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ABSTRACT

Machine learning and AI have been used for achieving autonomy in various aerospace
and robotic systems. In next-generation research tasks, which could involve highly
nonlinear, complicated, and large-scale decision-making problems in safety-critical
situations, however, the existing performance guarantees of black-box AI approaches
may not be sufficiently powerful. This thesis gives a mathematical overview of con-
traction theory, with some practical examples drawn from joint projects with NASA
JPL, for enjoying formal guarantees of nonlinear control theory even with the use
of machine learning-based and data-driven methods. This is not to argue that these
methods are always better than conventional approaches, but to provide formal tools
to investigate their performance for further discussion, so we can design and operate
truly autonomous aerospace and robotic systems safely, robustly, adaptively, and
intelligently in real-time.

Contraction theory is an analytical tool to study differential dynamics of a non-
autonomous (i.e., time-varying) nonlinear system under a contraction metric defined
with a uniformly positive definite matrix, the existence of which results in a neces-
sary and sufficient characterization of incremental exponential stability of multiple
solution trajectories with respect to each other. Its nonlinear stability analysis boils
down to finding a suitable contraction metric that satisfies a stability condition ex-
pressed as a linear matrix inequality, resulting in many parallels drawn between
linear systems theory and contraction theory for nonlinear systems. This yields
much-needed safety and stability guarantees for neural network-based control and
estimation schemes, without resorting to a more involved method of using uniform
asymptotic stability for input-to-state stability. Such distinctive features permit the
systematic construction of a contraction metric via convex optimization, thereby
obtaining an explicit exponential bound on the distance between a time-varying tar-
get trajectory and solution trajectories perturbed externally due to disturbances and
learning errors. The first two parts of this thesis are about a theoretical overview of
contraction theory and its advantages, with an emphasis on deriving formal robust-
ness and stability guarantees for deep learning-based 1) feedback control, 2) state
estimation, 3) motion planning, 4) multi-agent collision avoidance and robust track-
ing augmentation, 5) adaptive control, 6) neural net-based system identification and
control, for nonlinear systems perturbed externally by deterministic and stochastic
disturbances. In particular, we provide a detailed review of techniques for finding
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contraction metrics and associated control and estimation laws using deep neural
networks.

In the third part of the thesis, we present several numerical simulations and empir-
ical validation of our proposed approaches to assess the impact of our findings on
realizing aerospace and robotic autonomy. We mainly focus on the two joint projects
with NASA JPL: 1) Science-Infused Spacecraft Autonomy for Interstellar Object
Exploration and 2) Constellation Autonomous Space Technology Demonstration of
Orbital Reconfiguration (CASTOR), where we also perform hardware demonstra-
tions of our methods using our thruster-based spacecraft simulators (M-STAR) and
in high-conflict, distributed, intelligent UAV swarm reconfiguration with up to 20
UAVs (crazyflies).
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C h a p t e r 1

INTRODUCTION

Nonlinear dynamical systems describe the time evolution of various real-world phe-
nomena. As next-generation research objectives have become more complicated
and large-scale, the Guidance, Navigation, and Control (GNC) problems can easily
become computationally and/or theoretically intractable for conventional nonlin-
ear control approaches, which has led to the emergence of learning-based control
designs with, e.g., reinforcement learning [1]–[4], imitation learning [5]–[9], or
neural networks [10]–[12]. In highly autonomous and safety-critical tasks, such as
developing fully autonomous robotic explorers operating remotely on land, in water,
and in deep space, however, the existing performance guarantees of learning-based
approaches may not be sufficiently powerful.

The major focus of this thesis is to step back and provide mathematically rigorous
ways to enjoy the formal guarantees of nonlinear control theory even with the use
of learning-based autonomous GNC. Our motivation here is not just to develop
learning-based methods with formal guarantees that work better than conventional
control theoretical approaches, but to provide formal tools to access whether we
absolutely need machine learning or not in a given problem setting [13]. We can
thereby confidently determine the most appropriate tools to design our truly au-
tonomous systems safely, robustly, adaptively, and intelligently in real-time, without
jumping to seemingly performant solutions given by some black-box AI approaches.
Such analytical tools are the key ingredients for establishing the groundwork of truly
autonomous GNC, where anyone can follow their curiosity and turn their imagina-
tion into reality to the full extent and beyond, regardless of the physical, intellectual,
and temporal constraints inherent to humans. In particular, we use a nonlinear
control theoretical tool called contraction theory, which can be understood in the
context of Lyapunov theory in nonlinear systems theory.

Lyapunov theory is one of the most widely-used approaches to stability analysis of
a nonlinear system [14], [16]–[20], which provides a condition for stability with
respect to an equilibrium point, a target trajectory, or an invariant set. Contrac-
tion theory [15], [21]–[24] rewrites suitable Lyapunov stability conditions using
a quadratic Lyapunov function of the differential states, defined by a Riemannian
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Table 1.1: Differences between contraction theory and Lyapunov theory.

Contraction theory (which
constructs a positive definite
matrix 𝑀 (𝑥, 𝑡) that defines a
contraction metric)

Lyapunov direct method
(which constructs a Lyapunov
function 𝑉 (𝑥, 𝑡))

1. Lyapunov function
Always a quadratic function of
the differential state 𝛿𝑥 (𝑉 =

𝛿𝑥⊤𝑀 (𝑥, 𝑡)𝛿𝑥)

Any function of 𝑥, including
𝑉 (𝑥, 𝑡) = 𝑥⊤𝑀 (𝑥, 𝑡)𝑥

2. Stability condition
Exponential stability of trajec-
tories including points and in-
variant sets∗

Asymptotic or exponential sta-
bility of points and invariant
sets

3. Incremental stability
Incremental stability of tra-
jectories with differential dis-
placements (lim𝑡→∞ 𝛿𝑥 = 0)

Incremental stability via stabil-
ity of points (lim𝑡→∞ (𝑥−𝑥𝑑) =
0 for given 𝑥𝑑)

4. Non-autonomous system Same theory as for au-
tonomous systems

Additional conditions required
for non-autonomous stability
analysis

5. Robustness analysis

Intuitive both for ISS and
finite-gain L𝑝 stability due to
the extensive use of exponen-
tial stability

Same as contraction theory if
exponentially stable; more in-
volved if uniformly asymptoti-
cally stable

6. Analogy to linear sys-
tems

LTV-like differential dynamics
for global convergence

Indirect methods use lineariza-
tion for local stability (direct
methods use motion integrals)

7. L2 stability condition

Reduces to LMI conditions in
terms of a contraction metric
defined by a positive definite
matrix 𝑀

Hamilton-Jacobi inequality
(PDE) in terms of a Lyapunov
function 𝑉 [14, p. 211]

8. Modular stability
Differential analysis handles
hierarchical, feedback, and
parallel combinations [15]

Passivity is not intuitive for hi-
erarchical combinations

∗A semi-contracting system with a negative semi-definite generalized Jacobian matrix can be used
to analyze asymptotic stability (see Chapter 8).
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contraction metric and its uniformly positive definite matrix, thereby characterizing
a necessary and sufficient condition for incremental exponential convergence of the
multiple nonlinear system trajectories to one single trajectory. It can be regarded
as a generalization of Krasovskii’s theorem [19, p. 83] applied to nonlinear in-
cremental stability analysis [21], [25], where the differential formulation permits a
pure differential coordinate change with a non-constant metric for simplifying its
stability proofs [21].

The differential nature of contraction theory implies we can exploit the Linear
Time-Varying (LTV) systems-type techniques for nonlinear stability analysis and
control/estimation synthesis [26]–[30] (see Table 1.1). We emphasize that some of
these methodological simplifications in contraction theory are accomplished by its
extensive use of exponential stability along with the comparison lemma [14, pp. 102-
103, pp. 350-353], in lieu of Input-to-State Stability (ISS) or uniform asymptotic
stability which often renders nonlinear stability analysis more involved [14], [16]–
[20]. Several studies related to the notion of contraction, although not based on
direct differential analysis, can be traced back to [31]–[33].

The first two parts of this thesis are for elucidating how contraction theory may be
utilized as a method of providing provable incremental exponential robustness and
stability guarantees of learning-based and data-driven automatic control techniques
(see Fig. 1.1). In pursuit of this goal, we also provide an overview of the advantages
of contraction theory and present a systematic convex optimization formulation
to explicitly construct an optimal contraction metric and a differential Lyapunov
function for general nonlinear deterministic and stochastic systems. The third part
of this thesis is dedicated to the real-world applications of our proposed approaches
in our joint-projects with NASA Jet Propulsion Laboratory (JPL). It also includes
empirical validation of some of our algorithms using robotic hardware such as
thruster-based spacecraft simulators called M-STAR [34] and micro-UAVs called
crazyflies (https://www.bitcraze.io/products/crazyflie-2-1/).

1.1 Thesis Organization
This thesis is organized into the following three groups of chapters.

Part I: Nonlinear Stability Analysis (Chapters 2 – 4)
In Chapter 2, we present the fundamental results of contraction theory for nonlinear
robustness and stability analysis. Chapter 3 and Chapter 4 consider nonlinear opti-
mal feedback control and estimation problems from the perspective of contraction

https://www.bitcraze.io/products/crazyflie-2-1/
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Overview of Learning-based Control with Formal Guarantees (in the context of nonlinear control theory)

Nonlinear feedback control
Optimal disturbance rejection 

CV-STEM, NCM

Case 1: 𝑔 is either
a) bounded: 𝑔 2 ≤ ҧ𝑔

b) stochastic: 𝐺 𝐹 ≤ ҧ𝑔
for 𝑔 𝑋; 𝜃 𝑑𝑡 = 𝐺 𝑋; 𝜃 𝑑𝒲

and Wiener process 𝒲

𝑥: state, 𝑢: control, 𝑡: time, 𝑋 = (𝑥, 𝑢, 𝑡)
𝜃: system parameter/hidden state for environmental variations

ሶ𝑥 = 𝑓 𝑥, 𝑢, 𝑡 + 𝑔 𝑥, 𝑢, 𝑡; 𝜃
known unknown

Nonlinear motion planning
ሶ𝑥𝑑 = 𝑓 𝑥𝑑 , 𝑢𝑑 , 𝑡

LAG-ROS, CART

Nonlinear state estimation
NCM (bounded noise) 

NSCM (stochastic noise)

Nonlinear adaptive control
NCM + online adaptation

aNCM

Nonlinear system ID
𝑔 𝑋; 𝜃 = ො𝑔 𝑋; 𝜃 + 𝑔 𝑋; 𝜃

Invited tutorial paper

Case2: 𝑔 is linearly parametric
𝑔 𝑋; 𝜃 = ∆ 𝑋 𝑎 𝜃

for known ∆ and unknown 𝑎
(e.g., neural nets)

ො𝑔 (learned model) → Case 2 
if linearly parametric 

𝑔 (residual term) → Case 1 
if bounded/stochastic 

learning to replace heavy online
computation due to nonlinearity

learning to model complex and
off-nominal scenarios/functions

Spacecraft 
simulator

Swam
of 20 UAVs

Figure 1.1: Overview of our learning-based control with formal guarantees (in the
context of nonlinear control theory).

theory, deriving and delineating a convex optimization-based method for construct-
ing contraction metrics. Chapter 3 also presents some new results on relating
contraction theory to the bounded real lemma [35] and Kalman–Yakubovich–Popov
(KYP) lemma [36, p. 218].

Part II: Learning-based Control (Chapters 5 – 8)
In Chapter 5, we derive several theorems which form the basis of learning-based
control using contraction theory. Chapter 6 and Chapter 7 present frameworks for
learning-based control, estimation, and motion planning via contraction theory using
deep neural networks for designing contraction metrics, and Chapter 8 extends these
results to parametric uncertain nonlinear systems with adaptive control techniques.
Also in Chapter 8, we propose model-free versions of contraction theory for learning-
based and data-driven control.

Part III: Real-World Applications (Chapters 9 – 10)
In Chapter 9, we present the real-world application of some of our approaches in
exploring Interstellar Objects (ISOs). Chapter 10 then presents several numerical
simulations and empirical validation of our proposed approaches to assess the impact
of our findings on realizing aerospace and robotic autonomy. We mainly focus on the
two joint projects with NASA JPL: 1) Science-Infused Spacecraft Autonomy for ISO
Exploration [37], [38] and 2) Constellation Autonomous Space Technology Demon-
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stration of Orbital Reconfiguration (CASTOR) [39], where we also perform hard-
ware demonstrations of our methods using our thruster-based spacecraft simulators
(M-STAR) [34] and in high-conflict, distributed, intelligent UAV swarm reconfig-
uration with up to 20 UAVs (crazyflies, https://www.bitcraze.io/products/crazyflie-
2-1/).

1.2 Related Work
In the remainder, we give an overview of each chapter (Chapters 2 – 10) as well as
a survey of related work.

Contraction Theory (Chapter 2)

According to contraction theory, all the solution trajectories of a given nonlinear
system converge to one single trajectory incrementally and exponentially, regardless
of the initial conditions, if the system has a contraction metric and its associated
quadratic Lyapunov function of the differential state [21] (see 1 – 3 of Table 1.1).
This thesis primarily considers this generalized notion of stability, called incremen-
tal exponential stability, which enables systematic learning-based and data-driven
control synthesis with formal robustness and stability guarantees. The purpose of
this chapter is not for proposing that other notions of stability, such as traditional
Lyapunov-based stability or incremental asymptotic stability for semi-contraction
systems, should be replaced by incremental exponential stability, but for clarifying its
advantages to help determine which of these concepts is the best fit when analyzing
nonlinear robustness and stability (see Chapter 2 for the illustrative examples).

In keeping with the use of the comparison lemma [14, pp. 102-103, pp. 350-353],
incremental exponential stability naturally holds for non-autonomous nonlinear sys-
tems without any additional conditions or modifications unlike Lyapunov techniques
(see, e.g., the examples and theorems in [40]). Such aspects of contraction theory,
including the extensive use of exponential stability, result in intuitive proofs on ISS
and finite-gain L𝑝 stability both for autonomous and non-autonomous nonlinear
systems, without resorting to uniform asymptotic stability which makes stability
analysis much more involved than necessary [14], [16]–[20]. In particular, per-
turbed systems with a time-varying target trajectory are non-autonomous, and thus
contraction theory allows us to easily obtain an explicit exponential bound on its
tracking error [21], [26], [29], [30], [41], leveraging incremental stability of the per-
turbed system trajectories with respect to the target trajectory (see 4 of Table 1.1).

https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyflie-2-1/
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Having such analytical bounds on the tracking error is almost essential for the safe
and robust implementation of automatic control schemes in real-world scenarios.

Contraction theory also simplifies input-output stability analysis, such as L𝑝 gain
analysis of nonlinear systems including the H∞ nonlinear optimal control prob-
lem [42]–[49]. For example, in Lyapunov theory, the problem of finding a suitable
Lyapunov function with the smallest L2 gain boils down to solving a Partial Dif-
ferential Equation (PDE) called the Hamilton-Jacobi inequality [14, p. 211], [42]
in terms of its associated Lyapunov function. In essence, since contraction theory
utilizes a quadratic Lyapunov function of the differential state for stability analysis,
the problem could be solved with a Linear Matrix Inequality (LMI) constraint [35]
analogous to the KYP lemma [36, p. 218] in LTV systems theory [26], [29], [30],
[50], as shall be shown in Chapter 3 – 4 (see 5 – 7 of Table 1.1). There exist
stochastic analogues of these stability results for nonlinear systems with stochastic
perturbations [26], [29], [30], [51], [52], as shall be outlined also in this thesis.

Another notable feature of contraction theory is modularity, which preserves con-
traction through parallel, feedback, and hierarchical combinations [15], [23], spe-
cific time-delayed feedback communications [53], synchronized coupled oscilla-
tions [24], [54], and synchronized networks [15], [41], [54]–[57], expanding the
results obtainable with the passivity formalism of Lyapunov theory [58], [14, p.
227], [19, p. 132] (see 8 of Table 1.1). Due to all these useful properties, exten-
sions of contraction theory have been considered in many different settings. These
include, but are not limited to, stochastic contraction (Gaussian white noise [26],
[29], [30], [51], Poisson shot noise and Lévy noise [52]), contraction for discrete
and hybrid nonlinear systems [21], [22], [26], [30], [54], [59], [60], partial con-
traction [24], transverse contraction [61], contraction in terms of semi-norms [62],
incremental stability analysis of nonlinear estimation (the Extended Kalman Filter
(EKF) [63], nonlinear observers [29], [64], Simultaneous Localization And Map-
ping (SLAM) [65]), generalized gradient descent based on geodesical convexity [66],
contraction on Finsler and Riemannian manifolds [67]–[69], contraction on Banach
and Hilbert spaces for PDEs [70]–[72], non-Euclidean contraction [73], contracting
learning with piecewise-linear basis functions [74], incremental quadratic stabil-
ity analysis [75], contraction after small transients [76], immersion and invariance
stabilizing controller design [77], [78], and Lipschitz-bounded neural networks for
robustness and stability guarantees [79]–[82].
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Construction of Contraction Metrics (Chapters 3 – 4)
The benefits of contraction theory reviewed so far naturally lead to a discussion on
how to design a contraction metric and corresponding Lyapunov function. There
are some cases in which we can analytically find them using special structures of
systems in question [14], [16], [19]. Among these are Lagrangian systems [19,
p. 392], where one easy choice of positive definite matrices that define a contrac-
tion metric is the inertia matrix, or feedback linearizable systems [83]–[87], where
we could solve the Riccati equation for a contraction metric as in LTV systems.
This is also the case in the context of state estimation (e.g., the nonlinear SLAM
problem can be reformulated as an LTV estimation problem using virtual synthetic
measurements [29], [65]). Once we find a contraction metric and Lyapunov func-
tion of a nominal nonlinear system for the sake of stability, they could be used
as a Control Lyapunov Function (CLF) to attain stabilizing feedback control [14],
[88], [89] or could be augmented with an integral control law called adaptive back-
stepping to recursively design a Lyapunov function for strict- and output-feedback
systems [90]–[93]. However, deriving an analytical form of contraction metrics for
general nonlinear systems is challenging, and thus several search algorithms have
been developed for finding them at least numerically using the LMI nature of the
contraction condition.

The simplest of these techniques is the method of State-Dependent Riccati Equation
(SDRE) [94]–[97], which uses the State-Dependent Coefficient (SDC) parameter-
ization (also known as extended linearization) of nonlinear systems for feedback
control and state estimation synthesis. Motivating optimization-based approaches
to design a contraction metric, it is proposed in [26], [29], [30] that the Hamilton-
Jacobi inequality for the finite-gain L2 stability condition can be expressed as an
LMI when contraction theory is equipped with the extended linearity of the SDC for-
mulation. Specifically, in [26]–[28], [30], a convex optimization-based framework
for robust feedback control and state estimation, named ConVex optimization-based
Steady-state Tracking Error Minimization (CV-STEM), is derived to find a con-
traction metric that minimizes an upper bound of the steady-state distance between
perturbed and unperturbed system trajectories. In this context, we could utilize
Control Contraction Metrics (CCMs) [50], [98]–[102] for extending contraction
theory to the systematic design of differential feedback control 𝛿𝑢 = 𝑘 (𝑥, 𝛿𝑥, 𝑢, 𝑡)
via convex optimization, achieving greater generality at the expense of computa-
tional efficiency in obtaining 𝑢. Applications of the CCM to estimation, adaptive
control, and motion planning are discussed in [103], [104]–[106], and [99], [107]–
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[110], respectively, using geodesic distances between trajectories [68]. It is also
worth noting that the objective function of CV-STEM has the condition number of
a positive definite matrix for a contraction metric as one of its arguments, render-
ing it applicable and effective even to machine learning-based automatic control
frameworks as shall be seen in Chapters 5 – 8.

Contraction Theory for Learning-based Control (Chapter 5)
One drawback of these numerical schemes is that they require solving optimization
problems or nonlinear systems of equations at each time instant online, which is not
necessarily realistic in practice. In Lyapunov theory, approximating functions in a
given hypothesis space has therefore been a standard technique [111]–[121], where
examples of its function classes include piecewise quadratic functions [111], linearly
parameterized non-quadratic functions [114], a linear combination of radial basis
functions [115], Sum-Of-Squares (SOS) functions [116], and neural networks [113],
[117], [118]. In [86], [98], the SOS approximation is investigated for the case
of contraction theory, showing that the contraction condition can be relaxed to
SOS conditions for dynamics with polynomial or rational vector fields. Although
computationally tractable, it still has some limitations in that the problem size grows
exponentially with the number of variables and basis functions [122]. Learning-
based and data-driven control using contraction theory [27], [28], [123], [124] has
been developed to refine these ideas, using the high representational power of Deep
Neural Networks (DNNs) [10]–[12] and their scalable training realized by stochastic
gradient descent [66], [125].

The major advantage of using contraction theory for learning-based and data-driven
control is that, by regarding its internal learning error as an external disturbance, we
can ensure the distance between the target and learned trajectories to be bounded
exponentially with time as in the CV-STEM results [27], [28], [123], [124], with
its steady-state upper bound proportional to the learning error. Such robustness and
incremental stability guarantees are useful for formally evaluating the performance
of machine learning techniques such as reinforcement learning [1]–[4], imitation
learning [5]–[9], or neural networks [10]–[12]. This implies contraction theory
could be utilized as a central tool in realizing safe and robust operations of learning-
based and data-driven control, estimation, and motion planning schemes in real-
world scenarios. We especially focus on the following areas of research.
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Learning-based Robust Control and Estimation (Chapter 6)
In order to achieve real-time computation of a contraction metric, mathematical
models based on a Deep Neural Network (DNN) called a Neural Contraction Metric
(NCM) [27] and Neural Stochastic Contraction Metric (NSCM) [28] are derived
to compute optimal CV-STEM contraction metrics for nonlinear systems perturbed
by deterministic and stochastic disturbances, respectively. It can be proven that
the NCM and NSCM still yield robustness and optimality associated with the CV-
STEM framework despite having non-zero modeling errors [126]. These metrics
could also be synthesized and learned simultaneously with their feedback control
laws directly by DNNs [110], [126], [127] at the expense of the convex property in
the CV-STEM formulation.

Learning-based Safe and Robust Motion Planning (Chapter 7)
In [99], [128], contraction theory is leveraged to develop a tracking feedback con-
troller with an optimized control invariant tube, solving the problem of robust motion
planning under bounded external disturbances. This problem is also considered for
systems with changing operating conditions [107] and parametric uncertainty [108]–
[110] for its broader use in practice. As these methods still require online computa-
tion of a target trajectory, Learning-based Autonomous Guidance with RObustness
and Stability (LAG-ROS) [124] is developed to model such robust control laws
including the CV-STEM by a DNN, without explicitly requiring the target or de-
sired trajectory as its input. While this considers motion planning algorithms only
implicitly to avoid solving them in real-time, it is shown that contraction theory still
allows us to assure a property of robustness against deterministic and stochastic dis-
turbances following the same argument as in the NCM and NSCM work [124]. Note
that LAG-ROS using contraction theory is not intended to derive new learning-based
motion planning, but rather to augment any existing motion planner with a real-time
method of guaranteeing formal incremental robustness and stability. It is thus still
applicable to other methods such as tube-based robust Model Predictive Control
(MPC) [99], [128]–[132], its dynamic and adaptive counterparts [107]–[110], and
CCM-based learning certified control [127].

We also present CART (which is named after Collision Avoidance and Robust
Tracking) [39], an analytical method to augment a learning-based, distributed motion
planning policy of a nonlinear multi-agent system with real-time collision avoidance
and robust tracking guarantees, independently of the performance of the learning
approaches used in designing the learned policy. Although our approach can be
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extended further to handle general notions of safety, CART focuses on collision-free
operation as the objective of safety.

Learning-based Adaptive Control and Contraction Theory for Learned Models
(Chapter 8)
Adaptive control using contraction theory is studied in [93] for parametric strict-
feedback nonlinear systems, and recently generalized to deal with systems with
unmatched parametric uncertainty by means of parameter-dependent CCM feed-
back control [104], [105]. This method is further explored to develop an adaptive
Neural Contraction Metric (aNCM) [123], a parameter-dependent DNN model of
the adaptive CV-STEM contraction metric. As the name suggests, the aNCM control
makes adaptive control of [104], [105] implementable in real-time for asymptotic
stabilization, while maintaining the learning-based robustness and CV-STEM-type
optimality of the NCM. Although it is designed to avoid the computation for eval-
uating integrals involving geodesics unlike [104], [105], these differential state
feedback schemes could still be considered, trading off added computational cost
for generality. It is demonstrated in [123] that the aNCM is applicable to many
types of systems such as robotics systems [19, p. 392], spacecraft high-fidelity
dynamics [133], [134], and systems modeled by basis function approximation and
DNNs [135], [136]. Discrete changes could be incorporated in this framework
using [106], [137].

Furthermore, recent applications of machine learning often consider challenging
scenarios in the field of systems and control theory, where we only have access
to system trajectory data generated by unknown underlying dynamics, and the as-
sumptions in the aforementioned adaptive control techniques are no longer valid.
For situations where the data is used for system identification of full/residual dy-
namics [79], [82], [100], [138], [139], we can show by contraction theory that the
model-based approaches (e.g., CV-STEM and NCM) are still utilizable to guarantee
robustness against dynamics modeling errors and external disturbances. Note that
it is also proposed in [140] that we could directly learn certificate functions such as
contraction metrics and their associated Lyapunov functions using trajectory data.
Also, some of the theoretical results on gradient descent algorithms, essential in the
field of data-driven machine learning, can be replaced by more general ones based
on contraction and geodesical convexity [66].
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Interstellar Object Exploration (Chapter 9)
The methods outlined so far are also shown to be useful in real-world applications
such as ISO exploration. ISOs are active or inert objects passing through our solar
system on an unbound hyperbolic trajectory about the Sun, which could sample
planetesimals and primitive materials that provide vectors to compare our solar
system with neighboring exoplanetary star systems [141]. To date, two such objects
have been identified and observed: 1I/‘Oumuamua [142] discovered in 2017 and
2I/Borisov [143] discovered in 2019 (see Fig. 1.2). In 2022, the United States
Department of Defense confirmed that a third ISO impacted Earth in 2014, three
years before the identification of ‘Oumuamua. ISOs are physical laboratories that
can enable the study of exosolar systems in-situ rather than remotely using telescopes
such as the Hubble or James Webb Space Telescopes.

While remote observation can aid in constraining the level of activity, shape, and
spectral signature of ISOs, limiting scientists to Earth-based telescopic observation
prevents some of the most impactful science that can be performed. Using a dedi-
cated spacecraft to flyby an ISO opens the doors to high-resolution imaging, mass
or dust spectroscopy, and a larger number of vantage points than Earth observation.
It could also resolve the target’s nucleus shape and spin, characterize the volatiles
being shed from an active body, reveal fresh surface material using an impactor, and
more [144].

The discovery and exploration of ISOs are “once in a lifetime” or maybe “once
in a civilization” opportunities, and their exploration is challenging for three main
reasons: 1) they are often not discovered until they are close to Earth, meaning
that launches to encounter them often require high launch energy; 2) their orbital
properties are poorly constrained at launch, generally leading to significant on-board
resources to encounter; and 3) the encounter speeds are typically high (> 10 of km/s)
requiring fast response autonomous operations. Chapter 9 is for presenting an offline
deep learning-based robust nonlinear guidance and control (G&C) approach, called
Neural-Rendezvous [37], to autonomously encounter them even in the presence of
such large state uncertainty and high-velocity challenges. As outlined in Fig. 1.3,
the guidance, navigation, and control (GNC) of spacecraft for the ISO encounter
are split into two segments: 1) the cruise phase, where the spacecraft utilizes state
estimation obtained by ground-based telescopes and navigates via ground-in-the-
loop operations, and; 2) the terminal phase, where it switches to fully autonomous
operation with existing onboard navigation frameworks. The current state of practice
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and performance of autonomous navigation systems for small bodies like ISOs are
discussed in [145], [146]. Neural-Rendezvous is for performing the second phase
of the autonomous terminal G&C with the on-board state estimates and is built
upon the spectrally-normalized deep neural network (SN-DNN), a neural network
that has been successfully used for providing stability guarantees of learning-based
feedback controllers [79], [147], [148].

Nov. 16, 2019 Dec. 09, 2019

Oct. 14, 2017

Figure 1.2: Interstellar objects. Above: Artist’s illustration 1I/‘Oumuamua (credit:
NASA, ESA, and STScI). Below: 2I/Borisov near and at perihelion (credit: NASA,
ESA, and D. Jewitt (UCLA)). Click the picture to watch our YouTube video
(https://youtu.be/8h60B_p1fyQ).

Additional Numerical Simulations and Empirical Validation (Chapter 10)
Applying deep learning-based algorithms to real-world systems always involves
unmodeled uncertainties not just in its state, but also in the dynamics, environ-
ment, and control actuation, which could all lead to destabilizing behaviors differ-
ent from what is learned and observed in numerical simulations. Our learning-
based approaches to be discussed in this thesis are shown to be provably ro-
bust against these uncertainties, thereby helping to reproduce the simulation re-
sults seamlessly in real-world hardware experiments. We access the validity of
this argument based on our formal guarantees using the thruster-based space-
craft simulators (M-STAR) [34] for the ISO exploration demonstration and UAV
swarms (crazyflies, https://www.bitcraze.io/products/crazyflie-2-1/) for achieving
high-conflict, distributed, intelligent swarm reconfiguration with up to 20 UAVs as

https://youtu.be/4KPaqSpFMEU
https://photojournal.jpl.nasa.gov/catalog/PIA22357
https://apod.nasa.gov/apod/ap220305.html
https://apod.nasa.gov/apod/ap220305.html
https://youtu.be/4KPaqSpFMEU
https://www.bitcraze.io/products/crazyflie-2-1/
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Figure 1.3: Illustration of cruise and terminal GNC (𝑡: time; œ(𝑡): ISO state; 𝑥(𝑡):
spacecraft state relative to œ(𝑡); 𝑦(𝑡): state measurement of the ISO and spacecraft;
𝑢: control input; œ̂(𝑡): estimated ISO state; and 𝑥(𝑡): estimated spacecraft relative
state). Neural-Rendezvous enables obtaining a verifiable delivery error bound even
under the large ISO state uncertainty and high-velocity challenges.

Table 1.2: Additional notations to be used in this thesis.

Notation Description
∥𝑥∥ Euclidean norm of 𝑥 ∈ R𝑛

𝛿𝑥 Differential displacement of 𝑥 ∈ R𝑛

∥𝐴∥ Induced 2-norm of 𝐴 ∈ R𝑛×𝑚

∥𝐴∥𝐹 Frobenius norm of 𝐴 ∈ R𝑛×𝑚

sym(𝐴) Symmetric part of 𝐴 ∈ R𝑛×𝑛, i.e., (𝐴 + 𝐴⊤)/2
𝜆min (𝐴) Minimum eigenvalue of 𝐴 ∈ R𝑛×𝑛

𝜆max (𝐴) Maximum eigenvalue of 𝐴 ∈ R𝑛×𝑛

I Identity matrix of appropriate dimensions
E Expected value operator
P Probability measure
R>0 Set of positive reals, i.e., {𝑎 ∈ R|𝑎 ∈ (0,∞)}
R≥0 Set of non-negative reals, i.e., {𝑎 ∈ R|𝑎 ∈ [0,∞)}
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(a) Numerical simulations for ISO exploration

(b) Spacecraft simulator rendezvous (c) UAV swarm reconfiguration

Figure 1.4: Visualizations of our numerical and experimental validation to be
discussed in Chapter 10.2.

part of the CASTOR project. We also present some recent numerical simulation
results in [39] (see Fig. 1.4).

1.3 Notation
For a square matrix 𝐴𝑛×𝑛, we use the notation 𝐴 ≻ 0, 𝐴 ⪰ 0, 𝐴 ≺ 0, and 𝐴 ⪯ 0 for
the positive definite, positive semi-definite, negative definite, negative semi-definite
matrices, respectively. The L𝑝 norm in the extended space L𝑝𝑒 [14, pp. 196-197],

𝑝 ∈ [1,∞], is defined as ∥(𝑦)𝜏∥L𝑝 =

(∫ 𝜏

0 ∥𝑦(𝑡)∥
𝑝
)1/𝑝

< ∞ for 𝑝 ∈ [1,∞) and
∥(𝑦)𝜏∥L∞ = sup𝑡≥0 ∥(𝑦(𝑡))𝜏∥ < ∞ for 𝑝 = ∞, where (𝑦(𝑡))𝜏 is a truncation of
𝑦(𝑡), i.e., (𝑦(𝑡))𝜏 = 0 for 𝑡 > 𝜏 and (𝑦(𝑡))𝜏 = 𝑦(𝑡) for 0 ≤ 𝑡 ≤ 𝜏 with 𝜏 ∈ R≥0.
Furthermore, we use 𝑓𝑥 = 𝜕 𝑓 /𝜕𝑥, 𝑀𝑥𝑖 = 𝜕𝑀/𝜕𝑥𝑖, and 𝑀𝑥𝑖𝑥 𝑗 = 𝜕2𝑀/(𝜕𝑥𝑖𝜕𝑥 𝑗 ),

https://youtu.be/4KPaqSpFMEU?t=210
https://drive.google.com/file/d/1elE8vhydKUrmPMU8sSEHlDWTGCbQhVpB/view?usp=sharing
https://drive.google.com/file/d/1n8nqE913vMRGbRp5ELNRaLFm_T4iYk-2/view?usp=sharing
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where 𝑥𝑖 and 𝑥 𝑗 ate the 𝑖th and 𝑗 th elements of 𝑥 ∈ R𝑛, for describing partial
derivatives in a limited space. The other notations are given in Table 1.2.
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C h a p t e r 2

CONTRACTION THEORY

[1] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine, “Contraction theory for
nonlinear stability analysis and learning-based control: A tutorial overview,”
Annu. Rev. Control, vol. 52, pp. 135–169, 2021, issn: 1367-5788.

[2] H. Tsukamoto and S.-J. Chung, “Robust controller design for stochastic
nonlinear systems via convex optimization,” IEEE Trans. Autom. Control,
vol. 66, no. 10, pp. 4731–4746, 2021.

In this chapter, we present a brief review of the results from [1]–[8]. They will be
extensively used to provide formal robustness and stability guarantees for a variety of
systems in the subsequent chapters, simplifying and generalizing Lyapunov theory.

2.1 Fundamentals
Consider the following smooth non-autonomous (i.e., time-varying) nonlinear sys-
tem:

¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑡) (2.1)

where 𝑡 ∈ R≥0 is time, 𝑥 : R≥0 ↦→ R𝑛 the system state, and 𝑓 : R𝑛 × R≥0 ↦→ R𝑛

is a smooth function. Note that the smoothness of 𝑓 (𝑥, 𝑡) guarantees the existence
and uniqueness of the solution to (2.1) for a given 𝑥(0) = 𝑥0 at least locally [9, pp.
88-95].

Definition 2.1. A differential displacement, 𝛿𝑥, is defined as an infinitesimal dis-
placement at a fixed time as used in the calculus of variation [10, p. 107], and (2.1)
yields the following differential dynamics:

𝛿 ¤𝑥(𝑡) = 𝜕 𝑓

𝜕𝑥
(𝑥(𝑡), 𝑡)𝛿𝑥(𝑡) (2.2)

where 𝑓 (𝑥(𝑡), 𝑡) is given in (2.1).

Let us first present a special case of the comparison lemma [9, pp. 102-103, pp.
350-353] to be used extensively throughout this thesis.

https://www.sciencedirect.com/science/article/pii/S1367578821000766?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1367578821000766?via%3Dihub
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Figure 2.1: Illustration of contraction theory, where 𝑉 is a differential Lyapunov
function 𝑉 = 𝛿𝑥⊤𝑀 (𝑥, 𝑡)𝛿𝑥, 𝛿𝑧 = Θ(𝑥, 𝑡)𝛿𝑥, and 𝑀 (𝑥, 𝑡) = Θ(𝑥, 𝑡)Θ(𝑥, 𝑡)⊤ ≻ 0
defines a contraction metric (see Theorem 2.1).

Lemma 2.1. Suppose that a continuously differentiable function 𝑣 ∈ R≥0 ↦→ R
satisfies the following differential inequality:

¤𝑣(𝑡) ≤ −𝛾𝑣(𝑡) + 𝑐, 𝑣(0) = 𝑣0, ∀𝑡 ∈ R≥0

where 𝛾 ∈ R>0, 𝑐 ∈ R, and 𝑣0 ∈ R. Then we have

𝑣(𝑡) ≤ 𝑣0𝑒
−𝛾𝑡 + 𝑐

𝛾
(1 − 𝑒−𝛾𝑡), ∀𝑡 ∈ R≥0.

Proof. See [9, pp. 659-660].

2.1.I Contraction Theory and Contraction Metric
In Lyapunov theory, nonlinear stability of (2.1) is studied by constructing a Lyapunov
function 𝑉 (𝑥, 𝑡), one example of which is 𝑉 = 𝑥⊤𝑃(𝑥, 𝑡)𝑥. However, finding 𝑉 (𝑥, 𝑡)
for general nonlinear systems is challenging as 𝑉 (𝑥, 𝑡) can be any scalar function of
𝑥 (e.g., a candidate 𝑉 (𝑥, 𝑡) can be obtained by solving a PDE [9, p. 211]). In con-
trast, as summarized in Table 1.1, contraction theory uses a differential Lyapunov
function that is always a quadratic function of 𝛿𝑥, i.e., 𝑉 (𝑥, 𝛿𝑥, 𝑡) = 𝛿𝑥⊤𝑀 (𝑥, 𝑡)𝛿𝑥,
thereby characterizing a necessary and sufficient condition for incremental exponen-
tial convergence of the multiple nonlinear system trajectories to one single trajectory.
Thus, the problem of finding 𝑉 for stability analysis boils down to finding a finite-
dimensional positive-definite matrix 𝑀 , as illustrated in Figure 2.1 [1]. These
properties to be derived in Theorem 2.1, which hold both for autonomous (i.e.
time-invariant) and non-autonomous systems, epitomize significant methodological
simplifications of stability analysis in contraction theory.

Theorem 2.1. If there exists a uniformly positive definite matrix given as 𝑀 (𝑥, 𝑡) =
Θ(𝑥, 𝑡)⊤Θ(𝑥, 𝑡) ≻ 0, ∀𝑥, 𝑡, where Θ(𝑥, 𝑡) defines a smooth coordinate transforma-
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tion of 𝛿𝑥, i.e., 𝛿𝑧 = Θ(𝑥, 𝑡)𝛿𝑥, s.t. either of the following equivalent conditions
holds for ∃𝛼 ∈ R>0, ∀𝑥, 𝑡:

𝜆max(𝐹 (𝑥, 𝑡)) = 𝜆max

((
¤Θ + Θ𝜕 𝑓

𝜕𝑥

)
Θ−1

)
≤ −𝛼 (2.3)

¤𝑀 + 𝑀𝜕 𝑓

𝜕𝑥
+ 𝜕 𝑓
𝜕𝑥

⊤
𝑀 ⪯ −2𝛼𝑀 (2.4)

where the arguments (𝑥, 𝑡) of 𝑀 (𝑥, 𝑡) and Θ(𝑥, 𝑡) are omitted for notational sim-
plicity, then all the solution trajectories of (2.1) converge to a single trajectory
exponentially fast regardless of their initial conditions (i.e., contracting, see Defini-
tion 2.3), with an exponential convergence rate 𝛼. The converse also holds.

Proof. The proof of this theorem can be found in [1], but here we emphasize the
use of the comparison lemma given in Lemma 2.1. Taking the time-derivative of a
differential Lyapunov function of 𝛿𝑥 (or 𝛿𝑧), 𝑉 = 𝛿𝑧⊤𝛿𝑧 = 𝛿𝑥⊤𝑀 (𝑥, 𝑡)𝛿𝑥, using the
differential dynamics (2.2), we have

¤𝑉 (𝑥, 𝛿𝑥, 𝑡) = 2𝛿𝑧⊤𝐹𝛿𝑧 = 𝛿𝑥⊤
(
¤𝑀 + 𝜕 𝑓

𝜕𝑥

⊤
𝑀 + 𝑀𝜕 𝑓

𝜕𝑥

)
𝛿𝑥

≤ −2𝛼𝛿𝑧⊤𝛿𝑧 = −2𝛼𝛿𝑥⊤𝑀 (𝑥, 𝑡)𝛿𝑥

where the conditions (2.3) and (2.4) are used with the generalized Jacobian 𝐹

in (2.3) obtained from 𝛿 ¤𝑧 = ¤Θ𝛿𝑥 + Θ𝛿 ¤𝑥 = 𝐹𝛿𝑧. We get 𝑑∥𝛿𝑧∥/𝑑𝑡 ≤ −𝛼∥𝛿𝑧∥
by 𝑑∥𝛿𝑧∥2/𝑑𝑡 = 2∥𝛿𝑧∥𝑑∥𝛿𝑧∥/𝑑𝑡, which then yields ∥𝛿𝑧(𝑡)∥ ≤ ∥𝛿𝑧0∥𝑒−𝛼𝑡 by the
comparison lemma of Lemma 2.1. Hence, any infinitesimal length ∥𝛿𝑧(𝑡)∥ and
∥𝛿𝑥(𝑡)∥, as well as 𝛿𝑧 and 𝛿𝑥, tend to zero exponentially fast. By path integration
(see Definition 2.2 and Theorem 2.3), this immediately implies that the length of
any finite path converges exponentially to zero from any initial conditions.

Conversely, consider an exponentially convergent system, which implies the follow-
ing for ∃𝛽 > 0 and ∃𝑘 ≥ 1:

∥𝛿𝑥(𝑡)∥2 ≤ −𝑘 ∥𝛿𝑥(0)∥2𝑒−2𝛽𝑡 (2.5)

and define a matrix-valued function Ξ(𝑥(𝑡), 𝑡) ∈ R𝑛×𝑛 (not necessarily Ξ ≻ 0) as

¤Ξ = −2𝛽Ξ − Ξ𝜕 𝑓
𝜕𝑥
− 𝜕 𝑓
𝜕𝑥

⊤
Ξ, Ξ(𝑥(0), 0) = 𝑘I. (2.6)

Note that, for𝑉 = 𝛿𝑥⊤Ξ𝛿𝑥, (2.6) gives ¤𝑉 = −2𝛽𝑉 , resulting in𝑉 = −𝑘 ∥𝛿𝑥(0)∥2𝑒−2𝛽𝑡 .
Substituting this into (2.5) yields

∥𝛿𝑥(𝑡)∥2 = 𝛿𝑥(𝑡)⊤𝛿𝑥(𝑡) ≤ 𝑉 = 𝛿𝑥(𝑡)⊤Ξ(𝑥(𝑡), 𝑡)𝛿𝑥(𝑡) (2.7)
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which indeed implies that Ξ ⪰ I ≻ 0 as (2.7) holds for any 𝛿𝑥. Thus, Ξ satisfies
the contraction condition (2.4), i.e., Ξ defines a contraction metric (see Defini-
tion 2.3) [1].

Remark 2.1. Since 𝑀 of Theorem 2.1 is positive definite, i.e., 𝑣⊤𝑀𝑣 = ∥Θ𝑣∥2 ≥
0, ∀𝑣 ∈ R𝑛, and ∥Θ𝑣∥2 = 0 if and only if 𝑣 = 0, the equation Θ𝑣 = 0 only has a
trivial solution 𝑣 = 0. This implies that Θ is always non-singular (i.e., Θ(𝑥, 𝑡)−1

always exists).

Definition 2.2. Let 𝜉0(𝑡) and 𝜉1(𝑡) denote some solution trajectories of (2.1). We
say that (2.1) is incrementally exponentially stable if ∃𝐶, 𝛼 > 0 s.t. the following
holds [11]:

∥𝜉1(𝑡) − 𝜉0(𝑡)∥ ≤ 𝐶𝑒−𝛼𝑡 ∥𝜉0(0) − 𝜉1(0)∥

for any 𝜉0(𝑡) and 𝜉1(𝑡). Note that, since we have ∥𝜉1(𝑡) − 𝜉0(𝑡)∥ = ∥
∫ 𝜉1
𝜉0
𝛿𝑥∥ (see

Theorem 2.3), Theorem 2.1 implies incremental stability of the system (2.1).

Definition 2.3. The system (2.1) satisfying the conditions in Theorem 2.1 is said to
be contracting, and a uniformly positive definite matrix 𝑀 that satisfies (2.4) defines
a contraction metric. As to be discussed in Theorem 2.3 of Sec. 2.2, a contracting
system is incrementally exponentially stable in the sense of Definition 2.2.

Example 2.1. One of the distinct features of contraction theory in Theorem 2.1 is
incremental stability with exponential convergence. Consider the example given
in [12]:

𝑑

𝑑𝑡

[
𝑥1

𝑥2

]
=

[
−1 𝑥1

−𝑥1 −1

] [
𝑥1

𝑥2

]
. (2.8)

A Lyapunov function 𝑉 = ∥𝑥∥2/2 for (2.8), where 𝑥 = [𝑥1, 𝑥2]⊤, yields ¤𝑉 ≤ −2𝑉 .
Thus, (2.8) is exponentially stable with respect to 𝑥 = 0. The differential dynamics
of (2.8) is given as

𝑑

𝑑𝑡

[
𝛿𝑥1

𝛿𝑥2

]
=

[
−1 + 𝑥2 𝑥1

−2𝑥1 −1

] [
𝛿𝑥1

𝛿𝑥2

]
, (2.9)

and the contraction condition (2.4) for (2.9) can no longer be proven by𝑉 = ∥𝛿𝑥∥2/2,
due to the lack of the skew-symmetric property of (2.8) in (2.9). This difficulty
illustrates the difference between Lyapunov theory and contraction theory, where
the former considers stability of (2.8) with respect to the equilibrium point, while
the latter analyzes exponential convergence of any couple of trajectories in (2.8)
with respect to each other (i.e., incremental stability in Definition 2.2) [1], [12].
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Example 2.2. Contraction defined by Theorem 2.1 guarantees incremental stability
of their solution trajectories but does not require the existence of stable fixed points.
Let us consider the following system for 𝑥 : R≥0 ↦→ R:

¤𝑥 = −𝑥 + 𝑒𝑡 . (2.10)

Using the constraint (2.4) of Theorem 2.1, we can easily verify that (2.10) is con-
tracting as 𝑀 = I defines its contraction metric with the contraction rate 𝛼 = 1.
However, since (2.10) has 𝑥(𝑡) = 𝑒𝑡/2 + (𝑥(0) − 1/2)𝑒−𝑡 as its unique solution, it is
not stable with respect to any fixed point.

Example 2.3. Consider a Linear Time-Invariant (LTI) system, ¤𝑥 = 𝑓 (𝑥) = 𝐴𝑥.
Lyapunov theory states that the origin is globally exponentially stable if and only if
there exists a constant positive-definite matrix 𝑃 ∈ R𝑛×𝑛 s.t. [13, pp. 67-68]

∃𝜖 > 0 s.t. 𝑃𝐴 + 𝐴⊤𝑃 ⪯ −𝜖I. (2.11)

Now, let 𝑝 = ∥𝑃∥. Since −I ⪯ −𝑃/𝑝, (2.11) implies that 𝑃𝐴 + 𝐴⊤𝑃 ≤ −(𝜖/𝑝)𝑃,
which shows that 𝑀 = 𝑃 with 𝛼 = 𝜖/(2𝑝) satisfies (2.4) due to the relation
𝜕 𝑓 /𝜕𝑥 = 𝐴.

The contraction condition (2.4) can thus be viewed as a generalization of the Lya-
punov stability condition (2.11) (see the generalized Krasovskii’s theorem [14, pp.
83-86]) in a nonlinear non-autonomous system setting, expressed in the differen-
tial formulation that permits a non-constant metric and pure differential coordi-
nate change [1]. Furthermore, if 𝑓 (𝑥, 𝑡) = 𝐴(𝑡)𝑥 and 𝑀 = I, (2.4) results in
𝐴(𝑡) + 𝐴(𝑡)⊤ ⪯ −2𝛼I (i.e., all the eigenvalues of the symmetric matrix 𝐴(𝑡) + 𝐴(𝑡)⊤

remain strictly in the left-half complex plane), which is a known sufficient condition
for stability of Linear Time-Varying (LTV) systems [14, pp. 114-115].

Example 2.4. Most of the learning-based techniques involving neural networks are
based on optimizing their hyperparameters by gradient descent [15]. Contraction
theory provides a generalized view on the analysis of such continuous-time gradient-
based optimization algorithms [16].

Let us consider a twice differentiable scalar output function 𝑓 : R𝑛 × R ↦→ R, a
matrix-valued function 𝑀 : R𝑛 ↦→ R𝑛×𝑛 with 𝑀 (𝑥) ≻ 0, ∀𝑥 ∈ R𝑛, and the following
natural gradient system [17]:

¤𝑥 = ℎ(𝑥, 𝑡) = −𝑀 (𝑥)−1∇𝑥 𝑓 (𝑥, 𝑡). (2.12)



32

Then, 𝑓 is geodesically 𝛼-strongly convex for each 𝑡 in the metric defined by 𝑀 (𝑥)
(i.e., 𝐻 (𝑥) ⪰ 𝛼𝑀 (𝑥) with 𝐻 (𝑥) being the Riemannian Hessian matrix of 𝑓 with
respect to 𝑀 [18]), if and only if (2.12) is contracting with rate 𝛼 in the metric
defined by 𝑀 as in (2.4) of Theorem 2.1, where 𝐴 = 𝜕ℎ/𝜕𝑥. More specifically, the
Riemannian Hessian verifies 𝐻 (𝑥) = −( ¤𝑀 + 𝑀𝐴 + 𝐴⊤𝑀)/2. See [16] for details.

Remark 2.2. Theorem 2.1 can be applied to other vector norms of ∥𝛿𝑧∥𝑝 with, e.g.,
𝑝 = 1 or 𝑝 = ∞ [1]. It can also be shown that for a contracting autonomous system
of the form ¤𝑥 = 𝑓 (𝑥), all trajectories converge to an equilibrium point exponentially
fast.

2.1.II Partial Contraction
Although satisfying the condition (2.4) of Theorem 2.1 guarantees exponential
convergence of any couple of trajectories in (2.1), proving their incremental stability
with respect to a subset of these trajectories possessing a specific property could
be sufficient for some cases [6], [8], [19], [20], leading to the concept of partial
contraction [3].

Theorem 2.2. Consider the following nonlinear system with the state 𝑥 ∈ R≥0 ↦→ R𝑛

and the auxiliary or virtual system with the state 𝑞 ∈ R≥0 ↦→ R𝑛:

¤𝑥(𝑡) = g(𝑥(𝑡), 𝑥(𝑡), 𝑡) (2.13)

¤𝑞(𝑡) = g(𝑞(𝑡), 𝑥(𝑡), 𝑡) (2.14)

where g : R𝑛 × R𝑝 × R≥0 → R𝑛 is a smooth function. Suppose that (2.14) is
contracting with respect to 𝑞. If a particular solution of (2.14) verifies a smooth
specific property, then all trajectories of (2.13) verify this property exponentially.

Proof. The theorem statement follows from Theorem 2.1 and the fact that 𝑞 = 𝑥 and
a trajectory with the specific property are particular solutions of (2.14) (see [3] for
details).

The importance of this theorem lies in the fact that we can analyze contraction of
some specific parts of the system (2.13) while treating the rest as a function of
the time-varying parameter 𝑥(𝑡). Strictly speaking, the system (2.13) is said to be
partially contracting, but we will not distinguish partial contraction from contraction
of Definition 2.3 in this thesis for simplicity. Instead, we will use the variable 𝑞
when referring to partial contraction of Theorem 2.2.
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Examples of a trajectory with a specific property include the target trajectory 𝑥𝑑 of
feedback control in (3.3), or the trajectory of actual dynamics 𝑥 for state estimation
in (4.3) and (4.4) to be discussed in the subsequent chapters. Note that contraction
can be regarded as a particular case of partial contraction.

Example 2.5. Let us illustrate the role of partial contraction using the following
nonlinear system [12]:

¤𝑥 = −𝐷 (𝑥)𝑥 + 𝑢, ¤𝑥𝑑 = −𝐷 (𝑥𝑑)𝑥𝑑

where 𝑥 is the system state, 𝑥𝑑 is the target state, 𝑢 is the control input designed as
𝑢 = −𝐾 (𝑥) (𝑥 − 𝑥𝑑) + (𝐷 (𝑥) − 𝐷 (𝑥𝑑))𝑥𝑑 , and 𝐷 (𝑥) + 𝐾 (𝑥) ≻ 0. We could define a
virtual system, which has 𝑞 = 𝑥 and 𝑞 = 𝑥𝑑 as its particular solutions, as follows:

¤𝑞 = −(𝐷 (𝑥) + 𝐾 (𝑥)) (𝑞 − 𝑥𝑑) − 𝐷 (𝑥𝑑)𝑥𝑑 . (2.15)

Since we have 𝛿 ¤𝑞 = −(𝐷 (𝑥) + 𝐾 (𝑥))𝛿𝑞 and 𝐷 (𝑥) + 𝐾 (𝑥) ≻ 0, (2.15) is contracting
with 𝑀 = I in (2.4). However, if we consider the following virtual system:

¤𝑞 = −(𝐷 (𝑞) + 𝐾 (𝑞)) (𝑞 − 𝑥𝑑) − 𝐷 (𝑥𝑑)𝑥𝑑 (2.16)

which also has 𝑞 = 𝑥 and 𝑞 = 𝑥𝑑 as its particular solutions, proving contraction
is no longer straightforward because of the terms 𝜕𝐷/𝜕𝑞𝑖 and 𝜕𝐾/𝜕𝑞𝑖 in the
differential dynamics of (2.16). This is due to the fact that, in contrast to (2.15),
(2.16) has particular solutions nonlinear in 𝑞 in addition to 𝑞 = 𝑥 and 𝑞 = 𝑥𝑑 ,
and the condition (2.4) becomes more involved for (2.16) as it is for guaranteeing
exponential convergence of any couple of these particular solution trajectories [12].

Example 2.6. As one of the key applications of partial contraction given in Theo-
rem 2.2, let us consider the following closed-loop Lagrangian system [14, p. 392]:

H(q) ¥q + C(q, ¤q) ¤q + G(q) = 𝑢(q, ¤q, 𝑡) (2.17)

𝑢(q, ¤q, 𝑡) = H(q) ¥q𝑟 + C(q, ¤q) ¤q𝑟 + G(q) − K(𝑡) ( ¤q − ¤q𝑟) (2.18)

where q, ¤q ∈ R𝑛, ¤q𝑟 = ¤q𝑑 (𝑡)−Λ(𝑡) (q−q𝑑 (𝑡)),H : R𝑛 ↦→ R𝑛×𝑛, C : R𝑛×R𝑛 ↦→ R𝑛×𝑛,
G : R𝑛 ↦→ R𝑛, K : R≥0 ↦→ R𝑛×𝑛, Λ : R≥0 ↦→ R𝑛×𝑛, and (q𝑑 , ¤q𝑑) is the target
trajectory of the state (q, ¤q). Note that K,Λ ≻ 0 are control gain matrices (design
parameters), and ¤H − 2C is skew-symmetric withH ≻ 0 by construction.

By comparing with (2.17) and (2.18), we define the following virtual observer-like
system of 𝑞 (not q) that has 𝑞 = ¤q and 𝑞 = ¤q𝑟 as its particular solutions:

H(q) ¤𝑞 + C(q, ¤q)𝑞 + K(𝑡) (𝑞 − ¤q) + G(q) = 𝑢(q, ¤q, 𝑡) (2.19)
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which givesH(q)𝛿 ¤𝑞 + (C(q, ¤q) + K(𝑡))𝛿𝑞 = 0. We thus have that

𝑑

𝑑𝑡
(𝛿𝑞⊤H(q)𝛿𝑞) = 𝛿𝑞⊤( ¤H − 2C − 2K)𝛿𝑞 = −2𝛿𝑞⊤K𝛿𝑞 (2.20)

where the skew-symmetry of ¤H − 2C is used to obtain the second equality. Since
K ≻ 0, (2.20) indicates that the virtual system (2.19) is partially contracting in 𝑞
with H defining its contraction metric. Contraction of the full state (q, ¤q) will be
discussed in Example 2.7.

Note that if we treat the arguments (q, ¤q) ofH and C also as the virtual state 𝑞, we
end up having additional terms such as 𝜕H/𝜕𝑞𝑖, which makes proving contraction
analytically more involved as in Example 2.5.

As can be seen from Examples 2.5 and 2.6, the role of partial contraction in theo-
rem 2.2 is to provide some insight on stability even for cases where it is difficult to
prove contraction for all solution trajectories as in Theorem 2.1. Although finding a
contraction metric analytically for general nonlinear systems is challenging, we will
see in Chapter 3 and Chapter 4 that the convex nature of the contraction condition
(2.4) helps us find it numerically.

2.2 Path-Length Integral and Robust Incremental Stability Analysis
Theorem 2.1 can also be proven by using the transformed squared length integrated
over two arbitrary solutions of (2.1) [1], [5]–[8], which enables formalizing its
connection to incremental stability discussed in Definition 2.3. Note that the integral
forms (2.21) and (2.22) to be given in Theorem 2.3 are useful for handling perturbed
systems with external disturbances as shall be seen in Theorems 2.4 – 2.8.

Theorem 2.3. Let 𝜉0 and 𝜉1 be the two arbitrary solutions of (2.1), and define the
transformed squared length with 𝑀 (𝑥, 𝑡) of Theorem 2.1 as follows:

𝑉𝑠ℓ (𝑥, 𝛿𝑥, 𝑡) =
∫ 𝜉1

𝜉0

∥𝛿𝑧∥2 =

∫ 1

0

𝜕𝑥

𝜕𝜇

⊤
𝑀 (𝑥, 𝑡) 𝜕𝑥

𝜕𝜇
𝑑𝜇 (2.21)

where 𝑥 is a smooth path parameterized as 𝑥(𝜇 = 0, 𝑡) = 𝜉0(𝑡) and 𝑥(𝜇 = 1, 𝑡) =
𝜉1(𝑡) by 𝜇 ∈ [0, 1]. Also, define the path integral with the transformation Θ(𝑥, 𝑡)
for 𝑀 (𝑥, 𝑡) = Θ(𝑥, 𝑡)⊤Θ(𝑥, 𝑡) as follows:

𝑉ℓ (𝑥, 𝛿𝑥, 𝑡) =
∫ 𝜉1

𝜉0

∥𝛿𝑧∥ =
∫ 𝜉1

𝜉0

∥Θ(𝑥, 𝑡)𝛿𝑥∥. (2.22)
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Then (2.21) and (2.22) are related as

∥𝜉1 − 𝜉0∥ =
∫ 𝜉1

𝜉0

𝛿𝑥

 ≤ 𝑉ℓ√
𝑚
≤
√︄
𝑉𝑠ℓ

𝑚
(2.23)

where 𝑀 (𝑥, 𝑡) ⪰ 𝑚I, ∀𝑥, 𝑡 for ∃𝑚 ∈ R>0, and Theorem 2.1 can also be proven
by using (2.21) and (2.22) as a Lyapunov-like function, resulting in incremental
exponential stability of the system (2.1) (see Definition 2.2). Note that the shortest
path integral𝑉ℓ of (2.22) with a parameterized state 𝑥 (i.e., inf𝑉ℓ =

√
inf𝑉𝑠ℓ) defines

the Riemannian distance and the path integral of a minimizing geodesic [21].

Proof. Using 𝑀 (𝑥, 𝑡) ⪰ 𝑚I which gives √𝑚∥𝜉1 − 𝜉0∥ ≤ 𝑉ℓ, we have ∥𝜉1 − 𝜉0∥ =
∥
∫ 𝜉1
𝜉0
𝛿𝑥∥ ≤ 𝑉ℓ/

√
𝑚 of (2.23). The inequality 𝑉ℓ ≤

√
𝑉𝑠ℓ of (2.23) can be proven

by applying the Cauchy–Schwarz inequality [22, p. 316] to the functions 𝜓1(𝜇) =
∥Θ(𝑥, 𝑡) (𝜕𝑥/𝜕𝜇)∥ and 𝜓2(𝜇) = 1.

We can also see that computing ¤𝑉𝑠ℓ of (2.21) using the differential dynamics of (2.2)
yields

¤𝑉𝑠ℓ =
∫ 1

0

𝜕𝑥

𝜕𝜇

⊤ (
¤𝑀 + 𝑀𝜕 𝑓

𝜕𝑥
+ 𝜕 𝑓
𝜕𝑥

⊤
𝑀

)
𝜕𝑥

𝜕𝜇
𝑑𝜇

to have ¤𝑉𝑠ℓ ≤ −2𝛼𝑉𝑠ℓ and ¤𝑉ℓ ≤ −𝛼𝑉ℓ by the contraction conditions (2.3) and (2.4).
Since these hold for any 𝜉0 and 𝜉1, the incremental exponential stability results in
Theorem 2.1 follow from the comparison lemma of Lemma 2.1 (see also [6]–[8],
and [21], [23] for the discussion on the geodesic).

2.2.I Deterministic Perturbation
Let 𝜉0(𝑡) be a solution of the system (2.1). It is now perturbed as

¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝑑 (𝑥, 𝑡) (2.24)

and let 𝜉1(𝑡) denote a trajectory of (2.24). Then a virtual system of a smooth path
𝑞(𝜇, 𝑡) parameterized by 𝜇 ∈ [0, 1], which has 𝑞(𝜇 = 0, 𝑡) = 𝜉0 and 𝑞(𝜇 = 1, 𝑡) = 𝜉1

as its particular solutions is given as follows:

¤𝑞(𝜇, 𝑡) = 𝑓 (𝑞(𝜇, 𝑡), 𝑡) + 𝑑𝜇 (𝜇, 𝜉1, 𝑡) (2.25)

where 𝑑𝜇 (𝜇, 𝜉1, 𝑡) = 𝜇𝑑 (𝜉1, 𝑡). Since contraction means exponential convergence,
a contracting system exhibits a superior property of robustness [1], [5].
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Theorem 2.4. If the system (2.1) satisfies (2.3) and (2.4) of Theorem 2.1 (i.e., the
system (2.1) is contracting), then the path integral𝑉ℓ (𝑞, 𝛿𝑞, 𝑡) =

∫ 𝜉1
𝜉0
∥Θ(𝑞, 𝑡)𝛿𝑞∥ of

(2.22), where 𝜉0 is a solution of the contracting system (2.1), 𝜉1 is a solution of the
perturbed system (2.24), and 𝑞 is the virtual state of (2.25), exponentially converges
to a bounded error ball as long as Θ𝑑 ∈ L∞ (i.e., sup𝑥,𝑡 ∥Θ𝑑∥ < ∞). Specifically,
if ∃𝑚, 𝑚 ∈ R>0 and ∃𝑑 ∈ R≥0 s.t. 𝑑 = sup𝑥,𝑡 ∥𝑑 (𝑥, 𝑡)∥ and

𝑚I ⪯ 𝑀 (𝑥, 𝑡) ⪯ 𝑚I, ∀𝑥, 𝑡, (2.26)

then we have the following relation:

∥𝜉1(𝑡) − 𝜉0(𝑡)∥ ≤
𝑉ℓ (0)√
𝑚
𝑒−𝛼𝑡 + 𝑑

𝛼

√︄
𝑚

𝑚
(1 − 𝑒−𝛼𝑡) (2.27)

where 𝑉ℓ (𝑡) = 𝑉ℓ (𝑞(𝑡), 𝛿𝑞(𝑡), 𝑡) for notational simplicity.

Proof. Using the contraction condition (2.4), we have for 𝑀 = Θ⊤Θ given in
Theorem 2.1 that

𝑑

𝑑𝑡
∥Θ(𝑞, 𝑡)𝜕𝜇𝑞∥ = (2∥Θ(𝑞, 𝑡)𝜕𝜇𝑞∥)−1 𝑑

𝑑𝑡
𝜕𝜇𝑞

⊤𝑀 (𝑞, 𝑡)𝜕𝜇𝑞

≤ −𝛼∥Θ(𝑞, 𝑡)𝜕𝜇𝑞∥ + ∥Θ(𝑞, 𝑡)𝜕𝜇𝑑𝜇∥

where 𝜕𝜇𝑞 = 𝜕𝑞/𝜕𝜇 and 𝜕𝜇𝑑𝜇 = 𝜕𝑑𝜇/𝜕𝜇 = 𝑑 (𝜉1, 𝑡). Taking the integral with
respect to 𝜇 gives

𝑑

𝑑𝑡

∫ 1

0
∥Θ𝜕𝜇𝑞∥𝑑𝜇 ≤

∫ 1

0
−𝛼∥Θ𝜕𝜇𝑞∥ + ∥Θ𝑑 (𝜉1, 𝑡)∥𝑑𝜇

which implies ¤𝑉ℓ (𝑡) ≤ −𝛼𝑉ℓ (𝑡) + sup𝑞,𝜉1,𝑡
∥Θ(𝑞, 𝑡)𝑑 (𝜉1, 𝑡)∥ for 𝑉ℓ in (2.22) of

Theorem 2.3. Thus, applying the comparison lemma (see Lemma 2.1) results in

𝑉ℓ (𝑡) ≤ 𝑒−𝛼𝑡𝑉ℓ (0) + sup
𝑞,𝜉1,𝑡
∥Θ(𝑞, 𝑡)𝑑 (𝜉1, 𝑡)∥

1 − 𝑒−𝛼𝑡
𝛼

. (2.28)

By using 𝜉1− 𝜉0 =
∫ 𝜉1
𝜉0
𝛿𝑥 and ∥𝜉1− 𝜉0∥ = ∥

∫ 𝜉1
𝜉0
𝛿𝑥∥ ≤

∫ 𝜉1
𝜉0
∥𝛿𝑥∥ ≤

∫ 𝜉1
𝜉0
∥Θ−1∥∥𝛿𝑧∥,

we obtain
√︁

inf𝑡 𝜆min(𝑀)∥𝜉1 − 𝜉0∥ ≤ 𝑉ℓ =
∫ 𝜉1
𝜉0
∥𝛿𝑧∥, and thus

∥𝜉1 − 𝜉0∥ ≤
𝑒−𝛼𝑡𝑉ℓ (0)√︁
inf𝑡 𝜆min(𝑀)

+
sup𝑞,𝜉1,𝑡

∥Θ𝑑∥√︁
inf𝑡 𝜆min(𝑀)

1 − 𝑒−𝛼𝑡
𝛼

.

This relation with the bounds on 𝑀 and 𝑑 gives (2.27).
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2.2.II Stochastic Perturbation
Next, consider the following dynamical system modeled by the Itô stochastic differ-
ential equation:

𝑑𝑥 = 𝑓 (𝑥, 𝑡)𝑑𝑡 + 𝐺 (𝑥, 𝑡)𝑑𝒲(𝑡) (2.29)

where 𝐺 : R𝑛 × R≥0 → R𝑛×𝑤 is a matrix-valued function and 𝒲 : R≥0 ↦→ R𝑤 is a
𝑤-dimensional Wiener process [24, p. 100] (see also [24, p. xii] for the notations
used). For the sake of existence and uniqueness of the solution, we assume in (2.29)
that

∃𝐿 ∈ R≥0 s.t. ∥ 𝑓 (𝑥, 𝑡) − 𝑓 (𝑥′, 𝑡)∥ + ∥𝐺 (𝑥, 𝑡) − 𝐺 (𝑥′, 𝑡)∥𝐹
≤ 𝐿∥𝑥 − 𝑥′∥, ∀𝑡 ∈ R≥0, ∀𝑥, 𝑥′ ∈ R𝑛 (2.30)

∃�̄� ∈ R≥0 s.t. ∥ 𝑓 (𝑥, 𝑡)∥2 + ∥𝐺 (𝑥, 𝑡)∥2𝐹 ≤ �̄� (1 + ∥𝑥∥2), ∀𝑡 ∈ R≥0, ∀𝑥 ∈ R𝑛. (2.31)

In order to analyze the incremental stability property of (2.29) as in Theorem 2.3,
we consider two trajectories 𝜉0(𝑡) and 𝜉1(𝑡) of stochastic nonlinear systems with
Gaussian white noise, driven by two independent Wiener processes 𝒲0(𝑡) and
𝒲1(𝑡):

𝑑𝜉𝑖 = 𝑓 (𝜉𝑖, 𝑡)𝑑𝑡 + 𝐺𝑖 (𝜉𝑖, 𝑡)𝑑𝒲𝑖 (𝑡), 𝑖 = 0, 1. (2.32)

One can show that (2.29) has a unique solution 𝑥(𝑡) which is continuous with
probability one under the conditions (2.30) and (2.31) (see [24, p. 105] and [4],
[7]), leading to the following lemma as in the comparison lemma of Lemma 2.1.

Lemma 2.2. Suppose that 𝑉𝑠ℓ of (2.21) satisfies the following inequality:

ℒ𝑉𝑠ℓ ≤ −𝛾𝑉𝑠ℓ + 𝑐 (2.33)

where 𝛾 ∈ R>0, 𝑐 ∈ R≥0, and ℒ denotes the infinitesimal differential generator of
the Itô process given in [25, p. 15]. Then we have the following bound [4]:

E
[
∥𝜉1(𝑡) − 𝜉0(𝑡)∥2

]
≤ 1
𝑚

(
E[𝑉𝑠ℓ (0)]𝑒−𝛾𝑡 +

𝑐

𝛾

)
(2.34)

where 𝑉𝑠ℓ (0) = 𝑉𝑠ℓ (𝑥(0), 𝛿𝑥(0), 0) for 𝑉𝑠ℓ in (2.21), 𝑚 is given in (2.26), 𝜉0 and 𝜉1

are given in (2.32), and E denotes the expected value operator. Furthermore, the
probability that ∥𝜉1 − 𝜉0∥ is greater than or equal to 𝜀 ∈ R>0 is given as

P [∥𝜉1(𝑡) − 𝜉0(𝑡)∥ ≥ 𝜀] ≤
1
𝜀2𝑚

(
E[𝑉𝑠ℓ (0)]𝑒−𝛾𝑡 +

𝑐

𝛾

)
. (2.35)
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Proof. The bound (2.34) follows from Theorem 2 of [4] (see also [6]–[8], [26], [27]
and [25, p. 10] (Dynkin’s formula)). The probability tracking error bound (2.35)
then follows from Markov’s inequality [28, pp. 311-312].

Remark 2.3. Although Lemma 2.2 considers the second moment of ∥𝜉1(𝑡) − 𝜉0(𝑡)∥,
i.e., E[∥𝜉1(𝑡) −𝜉0(𝑡)∥2], it can be readily generalized to the 𝑝-th moment of ∥𝜉1(𝑡) −
𝜉0(𝑡)∥, i.e., E[∥𝜉1(𝑡) − 𝜉0(𝑡)∥𝑝], applying the Lyapunov-based technique proposed
in [29].

A virtual system of a smooth path 𝑞(𝜇, 𝑡) parameterized by 𝜇 ∈ [0, 1], which has
𝑞(𝜇 = 0, 𝑡) = 𝜉0 and 𝑞(𝜇 = 1, 𝑡) = 𝜉1 of (2.32) as its particular solutions, is given
as follows:

𝑑𝑞(𝜇, 𝑡) = 𝑓 (𝑞(𝜇, 𝑡), 𝑡)𝑑𝑡 + 𝐺 (𝜇, 𝜉0, 𝜉1, 𝑡)𝑑𝒲(𝑡) (2.36)

where 𝐺 (𝜇, 𝜉0, 𝜉1, 𝑡) = [(1 − 𝜇)𝐺0(𝜉0, 𝑡), 𝜇𝐺1(𝜉1, 𝑡)] and 𝒲 = [𝒲⊤
0 ,𝒲

⊤
1 ]
⊤. As

a consequence of Lemma 2.2, showing stochastic incremental stability between 𝜉0

and 𝜉1 of (2.32) reduces to proving the relation (2.33), similar to the deterministic
case in Theorems 2.1 and 2.4.

Theorem 2.5. Suppose that ∃�̄�0 ∈ R≥0 and ∃�̄�1 ∈ R≥0 s.t. sup𝑥,𝑡 ∥𝐺1(𝑥, 𝑡)∥𝐹 = �̄�0

and sup𝑥,𝑡 ∥𝐺1(𝑥, 𝑡)∥𝐹 = �̄�1 in (2.32). Suppose also that there exists 𝑀 (𝑥, 𝑡) ≻
0, ∀𝑥, 𝑡, s.t. 𝑀𝑥𝑖 = 𝜕𝑀/𝜕𝑥𝑖 is Lipschitz with respect to 𝑥 for all 𝑖 = 1, · · · , 𝑛, i.e.,
∃𝐿𝑚 ∈ R≥0 s.t.

∥𝑀𝑥𝑖 (𝑥, 𝑡) − 𝑀𝑥𝑖 (𝑥′, 𝑡)∥ ≤ 𝐿𝑚 ∥𝑥 − 𝑥′∥, ∀𝑥, 𝑥′, 𝑡, 𝑖. (2.37)

Also, suppose that 𝑀 of (2.37) satisfies (2.26) and (2.4) with its right-hand side
replaced by −2𝛼𝑀 − 𝛼𝑠I for 𝛼𝑠 = 𝐿𝑚 (�̄�2

0 + �̄�
2
1) (𝛼𝐺 + 1/2), i.e.,

¤𝑀 + 𝑀𝜕 𝑓

𝜕𝑥
+ 𝜕 𝑓
𝜕𝑥

⊤
𝑀 ⪯ −2𝛼𝑀 − 𝛼𝑠I (2.38)

where 𝛼𝐺 ∈ R>0 is an arbitrary constant (see (2.42)). Then, the following error
bound of incremental stability holds:

E
[
∥𝜉1(𝑡) − 𝜉0(𝑡)∥2

]
≤ E[𝑉𝑠ℓ (0)]

𝑚
𝑒−2𝛼𝑡 + 𝐶

2𝛼
𝑚

𝑚
(2.39)

where 𝜉0 and 𝜉1 are the trajectories given in (2.32), 𝑉𝑠ℓ (𝑡) = 𝑉𝑠ℓ (𝑞(𝑡), 𝛿𝑞(𝑡), 𝑡) =∫ 𝜉1
𝜉0
𝛿𝑞⊤𝑀 (𝑞, 𝑡)𝛿𝑞 is given in (2.21) with the virtual state 𝑞 of (2.36), 𝑚 and 𝑚

are given in (2.26), 𝐶 = (�̄�2
0 + �̄�

2
1) (2𝛼𝐺

−1 + 1), and E denotes the expected value
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operator. Furthermore, the probability that ∥𝜉1 − 𝜉0∥ is greater than or equal to
𝜀 ∈ R>0 is given as

P [∥𝜉1(𝑡) − 𝜉0(𝑡)∥ ≥ 𝜀] ≤
1
𝜀2

(
E[𝑉𝑠ℓ (0)]

𝑚
𝑒−2𝛼𝑡 + 𝐶

2𝛼
𝑚

𝑚

)
. (2.40)

Proof. By definition of the infinitesimal differential generator given in Lemma 2.2 [25,
p. 15], we have [6], [8]

ℒ𝑉𝑠ℓ =

∫ 1

0
𝑉𝑡 +

𝑛∑︁
𝑖=1

(
𝑉𝑞𝑖 𝑓𝑖 +𝑉𝜕𝜇𝑞𝑖

(
𝜕 𝑓

𝜕𝑞
𝜕𝜇𝑞

)
𝑖

)
(2.41)

+ 1
2

𝑛∑︁
𝑖, 𝑗=1

(
𝑉𝑞𝑖𝑞 𝑗 (𝐺𝐺⊤)𝑖 𝑗 + 2𝑉𝑞𝑖𝜕𝜇𝑞 𝑗 (𝐺𝜕𝜇𝐺⊤)𝑖 𝑗 +𝑉𝜕𝜇𝑞𝑖𝜕𝜇𝑞 𝑗 (𝜕𝜇𝐺𝜕𝜇𝐺⊤)𝑖 𝑗

)
𝑑𝜇

where 𝑉 = 𝜕𝜇𝑞
⊤𝑀 (𝑞, 𝑡)𝜕𝜇𝑞, 𝜕𝜇𝑞 = 𝜕𝑞/𝜕𝜇, 𝜕𝜇𝐺 = 𝜕𝐺/𝜕𝜇, 𝑉𝑝 = 𝜕𝑉/𝜕𝑝, and

𝑉𝑝1𝑝2 = 𝜕
2𝑉/(𝜕𝑝1𝜕𝑝2).

Since 𝑀𝑥𝑖 is Lipschitz as in (2.37), we have ∥𝑀𝑥𝑖𝑥 𝑗 ∥ ≤ 𝐿𝑚 and
𝑀𝑥𝑖

 ≤ √2𝐿𝑚𝑚
using (2.26) as derived [20]. Computing ℒ𝑉𝑠ℓ of (2.41) using these bounds, the
bounds of ∥𝐺0∥𝐹 and ∥𝐺1∥𝐹 , and 𝜕𝜇𝐺 = 𝜕𝐺/𝜕𝜇 = [−𝐺0, 𝐺1] as in [6], [8] yields

ℒ𝑉𝑠ℓ ≤
∫ 1

0
𝜕𝜇𝑞

⊤( ¤𝑀 + 2 sym(𝑀 𝑓𝑥))𝜕𝜇𝑞𝑑𝜇

+ (�̄�2
0 + �̄�

2
1) (𝐿𝑚 ∥𝜕𝜇𝑞∥

2/2 + 2
√︁

2𝐿𝑚𝑚∥𝜕𝜇𝑞∥ + 𝑚)

≤
∫ 1

0
𝜕𝜇𝑞

⊤( ¤𝑀 + 2 sym(𝑀 𝑓𝑥) + 𝛼𝑠I)𝜕𝜇𝑞𝑑𝜇 + 𝐶𝑚 (2.42)

where 𝛼𝑠 = 𝐿𝑚 (�̄�2
0 + �̄�

2
1) (𝛼𝐺 + 1/2), 𝐶 = (�̄�2

0 + �̄�
2
1) (2𝛼𝐺

−1 + 1), and the relation
2𝑎𝑏 ≤ 𝛼−1

𝐺
𝑎2 + 𝛼𝐺𝑏2, which holds for any 𝑎, 𝑏 ∈ R and 𝛼𝐺 ∈ R>0, is used

with 𝑎 =
√

2𝑚 and 𝑏 =
√
𝐿𝑚 ∥𝜕𝜇𝑞∥ to get the second inequality. This reduces to

ℒ𝑉𝑠ℓ ≤ −2𝛼𝑉𝑠ℓ + 𝑚𝐶 under the condition (2.38), resulting in (2.39) and (2.40) as
a result of (2.34) and (2.35) in Lemma 2.2.

Remark 2.4. Although we consider the Gaussian white noise stochastic differential
equation (2.32) when referring to stochastic systems in this thesis, other types of
stochastic noises, including compound Poisson shot noise and bounded-measure
Lévy noise, could be considered as in Theorem 2.5 using contraction theory [30].
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2.3 Finite-Gain Stability and Contraction of Hierarchically Combined Sys-
tems

Due to the simpler stability analysis of Theorem 2.1 when compared with Lyapunov
theory, Input-to-State Stability (ISS) and input-output stability in the sense of finite-
gain L𝑝 stability can be easily studied using contraction theory [5].

Theorem 2.6. If (2.24) is perturbed by 𝑑 (𝑥, 𝑡) ∈ L𝑝𝑒 (i.e., ∥(𝑑)𝜏∥L𝑝 < ∞ for
𝜏 ∈ R≥0 and 𝑝 ∈ [1,∞], see Sec. 1.3) and Theorem 2.1 holds, then (2.24) is
finite-gain L𝑝 stable with 𝑝 ∈ [1,∞] for an output 𝑦 = ℎ(𝑥, 𝑑, 𝑡) with

∫ 𝑌1
𝑌0
∥𝛿𝑦∥ ≤

𝜂0
∫ 𝜉1
𝜉0
∥𝛿𝑥∥ + 𝜂1∥𝑑∥, ∃𝜂0, 𝜂1 ≥ 0, i.e., ∀𝜏 ∈ R≥0 [5](∫ 𝑌1

𝑌0

∥𝛿𝑦∥
)
𝜏


L𝑝
≤

(𝜂0
𝛼
+ 𝜂1

) ∥(Θ𝑑)𝜏∥L𝑝√
𝑚

+ 𝜂0𝜁𝑉ℓ (0)√
𝑚

(2.43)

where 𝑌0 and 𝑌1 denote the output trajectories of the original contracting system
(2.1) and its perturbed system (2.24), respectively, 𝑚 is defined as 𝑀 (𝑥, 𝑡) ⪰ 𝑚I,
∀𝑥, 𝑡, as in (2.26), and 𝑉ℓ (0) = 𝑉ℓ (𝑥(0), 𝛿𝑥(0), 0) for 𝑉ℓ in (2.22). Also, 𝜁 = 1 if
𝑝 = ∞ and 𝜁 = 1/(𝛼𝑝)1/𝑝 if 𝑝 ∈ [1,∞). The perturbed system (2.24) also exhibits
ISS.

Proof. In keeping with Theorem 5.1 of [9], (2.28) also implies the following relation
for 𝑀 = Θ⊤Θ:

∥(𝑉ℓ)𝜏∥L𝑝 ≤ 𝑉ℓ (0)∥(𝑒−𝛼𝑡)𝜏∥L𝑝 + ∥𝑒−𝛼𝑡 ∥L1 ∥(Θ𝑑)𝜏∥L𝑝 ≤ 𝑉ℓ (0)𝜁 + ∥(Θ𝑑)𝜏∥L𝑝/𝛼.
(2.44)

Since we have ∥Θ−1∥ ≤ 1/√𝑚 for 𝑀 = Θ⊤Θ, (2.43) can be obtained by using both
(2.44) and the known bound of ∥𝛿𝑦∥, thereby yielding a finiteL𝑝 gain independently
of 𝜏. ISS can be guaranteed by Lemma 4.6 of [9, p. 176], which states that
exponential stability of an unperturbed system results in ISS.

Theorems 2.1 – 2.6 are also applicable to the hierarchically combined system of two
contracting dynamics due to Theorem 2.7 [2], [31].

Theorem 2.7. Consider the following hierarchically combined system of two con-
tracting dynamics:

𝑑

𝑑𝑡

[
𝛿𝑧0

𝛿𝑧1

]
=

[
𝐹00 0
𝐹10 𝐹11

] [
𝛿𝑧0

𝛿𝑧1

]
(2.45)
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where 𝐹 = 𝐹00 and 𝐹 = 𝐹11 both satisfy the contraction condition (2.3), and
suppose that it is subject to perturbation [𝑑0, 𝑑1]⊤. Then the path length integral
𝑉ℓ,𝑖 (𝑡) =

∫ 𝜉1
𝜉0
∥𝛿𝑧𝑖∥ with 𝑖 = 0, 1 between the original and perturbed dynamics

trajectories, 𝜉0 and 𝜉1, respectively, verifies [1]

¤𝑉ℓ,0 + 𝛼0𝑉ℓ,0 ≤ ∥Θ0𝑑0∥ (2.46)

¤𝑉ℓ,1 + 𝛼1𝑉ℓ,1 ≤ ∥Θ1𝑑1∥ +
∫ 𝜉1

𝜉0

∥𝐹10∥∥𝛿𝑧1∥ (2.47)

where 𝛼𝑖 = sup𝑥,𝑡 |𝜆max(𝐹𝑖𝑖) |, 𝑖 = 0, 1. Hence, the error bounds of𝑉ℓ,0(𝑡) and𝑉ℓ,1(𝑡)
can be obtained using Theorem 2.4 if ∥𝐹10∥ is bounded. In particular, if ∥Θ𝑖𝑑𝑖∥ ≤√
𝑚𝑖𝑑𝑖, 𝑖 = 0, 1, the relations (2.46) and (2.47) yield 𝑉ℓ,0(𝑡) ≤ 𝑉ℓ,0(0)𝑒−𝛼0𝑡 +
(
√
𝑚0𝑑0/𝛼0) (1 − 𝑒−𝛼0𝑡) as in (2.27), and

𝑉ℓ,1(𝑡) ≤ 𝑉ℓ,1(0)𝑒−𝛼1𝑡 +
√
𝑚1𝑑1 + 𝑓10�̄�0

𝛼1
(1 − 𝑒−𝛼1𝑡) (2.48)

where 𝑓10 = sup𝑡∈R≥0
∥𝐹10∥ and �̄�0 = 𝑉ℓ,0(0) +

√
𝑚0𝑑0/𝛼0.

Also, similar to Theorem 2.6, we have ∥(𝑉ℓ,0)𝜏∥L𝑝 ≤ 𝑉ℓ,0(0)𝜁0 + ∥(Θ0𝑑0)𝜏∥L𝑝/𝛼0,
and thus a hierarchical connection for finite-gain L𝑝 stability can be established as
follows [5]:

∥(𝑉ℓ,1)𝜏∥L𝑝 ≤ 𝑉ℓ,1(0)𝜁1 +
∥(Θ1𝑑1)𝜏∥L𝑝 + 𝑓10∥(𝑉ℓ,0)𝜏∥L𝑝

𝛼1
(2.49)

where 𝜁𝑖 = 1 if 𝑝 = ∞ and 𝜁𝑖 = 1/(𝛼𝑖𝑝)1/𝑝 if 𝑝 ∈ [1,∞) for 𝑖 = 0, 1. By recursion,
this result can be extended to an arbitrary number of hierarchically combined
groups.

Proof. Applying the comparison lemma of Lemma 2.1 to (2.46) and (2.47), which
follow from the differenital dynamics (2.45) with the condition (2.3), we get (2.48) as
in Theorem 2.4. Similarly, (2.49) follows from obtaining ∥(𝑉ℓ,0)𝜏∥L𝑝 by (2.44) using
(2.46), and then recursively obtaining ∥(𝑉ℓ,1)𝜏∥L𝑝 using (2.47) as in Theorem 2.6 [5].

Example 2.7. As demonstrated in Example 2.6, the Lagrangian virtual system (2.19)
is contracting with respect to 𝑞, having 𝑞 = ¤q and 𝑞 = ¤q𝑟 = ¤q𝑑 − Λ(q − q𝑑) as its
particular solutions. Let 𝑞0 = 𝑞 for such 𝑞. The virtual system of 𝑞1 which has
[𝑞⊤0 , 𝑞

⊤
1 ]
⊤ = [ ¤q⊤, q⊤]⊤ and [ ¤q⊤𝑟 , q⊤𝑑 ]

⊤ as its particular solutions is given as

¤𝑞1 = 𝑞0 − Λ(𝑞1 − q)
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resulting in 𝛿 ¤𝑞1 = I𝛿𝑞0 − Λ𝛿𝑞1. Since the virtual system of 𝑞0 is contracting as
in Example 2.6 and the virtual system 𝛿 ¤𝑞1 = −Λ𝛿𝑞1 is contracting in 𝑞1 due to
Λ ≻ 0, (2.48) of Theorem 2.7 implies that the whole system (2.17) for [𝑞⊤0 , 𝑞

⊤
1 ]
⊤

is hierarchically contracting and robust against perturbation in the sense of Theo-
rem 2.7 (𝐹10 = I in this case). Also, see [5], [32] for the hierarchical multi-timescale
separation of tracking and synchronization control for multiple Lagrangian systems.

2.4 Contraction Theory for Discrete-time Systems
The results presented so far can be readily extended to those for discrete-time
nonlinear systems.

2.4.I Deterministic Perturbation
Let us consider the following nonlinear system with bounded deterministic pertur-
bation 𝑑𝑘 : R𝑛 × N ↦→ R𝑛 with 𝑑 ∈ R≥0 s.t. 𝑑 = sup𝑥,𝑘 ∥𝑑𝑘 (𝑥, 𝑘)∥:

𝑥(𝑘 + 1) = 𝑓𝑘 (𝑥(𝑘), 𝑘) + 𝑑𝑘 (𝑥(𝑘), 𝑘) (2.50)

where 𝑘 ∈ N, 𝑥 : N ↦→ R𝑛 is the discrete system state, and 𝑓𝑘 : R𝑛 × N ↦→ R𝑛

is a smooth function. Although this thesis focuses mainly on continuous-time
nonlinear systems, let us briefly discuss contraction theory for (2.50) to imply
that the techniques in the subsequent chapters are applicable also to discrete-time
nonlinear systems.

Let 𝜉0(𝑘) and 𝜉1(𝑘) be solution trajectories of (2.50) with 𝑑𝑘 = 0 and 𝑑𝑘 ≠ 0,
respectively. Then a virtual system of 𝑞(𝜇, 𝑘) parameterized by 𝜇 ∈ [0, 1], which
has 𝑞(𝜇 = 0, 𝑘) = 𝜉0(𝑘) and 𝑞(𝜇 = 1, 𝑘) = 𝜉1(𝑘) as its particular solutions, can be
expressed as follows:

𝑞(𝜇, 𝑘 + 1) = 𝑓𝑘 (𝑞(𝜇, 𝑘), 𝑘) + 𝜇𝑑𝑘 (𝜉1(𝑘), 𝑘). (2.51)

The discrete version of robust contraction in Theorem 2.4 is given in the following
theorem.

Theorem 2.8. Let 𝑥𝑘 = 𝑥(𝑘) and 𝑞𝑘 = 𝑞(𝜇, 𝑘) for any 𝑘 ∈ N. If there exists a uni-
formly positive definite matrix𝑀𝑘 (𝑥𝑘 , 𝑘) = Θ𝑘 (𝑥𝑘 , 𝑘)⊤Θ𝑘 (𝑥𝑘 , 𝑘) ≻ 0, ∀𝑥𝑘 , 𝑘 , where
Θ𝑘 defines a smooth coordinate transformation of 𝛿𝑥𝑘 , i.e., 𝛿𝑧𝑘 = Θ𝑘 (𝑥𝑘 , 𝑘)𝛿𝑥𝑘 , s.t.
either of the following equivalent conditions holds for ∃𝛼 ∈ (0, 1), ∀𝑥𝑘 , 𝑘:Θ𝑘+1(𝑥𝑘+1, 𝑘 + 1) 𝜕 𝑓𝑘

𝜕𝑥𝑘
Θ𝑘 (𝑥𝑘 , 𝑘)−1

 ⪯ 𝛼 (2.52)

𝜕 𝑓𝑘

𝜕𝑥𝑘

⊤
𝑀𝑘+1(𝑥𝑘+1, 𝑘 + 1) 𝜕 𝑓𝑘

𝜕𝑥𝑘
⪯ 𝛼2𝑀𝑘 (𝑥𝑘 , 𝑘), (2.53)
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then we have the following bound as long as we have 𝑚I ⪯ 𝑀𝑥 (𝑥𝑘 , 𝑘) ⪯ 𝑚I, ∀𝑥𝑘 , 𝑘 ,
as in (2.26):

∥𝜉1(𝑘) − 𝜉0(𝑘)∥ ≤
𝑉ℓ (0)√
𝑚
𝛼𝑘 + 𝑑 (1 − 𝛼

𝑘 )
1 − 𝛼

√︄
𝑚

𝑚
(2.54)

where 𝑉ℓ (𝑘) =
∫ 𝜉1
𝜉0
∥Θ𝑘 (𝑞𝑘 , 𝑘)𝛿𝑞𝑘 ∥ as in (2.22) for the unperturbed trajectory 𝜉0,

perturbed trajectory 𝜉1, and virtual state 𝑞𝑘 = 𝑞(𝑘) given in (2.51).

Proof. If (2.52) or (2.53) holds, we have that

𝑉ℓ (𝑘 + 1) ≤
∫ 1

0
∥Θ𝑘+1(𝜕𝑞𝑘 𝑓𝑘 (𝑞𝑘 , 𝑘)𝜕𝜇𝑞𝑘 + 𝑑𝑘 (𝑥𝑘 , 𝑘))∥𝑑𝜇

≤ 𝛼
∫ 1

0
∥Θ𝑘 (𝑞𝑘 , 𝑘)𝜕𝜇𝑞𝑘 ∥𝑑𝜇 + 𝑑

√
𝑚 = 𝛼𝑉ℓ (𝑘) + 𝑑

√
𝑚

where Θ𝑘+1 = Θ𝑘+1(𝑞𝑘+1, 𝑘 + 1), 𝜕𝑞𝑘 𝑓𝑘 (𝑞𝑘 , 𝑘) = 𝜕 𝑓𝑘/𝜕𝑞𝑘 , and 𝜕𝜇𝑞𝑘 = 𝜕𝑞𝑘/𝜕𝜇.
Applying this inequality iteratively results in (2.54).

Theorem 2.8 can be used with Theorem 2.4 for stability analysis of hybrid nonlin-
ear systems [33]–[35], or with Theorem 2.5 for stability analysis of discrete-time
stochastic nonlinear systems [6], [8], [35]. For example, it is shown in [6] that if
the time interval in discretizing (2.1) as (2.50) is sufficiently small, contraction of
discrete-time systems with stochastic perturbation reduces to that of continuous-time
systems as follows.

2.4.II Stochastic Perturbation
Let us also present a discrete-time version of Theorem 2.5, which can be extensively
used for proving the stability of discrete-time and hybrid stochastic nonlinear sys-
tems, along with known results for deterministic systems [33], [34]. Consider the
discrete-time nonlinear system with stochastic perturbation modeled by the stochas-
tic difference equation

𝑥(𝑘 + 1) = 𝑓𝑘 (𝑥(𝑘), 𝑘) + 𝐺𝑘 (𝑥(𝑘), 𝑘)𝑤(𝑘) (2.55)

where𝐺𝑘 : R𝑛×N→ R𝑛×𝑑 is a matrix-valued function and 𝑤(𝑘) is a 𝑑-dimensional
sequence of zero mean uncorrelated normalized Gaussian random variables. Con-
sider the following two systems with trajectories 𝜉0(𝑘) and 𝜉1(𝑘) driven by two
independent stochastic perturbation 𝑤0(𝑘) and 𝑤1(𝑘):

𝜉𝑖 (𝑘 + 1) = 𝑓𝑘 (𝜉𝑖 (𝑘), 𝑘) + 𝐺𝑖,𝑘 (𝜉𝑖 (𝑘), 𝑘)𝑤𝑖 (𝑘), 𝑖 = 0, 1, (2.56)
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Similar to (2.36), a virtual system of 𝑞(𝜇, 𝑘) parameterized by 𝜇 ∈ [0, 1], which
has 𝑞(𝜇 = 0, 𝑘) = 𝜉0(𝑘) and 𝑞(𝜇 = 1, 𝑘) = 𝜉1(𝑘) as its particular solutions, can be
given as follows:

𝑞(𝜇, 𝑘 + 1) = 𝑓𝑘 (𝑞(𝜇, 𝑘), 𝑘) + 𝐺𝑘 (𝜇, 𝜉0(𝑘), 𝜉1(𝑘), 𝑘)𝑤(𝑘) (2.57)

where𝐺𝑘 (𝜇, 𝜉0(𝑘), 𝜉1(𝑘), 𝑘) = [(1−𝜇)𝐺0,𝑘 (𝜉0(𝑘), 𝑘), 𝜇𝐺1,𝑘 (𝜉1(𝑘), 𝑘)] and𝑤(𝑘) =
[𝑤0(𝑘)⊤, 𝑤1(𝑘)⊤]⊤. The following theorem analyzes stochastic incremental stabil-
ity for discrete-time nonlinear systems (2.56), which is different from [26], [35] in
that the stability is studied in a differential sense and its Riemannian metric is state-
and time-dependent.

Theorem 2.9. Suppose that (2.53) holds for the discrete-time deterministic system
(2.56) with 𝛼2 = 1 − 𝛾𝑑 and that∃𝑚, 𝑚 ∈ R>0 and �̄�0𝑑 , �̄�1𝑑 ∈ R≥0 s.t. 𝑚𝐼 ⪯
𝑀𝑘 (𝑥, 𝑘) ⪯ 𝑚𝐼, ∀𝑥, 𝑘 , sup𝑥,𝑘 ∥𝐺1,𝑘 (𝑥, 𝑘)∥𝐹 = �̄�0𝑑 , and sup𝑥,𝑘 ∥𝐺2,𝑘 (𝑥, 𝑘)∥𝐹 =

�̄�1𝑑 . Suppose also that ∃𝛾2 ∈ (0, 1) s.t. 𝛾2 ≤ 1 − (𝑚/𝑚) (1 − 𝛾𝑑), where 𝛾𝑑 is
the contraction rate. Consider the generalized squared length with respect to a
Riemannian metric 𝑀𝑘 (𝑞(𝜇, 𝑘), 𝑘) defined as

𝑉𝑠ℓ (𝑞, 𝛿𝑞, 𝑘) =
∫ 𝜉1

𝜉0

𝛿𝑞⊤𝑀𝑘 (𝑞(𝜇, 𝑘), 𝑘)𝛿𝑞 =

∫ 1

0

𝜕𝑞

𝜕𝜇

⊤
𝑀𝑘 (𝑞(𝜇, 𝑘), 𝑘)

𝜕𝑞

𝜕𝜇
𝑑𝜇 (2.58)

s.t. 𝑉𝑘 (𝑞, 𝛿𝑞, 𝑘) ≥ 𝑚∥𝜉1(𝑘) − 𝜉0(𝑘)∥2. Then the mean squared distance between
the two trajectories of the system (2.56) is bounded as follows:

E
[
∥𝜉1(𝑘) − 𝜉0(𝑘)∥2

]
≤

1 − �̃�𝑘
𝑑

1 − �̃�𝑑
𝐶𝑑 +

�̃�𝑘
𝑑

𝑚
𝐸 [𝑉𝑠ℓ (0)] . (2.59)

where 𝑉𝑠ℓ (0) = 𝑉𝑠ℓ (𝑞(0), 𝛿𝑞(0), 0), 𝐶𝑑 = (𝑚/𝑚) (�̄�2
0𝑑 + �̄�

2
1𝑑), and �̃�𝑑 = 1 − 𝛾2 ∈

(0, 1).

Proof. Let 𝑞𝑘 = 𝑞(𝜇, 𝑘), 𝑤𝑘 = 𝑤(𝑘), 𝑉𝑘 = 𝑉𝑠ℓ (𝑞(𝜇, 𝑘), 𝛿𝑞(𝜇, 𝑘), 𝑘), and 𝑀𝑘 =

𝑀𝑘 (𝑞(𝜇, 𝑘), 𝑘) for any 𝑘 ∈ N for notational simplicity. Using the assumed bounds
along with (2.53) (𝛼2 = 1 − 𝛾𝑑) and (2.57), we have, for ℓ ∈ N, that

𝑉ℓ+1 ≤ 𝑚
∫ 1

0

 𝜕 𝑓ℓ𝜕𝑞ℓ

𝜕𝑞ℓ

𝜕𝜇
+ 𝜕𝐺ℓ

𝜕𝜇
𝑤ℓ

2
𝑑𝜇 (2.60)

≤ 𝑚
𝑚
(1 − 𝛾𝑑)

∫ 1

0

𝜕𝑞ℓ

𝜕𝜇

⊤
𝑀ℓ

𝜕𝑞ℓ

𝜕𝜇
𝑑𝜇

+ 𝑚
∫ 1

0

(
2
𝜕𝑞ℓ

𝜕𝜇

⊤ 𝜕 𝑓ℓ
𝜕𝑞ℓ

⊤ 𝜕𝐺ℓ

𝜕𝜇
𝑤ℓ + 𝑤⊤ℓ

𝜕𝐺ℓ

𝜕𝜇

⊤ 𝜕𝐺ℓ

𝜕𝜇
𝑤ℓ

)
𝑑𝜇.
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Taking the conditional expected value of (2.60) when 𝑞ℓ, 𝛿𝑞ℓ, and ℓ are given, we
have that (see also: Theorem 2 of [26])

E𝜁ℓ [𝑉ℓ+1] ≤ 𝛾𝑚𝑉ℓ + 𝑚E𝜁ℓ
[∫ 1

0
𝑤⊤ℓ

𝜕𝐺ℓ

𝜕𝜇

⊤ 𝜕𝐺ℓ

𝜕𝜇
𝑤ℓ𝑑𝜇

]
≤ 𝛾𝑚𝑉ℓ +

∑︁
𝑖=1,2

𝑚E𝜁ℓ

[
Tr

(
𝑤𝑖,ℓ𝑤

⊤
𝑖,ℓ𝐺

⊤
𝑖,ℓ𝐺𝑖,ℓ

)]
≤ 𝛾𝑚𝑉ℓ + 𝑚

∑︁
𝑖=1,2

Tr
(
𝐺⊤𝑖,ℓ𝐺𝑖,ℓ

)
≤ �̃�𝑑𝑉ℓ + 𝑚𝐶𝑑 , (2.61)

where 𝛾𝑚 = 𝑚/𝑚(1 − 𝛾𝑑), and 𝑞ℓ, 𝛿𝑞ℓ, and ℓ are denoted as 𝜁ℓ. Here, we used the
condition: ∃𝛾2 ∈ (0, 1) s.t. 𝛾𝑚 ≤ 1 − 𝛾2 = �̃�𝑑 . Taking expectation over 𝜁ℓ−1 in
(2.61) with the tower rule E𝜁ℓ−1 [𝑉ℓ+1] = E𝜁ℓ−1 [E𝜁ℓ [𝑉ℓ+1]] gives us that

E𝜁ℓ−1 [𝑉ℓ+1] ≤ �̃�2
𝑑𝑉ℓ−1 + 𝑚𝐶𝑑 + 𝑚𝐶𝑑 �̃�𝑑

where �̃�𝑑 is defined as �̃�𝑑 = 1 − 𝛾2. Continuing this operation with the relation
𝑚E𝜁0

[
∥𝜉1,ℓ+1 − 𝜉2,ℓ+1∥2

]
≤ E𝜁0 [𝑉ℓ+1] yields

E𝜁0

[
∥𝜉1,𝑘 − 𝜉2,𝑘 ∥2

]
−
�̃�𝑘
𝑑

𝑚
𝑉0 ≤ 𝐶𝑑

𝑘−1∑︁
𝑖=0

�̃�𝑖𝑑 =
1 − �̃�𝑘

𝑑

1 − �̃�𝑑
𝐶𝑑

where 𝑘 = ℓ + 1. Taking expectation over 𝜁0 and rearranging terms result in
(2.59).

2.4.III Connection between Continuous and Discrete Stochastic Contraction
Theory

Let us now consider the case where the time interval Δ𝑡 = 𝑡𝑘+1− 𝑡𝑘 for discretization
is sufficiently small, i.e., Δ𝑡 ≫ (Δ𝑡)2. Then the continuous-time stochastic system
(2.29) can be discretized as

𝑥(𝑘 + 1) = 𝑥(𝑘) +
∫ 𝑡𝑘+1

𝑡𝑘

𝑓 (𝑥(𝑡), 𝑡)𝑑𝑡 + 𝐺 (𝑥(𝑡), 𝑡)𝑑𝒲(𝑡)

= 𝑥(𝑘) + 𝑓 (𝑥(𝑘), 𝑡𝑘 )Δ𝑡 + 𝐺 (𝑥(𝑘), 𝑡𝑘 )Δ𝒲(𝑘) + O
(
Δ𝑡2

)
where 𝑥(𝑘) = 𝑥(𝑡𝑘 ), Δ𝒲(𝑘) =

√
Δ𝑡𝑤(𝑘), and 𝑤(𝑘) is a 𝑑-dimensional sequence of

zero mean uncorrelated normalized Gaussian random variables. When Δ𝑡 ≫ (Δ𝑡)2,
𝑓𝑘 (𝑥(𝑘), 𝑘) and 𝐺𝑘 (𝑥(𝑘), 𝑘) in (2.55) can be approximated as 𝑓𝑘 (𝑥(𝑘), 𝑘) ≃ 𝑥(𝑘) +
𝑓 (𝑥(𝑘), 𝑡𝑘 )Δ𝑡 and 𝐺𝑘 (𝑥(𝑘), 𝑘) ≃

√
Δ𝑡𝐺 (𝑥(𝑘), 𝑡𝑘 ). In this situation, we have the

following theorem that connects the stochastic incremental stability of discrete-time
systems with that of continuous-time systems.
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Theorem 2.10. Suppose that (2.61) in Theorem 2.9 holds with �̃�𝑑 = 1− 𝛾2 ∈ (0, 1).
Then the expected value of 𝑉𝑘+1 up to first order in Δ𝑡 is given as E𝜁𝑘 [𝑉𝑘+1] =
𝑉𝑘 + Δ𝑡ℒ𝑉𝑘 , where 𝑉𝑘 = 𝑉𝑠ℓ (𝑞(𝜇, 𝑘), 𝛿𝑞(𝜇, 𝑘), 𝑘) for 𝑉𝑠ℓ of (2.58) and ℒ is the
infinitesimal differential generator. Furthermore, the following inequality holds:

ℒ𝑉𝑠ℓ (𝑞𝑘 , 𝛿𝑞𝑘 , 𝑡𝑘 ) ≤ −
𝛾2
Δ𝑡
𝑉𝑠ℓ (𝑞,𝛿𝑞𝑘 , 𝑡𝑘 ) + 𝑚�̃�𝑐 (2.62)

where 𝑞𝑘 = 𝑞(𝜇, 𝑘) �̃�𝑐 is a positive constant given as

�̃�𝑐 =
𝐶𝑑

Δ𝑡
=

𝑚

𝑚Δ𝑡
(�̄�2

0𝑑 + �̄�
2
1𝑑) =

𝑚

𝑚
(�̄�2

0 + �̄�
2
1) (2.63)

with �̄�0 and �̄�1 defined in Theorem 2.5.

Proof. Let 𝑀𝑘 = 𝑀𝑘 (𝑞(𝜇, 𝑘), 𝑘). 𝑀𝑘+1 up to first order in Δ𝑡 is written as

𝑀𝑘+1 =
𝜕𝑀𝑘

𝜕𝑡𝑘
Δ𝑡 +

𝑛∑︁
𝑖=1

𝜕𝑀𝑘

𝜕 (𝑞𝑘 )𝑖
( 𝑓𝑐,𝑘Δ𝑡 + 𝐺𝑐,𝑘Δ𝒲𝑘 )𝑖 (2.64)

+ 1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜕2𝑀𝑘

𝜕 (𝑞𝑘 )𝑖𝜕 (𝑞𝑘 ) 𝑗
(𝐺𝑐,𝑘Δ𝒲𝑘 )𝑖 (𝐺𝑐,𝑘Δ𝒲𝑘 ) 𝑗 + 𝑀𝑘 + O

(
Δ𝑡2

)
where 𝑓𝑐,𝑘 and 𝐺𝑐,𝑘 are defined as 𝑓𝑐,𝑘 = 𝑓 (𝑞𝑘 , 𝑡𝑘 ) and 𝐺𝑐,𝑘 = 𝐺 (𝑞𝑘 , 𝑡𝑘 ) for
notational simplicity. The subscripts 𝑖 and 𝑗 denote the corresponding vectors’ 𝑖th
and 𝑗 th elements. Similarly, 𝜕𝑞𝑘+1/𝜕𝜇 up to first order in Δ𝑡 can be computed as

𝜕𝑞𝑘+1
𝜕𝜇

=
𝜕𝑞𝑘

𝜕𝜇
+ 𝜕 𝑓𝑐,𝑘
𝜕𝑞𝑘

𝜕𝑞𝑘

𝜕𝜇
Δ𝑡 + 𝜕𝐺𝑐,𝑘

𝜕𝜇
Δ𝒲𝑘 + O

(
Δ𝑡2

)
. (2.65)

Substituting (2.64) and (2.65) into E𝜁𝑘 [𝑉𝑘+1] yields

E𝜁𝑘 [𝑉𝑘+1] = E𝜁𝑘
[∫ 1

0

𝜕𝑞𝑘+1
𝜕𝜇

⊤
𝑀𝑘+1

𝜕𝑞𝑘+1
𝜕𝜇

𝑑𝜇

]
= 𝑉𝑘 + (𝑑𝑉𝑑,𝑘 + 𝑑𝑉𝑠,𝑘 )Δ𝑡 + O(Δ𝑡3/2)

where 𝑑𝑉𝑑,𝑘 and 𝑑𝑉𝑠,𝑘 are given by

𝑑𝑉𝑑,𝑘 =

∫ 1

0

𝜕𝑞𝑘

𝜕𝜇

⊤ (𝜕 𝑓𝑐,𝑘
𝜕𝑞𝑘

⊤
𝑀𝑘 + ¤𝑀𝑘 + 𝑀𝑘

𝜕 𝑓𝑐,𝑘

𝜕𝑞𝑘

)
𝜕𝑞𝑘

𝜕𝜇
𝑑𝜇

with ¤𝑀𝑘 = 𝜕𝑀𝑘/𝜕𝑡𝑘 +
∑𝑛
𝑖=1(𝜕𝑀𝑘/𝜕 (𝑞𝑘 )𝑖) 𝑓𝑐,𝑘 and

𝑑𝑉𝑠,𝑘 =

∫ 1

0


𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
(𝑀𝑘 )𝑖 𝑗

(
𝜕𝐺𝑐,𝑘

𝜕𝜇

𝜕𝐺𝑐,𝑘

𝜕𝜇

⊤)
𝑖 𝑗

+ 2
𝜕 (𝑀𝑘 )𝑖
𝜕 (𝑞𝑘 ) 𝑗

𝜕𝑞𝑘

𝜕𝜇

(
𝐺𝑐,𝑘

𝜕𝐺𝑐,𝑘

𝜕𝜇

⊤)
𝑖 𝑗

+1
2
𝜕𝑞𝑘

𝜕𝜇

⊤ 𝜕2𝑀𝑘

𝜕 (𝑞𝑘 )𝑖𝜕 (𝑞𝑘 ) 𝑗
𝜕𝑞𝑘

𝜕𝜇
(𝐺𝑐,𝑘𝐺

⊤
𝑐,𝑘 )𝑖 𝑗

]
𝑑𝜇.
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We note that the properties of 𝑤(𝑘) as a 𝑑-dimensional sequence of zero mean un-
correlated normalized Gaussian random variables are used to derive these relations.
Since 𝑑𝑉𝑑,𝑘 + 𝑑𝑉𝑠,𝑘 = ℒ𝑉𝑘 where ℒ is the infinitesimal differential generator, we
have E𝜁𝑘 [𝑉𝑘+1] = 𝑉𝑘 + Δ𝑡ℒ𝑉𝑘 . Thus, the condition E𝜁𝑘 [𝑉𝑘+1] ≤ (1 − 𝛾2)𝑉𝑘 + 𝑚𝐶𝑑
given by (2.61) in Theorem 2.9 reduces to the following inequality:

ℒ𝑉𝑘 (𝑞𝑘 , 𝜕𝜇𝑞𝑘 , 𝑡𝑘 ) ≤ −
𝛾2
Δ𝑡
𝑉𝑘 (𝑞𝑘 , 𝜕𝜇𝑞𝑘 , 𝑡𝑘 ) + 𝑚

𝐶𝑑

Δ𝑡
. (2.66)

Finally, (2.66) with the relations �̃�𝑐 = 𝐶𝑑/Δ𝑡 and 𝐺𝑘 (𝑞𝑘 , 𝑘) =
√
Δ𝑡𝐺 (𝑞𝑘 , 𝑡𝑘 ) results

in (2.62) and (2.63).

For example, in practical control applications, we use the same control input at
𝑡 = 𝑡𝑘 for a finite time interval 𝑡 ∈ [𝑡𝑘 , 𝑡𝑡+1). Theorems 2.5 and 2.10 indicate that
if Δ𝑡 is sufficiently small, a discrete-time stochastic controller can be viewed as a
continuous-time counterpart with contraction rate 2𝛾1 = 𝛾2/Δ𝑡. We will illustrate
how to select the sampling period Δ𝑡 large enough without deteriorating the control
performance as demonstrated in [6].

We finally remark that the steady-state upper bounds of (2.27) in Theorem 2.4, (2.39)
in Theorem 2.5, and (2.54) in Theorem 2.8 are all functions of 𝑚/𝑚. This property
is to be used extensively in Chapter 4 for designing a convex optimization-based
control and estimation synthesis algorithm via contraction theory.
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C h a p t e r 3

ROBUST NONLINEAR CONTROL AND ESTIMATION VIA
CONTRACTION THEORY

[1] H. Tsukamoto and S.-J. Chung, “Robust controller design for stochastic
nonlinear systems via convex optimization,” IEEE Trans. Autom. Control,
vol. 66, no. 10, pp. 4731–4746, 2021.

[2] H. Tsukamoto and S.-J. Chung, “Convex optimization-based controller de-
sign for stochastic nonlinear systems using contraction analysis,” in IEEE
Conf. Decis. Control, Dec. 2019, pp. 8196–8203.

As shown in Theorem 2.4 for deterministic disturbance and in Theorem 2.5 for
stochastic disturbance, contraction theory provides explicit bounds on the distance
of any couple of perturbed system trajectories. This property is useful in design-
ing robust and optimal feedback controllers for a nonlinear system such as H∞
control [1]–[11], which attempts to minimize the system L2 gain for optimal distur-
bance attenuation.

Most of such feedback control and estimation schemes are, however, based on
the assumption that we know a Lyapunov function candidate. This chapter thus
delineates one approach to solve a nonlinear optimal feedback control problem via
contraction theory [12], [13], thereby proposing one explicit way to construct a
Lyapunov function and contraction metric for general nonlinear systems for the sake
of robustness. This approach is also utilizable for optimal state estimation problems
as shall be seen in Chapter 4.

We consider the following smooth nonlinear system, perturbed by bounded deter-
ministic disturbances 𝑑𝑐 (𝑥, 𝑡) with sup𝑥,𝑡 ∥𝑑𝑐 (𝑥, 𝑡)∥ = 𝑑𝑐 ∈ R≥0 or by Gaussian
white noise, driven by a Wiener process 𝒲(𝑡) with sup𝑥,𝑡 ∥𝐺𝑐 (𝑥, 𝑡)∥𝐹 = �̄�𝑐 ∈ R≥0:

¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢 + 𝑑𝑐 (𝑥, 𝑡) (3.1)

𝑑𝑥 = ( 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢)𝑑𝑡 + 𝐺𝑐 (𝑥, 𝑡)𝑑𝒲(𝑡) (3.2)

¤𝑥𝑑 = 𝑓 (𝑥𝑑 , 𝑡) + 𝐵(𝑥𝑑 , 𝑡)𝑢𝑑 (3.3)

where 𝑥 : R≥0 ↦→ R𝑛 is the system state, 𝑢 ∈ R𝑚 is the system control input,
𝑓 : R𝑛 × R≥0 ↦→ R𝑛 and 𝐵 : R𝑛 × R≥0 ↦→ R𝑛×𝑚 are known smooth functions,

https://ieeexplore.ieee.org/document/9261103
https://ieeexplore.ieee.org/document/9261103
https://ieeexplore.ieee.org/document/9028942
https://ieeexplore.ieee.org/document/9028942
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𝑑𝑐 : R𝑛 × R≥0 ↦→ R𝑛 and 𝐺𝑐 : R𝑛 × R≥0 ↦→ R𝑛×𝑤 are unknown bounded functions
for external disturbances, and 𝒲 : R≥0 ↦→ R𝑤 is a 𝑤-dimensional Wiener process.
Also, for (3.3), 𝑥𝑑 : R≥0 ↦→ R𝑛 and 𝑢𝑑 : R≥0 ↦→ R𝑚 denote the desired target state
and control input trajectories, respectively.

Remark 3.1. We consider control-affine nonlinear systems (3.1) – (3.3) in Chapter 3,
4, and 6 – 8.1. This is primarily because the controller design techniques for
control-affine nonlinear systems are less complicated than those for control non-
affine systems (which often result in 𝑢 given implicitly by 𝑢 = 𝑘 (𝑥, 𝑢, 𝑡) [14], [15]),
but still utilizable even for the latter, e.g., by treating ¤𝑢 as another control input (see
Example 3.1), or by solving the implicit equation 𝑢 = 𝑘 (𝑥, 𝑢, 𝑡) iteratively with a
discrete-time controller (see Example 3.2 and Remark 3.3).

Example 3.1. By using ¤𝑢 instead of 𝑢 in (3.1) and (3.2), a control non-affine system,
¤𝑥 = 𝑓 (𝑥, 𝑢, 𝑡), can be rewritten as

𝑑

𝑑𝑡

[
𝑥

𝑢

]
=

[
𝑓 (𝑥, 𝑢, 𝑡)

0

]
+
[
0
I

]
¤𝑢

which can be viewed as a control-affine nonlinear system with the state [𝑥⊤, 𝑢⊤]⊤

and control ¤𝑢.

Example 3.2. One drawback of the technique in Example 3.1 is that we have to
control ¤𝑢 instead of 𝑢, which could be difficult in practice. In this case, we can
utilize the following control non-affine nonlinear system decomposed into control-
affine and non-affine parts:

¤𝑥 = 𝑓 (𝑥, 𝑢, 𝑡) = 𝑓𝑎 (𝑥, 𝑡) + 𝐵𝑎 (𝑥, 𝑡)𝑢 + 𝑟 (𝑥, 𝑢, 𝑡)

where 𝑟 (𝑥, 𝑢, 𝑡) = 𝑓 (𝑥, 𝑢, 𝑡) − 𝑓𝑎 (𝑥, 𝑡) − 𝐵𝑎 (𝑥, 𝑡)𝑢. The controller 𝑢 can now be
designed implicitly as

𝐵𝑎 (𝑥, 𝑡)𝑢 = 𝐵𝑎 (𝑥, 𝑡)𝑢∗ − 𝑟 (𝑥, 𝑢, 𝑡) (3.4)

where 𝑢∗ is a stabilizing controller for the control-affine system ¤𝑥 = 𝑓𝑎 (𝑥, 𝑡) +
𝐵𝑎 (𝑥, 𝑡)𝑢∗. Since solving such an implicit equation in (3.4) in real-time could
be unrealistic in practice, we will derive a learning-based approach to solve it
iteratively for unknown 𝑟 (𝑥, 𝑢, 𝑡), without deteriorating its stability performance
(see Lemma 8.2 and Theorem 8.4 of Chapter 8).
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3.1 Overview of Nonlinear Control and Estimation
We briefly summarize the advantages and disadvantages of existing nonlinear feed-
back control and state estimation schemes, so that one can identify which strategy
is appropriate for their study and refer to the relevant parts of this thesis.

Table 3.1: Comparison between the SDC and CCM formulation (note that 𝛾(𝜇 =

0, 𝑡) = 𝑥𝑑 and 𝛾(𝜇 = 1, 𝑡) = 𝑥).

SDC (Theorem 4.2) [12], [13],
[16]–[18] CCM (Theorem 4.6) [19], [20]

Control law 𝑢 = 𝑢𝑑 − 𝐾 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) (𝑥 − 𝑥𝑑)
or 𝑢𝑑 − 𝐾 (𝑥, 𝑡) (𝑥 − 𝑥𝑑) 𝑢 = 𝑢𝑑 +

∫ 1
0 𝑘 (𝛾(𝜇, 𝑡), 𝜕𝜇𝛾(𝜇, 𝑡), 𝑢, 𝑡)𝑑𝜇

Computation Evaluates𝐾 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) for given
(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) as in LTV systems

Computes geodesics 𝛾 for given (𝑥, 𝑥𝑑 , 𝑡)
and integrates 𝑘

Generality Captures nonlinearity by (multi-
ple) SDC matrices Handles general differential dynamics

Contraction Depends on (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) or (𝑥, 𝑡)
(partial contraction) Depends on (𝑥, 𝑡) (contraction)

3.1.I Systems with Known Lyapunov Functions
As discussed in Sec. 1.2, there are several nonlinear systems equipped with a known
contraction metric/Lyapunov function, such as Lagrangian systems [21, p. 392],
whose inertia matrixH(q) defines its contraction metric (see Example 2.6), or the
nonlinear SLAM problem [18], [22] with virtual synthetic measurements, which
can be reduced to an LTV estimation problem [22]. Once we have a contraction
metric/Lyapunov function, stabilizing control and estimation laws can be easily
derived by using, e.g., [23]–[25]. Thus, those dealing primarily with such nonlinear
systems should skip this chapter and proceed to Part II of this thesis (Chapter 5 – 8)
on learning-based and data-driven control using contraction theory. Note that these
known contraction metrics are not necessarily optimal, and the techniques to be
derived in Chapter 3 and Chapter 4 are for obtaining contraction metrics with an
optimal disturbance attenuation property [12], [13].

3.1.II Linearization of Nonlinear Systems
If a contraction metric of a given nonlinear system is unknown, we could linearize it
to apply methodologies inspired by LTV systems theory such asH∞ control [6]–[11],
iterative Linear Quadratic Regulator (iLQR) [26], [27], or Extended Kalman Filter
(EKF). Their stability is typically analyzed by decomposing 𝑓 (𝑥, 𝑡) as 𝑓 (𝑥, 𝑡) =
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𝐴𝑥 + ( 𝑓 (𝑥, 𝑡) − 𝐴𝑥) assuming that the nonlinear part 𝑓 (𝑥, 𝑡) − 𝐴𝑥 is bounded, or by
finding a local contraction region for the sake of local exponential stability as in [16],
[28]. Since the decomposition 𝑓 (𝑥, 𝑡) = 𝐴𝑥 + ( 𝑓 (𝑥, 𝑡) − 𝐴𝑥) allows applying the
result of Theorem 2.4, we could exploit the techniques in Chapter 3 and Chapter 4
for providing formal robustness and optimality guarantees for the LTV systems-
type approaches. For systems whose nonlinear part 𝑓 (𝑥, 𝑡) − 𝐴𝑥 is not necessarily
bounded, Sec. 8.2.II elucidates how contraction theory can be used to stabilize them
with the learned dynamics for control synthesis.

3.1.III State-Dependent Coefficient (SDC) Formulation
It is shown in [12], [13], [16]–[18] that the SDC-based control and estimation [29]–
[32], which capture nonlinearity using a state-dependent matrix 𝐴(𝑥, 𝑡) s.t. 𝑓 (𝑥, 𝑡) =
𝐴(𝑥, 𝑡)𝑥 (e.g., we have 𝐴(𝑥, 𝑡) = cos 𝑥 for 𝑓 (𝑥, 𝑡) = 𝑥 cos 𝑥), result in exponential
boundedness of system trajectories both for deterministic and stochastic systems
due to Theorems 2.4 and 2.5 [16]. Because of the extended linear form of SDC (see
Table 3.1), the results to be presented in Chapter 3 – 4 based on the SDC formulation
are applicable to linearized dynamics that can be viewed as an LTV system with
some modifications (see Remark 3.2).

This idea is slightly generalized in [17] to explicitly consider incremental stability
with respect to a target trajectory (e.g., 𝑥𝑑 for control and 𝑥 for estimation) instead
of using 𝐴(𝑥, 𝑡)𝑥 = 𝑓 (𝑥, 𝑡). Let us derive the following lemma for this purpose [12],
[13], [17], [18], [32]. Let us derive the following lemma for this purpose [12], [13],
[17], [18], [32].

Lemma 3.1. Let 𝑓 : R𝑛 × R≥0 ↦→ R𝑛 and 𝐵 : R𝑛 × R≥0 ↦→ R𝑛×𝑚 be piecewise
continuously differentiable functions. Then there exists a matrix-valued function
𝐴 : R𝑛 × R𝑛 × R𝑚 × R≥0 ↦→ R𝑛×𝑛 s.t., ∀𝑠 ∈ R𝑛, 𝑠 ∈ R𝑛, �̄� ∈ R𝑚, and 𝑡 ∈ R≥0,

𝐴(𝑠, 𝑠, �̄�, 𝑡)e = 𝑓 (𝑠, 𝑡) + 𝐵(𝑠, 𝑡)�̄� − 𝑓 (𝑠, 𝑡) − 𝐵(𝑠, 𝑡)�̄�

where e = 𝑠 − 𝑠, and one such 𝐴 is given as follows:

𝐴(𝑠, 𝑠, �̄�, 𝑡) =
∫ 1

0

𝜕 𝑓

𝜕𝑠
(𝑐𝑠 + (1 − 𝑐)𝑠, �̄�, 𝑡)𝑑𝑐 (3.5)

where 𝑓 (𝑠, �̄�, 𝑡) = 𝑓 (𝑠, 𝑡) + 𝐵(𝑠, 𝑡)�̄�. We call 𝐴 an SDC matrix if it is constructed to
satisfy the controllability (or observability for estimation) condition. Furthermore,
the choice of 𝐴 is not unique for 𝑛 ≥ 2, where 𝑛 is the number of states, and
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the convex combination of such non-unique SDC matrices also verifies extended
linearization as follows:

𝑓 (𝑠, 𝑡) + 𝐵(𝑠, 𝑡)�̄� − 𝑓 (𝑠, 𝑡) − 𝐵(𝑠, 𝑡)�̄�

= 𝐴(𝜚, 𝑠, 𝑠, �̄�, 𝑡) (𝑠 − 𝑠) =
𝑠𝐴∑︁
𝑖=1

𝜚𝑖𝐴𝑖 (𝑠, 𝑠, �̄�, 𝑡) (𝑠 − 𝑠) (3.6)

where 𝜚 = (𝜚1, · · · , 𝜚𝑠𝐴),
∑𝑠𝐴
𝑖=1 𝜚𝑖 = 1, 𝜚𝑖 ≥ 0, and each 𝐴𝑖 satisfies the relation

𝑓 (𝑠, �̄�, 𝑡) − 𝑓 (𝑠, �̄�, 𝑡) = 𝐴𝑖 (𝑠, 𝑠, �̄�, 𝑡) (𝑠 − 𝑠).

Proof. The first statement on (3.5) follows from the integral relation given as∫ 1

0

𝑑 𝑓

𝑑𝑐
(𝑐𝑠 + (1 − 𝑐)𝑠, �̄�, 𝑡)𝑑𝑐 = 𝑓 (𝑠, �̄�, 𝑡) − 𝑓 (𝑠, �̄�, 𝑡).

If there are multiple SDC matrices 𝐴𝑖, we clearly have 𝜚𝑖𝐴𝑖 (𝑠, 𝑠, �̄�, 𝑡) (𝑠 − 𝑠) =
𝜚𝑖 ( 𝑓 (𝑠, �̄�, 𝑡) − 𝑓 (𝑠, �̄�, 𝑡)), ∀𝑖, and therefore, the relation

∑𝑠𝐴
𝑖=1 𝜚𝑖 = 1, 𝜚𝑖 ≥ 0 gives

(3.6).

Example 3.3. Let us illustrate how Lemma 3.1 can be used in practice taking the
following nonlinear system as an example:

¤𝑥 = [𝑥2,−𝑥1𝑥2]⊤ + [0, cos 𝑥1]⊤𝑢 (3.7)

where 𝑥 = [𝑥1, 𝑥2]⊤. If we use (𝑠, 𝑠, �̄�) = (𝑥, 𝑥𝑑 , 𝑢𝑑) in Lemma 3.1 for a given target
trajectory (𝑥𝑑 , 𝑢𝑑) that satisfies (3.7), evaluating the integral of (3.5) gives

𝐴1(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) = −
[

0 1
𝑥2+𝑥2𝑑

2 − 𝑢𝑑 (cos 𝑥1−cos 𝑥𝑑1)
𝑥1−𝑥𝑑1

𝑥1+𝑥1𝑑
2

]
(3.8)

due to the relation 𝜕 𝑓 /𝜕𝑠 =
[ 0 1
−𝑠2 −𝑠1

]
+
[ 0 0
−𝑢𝑑 sin 𝑠1 0

]
for 𝑓 (𝑠, 𝑢𝑑 , 𝑡) = 𝑓 (𝑠, 𝑡) +

𝐵(𝑠, 𝑡)𝑢𝑑 , where 𝑥𝑑 = [𝑥1𝑑 , 𝑥2𝑑]⊤. Note that we have

(cos 𝑥1 − cos 𝑥𝑑1)
𝑥1 − 𝑥𝑑1

= − sin
(𝑥1 + 𝑥1𝑑

2

)
sinc

(𝑥1 − 𝑥1𝑑
2

)
and thus 𝐴(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) is defined for all 𝑥, 𝑥𝑑 , 𝑢𝑑 , and 𝑡. The SDC matrix (3.8)
indeed verifies 𝐴1(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) (𝑥 − 𝑥𝑑) = 𝑓 (𝑥, 𝑡) − 𝑓 (𝑥𝑑 , 𝑡).

We can see that the following is also an SDC matrix of the nonlinear system (3.7):

𝐴2(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) = −
[

0 1
𝑥2 − 𝑢𝑑 (cos 𝑥1−cos 𝑥𝑑1)

𝑥1−𝑥𝑑1
𝑥1𝑑

]
. (3.9)

Therefore, the convex combination of 𝐴1 in (3.8) and 𝐴2 in (3.9), 𝐴 = 𝜚1𝐴1 + 𝜚2𝐴2

with 𝜚1 + 𝜚2 = 1, 𝜚1, 𝜚2 ≥ 0, is also an SDC matrix due to Lemma 3.1.
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The major advantage of the formalism in Lemma 3.1 lies in its systematic connection
to LTV systems based on uniform controllability and observability, adequately
accounting for the nonlinear nature of underlying dynamics through 𝐴(𝜚, 𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)
for global stability, as shall be seen in Chapter 3 and Chapter 4. Since 𝐴 depends
also on (𝑥𝑑 , 𝑢𝑑) in this case unlike the original SDC matrix, we could consider
contraction metrics using a positive definite matrix𝑀 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) instead of𝑀 (𝑥, 𝑡)
in Definition 2.3, to improve the representation power of 𝑀 at the expense of
computational efficiency. Another interesting point is that the non-uniqueness of
𝐴 in Lemma 3.1 for 𝑛 ≥ 2 creates additional degrees of freedom for selecting
the coefficients 𝜚, which can also be treated as decision variables in constructing
optimal contraction metrics as proposed in [12], [13], [18].

We focus mostly on the generalized SDC formulation in Chapter 3 and Chapter 4, as
it yields optimal control and estimation laws with global stability [17] while keeping
the analysis simple enough to be understood as in LTV systems theory.

Remark 3.2. This does not mean that contraction theory works only for the SDC
parameterized nonlinear systems but implies that it can be used with the other
techniques discussed in Sec. 3.1. For example, due to the extended linear form given
in Table 3.1, the results to be presented in Chapter 3 and in Chapter 4 based on the
SDC formulation are applicable to linearized dynamics that can be viewed as an
LTV system with some modifications, regarding the dynamics modeling error term
as an external disturbance as in Sec. 3.1.II. Also, the original SDC formulation
with respect to a fixed point (e.g., (𝑠, 𝑠, �̄�) = (𝑥, 0, 0) in Lemma 3.1) can still be
used to obtain contraction conditions independent of a target trajectory (𝑥𝑑 , 𝑢𝑑)
(see Theorem 3.2 for details).

3.1.IV Control Contraction Metric (CCM) Formulation
We could also consider using the partial derivative of 𝑓 of the dynamical system
directly for control synthesis through differential state feedback 𝛿𝑢 = 𝑘 (𝑥, 𝛿𝑥, 𝑢, 𝑡).
This idea, formulated as the concept of a CCM [3], [14], [15], [19], [20], [33],
constructs contraction metrics with global stability guarantees independently of
target trajectories, achieving greater generality while requiring added computation in
evaluating integrals involving minimizing geodesics. Similar to the CCM, we could
design a state estimator using a general formulation based on geodesics distances
between trajectories [34], [35]. These approaches are well compatible with the
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convex optimization-based schemes in Chapter 4, and hence will be discussed in
Sec. 4.3.

The differences between the SDC and CCM formulation are summarized in Ta-
ble 3.1. Considering such trade-offs would help determine which form of the
control law is the best fit when using contraction theory for nonlinear stabilization.

Remark 3.3. For control non-affine nonlinear systems, we could find 𝑓 (𝑥, 𝑢, 𝑡) −
𝑓 (𝑥𝑑 , 𝑢𝑑 , 𝑡) = 𝐴(𝑥, 𝑥𝑑 , 𝑢, 𝑢𝑑 , 𝑡) (𝑥 − 𝑥𝑑) + 𝐵(𝑥, 𝑥𝑑 , 𝑢, 𝑢𝑑 , 𝑡) (𝑢 − 𝑢𝑑) by Lemma 3.1
on the SDC formulation and use it in Theorem 4.2, although (3.10) has to be
solved implicitly as 𝐵 depends on 𝑢 in this case. A similar approach for the CCM
formulation can be found in [14], [15]. As discussed in Example 3.2, designing such
implicit control laws will be discussed in Lemma 8.2 and Theorem 8.4 of Sec. 8.2.II.

3.2 LMI Conditions for Contraction Metrics
We design a nonlinear feedback tracking control law parameterized by a matrix-
valued function 𝑀 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) (or 𝑀 (𝑥, 𝑡), see Theorem 3.2) as follows:

𝑢 = 𝑢𝑑 − 𝐾 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) (𝑥 − 𝑥𝑑) (3.10)

= 𝑢𝑑 − 𝑅(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)−1𝐵(𝑥, 𝑡)⊤𝑀 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) (𝑥 − 𝑥𝑑)

where 𝑅(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) ≻ 0 is a weight matrix on the input 𝑢 and 𝑀 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) ≻ 0
is a positive definite matrix (which satisfies the matrix inequality constraints for a
contraction metric, to be given in Theorem 3.1). As discussed in Sec. 3.1.III, the
extended linear form of the tracking control (3.10) enables LTV systems-type ap-
proaches to Lyapunov function construction, while being general enough to capture
the nonlinearity of the underlying dynamics due to Lemma 3.2 [36].

Lemma 3.2. Consider a general feedback controller 𝑢 defined as 𝑢 = 𝑘 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)
with 𝑘 (𝑥𝑑 , 𝑥𝑑 , 𝑢𝑑 , 𝑡) = 𝑢𝑑 , where 𝑘 : R𝑛 × R𝑛 × R𝑚 × R≥0 ↦→ R𝑚. If 𝑘 is piecewise
continuously differentiable, then ∃𝐾 : R𝑛 × R𝑛 × R𝑚 × R≥0 ↦→ R𝑚×𝑛 s.t. 𝑢 =

𝑘 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) = 𝑢𝑑 − 𝐾 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) (𝑥 − 𝑥𝑑).

Proof. Using 𝑘 (𝑥𝑑 , 𝑥𝑑 , 𝑢𝑑 , 𝑡) = 𝑢𝑑 , 𝑢 can be decomposed as𝑢 = 𝑢𝑑+(𝑘 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)−
𝑘 (𝑥𝑑 , 𝑥𝑑 , 𝑢𝑑 , 𝑡)). Since we have 𝑘 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) − 𝑘 (𝑥𝑑 , 𝑥𝑑 , 𝑢𝑑 , 𝑡) =

∫ 1
0 (𝑑𝑘 (𝑐𝑥 + (1 −

𝑐)𝑥𝑑 , 𝑥𝑑 , 𝑢𝑑 , 𝑡)/𝑑𝑐)𝑑𝑐, selecting 𝐾 as

𝐾 = −
∫ 1

0

𝜕𝑘

𝜕𝑥
(𝑐𝑥 + (1 − 𝑐)𝑥𝑑 , 𝑥𝑑 , 𝑢𝑑 , 𝑡)𝑑𝑐

gives the desired relation [36].
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Remark 3.4. Lemma 3.2 implies that designing optimal 𝑘 of 𝑢 = 𝑘 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) re-
duces to designing the optimal gain𝐾 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) of 𝑢 = 𝑢𝑑−𝐾 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) (𝑥−𝑥𝑑).
We could also generalize this idea further using the CCM-based differential feedback
controller 𝛿𝑢 = 𝑘 (𝑥, 𝛿𝑥, 𝑢, 𝑡) [3], [14], [15], [19], [20], [33] (see Theorem 4.6).

Substituting (3.10) into (3.1) and (3.2) yields the following virtual system of a smooth
path 𝑞(𝜇, 𝑡), parameterized by 𝜇 ∈ [0, 1] to have 𝑞(0, 𝜇) = 𝑥𝑑 and 𝑞(1, 𝑡) = 𝑥, for
partial contraction in Theorem 2.2:

¤𝑞(𝜇, 𝑡) = 𝜁 (𝑞(𝜇, 𝑡), 𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) + 𝑑 (𝜇, 𝑥, 𝑡) (3.11)

𝑑𝑞(𝜇, 𝑡) = 𝜁 (𝑞(𝜇, 𝑡), 𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)𝑑𝑡 + 𝐺 (𝜇, 𝑥, 𝑡)𝑑𝒲(𝑡) (3.12)

where 𝑑 (𝜇, 𝑥, 𝑡) = 𝜇𝑑𝑐 (𝑥, 𝑡), 𝐺 (𝜇, 𝑥, 𝑡) = 𝜇𝐺𝑐 (𝑥, 𝑡), and 𝜁 (𝑞, 𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) is defined
as

𝜁 = (𝐴(𝜚, 𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) − 𝐵(𝑥, 𝑡)𝐾 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)) (𝑞 − 𝑥𝑑) + 𝑓 (𝑥𝑑 , 𝑡) + 𝐵(𝑥𝑑 , 𝑡)𝑢𝑑
(3.13)

where 𝐴 is the SDC matrix of Lemma 3.1 with (𝑠, 𝑠, �̄�) = (𝑥, 𝑥𝑑 , 𝑢𝑑). Setting 𝜇 = 1
in (3.11) and (3.12) results in (3.1) and (3.2), respectively, and setting 𝜇 = 0 simply
results in (3.3). Consequently, both 𝑞 = 𝑥 and 𝑞 = 𝑥𝑑 are particular solutions of
(3.11) and (3.12). If there is no disturbance acting on the dynamics (3.1) and (3.2),
the differential dynamics of (3.11) and (3.12) for 𝜕𝜇𝑞 = 𝜕𝑞/𝜕𝜇 is given as

𝜕𝜇 ¤𝑞 = (𝐴(𝜚, 𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) − 𝐵(𝑥, 𝑡)𝐾 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)) 𝜕𝜇𝑞. (3.14)

In [12], [13], [16], [17], it is proposed that the contraction conditions of Theorems 2.1
and 2.5 for the closed-loop dynamics (3.11) and (3.12) can be expressed as convex
constraints as summarized in Theorem 3.1.

Theorem 3.1. Let 𝛽 be defined as 𝛽 = 0 for deterministic systems (3.1) and

𝛽 = 𝛼𝑠 = 𝐿𝑚 �̄�
2
𝑐 (𝛼𝐺 + 1/2)

for stochastic systems (3.2), respectively, where �̄�𝑐 is given in (3.2), 𝐿𝑚 is the
Lipschitz constant of 𝜕𝑀/𝜕𝑥𝑖 for 𝑀 of (3.10), and 𝛼𝐺 ∈ R>0 is an arbitrary
constant as in Theorem 2.5. Also, let𝑊 = 𝑀 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)−1 (or𝑊 = 𝑀 (𝑥, 𝑡)−1, see
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Theorem 3.2), �̄� = 𝜈𝑊 , and 𝜈 = 𝑚. Then the following three matrix inequalities
are equivalent:

¤𝑀 + 𝑀𝜕𝜁

𝜕𝑞
+ 𝜕𝜁
𝜕𝑞

⊤
𝑀 ⪯ −2𝛼𝑀 − 𝛽I, ∀𝜇 ∈ [0, 1] (3.15)

¤𝑀 + 2 sym(𝑀𝐴) − 2𝑀𝐵𝑅−1𝐵⊤𝑀 ⪯ −2𝛼𝑀 − 𝛽I (3.16)

− ¤̄𝑊 + 2 sym(𝐴�̄�) − 2𝜈𝐵𝑅−1𝐵⊤ ⪯ −2𝛼�̄� − 𝛽
𝜈
�̄�2 (3.17)

where 𝜁 is as defined in (3.13). For stochastic systems with 𝛽 = 𝛼𝑠 > 0, these
inequalities are also equivalent to[
− ¤̄𝑊 + 2 sym (𝐴�̄�) − 2𝜈𝐵𝑅−1𝐵⊤ + 2𝛼�̄� �̄�

�̄� − 𝜈
𝛽
I

]
⪯ 0. (3.18)

Note that 𝜈 and �̄� are required for (3.17) and (3.18) and the arguments (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)
for each matrix are suppressed for notational simplicity.

Furthermore, under these equivalent contraction conditions, Theorems 2.4 and
2.5 hold for the virtual systems (3.11) and (3.12), respectively. In particular, if
𝑚I ⪯ 𝑀 ⪯ 𝑚I of (2.26) holds, or equivalently

I ⪯ �̄� (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) ⪯ 𝜒I (3.19)

holds for 𝜒 = 𝑚/𝑚, then we have the following bounds:

∥𝑥(𝑡) − 𝑥𝑑 (𝑡)∥ ≤
𝑉ℓ (0)√
𝑚
𝑒−𝛼𝑡 + 𝑑𝑐

𝛼

√
𝜒(1 − 𝑒−𝛼𝑡) (3.20)

E
[
∥𝑥(𝑡) − 𝑥𝑑 (𝑡)∥2

]
≤ E[𝑉𝑠ℓ (0)]

𝑚
𝑒−2𝛼𝑡 + 𝐶𝐶

2𝛼
𝜒 (3.21)

where𝑉𝑠ℓ =
∫ 𝑥
𝑥𝑑
𝛿𝑞⊤𝑀𝛿𝑞 and𝑉ℓ =

∫ 𝑥
𝑥𝑑
∥Θ𝛿𝑞∥ are as given in Theorem 2.3 with 𝑀 =

Θ⊤Θ, the disturbance bounds 𝑑𝑐 and �̄�𝑐 are given in (3.1) and (3.2), respectively,
and 𝐶𝐶 = �̄�2

𝑐 (2𝛼𝐺−1 + 1). Note that for stochastic systems, the probability that
∥𝑥 − 𝑥𝑑 ∥ is greater than or equal to 𝜀 ∈ R>0 is given as

P [∥𝑥(𝑡) − 𝑥𝑑 (𝑡)∥ ≥ 𝜀] ≤
1
𝜀2

(
E[𝑉𝑠ℓ (0)]

𝑚
𝑒−2𝛼𝑡 + 𝐶𝐶

2𝛼
𝜒

)
. (3.22)

Proof. Substituting (3.13) into (3.15) gives (3.16). Since 𝜈 > 0 and 𝑊 ≻ 0,
multiplying (3.16) by 𝜈 and then by𝑊 from both sides preserves matrix definiteness.
Also, the resultant inequalities are equivalent to the original ones [37, p. 114]. These
operations performed on (3.16) yield (3.17). If 𝛽 = 𝛼𝑠 > 0 for stochastic systems,
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applying Schur’s complement lemma [37, p. 7] to (3.17) results in the Linear Matrix
Inequality (LMI) constraint (3.18) in terms of �̄� and 𝜈. Therefore, (3.15) – (3.18)
are indeed equivalent.

Also, since we have ∥𝜕𝜇𝑑 (𝜇, 𝑥, 𝑡)∥ ≤ 𝑑𝑐 for 𝑑 in (3.11) and ∥𝜕𝜇𝐺 (𝜇, 𝑥, 𝑡)∥2𝐹 ≤ �̄�2
𝑐

for𝐺 in (3.12), the virtual systems in (3.11) and (3.12) clearly satisfy the conditions
of Theorems 2.4 and 2.5 if it is equipped with (3.15), which is equivalent to (3.16) –
(3.18). This implies the exponential bounds (3.20) – (3.22) rewritten using 𝜒 = 𝑚/𝑚,
following the proofs of Theorems 2.4 and 2.5.

Because of the control and estimation duality in differential dynamics similar to that
of the Kalman filter and Linear Quadratic Regulator (LQR) in LTV systems, we
have an analogous robustness result for the contraction theory-based state estimator
as to be derived in Sec. 4.2.

Although the conditions (3.15) – (3.18) depend on (𝑥𝑑 , 𝑢𝑑), we could also use the
SDC formulation with respect to a fixed point [12], [13] in Lemma 3.1 to make them
independent of the target trajectory as in the following theorem.

Theorem 3.2. Let (𝑥, �̄�) be a fixed point selected arbitrarily in R𝑛 × R𝑚, e.g.,
(𝑥, �̄�) = (0, 0), and let 𝐴(𝑥, 𝑡) be an SDC matrix constructed with (𝑠, 𝑠, �̄�) = (𝑥, 𝑥, �̄�)
in Lemma 3.1, i.e.,

𝐴(𝜚, 𝑥, 𝑡) (𝑥 − 𝑥) = 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)�̄� − 𝑓 (𝑥, 𝑡) − 𝐵(𝑥, 𝑡)�̄�. (3.23)

Suppose that the contraction metric of Theorem 3.1 is designed by 𝑀 (𝑥, 𝑡) with 𝐴
of (3.23), independently of the target trajectory (𝑥𝑑 , 𝑢𝑑), and that the systems (3.1)
and (3.2) are controlled by

𝑢 = 𝑢𝑑 − 𝑅(𝑥, 𝑡)−1𝐵(𝑥, 𝑡)⊤𝑀 (𝑥, 𝑡) (𝑥 − 𝑥𝑑) (3.24)

with such 𝑀 (𝑥, 𝑡), where 𝑅(𝑥, 𝑡) ≻ 0 is a weight matrix on 𝑢. If the function
𝜙(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) = 𝐴(𝜚, 𝑥, 𝑡) (𝑥𝑑 − 𝑥) + 𝐵(𝑥, 𝑡) (𝑢𝑑 − �̄�) is Lipschitz in 𝑥 with its Lips-
chitz constant �̄�, then Theorem 3.1 still holds with 𝛼 of the conditions (3.15) – (3.18)
replaced by 𝛼 + �̄�

√︁
𝑚/𝑚. The same argument holds for state estimation of Theo-

rem 4.3 to be discussed in Sec. 4.2.

Proof. The unperturbed virtual system of (3.1), (3.2), and (3.3) with 𝐴 of (3.23)
and 𝑢 of (3.24) is given as follows:

¤𝑞 = (𝐴(𝜚, 𝑥, 𝑡) − 𝐵(𝑥, 𝑡)𝐾 (𝑥, 𝑡)) (𝑞 − 𝑥𝑑) + 𝐴(𝜚, 𝑞, 𝑡) (𝑥𝑑 − 𝑥) + 𝐵(𝑞, 𝑡) (𝑢𝑑 − �̄�)
+ 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)�̄� (3.25)
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where 𝐾 (𝑥, 𝑡) = 𝑅(𝑥, 𝑡)−1𝐵(𝑥, 𝑡)⊤𝑀 (𝑥, 𝑡). Following the proof of Theorem 3.1, the
computation of ¤𝑉 , where 𝑉 = 𝛿𝑞⊤𝑀 (𝑥, 𝑡)𝛿𝑞, yields an extra term

2𝛿𝑞⊤𝑀
𝜕𝜙

𝜕𝑞
(𝑞, 𝑥𝑑 , 𝑢𝑑 , 𝑡)𝛿𝑞 ≤ 2�̄�

√︄
𝑚

𝑚
𝛿𝑞⊤𝑀𝛿𝑞 (3.26)

due to the Lipschitz condition on 𝜙, where 𝜙(𝑞, 𝑥𝑑 , 𝑢𝑑 , 𝑡) = 𝐴(𝑞, 𝑡) (𝑥𝑑 − 𝑥) +
𝐵(𝑞, 𝑡) (𝑢𝑑 − �̄�). This indeed implies that the system (3.25) is contracting as long
as the conditions (3.15) – (3.18) hold with 𝛼 replaced by 𝛼 + �̄�

√︁
𝑚/𝑚. The last

statement on state estimation follows from the nonlinear control and estimation
duality to be discussed in Sec. 4.2.

Remark 3.5. As in [12], we could directly use the extra term 2𝛿𝑞⊤𝑀 (𝜕𝜙/𝜕𝑞)𝛿𝑞 of
(3.26) in (3.15) – (3.18) without upper-bounding it, although now the constraints of
Theorem 3.2 depend on (𝑥, 𝑞, 𝑡) instead of (𝑥, 𝑡). Also, the following two inequalities
given in [12] with �̄� = 𝜈𝛾, 𝛾 ∈ R≥0:

− ¤̄𝑊 + 𝐴�̄� + �̄� 𝐴⊤ + �̄�I − 𝜈𝐵𝑅−1𝐵⊤ ⪯ 0[
�̄�I + 𝜈𝐵𝑅−1𝐵⊤ − �̄�𝜙⊤ − 𝜙�̄� − 2𝛼�̄� �̄�

�̄� 𝜈
2𝛼𝑠 I

]
⪰ 0.

are combined as one LMI (3.18) in Theorems 3.1 and 3.2.

Example 3.4. The inequalities in Theorem 3.1 can be interpreted as in the Riccati
inequality inH∞ control. Consider the following system:

¤𝑥 = 𝐴𝑥 + 𝐵𝑢𝑢 + 𝐵𝑤𝑤, 𝑧 = 𝐶𝑧𝑥 (3.27)

where 𝐴 ∈ R𝑛×𝑛, 𝐵𝑢 ∈ R𝑛×𝑚, 𝐵𝑤 ∈ R𝑛×𝑤, and 𝐶𝑧 ∈ R𝑜×𝑛 are constant matrices,
𝑤 ∈ R𝑤 is an exogenous input, and 𝑧 ∈ R𝑜 is a system output. As shown in [4]
and [37, p. 109], there exists a state feedback gain 𝐾 = 𝑅−1𝐵⊤𝑢 𝑃 such that the L2

gain of the closed-loop system (3.27), sup∥𝑤∥≠0 ∥𝑧∥/∥𝑤∥, is less than or equal to 𝛾
if

2 sym (𝑃𝐴) − 2𝑃𝐵𝑢𝑅−1𝐵⊤𝑢 𝑃 +
𝑃𝐵𝑤𝐵

⊤
𝑤𝑃

𝛾2 + 𝐶⊤𝑧 𝐶𝑧 ⪯ 0 (3.28)

has a solution 𝑃 ≻ 0, where 𝑅 ≻ 0 is a constant weight matrix on the input 𝑢. If we
select 𝐵𝑤 and 𝐶𝑧 to have 𝐵𝑤𝐵⊤𝑤 ⪰ (𝑃−1)2 and 𝐶⊤𝑧 𝐶𝑧 ⪰ 2𝛼𝑃 for some 𝛼 > 0, the
contraction condition (3.16) in Theorem 3.1 can be satisfied with 𝑀 = 𝑃, 𝐵 = 𝐵𝑢,
and 𝛽 = 1/𝛾2 due to (3.28).

In Sec. 3.3 and Sec. 3.4, we will discuss the relationship to input-output stability
theory as in Example 3.4, using the results of Theorem 3.1.
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3.3 Bounded Real Lemma in Contraction Theory
The LMI (3.18) of Theorem 3.1 can be interpreted as the LMI condition for the
bounded real lemma [38, p. 369]. Let us consider the following Hurwitz linear
system with 𝜍 (𝑡) ∈ L2𝑒, (i.e., ∥(𝜍)𝜏∥L2 < ∞ for 𝜏 ∈ R≥0, see Sec. 1.3):

¤𝜅 = A𝜅 + B𝜍 (𝑡), 𝜐 = C𝜅 + D𝜍 (𝑡). (3.29)

Setting 𝜅 = 𝛿𝑞 and viewing 𝜍 as external disturbance, this system can be interpreted
as the differential closed-loop dynamics defined earlier in (3.14). The bounded real
lemma states that this system is L2 gain stable with its L2 gain less than or equal to
𝛾, i.e., ∥(𝜐)𝜏∥L2 ≤ 𝛾∥(𝜍)𝜏∥L2 +𝑐𝑜𝑛𝑠𝑡., or equivalently, theH∞ norm of the transfer
function of (3.29) is less than or equal to 𝛾, if the following LMI for P ≻ 0 holds
(see [38, p. 369]):[
¤P + 2 sym (PA) + C⊤C PB + C⊤D
B⊤P + D⊤C D⊤D − 𝛾2I

]
⪯ 0. (3.30)

Theorem 3.3 introduces the bounded real lemma in the context of contraction theory.

Theorem 3.3. Let A = 𝐴 − 𝐵𝑅−1𝐵⊤𝑀 , B = 𝑀−1, 𝐶 =
√

2𝛼Θ, and D = 0 in
(3.29), where 𝑀 = Θ⊤Θ, and the other variables are as defined in Theorem 3.1.
Then (3.30) with P = 𝑀 and 𝛾 = 1/

√
𝛽 is equivalent to (3.18), and thus (3.18)

implies L2 gain stability of (3.29) with its L2 gain less than or equal to 𝛾.

Proof. Multiplying (3.18) by 𝜈−1 and then by
[
𝑀 0
0 I

]
from both sides gives the

following matrix inequality:

𝜈

[
¤𝑀 + 2 sym (𝑀 (𝐴 − 𝐵𝑅−1𝐵⊤𝑀)) + 2𝛼𝑀 I

I − 1
𝛽
I

]
⪯ 0.

This is indeed equivalent to (3.30) if A = 𝐴 − 𝐵𝑅−1𝐵⊤𝑀 , B = 𝑀−1, 𝐶 =
√

2𝛼Θ,
D = 0, P = 𝑀 , and 𝛾 = 1/

√
𝛽. Now, multiplying (3.30) by [𝛿𝑞⊤, 𝜍⊤]⊤ = [𝜅⊤, 𝜍⊤]⊤

for such (A,B, C,D) gives

𝜅⊤( ¤P + 2PA + C⊤C)𝜅 + 2𝜅⊤PB𝜍 − 𝛾2∥𝜍 ∥2 ⪯ 0

resulting in ¤𝑉 + ∥𝜐∥2 − 𝛾2∥𝜍 ∥2 ⪯ 0 for 𝑉 = 𝜅⊤P𝜅 = 𝛿𝑞⊤𝑀𝛿𝑞. This implies L2

gain stability with its L2 gain less than or equal to 𝛾 = 1/
√
𝛽 [25, p. 209].
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3.4 KYP Lemma in Contraction Theory
Analogously to Theorem 3.3, the LMI (3.18) of Theorem 3.1 can be understood
using the Kalman-Yakubovich-Popov (KYP) lemma [39, p. 218]. Consider the
quadratic Lyapunov function𝑉 = 𝜅⊤Q𝜅 with Q ≻ 0, satisfying the following output
strict passivity (dissipativity) condition:

¤𝑉 − 2𝜍⊤𝜐 + (2/𝛾)𝜐⊤𝜐 ≤ 0. (3.31)

This which can be expanded by completing the square to have

¤𝑉 ≤ −∥𝛾(𝜍 − 𝜐/𝛾)∥2 + 𝛾∥𝜍 ∥2 − (1/𝛾)∥𝜐∥2

≤ 𝛾∥𝜍 ∥2 − (1/𝛾)∥𝜐∥2. (3.32)

This implies that we have ∥(𝜐)𝜏∥L2 ≤ 𝛾∥(𝜍)𝜏∥L2 +
√︁
𝛾𝑉 (0) by the comparison

lemma [25, pp. 102-103, pp. 350-353], leading to L2 gain stability with its L2

gain less than or equal to 𝛾 [39, p. 218]. The condition (3.31) can be expressed
equivalently as an LMI form as follows:
¤Q + 2sym(QA) + 2C⊤C

𝛾
QB + C⊤

(
2D
𝛾
− I

)
B⊤Q +

(
2D⊤
𝛾
− I

)
C −(D⊤ + 𝐷) + 2D⊤D

𝛾

 ⪯ 0 (3.33)

where A, B, C, and D are as defined in (3.29).

Theorem 3.4. If (3.33) holds, the LMI (3.30) for the bounded real lemma holds with
P = 𝛾Q, i.e., the system (3.29) is L2 gain stable with its L2 gain less than or equal
to 𝛾. Thus, for systems with A, B, C, and D defined in Theorem 3.3, the condition
(3.33) guarantees the contraction condition (3.18) of Theorem 3.1.

Proof. Writing the inequality in (3.32) in a matrix form, we have that
¤Q + 2sym(QA) + 2C⊤C

𝛾
QB + C⊤

(
2D
𝛾
− I

)
B⊤Q +

(
2D⊤
𝛾
− I

)
C −(D⊤ + 𝐷) + 2D⊤D

𝛾


⪰

[
¤Q + 2sym(QA) QB
B⊤Q 0

]
+
[
C⊤C
𝛾

C⊤D
𝛾

D⊤C
𝛾

D⊤D
𝛾

]
−
[
0 0
0 𝛾I

]
=

[ ¤Q + 2sym(QA) + C⊤C
𝛾
QB + C⊤D

𝛾

B⊤Q + D⊤C
𝛾

D⊤D
𝛾
− 𝛾I

]
.

Therefore, a necessary condition of (3.33) reduces to (3.30) if Q = P/𝛾. The rest
follows from Theorem 3.3.
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Example 3.5. Theorems 3.3 and 3.4 imply the following statements.

• If (3.30) holds, the system is finite-gain L2 stable with 𝛾 as its L2 gain.
• If (3.33) holds, the system is finite-gain L2 stable with 𝛾 as its L2 gain.
• (3.31) is equivalent to (3.33), and to the output strict passivity condition with

dissipation 1/𝛾 [25, p. 231].
• If (3.33) holds (KYP lemma), (3.30) holds (bounded real lemma). The converse

is not necessarily true.
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C h a p t e r 4

CONVEX OPTIMALITY IN ROBUST NONLINEAR CONTROL
AND ESTIMATION VIA CONTRACTION THEORY

[1] H. Tsukamoto and S.-J. Chung, “Robust controller design for stochastic
nonlinear systems via convex optimization,” IEEE Trans. Autom. Control,
vol. 66, no. 10, pp. 4731–4746, 2021.

[2] H. Tsukamoto and S.-J. Chung, “Convex optimization-based controller de-
sign for stochastic nonlinear systems using contraction analysis,” in IEEE
Conf. Decis. Control, Dec. 2019, pp. 8196–8203.

Theorem 3.1 indicates that the problem of finding contraction metrics for general
nonlinear systems could be formulated as a convex feasibility problem. This chap-
ter thus delineates one approach, called the method of ConVex optimization-based
Steady-state Tracking Error Minimization (CV-STEM) [1]–[4], to optimally design
𝑀 of Theorem 3.1 that defines a contraction metric and minimizes an upper bound
of the steady-state tracking error in Theorem 2.4 or in Theorem 2.5 via convex
optimization. In particular, we present an overview of the SDC- and CCM-based
CV-STEM frameworks for provably stable and optimal feedback control and state
estimation of nonlinear systems, perturbed by deterministic and stochastic distur-
bances. It is worth noting that the steady-state bound is expressed as a function of
the condition number 𝜒 = 𝑚/𝑚 as to be seen in (4.1) and (4.17), which renders the
CV-STEM applicable and effective even to learning-based and data-driven control
frameworks as shall be seen in Chapter 5.

4.1 CV-STEM Control
As a result of Theorems 2.4, 2.5, and 3.1, the control law 𝑢 = 𝑢𝑑 − 𝐾 (𝑥 − 𝑥𝑑) of
(3.10) gives a convex steady-state upper bound of the Euclidean distance between
the system trajectories, which can be used as an objective function for the CV-STEM
control framework in Theorem 4.2 [1]–[4].

Theorem 4.1. If one of the matrix inequalities of Theorem 3.1 holds, we have the
following bound for 𝜒 = 𝑚/𝑚:

lim
𝑡→∞

√︃
E
[
∥𝑥 − 𝑥𝑑 ∥2

]
≤ 𝑐0(𝛼, 𝛼𝐺)

√
𝜒 ≤ 𝑐0(𝛼, 𝛼𝐺)𝜒 (4.1)

https://ieeexplore.ieee.org/document/9261103
https://ieeexplore.ieee.org/document/9261103
https://ieeexplore.ieee.org/document/9028942
https://ieeexplore.ieee.org/document/9028942
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where 𝑐0(𝛼, 𝛼𝐺) = �̄�𝑐

√︃
(2𝛼−1

𝐺
+ 1)/(2𝛼) for stochastic systems and 𝑐0(𝛼, 𝛼𝐺) =

𝑑𝑐/𝛼 for deterministic systems, with the variables given in Theorem 3.1.

Proof. Taking lim𝑡→∞ in the exponential tracking error bounds (3.20) and (3.21) of
Theorem 3.1 gives the first inequality of (4.1). The second inequality follows from
the relation 1 ≤

√︁
𝑚/𝑚 ≤ 𝑚/𝑚 = 𝜒 due to 𝑚 ≤ 𝑚.

The convex optimization problem of minimizing (4.1), subject to the contraction
constraint of Theorem 3.1, is given in Theorem 4.2, thereby introducing the CV-
STEM control [1]–[4] for designing an optimal contraction metric and contracting
control policy as depicted in Fig. 4.1.

Theorem 4.2. Suppose that 𝛼, 𝛼𝐺 , 𝑑𝑐, and �̄�𝑐 in (4.1) and the Lipschitz constant 𝐿𝑚
of 𝜕𝑀/𝜕𝑥𝑖 in Theorem 3.1 are given. If the pair (𝐴, 𝐵) is uniformly controllable, the
non-convex optimization problem of minimizing the upper bound (4.1) is equivalent
to the following convex optimization problem, with the convex contraction constraint
(3.17) or (3.18) of Theorem 3.1 and I ⪯ �̄� ⪯ 𝜒I of (3.19):

𝐽∗𝐶𝑉 = min
𝜈∈R>0,𝜒∈R,�̄�≻0

𝑐0𝜒 + 𝑐1𝜈 + 𝑐2𝑃(𝜒, 𝜈, �̄�) (4.2)

s.t. (3.17) and (3.19) for deterministic systems

s.t. (3.18) and (3.19) for stochastic systems

where 𝑊 = 𝑀 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)−1 for Theorem 3.1 or 𝑊 = 𝑀 (𝑥, 𝑡)−1 for Theorem 3.2,
�̄� = 𝜈𝑊 , 𝜈 = 𝑚, 𝜒 = 𝑚/𝑚, 𝑐0 is as defined in (4.1) of Theorem 4.1, 𝑐1, 𝑐2 ∈ R≥0,
and 𝑃 is a performance-based convex cost function.

The weight 𝑐1 for 𝜈 can be viewed as a penalty on the 2-norm of the feedback
control gain 𝐾 of 𝑢 = 𝑢𝑑 − 𝐾 (𝑥 − 𝑥𝑑) in (3.10). Using non-zero 𝑐1 and 𝑐2 thus
enables finding contraction metrics optimal in a different sense. Furthermore, the
coefficients of the SDC parameterizations 𝜚 in Lemma 3.1 (i.e., 𝐴 =

∑
𝜚𝑖𝐴𝑖 in (3.6))

can also be treated as decision variables by convex relaxation, thereby adding a
design flexibility to mitigate the effects of external disturbances while verifying the
system controllability.

Proof. As proven in Theorems 3.1 and 4.1, 𝑚I ⪯ 𝑀 ⪯ 𝑚I of (2.26), the contraction
constraint (3.15), and the objective (4.1) reduce to (4.2) with 𝑐1 = 0 and 𝑐2 = 0.
Since the resultant constraints are convex and the objective is affine in terms of the
decision variables 𝜈, 𝜒, and �̄� , the problem (4.2) is indeed convex. Since we have
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𝑢𝑑
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𝑥𝑑

𝑀
𝑡
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Robust Control

𝑢∗

State 𝑥
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Trajectory 
(𝑥𝑑 , 𝑢𝑑)

Convex 
Program

(CV-STEM)

Figure 4.1: Block diagram of CV-STEM.

sup𝑥,𝑡 ∥𝑀 ∥ ≤ 𝑚 = 𝜈, 𝑐1 can be used as a penalty to optimally adjust the induced
2-norm of the control gain (see Example 4.1). The SDC coefficients 𝜚 can also be
utilized as decision variables for controllability due to Proposition 1 of [1].

Example 4.1. The weights 𝑐0 and 𝑐1 of the CV-STEM control of Theorem 4.2
establish an analogous trade-off to the case of the LQR with the cost weight matrices
of 𝑄 for state and 𝑅 for control, since the upper bound of the steady-state tracking
error (4.1) is proportional to 𝜒, and an upper bound of ∥𝐾 ∥ for the control gain 𝐾
in (3.10), 𝑢 = 𝑢𝑑 − 𝐾 (𝑥 − 𝑥𝑑), is proportional to 𝜈. In particular [2], [3],

• if 𝑐1 is much greater than 𝑐0 in (4.2) of Theorem 4.2, we get smaller control
effort but with a large steady-state tracking error, and

• if 𝑐1 is much smaller than 𝑐0 in (4.2) of Theorem 4.2, we get a smaller steady-state
state tracking error but with larger control effort.

This is also because the solution 𝑃 ≻ 0 of the LQR Riccati equation [5, p. 89],
− ¤𝑃 = 𝑃𝐴 + 𝐴⊤𝑃 − 𝑃𝐵𝑅−1𝐵⊤𝑃 +𝑄, can be viewed as a positive definite matrix 𝑀
that defines a contraction metric as discussed in Example 2.3.

4.2 CV-STEM Estimation
We could also design an optimal state estimator analogously to the CV-STEM
control of Theorem 4.2, due to the differential nature of contraction theory that
enables LTV systems-type approaches to stability analysis. In particular, we exploit
the estimation and control duality in differential dynamics similar to that of the
Kalman filter and LQR in LTV systems.

Let us consider the following smooth nonlinear systems with a measurement 𝑦(𝑡),
perturbed by deterministic disturbances 𝑑𝑒0(𝑥, 𝑡) and 𝑑𝑒1(𝑥, 𝑡)with sup𝑥,𝑡 ∥𝑑𝑒0(𝑥, 𝑡)∥ =
𝑑𝑒0 ∈ R≥0 and sup𝑥,𝑡 ∥𝑑𝑒1(𝑥, 𝑡)∥ = 𝑑𝑒1 ∈ R≥0, or by Gaussian white noise, driven
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by Wiener processes 𝒲0(𝑡) and 𝒲1(𝑡) with sup𝑥,𝑡 ∥𝐺𝑒0(𝑥, 𝑡)∥𝐹 = �̄�𝑒0 ∈ R≥0 and
sup𝑥,𝑡 ∥𝐺𝑒1(𝑥, 𝑡)∥𝐹 = �̄�𝑒1 ∈ R≥0:

¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝑑𝑒0(𝑥, 𝑡), 𝑦 = ℎ(𝑥, 𝑡) + 𝑑𝑒1(𝑥, 𝑡) (4.3)

𝑑𝑥 = 𝑓 (𝑥, 𝑡)𝑑𝑡 + 𝐺𝑒0𝑑𝒲0, 𝑦𝑑𝑡 = ℎ(𝑥, 𝑡)𝑑𝑡 + 𝐺𝑒1𝑑𝒲1 (4.4)

where 𝑡 ∈ R≥0 is time, 𝑥 : R≥0 ↦→ R𝑛 is the system state, 𝑦 : R≥0 ↦→ R𝑚 is the system
measurement, 𝑓 : R𝑛 × R≥0 ↦→ R𝑛 and ℎ : R𝑛 × R≥0 ↦→ R𝑚 are known smooth
functions, 𝑑𝑒0 : R𝑛×R≥0 ↦→ R𝑛, 𝑑𝑒1 : R𝑛×R≥0 ↦→ R0,𝐺𝑒0 : R𝑛×R≥0 ↦→ R𝑛×𝑤0 , and
𝐺𝑒1 : R𝑛 ×R≥0 ↦→ R𝑛×𝑤1 are unknown bounded functions for external disturbances,
𝒲0 : R≥0 ↦→ R𝑤0 and 𝒲1 : R≥0 ↦→ R𝑤1 are two independent Wiener processes, and
the arguments of 𝐺𝑒0(𝑥, 𝑡) and 𝐺𝑒1(𝑥, 𝑡) are suppressed for notational convenience.
Let 𝐴(𝜚𝑎, 𝑥, 𝑥, 𝑡) and 𝐶 (𝜚𝑐, 𝑥, 𝑥, 𝑡) be the SDC matrices given by Lemma 3.1 with
( 𝑓 , 𝑠, 𝑠, �̄�) replaced by ( 𝑓 , 𝑥, 𝑥, 0) and (ℎ, 𝑥, 𝑥, 0), respectively, i.e.

𝐴(𝜚𝑎, 𝑥, 𝑥, 𝑡) (𝑥 − 𝑥) = 𝑓 (𝑥, 𝑡) − 𝑓 (𝑥, 𝑡) (4.5)

𝐶 (𝜚𝑐, 𝑥, 𝑥, 𝑡) (𝑥 − 𝑥) = ℎ(𝑥, 𝑡) − ℎ(𝑥, 𝑡). (4.6)

We design a nonlinear state estimation law parameterized by a matrix-valued func-
tion 𝑀 (𝑥, 𝑡) as follows:

¤̂𝑥 = 𝑓 (𝑥, 𝑡) + 𝐿 (𝑥, 𝑡) (𝑦 − ℎ(𝑥, 𝑡)) (4.7)

= 𝑓 (𝑥, 𝑡) + 𝑀 (𝑥, 𝑡)�̄� (𝜚𝑐, 𝑥, 𝑡)⊤𝑅(𝑥, 𝑡)−1(𝑦 − ℎ(𝑥, 𝑡))

where �̄� (𝜚𝑐, 𝑥, 𝑡) = 𝐶 (𝜚𝑐, 𝑥, 𝑥, 𝑡) for a fixed trajectory 𝑥 (e.g., 𝑥 = 0, see Theo-
rem 3.2), 𝑅(𝑥, 𝑡) ≻ 0 is a weight matrix on the measurement 𝑦, and 𝑀 (𝑥, 𝑡) ≻ 0
is a positive definite matrix (which satisfies the matrix inequality constraint for a
contraction metric, to be given in (4.12) of Theorem 4.5). Note that we could use
other forms of estimation laws such as the EKF [2], [6], [7], analytical SLAM [8],
or SDC with respect to a fixed point [1], [4], [9], depending on the application of
interest, which result in a similar stability analysis as in Theorem 3.2.

4.2.I Nonlinear Stability Analysis of SDC-based State Estimation using Con-
traction Theory

Substituting (4.7) into (4.3) and (4.4) yields the following virtual system of a smooth
path 𝑞(𝜇, 𝑡), parameterized by 𝜇 ∈ [0, 1] to have 𝑞(𝜇 = 0, 𝑡) = 𝑥 and 𝑞(𝜇 = 1, 𝑡) = 𝑥:

¤𝑞(𝜇, 𝑡) = 𝜁 (𝑞(𝜇, 𝑡), 𝑥, 𝑥, 𝑡) + 𝑑 (𝜇, 𝑥, 𝑥, 𝑡) (4.8)

𝑑𝑞(𝜇, 𝑡) = 𝜁 (𝑞(𝜇, 𝑡), 𝑥, 𝑥, 𝑡)𝑑𝑡 + 𝐺 (𝜇, 𝑥, 𝑥, 𝑡)𝑑𝒲(𝑡) (4.9)
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where 𝑑 (𝜇, 𝑥, 𝑥, 𝑡) = (1 − 𝜇)𝑑𝑒0(𝑥, 𝑡) + 𝜇𝐿 (𝑥, 𝑡)𝑑𝑒1(𝑥, 𝑡), 𝐺 (𝜇, 𝑥, 𝑥, 𝑡) = [(1 −
𝜇)𝐺𝑒0(𝑥, 𝑡), 𝜇𝐿(𝑥, 𝑡)𝐺𝑒1(𝑥, 𝑡)], 𝒲 = [𝒲⊤

0 ,𝒲
⊤

1 ]
⊤, and 𝜁 (𝑞, 𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) is defined

as

𝜁 (𝑞, 𝑥, 𝑥, 𝑡) = (𝐴(𝜚𝑎, 𝑥, 𝑥, 𝑡) − 𝐿 (𝑥, 𝑡)𝐶 (𝜚𝑐, 𝑥, 𝑥, 𝑡)) (𝑞 − 𝑥) + 𝑓 (𝑥, 𝑡). (4.10)

Note that (4.10) is constructed to contain 𝑞 = 𝑥 and 𝑞 = 𝑥 as its particular solutions
of (4.8) and (4.9). If 𝑑 = 0 and 𝒲 = 0, the differential dynamics of (4.8) and (4.9)
for 𝜕𝜇𝑞 = 𝜕𝑞/𝜕𝜇 is given as

𝜕𝜇 ¤𝑞 = (𝐴(𝜚𝑎, 𝑥, 𝑥, 𝑡) − 𝐿 (𝑥, 𝑡)𝐶 (𝜚𝑐, 𝑥, 𝑥, 𝑡)) 𝜕𝜇𝑞. (4.11)

The similarity between (3.14) (𝜕𝜇 ¤𝑞 = (𝐴−𝐵𝐾)𝜕𝜇𝑞) and (4.11) leads to the following
theorem [1]–[4]. Again, note that we could also use the SDC formulation with
respect to a fixed point as delineated in Theorem 3.2 and as demonstrated in [1], [4],
[9].

Theorem 4.3. Suppose ∃�̄�, 𝑐 ∈ R≥0 s.t. ∥𝑅−1(𝑥, 𝑡)∥ ≤ �̄�, ∥𝐶 (𝜚𝑐, 𝑥, 𝑥, 𝑡)∥ ≤
𝑐, ∀𝑥, 𝑥, 𝑡. Suppose also that 𝑚I ⪯ 𝑀 ⪯ 𝑚𝐼 of (2.26) holds, or equivalently,
I ⪯ �̄� ⪯ 𝜒𝐼 of (3.19) holds with 𝑊 = 𝑀 (𝑥, 𝑡)−1, �̄� = 𝜈𝑊 , 𝜈 = 𝑚, and 𝜒 = 𝑚/𝑚.
As in Theorem 3.1, let 𝛽 be defined as 𝛽 = 0 for deterministic systems (4.3) and

𝛽 = 𝛼𝑠 = 𝛼𝑒0 + 𝜈2𝛼𝑒1 = 𝐿𝑚 �̄�
2
𝑒0(𝛼𝐺 + 1/2)/2 + 𝜈2𝐿𝑚 �̄�

2𝑐2�̄�2
𝑒1(𝛼𝐺 + 1/2)/2

for stochastic systems (4.4), where 2𝛼𝑒0 = 𝐿𝑚 �̄�
2
𝑒0(𝛼𝐺+1/2), 2𝛼𝑒1 = 𝐿𝑚 �̄�

2𝑐2�̄�2
𝑒1(𝛼𝐺+

1/2), 𝐿𝑚 is the Lipschitz constant of 𝜕𝑊/𝜕𝑥𝑖, �̄�𝑒0 and �̄�𝑒1 are given in (4.4), and
∃𝛼𝐺 ∈ R>0 is an arbitrary constant as in Theorem 2.5.

If 𝑀 (𝑥, 𝑡) in (4.7) is constructed to satisfy the following convex constraint for
∃𝛼 ∈ R>0:

¤̄𝑊 + 2 sym (�̄� 𝐴 − 𝜈�̄�⊤𝑅−1𝐶) ⪯ −2𝛼�̄� − 𝜈𝛽I (4.12)

then Theorems 2.4 and 2.5 hold for the virtual systems (4.8) and (4.9), respectively,
i.e., we have the following bounds for e = 𝑥 − 𝑥 with 𝜈 = 𝑚 and 𝜒 = 𝑚/𝑚:

∥e(𝑡)∥ ≤
√
𝑚𝑉ℓ (0)𝑒−𝛼𝑡 +

𝑑𝑒0
√
𝜒 + �̄�𝑐𝑑𝑒1𝜈
𝛼

(1 − 𝑒−𝛼𝑡) (4.13)

E
[
∥e(𝑡)∥2

]
≤ 𝑚E[𝑉𝑠ℓ (0)]𝑒−2𝛼𝑡 + 𝐶𝑒0𝜒 + 𝐶𝑒1𝜒𝜈

2

2𝛼
(4.14)

where 𝑉𝑠ℓ =
∫ 𝑥
𝑥
𝛿𝑞⊤𝑊𝛿𝑞 and 𝑉ℓ =

∫ 𝑥
𝑥
∥Θ𝛿𝑞∥ are given in Theorem 2.3 with

𝑊 = 𝑀−1 = Θ⊤Θ defining a contraction metric, the disturbance bounds 𝑑𝑒0, 𝑑𝑒1,
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�̄�𝑒0, and �̄�𝑒1 are given in (4.3) and (4.4), respectively, 𝐶𝑒0 = �̄�2
𝑒0(2𝛼𝐺

−1 + 1), and
𝐶𝑒1 = �̄�2𝑐2�̄�2

𝑒1(2𝛼𝐺
−1 + 1). Note that for stochastic systems, the probability that

∥e∥ is greater than or equal to 𝜀 ∈ R>0 is given as

P [∥e(𝑡)∥ ≥ 𝜀] ≤ 1
𝜀2

(
𝑚E[𝑉𝑠ℓ (0)]𝑒−2𝛼𝑡 + 𝐶𝐸

2𝛼

)
(4.15)

where 𝐶𝐸 = 𝐶𝑒0𝜒 + 𝐶𝑒1𝜒𝜈2.

Proof. Theorem 3.1 indicates that (4.12) is equivalent to

¤𝑊 + 2 sym (𝑊𝐴 − �̄�⊤𝑅−1𝐶) ⪯ −2𝛼𝑊 − 𝛽I. (4.16)

Computing the time derivative of a Lyapunov function 𝑉 = 𝜕𝜇𝑞
⊤𝑊𝜕𝜇𝑞 with 𝜕𝜇𝑞 =

𝜕𝑞/𝜕𝜇 for the unperturbed virtual dynamics (4.11), we have using (4.16) that

¤𝑉 = 𝜕𝜇𝑞
⊤𝑊𝜕𝜇𝑞 = 𝜕𝜇𝑞

⊤( ¤𝑊 + 2𝑊𝐴 − 2�̄�⊤𝑅−1𝐶)𝜕𝜇𝑞 ≤ −2𝛼𝑉 − 𝛽∥𝜕𝜇𝑞∥2

which implies that 𝑊 = 𝑀−1 defines a contraction metric. Since we have 𝑚−1I ⪯
𝑊 ⪯ 𝑚−1I, 𝑉 ≥ 𝑚−1∥𝜕𝜇𝑞∥2, and

∥Θ(𝑥, 𝑡)𝜕𝜇𝑑∥ ≤ 𝑑𝑒0/
√
𝑚 + 𝑑𝑒1 �̄�𝑐

√
𝑚

∥𝜕𝜇𝐺∥2𝐹 ≤ �̄�2
𝑒0 + �̄�

2𝑐2�̄�2
𝑒1𝑚

2

for 𝑑 in (4.8) and 𝐺 in (4.9), the bounds (4.13) – (4.15) follow from the proofs of
Theorems 2.4 and 2.5 [2], [3].

Remark 4.1. Although (4.12) is not an LMI due to the nonlinear term −𝜈𝛽I on
its right-hand side for stochastic systems (4.4), it is a convex constraint as −𝜈𝛽 =

−𝜈𝛼𝑠 = −𝜈𝛼𝑒0 − 𝜈3𝛼𝑒1 is a concave function for 𝜈 ∈ R>0 [3], [10].

4.2.II CV-STEM Formulation for State Estimation
The estimator (4.7) gives a convex steady-state upper bound of the Euclidean distance
between 𝑥 and 𝑥 as in Theorem 4.1 [1]–[4].

Theorem 4.4. If (4.12) of Theorem 4.3 holds, then we have the following bound:

lim
𝑡→∞

√︃
E
[
∥𝑥 − 𝑥∥2

]
≤ 𝑐0(𝛼, 𝛼𝐺)𝜒 + 𝑐1(𝛼, 𝛼𝐺)𝜈𝑠 (4.17)

where 𝑐0 = 𝑑𝑒0/𝛼, 𝑐1 = �̄�𝑐𝑑𝑒1/𝛼, 𝑠 = 1 for deterministic systems (4.8), and
𝑐0 =

√︁
𝐶𝑒0/(2𝛼), 𝑐1 = 𝐶𝑒1/(2

√
2𝛼𝐶𝑒0), and 𝑠 = 2 for stochastic systems (4.9), with

𝐶𝑒0 and 𝐶𝑒0 given as 𝐶𝑒0 = �̄�2
𝑒0(2𝛼

−1
𝐺
+ 1) and 𝐶𝑒1 = �̄�2𝑐2�̄�2

𝑒1(2𝛼
−1
𝐺
+ 1).
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Proof. The upper bound (4.17) for deterministic systems (4.8) follows from (4.13)
with the relation 1 ≤ √𝜒 ≤ 𝜒 due to 𝑚 ≤ 𝑚. For stochastic systems, we have using
(4.14) that

𝐶𝑒0𝜒 + 𝐶𝑒1𝜈2𝜒 ≤ 𝐶𝑒0(𝜒 + (𝐶𝑒1/(2𝐶𝑒0))𝜈2)2

due to 1 ≤ 𝜒 ≤ 𝜒2 and 𝜈 ∈ R>0. This gives (4.17) for stochastic systems (4.9).

Finally, the CV-STEM estimation framework is summarized in Theorem 4.5 [1]–[4].

Theorem 4.5. Suppose that 𝛼, 𝛼𝐺 , 𝑑𝑒0, 𝑑𝑒1, �̄�𝑒0, �̄�𝑒1, and 𝐿𝑚 in (4.12) and (4.17)
are given. If the pair (𝐴,𝐶) is uniformly observable, the non-convex optimization
problem of minimizing the upper bound (4.17) is equivalent to the following convex
optimization problem with the contraction constraint (4.12) and I ⪯ �̄� ⪯ 𝜒I of
(3.19):

𝐽∗𝐶𝑉 = min
𝜈∈R>0,𝜒∈R,�̄�≻0

𝑐0𝜒 + 𝑐1𝜈
𝑠 + 𝑐2𝑃(𝜒, 𝜈, �̄�) (4.18)

s.t. (4.12) and (3.19)

where 𝑐0, 𝑐1, and 𝑠 are as defined in (4.17) of Theorem 4.4, 𝑐2 ∈ R≥0, and 𝑃 is some
performance-based cost function as in Theorem 4.2.

The weight 𝑐1 for 𝜈𝑠 indicates how much we trust the measurement 𝑦(𝑡). Using
non-zero 𝑐2 enables finding contraction metrics optimal in a different sense in terms
of 𝑃. Furthermore, the coefficients of the SDC parameterizations 𝜚𝑎 and 𝜚𝑐 in
Lemma 3.1 (i.e., 𝐴 =

∑
𝜚𝑎,𝑖𝐴𝑖 and 𝐶 =

∑
𝜚𝑐,𝑖𝐶𝑖 in (4.5) and (4.6)) can also be

treated as decision variables by convex relaxation [9], thereby adding a design
flexibility to mitigate the effects of external disturbances while verifying the system
observability.

Proof. The proposed optimization problem is convex as its objective and constraints
are convex in terms of decision variables 𝜒, 𝜈, and �̄� (see Remark 4.1). Also,
larger 𝑑𝑒1 and �̄�𝑒1 in (4.3) and (4.4) imply larger measurement uncertainty. Thus by
definition of 𝑐1 in Theorem 4.4, the larger the weight of 𝜈, the less confident we are in
𝑦(𝑡) (see Example 4.2). The last statement on the SDC coefficients for guaranteeing
observability follows from Proposition 1 of [9] and Proposition 1 of [1].

Example 4.2. The weights 𝑐0 and 𝑐1 of the CV-STEM estimation of Theorem 4.5
has an analogous trade-off to the case of the Kalman filter with the process and
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sensor noise covariance matrices,𝑄 and 𝑃, respectively, since the term 𝑐0𝜒 in upper
bound of the steady-state tracking error in (4.17) becomes dominant if measurement
noise is much smaller than process noise (𝑑𝑒0 ≫ 𝑑𝑒1 or �̄�𝑒0 ≫ �̄�𝑒1), and the term
𝑐1𝜈

𝑠 becomes dominant if measurement noise is much greater than process noise
(𝑑𝑒0 ≪ 𝑑𝑒1 or �̄�𝑒0 ≪ �̄�𝑒1). In particular [2], [3],

• if 𝑐1 is much greater than 𝑐0, large measurement noise leads to state estimation
that responds slowly to unexpected changes in the measurement 𝑦 (i.e. small
estimation gain due to 𝜈 = 𝑚 ≥ ∥𝑀 ∥), and

• if 𝑐1 is much smaller than 𝑐0, large process noise leads to state estimation that
responds fast to changes in the measurement (i.e. large 𝜈 = 𝑚 ≥ ∥𝑀 ∥).

This is also because the solution 𝑄 = 𝑃−1 ≻ 0 of the Kalman filter Riccati equa-
tion [7, p. 375], ¤𝑃 = 𝐴𝑃 + 𝑃𝐴⊤ − 𝑃𝐶⊤𝑅−1𝐶𝑃 + 𝑄, can be viewed as a positive
definite matrix that defines a contraction metric as discussed in Example 2.3.

4.3 Control Contraction Metrics (CCMs)
As briefly discussed in Remark 3.4, the concept of a CCM [11]–[16] is introduced
to extend contraction theory to design differential feedback control laws for control-
affine deterministic nonlinear systems (3.1), ¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢. Let us show
that the CCM formulation could also be considered in the CV-STEM control of
Theorem 4.2, where similar ideas have been investigated in [12], [17], [18].

Theorem 4.6. Suppose the CV-STEM control of Theorem 4.2 is designed with its
contraction condition replaced by the following set of convex constraints along with
I ⪯ �̄� ⪯ 𝜒I of (3.19):

𝐵⊤⊥

(
−𝜕�̄�
𝜕𝑡
− 𝜕 𝑓 �̄� + 2 sym

(
𝜕 𝑓

𝜕𝑥
�̄�

)
+ 2𝛼�̄�

)
𝐵⊥ ≺ 0 (4.19)

𝐵⊤⊥

(
𝜕𝑏𝑖�̄� − 2 sym

(
𝜕𝑏𝑖

𝜕𝑥
�̄�

))
𝐵⊥ = 0,∀𝑥, 𝑡, 𝑖 (4.20)

where 𝐵⊥(𝑥, 𝑡) is a matrix whose columns span the cokernel of 𝐵(𝑥, 𝑡) defined as
coker(𝐵) = {𝑎 ∈ R𝑛 |𝐵⊤𝑎 = 0} satisfying 𝐵⊤𝐵⊥ = 0, 𝑏𝑖 (𝑥, 𝑡) is the 𝑖th column
of 𝐵(𝑥, 𝑡), �̄� (𝑥, 𝑡) = 𝜈𝑊 (𝑥, 𝑡), 𝑊 (𝑥, 𝑡) = 𝑀 (𝑥, 𝑡)−1 for 𝑀 (𝑥, 𝑡) that defines a
contraction metric, 𝜈 = 𝑚, 𝜒 = 𝑚/𝑚, and 𝜕𝑝𝐹 =

∑𝑛
𝑘=1(𝜕𝐹/𝜕𝑥𝑘 )𝑝𝑘 for 𝑝(𝑥, 𝑡) ∈ R𝑛

and 𝐹 (𝑥, 𝑡) ∈ R𝑛×𝑛. Then the controlled system (3.1) with 𝑑𝑐 = 0, i.e., ¤𝑥 =

𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢, is
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1) universally exponentially open-loop controllable
2) universally exponentially stabilizable via sampled-data feedback with arbitrary

sample times
3) universally exponentially stabilizable using continuous feedback defined almost

everywhere, and everywhere in a neighborhood of the target trajectory

all with rate 𝛼 and overshoot 𝑅 =
√︁
𝑚/𝑚 for 𝑚 and 𝑚 given in 𝑚I ⪯ 𝑀 ⪯ 𝑚I of

(2.26). Such a positive definite matrix 𝑀 (𝑥, 𝑡) defines a CCM.

Given a CCM, there exists a differential feedback controller 𝛿𝑢 = 𝑘 (𝑥, 𝛿𝑥, 𝑢, 𝑡) that
stabilizes the following differential dynamics of (3.1) with 𝑑𝑐 = 0 along all solutions
(i.e., the closed-loop dynamics is contracting as in Definition 2.3):

𝛿 ¤𝑥 = 𝐴(𝑥, 𝑢, 𝑡)𝛿𝑥 + 𝐵(𝑥, 𝑡)𝛿𝑢 (4.21)

where 𝐴 = 𝜕 𝑓 /𝜕𝑥 +∑𝑚
𝑖=1(𝜕𝑏𝑖/𝜕𝑥)𝑢𝑖 and 𝛿𝑢 is a tangent vector to a smooth path of

controls at 𝑢. Furthermore, it can be computed as follows [11], [12], [16]:

𝑢(𝑥(𝑡), 𝑡) = 𝑢𝑑 +
∫ 1

0
𝑘 (𝛾(𝜇, 𝑡), 𝜕𝜇𝛾(𝜇, 𝑡), 𝑢(𝛾(𝜇, 𝑡), 𝑡), 𝑡)𝑑𝜇 (4.22)

where 𝜕𝜇𝛾 = 𝜕𝛾/𝜕𝜇, 𝛾 is the minimizing geodesic with 𝛾(0, 𝑡) = 𝑥𝑑 and 𝛾(1, 𝑡) = 𝑥
for 𝜇 ∈ [0, 1], (𝑥𝑑 , 𝑢𝑑) is a given target trajectory in ¤𝑥𝑑 = 𝑓 (𝑥𝑑 , 𝑡) + 𝐵(𝑥𝑑 , 𝑡)𝑢𝑑 of
(3.3), and the computation of 𝑘 is given in [11], [12] (see Remark 4.2). Further-
more, Theorem 2.4 for deterministic disturbance rejection still holds and the CCM
controller (4.22) thus possesses the same sense of oplimality as for the CV-STEM
control in Theorem 4.2.

Proof. Since the columns of 𝐵⊥(𝑥, 𝑡) span the cokernel of 𝐵(𝑥, 𝑡), the constraints
(4.19) and (4.20) can be equivalently written as 𝐵⊥(𝑥, 𝑡) replaced by 𝑎 in coker(𝐵) =
{𝑎 ∈ R𝑛 |𝐵⊤𝑎 = 0}. Let 𝑎 = 𝑀𝛿𝑥 = 𝑊−1𝛿𝑥. Then multiplying (4.19) and (4.20) by
𝜈−1 > 0 and rewriting them using 𝑎 yields

𝛿𝑥⊤𝑀𝐵 = 0 ⇒ 𝛿𝑥⊤( ¤𝑀 + 2 sym(𝑀𝐴) + 2𝛼𝑀)𝛿𝑥 < 0 (4.23)

where 𝐴 = 𝜕 𝑓 /𝜕𝑥 + ∑𝑚
𝑖=1(𝜕𝑏𝑖/𝜕𝑥)𝑢𝑖 for the differential dynamics (4.21). The

relation (4.23) states that 𝛿𝑥 orthogonal to the span of actuated directions 𝑏𝑖 is
naturally contracting, thereby implying the stabilizability of the system (3.1) with
𝑑𝑐 = 0, i.e., ¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢. See [11], [12], [16] (and [17] on the CV-STEM
formulation) for the rest of the proof.
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Example 4.3. Let us consider a case where 𝑘 of the differential feedback controller
does not depend on 𝑢, and is defined explicitly by 𝑀 (𝑥, 𝑡) ≻ 0 as follows [17]:

𝑢 = 𝑢𝑑 −
∫ 𝑥

𝑥𝑑

𝑅(𝑞, 𝑡)−1𝐵(𝑞, 𝑡)⊤𝑀 (𝑞, 𝑡)𝛿𝑞 (4.24)

where 𝑅(𝑥, 𝑡) ≻ 0 is a given weight matrix and 𝑞 is a smooth path that connects
𝑥 to 𝑥𝑑 . Since (4.24) yields 𝛿𝑢 = −𝑅(𝑥, 𝑡)−1𝐵(𝑥, 𝑡)⊤𝑀 (𝑥, 𝑡)𝛿𝑥, the contraction
conditions (4.19) and (4.20) could be simplified as

− 𝜕�̄�
𝜕𝑡
− 𝜕 𝑓 �̄� + 2 sym

(
𝜕 𝑓

𝜕𝑥
�̄�

)
− 𝜈𝐵𝑅−1𝐵⊤ ⪯ −2𝛼�̄�

− 𝜕𝑏𝑖�̄� + 2 sym
(
𝜕𝑏𝑖

𝜕𝑥
�̄�

)
= 0 (4.25)

yielding the convex optimization-based control synthesis algorithm of Theorem 4.6
independently of (𝑥𝑑 , 𝑢𝑑) similar to that of Theorem 4.2 (see [17] for details).

Example 4.4. If 𝐵 is of the form [0, I]⊤ for the zero matrix 0 ∈ R𝑛1×𝑚 and identity
matrix I ∈ R𝑛2×𝑚 with 𝑛 = 𝑛1 + 𝑛2, the condition (4.25) says that 𝑀 should not
depend on the last 𝑛2 state variables [11].

Remark 4.2. We could consider stochastic perturbation in Theorem 4.6 using
Theorem 2.5, even with the differential control law of the form (4.22) or (4.24)
as demonstrated in [17]. Also, although the relation (4.20) or (4.25) is not included
as a constraint in Theorem 4.2 for simplicity of discussion, the dependence of ¤̄𝑊 on
𝑢 in Theorem 4.2 can be removed by using it in a similar way to [17].

As stated in (4.22), the computation of the differential feedback gain 𝑘 (𝑥, 𝛿𝑥, 𝑢, 𝑡)
and minimizing geodesics 𝛾 is elaborated in [11], [12]. For example, if 𝑀 is
state-independent, then geodesics are just straight lines.

Let us again emphasize that, as delineated in Sec. 3.1, the differences between
the SDC- and CCM-based CV-STEM frameworks in Theorems 4.2 and 4.6 arise
only from their different form of controllers in 𝑢 = 𝑢𝑑 − 𝐾 (𝑥 − 𝑥𝑑) of (3.10) and
𝑢 = 𝑢𝑑 +

∫ 1
0 𝑘𝑑𝜇 of (4.22), leading to the trade-offs outlined in Table 3.1.

4.4 Remarks in CV-STEM Implementation
We propose some useful techniques for the practical application of the CV-STEM
in Theorems 4.2, 4.5, and 4.6. Note that the CV-STEM requires solving a convex
optimization problem at each time instant, but its solution can be approximated with
formal stability guarantees to enable faster computation using machine learning
techniques as shall be seen in Chapter 6.
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4.4.I Performance-based Cost Function
Selecting 𝑐2 = 0 in Theorems 4.2, 4.5, and 4.6 yields a convex objective function that
allows for a systematic interpretation of its weights as seen earlier in Examples 4.1
and 4.2. One could also select 𝑐2 > 0 to augment the CV-STEM with other control
and estimation performances of interest, as long as 𝑃(𝜈, 𝜒, �̄�) in (4.2) and (4.18)
is convex. For example, we could consider a steady-state tracking error bound
of parametric uncertain systems as 𝑃, using the adaptive control technique to be
discussed in Chapter 8.1 [19]. Such a modification results in a contraction metric
optimal in a different sense. Also, the different assumption on the boundedness of
𝑀 and its derivatives lead to different convex optimization as derived in [1], [4].

4.4.II Selecting and Computing CV-STEM Parameters
The CV-STEM optimization problems derived in Theorems 4.2, 4.5, and 4.6 are
convex if we assume that 𝛼, 𝛼𝐺 , and 𝐿𝑚 are given. However, these parameters
would also affect the optimality of resultant contraction metrics. In [2], [3], [12],
a line search algorithm is performed to find optimal 𝛼 and 𝛼𝐺 , while the Lipschitz
constraint given with 𝐿𝑚 is guaranteed by spectrally-normalization [3], [20] as shall
be seen in detail in Sec. 6.3 (see [21]–[23] for contraction theory-based techniques
for obtaining Lipschitz bounds). Also, the CV-STEM can be formulated as a finite-
dimensional problem by using backward difference approximation on ¤̄𝑊 , where
we can then use −�̄� ⪯ −I to get a sufficient condition of its constraints, or we
could alternatively solve it along pre-computed trajectories {𝑥(𝑡𝑖)}𝑀𝑖=0 as in [2]. In
Chapter 6, we use a parameterized function such as neural networks [24]–[26] for
approximating 𝑀 to explicitly compute ¤𝑀 .

References

[1] H. Tsukamoto and S.-J. Chung, “Robust controller design for stochastic
nonlinear systems via convex optimization,” IEEE Trans. Autom. Control,
vol. 66, no. 10, pp. 4731–4746, 2021.

[2] H. Tsukamoto and S.-J. Chung, “Neural contraction metrics for robust esti-
mation and control: A convex optimization approach,” IEEE Control Syst.
Lett., vol. 5, no. 1, pp. 211–216, 2021.

[3] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine, “Neural stochastic contrac-
tion metrics for learning-based control and estimation,” IEEE Control Syst.
Lett., vol. 5, no. 5, pp. 1825–1830, 2021.

https://ieeexplore.ieee.org/document/9261103
https://ieeexplore.ieee.org/document/9261103
https://ieeexplore.ieee.org/document/9115010
https://ieeexplore.ieee.org/document/9115010
https://ieeexplore.ieee.org/document/9302618
https://ieeexplore.ieee.org/document/9302618


78

[4] H. Tsukamoto and S.-J. Chung, “Convex optimization-based controller de-
sign for stochastic nonlinear systems using contraction analysis,” in IEEE
Conf. Decis. Control, Dec. 2019, pp. 8196–8203.

[5] W. J. Rugh, Linear Systems Theory. USA: Prentice-Hall, Inc., 1996, isbn:
0134412052.

[6] S. Bonnabel and J.-J. E. Slotine, “A contraction theory-based analysis of the
stability of the deterministic extended Kalman filter,” IEEE Trans. Autom.
Control, vol. 60, no. 2, pp. 565–569, Feb. 2015.

[7] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and
Applied Kalman Filtering: with MATLAB Exercises and Solutions, 4th.
New York, NY: Wiley, 1997.

[8] F. Tan, W. Lohmiller, and J.-J. E. Slotine, “Analytical SLAM without lin-
earization,” Int. J. Robot. Res., vol. 36, no. 13-14, pp. 1554–1578, 2017.

[9] A. P. Dani, S.-J. Chung, and S. Hutchinson, “Observer design for stochastic
nonlinear systems via contraction-based incremental stability,” IEEE Trans.
Autom. Control, vol. 60, no. 3, pp. 700–714, Mar. 2015.

[10] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, Mar. 2004.

[11] I. R. Manchester and J.-J. E. Slotine, “Control contraction metrics: Convex
and intrinsic criteria for nonlinear feedback design,” IEEE Trans. Autom.
Control, vol. 62, no. 6, pp. 3046–3053, Jun. 2017.

[12] S. Singh, A. Majumdar, J.-J. E. Slotine, and M. Pavone, “Robust online
motion planning via contraction theory and convex optimization,” in IEEE
Int. Conf. Robot. Automat., May 2017, pp. 5883–5890.

[13] S. Singh, S. M. Richards, V. Sindhwani, J.-J. E. Slotine, and M. Pavone,
“Learning stabilizable nonlinear dynamics with contraction-based regular-
ization,” Int. J. Robot. Res., Aug. 2020.

[14] R. Wang, R. Tóth, and I. R. Manchester, “A comparison of LPV gain
scheduling and control contraction metrics for nonlinear control,” in 3rd
IFAC Workshop on LPVS, vol. 52, 2019, pp. 44–49.

[15] R. Wang, R. Tóth, and I. R. Manchester, Virtual CCMs: Convex nonlinear
feedback design via behavioral embedding, arXiv:2003.08513, Mar. 2020.

[16] I. R. Manchester and J.-J. E. Slotine, “Robust control contraction metrics:
A convex approach to nonlinear state-feedbackH∞ control,” IEEE Control
Syst. Lett., vol. 2, no. 3, pp. 333–338, 2018.

[17] H. Tsukamoto, S.-J. Chung, J.-J. Slotine, and C. Fan, “A theoretical overview
of neural contraction metrics for learning-based control with guaranteed
stability,” in IEEE Conf. Decis. Control, 2021, pp. 2949–2954.

https://ieeexplore.ieee.org/document/9028942
https://ieeexplore.ieee.org/document/9028942
https://web.ece.ucsb.edu/~hespanha/linearsystems/
https://ieeexplore.ieee.org/document/6849943
https://ieeexplore.ieee.org/document/6849943
https://www.oreilly.com/library/view/introduction-to-random/9780470609699/
https://www.oreilly.com/library/view/introduction-to-random/9780470609699/
https://journals.sagepub.com/doi/full/10.1177/0278364917710541
https://journals.sagepub.com/doi/full/10.1177/0278364917710541
https://ieeexplore.ieee.org/document/6899639
https://ieeexplore.ieee.org/document/6899639
https://web.stanford.edu/~boyd/cvxbook/
https://ieeexplore.ieee.org/document/7852456
https://ieeexplore.ieee.org/document/7852456
https://ieeexplore.ieee.org/document/7989693
https://ieeexplore.ieee.org/document/7989693
https://journals.sagepub.com/doi/abs/10.1177/0278364920949931
https://journals.sagepub.com/doi/abs/10.1177/0278364920949931
https://www.sciencedirect.com/science/article/pii/S2405896319322463
https://www.sciencedirect.com/science/article/pii/S2405896319322463
https://arxiv.org/abs/2003.08513
https://arxiv.org/abs/2003.08513
https://ieeexplore.ieee.org/abstract/document/8359119
https://ieeexplore.ieee.org/abstract/document/8359119
https://ieeexplore.ieee.org/document/9682859
https://ieeexplore.ieee.org/document/9682859
https://ieeexplore.ieee.org/document/9682859


79

[18] P. Zhao, A. Lakshmanan, K. Ackerman, A. Gahlawat, M. Pavone, and N.
Hovakimyan, Tube-certified trajectory tracking for nonlinear systems with
robust control contraction metrics, arXiv:2109.04453, Sep. 2021.

[19] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine, “Learning-based Adaptive
Control using Contraction Theory,” in IEEE Conf. Decis. Control, 2021,
pp. 2533–2538.

[20] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization
for generative adversarial networks,” in Int. Conf. Learn. Representations,
2018.

[21] M. Revay, R. Wang, and I. R. Manchester, Lipschitz bounded equilibrium
networks, arXiv:2010.01732, Oct. 2020.

[22] M. Revay, R. Wang, and I. R. Manchester, Recurrent equilibrium net-
works: Flexible dynamic models with guaranteed stability and robustness,
arXiv:2104.05942, Apr. 2021.

[23] I. R. Manchester, M. Revay, and R. Wang, “Contraction-based methods for
stable identification and robust machine learning: A tutorial,” in IEEE Conf.
Decis. Control, 2021, pp. 2955–2962.

[24] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward net-
works are universal approximators,” Neural Netw., vol. 2, no. 5, pp. 359–
366, 1989, issn: 0893-6080.

[25] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Math. Control Signals Syst, vol. 2, no. 4, pp. 303–314, Dec. 1989, issn:
1435-568X.

[26] K.-I. Funahashi, “On the approximate realization of continuous mappings
by neural networks,” Neural Netw., vol. 2, no. 3, pp. 183–192, 1989, issn:
0893-6080.

https://arxiv.org/abs/2109.04453
https://arxiv.org/abs/2109.04453
https://ieeexplore.ieee.org/document/9683435
https://ieeexplore.ieee.org/document/9683435
https://openreview.net/forum?id=B1QRgziT-
https://openreview.net/forum?id=B1QRgziT-
https://arxiv.org/abs/2010.01732
https://arxiv.org/abs/2010.01732
https://arxiv.org/abs/2104.05942
https://arxiv.org/abs/2104.05942
https://ieeexplore.ieee.org/document/9683128
https://ieeexplore.ieee.org/document/9683128
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1007/BF02551274
https://www.sciencedirect.com/science/article/pii/0893608089900038
https://www.sciencedirect.com/science/article/pii/0893608089900038


Part II: Learning-based Control

80



81

C h a p t e r 5

CONTRACTION THEORY FOR LEARNING-BASED CONTROL

[1] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine, “Contraction theory for
nonlinear stability analysis and learning-based control: A tutorial overview,”
Annu. Rev. Control, vol. 52, pp. 135–169, 2021, issn: 1367-5788.

Machine learning techniques, e.g., reinforcement learning [1]–[4], imitation learn-
ing [5]–[9], and neural networks [10]–[12], have gained popularity due to their
ability to achieve a large variety of innovative engineering and scientific tasks
which have been impossible heretofore. Starting from this chapter, we will see
how contraction theory enhances learning-based and data-driven automatic control
frameworks providing them with formal optimality, stability, and robustness guaran-
tees. In particular, we present Theorems 5.2 and 5.3 for obtaining robust exponential
bounds on trajectory tracking errors of nonlinear systems in the presence of learning
errors, whose steady-state terms are again written as a function of the condition
number 𝜒 = 𝑚/𝑚 of a positive definite matrix 𝑀 that defines a contraction metric,
consistently with the CV-STEM frameworks of Chapter 4.

5.1 Problem Formulation
Let us consider the following virtual nonlinear system as in Theorem 2.2:

¤𝑞(𝜇, 𝑡) = g(𝑞(𝜇, 𝑡), 𝜛, 𝑡) + 𝜇Δ𝐿 (𝜛, 𝑡) + 𝑑 (𝜇, 𝜛, 𝑡) (5.1)

where 𝜇 ∈ [0, 1], 𝑞 : [0, 1] × R≥0 ↦→ R𝑛 is a smooth path of the system states,
𝜛 : R≥0 ↦→ R𝑝 is a time-varying parameter, g : R𝑛 × R𝑝 × R≥0 ↦→ R𝑛 is a
known smooth function which renders ¤𝑞 = g(𝑞, 𝜛, 𝑡) contracting with respect to 𝑞,
𝑑 : [0, 1] ×R𝑝 ×R≥0 ↦→ R𝑛 with sup𝜇,𝜛,𝑡 ∥𝜕𝑑/𝜕𝜇∥ = 𝑑 ∈ R≥0 is unknown external
disturbance parameterized by 𝜇 as in Theorem 2.4, and Δ𝐿 : R𝑝 × R≥0 ↦→ R𝑛 is
the part to be learned with machine learning-based methodologies such as neural
networks [10]–[12]. We can also formulate this in a stochastic setting as follows:

𝑑𝑞(𝜇, 𝑡) = (g(𝑞(𝜇, 𝑡), 𝜛, 𝑡) + 𝜇Δ𝐿 (𝜛, 𝑡))𝑑𝑡 + 𝐺 (𝜇, 𝜛, 𝑡)𝑑𝒲 (5.2)

where 𝒲 : R≥0 ↦→ R𝑤 is a Wiener process, and 𝐺 : [0, 1] ×R𝑝 ×R≥0 ↦→ R𝑛×𝑤 is a
matrix-valued function parameterized by 𝜇 with sup𝜇,𝜛,𝑡 ∥𝜕𝐺/𝜕𝜇∥𝐹 = �̄� ∈ R≥0 as

https://www.sciencedirect.com/science/article/pii/S1367578821000766?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1367578821000766?via%3Dihub
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in Theorem 2.5. The objective of learning is to find Δ𝐿 which satisfies the following,
assuming that 𝜛 ∈ S𝜛 ⊆ R𝑝 and 𝑡 ∈ S𝑡 ⊆ R≥0 for some compact sets S𝜛 and S𝑡 :

∥Δ𝐿 (𝜛, 𝑡)∥ ≤ 𝜖ℓ0 + 𝜖ℓ1∥𝜉1 − 𝜉0∥, ∀(𝜛, 𝑡) ∈ S (5.3)

where S = S𝜛 × S𝑡 , 𝜉0 = 𝑞(0, 𝑡) and 𝜉1 = 𝑞(1, 𝑡) are particular solutions of (5.1)
and (5.2), and 𝜖ℓ0, 𝜖ℓ1 ∈ R≥0 are given learning errors.

Examples 5.1 – 5.3 illustrate how the problem (5.3) with the nonlinear systems (5.1)
and (5.2) can be used to describe several learning-based and data-driven control
problems to be discussed in the subsequent chapters, regarding 𝜛 as 𝑥, 𝑥𝑑 , 𝑥, 𝑢𝑑 ,
etc.

Example 5.1 (Feedback tracking control). Let us consider the problem of learning
a computationally-expensive (or unknown) feedback control law 𝑢∗(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) that
tracks a target trajectory (𝑥𝑑 , 𝑢𝑑) given by ¤𝑥𝑑 = 𝑓 (𝑥𝑑 , 𝑡) + 𝐵(𝑥𝑑 , 𝑡)𝑢𝑑 as in (3.3),
assuming that 𝑓 and 𝐵 are known. If the dynamics is perturbed by 𝑑𝑐 (𝑥, 𝑡) as in
(3.1), we have that

¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢𝐿 + 𝑑𝑐 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢∗ + 𝐵(𝑥, 𝑡) (𝑢𝐿 − 𝑢∗) + 𝑑𝑐 (𝑥, 𝑡)

where 𝑢𝐿 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) denotes a learned law that models 𝑢∗(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡). As long as
𝑢∗ renders the closed-loop dynamics ¤𝑥 = 𝑓 (𝑥, 𝑡) +𝐵(𝑥, 𝑡)𝑢∗(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) contracting
with respect to 𝑥 [13]–[16], we can define the functions of (5.1) as follows:

g(𝑞, 𝜛, 𝑡) = 𝑓 (𝑞, 𝑡) + 𝐵(𝑞, 𝑡)𝑢∗(𝑞, 𝑥𝑑 , 𝑢𝑑 , 𝑡)
Δ𝐿 (𝜛, 𝑡) = 𝐵(𝑥, 𝑡) (𝑢𝐿 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) − 𝑢∗(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)) (5.4)

with 𝑑 (𝜇, 𝜛, 𝑡) = 𝜇𝑑𝑐 (𝑥, 𝑡), where 𝜛 = [𝑥⊤, 𝑥⊤
𝑑
, 𝑢⊤
𝑑
]⊤ in this case. It can be easily

verified that (5.1) indeed has 𝑞(𝜇 = 0, 𝑡) = 𝑥𝑑 and 𝑞(𝜇 = 1, 𝑡) = 𝑥 as particular
solutions if 𝑢∗(𝑥𝑑 , 𝑥𝑑 , 𝑢𝑑 , 𝑡) = 𝑢𝑑 . Similarly, we can use (5.2) with 𝐺 = 𝜇𝐺𝑐 (𝑥, 𝑡) if
the dynamics is stochastically perturbed by 𝐺𝑐 (𝑥, 𝑡)𝑑𝒲 as in (3.2).

The learning objective here is to make ∥𝑢𝐿 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) − 𝑢∗(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)∥ as small
as possible, which aligns with the aforementioned objective in (5.3). Note that if
∥𝐵∥ is bounded in the compact set S of (5.3), we can bound ∥Δ𝐿 ∥ of (5.4) with
𝜖ℓ0 ≠ 0 and 𝜖ℓ1 = 0 as to be explained in Remark 5.1. See Theorems 6.1, 6.3, and
7.1 for details.
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Example 5.2 (State estimation). Next, let us consider the problem of learning a
computationally-expensive (or unknown) state estimator, approximating its estima-
tion gain 𝐿 (𝑥, 𝑡) by 𝐿𝐿 (𝑥, 𝑡). If there is no disturbance in (4.3) and (4.4), we have
that

¤̂𝑥 = 𝑓 (𝑥, 𝑡) + 𝐿𝐿 (ℎ(𝑥, 𝑡) − ℎ(𝑥, 𝑡))
= 𝑓 (𝑥, 𝑡) + 𝐿 (ℎ(𝑥, 𝑡) − ℎ(𝑥, 𝑡)) + (𝐿𝐿 − 𝐿) (ℎ(𝑥, 𝑡) − ℎ(𝑥, 𝑡))

where ¤𝑥 = 𝑓 (𝑥, 𝑡) is the true system, 𝑦 = ℎ(𝑥, 𝑡) is the measurement, and we assume
that 𝑓 and ℎ are known. If 𝐿 is designed to render ¤𝑞 = 𝑓 (𝑞, 𝑡) + 𝐿 (𝑥, 𝑡) (ℎ(𝑥, 𝑡) −
ℎ(𝑞, 𝑡)) contracting with respect to 𝑞 [13], [15], [17], [18], we could define the
functions of (5.1) and (5.2) as follows:

g(𝑞, 𝜛, 𝑡) = 𝑓 (𝑞, 𝑡) + 𝐿 (𝑥, 𝑡) (ℎ(𝑥, 𝑡) − ℎ(𝑞, 𝑡)) (5.5)

Δ𝐿 (𝑞, 𝜛, 𝑡) = (𝐿𝐿 (𝑥, 𝑡) − 𝐿 (𝑥, 𝑡)) (ℎ(𝑥, 𝑡) − ℎ(𝑥, 𝑡)) (5.6)

where 𝜛 = [𝑥⊤, 𝑥⊤]⊤. It can be seen that (5.1) and (5.2) with the relations (5.5)
and (5.6) indeed has 𝑞(𝜇 = 0, 𝑡) = 𝑥 and 𝑞(𝜇 = 1, 𝑡) = 𝑥 as its particular solutions
when perturbed by deterministic and stochastic disturbances as in (4.3) and (4.4),
respectively. We can bound ∥Δ𝐿 ∥ of (5.6) in the compact set of (5.3) with 𝜖ℓ0 = 0
and 𝜖ℓ1 ≠ 0 if ℎ is Lipschitz, and with 𝜖ℓ0 ≠ 0 and 𝜖ℓ1 = 0 if ℎ is bounded in S, using
the techniques to be discussed in Remark 5.1. See Theorems 6.2 and 6.3 for details.

Example 5.3 (System identification). We can use the problem (5.3) with the systems
(5.1) and (5.2) also if 𝑓true of the underlying dynamics ¤𝑥∗ = 𝑓true(𝑥∗, 𝑡) is unknown
and learned by ¤𝑥 = 𝑓𝐿 (𝑥, 𝑡). Since we have

¤𝑥∗ = 𝑓true(𝑥∗, 𝑡) = 𝑓𝐿 (𝑥∗, 𝑡) + ( 𝑓true(𝑥∗, 𝑡) − 𝑓𝐿 (𝑥, 𝑡))

we could define g and Δ𝐿 of (5.1) and (5.2) as follows, to have 𝑞(𝜇 = 0, 𝑡) = 𝑥 and
𝑞(𝜇 = 1, 𝑡) = 𝑥∗ as its particular solutions:

g(𝑞, 𝜛, 𝑡) = 𝑓𝐿 (𝑞, 𝑡), Δ𝐿 (𝜛, 𝑡) = 𝑓true(𝑥∗, 𝑡) − 𝑓𝐿 (𝑥∗, 𝑡) (5.7)

where 𝜛 = 𝑥∗, as long as ¤𝑥 = 𝑓𝐿 (𝑥, 𝑡) is contracting with respect to 𝑥 [19], [20].
Since Δ𝐿 of (5.7) is the learning error itself, ∥Δ𝐿 ∥ can be bounded in S using the
techniques of Remark 5.1. See Theorems 8.3 and 8.4 for details.

Remark 5.1. As seen in Examples 5.1 – 5.2, Δ𝐿 of (5.3) is typically given by a learn-
ing error, 𝜙(𝑧) − 𝜑(𝑧), multiplied by a bounded or Lipschitz continuous function,
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where 𝑧 = (𝜛, 𝑡) ∈ S for a compact set S, and 𝜙 is the true computationally-
expensive/unknown function to be learned by 𝜑 as in (5.4), (5.6), (5.7), etc.

Let T be a set of training data {(𝑧𝑖, 𝜙(𝑧𝑖))}𝑁𝑖=1 sampled in S. For systems with
the true function 𝜙 and its approximation 𝜑 being Lipschitz (e.g., by spectral nor-
malization [21] to be discussed in Definition 6.3 or by using contraction theory as
in [22]–[24]), we can analytically find a bound for ∥𝜙(𝑧) −𝜑(𝑧)∥ as follows if target
data samples 𝑧 are in 𝐵(𝑟) = {𝑧 ∈ S| sup𝑧′∈T ∥𝑧 − 𝑧′∥ ≤ 𝑟} for some 𝑟 ∈ R≥0:

sup
𝑧∈𝐵(𝑟)

∥𝜙(𝑧) − 𝜑(𝑧)∥ ≤ sup
𝑧′∈T
∥𝜙(𝑧′) − 𝜑(𝑧′)∥ + (𝐿𝜙 + 𝐿𝜑)𝑟 (5.8)

where 𝐿𝜙 and 𝐿𝜑 are the Lipschitz constants of 𝜙 and 𝜑, respectively. The term
sup𝑧′∈T ∥𝜙(𝑧′) − 𝜑(𝑧′)∥ can then be bounded by a constant, e.g., by using a deep
robust regression model as proven in [25], [26] with spectral normalization, under
standard training data distribution assumptions.

Deep Neural Networks (DNNs) have been shown to generalize well to the set of
unseen events that are from almost the same distribution as their training set [27]–
[31], and consequently, obtaining a tighter and more general upper bound for the
learning error as in (5.8) has been an active field of research [25], [26], [32],
[33], where some recent examples include, but are not limited to, spectral nor-
malization [21], [29], neural ordinary differential equations [34]–[41], robust
implicit networks [42], [43], robust equilibrium networks [24], [44], and Lipschitz
neural networks [45]–[47]. Thus, the condition (5.3) has become a common as-
sumption in analyzing the performance of learning-based and data-driven control
techniques [29], [48]–[55].

5.2 Formal Stability Guarantees via Contraction Theory
One drawback of naively using existing learning-based and data-driven control
approaches for the perturbed nonlinear systems (5.1) and (5.2) without analyzing
contraction is that, as shall be seen in the following theorem, we can only guarantee
the trajectory error to be bounded by a function that increases exponentially with
time.

Theorem 5.1. Suppose thatΔ𝐿 of (5.1) is learned to satisfy (5.3), and that g(𝑞, 𝜛, 𝑡)
of (5.1) is Lipschitz with respect to 𝑞 with its 2-norm Lipschitz constant 𝐿g ∈ R≥0,
i.e.,

∥g(𝑞, 𝜛, 𝑡) − g(𝑞′, 𝜛, 𝑡)∥ ≤ 𝐿g∥𝑞 − 𝑞′∥, ∀(𝜛, 𝑡) ∈ S
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where 𝑞, 𝑞′ ∈ R𝑛 and S is the compact set of (5.3). Then we have the following
upper bound for all (𝜛, 𝑡) ∈ S:

∥e(𝑡)∥ ≤ ∥e(0)∥𝑒(𝐿g+𝜖ℓ1)𝑡 + 𝜖ℓ0 + 𝑑
𝐿g + 𝜖ℓ1

(𝑒(𝐿g+𝜖ℓ1)𝑡 − 1) (5.9)

where e(𝑡) = 𝜉1(𝑡) − 𝜉0(𝑡), 𝜉0(𝑡) = 𝑞(0, 𝑡) and 𝜉1(𝑡) = 𝑞(1, 𝑡) for 𝑞 of (5.1), and
𝑑 = sup𝜇,𝜛,𝑡 ∥𝜕𝑑/𝜕𝜇∥ for 𝑑 of (5.3).

Proof. See the Gronwall-Bellman inequality [56, p. 651] and Theorem 3.4 of [56,
pp. 96-97].

The bound obtained in Theorem 5.1 is useful in that it gives mathematical guarantees
even for naive learning-based frameworks without a contracting property (e.g., it
can be used to prove safety in the learning-based Model Predictive Control (MPC)
framework [57]). However, the exponential term 𝑒(𝐿g+𝜖ℓ1)𝑡 in (5.9) causes the upper
bound to diverge, which could result in more conservative automatic control designs
than necessary.

In contrast, contraction theory gives an upper bound on the trajectory tracking error
∥e(𝑡)∥ which is exponentially bounded linearly in the learning error, even under the
presence of external disturbances [15], [51]–[53].

Theorem 5.2. Let us consider the virtual system of a smooth path 𝑞(𝜇, 𝑡) in (5.1) and
suppose that Δ𝐿 of (5.1) is learned to satisfy (5.3). If the condition 𝑚I ⪯ 𝑀 ⪯ 𝑚I
of (2.26) holds and the system (5.1) with Δ𝐿 = 0 and 𝑑 = 0 is contracting, i.e.,

¤𝑀 + 𝑀 (𝜕g/𝜕𝑞) + (𝜕g/𝜕𝑞)⊤𝑀 ⪯ −2𝛼𝑀

of Theorem 2.1 or 2.2 holds for 𝑀 ≻ 0 that defines a contraction metric with the
contraction rate 𝛼, and if the learning error 𝜖ℓ1 of (5.3) is sufficiently small to satisfy

∃𝛼ℓ ∈ R>0 s.t. 𝛼ℓ = 𝛼 − 𝜖ℓ1
√︃
𝑚/𝑚 > 0, (5.10)

then we have the following bound for all (𝜛, 𝑡) ∈ S:

∥e(𝑡)∥ ≤ 𝑉ℓ (0)√
𝑚
𝑒−𝛼ℓ 𝑡 + 𝜖ℓ0 + 𝑑

𝛼ℓ

√︄
𝑚

𝑚
(1 − 𝑒−𝛼ℓ 𝑡) (5.11)

where e(𝑡) = 𝜉1(𝑡) − 𝜉0(𝑡) with 𝜉0(𝑡) = 𝑞(0, 𝑡) and 𝜉1(𝑡) = 𝑞(1, 𝑡) for 𝑞 of (5.1),
𝑑 = sup𝜇,𝜛,𝑡 ∥𝜕𝑑/𝜕𝜇∥ as in (5.1), S is the compact set of Theorem 5.1, 𝜖ℓ0 and 𝜖ℓ1
are the learning errors of (5.3), and 𝑉ℓ (𝑡) =

∫ 𝜉1
𝜉0
∥Θ(𝑞(𝑡), 𝑡)𝛿𝑞(𝑡)∥ for 𝑀 = Θ⊤Θ

as in Theorem 2.3.
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Proof. Since (5.1) with Δ𝐿 = 0 and 𝑑 = 0 is contracting and we have that

∥𝜕 (Δ𝐿 + 𝑑)/𝜕𝜇∥ ≤ 𝜖ℓ0 + 𝜖ℓ1∥𝜉1 − 𝜉0∥ + 𝑑

≤ 𝜖ℓ0 +
𝜖ℓ1√
𝑚

∫ 𝜉1

𝜉0

∥Θ𝛿𝑞∥ + 𝑑 = 𝜖ℓ0 +
𝜖ℓ1√
𝑚
𝑉ℓ + 𝑑 (5.12)

for all 𝜇 ∈ [0, 1] and (𝜛, 𝑡) ∈ S due to sup𝜇,𝜛,𝑡 ∥𝜕𝑑/𝜕𝜇∥ = 𝑑, the direct application
of Theorem 2.4 to the system (5.1), along with the condition (5.10), yields (5.11).

Using Theorem 2.5, we can easily derive a stochastic counterpart of Theorem 5.2
for the system (5.2) [53], [58].

Theorem 5.3. Consider the virtual system of a smooth path 𝑞(𝜇, 𝑡) in (5.2) and
suppose Δ𝐿 of (5.2) is learned to satisfy (5.3). If 𝑚I ⪯ 𝑀 ⪯ 𝑚I of (2.26) holds and
the system (5.2) is contracting, i.e.,

¤𝑀 + 𝑀 (𝜕g/𝜕𝑞) + (𝜕g/𝜕𝑞)⊤𝑀 ⪯ −2𝛼𝑀 − 𝛼𝑠I

of Theorem 2.5 holds, and if the learning error 𝜖ℓ1 of (5.3) and an arbitrary constant
𝛼𝑑 ∈ R>0 (see (5.16)) are selected to satisfy

∃𝛼ℓ ∈ R>0 s.t. 𝛼ℓ = 𝛼 − (𝛼𝑑/2 + 𝜖ℓ1
√︃
𝑚/𝑚) > 0, (5.13)

then we have the following bound for all (𝜛, 𝑡) ∈ S:

E
[
∥e(𝑡)∥2

]
≤ E[𝑉𝑠ℓ (0)]

𝑚
𝑒−2𝛼ℓ 𝑡 + 𝐶

2𝛼ℓ
𝑚

𝑚
(5.14)

where e(𝑡) = 𝜉1(𝑡) − 𝜉0(𝑡) with 𝜉0(𝑡) = 𝑞(0, 𝑡) and 𝜉1(𝑡) = 𝑞(1, 𝑡) for 𝑞 of (5.2),
S is the compact set given in Theorem 5.1, 𝜖ℓ0 and 𝜖ℓ1 are the learning errors of
(5.3), 𝑉𝑠ℓ (𝑡) =

∫ 𝜉1
𝜉0
∥Θ(𝑞(𝑡), 𝑡)𝛿𝑞(𝑡)∥2 for 𝑀 = Θ⊤Θ as given in Theorem 2.3, and

𝐶 = �̄�2(2𝛼𝐺−1 + 1) + 𝜖2
ℓ0𝛼
−1
𝑑

for �̄� = sup𝜇,𝜛,𝑡 ∥𝜕𝐺/𝜕𝜇∥𝐹 of (5.2) with an arbitrary
constant 𝛼𝐺 ∈ R>0 as in Theorem 2.5. Furthermore, the probability that ∥e∥ is
greater than or equal to 𝜀 ∈ R>0 is given as

P [∥e(𝑡)∥ ≥ 𝜀] ≤ 1
𝜀2

(
E[𝑉𝑠ℓ (0)]

𝑚
𝑒−2𝛼ℓ 𝑡 + 𝐶

2𝛼ℓ
𝑚

𝑚

)
. (5.15)

Proof. Computingℒ𝑉𝑠ℓ with the virtual system (5.2) as in the proof of Theorem 2.5,
we get an additional term 2

∫ 1
0 𝜕𝜇𝑞

⊤𝑀Δ𝐿 . Using the learning error assumption (5.3)
to have ∥Δ𝐿 ∥ ≤ 𝜖ℓ0 + (𝜖ℓ1/

√
𝑚)

∫ 1
0 ∥Θ𝜕𝜇𝑞∥𝑑𝜇 as in (5.12), we have that

2
∫ 1

0
𝜕𝜇𝑞

⊤𝑀Δ𝐿 ≤ 2
√
𝑚𝑉ℓ (𝜖ℓ0 + (𝜖ℓ1/

√
𝑚)𝑉ℓ)

≤ 𝛼−1
𝑑 𝜖

2
ℓ0𝑚 + (𝛼𝑑 + 2𝜖ℓ1

√︃
𝑚/𝑚)𝑉2

ℓ (5.16)
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where 𝑉ℓ =
∫ 1

0 ∥Θ𝜕𝜇𝑞∥𝑑𝜇 as in Theorem 2.3, and the relation 2𝑎𝑏 ≤ 𝛼−1
𝑑
𝑎2 +𝛼𝑑𝑏2,

which holds for any 𝑎, 𝑏 ∈ R and 𝛼𝑑 ∈ R>0 (𝑎 = 𝜖ℓ0
√
𝑚 and 𝑏 = 𝑉ℓ in this

case), is used to obtain the second inequality. Since we have 𝑉2
ℓ
≤ 𝑉𝑠ℓ as proven

in Theorem 2.3, selecting 𝛼𝑑 and 𝜖ℓ1 sufficiently small to satisfy (5.13) gives the
desired relations (5.14) and (5.15) due to Theorem 2.5.

As discussed in Theorems 5.2 and 5.3, using contraction theory for learning-based
and data-driven control, we can formally guarantee the system trajectories to stay
in a tube with an exponentially convergent bounded radius centered around the
target trajectory, even with the external disturbances and learning errors 𝜖ℓ0 and 𝜖ℓ1.
The exponential bounds (5.11), (5.14), and (5.15) become tighter as we achieve
smaller 𝜖ℓ0 and 𝜖ℓ1 using more training data for verifying (5.3) (see Remark 5.1).
It is also worth noting that the steady-state bounds of (5.11) and (5.14) are again
some functions of the condition number 𝜒 = 𝑚/𝑚 as in Theorems 4.1 and 4.4,
which renders the aforementioned CV-STEM approach valid and effective also
in the learning-based frameworks. Theorems 5.2 and 5.3 play a central role in
providing incremental exponential stability guarantees for learning-based and data-
driven automatic control to be introduced in Chapter 6 – 8.1.
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C h a p t e r 6

LEARNING-BASED SAFE AND ROBUST CONTROL AND
ESTIMATION

[1] H. Tsukamoto and S.-J. Chung, “Neural contraction metrics for robust esti-
mation and control: A convex optimization approach,” IEEE Control Syst.
Lett., vol. 5, no. 1, pp. 211–216, 2021.

[2] H. Tsukamoto, S.-J. Chung, J.-J. Slotine, and C. Fan, “A theoretical overview
of neural contraction metrics for learning-based control with guaranteed
stability,” in IEEE Conf. Decis. Control, 2021, pp. 2949–2954.

[3] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine, “Neural stochastic contrac-
tion metrics for learning-based control and estimation,” IEEE Control Syst.
Lett., vol. 5, no. 5, pp. 1825–1830, 2021.

The CV-STEM schemes in Theorems 4.2, 4.5, and 4.6 permit the construction
of optimal contraction metrics via convex optimization for synthesizing optimal,
provably stable, and robust feedback control and state estimation. It is also shown in
Theorems 5.2 and 5.3 that these contraction metrics are useful for obtaining stability
guarantees for machine learning-based and data-driven control techniques. They
also retain the CV-STEM-type optimality due to the tracking error bounds (5.11)
and (5.14), which are comparable to those in Theorems 4.1 and 4.4. However, the
CV-STEM requires that a nonlinear system of equations or an optimization problem
be solved at each time instant, which is not suitable for systems with limited online
computational capacity.

The Neural Contraction Metric (NCM) and its extensions [1]–[4], to be discussed in
this chapter, have been developed to address such a computational issue by modeling
the CV-STEM optimization scheme using a DNN [5]–[7], making it implementable
in real-time. We will see in the following that Theorems 5.2 and 5.3 of Chapter 5
can still be used to formally prove the robustness and stability properties of the NCM
methodologies [8].

https://ieeexplore.ieee.org/document/9115010
https://ieeexplore.ieee.org/document/9115010
https://ieeexplore.ieee.org/document/9682859
https://ieeexplore.ieee.org/document/9682859
https://ieeexplore.ieee.org/document/9682859
https://ieeexplore.ieee.org/document/9302618
https://ieeexplore.ieee.org/document/9302618
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Let us again consider the systems (3.1) – (3.3) for control, i.e.,

¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢 + 𝑑𝑐 (𝑥, 𝑡) (6.1)

𝑑𝑥 = ( 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢)𝑑𝑡 + 𝐺𝑐 (𝑥, 𝑡)𝑑𝒲(𝑡) (6.2)

¤𝑥𝑑 = 𝑓 (𝑥𝑑 , 𝑡) + 𝐵(𝑥𝑑 , 𝑡)𝑢𝑑 (6.3)

with sup𝑥,𝑡 ∥𝑑𝑐∥ = 𝑑𝑐 ∈ R≥0 and sup𝑥,𝑡 ∥𝐺𝑐∥𝐹 = �̄�𝑐 ∈ R≥0, and (4.3) – (4.4) for
estimation, i.e.,

¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝑑𝑒0(𝑥, 𝑡), 𝑦 = ℎ(𝑥, 𝑡) + 𝑑𝑒1(𝑥, 𝑡) (6.4)

𝑑𝑥 = 𝑓 (𝑥, 𝑡)𝑑𝑡 + 𝐺𝑒0𝑑𝒲0, 𝑦𝑑𝑡 = ℎ(𝑥, 𝑡)𝑑𝑡 + 𝐺𝑒1𝑑𝒲1 (6.5)

with sup𝑥,𝑡 ∥𝑑𝑒0∥ = 𝑑𝑒0 ∈ R≥0, sup𝑥,𝑡 ∥𝑑𝑒1∥ = 𝑑𝑒1 ∈ R≥0, sup𝑥,𝑡 ∥𝐺𝑒0∥𝐹 = �̄�𝑒0 ∈
R≥0, and sup𝑥,𝑡 ∥𝐺𝑒1∥𝐹 = �̄�𝑒1 ∈ R≥0. The following definitions of a DNN [5]–[7]
and NCM [1], [2], [8] will be utilized extensively hereinafter.

Definition 6.1. A neural network is a nonlinear mathematical model to approxi-
mately represent training samples {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 of 𝑦 = 𝜙(𝑥) by optimally tuning its
hyperparameters𝑊ℓ, and is given as follows:

𝑦𝑖 = 𝜑(𝑥𝑖;𝑊ℓ) = 𝑇𝐿+1 ◦ 𝜎 ◦ 𝑇𝐿 ◦ · · · ◦ 𝜎 ◦ 𝑇1(𝑥𝑖) (6.6)

where 𝑇ℓ (𝑥) = 𝑊ℓ𝑥, ◦ denotes composition of functions, and 𝜎 is an activation
function (e.g. 𝜎(𝑥) = tanh(𝑥), note that 𝜑(𝑥) is smooth in this case). We call a
neural network that has more than two layers (i.e., 𝐿 ≥ 2) a Deep Neural Network
(DNN).

Definition 6.2. A Neural Contraction Metric (NCM) is a DNN model of a contraction
metric given in Theorem 2.1. Its training data could be sampled by solving the CV-
STEM presented in Theorem 4.2 for control (or Theorem 4.6 for differential feedback
control) and Theorem 4.5 for estimation. The NCM framework is summarized in
Fig. 6.1.

Remark 6.1. Although a stochastic version of the NCM is called a Neural Stochastic
Contraction Metric (NSCM) in [2], we also denote it as an NCM in this thesis for
simplicity of presentation.

Since the NCM only requires one function evaluation at each time instant to get 𝑀
that defines a contraction metric, without solving any optimization problems unlike
the CV-STEM approaches, it enables real-time optimal feedback control and state
estimation in most engineering and scientific applications.
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Find contraction metric given
by 𝑀 that minimizes 𝐷

𝑥 𝑡 , 𝑡

𝑦 𝑡 , 𝑡
NCM estimation

neural net

𝑢(𝑥, 𝑡)

ො𝑥(𝑡)

Compute 𝑢(𝑥, 𝑡) & ො𝑥(𝑡)
using trained neural nets 

time 𝑡

{𝑥𝑖}𝑖=1
𝑁

Neural 
Network

＊1 & 2 via convex optimization (CV-STEM) ＊different nets for estimation & control

𝛿𝑥(𝑡)

𝛿𝑥(∞)
𝐷

OFFLINE
PHASE

ONLINE
PHASE

{𝑡𝑖}𝑖=1
𝑁

{𝑀𝑖}𝑖=1
𝑁 NCM control

neural net 

Figure 6.1: Illustration of NCM (𝑥: system state; 𝑀: positive definite matrix that
defines optimal contraction metric; 𝑥𝑖 and 𝑀𝑖: sampled 𝑥 and 𝑀; 𝑥: estimated
system state; 𝑦: measurement; and 𝑢: system control input). Note that the target
trajectory (𝑥𝑑 , 𝑢𝑑) is omitted in the figure for simplicity.

6.1 Stability of NCM-based Control and Estimation
The NCM exhibits superior incremental robustness and stability due to its internal
contracting property.

Theorem 6.1. Let M define the NCM in Definition 6.2, and let 𝑢∗ = 𝑢𝑑 −
𝑅−1𝐵⊤𝑀 (𝑥 − 𝑥𝑑) for 𝑀 and 𝑅 given in Theorem 4.2. Suppose that the systems
(6.1) and (6.2) are controlled by 𝑢𝐿 , which computes the CV-STEM controller 𝑢∗ of
Theorem 4.2 replacing 𝑀 byM, i.e.,

𝑢𝐿 = 𝑢𝑑 − 𝑅(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)−1𝐵(𝑥, 𝑡)⊤M(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)e (6.7)

for e = 𝑥 − 𝑥𝑑 . Note that we could use the differential feedback control 𝑢 =

𝑢𝑑 +
∫ 1

0 𝑘𝑑𝜇 of Theorem 4.6 for 𝑢∗ and 𝑢𝐿 . Define Δ𝐿 of Theorems 5.2 and 5.3 as
follows:

Δ𝐿 (𝜛, 𝑡) = 𝐵(𝑥, 𝑡) (𝑢𝐿 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) − 𝑢∗(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)) (6.8)

where we use 𝑞(0, 𝑡) = 𝜉0(𝑡) = 𝑥𝑑 (𝑡), 𝑞(1, 𝑡) = 𝜉1(𝑡) = 𝑥(𝑡), and𝜛 = [𝑥⊤, 𝑥⊤
𝑑
, 𝑢⊤
𝑑
]⊤

in the learning-based control formulation (5.1) and (5.2). If the NCM is learned
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to satisfy the learning error assumptions of Theorems 5.2 and 5.3 for Δ𝐿 given by
(6.8), then (5.11), (5.14), and (5.15) of Theorems 5.2 and 5.3 hold as follows:

∥e(𝑡)∥ ≤ 𝑉ℓ (0)√
𝑚
𝑒−𝛼ℓ 𝑡 + 𝜖ℓ0 + 𝑑𝑐

𝛼ℓ

√︄
𝑚

𝑚
(1 − 𝑒−𝛼ℓ 𝑡) (6.9)

E
[
∥e(𝑡)∥2

]
≤ E[𝑉𝑠ℓ (0)]

𝑚
𝑒−2𝛼ℓ 𝑡 + 𝐶𝐶

2𝛼ℓ
𝑚

𝑚
(6.10)

P [∥e(𝑡)∥ ≥ 𝜀] ≤ 1
𝜀2

(
E[𝑉𝑠ℓ (0)]

𝑚
𝑒−2𝛼ℓ 𝑡 + 𝐶𝐶

2𝛼ℓ
𝑚

𝑚

)
(6.11)

where e = 𝑥 − 𝑥𝑑 , 𝐶𝐶 = �̄�2
𝑐 (2𝛼𝐺−1 + 1) + 𝜖2

ℓ0𝛼
−1
𝑑

, the disturbance upper bounds 𝑑𝑐
and �̄�𝑐 are given in (6.1) and (6.2), respectively, and the other variables are defined
in Theorems 4.2, 5.2 and 5.3.

Proof. Let g of the virtual systems given in Theorems 5.2 and 5.3 be g = 𝜁 , where
𝜁 is given by (3.13) (i.e., 𝜁 = (𝐴 − 𝐵𝑅−1𝐵⊤𝑀) (𝑞 − 𝑥𝑑) + ¤𝑥𝑑). By definition of Δ𝐿 ,
this has 𝑞 = 𝑥 and 𝑞 = 𝑥𝑑 as its particular solutions (see Example 5.1). As defined
in the proof of Theorems 3.1, we have 𝑑 = 𝜇𝑑𝑐 and 𝐺 = 𝜇𝐺𝑐 for these virtual
systems, resulting in the upper bounds of disturbances in the learning-based control
formulation (5.11) and (5.14) given as

𝑑 = 𝑑𝑐 and �̄� = �̄�𝑐 . (6.12)

Since 𝑀 and 𝑢∗ are constructed to render ¤𝑞 = 𝜁 (𝑞, 𝜛, 𝑡) contracting as presented in
Theorem 4.2, and we have ∥Δ𝐿 ∥ ≤ 𝜖ℓ0 + 𝜖ℓ1∥𝜉1− 𝜉0∥ due to the learning assumption
(5.3), Theorem 5.2 implies the deterministic bound (6.9) and Theorem 5.3 implies
the stochastic bounds (6.10) and (6.11). Note that using the differential feedback
control of Theorem 4.6 as 𝑢∗ also gives the bounds (6.9) – (6.11) following the same
argument [8].

Due to the estimation and control duality in differential dynamics observed in
Chapter 4, we have a similar result to Theorem 6.1 for the NCM-based state estimator.

Theorem 6.2. LetM define the NCM in Definition 6.2, and let 𝐿 (𝑥, 𝑡) = 𝑀�̄�⊤𝑅−1

for 𝑀 , �̄� and 𝑅 given in Theorem 4.5. Suppose that the systems (6.4) and (6.5) are
estimated with an estimator gain 𝐿𝐿 , which computes 𝐿 of the CV-STEM estimator
¤̂𝑥 = 𝑓 (𝑥, 𝑡) + 𝐿 (𝑥, 𝑡) (𝑦 − ℎ(𝑥, 𝑡)) in Theorem 4.5 replacing 𝑀 byM, i.e.,

¤̂𝑥 = 𝑓 (𝑥, 𝑡) + 𝐿𝐿 (𝑥, 𝑡) (𝑦 − ℎ(𝑥, 𝑡)) (6.13)

= 𝑓 (𝑥, 𝑡) +M(𝑥, 𝑡)�̄� (𝜚𝑐, 𝑥, 𝑡)⊤𝑅(𝑥, 𝑡)−1(𝑦 − ℎ(𝑥, 𝑡))
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Define Δ𝐿 of Theorems 5.2 and 5.3 as follows:

Δ𝐿 (𝜛, 𝑡) = (𝐿𝐿 (𝑥, 𝑡) − 𝐿 (𝑥, 𝑡)) (ℎ(𝑥, 𝑡) − ℎ(𝑥, 𝑡)) (6.14)

where we use 𝑞(0, 𝑡) = 𝜉0(𝑡) = 𝑥(𝑡), 𝑞(1, 𝑡) = 𝜉1(𝑡) = 𝑥(𝑡), and 𝜛 = [𝑥⊤, 𝑥⊤]⊤

in the learning-based control formulation (5.1) and (5.2). If the NCM is learned
to satisfy the learning error assumptions of Theorems 5.2 and 5.3 for Δ𝐿 given by
(6.14), then (5.11), (5.14), and (5.15) of Theorems 5.2 and 5.3 hold as follows:

∥e(𝑡)∥ ≤
√
𝑚𝑉ℓ (0)𝑒−𝛼ℓ 𝑡 +

𝑑𝑎

√︃
𝑚
𝑚
+ 𝑑𝑏𝑚

𝛼ℓ
(1 − 𝑒−𝛼ℓ 𝑡) (6.15)

E
[
∥e(𝑡)∥2

]
≤ 𝑚E[𝑉𝑠ℓ (0)]𝑒−2𝛼ℓ 𝑡 + 𝐶𝐸

2𝛼ℓ
𝑚

𝑚
(6.16)

P [∥e(𝑡)∥ ≥ 𝜀] ≤ 1
𝜀2

(
𝑚E[𝑉𝑠ℓ (0)]𝑒−2𝛼ℓ 𝑡 + 𝐶𝐸

2𝛼ℓ
𝑚

𝑚

)
(6.17)

where e = 𝑥 − 𝑥, 𝑑𝑎 = 𝜖ℓ0 + 𝑑𝑒0, 𝑑𝑏 = �̄�𝑐𝑑𝑒1, 𝐶𝐸 = (�̄�2
𝑒0 + �̄�

2𝑐2�̄�2
𝑒1𝑚

2) (2𝛼𝐺−1 + 1) +
𝜖2
ℓ0𝛼
−1
𝑑

, the disturbance upper bounds 𝑑𝑒0 𝑑𝑒1, �̄�𝑒0, and �̄�𝑒1 are given in (6.4) and
(6.5), and the other variables are defined in Theorems 4.5, 5.2 and 5.3.

Proof. Let g of the virtual systems given in Theorems 5.2 and 5.3 be g = 𝜁 , where
𝜁 is given by (4.10) (i.e., 𝜁 = (𝐴 − 𝐿𝐶) (𝑞 − 𝑥) + 𝑓 (𝑥, 𝑡)). By definition of Δ𝐿 , this
has 𝑞 = 𝑥 and 𝑞 = 𝑥 as its particular solutions (see Example 5.2). As defined in the
proof Theorem 4.3, we have

𝑑 = (1 − 𝜇)𝑑𝑒0 + 𝜇𝐿𝐿𝑑𝑒1 and 𝐺 = [(1 − 𝜇)𝐺𝑒0, 𝜇𝐿𝐿𝐺𝑒1]

for these virtual systems, resulting in the upper bounds of external disturbances in
the learning-based control formulation (5.11) and (5.14) given as

𝑑 = 𝑑𝑒0 + �̄�𝑐 ¯𝑑𝑒1
√︃
𝑚𝑚 and �̄� =

√︃
�̄�2
𝑒0 + �̄�2𝑐2�̄�2

𝑒1𝑚
2.

Since 𝑊 = 𝑀−1 is constructed to render ¤𝑞 = 𝜁 (𝑞, 𝜛, 𝑡) contracting as presented in
Theorem 4.5, and we have ∥Δ𝐿 ∥ ≤ 𝜖ℓ0 + 𝜖ℓ1∥𝜉1− 𝜉0∥ due to the learning assumption
(5.3), Theorem 5.2 implies the bound (6.15), and Theorem 5.3 implies the bounds
(6.16) and (6.17).

Remark 6.2. As discussed in Examples 5.1 and 5.2 and in Remark 5.1, we have
𝜖ℓ1 = 0 for the learning error 𝜖ℓ1 of (5.3) as long as 𝐵 and ℎ are bounded a compact
set by the definition of Δ𝐿 in (6.8) and (6.14). If ℎ and 𝑢∗ are Lipschitz with respect
to 𝑥 in the compact set, we have non-zero 𝜖ℓ1 with 𝜖ℓ0 = 0 in (5.3) (see Theorem 6.3).
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Using Theorems 6.1 and 6.2, we can relate the learning error of the matrix that
defines the NCM, ∥M − 𝑀 ∥, to the error bounds (6.9) – (6.11) and (6.15) – (6.17),
if 𝑀 is given by the CV-STEM of Theorems 4.2 and 4.5.

Theorem 6.3. LetM define the NCM in Definition 6.2, and let S𝑠 ⊆ R𝑛, S𝑢 ⊆ R𝑚,
and 𝑡 ∈ S𝑡 ⊆ R≥0 be some compact sets. Suppose that the systems (6.1) – (6.5)
are controlled by (6.7) and estimated by (6.13), respectively, as in Theorems 6.1
and 6.2. Suppose also that ∃�̄�, 𝑐, �̄� ∈ R≥0 s.t. ∥𝐵(𝑥, 𝑡)∥ ≤ �̄�, ∥𝐶 (𝜚𝑐, 𝑥, 𝑥, 𝑡)∥ ≤ 𝑐,
and ∥𝑅−1∥ ≤ �̄�, ∀𝑥, 𝑥 ∈ S𝑠 and 𝑡 ∈ S𝑡 , for 𝐵 in (6.1), 𝐶 in Theorem 4.5, and 𝑅 in
(6.7) and (6.13). If we have for all 𝑥, 𝑥𝑑 , 𝑥 ∈ S𝑠, 𝑢𝑑 ∈ S𝑢, and 𝑡 ∈ S𝑡 that

∥M(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) − 𝑀 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)∥ ≤ 𝜖ℓ for control (6.18)

∥M(𝑥, 𝑡) − 𝑀 (𝑥, 𝑡)∥ ≤ 𝜖ℓ for estimation

where 𝑀 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) and 𝑀 (𝑥, 𝑡) (or 𝑀 (𝑥, 𝑡) and 𝑀 (𝑥, 𝑡), see Theorem 3.2) are the
CV-STEM solutions of Theorems 4.2 and 4.5 with∃𝜖ℓ ∈ R≥0 being the learning error,
then the bounds (6.9) – (6.11) of Theorem 6.1 and (6.15) – (6.17) of Theorem 6.2
hold with 𝜖ℓ0 = 0 and 𝜖ℓ1 = �̄��̄�2𝜖ℓ for control, and 𝜖ℓ0 = 0 and 𝜖ℓ1 = �̄�𝑐2𝜖ℓ

for estimation, as long as 𝜖ℓ is sufficiently small to satisfy the conditions (5.10) and
(5.13) of Theorems 5.2 and 5.3 for deterministic and stochastic systems, respectively.

Proof. For Δ𝐿 defined in (6.8) and (6.14) with the controllers and estimators given
as 𝑢∗ = 𝑢𝑑 − 𝑅−1𝐵⊤𝑀 (𝑥 − 𝑥𝑑), 𝑢𝐿 = 𝑢𝑑 − 𝑅−1𝐵⊤M(𝑥 − 𝑥𝑑), 𝐿 = 𝑀𝐶⊤𝑅−1, and
𝐿𝐿 =M𝐶⊤𝑅−1, we have the following upper bounds:

∥Δ𝐿 ∥ ≤

�̄��̄�2𝜖ℓ∥𝑥 − 𝑥𝑑 ∥ (controller)

�̄�𝑐2𝜖ℓ∥𝑥 − 𝑥∥ (estimator)

where the relation ∥ℎ(𝑥, 𝑡) − ℎ(𝑥, 𝑡)∥ ≤ 𝑐∥𝑥 − 𝑥∥, which follows from the equality
ℎ(𝑥, 𝑡) − ℎ(𝑥, 𝑡) = 𝐶 (𝜚𝑐, 𝑥, 𝑥, 𝑡) (𝑥−𝑥) (see Lemma 3.1), is used to obtain the second
inequality. This implies that we have 𝜖ℓ0 = 0 and 𝜖ℓ1 = �̄��̄�2𝜖ℓ for control, and 𝜖ℓ0 = 0
and 𝜖ℓ1 = �̄�𝑐2𝜖ℓ for estimation in the learning error of (5.3). The rest follows from
Theorems 6.1 and 6.2.

Example 6.1. The left-hand side of Fig. 6.2 shows the state estimation errors of the
following Lorenz oscillator perturbed by process noise 𝑑0 and measurement noise
𝑑1 [1]:

¤𝑥 = [𝜎(𝑥2 − 𝑥1), 𝑥1(𝜌 − 𝑥3) − 𝑥2, 𝑥1𝑥2 − 𝛽𝑥3]⊤ + 𝑑0(𝑥, 𝑡)
𝑦 = [1, 0, 0]𝑥 + 𝑑2(𝑥, 𝑡)
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where 𝑥 = [𝑥1, 𝑥2, 𝑥3]⊤, 𝜎 = 10, 𝛽 = 8/3, and 𝜌 = 28. It can be seen that
the steady-state estimation errors of the NCM and CV-STEM are below the optimal
steady-state upper bound of Theorem 4.5 (dotted line in the left-hand side of Fig. 6.2)
while the EKF has a larger error compared to the other two. In this example, training
data is sampled along 100 trajectories with uniformly distributed initial conditions
(−10 ≤ 𝑥𝑖 ≤ 10, 𝑖 = 1, 2, 3) using Theorem 4.5, and then modeled by a DNN as
in Definition 6.2. Additional implementation and network training details can be
found in [1].

Example 6.2. Consider a robust feedback control problem of the planar spacecraft
perturbed by deterministic disturbances, the unperturbed dynamics of which is given
as follows [9]:
𝑚 0 0
0 𝑚 0
0 0 𝐼

 ¥𝑥 =


cos 𝜙 sin 𝜙 0
− sin 𝜙 cos 𝜙 0

0 0 1



−1 −1 0 0 1 1 0 0
0 0 −1 −1 0 0 1 1
−ℓ ℓ −𝑏 𝑏 −ℓ ℓ −𝑏 𝑏

 𝑢
where 𝑥 = [𝑝𝑥 , 𝑝𝑦, 𝜙, ¤𝑝𝑥 , ¤𝑝𝑦, ¤𝜙]𝑇 with 𝑝𝑥 , 𝑝𝑦, and 𝜙 being the horizontal coordi-
nate, vertical coordinate, and yaw angle of the spacecraft, respectively, with the
other variables defined as 𝑚 = mass of spacecraft, 𝐼 = yaw moment of inertia, 𝑢 =

thruster force vector, ℓ = half-depth of spacecraft, and 𝑏 = half-width of spacecraft
(see Fig. 8 of [9] for details).

As shown in the right-hand side of Fig. 6.2, the NCM keeps their trajectories within
the bounded error tube of Theorem 4.2 (shaded region) around the target trajectory
(dotted line) avoiding collision with the circular obstacles, even under the presence
of disturbances, whilst requiring much smaller computational cost than the CV-
STEM. Data sampling and the NCM training are performed as in Example 6.1 [1].

Remark 6.3. We could also simultaneously synthesize a controller 𝑢 and the NCM,
and Theorem 6.1 can provide formal robustness and stability guarantees even for
such cases [8], [10]. In Chapter 7, we generalize the NCM to learn contraction
theory-based robust control using a DNN only taking 𝑥, 𝑡, and a vector containing
local environment information as its inputs, to avoid the online computation of 𝑥𝑑
for the sake of automatic guidance and control implementable in real-time.

6.2 NCMs as Lyapunov Functions
We could also utilize the NCM constructed by the CV-STEM contraction metric
for designing a Control Lyapunov function (CLF) [11]–[13], resulting in a stability
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Figure 6.2: Lorenz oscillator state estimation error smoothed using a 15-point
moving average filter in Example 6.1 (left), and spacecraft positions (𝑝𝑥 , 𝑝𝑦) on a
planar field in Example 6.2 (right).

result different from Theorems 6.1 and 6.3. To this end, let us recall that designing
optimal 𝑘 of 𝑢 = 𝑘 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) reduces to designing optimal 𝐾 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) of
𝑢 = 𝑢𝑑 − 𝐾 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) (𝑥 − 𝑥𝑑) due to Lemma 3.2 of Chapter 3. For such 𝑢, the
virtual system of (6.1)/(6.2) and (6.3) without any perturbation, which has 𝑞 = 𝑥

and 𝑞 = 𝑥𝑑 as its particular solutions, is given as follows:

¤𝑞 = (𝐴(𝜚, 𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) − 𝐵(𝑥, 𝑡)𝐾 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)) (𝑞 − 𝑥𝑑) + 𝑓 (𝑥𝑑 , 𝑡) + 𝐵(𝑥𝑑 , 𝑡)𝑢𝑑
(6.19)

where 𝐴 is the SDC matrix of (6.1) in Lemma 3.1, i.e., 𝐴(𝜚, 𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) (𝑥 − 𝑥𝑑) =
𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢𝑑 − 𝑓 (𝑥𝑑 , 𝑡) − 𝐵(𝑥𝑑 , 𝑡)𝑢𝑑 . Using the result of Theorem 2.3, one of
the Lyapunov functions for the virtual system (6.19) with unknown 𝐾 can be given
as the following transformed squared length integrated over 𝑥 of (6.1)/(6.2) and 𝑥𝑑
of (6.3):

𝑉NCM =

∫ 𝑥

𝑥𝑑

𝛿𝑞⊤M(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)𝛿𝑞 (6.20)

where M defines the NCM of Definition 6.2 modeling 𝑀 of the CV-STEM con-
traction metric in Theorem 4.2.

Theorem 6.4. Suppose (6.1) and (6.2) are controlled by 𝑢 = 𝑢𝑑 − 𝐾∗(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)e,
where e = 𝑥 − 𝑥𝑑 , and that 𝐾∗ is designed by the following convex optimization for
given (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡):

(𝐾∗, 𝑝∗) = arg min
𝐾∈C𝐾 ,𝑝∈R

∥𝐾 ∥2𝐹 + 𝑝2 (6.21)

s.t.
∫ 𝑥

𝑥𝑑

𝛿𝑞⊤( ¤M + 2 sym (M𝐴 −M𝐵𝐾))𝛿𝑞 ≤ −2𝛼
∫ 𝑥

𝑥𝑑

𝛿𝑞⊤(M + 𝛽I)𝛿𝑞 + 𝑝

(6.22)
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whereM defines the NCM of Definition 6.2 that models 𝑀 of the CV-STEM con-
traction metric in Theorem 4.2 as in (6.18), C𝐾 is a convex set containing admissible
𝐾 , 𝛼 is the contraction rate, and 𝛽 is as defined in theorem 3.1 (i.e., 𝛽 = 0 for de-
terministic systems and 𝛽 = 𝛼𝑠 for stochastic systems). Then Theorems 2.4 and 2.5
still hold for the Lyapunov function defined in (6.20), yielding the following bounds:

∥e(𝑡)∥2 ≤ 𝑉NCM(0)
𝑚

𝑒−2𝛼𝑝𝑡 +
𝑝

𝑚
+ 𝑑2

𝑐𝑚

𝛼𝑑𝑚

2𝛼𝑝
(1 − 𝑒−2𝛼𝑝𝑡) (6.23)

E
[
∥e(𝑡)∥2

]
≤ E[𝑉NCM(0)]

𝑚
𝑒−2𝛼𝑡 + 𝐶𝐶𝑚 + 𝑝

2𝛼𝑚
(6.24)

P [∥e(𝑡)∥ ≥ 𝜀] ≤ 1
𝜀2

(
E[𝑉NCM(0)]

𝑚
𝑒−2𝛼𝑡 + 𝐶𝐶𝑚 + 𝑝

2𝛼𝑚

)
(6.25)

where 𝑝 = sup𝑥,𝑥𝑑 ,𝑢𝑑 ,𝑡 𝑝, 𝑚I ⪯ M ⪯ 𝑚I as in (2.26), 𝛼𝑑 ∈ R>0 is an arbitrary
positive constant (see (6.26)) selected to satisfy𝛼𝑝 = 𝛼−𝛼𝑑/2 > 0,𝐶𝐶 = �̄�2

𝑐 (2𝛼𝐺−1+
1), 𝛼𝐺 ∈ R>0 is an arbitrary constant as in Theorem 2.5, 𝜀 ∈ R≥0, and the
disturbance terms 𝑑𝑐 and �̄�𝑐 are given in (6.1) and (6.2), respectively. Note that the
problem (6.21) is feasible due to the constraint relaxation variable 𝑝.

Furthermore, if 𝜖ℓ = 0 in (6.18), (6.21) with 𝑝 = 0 is always feasible, and the optimal
feedback gain 𝐾∗ minimizes its Frobenius norm under the contraction constraint
(6.22).

Proof. Computing ¤𝑉NCM for the deterministic system (6.1) along with the virtual
dynamics (6.19) and the stability condition (6.22) yields

¤𝑉NCM ≤ −2𝛼𝑉NCM + 𝑑𝑐
√
𝑚
√︁
𝑉NCM + 𝑝 ≤ −2(𝛼 − 𝛼𝑑/2)𝑉NCM + 𝑑2

𝑐𝑚/𝛼𝑑 + 𝑝 (6.26)

where the relation 2𝑎𝑏 ≤ 𝛼−1
𝑑
𝑎2 +𝛼𝑑𝑏2, which holds for any 𝑎, 𝑏 ∈ R and 𝛼𝑑 ∈ R>0

(𝑎 = 𝑑𝑐
√
𝑚 and 𝑏 =

√
𝑉NCM in this case), is used to obtain the second inequality.

Since we can arbitrarily select 𝛼𝑑 to have 𝛼𝑝 = 𝛼 − 𝛼𝑑/2 > 0, (6.26) gives the
exponential bound (6.23) due to the comparison lemma of Lemma 2.1. Similarly,
computing ℒ𝑉NCM for the stochastic system (6.2) yields

ℒ𝑉NCM ≤ −2𝛼𝑉NCM + 𝐶𝑐𝑚 + 𝑝

which gives (6.24) and (6.25) due to Lemma 2.2. If 𝜖ℓ = 0 in (6.18), 𝐾 = 𝑅−1𝐵⊤𝑀

satisfies (6.22) with 𝑝 = 0 as we haveM = 𝑀 and 𝑀 defines the contraction metric
of Theorem 4.2, which implies that (6.21) with 𝑝 = 0 is always feasible.
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We could also use the CCM-based differential feedback formulation of Theorem 4.6
in Theorem 6.4 (see [14], [15]). To this end, define 𝐸NCM (Riemannian energy) as
follows:

𝐸 =

∫ 1

0
𝛾𝜇 (𝜇, 𝑡)⊤M(𝛾(𝜇, 𝑡), 𝑡)𝛾𝜇 (𝜇, 𝑡)𝑑𝜇 (6.27)

whereM defines the NCM of Definition 6.2 that models 𝑀 of the CCM in The-
orem 4.6, 𝛾 is the minimizing geodesic connecting 𝑥(𝑡) = 𝛾(1, 𝑡) of (6.1) and
𝑥𝑑 (𝑡) = 𝛾(0, 𝑡) of (6.3) (see Theorem 2.3), and 𝛾𝜇 = 𝜕𝛾/𝜕𝜇.

Theorem 6.5. Suppose 𝑢 = 𝑢∗ of (6.1) is designed by the following convex opti-
mization for given (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡):

(𝑢∗, 𝑝∗) = arg min
𝑢∈C𝑢,𝑝∈R

∥𝑢 − 𝑢𝑑 ∥2 + 𝑝2 (6.28)

s.t.
𝜕𝐸

𝜕𝑡
+ 2𝛾𝜇 (1, 𝑡)⊤M(𝑥, 𝑡) ( 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢)

s.t. − 2𝛾𝜇 (0, 𝑡)⊤M(𝑥𝑑 , 𝑡) ( 𝑓 (𝑥𝑑 , 𝑡) + 𝐵(𝑥𝑑 , 𝑡)𝑢𝑑) ≤ −2𝛼𝐸 + 𝑝 (6.29)

whereM defines the NCM of Definition 6.2 that models the CCM of Theorem 4.6,
andC𝑢 is a convex set containing admissible 𝑢. Then the bound (6.23) of Theorem 6.4
holds.

Furthermore, if 𝜖ℓ = 0 for the NCM learning error 𝜖ℓ in (6.18), then the problem
(6.28) with 𝑝 = 0 is always feasible, and 𝑢∗ minimizes the deviation of 𝑢 from 𝑢𝑑

under the contraction constraint (6.29).

Proof. Since the right-hand side of (6.29) represents ¤𝐸 of (6.27) if 𝑑𝑐 = 0 in
(6.1), the comparison lemma of Lemma 2.1 gives (6.23) as in Theorem 6.4. The
rest follows from the fact that 𝑢 of Theorem 4.6 is a feasible solution of (6.28) if
𝑝 = 0 [14], [15].

Remark 6.4. As discussed in Remark 4.2, Theorem 6.5 can also be formulated in a
stochastic setting as in Theorem 6.4 using the technique discussed in [8].

Theorems 6.4 and 6.5 provide a perspective on the NCM stability different from
Theorems 6.1 and 6.3 written in terms of the constraint relaxation variable 𝑝, by
directly using the NCM as a contraction metric instead of the CV-STEM contraction
metric or the CCM. Since the CLF problems are feasible with 𝑝 = 0 when we have
zero NCM modeling error, it is implied that the upper bound of 𝑝 (i.e., 𝑝 in (6.23)
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and (6.24)) decreases as we achieve a smaller learning error 𝜖ℓ using more training
data for verifying (6.18) (see Remark 5.1). This intuition is also formalized later
in [16]. See [14], [15] for how we compute the minimizing geodesic 𝛾 and its
associated Riemannian energy 𝐸 in Theorem 6.5.

Example 6.3. If C𝐾 = R𝑚×𝑛 and C𝑢 = R𝑚 in (6.21) and (6.28), respectively, they
can both be expressed as the following quadratic optimization problem:

𝑣∗ = arg min
𝑣∈Rv

1
2
𝑣⊤𝑣 + 𝑐(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)⊤𝑣

s.t. 𝜑0(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) + 𝜑1(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡)⊤𝑣 ≤ 0

by defining 𝑐 ∈ Rv, 𝜑0 ∈ R, 𝜑1 ∈ Rv, and 𝑣 ∈ Rv appropriately. Applying the KKT
condition [17, pp. 243-244] to this problem, we can show that

𝑣∗ =


−𝑐 − 𝜑0−𝜑⊤1 𝑐

𝜑⊤1 𝜑1
𝜑1 if 𝜑0 − 𝜑⊤1 𝑐 > 0

−𝑐 otherwise.

This implies that the controller uses 𝑢𝑑 with the feedback ((𝜑0 − 𝜑⊤1 𝑐)/𝜑
⊤
1 𝜑1)𝜑1

only if ¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢 with 𝑢 = 𝑢𝑑 is not contracting, i.e., 𝜑0 − 𝜑⊤1 𝑐 > 0.

Example 6.4. When 𝑞 is parameterized linearly by 𝜇 in Theorem 6.4, i.e., 𝑞 =

𝜇𝑥 + (1 − 𝜇)𝑥𝑑 , we have 𝑉NCM = (𝑥 − 𝑥𝑑)⊤M(𝑥 − 𝑥𝑑) as in the standard Lyapunov
function formulation [11]–[13]. Also, a linear input constraint, 𝑢min ≤ 𝑢 ≤ 𝑢max

can be implemented by using

C𝐾 = {𝐾 ∈ R𝑚×𝑛 |𝑢𝑑 − 𝑢max ≤ 𝐾e ≤ 𝑢𝑑 − 𝑢min}
C𝑢 = {𝑢 ∈ R𝑚 |𝑢min ≤ 𝑢 ≤ 𝑢max}

in (6.21) and (6.28), respectively.

Remark 6.5. For the CV-STEM and NCM state estimation in Theorems 4.5, 6.2,
and 6.3, we could design a similar Lyapunov function-based estimation scheme if its
contraction constraints of Theorem 4.5 do not explicitly depend on the actual state
𝑥. This can be achieved by using 𝐴(𝜚𝐴, 𝑥, 𝑡) and𝐶 (𝜚𝐶 , 𝑥, 𝑡) instead of 𝐴(𝜚𝐴, 𝑥, 𝑥, 𝑡)
and 𝐶 (𝜚𝐶 , 𝑥, 𝑥, 𝑡) in Theorem 4.5 as in Theorem 3.2 [18], leading to exponential
boundedness of system trajectories as derived in [18]–[20].

6.3 Remarks in NCM Implementation
This section briefly summarizes several practical techniques in constructing NCMs
using the CV-STEM of Theorems 4.2, 4.5, and 4.6.
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6.3.I Neural Network Training
We model 𝑀 of the CV-STEM contraction metric sampled offline by the DNN of
Definition 6.1, optimizing its hyperparameters by stochastic gradient descent [21],
[22] to satisfy the learning error condition (5.3) (see Remark 5.1). The positive
definiteness of 𝑀 could be exploited to reduce the dimension of the DNN target
output due to the following lemma [1].

Lemma 6.1. A matrix 𝐴 ≻ 0 has a unique Cholesky decomposition, i.e., there exists
a unique upper triangular matrix 𝑈 ∈ R𝑛×𝑛 with strictly positive diagonal entries
s.t. 𝐴 = 𝑈𝑇𝑈.

Proof. See [23, pp. 441].

Selecting Θ of 𝑀 = Θ⊤Θ as the unique Cholesky decomposition of 𝑀 and training
the DNN using only the non-zero entries of Θ, we can reduce the dimension of the
target output by 𝑛(𝑛 − 1)/2 without losing any information on 𝑀 . The pseudocode
to obtain NCMs, using this approach depicted in Fig. 6.1, can be found in [1].

Instead of solving the convex optimization in Theorems 4.2, 4.5, and 4.6 to sample
training data, we could also use them directly for training and optimizing the DNN
hyperparameters, treating the constraints and the objective functions as the DNN loss
functions as demonstrated in [10]. Although this approach no longer preserves the
convexity and can lead only to a sub-optimal solution, this still gives the exponential
tracking error bounds as long as we can get sufficiently small 𝜖ℓ0 and 𝜖ℓ1 in the
learning error assumption (5.3), as discussed in Theorems 5.2, 5.3, and 6.1 – 6.3.
See [8] for more details on the robustness and stability properties of this approach.

6.3.II Lipschitz Condition and Spectral Normalization
Let us first define a spectrally-normalized DNN, a useful mathematical tool designed
to overcome the instability of network training by constraining (6.6) of Definition 6.1
to be Lipschitz, i.e., ∃ 𝐿𝑛𝑛 ∈ R≥0 s.t. ∥𝜑(𝑥) − 𝜑(𝑥′)∥ ≤ 𝐿𝑛𝑛∥𝑥 − 𝑥′∥, ∀𝑥, 𝑥′ [24],
[25].

Definition 6.3. A spectrally-normalized DNN is a DNN of Definition 6.1 with its
weights 𝑊ℓ normalized as 𝑊ℓ = (𝐶𝑛𝑛Ωℓ)/∥Ωℓ∥, where 𝐶𝑛𝑛 ∈ R≥0 is a given
constant.

Lemma 6.2. A spectrally-normalized DNN given in Definition 6.3 is Lipschitz
continuous with its 2-norm Lipschitz constant 𝐶𝐿+1𝑛𝑛 𝐿𝐿𝜎, where 𝐿𝜎 is the Lipschitz
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𝑞

𝜑
Velocity

Figure 6.3: Rocket model (angle of attack 𝜑, pitch rate 𝑞).

constant of the activation function 𝜎 in (6.6). Also, it is robust to perturbation in its
input.

Proof. Let ∥ 𝑓 ∥Lip represent the Lipschitz constant of a function 𝑓 and let 𝑊ℓ =

(𝐶𝑛𝑛Ωℓ)/∥Ωℓ∥. Using the property ∥ 𝑓1 ◦ 𝑓2∥Lip ≤ ∥ 𝑓1∥Lip∥ 𝑓2∥Lip, we have for a
spectrally-normalized DNN in Definition 6.3 that

∥𝜑(𝑥;𝑊ℓ)∥ ≤ ∥𝜎∥𝐿Lip

𝐿+1∏
ℓ=1
∥𝑇ℓ∥Lip = 𝐿𝐿𝜎

𝐿+1∏
ℓ=1
∥𝑊ℓ∥

where we used the fact that ∥ 𝑓 ∥Lip of a differentiable function 𝑓 is equal to the
maximum spectral norm (induced 2-norm) of its gradient over its domain to obtain
the last equality. Since ∥𝑊ℓ∥ = 𝐶𝑛𝑛 holds, the Lipschitz constant of 𝜑(𝑥𝑖;𝑊ℓ) is
𝐶𝐿+1𝑛𝑛 𝐿𝐿𝜎 as desired. Since 𝜑 is Lipschitz, we have for small perturbation 𝑥𝜖 that

∥𝜑(𝑥 + 𝑥𝜖 ;𝑊ℓ) − 𝜑(𝑥;𝑊ℓ)∥ ≤ 𝐶𝐿+1𝑛𝑛 𝐿𝐿𝜎∥(𝑥 + 𝑥𝜖 ) − 𝑥∥ = 𝐶𝐿+1𝑛𝑛 𝐿𝐿𝜎∥𝑥𝜖 ∥

implying robustness to input perturbation.

In general, a spectrally-normalized DNN is useful for improving the robustness and
generalization properties of DNNs, and for obtaining the learning error bound as in
(5.3), as delineated in Remark 5.1 [24], [26], [27]. Using it for system identification
yields a DNN-based nonlinear feedback controller with a formal stability guarantee
as shall be seen in Sec. 8.2.II.

For the NCM framework with stochastic perturbation, we can utilize the spectrally-
normalized DNN of Definition 6.3 to guarantee the Lipschitz condition on 𝜕𝑀/𝜕𝑥𝑖,
appeared in the stochastic contraction condition of Theorem 2.5 (see Proposition 1
of [2]). We could also utilize the technique proposed in [28]–[30], which designs
Lipschitz-bounded equilibrium neural networks using contraction theory, for obtain-
ing a result analogous to Lemma 6.2. The pseudocode for the NCM construction in
a stochastic setting can be found in [2].

Example 6.5. Let us demonstrate how having the Lipschitz condition on 𝜕𝑀/𝜕𝑥𝑖
in Theorem 2.5 would affect the NCM-based control and estimation performance.
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Table 6.1: Notations in Example 6.5.

Notation Description
𝜑 angle of attack (state variable)
𝑞 pitch rate (state variable)
𝑢 tail fin deflection (control input)
𝑦 measurement
𝑀 Mach number
𝑝0 static pressure at 20,000 ft
𝑆 reference area
𝑑 reference diameter
𝐼𝑦 pitch moment of inertia
𝑔 acceleration of gravity
𝑚 rocket mass
𝑉 rocket speed

We consider a rocket autopilot problem perturbed by stochastic disturbances as
in [2], the unperturbed dynamics of which is depicted in Fig. 6.3 and given as
follows, assuming that the pitch rate 𝑞 and specific normal force are available as a
measurement via rate gyros and accelerometers [31], [32]:

𝑑

𝑑𝑡

[
𝜑

𝑞

]
=

[
𝑔𝐶 (𝑀) cos(𝜑)𝜙𝑧 (𝜑,𝑀)

𝑚𝑉
+ 𝑞

𝐶 (𝑀)𝑑𝜙𝑚 (𝜑)
𝐼𝑦

]
+
[
𝑔𝐶 (𝑀)𝑑𝑛 cos(𝜑)

𝑚𝑉
𝐶 (𝑀)𝑑𝑚

𝐼𝑦

]
𝑢

𝑦 =

[
𝑞

𝐶 (𝑀)𝜙𝑧 (𝜑,𝑀)
𝑚

]
+
[

0
𝐶 (𝑀)𝑑𝑛

𝑚

]
𝑢

where𝐶 (𝑀) = 𝑝0𝑀
2𝑆, 𝜙𝑧 (𝜑, 𝑀) = 0.7(𝑎𝑛𝜑3+𝑏𝑛𝜑 |𝜑 |+𝑐𝑛 (2+𝑀/3)𝜑), 𝜙𝑚 (𝜑, 𝑀) =

0.7(𝑎𝑚𝜑3+𝑏𝑚𝜑 |𝜑 | −𝑐𝑚 (7−8𝑀/3)𝜑), 𝑑𝑛 = 0.7𝑑𝑛, 𝑑𝑚 = 0.7𝑑𝑚, (𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛) and
(𝑎𝑚, 𝑏𝑚, 𝑐𝑚, 𝑑𝑚) are given in [32], and the notations are defined in Table 6.1. Since
this example explicitly takes into account stochastic perturbation, the spectrally-
normalized DNN of Definition 6.3 is used to guarantee the Lipschitz condition of
Theorem 2.5 by Lemma 6.2.

Figure 6.4 shows the state estimation and tracking error performance of each es-
timator and controller, where the NSCM is the stochastic counterpart of the NCM
aforementioned in Remark 6.1. It is demonstrated that the steady-state errors of
the NSCM and CV-STEM are indeed smaller than its steady-state upper bounds of
Theorems 4.2 and 4.5 (solid black line), while the other controllers violate this con-
dition. In particular, the optimal contraction rate of the deterministic NCM for state
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Figure 6.4: State estimation and tracking errors in Example 6.5 (𝑥 = [𝜑, 𝑞]𝑇 ).

estimation is turned out to be much larger than the NSCM as it does not account for
stochastic perturbation, which makes the NCM trajectory diverge around 𝑡 = 5.8 in
Fig. 6.4. The NSCM circumvents this difficulty by imposing the Lipschitz condition
on 𝜕𝑀/𝜕𝑥𝑖 as in Theorem 2.5 using spectral normalization of Lemma 6.2. See [2]
for additional details.
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C h a p t e r 7

LEARNING-BASED SAFE AND ROBUST MOTION PLANNING

[1] H. Tsukamoto and S.-J. Chung, “Learning-based robust motion planning
with guaranteed stability: A contraction theory approach,” IEEE Robot.
Automat. Lett., vol. 6, no. 4, pp. 6164–6171, 2021.

[2] S. Singh, H. Tsukamoto, B. T. Lopez, S.-J. Chung, and J.-J. E. Slotine, “Safe
motion planning with tubes and contraction metrics,” in IEEE Conf. Decis.
Control, 2021, pp. 2943–2948.

[3] H. Tsukamoto, B. Rivière, C. Choi, A. Rahmani, and S.-J. Chung, “CART:
Collision avoidance and robust tracking augmentation in learning-based
motion planning for multi-agent systems,” in IEEE Conf. Decis. Control,
under review, 2023.

One of the limitations of the CV-STEM and NCM control methods is that they
require the computation of target trajectories, which could be difficult to perform
optimally in real time, e.g., when we consider nonlinear systems possibly with
multiple robotic agents and obstacles. The purpose of this chapter is to show that
the CV-STEM and NCM are also useful for designing a real-time robust motion
planning algorithm, especially for systems perturbed by deterministic and stochastic
disturbances as in (6.1) and (6.2). This is not for proposing a new motion planner
to compute 𝑥𝑑 and 𝑢𝑑 of (6.3), but for augmenting existing learning-based motion
planners with real-time robustness, stability, and safety guarantees via contraction
theory.

Table 7.1: Comparison of LAG-ROS [1] with the learning-based and robust tube-
based motion planners.

Motion planning scheme State tracking error Computational load
(a) (𝑜ℓ , 𝑡) ↦→ 𝑢𝑑 Increases exponentially (Thm. 5.1) One DNN evaluation
(b) (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) ↦→ 𝑢∗ Exponentially bounded (Thm. 4.2, 4.6) Computation of (𝑥𝑑 , 𝑢𝑑)
(c) (𝑥, 𝑜ℓ , 𝑡) ↦→ 𝑢∗ Exponentially bounded (Thm. 7.1) One DNN evaluation

https://ieeexplore.ieee.org/document/9461623
https://ieeexplore.ieee.org/document/9461623
https://ieeexplore.ieee.org/document/9682865
https://ieeexplore.ieee.org/document/9682865
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Figure 7.1: Block diagram of tube-based planning using contraction theory.

7.1 Overview of Existing Motion Planners
Let us briefly review the following standard motion planning techniques and their
limitations:

(a) Learning-based motion planner (see, e.g., [2]–[8]): (𝑜ℓ (𝑥, 𝑜𝑔), 𝑡) ↦→ 𝑢𝑑 (𝑜𝑔, 𝑡),
modeled by a DNN, where 𝑜𝑔 ∈ R𝑔 is a vector containing global environment
information, and 𝑜ℓ : R𝑛×R𝑔 ↦→ Rℓ with ℓ ≤ 𝑔 is local environment information
extracted from 𝑜𝑔 ∈ R𝑔 [2].

(b) Robust tube-based motion planner (see, e.g., [9]–[25]): (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) ↦→ 𝑢∗,
where 𝑢∗ is robust feedback tracking control of Theorems 4.2, 4.6, 6.4, or 6.5.

The robust tube-based motion planner (b) ensures that the perturbed trajectories
𝑥 of (6.1) and (6.2) stay in an exponentially bounded error tube around the target
trajectory 𝑥𝑑 of (6.3) [9]–[17], [23]–[25] given as in Fig. 7.1, using Theorems 2.4
and 2.5. However, it requires the online computation of (𝑥𝑑 , 𝑢𝑑) as an input to their
control policy given in Theorems 4.2, 4.6, 6.4, and 6.5, which is not realistic for sys-
tems with limited computational resources. The learning-based motion planner (a)
circumvents this issue by modeling the target policy (𝑜ℓ, 𝑡) ↦→ 𝑢𝑑 by a DNN. In
essence, our approach, to be proposed in Theorem 7.1, is for providing (a) with the
contraction theory-based stability guarantees of (b), thereby significantly enhancing
the performance of (a) that only assures the tracking error ∥𝑥 − 𝑥𝑑 ∥ to be bounded
by a function which increases exponentially with time, as derived previously in
Theorem 5.1 of Chapter 5.

7.2 Stability Guarantees of LAG-ROS
The method of LAG-ROS, Learning-based Autonomous Guidance with RObustness
and Stability guarantees [1], bridges the gap between (a) and (b) by ensuring that the
distance between the target and controlled trajectories to be exponentially bounded.
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(c) LAG-ROS (see Fig. 7.6 and [1]): (𝑥, 𝑜ℓ (𝑥, 𝑜𝑔), 𝑡) ↦→ 𝑢∗(𝑥, 𝑥𝑑 (𝑜𝑔, 𝑡), 𝑢𝑑 (𝑜𝑔, 𝑡), 𝑡),
modeled by 𝑢𝐿 to be given in Theorem 7.1, where 𝑢∗(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) of (b) is viewed
as a function of (𝑥, 𝑜ℓ, 𝑡).

Table 7.1 summarizes the differences of the existing motion planners (a) and (b)
from (c), which is defined as follows.

Definition 7.1. Learning-based Autonomous Guidance with RObustness and Sta-
bility guarantees (LAG-ROS) is a DNN model for approximating a function which
maps state 𝑥, local environment information 𝑜ℓ, and time 𝑡 to an optimal robust
feedback control input 𝑢∗ given by (3.10) of Theorem 4.2, i.e., 𝑢∗ = 𝑢𝑑 − 𝐾 (𝑥 − 𝑥𝑑),
or (4.22) of Theorem 4.6, i.e., 𝑢 = 𝑢𝑑 +

∫ 1
0 𝑘𝑑𝜇, where its training data is sampled

as explained in Sec. 7.3 (see Figures 7.3, 7.4, and 7.6).

The LAG-ROS in Definition 7.1 achieves online computation of 𝑢 without solving
a motion planning problem, and it still possesses superior robustness and stability
properties due to its internal contracting architecture [1].

Theorem 7.1. Let 𝑢𝐿 = 𝑢𝐿 (𝑥, 𝑜ℓ (𝑥, 𝑜𝑔), 𝑡) be the LAG-ROS in Definition 7.1, and
let 𝑢∗ be given by (3.10) of Theorem 4.2, i.e., 𝑢∗ = 𝑢𝑑 − 𝐾 (𝑥 − 𝑥𝑑), or (4.22) of
Theorem 4.6, i.e., 𝑢∗ = 𝑢𝑑 +

∫ 1
0 𝑘𝑑𝜇. Define Δ𝐿 of Theorems 5.2 and 5.3 as follows:

Δ𝐿 = 𝐵(𝑢𝐿 (𝑥, 𝑜ℓ (𝑥, 𝑜𝑔), 𝑡) − 𝑢∗(𝑥, 𝑥𝑑 (𝑜𝑔, 𝑡), 𝑢𝑑 (𝑜𝑔, 𝑡), 𝑡))

where 𝐵 = 𝐵(𝑥, 𝑡) is the actuation matrix given in (6.1) and (6.2). Note that we use
𝑞(0, 𝑡) = 𝜉0(𝑡) = 𝑥𝑑 (𝑜𝑔, 𝑡) and 𝑞(1, 𝑡) = 𝜉1(𝑡) = 𝑥(𝑡) in the learning-based control
formulation of Theorems 5.2 and 5.3.

If the LAG-ROS 𝑢𝐿 is learned to satisfy (5.3) with 𝜖ℓ1 = 0, i.e., ∥Δ𝐿 ∥ ≤ 𝜖ℓ0 for
all 𝑥 ∈ S𝑠, 𝑜𝑔 ∈ S𝑜, and 𝑡 ∈ S𝑡 , where S𝑠 ⊆ R𝑛, S𝑜 ⊆ R𝑔, and S𝑡 ⊆ R≥0 are
some compact sets, and if the control-affine nonlinear systems (6.1) and (6.2) are
controlled by 𝑢 = 𝑢𝐿 , then (5.11) of Theorem 5.2 and (5.14) of Theorem 5.3 hold with
𝑑 and �̄� replaced as in (6.12), i.e., we have the following for e(𝑡) = 𝑥(𝑡) − 𝑥𝑑 (𝑜𝑔, 𝑡):

∥e(𝑡)∥ ≤ 𝑉ℓ (0)√
𝑚
𝑒−𝛼𝑡 +

𝑑𝜖ℓ

𝛼

√︄
𝑚

𝑚
(1 − 𝑒−𝛼𝑡) = 𝑟ℓ (𝑡) (7.1)

E
[
∥e(𝑡)∥2

]
≤ E[𝑉𝑠ℓ (0)]

𝑚
𝑒−2𝛼𝑡 +

𝐶𝜖ℓ

2𝛼
𝑚

𝑚
= 𝑟𝑠ℓ (𝑡) (7.2)

P [∥e(𝑡)∥ ≥ 𝜀] ≤ 1
𝜀2

(
E[𝑉𝑠ℓ (0)]

𝑚
𝑒−2𝛼𝑡 +

𝐶𝜖ℓ

2𝛼
𝑚

𝑚

)
(7.3)
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Figure 7.2: Cart-pole balancing: 𝑥 = [𝑝, 𝜃, ¤𝑝, ¤𝜃]⊤, 𝑥 and 𝑥𝑑 are given in (6.1) and
(6.3), (a) – (c) are given in Table 7.1, and 𝑟ℓ is given in (7.4). The shaded area
denotes the standard deviation (+1𝜎 and −0.5𝜎).

where 𝑥𝑑 = 𝑥𝑑 (𝑜𝑔, 𝑡) and 𝑢𝑑 = 𝑢𝑑 (𝑜𝑔, 𝑡) are as given in (6.3), 𝑑𝜖ℓ = 𝜖ℓ0 + 𝑑𝑐,
𝐶𝜖ℓ = �̄�

2
𝑐 (2𝛼𝐺−1+1) +𝜖2

ℓ0𝛼
−1
𝑑

, and the other variables are as defined in Theorems 5.2
and 5.3 with the disturbance terms in (6.12) of Theorem 6.1.

Proof. We have 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢𝐿 = 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢∗ + 𝐵(𝑥, 𝑡) (𝑢𝐿 − 𝑢∗) and
∥Δ𝐿 ∥ = ∥𝐵(𝑥, 𝑡) (𝑢𝐿 − 𝑢∗)∥ ≤ 𝜖ℓ0 by (5.3) with 𝜖ℓ1 = 0 for 𝑥𝑑 = 𝑥𝑑 (𝑜𝑔, 𝑡) and
𝑢𝑑 = 𝑢𝑑 (𝑜𝑔, 𝑡). Since the virtual system which has 𝑥 of ¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢∗ and
𝑥𝑑 of (6.3) as its particular solutions is contracting due to Theorems 4.2 or 4.6, the
application of Theorems 5.2 and 5.3 yields the desired relations (7.1) – (7.3).

Due to its internal feedback structure, the LAG-ROS achieves exponential bounded-
ness of the trajectory tracking error as in Theorem 7.1, thereby improving the per-
formance of existing learning-based feedforward control laws to model (𝑜ℓ, 𝑡) ↦→ 𝑢𝑑

as in (a), whose tracking error bound increases exponentially with time as in The-
orem 5.1 (see [1]). This property enables its use in safety-critical guidance and
control tasks which we often encounter in modern machine learning applications.

Example 7.1. Let us consider the cart-pole balancing task in Fig. 7.2, perturbed
externally by deterministic perturbation, to demonstrate the differences of (a) – (c)
summarized in Table 7.1. Its dynamical system is given in [26], [27] with its values
defined in [27].

The target trajectories (𝑥𝑑 , 𝑢𝑑) are sampled with the objective function
∫ 𝑇

0 ∥𝑢∥
2𝑑𝑡,

and the LAG-ROS of Theorem 7.1 is modeled by a DNN independently of the target
trajectory as detailed in [1]. The environment information 𝑜𝑔 is selected as random
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initial and target terminal states, and we let 𝑉ℓ (0) = 0 and 𝜖ℓ0 + 𝑑𝑐 = 0.75 in (7.1)
of Theorem 7.1, yielding the following exponential bound:

𝑟ℓ (𝑡) =
𝑉ℓ (0)√
𝑚
+
𝑑𝜖ℓ

𝛼

√︄
𝑚

𝑚
(1 − 𝑒−𝛼𝑡) = 3.15(1 − 𝑒−0.60𝑡) (7.4)

where 𝑑𝜖ℓ = 𝜖ℓ0 + 𝑑𝑐.

Figure 7.2 shows the tracking errors of each motion planner averaged over 50 simu-
lations at each time instant 𝑡. The LAG-ROS (c) and robust tube-based planner (b)
indeed satisfy the bound (7.4) (dotted black curve) for all 𝑡 with a small standard
deviation 𝜎, unlike learning-based motion planner (a) with a diverging bound in
Theorem 5.1 and increasing deviation 𝜎. This example demonstrates one of the
major advantages of contraction theory, which enables such quantitative analysis
on robustness and stability of learning-based planners.

As implied in Example 7.1, the LAG-ROS indeed possesses the robustness and
stability guarantees of 𝑢∗ as proven in Theorem 7.1, unlike (a), while retaining
significantly lower computational cost than that of (b). See [1] for a more detailed
discussion of this simulation result.

7.3 Tube-based State Constraint Satisfaction
We exploit the result of Theorem 7.1 in the tube-based motion planning [9] for
generating LAG-ROS training data, which satisfies given state constraints even under
the existence of the learning error and disturbance of Theorem 5.2. In particular,
we sample target trajectories (𝑥𝑑 , 𝑢𝑑) of (6.3) in S𝑠 ×S𝑢 of Theorem 7.1 by solving
the following, assuming the learning error 𝜖ℓ0 and disturbance upper bound 𝑑𝑐 of
Theorem 7.1 are selected a priori [28]:

min
𝑥=𝑥(𝑜𝑔,𝑡)
�̄�=�̄�(𝑜𝑔,𝑡)

∫ 𝑇

0
𝑐0∥�̄�∥2 + 𝑐1𝑃(𝑥, �̄�, 𝑡)𝑑𝑡 (7.5)

s.t. ¤̄𝑥 = (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)�̄�, 𝑥 ∈ X̄(𝑜𝑔, 𝑡), and �̄� ∈ Ū(𝑜𝑔, 𝑡)

where 𝑐0 > 0, 𝑐1 ≥ 0, 𝑃(𝑥, �̄�, 𝑡) is some performance-based cost function (e.g.,
information-based cost [29]), X̄ is robust admissible state space defined as X̄(𝑜𝑔, 𝑡) =
{𝑣(𝑡) ∈ R𝑛 |∀𝜉 (𝑡) ∈ {𝜉 (𝑡) |∥𝑣(𝑡)−𝜉 (𝑡)∥ ≤ 𝑟ℓ (𝑡)}, 𝜉 (𝑡) ∈ X(𝑜𝑔, 𝑡)},X(𝑜𝑔, 𝑡) is given
admissible state space, 𝑟ℓ (𝑡) is given by (7.1) of Theorem 7.1, and �̄� ∈ Ū(𝑜𝑔, 𝑡)
is an input constraint. The following lemma shows that the LAG-ROS ensures the
perturbed state 𝑥 of (6.1) to satisfy 𝑥 ∈ X, due to the contracting property of 𝑢∗.
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𝑥𝑑
Sampled 𝑥

CV-STEM:
Ensures 𝑥 to 
stay in

𝒙𝒅
Bounded error tube 𝑡

𝒓ℓ 𝒓ℓ

Figure 7.3: Illustration of state sampling in a robust bounded error tube.

Lemma 7.1. If the solution of (7.5) gives (𝑥𝑑 , 𝑢𝑑), the LAG-ROS 𝑢𝐿 of Theorem 7.1
ensures the perturbed solution 𝑥(𝑡) of ¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢𝐿 + 𝑑𝑐 (𝑥, 𝑡) in (6.1)
to stay in the admissible state space X(𝑜𝑔, 𝑡), i.e., 𝑥(𝑡) ∈ X(𝑜𝑔, 𝑡), even with the
learning error 𝜖ℓ0 of 𝑢𝐿 in Theorem 7.1.

Proof. See [1].

Lemma 7.1 implies that the perturbed trajectory (6.1) controlled by LAG-ROS will
not violate the given state constraints as long as 𝑥𝑑 is sampled by (7.5), which helps
greatly reduce the need for safety control schemes such as [30]. The localization
method in [2] allows extracting 𝑜ℓ of (a) by 𝑜𝑔 of (7.5), to render LAG-ROS
applicable to different environments in a distributed way with a single policy.

We therefore sample artificially perturbed states 𝑥 in the tube 𝑆(𝑥𝑑 (𝑜𝑔, 𝑡)) = {𝜉 (𝑡) ∈
R𝑛 |∥𝜉 (𝑡) − 𝑥𝑑 (𝑜𝑔, 𝑡)∥ ≤ 𝑟ℓ (𝑡)} as depicted in Figures 7.3 and 7.4 [1]. The robust
control inputs 𝑢∗ for training LAG-ROS of Theorem 7.1 is then sampled by comput-
ing the CV-STEM of Theorem 4.2 or Theorem 4.6. The LAG-ROS framework is
summarized in Fig. 7.6, and a pseudocode for its offline construction can be found
in [1].

Remark 7.1. For stochastic systems, we could sample 𝑥 around 𝑥𝑑 using a given
probability distribution of the disturbance using (7.2) and (7.3) of Theorem 7.1.

Example 7.2. Let us again consider the spacecraft dynamics of Example 6.2, but
now for designing a real-time robust motion planner using the LAG-ROS in a multi-
agent setting. In this example, each agent is assumed to have access only to the
states of the other agents/obstacles located in a circle with a limited radius, 2.0 m,
centered around it. The performance of LAG-ROS is compared with (a), (b), and
the following centralized motion planner (d) which is not computable in real-time:
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Time 𝑡

Sample 𝑥(𝑡) s.t. 𝑥 − 𝑥𝑑 ≤ 𝑟ℓ(𝑡)
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: Sampled state 𝑥
: Target state 𝑥𝑑
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CV-STEM Contraction Metric 
& Target State 𝑥𝑑

Figure 7.4: Block diagram of state sampling in a robust bounded error tube.

(d) Centralized robust motion planner:
(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) ↦→ 𝑢∗, offline centralized solution of (b).

The objective function to sample target trajectories of (6.3) is selected as
∫ 𝑇

0 ∥𝑢∥
2𝑑𝑡

with their target terminal positions 𝑥 𝑓 = [𝑝𝑥 𝑓 , 𝑝𝑦 𝑓 , 0, 0]⊤, where (𝑝𝑥 𝑓 , 𝑝𝑦 𝑓 ) is a
random position in (0, 0) ≤ (𝑝𝑥 𝑓 , 𝑝𝑦 𝑓 ) ≤ (5, 5). For the state constraint satisfaction
in Lemma 7.1, the following error tube (7.1):

𝑟ℓ (𝑡) = (𝑑𝜖ℓ/𝛼)
√
𝜒(1 − 𝑒−𝛼𝑡) = 0.125(1 − 𝑒−0.30𝑡)

is used with an input constraint 𝑢𝑖 ≥ 0, ∀𝑖, to avoid collisions with a random number
of multiple circular obstacles and of other agents, even under the learning error
and disturbances. See [1] for the LAG-ROS training details [1].

Figure 7.5 shows one example of the trajectories of the motion planners (a) – (d)
under deterministic external disturbances. It implies the following:

• For (a), the tracking error accumulates exponentially with time due to the lack
of robustness as proven in Theorem 5.1.

• (b) only yields locally optimal (𝑥𝑑 , 𝑢𝑑) of (6.3), as its time horizon has to be
small enough to make the problem solvable online with limited computational
capacity, only with local environment information. This renders some agents
stuck in local minima as depicted in Fig. 7.5.

• LAG-ROS (c) tackles these two problems by providing formal robustness and
stability guarantees of Theorem 7.1, whilst implicitly knowing the global solution
(only from the local information 𝑜ℓ as in [2]) without computing it online. It
indeed satisfies the state constraints due to Lemma 7.1 as can be seen from
Fig. 7.5.

See [1] for an in-depth discussion on this simulation result.
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Figure 7.5: Trajectories for the learning-based planner (a), robust tube-based plan-
ner (b), LAG-ROS (c), and offline centralized solution (d) (◦: start, •: goal).

7.4 Safe Exploration and Learning of Disturbances
All the theorems presented so far assume that the sizes of unknown external distur-
bances are fixed (i.e., 𝑑 in Theorem 2.4 and (�̄�0, �̄�1) in Theorem 2.5 are known and
fixed). Since such an assumption could yield conservative state constraints, e.g., in
utilizing motion planning of Lemma 7.1 with the tube of Theorem 7.1, we could
consider better estimating the unknown parts, 𝑑 (𝑥, 𝑡) in Theorem 2.4 or𝐺0(𝑥, 𝑡) and
𝐺1(𝑥, 𝑡) in Theorem 2.5, also using contraction theory and machine learning. For
example, it is demonstrated in [22] that the stochastic bounds of Theorem 2.5 can be
used to ensure safe exploration and reduction of uncertainty over epochs in learning
unknown, control non-affine residual dynamics. Here, its optimal motion plans are
designed by solving chance-constrained trajectory optimization and executed using
a feedback controller such as Theorem 4.2 with a control barrier function-based
safety filter [30], [31]. It is also shown in [13]–[15] that the state-dependent dis-
turbance 𝑑 (𝑥) in Theorem 2.5 can be learned adaptively with the Gaussian process
while ensuring safety.

These techniques are based on the robustness and stability properties of contraction
theory-based control and estimation schemes, which guarantee their state trajectories
to stay in a tube around the target trajectory as in Theorems 2.4, 2.5, 5.2, and 5.3,
and at the same time, enable safely sampling training data for learning the unknown
part of the dynamics. Chapter 8 is for giving an overview of these concepts in
the context of contraction theory-based adaptive control [26], [32], [33] and robust
control synthesis for learned models [28], [34]–[37].

7.5 Collision Avoidance and Robust Tracking Augmentation
One limitation of the LAG-ROS mentioned earlier in this chapter is that the size
of the disturbance depends on the learning error, although we can prove robustness
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Figure 7.6: Detailed block diagram of machine learning-based control using con-
traction theory, including LAG-ROS, where Fig. 4.1, Fig. 7.1, and Fig. 7.4 are
utilized as building blocks.

as in Theorem 7.1 due to its internal contracting structure. This section presents
an analytical framework for providing control theoretical collision avoidance and
robust tracking guarantees to given learned motion planning policies for nonlinear
multi-agent systems, independently of the performance of the learning approaches
used in designing the learned policy. Although our approach can be extended
further to handle general notions of safety, we focus on collision-free operation
as the objective of safety. We call our approach CART (Collision Avoidance and
Robust Tracking) [38] and its concept is to be summarized in the following.

7.5.I Augmenting Learned Policy with Safety and Robustness
Let us first recall that, as implied throughout this chapter, directly using the learned
motion planning policy has the following two issues in practice: (i) even in nom-
inal settings without external disturbance in (7.6) and (7.7), the system solution
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𝑥ℓ𝑥𝑑

𝑥𝑟
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𝑥
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DISTURBANCE

Figure 7.7: Conceptual illustration of CART, showing the hierarchical combination
of our safety filter and robust filter, where 𝛼ℎ, 𝛼𝑉 > 0, ℎ ≥ 0 is a safety function
given, 𝑆 is a safe set given, 𝑆𝜀 is some fictitious set containing learned trajectory 𝑥ℓ
with learning error 𝜀 > 0, 𝑥𝑑 is a safe trajectory, 𝑥𝑟 is a reference trajectory given by
global motion planner (7.8), 𝑥 is the actual state trajectory subject to disturbance, and
𝑉 is an incremental Lyapunov function for safe and robust trajectory tracking. Note
that we use a log-barrier formulation in CART for its distributed implementation
and analytical solution, but this figure uses ℎ for the simplicity of our concept
description.

trajectories computed with the learned motion planning policy could violate safety
requirements due to learning errors, and (ii) the learned policy lacks a formal
mathematical guarantee of safety and robustness under the presence of external dis-
turbance. Before going into details, let us see how we address these two problems
analytically in real-time for the general systems (7.6) and (7.7), optimally and in-
dependently of the performance of the learning method used in the learned motion
planning policy.

7.5.I-A Safety Filter and Built-in Robustness

Let 𝑆 = {𝑥 ∈ R2𝑛 |ℎ(𝑥) ≥ 0} be a set defining safety. Given the learned policy 𝑢𝑖
ℓ
,

we can slightly modify it using a safety filter (Control Barrier Function, CBF) to
ensure the agents’ safe operation using a constraint ¤ℎ ≥ −𝛼ℎℎ, 𝛼ℎ > 0 [39] even
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Figure 7.8: Different sources of robustness against external disturbance, where our
safety filter is robust due to stability of a safe set and our robust filter is robust due
to incremental stability of the closed-loop system with respect to a target trajectory.

with the presence of learning error 𝜀 > 0 (−𝛼ℎℎ can be −𝛼(ℎ) for a classK function
𝛼). Intuitively, since the learning error 𝜀 is expected to be small empirically, the
contribution required for the safety filter is also expected to be small in practice,
especially in the absence of external disturbance as depicted in the left-hand side of
Fig. 7.7.

Also, such a safety filter is robust as can be shown using a Lyapunov function𝑉 = −ℎ
for 𝑥 ∉ 𝑆 and 𝑉 = 0 for 𝑥 ∈ 𝑆 [40]. This implies that the safe set 𝑆 is constructed to
be exponentially (asymptotically for classK functions) stable, where the robustness
results from the pulling force to the safe set 𝑆 that could be undesirably large leading
to a large tracking error, e.g., in the real world scenario involving the discretization
of the control and dynamics (see the left-hand side of Fig. 7.8).

7.5.I-B Robust Filter and Tracking-based Robustness

Instead of handling both safety and robustness just by the safety filter, we can
further utilize a robust filter hierarchically to mitigate the burden of the safety filter
in dealing with the disturbance, i.e., to robustly track the safe trajectory 𝑥𝑑 slightly
modified from the reference trajectory 𝑥𝑟 using the safety filter, as depicted in the
right-hand side of Fig. 7.7. We still use the Lyapunov formulation as in the safety
filter for robustness, but now the Lyapunov function is defined incrementally as
𝑉 = (𝑥 − 𝑥𝑑)⊤𝑀 (𝑥 − 𝑥𝑑), where 𝑀 ≻ 0 is to be defined in the proceeding sections.
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Improving the robustness performance here will simply result in closer tracking of
the safe trajectory 𝑥𝑑 (see the right-hand side of Fig. 7.8) without losing too much
information of the learned motion planning policy 𝑢𝑖

ℓ
. This is mainly because the

safety is handled indirectly with ¤ℎ ≥ −𝛼ℎℎ in the safety filter and directly with ℎ ≥ 0
in the robust filter.

These observations imply that

(a) when the learning error is much larger than the size of the external disturbance,
then we can use the safety filter and its build-in robustness, and

(b) when the learning error is much smaller than the size of the external disturbance,
which is often the case, then we can modify the learned policy slightly with the
safety filter in a nominal setting, handling disturbance using the tracking-based
robust filter on behalf of the safety filter.

Note that we use the log-barrier formulation from now on instead of ¤ℎ ≥ −𝛼ℎℎ,
which allows for the distributed implementation of our safety filter in a multi-agent
setting.

7.5.I-C Relationship with Existing Methods

The nonlinear robustness and stability can also be analyzed using a Lyapunov
function, which gives a finite tracking error with respect to a given target trajectory
under the presence of external disturbances, including approximation errors of given
learned motion planning policies. This property can be used further to establish
a safety guarantee, by utilizing a conservative constraint that a tube around the
computed target trajectory will not violate a given safety requirement [17], [18], [20],
[41], [42]. This framework thus provides a one way to ensure safety and robustness
as in the LAG-ROS framework with Lemma 7.1 (see also [43]–[45] and references
therein), which depends on the knowledge and the size of the approximation error
of a given learned motion planning policy. Such information could be conservative
for previously unseen data or available only empirically (e.g., by using a Lipschitz
bound [46]).

The CLF-CBF control [39], [40], [47] also considers safety and robustness in real-
time without any knowledge of the learned motion planning errors at all [39], [40],
[47] (see also [30], [48]–[50] for stochastic and higher-order systems and [51]–
[54] for learning-based CBF methods), without solving nonlinear optimization as
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in MPC-based methods for robustness and safety [41]. In our context, it constructs
an optimal control input by solving a QP to minimize its deviation from the learned
motion planning policy, subject to the safety constraint ¤ℎ ≥ −𝛼ℎℎ and the relaxed
incremental stability constraint ¤𝑉 ≤ −𝛼𝑉𝑉 + 𝜌, where 𝜌 is for QP feasibility and 𝑉
is now defined as 𝑉 = (𝑥 − 𝑥ℓ)⊤𝑀 (𝑥 − 𝑥ℓ) for the learned trajectory 𝑥ℓ of Fig. 7.7.
We list key differences between the CLF-CBF controller and our approach, CART:

(a) The primary distinction between CART and CLF-CBF is the direction in which
the respective tracking component steers the system. The CLF-CBF stability
component steers towards the learned trajectory, which, because of learning
error, might not be safe. In contrast, CART’s robust filter steers the system
toward a certified safe trajectory, generated by the previous layer in the hierarchy,
the safety filter. Because of this distinction, whereas CART can safely reject
large disturbances with a large safety gain 𝛼𝑉 , this strategy is not practical for
the CLF-CBF controller, which is forced to reject disturbances with large safety
gain 𝛼ℎ, which pulls the system overconservatively towards the interior of the
safety set.

(b) The secondary distinction between CART and CLF-CBF is that CLF-CBF re-
quires solving a QP with a given Lyapunov function, while CART provides an
explicit way to construct the incremental Lyapunov function using contraction
theory, and gives an analytical solution for the optimal control input. This makes
CART end-to-end trainable with a faster computation evaluation time.

CART proposes a hierarchical approach to combine the best of both of these methods
for safety and robustness, by performing contraction theory-based robust tracking
of a provably collision-free trajectory, generated by a safety filter with the learned
policy. The additional tracking-based robust filter is for reducing the burden of the
safety filter in dealing with disturbances. CART can be viewed also as a generaliza-
tion of the frameworks [2], [55] to multi-agent Lagrangian and general control-affine
nonlinear systems with deterministic and stochastic disturbance, constructed on top
of the end-to-end learned motion planning policy augmented with the optimality
guarantee of the analytical solution to our safety and robust filters.

The trade-off of Sec. 7.5.I-B and the strengths implied in Sec. 7.5.I-C will be
demonstrated in Chapter 10.
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7.6 Theoretical Overview of CART
We specifically consider multi-agent settings in this section. In particular, we
consider the following multi-agent Lagrangian dynamical system, perturbed by
deterministic disturbance 𝑑𝑖 (𝑥, 𝑡) with sup𝑥,𝑡 ∥𝑑𝑖 (𝑥, 𝑡)∥ = 𝑑𝑖 ∈ [0,∞) and Gaussian
white noise driven by a Wiener process 𝒲(𝑡) with sup𝑥,𝑡 ∥Γ𝑖 (𝑥, 𝑡)∥𝐹 = �̄�𝑖 ∈ [0,∞):

𝑀 𝑖 (𝑝𝑖)𝑑𝑣𝑖 + (𝐶𝑖 (𝑝𝑖, 𝑣𝑖)𝑣𝑖 + 𝐺𝑖 (𝑝𝑖) + 𝐷𝑖 (𝑝𝑖, 𝑣𝑖))𝑑𝑡 (7.6)

= (𝑢𝑖 + 𝑑𝑖 (𝑥𝑖, 𝑡))𝑑𝑡 + Γ𝑖 (𝑥𝑖, 𝑡)𝑑𝒲𝑖 (𝑡), 𝑖 = 1, · · · , 𝑁

where 𝑡 ∈ R+, 𝑥𝑖 = [𝑝𝑖⊤, 𝑣𝑖⊤]⊤, 𝑖 is the index of the 𝑖th agent, 𝑝𝑖 : R+ ↦→ R𝑛 and
𝑣𝑖 : R+ ↦→ R𝑛 are the generalized position and velocity of the 𝑖th agent ( ¤𝑝𝑖 = 𝑣𝑖),
𝑢𝑖 ∈ R𝑚 (𝑚 = 𝑛 in this case) is the system control input,𝑀 𝑖,𝐶𝑖,𝐺𝑖, and𝐷𝑖 are known
smooth functions that define the Lagrangian system, 𝑑𝑖 and Γ𝑖 are unknown bounded
functions for external disturbances, 𝒲𝑖 is a 𝑤-dimensional Wiener process, and we
consider the case where 𝑑𝑖, �̄�𝑖 ∈ [0,∞) are given. Note that we have 𝑀 𝑖 (𝑝𝑖) ≻ 0 and
that the matrix 𝐶𝑖 (𝑝𝑖, ¤𝑝𝑖) is selected to make ¤𝑀 𝑖 (𝑝𝑖) − 2𝐶𝑖 (𝑝𝑖, 𝑣𝑖) skew-symmetric,
so we have a useful property s.t. 𝑧⊤( ¤𝑀 𝑖 (𝑝𝑖) − 2𝐶𝑖 (𝑝𝑖, 𝑣𝑖))𝑧 = 0, ∀𝑧 ∈ R𝑛 [56, p.
392]. We also consider the following general control-affine nonlinear system:

𝑑𝑣𝑖 = ( 𝑓 𝑖 (𝑝𝑖, 𝑣𝑖, 𝑡) + 𝐵(𝑝𝑖, 𝑣𝑖, 𝑡)𝑢𝑖)𝑑𝑡 + 𝑑𝑖 (𝑥𝑖, 𝑡)𝑑𝑡 + Γ𝑖 (𝑥𝑖, 𝑡)𝑑𝒲(𝑡), 𝑖 = 1, · · · , 𝑁
(7.7)

where 𝑓 𝑖, and 𝐵𝑖 are known smooth functions, 𝑢𝑖 ∈ R𝑚 is the system control input,
and the other notations are consistent with the ones of (7.6). We assume the existence
and uniqueness conditions of the solutions of (7.6) and (7.7) as in [57, p. 105].

The nonlinear motion planning problem of our interest is defined as follows:

𝑢𝑟 (𝑡) = arg min
{𝑢𝑖 (𝑡)∈R𝑚}𝑁

𝑖=1

∫ 𝑡 𝑓

0
𝑐(𝑥(𝜏), 𝑢(𝜏), 𝜏)𝑑𝜏 (7.8)

s.t. (7.6) or (7.7) with 𝑑𝑖 = 0 and Γ𝑖 = 0, 𝑥𝑖 (𝑡 𝑓 ) = 𝑥𝑖𝑓 , 𝑥
𝑖 (0) = 𝑥𝑖0

s.t. ∥𝑝𝑖 (𝑡) − 𝑝 𝑗 (𝑡)∥ ≥ 𝑟𝑠, ∀𝑡, ∀𝑖, 𝑗 ≠ 𝑖

where 𝑥(𝑡) = {𝑥𝑖 (𝑡)}𝑁
𝑖=1, 𝑢(𝑡) = {𝑢𝑖 (𝑡)}𝑁

𝑖=1, 𝑐(𝑥(𝑡), 𝑢(𝑡), 𝑡) is a user-specified cost at
time 𝑡, 𝑡 𝑓 is the terminal time, 𝑥𝑖0 and 𝑥𝑖

𝑓
are the initial and terminal state, respectively,

𝑟𝑠 is the minimal safe distance between 𝑖th agent and other objects, and 𝑗 is the index
denoting other agents and obstacles.
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7.6.I Learned Distributed Motion Planning Policy
Let 𝒩 denote the set of all the 𝑁 agents, ℳ denote the set of all the 𝑀 static
obstacles, and 𝑜𝑖 denote the local observation of the 𝑖th agent given as follows:

𝑜𝑖 = (𝑥𝑖, {𝑥 𝑗 } 𝑗∈𝒩𝑖 , {𝑝 𝑗 } 𝑗∈ℳ𝑖 ) (7.9)

where 𝑥𝑖 is the state of the 𝑖th agent, {𝑥 𝑗 } 𝑗∈𝒩𝑖 are the states of neighboring agents
defined with 𝒩

𝑖 = { 𝑗 ∈ 𝒩 |∥𝑝𝑖 − 𝑝 𝑗 ∥ ≤ 𝑟sen}, {𝑝 𝑗 } 𝑗∈ℳ𝑖 are the positions of
neighboring static obstacles defined with ℳ

𝑖 = { 𝑗 ∈ ℳ | ∥𝑝𝑖 − 𝑝 𝑗 ∥ ≤ 𝑟sen}, and
𝑟sen is the sensing radius.

In this section, we assume that we have access to a learned distributed motion
planning policy 𝑢𝑖

ℓ
(𝑜𝑖) obtained by [2]. In particular, (i) we generate demonstration

trajectories by solving the global nonlinear motion planning (7.8) and (ii) extract
local observations from them for deep imitation learning to construct 𝑢𝑖

ℓ
(𝑜𝑖). Our

differentiable safety and robust filters to be seen in Sec. 7.6.II and 7.6.III can be
used also in this phase to allow for end-to-end policy training as in [2].

7.6.II Analytical Form of Optimal Safety Filter
We are now ready to present an analytical way to design a safety filter that guarantees
safe operations of the systems (7.6) and (7.7) when 𝑑𝑖 = 0 and Γ𝑖 = 0. One of the
benefits of the log-barrier formulation in the following is that the global safety
violation can be decomposed as the sum of the local safety violations, allowing for
the distributed implementation of our analytical safety filter in a multi-agent setting:

𝜓𝑖 (𝑜𝑖) = − log
∏
𝑗∈S𝑖

ℎ(𝑝𝑖 𝑗 ), ℎ(𝑝𝑖 𝑗 ) =
∥𝑝𝑖 𝑗 ∥Ξ − (𝑟𝑠 + Δ𝑟𝑠)
𝑟sen − (𝑟𝑠 + Δ𝑟𝑠)

(7.10)

where 𝑝𝑖 𝑗 = 𝑝 𝑗 − 𝑝𝑖, S𝑖 is the set of all the neighboring objects (i.e., agents and
obstacles), 𝑟𝑠 is the minimal safe distance between 𝑖th agent and other objects,
𝑟sen is the sensing radius, and Δ𝑟𝑠 > 0 is a positive scalar parameter to account
for the external disturbance to be formally defined in Sec. 7.6.III. We use the
weighted 2-norm ∥ · ∥Ξ with the weight Ξ ≻ 0 to consider a collision boundary
defined by an ellipsoid. The parameters are selected to satisfy sup∥𝑝𝑖 𝑗 ∥≤𝑟sen ∥𝑝𝑖 𝑗 ∥Ξ ≤
𝑟sen and 𝑟sen − (𝑟𝑠 + Δ𝑟𝑠) > 0 to ensure 𝜓𝑖 (𝑜𝑖) ≥ 0 always when the distance to the
𝑗 th object is less than 𝑟sen. Having a negative value of ℎ implies a safety violation.
The idea for our safety filter is first to construct a safe target velocity given as

𝑣𝑖𝑠 (𝑜𝑖) = −𝑘 𝑖𝑝∇𝑝𝑖𝜓𝑖 (𝑜𝑖) (7.11)
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where 𝑘 𝑖𝑝 > 0, and then to realize it optimally using the knowledge of Lagrangian
systems and contraction theory.

When dealing with general safety ℎ(𝑥𝑖, 𝑥 𝑗 ) ≥ 0 for each 𝑖 and 𝑗 , we can also use the
local safety function (7.10) modified as 𝜓𝑖 (𝑜𝑖) = − log

∏
𝑗∈S𝑖 ℎ(𝑥𝑖, 𝑥 𝑗 ). We focus

on collision-free operation as the objective of safety in this paper as it is one of the
most critical safety requirements in a multi-agent setting.

Remark 7.2. The velocity (7.11) renders the single integrator system (i.e., ¤𝑝𝑖 = 𝑣𝑖)
safe [2]. Note that instead of the condition ¤𝜓 ≤ 0 in [2], [55], we could use
¤𝜓 ≤ 𝛼(ℎ) to increase the available set of control inputs [39], where 𝜓 is a barrier
function, ℎ is a safety function associated with 𝜓, and 𝛼 is a classK function [58, p.
144]. This requires an additional global Lipschitz assumption on 𝛼 as seen in [47].

7.6.II-A Optimal Safety Filter for Lagrangian Systems

Given the learned motion planning policy 𝑢𝑖
ℓ
(𝑜𝑖) of Sec. 7.6.I for the system (7.6),

we design a control policy 𝑢𝑖𝑠 processed by our proposed safety filter as follows:

𝑢𝑖𝑠 (𝑜𝑖) = 𝑢𝑖ℓ (𝑜
𝑖) −


𝑒𝑖𝑣 (𝑢𝑖ℓ (𝑜

𝑖)−�̄�𝑖𝑠)⊤𝑒𝑖𝑣
∥𝑒𝑖𝑣 ∥2

if (𝑢𝑖
ℓ
(𝑜𝑖) − �̄�𝑖𝑠)⊤𝑒𝑖𝑣 > 0

0 otherwise
(7.12)

where 𝑒𝑖𝑣 = 𝑣𝑖 − 𝑣𝑖𝑠 (𝑜𝑖) for 𝑣𝑖𝑠 (𝑜𝑖) of (7.11), �̄�𝑖𝑠 is given as

�̄�𝑖𝑠 = 𝑀
𝑖 ¤𝑣𝑖𝑠 + 𝐶𝑖𝑣𝑖𝑠 + 𝐺𝑖 + 𝐷𝑖 + 𝑣𝑖𝑠 − 𝑘 𝑖𝑣𝑀 𝑖𝑒𝑖𝑣 (7.13)

with its arguments omitted and 𝑘 𝑖𝑝, 𝑘
𝑖
𝑣 > 0 being design parameters. The con-

troller (7.12) is well-defined even with the division by ∥𝑒𝑖𝑣 ∥ as the relation (𝑢𝑖
ℓ
(𝑜𝑖) −

�̄�𝑖𝑠)⊤𝑒𝑖𝑣 = 0 ≤ 0 holds when ∥𝑒𝑖𝑣 ∥ = 0. We have the following for the safety
guarantee.

Theorem 7.2. Consider the following optimization problem:

𝑢𝑖opt = arg min
𝑢𝑖∈R𝑚

∥𝑢𝑖 − 𝑢𝑖ℓ (𝑜
𝑖)∥2 s.t. (𝑢𝑖 − �̄�𝑖𝑠)⊤𝑒𝑖𝑣 ≤ 0. (7.14)

where �̄�𝑖𝑠 is given by (7.13). Suppose that there exists a control input 𝑢𝑖 that satisfies
the constraint of (7.14) for each 𝑖. The safety of the system (7.6) is then guaranteed
when 𝑑𝑖 = 0 and Γ𝑖 = 0, i.e., all the agents will not collide with the other objects
when there is no external disturbance.

Also, the problem (7.14) is always feasible and its optimal solution is given by (7.12),
thereby minimizing the deviation of the safe control input from 𝑢𝑖

ℓ
(𝑜𝑖).
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Proof. Let us consider the following Lyapunov-type function:

V = 𝜓(𝑋) +
𝑁∑︁
𝑖=1

∥𝑣𝑖 − 𝑣𝑖𝑠∥2𝑀 𝑖 (𝑝𝑖)
2

= 𝜓(𝑋) +
𝑁∑︁
𝑖=1

∥𝑒𝑖𝑣 ∥2𝑀 𝑖 (𝑝𝑖)
2

where 𝑣𝑖𝑠 is given in (7.12), 𝑒𝑖𝑣 = 𝑣𝑖 − 𝑣𝑖𝑠, and 𝜓 is given as

𝜓(𝑋) = − log
𝑁∏
𝑖=1

∏
𝑖< 𝑗∈𝒩𝑖

ℎ(𝑝𝑖 𝑗 )
𝑁∏
𝑖=1

∏
𝑗∈ℳ𝑖

ℎ(𝑝𝑖 𝑗 ) (7.15)

for 𝑋 = {𝑥1, · · · , 𝑥𝑁 }. By the definition of ℎ in (7.10), the collision-free operation
of the system (7.6) is guaranteed as long as 𝜓𝑖 of (7.10) is bounded. Taking the time
derivative ofV, we get

¤V =

𝑁∑︁
𝑖=1

𝑘 𝑖𝑝∇𝑝𝑖𝜓𝑖
⊤
𝑣𝑖𝑠 − 𝑘 𝑖𝑣 ∥𝑒𝑖𝑣 ∥2𝑀 𝑖 + (𝑢𝑖 − �̄�𝑖𝑠)⊤𝑒𝑖𝑣 (7.16)

by using (7.6) for 𝑑𝑖 = 0 and Γ𝑖 = 0 along with the relation 𝑧⊤( ¤𝑀 𝑖 − 2𝐶𝑖)𝑧 =

0, ∀𝑧 ∈ R𝑛, where the arguments are omitted. Having (𝑢𝑖 − �̄�𝑖𝑠)⊤𝑒𝑖𝑣 ≤ 0 as in the
constraint of (7.14) gives ¤V ≤ ∑𝑁

𝑖=1 −𝑘 𝑖𝑝
2∥∇𝑝𝑖𝜓𝑖∥2 − 𝑘 𝑖𝑣 ∥𝑒𝑖𝑣 ∥2𝑀 𝑖 , which guarantees

the boundedness of 𝑉 and then 𝜓𝑖 for all 𝑖, implying no safety violation as long as
the system is initially safe. Also, the constraint (𝑢𝑖 − �̄�𝑖𝑠)⊤𝑒𝑖𝑣 ≤ 0 is always feasible
for 𝑢𝑖 given as 𝑢𝑖 = �̄�𝑖𝑠. Finally, applying the KKT condition [59, pp. 243-244]
to (7.14) results in 𝑢𝑖opt = 𝑢

𝑖
𝑠 (𝑜𝑖) for 𝑢𝑖𝑠 (𝑜𝑖) given in (7.12).

7.6.II-B Optimal Safety Filter for General Nonlinear Systems

The results of Theorem 7.2 can be generalized to obtain a safety filter nonlinear
systems given by (7.7). We use the following incremental Lyapunov function as in
contraction theory [43], [60], which leads to a safety analysis analogous to that of
LTV systems and Lagrangian systems (7.6):

E𝑖 (𝑜𝑖, 𝑡) =
∥𝑣𝑖 − 𝑣𝑖𝑠 (𝑜𝑖)∥2𝑀 𝑖 (𝑥𝑖 ,𝑡)

2
(7.17)

s.t. ¤𝑀 𝑖 + 𝑀 𝑖𝐴𝑖𝑠 + 𝐴𝑖𝑠
⊤
𝑀 𝑖 − 2𝑀 𝑖𝐵𝑖𝑅𝑖

−1
𝐵𝑖
⊤
𝑀 𝑖 ≤ −𝑘 𝑖𝑣𝑀 𝑖 (7.18)

where 𝑀 𝑖 (𝑥𝑖, 𝑡) ≻ 0, 𝑘 𝑖𝑣 is a design parameter, and 𝐴𝑖𝑠 (𝑜𝑖, 𝑡) is a nonlinear state-
dependent coefficient matrix for the system of (7.7) defined as follows:

𝐴𝑖𝑠 (𝑜𝑖, 𝑡) (𝑣𝑖 − 𝑣𝑖𝑠 (𝑜𝑖)) = 𝑓 𝑖 (𝑝𝑖, 𝑣𝑖, 𝑡) − 𝑓 𝑖 (𝑝𝑖, 𝑣𝑖𝑠 (𝑜𝑖), 𝑡).
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The arguments are omitted in (7.18) and the notations (7.17) and (7.18) are in-
tentionally consistent with the ones of Theorem 7.2 to imply the analogy between
the methods in Sec. 7.6.II-A and Sec. 7.6.II-B. Note that the nonlinear matrix 𝐴𝑠
always exists when 𝑓 𝑖 is continuously differentiable as proved in Lemma 3.1 [10].
Although we use one of the simple versions of a contraction metric in this paper for
simplicity of discussion, we can consider more general types of Lyapunov functions
and contraction metrics for the sake of the broader applicability of our approach by
using, e.g., path integrals, geodesics, virtual systems, and differential dynamics, as
discussed earlier in this thesis.

Let us also introduce the following assumption for generalizing the result of Theo-
rem 7.2.

Assumption 7.1. Consider a Lyapunov-type function for (7.7) defined as follows:

V𝑖 (𝑜𝑖, 𝑡) = 𝑘 𝑖𝑝𝜓𝑖 (𝑜𝑖) +
∥𝑣𝑖 − 𝑣𝑖𝑠 (𝑜𝑖)∥2𝑀 𝑖 (𝑥𝑖 ,𝑡)

2

for 𝑘 𝑖𝑝 > 0, 𝜓𝑖 (𝑜𝑖) of (7.10), 𝑣𝑖𝑠 (𝑜𝑖) of (7.11), and 𝑀 𝑖 (𝑥𝑖, 𝑡) of (7.18). We assume
that

𝑒𝑖𝑣 = 𝐵(𝑝𝑖, 𝑣𝑖, 𝑡)⊤∇𝑣𝑖V𝑖 = 𝐵(𝑝𝑖, 𝑣𝑖, 𝑡)⊤𝑀 𝑖 (𝑣𝑖 − 𝑣𝑖𝑠) = 0 (7.19)

⇒ ¤V𝑖 ≤ −𝑘 𝑖𝑝
2∥∇𝑝𝑖𝜓𝑖 (𝑜𝑖)∥2 − 𝑘 𝑖𝑣E𝑖 (𝑜𝑖, 𝑡) (7.20)

where 𝑒𝑖𝑣 = 𝑣𝑖 − 𝑣𝑖𝑠 for 𝑣𝑖𝑠 of (7.11), 𝜓𝑖 (𝑜𝑖) is given in (7.10), 𝛼 is given in (7.11),
E𝑖 (𝑜𝑖, 𝑡) is given in (7.17), and the arguments ofV and𝑀 𝑖 are omitted for notational
simplicity.

This assumption simply says that the system naturally satisfies the safety condi-
tion (7.20) when the velocity displacements are in the directions orthogonal to the
span of the actuated directions as discussed in [23].

Remark 7.3. Assumption 7.1 always holds for fully and over-actuated systems
s.t. 𝐵(𝑝𝑖, 𝑣𝑖, 𝑡)𝐵(𝑝𝑖, 𝑣𝑖, 𝑡)† = I𝑛×𝑛, where 𝐵(𝑝𝑖, 𝑣𝑖, 𝑡)† the Moore-Penrose pseudo
inverse. Furthermore, even when the system is under-actuated and Assumption 7.1
does not hold, the error associated with the under-actuation can be treated robustly
as to be seen in Sec. 7.6.III.
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Given the learned motion planning policy 𝑢𝑖
ℓ
(𝑜𝑖) of Sec. 7.6.I for the system (7.7),

we design a control policy 𝑢𝑖𝑠 processed by our proposed safety filter as (7.12), where
𝑒𝑖𝑣 is now given by (7.19) and �̄�𝑖𝑠 is defined as

�̄�𝑖𝑠 =


𝑒𝑖𝑣 (𝑒𝑖𝑣

⊤
𝑀 𝑖 ( ¤𝑣𝑖𝑠− 𝑓 𝑖𝑠 )−𝑘 𝑖𝑝𝑒𝑖𝑣

⊤∇
𝑝𝑖
𝜓𝑖)

∥𝑒𝑖𝑣 ∥2
if ∥𝑒𝑖𝑣 ∥ ≠ 0

0 otherwise
(7.21)

with 𝑓 𝑖𝑠 = 𝑓 𝑖 (𝑝𝑖, 𝑣𝑖𝑠, 𝑡) and 𝑘 𝑖𝑝 being a design parameter. The controller (7.12) is
well-defined with the division by ∥𝑒𝑖𝑣 ∥ under Assumption 7.1, because the relation
(𝑢𝑖
ℓ
(𝑜𝑖) − �̄�𝑖𝑠)⊤𝑒𝑖𝑣 = 0 ≤ 0 holds when ∥𝑒𝑖𝑣 ∥ = 0.

Theorem 7.3. Consider the optimization problem (7.14), where 𝑢𝑖
ℓ

is now given
by the learned motion planning policy for (7.8) with (7.7), 𝑒𝑖𝑣 is by (7.19), 𝑢𝑖

ℓ
is

by (7.21). Suppose that Assumption 7.1 holds and that there exists a control input
𝑢𝑖 that satisfies the constraint of (7.14) for each 𝑖. The safety of the system (7.7) is
then guaranteed when 𝑑𝑖 = 0 and Γ𝑖 = 0, i.e., all the agents will not collide with the
other objects when there is no external disturbance.

Also, the problem (7.14) is always feasible and its optimal solution is given by (7.12),
thereby minimizing the deviation of the safe control input from 𝑢𝑖

ℓ
(𝑜𝑖).

Proof. Let us consider a Lyapunov-type functionV = 𝜓(𝑋) +∑𝑁
𝑖=1 E𝑖 (𝑜𝑖, 𝑡), where

𝜓 is given in (7.15), 𝑣𝑖𝑠 is given in (7.12), and E𝑖 (𝑜𝑖, 𝑡) is given in (7.17). Using
the relation (7.18) and Assupmption 7.1, we have ¤V ≤ ∑𝑁

𝑖=1 −𝑘 𝑖𝑝
2∥∇𝑝𝑖𝜓𝑖∥2 −

𝑘 𝑖𝑣E𝑖 (𝑜𝑖, 𝑡) + (𝑢𝑖 − �̄�𝑖𝑠)⊤𝑒𝑖𝑣 when 𝑑𝑖 = 0 and Γ𝑖 = 0 in (7.7) as in the proof of
Theorem 7.2, where 𝜓𝑖 (𝑜𝑖) is given in (7.10), 𝛼 is given in (7.11), and E𝑖 (𝑜𝑖, 𝑡) is
given in (7.17). The rest follows from the proof of Theorem 7.2 below (7.16).

Remark 7.4. The safety filter of Theorem 7.3 minimizes the deviation of the safe con-
trol input from the learned motion planning input of the general system (7.7), which
implies that it instantaneously minimizes the contribution of the under-actuation
error when Assumption 7.1 does not hold. This error can be then treated robustly
as discussed in Remark 7.3.

7.6.III Augmenting Robustness
The results in Sec. 7.6.II depend on the assumption that 𝑑𝑖 = 0 and Γ𝑖 = 0
in (7.6) and (7.7). This section discusses the safety of these systems in the presence
of external disturbance.
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7.6.III-A Revisiting Built-in Robustness of Safety Filter

Due to its Lyapunov-type formulation in Theorems 7.2 and 7.3, our safety filter
inherits the robustness properties discussed in, e.g., [58]. It also inherits the robust-
ness of the barrier function of [39], [40], [47] ([50], [61] for stochastic disturbance)
as seen in Sec. 7.6.I with Fig. 7.7 and 7.8.

The robust filter of CART is for hierarchically augmenting such built-in robustness
with the tracking-based robustness to lighten the burden of the safety filter in dealing
with the disturbance. Given a safety condition ℎ ≥ 0, these two ways of augmenting
the learned motion planning with robustness as in Fig. 7.7 are achieved by

(a) changing our safety filter parameters (e.g., making 𝑘 𝑝 and 𝑘𝑣 larger in Theo-
rems 7.2 and 7.3),

(b) tracking a safe trajectory that satisfies ℎ ≥ 0, ensuring the deviation from the
perturbed trajectory is finite.

The first approach (a) could lead to a large repelling force due to the stability of
the safe set originating from the use of ¤ℎ, especially when we use the log-barrier
formulation with the dynamics discretization (i.e., we get a larger control input as
the agents get closer to the safety boundary, implying a large discretization error).
In contrast, (b) does not involve such behavior as it simply attempts to track the safe
trajectory satisfying ℎ ≥ 0. As illustrated in Fig. 7.8, there are the following two
sources of robustness in our approach:

(a) asymptotic/exponential stability of the safe set,

(b) incremental asymptotic/exponential stability of the system trajectory with respect
to a safe target trajectory,

and the robust filter of CART is about (b), which significantly reduces the respon-
sibility of the safety filter (a) in meeting the robustness requirement, allowing the
safe set to be less stable (i.e., the unsafe set to be less repelling, meaning more
freedom in choosing the safety filter parameters). Note that the robust filter here
is essencially the tracking control policy introduced in Chapter 3, Chapter 4, and
Chapter 6, where the target trajectory is obtained hierarchically by the safety filter of
Theorems 7.2 and 7.3 as in fig. 7.7 (see [38] for more details). These observations
will be more appreciable in the numerical simulations in Chapter 10.
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C h a p t e r 8

LEARNING-BASED ADAPTIVE CONTROL AND
CONTRACTION THEORY FOR LEARNED MODELS

[1] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine, “Learning-based Adaptive
Control using Contraction Theory,” in IEEE Conf. Decis. Control, 2021,
pp. 2533–2538.

[2] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine, “Contraction theory for
nonlinear stability analysis and learning-based control: A tutorial overview,”
Annu. Rev. Control, vol. 52, pp. 135–169, 2021, issn: 1367-5788.

All the results presented so far assume that we have sufficient information for a nom-
inal problem setting and thus our nominal model is sufficiently good for designing
control, estimation, or motion planning policies. However, future aerospace and
robotic exploration missions require that autonomous agents perform complex con-
trol tasks in challenging unknown environments while ensuring stability, optimality,
and safety even for poorly-modeled dynamical systems. In this chapter, we consider
the situations where the model and environmental uncertainties are too large to
be treated robustly as external disturbances, and present real-time implementable
control methods that extensively utilize online and offline data for their enhanced
performance certificates and autonomous capabilities. Note that these methods can
be used on top of the robust control approaches in the previous chapters.

8.1 Learning-based Adaptive Control
In this section, we consider the following smooth nonlinear system with an uncertain
parameter 𝜃 ∈ R𝑐:

¤𝑥 = 𝑓 (𝑥, 𝜃) + 𝐵(𝑥, 𝜃)𝑢, ¤𝑥𝑑 = 𝑓 (𝑥𝑑 , 𝜃) + 𝐵(𝑥𝑑 , 𝜃)𝑢𝑑 (8.1)

where 𝑥, 𝑢, 𝑥𝑑 , and 𝑢𝑑 are as defined in (6.1) and (6.3), and 𝑓 : R𝑛 × R𝑐 ↦→ R𝑛

and 𝐵 : R𝑛 ×R𝑐 ↦→ R𝑛×𝑚 are known smooth functions with the uncertain parameter
𝜃 ∈ R𝑐. Due to Theorems 2.4 and 5.2, we can see that the robust control techniques
presented earlier in Theorems 4.2, 4.6, 6.4, and 6.5 are still useful in this case if the
modeling errors ∥ 𝑓 (𝑥, 𝜃) − 𝑓 (𝑥, 𝜃𝑛)∥ and ∥𝐵(𝑥, 𝜃) − 𝐵(𝑥, 𝜃𝑛)∥ are bounded, where
𝜃𝑛 is a nominal guess of the true parameter 𝜃. However, there are situations where
such assumptions are not necessarily true.

https://ieeexplore.ieee.org/document/9683435
https://ieeexplore.ieee.org/document/9683435
https://www.sciencedirect.com/science/article/pii/S1367578821000766?via%3Dihub
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We present a method of deep learning-based adaptive control for nonlinear systems
with parametric uncertainty, thereby further improving the real-time performance of
robust control in Theorems 5.2 and 5.3 for model-based systems, and Theorems 8.3
and 8.4 for model-free systems. Although we consider continuous-time dynamical
systems in this chapter, discrete-time changes could be incorporated in this frame-
work using [1], [2]. Also, note that the techniques in this chapter [3] can be used
with differential state feedback frameworks [4]–[9] as described in Theorem 4.6,
trading off added computational cost for generality (see Table 3.1 and [10], [11]).

8.1.I Adaptive Control with CV-STEM and NCM
Let us start with the following simple case.

Assumption 8.1. The matrix 𝐵 in (8.1) does not depend on 𝜃, and ∃Π(𝑥) ∈ R𝑐×𝑛

s.t. Π(𝑥)⊤𝜗 = 𝑓 (𝑥, 𝜃𝑛) − 𝑓 (𝑥, 𝜃), where 𝜗 = 𝜃𝑛 − 𝜃 and 𝜃𝑛 is a nominal guess of
the uncertain parameter 𝜃.

Under Assumption 8.1, we can write (8.1) as

¤𝑥 = 𝑓 (𝑥, 𝜃𝑛) + 𝐵(𝑥)𝑢 − Π(𝑥)⊤𝜗

leading to the following theorem [3] for the NCM-based adaptive control. Note that
we could also use the SDC formulation with respect to a fixed point as delineated
in Theorem 3.2 [12]–[14].

Theorem 8.1. Suppose that Assumption 8.1 holds and letM defines the NCM of
Definition 6.2, which models 𝑀 of the CV-STEM contraction metric in Theorem 4.2
for the nominal system (8.1) with 𝜃 = 𝜃𝑛, constructed with an additional convex
constraint given as 𝜕𝑏𝑖 (𝑥)�̄� + 𝜕𝑏𝑖 (𝑥𝑑)�̄� = 0, where 𝜕𝑏𝑖 (𝑞)�̄� =

∑
𝑖 (𝜕�̄�/𝜕𝑞𝑖)𝑏𝑖 (𝑞)

for 𝐵 = [𝑏1, · · · , 𝑏𝑚] (see [4], [10]). Suppose also that the matched uncertainty
condition [10] holds, i.e., (Π(𝑥) −Π(𝑥𝑑))⊤𝜗 ∈ span(𝐵(𝑥)) for Π(𝑥), and that (8.1)
is controlled by the following adaptive control law:

𝑢 = 𝑢𝐿 + 𝜑(𝑥, 𝑥𝑑)⊤�̂� (8.2)
¤̂
𝜗 = −Γ(𝜑(𝑥, 𝑥𝑑)𝐵(𝑥)⊤M(𝑥, 𝑥𝑑 , 𝑢𝑑) (𝑥 − 𝑥𝑑) + 𝜎�̂�) (8.3)

where 𝑢𝐿 is given by (6.7) of Theorem 6.3, i.e., 𝑢𝐿 = 𝑢𝑑 − 𝑅−1𝐵⊤M(𝑥 − 𝑥𝑑),
Γ ∈ R𝑐×𝑐 is a diagonal matrix with positive elements that governs the rate of
adaptation, 𝜎 ∈ R≥0, and (Π(𝑥) − Π(𝑥𝑑))⊤𝜗 = 𝐵(𝑥)𝜑(𝑥, 𝑥𝑑)⊤𝜗.
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If ∃𝛾, 𝛾, �̄�, �̄�, 𝜙, �̄� ∈ R>0 s.t. 𝛾I ⪯ Γ ⪯ 𝛾I, ∥𝐵(𝑥)∥ ≤ �̄�, ∥𝑅−1(𝑥, 𝑥𝑑 , 𝑢𝑑)∥ ≤ �̄�,
∥𝜑(𝑥, 𝑥𝑑)∥ ≤ 𝜙, and ∥𝜗∥ ≤ �̄�, and if Γ and 𝜎 of (8.3) are selected to satisfy the
following relation for the learning error ∥M − 𝑀 ∥ ≤ 𝜖ℓ in some compact set S as
in (6.18) of Theorem 6.3:[
−2𝛼ℓ𝑚 𝜙�̄�𝜖ℓ

𝜙�̄�𝜖ℓ −2𝜎

]
⪯ −2𝛼𝑎

[
𝑚 0
0 1/𝛾

]
(8.4)

for ∃𝛼𝑎 ∈ R>0, 𝛼ℓ given in Theorem 6.3, and 𝑚 and 𝑚 given in 𝑚I ⪯ 𝑀 ⪯ 𝑚I of
(2.26), then the system (8.1) is robust against bounded deterministic and stochastic
disturbances with 𝜎 ≠ 0, and we have the following bound in the compact set S:

∥e(𝑡)∥ ≤ (𝑉ℓ (0)𝑒−𝛼𝑎𝑡 + 𝛼−1
𝑎 𝜎

√︁
𝛾�̄�(1 − 𝑒−𝛼𝑎𝑡))/√𝑚 (8.5)

where e = 𝑥 − 𝑥𝑑 , and 𝑉ℓ =
∫ 𝜉1
𝜉0
∥Θ𝛿𝑞∥ is defined in Theorem 2.3 with 𝑀 = Θ⊤Θ

replaced by diag(𝑀, Γ−1) for 𝜉0 = [𝑥⊤
𝑑
, 𝜗⊤]⊤ and 𝜉1 = [𝑥⊤, �̂�⊤]⊤. Furthermore,

if the learning error 𝜖ℓ = 0 (CV-STEM control), (8.3) with 𝜎 = 0 guarantees
asymptotic stability of 𝑥 to 𝑥𝑑 in (8.1).

Proof. The proof can be found in [3], but here we emphasize the use of contraction
theory. For 𝑢 given by (8.2), the virtual system of a smooth path 𝑞(𝜇, 𝑡) = [𝑞⊤𝑥 , 𝑞⊤𝜗 ]

⊤

parameterized by 𝜇 ∈ [0, 1], which has 𝑞(𝜇 = 0, 𝑡) = [𝑥⊤
𝑑
, 𝜗⊤]⊤ and 𝑞(𝜇 = 1, 𝑡) =

[𝑥⊤, �̂�⊤]⊤ as its particular solutions, is given as follows:

¤𝑞 =

[
𝜁 (𝑞𝑥 , 𝑥, 𝑥𝑑 , 𝑢𝑑) + 𝐵𝜑⊤𝑞𝜗 − Π(𝑥)⊤𝜗

−Γ(𝜑𝐵⊤M(𝑞𝑥 − 𝑥𝑑) + 𝜎(𝑞𝜗 − 𝜗)) + 𝑑𝑞𝜗 (𝜇, 𝜗)

]
where 𝑑𝑞𝜗 (𝜇, 𝜗) = −𝜇𝜎𝜗. Note that 𝜁 is as given in (3.13), i.e., 𝜁 = (𝐴 −
𝐵𝑅−1𝐵⊤M)(𝑞𝑥 − 𝑥𝑑) + ¤𝑥𝑑 , where the SDC matrix 𝐴 is defined as (see Lemma 3.1)

𝐴(𝑥 − 𝑥𝑑) = 𝑓 (𝑥, 𝜃𝑛) + 𝐵(𝑥)𝑢𝑑 − 𝑓 (𝑥𝑑 , 𝜃𝑛) − 𝐵(𝑥𝑑)𝑢𝑑 .

The arguments of 𝐴(𝜚, 𝑥, 𝑥𝑑 , 𝑢𝑑), 𝐵(𝑥),M(𝑥, 𝑥𝑑 , 𝑢𝑑), and 𝜑(𝑥, 𝑥𝑑) are omitted for
notational simplicity. Since ¤𝑞𝑥 = 𝜁 (𝑞𝑥 , 𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝑡) is contracting due to Theo-
rems 4.2 and 6.3 with a contraction rate given by 𝛼ℓ in Theorem 6.3, we have for a
Lyapunov function 𝑉 = 𝛿𝑞⊤𝑥 𝑀𝛿𝑞𝑥 + 𝛿𝑞⊤𝜗Γ

−1𝛿𝑞𝜗 that

¤𝑉/2 ≤ −𝛼ℓ𝛿𝑞⊤𝑥 𝑀𝛿𝑞𝑥 + 𝛿𝑞⊤𝑥 (𝑀 −M)𝐵𝜑⊤𝛿𝑞𝜗 − 𝜎∥𝛿𝑞𝜗∥2 + 𝛿𝑞⊤𝜗𝛿𝑑𝑞𝜗. (8.6)

Applying (8.4) with ∥M − 𝑀 ∥ ≤ 𝜖ℓ of (6.18), we get

¤𝑉/2 − 𝛿𝑞⊤𝜗𝛿𝑑𝑞𝜗 ≤ −(𝛼ℓ𝑚)∥𝛿𝑞𝑥 ∥
2 + 𝜙�̄�𝜖ℓ∥𝛿𝑞𝑥 ∥∥𝛿𝑞𝜗∥ − 𝜎∥𝛿𝑞𝜗∥2

≤ −𝛼𝑎 (𝑚∥𝛿𝑞𝑥 ∥2 + ∥𝛿𝑞𝜗∥2/𝛾) ≤ −𝛼𝑎𝑉.
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Since we have ∥𝜕𝑑𝑞𝜗/𝜕𝜇∥ = 𝜎�̄�, this implies ¤𝑉ℓ ≤ −𝛼𝑎𝑉ℓ + 𝜎
√︁
𝛾�̄�, yielding the

bound (8.5) due to Lemma 2.1 [3]. Robustness against deterministic and stochastic
disturbances follows from Theorem 3.1 if 𝜎 ≠ 0. If 𝜖ℓ = 0 and 𝜎 = 0, the relation
(8.6) reduces to ¤𝑉/2 ≤ −𝛼𝛿𝑞⊤𝑥 𝑀𝛿𝑞𝑥 , which results in asymptotic stability of 𝑥 to
𝑥𝑑 in (8.1) due to Barbalat’s lemma [15, p. 323] as in the proof of Theorem 2
in [10].

Remark 8.1. Although Theorem 8.1 is for the case where 𝑓 (𝑥) is affine in its
parameter, it is also useful for the following types of systems with an uncertain
parameter 𝜃 ∈ R𝑐 and a control input 𝑢 (see [3]):

𝐻 (𝑥)𝑝 (𝑛) + ℎ(𝑥) + Π(𝑥)𝜃 = 𝑢

where 𝑝 ∈ R𝑛, 𝑢 ∈ R𝑛, ℎ : R𝑛 ↦→ R𝑛, 𝐻 : R𝑛 ↦→ R𝑛×𝑛, Π : R𝑛 ↦→ R𝑛×𝑐, 𝑥 =

[(𝑝 (𝑛−2))⊤, · · · , (𝑝)⊤]⊤, and 𝑝 (𝑘) denotes the 𝑘th time derivative of 𝑝. In particular,
adaptive sliding control [16] designs 𝑢 to render the system of the composite variable
𝑠 given as 𝑠 = 𝑝 (𝑛−1) − 𝑝 (𝑛−1)

𝑟 to be contracting, where 𝑝 (𝑛−1)
𝑟 = 𝑝

(𝑛−1)
𝑑
−∑𝑛−2

𝑖=0 𝜆𝑖e
(𝑖) ,

e = 𝑝 − 𝑝𝑑 , 𝑝𝑑 is a target trajectory, and 𝜅𝑛−1 + 𝜆𝑛−2𝜅
𝑛−2 + · · · + 𝜆0 is a stable

(Hurwitz) polynomial in the Laplace variable 𝜅 (see Example 2.6). Since we have
e(𝑛−1) = 𝑠 −∑𝑛−2

𝑖=0 𝜆𝑖e
(𝑖) and the system for [e(0) , · · · , e(𝑛−2)] is also contracting if

𝑠 = 0 due to the Hurwitz property, the hierarchical combination property [17], [18]
of contraction in Theorem 2.7 guarantees lim𝑡→∞ ∥𝑝 − 𝑝𝑑 ∥ = 0 [19, p. 352] (see
Example 2.7).

Example 8.1. Using the technique of Remark 8.1, we can construct adaptive control
for the Lagrangian system in Example 2.6 as follows:

H(q) ¥q + C(q, ¤q) ¤q + G(q) = 𝑢(q, ¤q, 𝑡) (8.7)

𝑢(q, ¤q, 𝑡) = −K(𝑡) ( ¤q − ¤q𝑟) + Ĥ (q) ¥q𝑟 + Ĉ(q, ¤q) ¤q𝑟 + Ĝ(q) (8.8)

where Ĥ , Ĉ, and Ĝ are the estimates of H , C, and G, respectively, and the other
variables are as defined in Example 2.6. Suppose that the terms H , C, and G
depend linearly on the unknown parameter vector 𝜃 as follows [19, p. 405]:

H(q) ¥q𝑟 + C(q, ¤q) ¤q𝑟 + G(q) = 𝑌 (q, ¤q, ¤q𝑟 , ¥q𝑟)𝜃.

Updating the parameter estimate 𝜃 using the adaptation law, ¤̂𝜃 = −Γ𝑌 (q, ¤q, ¤q𝑟 , ¥q𝑟)⊤( ¤q−
¤q𝑟), as in (8.3) where Γ ≻ 0, we can define the following virtual system which has
𝑞 = 𝜉0 = [ ¤q⊤𝑟 , 𝜃⊤]⊤ and 𝑞 = 𝜉1 = [ ¤q⊤, 𝜃⊤]⊤ as its particular solutions:[
H 0
0 Γ−1

]
( ¤𝑞 − ¤𝜉0) +

[
C + K −𝑌
𝑌⊤ 0

]
(𝑞 − 𝜉0) = 0
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where the relation 𝑢 = −K(𝑡) ( ¤q− ¤q𝑟)+𝑌 (q, ¤q, ¤q𝑟 , ¥q𝑟)𝜃 is used. Thus, for a Lyapunov
function 𝑉 = 𝛿𝑞⊤

[H 0
0 Γ−1

]
𝛿𝑞, we have that

¤𝑉 = 𝛿𝑞⊤
[
K 𝑌

−𝑌⊤ 0

]
𝛿𝑞 = 𝛿𝑞⊤

[
K 0
0 0

]
𝛿𝑞

which results in asymptotic stability of 𝛿𝑞 (i.e., semi-contraction [20], see also
Barbalat’s lemma [19, p. 405-406]).

8.1.II Parameter-Dependent Contraction Metric (aNCM)
Although Theorem 8.1 utilizes the NCM designed for the nominal system (8.1)
with 𝜃 = 𝜃𝑛, we could improve its representational power by explicitly taking the
parameter estimate 𝜃 as one of the NCM arguments [3], leading to the concept of
an adaptive NCM (aNCM).

In this section, we consider multiplicatively-separable nonlinear systems given in
Assumption 8.2, which holds for many types of systems including robotics sys-
tems [19], spacecraft high-fidelity dynamics [21], [22], and systems modeled by
basis function approximation and DNNs [23], [24].

Assumption 8.2. The dynamical system (8.1) is multiplicatively separable in terms
of 𝑥 and 𝜃, i.e., ∃ 𝑌 𝑓 : R𝑛 ↦→ R𝑛×𝑐𝑧 , 𝑌𝑏𝑖 : R𝑛 ↦→ R𝑛×𝑐𝑧 , and 𝑍 : R𝑐 ↦→ R𝑐𝑧 s.t.

𝑌 𝑓 (𝑥)𝑍 (𝜃) = 𝑓 (𝑥, 𝜃), 𝑌𝑏𝑖 (𝑥)𝑍 (𝜃) = 𝑏𝑖 (𝑥, 𝜃)

where 𝐵(𝑥, 𝜃) = [𝑏1(𝑥, 𝜃), · · · , 𝑏𝑚 (𝑥, 𝜃)]. We could define 𝜃 as [𝜃⊤, 𝑍 (𝜃)⊤]⊤ so we
have 𝑌 𝑓 (𝑞)𝜃 = 𝑓 (𝑞, 𝜃) and 𝑌𝑏𝑖 (𝑞)𝜃 = 𝑏𝑖 (𝑞; 𝜃). Such an over-parameterized system
could be regularized using the Bregman divergence as in [25] (see Example 8.4),
and thus we denote [𝜃⊤, 𝑍 (𝜃)⊤]⊤ as 𝜃 in the subsequent discussion.

Under Assumption 8.2, the dynamics for e = 𝑥 − 𝑥𝑑 of (8.1) can be expressed as
follows:

¤e = 𝐴(𝜚, 𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝜃)e + 𝐵(𝑥, 𝜃) (𝑢 − 𝑢𝑑) − 𝑌 (𝜃 − 𝜃) (8.9)

where 𝐴 is the SDC matrix of Lemma 3.1, 𝜃 is the current estimate of 𝜃, and 𝑌 is
defined as

𝑌 = 𝑌 − 𝑌𝑑 = (𝑌 𝑓 (𝑥) + 𝑌𝑏 (𝑥, 𝑢)) − (𝑌 𝑓 (𝑥𝑑) + 𝑌𝑏 (𝑥𝑑 , 𝑢𝑑)) (8.10)

where 𝑌𝑏 (𝑥, 𝑢) =
∑𝑚
𝑖=1𝑌𝑏𝑖 (𝑞)𝑢𝑖.



139

Definition 8.1. The adaptive Neural Contraction Metric (aNCM) in Fig. 8.1 is a DNN
model for the optimal parameter-dependent contraction metric, given by solving
the adaptive CV-STEM, i.e., (4.2) of Theorem 4.2 (or Theorem 4.6 for differential
feedback) with its contraction constraint replaced by the following convex constraint:

− Ξ + 2 sym
(
𝐴�̄�

)
− 2𝜈𝐵𝑅−1𝐵⊤ ⪯ −2𝛼�̄� (8.11)

for deterministic systems, and[
−Ξ + 2 sym (𝐴�̄�) − 2𝜈𝐵𝑅−1𝐵⊤ + 2𝛼�̄� �̄�

�̄� − 𝜈
𝛼𝑠

I

]
⪯ 0 (8.12)

for stochastic systems, where 𝑊 = 𝑀 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝜃)−1 ≻ 0 (or 𝑊 = 𝑀 (𝑥, 𝜃)−1 ≻ 0,
see Theorem 3.2), �̄� = 𝜈𝑊 , 𝜈 = 𝑚, 𝑅 = 𝑅(𝑥, 𝑥𝑑 , 𝑢𝑑) ≻ 0 is a weight matrix on 𝑢,
Ξ = (𝑑/𝑑𝑡) |𝜃�̄� is the time derivative of �̄� computed along (8.1) with 𝜃 = 𝜃, 𝐴 and
𝐵 are given in (8.9), 𝛼, 𝑚, 𝑚, and 𝛼𝑠 are as given in Theorem 4.2, and the arguments
(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝜃) are omitted for notational simplicity.

The aNCM given in Definition 8.1 has the following stability property along with
its optimality due to the CV-STEM of Theorem 4.2 [3].

Theorem 8.2. Suppose that Assumption 8.2 holds and let M define the aNCM
of Definition 8.1. Suppose also that the true dynamics (8.1) is controlled by the
following adaptive control law:

𝑢 = 𝑢𝑑 − 𝑅(𝑥, 𝑥𝑑 , 𝑢𝑑)−1𝐵(𝑥, 𝜃)⊤M(𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝜃)e (8.13)
¤̂𝜃 = Γ((𝑌⊤𝑑M𝑥 + 𝑌⊤𝑑 𝑑M𝑥𝑑 + 𝑌⊤M)e − 𝜎𝜃) (8.14)

where 𝑑M𝑞 = [(𝜕M/𝜕𝑞1)e, · · · , (𝜕M/𝜕𝑞𝑛)e]⊤/2, e = 𝑥 − 𝑥𝑑 , Γ ≻ 0, 𝜎 ∈
R≥0, and 𝑌 , 𝑌𝑑 , 𝑌 are given in (8.10). Suppose further that the learning error in
∥M − 𝑀 ∥ ≤ 𝜖ℓ of Theorem 6.3 additionally satisfies ∥𝑑M𝑥𝑑 − 𝑑𝑀𝑥𝑑 ∥ ≤ 𝜖ℓ and
∥𝑑M𝑥 − 𝑑𝑀𝑥 ∥ ≤ 𝜖ℓ in some compact set S.

If ∃�̄�, �̄�, �̄� ∈ R>0 s.t. ∥𝐵(𝑥, 𝜃)∥ ≤ �̄�, ∥𝑅−1(𝑥, 𝑥𝑑 , 𝑢𝑑)∥ ≤ �̄�, ∥𝑌 ∥ ≤ �̄�, ∥𝑌𝑑 ∥ ≤ �̄�,
and ∥𝑌 ∥ ≤ �̄� in (8.13) and (8.14), and if Γ and 𝜎 of (8.14) are selected to satisfy
the following as in Theorem 8.1:[
−2𝛼ℓ𝑚 �̄�𝜖ℓ

�̄�𝜖ℓ −2𝜎

]
⪯ −2𝛼𝑎

[
𝑚 0
0 1/𝛾

]
(8.15)
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𝑴
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adaptive CV-STEM

𝒖𝒅

Figure 8.1: Illustration of aNCM (𝑀: positive definite matrix that defines aNCM; 𝜃:
estimated parameter; 𝑌 : error signal, see (8.10); 𝑥: system state; 𝑢: system control
input; and (𝑥𝑑 , 𝑢𝑑): target state and control input trajectory).

for ∃𝛼𝑎 ∈ R>0, 𝛼ℓ given in Theorem 6.3, and 𝑚 and 𝑚 given in 𝑚I ⪯ 𝑀 ⪯
𝑚I of (2.26), then the system (8.1) is robust against bounded deterministic and
stochastic disturbances, and we have the exponential bound (8.5) in the compact
set S. Furthermore, if 𝜖ℓ = 0 (adaptive CV-STEM control), (8.14) with 𝜎 = 0
guarantees asymptotic stability of 𝑥 to 𝑥𝑑 in (8.1).

Proof. Replacing the contraction constraints of the CV-STEM in Theorem 4.2 by
(8.11) and (8.12), the bound (8.5) and the asymptotic stability result can be derived
as in the proof of Theorem 8.1 (see Theorem 4 and Corollary 2 of [3] for details).
Theorems 2.4 and 2.5 guarantee robustness of (8.1) against bounded deterministic
and stochastic disturbances for 𝜎 ≠ 0.

Let us again emphasize that, by using Theorem 4.6, the results of Theorems 8.1
and 8.2 can be extended to adaptive control with CCM-based differential feed-
back [10], [11] (see Table 3.1 for the trade-offs).

Since the adaptation laws (8.3) and (8.14) in Theorems 8.1 and 8.2 yield an explicit
bound on the steady-state error as in (8.5), it could be used as the objective function
of the CV-STEM in Theorem 4.2, regarding Γ and 𝜎 as extra decision variables to
get 𝑀 optimal in a sense different from Theorem 4.2. Smaller 𝜖ℓ would lead to a
weaker condition on them in (8.4) and (8.15). Also, the size of ∥𝜗∥ ≤ �̄� in (8.5)
can be adjusted simply by rescaling it (e.g., 𝜗→ 𝜃/�̄�). However, such a robustness
guarantee comes with a drawback of having lim𝑡→∞ ∥𝜃 (𝑡)∥ = 0 for 𝜎 ≠ 0 in (8.3),
leading to the trade-offs in different types of adaptation laws, some of which are
given in Examples 8.2 – 8.4 (see also Remark 8.2).
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Example 8.2. Let us briefly describe the following projection operator-based adap-
tation law, again for the Lagrangian system (8.7) of Example 8.1 with the unknown
parameter vector 𝜃:

¤̂𝜃 = Proj (𝜃,−Γ𝑌 (q, ¤q, ¤q𝑟 , ¥q𝑟)⊤( ¤q − ¤q𝑟), 𝑝) (8.16)

where Proj is the projection operator and 𝑝 is a convex boundary function (e.g.,
𝑝(𝜃) = (𝜃⊤𝜃−𝜃2

max)/(𝜖𝜃𝜃2
max) for given positive constants 𝜃max and 𝜖𝜃). If 𝑝(𝜃) > 0

and ∇𝑝(𝜃)⊤𝜉 > 0,

Proj (𝜃, 𝜉, 𝑝) = 𝜉 − (∇𝑝(𝜃)∇𝑝(𝜃)⊤/∥∇𝑝(𝜃)∥2)𝜉𝑝(𝜃),

otherwise, Proj (𝜃, 𝜉, 𝑝) = 𝜉. The projection operator has the following useful
property which allows bounding the parameter estimate 𝜃.

Lemma 8.1. If 𝜃 is given by (8.16) with 𝜃 (0) ∈ Ω𝜃 = {𝜃 ∈ R𝑐 |𝑝(𝜃) ≤ 1} for
a convex function 𝑝(𝜃), then 𝜃 (𝑡) ∈ Ω𝜃 , ∀𝑡 ≥ 0 (e.g., ∥𝜃∥ ≤ 𝜃max

√
1 + 𝜖𝜃 if

𝑝(𝜃) = (𝜃⊤𝜃 − 𝜃2
max)/(𝜖𝜃𝜃2

max)).

Proof. See [26].

Since Lemma 8.1 guarantees the boundedness of ∥𝜃∥, the adaptive controller (8.8),
𝑢 = −K( ¤q− ¤q𝑟) +𝑌𝜃 +𝑌𝜃, can be viewed as the exponentially stabilizing controller
−K( ¤q−¤q𝑟)+𝑌𝜃 (see Example 2.6) plus a bounded external disturbance𝑌𝜃, implying
robustness due to Theorem 2.4 [11], [26]–[28].

Let us also remark that, as in Example 8.1, the projection operator-based adaptation
law (8.16) still achieves asymptotic stabilization. Applying the control law (8.8)
with the adaptation (8.16) yields the following virtual system which has 𝑞 = 𝜉0 =

[ ¤q⊤𝑟 , 𝜃⊤]⊤ and 𝑞 = 𝜉1 = [ ¤q⊤, 𝜃⊤]⊤ as its particular solutions:[
H 0
0 I

]
( ¤𝑞 − ¤𝜉0) +

[
(C + K)(𝑞𝑠 − ¤q𝑟) − 𝑌 (𝑞𝜃 − 𝜃)

Proj (𝜃, Γ𝑌⊤(𝑞𝑠 − ¤q𝑟), 𝑝)

]
= 0

where 𝑞 = [𝑞⊤𝑠 , 𝑞⊤𝜃 ]⊤. Thus, for a Lyapunov function𝑉𝑠ℓ = 1
2

∫ 𝜉1
𝜉0
𝛿𝑞⊤

[
H(q) 0

0 Γ−1

]
𝛿𝑞,

we have that

¤𝑉𝑠ℓ =
∫ 𝜉1

𝜉0

−𝛿𝑞⊤𝑠 K𝛿𝑞𝑠 + 𝛿𝑞⊤𝜃 (Proj (𝜃,𝑌⊤𝛿𝑞𝑠, 𝑝) − 𝑌⊤𝛿𝑞𝑠).

Using the convex property of the projection operator, i.e., 𝜃⊤(Proj (𝜃, 𝜉, 𝑝) − 𝜉) ≤
0 [26], [27], this gives ¤𝑉𝑠ℓ ≤ −

∫ 𝜉1
𝜉0
𝛿𝑞⊤𝑠 K𝛿𝑞𝑠, which results in asymptotic stability

of 𝛿𝑞 due to Barbalat’s lemma [19, p. 405-406] as in Example 8.1.
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Example 8.3. The dependence on 𝑢 and ¤̂𝜃 in (𝑑/𝑑𝑡) |𝜃𝑀 can be removed by using
𝜕𝑏𝑖 (𝑥)𝑀 + 𝜕𝑏𝑖 (𝑥𝑑)𝑀 = 0 as in Theorem 8.1, and by using adaptation rate scaling
introduced in [11]. In essence, the latter multiplies the adaptation law (8.14) by
any strictly-increasing and strictly-positive scalar function 𝑣(2𝜌), and update 𝜌 as

¤𝜌 =
1
2
𝑣(2𝜌)
𝑣𝜌 (2𝜌)

𝑐∑︁
𝑖=1

1
𝑉e + 𝜂

𝜕𝑉e

𝜕𝜃𝑖

¤𝜃𝑖 (8.17)

where 𝑣𝜌 = 𝜕𝑣/𝜕𝜌, 𝜂 ∈ R>0, and 𝑉e = e⊤𝑀 (𝑥, 𝑥𝑑 , 𝑢𝑑 , 𝜃)e for e = 𝑥 − 𝑥𝑑 and 𝑀
given in Definition 8.1, so the additional term due to (8.17) cancels out the term
involving ¤̂𝜃 in (𝑑/𝑑𝑡) |𝜃�̄� of (8.11) (see [11] for details). Its robustness property
follows from Theorem 8.2 also in this case.

Example 8.4. Using the Bregman divergence-based adaptation in [25], we could
implicitly regularize the parameter estimate 𝜃 as follows:

lim
𝑡→∞

𝜃 = arg min
𝜗∈𝐴

𝑑𝜓 (𝜗∥𝜃∗) = arg min
𝜗∈𝐴

𝑑𝜓 (𝜗∥𝜃 (0))

where 𝑑𝜓 is the Bregman divergence defined as 𝑑𝜓 (𝑥∥𝑦) = 𝜓(𝑥) − 𝜓(𝑦) − (𝑥 −
𝑦)⊤∇𝜓(𝑦) for a convex function 𝜓, and A is a set containing only parameters that
interpolate the dynamics along the entire trajectory. If 𝜃 (0) = arg min𝑏∈R𝑝 𝜓(𝑏), we
have lim𝑡→∞ 𝜃 = arg min𝜗∈𝐴 𝜓(𝜗), which regularizes 𝜃 to converge to a parameter
that minimizes 𝜓. For example, using 1-norm for 𝜓 would impose sparsity on the
steady-state parameter estimate 𝜃 [25].

These extensions of adaptive control techniques described in Examples 8.2 – 8.4
could be utilized with contraction theory and learning-based control as in Theo-
rems 8.1 and 8.2.

Remark 8.2. Note that the results presented earlier in this chapter do not necessarily
mean parameter convergence, lim𝑡→∞ ∥𝜃∥ = 0, as the adaptation objective is to drive
the tracking error ∥𝑥 − 𝑥𝑑 ∥ to zero [19, p. 331], not to find out the true parameter 𝜃
out of the many that achieve perfect tracking.

Asymptotic parameter convergence, lim𝑡→∞ ∥𝜃∥ = 0 for 𝜃 of (8.1) under Assump-
tion 8.2, could be guaranteed if there is no disturbance and learning error with
𝜎 = 0, and we have ∃𝑇, 𝛼𝑃𝐸 ∈ R>0 s.t.

∫ 𝑡+𝑇
𝑡

𝑌⊤𝑌𝑑𝜏 ⪰ 𝛼𝑃𝐸 I, ∀𝑡 for 𝑌 given in
(8.10) (the persistent excitation condition [19, p. 366]). We could also utilize the
Bregman divergence-based adaptation to regularize the behavior of lim𝑡→∞ ∥𝜃∥ as
in Example 8.4.
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8.2 Contraction Theory for Learned Models
Let us next consider the case where the dynamical system is partially or completely
unknown and we only have access to a large amount of system trajectory data, where
the assumptions in Sec. 8.1 for using learning-based adaptive control techniques are
no longer valid.

8.2.I Robust System Identification with Contraction Theory
A typical approach is to perform system identification [6], [29]–[31] using trajectory
data generated by (8.19):

¤𝑥 = 𝑓𝐿 (𝑥, 𝑢(𝑥, 𝑡), 𝑡) (8.18)

¤𝑥∗ = 𝑓true(𝑥∗, 𝑢(𝑥∗, 𝑡), 𝑡) (8.19)

where 𝑥 : R≥0 ↦→ R𝑛 is the system state, 𝑢 : R𝑛 × R≥0 ↦→ R𝑚 is the system control
input, 𝑓true : R𝑛 × R𝑚 × R≥0 ↦→ R𝑛 is a smooth function of the true dynamical
system (8.19), which is unknown and thus modeled by a learned smooth function
𝑓𝐿 : R𝑛 × R𝑚 × R≥0 ↦→ R𝑛 of (8.18). If we can learn 𝑓𝐿 to render the system (8.18)
contracting, contraction theory still allows us to ensure the robustness and stability
of these systems.

Theorem 8.3. Let 𝑞(0, 𝑡) = 𝜉0(𝑡) = 𝑥(𝑡), 𝑞(1, 𝑡) = 𝜉1(𝑡) = 𝑥∗(𝑡), and g = 𝑓𝐿 in
Theorems 5.2 and 5.3 as in Example 5.3, and define Δ𝐿 as

Δ𝐿 = 𝑓true(𝑥∗, 𝑢(𝑥∗, 𝑡), 𝑡) − 𝑓𝐿 (𝑥∗, 𝑢(𝑥∗, 𝑡), 𝑡) (8.20)

for the learning error condition ∥Δ𝐿 ∥ ≤ 𝜖ℓ0+𝜖ℓ1∥𝜉1−𝜉0∥ in (5.3). If the function 𝑓𝐿
is learned to satisfy (5.3) with 𝜖ℓ1 = 0, i.e., ∥Δ𝐿 ∥ ≤ 𝜖ℓ0 in some compact set S, and
if there exists a contraction metric defined by 𝑀 bounded as 𝑚I ⪯ 𝑀 ⪯ 𝑚I as in
(2.26), which renders (8.18) contracting as in (2.4) of Theorem 2.1 for deterministic
systems, i.e.,

¤𝑀 + 𝑀 (𝜕 𝑓𝐿/𝜕𝑥) + (𝜕 𝑓𝐿/𝜕𝑥)⊤𝑀 ⪯ −2𝛼𝑀, (8.21)

and (2.38) of Theorem 2.5 for stochastic systems, i.e.,

¤𝑀 + 𝑀 (𝜕 𝑓𝐿/𝜕𝑥) + (𝜕 𝑓𝐿/𝜕𝑥)⊤𝑀 ⪯ −2𝛼𝑀 − 𝛼𝑠I, (8.22)

then we have the following in the compact set S:

∥𝑥(𝑡) − 𝑥∗(𝑡)∥ ≤ 𝑉ℓ (0)√
𝑚
𝑒−𝛼𝑡 + 𝜖ℓ0

𝛼

√︄
𝑚

𝑚
(1 − 𝑒−𝛼𝑡) (8.23)
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for 𝑥 and 𝑥∗ in (8.18) and (8.19), where 𝑉ℓ =
∫ 𝑥
𝑥∗
∥Θ𝛿𝑥∥ as in Theorem 2.3 with

𝑀 = Θ⊤Θ. Furthermore, the systems (8.18) and (8.19) are robust against bounded
deterministic and stochastic disturbances.

Proof. Let 𝑝∗𝑡 = (𝑥∗, 𝑢(𝑥∗(𝑡), 𝑡), 𝑡) for notational simplicity. Since (8.19) can be
written as ¤𝑥∗ = 𝑓true(𝑝∗𝑡 ) = 𝑓𝐿 (𝑝∗𝑡 ) + ( 𝑓true(𝑝∗𝑡 ) − 𝑓𝐿 (𝑝∗𝑡 )) (see Example 5.3) and
∥Δ𝐿 ∥ = ∥ 𝑓true(𝑝∗𝑡 ) − 𝑓𝐿 (𝑝∗𝑡 )∥ ≤ 𝜖ℓ0, Theorem 2.4 holds with 𝑑 = 𝜖ℓ0 as (8.18) is
contracting, resulting in (8.23). Also, defining Δ𝐿 as (8.20) in Theorems 5.2 and
5.3 results in robustness of (8.18) and (8.19) against bounded deterministic and
stochastic disturbances due to (8.21) and (8.22), respectively.

Theorem 8.3 is the theoretical foundation for stability analysis of model-free non-
linear dynamical systems. The bound (8.23) becomes tighter as we achieve smaller
𝜖ℓ0 using more training data for verifying ∥Δ𝐿 ∥ ≤ 𝜖ℓ0 (see Remark 5.1). From
here onwards, we utilize contraction theory to provide stability guarantees to such
model-free systems, partially enabling the use of the aforementioned model-based
techniques.

8.2.II Robust Control of Systems Modeled by DNNs
One challenge in applying Theorem 8.3 in practice is to find contraction metrics for
the control non-affine nonlinear systems (8.18). This section delineates one way to
construct a contraction metric in Theorem 8.3 for provably-stable feedback control,
using the CV-STEM and NCM of Theorems 4.2, 4.6, 6.1, 6.3 – 6.5, and 7.1, along
with the spectrally-normalized DNN of Definition 6.3.

To this end, let us assume that 𝑓true of the dynamics (8.19) can be decomposed into
a known control-affine part 𝑓 (𝑥∗, 𝑡) + 𝐵(𝑥∗, 𝑡)𝑢 and an unknown control non-affine
residual part 𝑟 (𝑥∗, 𝑢, 𝑡) as follows:

¤𝑥∗ = 𝑓true = 𝑓 (𝑥∗, 𝑡) + 𝐵(𝑥∗, 𝑡) (𝑢 + 𝑟 (𝑥∗, 𝑢, 𝑡)). (8.24)

Ideally, we would like to design 𝑢 as

𝑢 = 𝑢∗(𝑥, 𝑡) − 𝑟𝐿 (𝑥, 𝑢, 𝑡) (8.25)

to cancel out the unknown term 𝑟 (𝑥, 𝑢, 𝑡) of the dynamical system (8.24) by the model
𝑟𝐿 (𝑥, 𝑢, 𝑡) learned using trajectory data, where 𝑢∗ is a nominal stabilizing control
input for ¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢 given by, e.g., Theorems 4.2 and 4.6. However, the
equation (8.25) depends implicitly on 𝑢, which brings extra computational burden
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especially if the learned model 𝑟𝐿 (𝑥, 𝑢, 𝑡) is highly nonlinear as in DNNs. In [29],
a discrete-time nonlinear controller is proposed to iteratively solve (8.25).

Lemma 8.2. Define a mapping F as F (𝑢) = 𝑢∗(𝑥, 𝑡) − 𝑟𝐿 (𝑥, 𝑢, 𝑡), where 𝑢∗ and
𝑟𝐿 are given in (8.25). If 𝑟𝐿 is Lipschitz in 𝑢 with a 2-norm Lipschitz constant
𝐿𝑢 < 1, i.e., ∥𝑟𝐿 (𝑥, 𝑢, 𝑡) −𝑟𝐿 (𝑥, 𝑢′, 𝑡)∥ ≤ 𝐿𝑢∥𝑢−𝑢′∥, ∀𝑢, 𝑢′, then F is a contraction
mapping for fixed 𝑥, 𝑡. Therefore, if 𝑥, 𝑡 are fixed, discrete-time nonlinear control 𝑢𝑘
defined as

𝑢𝑘 = F (𝑢𝑘−1) = 𝑢∗(𝑥, 𝑡) − 𝑟𝐿 (𝑥, 𝑢𝑘−1, 𝑡) (8.26)

converges to a unique solution 𝑢 given by 𝑢 = F (𝑢).

Proof. Since 𝑟𝐿 is Lipschitz, we have that

∥F (𝑢) − F (𝑢′)∥ ≤ ∥𝑟𝐿 (𝑥, 𝑢, 𝑡) − 𝑟𝐿 (𝑥, 𝑢′, 𝑡)∥ ≤ 𝐿𝑢∥Δ𝑢∥

where Δ𝑢 = 𝑢 − 𝑢′. Thus, the assumption 𝐿𝑢 < 1 ensures that F is a contraction
mapping for fixed 𝑥, 𝑡 [29].

By applying contraction theory to the discrete-time controller (8.26) of Lemma 8.2,
we can guarantee the stability of (8.24) if 𝑟𝐿 is modeled by a spectrally-normalized
DNN of Definition 6.3.

Theorem 8.4. Let 𝑥 be the trajectory of the following ideal system without the
unknown part 𝑟 of the dynamics (8.24):

¤𝑥 = 𝑓 (𝑥, 𝑡) + 𝐵(𝑥, 𝑡)𝑢∗(𝑥, 𝑡) (8.27)

where 𝑢∗ is a stabilizing controller that renders (8.27) contracting as in Theorem 8.3
for 𝑀 which satisfies 𝑚I ⪯ 𝑀 ⪯ 𝑚I of (2.26). Note that such 𝑢∗ can be designed
by using, e.g., Theorems 4.2 and 4.6. Suppose that the true dynamics (8.24) is
controlled by (8.26) and

∃𝜌 ∈ R≥0 s.t. ∥𝑢𝑘 − 𝑢𝑘−1∥ ≤ 𝜌∥𝑥 − 𝑥∗∥ (8.28)

for 𝑥∗ in (8.24) [29]. If ∃�̄� ∈ R≥0 s.t. ∥𝐵(𝑥, 𝑡)∥ ≤ �̄�, and if 𝑟𝐿 is modeled by a
spectrally-normalized DNN of Definition 6.3 to have

∥𝑟𝐿 (𝑥, 𝑢, 𝑡) − 𝑟 (𝑥, 𝑢, 𝑡)∥ ≤ 𝜖ℓ (8.29)
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for all 𝑥 ∈ S𝑠, 𝑢 ∈ S𝑢, and 𝑡 ∈ S𝑡 , whereS𝑠 ⊆ R𝑛, S𝑢 ⊆ R𝑚, andS𝑡 ⊆ R≥0 are some
compact sets, then 𝑟𝐿 is Lipschitz continuous, and the controller (8.26) applied to
(8.24) gives the following bound in the compact set:

∥𝑥(𝑡) − 𝑥∗(𝑡)∥ ≤ 𝑉ℓ (0)√
𝑚
𝑒−𝛼ℓ 𝑡 + �̄�𝜖ℓ

𝛼ℓ

√︄
𝑚

𝑚
(1 − 𝑒−𝛼ℓ 𝑡) (8.30)

as long as the Lipschitz constant of 𝑟𝐿 is selected to have

∃𝛼ℓ ∈ R>0 s.t. 𝛼ℓ = 𝛼 − �̄�𝐿𝑢𝜌
√︃
𝑚/𝑚 > 0 (8.31)

where 𝑉ℓ =
∫ 𝑥
𝑥∗
∥Θ𝛿𝑥∥ as in Theorem 2.3 with 𝑀 = Θ⊤Θ. Furthermore, the

system (8.24) with the controller (8.26) is robust against deterministic and stochastic
disturbances.

Proof. If 𝑟𝐿 is modeled by a spectrally-normalized DNN, we can arbitrarily choose
its Lipschitz constant 𝐿𝑢 by Lemma 6.2. Applying (8.26) to (8.24) yields

¤𝑥∗ = 𝑓𝑐𝑙 (𝑥∗, 𝑡) + 𝐵(𝑥∗, 𝑡) (𝑟 (𝑥∗, 𝑢𝑘 , 𝑡) − 𝑟𝐿 (𝑥∗, 𝑢𝑘−1, 𝑡))

where 𝑓𝑐𝑙 (𝑥∗, 𝑡) = 𝑓 (𝑥∗, 𝑡) + 𝐵(𝑥∗, 𝑡)𝑢∗. Using the Lipschitz condition on 𝑟𝐿 and the
learning error assumption (8.29), we have that

∥𝑟 (𝑥∗, 𝑢𝑘 , 𝑡) − 𝑟𝐿 (𝑥∗, 𝑢𝑘−1, 𝑡)∥ ≤ 𝜖ℓ + 𝐿𝑢∥𝑢𝑘 − 𝑢𝑘−1∥ ≤ 𝜖ℓ + 𝐿𝑢𝜌∥𝑥 − 𝑥∗∥

where (8.28) is used to obtain the second inequality. Since we have ∥𝐵(𝑥, 𝑡)∥ ≤ �̄�
and the closed-loop system ¤𝑥 = 𝑓𝑐𝑙 (𝑥, 𝑡) is contracting, Theorem 5.2 holds with
𝜖ℓ0 = �̄�𝜖ℓ and 𝜖ℓ1 = �̄�𝐿𝑢𝜌 as long as we select 𝐿𝑢 to satisfy (8.31), resulting in
the bound (8.30). The final robustness statement follows from Theorems 5.2 and
5.3.

Theorem 8.4 implies that the control synthesis algorithms via contraction theory,
including robust control of Theorems 4.2 and 4.6 (CV-STEM), learning-based robust
control of Theorems 6.1, 6.3 – 6.5, and 7.1 (NCM, LAG-ROS), can be enhanced
to provide explicit robustness and stability guarantees even for systems partially
modeled by DNNs that depend nonlinearly on 𝑢.

Example 8.5. Let us consider the following Lagrangian system of Example 2.6
perturbed externally by unknown control non-affine residual disturbance:

H(q) ¥q + C(q, ¤q) ¤q + G(q) = 𝑢 + 𝑟 (𝑥, 𝑢) (8.32)
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where 𝑥 = [q⊤, ¤q⊤]⊤ and the other variables are as given in Example 2.6. Using
the result of Theorem 8.4, we can design a discrete-time nonlinear controller by
augmenting the exponentially stabilizing controller of Example 2.6 with a learned
residual part 𝑟𝐿 (𝑥, 𝑢) as follows:

𝑢𝑘 = −K(𝑡) ( ¤q − ¤q𝑟) + H (q) ¥q𝑟 + C(q, ¤q) ¤q𝑟 + G(q) − 𝑟𝐿 (𝑥, 𝑢𝑘−1)

where ¤q𝑟 = ¤q𝑑 (𝑡) − Λ(𝑡) (q − q𝑑 (𝑡)), K : R≥0 ↦→ R𝑛×𝑛, Λ : R≥0 ↦→ R𝑛×𝑛, and
(q𝑑 , ¤q𝑑) is the target trajectory of the state (q, ¤q), and K,Λ ≻ 0 are control gain
matrices (design parameters). Again, note that ¤H − 2C is skew-symmetric with
H ≻ 0 by construction. This gives us the following closed-loop virtual system of a
smooth path 𝑞(𝜇, 𝑡) parameterized by 𝜇 ∈ [0, 1], which has 𝑞(𝜇 = 0, 𝑡) = ¤q𝑟 and
𝑞(𝜇 = 1, 𝑡) = ¤q as its particular solutions as in Example 2.6, but now with non-zero
perturbation due to 𝑟 (𝑥, 𝑢):

H( ¤𝑞 − ¥q𝑟) + (C + K)(𝑞 − ¤q𝑟) = 𝜇(𝑟 (𝑥, 𝑢𝑘 ) − 𝑟𝐿 (𝑥, 𝑢𝑘−1)).

After some algebra as in the proof of Theorem 8.4, we can show that

𝑑

𝑑𝑡

∫ 1

0
∥Θ𝜕𝜇𝑞∥ ≤ −

(
𝑘ℓ

ℎ𝑢
− 𝐿𝑢𝜌

ℎℓ

) ∫ 1

0
∥Θ𝜕𝜇𝑞∥ +

𝜖ℓ√
ℎℓ

where H = Θ⊤Θ, ℎℓI ⪯ H ⪯ ℎ𝑢I, 𝑘ℓI ⪯ K, ∥𝑢𝑘 − 𝑢𝑘−1∥ ≤ 𝜌∥ ¤q − ¤q𝑟 ∥, 𝜖ℓ is the
learning error of 𝑟𝐿 , and 𝐿𝑢 is the Lipschitz constant of 𝑟𝐿 (assuming 𝑟𝐿 is modeled
by a spectrally-normalized DNN of Definition 6.3). This indeed indicates that the
tracking error of the Lagrangian system (8.32) is exponentially bounded as proven
in Theorem 8.4.

In [29], the technique in Theorem 8.4 and in Example 8.5 is used to perform
precise near-ground trajectory control of multi-rotor drones, by learning complex
aerodynamic effects caused by high-order interactions between multi-rotor airflow
and the environment. It is demonstrated that it significantly outperforms a baseline
nonlinear tracking controller in both landing and cross-table trajectory tracking
tasks. Theorem 8.4 enables applying it to general nonlinear systems with state and
control dependent uncertainty, as long as we have a nominal exponentially stabilizing
controller (which can be designed by Theorems 4.2 and 4.6, or approximately by
Theorems 6.1, 6.3 – 6.5, and 7.1).
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C h a p t e r 9

INTERSTELLAR OBJECT EXPLORATION

[1] H. Tsukamoto, S.-J. Chung, B. Donitz, M. Ingham, D. Mages, and Y. K.
Nakka, “Neural-Rendezvous: Learning-based robust guidance and control
to encounter interstellar objects,” AIAA J. Guid. Control Dyn., under review,
Aug. 2022.

Interstellar objects (ISOs) represent one of the last unexplored classes of solar system
objects (see fig. 9.1), considered to be physical laboratories that can enable the study
of exosolar systems in-situ rather than remotely using telescopes such as the Hubble
or James Webb Space Telescopes. As discussed in Chapter 1, using a dedicated
spacecraft to flyby an ISO opens the doors to high-resolution imaging, mass or dust
spectroscopy, and a larger number of vantage points than Earth observation. It could
also resolve the target’s nucleus shape and spin, characterize the volatiles being shed
from an active body, reveal fresh surface material using an impactor, and more [1].

Nov. 16, 2019 Dec. 09, 2019

Oct. 14, 2017

Figure 9.1: Interstellar objects. Above: Artist’s illustration 1I/‘Oumuamua (credit:
NASA, ESA, and STScI). Below: 2I/Borisov near and at perihelion (credit: NASA,
ESA, and D. Jewitt (UCLA)). Click the picture to watch our YouTube summary of
the ISO exploration project (https://youtu.be/8h60B_p1fyQ).

http://aerospacerobotics.caltech.edu/publications
http://aerospacerobotics.caltech.edu/publications
https://youtu.be/4KPaqSpFMEU
https://photojournal.jpl.nasa.gov/catalog/PIA22357
https://apod.nasa.gov/apod/ap220305.html
https://apod.nasa.gov/apod/ap220305.html
https://youtu.be/4KPaqSpFMEU
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The discovery and exploration of ISOs are challenging for three main reasons: 1)
they are not discovered until they are close to Earth, meaning that launches to
encounter them often require high launch energy; 2) their orbital properties are
poorly constrained at launch, generally leading to significant on-board resources to
encounter; and 3) the encounter speeds are typically high (> 10 of km/s) requiring
fast response autonomous operations. As outlined in Fig. 9.2, the guidance, nav-
igation, and control (GNC) of spacecraft for the ISO encounter are split into two
segments: 1) the cruise phase, where the spacecraft utilizes state estimation ob-
tained by ground-based telescopes and navigates via ground-in-the-loop operations,
and; 2) the terminal phase, where it switches to fully autonomous operation with
existing onboard navigation frameworks. This chapter presents Neural-Rendezvous,
proposed in [2] for performing the second phase of the autonomous terminal guid-
ance and control (G&C) with the on-board state estimates. The overall mission
outline and motivation are visually summarized at https://youtu.be/8h60B_p1fyQ
(see Fig. 9.1).

Outline of Neural-Rendezvous
We utilize a dynamical system-based SN-DNN for designing a real-time guidance
policy that approximates nonlinear model predictive control (MPC), which is known
to be near-optimal in terms of dynamic regret (i.e., the MPC performance minus the
optimal performance in hindsight [3]). This is to avoid solving nonlinear MPC opti-
mization at each time instant and compute a spacecraft’s control input autonomously,
even with its limited online computational capacity. Consistent with our objective
of encountering ISOs, our SN-DNN uses a loss function that directly imitates the
MPC state trajectory performing dynamics integration [4], [5], as well as indirectly
imitating the MPC control input as in existing methods [6]. We then introduce
learning-based min-norm feedback control to be used on top of this guidance policy.
This provides an optimal and robust control input that minimizes its instantaneous
deviation from that of the SN-DNN guidance policy, under the incremental stabil-
ity condition as in the one of contraction theory [7]. Our contributions here are
summarized as follows.

Contribution
If the SN-DNN guidance policy is equipped with the learning-based min-norm
control, the state tracking error bound with respect to the desired state trajectory
decreases exponentially in expectation with a finite probability, robustly against the

https://youtu.be/4KPaqSpFMEU
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state uncertainty. This indicates that the terminal spacecraft deliver error at the ISO
encounter (i.e., the shaded blue region in Fig. 9.2) is probabilistically bounded in
expectation, where its size can be modified accordingly to the mission requirement
by tuning its feedback control parameters. Our main contribution is to provide a
rigorous proof of this fact by leveraging stochastic incremental stability analysis. It
is based on constructing a non-negative function with a supermartingale property for
finite-time tracking performance, explicitly accounting for the ISO state uncertainty
and the local nature of nonlinear state estimation guarantees. Also, the pointwise
min-norm controller design is addressed and solved in analytical form for Lagrangian
dynamical systems [8, p. 392], which describe a variety of general robotic motions,
not just the one used in our paper for ISO exploration. We further show that the
SN-DNN guidance policy possesses a verifiable optimality gap with respect to the
optimization-based G&C, under the assumption that the nonlinear MPC policy is
Lipschitz.

𝑢

œ(𝑡)

On-board Navigation (OpNav)
LA
U
N
C
H

CRUISE G&C TERMINAL G&C – NEURAL-RENDEZVOUS

: S/C

: ISO

𝑦 𝑡𝑥 𝑡

Autonomous Terminal 
Guidance and Control 𝑢∗

ො𝑥 𝑡 ෝœ 𝑡

𝑢∗

Ground-based Navigation

How can we 
get small 

delivery error 
bound        ? ො𝑥 𝑡 , ෝœ 𝑡

Figure 9.2: Illustration of cruise and terminal GNC (𝑡: time; œ(𝑡): ISO state; 𝑥(𝑡):
spacecraft state relative to œ(𝑡); 𝑦(𝑡): state measurement of the ISO and spacecraft;
𝑢: control input; œ̂(𝑡): estimated ISO state; and 𝑥(𝑡): estimated spacecraft relative
state). Neural-Rendezvous enables obtaining a verifiable delivery error bound even
under the large ISO state uncertainty and high-velocity challenges.

Such verifiable and real-time optimality, stability, and robustness guarantees offer
indispensable analytical insight into conventional black-box machine learning and
AI-based G&C approaches. It is worth noting that Neural-Rendezvous and its guar-
antees are general enough to be used not only for encountering ISOs, but also for
solving various nonlinear autonomous rendezvous problems accurately in real-time
under external disturbances and various sources of uncertainty (e.g., state measure-
ment noise, process noise, control execution error, unknown parts of dynamics, or
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parametric/non-parametric variations of dynamics and environments). To further
corroborate these arguments, the performance of Neural-Rendezvous is also empir-
ically validated in Chapter 10 using our thruster-based spacecraft simulator called
M-STAR [9] and in high-conflict and distributed UAV swarm reconfiguration with
up to 20 UAVs (see (b) and (c) of Fig. 1.4).

Related Work
The state of practice in realizing asteroid and comet rendezvous missions is to pre-
construct an accurate spacecraft state trajectory to the target before launch, and then
perform a few trajectory correction maneuvers (TCMs) along the way based on the
state measurements obtained by ground-based and onboard autonomous navigation
schemes as discussed in [10], [11]. Such a G&C approach is only feasible for
targets with sufficient information on their orbital properties in advance, which is
not realistic for ISOs visiting our solar system from interstellar space with large state
uncertainty.

The ISO rendezvous problem can be cast as a robust motion planning and control
problem that has been investigated in numerous studies in the field of robotics.
The most well-developed and commercialized of these G&C methods is the robust
nonlinear MPC [12], which extensively utilizes knowledge about the underlying
nonlinear dynamical system to design an optimal control input at each time instant,
thereby allowing a spacecraft to use the most updated ISO state information. When
the MPC is augmented with feedback control, robustness against the state uncer-
tainty and various external disturbances can be shown using, e.g., Lyapunov and
contraction theory (see [7] and references therein). However, as mentioned earlier,
the spacecraft’s onboard computational power is not necessarily sufficient to solve
the MPC optimization at each time instant of its TCM, which could lead to failure
in accounting for the ISO state that changes dramatically in a few seconds due to the
body’s high velocity. Even when we solve the MPC in a discrete manner, the com-
putational load of solving it online is not negligible, especially if the computational
resource of the agent is limited and not sufficient to perform nonlinear optimization
in real time.

Learning-based control designs have been considered a promising solution to this
problem, as they allow replacing these optimization-based G&C algorithms with
computationally-cheap mathematical models, e.g., neural networks [6]. Neural-
Rendezvous can be viewed as a novel variant of a learning-based control design
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with formal optimality, stability, and robustness guarantees, which are obtained by
extending the results of [7] for general nonlinear systems to the case of the ISO
rendezvous problem. Our proposed approach is also for providing an approximate
online solution even for complex and large-scale nonlinear motion planning prob-
lems in general, (e.g., distributed and intelligent motion planning and control of
high-conflict UAV swarm reconfiguration, the problem of which is highly nonlin-
ear and thus solving even a single optimization online could become unrealistic),
considering the ISO encounter problem as one example. In Chapter 10, we will see
also experimental validation on these scenarios to further support this argument.

9.1 Technical Challenges in ISO Exploration
In this chapter, we consider the following translational dynamical system of a
spacecraft relative to an Interstellar Object (ISO), equipped with feedback control
𝑢 ∈ R𝑛 × R𝑛 × R≥0 ↦→ R𝑚:

¤𝑥(𝑡) = 𝑓 (𝑥(𝑡),œ(𝑡), 𝑡) + 𝐵(𝑥(𝑡),œ(𝑡), 𝑡)𝑢(𝑥(𝑡), œ̂(𝑡), 𝑡) (9.1)

where 𝑡 ∈ R≥0 is time, œ ∈ R≥0 ↦→ R𝑛 are the ISO orbital elements evolving by a
separate equation of motion (see [13] for details), 𝑥 ∈ R≥0 ↦→ R𝑛 is the state of the
spacecraft relative to œ in a local-vertical local-horizontal (LVLH) frame centered on
the ISO [14, pp. 710-712], 𝑓 : R𝑛×R𝑛×R≥0 ↦→ R𝑛 and 𝐵 : R𝑛×R𝑛×R≥0 ↦→ R𝑛×𝑚 are
known smooth functions [15] (see (9.2)), and œ̂ ∈ R≥0 ↦→ R𝑛 and 𝑥 ∈ R≥0 ↦→ R𝑛

are the estimated ISO and spacecraft relative state in the LVLH frame given by
an on-board navigation scheme, respectively. Particularly when we select 𝑥 as
𝑥 = [𝑝⊤, ¤𝑝⊤]⊤ as its state, where 𝑝 ∈ R3 is the position of the spacecraft relative to
the ISO, we have that

𝑓 (𝑥,œ, 𝑡) =
[

¤𝑝
−𝑚sc(𝑡)−1 (𝐶 (œ) ¤𝑝 + 𝐺 (𝑝,œ))

]
, 𝐵(𝑥,œ, 𝑡) =

[
O3×3

𝑚sc(𝑡)−1I3×3

]
(9.2)

where 𝑚sc(𝑡) is the mass of the spacecraft described by the Tsiolkovsky rocket
equation, and the functions 𝐺 and 𝐶 are as given in [13], [15].

Remark 9.1. In general, the estimation errors ∥𝑥(𝑡) − 𝑥(𝑡)∥ and ∥œ̂(𝑡) −œ(𝑡)∥ are
expected to decrease locally with the help of the state-of-the-art onboard navigation
schemes as the spacecraft gets closer to the ISO, utilizing more accurate ISO state
measurements obtained from an onboard sensor as detailed in [11]. For example,
if the extended Kalman filter or contraction theory-based estimator [7] is used
for navigation, their expected values can be shown to be locally bounded and
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exponentially decreasing in 𝑡. Although G&C are the focus of our study and thus
developing such a navigation technique is beyond our scope, those interested in this
field can also refer to, e.g., [10], [11], to tighten the estimation error bound using
practical knowledge specific to the ISO dynamics. Online learning and adaptive
control methods [16], [17] can also be used to actively deal with such uncertainty
with some formal guarantees.

Since the ISO state and its onboard estimate in (9.1) change dramatically in time due
to their poorly constrained orbits with high inclinations and high relative velocities,
using a fixed desired trajectory computed at some point earlier in time could fail to
utilize the radically changing ISO state information as much as possible. Even with
the use of MPC with receding horizons, the online computational load of solving
it is not negligible, especially if the computational resource of the agent is limited
and not sufficient to perform nonlinear optimization in real-time. Also, when we
consider more challenging and highly nonlinear G&C scenarios (see Sec. 10.2),
solving even a single optimization online could become unrealistic. We, therefore,
construct a guidance policy to optimally achieve the smallest spacecraft delivery
error for given estimated states 𝑥(𝑡) and œ̂(𝑡) in (9.1) at time 𝑡, and then design a
learning-based guidance algorithm that approximates it with a verifiable optimality
gap, so the spacecraft can update its desired trajectory autonomously in real-time
using the most recent state estimates 𝑥(𝑡) and œ̂(𝑡), which become more accurate
as the spacecraft gets closer to the ISO as discussed in Remark 9.1. Note that the
size of the neural network to be used is selected to be small enough to significantly
reduce the online computational load required in solving optimization.

The major design challenge here is how we provide the learning approach with a
formal guarantee for realizing the ISO encounter, i.e., achieving a sufficiently small
spacecraft delivery error with respect to a given desired relative position to flyby or
impact the ISO, which leads to the problem formulated as follows.

Autonomous terminal G&C for ISO encounter with formal guarantees
We aim to design an autonomous nonlinear G&C algorithm that robustly tracks
the desired trajectory with zero spacecraft delivery error computed by utilizing the
above learning-based guidance, and that guarantees a finite tracking error bound
even under the presence of the state uncertainty and the learning error.
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9.2 Autonomous Guidance via Dynamical System-Based Deep Learning
Before proceeding to solve 9.1 in Sec. 9.1, this section describes dynamical system-
based deep learning to design the autonomous terminal guidance algorithm to be
used in the subsequent sections. It utilizes the known dynamics of (9.1) and (9.2) in
approximating an optimization-based guidance policy, thereby directly minimizing
the deviation of the learned state trajectory from the optimal state trajectory with
the smallest spacecraft delivery error at the ISO encounter, possessing a verifiable
optimality gap with respect to the optimal guidance policy.

9.2.I Model Predictive Control Problem
Let us first introduce the following definition of an ISO state flow, which maps the
ISO state at any given time to the one at time 𝑡, so we can account for the rapidly
changing ISO state estimate of (9.1) in our proposed framework.

Definition 9.1. A flow 𝜑𝑡 (œ0), where œ0 is some given ISO state, defines the solution
trajectory of the autonomous ISO dynamical system [13] at time 𝑡, which satisfies
𝜑0(œ0) = œ0 at 𝑡 = 0.

Utilizing the ISO flow given in Definition 9.1, we consider the following optimal
guidance problem for the ISO encounter, given estimated states 𝑥(𝜏) and œ̂(𝜏)
in (9.1) at 𝑡 = 𝜏:

𝑢∗(𝑥(𝜏), œ̂(𝜏), 𝑡, 𝜌) = arg min
𝑢(𝑡)∈U(𝑡)

(
𝑐0∥𝑝𝜉 (𝑡 𝑓 ) − 𝜌∥2 + 𝑐1

∫ 𝑡 𝑓

𝜏

𝑃 (𝑢(𝑡), 𝜉 (𝑡)) 𝑑𝑡
)
(9.3)

s.t. ¤𝜉 (𝑡) = 𝑓 (𝜉 (𝑡), 𝜑𝑡−𝜏 (œ̂(𝜏)), 𝑡) + 𝐵(𝜉 (𝑡), 𝜑𝑡−𝜏 (œ̂(𝜏)), 𝑡)𝑢(𝑡), 𝜉 (𝜏) = 𝑥(𝜏) (9.4)

where 𝑡 ∈ (𝜏, 𝑡 𝑓 ] in (9.4), 𝜏 ∈ [0, 𝑡 𝑓 ) is the current time at which the space-
craft solves (9.3), 𝜉 is the fictitious spacecraft relative state of the dynamics (9.4),∫ 𝑡 𝑓
𝜏
𝑃(𝑢(𝑡), 𝜉 (𝑡))𝑑𝑡 is some performance-based cost function, such as 𝐿2 control ef-

fort and 𝐿2 trajectory tracking error, and information-based cost [18], 𝑝𝜉 (𝑡 𝑓 ) is the
terminal relative position of the spacecraft satisfying 𝜉 (𝑡 𝑓 ) = [𝑝𝜉 (𝑡 𝑓 )⊤, ¤𝑝𝜉 (𝑡 𝑓 )⊤]⊤,
𝜌 is a mission-specific predefined terminal position relative to the ISO at given
terminal time 𝑡 𝑓 (𝜌 = 0 for impacting the ISO), U(𝑡) is a set containing admissi-
ble control inputs, and 𝑐0 ∈ R>0 and 𝑐1 ∈ R≥0 are the weights on each objective
function. We assume that the terminal time 𝑡 𝑓 is not a decision variable but a fixed
constant, as varying it is demonstrated to have a small impact on the objective value
of (9.3) in our simulation setup in Sec. 10.1. Note that 𝜌 is explicitly considered
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as one of the inputs to 𝑢∗ to account for the fact that it could change depending on
the target ISO. Note that the policy 𝑢∗ only depends on the information available
at the current time 𝑡 without using the information of future time steps. The future
estimated states are computed by integrating the nominal dynamics as mentioned in
definition 9.1.)

Remark 9.2. Since it is not realistic to match the spacecraft velocity with that of
the ISOs due to their high inclination nature, the terminal velocity tracking error
is intentionally not included in the cost function, although it could be with an
appropriate choice of 𝑃 in (9.3). Also, we can set 𝑐0 = 0 and augment the problem
with a constraint ∥𝑝𝜉 (𝑡 𝑓 ) − 𝜌∥ = 0 if the problem is feasible with this constraint.

Since the spacecraft relative state changes dramatically due to the ISO’s high relative
velocity, and the actual dynamics are perturbed by the ISO and spacecraft relative
state estimation uncertainty, which decreases as 𝑡 gets closer to 𝑡 𝑓 (see Remark 9.1),
it is expected that the delivery error at the ISO encounter (i.e., ∥𝑝𝜉 (𝑡 𝑓 )−𝜌∥) becomes
smaller as the spacecraft solves (9.3) more frequently onboard using the updated
state estimates in the initial condition (9.4) as in (9.1). More specifically, it is
desirable to apply the optimal guidance policy solving (9.3) at each time instant 𝑡 as
follows as in model predictive control (MPC) [19]:

𝑢mpc(𝑥(𝑡), œ̂(𝑡), 𝑡, 𝜌) = 𝑢∗(𝑥(𝑡), œ̂(𝑡), 𝑡, 𝜌) (9.5)

where 𝑢 is the control input of (9.1). Note that 𝜏 of 𝑢∗ in (9.5) is now changed
to 𝑡 unlike (9.3), implying we only utilize the solution of (9.3) at the initial time
𝑡 = 𝜏. Due to the predictive nature of the MPC, which leverages future predictions
of the states 𝑥(𝑡) and œ(𝑡) for 𝑡 ∈ [𝜏, 𝑡 𝑓 ] obtained by integrating their dynamics
given 𝑥(𝜏) and œ̂(𝜏) as in (9.4), the solution of its linearized and discretized version
can be shown to be near-optimal [3] in terms of dynamic regret, i.e., the MPC
performance minus the optimal performance in hindsight. This would imply that
the nonlinear MPC also enjoys similar optimality guarantees when it is solved by
the sequential convex programming approach, which is proven to converge to a
point satisfying the KKT conditions (see [20]). However, solving the nonlinear
optimization problem (9.3) at each time instant to obtain (9.5) is not realistic for
a spacecraft with limited computational power. Again, even when we use MPC
with receding horizons, the online computational load of solving it is not negligible,
especially if the computational resource of the agent is limited and not sufficient
to perform nonlinear optimization in real-time. Using offline learning to replace
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online optimization could enable our approach applicable also to more challenging
and highly nonlinear G&C scenarios (see Sec. 10.2), where solving even a single
optimization online could become unrealistic.

9.2.II Imitation Learning of MPC State and Control Trajectories
In order to compute the MPC of (9.5) in real-time with a verifiable optimality
guarantee, our proposed learning-based terminal guidance policy models it using
an SN-DNN [21], which is a deep neural network constructed to be Lipschitz
continuous and robust to input perturbation by design (see, e.g., Lemma 6.2 of [7]).
Note that the size of the neural network to be used is selected to be small enough to
significantly reduce the online computational load required in solving optimization.

Let 𝑢ℓ (𝑥(𝑡), œ̂(𝑡), 𝑡, 𝜌; 𝜃nn) denote the proposed learning-based terminal guidance
policy, which models the MPC policy 𝑢mpc(𝑥(𝑡), œ̂(𝑡), 𝑡, 𝜌) of (9.5) using the SN-
DNN, where 𝜃nn is its hyperparameter. The following definition of the process
induced by the spacecraft dynamics with 𝑢mpc and 𝑢ℓ, which map the ISO and
spacecraft relative state at any given time to their respective spacecraft relative state
at time 𝑡, is useful for simplifying notation in our framework.

Definition 9.2. Mappings denoted as 𝜑𝑡
ℓ
(𝑥𝜏,œ𝜏, 𝜏, 𝜌; 𝜃nn) and 𝜑𝑡mpc(𝑥𝜏,œ𝜏, 𝜏, 𝜌)

(called processes [22, p. 24]) define the solution trajectories of the following non-
autonomous dynamical systems at time 𝑡, controlled by the SN-DNN and MPC
policy, respectively, both with the initial condition 𝜉 (𝜏) = 𝑥𝜏:

¤𝜉 (𝑡) = 𝑓 (𝜉 (𝑡), 𝜑𝑡−𝜏 (œ𝜏), 𝑡) + 𝐵(𝜉 (𝑡), 𝜑𝑡−𝜏 (œ𝜏), 𝑡)𝑢ℓ (𝜉 (𝑡), 𝜑𝑡−𝜏 (œ𝜏), 𝑡, 𝜌; 𝜃nn)
(9.6)

¤𝜉 (𝑡) = 𝑓 (𝜉 (𝑡), 𝜑𝑡−𝜏 (œ𝜏), 𝑡) + 𝐵(𝜉 (𝑡), 𝜑𝑡−𝜏 (œ𝜏), 𝑡)𝑢mpc(𝜉 (𝑡), 𝜑𝑡−𝜏 (œ𝜏), 𝑡, 𝜌) (9.7)

where 𝜏 ∈ [0, 𝑡 𝑓 ], 𝑡 𝑓 and 𝜌 are the given terminal time and relative position at the
ISO encounter as in (9.4), œ𝜏 and 𝑥𝜏 are some given ISO and spacecraft relative
state at time 𝑡 = 𝜏, respectively, 𝑓 and 𝐵 are given in (9.1) and (9.2), and 𝜑𝑡−𝜏 (œ𝜏)
is the ISO state trajectory with 𝜑0(œ𝜏) = œ𝜏 at 𝑡 = 𝜏 as given in Definition 9.1.

Let (𝑥, œ̄, 𝑡, �̄�,Δ𝑡) denote a sampled data point for the spacecraft state, ISO state,
current time, desired terminal relative position, and time of integration to be used
in (9.8), respectively. Also, let Unif (S) be the uniform distribution over a compact
setS, which produces (𝑥, œ̄, 𝑡, �̄�,Δ𝑡) ∼ Unif (S). Using Definition 9.2, we introduce
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the following new loss function to be minimized by optimizing the hyperparameter
𝜃nn of the SN-DNN guidance policy 𝑢ℓ (𝑥(𝑡), œ̂(𝑡), 𝑡, 𝜌; 𝜃nn):

Lnn(𝜃nn) = E
[
∥𝑢ℓ (𝑥, œ̄, 𝑡, �̄�; 𝜃nn) − 𝑢mpc(𝑥, œ̄, 𝑡, �̄�)∥2𝐶𝑢

+ ∥𝜑𝑡+Δ𝑡ℓ (𝑥, œ̄, 𝑡, �̄�; 𝜃nn) − 𝜑𝑡+Δ𝑡mpc (𝑥, œ̄, 𝑡, �̄�)∥2𝐶𝑥
]

(9.8)

where ∥(·)∥𝐶𝑥 and ∥(·)∥𝐶𝑢 are the weighted Euclidean 2-norm given as ∥(·)∥2
𝐶𝑢

=

(·)⊤𝐶𝑢 (·) and ∥(·)∥2
𝐶𝑥

= (·)⊤𝐶𝑥 (·) for symmetric positive definite weight matrices
𝐶𝑢, 𝐶𝑥 ≻ 0, and 𝜑𝑡

ℓ
(𝑥, œ̄, 𝑡, �̄�; 𝜃nn) and 𝜑𝑡mpc(𝑥, œ̄, 𝑡, �̄�) are the solution trajectories

with the SN-DNN and MPC guidance policy given in Definition 9.2, respectively.
As illustrated in Fig. 9.3, we train the SN-DNN to also minimize the deviation of
the state trajectory with the SN-DNN guidance policy from the desired MPC state
trajectory [4], [5]. The learning objective is thus not just to minimize ∥𝑢ℓ − 𝑢mpc∥,
but to imitate the optimal trajectory with the smallest spacecraft delivery error at
the ISO encounter. We will see how the selection of the weights 𝐶𝑢 and 𝐶𝑥 affects
the performance of 𝑢ℓ in Sec. 10.1.

desired control input

learned control input

desired state trajectory

learned state trajectory

Figure 9.3: Neural net loss functions. Left: SN-DNN trained to imitate a desired
control input (first term of (9.8)); right: SN-DNN trained to imitate a desired state
trajectory (second term of (9.8)).
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Remark 9.3. As in standard learning algorithms for neural networks including
stochastic gradient descent (SGD), the expectation of the loss function (9.8) can be
approximated using sampled data points as follows:

Lemp(𝜃nn) =
𝑁𝑑∑︁
𝑖=1

(
∥𝑢ℓ (𝑥𝑖, œ̄𝑖, 𝑡𝑖, �̄�𝑖; 𝜃nn) − 𝑢mpc(𝑥𝑖, œ̄𝑖, 𝑡𝑖, �̄�𝑖)∥2𝐶𝑢

+ ∥𝜑𝑡𝑖+Δ𝑡𝑖
ℓ
(𝑥𝑖, œ̄𝑖, 𝑡𝑖, �̄�𝑖; 𝜃nn) − 𝜑𝑡𝑖+Δ𝑡𝑖mpc (𝑥𝑖, œ̄𝑖, 𝑡𝑖, �̄�𝑖)∥2𝐶𝑥

)
(9.9)

where the training data points {(𝑥𝑖, œ̄𝑖, 𝑡𝑖, �̄�𝑖,Δ𝑡𝑖)}𝑁𝑑𝑖=1 are drawn independently from
Unif (S).

9.2.III Optimality Gap of Deep Learning-Based Guidance
Since an SN-DNN is Lipschitz bounded by design and robust to perturbation, the
optimality gap of the guidance framework 𝑢ℓ introduced in Sec. 9.2.II can be bounded
as in the following theorem, where the notations are summarized in Table 9.1 and
the proof concept is illustrated in Fig. 9.4.

Table 9.1: Notations in Lemma 9.1.

Notation Description

𝐿ℓ 2-norm Lipschitz constant of 𝑢ℓ in R>0, guaranteed to exist by design

𝑁𝑑 Number of training data points

Stest
Any compact test set containing (𝑥,œ, 𝑡, 𝜌), not necessarily the training
set Strain itself

𝑢ℓ
Learning-based terminal guidance policy that models 𝑢mpc by the SN-
DNN using the loss function given in (9.8)

𝑢mpc Optimal MPC terminal guidance policy given in (9.5)

(𝑥,œ, 𝑡, 𝜌) Test data point for the S/C relative state, ISO state, current time, and
desired terminal relative position of (9.4), respectively

(𝑥𝑖 , œ̄𝑖 , 𝑡𝑖 , �̄�𝑖)
Training data point for the S/C relative state, ISO state, current time,
and desired terminal relative position of (9.4), respectively, where 𝑖 ∈
N ∪ [1, 𝑁𝑑]

Πtrain
Training dataset containing a finite number of training data points, i.e.,
Πtrain = {(𝑥𝑖 , œ̄𝑖 , 𝑡𝑖 , �̄�𝑖)}𝑁𝑑

𝑖=1
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Lemma 9.1. Suppose that 𝑢mpc is Lipschitz with its 2-norm Lipschitz constant
𝐿mpc ∈ R>0. If 𝑢ℓ is trained using the empirical loss function (9.9) of Remark 9.3 to
have ∃𝜖train ∈ R≥0 s.t.

sup
𝑖∈N∪[1,𝑁𝑑]

∥𝑢ℓ (𝑥𝑖, œ̄𝑖, 𝑡𝑖, �̄�𝑖; 𝜃nn) − 𝑢mpc(𝑥𝑖, œ̄𝑖, 𝑡𝑖, �̄�𝑖)∥ ≤ 𝜖train (9.10)

then we have the following bound ∀(𝑥,œ, 𝑡, 𝜌) ∈ Stest:

∥𝑢ℓ (𝑥,œ, 𝑡, 𝜌; 𝜃nn) − 𝑢mpc(𝑥,œ, 𝑡, 𝜌)∥ ≤ 𝜖train + 𝑟 (𝑥,œ, 𝑡, 𝜌) (𝐿ℓ + 𝐿mpc) = 𝜖ℓ𝑢
(9.11)

where 𝑟 (𝑥,œ, 𝑡, 𝜌) = inf𝑖∈N∪[1,𝑁𝑑]
√︁
∥𝑥𝑖 − 𝑥∥2 + ∥œ̄𝑖 − œ∥2 + (𝑡𝑖 − 𝑡)2 + ∥ �̄�𝑖 − 𝜌∥2.

Proof. Let 𝜂 = (𝑥,œ, 𝑡, 𝜌) be a test element in Stest (i.e., 𝜂 ∈ Stest) and let 𝜁 𝑗 (𝜂)
be the training data point in Πtrain (i.e., 𝜁 𝑗 (𝜂) ∈ Πtrain) that achieves the infimum of
𝑟 (𝜂) with 𝑖 = 𝑗 for a given 𝜂 ∈ Stest. Since 𝑢ℓ and 𝑢mpc are Lipschitz by design and
by assumption, respectively, we have for any 𝜂 ∈ Stest that

∥𝑢ℓ (𝜂; 𝜃nn) − 𝑢mpc(𝜂)∥ ≤ ∥𝑢ℓ (𝜁 𝑗 (𝜂); 𝜃nn) − 𝑢mpc(𝜁 𝑗 (𝜂))∥ + 𝑟 (𝜂) (𝐿ℓ + 𝐿mpc)
≤ 𝜖train + 𝑟 (𝜂) (𝐿ℓ + 𝐿mpc)

where the first inequality follows from the definition of 𝜁 𝑗 (𝜂) and the second in-
equality follows from (9.10) and the fact that 𝜁 𝑗 (𝜂) ∈ Πtrain. This relation leads to
the desired result (9.11) as it holds for any 𝜂 ∈ Stest.

The SN-DNN provides a verifiable optimality gap even for data points not in its
training set, which indicates that it still benefits from the near-optimal guarantee
of the MPC in terms of dynamic regret as discussed below (9.5). As illustrated in
Fig. 9.4, each term in the optimality gap (9.11) can be interpreted as follows:

1. 𝜖train of (9.10) is the training error of the SN-DNN, expected to decrease as
the learning proceeds using SGD.

2. 𝑟 (𝜂) is the closest distance from the test element 𝜂 ∈ Stest to a training data
point in Πtrain, expected to decrease as the number of data points 𝑁𝑑 in Πtrain

increases and as the training set Strain gets larger.

3. The Lipschitz constant 𝐿ℓ is a design parameter we could arbitrarily choose
when constructing the SN-DNN (it is Lipschitz by design by spectrally nor-
malizing the weights of the neural network [21], we can freely choose 𝐿ℓ
independently of the choice of the neural net parameters).
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4. We could also treat 𝐿mpc as a design parameter by adding a Lipschitz con-
straint, ∥𝜕𝑢mpc/𝜕𝜂∥ ≤ 𝐿mpc, in solving (9.3).

Note that 𝜖train and 𝑟 (𝜂) can always be computed numerically for a given 𝜂 as the
dataset Πtrain only has a finite number of data points.

𝑟(𝜂)

𝑟(𝜂)𝐿ℓ ≥

𝜖"#$%& ≥

𝑟(𝜂)𝐿∗ ≥ 𝑢∗( ̅𝜁((𝜂))

𝑢ℓ(𝜂)

= ̅𝜁((𝜂)𝜖ℓ) ≥ 𝑢ℓ( ̅𝜁((𝜂))

𝑢∗(𝜂)

∈ Π"#$%&

= 𝜂

𝑺𝐭𝐞𝐬𝐭

𝑺𝐭𝐫𝐚𝐢𝐧

Figure 9.4: Illustration of the optimality gap (9.11) in Lemma 9.1, where Strain
denotes the training set in which training data (𝑥𝑖, ǣ𝑖, 𝑡𝑖, �̄�𝑖) ∈ Πtrain is sampled.

The obvious downsides of the optimality gap (9.11) are that it still suffers the
generalization issue, which is common in the field of machine learning, and that we
may have to find the region that the MPC is locally Lipschitz empirically. However,
at least Lemma 9.1 explicitly describes all the assumptions we need to obtain the
bound on the learning error, without treating it like a black box to be validated in
the experimental results implicitly. Also in practice, a smaller Lipschitz constant 𝐿ℓ
could lead to a larger training error 𝜖ℓ, requiring some tuning in using it in real-world
simulations (see Sec. 10.1 and Sec. 10.2).

Remark 9.4. Obtaining a tighter and more general optimality gap of the learned
control and state trajectories has been an active field of research. Particularly for a
neural network equipped with a dynamical structure as in our proposed approach,
we could refer to generalization bounds for the neural ordinary differential equa-
tions [4], or use systems and control theoretical methods to augment it with stability
and robustness properties [23], [24]. We could also consider combining the SN-
DNN with neural networks that have enhanced structural guarantees of robustness,
including robust implicit networks [25] and robust equilibrium networks [26].
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The optimality gap discussed in Lemma 9.1 and in Remark 9.4 is useful in that
they provide mathematical guarantees for learning-based frameworks only with
the Lipschitz assumption (e.g., it could prove safety in the learning-based MPC
framework [6]). However, when the system is perturbed by the state uncertainty
as in (9.1), we could only guarantee that the distance between the state trajectories
controlled by 𝑢mpc of (9.5) and 𝑢ℓ of Lemma 9.1 is bounded by a function that
increases exponentially with time [7]. In Sec. 9.3 and 9.4, we will see how such a
conservative bound can be replaced by a decreasing counterpart.

9.3 Deep learning-Based Optimal Tracking Control
This section proposes a feedback control policy to be used on top of the SN-DNN
terminal guidance policy 𝑢ℓ of Lemma 9.1 in Sec. 9.2. In particular, we utilize 𝑢ℓ to
design the desired trajectory with zero spacecraft delivery error and then construct
pointwise optimization-based tracking control with a Lyapunov stability condition,
which can be shown to have an analytical solution for real-time implementation. In
Sec. 9.4, we will see that this framework plays an essential part in solving our main
problem 9.1 of Sec. 9.1.

Remark 9.5. For notational convenience, we drop the dependence on the desired
terminal relative position 𝜌 of (9.4) in 𝑢ℓ, 𝑢mpc, 𝜑𝑡ℓ, and 𝜑𝑡mpc in the subsequent
sections, as it is time-independent and thus does not affect the arguments to be made
in the following. Note that the SN-DNN is still to be trained regarding 𝜌 as one of
its inputs, so we do not have to retrain SN-DNNs every time we change 𝜌.

9.3.I Desired State Trajectory with Zero Delivery Error
Let us recall the definitions of the ISO state flow and spacecraft state processes
of Definitions 9.1 and 9.2 summarized in Table 9.2. Ideally at some given time
𝑡 = 𝑡𝑑 ∈ [0, 𝑡 𝑓 ) when the spacecraft possesses enough information on the ISO, we
would like to construct a desired trajectory using the estimated states œ̂(𝑡𝑑) and
𝑥(𝑡𝑑) s.t. it ensures zero spacecraft delivery error at the ISO encounter assuming
zero state estimation errors for 𝑡 ∈ [𝑡𝑑 , 𝑡 𝑓 ] in (9.1). As in trajectory generation in
space and aerial robotics [27], [28], this can be achieved by obtaining a desired state
trajectory as 𝜑𝑡

ℓ
(𝑥 𝑓 ,œ 𝑓 , 𝑡 𝑓 ) of Table 9.2 with œ 𝑓 = 𝜑

𝑡 𝑓−𝑡𝑑 (œ̂(𝑡𝑑)), i.e., by solving the
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following dynamics with the SN-DNN terminal guidance policy 𝑢ℓ (9.6) backward
in time:

¤𝜉 (𝑡) = 𝑓 (𝜉 (𝑡), 𝜑𝑡−𝑡𝑑 (œ̂(𝑡𝑑)), 𝑡) + 𝐵(𝜉 (𝑡), 𝜑𝑡−𝑡𝑑 (œ̂(𝑡𝑑)), 𝑡)𝑢𝑏𝑤, 𝜉 (𝑡 𝑓 ) = 𝑥 𝑓 (9.12)

𝑢𝑏𝑤 = 𝑢ℓ (𝜉 (𝑡), 𝜑𝑡−𝑡𝑑 (œ̂(𝑡𝑑)), 𝑡; 𝜃nn)

where the property of the ISO solution flow in Table 9.2 introduced in Definition 9.1,
𝜑𝑡−𝑡 𝑓 (œ 𝑓 ) = 𝜑𝑡−𝑡 𝑓 (𝜑𝑡 𝑓−𝑡𝑑 (œ(𝑡𝑑))) = 𝜑𝑡−𝑡𝑑 (œ(𝑡𝑑)), is used to get (9.12), 𝑡 𝑓 is the
given terminal time at the ISO encounter as in (9.4), and the ideal spacecraft
terminal relative state 𝑥 𝑓 is defined as

𝑥 𝑓 =

[
𝜌

𝐶s2v𝜑
𝑡 𝑓

ℓ
(𝑥(𝑡𝑑), œ̂(𝑡𝑑), 𝑡𝑑)

]
(9.13)

where 𝜌 is the desired terminal relative position given in (9.4), 𝜑𝑡 𝑓
ℓ
(𝑥(𝑡𝑑), œ̂(𝑡𝑑), 𝑡𝑑)

is the spacecraft relative state at 𝑡 = 𝑡 𝑓 obtained by integrating the dynamics forward
as in Table 9.2, and 𝐶s2v = [O3×3 I3×3] ∈ R3×6 is a matrix that maps the spacecraft
relative state to its velocity vector. Figure 9.5 illustrates the construction of such a
desired trajectory.

Table 9.2: Summary of the ISO state flow and spacecraft state processes in Defini-
tions 9.1 and 9.2, where 𝑢ℓ and 𝑢mpc are the SN-DNN and MPC guidance policies,
respectively. Note that the dependence on the terminal position 𝜌 is omitted as
explained in Remark 9.5.

Notation Description

𝜑𝑡−𝜏 (œ𝜏)
Solution trajectory of the ISO dynamics at time 𝑡 which satisfies
𝜑0 (œ𝜏) = œ𝜏

𝜑𝑡
ℓ
(𝑥𝜏 ,œ𝜏 , 𝜏; 𝜃nn)

Solution trajectory of the S/C relative dynamics at time 𝑡, controlled by
𝑢ℓ with no state estimation error, which satisfies 𝜑𝜏

ℓ
(𝑥𝜏 ,œ𝜏 , 𝜏; 𝜃nn) = 𝑥𝜏

at 𝑡 = 𝜏 and œ(𝑡) = 𝜑𝑡−𝜏 (œ𝜏)

𝜑𝑡mpc (𝑥𝜏 ,œ𝜏 , 𝜏)
Solution trajectory of the S/C relative dynamics at time 𝑡, controlled by
𝑢mpc with no state estimation error, which satisfies 𝜑𝜏mpc (𝑥𝜏 ,œ𝜏 , 𝜏) = 𝑥𝜏
at 𝑡 = 𝜏 and œ(𝑡) = 𝜑𝑡−𝜏 (œ𝜏)

Remark 9.6. Although the desired state trajectory design depicted in Fig. 9.5
involves backward and forward integration (9.12) and (9.13) as in Definition 9.2,
which is common in trajectory generation in space and aerial robotics [27], [28],
the SN-DNN approximation of the MPC policy allows performing it within a short
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𝜑𝑡−𝑡𝑑 (ෝœ 𝑡𝑑 )

ෝœ 𝑡𝑑ො𝑥 𝑡𝑑

𝑣𝑓

œ(𝑡𝑑)𝑥(𝑡𝑑)

*𝑥 is expressed in frame relative to ISO

ො𝑥 𝑡𝑑

𝜌

𝑣𝑓

State Estimates

: S/C

: ISO

Figure 9.5: Illustration of the desired trajectory discussed in Sec. 9.3.I, where
𝑣 𝑓 = 𝐶s2v𝜑

𝑡 𝑓

ℓ
(𝑥(𝑡𝑑), œ̂(𝑡𝑑), 𝑡𝑑) as in (9.13). Spacecraft obtains the desired trajectory

𝑥𝑑 of (9.14) as a result of backward integration (see Remark 9.6).

period. In fact, when measured using the Mid 2015 MacBook Pro laptop, it takes
only about 3.0 × 10−4 s for numerically integrating the dynamics for one step
using the fourth-order Runge–Kutta method (e.g., it takes ∼ 3 s to get the desired
trajectory for 𝑡𝑑 = 0 (s) and 𝑡 𝑓 = 10000 (s) with the discretization time step 1 s). The
computational time should decrease as 𝑡𝑑 becomes larger. Section 9.4.II delineates
how we utilize such a desired trajectory in real-time with the feedback control to be
introduced in Sec. 9.3.II.

9.3.II Deep Learning-Based Pointwise Min-Norm Control
Using the results given in Sec. 9.3.I, we design pointwise optimal tracking control
resulting in verifiable spacecraft delivery error, even under the presence of state
uncertainty. For notational simplicity, let us denote the desired spacecraft relative
state and ISO state trajectories of (9.12), constructed using 𝑥(𝑡𝑑) and œ̂(𝑡𝑑) at 𝑡 = 𝑡𝑑
with the terminal state (9.13) as illustrated in Fig. 9.5, as follows:

𝑥𝑑 (𝑡) = 𝜑𝑡ℓ (𝑥 𝑓 ,œ 𝑓 , 𝑡 𝑓 ), œ𝑑 (𝑡) = 𝜑𝑡−𝑡𝑑 (œ̂(𝑡𝑑)). (9.14)

Also, assuming that we select 𝑥 as 𝑥 = [𝑝⊤, ¤𝑝⊤]⊤ as the state of (9.1) as in (9.2),
where 𝑝 ∈ R3 is the position of the spacecraft relative to the ISO, let 𝒻(𝑥,œ, 𝑡) and
ℬ(𝑥,œ, 𝑡) be defined as follows:

𝒻(𝑥,œ, 𝑡) = 𝐶s2v 𝑓 (𝑥,œ, 𝑡), ℬ(𝑥,œ, 𝑡) = 𝐶s2v𝐵(𝑥,œ, 𝑡), (9.15)
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where 𝑓 and 𝐵 are given in (9.1) and 𝐶s2v = [O3×3 I3×3] ∈ R3×6 as in (9.13). Note
that the relations (9.15) imply

¥𝑝 = 𝒻(𝑥,œ, 𝑡) +ℬ(𝑥,œ, 𝑡)𝑢(𝑥, œ̂, 𝑡). (9.16)

Given the desired trajectory (9.14), 𝑥𝑑 = [𝑝⊤𝑑 , ¤𝑝
⊤
𝑑
]⊤, which achieves zero spacecraft

delivery error at the ISO encounter when the state estimation errors are zero for
𝑡 ∈ [𝑡𝑑 , 𝑡 𝑓 ] in (9.1), we design a controller 𝑢 of (9.1) and (9.16) as follows, as
considered in [7], [29] for general nonlinear systems:

𝑢∗ℓ (𝑥, œ̂, 𝑡; 𝜃nn) = 𝑢ℓ (𝑥𝑑 (𝑡),œ𝑑 (𝑡), 𝑡; 𝜃nn) + 𝑘 (𝑥, œ̂, 𝑡) (9.17)

𝑘 (𝑥, œ̂, 𝑡) =


0 if Υ(𝑥, œ̂, 𝑡) ≤ 0

−Υ(𝑥,œ̂,𝑡) ( ¤̂𝑝−𝜚𝑑 (𝑝,𝑡))
∥ ¤̂𝑝−𝜚𝑑 (𝑝,𝑡)∥2

otherwise
(9.18)

with Υ and 𝜚𝑑 defined as

Υ(𝑥, œ̂, 𝑡) = ( ¤̂𝑝 − 𝜚𝑑 (𝑝, 𝑡))⊤𝑀 (𝑡){𝒻(𝑥, œ̂, 𝑡) − 𝒻(𝑥𝑑 (𝑡),œ𝑑 (𝑡), 𝑡)
+ Λ( ¤̂𝑝 − ¤𝑝𝑑 (𝑡)) + 𝛼( ¤̂𝑝 − 𝜚𝑑 (𝑝, 𝑡))}

𝜚𝑑 (𝑝, 𝑡) = −Λ(𝑝 − 𝑝𝑑 (𝑡)) + ¤𝑝𝑑 (𝑡) (9.19)

where 𝑝 ∈ R3 is the estimated position of the spacecraft relative to the ISO s.t.
𝑥 = [𝑝⊤, ¤̂𝑝⊤]⊤, 𝑢ℓ is the SN-DNN terminal guidance policy of Lemma 9.1, œ𝑑 ,
𝒻, and ℬ are given in (9.14) and (9.15), Λ ≻ 0 is a given symmetric positive
definite matrix, 𝛼 ∈ R>0 is a given positive constant, and 𝑀 (𝑡) = 𝑚sc(𝑡)I3×3 for
the spacecraft mass 𝑚sc(𝑡) given in (9.2). This control policy can be shown to
possess the following pointwise optimality property, in addition to the robustness
and stability guarantees to be seen in Sec. 9.4. Note that (9.17) is well-defined
even with the division by ∥ ¤̂𝑝 − 𝜚𝑑 (𝑝, 𝑡)∥ because we have Υ(𝑥, œ̂, 𝑡) = 0 when
∥ ¤̂𝑝 − 𝜚𝑑 (𝑝, 𝑡)∥ = 0 and thus 𝑘 (𝑥, œ̂, 𝑡) = 0 in this case.

Consider the following optimization problem, which computes an optimal control
input that minimizes its instantaneous deviation from that of the SN-DNN guidance
policy at each time instant, under an incremental Lyapunov stability condition:

𝑢∗ℓ (𝑥, œ̂, 𝑡; 𝜃nn) = arg min
𝑢∈R𝑚
∥𝑢 − 𝑢ℓ (𝑥𝑑 (𝑡),œ𝑑 (𝑡), 𝑡; 𝜃nn)∥2 (9.20)

s.t.
𝜕𝑉

𝜕 ¤̂𝑝
( ¤̂𝑝, 𝜚𝑑 (𝑝, 𝑡), 𝑡) (𝒻(𝑥, œ̂, 𝑡) +ℬ(𝑥, œ̂, 𝑡)𝑢)

s.t. + 𝜕𝑉

𝜕𝜚𝑑
( ¤̂𝑝, 𝜚𝑑 (𝑝, 𝑡), 𝑡) ( ¥𝑝𝑑 (𝑡) − Λ( ¤̂𝑝 − ¤𝑝𝑑 (𝑡))) ≤ −2𝛼𝑉 ( ¤̂𝑝, 𝜚𝑑 (𝑝, 𝑡), 𝑡) (9.21)
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where 𝑉 is a non-negative function defined as

𝑉 ( ¤̂𝑝, 𝜚𝑑 , 𝑡) = ( ¤̂𝑝 − 𝜚𝑑)⊤𝑀 (𝑡) ( ¤̂𝑝 − 𝜚𝑑) (9.22)

and the other notation is as given in (9.17).

Lemma 9.2. The optimization problem (9.20) is always feasible, and the con-
troller (9.17) defines its analytical optimal solution for the spacecraft relative dynam-
ical system (9.2). Furthermore, substituting 𝑢 = 𝑢ℓ (𝑥𝑑 (𝑡),œ𝑑 (𝑡), 𝑡; 𝜃nn) into (9.21)
yields Υ(𝑥, œ̂, 𝑡) ≤ 0, which implies the controller (9.17) modulates the desired
input, 𝑢ℓ (𝑥𝑑 (𝑡),œ𝑑 (𝑡), 𝑡; 𝜃nn), only when necessary to ensure the stability condi-
tion (9.21).

Proof. Let 𝑢𝑛 (𝑥, œ̂, 𝑡) be defined as follows:

𝑢𝑛 (𝑥, œ̂, 𝑡) = 𝑀 (𝑡) ¤𝜚𝑑 (𝑝, 𝑡) + 𝐶 (œ̂)𝜚𝑑 (𝑝, 𝑡) + 𝐺 (𝑝, œ̂) − 𝛼𝑀 (𝑡) ( ¤̂𝑝 − 𝜚𝑑 (𝑝, 𝑡))

where 𝜚𝑑 is as given in (9.19). Substituting this into the left-hand side of (9.21) as
𝑢 = 𝑢𝑛 (𝑥, œ̂, 𝑡) gives

2( ¤̂𝑝 − 𝜚𝑑 (𝑝, 𝑡))⊤(−𝐶 (œ̂) − 𝛼𝑀 (𝑡)) ( ¤̂𝑝 − 𝜚𝑑 (𝑝, 𝑡)) = −2𝛼𝑉 ( ¤̂𝑝, 𝜚𝑑 (𝑝, 𝑡), 𝑡)

where 𝒻 of (9.15) is computed with (9.2), and the equality follows from the skew-
symmetric property of 𝐶, i.e., 𝐶 (œ̂) + 𝐶 (œ̂)⊤ = O3×3 [15]. The relation indeed
indicates that 𝑢 = 𝑢𝑛 (𝑥, œ̂, 𝑡) is a feasible solution to the optimization problem (9.20).
Furthermore, applying the KKT condition to (9.20) yields (9.17). Also, we get
the condition Υ(𝑥, œ̂, 𝑡) ≤ 0 by substituting 𝑉 of (9.22) and ¥𝑝 into the stability
condition (9.21) with 𝑢 = 𝑢ℓ (𝑥𝑑 (𝑡),œ𝑑 (𝑡), 𝑡; 𝜃nn).

Let us emphasize again that, as proven in Lemma 9.2, the deviation term 𝑘 (𝑥, œ̂, 𝑡)
of the controller (9.17) is non-zero only when the stability condition (9.21) cannot
be satisfied with the SN-DNN terminal guidance policy 𝑢ℓ of Lemma 9.1. This
result can be viewed as an extension of the min-norm control methodology of [29]
for control-affine nonlinear systems, and int Lemma 9.2, the Lagrangian system-
type structure of the spacecraft relative dynamics is extensively used to obtain the
analytical solution (9.17) of the quadratic optimization problem (9.20), for the sake
of its real-time implementation.
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9.3.III Assumptions for Robustness and Stability
Before proceeding to the next section on proving the robustness and stability prop-
erties of the SN-DNN min-norm control of (9.17) of Lemma 9.2, let us make a
few assumptions with the notations given in Table 9.3, the first of which is that the
spacecraft has access to an on-board navigation scheme that satisfies the follow-
ing conditions. Due to the system nonlinearity, we can only assume the following
only locally (see (9.23)), which is one of the reasons why we need to construct a
non-negative function with a non-negative supermartingale property later in Theo-
rem 9.1.

Table 9.3: Notations in Sec. 9.3.III.

Notation Description

Ciso (𝑟), Csc (𝑟)
Tubes of radius 𝑟 ∈ R>0 centered around the desired trajectories 𝑥𝑑 and
œ𝑑 given in (9.14), i.e., Ciso (𝑟) =

⋃
𝑡∈[𝑡𝑠 ,𝑡 𝑓 ]{𝜉 ∈ R𝑛 |∥𝜉−œ𝑑 (𝑡)∥ < 𝑟} ⊂

R𝑛 and Csc (𝑟) =
⋃
𝑡∈[𝑡𝑠 ,𝑡 𝑓 ]{𝜉 ∈ R𝑛 |∥𝜉 − 𝑥𝑑 (𝑡)∥ < 𝑟} ⊂ R𝑛

Eiso, Esc

Subsets of R𝑛 that have the ISO and S/C state estimation error vectors
∥œ̂(𝑡) − œ(𝑡)∥ and ∥𝑥(𝑡) − 𝑥(𝑡)∥, respectively, where a given on-board
navigation scheme is valid (e.g., region of attraction)

E𝑍1 [·]
Conditional expected value operator s.t.
E [ ·| 𝑥(𝑡1) = 𝑥1, 𝑥(𝑡1) = 𝑥1,œ(𝑡1) = œ1, œ̂(𝑡1) = œ̂1]

𝑡 𝑓 Given terminal time at the ISO encounter as in (9.4)

𝑡𝑠
Time when the S/C activates the SN-DNN min-norm control pol-
icy (9.17) of Lemma 9.2

𝑍1
Tuple of the true and estimated ISO and S/C state at time 𝑡 = 𝑡1, i.e.,
𝑍1 = (œ1, œ̂1, 𝑥1, 𝑥1)

𝜍 𝑡 (𝑍1, 𝑡1)
Expected estimation error upper bound at time 𝑡 = 𝑡1 given 𝑍1 at time
𝑡 = 𝑡1, which can be determined based on the choice of navigation
techniques (see Remark 9.1)

Assumption 9.1. Let the probability of the error vectors remaining in Eiso and Esc

be bounded as follows for ∃𝜀est ∈ R≥0:

P


⋂

𝑡∈[0,𝑡 𝑓 ]
(œ̂(𝑡) − œ(𝑡)) ∈ Eiso ∩ (𝑥(𝑡) − 𝑥(𝑡)) ∈ Esc

 ≥ 1 − 𝜀est. (9.23)

We assume that if the event of (9.23) has occurred, then we have the following bound
for any 𝑡1, 𝑡2 ∈ [0, 𝑡 𝑓 ] s.t. 𝑡1 ≤ 𝑡2:

E𝑍1

[√︁
∥œ̂(𝑡) − œ(𝑡)∥2 + ∥𝑥(𝑡) − 𝑥(𝑡)∥2

]
≤ 𝜍 𝑡 (𝑍1, 𝑡1), ∀𝑡 ∈ [𝑡1, 𝑡2] . (9.24)
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We also assume that given the 2-norm estimation error satisfies√︁
∥œ̂(𝑡) − œ(𝑡)∥2 + ∥𝑥(𝑡) − 𝑥(𝑡)∥2 < 𝑐𝑒

for 𝑐𝑒 ∈ R≥0 at time 𝑡 = 𝑡𝑠, then it satisfies this bound for ∀𝑡 ∈ [𝑡𝑠, 𝑡 𝑓 ] with
probability at least 1 − 𝜀err, where ∃𝜀err ∈ R≥0.

If the extended Kalman filter or contraction theory-based estimator [7] is used
for navigation with disturbances expressed as the Gaussian white noise processes,
then we have 𝜍 𝑡 (𝑍1, 𝑡1) = 𝑒−𝛽(𝑡−𝑡1)

√︁
∥œ̂1 − œ1∥2 + ∥𝑥1 − 𝑥1∥2 + 𝑐, where 𝑍1 =

(œ1, œ̂1, 𝑥1, 𝑥1) and 𝛽 and 𝑐 are some given positive constants (see Example 9.1). The
last statement of the boundedness of the estimation error is expected for navigation
schemes resulting in a decreasing estimation error, and can be shown formally using
Ville’s maximal inequality for supermartingales [30, pp. 79-83] with an appropriate
Lyapunov-like function for navigation synthesis [30, pp. 79-83] (see Lemma 9.3
for similar computation in control synthesis). Note that if Eiso = Esc = R𝑛, i.e.,
the bound (9.24) holds globally, then we have 𝜀est = 0. Let us further make the
following assumption on the SN-DNN min-norm control policy (9.17).

Assumption 9.2. We assume that 𝑘 of (9.18) is locally Lipschitz in its first two
arguments, i.e., ∃𝑟sc, 𝑟iso, 𝐿𝑘 ∈ R>0 s.t.

∥𝑘 (𝑥1,œ1, 𝑡) − 𝑘 (𝑥2,œ2, 𝑡)∥ ≤ 𝐿𝑘
√︁
∥œ1 − œ2∥2 + ∥𝑥1 − 𝑥2∥2 (9.25)

for all œ1,œ2 ∈ Ciso(𝑟iso), 𝑥1, 𝑥2 ∈ Csc(𝑟sc), and 𝑡 ∈ [𝑡𝑠, 𝑡 𝑓 ]. We also assume that
𝑟iso and 𝑟sc are large enough to have 𝑟iso − 2𝑐𝑒 ≥ 0 and 𝑟sc − 2𝑐𝑒 ≥ 0 for 𝑐𝑒 of
Assumption 9.1, and that the set Ciso(𝑟iso − 𝑐𝑒) is forward invariant, i.e.,

œ(𝑡𝑠) ∈ Ciso(𝑟iso − 𝑐𝑒) ⇒ 𝜑𝑡−𝑡𝑠 (œ(𝑡𝑠)) ∈ Ciso (𝑟iso − 𝑐𝑒) , ∀𝑡 ∈ [𝑡𝑠, 𝑡 𝑓 ] (9.26)

where 𝜑𝑡−𝑡𝑠 (œ(𝑡𝑠)) is the ISO state trajectory with 𝜑0(œ(𝑡𝑠)) = œ(𝑡𝑠) at 𝑡 = 𝑡𝑠 as
given in Table 9.2 and defined in Definition 9.1.

If 𝒻 of (9.15) is locally Lipschitz in 𝑥 and œ, 𝑘 of (9.18) can be expressed as
a composition of locally Lipschitz functions in 𝑥 and œ, which implies that the
Lipschitz assumption (9.25) always holds for finite 𝑟iso and 𝑟sc (see, e.g., Theorem 2
of [31] and the references therein for further explanation. Since the estimation error
is expected to decrease in general, 𝑐𝑒 of Assumption 9.1 can be made smaller as 𝑡𝑠
gets larger, which renders the second condition of Assumption 9.2 less strict.
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9.4 Neural-Rendezvous: Learning-based Robust Guidance and Control to
Encounter ISOs

This section finally presents Neural-Rendezvous, a deep learning-based terminal
G&C approach to autonomously encounter ISOs, thereby solving the problem 9.1
of Sec. 9.1 that arise from the large state uncertainty and high-velocity challenges.
It will be shown that the SN-DNN min-norm control (9.17) of Lemma 9.2 verifies
a formal exponential bound on expected spacecraft delivery error, which provides
valuable information in determining whether we should use the SN-DNN terminal
guidance policy or enhance it with the SN-DNN min-norm control, depending on
the size of the state uncertainty.

9.4.I Robustness and Stability Guarantee
The assumptions introduced in Sec. 9.3.III allow bounding the mean squared distance
between the spacecraft relative position of (9.1) controlled by (9.17) and the desired
position 𝑝𝑑 (𝑡) given in (9.14), even under the presence of the state uncertainty (see
Fig. 9.4). We remark that the additional notations in the following theorem are
summarized in Table 9.4, where the others are consistent with the ones in Table 9.3.
Let us remark that the use of our incremental Lyapunov-like function, along with
the supermartingale analysis, allows easier handling of the aforementioned local
assumptions in estimation and control.

Theorem 9.1. Suppose that Assumptions 9.1 and 9.2 hold, and that the spacecraft
relative dynamics with respect to the ISO, given in (9.1), is controlled by 𝑢 = 𝑢∗

ℓ
. If

the estimated states at time 𝑡 = 𝑡𝑠 satisfy œ̂𝑠 ∈ Ciso(�̄�iso) and 𝑥𝑠 ∈ Csc(�̄�sc), then the
spacecraft delivery error is explicitly bounded as follows with probability at least
1 − 𝜀ctrl:

E[∥𝑝(𝑡 𝑓 ) − 𝜌∥|œ̂(𝑡𝑠) = œ̂𝑠 ∩ 𝑥(𝑡𝑠) = 𝑥𝑠]

≤ sup
(œ𝑠 ,𝑥𝑠)∈Dest

𝑒−𝜆(𝑡 𝑓−𝑡𝑠) ∥𝑝𝑠 − 𝑝𝑑 (𝑡𝑠)∥ +
𝑒−𝜆𝑡 𝑓 𝐿𝑘
𝑚sc(𝑡 𝑓 )

∫ 𝑡 𝑓

𝑡𝑠

𝜛𝜏 (𝑍𝑠, 𝑡𝑠)𝑑𝜏

+


𝑒
−𝜆(𝑡 𝑓 −𝑡𝑠 )−𝑒−𝛼(𝑡 𝑓 −𝑡𝑠 )

𝛼−𝜆
𝑣(𝑥𝑠 ,𝑡𝑠)√
𝑚sc (𝑡 𝑓 )

if 𝛼 ≠ 𝜆

(𝑡 𝑓 − 𝑡𝑠)𝑒−𝜆(𝑡 𝑓−𝑡𝑠) 𝑣(𝑥𝑠 ,𝑡𝑠)√
𝑚sc (𝑡 𝑓 )

if 𝛼 = 𝜆
(9.27)

where 𝜀ctrl ∈ R≥0 is the probability to be given in (9.42),𝜛𝑡 (𝑍𝑠, 𝑡𝑠) is a time-varying
function defined as 𝜛𝑡 (𝑍𝑠, 𝑡𝑠) = 𝑒(𝜆−𝛼)𝑡

∫ 𝑡
𝑡𝑠
𝑒𝛼𝜏𝜍𝜏 (𝑍𝑠, 𝑡𝑠)𝑑𝜏. Note that (9.27) yields

a bound on P
[
∥𝑝(𝑡 𝑓 ) − 𝜌∥ ≤ 𝑑

�� œ̂(𝑡𝑠) = œ̂𝑠 ∩ 𝑥(𝑡𝑠) = 𝑥𝑠
]

as in Theorem 2.5 of [7],
where 𝑑 ∈ R≥0 is any given distance of interest, using Markov’s inequality.
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Table 9.4: Notations in Theorem 9.1.

Notation Description

Dest Set defined asDest = {(œ𝑠 , 𝑥𝑠) ∈ R𝑛 ×R𝑛 |
√︁
∥œ𝑠 − œ̂𝑠 ∥2 + ∥𝑥𝑠 − 𝑥𝑠 ∥2 ≤ 𝑐𝑒

𝐿𝑘 Lipschitz constant of 𝑘 in Assumption (9.1)

𝑚sc (𝑡)
Spacecraft mass of (9.2) satisfying 𝑚sc (𝑡) ∈ [𝑚sc (𝑡𝑠), 𝑚sc (𝑡 𝑓 )] due to the
Tsiolkovsky rocket equation

œ𝑠 , œ̂𝑠 , 𝑥𝑠 , 𝑥𝑠 True and estimated ISO and S/C state at time 𝑡 = 𝑡𝑠 , respectively

𝑝𝑑 (𝑡)
Desired S/C relative position trajectory, i.e., 𝑥𝑑 (𝑡) = [𝑝𝑑 (𝑡)⊤, ¤𝑝𝑑 (𝑡)⊤]⊤ for
𝑥𝑑 of (9.14)

𝑝𝑠 , 𝑝𝑠
True and estimated S/C relative position at time 𝑡 = 𝑡𝑠 , i.e., 𝑥𝑠 = [𝑝⊤𝑠 , ¤𝑝⊤𝑠 ]⊤
and 𝑥𝑠 = [𝑝⊤𝑠 , ¤̂𝑝⊤𝑠 ]⊤

�̄�iso, �̄�sc
Constants defined as �̄�iso = 𝑟iso −2𝑐𝑒 and �̄�sc = 𝑟sc −2𝑐𝑒 for 𝑐𝑒 of Assump-
tion 9.1 and 𝑟iso and 𝑟sc of Assumption 9.2

𝑢∗
ℓ

SN-DNN min-norm control policy (9.17) of Lemma 9.2

𝑣(𝑥, 𝑡) Non-negative function given as 𝑣(𝑥, 𝑡) =
√︁
𝑉 ( ¤𝑝, 𝜚𝑑 (𝑝, 𝑡), 𝑡) =√︁

𝑚sc (𝑡)∥Λ(𝑝 − 𝑝𝑑 (𝑡)) + ¤𝑝 − ¤𝑝𝑑 (𝑡)∥ for 𝑉 of (9.22)

𝑍𝑠
Tuple of the true and estimated ISO and S/C state at time 𝑡 = 𝑡𝑠 , i.e.,
𝑍𝑠 = (œ𝑠 , œ̂𝑠 , 𝑥𝑠 , 𝑥𝑠)

𝛼 Positive constant of (9.21)

𝜆 Minimum eigenvalue of Λ defined in (9.21)

𝜌 Desired terminal S/C relative position of (9.4)

Proof. The dynamics (9.16) controlled by (9.17) can be rewritten as

¥𝑝 = 𝒻(𝑥,œ, 𝑡) +ℬ(𝑥,œ, 𝑡)𝑢∗ℓ (𝑥,œ, 𝑡; 𝜃nn) +ℬ(𝑥, œ̂, 𝑡)�̃� (9.28)

where �̃� = 𝑢∗
ℓ
(𝑥, œ̂, 𝑡; 𝜃nn) − 𝑢∗ℓ (𝑥,œ, 𝑡; 𝜃nn). Since the third term of (9.28) is subject

to stochastic disturbance due to the state uncertainty of Assumption 9.1, we consider
the weak infinitesimal operator 𝒜 given in [30, p. 9], instead of taking the time
derivative, for analyzing the time evolution of the non-negative function 𝑣 defined as
𝑣(𝑥, 𝑡) =

√︁
𝑉 ( ¤𝑝, 𝜚𝑑 (𝑝, 𝑡), 𝑡) =

√︁
𝑚sc(𝑡)∥Λ(𝑝 − 𝑝𝑑 (𝑡)) + ¤𝑝 − ¤𝑝𝑑 (𝑡)∥ for 𝑉 of (9.22).

To this end, let us compute the following time increment of 𝑣 evaluated at the true
state and time (𝑥,œ, 𝑡):

Δ𝑣 = 𝑣(𝑥(𝑡 + Δ𝑡), 𝑡 + Δ𝑡) − 𝑣(𝑥, 𝑡)

=
1

2𝑣(𝑥, 𝑡)

(
𝜕𝑉

𝜕 ¤𝑝 ¥𝑝(𝑡) +
𝜕𝑉

𝜕𝜚𝑑
¥𝜚𝑑 (𝑝(𝑡), 𝑡) +

𝜕𝑉

𝜕𝑡

)
Δ𝑡 + O

(
Δ𝑡2

)
(9.29)
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where Δ𝑡 ∈ R≥0 and the arguments ( ¤𝑝(𝑡), 𝜚𝑑 (𝑝, 𝑡), 𝑡) of the partial derivatives of
𝑉 are omitted for notational convenience. Dropping the argument 𝑡 for the state
variables for simplicity, the dynamics decomposition (9.28) gives

𝜕𝑉

𝜕 ¤𝑝 ¥𝑝 +
𝜕𝑉

𝜕𝜚𝑑
¥𝜚𝑑 (𝑝, 𝑡) +

𝜕𝑉

𝜕𝑡

≤ 𝜕𝑉
𝜕 ¤𝑝 (𝒻(𝑥,œ, 𝑡) +ℬ(𝑥,œ, 𝑡)𝑢

∗(𝑥, œ̂, 𝑡; 𝜃nn)) +
𝜕𝑉

𝜕𝜚𝑑
( ¥𝑝𝑑 − Λ( ¤𝑝 − ¤𝑝𝑑))

≤ −2𝛼𝑉 ( ¤𝑝, 𝜚𝑑 (𝑝, 𝑡), 𝑡) + 2
𝜕𝑉

𝜕 ¤𝑝ℬ(𝑥,œ, 𝑡)�̃� = −2𝛼𝑣(𝑥, 𝑡)2 + 2𝑣(𝑥, 𝑡) ∥�̃�∥√︁
𝑚sc(𝑡)

(9.30)

where the first inequality follows from the fact that the spacecraft mass 𝑚sc(𝑡),
described by the Tsiolkovsky rocket equation, is a decreasing function and thus
𝜕𝑉/𝜕𝑡 ≤ 0, and the second inequality follows from the stability condition (9.21)
evaluated at (𝑥,œ, 𝑡), which is guaranteed to be feasible due to Lemma 9.2. Since
𝑢∗ is assumed to be Lipschitz as in (9.25) of Assumption 9.2, we get the following
relation for any 𝑥𝑠, 𝑥𝑠 ∈ Csc(𝑟sc), œ𝑠, œ̂𝑠 ∈ Ciso(𝑟iso), and 𝑡𝑠 ∈ [0, 𝑡 𝑓 ], by substitut-
ing (9.30) into (9.29):

𝒜𝑣(𝑥𝑠, 𝑡𝑠) = lim
Δ𝑡↓0

E𝑍𝑠 [Δ𝑣]
Δ𝑡

≤ −𝛼𝑣(𝑥𝑠, 𝑡𝑠) +
𝐿𝑘√︁
𝑚sc(𝑡 𝑓 )

√︁
∥œ̂𝑠 − œ𝑠∥2 + ∥𝑥𝑠 − 𝑥𝑠∥2

(9.31)

where E𝑍𝑠 [·] = E [ ·| 𝑥(𝑡𝑠) = 𝑥𝑠, 𝑥(𝑡𝑠) = 𝑥𝑠,œ(𝑡𝑠) = œ𝑠, œ̂(𝑡𝑠) = œ̂𝑠] for 𝑍𝑠 given as
𝑍𝑠 = (𝑥𝑠, 𝑥𝑠,œ𝑠, œ̂𝑠), and the relation 𝑚sc(𝑡) ≥ 𝑚sc(𝑡 𝑓 ) by the Tsiolkovsky rocket
equation is also used to obtain the inequality. Applying Dynkin’s formula [30, p.
10] to (9.31) gives the following with probability at least 1 − 𝜀est due to (9.24) of
Assumption 9.1:

E𝑍𝑠 [∥Λ(𝑝(𝑡) − 𝑝𝑑 (𝑡)) + ¤𝑝(𝑡) − ¤𝑝𝑑 (𝑡)∥] (9.32)

≤ 𝑒
−𝛼(𝑡−𝑡𝑠)𝑣(𝑥𝑠, 𝑡𝑠)√︁

𝑚sc(𝑡 𝑓 )
+ 𝑒
−𝛼𝑡𝐿𝑘
𝑚sc(𝑡 𝑓 )

∫ 𝑡

𝑡𝑠

𝑒𝛼𝜏𝜍𝜏 (𝑍𝑠, 𝑡𝑠)𝑑𝜏, ∀𝑡 ∈ [𝑡𝑠, 𝑡𝑒]

where 𝜍𝜏 (𝑍𝑠, 𝑡𝑠) is as given in (9.24) and 𝑡𝑒 is defined as 𝑡𝑒 = min{𝑡𝑒, 𝑡 𝑓 }, with 𝑡𝑒
being the first exit time that any of the states leave their respective set, i.e.,

𝑡𝑒 = inf{𝑡 ≥ 𝑡𝑠 : œ(𝑡) ∉ Ciso(𝑟iso) ∪ œ̂(𝑡) ∉ Ciso(𝑟iso) (9.33)

𝑡𝑒 = inf{𝑡 ≥ 𝑡𝑠 : ∪ 𝑥(𝑡) ∉ Csc(𝑟sc) ∪ 𝑥(𝑡) ∉ Csc(𝑟sc)}

given that the event of (9.23) in Assumption 9.1 has occurred. Since we further
have that 𝒜∥𝑝 − 𝑝𝑑 ∥ = 𝑑

𝑑𝑡
∥𝑝 − 𝑝𝑑 ∥ ≤ ∥ �̃�∥ − 𝜆(𝑝 − 𝑝𝑑) for �̃� = Λ(𝑝 − 𝑝𝑑) + ¤𝑝 − ¤𝑝𝑑
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due to the hierarchical structure of �̃�, utilizing Dynkin’s formula one more time and
then substituting (9.32) result in

E𝑍𝑠 [∥𝑝(𝑡) − 𝑝𝑑 (𝑡)∥] ≤ 𝑒−𝜆𝑡
∫ 𝑡

𝑡𝑠

𝑒(𝜆−𝛼)𝜏+𝛼𝑡𝑠𝑣(𝑥𝑠, 𝑡𝑠)√︁
𝑚sc(𝑡 𝑓 )

+ 𝐿𝑘

𝑚sc(𝑡 𝑓 )
𝜛𝜏 (𝑍𝑠, 𝑡𝑠)𝑑𝜏

+ 𝑒−𝜆(𝑡−𝑡𝑠) ∥𝑝𝑠 − 𝑝𝑑 (0)∥, ∀𝑡 ∈ [0, 𝑡𝑒] (9.34)

where 𝑥𝑠 = [𝑝⊤𝑠 , ¤𝑝⊤𝑠 ]⊤.

What is left to show is that we can achieve 𝑡𝑒 > 𝑡 𝑓 with a finite probability for the
first exit time 𝑡𝑒 of (9.33). For this purpose, we need the following lemma.

Lemma 9.3. Suppose that the events of Assumption 9.1 has occurred, i.e., the event
of (9.23) has occurred and the 2-norm estimation error satisfies√︁
∥œ̂(𝑡) − œ(𝑡)∥2 + ∥𝑥(𝑡) − 𝑥(𝑡)∥2 < 𝑐𝑒, ∀𝑡 ∈ [𝑡𝑠, 𝑡 𝑓 ] .

If Assumption 9.2 holds and if we have

𝒜𝑣(𝑥𝑠, 𝑡𝑠) ≤ −𝛼𝑣(𝑥𝑠, 𝑡𝑠) +
𝐿𝑘√︁
𝑚sc(𝑡 𝑓 )

√︁
∥œ̂𝑠 − œ𝑠∥2 + ∥𝑥𝑠 − 𝑥𝑠∥2 (9.35)

for any 𝑥𝑠, 𝑥𝑠 ∈ Csc(𝑟sc), œ𝑠, œ̂𝑠 ∈ Ciso(𝑟iso), and 𝑡𝑠 ∈ [0, 𝑡 𝑓 ] as in (9.31), then we
get the following probabilistic bound for ∃𝜀exit ∈ R≥0:

𝑝stay ≥ 1 − 𝜀exit =


(
1 − 𝐸𝑠

�̄�

)
𝑒−

𝐻 (𝑡 𝑓 )
�̄� if �̄� ≥

sup𝑡∈[𝑡𝑠 ,𝑡 𝑓 ] ℎ(𝑡)
�̄�

1 −
�̄�𝐸𝑠+(𝑒�̄� (𝑡 𝑓 )−1) sup𝑡∈[𝑡𝑠 ,𝑡 𝑓 ] ℎ(𝑡)

�̄��̄�𝑒
�̄� (𝑡 𝑓 )

otherwise
(9.36)

𝑝stay = P𝑍𝑠


⋂

𝑡∈[𝑡𝑠 ,𝑡 𝑓 ]
𝑥(𝑡) ∈ Csc(𝑟sc)


where 𝑍𝑠 = (œ𝑠, œ̂𝑠, 𝑥𝑠, 𝑥𝑠) denotes the states at time 𝑡 = 𝑡𝑠, which satisfy œ𝑠 ∈
Ciso(𝑟iso), œ̂𝑠 ∈ Ciso(�̄�iso), 𝑥𝑠 ∈ Csc(𝑟sc), and 𝑥𝑠 ∈ Csc(�̄�sc) for 𝑟iso = 𝑟iso − 𝑐𝑒 ≥ 0,
�̄�iso = 𝑟iso − 2𝑐𝑒 ≥ 0, 𝑟sc = 𝑟sc − 𝑐𝑒 ≥ 0, and �̄�iso = 𝑟sc − 2𝑐𝑒 ≥ 0, 𝐸𝑠 =

𝑣(𝑥𝑠, 𝑡𝑠) +𝛿𝑝 ∥𝑝𝑠− 𝑝𝑑 (𝑡𝑠)∥, 𝐻 (𝑡) =
∫ 𝑡
𝑡𝑠
ℎ(𝜏)𝑑𝜏, �̄� (𝑡) = 2𝐻 (𝑡)�̄�/sup𝑡∈[𝑡𝑠 ,𝑡 𝑓 ] ℎ(𝑡), and

ℎ(𝑡) = 𝐿𝑘𝜍
𝑡 (𝑍𝑠, 𝑡𝑠)/

√︁
𝑚sc(𝑡 𝑓 ). The suitable choices of �̄�, �̄�, 𝛿𝑝 ∈ R>0 are to be

defined below.

Proof of Lemma 9.3. Let us define a non-negative and continuous function 𝐸 (𝑥, 𝑡)
as

𝐸 (𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝛿𝑝 ∥𝑝 − 𝑝𝑑 (𝑡)∥ (9.37)
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where 𝑥 = [𝑝⊤, ¤𝑝⊤]⊤ and 𝛿𝑝 ∈ R>0. Note that 𝐸 (𝑥, 𝑡) of (9.37) is 0 only when
𝑥 = 𝑥𝑑 (𝑡). Since we have 𝒜∥𝑝 − 𝑝𝑑 (𝑡)∥ ≤ 𝑣(𝑥, 𝑡)/

√︁
𝑚sc(𝑡 𝑓 ) − 𝜆∥𝑝 − 𝑝𝑑 (𝑡)∥,

designing 𝛿𝑝 to have 𝛼 − 𝛿𝑝/
√︁
𝑚sc(𝑡 𝑓 ) > 0, the relation (9.35) gives

𝒜𝐸 (𝑥𝑠, 𝑡𝑠) ≤ −�̄�𝐸 (𝑥𝑠, 𝑡𝑠) +
𝐿𝑘√︁
𝑚sc(𝑡 𝑓 )

√︁
∥œ̂𝑠 − œ𝑠∥2 + ∥𝑥𝑠 − 𝑥𝑠∥2 (9.38)

for any 𝑥𝑠, 𝑥𝑠 ∈ Csc(𝑟sc), œ𝑠, œ̂𝑠 ∈ Ciso(𝑟iso), and 𝑡𝑠 ∈ [0, 𝑡 𝑓 ], where

�̄� = min
{
𝛼 − 𝛿𝑝/

√︃
𝑚sc(𝑡 𝑓 ), 𝜆

}
> 0.

Let us define another non-negative and continuous function𝑊 (𝑥, 𝑡) as

𝑊 (𝑥, 𝑡) = 𝐸 (𝑥, 𝑡)𝑒𝛾𝐻 (𝑡) + 𝑒
𝛾𝐻 (𝑡 𝑓 ) − 𝑒𝛾𝐻 (𝑡)

𝛾

where 𝛾 is a positive constant that satisfies 2�̄� ≥ 𝛾 sup𝑡∈[0,𝑡 𝑓 ] ℎ(𝑡). If �̄�, �̄� ∈ R>0

is selected to have 𝑊 (𝑥, 𝑡) < �̄� ⇒ 𝐸 (𝑥, 𝑡) < �̄� ⇒ 𝑥 ∈ Csc(𝑟sc) =
⋃
𝑡∈[0,𝑡 𝑓 ]{𝑠 ∈

R𝑛 |∥𝑠 − 𝑥𝑑 (𝑡)∥ < 𝑟sc} ⊂ R𝑛, which is always possible since 𝐸 (𝑥, 𝑡) of (9.37) is 0
only when 𝑥 = 𝑥𝑑 (𝑡), then we can utilize (9.38) to compute 𝒜𝑊 as follows for any
𝑥𝑠 = [𝑝⊤𝑠 , ¤𝑝⊤𝑠 ]⊤ ∈ Csc(𝑟sc) and 𝑡𝑠 ∈ [0, 𝑡 𝑓 ] that satisfies𝑊 (𝑥𝑠, 𝑡𝑠) < �̄�:

𝒜𝑊 (𝑥𝑠, 𝑡𝑠) = (𝛾ℎ(𝑡𝑠)𝐸 (𝑥𝑠, 𝑡𝑠) +𝒜𝐸 (𝑥𝑠, 𝑡𝑠))𝑒𝛾𝐻 (𝑡𝑠) − ℎ(𝑡𝑠)𝑒𝛾𝐻 (𝑡𝑠) (9.39)

≤ (𝒽(œ𝑠, œ̂𝑠, 𝑥𝑠, 𝑥𝑠) − ℎ(𝑡𝑠)) 𝑒𝛾𝐻 (𝑡𝑠)

where 𝒽(œ𝑠, œ̂𝑠, 𝑥𝑠, 𝑥𝑠) = 𝐿𝑘
√︃
(∥œ̂𝑠 − œ𝑠∥2 + ∥𝑥𝑠 − 𝑥𝑠∥2)/𝑚sc(𝑡 𝑓 ) and the inequal-

ity follows from the relation �̄� ≥ 𝛾 sup𝑡∈[0,𝑡 𝑓 ] ℎ(𝑡). Applying Dynkin’s formula [30,
p. 10] to (9.39), it can be verified that𝑊 (𝑥(𝑡), 𝑡) is a non-negative supermartingale
due to the fact that E𝑍𝑠 [𝒽(œ(𝑡), œ̂(𝑡), 𝑥(𝑡), 𝑥(𝑡))] ≤ 𝐿𝑘𝜍 𝑡 (𝑍𝑠, 𝑡𝑠)/

√︁
𝑚sc(𝑡 𝑓 ) = ℎ(𝑡)

by definition of 𝜍 𝑡 (𝑍𝑠, 𝑡𝑠) in (9.24) of Assumption 9.1, which gives the following
due to Ville’s maximal inequality [30, p. 26]:

P𝑍𝑠

[
sup

𝑡∈[𝑡𝑠 ,𝑡 𝑓 ]
𝑊 (𝑥(𝑡), 𝑡) ≥ �̄�

]
≤ 𝐸𝑠 + 𝛾

−1(𝑒𝛾𝐻 (𝑡 𝑓 ) − 1)
�̄�

(9.40)

as long as we have œ(𝑡), œ̂(𝑡) ∈ Ciso(𝑟iso) and 𝑥(𝑡) ∈ Csc(𝑟sc) for ∀𝑡 ∈ [𝑡𝑠, 𝑡 𝑓 ],
where 𝑍𝑠 = (œ𝑠, œ̂𝑠, 𝑥𝑠, 𝑥𝑠) is as defined in (9.36). For 𝑍𝑠 satisfying œ𝑠 ∈ Ciso(𝑟iso),
œ̂𝑠 ∈ Ciso(�̄�iso), 𝑥𝑠 ∈ Csc(𝑟sc), and 𝑥𝑠 ∈ Csc(�̄�sc), the occurrence of the events of
Assumption 9.1 and the forward invariance condition of (9.26) of Assumption 9.2
ensure that if we have 𝑥(𝑡) ∈ Csc(𝑟sc) for ∀𝑡 ∈ [𝑡𝑠, 𝑡 𝑓 ], we get œ(𝑡) ∈ Ciso(𝑟iso),
œ̂(𝑡) ∈ Ciso(𝑟iso), and 𝑥(𝑡) ∈ Csc(𝑟sc) for ∀𝑡 ∈ [𝑡𝑠, 𝑡 𝑓 ]. Therefore, selecting the
constants 𝛾 and �̄� in the inequality (9.40) as in [30, pp. 82-83] yields (9.36) due to
the relation𝑊 (𝑥, 𝑡) < �̄� ⇒ 𝐸 (𝑥, 𝑡) < �̄� ⇒ 𝑥 ∈ Ciso(𝑟iso).
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Now, let us select 𝑐𝑒 of Assumption 9.1 as 𝑐𝑒 = 𝑘𝑒E
[
𝜍 𝑡𝑠 (𝑍0, 0)

]
, where 𝑍0 is

the tuple of the true and estimated ISO and spacecraft state at time 𝑡 = 0 and
𝑘𝑒 ∈ R>0. Using Markov’s inequality along with the bounds (9.23) and (9.24) of
Assumption 9.1, we get the following probability bound:

P
[√︁
∥œ̂𝑠 − œ𝑠∥2 + ∥𝑥𝑠 − 𝑥𝑠∥2 < 𝑘𝑒E

[
𝜍 𝑡𝑠 (𝑍0, 0)

] ]
≥ (1 − 𝜀est)

(
1 − 1

𝑘𝑒

)
. (9.41)

Since we have œ̂𝑠 ∈ Ciso(�̄�iso) and 𝑥𝑠 ∈ Csc(�̄�sc) by the theorem assumption, the
occurrence of the event in (9.41) implies œ𝑠 ∈ Ciso(𝑟iso) and 𝑥𝑠 ∈ Csc(𝑟sc) for
𝑟iso = 𝑟iso − 𝑘𝑒E

[
𝜍 𝑡𝑠 (𝑍0, 0)

]
≥ 0, 𝑟sc = 𝑟sc − 𝑘𝑒E

[
𝜍 𝑡𝑠 (𝑍0, 0)

]
≥ 0, and then

œ(𝑡) ∈ Ciso(𝑟iso), ∀𝑡 ∈ [𝑡𝑠, 𝑡 𝑓 ] due to the forward invariance condition (9.26) in
Assumption 9.2. Therefore, using 𝜀err of Assumption 9.1 along with the result of
Lemma 9.3, we have ∃𝜀ctrl ∈ R≥0 s.t.

P [A| œ̂(𝑡𝑠) = œ̂𝑠 ∩ 𝑥(𝑡𝑠) = 𝑥𝑠] ≥ 1 − 𝜀ctrl = (1 − 𝜀exit) (1 − 𝜀est) (1 − 𝜀err)
(
1 − 1

𝑘𝑒

)
(9.42)

whereA =
⋂
𝑡∈[𝑡𝑠 ,𝑡 𝑓 ] œ(𝑡) ∈ Ciso(𝑟iso) ∩ œ̂(𝑡) ∈ Ciso(𝑟iso) ∩ 𝑥(𝑡) ∈ Csc(𝑟sc) ∩ 𝑥(𝑡) ∈

Csc(𝑟sc) ∩ E with E being the event of (9.23) in Assumption 9.1. The desired rela-
tion (9.27) follows by evaluating the first term of the integral in (9.34), and by ob-
serving that ifA of (9.42) occurs, we have 𝑡𝑒 > 𝑡 𝑓 and

√︁
∥œ̂𝑠 − œ𝑠∥2 + ∥𝑥𝑠 − 𝑥𝑠∥2 <

𝑘𝑒E
[
𝜍 𝑡𝑠 (𝑍0, 0)

]
due to (9.41).

Note that if Eiso = Esc = R𝑛 in Assumption 9.1 and 𝑘 is globally Lipschitz in
Assumption 9.2, the estimation bound (9.24) and the Lipschitz bound (9.25) always
hold without the second condition of Assumption 9.1. This indicates that the
bound (9.27) holds as long as (œ𝑠, 𝑥𝑠) ∈ Dest for given œ̂𝑠, 𝑥𝑠 ∈ R𝑛, which occurs
with probability at least 1 − 𝑘−1

𝑒 due to (9.41).

As derived in Theorem 9.1, the SN-DNN min-norm control policy (9.17) of
Lemma 9.2 enhances the SN-DNN terminal guidance policy of Lemma 9.1 by
providing the explicit spacecraft delivery error bound (9.27), which holds even un-
der the presence of the state uncertainty. This bound is valuable in modulating
the learning and control parameters to achieve a verifiable performance guaran-
tee consistent with a mission-specific performance requirement as to be seen in
Sec. 9.4.II.

As illustrated in Fig. 9.6, the expected state tracking error bound (9.27) of Theo-
rem 9.1 decreases exponentially in time if 𝜍 𝑡 (𝑍𝑠, 𝑡𝑠) is a non-increasing function
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Figure 9.6: Illustration of the expected position tracking error bound (9.27) of
Theorem 9.1, where 𝜍 𝑡 (𝑍𝑠, 𝑡𝑠) is assumed to be a non-increasing function in time.

in 𝑡. The following example demonstrates how we compute the bound (9.27) in
practice.

Example 9.1. Suppose that the estimation error is upper-bounded by a function that
exponentially decreases in time, i.e., we have

𝜍 𝑡 (𝑍𝑠, 𝑡𝑠) = 𝑒−𝛽(𝑡−𝑡𝑠)
√︁
∥œ̂𝑠 − œ𝑠∥2 + ∥𝑥𝑠 − 𝑥𝑠∥2 + 𝑐

for (9.24) in Assumption 9.1, where 𝑐 ∈ R≥0 and 𝛽 ∈ R>0. Assuming that 𝛼 ≠ 𝛽,
𝛽 ≠ 𝜆, and 𝜆 ≠ 𝛼 for simplicity, we get

RHS of (9.27) ≤ 𝑒−𝜆𝑡 𝑓 (∥𝑝𝑠 − 𝑝𝑑 (𝑡𝑠)∥ + 𝑐𝑒)

+ 𝑒
−𝜆𝑡 𝑓 − 𝑒−𝛼𝑡 𝑓
𝛼 − 𝜆

(�̄� + 1) (∥𝑥𝑠 − 𝑥𝑑 (𝑡𝑠)∥ + 𝑐𝑒)√︁
𝑚sc(𝑡 𝑓 )

+ 𝐿𝑘

𝑚sc(𝑡 𝑓 )

(
( 𝑐𝑒

𝛼 − 𝛽

(
𝑒−𝜆𝑡 𝑓 − 𝑒−𝛽𝑡 𝑓

𝛽 − 𝜆 − 𝑒
−𝜆𝑡 𝑓 − 𝑒−𝛼𝑡 𝑓
𝛼 − 𝜆

)
+ 𝑐
𝛼

(
1 − 𝑒−𝜆𝑡 𝑓

𝜆
− 𝑒
−𝜆𝑡 𝑓 − 𝑒−𝛼𝑡 𝑓
𝛼 − 𝜆

) )
(9.43)

where 𝑡 𝑓 = 𝑡 𝑓 − 𝑡𝑠. Note that the bound (9.43) can be computed explicitly for given
𝑥𝑠 and œ̂𝑠 at time 𝑡 = 𝑡𝑠 as long as œ̂𝑠 ∈ Ciso(�̄�iso) and 𝑥𝑠 ∈ Csc(�̄�sc). Its dominant
term in (9.43) for large 𝑡 𝑓 is 𝐿𝑘𝑐/(𝑚sc(𝑡 𝑓 )𝛼𝜆) due to the following relation:

lim
𝑡 𝑓→∞

RHS of (9.43) =
𝐿𝑘𝑐

𝑚sc(𝑡 𝑓 )𝛼𝜆
.
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The bound 9.27 of Theorem 9.1 can be used as a tool to determine whether we
should use the SN-DNN terminal guidance policy of Lemma 9.1 or the SN-DNN
min-norm control policy (9.17) of Lemma 9.2, based on the trade-off between them
as to be seen in the following.
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On-board Navigation
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Figure 9.7: Mission timeline for encountering an ISO, where 𝑦(𝑡) is the state
measurement as in Fig. 9.2 and the other notation follows that of Lemma 9.1 and
Theorem 9.1. Terminal G&C (Neural-Rendezvous) is performed using the SN-
DNN guidance and min-norm control policies online as in Algorithm 1, thereby
enabling fast response autonomous operations under the large ISO state uncertainty
and high-velocity challenges. Note that the SN-DNN is trained offline.

9.4.II Neural-Rendezvous
We summarize the pros and cons of the aforementioned terminal G&C techniques.

• The SN-DNN terminal guidance policy of Lemma 9.1 can be implemented in
real-time and possesses an optimality gap as in (9.11), resulting in the near-
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Algorithm 1: Neural-Rendezvous
Inputs : 𝑢ℓ of Lemma 9.1 and 𝑢∗

ℓ
of Lemma 9.2

Outputs: Control input 𝑢 of (9.1) for 𝑡 ∈ [0, 𝑡 𝑓 ]
𝑡0 ← current time
Δ𝑡 ← control time interval
𝑡𝑘 , 𝑡𝑑 , 𝑡int ← current time − 𝑡0
flagA, flagB← 0
while 𝑡𝑘 < 𝑡 𝑓 do

Obtain œ̂(𝑡𝑘) and 𝑥(𝑡𝑘) using navigation technique
if flagA = 0 then

𝑢 ← 𝑢ℓ (𝑥(𝑡𝑘), œ̂(𝑡𝑘), 𝑡𝑘)
else

if flagB = 1 then
𝑢 ← 𝑢∗

ℓ
(𝑥(𝑡𝑘), œ̂(𝑡𝑘), 𝑡𝑘)

else
Compute RHS of (9.27) in Theorem 9.1 with 𝑡𝑠 = 𝑡𝑘
if RHS of (9.27) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

𝑢 ← 𝑢ℓ (𝑥(𝑡𝑘), œ̂(𝑡𝑘), 𝑡𝑘)
else

𝑢 ← 𝑢∗
ℓ
(𝑥(𝑡𝑘), œ̂(𝑡𝑘), 𝑡𝑘)

flagB← 1

Apply 𝑢 to (9.1) for 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘 + Δ𝑡]
while current time − 𝑡0 < 𝑡𝑘 + Δ𝑡 do

if flagB = 0 then
Integrate dynamics to get 𝑥𝑑 and œ𝑑 of (9.14) form 𝑡int

if integration is complete then
Update 𝑥𝑑 and œ𝑑
𝑡𝑑 , 𝑡int ← 𝑡𝑘 + Δ𝑡
flagA← 1

else
𝑡int ← time when S/C stopped integration

𝑡𝑘 ← 𝑡𝑘 + Δ𝑡

optimal guarantee in terms of dynamic regret as discussed below (9.5) and
in Lemma 9.1. However, obtaining any quantitative bound on the spacecraft
delivery error with respect to the desired relative position, to either flyby or
impact the ISO, is difficult in general [7].

• In contrast, the SN-DNN min-norm control policy (9.17) of Lemma 9.2, which
solves the problem 9.1 of Sec. 9.1, can also be implemented in real-time and
provides an explicit upper-bound on the spacecraft delivery error that decreases
in time as proven in Theorem (9.1). However, the desired trajectory it tracks
is subject to the large state uncertainty initially for small 𝑡𝑠, resulting in a large
optimality gap.
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Based on these observations, it is ideal to utilize the SN-DNN terminal guidance
policy without any feedback control initially for large state uncertainty, to avoid
having a large optimality gap, then activate the SN-DNN min-norm control once
the verifiable spacecraft delivery error of (9.27) of Theorem (9.1) becomes smaller
than a mission-specific threshold value for the desired trajectory (9.14), which is to
be updated at 𝑡𝑑 ∈ [0, 𝑡 𝑓 ] along the way as discussed in Remark 9.6. The pseudo-
code for the proposed learning-based approach for encountering the ISO is given in
Algorithm 1, and its mission timeline is shown in Fig. 9.7.

Again, the role of offline learning in Neural-Rendesvous, with the size of the neural
network selected to be small enough for real-time implementation, is to deal with
the limited computational resources of the spacecraft in solving any nonlinear opti-
mization with non-negligible online computational load, including the one of MPC
with receding horizons. This also enables utilizing Neural-Rendezvous in more
challenging and highly nonlinear G&C scenarios as to be seen in Sec. 10.2, where
solving even a single optimization online could become unrealistic.

Remark 9.7. We use 𝑡int in Algorithm 1 to account for the fact that computing 𝑥𝑑
could take more than Δ𝑡 for small Δ𝑡 and 𝑡𝑘 as pointed out in Remark 9.6, and
thus the spacecraft is sometimes required to compute it over multiple time steps.
It can be seen that the SN-DNN terminal guidance policy 𝑢ℓ is also useful when
the spacecraft does not possess 𝑥𝑑 yet, i.e., when flagA = 0. Also, the impact of
discretization introduced in Algorithm 1 will be demonstrated in Sec. 10.1.III, where
the detailed discussion of its connection to continuous-time stochastic systems can
be found in [32].

9.5 Extensions
In this section, we present several extensions of the proposed G&C techniques for
encountering ISOs, which can be used to further improve certain aspects of their
performance.

9.5.I Optimal Lyapunov Functions and Other Types of Disturbances
The Neural-Rendezvous approach in Algorithm 1 is based on the feedback control
of Lemma 9.2, constructed using the non-negative function 𝑉 of (9.22). In general,
we can always construct such a feedback control policy as long as there exists a
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Lyapunov function V : R𝑛 × R𝑛 × R≥0 ↦→ R≥0 [33, p. 154] and control policy
𝑢 = 𝜇(𝑥,œ, 𝑡) that satisfies

𝑘1∥(𝑥 − 𝑥𝑑)∥2 ≤ V(𝑥,œ, 𝑡) ≤ 𝑘2∥(𝑥 − 𝑥𝑑)∥2 (9.44)
𝜕V
𝜕𝑡
+ 𝜕V
𝜕œ
¤œ + 𝜕V

𝜕𝑥
( 𝑓 (𝑥,œ, 𝑡) + 𝐵(𝑥,œ, 𝑡)𝜇(𝑥,œ, 𝑡)) ≤ −2𝛼V(𝑥,œ, 𝑡) (9.45)

∀𝑥,œ ∈ R𝑛 and 𝑡 ∈ R≥0, where 𝑘1, 𝑘2, 𝛼 ∈ R>0, and 𝑢, 𝑓 , and 𝐵 are given in (9.1).
The combination of such V and 𝜇 is not necessarily unique, and many studies
have discussed optimal and numerically efficient ways to find them, as partially
summarized in [7]. For example, contraction theory [7], [34]–[36] uses a squared
differential length V = 𝛿𝑥⊤𝑀 (𝑥,œ, 𝑡)𝛿𝑥 as a Lyapunov-like function, allowing the
systematic construction ofV and 𝜇 of (9.44) and (9.45) via convex optimization to
minimize an upper bound of the steady-state distance between the controlled and
desired system trajectories [32], [35]. The computational burden of these approaches
can be significantly reduced by using machine learning techniques [7], [37]–[39].

It is worth emphasizing that since our proposed feedback control of Lemma 9.2
is also categorized as a Lyapunov-based approach (which can be verified for V =

𝑉 + 𝜖 (𝑝 − 𝑝𝑑)⊤Λ(𝑝 − 𝑝𝑑), where 𝑉 and Λ are given in (9.20) and 𝜖 ∈ R>0 is as
defined in [40, pp. 54-55]), we can show that it is robust not only against the state
uncertainty of (9.1), but also deterministic and stochastic disturbances resulting from
e.g., process noise, control execution error, parametric uncertainty, and unknown
parts of dynamics as shown in [7], [41], [42].

9.5.II Stochastic MPC with Terminal Chance Constraints
We could utilize the expectation bound (9.27) in the guidance problem to compute a
risk-constrained policy using terminal chance-constrained stochastic optimal control
problem formulation in [43], with probabilistic guarantees on reaching the terminal
set. This approach improves the quality of the solution that is approximated by an
SN-DNN as in Theorem 9.1. Using the same notation as in (9.3) of Sec. 9.2.I, the
chance-constrained stochastic optimal control problem is described as follows:

𝑢∗(𝑥(𝜏), œ̂(𝜏), 𝑡, 𝜌) = arg min
𝑢(𝑡)∈U(𝑡)

E

[∫ 𝑡 𝑓

𝜏

𝐽S (𝜉 (𝑡), 𝑢(𝑡))𝑑𝑡 + 𝐽S 𝑓 (𝜉 (𝑡 𝑓 ))
]

(9.46)

s.t. 𝑑𝜉 (𝑡) = 𝑓 (𝜉 (𝑡), 𝜑𝑡−𝜏 (œ̂(𝜏)), 𝑡)𝑑𝑡 + 𝐵(𝜉 (𝑡), 𝜑𝑡−𝜏 (œ̂(𝜏)), 𝑡)𝑑𝑡
𝑠.𝑡. 𝑑𝜉 (𝑡) = + 𝐺 (𝜉 (𝑡), 𝜑𝑡−𝜏 (œ̂(𝜏)), 𝑢(𝑡))𝑑𝒲(𝑡), ∀𝑡 ∈ [𝜏, 𝑡 𝑓 ]
s.t. E(𝜉 (𝜏)) = 𝑥(𝜏), 𝑥(𝑡 𝑓 ) ∈ XS 𝑓
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where 𝐽S 𝑓 and 𝐽S are given transient and terminal cost functions, 𝐺 : R𝑛 × R𝑛 ×
R≥0 → R𝑛×𝑤 is a matrix-valued diffusion coefficient for stochastic disturbance,
𝒲 : R≥0 ↦→ R𝑤 is a 𝑤-dimensional Wiener process [44, p. 100] (see also [44, p.
xii] for the notations used), and the terminal constraint set XS 𝑓 is defined using a
quadratic chance constraint as follows:

XS 𝑓 = {𝑥 ∈ R𝑛 | P
[
(𝑥 − 𝜌)⊤𝑄X 𝑓 (𝑥 − 𝜌) ≤ 𝑐 𝑓

]
≥ 1 − 𝜖 𝑓 },

where 𝑄X 𝑓 ≻ 0, 𝑐 𝑓 ∈ R≥0, and 𝜖 𝑓 is the risk measure. The terminal set defines the
encounter specifications (position, velocity, and their variance, respectively) with the
ISO. Unlike the formulation given in (9.3), the problem (9.46) explicitly accounts for
the stochastic disturbance resulting from the ISO state uncertainty in its dynamics,
leading to a more sophisticated offline solution that can be obtained using the
generalized polynomial chaos-based sequential convex programming method [43].

9.5.III Multi-Agent Systems in Cluttered Environments
The optimization formulation with chance constraints in Sec. 9.5.II is also useful in
extending our proposed approach to a multi-agent setting with obstacles, where each
spacecraft is required to achieve its mission objectives in a collision-free manner. It
allows expressing stochastic guidance problems as deterministic counterparts [43]
so we could exploit existing methods for designing distributed, robust, and safe
control policies for deterministic multi-agent systems, which can be computed in
real-time [39], [45], [46].

9.5.IV Discrete-Time Systems
Although this chapter considers a continuous-time system and we discretize it when
implementing the proposed algorithm as discussed in Remark 9.7, where the impact
of discretization is to be demonstrated in Sec. 10.1.III, we could also start from a
discrete-time system and analyze robustness and stability in a discrete sense, which
can be performed by replacing the stability constraint (9.45) with its discrete versions
introduced in [32], [34], [47]–[51].

9.5.V Robustness of Neural Networks
As discussed in Remark 9.4, there are several ongoing studies in the field of machine
learning that view a neural network as one form of a dynamical system, so their
robustness performance could be analyzed using the techniques of Lyapunov and
contraction theory described in Sec. 9.5.I. These approaches typically rewrite a neu-
ral network as a discrete-time dynamical system, and utilize the stability constraint
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of Sec. 9.5.IV as either a regularization loss or a structural constraint of neural
networks [23]–[26], [52], [53]. This permits us to augment them with stronger
robustness and stability guarantees that could further tighten the optimality gap of
Theorem 9.1.

9.5.VI Online Learning
The proposed learning-based algorithm is based solely on offline learning and
online guarantees of robustness and stability, but there could be situations where the
parametric or non-parametric uncertainty of underlying dynamical systems is too
large to be treated robustly. As shown in [7], robust control techniques, including our
proposed approach in this chapter, can always be augmented with adaptive control
techniques with formal stability [17], [54]–[57] and with static or dynamic regret
bounds [58], [59] for online nonlinear control problems [60].
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C h a p t e r 10

ADDITIONAL NUMERICAL SIMULATIONS AND EMPIRICAL
VALIDATION

[1] H. Tsukamoto, S.-J. Chung, B. Donitz, M. Ingham, D. Mages, and Y. K.
Nakka, “Neural-Rendezvous: Learning-based robust guidance and control
to encounter interstellar objects,” AIAA J. Guid. Control Dyn., under review,
Aug. 2022.

[2] B. P. S. Donitz, D. Mages, H. Tsukamoto, et al., “Interstellar object acces-
sibility and mission design,” in IEEE Aerosp. Conf., 2022.

[3] H. Tsukamoto, B. Rivière, C. Choi, A. Rahmani, and S.-J. Chung, “CART:
Collision avoidance and robust tracking augmentation in learning-based
motion planning for multi-agent systems,” in IEEE Conf. Decis. Control,
under review, 2023.

Real-world systems always involve unmodeled uncertainties not just in their state,
but also in the dynamics, environment, and control actuation, which could all
lead to destabilizing and unexpected behaviors different from what we learned and
observed in simulations with a nominal problem setting. As discussed in the previous
chapters, our learning-based approaches are shown to be provably robust against
these uncertainties, thereby helping to reproduce the nominal simulation results
seamlessly in real-world environments. We access the validity of this argument using
several numerical simulations with external perturbation and empirical validation
with actual hardware, performed as part of the ISO exploration project and the
CASTOR project in collaboration with NASA JPL.

Remark 10.1. In order for readers to easily understand the motivations of this
chapter, let us recall that the discovery and exploration of ISOs are challenging
for three main reasons: 1) they are not discovered until they are close to Earth,
meaning that launches to encounter them often require high launch energy; 2) their
orbital properties are poorly constrained at launch, generally leading to significant
on-board resources to encounter; and 3) the encounter speeds are typically high (>
10 of km/s) requiring fast response autonomous operations. Our approach, Neural-
Rendezvous, can be viewed as one way to realize such autonomous operations,
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especially when the computational resource of the agent is limited and not sufficient
to perform nonlinear optimization in real time.

Also, when we consider more challenging and highly nonlinear G&C scenarios,
solving even a single optimization online could become unrealistic. This chapter
also discusses such cases in distributed, high-conflict, and optimal guidance and
control of swarms of UAVs.

10.1 Numerical Simulations for ISO Exploration
Our proposed framework, Neural-Rendezvous, is demonstrated using the data set
that contains ISO candidates for possible exploration [1] to validate if it indeed
solves Problem 9.1 introduced earlier in Sec. 9.1. PyTorch is used for designing and
training neural networks and NASA’s Navigation and Ancillary Information Facility
(NAIF) is used to obtain relevant planetary data. A YouTube video that visualizes
these simulation results can be found at https://youtu.be/8h60B_p1fyQ.

10.1.I Simulation Setup
All the G&C frameworks in this section are implemented with the control time
interval 1 s unless specified, and their computational time is measured using the
MacBook Pro laptop (2.2 GHz Intel Core i7, 16 GB 1600 MHz DDR3 RAM). The
terminal time 𝑡 𝑓 of (9.4) for terminal guidance is selected to be 𝑡 𝑓 = 86400 (s), and
the wet mass of the spacecraft at the beginning of terminal guidance is assumed to
be 150 kg. Also, we consider the SN-DNN min-norm control (9.17) of Theorem 9.1
designed with Λ = 1.3 × 10−3 and 𝛼 = 8.9 × 10−7. The maximum control input
is assumed to be 𝑢max = 3 (N) in each direction with the total admissible delta-V
(2-norm S/C velocity increase) being 0.6 km/s.

10.1.II Dynamical System-Based SN-DNN Training
This section delineates how we train the dynamical system-based SN-DNN of
Sec. 9.2 for constructing the leaning-based terminal guidance algorithm.

10.1.II-A State Uncertainty Assumption

For the sake of simplicity, we assume that the spacecraft has access to the estimated
ISO and its relative state generated by the respective normal distribution N(𝜇, Σ),
with 𝜇 being the true state and Σ being the navigation error covariance, where
Tr(Σ) exponentially decaying in 𝑡 as in Example 9.1. In particular, we assume
that the standard deviations of the ISO and spacecraft absolute along-track position,

https://pytorch.org/
https://naif.jpl.nasa.gov/naif/
https://youtu.be/4KPaqSpFMEU
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cross-track position, along-track velocity, and cross-track velocity, expressed in the
ECLIPJ2000 frame as in JPL’s SPICE toolkit, are 104 km, 102 km, 10−2 km/s,
and 10−2 km/s initially at time 𝑡 = 0 (s), and decays to O(101) km, O(100) km,
O(10−4) km/s, and O(10−4) km/s finally at time 𝑡 = 𝑡 𝑓 = 86400 (s) in the along-
track and cross-track direction, respectively, which can be achieved by using, e.g.,
the extended Kalman filter with full state measurements and estimation gains given
by 𝑅 = I𝑛×𝑛 and 𝑄 = I𝑛×𝑛 × 10−10.

Remark 10.2. As discussed in Remark 9.1, G&C are the focus of our study and
navigation is beyond our scope, we have simply assumed the ISO state measurement
uncertainty given above partially following the discussion of [1]. The assumption
can be easily modified accordingly to the state estimation schemes to be used in each
aerospace and robotic problem of interest. See Sec. 10.1.III-A for more discussion.

10.1.II-B Training Data Generation

We generate 499 candidate ISO and spacecraft ideal trajectories based on the ISO
population analyzed in [1], and utilized the first 399 ISOs for training the SN-DNN
and the other 100 for testing its performance later in this section. We then obtain
10000 time and ISO index pairs (𝑡𝑖, 𝐼𝑖) uniformly and randomly from [0, 𝑡 𝑓 ) ×
[1, 399] ∪ N and perturbed the ISO and spacecraft ideal state with the uncertainty
given in Sec. 10.1.II-A to produce the training samples (𝑥𝑖, œ̄𝑖, 𝑡𝑖) of (9.9) for the
control input loss (i.e., the first term of (9.8)). The training data samples for the state
trajectory loss (i.e., the second term of (9.8)) are obtained in the same way using
the pairs generated uniformly and randomly from [0, 3600] × [1, 399] ∪ N, with
Δ𝑡𝑖 of (9.9) fixed to Δ𝑡𝑖 = 10 (s). The desired relative positions �̄�𝑖 in (9.9) are also
sampled uniformly and randomly from the surface of a ball with radius 100 km.

The desired control input samples 𝑢mpc(𝑥𝑖, œ̄𝑖, 𝑡𝑖, �̄�𝑖) and desired state trajectory
samples 𝜑𝑡𝑖+Δ𝑡𝑖mpc (𝑥𝑖, œ̄𝑖, 𝑡𝑖, �̄�𝑖) of (9.9) are then generated by solving (9.5) using the
sequential convex programming approach and by numerically integrating (9.7) using
the fourth-order Runge–Kutta method, respectively, where the terminal position
error is treated as a constraint ∥𝑝𝜉 (𝑡 𝑓 ) − 𝜌∥ = 0 in (9.4), the cost function of (9.3)
is defined with 𝑐0 = 0, 𝑐1 = 1, and 𝑃 (𝑢(𝑡), 𝜉 (𝑡)) = ∥𝑢(𝑡)∥2 as in Remark 9.2, and
the control input constraint 𝑢(𝑡) ∈ U(𝑡) = {𝑢 ∈ R𝑚 | |𝑢𝑖 | ≤ 𝑢max} 𝑢𝑖 is used with 𝑢𝑖
being the 𝑖th element of 𝑢 and 𝑢max = 3 (N). Note that the problem is discretized
with the time step 1 s, consistently with the control time interval.

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/frames.html
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10.1.II-C Training Data Normalization

Instead of naively training the SN-DNN with the raw data generated in Sec. 10.1.II-B,
we transform the SN-DNN input data (𝑥𝑖, œ̄𝑖, 𝑡𝑖, �̄�𝑖) as follows, thereby accelerating
the speed of learning process and improving neural network generalization perfor-
mance:

SN-DNN input =
(
𝑝𝑖 − �̄�𝑖,

𝑝𝑖 − �̄�𝑖
𝑡 𝑓 − 𝑡𝑖

+ ¤̄𝑝𝑖, �̄�𝑖, 𝑡 𝑓 − 𝑡𝑖, �̄�𝑧,𝑖, 𝐺 (𝑝𝑖, œ̄𝑖)
)

(10.1)

where 𝑥𝑖 = [𝑝⊤𝑖 , ¤̄𝑝⊤𝑖 ]⊤, 𝐺 (𝑝,œ) is given in (9.2), and �̄�𝑧,𝑖 is the 𝑖th training sam-
ple of the orbital element 𝜔𝑧 given in [2], which is the dominant element of the
matrix function 𝐶 (œ) of (9.2). We further normalize the input (10.1) and output
𝑢ℓ (𝑥,œ, 𝑡, 𝜌; 𝜃nn) of the SN-DNN by dividing them by their maximum absolute
values in their respective training data.

10.1.II-D SN-DNN Configuration and Training

We select the number of hidden layers and neurons of the SN-DNN as 6 and 64, with
the spectral normalization constant (𝐶𝑛𝑛 of Definition 6.2 in [3]) being 𝐶𝑛𝑛 = 25.
The activation function is selected to be tanh, which is also used in the last layer not
to violate the input constraint 𝑢(𝑡) ∈ U(𝑡) = {𝑢 ∈ R𝑚 | |𝑢𝑖 | ≤ 𝑢max} 𝑢𝑖 by design.
Figure 10.1 shows the terminal spacecraft position error (delivery error) and control
effort (total delta-V) of the SN-DNN terminal guidance policy trained for 10000
epochs using several different weights 𝑐𝑢, 𝑐𝑥 ∈ R≥0 of the loss function (9.8) in
Sec. 9.2, where its weight matrices are given as 𝐶𝑥 = 𝑐𝑥 diag(I3×3, 107 × I3×3) and
𝐶𝑢 = 𝑐𝑢I3×3. The results are averaged over 50 simulations for the ISOs in the test set
without any state uncertainty. Consistently with the definition of (9.8), this figure
indicates that

• as 𝑐𝑥/𝑐𝑢 gets smaller, the loss function (9.8) penalizes the imitation loss of the
control input more heavily than that of the state trajectory, and thus the spacecraft
yields smaller control effort but with larger delivery error, and

• as 𝑐𝑥/𝑐𝑢 gets larger, the loss function (9.8) penalizes the imitation loss of the
state trajectory more heavily than that of the control input, and thus the spacecraft
yields smaller delivery error but with larger control effort.

The weight ratio 𝑐𝑥/𝑐𝑢 of the SN-DNN to be implemented in the next section is
selected as 𝑐𝑥/𝑐𝑢 = 102, which achieves the smallest delivery error with the smallest
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standard deviation of all the weight ratios in Fig. 10.1, while having the control
effort smaller than the admissible delta-V of 0.6 km/s. Note that we could further
optimize the ratio with the delta-V constraint based on this trade-off discussed above,
but this is left as future work. The SN-DNN is then trained using SGD for 10000
epochs with 10000 training data points obtained as in Sec. 10.1.II-B.

Remark 10.3. The trend of Fig. 10.1 is also due to the fact that the delivery is treated
as a hard constraint by MPC in this chapter as can be seen in (9.3). In general, the
best choice of the ratio 𝑐𝑥/𝑐𝑢 will depend on how the motion planning is formulated
and solved to sample training data (see, e.g., [4] for indirect approaches and [5]
for direct approaches).

Figure 10.1: Control performances versus weight ratio of the SN-DNN loss. The
shaded area denotes the standard deviations (±2.5 × 10−1𝜎 for the spacecraft deliv-
ery error and ±5 × 10−2𝜎 for the control effort).

10.1.III Neural-Rendezvous Performance
Figure 10.2 shows the spacecraft delivery error and control effort of Neural-
Rendezvous of Algorithm 1, SN-DNN terminal guidance of Sec. 9.2, PD guidance
and control (i.e., PD control constructed to track a pre-computed and fixed desired
trajectory, which is a JPL baseline), robust nonlinear tracking control of [6, pp.
397-402] (i.e., nonlinear sliding mode-type control for general Lagrangian systems
to track a pre-computed and fixed desired trajectory), and MPC with linearized dy-
namics [7], where the SN-DNN min-norm control (9.17) of Theorem 9.1 is activated
at time 𝑡 = 𝑡𝑠 = 26400 (s). It can be seen that Neural-Rendezvous achieves ≤ 0.2 km
delivery error for 99 % of the ISOs in the test set, even under the presence of the
large ISO state uncertainty given in Sec. 10.1.II-A. Also, its error is indeed less
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than the dominant term of the expectation bound on the tracking error (9.27) of
Theorem 9.1, which is computed assuming the estimation error is upper-bounded
by a function that exponentially decreases in time as in Example 9.1. Furthermore,
the SN-DNN terminal guidance can also achieve ≤ 1 km delivery error for 86 % of
the ISOs, and as expected from the optimality gap given in (9.11) of Lemma 9.1,
the control effort of Neural-Rendezvous is larger than that of the SN-DNN guidance
and MPC with linearized dynamics, but it is still less than the admissible delta-V of
0.6 km/s for all the ISOs in the test set.

Figure 10.2: Control performances versus ISOs in the test set (400-499), where 𝑒 𝑓 is
the right-hand side of bound (9.27) in Theorem 9.1, the admissible delta-V (2-norm
S/C velocity increase during the terminal guidance) is assumed to be 0.6 km/s, and
each result shown above is the average of 10 simulations performed for each ISO.

Figure 10.3 then shows the spacecraft delivery error and control effort of Neural-
Rendezvous of Algorithm 1 and SN-DNN terminal guidance of Sec. 9.2, averaged
over 100 ISOs in the test set, versus the control time interval. Although both
of these methods involve discretization when implementing them in practice as
pointed out in Remark 9.7, it can be seen that Neural-Rendezvous enables having
the delivery error smaller than 5 km with its standard deviation always smaller than
that of the SN-DNN guidance, even for the control interval 600 s (10 min). Since
the MPC problem is solved by discretizing it with the time step 1 s as explained
in Sec. 10.1.II-B, and the SN-DNN min-norm control (9.17) of Theorem 9.1 is
designed for continuous dynamics, Neural-Rendezvous yields less optimal control
inputs for larger control time intervals, resulting in larger delivery error and control
effort as expected from [8].
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Figure 10.3: Control performances versus control time interval, where each result
shown above is the average of 10 simulations performed for all 100 ISOs in the test
set (400-499). The shaded area denotes the standard deviations (±1𝜎 both for the
spacecraft delivery error and control effort).

The performance of the nonlinear MPC (the optimization-based solution we aim to
reproduce with machine learning) in this mission is shown in Figure 10.4, where the
robust nonlinear MPC is the nonlinear MPC with the min-norm feedback control
of Theorem 9.1. The performance comparison between our learning-based control
approaches and the MPC is summarized in Fig. 10.5. Comparing the SN-DNN
guidance with the nonlinear MPC, we can see that that optimality gap is 1.37×10%
on average for the control effort, while the SN-DNN delivery error is 1.82 × 102%
larger than that of the MPC due to the lack of the delivery error guarantee, unlike
Neural-Rendezvous. In contrast, the Neural-Rendezvous delivery error is only
5.84 × 10−3% larger than that of the robust nonlinear MPC at the slight expense of
the control effort 5.48% larger than that of the robust nonlinear MPC. This is thanks
to the formal probabilistic bound obtained in Theorem 9.1 equipped on top of the
SN-DNN guidance, as expected.

Finally, as shown in Table 10.1, we can see that all the methods presented in this
section including our proposed approaches, except for the global solution obtained
with the nonlinear MPC, can be computed in ≤ 1 (s) and thus can be implemented
in real-time. The observations so far imply that the proposed approach indeed
provides one of the promising solutions to Problem 9.1 of Sec. 9.1. The simulation
results summarized in this section are visualized at https://youtu.be/8h60B_p1fyQ
as illustrated in Fig. 10.6.

https://youtu.be/4KPaqSpFMEU
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Figure 10.4: Control performances versus ISOs in the test set (400-499). Each result
shown above is the average of 10 simulations performed for each ISO.

Figure 10.5: Performance comparison between our learning-based approaches and
MPC. Each result shown above is the average of all ISOs in Fig. 10.2 and Fig. 10.4.
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Table 10.1: Computational time of each method for the ISO encounter averaged
over 100 evaluations.

Average computational time for one step (s)

Neural-Rendezvous 8.0 × 10−4

SN-DNN 5.7 × 10−5

Nonlinear robust control 1.2 × 10−4

PD control 4.3 × 10−5

Linear approx. MPC 1.5 × 10−4

Global solution 2.0 × 103

Figure 10.6: Visualized Neural-Rendezvous trajectories for ISO exploration, where
yellow curves represent ISO trajectories and blue curves represent spacecraft trajec-
tories. More details can be found here.

https://youtu.be/4KPaqSpFMEU?t=210
https://youtu.be/4KPaqSpFMEU?t=210
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10.1.III-A Numerical Simulations at NASA JPL

The comparison of the performance of Neural-Rendezvous with the JPL state-
of-practice autonomous navigation systems for small bodies, including ISOs, is
discussed in [9]. Neural-Rendezvous is demonstrated to outperform them under
realistic ISO state uncertainty in terms of the spacecraft delivery error, under mild
GNC assumptions. Note that the uncertainty history is derived from an autonomous
optical navigation orbit determination filter, as is used in the AutoNav system [10],
where a Monte-Carlo analysis simulating AutoNav performance is run to provide
state estimation error versus time results.

10.2 Empirical Validation for ISO Exploration
Applying deep learning-based algorithms to real-world systems always involves un-
modeled uncertainties that may not be captured in numerical simulations. Using the
incremental stability-based analysis as in the proof of Theorem 9.1, we can further
show that Neural-Rendezvous guarantees robustness against bounded and stochastic
external disturbances and uncertainties in the dynamics and control actuation, in-
cluding the SN-DNN learning error, in a partially unknown environment [3] as seen
in the previous chapters. Such a strong mathematical guarantee helps us reproduce
the simulation results seamlessly in real-world hardware experiments, inherently
with various sources of uncertainties.

10.2.I Spacecraft Simulators
We first test the performance using our spacecraft simulator called M-STAR [11]
and epoxy flat floors for spacecraft motion simulation with the Vicon motion capture
system (https://www.vicon.com/). We have 14 motion capture cameras on the ceiling
of this facility, with an IMU mounted on each spacecraft simulator for estimating
the pose. The flatness of the epoxy floor is maintained within 0.001 inches for
frictionless translation of the spacecraft dynamics using 3 flat air-bearing pads, so
we can properly demonstrate its motion in deep space. Each simulator has 8 thrusters
in addition to the 3 air-bearing pads mounted at the bottom, which are to be used
for controlling its position and attitude as in actual spacecraft. The left-hand side of
Fig. 10.7 shows the spacecraft simulators and the ISO model used for this empirical
validation.

https://www.vicon.com/
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Figure 10.7: Robotic platforms. Left: Multi-Spacecraft Testbed for Autonomy
Research (M-STAR). Right: Crazyflie, a versatile open-source flying development
platform that only weighs 27 g.

10.2.I-A Relating M-STAR Dynamics to Spacecraft Dynamics Relative to
ISO

Although the M-STAR actuation works as in spacecraft in deep space due to the
epoxy flat floor and thruster-based control, its dynamics given in [11] is different
from the one we consider in Chapter 9 as (9.1). Also, due to the spatial limitation of
the facility, we need to scale down the position, velocity, and control input of (9.1)
to the ones of M-STAR (see Table 10.2).

Table 10.2: Scales of the state and control in each dynamics.

S/C w.r.t. to ISO M-STAR

Position (km) O(106) O(10−3)
Velocity (km/s) O(101) O(10−4)
Control (km/s2) O(10−5) O(10−5)

To this end, we consider the following state 𝑥sim and time 𝑡sim:

𝑥sim = [𝑝sim, 𝑣sim]⊤ =

[
𝑝(𝑡) − (𝑝(0) + ¤𝑝(0)𝑡)

𝑐𝑝
,
¤𝑝(𝑡) − ¤𝑝(0)

𝑐𝑣

]⊤
, 𝑡sim =

𝑡

𝑐𝑡
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where 𝑡 is the actual time of (9.1), 𝑝 is the position of the spacecraft relative to the
ISO as in (9.2), and 𝑐𝑝, 𝑐𝑣, and 𝑐𝑡 are constant scaling parameters. Taking the time
derivative of 𝑥sim with respect to 𝑡sim, we get

𝑑𝑥sim
𝑑𝑡sim

= 𝑐𝑡 [ ¤𝑝sim, ¤𝑣sim]⊤ =

[
𝑐𝑣𝑐𝑡

𝑐𝑝
𝑣sim,

𝑐𝑡

𝑐𝑣𝑚sc(𝑡)
(−𝐶 (œ) ¤𝑝 − 𝐺 (𝑝,œ) + 𝑢)

]⊤
where œ is the ISO state, 𝑢 is the spacecraft control input, and𝐶 and𝐺 are the matrix
functions defined in (9.1) and (9.2). To be dynamically consistent, we select 𝑐𝑝, 𝑐𝑣,
and 𝑐𝑡 to satisfy 𝑐𝑣𝑐𝑡/𝑐𝑝 = 1. If we allocate the control input of the 8 thrusters of
M-STAR to have its 3-dimensional acceleration vector 𝑢sim as follows:

𝑢sim =
𝑐𝑡

𝑐𝑣𝑚sc(𝑡)
(−𝐶 (œ) ¤𝑝 − 𝐺 (𝑝,œ) + 𝑢),

then we can convert the control input 𝑢 obtained by Neural-Rendezvous to the
spacecraft simulator control input 𝑢sim, to be applied to the scaled-down M-STAR
dynamics. Note that these procedures rewrite the dynamics as the double integrator
dynamics, which can be easily demonstrated using the generalized pseudo-inverse
control allocation scheme proposed in [11].

10.2.I-B Experimental Setup and Results

We select NVIDIA Jetson TX2 as the main onboard computer to run the GNC and
perception algorithms, where the software architecture is built on Robotic Operating
System (ROS) framework. The 8 thrusters are controlled at 2 Hz control frequency
(control input every 0.5 seconds) with the motion capture camera system running
at 100 Hz, which encourages the use of computationally efficient, deep learning-
based control schemes in place of optimization-based control schemes. The state
uncertainty in the M-STAR dynamics is added externally assuming the same un-
certainty as in Sec. 10.1 scaled down by the method detailed in Sec. 10.2.I-A. We
select 25 spacecraft relative state trajectories out of the ones given in Sec. 10.1,
which meet the spatial constraint of our spacecraft simulator facility (6.27 m in 𝑥
direction and 8.05 m in 𝑦 direction, see Table 10.2) after the scaling-down proce-
dures in Sec. 10.2.I-A. Note that our spacecraft simulator facility can demonstrate
2-dimensional motion although the spacecraft in the actual mission moves in 3-
dimensional space.

The demonstrated trajectories of the M-STAR are shown in Fig. 10.8 and the trajec-
tories observed in the actual environment are shown in Fig. 10.9. The scaled-down
trajectories of Fig. 10.8 and Fig. 10.9 correspond to the ones of the ISO candidates
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Figure 10.8: Demonstrated Neural-Rendezvous trajectories of M-STAR, where the
shaded yellow circle indicates the expected delivery error bound (the left figure is a
magnified view of the right figure).

400, 405, 406, 407, 408, 422, 425, 426, 430, 436, 437, 438, 439, 460, 461, 462,
463, 479, 480, 481, 490, 491, 492, 493, 494, simulated in Sec. 10.1. As can be
seen from the figures and the movie, Neural-Rendezvous indeed satisfies the prob-
abilistic bound computed by Theorem 9.1, which is indicated by the yellow ball in
Fig. 10.8 and scaled down to the bound of the M-STAR dynamics using the method
of Sec. 10.2.I-A.

10.2.II High-Conflict and Distributed UAV Swarm Reconfiguration
As we briefly mentioned in the introduction, Neural-Rendezvous and its guarantees
are general enough to be used for other G&C problems with completely different
dynamics and objectives. To demonstrate this point, this section considers the
problem of high-conflict reconfiguration of a UAV swarm, where the problem’s
complexity arises from the dynamics’ nonlinearity, the aerodynamic nonlinear in-
teraction between each UAV that acts as external disturbance, and highly nonlinear
and distributed optimization required to efficiently avoid collisions considering the
motions of multiple UAVs at each time instance, even with their limited communi-
cation radius. Another implicit focus of this validation is simply to demonstrate the
performance of Neural-Rendezvous in the 3-dimensional space in addition to the

https://drive.google.com/file/d/1CPVuKlRGM6u0tBCVWnwEZhH_JCgWhib0/view?usp=sharing
https://drive.google.com/file/d/1elE8vhydKUrmPMU8sSEHlDWTGCbQhVpB/view?usp=share_link
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Figure 10.9: Demonstrated Neural-Rendezvous trajectories of M-STAR observed in
the actual environment, illustrated using their light trails. This movie can be found
here.

2-dimensional setup in Sec. 10.2.I. We use 20 crazyflies shown in the right-hand
side of Fig. 10.7, which are designed to be a versatile open-source flying develop-
ment platform to perform various types of aerial robotics research. The product
description can be found here https://www.bitcraze.io/products/crazyflie-2-1/.

10.2.II-A Problem Statement

Given multiple crazyflies, our objective is to intelligently and distributedly control
each UAV to move to randomized and high-conflict target positions from random-
ized initial positions, optimally in a distributed manner. We solve nonlinear motion
planning problems to sample target guidance and control inputs that minimize total
control effort during the entire flight, using the sequential convex programming
approach. The training is performed in a distributed manner as in [12], so we can
use local observations to account for centralized global solutions even with the de-
centralized implementation of the G&C algorithm. The distributed communication
radius is set to 2 m and the initial and target positions are randomly sampled from a
3-dimensional cuboid (𝑥 ∈ [−1.25, 1.25], 𝑦 ∈ [0.60, 1.90], and 𝑧 ∈ [0.7, 2.7], all in
meters) under the conditions that the distances between the initial and target position
of each UAV are at least 2.00 m apart and the distances between each initial/target
position and the other initial/target positions are at least 0.60 m apart. The collision

https://drive.google.com/file/d/1elE8vhydKUrmPMU8sSEHlDWTGCbQhVpB/view?usp=sharing
https://drive.google.com/file/d/1elE8vhydKUrmPMU8sSEHlDWTGCbQhVpB/view?usp=sharing
https://www.bitcraze.io/products/crazyflie-2-1/
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avoidance constraint is implemented in the optimization using a tall ellipsoid with
the lengths of the principal axes being 0.6 m, 0.6 m, and 1.2 m, in 𝑥, 𝑦, and 𝑧
directions, respectively, considering the downwash effect. The SN-DNN is trained
as in Neural-Rendezvous with the robust learning approach proposed in [13], which
provides machine learning-based nonlinear motion planners with formal robustness
and stability guarantees, even under the presence of learning errors and external
disturbances.

Some example global solution trajectories are shown in the first row of Fig. 10.10.
They are obtained by solving the nonlinear motion planning problem by the sequen-
tial convex programming approach, which takes 4.4817 × 103 s on average with
the MacBook Pro laptop, 2.2 GHz Intel Core i7, 16 GB 1600 MHz DDR3 RAM).
The high-conflict nature of the UAV swarm reconfiguration is implied by the naive
fictitious solution trajectories shown in the second row of Fig. 10.10, which are
computed just with the Buffered Voronoi Cells method [14] for collision avoidance,
without solving the nonlinear motion planning.
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Figure 10.10: Crazyflie nominal position trajectories. First row: global solution
trajectories of 18 crazyfies, found by solving the nonlinear motion planning problem
by sequential convex programming. Second row: naive fictitious solution trajec-
tories obtained with the Buffered Voronoi Cells method [14]. Initial and terminal
positions are consistent with those of Fig. 10.11.

10.2.II-B Experimental Setup and Results

The G&C commands computed by Neural-Rendezvous are sent to crazyfies in real
time over 8 low-latency/long-range radio channels, with their control frequency
being 100 Hz. The software architecture is constructed using crazyswarm, a ROS-

https://drive.google.com/file/d/1_s1ay7VNXJK3aimHfTeqArnuVtF7WVMG/view?usp=sharing
https://crazyswarm.readthedocs.io/en/latest/
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Figure 10.11: Demonstrated Neural-Rendezvous trajectories of 18 crazyfies, where
the circles are their initial positions and the crosses are their target positions. The
first three figures represent randomized experiments without artificial disturbance,
4th figure represents a randomized simulation with artificial disturbance, and 5th
figure represents an experiment with the ISO model (see Fig. 10.12).

based open-source platform for controlling UAV swarms [15]. The pose of each UAV
is estimated using the Vicon motion capture system, and we perform experiments
both with and without artificial external and bounded disturbance acting on each of
the UAV dynamics. When added, the disturbance 𝑑 with ∥𝑑∥ = 0.125 is used for
demonstrating the robustness property of Neural-Rendezvous.

The demonstrated trajectories of the crazyflies are shown in Fig. 10.11 and the
trajectories observed in the actual environment are shown in Fig. 10.12, where the
first 3 figures of Fig. 10.11 represent the randomized experiments without artificial
disturbance, the 4th figure represents randomized simulation with artificial distur-
bance, and the 5th figure represents the experiment with the ISO model depicted
in Fig. 10.12. As implied in the figures and the movie, Neural-Rendezvous suc-
cessfully achieves the high-conflict UAV swarm reconfiguration in a distributed
manner, robustly against the real-world disturbance solving the highly-nonlinear
guidance and control problem. The total 2-norm control effort for the reconfigura-
tion is 1.7597 m/s for Neural-Rendezvous and 1.2901 m/s for the computationally-
expensive global solution (which takes 4.4817 × 103 s to be found on average when
using the sequential convex programming approach on the MacBook Pro laptop,
2.2 GHz Intel Core i7, 16 GB 1600 MHz DDR3 RAM). The optimality gap arises
from the SN-DNN learning error, real-world disturbances, and distributed commu-
nication of the UAVs. The performance is demonstrated up to 20 UAVs as is also
visualized in this movie.

10.3 Numerical Simulations for CASTOR
This section demonstrates one of our frameworks, CART of Chapter 7 [16], for
several motion planning and control problems as part of the CASTOR project in

https://drive.google.com/file/d/1ZFxl6pF-kQC7jfzp7mV95ibaNhXxm2mz/view?usp=sharing
https://drive.google.com/file/d/1elE8vhydKUrmPMU8sSEHlDWTGCbQhVpB/view?usp=share_link
https://drive.google.com/file/d/1elE8vhydKUrmPMU8sSEHlDWTGCbQhVpB/view?usp=share_link
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Figure 10.12: Demonstrated Neural-Rendezvous trajectories of 20 crazyflies ob-
served in the actual environment, illustrated using their light trails. This movie can
be found here.

collaboration with NASA JPL. PyTorch [17] is used for designing and training neural
networks and CVXPY [18] is used to solve convex optimization problems.

10.3.I Illustrative Examples
10.3.I-A General Nonlinear System

Let us first consider a nonlinear dynamical system (7.7) with 𝑓 𝑖 given as (10.2)

𝑓 𝑖 (𝑝𝑖, 𝑣𝑖, 𝑡) =
[

cos(𝑝𝑖1)𝑝
𝑖
2 − 𝑣

𝑖
1 + 𝑣

𝑖
2

− sin(𝑝𝑖2)𝑝
𝑖
1𝑣
𝑖
2 + (𝑣

𝑖
1)

2 − 𝑣𝑖2 − 2𝑣𝑖1𝑣
𝑖
2

]
(10.2)

where 𝑁 = 1 (number of agents) and 𝑀 = 5 (number of obstacles). Our safety filter
and robust filter are constructed using the methods outlined in Chapter 7, where
the state-dependent coefficient matrix is used to construct the contraction metric
of (7.18) as in [8]. This example does not have a clear physical interpretation, but
finding the incremental Lyapunov function is non-trivial as the system is nonlinear
and non-polynomial and the set of CLFs is non-convex [19].

The reference trajectory shown in the left-hand side of Fig. 10.13 is generated
by a baseline contraction-based tracking control law [8] with an initial condition
𝑥(0) = [1.0, 1.0, 1.0, 1.0]⊤, violates a safety constraint at the position indicated by
×. When the disturbance is small (𝑑𝑖 = �̄�𝑖 = 2.0 × 10−5), our safety filter works
without the robust filter thanks to its built-in robustness even with the control interval

https://drive.google.com/file/d/1n8nqE913vMRGbRp5ELNRaLFm_T4iYk-2/view?usp=sharing
https://drive.google.com/file/d/1n8nqE913vMRGbRp5ELNRaLFm_T4iYk-2/view?usp=sharing
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Figure 10.13: Position trajectories of the nonlinear system (7.7) with (10.2) with
small and large disturbance, 𝑑𝑖 = �̄�𝑖 = 2.0 × 10−5 and 𝑑𝑖 = �̄�𝑖 = 2.0 × 10−2 in (7.7),
respectively, which capture the trade-off discussed in (a) and (b) of Sec. 7.5.I-B.

𝑑𝑡 = 0.1, as we discussed in (a) of Sec. 7.5.I-B. Furthermore, since the reference
trajectory uses an incremental Lyapunov-based robust control, this scenario can be
viewed as a demonstration of the CLF-CBF controller. This result thus implies that
the CLF-CBF works well in a nominal setting with a small disturbance, as expected
from the argument of Sec. 7.5.I-C. When 𝑑 and �̄� get larger (𝑑𝑖 = �̄�𝑖 = 2.0×10−2) as
in the right-hand side of Fig. 10.13, however, our safety filter becomes too sensitive
to the disturbance for the control interval 𝑑𝑡 = 0.1, leading to a large control input
and safety violation indicated by ×. This situation can be avoided by using a smaller
control interval 𝑑𝑡 = 0.01, but still, its control input for safety becomes more
dominant than the ideal control input for the reference trajectory even in this case,
taking longer to reach the target position as can be seen from the green trajectory
of Fig. 10.13. The combination of the safety filter and robust filter, CART, indeed
allows for considering robustness separately when applying the safety filter, thereby
handling large disturbances without violating safety and losing too much of the
reference control performance, as discussed in (b) of Sec. 7.5.I-B.

10.3.I-B Thruster-based Spacecraft Simulators

Such a trade-off is more evident in a practical multi-agent robotic system, where
we cannot use a smaller control time interval due to hardware limitations. We next
consider a nonlinear spacecraft simulator system given in [11] with 𝑁 = 6 (number
of agents), 𝑀 = 10 (number of obstacles), and 𝑟sen = 2.0 (m) (sensing radius),
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Figure 10.14: Position trajectories of the spacecraft simulator system [11] with
various disturbances (small: 𝑑𝑖 = �̄�𝑖 = 3.0 × 10−4, medium: 𝑑𝑖 = �̄�𝑖 = 5.0 × 10−3,
and large: 𝑑𝑖 = �̄�𝑖 = 5.0 × 10−2 in (7.7)), which capture the trade-off discussed
in Sec. 7.5.I.

where the control time interval 𝑑𝑡 is required to be 𝑑𝑡 ≥ 0.1 (s). The dynamics
parameters are normalized to 1.

The learned motion planning policy detailed in Sec. 7.6.I is constructed using a
neural network used in [13] with the training process outlined in [12]. It utilizes the
centralized global solution data sampled by solving (7.8) using, e.g., the sequential
convex programming, for the decentralized approximation by the neural network
with the local observation (7.9). The initial and target states of the spacecraft and
the positions of the circular static obstacles in Fig. 10.14 are randomized during the
training and simulation. The cost function for the objective function is selected as
𝑐(𝑥(𝜏), 𝑢(𝜏), 𝜏) = ∑𝑁

𝑖=1 ∥𝑢𝑖 (𝜏)∥2 in (7.8).

As can be seen from Fig. 10.14, we can indeed observe the differences between
each approach as discussed in Sec. 7.5.I with Fig. 7.7 and 7.8. When the size of
the disturbance is relatively smaller than the learning error ((ii) of Fig. 10.14), then
the proposed safety filter works with its built-in robustness (see (a) of Sec. 7.5.I-B).
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Figure 10.15: Position trajectories for the multi-spacecraft reconfiguration task
in LEO [2] with various disturbances (small: 𝑑𝑖 = �̄�𝑖 = 1.0 × 10−2 and large:
𝑑𝑖 = �̄�𝑖 = 5.0 × 10−2 in (7.6)).

The loss of optimality in control results from the presence of disturbance and its
decentralized implementation with distributed information. As the disturbance gets
larger ((iii) – (v) of Fig. 10.14), our safety filter starts to fail. Also, our safety
filter with the CLF-CBF approach starts to yield excessively large control input even
when its QP is solved with a control input constraint (| (𝑢𝑖)𝑘 | ≤ 1.00, 𝑘 = 1, · · · , 𝑛),
which results in additional computational burden for each agent (see (a) – (b) of
Sec. 7.5.I-C with Fig 7.8). Task failure is defined as the situation where at least
one of the spacecraft does not reach the target state. Even when the size of the
disturbance is relatively larger than the learning error ((vi) of Fig. 10.14), CART,
the safety filter equipped with the robust filter, still works, retaining its control effort
4.96 times smaller than that of the CLF-CBF and 8.10 times greater than that of the
optimal solution (see (b) of Sec. 7.5.I-B with Fig. 7.7 and 7.8).

10.3.II Applications to Real-World Multi-Agent Systems
Let us also discuss the potential of our approach in numerical simulations for real-
world aerospace and robotic systems. These are performed as a part of the CASTOR
project in collaboration with JPL.

10.3.II-A Multi-Spacecraft Reconfiguration

We consider the optimal reconfiguration in Low Earth Orbit (LEO) with 10 space-
craft (𝑁 = 10 and 𝑀 = 0), where the distributed learned motion planning policy of
Sec. 7.6.I is trained again using [12] as discussed in Sec. 10.3.I-B with 𝑟sen = 2.0 (m)
for the sensing radius. Its nonlinear dynamical system can be expressed as a La-
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Table 10.3: Control performances for the multi-spacecraft reconfiguration in LEO
averaged over 50 simulations, where 𝐽 =

∫ 𝑡 𝑓
0

∑𝑁
𝑖=1 ∥𝑢𝑖∥2𝑑𝜏.

guidance and control methods success rate (%) control effort 𝐽
global solution (w/o disturb.) 100 1.26
our safety filter (small disturb.) 94.0 4.93
our CLF-CBF QP (large disturb.) 31.6 10.36
CART (large disturb.) 100 5.86

∗small disturb.: 𝑑𝑖 = �̄�𝑖 = 1.0 × 10−2 and large disturb.: 𝑑𝑖 = �̄�𝑖 = 5.0 × 10−2 in (7.6).

grangian system (7.6) as given in [2]. The task success is defined as the situation
where the agent reaches, avoiding collisions, if any, a given target terminal state 𝑥 𝑓
within a given time horizon. The success rate is computed as the percentage of suc-
cessful trials in the total 50 simulations. The initial and target states of the spacecraft
are randomized during the training and simulation. Also, the cost function of (7.8)
is again selected as 𝑐(𝑥(𝜏), 𝑢(𝜏), 𝜏) = ∑𝑁

𝑖=1 ∥𝑢𝑖 (𝜏)∥2 in (7.8).

As implied in Fig. 10.15 and as discussed in Sec. 10.3.I-B, we can still see that
our proposed safety filter works for small disturbances, and CART, the safety filter
equipped with the robust filter, works for large disturbances. Such an observation
can be corroborated by the results summarized in Table 10.3. In particular, CART
augments the learned motion planning policy with safety and robust tracking, result-
ing in its success rate of 100 % with its control effort 4.64 times greater than that of
the optimal solution. Again, the loss of optimality in control results from the pres-
ence of disturbance and the CART’s decentralized implementation with distributed
information.

10.3.II-B Swarm Control of UAVs with Single Rotor Failures

As an example of under-actuated nonlinear systems, let us finally consider the swarm
motion planning and control of UAVs each with one rotor failure [20], [21]. The dy-
namics parameters are selected as the ones of the crazyflie designed to be a versatile
open-source flying development platform to perform various types of aerial robotics
research https://www.bitcraze.io/products/crazyflie-2-1/. Figure 10.16 implies that
our approach, CART, provides the certified safety and robust tracking also in such a
challenging robotic motion planning and control problem, even under the presence
of learning errors and disturbance. Note that the learned motion planning policy

https://www.bitcraze.io/products/crazyflie-2-1/
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Figure 10.16: Position trajectories for the swarm motion planning and control of
UAVs with one rotor failure [20], [21] with disturbance 𝑑𝑖 = �̄�𝑖 = 2.0×10−2 in (7.7).

is obtained using [12] and the simulation is performed for randomized initial and
terminal states, with 𝑁 = 15 (number of agents), 𝑀 = 0 (number of obstacles), and
𝑟sen = 2.0 (m) (sensing radius).
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C h a p t e r 11

CONCLUDING REMARKS

The theoretical contribution of this thesis is twofold. First, we present an overview
of contraction theory, which provides a way to generalize and simplify Lyapunov-
based stability methods for incremental exponential stability analysis of nonlinear
non-autonomous (time-varying) systems (Chapter 2). The use of differential dy-
namics and its similarity to an LTV system allow for LMI and convex optimization
formulations that are useful for systematic nonlinear control and estimation synthe-
sis (Chapter 3 and Chapter 4). Second, various methods of machine learning-based
control using contraction theory are presented to augment the existing learning
frameworks with formal robustness and stability guarantees, extensively using the
results of the first part of the thesis (Chapter 5). In particular, we have derived such
guarantees for deep learning-based feedback control & state estimation (Chapter 6),
motion planning & multi-agent collision avoidance and robust tracking augmen-
tation (Chapter 7), adaptive control & neural net-based system identification and
control (Chapter 8), for nonlinear systems perturbed externally by deterministic and
stochastic disturbances.

11.1 Summary of Presented Methods
Let us summarize the control methods we have discussed so far, revisiting Fig. 11.1
shown also at the very beginning of this thesis in Chapter 1.

As described in Fig. 11.1,

1. if the uncertainty can be treated just robustly, then the NCM and CV-STEM
methods will take care of it and provide us with a near-optimal and robust
control policy, with formal guarantees even under the presence of learning
errors (Chapter 3, Chapter 4, and Chapter 6) [1]–[5];

2. if the uncertainty is linearly parametric, then we can use the NCM-based
adaptive control (aNCM) for online learning with the same guarantees (Chap-
ter 8) [6];
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Figure 11.1: Overview of our learning-based control with formal guarantees, revis-
ited.

3. if the uncertainty cannot be treated robustly and is non-parametric, then we
can model it by the SN-DNN, and treat each term robustly and adaptively in
real-time (Chapter 8) [7];

4. if the target trajectory and true state are unknown, we can use the extensions
of our proposed approach to motion planning and state estimation (Chapter 3,
Chapter 4, and Chapter 7) [2], [8]–[10].

We remark here that there are two different ways of using learning-based control
here: 1) the methods in the blue frame of Fig. 11.1 use learning for replacing heavy
computational load due to the problem complexity and nonlinearity as in meta-
learning, and 2) the methods in the yellow frame of Fig. 11.1 use them for learning
complex and off-nominal scenarios and functions.

The formal guarantees of the methods shown in Fig. 11.1 are essential for their
real-world applications but could be difficult to obtain without accounting for a
contracting property. Especially in situations where ISS and uniform asymptotic
stability-based arguments render nonlinear stability analysis unnecessarily compli-
cated, the use of exponential stability and the comparison lemma in contraction
theory helps to achieve significant conceptual and methodological simplifications.
A connection to the KYP and bounded real lemmas is also shown in the context of
contraction-based incremental stability analysis.
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Considering the promising outcomes of its utilization for model-based learning in
Chapter 5 – 7 and for model-free data-driven learning in Chapter 8, the methods of
contraction theory discussed in this thesis provide important mathematical tools for
formally providing safety and stability guarantees of learning-based and data-driven
control, estimation, and motion planning techniques for high-performance robotic
and autonomous systems. Examples are elucidated to provide clear guidelines for
its use in deep learning-based stability analysis and its associated control design for
various nonlinear systems.

Furthermore, the ISO exploration project of Chapter 9 with the numerical simula-
tions and experimental validation of Chapter 10 imply the real-world applicability
and the superior performance of our approaches. For example, we have developed
Neural-Rendezvous, a deep learning-based terminal G&C framework for achieving
ISO encounter under large state uncertainty and high-velocity challenges, which uses
a minimum-norm tracking controller with an optimal MPC-based guidance policy
imitated by the SN-DNN. As derived in Theorem 9.1 and illustrated in Fig. 9.3 – 9.7,
its major advantage is the formal optimality, stability, and robustness guarantee even
with the use of machine learning, resulting in a spacecraft delivery error bound that
decreases exponentially in expectation with a finite probability. The performance is
validated both in numerical simulations and hardware experiments, which indicates
that it works not just for ISO exploration but for general nonlinear G&C problems,
solving them robustly against real-world disturbances and uncertainties. Having
a verifiable performance guarantee is essential for using learning-based control in
safety-critical robotic and aerospace missions, and our work provides a nonlinear
control theoretical approach to formally meet this need.

Applying learning-based control algorithms to real-world systems always involves
unmodeled uncertainties in the state, dynamics, environment, and control actuation,
which could all lead to destabilizing behaviors different from what is learned and
observed in numerical simulations. Our learning-based approaches are provably
robust against these uncertainties, thereby helping to reproduce the simulation results
in a nominal setting seamlessly in real-world scenarios with various sources of
uncertainties.

11.2 Future Plans
Let us finally mention some of our future directions. Ideally speaking, if we place
a robotic/aerospace explorer in a fully or partially unknown dynamics and environ-
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ment, we expect our to-be-developed autonomous framework should possess the
superior capability of autonomously investigating the dynamical and environmen-
tal properties performing whatever tasks with varying objectives, just like humans,
but much more quickly, accurately, and intelligently with much-needed optimality,
safety, robustness, and incremental stability guarantees in real-time, unlike humans.

11.2.I Performance-based Learning via Contraction Theory
The performance guarantees in my previous approaches depend on GNC parame-
ters pre-tuned to be optimal in a nominal problem setting. In highly autonomous
situations with time-varying/off-nominal dynamics and environments, however, the
pre-computed guarantees can become too conservative to be used as they are. We
could instead utilize the real-time information of the guarantees to actively guide
online learning of the optimal GNC parameters, for the sake of having the best
performance even in such challenging, dynamically changing real-world scenarios.
Using [6] to handle the parameter update, we could develop autonomous systems
with much more radical options to explore in achieving their objectives, but with
the same or increasingly better quality of the performance guarantees.

11.2.II Universal Learning-based Control with Robustness Guarantees
This topic seeks to develop a learning-based nonlinear GNC method that works
for broader types of systems, beyond the ones considered in [7]. One of the most
important yet challenging of these is a system modeled by deep neural networks,
which is worth paying special attention to considering the recent triumphs of machine
learning. A promising direction is to view the network’s layer-to-layer connection
as a dynamical system and apply contraction theory to enjoy superior robustness
guarantees by design, where we can build our learning-based GNC on top of it. Such
a venture to more involved nonlinear systems enhances the nominal performance
guarantees to be optimized online in 11.2.I.

11.2.III Task Objective-driven Meta-learning for Online GNC
As we embark on new frontiers of autonomy, the task objectives should become
more interdisciplinary and dynamic. This would imply that near-future autonomous
systems are required to solve optimization problems in real-time with dynamically
changing definitions of optimality. One way to address this issue is to learn the
latent information shared among all the autonomy tasks offline and extract and
adaptively learn the portion of the problem that dynamically changes in a real-
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world environment online. Assuming we manage to express such information in a
multiplicatively-separable manner, we could still utilize our previous approaches for
online learning with strong incremental stability and robustness guarantees.
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