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ABSTRACT

The nature of dark matter (DM) is a fundamental question in modern cosmology.
Despite its significant role in various physical processes throughout the Universe,
the particle nature of DM remains elusive. With the non-detection of classical
candidates (e.g. WIMPs), the theoretical space for DM is becoming increasingly
open. This thesis revolves around studying the nature of DM in the context of
structure formation and we will focus on a category of DM with self-interactions
(SIDM), which can be constrained only through astrophysical probes if DM has
no coupling with the standard model particles. Utilizing advanced cosmological
hydrodynamical simulations, we examine the effects of DM elastic and dissipa-
tive self-interactions on galaxy structure and their interplay with baryonic physics
processes. Our numerical studies encompass a range of systems, such as Local
dwarf galaxies, massive galaxy clusters in the Local Universe, and rare massive
quasar-host galaxies at high redshift (𝑧 ≳ 6). In Local dwarf galaxies, we ana-
lyze the unique signatures of dissipative self-interacting DM (dSIDM) with typical
self-interaction cross-section 𝜎/𝑚 ∼ 0.1-10 cm2 g−1 and dissipation factor ∼ 0.5.
We find a universal cuspy central density profile and systematic changes in halo
morphology in dSIDM. By comparing our results with observations, we derive con-
straints for effective parameters of dSIDM and identify the parameter space where
it remains viable and exhibits interesting observational implications. For a similar
type of dSIDM with fairly low 𝜎/𝑚 ≲ 0.05 cm2 g−1, we also explore the possibil-
ity that the direct collapse of dSIDM halos at high redshift can seed supermassive
black holes and serve as progenitors for massive bright quasars observed at high
redshift. This scenario predicts a large population of quiescent supermassive black
holes (SMBHs) at high redshift, which could be tested by future LISA observations.
Lastly, in Local massive galaxy clusters, we compare the X-ray morphology of hot
gas in observed clusters with simulations of elastic SIDM. Although SIDM models
with large interaction cross-sections (𝜎/𝑚 ≳ 0.5 cm2 g−1) are favored, uncertainties
from cooling and feedback physics in galaxy clusters must be taken into account.
This thesis summarizes the findings and constraints on DM properties, with a par-
ticular emphasis on its potential self-interactions, as derived from a combination of
research projects.
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Number Page
2.1 Top: Relevant time scales of the physical processes involved in

dSIDM halos versus one-dimensional velocity dispersion of the
system. We have assumed that the local DM density is 𝜌dm = 2 ×
108 M⊙/ kpc3, a typical value at dwarf galaxy centers. We show
the collision time scale (𝑡coll) and dissipation time scales (𝑡diss) of all
the dSIDM models studied in this chapter as well as the dynamical
time scale (𝑡dyn). All the time scales are normalized by the Hubble
time scale at 𝑧 = 0 (𝑡h ≡ 1/h0). The dissipation time scales are
calculated assuming 𝑓diss = 0.5. The shaded regions show the typical
one-dimensional velocity dispersions in the classical (e.g. Milky
Way satellites) and bright dwarf galaxies (e.g. LSB galaxies). In
dwarf galaxies, dissipation and collision time scales are much larger
than the dynamical time scale, but can become considerably shorter
than the Hubble time scale. The velocity-dependent model becomes
less dissipative (𝑡diss/𝑡h becomes larger) in more massive galaxies
(with larger velocity dispersion) while models with constant cross-
sections become more dissipative. Bottom: Dissipation time scales
versus one-dimensional velocity dispersion of the system with 𝑓diss

varying from 0.1 to 0.9. The symbols are the same as the top panel.
For each model, the upper boundary of the shaded region corresponds
to the case 𝑓diss = 0.1 and the lower boundary corresponds to the case
𝑓diss = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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2.2 Visualizations of four DM halos in simulations with CDM ver-
sus dSIDM. The images are DM surface density maps, projected
along the z-direction of simulation coordinates, at 𝑧 = 0 with a log-
arithmic stretch. The dynamical ranges are adjusted based on the
maximum/median intensities of the pixels (but remain the same for
the same halo). The side lengths of the images are all chosen to be
0.8 × 𝑅vir of the CDM run. In the first row, we show the halos in the
CDM. In the second row, we show the halos in the velocity-dependent
dSIDM model. In the third row, we show halos in the dSIDM model
with constant cross-section 1 cm2 g−1. The halos are ordered from
left to right by their virial masses. In each image, the outer dotted
circle indicates the radius 𝑅500 (the density enclosed is 500 times the
critical density at 𝑧 = 0) which represents the overall size of the halo.
The inner dashed circle indicates the radius 𝑅core ≡ 10 × 𝑅0.1% (the
mass enclosed in a sphere of radius 𝑅0.1% is 0.1% the virial mass
of the halo) which represents the core size of the halo. Comparing
the core sizes, the halos in the dSIDM model are visibly more con-
centrated than their CDM counterparts. For the velocity-dependent
dSIDM model, since the self-interaction cross-section decreases in
more massive halos, the increased concentration of halo is less ap-
parent in more massive halos. For the dSIDM with constant cross-
section, halos of all masses are consistently more concentrated than
their CDM counterparts. . . . . . . . . . . . . . . . . . . . . . . . . 18
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2.3 A gallery view of the structural and kinematic properties of dwarf galaxies in simulations. From

top to bottom, in each row, we show the three-dimensional total mass density (𝜌t𝑜𝑡 = 𝜌dm+𝜌s𝑡𝑎𝑟 +𝜌gas),

circular velocity (𝑉circ ≡
√︁
𝐺𝑀 t𝑜𝑡

enc (𝑟 )/𝑟), the three-dimensional velocity dispersion of DM (𝜎3d ≡√︃
𝜎2

r + 𝜎2
𝜃
+ 𝜎2

𝜙
), velocity anisotropy of DM (𝛽 ≡ 1 − (𝜎2

𝜃
+ 𝜎2

𝜙
)/2𝜎2

r ), and rotation velocity

versus velocity dispersion of DM (𝑉rot/𝜎3d) averaged in spherical shells as a function of galactocentric

distance for three simulated galaxies. We compare three categories of DM models: CDM, eSIDM

(elastic SIDM model with a constant cross-section 1 cm2 g−1), and dSIDM (dissipative SIDM models

with various cross-sections, as defined in Table 2.1). The gray shaded regions in the first row of plots

indicate 0.2% − 0.8% 𝑅cdm
vir , which is the aperture we will later use to measure the slopes of the density

profiles (see Section 2.4 and Figure 2.5-2.7). The gray dashed horizontal line in the fourth row is a

reference line, indicating isotropic velocity dispersion (𝛽=0). In general, dSIDM models produce cuspy

central density profiles in the simulated dwarf galaxies, as opposed to the cored central density profile

in CDM and eSIDM models. As a consequence, the circular velocities at the center of the galaxies

increase. In dSIDM models with (𝜎/𝑚) ≥ 1 cm2 g−1, coherent rotation of DM becomes prominent,

and random velocity dispersion is suppressed. . . . . . . . . . . . . . . . . . . . . 19
2.4 Stellar mass versus halo mass relation of galaxies in simulations.

The stellar masses and halo masses of simulated dwarf galaxies are
presented with open markers (as labeled). We compare them with
the observational results derived through abundance matching from
Moster et al. [1], Brook et al. [2], Garrison-Kimmel et al. [3]. The
black dashed lines show ∼ 95% inclusion contour assuming the scat-
ter of the relation estimated in Garrison-Kimmel et al. [3]. Regardless
of the DM model, the simulated galaxies are consistent with the ob-
servational relation. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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2.5 Left: Total mass density profiles of the classical dwarf galaxies
in simulations. The three classical dwarfs presented here are m10q,
m10b and m10v. The total mass density profiles in different DM
models are shown (as labeled). They can be compared to the NFW
profiles derived by fitting the density profiles at large radii of the halos
(0.5 𝑟cdm

1/2 < 𝑟 < 20 𝑟cdm
1/2 ), and the ratios of the density profiles to the

NFW fits are shown in the lower sub-panel. The gray shaded region
denotes the range of radii where we measure the slopes of the density
profiles below. The purple dotted vertical line indicates the average
convergence radius (∼ 70 pc) of the classical dwarfs (see Table 2.1).
Right: Local power-law slopes of density profiles of the classical
dwarf galaxies. The slopes are derived by fitting the nearby density
profile with the power-law. In these classical dwarfs, the CDM model
predicts cored central density profiles due to baryonic feedback. The
eSIDM model produces cores of slightly bigger sizes and shallower
slopes. The dSIDM model with (𝜎/𝑚) = 0.1 cm2 g−1 still produces
cored profiles but with higher central densities and steeper slopes than
their CDM counterparts. The dSIDM models with effective cross-
section > 0.1 cm2 g−1 all produce cuspy central density profiles with
power-law slopes centering around −1.5. These profiles are even
steeper than the NFW profiles. . . . . . . . . . . . . . . . . . . . . 23
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2.6 Left: Total mass density profiles of the bright dwarf galaxies in
simulations. The three bright dwarfs presented here are m11a, m11b,
and m11q. The notation is the same as Figure 2.5. The purple dotted
vertical line here indicates the average convergence radius (∼ 200 pc)
of the bright dwarfs (see Table 2.1). Right: Local power-law slopes
of the density profiles of the bright dwarf galaxies. In these
bright dwarfs, the CDM model again predicts cored central density
profiles with even larger cores (∼ kpc) than the classical dwarfs
due to stronger baryonic feedback. The eSIDM model produces
cores of similar sizes and slopes. The velocity-dependent dSIDM
model has relatively low effective cross-sections (∼ 0.01 cm2 g−1)
in these dwarfs. This model still produces cores but with slightly
higher central densities than their CDM counterparts. The dSIDM
models with relatively high effective cross-sections (≫ 0.01 cm2 g−1)
still produce cuspy and power-law-like central density profiles. The
power-law slopes center around −1.5 with a scatter from −2 to −1. . . 26
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2.7 Slopes of the central density profiles of dwarf galaxies in the
simulation suite. The slopes are measured at 0.2 − 0.8% 𝑅cdm

vir .
The slopes measured in simulations with different DM models are
shown in open markers (as labeled). Galaxies are ordered from
left to right based on their stellar-to-halo mass ratios (𝑀∗/𝑀halo)
and are classified as classical dwarfs and bright dwarfs. (The ultra-
faint dwarf m09 in the suite also has its 𝑀∗/𝑀halo value lying in the
classical dwarf regime.) The asymptotic behaviors of the slopes at the
low mass end are clearly different between different DM models. In
low-mass dwarf galaxies, the density profiles in dSIDM models with
(𝜎/𝑚) ≥ 1 cm2 g−1 and the velocity-dependent model converge to a
slope of∼ −1.5 (indicated by the thick red horizontal line). The slope
is steeper than the asymptotic slope −1 of the NFW profile (∼ −1.1 at
the radii we measure the slope, indicated by the thick black horizontal
line). In contrast, the dSIDM model with (𝜎/𝑚) = 0.1 cm2 g−1

can still produce small cores in some dwarf galaxies with relatively
strong baryonic feedback, with 𝛼 ∼ −1 at the radius of measurement
and becoming even shallower at smaller radii as shown in the right
panels of Figure 2.5 and 2.6. In the bright dwarfs, the velocity-
dependent dSIDM model produces cored profiles with 𝛼 ∼ −0.5.
The dSIDM models with constant cross-sections still produce cuspy
density profiles with slopes centering around −1.5 but scattering
from −2 to −1. Unlike dSIDM models, density profiles in CDM are
shallower than the NFW profile and are shallower in more massive
dwarf galaxies, due to stronger baryonic feedback there (indicated by
the thick cyan line). The eSIDM model consistently produces cored
density profiles with slope ∼ −0.2 in most of the dwarf galaxies
(indicated by the thick gray horizontal line). We note that all the
thick reference lines are meant to label different “tracks” and are
rigorous fits to the simulation results. . . . . . . . . . . . . . . . . . 29
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2.8 Top: Slope change versus effective self-interaction cross-section
of dwarf galaxies in simulations. Δ𝛼 is defined as the difference in
slopes measured at 0.2 − 0.8%𝑅cdm

vir between galaxies in dSIDM and
CDM. The red dashed line labels the qualitative trend (not rigorous
fitting). In the regime where (𝜎/𝑚)eff < 1 cm2 g−1, the steepening of
central profiles induced by dissipative DM self-interactions becomes
progressively stronger in systems with higher effective cross-sections.
In the regime where (𝜎/𝑚)eff > 1 cm2 g−1, the steepening of central
profiles saturates. Bottom: Slope change versus dissipation time
scale at halo center. When log (𝑡cdiss/𝑡h) > −1, the density profiles
become steeper as 𝑡cdiss decreases while the steepening saturates when
log (𝑡cdiss/𝑡h) < −1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 Coherent rotation velocity relative to velocity dispersion of DM
in simulations. The coherent rotation velocities and the velocity
dispersions are measured in spherical shells as discussed in the main
text. We present the results in CDM and dSIDM with (𝜎/𝑚) = 1
and 10 cm2 g−1. For each model, we show the results of five dwarf
galaxies: m10q, m10b, m10v, m11a, and m11b. The coherent rota-
tion becomes more prominent inside ∼ 1% 𝑅vir as the self-interaction
cross-section increases, but not in every galaxy. The two galaxies
that have rotation velocities comparable to velocity dispersions are
m10q and m11b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Velocity anisotropy profiles of DM in simulated dwarf galax-
ies. The velocity anisotropies are calculated using Equation 2.13.
We present the results in CDM and dSIDM with (𝜎/𝑚) = 1 and
10 cm2 g−1. For each model, we show the results of the same five
galaxies as in Figure 2.9. The velocity anisotropy decreases as the
self-interaction cross-section increases and eventually becomes nega-
tive, suggesting that the velocity dispersion is more dominated by the
tangential component. This is consistent with more coherent rotation
found in Figure 2.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
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2.11 Phase space distribution function of DM in simulated classical
dwarfs. We present the two-dimensional density distribution of DM
in the 𝑣𝜙 − 𝑣r phase space, d𝜌dm/d𝑣rd𝑣𝜙. In the three columns,
we show the distribution in three radial bins: central, 𝑟 < 𝑟cdm

1/2 /3,
intermediate, 𝑟cdm

1/2 /3 < 𝑟 < 3𝑟cdm
1/2 , and “outskirt”, 3𝑟cdm

1/2 < 𝑟 <

0.5𝑅cdm
vir , respectively. From inside out, each contour is determined

such that it encloses a certain percentile of DM particles in the bin.
The percentiles range from 10% to 90% with 20% as interval, as
labeled on the contours. The dots represent the locations where
the velocity distribution function peaks. DM in dSIDM models
exhibit positive median 𝑣𝜙 while the phase space distribution is almost
isotropic in CDM. The differences consistently show up in the three
radial bins and suggest a coherent rotation built up in dSIDM halos.
The phase space distribution in the dSIDM model is also more peaky
than the CDM case, at least for the central and intermediate radial bins. 34

2.12 Velocity distribution functions of DM in the classical dwarfs.
Top left: Velocity distribution function at small galactocentric radii
(𝑟 < 𝑟cdm

1/2 /3). We show the velocity distributions in CDM and
dSIDM with (𝜎/𝑚) = 1 and 10 cm2 g−1 (as labeled). As a reference,
a Maxwell-Boltzmann distribution is shown with the thick gray line.
Compared to CDM, the velocity distribution functions in dSIDM
models are more suppressed at the high-velocity tail as the cross-
section increases and the peaks of the distributions also decrease
systematically. Top right: Same velocity distribution functions as
the top left panel but in log-log scale to highlight the asymptotic
behavior at the low-velocity tail. Both CDM and dSIDM models
have velocity distribution functions that decrease slower than the
Maxwell-Boltzmann distribution at the low-velocity tail. Dissipation
has limited impact at low velocities due to small interaction rates
there. Bottom left: Velocity distribution function at intermediate
galactocentric radii (𝑟cdm

1/2 /3 < 𝑟 < 3𝑟cdm
1/2 ). Similar differences in

the velocity distribution of CDM and dSIDM are found compared to
the one at small radii. Bottom right: The same velocity distribution
function as the bottom left panel but in log-log scale. Both CDM and
dSIDM models have velocity distributions that overall resemble the
Maxwell-Boltzmann distribution at the low-velocity tail. . . . . . . . 35
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2.13 Top: Axis ratios of DM halos at central kpc in simulations at
𝑧 = 0. We show the minor/intermediate axis ratio (𝑐/𝑏) versus
the intermediate/major axis ratio (𝑐/𝑎) of DM mass distribution in
different simulations. The axes are measured iteratively while fixing
the volume of an ellipsoid as 4𝜋/3 𝑟3

lim, where 𝑟lim is chosen to be
1 kpc. When 𝑐/𝑏 (𝑏/𝑎) is close to unity, the system is a prolate
(oblate) spheroid. When both 𝑐/𝑏 and 𝑏/𝑎 are close to unity, the
system is spherically symmetric. In CDM, DM halos are triaxial
ellipsoids with a clear hierarchy of minor, intermediate and major
axes. The CDM halos lean towards prolate shapes, driven by mild
radial dispersion anisotropy. In the dSIDM model with (𝜎/𝑚) = 1
and 10 cm2 g−1, DM halos behave as oblate spheroids, driven by the
coherent rotation of DM. In the extreme cases (e.g., m10q in dSIDM
with (𝜎/𝑚) = 10 cm2 g−1), 𝑐/𝑏 drops to as low as ∼ 0.5 while
𝑏/𝑎 stays around unity. At larger radii (𝑟 ≫ kpc), the qualitative
trends are similar but the differences between DM models become
rapidly smaller. Bottom: Evolution of the axis ratios of m10q at
central kpc from 𝑧 ≃ 2.2 to 𝑧 = 0. The markers with darker colors
represent measurements at lower redshifts. The CDM halo stays
triaxial since 𝑧 ≃ 2.2 while the eSIDM halo becomes more spherical
at late times. The halo in dSIDM with (𝜎/𝑚) = 1 cm2 g−1 is already
more spherical than CDM and eSIDM counterparts at 𝑧 ≃ 2.2 and it
becomes extremely spherical at 𝑧 = 0. However, the halo in dSIDM
with (𝜎/𝑚) = 10 cm2 g−1 initially follows the track of becoming
more spherical but then turns oblate in shape. . . . . . . . . . . . . . 38

2.14 DM energy transfer rates via “thermal conduction” (DM colli-
sional energy transfer) versus dissipation energy loss rates, mea-
sured in spherical shells, as a function of galactocentric radii. We
show the heat gain or loss of DM via collisions ( ¤𝐸coll, Equation 2.26)
versus the energy dissipation rate ( ¤𝐸diss, Equation 2.27) in circles (red
for ¤𝐸coll > 0, blue for ¤𝐸coll < 0). We present the results in one of the
classical dwarfs m10q and in one of the bright dwarfs m11a. In both
galaxies, with 𝑓diss = 0.5, the collisional energy transfer rate is always
roughly an order of magnitude lower than the energy dissipation rate. 44
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2.15 Top left: Total mass density profiles of m09 in dSIDM mod-
els with other combinations of 𝑓diss and 𝜎/𝑚. We choose three
combinations of 𝑓diss and 𝜎/𝑚 that give the same dissipation time
scale: 𝑓diss = 0.5, 𝜎/𝑚 = 1 cm2 g−1; 𝑓diss = 0.1, 𝜎/𝑚 = 5 cm2 g−1;
𝑓diss = 0.9, 𝜎/𝑚 = 0.56 cm2 g−1. Other panels: Collisional en-
ergy transfer rates versus energy dissipation rate of DM (as Fig-
ure 2.14). The energy transfer rate via collisions is subdominant
compare to dissipation in the model with 𝑓diss = 0.5 or 0.9. In the
model with 𝑓diss = 0.1, collisional heating overtakes dissipation at the
center of the galaxy. This model actually produces a denser and cus-
pier central density profile, as the halo experiences the gravothermal
collapse and a dense core in the SMFP regime emerges at the center.
In all models, at large radii (∼ 10 kpc), collisional energy transfer
rates become comparable to the dissipation rate, but the absolute
values of both terms at these radii are too small to make a difference. 46

2.16 A cartoon of the dSIDM parameter space. The dSIDM model is
parameterized with 𝜎/𝑚 and 𝑓diss. When 𝜎/𝑚 is small enough,
both elastic and dissipative SIDM models become analogous to
CDM in the lifetime of the Universe. When 𝑓diss becomes small
enough, dSIDM becomes essentially eSIDM-like since collisional
energy transfer dominates over dissipation in this regime. When the
product of 𝜎/𝑚 and 𝑓diss becomes large enough, the dissipation time
scale could drop below the local dynamical time scale of the system
and result in the fragmentation of dSIDM into compact dark objects.
Effectively, baryon-like models are located at the low 𝑓diss, high 𝜎/𝑚
corner of the plot. The dSIDM models studied in this chapter live
in the parameter space, which is not immediately ruled out but can
still give rise to unique phenomena different from CDM or eSIDM
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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2.17 Total mass density profiles of galaxies in DMO simulations and
full physics simulations. We present the density profiles of m10q
and m11q in CDM and dSIDM with (𝜎/𝑚) = 1 cm2 g−1. The results
of full physics simulations are shown in solid lines while the results of
DMO simulations are shown in dashed lines. The purple dotted verti-
cal line indicates the convergence radius in DMO runs (see Table 2.1).
In CDM, the central density profiles in DMO simulations are similar
to the NFW profile before reaching the convergence radii. The full
physics simulation of m11q produces a kpc size core at the center
due to strong baryonic feedback there. However, in the dSIDM model
with (𝜎/𝑚) = 1 cm2 g−1, the DMO and full physics simulations pro-
duce almost identical results, indicating that dissipative interactions
of DM completely determine the evolution of the DM halo and the
impact of baryonic feedback becomes negligible. This is generally
true when the dissipation time scale becomes significantly shorter
than the Hubble time scale. . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Visualizations of two simulated classical dwarfs. Each column
corresponds to one DM model studied. The images are mock Hubble
Space Telescope composites of u,g,r bands with a logarithmic surface
brightness stretch. We use the STARBURST99 model to determine
the SED of each stellar particle based on its age and initial metallicity
and use ray-tracing [4] to model dust attenuation assuming a Milky
Way-like reddening curve and a dust-to-metal ratio of 0.4. The
side lengths of the images are chosen to be 8 × 𝑟1/2 of the CDM
run. The dSIDM models with (𝜎/𝑚) = 1 cm2 g−1 and the velocity-
dependent cross-section produce visibly more concentrated stellar
content compared to the CDM case (the effective cross-section as
defined in Shen et al. [5] of our velocity-dependent model in classical
dwarfs is about 0.3 cm2 g−1). However, the model with (𝜎/𝑚) =

10 cm2 g−1 produces overall fluffier stellar distribution. . . . . . . . 56
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3.2 Visualizations of three simulated bright dwarfs. The images are
generated in the same way as those in Figure 3.1. Since some of the
bright dwarfs develop disk-like structures, we show both face-on and
edge-on images here. Compared to the CDM case, the stellar disks
in the dSIDM model with (𝜎/𝑚) = 1 cm2 g−1 are more well-defined
and exhibit more concentrated central regions. On the other hand, the
velocity-dependent dSIDM model produces galaxies that are visibly
similar to the CDM case given its small effective cross-section at this
mass scale ((𝜎eff/𝑚) ∼ 0.01 cm2 g−1). Interestingly, the model with
(𝜎/𝑚) = 10 cm2 g−1 produces stellar disks accompanied by overall
fluffier stellar distribution compared to the model with (𝜎/𝑚) =

1 cm2 g−1 and CDM. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Visualization of the gas content of three simulated bright dwarfs.

The images are logarithmically-weighted gas surface density projec-
tions. Each column corresponds to one DM model studied and each
row corresponds to one bright dwarf simulated. For each dwarf, both
the face-on and edge-on images are shown. The side lengths of the
images are chosen as 12 × 𝑟cdm

1/2 . Each image is a composite of gas
distribution in three phases characterized by the gas temperature. The
magenta color represents the “cold” neutral gas with𝑇 ≲ 8000 K; the
green color represents the “warm” gas with 𝑇 ∼ 1 - 3×104 K; the red
color represents the “hot” ionized gas in the CGM with 𝑇 ≳ 105 K.
The neutral gas disks are promoted in the dSIDM-c1 and c10 models,
even in m11a which is strongly perturbed by supernovae feedback in
CDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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3.4 Left column: Stellar density profiles of simulated classical dwarfs.
The density profiles from different DM models are presented as la-
beled. The short vertical lines indicate the stellar-half-mass-radius
of the galaxy in each model. The m10q and m10v halos show dif-
ferent responses to DM dissipation. In m10q (top), which forms
its stars early, a cuspy stellar profile appears with moderate dSIDM
cross-sections accompanied by shrinking galaxy size, and then the
profile turns shallower when the cross-section further increases. In
m10v (bottom), which forms quite late, the profile becomes more
concentrated monotonically as the cross-section increases, and the
decline of galaxy size is less dramatic. This is related to the distinct
star formation histories of the two galaxies as shown on the right.
Right column: Archaeological star formation history of simulated
classical dwarfs. This is computed as the age distribution of stellar
particles within 10% 𝑅cdm

vir at 𝑧 = 0. The galaxy m10q has an early
star formation history peaked at 𝑧 ≃ 3. The stars have more time
to react to the underlying DM distribution. On the other hand, the
galaxy m10v with a relative late period of star formation does not
exhibit this. The late time star formation and feedback also puffs up
the stellar content and make it less dependent on the underlying DM
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Left column: Stellar density profiles of simulated bright dwarfs.
The notation is the same as Figure 3.4. In both m11a and m11b, the
stellar density profiles become cuspy in dSIDM models with mod-
erate cross-sections while turning shallower as we further increase
the cross-section. This largely reflects similar behavior seen in the
DM density profiles in Shen et al. [5] – in particular, at very high
cross-sections the central DM profiles are flattened via dark rotation.
Right column: Archaeological star formation history of simulated
bright dwarfs. The notation is the same as Figure 3.4. The galaxy
m11a has a relatively flat star formation history and is not signifi-
cantly affected by the DM physics. However, in m11b, dips in star
formation history at low redshifts appear in dSIDM models. . . . . . 63
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3.6 Size-mass relation of simulated (isolated) dwarf galaxies. The
stellar half-mass radius versus stellar masses of simulated dwarfs are
shown with open markers (as labeled). We compare them with several
observations of dwarf galaxies in the Local Universe: gray points with
error bars, the Local Group dSphs compiled in McConnachie [6]; blue
contours, the NGFS dwarfs in Eigenthaler et al. [7]; green contours,
the SPARC galaxies presented in Lelli et al. [8, 9]; red contours, the
UDGs in the Coma and Virgo cluster from van Dokkum et al. [10]
and Mihos et al. [11]; purple (red) line, the size-mass relation of
the observed “normal” late-type (early-type) galaxies [12, 13]. The
simulated dwarfs are consistent with the median size-mass relation
of LTGs in observations and its extrapolation. With mild DM self-
interaction ( (𝜎/𝑚) ≲ 1 cm2 g−1), the sizes and masses of galaxies,
in general, do not vary much from the CDM case. In some cases,
the dSIDM models can produce compact dwarfs at 𝑀∗ ∼ 106 M⊙,
in better agreement with Local Group observations. However, in the
dSIDM-c10 model, dwarf galaxies have apparently more extended
stellar content and are located at the diffuse end of the observed
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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3.7 Circular velocity profiles of simulated classical dwarfs compared
with the observed field dwarfs in the Local Group. Top left:
Circular velocity profiles of the simulated dwarfs in different DM
models. The circular velocities are enhanced at the sub-kpc scale
in dSIDM models. In the model with (𝜎/𝑚) = 10 cm2 g−1, the
normalization of the circular velocity profile decreases. Top right:
We compare the results in CDM and dSIDM models with (𝜎/𝑚) =
0.1/1 cm2 g−1 with the observed field dwarfs in the Local Group (we
show two measurements for Tucana, connected by gray line; see text
for details). The 𝑟1/2 of these galaxies are shown by solid circles. We
highlight the observed dwarfs of similar sizes to the simulated one
(0.2 kpc ≲ 𝑟1/2 ≲ 0.9 kpc) with the purple shaded region. The CDM
results are consistent with the majority of the observed dwarfs, but
lower compared to the most compact dwarfs (NGC6822 and the older
measurement of Tucana). The

(
𝑉circ(𝑟1/2), 𝑟1/2

)
of these two dSIDM

models are still marginally consistent with the observed dwarfs of
similar sizes and improve the agreement for compact dwarfs. The
circular velocities in the dSIDM models are about two times higher
than the observed ones at small radii 𝑟 ≲ 0.2 kpc. Bottom left:
We show the results of the velocity-dependent dSIDM model and
compare them to the observed dwarfs with 0.1 kpc ≲ 𝑟1/2 ≲ 1.2 kpc.
Bottom right: We show the results of the model with (𝜎/𝑚) =

10 cm2 g−1 and compare them to the observed dwarfs with 0.7 kpc ≲
𝑟1/2 ≲ 1.5 kpc. The results from these two models are also consistent
with observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8 Circular velocity profiles of simulated bright dwarfs compared
with observed LSBs in the Local Universe. Right: Circular velocity
profiles of the bright dwarf galaxies in simulations. We compare the
results with the measured circular velocities of LSBs observed in the
field (see Section 3.4 for details of the observed sample and selection
criteria). Models with constant 𝜎/𝑚 that are consistent with in the
classical dwarfs (with low 𝑉c) generally produce too concentrated
galaxies at high 𝑉c, but the velocity-dependent model is consistent
over the entire range we consider here. . . . . . . . . . . . . . . . . . 70
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3.9 Circular velocity profiles of satellite galaxies of simulated Milky
Way-mass galaxies and compared with observations. The circular
velocity profiles in each DM model are shown in each column re-
spectively. The solid lines and the shaded regions show the median
and the 1.5𝜎 scatter (86% of the sample) of the curves. The dashed
lines highlight the three circular velocity profiles with the highest
(and the three with the lowest) circular velocities at 𝑟 = 1 kpc. Gray
circles with error bars show the (𝑉1/2, 𝑟1/2) of observed Milky Way
and M31 satellites compiled in Section 3.4. The 𝑟1/2’s of simulated
satellites are marked by solid circles. The identified subhalos in sim-
ulations are selected as satellites if they have galactocentric distance
20 kpc < 𝑑 < 300 kpc, and with at least 200 DM particles and 10
associated stellar particles (equivalently 𝑀∗ ≥ 10𝑚b). The selected
satellites are in the mass range 𝑀∗ ∼ 105 - 108 M⊙, in concordance
with the observed sample. The circular velocity profiles in different
models are almost indistinguishable compared to the scatter among
the observed satellites, despite the slightly larger median rotation ve-
locities and upper scatter in the dSIDM-c0.1 model. Circular velocity
profiles from all three models are consistent with the bulk of the ob-
served dwarfs, although the predicted galaxy sizes are systematically
larger. The smallest 𝑟1/2 reached in the two dSIDM models is smaller
than the CDM case, down to about ∼ 500 pc. As indicated by the
dashed lines, the most compact satellites in the dSIDM-c0.1 model
agree better with the observed compact dwarfs in the Local Group,
though the stellar content is still puffier compared to observations. . . 73
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3.10 Size-mass relation of satellite galaxies. We show the stellar-half-mass-radius

versus the stellar mass of satellites of the simulated Milky Way-mass host(s). Only

the high-resolution runs are considered here. The satellites from simulations follow

the same selection criteria as in Figure 3.9. The solid points show satellite sizes

corrected for the surface brightness limit in observations. The black dotted lines

indicate the surface brightness limit 30 m𝑎𝑔 arcsec−2 for the SDSS surveys and the

limit with an order of magnitude increasing sensitivity. For reference, the Local

Group dwarfs [6] are shown by gray points and the NGFS dwarfs [7] are shown by

the gray shaded contours. The purple dashed line is the extrapolation of the size-

mass relation of local late-type galaxies [12]. The left shaded region indicates the

mass resolution limit of the simulated satellites. The horizontal cyan dashed line

indicates radius limit where the enclosed DM particle number is ≤ 200 for a typical

satellite central density 𝜌dm ≃ 107.5 M⊙ kpc−3. The markers encircled highlight

the three most compact dwarfs (with the highest rotation velocities at 𝑟 = 0.5 kpc)

in each run. A significant population of low-mass satellites in simulations are

not detectable in current observations. For those in the observed regime, no

obvious difference is found between CDM and dSIDM models. Massive satellites

in dSIDM models are slightly more compact than their CDM counterparts, but

they are still systematically puffier than the observed ones. In all the models, the

satellites with the most compact DM content (highest circular velocities identfied

in Figure 3.9) also have the most compact stellar content. However, despite similar

stellar masses, they have about three times larger 𝑟1/2 than the observed compact

dwarf elliptical galaxies. For reference, the (𝑟1/2, 𝑀∗)’s of simulated classical

dwarfs (isolated systems) are shown as open stars. With an order-of-magnitude

better mass resolution, the isolated dwarfs have slightly more compact stellar

content that is in better agreement with the observed samples. This hints the

resolution-dependent uncertainties, which will be discussed in Appendix 3.7. . . . 75
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3.11 Satellite stellar mass function. The satellite stellar mass functions
of different DM models are shown in solid lines with different colors
(as labeled). The purple and orange dashed lines show the satellite
stellar mass functions of the Milky Way and M31, respectively. The
gray dashed lines with shaded regions show mass function of Milky
Way-like systems in the SAGA survey with 1𝜎 scatter. Each panel
corresponds to one simulated Milky Way-mass galaxy in the suite.
The vertical dotted line indicates the resolution limits of satellite
stellar mass (set as 10 times the baryonic mass resolution of the
simulation). Strong diversity shows up in the stellar mass function of
both observed satellites and the satellites of simulated galaxies. The
counts of satellites get enhanced slightly in the dSIDM models, but
the differences are still too small compared to the observed scatter to
effectively rule out any of the models studied. . . . . . . . . . . . . . 78

3.12 Cumulative count of satellites above a given stellar 3-D velocity
dispersion. The notation is the same as Figure 3.11. Similar to the
stellar mass function, we find strong diversity here in both observed
and simulated systems. The satellite 𝜎3d

∗ distributions of m12i (l.r.)
and m12f are in good agreement with the Milky Way and M31 sam-
ples at 𝜎3d

∗ ≲ 20 km s−1 but do not produce enough dynamically hot
satellites. On the contrary, in m12i (h.r.) and m12m, the high𝜎3d

∗ end
is in better agreement with the observed sample, but they tend to over-
predict the number of satellites with 𝜎3d

∗ ≲ 25 km s−1. In terms of the
DM physics tested, the dSIDM models (especially the dSIDM-c0.1
model) predict systematically higher velocity dispersions of satellites. 81

3.13 We compare satellite circular velocity profiles from the high and low-
resolution simulations of m12i. The notation follows the top panel.
Although the median circular velocity profile and the scatter do not
differ appreciably between high and low-resolution simulations, the
𝑟1/2’s of satellites in simulations are systematically smaller in the
high-resolution simulation. Compared to the observed dwarfs, even
the high-resolution simulation produces fluffier stellar content for
these satellites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
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3.14 We compare the high- and low-resolution simulations on the plane of
the size-mass relation. They are all corrected for the surface bright-
ness limit at 𝜇V = 30 mag arcsec−2. The horizontal lines indicate the
radius enclosing 200 DM particles assuming the typical satellite cen-
tral density 𝜌dm = 107.5 M⊙ kpc−3. Satellites in the low-resolution
simulations are systematically more diffuse than their high-resolution
counterparts. The resolution dependence could explain the discrep-
ancy between the simulations with observations in this plane. . . . . 86

4.1 Enclosed mass fraction as a function of radius (normalized to the scale
radius 𝑟𝑠), for 8 and 7 different 5- and 3-𝜎 halos (upper and lower
panels, respectively) including DM dissipation with cross-section
1 cm2 g−1. Different halos are labeled with the mass (in units of
1011𝑀⊙) and redshift. The high spin curve corresponds to 𝜆 = 0.1
at 𝑧 = 10, while other halos have spin parameter 𝜆 = 0.03. In these
figures, the more dense 5 − 𝜎 halos show core collapse, indicated
by the region of constant density at small radii, while 3 − 𝜎 halos
have not been destabilized, consistent with Fig. 4.2. In the collapsed
halos, the collapse fraction is found universally to be ∼ 3 × 10−3. . . 94
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4.2 left panel: Shown as shaded contours, minimum halo mass 𝑀 to
seed an SMBH (labeled “SMBH seeds”) immediately at redshift of
halo formation 𝑧 𝑓 , for a fixed tdSIDM cross-section (𝜎/𝑚 in units of
cm2/g). The solid curves show the mass of a 𝜈 = 1, 3, 5 halo in a
spherical collapse model formed at redshift 𝑧 𝑓 . A halo is available
in the cosmological history to seed an SMBH (for a given cross-
section) if the shaded region corresponding to that cross-section is
above a solid curve. For comparison, we show as dashed curves the
cosmological history of the Main Progenitors of a Milky Way Mass
and Cluster Mass galaxy, as given in Eq. (4.19). Interestingly, the
main progenitor of a 1 − 𝜎 halo at 𝑧 = 0, can be a 3 − 𝜎 halo at
𝑧 ∼ 10, which is more likely to form SMBHs. right panel: Mass
𝑀 of a 𝜈 = 5 halo, again for fixed cross-section corresponding to
colored regions, that may seed an SMBH at a lower redshift 𝑧 ≤ 𝑧f .
We can see that rare halos that do not seed an SMBH immediately
may do so later in the history of the Universe. During the evolution
of these halos, we assume the central density and the halo mass are
fixed; we will track the assembly history of halos more completely in
Sec. 4.3 utilizing merger trees. . . . . . . . . . . . . . . . . . . . . 97

4.3 Halo mass function. The reconstructed halo mass functions at
𝑧 = 4, 6, 8 based on the weighted abundance of halos in the merger
trees (shown by circles of different colors). They are compared to
the halo mass functions determined analytically using the hmf code
(shown by dashed lines), which itself is calibrated based on numerical
cosmological simulations [14]. The halo mass functions determined
by the merger trees agree reasonably well with the analytic ones up
to 1012 M⊙ (1013.5 M⊙) at 𝑧 = 8 (𝑧 = 6), which covers the mass range
of quasar host halos of interest. . . . . . . . . . . . . . . . . . . . . 102
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4.4 SMBH mass function. Top: Number density of SMBHs as a func-
tion SMBH mass at 𝑧 = 6, calculated from the weighted abun-
dance of SMBHs in the merger trees. The prediction assuming
𝜎/𝑚 = 0.1 (0.05) cm2 g−1 and Δ𝑀0 = 0 is shown and compared to
the halo mass function multiplied by the collapse fraction 𝑓col. The
massive end of the BHMF is coupled with the seeding mechanism,
and the shape of the SMBH mass function resembles the exponential
cut-off in the halo mass function. Low-mass SMBHs have decou-
pled from the seeding mechanism and the low-mass end of the mass
function deviates from the halo mass function. The choice of self-
interaction cross-section does not affect the massive end but changes
the characteristic mass where the SMBH mass function deviates from
the halo mass function. The shaded region indicates the abundance
of observed massive quasars (𝑀BH ≳ 109 M⊙) at high redshift and
the abundance of underlying SMBH population should at least be
larger. Bottom: We show the SMBH mass functions in the model
with 𝜎/𝑚 = 0.1 cm2 g−1 and Δ𝑀0 = 0 (107) M⊙. The baryonic ac-
cretion arguably only has an impact at the low-mass end (shifting
the lowest mass of the seeds produced by the mechanism), hardly
changing the abundance of the most massive SMBHs. . . . . . . . . 106

4.5 Bolometric quasar luminosity function at 𝑧 = 6. Top: Model
predictions, varying 𝜎/𝑚 and Δ𝑀0. The predictions are derived
by convolving the SMBH mass function with a log-normal ERDF,
tuning the duty-cycle to match the abundance of luminous quasars.
The solid circles represent observational constraints compiled in [15].
The prediction assuming 𝜎/𝑚 = 0.05 cm2 g−1 is compatible with
the observations and produces the observed abundance of luminous
quasars at 𝑧 = 6, assuming a relatively low duty-cycle. On the other
hand, the model with 𝜎/𝑚 = 0.05 cm2 g−1 will overproduce quasars
of 𝐿bol ∼ 1047 erg/s. Bottom: We show the predictions with a cut-
off power-law as the ERDF. The duty-cycle is assumed to be unity.
The faint-end slope of the ERDF (𝛼) is tuned to make the predicted
quasar luminosity function close to observations. Both models can
agree well with the luminous quasar abundances in observations. But
the model 𝜎/𝑚 = 0.05 cm2 g−1 does not fit perfectly with the faint
end luminosity function regardless of the 𝛼 adopted. . . . . . . . . . 109
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4.6 Mass growth history of SMBHs. The blue solid lines show the
mass of SMBHs as a function of redshift in our model assuming
𝜎/𝑚 = 0.1 cm2 g−1. These SMBHs are selected from merger trees
with 𝑀BH ≤ 1010 M⊙. The red points are the observed massive
quasars at 𝑧 ≳ 6 compiled in [16, 17] with the mass estimated using
the virial method. The gray points are a more complete set of 196
quasars at 𝑧 ≳ 6 compiled in [18], with the mass estimated indirectly
from UV luminosity. The red dotted lines indicate the growth history
of the observed quasars assuming they exhibit the same Eddington
ratio as the measured value at the redshift of discovery. The typical
mass and formation redshift of SMBH seeds from classical seeding
mechanisms are shown in shaded regions, with the Eddington-limit
growth tracks of these seeds in dashed lines for reference. Seeds
formed in canonical mechanisms need to accrete at rates near the
Eddington limit in order to produce billion solar mass SMBHs at
𝑧 ≃ 6 − 8. This is in tension with the low Eddington ratios of some
observed quasars, which require seed masses of ∼ 108𝑀⊙ implied
by their observed Eddington ratio. However, such quasars can be
accommodated in our seeding model. . . . . . . . . . . . . . . . . . 110

4.7 The 𝑀BH −𝜎∗
v relation of high redshift SMBHs. We show SMBHs

in the merger trees selected at 𝑧 = 7 in solid circles, with the marker
size scaling with the statistical weight. Red and blue circles corre-
spond to the model with 𝜎/𝑚 = 0.1 and 0.05 cm2 g−1, respectively.
The local 𝑀BH − 𝜎∗

v relation [19] is shown with the purple dashed
line. The orange dashed line shows the relation 𝑀BH ∼ 𝑓col𝑀vir, as-
suming the relation between 𝑀vir and 𝜎∗

v (Eq. (4.23) and Eq. (4.24))
holds. Observational samples based on the [C II] line observations
of the quasar host galaxies compiled in [17] (originally from [20])
are shown in orange circles. . . . . . . . . . . . . . . . . . . . . . . 111
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4.8 The comoving SMBH mass density in the Universe versus red-
shift. The cumulative mass density of SMBHs integrated over the
mass function. The results with different model parameters are
shown as labeled and compared to the local SMBH mass density,
4.4−5.9×105 M⊙ Mpc−3 [21], as indicated by the horizontal line. The
mass density from the model with 𝜎/𝑚 = 0.1 cm2 g−1 approaches
the local mass density already at 𝑧 ≃ 6, which is potentially prob-
lematic since the integrated quasar luminosity density matches the
local SMBH mass density [15] (at 0.5 dex level, assuming 𝜖r = 0.1).
Therefore, the mass density at high redshift needs to be significantly
lower than the local value in order to be consistent with the observa-
tion of quasar luminosity functions, unless 𝜖r is larger (i.e. SMBHs
are rapidly rotating). . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.9 Top: Mass growth history of halo progenitors. The growth tracks
of relatively massive progenitors are color-coded by their concentra-
tions. Low-mass progenitors are shown by the gray cloud. The main
progenitor is indicated by the cyan solid line. The green dashed line
shows an analytic model for the main progenitor mass growth history
[22]. The gray solid lines show the mass of the halo corresponding to
a certain rareness of fluctuations. Bottom: Ratio 𝑡diss/𝑡h of halo pro-
genitors versus redshift. The cross-section (𝜎/𝑚) = 0.05 cm2 g−1

is assumed here. Progenitors that are more massive than 1010 M⊙

are color-coded by their halo masses. The labeling is the same as
the top row. The green dashed lines show analytic expectations for
the timescales of the low and high redshift branches (as discussed
in the main text). The horizontal dashed line indicates the threshold
where SMBH seeding will occur assuming (𝜎/𝑚) = 0.05 cm2 g−1

and 𝜖 = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.10 Enclosed mass profile of two 5 − 𝜎 halos at 𝑧 = 10 with the same

NFW parameters but different simulation parameters. Solid curves
represent the mass profile at different times for the fiducial run, while
the dashed curves are for a run with a factor of 4 improved resolution
(improving both mass and force resolution accordingly). The vertical
dashed lines indicate the gravitational force softening length for both
the fiducial run and the high-resolution run. . . . . . . . . . . . . . 121
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4.11 Enclosed mass profile of three collapsed 5 − 𝜎 halos at 𝑧 = 10 with
the same NFW profile parameters. The collapse of those halos is
simulated with different cross-sections but the same mass and force
resolution. The enclosed profiles are flat at small radii, suggesting
the formation of SMBHs. Therefore, the universality of the collapse
fraction is not violated by changing the cross-section of tdSIDM. . . 126

5.1 Redshift and temperature distributions of the observed clusters and
temperature distribution for the simulated clusters. Left: Redshift dis-
tribution of the observed clusters. The distributions of the “peaky”
and “non-peaky” samples are shown in red and blue. For both dis-
tributions, most of the clusters fall in the range 0.1 ≲ 𝑧 ≲ 0.5, with
a few outliers out to 𝑧 ∼ 1. Right: Temperature distribution of the
observed (red and blue) and the simulated clusters (green). The me-
dian temperature of each sample is shown by a corresponding vertical
dashed line. On average, the temperatures of simulated clusters are
fairly consistent with the observed samples, despite having a smaller
dispersion in temperature. . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 DM mass density profiles of the simulated clusters. For each DM
model, we show the median and 1𝜎 dispersion of the density profiles
of the simulated clusters. The grey dotted line with a shaded region
indicates the conservative estimation of the convergence radii of DM
properties with its error. SIDM halos develop thermalized cores with
flat central density profiles, in contrast to the cuspy central profile
in CDM. The core size increases with greater self-interaction cross-
sections. These differences exist outside the convergence radius, but
eventually become negligible at the outskirts of the halos (≳ 5% 𝑅200).138
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5.3 Gas mass density profiles of the simulated clusters. The labeling is the
same as in Figure 5.2. The convergence radius for hydrodynamical
properties of the gas is ambiguous, so we choose 16 times the hydro
spatial resolution ℎb as a reference, indicated with the grey dashed
line (see Figure 5.4 and the discussion at the end of Section 5.5 for
the convergence criterion). The colored short dashed lines show gas
density profiles inferred from the gravitational potential of the gas,
assuming that the intracluster gas is isothermal and in hydrostatic
equilibrium. A zoom-in subplot is included to compare density
profiles at the center. Unlike DM, the gas density profiles show
little difference between DM models. The central densities are also
lower than expected from the hydrostatic equilibrium predictions. . . 139

5.4 Top: Gas temperature profiles of the simulated clusters. The label-
ing is the same as in Figure 5.3. The vertical dashed line shows an
estimate of the convergence radius for hydrodynamical properties.
The horizontal dashed lines indicate the median virial temperatures
of the halos in each DM model. Gas temperatures rise monotonically
towards halo centers with the central temperature being slightly lower
in SIDM models. Bottom: Thermal pressure gradient versus gravita-
tional potential gradient as a function of radius. The thermal pressure
support balances the gravitational attraction at 𝑟 ≳ 10% 𝑅200, indi-
cating that the hydrostatic equilibrium is perfectly respected. At
small radii, the dispersion in D𝑃/DΦ gradually becomes larger.
The convergence radius for hydrodynamical properties is estimated
as 16 times the hydro spatial resolution ℎb and is indicated with the
grey vertical dashed line. Within the convergence radius, the median
value of D𝑃/DΦ shows order of magnitude fluctuations. . . . . . . 140
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5.5 Three-dimensional axial ratios of the DM (gas) distribution of the
simulated clusters. The left (right) column shows the axial ratios for
DM (gas). The top row shows the minor-to-major axial ratio, 𝑐/𝑎,
and the bottom row shows the intermediate-to-major axial ratio, 𝑏/𝑎.
The shaded vertical regions on the left and dashed lines on the right
indicate the convergence radii for DM and gas properties, respectively.
Considerable differences between SIDM and CDM show up in the
DM shape out to large radii, while the distinct signature of SIDM
in the gas shape is much weaker. Meanwhile, the gas distribution
is systematically rounder than the DM one, as a consequence of the
X-ray emitting gas tracing more directly the isopotential surface of
the matter distribution rather than the mass distribution. . . . . . . . 141

5.6 Soft X-ray surface brightness profiles of the simulated clusters in
different DM models. For each model, we show the median and
1𝜎 dispersion of the surface brightness profiles. A zoom-in subplot
of the central surface brightness profiles is included. The hydro
convergence radius is shown with the grey vertical dashed line. The
surface brightness profile is basically insensitive to DM physics, due
to a combination of projection effects and the weak response of the
intracluster gas distribution to SIDM physics. . . . . . . . . . . . . . 144
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5.7 Comparisons of the soft X-ray surface brightness profiles of the sim-
ulated and observed clusters. Top: Surface brightness profiles (with
observational error bars) of individual clusters. The observed clus-
ters are grouped as the low-redshift “peaky” and “non-peaky” clusters
[23], and the three SPT-selected clusters at 𝑧 ≳ 1.2 [24] which do not
exhibit cool-cores. The surface brightness profiles are normalized
with the units defined in Equation 5.9. The shaded region indicates
the radial range of interest, 0.1 - 0.2 𝑅200. The cuspy central pro-
files of the low-redshift observed clusters, in particular the “peaky”
sample, are not present in the simulated clusters with the absence of
cooling processes. The high-redshift SPT-selected clusters appear to
agree better with the simulations, due to the different thermodynam-
ical properties compared to the low-redshift clusters. At large radii,
including the radial range of interest for shape measurements, we find
reasonable agreement in terms of normalization and slope between
the simulated and observed profiles. Bottom: Median and 1𝜎 disper-
sion of each group of surface brightness profiles. It is clear that the
simulated clusters agree better with the “non-peaky” sample at the
outskirts of the clusters. Based on the surface brightness in the radial
range of interest (0.1 - 0.2 𝑅200, indicated with the shaded region), we
pick the flux levels of the isophotes for morphology analysis. They
are marked by the purple dashed lines. . . . . . . . . . . . . . . . . . 145

5.8 Ellipticity profiles of the simulated clusters compared to the observa-
tional results. We show the ellipticity of the isophotes as a function
of the effective radius of the isophote. The median values and 1𝜎
dispersions of the simulated samples are shown as solid lines and
shaded regions. The results of the observed “non-peaky” (“peaky”)
samples are shown by open black (grey) markers with error bars. The
vertical dashed line on the left indicates the hydro convergence ra-
dius. The SIDM-c0.5 and SIDM-c1 models predict lower ellipticities
and agree better with the observational results. However, the signal
is smeared by large statistical uncertainties. . . . . . . . . . . . . . . 146
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5.9 Left: Cumulative distribution function of the ellipticities of the X-ray
isophotes. The fit to the isophotes is performed at 0.1 - 0.2 𝑅200 for
each viewing angle of each simulated halo. In the lower subpanel,
we show the median ellipticities and 1𝜎 dispersions for the different
DM models and the observed cluster samples. Top right: Probability
distribution function of the ellipticities. For simplicity, we only show
PDFs of the CDM and SIDM-c1 models compared to observations.
Bottom right: 𝑝 value of the two-sample KS and AD tests. The
tests are performed on the ellipticity distributions of observed and
simulated clusters. The 𝑝 value is the likelihood that the two samples
are drawn from the same underlying continuous distribution function.
Compared to the “non-peaky” sample, the KS and AD tests reject the
CDM and SIDM-c0.1 models at about 90% confidence level. . . . . 147

5.10 Ellipticity CDFs and statistics from the bootstrapped samples. Top:
Ellipticity CDFs of the bootstrapped samples for the CDM and SIDM-
c1 models and the “non-peaky” sample from observations. The 1𝜎
dispersions of the CDFs are shown by the shaded regions. The
discrepancy found between CDM and the observed sample is larger
than the statistical uncertainties illustrated here. Bottom: The 𝑝

values of KS and AD tests for the bootstrapped samples. The median
𝑝 values and the 1𝜎 scatters are shown by solid circles with error
bars. The 𝑝 values from the measurements of the original samples
are shown by crosses. Since the numerical implementation of the
AD test only covers the 𝑝 values from 0.1% to 25%, the bootstrapped
results are thus capped, as marked by the arrows in the figure. Even
taking into account the scatter in 𝑝 value, the CDM and SIDM-c0.1
models are rejected with a 68% confidence level. . . . . . . . . . . . 152

5.11 Top: Ellipticity versus redshift of the observed clusters. The ellip-
ticity does not show any apparent dependence on redshift. Note that
these clusters have been pre-selected as dynamically relaxed objects
through the SPA criteria. Bottom: Ellipticity versus temperature. No
apparent dependence on temperature is found either. However, the
simulated clusters have a narrower distribution in temperature. . . . . 153
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5.12 Top: Ellipticity CDFs when varying the radial aperture of the mea-
surements. The CDF when increasing (decreasing) the radial aperture
by 25% is shown as the solid (dotted) lines. The original CDMs are
shown as transparent lines. The comparison demonstrates that the
results are robust against aperture shifts. Middle: Ellipticity CDFs
when excluding outliers in the ICM temperature distribution. The
CDFs of the temperature-limited samples are presented in dashed
lines while those of the original samples are shown in solid lines.
The impact of the temperature outliers is small. Bottom: The 𝑝

value of KS and AD tests when varying the radial aperture of the
measurements or applying a temperature selection criterion. The
conclusion that the CDM and dSIDM-c0.1 models are disfavored at
68% confidence level is not altered by either the aperture shift or the
temperature selection criterion. . . . . . . . . . . . . . . . . . . . . 154
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2.1 Simulations of the FIRE-2 dSIDM suite. The simulated galaxies

are labeled and grouped by their halo masses. They are classified
into four categories: ultra-faint dwarfs; classical dwarfs, with typ-
ical halo mass ≲ 1010 M⊙; bright dwarfs, with typical halo mass
∼ 1010−11 M⊙; Milky Way-mass galaxies, with typical halo mass
∼ 1012 M⊙. These halos are randomly picked from the standard
FIRE-2 simulation suite [25], sampling various star formation and
merger histories. All units are physical.
(1) Name of the simulation. “l.r.” (“h.r.”) indicates low (high)-
resolution version of the simulation.
(2) 𝑀cdm

halo : Virial mass of the halo (definition given in Section 2.4) in
the CDM simulation with baryons at 𝑧 = 0.
(3) 𝑅cdm

vir : Virial radius of the halo (definition given in Section 2.4) in
the CDM simulation with baryons at 𝑧 = 0.
(4) 𝑀cdm

∗ : Galaxy Stellar mass (see Section 2.4) in the CDM simula-
tion at 𝑧 = 0.
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[25], the convergence radii in simulations with baryons can in fact
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(7-11) Parameters of the DM models. 𝜎 (with the number after it)
indicates the self-interaction cross-section, 𝜎/𝑚, in unit of cm2 g−1.
𝜎(𝑣) denotes the velocity-dependent cross-section, introduced in
Section 2.2. 𝑓diss indicates the dimensionless degree of dissipation.
(12) Notes: Additional information of each simulation. . . . . . . . 11
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5.1 Simulated cluster-mass halos in the suite.
(a) Each halo is simulated in CDM, SIDM-c0.1, SIDM-c0.5, and
SIDM-c1. The bulk properties of these halos are indistinguishable
in different DM models, so we only list the properties in the CDM
simulations here.
(b) The radius of convergence of DM properties (based on the Power
et al. 26 criterion discussed in Section 5.2). We present the maxi-
mum convergence radius for simulations in all four DM models as a
conservative estimate.
(c) Due to a technical issue, the simulation was stopped at 𝑧 ≃ 0.18
instead of 𝑧 = 0. We approximate the 𝑧 = 0 results with this snapshot. 132
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C h a p t e r 1

INTRODUCTION

1.1 Motivations for DM alternative to collisionless cold DM
Despite its veiled nature, dark matter (DM) is considered the main driver of structure
formation in the Universe. The current paradigm — the cosmological constant plus
cold DM (ΛCDM) cosmological model — has been successful in describing the
large-scale structures in the Universe [27, 28]. This model assumes that DM is non-
relativistic and is effectively collisionless, apart from its gravitational interactions
with itself and Standard Model particles. However, in recent decades, evidence from
astrophysical observations and the absence of signals from particle physics experi-
ments have motivated conjectures on alternative DM models. On the astrophysics
side, the ΛCDM model faces significant challenges in matching observations at
small scales [see a recent review 29]. For example, the core-cusp problem states
that the central profiles of DM-dominated systems, e.g. dwarf spheroidal galaxies
(dSphs) and low surface brightness galaxies (LSBs), are cored [e.g., 30–43], in
contrast to the universal cuspy central density profile found in DM only (DMO)
simulations [44–49]. The too-big-to-fail (TBTF) problem states that a substantial
population of massive concentrated subhalos appears in DMO simulations, which
is incompatible with the stellar kinematics of observed satellite galaxies around
the Milky Way or M31 [50–52]. This mismatch has been extended to field dwarf
galaxies in the Local Group [53, 54] and beyond [55]. Although the inclusion of
bursty star formation and feedback processes has been shown to alleviate the ten-
sions [e.g., 56–62], a population of compact dwarf galaxies in the local Universe
are missing in cosmological simulations of CDM (plus baryons) that can produce
DM cores [e.g., 62–64]. Relate to this, the rotation curves of dwarf galaxies appear
to be more diverse than CDM predictions in the field [65] and Milky Way satel-
lites [66]. Therefore, it is important to explore how non-standard DM models — in
conjunction with baryonic physics — could help solve the small-scale anomalies.
On the particle physics side, one of the most popular candidates for CDM (the
class of Weakly Interacting Massive Particles, WIMPs) has not been discovered
despite decades of efforts and a significant proportion of its parameter space being
ruled out [e.g., 67–69]. The null results in collider production and direct/indirect
detection experiments of classical CDM candidates have motivated ideas about al-
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ternative DM models [e.g., 70–73] and explorations of the rich phenomenology
from potential non-gravitational DM interactions. Many of these alternative DM
models could behave dramatically differently from CDM at astrophysical scales and
could potentially solve the small-scale problems mentioned above.

1.2 DM with self-interactions
Self-interacting DM (SIDM) is an important category of alternative DM models
that have been proposed and discussed in the literature for about three decades [e.g.,
71, 74–76]. It is well motivated by hidden dark sectors as extensions to the Standard
Model [e.g., 77–85]. The introduction of SIDM could potentially solve some small-
scale problems [see the review of 86, and references therein]. DM self-interactions
enable effective heat conduction and could result in an isothermal distribution of
DM with cores at halo centers, which alleviates the core-cusp problem. Meanwhile,
it could also make DM halos (subhalos) less dense and alleviate the TBTF prob-
lem. Previous DMO simulations have found that a self-interaction cross-section of
∼ 1 cm2 g−1 could solve the core-cusp and TBTF problems in dwarf galaxies si-
multaneously [e.g., 87–90]. In addition, SIDM with comparable cross-sections also
has the potential to explain [e.g., 91–93] the diversity of rotation curves of dwarf
galaxies [65, 66]. Following studies of galaxy clusters in SIDM suggested a cross-
section of ∼ 0.1 cm2 g−1 [e.g., 94, 95], which motivates the velocity-dependence of
the self-interaction cross-section.

These previous studies on SIDM focused on elastic DM self-interactions. How-
ever, in many particle physics realizations of SIDM, DM particles have inelastic (or
specifically dissipative) self-interactions [e.g., 78, 81, 83, 85, 96–106]. The impact
of dissipative processes of DM has not yet been explored in the context of cosmolog-
ical structure formation. In addition, the focus on purely elastic SIDM (eSIDM) in
previous studies has been motivated by solving some small-scale problems (making
galaxy centers less dense). Since dissipative DM self-interactions tend to make
centers of halos denser to first-order consideration, dSIDM was largely omitted in
previous studies of SIDM. However, apart from DM physics, some baryonic physics
processes, including bursty star formation, stellar/supernovae feedback, and tidal
disruption, have also been shown to strongly impact the structure of DM halos
and help alleviate some small-scale problems. Specifically, gas outflows driven by
stellar/supernovae feedback could create fluctuations in the central potential, which
irreversibly transfer energy to CDM particles and generate DM cores [56–58, 107].
Some more recent CDM simulations could resolve the small-scale problems by
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more realistic modeling of gas cooling, star formation, and stellar/supernovae feed-
back [e.g., 59–62, 108–110]. The interplay between baryons and SIDM in galaxy
formation has been more carefully considered in subsequent SIDM simulations
that include baryonic physics [e.g., 90, 111–116]. The inclusion of baryons sub-
stantially reduces the distinct signatures in dwarf galaxies caused by elastic DM
self-interactions, especially in bright dwarfs with 𝑟1/2 ≳ 400 pc [115]. This could
hide DM physics that lead to enhanced central density originally, other than those
proposed specifically to lower the central density. The parameter space for dSIDM,
as an example of such models, reopens due to these recent developments. The con-
traction of the halo driven by dSIDM interactions could help produce the compact
dwarf galaxies found in the local Universe that are missing in CDM simulations plus
baryons [e.g., 62–64] and increase the diversity of dwarf galaxy rotation curves.

A finite self-gravitating system has negative heat capacity and the heat conduction
will eventually result in the “gravothermal catastrophe” of the system [e.g., 117, 118].
In the eSIDM case, effective heat conduction is realized by DM self-interactions and
the inner cores of isolated eSIDM halos will ultimately experience gravothermal col-
lapse and cuspy density profiles will reappear [e.g., 87, 90, 119–124]. However, for
the most favored elastic self-interaction cross-sections ∼ 0. 1 - 1 cm2 g−1 (assuming
velocity-independent), the “gravothermal catastrophe” would not have enough time
to happen in halos within their typical lifetime. In the presence of dissipative self-
interactions, the gravothermal evolution of a halo can be accelerated significantly,
which affects the structure of dwarf galaxies within a Hubble time. Essig et al. [125]
recently used a semi-analytical fluid model to investigate the structure of isolated
spherically symmetric halos in dissipative SIDM (dSIDM) and presented the first
constraint on the energy loss and cross-section of dSIDM. This work was followed
by Huo et al. [126] with non-cosmological N-body simulations of isolated DM
halos with the NFW profile [127] initially. Moreover, when the dissipation of DM
self-interaction is strong enough, a patch of DM could lose its kinetic energy faster
than rebuilding hydrostatic equilibrium with surrounding matter. Substructures of
dissipative DM, e.g. dark disks and dark stars, could be generated under this circum-
stance. For example, DM scenarios with a highly dissipative component (sourced
by an 𝑈 (1) -like hidden sector) have been studied by Foot and Vagnozzi [100], Fan
et al. [128, 129, 130], Randall and Scholtz [131], Foot [132], Foot and Vagnozzi
[133], Hyeok Chang et al. [134]. Randall and Scholtz [131] claimed that a dark
disk composed of highly dissipative DM could appear and help explain the exotic
mass-to-light ratios of some Milky Way satellites. However, the analytical or semi-
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analytical studies discussed above were limited to isolated DMO halos with various
geometrical simplifications. The influences of baryonic physics, hierarchical halo
mergers, and deviations from simple fluid approximations in DM halos were not
properly captured in these previous studies. In addition, multi-component DM with
inelastic interactions has been considered in simulations in Todoroki and Medvedev
[135], Vogelsberger et al. [136], but the dominant process is exothermic in these
studies.

Meanwhile, continuous improvements in observations of local dwarf galaxies and
other small-scale baryonic structures have enabled great opportunities to constrain
the nature of DM. For example, the census of ultra-faint satellite galaxies in the Local
Group through optical imaging surveys has been boosted in recent years, using the
data from the Dark Energy Survey [DES; 137–140], the Panoramic Survey Telescope
and Rapid Response System [Pan-STARRS; 141, 142], and others [e.g., 143, 144].
Many of the recently detected ultra-faints appear to be clustered around the Large
Magellanic Cloud (LMC; Drlica-Wagner et al. 138, Koposov et al. 145). These
candidate LMC satellites are attractive targets for ongoing and future observations
to test the ΛCDM model [146]. The structural and dynamical properties of the
Local Group satellites with resolved stellar populations have been measured [see
for example compilations by 6, 52, and references therein] and play a key role in
understanding the TBTF problem [50]. In the near future, the Legacy Survey of
Space and Time [LSST, 147] at the Vera Rubin Observatory has the potential to
substantially expand the discovery space of faint dwarf galaxies, being sensitive to
galaxies one hundred times fainter than Sloan Digital Sky Survey [SDSS, 148] at the
same distance [29]. Beyond the Local Group, the Dark Energy Camera [DECam,
149] and Subaru (Hyper) Suprime-Cam [e.g., 150, 151] are being used to search for
faint companions of nearby galaxies [e.g., 152–154], as well as the LSBs and ultra-
diffuse dwarf galaxies (UDGs) in cluster environment [e.g., 7, 10, 11, 155, 156].
In addition, for relatively massive disky dwarfs (late-type), radio observations have
reported the HI rotation curves and mass models of a few hundred of them in the
Local Universe [e.g., 8, 39, 41, 157]. The time is therefore ripe to make testable
predictions from different DM model parameter space.

In Chapter 2 and Chapter 3 of this thesis, I will present two projects that focus on
dSIDM in Local dwarf galaxies and their analogs in simulations. These chapters
will explore the impact of dSIDM on galaxy structures and discuss the resulting
observational signatures and constraints.
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1.3 Beyond Local dwarf galaxies
Historically, the study of SIDM has been primarily focused on Local dwarf galaxies
due to their dark matter dominance and the related observational implications.
However, assuming a constant self-interaction cross-section, the interaction rate and
the resulting signatures of SIDM should be more pronounced in systems with higher
densities and velocity dispersions. Such systems include massive galaxy clusters
and their host halos in the Local Universe, as well as rare massive halos at high
redshift, which could act as the hosts of bright quasars.

Massive halos in the Local Universe
Due to the strong signature of SIDM in high-density and velocity systems, the
most stringent constraints on SIDM naturally come from massive galaxy clusters.
For instance, constraints around 0.4 - 2 cm2 g−1 (95% confidence level) have been
obtained from the lack of a spatial offset between the total mass peak and galaxy
centroid [e.g., 158–162] in merging bullet-like clusters, or the strength of wobbles
of the bright central galaxy [BCG; 163]. The robustness of these constraints is
still under debate due to the difficulty in measuring and interpreting observables
given the complexity of the baryonic physics and their interplay with the SIDM
physics [e.g., 94, 95, 111, 113, 115, 164].

DM halo shape is a promising avenue to constrain SIDM with several studies made
in the past. For example, Miralda-Escudé [165] argued that DM halos should
be spherical inside the radius where DM particles would collide with each other
once during a Hubble time on average. Based on the shape of the galaxy cluster MS
2137-23 as inferred from strongly gravitationally-lensed arcs, Miralda-Escudé [165]
obtained a stringent constraint on the SIDM cross-section, 𝜎/𝑚 ≲ 0.02 cm2 g−1.
Such a strong constraint was later shown to be incorrect by Peter et al. [166], by
demonstrating that one collision event of DM particles on average is not enough
to make halos completely spherical and that projection effects need to be properly
considered to interpret observations. As a result, the constraint on SIDM was
weakened to 𝜎/𝑚 ≲ 1 cm2 g−1. In recent years, high-resolution X-ray imaging data
have provided rich information on the intracluster gas over a large dynamical range
and have been used to infer the shapes of matter distributions in galaxy clusters [e.g.,
167, 168], which has direct implications for SIDM constraints. In addition, X-ray
morphological studies are also a powerful tool to assess the dynamical state of the
intracluster medium (ICM). Samples of massive relaxed clusters have been identified
through quantitative studies of the morphology of X-ray selected clusters [e.g.,
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23, 169–173]. These clusters are ideal to compare to simulated counterparts in near
equilibrium states in order to place significant constraints on SIDM based on their
shapes.

In Chapter 4 of this thesis, I will present a project that compares the X-ray morphol-
ogy of observed nearby galaxy clusters with the ones in cosmological hydrodynam-
ical simulations. Through this comparison, we aim to derive constraints on elastic
dark matter self-interactions.

Massive halos at high-redshift
The implication of SIDM is not restricted to the Local Universe. Observations of
quasars at 𝑧 ≳ 6 indicate that SMBHs with masses greater than ∼ 109𝑀⊙ formed
in the early Universe (e.g. [174–178]). The discovery of such SMBHs is puzzling
in the current understanding of SMBHs, i.e., how did the first SMBHs grow so
large so quickly? One possible scenario is that the SMBHs were seeded by
the remnants of the Population III (Pop III) stars, which are expected to form in
∼ 105−6𝑀⊙ DM minihalos through primordial gas undergoing molecular hydrogen
cooling. Since the primordial gas is significantly warmer than the usual star-forming
molecular clouds at low redshift, the cooling is less efficient, leading to inefficient
fragmentation [179–186]. Therefore, Pop III stars are expected to be more massive
than stars in the Local Universe, and simulations have suggested a mass range of
10 ≲ 𝑀★/𝑀⊙ ≲ 103 [187]. If SMBH growth is dominated by Eddington-limited
accretion, SMBH seeds will grow exponentially within an 𝑒-folding time 𝑡edd ≈ 50
Myr, assuming a radiative efficiency 𝜖r ≈ 10%. In the Eddington-limit, a 100𝑀⊙

Pop III seed will need ≈ 0.8 Gyr to reach a billion solar mass, a time greater than
the age of the universe at 𝑧 = 7 even assuming a duty-cycle 𝐷 ≈ 1 over eight orders
of magnitude growth in mass, making it impossible to explain the mass growth of
SMBHs with masses 109𝑀⊙ at 𝑧 = 7. A high duty-cycle (𝐷 ≈ 1) is also disfavored
by the feedback effects from accretion onto the SMBH, as well as displacement of
the gas reservoir by UV radiation and supernovae explosions of the Pop III stars in
the shallow gravitational potential of minihalos [188–191].

Several different scenarios have been proposed to ease the timescale constraints (see
[18] for a review of the assembly of SMBHs at high redshift). Generally, one can
increase either the SMBH seed mass or the growth rate. One possibility is that a
small fraction of SMBH seeds in rare massive halos may be able to sustain Eddington
accretion over most of the history of the Universe or even grow at a super-Eddington
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rate [192]. Super-Eddington accretion at a few times the Eddington-limited rate
could be maintained with duty-cycles ∼ 20 − 30% in some accretion disk models
(e.g. [193]), which could explain the existence of billion solar mass SMBHs at
𝑧 ≳ 7. Another popular scenario relies on the formation of massive SMBH seeds
with mass ≈ 104−6𝑀⊙ formed through collapse of chemically pristine primordial
gas in so-called “atomic cooling halos” with virial temperature 𝑇vir ∼ 104 k at
𝑧 ≃ 15 - 20 [186, 194–199]. However, even in these models, an Eddington-limit
accretion has to be sustained for most of the lifetime of the seeds, which implies
a very high duty-cycle of SMBHs in the early Universe. Thus, such a scenario is
hard to reconcile with some of the massive quasars at 𝑧 ≳ 6 with low measured
Eddington ratios [200, 201] as well as the short quasar lifetimes (∼ 104−5 yr) found
in observations of quasar proximity zones at 𝑧 ∼ 6 [202–206].

SIDM halos have the potential to seed massive SMBHs in a much more accelerated
way through the “gravothermal catastrophe” [123, 207–210]. Finite self-gravitating
systems (e.g. DM halos, globular clusters) have a negative heat capacity and
the heat conduction will eventually lead to the “gravothermal catastrophe” of the
system (e.g. [117, 118]). In a halo with elastic DM self-interactions, effective
heat conduction is realized by collisions between DM particles and the SIDM
halo cores could ultimately experience run-away collapse into compact objects
(e.g. [87, 119, 120, 122, 123, 207]). However, such eSIDM requires a cross-section
𝜎/𝑚 = 5 cm2 g−1 to seed SMBHs with masses 106𝑀⊙ at 𝑧 ∼ 10 [207], which is now
ruled out by observations of galaxy cluster collisions [159]. Those constraints are
derived at relative velocities 1000-2000 km/s, while the DM halos we are interested
in have virial velocities 200-2000 km/s. If the cross-section is velocity dependent,
those constraints might be avoided and a large cross-section that can seed SMBHs
efficiently is allowed, which we have not studied quantitatively. To accelerate the
“gravothermal catastrophe”, hybrid DM models were proposed where the bulk of
DM does not have any self-interaction, but a small fraction is SIDM with a large
cross-section [208, 211]. Alternatively, the presence of baryons in protogalaxies
has also been shown to accelerate the gravothermal collapse of eSIDM halos [16]
with a smaller cross-section.

If the self-interaction is totally inelastic (hit-and-stick), the collapse timescale can be
two orders of magnitude shorter than the prediction in elastic SIDM [125, 211, 212].
Therefore, totally dissipative self-interacting DM (tdSIDM) can greatly accelerate
the catastrophic collapse of halos, which leads to the formation of SMBHs in the
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early universe. Our study is motivated by the analysis of dark nuggets in Refs. [213–
215], based on the model of Refs. [216, 217] featuring hit-and-stick interactions
that are crucial for accelerating the catastrophic collapse of SIDM halos. Other
dissipative DM models, such as atomic DM, exciting DM, and composite strongly
interacting DM [98, 218–228], feature a constant kinetic energy loss in the center-
of-momentum frame, which needs to be tuned to accelerate the catastrophic collapse
efficiently. The proposal of Gresham et al. [213] was to consider rare, high density
fluctuations of dissipative DM which features hit-and-stick interactions as the seeds
of SMBHs at high redshift.

In Chapter 5 of this thesis, I will introduce a project aiming at testing this hypothesis
in detail using a combination of numeric simulations and semi-analytical models.
Though the timescale of seeding SMBHs in an isolated tdSIDM halo was well-
studied [211, 212], the cosmological abundance of SMBHs in the early Universe
has never been calculated. We want to determine whether a hit-and-stick dissipative
DM model that produces SMBHs through this mechanism can explain the SMBH
abundance in the early Universe while remaining consistent with observations of
DM halos (and their SMBHs) in the late Universe.
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C h a p t e r 2

DISSIPATIVE DM – SIMULATIONS

Xuejian Shen, Philip F. Hopkins, Lina Necib, Fangzhou Jiang, Michael Boylan-
Kolchin, and Andrew Wetzel. Dissipative dark matter on FIRE - I. Structural and
kinematic properties of dwarf galaxies. MNRAS, 506(3):4421–4445, September
2021. doi: 10.1093/mnras/stab2042.

2.1 Abstract of the chapter
In this chapter, we present the first set of cosmological baryonic zoom-in simulations
of galaxies including dSIDM. These simulations utilize the Feedback In Realistic
Environments (FIRE-2) galaxy formation physics, but allow the dark matter to have
dissipative self-interactions analogous to Standard Model forces, parameterized by
the self-interaction cross-section per unit mass, (𝜎/𝑚), and the dimensionless de-
gree of dissipation, 0 < 𝑓diss < 1. We survey this parameter space, including
constant and velocity-dependent cross-sections, and focus on structural and kine-
matic properties of dwarf galaxies with 𝑀halo ∼ 1010−11 M⊙ and 𝑀∗ ∼ 105−8 M⊙.
Central density profiles (parameterized as 𝜌 ∝ 𝑟𝛼) of simulated dwarfs become
cuspy when (𝜎/𝑚)eff ≳ 0.1 cm2 g−1 (and 𝑓diss = 0.5 as fiducial). The power-law
slopes asymptote to 𝛼 ≈ −1.5 in low-mass dwarfs independent of cross-section,
which arises from a dark matter “cooling flow”. Through comparisons with DM-
only simulations, we find the profile in this regime is insensitive to the inclusion
of baryons. However, when (𝜎/𝑚)eff ≪ 0.1 cm2 g−1, baryonic effects can produce
cored density profiles comparable to non-dissipative CDM runs but at smaller radii.
Simulated galaxies with (𝜎/𝑚) ≳ 10 cm2 g−1 and the fiducial 𝑓diss develop a signif-
icant coherent rotation of dark matter, accompanied by halo deformation, but this is
unlike the well-defined thin “dark disks” often attributed to baryon-like dSIDM. The
density profiles in this high cross-section model exhibit lower normalizations given
the onset of halo deformation. For our surveyed dSIDM parameters, halo masses,
and galaxy stellar masses do not show appreciable differences from CDM, but dark
matter kinematics and halo concentrations/shapes can differ.

The chapter is arranged as follows: In Section 2.2, we discuss the details of the
simulations and briefly introduce the dSIDM models we study. We derive relevant
time scales for dSIDM halos analytically in Section 2.3 and study the stellar masses
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Figure 2.1: Top: Relevant time scales of the physical processes involved in
dSIDM halos versus one-dimensional velocity dispersion of the system. We
have assumed that the local DM density is 𝜌dm = 2 × 108 M⊙/ kpc3, a typical value
at dwarf galaxy centers. We show the collision time scale (𝑡coll) and dissipation time
scales (𝑡diss) of all the dSIDM models studied in this chapter as well as the dynamical
time scale (𝑡dyn). All the time scales are normalized by the Hubble time scale at
𝑧 = 0 (𝑡h ≡ 1/h0). The dissipation time scales are calculated assuming 𝑓diss = 0.5.
The shaded regions show the typical one-dimensional velocity dispersions in the
classical (e.g. Milky Way satellites) and bright dwarf galaxies (e.g. LSB galaxies).
In dwarf galaxies, dissipation and collision time scales are much larger than the
dynamical time scale, but can become considerably shorter than the Hubble time
scale. The velocity-dependent model becomes less dissipative (𝑡diss/𝑡h becomes
larger) in more massive galaxies (with larger velocity dispersion) while models with
constant cross-sections become more dissipative. Bottom: Dissipation time scales
versus one-dimensional velocity dispersion of the system with 𝑓diss varying from
0.1 to 0.9. The symbols are the same as the top panel. For each model, the upper
boundary of the shaded region corresponds to the case 𝑓diss = 0.1 and the lower
boundary corresponds to the case 𝑓diss = 0.9.

and host halo masses of simulated dwarf galaxies in Section 2.4. Then we present the
mass density profiles of simulated dwarf galaxies and quantitatively study the impact
of dissipation on galaxy structure in Section 2.4. We study the kinematic properties
of DM and the shapes of halos in simulations in Section 2.4 and Section 2.5.
Subsequently, in Section 2.6, we use analytical methods to explain the phenomena
in dSIDM simulations and summarize the evolution pattern of dSIDM halos in
different regimes. In Section 2.7, we explore the results of simulations with other
choices of 𝑓diss as well as the DMO simulations and compare their differences from
the fiducial simulations. The summary and conclusion of the chapter are presented
in Section 2.8.
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Simulation 𝑀cdm
halo 𝑅cdm

vir 𝑀cdm
∗ 𝑟cdm

1/2 𝑟conv
dm Notes

name [ M⊙] [ kpc] [ M⊙] [ kpc] [ pc]
ultra-faint dwarf

m09 2.5e9 35.6 7.0e4 0.46 65 par choices explored
Classical dwarfs

m10b 9.4e9 55.2 5.8e5 0.36 77 late-forming
m10q 7.5e9 51.1 1.7e6 0.72 73 isolated, early-forming
m10v 8.5e9 53.5 1.4e5 0.32 65 isolated, late-forming

Bright dwarfs
m11a 3.6e10 86.7 3.7e7 1.2 310 diffuse, cored
m11b 4.2e10 90.7 4.2e7 1.7 250 intermediate-forming
m11q 1.5e11 138.7 2.9e8 3.1 240 early-forming, cored

Milky Way-mass galaxies
m11f 4.5e11 200.2 1.0e10 2.9 280 quiescent late history
m12i l.r. 1.1e12 272.3 1.1e11 2.0 290 Milky Way like
m12f l.r. 1.5e12 302.8 1.3e11 4.1 310 Milky Way like
m12m l.r. 1.5e12 299.3 1.4e11 6.1 360 early-forming
m12i h.r. 9.8e11 259.9 2.4e10 3.7 150 Milky Way like

Table 2.1: Simulations of the FIRE-2 dSIDM suite. The simulated galaxies are
labeled and grouped by their halo masses. They are classified into four categories:
ultra-faint dwarfs; classical dwarfs, with typical halo mass≲ 1010 M⊙; bright dwarfs,
with typical halo mass ∼ 1010−11 M⊙; Milky Way-mass galaxies, with typical halo
mass ∼ 1012 M⊙. These halos are randomly picked from the standard FIRE-2
simulation suite [25], sampling various star formation and merger histories. All
units are physical.
(1) Name of the simulation. “l.r.” (“h.r.”) indicates low (high)-resolution version
of the simulation.
(2) 𝑀cdm

halo : Virial mass of the halo (definition given in Section 2.4) in the CDM
simulation with baryons at 𝑧 = 0.
(3) 𝑅cdm

vir : Virial radius of the halo (definition given in Section 2.4) in the CDM
simulation with baryons at 𝑧 = 0.
(4) 𝑀cdm

∗ : Galaxy Stellar mass (see Section 2.4) in the CDM simulation at 𝑧 = 0.
(5) 𝑟cdm

1/2 : Galaxy stellar half mass radius (see Section 2.4) in the CDM simulation
at 𝑧 = 0.
(6) 𝑟conv

dm : Radius of convergence in DM properties at 𝑧 = 0 (calculated for the CDM
DMO simulations in the standard FIRE-2 series [25] based on the Power et al. [26]
criterion). As shown in Hopkins et al. [25], the convergence radii in simulations
with baryons can in fact extend to much smaller radii.
(7-11) Parameters of the DM models. 𝜎 (with the number after it) indicates the
self-interaction cross-section, 𝜎/𝑚, in unit of cm2 g−1. 𝜎(𝑣) denotes the velocity-
dependent cross-section, introduced in Section 2.2. 𝑓diss indicates the dimensionless
degree of dissipation.
(12) Notes: Additional information of each simulation.
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2.2 Simulations
Overview of the simulation suite
We present the new FIRE-2 dSIDM simulation suite, which consists of ∼ 45 cosmo-
logical hydrodynamical zoom-in simulations of galaxies chosen at representative
mass scales with CDM, eSIDM, and dSIDM models. The simulations here are
part of the Feedback In Realistic Environments project [FIRE, 229], specifically
the “FIRE-2” version of the code with details described in Hopkins et al. [25].
The simulations adopt the code Gizmo [230], with hydrodynamics solved using the
mesh-free Lagrangian Godunov “MFM” method. The simulations include heating
and cooling from a meta-galactic radiation background and stellar sources in the
galaxies, star formation in self-gravitating molecular, Jeans-unstable gas, and stel-
lar/supernovae/radiation feedback. The FIRE physics, source code, and numerical
parameters are identical to those described in Hopkins et al. [25], Garrison-Kimmel
et al. [231]. For dwarf galaxies, the baryonic particle masses of simulations are
𝑚b ≃ 250 - 2000 M⊙. For Milky Way-mass galaxies, the high-resolution ‘latte’
runs have 𝑚b = 7000 M⊙ while the low-resolution runs have 𝑚b = 56000 M⊙. In
all simulations, the DM particle masses are roughly five times larger, according
to the universal baryon fraction. For dwarf galaxies, the minimum gravitational
force softening length reached by gas in the simulations is ℎb ≃ 0.5 - 2 pc. For
Milky Way-mass galaxies, the value is ℎb ≃ 0.3 - 0.5 pc (1.4 pc) for high-resolution
(low-resolution) runs. The physical DM force resolution of the simulations of dwarf
(Milky Way-mass) galaxies is 𝜖dm = 40 pc (30 pc). Force softening for gas uses
the fully conservative adaptive algorithm from Price and Monaghan [232], meaning
that the gravitational force assumes the identical mass distribution as the hydrody-
namic equations (resulting in identical hydrodynamic and gravitational resolution).
The simulations are identified with the main “target” halo around which the high-
resolution zoom-in region is centered. In post-processing, we identify subhalos
(of the main “target” halo) with the Rockstar [233] halo finder and create merger
trees of halos (subhalos) with the code Consistent Trees [234, 235]. As shown in
Table 2.1, the simulation suite consists of one ultra-faint dwarf (m09), three classi-
cal dwarf galaxies (m10q, m10b, m10v), three bright dwarf galaxies (m11a, m11b,
m11q) and four Milky Way-mass galaxies (m11f, m12i, m12f, m12m). The analysis
in this chapter will primarily focus on the classical and bright dwarf galaxies and
we defer analysis on Milky Way-mass galaxies to a follow-up work.
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Dissipative DM parameterization
DM self-interactions are simulated in a Monte-Carlo fashion following the imple-
mentation in Rocha et al. [88] and the scattering process is assumed to be isotropic.
In this chapter, we study a simplified empirical dSIDM model: two DM particles lose
a constant fraction, 𝑓diss, of their kinetic energy in the center of momentum frame
when they collide with each other. The extreme version of this type of interaction is
the fusion process ( 𝑓diss = 1) of DM composites. Such a model has been discussed
in the context of self-interacting asymmetric DM [e.g., 99, 106, 236–238]. Self-
interaction mediated by a scalar mediator can give rise to strong attractive forces,
and large bound states of DM (“nuggets”) can form in the absence of competing
repulsive forces [99, 106]. These dark nuggets are the smoking gun signature of
fermionic asymmetric DM [see 239, for a review]. The residual self-interaction
between nuggets is highly dissipative and mimics the fusion process of nucleons.

Beyond this, dissipative portals present in other SIDM models as well. For strongly-
interacting dark composites in a hidden non-Abelian sector [e.g., 85, 96, 98], DM
will consist of dark baryons/mesons and glueballs (or glueballinos if incorporating
super-symmetry). For example, inelastic scattering to excited state(s) and glueball
emission will be possible when glueballinos have mass 𝑚𝜒 ≫ Λ [98]. Hyperfine-
transitions of dark mesons/baryons have been suggested in Alves et al. [96, 240]
and the late time up-scattering to excited states can induce dissipation. Excited
states and dissipative (endothermic) processes are also ubiquitous in generic SIDM
models [e.g., 78, 81], models featuring a dark SU(2)-like sector [e.g., 241, 242]
or a dark U(1)-like sector [e.g., 97, 101, 128, 243]. However, the exact behavior
of dissipation is model-dependent and could be quite different from what we are
modeling here.

For each galaxy, we run simulations with a default dissipation fraction 𝑓diss = 0.5 1

and with constant self-interaction cross-sections (𝜎/𝑚) = 0.1/1/10 cm2 g−1 or a
velocity-dependent cross-section model

𝜎(𝑣)
𝑚

=
(𝜎/𝑚)0

1 + (𝑣/𝑣0)4 , (2.1)

where the fiducial choice of parameters is (𝜎/𝑚)0 = 10 cm2 g−1 and 𝑣0 = 10 km s−1.
The velocity dependence of the self-interaction cross-section is empirically moti-
vated by the relatively tight constraints on SIDM at galaxy cluster scale [e.g.,
94, 159, 244] and the relatively high cross-section needed to solve some small-scale

1Other choices of 𝑓diss are explored with m09 in Section 2.7.
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problems [e.g., 87–90, 94]. Meanwhile, velocity dependence is a generic feature
of many particle physics realizations of DM. The asymptotic (𝑣/𝑣0)−4 velocity
dependence we adopt is motivated by particle physics models featuring DM self-
interactions mediated by light gauge bosons [e.g., 79, 83, 97, 102, 104]. The sharp
decline in cross-section could also appear in some models of strongly interacting
composites. In these models, when the de Broglie wavelength of the particle be-
comes smaller than the characteristic length scale of the interaction, ∼ 1/Λdm, the
self-interaction cross-section is expected to drop significantly [e.g., 85, 86, 98].

2.3 Relevant time scales
In this section, we derive analytical formulae for relevant time scales in dSIDM halos,
including the dynamical time scale, the collision time scale, and the dissipation
time scale. These analytical formulae can be used to understand the influence of
dissipation on galaxy structures in different circumstances. We will present results
for models with constant and velocity-dependent cross-sections, respectively.

Dynamical time scale
The local dynamical time scale in a system is defined as

𝑡dyn ≡

√︄
1

4𝜋𝐺𝜌

= 0.0042 Gyr
( 𝜌

109 M⊙/ kpc3

)−1/2
, (2.2)

where𝐺 is the gravitational constant and 𝜌 is the local matter density. At the centers
of dwarf galaxies, the mass density is dominated by DM, so 𝜌 is simply the local
DM mass density.

Collision time scale
The collision time scale of DM self-interaction is

𝑡coll ≡
1

⟨𝜌𝑣rel
𝜎

𝑚
⟩
, (2.3)

where 𝜌 is local DM mass density, 𝑣rel is the relative velocity between DM particles
and ⟨...⟩ denotes the average over all possible encounters. This measures the time
scale that one DM particle is expected to have one self-interaction with any other
DM particles. For simplicity, we assume that the velocities of DM particles locally
obey the Maxwell-Boltzmann distribution. Therefore, the average can be treated as
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a thermal average

⟨𝑋⟩ = 1
2
√
𝜋𝜎3

1d

∫ ∞

0
d𝑣rel𝑣

2
rel𝑒

−𝑣2
rel/4𝜎2

1d𝑋, (2.4)

where 𝜎1d is the local one-dimensional velocity dispersion of DM. After taking the
thermal average, the collision time scale is

𝑡coll = 0.206 Gyr
( 𝜌

109 M⊙/ kpc3

)−1 ( (𝜎/𝑚)
1 cm2 g−1

)−1 ( 𝜎1d

10 km s−1

)−1

[constant cross-section];

𝑡coll = 0.661 Gyr
( 𝜌

109 M⊙/ kpc3

)−1 ( (𝜎/𝑚)0
10 cm2 g−1

)−1 ( 𝜎1d

10 km s−1

)−1

(𝜎1d

𝑣0

)4
[
− 2Ci

( 𝑣2
0

4𝜎2
1d

)
cos

( 𝑣2
0

4𝜎2
1d

)
+ sin

( 𝑣2
0

4𝜎2
1d

) (
𝜋 − 2Si

( 𝑣2
0

4𝜎2
1d

))]−1

≃ 0.165 Gyr
( 𝜌

109 M⊙/ kpc3

)−1 ( (𝜎/𝑚)0
10 cm2 g−1

)−1 ( 𝜎1d

10 km s−1

)−1

(𝜎1d

𝑣0

)4
ln

(𝜎1d

𝑣0

)−1
[𝜎1d ≫ 𝑣0]

[velocity-dependent cross-section], (2.5)

where Si(𝑥) =
∫ 𝑥

0 d𝑡 sin(𝑡)/𝑡 and Ci(𝑥) = −
∫ ∞
𝑥

d𝑡 cos(𝑡)/𝑡 are sine and cosine
integrals, (𝜎/𝑚)0 and 𝑣0 are parameters of the velocity-dependent cross-section.
For our fiducial choice of 𝑣0 = 10 km s−1, galaxies of masses ≳ 1011 M⊙ (massive
dwarfs/Milky Way-mass galaxies) will have velocity dispersions in the limit 𝜎1d ≫
𝑣0. We can see that the collision time scale of the velocity-dependent model is
usually much larger than the constant cross-section model after the thermal average.
This is due to the velocity suppression of collisions between particles with high
relative velocities, which contribute more to the total interaction rate. In addition,
the collision time scale in different models scales with velocity dispersion in opposite
ways. For the models with constant cross-sections, the collision time scale is shorter
in systems with higher densities or higher velocity dispersions, which indicates that
self-interaction has a stronger impact in more massive systems. On the other
hand, for the velocity-dependent model, the collision time scale sharply increases in
systems with higher velocity dispersions, which indicates that self-interaction has a
weaker impact in more massive systems.
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Dissipation time scale
The dissipation time scale here is defined as the time scale for an order-unity fraction
of local DM kinetic energy to be dissipated away through DM self-interactions

𝑡diss ≡
3
2
𝜌𝜎2

1d/𝐶, (2.6)

where 𝜎1d is the one-dimensional velocity dispersion and 𝐶 is the effective cooling
rate defined as

𝐶 ≡
〈
𝑛(𝜌𝑣rel

𝜎

𝑚
)𝐸loss

〉
=

〈
𝜌2 𝜎

𝑚
𝑣rel

𝐸loss

𝑚

〉
, (2.7)

where 𝑛 is the local number density of DM particles, 𝐸loss is the kinetic energy
loss per collision in the center of momentum frame, and ⟨...⟩ again denotes the
thermal average. For the fractional dissipation model we study in this chapter,
𝐸loss/𝑚 = (1/4) 𝑓diss𝑣

2
rel. The dissipation time scale measures how fast the kinetic

energy is dissipated away from the system and, after order one dissipation time
scale, the local DM structure is expected to be dramatically affected.

After taking the thermal average, the dissipation time scale is

𝑡diss =
3

4 𝑓diss
𝑡coll

= 0.310 Gyr
( 𝑓diss

0.5

)−1 ( 𝜌

109 M⊙/ kpc3

)−1 ( (𝜎/𝑚)
1 cm2 g−1

)−1

( 𝜎1d

10 km s−1

)−1

[constant cross-section];

𝑡diss = 7.926 Gyr
( 𝑓diss

0.5

)−1 ( 𝜌

109 M⊙/ kpc3

)−1 ( (𝜎/𝑚)0
10 cm2 g−1

)−1

( 𝜎1d

10 km s−1

)−1 (𝜎1d

𝑣0

)6
[
8
(𝜎1d

𝑣0

)2
− 2Ci

( 𝑣2
0

4𝜎2
1d

)
sin

( 𝑣2
0

4𝜎2
1d

)
− cos

( 𝑣2
0

4𝜎2
1d

) (
𝜋 − 2Si

( 𝑣2
0

4𝜎2
1d

))]−1

≃ 0.991 Gyr
( 𝑓diss

0.5

)−1 ( 𝜌

109 M⊙/ kpc3

)−1 ( (𝜎/𝑚)0
10 cm2 g−1

)−1

( 𝜎1d

10 km s−1

)−1 (𝜎1d

𝑣0

)4
, [𝜎1d ≫ 𝑣0]

[velocity dependent model] . (2.8)

In the model with a constant cross-section, the dissipation time scale has the same
scaling behavior as the collision time scale defined in Equation 2.5 and differs only
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by a factor of 0.75/ 𝑓diss. In the velocity-dependent model, the scaling behaviors of
the dissipation and collision time scales are also quite similar when 𝜎1d ≫ 𝑣0. The
dissipation time scale of the velocity-dependent model is usually much larger than the
constant cross-section model after thermal average. This again can be attributed to
the velocity suppression of collisions between particles with high relative velocities,
which not only contribute more to the total collision rate but also induce higher
energy loss per collision. Similar to what has been found for the collision time
scale, dissipation is more significant in more massive systems in the models with
constant cross-sections. Dissipation, however, is less significant in more massive
systems in the velocity-dependent model.

In Figure 2.1, we show the relevant time scales discussed above as a function of
the one-dimensional velocity dispersion of the system; in particular, we show the
collision and dissipation time scales of the dSIDM models studied in this chapter
as well as the dynamical time scale, assuming that the local DM mass density is
𝜌 = 2 × 108 M⊙/ kpc3, which is a typical value at dwarf galaxy centers. The time
scales are all normalized by the Hubble time scale at 𝑧 = 0, roughly representing the
lifetime of the system. In the top panel, the dissipation time scales are calculated
assuming 𝑓diss = 0.5 while, in the bottom panel, the shaded regions indicate the
variation of 𝑡diss with 𝑓diss = 0. 1 - 0. 9. With the vertical shaded regions in both
panels, we show the typical ranges of one-dimensional velocity dispersions of the
classical (e.g., Milky Way satellites) and bright dwarf galaxies (e.g., LSB galaxies).
For the dSIDM models with constant cross-sections, the collision time scales are
always proportional to the dissipation time scales and, they are order of magnitude
comparable to each other. Both of them are shorter than the Hubble time scale but
larger than the dynamical time scale in dwarf galaxies. The dissipation time scale
decreases in systems with higher velocity dispersions, so we expect these constant
cross-section models to become more dissipative in more massive dwarfs. For the
velocity-dependent dSIDM model, the collision and dissipation time scales are no
longer proportional to each other, and they both increase as the velocity dispersion
increases, opposite to the behavior of models with constant cross-sections. The
dissipation time scale of the velocity-dependent model is comparable to the Hubble
time scale in the classical dwarfs but becomes at least an order of magnitude larger
than the Hubble time scale in the bright dwarfs, suggesting negligible effects of
dissipation in this case.
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m10q m10v m11a m11q

Figure 2.2: Visualizations of four DM halos in simulations with CDM versus
dSIDM. The images are DM surface density maps, projected along the z-direction
of simulation coordinates, at 𝑧 = 0 with a logarithmic stretch. The dynamical ranges
are adjusted based on the maximum/median intensities of the pixels (but remain
the same for the same halo). The side lengths of the images are all chosen to be
0.8 × 𝑅vir of the CDM run. In the first row, we show the halos in the CDM. In the
second row, we show the halos in the velocity-dependent dSIDM model. In the third
row, we show halos in the dSIDM model with constant cross-section 1 cm2 g−1.
The halos are ordered from left to right by their virial masses. In each image,
the outer dotted circle indicates the radius 𝑅500 (the density enclosed is 500 times
the critical density at 𝑧 = 0) which represents the overall size of the halo. The
inner dashed circle indicates the radius 𝑅core ≡ 10 × 𝑅0.1% (the mass enclosed in
a sphere of radius 𝑅0.1% is 0.1% the virial mass of the halo) which represents the
core size of the halo. Comparing the core sizes, the halos in the dSIDM model are
visibly more concentrated than their CDM counterparts. For the velocity-dependent
dSIDM model, since the self-interaction cross-section decreases in more massive
halos, the increased concentration of halo is less apparent in more massive halos.
For the dSIDM with constant cross-section, halos of all masses are consistently
more concentrated than their CDM counterparts.



19

de
ns

ity
pr

ofi
le

10-1 100 101

r [kpc]

104

105

106

107

108

109

ρ
to

t
[M

¯
/
k
p
c3

]

m10q

CDM

dSIDM (v dep. )
dSIDM (1 cm2/g)
dSIDM (10 cm2/g)
eSIDM (1 cm2/g)

10-1 100 101

r [kpc]

104

105

106

107

108

109

ρ
to

t
[M

¯
/
k
p
c3

]

m11a

CDM

dSIDM (v dep. )
dSIDM (1 cm2/g)
dSIDM (10 cm2/g)
eSIDM (1 cm2/g)

100 101 102

r [kpc]

104

105

106

107

108

109

ρ
to

t
[M

¯
/
k
p
c3

]

m11q

CDM

dSIDM (v dep. )
dSIDM (1 cm2/g)
eSIDM (1 cm2/g)

ci
rc

ul
ar

ve
lo

ci
ty

0.5 1.0 1.5 2.0
r [kpc]

5
10
15
20
25
30
35

V
ci

rc
[k

m
/
s]

m10q

0.5 1.0 1.5 2.0 2.5 3.0 3.5
r [kpc]

10

20

30

40

V
ci

rc
[k

m
/
s]

m11a

2 4 6 8
r [kpc]

10
20
30
40
50
60
70
80

V
ci

rc
[k

m
/
s]

m11q

ve
lo

ci
ty

di
sp

er
sio

n

100 101

r [kpc]

20

25

30

35

40

45

σ
3d

[k
m
/s

]

m10q

100 101

r [kpc]

35
40
45
50
55
60
65
70

σ
3d

[k
m
/s

]

m11a

100 101 102

r [kpc]

60

70

80

90

100

110

σ
3d

[k
m
/s

]

m11q

ve
lo

ci
ty

an
iso

tr
op

y

100 101

r [kpc]

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

β

m10q

100 101

r [kpc]

0.2

0.0

0.2

0.4

0.6

β

m11a

100 101

r [kpc]

0.2

0.0

0.2

0.4

0.6

β

m11q

ro
t.

ve
rs

us
di

sp
.

100 101

r [kpc]

10-2

10-1

V
ro

t/
σ

3d

m10q

100 101

r [kpc]

10-2

10-1

V
ro

t/
σ

3d

m11a

100 101

r [kpc]

10-2

10-1

V
ro

t/
σ

3d

m11q

Figure 2.3: A gallery view of the structural and kinematic properties of dwarf galaxies in simulations. From
top to bottom, in each row, we show the three-dimensional total mass density (𝜌t𝑜𝑡 = 𝜌dm + 𝜌s𝑡𝑎𝑟 + 𝜌gas), circular velocity

(𝑉circ ≡
√︁
𝐺𝑀 t𝑜𝑡

enc (𝑟 )/𝑟), the three-dimensional velocity dispersion of DM (𝜎3d ≡
√︃
𝜎2

r + 𝜎2
𝜃
+ 𝜎2

𝜙
), velocity anisotropy

of DM (𝛽 ≡ 1 − (𝜎2
𝜃
+ 𝜎2

𝜙
)/2𝜎2

r ), and rotation velocity versus velocity dispersion of DM (𝑉rot/𝜎3d) averaged in spherical
shells as a function of galactocentric distance for three simulated galaxies. We compare three categories of DM models:
CDM, eSIDM (elastic SIDM model with a constant cross-section 1 cm2 g−1), and dSIDM (dissipative SIDM models with
various cross-sections, as defined in Table 2.1). The gray shaded regions in the first row of plots indicate 0.2% − 0.8% 𝑅cdm

vir ,
which is the aperture we will later use to measure the slopes of the density profiles (see Section 2.4 and Figure 2.5-2.7). The
gray dashed horizontal line in the fourth row is a reference line, indicating isotropic velocity dispersion (𝛽=0). In general,
dSIDM models produce cuspy central density profiles in the simulated dwarf galaxies, as opposed to the cored central density
profile in CDM and eSIDM models. As a consequence, the circular velocities at the center of the galaxies increase. In
dSIDM models with (𝜎/𝑚) ≥ 1 cm2 g−1, coherent rotation of DM becomes prominent, and random velocity dispersion is
suppressed.
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Comparison to the cooling of baryons
The cooling induced by dissipative DM self-interactions can be compared to the
cooling of baryons, which is usually described by the cooling function Λ. For
dSIDM, the effective cooling function is

Λeff ∼ 𝑇

𝑛𝑡diss
∼ (𝜎/𝑚) 𝑓diss 𝜎

3
1d

∼

𝜎3

1d ∼ 𝑇3/2 [constant cross-section]

𝜎−1
1d ∼ 𝑇−1/2 [velocity dependent model]

(2.9)

where𝑇 is𝑚𝜎2
1d/𝑘b for weakly collisional DM. The cooling function in the constant

cross-section model is similar to the cooling curve of gas below ∼ 104 K while
the cooling function in the velocity-dependent model is similar to the 104 − 107 K
gas cooling curve. Other behaviors are possible if a velocity-dependence of 𝑓diss

is introduced, e.g. Λeff would be a constant if 𝑓diss ∼ 𝑇1/2 with the same velocity-
dependent cross-section. However, the most important qualitative difference be-
tween the dSIDM studied here and baryons is not the behavior of the cooling curve
but the fact that baryons (gas) are effectively in the 𝑓diss → 0 and (𝜎/𝑚) → ∞
regime. The effective interaction cross-section of gas is enormous compared to fa-
vored SIDM interaction cross-sections and the energy loss per “collision” is small.
Gas cooling is the result of a large number of particle interactions in a locally ther-
malized region. On the contrary, dSIDM with 𝑡coll order of magnitude comparable
to 𝑡diss cannot achieve local thermalization effectively when cools down.

Effective cross-section
It is useful to define an "effective cross-section" for the velocity-dependent dSIDM
model (𝜎

𝑚

)
eff

=

〈𝜎
𝑚
𝑣rel

〉
/⟨𝑣rel⟩, (2.10)

where 𝑣rel is the relative velocity between encountering particles and ⟨...⟩ is a
thermal average as discussed in Section 2.3. This definition ensures that a dSIDM
model with a constant cross-section taking the value of this "effective cross-section"
will result in the identical rate of DM self-interaction, assuming that DM particles
are in thermal equilibrium. This definition allows a proper comparison between
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velocity-dependent and independent SIDM models. Using Equation 2.4, we find(𝜎
𝑚

)
eff

=
(𝜎/𝑚)0

32

( 𝑣0

𝜎1d

)4
[
− 2Ci

( 𝑣2
0

4𝜎2
1d

)
cos

( 𝑣2
0

4𝜎2
1d

)
+ sin

( 𝑣2
0

4𝜎2
1d

) (
𝜋 − 2Si

( 𝑣2
0

4𝜎2
1d

))]
, (2.11)

where the notation is the same as Equation 2.5. The asymptotic behavior of (𝜎/𝑚)eff

is dominated by the 𝜎−4
1d term, which is similar to the velocity-dependent cross-

section defined in Equation 2.1. The factor 32 in the denominator comes from the
thermal average and indicates that dSIDM models with velocity-dependent cross-
sections are not as efficient as those with constant cross-sections, owing again to the
velocity suppression.

2.4 Simulation Results
In this section, we present the structural and kinematic properties of simulated
dwarf galaxies in different DM models and study the impact of dissipation on
galaxy structures.

Overview
In Figure 2.2, we show images of four DM halos in our simulation suite at 𝑧 = 0.
Each image is a two-dimensional surface density map of DM, projected along the
z-direction of simulation coordinates, with a logarithmic stretch. The dynamical
ranges are adjusted based on the maximum and median intensities of pixels. The
halos are ordered from left to right by their halo masses (see Section 2.4 for the
definition). We show the images in CDM, the dSIDM with constant cross-section
(𝜎/𝑚) = 1 cm2 g−1, and the velocity-dependent dSIDM model for comparison.
The halos in dSIDM models are visibly more concentrated than their CDM counter-
parts when comparing their core sizes (dashed circles). For the velocity-dependent
dSIDM model, since the self-interaction cross-section decreases in more massive
halos which typically have higher velocity dispersions, the increased concentration
of the halo becomes less apparent. On the contrary, in dSIDM models with con-
stant cross-sections, halos of all masses are consistently more concentrated than
their CDM counterparts. Meanwhile, the substructures also appear to be more
abundant and concentrated in dSIDM models, For example, in m10q, the number
of subhalos (within the virial radius) with 𝑀 > 106 M⊙ increases by about 20%,
and the median concentration increases by about 25% in the dSIDM model with
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Figure 2.4: Stellar mass versus halo mass relation of galaxies in simulations.
The stellar masses and halo masses of simulated dwarf galaxies are presented with
open markers (as labeled). We compare them with the observational results derived
through abundance matching from Moster et al. [1], Brook et al. [2], Garrison-
Kimmel et al. [3]. The black dashed lines show ∼ 95% inclusion contour assuming
the scatter of the relation estimated in Garrison-Kimmel et al. [3]. Regardless of the
DM model, the simulated galaxies are consistent with the observational relation.

(𝜎/𝑚) = 1 cm2 g−1. But we will focus on the main halo in this chapter and defer
the analysis of substructures to follow-up work.

In Figure 2.3, we present a gallery view of the total mass density, circular velocity,
three-dimensional velocity dispersion of DM, velocity anisotropy of DM, rotation
velocity versus velocity dispersion of DM, averaged in spherical shells as a function
galactocentric distance for three simulated galaxies. Details of the measurements
of the kinematic properties and relevant definitions are introduced in Section 2.4.
Under the influence of baryonic feedback, the density profiles in CDM are generally
shallower than the cuspy NFW profiles at galaxy centers, which is expected for these
galaxies for their 𝑀∗/𝑀halo values [e.g., 42, 245–248]. In the eSIDM model, due to
effective heat conduction, the profiles are even flatter at galaxy centers compared to
the CDM case, but the difference becomes less apparent in the bright dwarf (m11q)
where thermal conduction through self-interactions is subdominant compared to
baryonic feedback. In dSIDM models, when the effective self-interaction cross-
section is large (and equivalently dissipation is efficient assuming a fixed 𝑓diss), the
central density profiles are cuspy and power-law like. For the velocity-dependent
dSIDM model, in the classical dwarf galaxies like m10q, the velocity-dependent
cross-section is high and a cuspy central profile emerges. In more massive galax-
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Figure 2.5: Left: Total mass density profiles of the classical dwarf galaxies in
simulations. The three classical dwarfs presented here are m10q, m10b and m10v.
The total mass density profiles in different DM models are shown (as labeled). They
can be compared to the NFW profiles derived by fitting the density profiles at large
radii of the halos (0.5 𝑟cdm

1/2 < 𝑟 < 20 𝑟cdm
1/2 ), and the ratios of the density profiles to

the NFW fits are shown in the lower sub-panel. The gray shaded region denotes
the range of radii where we measure the slopes of the density profiles below. The
purple dotted vertical line indicates the average convergence radius (∼ 70 pc) of
the classical dwarfs (see Table 2.1). Right: Local power-law slopes of density
profiles of the classical dwarf galaxies. The slopes are derived by fitting the
nearby density profile with the power-law. In these classical dwarfs, the CDM
model predicts cored central density profiles due to baryonic feedback. The eSIDM
model produces cores of slightly bigger sizes and shallower slopes. The dSIDM
model with (𝜎/𝑚) = 0.1 cm2 g−1 still produces cored profiles but with higher central
densities and steeper slopes than their CDM counterparts. The dSIDM models with
effective cross-section > 0.1 cm2 g−1 all produce cuspy central density profiles with
power-law slopes centering around −1.5. These profiles are even steeper than the
NFW profiles.

ies like m11a and m11q, the velocity-dependent cross-section there becomes much
smaller, accompanied by stronger baryonic feedback. As a consequence, the pro-
files in these systems become cored again though the central mass density is still
higher than the CDM case. An interesting outlier here is the dSIDM model with
constant (𝜎/𝑚) = 10 cm2 g−1, exhibiting a cuspy central density profile but with
lower normalization, which is likely due to the deformed shape of the halo (see Sec-
tion 2.5). A more detailed discussion on the mass density profiles will be presented
in Section 2.4.
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In addition to the density profile, the kinematic properties of halos are also quite
different in different DM models. Despite some variations, there are some important
features shared by the simulations of different halos. When the cross-section is high,
the rotation curves of dwarf galaxies in dSIDM models are significantly higher at
small radii compared to their CDM counterparts. The differences are consistent
with the findings in density profiles. Again, an outlier is the dSIDM model with
(𝜎/𝑚) = 10 cm2 g−1, with the normalization of rotation velocities lower than other
models. For the velocity dispersion profile, the ones in eSIDM are flat at halo centers
indicating an isothermal distribution of DM particles. The velocity dispersions in
dSIDM models in general decrease towards halo centers. Particularly, the dSIDM
model with (𝜎/𝑚) = 10 cm2 g−1 shows a dramatic decrease in velocity dispersion at
𝑟 ≲ 10 kpc. This indicates a more coherent motion of DM particles and a decreasing
support from random velocity dispersion. For the velocity anisotropy profile, the
dSIDM models with (𝜎/𝑚) ≥ 1 cm2 g−1 have lower velocity anisotropies than their
CDM counterparts at halo centers, indicating that the velocity dispersions are more
dominated by the tangential component. At the same time, the coherent rotation
is also stronger in these dSIDM models. An extreme case is the dSIDM model
with (𝜎/𝑚) = 10 cm2 g−1 where the sub-kpc structure is clearly in transition from
dispersion supported to coherent rotation supported. The ratio between coherent
circular velocity and velocity dispersion is significantly higher than others. In
Section 2.4, the kinematic properties of simulated galaxies will be investigated in
detail.

Halo mass and galaxy stellar mass
We measure the bulk properties of the DM halos and galaxies in simulations follow-
ing what has been done for the standard FIRE-2 simulations as described in Hopkins
et al. [25]. We define the halo mass 𝑀halo and the halo virial radius 𝑅vir using the
overdensity criterion introduced in Bryan and Norman [249]. We define the stellar
mass 𝑀∗ as the total mass of all the stellar particles within an aperture of 0.1 𝑅vir and
correspondingly define the stellar half-mass radius 𝑟1/2 as the radius that encloses
half of the total stellar mass. For the isolated dwarf galaxies in simulations, these
definitions of the stellar mass and the stellar half-mass radius give similar results to
what was derived using the iterative approach described in Hopkins et al. [25].

In Figure 2.4, we compare the stellar mass versus halo mass of simulated dwarf
galaxies with the scaling relations derived based on observations [1, 3, 59]. The
black dashed lines show 95% inclusion contour assuming the scatter estimated in
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Garrison-Kimmel et al. [3]. The simulated dwarfs are consistent with observations
in the stellar mass versus halo mass relation and the galaxies we sampled in the
simulation suite well represent the "median" galaxies in the real Universe. With mild
DM self-interaction ((𝜎/𝑚) ≲ 1 cm2 g−1), the halo and stellar masses of galaxies
are not significantly affected compared to their CDM counterparts, in agreement
with previous studies of eSIDM [e.g., 111, 113, 115]. However, in the dSIDM model
with (𝜎/𝑚) = 10 cm2 g−1, both the halo masses and the stellar masses decrease for
about 0. 1 - 0. 2 dex (compared to CDM) in dwarf galaxies with 𝑀halo ≲ 1011 M⊙.
Although this level of difference is still minor compared to the scatter of the relation,
it is worth noting that the model with (𝜎/𝑚) = 10 cm2 g−1 behaves qualitatively
differently from other models explored. This aspect will be discussed in Section 2.4
and Section 2.4 in the following.

Total mass density profiles
In this section, we present the total mass density profiles (including the contribution
from DM, stars, and gas) of simulated dwarf galaxies in dSIDM models with
different parameters and compare them with the CDM predictions. We note that, for
the dwarf galaxies in simulations, the mass density profiles are dominated by DM.
We divide the simulated dwarf galaxies into two categories: (1) classical dwarfs,
e.g. the m10’s, with typical halo mass of ≲ 1010 M⊙ and sub-kpc stellar half-mass
radius; (2) bright dwarfs, e.g. the m11’s, with typical halo mass of ≳ 1010 M⊙ and
stellar half-mass radius of several kpc. We will investigate the extent to which the
dissipative DM self-interactions affect the structure of these dwarfs.

In the left panel of Figure 2.5, we show the total mass density profiles of the classical
dwarf galaxies in simulations with CDM, eSIDM, and dSIDM models at 𝑧 = 0 2.
The effective cross-section (𝜎/𝑚)eff of the velocity-dependent dSIDM model in
these classical dwarfs is ∼ 0.3 cm2 g−1 calculated using Equation 2.11, plugging in
the density and one-dimensional velocity dispersion of DM particles enclosed in a
sphere of radius 1/3 𝑟cdm

1/2 , where 𝑟cdm
1/2 is the stellar half-mass radius in the CDM

model. We fit the density profiles at large radii of the halos (0.5 𝑟cdm
1/2 < 𝑟 < 20 𝑟cdm

1/2 )
with the NFW profile. In the lower sub-panel, we show the ratios between the density
profiles in different models and the NFW fits. In the right panel of Figure 2.5, we
show the local power-law slopes of the density profiles. In the lower sub-panel, we

2The bursty star formation history in dwarf galaxies could create fluctuations in density profiles,
which leads to uncertainties in the profile measured at the 𝑧 = 0 snapshot. But we have explicitly
checked that the difference between the density profiles at 𝑧 = 0 and the other four latest snapshots
are minimal.
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Figure 2.6: Left: Total mass density profiles of the bright dwarf galaxies in
simulations. The three bright dwarfs presented here are m11a, m11b, and m11q.
The notation is the same as Figure 2.5. The purple dotted vertical line here indicates
the average convergence radius (∼ 200 pc) of the bright dwarfs (see Table 2.1). Right:
Local power-law slopes of the density profiles of the bright dwarf galaxies. In
these bright dwarfs, the CDM model again predicts cored central density profiles
with even larger cores (∼ kpc) than the classical dwarfs due to stronger baryonic
feedback. The eSIDM model produces cores of similar sizes and slopes. The
velocity-dependent dSIDM model has relatively low effective cross-sections (∼
0.01 cm2 g−1) in these dwarfs. This model still produces cores but with slightly
higher central densities than their CDM counterparts. The dSIDM models with
relatively high effective cross-sections (≫ 0.01 cm2 g−1) still produce cuspy and
power-law-like central density profiles. The power-law slopes center around −1.5
with a scatter from −2 to −1.

show the differences in the slopes versus the NFW fits. In the classical dwarfs, the
central density profiles are cored in the CDM case due to baryonic feedback. The
eSIDM model produces profiles with much larger cores and shallower slopes than
CDM. However, the dSIDM models all predict cuspy and power-law-like central
density profiles at the sub-kpc scale, except for the one with low self-interaction
cross-section 0.1 cm2 g−1. These profiles are even steeper than the NFW profiles,
with power-law slopes ∼ −1.5 compared to the −1 asymptotic power-law slope of
the NFW profile at the sub-kpc scale. The dSIDM model with a low cross-section
of 0.1 cm2 g−1 still produces cored central profiles in two galaxies, but the central
densities are higher, and the core sizes are smaller than their CDM counterparts.
The profiles in the velocity-dependent dSIDM model lie between the profiles in
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the dSIDM models with (𝜎/𝑚) = 0.1 and 1 cm2 g−1, which is consistent with the
estimate of (𝜎/𝑚)eff in these systems. Surprisingly, increasing the self-interaction
cross-section to 10 cm2 g−1 does not lead to further contraction of the halos. Instead,
the density profiles in the model have lower normalization out to ∼ 10 kpc, although
the profiles still have cuspy shapes at galaxy centers. The classical dwarf galaxy
that exhibits the strongest decrease in density profile normalization in this model
is m10q. This decreased normalization of density profiles measured in spherical
shells is likely related to the deformation of halos (e.g. with the same energy budget,
a disk-like structure will have a lower spherically averaged density than a spherical
structure). Assuming that the radial contraction is adiabatic which preserves specific
angular momentum, the radial contraction of dSIDM halos will eventually be halted
by the growing centrifugal force from coherent DM rotation. This will also make
dSIDM halos deform from spherical to oblate in shape and the density profiles will
appear with lower normalization. In subsequent sections, we will see more evidence
for this phenomenon from the analysis of kinematic properties (Section 2.4) and
shapes (Section 2.5) of DM halos.

In the left panel of Figure 2.6, we show the total mass density profiles of the bright
dwarf galaxies in simulations with CDM, eSIDM, and dSIDM models. The (𝜎/𝑚)eff

of the velocity-dependent dSIDM model in these bright dwarfs is ∼ 0.01 cm2 g−1.
In the right panel of Figure 2.6, we show the local power-law slopes of the density
profiles of the bright dwarfs. The phenomena in the bright dwarfs are qualitatively
consistent with those in the classical dwarfs shown above. In the bright dwarfs,
the central density profiles are cored in the CDM case. The decrease of the central
density compared to the NFW profile is stronger than that in the classical dwarfs,
due to stronger baryonic feedback in the bright dwarfs. The eSIDM model again
produces larger cores and shallower slopes in these galaxies compared to the CDM
case. In dSIDM models, the shapes of the density profiles vary with the self-
interaction cross-section (or equivalently the efficiency of dissipation, assuming
fixed 𝑓diss). The velocity-dependent dSIDM model has a relatively low effective
cross-section in the bright dwarfs and thus the central density profiles are still cored,
similar to the CDM case. However, in the dSIDM model with (𝜎/𝑚) = 0.1 cm2 g−1,
cuspy and power-law-like central profiles show up in two out of the three bright
dwarfs and the only cored one shows enhanced central densities at 𝑟 ≲ kpc. In
the dSIDM model with (𝜎/𝑚) = 1 cm2 g−1, the central profiles of all three bright
dwarfs are cuspy with power-law slopes centering around −1.5 at the sub-kpc scale.
In the dSIDM model with (𝜎/𝑚) = 10 cm2 g−1, the density profiles have lower
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normalization although they are still cuspy, similar to the phenomenon we found
in the classical dwarfs. Here, the bright dwarf galaxy that exhibits the strongest
decrease in density profile normalization in this model is m11b.

Comparing the density profiles of the classical dwarfs and bright dwarfs, we find
that the dSIDM model with the same constant cross-section can behave qualita-
tively differently in galaxies of different masses. For example, the model with
(𝜎/𝑚) = 0.1 cm2 g−1 produces cored central profiles in two of the classical dwarfs
but produces cuspy central profiles in two of the bright dwarfs. As discussed in Sec-
tion 2.3, the dissipation time scale of models with constant cross-section inversely
depends on the density and velocity dispersion of the system. The bright dwarfs
typically have much higher velocity dispersion at their centers than the classical
dwarfs while the central densities are comparable to the classical dwarfs. As ex-
pected, dissipation has a stronger impact on the bright dwarfs. On the other hand, the
velocity-dependent dSIDM model produces cuspy central profiles in the classical
dwarfs but produces cored central profiles in the bright dwarfs. The dissipation time
scale of the velocity-dependent model inversely depends on density but exhibits
a 𝑣3 asymptotic dependence on velocity dispersion. The opposite dependence on
velocity dispersion makes the impact of dissipation stronger in the classical dwarfs.

To quantify the impact of dissipation on galaxy structures, we measure the slopes
of the total mass density profiles at galaxy centers. The aperture we choose for this
measurement is 0.2 − 0.8% 𝑅cdm

vir (as indicated by the gray bands in Figure 2.5 and
2.6), where 𝑅cdm

vir is the virial radius of the halo in the CDM model. 3 This has
been chosen since it is an appropriate aperture to illustrate the impact of dissipation
at small radii while remaining larger than the convergence radii of DM profiles in
these runs (rather conservative estimates, see Table 2.1). In Figure 2.7, we show the
power-law slopes of the density profiles (measured at 0.2− 0.8%𝑅cdm

vir ) of simulated
dwarf galaxies versus their stellar-to-halo mass ratios (𝑀∗/𝑀halo). The slopes of the
density profiles in different models show four different “tracks”:

• The NFW profile has an asymptotic −1 4 power-law slope at galaxy centers.

• In CDM, baryonic feedback drives gas outflow and creates fluctuations in the
central gravitational potential which significantly affects the distribution of

3The virial radius does not vary much in simulations with different DM models. Using the virial
radius in the CDM run is simply to ensure that the aperture is identical for different DM models.

4The slope of the NFW profile varies with radius. At the radii we measure the slopes, the NFW
profile has a slope of ∼ −1.1.
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Figure 2.7: Slopes of the central density profiles of dwarf galaxies in the sim-
ulation suite. The slopes are measured at 0.2 − 0.8% 𝑅cdm

vir . The slopes measured
in simulations with different DM models are shown in open markers (as labeled).
Galaxies are ordered from left to right based on their stellar-to-halo mass ratios
(𝑀∗/𝑀halo) and are classified as classical dwarfs and bright dwarfs. (The ultra-faint
dwarf m09 in the suite also has its 𝑀∗/𝑀halo value lying in the classical dwarf
regime.) The asymptotic behaviors of the slopes at the low mass end are clearly
different between different DM models. In low-mass dwarf galaxies, the density
profiles in dSIDM models with (𝜎/𝑚) ≥ 1 cm2 g−1 and the velocity-dependent
model converge to a slope of ∼ −1.5 (indicated by the thick red horizontal line).
The slope is steeper than the asymptotic slope −1 of the NFW profile (∼ −1.1 at
the radii we measure the slope, indicated by the thick black horizontal line). In
contrast, the dSIDM model with (𝜎/𝑚) = 0.1 cm2 g−1 can still produce small cores
in some dwarf galaxies with relatively strong baryonic feedback, with 𝛼 ∼ −1 at the
radius of measurement and becoming even shallower at smaller radii as shown in
the right panels of Figure 2.5 and 2.6. In the bright dwarfs, the velocity-dependent
dSIDM model produces cored profiles with 𝛼 ∼ −0.5. The dSIDM models with
constant cross-sections still produce cuspy density profiles with slopes centering
around −1.5 but scattering from −2 to −1. Unlike dSIDM models, density profiles
in CDM are shallower than the NFW profile and are shallower in more massive
dwarf galaxies, due to stronger baryonic feedback there (indicated by the thick cyan
line). The eSIDM model consistently produces cored density profiles with slope
∼ −0.2 in most of the dwarf galaxies (indicated by the thick gray horizontal line).
We note that all the thick reference lines are meant to label different “tracks” and
are rigorous fits to the simulation results.
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Figure 2.8: Top: Slope change versus effective self-interaction cross-section of
dwarf galaxies in simulations. Δ𝛼 is defined as the difference in slopes measured at
0.2−0.8%𝑅cdm

vir between galaxies in dSIDM and CDM. The red dashed line labels the
qualitative trend (not rigorous fitting). In the regime where (𝜎/𝑚)eff < 1 cm2 g−1,
the steepening of central profiles induced by dissipative DM self-interactions be-
comes progressively stronger in systems with higher effective cross-sections. In
the regime where (𝜎/𝑚)eff > 1 cm2 g−1, the steepening of central profiles satu-
rates. Bottom: Slope change versus dissipation time scale at halo center. When
log (𝑡cdiss/𝑡h) > −1, the density profiles become steeper as 𝑡cdiss decreases while the
steepening saturates when log (𝑡cdiss/𝑡h) < −1.

DM. Dwarf galaxies have shallower density profiles than the NFW profile.
The difference in slope peaks in most massive bright dwarfs where baryonic
feedback is most efficient in perturbing galaxy structures, as has been found
in previous studies [e.g., 42, 245–248].

• In eSIDM, elastic DM self-interaction drives the halo to thermal equilibrium
and produces an isothermal density profile with a core at the center. The
power-law slopes of the central profiles are close to zero in most of the
simulated dwarf galaxies, regardless of their mass.

• In dSIDM, dissipative DM self-interaction is a competing factor against bary-
onic feedback in shaping the central density profile. When (𝜎/𝑚)eff >

0.1 cm2 g−1, DM dissipation becomes dominant and the central density pro-
files in dwarf galaxies are steeper than the ones in the CDM model. 5 In
the classical dwarfs, the power-law slopes are steeper than the −1 of NFW
profiles and asymptote to ∼ −1.5. In the bright dwarfs, the power-law slopes
have a larger scatter, ranging from −2 to −1. When the (𝜎/𝑚)eff is relatively
low (e.g. the model with (𝜎/𝑚) = 0.1 cm2 g−1 in the classical dwarfs and the

5We verify that the impact of baryonic feedback becomes negligible in this regime through the
comparison with DMO simulations in Section 2.7.
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velocity-dependent model in the bright dwarfs), the central density profiles
are affected by a mixture of DM dissipation and baryonic feedback, which
compete with each other. In some dwarfs with relatively strong feedback
effects, the slopes become shallower than the ∼ −1.5 value at the radius of
measurement. They could even develop a core (𝛼 ≳ −0.5) at smaller radii as
shown in the right panels of Figure 2.5 and 2.6.

To demonstrate the net impact of dissipation, in the top panel of Figure 2.8, we show
the slope change Δ𝛼 versus the effective self-interaction cross-section (𝜎/𝑚)eff . Δ𝛼
is defined as the difference in slopes measured at 0.2 − 0.8%𝑅cdm

vir between galaxies
in dSIDM and CDM, Δ𝛼 = 𝛼dsidm − 𝛼cdm. More negative Δ𝛼 indicates a stronger
impact of dissipation on the steepness of the density profile. The effective self-
interaction cross-section is calculated using Equation 2.11, plugging in the density
and one-dimensional velocity dispersion of DM particles enclosed in a sphere of
radius 1/3 𝑟cdm

1/2 . The red dashed line shows the qualitative trend (not rigorous fitting)
of Δ𝛼 versus (𝜎/𝑚)eff . When (𝜎/𝑚)eff ≲ 1 cm2 g−1, the steepening of the central
density profiles induced by dissipation becomes progressively stronger in systems
with higher effective cross-sections. The change of the power-law slope scales
roughly linearly as the logarithm of the effective cross-section. When (𝜎/𝑚)eff

is larger than 1 cm2 g−1, the steepening of the central density profiles saturates.
The Δ𝛼 when (𝜎/𝑚)eff ≃ 10 cm2 g−1 is comparable to the (𝜎/𝑚)eff ≃ 0.1 cm2 g−1

case. In the bottom panel of Figure 2.8, we show the slope change Δ𝛼 versus
the dissipation time scale at halo center 𝑡cdiss, calculated using Equation 2.8. The
steepening of the central density profiles occurs when 𝑡cdiss becomes comparable to
𝑡h. The slope difference becomes larger as 𝑡cdiss decreases when 𝑡cdiss ≳ 0.1 𝑡h. When
𝑡cdiss ≲ 0.1 𝑡h, the steepening of the central profile saturates, similar to the trend in
the top panel. This is likely related to the increasing rotation support of DM when
(𝜎/𝑚)eff ≳ 1 cm2 g−1, which will be shown in the following section.

Kinematic properties
In this section, we will explore the kinematic properties of DM particles in the
simulated dwarf galaxies. These properties include velocity dispersion, coherent
rotation velocity, velocity anisotropy and the velocity distribution function of DM.

To evaluate these properties, we first divide a simulated halo into spherical shells with
respect to the halo center. In each shell, we measure the total angular momentum
of DM particles and align the z-axis of the coordinate system with the direction of
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the angular momentum. This helps us define the azimuthal and zenith directions
(note that different shells could have different directions of angular momentum
and thus different definitions of the z-axis). The velocities of DM particles are
decomposed to the radial, zenith, and azimuthal components (𝑣r, 𝑣𝜃 , and 𝑣𝜙) in
spherical galactocentric coordinates. The coherent rotation velocity𝑉rot of particles
in the shell is calculated as

𝑉rot =
𝐽dm

𝐼shell
𝑅shell,

𝐼shell =
2
5
𝑀dm

𝑟5
o − 𝑟5

i

𝑟3
o − 𝑟3

i
, 𝑅shell =

𝑟o + 𝑟i

2
, (2.12)

where 𝐽dm is the total angular momentum of DM particles in the shell, 𝑀dm is the
total mass of DM in the shell, 𝐼shell is the moment of inertia of the shell, 𝑟o and
𝑟i are the outer and inner radii of the shell, and 𝑅shell is the median radius of the
shell. Here, we have assumed that the mass is uniformly distributed in the shell in the
calculation of moment of inertia. We also measure the mean inflow/outflow velocity
(𝑣r) of DM particles in the shell. We subtract both the coherent rotation velocity
and the mean inflow/outflow velocity before measuring the velocity dispersion 𝜎r,
𝜎𝜃 and 𝜎𝜙 corresponding to the radial direction, and the azimuthal and zenith
angles, respectively. Finally, the three-dimensional velocity dispersion is calculated
as 𝜎3d =

√︃
𝜎2

r + 𝜎2
𝜃
+ 𝜎2

𝜙
. The one-dimensional velocity dispersion is estimated as

𝜎1d =

√︃
(𝜎2

r + 𝜎2
𝜃
+ 𝜎2

𝜙
)/3. The degree of velocity anisotropy is calculated as

𝛽 = 1 −
𝜎2
𝜙
+ 𝜎2

𝜃

2𝜎2
r

. (2.13)

Under this definition, 𝛽 = 0 corresponds to an isotropic velocity dispersion, 𝛽 = 1
to a velocity dispersion purely dominated by the radial component, and negative 𝛽
to a velocity dispersion dominated by the tangential component.

Coherent rotation: A natural consequence of dissipative interactions is that par-
ticles tend to move in a more coherent fashion, rather than in random dispersion.
If the energy dissipation is faster than the relaxation processes (either through DM
self-interactions or gravitational interactions), the coherent rotation would gradually
become prominent in the system if angular momentum is conserved. In Figure 2.9,
we show the ratio between coherent rotation velocity and three-dimensional velocity
dispersion of DM measured in spherical shells in CDM and dSIDM with (𝜎/𝑚) = 1
and 10 cm2 g−1. For each model, each line corresponds to one of the simulated dwarf
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Figure 2.9: Coherent rotation velocity relative to velocity dispersion of DM
in simulations. The coherent rotation velocities and the velocity dispersions are
measured in spherical shells as discussed in the main text. We present the results
in CDM and dSIDM with (𝜎/𝑚) = 1 and 10 cm2 g−1. For each model, we show
the results of five dwarf galaxies: m10q, m10b, m10v, m11a, and m11b. The
coherent rotation becomes more prominent inside ∼ 1% 𝑅vir as the self-interaction
cross-section increases, but not in every galaxy. The two galaxies that have rotation
velocities comparable to velocity dispersions are m10q and m11b.
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Figure 2.10: Velocity anisotropy profiles of DM in simulated dwarf galaxies.
The velocity anisotropies are calculated using Equation 2.13. We present the results
in CDM and dSIDM with (𝜎/𝑚) = 1 and 10 cm2 g−1. For each model, we show
the results of the same five galaxies as in Figure 2.9. The velocity anisotropy
decreases as the self-interaction cross-section increases and eventually becomes
negative, suggesting that the velocity dispersion is more dominated by the tangential
component. This is consistent with more coherent rotation found in Figure 2.9.
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Figure 2.11: Phase space distribution function of DM in simulated classical
dwarfs. We present the two-dimensional density distribution of DM in the 𝑣𝜙 − 𝑣r
phase space, d𝜌dm/d𝑣rd𝑣𝜙. In the three columns, we show the distribution in three
radial bins: central, 𝑟 < 𝑟cdm

1/2 /3, intermediate, 𝑟cdm
1/2 /3 < 𝑟 < 3𝑟cdm

1/2 , and “outskirt”,
3𝑟cdm

1/2 < 𝑟 < 0.5𝑅cdm
vir , respectively. From inside out, each contour is determined

such that it encloses a certain percentile of DM particles in the bin. The percentiles
range from 10% to 90% with 20% as interval, as labeled on the contours. The
dots represent the locations where the velocity distribution function peaks. DM
in dSIDM models exhibit positive median 𝑣𝜙 while the phase space distribution is
almost isotropic in CDM. The differences consistently show up in the three radial
bins and suggest a coherent rotation built up in dSIDM halos. The phase space
distribution in the dSIDM model is also more peaky than the CDM case, at least for
the central and intermediate radial bins.

galaxies: m10q, m10b, m10v, m11a and m11b. Qualitatively, the coherent rotation
velocity at small galactocentric radii becomes progressively more prominent as the
self-interaction cross-section becomes higher (and dissipation becomes more effi-
cient). At large radii, the systematic difference becomes negligible. Quantitatively,
there are apparent galaxy-to-galaxy variations. The ratio can reach ∼ 0.5 inside
∼ 1% 𝑅vir (roughly sub-kpc scale in dwarfs) in m10q and m11b in dSIDM with
(𝜎/𝑚) = 10 cm2 g−1, while in m11a and m10b, the ratio remains ≲ 0.1 inside
∼ 1% 𝑅vir in any models. These evidences suggest that, at the centers of galaxies,
some dSIDM realizations are in a transition from a pure dispersion-supported sys-
tem to a system supported by a mixture of random velocity dispersion and coherent
rotation. The radial scale for this transition to take place is a few percent of the
virial radius. Such scale is quite consistent with the centrifugal barrier ∼ 𝑠𝑅vir (𝑠 is
the halo spin parameter with typical value ∼ 0. 01 - 0. 1) found for dissipative gas in
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Figure 2.12: Velocity distribution functions of DM in the classical dwarfs. Top
left: Velocity distribution function at small galactocentric radii (𝑟 < 𝑟cdm

1/2 /3). We
show the velocity distributions in CDM and dSIDM with (𝜎/𝑚) = 1 and 10 cm2 g−1

(as labeled). As a reference, a Maxwell-Boltzmann distribution is shown with the
thick gray line. Compared to CDM, the velocity distribution functions in dSIDM
models are more suppressed at the high-velocity tail as the cross-section increases
and the peaks of the distributions also decrease systematically. Top right: Same
velocity distribution functions as the top left panel but in log-log scale to highlight the
asymptotic behavior at the low-velocity tail. Both CDM and dSIDM models have
velocity distribution functions that decrease slower than the Maxwell-Boltzmann
distribution at the low-velocity tail. Dissipation has limited impact at low velocities
due to small interaction rates there. Bottom left: Velocity distribution function at
intermediate galactocentric radii (𝑟cdm

1/2 /3 < 𝑟 < 3𝑟cdm
1/2 ). Similar differences in the

velocity distribution of CDM and dSIDM are found compared to the one at small
radii. Bottom right: The same velocity distribution function as the bottom left panel
but in log-log scale. Both CDM and dSIDM models have velocity distributions that
overall resemble the Maxwell-Boltzmann distribution at the low-velocity tail.
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CDM halos [e.g., 250].

Velocity anisotropy: In Figure 2.10, we show the velocity anisotropy of DM mea-
sured in spherical shells in CDM and dSIDM with (𝜎/𝑚) = 1 and 10 cm2 g−1. The
velocity anisotropies are calculated using Equation 2.13. The measured anisotropy
is not sensitive to the bulk motion of DM in the shell since we have subtracted
the mean rotation/inflow/outflow velocities. For each model, we show the results
of the same five galaxies as in Figure 2.9. CDM halos are almost isotropic at the
centers with mild radial velocity dispersion anisotropy at the outskirt, which is con-
sistent with previous studies [e.g, 251–253]. In dSIDM models, it is similar to the
CDM case in that the velocity anisotropy increases towards larger galactocentric
radii. However, as dissipation becomes more efficient, the normalization of the
velocity anisotropy decreases and eventually becomes negative at small radii. In the
dSIDM model with (𝜎/𝑚) = 10 cm2 g−1, the velocity anisotropy drops to ∼ −0.2
at 𝑟 ∼ 1% 𝑅vir, suggesting that the tangential component of the velocity dispersion
is relatively stronger there. This phenomenon is inline with the more prominent
coherent rotation developed in dSIDM halos.

Phase space distribution: In Figure 2.11, we present the density distribution
function of DM in the 𝑣𝜙 − 𝑣r phase space, d𝜌dm/d𝑣rd𝑣𝜙, of m10q and m10v.
We compare the results in CDM and dSIDM with (𝜎/𝑚) = 10 cm2 g−1 to better
illustrate the contrast. The phase space distributions are measured in three radial
bins: central, 𝑟 < 𝑟cdm

1/2 /3 (∼ 100 - 200 pc); intermediate, 𝑟cdm
1/2 /3 < 𝑟 < 3𝑟cdm

1/2
(∼ kpc) and “outskirt”, 3𝑟cdm

1/2 < 𝑟 < 0.5𝑅cdm
vir (≳ 10 kpc). The azimuthal and

zenith directions are defined based on the direction of the total angular momentum
of DM in each radial bin respectively. From inside out, each contour is determined
such that it encloses a certain percentile (as labeled on the contour line) of DM
particles in the bin. We note that, different from the measurement of velocity
dispersions, the coherent rotation or inflow/outflow velocity has not been subtracted
when determining 𝑣r and 𝑣𝜙. DM at small and intermediate radii in the dSIDM
model with (𝜎/𝑚) = 10 cm2 g−1 exhibits a median 𝑣𝜙 ≃ 5 − 10 km s−1 contrary to
the almost zero median 𝑣𝜙 in the CDM case. The distribution in the dSIDM model
is also more peaky than in the CDM case. The differences here are consistent with
the coherent rotation of DM in dSIDM found above. At the outskirt of the galaxy,
the increase in the median of 𝑣𝜙 is still visible but the scatter in the phase space also
becomes larger.

In Figure 2.12, we show the velocity (|𝑣 |) distribution functions of DM in the classical
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dwarfs in CDM and dSIDM with (𝜎/𝑚) = 1 and 10 cm2 g−1. We present the results
at small (𝑟 < 𝑟cdm

1/2 /3) and intermediate galactocentric radii (𝑟cdm
1/2 /3 < 𝑟 < 3𝑟cdm

1/2 ),
respectively. We also show the distribution function in log-log scale to emphasize the
low-velocity tail. Compared to the CDM case, the velocity distributions in dSIDM
models show apparent suppression at the high-velocity tail and bumps at lower
velocities, due to relatively high interaction rates of particles with high absolute
velocities. The low-velocity tail is less affected by dissipation due to relatively low
interaction rates there. The peak velocity decreases as the self-interaction cross-
section becomes larger. The phenomenon is actually opposite to the prediction of the
“gravothermal collapse” in SIDM halos [e.g., 121, 125]. The difference reflects the
deviation of dSIDM halos from both dynamical and thermal equilibrium in the phase
of radial contraction, as well as the fact that one cannot assume velocity distributions
as purely isotropic in relaxed dSIDM halos. Compared with the Maxwell-Boltzmann
distribution, the velocity distributions in CDM have extended tails at both the low
and high-velocity tails, since CDM particles are collisionless and are not locally
thermalized. The distributions in the dSIDM models are suppressed in the high-
velocity tail. At small galactocentric radii, the asymptotic behavior of the velocity
distribution function in CDM and dSIDM is quite different from the Maxwell-
Boltzmann distribution, decreasing slower towards lower velocities. However, at
intermediate radii, both CDM and dSIDM have distributions that resemble the
Maxwell-Boltzmann distribution at the low-velocity tail.

2.5 Halo shape
The change in halo shape is another important signature for alternative DM physics.
This aspect has been explored in detail for the eSIDM case [e.g., 113, 166, 254–256].
In dSIDM halos, morphological changes in response to the energy dissipation are
also expected, inline with the steepening of the density profile and the increased
rotation support found in previous sections.

To measure the shape of DM halos, we determine the orientation and magnitude of
the principal axes of DM distribution by computing the eigenvectors and eigenvalues
of the shape tensor of DM mass distribution, defined as

S =

∫
𝑉
𝜌(r) r rT d𝑉∫
𝑉
𝜌(r) d𝑉

, (2.14)

where 𝜌(r) is the DM mass density at position r with respect to halo center. In
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Figure 2.13: Top: Axis ratios of DM halos at central kpc in simulations at 𝑧 = 0.
We show the minor/intermediate axis ratio (𝑐/𝑏) versus the intermediate/major axis
ratio (𝑐/𝑎) of DM mass distribution in different simulations. The axes are measured
iteratively while fixing the volume of an ellipsoid as 4𝜋/3 𝑟3

lim, where 𝑟lim is chosen to
be 1 kpc. When 𝑐/𝑏 (𝑏/𝑎) is close to unity, the system is a prolate (oblate) spheroid.
When both 𝑐/𝑏 and 𝑏/𝑎 are close to unity, the system is spherically symmetric. In
CDM, DM halos are triaxial ellipsoids with a clear hierarchy of minor, intermediate
and major axes. The CDM halos lean towards prolate shapes, driven by mild radial
dispersion anisotropy. In the dSIDM model with (𝜎/𝑚) = 1 and 10 cm2 g−1, DM
halos behave as oblate spheroids, driven by the coherent rotation of DM. In the
extreme cases (e.g., m10q in dSIDM with (𝜎/𝑚) = 10 cm2 g−1), 𝑐/𝑏 drops to as
low as ∼ 0.5 while 𝑏/𝑎 stays around unity. At larger radii (𝑟 ≫ kpc), the qualitative
trends are similar but the differences between DM models become rapidly smaller.
Bottom: Evolution of the axis ratios of m10q at central kpc from 𝑧 ≃ 2.2 to
𝑧 = 0. The markers with darker colors represent measurements at lower redshifts.
The CDM halo stays triaxial since 𝑧 ≃ 2.2 while the eSIDM halo becomes more
spherical at late times. The halo in dSIDM with (𝜎/𝑚) = 1 cm2 g−1 is already more
spherical than CDM and eSIDM counterparts at 𝑧 ≃ 2.2 and it becomes extremely
spherical at 𝑧 = 0. However, the halo in dSIDM with (𝜎/𝑚) = 10 cm2 g−1 initially
follows the track of becoming more spherical but then turns oblate in shape.

terms of discrete DM particles, each element of the tensor is calculated as

𝑆ij =

∑
k 𝑚k (𝑟k)i (𝑟k)j∑

k 𝑚k
, (2.15)

where 𝑚k is the mass of the k-th DM particle and (𝑟k)i is the spatial coordinate of
the k-th particle. The three eigenvectors of the shape tensor give the three axes of
the mass distribution. Specifically, the major, intermediate, and minor axes will be
denoted as 𝑎, 𝑏, and 𝑐, respectively. The ratios between the eigenvalues of the shape
tensor give the axis ratios of the mass distribution.

For the simulated DM halos, we perform this measurement in a fixed volume
of 𝑉 = 4𝜋𝑟3

lim/3, where 𝑟lim is chosen to be 1 kpc. The volume is an ellipsoid
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with its major, intermediate, and minor axes (𝑎, 𝑏, and 𝑐 are set to 𝑟lim initially)
updated iteratively until convergence is reached. This gives an estimation of the
shape of the DM halo at kpc scale. In the top panel of Figure 2.13, we show the
minor/intermediate axis ratio (𝑐/𝑏) versus the intermediate/major axis ratio (𝑏/𝑎) of
DM mass distribution at 𝑧 = 0 in simulations. Most of the CDM halos are triaxial,
with a clear hierarchy of minor, intermediate and major axes, and lean towards
prolate shapes likely driven by mild radial velocity dispersion anisotropy [e.g., 257–
259]. The eSIDM halos overall become more spherical than CDM halos. Despite
some galaxy-to-galaxy variations, it is clear that halos in the dSIDM models behave
as oblate or spherical spheroids, with the intermediate axes always comparable to
the major axes. In the model with (𝜎/𝑚) = 1 cm2 g−1, halos are quite spherical
with 𝑏/𝑎 ≳ 0.9 and 𝑐/𝑏 ≳ 0.8. The radial contraction washes the initial triaxiality
of the halos and the increased central force makes halos more spherical. However,
in the model with (𝜎/𝑚) = 10 cm2 g−1, two of the halos become oblate in shape,
with 𝑐/𝑏 drops to around 0.5 and 0.7, while the other three are still quite spherical
in the end.

In the bottom panel of Figure 2.13, we show the evolution of the axis ratios of m10q
from 𝑧 ≃ 2.2 to 𝑧 = 0 as an example. The halo shape is again measured at the
central kpc scale, an invariant of redshift. We choose m10q as an example since
it has dramatic changes in its shape in dSIDM models. The markers with darker
colors represent measurements at lower redshifts. The CDM halo stays triaxial
since 𝑧 ≃ 2.2 with little change in its shape subsequently. The eSIDM halo is
initially triaxial but becomes progressively more spherical at late times due to the
elastic scattering of DM. The halo in dSIDM with (𝜎/𝑚) = 1 cm2 g−1 is already
more spherical than CDM and eSIDM counterparts at 𝑧 ≃ 2.2 and it becomes
extremely spherical (𝑐/𝑏, 𝑏/𝑎 > 0.95) at 𝑧 = 0. However, the halo in dSIDM
with (𝜎/𝑚) = 10 cm2 g−1 initially follows the track of becoming more spherical
but then turns oblate in shape. We note that, though not shown explicitly here,
the other halo (m11b) which ends up oblate (𝑐/𝑏 ∼ 0.5 at 𝑧 = 0) in the model
with (𝜎/𝑚) = 10 cm2 g−1 has a similar evolutionary track in the axis ratio plane.
However, the three halos (m10b, m10v, m11a) that end up spherical (𝑐/𝑏, 𝑏/𝑎 ≳ 0.9
at 𝑧 = 0) are still in the phase of turning spherical.

The morphological differences found here are consistent with our findings in the
previous sections that coherent rotation develops in dSIDM halos with (𝜎/𝑚) =

10 cm2 g−1 and could also result in the lower normalization of the density profiles



40

(measured in spherical shells) found in Section 2.4. In the model with (𝜎/𝑚) =

10 cm2 g−1, the two halos that become oblate in shape at 𝑧 = 0 (m10q and m11b) are
the halos with the most significant coherent rotation (as presented in Section 2.4) and
also with the most significant decrease in density profile normalization (as presented
in Section 2.4). When the coherent rotation velocity becomes comparable to the
velocity dispersion, a self-gravitating spheroidal system consisting of collisionless
particles flattens. This is a well-known behavior in the stellar distribution of elliptical
galaxies [e.g., 260, 261] and models of isotropic oblate rotating spheroids [262–264].
Similar to these previous studies, the response of the ellipticity of the spheroid to
𝑉rot/𝜎3d is weak. In the simulated dwarfs m10q and m11b, significant coherent
rotation of 𝑉rot/𝜎3d ∼ 0.5 results in only modest ellipticity of the halo (𝑐/𝑏, 𝑐/𝑎 ∼
0.5 − 0.7 at 𝑟 ≲ kpc). However, the coherent rotation and halo deformation are
weaker in other simulated dwarfs and this is likely related to the differences in the
mass assembly history of the dwarfs.

We note that, for the oblate spheroids we found here, the minor and major axes
are still comparable to each other. The shape is qualitatively different from the
thin "dark disk" discussed in the literature (albeit for Milky Way-sized galaxies)
regarding dissipative DM [100, 128–133]. The dissipation time scale in the model
studied here is still orders of magnitude longer than the dynamical time scale of the
system, which prevents fragmentation of the DM into e.g., “dark stars” and other
compact structures [e.g., 265–267]. This is qualitatively different from baryon-like
dissipative DM models. In addition, unlike those models that assume dissipative
DM is a sub-component of all the DM, the model studied here assumes that all
the DM are dissipative. In our case, there would be no external gravitational force
that can suppress the growth of secular gravitational instabilities [e.g., 268, 269],
which prevents the formation of a cold and thin "dark disk" completely supported
by rotation.

2.6 Discussion
In previous sections, we have presented several signatures of dSIDM models in
dwarf galaxies that differ from their CDM counterparts. In this section, we discuss
these phenomena in more detail and provide some physical explanations for the
behaviors using simple analytical arguments.
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Slope of the density profile
When 𝜎/𝑚 becomes large enough such that the dissipation time scale is comparable
or lower than the Hubble time scale (1/𝐻0), all the dSIDM halos in simulations first
undergo radial contraction, accompanied by the steepening of the central density
profiles. It is surprising that, during this phase, the asymptotic power-law slopes
of the central density profiles of dwarf galaxies converge to ∼ −1.5 (though with
significant scatter ∼ 0.5 in the bright dwarfs), insensitive to the detailed value of
effective cross-section.

The cooling and contraction of dSIDM halos here share some similarities with the
cooling and collapse of gas clouds in the baryonic sector, which have been well-
studied in the context of star formation. However, compared to dSIDM halos studied
here, there are notable differences in the hierarchy of relevant time scales, which
result in different evolution patterns. Gas clouds exhibit much higher particle scat-
tering rates and less energy dissipation per scattering, so the collisional relaxation
time scale is orders of magnitude shorter than the cooling time scale, which means
that global thermal equilibrium is easier to be established in gas clouds. During the
early contraction of gas clouds, it is often assumed that the compressional heating
will offset the radiative loss of thermal energy and keep the cloud nearly isother-
mal [e.g., 270, 271]. However, in dSIDM halos, since the dissipation time scale is
comparable to the collision time scale (see Section 2.3), the dSIDM fluid cannot
adjust itself to global thermal equilibrium during the contraction of the system,
which is qualitatively different from the isothermal contraction of gas clouds. This
is supported by the fact that the velocity dispersion profiles (shown in Figure 2.3) at
the centers of simulated dwarfs in are never flat in dSIDM models, contrary to the
isothermal profiles in eSIDM cases.

For gas clouds, the isothermal contraction will gradually increase the imbalance
of gravitational forces over thermal pressure forces, which eventually results in
the free-fall collapse of the central part of the cloud [e.g., 271–277]. In terms of
time scales, the free-fall collapse will happen when the cooling time scale becomes
shorter than the dynamical time scale of the cloud. However, in dSIDM halos,
this is also prohibited, since the dissipation time scale (in the surveyed parameter
space) is orders of magnitude larger than the dynamical time scale of the system.
As the dissipation of thermal/kinetic energy drives the contraction of the halo on
the dynamical time scale, DM particles could be gravitationally accelerated again,
which would effectively increase the thermal pressure and slow down the collapse.
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Moreover, on the dynamical time scale, DM particles from different radii can “mix”
because they are only weakly collisional as opposed to gas. As a consequence,
even though the global thermal equilibrium of the system is broken, the contraction
would still be much slower than the free-fall collapse of gas clouds (as found in
Figure 2.11).

We find the behavior of our systems can be reasonably described by the solution
for a “slow” quasi-equilibrium cooling flow (with negligible thermal conduction)
rather than isothermal or rapid free-fall “collapse”. Following Stern et al. [278],
the continuity equation of a steady slow-cooling halo, that is spherically symmetric,
isotropic, and pressure supported, can be written as

d ln 𝜌
d ln 𝑟

+ d ln 𝑣r

d ln 𝑟
= −2, (2.16)

where 𝜌 is the density of the fluid and 𝑣r is the radial inflow velocity. The momentum
equation and the entropy equation of the system can be reduced to [278]

d ln 𝑣r

d ln 𝑟

(𝑣2
r

𝑐2
s
− 1

)
= 2 −

𝑣2
c

𝑐2
s
− 𝑟/𝑣r

𝛾𝑡cool
, (2.17)

where 𝑣c is the circular velocity, 𝑐s is the adiabatic sound speed, 𝛾 is the adiabatic
index and 𝑡cool is the cooling time scale of the fluid. Applying the solution to
the cooling flow of DM, we replace the sound speed 𝑐s with the one-dimensional
velocity dispersion of DM 𝜎1d and the cooling time scale 𝑡cool with the dissipation
time scale 𝑡diss of DM self-interactions. In the "subsonic" limit (𝑣r ≪ 𝜎1d), the
second equation becomes

−d ln 𝑣r

d ln 𝑟
= 2 −

𝑣2
c

𝜎2
1d

− 𝑟/𝑣r

𝛾𝑡diss
. (2.18)

A simple self-similar solution exists by requiring that all the logarithmic derivatives
of DM properties are constants. Then 𝑣2

c/𝜎2
1d and (𝑟/𝑣r)/𝑡diss also need to be

constants. If we assume 𝜌 ∼ 𝑟𝛼, we obtain the scaling of the one-dimensional
velocity dispersion as

𝜎1d ∼ 𝑣c ∼
√︁
𝐺𝑀enc(𝑟)/𝑟 ∼ 𝑟1+𝛼/2. (2.19)

In the meantime, Equation 2.16 implies that 𝑣r ∼ 𝑟−𝛼−2. According to Equa-
tion 2.8, the dissipation time scale 𝑡diss scales with density and velocity dispersion as
𝜌−1𝜎−1

1d ∼ 𝑟−(1+3𝛼/2) . If we plug in the scaling of 𝑣r and 𝑡diss to the term (𝑟/𝑣r)/𝑡diss,
we obtain

𝑟/𝑣r

𝑡diss
∼ 𝑟 𝑟𝛼+2

𝑟−(1+3𝛼/2) ∼ 𝑟
4+5𝛼/2. (2.20)
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So the power-law solution (which requires the term to be a constant at all radii)
has 𝛼 = −8/5. Quantitatively, the slope of the density profile given by this “dark
cooling flow” solution is consistent with the finding in dSIDM simulations that the
asymptotic slopes of the density profiles converge to around −1.5. It also predicts
𝜎1d ∼ 𝑟0.2, which is consistent with the central velocity dispersions of simulated
dwarfs that mildly increase with radii.

A similar solution for self-gravitating gaseous spheres with a polytropic equation of
state has been presented in Suto and Silk [279], as a generic study of the solution
proposed in Shu [271]. They considered spherical gaseous systems with the same
equations for mass and momentum conservation. Purely aiming at finding self-
similar solutions and without involving a detailed description of cooling/heating,
they derived an asymptotic self-similar density profile 𝜌 ∼ 𝑟−1.5 that is independent
of the assumed polytropic index of gas. The solution is not restricted to a steady-
state, subsonic inflow of gas and still holds even when there is no cooling term.

DM energy transfer in dSIDM
In general, “thermal conduction” and dissipation are the two main mechanisms in
SIDM halos to transfer the kinetic energy of DM. “Thermal conduction” is DM
collisional energy transfer. The detailed form of the heat conductivity depends on
the nature of the heat conduction. In the theory of thermal conductivity of an ideal
fluid, the heat flux is the averaged one-way flux of particles across an imaginary
surface multiplied by the difference in energy per particle between the starting and
ending points. Up to order-unity corrections, this gives

𝜅 ≃ 3
2
𝑘b

𝑚
𝜌
𝑙2

𝜏
, (2.21)

where 𝑘b is the Boltzmann constant, 𝑙 is the characteristic distance between the
starting and ending points and 𝜏 is the time between collisions. In SIDM halos, the
collision (or close encounters) between particles is governed by DM self-interactions
since the collision time scale of DM self-interaction is significantly lower than the
two-body gravitational relaxation time scale. Thus, we have 𝜏 = 𝑡coll. If the mean
free path between collisions is significantly shorter than the physical size of the
system (referred to as the Short Mean Free Path (SMFP) regime), DM will behave
like a fluid and the heat conductivity is fully regulated by the mean free path of DM
particles (𝑙 = 𝜆 = 1/(𝜌𝜎/𝑚)). Therefore, in this regime, the thermal conductivity
is

𝜅 =
3
2
𝑘b

𝑚
𝐶1𝜌

𝜆2

𝑡coll
, (2.22)
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Figure 2.14: DM energy transfer rates via “thermal conduction” (DM collisional
energy transfer) versus dissipation energy loss rates, measured in spherical
shells, as a function of galactocentric radii. We show the heat gain or loss of
DM via collisions ( ¤𝐸coll, Equation 2.26) versus the energy dissipation rate ( ¤𝐸diss,
Equation 2.27) in circles (red for ¤𝐸coll > 0, blue for ¤𝐸coll < 0). We present the
results in one of the classical dwarfs m10q and in one of the bright dwarfs m11a. In
both galaxies, with 𝑓diss = 0.5, the collisional energy transfer rate is always roughly
an order of magnitude lower than the energy dissipation rate.

where 𝐶1 is an order-unity constant and has been found to be (25
√
𝜋/32)/(4/

√
𝜋)

in the Chapman-Enskog theory [e.g., 280, 281] and 0.25/(4/
√
𝜋) in numerical

simulations [123].

On the other hand, this picture is not valid when the mean free path between collisions
is much larger than the gravitational scale height 𝐻 of the system (referred to as the
Long Mean Free Path (LMFP) regime), defined as

𝐻 =

√︄
𝜎2

1d
4𝜋𝐺𝜌

. (2.23)

In this regime, particles can travel several orbits before experiencing a collision.
Lynden-Bell and Eggleton [118] found that the characteristic distance between
encounters in this limit (for weakly collisional fluid) can be roughly described by
the gravitational scale height (𝑙 = 𝐻). In this case, the thermal conductivity is

𝜅 =
3
2
𝑘b

𝑚
𝐶2𝜌

𝐻2

𝑡coll
, (2.24)

where 𝐶2 is an order-unity constant and has been found to be 0.75 in numerical
simulations [123]. For the fiducial model studied in the paper, the mean free path
of DM self-interaction is always orders of magnitudes larger than the gravitational
scale height of the systems (or translated to time scale, the collision time scale of
DM self-interaction is orders of magnitudes larger than the dynamical time scale of
the system). So, these halos all stay in the LMFP regime.
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The flux of thermal energy transferred outward through a sphere of radius 𝑟 can be
calculated as

𝑗coll(𝑟) = −𝜅 𝜕𝑇 (𝑟)
𝜕𝑟

= −𝜅 𝑚
𝑘b

𝜕𝜎2
1d(𝑟)
𝜕𝑟

, (2.25)

where 𝜅 takes the conductivity in the LMFP regime defined in Equation 2.24. The
net collisional energy gain per unit volume in a spherical shell can be calculated as

¤𝐸coll(𝑟) = − 1
4𝜋𝑟2

𝜕 (4𝜋𝑟2 𝑗coll(𝑟))
𝜕𝑟

. (2.26)

The second mechanism of energy transfer is energy dissipation due to DM self-
interactions. Different from “thermal conduction”, the dissipation we modeled here
is not regulated by any characteristic length scale, since the dissipated energy will
not be reabsorbed and effectively has an infinite mean free path. The dissipation
energy loss per unit volume in a spherical shell is the volumetric cooling rate

¤𝐸diss(𝑟) = 𝐶 (𝑟) =
3
2
𝜌(𝑟)𝜎2

1d(𝑟)/𝑡diss(𝑟). (2.27)

The relative importance of collisional energy transfer and dissipation is determined
by the comparison between 𝑡coll and 𝑡diss. For the dSIDM model studied in this
chapter, 𝑡coll and 𝑡diss always have a similar dependence on density and velocity
dispersion. Thus, their ratio is almost constant over the evolution of the halo and
only depends on 𝑓diss. For the fiducial model with 𝑓diss = 0.5, 𝑡diss is of the same order
of magnitude as 𝑡coll (e.g., 𝑡diss = 0.75 𝑡coll/ 𝑓diss for the models with constant cross-
sections). In this regime, dissipation is always the dominant mechanism for energy
transfer and is responsible for triggering the contraction of the halo. Collisional
energy transfer is negligible. Therefore, the evolution pattern of dSIDM halos in
this regime will be qualitatively different from the canonical gravothermal collapse
of eSIDM halos.

In Figure 2.14, we demonstrate the dominance of dissipation over collisional energy
transfer in simulations. We show the collisional energy transfer rate, ¤𝐸coll, relative
to the energy loss rate due to dissipation, ¤𝐸diss, of spherical shells as a function
of galactocentric radii. In the classical and bright dwarfs, assuming the fiducial
choice of 𝑓diss, the rate of energy transfer via collisions is always roughly an order
of magnitude lower than the energy dissipation rate.

Evolution of a dSIDM halo
When dissipation dominates over collisional energy transfer of DM, the evolution
track of an isolated dSIDM halo can be divided into four regimes, depending on the
dissipation time scale 𝑡diss
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Figure 2.15: Top left: Total mass density profiles of m09 in dSIDM models with
other combinations of 𝑓diss and 𝜎/𝑚. We choose three combinations of 𝑓diss and
𝜎/𝑚 that give the same dissipation time scale: 𝑓diss = 0.5, 𝜎/𝑚 = 1 cm2 g−1; 𝑓diss =

0.1, 𝜎/𝑚 = 5 cm2 g−1; 𝑓diss = 0.9, 𝜎/𝑚 = 0.56 cm2 g−1. Other panels: Collisional
energy transfer rates versus energy dissipation rate of DM (as Figure 2.14). The
energy transfer rate via collisions is subdominant compare to dissipation in the model
with 𝑓diss = 0.5 or 0.9. In the model with 𝑓diss = 0.1, collisional heating overtakes
dissipation at the center of the galaxy. This model actually produces a denser and
cuspier central density profile, as the halo experiences the gravothermal collapse and
a dense core in the SMFP regime emerges at the center. In all models, at large radii
(∼ 10 kpc), collisional energy transfer rates become comparable to the dissipation
rate, but the absolute values of both terms at these radii are too small to make a
difference.
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• Regime A (𝑡diss ≫ 𝑡h): The halo evolves in the same way as analogous CDM
halo since both 𝑡diss and 𝑡coll are significantly longer than the lifetime of the
system.

• Regime B (𝑡h ≳ 𝑡diss ≳ 0.1 𝑡h): The halo undergoes radial contraction. The
density profile within the radius where 𝑡h ≳ 𝑡diss steepens and becomes cuspy
with power-law slopes asymptoting to ∼ −1.5. The shape of the halo becomes
more spherical in this phase.

• Regime C (0.1 𝑡h ≳ 𝑡diss ≫ 𝑡dyn at the halo center): At a certain stage of
the radial contraction, prominent coherent rotation of DM will develop in the
system. The system is in a transition from purely dispersion supported to being
supported by a mixture of random velocity dispersion and coherent rotation.
During this transition, the radial contraction of the halo and the steepening
of the density profile are stopped by centrifugal forces. The halo becomes
oblate in shape during this phase and the normalization of the density profile
measured in spherical shells decreases.

• Regime D (𝑡dyn ≳ 𝑡diss): Local instability starts to build up and results in
fragmentation of the halo. Numbers of dark "clumps" would start to form
within the local free-fall time scale. None of our simulations has reached
this regime and it would require order-of-magnitude larger self-interaction
cross-sections to test.

2.7 Comparison with other simulation physics
Varying the energy dissipation fraction
We note that the specific simulations studied in this chapter have assumed that the
dimensionless degree of dissipation is 𝑓diss = 0.5. However, the results can be
extrapolated to other slices of the dSIDM parameter space based a simple time
scale argument. In Section 2.3, we show that the energy dissipation time scale
only depends on the product of 𝑓diss and 𝜎/𝑚. Therefore, when dissipation is the
dominant mechanism for energy transfer, different combinations of 𝑓diss and 𝜎/𝑚
should give rise to similar predictions as long as the dissipation time scale is the
same. In this section, we vary the dissipation fraction 𝑓diss and test how the results
are affected in explicit simulations.

We use the ultra-faint dwarf m09 as the test halo. The halo is ideal for the test since
the density profile is DM dominated and baryonic feedback is weak considering its
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𝑀∗/𝑀halo ≲ 3 × 10−5. We choose three combinations of 𝑓diss and 𝜎/𝑚 that give
the same dissipation time scale: 𝑓diss = 0.5, 𝜎/𝑚 = 1 cm2 g−1; 𝑓diss = 0.1, 𝜎/𝑚 =

5 cm2 g−1; 𝑓diss = 0.9, 𝜎/𝑚 = 0.56 cm2 g−1. In Figure 2.15, we show the total mass
density profile of m09 in these three models compared with the CDM counterpart
and the NFW profile. The models with 𝑓diss = 0.5 and 𝑓diss = 0.9 produce exactly
the same density profile, which justifies that, when dissipation dominates energy
transfer, the evolution of the halo is determined by the dissipation time scale and
is independent of the detailed combination of parameters. However, we find the
model with 𝑓diss = 0.1 (and a large cross-section of 𝜎/𝑚 = 5 cm2 g−1) produces a
qualitatively different profile from the other two models. The density follows the
NFW profile at ≳ 100 pc while getting enhanced by about two orders of magnitude
at the scale ≲ 100 pc compared to the extrapolation of the NFW profile, and is even
denser than the cuspy profile in the other two models. It is counterintuitive that the
model with a lower degree of dissipation gives rise to higher central densities. The
phenomenon can be explained by the increased importance of collisional energy
transfer in this model. When 𝑓diss = 0.1, the collision time scale becomes an order
of magnitude lower than the dissipation time scale and the halo is no longer purely
dominated by dissipation. Under the influence of collisional energy transfer, the
evolution track of the halo resembles the “gravothermal catastrophe” of eSIDM
halos, where “thermal conduction” is responsible for energy transfer. The analytical
model of the “gravothermal catastrophe” of SIDM halos [e.g., 121] predicts that
a halo initially in the LMFP regime will contract while maintaining a cored, self-
similar density profile until the central part of the halo reaches the SMFP regime.
Subsequently, a dense, optical thick core (in the SMFP regime) will form while the
outskirt of the halo stays in the LMFP regime. In the simulation with 𝑓diss = 0.1, at
the center of m09, the density reaches 1011 M⊙/ kpc3 and the collision time scale
there is comparable to the dynamical time scale (assuming a typical one-dimensional
velocity dispersion ∼ 10 km s−1) which indicates that the center of the halo is indeed
in the SMFP regime. It is striking that the enhanced central density due to the
gravothermal evolution is even higher than that produced by models with a higher
degree of dissipation.

We verify that the phenomenon discussed above is indeed caused by the increased
importance of “thermal conduction” by showing the collisional energy transfer
rates versus dissipation rates in simulations in Figure 2.15. In the model with
𝑓diss = 0.9, 𝜎/𝑚 = 0.56 cm2 g−1 or 𝑓diss = 0.5, 𝜎/𝑚 = 1 cm2 g−1, the collisional
energy transfer rate is always subdominant compared to dissipation. However, in
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Figure 2.16: A cartoon of the dSIDM parameter space. The dSIDM model
is parameterized with 𝜎/𝑚 and 𝑓diss. When 𝜎/𝑚 is small enough, both elastic
and dissipative SIDM models become analogous to CDM in the lifetime of the
Universe. When 𝑓diss becomes small enough, dSIDM becomes essentially eSIDM-
like since collisional energy transfer dominates over dissipation in this regime.
When the product of 𝜎/𝑚 and 𝑓diss becomes large enough, the dissipation time
scale could drop below the local dynamical time scale of the system and result in the
fragmentation of dSIDM into compact dark objects. Effectively, baryon-like models
are located at the low 𝑓diss, high 𝜎/𝑚 corner of the plot. The dSIDM models studied
in this chapter live in the parameter space, which is not immediately ruled out but
can still give rise to unique phenomena different from CDM or eSIDM models.

the model with 𝑓diss = 0.1, 𝜎/𝑚 = 5 cm2 g−1, the collisional energy transfer rate
overtakes dissipation at small radii (≲ 0.2 kpc). This is in very good agreement with
the radii where we find the differences in density profiles between the two models.
In summary, when | ¤𝐸coll | ≫ | ¤𝐸diss | at halo centers, which occurs for 𝑓diss ≲ 0.1, the
halo behaves more like an eSIDM halo and the higher central density is primarily due
to the gravothermal evolution driven by collisional energy transfer (but potentially
accelerated by dissipation).

To better illustrate the parameter space of dSIDM (including the space that has not
been explored in this chapter), we create a cartoon image (Figure 2.16) which qualita-
tively divides the dSIDM parameter space into several regions. The dSIDM models
are parameterized with 𝜎/𝑚 and 𝑓diss. Both eSIDM and dSIDM models become
CDM-like when 𝜎/𝑚 is small enough such that the collision time scale becomes
much longer than the lifetime of the Universe. dSIDM becomes essentially eSIDM-
like when 𝑓diss becomes small enough since collisional energy transfer dominates
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Figure 2.17: Total mass density profiles of galaxies in DMO simulations and full
physics simulations. We present the density profiles of m10q and m11q in CDM
and dSIDM with (𝜎/𝑚) = 1 cm2 g−1. The results of full physics simulations are
shown in solid lines while the results of DMO simulations are shown in dashed lines.
The purple dotted vertical line indicates the convergence radius in DMO runs (see
Table 2.1). In CDM, the central density profiles in DMO simulations are similar to
the NFW profile before reaching the convergence radii. The full physics simulation
of m11q produces a kpc size core at the center due to strong baryonic feedback
there. However, in the dSIDM model with (𝜎/𝑚) = 1 cm2 g−1, the DMO and
full physics simulations produce almost identical results, indicating that dissipative
interactions of DM completely determine the evolution of the DM halo and the
impact of baryonic feedback becomes negligible. This is generally true when the
dissipation time scale becomes significantly shorter than the Hubble time scale.

over dissipation in this regime. When the product of 𝜎/𝑚 and 𝑓diss becomes large
enough, the dissipation time scale could drop below the local dynamical time scale
of the system and result in the fragmentation of dSIDM into compact dark objects.
For a higher value of 𝑓diss and 𝜎/𝑚, the scenario that all dark is dissipative would be
ruled out by observations (e.g., constraints from merger clusters [159, 244]; lensing
constraints on compact DM substructures). If we put baryons (and baryon-copy
dSIDM models) in this space effectively, they will be located at the low 𝑓diss, high
𝜎/𝑚 corner of the plot. Thus the interesting dSIDM parameter space that gives
unique phenomena but is not immediately ruled out is roughly around 𝑓diss ≃ 0.1−1,
(𝜎/𝑚) ≃ 0.01 − 100 cm2 g−1.

DM only versus full physics simulations
The analysis and discussion in the main chapter revolve around the impact of dis-
sipative DM interactions on galaxy structures. However, baryonic physics could
also impact galaxy structures in various ways. For instance, the gas outflow driven
by stellar/supernovae feedback could irreversibly transfer energy to DM and in-
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duce cores at galaxy centers [e.g., 56–58]; the gravitational influence of baryons
condensed at galaxy centers could induce adiabatic contraction of DM halos [e.g.,
282, 283]. The contamination of baryonic physics processes is an important factor
when studying the influence of alternative DM physics.

We explore this aspect by performing DMO simulations of the same halos in the
simulation suite and comparing the results. In Figure 2.17, we compare the total
mass density profiles of dwarf galaxies m10q and m11q in DMO simulations and
full physics simulations. It is not surprising that, in the CDM case, the density
profiles produced by DMO simulations are cuspy and NFW-like before reaching
the convergence radii. In full physics simulations, m11q exhibits a kpc size core
while m10q still exhibits a cuspy profile like its DMO counterpart. The difference
results from the different level of baryonic feedback in the two galaxies. However, in
the dSIDM model with (𝜎/𝑚) = 1 cm2 g−1, the DMO and full physics simulations
produce almost the same density profiles, indicating that baryonic physics no longer
affect the density profiles of dwarf galaxies once dissipation is strong enough. This
check also validates the results presented in this chapter against uncertainties in
modeling the baryonic physics processes in simulations.

2.8 Summary of the chapter
In this chapter, we present the first suite of cosmological baryonic (hydrodynamical)
zoom-in simulations of galaxies in dSIDM. We adopt a dSIDM model where a
constant fraction 𝑓diss of the kinetic energy is lost during DM self-interaction. We
sample models with different constant self-interaction cross-sections as well as a
model with velocity-dependent cross-section. The dSIDM models explored here
are weakly collisional (𝜎/𝑚 ≲ 10 cm2 g−1) but strongly dissipative ( 𝑓diss ≳ 0.1)
and are qualitatively different from some previously proposed baryon-like dSIDM
models [e.g., 128, 131, 132], which are limited to explain a subset of all DM in
the Universe. The simulations utilize the FIRE-2 model for hydrodynamics and
galaxy formation physics, which allows for realistic predictions on the structural and
kinematic properties of galaxies. This simulation suite consists of various galaxies,
from ultra-faint dwarfs to Milky Way-mass galaxies. In this chapter, we primarily
focus on the analysis of dwarf galaxies in dSIDM and explore galaxy/halo’s response
to dissipative self-interactions of DM. The following signatures of dSIDM models
in dwarf galaxies are identified and explored:

• The DM halo masses and galaxy stellar masses are not significantly affected
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in dSIDM models with (𝜎/𝑚) ≲ 1 cm2 g−1 compared to the CDM case
(see Figure 2.4). The dwarf galaxies in the dSIDM model with (𝜎/𝑚) =

10 cm2 g−1 have slightly lower (0. 1 - 0. 2 dex) halo/galaxy stellar masses. But
the results of this model are still within the scatter of the relation constrained
in observations as well as the stochastic run-to-run scatter of simulations of
different dwarf galaxies.

• Energy dissipation due to DM self-interactions induces radial contraction of
DM halo. This mechanism competes with baryonic feedback in shaping the
central profiles of dwarf galaxies (see Figure 2.5 and 2.6). When the effective
self-interaction cross-section is low, the central profiles are still cored despite
higher densities and smaller core sizes. When the effective self-interaction
cross-section is larger than ∼ 0.1 cm2 g−1, assuming 𝑓diss = 0.5, the central
density profiles of dwarf galaxies become cuspy and power-law like. The
resulting asymptotic power-law profile is steeper than the NFW profile. The
power-law slopes asymptote to ∼ −1.5 in the classical dwarfs and range from
−2 to −1 in the bright dwarfs (see Figure 2.7). The slope of the profile can
be well explained by the stead-state solution of a “dark cooling flow” (see
Section 2.6), which predicts a density profile with power-law slope −1.6.

• Interestingly, further increasing the effective cross-section to 10 cm2 g−1 does
not lead to further contraction of the halo or steepening of the density profile.
Instead, the normalization of the density profiles drops. A likely explanation is
that the centrifugal force increases faster than the gravitational attraction as the
halo contracts with specific angular momentum conserved. This eventually
halts the contraction, increases the rotation support of the halo, and drives the
halo deformation (to oblate), which makes the density measured in spherical
shell decreased.

• Through time scale analysis (Section 2.3), we show that the dSIDM mod-
els with constant cross-sections will have stronger impact in more massive
galaxies while the velocity-dependent model has the opposite dependence.
This is demonstrated by the simulations of classical dwarfs and bright dwarfs
with the same DM model (see Figure 2.5 and 2.6). The dSIDM model with
(𝜎/𝑚) = 0.1 cm2 g−1 produces small cores in two of the classical dwarfs but
produces cuspy profiles in two of the bright dwarfs. The velocity-dependent
dSIDM model produces cuspy profiles in all the classical dwarfs while pro-
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ducing cored profiles in the bright dwarfs that are almost identical to the CDM
case.

• The kinematic properties of the DM change in parallel to the contraction of
DM halo (see Section 2.4). As the self-interaction cross-section of dSIDM
increases, the coherent rotation becomes more prominent compared to ran-
dom velocity dispersion. In the meantime, the velocity dispersions are more
dominated by the tangential component than the radial component, reflected
by the negative velocity anisotropies in dSIDM halos. The central parts of
the galaxies are in transition from dispersion supported to rotation supported.
Meanwhile, the velocity distribution function is suppressed at high velocities
while it increases at low velocities in dSIDM models. As the cross-section
increases, the median velocity is also shifted lower.

• The shape of the halo is affected by dissipation (see Figure 2.13). In the
dSIDM model with (𝜎/𝑚) = 1 cm2 g−1, the halo becomes more spherical
towards lower redshifts, contrary to the triaxial shape of CDM halos. The
spherical “dark cooling flow” washes out the initial triaxiality of the halo and
makes the halo compact and spherical in the end. However, in the dSIDM
model with (𝜎/𝑚) = 10 cm2 g−1, the halo shape shows a response to the
more prominent coherent rotation of DM. Halos are initially on the track of
becoming more spherical, but later turn oblate in shape due to the halt of
spherical contraction and increased rotation support.

• As shown in Section 2.6, the energy transfer in dSIDM halos (with the degree
of dissipation 𝑓diss = 0.5) is dominated by dissipation rather than “thermal
conduction” (collisional energy transfer). When we vary 𝑓diss to ≲ 0.1,
collisional energy transfer becomes important and the density at small radii
(𝑟 ≲ 100 pc) is significantly enhanced (see Figure 2.15), which resembles
the gravothermal collapse of eSIDM halos. This gives the counterintuitive
prediction that a model with a lower degree of dissipation (but higher cross-
section to make the dissipation time scale invariant) can produce even denser
halos than models with higher degrees of dissipation.

• The density profiles in full physics simulations of CDM are more cored than
the ones in DMO simulations, caused by the inclusion of baryonic physics.
However, the DMO simulations of dSIDM models show little difference from
the full physics simulations (see Figure 2.17), likely due to the dominance
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of DM energy dissipation over perturbations from baryonic feedback. This
shows that the structural properties of dSIDM halos is insensitive to baryonic
physics in this regime and demonstrates the robustness of our results against
various uncertainties in the baryonic sector in simulations.

In this chapter, we present the first study of dwarf galaxies in dSIDM models using
cosmological hydrodynamical simulations. We find several observable signatures
of dSIDM models in dwarf galaxies and systematically study the evolution patterns
of dSIDM halos, which differs from canonical astrophysical systems. Analytical
explanations are provided to explain the phenomena found in simulations. The
findings in this chapter could serve as effective channels to constrain dSIDM models
when compared to observations. This aspect will be considered in follow-up work
in this series.
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C h a p t e r 3

DISSIPATIVE DM – OBSERVATIONAL CONSTRAINTS

Xuejian Shen, Philip F. Hopkins, Lina Necib, Fangzhou Jiang, Michael Boylan-
Kolchin, and Andrew Wetzel. Dissipative Dark Matter on FIRE: II. Observa-
tional signatures and constraints from local dwarf galaxies. arXiv e-prints, art.
arXiv:2206.05327, June 2022. doi: 10.48550/arXiv.2206.05327.

3.1 Abstract of the chapter
We analyze the first set of cosmological baryonic zoom-in simulations of galax-
ies in dSIDM introduced in the previous chapter. The simulations utilize the
FIRE-2 galaxy formation physics with the inclusion of dissipative dark matter self-
interactions modeled as a constant fractional energy dissipation ( 𝑓diss = 0.75). In
this chapter, we examine the properties of dwarf galaxies with 𝑀∗ ∼ 105 - 109 M⊙

in both isolation and within Milky Way-mass hosts. For isolated dwarfs, we
find more compact galaxy sizes and promotion of disk formation in dSIDM with
(𝜎/𝑚) ≤ 1 cm2 g−1, but they are still consistent with observed galaxy sizes and
masses. On the contrary, models with (𝜎/𝑚) = 10 cm2 g−1 produce puffier stellar
distributions that lie in the diffuse end of the observed size-mass relation. In addi-
tion, owing to the steeper central density profiles in dSIDM, the sub-kpc circular
velocities of isolated dwarfs when (𝜎/𝑚) ≥ 0.1 cm2 g−1 are enhanced by about a
factor of two, which are still consistent with the measured stellar velocity dispersions
of Local Group dwarfs but in tension with the HI rotation curves of more massive
field dwarfs. Meanwhile, for satellites of Milky Way-mass hosts, the median cir-
cular velocity profiles are marginally affected by dSIDM physics, but dSIDM may
help address the missing compact dwarf satellites in CDM. The number of satel-
lites is slightly enhanced in dSIDM, but the differences are small compared with
the large host-to-host variations. In conclusion, the dSIDM models with constant
cross-section (𝜎/𝑚) ≳ 0.1 cm2 g−1 (assuming 𝑓diss = 0.75) are in tension in bright
dwarfs (𝑀halo ∼ 1011 M⊙) due to circular velocity constraints. However, models
with lower effective cross-sections (at this halo mass/velocity scale) are still viable
and can produce non-trivial observable signatures.

In this chapter, we make predictions for various observed properties of galaxies
in dSIDM and compare them to the observed dwarf satellite galaxies in the Local
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Classical dwarfs

Figure 3.1: Visualizations of two simulated classical dwarfs. Each column cor-
responds to one DM model studied. The images are mock Hubble Space Telescope
composites of u,g,r bands with a logarithmic surface brightness stretch. We use the
STARBURST99 model to determine the SED of each stellar particle based on its
age and initial metallicity and use ray-tracing [4] to model dust attenuation assuming
a Milky Way-like reddening curve and a dust-to-metal ratio of 0.4. The side lengths
of the images are chosen to be 8 × 𝑟1/2 of the CDM run. The dSIDM models with
(𝜎/𝑚) = 1 cm2 g−1 and the velocity-dependent cross-section produce visibly more
concentrated stellar content compared to the CDM case (the effective cross-section
as defined in Shen et al. [5] of our velocity-dependent model in classical dwarfs is
about 0.3 cm2 g−1). However, the model with (𝜎/𝑚) = 10 cm2 g−1 produces overall
fluffier stellar distribution.

Group or LSBs in the field. The chapter will be organized as follows: In Section 3.2,
we briefly review the simulation setup and the DM models studied. In Section 3.3,
we present predictions for the stellar content of the simulated dwarfs, including
density profiles, size and mock optical images. Then in Section 3.4, the circular
velocity profiles of the simulated dwarfs (or satellites of Milky Way-mass hosts)
will be compared with their observational counterparts specifically. In Section 3.5,
the satellite counts of simulated Milky Way-mass hosts will be studied. Finally, in
Section 3.6, the summary and conclusions will be presented.

3.2 Simulations
Overview of the simulation suite
The analysis in this chapter is based on the FIRE-2 dSIDM simulation suite in-
troduced in Shen et al. [5], which consists of ∼ 40 cosmological hydrodynamical
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Bright dwarfs

Figure 3.2: Visualizations of three simulated bright dwarfs. The images are gen-
erated in the same way as those in Figure 3.1. Since some of the bright dwarfs develop
disk-like structures, we show both face-on and edge-on images here. Compared to
the CDM case, the stellar disks in the dSIDM model with (𝜎/𝑚) = 1 cm2 g−1 are
more well-defined and exhibit more concentrated central regions. On the other
hand, the velocity-dependent dSIDM model produces galaxies that are visibly sim-
ilar to the CDM case given its small effective cross-section at this mass scale
((𝜎eff/𝑚) ∼ 0.01 cm2 g−1). Interestingly, the model with (𝜎/𝑚) = 10 cm2 g−1 pro-
duces stellar disks accompanied by overall fluffier stellar distribution compared to
the model with (𝜎/𝑚) = 1 cm2 g−1 and CDM.
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Figure 3.3: Visualization of the gas content of three simulated bright dwarfs.
The images are logarithmically-weighted gas surface density projections. Each
column corresponds to one DM model studied and each row corresponds to one
bright dwarf simulated. For each dwarf, both the face-on and edge-on images are
shown. The side lengths of the images are chosen as 12 × 𝑟cdm

1/2 . Each image is a
composite of gas distribution in three phases characterized by the gas temperature.
The magenta color represents the “cold” neutral gas with 𝑇 ≲ 8000 K; the green
color represents the “warm” gas with 𝑇 ∼ 1 - 3 × 104 K; the red color represents the
“hot” ionized gas in the CGM with 𝑇 ≳ 105 K. The neutral gas disks are promoted
in the dSIDM-c1 and c10 models, even in m11a which is strongly perturbed by
supernovae feedback in CDM.
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zoom-in simulations of galaxies chosen at representative mass scales with CDM,
eSIDM, and dSIDM models. Below we will give a brief introduction of the sim-
ulations and refer the readers to Shen et al. [5] for more details. The simulations
are part of the Feedback In Realistic Environments project [FIRE, 229], specifi-
cally the “FIRE-2” version described in Hopkins et al. [25]. The simulations adopt
the code Gizmo [230], with gravity solved using the Tree-PM method [284] and
hydrodynamics solved using the mesh-free Lagrangian Godunov “MFM” method.
The FIRE galaxy formation physics and numerical parameters are identical to those
described in Hopkins et al. [25], Garrison-Kimmel et al. [231] 1. A full list of the
galaxies simulated and relevant parameters are shown in Table 2.1.

DM self-interactions are simulated in a Monte-Carlo fashion following the imple-
mentation in Rocha et al. [88]. A simplified, empirical dissipation model is em-
ployed: two interacting DM particles lose a constant fraction (the dissipation factor
𝑓diss) of their kinetic energy in the center-of-momentum frame when they collide with
each other. The extreme version of this type of interaction is the fusion process (i.e.
𝑓diss = 1) of DM composites discussed in the context of self-interacting asymmetric
DM [e.g., 99, 106, 236–238] and specifically the dark “nuggets” model [99, 106]. It
is worth noting that there are other particle physics models for dSIDM [e.g., 85, 96–
98, 101, 128, 243] with potentially different behaviors on cosmological scales that
are not captured by this simplified parameterization. However, it is a reasonable
starting point to study the phenomenology of dissipative DM in cosmic structural
formation.

The simulations employed a fiducial dissipation factor 𝑓diss = 0.75 and we explore
models with constant self-interaction cross-section2 (𝜎/𝑚) = 0.1, 1, 10 cm2 g−1

3,
or a velocity-dependent cross-section model

𝜎(𝑣)
𝑚

=
(𝜎/𝑚)0

1 + (𝑣/𝑣0)4 , (3.1)

where the fiducial choice is (𝜎/𝑚)0 = 10 cm2 g−1 and 𝑣0 = 10 km s−1. The velocity
dependence of the self-interaction cross-section is empirically motivated by the
relatively tight constraints on SIDM at galaxy cluster scale [e.g., 94, 159, 244]

1We note that the CDM runs are rerun to exactly match the configuration of dSIDM runs, so
galaxy properties are not expected to be “identical” to the original FIRE-2 results.

2The self-interaction cross-section is the total cross-section,
∫
(d𝜎/dΩ) dΩ, throughout this

chapter.
3The galaxy m11q does not have the (𝜎/𝑚) = 10 cm2 g−1 simulation since it stalls at fairly high

redshift due to formation of dense DM clumps (see Table 1 in Shen et al. [5]).
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and the relatively high cross-section needed to strongly influence some small-scale
galaxy properties [e.g., 87–90, 94]. The velocity dependence is also a generic feature
of many particle physics models for SIDM [e.g., 79, 83, 85, 86, 97, 98, 102, 104].
In this work, we assume scatterings to be isotropic. Angular dependence can arise
when the force mediator is light or massless [e.g., 79, 83, 102] but the effects are
limited for isolated halos [e.g. 285].

Given the choices of cross-section and dissipation factor, the typical collision and
energy dissipation time scale of DM will be smaller than the Hubble time scale
but still larger than the free-fall time scale (see Shen et al. [5] for details). In this
regime, the dissipative DM is weakly-collisional and weakly-dissipative compared
to the baryonic gas and will not fragment or form “compact” dark objects. In this
chapter, we will refer to the dSIDM model with constant cross-section (𝜎/𝑚) =

0.1, 1, 10 cm2 g−1 as “dSIDM-c0.1,1,10” for simplicity. For comparison, a subset
of the galaxies in the suite are also simulated with the eSIDM model with constant
cross-section (𝜎/𝑚) = 1 cm2 g−1.

Host halo and substructures
The simulations in this suite are all identified with the main “target” halo around
which the high-resolution zoom-in region is centered. The central position and
velocity of this main halo are defined by the center of mass (of DM particles)
and are calculated via an iterative zoom-in approach. However, specifically for
the measurements of stellar density profiles and galaxy visible sizes, we use stellar
particles for the center identification. The bulk properties of the halo and the galaxy
it hosts are calculated following the practice of the standard FIRE-2 simulations, as
described in Hopkins et al. [25]. We define the halo mass 𝑀halo and the halo virial
radius 𝑅vir using the redshift-dependent overdensity criterion in Bryan and Norman
[249]. We define the stellar mass 𝑀∗ as the total mass of all the stellar particles
within an aperture of 0.1 𝑅vir and correspondingly define the stellar half-mass radius
𝑟1/2 as the radius that encloses half of the total stellar mass.

To identify substructures in post-processing, we take two steps following Wet-
zel et al. [60], Garrison-Kimmel et al. [62], Necib et al. [286] and Samuel et al.
[287]. We first identify bound DM subhalos (of the main “target” halo) using the
Rockstar [233] halo finder, based only on DM particles. The force resolution
of Rockstar is conservatively set to be the same as the softening length of DM
particles in simulations. To exclude misidentified subhalos with a limited number
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of particles, we only keep subhalos with mass 𝑀200,𝑚 > 3×106 M⊙ 4 and maximum
circular velocity 𝑉max

circ > 5 km s−1 from the output Rockstar halo catalogs. In the
second step, stellar particles are assigned to the identified dark subhalos through an
iterative method [60, 62, 287, 288]. Initially, stellar particles are assigned to a DM
subhalo with a generous cut on their distances to the subhalo center (𝑟 ≤ 0.8𝑅200,𝑚

and 𝑟 ≤ 30 kpc) and velocities with respect to the subhalo center (𝑣 ≤ 2𝑉max
circ and

𝑣 ≤ 2𝜎3d
v,dm). Subsequently, stellar particles are iteratively removed if 𝑟 < 1.5 𝑟90,

where 𝑟90 is the radius than enclose 90% of the stellar mass currently associated to
the subhalo, or if 𝑣 < 2𝜎3d

v,∗, where 𝜎3d
v,∗ is the three-dimensional velocity dispersion

of stars currently associated to the subhalo, until the number of stellar particles
selected stabilizes at one percent level. Finally, we define 𝑀∗ of the subhalo as
the mass sum of all the stellar particles that remain assigned to each galaxy in this
way and correspondingly define 𝑟1/2 as the radius within which the enclosed mass
is 𝑀∗/2. The mass density profiles will be calculated in spherical shells centering
on each subhalo, using all relevant types of particles in those shells. The circular
velocity will be calculated based on the total mass enclosed by each shell.

3.3 Galaxy baryonic content
Galaxy morphology
In Figure 3.1 and Figure 3.2, we show mock images of simulated dwarf galaxies at
𝑧 = 0, grouped as classical and bright dwarfs. Each image is a mock Hubble Space
Telescope composite of u,g,r bands with a logarithmic stretch of the surface bright-
ness. We use the STARBURST99 model [289] to determine the spectral energy
distribution (SED) of each stellar particle based on its age and initial metallicity, and
use the ray-tracing method [4] to model dust attenuation, assuming a Milky Way-
like reddening curve and a dust-to-metal ratio of 0.4. For the classical dwarfs (m10
galaxies) in Figure 3.1, the dSIDM-c1 and the velocity-dependent model produce
visibly more concentrated stellar content than the CDM case. The contraction of the
stellar content is likely related to the contraction of the underlying DM distribution.
On the other hand, the dSIDM-c10 model produces fluffier stellar content in m10q.
This phenomenon is likely related to the lowered normalization of the central DM
density profile, and thus shallower gravitational potential, in this model as found and
described in in Shen et al. [5]. However, in the same model, the stellar content of
m10v is still compact, which demonstrates the large galaxy-to-galaxy variations of

4𝑀200,𝑚 and 𝑅200,𝑚 are defined for the subhalo with the density criterion 200 times the mean
matter density of the Universe at 𝑧 = 0 calculated by Rockstar. Note that this is different from the
virial mass definition of the main “target” halo, and is used only for selection purpose.
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Figure 3.4: Left column: Stellar density profiles of simulated classical dwarfs.
The density profiles from different DM models are presented as labeled. The short
vertical lines indicate the stellar-half-mass-radius of the galaxy in each model. The
m10q and m10v halos show different responses to DM dissipation. In m10q (top),
which forms its stars early, a cuspy stellar profile appears with moderate dSIDM
cross-sections accompanied by shrinking galaxy size, and then the profile turns
shallower when the cross-section further increases. In m10v (bottom), which forms
quite late, the profile becomes more concentrated monotonically as the cross-section
increases, and the decline of galaxy size is less dramatic. This is related to the distinct
star formation histories of the two galaxies as shown on the right. Right column:
Archaeological star formation history of simulated classical dwarfs. This is
computed as the age distribution of stellar particles within 10% 𝑅cdm

vir at 𝑧 = 0. The
galaxy m10q has an early star formation history peaked at 𝑧 ≃ 3. The stars have
more time to react to the underlying DM distribution. On the other hand, the galaxy
m10v with a relative late period of star formation does not exhibit this. The late
time star formation and feedback also puffs up the stellar content and make it less
dependent on the underlying DM distribution.
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Figure 3.5: Left column: Stellar density profiles of simulated bright dwarfs.
The notation is the same as Figure 3.4. In both m11a and m11b, the stellar density
profiles become cuspy in dSIDM models with moderate cross-sections while turning
shallower as we further increase the cross-section. This largely reflects similar
behavior seen in the DM density profiles in Shen et al. [5] – in particular, at very
high cross-sections the central DM profiles are flattened via dark rotation. Right
column: Archaeological star formation history of simulated bright dwarfs. The
notation is the same as Figure 3.4. The galaxy m11a has a relatively flat star
formation history and is not significantly affected by the DM physics. However, in
m11b, dips in star formation history at low redshifts appear in dSIDM models.

the star formation and corresponding DM and galaxy dynamics in classical dwarfs.
This variation mainly comes from the distinct star formation histories of the two
dwarfs. As will be shown in the following section (see also Hopkins et al. [25]),
m10q is an early-forming galaxy with half of its stellar mass formed at 𝑧 ≳ 4 while
m10v is late-forming with most of its stellar mass formed at 𝑧 ≲ 0.4, dominated by
a few starburst events within the recent 4 Gyr. Therefore, the early-formed stars in
m10q would have enough time to relax and respond to the change of the underlying
DM structure, while m10v is still strongly affected by its very recent star formation
and feedback. Similar phenomena are found in the stellar density profiles of the two
classical dwarfs presented in Figure 3.4, which will be discussed in Section 3.3.

For the bright dwarfs (m11 galaxies) in Figure 3.2, we show both face-on and edge-
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on images because stellar disks start to show up in some simulated galaxies. The
viewing angles are determined by the total angular momentum of the stellar particles
within half of the field of view. Compared to its CDM counterpart, the dSIDM-
c1 model gives rise to thinner and more well-defined stellar disks and meanwhile
more concentrated central cusps. This again is in line with the more concentrated
underlying DM distribution. The morphological transition is caused by the stronger
central attraction forces provided by the compact cusps formed in dSIDM halos. The
central dSIDM cusp provides a well-defined “center” of the galaxy for star-forming
gas to coherently rotate around and also stabilize the thin stellar disk formed. For
the velocity-dependent model, the compactness of the stellar content is close to the
CDM case because the effective cross-section (at the mass scale of bright dwarfs)
decreases to ∼ 0.01 cm2 g−1 which is much smaller than that in the classical dwarfs.
Nevertheless, the stellar distribution in this model is more extended and the on-going
star formation is also suppressed (see the lack of blue star-forming clouds in the
images). For the dSIDM-c10 model, stellar disks are produced but accompanied
by apparently fluffier stellar distributions, which is similar to what we described in
classical dwarfs.

An important feature of the bright dwarfs is the formation of co-rotating baryonic
structures, e.g. the stellar disks in some of the m11 galaxies, which is absent
in lower mass dwarfs. The larger halo mass and the presence of dense central
baryonic components make these galaxies more stable against the energy/momentum
injection from feedback, and therefore more able to sustain a rotationally supported
gaseous disk [e.g., 290, 291]. In observations, a highly-rotating subset of disky
dwarf galaxies (late-type) have been found in HI surveys at similar mass scale [e.g.,
8, 39, 41]. In Figure 3.3, we show the gas surface density projections of the
simulated dwarfs in the face-on and edge-on direction (determined by the angular
momentum of the gas). The images are composites of the gas surface density in three
phases, with the magenta/green/red color representing the “cold” neutral gas with
𝑇 ≲ 8000 K, the “warm” gas with 𝑇 ∼ 1 - 3 × 104 K and the “hot” ionized gas with
𝑇 ≳ 105 K, respectively. The cold neutral gas in these dwarf galaxies is confined
by the hot CGM gas, and star formation takes place in dense molecular clouds
embedded in the gas disks, and perturbations from subsequent stellar/supernovae
feedback manifest as “super bubbles” in the ISM. The feedback heats up the gas at the
shock front of “super bubbles” and creates a warm layer in the gas disk. Among all
three m11 galaxies simulated in CDM, only m11b develops a well-defined rotating
disk consists of cold neutral gas while the other two dwarfs are severely perturbed by
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feedback. However, in dSIDM-c1, all three dwarfs show signatures of a co-rotating
gaseous disk, with obvious diskness in the edge-on projection and spiral arms visible
in the face-on projection. Similar to what we found for the stellar disk, the compact
cusps of dSIDM halos provide stronger central attraction forces to stabilize and
promote the formation of thin gaseous disks. The role of modified gravitational
potential/acceleration on disk formation in dwarf galaxies will be studied in detail
in Hopkins et al. 2023 (in prep).

Stellar density profiles and star formation history
In Figure 3.4 and Figure 3.5, we show the stellar density profiles of simulated
classical and bright dwarfs, respectively. Each stellar density profile plot is paired
with the plot of the archaeological star formation history of the galaxy. The star
formation history is computed as the age distribution of stellar particles selected at
𝑟 ≤ 10% 𝑅cdm

vir at 𝑧 = 0. In both classical and bright dwarfs, dSIDM with moderate
cross-sections give rise to central stellar density profiles that are cuspier than the
NFW profile and the galaxy stellar-half-mass-radii decrease correspondingly. These
phenomena are likely caused by the more concentrated DM content in these dSIDM
models. Similarly, the stellar profiles in eSIDM are cored due to the gravitational
impact of thermalized DM cores. In the dSIDM-c10 model, the stellar distribution
becomes cored and more extended, which is also related the decreased normalization
of DM density profiles in this model. Specifically, in Shen et al. [5], coherent
rotation of DM was found in the highly-dissipative models (including dSIDM-
c10) and we showed that this drives halo deformation to oblate shapes. This
combination of rotational support and change in shape actually leads to a decline in
the central spherically-measured DM density, which we see here is reflected in the
stellar distribution. In general, the compactness of the DM distribution appears to
strongly influence the stellar density profile of dwarf galaxies. The star formation
efficiency is regulated by the competition between feedback-driven ejection versus
the gravitational attraction from DM [e.g., 292]. In equilibrium states (or after
numerous cycles of star formation events), star formation is promoted (inhibited)
in compact (diffuse) DM halos. Stars formed before their DM halo is structurally
modified (e.g. before a dark disk structure or a strong cusp owing to dissipation
can form) can still relax with respect to the modified halo potential within a few
dynamical time scales. One galaxy in this suite that deviates from the picture above
is the classical dwarf m10v. In all DM models for this particular galaxy, cored stellar
density profiles are developed at the galaxy center, while the central stellar density
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Figure 3.6: Size-mass relation of simulated (isolated) dwarf galaxies. The stellar
half-mass radius versus stellar masses of simulated dwarfs are shown with open
markers (as labeled). We compare them with several observations of dwarf galaxies
in the Local Universe: gray points with error bars, the Local Group dSphs compiled
in McConnachie [6]; blue contours, the NGFS dwarfs in Eigenthaler et al. [7]; green
contours, the SPARC galaxies presented in Lelli et al. [8, 9]; red contours, the
UDGs in the Coma and Virgo cluster from van Dokkum et al. [10] and Mihos et al.
[11]; purple (red) line, the size-mass relation of the observed “normal” late-type
(early-type) galaxies [12, 13]. The simulated dwarfs are consistent with the median
size-mass relation of LTGs in observations and its extrapolation. With mild DM
self-interaction ( (𝜎/𝑚) ≲ 1 cm2 g−1), the sizes and masses of galaxies, in general,
do not vary much from the CDM case. In some cases, the dSIDM models can
produce compact dwarfs at 𝑀∗ ∼ 106 M⊙, in better agreement with Local Group
observations. However, in the dSIDM-c10 model, dwarf galaxies have apparently
more extended stellar content and are located at the diffuse end of the observed
distribution.
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increases monotonously with dSIDM cross-section. The unique stellar content of
m10v could be a result of its distinct star formation history (bottom right panel
of Figure 3.4), which is dominated by several recent (very low-redshift) starburst
events. The system has therefore not yet relaxed from the perturbations of the recent
star formation and feedback.

In terms of the star formation history, as shown in Figure 3.4, m10q is clearly an
early-forming dwarf with most of the star formation taking place at 𝑧 ≳ 2 and a tail
extended to 𝑧 ∼ 0.7. In dSIDM models with increasing effective cross-sections,
this tail of star formation ceases earlier which is likely due to the faster depletion
of star-forming gas in the more compact dSIDM halos. In m10v, despite drastically
different star formation history from m10q, the recent period of star formation also
takes place earlier in dSIDM runs. On the other hand, for the bright dwarfs shown
in Figure 3.5, we do not see an apparent shift in the halt/onset of star formation. The
star formation histories in these dwarfs are continuous but fairly bursty in all the
models. In m11a, the star formation histories in different DM models do not exhibit
significant differences. However, the star formation history of m11b shows apparent
dips at low redshifts (𝑧 ≲ 0.5) in dSIDM models, which never occur in CDM or
eSIDM runs. This again could be related to the faster depletion of star-forming gas
in deeper gravitational potentials of dSIDM halos.

Galaxy size-mass relation
In Figure 3.6, we compare the stellar-half-mass radii (as a function of stellar mass) of
simulated dwarf galaxies (isolated ones only, do not include satellites of Milky Way-
mass hosts) with observations of dwarf galaxies in the local Universe. These obser-
vations include the Local Group dwarf spheroidal galaxies (dSphs) compiled in Mc-
Connachie [6], dwarf galaxies from the Next Generation Fornax Survey [NGFS, 7],
galaxies measured in the Spitzer Photometry and Accurate Rotation Curves [SPARC,
8, 9] project, and the ultra-diffuse galaxies (UDGs) in the Coma and Virgo cluster
from van Dokkum et al. [10] and Mihos et al. [11]. The quoted effective radius
(half-light radius) in literature has been converted to the half-mass radius assuming
𝑟1/2 ≃ 4/3 𝑅eff [293]. The purple solid line shows the galaxy size-mass relation of
“normal” late-type galaxies [LTGs; 12] and its extrapolation (purple dashed line)
while the red solid line shows that of early-type galaxies [ETGs; 13].

In general, despite some random galaxy-to-galaxy variations, the simulated dwarfs
agree well with the observed dwarf population in the Local Universe and follow the
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extrapolated size-mass relation of LTGs. The diversity of dwarfs is manifest as the
distinction between LTGs and ETGs in massive sub-Milky Way-mass galaxies, the
existence of UDGS, and the large scatter in galaxy size at 𝑀∗ ∼ 108 M⊙ as well
as the population of compact Local Group dwarfs that fall significantly lower than
the median relation. With mild DM self-interaction ( (𝜎/𝑚) ≲ 1 cm2 g−1), galaxy
sizes and masses in dSIDM or eSIDM do not vary much from the CDM case. This
is consistent with previous FIRE-2 studies of dwarf galaxies in eSIDM [113, 115].
Some compact dwarfs at 𝑀∗ ≲ 107 M⊙ are found in dSIDM models, which are in
better agreement with the observed compact dwarfs in the Local Group. However,
the compact dwarf elliptical galaxies with large stellar masses (𝑀∗ ≳ 107 M⊙) in
the Local Group [e.g., 52, 62] are still hard to produce in these isolated dwarf
simulations, no matter which DM model is employed. This point will be revisited
when we study the satellite galaxies of simulated Milky Way-mass hosts. Notably
in the dSIDM-c10 model, simulated dwarfs exhibit systematically more extended
stellar content and shift from the median relation. In this model, the bright dwarfs
become more like analogs to UDGs, and the classical dwarfs are located at the
diffuse end of the observed distribution. The dSIDM-c10 model is therefore perhaps
disfavored due to this systematic shift. However, we caution that, as many of
the observational studies above have noted, there could well exist a substantial
population of even-lower-surface-brightness galaxies in nature which would simply
not be detected given the present state-of-the-art surface brightness limits [see 294].
The number of dwarfs in the simulation suite is too limited to tell if dSIDM with
lower cross-sections are ruled out or are more consistent with the observed sample
(in terms of the diversity of the stellar content).

3.4 Galaxy circular velocity profiles
In this section, we will compare the circular velocity profiles of the simulated dwarfs
with observations and attempt to derive constraints for dSIDM. First, we will analyze
the isolated dwarfs (main “target” halos in simulations). The ideal observational
counterparts for the simulated classical dwarfs (m10 galaxies, see Table 2.1) are the
observed field dwarfs in the Local Group (with distances to the Milky Way and M31
𝑑 > 300 kpc). These field dwarfs typically have sub-kpc 𝑟1/2 and 𝑀∗ ≲ 107 M⊙,
which are comparable to the m10 galaxies. The observational counterparts for the
simulated bright dwarfs (m11 galaxies) are the LSBs in the Local Universe, usually
with 𝑟1/2 of several kpc and 107 M⊙ ≲ 𝑀∗ ≲ 109 M⊙. In addition to the isolated
dwarfs, we will analyze the subhalos (and the satellite galaxies they host) of the
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Figure 3.7: Circular velocity profiles of simulated classical dwarfs compared
with the observed field dwarfs in the Local Group. Top left: Circular velocity
profiles of the simulated dwarfs in different DM models. The circular velocities
are enhanced at the sub-kpc scale in dSIDM models. In the model with (𝜎/𝑚) =
10 cm2 g−1, the normalization of the circular velocity profile decreases. Top right:
We compare the results in CDM and dSIDM models with (𝜎/𝑚) = 0.1/1 cm2 g−1

with the observed field dwarfs in the Local Group (we show two measurements for
Tucana, connected by gray line; see text for details). The 𝑟1/2 of these galaxies
are shown by solid circles. We highlight the observed dwarfs of similar sizes to
the simulated one (0.2 kpc ≲ 𝑟1/2 ≲ 0.9 kpc) with the purple shaded region. The
CDM results are consistent with the majority of the observed dwarfs, but lower
compared to the most compact dwarfs (NGC6822 and the older measurement of
Tucana). The

(
𝑉circ(𝑟1/2), 𝑟1/2

)
of these two dSIDM models are still marginally

consistent with the observed dwarfs of similar sizes and improve the agreement for
compact dwarfs. The circular velocities in the dSIDM models are about two times
higher than the observed ones at small radii 𝑟 ≲ 0.2 kpc. Bottom left: We show the
results of the velocity-dependent dSIDM model and compare them to the observed
dwarfs with 0.1 kpc ≲ 𝑟1/2 ≲ 1.2 kpc. Bottom right: We show the results of the
model with (𝜎/𝑚) = 10 cm2 g−1 and compare them to the observed dwarfs with
0.7 kpc ≲ 𝑟1/2 ≲ 1.5 kpc. The results from these two models are also consistent
with observations.



70

0.2 0.5 1 2 5 10 20
r [kpc]

5

10

20

40

80

V
ci

rc
[k

m
/s

]

CDM

dSIDM (v dep. )
dSIDM (0.1 cm2/g)
dSIDM (1 cm2/g)
dSIDM (10 cm2/g)

0.2 0.5 1 2 5 10 20
r [kpc]

5

10

20

40

80

V
ci

rc
[k

m
/s

]

m11a

SPARC

LITTLE THINGS

0.2 0.5 1 2 5 10 20
r [kpc]

5

10

20

40

80

V
ci

rc
[k

m
/s

]

m11b

0.2 0.5 1 2 5 10 20
r [kpc]

5

10

20

40

80

V
ci

rc
[k

m
/s

]

m11q

Figure 3.8: Circular velocity profiles of simulated bright dwarfs compared
with observed LSBs in the Local Universe. Right: Circular velocity profiles
of the bright dwarf galaxies in simulations. We compare the results with the
measured circular velocities of LSBs observed in the field (see Section 3.4 for
details of the observed sample and selection criteria). Models with constant 𝜎/𝑚
that are consistent with in the classical dwarfs (with low 𝑉c) generally produce too
concentrated galaxies at high𝑉c, but the velocity-dependent model is consistent over
the entire range we consider here.

simulated Milky Way-mass hosts (m12 galaxies) and compare them to the observed
satellites of the Milky Way and M31.

Observational samples
For satellite galaxies, we adopt the Milky Way and M31 satellites compiled in
Garrison-Kimmel et al. [62], which was updated based on the McConnachie [6]
compilation. These dwarf galaxies were classified as satellites with their distances
to the Milky Way or M31 smaller than 300 kpc (following the criterion adopted in
Wetzel et al. [60] and Garrison-Kimmel et al. [62]). For the Milky Way satellites, the
dSphs presented in Wolf et al. [293] were included and the implied circular velocity at
the three-dimensional (de-projected) half-mass radius, 𝑉1/2 = 𝑉circ(𝑟1/2), has been
calculated using their formula based on the average velocity dispersion of stars.
In addition, the HI-based circular velocity measurement of the Small Magellanic
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Cloud (SMC) from Stanimirović et al. [295] and the proper motion-based circular
velocity measurement of the Large Magellanic Cloud (LMC) from van der Marel and
Kallivayalil [296] was included. For the satellites of M31, the compilation included
the 𝑟1/2 and𝑉1/2 measurements from Tollerud et al. [52]. For the dwarfs in the Local
Field (with distances to hosts larger than 300 kpc), the compilation included the 𝑟1/2,
𝑉1/2 and 𝜎𝑣,∗ from Kirby et al. [54] where possible, though with modifications to the
three galaxies with evidence of rotation [53]. A recent measurement [297] on the
field dwarf “Tucana” obtained a much lower dynamical mass of the system than the
previous measurements [298, 299], so we update the compilation correspondingly.

For the LSBs, we adopt the HI rotation curves and mass models from the “Local Ir-
regulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey” [LITTLE
THINGS, 41]. The mass modeling results in Oh et al. [41] showed that the selected
galaxies have a typical halo mass of ∼ 1010−11 M⊙ and stellar mass of ∼ 107−9 M⊙,
which are in good agreement with the simulated bright dwarfs. In addition, we
include the HI/H𝛼 rotation curves and mass models from the “Spitzer Photometry
and Accurate Rotation Curves” [SPARC, 8] project. Given the limited statistics pro-
vided by only three simulated bright dwarfs, we will do a case-by-case comparison
by selecting observed galaxies based on their maximum circular velocities, effective
radii, and inferred stellar masses.

Circular velocity profiles of isolated dwarfs
In the top left panel of Figure 3.7, we show the circular velocity profiles of the
simulated classical dwarfs in different DM models. In general, the circular velocities
at 𝑟 ≲ 1 kpc increase in dSIDM models with 0.1 cm2 g−1 ≲ (𝜎/𝑚)eff ≲ 1 cm2 g−1

5

and the circular velocity profiles are almost flat at the center. For example, the
circular velocities at 𝑟 ≃ 0.2 kpc are enhanced by about a factor of two in the
dSIDM-c1 model compared to the CDM case. This is a direct consequence of
the cuspy central density profiles in dSIDM models, as detailed in Shen et al. [5].
In the dSIDM-c10 model, circular velocity profiles have similar flat shapes but
with systematically lower normalizations than the dSIDM-c1 model, which is likely
related to the coherent rotation and halo deformation in the strong dissipation limit.

In the other three panels of Figure 3.7, we show specifically the (𝑉1/2, 𝑟1/2) of
the simulated dwarfs and compare them to the circular velocities of 10 observed
Local Group field dwarfs (compiled in Section 3.4). For Tucana, both the recent

5At the mass scale of classical dwarfs, the effective cross-section (𝜎/𝑚)eff is about 0.3 cm2 g−1,
where (𝜎/𝑚)eff follows the definition in Shen et al. [5].
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measurement [297], which attempts to subtract a potential correction (still somewhat
uncertain) for unresolved stellar binaries and an older measurement [298] without
such a correction are shown and linked by a gray dashed line in the figure. The
circular velocity profiles in CDM are consistent with the bulk of the observed dwarfs,
except two dense outliers (Tucana, if we take the older measurement and NGC6822)
with 𝑉1/2 ∼ 30 - 40 km s−1. The dSIDM-c0.1 and dSIDM-c1 models are marginally
consistent with observations: the 𝑉1/2 of some simulated dwarfs are slightly higher
than the observed dwarfs of similar 𝑟1/2 except for NGC6822 (if we adopt the new
measurement of Tucana) but the differences at this level are not enough to rule out
these models given the limited statistics. For the velocity-dependent dSIDM model,
the simulated dwarfs are consistent with the relatively compact observed dwarfs but
may be in tension with the six diffuse ones. Again the limited statistics prevent us
from drawing any conclusions about the model. For the dSIDM-c10 model, although
the circular velocities at small radii appear higher than the observed ones, the 𝑉1/2

are still consistent with the observed dwarfs with comparable sizes. The potential
problem with this model is that the stellar content of all simulated dwarfs is relatively
diffuse, and the range of galaxy stellar effective radii may not be diverse enough
to match observations. We also note that there is one observed galaxy (NGC6822,
or two if the older Tucana measurement is used) lying above the circular velocity
profiles of any simulated galaxies regardless of the DM model employed. Even the
model with the highest degree of dissipation used here cannot produce analogs of
these compact systems. If the discrepancy is real (not the result of e.g. unresolved
binaries or other sources of dispersion), the physical origin of these systems in the
field is still a challenge to existing cosmological simulations [e.g., 60–62, 108, 109].

In the top left panel of Figure 3.8, we show the circular velocity profiles of the
simulated bright dwarf galaxies in different DM models. Circular velocities in the
dSIDM-c0.1 and dSIDM-c1 models are enhanced to about 30 − 40 km s−1 at 𝑟 ≲
1 kpc. The circular velocity profiles in the dSIDM-c10 model have similar shapes
but lower normalizations. Those in the velocity-dependent dSIDM model are almost
indistinguishable from the CDM case, due to the limited effective cross-sections in
the bright dwarfs. In the other three panels, we compare the circular velocity profiles
of each simulated dwarf with the HI-based measurements from the LITTLE THINGS
survey [41] and the SPARC survey [8] as introduced in Section 3.4. For m11a, we
select observed galaxies with maximum circular velocities 40 km s−1 ≲ 𝑉max

circ ≲

60 km s−1 and, for m11b, we select observed galaxies with 50 km s−1 ≲ 𝑉max
circ ≲

70 km s−1. In addition, for both galaxies, we require the observed sample to have
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Figure 3.9: Circular velocity profiles of satellite galaxies of simulated Milky
Way-mass galaxies and compared with observations. The circular velocity pro-
files in each DM model are shown in each column respectively. The solid lines and
the shaded regions show the median and the 1.5𝜎 scatter (86% of the sample) of
the curves. The dashed lines highlight the three circular velocity profiles with the
highest (and the three with the lowest) circular velocities at 𝑟 = 1 kpc. Gray circles
with error bars show the (𝑉1/2, 𝑟1/2) of observed Milky Way and M31 satellites
compiled in Section 3.4. The 𝑟1/2’s of simulated satellites are marked by solid
circles. The identified subhalos in simulations are selected as satellites if they have
galactocentric distance 20 kpc < 𝑑 < 300 kpc, and with at least 200 DM particles
and 10 associated stellar particles (equivalently𝑀∗ ≥ 10𝑚b). The selected satellites
are in the mass range 𝑀∗ ∼ 105 - 108 M⊙, in concordance with the observed sam-
ple. The circular velocity profiles in different models are almost indistinguishable
compared to the scatter among the observed satellites, despite the slightly larger
median rotation velocities and upper scatter in the dSIDM-c0.1 model. Circular
velocity profiles from all three models are consistent with the bulk of the observed
dwarfs, although the predicted galaxy sizes are systematically larger. The smallest
𝑟1/2 reached in the two dSIDM models is smaller than the CDM case, down to
about ∼ 500 pc. As indicated by the dashed lines, the most compact satellites in
the dSIDM-c0.1 model agree better with the observed compact dwarfs in the Local
Group, though the stellar content is still puffier compared to observations.

0.5 kpc ≲ 𝑟1/2 ≲ 3 kpc and 107 M⊙ ≲ 𝑀∗ ≲ 108.5 M⊙. From these comparisons,
we find that the CDM and the velocity-dependent dSIDM model are fully consistent
with observations at these mass scales. However, the circular velocities in the
dSIDM-c0.1 and dSIDM-c1 models are about two times higher than the observed
values at the sub-kpc scale, and the discrepancy appears to be larger than both the
observational uncertainties as well as the galaxy-to-galaxy scatter.

For the massive dwarf m11q, we select observed galaxies with 60 km s−1 ≲ 𝑉max
circ ≲

80 km s−1, 1 kpc ≲ 𝑟1/2 ≲ 5 kpc and 108 M⊙ ≲ 𝑀∗ ≲ 109 M⊙. The CDM and the
velocity-dependent dSIDM models are again consistent with the median circular
velocity profiles of the observed dwarfs. However, due to the prominent diversity
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of the observed circular velocity profiles at the mass scale, the dSIDM-c0.1 and
dSIDM-c1 models are still marginally consistent with observations.

In conclusion, the comparisons of the three bright dwarfs with observations appear to
disfavor both the constant cross-section dSIDM models with (𝜎/𝑚) ≳ 0.1 cm2 g−1.
However, a velocity-dependent model is still viable to produce unique phenomena
in lower mass dwarfs while maintaining consistency with the HI-based observations
of bright dwarfs.

One important caveat we note is that the measurements here all adopt HI as the
kinematic tracer of the gravitational potential. This certainly involves an additional
layer of uncertainties in fitting the HI velocity field and asymmetric drift corrections.
In addition, the galaxies selected in the observational sample all are chosen to
exhibit cold dense gas disks. Most galaxies so selected are morphologically spiral
or irregular galaxies, and the observed samples by construction will miss elliptical or
spheroidal dwarf galaxies lacking a dense HI disk, which some authors have argued
may be more compact than the late-type disk galaxies of similar stellar masses [e.g.,
7, 13]. This could potentially bias the comparison here and naively might loosen the
constraints on dSIDM models. However, as shown in Figure 3.3, disk-like structures
of cold neutral gas are indeed prominent in m11a and m11b and are promoted in
dSIDM models. Therefore, compared to the CDM case, galaxies in dSIDM models
would be more likely to appear in HI-selected samples in observations but actually
match less well with the measured circular velocity profiles of those samples.

Circular velocity profiles of satellites of Milky Way-mass hosts
The comparisons above focus on isolated systems to avoid contamination with
environmental effects, but the derived constraints are subjected to galaxy-to-galaxy
statistical variations given the limited number of isolated dwarfs in the simulation
suite. An alternative way to constrain the dSIDM models is to compare satellite
galaxies of more massive hosts to improve the statistics. For this purpose, we analyze
the three low-resolution runs of Milky Way-mass hosts (m12i, m12m, and m12f)
and a high-resolution run for m12i (details listed in Table 2.1). Their subhalos (as
well as the associated stellar content) are identified with the procedure introduced
in Section 3.2.

In Figure 3.9, we show the circular velocity profiles of satellite galaxies of simulated
Milky Way-mass galaxies (the median curve, the 1.5𝜎 scatter and the three satellites
with the maximum/minimum rotation velocities at 𝑟 = 1 kpc) and compare them
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Figure 3.10: Size-mass relation of satellite galaxies. We show the stellar-half-mass-radius versus
the stellar mass of satellites of the simulated Milky Way-mass host(s). Only the high-resolution runs
are considered here. The satellites from simulations follow the same selection criteria as in Figure 3.9.
The solid points show satellite sizes corrected for the surface brightness limit in observations. The
black dotted lines indicate the surface brightness limit 30 m𝑎𝑔 arcsec−2 for the SDSS surveys and the
limit with an order of magnitude increasing sensitivity. For reference, the Local Group dwarfs [6]
are shown by gray points and the NGFS dwarfs [7] are shown by the gray shaded contours. The
purple dashed line is the extrapolation of the size-mass relation of local late-type galaxies [12]. The
left shaded region indicates the mass resolution limit of the simulated satellites. The horizontal
cyan dashed line indicates radius limit where the enclosed DM particle number is ≤ 200 for a
typical satellite central density 𝜌dm ≃ 107.5 M⊙ kpc−3. The markers encircled highlight the three
most compact dwarfs (with the highest rotation velocities at 𝑟 = 0.5 kpc) in each run. A significant
population of low-mass satellites in simulations are not detectable in current observations. For
those in the observed regime, no obvious difference is found between CDM and dSIDM models.
Massive satellites in dSIDM models are slightly more compact than their CDM counterparts, but
they are still systematically puffier than the observed ones. In all the models, the satellites with
the most compact DM content (highest circular velocities identfied in Figure 3.9) also have the
most compact stellar content. However, despite similar stellar masses, they have about three times
larger 𝑟1/2 than the observed compact dwarf elliptical galaxies. For reference, the (𝑟1/2, 𝑀∗)’s of
simulated classical dwarfs (isolated systems) are shown as open stars. With an order-of-magnitude
better mass resolution, the isolated dwarfs have slightly more compact stellar content that is in better
agreement with the observed samples. This hints the resolution-dependent uncertainties, which will
be discussed in Appendix 3.7.
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with the observed satellites of the Milky Way and M31 compiled in Garrison-
Kimmel et al. [62] as introduced in Section 3.4. For simulations, the identified
subhalos are classified as “satellites” if their distance from the center of the Milky
Way or M31-analog is 20 kpc ≤ 𝑑 ≤ 300 kpc. We only keep satellites with DM
particle number 𝑁dm ≥ 200 and associated stellar particle number 𝑁∗ ≥ 10, which
roughly corresponds to a stellar-mass cut of 𝑀∗ ≥ 7 × 104 (5.6 × 105) M⊙ for
high-(low-)resolution simulations. For reference, the minimum stellar mass of the
observed sample we select is 7.3 × 104 M⊙ (3 × 105 M⊙) for M31 (Milky Way). As
shown in Figure 3.9, circular velocities in dSIDM models are slightly higher than
their CDM counterparts (both the median and upper scatter), but the differences are
subdominant compared to the intrinsic scatter of the observed satellites. Despite
the fact that the circular velocity profiles in all the models are consistent with the
majority of the observed dwarfs, the stellar-half-mass radii are systematically larger
than the observed values. This will be discussed in more detail in the comparison
of the size-mass relation below. In addition, the CDM and the velocity-dependent
dSIDM model fail to produce the most compact dwarf with 𝑟1/2 ≲ 1 kpc and
𝑉1/2 ∼ 40 km s−1, which are typically elliptical or irregular galaxies in the M31
subgroup with stellar masses ≳ 108 M⊙. However, the dSIDM-c0.1 model gives a
larger scatter in the rotation velocities at the sub-kpc scale and can produce analogs of
those galaxies. But we need to note that the presence of compact satellite analogs in
the dSIDM run (while not in CDM) needs further validation with improved statistics
of the host systems simulated (at this point, it is difficult to say how significant the
result is). It is worth mentioning that the difference is smaller compared to isolated
halos. This could be caused by various heating from environmental effects, e.g.
evaporation and tidal heating balancing the cooling of DM and suppressing cusp
formation [e.g. 300].

The typical mass and size of the satellites studied here are similar to the isolated
classical dwarfs studied in Section 3.4. However, the differences between DM
models found in these satellites are smaller than what we found for field dwarfs.
First, this could be related to additional factors that affect galaxy structure in a group
environment, such as dynamical friction, tidal and ram pressure stripping [e.g.,
301–306]. But a more plausible explanation would be resolution effects. The
Milky Way-mass host simulations are about 30 times poorer in mass resolution
(i.e. 𝑚b = 7000 M⊙ for m12i versus 250 M⊙ for m10q) than the isolated dwarf
simulations. Since the impact of dSIDM typically shows up at very small radii
𝑟 ≲ 500 pc, this could be challenging to resolve in 𝑚b = 7000 M⊙ runs (see the
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convergence plots of m10q and m10v in Hopkins et al. 25).

In Figure 3.10, we show the size-mass relation for selected satellite galaxies from
simulations and compare them to observations. The Local Group dSphs and the
NGFS dwarfs compiled for Figure 3.6 are shown here again for reference. The
galaxy size measurements are often affected by the surface brightness detection
limit in observations. Following Wheeler et al. [294], this is estimated to be
𝜇V = 30 mag arcsec−2 for SDSS, which corresponds to a physical stellar surface
density limit Σlim

∗ = 0.036 M⊙ pc−2 assuming solar absolute magnitude𝑀⊙,V = 4.83
and a stellar mass-to-light ratio of 𝑀∗/𝐿 ≃ 1𝑀⊙/𝐿⊙. The limit is indicated with
the black dotted line in Figure 3.10 when Σ1/2 ≡ 𝑀∗/𝜋 𝑟2

1/2 = Σlim
∗ . We also

show the surface density limit with an order of magnitude increasing sensitivity at
𝜇V = 32.5 mag arcsec−2 for future surveys. In simulations, a significant population
of low-mass satellites has surface brightness close to or below the observational
detection limit, the majority of which will not be detected in current surveys. Even
the bright ones are potentially affected by the surface brightness cut in size/mass
measurements. To correct for this effect, we measure the stellar surface density
profile and truncate it where the average enclosed stellar surface density drop below
Σlim
∗ . The stellar mass is then corrected to the enclosed stellar mass within the

cut-off radius and the 𝑟1/2 is also corrected correspondingly. If the stellar surface
density of the satellite is too low to identify the cut-off radius, the satellite is removed
from the sample. After this correction, most of the satellites eventually reside in
the detectable region on the size-mass plane. However, compared to the observed
satellites, they are systematically more diffuse which is consistent with what we
found in Figure 3.9. No obvious difference between DM models is found, despite
the fact that satellites at the massive end in the dSIDM-c0.1 model are more compact
than the CDM counterparts. It is usually the satellites with the most compact DM
content (highest circular velocities at the sub-kpc scale) that also exhibit the most
compact stellar content. In Figure 3.9, we found that the most compact satellites
in the dSIDM-c0.1 model are better counterparts to the observed compact dwarf
elliptical galaxies in the Local Group, in terms of their circular velocities. However,
in the size-mass plane, it is clear that these satellites found in simulations still
do not have compact enough stellar content to match the most compact observed
systems. This discrepancy could owe to observational effects (e.g. selection effects
making it much easier to identify high-surface-brightness objects or the fact that
observations often use the light-weighted, Sersic-estimated profiles rather than the
mass-weighted 𝑟1/2 we measure here), or to the fact that some “satellites” may
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Figure 3.11: Satellite stellar mass function. The satellite stellar mass functions
of different DM models are shown in solid lines with different colors (as labeled).
The purple and orange dashed lines show the satellite stellar mass functions of the
Milky Way and M31, respectively. The gray dashed lines with shaded regions show
mass function of Milky Way-like systems in the SAGA survey with 1𝜎 scatter.
Each panel corresponds to one simulated Milky Way-mass galaxy in the suite. The
vertical dotted line indicates the resolution limits of satellite stellar mass (set as 10
times the baryonic mass resolution of the simulation). Strong diversity shows up in
the stellar mass function of both observed satellites and the satellites of simulated
galaxies. The counts of satellites get enhanced slightly in the dSIDM models, but
the differences are still too small compared to the observed scatter to effectively rule
out any of the models studied.

have their light profiles dominated by a single, massive/compact star cluster (or even
themselves be a star cluster entirely rather than a true dwarf galaxy) as shown in some
very high-resolution simulations in Ma et al. [307]. Exploring these possibilities
will require more detailed forward modeling in future work. Similar to the point
we made above about the circular velocity profiles of satellites, we caution that this
discrepancy could also be a resolution effect. Specifically, with about an order-of-
magnitude better mass resolution, the simulated isolate dwarfs at a similar mass
scale are in better agreement with the observed samples. The potential resolution
effects will be discussed in detail in Appendix 3.7.
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3.5 Satellite counts
In addition to the internal structure of satellites, the number counts of satellites
could also serve as a channel to constrain alternative DM models. For example,
the most well-known small-scale issue is the “missing satellite” (MS) problem
[46, 308], which states that the DM subhalos around Milky Way-mass hosts in DMO
simulations outnumber the observed satellites in the actual Milky Way. The problem
has been alleviated by the growing number of observed satellites in the Local Group
and more realistic modeling of the baryonic physics in CDM simulations [e.g.,
60, 62, 287]. In some cases, the observed satellite statistics and distribution can be
used to constrain alternative DM theories. For example, Nadler et al. [309] used
observational data from the Dark Energy Survey and Pan-STARRS1 to constrain
several alternative DM models that suppress the linear matter power spectrum at
small scales. Specifically for SIDM, the properties of satellites can be changed in
non-trivial ways. Thermalized cores generated by elastic SIDM can make satellites
prone to tidal stripping. Ram pressure stripping resulting from self-interactions
between satellite and host halo particles can drive material out of subhalos. The
relative importance of ram pressure stripping can also vary as cross-section has
velocity dependence. For instance, in Banerjee et al. [310], Nadler et al. [311],
the evolution of satellite pre- and post-infall have been systematically studied for
the elastic SIDM models with various velocity-dependence. Different types of
SIDM can also give rise to very different satellite responses. In Vogelsberger et al.
[136], they studied a multi-state SIDM model featuring inelastic (mainly exothermic)
interactions and found that this type of interaction suppresses the abundance of
substructures in Milky Way-mass halos considerably. In Fischer et al. [312], they
studied highly anisotropic DM self-interactions with large scattering rates but low
momentum transfer efficiency per scattering. They found larger suppression of
satellite abundance in this model compared to the isotropic model. Satellite statistics
and evolution in dSIDM have not yet been studied in previous works. In the regime
where 𝑡diss ≪ 𝑡h, dark cusps can develop in dwarf galaxies prior to infall, making
them more sustainable against tidal stripping and having higher chances to penetrate
deeper in the host halo.

In Figure 3.11, we show the satellite stellar mass functions from simulated Milky
Way-mass galaxies and compare them to the observed mass functions of the Milky
Way, M31 and 36 Milky Way-like systems from the Exploring Satellites Around
Galactic Analogs [SAGA, 313, 314] Survey Stage II 6. Each panel corresponds to

6We acknowledge potential inconsistency in the selection criteria used between satellites in
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one of the simulations of Milky Way-mass galaxies. Following the convention in the
previous section, we only select satellites with a stellar mass larger than 10 times the
baryonic mass resolution of the simulations. This limit is indicated by the vertical
dotted lines. For the observations, the Milky Way and M31 satellites extend to stellar
mass below 105 M⊙. All 36 complete systems in SAGA reach 100% spectroscopic
coverage within the primary targeting region for galaxies brighter than 𝑀r = −15.5.
For galaxies fainter than 𝑀r = −15.5, the survey maintains a ∼ 90% spectroscopic
coverage down to𝑀r = −12.3, with completeness slightly decreasing towards fainter
magnitudes. Using the color-dependent stellar mass estimates in Mao et al. [314]
[modified based on 315], the limit 𝑀r = −12.3 can be translated to the stellar mass
of 𝑀∗ ∼ 106.4−7 assuming the typical color 0.2 ≲ (𝑔 − 𝑟)0 ≲ 0.7 of the confirmed
satellites. This forms an estimate of the completeness limit of the SAGA surveys.
The satellite mass function of simulated galaxies shows significant diversity, with
m12m and m12i (h.r.) hosting ∼ 10 satellites with 𝑀∗ ≳ 106.5 M⊙ while m12f
hosts only one such satellite. This level of diversity is consistent with the scatter in
mass functions revealed by the SAGA surveys. Except for m12f, which shows an
apparent deficiency of massive satellites, the satellite mass functions of simulated
galaxies are generally consistent with observations. There are slight differences
between different DM models. The dSIDM models with either constant or velocity-
dependent cross-sections do produce slightly more satellites at a given mass than
CDM (i.e. slightly more-massive satellites by stellar mass, for a given halo mass,
on average). In the case of m12i, the total amount of resolved satellites increases by
about 50% in dSIDM-c0.1 compared to CDM. In m12f and m12m, although the total
number of resolved satellites does not differ significantly, massive satellites are still
systematically more abundant in dSIDM models. This is likely due to suppressed
tidal stripping for satellites with dark cusps built prior to infall. However, the
difference is subdominant compared to the scatter found in observations and none
of the models tested is in tension with observations here.

In Figure 3.12, we show the cumulative number counts of satellites above a given
stellar 3-D velocity dispersion, 𝜎3d

∗ . For satellites in simulations, 𝜎3d
∗ is measured

at 𝑟1/2, where it is expected to reflect the total dynamical mass [316]. For the
observed sample, we convert the observed line-of-sight velocity dispersion to 3-
D via 𝜎3d

∗ =
√

3𝜎3d
∗ [e.g. 293]. The 𝜎3d

∗ distributions of m12i (l.r.) and m12f
are consistent with the Milky Way and M31 satellites at 𝜎3d

∗ ≲ 20 km s−1 until

simulations and the SAGA satellites, which are selected within a line-of-sight aperture and within a
line-of-sight velocity cut.
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Figure 3.12: Cumulative count of satellites above a given stellar 3-D velocity
dispersion. The notation is the same as Figure 3.11. Similar to the stellar mass
function, we find strong diversity here in both observed and simulated systems.
The satellite 𝜎3d

∗ distributions of m12i (l.r.) and m12f are in good agreement with
the Milky Way and M31 samples at 𝜎3d

∗ ≲ 20 km s−1 but do not produce enough
dynamically hot satellites. On the contrary, in m12i (h.r.) and m12m, the high 𝜎3d

∗
end is in better agreement with the observed sample, but they tend to overpredict the
number of satellites with 𝜎3d

∗ ≲ 25 km s−1. In terms of the DM physics tested, the
dSIDM models (especially the dSIDM-c0.1 model) predict systematically higher
velocity dispersions of satellites.

reaching the resolution limit at low velocities. However, they do not contain as
many dynamically hot satellites as the observed sample. In m12i (h.r.) and m12m,
satellites exhibit systematically higher velocity dispersions (or equivalently more
satellites above a given𝜎3𝑑

∗ ) than m12i (l.r.) and m12f, and match better the high𝜎3d
∗

end of the observed sample. But they tend to overpredict the number of satellites with
𝜎3d
∗ ≲ 25 km s−1. The dSIDM models, especially the dSIDM-c0.1 model, produce

more dynamically hot satellites in all the four Milky Way-mass galaxies simulated.
This is likely caused by larger dynamical masses of the satellites at 𝑟1/2 on average
and also a few compact outliers in dSIDM-c0.1 as shown in Figure 3.9. Although
the comparisons here do not necessarily imply a particular model is favored or in
tension with observations (given limited statistics of the host systems studied), it
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points to an interesting channel to study dissipative DM models.

In addition to the number count, the spatial distribution of satellites is also crucial
in understanding the evolution of substructures in the Local Group environment.
In particular, astrometric measurements have revealed that most of the Milky Way
satellites orbit coherently within a spatially thin plane [e.g., 317–319] affirmed by
the recent Gaia measurements [320, 321]. The mass and spatial distribution of
satellites have been studied using FIRE-2 simulations [287, 322] in ΛCDM. The
dSIDM counterpart would be particularly interesting to explore since dissipation
promotes coherent dark rotation and triggers halo deformation as found in Shen
et al. 5. This aspect along with the physical evolution of subhalos in dSIDM will be
investigated in future works.

3.6 Summary of the chapter
This chapter is the second in a series studying galaxy formation in dissipative self-
interacting DM. In Shen et al. [5], a suite of cosmological hydrodynamical zoom-in
simulations of galaxies with dSIDM was introduced. As the starting point to study
structure formation in dissipative DM, a simplified empirical model featuring a
constant fractional energy dissipation was chosen, motivated by interactions of
DM composites (for example, confined particles in a non-Abelian hidden sector or
large stable bound states (dark “nuggets”) of asymmetric DM). Several interesting
phenomena and physics on the DM side, related to dSIDM, were identified in Shen
et al. [5].

In this chapter, we attempt to compare predictions to basic galaxy observables
affected by the underlying structural changes of DM halos induced by dissipative
interactions. The stellar morphology, the size-mass relation and the circular velocity
profiles of both field and satellite dwarf galaxies are studied, and first constraints
on the dSIDM model are obtained through comparisons with observations of local
dwarf galaxies.

We first study the observed morphology of the stellar component and quantitatively
the size-mass relation of isolated dwarf galaxies. With moderate but not negligible
interaction cross-sections ((𝜎/𝑚) ∼ 1 cm2 g−1), dSIDM makes the stellar content
more concentrated and promotes the formation of thin stellar disks as well as neu-
tral gas disks in massive bright dwarfs. The simulated galaxies in these models
are still consistent with observations in the plane of the galaxy size-mass rela-
tion. However, perhaps surprisingly, when the cross-section becomes large enough
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(𝜎/𝑚 ∼ 10 cm2 g−1), the stellar content of simulated dwarfs becomes fluffier even
than the CDM case, owing to rotation and other emergent properties of the DM
cusp. The dwarfs in this model lie systematically at the most diffuse observed end
of the size-mass relation and thus this model faces strong constraints.

In terms of the circular velocity profiles of simulated dwarfs, we separately consider
the isolated classical and bright dwarfs in the suite as well as the satellites in
the simulations of Milky Way-mass galaxies. The isolated classical dwarfs are
compared to the field dwarf galaxies in the Local Group and we find all of the dSIDM
models studied survive this comparison. The isolated bright dwarfs are compared
to the LSBs with HI-based circular velocity measurements. We find that the dSIDM
models with (𝜎/𝑚) ≳ 0.1 cm2 g−1 are in tension with observations and the velocity-
dependent model is favored. The satellites in simulated Milky Way-mass galaxies
are compared to the Local Group satellites. Though we find little differences
in the median and scatter of the circular velocity profiles between DM models,
dSIDM models with (𝜎/𝑚) = 0.1 cm2 g−1 produce outliers that agree better with
the compact elliptical satellites in observations, whose analogs are missing in CDM.
Although the circular velocity profiles of satellites in simulations are consistent with
the observationally inferred velocity dispersions of these systems, the size of the
simulated satellites are systematically larger. However, this is potentially subjected
to selection bias in observations and also could be a resolution effect. Further
high-resolution simulations are required to resolve the central kinematic structure of
satellites to give more robust predictions. Meanwhile, the stellar mass function and
velocity dispersion function of satellites are studied. In dSIDM models, the number
count of satellite galaxies is slightly enhanced and the satellites are dynamically
hotter, but the difference is too small to infer valid constraints on the models.

In conclusion, it is at the mass scale of isolated bright dwarfs that the dSIDM mod-
els with constant cross-sections face the most stringent constraint and models with
(𝜎/𝑚) ≳ 0.1 cm2 g−1 are in tension with HI-based circular velocity measurements.
The constraint is much weaker in lower-mass isolated dwarfs or in satellites of Milky
Way-mass hosts. Since as shown in Shen et al. [5] the dSIDM-related phenomena
strictly depend on the dissipation time scale, which is inversely proportional to the
product of 𝑓diss and (𝜎/𝑚), the constraints derive here can be translated to other 𝑓diss

values giving the combined constraints: 𝑓diss (𝜎/𝑚) ≲ 0.075 cm2 g−1. The con-
straints here should be treated with caution since we are limited by the number of
simulated isolated halos at each representative mass scale. In addition, the systemat-
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ical uncertainties in interpreting rotation curve measurements in observations [e.g.
323] and the potential bias of HI-selected galaxies are still open questions in the
field. In future work, it would be helpful to improve the robustness of the constraints
here with better statistics of simulations (simulating a greater variety and unbiased
sample of dwarf galaxies). Meanwhile, the improved resolution would help to re-
solve the central structure of satellite galaxies, and in particular to investigate the
implication of dSIDM in explaining the diversity of dwarf compactness in the Local
Group.

3.7 Resolution dependence of satellite properties
The analysis above utilizes both low and high-resolution Milky Way-mass galaxies in
the simulation suite. However, the satellite structure could be resolution-dependent.
This can arise from two primary causes: (1) the N-body relaxation of collisionless
particles and (2) the artificial burstiness of the star formation history due to limited
mass resolution (discreteness effects). Both can puff up the DM and the stellar
content of low-mass galaxies artificially. For example, in Fitts et al. [115], the test
on the isolated classical dwarf m10b has shown that the 𝑟1/2 shrinks by about a factor
of two (despite minimal changes of the overall halo properties) when increasing the
mass resolution from 𝑚b = 4000 M⊙ to 𝑚b = 62.5 M⊙. Similar resolution effects
manifested in the comparison of the observed ultra-faint dwarfs with high-resolution
dwarf simulations in Wheeler et al. [294].

In Figure 3.13, we compare the satellite circular velocity profiles from the high and
low-resolution simulations of m12i (listed in Table 2.1). Aside from the median and
scatter of circular velocity profiles, we also show the (𝑉1/2, 𝑟1/2) of these satellites.
The median circular velocity profile is converged and the 1.5𝜎 (7% to 93% inclusion)
contour moves up slightly. This indicates that the underlying DM structure of these
satellites is converged at the resolution level. However, the 𝑟1/2’s are systematically
smaller in the high-resolution run and the factor of by which they change is consistent
with the enhancement in spatial resolution (two times higher spatial resolution and
eight times better mass resolution). Even in the high-resolution run (the mass
resolution of which is still at least an order of magnitude poorer than that of isolated
dwarf galaxy simulations), the stellar content of satellites can only be resolved to
about 1 kpc scale, and so the simulated small satellites are more extended than the
observed satellites.

In Figure 3.14, we show the size-mass relations of satellites from the high- and
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Figure 3.13: We compare satellite circular velocity profiles from the high and low-
resolution simulations of m12i. The notation follows the top panel. Although the
median circular velocity profile and the scatter do not differ appreciably between
high and low-resolution simulations, the 𝑟1/2’s of satellites in simulations are sys-
tematically smaller in the high-resolution simulation. Compared to the observed
dwarfs, even the high-resolution simulation produces fluffier stellar content for these
satellites.

low-resolution simulations. The satellite stellar mass and size have been corrected
for the surface brightness cut-off at 𝜇V = 30 mag arcsec−2. The satellite sizes in
the low-resolution runs are systematically higher than the high-resolution ones. The
horizontal lines indicate the radius enclosing 200 DM particles assuming the typical
satellite central density 𝜌dm = 107.5 M⊙ kpc−3. The number 200 is suggested
in Hopkins et al. [25] as the convergence criterion in DM properties for FIRE-2
simulations. This limit roughly gives the minimum 𝑟1/2 that the simulation can
resolve. Certainly, we cannot conclude that the satellite sizes are fully resolved even
in the high-resolution runs, and it is likely that increasing the resolution will give
better agreement with the observed satellites. This is supported by that the simulated
isolated dwarfs in the mass range 105 - 106 M⊙ (with baryonic mass resolution
∼ 250 - 500 M⊙) agree well with the observations on the size-mass plane as shown
in Figure 3.6 and Figure 3.10. The impact of resolution on satellite properties
of Milky Way-mass hosts will be explored more in the upcoming Triple Latte
simulations (with baryonic mass resolution ∼ 880 M⊙) (Wetzel et al. in prep).
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Figure 3.14: We compare the high- and low-resolution simulations on the plane
of the size-mass relation. They are all corrected for the surface brightness limit
at 𝜇V = 30 mag arcsec−2. The horizontal lines indicate the radius enclosing 200
DM particles assuming the typical satellite central density 𝜌dm = 107.5 M⊙ kpc−3.
Satellites in the low-resolution simulations are systematically more diffuse than
their high-resolution counterparts. The resolution dependence could explain the
discrepancy between the simulations with observations in this plane.
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C h a p t e r 4

DISSIPATIVE DM – SMBH SEEDING

Huangyu Xiao, Xuejian Shen, Philip F. Hopkins, and Kathryn M. Zurek. SMBH
seeds from dissipative dark matter. J. Cosmol. Astropart. Phys., 2021(7):039, July
2021. doi: 10.1088/1475-7516/2021/07/039.

4.1 Abstract of the chapter
The existence of SMBHs with masses greater than ∼ 109 M⊙ at high redshift (𝑧 ≳ 7)
is difficult to accommodate in standard astrophysical scenarios. We study the
possibility that (nearly) totally dissipative self-interacting dark matter (tdSIDM)–in
rare, high-density dark matter fluctuations in the early Universe–produces SMBH
seeds through catastrophic collapse. We use a semi-analytic model, tested and
calibrated by a series of N-body simulations of isolated dark matter halos, to compute
the collapse criteria and timescale of tdSIDM halos, where dark matter loses nearly
all of its kinetic energy in a single collision in the center-of-momentum frame.
Applying this model to halo merger trees, we empirically assign SMBH seeds to
halos and trace the formation and evolution history of SMBHs. We make predictions
for the quasar luminosity function, the 𝑀BH-𝜎∗

v relation, and cosmic SMBH mass
density at high redshift and compare them to observations. We find that a dissipative
dark matter interaction cross-section of 𝜎/𝑚 ∼ 0.05 cm2 g−1 is sufficient to produce
the SMBHs observed in the early Universe while remaining consistent with ordinary
SMBHs in the late Universe.

This chapter is organized as follows. In Sec. 4.2, we discuss our semi-analytical
model of the dissipation timescale and calibrate it with a series of N-body simulations
in isolated NFW halos. In Sec. 4.3, we generate the merger trees of halos and track
the cosmological evolution of SMBH seeds in those halo progenitors, allowing us to
compute the mass function of SMBHs and compare it with observables. In Sec. 4.4,
we show our tdSIDM model will not cause the formation of overly massive SMBHs
at low redshift, remaining consistent with low redshift observations.

4.2 Simulating black hole formation in isolated halos
We performed N-body simulations of DM halos with the NFW density profile as
the initial condition, using the code Gizmo [324]. The initial condition is generated
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using the code pyICs which was first used in [325]. 15 N-body simulations are
performed for 15 different NFW halos with a mass range ∼ 109 − 1013𝑀⊙ which
are completely isolated in each simulation box. There are 6 × 106 particles in each
simulation box and the gravitational softening length is taken to be 2𝑑0 where 𝑑0 is
the particle mean separation within 0.07𝑟s at the beginning of the simulation. 𝑟𝑠 is the
scale radius of different NFW halos and 0.07𝑟s, as we will show later, is the universal
collapsed radius. Gizmo is a multi-method gravity plus hydrodynamics code and is
capable of simulating both gas and dissipative DM. Baryonic simulations are much
more computationally expensive, however, and the formation of SMBH seeds in
our model is mainly driven by the dissipation in the dark sector. Therefore, we
run DMO simulations to study the formation of SMBH seeds from the catastrophic
collapse of halos. The gravity of DM is solved with an improved version of the
Tree-PM solver from GADGET-3 [284]. DM self-interactions are simulated in a
Monte-Carlo fashion with the implementation in [88]. In the tdSIDM model, when
two DM particles collide with each other, they lose a fraction 𝑓 of their kinetic
energy in the center-of-momentum frame. We focus on the case that nearly all the
kinetic energy is dissipated in the interaction, 𝑓 ≈ 1. This is a particular feature
of the nugget fusion model presented in Refs. [213–217], not shared in general by
other dissipative DM models.

As explained in the introduction, we are interested in SMBH seed formation in
massive, rare halos in the mass range 109 − 1013𝑀⊙, which can produce SMBH
seeds in the mass range 106 − 1010𝑀⊙ (if the SMBH-to-halo mass ratio is about
10−3 as we will show later in the simulation results). In order to sample such
rare structures in cosmological simulations, a comoving boxsize of order Gpc3 is
required. Meanwhile, the physical size of the collapsed region is about 0.07𝑟s,
as we will show later in the simulation results, where 𝑟s is the scale radius. This
poses a challenge to cosmological simulations due to limitations on mass and spatial
resolution. For example, if we are interested in SMBH formation in a rare DM halo
at high redshift with mass 1012𝑀⊙, the particle number in the central region within
0.07𝑟s has to be larger than∼ 200 [26] to resolve the dense core. Assuming the virial
radius is 4𝑟s, the particle number in this halo is ∼ 2 × 104, which requires a mass
resolution of 5×107𝑀⊙ in the simulation box. However, we need a boxsize of≳ Gpc3

to simulate the structure formation from extremely rare fluctuations. Therefore, the
particle number in the simulation box has to be ∼ 1012, which is at least 100 times
larger than the particle number ≲ 1010 in state-of-the-art cosmological simulations
(e.g. [25, 326–328]). Therefore, it is very challenging to simulate the formation of
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SMBH seeds with cosmological simulations, even employing a zoom-in technique.
An alternative strategy is to simulate individual isolated halos with various halo
parameters and test the formation of SMBH seeds separately. Large-scale structure
with moderate DM self-interactions will not differ significantly from the CDM case
[e.g., 87, 88, 329, 330]. The calibration from the isolated halo simulations can
then be used to study the cosmological population of SMBHs with semi-analytic
approaches.

Semi-Analytic Model
Before introducing simulations, it is useful to develop an analytic model that can
predict the collapse timescale of the dissipative DM model. The analytic predictions
can then be compared to and calibrated by the simulation results. In this section, we
will discuss the analytic model that predicts the collapse timescale and show that
it agrees well with our simulation results after calibrating the result by a universal
O(1) prefactor in the formula. We focus on SMBH seed formation in rare, massive
halos at high redshift with high central DM density and thus high dissipative DM
self-interaction rates, following Ref. [213]. DM halos formed from rare fluctuations
are the ideal environments for seeding SMBHs, as such halos form at higher redshift
relative to typical halos, where the background density of the universe is larger,
implying a higher halo central density. The collapse rate of tdSIDM halos is
characterized by 𝜌𝑣𝜎/𝑚, where 𝜌 is the average density, 𝑣 is the velocity dispersion,
and 𝜎 is the cross-section of DM self-interaction. Thus higher densities shorten
the dissipation timescale, as we will discuss in detail in Eq. (4.14). We will take
the average density and velocity dispersion to be those in the collapsing central
region of the halo, characterized by a collapse radius 𝑟0 determined by our N-body
simulations.

Because of our reliance on high-density DM fluctuations to seed SMBHs, we must
quantify the rareness of halos, which can be explicitly defined through the variance
of density fluctuation

𝜎h(𝑀, 𝑧) = 𝜈h𝜎0(𝑀, 𝑧), (4.1)

where 𝜎0(𝑀, 𝑧) is the variance in the density fluctuation field smoothed over a
top-hat filter of scale 𝑅s = (3𝑀/4𝜋𝜌̄)1/3, 𝜌̄ is the average comoving background
density and 𝜎h(𝑀, 𝑧) is the variance of a local density fluctuation that can differ
from the average fluctuation. Clearly 𝜈h defines the rareness of the fluctuation and
the halo that just formed from this fluctuation. One can also define the peak height
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𝜈

𝜈(𝑀, 𝑧) ≡ 𝛿𝑐

𝜎0(𝑀, 𝑧)
=

𝛿𝑐

𝜎0(𝑀, 𝑧 = 0) 𝐷 (𝑧) , (4.2)

where 𝛿c = 1.686 is the critical overdensity for collapsed halos derived from the
spherical top-hat model and 𝐷 (𝑧) is the growth factor normalized to unity at 𝑧 = 0.
In the spherical collapse model, a halo forms when the variance in the density
fluctuation field satisfies 𝜎 = 𝛿𝑐, corresponding to when typical halos with 𝜈 = 1
collapse. However, rare, high-variance halos may collapse earlier than typical halos,
when 𝜈 = 𝜈h. In what follows, 5 − 𝜎 (3 − 𝜎) halos are defined by 𝜈(𝑀, 𝑧) = 5
(𝜈(𝑀, 𝑧) = 3) at 𝑧 = 𝑧 𝑓 , where 𝑧 𝑓 is determined by when a density perturbation
reaches 𝜎(𝑀, 𝑧 𝑓 ) = 𝛿𝑐. Note that different halos with different peak heights 𝜈 may
collapse at the same redshift, though rare fluctuations correspond to more massive
halos.

We use the model of [331], which is a modification of the Bullock model [332],
to define the halo parameters such as characteristic density 𝜌0, halo concentration
𝑐vir and halo mass 𝑀vir and their evolution with redshift. The density profile of
virialized DM halos is well described by the Navarro–Frenk–White profile [333]

𝜌(𝑟) = 𝜌0

𝑟
𝑟s

(
1 + 𝑟

𝑟s

)2 , (4.3)

where 𝜌0 is the scale density of the halo and 𝑟s is the scale radius. 𝜌0 characterizes
the central density of a DM halo. As is typical in a halo formation model, we can
link the central density of a halo formed at redshift 𝑧f to that of the critical density of
the universe at 𝑧f . Therefore we define the mass of the halo at the formation redshift
𝑧f via

𝑀f =
4
3
𝜋𝑐3

0𝑟
3
sΔ(𝑧f)𝜌crit(𝑧f), (4.4)

where 𝑐0 is the halo concentration at the formation time, 𝜌crit(𝑧) is the critical
density of the universe at redshift 𝑧, and Δ(𝑧) is the overdensity of the halo with
respect to the critical density. One common choice is to set Δ(𝑧f) = 200, which
is motivated by the spherical collapse model. The only dependence on cosmology
in this mass definition comes from 𝜌crit(𝑧). It has been universally found that the
initial halo concentration at the moment of the first collapse satisfies 𝑐0 ≈ 4 [334].
Therefore the halo central density is 𝜌0 ≈ 200𝑐3

0𝜌crit(𝑧f), suggesting that a halo
formed at high 𝑧f has a large central density. The scale radius 𝑟s is determined at
the time of formation and does not evolve with time

𝑟s =

(
3𝑀f

4𝜋𝑐3
0Δ(𝑧f)𝜌crit(𝑧f)

)1/3

. (4.5)
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The NFW profile is truncated at a virial radius that depends on redshift, which is
defined as 𝑅vir(𝑧) ≡ 𝑐vir(𝑧)𝑟s, where 𝑐vir(𝑧) is a redshift dependent concentration
number. As the universe expands, the background density drops but the halo central
density 𝜌s should remain the same, leading to a larger concentration number and a
larger virial radius. Therefore the mass within the virial radius for an NFW profile
should grow (logarithmically) as the universe evolves, which can be represented as

𝑀vir(𝑧) = 4𝜋𝜌0𝑟
3
s 𝑓 (𝑐vir(𝑧)) = 𝑀f

𝑓 (𝑐vir(𝑧))
𝑓 (𝑐0)

, (4.6)

where 𝑓 (𝑐) = ln(1 + 𝑐) − 𝑐/(𝑐 + 1). This equation is obtained by integrating the
NFW profile truncated at the virial radius. The redshift dependence of the halo
concentration is thus defined by

𝑐vir(𝑧)3

𝑓 (𝑐vir(𝑧))
=

𝑐3
0

𝑓 (𝑐0)
Δ(𝑧f)𝜌col(𝑧f)
Δ(𝑧)𝜌crit(𝑧)

, (4.7)

such that we see that 𝑐vir(𝑧) ∝ 1 + 𝑧 in the limit of large concentration parameters
and Δ(𝑧) = Δ(𝑧 𝑓 ). Equivalently, we have a generalized form of Eq. (4.4)

𝑀vir(𝑧) =
4
3
𝜋𝑐vir(𝑧)3𝑟3

sΔ(𝑧)𝜌crit(𝑧), (4.8)

where we assume Δ(𝑧) = Δ(𝑧 𝑓 ). From these relations, one finds the characteristic
density of DM halos

𝜌0 =
𝑀vir(𝑧)

4𝜋𝑟3
s (𝑧) 𝑓 (𝑐vir(𝑧))

=
𝑐3

0
3 𝑓 (𝑐0)

Δ(𝑧f)𝜌crit(𝑧f). (4.9)

This expression clearly states that the halo central density is directly determined by
the background density of the universe at the redshift of formation. The invariance of
𝜌0 and 𝑟s indicates that the inner profiles of DM halos do not change over time. The
boundary of a halo, described by 𝑅vir, must move outwards owing to the decreasing
background density 𝜌crit(𝑧), which is known as the “pseudo-growth" of DM halos
[335].

Now that we know how to determine the halo parameters from the halo mass
and concentration number at the observation redshift, we can further study the
behavior of halos that are made of dissipative self-interacting DM at high redshift.
DM particles dissipate their kinetic energy through self-interactions (referred to as
“collisions”). The average timescale for a particle to encounter one such collision
in radius 𝑟 can be estimated as

𝑡relax(𝑟) =
1

𝛼𝜌(𝑟)𝜎v(𝑟)
1

𝜎/𝑚, (4.10)
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where 𝜌(𝑟) and 𝜎v(𝑟) are the DM mass density and one-dimensional velocity
dispersion at radius 𝑟, 𝛼 =

√︁
16/𝜋 is a constant factor assuming hard-sphere-like

scattering and a Maxwell-Boltzmann velocity distribution and𝜎/𝑚 is the dissipative
interaction cross-section per particle mass. If the velocity field of DM is isotropic (as
found in [251–253]), 𝜎v(r) can be obtained by solving the spherical Jeans equation
[336]

𝜎v(𝑟) =
√︃

4𝜋𝐺𝜌0𝑟
2
s 𝐹 (𝑟/𝑟s),

𝐹 (𝑥) = 1
2
𝑥(1 + 𝑥)2

[
𝜋2 − ln (𝑥) − 1

𝑥

− 1
(1 + 𝑥)2 − 6

1 + 𝑥 +
(
1 + 1

𝑥2 − 4
𝑥
− 2

1 + 𝑥

)
× ln (1 + 𝑥) + 3 ln2 (1 + 𝑥) − 2L𝑖2(−𝑥)

]
, (4.11)

where L𝑖2(𝑥) is the dilogarithm. The timescale for local kinetic energy to dissipate
through such collisions is

𝑡diss(𝑟) =
3𝜌(𝑟)𝜎2

v /2
𝐶 𝑓 𝜌2(𝑟)𝜎3

v (𝑟)
1

𝜎/𝑚

=
1

𝛽 𝑓 𝜌(𝑟)𝜎v(𝑟)
1

𝜎/𝑚, (4.12)

where 𝑓 is the fraction of kinetic energy loss in the center-of-mass frame per
collision, 𝐶 is a constant factor and 𝛽 = 4𝛼/3 [5], assuming a Maxwell-Boltzmann
velocity distribution, a velocity independent cross-section and all the kinetic energy
in the center-of-momentum frame is dissipated during a collision.

Rapid kinetic (thermal) energy dissipation will inevitably result in the gravitational
collapse of the central halo. The collapse timescale should be on the same order
as the dissipation time, 𝑡col = 𝐴𝑡diss, where the order one factor 𝐴 is determined
by our simulations of isolated halos. Collapse is expected to happen at radii where
𝑡col(𝑟) ≪ 𝑡life, where 𝑡life is the lifetime of the system. It is hard to determine the
collapse radius analytically, but our N-body simulations can give us the desired
information. The details of our simulation results shall be discussed in the next
subsection but we can briefly describe the findings. We run a series of dark-matter-
only simulations for isolated NFW halos to study the evolution of their density
profiles. We show the final stage of the cumulative mass profile 𝑀 (𝑟)/𝑀 in Fig. 4.1,
where 𝑀 (𝑟)/𝑀 is roughly a constant in the central region, indicating the formation
of SMBHs. We studied the collapse of DM halos with different masses, all of which
formed an SMBH with mass ∼ 3 × 10−3𝑀 , where 𝑀 is the halo mass. If an NFW
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halo within some radius 𝑟0 collapses to an SMBH seed, the fraction of the initial
mass in the seed is

𝑓col =
ln(1 + 𝑟0/𝑟s) − 𝑟0/(𝑟s + 𝑟0)

ln(1 + 𝑐) − 𝑐/(𝑐 + 1) . (4.13)

Furthermore, if we take a collapse radius 𝑟0 = 0.07𝑟s and a concentration 𝑐 = 𝑐0 = 4
at formation time, this equation gives a collapse fraction 𝑓col ≈ 3 × 10−3. Note that
𝑐0 = 4 is a universal prediction for halos at formation [337], independent of their
rarity 𝜈. A higher 𝜈 halo, of a given mass, will simply form at a higher redshift 𝑧f

relative to typical halos and hence will have a higher concentration at lower redshift
𝑧, according to Eq. (4.7). A large central density, as shown in Eq. (4.12), corresponds
to a smaller dissipation time.

As we will discuss in the next subsection, the simulation results, as shown in
Fig. 4.1, indicate that the collapse fraction of tdSIDM halos is universally 3 × 10−3

independent of halo mass and redshift. Therefore, we conclude that the collapse
radius (the radius where DM particles will fall into the halo center and collapse)
is about 0.07𝑟s independent of halo mass and redshift, corresponding to a collapse
fraction of 3 × 10−3. In Appendix 4.9, we further confirm that the collapse fraction
is independent of the cross-section and provide a theoretical explanation for the
universality of the collapse fraction. We thus evaluate the collapse time within a
collapse radius 0.07𝑟s, which gives the timescale of SMBH formation at the halo
center. The corresponding collapse timescale 𝑡col(0.07𝑟s) is

𝑡col =
𝐴

𝑓
1.29 × 1011yr

(
𝑐vir(𝑧)3Δ(𝑧)

200
𝜌crit(𝑧)

Ωm𝜌crit(0)

)−7/6

× [ 𝑓 (𝑐vir(𝑧)]3/2
(
1 cm2 g−1

𝜎/𝑚

) (
1015𝑀⊙
𝑀vir

)1/3

,

(4.14)

where Ω𝑚 is the matter density today.

Simulations of halo collapse and black hole formation
We ran a series of DMO simulations with different initial conditions to calibrate
the collapse timescale and determine the SMBH-to-halo mass ratio. The initial
conditions are characterized by the NFW profile parameters 𝜌0 and 𝑟s, which can
be determined by the concentration number 𝑐vir, halo mass 𝑀vir and the observation
redshift 𝑧 by using Eq. (4.9) and Eq. (4.5). We simulate the evolution of 5 − 𝜎 and
3−𝜎 rare halos whose mass can be determined from 𝜈 = 5, 3. The concentration of
those halos can be determined from the models that give the relation between halo
mass 𝑀 and peak height 𝜈 [337–340], though for large 𝜈, the halo concentration is
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Figure 4.1: Enclosed mass fraction as a function of radius (normalized to the
scale radius 𝑟𝑠), for 8 and 7 different 5- and 3-𝜎 halos (upper and lower panels,
respectively) including DM dissipation with cross-section 1 cm2 g−1. Different
halos are labeled with the mass (in units of 1011𝑀⊙) and redshift. The high spin
curve corresponds to 𝜆 = 0.1 at 𝑧 = 10, while other halos have spin parameter
𝜆 = 0.03. In these figures, the more dense 5−𝜎 halos show core collapse, indicated
by the region of constant density at small radii, while 3 − 𝜎 halos have not been
destabilized, consistent with Fig. 4.2. In the collapsed halos, the collapse fraction
is found universally to be ∼ 3 × 10−3.
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roughly 4, with the exact value weakly depending on redshift. Therefore we assume
those halos have a concentration of 4 in our simulations. Selecting an observation
redshift 𝑧 for 5 − 𝜎 or 3 − 𝜎 halos, we obtain the halo mass and concentration,
from which we determine 𝜌0, 𝑟s needed to create initial conditions for our N-body
simulations.

We expect the most massive halos at high redshift, corresponding to rare fluctuations,
will have higher central DM density and thus smaller collapse timescales. The DM
self-interaction cross-sections in our simulation is taken to be 𝜎0/𝑚 = 1 cm2 g−1.
The analytic formula in Eq. (4.14) suggests that the collapse timescale is inversely
proportional to the cross-section. Therefore we can easily apply the simulation
results to other cross-sections. The gravitational softening length is chosen to be
2𝑑0 where 𝑑0 is the mean separation for particles within radius 0.07 𝑟s. The particle
number in the whole simulation box is 6 × 106.

As the tdSIDM halo evolves, dissipation will drive radial contraction of the halo as
well as a “dark cooling flow” found in recent cosmological simulations of tdSIDM
[5]. The contraction at a certain stage could be halted by centrifugal forces. How-
ever, if DM substructure torque, created by global gravitational instability or DM
viscosity, efficiently transports angular momentum, the run-away collapse of the halo
into an SMBH may occur. During this process, the central DM density is expected
to very rapidly increase, causing the integration time step to approach zero. Gizmo
uses adaptive time-stepping, which allows us to study the halo profiles at the moment
of collapse. In the extreme case, we expect DM particles to lose all of their kinetic
energy in the center-of-mass frame, typical in the dark nugget model [213]. In the
simulation, we choose 𝑓 = 0.8 to avoid numerical difficulties (e.g. particles cluster
in the same position in phase space and blow out the integration time) but the results
are nearly identical for 𝑓 ≈ 1 (if we correct for the dependence of 𝑡diss on 𝑓 ). After the
catastrophic collapse, the enclosed mass𝑀 (𝑟) is expected to be flat at the halo center,
which agrees well with what we found in simulations of isolated 5-𝜎 halos, as shown
in Fig. 4.1. The NFW parameters of 5-𝜎 halos are 𝑟s = 39.1, 23.2, 14.6, 9.6, 6.5,
4.6, 3.3 kpc, and 𝜌0 = 0.030, 0.051, 0.081, 0.121, 0.173, 0.237, 0.316𝑀⊙pc−3 for
redshift 𝑧 = 4− 10. The NFW parameters 𝜌0 and 𝑟s can be obtained from Eqs. (4.9)
and (4.5) once we fix the halo mass 𝑀vir and the concentration number 𝑐vir at a
given observation redshift. The halo spin parameter is taken to be 𝜆 = 0.03. For
comparison, we also run a simulation with high spin parameter 𝜆 = 0.1. The halo
collapses within the same timescale, suggesting that the centrifugal barrier discussed
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in Appendix 4.8 is not important, such that we expect SMBHs to form if the halo
mass is above the threshold.

After running simulations for isolated NFW halos, we calibrated our semi-analytic
model and found the timescale for SMBH formation is

𝑡col = 1.06𝑡diss. (4.15)

Therefore the collapse timescale can be determined from our analytic prediction of
the dissipation timescale, after adding a calibration factor of 1.06. The collapse
radius is universally found to be ∼ 0.07 𝑟s for 5-𝜎 halos at different redshift,
corresponding to a collapse fraction ∼ 3×10−3, independent of halo mass. Different
mass halos have slightly different calibration factors, which are found to be 1.02,
1.05, 1.05, 1.15, 1.12, 1.05, 1.01 for 5-𝜎 halos at redshift 𝑧 = 4 − 10. Even though
there are some uncertainties, our semi-analytic formula in Eq. (4.14) agrees well
with the simulation results after adding a calibration factor. To confirm that less
rare halos will not collapse, we also run simulations with 3 − 𝜎 halos and stop the
evolution at time 𝜎/𝜎0𝜖𝑡𝐻 , where 𝜎 is the cross-section that will be appropriate for
seeding SMBHs, 𝜎0 = 1 cm2 g−1 is the cross-section we are using in our simulation
and 𝜖 is the parameter of seeding criterion discussed in Eq. (4.17). We will show
later in Sec. 4.3 that 𝜎 ∼ 0.1 cm2 g−1 is appropriate for seeding the high mass
SMBHs at high redshift while not causing inconsistencies at low redshift.

Mass Threshold of Black Hole Seeding
In this subsection, we discuss the collapse criterion of DM halos analytically based
on the collapse timescale calibrated by our simulations. Other criteria related to the
halo spin parameter and halo dynamical timescale are discussed in Appendix 4.8,
where we will show they are not relevant to the problem at hand. We also study the
halo masses that lead to SMBH formation at different redshifts, assuming a median
mass-concentration relation discussed in [337]. There will, however, always be a
scatter in the halo concentration, which is related to the halo assembly history. The
complication is that halos may form early, but not merge until late. Such halos will
have a very large central density, corresponding to scatter above the median mass-
concentration relation. Another complication is that even though a certain halo is
not massive or concentrated enough to seed an SMBH, one of its halo progenitors
may have seeded an SMBH which subsequently falls to the halo center. We will
fully address those questions in Sec. 4.3 with a merger tree. In this section, we
only discuss SMBH formation based on median mass-concentration relations for a
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Figure 4.2: left panel: Shown as shaded contours, minimum halo mass 𝑀 to seed
an SMBH (labeled “SMBH seeds”) immediately at redshift of halo formation 𝑧 𝑓 ,
for a fixed tdSIDM cross-section (𝜎/𝑚 in units of cm2/g). The solid curves show
the mass of a 𝜈 = 1, 3, 5 halo in a spherical collapse model formed at redshift
𝑧 𝑓 . A halo is available in the cosmological history to seed an SMBH (for a given
cross-section) if the shaded region corresponding to that cross-section is above a
solid curve. For comparison, we show as dashed curves the cosmological history
of the Main Progenitors of a Milky Way Mass and Cluster Mass galaxy, as given in
Eq. (4.19). Interestingly, the main progenitor of a 1−𝜎 halo at 𝑧 = 0, can be a 3−𝜎
halo at 𝑧 ∼ 10, which is more likely to form SMBHs. right panel: Mass 𝑀 of a
𝜈 = 5 halo, again for fixed cross-section corresponding to colored regions, that may
seed an SMBH at a lower redshift 𝑧 ≤ 𝑧f . We can see that rare halos that do not seed
an SMBH immediately may do so later in the history of the Universe. During the
evolution of these halos, we assume the central density and the halo mass are fixed;
we will track the assembly history of halos more completely in Sec. 4.3 utilizing
merger trees.

given halo mass 𝑀vir and redshift 𝑧. This works well for rare halos that have large
masses at high redshift because we do not expect much scatter in their concentration.
Therefore the production of high-mass SMBHs is well predicted in this section with
purely analytic formulae.

For a halo with mass 𝑀vir(𝑧), the criterion that an SMBH seed form in the halo at
redshift 𝑧 is approximately given by

𝑡col(𝑀vir(𝑧), 𝜎/𝑚, 𝑧) ≪ 𝑡h(𝑧), (4.16)

where 𝑡h(𝑧) is the Hubble time at 𝑧. This indicates that seeding happens when the
collapse time is significantly shorter than the lifetime of the system. Practically, we
determine that an SMBH seed would form when

𝑡col(𝑀vir(𝑧), 𝜎/𝑚, 𝑧) = 𝜖𝑡h(𝑧), (4.17)
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where 𝜖 is set to be 0.1; this parameter is somewhat arbitrary, but also degenerates
with a rescaling of the cross-section, such that 𝜖 can be viewed as the uncertainty
on the cross-section. Therefore the only parameter that will determine the seeding
of SMBHs is 𝜖𝜎/𝑚. The choice of 𝜖 = 0.1 is reasonable because the time threshold
of collapse and the Hubble time is expected to be roughly within the same order of
magnitude. In our seeding model, the collapse timescale is greater than the halo
dynamical timescale as discussed in Appendix 4.8 to avoid local fragmentation. An
extremely small collapse timescale is disfavored if an SMBH is seeded in a halo
instead of forming many local dark stars. The fraction of a DM halo that eventually
collapses into a black hole is crucial for determining the mass function of the SMBH
seeds. From the simulation, we know this collapsing fraction is about 3 × 10−3.
Eq. (4.16) gives the lower bound of the halo mass that would lead to a collapsing
halo. For high redshift where the cosmological constant is not important and the
universe is dominated by matter, the critical density scales like 𝜌crit ∝ (1 + 𝑧)3/2.
We can further assume Δ(𝑧) = 200 regardless of redshift and the mass threshold for
collapsed halos can be determined by combining Eq. (4.14) and Eq. (4.17)

𝑀 >𝑀0(𝑐vir(𝑧), 𝑧)

= 1.63 × 1017𝑀⊙

[
ln(1 + 𝑐vir(𝑧)) −

𝑐vir(𝑧)
𝑐vir(𝑧) + 1

]9/2

× 1
(𝑐vir(𝑧)/4)21/2

(
Ω𝑚𝜌crit(0)
𝜌crit(𝑧)

)2 (
0.01 cm2 g−1

𝜖𝜎/𝑚

)3

.

(4.18)

For a given DM halo with mass 𝑀 at 𝑧, it has an SMBH seed with mass 𝑓 𝑀 in
the halo center if 𝑀 > 𝑀0(𝑐, 𝑧), where 𝑓 ∼ 3 × 10−3 is the collapse fraction of the
dissipative DM halo.

Eq. (4.18) suggests that the minimum halo mass to seed an SMBH is much smaller
at higher redshift, and furthermore, high concentration (rare) halos are more likely
to form an SMBH at higher redshift. This is shown in Fig. 4.2, similar to the
proposal and discussion in Ref. [213]. In the left panel of Fig. 4.2, the minimum
mass halo to form an SMBH is shown in shaded regions for different cross-sections.
To determine whether a halo is available in the cosmological history that meets this
minimum mass requirement, these colored regions are compared against the solid
lines corresponding to a 𝜈 = 1, 3, 5 halo of mass 𝑀 formed at redshift 𝑧 𝑓 , using
Eq. (4.18). When a colored region is above a solid line of fixed 𝜈, halos of a given
cosmological rarity 𝜈 are available to make SMBH seeds via dissipation at redshift
𝑧. We can thus see that rare halos can seed SMBHs at high redshift.
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In the right panel of Fig. 4.2, we track the 5 − 𝜎 halos to lower redshift 𝑧 to
determine if these rare halos of mass 𝑀 can seed a black hole later in the history of
the Universe. The shaded contours, with the colors corresponding again to different
cross-sections, indicate where SMBH seeds can form at lower redshifts. Note that
we assume the halo mass and central density remain fixed, while the concentration
is given by Eq. (4.7); this assumption is idealized since halos will accrete and merge
with other halos. Nevertheless, fixing the tdSIDM cross-section, this demonstrates
how rare halos that cannot form an SMBH seed immediately may form one at lower
redshift.

Furthermore, if the halo is not massive enough to seed an SMBH at high redshift, it
may still have lighter SMBH seeds because its progenitors may have formed black
holes at higher redshift.

We can thus see that the assembly history has to be determined to fully study SMBH
formation at low redshift. This will be discussed in detail in Sec. 4.3 using Monte
Carlo simulations to generate the merger tree. However, there is still an analytic
shortcut to describe the evolution of the most massive progenitors, known as main
progenitors, during the assembly history. Empirically, the mass accretion histories
for main progenitors, as observed at 𝑧 = 0, can be characterized by a simple function
[22]

𝑀 (𝑧) = 𝑀0𝑒
−𝛼𝑧, (4.19)

where 𝑀0 is the halo mass at 𝑧 = 0 and 𝑀 (𝑧) is the most massive progenitor
in the merger tree. Although the mass accretion history of individual halos may
deviate from this form, it provides a good characterization of the range of halo mass
accretion trajectories, as we will show later in Sec. 4.3. 𝛼 is related to the halo
mass at the observed time. The average 𝛼 is ≈ 0.6 for a typical halo with mass
𝑀 = 1012𝑀⊙ at 𝑧 = 0, and ≈ 0.9 for a rarer halo with mass 𝑀 = 1014𝑀⊙ at 𝑧 = 0.
We show two halo trajectories in Fig. 4.2 for masses 𝑀 = 1012 and 𝑀 = 1014𝑀⊙.
We can see from Fig. 4.2 that the most massive progenitor of a typical (1−𝜎) halo at
low redshift may instead be a rare 3 − 𝜎 halo at high redshift. The rare progenitors,
which formed relatively early, have a large central density even at low redshift before
merging, and they can potentially seed an SMBH at the halo center. Thus, while
the dissipative nature of DM helps us explain the most massive SMBHs at high
redshift, one must further examine the merger history of halos to check consistency
with observations of SMBHs at low-𝑧 in Milky Way-like galaxies. We will show
in Sec. 4.3 and Sec. 4.4 that this suggests a range of cross-sections where high
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redshift SMBH formation could occur, while simultaneously remaining consistent
with low-𝑧 observations.

4.3 Cosmological evolution and abundance of SMBHs
In this section, we aim to make predictions for the cosmological abundance of
SMBHs formed via the direct collapse of tdSIDM halos and the observed luminosity
functions of quasars formed via this mechanism. In contrast to the canonical seeding
mechanisms for smaller SMBH seeds (e.g., remnants of Pop III stars with typical
mass of ∼ 10 - 103 M⊙ [179–186] or directly collapsed pristine gas clouds of mass
∼ 104 - 106 M⊙ [186, 194–199]), the mechanism in this chapter could naturally
explain the existence of massive quasars (𝑀BH ≳ 109 M⊙) at 𝑧 ≳ 6 discovered in
recent years [200, 201, 341–347]. According to the mass criterion for seeding in
Eq. (4.18) and the seed-to-host mass ratio 𝑓col discussed in Sec. 4.2, 𝑀BH ≳ 109 M⊙

SMBHs at 𝑧 ∼ 7 will form in 𝑀 ≳ 1012 M⊙ halos with normal concentrations.
However, it is still an open question whether this model can produce the correct
cosmic abundance of the SMBHs and observed quasars at high redshift.

To investigate this aspect, the cosmological evolution of SMBH seeds and their
host halos need to be tracked. In this model, halos with different masses and
concentrations could be coupled to the seeding mechanism at very different cosmic
times. The seeding should be considered as a continuous process rather than
happening only in a short period of time. In addition, the decoupled seeds could
further increase their masses through the accretion of baryonic matter, and the
amount of such accretion depends on the evolutionary history of halos (e.g. a major
galaxy merger could trigger such accretion). Furthermore, the seeding criterion
has a strong dependence on the concentration of the halo, which in turn depends
on the assembly history of the halo [e.g., 348], and is subject to various biases
(e.g. environment of formation). A simple median mass-concentration relation may
not be accurate enough to describe the seeding process of the entire cosmological
population of DM halos.

Given the physical processes and uncertainties involved in the evolution of SMBH
seeds, we employ halo merger trees to trace the merger history of halos and SMBH
seeds and to evolve SMBHs using empirical prescriptions. The halo merger trees
are generated using the SatGen 1 code [349], which is based on the Extended Press-
Schechter (EPS) formalism [350] and the algorithm introduced in Refs. [351, 352].

1https://github.com/shergreen/SatGen
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The virial mass and radius of halos in the merger trees are defined with the redshift-
dependent Δvir in Ref. [249]. When creating the merger trees, we uniformly sample
10 halos per dex of halo mass ranging from 108 to 1016.4 M⊙ at 𝑧 = 4 and trace
their progenitors up to 𝑧 ≃ 20, with a progenitor mass resolution 5 (6 for trees more
massive than 1015 M⊙) orders of magnitude lower than the final halo mass at 𝑧 = 4.
The merger tree traces the mass and concentration of each halo from the time when
it enters the tree (becomes more massive than the mass resolution of the tree) to the
time when it merges into a more massive halo. The halo concentration is obtained
from an empirical relation calibrated via simulations [348], which relates the main
branch (the branch that tracks the most massive progenitor) merging history to the
concentration parameter by

𝑐vir(𝑀vir, 𝑧) =
[
48 +

(
𝑡 (𝑧)/𝑡0.04(𝑀vir, 𝑧)

)8.4]1/8
, (4.20)

where 𝑡 (𝑧) is the cosmic time at redshift 𝑧 and 𝑡0.04 is the cosmic time when
the host halo has assembled 4% of its instantaneous mass, 𝑀vir(𝑧). In principle,
the gravitational impact of baryonic matter (e.g. adiabatic contraction of DM
[282, 353]), star formation and subsequent feedback processes could potentially
affect the structure of high redshift halos. However, self-consistently modeling the
baryonic content of high redshift galaxies is beyond the scope of this chapter, and
we defer a detailed analysis of this aspect to follow-up work.

All the progenitors of one merger tree are weighted by the number density of the
final halo sampled at 𝑧 = 4, determined analytically by the halo mass function from
the hmf code [354], which itself is calibrated based on numerical cosmological
simulations [14]. In Fig. 4.3, we show the halo mass functions at 𝑧 = 4, 6, 8
reproduced with the weighted abundance of halos in the merger trees. They are
in agreement with the halo mass functions determined analytically up to 1012 M⊙

(1013.5 M⊙) at 𝑧 = 8 (𝑧 = 6), which covers the mass range of quasar host halos
of interest. In the subsequent analysis, we will use the weighted results for any
predictions in the cosmological context.

SMBH seeding and growth
Based on the halo merger trees, we initialize and evolve the SMBH seeds with
the following empirical prescriptions. An SMBH seed is initialized when the halo
meets the seeding criterion introduced in Eq. (4.18). The initial mass of the seed
is set as a constant fraction, 𝑓col = 3 × 10−3, of the instantaneous mass of the host
halo, motivated by the simulation results in Sec. 4.2. Subsequently, as long as
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Figure 4.3: Halo mass function. The reconstructed halo mass functions at
𝑧 = 4, 6, 8 based on the weighted abundance of halos in the merger trees (shown
by circles of different colors). They are compared to the halo mass functions de-
termined analytically using the hmf code (shown by dashed lines), which itself is
calibrated based on numerical cosmological simulations [14]. The halo mass func-
tions determined by the merger trees agree reasonably well with the analytic ones
up to 1012 M⊙ (1013.5 M⊙) at 𝑧 = 8 (𝑧 = 6), which covers the mass range of quasar
host halos of interest.

the host halo still meets the seeding criterion, we maintain the seed-to-host mass
ratio as 𝑓col (referred to as the 𝑟𝑒𝑠𝑒𝑒𝑑𝑖𝑛𝑔 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚). The treatment relies on
the assumption that, after the initial collapse of the DM halo, the accretion of DM
onto the central SMBH seed will continue until a dynamical equilibrium between
the SMBH seed and the host halo is reached. This dynamical equilibrium results
in the roughly constant seeding fraction found in the simulations, and should hold
as long as DM can still be efficiently fed to the halo center via dissipative self-
interactions. For halos that are coupled to the seeding mechanism, the 𝑟𝑒𝑠𝑒𝑒𝑑𝑖𝑛𝑔
would effectively erase the unique growth history of the SMBHs and set a tight
correlation between host halo mass and SMBH mass. However, for halos that no
longer meet the seeding criterion, the subsequent growth of SMBHs they host will
no longer be affected by DM physics but by hierarchical mergers of SMBHs during
halo mergers and accretion of baryonic matter. During the merger of host halos,
the dynamical friction against the DM background could drag the satellite SMBH
towards the primary SMBH and a bound SMBH binary will form. We assume that
this happens when the mass ratio of the two SMBH-plus-halo systems is larger than
0.3, as suggested in Ref. [355]. For simplicity, we do not model the subsequent
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evolution of the binary and treat the bound binary as a single SMBH right after the
merger. The typical timescale for a billion solar mass SMBH binary to go through
the hardening stage to the final coalesce is of ∼ 1 Gyr (e.g. [355]). Therefore, in the
early Universe, it is likely that binary SMBHs seeded through this mechanism are
common. These binaries could have different accretion (quasar) activities from low
redshift AGNs. In addition, SMBH triplets will likely form through hierarchical
merger as well. The intruding SMBH can facilitate the coalesce of the binary through
close three-body interactions and Kozai-Lidov oscillations (e.g. [356, 357]). The
lightest SMBHs are expected to be ejected from the galaxy center in about 40%
of the cases (e.g. [356, 357]). Moreover, the recoil due to the gravitational wave
emission after the binary merger (e.g. [358]) could also lead to the ejection of the
remnant SMBH. These processes could introduce order-unity correction factors to
the SMBH occupation fractions and SMBH masses. Self-consistently modeling
these processes is beyond the scope of this chapter, thus our results should be treated
as upper limits.

For the accretion of baryonic matter, we model the “merger driven” accretion of
SMBHs, which has been adopted in previous studies of the cosmic evolution of
SMBHs [355, 359–361]. The efficient gas inflow triggered by galaxy mergers feeds
both the accretion of SMBHs and the star-formation in galaxy bulges. We assume
this feeding happens when the mass ratio between the two progenitor halos is larger
than 0.1 (defined as a “major merger”). The stellar/supernovae feedback from rapid
star-formation and potential active galactic nucleus (AGN) feedback will eventually
quench the gas inflow as well as further growth of the SMBH. The total amount
of mass accreted during each major merger event is related to the complicated gas
dynamics and feedback processes in the galaxy bulge. Hypothetically, it manifests
as the observed statistical correlation between the SMBH mass and bulge velocity
dispersion of its host galaxy (the 𝑀BH − 𝜎∗

v relation [19, 362])

𝑀BH = (4.4 ± 0.9) × 107 M⊙ (𝜎∗
v/150 km s−1)4.58±0.52. (4.21)

This motivates us to set the mass gain of an SMBH through the accretion of baryonic
matter during each merger event as

Δ𝑀BH = Δ𝑀0(1 − 𝜖r) (𝜎∗
v/150 km s−1)4.58, (4.22)

where 𝜎∗
v is the bulge velocity dispersion of the merged galaxy, 𝜖r is the radiative

efficiency (assumed to be the canonical value 0.1) and Δ𝑀0 is a free normalization
parameter, which has been set to ∼ 104 - 107 M⊙ in previous studies of low-mass
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seeds [355, 359, 361]. In observations, the bulge velocity dispersion is found to
correlate with the asymptotic value of the halo circular velocity as [362]

log𝑉c = (0.892 ± 0.041) log𝜎∗
v + (0.44 ± 0.09). (4.23)

And for the NFW profile, the maximum circular velocity of the host halo is related
to the halo mass as [47, 327]

𝑉c =
[
𝐺
𝑓 (𝑥max)
𝑓 (𝑐vir)

𝑐vir

𝑥max

(4𝜋
3
Δ(𝑧)𝜌crit(𝑧)

)1/3]1/2
𝑀

1/3
vir ,

𝑓 (𝑥) = ln (1 + 𝑥) − 𝑥

1 + 𝑥 , 𝑥max = 2.15. (4.24)

Combining Eqs. (4.22), (4.23) and (4.24) above results in a link between Δ𝑀BH

and host halo parameters (𝑀vir, 𝑐vir) at a given redshift. This forms an empirical
prescription to model the mass growth of SMBHs during galaxy mergers tracked
by halo merger trees, with the assumption that the statistical correlations between
SMBHs and their host galaxies (halos) are maintained throughout cosmic time.
Overall, the two free parameters of the SMBH catalog are the self-interaction cross-
section per unit mass, 𝜎/𝑚, and the baryonic mass accretion constant, Δ𝑀0. Similar
to the host halos, the SMBHs are assigned with statistical weights corresponding
to the number density of the final halo of the merger tree at its sampling redshift.
For our fiducial model, we set Δ𝑀0 = 0 to study the pure impact of DM physics
and hierarchical mergers of SMBH seeds. In addition, we will try varying Δ𝑀0

to 107 M⊙ to study the “maximum” effect (since 107 M⊙ is already close to the
normalization of the local 𝑀BH − 𝜎∗

v relation) that baryonic accretion can have on
this population of SMBHs at high redshift.

Predictions for high redshift quasars
In this section, we aim to make predictions for the abundance of luminous quasars
at high redshift and explain the unexpectedly large masses of these quasars with the
seeding model discussed in this chapter. We will first derive predictions for the mass
function of SMBHs seeded by tdSIDM, and then link it to the luminosity function
of quasars. Binned estimations of SMBH mass functions are derived based on the
weighted abundance of SMBHs in the merger trees and the results are shown in
Fig. 4.4. At the massive end, the shape of the SMBH mass function resembles the
halo mass function with an exponential decrease, since the massive SMBHs are still
coupled to the seeding mechanism with mass proportional to the host halo mass. At
the low-mass end, SMBHs start to decouple from the seeding mechanism, so the



105

SMBH mass function turns over and starts to decrease with lower 𝑀BH, as opposed
to the behavior of the halo mass function. Varying the self-interaction cross-section
has almost no effects at the massive end while changing the characteristic lower mass
when the SMBH mass function turns over. The model with 𝜎/𝑚 = 0.1 cm2 g−1

predicts a more extended tail of SMBHs at the low-mass end, compared to the
model with 𝜎/𝑚 = 0.05 cm2 g−1, with no apparent mass cut-off. This is because
the redshift range of seeding in the model with 𝜎/𝑚 = 0.1 cm2 g−1 is broader than
the model with 𝜎/𝑚 = 0.05 cm2 g−1, as illustrated in the left panel of Fig.4.2.
SMBHs seeded and decoupled at higher redshift can populate the low-mass end of
the SMBH mass function. Quasar surveys and theoretical modeling indicate that
the number density of luminous high redshift quasars with 𝑀BH ≳ 109 M⊙ and
𝐿bol ≳ 1046 erg/s is 10−9 ≲ Φ ≲ 10−7 [ Mpc−3 dex−1] [15, 18, 363], which sets a
lower limit of the abundance of underlying SMBH population 2. The predictions
here are consistent with this limit. In the lower panel of Fig. 4.4, we compare the
model predictions with Δ𝑀0 = 0 and Δ𝑀0 = 107. Baryonic accretion during major
mergers only has a weak impact at the low-mass end (shifting the lowest mass of
the seeds produced by the mechanism) and can hardly affect the mass of the most
massive SMBHs seeded through this mechanism.

In order to relate the SMBH mass function to the quasar luminosity function, the
fraction of SMBHs that are active (the duty-cycle 𝐷) and the luminosity of active
quasars are required. The bolometric luminosity (luminosity integrated over the
entire quasar spectrum and free from extinction) of a quasar, 𝐿bol, is often described
as its ratio to the Eddington luminosity

𝐿bol = 𝜆edd𝐿edd = 𝜆edd
4𝜋𝐺𝑚p𝑐

𝜎T
𝑀BH

= 1.26 × 1047erg/s
(𝜆edd

1

) ( 𝑀BH

109 M⊙

)
, (4.25)

where 𝑚p is the proton mass and 𝜎T is the Thomson scattering cross-section for the
electron. The ratio 𝜆edd is referred to as the Eddington ratio. For simplicity, we first
adopt a log-normal Eddington ratio distribution function (ERDF)

𝑃1(log𝜆edd) =
1

√
2𝜋𝜎edd

𝑒−(log𝜆edd−log𝜆c)2/2𝜎2
edd , (4.26)

2The estimation is done using the bright UV-selected quasars at 𝑧 ≳ 6. If actively accreting
at (sub-)Eddington rate, a billion solar mass SMBH roughly gives bolometric radiation output
𝐿bol ∼ 1046−47 erg/s, which corresponds to 𝑀UV ∼ −24 after applying the bolometric corrections
(e.g. [15]). The number density of bright UV-selected quasar with such luminosities is roughly the
range quoted in the main text (e.g. [15, 364, 365]). Similar number density estimations were given
in [16, 363].
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Figure 4.4: SMBH mass function. Top: Number density of SMBHs as a function
SMBH mass at 𝑧 = 6, calculated from the weighted abundance of SMBHs in the
merger trees. The prediction assuming 𝜎/𝑚 = 0.1 (0.05) cm2 g−1 and Δ𝑀0 = 0 is
shown and compared to the halo mass function multiplied by the collapse fraction
𝑓col. The massive end of the BHMF is coupled with the seeding mechanism, and
the shape of the SMBH mass function resembles the exponential cut-off in the halo
mass function. Low-mass SMBHs have decoupled from the seeding mechanism
and the low-mass end of the mass function deviates from the halo mass function.
The choice of self-interaction cross-section does not affect the massive end but
changes the characteristic mass where the SMBH mass function deviates from the
halo mass function. The shaded region indicates the abundance of observed massive
quasars (𝑀BH ≳ 109 M⊙) at high redshift and the abundance of underlying SMBH
population should at least be larger. Bottom: We show the SMBH mass functions in
the model with 𝜎/𝑚 = 0.1 cm2 g−1 and Δ𝑀0 = 0 (107) M⊙. The baryonic accretion
arguably only has an impact at the low-mass end (shifting the lowest mass of the
seeds produced by the mechanism), hardly changing the abundance of the most
massive SMBHs.
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with 𝜆c = 0.6 and 𝜎edd = 0.3, motivated by observational constraints of 𝑧 ∼ 6
quasars [366], as well as the extrapolation of models constrained at lower redshift
[e.g., 367, 368]. Such a log-normal ERDF implies that active SMBHs accrete at
close to the Eddington limit. However, it is still possible that a substantial fraction
of active SMBHs accrete at much lower rates and the observed massive quasars
are only tip-of-the-iceberg of the SMBH population. Therefore, in addition to the
log-normal ERDF, we also try using a cut-off power-law ERDF that extends to
𝜆edd = 10−4

𝑃2(log𝜆edd) = 𝑁
(𝜆edd

𝜆c

)𝛼
𝑒−𝜆edd/𝜆c , (4.27)

where 𝑁 is a normalization factor to keep the integrated probability at unity, 𝜆c = 1.5
[368] sets a cut-off in the super Eddington regime and 𝛼 is the faint-end slope,
which is free and can be tuned to match the prediction with the observed bolometric
quasar luminosity function. The SMBH mass function can then be mapped to the
bolometric quasar luminosity function through the convolution

𝜙L(log 𝐿bol) = 𝐷
∫ ∞

−4
𝜙M(log 𝐿bol − log𝜆edd − log𝐶)

𝑃(log𝜆edd)d log𝜆edd, (4.28)

where 𝐶 is 4𝜋𝐺𝑚p𝑐/𝜎T (as in Eq. (4.25)) and we have assumed that SMBHs with
log𝜆edd > −4 are active (which also defines the duty-cycle). The duty-cycle can
be determined by making the normalization of the predicted luminosity function
consistent with observations at the bright end. We note that the parameterization
of the ERDF and the simple constant duty-cycle assumed here are purely for “a
proof of concept”, with the intention to check whether predictions from the seeding
model can be reconciled with observations with some level of tuning of the model
for SMBH growth. We do not try to argue for a specific model of SMBH growth
through the study here.

The bolometric luminosity of quasars is the integrated luminosity over the entire
spectrum, representing the total energy output. However, in observations, the lu-
minosity function measurements are performed in certain photometric bands (com-
monly far-UV and X-ray for quasars at high redshift) covering restricted parts of the
quasar spectral energy distribution and are subject to corrections for dust and neutral
hydrogen extinction, survey completeness, and selection biases. Ref. [15] has up-
dated the constraints on the bolometric quasar luminosity function at high redshift
based on the latest compilation of observations in far-UV, X-ray, and infrared. The
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observational binned estimations from compiled observations are converted onto
the bolometric plane, taking account of the extinction and bolometric corrections.

In the top panel of Fig. 4.5, we show the predicted bolometric quasar luminosity
function at 𝑧 = 6 from the merger trees, assuming a log-normal ERDF. The results
are compared to the observational constraints compiled in [15]. With a duty-cycle
of 3× 10−3 (6× 10−4), the predicted abundance of the most luminous quasars in the
model with 𝜎/𝑚 = 0.05 (0.1) cm2 g−1 can match the observed abundances. The
prediction assuming 𝜎/𝑚 = 0.1 cm2 g−1 gives better agreement at faint luminosi-
ties (𝐿bol ≲ 1046.5 erg/s) but over-predicts the quasars at intermediate luminosities
(𝐿bol ∼ 1047 erg/s). The prediction with 𝜎/𝑚 = 0.05 cm2 g−1 agrees with observa-
tions at the luminous end (𝐿bol ≳ 1047.5 erg/s) and is not in tension with observations
at intermediate and faint luminosities. Acknowledging that other seeding mecha-
nisms could still be responsible for the formation of low-mass and faint quasars,
the prediction with 𝜎/𝑚 = 0.05 cm2 g−1 is compatible with observations. In terms
of the duty-cycle, some observational studies of quasar clustering [369–371] have
suggested that the duty-cycle of high redshift AGNs in the most massive halos may
approach unity at 𝑧 ≃ 6. That duty-cycle is much larger than the median value
required for our models, especially for the 𝜎/𝑚 = 0.1 cm2 g−1 case, to not overpro-
duce the abundance of luminous quasars. However, if the Eddington ratio of SMBH
has a strong positive dependence on the host halo mass or environment, the averaged
duty-cycle of all SMBHs could be much smaller than inferred from the clustering
of currently observed luminous quasars. It is still debated observationally whether
high redshift quasars have order-unity duty-cycles, or we are observing the tip-of-
the-iceberg of the SMBH population. Some studies [368, 372] have instead argued
for a low duty-cycle of the quasar population at 𝑧 ≳ 6. We examine this possibility
by using the cut-off power-law function defined in Eq. (4.27) as the ERDF, which
essentially includes a power-law tail of SMBHs with low Eddington ratios. The
quasar luminosity functions predicted from this ERDF are shown in the lower panel
of Fig. 4.5. We have set 𝐷 = 1 (since we have already considered quasars with
low activity with this ERDF) and tuned 𝛼 in order to best match the observational
constraints. The model with 𝜎/𝑚 = 0.1 cm2 g−1 and 𝛼 = −1.1 is in perfect agree-
ment with observations at all luminosities. The model with 𝜎/𝑚 = 0.05 cm2 g−1

with 𝛼 = −0.6 can produce the correct abundance of bright quasars but predicts
a shallower faint-end slope. We note that this discrepancy cannot be alleviated by
tuning 𝛼 and 𝐷, since further decreasing 𝛼 will decrease the normalization at the
bright end and require an unphysical value 𝐷 > 1 to match observations. The com-
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Figure 4.5: Bolometric quasar luminosity function at 𝑧 = 6. Top: Model
predictions, varying 𝜎/𝑚 and Δ𝑀0. The predictions are derived by convolving the
SMBH mass function with a log-normal ERDF, tuning the duty-cycle to match the
abundance of luminous quasars. The solid circles represent observational constraints
compiled in [15]. The prediction assuming 𝜎/𝑚 = 0.05 cm2 g−1 is compatible
with the observations and produces the observed abundance of luminous quasars
at 𝑧 = 6, assuming a relatively low duty-cycle. On the other hand, the model
with 𝜎/𝑚 = 0.05 cm2 g−1 will overproduce quasars of 𝐿bol ∼ 1047 erg/s. Bottom:
We show the predictions with a cut-off power-law as the ERDF. The duty-cycle
is assumed to be unity. The faint-end slope of the ERDF (𝛼) is tuned to make
the predicted quasar luminosity function close to observations. Both models can
agree well with the luminous quasar abundances in observations. But the model
𝜎/𝑚 = 0.05 cm2 g−1 does not fit perfectly with the faint end luminosity function
regardless of the 𝛼 adopted.

parisons here demonstrate that with a little tuning of parameters of the ERDF, the
model can reproduce the observed quasar luminosity function. Meanwhile, despite
the detailed functional form we use for the ERDF, our results suggest that if the
collapse of dissipative DM halo is the dominant seeding mechanism for SMBHs
at high redshift, a significant fraction of non-active SMBHs or SMBHs with low
Eddington ratios would be expected. Such a feature can be tested with future surveys
of high redshift quasars with improved completeness.

Since the most important implication of the model is the existence of extremely
massive SMBHs, we explicitly track the mass growth history of ∼ 300 randomly
selected massive SMBHs with log𝑀BH ≤ 10 at 𝑧 = 7 in the merger trees. The
results of the model with 𝜎/𝑚 = 0.1 cm2 g−1 are shown in Fig. 4.6 and compared
to the mass measurements of high redshift quasars in the Ref. [16] compilation,
including observations from Refs. [200, 201, 341, 343, 345–347]. The masses were
measured using the virial method based on the broad line emission from quasars.
The recent measurement of a 𝑧 ∼ 7 quasar [373] is added to this compilation. For
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Figure 4.6: Mass growth history of SMBHs. The blue solid lines show the mass of
SMBHs as a function of redshift in our model assuming 𝜎/𝑚 = 0.1 cm2 g−1. These
SMBHs are selected from merger trees with 𝑀BH ≤ 1010 M⊙. The red points are
the observed massive quasars at 𝑧 ≳ 6 compiled in [16, 17] with the mass estimated
using the virial method. The gray points are a more complete set of 196 quasars at
𝑧 ≳ 6 compiled in [18], with the mass estimated indirectly from UV luminosity. The
red dotted lines indicate the growth history of the observed quasars assuming they
exhibit the same Eddington ratio as the measured value at the redshift of discovery.
The typical mass and formation redshift of SMBH seeds from classical seeding
mechanisms are shown in shaded regions, with the Eddington-limit growth tracks
of these seeds in dashed lines for reference. Seeds formed in canonical mechanisms
need to accrete at rates near the Eddington limit in order to produce billion solar
mass SMBHs at 𝑧 ≃ 6 − 8. This is in tension with the low Eddington ratios of
some observed quasars, which require seed masses of ∼ 108𝑀⊙ implied by their
observed Eddington ratio. However, such quasars can be accommodated in our
seeding model.
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Figure 4.7: The 𝑀BH −𝜎∗
v relation of high redshift SMBHs. We show SMBHs in

the merger trees selected at 𝑧 = 7 in solid circles, with the marker size scaling with
the statistical weight. Red and blue circles correspond to the model with 𝜎/𝑚 = 0.1
and 0.05 cm2 g−1, respectively. The local 𝑀BH − 𝜎∗

v relation [19] is shown with
the purple dashed line. The orange dashed line shows the relation 𝑀BH ∼ 𝑓col𝑀vir,
assuming the relation between 𝑀vir and 𝜎∗

v (Eq. (4.23) and Eq. (4.24)) holds.
Observational samples based on the [C II] line observations of the quasar host
galaxies compiled in [17] (originally from [20]) are shown in orange circles.

these quasars, we show their mass growth history assuming they have the same
Eddington ratio as the measured value at the redshift of discovery. In addition,
we show a more complete set of 196 quasars at 𝑧 ≳ 6 compiled by [18], where
the SMBH mass was inferred from the UV luminosity with bolometric corrections
and assuming 𝜆edd = 1. The massive quasars observed at 𝑧 ≃ 6 - 8 with relatively
low measured Eddington ratios are hard to reconcile with the canonical seeding
mechanisms since the seeds need to continuously accrete at the Eddington limit to
reach more than a billion solar mass at the redshift of discovery. On the other hand,
in our model, the masses of selected SMBH seeds are in agreement with the massive
quasars revealed by observations at 𝑧 ≃ 6 − 8. Among these seeds, the relatively
massive ones are still coupled to the seeding mechanism down to 𝑧 ≃ 6 and have
their mass growth following the growth of host halo mass. These seeds are already
very massive (𝑀BH ≳ 106 M⊙) when initially seeded at 𝑧 ≳ 15 and the mass growth
is dominated by the accretion of dissipative DM, so the observed low Eddington
ratios can be tolerated. Such a picture is consistent with the large fraction of in-
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active quasars constrained above in the discussion of quasar luminosity functions.
In addition, recent observational studies found that a few objects have extremely
small proximity zone sizes that imply UV-luminous quasar lifetimes of ≲ 100,000
yr [202]. The short lifetimes of these quasars also pose challenges to canonical
black hole formation models which require a much longer period of seed accretion
to reach the SMBH mass at the redshift of discovery. However, these young quasars
can be accommodated in our seeding model, where the mass growth of SMBHs is
dominated by dissipative DM accretion with no impact on the ambient intergalactic
medium.

In Fig. 4.7, we show the 𝑀BH − 𝜎∗
v relation of 𝑧 ≳ 6 quasars. The SMBHs in the

merger trees at 𝑧 = 7 are shown in this plane for comparison to observational results.
We convert the host halo mass to the bulge velocity dispersion using Eq. (4.23) and
Eq. (4.24), assuming that the locally observed scaling relations can be applied to high
redshift galaxies. The SMBHs in the merger trees tightly follow the 𝑀BH ∼ 𝑓col𝑀vir

relation in massive host galaxies, and start to scatter toward lower 𝑀BH at the
mass when the halo decouples from the seeding mechanism. We compare our
results with the observational constraints compiled in Ref. [17], based on the [C II]
line observations of the quasar host galaxies compiled in Ref. [20]. Observations
[17, 20, 374] indicate that the host galaxies of massive, luminous quasars at 𝑧 ≳ 6
have halo dynamical masses and velocity dispersions at least an order of magnitude
lower than expected from the local 𝑀BH −𝑀bulge and 𝑀BH −𝜎∗

v relations. However,
as shown in Fig. 4.7, SMBHs seeded by tdSIDM, which exhibit a much larger
SMBH-to-halo mass ratio than local constraints, are in better agreement with these
measurements. At the massive end, SMBHs in this model cluster around a straight
line fixed by the 𝑉c − 𝜎∗

v relation (Eq. (4.23)) we assumed. The statistical scatter of
the relation is not reflected here. The typical uncertainty of the normalization of the
relation measured at low redshift is ∼ 0.1 − 0.2 dex in 𝑉c(𝜎∗

v ) [362], which roughly
corresponds to ∼ 0.2 − 0.6 dex in 𝑀vir. At the low-mass end, SMBHs decouple
from the linear relation and the scatter at the tail is due to variations in the merger
histories of host halos. Such an 𝑀BH−𝜎∗

v relation predicted at high redshift will still
be consistent with the relation measured at low redshift, since the SMBHs below
1010 M⊙ will have already decoupled from the seeding mechanism and have their
mass growth dominated by baryonic accretion.

In Figure 4.8, we show the cosmic SMBH mass density as a function of redshift
predicted by our seeding mechanism and compare it to the local SMBH mass
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Figure 4.8: The comoving SMBH mass density in the Universe versus redshift.
The cumulative mass density of SMBHs integrated over the mass function. The
results with different model parameters are shown as labeled and compared to
the local SMBH mass density, 4.4 − 5.9 × 105 M⊙ Mpc−3 [21], as indicated by
the horizontal line. The mass density from the model with 𝜎/𝑚 = 0.1 cm2 g−1

approaches the local mass density already at 𝑧 ≃ 6, which is potentially problematic
since the integrated quasar luminosity density matches the local SMBH mass density
[15] (at 0.5 dex level, assuming 𝜖r = 0.1). Therefore, the mass density at high redshift
needs to be significantly lower than the local value in order to be consistent with
the observation of quasar luminosity functions, unless 𝜖r is larger (i.e. SMBHs are
rapidly rotating).

density [21], which poses an upper limit. The mass density from the model with
𝜎/𝑚 = 0.1 cm2 g−1 is close to the local value already at 𝑧 ≃ 6. The mass density
is quite sensitive to the self-interaction cross-section and the model with 𝜎/𝑚 =

0.05 cm2 g−1 predicts about two orders of magnitude lower mass density at 𝑧 ≃ 6.
On the other hand, baryonic accretion has little impact on the SMBH mass density
in our model. Quasar surveys indicate that the integrated quasar luminosity density
matches the local SMBH mass density [15] (at 0.5 dex level, assuming 𝜖r = 0.1).
Therefore, the SMBH mass density at high redshift has to be significantly lower than
the local value in order to be consistent with the observation of quasar luminosity
functions, unless 𝜖r is larger (i.e. SMBHs are rapidly rotating). The model with
𝜎/𝑚 = 0.1 cm2 g−1 is thus potentially in tension with the observations while the
model with 𝜎/𝑚 = 0.05 cm2 g−1 is still consistent with observations. Meanwhile,
since the mass growth of the seeds is dominated by accretion of dissipative DM rather
than baryonic matter, our model predicts that the integrated luminosity density of
quasars (which reflects baryonic accretion) at high redshift will be significantly
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smaller than the change in SMBH mass density at high redshift. Future surveys of
high redshift quasars with the next-generation instruments, such as the Nancy Grace
Roman Space Telescope, the Rubin Observatory Legacy Survey of Space and Time
(LSST), and the James Webb Space Telescope (JWST), may be able to further test
our seeding mechanism.

As mentioned above, the high redshift predictions and the comparisons with obser-
vations presented in this section are affected by many astrophysical uncertainties.
These come from both modeling the seeding/growth of SMBHs and connecting
them to the observed quasars. We have compared the predictions with the observa-
tionally inferred bolometric quasar luminosity functions at 𝑧 = 6, where bolometric
luminosities are affected by uncertainties in bolometric and extinction corrections
(see discussions in [15]). Towards higher redshift, the measurements of quasar lu-
minosity functions have been limited by the survey volume with respect to the vastly
decreasing quasar number density (e.g. [15, 306, 365, 375, 376]). Meanwhile, in
modeling the seeding, we have ignored the baryon content of early galaxies. If the
baryons have a non-neglibible contribution to the central gravitational potential, the
collapse of halo into compact objects was shown to be accelerated [16]. However,
the bursty star formation and feedback from the condensed baryon matter could
compete with the dissipative collapse of DM (e.g. [56–58]). Moreover, in modeling
SMBH growth, we have adopted scaling relations in connecting SMBH growth rates
to host galaxy bulge properties and host halo properties, while these relations are
largely based on low redshift observations. Finally, the largest uncertainty comes
from the fuelling model to connect SMBHs to observed quasars, for which there is
limited observational constraints even at moderate redshift. We essentially allow the
ERDF and the quasar duty-cycle as free parameterized inputs. We expect that none
of these uncertainties will likely overturn the general viability of the tdSIDM model,
but improved constraints on the astrophysical inputs will certainly help pinpoint the
working tdSIDM parameters more precisely. This will be explored in follow-up
studies.

4.4 Consistency with low redshift SMBHs
There are two branches of halos that are most likely to host SMBH seeds, as
illustrated in Fig. 4.2. The first branch consists of rare, massive halos at high
redshift that can seed SMBHs shortly after they formed. These rare halos typically
have low concentrations (usually below 4 as shown by most halo mass-concentration
relations e.g. [337, 377]). However, the central DM density in these halos is still
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very high since they form at unusually high redshift, as indicated by Eq. (4.14),
leading to efficient SMBH formation. For this branch, according to Eq. (4.14), 𝑡col

depends on redshift as 𝜌−7/6
crit (𝑧) ∼ (1 + 𝑧)−7/2, when 𝑀vir and 𝑐vir are fixed. At

high redshift, when the dark energy is subdominant to matter, 𝑡h depends on redshift
as (1 + 𝑧)−3/2. Therefore, the ratio 𝑡diss/𝑡h of this branch has a simple redshift
dependence as (1 + 𝑧)−2, indicating that the seeding is more likely to happen at
earlier times assuming a fixed halo mass and concentration. The second branch
consists of normal mass halos at low redshift with early assembly times, in which
SMBH seeds do not form immediately but when they evolve to low redshift. These
halos inherit high central DM densities at formation, which manifests as high halo
concentrations after they accrete matter at late times. By first-order approximation,
the central densities of such halos are roughly constant after the majority of their
mass is assembled, and the redshift evolution of the ratio 𝑡diss/𝑡h is dominated by
the evolution of the 𝑡h term assuming a fixed halo mass, which approximately gives
a redshift dependence (1 + 𝑧)3/2. This indicates that this branch of halos will more
likely seed SMBHs at low redshift.

The model predicts the SMBH-to-halo mass ratio to be 3 × 10−3 at seeding, which
is apparently much larger than that of local SMBHs in observations. Therefore,
the second branch must be checked for the formation of overly massive SMBHs at
low redshift. The distinct halos in the Local Universe (with halo masses as large
as 1014−15 M⊙) with median concentration could evade the seeding criterion at low
redshift and avoid hosting an overly massive SMBH. However, given the strong
dependence of the collapse timescale on halo concentration, a highly concentrated
progenitor (assembled early in cosmic time) could still seed an SMBH, which is
later merged into the main progenitor. To investigate the SMBH seeds formed in this
scenario and check the consistency of the model with local SMBHs, we generate a
second set of merger trees, sampling 5 halos of mass ∼ 1012 M⊙ and 5 halos of mass
∼ 1014 M⊙ at 𝑧 = 0, which correspond to the Milky Way mass and cluster mass
galaxies in the Local Universe. The mass resolution and highest redshift they trace
are the same as the first set. We explicitly track the mass growth history of all the
progenitors in these trees to 𝑧 = 0 and check if they are able to host SMBH seeds.
We will show that the model with small cross-sections (𝜎 ≲ 0.1 cm2 g−1) can stay
consistent with low redshift observations while explaining the massive high redshift
SMBHs.

In the top row of Fig. 4.9, we show the mass growth history of the progenitors
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Figure 4.9: Top: Mass growth history of halo progenitors. The growth tracks of
relatively massive progenitors are color-coded by their concentrations. Low-mass
progenitors are shown by the gray cloud. The main progenitor is indicated by
the cyan solid line. The green dashed line shows an analytic model for the main
progenitor mass growth history [22]. The gray solid lines show the mass of the halo
corresponding to a certain rareness of fluctuations. Bottom: Ratio 𝑡diss/𝑡h of halo
progenitors versus redshift. The cross-section (𝜎/𝑚) = 0.05 cm2 g−1 is assumed
here. Progenitors that are more massive than 1010 M⊙ are color-coded by their halo
masses. The labeling is the same as the top row. The green dashed lines show
analytic expectations for the timescales of the low and high redshift branches (as
discussed in the main text). The horizontal dashed line indicates the threshold where
SMBH seeding will occur assuming (𝜎/𝑚) = 0.05 cm2 g−1 and 𝜖 = 0.1.

of a Milky Way mass halo (left) and a cluster mass halo (right). The evolution
tracks of progenitors are color-coded by their halo concentration and end when
the progenitors merge. The mass growth history of the main progenitor is well
described by the analytical model 𝑀 ∝ 𝑒−𝛼𝑧 [22], with the 𝛼 values consistent
with the ones found therein for both halos. Apparently, for both halos, there exists
a population of halos with early assembly times and with limited mass accretion
at late times. These halos become much more concentrated than expected from a
median mass-concentration relation. Such halos are more abundant in the Milky
Way mass halo than in the cluster mass halo, due to the later assembly time of the
cluster mass halo and its progenitor (i.e. larger 𝛼 values). In the bottom row of
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Fig. 4.9, we show the ratio 𝑡diss/𝑡h of halo progenitors as a function of redshift and
compare it to the seeding threshold (assuming the fiducial choice of cross-section
𝜎/𝑚 = 0.05 cm2 g−1) indicated by the dashed line. It is obvious that there are
two branches of halos that are close to the seeding threshold, with the redshift
dependence of the timescale as expected from the analytic estimations above. For
a Milky Way mass halo, the low redshift branch is closer to the seeding threshold.
These highly concentrated, massive progenitors have their central mass densities
almost preserved towards low redshift before they merge into the main progenitor
and the dissipation timescale is almost a constant in these halos. We note that in
most of the Milky Way mass halo merger trees, under the choice of cross-section
here, no progenitor can cross the seeding threshold. Occasionally, as indicated by
the example in Fig. 4.9), a low-mass progenitor could cross the seeding threshold,
but the mass of the SMBH seed formed and its statistics are still compatible with the
observed local SMBHs. Such a low-mass seed (compared to the main progenitor)
may take too long time to sink to the halo center under dynamical friction to cause
any real issues (e.g. [378]). Whether this branch of SMBHs can fully explain the
local SMBH populations requires more careful modeling of the late-time evolution
of SMBHs and galaxies, which is beyond the scope of this chapter. For the cluster
mass halo, the high redshift branch is closer to the seeding threshold. Although the
entire population of progenitors is closer to the seeding threshold, the low redshift
branch stays at roughly the same position as those in the Milky Way mass halo,
primarily due to the late formation times and low halo concentrations. Again, the
low redshift branch can hardly cross the seeding threshold. The high redshift branch
in the cluster mass halo is at the edge of the seeding threshold such that seeding is
most likely to happen in the main progenitor. It is expected that, for more massive
halos, the seeding will continue favoring the high redshift branch and eventually
SMBH seeds may form in the main progenitor at high redshift. This is exactly the
SMBH population discussed in previous sections.

The discussion here demonstrates that there exists a parameter space of dissipative
DM where the predictions are consistent with observations at both high and low
redshift. The model with 𝜎/𝑚 = 0.05 cm2 g−1 (or 𝜖𝜎/𝑚 = 0.005 cm2 g−1 if we
make 𝜖 free) can give rise to the correct abundance of luminous quasars at high
redshift while not producing overly massive SMBH in the low redshift Universe.
Note again the seeding criterion depends on the product of𝜎/𝑚 and 𝜖 , so uncertainty
in 𝜖 degenerates with uncertainty in𝜎/𝑚. If a generic dSIDM model with a constant
dissipation fraction 𝑓 is considered, 𝑓 is degenerate with the cross-section in the
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seeding criterion and the relevant parameter is 𝑓 𝜖𝜎/𝑚.

4.5 Observational constraints of tdSIDM
Most of the observational constraints for SIDM come from studies of the elastic
case, with the stringent ones (𝜎/𝑚) ≲ 0.3−1 cm2 g−1 from merging galaxy clusters
(e.g. [159–162]). The tdSIDM models with (𝜎/𝑚) ∼ 0.05−0.1 cm2 g−1 considered
in this work are consistent with these constraints, although it is not clear whether
dissipation will create any distinct signatures at the cluster scale compared to the
elastic case.

Specifically, at the dwarf scale, dSIDM has been considered in some recent studies.
For instance, dSIDM with a constant energy dissipation per collision, 𝐸loss ≡ 𝑚𝜈2

loss,
has been studied in [125] through semi-analytic modeling of dwarf galaxies. The
central densities of dwarf galaxies were found to be significantly enhanced by
dissipation–accelerated gravothermal collapse, which confronted with the observed
local dwarfs led to constraints on dSIDM. The constraints they derived can be
roughly translated to our model when the constant energy loss is comparable to the
kinetic energy of DM particles. It is roughly equivalent to the 𝑓 ∼ 0.5 case, if 𝐸loss ∼
𝐸 rel

k ∼ 𝑚⟨𝑣2
rel⟩/4, which is equivalent to 𝜈loss ∼ 2/

√
𝜋𝜎v assuming the Maxwell-

Boltzmann velocity distribution. Considering the typical one-dimensional velocity
dispersion of the dwarfs they used, we get 𝑓 (𝜎/𝑚) ≲ 0.15 cm2 g−1 approximately
from their constraints. On the other hand, the dSIDM model with fractional energy
dissipation, which is of the same family as the tdSIDM model, has been studied in [5]
via hydrodynamical simulations of galaxies. Assuming a lower dissipation fraction
of 𝑓 = 0.5, they found that dSIDM with (𝜎/𝑚) ≳ 0.1 cm2 g−1 could lead to cuspy
and power-law-like central density profiles of dwarf galaxies at the sub-kpc scale.
The cuspy profiles are potentially in tension with the kinematic and rotation curve
measurements of Local dwarf galaxies (this aspect is expected to be analyzed in more
detail in the follow-up work Shen et al. [in prep., 2021]). Further investigations are
required to consolidate these constraints. Nevertheless, the favored tdSIDM models
in this work are still consistent with these low-redshift studies.

In addition, dissipative DM has potential impacts on halo substructures and corre-
sponding strong lensing signals, which remains an appealing aspect to explore. The
condensation of dSIDM has implications in explaining the excess of small-scale
gravitational lenses recently found in galaxy clusters [379] as well as the unexpected
concentration of some substructures [380].
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4.6 Summary of the chapter
In this chapter, we have studied a mechanism to seed high redshift SMBHs via
the collapse of totally dissipative self-interacting DM (tdSIDM) halos, where the
DM particle loses nearly all its kinetic energy during a single collision. The study
is motivated by the existence of billion solar mass SMBHs observed in the early
Universe (𝑧 ≳ 6), which are in tension with canonical seeding mechanisms. We
develop an analytical model for the collapse criteria and timescale of tdSIDM halos,
calibrated based on numerical N-body simulations of isolated halos, and then apply
this model to Monte-Carlo halo merger trees to make predictions of SMBHs and
observed quasars in the cosmological context. Our findings can be summarized as:

• We have performed N-body simulations of isolated, rare halos at high redshift
initialized with the Navarro–Frenk–White (NFW) profile, with the inclusion
of dissipative DM self-interactions. We find that a constant fraction, 𝑓col ≃
3 × 10−3, of the halo mass will eventually collapse to the scale below the
spatial resolution of the simulations. Surprisingly, the collapsed fraction is
insensitive to the mass, size, spin and redshift of the sampled halo. An analytic
description of the collapse criteria and timescale is developed and calibrated
based on these simulations. This analytic prescription can be applied to halos
with various masses, concentrations, and formation redshifts as well as in
different cosmological models.

• The unique feature of our seeding mechanism is the rapid formation of SMBHs
seeds with an SMBH-to-halo mass ratio of ∼ 3 × 10−3. The SMBHs directly
seeded from the catastrophic collapse of tdSIDM halos are massive enough
to explain the high mass end of SMBHs at 𝑧 ≳ 6. The rapid formation of
SMBHs in our model implies the existence of very young quasars at high
redshift, which is consistent with recent studies that attempt to measure the
lifetimes of quasars [202]. Such a young population of quasars is difficult to
explain in standard scenarios where SMBHs have to live long enough to grow
at some modest multiple of the Eddington limit from much smaller masses.

• We trace the seeding and growth of SMBHs via halo merger trees and derive
predictions for the cosmological abundance of SMBHs. With little tuning of
the fueling model of SMBHs (the ERDF and the quasar duty-cycle), our model
with 𝜎/𝑚 = 0.05/0.1 cm2 g−1 (or 𝜖𝜎/𝑚 = 0.005/0.01 cm2 g−1 if we make
𝜖 free) successfully reproduces the observed quasar luminosity functions at
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high redshift, particularly at the bright end. The tuned ERDF and duty-cycle
imply that a significant fraction of SMBHs seeded in this way must have low
quasar activity, which will hopefully be tested by future quasar surveys.

• SMBHs seeded directly from tdSIDM halos exhibit much larger SMBH-to-
halo mass ratios than local SMBHs and lie systematically above the local
𝑀BH −𝜎∗

v relation. This feature is in better agreement with [C II] gas velocity
dispersion and host galaxy dynamical mass measured for high redshift massive
quasars.

• We compare the cosmic SMBH mass density predicted in our model to the
observed SMBH mass density in the Local Universe. We find that the model
with 𝜎/𝑚 = 0.1 cm2 g−1 (or 𝜖𝜎/𝑚 = 0.01 cm2 g−1) is potentially in tension
with observations, since the mass density in this model approaches the local
value already at 𝑧 ∼ 6, requiring large radiative efficiency to remain consistent
with low redshift data. The model with (𝜎/𝑚) = 0.05 cm2 g−1 (or 𝜖𝜎/𝑚 =

0.005 cm2 g−1) is still compatible with observations. In addition, we find
that the growth of SMBHs at high redshift is dominated by dissipative DM
rather than baryonic matter, predicting that the integrated luminosity density
of quasars (which reflects baryonic accretion) will be significantly smaller
than the change in SMBH mass density at high redshift, which is a testable
feature of our seeding mechanism.

• While the large SMBH-to-halo mass ratio (3 × 10−3) found in our N-body
simulations can easily explain the most massive SMBHs at 𝑧 ≳ 6, which are
the most difficult to understand in the standard scenario, one must check with
consistency at low redshift, particularly if halos with mass 𝑀 ≳ 1015𝑀⊙ also
collapse to form overly massive SMBHs. We show this does not occur because
the dissipation timescale sensitively depends on the halo central density, which
is relatively low for those massive halos at 𝑧 ∼ 0. Therefore our seeding model
based on dissipative self-interacting DM is capable of producing SMBHs that
are challenging to explain in standard scenarios while remaining consistent
with low redshift observations. Though this work focused on explaining the
population of high redshift SMBHs, tdSIDM may also explain the origin of
SMBHs in Milky Way mass halos. As shown in Fig. 4.2 and Fig. 4.9, Milky
Way mass halos may contain progenitors that are formed from rare fluctuations
at high redshift. Such rare progenitors have a large central density and are
more likely to collapse compared to other progenitors.
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Figure 4.10: Enclosed mass profile of two 5−𝜎 halos at 𝑧 = 10 with the same NFW
parameters but different simulation parameters. Solid curves represent the mass
profile at different times for the fiducial run, while the dashed curves are for a run
with a factor of 4 improved resolution (improving both mass and force resolution
accordingly). The vertical dashed lines indicate the gravitational force softening
length for both the fiducial run and the high-resolution run.

Our model prefers a cross-section of𝜎/𝑚 ∼ 0.05 cm2 g−1 (or 𝜖𝜎/𝑚 ∼ 0.005 cm2 g−1)
to explain the quasar luminosity function at high redshift while remaining consis-
tent with low redshift observations. Such a model is testable in the future once
the quasar luminosity function is measured at more redshifts. In the future, quasar
surveys conducted with the Nancy Grace Roman Space Telescope, the Rubin Ob-
servatory Legacy Survey of Space and Time (LSST), and the James Webb Space
Telescope (JWST) can further test our predictions of the quasar luminosity function
and the density change of SMBHs at high redshift.

4.7 Convergence Testing
This appendix investigates whether our primary results for isolated NFW halos are
sensitive to our choice of gravitational softening length. The worry is that the
physics of SMBH formation is significantly different from structure formation, and
simulations with different gravitational softening lengths may lead to very different
results. We compare our fiducial run to a simulation with different particle numbers
and gravitational softening lengths and show that the central regions of DM halos
still collapse at the same timescale.

In a cosmological N-body simulation, the gravitational softening length is often
taken to be the 𝑑/30, where 𝑑 is the particle mean separation in the simulation box.
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However, our simulations with isolated NFW halos are different from a cosmological
simulation. Our focus in this work is the SMBH formation process at the halo center.
Therefore, we are more interested in the particle separation length in the region where
catastrophic collapse happens. We take our gravitational softening length to be 2𝑑0

where 𝑑0 is the particle mean separation within radius 0.07𝑟s at the beginning of the
simulation.

In our fiducial run for various halo masses, the particle number is chosen to be 6×106

and the simulation box size is fixed to be 1000 pc. The fiducial run simulated the
collapse of 5 − 𝜎 halos from 𝑧 = 4 − 10. To test for convergence, we select a
5 − 𝜎 halo at 𝑧 = 10 with NFW parameter 𝑟s = 3.3 kpc and 𝜌0 = 0.316𝑀⊙pc−3

with gravitational softening length 0.033 kpc. We then run another simulation
with improved mass resolution and correspondingly improved force resolution. The
particle number in the new run is taken to be 2.4×107 and the gravitational softening
length is still 2𝑑0, corresponding to 0.021 kpc.

As shown in Fig. 4.10, the enclosed mass profiles 𝑀 (𝑟)/𝑀 converge very well
when the time approaches the collapse time 0.35𝑡0. Even though the simulation
with an improved resolution has a larger 𝑀 (𝑟)/𝑀 for small 𝑟 before the catastrophic
collapse, their final predictions for the collapse timescale and the SMBH-to-halo
mass ratio do converge. Therefore, we conclude that our fiducial simulations reliably
predict the collapse timescale to form an SMBH seed and the SMBH-to-halo mass
ratio.

4.8 Considerations in Centrifugal Barrier and Fragmentation
The goal of this Appendix is to demonstrate that the halo angular momentum is not
an important consideration for SMBH seeding with tdSIDM, justifying the neglect
of angular momentum in the bulk of the analysis.

Centrifugal Barrier
The collapse of a realistic halo with non-zero spin may be halted by the centrifugal
barrier [e.g., 381]. The scale of the centrifugal barrier (∼ 𝜆𝑅vir) is much larger than
the physical scale of SMBH seed formation.

Similar to the seeding mechanism in pristine gas disks [186, 194–199], we first
note that the non-axial-symmetric structures originating from global gravitational
instability transfer angular momentum outward and enable further collapse of the
halo. As the halo center becomes denser, instability builds, triggering a further
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collapse of the halo. Run-away collapse to compact objects is realized in this
way, even when there is no microscopic physical mechanism to transfer angular
momentum outward. Following [195–197], we consider the configuration of the
system as a spherical isothermal DM halo of virial mass 𝑀vir, with a constant
circular velocity𝑉c and some of the DM condensed to a thick dark disk having mass
𝑚d𝑀vir. The surface density of the dark disk is assumed to be

Σ(𝑟) = Σ0𝑒
−𝑟/𝑅d , (4.29)

where Σ0 is the normalization of the surface density, 𝑅d is the scale length of the
disk. Note that the qualitative conclusion is not sensitive to the density profile
assumed here. The instability of the dark disk is evaluated by the “Toomre Q”
parameter [382], defined as

𝑄 =
𝑐s𝜅

𝜋𝐺Σ
=
√

2
𝜎v𝑉c

𝜋𝐺Σ0𝑅d
, (4.30)

where we have replaced the sound speed 𝑐s with the one-dimensional velocity
dispersion of DM in the dark disk 𝜎v, 𝜅 =

√
2𝑉c/𝑅d is the epicyclic frequency and

we use Σ0 and 𝑅d as a representative surface density and disk scale. The disk is
considered unstable when 𝑄 drops below a critical value 𝑄c of order unity. Since
the spherical halo plus dark disk we consider here is only a crude approximation of
the dissipative DM configuration, the detailed value of 𝑄c is uncertain and is left as
a free parameter.

If we assume that some mass, 𝑚a𝑀 , is accreted at the center of the halo and the
remaining mass in the disk is (𝑚d − 𝑚a)𝑀 , Σ0 and 𝑅d are related with

(𝑚d − 𝑚a)𝑀 = 2𝜋Σ0𝑅
2
d . (4.31)

We assume that the dark disk has angular momentum 𝐽d = 𝑗d𝐽, where 𝐽 is the total
angular momentum of the halo. 𝐽 is related to the spin parameter 𝜆 of the halo [381]

𝐽 =
𝜆𝐺𝑀5/2

|𝐸 |1/2 =
√

2
𝜆𝐺𝑀2

𝑉c
, (4.32)

where 𝐸 is the total energy of the halo, and we have assumed that the halo takes
an isothermal distribution of matter (circular velocity is a constant). Taking the
condensed dark disk to have the same circular velocity as the halo, we obtain

𝐽d =

∫
𝑉cΣ0𝑒

−𝑟/𝑅d (2𝜋𝑟)𝑟d𝑟

= 4𝜋𝑉cΣ0𝑅
3
d

= 2(𝑚d − 𝑚a)𝑀𝑅d𝑉c. (4.33)
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Combining Eqs. (4.32) and (4.33), we obtain the disk scale length as

𝑅d =
1
√

2
𝜆

( 𝑗d
𝑚d

) ( 1
1 − 𝑚a/𝑚d

)𝐺𝑀
𝑉2

c
. (4.34)

Inserting this into Eq. (4.31), we obtain Σ0, and further substituting into Eq. (4.30)
gives

𝑄 =
2𝜆
𝑚d

( 𝑗d
𝑚d

) 1
(1 − 𝑚a/𝑚d)2

𝜎v

𝑉c
. (4.35)

At the end of accretion and collapse, the configuration of the system is marginally
stable, so that the accreted/collapsed mass 𝑚a can be derived by replacing 𝑄 with
𝑄c

𝑚a

𝑚d
= 1 −

√︄
2𝜆
𝑚d𝑄c

( 𝑗d
𝑚d

) (𝜎v

𝑉c

)
. (4.36)

If we neglect angular momentum transfer and the dark disk is formed adiabatically,
𝑗d/𝑚d should be 1. In the absence of halo spin, the final SMBH seed mass is 𝑚d𝑀 ,
so we replace 𝑚d with the collapse fraction 𝑓col of a zero-spin halo. Finally, since
𝑚a/𝑚d cannot exceed unity, we obtain the instability criterion that collapse only
occurs when

𝜆 < 𝜆max =
𝑄c 𝑓col

2
𝑉c

𝜎v
. (4.37)

The corresponding SMBH seed mass fraction is therefore

𝑓 = 𝑓col

(
1 −

√︄
2𝜆
𝑓col𝑄c

(𝜎v

𝑉c

) )
. (4.38)

If we approximate 𝜎v as 𝜎v(0.07𝑟s) of an NFW halo given by Eq. (4.11), and calcu-
late𝑉c with Eq. (4.24), the ratio𝑉c/𝜎v will be a constant

√︁
𝑓 (2.15)/2.15/𝐹 (0.07) ≃

1.9, and the angular momentum barrier for seed formation will thus be independent
of halo mass. Under these assumptions, we obtain 𝜆max ≃ 0.003 when 𝑄c = 1.
However, in simulations, we have found that halos with much larger spin parameters
still collapse under dissipative DM self-interactions at a similar collapse timescale.

An alternative to the picture discussed above is angular momentum transfer through
microscopic physical processes. In our case, the viscosity from DM self-interactions
transports angular momentum through the dark disk. The viscosity of SIDM in the
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long-mean-free-path regime 3 can be written as

𝜂 = 𝐶𝜌
𝐻2

𝑡r

≃
𝜌(𝜎/𝑚)𝜎3

v
4𝜋𝐺

, (4.39)

where 𝐶 is a numerical constant of order unity, and 𝐻 =
√︁
𝜎2

v /4𝜋𝐺𝜌 is the gravi-
tational scale height. Similar to the theory of accretion disks, the typical timescale
for angular momentum to be transported over a length scale 𝐿 is

𝑡v =
𝜌𝐿2

𝜂
=

4𝜋𝐺𝐿2

(𝜎/𝑚)𝜎3
v
, (4.40)

where we have used Eq. (4.39) in the second line. If we assume that the typical
length scale 𝐿 for angular momentum transport is the collapse radius ∼ 0.07𝑟s found
in our simulations, and approximate 𝜎v with 𝜎v(0.07𝑟s) of a NFW halo given by
Eq. (4.11), we obtain

𝑡v =
0.072

(𝜎/𝑚)𝐹3/2(0.07)
1√︃

4𝜋𝐺𝜌3
0𝑟

2
s

. (4.41)

The viscous timescale has exactly the same scaling behavior as the dissipation
timescale in Eq. (4.12). The ratio between them can be estimated as

𝑡v

𝑡diss
≃ 𝑡v

1/𝜌(0.07𝑟s) (𝜎/𝑚)𝜎v(0.07𝑟s)

=
0.07

(1 + 0.07)𝐹 (0.07) ∼ 𝑂 (1). (4.42)

This suggests that the viscous timescale is comparable to the dissipation timescale.
In this case, angular momentum is transported efficiently, and the central collapse
mimics the zero spin case. This is the reason why we do not observe the effect of
the centrifugal barrier in the simulations.

Fragmentation limit
Another criterion is that the dissipation timescale remains larger than the dynamical
timescale at the center of the halos, such that local fragmentation does not occur,
preventing the formation of a single SMBH seed [383]. If fragmentation does occur,
the concentration of the largest amount of mass in the center will be suppressed and

3The mean free path of DM particles is much longer than the gravitational scale height of the
system. For the model studied in this chapter with 𝜎/𝑚 ≲ 0.1 cm2 g−1, the requirement is satisfied.
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Figure 4.11: Enclosed mass profile of three collapsed 5 − 𝜎 halos at 𝑧 = 10 with
the same NFW profile parameters. The collapse of those halos is simulated with
different cross-sections but the same mass and force resolution. The enclosed
profiles are flat at small radii, suggesting the formation of SMBHs. Therefore, the
universality of the collapse fraction is not violated by changing the cross-section of
tdSIDM.

small clumps will form instead. The dynamical time within a collapse radius is
defined as 𝑡dyn = 1/

√︁
4𝜋𝐺𝜌col, where 𝜌col is the average density of DM halo within

collapse radius 0.07𝑟s. We find the ratio of dissipation time to dynamical time is

𝑡diss

𝑡dyn
≈ 1.8

(
4
𝑐

)2 (
10

1 + 𝑧

)2 [
ln(1 + 𝑐) − 𝑐

1 + 𝑐

]
×

(
1 cm2 g−1

𝜎/𝑚

) (
1012𝑀⊙
𝑀

)1/3

. (4.43)

For rare halos that can seed SMBHs, the dissipation timescale is always larger than
the dynamical time when 𝜎/𝑚 ≲ 1 cm2 g−1. As we show in Sec. 4.3 and Sec. 4.4,
the preferred cross-section for seeding SMBHs at high redshift, while maintaining
consistency with low redshift observations, is 𝜎/𝑚 = 0.05 cm2 g−1. In such cases,
the dissipation time scale is always an order of magnitude larger than the dynamical
timescale, preventing the fragmentation of the DM halo.

4.9 Consideration of the universal collapse fraction
In the paper, we find a universal collapse fraction, 𝑓col ≃ 3× 10−3, of tdSIDM halos
that is independent of halo mass, size, spin, and formation redshift. This universal
collapse fraction corresponds to a collapse radius of 𝑟0 ≃ 0.07𝑟s. To further confirm
the universality of the collapse fraction numerically, we run N-body simulations
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with different DM self-interaction cross-sections for the same 5 − 𝜎 halo formed at
𝑧 = 10. The enclosed profiles of the collapsed DM halos, as shown in Fig. 4.11,
suggest that the collapse fraction is also universal for different cross-sections. The
goal of the following is to explain the universal collapse fraction from the theoretical
perspective.

The characteristic length scale of the gravitational collapse of gas clouds against
thermal pressure support is the Jeans length

𝜆j = 𝑐s

√︂
𝜋

𝐺𝜌
, (4.44)

where 𝑐s is the sound speed and 𝜌 is the mass density. Applying the concept to
weakly collisional dSIDM fluid, we replace 𝑐s with the one-dimensional velocity
dispersion 𝜎v and calculate 𝜌 as the averaged mass density within a radius 𝑟. Thus,
we obtain

𝑟

𝜆j(𝑟)
∝

√︄
𝐺𝑀 (𝑟)/𝑟2

𝜎2
v (𝑟)/𝑟

, (4.45)

where 𝜎v(𝑟) is the velocity dispersion given by Eq. (4.11), 𝑀 (𝑟) is the enclosed
halo mass within radius 𝑟. When the ratio 𝑟/𝜆j is at its maximum, it reaches the
point with the maximum gravitational instability. If the enclosed halo mass is given
by the NFW profile, one can obtain that 𝑟/𝜆j reaches maximum at 𝑟 ≃ 0.06𝑟s, which
is close to the collapse radius 0.07𝑟s we found in our simulations. The surprising
coincidence suggests that the size of the initially collapsed region is likely related
to the gravitational instability.

Furthermore, after the mass within a radius 𝑟 collapse to a point mass, the boundary
of spherical accretion of the surrounding medium is given by the Bondi-Hoyle-
Lyttleton (BHL) radius [384–387]

𝑅b(𝑟) =
2𝐺𝑀 (𝑟)
𝑐2

s
=

2𝐺𝑀 (𝑟)
𝜎2

v (𝑟)
, (4.46)

where the point mass has been assumed to be stationary with respect to the sur-
rounding medium and we have substituted 𝑐s with 𝜎v(𝑟) again. It is worth noting
that the ratio of the BHL radius to 𝑟 is proportional to (𝑟/𝜆j)2. Therefore, the ratio
𝑅b/𝑟 also reaches its maximum at 𝑟 ≃ 0.06𝑟s and the numeric value of the maximum
is actually close to unity. This indicates that the accretion of surrounding DM is
strongest at this universal radius and will be less effective when collapse extends to
larger radii since 𝑅b(𝑟) will quickly drop below 𝑟.
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Although accretion will be prohibited when 𝑅b(𝑟) drops below 𝑟 , dissipative self-
interactions can continually lower the kinetic energy of DM, decrease the velocity
dispersion and enlarge the BHL radius, which will restore accretion again. But the
accretion also relies on mechanisms to transfer angular momentum outward. As
discussed in Section 4.8, in the system considered here, two important mechanisms
would be torques of non-axial-symmetric structures originating from gravitational
instability and viscous angular momentum transfer. As found earlier this section,
the gravitational instability becomes weaker at larger radius beyond 𝑟 ≃ 0.06𝑟s. For
the viscosity, we can compute the ratio between 𝑡v and 𝑡diss as in Eq.(4.42)

𝑡v/𝑡diss ≃
4𝜋𝐺𝑟2

(𝜎/𝑚)𝜎3
v (𝑟)

/ 1
𝜌(𝑟) (𝜎/𝑚)𝜎v(𝑟)

=
3𝐺𝑀 (𝑟)
𝜎2

v (𝑟)𝑟
, (4.47)

where we have used 𝑟 as the characteristic length scale for angular momentum
transfer and used the averaged mass density within radius 𝑟 for the calculation of
𝑡diss. It is surprising that the ratio 𝑡v/𝑡diss is proportional to 𝑅b/𝑟 as well as (𝑟/𝜆j)2.
The ratio also reaches its maximum at 𝑟 ≃ 0.06𝑟s and takes an order-unity value at its
maximum. Beyond the radius 0.06𝑟s, viscous angular momentum transfer will also
quickly become ineffective. Therefore, the collapse of the central halo eventually
stagnates at the universal radius 𝑟 ≃ 0.06𝑟s. These arguments we discussed above
should work for generic dissipative DM models. For instance, the fractional kinetic
energy loss 𝑓 does not change the form of the collapse timescale and the Jeans
length. If the dissipation is velocity dependent, the arguments of the Jeans length
and Bondi radius still applies. Therefore, even if the fractional kinetic energy loss 𝑓
is significantly different from the current value or varies with velocities, one would
still expect the collapse fraction to be universal. Baryonic physics can potentially
affect the collapse fraction, which we leave for future work.
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C h a p t e r 5

SIGNATURES OF ELASTIC SIDM IN CLUSTER MASS HALOS

Xuejian Shen, Thejs Brinckmann, David Rapetti, Mark Vogelsberger, Adam Mantz,
Jesús Zavala, and Steven W. Allen. X-ray morphology of cluster-mass haloes in
self-interacting dark matter. MNRAS, 516(1):1302–1319, October 2022. doi:
10.1093/mnras/stac2376.

5.1 Abstract of the chapter
We perform cosmological zoom-in simulations of 19 relaxed cluster-mass halos
with the inclusion of adiabatic gas in the cold DM (CDM) and self-interacting DM
(SIDM) models. These clusters are selected as dynamically relaxed clusters from a
parent simulation with 𝑀200 ≃ 1 - 3 × 1015 M⊙. Both the DM and the intracluster
gas distributions in SIDM appear more spherical than their CDM counterparts.
Mock X-ray images are generated based on the simulations and are compared to
the real X-ray images of 84 relaxed clusters selected from the Chandra and ROSAT
archives. We perform ellipse fitting for the isophotes of mock and real X-ray
images and obtain the ellipticities at cluster-centric radii of 𝑟 ≃ 0.1 - 0.2 𝑅200. The
X-ray isophotes in SIDM models with increasing cross-sections are rounder than
their CDM counterparts, which manifests as a systematic shift in the distribution
function of ellipticities. Unexpectedly, the X-ray morphology of the observed non-
cool-core clusters agrees better with SIDM models with cross-section (𝜎/𝑚) =

0.5 - 1 cm2 g−1 than CDM and SIDM with (𝜎/𝑚) = 0.1 cm2 g−1. Our statistical
analysis indicates that the latter two models are disfavored at the 68% confidence
level (as conservative estimates). This conclusion is not altered by shifting the radial
range of measurements or applying the temperature selection criterion. However,
the primary uncertainty originates from the lack of baryonic physics in the adiabatic
model, such as cooling, star formation, and feedback effects, which still have the
potential to reconcile CDM simulations with observations.

The chapter is organized as follows: details of the simulations are introduced in
Section 5.2, while the observational samples are introduced in Section 5.3. In
Section 5.4, we discuss the modeling of the X-ray emission and the generation of
mock images for the simulated clusters. Details of the morphological analysis of
the mock and real X-ray images are also discussed in this section. The results
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are presented in Section 5.5 and are discussed further in Section 5.6. Finally, we
summarize and conclude in Section 5.7.

5.2 Simulations
The analysis in this chapter is based on a suite of cosmological zoom-in simulations
of cluster-mass halos (with the DMO version presented in Brinckmann et al. 255,
Sokolenko et al. 388). The simulations are performed using the moving-mesh
code Arepo [389] with the inclusion of adiabatic gas. The code employs the
tree-particle-mesh (Tree-PM) algorithm for gravity and a finite-volume/Godunov
scheme for hydrodynamics on an unstructured, moving Voronoi mesh. The halos
for zoom-in simulations were selected as dynamically relaxed systems from a large
1( Gpc/ℎ)3 parent simulation with an effective resolution of 5123 DM particles [see
255, for details on the relaxation criteria used]. The zoom-in simulations have an
effective resolution of 40963 DM particles in the high resolution regions, which are
surrounded by regions of intermediate resolution and finally low-resolution regions
with an effective resolution of 2563 particles. For the high-resolution region, the
effective Plummer equivalent gravitational softening length of DM is 𝜖 = 5.4 kpc/ℎ
and the DM particle mass resolution is 𝑚dm = 1.07 × 109 M⊙/ℎ.

DM self-interactions were simulated in a Monte Carlo fashion using the module
developed in Vogelsberger et al. [87, 329], assuming isotropic and elastic scattering.
In this work, we only study the case of a constant self-interaction cross-section,
and in particular we perform simulations for three cases: (𝜎/𝑚) = 0.1 cm2 g−1

(SIDM-c0.1), (𝜎/𝑚) = 0.5 cm2 g−1 (SIDM-c0.5), (𝜎/𝑚) = 1 cm2 g−1 (SIDM-c1),
in addition to the CDM case for comparison. Our simulations use the cosmological
parameters originally adopted in Brinckmann et al. [255]: Ωm = 0.315, ΩΛ = 0.685,
Ωb = 0.049, ℎ = 0.673, 𝜎8 = 0.83 and 𝑛s = 0.96, which are consistent with Planck
results [390].

Compared to the DMO version of the simulations in Brinckmann et al. [255],
Sokolenko et al. [388], our simulations introduce adiabatic gas cells, which are
generated in the initial conditions by splitting DM particles, with the mass ratio
between gas and DM particles set initially by the universal baryon fraction. The
gas cells (as Voronoi meshes) are regularized by their masses or face solid angles
and are allowed to be split or merged. The baryonic mass resolution in the final
halo is roughly the initial gas cell mass, 𝑚b ≃ 𝑚dm Ωb/(Ωm − Ωb) ≃ 0.18𝑚dm ≃
2×108 M⊙/ℎ. The spatial resolution of hydrodynamics is roughly the cell equivalent
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size (the radius of the sphere with the average volume of the cells) ℎb = 4.8 kpc/ℎ×
(𝜌b/105 M⊙/ kpc3)−1/3, where 105 M⊙/ kpc3 is the typical gas density at cluster
centers in our simulations. The gravitational softening length of adiabatic gas is
chosen to be the same as that of DM, i.e., 𝜖gas = 5.4 kpc/ℎ and the adiabatic index
of gas is chosen to be 5/3.

The main target halos are identified in the zoom-in regions and the DM particles
or gas cells are assigned to the main target halos using the Friends-of-Friends
(FoF) algorithm. The virial mass and radius of each halo are defined based on
the density criterion, 200 times the critical density at 𝑧 = 01, and are therefore
referred to as 𝑀200 and 𝑅200, respectively. The virial temperature is defined as
𝑇vir = (𝜇𝑚p/2𝑘b)𝐺𝑀200/𝑅200, where 𝑚p is the proton mass, 𝑘b is the Boltzmann
constant and 𝜇 is the mean molecular weight that takes the value 0.59 (see also
Equation 5.3).

The convergence radius of collisionless particles can be calculated using the Power
et al. [26] criterion. Power et al. [26] argued that the artificial central “flattening”
of DM profiles is driven by two-body relaxation, and that robust results should be
obtained outside the radius where the relaxation time is comparable to the Hubble
time. This is equivalent to the criterion

√
200
8

𝑁 (𝑟)
ln (𝑁 (𝑟))

(
𝜌̄(𝑟)
𝜌crit

)−1/2
≥ 0.6, (5.1)

where 𝑁 (𝑟) is the number of particles within a radius 𝑟, 𝜌crit is the critical density
of the Universe at 𝑧 = 0 and 𝜌̄(𝑟) is the average density within 𝑟. We evaluate
the convergence radius for each of our simulations based on this criterion and the
obtained values are listed in Table 5.1. On the other hand, the convergence of
the hydrodynamical properties of the gas is more complicated and depends on the
numerical method employed. In Section 5.5, we will explicitly check how the
hydrodynamical properties of the gas in our simulations are resolved and discuss
the issue of convergence.

The typical virial mass of the simulated halos is 𝑀200 ≃ (1 - 3) × 1015 M⊙ and the
typical size is 𝑅200 ≃ 2 - 3 Mpc. The detailed properties of all the simulated halos
are listed in Table 5.1.

1Some cluster studies adopt instead the redshift-dependent overdensity criterion from Bryan and
Norman [249] which gives Δc (𝑧 = 0) ≃ 100. This could lead to about 30% (10%) increase in the
virial radius (mass).
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Haloa 𝑀cdm
200 𝑅cdm

200 𝑇cdm
vir 𝑅conv

b

name [1015 M⊙] [ Mpc] [107 K] [ kpc]
halo11 2.91 3.03 14.7 35.9
halo39 1.47 2.41 9.29 33.7
halo43 1.54 2.45 9.61 35.0
halo55 1.38 2.36 8.94 35.0
halo83 1.52 2.43 9.50 35.8
halo84 1.66 2.51 10.1 34,7
halo92 1.32 2.33 8.68 34.3
halo102 1.39 2.37 8.98 33.8
halo128 1.40 2.37 9.00 35,6
halo136 1.10 2.18 7.65 33.0
halo144 1.50 2.42 9.43 34.1
halo159 1.25 2.28 8.35 35.5
halo162 1.34 2.34 8.75 34.8
halo165 1.26 2.28 8.38 36.1
halo171 1.30 2.31 8.59 34.8
halo194 1.54 2.45 9.61 35.3
halo210 1.15 2.22 7.88 36.1
halo215 1.24 2.27 8.30 36.0
halo217c 1.29 2.57 7.68 38.9

Table 5.1: Simulated cluster-mass halos in the suite.
(a) Each halo is simulated in CDM, SIDM-c0.1, SIDM-c0.5, and SIDM-c1. The
bulk properties of these halos are indistinguishable in different DM models, so we
only list the properties in the CDM simulations here.
(b) The radius of convergence of DM properties (based on the Power et al. 26
criterion discussed in Section 5.2). We present the maximum convergence radius
for simulations in all four DM models as a conservative estimate.
(c) Due to a technical issue, the simulation was stopped at 𝑧 ≃ 0.18 instead of 𝑧 = 0.
We approximate the 𝑧 = 0 results with this snapshot.

5.3 Observational samples
The observational samples we use consist of relaxed galaxy clusters as selected in
Mantz et al. [23, 391] using three morphological indicators, symmetry, peakiness,
and alignment of cluster X-ray images. Mantz et al. [23] developed a symmetry–
peakiness–alignment (SPA) criterion for relaxation and applied this analysis to a
large sample of galaxy clusters with archival Chandra and ROSAT observations,
which resulted in 40 relaxed clusters at 𝑧 ≲ 1. Each of these clusters has the cleaned
science image, the blank-sky event file, and an appropriate exposure map, along with
the blank-sky normalization factor and its statistical error, which all serve as input
to the morphological algorithm. Details of the sample selection, data reduction,
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Figure 5.1: Redshift and temperature distributions of the observed clusters and
temperature distribution for the simulated clusters. Left: Redshift distribution of
the observed clusters. The distributions of the “peaky” and “non-peaky” samples
are shown in red and blue. For both distributions, most of the clusters fall in
the range 0.1 ≲ 𝑧 ≲ 0.5, with a few outliers out to 𝑧 ∼ 1. Right: Temperature
distribution of the observed (red and blue) and the simulated clusters (green). The
median temperature of each sample is shown by a corresponding vertical dashed
line. On average, the temperatures of simulated clusters are fairly consistent with
the observed samples, despite having a smaller dispersion in temperature.

and post-processing can be found in Mantz et al. [23, 391]. The typical ICM
temperature of these clusters is 5 - 10 keV (about 5 - 10 × 107 K), which is in good
agreement with the virial temperatures of the simulated clusters listed in Table 5.1.
The original peakiness criterion, however, preferentially selects clusters with cool
cores, which indicates strong radiative cooling processes at cluster centers. Cooling
and the subsequent star formation as well as supernovae and active galactic nuclei
(AGN) feedback could significantly impact the structure of the central halo. Since
our simulations do not capture these processes, we specifically select another set of
clusters that meet the symmetry–alignment criterion but not the peakiness criterion,
referred to as the “non–peak” clusters, while the original set of SPA selected clusters
is instead referred to as the “peaky” clusters. The new set of “non–peaky” clusters
consists of 44 relaxed clusters. We will perform analyses on both sets of clusters to
study the potential impact of cluster cool cores on X-ray morphology.

In Figure 5.1, we show the redshift (left panel) and temperature distributions (right
panel) of the observed clusters and the temperature distribution for the simulated
clusters (right panel). For simulations, the ICM gas temperature is approximated
as the virial temperature 𝑇vir, which is tested to be close to the X-ray surface-
brightness weighted temperature of ICM gas. Most of the observed clusters, either
the “peaky” or the “non-peaky” ones, fall in the redshift range 0.1 ≲ 𝑧 ≲ 0.5.
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The median temperatures of the observational samples and the simulated clusters
match reasonably well, but the observational samples show larger dispersion in
temperature.

5.4 Methods
Brinckmann et al. [255] found that halo shapes are more sensitive to DM self-
interactions at larger radii than spherically-averaged density profiles. Signatures of
SIDM can be found in halo shapes out to the radii where density profiles already
converge to the CDM prediction. The radial range of 10 - 20% 𝑅200 was found
to be a suitable range where substantial differences between SIDM and CDM are
observed in DMO simulations, and where it was speculated that the impact of
complicated baryonic physics in the central galaxy would be limited. The primary
goal of the present work is to have a more direct comparison of the halo morphology
from simulations and observations, through more realistic modeling of the X-ray
emission from simulated clusters and two-dimensional shape analysis of mock/real
X-ray images in the radial range of interest.

Mock X-ray images
We begin by generating the X-ray spectrum for every gas cell in each of the halos
based on a table of spectral templates. The templates are calculated using the Astro-
physical Plasma Emission Code [APEC 392] model implemented in the PyAtomDB
code, which utilized the atomic data from AtomDB v3.0.9 [last described in 393].
The model gives the emission spectrum of collisional-ionized diffuse gas in equi-
librium with a given temperature and metal abundance pattern. The temperature of
a gas cell from the simulations is calculated as

𝑇 =
(𝛾 − 1)𝑈𝜇𝑚p

𝑘b
, (5.2)

where 𝑈 is the internal energy of the gas cell, 𝛾 = 5/3 is the assumed adiabatic
index and 𝜇 is the mean molecular weight, which can be calculated as

𝜇 =
4

1 + 3𝑋h + 4𝑋h𝑥e
, (5.3)

where 𝑋h = 0.76 is the hydrogen mass fraction in the Universe and 𝑥e (≡ 𝑛e/𝑛h)
is the electron abundance, assumed to be 1.17 [394]. The abundance pattern is set
to solar values following Anders and Grevesse [394], while the ICM metallicity is
set to 0.25 𝑍⊙ [e.g., 395, 396]. We note that, for hot intracluster gas as considered
here (𝑇 ≳ 107 K), the emission is dominated by thermal Bremsstrahlung and it



135

is insensitive to details of the abundance pattern. Then, we account for galactic
absorption with the photoelectric absorption cross-section given by Morrison and
McCammon [397], assuming a fixed galactic hydrogen column density of 𝑁h =

2 × 1020 cm−2. This effectively decreases the rest-frame soft X-ray luminosity by
only ∼ 3%. The energy range and resolution of the spectra depend on the desired
instrument. For example, an instrument similar to Chandra ACIS-I has an energy
range of 0.5 - 10 keV with an energy resolution of 150 eV. For our templates, we
adopt energy bins with high resolution 10 eV across 0.1 - 100 keV. These spectral
templates describe the energy emitted per unit time in each energy bin, 𝑓 (𝐸,𝑇),
normalized by the emission measure. Assuming the size of the cluster is much
smaller than the cosmological distances involved, the observed X-ray flux (per unit
energy per unit area and per unit time) can be calculated as

𝑓 obs(𝐸obs) =
(1 + 𝑧)
4𝜋𝐷2

L

∫
l.o.s.

𝑓 rst (𝐸rst, 𝑇
)
𝑛e 𝑛h d𝑉

=
(1 + 𝑧)
4𝜋𝐷2

L

∫
l.o.s.

𝑓 rst ((1 + 𝑧)𝐸obs, 𝑇
)
𝑛e 𝑛h d𝑉, (5.4)

where 𝐷L is the luminosity distance, 𝑛h (𝑛e) is the hydrogen (electron) number
density, “obs” and “rst” refer to the observer’s frame and the rest frame, respectively.
The integration is performed along the line of sight. If we consider the integrated
luminosity in an energy band in the observer’s frame, we obtain

𝐹obs =

∫ 𝐸max

𝐸min

𝑓 obs(𝐸obs)d𝐸obs

=
1

4𝜋𝐷2
L

∫
l.o.s.

𝑛e 𝑛h d𝑉
∫ (1+𝑧)𝐸max

(1+𝑧)𝐸min

𝑓 rst (𝐸rst, 𝑇
)

d𝐸rst, (5.5)

where we choose 𝐸min, 𝐸max = 0.6, 2 keV for the soft X-ray band images, and for
simulated halos (evolved to 𝑧 = 0) we assume a small dummy “emission” redshift
of 0.03, which does not have any real impact on the flux except for a constant
normalization change. In practice, we choose to evaluate the integral over energy
in Equation 5.5 first, solely based on the spectral templates. Then, we evaluate the
line-of-sight integral based on the particle information obtained from simulations.

Finally, for each pixel with physical side length 𝐿p, the surface brightness can be
calculated as

𝑆.𝐵.(pixel) ≃ 𝐹obs

(𝐿p/𝐷a)2 , (5.6)

where 𝐷a is the angular diameter distance. For an annulus with a surface area 𝐴
and cluster-centric radius 𝑟, the surface brightness profile of a simulated cluster can
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be calculated in a similar way

𝑆.𝐵.(𝑟) ≃
𝐹obs𝐷2

a
𝐴(𝑟) . (5.7)

For each simulated cluster, we pick 12 viewing angles that correspond to the 12
vertices of the 𝑁 = 1 Healpix sphere [398] oriented in the simulation coordinates.
Then, for each viewing angle, we generate an X-ray image of the cluster with a
physical side length of 𝐿 = 0.6 𝑅200 and 𝑁p = 1024 pixels on each side, following
the steps described above. Gas cells are binned in pixels and the X-ray surface
brightness in the soft X-ray band (0.6 − 2 keV) is calculated for each pixel. We
note that the equivalent size ℎb of the gas cell could be larger than the physical size
of the pixels. So the X-ray emitting gas cells should be considered as smoothed
distributions of emitting material rather than discrete particles. As an approximate
correction for this effect2, the images are convolved with a Gaussian kernel with
bandwidth ℎb.

Shape analysis of X-ray isophotes
Based on the mock X-ray images created from the simulations, we use the Isophote
package in the Photutils code to perform ellipse fitting of isophotes using the
iterative algorithm introduced in Jedrzejewski [399]. Each isophote is fitted for a
pre-defined semi-major axis length. The algorithm starts from a first guess of the
elliptical isophote, defined by approximate values of center coordinates, ellipticity
(𝑒), and position angle (𝜙). The ellipticity is defined as

𝑒 = 1 − 𝑏

𝑎
, (5.8)

where 𝑎 and 𝑏 are the semi-major and semi-minor axes of the ellipse, respectively.
Then the fitting is done recursively to minimize the intensity variations of pixels
along the elliptical path. For the first guess, we choose the semi-major axis to be
15% 𝑅200 (the median of the radial range of interest) and set the center of the ellipse
as the cluster center. We then derive the first guess of the ellipticity and position
angle by recursively doing isophote fitting at the semi-major axis of 15% 𝑅200, until

2In principle, the gas cells should be smoothed before being binned in pixels and used in flux
calculations. For our application, this is equivalent to smoothing after the images are generated. The
argument is supported by the following estimations: The typical displacement of particle coordinates
to the pixel center scales as 1/𝑛1/2 [pixel], where 𝑛 is the number of particles projected in a pixel
∼ (𝐿/ℎb)3/𝑁2

p . For reference, the smoothing kernel bandwidth is 𝑁p ℎb/𝐿 [pixel]. The ratio of the
two is a constant ∼ (ℎb/𝐿)1/2 ∼ 0.07, which corresponds to ∼ 0.03 in the logarithm of the flux, and
is therefore small enough to be neglected.
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the ellipticity and position angle are converged (Δ𝑒 < 0.03, Δ𝜙 < 0.03× 2𝜋). After
fitting the ellipse that corresponds to a given value of the semi-major axis, the axis
length is incremented (or decremented) following a pre-defined rule and the fitting
procedure is repeated again at the new semi-major axis. The first guess for the
ellipse parameters is taken from the previously fitted ellipse with the closest semi-
major axis length to the current one. The fitting will be terminated when either the
maximum acceptable relative error in the local radial intensity gradient is reached
or a significant fraction of pixels on the ellipse lie outside the image. We define
the effective radius of a fitted isophote as the geometric mean of the semi-major
and semi-minor axes, 𝑟eff =

√︁
(𝑎2 + 𝑏2)/2, and the results can be translated into

ellipticity values as a function of 𝑟eff . To get a measure of the ellipticity in the radial
range of interest, we compute the average ellipticity at 10 - 20% 𝑅200.

For the X-ray images from observations, we use the Spa code developed in Mantz
et al. [23, 391], which was used for the original sample selection and morphological
analysis, to perform isophotes identification and ellipse fitting. Along with the
cleaned science image, the algorithm takes the exposure map of observations, the
sky background noise, the blank-sky normalization factor, and its statistical error
as inputs. We refer readers to Mantz et al. [23] for a detailed description of the
algorithm. To standardize the surface brightness of clusters, the code motivated
a redshift- and temperature-dependent scaling of the surface brightness based on
the self-similar model of Kaiser [400] [see also 170]. The surface brightness is
normalized in units of

𝑓s = 𝐾 (𝑧, 𝑇, 𝑁h)
𝐸 (𝑧)3

(1 + 𝑧)4

( 𝑘b𝑇

keV

)
(5.9)

photons Ms−1 cm−2 (0.984 arcsec)−2,

where 𝐾 (𝑧, 𝑇, 𝑁h) is the K-correction calculated with the APEC model as done
in Section 5.4 and 𝐸 (𝑧) ≡ 𝐻 (𝑧)/𝐻0. The scaling reduces the redshift and halo
mass dependence of the surface brightness in observational samples. Assuming the
self-similarity of relaxed clusters, it becomes possible to approximately identify cor-
responding regions of clusters with different masses and redshifts, without explicitly
assuming the angular diameter distance to each or a prescription for estimating some
scale radius. The isophotes of the images will be determined based on flux levels (in
unit of 𝑓s) 𝑆j = 𝑁j 𝑓s, where we set the number of isophotes to three so 𝑗 = 0, 1, 2, 3.
𝑁j will be uniformly spaced in the logarithm, and the minimum and maximum levels
(𝑁0 and 𝑁3) will be tuned such that the radii of the isophotes roughly match the
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Figure 5.2: DM mass density profiles of the simulated clusters. For each DM model,
we show the median and 1𝜎 dispersion of the density profiles of the simulated
clusters. The grey dotted line with a shaded region indicates the conservative
estimation of the convergence radii of DM properties with its error. SIDM halos
develop thermalized cores with flat central density profiles, in contrast to the cuspy
central profile in CDM. The core size increases with greater self-interaction cross-
sections. These differences exist outside the convergence radius, but eventually
become negligible at the outskirts of the halos (≳ 5% 𝑅200).

radial range of interest (see Section 5.5 for the tuning), 10 − 20% 𝑅200. After an
adaptive smoothing of the original flat-fielded image, the code identifies pixels in
isophotes based on pre-defined surface brightness levels 𝑆j. Then, an elliptical shape
is fit to each of these isophotes, minimizing the sum of absolute distances from the
ellipse to each pixel in the isophote along the line passing through the pixel and the
ellipse center. The semi-major axis, center coordinates, position angle and elliptic-
ity of each isophote are obtained. The uncertainties of the measured morphological
parameters can be derived by performing the steps above on bootstrap realizations
of each observation. Since the typical uncertainty in ellipticity is about two orders
of magnitudes smaller than the halo-to-halo variation, in general, we ignore it in the
following analysis.

5.5 Results
Density profile
In Figure 5.2, we show the DM mass density profiles of the simulated clusters. They
are the average densities measured in uniformly spaced (in the logarithm) spherical
shells. Both the median and 1𝜎 dispersion of the density profiles are presented.
The radius of convergence of DM properties is calculated using Equation 5.1 in
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Figure 5.3: Gas mass density profiles of the simulated clusters. The labeling is the
same as in Figure 5.2. The convergence radius for hydrodynamical properties of
the gas is ambiguous, so we choose 16 times the hydro spatial resolution ℎb as a
reference, indicated with the grey dashed line (see Figure 5.4 and the discussion
at the end of Section 5.5 for the convergence criterion). The colored short dashed
lines show gas density profiles inferred from the gravitational potential of the gas,
assuming that the intracluster gas is isothermal and in hydrostatic equilibrium. A
zoom-in subplot is included to compare density profiles at the center. Unlike DM,
the gas density profiles show little difference between DM models. The central
densities are also lower than expected from the hydrostatic equilibrium predictions.

Section 5.2 and listed in Table 5.1. For each cluster, we choose the maximum
convergence radius from all four DM models as a conservative estimate. The
median and 1𝜎 dispersion of the convergence radii of all simulated clusters are
shown with the vertical dashed line and the shaded region. Unlike the cuspy central
profile in CDM, SIDM halos develop flat and thermalized cores, with increasing
core sizes with higher self-interaction cross-sections. Compared to the CDM case,
the central DM density in the SIDM model with (𝜎/𝑚) = 1 cm2 g−1 is about five
times (circa 0.7 dex) lower at 𝑟 ∼ 2% 𝑅200. Even for the SIDM model with the lowest
cross-section in the suite, 0.1 cm2 g−1, the profile is distinguishable from the CDM
case at the 2𝜎 level outside the convergence radius. However, all the differences
eventually diminish at the outskirts of the clusters, at larger than about 5% 𝑅200.
Although the discrepancy between SIDM and CDM predictions is significant at
halo centers, contamination from gas cooling, star formation, and feedback effects
in the central galaxies are expected to be important in those regions. These factors
will be discussed in detail in Section 5.6.

We apply the same analysis to the intracluster gas in the simulations. In Figure 5.3,
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Figure 5.4: Top: Gas temperature profiles of the simulated clusters. The labeling is
the same as in Figure 5.3. The vertical dashed line shows an estimate of the conver-
gence radius for hydrodynamical properties. The horizontal dashed lines indicate
the median virial temperatures of the halos in each DM model. Gas temperatures
rise monotonically towards halo centers with the central temperature being slightly
lower in SIDM models. Bottom: Thermal pressure gradient versus gravitational
potential gradient as a function of radius. The thermal pressure support balances the
gravitational attraction at 𝑟 ≳ 10% 𝑅200, indicating that the hydrostatic equilibrium
is perfectly respected. At small radii, the dispersion in D𝑃/DΦ gradually becomes
larger. The convergence radius for hydrodynamical properties is estimated as 16
times the hydro spatial resolution ℎb and is indicated with the grey vertical dashed
line. Within the convergence radius, the median value of D𝑃/DΦ shows order of
magnitude fluctuations.

we show the gas mass density profiles of the simulated clusters. Assuming the
intracluster gas is in hydrostatic equilibrium, the gas should distribute in a way that
the thermal pressure balances the gravitational attraction (neglecting non-thermal
pressure from, e.g., turbulent gas motions, which are subdominant in massive relaxed
clusters, Lau et al. 401, Vazza et al. 402, Nelson et al. 403). If we further assume that
the gas is isothermal, the gas density is simply related to the gravitational potential,
Φ, as

𝜌gas(𝑟)
𝜌gas(0)

= exp
[
−
𝜇𝑚pΦ(0)
𝑘b𝑇

(
Φ(𝑟)/Φ(0) − 1

) ]
, (5.10)

where the isothermal temperature𝑇 can be approximated as the virial temperature of
the halo. In Figure 5.3, the profiles determined from the potential are shown in short
dashed lines for reference. For both the gas mass density profile and the equilibrium-
modeled gas density profile, the difference between different DM models is small,
as opposed to the distinct signature of SIDM in the DM density profile. Part of
the reason is that the gravitational potential is less sensitive to the DM density
differences at small radii, thus the equilibrium-modeled gas density profiles are also
less sensitive to SIDM physics. However, compared to the equilibrium-modeled
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Figure 5.5: Three-dimensional axial ratios of the DM (gas) distribution of the
simulated clusters. The left (right) column shows the axial ratios for DM (gas). The
top row shows the minor-to-major axial ratio, 𝑐/𝑎, and the bottom row shows the
intermediate-to-major axial ratio, 𝑏/𝑎. The shaded vertical regions on the left and
dashed lines on the right indicate the convergence radii for DM and gas properties,
respectively. Considerable differences between SIDM and CDM show up in the
DM shape out to large radii, while the distinct signature of SIDM in the gas shape
is much weaker. Meanwhile, the gas distribution is systematically rounder than
the DM one, as a consequence of the X-ray emitting gas tracing more directly the
isopotential surface of the matter distribution rather than the mass distribution.

ones, the gas mass density profiles are systematically lower at cluster centers and
the SIDM-related differences are also smaller. This is likely related to a deviation
from hydrostatic or thermal equilibrium, which we will investigate in the following.

Assuming spherical symmetry and neglecting non-thermal pressure support, the
hydrostatic equilibrium implies

𝜕Φ(𝑟)
𝜕𝑟

= − 1
𝜌gas(𝑟)

𝜕𝑃(𝑟)
𝜕𝑟

= − 𝑘b𝑇 (𝑟)
𝑟𝜇𝑚p

(
𝜕 ln 𝜌gas(𝑟)
𝜕 ln 𝑟

+ 𝜕 ln𝑇 (𝑟)
𝜕 ln 𝑟

)
, (5.11)

which simply represents that the gravitational attraction is balanced by the thermal
pressure induced by either the density or temperature gradient. We denote the left-
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hand side of the equation as “DΦ” and the right-hand side as “D𝑃”. In perfect
hydrostatic equilibrium, we expect D𝑃 = DΦ. In the top panel of Figure 5.4,
we show the gas temperature profiles of the simulated clusters. With the absence
of cooling processes, the gas temperature rises monotonically towards the cluster
center, in line with the picture that the infalling gas is heated by strong accretion
shocks. As described in Equation 5.11, the temperature gradient revealed here
contributes to the thermal pressure support of gas and, as a result, the gas mass
density profile rises slower than the isothermal profile towards the cluster center.
Apart from this, SIDM models give slightly lower gas temperatures at 𝑟 ≲ 0.1 𝑅200

and the temperature gradients are also smaller, which makes the differences between
gas density profiles in SIDM and CDM even smaller. In the bottom panel of
Figure 5.4, we show D𝑃/DΦ as a function of radius. To obtain D𝑃, the pressure
and temperature gradients are evaluated between adjacent spherical shells. The
hydrostatic equilibrium is perfectly respected at 𝑟 ≳ 10% 𝑅200. The dispersion of
D𝑃/DΦ gradually becomes larger at smaller radii and SIDM models in general
show greater dispersion. This dispersion is likely caused by the limited statistics of
gas cells. For reference, the grey vertical dashed line indicates 16 times the hydro
spatial resolution ℎb (the equivalent size of gas cells), which roughly corresponds
to 8 times the spatial spacing of gas cells. Within this reference radius, the median
D𝑃/DΦ in all DM models starts to deviate significantly from unity and exhibits
order of magnitude oscillations. Therefore, we choose this radius as the convergence
radius of the hydrodynamical properties of the gas. This radius is also plotted in
Figure 5.3 and the top panel of Figure 5.4 as a reference for convergence.

Shapes of DM and gas distributions
Brinckmann et al. [255] found that the three-dimensional shape of DM halos is quite
sensitive to SIDM physics. However, as demonstrated in the previous section, gas
properties, in general, are much less sensitive to SIDM physics compared to DM.
Therefore, it is important to check whether the shape changes in the DM distributions
are reflected at the same level in the shape of the gas distribution.

To study the shapes of DM or gas distributions in simulated clusters, we adopt the
code developed by Brinckmann et al. [255] based on the methodology in Zemp et al.
[254]. The code determines the orientation and magnitude of the principal axes of a
distribution of particles by computing the eigenvectors and eigenvalues of the shape
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tensor, defined as

S ≡
∫
𝑉
𝜌 r r𝑇d𝑉∫
𝑉
𝜌 d𝑉

, (5.12)

where 𝜌 is the density, r is the position vector relative to the halo center and r𝑇 is
the transpose of it. The discrete form of the shape tensor is defined as

𝑆ij ≡
∑

k 𝑚k 𝑟
i
k 𝑟

j
k∑

k 𝑚k
, (5.13)

where 𝑚k is the mass of the kth particle and 𝑟 i
k is the ith component of the position

vector of the kth particle. In our analysis, we divide each halo into a number of
ellipsoidal shells. The shells are initialized as spherical and are adaptively merged or
split based on the particle number in each shell (adjacent shells with less than 2000
particles are merged and shells containing 50000 or more particles are split). The
code computes the eigenvectors and eigenvalues of the shape tensor of the particles
within each shell until convergence is achieved (when the axial ratios of both the
minor and intermediate axes to the major axis deviate by less than one percent over
the last ten iterations). For each iteration, the volume of the ellipsoidal shell will
deform according to the axes determined in the previous loop, with particles being
added or removed from the shell accordingly, while keeping the length of the major
axis invariant. After convergence is reached, we document the minor-to-major axial
ratio 𝑐/𝑎 and the intermediate-to-major axial ratio 𝑏/𝑎 for each shell and compute
the effective radius of the shell as 𝑟eff = 𝑎

√︁
[(𝑐/𝑎)2 + (𝑏/𝑎)2 + 1]/3, similarly to

what we have done in the isophote analysis (see Section 5.4). We apply the method
described above to both, the DM particles and gas cells in our simulated clusters.

In Figure 5.5, we show the three-dimensional axial ratios of the DM and gas distribu-
tions of the simulated clusters. For each model, we again present the median and 1𝜎
dispersion of the axial ratios. Similar to what was found in Brinckmann et al. [255],
we see that 𝑐/𝑎 for DM in the SIDM-c1 model can deviate from the CDM case at
2𝜎 level out to about 0.2 𝑅200. Note that at a similar radius the density profiles in
SIDM and CDM are already indistinguishable, as shown in Figure 5.2. Even for the
SIDM-c0.1 model, 𝑐/𝑎 for DM is distinguishable at about 1𝜎 level out to 0.1 𝑅200.
These findings are consistent with other cosmological simulations of cluster-mass
halos in SIDM [e.g., 164, 166]. On the contrary, gas shape differences between
SIDM and CDM become much weaker and the shape profiles are systematically
rounder than for DM. For example, at 𝑟 ∼ 0.2 𝑅200, we see that 𝑐/𝑎 in the SIDM-c1
model deviates from the CDM prediction at only about 1𝜎 level. In hydrostatic equi-
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Figure 5.6: Soft X-ray surface brightness profiles of the simulated clusters in dif-
ferent DM models. For each model, we show the median and 1𝜎 dispersion of
the surface brightness profiles. A zoom-in subplot of the central surface brightness
profiles is included. The hydro convergence radius is shown with the grey vertical
dashed line. The surface brightness profile is basically insensitive to DM physics,
due to a combination of projection effects and the weak response of the intracluster
gas distribution to SIDM physics.

librium, the isodensity (and isotemperature) surface of the gas distribution should
trace the isopotential surface of the matter distribution, also known as the X-ray
shape theorem [404]; ∇ 𝜌gas ×∇Φ = 0. Since the isopotential surfaces are typically
rounder than the source matter distribution [e.g., 264, 405, 406], the shape of the
gas distribution is rounder than DM as a consequence. In Robertson et al. [164], it
was found that the stellar and gas distributions in SIDM with (𝜎/𝑚) ≲ 1 cm2 g−1

and CDM show almost no difference in shape. However, in our results, we still find
some residual differences between SIDM and CDM that could be tested statistically
with large samples of simulated and observed galaxy clusters.

X-ray surface brightness profile
The next question to answer is how the differences in the three-dimensional shape of
gas are reflected in the two-dimensional shape of X-ray isophotes. To answer this,
we first create mock X-ray images for the simulated clusters following the procedure
described in Section 5.4 and measure the surface brightness profile. For each DM
model and each halo, 12 images are generated corresponding to 12 sampled viewing
angles. In Figure 5.6, we show the median and 1𝜎 dispersion of the soft X-ray
surface brightness profiles from the simulated clusters. Similar to what has been
found for the gas density profiles (see Fig. 5.3), SIDM and CDM predictions are
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Figure 5.7: Comparisons of the soft X-ray surface brightness profiles of the sim-
ulated and observed clusters. Top: Surface brightness profiles (with observational
error bars) of individual clusters. The observed clusters are grouped as the low-
redshift “peaky” and “non-peaky” clusters [23], and the three SPT-selected clusters
at 𝑧 ≳ 1.2 [24] which do not exhibit cool-cores. The surface brightness profiles are
normalized with the units defined in Equation 5.9. The shaded region indicates the
radial range of interest, 0.1 - 0.2 𝑅200. The cuspy central profiles of the low-redshift
observed clusters, in particular the “peaky” sample, are not present in the simulated
clusters with the absence of cooling processes. The high-redshift SPT-selected
clusters appear to agree better with the simulations, due to the different thermody-
namical properties compared to the low-redshift clusters. At large radii, including
the radial range of interest for shape measurements, we find reasonable agreement
in terms of normalization and slope between the simulated and observed profiles.
Bottom: Median and 1𝜎 dispersion of each group of surface brightness profiles.
It is clear that the simulated clusters agree better with the “non-peaky” sample at
the outskirts of the clusters. Based on the surface brightness in the radial range of
interest (0.1 - 0.2 𝑅200, indicated with the shaded region), we pick the flux levels of
the isophotes for morphology analysis. They are marked by the purple dashed lines.

nearly indistinguishable. For a given spherical annulus, the projection effects will
mix the gas emission at small and large three-dimensional radii, which makes the
surface brightness profiles more cored than the density profiles at 𝑟 ≲ 0.1 𝑅200 and
further decreases the difference between SIDM and CDM.

The soft X-ray surface brightness profiles can be directly compared to observational
results. For the observed clusters introduced in Section 5.3, the surface brightness
profiles are measured using the Spa code introduced in Section 5.4. In the top
panel of Figure 5.7, we compare the surface brightness profiles of the simulated
clusters with the observed ones, the latter of which are grouped as the “peaky”
(red) and “non-peaky” (blue) samples. For clarity, we only show the results of the
CDM simulations, since we have shown above that the surface brightness profiles
are insensitive to SIDM physics. We show explicitly the profile for each observed
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Figure 5.8: Ellipticity profiles of the simulated clusters compared to the observa-
tional results. We show the ellipticity of the isophotes as a function of the effective
radius of the isophote. The median values and 1𝜎 dispersions of the simulated
samples are shown as solid lines and shaded regions. The results of the observed
“non-peaky” (“peaky”) samples are shown by open black (grey) markers with error
bars. The vertical dashed line on the left indicates the hydro convergence radius.
The SIDM-c0.5 and SIDM-c1 models predict lower ellipticities and agree better
with the observational results. However, the signal is smeared by large statistical
uncertainties.

cluster, with the observational uncertainties as error bars, along with the profile
for each image of the simulated clusters (recalling that we have multiple possible
projection angles for each simulated cluster). The annulii radii and the surface
brightness are normalized following the convention in Mantz et al. [23] to reduce
potential redshift or temperature dependences. For reference, we show the profiles
of three SPT-selected clusters at 𝑧 ≳ 1.2 from Ghirardini et al. [24]3, which have
distinct thermodynamical properties from the low-redshift clusters and do not exhibit
cool cores. The clusters in the “peaky” observational sample have cuspy central
profiles, in contrast with the cored profiles of our (adiabatic) simulated clusters.
The “non-peaky” clusters are less cuspy, but the central surface brightness is still
almost an order of magnitude higher than that of our simulated clusters. Since the
simulations do not include gas cooling and physics of star formation and evolution,
it is expected that the condensation of baryons at the center of clusters will be weaker
for the simulated clusters compared to the observed ones. The shape of the surface
brightness profile simply manifests the thermodynamical properties of the clusters.

3Modelled surface brightness profiles convolved with the PSF matrix and then fitted to the raw
data, considering the exposed area and time for each annulus as well as the background.
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Figure 5.9: Left: Cumulative distribution function of the ellipticities of the X-ray
isophotes. The fit to the isophotes is performed at 0.1 - 0.2 𝑅200 for each viewing
angle of each simulated halo. In the lower subpanel, we show the median ellipticities
and 1𝜎 dispersions for the different DM models and the observed cluster samples.
Top right: Probability distribution function of the ellipticities. For simplicity, we
only show PDFs of the CDM and SIDM-c1 models compared to observations.
Bottom right: 𝑝 value of the two-sample KS and AD tests. The tests are performed
on the ellipticity distributions of observed and simulated clusters. The 𝑝 value is
the likelihood that the two samples are drawn from the same underlying continuous
distribution function. Compared to the “non-peaky” sample, the KS and AD tests
reject the CDM and SIDM-c0.1 models at about 90% confidence level.

This statement is supported by the agreement of the simulation results with the non-
cool-core clusters selected at high redshift. Despite the dissimilarity at small radii,
the surface brightness profiles of all samples agree well with each other at large radii,
including the radial range of interest for this work (0.1 - 0.2 𝑅200). In the bottom
panel of Figure 5.7, we condense the profiles shown on the upper panel to the median
and 1𝜎 dispersion of each sample. At 𝑟 ≃ 0.1 - 0.2 𝑅200, the simulation results are
in better agreement with the “non-peaky” observed sample. The “peaky” clusters
have slightly lower surface brightness at the radius of interest, but the differences
are small (less than about 0.1 dex). Based on the surface brightness of simulated
and observed clusters at 𝑟 ≃ 0.1 - 0.2 𝑅200, we choose the flux levels for isophotes
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generation. Adopting the normalization convention in Section 5.4, 𝑁0 and 𝑁3 are
determined as 2 × 10−3 and 3 × 10−2, respectively. The flux levels bounding the
three isophotes are marked as purple dashed lines in the figure.

Ellipticity of the isophotes
Given the flux levels determined above, we use the Spa code to select pixels for each
isophote from the observed cluster images, and perform ellipse fitting to the isophotes
as described in Section 5.4. For the images generated from the simulated clusters
we also perform ellipse fitting, as described in Section 5.4. In Figure 5.8, we show
the ellipticity of the isophotes as a function of the effective radius of the isophote (as
defined in Section 5.4). For the simulation results, the median and 1𝜎 dispersion are
shown for each DM model. For the observational results, the measured ellipticity of
each isophote is shown and the radius, 𝑟/𝑅200, is determined from the comparison
of surface brightness profiles in Figure 5.7. Compared to the three-dimensional
case, the two-dimensional shapes of the isophotes are much less sensitive to SIDM
physics, primarily due to projection effects. First, a projected quantity (e.g. surface
density, surface brightness) at a given projected radius 𝑟2d gets contribution from all
three-dimensional radii at 𝑟3d > 𝑟2d. This “mixing” of information at different radii
could mitigate signal strength. In addition, observed in different lines-of-sight, the
same three-dimensional mass/luminosity distribution can appear to have different
projected shapes, which acts as an additional source of noise. As shown in Figure 5.8,
the SIDM-c1 and SIDM-c0.5 models are still distinguishable from CDM and the
SIDM-c0.1 model, but the difference is smeared by large halo-to-halo variations and
thus has low statistical significance. The ellipticities of the observed “non-peaky”
clusters show a somewhat stronger radial dependence than the simulated clusters and
the observed “peaky” clusters, in addition to exhibiting slightly larger ellipticities
at smaller radii. Nevertheless, the results for the “non-peaky” sample are still more
consistent with large cross-section SIDM-c1 and SIDM-c0.5 models than with CDM
or the SIDM-c0.1 model.

With the large sample size we have, higher order differences can be revealed from the
distribution of the measured ellipticities. In the left panel of Figure 5.9, we show the
cumulative distribution function (CDF) of the average ellipticities at 0.1 - 0.2 𝑅200.
In this domain, the two SIDM models with relatively high cross-sections (SIDM-
c1 and SIDM-c0.5) give systematically lower ellipticities than CDM, while the
SIDM-c0.1 model is indistinguishable from CDM. In some parts of the CDF, the
SIDM-c0.1 model predicts even higher ellipticities than CDM, though we are unable
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to tell if it is due to a physical effect or purely statistical noise. For the observed
samples, the “non-peaky” case has a more extended high ellipticity tail than the
“peaky” case and agrees better with the simulation results in general. Despite the
even more extended high ellipticity tail, the SIDM-c1 and SIDM-c0.5 models agree
best with the observed “non-peaky” sample, while CDM predicts systematically
higher ellipticities by about 0.03 (manifested as the difference in the median values
and a global shift in the CDF). However, the difference in the median ellipticity
is significantly mitigated by the large sample variations. In the top right panel of
Figure 5.9, we show the probability distribution function (PDF) of the ellipticities.
The PDFs better reveal the features at the tails of the distributions. This comparison
also demonstrates that the shift of the CDFs of SIDM-c1 and CDM are not caused by
occasional peaks in the PDF driven by statistical noises, but by a real and systemetic
global shift in the PDF. Independent of the DM model employed, both the low
ellipticity (≲ 0.1) and high ellipticity (≳ 0.4) tails of the simulated clusters are
missing in the observational samples. However, this could be related to the baryonic
physics (e.g. radiative cooling, star formation, and stellar/AGN feedback) that are
not included in the simulation. An evidence is that the “non-peaky” sample in
observations (presumably less affected by cooling and star formation) shows much
more high-ellipticity clusters than the “peaky” sample. The impact of baryonic
physics and potential selection biases will be discussed in detail in Section 5.6.

Non-parametric statistical analysis
(I) Kolmogorov-Smirnov statistic: The two-sample Kolmogorov-Smirnov (KS) test
is a nonparametric test that compares the (empirical) CDF of two datasets. It mea-
sures the likelihood that two univariate datasets are drawn from the same underlying
parent probability distribution. Let 𝑥1, 𝑥2, ..., 𝑥m and 𝑦1, 𝑦2, ..., 𝑦n be samples of
independent observations of populations with continuous distribution functions 𝐹
and 𝐺, respectively. The empirical CDFs are 𝐹m and 𝐺n (i.e. the number of obser-
vations 𝑥i’s which do not exceed 𝑢 is 𝑚 𝐹m(𝑢) and similarly for 𝐺). To test the null
hypothesis 𝐹 = 𝐺, the KS statistic is defined as

𝐷m,n ≡
√︂

𝑚 𝑛

𝑚 + 𝑛 sup
u

|𝐹m(𝑢) − 𝐺n(𝑢) |, (5.14)

where sup represents the supremum of the set of distances. The probability distri-
bution 𝑃ks(𝑡) ≡ 𝑃𝑟 (𝐷m,n ≤ 𝑡 | 𝐹 = 𝐺) is mathematically proven to be independent
of the detailed form of 𝐹 or 𝐺, if 𝐹 and 𝐺 are continuous. We use the Scipy
implementation of the two-sample KS test, which follows Hodges [407] treatment



150

of the probability function 𝑃ks(𝑡). The null hypothesis is rejected at the significance
level 𝛼 if 𝐷m,n > 𝐾𝛼, where 𝐾𝛼 is found from 𝑃𝑟 (𝐷m,n ≤ 𝐾𝛼 | 𝐹 = 𝐺) = 𝛼. In the
following, the value 1 − 𝛼 will be referred to as the 𝑝 value. The 𝑝 value should
be interpreted as the probability of observing an equal or larger discrepancy in the
empirical CDFs, 𝐹m and𝐺n, than what was observed from the data in the hypothet-
ical context where 𝐹 = 𝐺, instead of the probability that the null hypothesis 𝐹 = 𝐺

is true.

For our purpose here, we perform KS tests between the samples of ellipticities
measured from simulations and observations. The tests will be performed between
simulations of each DM model and each observational group, respectively. The null
hypothesis is that the simulation and observational samples are randomly drawn
from the same underlying distribution of ellipticities. For each test, we obtain the
statistical significance 𝛼 at which this null hypothesis is rejected. In the bottom right
panel of Figure 5.9, we show the value 𝑝 ≡ 1 − 𝛼 versus SIDM cross-section. For
the “non-peaky” sample, the CDM model is rejected at about 90% confidence level,
while the SIDM models with (𝜎/𝑚) ≥ 0.5 cm2 g−1 are only constrained at about
40% confidence level, and thus have greater chance of being consistent with the
observational sample. On the other hand, for the “peaky” sample, even the SIDM-
c1 model is rejected at about 90% confidence level. In terms of the KS statistics,
CDM appears to be more consistent with the data than the SIDM-c0.1 model. This
is due to the fact that the SIDM-c0.1 model predicts even higher ellipticities than
CDM in some parts of the CDF, as shown in the left panel of Figure 5.9. However,
we are unable to tell if this is due to a physical effect or purely statistical noise.

(II) Anderson-Darling statistic: The KS test is most sensitive when the empirical
CDFs differ in a global fashion, but could be misleading if there are repeated cross-
ings between the CDFs or the deviations take place at the tails of the distributions.
Alternatively, the Anderson-Darling [AD, 408, 409] test was designed to overcome
these problems and has been proven more sensitive than the KS test with extensive
implications. The two-sample AD statistic is defined as [410–412]

𝐴2
m,n =

𝑚𝑛

𝑁

∫ ∞

−∞

[𝐹m(𝑢) − 𝐺n(𝑢)]2

𝐻N(𝑢) [1 − 𝐻N(𝑢)]
d𝐻N(𝑢), (5.15)

where 𝑁 = 𝑚 + 𝑛 and 𝐻N(𝑢) = [𝑚𝐹m(𝑢) + 𝑛𝐺n(𝑢)]/𝑁 . The weighting term
1/𝐻N(𝑢) [1 − 𝐻N(𝑢)] gives greater weight to displacements at the tails of the dis-
tribution. The probability distribution of the AD statistics has also proven to be
independent of the detailed form of 𝐹 and 𝐺. For numerical computation and as-
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sessment of the statistical significance, we adopt the Scipy implementation of the
method following Scholz and Stephens [412]. Similar to the KS tests, we perform
the AD tests between the simulated and the observed samples, and the results are
illustrated in the bottom right panel of Figure 5.9. Since the table of AD statistics
and significance levels in Scholz and Stephens [412] only covers 𝑝 values from 0.1%
to 25%, the 𝑝 values we get from this test are capped accordingly, as marked by the
arrows in the figure. The AD tests generally give lower 𝑝 values than the KS tests,
which suggests that the models are rejected at a higher confidence level.

5.6 Discussions
Statistical uncertainties
To measure the statistical uncertainties from the limited sample size and viewing
angle choices, we generate 1000 bootstrapped realizations for each observational
sample and for simulations in each DM model. The number is chosen to give a
converged assessment of the KS or AD statistics. The bootstrapped realizations
of the sample have the same sample size as the original one. In the top panel
of Figure 5.10, we present the median CDFs and the 1𝜎 dispersions from the
bootstrapped samples of the simulated CDM and SIDM-c1 samples and the observed
“non-peaky” sample. The displacement between CDM and the observed sample
is robust against the statistical uncertainties measured here. The SIDM-c1 model
and its bootstrapped realizations are in good agreement with the observed sample,
particularly around the center of the distribution, though with more extended tails
at both ends of the distribution. In the bottom panel of Figure 5.10, the median 𝑝
values and 1𝜎 dispersions of the KS and AD statistics are shown. The statistics
have been computed for each pair of the bootstrapped realizations, leading to in total
of one million measurements. For the KS test, the 𝑝 values of the bootstrapped
samples are systematically lower than that of the original sample, and in some cases,
the original value even lies outside the 1𝜎 scatter. This would be expected when the
CDFs of the original sample differ in a global fashion4 (|𝐹 −𝐺 | weakly depends on
ellipticity). On the other hand, the median 𝑝 value of the AD tests of bootstrapped
samples agrees well with the original measurement. Neglecting the cap at 𝑝 = 0.1%
and 𝑝 = 25%, the bootstrapped results of the KS and AD tests agree remarkably

4A small displacement from this state in bootstrapping will more likely lead to a larger KS
statistic sup

u
|𝐹 − 𝐺 | (thus lower 𝑝 value) and a shift of the location where the maximum is reached.

Stated in another way, a lower 𝑝 value (a higher KS statistic) corresponds to a larger number of
realizations of bootstrapped samples (and thus a larger entropy). So this can be understood as the
entropy gain when deviating from a (quasi-)equilibrium state.
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Figure 5.10: Ellipticity CDFs and statistics from the bootstrapped samples. Top:
Ellipticity CDFs of the bootstrapped samples for the CDM and SIDM-c1 models
and the “non-peaky” sample from observations. The 1𝜎 dispersions of the CDFs
are shown by the shaded regions. The discrepancy found between CDM and the
observed sample is larger than the statistical uncertainties illustrated here. Bottom:
The 𝑝 values of KS and AD tests for the bootstrapped samples. The median 𝑝

values and the 1𝜎 scatters are shown by solid circles with error bars. The 𝑝 values
from the measurements of the original samples are shown by crosses. Since the
numerical implementation of the AD test only covers the 𝑝 values from 0.1% to
25%, the bootstrapped results are thus capped, as marked by the arrows in the figure.
Even taking into account the scatter in 𝑝 value, the CDM and SIDM-c0.1 models
are rejected with a 68% confidence level.

well and both of them suggest that the CDM and SIDM-c0.1 models are rejected at
68% confidence level, as conservative estimates.

Selection bias and systematic uncertainties
Our analysis is potentially subject to selection biases in cluster redshift and tem-
perature. In the top (bottom) panel of Figure 5.11, we show the ellipticity versus
cluster redshift (temperature). The ICM temperatures of the simulated clusters are
approximated as the virial temperature. Although no obvious redshift or tempera-
ture dependence is found for the measured ellipticity, the simulated clusters have a
narrower temperature distribution. This is likely related to the selection criteria for
these clusters from the parent large-box simulation. They are the most massive halos
that are classified as dynamically relaxed and have not undergone recent mergers.
Clusters of even higher masses are most likely perturbed by recent mergers.

As illustrated in Figure 5.8, the ellipticity of the isophotes of the simulated clusters
exhibit a weak radial dependence, an effect that is more apparent at small radii and
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Figure 5.11: Top: Ellipticity versus redshift of the observed clusters. The ellipticity
does not show any apparent dependence on redshift. Note that these clusters have
been pre-selected as dynamically relaxed objects through the SPA criteria. Bottom:
Ellipticity versus temperature. No apparent dependence on temperature is found
either. However, the simulated clusters have a narrower distribution in temperature.

in CDM. The observed samples show a similar trend as well, albeit with the “non-
peaky” clusters displaying a much stronger radial dependence. In the top panel of
Figure 5.12, we show the CDF of ellipticities measured at slightly smaller/larger
(±25%) radii as solid/dotted lines. The ellipticities measured at smaller radii are
typically larger. As expected, the ellipticity CDF in CDM is more affected by
the aperture than in the SIDM-c1 model, but their systematic difference is robust
against the shift of the aperture. In the middle panel of Figure 5.10, we test the results
against the scatter in cluster temperature (or equivalently cluster mass). As shown
in the right panel of Figure 5.1, the observational samples have larger scatters in the
temperature distribution than the simulated ones and a few hot cluster outliers. To
test if these outliers would affect the ellipticity measurements, we limit the analysis
to clusters with 7 × 107 ≤ 𝑇vir ≤ 11 × 107 K and show the results as dashed lines
in the figure. The results are robust against these outliers. In the bottom panel of
Figure 5.12, we show the KS and AD statistics after applying the aperture shift or
the temperature cut. None of the conclusions we drew in the previous sections is
affected by these variations.

Another potential bias originates from the different definitions (and selection crite-
ria) for “relaxed” clusters in simulations and observations. The sample of relaxed
halos for zoom-in simulations were selected based on the virial ratio, center off-
set and subhalo mass fraction [255], which are expected to inherit some intrinsic
bias from the morphologically selected observed samples. In the future, construct-
ing a volume-limit sample of massive halos from large-volume, hydrodynamical
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Figure 5.12: Top: Ellipticity CDFs when varying the radial aperture of the measure-
ments. The CDF when increasing (decreasing) the radial aperture by 25% is shown
as the solid (dotted) lines. The original CDMs are shown as transparent lines. The
comparison demonstrates that the results are robust against aperture shifts. Middle:
Ellipticity CDFs when excluding outliers in the ICM temperature distribution. The
CDFs of the temperature-limited samples are presented in dashed lines while those
of the original samples are shown in solid lines. The impact of the temperature
outliers is small. Bottom: The 𝑝 value of KS and AD tests when varying the radial
aperture of the measurements or applying a temperature selection criterion. The
conclusion that the CDM and dSIDM-c0.1 models are disfavored at 68% confidence
level is not altered by either the aperture shift or the temperature selection criterion.

simulations would be an important future follow-up project. This would allow a
morphology selection process based on mock X-ray images from simulated clusters,
which is fully consistent with the observed sample. However, this certainly requires
significantly higher computational cost and more development in the sub-grid mod-
els for cluster physics.

Impact of baryonic physics
The response of cluster morphology to baryonic physics is not yet fully understood.
Radiative cooling of the intracluster plasma results in a condensed, rotating gas
disk in the central part of the halo, fueling star formation and subsequent AGN
activity in the Brightest Cluster Galaxy (BCG). The rotation support (and other
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non-thermal processes in the intracluster plasma) breaks the hydrostatic equilibrium
and the flattening of the three-dimensional gas distribution is reflected by the larger
ellipticities of two-dimensional isophotes. Fang et al. [413] found that the ellipticities
of X-ray isophotes are enhanced at small cluster-centric radii, 𝑟 ≲ 0.4 𝑅500 ∼
0.26 𝑅2005, in simulations with radiative cooling and star formation (CSF) compared
to adiabatic runs. The average ellipticity over sightlines reached 0.6 at 𝑟 ∼ 0.1 𝑅500

(∼ 0.065 𝑅200) as opposed to 0.3 in adiabatic runs. A similar phenomenon was
found by Lau et al. [414] between non-radiative (NR, i.e. adiabatic) cooling runs
and CSF runs. However, the flattening of the isophotes due to cooling was confined
to smaller radii 𝑟 ≲ 0.1 𝑅500.

On the other hand, at the radii beyond the scale of the central gas disk, halos in CSF
runs were more spherical than those in adiabatic models. For example, isophote
ellipticities were lower at 𝑟 ≳ 0.1 - 0.2 𝑅500 (0.065 - 0.13 𝑅200) in CSF simulations
with respect to those in NR simulations by about 0.1 (see Lau et al. 414 and also
Fang et al. 413, noting that the latter found a similar difference, but at larger radii).
Similar effects were also found in Battaglia et al. [415] and Suto et al. [416] out to
half of the virial radius with about 0.05 difference in two-dimensional axis-ratios.
The azimuthal scatter of surface brightness was found to be substantially lower in
cool-core clusters in observations and CSF simulations compared to adiabatic runs
[417], suggesting rounder distributions of gas. The shapes of the gas (and DM)
distributions are sensitive to the degree of the central concentration of the total
mass. As intracluster gas cools and flows towards the halo center, the distribution
becomes more spherical [e.g., 5, 416, 418–422]. In this study, the “peaky” clusters
have lower isophote ellipticities than the “non-peaky” clusters, which is consistent
with this picture. The fact that the “non-peaky” clusters in observations still have
more concentrated surface brightness profiles than the simulated ones indicate some
level of cooling even in the “non-peaky” sample that is not captured by the adiabatic
simulations. This effect has the potential to make the CDM results presented in this
chapter more consistent with observations.

Meanwhile, the cooling and condensation of gas can feed both star formation and
accretion onto SMBHs harbored by the BCG. The resulting stellar/supernovae and
AGN feedback can inject substantial amounts of energy into the ICM through
radiation, kinetic outflows and power jets of relativistic particles. As important

5Assuming an NFW profile with concentration 𝑐 = 4, a typical value for cluster-mass halos,
𝑅500 ≃ 0.65𝑅200 and 𝑅vir (𝑧 = 0) ≃ 𝑅100 ≃ 1.35𝑅200, where the second argument assumes the
redshift-dependence from Bryan and Norman [249] for Δc (𝑧 = 0) ≃ 100.
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heating mechanisms, they can compensate the energy loss due to radiative cooling
and mitigate the sphericalizing effect of cooling. In addition, potential anisotropic
feedback processes (e.g., bi-modal jets, bubbles, outflows from satellite galaxies)
can disturb the ICM and create non-thermal pressure support for the intracluster
gas in certain directions, further breaking the sphericity of the halo. In numerical
simulations, Battaglia et al. [415] and Suto et al. [416] found that clusters are
less spherical when AGN feedback is included relative to including only radiative
cooling. As an enlightening attempt, Robertson et al. [423] performed a series of
galaxy cluster simulations that includes baryonic physics and found diverse density
profiles of cluster-mass halos, which can be understood in terms of their different
final baryon distributions. This was followed by BAHAMAS–SIDM simulations
[164], which is the first large-volume cosmological set of simulations including
both SIDM and baryonic physics, including AGN feedback. Although considerable
differences were found in the shape of DM distributions, the discrepancy is weakened
by baryonic effects and were not reflected in the distribution of gas or stars within
galaxy clusters. However, there is no consensus yet on the strength and underlying
mechanism of AGN feedback as well as its numerical implementation. And the
numerical challenge to resolve baryonic physics processes for the large simulation
volumes required to sample massive clusters still exist. It is still hard to tell whether
the baryonic physics that primarily influence the central part of the clusters, and
which are not present in our simulations, can explain the discrepancy we report here
between adiabatic CDM simulations and observations of clusters.

5.7 Summary of the chapter
In this chapter, we study the X-ray morphology of massive, dynamically relaxed
clusters based on a suite of cosmological hydrodynamical zoom-in simulations
of 19 halos with 𝑀200 ≃ 1 - 2 × 1015 M⊙, simulated in CDM and SIDM models
with three different (constant) cross-sections per unit mass: (𝜎/𝑚) = 0.1, 0.5 and
1.0 cm2 g−1. The structural properties of both DM and intracluster gas in these
clusters are studied quantitatively in detail. These simulations include adiabatic gas
of which the X-ray emission is modeled to create mock soft X-ray images. We
perform ellipse fitting on the isophotes at intermediate radii of the clusters and
compare the ellipticities with those measured from real cluster X-ray images. Our
findings can be summarized as follows.

• The intracluster gas in the adiabatic simulations is in almost perfect hydrostatic
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equilibrium until reaching the hydro resolution limit. The gas temperature
within 0.1 𝑅200 is slightly lower in SIDM with increasing cross-sections.
Although the central DM density profile in SIDM is distinct from that in
CDM (when (𝜎/𝑚) ≥ 0.1 cm2 g−1 as tested by our simulation suite), the
gas density profiles of the two cases are almost indistinguishable down to the
resolution limit.

• Similar to what was found in Brinckmann et al. [255], the three-dimensional
shapes of the DM distribution in CDM and SIDM-c1 exhibit at least 2𝜎
level discrepancy out to large cluster-centric radii (𝑟 ∼ 0.2 𝑅200). For all the
models, the gas distributions are systematically more spherical than those of
DM, as a consequence of gas in hydrostatic equilibrium tracing the isopotential
surfaces, which are more spherical than the mass distribution. The variation
in axial ratios decreases to about 1𝜎 level at 𝑟 ∼ 0.1 - 0.2 𝑅200 between CDM
and SIDM-c1.

• The surface brightness profiles in SIDM are remarkably similar to those
produced in CDM. Both of them are in good agreement with observations at
the outskirts of the clusters (𝑟 ≳ 0.1 𝑅200), while the observed clusters develop
cuspy profiles at the center, especially for the selected cool-core (“peaky”)
clusters.

• Two-dimensional shape analysis is performed on the real and mock X-ray
images, of which the isophotes at the target radius (𝑟 ≳ 0.1 - 0.2 𝑅200) are
fitted with ellipses. We find that the ellipticities of the observed “non-peaky”
clusters are systematically lower than the CDM prediction, and interestingly
in good agreement with the SIDM models with (𝜎/𝑚) ≥ 0.5 cm2 g−1. Based
on statistical tests of the bootstrapped samples, we find that the CDM and
SIDM-c0.1 models are conservatively disfavored at 68% confidence level.
The result is robust against aperture choices and selection biases in cluster
temperatures and redshifts.

In conclusion, we demonstrate that the X-ray morphology of massive, relaxed clus-
ters is a promising channel to constrain DM self-interactions. Even though the DM
model-dependent variations in shape is smaller in the gas distribution and weak-
ened by projection effects, distinct signals can be identified with a large sample of
observed and simulated clusters. Our analysis favors SIDM models with relatively
high cross-sections. However, effects due to baryonic physics, including cooling,
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star formation and feedback effects that are not captured by our adiabatic simulations
is the primary source of uncertainty, and has the potential to reconcile simulations
with observations within the CDM framework. Follow-up cluster simulations with
full baryonic physics are required to confirm our findings.
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C h a p t e r 6

CONCLUSIONS

In this thesis, I discuss the motivations to study DM models with alternative be-
haviors to the classical collisionless CDM on astrophysical scales. The formation
of cosmic structures and galaxies offers a powerful avenue to constrain the general
properties of DM. Our primary focus is on DM with self-interactions, a dimension
of DM properties that may be probed exclusively through cosmological observa-
tions. In the following, I will provide a comprehensive summary of the four research
projects related to SIDM and the implications of these studies in elucidating various
phenomena observed in the Universe.

6.1 DSIDM – simulations and observational signatures
In Chapter 2 and Chapter 3, we present the first suite of cosmological baryonic (hy-
drodynamical) zoom-in simulations of galaxies in dSIDM. We adopt a dSIDM model
where a constant fraction of the kinetic energy is lost during DM self-interaction
and sample models with different self-interaction cross-sections. The simulations
utilize the FIRE-2 model for hydrodynamics and galaxy formation physics, which
allows for realistic predictions of the structural and kinematic properties of galax-
ies. We primarily focus on the analysis of dwarf galaxies in dSIDM and explore
galaxy/halo’s response to dissipative self-interactions of DM.

We find that energy dissipation due to DM self-interactions induces radial contrac-
tion of DM halo. This mechanism competes with baryonic feedback in shaping
the central profiles of dwarf galaxies, which may give rise to the observed diversity
of dwarf galaxy rotation curves. When the effective self-interaction cross-section
is larger than ∼ 0.1 cm2 g−1, the central density profiles of dwarf galaxies become
cuspy and power-law-like. The slope of the profile can be well explained by the
steady-state solution of a “dark cooling flow”. Through time scale analysis, we
show that the dSIDM models with constant cross-sections will have a stronger im-
pact in more massive galaxies while the velocity-dependent model has the opposite
dependence.

The kinematic properties and the shape of the DM halo are changed in parallel to the
contraction. As the self-interaction cross-section of dSIDM increases, the coherent
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rotation becomes more prominent compared to random velocity dispersion. In the
meantime, the velocity dispersions are more dominated by the tangential component
than the radial component, reflected by the negative velocity anisotropies in dSIDM
halos. The central parts of the galaxies are in transition from dispersion supported to
rotation supported. In the dSIDM model with (𝜎/𝑚) = 1 cm2 g−1, the halo becomes
more spherical towards lower redshifts, contrary to the triaxial shape of CDM halos.
The spherical “dark cooling flow” washes out the initial triaxiality of the halo and
makes the halo compact and spherical in the end. However, in the dSIDM model
with (𝜎/𝑚) = 10 cm2 g−1, the halo shape shows a response to the more prominent
coherent rotation of DM. Halos are initially on the track of becoming more spherical,
but later turn oblate in shape due to the halt of spherical contraction and increased
rotation support.

In Chapter 3, we attempt to compare these predictions to basic galaxy observables
affected by the underlying structural changes of DM halos induced by dissipative
interactions. The stellar morphology, the size-mass relation, and the circular velocity
profiles of both field and satellite dwarf galaxies are studied.

We find that with moderate but not negligible interaction cross-sections ((𝜎/𝑚) ∼
1 cm2 g−1), dSIDM makes the stellar content more concentrated and promotes the
formation of thin stellar disks as well as neutral gas disks in massive bright dwarfs.
The simulated galaxies in these models are still consistent with observations in
the plane of the galaxy size-mass relation. However, perhaps surprisingly, when
the cross-section becomes large enough (𝜎/𝑚 ∼ 10 cm2 g−1), the stellar content of
simulated dwarfs becomes fluffier even than the CDM case, owing to rotation and
other emergent properties of the DM cusp.

In terms of the circular velocity profiles of simulated dwarfs, we separately consider
the isolated classical and bright dwarfs in the suite as well as the satellites in
the simulations of Milky Way-mass galaxies. The isolated classical dwarfs are
compared to the field dwarf galaxies in the Local Group and we find all of the
dSIDM models studied survive this comparison. The isolated bright dwarfs are
compared to the LSBs with HI-based circular velocity measurements. We find that
the dSIDM models with (𝜎/𝑚) ≳ 0.1 cm2 g−1 are in tension with observations and
the velocity-dependent model is favored. The constraints here should be treated
with caution since we are limited by the number of simulated isolated halos at each
representative mass scale.

The satellites in simulated Milky Way-mass galaxies are compared to the Local
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Group satellites. Though we find little differences in the median and scatter of
the circular velocity profiles between DM models, dSIDM models with (𝜎/𝑚) =

0.1 cm2 g−1 produce outliers that agree better with the compact elliptical satellites
in observations, whose analogs are missing in CDM.

6.2 SIDM in massive high-density systems
In Chapter 4, we have studied a mechanism to seed high redshift SMBHs via the
collapse of tdSIDM halos, where the DM particle loses nearly all its kinetic energy
during a single collision. The study is motivated by the existence of billion solar mass
SMBHs observed in the early Universe (𝑧 ≳ 6), which are in tension with canonical
seeding mechanisms. We develop an analytical model for the collapse criteria and
timescale of tdSIDM halos, calibrated based on numerical N-body simulations of
isolated halos, and then apply this model to Monte-Carlo halo merger trees to make
predictions of SMBHs and observed quasars in the cosmological context.

We find that a constant fraction, 𝑓col ≃ 3 × 10−3, of the halo mass will eventually
collapse to the scale below the spatial resolution of the simulations. Surprisingly, the
collapsed fraction is insensitive to the mass, size, spin, and redshift of the sampled
halo. An analytic description of the collapse criteria and timescale is developed
and calibrated based on these simulations. This analytic prescription can be applied
to halos with various masses, concentrations, and formation redshifts as well as in
different cosmological models.

The unique feature of our seeding mechanism is the rapid formation of SMBHs seeds
with an SMBH-to-halo mass ratio of ∼ 3 × 10−3. The SMBHs directly seeded from
the catastrophic collapse of tdSIDM halos are massive enough to explain the high
mass end of SMBHs at 𝑧 ≳ 6. The rapid formation of SMBHs in our model implies
the existence of very young quasars at high redshift. Such a young population of
quasars is difficult to explain in standard scenarios where SMBHs have to live long
enough to grow at some modest multiple of the Eddington limit from much smaller
masses. SMBHs seeded directly from tdSIDM halos exhibit much larger SMBH-to-
halo mass ratios than local SMBHs and lie systematically above the local 𝑀BH −𝜎∗

v

relation. This feature is in better agreement with [C II] gas velocity dispersion and
host galaxy dynamical mass measured for high redshift massive quasars.

We trace the seeding and growth of SMBHs via halo merger trees and derive
predictions for the cosmological abundance of SMBHs. With little tuning of the
fueling model of SMBHs (the ERDF and the quasar duty-cycle), our model with
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𝜎/𝑚 = 0.05/0.1 cm2 g−1 (or 𝜖𝜎/𝑚 = 0.005/0.01 cm2 g−1 if we make 𝜖 free)
successfully reproduces the observed quasar luminosity functions at high redshift,
particularly at the bright end. The tuned ERDF and duty-cycle imply that a significant
fraction of SMBHs seeded in this way must have low quasar activity, which will
hopefully be tested by future quasar surveys.

Our model prefers a cross-section of𝜎/𝑚 ∼ 0.05 cm2 g−1 (or 𝜖𝜎/𝑚 ∼ 0.005 cm2 g−1)
to explain the quasar luminosity function at high redshift while remaining consis-
tent with low redshift observations. Such a model is testable in the future once
the quasar luminosity function is measured at more redshifts. In the future, quasar
surveys conducted with the Nancy Grace Roman Space Telescope, the Rubin Ob-
servatory Legacy Survey of Space and Time (LSST), and the James Webb Space
Telescope (JWST) can further test our predictions of the quasar luminosity function
and the density change of SMBHs at high redshift.

In Chapter 5, we study the X-ray morphology of massive, dynamically relaxed
clusters based on a suite of cosmological hydrodynamical zoom-in simulations
of 19 halos with 𝑀200 ≃ 1 - 2 × 1015 M⊙, simulated in CDM and SIDM models
with three different (constant) cross-sections per unit mass: (𝜎/𝑚) = 0.1, 0.5 and
1.0 cm2 g−1. The structural properties of both DM and intracluster gas in these
clusters are studied quantitatively in detail. These simulations include adiabatic gas
of which the X-ray emission is modeled to create mock soft X-ray images. We
perform ellipse fitting on the isophotes at the intermediate radii of the clusters and
compare the ellipticities with those measured from real cluster X-ray images.

The three-dimensional shapes of the DM distribution in CDM and SIDM-c1 exhibit
at least 2𝜎 level discrepancy out to large cluster-centric radii (𝑟 ∼ 0.2 𝑅200). For
all the models, the gas distributions are systematically more spherical than those
of DM, as a consequence of gas in hydrostatic equilibrium tracing the isopotential
surfaces, which are more spherical than the mass distribution. The variation in axial
ratios decreases to about 1𝜎 level at 𝑟 ∼ 0.1 - 0.2 𝑅200 between CDM and SIDM-c1.

In two-dimensional shape analysis, we find that the ellipticities of the observed “non-
peaky” clusters are systematically lower than the CDM prediction, and interestingly
in good agreement with the SIDM models with (𝜎/𝑚) ≥ 0.5 cm2 g−1. Based on
statistical tests of the bootstrapped samples, we find that the CDM and SIDM-c0.1
models are conservatively disfavored at a 68% confidence level. The result is robust
against aperture choices and selection biases in cluster temperatures and redshifts.
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We demonstrate that the X-ray morphology of massive, relaxed clusters is a promis-
ing channel to constrain DM self-interactions. Even though the DM model-
dependent variations in shape are smaller in the gas distribution and weakened
by projection effects, distinct signals can be identified with a large sample of ob-
served and simulated clusters. Our analysis favors SIDM models with relatively high
cross-sections. However, effects due to baryonic physics, including cooling, star for-
mation, and feedback effects that are not captured by our adiabatic simulations is the
primary source of uncertainty, and has the potential to reconcile simulations with
observations within the CDM framework. Follow-up cluster simulations with full
baryonic physics are required to confirm our findings.

6.3 Future works
There are three primary directions for my future research in constraining the nature of
DM in structure formation. The first is to delve deeper into SIDM studies. With a few
exceptions, the research on SIDM so far mainly involves empirical parameterizations
with effective parameters. This strategy has the advantage of efficiently constraining
the properties of a broad class of DM candidates but neglects the potential rich
phenomenology in the dark sector. One ongoing effort of us is to simulate a more
realistic dissipative DM model, such as DM with atomic structures, cooling, and
star formation physics. We have developed the code to simulate fluid-like atomic
DM alongside the standard model gas.

Another direction is to explore a broader range of DM candidates. This includes
classical CDM candidates, such as the QCD axions, of which the parameter space
has not been extensively searched in direct detections. The QCD axions in the post-
inflationary scenario may lead to (sub-)Earth mass structures detectable through
lensing and pulsar-timing observations. We have developed a semi-analytical model
to study the cosmic evolution of these mini structures and their survival probability
in the Milky Way environment. Other alternative DM types or properties, such
as low-mass WDM candidates with large free streaming lengths or ultralight par-
ticles with quantum mechanical effects, can impact structure formation at small
scales. Integrating these alternatives into existing simulation codes can help study
cosmological structure formation in different scenarios.

The last direction is to investigate signatures in various astrophysical systems. The
high redshift early Universe is a relatively unexplored territory that may be sensitive
to various DM physics, such as effects in small-scale primordial fluctuations and
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DM-baryon couplings. The next-generation observations will provide abundant
new data for structure formation in this era. This includes the abundance of faint
galaxies quantified by the UV luminosity function measured by JWST, rare massive
halos searched by quasar surveys as well as the Lyman-alpha forest tomography and
the 21 cm line intensity mapping that map the small-scale neutral gas structure at
different epochs. The global 21 cm signal of the first stars is sensitive to cooling from
DM-baryon coupling. Some recently develop numeric techniques will be useful to
study alternative DM in these observations.
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Hosting a 1.5 Billion Solar Mass Black Hole. ApJ, 897(1):L14, July 2020.
doi: 10.3847/2041-8213/ab9c26.

[348] D. H. Zhao, Y. P. Jing, H. J. Mo, and G. Börner. ACCURATE UNIVER-
SAL MODELS FOR THE MASS ACCRETION HISTORIES AND CON-
CENTRATIONS OF DARK MATTER HALOS. The Astrophysical Jour-
nal, 707(1):354–369, nov 2009. doi: 10.1088/0004-637x/707/1/354. URL
https://doi.org/10.1088%2F0004-637x%2F707%2F1%2F354.



204

[349] Fangzhou Jiang, Avishai Dekel, Jonathan Freundlich, Frank C. van den
Bosch, Sheridan B. Green, Philip F. Hopkins, Andrew Benson, and Xiao-
long Du. SatGen: a semi-analytical satellite galaxy generator – I. The model
and its application to Local-Group satellite statistics. arXiv e-prints, art.
arXiv:2005.05974, May 2020.

[350] Cedric Lacey and Shaun Cole. Merger rates in hierarchical models of galaxy
formation. MNRAS, 262(3):627–649, June 1993. doi: 10.1093/mnras/262.3.
627.

[351] Hannah Parkinson, Shaun Cole, and John Helly. Generating dark matter halo
merger trees. MNRAS, 383(2):557–564, January 2008. doi: 10.1111/j.1365-
2966.2007.12517.x.

[352] Andrew J. Benson. The mass function of unprocessed dark matter haloes and
merger tree branching rates. MNRAS, 467(3):3454–3466, May 2017. doi:
10.1093/mnras/stx343.

[353] Barbara S. Ryden and James E. Gunn. Galaxy Formation by Gravitational
Collapse. ApJ, 318:15, July 1987. doi: 10.1086/165349.

[354] S. G. Murray, C. Power, and A. S. G. Robotham. HMFcalc: An online tool
for calculating dark matter halo mass functions. Astronomy and Computing,
3:23–34, November 2013. doi: 10.1016/j.ascom.2013.11.001.

[355] Marta Volonteri, Francesco Haardt, and Piero Madau. The Assembly and
merging history of supermassive black holes in hierarchical models of galaxy
formation. Astrophys. J., 582:559–573, 2003. doi: 10.1086/344675.

[356] Masaki Iwasawa, Yoko Funato, and Junichiro Makino. Evolution of Massive
Black Hole Triples. I. Equal-Mass Binary-Single Systems. ApJ, 651(2):
1059–1067, November 2006. doi: 10.1086/507473.

[357] Loren Hoffman and Abraham Loeb. Dynamics of triple black hole systems
in hierarchically merging massive galaxies. MNRAS, 377(3):957–976, May
2007. doi: 10.1111/j.1365-2966.2007.11694.x.

[358] M. J. Fitchett. The influence of gravitational wave momentum losses on the
centre of mass motion of a Newtonian binay system. MNRAS, 203:1049–
1062, June 1983. doi: 10.1093/mnras/203.4.1049.

[359] Marta Volonteri, Ruben Salvaterra, and Francesco Haardt. Constraints on the
accretion history of massive black holes from faint X-ray counts. MNRAS,
373(1):121–127, November 2006. doi: 10.1111/j.1365-2966.2006.10976.x.

[360] Marta Volonteri, Giuseppe Lodato, and Priyamvada Natarajan. The evolution
of massive black hole seeds. MNRAS, 383(3):1079–1088, January 2008. doi:
10.1111/j.1365-2966.2007.12589.x.



205

[361] Priyamvada Natarajan. Seeds to monsters: tracing the growth of black holes
in the universe. General Relativity and Gravitation, 46:1702, May 2014. doi:
10.1007/s10714-014-1702-6.

[362] Laura Ferrarese. Beyond the bulge: a fundamental relation between super-
massive black holes and dark matter halos. Astrophys. J., 578:90–97, 2002.
doi: 10.1086/342308.

[363] Benny Trakhtenbrot. What do observations tell us about the highest-redshift
supermassive black holes? arXiv e-prints, art. arXiv:2002.00972, February
2020.

[364] Girish Kulkarni, Gábor Worseck, and Joseph F. Hennawi. Evolution of the
AGN UV luminosity function from redshift 7.5. MNRAS, 488(1):1035–1065,
September 2019. doi: 10.1093/mnras/stz1493.

[365] Feige Wang, Jinyi Yang, Xiaohui Fan, Xue-Bing Wu, Minghao Yue, Jiang-
Tao Li, Fuyan Bian, Linhua Jiang, Eduardo Bañados, Jan-Torge Schindler,
Joseph R. Findlay, Frederick B. Davies, Roberto Decarli, Emanuele P. Farina,
Richard Green, Joseph F. Hennawi, Yun-Hsin Huang, Chiara Mazzuccheli,
Ian D. McGreer, Bram Venemans, Fabian Walter, Simon Dye, Brad W. Lyke,
Adam D. Myers, and Evan Haze Nunez. Exploring Reionization-era Quasars.
III. Discovery of 16 Quasars at 6.4 ≲ z ≲ 6.9 with DESI Legacy Imaging
Surveys and the UKIRT Hemisphere Survey and Quasar Luminosity Function
at z ∼ 6.7. ApJ, 884(1):30, October 2019. doi: 10.3847/1538-4357/ab2be5.

[366] Chris J. Willott, Loic Albert, Doris Arzoumanian, Jacqueline Bergeron,
David Crampton, Philippe Delorme, John B. Hutchings, Alain Omont, Cé-
line Reylé, and David Schade. Eddington-limited Accretion and the Black
Hole Mass Function at Redshift 6. AJ, 140(2):546–560, August 2010. doi:
10.1088/0004-6256/140/2/546.

[367] Brandon C. Kelly and Yue Shen. The Demographics of Broad-line Quasars
in the Mass-Luminosity Plane. II. Black Hole Mass and Eddington Ratio
Functions. ApJ, 764(1):45, February 2013. doi: 10.1088/0004-637X/764/1/
45.

[368] Marco Tucci and Marta Volonteri. Constraining supermassive black hole
evolution through the continuity equation. Astron. Astrophys., 600:A64,
2017. doi: 10.1051/0004-6361/201628419.

[369] Yue Shen, Michael A. Strauss, Masamune Oguri, Joseph F. Hennawi, Xiaohui
Fan, Gordon T. Richards, Patrick B. Hall, James E. Gunn, Donald P. Schnei-
der, Alexander S. Szalay, Anirudda R. Thakar, Daniel E. Vanden Berk, Scott F.
Anderson, Neta A. Bahcall, Andrew J. Connolly, and Gillian R. Knapp. Clus-
tering of High-Redshift (z >= 2.9) Quasars from the Sloan Digital Sky Survey.
AJ, 133(5):2222–2241, May 2007. doi: 10.1086/513517.



206

[370] Martin White, Paul Martini, and J. D. Cohn. Constraints on the cor-
relation between QSO luminosity and host halo mass from high-redshift
quasar clustering. MNRAS, 390(3):1179–1184, November 2008. doi:
10.1111/j.1365-2966.2008.13817.x.

[371] Francesco Shankar, Martin Crocce, Jordi Miralda-Escudé, Pablo Fosalba,
and David H. Weinberg. On the Radiative Efficiencies, Eddington Ratios,
and Duty Cycles of Luminous High-redshift Quasars. ApJ, 718(1):231–250,
July 2010. doi: 10.1088/0004-637X/718/1/231.

[372] Huanqing Chen and Nickolay Y. Gnedin. Constraints on the Duty Cycles of
Quasars at z ∼ 6. ApJ, 868(2):126, December 2018. doi: 10.3847/1538-
4357/aae8e8.

[373] Feige Wang, Frederick B. Davies, Jinyi Yang, Joseph F. Hennawi, Xiao-
hui Fan, Aaron J. Barth, Linhua Jiang, Xue-Bing Wu, Dale M. Mudd,
Eduardo Bañados, Fuyan Bian, Roberto Decarli, Anna-Christina Eilers,
Emanuele Paolo Farina, Bram Venemans, Fabian Walter, and Minghao Yue.
A Significantly Neutral Intergalactic Medium Around the Luminous z =
7 Quasar J0252-0503. ApJ, 896(1):23, June 2020. doi: 10.3847/1538-
4357/ab8c45.

[374] Marcel Neeleman, Mladen Novak, Bram P. Venemans, Fabian Walter,
Roberto Decarli, Melanie Kaasinen, Jan-Torge Schindler, Eduardo Bana-
dos, Chris L. Carilli, Alyssa B. Drake, Xiaohui Fan, and Hans-Walter
Rix. The Kinematics of z ~6 Quasar Host Galaxies. arXiv e-prints, art.
arXiv:2102.05679, February 2021.

[375] F. Fiore, S. Puccetti, A. Grazian, N. Menci, F. Shankar, P. Santini, E. Picon-
celli, A. M. Koekemoer, A. Fontana, K. Boutsia, M. Castellano, A. Lamastra,
C. Malacaria, C. Feruglio, S. Mathur, N. Miller, and M. Pannella. Faint
high-redshift AGN in the Chandra deep field south: the evolution of the AGN
luminosity function and black hole demography. A&A, 537:A16, January
2012. doi: 10.1051/0004-6361/201117581.

[376] Yoshiki Matsuoka, Michael A. Strauss, Nobunari Kashikawa, Masafusa
Onoue, Kazushi Iwasawa, Ji-Jia Tang, Chien-Hsiu Lee, Masatoshi Imanishi,
Tohru Nagao, Masayuki Akiyama, Naoko Asami, James Bosch, Hisanori
Furusawa, Tomotsugu Goto, James E. Gunn, Yuichi Harikane, Hiroyuki
Ikeda, Takuma Izumi, Toshihiro Kawaguchi, Nanako Kato, Satoshi Kikuta,
Kotaro Kohno, Yutaka Komiyama, Robert H. Lupton, Takeo Minezaki,
Satoshi Miyazaki, Hitoshi Murayama, Mana Niida, Atsushi J. Nishizawa,
Akatoki Noboriguchi, Masamune Oguri, Yoshiaki Ono, Masami Ouchi,
Paul A. Price, Hiroaki Sameshima, Andreas Schulze, Hikari Shirakata,
John D. Silverman, Naoshi Sugiyama, Philip J. Tait, Masahiro Takada, Tada-
fumi Takata, Masayuki Tanaka, Yoshiki Toba, Yousuke Utsumi, Shiang-Yu
Wang, and Takuji Yamashita. Subaru High-z Exploration of Low-luminosity



207

Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to
Cosmic Reionization at z = 6. ApJ, 869(2):150, December 2018. doi:
10.3847/1538-4357/aaee7a.

[377] Aaron A. Dutton and Andrea V. Macciò. Cold dark matter haloes in the
Planck era: evolution of structural parameters for Einasto and NFW profiles.
MNRAS, 441(4):3359–3374, July 2014. doi: 10.1093/mnras/stu742.

[378] Linhao Ma, Philip F. Hopkins, Xiangcheng Ma, Daniel Anglés-Alcázar,
Claude-André Faucher-Giguère, and Luke Zoltan Kelley. Seeds Don’t Sink:
Even Massive Black Hole “Seeds” Cannot Migrate to Galaxy Centers Effi-
ciently. arXiv e-prints, art. arXiv:2101.02727, January 2021.

[379] Massimo Meneghetti, Guido Davoli, Pietro Bergamini, Piero Rosati, Priyam-
vada Natarajan, Carlo Giocoli, Gabriel B. Caminha, R. Benton Metcalf, Elena
Rasia, Stefano Borgani, Francesco Calura, Claudio Grillo, Amata Mercurio,
and Eros Vanzella. An excess of small-scale gravitational lenses observed
in galaxy clusters. Science, 369(6509):1347–1351, September 2020. doi:
10.1126/science.aax5164.

[380] Quinn E. Minor, Sophia Gad-Nasr, Manoj Kaplinghat, and Simona Vegetti.
An unexpected high concentration for the dark substructure in the gravita-
tional lens SDSSJ0946+1006. arXiv e-prints, art. arXiv:2011.10627, Novem-
ber 2020.

[381] H. J. Mo, Shude Mao, and Simon D. M. White. The formation of galactic
discs. MNRAS, 295(2):319–336, April 1998. doi: 10.1046/j.1365-8711.
1998.01227.x.

[382] A. Toomre. On the gravitational stability of a disk of stars. ApJ, 139:1217–
1238, May 1964. doi: 10.1086/147861.

[383] Giuseppe Lodato and Priyamvada Natarajan. Supermassive black hole forma-
tion during the assembly of pre-galactic discs. MNRAS, 371(4):1813–1823,
October 2006. doi: 10.1111/j.1365-2966.2006.10801.x.

[384] F. Hoyle and R. A. Lyttleton. The effect of interstellar matter on climatic
variation. Proceedings of the Cambridge Philosophical Society, 35(3):405,
January 1939. doi: 10.1017/S0305004100021150.

[385] H. Bondi and F. Hoyle. On the mechanism of accretion by stars. MNRAS,
104:273, January 1944. doi: 10.1093/mnras/104.5.273.

[386] H. Bondi. On spherically symmetrical accretion. MNRAS, 112:195, January
1952. doi: 10.1093/mnras/112.2.195.

[387] E. Shima, T. Matsuda, H. Takeda, and K. Sawada. Hydrodynamic calculations
of axisymmetric accretion flow. MNRAS, 217:367–386, November 1985. doi:
10.1093/mnras/217.2.367.



208

[388] Anastasia Sokolenko, Kyrylo Bondarenko, Thejs Brinckmann, Jesús Zavala,
Mark Vogelsberger, Torsten Bringmann, and Alexey Boyarsky. Towards an
improved model of self-interacting dark matter haloes. J. Cosmol. Astropart.
Phys., 2018(12):038, December 2018. doi: 10.1088/1475-7516/2018/12/
038.

[389] Volker Springel. E pur si muove: Galilean-invariant cosmological hydrody-
namical simulations on a moving mesh. MNRAS, 401(2):791–851, January
2010. doi: 10.1111/j.1365-2966.2009.15715.x.

[390] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown,
J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, N. Bar-
tolo, E. Battaner, R. Battye, K. Benabed, A. Benoît, A. Benoit-Lévy, J. P.
Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, A. Bonaldi, L. Bonavera, J. R.
Bond, J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R. C.
Butler, E. Calabrese, J. F. Cardoso, A. Catalano, A. Challinor, A. Chamballu,
R. R. Chary, H. C. Chiang, J. Chluba, P. R. Christensen, S. Church, D. L.
Clements, S. Colombi, L. P. L. Colombo, C. Combet, A. Coulais, B. P. Crill,
A. Curto, F. Cuttaia, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis,
A. de Rosa, G. de Zotti, J. Delabrouille, F. X. Désert, E. Di Valentino, C. Dick-
inson, J. M. Diego, K. Dolag, H. Dole, S. Donzelli, O. Doré, M. Douspis,
A. Ducout, J. Dunkley, X. Dupac, G. Efstathiou, F. Elsner, T. A. Enßlin,
H. K. Eriksen, M. Farhang, J. Fergusson, F. Finelli, O. Forni, M. Frailis, A. A.
Fraisse, E. Franceschi, A. Frejsel, S. Galeotta, S. Galli, K. Ganga, C. Gauthier,
M. Gerbino, T. Ghosh, M. Giard, Y. Giraud-Héraud, E. Giusarma, E. Gjer-
løw, J. González-Nuevo, K. M. Górski, S. Gratton, A. Gregorio, A. Gruppuso,
J. E. Gudmundsson, J. Hamann, F. K. Hansen, D. Hanson, D. L. Harrison,
G. Helou, S. Henrot-Versillé, C. Hernández-Monteagudo, D. Herranz, S. R.
Hildebrand t, E. Hivon, M. Hobson, W. A. Holmes, A. Hornstrup, W. Hovest,
Z. Huang, K. M. Huffenberger, G. Hurier, A. H. Jaffe, T. R. Jaffe, W. C. Jones,
M. Juvela, E. Keihänen, R. Keskitalo, T. S. Kisner, R. Kneissl, J. Knoche,
L. Knox, M. Kunz, H. Kurki-Suonio, G. Lagache, A. Lähteenmäki, J. M.
Lamarre, A. Lasenby, M. Lattanzi, C. R. Lawrence, J. P. Leahy, R. Leonardi,
J. Lesgourgues, F. Levrier, A. Lewis, M. Liguori, P. B. Lilje, M. Linden-
Vørnle, M. López-Caniego, P. M. Lubin, J. F. Macías-Pérez, G. Maggio,
D. Maino, N. Mandolesi, A. Mangilli, A. Marchini, M. Maris, P. G. Mar-
tin, M. Martinelli, E. Martínez-González, S. Masi, S. Matarrese, P. McGe-
hee, P. R. Meinhold, A. Melchiorri, J. B. Melin, L. Mendes, A. Mennella,
M. Migliaccio, M. Millea, S. Mitra, M. A. Miville-Deschênes, A. Moneti,
L. Montier, G. Morgante, D. Mortlock, A. Moss, D. Munshi, J. A. Mur-
phy, P. Naselsky, F. Nati, P. Natoli, C. B. Netterfield, H. U. Nørgaard-Nielsen,
F. Noviello, D. Novikov, I. Novikov, C. A. Oxborrow, F. Paci, L. Pagano, F. Pa-
jot, R. Paladini, D. Paoletti, B. Partridge, F. Pasian, G. Patanchon, T. J. Pear-
son, O. Perdereau, L. Perotto, F. Perrotta, V. Pettorino, F. Piacentini, M. Piat,
E. Pierpaoli, D. Pietrobon, S. Plaszczynski, E. Pointecouteau, G. Polenta,



209

L. Popa, G. W. Pratt, G. Prézeau, S. Prunet, J. L. Puget, J. P. Rachen, W. T.
Reach, R. Rebolo, M. Reinecke, M. Remazeilles, C. Renault, A. Renzi, I. Ris-
torcelli, G. Rocha, C. Rosset, M. Rossetti, G. Roudier, B. Rouillé d’Orfeuil,
M. Rowan-Robinson, J. A. Rubiño-Martín, B. Rusholme, N. Said, V. Sal-
vatelli, L. Salvati, M. Sandri, D. Santos, M. Savelainen, G. Savini, D. Scott,
M. D. Seiffert, P. Serra, E. P. S. Shellard, L. D. Spencer, M. Spinelli, V. Stol-
yarov, R. Stompor, R. Sudiwala, R. Sunyaev, D. Sutton, A. S. Suur-Uski,
J. F. Sygnet, J. A. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi, M. Tristram,
T. Trombetti, M. Tucci, J. Tuovinen, M. Türler, G. Umana, L. Valenziano,
J. Valiviita, F. Van Tent, P. Vielva, F. Villa, L. A. Wade, B. D. Wandelt, I. K.
Wehus, M. White, S. D. M. White, A. Wilkinson, D. Yvon, A. Zacchei, and
A. Zonca. Planck 2015 results. XIII. Cosmological parameters. A&A, 594:
A13, September 2016. doi: 10.1051/0004-6361/201525830.

[391] A. B. Mantz, S. W. Allen, R. G. Morris, D. A. Rapetti, D. E. Applegate, P. L.
Kelly, A. von der Linden, and R. W. Schmidt. Cosmology and astrophysics
from relaxed galaxy clusters - II. Cosmological constraints. MNRAS, 440(3):
2077–2098, May 2014. doi: 10.1093/mnras/stu368.

[392] Randall K. Smith, Nancy S. Brickhouse, Duane A. Liedahl, and John C.
Raymond. Collisional Plasma Models with APEC/APED: Emission-Line
Diagnostics of Hydrogen-like and Helium-like Ions. ApJ, 556(2):L91–L95,
August 2001. doi: 10.1086/322992.

[393] A. R. Foster, L. Ji, R. K. Smith, and N. S. Brickhouse. Updated Atomic Data
and Calculations for X-Ray Spectroscopy. ApJ, 756(2):128, September 2012.
doi: 10.1088/0004-637X/756/2/128.

[394] E. Anders and N. Grevesse. Abundances of the elements: Meteoritic and
solar. Geochimica et Cosmochimica Acta, 53(1):197–214, January 1989.
doi: 10.1016/0016-7037(89)90286-X.

[395] M. McDonald, E. Bulbul, T. de Haan, E. D. Miller, B. A. Benson, L. E.
Bleem, M. Brodwin, J. E. Carlstrom, I. Chiu, W. R. Forman, J. Hlavacek-
Larrondo, G. P. Garmire, N. Gupta, J. J. Mohr, C. L. Reichardt, A. Saro,
B. Stalder, A. A. Stark, and J. D. Vieira. The Evolution of the Intracluster
Medium Metallicity in Sunyaev Zel’dovich-selected Galaxy Clusters at 0 < z
< 1.5. ApJ, 826(2):124, August 2016. doi: 10.3847/0004-637X/826/2/124.

[396] Adam B. Mantz, Steven W. Allen, R. Glenn Morris, Aurora Simionescu,
Ondrej Urban, Norbert Werner, and Irina Zhuravleva. The metallicity of the
intracluster medium over cosmic time: further evidence for early enrichment.
MNRAS, 472(3):2877–2888, December 2017. doi: 10.1093/mnras/stx2200.

[397] R. Morrison and D. McCammon. Interstellar photoelectric absorption cross
sections, 0.03-10 keV. ApJ, 270:119–122, July 1983. doi: 10.1086/161102.



210

[398] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wand elt, F. K. Hansen, M. Rei-
necke, and M. Bartelmann. HEALPix: A Framework for High-Resolution
Discretization and Fast Analysis of Data Distributed on the Sphere. ApJ, 622
(2):759–771, April 2005. doi: 10.1086/427976.

[399] Robert I. Jedrzejewski. CCD surface photometry of elliptical galaxies - I.
Observations, reduction and results. MNRAS, 226:747–768, June 1987. doi:
10.1093/mnras/226.4.747.

[400] N. Kaiser. Evolution and clustering of rich clusters. MNRAS, 222:323–345,
September 1986. doi: 10.1093/mnras/222.2.323.

[401] Erwin T. Lau, Andrey V. Kravtsov, and Daisuke Nagai. Residual Gas Motions
in the Intracluster Medium and Bias in Hydrostatic Measurements of Mass
Profiles of Clusters. ApJ, 705(2):1129–1138, November 2009. doi: 10.1088/
0004-637X/705/2/1129.

[402] F. Vazza, G. Brunetti, C. Gheller, R. Brunino, and M. Brüggen. Massive
and refined. II. The statistical properties of turbulent motions in massive
galaxy clusters with high spatial resolution. A&A, 529:A17, May 2011. doi:
10.1051/0004-6361/201016015.

[403] Kaylea Nelson, Erwin T. Lau, and Daisuke Nagai. Hydrodynamic Simula-
tion of Non-thermal Pressure Profiles of Galaxy Clusters. ApJ, 792(1):25,
September 2014. doi: 10.1088/0004-637X/792/1/25.

[404] David A. Buote and Claude R. Canizares. Geometrical Evidence for Dark
Matter: X-Ray Constraints on the Mass of the Elliptical Galaxy NGC 720.
ApJ, 427:86, May 1994. doi: 10.1086/174123.

[405] Andrea Morandi, Kristian Pedersen, and Marceau Limousin. Unveiling the
Three-dimensional Structure of Galaxy Clusters: Resolving the Discrepancy
Between X-ray and Lensing Masses. ApJ, 713(1):491–502, April 2010. doi:
10.1088/0004-637X/713/1/491.

[406] Marceau Limousin, Andrea Morandi, Mauro Sereno, Massimo Meneghetti,
Stefano Ettori, Matthias Bartelmann, and Tomas Verdugo. The Three-
Dimensional Shapes of Galaxy Clusters. Space Science Reviews, 177(1-4):
155–194, August 2013. doi: 10.1007/s11214-013-9980-y.

[407] John L Hodges. The significance probability of the smirnov two-sample test.
Arkiv för Matematik, 3(5):469–486, 1958.

[408] Theodore W Anderson and Donald A Darling. Asymptotic theory of cer-
tain" goodness of fit" criteria based on stochastic processes. The annals of
mathematical statistics, pages 193–212, 1952.

[409] Theodore W Anderson and Donald A Darling. A test of goodness of fit.
Journal of the American statistical association, 49(268):765–769, 1954.



211

[410] Donald A Darling. The kolmogorov-smirnov, cramer-von mises tests. The
Annals of Mathematical Statistics, 28(4):823–838, 1957.

[411] Ao No Pettitt. A two-sample anderson-darling rank statistic. Biometrika, 63
(1):161–168, 1976.

[412] Fritz W Scholz and Michael A Stephens. K-sample anderson–darling tests.
Journal of the American Statistical Association, 82(399):918–924, 1987.

[413] Taotao Fang, Philip Humphrey, and David Buote. Rotation and Turbulence
of the Hot Intracluster Medium in Galaxy Clusters. ApJ, 691(2):1648–1659,
February 2009. doi: 10.1088/0004-637X/691/2/1648.

[414] Erwin T. Lau, Daisuke Nagai, Andrey V. Kravtsov, and Andrew R. Zentner.
Shapes of Gas, Gravitational Potential, and Dark Matter in ΛCDM Clusters.
ApJ, 734(2):93, June 2011. doi: 10.1088/0004-637X/734/2/93.

[415] N. Battaglia, J. R. Bond, C. Pfrommer, and J. L. Sievers. On the Cluster
Physics of Sunyaev-Zel’dovich and X-Ray Surveys. I. The Influence of Feed-
back, Non-thermal Pressure, and Cluster Shapes on Y-M Scaling Relations.
ApJ, 758(2):74, October 2012. doi: 10.1088/0004-637X/758/2/74.

[416] Daichi Suto, Sébastien Peirani, Yohan Dubois, Tetsu Kitayama, Takahiro
Nishimichi, Shin Sasaki, and Yasushi Suto. Projected axis ratios of galaxy
clusters in the Horizon-AGN simulation: Impact of baryon physics and com-
parison with observations. Publications of the Astronomical Society of Japan,
69(1):14, February 2017. doi: 10.1093/pasj/psw118.

[417] D. Eckert, F. Vazza, S. Ettori, S. Molendi, D. Nagai, E. T. Lau, M. Roncarelli,
M. Rossetti, S. L. Snowden, and F. Gastaldello. The gas distribution in the
outer regions of galaxy clusters. A&A, 541:A57, May 2012. doi: 10.1051/
0004-6361/201118281.

[418] John Dubinski. The Effect of Dissipation on the Shapes of Dark Halos. ApJ,
431:617, August 1994. doi: 10.1086/174512.

[419] August E. Evrard, F. J. Summers, and Marc Davis. Two-Fluid Simulations of
Galaxy Formation. ApJ, 422:11, February 1994. doi: 10.1086/173700.

[420] P. B. Tissera and R. Dominguez-Tenreiro. Dark matter halo structure in
CDM hydrodynamical simulations. MNRAS, 297(1):177–194, June 1998.
doi: 10.1046/j.1365-8711.1998.01440.x.

[421] Stelios Kazantzidis, Andrey V. Kravtsov, Andrew R. Zentner, Brandon All-
good, Daisuke Nagai, and Ben Moore. The Effect of Gas Cooling on the
Shapes of Dark Matter Halos. ApJ, 611(2):L73–L76, August 2004. doi:
10.1086/423992.



212

[422] Victor P. Debattista, Ben Moore, Thomas Quinn, Stelios Kazantzidis, Ryan
Maas, Lucio Mayer, Justin Read, and Joachim Stadel. The Causes of Halo
Shape Changes Induced by Cooling Baryons: Disks versus Substructures.
ApJ, 681(2):1076–1088, July 2008. doi: 10.1086/587977.

[423] Andrew Robertson, Richard Massey, Vincent Eke, Sean Tulin, Hai-Bo Yu,
Yannick Bahé, David J. Barnes, Richard G. Bower, Robert A. Crain, Claudio
Dalla Vecchia, Scott T. Kay, Matthieu Schaller, and Joop Schaye. The
diverse density profiles of galaxy clusters with self-interacting dark matter
plus baryons. MNRAS, 476(1):L20–L24, May 2018. doi: 10.1093/mnrasl/
sly024.


