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ABSTRACT

This dissertation contains three essays. They offer contributions to the fields of
mechanism design (Chapters 1 and 2) and contest theory (Chapter 3).

Chapter 1, co-authored with Wade Hann-Caruthers, studies the problem of aggre-
gating privately-held preferences for a facility to be located on a plane. We show that
for a large class of social cost functions, the mechanism that locates the facility at the
coordinate-wise median of the agent’s ideal points is quantitatively optimal (in the
sense that it has the smallest worst-case approximation ratio) among all determinis-
tic, anonymous, and incentive-compatible mechanisms. We also obtain bounds on
the worst-case approximation ratio of the coordinate-wise median mechanism for
an important subclass of social cost functions.

Chapter 2, co-authored with Wade Hann-Caruthers, studies a principal-agent project
selection problem with asymmetric information and demonstrates the value for the
principal in inducing partial verifiability constraints, such as no-overselling, on the
agent. We consider a setting where the principal has to choose one among a set of
available projects but the relevant information, such as each project’s profitability,
is held by a self-interested agent who might also have its own preference over
the projects. If the agent is unconstrained in its ability to manipulate its private
information, the principal can do no better than randomly choosing a project. But
if the agent cannot oversell any of the projects, maybe because it must support its
claims with evidence, we show that a simple cutoff mechanism (agent’s favorite
project is chosen among those that meet a cutoff profit level and a default project)
is optimal for the principal. We also find evidence in support of the well-known
ally-principle which says that principal delegates more authority to an agent with
more aligned preferences.

Chapter 3 studies the effect of increasing the value of prizes and competitiveness of
contests on the effort exerted by participants in an incomplete information environ-
ment. We identify two natural sufficient conditions on the distribution of abilities
in the population under which the interventions have opposite effects on effort. We
also discuss applications to the design of optimal contests in three different environ-
ments, including the design of grading contests. Assuming that the value of a grade
is determined by the information it reveals about the agent’s ability, we establish a
link between the informativeness of a grading scheme and the effort induced by it.
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INTRODUCTION

This dissertation contains three essays. Two of them contribute to the field of mech-
anism design (Chapters 1 and 2) and one to the field of contest theory (Chapter 3).

Mechanism Design
There are many settings where a principal wishes to take a socially or personally
optimal decision, but the information required to make the right decision is held
by another agent or is spread across many different agents. In these settings, the
principal must design institutions to extract the relevant information and make
decisions. Since the agents might have preferences over alternatives that differ from
those of the principal, the institutions that the principal designs must account for
the kind of incentives they create for the agents. The theory of mechanism design
provides us the tools to identify institutions that incentivize the self-interested agents
to reveal their private information or preferences, and then compare them in terms
of the information rent they pay and the welfare losses they incur. Two chapters in
this dissertation contribute to the field of mechanism design.

In Chapter 1, with Wade Hann-Caruthers, we study institutions for aggregating
preferences to reach socially optimal decisions in the context of facility location
problems. We consider a principal who wishes to choose a location for a pub-
lic facility on a plane based on the Euclidean preferences of the agents, defined
by their privately known ideal points. We show that locating the facility at the
coordinate-wise median of the agent’s ideal points is a good institution for this
problem in the sense that it has the smallest worst-case approximation ratio among
all incentive-compatible mechanisms. While previous research provided strong ax-
iomatic foundations for the coordinate-wise median mechanism, our paper augments
this literature by demonstrating its quantitative optimality. We also quantify exactly
the worst-case approximation ratio of the coordinate-wise median mechanism for
the minisum (minimize the sum of Euclidean distances) objective and obtain bounds
for the general p-norm (minimize the p-norm of Euclidean distances) objective.

In Chapter 2, with Wade Hann-Caruthers, we study institutions for extracting infor-
mation held by another agent to take personally optimal decisions in the context of
project selection problems. We focus on a setting where the principal has to choose
one among several available projects but does not know how profitable each of these
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projects are. There is an agent who has complete information about the profitability
of all the projects but also has its own preference over them. In this setting, there
is no mechanism that the principal can use to exploit the information held by the
agent and choose a profitable project. But if the principal can perhaps identify or
induce features in the environment that prevent the agent from overselling any of the
projects, we show that it can use a simple cutoff mechanism to maximize its expected
profit. The mechanism chooses the agent’s favorite project from those that meet
the profit cutoff and a default project. In addition, if the agent’s preferences over
projects become more aligned with those of the principal, the optimal cutoff level
goes down. Thus, our model lends support to the well-known ally principle which
says that a principal grants more leeway to an agent with more aligned preferences.

Contest Theory
Contests are situations where agents exert costly effort or resources to win one or
more prizes. In many applications like sporting events, classrooms, labor mar-
kets, etc., the contest designer can manipulate the different features of a contest to
influence the effort exerted by the agents and satisfy their objectives.

Chapter 3 considers contests where agents have private information about their
abilities and the contest designer can manipulate the values of different prizes
to influence effort. In such settings, previous research has shown that an effort-
maximizing budget-constrained designer would allocate the entire budget to the
best prize, irrespective of the distribution of abilities. The chapter contributes to
this literature by illustrating that if the value of the first prize was exogenously
fixed, it is not always the case that an effort-maximizing designer would simply
go down the ranks allocating as much prize money as possible until it runs out of
budget, as perhaps the optimality of the winner-take-all contest would suggest. More
generally, we show that the effect of increasing values of intermediate prizes and that
of increasing competition depends qualitatively on the distribution of abilities in the
population. While this may be interesting in itself, we also illustrate its relevance
through our applications, especially to the design of optimal grading schemes as
information disclosure policies. We find that more informative grading schemes may
lead to greater or lesser effort depending upon the relative likelihood of productive
and unproductive agents in the population.
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C h a p t e r 1

OPTIMALITY OF THE COORDINATE-WISE MEDIAN
MECHANISM FOR STRATEGYPROOF FACILITY LOCATION

IN TWO DIMENSIONS

Sumit Goel and Wade Hann-Caruthers. Optimality of the coordinate-wise median
mechanism for strategyproof facility location in two dimensions. Social Choice
and Welfare, pages 1–24, 2022.
Both authors contributed equally at all stages of this project.

1.1 Introduction
We consider the problem of locating a facility on a plane where a set of strategic
agents have private preferences over the facility location. Each agent’s preference is
defined by its ideal point so that the cost incurred by an agent equals the Euclidean
distance between the facility location and the ideal point. A central planner wishes
to locate the facility to minimize the social cost. Since agents may lie about their
ideal points if it benefits them, the planner is constrained to choose a mechanism that
is strategyproof. In this paper, we consider the problem of finding the strategyproof
mechanism that best approximates the optimal social cost as measured by the worst-
case approximation ratio (AR) and quantifying its performance.

We find that for an odd number of agents 𝑛 and the 𝑝 − 𝑛𝑜𝑟𝑚 objective with 𝑝 ≥ 1,
the coordinate-wise median mechanism is optimal in the class of deterministic,
anonymous, and strategyproof mechanisms. For the utilitarian social objective of
minimizing the sum of individual costs (𝑝 = 1), we show that the coordinate-
wise median mechanism has an AR of

√
2
√
𝑛2+1
𝑛+1 . For the general 𝑝−𝑛𝑜𝑟𝑚 objective

(𝑝 ≥ 2), we show that the asymptotic AR of the coordinate-wise median mechanism
is bounded between 21− 1

𝑝 and 2
3
2−

2
𝑝 . We conjecture that the asymptotic AR of the

coordinate-wise median mechanism is actually equal to the lower bound 21− 1
𝑝 (as is

the case when 𝑝 = 2 or 𝑝 = ∞).

This problem has been extensively studied in the literature known as Approximate
Mechanism Design without money. It was first introduced by Procaccia and Tennen-
holtz [111] who studied the setting of locating a single facility on a real line under the
utilitarian (sum of individual costs) and egalitarian (maximum of individual costs)
objectives. Since then, the problem has received much attention, with extensions
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to alternative objective functions, multiple facilities, obnoxious facilities, different
networks, etc. Cheng and Zhou [29] and more recently, Chan et al. [26] provide
surveys of results in the last decade in several of these settings. In the class of de-
terministic strategyproof mechanisms for locating a facility, the median mechanism
has been shown to be optimal under various objectives and domains [Procaccia and
Tennenholtz [111], Feigenbaum et al. [52], Feldman and Wilf [53], Feldman et al.
[54]].

There has been some related work in extending the problem to multiple dimensions.
Meir [92] shows that in the d-dimensional Euclidean space, the approximation ratio
of the coordinate-wise median mechanism for the utilitarian objective is bounded
above by

√
𝑑. Sui et al. [127] propose percentile mechanisms for locating multiple

facilities in Euclidean space which are further analysed in Sui and Boutilier [126]
and Walsh [131]. Meir [92], using techniques different from ours, finds the AR
of coordinate-wise median mechanism under the minisum objective for the case
of 3 agents. Gershkov et al. [63] shows that for some natural priors on the ideal
points (that include i.i.d. marginals), taking the coordinate-wise median after a
judicious rotation of the orthogonal axes can lead to welfare improvements under
the least-squares objective. In other related work, El-Mhamdi et al. [47] find
that the mechanism choosing the minisum optimal location (geometric median) is
approximately strategyproof in a large economy. Brady and Chambers [19] find
that the geometric median is Nash-implementable and in the case of three agents,
it is the unique rule that satisfies anonymity, neutrality, and Maskin-Monotonicity.
Durocher and Kirkpatrick [46] and Bespamyatnikh et al. [11] analyse approximations
to geometric median due to its instability and computational difficulty.

There is also a large literature in social choice theory on characterizing the set
of strategyproof mechanisms under different assumptions on preference domains
[Gibbard [65], Satterthwaite [115], Moulin [98]]. In multiple dimensions with
Euclidean preferences, the characterizations typically include or are completely
described by the coordinate-wise median mechanism [Kim and Roush [75], Border
and Jordan [16], Peters et al. [109], Peters et al. [108]]. Our work augments
this literature, which provides strong axiomatic foundations for the coordinate-wise
median mechanism, by demonstrating its quantitative optimality.

The paper proceeds as follows. In section 2, we formally define the problem and
state some characterisation results and approximation results from the literature
that will be useful in our analysis. In section 3, we discuss the optimality of the
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coordinate-wise median mechanism. In sections 4 and 5, we discuss the problem of
finding the approximation ratio of the coordinate-wise median mechanism for the
utilitarian objective and the 𝑝-norm objective. Section 6 concludes.

1.2 Preliminaries
Suppose (𝑋, 𝑑) is a metric space. There are 𝑛 agents and each agent has an ideal
point 𝑝𝑖 ∈ 𝑋 for a facility to be located in 𝑋 . The cost of locating the facility at
𝑧 ∈ 𝑋 for agent 𝑖 is 𝑑 (𝑧, 𝑝𝑖). Let p be the profile of ideal points: p = (𝑝1, . . . , 𝑝𝑛).
The social cost of locating the facility at 𝑧 under profile p ∈ 𝑋𝑛 is given by the social
cost function 𝑠𝑐 : 𝑋 × 𝑋𝑛 → R. Let𝑂𝑃𝑇 (𝑠𝑐, p) denote the set of minimizers for 𝑠𝑐
given p:

𝑂𝑃𝑇 (𝑠𝑐, p) = argmin𝑧𝑠𝑐(𝑧, p).

When 𝑂𝑃𝑇 (𝑠𝑐, ·) is singleton-valued, we will abuse notation and use 𝑂𝑃𝑇 (𝑠𝑐, p)
to refer to the unique element contained therein. When 𝑠𝑐 is clear from context, we
will suppress the first argument and write 𝑂𝑃𝑇 (𝑠𝑐, p) simply as 𝑂𝑃𝑇 (p).

A mechanism is a function 𝑓 : 𝑋𝑛 → 𝑋 . It is said to be strategyproof if no agent
can benefit by misreporting her ideal point, regardless of the reports of the other
agents. Formally:

Definition 1.2.1. A mechanism 𝑓 is strategyproof if for all 𝑖 ∈ 𝑁 , 𝑝𝑖, 𝑝′𝑖 ∈ 𝑋 ,
𝑝−𝑖 ∈ 𝑋𝑛−1,

𝑑 ( 𝑓 (𝑝𝑖, 𝑝−𝑖), 𝑝𝑖) ≤ 𝑑 ( 𝑓 (𝑝′𝑖, 𝑝−𝑖), 𝑝𝑖).

Definition 1.2.2. A mechanism 𝑓 is anonymous if for any permutation 𝜋 : [𝑛] →
[𝑛],

𝑓 (𝑝1, . . . , 𝑝𝑛) = 𝑓 (𝑝𝜋(1) , . . . , 𝑝𝜋(𝑛)).

To measure how closely a mechanism approximates the optimal social cost for a
given profile, we use the approximation ratio.

Definition 1.2.3. For a social cost function 𝑠𝑐, the approximation ratio of a mecha-
nism 𝑓 at a profile p is given by

𝐴𝑅 𝑓 (p) =
𝑠𝑐( 𝑓 (p), p)

𝑠𝑐(𝑂𝑃𝑇 (p), p) .
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In the case that 𝑠𝑐(𝑂𝑃𝑇 (p), p) = 0, we take 𝐴𝑅 𝑓 (p) to be 1 if 𝑠𝑐( 𝑓 (p), p) = 0 and
∞ otherwise.

To compare mechanisms, we will evaluate them by their worst-case approximation
ratio.

Definition 1.2.4. The worst-case approximation ratio of a mechanism 𝑓 is given by

𝐴𝑅( 𝑓 ) = sup
p
𝐴𝑅 𝑓 (p).

Given a metric space (𝑋, 𝑑) and a social cost function 𝑠𝑐, the problem is to find a
strategyproof mechanism with the smallest worst-case approximation ratio.

In this paper, we consider the Euclidean metric space with 𝑋 = R2 and the 𝑝-norm
social cost function which is the 𝐿𝑝 norm of the vector of Euclidean distances
𝑠𝑐(𝑧, p) = [∑∥𝑧 − 𝑝𝑖∥𝑝]

1
𝑝 where 𝑝 ≥ 1. We refer to the coordinates of points in

R2 by 𝑥 and 𝑦. We refer to the sets R × {0} and {0} × R as the 𝑥-axis and the
𝑦-axis, respectively. We refer to the sets ±R≥0 × {0} and {0} ×±R≥0 as the ±𝑥-axes
and ±𝑦-axes, respectively. We use the notation [𝑧, 𝑧′] to denote the line segment
joining 𝑧 and 𝑧′: {𝑡𝑧 + (1 − 𝑡)𝑧′ : 𝑡 ∈ [0, 1]}. Similarly, we denote by (𝑧, 𝑧′) the set
[𝑧, 𝑧′] \ {𝑧, 𝑧′}.

Our analysis makes use of some previous results regarding characterization of strat-
egyproof mechanisms and bounds on approximation ratios in the Euclidean domain.
We collect those results here.

Characterization results in two dimensions
First, let us define an important class of mechanisms in this domain.

Definition 1.2.5. In the Euclidean metric space with 𝑋 = R𝑚, a mechanism 𝑓 is
called a generalized coordinate-wise median mechanism with 𝑘 constant points if
there exists a coordinate system and points 𝑐1, 𝑐2, . . . , 𝑐𝑘 ∈ (R∪ {−∞,∞})𝑚 so that
for every profile p ∈ (R𝑚)𝑛 and every dimension 𝑗 = 1, 2, . . . , 𝑚, the 𝑗 𝑡ℎ coordinate
of 𝑓 is given by

𝑓 𝑗 (p) := med
(
𝑝
𝑗

1, 𝑝
𝑗

2, . . . , 𝑝
𝑗
𝑛, 𝑐

𝑗

1, . . . , 𝑐
𝑗

𝑘

)
where “med” denotes the median of the subsequent real numbers.
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This class of mechanisms has strong axiomatic foundations in the literature as
illustrated in the following lemma:

Lemma 1 (Kim and Roush [75], Peters et al. [108, 109]). In the Euclidean metric
space with 𝑋 = R2 and an odd number of agents 𝑛, a mechanism 𝑓 :

(
R2)𝑛 → R2 is

• (Kim and Roush [75]) continuous, anonymous, and strategyproof if, and only
if, 𝑓 is a generalized coordinate-wise median mechanism with 𝑛 + 1 constant
points.

• (Peters et al. [109]) unanimous, anonymous, and strategyproof if, and only
if, 𝑓 is a generalized coordinate-wise median mechanism with 𝑛 − 1 constant
points.

• (Peters et al. [108]) Pareto optimal, anonymous, and strategyproof if, and
only if, 𝑓 is a generalized coordinate-wise median mechanism with 0 constant
points.

We refer to the generalized coordinate-wise median mechanism with 0 constant
points and the standard coordinate-system as the coordinate-wise median mechanism
and denote it by 𝑐(p) = (𝑥𝑐 (p), 𝑦𝑐 (p)).

One subclass of generalized coordinate-wise median mechanisms that will play
an important role in demonstrating the optimality of the coordinate-wise median
mechanism is the following:

Definition 1.2.6. In the Euclidean metric space with 𝑋 = R𝑚, a mechanism 𝑓 is
called a coordinate-wise quantile mechanism if it is a generalized coordinate-wise
mechanism where all the 𝑘 constant points 𝑐1, 𝑐2, . . . , 𝑐𝑘 ∈ {−∞,∞}𝑚.

Note that if |{𝑖 : 𝑐 𝑗
𝑖
= −∞}| = ℓ, then 𝑓 𝑗 (𝑝1, . . . , 𝑝𝑛) is the 𝑛+𝑘+1

2 − ℓ order statistic
of the (multi)set {𝑝 𝑗1, · · · , 𝑝

𝑗
𝑛}. Hence, given a profile p, every coordinate-wise

median quantile mechanism locates the facility by selecting, for each dimension
𝑗 , some fixed quantile of the ordered projection of p in the 𝑗 𝑡ℎ dimension as the
coordinate of the facility location.

Approximation results in two dimensions
For the case of 𝑋 = R2 with the Euclidean metric, there has been some work in
finding bounds on AR for the utilitarian objective 𝑠𝑐(𝑧, p) = ∑∥𝑧− 𝑝𝑖∥. We discuss
those findings here.



8

A point minimizing the sum of distances from a finite set of points in R2 is known
as a geometric median for that set of points. The geometric median is characterised
by the following result:

Lemma 2. Given p ∈ (R2)𝑛, a point 𝑧 ∈ R2 is a geometric median for p if and only
if there are vectors 𝑢1, . . . , 𝑢𝑛 such that

𝑛∑︁
𝑖=1

𝑢𝑖 = 0

where for 𝑝𝑖 ≠ 𝑧, 𝑢𝑖 = 𝑝𝑖−𝑧
∥𝑝𝑖−𝑧∥ and for 𝑝𝑖 = 𝑧, ∥𝑢𝑖∥ ≤ 1.

This characterisation yields conditions under which changing a profile of points
does not change the geometric median, as summarized in the following corollary:

Corollary 1. Let p ∈ (R2)𝑛, and denote by 𝑧 the geometric median of p. For any
𝑖, if 𝑝𝑖 ≠ 𝑧 and if 𝑝′

𝑖
∈ {𝑧 + 𝑡 (𝑝𝑖 − 𝑧) | 𝑡 ∈ R≥0}, then the geometric median for the

profile (𝑝′
𝑖
, 𝑝−𝑖) is also 𝑧.

Informally, moving a point directly away from or directly towards (but not past)
the geometric median leaves the geometric median unchanged. We will use this
observation repeatedly in the sequel and note here that in fact it will be the only
characteristic of the geometric median that we use for much of the paper. We refer
to the geometric median by 𝑔(p) = (𝑥𝑔 (p), 𝑦𝑔 (p)).

It follows from Lemma 1 that the geometric median mechanism is not strategyproof.
Meir [92] finds an upper bound on the AR of the coordinate-wise median mechanism
in the 𝑚−dimensional problem:

Lemma 3 (Meir [92]). For 𝑋 = R𝑚 and the utilitarian objective 𝑠𝑐(𝑧, p) = ∑∥𝑧 −
𝑝𝑖∥, the coordinate-wise median mechanism has an approximation ratio of at most
√
𝑚 for any number of agents 𝑛.

Feigenbaum et al. [52] consider the facility location problem for 𝑋 = R and 𝑑 (𝑧, 𝑧′) =
|𝑧 − 𝑧′| with the social cost function 𝑠𝑐(𝑧, p) = [∑ |𝑧 − 𝑝𝑖 |𝑝]

1
𝑝 .

Lemma 4 (Feigenbaum et al. [52]). For 𝑋 = R and the 𝑝-norm objective 𝑠𝑐(𝑧, p) =
[∑ |𝑧 − 𝑝𝑖 |𝑝]

1
𝑝 with 𝑝 ≥ 1, the median mechanism has an approximation ratio

of 21−1/𝑝. Further, any deterministic strategyproof mechanism has approximation
ratio of at least 21−1/𝑝.
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1.3 Optimality of the coordinate-wise median mechanism
Our first major finding is that the coordinate-wise median mechanism is optimal with
respect to the worst-case approximation ratio for the class of social cost functions
we study.

Theorem 1. For 𝑋 = R2, and the 𝑝-norm objective 𝑠𝑐(𝑧, p) = [∑∥𝑧 − 𝑝𝑖∥𝑝]
1
𝑝

where 𝑝 ≥ 1, the coordinate-wise median mechanism has the lowest approximation
ratio among all deterministic, anonymous, and strategyproof mechanisms.

To prove Theorem 1, we will show that for every deterministic, anonymous, and
strategyproof mechanism 𝑓 , there is a coordinate-wise quantile mechanism 𝑄 such
that 𝐴𝑅( 𝑓 ) ≥ 𝐴𝑅(𝑄) ≥ 𝐴𝑅(𝐶𝑀). In the case that 𝑓 is not unanimous, 𝐴𝑅( 𝑓 ) =
∞ > 𝐴𝑅(𝐶𝑀). In the case that 𝑓 is unanimous, it follows from Lemma 1 that
𝑓 is a generalized coordinate-wise median mechanism with 𝑛 − 1 constant points.
Thus, to prove the theorem, we will show that for every such mechanism there is a
coordinate-wise quantile mechanism with a lower AR (Lemma 5) and that CM has
the lowest AR among all coordinate-wise quantile mechanisms (Lemma 6).

Lemma 5. Let 𝑓 be a generalized coordinate-wise median mechanism with 𝑛 − 1
constant points. Then for any 𝑝-norm objective 𝑠𝑐, there is some coordinate-wise
quantile mechanism 𝑄 such that 𝐴𝑅( 𝑓 ) ≥ 𝐴𝑅(𝑄).

Proof. Let 𝑐1, . . . , 𝑐𝑛−1 be the constant points for 𝑓 . Let 𝑄 be the coordinate-wise
quantile mechanism with constant points 𝑞1, . . . , 𝑞𝑛−1, where for each 𝑖, 𝑞 𝑗

𝑖
= ∞ if

𝑐
𝑗

𝑖
= ∞ and 𝑞 𝑗

𝑖
= −∞ otherwise. Now we will show that 𝐴𝑅( 𝑓 ) ≥ 𝐴𝑅(𝑄).

Let 𝑧1 ∈ R such that for every 𝑖, either 𝑐1
𝑖
< 𝑧1 or 𝑐1

𝑖
= ∞, and similarly, let 𝑧2 ∈ R

such that for every 𝑖, either 𝑐2
𝑖
< 𝑧2 or 𝑐2

𝑖
= ∞. Then for any p such that 𝑝1

𝑖
> 𝑧1 and

𝑝2
𝑖
> 𝑧2 for all 𝑖, it follows immediately from the definition of 𝑞𝑖 that

𝑚𝑒𝑑 (𝑝 𝑗1, . . . , 𝑝
𝑗
𝑛, 𝑞

𝑗

1, . . . , 𝑞
𝑗

𝑛−1) = 𝑚𝑒𝑑 (𝑝
𝑗

1, . . . , 𝑝
𝑗
𝑛, 𝑐

𝑗

1, . . . , 𝑐
𝑗

𝑛−1).

Defining 𝑇 = ( [𝑧1,∞] × [𝑧2,∞])𝑛, it hence follows that 𝑓 (p) = 𝑄(p) for all p ∈ 𝑇 ,
and thus that 𝐴𝑅𝑄 (p) = 𝐴𝑅 𝑓 (p) for all p ∈ 𝑇 .

In addition, we note that for any p ∈ (R2)𝑛, if p′ is a translation of p (i.e., there is
some Δ𝑝 ∈ R2 such that 𝑝′

𝑖
= 𝑝𝑖 + Δ𝑝 for all 𝑖), then 𝐴𝑅𝑄 (p) = 𝐴𝑅𝑄 (p′).
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Putting these observations together, it then follows that

𝐴𝑅(𝑄) = sup
p∈(R2)𝑁

𝐴𝑅𝑄 (p)

= sup
p∈𝑇

𝐴𝑅𝑄 (p)

= sup
p∈𝑇

𝐴𝑅 𝑓 (p)

≤ sup
p∈(R2)𝑁

𝐴𝑅 𝑓 (p)

= 𝐴𝑅( 𝑓 ).

Lemma 6. Let 𝑄 be a coordinate-wise quantile mechanism. Then for any 𝑝-norm
objective 𝑠𝑐, 𝐴𝑅(𝑄) ≥ 𝐴𝑅(𝐶𝑀).

Proof. Since 𝑄 = 𝑄1 is a coordinate-wise quantile mechanism, there exist order
statistics (𝑘1, 𝑘2) ∈ [𝑛] × [𝑛] such that 𝑄 locates the facility by selecting, for each
dimension, the 𝑘𝑖th order statistic of the projection of p in the 𝑖th dimension as the
coordinate of the facility in the 𝑖th dimension.

Now consider the coordinate-wise quantile mechanisms 𝑄2, 𝑄3, 𝑄4 defined by the
order statistics (𝑘1, 𝑛 + 1 − 𝑘2), (𝑛 + 1 − 𝑘1, 𝑘2), (𝑛 + 1 − 𝑘1, 𝑛 + 1 − 𝑘2), respec-
tively. As these mechanisms are isomorphic (each can be obtained from the others
by composition with a series of reflections across axes), they all have the same ap-
proximation ratio; that is, 𝐴𝑅(𝑄𝑖) = 𝐴𝑅(𝑄) for each 𝑖. Observe that for any profile
p ∈ (R2)𝑛, 𝐶𝑀 (p) is in the convex hull of 𝑄1(p), 𝑄2(p) , 𝑄3(p), 𝑄4(p). Hence,
since 𝑠𝑐(p, 𝑧) is quasi-convex as a function of 𝑧,1 𝑠𝑐(p, 𝐶𝑀 (𝑥)) ≤ 𝑠𝑐(p, 𝑄ℓ (𝑥))
for some ℓ ∈ 1, 2, 3, 4, and so 𝐴𝑅𝐶𝑀 (p) ≤ 𝐴𝑅𝑄ℓ

(p) ≤ 𝐴𝑅(𝑄ℓ) = 𝐴𝑅(𝑄). Thus,
𝐴𝑅𝐶𝑀 (p) ≤ 𝐴𝑅(𝑄) for all p, and so 𝐴𝑅(𝐶𝑀) ≤ 𝐴𝑅(𝑄).

Remark 2. The techniques used to prove Theorem 1, together with characterization
results for the one-dimensional facility location problem (Moulin [98]), can also
be used to prove that the median mechanism is also optimal for any 𝑛 odd and any
𝑝 ≥ 1. This strengthens the result in Feigenbaum et al. [52] (Lemma 4), which
demonstrates there is no mechanism that is asymptotically superior to the median
mechanism.

1Since 𝑠𝑐(p, 𝑧) 𝑝 is convex as a function of 𝑧 and the composition of a convex function with a
nondecreasing function is quasi-convex, 𝑠𝑐(p, 𝑧) = (𝑠𝑐(p, 𝑧) 𝑝)

1
𝑝 is quasi-convex as a function of 𝑧.
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Remark 3. Lemma 5 and Lemma 6 both hold for larger classes of social cost
functions than 𝑝-norms. For Lemma 5, it is sufficient that 𝑠𝑐 depends only on the
distances to the facility, and for Lemma 6, it is sufficient that 𝑠𝑐 is quasiconvex. It
follows that Theorem 1 holds for a much more general class of social cost functions.
For instance, it holds when the planner’s objective is to minimize a weighted sum of
distances 𝑠𝑐(𝑧, p) = ∑𝑛

𝑖=1 𝜆𝑖∥𝑧 − 𝑝𝑖∥.

1.4 The minisum objective
In this section, we quantify exactly the approximation ratio for the coordinate-wise
median mechanism under the minisum (𝑝 = 1) objective 𝑠𝑐(𝑧, p) = ∑𝑛

𝑖=1∥𝑧−𝑝𝑖∥. By
Theorem 1, it follows that this quantity provides a lower bound for the approximation
ratio of any deterministic, anonymous, and strategyproof mechanism under the
minisum objective.

Theorem 2. For 𝑛 odd, 𝑋 = R2, and 𝑠𝑐(𝑧, p) = ∑𝑛
𝑖=1∥𝑧 − 𝑝𝑖∥,

𝐴𝑅(𝐶𝑀) =
√

2
√
𝑛2 + 1
𝑛 + 1

.

For 𝑛 odd2, the geometric median 𝑔(p) is unique and 𝑂𝑃𝑇 (p) = 𝑔(p). Hence,
Theorem 2 amounts to finding how well the social cost of the coordinate-wise
median mechanism approximates the social cost of the geometric median in the
worst case.

The argument for obtaining the exact value of 𝐴𝑅(𝐶𝑀) is rather involved. We
provide a full proof for the case that 𝑛 = 3 as we find the approach taken in its proof
to be simple enough to be digestible yet sufficiently similar to the more nuanced
approach required for arbitrary odd 𝑛 as to be illuminating. We then provide a sketch
of the proof for all odd 𝑛, relegating the formal proof for this case to the appendix.

In both the 𝑛 = 3 case and the general case, the key to the proof is to reduce the
search space for the worst-case profile from (R2)𝑛 to a much smaller space of profiles
that have a simple structure. In many cases, this involves “transforming” one profile
into another profile that has a higher approximation ratio and a simpler structure.
One important transformation that helps in significantly reducing the search space
involves moving a point 𝑝𝑖 directly towards 𝑔(p), getting as close as possible to

2When 𝑛 = 2𝑚 is even, the version of the coordinate-wise median mechanism given by 𝑐(p) =
(median(−∞, x),median(−∞, y)) has worst-case approximation ratio equal to

√
2. This follows

from the bound in Lemma 3 and the worst-case profile p where 𝑝1 = 𝑝2 . . . 𝑝𝑚 = (1, 0) and
𝑝𝑚+1 = 𝑝𝑚+2 . . . 𝑝2𝑚 = (0, 1).
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𝑔(p) without changing 𝑐(p). Because this transformation will be used repeatedly
throughout this section, we provide here a proof that this transformation leads to a
profile (𝑝′

𝑖
, 𝑝−𝑖) with a weakly higher approximation ratio.

Lemma 7 (Towards geometric median). Let p be a profile and 𝑖 ∈ 𝑁 , and let p′ be
any profile such that

1. 𝑝′
𝑖
∈ [𝑝𝑖, 𝑔(p)],

2. for all 𝑗 ≠ 𝑖, 𝑝′
𝑗
= 𝑝 𝑗 , and

3. 𝑐(p′) = 𝑐(p).

Then 𝐴𝑅(p′) ≥ 𝐴𝑅(p) where 𝐴𝑅(p) = 𝑠𝑐(𝑐(p),p)
𝑠𝑐(𝑔(p),p) .

Proof. By corollary 1, 𝑔(p′) = 𝑔(p) and by definition, 𝑐(p′) = 𝑐(p). The change in
optimal social cost is given by ∥𝑝𝑖 − 𝑝′𝑖 ∥ while the change in social cost with respect
to coordinate-wise median is ∥𝑐(p) − 𝑝′

𝑖
∥ − ∥𝑐(p) − 𝑝𝑖∥. By triangle inequality,

∥𝑝𝑖 − 𝑝′𝑖 ∥ ≥ ∥𝑐(p) − 𝑝′
𝑖
∥ − ∥𝑐(p) − 𝑝𝑖∥. Thus, the 𝑠𝑐(𝑂𝑃𝑇 (·), ·) reduces by a greater

amount than 𝑠𝑐(𝐶𝑀 (·), ·) as we move 𝑝𝑖 to 𝑝′
𝑖
. Since the ratio is always at least 1,

it follows that 𝐴𝑅(p′) ≥ 𝐴𝑅(p).

Proof for 𝑛 = 3 case

Corollary 4. For 𝑛 = 3, the worst-case approximation ratio for the coordinate-wise
median mechanism is given by:

𝐴𝑅(𝐶𝑀) =
√

5
2
.

Remark 5. There is a more explicit characterisation of the geometric median when
𝑛 = 3. In this case, if any angle of the triangle formed by the three points is at least
120𝑜, 𝑔(p) lies on the vertex of that angle; otherwise, it is the unique point inside
the triangle that subtends an angle of 120𝑜 to all three pairs of vertices

Proof of Theorem 2 for 𝑛 = 3. Define the set of Centered perpendicular (CP) pro-
files as follows:

𝐶𝑃 = {p ∈ (R2)3 : 𝑐(p) = (0, 0) and ∀𝑖, either 𝑥𝑖 = 0 or 𝑦𝑖 = 0}.
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In words, a profile is in 𝐶𝑃 if the coordinate-wise median is at the origin and all
points in p are on the axes.

Define the set of Isosceles-centered perpendicular (I-CP) profiles as follows:

𝐼 − 𝐶𝑃 = {p ∈ 𝐶𝑃 : ∃𝑡 such that p = ((𝑡, 0), (−𝑡, 0), (0, 1)) and 𝑔(p) = (0, 1)}.

In words, a profile is in 𝐼 −𝐶𝑃 if there are two points on the 𝑥-axis equidistant from
the origin and the third point is at (0, 1), which is also the geometric median.

We first show that we can reduce the search space for the worst-case profile from
(R2)3 to 𝐶𝑃.

Lemma 8. For any profile p ∈ (R2)3, there is a profile 𝜒 ∈ 𝐶𝑃 such that 𝐴𝑅(𝜒) ≥
𝐴𝑅(p).

Proof. Let p ∈ (R2)3 be a profile. Let p′ be the profile where 𝑝′
𝑖
= 𝑝𝑖 − 𝑐(p). Then

p′ has the same approximation ratio as p and 𝑐(p′) = (0, 0). Denote 𝐴 = {𝑖 : 𝑥𝑖 = 0}
and 𝐵 = {𝑖 : 𝑦𝑖 = 0}. Note that since 𝑐(p′) = (0, 0), it follows from the definition
of 𝑐(p′) that 𝐴 ≠ ∅ and 𝐵 ≠ ∅. For each 𝑖, define 𝑝′′

𝑖
as follows. Let Γ = {(𝑥, 𝑦) ∈

R2 : 𝑥 = 0 or 𝑦 = 0}. If 𝑖 ∈ 𝐴 ∪ 𝐵, let 𝑝′′
𝑖
= 𝑝′

𝑖
; otherwise, let 𝑝′′

𝑖
be the point

in [𝑝′
𝑖
, 𝑔(p′)] ∩ Γ3 that is closest to 𝑝′

𝑖
. Then 𝑝′′

𝑖
∈ Γ for all 𝑖 and 𝑐(p′′) = (0, 0),

so p′′ ∈ 𝐶𝑃. Further, it follows from Lemma 7 that 𝐴𝑅(p′′) ≥ 𝐴𝑅(p′) = 𝐴𝑅(p);
hence, taking 𝜒 = p′′ completes the proof.

𝑝2

𝑝1

𝑝3

𝑐(p)

𝑔(p)
𝑝′3

Figure 1.1: Towards geometric median.

Now we show that we can further reduce the search space from 𝐶𝑃 to 𝐼 − 𝐶𝑃.
3The set [𝑝′

𝑖
, 𝑔(p′)] ∩ Γ is non-empty because 𝑔(p′) cannot be in the same quadrant as 𝑝′

𝑖
. Any

point in the same quadrant as 𝑝′
𝑖

subtends an angle of less than 90𝑜 with the other two points and
hence it cannot be the geometric median.
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Lemma 9. For any profile p ∈ 𝐶𝑃, there exists a profile 𝜒 ∈ 𝐼 − 𝐶𝑃 such that
𝐴𝑅(𝜒) ≥ 𝐴𝑅(p).

Proof. Let p be a profile in 𝐶𝑃.

Without loss of generality, we may assume that all 𝑝𝑖 are weakly above the 𝑥-axis and
there are at least two 𝑝𝑖 on the 𝑥-axis, since reflecting a profile in 𝐶𝑃 across the 𝑥-
axis, the 𝑦-axis, or the line 𝑥 = 𝑦 gives a profile in 𝐶𝑃 with the same approximation
ratio. Hence, we can label the points such that 𝑝1 = (−𝑎, 0), 𝑝2 = (𝑏, 0), and
𝑝3 = (0, 𝑐), for some 𝑎, 𝑏, 𝑐 ≥ 0.

If 𝑐 = 0, then 𝐴𝑅(p) = 1, and so every profile has approximation ratio weakly
greater than p. Hence, we may further assume that 𝑐 > 0.

Since 𝑝1 and 𝑝2 are on the 𝑥-axis, it follows from the characterization of the
geometric median for three points given in remark 5 that −𝑎 ≤ 𝑥𝑔 (p) ≤ 𝑏 and
0 < 𝑦𝑔 (p) ≤ 𝑐. Hence, moving 𝑝3 to 𝑔(p) then (if necessary) translating all points
by the same vector so that the coordinate-wise median is at the origin yields a profile
in 𝐶𝑃 which has higher approximation ratio. Hence, we may further assume that
𝑔(p) = 𝑝3.

Let p′ be the profile where 𝑝′1 = (−(𝑎+𝑏)/2, 0), 𝑝′2 = ((𝑎+𝑏)/2, 0), and 𝑝′3 = (0, 𝑐).
By definition, 𝑠𝑐(𝑔(p′), p′) ≤ 𝑠𝑐(𝑔(p), p′) and by an argument that exploits the
convexity of the distance function, 𝑠𝑐(𝑔(p), p′) ≤ 𝑠𝑐(𝑔(p), p). Combining these
inequalities gives 𝑠𝑐(𝑔(p′), p′) ≤ 𝑠𝑐(𝑔(p), p), and a simple calculation shows that
𝑠𝑐(𝑐(p′), p′) = 𝑠𝑐(𝑐(p), p). Thus, 𝐴𝑅(p′) ≥ 𝐴𝑅(p).

Note that under p′, 𝑔(p′) = (0, 𝑘) for some 𝑘 ≤ 𝑐. Define p′′ to be the profile with
𝑝′′1 = 𝑝′1, 𝑝′′2 = 𝑝′2, and 𝑝′′3 = 𝑔(p′). Then, by Lemma 7, 𝐴𝑅(p′′) ≥ 𝐴𝑅(p′).

Finally, define p′′′ such that 𝑝′′′
𝑖
= 1

𝑐
𝑝′′
𝑖

for each 𝑖. Then since 𝐴𝑅(·) is homogeneous
of degree 0, 𝐴𝑅(p′′′) = 𝐴𝑅(p′′), and so 𝐴𝑅(p′′′) ≥ 𝐴𝑅(p). Further, 𝑐(p′′′) = (0, 0),
𝑝′′′1 = (−𝑡, 0), 𝑝′′′2 = (𝑡, 0), and 𝑝′′′3 = (0, 1) for some 𝑡 ≥ 0; in fact, it follows from
the characterisation of the geometric median that 𝑡 ≥

√
3. Hence, p′′′ ∈ 𝐼 −𝐶𝑃, and

so taking 𝜒 = p′′′ completes the proof.

Denote by 𝜂𝑡 = ((𝑡, 0), (−𝑡, 0), (0, 1)). It follows from the arguments in the proof of
Lemma 9 that 𝐼 − 𝐶𝑃 = {𝜂𝑡 : 𝑡 ≥

√
3}. Let 𝛼(𝑡) = 2𝑡+1

2
√
𝑡2+1

. A simple calculation
shows that for 𝑡 ≥

√
3, 𝐴𝑅(𝜂𝑡) = 𝛼(𝑡). In particular, it follows that the approximation
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ratio of coordinate-wise median mechanism is equal to sup
𝑡≥

√
3 𝛼(𝑡). Since 𝛼(𝑡)

achieves its global maximum at 𝑡∗ = 2 >
√

3, the ratio is 𝐴𝑅(𝜂2) = 𝛼(2). Since

𝛼(2) =
√

2
√

32 + 1
3 + 1

, the result follows.

Proof sketch for general 𝑛

Proof sketch. We now consider the case of 𝑛 = 2𝑚 +1 agents. We begin by defining
classes of profiles analogous to those used in the proof for 𝑛 = 3.

We define the class of Centered Perpendicular (CP) profiles as all profiles p ∈ (R2)𝑛

such that

• 𝑐(p) = (0, 0),

• for all 𝑖, either 𝑥𝑖 = 0 or 𝑦𝑖 = 0 or 𝑝𝑖 = 𝑔(p),

• if 𝑝′
𝑖
∈ (𝑝𝑖, 𝑔(p)), then 𝑐(𝑝′

𝑖
, 𝑝−𝑖) ≠ (0, 0).

Since the last condition is slightly more subtle than the others and will be important
in the sequel, we describe it now in words. This condition says that any (nonzero)
movement of any 𝑝𝑖 towards the geometric median would result in a change in the
coordinate-wise median.

We define the class of Isosceles-Centered Perpendicular (I-CP) profiles as all p ∈ 𝐶𝑃
for which there exists 𝑡 ≥ 0 such that

• 𝑝1 = · · · = 𝑝𝑚 = (𝑡, 0),

• 𝑝𝑚+1 = (−𝑡, 0),

• 𝑝𝑚+2 = · · · = 𝑝2𝑚+1 = (0, 1),

• 𝑔(p) = (0, 1).

The proof proceeds much as in the proof for 𝑛 = 3. We first show that for every
profile, there is some profile in 𝐶𝑃 with weakly higher approximation ratio. The
approach used in the 𝑛 = 3 case extends naturally here: first, translate the profile
p ∈ (R2)𝑛 so that coordinate-wise median moves to the origin; then, starting from
𝑖 = 1 and going to 𝑖 = 𝑛, move 𝑝𝑖 directly towards the geometric median until either it
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reaches the geometric median or moving it further would move the coordinate-wise
median. The resulting profile is in𝐶𝑃 and has an approximation ratio that is weakly
greater than p’s.

𝑐(p)

𝑔(p)

Figure 1.2: A CP profile.

Next, we show that for any profile in 𝐶𝑃, there is some profile in 𝐼 − 𝐶𝑃 with
weakly higher approximation ratio. The approach used in the 𝑛 = 3 case for this
step does not extend in a straightforward manner to the general case—the main
obstruction arises from the fact that for a profile p in 𝐶𝑃, there may be 𝑖 ∈ 𝑁 such
that 𝑝𝑖 = 𝑔(p), which may not be on either axis. The next subsection is devoted
to giving an overview of the procedure used to transform a profile in 𝐶𝑃 to one in
𝐼 − 𝐶𝑃 with weakly higher approximation ratio.

Finally, the approach used to calculate the worst-case approximation ratio for profiles
in 𝐼 − 𝐶𝑃 has much the same structure as in the 𝑛 = 3 case. We define 𝜂𝑡 =

(𝑝𝑡1, . . . , 𝑝
𝑡
2𝑚+1), where

𝑝𝑡𝑖 =


(𝑡, 0), 𝑖 = 1, . . . , 𝑚

(−𝑡, 0), 𝑖 = 𝑚 + 1

(0, 1), 𝑖 = 𝑚 + 2, . . . , 2𝑚 + 1

and we show that 𝐼 − 𝐶𝑃 =

{
𝜂𝑡 : 𝑡 ≥

√︃
2𝑚+1
2𝑚−1

}
. Defining 𝛼(𝑡) =

(𝑚+1)𝑡+𝑚
(𝑚+1)

√
𝑡2+1

, we

show that for 𝑡 ≥
√︃

2𝑚+1
2𝑚−1 , 𝐴𝑅(𝜂𝑡) = 𝛼(𝑡), and that 𝛼(𝑡) has a global maximum at

𝑡∗ = 𝑚+1
𝑚

>

√︃
2𝑚+1
2𝑚−1 , from which it follows that

𝐴𝑅(𝐶𝑀) = 𝛼
(
𝑚 + 1
𝑚

)
=
√

2
√︁
(2𝑚 + 1)2 + 1
(2𝑚 + 1) + 1

=
√

2
√
𝑛2 + 1
𝑛 + 1

.
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(−𝑚+1
𝑚
, 0) (𝑚+1

𝑚
, 0)

(0, 1)

𝑚 agents1 agent

𝑚 agents

𝑐(p)

𝑔(p)

Figure 1.3: Worst case profile.

Reduction from CP to ICP
In this subsection, we discuss informally some transformations that allow us to deal
with the profiles in 𝐶𝑃. Without loss of generality (using reflections if necessary
as in the 𝑛 = 3 case), we may restrict consideration to profiles p ∈ 𝐶𝑃 with
𝑔(p) = (𝑥𝑔, 𝑦𝑔) such that 𝑥𝑔 ≥ 0, 𝑦𝑔 ≥ 0, and 𝑦𝑔 ≥ 𝑥𝑔.

1. Reducing axes: In this step, we move all points on −𝑦-axis to −𝑥-axis
while keeping them equidistant from 𝑐(p) = (0, 0). This works because the
𝑠𝑐(𝑐(·), ·) remains the same while 𝑠𝑐(𝑔(·), ·) reduces, as the points move
closer to the old geometric median. Thus, we get a profile in which all points
are either on one of the +𝑥-, +𝑦-, or −𝑥-axes or at 𝑔(p).

2. Convexity: Consider a profile obtained after applying step 1. Transform
the profile so that all points on the +𝑥-, +𝑦-, and −𝑥-axes are at their mean
coordinates on the +𝑥-, +𝑦-, and −𝑥-axes, respectively. Again, 𝑠𝑐(𝑐(·), ·)
remains the same while 𝑠𝑐(𝑔(·), ·) falls because of convexity of the distance
function. Thus, we get a profile with weakly higher approximation ratio which
has 𝑘 points at (−𝑏, 0), 𝑚 +1− 𝑘 points at (0, 𝑐), 𝑚 +1− 𝑘 points at (𝑎, 0) and
𝑘 − 1 points at 𝑔(𝑥). Note that we are able to pin down the exact cardinalities
of these sets because of the third condition in the definition of 𝐶𝑃, which
requires that if any of the points were to move towards 𝑔(p), then 𝑐(p) would
change.

3. Double Rotation: Consider a profile obtained after applying step 2. Trans-
form the profile by moving the 𝑘 − 1 points at 𝑔(p) to (0, 𝛼), where 𝛼 =

𝑑 (𝑐(p), 𝑔(p)), and moving 𝑘 − 1 of the 𝑘 points at (−𝑏, 0) to (𝛽, 0), where 𝛽
is the unique positive number such that 𝑑 (𝑔(p), (𝛽, 0)) = 𝑑 (𝑔(p), (−𝑏, 0)). In
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this case, one can show that the increase in 𝑠𝑐(𝑐(·), ·) is at least
√

2 times the
increase in 𝑠𝑐(𝑔(·), ·) and therefore, by Lemma 3, it follows that the approx-
imation ratio weakly increases. Applying convexity again, we get a profile
such that there is one point at (−𝑏, 0), 𝑚 points at (0, 𝑐) and𝑚 points at (𝑎, 0).
Note that 𝑔(p) may still not be on the axes.

4. Geometric to axis: Consider a profile obtained after applying step 3. In the
case that 𝑔(p) is not on the axes, we show that moving the 𝑚 points at (0, 𝑐)
directly towards or away from 𝑔(p) strictly increases the ratio. It follows then
that there must be a worst-case profile where one point is at (−𝑏, 0), 𝑚 points
are at (0, 𝑐), 𝑚 points are at (𝑎, 0) and 𝑔(p) = (0, 𝑐).

From here, we apply a transformation similar to step 2 to get a profile in 𝐼 − 𝐶𝑃.
Note that we have suppressed some details (especially when the same transformation
must be used repeatedly) in order to make the exposition as clear as possible—see
the appendix for a rigorous proof.

1.5 p-norm objective
In this section, we consider the problem of quantifying the approximation ratio
for the coordinate-wise median mechanism under the 𝑝-norm objective 𝑠𝑐(𝑧, p) =
[∑𝑛

𝑖=1∥𝑧 − 𝑝𝑖∥𝑝]
1
𝑝 for 𝑝 ≥ 2. While we do not exactly quantify the AR for arbitrary

𝑛 in this case, we are able to obtain bounds on the asymptotic AR of the coordinate-
wise median mechanism.

Theorem 3. For 𝑋 = R2 and the 𝑝-norm objective with 𝑝 ≥ 2,

21− 1
𝑝 ≤ sup

𝑛∈N
𝐴𝑅(𝐶𝑀) ≤ 2

3
2−

2
𝑝 .

The lower bound follows directly from Lemma 4, since restriction of the coordinate-
wise median mechanism to profiles on the 𝑥-axis corresponds to the median mech-
anism in one dimension. 4

4The lower bound actually holds more generally in that if 𝑓 is a deterministic, strategyproof
mechanism defined for all 𝑛, then sup𝑛∈𝑁 𝐴𝑅( 𝑓 ) ≥ 21− 1

𝑝 . If 𝑓 is anonymous as well, the bound is
a corollary of Theorem 3 due to the optimality of Coordinate-wise median (Theorem 1) for any 𝑛.
For any 𝑓 , the argument used to prove Lemma 4 in Feigenbaum et al. [52] extends to this setting as
well and is in the appendix proof.
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For the upper bound, we again use Lemma 4 and note that, if 𝑥𝑐 is the median of
x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑂𝑃𝑇 (x) is the optimal location, then

𝑛∑︁
𝑖=1

∥𝑥𝑐 − 𝑥𝑖∥𝑝 ≤ 2𝑝−1
𝑛∑︁
𝑖=1

∥𝑂𝑃𝑇 (x) − 𝑥𝑖∥𝑝 .

The upper bound is then obtained by using the following inequalities, together with
Lemma 4:

(𝛼2 + 𝛽2)
𝑝

2 ≥ (𝛼𝑝 + 𝛽𝑝) 𝛼𝑝 + 𝛽𝑝 ≥ 21− 𝑝

2 (𝛼2 + 𝛽2)
𝑝

2 .

The full proof is relegated to the appendix.

For 𝑝 = 2, the upper and lower bound in Theorem 3 coincide and we get the
following:

Corollary 6. For 𝑋 = R2 and 𝑠𝑐(𝑧, p) =
[∑∥𝑧 − 𝑝𝑖∥2] 1

2 (𝑝 = 2),

sup
𝑛∈N

𝐴𝑅(𝐶𝑀) =
√

2.

For 𝑝 = ∞, any deterministic strategyproof mechanism has 𝐴𝑅 ≥ 2. Also, any
Pareto optimal mechanism has 𝐴𝑅 ≤ 2. Together, we get

Corollary 7. For 𝑋 = R2 and 𝑠𝑐(𝑧, p) = max𝑖∥𝑧 − 𝑝𝑖∥ (𝑝 = ∞),

𝐴𝑅(𝐶𝑀) = 2.

The last corollary suggests that the upper bound in Theorem 3 is not tight. In fact,
the AR of CM is actually equal to its lower bound in both cases 𝑝 = 2 and 𝑝 = ∞.
This leads us to conjecture that:

Conjecture 8. For 𝑋 = R2, and the 𝑝- norm objective 𝑠𝑐(𝑧, p) = [∑∥𝑧 − 𝑝𝑖∥𝑝]
1
𝑝

where 𝑝 ≥ 2,
sup
𝑛∈N

𝐴𝑅(𝐶𝑀) = 21− 1
𝑝 .

1.6 Conclusion
In this work, we demonstrate that the coordinate-wise median mechanism is the
optimal deterministic, anonymous, and strategyproof mechanism for a large, natural
class of social cost functions. We show that the utilitarian cost of the coordinate-wise
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median is always within
√

2
√
𝑛2+1
𝑛+1 of the utilitarian cost obtained under the optimal

mechanism. For the 𝑝-norm objectives, we find that the worst-case approximation
ratio for the coordinate-wise median mechanism is bounded above by 2

3
2−

2
𝑝 for

𝑝 ≥ 2. For the case of 𝑝 = 2 and 𝑝 = ∞, the coordinate-wise median mechanism
has AR equal to

√
2 and 2, respectively. This leads us to conjecture that the AR of

coordinate-wise median mechanism is actually equal to 21− 1
𝑝 for any 𝑝 ≥ 2.

We hope that the results and methods in this paper will encourage further research in
this fundamental domain. The question of how well a randomized mechanism might
approximate the social cost of the geometric median remains open. A potentially
good candidate is the mechanism that chooses a coordinate-wise median after a
uniform rotation of the orthogonal axes. While its analysis seems hard in general,
finding its AR on the worst-case profile in Theorem 2 might give a useful lower
bound. Another question is to close the gap between the upper bound on AR of the
coordinate-wise median mechanism and the lower bound on AR of any deterministic
strategyproof mechanism for the 𝑝 norm objective. The analysis for more general
single-peaked preferences in multi-dimensional domains also remains open.
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C h a p t e r 2

PROJECT SELECTION WITH PARTIALLY VERIFIABLE
INFORMATION

2.1 Introduction
Suppose a principal has to choose exactly one of 𝑁 available projects but does
not know how profitable they are. There is an agent who is fully informed about
these profits but also has its own preference over the projects. The principal would
like to use the agent’s information and choose a profitable project. Assuming the
principal has commitment power and cannot use transfers to incentivize the agent,
we consider the problem of finding the optimal mechanism for the principal in this
project selection framework.

Let us first quickly consider the standard setting where the agent can lie arbitrarily.
So for any principal and agent payoff vectors (𝑝, 𝑎) ∈ Θ, the agent can report any
(𝜋, 𝛼) ∈ Θ. Consider any mechanism 𝑑 and suppose its range is 𝑆 ⊂ [𝑁]. Under
this mechanism, the agent will always report a (𝜋, 𝛼) so that its favorite project in
𝑆 defined by arg𝑚𝑎𝑥𝑖∈𝑆𝑎𝑖 is chosen. Thus, the principal can only fix a set 𝑆 ⊂ [𝑁]
and commit to choosing the agent’s favorite project in 𝑆. This means that if the
payoffs 𝑝𝑖, 𝑎𝑖 are i.i.d. across projects, all mechanisms lead to expected payoff E[𝑝𝑖]
for the principal. And the probability of the principal choosing the best project is 1

𝑁

for any mechanism. Thus, the principal may as well choose a constant mechanism
and commitment power does not buy anything for the principal.

An important assumption in the above setting is that the agent can lie arbitrarily.
But the agent’s ability to manipulate may be limited if it is required to support its
claims with some form of evidence. For instance, if a tech firm wants to a hire
a programmer and the hiring committee is biased towards candidates with better
social skills, the firm can require the hiring committee to provide certificates that
support the reported coding skills of the candidates. Now the hiring committee can
still potentially hide certificates and understate the coding ability of an applicant,
but it cannot furnish fake certificates and overstate its coding abilities. Thus, by
requiring some kind of supporting evidence, the principal can constraint the kind of
manipulations that the agent can make.

In this paper, we consider a setting where the agent cannot oversell a project to the
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principal. That is, the agent cannot say a project is more profitable for the principal
than it actually is. So if the true state is (𝑝, 𝑎) ∈ Θ, the agent’s message space is
𝑀 (𝑝, 𝑎) = {(𝜋, 𝛼) ∈ Θ : 𝜋𝑖 ≤ 𝑝𝑖 for all 𝑖}. Since the set of manipulations that the
principal has to guard against is now smaller, the class of truthful mechanisms is
potentially bigger. Note that our message correspondence satisfies the nested range
condition (𝜃′ ∈ 𝑀 (𝜃) =⇒ 𝑀 (𝜃′) ⊂ 𝑀 (𝜃)) from Green and Laffont [67] and thus,
we can without loss of generality restrict attention to truthful mechanisms.

Under the partial verifiability constraint of no overselling, we first characterize the
class of truthful mechanisms and call them table mechanisms. A table mechanism
is defined by an increasing set function which determines the set of projects on the
table as a function of the reported profit values 𝜋. The mechanism then chooses
the agent’s favorite project according to the reported 𝛼 from those on the table.
Thus, the class of truthful mechanisms is now significantly bigger. We use this
characterization to find the optimal mechanism for the principal under two different
objectives.

First, we consider the objective of maximizing the expected profit for the principal.
For the case of two projects, we show that the optimal table mechanism is a cutoff
mechanism. In this mechanism, one project is always on the table and the other
project is on the table if its reported profit meets a cutoff that depends on the bivariate
distribution 𝐹 from which the principal and agent payoffs (𝑝𝑖, 𝑎𝑖) are drawn for each
project. When the payoffs are independent, this cutoff equals the expected profit.
We also discuss the well-known ally principle in our framework by considering the
case where 𝐹 is bivariate normal. In this case, we find that the optimal cutoff is
decreasing in the correlation between the principal and agent payoffs and thus, the
principal lends more leeway to an agent who shares their preferences. For the case
of 𝑁 > 2 projects, focusing on the case of the uniform distribution, we are able to
show that a cutoff mechanism is nearly optimal. We do this by obtaining an upper
bound on the payoff of an arbitrary table mechanism and showing that the payoff
from the optimal cutoff mechanism is very close to the upper bound. Next, we also
consider the objective of maximizing the probability of choosing the best project.
Again, for the case of two projects, we show that a cutoff mechanism is optimal and
when the project payoffs are independent, the optimal cutoff equals the median of
the principal’s profit.
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Related literature
Mechanism design has often been used to deal with problems of asymmetric infor-
mation ( Myerson [100], Myerson and Satterthwaite [101]). An important theme in
the literature on mechanism design is characterizing the set of implementable mech-
anisms (Gibbard [65], Satterthwaite [115], Dasgupta et al. [40], Green and Laffont
[67]). In particular, Green and Laffont [67] introduce the idea of partially verifiable
information in mechanism design and identify a necessary and sufficient condition,
called the “Nested Range Condition”, under which the set of implementable mech-
anisms coincides with the set of truthfully implementable mechanisms (i.e., the
revelation principle holds). Later research focuses on identifying implementabil-
ity conditions in other environments with partially verifiable information; Kartik
[74] looks at Nash implementation, Deneckere and Severinov [41] considers lying
with finite costs, Ben-Porath and Lipman [7] and Singh and Wittman [123] allow
for transfers, and Caragiannis et al. [24] considers probabilistic verification. Some
computer scientists have looked at the trade-off between monetary transfers and
partial verifiability in terms of implementing social choice functions (Ferraioli et al.
[55], Fotakis et al. [58]). Our setup belongs to the environment considered by
Green and Laffont and satisfies their “Nested Range Condition”. Thus, without loss
of generality, we restrict attention to truthfully implementable mechanisms in our
analysis.

Our paper contributes to the literature finding optimal or efficient mechanisms
in environments with a specific form of partial verifiability (Maggi and Rodriguez-
Clare [90], Lacker and Weinberg [83], Moore [96], Celik [25]). For instance, Munro
et al. [99] argues using a model in which only some expenditure can be hidden that
spouses hiding income and assets from one another is efficient. Deneckere and
Severinov [42] explains the complicated selling practices of real-world monopolists
by considering an economy where some agents have limited ability to misrepresent
their preferences. This paper considers the partial verifiability constraint of no-
overselling and potentially explains the use of cutoff mechanisms in settings that
only admit positive evidence which can be hidden but not fabricated.

Our work also relates to the literature studying principal agent project selection
problems with different modeling assumptions (Ben-Porath et al. [8], Mylovanov
and Zapechelnyuk [102], Armstrong and Vickers [3] and Guo and Shmaya [68]).
Ben-Porath et al. [8] and Mylovanov and Zapechelnyuk [102] consider a problem
where the principal has to choose one of 𝑁 agents who prefer being chosen and
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provide some private value to the principal from being chosen. In Ben-Porath et al.
[8], the principal can verify his value from agent 𝑖 at a cost 𝑐𝑖, while Mylovanov
and Zapechelnyuk [102] assumes ex-post verifiability so that the principal can
penalize the winner by destroying a certain fraction of the surplus. Armstrong
and Vickers [3] considers a project delegation problem in which the principal can
verify characteristics of the chosen project but is uncertain about the set of available
projects. These papers find their respective optimal mechanisms for the principal and
call them the favored agent mechanism Ben-Porath et al. [8], shortlisting procedure
Mylovanov and Zapechelnyuk [102], and the threshold rule Armstrong and Vickers
[3]. While these mechanisms have some flavor of the cutoff mechanisms we obtain
in this paper, there are important differences in the setup we consider here. Primarily,
in their setups, the principal is empowered by ex-post verifiability of the reported
values and the ability to use a prohibitively high punishment to deter the agent
from telling any lie, whereas in our setup, the agent is constrained in that he cannot
oversell, but the principal does not have the power to directly deter the agent from
underselling.

The paper proceeds as follows. In section 2, we present the model and definitions.
Section 3 characterizes the class of truthful mechanisms. In sections 4 and 5, we
consider the two different objectives of maximizing expected profit and maximizing
probability of choosing the best project for the principal. In section 6, we give some
remarks and section 7 concludes. The more technical proofs are in the appendix.

2.2 Model
There are two parties: a principal and an agent. The principal has a set of available
projects [𝑁] = {1, 2, . . . , 𝑁} and must choose one of them. Each project 𝑖 leads
to payoffs (𝑝𝑖, 𝑎𝑖) ∈ 𝑋 ⊂ R2 where 𝑝𝑖 denotes the profit for the principal and 𝑎𝑖 is
the utility to the agent. The payoffs (𝑝𝑖, 𝑎𝑖) are i.i.d. from a bi-variate distribution
𝐹 and this is all the information that the principal has. The agent knows the true
payoffs from all the projects (𝑝, 𝑎) ∈ 𝑋𝑛 = Θ.

We assume that the principal can commit to a mechanism 𝑑 : Θ → [𝑁] so that if the
agent reports payoffs (𝜋, 𝛼) when the true state is (𝑝, 𝑎), the project 𝑑 (𝜋, 𝛼) is chosen
leading to final payoffs 𝑝𝑑 (𝜋,𝛼) , 𝑎𝑑 (𝜋,𝛼) for the principal and agent, respectively.

As discussed earlier, if the agent can lie arbitrarily, the principal cannot do better
than by choosing a project at random. So we assume a natural partial verifiability
constraint of no overselling under which the agent cannot report a project to be
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more profitable than it actually is. Such a constraint on the message space may be
inherent in the environment or induced by the principal by requiring the agent to
furnish some kind of evidence supporting its claims. Formally, the agent’s state
dependent message space takes the form:

𝑀 (𝑝, 𝑎) = {(𝜋, 𝛼) ∈ Θ : 𝜋𝑖 ≤ 𝑝𝑖 ∀𝑖 ∈ [𝑁]}.

Since our message space satisfies the Nested Range condition of Green and Laffont
[67],

𝜃′ ∈ 𝑀 (𝜃) =⇒ 𝑀 (𝜃′) ⊂ 𝑀 (𝜃)

we can without loss of generality restrict attention to truthful mechanisms.

Definition 2.2.1. A mechanism 𝑑 is truthful if for any (𝑝, 𝑎) and (𝜋, 𝛼) ∈ 𝑀 (𝑝, 𝑎)

𝑎𝑑 (𝑝,𝑎) ≥ 𝑎𝑑 (𝜋,𝛼) .

We will consider the principal’s problem of finding the optimal truthful mechanism
for two different objectives:

• Maximizing the expected profit:

max
𝑑:𝑑 is truthful

E[𝑝𝑑 (𝑝,𝑎)] .

• Maximizing the probability of choosing the best project:

max
𝑑:𝑑 is truthful

P[𝑑 (𝑝, 𝑎) ∈ arg𝑚𝑎𝑥𝑖𝑝𝑖] .

First, we characterize the class of truthful mechanisms.

2.3 Characterization of truthful mechanisms
We begin by defining a special class of mechanisms which we call table mechanisms.

Definition 2.3.1. A mechanism 𝑑 is a table mechanism if there exists a function
𝑓 : Θ → 2𝑁 with the properties

• 𝑓 (𝑝, 𝑎) ≠ 𝜙

• 𝑓 (𝑝, 𝑎) = 𝑓 (𝑝, 𝑎′) = 𝑓 (𝑝)

• 𝑝 ≤ 𝑝′ =⇒ 𝑓 (𝑝) ⊂ 𝑓 (𝑝′)
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so that
𝑑 (𝑝, 𝑎) ∈ arg max

𝑖
{𝑎𝑖 : 𝑖 ∈ 𝑓 (𝑝)} .

In words, a table mechanism is defined by an increasing set function that determines
the set of projects on the table and the mechanism always chooses the agent’s favorite
project among those on the table. The first condition says that there is a default
project which is always on the table. The second condition says that the set of
projects on the table cannot depend on the agent’s payoffs. The third condition is
that the set of projects on the table weakly increases as the profit vector increases.

Theorem 4. 𝑑 is truthful if and only if it is a table mechanism.

It is fairly straightforward from the definitions to check that table mechanisms are
truthful. Indeed, under a table mechanism, the agent prefers reporting higher 𝜋’s to
reporting lower ones and, given any report of 𝜋’s, prefers reporting her payoffs to
misreporting her payoffs (since such a misrepresentation can only lead the principal
to make a choice which gives the agent a lower payoff.) The other direction is more
involved.

Proof of Theorem 4. Suppose 𝑑 is a table mechanism. Consider any profile (𝑝, 𝑎).
If the agent reports some (𝜋, 𝛼), we know that 𝜋 ≤ 𝑝 from the constraint (𝜋, 𝛼) ∈
𝑀 (𝑝, 𝑎). Since 𝑓 is increasing, it follows that 𝑓 (𝜋) ⊂ 𝑓 (𝑝). Since the agent gets
his preferred project among those available and reporting truthfully maximizes his
set of available projects, the agent cannot gain by misreporting. Therefore, 𝑑 is
truthful.

Now suppose that 𝑑 is a truthful mechanism. Define the function 𝑓 : Θ → 2𝑁

so that 𝑖 ∈ 𝑓 (𝑝, 𝑎) if and only if there exists some (𝑝′, 𝑎′) ∈ 𝑀 (𝑝, 𝑎) such that
𝑑 (𝑝′, 𝑎′) = 𝑖. First, we will show that the function satisfies the three properties in
the definition of table mechanism:

• Observe that (𝑝, 𝑎) ∈ 𝑀 (𝑝, 𝑎) and thus, 𝑑 (𝑝, 𝑎) ∈ 𝑓 (𝑝, 𝑎) =⇒ 𝑓 (𝑝, 𝑎) ≠ 𝜙
for any (𝑝, 𝑎) ∈ Θ.

• The property that 𝑓 does not depend on agent payoffs follows from observing
that 𝑀 (𝑝, 𝑎) = 𝑀 (𝑝, 𝑎′). Thus, if 𝑖 ∈ 𝑓 (𝑝, 𝑎), 𝑖 ∈ 𝑓 (𝑝, 𝑎′) and vice versa.
Thus, we have 𝑓 (𝑝, 𝑎) = 𝑓 (𝑝, 𝑎′) for any (𝑝, 𝑎), (𝑝, 𝑎′).
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• Take any 𝑝, 𝑝′ such that 𝑝 ≤ 𝑝′. Suppose 𝑖 ∈ 𝑓 (𝑝) which implies that
there exists (𝜋, 𝛼) ∈ 𝑀 (𝑝, 𝑎) with 𝜋 ≤ 𝑝 so that 𝑑 (𝜋, 𝛼) = 𝑖. But then,
(𝜋, 𝛼) ∈ 𝑀 (𝑝′, 𝑎) as well and so 𝑖 ∈ 𝑓 (𝑝′). Thus, we get that 𝑓 (𝑝) ⊂ 𝑓 (𝑝′).

Now we want to show that for any state (𝑝, 𝑎), 𝑑 (𝑝, 𝑎) ∈ arg max𝑖 {𝑎𝑖 : 𝑖 ∈ 𝑓 (𝑝)}.

Suppose towards a contradiction that 𝑑 (𝑝, 𝑎) is not in this set. By definition,
𝑑 (𝑝, 𝑎) ∈ 𝑓 (𝑝). Let 𝑗 ∈ arg max𝑖 {𝑎𝑖 : 𝑖 ∈ 𝑓 (𝑝)}. Then 𝑎 𝑗 > 𝑎𝑑 (𝑝,𝑎) and 𝑗 ∈ 𝑓 (𝑝).
But the fact that 𝑗 ∈ 𝑓 (𝑝) implies that there exists a (𝜋, 𝛼) ∈ 𝑀 (𝑝, 𝑎) such that
𝑑 (𝜋, 𝛼) = 𝑗 . But then, the agent can misreport at state (𝑝, 𝑎) to (𝜋, 𝛼) and gain from
this manipulation. This contradicts the fact that 𝑑 is truthful and so it must be that
𝑑 (𝑝, 𝑎) ∈ arg max𝑖 {𝑎𝑖 : 𝑖 ∈ 𝑓 (𝑝)}. It follows then that 𝑑 is a table mechanism.

For simplicity going forward, we will assume (without loss of generality) that
𝑁 ∈ 𝑓 (𝑝) for all (𝑝, 𝑎) ∈ Θ. That is, in a table mechanism, project 𝑁 is always on
the table.

Before discussing the results, we define a subclass of table mechanisms that take a
simple cutoff form.

Definition 2.3.2. A mechanism 𝑑 is a cutoff mechanism if it is a table mechanism
and for 𝑖 = 1, . . . , 𝑁 − 1, there exist cutoffs 𝑐𝑖 ∈ 𝑋 , such that 𝑖 ∈ 𝑓 (𝑝) if and only if
𝑝𝑖 ≥ 𝑐𝑖.

In a cutoff mechanism, a project is on the table if the principal’s profit from the
project meets a threshold. That is, whether a project is on the table or not depends
only on that particular project’s profit value. The principal then chooses the agent’s
favorite project among those that meet the cutoff and the default project.

2.4 Maximizing expected profit
In this section, we consider the principal’s problem of finding the optimal table
mechanism 𝑑 for maximizing expected profit E[𝑝𝑑 (𝑝,𝑎)]. For the most part, we will
consider and solve the problem for the case of 𝑁 = 2 projects. We will then discuss
the case of 𝑁 > 2 projects towards the end of this section.

Two projects
In the case of two projects, we have (𝑝1, 𝑎1) ∼ 𝐹 and (𝑝2, 𝑎2) ∼ 𝐹. In a table
mechanism 𝑓 with 2 projects, we can assume without loss of generality that 2 ∈ 𝑓 (𝑝)
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for all 𝑝 and so the principal only really has to decide the set of vectors when
1 ∈ 𝑓 (𝑝).

Theorem 5. For two projects with (𝑝𝑖, 𝑎𝑖) ∼ 𝐹, the optimal truthful mechanism is
a cutoff mechanism. The optimal cutoff 𝑐1 is defined by

E [(𝑝1 − 𝑝2) Pr(𝑎1 > 𝑎2 |𝑝2) |𝑝1 = 𝑐1] = 0.

Proof. Suppose 𝑑 is truthful with associated function 𝑓 . From Theorem 4, we know
that 𝑑 is a table mechanism. So 2 ∈ 𝑓 (𝑝) for all 𝑝1, 𝑝2. Define 𝑐 = sup{𝑝1 : 1 ∉

𝑓 (𝑝1, 𝑝1)}. Define the cutoff mechanism 𝑑′ so that 1 ∈ 𝑓 ′(𝑝) ⇐⇒ 𝑝1 ≥ 𝑐. We
will show that the expected profit for the principal from 𝑑′ is at least as high as the
expected profit from 𝑑. In fact, we will show that this holds conditional on (𝑝1, 𝑝2),
and hence in expectation.

Consider the following (exhaustive and mutually exclusive) cases depending on
whether 𝑝𝑖 ≥ 𝑐 or 𝑝𝑖 < 𝑐:

• 𝑝1 ∈ (−∞, 𝑐), 𝑝2 ∈ (−∞, 𝑐): For any such 𝑝1, 𝑝2, we know both 𝑓 (𝑝) =

𝑓 ′(𝑝) = {2} and therefore, the second project is chosen for all such profiles.
Thus, the two mechanisms are identical and generate the same profit for the
principal in this case.

• 𝑝1 ∈ (∞, 𝑐), 𝑝2 ∈ [𝑐,∞): In this case, 𝑓 ′(𝑝) = {2} and thus project 2 is
chosen for sure. Note that the principal prefers project 2 over 1 in these
profiles and thus, the profit from the cutoff mechanism is weakly higher for
any such 𝑝1, 𝑝2.

• 𝑝1 ∈ [𝑐,∞), 𝑝2 ∈ (−∞, 𝑐): Now 𝑓 ′(𝑝) = {1, 2} while 𝑓 (𝑝) can be either
{2} or {1, 2}. Observe that the principal strictly prefers project 1 over 2 in
all these profiles. Thus, the cutoff mechanism again leads to weakly higher
profits for such 𝑝1, 𝑝2.

• 𝑝1 ∈ [𝑐,∞), 𝑝2 ∈ [𝑐,∞): Here we have 𝑓 (𝑝) = 𝑓 ′(𝑝) = {1, 2}. Thus,
the two mechanisms are identical in this set and lead to same profits for the
principal.

This shows that for any truthful mechanism, there is a cutoff mechanism under
which the principal’s expected profit is weakly higher. Thus, the optimal truthful
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mechanism must be a cutoff mechanism. Now our problem is just to find the optimal
cutoff 𝑐.

Consider the decision problem of the principal for any given 𝑝1, 𝑝2, 𝑎1, 𝑎2. It can
either

• not make project 1 available and get 𝑝2,

• make project 1 available and get 𝑝1I𝑎1≥𝑎2 + 𝑝2I𝑎2>𝑎1 .

The constraint imposed by truthfulness and optimality of cutoff mechanisms imply
that the principal can only base this decision on the value of 𝑝1. Thus, taking
expectation with respect to 𝑝2, 𝑎1, 𝑎2, we get that the two alternatives are:

• not make project 1 available and get E[𝑝2 |𝑝1],

• make project 1 available and get E
[
𝑝1I𝑎1≥𝑎2 + 𝑝2I𝑎2>𝑎1 |𝑝1

]
.

Thus, the principal would want to make project 1 available if and only if

E
[
𝑝1I𝑎1≥𝑎2 + 𝑝2I𝑎2>𝑎1 |𝑝1

]
≥ E[𝑝2 |𝑝1]

⇐⇒ E
[
𝑝1I𝑎1≥𝑎2 |𝑝1

]
≥ E

[
𝑝2I𝑎1≥𝑎2 |𝑝1

]
⇐⇒ E

[
(𝑝1 − 𝑝2)I𝑎1≥𝑎2 |𝑝1

]
≥ 0

⇐⇒ E [(𝑝1 − 𝑝2)P[𝑎1 ≥ 𝑎2 |𝑝2] |𝑝1] ≥ 0.

At the optimal cutoff, the principal should be indifferent between the two alternatives
and so the cutoff 𝑐1 is defined by the solution to the equation

E [(𝑝1 − 𝑝2)P[𝑎1 ≥ 𝑎2 |𝑝2] |𝑝1 = 𝑐1] = 0.

In the special case where the principal and agent payoffs are independent, we get
the following corollary.

Corollary 9. Suppose 𝐹 is such that the principal and agent payoffs (𝑝𝑖, 𝑎𝑖) are
independent. Then the optimal cutoff is given by 𝑐1 = E[𝑝1].
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Ally principle
In this subsection, we discuss the implications of our model for the well-known
Ally principle which states that a principal delegates more authority to an agent
with more aligned preferences. For this purpose, we assume that the principal agent
payoffs for each project is bivariate normal (𝑝𝑖, 𝑎𝑖) ∼ 𝑁 (0, 0, 1, 1, 𝜌) and are drawn
i.i.d. across projects. Now the question is whether we can say something systematic
about 𝑐(𝜌), the optimal cutoff as a function of the correlation 𝜌.

Theorem 6. For 𝑁 = 2 projects with (𝑝𝑖, 𝑎𝑖) ∼ 𝑁 (0, 0, 1, 1, 𝜌), the optimal cutoff
is defined by the equation

𝑐Φ(𝑡𝑐) + 𝑡𝜙(𝑡𝑐) = 0

where 𝑡 = 𝜌√
2−𝜌2

. The optimal cutoff is decreasing in 𝜌.

The proof proceeds by applying the condition obtained in Theorem 5 for the case
of the bivariate normal distribution. Using formulas for integrals of normal cdfs
from Owen [106], we obtain the condition that the optimal cutoff must satisfy
𝑐Φ(𝑡𝑐) + 𝑡𝜙(𝑡𝑐) = 0 where 𝑡 = 𝜌√

2−𝜌2
. We can then differentiate this equation and

get that 𝑐′(0) < 0. The smoothness of 𝑐 and the fact that 𝑐′(𝑡) is never zero implies
that 𝑐′(𝑡) < 0 for all 𝑡. The formal proof is in the appendix.

N projects
In this subsection, we discuss the case of 𝑁 > 2 projects. Assume 𝐹 is such that
both 𝑝𝑖 and 𝑎𝑖 are independent and uniform on [0, 1]. Under the independence
assumption, the principal’s problem can be written as:

𝑚𝑎𝑥 𝑓E

[∑
𝑖∈ 𝑓 (𝑝) 𝑝𝑖

| 𝑓 (𝑝) |

]
where 𝑓 : [0, 1]𝑛 → 2[𝑛] must be such that

• it is never empty ( 𝑓 (𝑝) ≠ 𝜙 for any 𝑝)

• and it is increasing (𝑝 ≤ 𝑝′ =⇒ 𝑓 (𝑝) ⊂ 𝑓 (𝑝′)).

While we believe that a cutoff mechanism is optimal, we have not been able to exactly
prove it. Instead, we show that a cutoff mechanism is very close to being optimal by
(i) obtaining an upper bound on the expected payoff of any table mechanism and (ii)
characterizing the optimal cutoff mechanism and showing that the corresponding
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Figure 2.1: Optimal cutoff for maximizing expected profit.

payoff for the principal is close to the bound. We first characterize the optimal cutoff
mechanism.

Theorem 7. For 𝑁 projects and 𝐹 uniform on [0, 1]2, the optimal cutoff mechanism
has a single cutoff 𝑐(𝑁) that is defined by the equation 𝑁 (1−𝑐) (1−𝑐+𝑐𝑁 ) = 1−𝑐𝑁

and takes the form

𝑐(𝑁) = 1 − 1
√
𝑁

+ 𝑜
(

1
√
𝑁

)
.

Moreover, the principal’s expected utility from the optimal cutoff mechanism is

𝑉𝑁 = 1 − 1
√
𝑁

+ 𝑜
(

1
√
𝑁

)
.

Note that since we are maximizing a continuous function over a compact space, a
solution exists. The rest of the proof proceeds in three steps. In step 1, we show
that in any cutoff mechanism which has a cutoff that is 0 or 1 cannot be optimal.
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That is, the solution must be interior. In step 2, we show that a cutoff mechanism
with different cutoffs cannot be optimal. Finally, we maximize the principal’s utility
with respect to the single cutoff 𝑐 to get the optimal cutoff mechanism. While it is
hard to obtain an exact closed form solution for the optimal single cutoff, and hence
the expected payoff, we describe what they look like asymptotically. The proof is
relegated to the appendix.

Next, we obtain an upper bound on the expected payoff of any table mechanism.
Suppose the principal has to chose between 𝑛 + 1 projects and consider any table
mechanism 𝑓 . The principal’s expected utility from this mechanism is

𝑉 ( 𝑓 ) = E
(∑

𝑖∈[𝑛+1] 1(𝑖 ∈ 𝑓 (𝑝))𝑝𝑖∑
𝑖∈[𝑛+1] 1(𝑖 ∈ 𝑓 (𝑝))

)
.

Theorem 8. Suppose there are 𝑁 + 1 projects and 𝐹 uniform on [0, 1]2. There is a
function 𝛾(𝑁) ∈ 𝑜(1) such that for any table mechanism 𝑓 ,

𝑉 ( 𝑓 ) ≤ 1 − 1 + 𝛾(𝑁)
8
√
𝑁

·

Proof. To prove this, we first obtain the following bound on the principal’s expected
utility.

Lemma 10. For any table mechanism 𝑓 ,

𝑉 ( 𝑓 ) ≤ E
(∑

𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝))𝑝𝑖 + 1
2∑

𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1

)
.

This bound follows from the fact that there must a project that is always on the table
(assume project 𝑛 + 1). We then split the objective, apply 𝐹𝐾𝐺 inequality on the
contribution of project 𝑛 + 1, and bring the terms back together to get the bound.

Now, for any 𝑝, we have∑
𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝))𝑝𝑖 + 1

2∑
𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1

≤ max
𝑆⊆[𝑛]

∑
𝑖∈𝑆 𝑝𝑖 + 1

2
|𝑆 | + 1

·

Thus,

𝑉 ( 𝑓 ) ≤ E
(
max
𝑆⊆[𝑛]

∑
𝑖∈𝑆 𝑝𝑖 + 1

2
|𝑆 | + 1

)
.

Now we obtain an upper bound on the right hand side.
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Lemma 11. Let 𝑝𝑖 for 𝑖 ∈ N be i.i.d. 𝑈 [0, 1]. Define

𝑌𝑛 = max
𝑆⊆[𝑛]

∑
𝑖∈𝑆 𝑝𝑖 + 1

2
|𝑆 | + 1

·

lim inf
𝑛→∞

√
𝑛(1 − E(𝑌𝑛)) ≥

1
8
.

To prove this lemma, we will make heavy use of the following auxiliary random
variables. For 𝜀 > 0, define

𝑍𝑛1 (𝜀) =
{
𝑖 ∈ [𝑛] : 𝑝𝑖 > 1 − 𝜀

𝑛

}
,

and define

𝑍𝑛2 =

{
𝑖 ∈ [𝑛] : 𝑝𝑖 ≥ 1 − 1

√
𝑛

}
.

We show that it is often the case that 𝑍𝑛1 is empty and |𝑍𝑛2 | is no bigger than 2
√
𝑛.

Moreover, when 𝑍𝑛1 is empty and |𝑍𝑛2 | is no bigger than 2
√
𝑛, 1−𝑌𝑛 cannot be much

smaller than 1
4
√
𝑛
.

Together, lemmas 10 and 11 complete the proof of Theorem 8.

The payoff from the optimal cutoff mechanism and the upper bound on the payoff
of any arbitrary table mechanism imply that the cutoff mechanism is very close to
being optimal.

2.5 Maximizing probability of best project
In this section, we consider the objective of maximizing the probability of choosing
the best project for the principal P[𝑝𝑑 (𝑝,𝑎) ≥ 𝑝 𝑗 for all 𝑗]. We will only focus on
the case of 𝑁 = 2 projects for this part.

Two projects
Let us consider the case of two projects and table mechanisms with project 2 always
on the table.

Theorem 9. For two projects with (𝑝𝑖, 𝑎𝑖) ∼ 𝐹, the optimal truthful mechanism is
a cutoff mechanism. The optimal cutoff 𝑐1 is defined by

E
[
(I𝑝1≥𝑝2 − I𝑝2>𝑝1)I𝑎1≥𝑎2 |𝑝1 = 𝑐1

]
= 0
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or more simply

P[𝑝1 ≥ 𝑝2 |𝑝1 = 𝑐1, 𝑎1 ≥ 𝑎2] =
1
2
.

Proof. The argument for why cutoff is optimal is exactly the same as in the proof
of Theorem 5. We now derive the optimal cutoff. The principal can either

• make project 1 available and get I𝑝1≥𝑝2I𝑎1≥𝑎2 + I𝑝2>𝑝1I𝑎2>𝑎1

• or not make it available and get I𝑝2>𝑝1 .

Since the principal can only make the decision based on value of 𝑝1, it will chose
to make project 1 available if and only if

E[I𝑝1≥𝑝2I𝑎1≥𝑎2 + I𝑝2>𝑝1I𝑎2>𝑎1 |𝑝1] ≥ E[I𝑝2>𝑝1 |𝑝1]
⇐⇒ E

[
(I𝑝1≥𝑝2 − I𝑝2>𝑝1)I𝑎1≥𝑎2 |𝑝1

]
≥ 0.

At the cutoff, the principal must be indifferent between making or not making project
1 available. This gives the desired condition.

In the special case where the principal and agent payoffs are independent, we get
the following corollary.

Corollary 10. Suppose 𝐹 is such that the principal and agent payoffs (𝑝𝑖, 𝑎𝑖) are
independent. Then the optimal cutoff is given by 𝑐1 = 𝑀𝑒𝑑 [𝑝1].

Ally principle
Assume that the principal agent payoffs for each project is bivariate normal (𝑝𝑖, 𝑎𝑖) ∼
𝑁 (0, 0, 1, 1, 𝜌) and are drawn i.i.d. across projects. Now the question is whether
we can say something systematic about 𝑐(𝜌), the optimal cutoff as a function of the
correlation 𝜌.

Theorem 10. For 𝑁 = 2 projects with (𝑝𝑖, 𝑎𝑖) ∼ 𝑁 (0, 0, 1, 1, 𝜌), the optimal cutoff
𝑐(𝜌) is given by the equation

P[𝑋 ≤ 𝑐,𝑌 ≤ 𝑡𝑐]
P[𝑌 ≤ 𝑡𝑐] =

1
2

where 𝑋,𝑌 ∼ 𝑁 (0, 0, 1, 1, 𝑡) and 𝑡 =
𝜌√︁

2 − 𝜌2
.
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Again, we use the definition of optimal cutoff from Theorem 9 and apply it to
the bivariate normal case. Then, using the integral formulas from Owen [106],

we show that the optimal cutoff in this case is defined by
P[𝑋 ≤ 𝑐,𝑌 ≤ 𝑡𝑐]
P[𝑌 ≤ 𝑡𝑐] where

𝑋,𝑌 ∼ 𝑁 (0, 0, 1, 1, 𝑡) and 𝑡 =
𝜌√︁

2 − 𝜌2
. We have not been able to show that this

result implies that the optimal cutoff is decreasing in 𝜌, but the following contour
plot from Python suggests that it is:

Figure 2.2: Optimal cutoff for maximizing probability of choosing better project.

2.6 Remarks
1. Comparison of optimal mechanisms for the two objectives: We wanted to

see how the optimal cutoffs for the two objectives compare when payoffs are
bivariate normal. To do so, we plotted the two optimal cutoff curves together
and interestingly found that the curves coincide. While we have not been able to
formally prove that the solutions coincide, we conjecture that they do.

Conjecture 11. With 𝑁 = 2 projects and payoffs (𝑝𝑖, 𝑎𝑖) drawn iid from bivari-
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ate normal 𝑁 (0, 0, 1, 1, 𝜌), the optimal mechanism for maximizing principal’s
expected profit and that for maximizing probability of choosing better project is
the same cutoff mechanism with the cutoff 𝑐(𝜌) defined by 𝑐Φ(𝑡𝑐) + 𝑡𝜙(𝑡𝑐) = 0
where 𝑡 = 𝜌√

2−𝜌2

2. Delegation interpretation of the optimal mechanism: The simplest imple-
mentation of the optimal cutoff mechanism has a nice delegation interpretation.
The principal selects a cutoff profit and a default project and delegates the project
choice to the agent, in the sense that the agent can select either the default project
or a project which meets the cutoff profit, and the principal signs off on the final
decision. Under this delegation, the agent chooses his favorite project among
those that meet the cutoff and the default project. Note in particular that this
implementation only requires the agent to report information about the chosen
project. This is outcome-equivalent to the cutoff mechanism. We note that many
instances of “cutoff mechanisms” with flavors similar to ours have appeared in
the literature, but the optimality of such mechanisms has been driven by the
assumption of ex-post verifiability (Ben-Porath et al. [8], Mylovanov and Za-
pechelnyuk [102] Armstrong and Vickers [3]). In particular, in most previous
models the principal’s ability to punish in the case of a misreport is tantamount
to the assumption that the agent cannot lie. Here, we offer an alternative way of
rationalizing such cutoff mechanisms via the no-overselling (or more generally,
interim partial verifiability) constraint, which alters the agents incentives but not
by threatening the agent in the case of a misreport. To help elucidate this point,
we make the following observation. If our model were altered so that the agent
had an unconstrained message space, but the principal were required to take the
default project in case the agent should oversell any of the projects, then all of
our results would carry over.

2.7 Conclusion
We consider a principal agent project selection problem with asymmetric infor-
mation. When the agent can lie arbitrarily, we find that the principal cannot gain
anything from commitment power and may as well choose a project at random. In
contrast, if the principal can identify or induce partial verifiability in the environment
so that the agent cannot oversell any of the projects, then a simple cutoff mechanism
is optimal for the case of two projects, both for maximizing expected profit and
for maximizing probability of choosing better project. In the particular case where
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payoffs are bivariate normal, we find that the optimal cutoff is decreasing in the cor-
relation between payoffs and thus, our model provides evidence in favor of the ally
principle which says that the principal grants more leeway to an agent who shares
its preferences. We conjecture that our results for the case of two project extend
to settings with more than two projects as well and provide some evidence towards it.
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C h a p t e r 3

PRIZES AND EFFORT IN CONTESTS WITH PRIVATE
INFORMATION

3.1 Introduction
Contests are situations in which agents compete with one another by investing effort
or resources to win prizes. Such competitive situations are common in many social
and economic contexts, including college admissions, classroom settings, labor
markets, R&D races, sporting events, politics, etc. While some of these situations
arise naturally, there are many others where the contest designer can carefully design
the rules of the contest so as to satisfy their objectives. The designer’s objective,
and the structural elements of the contest that it can and cannot manipulate may vary
depending upon the situation.

In this paper, we focus on situations where the contest participants have private
information about their abilities (defined by their marginal costs of effort) and the
designer can manipulate the values of the different prizes 𝑣1, . . . , 𝑣𝑛 to influence the
effort exerted by the participants. Our goal is to understand how different contests
(defined by the prizes 𝑣1, 𝑣2, . . . , 𝑣𝑛) compare in terms of the effort they induce. In
particular, we study the effect on effort of two different interventions. First, we study
how the effort changes as the designer increases the values of the different prizes.
Second, we study how effort changes as the designer increases the competitiveness of
the contest (by transferring value from lower ranked prizes to better ranked prizes).
Note that the first intervention requires the designer to put in more money into the
contest, while the second one does not require any additional investment. We also
illustrate the relevance of the exercise by discussing applications to the design of
optimal contests in three different environments. More specifically, we study the
design of grading contests which are widely used in classroom environments, the
design of contests where agents have concave utility for prizes, and the design of
contests where the designer can award any number of agents with a homogeneous
prize of fixed value.

We find that the effect of the two interventions on effort, and thus the structure of
optimal contests in the three applications, depend qualitatively on the distribution
of abilities in the population. In particular, we identify two sufficient conditions on
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the distribution of abilities in the population under which increasing the values of
prizes, and also increasing competition, has opposite effects on the effort exerted
by the agents. The sufficient conditions are on the relative likelihood of highly
productive (low marginal cost of effort) and less productive (high marginal cost of
effort) agents in the population. More precisely, we measure an agent’s ability by
its marginal cost of effort 𝜃 ∈ [0, 1] and find that when the density of agents is
increasing in marginal cost, so that inefficient agents are more likely than efficient
agents, these interventions encourage effort. In contrast, when the density function
is decreasing, so that efficient agents are more likely than inefficient agents, these
interventions discourage effort. Consequently, the structure of optimal contests in
our three applications also differ depending upon the distribution of abilities.

We characterize optimal contests in the three applications for the cases where the
density function is monotone increasing or decreasing. We note here that we focus
on a parametric class of distributions with monotone density functions (𝐹 (𝜃) = 𝜃𝑝)
for some of these results. For the design of grading contests, we assume that
the value of a grade is determined by the information it reveals about the agent’s
type, and in particular, equals its expected productivity. Under this assumption, the
question is essentially one of choosing an optimal information disclosure policy. We
find that more informative grading schemes lead to more competitive prize vectors,
and thus, using our results on the effect of competition, we establish a link between
the informativeness of a grading scheme and the effort induced by it. The recent
transition from letter grades to pass/fail grading schemes in higher education seen
around the world makes this connection between information and effort all the more
relevant. In short, we find that more informative grading schemes lead to greater
effort when the density is increasing (𝑝 > 1) and lesser effort when the density is
decreasing (𝑝 < 1). Thus, an effort-maximizing designer would want to reveal the
rank when 𝑝 > 1 and it would want to award only two different grades, say A and
B, in some distribution when 𝑝 < 1.

For the second application where we consider agents with concave utilities for prizes,
we find that when the density function is decreasing, an effort-maximizing budget-
constrained designer would allocate the entire budget to the first prize irrespective
of the concavity of the utility function. In comparison, when the density function is
increasing, the optimal prize vector distributes the budget over 𝑛 − 1 prizes and the
distribution becomes less competitive as the utility function becomes more concave.
For the last application with homogeneous prizes, we find that the optimal contest
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awards either a single prize or 𝑛−1 prizes depending upon whether density function
is increasing or decreasing.

Literature review
There is a vast literature studying the design of contests in incomplete information
environments (Glazer and Hassin [66], Liu, Lu, Wang, and Zhang [86], Liu and Lu
[87], Moldovanu and Sela [93, 94], Zhang [132]). The paper most closely related to
ours is Moldovanu and Sela [93] who showed that in a model with linear utility and
linear costs, an effort-maximizing budget-constrained designer would allocate the
entire budget to the first prize, irrespective of the distribution of abilities. Moldovanu
and Sela [94] and more recently, Zhang [132] showed that a winner-takes-all prize
structure maximizes expected effort in a more general class of mechanisms. In
summary, the literature has shown that increasing the value of first prize has a
dominant effect in terms of encouraging effort as compared to increasing the value
of other prizes. Our paper contributes to this literature by illustrating that if the
value of the first prize was exogenously fixed, it is not always the case that an
effort-maximizing designer would simply go down the ranks allocating as much
prize money as possible until it runs out of budget, as perhaps the optimality of
the winner-take-all contest would suggest. While this may be interesting in itself,
we also illustrate its relevance through our applications, especially to the design
of optimal grading schemes. We also note here that the distributional assumptions
we make in this paper are disjoint from those made in the literature as the papers
generally assume a lower bound on the marginal costs of effort while we allow for
the possibility of genius agents with negligible marginal costs of effort.

The optimal contest design problem of allocating a budget across different prizes so
as to maximize effort has also been considered in other contest environments. In a
complete information environment with symmetric agents, Fang, Noe, and Strack
[50] showed that increasing competition discourages effort which generalizes the
idea that it is optimal for the designer to distribute the budget equally amongst the
top 𝑛 − 1 prizes (Barut and Kovenock [5], Glazer and Hassin [66]). Clark and Riis
[34] provides examples with asymmetric agents where splitting the budget into more
than one prize might be optimal. Clark and Riis [35] considers Tullock form contest
success functions and finds that increasing competition leads to an increase in total
effort. Szymanski and Valletti [128] show that with asymmetric agents, a second
prize might be optimal. Other related work that looks at the design of optimal
contests under some different assumptions include Cohen and Sela [36], Krishna
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and Morgan [81], Liu and Lu [88]. Sisak [124] provides a more detailed survey
of the literature on this problem. More general surveys of the theoretical literature
in contest theory can be found in Corchón [38], Fu and Wu [60], Konrad et al.
[77], Segev [116], Vojnović [130].

There is also a growing literature studying grading contests (Chan, Hao, and Suen
[27], Dubey and Geanakoplos [45], Krishna, Lychagin, Olszewski, Siegel, and
Tergiman [79], Moldovanu, Sela, and Shi [95], Popov and Bernhardt [110], Rayo
[112], Rodina, Farragut, et al. [113], Zubrickas [133]). The papers generally differ
in whether they allow for relative or absolute grading schemes, and also in their
assumptions about how the grades translate to prizes. Our paper contributes to the
strand of literature in which the value associated with a grade is determined by the
information it reveals about the agent’s productivity to the market, and thus, the
designer’s problem of choosing a grading scheme is essentially one of determin-
ing how much information to disclose about the agent’s type. Rayo [112], Rodina,
Farragut, et al. [113], Zubrickas [133] study information disclosure policies with ab-
solute grading schemes and find conditions under which pooling types together with
a common grade may be optimal. In recent work, Krishna, Lychagin, Olszewski,
Siegel, and Tergiman [79] study information disclosure policies with relative grad-
ing schemes in a large contest framework and investigate how pooling intervals of
performances together can improve the welfare of the agents in a Pareto sense. In
other related work, Brownback [20] studies experimentally the effect on effort of
increasing class size under a pass/fail grading scheme. Butcher et al. [23] uses
data from Wellesley College to show that switching from letter grades to a pass/fail
policy led to a decline in student effort. In comparison, we find that less informative
grading schemes may lead to greater or lesser effort depending upon whether the
density of agents is increasing or decreasing in ability.

The paper proceeds as follows. In section 2, we present the model of a contest
in an incomplete-information environment. Section 3 characterizes the symmetric
Bayes-Nash equilibrium of the contest game and studies the effect of prizes and
competition on effort. In section 4, we discuss applications to the design of optimal
contests in three natural environments. Section 5 concludes. All proofs are relegated
to the appendix.
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3.2 Model
There is a single contest designer and 𝑛 agents. The designer chooses a vector of
prizes v = (𝑣1, 𝑣2, . . . , 𝑣𝑛) such that 𝑣𝑖 ≥ 𝑣𝑖+1 for all 𝑖. The agents compete for these
prizes by exerting costly effort. Each agent 𝑖 is privately informed about its marginal
cost of effort 𝜃𝑖 ∈ [0, 1] which is drawn independently from [0, 1] according to a
distribution 𝐹 : [0, 1] → [0, 1]. The distribution 𝐹 is common knowledge.

Assumption 1. The distribution of marginal costs 𝐹 is twice-differentiable and it is
such that lim𝜃→0 𝑓 (𝜃)𝐹 (𝜃) = 0.

The assumption ensures that there are not too many highly productive agents in the
population and is satisfied, in particular, by the parametric class of distributions
𝐹 (𝜃) = 𝜃𝑝 with 𝑝 > 1

2 . Given a vector of prizes v, marginal cost of effort
𝜃𝑖, and belief 𝐹 about the marginal costs of effort of other agents, each agent 𝑖
simultaneously chooses an effort level 𝑒𝑖. The designer ranks the agents in order of
the efforts they put in and awards them the corresponding prizes. The agent who
puts in the maximum effort is awarded prize 𝑣1. Agent with the second highest
effort is awarded prize 𝑣2 and so on. If agent 𝑖 puts in effort 𝑒𝑖 and wins prize 𝑣𝑖, its
final payoff is

𝑣𝑖 − 𝜃𝑖𝑒𝑖 .

Given a prize structure v and belief 𝐹, an agent’s strategy 𝜎𝑖 : [0, 1] → R+

maps its marginal cost of effort to the level of effort it puts in. A strategy profile
𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝑛) is a Bayes-Nash equilibrium of the game if for all agents 𝑖
and type 𝜃𝑖 ∈ [0, 1], agent 𝑖’s expected payoff from playing 𝜎𝑖 (𝜃𝑖) is at least as
high as its payoff from playing anything else given that all other agents are playing
𝜎−𝑖. We will focus on the symmetric Bayes-Nash equilibrium of this contest game.
This is a Bayes-Nash equilibrium where all agents are playing the same strategy
𝑔v : [0, 1] → R+.

Given a prior distribution 𝐹, we will assume the designer’s preferences over the
different contests or prize vectors v is defined by a monotone utility function 𝑈 :
R+ → R so that the designer prefers v over v′ if and only if E[𝑈 (𝑔v(𝜃))] ≥
E[𝑈 (𝑔v′ (𝜃))] where 𝑔v represents the symmetric Bayes-Nash equilibrium function
under prize vector v. We will impose conditions on 𝑈 as required to illustrate
our results. A standard objective for the designer in the literature is to maximize
expected effort which is captured in our model by the utility function𝑈 (𝑥) = 𝑥.
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Notation
We will denote by 𝑝𝑖 (𝑡) the probability that a random variable 𝑋 ∼ 𝐵𝑖𝑛(𝑛 − 1, 𝑡)
takes the value 𝑖 − 1. That is,

𝑝𝑖 (𝑡) =
(
𝑛 − 1
𝑖 − 1

)
𝑡𝑖−1(1 − 𝑡)𝑛−𝑖 .

The Beta function is defined by

𝛽(𝑎, 𝑏) =
∫ 1

0
𝑡𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡

for 𝑎, 𝑏 > 0. For integral 𝑎, 𝑏, we have that 𝛽(𝑎, 𝑏) = (𝑎 − 1)!(𝑏 − 1)!
(𝑎 + 𝑏 − 1)! .

3.3 Equilibrium
We begin by characterizing the unique symmetric Bayes-Nash equilibrium of the
contest game for arbitrary prize vectors. While the equilibrium strategy function
takes the same form as in Moldovanu and Sela [93], it satisfies an interesting property
due to the presence of agents with negligible marginal costs of effort which we will
discuss later. The following result displays the symmetric Bayes-Nash equilibrium
strategy of the contest game (Moldovanu and Sela [93]).

Lemma 12. The equilibrium function is given by

𝑔v(𝜃) =
𝑛∑︁
𝑖=1

𝑣𝑖𝑚𝑖 (𝜃)

where

𝑚𝑖 (𝜃) = −
∫ 1

𝐹 (𝜃)

𝑝′
𝑖
(𝑡)

𝐹−1(𝑡)
𝑑𝑡.

The proof uses the standard approach of assuming 𝑛 − 1 agents are playing the
same strategy and then getting conditions under which that strategy is also the best
response for the last agent:

∑𝑛
𝑖=1 𝑣𝑖𝑝

′
𝑖
(𝐹 (𝜃)) 𝑓 (𝜃) − 𝜃𝑔′(𝜃) = 0. The boundary

condition 𝑔v(1) = 0 pins down the form of the equilibrium function as in Lemma
12. The full proof is in the appendix.

The equilibrium effort level of an agent of type 𝜃 is linear in the values of prizes 𝑣𝑖 and
the weights 𝑚𝑖 (𝜃) depend on the distribution 𝐹. Generally, studying the effects of
manipulating different prizes on effort amounts to understanding properties of these
marginal effect functions 𝑚𝑖 (𝜃) and we will discuss them in the next subsection.
Here, we make some observations about the equilibrium function.
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First, for any agent type 𝜃 ∈ [0, 1], the sum of the weights

𝑛∑︁
𝑖=1

𝑚𝑖 (𝜃) = −
∫ 1

𝐹 (𝜃)

∑𝑛
𝑖=1 𝑝

′
𝑖
(𝑡)

𝐹−1(𝑡)
𝑑𝑡 = 0.

The last equality holds because
∑𝑛
𝑖=1 𝑝𝑖 (𝑡) = 1 for all 𝑡. This makes sense because

if all the prizes are equal, there is no incentive for any agent to put in any effort.

Second, the equilibrium function 𝑔v(𝜃) is decreasing in 𝜃 and thus, more productive
agents put in greater effort. To check this, note that

𝑔′v(𝜃) =
𝑛∑︁
𝑖=1

𝑣𝑖𝑚
′
𝑖 (𝜃) =

𝑓 (𝜃)
𝜃

𝑛∑︁
𝑖=1

𝑣𝑖𝑝
′
𝑖 (𝐹 (𝜃)) < 0.

The last inequality holds because for any 𝑘 ∈ {1, . . . , 𝑛} and any 𝑡 ∈ (0, 1),∑𝑘
𝑖=1 𝑝

′
𝑖
(𝑡) ≤ 0. Since

∑𝑘
𝑖=1 𝑝𝑖 (𝑡) is the probability that a binomial random vari-

able 𝑋 ∼ (𝑛− 1, 𝑡) takes a value ≤ 𝑘 − 1, we know that this probability decreases as
we increase the success probability 𝑡.

Third, in case an agent’s value for prize 𝑣 is given by some increasing utility function
𝑢(𝑣) and all agents share the same utility function 𝑢 for prizes, the equilibrium is
simply as if prize 𝑖 was 𝑢(𝑣𝑖) instead of 𝑣𝑖 in Lemma 12. The following corollary
formalizes this.

Corollary 12. If the agents have a common increasing utility function 𝑢 for prizes,
the equilibrium function is given by

𝑔v(𝜃) =
𝑛∑︁
𝑖=1

𝑢(𝑣𝑖)𝑚𝑖 (𝜃)

where

𝑚𝑖 (𝜃) = −
∫ 1

𝐹 (𝜃)

𝑝′
𝑖
(𝑡)

𝐹−1(𝑡)
𝑑𝑡.

And lastly, as the population becomes more efficient (in the sense of first order
stochastic dominance), the expected effort exerted under any given contest v in-
creases.

Lemma 13. Suppose 𝐹 and 𝐺 are such that 𝐹 (𝑥) ≤ 𝐺 (𝑥) for all 𝑥 ∈ [0, 1]. Then
for any contest v,

E[𝑔𝐺v (𝜃)] ≥ E[𝑔𝐹v (𝜃)] .
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This result suggests that there is value for a contest designer in running training or
educational programs that make the participants more productive if it cares about
increasing the expected effort exerted by the participants. Going forward, we fix the
distribution of types 𝐹 and focus on studying the effect of manipulating prizes on
the effort exerted by the participants.

Effect of prizes
Now we focus our attention on studying how the equilibrium effort changes as we
vary the values of different prizes. Given the linearity of the equilibrium function
in Lemma 12, we can do so by simply understanding the properties of the marginal
effect functions 𝑚𝑖 (𝜃).

The next result illustrates the differing effects of increasing the value of the first
prize, an intermediate prize, or the last prize on effort.

Lemma 14. The marginal effect functions 𝑚𝑖 (𝜃) = −
∫ 1
𝐹 (𝜃)

𝑝′
𝑖
(𝑡)

𝐹−1 (𝑡) 𝑑𝑡 satisfy:

1. 𝑚1(𝜃) ≥ 0 for all 𝜃 ∈ [0, 1],

2. 𝑚𝑖 (𝜃) =

< 0 if 𝜃 ≤ 𝑡𝑖
≥ 0 otherwise

where 𝑡𝑖 ∈ (0, 1) for 𝑖 ∈ {2, . . . , 𝑛 − 1},

3. 𝑚𝑛 (𝜃) ≤ 0 for all 𝜃 ∈ [0, 1].

The result follows from the fact that 𝑝1(𝑡) is monotone decreasing, 𝑝𝑖 (𝑡) is single
peaked for 𝑖 ∈ {2, . . . , 𝑛 − 1} and 𝑝𝑛 (𝑡) is monotone increasing. The full proof is in
the appendix.

In words, Lemma 14 says that increasing the value of the first prize encourages
effort for all agent types and increasing the value of the last prize discourages effort
for all agent types. In comparison, increasing the value of any intermediate prize
𝑖 ∈ {2, . . . , 𝑛 − 1} has mixed effects in that it reduces the effort of highly efficient
agents (those with low 𝜃) and increases the effort of the less efficient agents (those
with high 𝜃). Intuitively, this is because the highly efficient agents are generally
winning the best prizes and when the value of an intermediate prize increases, their
value for the better prizes, and hence the incentive to exert effort, goes down. In
contrast, the less efficient agents get lower ranked prizes and when the value of an
intermediate prize increases, they are encouraged to exert greater effort for the better
prize.
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The next result identifies an interesting property of the aggregate effect of increasing
the value of any prize.

Lemma 15. The marginal effect functions 𝑚𝑖 (𝜃) = −
∫ 1
𝐹 (𝜃)

𝑝′
𝑖
(𝑡)

𝐹−1 (𝑡) 𝑑𝑡 satisfy:

1.
∫ 1

0 𝑚1(𝜃)𝑑𝜃 = 1.

2.
∫ 1

0 𝑚𝑖 (𝜃)𝑑𝜃 = 0 for 𝑖 ∈ {2, . . . , 𝑛 − 1},

3.
∫ 1

0 𝑚𝑛 (𝜃)𝑑𝜃 = −1.

Using assumption 1, we show that
∫ 1

0 𝑚𝑖 (𝜃)𝑑𝜃 = 𝑝𝑖 (0) − 𝑝𝑖 (1) which implies the
result. Note that the possibility of agents with negligible marginal costs of effort
is essential for the equilibrium to satisfy this property. We believe ours is the first
paper to consider this possibility and hence, identify this property of the equilibrium
function. We will make use of this property later to study the expected effect on
effort of increasing the value of different prizes under some special distributions.

In words, Lemma 15 says that the aggregate impact on effort of increasing the value
of any prize (measured by the area under its marginal effect curve) is balanced in
that it does not depend on the distribution of abilities 𝐹. In particular, we know
from Lemma 14 that increasing the value of an intermediate prize reduces effort
of the most efficient agents while increasing the effort of the less efficient agents.
Lemma 15 says that the reduction in the effort of the most efficient agents is exactly
compensated for by the increase in effort of the less efficient agents in the sense that
the area under the equilibrium function remains the same. Note that by compensate,
we do not mean that the expected effort remains the same but that the area under the
equilibrium function remains the same.

Corollary 13. For any distribution 𝐹 and prize vector v,∫ 1

0
𝑔v(𝜃)𝑑𝜃 = 𝑣1 − 𝑣𝑛.

The properties of the marginal effect functions described in Lemmas 14, 15 are
illustrated in figure 3.1 for the case of 𝑛 = 5 and 𝐹 (𝜃) = 𝜃3.

Now to study the overall effect of increasing the value of these prizes, we look at
E[𝑚𝑖 (𝜃)]. Note that it is clear from Lemma 14 thatE[𝑚1(𝜃)] > 0 andE[𝑚𝑛 (𝜃)] < 0
irrespective of the distribution of abilities 𝐹. Thus, increasing the value of first prize
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Figure 3.1: Marginal effect of prizes on effort for 𝑛 = 5 and 𝐹 (𝜃) = 𝜃3.

increases expected effort while increasing the value of last prize decreases expected
effort. The next result identifies sufficient conditions on the distribution of abilities
under which increasing the value of any intermediate prize 𝑖 ∈ {2, . . . , 𝑛 − 1} has
opposite effects on expected effort.

Theorem 11. Suppose v,w are two prize vectors such that 𝑣𝑖 > 𝑤𝑖 for some
intermediate prize 𝑖 ∈ {2, . . . , 𝑛 − 1} and 𝑣 𝑗 = 𝑤 𝑗 for 𝑗 ≠ 𝑖.

1. If the density 𝑓 is increasing, then a designer with a concave utility 𝑈 for
effort prefers v over w.

2. If the density 𝑓 is decreasing, then a designer with a convex utility𝑈 for effort
prefers w over v.

In particular, the theorem implies that a designer who cares about increasing expected
effort may prefer to increase the value of intermediate prizes or decrease them
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depending on whether the density function is increasing or decreasing. Intuitively,
we know from Lemmas 14 and 15 that increasing the value of any intermediate
prize leads to a balanced transfer of effort from the highly efficient agents to the less
efficient agents. The overall expected effect then depends on the relative likelihood
of highly efficient and less efficient agents. When the density is increasing so
that less efficient agents are dominant, increasing the value of intermediate prizes
increases expected effort. When the density is decreasing so that highly efficient
agents are dominant, increasing the value of intermediate prizes reduces expected
effort.

Corollary 14. Suppose v,w are two prize vectors such that 𝑣𝑖 > 𝑤𝑖 for some
intermediate prize 𝑖 ∈ {2, . . . , 𝑛 − 1} and 𝑣 𝑗 = 𝑤 𝑗 for 𝑗 ≠ 𝑖.

1. If the density 𝑓 is increasing, then E[𝑔v(𝜃)] ≥ E[𝑔w(𝜃)].

2. If the density 𝑓 is decreasing, then E[𝑔v(𝜃)] ≤ E[𝑔w(𝜃)].

Also, it follows from the Theorem that when 𝐹 is uniform so that the density function
is constant, the expected effort does not change as the value of intermediate prizes
change. More precisely, we obtain the following corollary:

Corollary 15. Suppose v,w are two prize vectors such that 𝑣𝑖 > 𝑤𝑖 for some
intermediate prize 𝑖 ∈ {2, . . . , 𝑛 − 1} and 𝑣 𝑗 = 𝑤 𝑗 for 𝑗 ≠ 𝑖. If 𝐹 is uniform, then
𝑔w(𝜃) is a mean-preserving spread of 𝑔v(𝜃).

To prove the theorem, we use the fact that
∫ 1

0 𝑚𝑖 (𝜃)𝑑𝜃 = 0 (Lemma 15) and that it
is initially negative and then positive (Lemma 14) to show that expected marginal
effect on effort of prize 𝑖,

E[𝑚𝑖 (𝜃)] =
∫ 1

0
𝑚𝑖 (𝜃) 𝑓 (𝜃)𝑑𝜃 = −

∫ 1

0

𝑝′
𝑖
(𝑡)

𝐹−1(𝑡)
𝑡𝑑𝑡

is positive if the density is increasing and negative if the density is decreasing. The
more general comparison with respect to concave and convex utilities then follows
from the single crossing property of the equilibrium functions 𝑔v(𝜃) and 𝑔w(𝜃). The
full proof is in the appendix.

The effect of increasing prizes and the single crossing property of the equilibrium
function is illustrated in figure 3.2 for the case of 𝑛 = 5 and 𝐹 (𝜃) = 𝜃3.
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Figure 3.2: Effect of increasing prizes on effort for 𝑛 = 5 and 𝐹 (𝜃) = 𝜃3.

Effect of competition
In this subsection, we study the effect of increasing the competitiveness of a contest
on effort. In our framework, where a contest is defined by a prize vector v, we say a
contest v is more competitive than w if the prizes in v are more unequal than in w.
Formally:

Definition 3.3.1. A prize vector v = (𝑣1, 𝑣2, . . . , 𝑣𝑛−1, 𝑣𝑛) is more competitive than
w = (𝑤1, 𝑤2, . . . , 𝑤𝑛−1, 𝑤𝑛) if v majorizes w (i.e.,

∑𝑘
𝑖=1 𝑣𝑖 ≥

∑𝑘
𝑖=1 𝑤𝑖 for all 𝑘 ∈ [𝑛]

and
∑𝑛
𝑖=1 𝑣𝑖 =

∑𝑛
𝑖=1 𝑤𝑖).

In words, a more competitive prize vector v can be obtained from a less competi-
tive prize vector w by transferring value from lower ranked prizes to better ranked
prizes. This definition of competitiveness was also considered in Fang, Noe, and
Strack [50] who showed that increasing competition has a discouraging effect on
effort in contests under complete information environments.
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To study the effect of competition on effort, we need to understand how the expected
marginal effects vary across prizes. That is, we want to understand how E[𝑚𝑖 (𝜃)]
compares with E[𝑚 𝑗 (𝜃)]. We know that

E[𝑚𝑖 (𝜃)] =
∫ 1

0
𝑚𝑖 (𝜃) 𝑓 (𝜃)𝑑𝜃 = −

∫ 1

0

𝑝′
𝑖
(𝑡)

𝐹−1(𝑡)
𝑡𝑑𝑡.

An important object going forward will be the integral
∫ 1

0 𝑡𝑘 𝑝′
𝑖
(𝑡)𝑑𝑡 and we note its

value in the following lemma.

Lemma 16. For any 𝑛 ∈ N, 𝑖 ∈ {1, . . . , 𝑛 − 1} and 𝑘 > 0,∫ 1

0
𝑡𝑘 𝑝′𝑖 (𝑡)𝑑𝑡 = −𝑘

(
𝑛 − 1
𝑖 − 1

)
𝛽(𝑖 + 𝑘 − 1, 𝑛 − 𝑖 + 1).

It is known from Moldovanu and Sela [93] that E[𝑚1(𝜃)] > E[𝑚𝑖 (𝜃)] for any 𝑖 > 1.
That is, the effect of the first prize on expected effort dominates the effect of any
other prize. We state it here again as a lemma.

Lemma 17. For any 𝑛 and distribution 𝐹, E[𝑚1(𝜃)] > E[𝑚𝑖 (𝜃)] for any 𝑖 > 1.

But it is not clear how the effects of the intermediate prizes compare with each
other. Does this idea generalize and do we have E[𝑚𝑖 (𝜃)] ≥ E[𝑚 𝑗 (𝜃)] for all 𝑖 < 𝑗

or do we get something else? While we are unable to say something in complete
generality, we focus on a parametric class of distributions 𝐹 (𝜃) = 𝜃𝑝 with 𝑝 > 1

2
and show that the idea does not generalize. Note that 𝑝 > 1

2 ensures that assumption
1 is satisfied. Under these parametric assumptions, we show that the comparison of
expected marginal effects of the intermediate prizes on effort depends on whether
the density is increasing (𝑝 > 1) or decreasing (𝑝 < 1).

Theorem 12. Suppose 𝐹 (𝜃) = 𝜃𝑝 and v and w are two prize vectors such that v is
more competitive than w.

1. If 𝑝 > 1, then
E[𝑔v(𝜃)] ≥ E[𝑔w(𝜃)] .

2. If 1
2 < 𝑝 < 1, and 𝑣1 = 𝑤1, 𝑣𝑛 = 𝑤𝑛, then

E[𝑔v(𝜃)] ≤ E[𝑔w(𝜃)] .
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3. If 𝑝 > 1
2 and 𝑣𝑛 = 𝑤𝑛, then

E[𝑔v(𝜃𝑚𝑎𝑥)] ≤ E[𝑔w(𝜃𝑚𝑎𝑥)] .

Here again, we find that the effect of increasing competition depends qualitatively on
the relative likelihood of highly efficient and less efficient agents. When less efficient
agents are more likely than highly efficient agents (𝑝 > 1), increasing competition
by increasing prize inequality encourages effort. In contrast, when efficient agents
are more likely ( 1

2 < 𝑝 < 1), increasing competition discourages effort.

The parametric assumptions allow us to compute the expected marginal effects for
each prize 𝑖. More precisely, we get that for any 𝐹 (𝜃) = 𝜃𝑝 with 𝑝 > 1

2 and
𝑖 ∈ {2, . . . , 𝑛 − 1},

E[𝑚𝑖 (𝜃)] =
(
𝑛 − 1
𝑖 − 1

)
𝛽(𝑖 − 1

𝑝
, 𝑛 − 𝑖) (𝑛 − 𝑖) (𝑝 − 1)

𝑛𝑝 − 1
.

The ratio of expected marginal effects is then

E[𝑚𝑖+1(𝜃)]
E[𝑚𝑖 (𝜃)]

=
𝑛 − 𝑖
𝑖

𝑖 − 1
𝑝

𝑛 − 𝑖 − 1
𝑛 − 𝑖 − 1
𝑛 − 𝑖 =

𝑖 − 1
𝑝

𝑖
< 1.

Thus, the ratio is always < 1 irrespective of 𝑝. In the case where 𝑝 > 1 so that the
density is increasing, the marginal effects are positive (Theorem 11) and therefore,
the ratio being less than one implies that the expected effects are decreasing in the
rank of the prize. That is, E[𝑚𝑖 (𝜃)] > E[𝑚 𝑗 (𝜃)] for all 𝑖 < 𝑗 . Thus, any transfer of
value from lower ranked prize to better ranked prizes would lead to a net increase in
expected effort. Since a more competitive prize vector v can be obtained from a less
competitive prize vector w via a sequence of such transfers, we get that increasing
competition encourages effort when 𝑝 > 1. This is perhaps a bit surprising since
these are distributions in which the designer puts more weight on the effort of the
less efficient agents, who care more about the lower ranked prizes. While we do see
that the relative benefit of prize 𝑖 + 1 over 𝑖 increases as 𝑝 increases, it remains ≤ 1
as 𝑝 → ∞. Also note that this is in contrast to the complete information case where
increasing competition discourages effort (Fang, Noe, and Strack [50]).

An analogous argument holds for the case where 1
2 < 𝑝 < 1. In this case, the density

is decreasing and so the expected marginal effects are actually negative (Theorem
11). Thus, the ratio being less < 1 implies that the expected marginal effects are
actually increasing in 𝑖. As a result, we get that conditional on the first and last prize
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being fixed, transfer of value from worse prizes to better prizes actually discourages
effort. Thus, in this case we get that increasing competition discourages effort.

For the case of expected minimum effort, we again find the expected marginal effect
of each prize on the effort of the least efficient agent. In the general case, we show
that

E[𝑚𝑖 (𝜃𝑚𝑎𝑥)] = −
∫ 1

0

𝑝′
𝑖
(𝑡)

𝐹−1(𝑡)
𝑡𝑛𝑑𝑡

and then plug in 𝐹 (𝜃) = 𝜃𝑝 to get that for each 𝑖 ∈ {1, 2, . . . , 𝑛 − 1},

E[𝑚𝑖 (𝜃𝑚𝑎𝑥)] =
(
𝑛 − 1
𝑖 − 1

)
𝛽

(
𝑛 + 𝑖 − 1 − 1

𝑝
, 𝑛 − 𝑖

)
(𝑛 − 𝑖) (𝑛𝑝 − 1)

2𝑛𝑝 − 𝑝 − 1

which implies
E[𝑚𝑖+1(𝜃𝑚𝑎𝑥)]
E[𝑚𝑖 (𝜃𝑚𝑎𝑥)]

=
𝑛 + 𝑖 − 1 − 1

𝑝

𝑖
> 1.

By similar reasoning as above, we get here that conditional on the last prize being
fixed, increasing competition discourages effort. In this case, the designer is putting
a lot of weight on the effort of the least efficient agents, who care more about the
value of the worse prizes (Lemma 14). Thus, we get that the lower ranked prizes
induce greater effort in expectation from the least efficient agent than the top ranked
prizes.

We note here that increasing competition by transferring value from a lower ranked
intermediate prize to a better ranked intermediate prize leads to equilibrium func-
tions that cross each other at two distinct points. Due to this double-crossing prop-
erty, we do not believe that Theorem 12 generalizes to the case where the density
is simply increasing or decreasing. Anyhow, the parametric assumption we make
allow us to illustrate that it is not always the case that the expected marginal effects
are decreasing in the rank of the prize, as one might suspect based on Moldovanu
and Sela [93]’s result on the dominant effect of the first prize.

The effect of increasing competition and the double crossing property of the equi-
librium function is illustrated in figure 3.3 for the case of 𝑛 = 5 and 𝐹 (𝜃) = 𝜃3.

3.4 Applications
In this section, we will discuss applications of our results to the design of optimal
contests in three different environments. First, we will consider the design of grading
schemes. Second, we will consider settings where agents have concave utilities for
prizes and the designer has a fixed budget that it can distribute arbitrarily across
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Figure 3.3: Effect of competition on effort for 𝑛 = 5 and 𝐹 (𝜃) = 𝜃3.

prizes. And last, we will consider settings where the designer can costlessly award
any number of agents with a homogeneous prize of a fixed value. In all of these
environments, we will find that the structure of the optimal contest depends in an
important way on the distribution of abilities in the population.

Grading schemes
Our first applications looks at the design of grading schemes. These are generally
used in classroom settings where the professor awards grades to students based on
their performance in exams. While the grades may be assigned based on absolute
scores as well, we focus here on the case where the grades can only be assigned based
on relative performance. For instance, the professor may commit to giving grades 𝐴
and 𝐵 to the top 50% and bottom 50%, respectively, or it may give 𝐴+, 𝐴−, 𝐵+, and
𝐵− with distribution ( 1

4 ,
1
4 ,

1
4 ,

1
4 ). Formally, we define a grading contest as follows:

Definition 3.4.1. A grading contest with 𝑛 agents is defined by a strictly increasing
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sequence of natural numbers 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑘 ) such that 𝑠𝑘 = 𝑛.

The interpretation of grading contest 𝑠 is that the top 𝑠1 agents get grade 𝑔1, next
𝑠2 − 𝑠1 get grade 𝑔2 and generally, 𝑠𝑘 − 𝑠𝑘−1 agents get grade 𝑔𝑘 . But how do these
grades translate to prizes? In incomplete information environments like the one
considered in this paper, the grade secured by an agent under any grading scheme
reveals information about its rank, and thus, its productivity. We assume that the
value of a grade is determined by the information it reveals about the type of the
agent. More precisely, we assume that there is a publicly known wage (productivity)
function 𝑤 : Θ → R+ which maps an agent’s marginal cost to its productivity and
is monotone decreasing. The interpretation is that if the market could observe that
an agent is of type 𝜃, it would offer the agent a wage of 𝑤(𝜃). Given this wage
function, we assume that the value of a grade in a grading contest 𝑠 equals the
expected productivity of the agent who gets the grade. The problem of choosing a
grading scheme is then essentially one of determining how much information the
designer should disclose about the agent’s types.

Observe that there is a natural partial order over grading contests in terms of how
much information they reveal about the type of the agents. In the examples above,
the grading contest that awards the grades 𝐴+, 𝐴−, 𝐵+, and 𝐵− in equal proportion
is more informative about the agents type then the one that awards just 𝐴 and 𝐵 in
equal proportion. More generally, we can say the following:

Definition 3.4.2. A grading contest 𝑠 is more informative than 𝑠′ if 𝑠′ is a subse-
quence of 𝑠.

Clearly, the rank revealing contest 𝑠∗ = (1, 2, . . . , 𝑛) is more informative than any
other grading contest. Under our assumption for how grades translate to prizes, the
rank revealing contest 𝑠∗ = (1, 2, . . . , 𝑛) induces the prize vector

𝑣𝑖 = E[𝑤(𝜃) |𝜃 = 𝜃𝑛(𝑖)]

where 𝜃𝑛(𝑖) is the 𝑖th order statistic in a random sample of 𝑛 agents. This is because
the rank revealing contest reveals the exact rank of the agent in a random sample of
𝑛 observations. Note here that since 𝜃𝑛(𝑖) is stochastically dominated by 𝜃𝑛( 𝑗) for all
𝑖 < 𝑗 and 𝑤 is monotone decreasing, the prize vector induced by the rank revealing
contest is monotone decreasing 𝑣1 > 𝑣2 · · · > 𝑣𝑛.

Now we can define the prize vectors induced by arbitrary grading contests 𝑠 in
terms of the 𝑣𝑖’s as defined above. An arbitrary grading contest 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑘 )
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induces the prize vector 𝑣(𝑠) where

𝑣(𝑠)𝑖 =
𝑣𝑠 𝑗−1+1 + 𝑣𝑠 𝑗−1+2 + · · · + 𝑣𝑠 𝑗

𝑠 𝑗 − 𝑠 𝑗−1

and 𝑗 is such that 𝑠 𝑗−1 < 𝑖 ≤ 𝑠 𝑗 . This is because if an agent gets grade 𝑔 𝑗 in the
grading contest 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑘 ), then the market learns that the agent’s rank must
be one of {𝑠 𝑗−1 + 1, . . . , 𝑠 𝑗 } and further, it is equally likely to be ranked at any of
these positions. The form of the prize vector above then follows from the assumption
that the value of grade equals its expected productivity under the posterior induced
by the grade. We state this formally in the assumption below:

Assumption 2. Given a monotone decreasing wage function 𝑤 : Θ → R+, the rank
revealing grading contest 𝑠∗ = (1, 2, . . . , 𝑛) induces prize vector v = (𝑣1, . . . , 𝑣𝑛)
where

𝑣𝑖 = E[𝑤(𝜃) |𝜃 = 𝜃𝑛(𝑖)] .

A grading contest 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑘 ) induces the prize vector v(𝑠) where

v(𝑠)𝑖 =
𝑣𝑠 𝑗−1+1 + 𝑣𝑠 𝑗−1+2 + · · · + 𝑣𝑠 𝑗

𝑠 𝑗 − 𝑠 𝑗−1

and 𝑗 is such that 𝑠 𝑗−1 < 𝑖 ≤ 𝑠 𝑗 .

Given this framework, we can now ask how the different grading schemes compare
in terms of the effort they induce. It turns out that under our assumption 2, if
grading scheme 𝑠 is more informative than 𝑠′, then the prize vector v(𝑠) induced
by 𝑠 is more competitive than the prize vector v(𝑠′) induced by 𝑠′. As a result, we
can use our Theorem 12 describing the effects of competition on effort to say how
informativeness of a grading scheme influences the effort they induce.

Corollary 16. Suppose 𝐹 (𝜃) = 𝜃𝑝 and grading scheme 𝑠 is more informative than
𝑠′.

1. If 𝑝 > 1, then 𝑠 induces greater expected effort than 𝑠′.

2. If 1
2 < 𝑝 < 1, and 𝑣(𝑠)1 = 𝑣(𝑠′)1, 𝑣(𝑠)𝑛 = 𝑣(𝑠′)𝑛, then 𝑠′ induces greater

expected effort than 𝑠.

3. If 𝑝 > 1
2 and 𝑣(𝑠)𝑛 = 𝑣(𝑠′)𝑛, then 𝑠′ induces greater expected minimum effort

than 𝑠.
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Moreover, we can also characterize optimal grading schemes. The following corol-
lary describes the effort-maximizing grading contests.

Corollary 17. Suppose 𝐹 (𝜃) = 𝜃𝑝.

1. If 𝑝 > 1, the rank revealing contest 𝑠 = (1, 2, . . . , 𝑛) maximizes expected
effort among all grading contests.

2. If 1
2 < 𝑝 < 1, the contest 𝑠 = (1, 𝑛 − 1, 𝑛) maximizes expected effort among

all grading contests in which the last agent gets a unique grade.

3. If 𝑝 > 1
2 , the contest 𝑠 = (𝑛−1, 𝑛) maximizes expected minimum effort among

all grading contests.

Note that when the designer has a budget that it can distribute arbitrarily across
prizes, the expected effort maximizing contest is a winner-take-all contest that
allocates the entire budget to the first prize, irrespective of the distribution of abilities
(Moldovanu and Sela [93]). When the designer can only choose a grading scheme,
the set of feasible contests under our assumption 2 is actually a finite subset of these
prize vectors that all add up to a constant sum. And as we see in the corollary, the
optimal grading contest now depends on the prior distribution of abilities. If the
density of agents is increasing in 𝜃 so that there is a greater proportion of inefficient
agents (𝑝 > 1), the effort maximizing grading contest awards a unique grade to each
agent. But when the density is decreasing (1

2 < 𝑝 < 1), the optimal grading contest,
among those that award a unique grade to the last agent, awards a unique grade to the
best agent and pools the rest of the agents by awarding them a common grade. And
finally for the case where the designer wants to maximize expected minimum effort,
which is perhaps a reasonable objective in a classroom environment, the optimal
grading contest awards a common grade to everyone except the least efficient agent.

Next we characterize effort-minimizing grading contests. Note that a grading contest
that pools all the agents together clearly minimizes effort among all grading contests
as it leads to zero effort. So we focus on grading contests that reveal some information
about the type of the agents. In other words, we exclude the trivial grading contest
𝑠 = (𝑛) from consideration while referring to grading contests.

Corollary 18. Suppose 𝐹 (𝜃) = 𝜃𝑝.

1. If 𝑝 > 1, the effort-minimizing grading contest takes the form 𝑠 = (𝑘, 𝑛) for
some 𝑘 ∈ {1, 2, . . . , 𝑛 − 1} .
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2. If 1
2 < 𝑝 < 1, the effort-minimizing grading contest takes the form 𝑠 =

(𝑘, 𝑘 + 1, . . . , 𝑛 − 1, 𝑛) for some 𝑘 ∈ {1, 2, . . . , 𝑛 − 1} .

In words, when the density is increasing so that inefficient agents dominate the
population, the effort-minimizing contest only awards two grades, say A and B, in
some distribution. And when the density is decreasing so that highly efficient agents
dominate the population, the effort-minimizing contest pools some of the top agents
together by awarding them a common grade, and then awards a unique grade to each
of the remaining agents.

Concave utilities
In this subsection, we consider a setting where the designer has a budget 𝐵 that
it can allocate across prizes v = (𝑣1, 𝑣2, . . . , 𝑣𝑛) such that 𝑣𝑖 ≥ 𝑣𝑖+1. Again, with
linear utility, the effort maximizing contest allocates the entire prize budget 𝐵 to
the first prize ([93]). We will consider the problem where agents have a common
concave utility function. More precisely, we assume that under a prize vector v, if
agent 𝑖 of type 𝜃𝑖 puts in effort 𝑒𝑖 and wins prize 𝑗 , its payoff equals 𝑢(𝑣 𝑗 ) − 𝜃𝑖𝑒𝑖
where 𝑢(𝑣 𝑗 ) = 𝑣𝑟𝑗 for 𝑟 ∈ (0, 1). The next result characterizes the expected effort
maximizing contest in this environment.

Theorem 13. Suppose agents have utility 𝑢(𝑣) = 𝑣𝑟 with 𝑟 ∈ (0, 1) and the distri-
bution of abilities is 𝐹 (𝜃) = 𝜃𝑝.

1. If 𝑝 > 1, the effort-maximizing contest awards 𝑛 − 1 prizes of decreasing
values. Moreover, the optimal contest 𝑣(𝑟) becomes more competitive as 𝑟
increases.

2. If 1
2 < 𝑝 < 1, the effort-maximizing contest is a winner-take-all contest for

any 𝑟 ∈ (0, 1).

We use corollary 12 to identify the equilibrium function so that the design problem
becomes maxv

∑𝑛−1
𝑖=1 𝑣

𝑟
𝑖
E[𝑚𝑖 (𝜃)] such that

∑
𝑣𝑖 = 𝐵. For 1

2 < 𝑝 < 1, it follows from
Theorem 11 that the marginal effects of all intermediate prizes is negative and so
regardless of how concave the utilities are, the optimal contest awards the entire
budget to the first prize. For 𝑝 > 1, we know from Theorems 11 and 12 that the
expected marginal effects for prizes 1, 2, . . . , 𝑛− 1 are all positive and decreasing in
rank. In this case, we solve the constrained optimization problem and characterize
the optimal contest. To show that the optimal contest become more competitive as 𝑟
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increases, we define 𝑓𝑘 (𝑟) as the sum of the first 𝑘 prizes in the optimal contest under
𝑟 and show that this sum is increasing in 𝑟 . Thus, as the agents utility for prizes
becomes less concave, the effort maximizing contest becomes more competitive.

Costless homogeneous prizes
For our last application, we consider a setting where the contest designer can award
arbitrarily many prizes of a fixed value 𝑎. More precisely, the set of prize vectors
available to the designer is given by

𝐵 = {v ∈ R𝑛 : ∃𝑘 such that 𝑣𝑖 = 𝑎 if 𝑖 ≤ 𝑘 and 𝑣𝑖 = 0 if 𝑖 > 𝑘}.

This might be the case when the designer is awarding free trials or subscriptions to
digital content or services. In these cases, the value of the prize for the winner does
not diminish if it is awarded to many agents and further, the cost to awarding addi-
tional prizes is negligible for the designer. The designer wants to chose the number
of prizes so as to maximize the expected effort. This contest design problem was
also considered in Liu and Lu [88] but under different distributional assumptions.
In their setting, the authors found that the expected effort was single-peaked in 𝑘 .
In our setting, we obtain the following as a corollary of Theorem 11.

Corollary 19. Suppose a designer can award any number of homogeneous prizes
of a fixed value.

1. If the density 𝑓 is increasing, then a designer with concave and increasing
utility𝑈 for effort awards 𝑛 − 1 prizes.

2. If the density 𝑓 is decreasing, then a designer with convex and increasing
utility𝑈 for effort awards only a single prize.

3.5 Conclusion
We study the effect of increasing the value of prizes and increasing competition on
effort in contests where agents have private information about their abilities. For
prizes, we find that increasing the value of the first prize encourages effort for all
agents, increasing the value of last prize discourages effort for all agent types, and
increasing any intermediate prizes leads to a balanced transfer of effort from the
more efficient agents to the less efficient agents. In expectation, the effects of prizes
and competition depend qualitatively on the prior distribution of abilities in the
population and we identify natural sufficient conditions on the distributions under
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which these interventions have opposite effects. If there is an increasing density of
inefficient agents, increasing the value of prizes or competition encourages effort.
If this density is decreasing, these interventions discourage effort.

We also discuss applications of these results to the design of optimal contests in
three natural environments. First, we consider the design of grading contests under
the assumption that the value of a grade is determined by the information it reveals
about the type of the agent. We establish a connection between informativeness of
a grading contest and the effort it induces and also derive effort-maximizing and
effort-minimizing grading contests. Second, we consider a parametric setting where
the designer has a budget that it must allocate across different prizes and the agents
have concave utilities for prizes. Lastly, we consider settings where the designer can
only choose the number of agents to award with a homogeneous prize and show that
when the prior density is monotone, it is optimal to award either 1 or 𝑛 − 1 prizes
depending on whether the density is increasing or decreasing. In summary, the
structure of the optimal contest in all of these environments depends in an important
way on the distribution of abilities in the population.
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A p p e n d i x A

PROOFS

A.1 Proofs for Section 1.4 (The minisum objective)

Theorem 2. For 𝑛 odd, 𝑋 = R2, and 𝑠𝑐(𝑧, p) = ∑𝑛
𝑖=1∥𝑧 − 𝑝𝑖∥,

𝐴𝑅(𝐶𝑀) =
√

2
√
𝑛2 + 1
𝑛 + 1

.

Proof. Define Centered Perpendicular (CP) profiles as all profiles p ∈ (R2)𝑛 such
that

• 𝑐(p) = (0, 0),

• for all 𝑖, either 𝑥𝑖 = 0 or 𝑦𝑖 = 0 or 𝑝𝑖 = 𝑔(p),

• if 𝑝′
𝑖
∈ (𝑝𝑖, 𝑔(p)), then 𝑐(𝑝′

𝑖
, 𝑝−𝑖) ≠ (0, 0).

Lemma 18 (CP). For any profile p ∈ (R2)𝑛, there exists a profile 𝜒 ∈ 𝐶𝑃 such that
𝐴𝑅(𝜒) ≥ 𝐴𝑅(p).

Proof. Let p ∈ (R2)𝑛 be a profile. Let p′ be the profile where 𝑝′
𝑖
= 𝑝𝑖 − 𝑐(p). Then

p′ has the same approximation ratio and 𝑐(p′) = (0, 0). Denote 𝐴 = {𝑖 : 𝑥𝑖 = 0}
and 𝐵 = {𝑖 : 𝑦𝑖 = 0}. Note that since 𝑐(p′) = (0, 0), it follows from the definition
of 𝑐(p′) that 𝐴 ≠ ∅ and 𝐵 ≠ ∅. Let Γ = {(𝑥, 𝑦) : 𝑥 = 0 or 𝑦 = 0} ∪ 𝑔(p′). Starting
from 𝑖 = 1 and going until 𝑛, define 𝑝′′

𝑖
to be the point in [𝑝′

𝑖
, 𝑔(p′)] ∩ Γ that is

closest to 𝑔(p′) under the constraint that 𝑐(𝑝′′1 , 𝑝
′′
2 , . . . , 𝑝

′′
𝑖
, 𝑝𝑖+1, . . . , 𝑝𝑛) = (0, 0).

Then p′′ ∈ 𝐶𝑃. Further, by lemma 7 𝐴𝑅(p′′) ≥ 𝐴𝑅(p′) = 𝐴𝑅(p); hence, taking
𝜒 = p′′ completes the proof.

Define Isosceles-Centered Perpendicular (I-CP) profiles as all p ∈ 𝐶𝑃 for which
there exists 𝑡 ≥ 0 such that

• 𝑝1 = · · · = 𝑝𝑚 = (𝑡, 0)

• 𝑝𝑚+1 = (−𝑡, 0)
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• 𝑝𝑚+2 = · · · = 𝑝2𝑚+1 = (0, 1)

• 𝑔(p) = (0, 1).

Next, we prove some lemmas that will be useful in reducing the search space for the
worst-case profile from 𝐶𝑃 to 𝐼 − 𝐶𝑃.

First, we show that we can reduce the number of half-axes that the points lie on from
(at most) four to (at most) three.

Lemma 19 (Reduce axes). Suppose p and p′ are profiles which differ only at 𝑖 where
for some 𝑎 > 0, 𝑝𝑖 = (0,−𝑎) and 𝑝′

𝑖
= (−𝑎, 0), and for which 𝑐(p) = 𝑐(p′) = (0, 0)

and 𝑦𝑔 (p) ≥ 𝑥𝑔 (p) ≥ 0. Then 𝐴𝑅(p′) ≥ 𝐴𝑅(p).

Proof. Again 𝑐(p′) = 𝑐(p) and 𝑠𝑐(𝑐(p′), p′) = 𝑠𝑐(𝑐(p), p). Thus, it is sufficient
to show that 𝑠𝑐(𝑔(p′), p′) ≤ 𝑠𝑐(𝑔(p), p). For this, we just need to show that
𝑑 (𝑝′

𝑖
, 𝑔(p)) ≤ 𝑑 (𝑝𝑖, 𝑔(p)). This follows from the following simple calculation:

𝑑 (𝑝′𝑖, 𝑔(p))2 = (𝑥𝑔 (p) + 𝑎)2 + 𝑦𝑔 (p)2

= 𝑥𝑔 (p)2 + 2𝑥𝑔 (p)𝑎 + 𝑎2 + 𝑦𝑔 (p)2

≤ 𝑥𝑔 (p)2 + 𝑦𝑔 (p)2 + 2𝑎𝑦𝑔 (p) + 𝑎2

= 𝑥𝑔 (p)2 + (𝑦𝑔 (p) + 𝑎)2

= 𝑑 (𝑝𝑖, 𝑔(p))2.

Next, we show that we can combine points on each of the three half-axes while
weakly increasing the approximation ratio.

Lemma 20 (Convexity). Let p ∈ 𝐶𝑃 and let 𝑆 ⊆ 𝑁 be such that for all 𝑖 ∈ 𝑆, 𝑥𝑖 > 0
and 𝑦𝑖 = 0. Let 𝑝𝑆 be the mean of the 𝑝𝑖 across 𝑖 ∈ 𝑆. Let p′ be the profile where

1. 𝑝′
𝑗
= 𝑝 𝑗 for 𝑗 ∉ 𝑆 and

2. 𝑝′
𝑗
= 𝑝𝑆 for 𝑗 ∈ 𝑆.

Then 𝐴𝑅(p′) ≥ 𝐴𝑅(p).

Proof. It is immediate that 𝑐(p′) = 𝑐(p). Further, 𝑠𝑐(𝑐(p′), p′) = 𝑠𝑐(𝑐(p), p′) =

𝑠𝑐(𝑐(p), p)) and 𝑠𝑐(𝑔(p′), p′) < 𝑠𝑐(𝑔(p), p′) < 𝑠𝑐(𝑔(p), p) where the last inequal-
ity follows from convexity of the distance function.
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The same argument applies for any of the other strict half axes.

Next, we show that we can move all the points that are on the geometric median to
the axis in a way that weakly increases the approximation ratio.

Lemma 21 (Double Rotation). Let p and p′ be profiles that differ only at 𝑖1 and 𝑖2,
such that for some 𝑎 ≥ 0

• 𝑐(p) = (0, 0),

• 𝑦𝑔 (p) ≥ 𝑥𝑔 (p) > 0,

• 𝑝𝑖1 = (−𝑎, 0),

• 𝑝′
𝑖1
= (𝑎 + 2𝑥𝑔 (p), 0),

• 𝑝𝑖2 = 𝑔(p), and

• 𝑝′
𝑖2
= (0, 𝑑 (𝑔(p), (0, 0))).

Then 𝑐(p′) = (0, 0) and 𝐴𝑅(p′) ≥ 𝐴𝑅(p).

Proof. The first claim is immediate.

For the second claim, let

𝐴 =
∑︁
𝑖≠𝑖1

𝑑 (𝑝𝑖, 𝑐(p))

𝐵 =
∑︁
𝑖≠𝑖2

𝑑 (𝑝𝑖, 𝑔(p)).

By Lemma 3,

𝐴 + 𝑑 (𝑝𝑖1 , 𝑐(p)) ≤
√

2𝐵.

Hence, it follows that

[𝐴 + 𝑑 (𝑝𝑖1 , 𝑐(p))]𝑑 (𝑝′𝑖2 , 𝑔(p)) ≤
√

2𝐵𝑑 (𝑝′𝑖2 , 𝑔(p)).

But since 𝑦𝑔 (p) ≥ 𝑥𝑔 (p), it follows that 𝑑 (𝑝′
𝑖2
, 𝑔(p)) ≤

√
2𝑥𝑔 (p). Hence,

[𝐴 + 𝑑 (𝑝𝑖1 , 𝑐(p))]𝑑 (𝑝′𝑖2 , 𝑔(p)) ≤ 2𝐵𝑥𝑔 (p)
= 𝐵(𝑑 (𝑝′𝑖1 , 𝑐(p)) − 𝑑 (𝑝

′
𝑖2
, 𝑐(p))).
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From this it follows that

(𝐴 + 𝑑 (𝑝𝑖1 , 𝑐(p))) (𝐵 + 𝑑 (𝑝′𝑖2 , 𝑔(p))) = 𝐴𝐵 + 𝐵𝑑 (𝑝𝑖1 , 𝑐(p)) + [𝐴 + 𝑑 (𝑝𝑖1 , 𝑐(p))]𝑑 (𝑝′𝑖2 , 𝑔(p))
≤ 𝐴𝐵 + 𝐵𝑑 (𝑝′𝑖1 , 𝑐(p))
= (𝐴 + 𝑑 (𝑝′𝑖1 , 𝑐(p)))𝐵

and hence

𝐴𝑅(p) =
𝐴 + 𝑑 (𝑝𝑖1 , 𝑐(p))

𝐵

≤
𝐴 + 𝑑 (𝑝′

𝑖1
, 𝑐(p))

𝐵 + 𝑑 (𝑝′
𝑖2
, 𝑔(p))

=
𝐴 + 𝑑 (𝑝′

𝑖1
, 𝑐(p′))

𝐵 + 𝑑 (𝑝′
𝑖2
, 𝑔(p))

≤ 𝐴𝑅(p′).

Lemma 22 (Geometric to axis). Suppose that p is a profile such that there are
𝑎 ≥ 0 and 𝑏, 𝑐 > 0 and subsets 𝐿, 𝑅,𝑈 ⊆ 𝑁 with 𝐿 ∩ 𝑅 = 𝐿 ∩ 𝑈 = 𝑅 ∩ 𝑈 = ∅,
𝐿 ∪ 𝑅 ∪𝑈 = 𝑁 , |𝐿 | = 1, |𝑈 | = |𝑅 | = 𝑚, and

• 𝑝𝑖 = (−𝑎, 0) for 𝑖 ∈ 𝐿

• 𝑝𝑖 = (0, 𝑏) for 𝑖 ∈ 𝑈

• 𝑝𝑖 = (𝑐, 0) for 𝑖 ∈ 𝑅

and so that 𝑥𝑔 (p) > 0.

Then, there exists another profile z such that 𝐴𝑅(z) > 𝐴𝑅(p).

Proof. We will consider two separate cases.

First assume that 𝑎 > 0. Let p(𝑡) be the profile which is the same as p for 𝑖 ∉ 𝑈 and
which has p𝑖 (𝑡) = 𝑔(p) + 𝑡

(
−𝑥𝑔 (p), 𝑏 − 𝑦𝑔 (p)

)
for 𝑖 ∈ 𝑈. Then there exists 𝜀 > 0

such that for 𝑡 ∈ [0, 1 + 𝜀],

𝐴𝑅(p(𝑡)) =
(𝑎 + (1 − 𝑡)𝑥𝑔 (p)) + 𝑚(𝑐 − (1 − 𝑡)𝑥𝑔 (p)) + 𝑚𝑏𝑔 (p) + 𝑚𝑡 (𝑏 − 𝑦𝑔 (p))

𝑑 ((−𝑎, 0), 𝑔(p)) + 𝑚𝑑 ((𝑐, 0), 𝑔(p)) + 𝑚𝑡𝑑 ((0, 𝑏), 𝑔(p))

=
𝑡
(
(𝑚 − 1)𝑥𝑔 (p) + 𝑚(𝑏 − 𝑦𝑔 (p))

)
+ 𝑎 + 𝑥𝑔 (p) + 𝑚(𝑐 − 𝑥𝑔 (p) + 𝑦𝑔 (p))

𝑡𝑚𝑑 ((0, 𝑏), 𝑔(p)) + 𝑑 ((−𝑎, 0), 𝑔(p)) + 𝑚𝑑 ((𝑐, 0), 𝑔(p)) .
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Note that p(1) = p. Now since the denominator of 𝐴𝑅(p(𝑡)) is strictly positive for
𝑡 ≥ 0 and since both the numerator and the denominator are linear in 𝑡, 𝐴𝑅(p(𝑡)) is
monotonic on [0, 1 + 𝜀]. There are three possibilities.

If 𝐴𝑅(p(𝑡)) is strictly increasing, then 𝐴𝑅(p(1 + 𝜀)) > 𝐴𝑅(p).

If 𝐴𝑅(p(𝑡)) is strictly decreasing, then 𝐴𝑅(p(0)) > 𝐴𝑅(p).

If 𝐴𝑅(p(𝑡)) is constant, consider the profile z′ obtained by putting 𝑡 such that
−𝑎 = (1 − 𝑡)𝑥𝑔 (p). Then, under z′, we have 1 agent at (−𝑎, 0), 𝑚 agents at
(−𝑎, 𝑏𝑡 + (1 − 𝑡)𝑦𝑔 (p)) and 𝑚 agents at (𝑐, 0). Also, 𝐴𝑅(p) = 𝐴𝑅(z′). We can
translate this profile by 𝑎 to the right and get a profile of points in the case where
essentially we have 𝑎 = 0. We’ll deal with this case now.

Now let us consider the case where p is such that 𝑎 = 0. To begin, note that
since 𝑔(p) must be in the convex hull of (0, 0), (0, 𝑏) and (𝑐, 0), if 𝑥𝑔 (p) ≥ 𝑐

2

and 𝑦𝑔 (p) ≥ 𝑏
2 , then 𝑔(p) = ( 𝑐2 ,

𝑏
2 ). But then

∑𝑛
𝑖=1

𝑝𝑖 − 𝑔(p)
∥𝑝𝑖 − 𝑔(p)∥

=
(𝑐, 𝑏)

√
𝑐2 + 𝑏2

≠ 0,

contradicting the characterization of the geometric median in Lemma 2. Hence, it
must be that either 𝑥𝑔 (p) < 𝑐

2 or 𝑦𝑔 (p) < 𝑏
2 .

Suppose that 𝑥𝑔 (p) < 𝑐
2 . Let z be the profile obtained from p by moving the point

at (0, 0) to (𝑥𝑔 (p) − 𝑐
2 , 0) and moving one of the points at (𝑐, 0) to ( 𝑐2 + 𝑥𝑔 (p), 0).

This transformation leaves coordinate-wise median unchanged, as well as leaving
the sum of distances to the coordinate-wise median unchanged. However, the sum
of distances to 𝑔(p) strictly decreases, since for the unaltered points the distance to
𝑔(p) remains the same, and the sum of the distances from the altered points to 𝑔(p)
is

𝑑 ((0, 0), 𝑔(p)) + 𝑑 ((𝑐, 0), 𝑔(p)) = 𝑑 ((2𝑥𝑔 (p), 0), 𝑔(p)) + 𝑑 ((𝑐, 0), 𝑔(p))

> 2𝑑 ((𝑥𝑔 (p) +
𝑐

2
, 0), 𝑔(p))

= 𝑑 ((𝑥𝑔 (p) −
𝑐

2
, 0), 𝑔(p)) + 𝑑 ((𝑥𝑔 (p) +

𝑐

2
, 0), 𝑔(p)),

where the inequality follows from convexity of 𝑑 (·, 𝑔(p)). Since 𝐴𝑅(z) is bounded
below by the ratio of the sum of distances to the coordinate-wise median to the sum
of distances to 𝑔(p), it follows that 𝐴𝑅(z) > 𝐴𝑅(p).

Next, suppose that 𝑦𝑔 (p) < 𝑏
2 . Let z be the profile obtained from p by moving the

point at (0, 0) to (0, 𝑦𝑔 (p)− 𝑏
2 ) and moving one of the points at (0, 𝑏) to (0, 𝑏2+𝑦𝑔 (p)).

By essentially the same argument just given, 𝐴𝑅(z) > 𝐴𝑅(p).
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Finally, the following lemma shows that we can use convexity to make the triangle
formed by the three groups of points isosceles.

Lemma 23 (Isosceles). Let p be a profile such for which are𝑚 points at (𝑎, 0), 1 point
at (−𝑏, 0) and 𝑚 points at (0, 𝑐), and for which 𝑔(p) = (0, 𝑐) and 𝑐(p) = (0, 0). Let

p′ be the profile where there are 𝑚 points at
(
𝑚𝑎 + 𝑏
𝑚 + 1

, 0
)
, 1 point at

(
−𝑚𝑎 + 𝑏
𝑚 + 1

, 0
)
,

and 𝑚 points at (0, 𝑐). Then, 𝐴𝑅(p′) ≥ 𝐴𝑅(p).

Proof. Note that 𝑐(p) = 𝑐(p′) = (0, 0). Since 𝑚𝑎 + 𝑏 = 𝑚
(𝑚𝑎+𝑏)
𝑚+1 + 𝑚𝑎+𝑏

𝑚+1 , we get
that the numerator in 𝐴𝑅(p) and 𝐴𝑅(p′) remains the same. Thus, we only need to
argue that the denominator goes down as we go from 𝐴𝑅(p) to 𝐴𝑅(p′).

Even though 𝑔(p′) may not be equal to 𝑔(p) we have that 𝑠𝑐(𝑔(p), p′) ≤ 𝑠𝑐(𝑔(p), p)
by the convexity of the distance function which would imply 𝑠𝑐(𝑔(p′), p′) ≤
𝑠𝑐(𝑔(p), p) by definition of 𝑔(p). Thus, we have that 𝐴𝑅(p′) ≥ 𝐴𝑅(p).

Now, we use above lemmas to reduce the search space to I-CP.

Lemma 24 (ICP). For every p ∈ 𝐶𝑃, there exists 𝜒 ∈ 𝐼 − 𝐶𝑃 such that 𝐴𝑅(𝜒) ≥
𝐴𝑅(p).

Proof. Without loss of generality, consider any profile p ∈ 𝐶𝑃 such that 𝑦𝑔 (p) ≥
𝑥𝑔 (p) ≥ 0. Applying Lemma 19 to all points on the −𝑦-axis gives a profile p′ with
a weakly higher approximation ratio. In p′, we have all points on +𝑥-axis, −𝑥-axis,
+𝑦-axis and the geometric median. Using lemma 20, we can combine the points
on +𝑥-axis, −𝑥-axis, +𝑦-axis to some (𝑎, 0), (0, 𝑏), (−𝑐, 0) while weakly increasing
AR. Let this profile be p′′. Now, we use lemma 21 to move points on the geometric
median to +𝑦-axis. Using 20 again, we get a profile p′′′ with 𝑚 points on some
(𝑎, 0), 1 point on (−𝑐, 0) and 𝑚 points on (0, 𝑏).

So we know that there must be a worst-case profile that takes this form. From
Lemma 22, we can say that if the geometric median of such a profile is not on the
𝑦-axis, it cannot be a worst-case profile. Thus, there must be a worst-case profile
z with 𝑚 points on some (𝑎, 0), 1 point on (−𝑐, 0) and 𝑚 points on (0, 𝑏) and
𝑥𝑔 (z) = 0. Further, such a profile must have 𝑦𝑔 (z) = 𝑏, since otherwise, the profile
with 𝑚 points on (𝑎, 0), 1 point on (−𝑐, 0), and 𝑚 points on (0, 𝑦𝑔 (z)) would have
a strictly higher approximation ratio than z. By Lemma 23, since z is a worst-case
profile, it must be that 𝑐 = 𝑎.
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Now, since z is a worst-case profile, the profile 𝜒 with 𝜒𝑖 = 1
𝑏
𝑧𝑖 is also a worst-case

profile, and since 𝜒 ∈ 𝐼 − 𝐶𝑃, the result follows.

Using Lemma 24, we can now restrict attention to profiles in 𝐼 − 𝐶𝑃. Define

𝜂𝑡 = (𝑝𝑡1, . . . , 𝑝
𝑡
2𝑚+1),

where

𝑝𝑡𝑖 =


(𝑡, 0) 𝑖 = 1, . . . , 𝑚

(−𝑡, 0) 𝑖 = 𝑚 + 1

(0, 1) 𝑖 = 𝑚 + 2, . . . , 2𝑚 + 1.

Then, 𝐼 − 𝐶𝑃 =

{
𝜂𝑡 : 𝑡 ≥

√︃
2𝑚+1
2𝑚−1

}
. Defining 𝛼(𝑡) =

(𝑚+1)𝑡+𝑚
(𝑚+1)

√
𝑡2+1

, we get that for

𝑡 ≥
√︃

2𝑚+1
2𝑚−1 , 𝐴𝑅(𝜂𝑡) = 𝛼(𝑡), and that 𝛼(𝑡) is maximized at 𝑡∗ = 𝑚+1

𝑚
>

√︃
2𝑚+1
2𝑚−1 , from

which it follows that

Approximation ratio of CM = 𝛼

(
𝑚 + 1
𝑚

)
=
√

2
√︁
(2𝑚 + 1)2 + 1
(2𝑚 + 1) + 1

=
√

2
√
𝑛2 + 1
𝑛 + 1

.

Thus, we get that the worst case approximation ratio is
√

2
√
𝑛2 + 1
𝑛 + 1

as required.

A.2 Proofs for Section 1.5 (p-norm objective)

Theorem 3. For 𝑋 = R2 and the 𝑝-norm objective with 𝑝 ≥ 2,

21− 1
𝑝 ≤ sup

𝑛∈N
𝐴𝑅(𝐶𝑀) ≤ 2

3
2−

2
𝑝 .

Proof. We will prove that the lower bound actually holds for any deterministic, strat-
egyproof mechanism (defined for all 𝑛 ∈ N) and hence, it holds for the coordinate-
wise median mechanism. So suppose 𝑓 is any deterministic, strategyproof mecha-
nism. With 𝑛 = 2𝑚 + 1 agents1, for any profile p such that 𝑚 agents have ideal point

1The same argument applies if we just take 𝑛 = 2, but we wanted to illustrate that the result holds
even under the restriction to odd number of agents.
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𝛼, 𝑚 + 1 agents have ideal point 𝛽 ≠ 𝛼, and 𝑓 (p) = 𝛽,

𝐴𝑅 𝑓 (p′) = 𝑠𝑐( 𝑓 (p), p)
𝑠𝑐(𝑂𝑃𝑇 (p), p)

≥ (𝑚 ∗ ∥𝛼 − 𝛽∥𝑝)
1
𝑝

((2𝑚 + 1) (∥𝛼 − 𝛽∥/2)𝑝)
1
𝑝

= 21− 1
𝑝 ·

(
𝑚

𝑚 + 1/2

) 1
𝑝

·

To see that such a profile always exists, consider the profile p where agents 1 through
𝑚 have ideal point (−1, 0) and agents 𝑚 + 1 through 2𝑚 + 1 have ideal point (1, 0).
If 𝑓 (p) = (1, 0), then p is such a profile; if not, let p′ be the profile where agents
1 through 𝑚 + 1 have ideal point 𝑓 (p) and agents 𝑚 + 2 through 2𝑚 + 1 have ideal
point at (1, 0). Since p′, every agent’s ideal point is either the same as under p or
equal to 𝑓 (p), it follows from strategyproofness that 𝑓 (p′) = 𝑓 (p), and so p′ is such
a profile.

Thus, for any 𝑛 = 2𝑚 + 1,

𝐴𝑅( 𝑓 ) ≥ 21− 1
𝑝 ·

(
𝑛 − 1
𝑛

) 1
𝑝

,

so

sup
𝑛

𝐴𝑅( 𝑓 ) ≥ 21− 1
𝑝 .

Now we show that the asymptotic AR of coordinate-wise median mechanism is
bounded above by 2

3
2−

2
𝑝 . Consider any profile p ∈ (R2)𝑛. Let 𝑔(p) = (𝑥𝑔 (p), 𝑦𝑔 (p))

and 𝑐(p) = (𝑥𝑐 (p), 𝑦𝑐 (p)). Then, we have that
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𝑠𝑐(𝑔(p), p)𝑝 =
𝑛∑︁
𝑖=1

∥𝑔(p) − 𝑝𝑖∥𝑝

≥
(
𝑛∑︁
𝑖=1

∥𝑥𝑔 (p) − 𝑥𝑖∥𝑝 +
𝑛∑︁
𝑖=1

∥𝑦𝑔 (p) − 𝑦𝑖∥𝑝
)

≥
(
𝑛∑︁
𝑖=1

∥𝑂𝑃𝑇 (x) − 𝑥𝑖∥𝑝 +
𝑛∑︁
𝑖=1

∥𝑂𝑃𝑇 (y) − 𝑦𝑖∥𝑝
)

≥ 1
2𝑝−1

(
𝑛∑︁
𝑖=1

∥𝑥𝑐 (p) − 𝑥𝑖∥𝑝 +
𝑛∑︁
𝑖=1

∥𝑦𝑐 (p) − 𝑦𝑖∥𝑝
)

≥ 21− 𝑝

2

2𝑝−1

𝑛∑︁
𝑖=1

∥𝑐(p) − 𝑝𝑖∥𝑝

= 22− 3𝑝
2 𝑠𝑐(𝑐(p), p)𝑝 .

Thus, we get 𝐴𝑅(𝐶𝑀) ≤ 2
3
2−

2
𝑝 for 𝑝 ≥ 2 as required.

A.3 Proofs for Section 2.4 (Maximizing expected profit)

Theorem 6. For 𝑁 = 2 projects with (𝑝𝑖, 𝑎𝑖) ∼ 𝑁 (0, 0, 1, 1, 𝜌), the optimal cutoff
is defined by the equation

𝑐Φ(𝑡𝑐) + 𝑡𝜙(𝑡𝑐) = 0

where 𝑡 = 𝜌√
2−𝜌2

. The optimal cutoff is decreasing in 𝜌.

Proof. We know that the optimal cutoff 𝑐(𝜌) is the solution to the following equation

E [(𝑝1 − 𝑝2)P[𝑎1 ≥ 𝑎2 |𝑝2] |𝑝1 = 𝑐(𝜌)] = 0.

Let us simplify the above expression. First, we want to find P[𝑎1 ≥ 𝑎2 |𝑝1, 𝑝2]. We
know that if 𝑋,𝑌 ∼ 𝑁 (𝜇𝑥 , 𝜇𝑦, 𝜎2

𝑥 , 𝜎
2
𝑦 , 𝜌), then the conditional distribution

𝑋 | 𝑌 ∼ 𝑁
(
𝜇𝑥 + 𝜌

𝜎𝑥

𝜎𝑦

(
𝑦 − 𝜇𝑦

)
, 𝜎2

𝑥 (1 − 𝜌2)
)

and so in our case, 𝑎𝑖 |𝑝𝑖 ∼ 𝑁 (𝜌𝑝𝑖, 1 − 𝜌2). Also, since the payoffs are independent
across projects, we get that

𝑎1 − 𝑎2 |𝑝1, 𝑝2 ∼ 𝑁 (𝜌(𝑝1 − 𝑝2), 2(1 − 𝜌2)).
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Using this, we get that

P[𝑎1 − 𝑎2 ≥ 0|𝑝1, 𝑝2] = Φ

(
𝜌(𝑝1 − 𝑝2)√︁

2(1 − 𝜌2)

)
where Φ is the standard normal cdf.

Plugging this into the equation, we get that the optimal cutoff satisfies

E

[
(𝑝1 − 𝑝2)Φ

(
𝜌(𝑝1 − 𝑝2)√︁

2(1 − 𝜌2)

)�����𝑝1 = 𝑐(𝜌)
]
= 0.

We can find that the expectation is equal to

𝑝1Φ

(
𝜌𝑝1√︁
2 − 𝜌2

)
+ 𝜌√︁

2 − 𝜌2
𝜙

(
𝜌𝑝1√︁
2 − 𝜌2

)
and letting 𝑡 =

𝜌√︁
2 − 𝜌2

, we have that the optimal cutoff 𝑐 is implicitly defined by

𝑐Φ(𝑡𝑐) + 𝑡𝜙(𝑡𝑐) = 0

where Φ and 𝜙 represent the standard normal cdf and pdf, respectively. Observe
that 𝑡 ∈ [−1, 1] and is increasing in 𝜌.

Now letting 𝐹 (𝑐, 𝑡) = 𝑐Φ(𝑡𝑐) + 𝑡𝜙(𝑡𝑐), we can use the implicit function theorem to
get that

𝑐′(𝑡) = − 𝐹𝑡
𝐹𝑐

= −𝑐
2𝜙(𝑡𝑐) + 𝜙(𝑡𝑐) − 𝑡2𝑐2𝜙(𝑡𝑐)
Φ(𝑡𝑐) + 𝑡𝑐𝜙(𝑡𝑐) − 𝑡3𝑐𝜙(𝑡𝑐)

= −
𝜙(𝑡𝑐)

(
1 + 𝑐2(1 − 𝑡2)

)
Φ(𝑡𝑐) + 𝑡𝑐𝜙(𝑡𝑐) (1 − 𝑡2)

= −
𝜙(𝑡𝑐)

(
1 + 𝑐2(1 − 𝑡2)

)
Φ(𝑡𝑐)

(
1 − 𝑐2(1 − 𝑡2)

) .
Note that 𝑐(0) = 0 and so 𝑐′(0) = −2𝜙(0) < 0. Also observe from the above
expression that 𝑐′(𝑡) is never 0 and so it follows from the smoothness of 𝑐 that
𝑐′(𝑡) < 0 for all 𝑡 ∈ (−1, 1). Thus, we have that the optimal cutoff is decreasing in
𝜌.
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Theorem 7. For 𝑁 projects and 𝐹 uniform on [0, 1]2, the optimal cutoff mechanism
has a single cutoff 𝑐(𝑁) that is defined by the equation 𝑁 (1−𝑐) (1−𝑐+𝑐𝑁 ) = 1−𝑐𝑁

and takes the form

𝑐(𝑁) = 1 − 1
√
𝑁

+ 𝑜
(

1
√
𝑁

)
.

Moreover, the principal’s expected utility from the optimal cutoff mechanism is

𝑉𝑁 = 1 − 1
√
𝑁

+ 𝑜
(

1
√
𝑁

)
.

Proof. For any arbitrary cutoff mechanism with cutoffs 𝑐 = (𝑐1, 𝑐2...𝑐𝑁−1), we
compute the expected utility of the principal. For the below expressions, consider
𝑐𝑁 = 0.

𝐸𝑈𝑝 (𝑐) =
𝑁∑︁
𝑖=1

(1 + 𝑐𝑖)
2
P(𝑑 = 𝑖)

Note that P(𝑑 = 𝑖) = (1 − 𝑐𝑖)P(𝑑 = 𝑁 |𝑐𝑖 = 0). That is, conditional on 𝑝𝑖 ≥ 𝑐𝑖, the
probability that the decision is 𝑖 is the same as the probability that the decision is 𝑁
when the cutoff 𝑐𝑖 = 0 and the remaining cutoffs are the same. To find the probability
that the last project 𝑁 is chosen, we condition on its rank which is defined in terms
of 𝑎𝑖s. That is, the rank of 𝑁 is 𝑘 if there are exactly 𝑘 − 1 projects with higher 𝑎𝑖s.

P(𝑑 = 𝑁) =
𝑁∑︁
𝑘=1
P(rank of 𝑁 = 𝑘)P(𝑑 = 𝑁 | rank of 𝑁 = 𝑘)

=
1
𝑁

𝑁∑︁
𝑘=1
P(𝑑 = 𝑁 | rank of 𝑁 = 𝑘)

=
1
𝑁

𝑁∑︁
𝑘=1

∑︁
𝑆⊂[𝑁−1]:|𝑆 |=𝑘−1

Π𝑖∈𝑆𝑐𝑖(𝑁−1
𝑘−1

) .

We first argue that cutoffs have to be interior in the optimal cutoff mechanism.
Suppose 𝑑 is a cutoff mechanism with cutoffs 𝑐 = (𝑐1, 𝑐2...𝑐𝑁−1) and 𝑐𝑖 = 1. In this
case, let 𝑢∗ denote the expected utility of the principal. Note that 𝑢∗ < 1. Define a
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new cutoff mechanism in which all cutoffs remain the same except for 𝑖 which now
has the cutoff 𝑢∗. Now, with probability 𝑢∗, the principal gets 𝑢∗ and with probability
1 − 𝑢∗, the principal gets a convex combination of 𝑢∗ and 1+𝑢∗

2 > 𝑢∗. This means
that his expected payoff under the new mechanism is > 𝑢∗. Therefore, an optimal
mechanism cannot have the cutoff 1. Now, suppose there is an 𝑖 ∈ [𝑁 −1] which has
a cutoff of 0. Observe that the expected utility from any arbitrary project conditional
on being chosen is 1+𝑐

2 ≥ 0.5. Now, consider increasing the cutoff to 𝑐𝑖 = 1
2 in the

new mechanism while keeping every other cutoff the same. For every 𝑝𝑖 < 1
2 , under

the old mechanism, the principal’s payoff was some convex combination of 𝑝𝑖 and
some 𝑘 ≥ 1/2. Under the new mechanism, it is just 𝑘 > 𝑝𝑖. For 𝑝𝑖 ≥ 1

2 , the new
mechanism is identical to the old one. Therefore, an optimal mechanism cannot
have a cutoff of 0. Thus, we know that in the optimal cutoff mechanism, 𝑐𝑖 ∉ {0, 1}
for any 𝑖 ∈ [𝑁 − 1].

Now suppose that the mechanism 𝑑 is such that there exist 𝑖, 𝑗 with 𝑐𝑖 > 𝑐 𝑗 . Define 𝑡
so that 𝑐+𝑡 = 𝑐𝑖 and 𝑐−𝑡 = 𝑐 𝑗 . From the above calculations, we know that if we write
𝐸𝑈𝑝 (𝑐) in expanded form and plug in 𝑐𝑖 = 𝑐 + 𝑡 and 𝑐 𝑗 = 𝑐 − 𝑡, we get a polynomial
that is at most cubic in 𝑡. This is because we get a term that is at most quadratic in
𝑡 for P(𝑑 = 𝑘) for any 𝑘 ∈ [𝑛] and in the expected utility calculation, we multiply
that with 1+𝑐𝑘

2 . Note that by the symmetry of the projects, the principal should get
the same expected utility if we changed 𝑡 to −𝑡. Therefore, the polynomial should
be of the form 𝑎𝑡2 + 𝑏. Now, if 𝑎 is > 0 or < 0, the principal gains from increasing
or decreasing 𝑡 which is possible since we know that the solution is interior and
𝑐𝑖 > 𝑐 𝑗 . Therefore, 𝑑 cannot be optimal in either case. When 𝑎 = 0, the principal is
indifferent to increasing 𝑡 till one of the cutoffs reaches an extreme of 1 or 0 which
we know cannot be optimal. Therefore, a cutoff mechanism with different cutoffs
cannot be optimal.

The above discussion implies that the solution to the optimization problem has to be
a single cutoff mechanism. Let 𝑐 be the single cutoff. Using the above calculations,
we have that
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P(𝑑 = 𝑁) = 1
𝑁

𝑁∑︁
𝑘=1

∑︁
𝑆⊂[𝑁−1]:|𝑆 |=𝑘−1

Π𝑖∈𝑆𝑐𝑖(𝑁−1
𝑘−1

)
=

1
𝑁

𝑁∑︁
𝑘=1

𝑐𝑘−1

=
1
𝑁

1 − 𝑐𝑁
1 − 𝑐 .

Therefore,

𝐸𝑈𝑝 (𝑐) =
1
2
P(𝑑 = 𝑁) + 1 + 𝑐

2
P(𝑑 ≠ 𝑁)

=
1
2
+ 𝑐

2

(
1 − 1 − 𝑐𝑁

𝑁 (1 − 𝑐)

)
.

Differentiating with respect to 𝑐 gives the desired optimal cutoff mechanism defined
by single cutoff 𝑐(𝑁).

𝜕𝐸𝑈𝑝 (𝑐)
𝜕𝑐

=
1
2

(
1 − 1 − 𝑐𝑁

𝑁 (1 − 𝑐)

)
− 𝑐

2𝑁

(
(1 − 𝑐) (−𝑁𝑐𝑁−1) + (1 − 𝑐𝑁 )

(1 − 𝑐)2

)
=

1
2
+ 𝑐𝑁

2(1 − 𝑐) −
1 − 𝑐𝑁

2𝑁 (1 − 𝑐)2 .

Setting it equal to zero gives us:

𝑁 (1 − 𝑐) (1 − 𝑐 + 𝑐𝑁 ) = 1 − 𝑐𝑁 .

Let

𝜙𝑁 (𝑐) = 𝑁 (1 − 𝑐) (1 − 𝑐 + 𝑐𝑁 ) − (1 − 𝑐𝑁 ).

Then for any 𝛼 > 0,

lim
𝑁→∞

𝜙𝑁

(
1 − 𝛼

√
𝑁

)
= 𝛼2 − 1,
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and so for all sufficiently large 𝑁 , the quantity

𝜙𝑁

(
1 − 𝛼

√
𝑁

)
is positive if and only if 𝛼 > 1 and negative if and only if 𝛼 < 1. Hence, for any
𝜀 > 0, it follows that the unique root 𝑐(𝑁) of the equation from Theorem 7 satisfies

(1 − 𝜀) 1
√
𝑁

≤ 1 − 𝑐(𝑁) ≤ (1 + 𝜀) 1
√
𝑁

for all sufficiently large 𝑁 , so

lim
𝑁→∞

√
𝑁 (1 − 𝑐(𝑁)) = 1.

Plugging in the expected utility expression gives us the maximum utility of the
principal in the class of cutoff mechanisms: 𝑉𝑁 = 1

2 + 𝑐(𝑁)
2 (𝑐(𝑁) − 𝑐(𝑁)𝑁 ). It

follows that

2
√
𝑁 (1 −𝑉𝑁 ) =

√
𝑁 (1 − 𝑐(𝑁)2 + 𝑐(𝑁)𝑁+1)

=
√
𝑁 (1 − 𝑐(𝑁)) · (1 + 𝑐(𝑁)) +

√
𝑁𝑐(𝑁)𝑁+1.

As shown above,
√
𝑁 (1 − 𝑐(𝑁)) → 1 and hence also (1 + 𝑐(𝑁)) → 2. Further, for

𝑁 sufficiently large, 𝑐(𝑁) ≤ 1 − 1
2
√
𝑁
≤ 𝑒

− 1
2
√
𝑁 , so

√
𝑁𝑐(𝑁)𝑁+1 ≤

√
𝑁𝑐(𝑁)𝑁 ≤

√
𝑁𝑒−

√
𝑁
2 → 0.

Thus,

lim
𝑁→∞

√
𝑁 (1 −𝑉𝑁 ) = 1.

Lemma 10. For any table mechanism 𝑓 ,

𝑉 ( 𝑓 ) ≤ E
(∑

𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝))𝑝𝑖 + 1
2∑

𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1

)
.

Proof. Note that since 𝑛 + 1 ∈ 𝑓 (𝑝) for all 𝑝,

𝑉 ( 𝑓 ) = E
(∑

𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝))𝑝𝑖 + 𝑝𝑛+1∑
𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1

)
= E

( ∑
𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝))𝑝𝑖∑
𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1

)
+ E

(
𝑝𝑛+1∑

𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1

)
.
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Now, since 𝑝𝑛+1 and
∑
𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1 are both increasing, FKG implies

E

(
𝑝𝑛+1∑

𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1

)
≤ E(𝑝𝑛+1) · E

(
1∑

𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1

)
=

1
2
· E

(
1∑

𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1

)
= E

(
1
2∑

𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1

)
.

Thus,

𝑉 ( 𝑓 ) ≤ E
( ∑

𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝))𝑝𝑖∑
𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1

)
+ E

(
1
2∑

𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1

)
= E

(∑
𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝))𝑝𝑖 + 1

2∑
𝑖∈[𝑛] 1(𝑖 ∈ 𝑓 (𝑝)) + 1

)
.

Lemma 11. Let 𝑝𝑖 for 𝑖 ∈ N be i.i.d. 𝑈 [0, 1]. Define

𝑌𝑛 = max
𝑆⊆[𝑛]

∑
𝑖∈𝑆 𝑝𝑖 + 1

2
|𝑆 | + 1

·

lim inf
𝑛→∞

√
𝑛(1 − E(𝑌𝑛)) ≥

1
8
.

Proof. We need to show that for any 𝜀 > 0,
√
𝑛(1−E(𝑌𝑛)) ≥ 1

8 −𝜀 for all sufficiently
large 𝑛. To prove this lemma, we will make heavy use of the following auxiliary
random variables. For 𝜀 > 0, define

𝑍𝑛1 (𝜀) =
{
𝑖 ∈ [𝑛] : 𝑝𝑖 > 1 − 𝜀

𝑛

}
,

and define

𝑍𝑛2 =

{
𝑖 ∈ [𝑛] : 𝑝𝑖 ≥ 1 − 1

√
𝑛

}
.

To begin, observe that for small 𝜀, 𝑍𝑛1 (𝜀) is very likely to be empty. Formally, we
have that for any 𝜀 ∈ (0, 1),

P( |𝑍𝑛1 (𝜀) | = 0) ≥ 1 − 2𝜀
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for all 𝑛 sufficiently large. This is because

P
(
𝑝𝑖 ≤ 1 − 𝜀

𝑛
∀𝑖 ∈ [𝑛]

)
=

(
1 − 𝜀

𝑛

)𝑛
→ 𝑒−𝜀,

and so it follows that for 𝑛 sufficiently large that

P( |𝑍𝑛1 (𝜀) | = 0) ≥ (1 − 𝜀)𝑒−𝜀 ≥ (1 − 𝜀)2 ≥ 1 − 2𝜀.

Next we note that |𝑍𝑛2 | is often no bigger than 2
√
𝑛. Formally,

P( |𝑍𝑛2 | ≤ 2
√
𝑛) ≥ 1

2
·

This is because

E( |𝑍𝑛2 |) =
∑︁
𝑖∈[𝑛]
P

(
𝑝𝑖 ≥ 1 − 1

√
𝑛

)
= 𝑛 · 1

√
𝑛
=
√
𝑛,

so by Markov’s inequality,

P( |𝑍𝑛2 | > 2
√
𝑛) ≤

√
𝑛

2
√
𝑛
=

1
2
.

Consequently, it is often the case that 𝑍𝑛1 is empty and |𝑍𝑛2 | is no bigger than 2
√
𝑛.

Using the union bound, we have

P( |𝑍𝑛1 (𝜀) | = 0, |𝑍𝑛2 | ≤ 2
√
𝑛) ≥ P( |𝑍𝑛1 (𝜀) | = 0) + P( |𝑍𝑛2 | ≤ 2

√
𝑛) − 1,

and so it follows from above that

P( |𝑍𝑛1 (𝜀) | = 0, |𝑍𝑛2 | ≤ 2
√
𝑛) ≥ [1 − 2𝜀] + 1

2
− 1 =

1
2
− 2𝜀

for all 𝑛 sufficiently large.

Moreover, when 𝑍𝑛1 is empty and |𝑍𝑛2 | is no bigger than 2
√
𝑛, 1−𝑌𝑛 cannot be much

smaller than 1
4
√
𝑛
:

Lemma 25. For every 𝜀 ∈ (0, 1) there is some 𝑁 (𝜀) such that if 𝑛 > 𝑁 (𝜀),
|𝑍𝑛1 (𝜀) | = 0, and |𝑍𝑛2 | ≤ 2

√
𝑛, then

𝑌𝑛 ≤ 1 − 1 − 𝜀
4
√
𝑛
·
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Proof of Lemma 25. Fix 𝜀 ∈ (0, 1), take 𝑁 (𝜀) to be the largest 𝑁 such that

min

(
2
√
𝑁

⌊2
√
𝑁⌋ + 1

,
𝑁

𝑁 + 1

(
1 − 3

2
√
𝑁

+ 2𝜀
𝑁

))
< 1 − 𝜀,

and assume 𝑛 > 𝑁 (𝜀).

Let

𝑉 =

{
𝑖 ∈ [𝑛] : 𝑝𝑖 ≤ 1 − 1

√
𝑛

}
and𝑊 = [𝑛] \𝑉 . Then for any 𝑆 ⊆ [𝑛],∑
𝑖∈𝑆 𝑝𝑖 + 1

2
|𝑆 | + 1

=

∑
𝑖∈𝑆∩𝑉 𝑝𝑖 +

∑
𝑖∈𝑆∩𝑊 𝑝𝑖 + 1

2
|𝑆 | + 1

≤
|𝑆 ∩𝑉 |

(
1 − 1√

𝑛

)
+ |𝑆 ∩𝑊 |

(
1 − 𝜀

𝑛

)
+ 1

2

|𝑆 | + 1
·

Thus,

𝑌𝑛 ≤ max
𝑆⊆[𝑛]

|𝑆 ∩𝑉 |
(
1 − 1√

𝑛

)
+ |𝑆 ∩𝑊 |

(
1 − 𝜀

𝑛

)
+ 1

2

|𝑆 | + 1

= max
𝑎≤|𝑉 |, 𝑏≤|𝑊 |

𝑎

(
1 − 1√

𝑛

)
+ 𝑏

(
1 − 𝜀

𝑛

)
+ 1

2

𝑎 + 𝑏 + 1

= max
𝑎≤|𝑉 |

𝑎

(
1 − 1√

𝑛

)
+ |𝑊 |

(
1 − 𝜀

𝑛

)
+ 1

2

𝑎 + |𝑊 | + 1

= max
©­­«
|𝑊 |

(
1 − 𝜀

𝑛

)
+ 1

2
|𝑊 | + 1

,

|𝑉 |
(
1 − 1√

𝑛

)
+ |𝑊 |

(
1 − 𝜀

𝑛

)
+ 1

2

|𝑉 | + |𝑊 | + 1
ª®®¬.

Now, since |𝑊 | ≤ ⌊2
√
𝑛⌋ and 𝑛 > 𝑁 (𝜀),

|𝑊 |
(
1 − 𝜀

𝑛

)
+ 1

2
|𝑊 | + 1

≤
⌊2
√
𝑛⌋

(
1 − 𝜀

𝑛

)
+ 1

2

⌊2
√
𝑛⌋ + 1

≤
⌊2
√
𝑛⌋ + 1

2

⌊2
√
𝑛⌋ + 1

= 1 − 2
√
𝑛

⌊2
√
𝑛⌋ + 1

· 1
4
√
𝑛
≤ 1 − 1 − 𝜀

4
√
𝑛

and

|𝑉 |
(
1 − 1√

𝑛

)
+ |𝑊 |

(
1 − 𝜀

𝑛

)
+ 1

2

|𝑉 | + |𝑊 | + 1
=

(𝑛 − |𝑊 |)
(
1 − 1√

𝑛

)
+ |𝑊 |

(
1 − 𝜀

𝑛

)
+ 1

2

𝑛 + 1

≤
(𝑛 − 2

√
𝑛)

(
1 − 1√

𝑛

)
+ 2

√
𝑛
(
1 − 𝜀

𝑛

)
+ 1

2

𝑛 + 1

= 1 −
[
𝑛

𝑛 + 1

(
1 − 3

2
√
𝑛
+ 2𝜀
𝑛

)]
· 1
√
𝑛

≤ 1 − 1 − 𝜀
√
𝑛

< 1 − 1 − 𝜀
4
√
𝑛
·
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Hence, 𝑌𝑛 ≤ 1 − 1−𝜀
4
√
𝑛
.

Using these observations, the proof of lemma 11 follows easily.

Fix 𝜀 ∈ (0, 1), and denote

𝑝𝑛 = P( |𝑍𝑛1 (𝜀) | = 0, |𝑍𝑛2 | ≤ 2
√
𝑛)

and

𝑦𝑛 = E(𝑌𝑛 | |𝑍𝑛1 (𝜀) | = 0, |𝑍𝑛2 | ≤ 2
√
𝑛).

For any sufficiently large 𝑛, we know from above that 𝑝𝑛 ≥ 1
2 −2𝜀, and 𝑦𝑛 ≤ 1− 1−𝜀

4
√
𝑛

since 𝑌𝑛 ≤ 1− 1−𝜀
4
√
𝑛

whenever that |𝑍𝑛1 | = 0 and 𝑍𝑛2 ≤ 2
√
𝑛 by Lemma 25. Hence, for

all sufficiently large 𝑛,

E(𝑌𝑛) ≤ 𝑝𝑛 · 𝑦𝑛 + (1 − 𝑝𝑛) · 1

= 1 − 𝑝𝑛 · (1 − 𝑦𝑛)

≤ 1 −
(
1
2
− 2𝜀

)
·
(
1 − 𝜀
4
√
𝑛

)
≤ 1 − 1

8
√
𝑛
+ 𝜀
√
𝑛
·

and thus

√
𝑛(1 − E(𝑌𝑛)) ≥

1
8
− 𝜀.

A.4 Proofs for Section 2.5 (Maximizing probability of best project)

Theorem 10. For 𝑁 = 2 projects with (𝑝𝑖, 𝑎𝑖) ∼ 𝑁 (0, 0, 1, 1, 𝜌), the optimal cutoff
𝑐(𝜌) is given by the equation

P[𝑋 ≤ 𝑐,𝑌 ≤ 𝑡𝑐]
P[𝑌 ≤ 𝑡𝑐] =

1
2

where 𝑋,𝑌 ∼ 𝑁 (0, 0, 1, 1, 𝑡) and 𝑡 =
𝜌√︁

2 − 𝜌2
.

Proof. Given the distributional form, we have

𝑎1 − 𝑎2 |𝑝1 ∼ 𝑁 (𝜌𝑝1, 2 − 𝜌2)
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and therefore,

𝑝2 |𝑎1 − 𝑎2, 𝑝1 ∼ 𝑁
(
𝜌2𝑝1 − 𝜌(𝑎1 − 𝑎2)

2 − 𝜌2 ,
2(1 − 𝜌2)

2 − 𝜌2

)
.

This gives

P [𝑝2 ≤ 𝑝1 |𝑝1, 𝑎1 − 𝑎2] = Φ

(
2𝑝1(1 − 𝜌2) + 𝜌(𝑎1 − 𝑎2)√︁

2(1 − 𝜌2) (2 − 𝜌2)

)
.

Then,

P[𝑝2 ≤ 𝑝1 |𝑝1, 𝑎1 ≥ 𝑎2] =
1

P[𝑎1 ≥ 𝑎2 |𝑝1]

∫ ∞

0
P[𝑝2 ≤ 𝑝1 |𝑝1, 𝑎1 − 𝑎2 = 𝑥] 𝑓 (𝑎1 − 𝑎2 = 𝑥 |𝑝1)𝑑𝑥

=
1

Φ

(
𝜌𝑝1√︁
2 − 𝜌2

) ∫ ∞

0
Φ

(
2𝑝1(1 − 𝜌2) + 𝜌𝑥√︁
2(1 − 𝜌2) (2 − 𝜌2)

)
𝑒
− 1

2

(
𝑥−𝜌𝑝1√

2−𝜌2

)2

√︁
2 − 𝜌2

√
2𝜋
𝑑𝑥

=
1

Φ

(
𝜌𝑝1√︁
2 − 𝜌2

) ∫ ∞

−𝜌𝑝1√
2−𝜌2

Φ

(
2𝑝1(1 − 𝜌2) + 𝜌(𝑡

√︁
2 − 𝜌2 + 𝜌𝑝1)√︁

2(1 − 𝜌2) (2 − 𝜌2)

)
𝜙(𝑡)𝑑𝑡

=
1

Φ

(
𝜌𝑝1√︁
2 − 𝜌2

) ∫ ∞

−𝜌𝑝1√
2−𝜌2

Φ

(
𝑝1

√︁
2 − 𝜌2 + 𝜌𝑡√︁
2(1 − 𝜌2)

)
𝜙(𝑡)𝑑𝑡

= E

[
Φ

(
𝑝1

√︁
2 − 𝜌2 + 𝜌𝑡√︁
2(1 − 𝜌2)

) ����𝑡 ≥ −𝑝1𝜌√︁
2 − 𝜌2

]
.

Observe that if 𝑓 (𝑝1, 𝜌) is the above expectation, then we have 𝑓 (𝑝1, 𝜌)+ 𝑓 (−𝑝1,−𝜌) =
1. Thus, we can conclude that 𝑐(−𝜌) = −𝑐(𝜌) for all 𝜌 ∈ [0, 1]. So let us focus on
𝜌 > 0 and try to argue that the optimal cutoff must be decreasing in 𝜌.

The expectation above equals

P[𝑋 ≤ 𝑝1, 𝑌 ≤ 𝑡 𝑝1]
P[𝑌 ≤ 𝑡 𝑝1]

where 𝑋,𝑌 ∼ 𝑁 (0, 0, 1, 1, 𝑡) and 𝑡 =
𝜌√︁

2 − 𝜌2
and this completes the proof.
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A.5 Proofs for Section 3.3 (Equilibrium)

Lemma 12. The equilibrium function is given by

𝑔v(𝜃) =
𝑛∑︁
𝑖=1

𝑣𝑖𝑚𝑖 (𝜃)

where

𝑚𝑖 (𝜃) = −
∫ 1

𝐹 (𝜃)

𝑝′
𝑖
(𝑡)

𝐹−1(𝑡)
𝑑𝑡.

Proof. Suppose 𝑛 − 1 agents are playing a strategy 𝑔 : [0, 1] → R+ so that if the
agent’s type is 𝜃, it exerts effort 𝑔(𝜃). Further, 𝑔(𝜃) is decreasing in 𝜃. Now if an
agent’s type is 𝜃 and it imitates an agent of type 𝑡 ∈ [0, 1], it’s payoff is

𝑛∑︁
𝑖=1

𝑣𝑖𝑝𝑖 (𝐹 (𝑡)) − 𝜃𝑔(𝑡)

where 𝑝𝑖 (𝑥) =
(𝑛−1
𝑖−1

)
𝑥𝑖−1(1 − 𝑥)𝑛−𝑖 is the probability that a random variable 𝑋

following 𝐵𝑖𝑛(𝑛 − 1, 𝑥) takes the value 𝑖 − 1.

Taking the first order condition, we get
𝑛∑︁
𝑖=1

𝑣𝑖𝑝
′
𝑖 (𝐹 (𝑡)) 𝑓 (𝑡) − 𝜃𝑔′(𝑡) = 0.

Now we can plug in 𝑡 = 𝜃 to get the condition for 𝑔(𝜃) to be a symmetric Bayes-Nash
equilibrium:

𝑛∑︁
𝑖=1

𝑣𝑖𝑝
′
𝑖 (𝐹 (𝜃)) 𝑓 (𝜃) − 𝜃𝑔′(𝜃) = 0

so that

−
𝑛∑︁
𝑖=1

𝑣𝑖

∫ 1

𝜃

𝑝′
𝑖
(𝐹 (𝑡)) 𝑓 (𝑡)

𝑡
𝑑𝑡 = 𝑔(𝜃)

which can be equivalently written as

−
𝑛∑︁
𝑖=1

𝑣𝑖

∫ 1

𝐹 (𝜃)

𝑝′
𝑖
(𝑡)

𝐹−1(𝑡)
𝑑𝑡 = 𝑔(𝜃).

Let us now make sure the second order condition is satisfied. Differentiating the lhs
of the foc, we get

𝑛∑︁
𝑖=1

𝑣𝑖 (𝑝′𝑖 (𝐹 (𝑡)) 𝑓 ′(𝑡) + 𝑓 (𝑡)𝑝′′𝑖 (𝐹 (𝑡)) 𝑓 (𝑡)) − 𝜃𝑔′′(𝑡).
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From the foc, we have that 𝑔 satisfies
∑𝑛
𝑖=1 𝑣𝑖 (𝑝′𝑖 (𝐹 (𝑡)) 𝑓 ′(𝑡) + 𝑓 (𝑡)𝑝′′𝑖 (𝐹 (𝑡)) 𝑓 (𝑡)) =

𝑡𝑔′′(𝑡) + 𝑔′(𝑡).

Thus, when we plug in 𝑡 = 𝜃 in the soc, we get 𝑔′(𝜃) which we know is < 0. Thus,
the second order condition is satisfied.

Lemma 13. Suppose 𝐹 and 𝐺 are such that 𝐹 (𝑥) ≤ 𝐺 (𝑥) for all 𝑥 ∈ [0, 1]. Then
for any contest v,

E[𝑔𝐺v (𝜃)] ≥ E[𝑔𝐹v (𝜃)] .

Proof. For the expected effort, we have that

E[𝑔𝐹v (𝜃)] =
𝑛∑︁
𝑖=1

𝑣𝑖E[𝑚𝑖 (𝜃)]

=

𝑛−1∑︁
𝑖=1

(𝑣𝑖 − 𝑣𝑖+1)
𝑖∑︁
𝑗=1
E[𝑚 𝑗 (𝜃)]


= −

𝑛−1∑︁
𝑖=1

(𝑣𝑖 − 𝑣𝑖+1)
𝑖∑︁
𝑗=1

∫ 1

0

𝑝′
𝑗
(𝑡)

𝐹−1(𝑡)
𝑡𝑑𝑡


=

𝑛−1∑︁
𝑖=1

[
(𝑣𝑖 − 𝑣𝑖+1)

∫ 1

0

−∑𝑖
𝑗=1 𝑝

′
𝑗
(𝑡)

𝐹−1(𝑡)
𝑡𝑑𝑡

]
≤

𝑛−1∑︁
𝑖=1

[
(𝑣𝑖 − 𝑣𝑖+1)

∫ 1

0

−∑𝑖
𝑗=1 𝑝

′
𝑗
(𝑡)

𝐺−1(𝑡)
𝑡𝑑𝑡

]
= E[𝑔𝐺v (𝜃)] .

The inequality follows from the fact that
∑𝑖
𝑗=1 𝑝

′
𝑗
(𝑡) < 0 for all 𝑡 ∈ [0, 1] and

all 𝑖 ∈ {1, 2, . . . , 𝑛 − 1} and the assumption that 𝐹 (𝑡) ≤ 𝐺 (𝑡) which implies
𝐹−1(𝑡) ≥ 𝐺−1(𝑡).

Lemma 14. The marginal effect functions 𝑚𝑖 (𝜃) = −
∫ 1
𝐹 (𝜃)

𝑝′
𝑖
(𝑡)

𝐹−1 (𝑡) 𝑑𝑡 satisfy:

1. 𝑚1(𝜃) ≥ 0 for all 𝜃 ∈ [0, 1],

2. 𝑚𝑖 (𝜃) =

< 0 if 𝜃 ≤ 𝑡𝑖
≥ 0 otherwise

where 𝑡𝑖 ∈ (0, 1) for 𝑖 ∈ {2, . . . , 𝑛 − 1},
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3. 𝑚𝑛 (𝜃) ≤ 0 for all 𝜃 ∈ [0, 1].

Proof. The first and third items follow from observing that 𝑝′1(𝑡) < 0 for all 𝑡 ∈ [0, 1]
and 𝑝′𝑛 (𝑡) > 0 for all 𝑡 ∈ [0, 1].

For the second part, we will make three observations that would imply the result.

First, observe that 𝑚𝑖 (1) = 0.

Second, 𝑚′
𝑖
(𝜃) =

𝑝′
𝑖
(𝐹 (𝜃)) 𝑓 (𝜃)

𝜃
is initially positive because 𝑝′

𝑖
(𝑡) > 0 for small 𝑡

and then negative. More precisely, 𝑚′
𝑖
(𝜃) =


>= 0 if 𝜃 ≤ 𝑡2

𝑖

< 0 otherwise
where

𝑡2𝑖 = 𝐹
−1

(
𝑖 − 1
𝑛 − 1

)
.

Third, 𝑚𝑖 (0) = −
∫ 1

0
𝑝′
𝑖
(𝑡)

𝐹−1 (𝑡) 𝑑𝑡. Since
∫ 1

0 𝑝′
𝑖
(𝑡)𝑑𝑡 = 0, weighing these by 1

𝐹−1 (𝑡) puts
more weight on small values of 𝑡 (where 𝑝′

𝑖
(𝑡) > 0) as compared to greater values

of 𝑡 (where 𝑝′
𝑖
(𝑡) < 0). It follows then that 𝑚𝑖 (0) < 0.

Together, these observations imply the 𝑚𝑖 (𝜃) is initially negative, it increases and

becomes positive and continues increasing till 𝜃 equals 𝐹−1
(
𝑖 − 1
𝑛 − 1

)
. After this, it

decreases and goes to 0 as 𝜃 → 1.

Lemma 15. The marginal effect functions 𝑚𝑖 (𝜃) = −
∫ 1
𝐹 (𝜃)

𝑝′
𝑖
(𝑡)

𝐹−1 (𝑡) 𝑑𝑡 satisfy:

1.
∫ 1

0 𝑚1(𝜃)𝑑𝜃 = 1.

2.
∫ 1

0 𝑚𝑖 (𝜃)𝑑𝜃 = 0 for 𝑖 ∈ {2, . . . , 𝑛 − 1},

3.
∫ 1

0 𝑚𝑛 (𝜃)𝑑𝜃 = −1.

Proof. First, we will show that lim𝜃→0 𝜃𝑚𝑖 (𝜃) = 0. If 𝑚𝑖 (0) is finite, we are done.
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But if lim𝜃→0 𝑚𝑖 (𝜃) = ∞, we have

lim
𝜃→0

𝜃𝑚𝑖 (𝜃) = lim
𝜃→0

𝑚𝑖 (𝜃)
1
𝜃

= lim
𝜃→0

𝑚′
𝑖
(𝜃)
−1
𝜃2

= lim
𝜃→0

−𝜃2 𝑝
′
𝑖
(𝐹 (𝜃)) 𝑓 (𝜃)

𝜃

= lim
𝜃→0

−𝜃𝑝′𝑖 (𝐹 (𝜃)) 𝑓 (𝜃)

= 0.

The last equality holds because we assume that lim𝜃→0 𝐹 (𝜃) 𝑓 (𝜃) = 0. It implies
the density function 𝑓 is such that lim𝜃→0 𝜃 𝑓 (𝜃) = 0. Using this, we have that

∫ 1

0
𝑚𝑖 (𝜃)𝑑𝜃 = −

∫ 1

0
𝑚′
𝑖 (𝜃)𝜃𝑑𝜃

= −
∫ 1

0

𝑝′
𝑖
(𝐹 (𝜃))
𝜃

𝑓 (𝜃)𝜃𝑑𝜃

= −
∫ 1

0
𝑝′𝑖 (𝑡)𝑑𝑡

= 𝑝𝑖 (0) − 𝑝𝑖 (1).

The result then follows from the definition of 𝑝𝑖 (𝑥).

Theorem 11. Suppose v,w are two prize vectors such that 𝑣𝑖 > 𝑤𝑖 for some
intermediate prize 𝑖 ∈ {2, . . . , 𝑛 − 1} and 𝑣 𝑗 = 𝑤 𝑗 for 𝑗 ≠ 𝑖.

1. If the density 𝑓 is increasing, then a designer with a concave utility 𝑈 for
effort prefers v over w.

2. If the density 𝑓 is decreasing, then a designer with a convex utility𝑈 for effort
prefers w over v.

Proof. First, we will show that the expected marginal effects E[𝑚𝑖 (𝜃)] are positive
if the density is increasing and negative if the density is decreasing. We will then
use this along with the result of Lemma 14 to get the result in the theorem. The
expected marginal effect of prize 𝑖 is given by:
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E[𝑚𝑖 (𝜃)] =
∫ 1

0
𝑚𝑖 (𝜃) 𝑓 (𝜃)𝑑𝜃

= 𝑚𝑖 (𝜃)𝐹 (𝜃) |10 −
∫ 1

0
𝑚′
𝑖 (𝜃)𝐹 (𝜃)𝑑𝜃

= −
∫ 1

0

𝑝′
𝑖
(𝐹 (𝜃))
𝜃

𝑓 (𝜃)𝐹 (𝜃)𝑑𝜃

= −
∫ 1

0

𝑝′
𝑖
(𝑡)

𝐹−1(𝑡)
𝑡𝑑𝑡.

Note that Assumption 1 is sufficient to ensure that lim𝜃→0 𝑚𝑖 (𝜃)𝐹 (𝜃) = 0 and thus,
the first term in the second line of the equation is just 0.

We know that
∫ 1

0 𝑝′
𝑖
(𝑡)𝑑𝑡 = 0. Let ℎ(𝑡) = 𝑡

𝐹−1 (𝑡) so that

ℎ′(𝑡) =
𝐹−1(𝑡) − 𝑡

𝑓 (𝐹−1 (𝑡))

(𝐹−1(𝑡))2 =
𝑥 𝑓 (𝑥) − 𝐹 (𝑥)

𝑓 (𝑥)𝑥2

where 𝑥 = 𝐹−1(𝑡).

The sign of ℎ′(𝑡) is then determined by the numerator 𝑥 𝑓 (𝑥) − 𝐹 (𝑥). Observe that
𝑥 𝑓 (𝑥) − 𝐹 (𝑥) > 0 for all 𝑥 when the density 𝑓 is increasing and it is < 0 for all 𝑥
when the density is decreasing. That is, ℎ(𝑡) is increasing in 𝑡 when the density is
increasing and decreasing in 𝑡 when the density is decreasing.

Let 𝛼 = 𝑖−1
𝑛−1 so that 𝑝′

𝑖
(𝛼) = 0 and 𝑝′

𝑖
(𝑡) > 0 for 𝑡 < 𝛼 and 𝑝′

𝑖
(𝑡) < 0 for 𝑡 > 𝛼.

Going back to the expected marginal effects, suppose first that the density function
𝑓 and thus ℎ(𝑡) is increasing. Then, we have

E[𝑚𝑖 (𝜃)] = −
∫ 1

0
𝑝′𝑖 (𝑡)ℎ(𝑡)𝑑𝑡

= −
∫ 𝛼

0
𝑝′𝑖 (𝑡)ℎ(𝑡)𝑑𝑡 −

∫ 1

𝛼

𝑝′𝑖 (𝑡)ℎ(𝑡)𝑑𝑡

≥ −
∫ 𝛼

0
𝑝′𝑖 (𝑡)ℎ(𝛼)𝑑𝑡 −

∫ 1

𝛼

𝑝′𝑖 (𝑡)ℎ(𝛼)𝑑𝑡

= 0.
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When the density 𝑓 is decreasing so that ℎ(𝑡) is decreasing in 𝑡, we have

E[𝑚𝑖 (𝜃)] = −
∫ 1

0
𝑝′𝑖 (𝑡)ℎ(𝑡)𝑑𝑡

= −
∫ 𝛼

0
𝑝′𝑖 (𝑡)ℎ(𝑡)𝑑𝑡 −

∫ 1

𝛼

𝑝′𝑖 (𝑡)ℎ(𝑡)𝑑𝑡

≤ −
∫ 𝛼

0
𝑝′𝑖 (𝑡)ℎ(𝛼)𝑑𝑡 −

∫ 1

𝛼

𝑝′𝑖 (𝑡)ℎ(𝛼)𝑑𝑡

= 0.

Thus, we have shown that the expected marginal effects are of opposite signs under
increasing and decreasing density functions.

In addition, we know from lemma 14 that there exists 𝑡𝑖 such that

𝑔v(𝜃) − 𝑔w(𝜃)


≤ 0 if 𝜃 < 𝑡𝑖
= 0 if 𝜃 = 𝑡𝑖
≥ 0 otherwise.

Let 𝐺v(𝑥) = P[𝑔v(𝜃) ≤ 𝑥] denote the cdf of effort under prize vector v. Then, from
above, we have that

𝐺v(𝑥) − 𝐺w(𝑥)


< 0 if 𝑥 < 𝑔v(𝑡𝑖)

= 0 if 𝑥 = 𝑔v(𝑡𝑖)

> 0 otherwise .

Thus, when the density 𝑓 is increasing, we have that E[𝑔v(𝜃)] ≥ E[𝑔w(𝜃)] and
also the sign of 𝐺v(𝑥) − 𝐺w(𝑥) changes exactly once from − to + as 𝑥 increases.
It follows then from Theorem 4.A.22 in Shaked and Shanthikumar [120] that 𝑔v(𝜃)
second order stochastically dominates 𝑔𝑤 (𝜃).

The argument for the case of decreasing density is analogous.

Lemma 16. For any 𝑛 ∈ N, 𝑖 ∈ {1, . . . , 𝑛 − 1} and 𝑘 > 0,∫ 1

0
𝑡𝑘 𝑝′𝑖 (𝑡)𝑑𝑡 = −𝑘

(
𝑛 − 1
𝑖 − 1

)
𝛽(𝑖 + 𝑘 − 1, 𝑛 − 𝑖 + 1).
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Proof. For any 𝑖 ∈ {1, . . . , 𝑛 − 1}

∫ 1

0
𝑝′𝑖 (𝑡)𝑡𝑘𝑑𝑡 =

(
𝑛 − 1
𝑖 − 1

) ∫ 1

0
𝑡𝑖+𝑘−2(1 − 𝑡)𝑛−𝑖−1 ((𝑖 − 1) − 𝑡 (𝑛 − 1))) 𝑑𝑡

=

(
𝑛 − 1
𝑖 − 1

)
[(𝑖 − 1)𝛽(𝑖 + 𝑘 − 1, 𝑛 − 𝑖) − (𝑛 − 1)𝛽(𝑖 + 𝑘, 𝑛 − 𝑖)]

=

(
𝑛 − 1
𝑖 − 1

)
𝛽(𝑖 + 𝑘 − 1, 𝑛 − 𝑖)

(
(𝑖 − 1) − (𝑛 − 1) (𝑖 + 𝑘 − 1)

(𝑛 + 𝑘 − 1)

)
= −

(
𝑛 − 1
𝑖 − 1

)
𝛽(𝑖 + 𝑘 − 1, 𝑛 − 𝑖) (𝑛 − 𝑖)𝑘

(𝑛 + 𝑘 − 1)

= −𝑘
(
𝑛 − 1
𝑖 − 1

)
𝛽(𝑖 + 𝑘 − 1, 𝑛 − 𝑖 + 1).

When 𝑘 is a non-negative integer, the integral equals −𝑘 (𝑛 − 1)!(𝑖 + 𝑘 − 2)!
(𝑖 − 1)!(𝑛 + 𝑘 − 1)! .

Lemma 17. For any 𝑛 and distribution 𝐹, E[𝑚1(𝜃)] > E[𝑚𝑖 (𝜃)] for any 𝑖 > 1.

Proof. Fix any 𝑖 ∈ {2, . . . , 𝑛 − 1}. We know that there exists a unique 𝑐 ∈ (0, 1)
such that

𝑝′𝑖 (𝑡) − 𝑝′1(𝑡)


> 0 if 𝑡 < 𝑐

= 0 if 𝑡 = 𝑐

< 0 otherwise.

Given this 𝑐, we have that

E[𝑚1(𝜃)] − E[𝑚𝑖 (𝜃)] =
∫ 1

0

(𝑝′
𝑖
(𝑡) − 𝑝′1(𝑡))𝑡
𝐹−1(𝑡)

𝑑𝑡

=

∫ 𝑐

0

(𝑝′
𝑖
(𝑡) − 𝑝′1(𝑡))𝑡
𝐹−1(𝑡)

𝑑𝑡 +
∫ 1

𝑐

(𝑝′
𝑖
(𝑡) − 𝑝′1(𝑡))𝑡
𝐹−1(𝑡)

𝑑𝑡

>
1

𝐹−1(𝑐)

∫ 1

0
(𝑝′𝑖 (𝑡) − 𝑝′1(𝑡))𝑡𝑑𝑡.

Plugging in 𝑘 = 1 in Lemma 16, we get that this integral equals 0 and hence, it
follows that E[𝑚1(𝜃)] − E[𝑚𝑖 (𝜃)] > 0.

Theorem 12. Suppose 𝐹 (𝜃) = 𝜃𝑝 and v and w are two prize vectors such that v is
more competitive than w.
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1. If 𝑝 > 1, then
E[𝑔v(𝜃)] ≥ E[𝑔w(𝜃)] .

2. If 1
2 < 𝑝 < 1, and 𝑣1 = 𝑤1, 𝑣𝑛 = 𝑤𝑛, then

E[𝑔v(𝜃)] ≤ E[𝑔w(𝜃)] .

3. If 𝑝 > 1
2 and 𝑣𝑛 = 𝑤𝑛, then

E[𝑔v(𝜃𝑚𝑎𝑥)] ≤ E[𝑔w(𝜃𝑚𝑎𝑥)] .

Proof. For the parametric distribution 𝐹 (𝜃) = 𝜃𝑝, we can compute the expected
marginal effects. We have that

E[𝑚𝑖 (𝜃)] = −
∫ 1

0

𝑝′
𝑖
(𝑡)

𝐹−1(𝑡)
𝑡𝑑𝑡

= −
∫ 1

0
𝑝′𝑖 (𝑡)𝑡

1− 1
𝑝 𝑑𝑡

=
𝑝 − 1
𝑝

(
𝑛 − 1
𝑖 − 1

)
𝛽(𝑖 − 1

𝑝
, 𝑛 − 𝑖 + 1). (Plugging in 𝑘 = 1 − 1

𝑝
in Lemma 16.)

Observe that with 𝑖 ≥ 2 and 𝑝 > 1
2 , 𝑖𝑝 > 1 and the expectation is well defined.

Now observe that

E[𝑚𝑖+1(𝜃)]
E[𝑚𝑖 (𝜃)]

=
𝑛 − 𝑖
𝑖

𝑖 − 1
𝑝

𝑛 − 𝑖 − 1
𝑛 − 𝑖 − 1
𝑛 − 𝑖 =

𝑖 − 1
𝑝

𝑖
< 1.

For 𝑝 ≥ 1, the density 𝑓 is increasing and we know from Theorem 11 that the
marginal effects E[𝑚𝑖 (𝜃)] are positive and thus, the effect of prize 𝑖 on expected
effort is decreasing in 𝑖. Since w can be obtained from v via a sequence of Robinhood
operations which involve replacing 𝑣𝑖 by 𝑣𝑖 − 𝜀 and 𝑣 𝑗 by 𝑣 𝑗 + 𝜀 where 𝑖 < 𝑗 , each of
which reduces expected effort, we get that the expected effort under w will be lesser
than the expected effort under v. So if 𝑣 is more competitive than 𝑤 and 𝑝 > 1, then
E[𝑔𝑣 (𝜃)] ≥ E[𝑔𝑤 (𝜃)]. For the case where 1

2 < 𝑝 ≤ 1, the density 𝑓 is decreasing
and thus, the expected marginal effects E[𝑚𝑖 (𝜃)] are negative. From above, we have
that the ratio of effects is still < 1. Thus, the effect of prize 𝑖 on expected effort
is actually increasing in 𝑖. It follows that the Robinhood transfers would lead to an
increase in expected effort.

Now let us prove the third result. In this case, we need to compute E[𝑚𝑖 (𝜃𝑚𝑎𝑥)].
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E[𝑚𝑖 (𝜃𝑚𝑎𝑥)] =
∫ 1

0
𝑚𝑖 (𝜃)𝑛𝐹 (𝜃)𝑛−1 𝑓 (𝜃)𝑑𝜃

= 𝑚𝑖 (𝜃)𝐹 (𝜃)𝑛 |10 −
∫ 1

0
𝑚′
𝑖 (𝜃)𝐹 (𝜃)𝑛𝑑𝜃

= −
∫ 1

0

𝑝′
𝑖
(𝐹 (𝜃))
𝜃

𝑓 (𝜃)𝐹 (𝜃)𝑛𝑑𝜃

= −
∫ 1

0

𝑝′
𝑖
(𝑡)

𝐹−1(𝑡)
𝑡𝑛𝑑𝑡.

For the case of 𝐹 (𝜃) = 𝜃𝑝, we get that

E[𝑚𝑖 (𝜃𝑚𝑎𝑥)] = −
∫ 1

0
𝑝′𝑖 (𝑡)𝑡

𝑛− 1
𝑝 𝑑𝑡

= (𝑛 − 1
𝑝
)
(
𝑛 − 1
𝑖 − 1

)
𝛽

(
𝑛 + 𝑖 − 1 − 1

𝑝
, 𝑛 − 𝑖 + 1

)
. (Plugging in 𝑘 = 𝑛 − 1

𝑝
in Lemma 16.)

Observe that
E[𝑚𝑖+1(𝜃𝑚𝑎𝑥)]
E[𝑚𝑖 (𝜃𝑚𝑎𝑥)]

=
𝑛 + 𝑖 − 1 − 1

𝑝

𝑖
> 1.

Thus, the marginal effect of prize any intermediate prize 𝑖 positive and increasing in
𝑖. It follows that if 𝑣 is more competitive than 𝑤 and both have the same last prize,
then E[𝑔𝑣 (𝜃𝑚𝑎𝑥)] ≤ E[𝑔𝑤 (𝜃𝑚𝑎𝑥)].

A.6 Proofs for Section 3.4 (Applications)

Theorem 13. Suppose agents have utility 𝑢(𝑣) = 𝑣𝑟 with 𝑟 ∈ (0, 1) and the distri-
bution of abilities is 𝐹 (𝜃) = 𝜃𝑝.

1. If 𝑝 > 1, the effort-maximizing contest awards 𝑛 − 1 prizes of decreasing
values. Moreover, the optimal contest 𝑣(𝑟) becomes more competitive as 𝑟
increases.

2. If 1
2 < 𝑝 < 1, the effort-maximizing contest is a winner-take-all contest for

any 𝑟 ∈ (0, 1).
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Proof. When 1
2 < 𝑝 < 1, we know from Theorem 11 that the expected marginal

effect of the intermediate prizes are negative. Thus, regardless of how concave the
utilities are, it is best to allocate the entire budget to the first prize.

Now let us consider the case where 𝑝 > 1 where we know from Theorems 11 and
12 that the expected marginal effects for prizes 1, 2, . . . , 𝑛 − 1 are all positive and
decreasing in rank. From corollary 12, we know that the Bayes-Nash equilibrium
function takes the form

𝑔v(𝜃) =
𝑛∑︁
𝑖=1

𝑚𝑖 (𝜃)𝑢(𝑣𝑖).

Given this form of the equilibrium function, the problem is

max
v

𝑛−1∑︁
𝑖=1

𝑢(𝑣𝑖)E[𝑚𝑖 (𝜃)]

such that
∑𝑛−1
𝑖=1 𝑣𝑖 = 𝐵.

The solution will satisfy the equation

𝑉1(𝑟)
[
1 +

𝑛−1∑︁
𝑖=2

𝑐
1

1−𝑟
𝑖

]
= 𝐵

where 𝑐𝑖 = E[𝑚𝑖 (𝜃)]
E[𝑚1 (𝜃)] < 1 and 𝑐𝑖 > 𝑐𝑖+1 for all 𝑖 (Theorem 12). Note that 𝑐𝑖 does not

depend on 𝑟.

Let 𝑓𝑘 (𝑟) = 𝑉1(𝑟)
[
1 + ∑𝑘

𝑖=2 𝑐
1

1−𝑟
𝑖

]
.

I want to show that 𝑓 ′
𝑘
(𝑟) > 0 for all 𝑘 .

If I can show 𝑓 ′
𝑘
(𝑟) is single peaked in 𝑘 , that would imply the result since 𝑓𝑛 (𝑟) = 0.

Check that 𝑉 ′
1(𝑟) =

−
[∑𝑛−1

𝑖=2 𝑐
1

1−𝑟
𝑖

log(𝑐𝑖)
]
𝑉2

1 (𝑟)

(1 − 𝑟)2𝐵
.
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Plugging it in, we get

𝑓 ′𝑘 (𝑟) = 𝑉1(𝑟)
[

1
(1 − 𝑟)2

𝑘∑︁
𝑖=2

𝑐
1

1−𝑟
𝑖

log(𝑐𝑖)
]
+𝑉 ′

1(𝑟)
[
1 +

𝑘∑︁
𝑖=2

𝑐
1

1−𝑟
𝑖

]

= 𝑉1(𝑟)
[

1
(1 − 𝑟)2

𝑘∑︁
𝑖=2

𝑐
1

1−𝑟
𝑖

log(𝑐𝑖)
]
−

[∑𝑛−1
𝑖=2 𝑐

1
1−𝑟
𝑖

log(𝑐𝑖)
]
𝑉2

1 (𝑟)

(1 − 𝑟)2𝐵

[
1 +

𝑘∑︁
𝑖=2

𝑐
1

1−𝑟
𝑖

]
=

𝑉1(𝑟)
(1 − 𝑟)2

𝑘∑︁
𝑖=2

𝑐
1

1−𝑟
𝑖

log(𝑐𝑖)
[
1 − 𝑉1(𝑟)

𝐵

(
1 +

𝑘∑︁
𝑖=2

𝑐
1

1−𝑟
𝑖

)]
−

𝑉2
1 (𝑟)

𝐵(1 − 𝑟)2

𝑛−1∑︁
𝑖=𝑘+1

𝑐
1

1−𝑟
𝑖

log(𝑐𝑖)
[
1 +

𝑘∑︁
𝑖=2

𝑐
1

1−𝑟
𝑖

]
=

𝑉1(𝑟)
𝐵(1 − 𝑟)2

𝑘∑︁
𝑖=2

𝑐
1

1−𝑟
𝑖

log(𝑐𝑖) [𝐵 − 𝑓𝑘 (𝑟)] −
𝑉1(𝑟) 𝑓𝑘 (𝑟)
𝐵(1 − 𝑟)2

𝑛−1∑︁
𝑖=𝑘+1

𝑐
1

1−𝑟
𝑖

log(𝑐𝑖)

=
𝑉1(𝑟)

𝐵(1 − 𝑟)2

(
𝐵

𝑘∑︁
𝑖=2

𝑐
1

1−𝑟
𝑖

log(𝑐𝑖) − 𝑓𝑘 (𝑟)
𝑛−1∑︁
𝑖=2

𝑐
1

1−𝑟
𝑖

log(𝑐𝑖)
)
.

To show that the term inside the bracket is positive, we basically need to show that
for any decreasing sequence 1 ≥ 𝑑1 > 𝑑2 > . . . 𝑑𝑛 > 0, we have that

ℎ(𝑘) =
𝑛∑︁
𝑖=1

𝑑𝑖

𝑘∑︁
𝑖=1

𝑑𝑖 log(𝑑𝑖) −
𝑘∑︁
𝑖=1

𝑑𝑖

𝑛∑︁
𝑖=1

𝑑𝑖 log(𝑑𝑖) ≥ 0

for any 𝑘 ∈ [𝑛].

Observe that

Δ(𝑘) = ℎ(𝑘 + 1) − ℎ(𝑘)

= 𝑑𝑘+1 log(𝑑𝑘+1)
𝑛∑︁
𝑖=1

𝑑𝑖 − 𝑑𝑘+1

𝑛∑︁
𝑖=1

𝑑𝑖 log(𝑑𝑖)

= 𝑑𝑘+1

(
log(𝑑𝑘+1)

𝑛∑︁
𝑖=1

𝑑𝑖 −
𝑛∑︁
𝑖=1

𝑑𝑖 log(𝑑𝑖)
)
.

Since 𝑑𝑘 is a decreasing sequence, it follows that if Δ(𝑘) < 0, then Δ( 𝑗) < 0 for all
𝑗 > 𝑘 . But observe that ℎ(𝑛) = 0. So we just need to show that ℎ(1) > 0 which is
obvious.
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