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CHAPTER II - SOIL-FOUNDA TION-SUPERSTR UC TURE 
INTERACTION 

[2-1] A GENERAL FORMULATION 

The harmonic analysis of the soil-rigid foundation-superstruc

ture problem can be separated into three parts. The first two 

parts involve only the interaction between the soil medium and the 

foundation, i.e., the motion of a rigid-massless foundation, while 

the third part considers the dynamics of the superstructure. 

The analysis of the superstructure is usually considered to be 

easily solved by the finite element method or other numerical 

methods. There are also numerous reports describing the compu

tational as well as experimental determinations of the dynamic 

response of typical structures. Thus, the problem in soil-structure 

interaction when using the continuum approach is practically reduced 

to the determination of the steady state motion of a rigid massless 

foundation subjected to the action of seismic waves and external 

forces. This procedure has the advantage that, once the solutions 

of the first two steps are obtained for a class of foundations, the 

results can be used to calculate the interaction response for a 

large variety of superstructures. This approach is, of course, 

applicable to linear problems only. 

The motion of a rigid foundation may be described by 

defining six coordinates if the displacements remain small. These 

coordinates include two orthogonal horizontal translations, a verti

cal translation, two rotations about two mutually perpendicular 

horizontal axes, and a torsional rotation about the vertical axis. 
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Using the principle of superposition, the generalized displace

ment u eiwt of the rigid foundation may be represented as 

(2 -1. 1) 

where u* eiwt corresponds to the six components of translation and 

rotation of the rigid foundation under the action of seismic waves 

and in absence of external forces, while I.lo eiwt corresponds to the 

six components in which the foundation is under action of the exter

nal force without seismic excitations. In this thesis, the displace

ments u>:< and I.lo will be designated as 11foundation input motion 11 and 

11 relative displacement, 11 respectively. 

The relative displacement Uo eiwt generated by the interaction 

forces Fs eiwt that the foundation exerts on the ground may be 

expressed by means of the following linear relationship 

(2-1. 2) 

where [ Cs J is the compliance matrix for the rigid foundation. Con

versely, the interaction forces may be expressed in terms of the 
' 

relative displacement by 

(2 -1. 3) 

where [ Ks J = [ Cs J -i is the impedance matrix for the rigid founda -

tion. 

The complex impedance and compliance matrices which 

describe the force-displacement relationship between the foundation 

and soil medium depend mainly on the frequency of harmonic 
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excitation, the material property of the soil medium, and the shape 

of the foundation. Physically, the impedance functions for a rigid 

foundation can be viewed as 

(2-1. 4) 

where [ks] and [cs] are real, frequency dependent matrices which 

represent the stiffness and damping contribution to [Ks], re spec -

ti vely. 

If the soil medium is assumed to be elastic, then no energy 

dissipating mechanism exists in the material itself. Therefore, the 

dissipating term of the impedance matrix arises solely from the 

radiation of wave energy into the half space. This damping term 

usually dominates the stiffness term in the high frequency range. 

The behavior of [Ks] becomes more complicated if the underlying 

soil medium is layered, because a significant part of the radiated 

energy may be trapped in the 11low-velocity 11 layers and scattered 

back towards the foundation. 

Since the impedance matrix [Ks J represents a force-displace-
' 

ment relationship for the rigid foundation and the soil medium, the 

11driving force, 11 F/, of the seismic waves can be introduced as 

(2 -1. 5) 

With the input motion u ,:, measured relative to an inertial frame, 

the 11driving force, 11 Fl, corresponds to the forces caused by the 

seismic excitation while the foundation is kept fix ed. 
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Using equation (2-1. 2) and the inverse of (2-1. 5), the dis

placement~ of equation (2-1. 1) can be expressed as 

(2 -1. 6) 

Therefore, to solve the problem of the dynamic response of rigid 

foundations, it is possible to separate the problem in two parts: 

the first part corresponding to the determination of the re straining 

force, or, equivalently, the determination of the compliance (impe

dance) matrices; the second part being the evaluation of the driving 

forces F 
,:, 

s . 

In the past, the case most commonly studied has been that of 

the vertically incident S-wave of a unit amplitude. The amplitude of 

the free-field motion at every point on the surface is then equal to 

two. In that case, no scattering occurs for a flat foundation, the 

"base input motion" is just two, and the driving forces Fs* are 

equal to two times the impedance functions which are given by 

equation (2-1. 5 ). 

For non - vertically incident waves, the free-field motion is no 
1 

longer constant everywhere on the free surface and, hence, wave 

scattering will occur. This effect becomes especially important 

when the incident wave' s wavelength is comparable to the charac -

teristic dimension of the foundation. Also, for embedded founda

tions, the "free-field" motion below the ground surface must also 

be taken into account. In that case, the scattering will occur even 

for vertically incident w aves. 
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In previous research work dealing with soil-structure inter -

action, most of the effort has been devoted to the determination of 

the compliance matrix. On the other hand, the evaluation of driving 

forces has been neglected by most authors. It should be noted 

here that the driving forces are equally important because they 

contain the characteristics of the incident waves. 
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[2-2] SUPERPOSITION OF RESULTS 

The principal unknown of the soil-foundation-superstructure 

interaction problem is the motion of the foundation. This motion 

is excited by seismic waves and the external forces exerted on the 

foundation by the superstructure. Resistance to this motion is 

offered by the soil and the inertia forces of the foundation. Once 

the displacement of the foundation is determined, all other quanti

ties, such as the stress and deformation of the superstructure, can 

be obtained. If more than one structure is pre sent, the scattered 

wave pattern outside the foundation must also be determined. 

Next, one can derive the equations of motion for the founda

tion by using Newton 1 s Law. First of all, the steady state motion 

of the foundation, ~ eiwt, can be expressed as the superposition of 

the 11base input motion" u>:< and the 11relative motion 11 u0 , 

u = u>:< + u0 (2-2. 1) 

The relative displacements and rotations, Uo eiwt, are caused by 

forces and moments exerted on the foundation by the superstruc-
' 

ture. 

Multiplying equation (2-2. 1) by the impedance matrix, using 

the relations (2-1.3) and (2-1.5), 

(2-2. 2) 

in which -F8 is the total force that the ground exerts on the 

foundation, and knowing the mass matrix [M0 ] of the foundation, 

we can write the force balance equation as 
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d2 . 
[ 1\A"] (ueiwt) -Fse1wt + F.eeiwt 

-'-V-'{) dt2 - = (2 -2. 3) 

Here, Fe eiwt is the external force acting on the foundation and is 

caused by the superstructure. 

Substituting (2-2. 2) into (2-2. 3) and using the definition 

(2 -1. 3 ), equation (2-2. 3) becomes 

(2-2. 4) 

Equation (2-2. 4) corresponds to a general linear system which has 

frequency dependent damping and stiffness matrices. By manipu

lating (2-2. 4), an equation for the relative motion can be written as 

(2-2. 5) 

In both equations (2-2. 4) and (2-2. 5), the unknowns u or u 0 

can easily be calculated if the results for the three parts of the 

problem as described earlier are available. 

The above procedure appears to be quite useful because it 

enables us to concentrate on a small segment of a problem and to 

use the available data from previous analyses. This approach can 

increase the efficiency of the analysis and avoid costly duplication 

of the available results. 
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CHAPTER III - LONG FOUNDATIONS SUBJECTED 
TO SH-WAVE EXCITATION 

[3-1] THE APPLICATION OF THE METHOD OF IMAGES 

Except for a limited amount of work done using the continuum 

{Al 77 A182 A183) . 
approach, ' ' the analyses of embedded foundations 

are usually done by finite element computer codes. The finite ele

ment method gives only an approximate solution and its accuracy 

may depend greatly on the number and size of elements, as well as on 

the assumed displacement or stress variation in each element 

itself. Due to the approximate nature of this approach, the finite 

element solutions should be tested first by a comparison with a 

simple exact solution so that more complicated problems may be 

analyzed with confidence. 

Unfortunately, exact solutions for wave scattering in the 

elastic half space are scarce. To obtain an exact solution of the 

wave equation with more than one space dimension, the physical 

boundary may have to coincide with one of the constant coordinate 

lines. For example, wave scattering from a sphere in an infinite 

elastic space will require the boundary conditions to be satisfied on 

the radial coordinate, r = a, the radius of the sphere. This proce

dure can be carried out methodically without difficulties. However, 

when the scattering of a semi-spherical body embedded in an elastic 

half space is considered, the boundary conditions must be matched 

using both radial and angular coordinates. Here, the radial coor -

dinate is held constant to match the boundary condition at the 

spherical surface, while the two angular coordinates are held 
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constant for the free surface condition at the half space boundary. 

This procedure usually cannot be carried out effectively. 

A simple idea of the method of images allows some cases 

of the two-dimensional half space problem to be solved. However, 

this method is presently limited only to the SH-wave problem 

because just one space derivative is required to satisfy stress 

compatibility conditions. For the in-plane SV- and P-wave 

motions, the second space derivatives of the potentials are also 

required. 

To apply the method of image to the z -component of the displace

ment, w, consider the scattering object or foundation shown in Figure 

3-1. la. The wave motion located outside this object consists of 

incident waves and scattered waves. Now, if one chooses the 

object to be symmetrical about the x-axis and imposes an image of 

the incident wave about the same x-axis, then the condition ~w = 0 
· uY 

holds at y = 0 because of symmetry. Physically, this image wave 

is actually the reflected wave from the free surface. In linear 

elasticity, T yz = f.ls ~w I correspond..s to the shear stress at the 
y y=O 

surface where y = O; hence, the problem represented in Figure 

3-1. la is equivalent to that in Figure 3-1. lb. Of course, the 

scattered wave from the foundation must also be symmetrical about 

the x-axis. 

In the following sections, several :::i roblems in foundation dyna

mics are solved exactly using this idea. As will be shown, certain 

aspects of soil-structure interaction can be under stood and explained 

by using this approach. 



-20-

\ I 

e 
I \ 

y 

iJw=O ay 
---------~r-,-r....,..,......,,......,,.........,......,....,.._-------11► x 

I \ 

y 

Figure 3 -1. 1 Symmetrical formulation of the image problem. 
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[ 3-2] THE EFFECT OF EMBEDMENT ON FOUNDATION 
RESPONSE 

Even though the symmetry argument for the SH-wave problem 

allows us to obtain some simple solutions in the half space, there 

are only a few simple coordinate systems that allow an exact 

solution for the scalar wave equation. In two dimensions, the wave 

equation is separable in the cartesian, polar, elliptical, and para

bolic coordinates, and infinite series solutions are possible. The 

cartesian coordinates perhaps best fit the shape of most common 

foundations, but the exterior wave scattering problem for a rec -

tangular foundation is not yet solved because difficulties arise w hen 

the boundary condition has to be posed at both x and y coordinates. 

U . 1 d" t L (Alb 8 ) . t· d h . smg po ar coor 1na es, uco 1nves 1gate t e semi-

circular cylindrical foundation excited by a vertically incident S-wave. 

Trifunac (Alb 9 ) generalized the results to include SH-waves with an 

arbitrary angle of incidence. Because a circle is symmetrical 

about its origin, it was found that the angle of incidence has no 

effect on the response of the foundation. 

The disadvantage of the semi-circular foundation model from the 

point of view of analysis is that the embedment ratio of the foundation 

cannot be varied. The semi-elliptical shape of the foundation, on the 

other hand, has both the semi-circular and strip foundation (Al Sb) as 

its limiting cases. The embedment ratio can be chang ed easily by 

varying the focal length of the ellipse. 

Because a great deal of lite rature is a vailable on the subject 

of an elliptical sea tte rer, it is not difficult to formulate the 
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SH-wave problem in the elliptical coordinates. In Mow and Pao 

(1971), the elliptical coordinates are defined as 

x = a cosh s cos T] 

y = a s inh s sin Tl 
(3-2 . 1) 

where a is the focal length of the ellipse, while T] and s are the 

angular and radial coordinates, respectively. Using the above 

coordinates, the integral solution of the two-dimensional scalar 

wave equation degenerates into an infinite series of Mathieu and 

Modified Mathieu functions. Though they are tedious to calculate, 

the general method to generate them is quite well developed 

(Abramowitz and Stegun, 1970). 

To apply this two-dimensional wave solution to soil-structure 

interaction, the rigid foundation is assumed to be infinitely long and 

embedded in an elastic half space, Figure 3-2. 1. The width and 

depth of the elliptical cross section are b and h, respectively. 

Because SH-wave is being studied, only the longitudinal com-

ponent of the generalized vectors ~ and Fs of (2 -1. 1) are non-zero. 

Because of this simplification, the longitudinal element of the 

impedance matrix is independent from all other components. 

To calculate the value of the impedance function Ks, the 

radiating wave wR from the elliptical foundation was expanded into 

a generalized Fourier series of orthog onal Mathieu functions. The 

unknown coefficients in the expansion were then determined by the 

compatibility of displacements at the foundation surface, 
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wRl = 1 eiwt 

s=so 
0 ::;; T] s; 2TT (3-2.2) 

where so is the radial coordinate that matches the perimeter of the 

foundation. 

While the foundation is subjected to a unit excitation, the sur

face boundary condition for the half space is automatically satisfied 

by symmetry if only even Mathieu functions are used. Therefore, 

the forces resisting the foundation can be obtained by integrating the 

shear stress o-i;z over the surface area. For a unit displacement 

excitation, this force is the impedance function 

= -f o-~I ds = 
s s=so 

-µ f 
-TT 

0 

dT] 
s=so 

Further details of this derivation can be found in Wong and 

T "f (Al72) r1 unac. 

(3-2. 3) 

The equivalent stiffness and damping coefficients associated 

with the real and imaginary parts of Ks are shown in Figure 3-2. 2 

for different embedment ratios h/b and for dimensionless frequen

cies a 0 = wb//3s in the range from O to 4. These results indicate 

that both the equivalent stiffness and damping coefficients are fairly 

constant for values of the dimensionless frequency larger than 0. 5. 

For low frequencies, the stiffness coefficient increases with the 

embedment ratio; for high frequencies, however, the value of the 

stiffness coefficient lies between the values corresponding to a strip 

foundation(AlSb) (h/b = 0) and a semi-circular foundation(AlbS,Alb 9 ) 

(h/b = 1). This result is in agreement with the finding of Thau and 
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Umek{Al 
71

) that the longitudinal stiffness coefficient for a rectan

gular embedded foundation at high frequencies is only 20 per cent 

larger than the corresponding stiffness for a flat foundation. 

Figure 3-2. 2 also shows that the damping coefficient is highly 

dependent on the embedment ratio; the values for high frequencies 

being directly proportional to the contact area between the founda

tion and soil. This result is thus in agreement with one's intuitive 

expectation that the efficiency of energy loss through radiation of 

waves would be increased for larger foundations. 

For a complete analysis of the foundation, it is necessary to 

calculate the longitudinal driving force, Fs *, per unit length. For 

simplicity and clarity, plane SH-waves with incident angle 8 and 

amplitude wi may be assumed. For this wave scattering problem, 

assume an unknown scattered wave from the foundation to be 

ws eiwt. It must satisfy the "fixed 11 condition along with wi and its 

reflection wr from the half space boundary. The boundary condition 

is, therefore, 

[ws + wi(e) + wr{-e)]i 
1

= 0 
s=so 

0 :s; T) :s; 2TT • (3-2.4) 

and the longitudinal driving force per unit length is 

0 

-µ f (3-2. 5) 

-TT 

The real and imaginary parts of the longitudinal driving force, 

per unit length, Fs,:, acting on the foundation are shown in 
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Figures 3-2. 3a and 3-2. 3b, respectively, for different angles of 

incidence and different embedment ratios. In particular, for a flat 

foundation (h/b = 0) and for vertical incidence {0 = 90 degrees), 

embedment ratios and angles of incidence not equal to e = 90 

degrees, Fs ,:,: f 2Ksui, as may be seen in Figure 3-2. 3. The devia

tions from this simple case become more important for higher 

frequencies and for deeper embedments, indicating that the input 

motion F >:< /K may be quite different from the free-field s s 

motion 2ui. In general, these differences become apparent at values 

of wb//3s between 0. 5 and 1 and correspond to wavelengths of the 

order of three to six times the total width of the foundation. The 

longitudinal impedance and driving forces shown in Figures 3-2. 2 

and 3-2. 3 can be used, along with equation (2-2. 4), to study 

soil-structure interaction. 

was 

An application of these results to an infinitely long shear wall 

given by Wong and Trifunac. {Al 72 ) Described by the one-

dimensional wave equation, the she;ar wall secures the "fixed-free 11 

boundary condition while subjected to a base excitation of 6 eiwt, 

where 6. is the unknown displacement of the foundation to be 

determined. 

The shear force which the w all exerts on the foundation is 

Fe = w2 Mb (ta:b~H )6. eiwt, where Mb and kb ar e the mass and the 

wave number of the shear wall, respectively. Substituting Fe into 

equation (2-2. 4) and rearrang ing, the solution is 
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Figure 3-2. 3a Real part of the longitudinal 
driving force. 
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Figure 3-2. 3b Imaginary part of the longitudinal 
driving force. 
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t; = Fs* k 5 + iwC 8 - w2 [Mo+ Mb ta;k:;~)] (3-2. 6) 

The unknown foundation motion 6. eiwt is then completely determined 

by the results shown in Figures 3-2. 2 and 3-2. 3. 

These results can be characterized by the following dimen-

sionless parameters: 

(1) wA/(3s, the dimensionless frequency, where A is the major 

axis of the ellipse; 

(2) Mb/Ms, Mo/Ms, the ratio of the shearwall mass, Mb, and 

the foundation mass, M 0 , to the mass of the soil replaced 

by the foundation, Ms; 

(3) e = kbH/ksA, which involves the ratio of the wave numbers 

in the superstructure and in the soil medium; 

(4) b/h, the embedment ratio of the foundation. 

In Figures 3-2. 4 and 3-2. 5, the amplitude of the foundation 

motion I .6J determined by equation (3-2. 6) is plotted versus wA/(3s 

for the angle of incidence SH-waves 11 THETA 11
, where THETA is 

defined in Figure 2-2. 1. It is seen that for wA/(3 = 0, all curves 

tend to 2 which is the amplification at the half space boundary. 

Each figure presents I 6. I for the four axis ratios b/ A equal to 

0 . 05, 0. 30, 0. 70, and 0 . 99. The small axis ratio represents either 

a shallow foundation or a very deep foundation, while the ratio 

b/A = 1 corresponds to the semi-circular cross section. 

Since the values of THETA defined in Figure 3-2. 1 

measured with respect to the vertical axis, i.e., THETA 

are 

TT 
- 0; 

2 

the results for THETA = 0 in the case of the shallow foundation 
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Figure 3-2. 4 Effect of interaction on the displacement 
amplitude j 6 j of a rigid foundation. 
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Figure 3-2. 5 Effect of interaction on the displacement 
amplitude j 6 j of a rigid foundation 
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are the same as those for THETA = 90° for the deep foundation. 

All the curves in Figures 3-2 . 4, 3-2. 5, and 3-2. 6 are labeled 

first for 11 shallow 11 and then 11deep 11 (in brackets) foundation cases. 

In each figure, the data are plotted for the same e value and for 

three values of Mb/Ms = 0 . 5, 2. 0, and 8. 0. The value of Mo/Ms 

is set equal to 1 for all cases studied here. 

Figure 3-2. 4 presents the E = 0 case. From the definition of 

e, this may be realized for a rigid wall (f3b -+ 00 ) or for a wall with 

mass concentrated at the base so that H = 0. In either case, there 

is no motion of the wall mass relative to the foundation, and, 

consequently, no structural resonances enter into the problem. As 

a result, Figure 3-2. 4 has no zeroes in the I 6 I diagram, while 

Figure 3-2. 5 with E = 1. 0 has one zero. The zeroes in I 61 curves 

correspond to the natural frequencies of the shear wall, at which 

the external force Fe on the right hand side of equation (3-2. 6) 

becomes unbounded, and the foundation becomes a node in the half 

space. Since the fixed base resonance frequencies of a shear wall 

occur at kbH = (n + ½ )1r, the zeroes of ID. I will then appear at 

wA/(3 = (n + ½)1r/e. 

The e = 0 case in Figure 3-2. 4 describes the case of a rigid 

mass M = Mo + Mb forced to vibrate by the incident SH waves. It 

is seen from Figure 3 -2. 4 that for small axis ratios and small 

Mb/Ms ratio of 0. 5, the dimensionless frequency band for wA/(3 

between 0 and 3, very shallow foundation and vertical-wave inci

dence, or for very deep foundation and horizontal incidence, the 

founda ti.on moves essentially like the half space would move in the 
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absence of any foundation. In these two cases the "projection" of 

that part of the foundation mass which is in contact with the half 

space onto the normal of the plane-wave front is 11 small 1 1 relative 

to the cases of THETA = 90° incidence for shallow foundation and 

THETA = 0° incidence for deep foundations, so that the incident 

waves do not 11 see II the foundation very well. Consequently, the 

scattering and diffraction effects and interaction are therefore 

reduced. As the angle THETA increases toward 90° for the shallow 

foundation, or decreases toward 0° for the deep foundation, the 

size of the projection of the foundation onto the normal of the 

plane-wave front increases, the scattering and diffraction become 

more prominent, and I b. I becomes more s entitive to changes of 

wA/fJ. This is best displayed in Figure 3-2. 4 for Mb/Ms = 0. 5 

and axis ratio equal to 0. 05. As the axis ratio increases toward 

1, i.e., the elliptical cross section of the foundation tends toward 

a circular cross section, the size of the "projection" of the founda

tion onto the plane-wave front and the amplitude I b. I become inde

pendent of the incidence angle THETA. For the axis ratio of 0. 99 

this dependence is already lost. 

When Mb/Ms is small or zero, and since we take M 0 /Ms = 1, 

Figure 3-2. 4 reflects the consequences of assuming that the founda

tion medium is rigid. As Mb/Ms increases, the effective density 

of the foundation block increases relative to the density of the sur

rounding medium and the contribution of inertial forces becomes 

more prominent. The result of this is that the characteristics of 

a single-degree-of-freedom system represented by a spring, mass, 
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and a dash-pot emerge as representative of the I!::. I curves in Figure 

3-2. 4. Keeping the foundation shape constant in effect means that one 

keeps the equivalent elastic spring, ks, and the equivalent dash-pot, 

Cs, of the impedance fixed, and then the increasing of Mb, which leads 

to the increase of M = Ms + M 0 + Mb, results in the reduction of the 

equivalent natural frequency and the fraction of critical damping. 
f 

This trend is clearly seen in Figure 3-2. 4. 

As E increases, the zeroes of J!::.l at wA/f3s = (n +½)rr/E become 

more densely distributed; the overall trends of J 6 \ and the charac

teristic of the low-frequency peak, however, remain the same as the 

case where E = 0. While E governs the position of zeroes in the J 6 J 

diagrams because of the definition of the dimensionless frequency, 

the width of the reduced J 6 I amplitudes centered around these 

zeroes increases with Mb/Ms. This behavior can be explained by 

equation (3-2. 6 ); with larger Mb, the inertia force of the structure 

also becomes greater. 

In the analysis and design of earthquake-resistant structures, 

it is necessary to know the maximum amplitudes of the displace

ment of the top of the superstructure relative to its foundation. 

From the maxima of these relative displacements, it may be 

possible to calculate the linear strain and therefore the maximum 

stresses experienced at any point in the superstructure. 

For a shear wall, the displacement at its top is 6/ cos (kbH). 

Therefore, the relative response is 

(3-2.7) 
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At the "fixed base II natural frequencies of the wall, kb H = (n + ½)TT, 

n = 1, 2, ... , the relative response IR I is infinite if the value of .t::. 

is non-zero, as in the case of the rigid base. However, if the 

interaction is not neglected, .t::. is equal to zero, and the relative 

response given by (3 -2. 7) is finite. Thus, the interaction plays a 

role similar to that of the damping mechanisms, which are used to 

model the energy dissipation in structural dynamics. 

Figure 3-2. 6 shows the relative response I RI given by 

equation (3-2. 7) for the same set of parameters used in describing 

I .t::.1 versus wA/(3s as in Figure 3-2. 5. The solid lines in these figures 

correspond to the response on a rigid base, and they tend to 

infinity for wA/(3s = (n + ½)TT/e. The dashed lines correspond to I RI 
and show the relative response for four typical incident angles 

THETA = 0°, 30°, 60°, and 90°. It is seen that the relative 

response is strongly dependent on the incidence angle of SH-waves 

when the axis ratio of the elliptical rigid foundation is small. 

When the axis ratio tends to one, i.e., when the cross section of 

a foundation becomes circular, the dependence on THETA dis

appears. 

The ratio Mb/Ms has a pronounced effect on the relative 

response. As it increases, the overall amplitudes of the relative 

response I RI decreases and the shape of the curves changes 

appreciably. This change is so pronounced for the larger values of 

Mb/Ms that the peaks at resonance are completely lost. This 

could, therefore, represent one possible mechanism that might 
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Figure 3-2. 6 Effect of interaction on relative response. 
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explain the differences between calculated and measured natural 

frequencies for some full-scale structures. 
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[3-3] SHIELDING AND AMPLIFYING EFFECTS CAUSED BY 
LOCAL TOPOGRAPHY 

In the quest for the safest locations for building important 

structures, the idea of shielding from seismic waves by use of 

trenches and canyons has often been proposed [Brown (1971 ), Lysmer 

and Waas (1972)]. However, the shielding characteristics of a trench 

are limited to very high frequencies only, not to mention the fact 

that an amplifying effect would occur if the incident waves were to 

come from the opposite direction. In this section, some of these 

topographic effects will be discussed by considering a simple two

dimensional model. 

Consider the model shown in Figure 3-3. 1. It consists of a 

semi-circular cylindrical foundation with radius ¾ which is placed 

to the right of a semi-circular canyon with radius a1 • Though the 

geometry illustrated is far too simple to qualify for practical 

applications, it simulates adequately a simple shielding problem. 

Since the wave scattering objects are assumed to be of semi

circular cross sections, it is convenient to define two polar coor -

dinates, (r1 , cp 1 ) and {r2 , cp2 ), with their origins located at the centers 

of the canyon and the foundation, respectively. The two origins 

are separated by a distance D. The presence of the canyon will 

alter both the impedance functions and the driving forces derived 

in the previous section. To formulate this foundation interaction 

R problem, we must be able to transform the scattered waves, w 1 

R and w2 , and their expansions from one polar coordinate system to 

another so that all the boundary conditions can be .satisfied. 
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Figure 3-3. 1 Canyon, Shear Wall, foundation, and soil. 
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In polar coordinates, the scattered waves from cylindrical 

objects are usually expressed in an infinite series of Hankel func

tions and harmonic functions. These series can be transformed 

from one coordinate system to another by applying the addition 

theorem [Abramowitz and Stegun (1971)] 

co 

L 
m=O 

(3-3.1) 

where K1 (kD) 
m 

= H(2 ) (kD) + (-l)mH( 2 ) (kD) and eo = 1, em= 2 
n+m n-m 

for m f 1. 

The boundary conditions to be satisfied for the calculation of 

the impedances are 

= 0 (3-3.2) 

and 

(3-3.3) 

Equation (3-3. 2) imposes conditions on the canyon so that the sur-

face shear stresses are zero. The radiated wave from the founda-

tion, 
R originally expressed in coordinates (r2 , ¢ 2 ) as W2' 

co 

a~
2 )8n (kr2 ) cos n¢2 

R I: (3-3.4) Wz (rz, ¢2) = 

n=O 
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can now be transformed to (r1 , ¢ 1 ) by (3 -3. 1 ). In (3-3. 4 ), only the 

cosine functions were chosen because of the symmetry required to 

meet the boundary condition at the half space surface, 

(T = 1'.)w I = o. 
8z µ 08 0=0,-rr Similarly, the radiated waves from the 

canyon 

co 

I: (3-3.5) 

n=O 

are transformed to satisfy the displacement condition (3-3. 3) at 

(r2 ,¢2 ) where a unit excitation is imposed. Because the Addition 

Theorem (3 -3. 1) involves infinite sums, the boundary conditions 

(3-3. 2) and (3-3. 3) will result in an infinite matrix equation for the 

( 1) (2) 
unknown coefficients, an , an , n = 0, 1, 2, . . . . Since it is not 

possible to invert an infinite matrix, the matrix is approximated by 

a finite one and is inverted numerically. Taking advantage of the 

descending behavior of the coefficients, this reduction of the matrix 

size can be used effectively because the higher order coefficients 

are small enough to be ignored. The numerical solution of the 

coefficients can be considered satisfactory if the results obtained 

by using N equations are sufficiently close to those obtained by 

using N+l equations. 

An analogous formulation applies to the calculations of the 

driving force. Together with the incident and reflected waves from 

the half space boundary, the scattered waves wf and wff must 

satisfy the following conditions, 
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(3 -3. 6) 

[wf(r2,¢2) + w;(r2,¢2) + wi(r2,¢2) + wr(r2,¢2)JI = 0 . 
r2=¾ 

(3-3. 7) 

Equations (3-3. 6) and (3-3. 7) represent the 11£ree surface 11 condi

tion at the canyon and the 11£ixed 11 condition at the foundation, 

respectively. 

For non-vertically incident waves, the wave front arrives at 

the two coordinate systems at different instances. These arrivals 

are related by the phase relationship 

-i w D cos 0 
= e (3 [wi(r1,¢1) +wr(r1,¢1)J (3 -3. 8) 

where e is the angle of the incident wave. Because of this phase 

difference of the excitation, the solution can be quite different for 

various angles e. 

Because of the presence of the canyon, the driving force is 

dependent on the angle of incidence. For 8 :s; 1, the incident waves 

approach from left to right in Figure 3-3. 1 and the canyon acts as 

a shield for the foundation. 
1T 

For 8 :;:;: 2 , however, the canyon reflects 

the waves toward the foundation and thereby creates a standing 

wave pattern whose amplitudes at places may reach two times the 

amplitudes of 11free field II motion. 

To investigate the characteristics of the response of a rigid 

foundation and shear wall structure system, the amplitude of the 

foundation motion I 6 I is plotted versus the dimensionless 
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frequencies, wa1 //3s and waa//3s· The shear wall studied here is 

identical to that of the previous section. Therefore, all parameters 

used there apply here. Without any loss of generality, the founda

tion radius ¾ is set equal to I, while a 1 is varied to show the 

effects the canyon size may have on the response amplitudes. Since 

the presence of the canyon causes j t:::. j to be 0-dependent, the five 

cases where 0 = 0°, 45°, 90°, 135°, and 180° have been studied. 

Figures 3-3. 2 and 3-3. 3 illustrate the response of a rigid 

foundation without a superstructure; its density is set equal to that 

of the soil medium, i.e., Mo/Ms = I. This arrangement was made 

so that the effect of the canyon can be studied without interaction 

with the superstructure. In each of these figures, the cases where 

a 1 = I, 3, 5, and co are shown in parts (a), (b), (c), and {d), respec

tively. Also plotted on these graphs, for comparison, is the case 

where a 1 = 0, i.e., the half space solution without a canyon. This 

response curve is represented by the dash-dot-dash line. Since 

different sizes of canyons are dealt with, it is convenient to select 

the distance so that D ,:< = D - (a1 +¾) . is a constant for all four parts. 

n,:, is the distance between the two nearest edges of the foundation 

and the canyon. In Figure 3-3. 2, n,:, = I; while in Figure 3-3. 3, 

u,:, = 5. 

While examining Figures 3-3. 2 and 3-3. 3, the most important 

thing is to observe whether there are any significant shielding 

effects. Let us consider first the horizontally incident case, 0 = 0°; 

the foundation response If:::. I is represented by a fine dashed line. 

As shown, this response is very similar to that of the half space 
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solution when a1 = 1. In fact, the results are nearly identical up to 

waz//3s = 0. 5. Physically, this means that the low frequency waves 

which have long wavelengths are not greatly altered by small 

scattering objects. To scatter away some of these longer waves, 

the size of the canyon must be increased as clearly shown by parts 

(b) and (c) in the figures. The shielding by the canyon with a1 = 5 

is effective for wa 2 //3s down to 0. 25; for wa 2 //3s > 0. 75, the ampli

tude is reduced nearly 50%. Therefore, a canyon in front of a 

foundation does shield away part of the horizontally incident waves 

with wavelengths less than the width of the canyon. Whether this 

advantage can be used effectively is clearly a question for the 

designer and may depend on the problem at hand. However, some 

consequences caused by non-horizontally incident waves must also 

be considered carefully. 

For jncident waves with 0 # 0°, the shadow zone behind the 

canyon approximately extends up to its projection onto the half 

space surface. Therefore, the shielding diminishes if the structure 

is moved further away from the canyon. For example, consider the 

case when 0 = 45° and n,:, = 1 in Figure 3-3. 2; the foundation is 

shielded for a1 = 3 and 5, but the foundation is already out of the 

shadow area if a 1 = 1. If the distance n,:, is increased to 5, the 

foundation is no longer protected for incident angles greater than 

45°; in fact, the response amplitude may exceed that of the half 

space solution for certain frequencies because part of the energy is 

trapped in between the two scatterers. 
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This situation worsens as the incident angle increases; for 

0 > 90°, the canyon plays the role of a wave source as part of the 

-
incident waves are reflected and focused back towards the founda-

tion. As shown by Figures 3-3. 2 and 3-3. 3, the response ampli

tude can increase by more than 50% over the half space solution. 

Of course, this amplification is less pronounced if the canyon is 

further away, because the reflected wave diminishes as 1/ YD 

Using the same reasoning as before, the longer waves are not 

reflected by the smaller canyon, therefore, the amplitude of 

response is near the static value of 2 for low frequencies. With 

the presence of a large canyon, the longer waves are also partially 

reflected, while all waves are reflected for the limiting case a 1 = co. 

For a 1 = 00 , the half space has become the quarter space, and the 

free surface amplitude becomes 4 for a unit input excitation. 

In Figure 3 -3. 4, the interaction of a shear wall is also 

included. The structural response characteristics discussed in 

Section [ 3-2] also appear here, except for the minor changes 

caused by the canyon. The node in the response curve represents 

the resonance frequency of the shear wall. At this frequency, the 

base shear force directly cancels out the input driving force. 

Therefore, at the resonant frequency of the superstructure, I!::, I is 

not affected by the canyon, although the relative response is. 

Judging from the discussion above, the canyon does provide 

some limited shielding for the structure. In the next section, a 

different type of shielding, that provided by local structures, will 

be discussed. 
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[3-4] STRUCTURE-SOIL-STRUCTURE INTERACTION 

This investigation will now focus on a more complex problem 

of structure-soil-structure interaction. In a set-up consisting of 

many structures, there are many possible arrangements of many 

structures, which make this problem difficult. Other than some 

two-dimensional finite element analyses, the interaction between two 

foundations has been explored analytically by Warburton et al. {Al
47

) 

and experimentally by MacCalden and Mathieson. {Al 4 S) Their models 

consisted of two rigid circular foundations placed on top of an elastic 

half space. For anti-plane vibrations, Luco and Contesse (Al 7 o) 

studied the interaction of two embedded foundations with semi-circular 

cross sections excited by vertically incident harmonic SH-waves. 

In the following analysis, a simple two-dimensional model is 

presented. Although, in this case, only one longitudinal component 

of the displacements remains, the mathematical manipulation 

becomes quite tedious. Nevertheless, the exact solution can explain 

some phenomena, which may be of fundamental importance for the 

understanding and interpretation of other, even more complicated 

three-dimensional models. 

Using a procedure similar to that outlined in the previous 

section, the coordinate systems for the N buildings are defined in 

Figure 3 -4. 1. Contrary to the previous problems, the impedance 

function is now an N X N matrix, Kp£' Its elements depend on the 

frequency of excitation, the sizes and separations of all the 
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foundations, and the properties of the soil medium. Physically, 

Kp£ represents the force exerted on the pth foundation, while only 

the £th foundation .is moved harmonically with a unit displacement. 

To calculate the impedance matrix, Kp.e• we assume that the 

radiating waves from the jth foundation have the form 

£ 
w. (r ., ¢-) 

J J J 

• £ (2) 
cJ• H (kr.) cosn<b. 

n n J J 
j = 1, 2, ... , N . (3 -4. 1) 

£ 

Then, the boundary condition 
ow., 

f.l- __J_ = 0 is 
by y=O 

automatically satisfied 

at the half space boundary. But, in addition, the following boundary 

conditions must be specified, 

for £ = 1,2, ... ,N; 
N £ 
~w.(a ,¢ )= 
L.,; J p p 
j=l 

p=l,2, ... ,N. (3-4.2) 

Conditions (3 -4. 2) constrain the scattered waves so that only the 

£th foundation is moved by one unit. Along with equations (3-4. 1) 

and (3-3. 1), the boundary conditions (3-4. 2) will again yield, for 

each £, an infinite matrix for the unknown coefficients, Cj,£ 
n ' 

j = 1, 2, ... , N; n = 1, 2, 3, ... 

After the unknown coefficients have been determined by 

numerical inversion of a finite matrix which closely approximates 

the original one, the impedances, Kp£' can be evaluated as 
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(3-4. 3) 

p = 1, 2, ..• , N i. = 1, 2, •.. , N . 

Now, in order to include the contributions from the incident 

wave, it is necessary to calculate the driving forces, Sp, 

p = 1, 2, ... , N. Physically, Sp represents the force which the soil 

exerts on the pth foundation while all foundations are kept fixed. 

By considering this as the (N+l )th problem, the scattered waves can 

be written in the same form as equation (3-4. 1 ). The boundary 

conditions for zero displacements at the foundation surfaces are 

N+l 
w. (ap, ¢ ) 

J p 
= 0 (3 -4. 4) 

p = 1, 2, ... , N , 

where wi and wr are the · incident and reflect waves, respectively. 

Equations (3-4. 4) constitute an infinite system of simultaneous 

equations for the unknown coefficients, C~ N+ 
1

, j = 1, 2, ... , N; 

. (Al 73) 
n = 1, 2, . . . . See Wong and Trifunac for the detailed 

derivation and numerical methods. 

With the coefficients, C~N+1, calculated, the driving forces Sp 

can be determined by 

N+l · + W
l w. 

J 
(3-4.5) 
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We next consider the superposition of the above results. The 

NxN matrix [Kp.e] and the "N" vector [Sp} can now be used to 

analyze the interaction of N buildings as shown in Figure 3-4. 1. 

The total force exerted on the pth foundation by the soil is by 

superposition 

N 

F; = Sp + L Kp.e ~.e 
£=1 

(3 -4. 6) 

where ~£• £ = 1, 2, ..• , N, are the unknown displacements of the N 

foundations. The total displacements outside the foundations are 

obtained likewise by superposition, 

N 

w = I: 
j=l 

wl + wr + [WJN. +l + · 
N 

I: (3 -4. 7) 

£= 1 

Equation (3-4. 7) now satisfies all the boundary conditions of the 

interaction problem as the displacement at the pth foundation is now 

set equal to .6p. 

The determination of the unknowns, .6p, also depends on the 

external forces and, hence, the type of superstructures selected. 

For simplicity, the shear wall is again chosen for this analysis, 

and the excitation is assumed to consist of plane SH-waves with 

the angle of incidence 8. 

The shear force at the base of the pth shear wall when it is 

subjected to the base excitation .6p eiwt is 
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(3-4. 8) 

where (Mb)p, (kb)p• and hp are the mass, wave number, and height 

of the pth building, respectively. Since the motions of the N 

buildings are simultaneous, the displacement of one foundation will 

also depend on the displacement of another. Therefore, the N 

unknown displacements .6p, p = 1, 2, ... , n= must be determined 

simultaneously through the N equations of motion written for the N 

foundations. These are of the form 

(3-4.9) 

where (M0 ) is the mass of the pth foundation. Note, that the 
p -

structure-soil-structure interaction effects are coupled through the 

N 
terms Sp + ,L Kp£.611" 

£= 1 

Dividing (3-4. 9) by µ:rrka , and introducing the parameter 
p 

(Ms )p = ½P TTap2 , which is the mass per unit length of the soil 

replaced by the pth foundation, the equations of motion can be 

written in a dimensionless form as follows 

(3 -4. 10) 

p = 1, 2, . . . , N . 
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The Nature of the Interaction 

The interaction of two or more structures are now con-

sidered by studying the numerical results presented in the figures 

which follow. The results shown in these figures depend mainly on 

the angle of the incident wave, 0, and four other dimensionless 

parameters: 

(i) wap/~ = kAP = 'llp, the dimensionless frequency which 

compares the wavelength of the incident wave to the 

size of the pth foundation. To describe a system 

of foundations with different sizes, the maximum 

radius will be chosen as the reference, and the 

parameter wamax/ ~ will be used in plotting the 

figures. (The notation of WA/B is used in 

place of wamax/~ in the figures.) 

(Mo)p 
(ii) (Ms)P, the ratio of the mass of the foundation to 

the mass of the soil replaced by the foundation. 

For all the cases studied in this thesis, this ratio 

has been equated to 1. 

(Mb)p 
(iii) (M ) , the ratio of the mass of the pth shear wall 

s p 
to the mass of the soil replaced by the pth 

foundation. 

This ratio describes the flexibility and 

the relative height of a shear wall. Larger values 

of E indicate taller and/ or more flexible walls, 
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while e = 0 implies a rigid structure or one with all 

its weight (hp = 0) located at the base. 

One of the interesting results that can be derived from the 

solution of equations (3-4. 10) is represented by the displacements 

,6p of the foundations. In the figures that follow, amplitudes I ,6p I 

have been plotted versus the dimensionless frequency WA/B 

(A = amax) and are identified by a dashed line or a solid line. All 

of these amplitudes approach the low frequency limit of 1 6 I = 2 p 

(the displacement amplitude of the surface of half space due to an 

incident SH-wave with amplitude 1) as WA/ B . .... 0. 

Another characteristic of the foundation displacement ,6p is 

that it becomes zero when the flexible pth shear wall is being 

excited at its fixed-base natural frequencies, (Kbh)p = (2n+l )TT /2, 

n = 0, 1, 2, ... , or by using relation 3-4. 10, ,6p is zero at 

wamax 

/3 
= (2n+l )TT 

2Ep 
(3-4. 11) 

,6p has no finite zeroes if ep = 0. The occurrence of the zeroes of 

,6p has been explained by Luco(AlbS) and Trifunac. (Alb 9 ) It is that 

during the steady excitation of incident plane SH-waves at the 

resonant frequencies of equation (3-4. 11 ), the foundations behave as 

a node in a standing wave pattern. 

The envelope of the response for a single wall placed on a 

half space, I 6e Ip• is plotted on the same graph as the foundation 

displacements I 6pJ. This envelope, I 6eJ P' provides an upper limit 

for the response of the pth foundation if it is the only structure on 
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the half space, therefore it may be used to indicate the strength of 

the additional interaction effects caused by the presence of other 

structures. These envelopes resemble a hyperbola and are 

described by the equation [Trifunac (Al69)]: 

(3-4. 12) 

These envelopes have been plotted with the same type of lines as 

I 6.pl in the subsequent figures. 
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Interaction of Two Walls 

Displacements, .6p, during the steady interaction between the 

two walls have been illustrated in Figures 3-4.2, 3-4.3, and 3-4.4 

and are designated by ''DELTA." Each of these figures consists of 

parts (a), (b ), and (c ), which present the effects of different separa

tion distances; each part also includes five graphs which corres

pond to the angles of incidence e = 0°, 45 °, 90°; 135 °, and 180°. 

(Note: e is written as THETA in these graphs.) These figures 

have been arranged so that the influence of the angle of incidence 

and the separation distance can be studied together. 

For the two cases shown in Figures 3-4. 2 and 3-4. 3, the 

values of ep are taken to be zero so that the interaction effects of 

only the foundations can be more clearly shown. In this way the 

complications introduced by the vibrating walls are eliminated. 

An interesting interaction phenomenon occurs when the inci

dent wave travels with a shallow angle of incidence. The wall in 

front acts as a shield for the wall behind, but the latter may ampli

fy the excitation for the former. This shielding effect is most 

evident in Figure 3-4. 3 where the size of wall No. 1 is 5 times 

that of wall No. 2. (The numbering system used here is the same 

as that used in Figure 3-4. 1) 

For incident wave angles, THETA= 0° or 45°, and small wall 

separation distances, the smaller wall No. 2 moves with nearly the 

same displacement as the larger wall No. 1. The additional ampli

fication effects caused by the smaller wall are negligible in this 

case because of the massiveness of the larger wall. The situation 



(a ) 

(b) 

(c) 

Figure 3-4. 2 

~LL RADIUS O HB/115 EPS 

~LL RADIUS O HB/HS EPS 

WALL RADIUS O 118/115 EPS 

I ,- 12 

-6 3-

' WA/B 

THETA= J80 

\S 0~. --+-:::::::=,.., :;_;;;_;;;;;---:;,=-== 
WA/8 

0 I 2 3 
WA/8 

Foundation displacement for two identical 
structures . 
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(a) 
loALL MOIUS O HB/"5 EPS 

(b) 
~ LL RAO IUS O H8/HS EPS 

11 

•l--, _J___~, =====~~ 
I-IA/8 

\ THETA= 45 

a" \ 
J~ 

~ 

(c) 

0 
0 

a 

f 
0 

0 

Figure 3 -4. 3 

' WR/B 

1-RLL RAO !US O HS/115 EPS 

16 

' MA/6 

THETA= 45 

.............. _ ------' WA/B 

0 
0 

Foundation displacement for two structures 
with foundation size ratio of 5 : 1. 
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(a ) 
WRll RAO !US D te/11S EPS 

(b) HALL RAO I US O HB/11S EPS 

(c) 
MRLL MDIUS D HB/tlS EPS 

'" 

o~, --~~-- ~,-"-- ~ - --"" 
l.'A/8 

3-4.4 Foundation displacement for 
with foundation size ratio of 

two structures 
3 : 1. 
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is reversed, however, when the waves are coming at an angle 

THETA = 135° or 180°. Now the 11front wal1 1 1 is much smaller than 

the 11back wall 11
; here, the 11front wal1 11 meaning the first wall to 

be hit by the incident waves. In this case, the shielding effect 

provided by the 11front wall II is negligible, while the amplifying 

effect caused by the 11back wall 11 is overwhelming. 

For the cases where the 11front wall 11 is of comparable size 

or much smaller than the 11back wall, 11 the response of the front 

foundation dips down to a small value of 6 before it rises to a 

level exceeding the envelope curve of equation 3 -4. 12 at some 

higher frequency. This dip in foundation response amplitude for 

the front wall is greater when this foundation is smaller than the 

back foundation. The response is nearly zero at this point for the 

case described in Figure 3-4. 3. 

This phenomenon can be explained by the standing waves 

generated by the interference of the incident and the reflected wave 

from the larger back wall. For certain frequencies and/ or dis

tances, the smaller wall may be situated on a node and experience 

pure torsional excitation. This behavior can also be e x plained 

qualitatively by a vibration absorber example. Consider the fol

lowing simplified model of the two foundation system. The spring 

constants k1 , ¾, and k12 depend upon the soil properties and, hence, 

are highly frequency dependent because of the geometrical configura

tion of the foundations. The displacem ents resulting fr om simple 

harmonic excitation are 



where 

m 1 , x 1 becomes zero and x 2 = 

-67-

(3-4. 13) 

j k2 + k12 
, the response of 

m2 

k1 · t 
- e 1 W Hence, m 1 is stationary 
k12 • 

at w = w_., , while m 2 is moving in an opposite direction from the 
'l' 

excitation; so the forces on either side of m 1 eliminate each other, 

and m 1 is located on a node of a 11 standing wave 11 pattern. The 

system in Figure 3-4. 5 is, of course, far too simplified to describe 

the phenomenon of the interactions in detail because the scattering 

from the foundations introduces 11damping" into the system and the 

wave propagation is two dimensional. However, the intuitive physi

cal explanation of this interaction problem is well represented by 

this model. 

The spring constant k12 can be visualized as the soil joining 

the two foundations, so that as the separation becomes large, the 

interaction is weaker, and k12 -+ 0 as d12 -+ co. The frequency 

becomes smaller and the dip occurs at lower frequencies for larger 

separations. 

The troughs and the crests in the response of 6P for the 

front foundation may be better visualized by studying Figures 

3-4. 6, 3-4. 7, and 3-4. 8, where the amplitudes of surface 
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displacements in the vicinity of the two foundations are plotted 

against the dimensionless frequency, Tj, and the dimensionless 

d
• X 1stance - . 

a 
The definition of dimensionless parameters used in 

these figures is identical to those discussed previously. 

The foundation size ratio for all cases presented in Figures 

3-4. 6, 3-4. 7, and 3-4. 8 is 2 to 1. Figure 3-4. 6 illustrates the 

scattered wave patterns around the two foundations for THETA = 

135° and 180°, both of which have rigid walls, i.e., for e = 0. 

Figure 3-4. 7 illustrates the effect of vertically incident waves in 

part (a) and the effect of horizontally incident waves in part (b); 

both shear walls considered here are flexible and tall. The sur

face displacement plots of Figure 3-4. 8 show the weaker interaction 

with a larger separation distance. 

In Figure 3-4. 6b, the phenomenon described by a simple 

model in Figure 3-4. 5 can be observed. The first trough of the 

response .6 2 of the smaller foundation occurs at wA/f3 ==== 0. 4. At 

that frequency, both foundations are moving in phase with foundation 

No. 1 and have large amplitudes. Not far to the right of foundation 

No. 2, there is a point with small displacement. This is where the 

displacements on either side change direction and, hence, the point 

pivots the movement of both walls. If the foundation size ratio is 

much greater than 2 to 1, e.g., 5 to 1, the presence of the smaller 

foundation can almost be ignored when studying the response of a 

large foundation. Also, for a certain wavelength of incident waves, 

the motion of the smaller foundation may be located on a node of a 

standing wave pattern and remain stationary. 
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The crest of the response 6. 2 , which follows the trough, 

occurs at wA/f3 ~ 1. 0 in Figure 3-4. 6b and is created by the 

amplifying effect of wall No. 1. At this particular frequency, the 

two walls are nearly 180° out of phase and the "node II is now 

located between the two foundations. Because of the rapid change 

of phase in the vicinity of a 11node, 11 the ground motion at that 

point is essentially torsional. When the frequencies are higher 

than wA/f3 ~ 1. 5, or when the wavelength of the incident wave 

becomes smaller than the separation distance, the interaction effects 

gradually disappear and the response of the foundations most likely 

does not exceed appreciably the envelopes for the response of a 

single foundation. 

It is clear from the above discussion that the presence of 

two shear walls increases the complexity of response of each 

foundation and that the interference of waves scattered from the two 

foundations may lead to appreciable modification of their base 

motions, 6.p. It is beyond the scope of this paper to analyze in 

detail these amplifications caused by the building-soil-building 

interaction effects, but the general trends may nevertheless be 

extracted from several cases considered. These amplifications 

determined for three foundation size ratios are presented in 

Figures 3 -4. 9 and are plotted versus the separation distance, d12 • 

Some of these results have been extracted from Figures 3-4. 2 and 

3-4. 3. 

The two sets of points in Figure 3-4. 9 show the differences 

caused by the angle of incidence. Since wall No. 2 is smaller, the 
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amplifying effects occur for 0 > 90°, e.g., 0 = 135° and 180°. 

Because the waves scattered from the two foundations are of a 

cylindrical type, one would expect that the peak amplitude I 6 2 I of 

small foundations would be related to its envelope J 6e J by 

( J 6 2 J / J 6eJ )max - 1 ~ const. /di when d12 is larger compared to 

a1 + a 2 • This is simply stating that J 6e I is entirely due to 

scattered, uR, waves. Diffraction and interference effects for di.a 

small may alter this trend appreciably, and in the limit for 

d12 ... a1 + a 2 , we have ( I 6 2 I / I 6e J )max - 1 ... 0. It appears that 

the few points plotted in Figure 3-4. 9 may be explained by these 

trends. It is clear, however, that the continuous representation of 

( I 6 2 J / J 6e I )max - 1 versus d12 should have numerous peaks and 

troughs which are caused by the interference of scattered field with 

the incident plane SH-waves. It is this interference that causes the 

apparent scatter of the few randomly selected points in Figure 

3-4. 9. 
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Interaction of Many Walls 

The interaction which involves many foundations clearly 

becomes more complex as the number of foundations increases, but 

the solution presented in this paper should provide a simplified 

two-dimensional picture of what might occur. 

In Figures 3-4. 10 and 3 -4. 11, foundation responses I .6p I 
for three foundations with rigid walls have been presented. Figure 

3-4. 10 shows a case where one small wall is placed between two 

larger walls of three times its size and Ep = 0 for all three 

walls. 

For the foundation response shown in Figure 3-4. 10a, the two 

large outside walls behave as if the smaller middle wall is absent. 

This conclusion results from comparison of I .61 I and I .63 I with 

l.61 1 and l.6 2 1 of Figure 3-4.2a, where the response of two identi

cal walls has been presented. However, at WA/B = 1. 8, .61 and .63 

are slightly altered and the response of wall no. 2 is strongly 

excited for d12 = 5 and d13 = 10. In Figure 3-4. 1 Ob, the peak at 

WA/ B = 1. 8 has been translated to WA/ B = 0. 85, indicating that 

the 11 resonant frequency 11 of the small wall is highly dependent on 

the distance to the larger walls. For the case in Figure 3-4. 10c, 

the separation distance is large, so that the building-soil-building 

interaction effects cease to be prominent. 

The interaction of three walls as described above can again 

be visualized by using a simplified model of springs and masses. 

Since the relative motions of the large outside walls are relatively 
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small, the excitation can be considered to be such that m 1 and m
3 

are moving with displacement eiwt as shown in Figure 3-4. 12. The 

11resonant frequenc:y 11 of m 2 is therefore 

(3-4. 14) 

When excited at that particular frequency, the motion of m 2 would 

become unbounded. But again, in the two-dimensional model, scat

tering of waves from the semi-cylindrical foundations reduces the 

response amplitude. As the separation distances d12 and d13 

increase, the "spring constants II k12 and k 23 decrease, and by equa

tion (3-4. 14), the "resonant frequency 1
' also decreases. Therefore, 

the simplified model shown in Figure 3-4. 12 qualitatively explains 

the translation of the peaks shown in Figure 3-4. 1 Oa and 3 -4. 1 Ob 

when d12 and d13 become large. 

Another case of interest is when a large wall is surrounded 

by smaller walls. Figure 3 -4. 11 pre sen ts such an example for 

three walls with the middle wall three times larger than the two 

outside walls. The distances d12 and d13 are the same as those 

used in Figure 3 -4. 10. Now the middle wall 11drives" the outside 

walls because of its weight and size, and a totally different situa -

tion arises . As may be seen in Figure 3-4. 11, the response of the 

large middle wall is not g reatly affected by the smaller outside 
I 

walls. But the smaller w alls behave as if they were interacting 

with the large wall alone, i.e., the small wall contributes very 

little to the behavior of the other small wall. For horizontally 
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incident waves, the response of the front wall is being amplified, 

while the back wall is being shielded. The large middle wall moves 

as if the other two are absent. 

As indicated by the above analysis, the weight and size of the 

structure plays an important role in the interaction process. This 

suggests that there may be circumstances in which the smaller 

structures will receive the heavier 11bombardment 11 of scattered 

waves from nearby larger buildings. 

Large amplitudes of response can also arise when many 

buildings of comparable size are closely grouped. Figure 3 -4. 13 

presents an arrangement of five identical foundations, all of which 

support a rigid wall. In this particular case, we find that the 

amplitude I 6P I can exceed the single foundation envelope given by 

equation (3-4. 12) by more than 200%. We expect, however, that 

such building-to-building interaction effects will not be so promi

nent in three dimensions, because the geometrical radiative scat

tering of waves causes the 1'radiation damping" of the whole sys

tem to increase. 
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The Measurement of Earthquake Motions 

In earthquake er gineering the measurement of the base motion 

of structures as well as the free field motion is of interest. Con-

side ring the interaction effects discussed in the previous sections, 

the true measurement of the free field motions might be difficult 

to realize. As shown by the surface displacement plots (of Figures 

3-4. 6, 3-4. 7, and 3-4. 8), the amplitude of surface motion is greatly 

altered from the free field amplitude of 2. At some points, the 

displacements are near zero, while they are close to 4 at other 

locations. These rapid changes of displacement amplitudes are 

most evident for higher frequencies. The amplification of the sur

face displacement can be quite large even when caused by interac

tion at large dis\ance, as shown, for ex ample, in Figure 3-4. 8. 

An accelerogram recorded at the base of a structure may 

also be modified by the effects from neighboring large struc

tures or structures of comparable size. As pointed out by 

(Al 68) 
Luco, such records may be filtered around the natural fre-

quencies of the structure. From the discussion of the interaction of 

many foundations, it now appears that it is possible to have 

''resonant frequencies" caused by the specific arrangement of the 

surrounding buildings. This suggests that the "resonant frequency" 

of a large structure may also be recorded in surrounding smaller 

structures as it dominates the behavior of the others. This effect 

can be observed 1n Figure 3-4. 4, where the parameters are a1 = 3, 

32 = 1, E1 = 2 and f:a = 2. By using equation (3 -4. 11 ), the response 

curve IL:::.1 1 should go to zero at wamax lf3 = 3(2ntl)1r/4, n=0,1,2, ... 
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In Figures 3-4. 4a and 3-4. 4b, the curve I 6. 2 I also dips down to an 

amplitude of almost zero at the resonant frequency of the wall No. 

1. When the large structure acts as a shield for the small struc

ture, as in the case of 0 = 0° and 45° in Figure 3-4. 4, the small 

structure moves with nearly the identical displacements as that of 

the large structure. Of course, this behavior begins to change 

when the wavelength of the incident wave is less than that of the 

separation distance. Therefore, from the above discussion, the 

effects caused by structure-soil-structure interaction may be quite 

important. 
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[3-5] THE EFFECT OF FOUNDATION SHAPE ON SOIL
STRUCTURE INTERACTION 

The examples given in the previous sections have dealt with 

various effects on soil-structure interaction, all of which were 

represented by two-dimensional models compatible with circular or 

elliptical cylindrical coordinates. For more general foundation 

geometries, other than the ones described above, exact series 

solutions are either very difficult or intractable. In this section, 

in order to investigate further the effect of varying shapes, an 

approximate integral formulation is used. 

For scattering of scalar waves in a homogeneous, isotropic 

medium, the scattered wave field, w(s )(r ), outside a surface can be 

obtained by superimposing the contribution from a distribution of 

wave sources located on the scatterer• s outer surface. The integral 

representation of w(s \:) written in terms of the boundary sources, 

w(s)(r0 ) and ow(s){~0 )/ono, is 

r 0 on A (3-5. 1) 

where r 0 on A implies that r 0 is the coordinate of the surface A 

[Mow and Pao (1971)]. In (3-5. 1), G{E_,~) is the Green 1 s function 

of the scalar wave equation and r and Si are the observation and 

source points, respectively. Since the two-dimensional SH-waves 

satisfy the scalar wave equation, equation (3-5. 1) applies directly 

to the two-dimensional anti-plane foundation model. 
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Because the boundary sources w<s )(r0 ) and ow<s )(:9)/on
0 

are 

usually the unknowns, the unique solution is obtained by specifying 

the bounda!-Y value.s. In many applications, especially the ones 

considered in this chapter, the boundary conditions are prescribed 

to the total wave w(t) = w(s) + w(i), where w(i) is the incident wave. 

Therefore, it is convenient to add to (3-5. 1) the integral repre

sentation of w(i), 

(3-5. 2) 

w(i)(r0 ) satisfies the Helmholtz 1 s first formula, equation (3-5. 2), 

because it possesses no singularities inside the surface A. The 

addition of (3-5. 2) to (3-5. 1) yields the integral representation for 

w(t) as, 

(3-5.3) 

Now, to obtain a solution for the boundary values, the obser

vation point is made to approach the surface A, resulting m an 

integral equation for the unknown values, w(t)(~) and ow(t)(r0 )/on0 • 

Because oG(r, r 0 )/on0 is discontinuous across the surface A, a limit 
~ ~ 

must be taken as .::_ ... r 0 • For a smooth surface, equation (3-5. 3) 

becomes the following as.::_ ... r 0 ,[Mow and Pao (1971)], 
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where w(i\::_) is usually the known quantity. 

The integral equation (3-5. 4) can be solved exactly if the 

surface A is compatible with certain coordinate systems, such as the 

circular cylinder and elliptical cylinder. In these cases, the Green's 

function G(r, r 0 ) can be expanded in series of orthogonal functions, ~ ~ 
such as Bessel function or Mathieu functions. Using the ortho

gonal properties of these special functions, the integral equation 

can be solved by the Hilbert-Schmidt method. The results are 

identical to those obtained by the method of separation of variables. 

However, the original difficulty concerning the geometry of the 

foundations is still not resolved; other means of solutions, such as 

various numerical methods, must now be employed. 

Banaugh and Goldsmith (196 3) obtained numerical solutions 

for wave scattering in -an infinite medium by cylinders of arbitrary 

shape. Their approach was to replace the integrals of (3-:5. 4) by 

numerical quadrature formulas, so that they could be represented 

by a finite sum of discrete values of the integrand. The displace

ments w(t)(r0 ) are then matched on a chosen number of points on 

the surface A, resulting in a set of simultaneous equations for the 

unknowns. These unknowns can usually be determined by conven

tional methods of numerical analysis. 

Using the method of images as discussed in the beginning of 

this chapter, the scattering of scalar waves in the infinite space 
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can be adopted to analyze some problems in the semi-infinite space 

[Wong and Jennings (1975)]. Following the same analysis proce

dures as described in Chapter 2, i.e., by considering only the 

dynamics of the foundation, the boundary conditions for problems 

(i) and (ii) can be prescribed. 

In determining the impedances of the foundations, the founda

tion is moved harmonically by one unit of displacement; in the 

absence of incident waves, therefore, the boundary conditions for 

the z-component of the displacement are 

r 0 on A (3-5.Sa) 

and 

r on c (A) . (3-5. Sb) 

The latter condition is imposed for the free surface requirement of 

the half space, and it can be satisfied simply by taking w?)(!:_) to be 

symmetric about the x-axis. Using boundary condition (3 -5. Sa), the 

integral equation (3-5. 4) for ow}t)(~)/ono simplifies to 

r on A (3-5.6) 

an integral equation for the unknown ow1(t\r0 )/ono, which is pro

portional to the stress distribution over the surface A. 

For the calculation of driving forces induced by the seismic 

excitation, the foundation is kept fixed while the incident wave is 
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inc:luded. Since the incident wave field w(i) in the half space con

sists of an incident wave plus a reflected wave, the free surface 

condition for the half space is automatically satisfied. Therefore, 

by assuming a distribution symmetric about the x-axis for the 

unknown w2 (s )(r0 ), the only remaining boundary condition is at the 

foundation surface, 

:.9 on A . (3-5. 7) 

(t) 
To satisfy (3-5. 7), w2 is set to zero in equation (3-5. 4), and an 

integral equation again results for the normal gradient 

r on A . 

ow (t) 
After the solution of the stress distribution crnz = µs bno on 

(3-5. 8) 

the 

surface of the foundation is available, the impedance and the driving 

force can be calculated from 

Ks 
-½ ff 

ow?\ro) 
= - ds0 µs A on0 

(3-5. 9) 

F ,:, 

ffA 
owJt)(ro) 

s 
= - 1. ds0 , 

µs 2 ono 
(3-5. 10) 

respectively. The factor of ½ is used because the foundation sur

face covers only half the area of the mathematically symmetrical wave 

scatterer. 
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Proceeding with the analysis, the integral equations (3-5. 6) 

and (3-5. 8) can be solved by the point matching technique. Using 

this technique for an assumed distribution of ow(t)(r0 )/on0 , the 

integral is matched with the given condition on the right hand side 

for a selected number of points only. Of course, the solution 

becomes more accurate if the number of matched points increases. 

To evaluate the integral, it is convenient to parameterize the 

coordinate system. For an infinitely long cylinder, the surface area 

per unit length can be described by just one parameter. By intro

ducing the parameter ¢ such that 

(3-5. 11) 

the element of surface area per unit length is 

(3-5. 12) 

Since the Green's function G{!_, r 0 ) for the two-dimensional scalar 

wave equation is }H0<
2 )(kJ..::.-:9l), the Hankel function of the second 

kind, the left hand side of the equations (3 -5. 6) and (3 -5. 8) can be 

replaced by 

(3-5. 13) 
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The new integral can be evaluated numerically if the distribution 

ow(t)(r0 )/ot1o is assumed; also, the logarithmic singularity of the 

Green 1 s Function as r -+ r 0 must be evaluated by a special method 

discussed by Banaugh and Goldsmith (1963 ). 

The function ow(t) /ot1o also possesses singularities if the wave 

scattering object has sharp corners, and the numerical solution may 

become very difficult. However, it was shown by Shafai (1971) that 

ow(t)(¢)/ot1o would have a singularity of the type 1/Sq,. Therefore, 

the quantity [ow;t)(</>) S<p] is smooth and can be determined more 

easily. Hence, itllois advantageous to consider [ Ow;~</>) S<p] as 

the .unknown because Ksfi-..1.s and F;' /µs are also expressed by the 

integrals whose integrands represent the stress. Therefore, with 

this new variable one can write 

ff (3-5.14) 
A 

Equation (3 -5. 14) brings out the fact that the total forces on 

the foundation do not change appreciably if the shape of the founda

tion changes by a small degree. This is not true for the stress 

distribution µow(t)(<i>)/on, however, because it is sensitive to the 

local change of slopes. In other words, the assumption that the 

foundation is rigid has effectively eliminated the influence of detailed 

geometries and acts as a smoothing operation. 

To obtain numerical results, assume that the unknown 

variable can be expressed by a finite Fourier series as follows 
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N 

=L 
j=O 

h1 cos j</>0 
J 

(3-5. 15) 

P. 
where b. (£ = 1, 2) are unknown coefficients for the problems (i) and 

J 

(ii). Here, the cosine functions have been chosen to satisfy the 

symmetry requirement. Using (3-5. 13) and (3-5. 15), the integral 

equations (3-5. 6) and (3-5. 8) become 

(3-5. 16) 

= 

(3-5.17) 

respectively. For N chosen values of ¢ on the boundary, (3-5. 16) 

and (3 -5. 17) constitute N equations for the N unknown Fourier 

coefficients b~ for each P. = 1, 2. 
J 

[
ow (t) (<Po) 

Since the variable -"----''-'---'
one 

is quite smooth, the Fourier 

coefficients b~ diminish rapidly. 
J 

Further consideration of (3-5. 14) 

and (3 -5. 15} shows that 

(3-5. 18) 

because all higher harmonics integrate to zero. Equation (3-5. 18) 

again indicates the smoothing effect of a rigid foundation, because 
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the contribution of the zeroth harmonic is smaller for higher £re

p_ 
quencies. Therefore, the coefficients b 0 would be smaller due to 

the fact that most . of the energy is radiated away. 
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The Influence of Small Differences of Foundation Geometry on 
Its Interaction with the Soil 

We now consider the rectangular foundation. Although its 

geometry fits nicely with the cartesian coordinates, the exterior 

wave scattering problem cannot be solved exactly because the 

boundary conditions involve both independent variables x and y. 

However, the numerical values for the compliances and driving 

forces can be obtained readily by the method described above. 

They should be interesting to compare with the elliptical foundation 

because of the similarity in the overall dimensions. In Section 

[3. 2], it was noted that the 11 radiation 11 damping is directly pro

portional to the area of the scattering surface. Therefore, the 

comparison of these two cases has been performed by equating the 

perimeter of the two cross sections. 

The special case of the semi-circular foundation and the rec -

tangular foundation with a height to width ratio of ½ has been com

pared first. The numerical results for both foundation shapes are 

tabulated in Table 3-5. la. The format of the numbers tabulated is 

(REAL PART, IMAGINARY PART). The imaginary part compares 

well, within a few percent, as would be expected, because the two 

surface areas are identical. Thus, the "smoothing" effect of the 

ri gid foundation is displayed clearly, and the detailed foundation 

shape apparently does not affect the total force a ppreciably . The 

real part of the two cases deviates at higher frequencies. This is 

possibly due to the numerical errors created while the complex 

matrix equation is solved numerically. The numerical errors are 
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TABLE 3-5. la 

COMPARISON OF IMPEDANCE FUNCTIONS 

Exact Solution A ppr. Solution 
w.A/B Semi-Circle Half-Square 

0.20 ( 1. 08, . 931) (1.06, . 885) 

0.40 ( 1. 24, 1. 5 5) ( 1. 2 0, 1. 47) 

0.80 ( 1. 38, 2. 76) (1. 30, 2. 62) 

1. 20 ( 1. 45, 3. 98) (1. 31, 3. 80) 

1. 60 ( 1. 48, 5. 21) ( 1. 24, 5. 02) 

2. 00 (1.51, 6.44) (1. 15, 6. 35) 

2.40 (1. 52, 7. 6 8) (1.17, 7. 59) 

2.80 ( 1. 53, 8. 90) ( 1. 18, 8. 90) 

3.20 (1. 54, 10.2 ( 1. 22, 10. 1 

4. 00 ( 1. 5 5, 12. 7 ( 1. 26, 12. 7 
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usually accumulated in the real part as the imaginary part becomes 

an order of magnitude larger. 

Our attention is next turned to the comparison of the driving 

force induced by seismic excitation on a rectangular foundation and 

a semi-circular foundation. The exact solutions of the semi

circular foundation presented by Luco(AlbS) and Trifunac(Alb 9 ) are 

both for the plane wave excitation. Therefore, to draw an analogy, 

a plane SH-wave with an angle of incidence 0 is again assumed. 

The total incident wave motion w (i) (r) in the half space is then 

C) i*x(cp)cose [ ] 
W l [ X ( q>), y ( q> ) ] = 2 Uc£ COS * y ( q>) Sin 0 (3-5. 19) 

and it makes up the right hand side of equation (3 - 5. 8 ). The 

driving forces were calculated for four angles of incidence, e = 0°, 

30°,60°, and 90°, and are tabulated in Table 3-5.lb. Also tabu

lated in the second colurrm of Table 3-5. lb is the driving force on 

the semi-circular foundation, which was shown by Trifunac (Alb 9 ) 

to be independent of the angle of incidence. The differences in 

this case are again negligible for dimensionless frequencies of less 

than about two. The numerical error is not important in this case 

because both the real and imaginary parts are of the same order. 

Another case of interest is when the height to width ratio is 

3/2. Though the perimeter is again equated to yield the same sur

face area, the differences in geometry and slopes become more 

distinct than for the previous comparison. Impedances and driving 
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forces for these two foundation shapes are plotted in Figures 3-5. 1 

and 3-5. 2, respectively. 

The difference between the two cases for the driving forces 

becomes noticeable, especially at higher frequencies where the 

deviation is great. This can be explained by the greater sensitivity 

of waves to the geometries when the wavelength is of a comparable 

size with the foundation. Since the dimensionless frequencies are 

based on the width of the foundation, the frequencies considered 

here are actually higher than the case tabulated in Table 3. 1. 

Figure 3-5. 2 also shows that driving forces for a rectangular foun

dation are dependent on the angle of incidence 0. The vertically 

incident wave, for example, resulted in the greatest scattering 

because it arrived in the direction of the major axis. 
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[3-6] THE EFFECTS CAUSED BY AN ENCLOSED SOIL MEDIUM 

As discussed previously in Section [ 1-2 ], mo st finite element 

programs for soil-structure interaction consist of a layered or 

homogeneous medium enclosed by an arbitrary boundary. The input 

of seismic excitation is made through the shaking of the outer 

boundary. This set-up can introduce into the analysis some un

wanted reflections and standing wave patterns. Since all of the 

energy is trapped in the enclosed medium, the ''radiation" type of 

damping cannot be accounted for. Therefore, artificial material 

damping is usually introduced into the finite element models to 

dissipate this trapped energy and, thus, hopefully to model approxi

mately the semi-infinite medium. 

B 
(A79) 

Luco, Hadjian and os investigated this problem by com-

paring the exact solution of a rigid strip foundation to an approxi

mate solution obtained by finite elements. The two-dimensional 

finite element model consisted of a rigid strip over an enclosed 

rectangular box. The size of the box was also varied to gain 

additional insight into the problem. The results they presented 

indicated that the modeling by a finite medium possesses charac

teristics which are entirely different from those of the half space, 

and that the difference is most pronounced for the symmetric ver

tical excitation. The unfortunate consequence of these approxima

tions is the overestimation of the effective soil stiffness, which 

leads to the underestimation of response. Therefore, the solution 

which is based on a bounded finite element approach may not yield 

a conservative response estimate. 
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In this section, the characteristics of the foundation impe

dances for an enclosed medium are investigated by using an exact 

solution, so that various approximations made by the finite element 

approach can be eliminated. 

We consider the anti-plane model illustrated in Figure 3-6. 1. 

It consists of an infinitely long foundation with a semi-circular 

cross section of radius a 1 • This foundation is embedded in a soil 

medium bounded by a rigid circular boundary of radius ¾· This 

configuration allows a simple exact solution for the longitudinal 

displacements. 

Since the longitudinal displacement w satisfies the two-dimen

sional wave equation in polar coordinates, the harmonic displacement 

field in the soil medium has the form: 

00 

w(r, ¢) = L 
n=O 

[a J (kr) + b Y (kr)][cosn¢ + c sinn¢] n n n n n (3-6. 1) 

where k is the wave number in the soil and J and Yn are Bessel , n 

functions of the 1st and 2nd kind, respectively. To calculate the 

impedance function for this foundation, we impose the following 

boundary conditions: 

(i) the ''free''condition for the soil surface: 

ow I = o 
0¢ ¢=0,rr 

(3-6.2) 

(ii) a unit amplitude excitation by the foundation: 

( ,.J..) l niwt w a 1 , ¥J = x. (3-6.3) 



Figure 3-6. l 
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Circular foundation placed on a bounded 
soil medium. 
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(iii) the "fixed II condition at outer boundary: 

w(a 2 , ¢) = 0 . (3-6.4) 

Boundary condition (i) eliminated the unknown constants, en = 0, 

n = 1, 2, . . . . Boundary conditions (ii) and (iii) lead to a solution 

for the coefficients, an• bn• which are given by 

n = 1, 2, ... (3-6.5) 

n = 1, 2, ... (3-6.6) 

where 

Therefore, all harmonics drop out except for the zeroth. The dis

placement in the soil medium is then 

w(r, ¢) = 
Y0 (ka 2 )J0 (kr) - J0 (ka 2 )Y0 (kr) 

D 
(3-6.7) 

and the impedance KB is just the force exerted on the foundation 

by the soil, 

0 

= f owl ad¢ = - µ or r =a1 l 
-rr 

For comparison w ith (3 -6. 8 ), the solution for the half space 

problem is 

(3-6.8) 

(3-6.9) 
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where H<2 ) = J - iY is the Hankel's function of the second kind, 4

"'11 n n 

which represents diverging waves. 

An immediate comparison of these results is that KB is real, 

while KHS is complex. Since the imaginary part of the impedance 

represents_ the energy dissipation, there exists no damping for the 

former case, because all of the radiated energy is totally reflected 

back from r = a 2 • It should be pointed out that the amount of this 

reflected energy does not depend on the size of the enclosed 

medium, a 2 • 

The asymptotic amplitude of the Bessel functions for large 

arguments r decays as 1/{r [Abramowitz and Stegun (1971)], 

therefore, the corresponding wave energy is proportional to 1 / r as 

r .... co. However, the total reflected energy at the outer boundary is 

= constant , (3-6. 10) 

and thus is not dependent on the distance of the outer boundary a 2 • 

Therefore, no energy dissipation is possible and, . as a result, the 

converging waves from the outer boundary cause constructuve or 

destructive interference with the diverging waves from the founda

tion. The constructive interference will cause resonance within the 

soil medium, which can result in large amplitudes for low level 

excitation. The destructive interference, however, will tend to 

overestimate the stiffness of the soil medium if the foundation lies 

near a node in the standing wave pattern. 
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One possible way of introducing the damping into the bounded 

soil medium is to assume the soil to be viscoelastic. Following 

Veletsos and Verbic, (Al 4
S) the shear modulus µ of a viscoelastic 

material may be ex:i:, ::- essed as a complex quantity in terms of the 

real shear modulus and a damping coefficient. There are also 

several types of viscoelastic materials. For a viscous solid, 

µ1 =µ(l+io), while for a Voigt solid, µ2 =µ(l+ia 0 s), where 

a 0 = ka1 = wa1 /(3 is the dimensionless frequency; o and g are damping 

coefficients. 

The two types of viscoelastic materials defined above will now 

be used for the investigation of the material's dissipation of energy. 

Since the shear wave velocity is related to the shear modulus as 

~ = {µIp , the dimensionless frequency can be expressed as 

~1 k1a1 
ao 

for viscous solid ao = = 
i 1 + io 

(3-6. 11) 

and as 

~2 
k2a1 

ao 
ao = = 

i 1 +iaos 
(3-6. 12) 

for the Voigt solid. Substituting the complex frequency a~ into 

equation (3-6. 8), the value of KB is now complex because the 

Bessel functions have complex arguments. 

To compare these different phenomena caused by the material 

damping to those of radiative damping, the impedance functions are 

plotted versus the real dimensionless frequency, a 0 , in Figures 

3-6. 2 for a viscous solid and in Figure 3-6. 3 for a Voigt solid. 
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Each figure includes the ratios, a 2 /a1 = 5 and 10, so that the effect 

of the medium size can be studied. Also, five values of damping, 

6 or g equal to 0, 0. 1, 0. 25, 0. 5, and 1, are shown, each one dis

tinguished by a different dashed line. 

Comparing these results, it is seen that the characteristics of 

KB are far from those of KHS, especially at low frequencies. The 

static impedance of the enclosed medium is always larger because 

of the additional restraint nearby. This restraint relaxes as a 2 /a1 

becomes larger, as shown in Figures 3-6. 2 and 3-6. 3. For the 

dynamic impedances, KB is generally oscillatory. The number of 

oscillations increases as a 2 / a1 increases. Therefore, as the outer 

boundary moves further away, the order of the mode shapes in the 

enclosed medium becomes higher for the same a 0 • 

Let us consider the undamped cases, i. e., g or 6 = 0. The 

impedance function has unbounded amplitudes at certain frequencies, 

while at some other frequencies its value is equal to zero. For the for

mer case, the foundation lies on a node of the standing wave pat

tern where the resistance of the soil medium is equal in magnitude 

but opposite in direction to the input force; hence, the foundation 

has infinite rigidity and the motion is zero. For the latter case, 

the resistance is zero; therefore, the motion is undefined at these 

resonant frequencies as the waves constructively combine . 

The introduction of damping into the material smooths out 

the large amplitude oscillation and contributes to the imaginary 

part of the impedance. However, the general characteristic is still 

far from that for the half space solution, even for large values of 
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damping. There are no simple trends that explain the effect of the 

different types of material damping except that the oscillation is 

smoothed out much quicker for the Voigt solid as a 0 increases. 

For the lower frequency range which is of special importance 

for earthquake engineering, the imaginary part of the impedance is 

near zero, contrary to the large values of the half space solution. 

The Voigt solid model uses a shear modulus that depends on £re -

quencies, but this helps only to damp out the oscillation of the 

impedance curve more at high frequencies. Otherwise, there is 

not much difference when it is compared with the viscous solid. 

Therefore, one might conclude that the harmonic behavior of a 

bounded medium is not the same as that of the semi-infinite 

medium because the waves cannot propagate outwards. This feature 

has a marked influence with steady state response to harmonic 

excitation. 
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CHAPTER IV - THREE-DIMENSIONAL FOUNDATION MODELS 

[4-1] AN INTEGRAL FORMULATION FOR THE MIXED 
BOUNDARY VALUE PROBLEM 

The nature of soil-structure interaction phenomena in two 

dimensions was discussed in Chapter III. The results indicate that 

soil-structure interaction may have important effects on the com

putation of complete structural response. Experimental evidence 

of these phenomena has been presented by Foutch et al. (1975). The 

full scale testing of a nine-story building has indicated that inter

action contributed to at least 3 0% of the total deflection at the roof 

of the structure. Therefore, the design and analysis of important 

structures should not disregard the aspect of soil-structure inter-

action. 

However, for the introduction of the soil-structure interaction 

computations into engineering design, three-dimensional models 

must be developed, because of the limitations of two-dimensional 

approximations [Luco and Hadjian(A
7 B)J. 

But, as described in Section [ 3-1 ], the solution of this boundary 

value problem in the half space is difficult to obtain due to the 

conversion of longitudinal and shear wave modes. Since the bound

ary conditions are usually prescribed on the second space deriva

tive of the potentials, the method of images cannot be applied here. 

As a result, only a few three-dimensional models have been suc

cessfully analyzed, mo st of which were reviewed in Section [ 1-2 J. 
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Because of the practical importance of the three-dimensional 

soil-foundation interaction, this chapter is devoted to the develop

ment of a general method which is capable of numerically calcu

lating the impedances and 11driving forces 11 for a flat foundation of 

an arbitrary shape. This method is a direct analog to the two

dimensional scheme discussed in Section [ 3-5 J. 

In constructing a mathematical model for a three-dimensional 

foundation placed on top or within a half space, a mixed boundary 

value problem results. The half space surface outside the founda

tion is considered to be 11traction free, 11 while the compatibility 

of displacements is prescribed under the foundation. If this prob

lem is posed in the framework of linear theory, the principle of 

superposition can be used effectively. Utilizing the Green's func -

tion on the surface of the half space, the displacements everywhere 

can be expressed in terms of the unknown traction via an integral 

formula. This representation thus results in an integral equation 

for the unknown surface tractions. 
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Superposition of Point Loads 

[ J iwt Consider now a harmonic point load, ~ = P 1 , P .. i, P 3 e , 

acting on the free surface of a half space which is composed of 

linear materials. The notation is such that P3 is the normal com

ponent, while P 1 and P2 are the tangential components in the x 1 and 

x 2 directions, respectively. Using a Green's function matrix, G, 

the resulting displacement, ~• at x is related to the exciting force 

P at ~o by 

u(x)eiwt = 
~~ 

G(w,x -x )P (:xo)eiwt = ~ ~o ~ ~ (4-1.1) 

The elements of the matrix Q, g_em(w,~ -~0 ), relate the £th compo

nent, ui' of the displacement and the mth component, Pm' of the 

point fore e. Applying the Maxwell reciprocity relation, the func -

tions, g£m' have the property 

and (4-1. 2) 

Therefore, the matrix G has actually only six independent elements. 

By superimposing many of these point loads, the displacement, 

u, at ~' caused by the traction, !(~_0 ), over an area, A, is 

= x 0 on A . (4-1.3) 

If the surface tractions, T(x0 ), in equation (4-1. 3) are known or 

prescribed, the displacement, _!::(~), can be obtained by direct inte

gration over the loaded area, A. However, for many practical 
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problems, the displacement, ;::(x), is prescribed over the foundation 

surface. Therefore, the values of T(:xo) must be determined by 

solving the integral equation (4-1. 3 ). 

Because of the complexity of the kernel, G(w, x - :xo), only very 
= - -

special geometries such as a circle or a strip are amenable to an 

exact solution. For many foundation shapes of practical importance, 

the exact solution of (4-1. 3) appears either too complex to handle or 

impossible to obtain. Therefore, analogous to the two-dimensional 

problem, an effort is made here to solve the integral equation 

numerically. 

The results presented in Section [3-5] indicated that the 

stress distribution is quite sensitive to the exact shape of the 

foundation while the integrals of the stresses, i.e., impedances and 

driving forces, are not. Therefore, if only the impedance and 

driving force are needed, the area, A, can be approximately repre -

sented by an area over which the integration over dS0 can be per -

formed easily. In the following sections, two different numerical 

approaches will be discussed. 
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[4-2] METHOD I - PARTITIONIN'G THE FOUNDATION AREA 
INTO SMALLER SUBREGIONS 

The standard procedure for obtaining the numerical solution of 

an integral equation is to degenerate the continuous integral formu

lation into a set of discrete algebraic equations which can be solved 

numerically. To accomplish this, the integral on the right hand 

side of (4-1. 3) is replaced by a sum over the yet unknown inte -

grand, GT. This sum may be weighted differently depending on the 
=~ 

type of integration rules used. For complicated foundation shapes, 

numerical integration rules are not available. However, the founda

tion area can first be partitioned into many smaller areas of a 

fundamental shape for the purpose of integration. The integral in 

(4-1. 3) can then be expressed approximately as 

N 

=L 
j=l 

where A. is the area of the jth foundation element. 
J 

An attempt was made by Elorduy, S k 1 
{Al63) 

Nieto, and . ze e y 

* to represent the total traction in an area A. by a point load P. , 
J ~J 

where each element is taken to be a square. The integral equation 

(4-1. 3) is then replaced by the set of 3N X 3N simultaneous equa-
-'-

tions for the unknown point loads P:•· 
~J 

u(x.) 
~~l 

N 

""' L G (w, x. - x.) P :'' = ~l ~J ~J j=l 
i, j = 1, 2, ... , N 
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where x. and ~J· are the observation and source points, respectively. 
~1 

However, the difficulty of this approach arises in the numerical 

evaluation of the Green's function g.R..R., which has a singularity of the 

type 1 / I (x. - x. )J when x. = x. or i = j. Hence, the contribution to 
~1 ~J ~1 ~J 

the diagonal terms of the algebraic equations is unbounded. To 

(Al63) 
avoid this singularity, Elorduy et al. kept the source points 

at the center of the square elements while the observation points 

were shifted to an arbitrary corner of the element. This special 

scheme tends to introduce a bias into the equation because the 

diagonal terms, where i = j, are dominant. 

In this section, a more rigorous approach is taken, in which 

the singularity of the Green's functions is properly accounted for. 

The traction, T . (x0 ), in equation (4-2. 1) is fir st expanded in a 
~J ~ 

Taylor series about a point x. inside A. as follows 
~J J 

(4-2. 2) 

where [H(x.)], the Hessian matrix, consists of the second partial 
~J 

derivatives of T. at x.. Since the values of the expansion coeffi-
~J ~J 

cients T.(x.), vT.(x.), [H(x.)J, ... , etc., are unknown, they must be 
~J ~J ~J ~J ~J 

determined by the compatibility conditions on the displacements. 

By substituting (4-2. 2) into the right hand side of (4-2. 1) and per

forming the integration over A., the resulting discrete sum will 
J 

depend on the unknown Taylor expansion coefficients. By pre-

scribing the displacements and their derivatives on the left hand 

side of (4-1. 3) at the same location, x., 
~l 

a set of simultaneous 
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equations for the unknowns is obtained 

= M (4-2. 3) 

Theoretically, the representation of T. in (4-2. 2) improves 
~J 

as the number of terms is increased; however, only a few terms 

are necessary if the function 

A.. From the exact solution 
J 

T. (x0 ) is well behaved inside the area 
~J ~ 

of the circular disc [Bielak(AI 34 )], 

the stress distribution under the disc was noted to be quite smooth 

except at the edge, where the stress is infinite. Since this singu

larity is quite easily integrable, an elaborate expression of (4-2. 2) 

is not needed if only the integral of the stresses is wanted. 

The limiting factor for the numerical solution of (4-2. 3) is 

the number of equations allowed. Since the matrix, M, is a full 

matrix, the numerical round off errors, accumulated by 

computers during the inversion process, can cause the solution to 

be unstable. The maximum order of the matrix should be kept under 

about 500 even when double precision calculation is performed. 

With the maximum order of M fixed, the choice is either to have 
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many smaller areas, A., with a low order Taylor expansion, or to 
J 

have fewer areas, A., with a higher order expansion for the trac
J 

tion. Of course, a hybrid of the two can be used effectively as 

well. 

In the applications presented in this section, the former 

approach is taken because the integral of the lower order func

tions, Ix - x . )n, over the area, A., can be carried out with less 
~ ~J J 

difficulty. Some examples of the actual calculations will be shown 

next using small rectangular elements and a zeroth order expan

sion of T .. 
~J 
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An Application Using Rectangular Subregions 

Using an appropriate number of rectangular areas, many 

foundation shapes can be modeled adequately as shown in Figure 

4-2. 1. Matching only the displacement compatibility and the zeroth 

order term of the traction at the center of each of the rectangular 

elements, x., equation (4-1. 3) simplifies to 
~J 

N 

u(x.) 
~~l 

~I: rr G(w, X. -~) T. (x.)dSo 
J J A. = ~l ~ ~J ~J 

i, j = 1, 2, ... , N . (4-2. 4) 
j=l 

J 

Since T. (x.) is actually a uniform load over the area A., it is con-
J ~J J 

venient to introduce a total force over the whole area as 

p:(x.) = T.(x.)[4b.c.J, where 2b. and 2c. are the side dimensions 
~ J ~J ~J ~J J J J J 

of a rectangular element. Equation (4-2. 4) can then be rewritten 

as 

i,j = 1,2, ... , N 

(4-2. 5) 

where µ and f3s are the shear modulus and the shear wave velocity, 

respectively. The "influence coefficients, 11 
~. are defined as fol-

lows: 
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Figure 4-2. 1 An approximation to a foundation of 
arbitrary shape. 
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[gll gl.2 ~.] /(x2 ).+c. (x1 ).+b. 
-1::.... = J J f J J &:!1 &32 &33 (w,x-x.) ds1ds2 . 4b. ~ ~J 

(x 2 ).-c. (x1 ). -b. J 
. J J J J ~l ~ ~3 

(4-2. 6) 

where ¢1m; i.,m = 1, 2, 3; are complex quantities. 

After the double integration, the influence functions become 

finite even when ~i = ~j. In fact, ¢ii ( ;:i, .Q) are actually the com

pliance functions for the uniformly loaded area, A., normalized with 
l 

respect to the deflection at the center [Kobori et al. (Al 64 )J. The 

expression for the point load on the surface of the half space is 

quite lengthy and complicated [ Ewing, Jardetsky, and Press (195 7 )] ; 

therefore, the actual integration over the area, A., is difficult . An 
J 

alternate approach, using two-dimensional Fourier Transforms, is 

taken since the definition of f_ in (4-2. 6) physically represents the 

case where the rectangular element is uniformly loaded. Thomson 

(Al62) (wbi ) and Kobori have derived the formulae for ¢.. r• 0 . The 

off-diag anal terms qi lm ( ;:j , -"i - !oj) can be deri ve

1

: si,:il:rly. The 

mathematical derivation of the above can be found in Appendix B. 

The formulae, after simplification, are 
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Since!, the integral of Q_, also satisfies the relation (4-1. 2), 

only six independent components need to be evaluated. 

As the frequency of excitation approaches zero, the formulae 

of (4-2. 7) become the static solutions which can be obtained by super

imposing the solution for a point load given by Love (1927), 

(4-2.-8a) 

</> (o X1. X2) = _l (c)2 fl f 1 
[(l-2n

2
) (¥)(~}(x{)d(¾) 

21 'b'c 16-rr b (l-n 2 ) R3 b c 
-1 -1 

(4-2. 8b) 

¢a,~,;.;)= 1l~(~1~:1 ( ( (x::{) d(~H~) (4-2. 8c) 

(4-2.8d) 

(4-2. 8e) 

(4-2. 8f) 

In the formulae above, the functions, </> . . , are finite and well 
lJ 

behaved. The algebraic equations (4-2. 5) can then be rear ranged 
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in matrix form 

= 
l ~ (kbi, ~ 2-zi.) !_ (k~, 0) 

1-L 

(4-2. 9) 
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Numerical Evaluation of the Integrals 

The double integrals appearing in equation (4-2. 7) cannot 

easily be evaluated analytically or numerically. The infinite inte

gral is convergent, since·, when z ➔ co, the non-oscillatory part of 

the integrand for ¢ .. approaches zero as 1 / z2
; but the denominator, 

lJ 

F(z), has a simple pole at s, where s is a root of F(s) = O. One way 

to eliminate this simple pole is to use the method discussed by 

I. M. Longman · (1958) in which the integrand was separated into an 

even part and an odd part. Since the odd part, which possesses the 

singularity, integrates to zero, the remaining even part is integrable . 

The results obtained by this method are actually the principal 

value of the integral; to avoid standing waves, one half of the 

residue of the 11Rayleigh Pole'' must be subtracted from it. 

In the current application, contour integration over the com

plex plane is used to include the contribution from the Rayleigh 

pole and the branch cuts associated with ~/z2 -n2 and ../z2
- 1 . The 

contours used here are similar to those employed by Ewing et al. 

(1957). The process of contour integration has eliminated all non

integrable singularities and reduced the infinite integral over z for 

the diagonal terms, ¢ .. to a residue plus two finite integrals with 
11 

limits of O :;; z :;; n and O :;; z :;; 1. This reduction was possible 

because the integ rand is analytic e verywhere except at the branch 

c~ts and at the Rayleigh Pole. 

After contour integration, the resulting integrals are still too 

complicated to be evaluated analytically; th e r efore, a numerical 

solution is necessary. With the aid of high speed dig ital computers, 
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numerical integration would appear to be an easy task, but for 

large values of k, x 1 , and x 2 , the integrand becomes highly oscilla

tory and standard quadrature formulae such as Simpson's rule are 

not efficient. 

For an oscillatory integrand with sine and cosine functions, 

i. e. , 

a 
{ 

sin pz} 
f(z) dz , 

cospz 
(4-2. 10) 

the numerical calculation can be treated efficiently with the Filon' s 

method [Abramowitz and Stegun (1971 )]. This approximates the non

oscillatory function f(z} by intervals of parabolae as used in the 

Simpson's rule. These parabolae are then integrated exactly along 

with the sine or cosine dependent on the value of p, but only on the way 

f(z} is approximated. Another advantage of this approach is that f(z) 

in the integrand Gf (4-2. 10) remains the same for all k, x1 , and x 2 • 

Therefore, it can be stored to avoid repetitive calculations. 

fore, it can be stored to avoid repetitive calculations. 

Since the calculation of the influence functions f_ requires 

considerable effort, it is therefore wise to store the results for 

future . usage. In the examples given in this Chapter, the foundation 

surfaces are formed using square elements; so square grids for the 

influence function were calculated and stored before the actual appli

cation. For the frequency band of interest, a square grid of 8 x 8 

was calculated for the dimensionless frequencies wb>!<//3s ranging 

from 0. 05 to 0. 50 in an increment of 0 . 05, and 4 x 4 grids were 
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calculated for wb >'r= /f3s from 0. 60 to 1. 00 in an increment of 0. 10. 

The influence functions also have symmetrical properties so that 

they only have to be calculated in one quadrant of the x 1 x 2 -plane 

for horizontal vibrations and in one octant for vertical vibrations. 

By taking advantage of all these properties, the calculation of the 

final results can be performed economically. 
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Reduction to the Relaxed Boundary Value Problem 

Thus far the formulation in Section [ 4-2] has been concerned 

with the solution of equation (4-1. 3 ), which is a set of three coupled 

integral equations involving the tractions in the x1 , x 2 , and x3 

directions. Their unique solutions are to be determined by the 

compatibility conditions of the three components of displacement on 

the foundation surface. However, these coupled integral equations 

associated with the "welded-contact" problem are difficult to solve. 

For numerous applications in soil-structure interaction, only 

an approximate answer is necessary. In these cases, it is worth

while to ignore some of the less important boundary conditions 

which may uncouple part of the integral equations. The solution 

obtained by disregarding some boundary conditions is called a 

"relaxed" solution. 

The relaxed boundary conditions can be based on different 

assumptions, and their justification is necessary. In this chapter, 

the following relaxed conditions will be used: 

(1) Vertical Vibrations: The boundary conditions are such that 

the vertical displacement tJs(Xi, x 2, 0) on the foundation surface is 

prescribed while the horizontal displacements are left unrestricted. 

In other words, the foundation surface is assumed to be frictionless 

in the horizontal directions. By i gnoring the tangential stresses, 

equation (4-1. 3) can be reduced to just one independent integral 

equation for the unknown normal stresses. 

(2) Horizontal Vibrations: In this case, the horizontal dis

placement in one direction is prescribed w hile its complemental 
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components are not resisted. Once again, equation (4-1. 3) reduces 

to an independent integral equation for the tangential stresses in 

the direction of the applied load. It should be noted, however, m 

some cases only the vertical component is relaxed [ Luco and 

Westmann (AlZ 9 )] . 

(3) Rocking Vibrations: The boundary conditions are similar 

to those 6£ the vertical problem, except for the vertical displace

ment which now follows a rigid body rotation. The horizontal com

ponents for this case are assumed to be unimportant. 

(4) Torsional Vibrations: The horizontal displacements are 

prescribed for torsional motion while no resistance is placed on the 

vertical displacement. In this case, the uncoupling of the two hori

zontal components is not possible because the interaction between 

the two is significant. 

These "relaxed boundary conditions" listed above are quite 

(Al29 Al30) 
commonly used, ' and they are generally accepted to be 

adequate for engineering applications. 
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Compliances for Rigid Foundations 

When the foundation is assumed to be rigid, the method of 

superposition which was discussed in Chapter II can be applied. 

For the calculation of the vertical compliance, Cvv' and the hori

zontal compliance, Chh, the displacements must satisfy the rigid 

body translation conditions. But for the evaluation of the rocking 

compliances, Cmm, and for the torsion compliance, Cu, rigid body 

rotation is imposed. The following examples illustrate the set-up 

of the algebraic equations; square elements with sides of 2b* are 

used because of their simplicity. 

(1) Vertical Compliance: Using the relaxed conditions 

described above, the compatibility conditions for the vertical dis -

placement, under the constraint of rigid body translation, are 

x on A, (4-2. 11) 

with u1 ~) and u 2 {~) unrestricted. By ignoring the tangential 

stresses, equation (4-2. 9) uncouples, and the set of algebraic equa

tions for the normal loads {P3,:<). are 
J 

1 

1 

1 

= 

¢33 (kb,:' ,~1-~2) 

c/>33 (kb>:,, 0) 

(4-2. 12) 
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Since the influence coefficients, <j,33 , are calculated for the 

dimensionless frequency, wb*f/3s, the dimensionless frequency, a 0, 

based on the characteristic length of the foundation, b, will actually 

be a factor of b/b•:< higher. Using the numerical solution for the 

unknowns, (P3* ). / f-Lb*L::.v, the dimensionless vertical compliance, 
J 

Cvv(a0 ), can be defined by 

= = 

N 
(P/). 

-1 

I: J 
f-Lb>!<L::. 

j=l V 

(4-2.13) 

where Q 3 eiwt is the vertical load required to move the rigid founda

tion vertically with displacement, L::.veiwt. 

Theoretically, the compliance thus evaluated will approach the 

exact value as the number of square elements used is increased. 

This trend is best illustrated by Figure 4-2. 2, in which the results 

obtained for a square foundation by using 1, 4, 16 and 64 elements 

are plotted versus a 0 , the dimensionless frequency. The Pais son 

ratio of the soil is assumed to be½, so the ratio of S wave to P wave 

velocity in the soil is ½· When just one element is used, the 

foundation surface is under a uniform load; therefore, it does not 

actually represent a rigid foundation. This solution was originally 

(Al 62) 
presented by Thomson and Kobori. If the number of elements 

is increased to four, the stress distribution is still uniform because 

all four elements must be identical for symmetric loading. But the 

foundation deflection, L::.v, is now pre scribed at the points, 

( ± ~, ± ~ ), rather than at the center; hence, L::.v is equivalent to 
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Effect of the number of subregions on the 
vertical compliance for a rigid square 
foundation (\! = ½ ). 
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an average of all displacements under the uniform load. When 16 

or 64 elements are used, the stress distribution under the founda

tion is no longer uniform (the approximate static solution is shown 

in Figure 4-2. 3; since the stress distribution is symmetrical about 

the Xi_-axis and the x 2 -axis, only the first quadrant of the stresses 

is shown in the figure). The loading at the corners and at the 

edges is higher than at the areas near the center of the foundation 

as is espected because of stress concentrations. Though the stress 

distribution of the two cases shown are quite different, the values of 

the compliances are remarkably close, indicating that the com

pliance is not as sensitive as the stress distribution is to the num

ber of elements used. 

(2) Horizontal Compliance: A similar set up can be made for 

horizontal excitations. First of all, the displacement conditions for 

the rigid body motion in the x1 direction are 

x on A, (4-2. 14) 

with u
2

{~) and U:3(~) unrestricted. Hence, the matrix equation for 

the unknown tangential loads, (P/')., is 
J 

1 

1 

1 

= 

¢11 (kb>:~~1-~N) 

¢11 {kb,:~33-~N) 

(P/)1 

(P/)z 

(4-2. 15) 
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Figure 4-2. 3 Approximate stress distribution under the first 
quadrant of a square foundation for vertical 
loading. 
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The numerical solution of (P/)/f-lb::,'<,6_1\ can now be superimposed to 

yield Chh (a0 ) in the x 1 direction, 
l 

f.lb.6H 
l 

= 

N -l 

( b~'<) L 
j= 1 

where Q1 eiwt is the total horizontal force required to cause a 

foundation deflection of .6Hi eiwt. The horizontal compliance in the 

x 2 direction can be obtained by following the same procedure. 

For a rectangular foundation, the horizontal compliance can 

be calculated readily by using square elements. Results for the 

cases in which the ratio of the sides c/b are equal to ½, 1, and 2 

are plotted in Figure 4-2. 4 versus a 0 • In these cases, the side 

b was chosen to be the characteristic dimension of the rectangular 

foundation, and the surface area depends only on the ratio c/b. As 

shown by Figure 4-2. 4, Chh (a0 ) is largest for c/b = ½ because the 
l 

area, A = ½b2 , is the smallest of the three cases studied. When the 

area, hence, the resistance to the load Q1 , is smaller, the deflec -

tion, .6Hi, and also Chhi (a0 ) are larger. Therefore, the force, Ql' 

and the displacement, .6.I\, are related through the size of the 

foundation area. 

Since the surface area, A, when c /b = 2, is 2b2 , which is four 

times larger than the case where c/b = ½, one might expect that the 

ratio of their compliances should be 4. This is not true, however, 

because the resistance of a rectangular foundation when c/b # 1 is 

dependent on the direction in which the load is applied. Hence, when 
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Figure 4-2. 4 Horizontal compliance for rigid rectangular 
foundations (v = ½ ). 
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c /b = ½, the force is applied parallel to the direction of the "long 

side" b; while when c /b = 2, the force is applied parallel to the 

direction of the "short side 11 b. For the latter case, b is less than 

c. The resistance is thus greater in the direction parallel to the 

short side. 

An analogous analysis was made for the rectangular foundation 

subjected to vertical excitation. The cases with c/b = ¼, ½, and 1 

are plotted versus a 0 in Figure 4-2. 5. Since the rectangular founda

tion is synunetric about its center, the compliance for the case 

where c/b = ¼ would be just 16 times that for the case where c/b = 

4. Note: for the two approximate solutions above, the element size 

was chosen such that b ,:, = b/ 8. 

(3) Rocking Compliance: Consider next the rocking character -
. 

istics of a rigid rectangular foundation. The boundary conditions 

must now satisfy rigid body rotation. For rocking about the x 2 -

axis, the relaxed displacement conditions are 

x on A, (4-2. 1 7) 

with l½_ ~) and u 2 (~) unrestricted. x~ and ¢ in equation (4-2. 17) are 

the center of moment of the area A and the angle of rotation about 

the x
2

-axis, respectively. 

One can define the dimensionless distance, d_,:, = (x. -~)/b, as 
l l 

the moment arm measured from x~ perpendicular to the x 2 -axis. 

Then the matrix equation for the normal loads, ignoring the tan

gential contribution, is, 
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Figure 4-2. 5 Vertical compliance for rigid rectangular . 
foundations (v = ½ ). 
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d* 
J, 

¢ 33 (kb*, _Q) ¢33(kb*,5-~ ¢33 (kb*,-5.-~N) (P/)1 1 

d* ¢33 (kb*~-~N) 
,t, 

¢33 (kb*,32-5) ¢ 33 (kb*, 0) (P3"' k 2 

b</> 
1 

= 
µb* 

d* <p33 (kb*,~N-5_) </>33 (kb*,xN-?Sa) ··· 'f>33 (kb>:,, 0) (P/)N N ~ ~ 

(4-2. 18) 

Comparing (4-2. 18) with (4-2. 12), the two matrices are iden

tical. The only difference between these two quantities is in the 

displacement compatibility conditions. For vertical excitation, 1.1:3 

is constant over the foundation surface; while for rocking excitation, 

~ varies linearly over the surface. 

To superimpose the numerical results for Cmm(a0 ), the 

dimensionless moment is obtained by summing the dimensionless 

forces, (P~l<)./µbb>!<<p, after having multiplied by the moment arm, 
J 

f [~](~ ... )d. . b2 b -,- J J=l µ 

-1 

= µb3 </> 
M (4-2.19) 

As indicated by (4-2. 18) and (4-2. 19), Cmm(a0 ) is sensitive to the 

moment arm, d.b; therefore, the contribution from the outer edges 
1 

is more prominent than that of the inner areas. 

Numerical results for a rectangular foundation are shown in 

Figure 4-2. 6. The rocking compliance about the x 2 -axis, for 

ratios c/b = ½, 1, and 2, are plotted versus the dimensionless fre

quency, a 0 • The rocking compliance is shown to be directional if 
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the foundation is not circular; the difference is greater in different 

directions if the foundation shape is elongated, and the resistance is 

related to the moment of inertia about the axis. Comparing the 

cases where c/b = ½ and 2 in Figure 4-2. 6, the former has an area 

4 times less than that of the latter, but the rocking of the former 

is with respect to the shorter axis. By normalizing both cases to 

the same area, the compliance for the rectangular foundation with 

c/b = 2 is 50% higher than when c/b = ½; hence, less resistance is 

encountered due to the smaller moment arms. 

(4) Torsional Compliance: Similar to the rocking motion, the 

torsional excitation causes the horizontal displacements to vary 

linearly with respect to the center of torsional moment. 

An example is shown in Figure 4-2. 7 for a rectangular 

foundation with the ratio of its sides, c /b, equal to ½ and 1. The 

relaxed boundary conditions used here are perhaps over -simplified 

because the transverse horizontal displacement caused by an applied 

load is neglected. These assumptions can be justified in a crude 

way because the transverse displacement is usually of an order of 

magnitude less than the longitudinal component of the horizontal 

displacement. As shown by Figure 4-2. 7, the torsional resistance 

is greater for the elongated foundations if the area is held constant 

during the comparison because the moment depends on the leverage 

of the loads. 
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--------- c I b = I /2 2b -2c -----c/b= I 

---c/b=2 

-

2 3 
a0 = wbl/3s 

Figure 4-2. 6 Rocking compliance for rigid rectangular 
foundations (v = ½ ). 
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Figure 4-2 . 7 Torsional compliance for rigid rectangular 
foundations (v = l). 
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The Effect of Foundation Shape 

The results of Section [3-5] indicated that fine details of the 

foundation do not affect the compliances appreciably at a low fre

quency; therefore, a circular foundation may be approximated by 

using square elements as well. In Table 4-2. 1, the approximate 

vertical compliances for a circular disc foundation, obtained by 

using 52 square elements, is compared with the exact solution 

(Al29) 
[Luco and Westmann ]. Both of the above analyses have used 

the relaxed boundary conditions of equation (4-2. 11) for vertical 

excitation. Besides the shape effect, Table 4-2. 1 also demonstrates 

the accuracy of the numerical method; up to a 0 = 2, the error for 

the modulus of the compliance is still less than 5%. Since the 

important frequencies of most structures are well represented by 

the frequency band O :c;; a 0 :c;; 2, the error created by using this 

approximate approach will usually be negligible. 

Another type of foundation which may often occur m applica

tion is that with a hole. Likewise, ring type foundations are com

mon in Nuclear Power Plant structures. 

From studies of simply connected foundations, it is known 

that the stress is usually concentrated at the outer edges of the 

[ 1 d W .(Al30)] foundation Ve etsos an e1 . Therefore; the contribution 

of the forces on the inside part to the total compliance is not 

great, and the presence of a hole inside the foundation might not 

cause significant changes unless the length of the radiated waves in 

the half space is comparable to the foundation dimensions. 
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TABLE 4-2. 1 

VERTICAL COMPLIANCES 

Circular Foundation 
(Luco & Westmann) 

(0. 167 , 0.000 ) 

(0. 154 , -0.0495) 

(0. 121 , -0.0846) 

(0. 0815, -0.0978) 

(0. 0488, -0.0922) 

(0. 0286, -0.0796) 

Approximate 
Cir cular Foundation 

(0. 166 , 0.000 ) 

(0. 154 , -0.0491) 

(0. 122 , -0.0856) 

(0. 0824, -0. 102 ) 

(0. 0495, -0. 0967) 

(0.0291, -0. 0888) 
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In Figure 4-2. 8, a (2b x 2b) square foundation .with a (2d x 2d) 

square hole is shown. The ratios of d/b equal to 0. 75, 0. 50, and 

0 were studied. The case shown with d/b = 0 is identical to the 

example presented in Figure 4-2. 2 using 64 elements. Comparing 

the results for d/b = 0 and 0. 50, a large deviation does not occur 

until a 0 is equal to 2 for the real part and 1 for the imaginary 

part. This indicates that the compliances remain practically the 

same even when 25% of the foundation area is removed. Compari

son of the cases d/b = 0 and 0. 75 shows a consistent 15 % difference 

even for the static solution, because more than one half of the area 

was removed. As indicated by Figure 4-2. 8, the large hole causes 

some oscillatory behavior at higher frequencies. This is caused by 

wave interferences inside the foundation. 

As illustrated by the above example~, the conclusion about the 

shape effect is again consistent with that of Section [ 3-5 J. The 

compliance functions are insensitive to the small changes in founda

tion shape, and the main resistance is contributed by the high 

stresses near the edges. Since the soil medium cannot resist 

infinite stresses, the load distribution under a rigid foundation is 

always finite; thus, the compliance estimated by mathematical 

models may actually be lower than indicated by the analysis. 
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Figure 4-2. 8 Vertical compliance for a rigid square 
foundation with an internal hole (\! = ½ ). 
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Calculation of the Driving Forces and Moments 

To complement the compliances (or impedances) already 

obtained, the driving forces, £/, as defined in Section [ 2-2] must 

be evaluated. To illustrate the rotational effects caused by a non

vertical incident wave, for example, a plane harmonic SH-wave is 

used. The normal of the plane wave is taken to lie in the x1 X:3-

plane at an angle 0 with the x 1 -axis (Figure 4-2. 1 ). The unit 

harmonic wave can be expressed as 

(4-2. 20) 

Superposed with the reflected wave from the half space boundary, 

the free field displacement at the surface is 

(4-2. 21) 

which is independent of x 2 • 

The "fixed" boundary conditions required for calculation of 

the driving force and torque for the incident plane SH-wave, are 

then 

(4-2. 22) 

with u,_(x1 , X:a, 0) and 0:3(xi, X:a, 0) unrestricted. The conditions imposed 

by equation (4-2. 22) will directly cancel out with the incident wave 

motion (4-2. 21) at the foundation surface, so that the displacement 

is zero as required by the 11fixed 1 1 condition. Substituting (4-2. 22) 
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into the left hand side of (4-2. 15), the approximate surface stress 

distribution can be obtained by inverting the matrix equation. 

An SH-wave with 8 .f. 90° causes a translational force in the 

¾-direction and a torque about the vertical axis ¾• If the 11bonded'' 

boundary conditions are used, all components of the displacement 

must be compatible. As a result, small rocking and vertical com

·ponents are also present. 

Figure 4-2. 9 shows the driving force and torque on a square 

:foundation with the incident wave angle 8 = 0°, 45 °, and 90°. For 

8 = 90°, which is the usual assumption made in soil-structure 

interaction [Jennings and Bielak (A
6 8 

)], the field displacements m 

equation (4-2. 21) become constant, 2, over the free surface; hence, 

no torsional motion is possible. The driving force for this case is 

equal to the impedance function multiplied by a factor of -2; there

fore, no scattering of waves occur if 8 = 90°. 

For angles other than vertical, the wave scattering becomes 

noticeable for the translation component when a 0 > 1. 0. For the 

torsional component, it becomes important at a 0 == 0. 5. Referring 

to Section [ 3-2 ], the wave scattering for embedded foundations is 

clearly more prominent. 

To illustrate the differences created by the geometrical shape 

of the foundation, consider a square foundation with a hole within 

it. The size of the hole is such that d/b = 0. 75 (Figure 4-2. 10). 

The difference shown between its driving force and that of the 

square foundation is again not great for low frequencies, similar 

to the behavior of the compliances (Figure 4-2. 8). The difference 
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Figure 4-2 . 9 Transverse driving force and driving torque 
for a rigid square foundation s ubjected to 
incident plane SH-waves. 
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Figure 4-2. 10 Transverse driving force and driving torque 
for a square foundation with a hole subjected 
to incident plane SH-waves. 
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in the induced torques for the two cases, however, is even smaller 

because the stresses are concentrated at the outer edges where the 

moment arm is the greatest. Therefore, the removal of the inner 

part has nearly no effect on the torsional characteristics of the 

foundation, for the torsional compliance function is analogous to the 

moment of inertia. 

The above examples were used to bring out some of the fun

damental phenomena of rigid foundation interaction with the soil. 

It is worthwhile to note, however, that the rigid foundation assump

tion may not be applicable for higher frequency waves unless its 

stiffness is much greater than that of the soil medium. If such is 

the case, the concept of using superposition of the impedance and 

driving forces must be modified; in general, the problem of soil

structure interaction must be analyzed as a whole without parti

tioning. An application of the above integral formulation, which can 

be extended to flexible foundation analyses, will be made in Chapter 

v. 
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[ 4-3] METHOD II - REPLACING THE CONTINUOUS INTEGRAL 
BY A DISC RE TE SUM 

Continuing in the search for an approximate solution of the 

integral equation (4-1. 3 ), the conventional method for solving inte -

gral equations will be used. The double integral on the right hand 

side of (4-1. 3) is first evaluated numerically with respect to its 

unknown integrand, G ! , so that the continuous integral can be 

approximated by a discrete sum 

M N 

ff G(w, ~-~o)!(xo)dSo ~ L L anamQ_[w,x1-(x1)m,Xz-(Xz}n]T[(x1)m, (Xz)n] 
A m=l n=l 

(4-3. 1) 

where ~ and °ri are the weighting constants for the numerical 

integration in the x1 and :xz directions, respectively. The value of 

these weighting constants usually depends on the type of integration 

rules used. For the trapezoidal rule with a step size of h, ct is 

equal to h except on the ends of the integration interval where it is 

equal to h/2. 

The procedure for degeneration of equation (4-3. 1) requires 

that the surface area, A, be suitable for simple cartesian integra

tion; otherwise, the discrete sum may be difficult to define. How

ever, if the foundation area, A, is irregular, it can again be broken 

into smaller elements as in Section (4-2) before the numerical 

integration is applied. Therefore, the basic approach of Method I 

and II is the same except for the approximation which follows. 

Using the approximation of (4-3. 1), the integral equation 

(4-1. 3) can be degenerated into a set of simultaneous equations for 
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discrete values of the unknowns, '.!'_, by matching the displacement 

to the boundary conditions at the points where the numerical inte -

gration is sampled. The algebraic equation taken at the observation 

N M 

= L L °n O'm G [ w, (xi )i - (xi )m' (¾ )j - (¾ )n J '.!'.mn , 
n=l m=l 

(4-3. 2) 

where U• • is the displacement at the observation point and T is ~lJ ~mn 

the value of the traction at the source point. Equation (4-3. 2) is 

similar to the formulation proposed by Elorduy et al. (Alb 3 ) except 

for the weighting factor, O'; the ref ore, the problem with singularity 

of the Green I s function matrix G, when (xi )i = (xi )m and (¾ )j = (~ )n, 

remains. 

In the present approach, the integrable singularity will be 

accounted for by exact integration over a small area surrounding the 

observation point. This approximation is analogous to the method 

by which Banaugh and Goldsmith ( 196 3) handled the logarithmic 

singularity for a single integral. We first divide the surface area, 

A, into two parts: a small area, A .. , surrounding the observation 
iJ 

point, [(xi).,(~)-], and the complementary area, Ac = A -A... For 
l J lJ 

integration over the surface Ac, the Green's function is well behaved 

and the numerical integration rule of equation (4-3. 2) can be used 

effectively. For the surface area, 

integrated exactly to eliminate the 

A .. , the integrand GT can be 
iJ =~ 

singularity of G; the approach 

used in Method I will be applied here. By expanding T in a Taylor 

Series about the observation point and taking only the zeroth order 
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term, T .. (x .. ), the integral over A .. can be reduced to 
~lJ ~1J lJ 

b*' 4-~ (kb*, 0) T .. , where b* is the characteristic dimension of the µ ~1J 

area A ... 
lJ 

The dimension, b*, of A .. should be chosen so that it 
lJ 

is compatible with the numerical integration grid. For example, 

when µsing a square grid network with step size of h, the area A .. 
lJ 

should be chosen so that it is an (h x h) square, centered at the 

point [ (x1 ). , (~ ). J. 
1 J 

With the above modification, (4-3. 2) can be rewritten as 

N M 

u .. = L L O! O!m G.. T + a
1
.aJ_) 

2
1
~ ~ 1k (~2), o] T

1
.J. { 

~lJ n=l m=l n lJmn~mn t r l f (4-3 . 3) 

(ni,n) :/: (i,j) 

if the trapezoidal rule is used. The weighting factor a.a. for this 
1 J 

particular rule is ¼hnhm at the corners ½hnhm at the sides, and 

~hm at the interior of the grid network. The weights O! .O!. can 
1 J 

also be applied on the second term of the right hand side if the symmet

ric vertical or horizontal cases are considered, because the area A .. lJ 

is only ¼(hi X hj) at the corners and½ (hi X hj) on the sides. 

The , unknowns, T , can now be solved for by numerically 
~mn 

inverting the matrix equation (4-3. 3 ) . . The actual value of T at 

the corners and sides is , of course, infinite; but using this approxi

mate method, only finite values will be obtained. The numerical 

values of I can then be used for the determination of the imped

ance and the 11driving force 11 depending on the type of displacement 

compatibility impos e d. 
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Circular "Ring-Shaped" Foundations, Vertical Excitation 

Using Method II, the circular "ring-shaped 11 foundation can be 

analyzed by using the polar coordinate system, (r, e ). The ring

shaped foundation is also practical for many circular-cylindrically 

shaped structures such as liquid storage tanks, towers, etc., but an 

analytical solution for the dynamic problem is not yet available 

because of its complexity. Also, since the ring surface is multiply 

connected, triple integral equations will result for the mixed bound

ary value problem; therefore, the analytical solution is considera

bly more tedious than that of the circular disc foundation. 

We now apply Method II by taking advantage of the simplicity 

of the polar coordinates. Equation (4-1. 3) can be rewritten as 

= (4-3. 6) 

where r. and r 0 are the inner and outer radii of the ring, re spec -
1 

tively. The integral equation (4-3. 6) can then determine the trac-

tion, '.!'., according to the displacement compatibilities on the left 

hand side. For the special case with vertical excitation, the con

dition of symmetry about the center of the ring can simplify the 

calculations even further because uz and ur are independent of the 

angular coordinate, e, and u 0 is zero. In addition, if the relaxed 

boundary conditions are used, i.e., the horizontal component ur is 

ignored, equation (4-3 . 6) can be reduced to a single integral 
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equation for the vertical component, uz, 

r-
1 

(4-3. 7) 

where the distance, IE. -E_,:c ! , is V r 2 + (r*)2 - 2rr >:< cos 90 , by the 

cosine law. 

For the present analysis, only the axisymmetric Green's func

tion &33 is needed. From Love (1927), the static value for &33 is 

1 = f33 (0) 
fJ.r 

(4-3. 8) 

and for the harmonic point load ex citation [Ewing et al. (1957)], 

co 

g33 (w,r) f 
0 fJ.r 

(4-3. 9) 

The above expressions are much simpler than the one defined for 

the influence coefficient, ¢33 , in equation (4-2 . 7f); therefore, the 

numerical evaluation of (4-3. 9) is not difficult. 

To obtain a numerical solution of equation (4-3. 7), we shall 

approximate the integration over the independent variable r>:' by the 

trapezoidal rule 
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(r0 -r;) 
h l . h df where = (N _ 1 ) 1s t e step size use or numerical integration. 

The two-dimensional integral formula is hence reduced to one with 

one dimension by analyzing the foundation surface in discrete ring 

elements. 

Matching the boundary conditions for the displacements at 

the center point, rp_, of the ring, the discrete form of equation 

(4-3. 7) becomes 

N 

I: uz (r_e) = 
j=l 
j# 

Q'. 

J 

l 
T r-
~ 

JJ-

1 
h 

2Tr 

f 
0 

d9 0f(~: R) 

R 

d0 0 r>'.<dr>:<f33( t; R) 

µR 

d0of33 (t!- r.e ✓ 2(1 - cos 00 )) 

µ(rp_ ✓ 2(1 - cos 00 ) ) 

(4-3. 11) 

The double integral on the right 

hand side now represents the contribution from the small area 

surrounding the singularity at r.e = r j; the limits of the d0 0 integral 

h 
were chosen to be ± 2 /r.e so that this area is nearly a square 

except for a slight curvature. Also, if the step size, h, of the 

numerical integration is made small enough, the double integral 

over a slightly curved area can be performed in cartesian coordi

nates with only a small difference in value; and it is actually 
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The remaining part of the ring centered at 

r 1 can now be approximated by assuming that the integrand is inde

pendent of r*; this assurnption is an excellent one if the discrete 

rings are very thin, i.e., h is small. 
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Figure 4-3. la Approximate distribution of vertical stress 
under a rigid ring for N = 4, 13, or 49. 
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Vertical Stress Distribution under the Ring Foundation 

By numerically inverting the matrix equation (4-3. 9), the 

unknown stress, Tz, at the discrete locations, r., j = 1, 2, ... , N, can 
J 

readily be obtained. But for a ring foundation, the stress is infinite 

at both the inside and outside edges; therefore, the numerical 

approximation cannot equal the exact solution at the two 

edges. However, the stresses within the ring area can be esti

mated quite easily because they are usually quite regular. 

In Figure 4-3. la, the static stress distribution under a ring 

with an inner to outer radii ratio, r/ r 0 , of 0. 5 is presented. Since 

the stress distribution is sensitive to the step size, h, of the 

numerical integration procedure, the results obtained by using 4, 13, 

and 49 discrete points were plotted for comparison. As indicated by 

the dimensionless stresses, the results for the two cases using 

N = 13 and N = 49 are nearly identical for most of the area inside 

the foundation except for a small portion near the outer edges. 

However, using N = 4, the results become quite coarse and do not 

match well with the results obtained by using N = 49, which are 

approaching those of the exact solution. 

Although the exact stress distribution under the ring founda

tion cannot be approached asymptotically, the impedance of the 

rigid foundation, however, can approach the exact value quickly by 

using just a rough approximation. This fact was also indicated by 

the two-dimensional model in Section [ 3-5 J and by the square plate 

foundation in Section [ 4-2 ]. To illustrate the rate of convergence, 

the value of the static compliance was calculated for ring 
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foundations by using different grid sizes and was tabulated in 

Table 4-3. 1. The numerical examples where N = 3, 4, 7, 13, 25, and 

49 were chosen for rings with radii ratio of 0. 5 and 0. 90. As 

indicated by the tabulated values, the compliance obtained by using 

13 grid points is within 2 % of that obtained by using 49 grid points. 

This quick convergence is caused by the smoothing process during 

the double integration of the stress distribution over the foundation 

area . This is. an obvious advantage of the rigid foundation assump

tion. 
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TABLE 4-3. 1 

APPROXIMATE STATIC COMPLIANCES FOR A 
CIRCULAR RING FOUNDATION (v =.½) 

r. /r0 = o. 5 ri/ro = 0.9 
l 

CvviQJ % Error Cvv(..Ql % 

0. 1545 9. 5 o. 1927 

0. 1594 6. 1 0. 1958 

0. 1645 2.9 0. 1992 

0. 1671 1. 3 0.2011 

0. 1685 0.4 0.2020 

0. 1692 0.2025 

Error 

5. 1 

3.4 

1. 7 

0.7 

0.2 
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The Influence of the Hole in the Ring Foundation 

Recalling the effects caused by a square hole in the square 

foundation [Section [4-2]}, a similar analysis can be made for the 

circular ring. The size of the hole, in this case, can be varied by 

changing the ratio of inner to outer radii, ri/r0 • The basic phenomena 

are identical to those of the square foundation; the effect of the 

hole is not obvious until the ratio, r. /r0 , is such that more than 
l 

half of the area is removed. 

Since the resistance of the foundation is nearly the same for 

many different r/r0 ratios, the static compliances are tabulated 

in Table 4-3. 2 for comparison. Since the exact vertical static 

compliance of a circular disc is 0. 1667 for a Poisson ratio of ½ 

[Shah(AlZS)J, the values shown in Table 4-3. 2 are probably within 

1 % of the exact compliance of the ring foundation. Tabulated to the 

right of Cvv(0) are the ratios of the ring compliances to the com

pliance of the circular disc foundation; the trend of these ratios is 

that no noticeable differences occur until r/r 0 is greater than 0. 5. 

This is again evidence of the stress concentration occurring at the 

outer edge of the ring foundation. The stresses are so distributed 

that when half of the foundation surface is removed, i. e., r/ r 0 = 

0. 707, the compliance is only 7% higher than that of the circular 

disc. Therefore, the influence of the hole on the compliances is 

not significant until it is quite large. 

The accuracy of the numerical values given in Table 4-3. 2 

can be checked in another way because the axisymmetric vertical 
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TABLE 4-3. 2 

VERTICAL STA TIC COMPLIANCES FOR A RING 

~d ... !.SJ.. cvv(ring) Cvv(ring)/ Cvv(disc) 

o. 10 0. 1656 1. 00 

0.20 0. 16 59 1. 00 

0.30 0. 1664 1. 00 

0.40 0. 1674 1. 01 

0. 50 0. 1692 1. 02 

0 . 60 0. 1720 1. 04 

0.70 0. 1768 1. 07 

0 . 80 0. 1851 1. 12 

0.90 o. 2025 1. 22 

0.95 0.2223 1. 34 

0 . 99 0.2730 1. 65 
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vibration of a ring foundation corresponds directly to an electro

static problem in which the annular disc is electrified. The solu

tion of this electrostatic problem was obtained by using triple 

integral equations, some numerical results were presented by 

Symthe (1951) and Sneddon (1966 ). The difference between their re

sults and those presented in Table 4-3. 2 is less than one percent. 

Although the compliances are relatively insensitive to the 

width of the ring, the stress distribution under the ring, on the 

other hand, is quite different for all ratios of r. /r0 • Shown in 
1 

Figure 4-3. lb are the vertical dimensionless stress distributions 

under the ring foundations with ratios ri/r0 = 0. 30, 0. 60, and 0. 90. 

Other than the well known stress singularity at the inner and outer 

edges, the stresses within the ring are clearly higher for the case 

with r/r 0 = 0. 90 than the other two cases. This, perhaps, is 

accountable for the high load resistances of a thin ring. Note, 

however, that all of the above solutions are made within the 

framework of linear elasticity; therefore, the high stresses are a 

purely mathematical expression for stress concentration. In 

reality, these high stresses near the edges would cause soil failure; 

thus, the load resistance of a thin ring may be overestimated if 

the level of excitation is high enough for the soil to be in the 

inelastic range. 
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[ 4-4] FURTHER APPLICATIONS OF METHODS I AND II 

As illustrated by the examples in Sections [4-2] and [4-3], 

Methods I and II can be used to analyze the vibration of foundations 

with arbitrary shapes. The power of these integral formulations 

does not end there, however. They can be extended to analyze 

many other important problems concerning the dynamics of founda

tions which can be considered to be flat. For example, the flexible 

foundation can readily be analyzed so that local stresses and de

formations of the foundation as well as the superstructure can be 

estimated approximately. By knowing the location of large defor -

mations, it is then possible to provide adequate reinforcement. 

Another challenging problem is that of multi-structure inter

action. By employing Methods I or II, the interactions between a 

reasonable number of foundations can be investigated. From the 

results of Section [ 3-4 ], the physical phenomena of this multi

structure interaction problem change according to the arrangement 

of the structures. Sine e there are infinitely many combinations of 

interest, there is no general solution for this problem. By 

physical intuition, one can imagine the complexity of this 

problem, because one component of force excitation can result in 

six components of motion for all the structures in the area. For 

example, the translation of one structure can cause translations m 

three directions plus rocking and torsional motions for a nearby 

structure. Of course, the relative sizes of the structures are also 

important. 
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From the derivations above, reasonably complex soil-structure 

interaction problems can be solved along with good engineering 

judgment. Although the above methods are not capable of handling very 

deep foundations or foundations on piles, they serve as an improvement 

over the existing methods for certain types of foundations. 

An interesting comparison of the numerical results presented 

indicates that method I overestimates the exact value of the com

pliance while method II underestimates it. This trend is clearly 

shown in Figure 4-4. 1, where the static vertical compliance Cvv(O) 

for a square foundation calculated by the two methods is plotted 

versus N. For method I, N X N is the number of square subregions 

used to rep re sent the square foundation, while for method II, N x N 

is the number of grid points used for the numerical integration. 

From Figure 4-4. 1, method I appears to converge to the 

exact value faster than method II, because the integration procedure, 

by using influence functions, is of a higher order than the trape

zoidal rule. By using N = 25, the difference between the two 

numerical solutions is 4. 5%. This may imply that the appro:ximate 

solutions are less than 3% from the exact value. Applying the 

Romberg extrapolation, however, a fair approximation can be ob

tained by extrapolating and averaging the results given by the lower 

order approximations. Another modification that may also improve 

the numerical results is to use subregions of different sizes . This 

allows the areas with high stress concentrations to be covered by 

a denser mesh of smaller elementary areas. 
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To interpret physically the converging trends shown in Figure 

4-4. 1, consider the following explanations: 

Method I: The observation points for this method were placed 

at the center of the rectangular subregions, hence, the displacement 

compatibilities are matched at points within the rigid foundation 

rather than on the outside edges. Therefore, the remaining edges 

of the approximate rigid foundation are 11 softer" so that the force 

required to displace it one unit is less than that of a totally rigid 

foundation. As a result, the compliance, which is inversely pro

portional to the total force, becomes an upper bound to the exact 

value. 

Method II: The observation points for this method are sampled 

at the nodes of the grid network. Some of these nodes are located 

at the edges of the rigid foundation. Theoretically, the stresses 

are infinite at the sharp edges of the rigid foundation, but finite 

stresses were obtained numerically due to the approximate nature 

of the formulation. Nevertheless, the stresses at the edges are 

far higher than those at the interior nodes, and they contribute 

heavily to the total force. For this particular case, the weighting 

factors, a, of the trapezoidal rule overestimate the total force, 

which in turn underestimates the compliances. 

Thus, these two methods appear to yield upper and lower bounds 

to the exact value; this characteristic can be used effectively in many 

situations. Comparing these two appraches, method I allows a 

faster rate of convergence, but method II is somewhat more con

venient to apply. The author feels that the former is superior for 



-170-

a detailed analysis of a single foundation, while the latter can be 

used more effectively for studies of interaction between many 

foundations. Of course, either method can be used to obtain results 

of acceptable accuracy. 
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CHAPTER V - AN EXPERIMENTAL OBSERVATION 
OF SOIL-STRUCTURE INTERACTION 

[5-1] DEFORMATION OF A FLEXIBLE FOUNDATION 

Several facets of soil-structure interaction have been inves -

tigated in previous chapters by using idealized two-dimensional or 

three-dimensional theoretical models. To simplify the realistic 

problem to a mathematically manageable one, numerous details of 

the prototype had to be sacrificed, because even the most sophisti

cated mathematical solutions cannot represent the true behavior 

of soil-structure interaction. In this chapter, some experimental/ 

observations will be discussed to complement the theoretical obser

vations made in previous chapters so that a better under standing 

of the problem will be possible. 

Since 1966, numerous experiments have been performed on 

the Robert A. Millikan Memorial Library at the California Institute 

of Technology by the personnel of the Earthquake Engineering 

Research Laboratory. As a result, the building characteristics, 

such as the mode shapes and mode frequencies, are well documented 

[e.g., Kuroiwa (A20), Trifunac (1972)]. Recently, an experiment 

designed to study the soil-structure interaction and the resulting 

wave propagation in the nearby soil was performed on the nine-story 

library by Luco et al. (1975). The vibration induced into the soil 

during the test was measured over a radius of several miles around the 

library, consistent with observations made by Jennings (1970), who 
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had concluded that a building excited at one of its resonant fre

quencies could become a very efficient wave generator. 

In the analysis which follows, simple wave propagation 

theories discussed in previous chapters will be used in an attempt 

to correlate the experimental data with theoretical calculations. 

These data, presented by Luco et al. (1975 ), have been sampled at 

50 locations in the basement of the library and also at 100 locations 

outside the library (Figures 5-1. l, 5-1. 2, and 5-1. 3). 

We begin by examining the foundation plan of the Millikan 

Library as shown in Figure 5-1. 4. Its dimensions are'. 69 feet m 

the N-S direction, 75 feet in the E-W direction, and approximately 

23 feet into the ground. The supporting system of the library con

sists of a central pad 32 feet wide and 4 feet deep which runs in 

the E- W direction connecting the two 12-inch thick shear walls on 

the east and west ends of the building. These shear walls provide 

the lateral strength to the building for the N-S deformations. The 

central pad also supports the smaller 12-inch thick reinforced 

concrete walls of the central core, which serve as an elevator 

shaft as well as strengthening the building for the E-W deforma

tions. The vertical columns on the north and south ends of the 

building are supported on two independent beams, each 10 feet wide 

and 2 feet deep (Figure 5-1. 4). 

From the above brief description of the foundation plan, one 

can see that the foundation system of the Millikan Library is 

flexible and can be deformed by the forces exerted on it by the 

superstructure. Of course, this deformation of the foundation slabs 
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depends on the relative movement of the structural members above 

it. For instance, the deformation pattern in the b_asement floor is 

not even similar for the E-W and N-S vibrations (Figures 5-1. 1 

and 5-1. 2 ), indicating significant differences between the lateral 

stiffness provided by the shear walls (N-S) and by the central core 

(E-W). The investigation carried out by Foutch et al. (1975) also 

emphasized some of these characteristics. When the library 

building was excited at its fundamental mode in the N -S direction, 

the stiff shear walls on the east and west ends of the building 

caused the entire structure to translate and rotate in a way similar 

to that of a rigid body (see the basement deformation patterns 

illustrated in Figure 5-1. 2 ). Though the motion of the foundation 

is quite uniform, the large shear walls and the central core walls 

cause the underlying foundation beams to deform like a beam on 

a soft foundation, as indicated by the type of curvatures that 

can be seen in this figure. For the E-W shaking, however, the 

central core walls, rather than the outside shear walls, are pro

viding the main resistance to lateral motions. Hence, this results 

in a twist in the center of the foundation where the core wall 

is jointed to the central foundation slab (Figure 5-1. 4). As 

shown by Figure 5-1. 3, the basement floor plane is so distorted 

that the rigid foundation assumption may become questionable. 

From the deformation patterns shown in Figures 5-1. 1 and 

5-1. 2, it appears that a flexible foundation may experience larger 

local deformations than a rigid foundation. Therefore, the non -

linear response or failure of the soil underneath the foundation, 
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or the nonlinear response of the superstructure, becomes more 

likely during high level excitations. 

By using the displacement data of the basement floor pre

sented in Figures 5-1.1 and 5-1. 2, the approximate stress distri

bution impressed on the soil can be estimated by using the integral 

formulation derived in Section [ 4-2 ], because this method does not 

require the foundation to be rigid. However, one of the more 

serious restrictions is that the foundation model be flat. In the 

particular case of the library, however, the embedment to width 

ratio, h/b, is approx imately 23 feet/75 feet; hence, in view of the 

results of Section [3-2], there may be some justification in making 

the flat foundation assumption. Also, because the excitation level of 

the test was low [ Luco et al. (1975 )], the linear theory can be 

used effectively here. 

For the present analysis, the measured displacements will be 

imposed as the displacement compatibility conditions for the mixed 

boundary value problem. The various dimensionless parameters 

used will be based on the actual value of the structural system. 

The values of the dimensionless frequency, a 0 , for example, are 

d etermined as in Table 5-1. 1. The values calculated are approxi

mately equal to 0. 2, which is quite a low value for the dimension

less frequency a 0 • Judging from the results presented in Chapter 

IV, the values of the compliances at such low frequencies are 

nearly equal to those for the static solution. Because of this, the 

simplified calculations of the fallow ing analysis will be made by 

using the static assumption. 
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Shown in Figure 5-1. 5 is a quantization of the basement 

floor plan using 50 rectangular elements. Admittedly, this may be 

rather crude, but further refinements are beyond the scope of this 

thesis, which is being focused on the first order effects. This 

particular arrangement was chosen so that the experimentally 

measured points (indicated by asterisks) are as close to the centers 

of the elements as possible. Also, to emphasize the loading of 

some of the heavier structural members, different sizes of elements 

were taken to model the stress distribution more closely. 

This discrete flat foundation model shown in Figure 5-1. 5 has 

been employed to obtain the resulting stresses by using the integral 

formulation presented in Section [ 4-2]. The results obtained for 

the N-S vibration and normalized to the highest value are tabulated 

in Table 5-1. 2 under the heading 11flexible founda tion. 11 The 

stresses for the E-W vibration are shown in Table 5-1. 3. The 

numbering system of the elements used in these tables is defined 

in Figure 5-1. 5. For both Tables 5-1. 2 and 5-1. 3, parts (a) and 

(b) display the vertical and the horizontal stresses, respectively. 

The stress distributions tabulated in these tables show that 

the larger stresses in the soil usually occur under the heavier 

structural members, such as the shear walls and the central core, 

indicating that the largest soil deforma ti.ons caused by the lateral 

and rocking motions of the building are underneath these members. 

Therefore, the flexible foundation, unlike the rigid foundation, may 

concentrate the loading on certain localized regions of the founda

tion. 
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TABLE 5-1. 2(a) 

NOR TH -SOUTH VIBRATION 
NORMALIZED VERTICAL STRESSES 

Flexible Rigid Flexible 
Foundation Foundation Element Foundation 

0.871 0.607 26 -0.001 

0.370 0.445 27 0.051 

0.286 0.441 28 -0.185 

0.212 0.424 29 -0.095 

0.251 0.441 30 -0. 120 

0.596 0.445 31 -0.273 

1. 000 0.612 32 -0. 139 

0. 500 0.284 33 -0. 100 

o. 097 0. 143 34 -0.234 

0. 021 o. 124 35 -0. 503 

0.047 o. 125 36 -0 . 119 

0.019 o. 124 37 -0. 107 

o. 114 0. 142 38 -0.091 

o. 151 0.290 39 -0.047 

0. 133 0. 147 40 -0. 115 

0.045 0.072 41 -0.427 

0.372 0.056 42 -0.827 

0.343 0.057 43 -0.330 

o. 174 0.056 44 -0. 145 

0.095 0.071 45 -0. 190 

0.229 0. 148 46 -0.262 

o. 060 -0.000 47 -0.400 

0.007 -0.000 48 -0.917 

-0. 094 -0.000 49 0. 060 

0.029 -0.000 50 -0.007 

Rigid 
Foundation 

-0.000 

-0.000 

-0. 147 

-0. 072 

-0.056 

-0.057 

-0.056 

-0.071 

-0. 148 

-0.284 

- 0. 143 

-0. 124 

-0. 125 

-0. 124 

-0. 142 

-0.290 

-0. 6 07 

-0.445 

-0.441 

-0 . 424 

-0.441 

-0.445 

-0.612 

0.000 

0.000 



-183-

TABLE 5-1. 2(b) 

NORTH-SOUTH VIBRATION 
NORMALIZED HORIZONTAL STRESSES (N-S COMPONENT) 

Flexible Rigid Flexible Rigid 
Element Foundation Foundation Element Foundation Foundation 

1 0.914 0.860 26 o. 110 0.061 

2 0.487 0.701 27 0. 116 o. 194 

3 0.410 0.615 28 0.283 0.222 

4 0.404 0.617 29 0.085 0.021 

5 0.323 0.615 30 o. 136 0.023 

6 o. 513 0.702 31 0.229 0.051 

7 0.962 0.867 32 -0.028 0.024 

8 o. 175 0.318 33 -0.005 0.022 

9 -0.015 0. 125 34 0.270 0.253 

10 -0.022 0. 124 35 0.358 0.318 

11 0.089 0. 104 36 0. 100 0. 125 

12 -0.074 0. 125 37 o. 164 o. 124 

13 0. 11 7 o. 126 38 0. 158 0. 104 

14 0.097 o. 328 39 0.047 o. 125 

15 0.504 0.222 40 0. 155 0. 126 

16 0.245 0.021 41 0.428 0.328 

17 0.590 0.024 42 1. 000 0.860 

18 -0. 106 0.051 43 0.676 0.701 

19 0.282 0.024 44 0.498 o. 615 

20 -0.059 0.022 45 0.431 o. 617 

21 0.429 0.253 46 0. 391 0.615 

22 0.258 o. 1 78 47 0.409 0.702 

23 0. 14 7 0.060 48 0.921 0.867 

24 0.296 0.076 49 0.509 0. 397 

25 0.209 0.076 50 0. 888 0.437 
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TABLE 5-1. 3(a) 

EAST-WEST VIBRATION 
NORMALIZED VERTICAL STRESSES 

Flexible Rigid Flexible 
Foundation Foundation Element Foundation 

-0.098 -0.360 26 0. 119 

-0.050 -0. 155 27 0. 140 

-0.082 -0.072 28 0. 113 

0.022 0.000 29 -0. 03 7 

0.074 0.073 30 -0.472 

o. 109 o. 157 31 0.057 

0.201 0.363 32 0.399 

-0 . 051 -0.251 33 0.084 

-0.005 -0.083 34 o. 161 

-0.019 -0.034 35 -0. 041 

-0.020 0.000 36 -0.031 

-0.015 0.034 37 -0. 003 

0. 060 0.085 38 0.027 

o. 184 0.259 39 0. 015 

0.073 -0. 191 40 0. 050 

-0.077 -0.077 41 o. 133 

-0.514 -0.030 42 -0. 107 

0.008 0.000 43 -0.025 

0.423 0.031 44 -0.055 

0.099 0.079 45 0. 03 5 

0. 174 0.222 46 -0.055 

0.079 -0. 132 47 0. 140 

-0. 061 -0. 063 48 0.278 

-0.421 -0.028 49 -1. 000 

0.466 0.028 50 0.256 

Rigid 
Foundation 

0.065 

o. 145 

-0. 191 

-0.077 

-0.030 

0.000 

0.031 

0.079 

0.222 

-0.251 

-0.083 

0.034 

0.000 

o. 034 

0.085 

0.259 

-0.360 

-0. 155 

-0.072 

0.000 

0. 073 

0. 157 

0.363 

-0.309 

0.332 
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TABLE 5-1. 3(b) 

EAST-WEST VIBRATION 
NORMALIZED HORIZONTAL STRESSES (E-W COMPONENT) 

Flexible Rigid Flexible Rigid 
Element Foundation Foundation Element Foundation Foundation 

1 0.781 0.786 26 0. 054 0.097 

2 0.457 0.332 27 -0 . 002 0.201 

3 0.411 0.220 28 o. 120 0.395 

4 0 . 460 0.277 29 0.071 0. 109 

5 0.411 0 . 219 30 -0. 104 0.067 

6 0.392 0.328 31 0.246 0.093 

7 0.780 0.799 32 -0 . 032 0.068 

8 0.370 0 . 561 33 o. 096 0. 117 

9 0.290 0 . 147 34 0.297 0.491 

10 -0. 02 5 0.078 35 0.410 0. 561 

11 o. 104 0.054 36 0. 170 0. 147 

12 0. 132 0 . 078 37 0.083 0.078 

13 o. 133 0. 146 38 0.093 0 . 054 

14 0.404 0.567 39 o. 175 0. 079 

15 0. 187 0.395 40 0. 089 0. 146 

16 0.089 o. 109 41 0.454 0.567 

17 -0.296 0.067 42 0.687 0.786 

18 0.629 0.093 43 0.396 0. 332 

19 -0. 153 0. 068 44 0.333 0.220 

20 0 . 0968 o. 117 45 0.420 0.277 

21 0.307 0.063 46 0.289 0.219 

22 0. 126 0.200 47 0.408 0.328 

23 0.043 0.092 48 0 . 841 0.799 

24 -o. 211 0.201 49 0.989 0.589 

25 -0.26 4 0.063 50 1.000 0. 634 
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To estimate the degree by which the calculated stresses 

exceed those of a rigid foundation having the same shape, a study 

was made of an equivalent rigid foundation. Since the displacement 

pattern under the flexible foundation is different from that which 

would be caused by a rigid foundation, an equivalent horizontal 

displacement, .6H, and an equivalent rocking angle, ¢, were defined 

for the rigid foundation so that the horizontal load and rocking 

moment induced would be equal to those calculated for the flexible 

foundation. It was found that the horizontal displacement is appro -

N 

mately the average of the displacements, i. e., l_ L 
N . 1 J= 

while the equivalent angle of rotation is subjected to a "moment" 

N 

L 
j= 1 

type of normalization: 
N 

L 
j= 1 

arm of the jth element. 

d.uj 
J 

d.2 
J 

, where d. is the moment 
J 

The stress distribution of the equivalent rigid foundation is 

also tabulated in Tables 5-1. 2 and 5-1. 3. It can be seen to be 

more uniform than that of the flexible foundation, but, as would be 

expected, the higher stresses are concentrated at the outside 

portions of the plan. 

Comparing these two models, one can easily distinguish their 

principal areas of load resistance, especially for the E-W motions. 

As indicated earlier, the reinforcements in the E-W direction are 
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partly provided by the central elevator core, e.g., elements # 17, 

18, 19, 30, 31, and 32. Thus, a significant part of the rocking 

moment is counteracted by the reaction moments created by the 

vertical stresses on elements # 1 7, 19, 30, and 32. This is indicated 

by their higher stress levels when compared to the neighboring 

elements. 

The equivalent rigid foundation, on the other hand, makes no 

distinction for the locations of the load carrying members because 

it translates and rotates as a rigid plate. The load resisting 

reactions are mainly provided by the outer edges; the vertical 

stresses at the central core area are then more than an order of 

magnitude lower (Table 5-1. 3a). Hence, there is an obvious dif

ference in the emphasis on the support. 

The fundamental differences of these two foundation models 

may also be detected in the superstructure. For a rigid foundation, 

there is little relative deformation between the major structural 

members, such as the Millikan Library excited in the N-S direction . 

But for a flexible foundation, such as the Millikan Library excited 

in the E-W direction, the relative movement between the central 

core and the two large shear walls can result in larger deformations 

in the floor slabs on the higher levels [Foutch et al. (1975)]. 

Hence, in several aspects of design, a rigid foundation plan may be 

more desirable. 
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[5-2] RECORDED GROUND MOTIONS IN THE IMMEDIATE 
VICINITY OF THE MILLIKAN LIBRARY 

From the point of view of the overall soil deformation, the 

motion outside the library is of special interest. Detailed studies 

of the data recorded outside the Millikan Library can reveal 

whether the effect of embedment has important contributions to the 

"near field'' term or to what extent the body and surface waves 

contribute to the recorded motions. For distant measurements, of 

course, the library resembles a point source [Luco et al. (1975)], 

and the details of the foundation plan are not important. But the 

shape as well as the flexibility of the foundation plays a major 

role in the vibrations in the immediate vicinity of the building. It 

is therefore useful to analyze the "near field" data by using the 

displacement measurements made inside the library. 

The "near field" experimental data obtained from Luco et al. 

( 1975) covered an area extending 400 feet from the library in both 

the east and the west directions and 100 feet in the north and the 

south directions. Three components were available for each of the 

100 locations shown in Figure 5-1. 3, all of which are within the 

campus of the California Institute of Technology. 

The surrounding area of the Millikan Library cannot easily be 

considered as a simple elastic half space. For example, the 

recordings at stations 40-43 (Figure 5-1. 3) were made on pavement, 

while stations 33-38 and 69-74 (Figure 5-1. 3) were placed on the 

side of a fountain. Also, stations 1-10 and 91-100 were placed 

along the arcades of the surrounding buildings. Nevertheless, the 
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displacement pattern for the network of recorded motions in Figure 

5-1. 3 will be analyzed by using the same integral formulations as 

in Section [ 5-1 J and by neglecting the adverse effects that may be 

created by the nearby buildings. 

Since the approximate stresses under the library foundation 

have been calculated in the previous section, the model no longer 

represents a ''mixed boundary value problem. 11 By superimposing 

the known stresses, the displacement on the surface of the half 

space can be obtained. Doing so for the stations where the field 

measurements were taken, the theoretical results can be compared 

with the measurements as in Figure 5-2. 1 for the N-S vibration 

and in Figure 5-2. 2 for the E-W vibration. 

In these figures, x is defined to be positive in the east direc

tion, while positive y points in the north direction. Each of the 

figures consists of part a through i, displaying the vertical and 

horizontal components of the displacement at the longitude lines 

where y = 0, ±35, ±48, ±77, and ±100 feet. Included are the experi

mental points and theoretical curves for both the flexible (solid 

lines) and the equivalent rigid foundation (dotted lines). The nota

tion used is such that "FH" and "FV'' represent the horizontal and 

vertical motions for the "flexible" foundation, while "RH" and "RV" 

represent the horizontal and vertical motions for the equivalent 

"rigid II foundation. 

The amplitude of the displacements plotted on the vertical 

scales in Figures 5-2. 1 and 5-2. 2 were normalized to match the 

measurements inside the library at the basement so that a direct 



-190-

N-S VIBRATION 
(A) 

0.1 

0 

0 

0 

D. measured vertica I motion 
o measured horizontal motion 

FV 

y = 0 feet 

VERTICAL 

HORIZONTAL 

Figure 5-2. 1 (A) Ground displacements near the Millikan Library 
during its excitation in the N-S direction, y = 0. 
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6 measured vertical motion 
o measured horizonta I motion 

y = 35 feet 

VERTICAL 

QL_ __ u;r~ ____ L_ ____ :.:::::~~~==6---+X 
-100 0 100 

0 0 
0 

0 

o RH7 

... •··········I..········ 

0 

0 

HORIZONTAL 

0 

0 

OL._ __ _J_ ______ ___J_ ______ _L_ _____ _..x 
-100 0 100 

Figure 5-2. 1 (B) Ground displacements near the Millikan Library 
during its excitation in the N-S direction, y = 3 5 
feet. 
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N-S VIBRATION t:. measured vertical motion 
(C) o measured horizontal motion 

y = -35 feet 

U
3 -100 0 100 

Or-----.--,~~----.-------------===-------T'(-► x 

-I 

VERTICAL 

-2 

0 
0 

0 
2 

0 

0 

FH 
0 HORIZONTAL 

·······'C_ ... 
0 0 / RH 

/ 0 
0 

0 .... 
0 

-100 0 100 
X 

Figure 5 -2. 1 (C) Ground displacements near the Millikan Library 
during its excitation in the N-S direction, 
y = -35 feet. 
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N-S VIBRATION 6 measured vertical motion 
(D) 0 measured horizontal motion 

U3 6 LRV 6 
y =48feet 

········~· ···········~---. 
VERTICAL 0.5 6 

FV 

0 -50 0 50 X 

u2 LRH 
HORIZONTAL 0.5 ·· ··· ······· ························· 

0 0 0 0 
FH 

0 -50 0 50 
X 

(E) 

U3 
y = -48 feet 

-50 0 50 
0 X 

/ 
6 FV 

-0.5 
6 

VERTICAL 
------------------~--------

6 6 6 

u2 RV 
FH 

' HORIZONTAL 0.5 ········~o ..... .... 

0 RH 
0 

0 0 

0 -50 0 50 
X 

Figure 5 -2.. 1 (D) and (E) Ground displacements near the Millikan 
Library during its excitation in the N-S 
direction, y = 48 feet and y = -48 feet, 
respectively. 
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N-S VIBRATION l:;, measured vert ica I motion 
(F) 0 measured horizonta I mot ion 

U3 l:;, l:;, 
l:;, y = 77 feet 

l:;, 

0.25 ····· ... rRV 
FV 

0 
-100 -50 0 50 100 150 200 

X 

U2 
······ ······r..~.H 

0.25 
0 0 0 

FH 

0 -100 -50 0 50 100 150 200 
X 

(G) 

y=-77feet 
U3 -100 -50 0 50 100 150 200 

0 X 

-0.25 

u2 

0.25 

0L-----'-----_.J._ ___ L__ __ .J_ __ _.L_ __ _JL.__ __ ~x 
-100 -50 0 50 100 150 200 

Figure 5-2. 1 (F) and (G) Ground displacements near the Millikan 
Library during its excitation in the N-S 
direction, y = 77 feet and y = -77 feet, 
respectively. 
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6 measured vertical motion 
o measured horizontal motion 

y = 100 feet 

VERTICAL 

0 ..__ _________ ...__ _____ __. ______ ____._ __ X 

-100 0 100 200 

0.2 0 0 

r RH 
.. o ............ . . 

0 

HORIZONTAL 

0 0 

FH 0 

0 ...__ __ ......._ ______ ...__ _____ __. ______ ~.._ X 
100 200 -100 0 

(I) 
y = -100 feet 

0 U3 -100 0 100 200 X --
0.1 

FV 
VERTICAL 

0.2 

FH 

0.2 
HORIZONTAL 

0 

OL---__._ ______ .._ _____ _._ ______ _..__ __ x 
-100 0 100 200 

Figure 5-2 . l(H) and (I) Ground displacements near the Millikan 
Library during its excitation in the N-S 
direction, y = 100 feet and y = -100 feet, 
respectively. 



E-W VIBRATION 
(A) 

-I 

-196-

D. measured vertical motion 
o measured horizontal motion 

00 
0 

0 

FV 

y=Ofeet 

Figure 5-2. 2 (A) Ground displacements near the Millikan Library 
during its excitation in the E-W direction, y = 0. 
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(B) 
E-W VIBRATION l:,. measured vertical motion 

o measured horizonta I mot ion 

y = 35 feet 

3 

2 

O~-------"-----+----"---_.___ __ _.._~___,►X 
-100 -50 

-I 
· .. . '-·-· 

RV 

-2 

-3 

Figure 5-2 . 2(B) Ground displacements near the Millikan Library 
during its excitation in the E-W direction, 
y = 35 feet. 
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(C) 
E-W VIBRATION 6 measured vertical motion 

o measured horizontal motion 

y = -35 feet 

3 0 

0 
0 

0 
0 

0 

r-----~ 
2 I ' / FH \ 

I \ 
/:r.=-:-:--<------ \ 

/// .>·:.····· ··,·· ··· ···· ······ .. \, 
.,,,, 0 6_.· L.> \. "\_RH --.... ......._ 

- 0 ·· ... >RV - - - __ 

0 

0 
0 

150 

FV 
-I 

... 

-2 

-3 

Figure 5 - 2. 2(C) Ground displacements near the Millikan Library 
during its excitation in the E-W direction, 
y = -35 feet. 
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E-W VIBRATION 6 measured vertical motion 
o measured horiz.ontal motion 

y = 4 8 feet 
0 

0 
0 

✓----------------- ....... / o, 
FH , 

-50 
6 

.. ... 

U1, U3 
0 0 

--------------/ -Q_ 

/ FH ' 

0 .· . ... \_ 

.·· RH 
4 . .... . 

6 

\ 

'o 

X 
50 

6 

y = -48 feet 

' ' t) 

01---_._ ____ _,,...._--'+-______ ___._ _____ x 
50 

-0.5 FV 

.... .. 
6 

6 

Figure 5-2. 2(D) and (E) Ground displacements near the Millikan 
Library during its excitation in t h e 
E-W direction, y = 4 8 feet and y = -48 
feet, respectively. 
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E-W VIBRATION A measured vertical motion 
(F) o measured horizontal motion 

1.0 y = 77 feet 

0.5 

'0 __ ...n.. __ g __ 
--~~ a~~~ 

FH ---------------RV 0 0 
0 

RH 
01--__ _j_ __ __J'---~.+.------L-----'----_._--_.x 

-100 
F 

(G) 

1.0 y = - 77 feet 

0 O 0 

0.5 

,,,,,,,,,.---------___ ,, ~---
FH -- ........................... --

0 ---------
RH 0 

F V - ~ ~:.:._--6_ 50 100 150 
Ol--_ _l_ __ __J__~~~--1----'-----'----. x 

-100 
· ·· ······ ··· · · ·· · ·· A 

A A 

Figure 5 -2 . 2 (F) and (G) Ground displacements near the Millikan 
Library during its excitation in the 
E- W direction, y = 77 feet and y = -77 
feet, respectively. 
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E-W VIBRATION 6. measured vertical motion 
(H) 0 measured horizontal motion 

U1, U2 ,.,,---------- y = 100 feet 0.5 
_____ ,.,,, 

----------............................. --
FV ~---~--- 6.;:RV 

·• .. • .. t:. 

0 -100 100 150 
X 

(I) 

0.5 
✓.,,,,,.-------- ....... 

.,, ------------------ ..... 

O 0 

RH,FH~o o 
0 0 

y = -100 feet 

Figure 5-2. 2(H) and (I) Ground displacements near the Millikan 
Library during its excitation in the 
E-W direction, y= 100 feet and y= 
-100 feet, respectively. 
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comparison could be made. The N-S data were based on the N-S 

component of the measurement made at element # 18 in Figure 

5-1. 5 and those for E-W vibration were based on the E-W value 

at element #25. Also, because of the way in which the measuring 

stations are arranged in Figure 5-1. 3, e.g., some lines have more 

stations than others, the horizontal axes are labelled differently and, 

hence, are · not uniform in all figures. 

The comparison of the computed and the measured motions in 

these figures has indicated that the agreement for the vertical 

component of displacement is quite good, while the horizontal 

displacements show a difference of about two times in amplitude. 

An explanation for this deviation is that the experimental data for 

the deformation of the basement floor discussed in Section [ 5-1] 

have been measured at a depth of 14 feet below the ground surface, 

while most of the data outside the library have been measured on 

the ground surface. Since the building has a large rocking compo

nent during steady state excitation at the fundamental mode frequen

cy [Foutch et al. (1975)], the horizontal data recorded at the soil 

surface, which approximately coincides with the first floor, have an 

extra rotational term that should be added to the motion at the 

basement. If one assumes that the library rotates as a rigid body 

between the basement and the first floor, the two horizontal dis

placements should be related as 

u(first floor) """ u(basement) + h<p (5-2. 1) 

where ¢ is the rocking angle of the basement floor and h is the 
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difference in height between the two levels. Applying this simple 

correction to the computed E-W horizontal motions in Figures 

5-2 . 2, which amounts to an increase of approximately 75%, the 

measured and theoretical data are then in better agreement as 

indicated by the dashed lines in the plots. Obviously, a similar 

correction can be applied to the N-S horizontal displacement, but 

the necessity of a correction suggests that a more complete analy

sis including the embedment of the foundation may be necessary 

before the better theoretical fit of data is possible. 

The comparison. of the vertical data is encouraging, however, 

especially at larger distances. The good fit of the data away from 

the library indicates that the effect of embedment decreases rapidly 

with distance. The large displacement amplitude near the library 

may also be influenced by other unknown factors, because the 

setting of the library in the midst of the nearby buildings may 

affect the simple half space assumption in a complicated way. The 

presence of the other buildings can affect the deformation of the 

soil as measured at stations 1-10 and 91-100 shown in parts h and 

i of Figures 5-2. 1 and 5-2. 2. The horizontal displacements for 

this data set appears to be a factor of nearly two lower than the 

others. This might be caused by the arcades there. 

Recalling the assumptions made in the last section, this analy

sis is actually a static solution of the problem. The static assump

tion was made because the dimensionless frequency of the building 

vibration is low (about 0. 2) and the compliance at this frequency is 

near that of the static compliance. In this section, it has been 
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assumed that the "near field" motions can also be analyzed by a 

static solution, although, clearly, the "far field II motion, which is 

dominated by surface waves, cannot be assumed static. At the 

present time, the static solution provides an adequate model for 

deformation outside a vibrating building at low frequencies, which 

has special significances if the relative displacement of the building 

and the ground is important. A better dynamic analysis of the 

Millikan Library can clearly improve the correlation of the theore

tical and experimental data, but its effect is probably of second 

order to the complexity of the half space. 

The deformations caused by the actual flexible foundation and 

the equivalent rigid foundation were also compared. The differences 

between the two are significant only at locations nearest to the 

building. From the results shown in Figures 5-2. lb and 5-2. le for 

the N-S vibration, the vertical indentation on the soil caused by the 

two shear walls at x = ±38 feet is obvious, because the middle of 

the building is supported by small colunms. However, at y = ±48 

feet (parts d and e of the figures), the difference between the two 

cases has diminished. The results are practically identical at 

y = ± 100 feet, as shown in parts h and i of Figures 5-2. 1 and 

5-2 . 2. Note, in part h and i, the vertical component of the two 

cases differs by a small constant factor. This is due to the fact 

that the library was vibrating in the vertical direction as well. 

Although the equivalent rigid foundation matches the horizontal load 

and rocking moment to the flexible foundation, it did not include the 

small vertical vibrations. 
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In the light of the fair correlations between the simple 

theoretical computations and the experimental measurements shown 

in Figure 5-2. 1 and Figure 5-2. 2, it appears that it may be 

possible to apply the simple theory above to roughly determine the 

deformation in the vicinity of a vibrating building. Despite the 

simplification required for the above analysis, a general trend of 

the deformation can be determined. It appears, however, that the 

experimental data could be better matched by employing a founda

tion model which includes the effect of embedment, but this im

provement is presently beyond the scope of this effort. 
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CHAPTER VI - SUMMARY 

In this thesis, a class of problems in soil-structure inter

action has been investigated in the framework of linear theory of 

wave propagation. In some portions of this work, the emphasis has 

been directed towards the development of theoretical methods which 

can be applied to many simplified soil-structure interaction analy

ses in engineering applications. In other parts of this thesis, the 

thrust of the investigation has been focused on the physical phenom

ena which accompany the interaction process. Though the former 

may be more useful for applications in designs and analysis, the 

latter provides a good basic knowledge of the problem so that more 

difficult problems can be understood. 

From the results given in Section [3-5] and Chapter IV, it is 

clear that the theory of potentials, which has been applied frequent

ly in other disciplines, can be applied advantageously in soil-struc

ture interaction as well. The integral equation with a singular 

kernel, which results from the superposition of point sources on 

the foundation surface, can be approximately represented by a set 

of algebraic equations with the singular part handled by special 

methods. Two methods have been presented, and each has been 

shown to converge towards the ''exact solution" of the integral 

equation as the number of simultaneous equations increases; the 

rate of convergence has been shown to be fast enough to be prac

tical. Method I yields an upper bound to the 11 exact 11 compliance, 

while method II presents a lower bound; hence, a good approximate 

answer can be obtained by extrapolation and averaging. 
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Using this integral formulation, which is not limited to flat 

foundations only, many problems in linear wave propagation can be 

solved numerically. The advantage of this numerical method is 

that the shape of the foundation model can be quite arbitrary. This 

approach appears to be especially effective when the size of the 

soil medium is large compared to the foundation and the material 

properties are relatively uniform so that it can be considered as a 

homogeneous or layered half space. An additional feature of this 

integral - formulation is that flexible foundations may be analyzed 

without difficulties; the much needed analysis of multi-structure

soil interaction is also possible. The development of these numeri

cal methods has thus expanded our capability to apply the continuum 

approach to solve problems that cannot be solved analytically. 

The analyses made in the previous chapters dealt mainly with 

the structures placed on top of a homogeneous half space, but the 

method used can easily be extended to the analysis involving elastic 

or viscoelastic strata. As a general rule, however, the difficulty of 

the analysis increases as the details and sophistication of the model 

increase. Therefore, the optimal selection of an adequate analytical 

model must be made by using good engineering judgment and 

experience. 

From the experimental and theoretical observations given in 

this text, some conclusions can be made that might be helpful for 

further investigation of phenomena in soil-structure interaction. 

These can be summarized as follows: 
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{l) In Section [3-2], the characteristics of an isolated struc

ture placed on a homogeneous half space have been investigated. 

The interaction with the soil usually becomes important if the ratio 

of the elastic wave speed in the super structure and in the soil 

medium is increased, i.e., the structure is stiffer than the soil. 

Also, the mass of the entire structure plays an important role 

during interaction because a massive structure on soft soil can 

cause a large reduction in the fundamental "fixed base 11 resonant 

frequency. This might be one possible explanation for the fact that 

the measured resonant frequency is often lower than the theoreti

cally predicted one. The radiation damping of the soil medium may 

also be included as part of the measured modal damping when 

interpretations are made on the observed responses, hence, the 

actual damping in the superstructure may be overestimated. In 

many cases, the radiation damping for small foundations can be 

ignored; it increases, however, as the surface area of the foundation 

increases. Therefore, the energy dissipation by geometrical 

spreading of waves can become significant if the foundation is 

large and embedded into the soil. 

{2) The effects caused by incident waves on the response of 

the structure require special attention, especially for embedded 

foundations. Large rotational characteristics accompanying the 

translational motions can be induced by non-vertically incident waves 

for both the embedded and flat foundations. The rotational com

ponents are usually amplified, while the translational components are 

reduced as the wavelength of the incident wave increases. 
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(3) For the analysis of rigid foundations, the concept of 

superimposing the impedance and the driving forces is often used, 

and the characteristics of the incident wave motion are usually 

included in the latter. The "driving forces" induced by various 

types of seismic waves act as the complement to the impedance; 

both of these are essential for a complete analysis of the inter

action problem. The only exception is perhaps that of the flat 

foundation subjected to vertically incident waves; then, only the 

impedances are necessary. 

(4) As the complexity of the local geology and topography 

increase, the determination of both the impedances and the driving 

forces become more difficult. Here, the topographical effects on 

the incident waves, as well as the change in impedances due to 

reflection from layers, have to be accounted for. Shielding and 

focusing are now more likely to occur because of the constructive 

and destructive interferences of the incident and refracted waves. 

Although the shielding properties of the geological and topographical 

features may eventually be used advantageously in some future 

applications, the nature of seismic waves is still too unpredictable 

for practical use of these shielding phenomena. 

(5) Another possibly important characteristic for structures 

located in densely constructed areas is the interaction of many 

structures with the soil. A general conclusion which can be drawn 

from the simple analysis in Section [ 3 -4] is that lighter and 

smaller structures might be excited by more energy than that 

provided by the incident waves alone unless they are placed in the 
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shadow zone of the larger structures. From a physical point of 

view, the motion of the neighboring structures can be considered to 

represent wave sources which can be constructively combined with 

the incident waves to amplify the ground motion for a particular 

structure. The motion created by smaller structures usually can

not generate enough energy to disturb their larger neighbors, but 

the opposite is true for larger structures. 

The phenomena of multi-structure-soil interaction are analogous 

to those of ''spring-mass -dash pot" systems. The mass can repre

sent the structure, the spring can represent the interrelation through 

the soil, and the dash pots can approximately model the radiative 

damping. This analogy extends further to the phenomena of mode 

vibrations of the entire system; e.g., a certain arrangement of the 

structures can result in resonances which are not directly related 

to the properties of the structures but the spacing between them. 

These effects are, of course, most prominent when the spacings 

are small and the number of structures is large. For the two

dimensional cases investigated in this thesis, the radiated waves 

from each foundation decays as 1/Yd, where d is the distance from 

the foundation. A much faster decay is expected for a three

dimensional model; therefore, the interaction between typical struc -

tures will not be as strong as the two-dimensional case studied 

here. 

(6) Development of the mo st general analysis which includes 

all of the above mentioned phenomena quickly becomes difficult 

to handle and therefore some details must be sacrificed. It was 
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shown in Section [ 3-5] and Chapter IV, for example, that the effect 

of foundation shape is not important for the overall response of 

rigid foundations for intermediate or long incident waves. Using 

this result, the foundation of an arbitrary shape can be replaced 

by one of similar but simpler shape so that the analysis can be 

simplified, e.g., a rectangular foundation with a reasonably small 

hole can be replaced by a rectangular foundation without a hole. 

The above simplification is, of course, not adequate for the stress 

analysis of the structure or foundation, because the stress distri

bution is very sensitive to the details of the foundation shape. In 

addition, the foundation cannot always be considered as rigid as 

indicated by the data shown in Chapter V. In the case of a flexible 

foundation, the localized stresses and deformations usually exceed 

those of an equivalent rigid foundation. Considering the particular 

case of the Millikan Library, for example, the local stresses under 

the foundation can be as much as 2½ times those for the equivalent 

rigid foundation. Therefore, depending on the type of analysis which 

is made, the assumption of rigid foundation may not always be an 

acceptable one. 

This thesis has been motivated by a need to provide a review 

of the 11 state-of-the-art 11 in soil-structure interaction, as well as 

to present some new applications using potential theories and the 

method of separation of variables. The intent of the analyses has 

been to lean towards the basic phenomena, in hopes that this may 

expand our understanding of these problems. For more sophisticated 

analysis involving soil-structure interaction, in the case of the 
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deeply imbedded pile foundation, for example, the theory is still in 

its infancy. Thus, continual and conscientious effort will clearly be 

necessary before we can develop adequate methods which may 

become applicable to a broad class of applied engineering problems. 
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APPENDIX B 

In a three-dimensional elastic, homogeneous and isotropic 

medium, the governing equation for harmonic wave motion is 

where 11. and µ are the lame' constants and ~ = [ui, u_., u3 ] is the 

displacement in the [x1 , ~, X:3] direction, respectively. 

Using Fourier Transforms to obtain a solution for steady 

harmonic waves in a semi-infinite medium, the three components of 

the displacement, ~ and their Fourier Transforms, ~ are defined 

as: 

1 
2TT 

1 
2TT 

co co 

f j [u.1, ~, ~ J e i(sx1+1l~) ds dT] (B-2a) 
-CO -CO 

(B-2b) 

-co -oo 

Substituting equations (B-2b) into the Fourier Transform of 

~quation (B-1 ), the solutions for the half space with positive ~ 

have then the form, (Al 62 ) 

(B-3) 

h 2 _ P. 2 2 2; 2 2 _ P. 2 2 2; P. 2 d A B d w ere y 1 - ,-, s + a s - w a s , y2 - ,-, s + a s - w ,-, s , an , , an 

C are the arbitrary constants which have to be determined by the 

boundary conditions at the surface where ~ = 0. 



-235-

To match stress boundary conditions, the Fourier Transform 

of the stress components on the negative X:3-face can be expressed 

in terms u as: 

(B-4a) 

(B-4b) 

The matrix representation of B-4 is therefore 

. 2y1s (s2 + y;a2) s..n A ~ 
lb2 Ya Y2 

Tl3 

. 2yl 'f1 ill (]2 + Y22) 
B ~ (B-5) -fJ, 1-- = T23 h2 Yz Y2 

(2y;} + k 2) 
-Zig -2iT] C ~ 

h2 T33 

x3 =0 

. in which the vector of the right hand side of equation (B-5) contains 

the Fourier Transforms of the stress boundary conditions. The 

determination of unknowns A, B, and C will lead to the determina

tion of i and, hence, ~ by using equations (B-4) and (B-2a), 

respectively. 
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Uniformly Distributed Vertical Load over a Rectangular Area 

Consider the case of a uniformly distributed vertical load over 

a rectangular area. The boundary conditions representing the 

compressive stress in the x3 -direction are 

0 

-ro S: ~ S: o:, 

-b s: Xi s: b 
for 

-C S: ~ S: C 

otherwise 

Therefore, the right hand side of (B-5) becomes 

[ 0~ l 4T3 sing;b sin]c 
2rr sT] 

Applying Cramer 1 s Rule, the constants are 

4T3 sin gb sin ]c 
2 rrµ s T] F (s, T]) 

where F(s,T]) = [2(g 2 +Tj2 )-k2
]

2 
- 4yy(!;2 +Tj 2

) is the Rayleigh 
1 2 

determinant and h = w/ as and k = w/i3s are the wave numbers. 

(B-6) 

(B- 7) 

(B-8) 
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Substituting (B-8) into (B-3 ), 

(B-9) 

by (B-2a) and the substitution, T3 = P 3 / 4bc, we have 

- 4µrr 2bc 

(B-10) 

Uniforntly Distributed Horizontal Load Over a Rectangular Area 

The boundary conditions for the case where the uniform load 

is applied tangentially in the x1 -direction are 

0 

Hence, 

-c :5: X,a :5: C 

otherwise 

-co :5: X:;i :,:; co 

4T1 sinsb sinT)c 

[~
l l 2rr Pl 

(B-11) 

(B -12) 
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Substituting (B-12) into (B-5) yields 

A 

B . = 4T1 sin gb sin ]c 
2TTfJ, snF (1;,'T]) 

C H 

Hence, by (B-3) 

~ 
Ui 

U:a 
= 4Tl sin sb sin ]c 

2TTfJ, i;'T] 

_!_ [[2 (l;2+'T]2) - k2] [l;2+2'T]2-k2] - 4Y1 Y2 'T]2} 
Y2 

- _!;_TI_ [[ 2 (l;2+'T]2) - k2] - 4Y1 Y2} 
Ya 

1 1; 2[[2(TJ2+s;2) - k 2J + 2vl - 4Y1 Y2} 
Y2 Y2F (1;,'T]) 

i;'T][[2(g2+'T]2)-k2] +2Y22_4Y1Y2} 

YaF(i;,'T]) 

ig [ (Y1-Y2 )2+h2
] 

F (I;, 'T]) 

(B-13) 

(B-14) 

Applying the inverse Fourier transformation of (B-2a) and letting 

-~ 
T 1 - 4bc ' 

-CO -co 

1 i;
2[[2(f12+!; 2) -k2] +2y/-4Y1 Y2 } 

Ya y2 F($, 'T]) 

I; 'T] [[2(i; 2 +'T] 2 )-k2 ] +2 Y;-4Y1 Y2 } 

Y2F(s,'T]) 

is [ (Y1 -Y2 )2+h2] 

F (I;, 'T]) 

sin]csingb 
'T]I; X 

(B-15) 
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Coordinate Transformation 

Since the odd part of the integrands of (B-10) and (B-15) 

vanishes after integration, the remaining even part can be expressed 

as double integrals with limits g, 'fl = 0 ... co. A further transforma

tion of (g, 'fl) into polar coordinates (z, 8) will result in just one 

infinite integral with the other one finite. 

Let 

then 

and 

kz cos 8 

kz sin 8 

z=O-.co 

The next step is to substitute (B-16) and (B-17) in (B-10) and 

(B-15) which results in the following expressions: 

(B-16) 

(B- 1 7) 
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