essentially ignores the
torque between the orbit and the star. The mismatch of GW signals between this
formalism and numerical integrations increases to 0.2 when the spin frequency is
larger than 450Hz, even when accurate models for tidal amplitudes 𝐴 and 𝐵 are used,
therefore, it is the method itself that is inaccurate. (v) We found that DT leads to
little improvement on estimating �̃�3 in Eq. (5.105), for which constrains are mainly
from AT. In our study, they even become worse since the adiabatic part is relatively
short when the spin is large. For a system with component masses (1.4, 1.4)𝑀⊙ at
100Mpc, the relative errors of �̃�3 are around 5 for aLIGO and 0.4 for CE. However,
DT does break the degeneracy between �̃�3 and �̃�4, because the oscillations of (2, 2)
mode are excited while (2, 0) mode are not, hence they contribute differently to
GWs. The constraints on �̃�4 can be improved by factor of 3 ∼ 4. In the CE case, the
relative errors are 0.7 ∼ 0.8 when the spin frequency is 500Hz. We also calculated
the constraints on the mode frequency 𝜔2 and the spin Ω𝑠. We found that they
improve by factors of 5 ∼ 6 and 19 ∼ 27, respectively. In the CE case, the relative
errors of the mode frequency are around 0.2 ∼ 0.4 while for spin, the numbers are
0.7 ∼ 1.0. Hence DT potentially provides an alternative channel for people to study
the physics of NSs.

Throughout the chapter, we have assumed that the NS is in the normal-fluid state,
whereas in reality the core of a cold NS is expected to be in the superfluid state [101].
Thus a two-fluid formalism should be used to capture the new degree of freedom
associated with the superfluidity [102], and the 𝑓 -mode in particular should split
into a doublet [103]. However, as shown in Ref. [103], the new 𝑓 -mode due to
the superfluid degree of freedom typically have a much higher frequency than the
ordinary one (i.e., the 𝑓 -mode we considered here) and consequently we do not
expect it to significantly change the results we have here.
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In addition to the ignorance of superfluidity, there are three caveats we would like
to note. First, the H4 EoS has been shown to be less likely based on the observation
of GW170817 [7]. Second, the spin modifications to mode frequencies through
Maclaurin spheroid is merely a toy model and might be too simple for the real
situation. Finally, the NS spin frequency should be high enough (∼ 500Hz) for DT
to have significant effects. Such high frequency is unlikely in astrophysical binaries.
However, we here mainly aim to use semi-analytic methods to provide qualitative
understandings on DT, different EoS will give similar results. This is because the
equations of motion in Eqs. (5.32) are generic. EoS only affects the values of 𝜆0,2

and 𝜔0,2,3. On the other hand, our derivations of tidal excitations 𝐴 and 𝐵 [Eq.
(5.60)] are valid for any systems which couple a harmonic oscillator to a Kepler
orbit with a dissipative force in the long timescale. The framework presented in the
chapter is generic and can be applied to other types of DTs. One possible avenue for
future work is to use our discussions to study the excitation of 𝑟-modes with more
realistic EoS, since they only require NS to spin at tens of Hz, and are more likely
to take place in BNS systems.

All of the calculations in this chapter are at the Newtonian order, which has allowed us
to reveal the insufficiency of the effective Love number approach, and the possibility
of gaining further information on neutron stars—in the regime where the NS has
substantial spin, anti-aligned with the orbital angular momentum. This information
must still be complemented by contributions from PN corrections. For instance,
at the Newtonian order 𝜁 and Ω𝑠 are partially degenerate since they mainly enter
equations through the combination 𝜁 − Ω𝑠. By introducing PN effect, like spin-
orbit and spin-spin coupling, spin will be more constrained, which could break the
degeneracy, and consequently, put more stringent constraints on mode frequencies.
This is also true for the degeneracy between mass ratio and Love number. In our case,
the mass ratio is still badly constrained and degenerates with the Love number. By
including the 1PN effect, we could get more accurate estimations of these quantities.

Secondly, the universal relation for NS is also an important fact to break degeneracy.
For example, the universality between the Love number and 𝑓 -mode frequencies was
observed in Ref. [58]. With such additional information, constraints on parameters
should be improved.

Finally, it is interesting to compare our analytic analyses with recent numerical
simulations in Ref. [57]. To do so, one need to append the tidal Hamiltonian Eq.
(5.24) to the EOB Hamiltonian, and jointly evolve the orbital motion and the stellar
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oscillation, to obtain faithful predictions of waveforms.

5.7 Appendix: The derivation of mode oscillation formulae
In this section, we will give a detailed derivation for our new DT formulae of 𝐴 and
𝐵, following Ref. [104].

As we have shown in Eq. (5.49), the stellar oscillation during DT can be described
by a harmonic oscillator after a transformation. Its general solution is the sum of a
homogeneous solution and the particular solution. Here we assume that there are
no free oscillations in the NS initially, hence the solution can be expressed in terms
of the retarded Green function and tidal driving

𝑥(𝑡) = 1
𝜁

∫ 𝑡 3𝑀2𝜆2𝜔
2
2

2𝑟′3
𝑒𝑖Ω𝑠𝑡

′+2𝑖𝜙(𝑡′) sin 𝜁 (𝑡 − 𝑡′)𝑑𝑡′. (5.111)

By integration by part, we get

𝑥(𝑡) =
3𝑀2𝜆2𝜔

2
2

2𝜁

[
𝜁𝑒𝑖Ω𝑠𝑡+2𝑖𝜙

𝜁2 − (Ω𝑠 + 2Ω)2
1
𝑟3 + 𝑒

−𝑖𝜁𝑡
∫ 𝑡 ¤Ω′𝑒𝑖Ω𝑠𝑡

′+2𝑖𝜙(𝑡′)+𝑖𝜁 𝑡′

(Ω𝑠 + 2Ω′ + 𝜁)2𝑟′3
𝑑𝑡′

−𝑒𝑖𝜁𝑡
∫ 𝑡 ¤Ω′𝑒𝑖Ω𝑠𝑡

′+2𝑖𝜙(𝑡′)−𝑖𝜁 𝑡′

(Ω𝑠 + 2Ω′ − 𝜁)2𝑟′3
𝑑𝑡′

]
, (5.112)

where we have ignored ¤𝑟. However, the method fails once the resonance happens.
There is a stationary point within the integration domain. L94 [36] and H+16 [54,
55] expanded 𝜙(𝑡′) in Eq. (5.111) around 𝑡𝑟 and estimated the integral with SPA.
Our treatment is slightly different. In order to incorporate both the adiabatic and
resonant regimes, we start from Eq. (5.112) instead of (5.111), where the adiabatic
term is separated out initially. At resonance, this adiabatic term goes to infinity.
Hence there should be a counterterm arising from the integration, to cancel out such
infinity. H+16 [54, 55] chose Eq. (5.48) as the counterterm. Here we derive a better
counterterm by studying the integration in Eq. (5.112).

Since there is no stationary point in the second term on the RHS of Eq. (5.112), it
can be ignored. Expanding the integrand of the third term around the resonance
point, and neglecting the time derivatives of ¤Ω and 𝑟, the integration becomes∫ 𝑡 𝑒𝑖𝜒𝑟+𝑖

¤Ω𝑟 (𝑡′−𝑡𝑟 )2

4𝑟3
𝑟
¤Ω𝑟 (𝑡′ − 𝑡𝑟)2

𝑑𝑡′ = − 𝑒
𝑖𝜒𝑟+𝑖𝑡2

4𝑟3
𝑟

√︁
¤Ω𝑟

1
𝑡
+ 𝑒

𝑖𝜒𝑟

2𝑟3
𝑟

√︂
𝜋

2 ¤Ω𝑟

×
[
−FS

(√︂
2
𝜋
𝑡

)
+ 𝑖FC

(√︂
2
𝜋
𝑡

)
− 1
√

2
𝑒−𝑖𝜋/4

]
. (5.113)
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The terms in the bracket are the same as H+16 [54, 55]. However, we have a new
counterterm

− 𝑒
𝑖𝜒𝑟+𝑖𝑡2

4𝑟3
𝑟

√︁
¤Ω𝑟

1
𝑡
, (5.114)

which contains the phase 𝜒𝑟 + 𝑡2. As we have discussed in Sec. 5.3.2, the real part
of this term gives rise to a contribution to 𝐴 that is proportional to cos(𝑡2 − Θ)/𝑡2,
which reduces to H+16’s [54, 55] if we neglect cos(𝑡2 − Θ). This term cancels the
infinity caused by the adiabatic term. On the other hand, the imaginary part of Eq.
(5.114) does not diverge, since

lim
𝑡→𝑡𝑟

sin(𝑡2 − Θ)
𝑡

= 0. (5.115)

Performing the integration by part again on the third term of Eq. (5.112), we get the
next order correction∫ 𝑡 ¤Ω′𝑒𝑖Ω𝑠𝑡

′+2𝑖𝜙(𝑡′)−𝑖𝜁 𝑡′

(Ω𝑠 + 2Ω′ − 𝜁)2𝑟′3
𝑑𝑡′ =

¤Ω𝑒𝑖Ω𝑠𝑡+2𝑖𝜙−𝑖𝜁 𝑡

𝑖(Ω𝑠 + 2Ω − 𝜁)3𝑟3 +
∫ 𝑡 6 ¤Ω′2𝑒𝑖Ω𝑠𝑡

′+2𝑖𝜙(𝑡′)−𝑖𝜁 𝑡′

𝑖(Ω𝑠 + 2Ω′ − 𝜁)4𝑟′3
𝑑𝑡′.

(5.116)

Following the same procedure, we obtain a higher-order correction as

Δ𝐴(𝑡) = 𝑀2𝜆2
𝜁

3𝜔2
2

16𝑟3
𝑟
¤Ω1/2
𝑟

sin(𝑡2 − Θ)
𝑡3

. (5.117)

The correction term contributes a finite value as 𝑡 → 𝑡𝑟 . As shown in Table 5.1,
this term reduces the error of 𝐴𝑟 from tens of percent to ≲ 4% in the situations we
consider.
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C h a p t e r 6

DETECTING RESONANT TIDAL EXCITATIONS OF ROSSBY
MODES IN COALESCING NEUTRON-STAR BINARIES WITH
THIRD-GENERATION GRAVITATIONAL-WAVE DETECTORS

[1] Sizheng Ma, Hang Yu, and Yanbei Chen. “Detecting resonant tidal ex-
citations of Rossby modes in coalescing neutron-star binaries with third-
generation gravitational-wave detectors.” Phys. Rev. D 103.6 (2021), p. 063020.
doi: 10.1103/PhysRevD.103.063020. arXiv: 2010.03066 [gr-qc].

6.1 Introduction
Gravitational-wave (GW) astronomy recently provided us with a new way to study
neutron star (NS) physics, with events GW170817 [1, 2] and GW190425 [3] al-
ready imposing new constraints on NS properties [4–12]. With future upgrades
for Advanced LIGO and Virgo [13–24], LIGO-India [25], KAGRA [26, 27], as
well as third-generation detectors like the Einstein Telescope [28–31] and the Cos-
mic Explorer (CE) [32, 33], we expect to detect more events, as well as achieving
much higher signal-to-noise ratios [34]. These new opportunities motivate the more
accurate modeling of NSs in coalescing binaries, and the GWs they emit [35–40].

During the last few minutes of a binary neutron star inspiral, the orbital frequency
sweeps through tens of Hertz to hundreds of Hertz; internal fluid motions of NSs may
get resonantly excited by tidal forces exerted by their companions. Such fluid motion
will also act back onto the orbital motion. This phenomenon is called dynamical
tide (DT), which was first investigated by Cowling [41]. For non-spinning NSs in
binaries with circular orbits, only 𝑔-modes can be resonantly excited, but their effect
on gravitational waveforms is negligible [42–45]. However, DT can be enhanced by
orbital eccentricity [46–49] and rotation [50–53].

The effect of rotation on DTs was first studied by Lai et al. [50, 51], who aimed to
explain the orbital decay of the PSR J0045-7319/B binary system. They pointed out
that stellar rotation can excite 𝑓 -modes and lower-order 𝑔-modes. Since these modes
couple more strongly to the tidal field, DTs should be more pronounced. The same
formalism was then applied to coalescing binaries by Ho and Lai [52] to investigate
the impact of DTs on GW. It was found that 𝑓 -mode resonances require NSs to rotate

https://doi.org/10.1103/PhysRevD.103.063020
https://arxiv.org/abs/2010.03066
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at very high frequencies—and only in this case it induces significant GW phase shift.
On the other hand, 𝑔-mode resonances are still too weak to be detected. Several
authors later extended the above Newtonian studies, and discussed the excitation of
𝑓 -modes and 𝑔-modes in the context of general relativity [35, 54–58].

Although 𝑓 -mode resonances can significantly influence GW, the high rotation rate
required here is disfavored by the astrophysics of formation scenarios. It is generally
believed that NSs in binaries have already spun down to low frequencies (≲ 40 Hz)
when their GW frequencies enter the band of ground-based detectors [59, 60]. For
example, recent events GW170817 [1] and GW190425 [3] were all consistent with
low spins. In this way, 𝑓 -mode resonance might not be very promising for GW
observations.

For spinning neutron stars, besides 𝑓 -, 𝑝- and 𝑔-modes, there also exist inertial
modes (hybrid modes) that are mainly supported by the Coriolis force [61–63]. As
pointed out by Lockitch and Friedman [62], for isentropic stars1, rotation mixes
purely axial modes and purely polar modes, and leads to a class of modes that have
hybrid parity, where each of them can be classified into axial-led or polar-led For
Newtonian stars, there is a special subclass of modes that has a purely axial parity,
which is usually referred to as the Rossby modes (or 𝑟-modes) [64, 65], although
this particular subclass also obtains a polar part for relativistic stars [66–68]. On
the other hand, for non-isentropic NSs, the mixing of 𝑔-modes and 𝑟-modes takes
place at a relatively high rotation rate (where the Coriolis force dominates over the
buoyancy), leading to the so-called inertial-gravity modes.

Previous studies have shown that inertial modes (including 𝑟-modes) and inertial-
gravity modes can be excited by the (gravito-electric) Newtonian tidal field [52, 69,
70]. The resonance takes place as the orbital angular velocity becomes comparable
to the spin frequency, which requires a minimum NS spin of only tens of Hertz.
Although this spin requirement is more likely fulfilled, the effect of such resonances
are too weak to be detectable. However, inertial modes (including 𝑟-modes) can
also be excited by the gravitomagnetic force [71–75]. As pointed out by Flanagan et
al. (hereafter FR07) [72], this kind of DT can induce ∼ 0.1 rad of GW phase shift—
detectable by third-generation detectors, like ET and CE. Their studies, though, did
not provide detailed discussions on how those DTs impact parameter estimation.
Later on, Yu et al. [76] proposed that the 𝑟-mode DTs can improve the accuracy in

1Isentropic stars have no buoyancy; both 𝑔-modes and 𝑟-modes (purely axial modes) have
vanishing mode frequency in the non-spinning limit, and they are mixed even without rotation.
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measuring tidal Love numbers. The aim of this chapter is to build upon FR07 and
Ref. [76], and study the 𝑟-mode DTs with more details, including a Fisher-matrix
analysis. Especially, we will investigate the impact of universal relations among NS
properties [77, 78].

This chapter is organized as follows. We first give a summary of the implication
of 𝑟-mode DT on GW parameter estimation in Sec. 6.2, and the rest of this chapter
presents the details. In Sec. 6.3, we briefly review the coupling between the 𝑟-
mode and the gravitomagnetic force. In Sec. 6.4, we discuss features of 𝑟-mode
excitation and the 𝑟-mode’s impact on the orbital evolution. We first focus on the
orbital part in Sec. 6.4.2, where we compare the model presented in FR07 [Eq.
(6.1)] with numerical integration. Next we study the tidal excitation in Sec. 6.4.3,
where we give an analytic formula for 𝑟-mode tidal evolution that is valid in the
entire evolution regime. In Sec. 6.5, we explore the universal relation between the
normalized 𝑟-mode overlap and the normalized tidal Love number. Sec. 6.6 focuses
on the construction of gravitational waveforms. We first propose a hybrid GW
waveform in Sec. 6.6.1, which incorporates both 𝑟-mode and other PN effects. Next
in Sec. 6.6.2 we provide a model for the GW phase of 𝑟-mode, following FR07. In
Sec. 6.7, we use the Fisher information matrix formalism to discuss the influence of
𝑟-mode excitation on parameter estimation. Finally in Sec. 6.8 we summarize our
results.

Throughout this chapter we use geometric units with 𝐺 = 𝑐 = 1.

6.2 Summary of parameter dependencies
In this section, we shall give a brief summary of 𝑟-mode resonance’s impact on
the gravitational waveform, and on how physical parameters of neutron-star and
neutron-star–black-hole binaries influence the gravitational waveform, via point-
particle, spin-orbit, 𝑓 -mode tide, and 𝑟-mode resonance effects. We shall divide
binaries into four categories, and discuss in each category how some, or all, of the
physical parameters of the neutron stars can be measured.

6.2.1 The role of 𝑟-mode dynamical tide
As discussed in FR07 [72], 𝑟-mode excitation is mainly controlled by the spin fre-
quency Ω𝑠 and 𝑟-mode coupling coefficient I [Eq. (6.30)], which play different
roles: (i) spin frequency determines the location (both in time and frequency do-
mains) of resonance during orbital evolution, because resonance takes place as the
tidal driving frequency (related to the orbital frequency) coincides with the pattern
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frequency of the mode (determined by the spin frequency) in the inertial frame;
(ii) the 𝑟-mode coupling coefficient I characterizes the strength of the 𝑟-mode DT,
therefore determines the effect of this DT on orbital evolution [See Sec. 6.4 for
details]. As proposed in FR07, the orbital evolution before and after the 𝑟-mode
resonance can described as two different point-particle (PP) orbits, with orbital-
frequency evolution given by

¤𝜙(𝑡) =

¤𝜙(pre)
PP (𝑡), if 𝑡 < 𝑡𝑟
¤𝜙(post)
PP (𝑡), if 𝑡 > 𝑡𝑟

, (6.1)

with 𝑡𝑟 the time of resonance2. These two frequency evolutions satisfy the same
evolution equation, with the same set of parameters (including mass, spin, inclination
angles, etc) which, at Newtonian order, reads

𝑑

𝑑𝑡
¤𝜙(PP) =

96
5
M5/3 ¤𝜙11/3

(PP) , (6.2)

whereM is the chirp mass. The two orbits are related to each other by a “jump” at
𝑡𝑟

¤𝜙(post)
PP (𝑡𝑟) − ¤𝜙(pre)

PP (𝑡𝑟) = Δ ¤𝜙tid, (6.3)

where Δ ¤𝜙tid depends on I (see Sec. 6.4.2 for more details). As a result, by studying
the GW emitted from the orbit in Eq. (6.1), we can obtain the constraints on Ω𝑠 and
I.

6.2.2 The impact of 𝑟-mode DT on parameter estimation
In order to explore how the additional information from the 𝑟-mode DT can improve
parameter estimation, we consider both BNS and BHNS binaries, and distinguish
whether universal relations between neutron-star properties are used as input. This
will divide these binaries into four categories.

6.2.2.1 BNS systems without 𝑟-mode DT and universal relations

A spinning BNS system is sketched in Fig. 6.1. Without 𝑟-mode DT (but with
𝑓 -mode adiabatic tide), the system has 6 intrinsic parameters: chirp mass M;
mass ratio Ξ = 𝑚1/(𝑚1 + 𝑚2); two individual tidal Love numbers 𝜆(𝑖)

𝑓
; and two

dimensionless spin along the direction of orbital angular momentum 𝜒
(𝑧)
𝑖

(The index
2The resonance condition is given by Eq. (6.19). Hereafter we use the subscript 𝑟 to refer to the

value at the resonance time.
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Table 6.1: Parameters and constraints for a BNS system without 𝑟-mode DT and
not applying the universal relations between NS properties. We have 6 parameters
and 4 independent constraints; as a result, the two individual Love numbers are
degenerate, so are the two individual dimensionless spins.

All variables Effect Variables in Constrainable
in GW the effect variable

M,Ξ

𝜆
(1)
𝑓
, 𝜆
(2)
𝑓

𝜒
(𝑧)
1 , 𝜒

(𝑧)
2

PN (PP part) M M
PN (PP part) Ξ Ξ

SO coupling 𝜒
(𝑧)
1 , 𝜒

(𝑧)
2 𝜒eff

Adiabatic tide
𝜆
(1)
𝑓
, 𝜆
(2)
𝑓

𝜆eff
𝑓( 𝑓 -mode)

𝑖 = 1, 2 labels the two NSs). In the absence of DT, the system evolves under four
main effects: the Newtonian gravity, post-Newtonian (PN) corrections from mass
ratio, PN corrections from spin-orbit (SO) coupling, and the adiabatic ( 𝑓 -mode)
tidal effect, as summarized in Table 6.1. Here we do not include the PN spin-spin
coupling [79] and PN spin precession [80], because their effects are negligible even
for 3G detectors for the range of spins we consider (10 ∼ 80 Hz, see Sec. 6.9 for
more details). For a BNS system, the waveform only depends on a combination of
𝜆
(𝑖)
𝑓

and a combination of 𝜒𝑧
𝑖
, not individually; as a result, we can only measure four

parameters to meaningful accuracy: M, Ξ, 𝜒eff, and 𝜆eff
𝑓

, with 𝜆eff
𝑓

and 𝜒eff defined
by [81, 82]

𝜒eff =
𝑚1𝜒

(𝑧)
1 + 𝑚2𝜒

(𝑧)
2

𝑀
,

𝜆eff
𝑓 =

(
11
𝑚2
𝑚1
+ 𝑀
𝑚1

)
𝜆
(1)
𝑓
+

(
11
𝑚1
𝑚2
+ 𝑀
𝑚2

)
𝜆
(2)
𝑓
,

where 𝑀 = 𝑚1 + 𝑚2. The two individual Love numbers 𝜆(𝑖)
𝑓

, as well as the two
𝜒
(𝑧)
𝑖

, are degenerate. Even among the constrainable parameters, errors in Ξ, 𝜒eff,
and 𝜆eff

𝑓
are highly correlated with each other. In order to obtain a good constraint

on 𝜆eff
𝑓

, a low-spin prior based on the observed Galactic binary NS population has
to be assumed [1, 4]. As we shall discuss later, such assumption is not necessary if
𝑟-mode resonance can be incorporated.

6.2.2.2 BNS systems with the I-Love universal relation but without DT

For the same BNS system (without DT), the I-Love universal relation of NSs [77, 78]
can be used to improve parameter estimation. This is a relation between momentum
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Figure 6.1: A BNS system 𝑚1 − 𝑚2 with two spin vectors ®𝑆1 and ®𝑆2. The neutron
stars’ spin axis are tilted by angles 𝜓1,2 with respect to the direction of the orbital
angular momentum ®𝐿. Here the azimuthal angle of the spins are unimportant,
because the effect of precession is negligible.

of inertia and tidal Love number, that is insensitive to the EoS. To use this relation,
we express 𝜒(𝑧) of each NS as

𝜒
(𝑧)
𝑖

=
𝐼𝑖Ω𝑠𝑖

𝑚2
𝑖

cos𝜓𝑖 . (6.4)

In this case, we have a total of 10 parameters: chirp massM; mass ratio Ξ; two Love
numbers 𝜆(𝑖)

𝑓
; two moments of inertia 𝐼𝑖; two inclination angles 𝜓𝑖; and two spin

frequencies Ω𝑠𝑖. As listed in Table 6.2 (“Non-DT sector”), there are 6 constraints
on these parameters: four are from GW (M,Ξ, 𝜒eff, 𝜆eff

𝑓
), as discussed above; and

two are from universal relations (each star contributes one constraint). This is still
not enough to independently constrain all 10 parameters.

Introducing the universal relations did not reduce the number of degeneracies be-
cause more parameters, namely spin frequency and inclination angle for each NS,
are needed to be introduced in order to use these relations. The situation will change
as we consider 𝑟-mode DT.

6.2.2.3 Resonant BNS systems with universal relations

Now take the 𝑟-mode resonance into account. As shown in Table 6.2 , we have
in total 12 parameters: chirp massM; mass ratio Ξ; two Love numbers 𝜆(𝑖)

𝑓
; two

momentum of inertia 𝐼𝑖; two spin frequencies Ω𝑠𝑖; two inclination angles 𝜓𝑖; and
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Table 6.2: Parameters and constraints for a BNS system with universal relations (for
both NSs). In the “Non-DT sector,” when 𝑟-mode DTs do not take place, we have
10 parameters and 6 constraints, with 4 degeneracies. In presence of 𝑟-mode DTs,
we have 2 more parameters, but 6 more constraints. As a result, we have in total
12 parameters and 12 constraints; the system can in principle be decoded without
degeneracy.

Variables Sector Effect Variables Constrainable
in GW in effect variable

M,Ξ

𝜆
(1)
𝑓
, 𝜆
(2)
𝑓

𝐼1, 𝐼2
𝜓1, 𝜓2
Ω𝑠1,Ω𝑠2

Non-
DT

sector

PN M M(PP part)
PN

Ξ Ξ(PP part)
SO- 𝐼1,Ω𝑠1, 𝜓1,M

𝜒eff
coupling 𝐼2,Ω𝑠2, 𝜓2,Ξ
Adiabatic

𝜆
(1)
𝑓
, 𝜆
(2)
𝑓

𝜆eff
𝑓tide

( 𝑓 -mode)
I-Love 𝜆

(1)
𝑓
, 𝜆
(2)
𝑓

𝐼1, 𝐼2universal 𝐼1, 𝐼2
relation Ξ

I1,I2 DT
sector

𝑟-mode Ω𝑠1,Ω𝑠2 Ω𝑠1,Ω𝑠2
resonances I1,I2 I1,I2
𝑟-mode I1, 𝜓1, 𝜆

(1)
𝑓

𝜓1, 𝜓2universal I2, 𝜓2, 𝜆
(2)
𝑓

relation Ξ

two 𝑟-mode coupling coefficients I𝑖. Meanwhile, we can obtain 12 constraints from
GW and the universal relations. Six of them (M,Ξ, 𝜒eff, 𝜆eff

𝑓
, 𝐼1,2) have already

been discussed previously. The rest of the six constraints involve the 𝑟-mode.
Four are constraints on Ω𝑠𝑖 and I𝑖, as we discussed in Sec. 6.2.1. The other two
constraints come from a new universal relation found in this chapter, namely the
relation between the normalized 𝑟-mode overlap and the normalized Love number
(see Sec. 6.5). As a result, the number of constraints is the same as the number
of parameters. In principle, this breaks degeneracy, and allows us to estimate all
parameters independently, given a high enough signal-to-noise ratio. However, as it
later turns out, even in the era of 3G detectors, for each individual binary, we still
may not fully constrain all parameters with relative error less than 100%, since the
DT sector is not strong enough.
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Table 6.3: Parameters and constraints for a BHNS system with universal relations
and 𝑟-mode DT. We have 8 parameters and 8 constraints, and the system can be
decoded without degeneracy.

All variables Effect Variables Constrainable
in GW in the effect variable

M,Ξ

PN (PP part) M M

𝜆
(1)
𝑓
, 𝐼1

PN (PP part) Ξ Ξ

𝜓1,Ω𝑠1

SO 𝐼1,Ω𝑠1, 𝜓1
𝜒eff

I1, 𝜒(𝑧)2

coupling 𝜒
(𝑧)
2 ,Ξ,M

Adiabatic tide
𝜆
(1)
𝑓

𝜆
(1)
𝑓( 𝑓 -mode)

I-Love
𝜆
(1)
𝑓
, 𝐼1 𝐼1universal relation

𝑟-mode
Ω𝑠1,I1 Ω𝑠1,I1resonances

𝑟-mode I1, 𝜓1
𝜓1universal relation Ξ, 𝜆

(1)
𝑓

6.2.2.4 Resonant BHNS systems with universal relations

For BHNS systems, the 𝑟-mode resonance only takes place once before merger. As
shown in Table 6.3, the system has 8 parameters: chirp massM; mass ratio Ξ; NS
Love number 𝜆(1)

𝑓
; NS moment of inertia 𝐼1; NS spin frequency of NS Ω𝑠1; NS

inclination angle 𝜓1; NS 𝑟-mode coupling coefficient I1, and the spin of BH along
the direction of orbital angular momentum 𝜒

(𝑧)
2 . We can obtain 8 constraints on

these parameters, with 6 of them from GW (M,Ξ, 𝜒eff, 𝜆
(1)
𝑓
,Ω𝑠1,I1), and 2 from

the two universal relations. In this way, the BHNS system is also expected to be
decoded without degeneracy, given enough signal-to-noise ratio.

6.3 Basic equations of dynamical tides
In this section, we briefly review the coupling between 𝑟-modes and gravitomagnetic
force in coalescing binary systems. We refer the reader to Refs. [72, 83] by Flanagan
and Racine for further details. In Sec. 6.3.1, we first provide some basic information
about 𝑟-modes in NSs. All equations are kept to linear order in spin frequency. In
Sec. 6.3.2, we show how 𝑟-modes are driven by the gravitomagnetic force. Finally
in Sec. 6.3.3, we discuss the tidal back reaction to the orbit and present the full
equation of motion (EOM). In this section, as done in FR07, the slowly rotating
NS is treated in Newtonian gravity. This will lead to the correct form of evolution
equations, although parameters may eventually need relativistic corrections. We
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shall incorporate PN and 𝑓 -mode adiabatic tide corrections using a hybrid approach
described in Sec. 6.6.

6.3.1 Rossby modes
For a rotating NS with mass 𝑚1, we introduce a co-rotating frame (𝑥′, 𝑦′, 𝑧′), in
which the spin of the star 𝛀𝑠1 is along the 𝑧′ direction. In this coordinate system,
the perturbation equation of the rotating star is given by

𝜕2ξ

𝜕𝑡2
+ 2𝛀𝑠1 ×

𝜕ξ

𝜕𝑡
+C · ξ = aext, (6.5)

where ξ is the Lagrangian displacement of fluid elements, and C is a self-adjoint
operator, and aext the external driving, which will arise from gravitomagnetism in
our case. We refer the interested reader to Ref. [84] for more details.

In the phase-space mode expansion framework [71], ξ and its time derivative ¤ξ can
be expanded as a summation of modes(

ξ

ξ

)
=

∑︁
𝑙𝑚

𝑐𝑙𝑚 (𝑡)
(

ξ𝑙𝑚

−𝑖𝜔𝑙𝑚ξ𝑙𝑚

)
, (6.6)

where the angular quantum numbers 𝑙 and𝑚 are integers with𝑚 = ±𝑙,±(𝑙−1) . . . 0.
Here 𝜔𝑙𝑚 is the co-rotating frame eigenfrequency of the mode. Each mode ξ𝑙𝑚

satisfies the following eigenvalue problem,

−𝜔2
𝑙𝑚ξ𝑙𝑚 − 2𝑖𝜔𝑙𝑚𝛀𝑠1 × ξ𝑙𝑚 + C · ξ𝑙𝑚 = 0 , (6.7)

and modes with (𝑙, 𝑚) ≠ (𝑙′, 𝑚′) satisfy the following orthogonality condition,

⟨ξ𝑙𝑚, 2𝑖𝛀𝑠1 × ξ𝑙′𝑚′⟩ + (𝜔𝑙𝑚 + 𝜔𝑙′𝑚′) ⟨ξ𝑙𝑚, ξ𝑙′𝑚′⟩ = 0, (6.8)

with the inner product defined by

⟨u, v⟩ =
∫

𝑑3𝑥′𝜌u∗ · v, (6.9)

where 𝜌 is the density profile of NS.

In presence of driving, the mode amplitudes satisfy

¤𝑐𝑙𝑚 (𝑡) + 𝑖𝜔𝑙𝑚𝑐𝑙𝑚 (𝑡) =
𝑖

𝑏𝑙𝑚
⟨ξ𝑙𝑚,aext⟩ , (6.10)

where the coefficient 𝑏𝑙𝑚 is given by

𝑏𝑙𝑚 = ⟨ξ𝑙𝑚, 2𝜔𝑙𝑚ξ𝑙𝑚 + 2𝑖𝛀𝑠1 × ξ𝑙𝑚⟩ . (6.11)
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To linear order in spin frequency, the (𝑙, 𝑚) 𝑟-mode has Lagrangian displacement
vector field as

ξ𝑙𝑚 (𝑟′, 𝜃′, 𝜙′) = −
𝑖 𝑓𝑙𝑚 (𝑟′)√︁
𝑙 (𝑙 + 1)

r′ × ∇𝑌𝑙𝑚 (𝜃′, 𝜙′), (6.12)

where 𝑌𝑙𝑚 (𝜃′, 𝜙′) are spherical harmonics, and (co-rotating frame) eigenfrequency
given by [84]

𝜔𝑙𝑚 = − 2𝑚Ω𝑠1
𝑙 (𝑙 + 1) . (6.13)

The radial profile function 𝑓𝑙𝑚 (𝑟′) can only be determined if one includes the next-
order correction of spin frequency. For barotropic stars, only the modes |𝑚 | = 𝑙

exist, whose coefficients 𝑓𝑙𝑚 (𝑟′) are given by [84]

𝑓𝑙𝑚 (𝑟′) ∝ 𝑟′𝑙 . (6.14)

The constant of proportionality can be determined by the normalization condition

⟨ξ𝑙𝑚, ξ𝑙𝑚⟩ = 𝑚1𝑅
2
1, (6.15)

where 𝑅1 the radius of the star. As for other modes with |𝑚 | ≠ 𝑙, 𝑓𝑙𝑚 = 0.
Henceforth, we restrict our discussions to barotropic stars, and only focus on the
(2, 2) 𝑟-mode, since it gives the strongest effect [72].

6.3.2 Gravitomagnetic coupling: stellar part
To investigate the coupling between the (2, 2) 𝑟-mode and gravitomagnetic force,
i.e., the RHS of Eq. (6.10), we place the spinning NS, 𝑚1, in a binary system.
It is perturbed by the gravitomagnetic tidal field B𝑖 𝑗 (𝑡) exerted by the companion
𝑚2. For convenience, we introduce a non-rotating, co-moving coordinate system
(𝑥, 𝑦, 𝑧) centered at 𝑚1, as shown in Fig. 6.2, with 𝑧 axis placed along the spin axis.
The co-moving frame is related to the co-rotating frame (the primed frame) though
a rotation about the 𝑧 (𝑧′) axis by Ω𝑠1𝑡. (Note that the co-moving frame can be
non-rotating because in this chapter we treat the spin directions of NSs as fixed.)

Using the same convention as Ref. [72], we parameterize the location of 𝑚2, z, as

z(𝑡) = 𝐷 (𝑡) [cos𝜓1 cos 𝜙(𝑡), sin 𝜙(𝑡), sin𝜓1 cos 𝜙(𝑡)], (6.16)

where 𝜓1 is the inclination angle between the stellar spin vector and the orbital angu-
lar momentum; 𝐷 (𝑡) is the separation between two NSs. With this parametrization,
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the orbital angular moment, ®𝐿, is in the 𝑥 − 𝑧 plane. This plane and the orbital plane
intersect at ®𝑁 . The orbital phase of 𝑚2, 𝜙(𝑡), is the angle between ®𝑧 and ®𝑁 .

The expressions of B𝑖 𝑗 (𝑡) and aext are given in Sec. V C of Ref. [72]. Plugging
them and Eq. (6.12) into Eq. (6.10), we obtain the evolution equation for 𝑐22

¤𝑐22 + 𝑖𝜔22𝑐22 =
𝑖

𝜔22

√︂
16𝜋

5
𝐼𝑟22𝑚2𝑅1

𝐷2
¤𝜙( ¤𝜙 − 2Ω𝑠1)

× sin𝜓1 cos2 𝜓1
2
𝑒2𝑖Ω𝑠1𝑡−𝑖𝜙, (6.17)

where we have ignored the exp[+𝑖𝜙] part of driving force that does not give rise to
resonance, since its effect is negligible. On the RHS of Eq. (6.17), we have used 𝐼𝑟22
to denote the (2, 2) 𝑟-mode overlap. For Newtonian NS, 𝐼𝑟22 is given by

𝐼𝑟22 =

√︄
1

𝑚1𝑅
4
1

∫ 𝑅1

0
𝜌𝑟6𝑑𝑟. (6.18)

This is an analog of the tidal Love number for 𝑓 -mode.

In Eq. (6.17), 𝜓1 is treated as a constant, because for a typical BNS system, this
angle changes on a timescale of ∼ 70 s, which is much longer than the duration
of resonance (∼ 0.52 s) and the time to the merger (∼ 4 s); see Sec. 6.9 for more
details.

From Eq. (6.17), we can obtain the resonant condition in terms of orbital frequency
¤𝜙𝑟

¤𝜙𝑟 = 2Ω𝑠1 + 𝜔22 =
4
3
Ω𝑠1, (6.19)

where we have used Eq. (6.13) to replace the mode frequency by spin frequency.
Note that the driving force is porportional to∼ sin𝜓1 cos2 𝜓1/2, therefore no 𝑟-mode
DT takes place for 𝜓1 = 0, 𝜋, when spins are aligned or anti-aligned with the orbital
angular momentum.

6.3.3 Gravitomagnetic coupling: orbital part
Let us now use the standard osculating equations to study the orbital evolution.
Assume that there is a perturbing force F on the Newtonian binary system, which
takes the form of

F

𝜇
= Sλ, (6.20)
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Figure 6.2: A co-moving coordinate system (𝑥, 𝑦, 𝑧) that centers at 𝑚1. The com-
panion NS 𝑚2 orbits around 𝑚1, whose orbital plane intersects with the 𝑥 − 𝑧 plane
at ®𝑁 , and intersects with the 𝑥 − 𝑦 plane at the 𝑦-axis. The orbital phase 𝜙(𝑡) is the
angle between ®𝑁 and the location of 𝑚2, ®𝑧. The orbital angular momentum ®𝐿 is in
the 𝑥 − 𝑧 plane, with polar angle 𝜓1.

where 𝜇 is the reduced mass, and λ is the unit azimuthal vector in the orbital plane.
The evolution of orbital separation 𝐷 (𝑡) is given by [85]

𝑑𝐷

𝑑𝑡
= 2

√︂
𝐷3

𝑀
S. (6.21)

In our case, S contains two parts. The first one is the back-reaction force due to GW
radiation, given by the averaged (over orbital timescale) Burke-Thorne dissipation
term [85]:

SGW = −32
5
𝜂

(
𝑀

𝐷

)3 √︂
𝑀

𝐷3 . (6.22)

The other part is the stellar induced force. The current quadrupole moment 𝐽𝑖 𝑗
induced by the 𝑟-mode (to the linear order in ξ22) is given by3 [72]

𝐽𝑖 𝑗 ∼ 𝐼𝑟22𝑚1𝑅
3
1𝜔22𝑒

−2𝑖Ω𝑠1𝑡𝑐22 + 𝑐.𝑐., (6.23)

leading to an azimuthal acceleration Stide [83]

Stide =
8
3

√︂
𝜋

5
𝐼𝑟22

Ω𝑠1(𝜔22 + 2Ω𝑠1)
𝐷3 𝑀𝑅3

1 sin𝜓1 cos2 𝜓1
2
× 2ℜ(−𝑖𝑒𝑖𝜙−2𝑖Ω𝑠𝑡𝑐22).

(6.24)
3This is different from the 𝑓 -mode dynamical tides, where the leading term is mass quadrupole

moment.
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The total acceleration is given by

S = Stide + SGW. (6.25)

Note that the current quadrupole moment also induces forces along the radial axis,
and along the axis of orbital angular momentum. These will lead to the evolution in
orbital eccentricity and semi-latus rectum. However, as argued in Ref. [72], these
effects are negligible, and the orbit keeps quasicircular within the entire evolution
process. We have also confirmed this numerically. Here we do not include those
effects.

So far we have only considered the 𝑟-mode of 𝑚1. The resonance for 𝑚2 can be
treated by a direct replacement (1↔ 2). Since we only consider the (2, 2) 𝑟-mode
in the two stars, henceforth we will drop the labels of (𝑙, 𝑚), and add a new subscript
to refer to individual star. For example, 𝐼𝑟1 and 𝜔1 stand for the 𝑟-mode overlap and
frequency of 𝑚1, respectively.

Combining Eqs. (6.17), (6.21), (6.22) and (6.24), we finally arrive at a complete set
of EOM for the binary system

𝑑𝜙

𝑑𝑡
=

√︂
𝑀

𝐷3 , (6.26a)

𝑑𝐷

𝑑𝑡
= − 64

5
𝜂

(
𝑀

𝐷

)3
+ 16

3

√︂
𝜋

5
𝐼𝑟1
Ω𝑠1(𝜔1 + 2Ω𝑠1)

𝐷3/2 𝑀1/2𝑅3
1

× 2 sin𝜓1 cos2 𝜓1
2
ℜ(−𝑖𝑒𝑖𝜙−2𝑖Ω𝑠1𝑡𝑐1)

+ 32
3

√︂
𝜋

5
𝐼𝑟2
Ω𝑠2(𝜔2 + 2Ω𝑠2)

𝐷3/2 𝑀1/2𝑅3
2 sin𝜓2 cos2 𝜓2

2
ℜ(−𝑖𝑒𝑖𝜙−2𝑖Ω𝑠2𝑡𝑐2),

(6.26b)

¤𝑐1 = − 𝑖𝜔1𝑐1 +
𝑖

𝜔1

√︂
16𝜋

5
𝐼𝑟1𝑚2𝑅1

𝐷2
¤𝜙( ¤𝜙 − 2Ω𝑠1) sin𝜓1 cos2 𝜓1

2
𝑒2𝑖Ω𝑠1𝑡−𝑖𝜙, (6.26c)

¤𝑐2 = − 𝑖𝜔2𝑐2 +
𝑖

𝜔2

√︂
16𝜋

5
𝐼𝑟2𝑚1𝑅2

𝐷2
¤𝜙( ¤𝜙 − 2Ω𝑠2) sin𝜓2 cos2 𝜓2

2
𝑒2𝑖Ω𝑠2𝑡−𝑖𝜙. (6.26d)

By simultaneously integrating stellar and orbital parts, we can obtain the evolution
of the system, and the gravitational waves it emits.

6.4 Dynamics of r-mode excitation
In this section, we discuss features of 𝑟-mode excitation and its back action onto
orbital motion. In Sec. 6.4.1, we first cast equations of motion Eqs. (6.26) into



268

forms that only depend on independent parameters, and provide the appropriate
initial conditions. In Sec. 6.4.2, we analytically describe orbital motion across tidal
resonance, and compare it with the results in FR07. In Sec. 6.4.3, we provide
analytical formulas for tidal excitation.

6.4.1 Equation of motion
Although Eqs. (6.26) are complete, and can be integrated straightforwardly, it is
difficult to see the actual dependence of solutions on specific parameters. For
example, it is well known that the inspiraling process of a binary system is controlled
by the chirp massM = 𝑀𝜂3/5 at the leading order, since the direct observable is GW
phase as a function of frequency. However both the total mass 𝑀 and the symmetric
mass ratio 𝜂 appears in equations. The degeneracy between them is hidden. This
problem can be fixed by rescaling parameters in the following way:

𝑐1 = 𝑐1
𝐼𝑟1𝑚2𝑅1

𝜔1𝑀2/3 sin𝜓1 cos2 𝜓1
2
, (6.27)

𝑐2 = 𝑐2
𝐼𝑟2𝑚1𝑅2

𝜔2𝑀2/3 sin𝜓2 cos2 𝜓2
2
, (6.28)

and replace separation 𝐷 by orbital frequency ¤𝜙. In terms of these new parameters,
the equations of motion become:

𝑑 ¤𝜙
𝑑𝑡

=
96
5
M5/3 ¤𝜙11/3 + 32

√︂
𝜋

5
I1Ω𝑠1 ¤𝜙8/3ℜ(−𝑖𝑒𝑖𝜙−2𝑖Ω𝑠1𝑡𝑐1)

+ 32
√︂
𝜋

5
I2Ω𝑠2 ¤𝜙8/3ℜ(−𝑖𝑒𝑖𝜙−2𝑖Ω𝑠2𝑡𝑐2), (6.29a)

¤̄𝑐1 −
2
3
𝑖Ω𝑠1𝑐1 = 𝑖

√︂
16𝜋

5
( ¤𝜙 − 2Ω𝑠1) ¤𝜙7/3𝑒2𝑖Ω𝑠1𝑡−𝑖𝜙, (6.29b)

¤̄𝑐2 −
2
3
𝑖Ω𝑠2𝑐2 = 𝑖

√︂
16𝜋

5
( ¤𝜙 − 2Ω𝑠2) ¤𝜙7/3𝑒2𝑖Ω𝑠2𝑡−𝑖𝜙. (6.29c)

Here we have defined the 𝑟-mode coupling coefficient for each individual NS as :

I𝑖 = 𝐼𝑟2𝑖 𝑚4
𝑖 sin2 𝜓𝑖 cos4 𝜓𝑖

2

(
1 − 𝑚𝑖

𝑀

)
, (6.30)

with the normalized 𝑟-mode overlap 𝐼𝑟 defined by

𝐼𝑟 =

√︄
1
𝑚5

NS

∫ 𝑅NS

0
𝜌𝑟6𝑑𝑟, (6.31)

where 𝑚NS and 𝑅NS are the mass and the radius of the NS. In Eqs. (6.29), I𝑖
characterizes the tidal backreaction of NS 𝑖 onto the orbit. Note that I (the effect of
𝑟-mode DT) vanishes when 𝜓 = 0, 𝜋, and its maximized when 𝜓 = 𝜋/3.
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Initial conditions for Eqs. (6.29) are chosen such that the orbit is quasicircular and
tides are in equilibrium:

¤𝜙(0) = 2𝜋𝐹0, 𝜙(0) = 0,

𝑐
(0)
1 = (2𝜋𝐹0)4/3

√︂
16𝜋

5
(2𝜋𝐹0)2 − 4Ω𝑠1𝜋𝐹0

4
3Ω𝑠1 − 2𝜋𝐹0

,

𝑐
(0)
2 = (2𝜋𝐹0)4/3

√︂
16𝜋

5
(2𝜋𝐹0)2 − 4Ω𝑠2𝜋𝐹0

4
3Ω𝑠2 − 2𝜋𝐹0

.

Written in this way, the EOM (as well as initial conditions) depend on five parameters
of the binary system: M, I𝑖, Ω𝑠𝑖, with 𝑖 = 1, 2.

In the rest of this section, we shall numerically integrate the EOM and discuss
features of solutions. For example, we choose a (1.4, 1.4)𝑀⊙ BNS system, with one
of the stars spinning at frequency Ω𝑠1 = 2𝜋×30Hz, and the other one non-spinning.
We choose an inclination angle 𝜓1 of 𝜋/3. The EoS is polytopic with Γ = 2, and the
radii of both stars are chosen to be 𝑅NS = 13km. This gives the 𝑟-mode overlap of
𝐼𝑟1 = 0.185. There is only one resonance during the inspiral whose resonant orbital
frequency is given by

¤𝜙(𝑡𝑟) =
4
3
Ω𝑠 = 2𝜋 × 40 Hz. (6.32)

We set an initial orbital frequency 𝐹0 as 4.5 Hz, and evolve the system up to the
contact separation of 𝑟stop = 2𝑅NS.

6.4.2 Orbital evolution
As argued in FR07, the pre- and post-resonance orbit can be well approximated as
two point-particle (PP) orbits, with orbital phase given by

𝜙(ana) (𝑡) =

𝜙
(pre)
PP (𝑡), if 𝑡 < 𝑡𝑟
𝜙
(post)
PP (𝑡), if 𝑡 > 𝑡𝑟

, (6.33)

Both 𝜙(post,pre) (𝑡) evolve without being affected by tides, following the same equa-
tion:

𝑑

𝑑𝑡
¤𝜙(post,pre) =

96
5
M5/3

[
¤𝜙(post,pre)

]11/3
. (6.34)

The initial condition for pre-resonance orbit is simply (the same as the one we used
for numerical integration)

𝜙(pre)(𝑡 = 0) = 0 , ¤𝜙(pre) (𝑡 = 0) = 2𝜋𝐹0, (6.35)
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the resonance orbital frequency is given by

¤𝜙(pre)
PP (𝑡𝑟) =

4
3
Ω𝑠1 . (6.36)

At resonance, 𝜙(post)
PP (𝑡𝑟) is related to 𝜙(pre)

PP (𝑡𝑟) with continuity in value and a jump
in derivative, and one can write

𝜙
post
PP (𝑡𝑟) = 𝜙

pre
PP (𝑡𝑟), (6.37)

Δ ¤𝜙tid = ¤𝜙(post)
PP (𝑡𝑟) − ¤𝜙(pre)

PP (𝑡𝑟) = ¥𝜙
(pre)
PP (𝑡𝑟)𝛿𝑡𝑟 . (6.38)

In fact, Eqs. (6.37) and (6.38) can be grouped into a compact form [cf. Eq. (1.6) in
FR07]

𝜙
post
PP (𝑡) = 𝜙

pre
PP (𝑡 + 𝛿𝑡𝑟) − 𝛿𝜙𝑟 , (6.39)

with [cf. Eq. (5.37) in FR07]

𝛿𝑡𝑟 = −
5𝜋2

192

(
4
3

)−1/3 Ω
−1/3
𝑠1
M10/3I1

= −2.64 × 10−4 s
(

Ω𝑠1
2𝜋 × 30 H𝑧

)−1/3 (
sin2 𝜓1 cos4 𝜓1/2

0.422

)
×

(
𝑚1

1.4 𝑀⊙

)3 (
𝑀

2.8 𝑀⊙

)−7/3 ( 𝜂

0.25

)−1
(
𝐼𝑟1

7.32

)2

. (6.40a)

𝛿𝜙𝑟 = ¤𝜙(𝑡𝑟)𝛿𝑡𝑟 = −
5𝜋2

192

(
4
3

)2/3 Ω
2/3
𝑠1

M10/3I1

= −6.65 × 10−2 rad
(

Ω𝑠1
2𝜋 × 30 H𝑧

)2/3 (
sin2 𝜓1 cos4 𝜓1/2

0.422

)
×

(
𝑚1

1.4 𝑀⊙

)3 (
𝑀

2.8 𝑀⊙

)−7/3 ( 𝜂

0.25

)−1
(
𝐼𝑟1

7.32

)2

, (6.40b)

Here 𝛿𝑡𝑟 and 𝛿𝜙𝑟 are effective orbital time and phase shifts between the pre- and
post-resonance PP orbits.

Note that Δ ¤𝜙tid < 0, and ¤𝜙(post)
PP (𝑡𝑟) < ¤𝜙(pre)

PP (𝑡𝑟), the resonance transfers the energy
from star to orbit, which is different from the case for 𝑓 -mode (cf. Fig. 8 in Ref.
[53]). This can be understood by the relation [71, 72]

Δ𝐸star =
𝐸mode
𝜔𝑙𝑚

(𝜔𝑙𝑚 + 𝑚Ω𝑠1)

= −9.9 × 1046 erg
(

Ω𝑠1
2𝜋 × 30 Hz

)3
(
𝐼𝑟1

7.32

)2 (
𝑚1

1.4𝑀⊙

)4
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Figure 6.3: The orbital dynamics near the 𝑟-mode resonance. The BNS system
has individual masses (1.4, 1.4)𝑀⊙. One of them spins at Ω𝑠1 = 30Hz with the
inclination angle 𝜓1 = 𝜋/3, whereas the other one is non-spinning. The EoS is
Γ = 2 polytrope with radius 𝑅NS = 13km. The vertical dashed line represents for
the time of resonance 𝑡𝑟 . The pre-resonance PP orbit ¤𝜙(pre)

PP (𝑡), which has the same
initial condition as the numerical one, is compared with the numerical integration,
as shown by black curve. Before the resonance, |Δ ¤𝜙tid | is below ∼ 2𝜋 × 10−4 Hz,
which is mainly caused by the adiabatic 𝑟-mode. After the resonance, there are
some oscillatory features, which are from the 𝑟-mode oscillation. Eq. (6.38) gives
the new orbital frequency after the 𝑟-mode is excited, which is labeled by “P” in the
figure. Using “P” as a new initial condition, we obtain the other PP orbit ¤𝜙(post)

PP (𝑡).
The difference between ¤𝜙(pre)

PP (𝑡) and ¤𝜙(post)
PP (𝑡) is shown as red dashed line, which

tracks the averaged numerical result very well.

×
(
sin2 𝜓1 cos4 𝜓1/2

0.422

) (
1 − Ξ
0.5

)
, (6.41)

where 𝐸mode = 𝑏𝑙𝑚𝜔𝑙𝑚 |𝑐𝑙𝑚 |2 > 0, and Δ𝐸star is the change of stellar energy. There-
fore, for any mode that is subjected to the Chandrasekhar-Friedman-Schutz instabil-
ity condition [86, 87]

𝜔𝑙𝑚 (𝜔𝑙𝑚 + 𝑚Ω𝑠1) < 0, (6.42)
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the tidal excitation leads to the loss of stellar energy, and the decrease of spin
frequency.4 For completeness, the angular momentum transfer can be written as

Δ𝐿star =
𝐸mode
𝜔𝑙𝑚

= −3.9 × 1044 e𝑟𝑔 · 𝑠
(

Ω𝑠1
2𝜋 × 30 H𝑧

)2
(
𝐼𝑟1

7.32

)2 (
𝑚1

1.4𝑀⊙

)4

×
(
sin2 𝜓1 cos4 𝜓1/2

0.422

) (
1 − Ξ
0.5

)
, (6.43)

and the change of spin frequency is given by

ΔΩ𝑠 = −2𝜋 × 3.6 × 10−2 Hz
(

Ω𝑠1
2𝜋 × 30 H𝑧

)2
(
𝐼𝑟1

7.32

)2

×
(
𝑚1

1.4𝑀⊙

)4 (
sin2 𝜓1 cos4 𝜓1/2

0.422

) (
1 − Ξ
0.5

) (
𝐼

14.6

)−1
, (6.44)

which is negligible in our study.

Using the binary system above, we first investigate how the numerical integration
of the EOM deviates from ¤𝜙(pre)

PP (𝑡). In Fig. 6.3, we plot ¤𝜙(pre)
PP (𝑡) − ¤𝜙

(num) (𝑡) in the
black line. The vertical, blue-dashed line stands for the time of resonance. In the
pre-resonance regime 𝑡 < 𝑡𝑟 , |Δ ¤𝜙tid | < 2𝜋 × 10−4 H𝑧, and is mainly contributed by
the adiabatic tide. During the resonance, |Δ ¤𝜙tid | quickly grows to 2𝜋 × 10−3 H𝑧.
Then in the post-resonance regime, there is a small oscillation on the top of major
deviation, which is caused by the 𝑟-mode oscillation. We also saw this feature in
the case of 𝑓 -mode [53]. Note that ¤𝜙(num) ∼ 2𝜋 × 102 − 2𝜋 × 103 H𝑧 for the time
interval we present, the deviation caused by the resonance is extremely small.

Eqs. (6.40) show that typical values for 𝛿𝜙𝑟 and 𝛿𝑡𝑟 are −6.65 × 10−2 rad and
−2.64 × 10−4 s, respectively. The induced change in orbital frequency |Δ ¤𝜙tid(𝑡𝑟) |
is 2𝜋 × 10−3 H𝑧, which corresponds to “P” in Fig. 6.3. With “P” as a new initial
condition, we obtain ¤𝜙(post)

PP (𝑡) by solving Eq. (6.34). In Fig. 6.3, we show ¤𝜙(pre)
PP (𝑡) −

¤𝜙(post)
PP (𝑡) as red dashed line. We can see ¤𝜙(post)

PP (𝑡) tracks the averaged ¤𝜙(num) (𝑡) well
in the post-resonance regime.

6.4.3 Tidal evolution
Let us move on to the stellar part. Following the procedure in Sec. III of Ref. [53],
we define two real-valued quadratures, 𝐴 and 𝐵, from the 𝑟-mode amplitude,

𝐴 + 𝑖𝐵 = 𝑐1𝑒
𝑖𝜙−𝑖𝑚Ω𝑠1𝑡 and 𝑚 = 2, (6.45)

4For a given baryon number and total angular momentum, uniform angular velocity is the
minimum-energy state [88, 89].
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with 𝐴 determining the radial force, and 𝐵 the torque back-reacting onto the orbit,
respectively. Here 𝑚 = 2 since we are focusing on the (𝑙 = 2, 𝑚 = 2) mode. Using
integration by parts, we obtain analytic expressions of 𝐴 and 𝐵 as

𝐴 = − ¤𝜙7/3
√︂

16𝜋
5
(2Ω𝑠1 − ¤𝜙)
− ¤𝜙 + 4

3Ω𝑠1
+
¤𝜙10/3
𝑟√︁
¤Ω𝑟

√︂
4𝜋
5

[√
𝜋𝐹𝐶

(
𝑡
√
𝜋

)
sinΘ +

√︂
𝜋

2
sin

(
Θ − 𝜋

4

)
−
√
𝜋𝐹𝑆

(
𝑡
√
𝜋

)
cosΘ −

cos(Θ − 1
2 𝑡

2)
𝑡

]
, (6.46a)

𝐵 = −
¤𝜙10/3
𝑟√︁
¤Ω𝑟

√︂
4𝜋
5

[√
𝜋𝐹𝐶

(
𝑡
√
𝜋

)
cosΘ +

√︂
𝜋

2
cos

(
Θ − 𝜋

4

)
+
√
𝜋𝐹𝑆

(
𝑡
√
𝜋

)
sinΘ +

sin(Θ − 1
2 𝑡

2)
𝑡

]
. (6.46b)

where [Eq. (6.34)]

1
¤Ω1/2
𝑟

=

[
96
5
M5/3

(
4
3
Ω𝑠1

)11/3
]−1/2

= 0.2 s
(
M

1.22 𝑀⊙

)−5/6 (
Ω𝑠1

2𝜋 × 30 H𝑧

)−11/6
.

(6.47)

The phases of 𝐴 and 𝐵 in the post-resonance regime are controlled by two quantities,

Θ = 𝜒𝑟 − 𝜔1𝑡 + 𝜙 − 2Ω𝑠1𝑡, (6.48a)

𝑡 =

√︃
¤Ω𝑟 (𝑡 − 𝑡𝑟), (6.48b)

with the constant defined by 𝜒𝑟 = 𝜔1𝑡𝑟 − 𝜙𝑟 + 2Ω𝑠1𝑡𝑟 , which results in Θ𝑟 = 0 on
resonance. Note that 1/

√︁
¤Ω𝑟 ∼ 0.2 s in Eq. (6.48b) is the duration of tidal excitation,

which is much longer than the effective orbital time shift 𝛿𝑡𝑟 ∼ 10−4 s induced by
tide [Eq. (6.40a)].

In Fig. 6.4, we compare Eqs. (6.46) with numerical integration, for the same binary
system mentioned above. We can see that our formulas are accurate in all regimes:
adiabatic, resonance, and post-resonance. The evolutions of 𝐴 and 𝐵 are similar
to those of 𝑓 -mode [53], except the fact that 𝐴 increases toward infinity as the two
stars become close to each other (recall that the amplitude of 𝐴 for 𝑓 -mode remains
constant after the resonance.) This can be easily understood from Eq. (6.46a). The
first line of Eq. (6.46a), i.e, the adiabatic part, diverges as ¤𝜙7/3 when ¤𝜙 → ∞. On
the other hand, the term remains ∼ 1 for 𝑓 -mode, which stays constant as two stars
contact. In spite of the diverging feature of 𝑟-mode in the late time evolution, our
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numerical calculation shows that it does not lead to any detectable effect (for 3G
detectors).
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Figure 6.4: Time evolution of 𝑟-mode amplitudes, 𝐴 (upper panel) and 𝐵 (lower
panel). Black curves are from the numerical integration of Eqs. (6.29), and red dots
are from our analytic approximations in Eqs. (6.46). The vertical dashed line is
the time of resonance from numerical simulation. Our analytic results agree with
numerical ones to high accuracies. Unlike 𝑓 -mode, the variable 𝐴 diverges as two
NSs become close to each other, this is caused by differences in adiabatic tide. [see
first line of Eq. (6.46a)].

6.5 Rossby-mode overlaps for different equations of state: A new universal
relation

In the last section, we have seen that the effect of 𝑟-mode enters into the EOM
through the normalized overlap 𝐼𝑟 . Here we shall identify a new universal relation
between 𝐼𝑟 and the tidal Love number 𝜆 𝑓 . We consider five realistic EoS for cold
NSs: APR [90], FPS [91], GM1 [92, 93], QHC19 [94–96], SLY [93], which are
shown in Fig. 6.5. Among them, the data of FPS are from Ref. [97] and the rest of
them are obtained from a EoS database CompOSE [98]. For comparison, we also
include a polytropic EoS with 𝑃 ∝ 𝜌Γ and Γ = 2. The mass-radius relations from
those EoS are shown in Fig. 6.6.

In Sec. 6.5.1, we first calculate 𝐼𝑟 by solving Tolman–Oppenheimer–Volkoff (TOV)
equations. Then in Sec. 6.5.2, we explore the universal relation between 𝐼𝑟 and 𝜆 𝑓 .

6.5.1 The calculation of 𝐼𝑟

We calculate 𝐼𝑟 at the zeroth order, i.e., using an unperturbed NS with spherical
symmetry. Its metric is given by

𝑑𝑠2 = −𝑒𝜈𝑑𝑡2 + 𝑒𝜆𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2), (6.49)
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Figure 6.5: Several EoS for NSs used in this chapter.

we can obtain the density profile 𝜌(𝑟) by solving the TOV equations (see Sec. 6.10
for more details). We then perform a numerical integration to get 𝐼𝑟 based on its
definition in Eq. (6.18). 𝐼𝑟 is related to 𝐼𝑟 by

𝐼𝑟 = 𝐼𝑟C2, (6.50)

where C is the compactness of the NS

C =
𝑚NS
𝑅NS

. (6.51)
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Figure 6.6: NS mass-radius relation with different EoS.
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6.5.2 Universal relations
To establish the universal relation between the tidal Love number and the moment
of inertia, Yagi et al. [77, 78] normalized the tidal Love number 𝜆 𝑓 and the moment
of inertia 𝐼 as: �̄� 𝑓 = 𝜆 𝑓 /𝑚5

NS and 𝐼 = 𝐼/𝑚3
NS (The calculation of �̄� 𝑓 is summarized

in Sec. 6.11.). Universal relation between 𝜆 𝑓 and 𝐼 are shown in the left panel of
Fig. 6.7.
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Īr f
it

Figure 6.7: The I-Love and 𝐼𝑟-Love universal relations for several EoS, as well as
the fitting formulae in Eq. (6.52). The bottom two plots are fractional errors between
true values and fitted results; errors of both relations are within 10−2 for �̄� 𝑓 ranging
from O(1) to O(104).

Similarly, we plot 𝐼𝑟 as functions of �̄� 𝑓 for various EoS in the right panel of Fig.
6.7. We can see that their relation is also insensitive to EoS. Same as Yagi et al., we
fit the relation with a polynomial on a log-log scale

log 𝑦 = 𝑎 + 𝑏 log �̄� 𝑓 + 𝑐(log �̄� 𝑓 )2 + 𝑑 (log �̄� 𝑓 )3 + 𝑒(log �̄� 𝑓 )4, (6.52)

where 𝑦 = 𝐼𝑟 or 𝐼. Results are shown in Table 6.4, where we also list the I-Love
relation for comparison. In Fig. 6.7 we compare fitted results with true values. We
can see that relative errors for both relations are similar and within 10−2.

Note that although the profile of 𝜌 comes from the solution of Einstein’s equation
(i.e., TOV equations), our definition of 𝐼𝑟 in Eq. (6.31) still used a Newtonian model
of the NS, and post-Newtonian equations for the gravitomagnetic coupling. We
conjecture that a universal relation will still exist after relativistic corrections are
made, but we anticipate systematic corrections to the form of the relation.

6.6 Gravitational waves
This section focuses on gravitational waves emitted by binaries that contain at least
one spinning NS with 𝑟-mode resonance. In Sec. 6.6.1, we construct a hybrid
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Table 6.4: Coefficients for the fitting formulae of the NS I-Love and 𝐼𝑟-Love rela-
tions.

𝑦 𝑎 𝑏 𝑐 𝑑 𝑒

𝐼𝑟 0.121 0.169 1.25 × 10−2 −9.38 × 10−5 −1.92 × 10−5

𝐼 1.47 8.17 × 10−2 1.49 × 10−2 2.87 × 10−4 −3.64 × 10−5

waveform model that incorporates both 𝑟-mode and PN effects. In Sec. 6.6.2, we
compare Flanagan and Racine’s analytical formula for 𝑟-mode-resonance-induced
GW phase with numerical results.

6.6.1 A hybrid 𝑃𝑁-𝑟-mode waveform model
Once we obtain the orbital evolution from the EOM, we can extract numerical GW
waveform through the (mass) quadrupole formula [85]

ℎ(𝑡) = 1
𝐷𝐿

( ¥𝑄𝑥𝑥 − ¥𝑄𝑦𝑦), (6.53)

where 𝐷𝐿 is the distance between the detector and the source. Here we assume the
BNS is optimally oriented for the plus polarization. The quadrupole moment of the
system is given by

𝑄𝑖 𝑗 = 𝜇(𝑥𝑖𝑥 𝑗 − 𝑟2𝛿𝑖 𝑗/3), (6.54)

where only the orbital part is included, because 𝑟-mode does not induce additional
mass quadrupole moment5.

It is usually convenient to analyze data in the frequency domain (FD). Following
Ref. [53], we first sample the numerical ℎ(𝑡) in the time domain with a rate of
8192 Hz, and then use the fast Fourier Transform algorithm to transform the data to
FD. Finally, we select data in the frequency band [2𝐹0, 2𝐹contact]. (Note that at the
mass quadrupole order, GW freuqency is twice the orbital frequency.)

Our numerical FD waveform ℎ̃𝑁+𝑟 ( 𝑓 ) contains the leading-order PP contribution as
well as the effect of 𝑟-mode resonance; its phase Ψ𝑁+𝑟 can be written as

Ψ𝑁+𝑟 = Ψ𝑁 + Ψ𝑟 . (6.55)

where Ψ𝑟 is the phase induced by the 𝑟-mode resonance; and Ψ𝑁 corresponds to the
leading order of PP waveform. With the stationary phase approximation (SPA), Ψ𝑁

5R-mode does contribute to gravitational radiation through the current quadrupole moment
[Eq. (6.23)]. However, it is 10−7 smaller than the orbital mass quadrupole moment, which is
negligible in our case.
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can be written as Ψ𝑁 = 2𝜋 𝑓 𝑡𝑐 − 𝜙𝑐 + 3
128 (𝜋M 𝑓 )−5/3, where 𝑡𝑐 and 𝜙𝑐 are the time

and GW phase of coalescence.

To incorporate other PN and ( 𝑓 -mode) tidal effects into the waveform, we introduce
a phase correction within the SPA framework, writing

ℎ̃( 𝑓 ) = ℎ̃𝑁+𝑟 ( 𝑓 )𝑒𝑖ΨSPA . (6.56)

The total phase of ℎ̃( 𝑓 ), Ψtot, can be written as

Ψtot = Ψ𝑁 + Ψ𝑟 + ΨSPA , (6.57)

with

ΨSPA = ΨPP + Ψ𝑆𝑂 + Ψ�̄� (1)
𝑓

+ Ψ
�̄�
(2)
𝑓

. (6.58)

Here ΨPP is the PN correction to the phase of non-spinning PP, up to 3.5PN6 [99];
Ψ𝑆𝑂 is the spin-orbit coupling term [100–103]; and Ψ

�̄�
(1)
𝑓

and Ψ
�̄�
(2)
𝑓

are 𝑓 -mode tidal
effects from 𝑚1 and 𝑚2, respectively [104–106]. We have ignored the spin-spin
coupling and the spin precession, because their effects are negligible (cf. Sec. 6.9).
Expressions of phase terms are shown in Sec. 6.12.

Let us briefly review the parameter dependence of our waveforms. The Newtonian-
plus-𝑟-mode part of the waveform, ℎ̃𝑁+𝑟 , depends on 8 independent parameters:
chirp massM; two individual spin frequencies Ω𝑠𝑖; two individual 𝑟-mode coupling
coefficients I𝑖; luminosity distance, 𝐷𝐿; the coalescing time and phase, 𝑡𝑐 and
𝜙𝑐. The phase correction, ΨSPA, depends on 5 additional parameters: mass ratio
Ξ = 𝑚1/𝑀; the (anti-)symmetric tidal Love numbers �̄�𝑠(𝑎)

𝑓
= (�̄�1

𝑓
± �̄�2

𝑓
)/2; the

(anti-)symmetric dimensionless spin along the orbital angular momentum 𝜒
(𝑧)
𝑠(𝑎) =

(𝜒(𝑧)1 ± 𝜒
(𝑧)
2 )/2. Here we use the normalized Love number (Sec. 6.5.2) because in

this way it is more convenient to incorporate universal relations into the calculation.

6.6.2 Analytic model for Ψ𝑟

As discussed in Sec. 6.4.2, DTs only affect the orbital evolution significantly near
the resonance. In the post-resonance regime, the orbit is well described by a PP
orbit. Similarly, in the FD, resonance only leads to a phase shift 𝛿Φ𝑟 and a time
shift 𝛿𝑡𝑟 to the waveform, i.e., [72]

Ψ𝑟 = (𝛿Φ𝑟 − 2𝜋 𝑓 𝛿𝑡𝑟)Θ( 𝑓 − 𝑓𝑟), (6.59)
6It excludes the leading-order contribution which is already contained in Ψ𝑁 .



279

where the resonant GW frequency is given by [Eq. (6.19)]

𝑓𝑟 =
¤𝜙𝑟
𝜋

=
4

3𝜋
Ω𝑠1. (6.60)

The Heaviside step function Θ( 𝑓 − 𝑓𝑟) is introduced here because there is no DT
when 𝑓 < 𝑓𝑟 7. Using Eqs. (6.40b), (6.40a) and the relation

𝛿Φ𝑟 = 2𝛿𝜙𝑟 , (6.61)

we obtain

𝛿𝑡𝑟 =
𝛿Φ𝑟

2𝜋 𝑓𝑟
, (6.62)

we arrive at

Ψ𝑟 =

(
1 − 𝑓

𝑓𝑟

)
𝛿Φ𝑟Θ( 𝑓 − 𝑓𝑟). (6.63)

We refer the interested reader to Appendix B in Ref. [45] for a strict derivation.
In Fig. 6.8, we compare Eq. (6.63) with the numerical result, using the same BNS
system as Fig. 6.3, except that Ω𝑠1 = 80 Hz. We can see that the phase difference
induced by the 𝑟-mode, Ψ(num)

GW −Ψ(pre)
GW , agrees well with the expression of Ψ𝑟 in Eq.

(6.63). Here Ψ(num)
GW stands for the real GW phase, and Ψ

(pre)
GW is the GW phase of the

pre-resonance PP orbit (extending to the post-resonance regime).

The expression of Ψ𝑟 results in

𝜕ℎ̃𝑁+𝑟

𝜕I ∼ 𝜕ℎ̃
𝑁+𝑟

𝜕𝛿Φ𝑟

= 𝑖

(
1 − 𝑓

𝑓𝑟

)
Θ( 𝑓 − 𝑓𝑟) ℎ̃𝑁+𝑟 , (6.64a)

𝜕ℎ̃𝑁+𝑟

𝜕Ω𝑠

∼ 𝜕ℎ̃
𝑁+𝑟

𝜕 𝑓𝑟
+ 𝜕ℎ̃

𝑁+𝑟

𝜕𝛿Φ𝑟

𝜕𝛿Φ𝑟

𝜕Ω𝑠1
∼ 𝑓

𝑓 2
𝑟

𝛿Φ𝑟Θ( 𝑓 − 𝑓𝑟) ℎ̃𝑁+𝑟 , (6.64b)

which are important to understand the result Fisher analysis, as we will discuss in
the next section. In Eq. (6.64b), we have ignored the term 𝜕ℎ̃𝑁+𝑟/𝜕𝛿Φ𝑟 , because it
is suppressed by the factor (1 − 𝑓 / 𝑓𝑟) when 𝑓 ∼ 𝑓𝑟 .

With Eqs. (6.64), we can learn two things. First, 𝜕ℎ̃𝑁+𝑟/𝜕𝛿I is proportional to
(1 − 𝑓 / 𝑓𝑟), which is close to 0 when 𝑓 ∼ 𝑓𝑟 , so the constraint for I from GW
detection is weaker than the one for Ω𝑠. Second, the constraint for I is independent
from the magnitude of 𝛿Φ𝑟 (or I); while the constraint for Ω𝑠 is proportional to
𝛿Φ−1

𝑟 ∼ I−1 (see also Ref. [45]).
7Here we assume that the pre-resonance PP orbit is aligned with the true orbit, so the phase and

time shifts appear after the resonance. It is also equivalent to align the post-resonance PP orbit with
the real orbit. Then the Heaviside step function should be changed to Θ( 𝑓𝑟 − 𝑓 ).
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Figure 6.8: The GW phase difference induced by the 𝑟-mode DT versus GW
frequency. It is compared with the expression of Ψ𝑟 in Eq. (6.63). The BNS system
is the same as the one we used in Fig. 6.3, except that Ω𝑠1 = 80 Hz.
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Figure 6.9: The noise spectral density of CE.

6.7 Constraints of parameters using 𝑟-mode dynamical tide
In this section, we discuss parameter estimation based on the hybrid PN-𝑟-mode
waveform obtained in Sec. 6.6.1.

6.7.1 Fisher-matrix formalism and signal strength
We shall do this by computing the Fisher information matrix, defined by

Γ𝑖 𝑗 =

(
𝜕ℎ

𝜕𝜃𝑖

���� 𝜕ℎ𝜕𝜃 𝑗 ) , (6.65)
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where 𝜃𝑖 are parameters of the waveform, and the derivative will be computed
numerically. The inner product between two waveforms (ℎ |𝑔) is defined as

(ℎ|𝑔) = 4ℜ
∫

ℎ̃∗( 𝑓 )�̃�( 𝑓 )
𝑆𝑛 ( 𝑓 )

𝑑𝑓 , (6.66)

with the superscript ∗ standing for complex conjugation, and 𝑆𝑛 ( 𝑓 ) the noise spectral
density of the detector. By inverting the Fisher information matrix, we obtain
projected constraints on 𝜃𝑖 as

Δ𝜃𝑖 =
√︁
(Γ−1)𝑖𝑖, (6.67)

and the covariance between 𝜃𝑖 and 𝜃 𝑗 is characterized by the off-diagonal term
(Γ−1)𝑖 𝑗 . In this section, we will mainly focus on the Cosmic Explorer (CE), whose
𝑆𝑛 ( 𝑓 ) is shown in Fig. 6.9 [107].

To see the loudness of BNS signals, we choose a (1.4, 1.35)𝑀⊙ BNS system as
an example, and plot the SNR of pre- and post-resonance signals as functions
of spin frequency in Fig. 6.10. The system is assumed to be 100Mpc away and
optimally oriented. Unless stated otherwise, our lower limit of GW frequency band
is 2𝐹0 = 9 Hz. We note that CE is also sensitive to the frequency below 9 Hz,
yet it is computationally expensive to simulate the low-frequency evolution. We
have checked that neglecting those signals does not lead to a significant change
on parameter estimation if Ω𝑠 ≳ 2𝜋 × 10 Hz (cf. Fig. 6.12). On the other hand,
low-frequency signals are important if Ω𝑠 < 3/4𝐹0 = 3.38 Hz. Nonetheless, as
we will show shortly, 𝑟-mode sector does not provide as strong constraints in that
regime, hence that part of parameter space is not of our interest. Because the resonant
orbital frequency is proportional to spin frequency, SNR of the pre-resonance signals
increases with the spin frequency, and there is no pre-resonance signals when the
spin frequency is below 3/4𝐹0 = 3.38 Hz. For 10 Hz ≲ Ω𝑠 ≲ 80 Hz, both the
pre- and post-resonance signals are loud enough to be detected. Thus phase and
time shift induced by the 𝑟-mode resonance (Sec. 6.6.2) can be extracted from the
waveform, and can be used for parameter estimation. This is the foundation for our
later discussions.

In the rest of this section, we use the same BNS system to explore the effect of 𝑟-mode
resonance on parameter estimation. Since the sky location, the inclination between
the orbital angular momentum and the line of sight, and the polarization angle are
not of our interest, below we simply fix their values and consider Fisher matrices
involving only the intrinsic parameters. We mainly consider three situations. In
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Figure 6.10: SNR of pre- and post-resonance GW signals as functions of spin
frequency. The BNS system is (1.4, 1.35)𝑀⊙, optimally oriented at 100Mpc. EoS
is GM1. As a comparison, the horizontal dash line is the SNR of the entire in-band
signals. There is no pre-resonance signals when 3/4𝐹0 = 3.38 Hz, because our
frequency band starts from there. Recalling that the resonant orbital frequency is
proportional to the spin frequency, then the SNR of pre-resonance signal increases
with the spin frequency.

Table 6.5: A summary of properties of NS for GM1 and FPS.

EOS 𝑚/𝑀⊙ 𝑅/km 𝑘2 𝐼𝑟 𝐼

GM1 1.4 13.79 0.116 6.151 15.85
GM1 1.35 13.78 0.121 6.578 16.87
FPS 1.4 10.90 0.0668 3.709 10.09
FPS 1.35 10.95 0.0711 4.000 10.77

Sec. 6.7.2, we first investigate the case where resonances take place in both NSs.
The 𝑟-mode DTs are treated as an independent degree of freedom (i.e., the universal
relations between NS properties are not used). Then in Sec. 6.7.3, we discuss
the improvements on parameter estimation by incorporating the universal relations.
Finally in Sec. 6.7.4, we study BHNS systems. For comparison, we consider two
EoSs, GM1 and FPS, as they, respectively, give the largest and smallest radii for the
same mass (see Fig. 6.6). The NS properties for these two EoSs are summarized in
Table 6.5. Because the features for both EoSs are similar, we mainly discuss GM1
in the main text, and put the results of FPS in Secs. 6.13 and 6.14.
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Figure 6.11: Case I: relative errors of I1 (left) and Ω𝑠1 (right) as functions of 𝜓1
and Ω𝑠1, i.e., the spin configuration of 𝑚1. The errorbar is in log scale. For 𝑚2, we
fix its spin configuration as Ω𝑠2 = 40 Hz, 𝜓2 = 7𝜋/18. The EoS is GM1. Eq. (6.68)
shows that both ΔI1/I1 annd ΔΩ𝑠1/Ω𝑠1 have 𝜓1 dependence: sin−2 𝜓1 cos−4 𝜓1/2.
Therefore they diverge to infinite as 𝜓1 → 0, 𝜋, and become the best when 𝜓 = 𝜋/3.
In the best scenario, the constraint on Ω𝑠1 is around 6%, and the one on I1 is 21.7%.
I1 is less constrained because 𝜕ℎ/𝜕I1 is suppressed by the factor (1 − 𝑓 / 𝑓𝑟) as
𝑓 ∼ 𝑓𝑟 [Eq. (6.64a)]. Constraints get bad when Ω𝑠1 ∼ Ω𝑠2 = 40 Hz, because two
resonances are degenerated in GW.

6.7.2 Case I: two resonant NSs without the universal relations
As we discussed in Sec. 6.2.1, for a BNS system where 𝑟-mode excitation takes
place in each NS, Ω𝑠𝑖 and I𝑖 can be constrained by GW. Since 𝑟-mode DT adds
independent contributions to the GW phase evolution, simply adding this effect
does not improve the existing measurement accuracy provided by other PN effects.
For example, individual tidal Love numbers, as well as individual dimensionless
spins, are still degenerate. Therefore, in this subsection, we mainly focus on the
measurement of 𝑟-mode sector itself, and study estimation accuracy for Ω𝑠𝑖 and I𝑖.
The full waveform depends on 13 parameters, including 9 PP parameters, M, Ξ,
𝜒
(𝑧)
𝑠(𝑎) , �̄�

𝑠(𝑎)
𝑓

, 𝐷𝐿 , 𝑡𝑐, 𝜙𝑐, and 4 𝑟-mode parameters Ω𝑠𝑖, and I𝑖. The Fisher matrix
is 13 dimensional. We note again that here we use the normalized Love number
[Eq. (6.31)] instead of the Love number listed in Table 6.2.

To be concrete, let us fix the spin vector of 𝑚2, Ω𝑠2 = 40 Hz and 𝜓2 = 7𝜋/18, and
explore the following parameter space: Ω𝑠1 ∈ [10, 85] Hz, 𝜓1 ∈ [ 1

20𝜋,
17
20𝜋]. In

Fig. 6.11, we show the relative errors of I1 and Ω𝑠1 as functions of Ω𝑠1 and 𝜓1.
We first observe that the relative errors of I1 and Ω𝑠1 depend on 𝜓1 in a similar
way; both become worse as 𝜓1 → 0 and 𝜋. However, their behaviors are caused
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Table 6.6: The comparison between constraints for Ω𝑠𝑖 and I𝑖 with two EoS: FPS
and GM1. We explore the parameter space: Ω𝑠1 ∈ [10, 85] Hz, 𝜓1 ∈ [ 𝜋20 ,

17
20𝜋],

while choose Ω𝑠2 = 40 Hz and 𝜓2 = 7𝜋/18. The median values of the ratio between
two EoS for several parameters are shown in the first four columns. Eq. (6.68) shows
that the constraint is proportional to (𝐼𝑟

𝑖
)−2, so we also show their ratios in the last

two columns, for comparison. All numbers are close.

Parameters ΔΩ𝑠1 ΔΩ𝑠2 ΔI1 ΔI2 (𝐼𝑟1)
−2 (𝐼𝑟2)

−2

FPS/GM1 2.67 2.65 3.23 2.78 2.77 2.72

by different reasons. Recall the discussion in Sec. 6.6.2, ΔI1 is independent of I1,
while ΔΩ𝑠1 ∝ I−1

1 , hence we can obtain

ΔI1
I1
∼ ΔΩ𝑠1

Ω𝑠1
∼ I−1

1 ∼ (𝐼𝑟𝑖 )−2 sin−2 𝜓1 cos−4 𝜓1/2, (6.68)

where Eq. (6.30) is used. We have checked that the dependence above is consistent
with our numerical calculation. With this knowledge, we can know that constraints
become the best when𝜓1 = 𝜋/3, whereI1 is maximal. In the best case, the constraint
on Ω𝑠1 is around 6%, and on I1 around 22%. Meanwhile, the measurement error
ΔI1/I1 is less than 1 when 𝜓1 ∈ [18◦, 110◦], therefore there is a large range of
parameter space where one can extract meaningful constraints from GW.

Secondly, constraints on both Ω𝑠𝑖 and I𝑖 become worse when Ω𝑠1 ∼ Ω𝑠2 = 40 Hz,
because two resonances take place at similar locations, and are therefore indistin-
guishable from each other. In this regime, Fisher-matrix based analysis becomes
invalid, and a more detailed Bayesian analysis will be required. Out of this regime,
two resonances do not interfere anymore. We have checked that constraints on Ω𝑠2

and I2 are insensitive to the values of 𝜓1 and Ω𝑠1 (except when Ω𝑠1 ∼ Ω𝑠2). In the
best-case scenario, ΔΩ𝑠2/Ω𝑠2 is around 5%, and ΔI2/I2 around 17%.

Thirdly, constraints on Ω𝑠 are better than those on I, because 𝜕ℎ̃𝑁+𝑟/𝜕I is sup-
pressed by the factor (1 − 𝑓 / 𝑓𝑟) as 𝑓 ∼ 𝑓𝑟 [Eq. (6.64a)]. Recalling that the spin
frequency determines where the resonance takes place (in time or frequency do-
main), while I characterizes the phase shift (strength of the DT), therefore we can
conclude that GW signals are more sensitive to the location of resonance than the
strength of the resonance.

Finally, we investigate the effect of EoS. We compute the ratio of relative er-
rors with FPS to those with GM1:

[
ΔΩ

(FPS)
𝑠𝑖
/Ω(FPS)

𝑠𝑖

] / [
ΔΩ

(GM1)
𝑠𝑖

/Ω(GM1)
𝑠𝑖

]
and[

ΔI(FPS)
𝑖
/I(FPS)
𝑖

] / [
ΔI(GM1)

𝑖
/I(GM1)
𝑖

]
. In Table 6.6, we provide the median values



285

5 1010-1

100

101

102

∆
I 1
/I

1

20 40 60 80

F0 = 2.5 Hz
F0 = 4.5 Hz
F0 = 8 Hz

Ωs1/(2π) (Hz)

5 1010-2

10-1

100

101

102

∆
Ω
s1
/Ω

s1

20 40 60 80

F0 = 2.5 Hz
F0 = 4.5 Hz
F0 = 8 Hz

Ωs1/(2π) (Hz)

Figure 6.12: Fractional errors of Ω𝑠1 and I1 as functions of Ω𝑠1, with different
values of 𝐹0. We set the spin configuration for 𝑚2 to be the same as Fig. 6.11, and
𝜓1 = 𝜋/3. Fractional errors first decrease with Ω𝑠1, because there are more in-band
pre-resonance signals. Then it becomes bad as Ω𝑠1 ∼ Ω𝑠2, since two resonances
are not distinguishable. The lower limit of Ω𝑠1/(2𝜋) is taken to be 3/4𝐹0, i.e.,
resonance takes place initially (at orbital frequency 𝐹0). We cannot get constraints
on I1 and Ω𝑠1 if we further decrease the spin frequency. Those curves show that the
value of 𝐹0 only affects these constraints mildly.

of these ratios over the parameter space we have explored. The results for different
parameters are similar: those for GM1 are better than FPS by a factor of 2.6 ∼ 3.2.
The numbers are also close to the ratio of (𝐼𝑟)−2, recalling that the relative errors
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are proportional to I−1 ∼ (𝐼𝑟)−2. We can then conclude that, constraints are more
stringent for less compact NSs, i.e., those with harder EoS, with error inversely
proportional to 𝑟-mode overlap. Detailed results for FPS are shown in Sec. 6.13.
Since the two EoSs are representative for hard and soft EoSs, the fractional error
on the spin for other EoSs can be between 6% to 16%. As a result, the 𝑟-mode
resonance provides an important channel to put constraints on the spin frequency.

If Ω𝑠1 is further decreased to below 3.38 Hz, we need to lower the value of 𝐹0 to
include enough pre-resonance signals8. In Fig. 6.12, we compare ΔI1/I1 −Ω𝑠1 and
ΔΩ𝑠1/Ω𝑠1 − Ω𝑠1 relations with different values of 𝐹0. We can see that the value of
𝐹0 affects the constraint mildly if Ω𝑠 > 10 Hz. Furthermore, the fractional error of
I1 exceeds 100% when Ω𝑠1 ≲ 6 Hz. In this parameter regime, the 𝑟-mode cannot
be unambiguously detected. Therefore, we here only focus on Ω𝑠 > 10 Hz, and it is
enough to choose 𝐹0 = 4.5 Hz for a general calculation.
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Figure 6.13: Case II: fractional errors as functions of Ω𝑠1 after incorporating univer-
sal relations. The spin configuration for 𝑚2 is same as Fig. 6.11, and 𝜓1 = 3𝜋/10.
EoS is still GM1. The top panel is for Ξ while the bottom one corresponds to �̄�𝑠(𝑎)

𝑓
.

8Constraints on Ω𝑠2 and I2 are unaffected, because the two resonances are independent from
each other.
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Figure 6.14: The error ellipses of (Δ�̄�𝑎
𝑓
,Δ�̄�𝑠

𝑓
) and (Δ𝜒(𝑧)𝑎 ,Δ𝜒

(𝑧)
𝑠 ), with Ω𝑠1 = 80

Hz, Ω𝑠2 = 40 Hz, 𝜓1 = 𝜋/3 and 𝜓2 = 7𝜋/18. The black curve is the result of PN
effects (including adiabatic tidal effect and spin-orbit coupling). The red curve is
the result after including 𝑟-mode resonances (with universal relations). For those
ellipses, both directions are improved by resonances.

6.7.3 Case II: two resonant NSs + universal relations
In the previous subsection, we only studied the estimation of parameters in the 𝑟-
mode sector because this sector is independent of other PN effects. However, if we
take into account the universal relations between NS properties, the 𝑟-mode sector
will behave like a bridge that connects tidal and spin parameters. We will then have
enough number of degrees of freedom in the waveform to constrain all parameters,
as summarized in Table 6.2.
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Figure 6.15: Same as Fig. 6.14. The error ellipses between Ξ − �̄�𝑠
𝑓
− 𝜒(𝑧)𝑠 .

6.7.3.1 Neutron-Star Parameters

To begin with, we need to express 𝜒(𝑧)
𝑠(𝑎) in terms of spin frequency and (normalized)

moment of inertia [Sec. 6.5.2]:

𝜒
(𝑧)
𝑠(𝑎) =

1
2

(
𝐼1Ω𝑠1𝑚1 cos𝜓1 ± 𝐼2Ω𝑠2𝑚2 cos𝜓2

)
, (6.69)

We will then have 12 intrinsic parameters, including: chirp mass M; mass ratio
Ξ; (anti-)symmetric normalized Love numbers �̄�𝑠(𝑎)

𝑓
; two inclination angles 𝜓𝑖;

two spin frequencies Ω𝑠𝑖; two 𝑟-mode coupling coefficients I𝑖; and two normalized
momentum of inertia 𝐼𝑖. Meanwhile, we have 8 constraints from GW

M, Ξ, 𝜒eff, 𝜆eff
𝑓 , ΔΩ𝑠𝑖, ΔI𝑖, (6.70)

and 4 constraints from the two universal relations

I𝑖 = I𝑖 (�̄�𝑠(𝑎)𝑓
,Ξ, 𝜓𝑖,M), 𝐼𝑖 = 𝐼𝑖 (�̄�𝑠(𝑎)𝑓

), (6.71)

where we have used the definitions of I in Eq. (6.30). In principle, these 12
constraints are enough to decode the BNS system. However, as we have seen in
the last subsection, constraints in Eq. (6.70) in practice may not be measured with
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extremely high statistical accuracy; the relative error on I can be as bad as 100%.
Therefore, we should be prepared that degeneracy may not be completely broken in
practice.

After using the universal relations, the Fisher matrix is 11D, corresponds toM, Ξ,
Ω𝑠𝑖, �̄�𝑠(𝑎)𝑓

, 𝜓𝑖, 𝑡𝑐, 𝜙𝑐, 𝐷𝐿 .

6.7.3.2 Parameter Constraints: tidal Love numbers �̄�𝑠,𝑎
𝑓

In the lower panel of Fig. 6.13, we plot the dependence of Δ�̄�
𝑠(𝑎)
𝑓
/�̄�𝑠(𝑎)

𝑓
on Ω𝑠1,

with 𝜓1 = 3𝜋/10, 𝜓2 = 7𝜋/18 and Ω𝑠2 = 2𝜋 × 40 Hz. (we use the GM1 EoS;
data for the FPS EoS are shown in Sec. 6.14.) Constraints become worse when
Ω𝑠1 ∼ Ω𝑠2 = 2𝜋×40 Hz because two resonances take place simultaneously, making
it impossible to resolve their individual features. For favorable values of Ω𝑠1, Δ�̄�𝑠

𝑓

can be constrained as well as ∼ 1.0%, while Δ�̄�𝑎
𝑓
/�̄�𝑎

𝑓
is ∼ 1.7. The degeneracy

between two individual tidal Love numbers is still not broken, but substantially
reduced. To see this more clearly, we plot the error ellipses between Δ�̄�𝑎

𝑓
and Δ�̄�𝑠

𝑓

in Fig. 6.14, for Ω𝑠1 = 80 Hz and 𝜓1 = 𝜋/3, when 𝑟 mode is either included or not
included. Constraints on both directions are substantially improved by 𝑟-mode, but
the fractional error of �̄�𝑎

𝑓
is still greater than 1.

Let us note that breaking of �̄�𝑎
𝑓

degeneracy is difficult because the predicted values
of �̄�𝑎

𝑓
is intrinsically very small, if we make the tacit assumption that neutron stars

all have the same, albeit unknown, EoS. For example, in our case, the two neutron
stars are (1.4, 1.35) 𝑀⊙, and with the GM1 EoS, �̄�𝑎

𝑓
/�̄�𝑠

𝑓
≈ 0.1. Nevertheless, it is

theoretically possible that the two neutron stars do not follow the same EoS—and
for this reason, it is still very meaningful to dramatically reduce Δ�̄�𝑎

𝑓
, even if our

measurement error is somewhat larger than the predicted value of �̄�𝑎
𝑓
.

As we turn to the individual Love numbers of the two neutron stars, �̄�(𝑖)
𝑓

, we find
that their errors are still correlated in general. For some special cases, the individual
Love numbers can be sufficiently well constrained. In Table 6.7, we show one
example with Ω𝑠1 = 80 Hz, 𝜓1 = 𝜋/3, Ω𝑠2 = 40 Hz, 𝜓1 = 7𝜋/18, and GM1 EoS.
Relative errors of two individual tidal Love numbers are around 20%.

We then study the improvement of constraints by comparing results above with
those of pure PN effects (i.e., adiabatic tidal effect). The improvement factor, Imp.
Δ�̄�

𝑠(𝑎)
𝑓
/�̄�𝑠(𝑎)

𝑓
, is defined to be the ratio between constraints from two sides (the factor

is larger than 1 when the 𝑟-mode enhances the constraint). Results are shown in
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Table 6.7: A special case where the individual normalized Love numbers and
inclination angles are well constrained. Two NSs have spin Ω𝑠2 = 40Hz, 𝜓2 =

7𝜋/18, Ω𝑠1 = 80Hz and 𝜓1 = 𝜋/3. EoS is GM1.

Parameters Δ�̄�
(1)
𝑓
/�̄�(1)

𝑓
Δ�̄�
(2)
𝑓
/�̄�(2)

𝑓
Δ𝜓 (1) (rad) Δ𝜓 (2) (rad)

Constraints 0.26 0.22 0.18 0.28

Table 6.8: A summary of the effect of including 𝑟-mode resonance on parameter
constraints. The second column gives the best fractional errors for Ξ and �̄�𝑠(𝑎)

𝑓

achievable when we vary𝜓1 andΩ𝑠1. These fractional errors are generally improved,
when compared with those achievable only including PN effects. In the third and
forth columns, we list the best and worst improvement factors for each parameter,
as we vary 𝜓1 and Ω𝑠1.

Parameters Best Best Worst
constraints improvement improvement

Δ�̄�𝑠
𝑓
/�̄�𝑠

𝑓
10−2 389 1

Δ�̄�𝑎
𝑓
/�̄�𝑎

𝑓
1.84 336 1

ΔΞ/Ξ 5 × 10−3 11.6 1

Table 6.8. We can see constraints on Δ�̄�
𝑠(𝑎)
𝑓
/�̄�𝑠(𝑎)

𝑓
are improved. In the best case,

the factor is around 300–400.

6.7.3.3 Parameter Constraints: mass ratio Ξ and spins 𝜒(𝑧)𝑎,𝑠

The measurement of Δ𝜒
(𝑧)
𝑎 and Δ𝜒

(𝑧)
𝑠 can also benefit from universal relations9.

As shown in the lower panel of Fig. 6.14, while the improvement in 𝜒(𝑧)𝑠 is mild,
the constraint on 𝜒(𝑧)𝑎 is improved by a factor of ∼ 120. Therefore, the degeneracy
between individual dimensionless spin is also reduced.

The case for Ξ is similar. Its correlation with other parameters is reduced by the
𝑟-mode DT and the universal relations. Compared with constraints from pure PN
effects, the error inΞ can be improved by a factor of 1−11.6, as summarized in Table
6.8. In the first row of Fig. 6.13, we also present its fractional error as a function
of Ω𝑠1. We can see ΔΞ/Ξ is insensitive to Ω𝑠. Generally, it can be constrained to
∼ 1.3%.

It is also well-known that the estimation errors of Ξ, �̄�𝑠
𝑓

and 𝜒(𝑧)𝑠 are correlated in
absence of 𝑟-mode resonance. The effects of incorporating 𝑟-mode resonances are

9These are not independent variables in this subsection, their constraints are obtained by error
propagation.
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shown in Fig. 6.15. Whereas in Refs. [1, 4] the error reduction relies on imposing an
observational-based prior on 𝜒𝑧, once the 𝑟-mode resonances are taken into account,
the mutual correlations between parameters are significantly reduced. As suggested
in Ref. [76], the 𝑟-mode DT indeed improves dramatically the inference accuracy
on both the tidal deformability and the NS component masses. The later can be
further converted to an indication of the maximum mass of NSs with a population
of events. We thus conclude that the 𝑟-mode DT plays a crucial role in constraining
the nature of NS EoS.

6.7.3.4 Parameter Constraints: inclination angles
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Figure 6.16: Case II: constraints on inclination angles 𝜓𝑖 as functions of Ω𝑠1. Spin
configurations are same as Fig. 6.11 and 𝜓1 = 3𝜋/10. Generally speaking, 𝜓1 and
𝜓2 are correlated. In the best case, Δ𝜓1 ∼ Δ𝜓2 ∼ 0.09 rad.

Besides improving constraints, universal relations also provide information of incli-
nation angles 𝜓𝑖, which is hard to be accessible by other PN effects. In Figs. 6.16,
we show Δ𝜓𝑖 as functions of Ω𝑠1. Generally speaking, 𝜓1 and 𝜓2 are correlated.
In the best case, Δ𝜓1 ∼ Δ𝜓2 ∼ 0.09 rad. We note that determining this angle may
play significant roles in astrophysics, as it allows the constraining of the NS natal
kicks, i.e., kicks received by NSs at their formation due to asymmetric supernova
explosions (see, e.g., Refs. [108–110]). This may further shed light on models and
theories of core-collapse supernova [111, 112].



292

6.7.3.5 If only one of NS is resonant

If one of NS (e.g., 𝑚2) in the binary system rotates at very low frequency, its 𝑟-mode
resonance is not in-band anymore, and 𝑟-mode resonance does not provide enough
constraints to decode the whole system. In fact, we find that the two inclination
angles 𝜓𝑖 are highly correlated and are totally unmeasurable. Nevertheless, the
measurement of Love number can still benefit from the single, in-band resonance. As
an example, we still adopt a BNS system with (1.4, 1.35)𝑀⊙ and𝜓1 = 𝜋/3, Ω𝑠1 = 40
Hz. The value of Ω𝑠2 is taken to be small enough such that the 𝑟-mode of 𝑚2 is not
excited in-band. In Fig. 6.17, we show contours between �̄�𝑠

𝑓
and �̄�𝑎

𝑓
with or without

DT. We can see they are similar to the case of two resonances in Fig. 6.14: even with
only one resonance, the degeneracy between �̄�𝑠(𝑎)

𝑓
can still be substantially reduced.
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Figure 6.17: Similar to the top panel of Fig. 6.14. But with only one in-band 𝑟-mode
resonance. For the binary system, we choose Ω𝑠1 = 40 Hz, 𝜓1 = 𝜋/3. The value of
Ω𝑠2 is taken to be small enough such that the 𝑟-mode of 𝑚2 is not excited in-band.
The degeneracy between �̄�𝑠(𝑎)

𝑓
can still be reduced a lot.

6.7.4 Case III: BHNS
For a BHNS system, the 𝑟-mode resonance only takes place once before the merger.
As shown in Table 6.3, there are 8 parameters for the system: M, Ξ, �̄�(1)

𝑓
, 𝐼1, Ω𝑠1, I1,

𝜓1 and 𝜒(𝑧)2 . And there are 8 constraints from GW and universal relations. Hence
the degeneracies can be reduced, even broken.
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Figure 6.18: Case III: constraints on several parameters in the case of BHNS system.
We choose Ω𝑠1 = 30 Hz and 𝜒(𝑧)2 = 0.1. The EoS is GM1, and the binary system is
100Mpc away from the detector. In the left panel, we show constraints as functions
of 𝜓1, where we fix the mass of BH to be 10𝑀⊙; whereas in the right panel, we
study their dependence on the mass of BH 𝑚2, with 𝜓1 = 𝜋/3. Using universal
relations, the degeneracy of parameters is totally broken, where Δ𝜓 is ∼ 1 rad, and
the relative errors of 𝜒(𝑧)2 are ∼ 1%.
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To study this case, we choose a BHNS system with (1.4, 10)𝑀⊙. The NS is assumed
to spin at 30 Hz, and EoS is GM1. As for BH, we assume 𝜒(𝑧)2 = 0.1. The distance
of the system is 100 Mpc. Results are shown in the left column of Fig. 6.18. In this
case, the degeneracy between two individual spins is completely broken. For 𝜒(𝑧)2 ,
it is constrained to ∼ 1%, and 𝜓1 is constrained to ∼ 1 rad.

We further investigate the effect of BH mass on constraints by varying 𝑚2, while
fixing Ω𝑠1=30 Hz and 𝜓1 = 𝜋/3. The distance of the system is still 100 Mpc. In the
right column of Fig. 6.18, we show constraints as functions of BH mass. We can
see both constraints first decrease with 𝑚2, because of the increase of SNR. If we
further increase𝑚2, post-resonance signals then will be reduced, and the constraints
will become worse accordingly.

6.8 Conclusion
In this chapter, we studied the tidal excitation of 𝑟-mode by the gravitomagnetic force
in coalescencing NS binaries. We began by a brief review on the dynamics of these
systems: the 𝑟-mode is excited by the gravitomagnetic field from the companion,
while the induced current quadrupole moment gives rise to an acceleration back to
the orbit. By assuming the orbit to be quasicircular, we obtained a coupled EOM.
Next, we numerically integrated the coupled set of EOM and discussed features of
solutions. We confirmed that the pre- and post-resonance orbital evolution can be
well described by two PP orbits, as proposed in FR07 [72]. The post-resonance PP
orbit is related to the pre-resonance one through a “jump” in orbital frequency at the
resonance. We subsequently investigated the tidal evolution, by extending Ref. [53]
to the 𝑟-mode, and providing analytic formulae for tidal evolution that are accurate
in all regimes: adiabatic, resonance and post-resonance. Separately, using the TOV
equation, we found a universal relation between the normalized 𝑟-mode overlap 𝐼𝑟

of a neutron star and its normalized tidal Love number �̄� 𝑓 .

We then moved on to the wave zone and studied gravitational waves emitted by
such binaries. We constructed a hybrid GW waveform that combines several SPA
models with results from numerical integrations of the coupled EOM. This waveform
contains information from 𝑟-mode resonance, adiabatic tidal effect, and spin-orbit
coupling. To understand the effect of 𝑟-mode DT on GW waveforms, we adopted
the model in FR07: the 𝑟-mode induces phase and time shifts in GW. We found this
model to be quantitatively accurate. Finally, with the hybrid waveform, we calculated
Fisher information matrix to investigate how 𝑟-mode resonances improves parameter
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estimation accuracy. We mainly studied three cases: binary NS systems with 𝑟-
mode resonances in NSs, binary NS systems including 𝑟-mode resonances together
with universal relations between NS properties, and BHNS binary systems.

We found a variety of interesting results. First, the excitation of 𝑟-mode is mainly
described by two parameters: spin frequency Ω𝑠 and 𝑟-mode coupling coefficient
I. The spin frequency Ω𝑠 determines when the resonance takes place during
the inspiral, and I determines the phase and time shifts induced by the 𝑟-mode
resonance. Choosing a (1.4, 1.35)𝑀⊙ BNS system at 100Mpc away as example, we
found that when the inclination angle is within the range of [18◦, 110◦] (and if Ω𝑠1,2

are not too close), the measurements errors of I𝑖 and Ω𝑠𝑖 are less than 100%, where
Fisher analysis is valid and we can extract meaningful information from GW. The
best constraint on Ω𝑠 is around 6% with 3G detectors; whereas for I, the value is
around 22%. The constraint on I is worse than Ω𝑠 because 𝜕ℎ̃𝑁+𝑟/𝜕I is suppressed
by the factor (1 − 𝑓 / 𝑓𝑟) as 𝑓 ∼ 𝑓𝑟 [Eq. (6.64a)]. In other words, the waveform is
more sensitive to the location of the resonance than to the phase shift. With the
analytic model for the 𝑟-mode, we foundΔI/I ∼ ΔΩ𝑠/Ω𝑠 ∼ sin−2 𝜓 cos−4 𝜓/2 [Eq.
(6.68)]. This is consistent with our numerical calculations. The formula shows that
the constraint is the best when 𝜓 = 𝜋/3, while there is no constraint as 𝜓 → 0, 𝜋.
We also found that two resonances in each star do not get strongly correlated except
for Ω𝑠1 ∼ Ω𝑠2, when effects from the two resonances become indistinguishable.

Secondly, with the help of the universal relations, 𝑟-mode resonance behaves like a
bridge that connects adiabatic tidal effect and the spin-orbit coupling. In principle,
for systems which have two 𝑟-mode resonances, we can obtain as many constraints
as free parameters in GW. This situation is in contrary to the case without DT,
where the universal relation requires additional parameters to be incorporated. This
is because if one wants to use I-Love relation to connect adiabatic tidal effect and
the spin-orbit coupling, four more free parameters: inclination angle 𝜓𝑖 and spin
frequency Ω𝑠𝑖 should be introduced. In the absence of 𝑟-mode resonance, they
cannot be constrained at all.

Although the 𝑟-mode resonance provides enough constraints to decode the BNS
system, some constraints are not very accurate in practice. For example, errors on I𝑖
sometimes are as large as 100%, where the information is not meaningful. This will
diminish the role of 𝑟-mode in degeneracy breaking. Nevertheless, our calculations
show that two individual normalized Love numbers are still significantly correlated
in the most cases. The best relative errors of symmetric normalized Love number
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is ∼ 1.3%, while is 1.84 for the anti-symmetric normalized Love number. Both of
them are improved by factors of ∼ 300 − 400 in the best-case scenario, comparing
with those that come solely from PN effects. In favorable cases, the normalized
Love numbers of individual NS can be sufficiently well constrained. As shown
in Table 6.7, each normalized Love number is constrained to 20%, significantly
improve our understanding on the NS EoS. Meanwhile, the 𝑟-mode DT allows us
to put constraints on the inclination angle between the spin and orbital angular
momentum, which is hard to be accessible by other PN effects. In the best-case
scenario, each inclination angle is constrained to 0.09 rad. This could potentially
constrain the NS natal kick and hence the supernovae explosion mechanism. The
other benefit from the universal relations is constraints on mass ratio Ξ, which is
known to have correlated errors with �̄�𝑠

𝑓
and 𝜒(𝑧)𝑠 in absence of DT. After including

𝑟-mode DT and universal relations, Ξ measurement can be improved by actors
of 1 − 11.6. For most cases, its fractional error is around ∼ 1%. An improved
estimation accuracy on Ξ means better accuracy on the component masses. This
could constrain the maximum mass of NSs with a large number of detection and
shed light on the NS EoS in a way complementary to the information derived from
tidal deformability.

Thirdly, for BHNS systems, we can also obtain as many constraints as parameters.
As a result, degeneracies are totally broken. Choosing a BHNS system as example,
we found Δ𝜓1 ∼ 1 rad, and Δ𝜒

(𝑧)
2 /𝜒

(𝑧)
2 ∼ 1% − 2%.

Our results show that 𝑟-mode resonance will be an important channel for 3G detectors
to extract information of NSs. Since the excitation only requires NSs to spin at tens of
Hertz, these events are quite generic in coalescing binaries that have NSs. Therefore,
to develop an accurate GW waveform from these systems seems necessary in the
future. Our numerical calculations of 𝑟-mode are only on Newtonian order, and
PN effects are incorporated in a naive way. Also, the corrections of DT onto PN
terms are not considered here. Therefore, one possible avenue for future work
is to perform a systematic study on the scenario with relativity. This includes to
couple the gravitomagnetic force with rotational modes of relativistic stars10 by the
formalism in Ref. [66], and to study the orbital evolution with either PN approach
[83] or EOB formalism [35, 57]. As pointed out by Idrisy et al. [68], there is more
than 10% variance for the mode frequency of relativistic stars, depending on the
compactness. This is on the same order as the statistical accuracy of Ω𝑠 in this

10There is no pure 𝑟-mode in relativistic barotropic stars.
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chapter. Therefore, relativistic corrections would be important in this case. It is
also interesting to see how relativistic corrections to the 𝐼𝑟 − �̄� 𝑓 universal relation
changes the parameter estimation.

The other direction would be numerical relativity. Although the excitation of 𝑓 -
mode has been observed by recent study [113], the simulation of 𝑟-mode is more
difficult to achieve with the current version of numerical relativity code, such as
SpEC [114], since the mode amplitude of 𝑟-mode is much smaller. A typical
Lagrangian displacement of 𝑟-mode is only 10−4 of the radius of a NS. This requires
much more resolutions to resolve 𝑟-mode. However, with the upgraded version of
SpEC, SpECTRE [115], this may be doable in the near future.

Furthermore, our study mainly focuses on the (2, 2) 𝑟-mode in barotropic NSs. As
pointed out by Poisson et al. recently [73], four inertial modes can be excited by
the gravitomagnetic force before the merger. Meanwhile, for NSs with buoyancy,
there is also the (2, 1) 𝑟-mode, which plays a role as important as the (2, 2) mode
[72]. These modes have different 𝜓-dependence, and contain different information
about NSs. Therefore, they can further reduce the degeneracy of parameters, and
put more constraints on the inclination angle 𝜓. On the other hand, the detection
of (2, 1) mode can confirm the existence of buoyancy in cold NSs, so it is worth
incorporating these modes in the future.

A caveat, however, is that our analysis as well as the studies mentioned above,
all assumed that the matter inside the NS behaves as a normal fluid. In reality,
superfluidity may be expected in cold NSs [116] and may lead to richer dynamics
than what we considered here thanks to its two-fluid nature (see e.g., Ref. [117]).
Ref. [118] showed that the superfluid 𝑟-modes characterized by a common flow
of neutrons and protons reduce to their normal-fluid counterparts (i.e., the 𝑟-mode
studied in our work) in the slow-rotation limit. On the other hand, Ref. [117] argued
the existence of a new class of 𝑟-modes whose fluid motion is such that neutrons
and protons are counter-moving. This new class of 𝑟-modes is not accounted for in
our current study and is deferred to future studies.

Meanwhile, we ignored damping on the 𝑟-mode due to microphysical processes in
the NS. While viscous damping and nonlinear saturation may play a critical role
for the 𝑟-mode instability in newly-born NSs and/or X-ray binaries [119], its effect
might be subdominant in coalescing NS binaries given the very short duration of
tidal excitation (< 1s, see [120]) compared to the typical viscous damping timescale
of 104 s [118]. Nevertheless, sufficiently large uncertainty remains in our current
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understanding of NS microphysics, and future explorations on the dissipation of
saturation of 𝑟-modes under various astrophysical contexts will be of great value.

Finally, we want to emphasize that we treated the two universal relations as exact
relations. However, as pointed out in Ref. [121], even the most insensitive relations
still have residual variability with respect to EoSs and could lead to systematic bias
in parameter estimations for 3G detectors potentially comparable to the statistical
uncertainties. Therefore, studying the impact of such EoS variability would be
another interesting direction to go.

6.9 Appendix: Justification of ignoring the PP precession
When the spins S1,2 are misaligned with respect to the orbital angular momentum
L, various precession effects will happen and, in principle, modify the dynamics
when the orbit is both close to and far away from a mode’s resonance. We will show
quantitatively that all the precession-induced corrections are small and therefore can
be safely ignored.

Specifically, we have [80, 122]

𝑑 �̂�1
𝑑𝑡

= 𝛀(1)dS × �̂�1, (6.72)

𝑑 �̂�2
𝑑𝑡

= 𝛀(2)dS × �̂�2, (6.73)

𝑑 �̂�

𝑑𝑡
=

[
𝛀(1)LT +𝛀

(2)
LT

]
× �̂�, (6.74)

where

𝛀(1,2)dS =
3
(
𝑚2,1 + 𝜇/3

)
2𝐷

Ωorb �̂�, (6.75)

is the rate of the leading-order de Sitter precession of the spins induced by the orbital
angular momentum 𝑳 and

𝛀(1,2)LT =
𝑆1,2

(
4 + 3𝑚2,1/𝑚1,2

)
2𝐷3 �̂�2, (6.76)

is the rate of the Lense-Thirring precession of 𝑳 due to 𝑺1,2. The hat stands for the
unit vector along the direction of the corresponding quantity.

As a result of the de Sitter precession of 𝑺1, the resonance frequency of the 𝑟-mode
in 𝑚1 should be shifted by Ω

(1)
dS with

Ω
(1)
dS

2𝜋
≃ 0.8 ×

(
𝑓𝑟

80 Hz

)5/3
, (6.77)
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assuming a binary with 𝑚1 ≃ 𝑚2 ≃ 1.4𝑀⊙ and evaluating at 𝑓 = 𝑓𝑟 with 𝑓𝑟 the
resonant frequency [Eq. (6.60)]. The above shift is ∼ 1% of the spin frequency,
about 10 times smaller than the typical statistical error of ∼ 10% (e.g., Fig. 6.11), it
can thus be neglected.

Meanwhile, the Lense-Thirring precession of the orbital angular momentum together
with the spin-spin interaction will cause the inclination angle of the spin of NS,𝜓1(2) ,
evolves slowly as [123]

𝑑

𝑑𝑡
cos𝜓1 = ΩΔ𝜓1 �̂�1 ·

(
�̂�2 × �̂�

)
, (6.78)

where ΩΔ𝜓1 = 3(1 + 𝑞)𝑆2/2𝑞𝐷3 ≃ (6/7)Ω(2)LT for nearly equal-mass binaries with
𝑞 ≡ 𝑚2/𝑚1 ≃ 1. We can thus define a timescale 𝜏Δ𝜓1 = 1/ΩΔ𝜓1 , which is given by

𝜏Δ𝜓1 ≃ 70 s
(

𝑓𝑟

80 Hz

)−2 (
𝜒2 sin𝜓2

0.02

)−1
. (6.79)

On the other hand, the duration of resonance is given by [Eq. (6.48b)]

𝜏r ≃
(

1
¤Ω𝑟

)1/2
= 0.52 s

(
𝑓𝑟

80 Hz

)−11/6
. (6.80)

We thus see that 𝜓1 is a well-defined quantity at resonance. Moreover, it is well de-
fined throughout the entire post-resonance evolution which lasts about 4 s (Fig. 6.4),
much shorter than 𝜏Δ𝜓1 .

The above two points allow us to conclude that the modifications due to precession
is indeed negligible during mode resonances. We now consider their effects away
from resonance. To do so, we drop the 𝑟-mode effects and use the LALSuite [124]
to generate PP waveforms with IMRPhenomPv2 approximation [80, 125].

In Fig. 6.19 we compute the mismatch of a precessing waveform (parameterized in
terms of 𝜒p) with a non-precessing but otherwise identical one. Here the mismatch
is defined as

Mismatch(ℎ1, ℎ2) = 1 −max
𝑡𝑐 ,𝜙𝑐

(ℎ1 |ℎ2)√︁
(ℎ1 |ℎ1) (ℎ2 |ℎ2)

. (6.81)

For a typical NS with spin < 100 Hz, it corresponds to a precession parameter
𝜒p ≲ 0.1 (even assuming 𝜓 = 𝜋/2; 𝜒p is smaller for harder EOSs). Consequently,
neglecting precessions will only cause small errors on the PP waveforms.

Lastly, we show in Fig. 6.20 the parameter estimation uncertainties of 𝜒p us-
ing the PP waveform alone. Here we have assumed a fiducial relation of 𝜒p =
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Figure 6.19: Mismatch between a precessing waveform 𝜒p ≠ 0 and an a non-
precessing but otherwise identical one.

0.06Ω𝑠1 sin𝜓1/(2𝜋 × 100 Hz) so that we can show the y-axis in physical spin units.
As the fractional error Δ𝜒p/𝜒p > 10 for the parameter space of interest, we thus do
not expect we would be able to further improve the parameter estimation accuracy
by incorporating the precession effects.
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Figure 6.20: The fractional error in inferring the PP precession parameter 𝜒𝑝.
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6.10 Appendix: The Tolman–Oppenheimer–Volkoff equations
The stress-energy tensor 𝑇𝜇𝜈 for a perfect fluid is given by

𝑇𝜇𝜈 = (𝜌 + 𝑝)𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈, (6.82)

where 𝑝 and 𝜌 stand for the pressure and energy density of the star, and 𝑢𝜇 is
four-velocity. The metric 𝑔𝜇𝜈 is given by Eq. (6.49). With Einstein field equation,
quantities shown above can be solved by the TOV equations

𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜌, (6.83)

𝑑𝑝

𝑑𝑟
= − (4𝜋𝑟

3𝑝 + 𝑚) (𝜌 + 𝑝)
𝑟 (𝑟 − 2𝑚) , (6.84)

𝑑𝜈

𝑑𝑟
= 2

4𝜋𝑟3𝑝 + 𝑚
𝑟 (𝑟 − 2𝑚) , (6.85)

where

𝑚 ≡ 1 − 𝑒−𝜆
2

𝑟. (6.86)

In practice, it is preferable to cast them into a new form for numerical integration.
Following the procedure of Ref. [126], we use the specific enthalpy ℎ, defined by

𝑑ℎ =
𝑑𝑝

𝜌 + 𝑝 , (6.87)

to replace 𝑟 , where the integration constant is set by the condition ℎ→ 0 as 𝜌 → 0
and 𝑝 → 0. Defining two new dependent variables, 𝑢 = 𝑟2 and 𝑣 = 𝑚/𝑟, then we
have

𝑑𝑢

𝑑ℎ
= −2𝑢(1 − 2𝑣)

4𝜋𝑢𝑝 + 𝑣 , (6.88)

𝑑𝑣

𝑑ℎ
= −(1 − 2𝑣)4𝜋𝑢𝜌 − 𝑣

4𝜋𝑢𝑝 + 𝑣 , (6.89)

𝑑𝜈

𝑑ℎ
= −2. (6.90)

At the center of the star, we have

ℎ = ℎ𝑐, 𝑢 = 0, 𝑣 = 0, (6.91)

with ℎ𝑐 a free parameter. The surface of star locates at ℎ = 0.

Therefore, we can find the structure of the star by integrating Eqs. (6.88)–(6.90)
from ℎ = ℎ𝑐 to ℎ = 0, with the initial conditions in Eq. (6.91). The total mass of
the star can be obtained from the formula 𝑚NS =

√
𝑢𝑣 |ℎ=0, and the radius is given

by 𝑅NS =
√
𝑢 |ℎ=0. The quantity 𝜈 is linear in ℎ, where the integration constant is set

by the condition 𝜈 |ℎ=0 = log(1 − 2𝑚NS/𝑅NS), to connect the value outside of star.
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6.11 Appendix: The calculation of tidal Love number 𝜆 𝑓
Let us consider linearized even-parity perturbations to the equilibrium metric in
Eq. (6.49). Following Refs. [127–129], the perturbed metric in the Regge-Wheeler
gauge can be written as

𝑔𝜇𝜈 = 𝑔
(0)
𝜇𝜈 + ℎ𝜇𝜈, (6.92)

with

ℎ𝜇𝜈 = diag[𝑒−𝜈𝐻0, 𝑒
𝜆𝐻2, 𝑟

2𝐾, 𝑟2 sin2 𝜃𝐾]𝑌𝑙𝑚 (𝜃, 𝜙), (6.93)

where 𝐻0, 𝐻2, 𝐾 are functions of 𝑟. The perturbation on the stress-energy tensor is
given by [127]

𝛿𝑇0
0 = −𝛿𝜌𝑙𝑌𝑙𝑚 (𝜃, 𝜙) = −

𝑑𝜌

𝑑𝑝
𝛿𝑝𝑙𝑌𝑙𝑚 (𝜃, 𝜙), (6.94)

𝛿𝑇 𝑖𝑖 = 𝛿𝑝𝑙𝑌𝑙𝑚 (𝜃, 𝜙). (6.95)

With Einstein’s field equations, we obtain [129]

𝐻2 = 𝐻0 = 𝐻, (6.96)

𝐻′′ + 𝐻′
{

2
𝑟
+ 𝑒𝜆

[
2𝑚
𝑟2 + 4𝜋𝑟 (𝑝 − 𝜌)

]}
+ 𝐻

{
𝑒𝜆

[
− 6
𝑟2 + 4𝜋(𝜌 + 𝑝) 𝑑𝜌

𝑑𝑝
+ 4𝜋(5𝜌 + 9𝑝)

]
−

(
𝑑𝜈

𝑑𝑟

)2
}
= 0, (6.97)

where we only focus on the 𝑙 = 2 component. The mass function 𝑚 is related to the
metric function 𝜆 by Eq. (6.86).

Imposing regularity condition at 𝑟 = 0 yields the initial condition 𝐻 ∝ 𝑟2. The
proportionality constant does not matter here, so we simply choose it as 1. Functions
𝜆,𝑚, 𝑝, 𝜌 in the above equation can be obtained from the solutions of TOV equations.

Integrating Eq. (6.97) from 𝑟 = 0 to 𝑟 = 𝑅NS leads to the dimensionless tidal Love
number 𝑘2 as [130]

𝑘2 =
8
5
C5(1 − 2C)2 [2 + 2C(𝑦 − 1) − 𝑦] {2C[6 − 3𝑦

+ 3C(5𝑦 − 8)] + 4C3 [13 − 11𝑦 + C(3𝑦 − 2) + 2C2(1 + 𝑦)]
+ 3(1 − 2C)2 [2 − 𝑦 + 2C(𝑦 − 1)] log(1 − 2C)}−1, (6.98)

where 𝑦 = 𝑅NS𝐻
′(𝑅NS)/𝐻 (𝑅NS), and the tidal Love number 𝜆 𝑓 is given by

𝜆 𝑓 =
2
3
𝑘2𝑅

5
NS. (6.99)
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Figure 6.21: Same as Fig. 6.11, but with FPS EoS. The constraints are worse than
those for GM1 by factors of ∼ 2.6 − 2.7

6.12 Appendix: The GW phase with SPA
From Ref. [99–106], we obtain the frequency-domain gravitational-wave phasing,
up to 3.5 PN order for point-particle contributions, up to 3PN for spin terms, and
up to 2.5 PN for adiabatic, 𝑓 -mode tide. Here are terms in addition to the leading
Newtonian phasing Ψ𝑁 :

ΨPP =
3

128
(𝜋M 𝑓 )−5/3

{(
3715
756

+ 55
9
𝜂

)
𝑥 − 16𝜋𝑥3/2 +

(
15293365
508032

+ 27145
504

𝜂 + 3085
72

𝜂2
)
𝑥2

+
(
38645
756

𝜋 − 65
9
𝜋𝜂

)
(1 + 3 log 𝑣)𝑥5/2 +

[
11583231236531

4694215680
− 640𝜋2

3
− 6848

21
𝛾𝐸

−
(
15737765635

3048192
− 2255

12
𝜋2

)
𝜂 + 76055

1728
𝜂2 − 127825

1296
𝜂3 − 6848

21
log(4𝑣)

]
𝑥3

+
(
77096675
254016

+ 1014115
3024

𝜂 − 36865
378

𝜂2
)
𝜋𝑥7/2

}
, (6.100a)

Ψ𝑆𝑂 =
3

128
(𝜋M 𝑓 )−5/3

{
4
(
113
12
− 19

3
𝜂

)
(L̂ · χ𝑠)𝑥3/2 − 10

[
719
48

𝛿𝑚 (L̂ · χ𝑠) (L̂ · χ𝑎)

+
(
719
96
+ 𝜂

24

)
(L̂ · χ𝑠)2 +

(
719
96
− 30𝜂

)
(L̂ · χ𝑎)2

]
𝑥2 − (1 + 3 log 𝑣)

×
[(

732985
2268

− 24260
81

𝜂 − 340
9
𝜂2

)
(L̂ · χ𝑠) +

(
732985
2268

+ 140
9
𝜂

)
𝛿𝑚 (L̂ · χ𝑎)

]
𝑥5/2

+2270𝜋
3

[(
1 − 227

156
𝜂

)
(L̂ · χ𝑠) + 𝛿𝑚 (L̂ · χ𝑎)

]
𝑥3

}
, (6.100b)

Ψ
�̄�
(1)
𝑓

= − 3
16𝜂

𝑥5/2(12 − 11Ξ)�̄�(1)
𝑓
Ξ4

{
1 + 5(3179 − 919Ξ − 2286Ξ2 + 260Ξ3)

672(12 − 11Ξ) 𝑥 − 𝜋𝑥3/2
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+ 1
12 − 11Ξ

[
39927845
508032

− 480043345
9144576

Ξ + 9860575
127008

Ξ2 − 421821905
2286144

Ξ3 + 4359700
35721

Ξ4

−10578445
285768

Ξ5
]
𝑥2 − 𝜋(27719 − 22127Ξ + 7022Ξ2 − 10232Ξ3)

672(12 − 11Ξ) 𝑥5/2
}
, (6.100c)

Ψ
�̄�
(2)
𝑓

= (1→ 2 and Ξ→ 1 − Ξ). (6.100d)

0.006

0.008

0.010

0.012

0.014

0.016
∆Ξ/Ξ

20 40 60 80
Ωs1/(2π) (Hz)

10-2

10-1

100

101

102 ∆λ̄af/λ̄
a
f

∆λ̄sf/λ̄
s
fFr
ac

tio
na

l e
rr

or

Figure 6.22: Same as Fig. 6.13, but with FPS EoS.

Here we have defined 𝑥 = 𝑣2 = (𝜋𝑀 𝑓 )2/3, Ξ = 𝑚1/𝑀 , 𝛿𝑚 = (𝑚1−𝑚2)/𝑀 . �̂� is the
unit vector along the orbital angular momentum. Symmetric and anti-symmetric
dimensionless spins are defined as χ𝑠 = (χ1 + χ2)/2 and χ𝑎 = (χ1 − χ2)/2 with
χ𝑖 = 𝐼𝑖𝛀𝑠𝑖𝑚𝑖. Here we use the normalized momentum of inertia, as well as the
normalized tidal Love number in Eqs. (6.100c) and (6.100d), in order to use the
I-Love universal relation.

6.13 Appendix: Case I for FPS EoS (without universal relations)
In Fig. 6.21, we present the results for a BNS system with FPS EoS. Following Sec.
6.7.2, we still assume that both NSs are excited before merger. The spin vector of
𝑚2 is fixed at Ω𝑠2 = 2𝜋 × 40 Hz and 𝜓2 = 7𝜋/18. And we vary the spin of 𝑚1:
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Ω𝑠1 ∈ 2𝜋 × [10, 85] Hz, 𝜓1 ∈ [ 1
20𝜋,

17
20𝜋]. Without universal relations, we can put

constraints on Ω𝑠𝑖 and I𝑖. From Table 6.6, we know that the constraints for FPS are
worse than those for GM1 by factors of ∼ 2.6 − 3.2. But their dependence on Ω𝑠1

and 𝜓𝑠1 is the same as the case of GM1.
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Figure 6.23: Same as Fig. 6.16, but with FPS EoS.

6.14 Appendix: Case II for FPS EoS (with universal relations)
After incorporating universal relations into the calculations of Appendix 6.13, we
can obtain the constraints on �̄�𝑠(𝑎)

𝑓
, Ξ, and 𝜓𝑖, as shown in Fig. 6.22 and 6.23.
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C h a p t e r 7

FULLY RELATIVISTIC 3D CAUCHY-CHARACTERISTIC
MATCHING

7.1 Introduction
Since the detection of GW150914 [1], gravitational wave (GW) astronomy has
become a flourishing field. Accurate modeling of GW signals is a key ingredient in
extracting signals from detector noise and understanding the properties of sources.
To date, numerical relativity (NR) remains the only ab initio method to simulate
the major sources of the GW signals: the coalescence of binary black hole (BBH)
systems.

Generally speaking, the formulations of NR can be classified into two groups:
Cauchy [2, 3] and characteristic [4–11] formalism, depending on how spacetime is
foliated1. For the Cauchy approach, a spacelike foliation is adopted, and Einstein’s
equations are split into evolution and constraint sets. This formalism has successfully
led to high-accuracy simulations of BBH systems [3].

On the other hand, in the characteristic case, spacetime is sliced into a sequence of
null hypersurfaces that extend to future null infinity. Einstein’s equations are formu-
lated in terms of the unambiguous geometric treatment of gravitational radiation in
curved spacetimes due to Bondi et al. [17] Sachs [18] and Penrose [19]. Meanwhile,
future null infinity is rigorously encompassed on the characteristic grid via a com-
pactified coordinate system and treated as a perfect absorbing outer boundary. In this
way, one is able to extract faithful GWs with the characteristic formalism at future
null infinity without any ambiguity [20–24]. However, the characteristic method
cannot evolve the near-field region of BBHs when caustics of null rays are present.
Therefore, in practice, one can use the Cauchy evolution to simulate the near-zone
of the systems and construct metric data on a timelike worldtube [9–11, 25]. Then
the characteristic system propagates the worldtube data nonlinearly to future null
infinity, which in turn yields GW information. This procedure of extracting GW is
known as Cauchy-characteristic evolution (CCE) [4–11, 26]. Studies of character-
istic evolution and CCE date back to the 1980s. Isaacson et al. [27] and Winicour

1The third group adopts hyperboloidal slicing [12–16]. Its discussion is beyond the scope of this
chapter.
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[28, 29] considered a prototype of CCE by shrinking the worldtube to a timelike
geodesic and investigated the GWs emitted by an axially symmetric ideal fluid.
More complete and complicated CCE systems were developed later [6, 7, 30–36].
Early applications of the characteristic evolution has been focused on simulating
generic 3-dimensional single-black-hole spacetimes [37], Einstein-perfect fluid sys-
tems [38–42], Einstein-Klein-Gordon systems [41, 43–46], (nonlinear) perturbation
of BHs [47–50], event horizons [51–53], fissioning white holes [54], extreme mass
ratio inspirals [55], stellar core collapse [56], as well as linearized systems [57]. By
using finite-difference methods, PITT null [6–8] is the first code to implement CCE
and characteristic evolution, which led to the first CCE simulation of BBH systems
[58–61]. The code was also used to extract GWs emitted by rotating stellar core
collapse [62]. On the other hand, a spectral algorithm for CCE was built as a module
in SpEC [9, 63–65] and SpECTRE [10, 11], developed by the SXS collaboration [3,
66–69]. Bhagwat et al. [70] used SpEC CCE to investigate the start time of BBH
ringdown. And SpECTRE CCE has been applied to computing memory effects
[71, 72], fixing the Bondi-Metzner-Sachs frame of GWs [73, 74], extracting GWs
emitted by black hole-neutron star binaries [75], and computing GW echoes [76].

Although CCE has led to high-accuracy and unambiguous GWs at future null infin-
ity, CCE’s data flow is one-way, meaning that the Cauchy evolution does not depend
at all on the characteristic evolution. This is inaccurate because for a nonlinear set
of equations like general relativity, outgoing radiation at arbitrarily far distances can
backscatter off the spacetime curvature and eventually affect the source; the Cauchy
evolution (with or without CCE) fails to capture this backscattering. To explain
this in more detail, note that to perform a Cauchy simulation, the spatial Cauchy
domain is typically truncated at a finite distance from the source, with suitable
boundary conditions provided at the artificial outer boundary2. Ideally speaking,
perfect boundary conditions should make the artificial boundary as transparent as
possible so that the numerical solution is identical to one that would be evolved
on an infinite domain, and these boundary conditions would ideally include non-
linear backscattering. On the contrary, if poor boundary conditions are prescribed,
not only will backscattering be incorrectly implemented, but spurious reflection
can also be introduced at the boundary and contaminate the whole simulation. In
SpEC [67] and SpECTRE [68, 69], the generalized harmonic (GH) evolution sys-
tem [77] is adopted, whose boundary conditions can be divided into three subsets:
constraint-preserving, physical, and gauge boundary conditions [78]. Effort has

2In this chapter we restrict our discussions to the outer boundary.
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been made to improve the accuracy of these boundary conditions, such as [79–82].
The boundary conditions on the physical degrees of freedom are expected to encode
the information of the back-scattered (incoming) GWs that enter the Cauchy domain.
Accurately modeling of the back-scattered radiation is not a trivial task. Although
there were some attempts [79, 80] to improve the physical boundary conditions, in
most SpEC production runs [3] the incoming GWs at the boundary are treated by
freezing the Weyl scalar 𝜓0 to zero [78], which effectively eliminates all backscatter
from beyond the outer boundary.

It was pointed out that the characteristic evolution is a natural system to compute the
value of the back-scattered radiation in an exact and efficient way, e.g., see Ref. [4]
and references therein. A matching of the internal Cauchy system and the exterior
characteristic system is expected to provide accurate physical boundary conditions
for the Cauchy module. In this way, the interface between the two grids is trans-
parent and GWs can pass cleanly off of and onto the Cauchy grid. This algorithm
is known as Cauchy-characteristic matching (CCM). Historically, the idea of CCM
was outlined in Refs. [83] and [84]. Then the algorithm was applied to the evo-
lution of a scalar field on a flat background [85, 86], and around a Schwarzschild
BH [87] (with metric being fixed). The CCM simulation of gravitational systems
was also visited by a series of papers [88–92] that assumed cylindrical symmetry
[88, 89, 92] and axial symmetry [90, 91]. Meanwhile, CCM was used to study an
Einstein-perfect fluid system [93] and an Einstein-Klein-Gordon system [94] with
spherical symmetry. Going to the 3D regime, Bishop et al. investigated a scalar
wave [95]. Szilagyi et al. [96] performed the matching in linearized harmonic co-
ordinates. An alternative to CCM is Cauchy-perturbative matching [97–99], where
the exterior region is not evolved fully nonlinearly with a characteristic code but
instead is treated as a linearized Schwarzschild BH. This algorithm led to a simu-
lation of a 3D Teukolsky wave [100] propagating on a flat background [97]. Later,
this topic was revisited [101] in 2005 after years of progress in numerical relativity.
However, until now, all the existing matching algorithms for the gravitational sec-
tor are based on either assumptions (symmetries) or approximations (perturbative
matching, linearized equations), a full matching in three spatial dimensions is still
missing. Further, the formulation of CCM seems to be ill-posed [102–104].

As a step toward addressing those questions, in this chapter, we report the first
successful numerical simulation of fully relativistic 3D CCM for gravitational fields
without any approximation. The code is implemented in SpECTRE [68, 69]. Unlike
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CCE, the data in CCM flows in both directions, meaning that the Cauchy and
characteristic systems need to be evolved simultaneously. The communication from
the Cauchy to the characteristic system has been discussed extensively [9–11]. In
this chapter, we will be explaining how to feed the information of the characteristic
module back to the Cauchy system.

This chapter is organized as follows. In Sec. 7.2, we review the Cauchy evolution
and the GH system adopted by SpECTRE, with particular attention given to its
physical boundary conditions. Next in Sec. 7.3 we discuss some basic information
about the CCE module in SpECTRE. Then a thorough algorithm to complete the
matching procedure is introduced in Sec. 7.4. Our code is tested with two types of
physical systems in Sec. 7.5. Finally, we summarize the results in Sec. 7.6.

Throughout this chapter we use Latin indices 𝑖, 𝑗 , 𝑘, . . . to denote 3D spatial compo-
nents; and Greek indices 𝜇, 𝜈, . . . for 4D spacetime components. We generally avoid
using abstract indices, denoted by Latin letters from the first part of the alphabet
𝑎, 𝑏, . . ., to keep the text concise, unless stated otherwise.

7.2 The generalized harmonic system and boundary conditions
The detailed communication (matching) algorithm depends on the formulation of
the Cauchy evolution. For instance, the perturbative matching in Ref. [97] was
performed through Dirichlet and Sommerfeld boundary conditions. In SpECTRE,
the Cauchy data are evolved with the GH formalism. Outer boundary conditions
are imposed via the Bjørhus method [78, 105]: the time derivatives of the incoming
characteristic fields are replaced on the boundary. In this section, we give a brief
introduction to the formulation of the GH system and refer the interested reader
to Ref. [77] for more details. In particular, we give more attention to the physical
subset of the boundary conditions [78].

Let us consider a spacetime with a metric tensor 𝑔𝜇′𝜈′ and its 3 + 1 decomposition

𝑑𝑠2 =𝑔𝜇′𝜈′𝑑𝑥
′ 𝜇′𝑑𝑥′ 𝜈

′

=(−𝛼2 + 𝛽𝑖′𝛽𝑖′𝛾𝑖′ 𝑗 ′)𝑑𝑡′2 + 2𝛽𝑖
′
𝛾𝑖′ 𝑗 ′𝑑𝑥

′ 𝑗 ′𝑑𝑡′ + 𝛾𝑖′ 𝑗 ′𝑑𝑥′ 𝑖
′
𝑑𝑥′ 𝑗

′
, (7.1)

with 𝛼 the lapse function, 𝛽𝑖′ the shift function, and 𝛾𝑖′ 𝑗 ′ the spatial metric3. We
use primes on the coordinates to distinguish them from different coordinate systems

3In Ref. [77], the authors used 𝜓𝑎′𝑏′ and 𝑔𝑖′ 𝑗′ to refer to the spacetime metric and the spatial
metric, respectively.
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that will be introduced later; see Fig. 7.1. The GH gauge conditions read

□′𝑥′ 𝜇
′
= 𝐻𝜇′ , (7.2)

where 𝑥′ 𝜇′ are the Cauchy coordinates, □′ = 𝑔 𝜏′𝜈′ (𝜕𝜏′𝜕𝜈′ −Γ𝜌
′

𝜏′𝜈′ 𝜕𝜌′), and the gauge
source function𝐻𝜇′ is chosen to be some function of the spacetime metric but not the
derivatives of the spacetime metric; for example 𝐻𝜇′ might be chosen according to
the damped harmonic gauge [106]. Then the vacuum Einstein equations, 𝑅𝜇′𝜈′ = 0,
can be cast into a first-order symmetric hyperbolic (FOSH) evolution system

𝜕𝑡′𝑢
𝛼′ + 𝐴𝑘 ′𝛼′𝛽′𝜕𝑘 ′𝑢

𝛽′ = 𝐹𝛼
′
, (7.3)

where 𝑢𝛼′ = {𝑔𝜇′𝜈′ ,Π𝜇′𝜈′ ,Φ𝑖′𝜇′𝜈′} is a collection of dynamical variables, Π𝜇′𝜈′ =

𝛼−1(𝛽𝑖′𝜕𝑖′𝑔𝜇′𝜈′ − 𝜕𝑡′𝑔𝜇′𝜈′) and Φ𝑖′𝜇′𝜈′ = 𝜕𝑖′𝑔𝜇′𝜈′ are related to the time and spatial
derivatives of the metric.

The FOSH system in Eq. (7.3) is symmetric hyperbolic, and its characteristic fields
𝑢�̂�
′
= 𝑒�̂�

′

𝛽′𝑢
𝛽′ play an important role in imposing boundary conditions. Here the

left eigenvectors 𝑒𝛼′
𝛽′ are defined by

𝑒�̂�
′
𝜇′𝑠𝑘 ′𝐴

𝑘 ′𝜇′

𝛽′ = 𝑣 (�̂�′)𝑒
�̂�′

𝛽′ , (7.4)

where 𝑠𝑘 ′ is the outward-directed unit normal to the boundary of the computational
domain:

𝑠𝑡
′
= 0, 𝑠𝑘

′
=

𝛾𝑖
′𝑘 ′𝜕𝑖′𝑟

′√︁
𝛾𝑖
′ 𝑗 ′𝜕𝑖′𝑟

′𝜕𝑗 ′𝑟′
, (7.5)

and 𝑣 (�̂�′) are the eigenvalues. To impose the Bjørhus boundary conditions [78, 105],
we first project the FOSH system in Eq. (7.3) to a characteristic fields 𝑒�̂�′

𝛽′ and
obtain

𝑑𝑡′𝑢
�̂�′ + 𝑣 (�̂�′)𝑑⊥𝑢�̂�

′
= 𝑒�̂�

′

𝛽′ (−𝐴
𝑖′𝛽′

𝛼′𝑃
𝑘 ′
𝑖′𝜕𝑘 ′𝑢

𝛼′ + 𝐹𝛽′), (7.6)

with

𝑑𝑡′𝑢
�̂�′ ≡ 𝑒�̂�′𝛽′𝜕𝑡′𝑢

𝛽′ , 𝑑⊥𝑢
�̂�′ ≡ 𝑒�̂�′𝛽′𝑠

𝑘 ′𝜕𝑘 ′𝑢
𝛽′ , (7.7)

and the projection operator

𝑃𝜇′𝜈′ = 𝑔𝜇′𝜈′ + 𝑛𝜇′𝑛𝜈′ − 𝑠𝜇′𝑠𝜈′ , (7.8)
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as well as the normal vector of the time slice 𝑛𝜇′ . At the outer boundary, we
replace the normal derivative 𝑑⊥𝑢�̂�

′ by its desired value 𝑑⊥𝑢�̂�
′ ��

BC while leaving the
tangential derivative unchanged. A convenient way to achieve the goal is given by
[78]

𝑑𝑡′𝑢
�̂�′ = 𝐷𝑡′𝑢

�̂�′ + 𝑣 (�̂�′)
(
𝑑⊥𝑢

�̂�′ − 𝑑⊥𝑢�̂�
′
���
BC

)
, (7.9)

where

𝐷𝑡′𝑢
�̂�′ ≡ 𝑒�̂�′𝛽′ (−𝐴

𝑘 ′𝛽′

𝛼′𝜕𝑘 ′𝑢
𝛼′ + 𝐹𝛽′). (7.10)

Note that within the bulk, Eq. (7.9) reduces to

𝑑𝑡′𝑢
�̂�′ = 𝐷𝑡′𝑢

�̂�′ . (7.11)

Cauchy coordinates 
 {r′ , x′ A′ , t′ }

Coordinates used by Cauchy evolution

Bondi-like coordinates 

{r, xA, u}
u = u

xA = δA
A xA

r = [
det(gAB)
det(qAB) ]

1/4

{

<latexit sha1_base64="6S6p3ehh5l0foResmn8eXbacDTw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkongqePFYxX5AG8pmO2mXbjZhdyOU0H/gxYMiXv1H3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8NJME/YgOJQ85o8ZKD72sX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85ZdXSeui6tWql/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAYhPMMrvDlj58V5dz4WrQUnnzmGP3A+fwCbtI1l</latexit>

An intermediate coordinate system. The metric takes 
the Bondi-Sachs form. No requirement for asymptotic 

behaviors of metric components.

{ ̂r, ̂x ̂A, ̂u}
̂u = u

̂x ̂A = ̂x ̂A(u, xA)

̂r = rω̂(u, xA)

Partially flat Bondi-like 
coordinates 

{

<latexit sha1_base64="FqN1P3SDlNnEuQOsdyCyirhGo80=">AAAB6XicdVDLSsNAFJ34rPVVdelmsAiuwqQkpNkV3bisYh/QhjKZTtqhk0mYmQgl9A/cuFDErX/kzr9x+hBU9MCFwzn3cu89UcaZ0gh9WGvrG5tb26Wd8u7e/sFh5ei4rdJcEtoiKU9lN8KKciZoSzPNaTeTFCcRp51ocjX3O/dUKpaKOz3NaJjgkWAxI1gb6bZfDCpVZNcD1wk8iGy/5vl+YAjyXOQE0LHRAlWwQnNQee8PU5InVGjCsVI9B2U6LLDUjHA6K/dzRTNMJnhEe4YKnFAVFotLZ/DcKEMYp9KU0HChfp8ocKLUNIlMZ4L1WP325uJfXi/XcT0smMhyTQVZLopzDnUK52/DIZOUaD41BBPJzK2QjLHERJtwyiaEr0/h/6Rdsx3X9m7cauNyFUcJnIIzcAEc4IMGuAZN0AIExOABPIFna2I9Wi/W67J1zVrNnIAfsN4+ASPXjck=</latexit>

Coordinates used by CCE. All metric components 
except for  asymptotically approach Minkowski form.̂β

Null-radius coordinates 

{λ, xA, u}
u = t′ 

xA = δA
A′ 

x′ A′ 

λ = λ(t′ , r′ ){

<latexit sha1_base64="lktTBdt0/vZPHgEMTClFof4LDbI=">AAAB6XicdVDJSgNBEK2OW4xb1KOXxiB4GmZCxOQW9OIxilkgGUJPpydp0tMzdPcIYcgfePGgiFf/yJt/Y2cRXB8UPN6roqpekAiujeu+o9zK6tr6Rn6zsLW9s7tX3D9o6ThVlDVpLGLVCYhmgkvWNNwI1kkUI1EgWDsYX8789h1Tmsfy1kwS5kdkKHnIKTFWuull/WLJdWo1r1x18W/iOe4cJVii0S++9QYxTSMmDRVE667nJsbPiDKcCjYt9FLNEkLHZMi6lkoSMe1n80un+MQqAxzGypY0eK5+nchIpPUkCmxnRMxI//Rm4l9eNzVh1c+4TFLDJF0sClOBTYxnb+MBV4waMbGEUMXtrZiOiCLU2HAKNoTPT/H/pFV2vIpzdl0p1S+WceThCI7hFDw4hzpcQQOaQCGEe3iEJzRGD+gZvSxac2g5cwjfgF4/ABxbjcQ=</latexit>

An intermediate coordinate system.The spacetime is 
sliced by outgoing null congruences emitted from the 

worldtube.

CCM

Figure 7.1: Coordinate systems used in the code. The Cauchy coordinates are
used by the interior GH evolution, whereas the exterior characteristic system adopts
the partially flat Bondi-like coordinates. To achieve their communication, two
intermediate coordinate systems (the right column) are introduced.

Boundary conditions must be imposed on each incoming characteristic field 𝑣 (�̂�′) <
0 [107–109]. In addition, as discussed in Refs. [77, 78], boundary conditions
can be divided into three categories: constraint-preserving, physical, and gauge
conditions. In this study, we restrict our discussions to the physical subset, where
the corresponding characteristic fields read

𝑢1̂−
𝜇′𝜈′ = Π𝜇′𝜈′ − 𝑠𝑖

′
Φ𝑖′𝜇′𝜈′ − 𝛾2𝑔𝜇′𝜈′ , (7.12)
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whose coordinate characteristic speed is given by −𝑠𝑘 ′𝛽𝑘
′ − 𝛼. Then the boundary

conditions on 𝑢1̂−
𝜇′𝜈′ can be written as

𝑑𝑡′𝑢
1̂−
𝜇′𝜈′ = 𝑃

P𝜌′𝜏′
𝜇′𝜈′

[
𝐷𝑡′𝑢

1̂−
𝜌′𝜏′ − (𝛼 + 𝑠 𝑗 ′𝛽 𝑗

′) × (𝑤−𝜌′𝜏′ − 𝑤−𝜌′𝜏′
���
BC
− 𝛾2𝑠

𝑖′𝑐3
𝑖′𝜌′𝜏′)

]
,

(7.13)

where the physical projection operator 𝑃P𝜌′𝜏′
𝜇′𝜈′ are given by

𝑃
P𝜌′𝜏′
𝜇′𝜈′ ≡

(
𝑃

𝜌′

𝜇′ 𝑃 𝜏′
𝜈′ −

1
2
𝑃𝜇′𝜈′𝑃

𝜌′𝜏′
)
, (7.14)

and the constraint fields 𝑐3
𝑖′𝜌′𝜏′ read

𝑐3
𝑖′𝜌′𝜏′ = 𝜕𝑖′𝑔𝜌′𝜏′ −Φ𝑖′𝜌′𝜏′ . (7.15)

Crucially, 𝑤−
𝜌′𝜏′ in Eq. (7.13) are the inward propagating components of the Weyl

tensor 𝐶𝜇′𝜂′𝜈′𝛼′ ,

𝑤−𝜌′𝜏′ = 𝑃
P𝜇′𝜈′
𝜌′𝜏′ (𝑛

𝜂′ + 𝑠𝜂′) (𝑛𝛼′ + 𝑠𝛼′)𝐶𝜇′𝜂′𝜈′𝛼′ , (7.16)

and 𝑤−
𝜌′𝜏′

���
BC

are the desired values of 𝑤−
𝜌′𝜏′ at the outer boundary. The effect of the

boundary condition, Eq. (7.13), is to drive 𝑤−
𝜌′𝜏′ toward 𝑤−

𝜌′𝜏′

���
BC

.

The quantity 𝑤−
𝜌′𝜏′ is related to the Weyl scalar 𝜓′0 via

𝑤−𝜌′𝜏′ = 2(𝜓′0�̄�𝜌′�̄�𝜏′ + �̄�′0𝑚𝜌′𝑚𝜏′), (7.17)

where we have used an identity [Eq. (7.8)]

𝑃𝜌′𝜏′ = 𝑚𝜌′�̄�𝜏′ + 𝑚𝜏′�̄�𝜌′ , (7.18)

and the definition of 𝜓′0:

𝜓′0 = 𝐶𝜇′𝜈′𝜌′𝜏′ 𝑙
𝜇′𝑚𝜈′ 𝑙𝜌

′
𝑚𝜏

′
. (7.19)

Here {𝑙𝜇′ , 𝑘𝜇′ , 𝑚𝜇′} refer to the null tetrad within the Newman-Penrose formalism.
The choice of the null vectors 𝑙𝜇′ (outgoing) and 𝑘𝜇

′ (ingoing) are determined
uniquely by Eqs. (7.8) and (7.16) (namely the Cauchy grid):

𝑙𝜇
′
=

1
√

2
(𝑛𝜇′ + 𝑠𝜇′), (7.20a)

𝑘𝜇
′
=

1
√

2
(𝑛𝜇′ − 𝑠𝜇′). (7.20b)
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However, the choice of 𝑚𝜇′ is not unique. The requirements on 𝑚𝜇′ read:

𝑚𝜇′ 𝑙𝜇′ = 0, 𝑚𝜇′𝑘𝜇′ = 0, 𝑚𝜇′𝑚𝜇′ = 1. (7.21)

As we shall show later, the only allowed gauge freedom on 𝑚𝜇′ is a rotation:
𝑚𝜇′ → 𝑚𝜇′𝑒𝑖Θ, but the values of 𝑤𝜌′𝜏′ in Eq. (7.16) do not depend on the gauge
variable Θ. Therefore, in our following calculations, we will take advantage of this
fact and choose 𝑚𝜇′ as close as possible to that of the characteristic system, in order
to simplify calculations.

As mentioned earlier, production SpEC simulations set 𝑤−
𝜌′𝜏′

���
BC

to zero. But within

the CCM framework, we shall use the characteristic system to determine 𝑤−
𝜌′𝜏′

���
BC

from Eq. (7.17), where the 𝜓′0 in Eq. (7.17) will be computed from the characteristic
evolution and interpolated back to the Cauchy grid. We will explain more details in
Sec. 7.4 below.

7.3 The CCE system
In this section we briefly summarize the SpECTRE CCE system as described in
Refs. [10, 11]. The procedures for extracting the Cauchy quantities on the worldtube,
evolving the characteristic variables in the exterior region, and computing waveform
quantities at future null infinity are identical for CCE versus CCM. For more details
of the CCE algorithm, see Refs. [10, 11]

The SpECTRE CCE system is based on Bondi-Sachs metric in partially flat Bondi-
like coordinates {𝑟, 𝑥 �̂�, �̂�} [10, 11]

𝑑𝑠2 = −
(
𝑒2𝛽 �̂�

𝑟
− 𝑟2 ℎ̂ �̂��̂��̂�

�̂��̂� �̂�

)
𝑑�̂�2 − 2𝑒2𝛽𝑑�̂�𝑑𝑟 − 2𝑟2 ℎ̂ �̂��̂��̂�

�̂�𝑑�̂�𝑑𝑥 �̂� + 𝑟2 ℎ̂ �̂��̂�𝑑𝑥
�̂�𝑑𝑥 �̂�,

(7.22)

where 𝑥 �̂� stands for the pair of angular coordinates {𝜃, 𝜙}. With this coordinate
system, a few gauge conditions have been imposed: 𝑔𝑟𝑟 = 0, 𝑔𝑟 �̂� = 0, and the
determinant of the angular components ℎ̂ �̂��̂� is set to that of the unit sphere metric
𝑞 �̂��̂�

det( ℎ̂ �̂��̂�) = det(𝑞 �̂��̂�) = sin2 𝜃. (7.23)

Consequently, the system is characterized by 6 degrees of freedom (4 quantities):
�̂� = (�̂� − 𝑟)/𝑟2, ℎ̂ �̂��̂�, �̂� �̂�, and 𝛽. Near future null infinity, the metric components
need to follow falloff rates [10, 11]:

lim
𝑟→∞

�̂� = O(𝑟−2), (7.24a)
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lim
𝑟→∞

�̂� �̂� = O(𝑟−2), (7.24b)

lim
𝑟→∞

ℎ̂ �̂��̂� = 𝑞 �̂��̂� + O(𝑟
−1). (7.24c)

Note that the conditions in Eqs. (7.24) are not sufficient for the metric to asymptoti-
cally approach the Minkowski metric, as true Bondi-Sachs coordinates do. To bring
the partially flat Bondi-like coordinates to a true Bondi-Sachs system (up to BMS
transformations), one needs to further impose

lim
𝑟→∞

𝛽 = O(𝑟−1). (7.25)

In practice, it was found that most computations are more straightforward in partially
flat Bondi-like coordinates {𝑟, 𝑥 �̂�, �̂�} where Eq. (7.25) is not satisfied, or in Bondi-
like coordinates {𝑟, 𝑥𝐴, 𝑢} that do not satisfy Eqs. (7.24); we transform into true
Bondi-Sachs coordinates only when necessary for computing waveform quantities
at future null infinity [10, 11]. See Fig. 7.1 (and also Table I of [10]) for the various
coordinate systems used in CCE and CCM.

Following the algorithm outlined in Refs. [10, 11], the characteristic system needs
to take boundary data on a time-like worldtube from the inner Cauchy system.
Therefore, one has to perform gauge transformations to convert the Cauchy 3 + 1
metric in Eq. (7.1) to the Bondi-Sachs metric in Eq. (7.22). The procedure involves
three steps, and we summarize them in Fig. 7.1. First, the space-like foliation of
Eq. (7.1) is converted to null foliation. To achieve the goal, one needs to construct
a class of null vectors 𝜕𝜆 at the worldtube surface.

(
𝜕𝜆

)𝑎
= 𝛿

𝑎

𝑎′
𝑛𝑎
′ + 𝑠𝑎′

𝛼 − 𝛾𝑖′ 𝑗 ′𝛽𝑖′𝑠 𝑗 ′
, (7.26)

where 𝜆 is an affine parameter, 𝑎′ and 𝑎 are abstract indices, the unit vector 𝑠𝑎′ is
defined in Eq. (7.5), and 𝑛𝑎′ still stands for the normal vector of the time slice. A
new null coordinate system {𝑢, 𝜆, 𝑥𝐴} is introduced, and quantities are transformed
into this coordinate system.

The second step is to transform the null-radius coordinates to so-called Bondi-like
coordinates {𝑢, 𝑟, 𝑥𝐴} by imposing the gauge condition in Eq. (7.23). At this stage,
the metric is brought into Bondi-Sachs form

𝑑𝑠2 = −
(
𝑒2𝛽𝑉

𝑟
− 𝑟2ℎ𝐴𝐵𝑈

𝐴𝑈𝐵

)
𝑑𝑢2 − 2𝑒2𝛽𝑑𝑢𝑑𝑟 − 2𝑟2ℎ𝐴𝐵𝑈

𝐵𝑑𝑢𝑑𝑥𝐴 + 𝑟2ℎ𝐴𝐵𝑑𝑥
𝐴𝑑𝑥𝐵.

(7.27)
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The coordinates still differ from the partially flat Bondi-like coordinates because the
falloff rates in Eqs. (7.24) are now relaxed to

lim
𝑟→∞

𝑊 = O(𝑟0), (7.28a)

lim
𝑟→∞

𝑈𝐴 = O(𝑟0), (7.28b)

lim
𝑟→∞

ℎ𝐴𝐵 = O(𝑟0). (7.28c)

Finally, the Bondi-like coordinates are transformed to the partially-flat Bondi-like
coordinates {𝑟, 𝑥 �̂�, �̂�} by removing the asymptotic value of𝑈𝐴 at null infinity,𝑈 (0)𝐴.
Here we define𝑈 (0)𝐴 by

𝑈𝐴 = 𝑈 (0)𝐴 + O(𝑟−1). (7.29)

Once the worldtube quantities have been computed in partially flat Bondi-like co-
ordinates, these worldtube quantities serve as inner boundary conditions for a set of
hierarchichal radial hypersurface equations [7, 63]

𝛽,𝑟 = 𝑆𝛽 (𝐽), (7.30a)

(𝑟2�̂�),𝑟 = 𝑆𝑄 (𝐽, 𝛽), (7.30b)

�̂�,𝑟 = 𝑆𝑈 (𝐽, 𝛽, �̂�), (7.30c)

(𝑟2�̂�),𝑟 = 𝑆𝑊 (𝐽, 𝛽, �̂�, �̂�), (7.30d)

(𝑟�̂�),𝑟 + 𝐿𝐻 (𝐽, 𝛽, �̂�, �̂�, �̂�)�̂� + 𝐿 ¯̂𝐻 (𝐽, 𝛽, �̂�, �̂�, �̂�)
¯̂𝐻 = 𝑆𝐻 (𝐽, 𝛽, �̂�, �̂�, �̂�),

(7.30e)

that are solved along a surface of constant null coordinate �̂� that extends from
the worldtube to future null infinity. The expressions for the source functions in
Eq. (7.30) can be found in Refs. [7, 63]. Here the quantities determined by Eqs. (7.30)
are components of the spacetime metric, which are written as a set of spin-weighted
scalars defined by4

�̂� ≡ �̂� �̂�𝑞 �̂�, (7.31a)

�̂� ≡ 𝑟2𝑒−2𝛽𝑞 �̂� ℎ̂ �̂��̂�𝜕𝑟�̂�
�̂�, (7.31b)

𝐽 ≡ 1
2
𝑞 �̂�𝑞 �̂� ℎ̂ �̂��̂�, (7.31c)

�̂� ≡ 1
2
𝑞 �̂�𝑞 �̂� ℎ̂ �̂��̂� =

√︃
1 + 𝐽 ¯̂𝐽, (7.31d)

4We note that there is a typo in Eq. (10e) of Ref. [10]; the correct expression is given in
Eq. (7.31d).
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�̂� = 𝜕�̂�𝐽, (7.31e)

where the complex dyad is defined as

𝑞 �̂�𝜕�̂� = −𝜕𝜃 −
𝑖

sin 𝜃
𝜕𝜙, (7.32a)

𝑞 �̂�𝑑𝑥
�̂� = −𝑑𝜃 − 𝑖 sin 𝜃𝑑𝜙. (7.32b)

The complex dyad obeys the identity

𝑞 �̂�𝑞 �̂� = 0, 𝑞 �̂�𝑞 �̂� = 2, (7.33)

and the unit sphere metric 𝑞 �̂��̂� can be written as

𝑞 �̂��̂� =
1
2
(𝑞 �̂�𝑞 �̂� + 𝑞 �̂�𝑞 �̂�). (7.34)

The final step in the characteristic evolution is to time-evolve the quantity 𝐽 from one
null surface �̂� to the next null surface �̂� + 𝛿�̂�. This is accomplished by integrating
𝐽 forward in �̂� using Eq. (7.31e); the quantity �̂� is known on the entire null
hypersurface from the solution of Eq. (7.30e). The time evolution is described in
detail in [10, 11] and is identical for CCM versus CCE.

Having determined all the metric components with the CCE algorithm, we can
now compute Weyl scalars. For CCM, we need the Weyl scalar 𝜓0 in the exterior
region, which will be used in the outer-boundary condition for the interior Cauchy
system. To assemble 𝜓0 from the metric components, we adopt the tetrad provided
by Ref. [10]

𝑚𝜇 = − 1
√

2𝑟

(√︂
𝐾 + 1

2
𝑞𝜇 − 𝐽√︁

2(1 + 𝐾)
𝑞𝜇

)
, (7.35a)

𝑘𝜇 =
√

2𝑒−2𝛽
[
𝛿
𝜇
𝑢 −

𝑉

2𝑟
𝛿
𝜇
𝑟 +

1
2
�̄�𝑞𝜇 + 1

2
𝑈𝑞𝜇

]
, (7.35b)

𝑙𝜇 =
1
√

2
𝛿
𝜇
𝑟 . (7.35c)

Note that these tetrad vectors are constructed with the Bondi-like coordinates, of
which the partially flat Bondi-like coordinates are subclasses. Therefore, Eqs. (7.35)
can be applied directly to the partially flat Bondi-like coordinates as long as all
variables are replaced by their partially flat Bondi-like counterparts.

In addition, a full expression of the Bondi-like 𝜓0 in terms of Bondi quantities can
be written as [10]

𝜓0 =

(
𝑟𝜕𝑟𝛽 − 1

4𝐾𝑟

) [
(1 + 𝐾)𝜕𝑟𝐽 −

𝐽2𝜕𝑟𝐽

1 + 𝐾

]
+ 𝐽 (1 + 𝐾

2)𝜕𝑟𝐽𝜕𝑟𝐽
8𝐾3
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+ 1
8𝐾

[
𝐽2𝜕2

𝑟 𝐽

1 + 𝐾 − (1 + 𝐾)𝜕
2
𝑟 𝐽

]
− 𝐽𝐽

2(𝜕𝑟𝐽)2 + 𝐽3(𝜕𝑟𝐽)2
16𝐾3 . (7.36)

Similarly, Eq. (7.36) is also applicable to the partially-flat-Bondi-like �̂�0 when the
Bondi quantities are evaluated with the partially flat Bondi-like coordinates.

7.4 Matching characteristic and Cauchy systems
We are now in a position to accomplish Cauchy-characteristic matching. The goal
is to use the Weyl scalar 𝜓0 obtained with the characteristic system to compute
the boundary value 𝑤−

𝜌′𝜏′

���
BC

that goes into the physical boundary condition of the

Cauchy system [Eq. (7.13)]. This is done by evaluating 𝑤−
𝜌′𝜏′

���
BC

by inserting CCE’s
𝜓0 into Eq. (7.17). Notice that the tetrad adopted by the characteristic system in
Eqs. (7.35) differs from the one used by Cauchy evolution in Eqs. (7.20), so we
need to perform Lorentz transformations to obtain (a) the Cauchy Weyl scalar 𝜓′0
[defined in Eq. (7.19)] and (b) the null covariant vector 𝑚𝜇′ in Eq. (7.17). Neces-
sary ingredients for the Lorentz transformations involve a set of Jacobian matrices
across different coordinate systems. So in Sec. 7.4.1 we first work out the explicit
expressions for these Jacobians, and then in Secs. 7.4.2 and 7.4.3 we carry out the
transformations. Notice that the evaluation of 𝜓0 with the characteristic system
[Eq. (7.36)] could be done in either the Bondi-like coordinates or the partially flat
Bondi-like coordinates, and different choices lead to different Lorentz transforma-
tions. In order to keep our discussions as general as possible, we consider both
choices in Secs. 7.4.2 and 7.4.3, respectively. The final step toward finishing the
matching is to interpolate the values of 𝜓′0 and 𝑚𝜇′ from the characteristic grid to
the Cauchy grid. This is done in Sec. 7.4.4. Figure 7.2 summarizes the matching
procedures.

7.4.1 Jacobians for CCM
As outlined in Sec. 7.3 and summarized in Fig. 7.1, two intermediate coordinate
systems are introduced to convert the worldtube data from the Cauchy coordinates
to the partially flat Bondi-like coordinates. Below, we provide the definition of these
transformations and their Jacobians.

7.4.1.1 Cauchy and null-radius coordinates

The null-radius coordinates consist of {𝑢, 𝜆, 𝑥𝐴}, where 𝜆 is the affine parameter of
the null vector in Eq. (7.26). Meanwhile, the time and angular coordinates are the
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Sec. IV B 1 
Type I Lorentz transformation 

 m ̂μ ( ̂x ̂A) → mμ′ 
( ̂x ̂A)

Choice 1 (Sec. IV B) 
Partially flat Bondi-like coordinates  Cauchy coordinates→

w−
a′ b′ = 2(ψ′ 0m̄a′ m̄b′ + ψ̄′ 0ma′ mb′ )

w−
μ′ ν′ 

(x′ A′ ) = 2(ψ′ 0 m̄μ′ 
m̄ν′ 

+ ψ̄′ 0 mμ′ 
mν′ 

)

Interpolation to  
Cauchy coordinates

Sec. IV B 2 
Type II Lorentz transformation 

 ψ̂0 ( ̂x ̂A) → ψ′ 0 ( ̂x ̂A)

Interpolation to  
Cauchy coordinates

mμ′ 
(x′ A′ )

ψ′ 0 (x′ A′ )

Sec. IV C 1 
No transformation needed 

 mμ (xA) → mμ′ 
(xA)

Choice 2 (Sec. IV C) 
Bondi-like coordinates  Cauchy coordinates→

w−
a′ b′ = 2(ψ′ 0m̄a′ m̄b′ + ψ̄′ 0ma′ mb′ )

w−
μ′ ν′ 

(x′ A′ ) = 2(ψ′ 0 m̄μ′ 
m̄ν′ 

+ ψ̄′ 0 mμ′ 
mν′ 

)

Interpolation to  
Cauchy coordinates

Sec. IV C 2 
Type II Lorentz transformation 

 ψ0 (xA) → ψ′ 0 (xA)

Interpolation to  
Cauchy coordinates

mμ′ 
(x′ A′ )

ψ′ 0 (x′ A′ )

Figure 7.2: Summary of the matching procedures discussed in Sec. 7.4. Since
one can compute the relevant characteristic quantities in either the partially flat
Bondi-like coordinates {𝑟, 𝑥 �̂�, �̂�} (top), or in the Bondi-like coordinates {𝑟, 𝑥𝐴, 𝑢}
(bottom), there are two choices to perform the matching. In practice, Choice 2 is
preferred since it is easier to implement.

same as the Cauchy coordinates:
𝑢 = 𝑡′,

𝑥𝐴 = 𝛿
𝐴

𝐴′𝑥
′ 𝐴′ ,

𝜆 = 𝜆(𝑡′, 𝑟′).

(7.37)



331

Consequently, the metric components in the null-radius coordinates are [10]

𝑔𝜆𝑢 = −1, 𝑔𝜆𝜆 = 0, 𝑔𝜆𝐴 = 0, 𝑔𝑢𝑢 = 𝑔𝑡′𝑡′ ,

𝑔𝑢𝐴 = 𝛿𝐴
′

𝐴 𝑔𝑡′𝐴′ , 𝑔𝐴𝐵 = 𝛿𝐴
′

𝐴 𝛿
𝐵′
𝐵 𝑔𝐴′𝐵′ . (7.38)

Eqs. (7.38) lead to the Jacobian between two coordinate systems:

𝜕 (𝑡′, 𝑟′, 𝑥′ 𝐴′)
𝜕 (𝑢, 𝜆, 𝑥𝐴)

=

©«
1 𝜕𝜆𝑡

′ 0
0 𝜕𝜆𝑟

′ 0
0 0 𝛿𝐴

′

𝐴

ª®®®¬ . (7.39)

7.4.1.2 Null-radius and Bondi-like coordinates

To bring the null-radius coordinates to Bondi-like coordinates, one needs to impose
the gauge condition in Eq. (7.23) and define the Bondi-like radius:

𝑟 =

[det(𝑔𝐴𝐵)
det(𝑞𝐴𝐵)

]1/4
. (7.40)

Then the Bondi-like coordinates {𝑢, 𝑟, 𝑥𝐴} can be written as
𝑢 = 𝑢,

𝑥𝐴 = 𝛿𝐴
𝐴
𝑥𝐴,

𝑟 = 𝑟 (𝑢, 𝜆, 𝑥𝐴).

(7.41)

Eqs. (7.41) result in the Jocobian

𝜕 (𝑢, 𝑟, 𝑥𝐴)
𝜕 (𝑢, 𝜆, 𝑥𝐴)

=

©«
1 0 0
𝜕𝑢𝑟 𝜕𝜆𝑟 𝜕𝐴𝑟

0 0 𝛿𝐴
𝐴

ª®®®¬ , (7.42)

and its inverse

𝜕 (𝑢, 𝜆, 𝑥𝐴)
𝜕 (𝑢, 𝑟, 𝑥𝐴)

=

©«
1 0 0

−𝜕𝑢𝑟/𝜕𝜆𝑟 (𝜕𝜆𝑟)−1 −𝛿𝐴
𝐴
𝜕𝐴𝑟/𝜕𝜆𝑟

0 0 𝛿
𝐴

𝐴

ª®®®¬ . (7.43)

7.4.1.3 Bondi-like and partially flat Bondi-like coordinates

One difference between these two coordinate systems is that the quantity𝑈𝐴 is finite
at future null infinity, but the quantity �̂� �̂� vanishes. To remove the asymptotically
constant part of𝑈𝐴, the angular coordinates 𝑥 �̂� must satisfy

𝜕𝑢𝑥
�̂� = −𝜕𝐴𝑥 �̂�𝑈 (0)𝐴, (7.44)
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where 𝑈 (0)𝐴 is defined by Eq. (7.29). The Bondi-like radius 𝑟 also needs to be
adjusted accordingly to meet the gauge condition in Eq. (7.23). Finally, the time
coordinate �̂� = 𝑢 remains unchanged. In summary, the transformation is given by

�̂� = 𝑢,

𝑥 �̂� = 𝑥 �̂� (𝑢, 𝑥𝐴),

𝑟 = 𝑟�̂�(𝑢, 𝑥𝐴),

(7.45)

where �̂�(𝑢, 𝑥𝐴) is a conformal factor

�̂� =
1
2

√︃
�̂�

¯̂
𝑏 − �̂� ¯̂𝑎, (7.46)

and two spin-weighted Jacobian factors �̂� and �̂� are given by

�̂� = 𝑞 �̂�𝜕�̂�𝑥
𝐴𝑞𝐴, (spin-weight 2) (7.47)

�̂� = ¯̂𝑞 �̂�𝜕�̂�𝑥
𝐴𝑞𝐴. (spin-weight 0) (7.48)

Since {𝑞𝐴, 𝑞𝐴} ({𝑞 �̂�, ¯̂𝑞 �̂�}) form a complete basis for the angular subspace spanned
by {𝑥𝐴} ({𝑥 �̂�}), we can expand 𝜕�̂�𝑥

𝐴 into5

𝜕�̂�𝑥
𝐴 =

1
4

(
𝑞 �̂�,

¯̂𝑞 �̂�
) (

¯̂𝑎 ¯̂
𝑏

�̂� �̂�

) (
𝑞𝐴

𝑞𝐴

)
, (7.49)

where the expression is written in terms of matrix products. Note that the determi-
nant of the middle 2× 2 matrix (together with the factor of 1/4) is equal to −�̂�2 [see
Eq. (7.46)]. In practice, we find it is also convenient to define spin-weighted factors
that are related to the inverse of the Jacobian:

𝑎 = 𝑞𝐴𝜕𝐴𝑥
�̂�𝑞 �̂�, (spin-weight 2) (7.50)

𝑏 = 𝑞𝐴𝜕𝐴𝑥
�̂�𝑞 �̂�, (spin-weight 0) (7.51)

as well as the conformal factor 𝜔(�̂�, 𝑥 �̂�) associated with them

𝜔 =
1
2

√︁
𝑏�̄� − 𝑎�̄�. (7.52)

Similarly, the counterpart of Eq. (7.49) reads

𝜕𝐴𝑥
�̂� =

1
4

(
𝑞𝐴, 𝑞𝐴

) (
�̄� �̄�

𝑏 𝑎

) (
𝑞 �̂�

¯̂𝑞 �̂�

)
. (7.53)

5To obtain Eq. (7.49), one can exhaust all the possible linear combinations formed by the two
bases {𝑞 �̂�, ¯̂𝑞 �̂�} and {𝑞𝐴, 𝑞𝐴}, and then determine the coefficients uniquely via Eqs. (7.33), (7.47)
and (7.48).
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At the same spacetime point, the identity 𝜕�̂�𝑥
𝐴𝜕𝐴𝑥

�̂� = 𝛿�̂�
�̂�

leads to

𝑎 = − �̂�
�̂�2 , 𝑏 =

¯̂
𝑏

�̂�2 . (7.54)

Plugging Eq. (7.54) into Eq. (7.52) we obtain another identity

𝜔�̂� = 1. (7.55)

We then use Eq. (7.45) to get the Jacobian between the Bondi-like and the partially
flat Bondi-like coordinates

𝜕 (𝑟, 𝑥 �̂�, �̂�)
𝜕 (𝑟, 𝑥𝐴, 𝑢)

=
©«
�̂� 𝑟𝜕𝐴�̂� 𝑟𝜕𝑢�̂�

0 𝜕𝐴𝑥
�̂� 𝜕𝑢𝑥

�̂�

0 0 1

ª®®¬ . (7.56)

Its inverse reads

𝜕 (𝑟, 𝑥𝐴, 𝑢)
𝜕 (𝑟, 𝑥 �̂�, �̂�)

=

©«
𝜔 𝑟𝛿𝐴

�̂�
𝜕𝐴 ln𝜔 𝑟𝜕𝑢 ln𝜔 + 𝑟𝑈 (0)𝐴𝜕𝐴 ln𝜔

0 𝜕�̂�𝑥
𝐴 𝑈 (0)𝐴

0 0 1

ª®®®¬ , (7.57)

where we have used Eq. (7.44) to simplify the result.

7.4.2 Choice 1: Transforming 𝑚 �̂� and �̂�0 to the Cauchy tetrad
We first consider Choice 1, as summarized in Fig. 7.2, where the tetrad vector 𝑚 �̂�

and the Weyl scalar �̂�0 are evaluated in the partially flat Bondi-like coordinates,
using Eqs. (7.35a) and (7.36). Before transforming them into the Cauchy tetrad, we
first observe a useful and important fact: The CCE outgoing null tetrad vector 𝑙 �̂� at
the worldtube surface, as defined in Eq. (7.35c), is by construction proportional to
that of the Cauchy system 𝑙𝑎

′ , defined in Eq. (7.20a). Again, here �̂� and 𝑎′ stand for
abstract indices. To see this, we write

𝑙 �̂� =
1
√

2
(𝜕𝑟) �̂� =

1
√

2
(
𝜕𝜆𝑟

)−1
𝛿�̂�𝑎

(
𝜕𝜆

)𝑎
=

1
√

2
𝑒2𝛽𝛿�̂�𝑎

(
𝜕𝜆

)𝑎
, (7.58)

where the first equality comes from Eq. (7.35c), the second equality is due to the
combination of the Jacobian matrices in Eq. (7.43) and (7.57), and the final equality
is based on a relationship [see Eqs. (19a) and (33a) of Ref. [10]]

𝛽 = −1
2

ln(𝜕𝜆𝑟). (7.59)
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On the other hand, the null vector
(
𝜕𝜆

)𝑎 in Eq. (7.58) is proportional to the Cauchy
outgoing null vector 𝑙𝑎′ needed by the boundary condition [see Eqs. (7.26) and
(7.20a)], but with a different normalization. After combining Eq. (7.58) with (7.26)
and (7.20a), we obtain:

𝑙𝑎
′
= (𝛼 − 𝛾𝑖′ 𝑗 ′𝛽𝑖

′
𝑠 𝑗
′)𝑒−2𝛽𝑙 �̂�𝛿𝑎

′

�̂� . (7.60)

Therefore, the statement 𝑙𝑎′ ∝ 𝑙 �̂� is proven. Under this constraint, the allowed
Lorentz transformation between the characteristic and Cauchy tetrads can be split
into two categories:

• Type I: (l unchanged)

l→ l, k→ k + 𝜅m + 𝜅m̄ + 𝜅𝜅l,
m→m + 𝜅l, m̄→ m̄ + 𝜅l. (7.61)

• Type II: (both l and k changed)

l→ 𝐴l, k→ 𝐴−1k,

m→ 𝑒𝑖Θm, m̄→ 𝑒−𝑖Θm̄, (7.62)

where the complex scalar 𝜅 has a spin weight 1, 𝐴 and Θ are real scalars. The Weyl
scalar �̂�0 transforms correspondingly:

• Type I:

�̂�0 → �̂�0. (7.63)

• Type II:

�̂�0 → 𝐴2𝑒2𝑖Θ�̂�0. (7.64)

Notice that �̂�0 is not mixed with other Weyl scalars. In particular, it remains un-
changed within the Type I category. Below we will take advantage of this observation
to simplify the calculation.

As summarized in Fig. 7.2, for Choice 1, we need to transform both 𝑚 �̂� and �̂�0 to
the Cauchy tetrad in order to evaluate the inward propagating components of the
Weyl tensor 𝑤−

𝜌′𝜏′

���
BC

[Eq. (7.17)] in the correct tetrad. We treat the transformation
of 𝑚 �̂� and �̂�0 separately in the two following sections.
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7.4.2.1 Type I transformation of 𝑚 �̂�

CCE’s𝑚 �̂� [Eq. (7.35a)] is not aligned with Cauchy’s [Eq. (7.21)]. This is because our
choice of the ingoing null vector 𝑘𝜇 for the characteristic system [Eq. (7.35b)] is not
the same as 𝑘𝜇′ used in the Bjørhus boundary condition, which is defined uniquely
by Eq. (7.20b). To transform the characteristic vectorm to the corresponding choice
in the Cauchy boundary condition, it suffices to add some multiple of the outgoing
null vector l to m; thus we need to perform a type I transformation. We want to
emphasize that the value of �̂�0 is not impacted by a type I transformation, so when
performing such a transformation it is not necessary to keep track of the explicit
Lorentz parameter [namely 𝜅 in Eq. (7.61)] that was used in the transformation.
Accordingly, in some vector expressions below we will simply drop terms that are
proportional to the outgoing null vector l, when such terms can be removed by
making a type I transformation; when this is done we will indicate that such terms
have been dropped by a type I transformation by using the symbol ≈ instead of =.

We first convert the contravariant vector 𝑚 �̂� in Eq. (7.35a) to its covariant form

𝑚 �̂� = −
𝑟
√

2
©«
√︄
�̂� + 1

2
𝑞 �̂� +

𝐽√︁
2(1 + �̂�)

𝑞 �̂�
ª®¬ , (7.65)

where the expression for 𝑞 �̂� can be found in Eq. (7.32b). By combining Jacobians
in Eqs. (7.39), (7.42) and (7.56), we obtain a relationship

𝑑𝑥 �̂� = (𝜕𝐴𝑥 �̂�)𝑑𝑥′ 𝐴
′
𝛿𝐴𝐴′ + (𝜕𝑢𝑥

�̂�)𝑑𝑢. (7.66)

Since −𝑑𝑢
𝑎
= 𝑔𝑎𝑏

(
𝜕𝜆

)𝑏 is the covariant form of the outgoing null vector
(
𝜕𝜆

)𝑏 given
in Eq. (7.58), the second term in Eq. (7.66) can be removed via a type I Lorentz
transformation. We then insert Eqs. (7.66) and (7.53) into Eq. (7.32), which yields

𝑞 �̂� ≈
1
2
𝑎𝛿

𝜇′

�̂�
𝑞𝜇′ +

1
2
𝑏𝛿

𝜇′

�̂�
𝑞𝜇′ , (7.67)

where ≈ implies that a type I Lorentz transformation has been performed, as de-
scribed above. Plugging Eq. (7.67) into Eq. (7.65), we obtain

𝑚 �̂� ≈ −
𝑟𝛿

𝜇′

�̂�√
2

©«
√︄
�̂� + 1

2
1
2
𝑎 + 𝐽√︁

2(1 + �̂�)
1
2
�̄�
ª®¬ 𝑞𝜇′

+ ©«
√︄
�̂� + 1

2
1
2
𝑏 + 𝐽√︁

2(1 + �̂�)
1
2
�̄�
ª®¬ 𝑞𝜇′

 . (7.68)
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Or equivalently

𝑚 �̂� ≈ 𝛿𝜇
′

�̂�
𝑚𝜇′ , (7.69)

with 𝑚𝜇′ being the components of a new covariant vector 𝑚𝑎′

𝑚𝑎′ = �̂�𝜃′ (𝑑𝜃′)𝑎′ + 𝑖�̂�𝜙′ sin 𝜃′ (𝑑𝜙′)𝑎′ , (7.70)

and

4/𝑟 �̂�𝜃′ = (𝑎 + 𝑏)
√︁
�̂� + 1 + (�̄� + �̄�) 𝐽√︁

(1 + �̂�)
, (7.71)

4/𝑟 �̂�𝜙′ = (𝑏 − 𝑎)
√︁
�̂� + 1 + ( ¯̂𝑎 − �̂�) 𝐽√︁

(1 + �̂�)
. (7.72)

At this stage, we have constructed a Cauchy tetrad vector𝑚𝑎′ in Eq. (7.70) that differs
from the original characteristic tetrad vector 𝑚�̂� by only a type I transformation.
Meanwhile, we can see𝑚𝑎′ has components only within the Cauchy angular subspace
{𝜃′, 𝜙′}. Therefore it meets all the requirements in Eq. (7.21), and we can insert 𝑚𝑎′
into Eq. (7.17) to evaluate 𝑤−

𝜌′𝜏′

���
BC

.

Since Cartesian coordinates are used to evolve the Cauchy system, we write down
the Cartesian components of two angular bases (𝑑𝜃′)𝑎′ and (𝑑𝜙′)𝑎′ for completeness

(𝑑𝜃′)𝑎′ =
1
𝑅′wt
(cos 𝜙′ cos 𝜃′, sin 𝜙′ cos 𝜃′,− sin 𝜃′) , (7.73)

sin 𝜃′ (𝑑𝜙′)𝑎′ =
1
𝑅′wt
(− sin 𝜙′, cos 𝜙′, 0) . (7.74)

7.4.2.2 Type II transformation of �̂�0

Eq. (7.60) indicates that two outgoing null vectors 𝑙𝑎′ and 𝑙 �̂� are related by a Type II
transformation [Eq. (7.62)], with the Lorentz parameter �̂� given by

�̂� = (𝛼 − 𝛾𝑖′ 𝑗 ′𝛽𝑖
′
𝑠 𝑗
′)𝑒−2𝛽, (7.75)

which leads to

𝜓′0 = �̂�2�̂�0. (7.76)

On the other hand, there is one more gauge freedom: the rotation of m with
a phase factor 𝑒𝑖Θ. However, the combination 𝜓′0�̄�𝜌′�̄�𝜏′ that appears in 𝑤−

𝜌′𝜏′

[Eq. (7.17)] is invariant because𝜓′0 is also transformed accordingly due to Eq. (7.64).
Physically speaking, the incoming characteristics 𝑤−

𝜌′𝜏′ do not depend on the choice
of the angular tetrad vector. Therefore, we can neglect this gauge freedom while
performing the matching.
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7.4.3 Choice 2: Transforming 𝑚𝜇 and 𝜓0 to the Cauchy tetrad
Then we consider Choice 2, where the characteristic quantities 𝑚𝜇 and 𝜓0 are
evaluated in the Bondi-like coordinates. Similar to Sec. 7.4.2, below we treat the
transformation of 𝑚𝜇 and 𝜓0 separately.

7.4.3.1 𝑚𝜇 fulfills the requirements

The Bondi-like covariant vector 𝑚𝜇 reads6

𝑚𝜇 = −
𝑟
√

2

(√︂
𝐾 + 1

2
𝑞𝜇 +

𝐽√︁
2(1 + 𝐾)

𝑞𝜇

)
. (7.77)

By combining Jacobians in Eqs. (7.39) and (7.42), we obtain

𝑑𝑥𝐴 = 𝛿𝐴𝐴′𝑑𝑥
′ 𝐴′ , (7.78)

which yields

𝑚𝜇 = 𝛿
𝜇′
𝜇 𝑚𝜇′ , (7.79)

with 𝑚𝜇′ being the components of the vector 𝑚𝑎′

𝑚𝑎′ = 𝑀𝜃′ (𝑑𝜃′)𝑎′ + 𝑖𝑀𝜙′ sin 𝜃′ (𝑑𝜙′)𝑎′ , (7.80)

and

2/𝑟𝑀𝜃′ =
√
𝐾 + 1 + 𝐽√︁

(1 + 𝐾)
, (7.81)

2/𝑟𝑀𝜙′ =
√
𝐾 + 1 − 𝐽√︁

(1 + 𝐾)
. (7.82)

We remark that the null vector 𝑚𝜇′ , which is identical to 𝑚𝜇, is already in the
Cauchy angular subspace {𝜃′, 𝜙′}, as required by the Cauchy boundary condition in
Eq. (7.21), so we do not need to perform any Lorentz transformation.

In practice, the characteristic system is evolved with the partially flat Bondi-like
coordinates, as summarized in Fig. 7.1. Therefore, we need to transform the Bondi
quantities 𝐽 and �̂� [Eq. (7.31)] to the Bondi-like coordinates via [10]

𝐽 =
�̄�2𝐽 + 𝑎2 ¯̂𝐽 + 2𝑎�̄��̂�

4𝜔2 , (7.83)

𝐾 =
√︁

1 + 𝐽𝐽, (7.84)

and then insert the results into Eq. (7.80) to construct the tetrad vector 𝑚𝜇′ for
matching.

6Eq. (7.77) is the same as Eq. (7.65) except that all the hatted quantities in Eq. (7.65) are replaced
by their unhatted counterparts.
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7.4.3.2 Type II transformation of 𝜓0

In the meantime, after obtaining 𝐽 and 𝐾 from Eqs. (7.83) and (7.84), we can
evaluate 𝜓0 with Eq. (7.36). Similar to the previous discussion, the two outgoing
null vectors 𝑙𝜇′ and 𝑙𝜇 are related by a Type II transformation, and the corresponding
Lorentz parameter 𝐴 reads

𝐴 = (𝛼 − 𝛾𝑖′ 𝑗 ′𝛽𝑖
′
𝑠 𝑗
′)𝑒−2𝛽. (7.85)

Consequently, the desired 𝜓′0 is given by

𝜓′0 = 𝐴2𝜓0. (7.86)

7.4.4 Interpolating to the Cauchy coordinates
Now we have obtained the desired tetrad vector𝑚𝜇′ and the Weyl scalar 𝜓′0. But they
are still evaluated on the partially flat Bondi-like grid for both choices7. The final
step to complete the matching is to interpolate the results to the Cauchy grid. More
specifically, since the matching is performed at a 2D spherical surface, we need to
construct a map from the partially flat Bondi-like angular coordinates 𝑥 �̂� = {𝜃, 𝜙}
to the Cauchy angular coordinates 𝑥′ 𝐴′ = (𝜃′, 𝜙′) for each time step of simulations.
Recall from Fig. 7.1 that the Bondi-like angular coordinates 𝑥𝐴 are constructed to
be the same as 𝑥′ 𝐴′ , therefore the task is equivalent to constructing the dependence
of 𝑥𝐴 on 𝑥 �̂�.

The inverse problem, namely 𝑥 �̂� as functions of 𝑥𝐴, has been worked out while
we are constructing the worldtube data for the characteristic system [10, 11]—the
partially flat Bondi-like angular coordinates 𝑥 �̂� are evolved with respect to Bondi-like
angular coordinates 𝑥𝐴 using Eq. (7.44). In principle, one can invert the dependence
numerically to fulfill our purpose, but the process might be numerically expensive.
A cheaper way is to evolve 𝑥𝐴 as functions of 𝑥 �̂� simultaneously. The counterpart
of Eq. (7.44) for the evolution of 𝑥𝐴 can be read off directly from the Jacobian in
Eq. (7.57):

𝜕�̂�𝑥
𝐴 = 𝑈 (0)𝐴. (7.87)

In practice, we find it is more convenient to convert 𝑥𝐴 to Cartesian coordinates 𝑥𝑖

on a unit sphere,

𝑥𝑖 = (sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃) , (7.88)
7For Choice 2, the Bondi-like 𝐽 and 𝐾 obtained from Eqs. (7.83) and (7.84), as well as the Weyl

scalar 𝜓0 built upon them, are functions of the partially flat Bondi-like coordinates, rather than the
Bondi-like coordinates.
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since the spin-weight of 𝑥𝑖 is 0 and we can make use of the spin-weighted derivatives
[110]

ð𝑥𝑖 = 𝑞𝐵𝐷𝐵𝑥
𝑖, ð̄𝑥𝑖 = 𝑞𝐵𝐷𝐵𝑥

𝑖, (7.89)

where 𝐷𝐴 denotes the covariant derivative associated with the metric 𝑞𝐴𝐵 =

1/2(𝑞𝐴𝑞𝐵 + 𝑞𝐴𝑞𝐵). Then Eq. (7.87) can be written as

𝜕�̂�𝑥
𝑖 =

1
2
Û (0) ð̄𝑥𝑖 + 1

2
¯̂U (0)ð𝑥𝑖, (7.90)

where we have introduced an auxiliary variableU (0) �̂� such that

U (0) �̂�𝜕�̂�𝑥
𝐵 = 𝑈 (0)𝐵, (7.91)

U (0) = U (0) �̂�𝑞 �̂�. (7.92)

The two equations above imply

U (0) = 1
2�̂�2

(
ˆ̄𝑏𝑈 (0) − �̂��̄� (0)

)
, (7.93)

and its inverse

𝑈 (0) =
1

2𝜔2

(
�̄�U (0) − 𝑎Ū (0)

)
. (7.94)

For completeness, we also cast Eq. (7.44) into its Cartesian version

𝜕𝑢𝑥
𝑖 = −1

2
𝑈 (0) ð̄𝑥𝑖 − 1

2
�̄� (0)ð𝑥𝑖 . (7.95)

After solving the map 𝑥𝐴 (�̂�, 𝑥 �̂�) numerically from Eq. (7.87) and (7.90), we can
adopt the spin-weighted Clenshaw algorithm [11] to perform the angular interpo-
lation of 𝑚𝜇′ and 𝜓′0 to the Cauchy grid; and assemble them into the incoming
characteristics 𝑤−

𝜇′𝜈′ using Eq. (7.17).

7.5 Numerical tests
In this section, we use two systems to test our CCM algorithm. We first consider
a gravitational Teukolsky wave [100] propagating on a flat background nonlinearly
in Sec. 7.5.1, where the wave packet is initially on the Cauchy grid. This test
demonstrates how CCM improves the accuracy of Cauchy boundary conditions.
Next in Sec. 7.5.2, we initialize a GW pulse on the characteristic grid and inject
it into the Cauchy domain, whose results illustrate that the interface between the
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Inner Boundary

r′ in = 1.9

Outer Boundary (reference)

r′ ref = 200

Outer Boundary (small)

r′ out = 41

Worldtube

r′ c = 20

The characteristic grid

The Cauchy grid

Figure 7.3: The propagation of an outgoing Teukolsky wave on a flat background,
and the corresponding numerical setup. The horizontal black line stands for the
radial direction of the spatial domain for the Cauchy grid. The initial center of the
Teukolsky wave is at 𝑟′𝑐 = 20, with a width of 𝜏 = 2. The radius of the inner boundary
𝑟′in is always set to 1.9 to avoid the divergence at 𝑟′ = 0. The outer boundary is placed
at 𝑟′out = 41. We evolve the system with both CCE and CCM. As for the reference
solution, we put its outer boundary 𝑟′ref at 200 so that it is causally disconnected from
the system throughout the entire simulation. The worldtube (vertical blue dashed
line) is always at 𝑟′wt = 41 for wave extraction.

Cauchy and the characteristic systems is transparent to GWs and spurious reflection
is reduced.

Throughout the simulations, we focus on the Choice 2 approach provided in
Sec. 7.4.3, because it involves only one Lorentz transformation, which makes it
easier to implement and for future code development.

7.5.1 A Teukolsky wave propagating on a flat background
Following the tests in Refs. [9, 11], we consider a Teukolsky wave [100] propagating
on a flat background. The initial data of the Cauchy system are constructed non-
linearly based on the Extended Conformal Thin Sandwich formulation [111, 112].
Afterward, the system is evolved fully nonlinearly. In the perturbative limit, the
metric reads [100]:

𝑑𝑠2 = −𝑑𝑡′2 + (1 + 𝐴 𝑓𝑟 ′𝑟 ′)𝑑𝑟′2 + 2𝐵 𝑓𝑟 ′𝜃′𝑟′𝑑𝑟′𝑑𝜃′

+ 2𝐵 𝑓𝑟 ′𝜙′𝑟′ sin 𝜃′𝑑𝑟′𝑑𝜙′ + (1 + 𝐶 𝑓 (1)
𝜃′𝜃′ + 𝐴 𝑓

(2)
𝜃′𝜃′)𝑟

′2𝑑𝜃′2

+ 2(𝐴 − 2𝐶) 𝑓𝜃′𝜙′𝑟′2 sin 𝜃′𝑑𝜃′𝑑𝜙′

+ (1 + 𝐶 𝑓 (1)
𝜙′𝜙′ + 𝐴 𝑓

(2)
𝜙′𝜙′)𝑟

′2 sin2 𝜃′𝑑𝜙′2, (7.96)

with

𝐴 = 3
[
𝐹 (2)

𝑟′3
+ 3𝐹 (1)

𝑟′4
+ 3𝐹
𝑟′5

]
, (7.97a)
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𝐵 = −
[
𝐹 (3)

𝑟′2
+ 3𝐹 (2)

𝑟′3
+ 6𝐹 (1)

𝑟′4
+ 6𝐹
𝑟′5

]
, (7.97b)

𝐶 =
1
4

[
𝐹 (4)

𝑟′
+ 2𝐹 (3)

𝑟′2
+ 9𝐹 (2)

𝑟′3
+ 21𝐹 (1)

𝑟′4
+ 21𝐹
𝑟′5

]
, (7.97c)

and

𝑓𝑟 ′𝑟 ′ = 4
√︂
𝜋

5
𝑌20(𝜃′, 𝜙′), 𝑓𝑟 ′𝜃′ = 2

√︂
𝜋

5
𝜕𝜃′𝑌20(𝜃′, 𝜙′),

𝑓𝑟 ′𝜙′ = 0, 𝑓
(2)
𝜃′𝜃′ = −1, 𝑓𝜃′𝜙′ = 0,

𝑓
(1)
𝜃′𝜃′ = 2

√︂
𝜋

5

(
𝜕2
𝜃′ − cot 𝜃′𝜕𝜃′ −

𝜕2
𝜙′

sin2 𝜃′

)
𝑌20(𝜃′, 𝜙′),

𝑓
(1)
𝜙′𝜙′ = − 𝑓

(1)
𝜃′𝜃′ , 𝑓

(2)
𝜙′𝜙′ = 1 − 𝑓𝑟 ′𝑟 ′ . (7.98)

We are free to specify the form of 𝐹 (𝑢′) in Eq. (7.97). Here we consider an outgoing
Gaussian pulse:

𝐹 (𝑢′) = 𝑋𝑒−
(𝑢′−𝑟′𝑐 )2

𝜏2 , (7.99)

where 𝑢′ = 𝑡′ − 𝑟′ is the retarded time, 𝑟′𝑐 is the initial center of the pulse at 𝑡′ = 0, 𝜏
is its width, and 𝑋 is its amplitude. We denote the 𝑛th derivative of 𝐹 (𝑢′) as

𝐹 (𝑛) ≡
[
𝑑𝑛𝐹 (𝑢′)
𝑑𝑢′𝑛

]
𝑢′=𝑡′−𝑟 ′

. (7.100)

Our numerical setup is sketched in Fig. 7.3. The Gaussian pulse initially centers at
𝑟′𝑐 = 20, with a width of 𝜏 = 2. We first simulate the system with a small Cauchy
domain—its outer grid radius 𝑟′out = 41 is small enough that the back-scattering
of GWs at the outer boundary is not negligible, which consequently makes the
improvement due to CCM resolvable by the code. The inner boundary of the
Cauchy grid is put at 𝑟′in = 1.9 to avoid the divergence of the Teukolsky wave at
𝑟′ = 0. We evolve the system with both CCE and CCM, and the time-like worldtube
is always placed at 𝑟′wt = 41, coinciding with the Cauchy boundary 𝑟′out = 41, to
avoid any potential numerical issue.

It is expected that the CCM system provides more accurate boundary conditions
at 𝑟′out to represent better the true evolution. To see this, we need to design a
third reference system whose results are not contaminated by approximations of the
numerical simulations (e.g., inaccurate boundary conditions) and can be viewed as
the exact solutions. This can be achieved differently under two separate scenarios.
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(d) 𝑟3𝜓2, (𝑙=2,𝑚=0) at ℐ+

Figure 7.4: Various waveform quantities for a Teuskolsky wave, with an amplitude of
𝑋 = 10−5. In the top panel of each subfigure, we plot the analytic results [Eq. (7.102)]
in blue, the CCE results in green, and the CCM results in red. In each bottom panel,
the difference between the waveforms is provided. The numerical error of the CCM
system is computed by taking the difference between two numerical resolutions.

First, when the amplitude of the Teukolsky wave 𝑋 is small enough, we are in
the perturbative regime, and the evolution of the Teukolsky wave is analytically
available. Therefore, we can compare the CCE and CCM simulations to the analytic
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(d) 𝑟ℎ20 at ℐ+

Figure 7.5: Continuation of Fig. 7.4. More waveforms are provided.

results in Eq. (7.96). Second, when the amplitude 𝑋 is large and nonlinear effects
cannot be neglected, we choose the reference system to be a CCE simulation with a
larger Cauchy computational domain such that its outer boundary remains casually
disconnected from the system throughout the simulation. In our case, we place its
outer boundary at 𝑟′ref = 200, as displayed in Fig. 7.3. The location of the worldtube
for CCE wave extraction is still at 𝑟′wt = 41, the same as the other two for fair
comparisons.
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Below, we consider these two scenarios, respectively. We first study the linear-
regime case by setting 𝑋 to 10−5 [9, 11]. Then we investigate the nonlinear case
with 𝑋 = 2.

7.5.1.1 𝑋 = 10−5

In Refs. [9, 11], the comparison was for the News function 𝑁20 only. For our
purposes, here we extend their studies to all the waveform quantities including the
Weyl scalars 𝜓0...4 and the strain ℎ. Using the Appendix of [100], the metric in
Eq. (7.96) leads to analytic expressions for these waveform quantities at the linear
order

𝜓0 = −
√︂

2𝜋
15

𝑌+2 20

[
(6 ¥𝐶 − 3 ¥𝐴) + 1

2
𝑟 (3𝐵 + 𝐴)

]
, (7.101a)

𝜓1 =
1
2

√︂
2𝜋
15

𝑌+1 20
[
𝑟 𝐴 + 3 ¥𝐵

]
, (7.101b)

𝜓2 = −
√︂
𝜋

5
𝑌20 ¥𝐴, (7.101c)

𝜓3 =
1
2

√︂
2𝜋
15

𝑌−1 20
[
𝑟 𝐴 − 3 ¥𝐵

]
, (7.101d)

𝜓4 =

√︂
2𝜋
15

𝑌−2 20

[
(3 ¥𝐴 − 6 ¥𝐶) + 1

2
𝑟 (3𝐵 + 𝐴)

]
, (7.101e)

𝑁 = −
√︂

2𝜋
15

𝑌−2 20

[
(3 ¤𝐴 − 6 ¤𝐶) + 1

2
𝑟 (3 ¥𝐵 + ¥𝐴)

]
, (7.101f)

ℎ = −
√︂

2𝜋
15

𝑌−2 20

[
(3𝐴 − 6𝐶) + 1

2
𝑟 (3 ¤𝐵 + ¤𝐴)

]
. (7.101g)

where (spin-weighted) spherical harmonics are given by

𝑌−2 20 = 𝑌+2 20 =
1
4

√︂
15
2𝜋

sin2 𝜃,

𝑌−1 20 = 𝑌+1 20 = −1
4

√︂
15
2𝜋

sin 2𝜃,

𝑌20 =
1
8

√︂
5
𝜋
(1 + 3 cos 2𝜃).

Eq. (7.101) simplifies at future null infinity ℐ
+ after plugging in Eq. (7.97)

𝑟ℎ|ℐ+ =
√︂

6𝜋
5
𝐹 (4) × 𝑌−2 20 , (7.102a)

𝑟𝑁 |ℐ+ =
√︂

6𝜋
5
𝐹 (5) × 𝑌−2 20 , (7.102b)
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𝑟𝜓4 |ℐ+ = −
√︂

6𝜋
5
𝐹 (6) × 𝑌−2 20 , (7.102c)

𝑟2𝜓3 |ℐ+ =
√︂

6𝜋
5
𝐹 (5) × 𝑌−1 20 , (7.102d)

𝑟3𝜓2 |ℐ+ = −
√︂

9𝜋
5
𝐹 (4) × 𝑌20, (7.102e)

𝑟4𝜓1 |ℐ+ =
√︂

27𝜋
10

𝐹 (3) × 𝑌+1 20 , (7.102f)

𝑟5𝜓0 = −
√︂

27𝜋
10

𝐹 (2) × 𝑌+2 20 . (7.102g)

In particular, the expression for𝜓0 in Eq. (7.102g) is valid across the entire spacetime.
Therefore, we can take advantage of this result to test our calculation of 𝜓′0 in
Eq. (7.17) that is sent to the Cauchy’s boundary conditions. On the other hand, we
note that 𝜓0 scales with distance as 𝑟−5; so the back-scattered wave reduces quickly
as we move away from the system.

The top panel of Fig. 7.4a displays the evolution of 𝜓′0 used for matching, evaluated
with our CCM code (in red), and the analytic expression in Eq. (7.102g) (in blue).
The difference between the CCM and the analytic results is shown as the blue curve
in the bottom panel of Fig. 7.4a, which is comparable with the numerical error of
CCM (the red dashed curve). This verifies the correctness of our calculation for 𝜓′0.
Meanwhile, the difference between the CCE and the CCM results (the green curve
in the bottom panel of Fig. 7.4a) is also on the same order as the numerical error.
This is because the size of 𝜓′0, namely the back-scattered wave, is ∼ 10−13, which
makes the matching term in the boundary condition [Eq. 7.13] negligible.

Additionally, we provide complete comparisons for𝜓0...4, 𝑁 , and ℎ in other panels of
Figs. 7.4 and 7.5. All the quantities are evaluated at future null infinity ℐ

+. We see
the numerical results agree with analytic expressions in Eq. (7.102). The difference
between CCM and CCE is also comparable to numerical error, as expected.

7.5.1.2 𝑋 = 2

We then switch our attention to nonlinear regime and set the amplitude of the
Teukolsky wave 𝑋 to 2. Figure 7.6a shows 𝜓′0 used for matching, where we can
see its evolution is highly nonlinear because it does not have oscillatory features
predicted by the linear analytic expression in Eq. (7.102g). In this scenario, the back-
scattered wave 𝜓′0 leads to a nonnegligible contribution to the Cauchy evolution, and
indeed we see the evolution of the CCM 𝜓′0 is distinguishable from that of CCE.
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(d) 𝜓1, (𝑙=2,𝑚=0) at ℐ+

Figure 7.6: (Similar to Fig. 7.4) Various waveform quantities for a Teuskolsky wave,
with an amplitude of 𝑋 = 2. The top panel of each subfigure displays the reference
results (blue), the CCE results (green), and the CCM results (red). The bottom panel
shows the difference between the waveforms.

Figures 7.6 and 7.7 display all the waveform quantities extracted at future null infinity
with CCE (green) and CCM (red). They are compared with the reference results
(blue). In the bottom panel of each subfigure, we show their difference as well as the
corresponding numerical error. We see for all the results, CCM generally provides
systematic improvements by 1-2 orders of magnitude except for 𝜓4, since it is the
least reflective and least affected by CCM. Finally, we remark that the numerical
wiggles in the reference 𝜓4 following the main peak are caused by numerical errors.
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Figure 7.7: Continuation of Fig. 7.6. More waveforms are provided.

Reducing them with higher resolutions is very computationally expensive. We leave
optimization for future work.
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7.5.2 Initializing a GW pulse on the characteristic grid
Our second test is to initialize a GW pulse on the characteristic grid and inject it into
the Cauchy domain. To do this, we adopt the following initial data for the Bondi
variable 𝐽:

𝐽 ( �̂�, 𝜃, 𝜙) =


0, �̂� ≤ �̂�min,

𝑌+2 20 (𝜃, 𝜙)J ( �̂�), �̂�min ≤ �̂� ≤ �̂�max,

0, �̂� ≥ �̂�max,

(7.103)

where �̂� = 1 − 2�̂�/𝑟, and �̂� is the partially flat Bondi-like radius of the worltube.
The spin weight of the pulse is set to 2 in order to match with that of 𝜓0. The radial
profile J (𝑦) reads

J ( �̂�) = 4𝑍
( �̂�max − �̂�) ( �̂� − �̂�min)
( �̂�max − �̂�min)2

𝑒
− ( �̂�− �̂�𝑐 )

2

𝜏2 . (7.104)

Meanwhile, the inner Cauchy domain is initialized to a flat (Minkowski) spacetime.
Figure 7.8 displays our numerical setup. The center of the pulse �̂�𝑐 is initially at
0. In addition, we choose 𝑦min = −0.8, 𝑦max = 0.8, 𝜏 = 0.15, 𝑍 = 10−3. Here, the
amplitude of the pulse 𝑍 is small enough to ensure it does not collapse into a BH.
Finally, the outer boundary of the Cauchy grid is chosen to be 100, coinciding with
the worldtube.

The Cauchy grid

The characteristic grid

Worldtube

Outer Boundary

r′ out = 100

Figure 7.8: Numerical setup of our second test, where a pulse is initialized on the
characteristic grid and is injected into the inner Cauchy region. The worldtube
locates at the outer boundary of the Cauchy grid (𝑟′out = 100).

Since the pulse is imposed on an outgoing null surface, it naturally propagates
inwards once we allow the system to evolve. By using the CCM algorithm, the
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interface between the Cauchy and the characteristic grid is transparent to this in-
coming pulse. As a result, the GW is sent to the Cauchy domain by the matching
term in the boundary condition [Eq. (7.13)]. Afterward, the pulse falls toward the
center and bounces. Finally, it leaves the inner Cauchy region and dispenses to
null infinity after the crossing time of the Cauchy domain (namely its diameter).
On the contrary, if we turn off the matching term and evolve the system with the
standard CCE algorithm, the worldtube at 𝑟′wt will become a perfectly reflecting
mirror. Consequently, the inner Cauchy system does not see the incoming pulse,
and its metric remains the Minkowski one.

In the top panel of Fig. 7.9, we plot the evolution of 𝜓′0,(𝑙=2,𝑚=0) used for matching,
which characterizes the incoming GW seen by the inner Cauchy system. We see
both the CCM and the CCE systems result in similar evolution. Below we use the
time that 𝜓′0,(𝑙=2,𝑚=0) reaches its first trough, denoted by 𝑡1, to refer to the moment
that the pulse enters into the Cauchy domain. Then the bottom panel of Fig. 7.9
exhibits the evolution of 𝜓4,(𝑙=2,𝑚=0) at null infinity. In the absence of the matching
(CCE), the ingoing pulse is fully reflected by the worldtube—the first peak of the
reflected wave takes place at 𝑡1. In contrast, the CCM system has a weaker reflected
wave at that moment. After the crossing time of the inner Cauchy domain: 2𝑅,
where 𝑅 stands for its radius, the pulse leaves the Cauchy grid at 𝑡2 = 𝑡1 + 2𝑅 and
escapes to null infinity. This result verifies that our CCM algorithm does send the
characteristic pulse into the Cauchy system.

Another way to support our conclusion is to look at the evolution of the Bondi mass,
as shown in Fig. 7.10. Initially, the two runs evolve identically, but then they start
to differ when the pulse comes close to the worldtube (∼ 𝑡1). In the CCE case, the
entire pulse is reflected by the worldtube, so the Bondi mass reduces sharply when
the reflected wave escapes toward null infinity. Oppositely, for CCM, the matching
term sends the characteristic pulse into the Cauchy system. Its Bondi mass stays
almost constant while the pulse travels across the Cauchy domain. Finally, the Bondi
mass decreases to 0 as the pulse leaves the Cauchy grid at 𝑡2.

7.6 Conclusions
In this chapter, we have implemented a fully relativistic 3D CCM algorithm in
our numerical relativity code SpECTRE. Core steps towards matching involve (a)
evaluating the Weyl scalar 𝜓0 and the Newman-Penrose tetrad vector m at Cauchy’s
outer boundary (b) performing tetrad transformations to the Cauchy tetrad; (c)
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Figure 7.9: The (𝑙 = 2, 𝑚 = 0) harmonic of 𝜓′0 using for matching (top), and 𝜓4
extracted at null infinity (bottom). The GW pulse is initialized on the characteristic
grid; and evolved with CCM (red) and CCE (green). The black dashed line (𝑡1) is
at the first trough of 𝜓′0,(𝑙=2,𝑚=0) , which can be treated as the time that the pulse hits
the outer boundary of the Cauchy domain. The yellow dashed line (𝑡2 = 𝑡1 + 2𝑅)
refers to the crossing time of the Cauchy domain after 𝑡1.

interpolating the quantities to the Cauchy grid; (d) completing the physical subset
of Cauchy’s Bjørhus boundary conditions.

We have designed two systems to test our code. The first case is the propagation of
a Teuskolsky wave on a flat background. When its amplitude is small (𝑋 = 10−5),
the evolution of the CCM system is almost identical to that of the CCE system, since
the back-scattered wave is negligible. However, after increasing the amplitude to
2, the CCM system displays a better agreement with the reference (exact) solution
whose outer boundary is farther out to ensure that the outer boundary is causally
disconnected from the system. In this way, we illustrate that the CCM system does
improve the accuracy of Cauchy’s outer boundary conditions. In the second case,
we initialize a pulse on the characteristic grid and send it into the Cauchy system.
Without the matching term, the pulse does not pass through the interface between
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Figure 7.10: The time evolution of the Bondi mass, using the same system as
Fig. 7.9. We evolve the system with both CCM (red), and CCE (green). The black
dashed line (𝑡1) stands for the time that the pulse hits the outer boundary of the
Cauchy domain, and the yellow dashed line (𝑡2 = 𝑡1 + 2𝑅) represents the crossing
time of the Cauchy grid after 𝑡1.

the characteristic and the Cauchy systems, and it is totally reflected while hitting the
interface, which in turn leads to a strong prompt reflective wave at null infinity. In
addition, the Bondi mass of the system decreases sharply to 0 after the reflection.
In contrast, the CCM algorithm sends the pulse to the inner Cauchy system, and the
reflective wave is much weaker. After the crossing time of the Cauchy region, the
pulse leaves the Cauchy domain and escapes to null infinity. The Bondi-mass of the
CCM system remained constant while the pulse propagating on the Cauchy grid.

Although we restrict ourselves to two simple physical systems, the CCM algorithm
is generic and should be applicable to any system. Future work could investigate
more sophisticated scenarios, such as binary black hole systems. With CCM, we
should be able to have a more accurate prediction for the back-scattered GWs, which
allows us to adopt a smaller Cauchy domain to improve computational efficiency.
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C h a p t e r 8

EXTENDING SUPERPOSED HARMONIC INITIAL DATA TO
HIGHER SPIN

[1] Sizheng Ma et al. “Extending superposed harmonic initial data to higher
spin.” Phys. Rev. D 103.8 (2021), p. 084029. doi: 10.1103/PhysRevD.
103.084029. arXiv: 2102.06618 [gr-qc].

8.1 Introduction
The detection of GW150914 [1] and other binary compact objects [2–6] has opened
a new era in astrophysics. With the improvement of detector sensitivity, more and
more events are expected to be detected in the near future [7]. Therefore, accurate
modeling of coalescing binaries is crucial for data analysis. Numerical relativity
(NR) remains the only ab initio method to simulate the coalescence of binary black
hole (BBH) systems. With NR, one can obtain the entire BBH waveform including
inspiral, merger, and ringdown. Moreover, gravitational wave models [8–15] used
to analyze detector data are ultimately calibrated against NR.

Numerical simulations of BBHs are based on splitting the Einstein equation into
constraint and evolution parts, where the constraint equations provide the initial data
to evolve. However, the constructed initial data does not exactly correspond to a
quasi-equilibrium state of an inspiral that started at an infinite time in the past. For
example, the tidal distortion of a BH is not fully recovered, and the initial data do
not usually include gravitational radiation already present. As a result, once the
evolution begins, the system relaxes into a quasi-equilibrium state, and gives rise
to a pulse of spurious radiation, which is referred to as ‘junk radiation.’ Several
attempts have been made to reduce junk radiation, by introducing PN corrections
[16–21], or by using a curved conformal metric [18, 22, 23].

Recently, Varma et al. [23] carried out a systematic study of initial data and its effects
on junk radiation and computational efficiency of the subsequent time evolution. The
simulations studied in Varma et al. were performed with an NR code: the Spectral
Einstein Code (SpEC) [24], where the construction of initial data is based on the
Extended Conformal Thin Sandwich (XCTS) formulation [25, 26]. Within this
formalism, several free fields, including the conformal metric, must be provided.

https://doi.org/10.1103/PhysRevD.103.084029
https://doi.org/10.1103/PhysRevD.103.084029
https://arxiv.org/abs/2102.06618
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Different choices of the free fields generate different physical initial data; the data
still correspond to two black holes with the same desired mass ratio and spins, but
the initial tidal distortions and strong-field dynamics differ. Varma et al. showed that
the junk radiation and efficiency of the subsequent evolution depend on the given
free fields. In particular, choosing the initial data based on two superposed black
holes in time-independent harmonic coordinates [27] (heretofore called superposed
harmonic (SH) data) leads to less junk radiation than superposed Kerr-Schild (SKS)
initial data [22], which is typically used in SpEC simulations [28]. Varma et al. also
found that SH initial data has higher computational efficiency. However, SH initial
data works well only for BHs with dimensionless spin 𝜒 ≲ 0.7. For high-spin BHs,
the horizons become so highly deformed that it is difficult to construct initial data
(cf. Fig. 10 in Ref. [23]).

For both SH and SKS initial data, the conformal spatial metric and the trace of
the extrinsic curvature are determined by superposing the analytic solutions for two
single Kerr black holes. The difference is that SKS uses the Kerr metric in Kerr-
Schild coordinates, and SH uses the Kerr metric in time-independent harmonic
coordinates [27]. It may be surprising that making a different coordinate choice—
the choice of coordinates for the single-BH analytic solution—leads to a different
physical BBH solution. The reason is that the superposition of two single-BH
solutions does not solve the Einstein equations for a BBH and is used to compute
only some of the fields; the remaining fields are computed by solving constraints and
by quasi-equilibrium conditions. For a single black hole, following the complete
initial data procedure (including solving the constraints numerically) for both SKS
and SH would result in the same physical Kerr metric but in different coordinates.

In this chapter, we extend SH to higher spins by using a spatial coordinate map to
transform the free data for the single-BH conformal metric, while retaining harmonic
time slicing for this single-BH conformal metric. The coordinate transformation
defines a class of spatial coordinate systems that are characterized by a continuous
parameter 𝛼. We refer to these coordinates as the modified harmonic (MH) coor-
dinate system. MH coordinates are purely harmonic with 𝛼 = 1 and correspond to
spatial KS when 𝛼 = 0. Similar to the cases of SKS and SH, an initial data for a
BBH system can also be constructed by superposing two single Kerr black holes
in MH coordinates. We refer to this initial data as superposed modified harmonic
(SMH). For the BBH systems with 𝜒 > 0.7, a value of 𝛼 < 1 results in less distorted
horizons. However, it is desirable to keep 𝛼 as close to 1 as possible so that SMH
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data still shares the desirable properties of SH initial data.

This chapter is organized as follows. In Sec. 8.2, we provide some basic information
about how we compute initial data and evolve BBH systems. In Sec. 8.3, we compare
the behavior of different single-BH coordinate systems. In particular, in Sec. 8.3.5
we explicitly point out the numerical reason that SH does not work for high-spin
BHs. This immediately leads to a class of spatial coordinate transformations, defined
in Sec. 8.3.6, that can cure the numerical issues. We then use the MH coordinate
system to construct initial data for BBHs (i.e., SMH) with 𝜒 = 0.8 and 0.9 and
evolve these systems. In Sec. 8.4, we discuss the results of our simulations. Finally
in Sec. 8.5, we discuss our results and highlight possible future work.

Throughout this chapter, we use Latin letters to stand for the spatial indices, and use
Greek letters to represent spacetime indices.

8.2 BBH initial data and evolution
Following the discussions in Ref. [23], we use the XCTS formulation to construct
initial data for a binary black hole system. Within this formalism, one can freely
specify the conformal metric �̄�𝑖 𝑗 , trace of extrinsic curvature 𝐾 , and their time
derivatives 𝜕𝑡 �̄�𝑖 𝑗 and 𝜕𝑡𝐾 . To obtain quasi-equilibrium initial data, we choose

𝜕𝑡 �̄�𝑖 𝑗 = 0, 𝜕𝑡𝐾 = 0 . (8.1)

The construction of the other free fields, �̄�𝑖 𝑗 and 𝐾 , is based on the 3-metric 𝑔𝛽
𝑖 𝑗

and the trace of extrinsic curvature 𝐾 𝛽 of two single boosted Kerr BHs , where the
superscript 𝛽 = 1, 2 labels each of the two BHs in the binary system. The conformal
metric and the trace of the extrinsic curvature are then given by:

�̄�𝑖 𝑗 = 𝑓𝑖 𝑗 +
2∑︁
𝛽=1

𝑒
−𝑟2

𝛽
/𝑤2

𝛽 (𝑔𝛽
𝑖 𝑗
− 𝑓𝑖 𝑗 ), (8.2)

𝐾 =

2∑︁
𝛽=1

𝑒
−𝑟2

𝛽
/𝑤2

𝛽𝐾 𝛽 , (8.3)

where 𝑓𝑖 𝑗 is the flat 3-metric, and 𝑟𝛽 is the Euclidean coordinate distance from the
center of each BH [29]. Note that each metric is weighted by a Gaussian with width

𝑤𝛽 = 0.6 𝑑𝐿1
𝛽
, (8.4)

where 𝑑𝐿1
𝛽

is the Euclidean distance between the Newtonian 𝐿1 Lagrange point
and the center of the black hole labeled by 𝛽. Here 𝑔𝛽

𝑖 𝑗
and 𝐾 𝛽 correspond to the
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Kerr solution expressed either in the KS, harmonic, or MH coordinate systems.
BBH initial data constructed from the two Kerr solutions in the aforementioned
coordinates are referred to as SKS, SH, and superposed modified harmonic (SMH),
respectively.

After specifying the free fields, the initial data are completed by solving a set of
coupled elliptic equations that ensure satisfaction of the constraints and an additional
quasi-equilibrium condition. Additionally, these elliptic equations require boundary
conditions. At the outer boundary (typically chosen to be 109 𝑀 from the sources),
we impose asymptotic flatness [cf. Eq. (11)—(13) in Ref. [23]], and at each inner
boundary we enforce an apparent horizon condition [cf. Eq. (15)—(24) in Ref. [23]].
After generating initial data in the XCTS formalism, we also need to specify the
initial gauge for time evolution. Here we use the most common choice for SpEC
simulations: 𝜕𝑡𝑁 = 𝜕𝑡𝑁

𝑖 = 0 in a corotating frame, where 𝑁 is the lapse function
and 𝑁 𝑖 is the shift vector. It was shown that the damped harmonic gauge [30] is the
most suitable for mergers, so we do a smooth gauge transformation on a time scale
of ∼ 50𝑀 during the early inspiral, to transform from the initial gauge to the better
suited damped harmonic gauge.

8.3 Modified harmonic coordinate system
In this section, we aim to investigate the reason that makes the harmonic coordinates
problematic for high-spin BHs. We begin with a brief review of KS coordinates in
Sec. 8.3.1. Then in Sec. 8.3.2, we outline a method that can be used to study the
numerical behavior of Kerr metric in different coordinate systems. It is then applied
to KS spatial coordinates with harmonic slicing in Sec. 8.3.3, and to harmonic
coordinates in Sec. 8.3.4. Those analyses allow us to explicitly show the numerical
problem with using harmonic coordinates for high-spin BHs, as discussed in Sec.
8.3.5. Finally in Sec. 8.3.6, we provide a coordinate map to fix the problem.

8.3.1 Kerr in Kerr-Schild coordinates
For a stationary Kerr BH with mass 𝑀 and angular momentum 𝜒𝑀2 in the 𝑧
direction, the metric in KS coordinates 𝑥𝜇KS = (𝑡KS, 𝑥KS, 𝑦KS, 𝑧KS) is given by [31]

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇

KS𝑑𝑥
𝜈
KS = (𝜂𝜇𝜈 + 2𝐻𝑙𝜇𝑙𝜈)𝑑𝑥𝜇KS𝑑𝑥

𝜈
KS , (8.5)

where 𝜂𝜇𝜈 is the Minkowski metric, 𝐻 is a scalar function, and 𝑙𝜇 is a null covariant
vector. The expressions for 𝐻 and 𝑙𝜇 are not used here but can be found in Ref. [31].
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With KS coordinates, the radial Boyer-Lindquist coordinate 𝑟 can be written as [31]

𝑟2 =
1
2
(𝑥2

KS + 𝑦
2
KS + 𝑧

2
KS − 𝑎

2) +
[
1
4
(𝑥2

KS + 𝑦
2
KS + 𝑧

2
KS − 𝑎

2)2 + 𝑎2𝑧2
KS

]1/2
, (8.6)

or equivalently

𝑥2
KS + 𝑦

2
KS

𝑟2 + 𝑎2 +
𝑧2

KS
𝑟2 = 1 . (8.7)

Here we have used 𝑎 = 𝜒𝑀 for the sake of conciseness. The outer and inner
horizons of the BH are located at

𝑟± = 𝑀 ±
√︁
𝑀2 − 𝑎2 . (8.8)

8.3.2 Transforming from KS to a different coordinate system
Now we introduce a new coordinate system 𝑥𝜇 = (𝑡, 𝑥, 𝑦, 𝑧), which are related to the
KS coordinates 𝑥𝜇KS through

©«
𝑑𝑡KS

𝑑𝑥KS

𝑑𝑦KS

𝑑𝑧KS

ª®®®®®¬
=

(
1 b

0 C

) ©«
𝑑𝑡

𝑑𝑥

𝑑𝑦

𝑑𝑧

ª®®®®®¬
, (8.9)

where b is a 3D vector, and C is a 3 × 3 matrix. In Eq. (8.9), we have assumed
that the new spatial coordinates are independent of 𝑡KS 1. Note that we here keep the
forms of b and C generic, so that our present discussion can be applied to different
coordinate systems.

With the Jacobian at hand, we could transform the Kerr metric into the new co-
ordinates, and study the numerical features of each metric component, such as the
problematic behavior of harmonic coordinates for high-spin black holes, but this
usually involves very complicated calculations. However, since 𝑔KS

𝜇𝜈 can be decom-
posed into two pieces [Eq. (8.5)], it is simpler to study the transformations of 𝜂𝜇𝜈 2.
In the new coordinates, we have

𝜂𝜇𝜈 =

(
−1 0

0 I3

)
→

(
1 b

0 C

)𝑇 (
−1 0

0 I3

) (
1 b

0 C

)
=

(
−1 −b
−b𝑇 C𝑇C − b𝑇b

)
, (8.10)

1Equivalently, (𝑥KS, 𝑦KS, 𝑧KS) are independent of 𝑡.
2We have checked that the same problematic terms also occur in the 𝐻𝑙𝜇𝑙𝜈 piece of Eq. (8.5).
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where I3 is the three-dimensional identity matrix. Both the 3-metric (C𝑇C − b𝑇b)
and the shift vector −b above are modified by the vector b. Any numerically prob-
lematic term in b might cause difficulty to resolve the metric in the new coordinates.
Below, we focus on the 𝑧 component of b, 𝑏𝑧, at the inner boundary 𝑟 = 𝑟+, and
study its numerical behavior for high-spin black holes (especially when 𝑎 → 𝑀)
with several coordinates.

8.3.3 Kerr-Schild spatial coordinates with harmonic slicing
We first apply our discussion in Sec. 8.3.2 to a mixed coordinate system: KS spatial
coordinates together with harmonic temporal slicing, then we have

CKSHS = I3, (8.11a)

bKSHS =
2𝑀
𝑟 − 𝑟−

∇𝑟, (8.11b)

where the subscript ‘KSHS’ stands for Kerr-Schild spatial coordinates with Har-
monic Slicing; and 𝑟 is the radial Boyer-Lindquist coordinate. Note that Eq. (8.11b)
is the result of [27]

𝑡KSHS = 𝑡KS −
∫

2𝑀
𝑟 − 𝑟−

𝑑𝑟 . (8.12)

We refer the reader to Sec. 8.6 for the detailed expression of ∇𝑟. The 𝑧 component
of bKSHS at the inner boundary 𝑟 = 𝑟+ is given by (as 𝑎 → 𝑀)

𝑏𝑧KSHS =
𝑀2𝑧KS

𝑟4
+ + (𝑎𝑧KS)2

. (8.13)

8.3.4 Harmonic coordinates
Let us turn our attention to harmonic coordinates 𝑥𝜇H = (𝑡H, 𝑥H, 𝑦H, 𝑧H), where the
spatial coordinates also become harmonic. For such a coordinate system, we have
[27]

(𝑟 − 𝑀)2 =
1
2
(𝑥2

H + 𝑦
2
H + 𝑧

2
H − 𝑎

2) +
[
1
4
(𝑥2

H + 𝑦
2
H + 𝑧

2
H − 𝑎

2)2 + 𝑎2𝑧2
H

]1/2
, (8.14)

and
𝑥2

H + 𝑦
2
H

(𝑟 − 𝑀)2 + 𝑎2 +
𝑧2

H
(𝑟 − 𝑀)2

= 1 , (8.15)

where the subscript ‘H’ stands for harmonic coordinates. The harmonic slicing
implies

bH =
2𝑀
𝑟 − 𝑟−

∇𝑟, (8.16)
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with 𝑧 component of bH at 𝑟 = 𝑟+ given by (as 𝑎 → 𝑀)

𝑏𝑧H =
𝑀2𝑧H

(𝑟+ − 𝑀)4 + (𝑎𝑧H)2
. (8.17)

Expressions for the 3 × 3 block matrix, (𝐶H)𝑖𝑗 = 𝜕𝑥𝑖KS/𝜕𝑥
𝑗

H , along with additional
details, can be found in Sec. 8.6.

8.3.5 Problematic behavior of harmonic coordinates
In SpEC, the Legendre polynomials are used to numerically expand 𝑏𝑧H and 𝑏𝑧KSHS
as functions of cos 𝜃, defined by

cos 𝜃 =
𝑧H√︃

𝑥2
H + 𝑦

2
H + 𝑧

2
H

.

Here 𝜃 is the polar angle in harmonic coordinates and is not to be confused with
the angular Boyer-Lindquist coordinate. As a test, we first represent 𝑏𝑧H [Eq. (8.17)]
with twenty Legendre-Gauss collocation points and a BH spin of 𝑎 = 0.95𝑀 . The
results of this test are shown in Fig. 8.1. From Fig. 8.1, we see that the function 𝑏𝑧H
is difficult to resolve using Legendre polynomials. This is the primary reason that
harmonic coordinates fail to accurately represent high-spin BH initial data. Note that
increasing the resolution to 𝑙 ≳ 60 (for a single BH) eventually allows us to resolve
𝑏𝑧H, but in practice requiring such high resolution is computationally prohibitive;
furthermore, the required resolution increases rapidly as the spin increases.

Previous studies have shown success in high-spin BBH simulations with SKS initial
data up to spins of 𝜒 = 0.998 [32]. A natural question to ask is whether the spatial
or the time coordinates are more important in allowing KS coordinates to better
resolve highly-spinning black holes. Therefore, we also investigate the behavior
of 𝑏𝑧KSHS (see Sec. 8.3.3) in which the time coordinate is harmonic but the spatial
coordinates are Kerr-Schild. Again, we represent 𝑏𝑧KSHS with twenty Legendre-
Gauss collocation points and a BH spin of 𝑎 = 0.95𝑀 , as shown in Fig. 8.1. The
representation is much better than the case of harmonic coordinates. And we also
confirm that with such mixed coordinates, BBH initial data can be indeed extended
to higher spins. However, as we show later, they do not lead to a smaller amount of
junk radiation than SKS initial data.

Looking more closely at Fig. 8.1, 𝑏𝑧KSHS has fewer structures than 𝑏𝑧H, which makes
𝑏𝑧KSHS easier to represent by Legendre polynomials. More quantitatively, we write

𝑏𝑧H ∼
1

𝑢2 + 𝜖
1+𝜖

, (8.18)
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Figure 8.1: The function 𝑏𝑧 in KSHS [Eq. (8.13)], harmonic [Eq. (8.17)] and
MH [Eq. (8.23)] coordinates with 𝛼 = 0.7. Solid lines represent 𝑏𝑧, whereas
triangles represent the Legendre-Gauss collocation approximation to each function
𝑏𝑧 using 20 Legendre polynomials. The spin of the BH is 𝑎 = 0.95𝑀 . 𝑏𝑧 is better
approximated by a fixed number (𝑙 = 20) of Legendre polynomials for MH than for
harmonic coordinates.

with

𝑢 =
𝑎

𝑟+ − 𝑀
cos 𝜃, 𝜖 =

(𝑟+ − 𝑀)2
(𝑟+ − 𝑀)2 + 𝑎2 . (8.19)

In Eq. (8.18), we have omitted unimportant functions of cos 𝜃 since they are well
represented by Legendre polynomials. We see 𝑏𝑧H has two poles 𝑢 = ±𝑖

√︁
𝜖/(1 + 𝜖).

The domain of convergence for Legendre series 𝑃𝑛 (cos 𝜃) is an elliptic region on
the complex plane [33]. If we restrict ourselves to the real axis, we can obtain the
radius of convergence as

| cos 𝜃 | ≲
√︂

1 + 2𝜖
1 + 𝜖

𝑟+ − 𝑀
𝑎

. (8.20)

The radius becomes less than 1 if 𝑎 ≳ 0.75𝑀 , thus in that case the Legendre
polynomials fail to provide a good representation for the metric. This is the main
reason that BBH simulations using SH become difficult when spins are larger than
about 𝑎 = 0.7𝑀 [23]. We remark that Chebyshev series have the same domain
of convergence as Legendre series; hence we do not expect the situation can be
improved by changing basis.
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8.3.6 Modified Harmonic coordinates
We have seen that 𝑏𝑧H is sensitive to cos 𝜃 for high-spin BHs. To reduce such
dependence, we define a more general coordinate system

𝑥2
MH + 𝑦

2
MH

(𝑟 − 𝛼𝑀)2 + 𝑎2 +
𝑧2

MH
(𝑟 − 𝛼𝑀)2

= 1, 𝑡MH = 𝑡H , (8.21)

which leads to

(𝑟 − 𝛼𝑀)2 =
1
2
(𝑥2

MH + 𝑦
2
MH + 𝑧

2
MH − 𝑎

2)

+
[
1
4
(𝑥2

MH + 𝑦
2
MH + 𝑧

2
MH − 𝑎

2)2 + 𝑎2𝑧2
MH

]1/2
. (8.22)

Here we introduce a new constant parameter 𝛼. As mentioned earlier, we refer to
this new choice of spatial coordinates as the modified harmonic (MH) coordinate
system. MH coordinates become harmonic (spatial) coordinates when 𝛼 = 1 [Eq.
(8.15)] and become KS (spatial) coordinates when 𝛼 = 0 [Eq. (8.7)]. Meanwhile,
the time slicing of MH coordinates is the same as in harmonic, regardless of the
value of 𝛼. With this new coordinate system, the radius of the outer horizon along
the spin direction is (1 − 𝛼)𝑀 +

√
𝑀2 − 𝑎2. For 𝑎 → 𝑀 , this radius goes to 𝑀

for KS coordinates (𝛼 = 0) and it goes to zero for harmonic coordinates (𝛼 = 1).
Therefore, the horizon with harmonic coordinates is highly compressed in the spin
direction. However, if we let 𝛼 be a number smaller than, but still close to 1, the
horizon will be less distorted. On the other hand, since 𝛼 is close to 1, we can expect
that it still shares some similar properties (e.g., less junk radiation) with harmonic
coordinates.

As in Sec. 8.3.5, we use the function 𝑏𝑧 as an example to see the improvement
offered by MH coordinates. In the MH coordinate system, we have

𝑏𝑧MH =
𝑀2𝑧MH

(𝑟+ − 𝛼𝑀)4 + (𝑎𝑧MH)2
. (8.23)

Now (𝑟+ − 𝑀)2 is replaced by (𝑟+ − 𝛼𝑀)2. The problematic part of 𝑏𝑧MH takes the
same form as Eq. (8.18), except that

𝑢 =
𝑎

𝑟+ − 𝛼𝑀
cos 𝜃, 𝜖 =

(𝑟+ − 𝛼𝑀)2
(𝑟+ − 𝛼𝑀)2 + 𝑎2 . (8.24)

And the radius of convergence is given by

| cos 𝜃 | ≲
√︂

1 + 2𝜖
1 + 𝜖

𝑟+ − 𝛼𝑀
𝑎

. (8.25)
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Figure 8.2: The radius of convergence given in Eq. (8.25).

Table 8.1: A summary of parameters (mass ratio 𝑞 and dimensionless spins χ)
for four simulations, where the spins of Case II are chosen randomly. The orbital
angular momentum is pointing along (0, 0, 1). In the final column, we show the
value of 𝛼 for MH coordinates.

Simulation label 𝑞 χ1 χ2 𝛼

Case I 1 (0, 0, 0.8) (0, 0, 0.8) 0.9
Case II 1 (0.44, 0.44, 0.50) (0.13, 0.64, 0.46) 0.9
Case III 2 (0, 0, 0.7) (0, 0, 0.8) 0.8
Case IV 1 (0, 0, 0.9) (0, 0, 0.9) 0.7

In Fig. 8.2, we plot the radius of convergence as a function of 𝜒 = 𝑎/𝑀 for
several values of 𝛼. We see the convergent region for a fixed 𝜒 is enlarged if 𝛼
becomes smaller. As a consequence, it should be easier for Legendre polynomials
to represent 𝑏𝑧MH. To see that this is the case, in Fig. 8.2 we plot 𝑏𝑧MH with 𝛼 = 0.7
and 𝑎 = 0.95𝑀 , using the same set of angular Legendre-Gauss collocation points
as for the other curves in the figure. As expected, the representation in Legendre
polynomials of 𝑏𝑧MH shows an enormous improvement over the same representation
of 𝑏𝑧H.

8.4 Results
In this section we investigate the numerical behavior of BBHs evolved starting with
SMH initial data, compared to evolution of SKS data. We pick four cases, as
summarized in Table 8.1. To make comparisons, we consider constraint violations,
computational efficiency, changes of BH parameters (mass and spin), and junk
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Figure 8.3: The volume-weighted generalized harmonic constraint energy for evo-
lutions of Case I, with both SKS (dotted lines) and SMH (solid lines) initial data.
Three resolutions are shown, labeled ’Lev1’ (red), ’Lev2’ (blue), and ’Lev3’ (black)
in order of decreasing AMR tolerance (i.e., in order of increasing numerical resolu-
tion). At the beginning, BHs of SMH initial data are more distorted on the grid so
the constraints are worse. However, as the gauge transition proceeds, the constraints
decay quickly. During most of the junk stage (25𝑀 ≲ 𝑡 ≲ 700𝑀), the constraints of
SMH initial data are smaller than SKS by an order of magnitude. They also converge
with resolution. After the junk stage, SKS and SMH finally become comparable.

radiation. For the first three factors, we show the general features of SMH by focusing
on Case I. For junk radiation, we study all cases. For each simulation, we evolve with
three resolutions (labeled Lev 1,2,3 in order of increasing resolution). The resolution
is chosen by specifying different numerical error tolerances to the adaptive mesh
refinement (AMR) algorithm [34]. The orbital eccentricity is iteratively reduced to
below ∼ 10−3 [35]. The coordinate sizes of the black holes are different for SMH
and SKS, so the excision boundaries (which are placed just inside each apparent
horizon) are also different for SMH and SKS; this means that the grids are not
exactly the same between the two cases, but the grid points are chosen by AMR so
that the two cases have the same approximate numerical error.
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Figure 8.4: Same as Fig. 8.3, except that 𝐿2 norm is used.

8.4.1 Constraint violations and computational efficiency
Figure 8.3 shows the evolution of the volume-weighted generalized harmonic con-
straint energy 𝑁volume, which is given by [Eq. (53) of Ref. [36]]

𝑁volume =

√√√∫
𝑉
𝐹 (𝑥)2𝑑3𝑥∫
𝑉
𝑑3𝑥

, (8.26)

with 𝐹 (𝑥) the generalized harmonic constraint energy at 𝑥. For the first ∼ 25𝑀 of
evolution, the constraints of SMH are much larger than those of SKS. This is because
BHs with SMH initial data are more distorted than SKS, and the metric is more
difficult to resolve; however, the metric is much easier to resolve for SMH than SH
(which is not shown because even constructing the initial data for SH is problematic
with a spin of 𝜒 = 0.8). Furthermore, at slightly later times, constraints decrease
rapidly. During the junk stage (𝑡 ≲ 700𝑀), the constraints for the evolution of SMH
initial data are smaller than those of SKS by an order of magnitude. After the junk
leaves the system, the evolution of SMH initial data is still a little bit better than that
of SKS initial data, although constraints of SKS and SMH become similar at late
times (𝑡 ≳ 3000𝑀 for Lev 3 and 𝑡 ≳ 2000𝑀 for Lev 2).

During the junk stage we make no attempt to resolve the junk oscillations, i.e., the
AMR algorithm is intentionally set to change the grid very infrequently (and not at
all in the wave zone) during the junk stage of the evolution. We do this because
resolving junk is computationally expensive and because the junk is not part of the
physical solution we care about. Accordingly, the SKS curves in Figure 8.3 are not
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Figure 8.5: Computational efficiency of evolutions of SMH (𝛼 = 0.9) and SKS
initial data for Case I, with the highest resolution. The upper panel is the total
number of grid points as a function of time. At the beginning, the SMH initial data
requires many more grid points to meet the error tolerance. As the gauge transition
to damped harmonic gauge proceeds (on a time scale of ∼ 50𝑀), the BHs become
less distorted, so AMR gradually drops points. At the same time, several concentric
spherical shells around each of the BHs are dropped, which leads to discontinuous
jumps in the number of grid points. In the end, evolutions of SMH initial data has
fewer collocation points than for SKS. The lower panel is the accumulated CPU
hours versus time. The SMH initial data is extremely slow at the beginning. As the
collocation points and subdomains are adjusted, it speeds up. The total CPU hours
for evolutions of both initial data sets are similar.

well-resolved during the junk stage and do not show good convergence. However,
we notice that the simulations of SMH initial data are better resolved than for SKS,
and they converge with resolution even during the junk stage; convergence during
the junk stage was also observed for SH with low-spin BHs [23].

The convergence plot looks slightly different when the norm of the constraint energy
is determined using a pointwise 𝐿2 norm over grid points rather than an integral
over the volume, as given by

𝑁pointwise =

√√√√√ 𝑁∑
𝑖=1
(𝐹𝑖)2

𝑁
, (8.27)
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Figure 8.6: The time step as a function of evolution time. The resolution is Lev
3. Initially, the time step for evolutions of SKS initial data is larger than for SMH.
However, after several jumps due to the shell-dropping algorithm, SMH eventually
has a larger time step than SKS.
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where the subscript 𝑖 stands for the index of a grid point, and 𝑁 is the total number
of grid points. The pointwise norm is shown in Fig.8.4. For the pointwise norm the
improvement of convergence of SMH over SKS is not as good as for the volume-
weighted norm. This is because the pointwise norm gives larger weight to the
interior regions near the BHs where there are more points, whereas the volume
norm gives larger weight to the exterior wave zone which covers more volume. The
difference beween Figs. 8.3 and 8.4 illustrates that the improvement of the constraints
in the case of SMH mainly comes from the outer region, where the high-frequency
components in the waveforms are smaller (i.e., less junk radiation). Figure 8.4
also shows that the pointwise norms (𝐿2 norm) for evolutions of both initial data
sets become comparable much earlier than the volume norms (𝑡 ∼ 200𝑀). This
is because the pointwise norms are monitored by AMR, and therefore their values
remain consistent with the numerical error tolerance in AMR during the evolution
as AMR makes changes to the grid resolution.
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Figure 8.7: The evolution of irreducible mass (left) and dimensionless spin (right)
of the first BH for Case I, with three resolutions. The quantities shown are deviations
from their values at 𝑡 = 0. Evolutions of SMH initial data have fewer oscillations
than SKS. Deviations of three parameters for both initial data sets are on the same
order.

To understand how the computational efficiency of the evolution depends on the
initial data, in Fig. 8.5 we show the total number of grid points in the computational
domain as a function of time. At the beginning, SMH needs many more points than
SKS. As the gauge gradually transforms to the damped harmonic gauge, the BHs
become less distorted and AMR decides to drop grid points. During the evolution,
there are two factors that mainly control the number of grid points. One is AMR,
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which adjusts grid points based on the numerical error tolerance. The other one
is the domain decomposition [37]. SpEC splits the entire computation region into
various subdomains. In particular, there are a series of concentric spherical shells
around each BH. The subdomain boundaries are fixed in the “grid frame,” the
frame in which the BHs do not move, but these boundaries do move in the “inertial
frame,” the frame in which the BHs orbit and approach each other [38]. As the
separation between the BHs decreases, the inertial-frame widths of the subdomains
between them decreases as well. During the evolution, the inertial-frame widths
of the spherical shells are monitored. Once one of the shells becomes sufficiently
squeezed, the algorithm drops one of the shells and redistributes the computational
domain. In Ref. [23], the authors pointed out that evolutions of SH initial data
are faster than for SKS initial data. However, that statement is not true at very
early times, when SH starts with more spherical shells and more grid points, which
leads to low speed. The evolution of SH initial data then gradually speeds up
after several spherical shells are dropped, and eventually becomes faster than the
corresponding evolution of SKS data. Our simulation here is similar. In Fig. 8.5,
AMR modifies 𝑁grid smoothly, while the discontinuous jump is caused by the shell-
dropping algorithm. For each BH, we have six spherical shells initially. However,
four of them are dropped during the first ∼ 200𝑀 . In the end, the number of grid
points for evolutions of SMH is smaller than for evolutions of SKS. This not only
improves the computational efficiency of each time step, but also increases the time
step Δ𝑡 allowed by the Courant limit (Δ𝑡 ∼ 𝑁−2

grid). As shown in Fig. 8.6, the time
step for SMH jumps several times because of the shell-dropping algorithm. In the
end, Δ𝑡 for SMH is larger than the one for SKS. Both 𝑁grid and Δ𝑡 contributes to the
high speed of evolutions of SH and SMH initial data. And we have checked that the
increase of Δ𝑡 plays the major role in the speed increase.

The bottom panel of Fig. 8.5 shows the accumulated CPU hours of the simulation.
At first, the evolution of SMH is extremely slow. Once several shells are dropped,
the simulation gradually speeds up. This suggests that both SH and SMH initial
data start with more shells than necessary. Therefore, it might be possible to further
improve the computational efficiency solely by reducing the number of shells.

8.4.2 Junk radiation and changes in parameters
Since the BHs in the initial data are not in true quasi-equilibrium, the masses
and spins of BHs relax once the evolution begins, resulting in slight deviations
from their initial values. In Figure 8.7, we show the change of irreducible mass
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Figure 8.8: Mode amplitudes of waveforms for Case I, II and III with the highest
resolution. Columns correspond to three cases, and rows are for different modes.
For SMH initial data, we pick 𝛼 = 0.9 for Case I and II, and 𝛼 = 0.8 for Case III.
Note that the linear growth of ℎ21 for Case II appears because only the initial part
of the waveform is shown. Over the entire evolution, the mode is oscillatory. In
general, the junk radiation of SMH initial data leaves the system faster. It is also
smaller than the junk radiation of SKS for most of the modes. However, there are
some modes, such as ℎ33, that have the same peak as SKS.

Δ𝑀irr(𝑡) = |𝑀irr(𝑡) −𝑀irr(𝑡 = 0) | and the change of spin Δ𝜒(𝑡) = |𝜒(𝑡) − 𝜒(𝑡 = 0) |
as functions of time, for three resolutions. We can see the variations are on the same
order for both SMH and SKS initial data, but SMH has smaller oscillations. With
the highest resolution, the deviation of SMH is smaller by a factor of ∼ 1.5 − 2.

To study the junk radiation in the waveform, in Fig. 8.8 we plot the amplitudes of
different spin weighted spherical harmonic modes ℎ𝑙𝑚, for Case I, II and III listed
in Table 8.1 (Case IV will be discussed later). Note that the linear growth of ℎ21
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Figure 8.9: The ℎ22 and ℎ44 modes for the highest resolution of Case IV, an equal-
mass BBH system with larger spins. The spins for both BHs are (0, 0, 0.9), which
we have not been able to run with SH initial data. We can still see that the junk
radiation for SMH is less than SKS.

for Case II appears because only the initial part of the waveform is shown; over the
entire evolution, the mode is oscillatory.

We can see that the junk radiation of evolutions of SMH initial data is less than
for SKS for most of the modes. In general, the junk radiation leaves the system
faster for SMH initial data than for SKS. However, the decrease of junk radiation
for SMH is not as significant as SH for low-spin BHs [23]. Some modes of SMH
initial data, such as ℎ33, are similar to SKS. Comparing Cases II and III, we note
that the junk radiation of 𝛼 = 0.8 SMH is larger than that of 𝛼 = 0.9 , presumably
because 𝛼 = 0.8 deviates more from SH initial data (𝛼 = 1). Note that Case II has
similar junk radiation as Case III when both cases are evolved from SKS initial data;
this suggests that the difference in junk radiation between Cases II and III seen in
Figure 8.8 is probably not due to differences in parameters like the mass ratio.

For Case IV, a BBH system with dimensionless spins 0.9, we need to decrease 𝛼 to
0.7, since for that large of spin 𝛼 = 0.8 requires too high resolution and sometimes
the initial data solver doesn’t converge. To speed up the evolution, we start the SMH
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initial data with fewer spherical shells around each BH than the standard choice
made by SpEC. The comparison of the waveform is in Fig. 8.9, where we show only
ℎ22 and ℎ44. We can see the junk radiation for SMH initial data is still less than for
SKS. But the improvement is not as good as other cases. For modes other than ℎ22

and ℎ44 , we do not see improvements. The main reason appears to be that 𝛼 = 0.7
deviates too much from 𝛼 = 1, so that the benefit of SH initial data is reduced.
In addition, in Fig. 8.10 we compare the accumulated CPU hours for evolutions of
both initial data sets. We can see the initial computational efficiency for SMH initial
data is much lower, but it gradually catches up after several shells are dropped. For
evolutions of only a few orbits, the expense of evolving SMH initial data may not
be worth the extra computational cost. But for evolutions of many orbits, the extra
cost at the beginning of the evolution will be comparatively small.

In most of the evolutions shown here, shortly after the beginning of the simulation
several spherical shells around each BH are dropped, leading to a smaller number of
grid points, a larger time step, and overall greater computational efficiency. However,
for a general evolution, we are not always ‘lucky’ enough to gain this efficiency, since
the current algorithm for dropping spherical shells aims only to avoid narrow shells
rather than to speed up the simulation. To improve the computational efficiency for
all simulations, we could start with fewer spherical shells at 𝑡 = 0. However, the
benefit of this change is limited without changing the shell-dropping algorithm. One
workaround is to use smaller 𝛼, which speeds up the simulation, but if 𝛼 deviates too
much from 𝛼 = 1, we cannot have less junk radiation. Therefore, we suggest that the
algorithm that divides the domain in to subdomains should be modified to account
for computational efficiency during the evolution, or a better algorithm should be
developed to initialize subdomains. Given such future algorithmic improvements,
we could potentially run high-spin BBH evolution with larger 𝛼, which can lead to
less junk radiation.

8.5 Conclusion
In this chapter, we extended SH initial data [23] to higher-spin BBHs by introducing
a class of spatial coordinate systems that represent a time-independent slicing of
a single Kerr black hole and are characterized by a continuous parameter 𝛼. This
coordinate representation of Kerr is used to supply free data for the initial-value
problem for BBH systems; we call the resulting initial-value solution SMH initial
data. The harmonic (𝛼 = 1) and KS (𝛼 = 0) coordinate representations of Kerr
are only two special cases of our new representation. The coordinate shape of the
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Figure 8.10: The accumulated CPU hours for evolutions of SMH and SKS initial
data as functions of time. The BBH system is Case IV, and we plot results for
the highest resolution. The initial computational efficiency of SMH initial data is
much lower than for SKS, but after a short time both evolutions proceed at the same
number of CPU hours per simulation time.

horizon becomes less spherical and more distorted for larger 𝛼. Therefore for high-
spin BHs, we pick 𝛼 < 1 to decrease the distortion and ease requirements on very
high resolution during the BBH simulation. At the same time, 𝛼 should be close
to 1 so that SMH initial data still has the desirable properties of SH initial data as
shown in Ref. [23], such as less junk radiation. We have tested that for SMH initial
data with 𝛼 = 0, i.e, harmonic time slicing with KS spatial coordinates, there is
more junk radiation than for SKS initial data.

We have evolved four BBH systems with dimensionless spins 0.8 or 0.9 starting from
SMH initial data with 𝛼 between 0.7 and 0.9, and we compared with evolutions of
the same system starting from SKS initial data. The first three cases, all with
dimensionless spins 0.8, represent different situations: a non-precessing system
with equal masses, a precessing system with random spin directions, and a non-
precessing system with unequal masses. In general, the junk radiation of SMH
initial data leaves the system faster than that of SKS. For most gravitational wave
modes, the SMH initial data leads to less junk radiation. The exceptions, like the
ℎ33 mode and the ℎ21 mode for Case III, have bursts with amplitudes similar to SKS.
Furthermore, 𝛼 = 0.8 SMH has more junk radiation than 𝛼 = 0.9.

Using Case I as an example, we also studied other properties of the evolution,
including constraint violations, computational efficiency, and changes in parameters.
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We found the values of the volume-weighted constraints for SMH initial data are
smaller than those of SKS by factors of 10. Furthermore, the volume-weighted
constraints of SMH initial data converge with resolution during the junk stage.
However, 𝐿2-norm constraints do not have such convergence. Therefore, the benefit
is mainly from the outer regions, where there is less junk radiation.

At the beginning of the evolution for Case I, SMH requires more collocation points
than SKS to reach the error tolerance because the horizon is distorted, hence it
proceeds more slowly. At later times, SKS and SMH run at approximately the same
rate, after both the computational efficiency on each time slice and the size of the
time step increase for the SMH case.

For Case IV, which has BHs with dimensionless spin 0.9, we found that we needed to
decrease 𝛼 to 0.7. We simulated an equal-mass BBH system with equal dimension-
less spins χ1,2 = (0, 0, 0.9) and compared ℎ22 and ℎ44 for both SMH and SKS initial
data sets. Junk radiation for SMH is still less than for SKS, but the improvement
is not as good as the case of lower spin. The comparison of CPU hours for these
two cases show that the initial computation efficiency for SMH initial data is much
lower. But it gradually becomes the same as SKS after several shells are dropped.

We also found that the algorithm for choosing the number and sizes of subdomains in
SpEC could use some improvement, particularly for the initial choice of subdomains
and the early stages of the evolution. In most simulations but not all, AMR eventually
chooses a subdomain distribution that increases computational efficiency. Some
improvements can be gained by simply starting with fewer spherical shells around
each BH, but we find that the effects of this change are limited. Therefore, the
evolution of SMH initial data for high-spin BBH will benefit from either an algorithm
to adjust subdomain sizes based on computational efficiency during the evolution,
or a better algorithm to initialize subdomains. Those algorithmic improvements
could allow us to run high-spin BBH evolutions with larger 𝛼, which can give rise
to less junk radiation.

8.6 Appendix: Details of MH coordinates
For a Kerr BH with an arbitrary spin vector a, the transformations between KS
spatial coordinates and MH spatial coordinates are given by

xKS =
𝑎2 + 𝑟 (𝑟 − 𝛼𝑀)
𝑎2 + (𝑟 − 𝛼𝑀)2

xMH +
𝛼𝑀

𝑎2 + (𝑟 − 𝛼𝑀)2
(xMH × a)

+ (xMH · a)a
𝛼𝑀

(𝑟 − 𝛼𝑀) [𝑎2 + (𝑟 − 𝛼𝑀)2]
, (8.28)
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where 𝑎2 = a ·a, and 𝑟 is the radial Boyer-Lindquist coordinate. For 𝛼 = 0, we have
xKS = xMH, i.e., the identity transformation. The Jacobian 𝐶𝑖 𝑗MH = 𝜕𝑥𝑖KS/𝜕𝑥

𝑗

MH
between KS and MH coordinates is given by3

𝐶
𝑖 𝑗

MH =
𝑎2 + 𝑟 (𝑟 − 𝛼𝑀)
𝑎2 + (𝑟 − 𝛼𝑀)2

𝛿𝑖 𝑗 + 𝛼𝑀

𝑎2 + (𝑟 − 𝛼𝑀)2
𝑎𝑘𝜖

𝑖 𝑗 𝑘 + 𝑎𝑖𝑎 𝑗 𝛼𝑀

(𝑟 − 𝛼𝑀) [𝑎2 + (𝑟 − 𝛼𝑀)2]

+ 𝑀𝛼[𝑎
2 − (𝑟 − 𝑀𝛼)2]

[𝑎2 + (𝑟 − 𝑀𝛼)2]2
𝑥𝑖MH𝜕

𝑗𝑟 − 2𝑀𝛼(𝑟 − 𝑀𝛼)
(𝑎2 + (𝑟 − 𝑀𝛼)2)2

𝑥MH
𝑚 𝑎𝑘𝜖

𝑖𝑚𝑘𝜕 𝑗𝑟

− 𝑥𝑚MH𝑎𝑚𝑎
𝑖𝜕 𝑗𝑟

𝑀𝛼[𝑎2 + 3(𝑟 − 𝑀𝛼)2]
[𝑎2 + (𝑟 − 𝑀𝛼)2]2(𝑟 − 𝛼𝑀)2

, (8.29)

where 𝜖 𝑖 𝑗 𝑘 is the Levi-Civita symbol, 𝛿𝑖 𝑗 is the Kronecker delta, and the Einstein
summation convention is used. For 𝛼 = 1, 𝐶𝑖 𝑗MH becomes 𝐶𝑖 𝑗 defined in Sec. 8.3.4.
By differentiating Eq. (8.22), we have

𝜕𝑖𝑟 =
𝑥MH
𝑖
+ (a · xMH)𝑎𝑖/(𝑟 − 𝛼𝑀)2

2(𝑟 − 𝛼𝑀)
[
1 − xMH·xMH−𝑎2

2(𝑟−𝛼𝑀)2

] . (8.30)

With MH coordinates, the null covariant vector 𝑙 in Eq. (8.5) can be written as

𝑙 =

(
𝑑𝑡MH +

2𝑀
𝑟 − 𝑟−

𝑑𝑟

)
+ (𝑟 − 𝛼𝑀)xMH − a × xMH + (a · xMH)a/(𝑟 − 𝛼𝑀)

(𝑟 − 𝛼𝑀)2 + 𝑎2 · 𝑑xMH, (8.31)

where the first bracket corresponds to 𝑑𝑡KS [see Eq. (8.12), with 𝑡MH = 𝑡H]. The
scalar function 𝐻 in Eq. (8.5) is given by

𝐻 =
𝑀𝑟 (𝑟 − 𝛼𝑀)2

𝑟2(𝑟 − 𝛼𝑀)2 + (a · xMH)2
. (8.32)

In addition, the lapse function 𝑁 and the shift vector 𝑁 𝑖 in MH coordinates are given
by

𝑁−2 = 1 + 2𝑀 (𝑟 − 𝛼𝑀)2
𝑟2(𝑟 − 𝛼𝑀)2 + (a · xMH)2

𝑟2 + (𝑟 + 2𝑀)𝑟+
𝑟 − 𝑟−

, (8.33)

𝑁 𝑖 = 𝑁𝑟 𝑙𝑖 + 𝑁𝜙
𝑎 𝑗𝑥

MH
𝑘
𝜖 𝑗 𝑘𝑖

𝑎
, (8.34)

with

𝑁𝑟 = 𝑁2 2𝑀𝑟+
𝜌2 , 𝑁𝜙 = −𝑁2 𝑎

𝜌2
2𝑀
𝑟 − 𝑟−

, (8.35)

𝜌2 = 𝑟2 + 𝑎2 cos2 𝜃 = 𝑟2 + (a · xMH)2
(𝑟 − 𝛼𝑀)2

, 𝑙𝑖 = 𝑙𝑖, (8.36)

where 𝜃 is the polar Boyer-Lindquist coordinate, and 𝑙𝑖 is the spatial component of
the null covariant vector 𝑙.

3Here we do not distinguish upper and lower indices of a tensor in a Euclidean space.
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C h a p t e r 9

NUMERICAL SIMULATIONS OF BLACK HOLE–NEUTRON
STAR MERGERS IN SCALAR-TENSOR GRAVITY

[1] Sizheng Ma, Vĳay Varma, Leo C. Stein, Francois Foucart, Matthew D. Duez,
Lawrence E. Kidder, Harald P. Pfeiffer, and Mark A. Scheel. “Numerical
simulations of black hole-neutron star mergers in scalar-tensor gravity.”
(Apr. 2023). arXiv: 2304.11836 [gr-qc].

9.1 Introduction
Increasing numbers of gravitational-wave (GW) events [1–4] have allowed us to
probe the extreme gravity environment near the coalescence of a compact binary
system, which opens up a new chapter for tests of general relativity (GR) [1, 5–
25]. To robustly test GR, there is a need for accurate GW predictions both in GR
and beyond-GR theories, so that one can use Bayesian model selection to ascertain
which theory better agrees with GW observations.

Scalar-tensor (ST) theory [26–29] is the simplest alternative theory of gravity, where
the strength of gravity is modulated by scalar field(s). The original formulation of
ST theory was due to Jordan [26], Fierz [27], Brans and Dicke [28, 29] (JFBD),
and was generalized by Bergmann [30] and Wagoner [31] to capture more general
conformal factors, and by Damour and Esposito-Farèse [32] to multiple scalar fields.
An important feature of ST theory is scalar radiation, an extra energy dissipation
channel in addition to the usual tensor radiation in GR. The leading scalar radiation
is dipolar, and thus more important at low frequencies than the quadrupolar waves
that control a GR inspiral [5, 32–46]. Under this effect, the evolution of some
strong-gravity systems can deviate from the prediction of GR and leave imprints
on observables. For instance, binary-pulsar systems have been shown to be a
good laboratory [33, 41, 46–58] (see also Refs. [19, 59–65] for reviews) since the
celebrated Hulse-Taylor PSR B1913+16 [66]. By measuring the orbital decay rate
of the systems, one can examine and constrain ST theory via the parametrized
post-Keplerian formalism [53, 54, 65, 67].

The strength of the dipole radiation depends on the scalar charge 𝛼NS [32, 51, 68,
69], which characterizes the ability of an object to condense the scalar field. The

https://arxiv.org/abs/2304.11836
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scalar charge of a black hole (BH) vanishes as the no-hair theorems have been
shown to apply in ST [16, 70–73]. For a binary system, the dipole radiation power
is proportional to its charge difference squared [33]: (𝛼𝐴 − 𝛼𝐵)2, where 𝐴 and 𝐵
refer to the two objects in the binary system. Typically, neutron stars (NSs) have
similar scalar charges so the dipole radiation is suppressed in binary neutron star
(BNS) systems. Consequently, the best tests of ST can come from mixed systems,
such as BHNS binaries, as only one of the objects carries scalar charge.

While ST theory is strongly constrained in some environments, deviations from GR
could also be amplified if a NS undergoes spontaneous scalarization1 in certain
conditions [74–83], as pointed out by Damour and Esposito-Farèse [54, 68]. At
some critical central density, the equilibrium solutions for NSs’ structures bifurcate
into several branches, and the GR branch becomes unstable [84, 85]. The most
stable solution corresponds to a scalarized NS with a much larger scalar charge [32,
51, 68, 69]. Therefore, the dipole radiation and consequential deviations from GR
are significantly amplified in such scalarized BHNS systems, which makes them, if
they exist, ideal environments for studying ST theory.

The LIGO-Virgo detectors [86, 87] recently made the landmark observations of the
first BHNS binaries via GWs, GW200105 and GW200115 [88]. With the upcoming
improvement in GW detector sensitivity [89], including future third-generation
detectors [90–93], we can look for effects of gravitational dipole radiation at ever-
increasing precision. Therefore, it is timely and vital to give a precise prediction of
the evolution of the scalarized BHNS binaries in ST, especially accurate modeling of
their dipole GW waveforms. Although there have been significant post-Newtonian
(PN) efforts dedicated toward constructing waveforms in ST theory2 [5, 32–46, 96],
PN theory breaks down as one approaches the merger, or for strongly scalarized
NSs. To date, numerical relativity (NR) still remains the only ab initio method
to investigate ST theory near the merger [73–75, 97–103]. For compact binaries,
NR has been used to simulate binary black holes (BBHs) [73] and BNSs [74, 75,
98] in ST. A numerical simulation of a scalarized BHNS system is still missing.
In this work, we aim to fill this gap by performing fully nonlinear NR simulations
of a BHNS merger in ST theory, with a particular focus on how GW emission is
impacted by spontaneous scalarization. Motivated by the LIGO-Virgo observations,
we consider a GW200115-like system [88].

1See Refs. [74–79] for two related phenomena: induced and dynamical scalarization.
2See also Refs. [94, 95] for an effective-field-theory approach.
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This chapter is organized as follows. In Sec. 9.2 we give a brief introduction to ST
theory and our simulation algorithm. Section 9.3 concentrates on our numerical
setup and strategy to maximize the effect of spontaneous scalarization. Section 9.4
provides our major simulation results. Next in Sec. 9.5 we investigate distinguisha-
bility between waveforms in GR and ST, with a particular focus on to what extent the
ST waveform can be mimicked by tidal effects predicted by GR. Finally in Sec. 9.6
we provide some concluding remarks.

Throughout this chapter we use the geometric units with 𝑐 = 𝐺∗ = 1, where 𝐺∗ is
the bare gravitational constant in the Jordan frame. We use the total Jordan-frame
mass to normalize all dimensional quantities (e.g., time and distance). Meanwhile,
we use the Latin letters 𝑎, 𝑏, 𝑐 . . . for spacetime indices, and 𝑖, 𝑗 , 𝑘 . . . to represent
spatial indices.

9.2 Equations of motion and numerical methods
In this work we consider a ST theory with a single massless scalar field 𝜙. We first
provide some basic features and equations of motion of this theory in Sec. 9.2.1.
Then in Sec. 9.2.2 we introduce our numerical algorithm to perform the NR simu-
lation. Finally in Sec. 9.2.3 we provide our method for extrapolating the waveform
to future null infinity.

9.2.1 The Jordan and Einstein frames
The ST theory is governed by the action [30, 31]

𝑆 =

∫
𝑑4𝑥

√−𝑔
16𝜋

[
𝜙𝑅 −𝜔(𝜙)

𝜙
∇𝑐𝜙∇𝑐𝜙

]
+𝑆𝑀 [𝑔𝑎𝑏,Ψ𝑚], (9.1)

where 𝑔𝑎𝑏 is the metric, 𝑔 is the metric determinant, 𝑅 is the Ricci scalar, 𝑆𝑀
is the action for all matter fields Ψ𝑚, and 𝜔(𝜙) is an arbitrary function of 𝜙 that
parameterizes the coupling between the scalar field and metric. The action in
Eq. (9.1) is written in the Jordan frame in which 𝜙 is nonminimally coupled with
the metric 𝑔𝑎𝑏, whereas the matter fields are minimally coupled to the metric and
not coupled with the scalar field 𝜙, as required by the weak equivalence principle.
Therefore, test particles follow the geodesics of the Jordan frame metric. NSs are
treated as ideal fluids and are governed by the law of conservation of baryon number
and energy-momentum:

∇𝑎 (𝜌0 𝑢
𝑎) = 0, (9.2a)

∇𝑎𝑇𝑎𝑏 = 0, (9.2b)
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where 𝑇𝑎𝑏 is the stress-energy tensor in the Jordan frame. The stress-energy tensor
for an ideal fluid reads

𝑇𝑎𝑏 = 𝜌0ℎ𝑢𝑎𝑢𝑏 + 𝑃𝑔𝑎𝑏, (9.3)

with 𝜌0 the rest mass density of the fluid, ℎ the specific enthalpy, 𝑃 the pressure,
and 𝑢𝑎 the 4-velocity.

The equations of motion for the metric and the scalar field take complicated forms in
the Jordan frame [see Eq. (2.6) of Ref. [22] for example]. In particular, the principal
symbols of the PDE system is not diagonal in the (𝑔𝑎𝑏, 𝜙) field space, so it is not
manifestly symmetric-hyperbolic. Consequently, the Jordan frame is not ideally
suited for simulating the metric and scalar fields. A standard approach to get around
this issue is to apply a conformal transformation [32]: �̄�𝑎𝑏 = 𝜙 𝑔𝑎𝑏. Then the action
becomes:

𝑆 =

∫
𝑑4𝑥

√︁
−�̄�

[
�̄�

16𝜋
− 1

2
∇𝑐𝜓 ∇𝑐𝜓

]
+𝑆𝑀

[
�̄�𝑎𝑏

𝜙
,Ψ𝑚

]
, (9.4)

where �̄� is the Ricci scalar derived from �̄�𝑎𝑏, and

𝑑𝜓 =

√︂
3 + 2𝜔

16𝜋
𝑑𝜙

𝜙
. (9.5)

The integration of Eq. (9.5) depends on the form of 𝜔(𝜙), and we will explain more
details below in Eqs. (9.17) and (9.18). The transformed metric �̄�𝑎𝑏 defines a new
frame, called the Einstein frame; and the scalar field 𝜓 is minimally coupled in
the gravitational sector. The corresponding equations of motion become manifestly
symmetric-hyperbolic:

�̄�𝑎𝑏 = 8𝜋 (𝑇𝜓
𝑎𝑏
+ 𝑇𝑎𝑏), (9.6a)

□̄𝜓 =
1
2
𝑑 log 𝜙
𝑑𝜓

𝑇. (9.6b)

Note that the principal part of the gravitational sector is now identical to its GR
counterpart. Here �̄�𝑎𝑏 is the Einstein tensor obtained from �̄�𝑎𝑏, 𝑇𝑎𝑏 = 𝑇𝑎𝑏/𝜙 is the
matter stress-energy tensor in the Einstein frame, 𝑇 = �̄�𝑎𝑏 𝑇𝑎𝑏 is its trace, and 𝑇𝜓

𝑎𝑏
is

the stress-energy tensor of the scalar field, given by

𝑇
𝜓

𝑎𝑏
= ∇𝑎𝜓 ∇𝑏𝜓 −

1
2
�̄�𝑎𝑏 ∇𝑐𝜓 ∇𝑐𝜓. (9.7)

On the other hand, a complication of the Einstein frame is that the hydrodynamic
equations gain additional source terms:

∇̄𝑎𝑇𝑎𝑏 = −
1
2
𝑑 log 𝜙
𝑑𝜓

𝑇 ∇𝑏𝜓, (9.8a)
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∇̄𝑎 ( �̄�0 �̄�
𝑎) = −1

2
𝑑 log 𝜙
𝑑𝜓

�̄�0 �̄�
𝑎 ∇𝑎𝜓 . (9.8b)

The scalar field 𝜓 is now directly coupled with the matter fields. Because of the
source terms on the RHS, particles do not follow geodesics of �̄�𝑎𝑏.

9.2.2 Numerical algorithm
The single-scalar-field ST theory has been solved numerically for BBHs [73] and
BNSs [74, 75], with the pure Einstein frame [73, 74], and the pure Jordan frame [75].
In our case, we simulate the BHNS system using the Spectral Einstein Code (SpEC)
[104], developed by the Simulating eXtreme Spacetimes (SXS) collaboration [105].
SpEC adopts the generalized harmonic formalism [106], where the Einstein equa-
tions are cast into a first-order symmetric hyperbolic (FOSH) form. It is ideal to
use SpEC to evolve the metric and the scalar field sectors in the Einstein frame
[Eqs. (9.6)]. The reason is twofold. (a) The equations of motion in the Einstein
frame are manifestly symmetric-hyperbolic, as mentioned in Sec. 9.2.1. Therefore
the well-posedness of the Cauchy problem is straightforwardly established. (b) The
principal parts of Eqs. (9.6) are identical to that of GR with a Klein-Gordon field.
Consequently, we can utilize the existing GR FOSH system [106] and the FOSH
system for scalar fields [107, 108] to perform the simulations.

For the hydrodynamics, one could in principle approach the problem in the same
Einstein frame by evolving Eqs. (9.8). But this will complicate the problem because
the extra source terms in Eqs. (9.8), which depend on the scalar field, need to be
added to the existing hydrodynamic code infrastructure in SpEC [109]. Furthermore,
any routine in SpEC that assumes the simple form of energy-momentum and Baryon
number conservation in Eq. (9.2) will need to be revisited. To save the amount of
code changes required, here we propose a simpler algorithm to fulfill the goal.

We adopt a hybrid scheme, illustrated in Fig. 9.1. We evolve the hydrodynamic
system in the Jordan frame, where the corresponding equations [Eq. (9.2)] are the
same as their GR counterparts due to the weak equivalence principle. This lets us
use the entire relativistic hydrodynamics module without modification. Meanwhile,
we use the FOSH systems to treat the metric and the scalar field in the Einstein
frame. Since the Jordan and Einstein frames are related, a proper data flow needs to
be established to evolve them together. An essential step is to pass the Jordan-frame
metric 𝑔𝑎𝑏 and stress-energy tensor 𝑇𝑎𝑏 back and forth (see App. 9.7 for details):
The Einstein-frame metric �̄�𝑎𝑏 is converted to its Jordan-frame version 𝑔𝑎𝑏 via
𝑔𝑎𝑏 = �̄�𝑎𝑏/𝜙, then 𝑔𝑎𝑏 is sent to the Jordan frame for evolving the hydrodynamics.
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Einstein Frame

�̄�𝑎𝑏 = 8𝜋(𝑇𝜓
𝑎𝑏
+ 𝑇𝑎𝑏)

□̄𝜓 =
1
2
𝑑 log 𝜙
𝑑𝜓

𝑇

Gravity Sector

Pseudospectral

Jordan Frame

∇𝑎 (𝜌0𝑢
𝑎) = 0

∇𝑎𝑇𝑎𝑏 = 0

Matter Sector

Finite Difference

𝑔𝑎𝑏 = �̄�𝑎𝑏/𝜙

𝑇𝑎𝑏 = 𝑇𝑎𝑏/𝜙

Figure 9.1: The algorithm of our numerical simulations. We use pseudospectral
methods to evolve the Einstein-frame metric and scalar field, while we use shock-
capturing finite difference to simulate the Jordan-frame matter fields. In practice,
we convert the Einstein-frame metric �̄�𝑎𝑏 to the Jordan-frame one via 𝑔𝑎𝑏 = �̄�𝑎𝑏/𝜙,
and then send 𝑔𝑎𝑏 to the finite difference domain for hydrodynamics simulations.
Similarly, we transfer the Jordan-frame stress-energy tensor 𝑇𝑎𝑏 from the finite
difference grid to the pseudospectral grid, convert it to the Einstein-frame stress-
energy tensor through 𝑇𝑎𝑏 = 𝑇𝑎𝑏/𝜙, and then insert 𝑇𝑎𝑏 into the Einstein equations
in Eqs. (9.6).

Similarly, the Jordan-frame stress-energy tensor 𝑇𝑎𝑏 is converted to the Einstein-
frame one through𝑇𝑎𝑏 = 𝑇𝑎𝑏/𝜙, and inserted into the Einstein equations in Eqs. (9.6).

Within SpEC, this communication is made easier by the two-grid method already
used in hydrodynamics simulations [109], wherein the metric sector is evolved on
a pseudospectral grid, while the hydrodynamic equations are evolved on a finite
difference grid that can handle shocks. At each time step, the metric from the
pseudospectral grid is already interpolated onto the finite difference grid and is fed
to the hydrodynamic equations, and the matter fields are passed by interpolation from
the finite difference grid to the pseudospectral grid and are fed to the stress-energy
tensor in the Einstein equations. For the ST simulations, the metric and the scalar
field are evolved in the Einstein frame [see Eqs. (9.6)] on the pseudospectral grid,
but before the metric is interpolated to the finite difference grid, it is first converted
to the Jordan frame. Similarly, the hydrodynamics equations [see Eqs. (9.2)] are
evolved in the Jordan frame, but before the matter terms are transformed to the
Einstein frame, they are first interpolated to the pseudospectral grid.
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Table 9.1: Summary of the parameters of the GW200115-like BHNS system we
consider. The NS has a baryonic mass 𝑚B and a Jordan-frame mass 𝑚J

NS. Its radius
in the Jordan frame is 𝑅J

S𝑇 . In the absence of the scalar field, its radius is 𝑅GR,
and 𝐶GR = 𝑚J

NS/𝑅GR is its compactness. The tidal Love number of the NS is 𝑘2;
Λ2 is the tidal deformability; 𝛼NS is its scalar charge. To maximize the effect of
spontaneous scalarization, we choose (𝛽0, 𝛼0) = (−4.5,−3.5 × 10−3). The BH has
a Jordan-frame mass 𝑚J

BH. Its dimensionless spin along is denoted by χBH
i𝑛𝑖𝑡 and

is anti-aligned with the Newtonian angular momentum direction L̂𝑁 . The mass-
weighted tidal deformability of the BNHS system is Λ̃2. 𝑅bdry indicates the radius
of the simulation domain, in the unit of total mass 𝑀 = 7.2𝑀⊙, and 𝑁cycle is the
number of orbital cycles before merger. The remnant is a BH with mass 𝑚 𝑓 and
spin 𝜒 𝑓 , where 𝑚 𝑓 is in the unit of 𝑀 .

𝑚B/𝑀⊙ 𝑚J
NS/𝑀⊙ 𝜒NS

init 𝑅J
ST/km 𝑅GR/km 𝐶GR 𝑘2 Λ2

1.71 1.5 0.0 10.58 10.55 0.21 0.0803 131.1

𝛼NS 𝑚J
BH/𝑀⊙ χBH

init Λ̃2 𝑅bdry/𝑀 𝑁cycle 𝑚 𝑓 /𝑀 𝜒 𝑓

0.18 5.7 −0.19L̂𝑁 2.95 500 12 0.98 0.38

9.2.3 Waveform extrapolation
One of the most important tasks of our numerical simulations is to compute GWs
at future null infinity, where we approximate GW detectors to reside. Methods have
been developed, including wave extrapolation [110, 111] and Cauchy-Characteristic
Extraction (CCE) [112, 113], to extract the GWs from simulations with finite do-
mains. This chapter adopts the extrapolation method and leaves CCE for future
work.

Following the standard treatment in PN theory [36, 37, 39, 43], we define a new
conformally transformed metric �̃�𝑎𝑏 by

�̃�𝑎𝑏 = (𝜙/𝜙0)𝑔𝑎𝑏 = �̄�𝑎𝑏/𝜙0, (9.9)

which differs from the Einstein frame metric �̄�𝑎𝑏 by a factor of 𝜙0, the asymptotic
value of the scalar field. The factor is introduced so that the metric �̃�𝑎𝑏 takes its
Minkowski form 𝜂𝑎𝑏 ≡ diag(−1, 1, 1, 1) far from the system. In our simulations,
we find that the value of 𝜙0 is always close to 1, and the difference is negligible,
so we will not distinguish �̃�𝑎𝑏 from �̄�𝑎𝑏 below. The gravitational perturbation ℎ̃𝑎𝑏
associated with �̃�𝑎𝑏 is given by

ℎ̃𝑎𝑏 = 𝜂𝑎𝑏 −
√︁
−�̃� �̃�𝑎𝑏, (9.10)
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whose indices are raised and lowered by 𝜂𝑎𝑏. Then the Jordan-frame metric can be
written as [36]

𝑔𝑎𝑏 = 𝜂𝑎𝑏 + ℎ̃𝑎𝑏 −
1
2
ℎ̃𝜂𝑎𝑏 − Ψ𝜂𝑎𝑏 + O

(
1
𝑟2

)
, (9.11)

where

Ψ =
𝜙 − 𝜙0
𝜙0

. (9.12)

Due to the equation of geodesic deviation [114], the GW measured by a detector
corresponds to the components of the Riemann curvature tensor,

𝑅0𝑖0 𝑗 = −
1
2
¥̃ℎTT
𝑖 𝑗 −

1
2
¥Ψ(�̂�𝑖 �̂� 𝑗 − 𝛿𝑖 𝑗 ), (9.13)

where “TT” refers to the transverse-traceless projection of ℎ̃𝑖 𝑗 , and �̂�𝑖 is GW’s
propagation direction. As a result, the tensor field ℎ̃TT

𝑖 𝑗
contributes to the + and ×

polarizations of the GW signal as in GR, while the scalar field Ψ corresponds to a
transverse breathing mode.3

To extract the three GW polarizations from our numerical simulations, we notice
that the gravitational perturbation ℎ̃𝑎𝑏 is associated with the Einstein-frame metric
�̄�𝑎𝑏, so we can restrict ourselves to this frame during the extrapolation. On the scalar
sector side, 𝜓 [defined in Eq. (9.5)] is our evolved variable in the Einstein frame.
We can convert it to the observable Ψ by integrating Eq. (9.5) and then inserting the
result into Eq. (9.12). Note that the integration depends on the form of 𝜔(𝜙) and
we will provide more details in Eq. (9.17). In practice, we first measure the values
of ℎ̃ and 𝜓 at multiple extraction radii at each timestep, and then extrapolate their
values to null infinity ℐ

+. For each radius, we decompose ℎ̃ = ℎ̃+ − 𝑖ℎ̃× and 𝜓 into
a sum over a set of (spin-weighted) spherical harmonics 𝑠𝑌𝑙𝑚 (𝜄, 𝜑),

𝑟 ℎ̃/𝑀 =
∑︁
𝑙,𝑚

𝑌𝑙𝑚−2 (𝜄, 𝜑) ℎ̃𝑙𝑚 + O(𝑟−1), (9.14a)

𝑟𝜓/𝑀 =
∑︁
𝑙,𝑚

𝑌𝑙𝑚 (𝜄, 𝜑)𝜓𝑙𝑚 + O(𝑟−1), (9.14b)

where we used the fact that ℎ̃, 𝜓 ∼ 1/𝑟 in the wave zone. Each field ℎ̃𝑙𝑚 and 𝜓𝑙𝑚 is
extrapolated to ℐ

+ following the algorithm outlined in Refs. [111, 115–117], with
the PYTHON package scri [118, 119]. In particular, the null rays are parameterized
by an approximate retarded time 𝑢, given by

𝑢 = 𝑡corr − 𝑟∗, (9.15)
3Longitudinal and vector polarizations vanish in ST gravity [114].
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with

𝑟∗ = 𝑟 + 2𝑀𝐸 log
( 𝑟

2𝑀𝐸
− 1

)
, (9.16)

where 𝑀𝐸 = 𝑚E
NS+𝑚

E
BH is the total Einstein-frame mass, and we refer to Refs. [110,

111] for the expression of the corrected time 𝑡corr. Finally these fields are interpolated
to common sets of 𝑢 and fit in powers of 1/𝑟 , allowing to approximate the 𝑟 → ∞
limit.

9.3 Binary and scalar parameters
In Sec. 9.3.1, we provide the binary parameters we consider for the BHNS system,
which are chosen to be consistent with GW200115 [88]. Then in Sec. 9.3.2, we
introduce our strategy for choosing the parameters of the scalar field and the NS. As
mentioned in Introduction, a NS can undergo significant scalarization under certain
conditions, leading to nonnegligible dipole radiation while the scalarized NS orbits
in the binary system. This extra energy dissipation channel accelerates the evolution
of the BHNS system and thus makes the emitted GWs distinguishable from their
GR counterparts. In our simulations, we want to highlight such distinctions by
optimally picking the ST theory parameters and the EOS of the NS.

9.3.1 The binary parameters
We summarize the parameters of the GW200115-like BHNS system [88] we consider
in Table 9.1. The binary system consists of a nonrotating NS with a Jordan-frame
mass𝑚J

N𝑆 of 1.5𝑀⊙, and a spinning BH with𝑚J
BH = 5.7𝑀⊙. The dimensionless spin

of the BH 𝜒BH
init is −0.19, i.e., it is anti-aligned with the orbital angular momentum.

We set the initial separation between the BH and the NS 𝐷init to 11.7𝑀 , where
𝑀 ≡ 𝑚J

B𝐻 + 𝑚
J
NS = 7.2𝑀⊙ is the total Jordan-frame mass; and place the outer

boundary of the system at 𝑅bdry = 500𝑀 . The system undergoes 𝑁cycle ∼ 12 cycles
prior to the merger. The orbital eccentricity is reduced iteratively to 𝑒orb ∼ 1.6×10−4

[120].

Due to our two-grid method described in Fig. 9.1, the NS resides in the Jordan
frame while the BH is in the Einstein frame. So in practice one needs to specify the
Einstein-frame mass of the BH 𝑚E

BH instead, which is related to the Jordan-frame
mass 𝑚J

BH through [32]

𝑚E
BH =

𝑚J
BH√
𝜙
,
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where 𝜙 is evaluated at the position of the BH. We find that |𝜙−1| ≲ 5×10−5 in the
vicinity of the BH, during the inspiral stage, therefore the difference between 𝑚J

BH
and 𝑚E

BH is negligible; thus we simply set 𝑚E
BH = 5.7𝑀⊙.

9.3.2 The parameters of the scalar field and the NS
For a given Jordan-frame mass 𝑚J

NS, the strength of spontaneous scalarization for
the NS depends on 𝜔(𝜙), as well as the EOS and compactness [69, 121]. To look
for the optimal choices to maximize the scalarization in our BHNS simulation, we
consider a single Tolman–Oppenheimer–Volkoff (TOV) NS in an isolated gravity
environment and investigate the impact of the scalar field on the stellar internal
structure.

The function 𝜔(𝜙) characterizes the coupling between the scalar field and gravity.
In this work we follow Ref. [122], whose idea was to Taylor expand the coupling
function ln 𝜙 in 𝜓,

𝜙 = exp
[
−4
√
𝜋𝛼0 (𝜓 − 𝜓0) − 4𝜋 𝛽0 (𝜓 − 𝜓0)2

]
. (9.17)

Using Eq. (9.5), we obtain

𝜔 =
1
2

1
[𝛼0 +

√
4𝜋𝛽0(𝜓 − 𝜓0)]2

− 3
2
. (9.18)

Here 𝜓0 is the asymptotic value of 𝜓 that can also be associated with cosmological
expansion [123–125]. For simplicity, we follow Ref. [74] and set 𝜓0 = 0. The other
two constants 𝛼0 and 𝛽0 determine the features of the ST theory. In particular, if
𝛽0 = 0 we get the JFBD theory [26–29], which is parameterized by 𝛼0 = −(3 +
2𝜔BD)−1/2, where 𝜔B𝐷 is the BD parameter. In the low-density solar system
environment, its value is severely restricted to 𝜔B𝐷 > 40000 by the Cassini mission
[19, 126], which corresponds to |𝛼0 | ≲ 3.5×10−3. In addition, current binary pulsar
measurements place a constraint 𝛽0 ≳ −4.5, because no spontaneous scalarization
has been detected yet [22]. See also Refs. [47–49, 52] for more recent updates.

As pointed out by Damour and Esposito-Farèse [54, 122], even though a scalar-tensor
theory with |𝛼0 | ≪ 1 is indistinguishable from GR within the weak-gravity regime,
a negative value of 𝛽0 can lead to significant relativistic deviations in a strong-
gravity environment, such as spontaneous scalarization of a NS. The size of the
scalarization is characterized by the scalar charge 𝛼NS [32, 122]. In this chapter, we
adopt the definition of 𝛼NS from Refs. [32, 122], which differs from the convention
used by the PN community by a minus sign (see App. A of Ref. [37] for translating
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Figure 9.2: The scalar charge of a NS as a function of 𝑚J
NS, with a variety of 𝛽0 (the

upper panel) and 𝛼0 (the lower panel) values. Its EOS is summarized in Table 9.1,
which has been selected to amplify the scalarization. The vertical dashed lines
correspond to the NS in our simulation (𝑚J

NS = 1.5𝑀⊙). We choose 𝜓0 = 0 in both
panels.

notation); consequently, we have 𝛼NS < 0. For a Newtonian star, 𝛼NS reduces to
𝛼0; thus is independent of its internal structure (a proof can be found in App. 9.8).
For a strongly self-gravitating scalarized star, its structure is governed by the TOV
equation with an extra scalar field, see, e.g., Eqs. (7 − 9) of Ref. [122]; we provide
a brief review in App. 9.8. We numerically solve the TOV equation, and the choice
of the EOS will be discussed shortly. Then we compute the corresponding scalar
charge 𝛼NS with Eq. (9.48). Figure 9.2 shows 𝛼NS as a function of the Jordan-frame
mass 𝑚J

N𝑆, using a variety of 𝛽0 (the upper panel) and 𝛼0 (the lower panel) values.
Notice that sharp transitions develops at 𝑚J

NS ∼ 1.4𝑀⊙ and 1.8𝑀⊙ as 𝛼0 → 0. The
NSs between these masses are spontaneously scalarized. In addition, we see the
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scalar charge increases with the absolute value of 𝛼0 and 𝛽0 for a fixed 𝑚J
NS (e.g.,

the vertical dashed line). Therefore, we chose (𝛽0, 𝛼0) = (−4.5,−3.5×10−3) below
to maximize the effect of scalarization.

On the other hand, we can also leverage the freedom of choosing an EOS to magnify
the scalarization. Here we restrict ourselves to the spectral EOSs provided in [127],
parameterized by the form

𝑃(𝜌) =

𝜅0𝜌

Γ0 , 𝜌 < 𝜌0,

𝑃0 exp
[∫ 𝑥

0 Γ(𝑥) 𝑑𝑥
]
, 𝜌 > 𝜌0,

(9.19)

with 𝜌0 a reference density, 𝑃0 = 𝑃(𝜌0), Γ(𝑥) = 𝛾2𝑥
2 + 𝛾3𝑥

3 and 𝑥 = ln(𝜌/𝜌0).
Among the options, we find the following soft EOS that gives rise to the strongest
scalarization effect (obtained from Table III of Ref. [127]):

Γ0 = 2, 𝜌0 = 8.44019 × 10−5, 𝑃0 = 1.20112 × 10−7

𝛾2 = 0.475296, 𝛾3 = −0.117048.

Note that 𝜌0 and 𝑃0 are in 𝐺∗ = 𝑐 = 𝑀⊙ = 1 units. For comparison, we also solve
a NS with the same Jordan-frame mass in GR, and summarize the corresponding
stellar properties in Table 9.1. The compactness of the NS is 𝐶GR ∼ 0.22, with
a tidal Love number 𝑘2 of ∼ 0.08 [128] and a tidal deformability Λ2 = 2

3
𝑘2
𝐶5

GR
of

∼ 131.1 [129] in the absence of the scalar field.

To end this section, we emphasize that our choices for the EOS and the ST theory
parameters are intentionally made to produce a large scalar field: the values of
(𝛼0, 𝛽0) lie on the edge of existing constraints [19, 22, 47–49, 126], even though they
may not be preferred in the actual astrophysical environment. The current idealized
configuration is to justify our simulation code and to investigate the maximum
possible detectability of the dipole radiation emitted by BHNS systems. Future
work is being planned to explore more moderate scenarios.

9.4 Numerical results
We present our main simulation results in this section. For comparison, the BHNS
system is evolved in both GR and ST theory, and two numerical resolutions are
adopted for each case by specifying different numerical error tolerances to the
adaptive mesh refinement (AMR) algorithm in SpEC [130]. Below we first give
a qualitative panorama view of the GR system in Sec. 9.4.1, and the ST system in
Sec. 9.4.2. Then in Sec. 9.4.3 we compare the GR and ST simulations. Finally in
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Figure 9.3: The evolution of the volume-weighted constraint energy for the metric,
evolved with GR. The orange (blue) curve corresponds to the low (high) resolution.
The vertical dashed line indicates the onset of the merger.

Sec. 9.4.4, we conduct more quantitative discussions by comparing our numerical
waveforms to existing PN predictions in ST.

9.4.1 The BHNS system in GR
We first evolve the system with GR, whose initial data are built based on the method
in Refs. [131, 132]. For the GW200115-like binary parameters we consider (see
Table 9.1), the NS is swallowed quickly by the BH during the merger, and there is no
tidal disruption. The remnant BH has a mass of 𝑚 𝑓 = 0.9785𝑀 , with 𝑀 = 7.2𝑀⊙
the total Jordan-frame mass defined in Sec. 9.3.1. The remnant dimensionless spin
is 𝜒 𝑓 = 0.38. As a standard numerical diagnostic, we plot the volume-weighted
generalized harmonic constraint energy [see Eq. (53) of Ref. [106]] in Fig. 9.3,
where the orange (blue) curve refers to the low (high) resolution run. As expected,
the constraint energy decreases with increasing resolution, once the initial transients
(known as junk radiation) leave the domain (𝑡 > 𝑅bdry = 500𝑀). Here 𝑅bdry is
the radius of our simulation domain, as summarized in Table 9.1. In addition, we
remark that the constraints jump drastically near 𝑡 = 1938𝑀 , when the NS starts to
plunge into the BH.

The top panel of Fig. 9.4 shows the dominant 𝑙 = 𝑚 = 2 harmonic ℎ̃22 emitted
by the BHNS system, with low (in orange) and high (in blue) resolution. We see
that the two waveforms manifest significant dephasing near the merger. Our current
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Figure 9.4: GW diagnostics for the GR systems. Upper panels: The GW harmonic
ℎ̃22 of the BHNS system evolved with GR, using a low (in orange) and high resolution
(in blue). Two BHNS waveforms are compared to that of the BBH system (in
black) which has the same mass ratio and spins. We align the three waveforms by
minimizing their mismatch over time and phase shifts, with the optimization window
chosen to be [200𝑀, 800𝑀]. Middle panels: the GW phases of the high-resolution
BHNS binary (in blue) and the BBH binary (in black). Lower panels: the GW phase
difference between the BBH and the BHNS system (in black). It is compared to the
numerical resolution difference of the BHNS waveform (in blue).

waveforms are less accurate than other recent BHNS SpEC simulations [133] even
though we use the same criteria to set the numerical error tolerances in AMR. This
is mainly because the NS we consider is softer, which has a smaller radius and would
require finer grids to resolve its structure. However, as the main purpose of this
study is to get a first qualitative understanding of BHNS binaries in ST, we expect
the current accuracy to be sufficient (see more details in Sec. 9.4.3).
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The leading tidal effect in the GW phase evolution appears at 5PN order [129], and
is captured by a mass-weighted tidal parameter Λ̃2 [134]

Λ̃2 =
16
13
(𝑀 + 11𝑚J

BH)
𝑀5 𝑚J 4

NSΛ2. (9.20)

After plugging in the values listed in Table 9.1, we find Λ̃2 is around 2.95, implying
that the emitted GWs are almost indistinguishable from that of a BBH system with
the same spins and mass ratio. To demonstrate this, we compare the BHNS waveform
to that of an equivalent BBH system (black dashed line in the top panel of Fig. 9.4).
The data of the BBH binary are obtained from the NRSur7dq4 surrogate model
[135]. We align the two waveforms ℎ̃BHNS

22 and ℎ̃Sur
22 by minimizing their mismatch

M:

M = 1 −
( ℎ̃BHNS

22 | ℎ̃Sur
22 )√︃

( ℎ̃BHNS
22 | ℎ̃BHNS

22 ) ( ℎ̃Sur
22 | ℎ̃

Sur
22 )

, (9.21)

over time and phase shifts. Here the time-domain inner product between two signals
𝑎, 𝑏 is given by

(𝑎 |𝑏) = Re
∫ 𝑡2

𝑡1

𝑎(𝑡)∗ 𝑏(𝑡) 𝑑𝑡, (9.22)

where the star denotes complex conjugation, and we choose the optimization window
to be [𝑡1, 𝑡2] = [200𝑀, 800𝑀]. We provide the phase evolution 𝜙22 of the aligned
waveforms:

𝜙22 ≡ arg ℎ̃22, (9.23)

in the middle panel of Fig. 9.4, as well as the corresponding waveform phase
differencesΔ𝜙22 in the bottom panel. We see the phase difference between the BHNS
and BBH (∼ 0.4 rad) remains comparable to NR numerical resolution difference up
to ∼ 10𝑀 prior to the waveform peak, which indicates that the tidal effect of this
system is negligible.

9.4.2 The BHNS system in ST: Scalar Field
Let us then move on to the ST simulation. For simplicity, we use the same initial
data as its GR counterpart to evolve the system, where the scalar field is absent;4
while this means the initial data do not correctly capture a snapshot of the binary

4It is straightforward to check that the GR initial data satisfy the ST constraint equations.
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Figure 9.5: The evolution of the scalar field 𝜓 measured at the center of the NS.
The plot describes the growth of the scalar field around the NS at the beginning of
the simulation. The horizontal dashed line corresponds to the prediction by solving
equations of motion for an isolated NS in Sec. 9.3.2.

system in ST gravity that started at an infinite time in the past, this is also true for
the GR simulation presented in Sec. 9.4.1, where Fig. 9.3 displays the presence of
spurious initial transients during 𝑡 < 𝑅bdry = 500𝑀 . In our ST simulations, the
system undergoes an extra transient regime at the beginning of the evolution, during
which a scalar field cloud grows dynamically around the NS. In Fig. 9.5, we plot
the scalar field value 𝜓𝑐 measured at the stellar center as a function of time. During
the first 50𝑀 , the value of 𝜓𝑐 increases and asymptotes to the value predicted by
the isolated NS solver (the horizontal dashed line) that we used in Sec. 9.3.2, which
serves as a cross-check of our numerical code. Note that the 𝜓𝑐 growth time scale
is much shorter than the aforementioned initial transients (𝑡 ∼ 500𝑀), therefore we
expect that our results are not impacted by this additional transition from GR to ST.

We also provide the volume-weighted generalized harmonic constraint energy [see
Eq. (53) of Ref. [106]] in the top panel of Fig. 9.6 and find that the additional scalar
field does not worsen the constraint violation compared to the GR system (Fig. 9.3):
the evolution of the constraint is identical modulo a shift to an earlier time, due to
the hastened merger of the ST system. In addition, as for the scalar field’s FOSH
system [107, 108], we need to introduce an auxiliary dynamical variable Φ𝑖 ≡ 𝜕𝑖𝜓,
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and its associated constraint energy:

E𝜓 =


√√√ 3∑︁

𝑖=1

[
𝐶
(1)
𝑖
𝐶
(1)
𝑖
+ 𝐶 (2)

𝑖
𝐶
(2)
𝑖

] , (9.24)

where ∥·∥ denotes 𝐿2 norm over the domain. The derivative constraint for 𝜓, 𝐶 (1)
𝑖

,
reads

𝐶
(1)
𝑖

= (𝜕𝑖𝜓)num −Φ𝑖, (9.25)

where (𝜕𝑖𝜓)num corresponds to the numerical spatial derivative of 𝜓. The second
derivative constraint for 𝜓, 𝐶 (2)

𝑖
, is given by

𝐶
(2)
𝑖

= [𝑖 𝑗 𝑘]𝜕𝑗Φ𝑘 (sum on 𝑗 , 𝑘) (9.26)

with [𝑖 𝑗 𝑘] being the Levi-Civita symbol, with [123] = +1. We provide the evolution
of E𝜓 in the lower panel of Fig. 9.6. As expected, it also decreases with increasing
resolution.

Finally, to close this subsection, we give a qualitative description of the scalar field
𝜓 in Fig. 9.7 by taking a snapshot of its distribution at 𝑡 = 2062.3𝑀 across the entire
computational domain. In the wave zone, the distribution of the scalar field in the
𝑥 − 𝑦 plane (left panel) is singly periodic in 𝜑 like 𝑒𝑖𝜑, where 𝜑 is the azimuthal
angle defined in Eq. (9.14b); and in the 𝑦 − 𝑧 plane (right panel), we see vanishing
on the 𝑧 axis with a single maximum at the equatorial plane (𝑧 = 0), like sin 𝜄. These
patterns are consistent with the dipolar nature 𝑌11 ∼ sin 𝜄𝑒𝑖𝜑 of the scalar field, and
we will discuss this in more detail in Sec. 9.4.4.

9.4.3 Comparison between the GR and ST
Figure 9.8 displays the evolution of the coordinate separation between the two
compact objects for the GR and the ST systems. We first see that the merger
portions of both systems can be aligned perfectly through a time shift, namely, they
have a similar ¤𝑅−𝑅 dependence near the merger and thus a similar plunge dynamic,
implying a similar orbital separation (and therefore similar frequency) for the onset
of the plunge. This feature is different from the BNS simulations in Ref. [74], where
ST binaries were found to merge at significantly larger orbital separation (see their
Fig. 1). The difference arises from the size of the gravitational attraction. Recall
that the gravitational pull in ST gravity is characterized by the effective gravitational
constant 𝐺eff = 𝐺∗(1 + 𝛼1𝛼2) [32], which is amplified for BNS systems when
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Figure 9.6: The evolution of the volume-weighted constraint energy for the metric
(the upper panel) and the scalar field (the lower panel), evolved with ST. The red
(green) curve corresponds to the low (high) resolution. The vertical dashed line
indicates the onset of the merger.

both the NSs have a nonzero scalar charge. Consequently, their plunges happen
at larger orbital separations. By contrast, the gravitational pull in our ST BHNS
system is similar to its GR counterpart because the BH’s scalar charge vanishes,
so the scalar sector has negligible impact on the plunge separation. However, the
ST simulation does exhibit a nonnegligible deviation from its GR counterpart over
a longer timescale. As shown in Fig. 9.8, the ST simulation has a shorter total
duration than the GR case, even though they both start at the same separation. This
is because the scalarized NS admits an additional energy dissipation channel via
scalar radiation; therefore the system in ST gravity evolves faster during the inspiral.

A direct consequence of the hastened dynamics is a shortening of the GW signal.
Figure 9.9 provides the 𝑙 = 𝑚 = 2 harmonic of the ST waveform for two different
resolutions (solid curves). For reference, ℎ̃22 in GR is plotted as the blue dashed
curve. Here we still align the waveforms by minimizing the mismatch in Eq. (9.21)
over time and phase shifts. The same time window [𝑡1, 𝑡2] = [200𝑀, 800𝑀] is
used. After the peak of the ST waveform, it takes the GR waveform an extra
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(a) The 𝑥 − 𝑦 plane (b) The 𝑦 − 𝑧 plane

Figure 9.7: A snapshot of the field log |𝜓 | at 𝑡 = 2062.3𝑀 across the entire com-
putational domain, with the outer boundary being at ∼ 500𝑀 . The orbital angular
momentum is aligned with the 𝑧 axis.
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Figure 9.8: The evolution of the orbital separation for the BHNS system, in the ST
gravity (green) and GR (blue).

GW cycle, Δ𝜙22 ∼ 6.34 rad [Eq. (9.23)], to reach its peak, smaller than GR’s
numerical resolution difference at the peak (∼ 0.6 rad). Therefore our simulations
are able to capture the effect of scalar radiation well above the numerical resolution
difference, even though our simulations are less accurate than other recent BHNS
SpEC simulations [133], as discussed in Sec. 9.4.1.



408

250 500 750 1000 1250 1500 1750

0.2

0.1

0.0

0.1

0.2
R

e 
h̃

22

ST (low resolution)
ST (high resolution)
GR (high resolution)

2020 2060 2100 2140 2180

0.2

0.1

0.0

0.1

0.2

250 500 750 1000 1250 1500 1750

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

∆
φ

22
 (r

ad
)

ST |high resolution−low resolution|
GR |high resolution−low resolution|
|ST−GR|

2020 2060 2100 2140 2180

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

t (M)

t (M)

mJ
BH = 5.7M¯ , m

J
NS = 1.5M¯ , χ

BH
z = − 0.19, χNS

z = 0, Λ2 = 131.1
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addition, we summarize some of the binary parameters in the title.

9.4.4 Comparing to post-Newtonian theory
We now carry out quantitative comparisons between the simulated GW waveforms
and existing PN waveform predictions in ST. As pointed out in Refs. [37, 39], the
relative size of the leading scalar dipolar radiation and leading tensor quadrupolar
radiation is given by

Fnd
Fd

=

(
24

5𝜁S2
−

)
𝑥, (9.27)

with F being energy flux. In our simulation, we find the factor above is greater
than 25, i.e., quadrupolar radiation dominates, so we are in the quadrupole-driven
regime [37].
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Figure 9.10: Comparing the numerical waveforms (in green and blue) to the PN
model (in magenta). Fig. 9.10a shows the ST tensor harmonic ℎ̃22 (top) and the
scalar modes Ψ11 (middle) and Ψ22 (bottom). Note that the modes Ψ𝑙𝑚 are defined
in Eq. (9.36). Fig. 9.10b provides the GR tensor harmonic ℎ̃22.

We first consider the gravitational modes ℎ̃𝑙𝑚, whose PN expressions read [37]

ℎ̃𝑙𝑚 = 2�̃� (1 − 𝜁)𝜂𝑥
√︂

16𝜋
5
�̂�𝑙𝑚𝑒

−𝑖𝑚𝜙, (9.28)

where 𝜂 = 𝑚J
BH𝑚

J
NS/(𝑚

J
BH+𝑚

J
NS)

2 is the symmetric mass ratio, 𝑥 = (�̃�𝑀𝛼Ωo𝑟𝑏)2/3

is the PN expansion parameter, Ωorb is the orbital frequency, and we give 𝜙 below.
We summarize the definition of ST parameters �̃�, 𝜁 , 𝛼 in Table 9.2. In Eq. (9.28),
comparing with Eq. (65) of Ref. [37], we removed an overall factor 𝑀/𝑟 which is
already divided out in Eq. (9.14a). The expressions for �̂�𝑙𝑚 are long and they can
be found in Eqs. (67) of Ref. [37]. Because the dipolar scalar radiation starts 1PN
earlier than the leading quadrupolar gravitational radiation, the inspiral is separated
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into two parts: dipolar (D) or non-dipolar (ND). The phase factor 𝜙 reads

𝜙 = 𝜙nd + 𝜙d , (9.29a)

𝜙nd = −𝑥
−5/2

32𝜂𝜉

[
1 + 5

3
𝜌nd

2 𝑥 +
5
2
𝜌nd

3 𝑥
3/2 + 5𝜌nd

4 𝑥
2 + 5

2
𝜌

spin
3 𝑥3/2 + 5𝜌spin

4 𝑥2
]
, (9.29b)

𝜙d =
25S2

−𝜁𝑥
−7/2

5376𝜂𝜉2

[
1 + 7

5
𝜌d

2𝑥 +
7
4
𝜌d

3𝑥
3/2 + 7

3
𝜌d

4𝑥
2
]
, (9.29c)

with the coefficients 𝜌nd/d
𝑖

’s being listed in Eqs. (B10) of Ref. [37]. The ST param-
eters 𝜉 and S± are defined in Table 9.2, and we see that all of them depend on the
sensitivity of the NS

𝑠NS =

(
𝑑 ln𝑚J

NS
𝑑 ln 𝜙

)
𝜙0

. (9.30)

The relationship between 𝑠NS and the scalar charge 𝛼NS reads [37]

𝑠NS =
1
2
− 𝛼NS

2𝛼0
, (9.31)

where 𝛼0 is the ST parameter defined in Eq. (9.18). Equation (9.29b) is controlled
by the quadrupolar radiation, while Eq. (9.29c) is controlled by the dipolar radiation
starting at −1PN. Spin effects are not considered in Ref. [37]; here we simply add
the spin contributions in GR, leading to the second line in Eq. (9.29b), and we leave
the relevant ST corrections for future studies. The expressions of 𝜌spin

𝑖
’s can be

found in Eq. (4.16) of Ref. [136],

𝜌
spin
3 =

1
12

∑︁
𝑖=1,2

𝜒𝑖 (L̂𝑁 · ŝ𝑖)
(
113

𝑚2
𝑖

𝑀2 + 75𝜂

)
, (9.32)

𝜌
spin
4 =

1
48
𝜂𝜒1𝜒2 [247(ŝ1 · ŝ2) − 721(L̂𝑁 · ŝ1) (L̂𝑁 · ŝ2)], (9.33)

where L̂𝑁 and ŝ𝑖 stand for the unit vector along the orbital angular momentum
and the individual spin s𝑖. Furthermore, we note that tidal effects are ignored
in Eq. (9.29a), which formally enter into the phase evolution at 5PN order [129].
This is reasonable for this study, as the system’s mass-weighted tidal deformability
Λ̃2 ∼ 2.95 is very small and it has little impact on the binary dynamics, as shown in
Fig. 9.4. In the top panel of Fig. 9.10a, we compare the ST numerical waveform ℎ̃22

to the PN prediction, finding good agreement until ∼ 500𝑀 before the merger. For
reference, we also plot the GR waveform ℎ̃22 and the corresponding PN prediction
in Fig. 9.10b. Additionally, in App. 9.10, we present a more detailed comparison by
demonstrating the hierarchical contributions of each PN term.
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Table 9.2: Summary of PN parameters used for ST gravity. We have used the
fact that a BH’s scalar charge vanishes: 𝛼BH = 0, and thus 𝑠BH = 1/2 following
Eq. (9.31). Note that 𝛼 is not to be confused with the scalar charge 𝛼NS.

𝜔0 �̃� 𝜁 𝛼 S− S+ 𝜉

1−3𝛼2
0

2𝛼2
0

1+𝛼2
0

𝜙0

𝛼2
0

1+𝛼2
0

1
1+𝛼2

0
−𝛼1/2𝑠NS 𝛼1/2(1 − 𝑠NS) 1 + 𝜁S2

+
6

We then compare the scalar modes 𝜓𝑙𝑚 extracted from our simulation with predic-
tions from PN. The PN prediction for the (𝑙, 𝑚) harmonic of the transverse breathing
mode Ψ [see Eq. (9.11)] is given by [39]

Ψ𝑙𝑚 = 2𝑖�̃�𝜁
√
𝛼S−𝜂

√
𝑥

√︂
8𝜋
3
Φ̂𝑙𝑚𝑒

−𝑖𝑚𝜙, (9.34)

where the expression of Φ̂𝑙𝑚 can be found in Eqs. (6.10) of Ref. [39]; and Ψ𝑙𝑚 is
defined in parallel with Eq. (9.14b):

𝑟Ψ/𝑀 =
∑︁
𝑙,𝑚

𝑌𝑙𝑚 (𝜄, 𝜑)Ψ𝑙𝑚 . (9.35)

Here Ψ𝑙𝑚 is related to our numerical extracted scalar mode 𝜓𝑙𝑚 [Eq. (9.14b)] via

Ψ𝑙𝑚 = −4
√
𝜋𝛼0𝜓𝑙𝑚, (9.36)

where Eq. (9.17) has been used. We compare our numerical scalar modes Ψ11 and
Ψ22 to the PN predictions in the middle and bottom rows of Fig. 9.10a, and refer
to App. 9.9 for other (subdominant) modes. Similar to ℎ̃22, the PN predictions for
the 𝜓𝑙𝑚 phase evolution are accurate until ∼ 500𝑀 before merger; however, their
amplitudes do not match as accurately as their phases.

9.5 Waveform distinguishability
We have discussed features of the BHNSs in GR and ST. Then in this section, we
investigate how our numerical simulations can help place constraints on ST theory
with GW200115 and future BHNS observations. Specifically, here we focus on
whether a ST waveform can be distinguished from a GR waveform. We estimate this
by computing the mismatchM between the two waveforms, defined in Eq. (9.21).
Note that in Eq. (9.22), we used a flat noise curve for simplicity, namely assuming
an idealized detector.

We first compute the mismatch between the GR and ST waveform ℎ̃22 presented in
Fig. 9.9 and findM = 0.38. Since the error in our simulations is larger than other
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Figure 9.11: The mismatch of the SEOBNRv4Tmodel with the ST waveform (green)
and the GR result (blue), as a function of tidal deformability Λ2. For the sake of
comparison, we also compute the mismatch between two resolutions for ST (green
dashed line) and GR (blue dashed line).

BHNS SpEC simulations (see discussions around Figs. 9.4 and 9.9), we terminate
the integration in Eq. (9.22) at the peak of the ST waveform (𝑡2 = 2102𝑀) to avoid
the ringdown region. One criterion for the distinguishability of two waveforms reads
[137–141]

M >
𝐷

2𝜌2 , (9.37)

where 𝐷 = 5 is the number of free intrinsic parameters (chirp mass, mass ratio, spin
magnitudes on both compact objects, and tidal deformability) of our nonprecessing
systems, and 𝜌 is the signal-to-noise ratio (SNR). After inserting the numbers, we
find 𝜌 > 2.56 is needed to distinguish ST from GR. Such a low SNR threshold is not
surprising for this specific case with extreme scalarization and an idealized detector,
given the significant dephasing between the two waveforms shown in Fig. 9.9. For
more moderate ST parameters and more realistic detectors, the deviation is not
expected to be as large, and we leave this exploration for future work.

The subsequent question to consider is the extent to which tidal effects within GR
can replicate the ST waveform. To explore this question, we employ an effective-
one-body (EOB) model known as SEOBNRv4T [142, 143]. This model includes tidal
effects and is characterized by tidal deformability coefficients Λ𝑙 in its tidal sector,
with 𝑙 = 2 being the focus in this case. To generate the SEOBNRv4T waveforms with
varying Λ2, we utilize LALSuite [144]. Figure 9.11 showcases the mismatch of
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Figure 9.12: Comparing the ST waveform (black) with the SEOBNRv4Tmodel, with
a variety of Λ2, ranging from 0 to 6000. The minimum mismatch M ∼ 0.023
happens at Λ2 ∼ 4000.

these waveforms with the ST waveform ℎ̃22 as a function of Λ2 while fixing other
intrinsic parameters at their NR values. The mismatch first decreases when Λ2 is
small, and the best match M ∼ 0.023 happens at Λ2 ∼ 4000. As a comparison,
we repeat the same calculation for the mismatch between the SEOBNRv4T model
and the GR waveform. The result is shown as the blue curve in Fig. 9.11, and
we can see the mismatch grows monotonically with Λ2 (recall the tidal effect is
negligible in the GR simulation). To better understand the feature, in Fig. 9.12 we
provide the SEOBNRv4T waveforms with a variety of Λ2, ranging from 0 to 6000.
In particular, we mark the best-fit waveform (Λ2 = 4000) with black crosses. With
increasing Λ2, we see the tidal waveforms gradually shift backward in time, because
the tidal effect accelerates the evolution and shortens the length of waveforms. This
behavior is similar to the effect of the scalar field and dipole radiation. Notably,
as Λ2 approaches 4000, the last two wave cycles of the SEOBNRv4T waveforms (at
𝑡 ∼ 2075𝑀) align more closely with ST’s phase evolution, resulting in a smaller
mismatch. Further increasing Λ2 beyond this point causes the tidal waveforms to
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deviate again from the ST waveform. Therefore, the mismatch in Fig. 9.11 bounces
back.

Our preliminary mismatch comparison shows that both the tidal and scalar sectors
could produce similar and potentially degenerate imprints in GWs given the length of
our simulations (∼ 12 cycles before the merger). A limitation of our analysis is that
the NR waveforms are relatively short and lacked low-frequency components—the
dipole radiation appears at−1PN whereas the tidal effect at 5PN. A longer waveform
with a broader frequency span may break the degeneracy. A more comprehensive
analysis is therefore necessary to fully characterize these features using longer
waveforms with a broader frequency span and Bayesian parameter estimation. We
leave this exploration to future research.

9.6 Conclusion
In this chapter, we numerically simulate a fully relativistic BHNS binary system in
ST theory, chosen to be consistent with GW200115 [88]. To maximize the effect of
spontaneous scalarization, we set the ST parameters (𝛽0, 𝛼0) to be at the boundary of
known constraints from other observations [22]: (−4.5,−3.5 × 10−3). In addition,
we select a soft EOS for the NS so that it can generate a large scalar charge, as
summarized in Table 9.1. Following Refs. [131, 132], we construct the initial data
without including the scalar sector. Instead, the scalar field dynamically grows
during the first ∼ 50𝑀 , and quickly approaches the desired value predicted by the
isolated NS solver.

We evolve the BHNS system with both GR and ST. For the GR binary, we find the
soft EOS results in GW emissions that are nearly identical to those of a BBH system
with the same spins and mass ratio. In contrast, the ST binary exhibits dominant
dipolar radiation due to spontaneous scalarization, with the spatial distribution of the
scalar field 𝜓 matching the dipolar emission pattern throughout the computational
domain. As a result of this additional dipolar radiation, the ST binary evolves faster
than its GR counterpart, and the ST binary reaches its peak amplitude one whole GW
cycle earlier than the GR counterpart. We also compare our waveforms, including
the tensor mode ℎ̃22 and scalar breathing modes Ψ11,22, with existing PN waveform
predictions in ST [37, 39, 136], and find reasonable agreement up to ∼ 500𝑀 before
the merger. Finally, we compute the mismatch between our ST waveform and the
SEOBNRv4Tmodel as a function of tidal deformability Λ2. We find the ST waveform
could be partially mimicked by a GR tidal waveform with a large Λ2 ∼ 4000, due to
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the tidal effect accelerating the evolution of the binary.

Throughout the analysis, we pick optimal choices for the EOS and the ST theory pa-
rameters in order to produce a significant scalarization effect, and thus strong dipolar
radiation. Under this idealized scenario, we find that the GR and ST waveforms
should be distinguishable for SNRs above 2.56. To fully understand observational
prospects of constraining ST theory using BHNS systems, future work should ex-
plore a wider range of EOSs and more moderate ST parameters. Specifically, the
scalar field’s ability to alter the properties of NSs, such as compactness and ra-
dius, may play a crucial role in determining whether the NSs are disrupted or not
[145], potentially leading to rich phenomena in the corresponding GW and even
electromagnetic emissions for ST binary systems.

Our mismatch tests using the SEOBNRv4Tmodel and the GR waveforms indicate that
the ST sector might be partially degenerate with tidal effects during the late inspiral
stage (excluding low-frequency regime), which can lead to parameter estimation
biases. Here we restrict ourselves to a single degree of freedom: Λ2, while holding
other parameters such as mass ratio and spins constant. A possible avenue for future
work is to carry out a more systematic full Bayesian parameter estimation to better
account for these degeneracies.

Finally, our waveforms are obtained at null infinity through extrapolation following
Refs. [111, 115–117], with the PYTHON package scri [118, 119]. The method is an
approximate approach that relies on the asymptotic behavior of several fields given
by the peeling theorem [146]. While this approximate approach captures linear
signals, it does not accurately capture nonlinear features such as the memory effect
[147–152]. The more correct Cauchy-Characteristic Extraction (CCE) [112, 113]
method would be required to fully account for these effects. Therefore, another
future avenue could be to evolve the coupled metric-scalar system using a CCE
framework adapted to ST, and investigate the memory effect in ST gravity [147–
150, 153–155].

9.7 Appendix: The two-grid method and transformations
In the Einstein frame, we adopt the 3+1 decomposition of the metric [156]

𝑑𝑠2 = −�̄�2𝑑𝑡2 + �̄�𝑖 𝑗 (𝑑𝑥𝑖 + 𝛽𝑖𝑑𝑡) (𝑑𝑥 𝑗 + 𝛽 𝑗𝑑𝑡), (9.38)

where �̄�, 𝛽𝑖, �̄�𝑖 𝑗 are the lapse, shift, and 3-metric in the Einstein frame. They, their
spatial derivatives, and the extrinsic curvature 𝐾𝑖 𝑗 are transformed to the Jordan
frame via:
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(9.39)

where the future-directed unit timelike normal is given by

�̄�𝑎 = �̄�−1(𝜕𝑎𝑡 − 𝛽𝑖𝜕𝑎𝑖 ). (9.40)

On the other hand, the transformation of the stress-energy tensor 𝑇𝑎𝑏 can be estab-
lished from its definition

𝑇𝑎𝑏 =
2
√
−�̄�

𝛿𝑆𝑀

𝛿�̄�𝑎𝑏
. (9.41)

After inserting
�̄�𝑎𝑏 = 𝜙𝑔𝑎𝑏,√︁
−�̄� = 𝜙2√−𝑔,

(9.42)

into Eq. (9.41), we obtain

𝑇𝑎𝑏 =
2
√
−�̄�

𝛿𝑆𝑀

𝛿�̄�𝑎𝑏
=

1
𝜙3

2
√−𝑔

𝛿𝑆𝑀

𝛿𝑔𝑎𝑏
=

1
𝜙3𝑇

𝑎𝑏, (9.43)

which leads to 𝑇𝑎𝑏 = 𝑇𝑎𝑏/𝜙.

9.8 Appendix: Structure of neutron stars in ST gravity
Following Ref. [122], the Einstein-frame metric of an isolated, nonspinning NS can
be written as

𝑑𝑠2 = −𝑒𝜈(𝑟)𝑑𝑡2 + 𝑑𝑟2

1 − 2𝜇(𝑟)/𝑟 + 𝑟
2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2). (9.44)

Then the equations of motion are given by

𝜇′ = 4𝜋𝑟2𝐴4(𝜌0ℎ − 𝑃) +
1
2
𝑟 (𝑟 − 2𝜇)𝜑2, (9.45a)

𝜈′ = 8𝜋
𝑟2𝐴4𝑃

𝑟 − 2𝜇
+ 𝑟𝜑2 + 2𝜇

𝑟 (𝑟 − 2𝜇) , (9.45b)
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(9.45d)
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[
1
2
𝜈′ + (𝛼0 + 𝛽0

√
4𝜋𝜓)𝜑

]
, (9.45e)

with 𝐴 = 𝜙−1/2. Note that 𝑃, 𝜌0, and ℎ are in the Jordan frame. The system of
coupled ordinary differential equations can be solved as an initial value problem
integrating out from 𝑟 = 𝜖 > 0. The asymptotic expansion of the solution near the
stellar center 𝑟 → 0 is

𝜇(𝑟) ∼ 1
3!
𝜇3𝑟

3,

𝜈(𝑟) ∼ 1
2!
𝜈2𝑟

2,

𝜑(𝑟) ∼ 𝜑1𝑟,

𝜓(𝑟) ∼ 𝜓𝑐 +
1
2!

1
√

4𝜋
𝜑1𝑟

2,

𝑃(𝑟) ∼ 𝑃𝑐 +
1
2!
𝑃2𝑟

2,

(9.46)

where
𝜇3 = 8𝜋𝐴4

𝑐 (𝜌𝑐ℎ𝑐 − 𝑃𝑐),

𝜈2 = 8𝜋𝐴4
𝑐𝑃𝑐 +

𝜇3
3
,

𝜑1 =
4𝜋
3
𝐴4
𝑐 (𝛼0 + 𝛽0

√
4𝜋𝜓𝑐) (𝜌𝑐ℎ𝑐 − 4𝑃𝑐),

𝑃2 = −𝜌𝑐ℎ𝑐
[
1
2
𝜈2 + (𝛼0 + 𝛽0

√
4𝜋𝜓𝑐)𝜑1

]
.

(9.47)

We start the integration of Eqs. (9.45) at 𝜖 = 10−7𝑅E
ST away from the stellar center,

and terminate at the stellar surface. From surface values, we obtain the scalar charge
of the NS via [122]

𝛼NS =
2𝜑
𝜈′

����
surf.

, (9.48)

and the Einstein-frame mass

𝑚E
NS = exp

−
1√︃

1 + 𝛼2
NS

arctanh
©«

√︃
1 + 𝛼2

NS

1 + 2/(𝑟𝜈′)
ª®®¬
 ×

𝑟2𝜈′

2

(
1 − 2𝜇

𝑟

)1/2
�����
surf.

. (9.49)

It is related to the Jordan-frame mass through [32]

𝑚J
NS = 𝑚E

NS(1 + 𝛼0𝛼NS). (9.50)
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For a Newtonian star, Eqs. (9.45) reduce to

𝜇′ = 4𝜋𝑟2𝐴4(𝜓∞)𝜌0, (9.51a)

𝑃′ = −𝜌0𝜇

𝑟2 , (9.51b)

where the scalar field 𝜓 decouples from the matter and it becomes constant across
the star. Here we denote its (background) value as 𝜓∞. Next we can compute the
baryonic mass 𝑚𝐵 and the Einstein-frame mass 𝑚E

NS of the NS:

𝑚𝐵 = 𝐴3(𝜓∞)
∫

4𝜋𝜌0𝑟
2𝑑𝑟, (9.52a)

𝑚E
NS = 𝐴4(𝜓∞)

∫
4𝜋𝜌0𝑟

2𝑑𝑟 = 𝑚𝐵𝐴(𝜓∞). (9.52b)

As shown in Refs. [32, 122], the scalar charge can be computed alternatively through

𝛼NS =
1
√

4𝜋

(
𝜕 ln𝑚E

NS
𝜕𝜓∞

)
𝑚𝐵

. (9.53)

After plugging Eq. (9.52b), we obtain 𝛼NS = 𝛼0 [see Eq. (9.17)].
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Table 9.3: Summary of all the PN orders in the amplitude of ℎ̃22, Ψ11, and Ψ22.

Modes Available PN orders References

ℎ̃22 0PN, 1PN, 1.5PN, 2PN Eqs. (67) of [37]

Ψ11 −0.5PN, 0.5PN, 1PN Eqs. (6.10b) of [39]

Ψ22 0PN, 1PN Eqs. (6.10c) of [39]

9.9 Appendix: Some other scalar and tensor modes
Figure 9.13 displays additional scalar and tensor modes of the ST simulation.

9.10 Appendix: Hierarchical contributions from PN terms
In Fig. 9.10, we compared the ST waveforms with the existing PN predictions that
include all the PN orders. Exploring the hierarchical contributions of each PN term
is also an interesting aspect to investigate. Here we focus on the amplitude of ℎ̃22

[Eq. (9.28)], Ψ11 and Ψ22 [Eq. (9.34)], which are controlled by �̂�𝑙𝑚 and Φ̂𝑙𝑚 [37].
Table 9.3 outlines all the relevant PN orders of ℎ̃22, Ψ11, and Ψ22. Our convention
considers the leading Newtonian quadrupole approximation in GR, namely O(1) in
�̂�𝑙𝑚, as 0PN. In contrast, the prefactor of Eq. (9.34) is 0.5PN (𝑥1/2) lower than that
of Eq. (9.28), thus the term O(1) in Φ̂𝑙𝑚 represents −0.5PN.

We depict the size of each PN term as solid lines with different colors in Fig. 9.14.
For reference, the dashed lines represent the ones with all the PN contributions.
The lowest PN order contributes the most, while higher PN corrections improve
consistency. The amplitude of Ψ22 is the least accurate. Higher PN terms may be
needed to improve the agreement with numerical simulations.
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C h a p t e r 10

GRAVITATIONAL-WAVE ECHOES FROM
NUMERICAL-RELATIVITY WAVEFORMS VIA SPACE-TIME

CONSTRUCTION NEAR MERGING COMPACT OBJECTS

[1] Sizheng Ma et al. “Gravitational-wave echoes from numerical-relativity
waveforms via spacetime construction near merging compact objects.” Phys.
Rev. D 105.10 (2022), p. 104007. doi: 10.1103/PhysRevD.105.104007.
arXiv: 2203.03174 [gr-qc].

10.1 Introduction
Delayed and repeating gravitational wave echoes emitted by compact-binary merg-
ers [1–3], following the main gravitational waves (GWs), can be signatures of (i)
deviations of laws of gravity from general relativity [4, 5], (ii) near-horizon quantum
structures surrounding black holes (BHs) [6–15], and (iii) the absence of event hori-
zon, namely the existence of horizonless Exotic Compact Objects (ECOs) [16–20].
We must emphasize that strong arguments (within the context of general relativity
and standard model of matter) exist against the existence of echoes and ECOs, in-
cluding: (i) the ergoregion instability [21–24], (ii) the formation of a trapped surface
due to the pileup of energy near the stable photon orbit [25–28], (iii) the collapse of
ECO due to the gravity of incident GWs [29, 30], and (iv) other nonlinear effects
[31]. Nevertheless, if GW echoes do exist, their detection will serve as an important
tool for studying the physics of BHs or ECOs. A lot of efforts have been made to
search for echoes in observed data (see Ref. [32] for a thorough review). As a result,
constructing accurate waveform models for GW echoes is necessary and timely [33,
34].

If we restrict deviation from general relativity (GR) to be localized near the would-be
horizon, then due to Birkhoff’s theorem, the region outside a spherically symmetric
ECO can still be described by a Schwarzschild geometry. Consequently, studies of
echoes from non-spinning ECOs were mostly based on the black hole perturbation
(BHP) theory and the Zerilli-Regge-Wheeler equations [35, 36]. For instance,
Cardoso et al. [1, 2] showed that the initial ringdown signal of different ECO
models has a universal feature, and is identical to that of a Schwarzschild BH, even

https://doi.org/10.1103/PhysRevD.105.104007
https://arxiv.org/abs/2203.03174
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though the quasinormal mode (QNM) spectra of ECOs are completely different from
the ones of the Schwarzschild BH. This implies that the initial pulse of the ringdown
is more related to space-time geometry near the light ring, rather than the formal
spectra of QNMs. The following echoes do depend on the structure of the QNM
spectra [37], which is characterized by modes trapped between the ECO surface and
the peak of BH potential barrier [38]. Mark et al. [39] developed a framework to
systematically compute scalar echoes from non-spinning ECOs, in terms of GWs
propagating toward the would-be horizon, and transfer functions that convert this
horizon-going wave into echoes toward infinity. Testa et al. [40] used a Poschl-
Teller potential to approximate the BH potential for perturbations, and derived an
analytical echo template. Meanwhile, Ref. [41] estimated the contribution of GW
echoes to stochastic background. In terms of the membrane diagram, Maggio et
al. [42] and Chakraborty et al. [14] treated the ECO surface as a dissipative fluid,
and related the reflectivity to the bulk and the shear viscosity. Cardoso et al. [43]
studied resonant excitation of the modes of non-spinning ECOs during an extreme-
mass-ratio inspiral. More recently, the echoes of fuzzballs [44, 45] were computed
numerically in Ref. [46], and the GW echo from a three-body system was studied in
Ref. [47].

In astrophysical situations, merger remnants usually have non-negligible spins [48],
hence it is of great practical interest to model echoes from spinning ECOs. Even if
GR is valid away from ECOs, the space-time geometry there can deviate significantly
from Kerr, having a general multipole structure [49, 50]. Nevertheless, we shall
restrict ourselves to Kerr geometry, whose linear perturbation is described by the
Teukolsky equation [51, 52]. An early attempt towards constructing echo waveforms
studied scalar perturbations around a Kerr-like wormhole [53]. Working on a
sourceless system, Nakano et al. [54] imposed a complete reflecting boundary
condition at a constant Boyer-Lindquist radius. Later, the effect of source terms was
investigated [55–60]. Sago et al. [55] and Maggio et al. [56] studied main GWs and
echoes generated by a particle that plunges into a Kerr black hole. The case of a
particle (with scalar charge) spiraling into a Kerr black hole was studied in Ref. [57].
Refs. [58–60] further introduced the back-reaction of GW emissions on the orbital
motion.

Recently, Chen et al. [61] proposed a more physically-motivated boundary condition,
by considering the tidal fields experienced by fiducial observers with zero angular
momentum orbiting just above the ECO surface. This model established a relation
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between the ingoing component of the Weyl scalar 𝜓0 and the outgoing piece of
the Weyl scalar 𝜓4. Using this new boundary condition, Xin et al. [59] calculated
GW echoes by computing explicitly the 𝜓4 falling down the ECO surface, and
converting it to 𝜓0 via the Teukolsky-Starobinsky (TS) identity [62, 63]. They
found weaker echoes than those obtained from other approaches [11, 64]. A flaw in
their calculation is that the TS identity is only applicable in the absence of source
terms. A direct computation of 𝜓0 propagating toward the ECO surface was later
carried out by Srivastava et al. [60].

As we move away from extreme mass ratio inspirals, several approaches have been
adopted to model echoes from comparable-mass binary black-hole (BBH) mergers.
These include the inside/outside formulations, which do not involve modeling the
merger dynamics; the adaptation of the Effective One-Body (EOB) [65, 66]; and
the Close-Limit Approximation (CLA) approaches [67–70], which have played
important roles in modeling BBH ringdown waveforms in GR.

In the outside prescription [71, 72], the main GR GW emitted by a BBH merger was
modeled as having been generated by the reflection of an initial pulse originated
from null infinity (see Fig. 1 in Ref. [71]). The rest of this pulse travels through
the light-ring potential, bounces back and forth between the surface of ECO and the
peak of the potential. As a result, a sequence of echoes follows the main GR GW
at null infinity. In the inside prescription [11, 64], the main GR GW was modeled
instead as the transmitted wave of an initial wave emerging from the past horizon
(see Fig. 1 in Ref. [11]). Wang et al. [11] computed this initial wave by matching
the main GW to that of a BBH merger event, whereas Maggio et al. [64] treated
the main pulse as a superposition of QNMs, which led to analytical echo templates.
Both the inside and outside prescriptions make direct connections between the main
BBH GW and the ensuing echoes; they do not require detailed modeling of the
merger dynamics.

In contrast, the approach based on the EOB formulation does rely on the orbital dy-
namics. Following the same spirit as the EOB method, Micchi et al. [58] considered
the back-reaction on the orbital evolution due to GW emissions. With more accurate
orbital dynamics, they were able to obtain a complete inspiral-merger-ringdown
waveform and the subsequent echoes. Xin et al. [59] calibrated the dissipative force
to a surrogate model [73, 74] so that the GW at infinity matches the prediction of
numerical relativity (NR).
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Recently, the CLA approach was applied to the computation of echoes from a head-
on collision of two equal-mass ECOs [75], where the Brill-Lindquist initial data
[76] for two BHs was ported into a linear perturbation of a single Schwarzschild
space-time, with a modified boundary condition on a surface right above the horizon.

In addition to the EOB and CLA approaches, a so-called hybrid approach [77,
78] has also been proposed to jointly use Post-Newtonian (PN) and Black-Hole
Perturbation (BHP) theories to model comparable-mass BBH mergers. To illustrate
this method, a Penrose diagram of a BBH merger space-time is shown in Fig. 10.1.
The space-time is split by a time-like world tube ΣShell (which asymptotes toward
a null tube in its upper-left section) into an inner PN region III and an outer BHP
region (I+II). The hybrid approach offers a way to construct space-time geometries
in both regions—including GWs at null infinity; it was able to accurately predict the
GW waveform and kick velocity of a head-on collision [77, 78].

In this chapter, we shall take a similar point of view as the hybrid approach—by
dividing the space-time into a linear BHP region (I and II in Fig. 10.1) and a region
(III) in which the space-time is not a linear perturbation of the remnant BH. We shall
not attempt to approximately solve for the entire space-time geometry in all regions,
but instead use gravitational waveform at the null infinity ℐ

+ already obtained from
NR, and reconstruct the space-time geometry in the BHP region—including GWs
propagating toward the future horizon ℋ

+. In particular, we find the location of the
worldtube ΣShell at ℋ+can be determined by looking for when the linearly quasi-
normal ringing of horizon GW starts. Equipped with this information, together
with the recent physically-motivated boundary condition near the would-be future
horizon [61], we can construct gravitational echoes at ℐ+.

As a first step toward demonstrating our space-time reconstruction approach, in
this chapter, we restrict ourselves to inspiraling BBHs whose remnants are non-
rotating1

,
2. Specifically, we shall use a NR technique Cauchy-characteristic extrac-

tion (CCE) [79–84] to extract the Weyl scalars 𝜓4 and 𝜓0 of the BBH events in
question, and use them to reconstruct space-time geometry in the linear BH regions
I and II.

This chapter is organized as follows. In Sec. 10.2 we explain more details about
space-time reconstruction using Fig. 10.1 and outline the basic ideas of the hybrid
method. We then describe our NR techniques and simulations in Sec. 10.3. Taking

1The initial parameters of BBHs are fine-tuned so that the remnants are Schwarzschild BHs
2Our method will also be applicable to head-on collisions.
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these NR simulations we explicitly carry out space-time reconstruction in Sec. 10.4,
in particular obtaining gravitational waves propagating toward the future horizon
ℋ
+. With these horizon waveforms, we construct gravitational-wave echoes at ℐ+

in Sec. 10.5. Section 10.6 focuses on the detectability of GW echo and parameter
estimation, using the Fisher information matrix formalism. Finally in Sec. 10.7 we
summarize our results.

Throughout this chapter we use geometric units with 𝐺 = 𝑐 = 1. Unless stated
otherwise, we use the remnant mass 𝑀 𝑓 to normalize all dimensional quantities3
(e.g., time, length, and Weyl scalars). Note that this choice is different from the
typical convention adopted by the NR community, where the initial total mass of
the system 𝑀tot is used.

10.2 Space-time reconstruction from gravitational waves at future null infin-
ity: theory

In this section, we shall describe our theoretical strategy for space-time reconstruc-
tion based on BBH GWs at the future null infinity ℐ

+. We shall divide the entire
space-time into two regions, the black-hole perturbation region (I+II in Fig. 10.1),
and the strong-field region (III in Fig. 10.1), as proposed during the construction of
the hybrid model for BBH coalescence [77, 78]. In Sec. 10.2.1, we shall review the
hybrid method, focusing on how space-time geometry in the bulk of the BHP region
depends on boundary values. In Sec. 10.2.2, we discuss in particular how the bulk
geometry can be expressed in terms of waves at ℐ+. In Sec. 10.2.3, we focus on
GWs that propagate toward the future horizon ℋ

+, in particular propose a way to
determine the boundary between the BHP region II and the strong field region III.
In Sec. 10.2.4, we comment on how our approach is connected to previous works.

10.2.1 From the hybrid method to space-time reconstruction
In the Penrose diagram of a coalescing BBH space-time (Fig. 10.1), the red curve
represents the dynamical horizon, which is well-known to be inside the event hori-
zon [85]. Nichols and Chen [77] proposed using a 3-dimensional time-like tube
ΣShell, shown as the blue curve, to divide the space-time into two regions. The ex-
terior regions (I+II) can be treated as a linearly perturbed Schwarzschild spacetime.
Interior to the tube ΣShell, is a strong field region (III), which Nichols and Chen
modeled using post-Newtonian theory; this PN metric is matched to the exterior
perturbed Schwarzschild metric on the ΣShell. Note that the PN expansion for the

3Namely 𝑀 𝑓 = 1.
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Figure 10.1: The space-time of a BBH merger event. The hybrid method divides
space-time into an inner PN region (III) and an outer BHP region (I+II). The two
regions communicate via boundary conditions at the worldtube ΣShell (the blue
curve), which was assumed to track the motion of the BH. The dynamical horizon
(the red curve) lies inside the future horizon, and it eventually settles down to the
isolated horizon. The common horizon forms at the time slice Σinit (the horizontal
dashed line). The time sliceΣinit is not unique and is determined by gauge conditions.
The CLA focuses exclusively on the region I, where the system is treated as a Cauchy
problem—an initial data needs to be provided on Σinit, whereas the hybrid method
gives attention to both region I and II and handles the system as a boundary value
problem.

interior space-time may break down toward the late stage of evolution, but the shell
does fall rapidly to the horizon so the errors might stay within the BH potential and
not propagate toward infinity.

For a head-on collision, the tube ΣShell passes through the centers of the two BHs,
and follows plunge geodesic of the remnant BH (i.e., the BH on which regions
I and II are based). A more sophisticated framework was developed later [78]
to determine the motion of ΣShell for an inspiralling BBH system. This framework
added a radiation-reaction force to account for the dissipative effect of GW emission.
In the end, this PN-BHP system, accompanied by the no-incoming-wave condition
at ℐ−, forms a complete set of evolution equations, which leads to an approximated,
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ab initio waveform model. This method was able to predict a reasonable waveform
for a BBH system merging in quasi-circular orbits.

In this chapter, we focus mainly on the region I+II, where the space-time is treated
as a linear perturbation to a Schwarzschild BH. Let us first examine this linear
perturbation using the Sasaki-Nakamura (SN) formalism [86], in which the SN
variable ΨSN

𝑙𝑚𝑠
satisfies the Regge-Wheeler (RW) equation [35](

𝜕2

𝜕𝑢𝜕𝑣
+
𝑉 𝑙RW

4

)
ΨSN
𝑙𝑚𝑠

= 0, (10.1)

where 𝑢 = 𝑡 − 𝑟∗ and 𝑣 = 𝑡 + 𝑟∗ are the retarded and advanced time, respectively,
with the tortoise coordinate 𝑟∗ = 𝑟 + 2 ln

(
𝑟
2 − 1

)
. The RW potential reads [87]

𝑉 𝑙RW =
Δ

𝑟5 [(𝑙
2 + 𝑙)𝑟 − 2(𝑠2 − 1)] . (10.2)

Here 𝑠 corresponds to the spin weight of ΨSN
𝑙𝑚𝑠

and Δ = 𝑟2 − 2𝑟. In the hybrid
approach, no-incoming wave condition was imposed on ℐ

−, while PN data was
imposed on Σshell. One way to obtain ΨSN

𝑙𝑚𝑠
throughout regions I+II from these

boundary conditions is to use the characteristic method, as we discuss in Sec. 10.9.

In this chapter, while keeping the no-incoming condition on ℐ
−, we shall revert

the rest of the reconstruction process by imposing outgoing waves obtained from
NR on ℐ

+(e.g., with the CCE method). In particular, we will obtain perturbative
fields near ℋ+, which will inform us of the gravitational waveform going down the
horizon, and serve as a foundation for obtaining GW echoes.

10.2.2 Space-time reconstruction using homogeneous Teukolsky solutions
As we reconstruct space-time geometry, instead of SN variables, we will directly
consider both 𝜓0 and 𝜓4, because they both have explicit physical meanings, as
explained in Ref. [61]. Since the new boundary ℐ

+∪ℐ−for space-time reconstruc-
tion has a regular shape (unlike Σshell), we can carry out space-time reconstruction
by superimposing homogeneous solutions to the Teukolsky equation that already
satisfy no-ingoing boundary condition—traditionally referred to as the up solutions.

Let us first write general homogeneous solutions for 𝜓0 and 𝜓4 in mode expansions:

𝜓4(𝑡, 𝑟, 𝜃, 𝜙) =
1
𝑟4

∑︁
𝑙𝑚

∫
𝑑𝜔 −2𝑅𝑙𝑚𝜔 (𝑟) −2𝑌𝑙𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔𝑡 , (10.3a)
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Figure 10.2: The coefficients 𝐶in
𝑙𝑚𝜔

and 𝐷in/out
𝑙𝑚𝜔

predicted by the Teukolsky equation,
assuming a Schwarzschild BH. The vertical dashed line represents the real part of
the fundamental QNM (0.374 − 0.0890𝑖). Data are obtained from the Black Hole
Perturbation Toolkit [88].

𝜓0(𝑡, 𝑟, 𝜃, 𝜙) =
∑︁
𝑙𝑚

∫
𝑑𝜔 +2𝑅𝑙𝑚𝜔 (𝑟) +2𝑌𝑙𝑚 (𝜃, 𝜙)𝑒−𝑖𝜔𝑡 . (10.3b)

Here 𝑠𝑌𝑙𝑚 are spin-weighted spherical harmonics. The radial functions 𝑠𝑅𝑙𝑚𝜔 (𝑟)
satisfy the radial Teukolsky equation [52]

Δ−𝑠
𝑑

𝑑𝑟

(
Δ𝑠+1

𝑑

𝑑𝑟
𝑅𝑙𝑚𝜔𝑠

)
+𝑉 𝑅𝑙𝑚𝜔𝑠 = 0, (10.4)

with

𝑉 = 4𝑖𝑠𝜔𝑟 − 𝑙 (𝑙 + 1) + 𝑟
4𝜔2 − 2𝑖𝑠(𝑟 − 𝑀)𝑟2𝜔

Δ
.

The up solutions, with their conventional normalization (with unity outgoing wave
amplitude at infinity), have the following asymptotic forms near infinity and horizon

𝑅
up
𝑙𝑚𝜔−2 ∼


𝑟3𝑒𝑖𝜔𝑟∗ , 𝑟∗ → +∞,

𝐷out
𝑙𝑚𝜔

𝑒𝑖𝜔𝑟∗ + Δ2𝐷in
𝑙𝑚𝜔

𝑒−𝑖𝜔𝑟∗ , 𝑟∗ → −∞,

(10.5a)

𝑅
up
𝑙𝑚𝜔+2 ∼


𝑟−5𝑒𝑖𝜔𝑟∗ , 𝑟∗ → +∞,

𝐶out
𝑙𝑚𝜔

𝑒𝑖𝜔𝑟∗ + Δ−2𝐶in
𝑙𝑚𝜔

𝑒−𝑖𝜔𝑟∗ , 𝑟∗ → −∞.

(10.5b)
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Numerical values of the coefficients 𝐶in/out
𝑙𝑚𝜔

and 𝐷in/out
𝑙𝑚𝜔

are available from the Black-
Hole Perturbation Toolkit [88].

In a BBH coalescence space-time, the𝜓0 and𝜓4 in the I+II region have the following
asymptotic forms:

𝑅BBH
𝑙𝑚𝜔−2 ∼


𝑟3𝑍∞

𝑙𝑚𝜔
𝑒𝑖𝜔𝑟∗ , 𝑟∗ → +∞,

𝑍H out
𝑙𝑚𝜔

𝑒𝑖𝜔𝑟∗ + Δ2𝑍H in
𝑙𝑚𝜔

𝑒−𝑖𝜔𝑟∗ , 𝑟∗ → −∞,

(10.6a)

𝑅BBH
𝑙𝑚𝜔+2 ∼


𝑟−5𝑌∞

𝑙𝑚𝜔
𝑒𝑖𝜔𝑟∗ , 𝑟∗ → +∞,

𝑌H out
𝑙𝑚𝜔

𝑒𝑖𝜔𝑟∗ + Δ−2𝑌H in
𝑙𝑚𝜔

𝑒−𝑖𝜔𝑟∗ , 𝑟∗ → −∞.

(10.6b)

Here the amplitudes at infinity, 𝑍∞
𝑙𝑚𝜔

and𝑌∞
𝑙𝑚𝜔

in Eq. (10.6), can be directly obtained
from NR simulations. For completeness, the strain ℎ∞

𝑙𝑚
observed at ℐ+ is related to

𝑍∞
𝑙𝑚𝜔

via

ℎ∞𝑙𝑚 (𝜔) =
1
𝜔2 𝑍

∞
𝑙𝑚𝜔. (10.7)

Note that ℎ∞
𝑙𝑚

is defined later in Eq. (10.15b). By comparing Eqs. (10.6) with the
standard up solutions in Eqs. (10.5), we can obtain amplitudes near the horizon:

𝑍H out
𝑙𝑚𝜔 = 𝐷out

𝑙𝑚𝜔𝑍
∞
𝑙𝑚𝜔 , 𝑍H in

𝑙𝑚𝜔 = 𝐷in
𝑙𝑚𝜔𝑍

∞
𝑙𝑚𝜔, (10.8a)

𝑌H out
𝑙𝑚𝜔 = 𝐶out

𝑙𝑚𝜔𝑌
∞
𝑙𝑚𝜔 , 𝑌H in

𝑙𝑚𝜔 = 𝐶in
𝑙𝑚𝜔𝑌

∞
𝑙𝑚𝜔. (10.8b)

In this way, from waves escaping at infinity, 𝑍∞
𝑙𝑚𝜔

and 𝑌∞
𝑙𝑚𝜔

, the coefficients 𝐷in
𝑙𝑚𝜔

and 𝐶in
𝑙𝑚𝜔

will allow us to reconstruct ingoing waves 𝑍 in
𝑙𝑚𝜔

and 𝑌 in
𝑙𝑚𝜔

toward ℋ
+. We

plot 𝐷in
22𝜔 and 𝐶in

22𝜔 in Fig. 10.2.

We note that for the same linear perturbative spacetime of Schwarzschild governed
by the vacuum Teukolsky equation, the 𝜓0 and 𝜓4 can be related by the Teukolsky-
Starobinsky (TS) relations, which state [62, 63]:

4𝜔4

𝐶∗
𝑌∞𝑙𝑚𝜔 = 𝑍∞𝑙𝑚𝜔 , (10.9a)

𝑌H in
𝑙𝑚𝜔 =

𝐷

𝐶
𝑍H in
𝑙𝑚𝜔 (10.9b)

with

𝐶 = (𝑙 − 1)𝑙 (𝑙 + 1) (𝑙 + 2) + 12𝑖𝜔 (10.10a)
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Figure 10.3: A diagram summarizing relations between BHP quantities on the
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.

𝐷 = 64𝑖𝜔
(
128𝜔2 + 8

)
(1 − 2𝑖𝜔) . (10.10b)

These relations are consistent with coefficients in Eqs. (10.8). For example, because4

|𝐶 |2
4𝜔4𝐶

in
𝑙𝑚 = 𝐷𝐷in

𝑙𝑚, (10.11)

one can obtain 𝑌H in from 𝑍∞ either by: (i) using the TS relation at infinity to
obtain 𝑌∞, followed by Eq. (10.8b), or (ii) using Eq. (10.8a) to obtain 𝑍H in, and
then use the TS relation near the horizon [i.e., Eq. (10.9b)]. Relations between the
BHP quantities have been summarized in Fig. 10.3. We will check the TS relations
directly in Sec. 10.4.1.

We would like to caution here that while it has been established [62, 63] that the
TS transformation maps between solutions of 𝜓0 and 𝜓4, these work alone did not
explicitly establish the one-to-one relations in Eqs. (10.9) between 𝑍𝑙𝑚𝜔 and 𝑌𝑙𝑚𝜔
for the same GW. Further work by Wald [89] explicitly related both 𝜓0 and 𝜓4 to
the Hertz potential, while more recent work by Loutrel et al. [90] provided a new
way to reconstruct metric (hence 𝜓0) from 𝜓4. From Ref. [90], for the same, generic
GW, the one-to-one relation is in between (𝑍𝑙,𝑚,𝜔, 𝑍𝑙,−𝑚,−𝜔) and (𝑌𝑙,𝑚,𝜔, 𝑌𝑙,−𝑚,−𝜔),
rather than simply between 𝑍𝑙𝑚𝜔 and 𝑌𝑙𝑚𝜔. Nevertheless, as will be seen later in
this chapter (see Sec. 10.4.1), our numerical results for 𝜓0 and 𝜓4 do agree with
Eqs. (10.9). This might be due to the fact that we have non-precessing systems
which satisfy [91]

𝑍𝑙,𝑚,𝜔 = (−1)𝑙𝑍∗𝑙,−𝑚,−𝜔 , 𝑌𝑙,𝑚,𝜔 = (−1)𝑙𝑌 ∗𝑙,−𝑚,−𝜔 . (10.12)

However, for more generic, e.g., precessing binaries, the naive TS relation Eq. (10.9)
may not hold.

4We have checked that Eq. (10.11) holds up to numerical accuracy, which is at the order of 10−13

for the Black Hole Perturbation Toolkit.
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10.2.3 Connection to the inside prescription and determining the location of
ΣShell

To understand the physical meaning of 𝑍H out
𝑙𝑚𝜔

and 𝑌H out
𝑙𝑚𝜔

, which mathematically
appears to be emitted from the past horizon ℋ

−, we have to go to Fig. 10.4 and
remind ourselves that region I+II does not contain the past horizon of the background
BH. Anything below the red curve (the Shell) in Fig. 10.4 are linear extrapolations.
Nevertheless, this extrapolation asserts that waveforms at infinity can be thought of
as generated by “image waves” with 𝑍H out and𝑌H out that rise from the past horizon.
This follows the same reasoning as the inside prescription [11, 64].

Since the image wave encounters the BH potential barrier (from the inside), it
is partially transmitted toward ℐ

+, while partially reflected toward ℋ
+. We can

rewrite

𝑍∞𝑙𝑚𝜔 =
1

𝐷out
𝑙𝑚𝜔

𝑍H 𝑜𝑢𝑡
𝑙𝑚𝜔 , 𝑍H in

𝑙𝑚𝜔 =
𝐷in
𝑙𝑚𝜔

𝐷out
𝑙𝑚𝜔

𝑍H out
𝑙𝑚𝜔 (10.13a)

𝑌∞𝑙𝑚𝜔 =
1

𝐶out
𝑙𝑚𝜔

𝑌H out
𝑙𝑚𝜔 , 𝑌H in

𝑙𝑚𝜔 =
𝐶in
𝑙𝑚𝜔

𝐶out
𝑙𝑚𝜔

𝑌H out
𝑙𝑚𝜔 (10.13b)

Here 1/𝐷out
𝑙𝑚𝜔

and 1/𝐶out
𝑙𝑚𝜔

are the transmissivities from ℋ
−to ℐ

+, across the po-
tential barrier, while 𝐷in

𝑙𝑚𝜔
/𝐷out

𝑙𝑚𝜔
and 𝐶in

𝑙𝑚𝜔
/𝐶out

𝑙𝑚𝜔
are reflectivities at the potential

barrier that direct the wave toward ℋ
+. (The dependence of 1/𝐷out

22𝜔 on 𝜔 is plotted
in Fig. 10.2.)

In this way, we have shown that the inside prescription and the hybrid method
correspond to the same reconstruction of space-time geometry in the regime where
the linear BHP applies. However, we want to emphasize that the two methods adopt
different ways when choosing the linear BHP region. In the hybrid method, it is
given by the exterior region of ΣShell. In particular, in order to compute echoes,
we will need to terminate the linear perturbation region at the intersection of the
shell Σshell and the future horizon, which is denoted by the advanced time 𝑣 = 𝑣 (H)

Σ

in Fig. 10.4. One natural way to determine the intersection is to first evaluate the
time-domain waveform

𝑌H in
𝑙𝑚 (𝑣) =

∫
𝑑𝜔𝑌H in

𝑙𝑚𝜔 𝑒
−𝑖𝜔𝑣 (10.14)

and then define 𝑣 (H)
Σ

as the starting time after which 𝑌H in
𝑙𝑚
(𝑣) can be decomposed as

a sum of QNM overtones. We shall provide more details when we carry out this
decomposition in Sec. 10.4.2.
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Figure 10.4: The space-time diagram illustrating the BHP region I+II and their linear
extrapolation into region III. Outside the matching shell, curvature perturbations
are linear combinations of the up-mode solutions to the homogeneous Teukolsky
equation. At the infinity ℐ

+, the value of 𝑍∞
𝑙𝑚𝜔

and 𝑌∞
𝑙𝑚𝜔

are chosen to be consistent
with the predictions of CCE. The past horizon exists in the strong gravity region
III, where 𝑍H out

𝑙𝑚𝜔
and 𝑌H out

𝑙𝑚𝜔
represent the image wave that give rise to waves in the

region I+II. They serve the same role as the initial wavepacket within the inside
prescription [11, 64]. The future horizon lies partially outside the matching shell,
only the outside portion (𝑣 > 𝑣

(H)
Σ
) of 𝑍H in

𝑙𝑚
and 𝑌H in

𝑙𝑚
corresponds to the actual

wave that falls down the horizon. One natural way to self-consistently determine
the location of Σshell is to evaluate the starting time after which 𝑌H in

𝑙𝑚
(𝑣) can be

decomposed as a sum of QNM overtones. More details can be found in Sec. 10.4.2.

On the contrary, the inside prescription uses only the late-time evolution as the
linear region. We shall give more discussions regarding this comparison in the next
subsection (Sec. 10.2.4).

10.2.4 Further comparisons with the inside prescription and the close limit
approximation

To fit the inside prescription into our framework, in Fig. 10.1, we choose a time
slice Σinit after which the space-time (i.e., the region I) is consistent with that of a
single, perturbed BH. The time slice is usually not unique and is determined by a
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gauge condition. An appropriate choice is to let Σinit represent a moment when the
common horizon just forms, following the close limit approximation [92–99]. Then
the inside prescription corresponds to only taking the region I, and treating it as the
linear BHP area. Consequently, one needs to take the ringdown of the main GWs
at the null infinity as input, which is equivalent to imposing a filter at ℐ+ [64], and
use that information to calculate echoes. In fact, since region II is not included, the
indeterminate condition at past null infinity leaves room for the outside prescription
[71, 72].

Similarly, the CLA corresponds to region I as well. This is an approach to studying
space-time based on the fact that the gravitational field in the region I can be modeled
as the one of a single perturbed BH. The system in region I is then treated as a Cauchy
problem (i.e., an initial value problem) as long as initial data is provided on Σinit.
Previous studies have investigated the Misner initial data [100], the Brill-Lindquist
initial data [76], the Bowen-York initial data [101] as well as numerically generated
initial data [102, 103]. Once the gravitational field in the region I is solved, one can
read off the value of 𝑍H in

𝑙𝑚𝜔
and 𝑌H in

𝑙𝑚𝜔
at future horizon and compute echo waveforms

[75].

The hybrid method, however, is a boundary value problem. It divides the space-
time into two regions via the time-like shell ΣShell, as opposed to the space-like
hypersurface Σinit adopted by the CLA. In addition, both region I and II are regarded
as BHP areas.

10.3 Numerical relativity simulations
In this section, we adopt two BBH merger simulations performed using the Spectral
Einstein Code (SpEC) [104], developed by the Simulating eXtreme Spacetimes
(SXS) collaboration [105]. These binaries have their initial parameters fine-tuned,
such that the remnant black holes are nearly non-spinning. Gravitational waveforms
(at infinity) of these simulations are publicly available through the SXS catalog
[105], with the identifier SXS:BBH:0207 and SXS:BBH:1936.

We summarize the properties of these binaries in Table 10.1, where we adopt
the standard convention in SpEC, namely labeling the heavier hole with ‘1’ and
the lighter one with ‘2’, and assuming the 𝑧−axis to be aligned with the initial
orbital angular momentum. Our two systems have mass ratios 𝑞 = 𝑚2/𝑚1 = 7, 4,
respectively; they undergo 𝑁cycle = 36, 16.5 orbit cycles before the merger, with
the initial orbital eccentricity already reduced to ∼ 10−4. Both systems are non-
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Table 10.1: A summary of NR simulations used in this chapter. The first column
is the identifier in the SXS catalog [105]. The second column 𝑞 = 𝑚2/𝑚1 > 1
shows the mass ratio. The third column is the number of orbit cycles that a system
undergoes before the merger. The fourth and fifth columns give the initial individual
dimensionless spins. They have only the 𝑧−component, where the 𝑧−axis is chosen
to be aligned with the orbital angular momentum. The sixth and seventh columns
exhibit the remnant mass (in the unit of initial total mass 𝑀tot) and remnant spin.
The final column corresponds to the radius of the extraction worldtube for CCE.

ID
𝑞 𝑁cycle 𝜒𝑧1 𝜒𝑧2

𝑀 𝑓

𝑀tot
𝜒 𝑓

Extraction
SXS:BBH: Radius(𝑀tot)

0207 7.0 36 −0.6 10−6 0.991 −0.077 300
1936 4.0 16.5 −0.8 −0.8 0.985 0.022 273

precessing, with initial spins anti-aligned with the orbital angular momentum (or
vanishing), as indicated by the negative signs of the dimensionless spin components,
𝜒𝑧1 and 𝜒𝑧2. The remnant BHs have small spins at the 𝜒 𝑓 ∼ 10−2 level, with the
remnant mass𝑀 𝑓 slightly less than the initial total mass of the system𝑀tot = 𝑚1+𝑚2.

We extract gravitational waveforms at the null infinity ℐ
+ using the Cauchy Char-

acteristic Extraction (CCE) method [83, 84], implemented in the new NR code
SpECTRE [106, 107]. The CCE system evolves the Einstein field equations on a
foliation of null hypersurfaces, where the metric is written in the Bondi-Sachs coor-
dinates [108]. This method is most efficient in evolving the space-time far from the
BBH system, and is reliable enough to produce all Weyl scalars 𝜓0,1,2,3,4 with high
accuracy [83, 84]. In practice, CCE first reads off boundary data on a worldtube
covered by the inner Cauchy evolution, and then evolves a hierarchical system from
the worldtube towards future null infinity. The radii of the extraction worldtubes for
SXS:BBH:0207 and SXS:BBH:1936 are summarized in Table 10.1. Same as the
standard treatment in NR, CCE decomposes each of the Weyl scalars 𝜓0,1,2,3,4, and
the strain ℎ, into sums over a set of spin-weighted spherical harmonics 𝑌𝑙𝑚𝑠 (𝜃, 𝜙).
Using the notation defined in Eqs. (10.6), the decomposition reads

[𝑟𝑀 𝑓𝜓4]ℐ+ =
∑︁
𝑙,𝑚

𝑌𝑙𝑚−2 (𝜃, 𝜙)𝑍∞𝑙𝑚, (10.15a)

[𝑟ℎ/𝑀 𝑓 ]ℐ+ =
∑︁
𝑙,𝑚

𝑌𝑙𝑚−2 (𝜃, 𝜙)ℎ∞𝑙𝑚, (10.15b)

[𝑟5𝑀−3
𝑓 𝜓0]ℐ+ =

∑︁
𝑙,𝑚

𝑌𝑙𝑚+2 (𝜃, 𝜙)𝑌∞𝑙𝑚, (10.15c)
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where 𝜃 and 𝜙 are the polar and azimuthal angles, respectively, on the sky in the
source frame. Note that in Eqs. (10.15) the asymptotic 𝑟-dependences of 𝜓4, ℎ
and 𝜓0, as 𝑟 → ∞, are consistent with the peeling theorem [109]. Furthermore,
these fields are normalized by the appropriate powers of 𝑀 𝑓 so that 𝑍∞

𝑙𝑚
, 𝑌∞

𝑙𝑚
and

ℎ∞
𝑙𝑚

are dimensionless. We want to emphasize again that as opposed to the usual
NR convention, where the initial total mass of the system 𝑀tot is used as the unit
for time and length, in this chapter, we use the remnant mass 𝑀 𝑓 to normalize all
dimensional quantities, because we mainly deal with perturbations of the remnant
(approximately) Schwarzschild BH.
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u/Mf
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20
Re Y∞22

Re Z∞22 , enlarged ×300

10-1 100

ωMf

10-1

101

103

n= 0
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Figure 10.5: The spherical modes 𝑌∞22 and 𝑍∞22 of SXS:BBH:0207, in the time
domain (the upper panel), and in the frequency domain (the lower panel). The
vertical lines in the lower panel stand for QNM frequencies of a Schwarzschild BH,
labeled by the overtone index 𝑛. The absolute value of 𝑍∞22 is amplified by a factor
of 300 for ease of reading.
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Furthermore, we shift all temporal coordinates such that 𝑢 = 0 corresponds to the
peak of total rms strain amplitude:√︄∑︁

𝑙𝑚

|ℎ𝑙𝑚 (𝑢) |2

������
𝑢=0

= peak. (10.16)

10.4 Numerical implementations of the hybrid method
In this section, we apply the space-time reconstruction procedure of Sec. 10.2 to
SXS:BBH:0207 and SXS:BBH:1936. In Sec. 10.4.1, we first investigate the validity
of TS identities at future null infinity ℐ

+ [see Eq. (10.9a)], given that the future null
infinity lies completely in the BHP region. We also provide the horizon-𝜓0 at future
horizon ℋ

+. Then in Sec. 10.4.2, we use the horizon-𝜓0 to determine the location
of the matching tube ΣShell by looking for when its linearly quasi-normal ringing
starts.

10.4.1 At null infinity and future horizon: The Weyl scalars and the Teukolsky-
Starobinsky identities

For SXS:BBH:0207, we plot its 𝑍∞
𝑙=2,𝑚=2 and 𝑌∞

𝑙=2,𝑚=2 in Fig. 10.5, in both time
domain (upper panel) and frequency domain (lower panel). In the frequency domain,
𝑍∞22 (black curve) peaks at the fundamental (2,2) quasi-normal mode frequency (the
vertical dotted line). On the other hand, 𝑌∞22 rises sharply in low frequencies, where
its magnitude is much greater than that of 𝑍∞22. This feature in the frequency domain
is consistent with the TS identity at infinity [see Eq. (10.9a)]. To be concrete, we
test the validity of Eq. (10.9a) in Fig. 10.6. The actual 𝑍∞22 (in black) is compared
to 4𝜔4

𝐶∗ 𝑌
∞
22 (in red), in the time domain (the left two panels) and frequency domain

(the right panel). We see the TS identity holds throughout the entire region. The
comparison for SXS:BBH:1936 is similar and can be found in Sec. 10.10.

At the future horizon, 𝑌H in
𝑙𝑚

[Eq. (10.6)] is essential for us to compute echoes (see
Sec. 10.5.1 for more details). In Fig. 10.7, we plot 𝑌H in

22 of SXS:BBH:0207 in the
time domain (blue curve), where the advanced time 𝑣 is used as the time coordinate.
Similar to 𝑌∞22 [see Fig. 10.5], 𝑌H in

22 has a dominated low-frequency content. At an
early stage, 𝑌H in

22 is inside the strong gravity region III and should be excised—as
we shall discuss in Secs. 10.4.2 and 10.5.3. For comparison, we also plot 𝑌∞22 in
the same figure (red curve)—using 𝑢 as the time coordinate. We caution that this
comparison only has a qualitative meaning, because the two waveforms are emitted
in different directions. Showing the 𝑣 dependence of 𝑌H in

22 and the 𝑢 dependence
of 𝑌∞22 in the same plot effectively traces both of these waves back to the same time
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Figure 10.6: The validity of the TS identity at infinity [Eq. (10.9a)], using
SXS:BBH:0207. The predicted form 4𝜔4

𝐶∗ 𝑌
∞
22 (in red) is compared to the actual

𝑍∞22 (in black), in the time domain (the left two panels), and in the frequency domain
(the right panel). The comparison for SXS:BBH:1936 is in Fig. 10.20.

𝑡 at 𝑟∗ = 0. This is qualitatively meaningful because the ringdown wave can be
thought of as having originated from the light ring at 𝑟 = 3𝑀 , where 𝑟∗ ≈ 0. From
this comparison, we can see 𝑌H in

22 decreases faster and undergoes fewer cycles of
oscillation at the late phase than 𝑌∞22.
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time/Mf
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Re Y∞22

Re YH in
22

Figure 10.7: The real part of 𝑌H in
22 [Eq. (10.6)] and 𝑌∞22 in the time domain, using

SXS:BBH:0207. The temporal coordinate for 𝑌H in
22 is 𝑣, while is 𝑢 for 𝑌∞22. Both

coordinates are in the unit of final mass.

10.4.2 Determining the location of ΣShell

As mentioned in Sec. 10.2, the region outside the matching tube ΣShell is consistent
with a sourceless, linearly perturbed Schwarzschild space-time. Accordingly, the
part of 𝑌H in

𝑙𝑚
that is in region I+II can be decomposed into a sum of QNMs (in the
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time domain). Conversely, we can use this fact to determine the location of ΣShell.
Indeed, this method has been used not only to determine the start time of a BBH
ringdown at the future infinity5 [110], but also to investigate the dynamics of a
final apparent horizon in a BBH system approaching to equilibrium [111]. More
specifically, we write [112],

ℎ∞22(𝑢 > 𝑢
(ℎ)) =

𝑛max∑︁
𝑛=0
[A (ℎ)𝑛 𝑒−𝑖𝜔𝑛𝑢 + B (ℎ)𝑛 𝑒𝑖𝜔

∗
𝑛𝑢], (10.17a)

𝑌∞22 (𝑢 > 𝑢
(∞)) =

𝑛max∑︁
𝑛=0
[A (∞)𝑛 𝑒−𝑖𝜔𝑛𝑢 + B (∞)𝑛 𝑒𝑖𝜔

∗
𝑛𝑢], (10.17b)

𝑌H in
22 (𝑣 > 𝑣

(H)
Σ
) =

𝑛max∑︁
𝑛=0
[A (H)𝑛 𝑒−𝑖𝜔𝑛𝑣 + B (H)𝑛 𝑒𝑖𝜔

∗
𝑛𝑣], (10.17c)

where 𝜔𝑛 is the QNM frequency of a Schwarzchild BH, and 𝑛 refers to the overtone
index (we have restricted to 𝑙 = 2). Note that for a Schwarzchild BH, the QNM
frequency is independent of its spin weight and azimuthal quantum number. Unlike
Ref. [110], we include both prograde modes A𝑛 and retrograde modes B𝑛 for
generality [113]. In Eq. (10.17) we use 𝑢(∞/ℎ) and 𝑣 (H)

Σ
to indicate the time at which

ringdown begins, and we emphasize again that the retarded time 𝑢 is used for ℎ∞22
and𝑌∞22 at the null infinity, whereas the advanced time 𝑣 is used for𝑌H in

22 at the future
horizon.

In making the decomposition, we follow the procedure of Ref. [110], namely we use
the mismatchM between the quasi-normal mode ringdown waveform model (e.g.,
ℎ

Ringdown
22 ) and the NR result (e.g., ℎNR

22 ) as a loss function

M = 1 −
(ℎNR

22 , ℎ
Ringdown
22 )√︃

(ℎRingdown
22 , ℎ

Ringdown
22 ) (ℎNR

22 , ℎ
NR
22 )

, (10.18)

with

(ℎNR
22 , ℎ

Ringdown
22 ) = Re

∫ 𝑇

𝑢
(ℎ)
Σ

ℎNR
22 ℎ

Ringdown ∗
22 𝑑𝑡, (10.19)

where the upper limit of the integral 𝑇 is taken to be 90𝑀 𝑓 after the peak of total
rms strain amplitude. In addition, we use unweighted linear least squares to fit the
mode amplitudes and use nonlinear least squares to fit the final spin and mass. The
mode frequency 𝜔𝑛 is obtained from a Python package qnm [114]. During the fit,

5The linear perturbation regime was found to be valid as early as the peak of strain if seven
overtones are included.
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Figure 10.8: Mismatch as a function of the start time (in the unit of remnant mass)
for different models [Eq. (10.17)]. Each model includes up to 𝑛max overtones. The
left panel corresponds to the strain ℎ∞22 at infinity, the middle one 𝑌∞22, and the right
panel 𝑌H in

22 [see Eqs. (10.6) and (10.15b)]. The upper row refers to SXS:BBH:0207,
whereas the lower one SXS:BBH:1936. All waveforms are aligned such that 𝑡 = 0
occurs at the peak of

√︁∑
𝑙𝑚 |ℎ𝑙𝑚 (𝑡) |2.

we find that the numerical accuracy of 𝑌∞22 and 𝑌H in
22 is much worse than that of ℎ∞22,

which makes the remnant mass and spin more difficult to recover.

In Fig. 10.8, we plot the mismatch M for ℎ∞22 (the left panel), 𝑌∞22 (the mid-
dle panel), and 𝑌H in

22 (the right panel), for SXS:BBH:0207 (the upper panel) and
SXS:BBH:1936 (the lower panel). We see the strain ℎ∞22 can be decomposed into a
sum of the fundamental mode and six overtones6. For SXS:BBH:0207, the linear
regime can be extended to 16𝑀 𝑓 before the peak of ℎ∞22, whereas for SXS:BBH:1936,
the linear quasinormal ringing regime starts from 2.0𝑀 𝑓 , similar to the case of
GW150914 [110] and superkick systems [115].

On the other hand, since the numerical accuracy of 𝑌∞22 and 𝑌H in
22 from CCE is

not as high as ℎ∞22, only five overtones can be resolved. In particular, the late-
6Including more overtones no longer improves the match.
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Table 10.2: A summary for the QNM decomposition of ℎ∞22, 𝑌∞22 and 𝑌H in
22 . The

second row refers to the maximum number of overtones we include in Eq. (10.17).
The third and fourth rows correspond to the time from which the waveform is
consistent with a linear quasinormal ringing. The values are from the minimum of
the corresponding curves in Fig. 10.8.

ℎ∞22 𝑌∞22 𝑌H in
22

𝑛max 6 5 5

𝑢(∞/ℎ) or 𝑣 (H)
Σ

SXS:BBH:0207 −11.1 −14.1 −13
SXS:BBH:1936 2.0 −14.2 −15

time portion is dominated by numerical noise, therefore the mismatchM tends to
increase significantly. The start times of the linear regime for ℎ∞22, 𝑌∞22, and 𝑌H in

22
are summarized in Table 10.2. Below, we will use the start time of 𝑌H in

22 , denoted
by 𝑣(H)

Σ
, as the advanced time of the matching tube ΣShell (Figs. 10.1 and 10.4), and

utilize the exterior portion of the GW to approximate the actual wave falling down
the future horizon.

Apart from searching for the start time of the quasinormal ringing regime of 𝑌H in
22 ,

it is also interesting to investigate their QNM amplitudes [115, 116]. This topic is
beyond the scope of our study and we only provide a brief discussion in Sec. 10.8.

10.5 Constructing echoes
Now we utilize the horizon-going GW obtained above to construct GW echoes
at infinity. In Sec. 10.5.1, we first introduce physical boundary conditions near
an ECO surface [61], and obtain formulas that relate horizon waves to echoes at
infinity. Then in Sec. 10.5.2, we focus on the Boltzmann reflectivity and discuss
QNM structures of the ECO. Next in Sec. 10.5.3, we compute echo waveforms
numerically and investigate the impact of prescriptions made at the matching shell
ΣShell (see Fig. 10.1), taking SXS:BBH:0207 for example. Finally, we compare the
hybrid method with the inside prescription in Sec. 10.5.4.

10.5.1 Constructing echoes using the physical boundary condition near an
ECO surface

Chen et al. [61] recently proposed imposing boundary conditions near the ECO sur-
face using the Membrane Paradigm, in which a family of zero-angular-momentum
fiducial observers (FIDOs) are considered. Within their own rest frame, the FIDOs
experience a tidal tensor field [117]

E𝑖 𝑗 = ℎ𝑎𝑖 ℎ𝑐𝑗𝐶𝑎𝑏𝑐𝑑𝑈𝑏𝑈𝑑 , (10.20)
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where 𝐶𝑎𝑏𝑐𝑑 is the Weyl tensor, 𝑈𝑏 is the four-velocity of the FIDOs, and ℎ𝑎
𝑖
=

𝛿𝑎
𝑖
+𝑈𝑎𝑈𝑖 is the projection operator. The transverse component of E𝑖 𝑗 is of particular

interest [61]

Etransverse ∼ −
Δ

4𝑟2𝜓0 −
𝑟2

Δ
𝜓∗4, (10.21)

since it represents the stretching and squeezing effect due to GW. In analogous to
the tidal response of a neutron star, the response of the ECO was proposed to be
linear in Etransverse, namely [61][

−𝑟
2

Δ
𝜓∗4

]
surface

=

[
ℛ

ECO

ℛECO − 1
Etransverse

]
surface

. (10.22)

The reflectivityℛECO depends on the (non-GR) property of ECO as we shall discuss
in Sec. 10.5.2.

Near the ECO surface, 𝜓0 is dominated by the incident wave (toward the horizon),
whereas 𝜓4 by the reflected wave (by the ECO), i.e.,

𝑅ECO
𝑙𝑚+2 (𝑢, 𝑣) ∼

∫
𝑑𝜔

Δ2 𝑌
H in ECO
𝑙𝑚𝜔 𝑒−𝑖𝜔𝑣, (10.23a)

𝑅ECO
𝑙𝑚𝜔−2 (𝑢, 𝑣) ∼

∫
𝑑𝜔𝑍H out ECO

𝑙𝑚𝜔 𝑒−𝑖𝜔𝑢, (10.23b)

with 𝑅ECO
𝑙𝑚±2 (𝑢, 𝑣) the radial Teukolsky function for the ECO. Here we use the

same notation as Eq. (10.6), and we emphasize that 𝑌H in ECO
𝑙𝑚𝜔

stands for the actual
𝜓0-wave that falls down the future horizon.

After simplification, the boundary condition in Eq. (10.22) becomes

𝑍H out ECO
𝑙𝑚𝜔 =

(−1)𝑙+𝑚+1
4

ℛ
ECO𝑌H in ECO

𝑙𝑚𝜔 , (10.24)

where we have used the symmetry of a nonprecessing BBH system under reflection
across the orbital plane [91]

[𝑌H in ECO
𝑙,−𝑚,−𝜔 ]

∗ = (−1)𝑙𝑌H in ECO
𝑙𝑚𝜔 . (10.25)

Subsequently, the echo waveform at null infinity reads [59]

𝑍∞ echo
𝑙𝑚𝜔 = K(𝜔)𝑌H in ECO

𝑙𝑚𝜔 , (10.26)

with the transfer function K(𝜔)

K(𝜔) = (−1)𝑙+𝑚+1ℛECO

1 −ℛECORBH T
1

4𝐷out
𝑙𝑚

=
𝐶

𝐷𝐷in
𝑙𝑚

∑︁
𝑛=1

(
ℛ

ECORBH T
)𝑛
, (10.27)
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and

RBH T = (−1)𝑙+𝑚+1
𝐷in
𝑙𝑚

𝐷out
𝑙𝑚

𝐷

4𝐶
. (10.28)

In Eq. (10.27), we have written the total echo signal as a sum of individual echoes.
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Figure 10.9: The real and imaginary parts of QNMs for an irrotational ECO, as
functions of 𝛾. They are the solutions to Eq. (10.31). The Boltzmann reflectivity
is used, assuming 𝑇QH = 𝑇𝐻 . Each mode is labeled by the overtone index 𝑛. The
imaginary part of QNMs is negative, meaning that the mode is stable.

10.5.2 The Boltzmann reflectivity
To model quantum effects around the horizon, Oshita et al. [12] and Wang et al.
[11] proposed that GWs around the horizon interact with a quantum thermal bath.
Specifically, these waves are subject to a position-dependent dissipation Ω(𝑟∗)/𝐸Pl,
and driven by a position-dependent stochastic source 𝜉 (𝑟∗)—levels of the driving
and the dissipation are related by the fluctuation-dissipation theorem [118]. Then
the BHP equation is modified to [11, 12][

−𝑖𝛾Ω(𝑟∗)
𝐸Pl

𝑑2

𝑑𝑟2
∗
+ 𝑑2

𝑑𝑟2
∗
+ 𝜔2 −𝑉 𝑙RWZ

]
ΨSN
𝑙𝑚𝑠
(𝑟∗) = 𝜉 (𝑟∗), (10.29)
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Figure 10.10: The transfer functionK of the ECO using (𝛾 = 10−15, 𝑇QH = 𝑇𝐻) (the
blue curve), and (𝛾 = 10−1, 𝑇QH = 5𝑇𝐻) (the black curve). The QNM resonances
are visible in the former case, where the location of first three resonances are labeled
by the dashed vertical lines, based on the estimation in Eq. (10.33). By comparison,
the red curve corresponds to the absolute value of the filtered horizon wave 𝑌H Filter

for SXS:BBH:0207, assuming 𝑣H
Σ
= −13 and Δ𝑣 = 2/𝜅 [see Eq. (10.36)]. Its value

is decreased by a factor of 4000 for ease of read.
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Figure 10.11: The echo emitted by SXS:BBH:0207, following the main GW. Here
we set 𝑣 (H)

Σ
= −13,Δ𝑣 = 2/𝜅 = 8, 𝛾 = 10−15, and 𝑇QH = 𝑇𝐻 .

where Ω(𝑟∗) = |𝜔 |/
√︁
|𝑔00(𝑟∗) | is the proper frequency measured in the frame of

the Schwarzschild observers, 𝐸Pl is the Planck energy, and 𝛾 is a dimensionless
dissipation parameter that controls how the damping ramps up as the wave gets
close to the horizon. Note that Eq. (10.29) reduces to the classical Zerilli-RW
equation in the limit of 𝛾 → 0 (vanishing of the dissipative effect) and 𝜉 → 0
(vanishing of the fluctuation source). Consequently, the modified equation leads to



457

200 300 400 500 600 700

0.005

0.000

0.005

0.010

R
e 
h

ec
h
o

2
2

γ= 10−15 TQH = TH

First
Total

0 100 200 300 400
0.2

0.1

0.0

0.1

0.2
γ= 10−15 TQH = 5TH

First
Total

0 25 50 75 100 125

0.005

0.000

0.005

0.010

R
e 
h

ec
h
o

2
2

γ= 10−1 TQH = TH

First
Total

0 50 100 150

0.2

0.1

0.0

0.1

0.2

γ= 10−1 TQH = 5TH

First
Total

u/Mf

Figure 10.12: The echoes emitted by SXS:BBH:0207, with a variety of 𝑇QH and 𝛾.
The width of filer Δ𝑣 is equal to 2/𝜅. The total echoes (orange curves) are compared
with the first echoes (blue curves). In the upper left panel, the values of 𝑇QH and 𝛾
are small enough that the spacing between echoes is greater than the echo duration,
hence the individual pulses are well separated, whereas in the other three panels,
different pulses overlap and interfere with each other.

the Boltzmann reflectivity [11, 12]:

ℛ
ECO = exp

[
−𝑖 𝜔

𝜋𝑇QH
ln(𝛾 |𝜔 |)

]
exp

(
− |𝜔|

2𝑇QH

)
, (10.30)

where the quantity 𝑇QH is the effective horizon temperature. The first term on
the right hand side of Eq. (10.30) implies that as 𝛾 ≪ 1, the region between
𝑟∗ ∼ ln 𝛾

2𝜋𝑇QH
and the peak of the BH potential forms a cavity. In this way, the ECO’s

QNM frequencies, 𝜔𝑛, are determined as poles of the transfer function K(𝜔) [see
Eq. (10.27)]

ℛ
ECO(𝜔𝑛)RBH T(𝜔𝑛) = 1. (10.31)

We solve Eq. (10.31) numerically and plot the value of 𝜔𝑛 as a function of 𝛾 in
Fig. 10.9, where the quantum horizon temperature 𝑇QH is set to be the Hawking
temperature 𝑇𝐻:

𝑇𝐻 B
𝜅

2𝜋
=

1
8𝜋
, (10.32)
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with 𝜅 = 1/4 the surface gravity. We can see that the absolute value of the real
and imaginary parts of 𝜔𝑛 increases with 𝛾 and 𝑛. In particular, the negative sign
of Im 𝜔𝑛 ensures the stability of the QNMs. For the fundamental mode 𝑛 = 0, its
decay rate is less than 10−3, hence it is long-lived.

The feature of ECO’s QNMs is also visible in the transfer function K (Fig. 10.10).
The blue curve corresponds to the case with (𝛾 = 10−15, 𝑇QH = 𝑇𝐻). There
are a number of local maxima whose locations are close to the real part of the
corresponding QNMs. With 𝛾 ≪ 1, the peak frequency 𝜔(𝑛)peak is given by

𝜔
(𝑛)
peak = 𝜔

(𝑛)
FSR −

𝜔
(𝑛)
FSR

(2𝑛 + 1)𝜋 Im ln
[
RBH T(𝜔(𝑛)FSR)

]
, (10.33)

where the free spectral range (SFR) of the cavity writes

𝜔
(𝑛)
FSR = (2𝑛 + 1)

𝑇QH𝜋
2

| ln 𝛾 |

{
1 − 1

ln 𝛾
ln

[
(2𝑛 + 1)

𝑇QH𝜋
2

| ln 𝛾 |

]}
+ O

[
(ln 𝛾)−2] , 𝑛 = 0, 1 . . .

(10.34)

In Fig. 10.10 we label the location of 𝜔(𝑛)peak for 𝑛 = 0, 1, 2 using the dashed ver-
tical lines. Additionally, K has a global maximum at the fundamental QNM of
a Schwarzschild BH (0.374 − 0.0890𝑖), contributed by the factor 1/𝐷out

22 (see the
blue curve in Fig. 10.2). Within the frequency band 𝜔 < 0.374, K is dominated
by 1/𝐷out

22 , hence its asymptotic behavior is ∼ 𝜔4 as 𝜔 → 0. Whereas for the band
𝜔 > 0.374, K decays exponentially due to the second term on the right hand side
of Eq. (10.30).

On the other hand, when 𝛾 is comparable to 1, GWs cannot be effectively trapped
near the ECO surface, and the ECO QNMs do not exist. This fact is clearly
manifested in the transfer function of the case with (𝛾 = 10−1, 𝑇QH = 5𝑇𝐻), as
shown in the black curve in Fig. 10.10. Moreover, since the value of 𝑇QH is greater
than the previous one, more high-frequency contents can be reflected by the ECO
surface hence emerge at infinity.

10.5.3 Numerical computation of echo waveforms
In order to use Eq. (10.26) to compute echo waveforms, we first need to estimate the
actual wave 𝑌H in ECO

𝑙𝑚𝜔
[see Eq. (10.23)] that falls down the future horizon. In the

context of hybrid method, the future horizon exists partially in region I+II, only the
late-time portion of 𝑌H in

𝑙𝑚
[see Eq. (10.14)] can represent 𝑌H in ECO

𝑙𝑚
, namely

𝑌H in ECO
𝑙𝑚 (𝑣) = 𝑌H in

𝑙𝑚 (𝑣), when 𝑣 > 𝑣
(H)
Σ
. (10.35)
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Figure 10.13: The influence of the filter parameter Δ𝑣 on echo waveforms. Each
curve corresponds to the real part of the first echo (with different Δ𝑣), using
SXS:BBH:0207 and the Boltzmann reflectivity (𝛾 = 10−15 and 𝑇QH = 𝑇𝐻) . The
filter is applied at the future horizon with 𝑣 (H)

Σ
= −13.

Note again that the condition is in the time domain. The value of 𝑣 (H)
Σ

was determined
by searching for the starting time after which 𝑌H in

𝑙𝑚
(𝑣) can be decomposed as a sum

of QNM overtones, as discussed in Sec. 10.4.2. In practice, we impose the condition
in Eq. (10.35) via a filter:

𝑌H in ECO
𝑙𝑚 (𝑣) → 𝑌H Filter

𝑙𝑚 (𝑣),
= 𝑌H in

𝑙𝑚 (𝑣)F (𝑣) + Const. × [1 − F (𝑣)], (10.36)

where the Planck-taper filter F (𝑣) is given by [119]

F (𝑣; 𝑣 (H)
Σ
,Δ𝑣) =


0, 𝑣 < 𝑣

(H)
Σ
− Δ𝑣,

1
exp 𝑧+1 , 𝑣

(H)
Σ
− Δ𝑣 < 𝑣 < 𝑣 (H)

Σ
,

1, 𝑣 > 𝑣
(H)
Σ
.

(10.37)

and 𝑧 = Δ𝑣

𝑣−𝑣 (H)
Σ

+ Δ𝑣

𝑣−𝑣 (H)
Σ
+Δ𝑣

. The Planck-taper filter F (𝑣) is a function that gradually

ramps up from 0 to 1 within the time interval [𝑣 (H)
Σ
−Δ𝑣, 𝑣 (H)

Σ
]. Therefore,𝑌H Filter

𝑙𝑚
(𝑣)

in Eq. (10.36) represents a quantity that switches from a constant value to 𝑌H in
𝑙𝑚
(𝑣)

that is predicted by the hybrid method. The value of the constant does not affect the
echo waveform since this zero-frequency content cannot penetrate the BH potential
(see the value of 𝐷out

22 in Fig. 10.2). In our case, we set the constant to 0.

With the transfer function at hand, we are able to compute echo waveforms.
Figure 10.11 shows an echo signal following the main GW, emitted by the sys-
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tem SXS:BBH:0207, assuming 𝑣
(𝐻)
Σ

= −13, as summarized in Table 10.2, and
(Δ𝑣 = 2/𝜅 = 8, 𝛾 = 10−15, 𝑇QH = 𝑇𝐻). To further investigate how the echo sig-
nal is impacted by the parameters (𝛾, 𝑇QH), we vary their values and exhibit the
results in Fig. 10.12. The echo waveform of SXS:BBH:1936 looks similar to that
of SXS:BBH:0207, and it can be found in Sec. 10.10. The total echo waveform is
compared with the first echo. In the case of (𝛾 = 10−15, 𝑇QH = 𝑇𝐻) (shown in the
upper left panel), distinct echo pulses are separated by an equal time interval of

Δ𝑢echo ∼ | ln 𝛾 |/(𝜋𝑇QH), (10.38)

which is long compared with the duration of BBH ringdown. These well-separated
echoes do result mathematically from a collective excitation of ECO’s multiple
QNMs displayed in Fig. 10.10—even though each individual QNM bears little
resemblance to the echo pulse. On the other hand, for greater values of 𝑇QH and 𝛾
(𝛾 = 10−1, 𝑇QH = 5𝑇𝐻 , shown in the lower right panel), the spacing between nearby
pulses becomes comparable to the pulse duration, distinct echo pulses interfere with
each other, and we cannot resolve any single pulse. In addition, since the ECO with
greater 𝑇QH reflects a broader frequency band, the final echo is stronger.

We then investigate the impact of the filter parameter Δ𝑣 in Eq. (10.37). As shown
in Fig. 10.13, we compute the first echo emitted by SXS:BBH:0207, using (𝛾 =

10−15, 𝑇QH = 𝑇𝐻) and 𝑣
(H)
Σ

= −13—for a variety of Δ𝑣. We can see that the
waveforms have different amplitude evolution within the first two cycles, but the
distinction is suppressed shortly afterward.

10.5.4 Comparison with the inside prescription
The horizon filter is absent in the framework of inside prescription [11, 64]. Taking
𝑣
(H)
Σ
→ −∞, Eq. (10.35) reduces to

𝑌H in ECO
𝑙𝑚𝜔 = 𝐶in

𝑙𝑚 (𝜔)𝑌
∞
𝑙𝑚𝜔, (10.39)

and Eq. (10.26) becomes

𝑍∞ e𝑐ℎ𝑜
𝑙𝑚𝜔 =

∞∑︁
𝑛=1

(
ℛ

ECORBH T
)𝑛
𝑍∞𝑙𝑚𝜔, (10.40)

where we have used the TS identities in Eqs. (10.9). Direct usage of Eq. (10.40)
will lead to undesired low-frequency contents, contributed by the inspiral stage.
A workaround would be taking only the ringdown portion of 𝑍∞

𝑙𝑚
(𝑢), following

Ref. [64]. We compare the hybrid method [Eq. (10.26)] with the inside formula



461

250 275 300 325 350 375

5.0

2.5

0.0

2.5

5.0

7.5

R
e 
Z

ec
h
o

22

1e 4 The first echo
Inside
Hybrid

525 550 575 600 625 650
u/Mf

2

0

2

4

R
e 
Z

ec
h
o

22

1e 5 The second echo
Inside
Hybrid

Figure 10.14: A comparison between the hybrid approach and the inside pre-
scription, using SXS:BBH:0207. We choose the Boltzmann reflectivity with
(𝛾 = 10−15, 𝑇QH = 𝑇𝐻). The upper panel shows the first echo, whereas the bot-
tom panel is the second echo. The filter is applied at null infinity (labeled by
“Inside,” in red), and at future horizon (labeled by “Hybrid,” in black). The width
of both filters Δ𝑣 is 2/𝜅.

[Eq. (10.40)] in Fig. 10.14, assuming SXS:BBH:0207. Here we choose Δ𝑣 = 2/𝜅
and (𝛾 = 10−15, 𝑇QH = 𝑇𝐻). We see for the first echo, the hybrid method leads to a
stronger signal, but the inside prescription has a stronger second echo. Meanwhile,
for the initial part of the first echo, the hybrid method gives rise to one more cycle,
but the evolution is almost identical afterward.

10.6 Detectability and parameter estimation
In this section, we focus on the detectability of the echoes computed in this chapter
by current and future detectors. We first give a brief summary of detector response,
signal-to-noise ratio (SNR) and Fisher matrix calculations in Sec. 10.6.1. Then we
study the detectability of echoes by calculating SNR in Sec. 10.6.2, and discuss
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Figure 10.15: The sky-averaged echo SNR across the 𝑇QH − 𝛾 space, using
SXS:BBH:0207 (the upper panel) and SXS:BBH:1936 (the lower panel), as well as
aLIGO (the left column) and CE (the right column). The binary system is 100Mpc
away from the detector, with a total mass of 60𝑀⊙. We set Δ𝑣 to 2/𝜅 and the values
of 𝑣 (H)

Σ
are listed in Table 10.2.
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parameter estimation by adopting the Fisher matrix in Sec. 10.6.3.

10.6.1 The signal-to-noise ratio and Fisher-matrix formalism
We first construct two polarizations of an echo ℎecho

+,× by assembling ℎecho
𝑙𝑚

:

ℎecho
+ − 𝑖ℎecho

× =
∑︁
𝑚=±2

𝑌−2 𝑙=2,𝑚 (𝜃, 𝜙)ℎ
echo
𝑙=2,𝑚, (10.41)

where we are using the leading contributions ℎecho
2,±2, who satisfy the condition ℎecho

2,−2 =

(ℎecho
2,2 )

∗. The echo strain ℎecho detected by a detector is given by

ℎecho = 𝐹+(𝜃𝑆, 𝜙𝐿 , 𝜓𝐿)ℎecho
+ + 𝐹×(𝜃𝑆, 𝜙𝐿 , 𝜓𝐿)ℎecho

× , (10.42)

with (𝜃𝑆, 𝜙𝐿) the sky location of a source with respect to the detector, and 𝜓𝐿 the
polarization angle. The SNR of a given GW signal ℎ is written as

√︁
(ℎ |ℎ), where

the inner product between two waveforms (ℎ |𝑔) reads

(ℎ |𝑔) = 4Re
∫

ℎ∗( 𝑓 )𝑔( 𝑓 )
𝑆𝑛 ( 𝑓 )

𝑑𝑓 . (10.43)

Here 𝑆𝑛 ( 𝑓 ) is the spectral density of the noise when detecting GWs. The averaged
SNR over angular parameters (𝜃𝑆, 𝜙𝐿 , 𝜓𝐿 , 𝜃, 𝜙) is given by [120]〈

𝜌2〉 = 16
25

∫ |ℎ+ |2(𝜃 = 0)
𝑆𝑛 ( 𝑓 )

𝑑𝑓 . (10.44)

We shall adopt the sky-averaged SNR throughout this chapter.

On the other hand, the Fisher matrix for a given gravitational waveform ℎ(𝜆𝑖) can
be written as

Γ𝑖 𝑗 =

(
𝜕ℎ

𝜕𝜆𝑖

���� 𝜕ℎ𝜕𝜆 𝑗 ) , (10.45)

where 𝜆𝑖 are parameters to be estimated. In this chapter, we restrict ourselves to
(𝛾, 𝑇QH) that determine the Boltzmann reflectivity [Eq. (10.30)]. By inverting Γ𝑖 𝑗 ,
we obtain parameter estimation accuracies for 𝜆𝑖 as

Δ𝜆𝑖 =
√︁
(Γ−1)𝑖𝑖 . (10.46)

10.6.2 Detectability of echoes
To study how the SNR is impacted by the reflectivity parameters (𝛾, 𝑇QH), we adopt
a aLIGO-like detector [121] and a Cosmic Explorer (CE)-like detector [122], for
both SXS:BBH:0207 and SXS:BBH:1936. We assume the binaries to have a total
mass of 60𝑀⊙, and to be located 100Mpc from the detector.
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In the baseline case with 𝑇QH = 𝑇𝐻 , 𝛾 = 10−1, Δ𝑣 = 2/𝜅 and using values of 𝑣 (H)
Σ

in
Table 10.2, we obtain (sky-averaged) echo SNR of ∼ 0.45 for aLIGO, and ∼ 15 for
CE. Echo SNRs of SXS:BBH:1936 are greater than SXS:BBH:0207 by a factor of
∼ 1.5 in both detectors. In order to compare with Ref. [58], we also estimate the
ratios between echo SNR and ringdown SNR. To first obtain the ringdown SNR,
we choose the lower limit of integration in Eq. (10.44) to be the frequency of ℎ∞22
evaluated at 𝑢(ℎ) [see Eq. (10.17a) and Table 10.2]. For aLIGO, the ringdown SNR
for SXS:BBH:0207 is around 7.0, and the ratio SNRecho/SNRringdown = 6.5%, close
to the blue curve in the bottom left panel of Fig. 9 in Ref. [58].

In Figure 10.15, we explore how the echo SNR depends on values of 𝛾 and 𝑇QH, for
both detectors and both binaries, respectively, assuming Δ𝑣 = 2/𝜅 and the values
of 𝑣 (H)

Σ
being listed in Table 10.2. The SNR increases with 𝑇QH since a larger 𝑇QH

corresponds to a broader reflection frequency band, and more incident waves are
reflected. The 𝛾 dependence of SNR is more complex. For small values of 𝑇QH

(i.e., around unity, as originally proposed by Ref. [11]), the SNR barely depends on
𝛾, because in this case the echoes are weak and mainly dominated by the first pulse,
where 𝛾 only controls the separation between the echoes in time, then it does not
affect the SNR. By contrast, for 𝑇QH ≳ 5𝑇𝐻 , the echoes may overlap with each other,
and (constructively) interfere, elevating the SNR.

Next, we investigate the impact of filters on the horizon, namely the advanced
time 𝑣 (H)

Σ
at which the shell Σ crosses the horizon, and the thickness Δ𝑣 of the

transition region in which we cut off reflection. Taking SXS:BBH:0207 and CE for
example, we plot, in Fig. 10.16, the sky-averaged echo SNR as a function of two
filter parameters 𝑣 (H)

Σ
and Δ𝑣 [see Eq. (10.37)], where we choose 𝛾 = 10−15 and

𝑇QH = 𝑇𝐻 . As expected, the SNR decreases as either 𝑣 (H)
Σ

increases or Δ𝑣 decreases.
The global pattern suggests that the dependence on 𝑣 (H)

Σ
andΔ𝑣 is linearly correlated.

10.6.3 Parameter estimation
We now use the Fisher-matrix formalism to study parameter estimation. Here
we restrict ourselves to reflectivity parameters (𝛾, 𝑇QH), resulting in 2-D Fisher
Matrices. This will result in an under-estimate of measurement errors. As shown in
Fig. 10.17, we compute the fractional errors of 𝑇QH and 𝛾, using SXS:BBH:0207.
We still assume that the system has a total mass of 60𝑀⊙, and is located 100Mpc
from the detector. Two filter parameters 𝑣 (H)

Σ
and Δ𝑣 are still set to −13 and 2/𝜅,

respectively. We vary the value of 𝑇QH from 0.4 to 10 while fixing the value of 𝛾 to
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Figure 10.16: The sky-averaged echo SNR as a function of filter parameters 𝑣 (H)
Σ

and Δ𝑣 [see Eq. (10.37)], using CE. The binary system is SXS:BBH:0207 and has
the same total mass and distance as Fig. 10.15. We use the Boltzmann reflectivity
with 𝛾 = 10−15 and 𝑇QH = 𝑇𝐻 . The vertical dot-dashed line stands for the value of
𝑣
(H)
Σ

in Table 10.2.

10−15. We see the fractional error decreases as 𝑇QH increases, since the echo signal
is stronger. The constraint on 𝑇QH is greater than 𝛾 since it has a bigger impact on
the echo’s profile and SNR. Choosing 𝑇QH = 𝑇𝐻 , the aLIGO can constrain 𝛾 and
𝑇QH to the level of 366.7% and 10.2%, respectively. These two constraints lead
to 20.9% measurement uncertainty in the time interval Δ𝑢echo between individual
echoes, based on Eq. (10.38). For CE, the fractional errors of 𝛾, 𝑇QH, and Δ𝑢echo

are 11.4% and 0.3%, and 0.65%, respectively.

10.7 Conclusion
In this chapter, we made use of the hybrid method [77, 78] to establish an echo
waveform model for comparable-mass merging binaries whose remnants do not
rotate. The hybrid method was proposed originally to predict GWs emitted by
BBH coalescences—it separates the space-time of a BBH event into an inner PN
region and an outer BHP region (see Fig. 10.1). The two regions communicate via
boundary conditions on a worldtube Σ. To build the echo model, we first took the
Weyl scalars of the BBH systems from CCE [83] at the future null infinity. Then we
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Figure 10.17: The fractional error of 𝑇QH (solid curves) and 𝛾 (dashed curves) as
functions of 𝑇QH, using aLIGO (in black) and CE (in red). The binary system is
SXS:BBH:0207, who has a total mass of 60𝑀⊙, and is located 100Mpc from the
detector. Two filter parameters 𝑣 (H)

Σ
and Δ𝑣 are still set to −13 and 2/𝜅, respectively.

We vary the value of 𝑇QH from 0.4 to 10 while fixing the value of 𝛾 to 10−15.

reversed the process of the hybrid method by evolving Weyl scalars back into the
bulk, and the solution in the BHP region is proportional to the up-mode solution to
the homogeneous Teukolsky equation, as required by the uniqueness of solutions.
With the solution at hand, we were able to compute the GW that falls down the
future horizon.

Since the BHP theory is not valid inside the matching shellΣ, only the portion of GW
that lies outside the worldtube ΣShell is physical. Consequently, the usefulness of our
method is limited to the ringdown phase. We determined the location of Σ, namely
the advanced time 𝑣(H)

Σ
at which it crosses the future horizon, by looking for the

quasi-normal ringing regime of the horizon−𝜓0—we fitted 𝑌H in
𝑙𝑚

to a superposition
of five overtones [Eq. (10.17)]. We then removed the earlier piece of 𝜓0 (with
𝑣 < 𝑣

(𝐻)
Σ

) by applying a Planck-taper filter, whose width Δ𝑣 (a free parameter in our
model) can be viewed as the effective thickness of the matching shell.

Next, by utilizing the physical boundary condition near ECO surfaces [61] and the
Boltzmann reflectivity [11], we computed the QNMs of irrotational ECOs, as well
as echo signals of two systems: SXS:BBH:0207 and SXS:BBH:1936. We picked
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these two runs because their remnant spins vanish, in which the prediction of the
hybrid method for ringdown signals has proved to be accurate [77]. Finally, we
studied the detectability and parameter estimation of echoes.

We summarize our main conclusions as follows:

(i) The hybrid method is similar to the inside prescription of Refs. [11, 64] in the
sense that both of them treat the main GW as a transmitted wave of an initial pulse
emerging from the past horizon (see Fig. 10.4). Furthermore, filters are involved
in both treatments, which, however, have different physical interpretations. The
inside prescription (also the CLA) handles the system as an initial value problem
(the Cauchy problem), where the whole process is split into two stages. Only
the late time portion lies in the BHP region. Therefore, the filter needs to be
applied at the future null infinity. Oppositely, in our case, the exterior system is
described by a boundary value problem—a spatial volume is separated at every
moment. Accordingly, the filter is imposed at the future horizon to remove the
unrealistic portion of the incoming GW. We took SXS:BBH:0207 as an example
and compared the hybrid method with the inside prescription. We found that the
inside prescription leads to fewer cycles than the hybrid method for the initial part
of the echo. Meanwhile, the first echo predicted by the inside prescription is weaker
than the result by the hybrid method.

(ii) The Weyl scalars 𝜓0,4 from CCE are consistent with the TS identities throughout
the entire frequency band in question. This supports the treatment of the hybrid
method that uses the BHP theory to describe the exterior region, at least when the
remnant object does not rotate.

(iii) Similar to the studies of Refs. [110, 115], using six overtones, the ringdown
of the strain for SXS:BBH:1936 starts at 2𝑀 𝑓 after the peak. However, the time
for SXS:BBH:0207 can be extended to ∼ 11𝑀 𝑓 before the peak. For the horizon
and infinity 𝜓0: 𝑌H/∞

22 , the prediction of CCE is less accurate, and we were only
able to resolve five overtones. The linearly quasi-normal ringing regime of 𝑌H 𝑖𝑛

22
for SXS:BBH:0207 and SXS:BBH:1936 are similar and they start at ∼ 13 − 15𝑀 𝑓

before the peak.

We have restricted ourselves to inspiralling compact binaries whose remnants are
Schwarzschild-like ECOs. Future work could extend the hybrid method to Kerr-like
ECOs and utilize it to compute echoes emitted by more general comparable-mass
coalescence systems. It is worth pointing out that throughout the process, the Kerr-
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like background should have an adiabatically evolving mass and angular momentum
due to GW emission. It will be a limitation for the hybrid method if one fails
to capture this feature. Another possible avenue for future work is to apply our
calculations to head-on collisions and compare the echo waveform with the results
in Ref. [75].

10.8 Appendix: The QNM amplitudes of SXS:BBH:0207 and 1936
Figure 10.18 shows the absolute value and phase of A (ℎ/∞/H)𝑛 and B (ℎ/∞/H)𝑛 [see
Eq. (10.17)]. For SXS:BBH:1936, A (ℎ)𝑛 peaks at 𝑛 = 5, consistent with previous
studies [110, 115, 116]. However, in this case the absolute value of the retro-
grade mode B (ℎ)𝑛 is comparable with that of A (ℎ)𝑛 , thus it is not negligible. For
SXS:BBH:0207, the contribution of the retrograde mode B (ℎ)𝑛 is considerable as
well, and A (ℎ)𝑛 peaks at 𝑛 = 2 and B (ℎ)𝑛 at 𝑛 = 3.
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Figure 10.18: The absolute value (the left two panels) and phase (the right
two panels) of the prograde mode A𝑛 and the retrograde mode B𝑛, assuming
SXS:BBH:0207 (the upper row) and SXS:BBH:1936 (the lower row). We fit
Eqs. (10.17) to the data of ℎ∞22 (blue), 𝑌∞22 (black) as well as 𝑌H 𝑖𝑛

22 (red) obtained
from CCE.

10.9 Appendix: The characteristic approach for solving the RW equation
Eq. (10.1) can be solved numerically via a second-order-accurate, characteristic
method, proposed by Gundlach et al. [123]. As shown in Fig. 10.19, Gundlach et
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al. [123] picked four points on a discretized (𝑢, 𝑣) grid:

ΨN
𝑙𝑚𝑠

= ΨSN
𝑙𝑚𝑠
(𝑢 + ℎ, 𝑣 + ℎ), ΨE

𝑙𝑚𝑠
= ΨSN

𝑙𝑚𝑠
(𝑢, 𝑣 + ℎ),

ΨW
𝑙𝑚𝑠

= ΨSN
𝑙𝑚𝑠
(𝑢 + ℎ, 𝑣), ΨS

𝑙𝑚𝑠
= ΨSN

𝑙𝑚𝑠
(𝑢, 𝑣), (10.47)

with ℎ the step size. The value on left corner ΨW
𝑙𝑚𝑠

can be obtained through

ΨW
𝑙𝑚𝑠

= ΨN
𝑙𝑚𝑠
+ ΨS

𝑙𝑚𝑠
− ΨE

𝑙𝑚𝑠

+ ℎ
2

8
𝑉 𝑙RW(𝑟𝑐) ( Ψ

N
𝑙𝑚𝑠
+ ΨS

𝑙𝑚𝑠
) + O(ℎ3), (10.48)

where𝑉 𝑙RW(𝑟𝑐) is the value of the RW potential at the center 𝑟𝑐 = (𝑢 + ℎ/2, 𝑣 + ℎ/2).
We note that Eq. (10.48) is different from the one used in Refs. [77, 78], where ΨN

𝑙𝑚𝑠

was calculated based on the other three. This is because we evolve the system back
into the bulk (from ℐ

+ to past horizon).
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Figure 10.19: The (𝑢, 𝑣) grid cell in characteristic evolution scheme for the RW
equation.

10.10 Appendix: SXS:BBH:1936
Using SXS:BBH:1936, we test the validity of the TS identity at the null infinity [see
Eq. (10.9a)] in Fig. 10.20. Conventions are the same as Fig. 10.6.
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In Fig. 10.21, we present the total echo and the first echo with a variety of (𝛾, 𝑇QH).
The location of the filter is listed in Table 10.2, and the width of the filter is set to
2/𝜅.
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Figure 10.20: Same as Fig. 10.6, using SXS:BBH:1936.

200 300 400 500 600 700

0.010

0.005

0.000

0.005

0.010

0.015

0.020

R
e 
h

ec
h
o

22

γ= 10−15 TQH = TH

First
Total

0 100 200 300 400
0.3

0.2

0.1

0.0

0.1

0.2

0.3

γ= 10−15 TQH = 5TH

First
Total

0 25 50 75 100 125

0.010

0.005

0.000

0.005

0.010

0.015

0.020

R
e 
h

ec
h
o

22

γ= 10−1 TQH = TH

First
Total

0 50 100 150
0.4

0.2

0.0

0.2

γ= 10−1 TQH = 5TH

First
Total

u/Mf

Figure 10.21: Same as Fig. 10.12, using SXS:BBH:1936.
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