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ABSTRACT

The Newman-Penrose tetrad equations are set up for the
principal tetrad of a Typzs D gravitational field in vacuum. With
no further assumptions, the equations are integrated, yielding an
exhaustive list of Type D vacuum metrics. The solutions all
possess two commuting Killing vectors and depend on from one to
four arbitrary constants. The Type D fields with expanding rays
are six closely related versions of Kerr-NUT spacé, the Ehlers-
Kundt "C" metric, and a new generalization of the "C'" metric
possessing rotation. For zero expansion we find the three Ehlers-
Kundt "B'" metrics, plus rotating generalizations of each.

The six Kerr-NUT meirics are interpreted as spinning
particles with timelike, lightlike, or spacelike momsantum and
angular momentum vectors occurring in all possible combinations.
The "C'" metric is tentatively identified as a gravitational analog
of the runaway solutions encountered in electrodynamics, i.e., a
point mass executing hyperbolic motion,

Next we consider Type D fields with electromagnetism
present. We find that all of the above vacuum metrics can be
readily "charged' by adding a non-null electromagnetic field whose
principal null vectors coincide with the gravitational ones. We also
discuss some interesting generalizations of the Schwarzschild and
"C'" metrics containing the geometrical optics limit of a null
electromagnetic field which propagates along one principal null
‘congruence, In the Schwarzschild case they generalize Vaidya's
"shining star' metric to include the field of a particle traveling

along an arbitrarily accelerated world-line,
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I. INTRODUCTION

Two of the oldest and most widely known solutions to
Einstein's field equations are the Schwarzschild and Nordstrom
metrics, which describe the gravitational fields of a point mass
~and a point charge respectively. The Schwarzschild vacuum
solution can be "electrified" to yield the Nordstrom solution by -
the simple substitution m » m - ez/r in the metric. (Here e
and m are the charge and mass in suitable units, and r is the
radial co-ordinate defined such that the area of a sphere centered
at the origin is 4rrr2.)

When the Petrov algebraic classification of gravitational
fields was introduced, 1 it was noticed that both of these metrics
are ""T'ype D", which meant in this instance that there is only one
independent component of the Riemann curvature tensor. Other
Type D metrics have been discovered by Levi-Civita, }2 Newman

3,4 Kerr, o and Carter, 6 In each case the solutions exhibit

et al. s
a high degree of syrﬁmetry, and in some cases electrifications
are also known.

Whether by design or coincidence, the Type D solutions
have played key roles in bringing to light many interesting and
unsuspected problems, thereby acting as a stimulus for further
research. We mention in particular the occurrence of event
horizons, 7 the analytic incompleteness of manifolds, 8 the conical
behavior of NUT space, 9 and the hunt for a rotating source to
match the Kerr metric, 10 Finding and understanding more Type D

fields might therefore prove quite useful.
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In this work we will use the Newman- Penrose null tetrad

méthods11

to find all Type D vacuum fields and a wide class of

| Type D fields with electromagnetism prééent. Since the NP
Formalism is unfamiliar to many people, we give a complete |
description of it here. For those who are interested in the results
but not the methods, we give explicitly the metric coefficients for
each solution encountered. Although the primary aim of this work
is derivation rather than description, some first steps toward
‘undérstanding the nature of the solutions are made, Many questions |

remain to be answered.
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II. TETRAD METHODS IN RELATIVITY

A. Importance |

A tetrad field consists of a set of four orthonormal vectors
at each point of space-time. The differential geometry of such a
structure immersed in a general Riemannian manifold was first
considered by Ri.cc112 in 1895, By the 1930's, tetrads were being
used to advantage in connection with General Relativity. The most
‘spectacular success of the tetrad method has come since 1961,
when Sach313 and Newman and PenroseM began using null tetrads
to study gravitational radiation. Today tetrads are used, explicitly
or implicitly, in such a variety of ways with so many different
notations that the essential unity of the subject is often overlooked.
For example, the method of anholonomic co-ordinates of Schouten,15
the differential forms used by Cartan16 and recently Misner, 17 the
curved space spinor calculus pursued by Baade and Jehle, 18 and
also the Fock-Ivanenko coefficien’cs19 are all equivalent to the
introduction of a tetrad field,

The interpretation and significance of the tetrad approach
is a point not universally agreed upon. In the earlier geometrical.
view espoused by Einstein with its emphasis on the metric tensor,
a tetrad was at best an auxiliary field, and often regarded as an
un:fortunate complication. More recently the relative importance
of mefric and tetrad has undergone a complete reversal.

A tetrad provides at each point a local Minkowski refer-
ence frame. For this reason, Estabrook regards it as a natural
extension to General Relativity of the familiar "local observer'

concept of the special theory. I prefer to think that only the



relative orientation of the tetrads at different points is important.
Given a tensor at one point we can define 'the samé_ tensor'" at
other points to be the one with the same tetrad components. In
other words, each choice of the tetrad field defines a particular
"transport",

Next we should consider why tetrads are important, The
immediate answer, of course, is that Einstein's field equations
turn out to be easier fo solve in the tetrad formalism than they
are in terms of tensors, However, there are several deeper
reasons why this is so. First (as we shall show in Equation (I 1))
the array of tetrad vector components forms a "square root of the
metric" in a natural way. In this sense it is a more fundamental |
object than the metric. |

: Second, the tetrad method seems more effective at
isolating the simple gravitational fields for study. In the traditional
approach one requires the metric to take a certain form or to
depend on only a few co-ordinates, and one is guided mainly by
aesthetics. There are examples of recent research in which this
procedure is still being used to advantage. 20 On the other hand,
vector fields have many geometric properties which are both
physically relevant and easy to visualize, For instance they can
be chosen geodesic or hypersurface-orthogonal. The importance
of such choices will be discussed further in Section ITI-C.

There is one more reason for using tetrads in General
Relativity which should not go without mention. It is totally
impossible to introduce spinors in a curved space-timelwithout
using a tetrad field. 21, This is because the group of general co-

ordinate transformations does not possess spinor representations,



The group of tetrad rotations does, since it is just the direct

product of Lorentz groups at every point.

B. ‘General Formalism

To begin the formal development, let the vectors of the’
tetrad be denoted by ha“, where u is a tensor index; and where
a numbers the vectors from 1 to 4 and is called a tetrad index,

Immer products of the vectors,

Eh“

nab a hbu ’

are assumed to be constants and given a priori. For orthonormal
tetrad fields, N, is just the Minkowski matrix, Diag (-1, -1, -1,

1). Denote the corresponding inverse matrices by

a _ , -1

hu. = (b, )_

ab _ -1
- (ﬂab) .

The completeness relation is

8 = huahvbnab. (IL 1)
Then the following interpretation is a natural one to
make: 81y’ ha“, Ny, and their inverses are all regarded as
"fundamental tensors, ' i. e., tensors which are used to raise
and lower indices. The guantities ha“ change an index from a
tensor index to a tetrad index or vice versa, while nab raises



and lowers tetrad indices. Thus

T

OAY
Tav - hau Tw

Tab - hauhb\) Tuv
Tub - havnabTw)

are all assumed to be various manifestations of the ""same' tensor
T. This is largely a matter of convention. Then gw', ha“, b
are all manifestations of the same metric tensor g. The processes
of changing from tensor index to tetrad index and back have been
called "strangulation' and "resurrection" respectively. 22

~ Associated with a tetrad field are several different types
of derivative. A semicolon will be used to denote the usual co-
variant derivative, which ignores tetrad indices and treats haLl as
a set of vectors. Define

R
A = ha

av v T

This field is known as the '"Ricci rotation coefficient”23
and is central in what follows, The strangled components A‘bav

are antisymmetric in a and b, since

" _ W T
(b hy )., = L L



Lét us calculate the change in'the tetrad under an
infinitesimal displacement:

hb“=h‘“‘L 5%’
a ;v

!“‘I‘ =
shy = 0, ,

(I 2)

= Qab " ““bav

Thus A, measures the rotation of the tetrad in the ab
plane when we step in the v direction,

The "intrinsic derivative"zl; of any quantity (say Ta“) with
respect to a given tetrad is obtained by strangling completely,
taking the covariant derivative of the resulting scalar, and then

resurrecting. For example,

S o, b v
Ta v - (Ta ho);vhb . (IL 3)

According to this definition, intrinsic differentiation

commutes with strangulation and resurrection:

b ¢ _ b
huTalv—Talv’a
and also
ht = 0.
a|v

With the help of the Ricci rotation coefficient we can
rewrite the intrinsic derivative in a suggestive form, with a

correction term appearing for each tensor index:



TH =M L IpH
a o

alv a;v v '

The intrinsic derivative is closely related to the concept
of transport. A transport OHV (x, x') is a tensor used to convey
vectors from the point x to the point x'. The transport associated

with a tetrad ha“ is
V! , a v,
Ou (x, x") =_hu(x)ha x).

If we are given Ta"“L at one point X and define it every-

where by transport,

il

TG = T, h e )

then clearly the tetrad components Tab are constants and

One can easily calculate the commutator of successive
intrinsic differentiations. Applied to a tetrad index the commuta‘cor"<

is

T _
Tal[vo] - TaITA [vo] ” (IL 4)

Applied to a tensor index it is

*_ 1
actually one-half the commutator. T, 1 3(T alvo~ Ta| o)



' 3 T
Tiltve1 = THITA fvol © Tuslvol

(1. 5)
T Tp
- A .
* TT(A mlvsol _Apu[v_ . 0])
Recalling that
1 T
Tu;[vo] = -3T,R WUVo

and that strangulation commutes with intrinsic differentiation, we
see that the only way Equations (IL 4) and (IL 5) can be made to
agree is if

T T TP
= - 2 A ]
R Vo 2A uliv;ol App,[\). o] ? (IL. 6)

or equivalently,

T T TO
L= - A
R Vo 24 ulv]o] ZAPH[V' - 0]
(I 7)
T p
24 upA [vol®

As a particular example, apply the commutator to the

. (o4 .
co-ordinates x, which are scalars:

(I 8)
= 80 aT . AO
= & TA [uv] = A

o |
* | [uv] [uv] *
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There is one gap remaining to be bridged. Since Amv
involves a covariant derivative, one would think that the Christoffel
symbols are still necessary to calculate them. However because
of its index symmetry, Amv may be expressed in terms of AT[M\)]
which contains only partial derivatives. Any tensor AMVG’ anti-

symmetric in pu and v satisfies

Auvo N Au[vo]' N Av[cu] * Ao[w] ’ (IL. 9)

The full procedure for calculating Ruvcfr via the tetrad
formalism is as follows: obtain AT[MV] from Equation (IL 8),
A:mv from Equation (IL 9), and then Ruvm from Equation (IL %).

There is a third important type of derivative in tetrad
analysis, called "invariant differentiation. n25 Its definition is
similar to the one for intrinsic differentiation, but this time we
first resurrect all indices, take the covariant derivative of the
resulting tensor, and then strangle. That is,

M M. b o
T, .y = (T,"h 'o);vha . (I 10)
As before, invariant differentiation commutes with

strangulation and

When a tensor T is expressed in terms of its tensor
components TMV , its invariant derivative is identical to its

covariant derivative, For this reason the invariant derivative
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is the natural generalization of the covariant derivative to tetrad
analysis. The invariant derivative can be rewritten using the
b < .

A as:
av

b

Lo oM U
T =T - T A,

a-.v a ;v b
with a similar correction term for each tetrad index.
As can be seen from the definition, Equation (IL 10), the
commutator of two invariant differentiations takes a familiar form,
bringing in the Riemann tensor once for each index:

T M Topugh —lTaTR“T (IL 11)

a-[vc]=_2 b avo 2 N

When Equation (I 10) is substituted into Equation (IL 11)
we get an expression for R“\)OT which agrees with Equation (IL 6).
‘'The Riemann tensor satisfies a Set of 20 equations known

as the Bianchi Identities:

S -
R [oT «p] 0 .

Put in terms of the intrinsic derivative they are

URY _ u AV _ v A
R_ loT|e] Ay [pR oT] A [pR oT]
(IL. 12)

A

MNORMY HY o
-AG[pRy S AT[pr‘f‘*'o)\] 0.

Since we will be considering space-~times containing
electromagnetic fields in later sections, we also need to write

Maxwell's Equations in a form suitable for tetrad analysis, When
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no sources are present, Maxwell's Equations are

F[MV-OJ = 0.

In terms of intrinsic derivatives they become

_ (IL. 13)
T \

Fruvjol - Ax[uéF vl = Aapvetuy =0
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II. NEWMAN-PENROSE FORMALISM

- A. NP Equations

The Newman-Penrose tetrad formalism%‘ is currently
one of the most successful versions of the general tetrad formalism

outlined in Section II

U-’ e M
y Z
timelike and future-pointing, and Tap = Diag (-1, -1, -1; 1), The

Let eX“‘, e s etLl be any orthonormal tetrad with etM

corresponding "quasi-orthonormal' tetrad is defined by

Bt =t =22 e et
Bt o=t =22 - et
h3u‘ = m" = —%fZ (éXlLl + iéy“)‘
h4“ = m" = %fz » (eXH - ieyu) .

With respect to this basis,

0 1
1 0
'rl =
ab 0 -1
-1 0
g =4 n +nd -m m - m m
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Note that 4% and n* are null vectors and m" is complex,
Complex basis vectors are used here as in quantum mechanics
because of their simple behavior under rotations. Under a rotation
about the z-axis m" just picks up a phase factor. Now of course
any set of equations involving an even number of variables can be
trivially cast into complex notation by transforming from x, y to
X * iy, etc. It is normally considered advantageous to do this only
when the resulting equations are free of conjugates; that is, when
they involve only analYtic funétions or anti-analytic functions, not -
a mix’iure of both. We will not be so fortunate, However, the
necessary number of equations will be cut in half, and this is
important since we henceforth abandon the summation convention
for tetrad indices.

The 24 independent tetrad components of Aabc relative to
our orthonormal basis are expressed in terms of 12 complex

functions as follows:

A131 = 'L“mu;v&v = -mufbu;v&v = -
A132 =.L“mu;vn\) = —muéu;vnv = -7
A133 = &umu;vmv = -muéu;vmv = -0
Ajgy = &Mmu;\)l_flv = -m“&u;viﬁv = -p
Agsy = numu;v{,v = —m“nu;v{lv = T
A =p"'m 1n’ = -m"n _n’ =79

232 YY) SRV



Aggs = n“mu;vmv = —m“nu;vmv = A |
Agay = n“musvl—ﬁv = -munu;vfﬁv = U (L 1)
Aoy = &“nu;\)&v = —n“fbu;vév = - (e +_e_)

‘Alz2 = L“nusvnv = —n“f?z“;vnv‘-“- -l(Y +Y)

Agos = {’unu;vmv - 'n%u;vmv = - (a+p)

Agyq = muﬁlu;v&v = -r—numugvfbv = g-c

Agyg = muﬁlu;vnv = -iﬁumu;vnv = y-y

Agys = m“r"ﬁu;vmv = -r'ﬁ“mu;vmv = -0 +B.

The above formulae involve 14 of the 24 independent com-

ponents. The remaining 10 are obtained by complex conjugation;
e g,

. _ M= Voo
Aggg = ¥ my b = Ay

The 10 independent tetrad components of the Weyl tensor*

and the 6 independent components of the Maxwell tensor are denoted

by:

*The Weyl tensor C Vo T is the traceless part of the

Riemann tensor and represents the gravitational field in General

Relativity. In vacuum, C = R
VO T MVoT'



Cis13
1213

4213

Fog =

il

C -5C

1212 1234

=t DOl b=

1
)
e, -
3 “3434 © 2 ~1234
..1#2
Ty
_¢4

C = C

2324 1324 *

_Ep'z ,

- plus the obvious complex conjugate equations.

Finally, the intrinsic derivatives along each tetrad

vector are each given a unique operator symbol:

-

D

ol

(L. 2)



17

With all this formidable terminology the more important

equations of Section II can now be written out in full, for the case

in which the only stress-energy present is eleétromagnetic.
Equation (IL 7) for the Riemann tensor in terms of Aabc becomes:

Dp

Do

Dp

Da

Dy

Sn

Sn

de

A

Ae

i

-+

I

olp + € +€) + 00 - %7
nBa + B - T + 959,

oo +p +3 -¢)-nr-m
E+3B)+¢O

Blo - €) + ola + m) - nlu+7y)
e(E-E)+.¢/1

ofp + € - 2¢) + Bo - Be - uA
wy + o + €) + 950y

o + e =€)+ o + o(T + )
W@y +7) + gy + 9y

alt +m) + B(T + rr’) - v(e + %)

e(y +¥) + 7 - vu + Yo + ByPg

(111, 3a)

(111, 3b)

(IIL 3c)

(111, 3d)

(1. 3e)

(IIL 3£)



D) - &m

Du - om

Dv - AT

6p - 60

6T - Ao
8T - Ap
da - 8B

- 18

Il

Mp-8e+¢€)+m(m+a-B)
+ ou - v'ﬁ+cp0q>2“

ulp-e-¢e)+m(m-a+p)

i

+ox—vm+¢2

T+ vy = ¥) + ut + A1 + )

v(3e +¢) + Yg + Py,

p(a+8) - o(Ba-B) + 7(p - o)
+ nlu - 1) —.:,[/1+CPOC91

= 7(T-a+B)+0(u-3y+Yy)

- ‘n5+CpOCp2

= T(T+a-B)+p(L-v+7)

- cx+nv—¢/2

= oo+ BB - 2aB + up + y(p - p)

- Ao+ e(u-b) - Py + o0,

(. 3g)

(I11 3h)

(1L 31)

(111, 4a)

(I 4b)

(I11. 4c)

(I, 44) -



Eu-ék
AB - by
Aa - By
A - 8v
AN - BV

-+
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—u(n+oc+'é)+ﬁn + (38 - @)

_ , (III.-4e)
Vip - p) + g - 910,
Bly -y - ) +v(a+B-1)-pr
o (IIL. 41)
oV + eV - Ao - 6p1cp2
a(y - ) + (B - 7) + v(p + &)
(IL. 4g)
M8+ T)- 4/3
b +y-y) + v(a+ 38 - T)
_ (IIL. 4h)
VIT - )\7\-+Cp2¢pz
A+ + 3y - )+ vBa+ B
~ (IIL. 4i)
m-1T)- W4

These are usually referred to as the NP Equations.

Equations (III. 3) which contain the operator D are the radial
equations and Equations (III 4) are the non-radial equations.
Maxwell's Equations, Equation (I 13), take the form

= 2pCp1 + (7 - Zoc)qoo - 9, | (I11. 5a)

= (p - 2e)cp2 + 2TTCP1 - A9 (111. 5b)
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Apy - 8%y = (2y —\H)QPO + 279y - 0% (1L 5¢)
Acpl - chz = 2H°P1 + (T - ZB)sz - VCPO 5 | (IH- 5d)

and the Bianchi Identities, Equation (II 12), take the form

Dy - 8y

(4p + 2e)yy + (- dahly - 3y,
+ 9y Doy -9y 80, + 2,0,  (IL6a)
G AC PRI T
Dy = 8y = 3pyy + 2m + Zoc)zpl - 2y,
T MY T R10% ~ Pgh%
- L (I1L. 6b)
+ 20y, Py - APy Py - TRy
+ pPyPq)
Dy =By = (20 - 22y + 3P, - 1 - 20y
- TP Py - BOYPy + €Dy D)
Dy, - dyg = (p - 4e)y, + (47 + Za)y/?) 2
+ P00y - Oy AP, + 2(vchAcp1 (111, 64)
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MYy - By = (4y - Wy - (28 + 470y, + Soy,

- 6@052 - O-Cplal + %Cp]_@z)

Hi

Ay - Sy = 2y - Zu)gbl - 3TYy + 2095 + VY

- APy Py = TH; Py + PPy By)

i

Ay - bg = -3uy, + (2B - 2T)¢/3 + oYy, + 29y
+ Eb_l 6@2 - -‘:EZDCPZ - 2(}'“9151 (IH-Gg)

- m @152 - B_C—p-icpz + €C9252)

1l

Ao - 8, = -(2v + 4)yg + (48 - )Y,
+ CplAcpz - sz 8 sz - 2(chlcp1 (IH. Gh)
- chlaz - Y-C-’Slcxoz + acpz-c—éz) .

Finally there are the commutation relations, Equation (IL 4),

which become

AD -DA = (y+ YY)D+ (e +¢€)A = (T+ms - (T +7)5
$D-D8 = (a+B-mD+#A - (p+¢€=-¢)d~0d

_ (m
8A - A8 = = VD +(T-a-BA+(@-Y+Y)6+20
86 - 88 = (u-uD+(p-p)a+(a-8)d+(8-a)
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Although Equations (IL 3) - (IIL. 6) look very complicated
they contain a great deal of symmetry. There is also a strong

analogy between Equations (III. 5) and (III. 6). *

B. Tetrad Tr_ansformations

In any given space-time an infinity of different tetrad fields
is possible, At each point there are six degrees of freedom corre-
sponding to the six Lorentz transformations which rotate one tetrad
into another. (This is why ha“ has 16 independent components and
g,y only 10.) To investigate the behavior of the NP variables under
a tetrad transformation it is convenient to split the Lorentz group

into three Abelian 2-parameter subgroups, as follows:

1) "Null" rotations which leave 4" fixed. These are

given by
Moo M
m” - "+ at - (I11. 8)

M M —H

n~ - n” +am + am"™

+aad",
where a is an arbitrary complex function of position.

2) Null rotations which leave n* fixed:

*A massless particle of spin s can be described by a
(2s + 1)-component complex field obeying 4s equations. Only
the numerical coefficients depend on s. For s =1, 2 we get
Equations (III. 5), (IIL 6) above, :
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m* - mM + ba* ' : (1I1. 9)

Moo M s pmM + bm* + pbnt.

3) Two rotations which leave the directions of both M

“and n" fixed:

A A'IL“, n"t o Anp* (I11. 10)

m* o et Ot (ITL. 11)
where A and ¢ are real functions.

Actually the analysis will be more transparent if before
considering rotations, we fiI:St consider the two tetrad reflections
m" <= m" and ¢H<> n* .

Under m" <= r?l“, all variables go into their complex

conjugates. Under 4 <= n* s

Yy <~ 54 | n e =y
Yy < Vg p = -1
Vg <> ”.52 o > =%
Py <~ P9 e = -y (I1I. 12)
Py amr ~01 M o< -1
D == o ~=-B

& =%
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Under the null rotation leaving 4" fixed, Equation (IIL 8),

¥yt 2y

Yy A 22y, + 52:,00

Yg + 32y, + 3521//1 + 537,[/0

Yy + 451,[/3 + 6§2g[/2+45:31,b1+5,4§[/0

Py + A

— -2
P + Zacpl + acpo
D
§ + aD

A +as +as + aaD

'T’+ap+5:c5+3-5%
- 2
o + alp +6e) + 2" g
B+ ac + ag + aay
_ ) _
T + 2ae + a # + Da
_ — _2
Yy + ac + a(B+ 1) + aalp+¢) +ao

—2
+ aa

(TI1. '13)
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A - x+E(n+av-_§—?)+§2(p+2€)+53m

+da+aDa
- — -2 -2

o) - W+ am + 2aB + 2aac + 2 o0 + aa u
+ 6a + aDa

v - v+ a\ +§(u+2y)+a§(2a+ﬂ)+52('r+28)
+ a'aiz(p + 2¢) + 3% + a3% + 0B + a%a
+ada + aaDa.

It is now unnecessary to write out the behavior under the

other null rotations, Equation (IIL 9), since this follows immedi-

atély upon interchanging M and oM,
Under the rotations of Equations (IIL 10) and (UL 11),

v - A-zezie%
v - A-leiew1
vy - Wy
vy - ATy
v - A2 216 v
0y - A-1619%
®y v 9
v, = Aclq,
p - Alp
A - AD

ig

5 - e b
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o - AT2elfy | (I, 14)
B . A---1p h |
o - atLe2i0

¢ - Ale-2a%pa+iialpe

. . ie '

o - e—iea——%A_le_ie_éA +—é—ie"iege

B - eieB-—;—A_leieéA +~21-ie1666'

T - el

Y - Ay-%AA+-;:iAAe

A - Ae 218y

w2 Ap

v - AZetity

It can be checked that the NP Equations are covariant
(i.e., go into linear combinations of themselves) under all these

transformations.

C. Geometric Considerations

Next we would like to illustrate the geometric significance
of some of the NP variables. As pointed out in Section II, Equation
(IL. 2), the rotation coefficient Aabc corresponds to a rotation in the
ab plane when we step 6x in the c direction. For example,
traveling along the e congruence we can use the quantities Aabl

- from Equation (III. 1) to find the antisymmetric rotation matrix.
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E T (e D %(-— )m_ m
PASTNE [ V] e v
+ Kn[HmV] + %n[p.f-n\)] (1. 15)

- n.L[MmV] ‘- ™ L[%mv]

Suppose nM, mM, mM are given at one point on a trajectory
of ¢M. Is there now a particularly simple way of choosing nu, mM,
mW at all other points of the trajectory? The freedoms available
are the rotations, Equations (III.8), (III. 10), and (III. 11) listed above.
According to the behavior of g listed in Equation (IIl. 13), we can, by
a suitable null rotation leaving ¢¥ fixed, set 1 = 0. Then from
Equation (III. 14) we see that a particular choice of A and g will

make ¢ = 0 also. Defining the real spacelike vector

a = am_ + am , (111. 16)

we have reduced ¢ to a simple bivector,
uv |

1 _
3 %y T Pt

~ By analogy with the definition for spacelike congruences, 27
we will say a tetrad is "Fermi-Walker transported” along ¢ if and
only if 1 = ¢ = 0. Note that under these circumstances, nM is even
parallel-transported. | ' |

Starting again with an arbitrary tetrad, assume only that
w=0. Then from Equation (III. 1),
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S G R R N mc)&cy " A
. b

e + €)™,

so 4 must now be tangent to a geodesic congruence, X" = H(s.)
and
: M
b dx
L7 = s
The choice of A in Equation (IIL 10) which makes ¢ + ¢ = 0
also makes s an affine parameter. For a geodesic congruence,

a =0 and qu = 0, hence Fermi-Walker transport reduces to

parallel transport.

Corresponding remarks can be made for the n" congruence
and the NP variables v, v, T according to Equation (IIL 12).

If instead we step in a spacelike direction along the
congruence mu, the rotation matrix is

= - (@rRdgny + (a-pmgm,

o
@]
1

+ p nmm\)‘] + 0 nmmv]

IR Tt

From the definition of Dy Equation (IL. 2), only the p and

o terms can change the direction of ¢, For instance (Rep)n[ RN



29

causes 2 to deviate toward m™

, i.e., in the same direction we
are stepping. This can be illustrated by looking down on the mm
2-flat at a bundle of trajectories of M coming out of the page. At
the center of the diagram i points directly out of the page, but a
distance 6x away it has a small transverse component 6&“,

- represented by an arrow:

f Im“ m*

T

s 4 Re m*

Rep measures how much the M congruence is diverging

as it passes through the mm 2-flat, Likewise Imp, Reo, and

M H

Imo describe deviation of 4" in the -im”, m" and im" directions

respectively. The diagrams are:

Re o
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Im o:

Thus Imp measures the rotation of &“, and Reo, Imo
measure two independent shearing motions. _

Once more, by interchanging 4" < n" (Equation (IIL 12))
we see that u, A have the corresponding interpretations with respect
to the n* congruence,

' As a final geometric question we may ask under what
circumstances the vector fields actually mesh to form finite 2-
sﬁrfaces or 3-surfaces. According to the Frobenius Theorem,
the necessary and sufficient condition that an antisymmetric tensor

w in n space be orthogonal to an (n - m)-surface is
Hilg eve B , ,

W W
[yt eev ms M vl]vz ces V

Since the calculations are straightforward only the results
will be given.

1) The vector {IM is hypersurface-orthogonal iff

(I, 17)
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2) The vector Re m, is hypersurface-orthogonal iff-

‘Re("r+"ﬁ) = 0
ImA +u+y~-v) =0 (1. 18)

Imlc+p+e-¢) = 0,

3) The bivector L[Mn\)] is surface-orthogonal iff

Imp = 0
(1I1. 19)
0.

H)

Imp

4) The bivector mmfﬁvj is surface-orthogonal iff
T+T o= 0. (TIL. 20)

5) The bivector Re m[u{;\)] is surface-orthogonal iff

Imn = 0
(I, 21)

Im(p - o~ 2¢) = 0,

| All other cases follow after suitable tetrad reflections.

D. Algebraically Special Fields

Now we turn our attention to the components of the electro-
magnetic field, namely ©gr P10 and P - Assume for simplicity
that o, # 0. (If this is not already the case, a small null rotation,
Equation (IIL 8), will make it so.) Try to find a null rotation,

Equation (IIL 9), to make g ZEro:



32

2
P Cp0+2acp1+acp2-0
P 7 Pyt APy (111, 22)
Py 7 Py .

Equation (III. 22) is a complex quadratic equation and
always has two roots. The corresponding directions of M oare
called the "principal null vectors' of the electromaugnetic field.

They coincide if and only if the discriminant is zero:
@v,)2 - 40,0, = 0
1 072 ’

or equivalently iff a = - cpl/cpz is a root. In this case both D0

Py 0" at once leaving only Pos and we say the field is a "null"
electromagnetic field. * The other two rotations, Equations (III 10)
and (IIL 11), preserve Dy = ®q = 0 but change ¢, arbitrarily, so
the field has no invariants in this case,

If the roots are distinct and o4 # 0, then a null rotation,
Equation (IIL 8), can be used to make Po = ¥y = 0, leaving ®q as
the only component. Both 2" and o™ are then the principal null
vectors. In this case Py is a genuine invariant because it is
invariant under the remaining two rotations, Equations (IIL. 10)

and (III. 11). The usual tensor invariants in terms of ¢y are

*In the familiar 3-vector notation, a null field is one
for whick E - B = 0 and EZ = B2.
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| 1 ) ; 2

1 uvk 2
-3 FLLV F = Im(cpl) .
An analogous situation prevails for the components of the .,

Weyl tensor, Yoo ¥1o Yor Vg Yy Assume Yy has been made
nonzero, and try to use a null rotation, Equation (II. 9), to set

Yo = 0

Yo~ Yo t 4a,gb1 + Gazwz + 4a3zp3 + a4¢/4 = 0
(1. 23)

2 3
¢1 —»zp1+3az,b2+3a a,l/3+a :,04.

Equation (II 23) always has four roots, and the corre-
sponding directions of M are the principa]. null vectors of the
gravitational field. If any of them happen to coincide, the field
is called "algebraically special' and the various ways in which
coincidence can occur lead to the Petrov classification. 29

The condition for a polynomial to have a double root is

that the derivative also have a root there, i.e., that
1,111 + 3azp2 + 3a2¢3 + a3¢4 = 0.

This implies that there is a double root iff Yo =¥y = 0
for some choice of a, All possible cases will now be listed:

Petrov Type I: all roots distinct. By choice of tetrad we can make

*
¥y = ¥4 = 0. The only invariants are then Y ¥ # 0 and 2%

. *We might also distinguish a subcase, Type I-A say, in
which Yy = 0.
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Petrov Type II: one pair of roots coincide. We can make
Yo =¥1= Yy = 0. The only invariant is .

Petrov Type D: two pairs of coincident roots. We can eliminate
all components but 2% which is then an invariant.

Petrov Type IIL: three roots coincide. Set Yo = ¢1_= Yy = z,b4 = 0,
and there are no invariants in this case,

; Petrov Type N: all four roots coincide., We can set everything
zero except ¢ 4 and there are no invariants in this case

either.

In this paper we will be primarily concerned with Type D.

There are several theorems relating to the properties of
algebraically special fields.

The Mariot-Robinson Theorém30 for electromagnetism
states that the principal null vector of a null field in a charge-free
region is geodesic and shear-free. In the NP formalism the proof
of this theorem is trivial: We choose the tetrad such that 4" is the

principal null vector, thereby making o, =®; =0 and ¢, #0.
Then Maxwell's Equations, Equations (IIL 5a) and (IIL 5c) state that
n=o0 =0, thus M s geodesic and shear-free, This theorem
reveals how very special the null fields are; even a beam of light
emerging from a cylindrical lens does have shear, hence is not
null, 4
The analogous result for gravitation is even stronger. The
Goldberg-Sachs Theoremg1 says that the double principal null

vector of any algebraically special vacuum field is geodesic and

shear-free; and conversely, if there exists a geodesic shear-free
null vector field in vacuum, then the Weyl tensor is algebraically

special and has that vector as a double principal null vector. The
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first statement follows immediately from the Bianchi Identities,
Equations (III. 6), when we choose a tetrad to make Yo = ¥y =0, -
The proof of the converse is complicated, and is given in
reference 11. Again the inference to be drawn is that algebrai-
cally special fields are too special to represent realistic radiation.
Even for the linearized radiating multipole solutions, the null
" congruences are clearly not geodesics (straight lines); hence those
fields must be Petrov Type I The same is therefore expected a
fortiori for exact solutions. |
The asymptotic behavior of an isolated radiating source

has been studied in detail by Newman and Unti. 32 Their most
impor?ant conclusion is the Peeling Theorem: that Yy dies off
like r1_5. The true field is Type I, but asymptotic approximations
to it are algebraically special since Yo ~ 0, and the farther we
get from the source the more special the field becomes. Where
Yy~ r—1 is the only surviving component we have reached the
"radiation zone' and Type N. This theorem provides a large part

of the rationale for detailed studies of algebraically special fields.
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1IV. TYPE D VACUUM METRICS

~ In this section we will solve the NP Equations, assuming
only that the gravitational field is a Type D vacuum field. Despite
our use of tetrad methods throughout, we will give explicitly the
metric for each solution.

Choose " and n" to lie along the double principal null

vegtors, thereby making Yo =Wy =¥ =Yy = 0. . By the Goldberg-
Sachs Theorem both ¢ and n* are shear-free geodesicsA, or
n=0=v=\=0, For convenience denote the co-ordinates by
xl =u, x2 =r, X3 = X, X4 =y. We will take them "comoving"
along the M congruence; that is, r varies on a given trajectory
and u, x, y label different trajectories.’k It we choose r such that

- the components of the tetrad may be written

LM

(o, 1, 0, 0)

o= (), U, x5, %Y
1 3 .4
mu = (8 , Wy 7, 8 ):

where X" and U are real and §1, w are complex. By means of the
two tetrad rotations, Equations (IIL 10), (Il 11) which leave the
directions of {" and n" fixed, we may set ¢ = 0. Note that the

%
Any attempt to treat M and o ina symmetrical manner
-would only lead to more complicated equations later on.
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tetrad is still not completely determined, since a further rotation

with DA =D6 = 0

preserves ¢ = 0,

Apply the commutators, Equation (IIL 7), to each of the

co-ordinates to get the NP version of Equations (II 8):

DU
DX
Dw
pe!
68U - Aw

sx! - ae!

Sw - ow=w(a-B)+w@-a)+Ulp-p)+(L-1)

seto 68l = gl -B) + T -3 + X o - 7),

where i runs over

' The Bianchi Identities, Equation (IIL 6), simplify

= (T +m) + B +7) - (v +7)
= §i(?+1‘r) +_€'i(T +ﬁ)

= pw+ (T~ a- B

= o’
= Ulr - a-8)+wl-v+7)

= Xi('r—_o_a— B) +§i(}4~Y+~Y_)

the values 1, 3, 4.

(Iv. 1a)
(IV. 1b)
(1V. 1c)
(Iv. 1d)

(Iv. 2a)
(IV. 2b)

(Iv. 24)

considei*ably under the present assumptions. The only ones

which survive are:

Dwz = 397102
Alpz '3M§D2
Sy = 3 X2

(Iv. 32a)
(Iv. 3b)

| (Iv. 3c)

(Iv. 3d)
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In addition one can derive three important "integrébility
conditions'" by applying the commutators to Yoi '

(AD - DA)QDZ = A(3p§b2) = D(-3H¢2)

3W2(Ap + Dy) (IV. 4)

3¢2[p(\( +7v) - 7(T +m) + 7t +1)]

= Ap +Du ply +y) +mm - TT .

L

Likewise from (&D - Dg)gl/z and (64 - A&)zpz we get:

6p + D = pla +B) (Iv. 5)
6+ AT = ~p(a + ) + T(y - ). (Iv. 6)
The other commutators give no new information.

For convenience here are the surviving radial NP

Equations, Equation (I 3), after all simplifications have been

made:
Dp = p2 | (IV. 7a)
DB = pp (IV. Tb)
Da = plo +1m) (Iv. 7¢)
Dt = p(r +m) (. 7d)
Dy = afr +_ﬁ)+B(TF_+TT)+Tﬂ'+¢2 (IV. 7e)
DM—GTT:—p—}.i+TT(E—a+B)+gU2. (Iv. 1)
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Since D = 3/ar, the solution of Equation (IV. 7a) is easily

seen to be
_ . O0\-1
p = ~(r+ip )~ . (1v. 8)

Here p0 is real, and the superscript O jndicates it
is independent of r. We will attempt to use p in preference to
r as the independeht variable. The solution p =0, obtained by

letting pO - », must be considered separately later.

A. The Case p # 0
1. Radial Integration

An equation for 8p may be derived from the commutator:

(6D -D8)p = 2p8p - Dép
9 - —
= p(@+B-m-pdp,
giving:
— - 9 —
Dép ~ 3pdp = p (m-0a-B) . (Iv.9)

Using Equations (IV. 7a, b, c) the solution of this is

Tp = pla +B) - 27005, IV, 10)
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-0 .. . . . . N
where 7~ is a "constant' of integration, i.e., independent of r.

This result is substituted in Equétion (IV. 5) to get

pr = 27° o3 (Iv. 11)

s
which has the solution
o -0 2
TET 4T pl. - (Iv. 12)

Equations (IV. 1), (IV.3a), (IV.7b-e) can now be integrated
easily one at a time, each one yielding a new complex integration
constant. In this way the radial dependence of every tetrad

variable except u is determined; here are the solutions:

B = 08" . (IV. 13a)
o0 = pao -0 4 pz?o (Iv. 13b)
T o= pn° 4+ p—p_’rO - wo (Iv. 13c)
w =pu’ +3%+8°-7%% - (Iv. 134)

gt = e (IV. 13¢)
Xi - Xoi . pnOEOi + E?]O§01+ pE(?0§°i+rr0 Eqi) (IV. 131)
Wy = 00wy (v. 13g)
v = v 4e0%%-7OT%) + 5(n° 6% - °n®

2,1 - - -0 0
+ 095wy +T0N0) + pp(r0a® + 7087

+ szTo?o + 1%/ (IV. 13h)
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U = UO + p[—T“O(EO_*_ B0‘_ 1’]0) + nO—U-)-O _ 4 1,02
- __,’Dz ]

+ pE(?Owo+'ro-030— T T ) - (p/p)’]‘

- 0, O =0 -0 —0 O
+plt (0 +B -n)+n w

(o] —Q 0] (0]
©/p)7m% = r(° + 7%+ 1°n° + 7°FO)

+ ﬂoao/p—f;.. - (Iv. 13i)

To get expressions for Ap and u we again need to use a

commutator:

(oD - Da)p 204p - DAp

2y 1) - (r+MTp - (T +m)sp .

The last member can be writte.n out in full using Equations
(11 4a), (IV. 10), (IV.12), and (IV. 13). The result is an equation

for Ap which can be integrated to give

bp = -p"M° 4 pP%WC +50) + p(y° + 7%+ 1%0)

+ 17 4+ ppln°@® + 8% - %%+ 79RO
- Qe 11—
n°n°] - (zwz +7%0°) - 9 p[ngo (Iv. 14)

°6° +8%) - 7% @%+8% + T

3— 0—0 - _0—0
p"pT T+ (p/p)r T,

where M° is the constant of integration. Finally we substitute

this into Equation (IV.4) and perform the radial integration for

u, getting
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o 0 —0—0y, — 0.0 2,1, o
Sop s (M-t ) T+ T (FYy
| S | (1v. 15)
+ 701°%) + % 957,?20 + 0251070 L 10RO/

Looking back for a moment, we see that the solution of
Typz D fields would present a far more difficult problem were

it not for some very fortunate circumstances:

1) The Goldberg-Sachs Theorem makes many NP

variables zero.
2) Three "bonus' integrability conditions arise.

3) The non-radial derivatives all disappear from
Equations (1L 3).

4) The variables after radial integration are simple

power series in p and p .

2. Reduction of the Non-radial Equations

In the second stage of the solution we complete the
elimination of r from the remaining NP Equations. We substitute
the above results into the non~radial NP Equations and equate
coefficients of like powers of p, p . (Care must be taken since
p and p are not independent variables; they are linked by
o - p = 2ip°%07.) Inthis manner we obtain differential equations
involving §Oi and XOi, and also some purely algebraic constraints
among the integration constants,

To find the derivatives of p° we differentiate Equation

(1Iv. 8) for o :
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sp = (0 +1p9) 2(6r +1860%) = p2(w+1i50%) (IV. 16a)
To = p2(w+150°) o (IV. 16b)
Ap = pz(U +i809) . _ (Iv. 16¢)

When these are expanded and compared with Equations
(I, 4a), (IV. 10) and (IV. 14) they yield the following information:

5*90 = -p°('oZ°+ g° - no) - it0 4 Ziy(po)z%'fo - (IV. 17a)

X.0% = %00 + 70+ 27°7) + 21(v° - B1°)

+ i(r%n° - 7979 (IV. 17b)
o = -ip%(@% + 8% - %) - 2(:°)% 7O (V. 117¢)
00 = -3+ M°) + n°6° + 3% + 7030 + 6%

- %1% + 1% 17070 4 1p%0 %0 - 7°7°), @ 17d)

where the obvious shorthand £ - p° = £%5°,1 and X+ ° = X%%°, i
has been introduced.

The three non-radial Bianchi Identities, Equations
(IV. 3b-d), provide the derivatives of Y, :

£ . ,1[/20 = _3,’p20(—&0 +g° - no - Zipoﬁ 0) (1Iv. 18a)
-5.4,20 = _3¢2°(d° +89 (1vV. 18b)
X. 1’020 = _31‘[/20(«{0 + _Y‘O + p,o + nOTTO + -ﬁoﬁo) . (Iv. 18c)

Now for convenience we write out the remaining NP

Equations:
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5T V=‘T(T-—C-X—,+B) | (IV. 19a)

po =BT = - T(THa-B) 4 oly +T)+ (1v. 19b)
D=8 o= o+ (T - o+ B) + Yy (IV. 19¢)
3 o= -m{m + o - B) (Iv. 19d)

8a - 8B =OL—O—L+B_§-20LB+QU.+Y(p-E)-gD2 (IV. 19¢)

B = -l +oa+ B) + um . | (Iv. 19f)
am o= -m(u 4y - Y) - uT | " (V. 19g)
AB -6y = -B( - 2y +Y) + y(a-T) -puT (IV. 19h)
Aa -8y = -aln - ¥) + y(B - 1) - (v, 19i)
M o= —ule + ¥y +v). (Iv. 19j)

We now proceed to substitute Equations (IV. 13) into

the above. Substitution in Equations (IV. 19a,b) gives the

. s o o
derivatives of 1", TO, n :

g.n° = -n°E°% - 3% - u° . (IV. 202)
E.m° = -n°@® -89 ~ (IV. 20Db)
.10 = 1933° + 89 (Iv. 20c)
.19 = —T?(ao‘ +38°%-7° 4210 - 2ip°M°

N .21. (o - ¥p") | (IV. 20d)
£-n® = -n°23° - 1° - 2ip°7°) + 2:°7° (Iv. 20e) .
E.n® = -20°8° - ° - &°) + 27°7°. (IV. 20f)
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Equations (IV. 19c, d) merely confirm these results.
Equation (IV. 19¢e) yields '

. €-oco—7€f- B0 = ZBO(EO'G.o)+23‘lp0('Yo+HO+CX.Oﬁ0

(v, 21)
+ Boﬂ’o) + MC + 2(p0)2 n°w O,

Equation (IV. 19f) yields the derivatives

E. 0 = 12@® +§0) - Zipoﬁoﬂo + (1\/10 + 'I\—/Io)ﬂo

+2i0°m°7 0RO 4 4(%%)2 7O (IV. 222)
£ M = a4+ B0) + Wy + 2y 0 - 27O
+27%m%° + 41p°7%%7° (IV. 22b)

and a very important relation,

T, | (Iv. 23)

When this last constraint is introduced, many of the
above results simplify. If we differentiate it and compare with
Equation (IV. 20f) we get another condition,

MO - W© = 21 %10 + 4T°F° - 8(:%%n0 RO ; (Iv. 24)

and since the real part of the right-hand side must vanish, we
have also

2710 4 2797° = 8(,°)%n°T 0 +1,°0° - 19 . (IV. 25)
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Resuming substitution in the NP Equations, we get from
Equations (IV.6), (IV.19g-j):- ' |

© = O + %) +210%°7° + (M° + MO)FO

E.pu° =
+ 8(:°7%)%n° (IV. 26a)
g M = -2M°(° +8°) + 3{52"%0 +210°7°%0M°
+ 4M°) + 161077 - 16177 T O ° |
- 16(:%)2 07 ° (IV. 26b)
X710 = °°-79 (Iv. 26c)
1% = %040+ 370) 4 5y ° - T
- 2i0°M°7C + 43 On® (IV. 26d)
Xeo?-F v = -a®@%+v%) + 8% +210%n°G°
+ 1% - o704 g% & MOn© 4+ 27°%0ORO
(Iv. 26e)

+4(poﬂo)zﬁfo
X-8%-2-9% = g% - v+ 27%) +a%°
_ ZipO;ﬁO(YO + cx’O-ﬁO _ BOTTO) + MO'ﬁO

+ 27%7°7° & 4(,%) 2T 070 (IV. 26%)

Xl = —plu ey +79 +2ip%°7°° - 19 (Iv. 26g)
X+ M0 = 20O 4 +70) - (0,0 - 7,007
+ 41 p°MOn%mO - 2497 4 6(90)2”0?’;0@0
(Iv. 26h)

- EO) - 8i po’]‘o‘ﬂ'oﬂ'oﬁo



47

. .,k
and an algebraic constraint,

Differentiation of Equation (IV. 25) leads to

0 0 0—-0

ﬁo(zpzo- 1/720) = —2u0T0+4ipOi\7I0_1‘fo— 8ip rmow”,

| Finally, Equations (IV.2) give only

£ 'XOI -X. 501 = (U-O + 2;0 _ 2ip0ﬂ0ﬁ70)§01

+ Zipoﬂ"oﬁo—ém + (Zipoﬁo _ —&o _ BO)XOi
8% 808 = (-2 - 210172 & (28°

_ ZipO-ﬁ,O)—gOl -9 i‘pOXOI .

| (Iv. 261)

(Iv. 27)

(IV. 28a)

(Iv. 28b)

The lengthy algebra encountered in the derivation of

these equations has been verified by a FORMAC computer

program on the California Institute of Technology's IBM 7094.

To simplify the equations further we must use the

tetrad freedom which remains, Under the rotations of Equations
(I 10), (IIL 11) with DA = D6 = 0, some of the recently introduced

tetrad variables transform as follows:

*
It is interesting to note that this constraint is implied
only by the very last equation to be used, Equation (IV, 19j).
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m° - n° exp(-i0)

T - TOAZ

o 0,3
Vg = Yy A

° - %A% .

exp(ie) - (IV 26)

Select A such that wzo {z?zo becomes a constant. Then
Equations (IV. 18) tell us that

(0]

2% +8°-2ip°T% =0 (IV. 30a)

y0+§o+uo =0 , ’ - (IV. 30D)

Select 8 such that n° is real and non-negative, It
is actually advantageous at this point to abandon the complex

notation and work with real and imaginary parts. To this end

0O o

let us define four new functions bo, t’, V7, and m° by:

8% = b0+ 1p%n° | | (IV. 31a)
© = 2(9%n° + it° | (IV. 31b)
vO = U° & 4(%°n%)? (Iv. 31c)
ol = m® +i0-20°V0 + 40%° + 8(:°)° (1% (IV. 31d)

A comparison of Equations (IV. 202, b), (IV.30a)
and the reality of n° and uo show that b° is real and

uo = -4m°p° .
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Then from Equations (IV. 25) and (IV. 27), t° and m°

sk
are also real. From Equations (IV. 26c), (IV, 30b), (IV. 17d)
and (IV. 24), we find

Yo = Zboﬁo
M° =

-v0 - 2in®%¢° - 4i0°m°0° + 8(p0rr0)2 .

Every quantity has now been expressed in terms of
real functions. Furthermore when we carry this change of
variables into Equations (IV. 17), (IV.20), (IV.21), (IV.22),
(IV. 26), (IV. 28) we make the remarkable discovery that

and likewise for to, TTO, v° and m®! In other words they are all

effectively functions of a single co-ordinate. The only equations
remaining to be solved are

g.0% = ¢° (IV. 32a)
e. 10 = 2000 - (%)% ()2 (IV. 32b)
e-n® = 2p°n° (IV. 32¢)

E3
| It n° = 0, Equations (IV. 25), (IV.27) are identities and give
no information. However in that case, 6 is not yet well-defined.
We can use 6 to make t° = -i1° real and non-negative, and then
the reality of m® follows from Equations (IV. 20c, d).
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g.V° = -3m°n° (IV. 32d)
e m® = 12(:%%°V° - 24 %%

- 48(p9* (%3, (IV. 32¢)

and
g-b2+E-b° = VO - 49?2 - 12(,%n%)2 (IV. 33a)
B g 80 o gpPECog0h L 94,001 (IV. 33b)
g x% . x. g% = 91,0020~ %) | (IV. 33¢)
3. Solutions
At this point it is necessary to distinguish several

cases,

CaseI) n°=1t%=0. These are the NUT metrics.
Since they were treated thoroughly in reference 3, a rigorous
derivation will not be given here. However they will be
recovered as a limiting case of our other solutions.

In all the remaining cases at least one of the variables
po, v° is non-constant and hence may be used to define the co-
ordinate x3 =X, e.g., o® = po(x). Then x93 - 0 and 503 is real.
By co-ordinate transformations

u - ou -+ f(x,vy)
(Iv. 34)

y - v+ ek, ¥y,

make §01, §04 imaginary.
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Case II) 1° =0, t®#0. In this case V° and 1[/20 are both
constants., Define the co-ordinate x by setting pQ = ax + b, where
"a, b are also constants. Then Equations (IV. 32a, b), (IV. 33a)

become
3503 = 0
Ce%x =’
€% = 2v°

3

implying that €0 s b° also are functions of x alone. Integration

gives
€32 = v + Bxx C (IV. 35)
where B, C are constants. Equation (IV. 33b) implies

0

I

(4

b4
03 _01
(S ),X

0304
SN

- i(ax + b),

with solutions

4 . . 3
e%* = ij(y)/e° | _
01 o -% jax? - ibx + ik(y)]/§03 .

it

(Iv. 36)

By further co-ordinate transformations of the form
of Equation (IV, 34) we may eliminate k and set j= 1. The

resulting tetrad is
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M= (0, 1, 0, 0)

o = op? b2, VOr? 4 mr + [bt - a%C], 0, 2a)  (IV. 37)

m' = 5([- 5 iax® - ibx1/5, 0, 5, i/5),
where

€ =VOX2+BX+C
_ . -1
p = -(r + iax + ib)

(Iv. 38)
:,bzo = m + it

4 = aB - 2bV°.

A detailed discussion of this solution and a presentation
of the metric will be postponed until the remaining cases have

been dealt with,
Case 1) t° =0, n° 74 0. In this case ¢ =0 and
:,020 = _@20 = const. Define the co-ordinate x by V° = wx + v,

where w, v are also constants. Equations (IV. 32d, c), (IV.33a)

become
W€03 = —3mTTO
03 _ 0 ‘
g 4 = 2b (Iv. 39)
?
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Their integration gives

03)‘2 =1WX3+VX2+BX+C.

(3 3

Equation (IV. 33b) implies

03 .04
= 0
€% ,

. 1=03 .01 _
(S )’X-o,

with solutions

i

9% = 15y
IV, 40)

01 = ik .

Once more, by the co-ordinate transformation of
Equation (IV. 34) we can set j =1, k = 0. The resulting tetrad

is

M=, 1, 0,0
= [1, wor?e?(x + 3m/wr)/9m?, 0, 0] (V. 41)
m" = [0, -wrg(x)/sm, -£(x)/r, -i/re(x)]

where

52(}() = —31—WX3 +vx2 + Bx + C , (Iv. 42)
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“and gz(x + 3m/wr) is the same cubic polynomial of its argument.
Here again we have left the tetrad slightly more general than

necessary, to facilitate the later discussion.

Case 1IV) m° #0, t© # 0. Recall that 503 and m° are
functions of a single co-ordinate x. Under ‘x - f(x) we may set
%03‘ equal to any function of x. Fix x by demanding 503 = dT‘ro,
where d is a real scaling parameter to be chosen in a moment,

Equations (IV, 32a, b) imply -

o] _ 0,3 ,.,2
p,XX = -8(p ) /d” . (Iv. 43)

The general solution is
0% =a cnl (2a/2/d)(x - xo)] ,

where cn is a Jacobian elliptic function™ of modulus k = %—/ 2,
and a, x are integration constants. A simple redefinition of x

permits us to set d = -2a/2, X, = 0. Then:

. 0
po = acnx

(IV. 44)

’to = 2f2a2ﬁ0snxdnx.

Equation (IV. 18a) is

>kThe elliptic functions of modulus k = sin 45° are somewhat
special, lying midway between the circular (k= 0) and the hyper-
bolic (k= 1) functions. For another vacuum metric which utilizes
these functions, see reference 33.
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o . 0 O
g - wz = Glp WZ ’
which has the solution

1P20 = (m+if«)(dn><-%if2 snx)° - (IV. 45)

where m, 4 are constants. Therefore

m® = Re 1//20 = m(dnsx - —g-dn X snzx) v

9 (Iv. 46)

+ L(—g—/z dn Xsnx-%fz sn3x) .

We substitute this into Equation (IV. 32d) and get

Vo,x = %/2 a_l [m(dn3xv - —g—dn X snz X)
+ L(—g—fz dnzx sn x - ;}/2 snsx)] ,

hence
VO=b+s/2a  menx-4/2dm ) enx,  (V.47)
where b is a constant.

Now if we put these findings into Equation (IV. 32e) we
. 0,2
get an equation for (m)":
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2 _ 1, -2
)

snxdnx[(ﬂ’o)zj < " Cn3X @) = --4-ba" cn X

H

+—i%\/2 ma™3 sn’x +%fff a”3 an’x )

with the solution

(Tro)2 = csnxdnx .-a-% ba 2 en’x

(Iv. 48)

3cnx(msnx+fb‘/2dnx),e

1, .-
- -8- J2 a
where c is a constant.
~ Finally, the solution of Equations (IV.33b, c) for
i=1, 4 is |

oi

X Dlsnx+E1an

(IV. 49)

gOi = —%i\/-z (‘[TO)—l (—Di dn x + '%Ei Sn X) .

By a co-ordinate transformation, Equation (IV, 34),
we set D' = 8.4 and E* 2611" and the resulting vacuum

solution is

M= (0, 1, 0, 0)
M = %L, U, 0, x4 (IV. 50)
m” = - %/2_'5[- —zl—i(ﬂo)—lsn X, /2 ﬂ"o(r2

+ 3a20n2x), 4an®, i(rro)-ldn x]

where
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p = -(r+ia cnx)"1
'X1 =dnx+/2app(renx+a/2snxdnx)snx
X4 =snx-2/2applrenx+a/2snxdnx)dnx

U= V- 7a2(ﬂ=0)2 cnzx +2ar/2 (ﬂ"o)z < * r‘?'(rro)z

b

+ rop[m® + 82> /2 (rro)z sn x dn x] (1Iv. 51)

+poplat’cenx+ 2t 2 enx - 1)(rr0)2]

L0 = Im:,lxzo = -m/2 (%dnzxsnx-%sn3x)

+ L(dn3x - —g-dn X snzx) ,

mo, VO, (1T0)2 are given by Equations (IV. 46) - (IV. 48), and
a, b, ¢, 4, m are all constants.

The non-zero metric components are

8y = -2U dnzx - (X4 _TTO)Z (Jc'2 + az anx)
gur = dnx
By = - %\/2 a—l (r2 + Saz cn2 x) dn x
guy = -Usnxdnx+ X1X4(ﬂ‘0)2 (:r2 + az cnzx)
1 (1Iv. 52)
gry = 5 SnX
By = " -1% (a 1”ro)-2 (r2 +afen?x
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i

1 -1,2 2 2
gxy -—8-f2a (r” + 3a“ en"x) sn x

- %— U snzx - (X1 TTO)Z (r2 + az cn2x) .

I

Syy
There is one degree of freedom left in the tetrad,
namely Equation (IIL 10) with A constant. I may be used

‘to set a = 1, leaving four arbitrary parameters in this solution.

This concludes the list of solutions for p # 0.

4, Discussion

The most obvious fact about all of these solutions is
that the tetrad components depend only on two co-ordinates, r
and x. Hence they all possess at least two Killing vectors,*

namely

[H

V{J,

wt

(1, O, O’ 0)

i

©, 0, 0, 1) .

Since Y, ~ r™3 for large r, the solutions;zre all
asymptotically flat at r » =, Misner has emphasized® ~ that
this does not necessarily imply the existence of a global co-
ordinate system which is asymptotically Minkowskian, How-
ever, in case one does exist, at r - = the Killing vectors
must tend to some combinations of space-time translations

N .
A vector V" is a Killing vector if gw(x“) = gw(X“+V“da)

where da is an infinitesimal parameter. Thus VM is the generator
of a group of mappings of the space onto itself which do not distort

the geometry.
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and rotations in a flat background metric,

Let us begin the discussion with Case I, In a search
for spaces in which the geodesic equations are separable, Carter35
found a metric (which he called the [A] metric) that is equivalent
to our tetrad solution, Equation (IV. 37). In order to find a

physical interpretation, define a new co-ordinate 6 by
o = [t lax = [ (vOx® + Bx + 0y /2 ax. (1v. 53)

Although this integral is expressible in terms of

elementary functions, six cases must be distinguished depending

2

upon the signs of v° and B - 4v°C. Further simplification can

be achieved by using a tetrad rotation, Equation (III. 10), with A
constant. (For instance we may set vO =z %, 0.) The tetrads

which result, along with the non-zero metric components, are

now given:
Case II-A) V° < 0.
M= ©, 1, 0, 0)
= 5 [fz 42 +a2, - %(r2 - 2mr - 22 + az), 0, a]
m” = -%fz'ﬁ[iasine +2it cotd, 0O, '1, icse 98]
. . -1
p = -(r + it - iacos9)

pb‘(r2 - 2mr - 12 4 a2 cosze)

Sau
g = 1 AL
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= -2 &p};(rz - 2mr - 12 + az)cos )

oo
1

uy
- 2y .
+ 2app(mr + £7)sin 6
2
g = -asin 6 - 24 cosé
ry
2 2
8yg = -T - (t - a cos6)
8oy = --p-;?(r2 +Lz +a,‘?')'2 sin26 + p'ﬁ(:c2 - 2mr
22 + az)(a sinz-e + 24 cos 6)2
Case I-B) V° > 0, B - 4v°C > 0,
M= (0, 1, 0, 0)
= pplr +Lz+a2, %(r +2mr—f€,2+a ), 0, al
m" = -~21—/25[-iasmh6 + 2it cothe, 0, 1, icsché]
L -1
p = =(r - it + iacosh®)
By = - p-p'(r2 + omr - 42 + a® cosh? 8)
g =1 (IV. 55)

ur
8y = 24 p—é(r2 + 2mr - 22 + az) cosh®

~2app(mr - Lz) sinhze

g = asinhze - 24 cosh®
ry
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€og = r? - (-4 +a coshe)2
gyy = - p’p'(rz + 42 + az)2 sinhze - p—p_(r2 + 2mr

X + az)(-— a sinhze + 24 cosh 9)2

2 _ 4% = 0.

Case II-C) V°> 0, B
M= (0, 1, 0, 0)
o= pE[rz + Lz, %(r2 + 2mr - Lz), 0, a]
m" = —%/ZE(-iaee + 2id, 0, 1, ie_e)

p = -(r - it + iaee)—1

B = —p'ﬁ(:c2 + 2mr - 12 + az e26

Sur =1 (IV. 56)

By = 24 pE(I‘z + 2mr - Lz)ee - 2app(mr - &2)926

g = aeze - 24 ee
ry
2 8,2
8gg = - T - (-2 +ae)
gyy = -pE(I‘Z + &2)2 626 - p_p"(r2 + 2mr

20

- 4,2)(- ae” + ZJLee)2
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Case I-D) V° > 0, B? - 4v°C < 0.
o= ©, 1, 0, 0)
= 'pE[rz 22 az, %(r2 + omr - 42 - a,z), 0, a]
m" = -—1—f2 o(-ia cosh6 + 2it4tanho, 0, 1, isech®)
~ e | |
p = =(r - it + iasinho)
S = —p'g?(r2 + 2mr - {,2 + a2 sinhze)
g =1 (Iv.57)

ur
guy = 24 p'ﬁ(r2 + 2mr - Lz - az) sinh 6

- 2app(mr - L‘?‘) cosh? 8

acosh28 - 24 8inh®©

gry =
8o T —r2 - (-4 + a,coshe)2
gyy = -P—P_(rz + 4’/2 - a2)2 coshze - p'é'(r2 + 2mr

YL az)(-a coshze + 24 sinh 9)2

Case II-E) V° = 0, B # 0.

s

©, 1, 0, 0)

)

n p_p?(:r'2 + bz, mr + bt, 0, 1)

1l
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m“=-—21-f2-5(-%1«ce3 - ibe, 0, 1, 187
o =-( +ib+ % 14621
e | 2.2
g, = -Pp(2mr + 2bL + £76%)
8y = 1 | (IV. 58)
Buy = sp@r? - 2mbr - 46%)6% - 1 4 o5 (mr + b)o*
.2 1,4
gry - be +-4—&8
- 2 1,.22
gee""‘r "(b+—2"£!8)
Byy —F;F;(r2 + b2)292 - 2pp(mr + lo%b)(be2 + %—zﬂ, 84)2

Case II-F) V° = 0, B = 0.

= (0, 1, 0, 0)

o = pE(rz, mr - —%— bz', 0, b)

m'= - 1/2%Cbe%, 0, 1, 1)

p = -(r +ib 6)-1

gy = ~2pp MT

8y = 1 (Iv. 59)

Q
H

— 1,202 -, 2
uy ~2bpp(mr - 5 b7)8" + pp br
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2
gry-beA
gee—-rz—bzez

-4 9 — 1.2 4
Bgy = "PPT - 2b pp(mr-—?;b)e )

Case II-A, first discovered by Demianski and
Newman, 36 is known as Kerr-NUT space. For 4 =0 it
reduces to the Kerr metric, 31 widely hailed as the exterior
gravitational field of a rotating mass. For a = 0, o° becomes
constant and all six metrics revert to Case I. As mentioned
earlier, Case I was exhaustively treated by Newman, Tamburino,
and Unti, > and found to have only three distinct solutions. Tn
this limit, therefore, some of the six solutions given above must
become equivalent. For a =4 =0 we get the three "A' metrics
listed by Ehlers and Kundt, 39 of which one is the Schwarzschild
metric,

Let us look at the norm of the I Killing vector,

Vv guv = &g

As r -« we see from Equations (IV. 54) - (IV. 59)
that this norm goes to a constant: +1 for Case A; -1 for B,
C, D; and O for E and F. Since the only flat-space Killing
vectors with constant norm are the translations, we are
justified in regarding V" asa timelike, spacelike, or null
translation. Although v may not be hypersurface- orthogonal
éverywhere, it is at r - «, and there the hypersurface will be

either a Euclidean, Lorentz, or null 3-flat. The "wavefronts"
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r = const., u = const. are two-dimensional manifolds in the
3-flat. The metrics induced on them tend in the limit r - « to:

Casé A) —rz(d 92 + sin28 dyz)‘
B) —rz(d 62 + sinh? edyz)
C) —rz(d 92 + e28 dyz)
D) —r2(d 62 + cosh?e dyz)
E) —rz(d 92 + 92 dyz)
F) —rz(d 92 + dyz)

Thus the wavefronts tend to spheres in A, pseudo-
spheres in B, C, C, and planes in E and F. Inall cases the
co-ordinate system is geared to the ay Killihg vector. On a
sphere any isometry is a rotation about some axis, leading to
the usual spherical co-ordinates. On a plane there are fwo
kinds of isometries, translations and rotatidns, and the corre-
sponding co- ordinate systems are polar and Cartesian co-
ordinates (Cases E and F). A pseudosphere, however, has
three kinds of isometries, perhaps not as familiar, When it
is embedded as the future hyperboloid in a Lorentz 3-space
(as it is here), the three isometry classes are rotations about
' atimeiike, spacelike, or null axis; Cases B, C, D respectively
are the co-ordinate systems geared to these isometries. The
explicit transformations relating the three co-ordinate systems

are given in Appendix A.
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For a'% 0, o° depends explicitly on 6 and therefore the
six Case II metrics are only axially symmetric and inequivalent.
- For a = 0 the metrics actually become spherically symmefric,
acquiring two more Killing vectors. Cases B, C, D then differ
only by a co-ordinate transformation, and likewise for E and F.
The Killing vectors of these Case I metrics are described in
reference 6,

A fortunate circumstance perm1ts us to easily v1suahze
the geometry of some of the Ca,se I metfrics at finite values of r.
For 4 =0 the curvature :,1/2 = m appears only once in the tetrad,
in the quantity U, Defining

M H

n™ = p* - mrpp it

we see that ¢, n'", ‘m", m" comprise a flat-space tetrad and
g™V = MV _amr o5 MY

a flat-space metric, Vacuum metrics which differ from flat
space by the square of a vector were studied by Kerr and
Schild, 40 The flat-space limit of the M congruence for Case
II-A has been discussed in detail, 41 and this is summarized
in Appendix B.

We propose that all six metrics of Case I with £ =0
are the external fields of spinning particles, witha 4-momentum
parallel to V“, and an angular momentum vector orthogonal to it
and along the direction of axial symmetry. The six cases arise
as the six different combinations in which spacelike, null, or

timelike vectors may be orthogonal. Particles with spacelike
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momentum have been discussed in the framework of first
quantization by Wigner. 42 He found relativistic wave equations
corresponding to each of these cases. To firmly establish the
spinning particle interpretation one would want to either (a) find
interior solutions for these metrics, or (b) study the linearized
fields of such particles. The widely-accepted interpretation of
the Kerr metric thus far relies on approach (b). Since all six
metrics arise from one metric, Equation (IV. 37) by continuously
varying VO, A, B, and since they have the expected symmetries,
I believe this extended interpretation is justified.

Next we would like to discuss the solution of Case III,
Equation (IV, 41). A metric equivalent to this tetrad was listed
by Ehlers and Ku.ndt43 as the "C'" metric, We have three degrees
of freedom remaining: the constant tetrad rotation, and linear
transformations of x, x - px + ¢. These can be used to set

w=3m, B=0and m =1, giving

= (0, 1, 0, 0)

= [, r2e2(x + 1/1), 0, 0]

m" = [0, -r5(x), -5()/r, -i/15(x)]

g, = T &+ 1/r)

g, = 1 (IV. 60)
B = T

B = /2
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_ 2.2
gy = “TE (x)
where

EZ(X) =x3+vx2+C.

The "C'" metric therefore has two free parameters.
If instead we take the singular limit w - 0, the tetrad

becomes
M=, 1,0, 0)
" = (1, v+ m/r, 0, 0)
m" = (0, 0, -£/r, i/f g) ,
with

§2=VX2+BX+C,

which coincides with Equation (IV, 37) with a =4 = 0, V° = v,
Hence in this limit we recover the three "A' metrics.

The wavefronts r = const., u = const. of the "C" metric
are spacelike 2-surfaces whose intrinsic geometry may be
studied by embedding them in a Euclidean or Lorentz 3-space.
They are axially symmetric but may have cusps on the axis.
They may also be open or closed, depending on the particular
values of v and C, The only case in which the wavefronts are

closed and free of cusps is the Schwarzschild limit w ~ 0,

v> 0,
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Let us now examine the two Killing vectors. Since
3 (X + 1/r) is a cubic polynomial, V" v 8= guu =0 may
have as many as three roots. This 1mp11es that as many as
three event horizons may exist where the au Killing vector
becomes null. However in all casesas r - «, Sy © 0,
gyy < 0, guy = 0, and the two Killing vectors are spacelike
and orthogonal with norms proportional to r. Therefore they
do- not tend to translation vectors, but rather to rotations or screw
motions. The simplest assumption is that théy are rotations (i e.,
Lorentz transformations). Since they commute, the two iso-
metries must then be a rotation about an axis and a boost along
the same axis.

To gain further insight, consider the flat-space limit
w = 3m = 0 of the tetrad of Equation (IV.41). Now we have

€2=VX2+BX+C.

Just as in Equatmn (Iv.53) in the discussion of Case II
we define 6 = [ g~ 1 4x and need to consider six different sub-
cases. We will only write down the case 6 = cos 1x. The

tetrad and metric become

&
gt
]

©, 1, 0, 0)
o= (1, ——-+Ar cos 6 +A2r2 sze 0, 0)
m" = (0, Ar sin6, - 1/r/2, -i/r /2 sin8)

1 - 2Arcosg - A2 r2 sm26

g
it



70

g = 1 (IV.G,l)
2 .
8o = ~Ar” sin6
_ 2
o = T
_ 2 .2
gyy = -r" sin 6,

where A is a constant. ,
Flat-space metrics of this form have been considered by

Newman and Unti44 (cf. also Equation (V. 36)). From their
results one can conclude that u, r, 68, y are null co-ordinates
based on a timelike hyperbola (at r = 0) with radius 1/A.

I would like to suggest, therefore, that the "C'' metric
is a "runaway' solution, similar to those encountered in electro-
dynamics. It may represent the field of a point mass executing
hyperbolic motion. More work needs to be done to confirm this.
For example, one would like to examine the lmearizéd metrics
in which m/r or m/A are small but non-zero. '

Case IV is the one Type D vacuum metrié which I believe
| to be new. We may say it is the "most general, " in the sense
that it contains all previous metrics as singular limits. For
example, we can retrieve Case I from it via a co-ordinate

transformation
X = px' ,

thereby introducing a redundant parameter p. Replace the elliptic

functions by their Maclaurin series,
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oy

snx = x--1-x3+
4
cnx =1 ——1—XZ+
5 .
~dnx = 1-;%x2+
valid for small x. If we set
a =4
b = 1+pZC
¢ = (u/2+ptB)/8”
m= m
L =4
u = u
y = 2¢ply

and let p — 0, the resulting tetrad is Equation (IV. 37) with p0 =41,
i.e., NUT space.

To show the relation to Cases II and III, it is necessary to
shift the origin of x byr one-quarter wavelength of the cn function.
(This distance is the complete elliptic integral K(k), listed in
many tables. Some particular values are K(0) =m/2, K(1) = =,
K(—é—f 2) = 1,3506.) The relations we need are



sn (x ’+ K)
en (x + K)

dn (x + K)
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cn x/dn x
1
-5/2sn x/dn x

%fz/dnx .

Now p0 = - % a/2 sn x/dn x has its zero at the origin.
We again change the scale of X by x = px' and use the Maclaurin

expansions. If we set
a = —-41—p/2
b =v
c =C
m = —%fz
4 = -17%‘/2
....1 ] 1 1 ’
u=5u2 +7pyV2
! 1 \
y = uw-35Dby

and take the limit p - 0, the tetrad which results is Case III, and

corresponds to the metric given in Equation (IV. 60).

If instead we set

il

-/2a'/p
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c = cptra/16a'?
m = —%—m"/z

I S
L = +5m /2

1
u=.§-u'f2 +/2 a'y’/p2
| Txr! 2
y = u'-2a'y'/p

“the limit p ~ 0 yields the tetrad of Case II, Equation (IV. 37) with
po = a'x, i.e., the Kerr family of metrics. Kerr-NUT space can
be obtained by exactly the same approach, but with somewhat more

complicated substitutions.
B. The Case p=0

1. Integration and Solutions

In the discussion of the case p = 0 which follows, we
can also assume u = 0, because otherwise after interchange of
M and o the derivation of Section IV A would apply. According
to Equation (IIL 17), both M and o™ are hypersurface orthogonal,
We take co-ordinates comoving along M as before, but with the
added condition that |

f&u =u, = (1, 0, 0, 0).

The orthdnormality relations imply



Also, from Equation (IIL 1), the fact that &[H vl = 0
?

implies

Equations (IV, 4), (IV.5), (IV.7d) reduce to

T = 77
Dr = 0 (Iv. 62)
Dt = 0

sl

hence we may use the tetrad rotation m™ - m" exp(i9) with

D6 =0 to set

(Iv.63)

-.a
n.
1

-

‘With all these simplifications, Equations (IV. 19), (IV.6)

now become

ry -7 (1v. 645)

A.'r =

8T = 2BT (Iv. 64b)
BT = 2aT + Yy (Iv. 64c)
o1 = Tl + o - B+ B) Y, (Iv. 64d)
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8T = T(-a + o + B + B)

Sa - 68 = aao + BE"ZCLB“?,DZ-
At = T(y - )

AB - 8y = 0

0.

Aa-gy

y =y

AT = 0.

Equations (IV. 64h, i) then imply

From Equations (IV. 64b, d) we get a formula

for 7%

Ao = AB = 0

8y = 0 ,

Yy = (-0 - o+ 38 - B),

while from Equations (IV. 64c, e):

The only way Equations (IV. 6%7), (IV.68) can be

consistent is if

Yo = T(-3a+a+B+8).

(1v. 64e)

(IV. 641)

(IV. 64g)
(IV. 64h)
(IV. 64i)

(Iv. 65a)

(IV. 65b)

(Iv. 66a)

(Iv. 66b)

(Iv.e7)

-(IV. 68)



W+B = a+B (IV.692)
Yy = 27(8 - a) . (IV.69b)

Then EQuatibns (Iv. 64b, c) are
8T = 0T = 2BT. v (Iv. 70)
The Bianchi Identities, Equations (IV. 3), read

DYy = by, = 0 (IvV. 71a)

8y = sz = 31y, . (Iv. 71b)

The radial integration is trivial. All of the NP

variables are independent of r except

v = % 4 x[(r + T)@ 0) - 72 (IV. 72a)
U= U°- r[2¢° + 0 - T)] - x20(r + (B - 0)-12] (IV. 72b)
w = -2+ 7T) | (Iv. 72¢)
x! = X% . pir - D)ED - B (IV. 724)

Choose co-ordinates such that X% = 611. When
these expressions are substituted in Equations (IV. 66b), (IV.2)

-~we get the following:

50 = -[(r + TG - a) - T°] (IV. 732)
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sU° - X 6% = 0’[2y% + (7 - D® - 391 - UOr +7)  (IV. 73b)

B0 - 60° = -(° - 8% + 28 + B) - (1v.73¢)
5et - o8 = Ll - T - ) (V. 73d)
6x% - x-el = WO - EL - Y, (IV. 73¢)

As a first step in simplifying these equations, we will
show how ° may be eliminated, The co-ordinate transformation
r » r + f(u, X, y) leaves previous conditions unchanged. Under

this transformation
0 - o 4 8f 4+ (1 + TN .
Thus a solution of
5f = -w® - (1 + 7

will make w® - 0, provided such a solution 4e>§ists. A partial
differential equation like this always has certain integrability
conditi.ohs which must be satisfied. Giving the first derivatives
Df, Af, &f legitimately defines f if and only if the commutators
D(af) - A(Df), etc. agree with Equations (IIL 7). Choose

Df = 0
. o] o 2
Xt =-U - 2vyf+ 1Dy

8f = 0¥ - (1 + T .
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The only nontrivial commutators are (A5 - 5A)f and
(38 - 55)f. These may be calculated using Equations (IV. 64f),
(Iv.65b), (IV.70) and (IV.73a - c¢), and they do agree with
Equations (I 7). Hence we can find an f which sets «° = 0.

Next we show how to eliminate UO, yo by a combined

rco-ordinate transformation and tetrad rotation. The rotation is

@) = A" M
(Iv. 74)
@) = A@a", |
and the change of co-ordinates is

o1
u' = [ A T(@)at

° (IV. 75)
r' = rA() + U°R() ,

which together preserve all previously imposed conditions, but

send

¥ - A - 2°A + 2(0°DY)R
b

0° - (a2 + [U°DyIR? + AR L +ARU® /UOU°.
3

H

From Equation (IV. 73b) and (6D - Ds)y, we have

s(U°Dy) = -UC(r +T)IDYy + V%G +8-TODy = 0 .
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Therefore UODY is a real function of u alone. We can
prove the same thmg for the quantity u° /U The problem of
eliminating Y , U° thus reduces to the solutlon of two differential
equations for A, R, given v° , U Dy, U ,u/U as arbitrary
functions of u. Under sufficient assumptions of continuity such
equations always have solutions, which is all we need to know,

Now we are ready to solve the NP Equations, Since
8y = —61//2 # 0, we can use 9”2‘;2 to define a co-ordinate x via -
7,027,’52 = z,bzz,'&z(x). Then §3 is real, and by a co-ordinate trans-
formation y -~ y + (3, y) we make §4 imaginary. Equations
(IV.62), (IV.65b), (IV.66a), (IV.70), (IV.'71a, b), (IV.73d) show
that ¢y, 7, B, o, §3 depend only on x, From Equations (IV. 61),
(Iv.69a), (IvV.70),

-3
1

=i
I

o -a+B-B
= 2(8 - B) (Iv. 76)
-1 R

T =T = T 8T - T 8T,

Solve Equation (IV. 71b) for and substitute in this

expression. The result may be written

vy 2 sy

¢}
7 =473 7,

(Iv. 77)

1
o

and integrated twice to give

El[/z-l/s i T AAE (1v. 78)
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where E is an arbitrary complex constant ~Actually it is
convement here, as in the metrics for p 74 0, to introduce

a redundant parameter by letting

E = —-%13. (m+1%)1/3 (Iv. 79)
where a, m, 4 are real constants.
The co-ordinate freedom x' = f(x) permits us to
set 'gbzz:l}z equal to any function of x we please. Let
- m2 + Lz
Yol¥p = o593 (IV. 80)
" + a%)
Equations (IV. 78) - (IV. 80) imply
p, = 218 (V. 81)
(x + ia)

and it is fhis simple form which the above definitions were |

contrived to achieve,

Next, Equations (IV, 81), (IV. 71b), (IV.70), (IV.61)
are used to find expressions for T, a, and g all in terms of
§3. These are substituted into Equation (IV. 69b), which then

becomes

; 3.2 .
4
(32 4 2i2G)  m+il (IV. 82)
X 2 2 . 22

’ x" +a (x + ia)
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If a # 0 this has the real solution

%)

3)2 . 2amx + L(az - X

(3
2a(x2 + az)

If a=0, then 55 can be real only if 4 = 0 also.
The solution in this case is

3.2
€)Y = C+ m/x ,

where C is an arbitrary constant, | ,

Here are the tetrads and metrics which result.
Case V) a # 0.

= (0, 1, 0, 0)

2

o= a, ~ rZL - 0, ;‘carz)
2a(x” + a") X +a
mU- = (O, } grx"g"z“ s By %‘ )
x +a (IV. 83)
g = [rz«&/a(xz + az)] - [4r232§2/(x2 + a2)2]
Sur © 1
8 = —2rx/(x2 + az)
g = arc?/@x? + ad)

uy



where

Case VI)

where

82

' 2
gXX-- - 1/2¢
2
= - 2
- g%/2 ,

g2 _ 2amx + &(az - Xz)
Za(x2 + a,z)

a=10

M= (0, 1, 0, 0)

H

o= (1, Crz/xz, 0, 0)

m" = (0, 2r&/x, §, i/8) -

8 = —ZCrZ/xz
Sur T 1
8x © -2r/x
2
8 = " 1/28
2
gyy = - /2 s

(Iv. 84)
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2. Discussion

Case V appears in the preprint by Carter, 5 yhere it
is referred to as the [B(-)] metric. Case VI is equivalent (via
a transformation of the form of Equations (IV, 74), (IV.75)) to the
trio of static "B'" metrics listed by Ehlers and Kundt. 46

Recall that in Case V the parameter a is redundant,
so we may set a = 1 in the following discussion. The space is
asymptotically flat at x - <, however there is a restriction on
the range of x which may actually exclude the flat region for
certain values of m and 4. The permitted values of x must

keep €3 real, or equivalently,

-%x2+2mx+{42>0.

2> 0s0E%=0

one positive and one negative,

The discriminant is 4(m? + 42) > 4m
always has two roots, say x=x_,

Case V-A) 4 < 0. The permitted ranges of x are

3,2 .

X > x+and X< x . At |x| » =, )" = -4, Since S 0,
g <0, the au and ay Killing vectors are spacelike everywhere.
At |x| - =, gy = 05 Sy ~ 0, gy ” 2¢; hence the 2, vector
remains spacelike while the au vector becomes a null vector
orthogonal to it.

Case V-B) ¢ > 0. The range of x is x < x < X,
The 3_ Killing vector is spacelike everywhere., At x= X,

2 : 2 .

8w = rzé/(xi +1)>0; butat x=0, &y = ~3T ¢ < 0. Hence
the au Killing vector is timelike near the endpoints, spacelike

near x =0, and has at least two "horizons" where it is a null

~ vector.,
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Case V-C) 4 =.0. The allowed range of x is mx > 0.
At x=0 and at Ix[ - e §3 - 0, Both Killing vectors are
spacelike for finite values of x, but at |x| - =, they both
become null and orthogonal, hence coincident, The only obvious
statement one can make about the asymptotically flat region is
that the co-ordinate system is badly behaved there.

The metric of Case VI may be obtained from that of

Case V by taking the limit

L/a - -2C .,
The following transformation preserves the metric:

X - px

-1
y-p v
m'—>p3m

C-*po.

In this way we cannot change the sign of C, but we
can reduce it to one of the three values +-;: , - % , 0. These
three metrics will be denoted VI-A, VI-B, and VI-C respectively,

. -and are the limits as a - 0 of V-A, V-B, V-C respectively.
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V. ELECTRIFIED TYPE D METRICS

_ Although vacuum metrics are the most natural ones-to
study, because they presumably represent purely gravitational
phenomena, it is sometimes interesting to consider the inter-
action of gravity with an explicit source of stress-energy,
Introduction of a realistic source such as stellar material leads
either to a very complicated equation of state, or else to a
debatable idealized one., Simple stress-energy tensors can
come from unquantized relativistic wave fields such as a Klein-
Gordon or Dirac field. However, free scalar bosons do not
exist, and macroscopically coherent fermion fields are inconsistent
with quantization, The only source which is simple and unarguably
realistic is electromagnetism, '

In this section we will generalize thé results of Section
IV to the case in which an electromagnetic field is present. We
still assume that the Weyl tensor is Type D. A priori there is no
reason to expect the principal null vectors of FLW to have any
- particular relation to the gravitational null vectors. This most
general situation has not yet been solved. We will treat only two
cases: one in which the electromagnetic field is non-null with the
- same two principal vectors as the Weyl tensor, and the other in
which the field is null and shares one of the gravitational principal

null vectors.

A. Non-null Fields

The assumptions to be made for the non-null case are

Yo =W =Yg = Yy =9y =Py = €= 0. The proof of the
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Goldberg-Sachs Theorem (x = v = 0 = X = 0) must be reexamined,

since it was previously intended only for vacuum fields., The

Maxwell Equations and Bianchi Identities become

Do, = 2p04 (V.

bpy = -2p0y | (V.

8y = 2Tcp1 L (V.

-6'cp1 = -Zﬁcpl (V.

Dy = 3pyy + 20 9y (V.
Ay = -3wz - 2490, (V.
8y = 3T - 2"rcp1'q31 | (V.
_6_;&2 = =3y + 2'rrcp1€51 (v.
3%1,02 = 9 cpl'c—pl | (V.
My = -2 cpl'cﬁl | (V.
0y = -20 cplal (v
- vy = 2v cpl?pl . (v.

‘ Clearly, exceptions to the theorem can occur only if
Yo = & Py _q31 . Putting this into Equations (V. 1), (V. 2) we get

a contradiction unless p=u=7=1m=0,

1a)
1b)
10). _

1d)

2a)

2b)

2d)
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Case 1) Yo = +cp1m1, o.= x = 0, The NP Equations
(III 4b, c) reduce to

nvr-z,bz,

which is impossible except in flat space.-

Case 2) Yy = —cpl‘@l, % =v =0, The NP Equations
(111. 3a), (IIL 4h) reduce to

>

>
il
o

Hence this important theorem is still true, and from
now on we assume « = v =\ = o = 0,

We get integrability conditions by applying commutators
to both Py and 2% Since Equations (V. 1) are so similar tq the
vacuum Bianchi Identities, Equations (IV. 3), the commutators on
Pq give exactly the same integrability conditions as obtained in
Section IV (Equations (IV. 4) - (IV. 6)):

Ap +Dy = ply +¥) + 7 - 17 (V. 42)
Sp + D = pla + B) | : (V. 4b)

s+ AT = -p(o + B) + T(y - V). (V. 4c)
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The commutators applied to g&z give some different

conditions:

(oD - DA)Yq =

MM - TT + p - p = 0,
hence

TT = T A (V. 5a)

he)
=
i

U ; | ' (V. 5b)

(6D - D-g)t,[/z =

Sp = pla + B - 20 =-T) + pm (V. 6a)
DT = p(2m + T) - om (V. 6b)

(68 - A8)yq =
' AT = Ty - _«?)A - @21 + )+ uT (V. 7a)
= -ulo + B - 271 -;fr') - uT . (V. o)

Apparently, the electrification of a Type D metric
imposes severe restrictions above and beyond those present

in the vacuum case.
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1. TheCase p # 0

The radial integration of Equations (V. 1a), (V. 2a)
yields

2 \

Py = P cplo (V. 8a)
o 3— —

Vg = P Yy +20 PPy Py - (V. 8b) .

The other results of the radial integration may
be taken over almost verbatim from the corresponding vacuum
formulae, Equations (IV. 13) - (IV. 15). The only exception is
that where 1°7° occurs in v, U, 1, it must be replaced by

1970 4 cplo'céf. For instance p is now given by

b= e - TORO) 4 500 4 pz(—%wzo +7%)

1 ——o0 2—, 0—0 0— O 0—0 ,—
5P Yy +p (T T+ 0y Py )= /o

Making substitution into the conditions, Equations

(v.5), (V.6), we get

HO = HO

M° - #° = 27°%7° - 2% + 21p%°
no ~ Zipo,n,o

7%r° + 7Oo7° 4(p0)2ﬁ’0 =0
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These are not new restrictions since they occur in the
vacuum case (Equations (IV. 23) - (IV. 25), (IV. 26i)).

When we carry out the substitution into the non-radial
NP Equations the results are identical to the vacuum results.
The only changes that do occur are in the derivatives of cplo, ngO
~ implied by Equations (V. 1), (V. 2):

g = -2,°(% + g0 - 4ip°T°) (V. 9a)
E - @10 = —2cp10(oco + B9 | (V. 9b) |
X - cplo = —Zmlo(uo +v° +7°) (V. 9c)
£ . ,1&20 = -3y, (@ + s"‘-‘4ip°‘ﬁ°) + 4cp10251°ﬁ° (V. 10a)
By’ = -89,00° + BO) + 40,75 O n” (V. 10b)
X Yy = }34/2%0 +v° +79. (v. 10c)

We use the tetrad freedom to make cplo'cﬁlo constant,
obtaining the same conditions as Equation (IV. 30).

Cases I & II) m°

and cpio = const. Let Cplo = e + id, where e, d are real. The

= 0. We get g&zo =m + id = const,

only spot where cplo occurs in the tetrad is in U:

U=Uo+p'5(mr+/¢po-e2-d2).
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Therefore, all versions of NUT and Kerr-NUT Space

may be electrified by the simple substitution m - m - (92 + dz)/ r

in the tetrad or in the metric.

Case ) 1° # 0, o° = 0. In this case cp1° = e +id is
constant but zpzo = JZO = m® is not. With 5% = 10 the equations
to solve, Equations (IV. 39), (V. 10a) become

ﬂ’o = 2b0
,X
2m%° 4+ 4%? = v°
,X
0] O
v ,X ~3Yyg

Together these imply

o 5 2 2
(ﬁ),xxxx = -24(e” +d"),

with the solution
(TTO)Z = —(e2 n d?')x4 - mx° 4 vx2 + Bx + C , (V.11)

where m, v, B, C are arbitrary constants. If we take the Case
IIT vacuum solution as Equations (IV. 41), (IV.42) with w = -3m,
- the Ehlers-Kundt ""C" metric may be electrified by the substitution

m-m + x(e2 + d?).

Case IV) w° # 0, po # 0. As in the corresponding

vacuum case we get
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o
p = acnx .,

Integration of Equations (V. 9a), (V. 10a) leads to

B
-y
H]

(e + id)(dn x - % i/2 sn x)

(m+it)dnx - —;: i/2 sn X)3 (v.12)

<
Do
il

o+ Zia-1(92+ dz)(dnx 5%i/2 sn X)2 cnx.

The remaining integrations parallel exactly the vacuum
case. The tetrad is the same as Equation (IV. 50) with

vO = b+-§/2a—1(msnx-'&/2dnx) cn X
-—ga—z(e2+d2) en® x
@°)* = csnxdnx+%ba-2cn2x

—%/2 a"3(m snx+4/2dnx)cnx

- % a4 (e2 +'d2) en® x

m® = m(dn3x - g- dn x snzx) + &(%/2 dn2 X sn X
(V.13)
- 21/2 sn3x) + 2/2 a—l(e2 + dz) sn x cn x dn X
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° = -m/2 (—g- dn’x sn x - % slngx) + &(dn?’x

- —g- dn x snzx) + 23;—1(e2 + d2) enx

U = V- 2%’ + 2ar /2 (092 4 13(n%)?
b

+1pp[m° + 8a° /2 (TTO)z sn x dn x]

4

+oplat’ enx +2@ entx - DEY2 - €2+ a7 .

2. The Case p = 0

The electrification of the p = 0 vacuum metrics proceeds
just as smoothly. The only NP Equations which change are the
Maxwell Equations and the Bianchi Identities:

Do, = bpy = 0 (V. 14a)
6cp1 = ?)'cpl = 2Tcp1 . (V. 14b)
Dy, = Ay = 0 (V. 15a)
8y = €¢2 = 37y, - zTcpl'cél. (V. 15b)

The variables vy and U (cf, Equation (IV. 72)) acquire

a term in q)lz

i

Yy = vC 4+ rl(r + (B - q) - = +CP1$1]

U=1U°- r[2v° + wO(r - T)] - rz[(T +7)(B - a)- T2 + Cpl—@ll
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The analysis follows the vacuum case down to Equation
(IV.76). This time we must solve Equation (V. 14b) for T and
substitute in Equation (IV, 7b). The resulting equation may be

written

and integrated twice to give

’Ecpl'l/z +EE51"1/2 =1 .

We can choose x such that

(pl = w-?: s (V. 16)
(x + ia) ,

where e, d, a are real constants. The rest of the derivation
is a straightforward modification of Section IV and leads to

these metrics:

CaseV) a #0

+ = (,1,0 0

W —rz(e2+d2+a&) o _4ar

n = (1y 2.9 9 » Y 7Y "'2‘)
2a°(x" + a“) x“+a

2rx i
mu=(0, 21‘ 52’ ga‘g“)
x“+a




where
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8y = [rz(e2 a2 a,l;)/a,z(x2 + az)]

- [4r%a%2/2 + 2B

Eux = —2rx/(x2 + az)

By = ariz/(x2 + az)

_ 2
8 = ~1/28
' 2
= -E9/9
gyy g€ / ’

2 _ 22%mx + a,’fz(a2 - Xz) - (62 + dz)(Xz + az)

2&12(}{2 + az)
Case VI) a = 0 .,

= (0, 1, 0, 0)

Hi

(1, Crz/xz, 0, 0)

]
i

m" = (0, 218/, &, i/E)

8 = -2C rz/x2

(v.17)

(V. 18)
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Sar = 1
8ix = -2r/x
- 2
8y = -1/2¢
2
gyy = =£ /2 s
‘Where
2 2
2 _ m e +d
5 =C+x - 2
As in the corresponding vacuum metrics we may set
a=+1andC=i-;:,O.

B. Null Fields

1. Solutions

Next we would like to consider the situation which arises
when the electrofnagnetic field is null with 4" as the principle null
vector. Assume Yo = ¥ =Yg = z,b4‘= Pg =Py =€ = 0. The
Mariot-Robinson Theorem immediately tells us that » = o = 0,
i.e., the M congruence is geodesic and shear-free. However
the Goldberg-Sachs Theorem is actually false in this case and,
as we will see, the fact that n" need not be geodesic produces
some very interesting results. The Bianchi Identities and

Maxwell Equations under the current assumptions are
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Dy, = 3p¢2 | (V. 192)
by = Buyy - eeyF, (V.19
8y = 377,1/2- (V.19c¢)
Sy, = -3my, ' (V. 194d)
A = 0 (V. 20a)
By = BTy + 205,9,  (V.200)
Doy = po, ’ (V. 21a)
b9, = (1 - 28)0, . (V. 21b)

Here are the only NP Equa,tions in which v or Py

make an appearance:

AT - Dy = m(y - y) - u(T + M) (V.22a) .

1

Ao - By ov + aly - w) - y(T - B) (V. 22b)

Mo=-8v=-ulu+y+y)+via+38-r1)

+ VT - cszﬁz (V.22¢)
v = v(T - T - 30 - B) ' (V. 22d)
Su = ~u(m + o+ B) +um - v - p). - (V. 22¢)

If the methods of Section V are followed, one is forced

to conclude after a tedious argument that p must be real. For



98

the sake of simplicity, we are willing to take p = p as an
initial assumption. The solutions we seek will therefore be
electromagnetic generalizations of the Schwarzschild and
Ehlers-Kundt ""C'" metrics.

The radial integration is unchanged, except for the
addition of Equation (V. 21a), which gives

_ o ;

Equations (V. 19b-d) imply
5 Wy = -3y, (a + 8°) (V. 24a)

-3, (0° +3°) (V. 24b)

Al
.e
()
n

Xy = =30 0040+ ) -0 5,0, (V. 24c)

Equations (V. 20b), (V.21b) can be combined to give
3V, = _5—(CP252) +.CPZ-C52(20, + 2B - ?) ; (V.25)
substitution into this yields an expression for v:
v = v0 4 rﬁocpzo_cﬁzo/z,lxzo , (v.28)
and a .derivative

5 (9 %y) = -40,°5,°0° + 5O + 3%,°0 (v.27)
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The information obtainable frovm Equations (V. 22b-¢) is

X-m% = n%G° - 3° - cpzoﬁzo/wz'o) - (V.28a5
X. o - €. v2 = 20 + v9) + B%%-M%° +\% (V. 28b)
Xy = -Mo(ulO #0470 - 0,00y /yy) - 29010 (V. 28¢)
a X MP+g.-v0 = MOl + % +59) - vO(@®+38°) | .(V.28d)
E. ‘vo = -v%3c° + B9 (V. Zée) -
v = 0. | (V. 231)

We also need to recall Equations (IV.21), (IV.26f),
(Iv. 28), which for p® = 0 simplify to

g0 -F.8% = 28°B° - ¢°) + M° (V. 292)
X-8%-2.+v% = g% %+ 279 + v°(a%+8°) + M°T° (V. 29b)
g X% - x g% = (04279 - (@04 809%™ (v.290)

.0 _g. g0l o _gg0g0l | 950F 0l (V. 294)

Equation (V. 28f) leads to separate consideration of

two cases.

Case 1) v = 0. We use the tetrad freedom to make

m° real and non-negative and 7,1/20 = m constant. Then we
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have from Equations (V. 24), (V. 27),

9y By = -3m@u’ + v + °) (v. 30)

5+ (g 0y0) = 0.

As we can check from Equations (IV. 13), this makes
T=a+p = -n°, which implies that 4" is equal to a gradient.
Choosing co-ordinates suchthat £ =u , we have X1 = 1
and 51 = 0. Therefore, from Eantion,Rf. 30), CPZOE@ZO and
uo + Yo + '\?O are functions of u alone. Under a recalibration

of u,

u - f(u)
Moo fr(u) M

1O+ 9% 470 = [EC+ v+ YO + 211/
hence we can find an f which sets WC+y?+7%=0. ma
roundabout way we have now achieved exactly the same tetrad
conditions as in Equation (IV. 30); however m = m(u) is no
longer a constant. Straightforward integration leads to a tetrad
identical to that of Equation (IV. 41) except that m(u) is an

- arbitrary function and

0—0 _ _
Py Py = m’u. (V. 31)
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We have deliberately postponed using Equations (V. 20b)
and (V. 21b) separately to determine the phase of cpzo. Let

o _ 0y iy
Py = |og |e™.
Then Equations (V. 20b), (V.21b) imply

£ . X = 2150,'

or

(=]

X,x =

X = WX2+VX+B.
4 '

DO

Hence the electromagnetic field cp20 can exist only if

By + D,

=<
Il

which correspond to the vacuum Cases II-E and II-F with
b =4 =0, Then

9y = [0y | ()e’” | (v. 32)
in Case I-E, and

%y = |y ] (e = % (1) (V. 33)
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in Case IL-F.

For Cases II-A-D and Case III a null electromagnetic -
~ field cannot be found. We postpone further comment on this
situation to the discussion.

Case 2) V0 # 0. In this case m® = u® = 0. Choose

the tetrad rotations to make v° real and positive and w=v
= -M° = constant. Once again, o + g° = 0, which implies
T = a+p. Letting /Lu =u,  weget x! = 0, §ll= 0, and

0 b4
Yy = m(u).
Since v° is real, Equations (V. 28d, e) imply

O

28 = - v°(4°+79), (V. 34)

and therefore BO is also real.
From Equation (V. 27), € - (cp203520) is real, so we may
choose co-ordinates such that £03 is real and £°% imaginary.

By analogy with the vacuum metrics, choose

§03 = (VOX2 + Bx + C)l/2

The solutions of Equations (V.29a, d), (V. 28e) are

8° = @v°% + B)/4£°
g()4: = i/§03

W = g9 ) .

Equations (V. 28b), (V. 29b) imply
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g (% +7%) = -0,
hence

YO +7° = -xt) + gu) .

Comparing with Equation (V. 34),
: o
Bffu) = -2V gl) .

We take those linear combinations of Equation (V. 29¢)
and its conjugate which involve only v° +v°, and treat x% a5
the unknowns. When these have been integrated for XOi , we
put the results back into the remaining linear combinations and
solve for y° - ¥°. The resulting tetrad is of the form

o= (0, 1, 0, 0)
o= (1, v° +%, x3, x% (V. 35)

m" = (0, 0, -5/r, -i/rg)
where

VOX2+BX+C,

LA}
i

3

m = mu), and X, x4 depend on X, y, u. More explicit tetrads

and metrics will be given in the discussion.
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2. Discussion

In Special Relativity there is a theorem47 which says
that, given any shear-iree geodesic null congruence &“, it is
poséible to construct a null electromagnetic field with M as
principal null vector. However in Special Relativity we do not
have to satisfy the Bianchi Identities! Hence we cannot expect
this theorem to extend to General Relativity. In particular it
is invalid for Type D metrics because of the extra restriction
imposed by the Bianchi Identity, Equation (V.20b). Thus we
found it possible to insert null electromagnetic fields only in
the vacuum metrics II-E and F.

In the remaining cases, what interpretation can we
give to the generalized tetrads we have just found? They have
stress tensors proportional to &MLV’ which suggests the
presence of a stream of non-interacting particles with velocity
vector ff,u . Finding a phase for ¢, is tantamount to finding a
polarization vector

e, = %M, + @om, ,

with

= 24 ]
Fov = 2418
(This agrees with the definitions of %, in Equation (1. 2).) If
a phase does not exist we may say we are merely dealing with
unpolarized light. The metric which is the generalization of
Case II-A with v° = 0 has been previously discovered by
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Vaidya, 48 who gave it this interpretation. The same stress
tensor could as easily represent unpolarized neutrinos or evén
gravitons. 49 On the other hand we may forsake the attempt for
a‘ physical interpretation and regard these time-dependent
genefalizations as nothing more than a formal tool to use to
study the static vacuum metrics.

As an example if we take the Vaidya metric with
cpzoEﬁzo non-zero only in the interval u, <u<uy. The
solution is initially and finally a static Schwarzschild field,
but some stress energy escapes to the asymptotically flat
region during the intervening period. The total loss of 4-
momentum may be calculated by integrating ™ over a large

sphere:
u
v 1 My 13
APT = [ 4TV AT,
u
(8]
where
My o1 SRR
TO = gr oy g b7 4
s =r r’dadu,
v ,u

and dZQ denotes solid angle. In the limit r - « the integral

becomes a covariant quantity. Writing

where VM is the timelike Killing vector, and using Equations
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(V. 23), (V.31), we get

Ty
P = v

u

(-m)du = (m (uo) - m(ul))V“.

o)

For m(ul) = 0, this proves that the source of the
‘Schwarzschild vacuum metric has 4-momentum P* = mvM.

The solutions we have found with v° # 0 are more
interesting. Let us take the tetrad Equation (V. 35) and put
it in terms of the angular co-ordinate 6, used in Section IV

and defined by
o = | el ax .

The various possibilities arising from the signs of
VO, B2 - 4v°C will now be listed:

Case 2-A) V0 < 0.

= (0, 1, 0, 0)

I

= (1, -%—+racose + m/r, XS, X4)

o = (0, 0, 1/r/2, i/r /2 sin 6)

X3 -asin® + bsiny + c cosy

1l

X4

1l

bcotb cosy - c cot siny

(V. 36)
8y = 1-2m/r - 2racos® - 1{‘2(}(3)2 - rz(X‘J“)2 sinze

By = 1
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2,3
B = ¥ &)
guy = rz(X4) Sin26

- —rz
a0
g = —r2 sinze
Yy
°%.9 = -m _+ 3ma coss

CP2 Pg u :

H

Here, as in the succeeding solutions, m, a, b, ¢ are all

arbitrary functions of u.

Buu

gU.I‘

i

Case 2-B) V° > 0, B? - 4v°C > 0.

(0’ 1’ O) O)

= (1, -%— racosh® + m/r, X3, X4)

= {0, 0, 1/r/2, i/r /2 sinh 8)

= a coshé + bcoshy + ¢ sinhy

= -b tanh 6 sinhy - c¢ tanh® coshy
=-1-2m/r +2ra coshd - r?‘(X3)2 - rz(X4)2sinhze
- 1 | (V. 37)
= r2(x%)
= r2x* sin
2
= -1
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2 L2
= -y sinh 8
gyy T sin

o= o0 _ _ _
Py g = -m 3macosh6 .

b

Case 2-C) V° > 0, B2

&
-
i

o, 1, 0, 0)

o= (1, —‘%-'rae9 + m/r, X3, X4)
Moo . =0

m~ = (0, 0, 1/r/2, ie "/r/2)
3 0

X" = ae + b

X" = -by-c

gy = -1- 2m/r + 2rae —‘1:'2(Xs)2 -

yr = 1
2.3,
8o = T &)
2. 4 29
By = T &')e
=-r2
€a0
2 26
= -r" e
gy = T
@20520 = -m - smae’ .

3

Case 2-D) V° > 0, B2

* =, 1,00

- 4v°% = 0.

- 4v°% < 0.

2(X4)2 e28

(V. 38)



109
o= (1, -;— - ra sinh® + m/r, X3, X4')

m" = (0, 0, 1/r/2, i/r /2 cosh 0)

X3 = a cosh 6 + bcoshy + c sinhy
X4 = -btanh 0 sinhy - c tanh 6 coshy
guu=—1—2m/r+2rasinhe .
| (V. 39)
g = 1
2,3
g = I &)
8ay ~ r2(X3) coshze
L2
Bgg = 7T
g = --r2 coshze
yy
0— 0 . ~
= -m _ - 3masinh6 .
P2 P9 ,u
Case 2-E) V° =0, B =0 .
M=, 1,0, 0)
! = (1, -rax - rb + m/r, X3, X4)

m' = @, 0, 1/r/2, i/r /2)
X3 = —;—a(x2 - y2) + bx + cy

X" = axy + by - ¢x
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= -2m/r + 2rax + 2rb - 1‘2(}{3)2 - 1‘2(X4 2
Sy

b

. (V. 40)
Sur ~
' 2.3
B = T X)
2.4
guy = r7(X")
- —-rz
€98
g =-1‘2
vy
0— 0 _
CPZ sz = -mu-— 3max - 3mb.

In reference 44 the flat-space Iimit of these co-ordinate
systems are examined and found to correspond to a family of null
cones based on an accelerating world line. The co-ordinates r,
0, y are spherical co-ordinates on each cone, and u is the
 retarded time. The function a(u) is the magnitude of the
acceleration vector, while b(u) and c(u) measure the rate at
which the direction of the acceleration vector is changing.

We can calculate AP" for these metrics just as we did
for the Vaidya metric. If quo 520 is non-zero for u < usuy
only, then solution 2-A is initially and finally a static Schwarzs-
child metric. The analysis is simplest for the case of a slowly
accelerating particle, If we can pick a radius r such that
m << r << é , then the metric is approximately Minkowskian,

| and
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a* 1

_ 9
T =4 § 0y %y 4Ma%

= - mV* + maz

——aqﬁ(m\fd) .
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VI CONCLUSION

, We have found a total of fourteen distinct Type D vacuum
metrics, Equations (IV.54) - (IV.59), (IV.60), (IV.52), (IV. 83),
and (IV.84). This marks the first time that all solutions of a given
Petrov Type have been explicitly determined. All but one
(Equation (IV, 52)) of the fourteen have been previously discovered.
However, it is imporiant to know that the list is now complete.

The list is complete even in the sense that there remain no un-
-covered regions of these manifolds to be revealed by analytic
continuation. Although the co-ordinate patches given can be and
need to be continued analytically, the most we can expect is that
several equivalent or inequivalent patches will be found to join
together. For instance in the continuation of the Kerr metric, a
family of patches with paran]eters m, a are analytically connected
to a family with parameters -m, -a. 50

What comes as a complete surprise is that the Type D
vacuum metrics all have at least two Killing vectors. It is not
known whether this could be called "accidental, '" or whether it
is due to some profound connection between algebraically special
fields and the existence of isometries.

We have extended the simple relation between the Schwarz-
schild and Nordstrom metrics by finding charged versions of each -
Type D vacuum solution. I believe this emphasizes nicely the close
structural similarity between the gravitational and electromagnetic
fieids. In the search for Type D metrics containing null electro-
magnetic fields we were not as successful in a direct sense, but
the metrics thereby uncovered (Equations (IV.41) with m = m(u)
and Equations (V. 36) - (V. 40)) can help us better understand the

vacuum solutions.
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Further work needs to be done on most of these metrics

_ to clarify their physical interpretations, as noted in the discussion.
I hope also that now that Type D has proven possible to analyze,
efforts will be made to obtain exhaustive treatments of the other
special Petrov Types.
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APPENDIX A, THREE CO-ORDINATE SYSTEMS
ON PSEUDOSPHERES

Let us consider a Lorentz 3-space with signature (+, -, -).
Let X Y, T be Minkowski co-ordinates, so that

ds® = aT2 - ax? - aY2

The pseudosphere is defined by T2 - X2 - Y2 = 1,
T > 0, the future hyperboloid. Construct three sets of intrinsic

co-ordinates (X, y) on the pseudosphere as follows:

1)

i

cosh x
X = sinhxsiny

Y = sinhxcosy

2) T = coshxcoshy

X = coshxsinhy

Y = sinh x
3) T = ( + 1)e* s LoX
2 y’ 2
1 Xx 1 -x
X —-z-(y - 1)e +5e
Y = yeX
2 2 2
We can check for all three of these that T - X® - Y

= 1, T > 0. The metrics, d82 = de - dX2 - de, become
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1) - dX2 - sinhzx dy2

2) - dx® - cosh®x dy2

3)  -dx® - &2 gy,

which are the 2-metrics discussed in Section IV A, We can see
that the ay isometries are rotations in the (X, Y), (X, T), and
(T + X, Y) planes respectively.
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APPENDIX B. THE FLAT-SPACE LIMIT OF THE
KERR NULL CONGRUENCE

The tetrad and metric of Case II-A for m = 4 = 0 is

= (, 1,0, 0)
v _ 2
n = pp(r +a, (r +a),0 a)
1 . -
m" = -:2-/2 P
By = 1
B = 1
= asinze
gry -
2 2 2
8pg = -r - a  cos”6
2 2, .2
= -(r + a )sin 6.
Syy ( ) 5

- Define new co-ordinates t, R, ®, ¢ by

t = -u-~-7T
R = (r + a2 sin 9)1/2

(B. 1)
® = tan~! |:r"1(r2 +a )1/2 tan 6]

y - tan™" (@/r) .

8
Il
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When we calculate the new metric, we discover that

t, R, 8, v are ordinary spherical co-ordinates: .

gpr ~ -1
2
8g ~ R
2 .2
- = -R“sin®@ .
. sin

The new components of M are

2 . .
_«b“:(-l,r a sin 6 cos 6 a sin 6 )

R " Q2,2 .2 1/2 * R 1 a)/2

sin ©

where r, 6 are given implicitly by Equation (B. 1) or by

JR2 sin?‘@ R2 cosz®‘ _
+ = 1
2 2 2
r +a r

R2 sinz@) = (r2 +a2) sin2 9.

Projected into the 3-space (R, ®, o), the trajectories of
H must be straight lines, with the affine parameter r measuring
Euclidean distance along them. Hence they must all pass through
the surface r = 0, which is a disk centered at the origin with

radius a.
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