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ABSTRACT

This thesis consists of three health economics papers, two studying the effectiveness
of policy interventions on the opioid epidemic, and one on the effects of air pollution
on school absences. The first two chapters were coauthored with Shiyu Zhang, a
former Caltech graduate student.

The first chapter examines the market for prescription opioids following the Oxy-
Contin Reformulation, an event that made OxyContin harder to misuse. Using
detailed prescription opioid sales data from 2006 to 2014, we show that event did
not reduce overdose deaths but led individuals to switch to generic oxycodone as a
substitute for OxyContin.

The second chapter examines geographic spillover effects from state prescription
drug monitoring programs (PDMPs). We show that these policies reduce prescrip-
tion opioid sales and opioid overdose deaths in the state they are enacted in. However,
because they only track opioids sold locally, these programs induce individuals to
drive across state lines to purchase opioids and avoid these regulations.

The final chapter examines the effects of air pollution on NYC school absences using
daily changes in wind direction. I show that PM2.5 and Ozone concentrations are
strongly influenced by wind patterns, and exposure to these two pollutants causes
detectable increases in absences over the following two days. Reductions in PM2.5
pollution over time have prevented approximately 381,000 absences annually in
NYC which increases school funding by $19 million.
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NOMENCLATURE

ARCOS. The Automated Reports and Consolidated Ordering System (ARCOS) is
the DEA’s system for tracking opioid distribution and sales. A federal judge
ordered the release of all ARCOS data from 2006 to 2014.

Generic Oxycodone. Oxycodone is the active ingredient in most high-dosage opi-
oid pills including OxyContin, and generic oxycodone refers to generic opioid
pills manufactured after OxyContin lost the patent in 2004..

IV Regression. An Instrumental Variables (IV) Regression uses random variation
in one variable to get causal estimates of the effects on the outcome variable.

OxyContin. A brand of prescription opioid produced by Purdue Pharma that was
marketed for severe pain and led to misuse.

OxyContin Reformulation. In 2010, Purdue Pharma added a chemical to Oxy-
Contin that made it harder to crush or inject for an immediate high.

PDMP. A Prescription Drug Monitoring Program (PDMP) is a state regulation that
tracks individuals purchasing prescription opioids in that state. In Chapter
2 we focus on electronic PDMPs, that allow doctors and pharmacists to
immediately view a patient’s opioid history.
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INTRODUCTION

Broadly speaking, this dissertation uses econometric methods to identify relation-
ships between public policies and health outcomes. This thesis consists of three
papers, two studying the effects of policy interventions and market forces on the
opioid crisis, and one on the effects of air pollution on school absences.

The first two chapters study how prescription opioid markets affected drug overdose
deaths and are coauthored with Shiyu Zhang, a former Caltech graduate student.
When I arrived at Caltech in 2012, there were approximately 22,000 annual opioid
overdose deaths in the United States and prescription opioids were the most common
opioid contributing to death. By the time I started my PhD in 2017, fatalities had
more than doubled to approximately 47,000 overdose deaths, with a switch from
prescription opioids, to heroin, and then fentanyl. In the most recent year with
finalized data, 2021, opioid overdose deaths nearly doubled again to 80,000, with
the increase almost entirely due to fentanyl.1

Chapter 1 examines the chemical reformulation for OxyContin in 2010 that made
it more difficult to misuse. Using novel prescription opioid sales data released due
to a federal court case, we show that generic oxycodone was more widely misused
and predictive of future overdose deaths than OxyContin. In contrast to previous
work, we show the decline in OxyContin sales first led to substitution to generic
oxycodone, and then later to heroin. These findings highlight the important role
generic oxycodone played in the opioid epidemic and the limited effectiveness of a
partial supply-side intervention. Since writing that paper, many of the largest opioid
manufacturers and distributors have settled for billions of dollars to resolve lawsuits
related to their role in the opioid crisis.2

Chapter 2 analyzes state-level policies known as Prescription Drug Monitoring
Programs (PDMPs) and their effect on the prescription opioid markets. These
PDMPs document every time an individual purchases opioids at a pharmacy in
that state, and we focus on electronic versions that allow doctors and pharmacists

12012 data from this link, 2017 number from this link, and most recent data from here.
2Figure A.1 shows the market share for opioids by manufacturer. SpecGx is owned by Mallinck-

rodt, which settled for $1.6 billion dollars, and Actavis and Par were bought by Teva, which settled
for $4.25 billion dollars. The manufacturer of OxyContin, Purdue Pharma and its owners, settled for
$6 billion dollars, and the three largest distributors of opioids settled for a combined $21 billion.

https://www.cdc.gov/nchs/data/hestat/drug_poisoning/drug_poisoning.htm
https://www.cdc.gov/mmwr/volumes/67/wr/mm675152e1.htm
https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates
https://www.nytimes.com/2020/02/25/health/mallinckrodt-opioid-settlement.html
https://www.washingtonpost.com/health/2022/07/27/teva-reaches-opioid-settlement/
https://www.washingtonpost.com/health/2022/07/27/teva-reaches-opioid-settlement/
https://www.washingtonpost.com/business/2022/03/03/purdue-sacklers-opioid-settlement/
https://www.washingtonpost.com/business/2022/03/03/purdue-sacklers-opioid-settlement/
https://www.nytimes.com/2022/02/25/health/opioids-settlement-distributors-johnson.html


2

to instantly review a patient’s opioid history. We show that these programs are
effective at reducing sales and overdose deaths, but also that individuals cross state
lines and purchase opioids in neighboring states to avoid these regulations. This
chapter highlights a cost to having state-level policies when people can freely travel
between states and purchase opioids while obscuring their prescription history.

Chapter 3 changes focus to air pollution and the effects on school absences as a
proxy for children’s health. Previous work has shown that children are especially
susceptible to air pollution, and that pollution was associated with increased absences
due to respiratory illness. Using all school absences in New York City for 14 years
and wind-carried pollution, I estimate a casual relationship for how PM2.5 and
Ozone increase absences at the daily level. My results suggest that the decrease
in average daily PM2.5 pollution of 5 𝜇g/𝑚3 from 2006 to 2019 led to at least
381,000 fewer absences across NYC schools and increased education spending by
$19 million every year. This work shows that air pollution, even when below the
federal limits, still has detectable negative effects on children.
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C h a p t e r 1

THE OXYCONTIN REFORMULATION REVISITED: NEW
EVIDENCE FROM IMPROVED DEFINITIONS OF MARKETS

AND SUBSTITUTES
SHIYU ZHANG AND DANIEL GUTH

The opioid epidemic began with prescription pain relievers. In 2010 Purdue
Pharma reformulated OxyContin to make it more difficult to abuse. Oxy-
Contin misuse fell dramatically, and concurrently heroin deaths began to rise.
Previous research overlooked generic oxycodone and argued that the reformu-
lation induced OxyContin users to switch directly to heroin. Using a novel and
fine-grained source of all oxycodone sales from 2006 to 2014, we show that the
reformulation led users to substitute from OxyContin to generic oxycodone,
and the reformulation had no overall impact on opioid or heroin mortality. In
fact, generic oxycodone, instead of OxyContin, was the driving factor in the
transition to heroin. Finally, we show that by omitting generic oxycodone we
recover the results of the literature. These findings highlight the important role
generic oxycodone played in the opioid epidemic and the limited effectiveness
of a partial supply-side intervention.

1.1 Introduction
Since 1999, the opioid epidemic has claimed more than 415,000 American lives
(National Center for Health Statistics, Centers for Disease Control and Prevention,
2020). What started with fewer than 6,000 opioid-related deaths in 1999 grew
steadily every year until fatalities reached 47,573 deaths in 2017. Following a small
decline in fatal drug overdoses in 2018, deaths continue to rise. Over the past two
decades, millions of Americans have misused prescription opioids or progressed to
more potent opioids, first heroin and later fentanyl. Many social scientists have tried
to understand how this crisis has grown over two decades despite significant public
health efforts to the contrary.

Doctors and health economists have long argued that the drug most responsible
for prescription opioid overdose deaths, and the key to understanding the transition
from prescription opioids to heroin starting in 2010, was OxyContin. Previous
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research (Van Zee, 2009), court proceedings (Meier, 2007), and books (Meier,
2003, Macy, 2018) have documented how Purdue Pharma’s marketing campaign
for OxyContin downplayed the risk of addiction starting in 1996. Since then,
according to the National Survey on Drug Use and Health (NSDUH), millions of
Americans have misused it previously. A key question in this area is whether or
not making prescription opioids, especially OxyContin, more difficult to abuse will
reduce overdose deaths.

In this paper, we show that restricting access to OxyContin led many users to
switch to generic oxycodone but had no immediate impact on opioid or heroin
mortality. Earlier analyses attributing opioid overdose deaths in the late 2000s and
the subsequent rise in heroin deaths to OxyContin are incomplete because they omit
generic oxycodone. Our analysis shows that the misuse of generic oxycodone was
prevalent before the reformulation that restricted OxyContin access, and was even
more so afterward. We also show that heroin overdose deaths increased in areas with
high generic oxycodone exposure, not high OxyContin exposure, two years after the
OxyContin reformulation. In addition, we show that omitting generic oxycodone in
our regressions recovers the results of the literature.

This analysis was not possible until several years ago when the Washington Post won
a court order and published the complete Automation of Reports and Consolidated
Orders System (ARCOS). The ARCOS tracks the manufacturer, the distributor, and
the pharmacy of every pain pill sold in the United States. The newly released data
allow us to analyze what happened to sales of generic oxycodone and OxyContin
when OxyContin suddenly became more difficult to abuse. The previous literature
focused on analyzing OxyContin because of Purdue’s notorious role in the opioid
crisis. However, the new data shows that the sales of OxyContin was only a small part
of the sales of all prescription opioids: in terms of the number of pills, OxyContin
was 3% of all oxycodone pills sold from 2006 to 2012; in terms of morphine
milligram equivalents (MME), OxyContin has closer to 20% market share over
this period. The new transaction-level ARCOS data allows us to track the sales of
generic oxycodone and fill in the narrative gaps of how the opioid crisis progressed
in the United States.

Following Alpert, Powell, and Pacula (2018), W. N. Evans, Lieber, and Power
(2019), and T. Cicero and Ellis (2015), we treat the introduction of an abuse-
deterrent formulation (ADF) of OxyContin as an exogenous shock that should only

https://www.washingtonpost.com/investigations/little-known-generic-drug-companies-played-central-role-in-opioid-crisis-documents-reveal/2019/07/26/95e08b46-ac5c-11e9-a0c9-6d2d7818f3da_story.html
https://www.washingtonpost.com/investigations/an-onslaught-of-pills-hundreds-of-thousands-of-deaths-who-is-accountable/2019/07/20/8d85e650-aafc-11e9-86dd-d7f0e60391e9_story.html
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affect people who seek to bypass the extended-release mechanism for a more im-
mediate high. We construct measures of exposure by combining ARCOS sales and
the NSDUH data on drug misuse. The NSDUH is the best survey of people who
use drugs at the state level, and by combining it with local sales we can capture
variation in drug use within the state. We leverage this variation in OxyContin
and generic oxycodone exposure to examine how the reformulation affected Oxy-
Contin sales, generic oxycodone sales, opioid mortality, and heroin mortality. Our
first contribution is that we fix the omitted-variable problem by differentiating be-
tween OxyContin and generic oxycodone, and we show that this leads to different
conclusions than what previous literature suggests. Our second contribution is
disaggregating the data to metropolitan statistical area (MSA), which allows us to
address endogeneity at the state level.

To preview our results, we find strong evidence of substitution from OxyContin to
generic oxycodone immediately after the reformulation. This substitution was larger
in places that had more OxyContin misuse pre-reform, which is consistent with our
hypothesis that users would switch between oxycodones rather than move on to
heroin. Because this substitution should be concentrated among people misusing
OxyContin, the results imply large changes in consumption at the individual level.
Back-of-the-envelope calculation suggests 68% of the decline in OxyContin sales
was substituted to oxycodone in MSAs with high OxyContin misuse. The findings
are consonant with surveys like Havens et al. (2014), Coplan et al. (2013), and
Cassidy et al. (2014) who all document substitution to generic oxycodone after the
reformulation by people seeking to bypass the ADF. We also find suggestive evidence
of substitution from generic oxycodone to OxyContin after the reformulation in
places where generic oxycodone misuse was high, a channel that has been unexplored
in previous research.

Our event study approach also shows that generic oxycodone exposure is predictive
of future heroin overdose deaths whereas OxyContin exposure is not. The results
are not contingent on methodology or our construction of exposure measures. Cru-
cially, if we run the same exact regressions at the state or MSA level and omit
generic oxycodone, we recover the results of the literature where OxyContin misuse
appears to be significantly predictive of future heroin overdose deaths. We find that
every standard deviation increase in generic oxycodone exposure pre-reformulation
is associated with a 40.8% increase in heroin mortality in 2012 from the 2009
baseline level. As further evidence against the argument that there was immediate
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substitution from OxyContin to heroin after the reformulation, we note that in all
of our regressions the increase in heroin deaths wasn’t statistically significant until
2012. As suggested in O’Donnell, Gladden, and Seth (2017), the rise in heroin
deaths can be attributed in part to an increase in the supply of heroin as well as the
introduction of fentanyl into heroin doses.

Our findings highlight the pitfalls of omitting important substitutes to OxyContin in
analyzing the prescription opioid crisis. Purdue Pharma has received well-deserved
attention over the years for its role in igniting the crisis. The company has been
involved in many lawsuits over the years, but perhaps the most damaging were
lesser-known cases that involved losing its patent in 20041 which cleared the way
for a rapid increase in generic oxycodone sales in the early 2000s. While Purdue
Pharma was being sued and scrutinized, several manufacturers took the opportunity
to fill in the gaps of OxyContin. By 2006, generic oxycodone outsold OxyContin
by more than 3-to-1 after accounting for pill dosage differences. This paper sheds
lights on the role generic oxycodone played and continues to play in the opioid
crisis and helps policy makers update their picture of the opioid use disorder (OUD)
landscape.

The paper also calls attention to the limited effectiveness of a partial supply-side
intervention to curb OUD. Purdue Pharma was once a dominant player in the opioid
market, but by the time of the reformulation, that dominance had vanished and it
was only one of the many manufacturers whose drugs were actively misused by
Americans. Purdue was the first company to include abuse-deterrent formulation
(ADF) in their opioids, but it is not until recent years that other brands started
adding anti-deterrent compounds to their products (Pergolizzi et al., 2018). When
substitutions to other abusable opioids are easy, cutting supplies of one kind is less
effective.

The rest of the paper runs as follows. Section 2 gives more background on the
opioid crisis and explains how previous research has characterized the OxyContin
reformulation. In Section 3 we describe the new ARCOS sales database, the NSDUH
misuse data, the NVSS mortality data, as well as our constructed misuse measure
and descriptive statistics. Section 4 describes our empirical strategy for testing our
hypotheses. Section 5 discusses our results and what it means for our understanding
of the transition between illicit drugs, and Section 6 concludes.

1Federal ruling, risk management plan proposals for generic oxycodone.

https://www.nytimes.com/2004/01/06/business/judge-says-maker-of-oxycontin-misled-officials-to-win-patents.html
https://www.drugtopics.com/view/generic-oxy-makers-too-must-offer-risk-management
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1.2 Background and Literature Review
This section proceeds in chronological order. First, we provide a history of oxy-
codone and its most important formulation, OxyContin. We then describe the
OxyContin reformulation in 2010 and what it meant for prescription opioid misuse,
as well as how the previous literature analyzed the reformulation. Next, we present
the nascent research on substitution between different opioids and how our contri-
bution fits in this strain of work. We conclude with a summary of the literature on
heroin mortality in the early 2010s and its link with the prescription opioid crisis.

Oxycodone was first marketed in the United States as Percodan by DuPont Pharma-
ceuticals in 1950. It was quickly found to be as addictive as morphine (Bloomquist,
1963), and in 1965 California placed it on the triplicate prescription form (Quinn,
1965).2 Before the 1990s, doctors were hesitant to prescribe oxycodone to non-
terminally ill patients due to its high abuse potential (DeWeerdt, 2019). The sales of
oxycodone-based pain relievers did not take off until the mass marketing of OxyCon-
tin, Purdue’s patented oxycodone-based painkiller. OxyContin was first approved
by the FDA in 1995. The drug’s innovation was an “extended-release” formula,
which allowed the company to pack a higher concentration of oxycodone into each
OxyContin pill and the patients to take the pills every 12 hours instead of 8 hours.
OxyContin’s original label, approved by the FDA, stated that the “delayed absorp-
tion, as provided by OxyContin tablets, is believed to reduce the abuse liability of
a drug." In 2001, the FDA changed OxyContin’s label to include stronger warnings
about the potential for abuse and Purdue agreed to implement a Risk Management
Program to try and reduce OxyContin misuse.3

OxyContin was one of the first opioids marketed specifically for non-cancer pain.
In the early 1990s, pain started to enter the medical discussion as the “fifth vital
sign” and something to be managed. As described in Meier (2003), Van Zee (2009),
and elsewhere, Purdue’s sales representatives pushed OxyContin and were told to
downplay the risk of addiction. Quinones (2015) describes how Purdue cited a 1980
short letter published in the New England Journal of Medicine describing extremely
low rates of opioid addiction among hospital patients undergoing hospital stays, but
the company repeatedly implied this result extended to the general population or to
individuals who left the hospital with take-home prescriptions of OxyContin. The

2Triplicate programs required pharmacists to send a copy to the government, and Alpert, Evans,
et al., 2019 show that these had a persisting effect on reducing the number of opioid prescriptions.

3From the FDA Opioid Timeline.

https://www.fda.gov/media/126835/download
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short letter was uncritically or incorrectly cited 409 times as evidence that addiction
was rare with long-term opioid therapy (Leung et al., 2017). As a result of Purdue’s
aggressive marketing and downplaying of the drug’s abuse potential, OxyContin
was a huge financial success and effectively catalyzed the prescription opioid crisis.

In May 2007, Purdue signed a guilty plea for misleading the public about the risk
of OxyContin and paid more than $600 million in fines. Less than six months later,
the company applied to the FDA for approval of a new reformulated version of
OxyContin that included a chemical to make it more difficult to crush and misuse
(Rappaport, 2009). Although not completely effective in reducing misuse, it was
approved by the FDA and after August 2010 accounted for all OxyContin sales in
the United States. Until 2016, with Mallinrockdt’s Xtampza ER, Purdue was the
only prescription opioid manufacturer to make abuse-deterrent oxycodone pills. The
majority of all oxycodone sold over this time was generic oxycodone that remained
abusable.4

Most research shows that OxyContin misuse fell following the reformulation. As
described in T. Cicero and Ellis (2015), although some users were able to circumvent
the abuse-deterrent formulation (ADF) to inject or ingest, the reformulation did
reduce misuse. W. N. Evans, Lieber, and Power (2019) finds that the reformulation
coincided almost exactly with a structural break in aggregate oxycodone sales,
which had previously been increasing. Shortly after the OxyContin reformulation
was implemented, researchers began to notice illicit drug use moving towards other
drugs such as heroin or generic oxycodone (T. Cicero, Ellis, and Surratt, 2012,
Coplan et al., 2013, Alpert, Powell, and Pacula, 2017, W. N. Evans, Lieber, and
Power, 2019, Havens et al., 2014, Cassidy et al., 2014). Our paper extends the
analysis of the impact of reformulation on opioid use by separately identifying the
shifts in OxyContin and generic oxycodone misuse.

We build upon a rich literature that studies opioid misuse through surveys or analysis
of the aggregated ARCOS reports. Surveys mostly polled either informants or users
themselves (for details see Inciardi et al., 2009). The best surveys have been of
users in smaller samples at individual treatment facilities, like in Hays (2004) and
Sproule et al. (2009). However, selection bias is a problem for surveying treatment
facilities, as that is a specific subset of patients whose habits may be different from

4Many other companies attempted to make abuse-deterrent opioid pills at the same time, as
shown in Webster (2009), but Purdue was the first to market. Adler and Mallick-Searle (2018) and
Pergolizzi et al. (2018) list other opioids with an ADF.
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the overall drug-using population (particularly because they are seeking treatment).
Some researchers have also used the quarterly ARCOS reports to study national
trends in consumption, like in Alpert, Powell, and Pacula (2018), Mallatt (2018),
and Atluri, Sundarshan, and Manchikanti (2014). The quaterly ARCOS reports have
no information on the market share of each brand of prescription opioid, thereby
restricting any analysis to the aggregate level only. Our work is closely connected
to the second set of papers, but we are able to leverage ARCOS’s transaction level
data to distinguish sales of OxyContin from generic oxycodone.

This newly released ARCOS data allows us to make two methodological improve-
ments. First, the literature treats the OxyContin reformulation as an exogenous
shock at the state level. This assumption is problematic because each state’s de-
pendency on OxyContin as well as exposure to the reformulation is the result of
the state’s regulatory environment (Alpert, Evans, et al., 2019). These regulatory
factors could have an impact on how people react to the reformulation, and thus
create a hidden link between OxyContin exposure and the reformulation outcomes.
Using the new ARCOS data, we can disaggregate to Metropolitan Statistical Areas
(MSAs), which allows our model to identify drug substitutions using within-state
variations in opioid sales and mortality while controlling for across-state variations
in policies and drug enforcement.

The second benefit of the new ARCOS data set is that it allows us to disaggregate
different kinds of prescription opioid sales on a national scale. Previous national
studies were unable to distinguish between these drugs due to limitations in existing
data. The NSDUH survey, the primary data source for drug misuse at the national
level, only documented past year use of OxyContin. Death certificates do not
distinguish between OxyContin and generic oxycodone. The aggregate ARCOS
data lumps all oxycodone sales into one group. Because of OxyContin’s unique role
in fomenting the opioid epidemic, it has received most of the attention of researchers.
The literature assumes that the study of OxyContin was equivalent to the study of all
oxycodone. As a result, although non-OxyContin oxycodone misuse is significant in
size, it has been understudied. One notable exception is Paulozzi and Ryan (2006),
which notes that non-OxyContin oxycodone was a better predictor of state opioid
deaths than OxyContin.

The previous literature also attempts to link the misuse of prescription opioids to the
rise in heroin misuse. Siegal et al. (2003) are the first to suggest the pathway from
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prescription opioids to heroin, and they further note a reverse in trend where heroin
users switched to prescription opioids when heroin was unavailable. Compton,
Jones, and Baldwin (2016) describe how by the 21st-century people who initiated
heroin use were very likely to have started by using prescription opioids non-
medically. The most recent works on OxyContin reformulation suggest that the
reformulation played an important part in reigniting the heroin epidemic since 2010.
T. Cicero and Ellis (2015) and Mars et al. (2014), who rely on smaller surveys, find
the predominant drug people switched to after reformulation was heroin. W. N.
Evans, Lieber, and Power (2019) identify a structural break in heroin deaths in
August 2010 that was accompanied by higher growth in heroin deaths in areas with
greater pre-reformulation access to heroin and opioids. Similarly, Alpert, Powell,
and Pacula (2018) shows that the rise in heroin deaths was larger in places with
higher OxyContin misuse pre-reformulation. However, the evidence linking the
reformulation to the rise in heroin death is not conclusive: other researchers suggest
the sharp rise in heroin use may have predated the OxyContin reformulation by
a few years (Dasgupta et al., 2014, Cassidy et al., 2014). With the new ARCOS
data, we are able to examine the claim that the OxyContin reformulation caused the
subsequent heroin epidemic in more detail. In particular, we separate the impact of
the reformulation on heroin use from the gradual shifts in oxycodone misuse that
are independent of the reformulation.

1.3 Data and Descriptive Statistics
To estimate the impact of the OxyContin reformulation on opioid use and mortality,
we combine several data sources including sales of OxyContin and non-OxyContin
alternatives from ARCOS, opioid and heroin mortality from the NVSS, and self-
reported OxyContin and Percocet misuse from the NSDUH. Our main regression
leverages variations in pre-reform exposure to OxyContin and generic oxycodone to
identify the impact of the reformulation on opioid sales and mortality. We define a
new measure of exposure by interacting the state-level self-reported opioid misuse
and MSA-level opioid sales. In this section, we describe the three sources of data,
the market definition, the construction of the OxyContin and generic oxycodone
exposure measure, and present summary statistics of our data.
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Data
ARCOS and the Sales of Prescription Opioid

As part of the Controlled Substances Act, distributors and manufacturers of con-
trolled substances are required to report all transactions to the DEA. This Automation
of Reports and Consolidated Orders System (ARCOS) database contains the record
of every pain pill sold in the United States. The complete database from 2006 to
2014 was recently released by a federal judge as a result of an ongoing trial in Ohio
against opioid manufacturers.5

The ARCOS database has been used previously to study opioids, but only using
the publicly available quarterly aggregate weight of drugs sold (Atluri, Sundarshan,
and Manchikanti, 2014) or via special request to the DEA (Modarai et al., 2013).
The newly released full database reports the manufacturer and the distributor for
every pharmacy order. These data allow us to track different brands of prescription
opioids separately, and calculate what fraction of oxycodone sold is OxyContin at
any level of geographic aggregation. We can thus construct what we believe is the
first public time-series of OxyContin and generic oxycodone sales from 2006 to
2014.

Note: We supplemented the 2006 to 2014 data with publicly available aggregate data from
2000 to 2005. The publicly available aggregate data does not break down the oxycodone
sales by manufacturer.

Figure 1.1: Growth of oxycodone and OxyContin sales.

As we can see from Figure 1.1, total oxycodone sales increased substantially from
5Link to the ARCOS Data published by the Washington Post.

https://www.washingtonpost.com/graphics/2019/investigations/dea-pain-pill-database/


12

2000 to 2010, with per-person sales nearly quadrupling in the ten years period. From
2010 to 2015, sales of oxycodone declined as a result of aggressive measures taken
by the states and the federal government to counter opioid addiction (Kennedy-
Hendricks et al., 2016).

The newly available ARCOS data suggests that the commonly held belief about
OxyContin’s dominance in the prescription opioid market at the time of reformula-
tion is incorrect. The last time OxyContin’s market was estimated was in 2002 by
Paulozzi and Ryan (2006), who acquired from the DEA a year’s worth of ARCOS
data aggregated at the state level. In that year, OxyContin was 68% of all oxy-
codone sales by active ingredient weight and scholars have assumed that Purdue’s
market share stayed high until the OxyContin reformulation. However, as Figure 1.1
shows, by 2006 when our data starts, OxyContin sales only accounted for 18% of all
oxycodone sold by weight and never got above 35% during this period. The share
is even smaller if we count the number of pills sold, since the average OxyContin
active ingredient weight is five to ten times higher than that of oxycodone from other
brands. The share of OxyContin decreased dramatically from 2002 to 2006 because
Purdue lost the patent rights in 2004. As a result, non-OxyContin oxycodone sales
grew much faster in the early 2000s than OxyContin sales. Figure A.1 in Appendix
presents the market share for all oxycodone manufacturers by dosage strength, and
Purdue Pharma is only dominant at higher dosages (≥ 40mg). The overestima-
tion of OxyContin’s importance in the pre-reform period explains why the previous
literature overlooked the role generic oxycodone played in the opioid epidemic.

The ARCOS sales data are the primary variables in our main regressions. We
aggregate sales by MSA, year, and brand. To focus on the impact of the reformulation
on OxyContin and non-OxyContin alternatives, we group all alternative oxycodone
products into one measure, and we will refer to it as generic oxycodone for the rest
of the analysis.6

NVSS Mortality Data

The second outcome of interest in our main regression is opioid mortality. We use
the restricted-use multiple-cause mortality data from the National Vital Statistics
System (NVSS) to track opioid and heroin overdose. The dataset covers all deaths

6We acknowledge some non-OxyContin alternatives are branded and non-generic (i.e., Percocet
and Percodan or later Roxicodone), but the majority of them are generic products. Generic oxycodone
in this paper should be interpreted as all non-OxyContin oxycodone products.
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in the United States from 2006 to 2014. We follow the literature’s two-step proce-
dure to identify opioid-related deaths. First, we code deaths with ICD-10 external
cause of injury codes: X40–X44 (accidental poisoning), X60–64 (intentional self-
poisoning), X85 (assault by drugs), and Y10–Y14 (poisoning) as overdose deaths.
Second, we use the drug identification codes, which provide information about the
substances found in the body at death, to restrict non-synthetic opioid fatalities to
those with ICD-10 code T40.2, and heroin deaths to those with code T40.1. Figure
2 shows the trend over our period of study for the two series.

Figure 1.2: Mortality trends for opioids and heroin overdose deaths.

The number of opioid fatalities grew in our sample period, from on average 600
deaths per month to 1000 per month. The number of heroin deaths was stable from
2006 to 2009 at about 200 deaths per month, and then it rose sharply from 2011 to
2015. As we’ve stated in the literature review section, the cause of the increase in
heroin mortality is unclear. While some papers blame the OxyContin reformulation,
there is evidence indicating the availability of heroin increased substantially after
2010 (O’Donnell, Gladden, and Seth, 2017).

Since the number of drug overdose deaths with no drug specified accounts for be-
tween one-fifth and one-quarter of the overdose cases (Ruhm, 2017), our measures
of opioid and heroin deaths likely underestimate the true number of deaths.7 How-
ever, the underestimation would not pose a problem for our regressions. There are

7Specifically, we omit ICD-10 code T50.9 (unspecified poisioning) from our analysis, and some
fraction of these deaths are due to opioids or heroin but were not diagnosed or recorded as such.
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variations in how coroners attribute the cause of death across states, but such vari-
ation would be captured by the state fixed effects. In addition, we do not anticipate
systematic changes to each state’s practices due to the reformulation.

NSDUH and Measuring Misuse

We use state-level data from the National Survey on Drug Use and Health (NSDUH)
to measure nonmedical use of opioids. The NSDUH publishes an annual measure of
OxyContin misuse, asking the respondents whether they have ever used OxyContin
“only for the experience or feeling they caused" (NSDUH Codebook). As first
described in Alpert, Powell, and Pacula (2018), the advantage of the NSDUH
misuse measure is that it seperates out misuse from medical use. However, only
OxyContin is reported in the NSDUH and there is no equivalent measure for generic
oxycodone.

Fortunately, the NSDUH reports PERCTYL2, which asks whether individuals ever
misused Percocet, Percodan, or Tylox.8 These drugs are oxycodone hydrochloride
with acetaminophen and have a maximum dosage of 10mg of oxycodone per pill.
The three drugs were popular among users in the pre-OxyContin era (Meier, 2003).
In the present day, the PERCTYL2 variable captures misuse of not only the three
branded drugs but also other generic oxycodone products that are popular on the
street.

The most direct evidence supporting this claim is the fact that generic oxycodone
pills have often been referred to as “Percs” colloquially in the last decade. Many
news report indicated that generic oxycodone has the street name “Perc 30” but is
in fact not Percocet. The Patriot Ledger reported in a 2011 article9 that “Perc 30s”
were the newest drug of choice in South Shore of Massachusetts, saying:

Perc 30s are not Percocet — the brand name for oxycodone mixed with
acetaminophen, the main ingredient in Tylenol — but a generic variety
of quick-release oxycodone made by a variety of manufacturers. They
are sometimes referred to as “roxys” after Roxane Laboratories, the first
company to make the drug, or “blueberries,” because of their color.

8Percocet Drug Information. Tylox was discontinued in 2012 following the FDA regulations
limiting acetaminophen.

9Patriot Ledger Link. Other references to generic non-OxyContin oxycodone as Perc 30s:
Phoenix House, Washington State Patrol, Boston Globe, Salem News, Massachusetts Court Filing,
Cape Cod Times, Pocono Record, Bangor Daily News, Patch, CNN Op-Ed

https://www.datafiles.samhsa.gov/sites/default/files/field-uploads-protected/studies/NSDUH-2006/NSDUH-2006-datasets/NSDUH-2006-DS0001/NSDUH-2006-DS0001-info/NSDUH-2006-DS0001-info-codebook.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/040330s015,040341s013,040434s003lbl.pdf
https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-prescription-acetaminophen-products-be-limited-325-mg-dosage-unit
https://www.patriotledger.com/article/20111219/NEWS/312199817
https://www.phoenixhouse.org/news-and-views/true-stories/true-story-alex-2/
https://www.wsp.wa.gov/breathtest/docs/dre/manuals/inservice/2011/pharmageddon04.pdf
http://archive.boston.com/news/local/massachusetts/articles/2011/07/12/witness_police_work_led_to_arrest_of_musician_in_holdup/
https://www.salemnews.com/news/local_news/dealers-life-goes-from-the-prep-to-state-prison/article_fccdc120-f578-5d92-9c3d-f6e797090edd.html
https://www.mass.gov/doc/fitchburg-william-l-conlin-jr-dba-conlinscorner-violation-narcotics-09-10-15/download
https://www.capecodtimes.com/article/20100912/NEWS/100909841
https://www.poconorecord.com/article/20110506/NEWS/105060380
https://bangordailynews.com/2014/05/09/news/bangor/key-witness-in-triple-murder-trial-arrested-for-violating-bail/
https://patch.com/massachusetts/tewksbury/dorringtons-we-did-it-to-protect-our-little-brother
https://www.cnn.com/2011/OPINION/06/23/zeller.oxycodone.heroin/index.html
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Since many generic oxycodone users wouldn’t know the name of the drug they
use other than by its street name, but could distinguish between immediate release
oxycodone and extended release OxyContin, it is likely that they answer affirmatively
to misusing Percocet when they are, in fact, using generic oxycodone.10

There are also several empirical observations that support this claim. The first is that
we continue to see increases in the lifetime misuse of Percocet, Percodan, and Tylox
even after they were replaced by OxyContin as the preferred prescription opioid
to misuse. The misuse rate of Percocet, Percodan, and Tylox increased 30% from
4.1% to 5.6% from 2002 to 2009 (see Figure A.2 in Appendix), which would not
have been possible if these drugs, or what people believed were “Percs”, were not
actively misused by new users post-introduction of OxyContin.

The second observation is that, based on the average sales data from 2006 to 2014,
a disproportionate number of people have reported misusing Percocet, Percodan, or
Tylox as compared to the actual sales of the three drugs. The sales of Endo Pharma,
the manufacturer of Percocet and Percodan11, are orders of magnitude less than the
sales of Purdue while more than twice as many people reported misusing the three
drugs as compared to OxyContin (see Figure A.3 in Appendix). A back-of-the-
envelope calculation shows that if PERCTYL2 misuse captures only the misuse of
Percocet and Percodan, then the proportion of pills misused out of all pills sold
is 29 times higher for Percocet and Percodan than than the same proportion for
OxyContin12, a very unlikely situation given the popularity of OxyContin on the
street.

This deduction is further supported by misuse data reported in the NSDUH. We know
that generic oxycodone is commonly misused.13 If oxycodone has any other drug
names, the popularity of that drug name in the NSDUH surveys should increase to
reflect the increase in misuse in recent years. In addition to inquiring about popular
brands, the NSDUH survey asks respondents to list any other prescription oxycodone
that they have misused before. Dozens of pain relievers are reported, but in 2010
“oxycodone or unspecified oxycodone products” was only named by 0.10%14 of the

10In the ARCOS dataset these pills are simply listed as “Oxycodone Hydrochloride 30mg”
11Tylox not included since it was discontinued.
12In terms of number of pills circulated, OxyContin is 12.1 times Percocet and Percodan from

2006 to 2014. In terms of misuse, OxyContin is 41% of Percocet and Percodan in the same period.
13Law enforcement and journalists have previously identified the 30mg oxycodone pill as the

most commonly trafficked opioid, see DEA Link, ICE Link, and Palm Beach Post Link.
14NSDUH Codebook variables ANALEWA through ANALEWE list the other pain relievers

https://www.dea.gov/press-releases/2011/02/24/dea-led-operation-pill-nation-targets-rogue-pain-clinics-south-florida
https://www.ice.gov/news/releases/10-facing-federal-drug-trafficking-charges-related-distribution-opioids-through-bogus
https://heroin.palmbeachpost.com/how-florida-spread-oxycodone-across-america/
https://www.datafiles.samhsa.gov/sites/default/files/field-uploads-protected/studies/NSDUH-2010/NSDUH-2010-datasets/NSDUH-2010-DS0001/NSDUH-2010-DS0001-info/NSDUH-2010-DS0001-info-codebook.pdf
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respondents. No other brand of oxycodone pill is reported as commonly misused.
We know from the reports in press and documents in court that generic oxycodone
is a popular opioid on the street, and we know that Percocet is the only other
commonly misused opioid documented in the NSDUH survey. Thus, the only way
to reconcile the discrepancy between these two sources is that people mistakenly
perceive generic oxycodone as Percocet or respond to the NSDUH as if they do.
Thus, we use lifetime OxyContin and lifetime Percocet misuse for the construction
of OxyContin and generic oxycodone exposure measures in this chapter.

Market Definition and Endogeneity Problems
Previous studies of the OxyContin reformulation depend on state-level variation to
causally identify the impact of the reformulation. Treating OxyContin reformulation
as an exogenous shock at the state level is potentially problematic. Although the
timing of the reformulation is exogenous, each state’s exposure to it is a result of
a combination of the state’s regulatory environment and Purdue’s initial marketing
strategy (Alpert, Evans, et al., 2019). These factors have substantial impact on
how people in a state respond to the reformulation, creating a hidden link between
exposure to the reformulation, the identifying variation, and subsequent drug use,
the outcome variable.

One can limit the impact of endogenous regulation by disaggregation, but only
if there is substantial intra-state variation in exposure to the reformulation. Both
the ARCOS database and the NVSS mortality data have great geographic detail.
Conducting our analysis on metropolitan statistical areas (MSAs), we find large
variation in both OxyContin use and opioid mortality across MSAs in the same
state. At the aggregate level in 2009, the average OxyContin market share in a state
is 35.6%. 65 of the 379 MSAs (17.1%) in our sample have an OxyContin market
share that is 10% greater or smaller than their state average. The average opioid
mortality is 0.343 deaths per 100,000 population in 2008. The variation in death
is even more significant. More than 310 (83%) MSAs have a mortality rate 20%
higher or lower than their state average, and more than 192 (51%) have a mortality
rate 50% higher or lower than their state average. We present the full distribution
of deviations of OxyContin market share and opioid mortality from state average in
Figure A.4 and Figure A.5 in the Appendix.

reported. Even if we assumed all 2.49% of respondents saying they took a prescription pain reliever
not listed had taken generic oxycodone, it is still less than half of the reported Percocet misuse.
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Disaggregating to the MSA-level allows us to control for the state’s regulatory
environment and hence eliminate the most problematic source of endogeneity. We
use intra-state variation in exposure to the reformulation for identification. Intra-state
heterogeneity in opioid use is associated with past economic conditions (Carpenter,
McClellan, and Rees, 2017), location of hospitals and treatment centers (Swensen,
2015), preferences of local physicians (Schnell, 2017), and local policy, some of
which could still be correlated with the locality’s response to the reformulation.
Analysis at the MSA level clearly allows us to make a much stronger claim than
analysis at the state level.

In addition, as we will show in the next sections, the disaggregation increases the
statistical power of our regressions beyond the impact of the tripled sample size.
Our results indicate that defining the market at the MSA level better captures the
interaction between drug use and mortality than the state level. The important
variations in drug use, for example between Los Angeles-Long Beach-Santa Ana
at 4.4% of nonmedical use of pain relievers and San Francisco-Oakland-Fremont
at 5.6%, disappears when they’re aggregated to the state level (2005-2010 NSDUH
MSA Detailed Tables 2012).

OxyContin and Non-OxyContin Oxycodone Exposure
Since the OxyContin reformulation was a national event independent of local con-
ditions, we can estimate its impact by comparing the outcomes in areas of high prior
exposure to opioids with outcomes in areas of low exposure. Ideally, we want to
quantify exposure using the volume of OxyContin misused in each region pre-reform
while controlling for the volume of generic oxycodone misused. In practice, we do
not observe these quantities. The best proxy in the literature is the self-reported
misuse rate from the NSDUH.

Based on the NSDUH misuse, we create a new measure of OxyContin and non-
OxyContin oxycodone exposure by combining the NSDUH state-level misuse rate
with ARCOS MSA-level sales. Specifically, for each drug, we calculate:

Exposurepre-reform
𝑚 = Lifetime Misuse2004−2009

𝑠 × Sales2009
𝑚 (1.1)

Our measure is the interaction term of sales of OxyContin/generic oxycodone in
an MSA and the lifetime misuse rate of that drug in the corresponding state. This
new measure has two advantages over the conventional misuse rate from NSDUH:
it captures intra-state variation in misuse and it more accurately reflects the current
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misuse of both OxyContin and generic oxycodone.

The NSDUH surveys approximately 70,000 respondents every year and uses demo-
graphic reweighting techniques to get accurate state level estimates. Once we get
to the MSA level, the number of people surveyed as well as the number of positive
responses to questions on opioid misuse are extremely small. As a result, most of
the outcomes at the MSA level are censored by the NSDUH to protect individual
privacy. Using only the survey data means that we would use same state misuse
value for all MSAs and therefore forgo any intra-state variation in drug use. In
comparison, our proposed measure relies on deviations from normal sales patterns
to generate variations in exposure rates for the MSAs. Our definition assumes that
the percentage of people reported misusing a particular drug in a state is equivalent
to the proportion of sales that are being misused. In a state where all the MSAs
have identical sales, all the MSAs will have identical exposure rates by definition.
However, if one MSA has higher sales of OxyContin compared with the rest of the
state, our OxyContin exposure measure in that MSA will be higher than the rest of
the state. This construction of exposure mirrors our intuitive understanding that the
misuse of a drug in a locality is a function of the overall misuse and the availability
of that particular drug in the area.

The NSDUH survey15 reports past-year misuse of OxyContin but only lifetime mis-
use of generic oxycodone. Previous studies did not focus on generic oxycodone
misuse, so these studies rely on past-year OxyContin misuse rate. In our case, to
disentangle substitution among prescription opioids, we have to make the compari-
son between OxyContin and generic oxycodone equal. Resorting to lifetime misuse
rates for both series sacrifices the timely nature of the NSDUH misuse rates. By
combining the lifetime misuse rates with sales in the year before reformulation,
we capture recent changes in use of both drugs. To make our results comparable
with previous studies, in the Appendix section, we repeat our entire analysis with
OxyContin last-year misuse and generic oxycodone lifetime misuse. Most of our
conclusions stand despite giving OxyContin a more favorable treatment.

To construct our measure, we follow the precedent set in the literature by using
a six-years-average state-level lifetime misuse rate pre-reform (2004 to 2009) and
sales in 2009. The goal of the time average is to reduce the variance of the state-level
misuse rates. We check the validity of our measure by regressing opioid death on it

15In all surveys prior to 2014.
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Table 1.1: Summary Statistics

All MSAs MSAs
with low
OxyCon-

tin
exposure

MSAs
with high
OxyCon-

tin
exposure

MSAs
with low

oxycodone
exposure

MSAs
with high
oxycodone
exposure

NSDUH lifetime misuse rates (2004-2009)
OxyContin misuse rate (%) 2.22 1.88 2.56 1.87 2.56
Oxycodone misuse rate (%) 5.19 4.22 6.17 3.75 6.64

Annual ARCOS sales (all sample period)
Oxycontin sales per person 65.71 43.47 88.06 50.70 80.79
Oxycodone sales per person 181.84 112.50 251.55 99.24 264.88

Annual death per 100,000 (all sample period)
Opioid 0.32 0.23 0.41 0.23 0.42
Heroin 0.13 0.09 0.16 0.10 0.16

Census Demographics (2009)
Number of MSAs 379 190 189 190 189
Population 679878 745327 614082 663740 696101
Age 36.13 34.68 37.59 34.84 37.43
Male (%) 49.24 49.35 49.13 49.40 49.08
Separated (%) 18.83 18.24 19.42 18.32 19.34
High school and above (%) 84.20 82.79 85.61 83.68 84.72
Bachelor and above (%) 25.36 24.77 25.96 24.85 25.87
Mean income 64213 63414 65016 63058 65374
Low income (%) 35.38 35.79 34.98 35.90 34.86
White (%) 82.17 79.99 84.36 81.22 83.12
Black (%) 11.20 13.09 9.30 11.80 10.60
Asian (%) 3.03 3.47 2.60 3.52 2.54
Native American (%) 0.18 0.20 0.17 0.20 0.17

Note: Simple average, not weighted by population.

and compare the results with the same regressions on either only ARCOS sales or
only NSDUH misuse. Results are summarized in Table A.1 in Appendix. The fit
of the generic oxycodone regression is much improved with the interacted variable
(𝑅2 = 0.187) relative to using only one with NSDUH misuse (𝑅2 = 0.062) or
sales (𝑅2 = 0.176). The improvement is even larger for the OxyContin regression
(𝑅2 = 0.128) relative to using only one with NSDUH (𝑅2 = 0.084) or with sales
(𝑅2 = 0.086).

Descriptive Statistics
Table 1.1 reports summary statistics for five groups of MSAs: all MSAs, MSAs with
high OxyContin exposure, MSAs with low OxyContin exposure, MSAs with high
generic oxycodone exposure, and MSAs with low generic oxycodone exposure.
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MSAs with high OxyContin exposure and MSAs with high generic oxycodone
exposure have similar demographic summary statistics. These two groups of MSAs
also are not different statistically in their heroin mortality. Disentangling the impact
of various opioids on the rise in heroin mortality is impossible with nationally
aggregated or state-level data due to the high correlation in misuse between the two
prescription opioids. The high correlation also implies that regressing heroin death
on OxyContin without controlling for generic oxycodone use will likely lead to an
overestimation of OxyContin’s impact.

MSAs with high misuse differ from MSAs with low misuse. High misuse states have
higher sales of both types of prescription opioids (twice as much for both types of
opioids), higher mortality rate (twice as much for both opioid and heroin overdose),
smaller population, higher average age, higher median income, higher percentage
of white population, and lower percentage of black population. The differences in
racial composition repeat well-established findings in the literature: prescription
opioid misuse was originally concentrated among white users, and by 2010 new
heroin users were almost entirely white (T. J. Cicero et al., 2014). These differences
in demographic variables motivate the inclusion of control variables in our main
regressions.

1.4 Empirical Strategies
Our goal is to investigate two questions. First, what was the reformulation’s im-
mediate impact on OxyContin and generic oxycodone use? Second, what was the
reformulation’s long-run effect on opioid mortality, heroin mortality, and on the
progression of opioid addiction?

We follow the event study framework from Alpert, Powell, and Pacula (2018) to es-
timate the causal impact of the OxyContin reformulation on OxyContin and generic
oxycodone sales and opioid and heroin mortality. We exploit variation in MSAs’
exposure to the reformulation due to the differences in their pre-reform OxyContin
use while controlling for pre-reform generic oxycodone use. Our approach is similar
to Finkelstein (2007), where the OxyContin reformulation has more “bite,” or more
of an effect, in areas where OxyContin misuse was higher than in places where
generic oxycodone was the preferred drug. The approach allows us to measure
whether MSAs with higher exposure to OxyContin experienced larger declines in
OxyContin sales, larger increases in alternative oxycodone, or larger increases in
opioid and heroin mortality. The empirical framework is:
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𝑌𝑚𝑡 = 𝛼𝑠 + 𝛿𝑡 +
2014∑︁
𝑖=2006

1{𝑖 = 𝑡}𝛽1
𝑖 × OxyContin Exp𝑃𝑟𝑒𝑚

+
2014∑︁
𝑖=2006

1{𝑖 = 𝑡}𝛽2
𝑖 × Oxycodone Exp𝑃𝑟𝑒𝑚 + 𝑋′

𝑚𝑡𝛾 + 𝜖𝑚𝑡

(1.2)

where𝑌𝑚𝑡 are the outcome variables of interest in MSA𝑚 at year 𝑡; OxyContin Exp𝑃𝑟𝑒𝑚

and Oxycodone Exp𝑃𝑟𝑒𝑚 are time-invariant measures of OxyContin and oxycodone
exposure before the reformulation (see Section 3.5 for construction), and are in-
teracted with a set of 𝛽1

𝑡 and 𝛽2
𝑡 for each year. We include state-fixed effects to

control for regulatory differences among states and year-fixed effects to control for
national changes in drug use. We also include a full set of MSA-level demographic
variables. We weight the regression by population and exclude Florida.16 We show
the full set of 𝛽𝑡 estimates graphically, normalizing by the 2009 coefficient. The
𝛽𝑡 identifies the differences in sales and death across MSAs due to their higher or
lower pre-reform OxyContin or oxycodone exposure. Standard errors are clustered
at the MSA level to account for serial correlation. In the Appendix section, we
present beta estimations from variations of our base model, which include (1) using
a MSA-fixed effect instead of state-fixed effect, (2) replacing OxyContin lifetime
misuse rate with OxyContin last-year misuse rate, (3) regressing at the state level,
and show that our conclusions are insensitive to most of these variations.

To complement our results, we also use a strict difference-in-difference framework to
estimate effect of the reformulation conditioning on OxyContin and non-OxyContin
oxycodone exposure levels. Our specification is:

𝑌𝑚𝑡 = 𝛼𝑠 + 𝛾𝑡 + 𝛿11{𝑡 > 2010}
+ 𝛿21{𝑚 ∈ 𝐻𝑖𝑔ℎ𝑂𝑥𝑦𝐶𝑜𝑛𝑡𝑖𝑛} + 𝛿31{𝑚 ∈ 𝐻𝑖𝑔ℎ𝑂𝑥𝑦𝑐𝑜𝑑𝑜𝑛𝑒}
+ 𝛿41{𝑡 > 2010} × 1{𝑚 ∈ 𝐻𝑖𝑔ℎ𝑂𝑥𝑦𝐶𝑜𝑛𝑡𝑖𝑛}
+ 𝛿51{𝑡 > 2010} × 1{𝑚 ∈ 𝐻𝑖𝑔ℎ𝑂𝑥𝑦𝑐𝑜𝑑𝑜𝑛𝑒} + 𝑋′

𝑚𝑡𝛽 + 𝜖𝑚𝑡 ,

(1.3)

where 𝐻𝑖𝑔ℎ𝑂𝑥𝑦𝐶𝑜𝑛𝑡𝑖𝑛 and 𝐻𝑖𝑔ℎ𝑂𝑥𝑦𝑐𝑜𝑑𝑜𝑛𝑒 are the set of MSAs with higher than
median pre-reform exposure to OxyContin and oxycodone respectively. We restrict
the regression to include only the three years prior (2008 to 2010) and the three

16The literature excludes Florida because it underwent massive increases in oxycodone sales over
this period, some of which was trafficked to other states.
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years after (2011 to 2013) the reformulation. The advantage of this specification is
that it does not assume that OxyContin or oxycodone exposure affects the outcome
variable linearly. Instead of having a flexible 𝛿 for each year, we have only one
𝛿 for each of the pre- or post-reform period. In this specification, we simply test
whether higher exposure MSAs reacted differently to the reformulation as compared
to lower exposure MSAs (if 𝛿4 and 𝛿5 are significant). We include state-fixed effects
to control for state-level heterogeneity, year fixed effects for national trend, and a set
of time-varying MSAs level covariates. Again, standard errors are clustered at the
MSA level.

1.5 Results
We proceed in two steps. First, we provide direct evidence that the OxyContin
reformulation caused OxyContin sales to decrease and generic oxycodone sales to
increase, and that the changes in sales are proportional to the pre-reformulation level
of OxyContin exposure. Second, we estimate the impact of the reformulation on
opioid and heroin mortality. We find that high pre-reformulation levels of OxyContin
exposure were not associated with high opioid deaths, but there was a strong positive
effect from generic oxycodone exposure in both the pre- and post-reform period.
We find that higher pre-reform OxyContin and pre-reform oxycodone exposure
were both positively but not significantly associated with later heroin deaths, but the
oxycodone coefficient is larger. If we run the heroin regression separately with only
OxyContin exposure we recover the results of the literature, but running the heroin
regression with only oxycodone exposure better fits the data.

Reformulation’s Impact on Opioid Sales
We begin by showing graphically that OxyContin sales decreased and generic oxy-
codone sales increased in high OxyContin misuse MSAs immediately after reformu-
lation. Figure 1.3 and Figure 1.4 present the full set of coefficients from estimating
the event study framework on OxyContin and generic oxycodone sales. Each data
point in the figure is the coefficient of the interactive term of misuse and sale, which
we call exposure, for OxyContin or generic oxycodone in a specific year, and it
captures any additional change in sales in that year driven by high OxyContin or
oxycodone exposure. In Figure 1.3, we observe a larger decrease in OxyContin
sales post-reform in MSAs with higher pre-reform OxyContin exposure. As Fig-
ure 1.4 shows, higher OxyContin exposure MSAs saw greater increases in generic
oxycodone sales post-reform. The effects are statistically significant at the 95%
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confidence level. An one standard deviation increase in OxyContin exposure trans-
lates into an additional 21.2 MME decrease in per person OxyContin sales and 11.8
MME increase in per person oxycodone sales in 2011. These changes represents
a 24% decrease in OxyContin sales and a 8.8% increase in oxycodone sales from
the 2009 level. The effects are economically significant especially given that the
reformulation should only affect the population abusing OxyContin, so this drop in
sales is driven by a fraction of all users. The two observations combined support
the hypothesis that reformulation caused substantial substitution from OxyContin to
generic oxycodone.

Figure 1.3: Main regression on OxyContin sales. Shaded regions are the 95 percent
confidence intervals with standard errors clustered at the MSA level.

Figure 1.4: Main regression on generic oxycodone sales. Shaded regions are the 95
percent confidence intervals with standard errors clustered at the MSA level.

Figure 1.3 also documents that high pre-reform oxycodone misuse MSAs saw large
increases in OxyContin sales right after the reformulation. This phenomenon has
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been unreported previously, but would be consistent with Schnell (2017)’s physician
benevolence hypothesis where good physicians switch patients from oxycodone to
reformulated OxyContin to lower the future risk of abuse. Although the switch
toward OxyContin is smaller in magnitude than the switch from OxyContin, this
increase is the first documented positive impact of the OxyContin reformulation
in the literature. It seems both physicians and users saw the two types of drugs
as substitutes. Unfortunately, there are not enough MSAs where the switch toward
OxyContin is significant enough that it cancels out the switch away from OxyContin
to examine the possible substitution channel in the other direction.

Because we include both OxyContin and generic oxycodone misuse in the same
regression, we can separate the increases in oxycodone sales due to its own popularity
from the increases due to spillover effects from the OxyContin reformulation. Figure
1.4 shows increasing growth in oxycodone sales in MSAs with higher oxycodone
misuse until 2011, and the growth rate declined after. The smoothness of the
oxycodone curve indicates that the OxyContin reformulation had no impact on how
oxycodone misuse affected oxycodone sales. This trend corresponds well with
many states tightening control over opioid prescription policies in 2011 and 2012 in
response to rising sales and and increased awareness of opioid misuse.

Another way of estimating the impact of the reformulation is through difference-in-
difference regressions. Column (1) of Table A.2 in Appendix shows the regression
on OxyContin sales. OxyContin sales in all MSAs decreased by 8.05 MME post-
reform, a 9.4% decrease with respect to the average per person sales of 85.6 MME in
2009. High OxyContin misuse MSAs had a higher level of OxyContin sales to start
with, but experienced an additional 15.1 MME drop (an additional 17% decrease)
post-reform. Given that only 2.46% of the population ever misused OxyContin17 and
the reformulation only affected the people misusing it, a 17% additional decrease
in all OxyContin sales would translate into a very significant decrease in sales to
the population that misuses it. The negative and significant Post × High OxyContin
coefficient confirms previous findings that high OxyContin exposure MSAs saw
larger decreases in OxyContin sales post-reform.

Column (2) of the same table reports the regression on generic oxycodone sales.
Generic oxycodone sales per person increased 41.7 MME in the post period, a 31.2%
increase with respect to the average per person alternative oxycodone sales of 133.5

17NSDUH, 2010.
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MME in 2009. High OxyContin misuse MSAs experienced an additional 10.3
MME increase, which translates to a 68% conversion from OxyContin to generic
oxycodone in those areas. Combining the findings from columns (1) and (2), we see
direct substitution from OxyContin to generic oxycodone in local sales immediately
after reformulation, and the substitution pattern is more pronounced in MSAs with
high OxyContin exposure as expected.

To visualize the trend of OxyContin and alternative oxycodone sales, in Figure A.6
in the Appendix, we break all MSAs into three bins by the magnitude of the observed
drop in OxyContin sales due to the reform. Then, we plot the per person OxyContin
and generic oxycodone sales for the three group respectively. By definition, the high
empirical drop group experienced the largest decreases in OxyContin sales from
2009 to 2011 (-29%) and the low drop group experienced an increase in OxyContin
sales (+15%). Sales of generic oxycodone started at different levels, but shared
the same growth rate until the reformulation in 2010. Since 2010, the higher the
empirical drop in OxyContin, the faster the growth in generic oxycodone. The high
group saw in a 72 MME increase (46% from 2009) in generic oxycodone sales,
while the low group only saw an 29 MME increase (29% from 2009). The high
growth rate of generic oxycodone in high drop MSAs support the substitution story.
The post-reform level of OxyContin sales converges to the same level for all three
groups, suggesting that the remaining sales most likely represent non-replaceable
demand for medical OxyContin use.

Reformulation and Opioid and Heroin Mortality
Next, we estimate the impact of the reformulation on overdose mortality. In Figure
1.5, we report the full set of coefficients from estimating the event study framework
on opioid mortality. Each data point in the figure is the coefficient of the interactive
term of misuse and sale for OxyContin or generic oxycodone in a specific year,
and it captures any additional change in opioid mortality in that year driven by
high OxyContin or oxycodone exposure. The OxyContin coefficients are never
significant, suggesting higher pre-reform OxyContin misuse is not predictive of
either higher or lower opioid death post-reform. The lack of any trend indicates that
any benefit of the OxyContin reformulation on reducing OxyContin consumption is
offset by the substitution to generic oxycodone. In aggregate, the reformulation had
no impact on non-heroin opioid deaths.
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Figure 1.5: Main regression on opioid mortality. Shaded regions are the 95 percent
confidence intervals with standard errors clustered at the MSA level.

Figure 1.6: Main regression on heroin mortality. Shaded regions are the 95 percent
confidence intervals with standard errors clustered at the MSA level.

In Figure 1.6, we report the event study coefficients on heroin mortality. Again the
OxyContin coefficients are tiny and insignificant, while the oxycodone coefficients
grow over time but never reach statistical significance at conventional levels. The
lack of statistical significance is due to the small number of heroin moralities in the
whole sample and high correlations between OxyContin and oxycodone exposure.
If we were to run the OxyContin and oxycodone regression separately (see Figure
A.28 and Figure A.32 in Appendix), oxycodone exposure had a much larger and
more significant impact on heroin mortality. The results provide tentative evidence
that the higher the generic oxycodone exposure in an MSA, the higher the increases
in heroin mortality. However, the results do not support the alternative hypothesis
that the OxyContin reformulation was solely responsible for the increase in heroin
mortality.
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The difference-in-difference results mirror our finding from the event study frame-
work. Column (3) of Table A.2 in Appendix suggests that opioid deaths are 0.08
higher in high oxycodone exposure MSAs, which is equivalent to 27% of the average
opioid overdose of 0.29 per 10,000 people in 2009. Opioid mortality is 0.05 lower
(17% of the 2009 average) in higher OxyContin exposure MSAs after controlling for
oxycodone use. Higher OxyContin exposure does not lead to higher or lower opioid
overdose post-reform, while higher generic oxycodone exposure is associated with
0.06 (20.6% of 2009 average) more opioid death in the post period.

Column (4) of the same table reports the difference-in-difference regression on
heroin death. Heroin mortality has increased by 0.14 in the post period in all MSAs,
which is equivalent to a 111% increase from the average 2009 level of 0.126 heroin
death per 10,000 population. High OxyContin exposure MSAs did not experience
additional jumps in heroin mortality, while high oxycodone exposure MSAs did
experience an additional 0.07 (56% with respect to 2009 average) increase in death.
Again, the evidence from the difference-in-difference regressions indicates that
OxyContin was not responsible for the rise in heroin mortality.

In Figure A.7 in the Appendix, we show the average trend of the opioid and heroin
mortality for groups with high, medium and low observed drop in Oxycontin sales.
If the reformulation was responsible for the subsequent heroin epidemic, then the
MSAs mostly likely to have additional jumps in heroin mortality would be the MSAs
with the largest OxyContin drop. As shown in the figure, the three groups went
through the same explosive growth in heroin mortality (around 38% from 2009 to
2011, and similar rate afterward), indicating the rise in heroin was independent of
the decrease in OxyContin sales. This evidence conclusively rejects the hypothesis
that the OxyContin reformulation is solely responsible for the subsequent heroin
epidemic.

Discussion
(A) The Reformulation’s Impact on Opioid Mortality

Until now, the literature has found mixed results for the effects of the OxyContin
reformulation on opioid mortality. In contrast to previous work, we find no sta-
tistically significant impact of the reformulation on opioid mortality as a result of
substantial substitutions from OxyContin to generic oxycodone post-reform. In-
creases in generic oxycodone sales compensated for 55% of the drop in OxyContin
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sales in high OxyContin misuse MSAs by our event study framework, and 68% by
our difference-in-difference estimation. Opioid mortality continued to increase in
the post-reform period, but not was driven by high OxyContin exposure.

(B) The Reformulation’s Impact on Heroin Mortality

Our results stand in direct contrast to the findings of the literature. Instead of
being the event that precipitated the heroin epidemic, the OxyContin reformulation
shifted misuse to other opioids, of which heroin was only one. We cannot refute the
hypothesis that some OxyContin users switched to heroin due to the reformulation.
Our analysis refutes the hypothesis that the reformulation was the sole cause of the
heroin epidemic. Instead of OxyContin misuse, we identified generic oxycodone
misuse as a much more powerful driver of increases in heroin mortality post-2011.
What prompted the increases in heroin use is still an unresolved question. Previous
research has suggested an increase in the supply of heroin (O’Donnell, Gladden,
and Seth, 2017) around this time, as well as crackdowns in Florida on pill-mills
reducing the supply of oxycodone (Kennedy-Hendricks et al., 2016).

(C) Bridging the Differences between our Findings and the Literature

One of the innovations in this paper is to shed light on a hidden source of opioid
misuse: the misuse of generic oxycodone. This segment of prescription opioids was
overlooked by other scholars because of OxyContin’s dominance in opioid misuse
in the early years as well as, we argue, the lack of identifiable brand names for the
generic products. Empirical studies based on market data or interviews of opioid
users noted that many people misused generic oxycodone products (Paulozzi and
Ryan, 2006, Inciardi et al., 2009). Leaving out oxycodone misuse, an important
driver of opioid and heroin mortality that is positively correlated with OxyContin
misuse, would produce spurious regression results.

To show that the difference in findings is not driven by our constructed misuse
measure, or our choice of framework, we test whether we can reproduce findings in
the literature by running all of our regressions using only OxyContin (see Section A
in the Appendix). Our OxyContin misuse exposure individually predicts an increase
in opioid and heroin mortality post-reform as the literature claims. This finding is the
basis of previous studies supporting the claim that the OxyContin reformulation is
the main cause of the subsequent heroin epidemic. However, if we run the same set of
regressions using only generic oxycodone (see Section A), we were able to produce
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the same findings. The only way to differentiate the impact of OxyContin from that
of generic oxycodone is to include both in the same regressions. Variations in local
OxyContin and oxycodone exposure allow us to identify the impact of both series,
if any exist. As we’ve shown in our main regressions, the impact of OxyContin on
heroin disappears after controlling for the effect of generic oxycodone.

(D) Market Definition

Another innovation in this paper is a finer definition of the opioid market. It is
important to consider what we gain from disaggregating to the MSA level. The
specific OxyContin market share in a state is endogenous to a great many things,
including advertising (Van Zee, 2009) and triplicate status (Alpert, Evans, et al.,
2019). Although the OxyContin reformulation was an exogenous shock, its inter-
pretation is made very complicated because its impact depended on each state’s
regulatory history and prescribing environment. We do our regressions at the MSA
level, where there are unobserved local conditions that affected sales of OxyContin
and generic oxycodone, while controlling for state-level laws and restrictions. By
comparing two different MSAs with the same regulatory environment but different
exposures to the reformulation, we can get at the marginal effects of OxyContin
and generic oxycodone exposure. Contrasting the state-level regression estimates
(see Section A) with our main results, our main results are larger in magnitude and
more statistically significant. The MSA level estimation of the effect of exposure on
mortality is more stable.

(E) Definition of OxyContin Misuse

The literature relies on NSDUH’s OxyContin past-year misuse. To make our findings
comparable with previous studies and robust to the choice of misuse measure, we
repeat our entire analysis with OxyContin last-year misuse and generic oxycodone
lifetime misuse (see Section A for results.) As noted in Section 1.3, using last-year
OxyContin misuse gives an unfair advantage to OxyContin due to the timeliness of
the measure. If our findings on oxycodone persist despite the unequal treatment of
the two misuse measures, then it is a stronger indication of the essential role generic
oxycodone played in the opioid and heroin epidemic.

Comparing the two sets of results, we observe the same decline in OxyContin sales
and increase in generic oxycodone sales, although smaller in magnitude. Both
sets of coefficients on opioid mortality become positive but insignificant. Finally,
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comparing the heroin result, at the state level we detect a positive effect on heroin
mortality from OxyContin. In aggregate, our results lose some significance when
we replace lifetime OxyContin misuse with last-year OxyContin misuse. The loss
of significance, however, is in the direction predicted by the unfair advantage given
to OxyContin. This exercise highlights the importance of treating the two misuse
measures equally. When we use measures that more accurately capture recent
OxyContin misuse than recent generic oxycodone misuse, we could mistakenly
attribute effects of generic oxycodone to OxyContin.

1.6 Conclusion
Researchers have attributed the prescription opioid crisis and recent increase in
heroin use to OxyContin. Previous studies have documented how Purdue Pharma’s
marketing downplayed the risks of OxyContin’s abuse potential, which fomented the
prescription opioid crisis; recent studies identified the OxyContin reformulation as
the event that pushed users to switch to heroin, which precipitated recent increase in
heroin use. This paper revisits the roles OxyContin and the Oxycontin reformulation
played in the opioid crisis with fine-grained sales data that includes OxyContin’s
most immediate substitute, generic oxycodone. We have three main findings.

First, we find direct evidence of substitution to from OxyContin to generic oxy-
codone post-reformulation. Our difference-in-difference estimation indicates a 68%
substitution from OxyContin to generic oxycodone due to the reform. Looking at
the decline in OxyContin sales and rise in generic oxycodone sales from 2002-2006,
we believe this substitution (for different reasons, namely Purdue’s loss of its patent)
also happened years before the reformulation. The size of this substitution, and
indeed the size of the generic oxycodone market pre-reform, may come as a surprise
to researchers. Paulozzi and Ryan, 2006 estimate that in 2002 OxyContin’s market
share was 68%. By the time of the reformulation in 2010, it had fallen by more than
half. OxyContin played an essential part in igniting the prescription opioid crisis
but, after losing its patent in 2004, other companies took up the torch and surpassed
Purdue by selling generic oxycodone.

Our second main finding is that the OxyContin reformulation had no overall effect on
opioid mortality. In our estimation, the OxyContin coefficients are not significant in
the entire sample period, suggesting that higher OxyContin exposure is not predictive
of either higher or lower opioid death. The lack of any trend indicates that the
benefits of the OxyContin reformulation, if they exist, are offset by substitution to
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oxycodone. In addition, we do find that high oxycodone exposure is predictive of
rise in opioid mortality from 2011, confirming the increasingly important role of
generic oxycodone in the recent prescription opioid crisis.

Third and most importantly, we show that the heroin overdose deaths after 2010
were predicted by generic oxycodone exposure, not OxyContin exposure. Our main
event-study model shows positive and significant effects from oxycodone exposure
on heroin deaths after 2012, but OxyContin exposure is not predictive of heroin
deaths once we control for oxycodone. The difference-in-difference results are
similar, showing that oxycodone exposure was predictive of heroin deaths before or
after the reformulation, and OxyContin exposure after the reformulation is weakly
positive but not statistically significant. We also do not observe an additional
rise in heroin deaths immediately after reformulation in areas where OxyContin
sales declined the most post-reformulation. In particular, without including generic
oxycodone in the analysis, we recover the same results from the literature that
OxyContin was responsible for the rise in heroin deaths. The evidence shows that
omitting oxycodone, an important substitute to OxyContin, produces erroneous
results. This paper demonstrates the pernicious effects of generic oxycodone, which
had thus far escaped scrutiny until the Washington Post acquired data and reported
on it.
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C h a p t e r 2

GEOGRAPHIC SPILLOVER EFFECTS OF PRESCRIPTION
DRUG MONITORING PROGRAMS (PDMPS)

DANIEL GUTH AND SHIYU ZHANG

Prescription Drug Monitoring Programs (PDMPs) seek to potentially reduce
opioid misuse by restricting the sale of opioids in a state. We examine disconti-
nuities along state borders, where one side may have a PDMP and the other side
may not. We find that electronic PDMP implementation, whereby doctors and
pharmacists can observe a patient’s opioid purchase history, reduces a state’s
opioid sales but increases opioid sales in neighboring counties on the other
side of the state border. We also find systematic differences in opioid sales
and mortality between border counties and interior counties. These differences
decrease when neighboring states both have ePDMPs, which is consistent with
the hypothesis that individuals cross state lines to purchase opioids. Our work
highlights the importance of understanding the opioid market as connected
across counties or states, as we show that states are affected by the opioid
policies of their neighbors.

2.1 Introduction
Over the past two decades, the opioid epidemic has claimed more than 415,000
American lives (National Center for Health Statistics, Centers for Disease Control
and Prevention, 2020). To stem the rising tide of opioid misuse, in the early 2000s,
states began to regulate prescription opioid sales. Among the different policies that
were implemented, we focus on Prescription Drug Monitoring Programs (PDMPs)
that require prescribers and dispensers to submit data to a centralized system. In this
paper, we study the effects of states’ implementation of electronic-access PDMPs,
a version of the law that allows doctors and pharmacists to query the patient’s
prescription history in real-time, on different regions in the same state and on the
nearby states. Specifically, we focus on how sales in counties that border other states
react differently to new PDMP regulations from sales in “inland” counties.

Our analysis shows that electronic-access PDMPs reduce prescription opioid sales
and opioid mortality. The effect is economically and statistically significant despite



36

the fact that endogenous adoptions of such regulations bias our estimates of their
impact downward. We find that border counties (counties that are immediately
adjacent to another state) are systematically different from inland counties (coun-
ties not immediately adjacent to a county in a different state) and the enactment of
ePDMP laws disproportionately affects border counties. These findings are consis-
tent with our hypothesis that the border counties are destinations for consumers who
are doctor or pharmacy shopping due to their proximity to another state. We also
find a small but significant spillover effect in the form of increased opioid sales and
overdose deaths when the neighboring state adopts stricter PDMP regulations.

Using the novel ARCOS data, we confirm the literature’s general finding that PDMPs
reduce opioid sales and mortality. We also contribute to resolving a debate in the
literature about what features of PDMPs are more effective than others. We find that
one specific implementation, electronic-access PDMPs (ePDMPs), is most effective
at reducing opioid sales and mortality. Compared to a regular PDMP, this version
not only requires doctors to submit information, but also allows doctors to see
what other opioids a patient has received in real time. To the extent doctors and
pharmacists consult the databases, ePDMPs mitigate the problem of individuals
going to multiple doctors or pharmacies to secure opiates. We find that ePDMP
laws reduce per person sales by 0.006 mg in active ingredient weight1, which is
equivalent to a 5.6% drop the 2006 national average, and per 100,000 mortality by
0.279, which is equivalent to a 12.3% decline from the 2006 national average.

We perform our analyses at the county level, which allows us to measure systemic
differences in opioid markets of inland versus border counties due to the presence
of state borders. Border counties appear similar to inland counties on observable
demographics, but they have significantly higher opioid sales and lower opioid
overdose deaths. These differences are consistent with the hypothesis that border
counties are more frequently the destinations of doctor or pharmacy shopping,
largely because their proximity to other states leads to lower travel costs for out-of-
state residents. This difference between border counties and inland counties falls
after the state adopts ePDMP, which further confirms our hypothesis that a higher
percentage of sales in border counties were trafficked elsewhere for consumption.
Our findings challenge the states-as-islands model often assumed in the opioid
literature.

1The active ingredient weight is equivalent to the morphine milligram equivalent (MME) divided
by 1500.
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We also document negative externalities from these ePDMP laws, in the form of
opioid sales and mortality increases in the border counties of neighboring states. We
argue that these externalities come from the demand-side response of individuals
using opioids, who now acquire these prescription drugs from out-of-state. The
substitution to opioids from other states potentially reduces the effectiveness of
ePDMPs as a policy intervention. The spatial substitution identified in this paper
builds upon our previous work (Zhang and Guth, 2021) showing that partial supply-
side interventions, like the OxyContin reformulation, can lead to drug substitution
instead of preventing misuse. In the case of ePDMPs, the policy intervention was
at the state and not the national level, so sales shifted across state lines instead of
across products. This paper adds to the growing literature on the side effects of
supply-side intervention curbing the opioid crisis (Alpert, Powell, and Pacula, 2018;
Kim, 2021).

Our work speaks to the importance of not analyzing individual state policies in a
vacuum. Individuals frequently cross these invisible borders in their day-to-day
lives, and they may thus be subject to different regulatory regimes. The ability
for individuals to evade one state’s regulations for another extends to all markets
regulated at the state level. One of the policy implications of our work is that there
are costs to regulating opioids at the state level, and there would be benefits in
enacting a national ePDMP. The American College of Physicians has called for a
national prescription drug monitoring program, and for standardized PDMP laws
across states until that point (Kirschner, Ginsburg, and Sulmasy, 2014).

The rest of the paper is as follows. Section 2 gives a background on PDMP laws as
well as an overview of the literature understanding their effects. Section 3 describes
the county-level sales and mortality data we use, the spread of PDMP laws during
this time period, and our categorization of border counties. Section 4 describes
how we model PDMP-border counties as well as our predictions based on economic
theory and known trafficking patterns. Section 5 provides our results on sales and
mortality, and finally, Section 6 concludes.

2.2 Background and Literature Review
Our paper connects three different strands of literature. First, we contribute to the
literature on the opioid crisis and policies curbing opioid misuse. Second, we take
methods from spatial economics and apply them to cross-border opioid sales and
misuse. Third but not least, we build upon modern analyses of the effects of PDMP
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laws.

The Opioid Crisis and Interventions
Over the past two decades, millions of Americans have misused prescription opioids.
In 2019 alone, 1.6 million people had an opioid use disorder and 70,630 people died
from an opioid overdose2. Opioid use disorder has devastating consequences for the
individual, the family, and the community. The CDC estimates the total “economic
burden” of prescription opioid misuse to be 78 billion dollars a year.

Many victims of the epidemic got their first access to an opioid from a doctor’s
prescription. Previous research has documented large variations in opioid prescrib-
ing and sales, both within and across states. McDonald, K. Carlson, and Izrael
(2012) shows that the ratio of per-capita oxycodone sales in counties in the 75th
percentile to counties in the 25th percentile is approximately seven to one. Their
best model can only predict one-third of the variation in sales by county. Finkelstein,
Gentzkow, and Williams (2018) uses Medicare data to track individuals who move
between counties, and the paper finds that location has a noticeable effect on an
individual’s access to opioids. The paper estimates that 30% of the difference in
opioid prescribing between counties can be explained by these place-specific factors.
Our work is connected to the opioid prescription literature, in that we both study
location-specific effects, but our data is on opioid shipments to pharmacies which
occurs further down the prescription pipeline. We add to this literature by showing
that being on the state border is one of these factors that affects local opioid sales
and misuse.

Over the last two decades, states have made repeated attempts to regulate the sales
of prescription opioids in the hope of preventing further opioid misuse. Litigation
against Purdue Pharma, the manufacturer of the drug that ignited the opioid crisis, led
the company to reformulate OxyContin in 2010. The reformulation led to reduced
sales of OxyContin, but spurred on an increase in alternative oxycodone and heroin
misuse (Zhang and Guth, 2021; Alpert, Powell, and Pacula, 2018; Evans, Lieber,
and Power, 2019). Many states enacted new PDMP laws or tightened existing ones.
The evidence of the effectiveness of such laws is mixed (for more detail see Section
2.2), and some argue that the new restrictions led to increases in heroin mortality
(Kim, 2021; D. Dave, Deza, and Horn, 2021). Some states, Florida included,
passed legislation that requires pill mills—rogue pain management clinics that were

2The US Department of Health and Human Services on the Opioid Epidemic (link).

https://www.hhs.gov/opioids/about-the-epidemic/index
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inappropriately prescribing and dispensing opioids—to register with the state. The
pill mill laws have led to a moderate decrease in opioid prescription and use (Rutkow
et al., 2015; Kennedy-Hendricks et al., 2016). One common theme in this strand
of the literature is a substitution toward alternative drugs when the original supply
became restricted. We add to this literature by evaluating the effectiveness of PDMP
laws while taking into consideration potential spatial spillovers.

Spatial Spillover and Opioids
Our work ties tightly into the literature studying the distribution of economic ac-
tivities across space. Many works have noted how geographic characteristics have
a direct impact on manufacturing, sales, and trade. Holmes (1998) finds sharp
increases in manufacturing activity across the border in so-called “pro business”
states. Similarly, Nachum (2000) finds that location and agglomeration effects can
explain which states transnational corporations choose to put their headquarters in.
Fox (1986) examines border counties and finds that changes in state taxes can shift
purchases across state lines. Garrett and Marsh (2002) examines lottery sales in
Kansas and estimates that the state loses $10.5 million dollars in net lottery revenue
to cross-border shopping in 1998. We use border counties, a concept from this liter-
ature, to show how state policy differentially affects different locations. Our setting
provides the perfect environment to test for spillovers because we have detailed sales
data on exactly where opioids are sold, which is not common in other settings.

We also contribute to a small but significant literature on cross-border prescrip-
tion shopping. Crossing state and national borders to taken advantage of favorable
regulatory environments to obtain drugs is not a new concept in the literature.
Casner and Guerra (1992) documents patients crossing the US-Mexico border to
purchase prescription medication cheaply and without a prescription. McDonald
and K. E. Carlson (2014) estimates that approximately 30% of “doctor shoppers"
had opioid prescriptions from multiple states. Cepeda et al. (2013) finds that 4% of
non-shoppers visited more than one state to purchase opioids, and for individuals
who visited multiple pharmacies to purchase opioids, the median distance between
pharmacies was about 12.6 miles. We add to this literature by leveraging decentral-
ized policy change to systematically identify the impact of cross-border shopping
on opioid sales.
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Prescription Drug Monitoring Programs
Before any Prescription Drug Monitoring Programs, or PDMPs, individuals can
freely doctor or pharmacy shop3, and there is no way for doctors or pharmacists
to know how many other prescriptions an individual has. PDMPs are state-level
databases that track controlled substance prescriptions in a state. The modern
precursor to the PDMP was California’s “Triplicate Prescription Program” enacted
in 19394. The law required the dispensing pharmacist to fill out standardized forms
for controlled substances and mail a copy to a centralized state repository. The
California program set the blueprint for PDMPs and many states followed suit in
subsequent decades. The legality of PDMPs was tested in Whalen v. Roe, where the
Supreme Court unanimously ruled that storing this personal medical information
did not violate a person’s right to privacy.

These original PDMPs collected information from doctors and pharmacists via mail
or fax, and doctors and pharmacists could not immediately query a patient’s opioid
history. Oklahoma implemented the first fully electronic PDMP in 1990 that directly
and routinely sent records to a state database (Holmgren, Botelho, and Brandt, 2020).
Currently, the electronic-access PDMPs allow registered doctors and pharmacists
to query the data set in real-time and see all opioids an individual received in that
state. The 21st century saw a wave of expansion to electronic PDMPs and by
2019, all but one US state have implemented e-access PDMPs (Mallatt, 2019). The
next wave of PDMP regulation is the must-access or mandatory PDMPs. These
laws require doctors and pharmacists to check an individual’s opioid history before
dispensing opioids. Absent the mandate, only filling the information is mandatory;
checking a patient’s history is voluntary. The must-access laws are often based on,
and enacted after, electronic PDMPs. By 2017, 19 states have enacted some version
of must-access PDMPs.

Most states do not share any information collected from PDMPs with other states5.
The lack of information sharing made it feasible for individuals to partially circum-
vent the regulation by shopping across state borders. If state A adopted an ePDMP,

3Doctor shopping refers to the behavior of individuals going to multiple doctors to get opioid
prescriptions to evade scrutiny, and pharmacy shopping refers to going to multiple pharmacies to get
the prescriptions filled.

4New York had the first PDMP law in 1918, but rescinded it three years later.
5Lin et al., 2019 shows that in 2014, 23 states had some sort of data sharing agreement, but many

of these agreements were one-way, and only Michigan and Indiana shared this information with all
of their neighboring states.
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an individual would face greater difficulty getting a second opioid prescription filled
in-state. This difficulty could occur either from doctors, who upon observing that a
patient already has an opioid prescription do not write another, or from pharmacists
who refuse to fill it for the same reason. However, an individual could attempt to get
and fill a second prescription in a neighboring state. We aim to evaluate the propen-
sity for individuals to get opioid prescriptions outside of their state, specifically to
avoid PDMP regulations.

There is a wide array of studies on the effects of PDMPs. One typical corroborated
result in the literature is that PDMPs decrease prescription opioid sales (Simeone and
Holland, 2006; Reisman et al., 2009; Kilby, 2016) and reduce abuse and mortality
(Simeone and Holland, 2006; Patrick et al., 2016). Some papers note that specific
formulations of PDMP are more effective than others. Effective features include
monitoring more drugs and updating weekly (Patrick et al., 2016), and identifying
and investigating cases proactively (Simeone and Holland, 2006). Bao et al. (2016)
look at 22 states from 2001 to 2010 that implemented electronic access to PDMPs
and showed it reduced oxycodone prescriptions from ambulatory visits to physician
offices by 30%. A set of papers claim that only must-access PDMPs (MA-PDMPs)
are effective in reducing opioid misuse (Buchmueller and Carey, 2018; Grecu,
D. M. Dave, and Saffer, 2019; D. Dave, Deza, and Horn, 2021; Meinhofer, 2018;
Kim, 2021) which conflicts with existing results on effectiveness of non-mandatory
PDMPs. We contribute to this debate by showing that ePDMP laws are effective at
reducing sales and overdose deaths during our sample period.

The disagreement in the literature on what features of PDMPs are more effective
than others is partly the result of each paper employing its own categorization of
laws and testing the effectiveness on different outcome variables. Assembling an
accurate policy data set across all 50 states is inherently challenging (Schuler et al.,
2021). Horwitz et al. (2018) point out that the inconclusive and contradictory results
may be due to the large variations in dates used in different studies. Existing sources
of enactment dates rarely acknowledge the researchers’ decisions in creating such a
data set, and the public sources have a large disagreement. In this paper, we use the
“modern system operational date” variable from Horwitz et al. (2018) in our main
analysis. We will elaborate on the choice of “modern system operational date” over
other implementation dates in Section 2.3.

States adopted PDMP policies at different times, but the literature generally does not
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address potential endogeneity concerns. For our regression specification, one par-
ticularly worries that states might be more likely to adopt PDMPs because they have
the infrastructure to make the laws effective. If so, a naive regression’s coefficients
would be biased in favor of the hypothesis that the laws matter but such upward
biases are unlikely. We argue that adoptions of PDMP laws are endogenous to local
conditions but in ways that bias coefficients downwards toward zero rather than
upwards. Specifically, places that are experiencing more opioid misuse or higher
growths in sales or overdoses are the most likely to adopt measures like PDMPs.
A simple difference-in-difference estimation of the effect of the law underestimates
its impact and biases against the key hypotheses we want to test. Our estimation
of the impact of PDMP laws on sales and mortality both suffer from this bias, but
we are capturing statistically significant coefficients nonetheless. Moreover, since
the enactment of PDMPs in a state is independent of the differences between border
and inland counties in that state, and independent of conditions in nearby states, our
estimation of the border effect and spillover will not be affected by the endogeneity
problem.

2.3 Data
In this section, we introduce the data source of our sales and mortality data, describe
our choice of PDMP implementation dates, define how we characterize border
counties, and present summary statistics.

ARCOS sales data and NVSS Mortality data
As part of the Controlled Substances Act, distributors and manufacturers of con-
trolled substances are required to report all transactions to the DEA. This Automation
of Reports and Consolidated Orders System (ARCOS) database contains the record
of every pain pill sold in the United States. The complete database from 2006
to 2014 was recently released by a federal judge as a result of an ongoing trial
in Ohio against opioid manufacturers.6 The part of ARCOS that we use in this
paper is shipments of oxycodone from manufacturers to pharmacies. In theory, the
manufacturer to pharmacy shipments are not equivalent to sales to the consumers.
However, since pharmacies do not keep large stocks of opioids, the aggregated an-
nual data of sales from manufacturers to pharmacies is practically equivalent to the
annual sales of pharmacies to consumer sales. The benefit of ARCOS data is that
it allows disaggregation to arbitrarily fine geographical levels, which is essential for

6Link to the ARCOS Data published by the Washington Post.

https://www.washingtonpost.com/graphics/2019/investigations/dea-pain-pill-database/
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the identification of the border effects, and it contains all opioid sales which allows
us to identify spatial substitution. The ARCOS sales data is the primary outcome
variable in our regressions.

We care about how PDMP laws affect opioid sales, but ultimately we’re interested
in preventing their effects on overdoses and deaths. The second outcome of interest
in our main regression is opioid mortality. We use the restricted-use multiple-
cause mortality data from the National Vital Statistics System (NVSS) to track
opioid overdoses. The dataset covers all deaths in the United States from 2006
to 2014. We follow the literature’s two-step procedure to identify opioid-related
deaths. First, we code deaths with ICD-10 external cause of injury codes: X40–X44
(accidental poisoning), X60–64 (intentional self-poisoning), X85 (assault by drugs),
and Y10–Y14 (poisoning) as overdose deaths. Second, we use the drug identification
codes, which provide information about the substances found in the body at death,
to restrict non-synthetic opioid fatalities to those with ICD-10 code T40.2.

PDMP Enactment Dates
As discussed in the background section, there are multiple sets of PDMP enactment
dates, and the literature disagrees on which is the most effective in reducing opioid
misuse. In this paper, we consider three sets of dates: (a) the legislated start date (any
PDMP), which is the year that dispensers or prescribers would be required to send
prescriptions to a central database, (b) the electronic access date (ePDMP), which
is the year that the PDMP data becomes accessible to the dispensers or prescribers
through a centralized electronic system, and (c) the must-access date (MA-PDMP),
which is the year when certain dispensers or prescribers are required to check an
individual’s opioid history before dispensing. In Figure B.1 in Appendix, we graph
the three enactment dates for each state. Most states started with the most basic
version of PDMP and gradually adopted e-access in the 2000s. Only a handful of
states adopted must-access PDMP during our time period.

We use ePDMP dates in our main regression analysis. The reasons are twofold.
First, ePDMPs have large impact on prescriptions and sales both conceptually and
empirically. Conceptually, an ePDMP streamlines the process by which the pre-
scribers and dispensers check a patient’s prescription history. Before an ePDMP,
prescribers and dispensers are required to report opioid prescriptions but could not
easily tell what other prescriptions an individual had. ePDMPs allows them to check
a patient’s opioid history online in real-time, so they could more easily refuse opioids
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to questionable patients. Although an ePDMP is less restrictive than a MA-PDMP, it
is reasonable to assume a large number of doctors who are conscious of the severity
of the opioid crisis would have taken advantage of the electronic system when it
became available. Empirically, Horwitz et al., 2018 finds this set of dates is most
correlated with reductions in opioid sales after comparing it with nine other sets of
dates7.

Second, our sample period has higher coverage of enactment of ePDMP as compared
to the other two dates. There is reasonable consensus in the literature that each wave
of new PDMP legislation tightens the legal supply of opioids and reduces misuse
(although the literature disagrees on which version is the most effective). Given that
each round of legislation may have some impact, we want to work with the one that
gives us the most identification power. The switch from no PDMP to any PDMP
happened in the 1990s and early 2000s, and by 2006, the start of our sample period,
31 states have already adopted it. The adoption of ePDMPs took place mainly during
our sample period: 37 states adopted ePDMP between 2006 and 2014. Only 10
states enacted MA-PDMP during our sample period. Working with ePDMPs allows
us to use data from more states to estimate the impact of the law. Our 𝛽 estimations
would be less reliant on trends from a few states.

Our ePDMP dates are obtained from Horwitz et al. (2018)8. We use Horwitz as
our main source because this paper is the most systematic methodological paper on
PDMP implementation timing that we’ve reviewed. In robustness, we use ePDMP
dates published by the Prescription Drug Abuse Policy System (PDAPS), an orga-
nization funded by the National Institute on Drug Abuse to track state laws related
to prescription opioid abuse. To check if other PDMP laws have similar spillover
effects, we use any PDMP dates from Horwitz et al. (2018) and MA-PDMP dates
from Sacks et al. (2021). We list all sets of dates in the Chapter 2 Appendix.

Defining Border Counties and Assigning ePDMP Status
We define a border county as a county that neighbors at least one county in an
adjacent state and an inland county as a county that borders only counties of the

7To be fair, the paper did not compare ePDMP with MA-PDMP.
8The authors coined their e-access dates the “modern system operational date.” Although the

naming is different, the two definitions are conceptually identical.
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same state. After excluding Alaska, Hawaii9, and Florida10 from our data, we have
2906 counties, 37.3% of which are border counties (see Figure B.2 in Appendix for
a visual representation of border and inland counties). For each inland county, we
document whether an ePDMP law has been implemented. For each border county,
we document whether a law has been implemented in that state and the bordering
state(s). If a county is bordering multiple states and these states have different
ePDMP status, the nearby law of the county will be the ePDMP status under which
the majority of the nearby population live11. We only need to do this calculation on
653 county-year observations, which is 6.6% of all border county-year observations.
See Figure B.3 in Appendix for an example of the calculation.

The transition from states not having an ePDMP to having an ePDMP is key to our
identification. During our sample period, over 60% of all counties transitioned from
no ePDMP to ePDMP (see adoption rate in Figure B.4 in Appendix). Identification
of border coefficients relies on law change in a county and law changes in nearby
border counties. The majority of the transitions in border counties also took place
during our sample period: over 80% of border counties has no ePDMP regulation
in 2006 and that number decreases to less than 20% by the end of 2014 (see detailed
transitions in Figure B.5 in Appendix).

Summary Statistics
Since we are comparing border counties to inland counties of the same state, it is
important that we acknowledge any potential differences between the two sets of
counties, especially those associated with opioid use. In Table 2.1, we document
the population-weighted average of opioid sales, mortality, and important demo-
graphics, and ePDMP coverage of the two sets of counties. Border counties have a
significantly higher level of opioids sales throughout the sample period. They have
lower levels of opioid mortality in 2006, but the difference loses significance since
2010. We will discuss these differences in outcome variables in our hypotheses
and result section. The two sets of counties are quite similar on all demographic

9Alaska and Hawaii neighbor no US states.
10Florida experienced a dramatic rise in opioid supply in the 2000s and then a significant drop

due to crackdown on pill mills in 2010–2011. It is common practice in the literature to exclude
Florida from the analysis.

11The underlying idea is that the ePDMP status of more populous nearby counties would have
a bigger impact on the local county than the ePDMP status of less populous nearby counties.
Specifically, we sum up the population adjacent to a border county by ePDMP status. If more nearby
population resides under the states with PDMP law than no law, the county’s nearby law variable
will be 1; if more nearby population resides under the states with no law, it will be 0.
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dimensions. Since some of these demographic factors are associated with higher
levels of opioid misuse, it is important we control for demographic differences in
our regressions.

Table 2.1: Summary Statistics.

Variables All
counties

Border
counties

Inland
counties

Test of
equality
(p-value)

Opioid-related statistics
Sales per person (2006) 0.101 0.113 0.095 3.28e-11
Sales per person (2010) 0.163 0.185 0.150 0.004
Sales per person (2014) 0.158 0.181 0.145 0
Opioid overdose per 10,000
(2006)

2.22 2.01 2.33 0.003

Opioid overdose per 10,000
(2010)

3.35 3.29 3.38 0.574

Opioid overdose per 10,000
(2014)

3.84 4.02 3.75 0.164

Demographics (2009)
Average Population 98,853 92,914 102,392 0.397
Average Age 36.11 36.8 35.7 0.149
Male (%) 49.2 49.0 49.3 1.53e-07
Separated (%) 18.2 18.6 18.1 0.001
High School and above (%) 83.4 83.9 83.1 0.002
Bachelor and above (%) 27.4 27.2 27.6 0.004
Mean income 70,130 71,063 69,625 0.05
Low income (%) 33.2 33.3 33.2 0.703
White (%) 78.6 79.0 78.4 0.279
Black (%) 12.8 13.6 12.4 0.015
Asian (%) 4.94 3.87 5.51 0
Native American (%) 0.178 0.141 0.197 8.41e-05

PDMP-related statistics
Number of counties 2906 1085 1821
Have ePDMP by 2006 (%) 18.6 17.8 20.1
Have ePDMP by 2010 (%) 50.5 52.0 49.5
Have ePDMP by 2014 (%) 87.2 85.1 88.3

Notes: Means are weighted by county population. For opioid-related statistics,
border counties have significantly higher levels of opioid sales throughout the
sample period. Mortality is higher in inland counties, but the difference is not
significant in all three years we tested. Many of the differences in demographics
between border and inland counties are statistically significant but not econom-
ically. The adoption rates of ePDMP laws are similar between the two sets of
counties.
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2.4 Hypotheses and Empirical Framework
Hypotheses
In this section, we lay out our hypotheses and discuss the underlying assumptions
and their implications on the market structure of prescription opioids. We start with
a simplified model with no spatial spillover.

The state-as-island model. Consider states as isolated islands in an ocean. Due to
the separation, opioids sold in each state can only be consumed in that state. Since
county location bears no significance in this model, sales patterns and mortality
should be similar in border and inland counties of the same state after controlling
for demographic differences. For example, San Bernadino County, on the state
border between California and Arizona, should behave similarly to Fresno County,
landlocked within California. Although the adoption of a PDMP is endogenous
to local conditions, a priori we would not expect the law to have differential ef-
fects on border and inland counties. Since all opioids sold locally are consumed
locally, changes in sales due to PDMP laws should translate directly to changes in
use patterns, and by extension, to changes in local opioid mortality, ignoring any
substitution to illegal opioids12. The adoption of PDMP in one state should have no
impact on opioid sales or mortality in the neighboring state. The testable hypotheses
of the state-as-island model are:

Hypothesis 1a: Under the state-as-island model, sales and mortality
patterns are similar in border and inland counties.

Hypothesis 1b: Under the state-as-island model, changes in sales trans-
lates into changes in mortality.

Hypothesis 1c: Under the state-as-island model, adoption of PDMP in
one state has no impact on sales or mortality in the neighboring states.

However unrealistic the above model is, it is assumed in many important studies
on the opioid crisis. States are treated as isolated markets where all pills sold
are consumed locally with the exception of Florida, which most papers exclude.
The state-as-island model is applicable in situations when the spillover effect is
small compared to the main effect, or if the spillover’s impact is tangential to the
main question. The literature has documented many occasions when the state-as-

12We focus on opioid mortality, but as described in the literature review, some papers do find
substitution to heroin following implementation of MA-PDMP laws.
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island model fails. Individuals cross the state border to take advantage of favorable
lottery situations (Garrett and Marsh, 2002); patients cross the US-Mexico border
to purchase prescription medication cheaply and without a prescription (Casner
and Guerra, 1992). The decentralized enactment of PDMP creates differences in
regulatory environments and incentivizes individuals to seek out the less regulated
market. Next, we consider a model with spatial spillover.

The spatial spillover framework. Consider two states not separated by an imagi-
nary ocean. Both opioids and people can cross the state line. As a result, opioids
purchased in one state may or may not be consumed in that state. When individuals
are incentivized to purchase opioids from a neighboring state, their cost of doing so
is highly dependent on the distance traveled. Under these assumptions, vicinity to
the state border has consequences on opioid sales and diversion. For someone living
on the Arizona side of the Arizona-California state border, the cost of travelling to
San Bernadino County for additional pills is much lower than that of travelling to
some inland county within California.

The question remains as to when individuals are incentivized to cross the state
border. Before any PDMP law, patients could obtain multiple prescriptions and
get them filled in the same state with minimal constraint. When states adopt some
version of the PDMP, doctor and pharmacy shopping within the same state become
more difficult. However, because most states do not share their PDMP data with the
neighboring states, the cost of obtaining additional pills from the neighboring states
remains the same despite enactment of PDMP locally. As the cost of within-state pill
shopping increases due to progressively stricter PDMP regulations (from PDMP to
ePDMP to MA-PDMP), more and more individuals would be incentivized to cross
a nearby border. By the start of our time period, 31 states had enacted some version
of the PDMP, which means that some individuals would already be going to other
states for pills. Hence, we expect a higher share of the border counties’ sales to be
diverted elsewhere for consumption during our sample period. Because the diverted
pills are not consumed locally, we expect the sales to mortality ratio to be higher in
a border county.

Hypothesis 2a: Under the spillover framework, border counties will
have higher sales but lower moralities as compared to inland counties
of the same state.
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Variation in diversion rates between inland and border counties implies that the two
sets of counties will respond differently to new PDMP regulations. When states
enact stricter PDMPs, the local pill shoppers and the out-of-state pill shoppers are
similarly affected by the new rule. Since a higher share of the border counties’
sales is from pill shoppers, the law change will have a bigger impact on the border
counties. The endogeneity of adoption may bias the overall estimation toward zero,
but should not affect how the border counties react to the law change relative to
the inland counties. In addition, as the cost of local pill shopping increases due to
stricter laws, local pill shoppers are more incentivized to cross the state border, and
hence sales in border counties of the neighboring states would increase.

Hypothesis 2b: Under the spillover framework, when the local state
adopts a stricter PDMP, border counties will experience a larger decrease
in sales relative to inland counties of the same state.

Hypothesis 2c: Under the spillover framework, when the nearby state
adopts a stricter PDMP, border counties will experience a larger increase
in sales relative to inland counties of the same state.

In this stylized model, the mapping from sales to mortality is less direct when
spatial spillover was not possible. With the state-as-island model, the enactment
of a PDMP law puts a hard constraint on the opioid misuser’s ability to acquire
prescription opioids. Assuming no other substitution, changes in opioid sales in
one location translate directly into changes in opioid mortality in that location.
With spatial spillovers, changes in opioid sales in one place may lead to changes
in mortality elsewhere. Since a larger share of the border counties’ sales was
consumed elsewhere, the adoption of stricter PDMP will result in a smaller drop
in opioid mortality in the border counties. The enactment of PDMP in a nearby
state increases sales in the border counties but should have no additional impact
on mortality, assuming that people traveling to acquire pills go back to their home
counties to consume them. In reality, how mortality responds to a PDMP law
depends on many factors, including the state of the black market, the availability of
alternative drugs, and the ease of getting drugs from the nearby states. Since we
cannot control for all of these relevant factors, we expect the mortality results to be
less sharp than the sales results.

Hypothesis 2d: Under the spillover framework, when the local state
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adopts stricter PDMPs, border counties will experience a smaller de-
crease in mortality relative to inland counties of the same state.

Hypothesis 2e: Under the spillover framework, when the nearby state
adopts stricter PDMPs, border counties will experience no additional
change in mortality relative to inland counties of the same state.

See Figure B.6 in Appendix for a visual representation of the hypotheses of the
spillover framework.

Empirical Framework
We want to test (1) how counties react to the enactment of ePDMP laws, (2) if border
counties react differently as compared to inland counties, and (3) how the adoption
of an ePMDP in one state affects border counties in the adjacent state. We use the
following empirical framework to test our hypothesis:

𝑌𝑐𝑡 =𝛼𝑠 + 𝛿𝑡 + 𝛽1 Law𝑐𝑡 + 𝛽2 Border𝑐 + 𝛽3 Law𝑐𝑡 × Border𝑐+
𝛽4 Nearby Law𝑐𝑡 × Border𝑐 + 𝑋𝑐𝑡𝛾 + 𝜖𝑚𝑡

where 𝑌𝑐𝑡 are the outcome variables of interest: sales and mortality in county 𝑐

in year 𝑡. Ideally, because each county has different initial conditions, we want to
control for these conditions to get at the impact of the law change. However, because
the location of a county and its border status does not change over time, any time-
invariant differences between the border and inland counties would be absorbed by
the county-fixed effects if added. Hence, we use a full set of state-fixed effects 𝛼𝑠

and county characteristics 𝑋𝑐𝑡 as controls. We also add year-fixed effects to control
for national changes in drug use over time.

Our coefficients of interest are the full set of 𝛽’s: 𝛽1 estimates the impact of
ePDMP laws on sales and mortality; 𝛽2 estimates the baseline difference in sales
and mortality between border and inland counties of the same state; 𝛽3 estimates how
the law affects the border counties differently as compared to the inland counties;
and 𝛽4 estimates how the enactment of an PDMP in one state impacts sales and
mortality in the bordering counties of the neighborhood state, as compared to inland
counties in the neighborhood state.

One notable feature of our empirical strategy is that the identification of the border
effects (𝛽3 and 𝛽4) does not require any assumption about the exogeneity of law
change. As we’ve discussed in the literature review, enactments of PDMP laws are
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endogenous. When each state decides to implement ePDMP is a function of many
factors, including its regulatory environment, the severity of its opioid crisis, the
current political climate, and many others. These factors are highly correlated with
the pre-enactment level of sales and mortality and the post-enactment response. If
states are more likely to pursue stringent opioid regulations when conditions are
bad, 𝛽1 would underestimate the true impact of the law change. In terms of the
estimation of the difference (𝛽3) and the spillover effect (𝛽4), law changes can be
considered as random events.

2.5 Results
PDMP Law and spatial spillover in sales
The full set of 𝛽 from our main regression is presented in column (5) of Table 2.2.
We start with a simple two-way fixed effects model in column (1). We replace
county fixed effects with the set of state fixed effects in (2) to (5) to estimate the
border coefficients. In (2), we replicate the same regression as in (1) to show that
changing from county to state fixed effects has no discernible impact on the ePMDP
law coefficient. Starting in column (3), we add border status and interact it with
ePDMP law to separately estimate the impact of ePDMP law on border counties.
To ensure that differences in population characteristics between border and inland
county are not driving the identification, in column (4) to (5), we control for county
characteristics (average age, % male, % separated, education level, mean income, %
low income, and ethnicity). These are variables that the literature has characterized
as being influential in driving opioid use and overdose (Wright et al., 2014). In
column (5), we add an indicator for whether the nearby state adopted ePDMP for
each border county. We repeat the same analysis using the alternative ePDMP
enactment dates from PDAPS. The results are documented in in Table B.1 in the
Appendix.
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Table 2.2: Impact of ePDMP laws on opioid sales using Horwitz (2018) modern
system operational dates.

Dependent variable:
Sales per person

(1) (2) (3) (4) (5)
𝛽1 - PDMP law -0.006*** -0.005*** -0.002 -0.003 -0.003

(0.001) (0.002) (0.002) (0.002) (0.002)
𝛽2 - Border county 0.006*** 0.004*** 0.004***

(0.002) (0.001) (0.002)
𝛽3 - Law x border -0.009*** -0.008*** -0.008***

(0.002) (0.002) (0.002)
𝛽4 - Nearby law x border 0.0004

(0.002)
County FE Yes
State FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Controls Yes Yes
Observations 26,154 26,154 26,154 26,154 26,154
𝑅2 0.000 0.458 0.458 0.519 0.519

𝛽1 estimates the average effect of the enactment of ePMDP laws on opioid sales.
Before adjusting for differential response due to the location of the county, we
find that ePDMP reduces opioid sales. The coefficient is consistently negative in
all specifications, but only significant before the inclusion of border coefficients.
The border coefficient 𝛽2 is consistently positive from (3) to (5), indicating that
border counties start with higher sales as compared to inland counties of the same
state. The estimation of 𝛽2 supports hypothesis 2a (spillover framework) over
hypothesis 1a (state-as-island framework). 𝛽3, the law and border interaction term,
is consistently negative. Although border counties start with higher per person sales,
they experience a much larger drop in sales post-ePDMP than inland counties in the
same state. The results are consistent with hypothesis 2b (spillover framework) that a
higher percentage of sales in border counties are diverted elsewhere for non-medical
use. Comparing the size of 𝛽1 across specifications, we see that the estimated impact
of ePMDP law on sales is largest in columns (1) and (2) and decreases and loses
significance once we interact law with border status. If we don’t separately account
for abnormal behaviors in the border counties, the coefficients in (1) and (2) over-
estimate the effect of the law change on opioid sales in a “normal” county. We
observe the same pattern using our alternative e-access dates in Table B.1.

In regression (5) of Table 2.2, 𝛽4 is not well identified. Using our alternative e-access
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date, 𝛽4 is significant and positive. We need to be careful in interpreting 𝛽4 since
the coefficient is measured with respect to sales in inland counties of the same state.
Suppose A and B are two neighboring states and A experiences a law change. We
have tentative evidence that counties in B that border A experience a faster growth
(or slower decline) in sales than the inland counties in B. The findings support
hypothesis 2c (spillover framework) over hypothesis 1c (state-as-island framework).
Implementation of an ePDMP in one state increases the sales of opioids in border
counties of nearby states.

Putting the coefficients together, border counties start with higher sales, experience
a larger decrease if the local state enacts the ePDMP, and an additional increase if
the nearby state enacts the ePDMP (only if we use alternative ePDMP dates). When
states on both sides of the border adopt ePDMPs, most of the border effects cancel
out. As the difference in regulation disappears between states, border counties
lose their higher-than-average sales and their significance in cross-border opioid
trafficking. In addition, the decrease in sales due to ePDMP laws is driven mostly
by decreases in the border counties. The inland counties experience no significant
drops in sales once we control for the border-law interactions. In the robustness
section, we discuss what impact adoption timing has on how border states react to
the enactment of electronic PDMP locally and nearby.

Translating our coefficients to real terms using Table 2.2, if we don’t differentiate
the border counties from inland counties, (1) shows that the law reduces per person
sales by 0.006 MME, which is equivalent to a 5.6% drop from the national average
in 2006. Since only a portion of sales are diverted for non-medical use, a 5.6%
overall decrease is large if we translate it into drops in diversions. When we account
for border status, our estimation shows that the law reduces inland county sales by
0.003 mg in active ingredient on average (2.8%). In addition, the law reduces the
border county’s sales by 0.011 mg in active ingredient weight (10.2%), which is
more than three times as much as the drop in inland counties.

PDMP Law and spatial spillover in mortality
We’ve shown that the adoption of PDMP laws decreases local sales but has spillover
effects on nearby states. Ultimately, however, what we care about is the consequences
these laws have on actual opioid misuse and overdose. In this section, we use the
same econometric specifications to test what impact an ePDMP law enacted in a state
has on mortality in local and nearby counties. We expect the mortality results to be
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less sharp than sales results since there are many intervening factors between access
to prescription opioids and opioid overdoses. Spatial spillovers, as identified in the
previous section, are one. Substitution toward other alternative drugs is another.
The literature has many examples of how restricting access to one drug resulted in
substitution toward another potentially more lethal substance (Alpert, Powell, and
Pacula, 2018; Zhang and Guth, 2021; Kim, 2021).

Table 2.3: Impact of ePDMP laws on opioid mortality using Horwitz (2018)
modern system operational date.

Dependent variable:
Mortality per 100,000 residents

(1) (2) (3) (4) (5)
𝛽1 - PDMP law -0.217*** -0.192*** -0.302*** -0.318*** -0.279***

(0.051) (0.069) (0.075) (0.073) (0.074)
𝛽2 - Border county -0.580*** -0.666*** -0.763***

(0.063) (0.062) (0.067)
𝛽3 - Law x border 0.320*** 0.366*** 0.254***

(0.085) (0.083) (0.088)
𝛽4 - Nearby law x border 0.297***

(0.076)
County FE Yes
State FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Controls Yes Yes
Observations 26,154 26,154 26,154 26,154 26,154
𝑅2 0.000 0.283 0.285 0.318 0.318

The coefficients on PDMP law are straightforward to interpret. Across the spec-
ifications, PDMP laws reduce opioid overdose. The reduction is economically
significant. Using estimates from column (5), a -0.279 drop per 100,000 people
translates into a 12.3% drop from the national opioid fatality rate in 2006. A nega-
tive and significant 𝛽2 indicates that border counties have a lower level of baseline
overdoes rate, which is consistent with our hypothesis that border counties don’t
abuse as many opioids but export a high percentage of their sales for misuse else-
where (hypothesis 2a). Given that the extra sales originating from border counties
are not consumed locally, the adoption of PDMP laws should have no extra impact,
if not less, on mortality in these counties. In columns (3) to (5), our estimation of
𝛽3 is positive and significant. The size of 𝛽3 is almost as large as 𝛽1 in all three
specifications, suggesting that the adoption of ePDMP has nearly no impact on a
border county, which supports hypothesis 2d.
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In regression (5), we find 𝛽4 to be positive and significant, which suggests that
the mortality rate in border counties neighboring a state with a new ePDMP law
increases faster (or decreases slower) than that in the inland counties of the same
state. We get similar findings using the alternative ePDMP dates (Table B.2). A
positive 𝛽4 does not support hypothesis 2e that nearby enactment of ePDMP has
no addition impact on the border counties. While the sales results suggest that
people from recently restrictive states cross the state line to acquire opioids from
the neighbor county, the mortality results suggest that these people not only shop
across state lines, but also stay in the neighbor county to consume these opioids.
Validating this mechanism is beyond the scope of the data we have, and we leave it
to future researchers.

The differences in the mortality and the sales results are direct evidence that pre-
scription opioids are trafficked across state lines. If opioids sold in each county are
consumed locally, the mortality result should mirror that of the sales result. How-
ever, we find that border counties start with higher levels of sales but lower levels
of mortality. Enactment of ePDMP leads to additional drops in sales in border
counties, but fewer drops in mortality. The overall evidence supports the spillover
framework over the state-as-island framework.

Effectiveness of alternative PDMP laws
To check if other PDMP laws have similar spillover effects, we run our main regres-
sion using two additional dates: any PMDP dates from Horwitz et al. (2018) and
MA-PDMP dates from Sacks et al. (2021). The results on sales are documented
in Table B.3 in Appendix. The enactments of PDMP and must-access PDMP are
not associated with reductions in opioid sales during our sample period. These
findings are not conclusive evidence that PMDPs or MA-PDMPs are ineffective in
reducing opioid sales. As we’ve stated in Section 3.2 and shown in Figure B.1, our
sample period covers very few enactments of PDMPs and MA-PDMPs. Most states
had already enacted some version of the PDMP by the start of our sample period,
hence we only observe PDMP law change in few states that had been slow in action.
Similarly for MA-PDMP, we only observe law change in the few early-mover states.
The limited data combined with the endogeneity of adoption means that we do not
have enough power to identify the effects of PMDP and MA-PDMP using 2006 to
2014 data.

We identify no border or spillover effect using the two alternative dates. The results
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suggest that identification of the border and spillover effects is sensitive to using the
“correct” PDMP law. On the border coefficient, we know from previous regressions
that the enactment of ePDMPs on both sides of the border makes the border counties
lose their significance in cross-border shopping. Not finding a border effect using
PDMP or MA-PDMP dates further validates our main hypotheses. On the spillover
effect, if the law itself did not lead to a significant reduction in opioid sales in the
first place, there is no reason to expect individuals to cross-border shop.

2.6 Conclusion
In this paper, we examined the effects of ePDMP laws on both the states they were
enacted in and neighboring states. Following the literature, we find that opioid sales
fall in states that adopted electronic access PDMPs. After controlling for border and
spillover effects, we estimate that ePDMP laws reduce per-person opioid sales by
5.6% from the median sales in 2006, a considerable drop because the laws should
only affect the fraction of users doctor or pharmacy shopping. We find that the
decrease was driven by border counties in particular, where sales decreased 10.2%
post-ePDMP. We also find that ePDMP laws reduce opioid overdoses in a state,
with approximately a 12.3% decrease relative to per-capita mortality in 2006. These
findings confirm the understanding in the literature that PDMP laws are effective in
curbing the opioid epidemic.

The decentralized adoption of ePDMPs created opportunities for individuals to
cross the state border to acquire opioids from a less restrictive state. Counties
on the border are more likely to be destinations for doctor or pharmacy shopping,
due to the lower travel cost from other states. Our paper is the first to document
a differential pattern in opioid use and a differential response to law changes in
counties due to their proximity to the state border. Before the enactment of an
ePDMP, border counties have significantly higher opioid sales and lower rates of
overdose as compared to inland counties of the same state. When the state adopts an
ePDMP, its border counties experience a larger drop in sales and a smaller decrease
in mortality. In addition, when the nearby state adopts an ePDMP, we observe a
larger increase (or smaller decrease) in sales in counties neighboring the law change
state as compared to inland counties in that same state. The spillover effect indicates
that the benefits of ePDMPs are partially mitigated because individuals purchase
opioids from neighboring states when their state adopts an ePDMP.

The qualitative differences between border and inland counties in opioid sales and
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overdose have implications for all studies on the opioid crisis. Previous studies
treat each state as an independent market and assume that local opioid sales have
a one-to-one mapping to local opioid consumption. This simplifying assumption
is the correct one to make in many situations. For example, in the study of the
OxyContin reformulation, each state is treated with the same regulatory change.
Spillover effects due to preexisting regulatory or cultural differences still exist, but
they are irrelevant to measuring the impact of OxyContin reformulation on opioid
use. However, in many other situations, where change takes place on a state-by-state
basis, treating each state as an independent market may bias the estimation. In the
case of PDMP laws, not accounting for cross-border sales overestimates the benefits
of the law change.

The spillovers we have identified in this paper have implications beyond the opioid
crisis. We have documented a direct negative externality from having state-based
opioid policies instead of a national one. In a counterfactual world where all states
adopt electronic access of PDMPs at the same time, all states would get the sales
reduction without the increased sales from cross-border trafficking. These findings
speak to the advantages and disadvantages of a federalist system. On one hand,
decentralization allows each state to experiment and adopt politics based on their
own conditions. Information from early adopters could flow to late adopters, thereby
providing late adopters with real-world data on policy effectiveness. On the other
hand, decentralization kills coordination and there is often a cost in failures to
coordinate. Individuals, resources, and businesses are often not confined to one
location. Regulatory differences among states allow entities unwilling to comply to
move to a different state, thereby offsetting the positive benefit of new regulations.
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C h a p t e r 3

AIR POLLUTION AND SCHOOL ABSENCES IN NEW YORK
CITY

DANIEL GUTH

In this paper, I analyze the effects of changes in day-to-day air pollution levels
on daily absences for New York City schools from 2006 to 2019. I combine
EPA air quality data with absences for more than 1,600 schools and use wind
as an instrument for transport of air pollution. I estimate that an additional
1 𝜇g/𝑚3 of PM2.5 pollution increases absences across all schools by 44 per
100,000 students, and an extra part-per-billion (PPB) of Ozone increases it by
29 per 100,000 students. PM2.5 pollution has the largest effects on elementary
and middle schools, but Ozone has largest effects on high schools. Examining
trends across 14 years of pollution and absences, my results suggest that the
decrease in average daily PM2.5 pollution of 5 𝜇g/𝑚3 from 2006 to 2019 led to
at least 381,000 fewer absences across NYC schools and increased education
spending by $19 million every year. This work shows the improvements over
time in air quality in New York City but also highlights the disparate impacts
of air pollution.

3.1 Introduction
Air pollution has darkened American skies for a century. It is well understood on
the individual level that air pollution is a risk factor for a variety of respiratory and
cardiovascular diseases. However, measuring the effects of air pollution on human
health is difficult because the consequences unfold over time and many other factors
influence health outcomes. In this paper, I estimate the consequences of exposure
to air pollution in day-to-day life by analyzing its effects on school absences for
millions of students in New York City. I find strong evidence that increased levels
of PM2.5 and Ozone cause additional students to be absent over the next few days,
and this effect persists even when pollution levels are below federal limits.

Much of the research on air pollution in the US was done when when carbon
monoxide (CO) levels were frequently above the federal limit and the smallest
particulate matter that could be measured was 10 microns (PM10). More recent
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work demonstrates that small particle pollutants (PM2.5) are particularly harmful
to human health because their smaller size allows them to penetrate deeper into
the lungs. Deryugina et al., 2019 found large increases in mortality and medical
spending among Medicare recipients due to PM2.5 pollution, as well as annual
benefits of more than $24 billion from national reductions in PM2.5 emissions from
1999 to 2013. I contribute to this literature by providing evidence for the negative
effects of PM2.5 and Ozone on NYC children while also showing in the same context
that CO and other pollutants do not cause similar harms. I analyze school absences
from 2006 to 2019 and find suggestive evidence that the reduction in average PM2.5
pollution over that time contributed to a citywide decline in student absences. My
data and methodology also allow me to separately identify the effects of air pollution
on each school, and I find novel results for high school absences caused by Ozone.

Previous work on pollution and school absences took place in different pollution
environments and with less data. Currie, Hanushek, et al., 2009 analyzed school
absences aggregated by six-week attendance blocks for Texas in the late 1990s and
found that carbon monoxide (CO) was responsible for large increases in absences,
PM10 and Ozone had a small effect on absences, and they could not evaluate PM2.5
because atmospheric measurements did not exist at the time. I analyze absences
from 2006 to 2019 in NYC at pollution levels much lower than in Currie, Hanushek,
et al., 2009, and I find a statistically significant number of absences caused by PM2.5
and Ozone pollution. I use absences at the daily level and develop a framework that
allows me to estimate the effects of increased air pollution on different days while
controlling for seasonal variation. I further leverage modern climate modeling to
use exogenous variation in daily wind direction to show that wind-carried PM2.5
and Ozone directly causes absences. NYC has PM2.5 pollution comparable to the
median county in the United States but Ozone pollution higher than the median
county, so school districts across the country may have similar amounts of absences
caused by air pollution. My estimates represent a lower bound for the harms
experienced by other countries, though, most of which have much higher PM2.5 or
Ozone concentrations.

School absences represent a child missing class for whatever reason. In papers that
track individual students and further break down the cause of absences, respiratory-
related absences are the most responsive to pollution. Gilliland et al., 2001 found that
Ozone led to increases in both upper and lower respiratory illnesses. Gilliland et al.
note that these kinds of respiratory issues often do not land children in the hospital,
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and so “school absences caused by respiratory illnesses may usefully represent the
first tier of adverse effects that are far more common than severe adverse effects."
S. Chen, Guo, and Huang, 2018 studied the effects of pollutants in China from 2013
to 2015, finding that PM2.5 and Ozone particularly increased respiratory-illness
related absences. I do not observe reasons for school absences in my NYC data, so
for each school I control for the average number of absences on less-polluted days
and seasonal effects using multiple years of data. After netting out those effects, the
remaining absences caused by pollution are likely due to respiratory issues.

There are two advantages to my approach. First, by analyzing school absences at
the daily level I can look at the same school cohort before and after a high-pollution
event. This analysis allows each school to act as both a control and treatment group
on different days, and I can test multiple lag structures to identify the time frame at
which pollution causes absences. Specifically, I find differences between the time
it takes PM2.5 pollution to cause absences (largest same-day effects) and the time
takes Ozone pollution to cause absences (one or two days). Second, by using wind
as an instrument, pollution shocks (after accounting for snow) are uncorrelated with
school absences except through wind-carried pollutant transport. This allows me to
get causal estimates of pollution’s effects on school absences using years of variation
in air quality levels.

I use two kinds of regression models to estimate the effects of air pollution on
absences at the school-day level. In the first set of models, I use the pollutant
concentration (for PM2.5 in terms of 𝜇g/𝑚3, and Ozone in parts-per-billion) and
directly regress school absences on air pollution through ordinary least squares
(OLS). The second set of regressions uses wind direction as an instrumental variable
(IV) in a two-stage least squares procedure (2SLS). In the first stage, daily PM2.5 or
Ozone pollution is regressed on wind direction, and then the wind-fitted pollution
is used in the second stage absence regression. All models include a panel of
fixed effects for day of week, school, school times school year, and school times
month to control for unobserved school and seasonal characteristics. To the extent
that wind satisfies the exclusion restriction (that is, wind being uncorrelated with
school absences except through pollution-transport), this IV regression produces
causal estimates of PM2.5 and Ozone on absences. I also show that snowfall in
NYC has large effects on absences and is correlated with wind direction, so the
main regressions are run on months without snow to avoid model misspecification
and violating this exclusion principle. In the robustness section I include OLS
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regressions run on all months and directly controlling for snow, but measurement
error makes it difficult to separate absences caused by snowfall from absences caused
by air pollution.

Before previewing the results, it’s worth considering these effects relative to the
overall burden of pollution. First, we should expect the coefficient on pollution for
absences to be relatively small, because there are many factors that cause sickness
or for students to otherwise miss school. For instance, snowfall in NYC sometimes
cancels school but short of that, icy roads often cause some students to be absent.
Other non-illness related absences can be caused by students travelling for holidays
or otherwise being unable to get transportation to school. Illnesses can also be
caused by seasonal flu or infectious respiratory diseases, although it is generally
understood that air pollution impairs the body’s immune system and ability to fight
off disease. At the same time, air pollution negatively affects everyone and in many
more ways than are captured in school absences. Elevated levels of air pollution have
been shown to be associated with reductions in test scores, increases in mortality
and hospital spending, as well as increase in crime rates.1 This paper provides a
precise estimation of one of the short-run causal effects of air pollution, but these
estimates are lower bounds on the societal costs of pollution.

Analyzing school absences allows me to test multiple lag structures without issues of
displacement or “harvesting” that arise when analyzing mortality or hospitalization
data. In those settings, the effects of pollution might be strongest among people
who were going to die or require hospitalization soon regardless of exposure, so
researchers often average pollution measurements or mortality over many days.
Absences are high-frequency indicators of student health where I can separately
identify the effects of pollution on day-of absences from its effects on absences one
or more days later. I can identify these changes because I have absence data on the
same group of students across many days, and wind direction provides day-specific
pollution shocks. My extended results show that PM2.5-caused absences are largest
on the day-of pollution exposure, with somewhat smaller effects one or two days
afterwards, and the effect become approximately zero three or more days later. I find
that Ozone-caused absences are also approximately zero after three days, but I find
the largest effect on absences two days later. These findings are significant because

1Papers on air pollution and test scores include Xin Zhang, X. Chen, and Xiaobo Zhang, 2018
and Ebenstein, Lavy, and Roth, 2016. Mortality effects from Medicare populations are analyzed in
Deryugina et al., 2019 and Di et al., 2017. Crime papers include Bondy, Roth, and Sager, 2020 and
Herrnstadt et al., 2021.
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they represent illnesses that are generally too minor to appear in hospital data but
are common in the everyday life of children. In this paper I am able to quantify both
the effect size as well as timescale at which pollution causes absences.

I find that elevated levels of PM2.5 and Ozone each lead to absences across all
schools and in a variety of regression specifications. My preferred specification,
the IV regression with full set of fixed effects, finds that every additional 1 𝜇g/𝑚3

of PM2.5 leads to 44.3 more absences per 100,000 students and every additional
part-per-billion (PPB) of Ozone leads to 29.8 more absences per 100,000 students.
The average school day in NYC has an absence rate of approximately 8%, and
going from the median PM2.5 concentration of 8.05 𝜇g/𝑚3 to the top decile of most
polluted days at 16.98𝜇g/𝑚3 times that coefficient implies an additional 0.395%
(one-twentieth the daily mean) absences that day. Doing the same comparison for
Ozone, going from the median pollution day of 32.6 PPB to the top decile of 60.8
PPB implies an additional 0.84% (one-tenth the daily mean) absences two days later.
I document a decline in both school absences and daily PM2.5 concentration over
this period, and multiplying the decrease of 5 𝜇g/𝑚3 from 2006 to 2019 suggests
that there are 0.2% (approximately 2100) fewer absences across NYC schools every
day because air quality improved. In contrast to the PM2.5 trends, I find that Ozone
concentration slightly increased over this period and continues to cause school
absences through the present day. These are lower bounds for the effects of air
pollution, though, and cumulative exposure may cause harms not captured in my
analysis.

Finally, to understand the treatment heterogeneity I separately analyze each school’s
absences and compare regression coefficients across schools. I find that elementary
and middle schools had much larger PM2.5-induced absences compared to high
schools. This difference in effect size is consistent with medical literature on these
kinds of respiratory issues, because children’s immune systems are developing and
they are known to be more susceptible to a variety of illness. Ozone, in contrast, has
largest effect sizes for high schools, followed by elementary schools, and smallest
effect sizes for middle schools. I am unaware of research that would suggest high
school students are more (and middle school students less) susceptible to Ozone-
related health issues, but high school students who participate in after school sports
programs might spend hours outside during hours when Ozone concentration is
highest. If that is the case, high school students might have the most exposure to
Ozone pollution and further research should investigate the relationship between
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Ozone and other health outcomes. Breaking down the effect size for schools by
measures of student poverty, I find the elasticity of PM2.5-related absences is higher
for schools with more students classified as economically disadvantage. This means
that the reduction in PM2.5 pollution from 2006 to 2019 might have had largest
benefits for poorer students. Repeating that exercise for Ozone, I find that economic
status has less of an effect on pollution elasticity.

The rest of the paper is as follows. Section 2 provides background on air quality reg-
ulations and previous papers on school absences. Section 3 outlines the absence, air
pollution, and weather data. Section 4 describes the methodology and instrumental
variables (IV) approach. Section 5 provides results for OLS, IV, and individual
school regressions. Section 6 includes extensions of the model to compare lagged
days of pollution and OLS results including winter months controlling for snow.
Section 7 concludes and discusses the implications for future pollution regulations.

3.2 Background
This section gives background on air pollution and related literature of its effects on
humans. Most of the research on air pollution has been done using observational
studies which can identify correlations but are less effective at estimating the effects
from marginal changes in pollutant concentrations. More recently, environmental
economists have developed methods for exploiting quasi-random pollution shocks
or changes in regulation that allows for causal identification and estimation of
counterfactuals for different pollution levels. I continue this line of research by
analyzing the effects of changes in air pollution on school absences, which allows
for comparing the same set of students on days of high and low pollution.

Effects of Air Pollution
Air pollution leads to many health problems, but mortality is the most studied be-
cause it is the worst possible outcome and governments have kept detailed death
records for decades. Anderson, 2009 describes the history of research on pollution
and mortality, which have improved over time due to better pollution measurements
and computational power. The landmark six-cities study of Dockery et al., 1993
found large increases in mortality from PM2.5 over a 14-year observational pe-
riod. Follow-up studies, such as Lepeule et al., 2012, found that average PM2.5
concentrations declined but were still associated with higher mortality. Deryugina
et al., 2019 analyzed mortality among Medicare populations using daily changes in
pollution from wind and found significant effects from PM2.5 across the US. The
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other population that is often studied in this context is newborn infants, who have
developing lungs and are especially affected by pollution. Currie and Neidell, 2005
finds that reductions in California of CO and PM10 pollution in the 1990s likely
prevented more than one thousand infant deaths. Several papers studying pollution
from car exhaust, such as Knittel, Miller, and Sanders, 2016, find similar effects
of particulate matter on infant mortality. Currie and R. Walker, 2011 finds that
the introduction of E-ZPass reduced congestion and resulted in nearly 10% fewer
premature births near toll plazas. School-aged children are underrepresented in
these kinds of studies because they are rarely hospitalized for respiratory issues, so
absences are a useful kind of high-frequency data to analyze as health outcomes.

A separate strand of literature analyzes the educational effects of pollution on test
scores. Ebenstein, Lavy, and Roth, 2016 analyzed students retaking exams in Israel
and found that increased PM2.5 pollution on the day of the exam reduced student test
scores. Lower test scores then lead to reductions in average earnings and university
completion later in life. Marcotte, 2017 finds that students score between 1 to 2%
lower on tests on days with high pollen or PM2.5 concentration. Xin Zhang, X. Chen,
and Xiaobo Zhang, 2018 showed negative effects of both transient and cumulative
air pollution on verbal and math test scores. Heissel, Persico, and Simon, 2022
finds that students who transitioned to schools downwind of highways had lower test
scores and more absences.

Regulations on Air Pollution
There are costs associated with reducing air pollutant emissions, and a better un-
derstanding of the harms caused by air pollution informs cost-benefits analysis for
regulation. W. R. Walker, 2013 examines industrial plants newly affected by the
1990 Clean Air Act Amendments and finds they led to more than $5 billion in
lost wages, but notes that this is approximately two orders of magnitude less than
the health benefits from pollution reduction. Currie and R. Walker, 2019 reviews
the economic literature on the Clean Air Act, distinguishing between papers using
casual identification on short-run changes in pollution versus longitudinal changes
in yearly pollution. The EPA updated the PM2.5 regulations in 19972, but PM2.5
and Ozone pollution below the federal limits still has negative effects. Counties in
the US that are above the annual limits are designated as “non-attainment”, but in
this paper I am able to identify costs from pollution at levels that are well below

2The updated thresholds were in large part due to Dockery et al., 1993 which found large
increases in mortality from PM2.5 even below the previous threshold.
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these limits. I show large reductions of PM2.5 concentration in NYC from 2006
to 2019 3, but Ozone concentration increased over this time and continues to cause
absences.

Literature on School Absences
Ransom and Pope III, 1992 was one of the first papers to study the association
between PM10 and school absences for schools in Utah. Hales et al., 2016 continues
that Utah analysis into the 2010s using PM2.5 and uses a “control” district exposed to
lower levels of pollution to explain residual absences caused by pollution. Gilliland
et al., 2001 identified a longitudinal sample of fourth graders and tracked the cause
of their absences over six months, finding increases in Ozone concentrations were
associated with more respiratory-illness related absences. L. Chen et al., 2000
similarly found absences caused by CO and Ozone for Nevada in 1996-1998, but
found a negative association from PM10. The most recent paper on school absences
is S. Chen, Guo, and Huang, 2018, which analyzed school absences and their causes
for two years in Guangzhou, and found that air pollution increased respiratory illness-
related absences. The mean daily absence rate in that paper was 0.22%, though, with
worse air quality than in NYC so comparatively each of those absences represents
more severe illness. Currie, Hanushek, et al., 2009 is the most comprehensive school
absence study in the US, but it was limited to analysis of 6-week absence periods and
PM10 instead of PM2.5 concentrations. I update analysis of school absences in the
United States for years 2006 - 2019, which allows me to analyze Ozone and PM2.5
to identify causal effects of absences at the individual day level. Daily absence data
across years allows me to identify the timescale at which pollution causes absences
as well as document a decline in absences over time due to reductions in PM2.5
pollution.

In addition to the negative health effects, missing school causes a child to also miss
opportunities to learn. Research that uses individual student-level data is able to
study the effects of absences themselves on other educational outcomes. Most of
the research on absenteeism in this area analyzes the educational effects of chronic
absenteeism, such as Chang and Romero, 2008 or Allen, Diamond-Myrsten, and
Rollins, 2018, because that has large effects on graduation rates. Less attention is
focused on students who are infrequently absent, they but still experience learning
loss. Goodman, 2014 finds that school absences had more effect than school

3This link, shows the reductions in pollution by neighborhood using NYCCAS measurements
from approximately 100 locations.

https://www.nyc.gov/site/doh/about/press/pr2022/earth-day-new-report-on-nyc-air-quality.page
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closures on test performance, suggesting that teachers are less able to accommodate
students who miss school at different times. Liu, Lee, and Gershenson, 2021
connects school absences in specific class periods and shows that they can reduce
the probability of graduating. I do not directly test for those educational outcomes in
my analysis, but my research provides a method and preliminary evidence showing
that PM2.5 and Ozone in NYC over this period caused school absences. Further
research is warranted to understand the effects of these pollution-induced absences
on educational outcomes.

3.3 Data
This section describes the different data sources combined to analyze school ab-
sences. Table 3.1 provides school and pollution summary statistics for each school
year. School absence data is described first, then air pollution data, and then finally
weather data comprising wind and snow.

Table 3.1: NYC daily absences and pollution concentration by school year, with PM2.5
and Ozone calculated starting in August. Average absences are expressed as a daily per-
cent weighted by school size, and elementary absences calculated for the approximately
1,182 schools that are either elementary or middle schools.

School
Year

Average
Daily
PM2.5
(𝜇g/𝑚3)

Average
Daily
Ozone
(PPB)

Number of
Schools

Average
Absences

(%)

Average
Absences

Elementary
(%)

Total
Enrollment

2006-2007 12.8 32.73 1313 9.88 7.85 917876
2007-2008 13.06 34.36 1369 9.58 7.42 924888
2008-2009 10.54 31.32 1428 9.47 7.56 931849
2009-2010 9.85 35.27 1491 8.8 6.88 957476
2010-2011 10.36 36.25 1525 9.01 7.03 967880
2011-2012 9.08 34.99 1551 8.37 6.36 969586
2012-2013 9.08 35.03 1577 8.53 6.72 976174
2013-2014 8.92 34.25 1607 8.58 6.92 980377
2014-2015 8.22 34.48 1615 8.21 6.63 983312
2015-2016 7.83 36.49 1608 7.97 6.37 977592
2016-2017 7.22 35.07 1594 8.19 6.69 972781
2017-2018 7.69 35.44 1594 8.41 6.97 964161
2018-2019 7.35 35.16 1565 8.38 6.97 947389

School Absence Data
School absence data for NYC is publicly available from 2006 to 2021. This paper
ends at the 2018-2019 school year to avoid Covid-related school absences starting
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in 2020.4 The absence rates are reported at the school level, so all analysis will be
done at the school level. I analyze a total of 1669 different schools in NYC from
2006 to 2019, representing more than three million school-day absence records and
twelve million student-years. Figure 3.1 shows the number of students as well as
the average absences for all schools and for elementary-to-middle schools. The data
includes a total of 1182 elementary schools, and previous research has suggested
that younger children are most susceptible to pollution, but I also analyze high
schools. High schools also have higher absence rates because older students may
be absent for work, sports, or other reasons. One advantage of my analysis is that
NYC schools are all in the same district and thus have the same regulations and
absences procedures.5 For methodological reasons, I do not directly include school
demographics as fixed effects in the absence regressions.6 In one specification I run
each school separately and group the results by type (elementary, middle, or high)
and socioeconomic information (fraction of students classified as living in poverty).

Air Pollution Data
Air pollution data comes from the EPA’s Air Quality System (AQS) that maintains
a network of outdoor monitors across the United States.7 Using this data, pollution
concentrations are measured multiple times throughout the day and then aggregated
to form daily readings. The EPA regulates and measures six principal pollutants:
particulate matter (PM2.5)8, Ozone, NO2, SO2, CO, and lead. AQS data on
airborne lead concentrations is sparse, so lead is not analyzed in this paper. Outdoor
concentrations of CO never went above 50% of the daily limit or near harmful
levels from Currie, Hanushek, et al., 2009, so it is analyzed in Appendix Section C
but has no significant effect.9 OLS results for NO2 and SO2 are also reported in

4School absence data is available at this link. NYC School locations were obtained using location
data from 2012 to 2013 school data and a few dozen school locations from later years.

5In NYC when a student is suspended (Suspension Link), they receive alternative instruction
and are not marked absent unless they miss those activities. Alternative Reference.

6Including yearly school student demographic variables in the model corresponds to trying to
estimate and control for the average daily absence rate by race. Across all of NYC and 14 years of
data, I do not think it is meaningful to try and estimate those quantities using ecological inference at
the school level, so I instead use school fixed effects. Including school by year fixed effects similarly
controls for changes in the student body by year without assuming race has a constant absence
elasticity across the entire sample.

7This link allows you to download daily data by state and year.
8The AQS stopped measuring PM10 concentrations for New York in approximately 2006, so

PM10 is not analyzed in this paper.
9Different pollutants are aggregated on different time-scales: PM2.5 is reported as daily mean

concentration; Ozone is reported as daily maximum 8-hour concentration; SO2 is reported as daily
maximum 1-hour concentration; CO is reported at daily maximum 8-hour concentration; NO2 is

https://data.cityofnewyork.us/browse?q=Historical%20Daily%20Attendance%20By%20School&sortBy=relevance
https://data.cityofnewyork.us/Education/2012-2013-School-Locations/emnd-d8ba
https://www.schools.nyc.gov/school-life/safe-schools/suspensions
https://ocfs.ny.gov/main/ombudsman/assets/docs/OOTO-School-Suspension-Guide.pdf
https://www.epa.gov/outdoor-air-quality-data/download-daily-data
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Figure 3.1: NYC average PM2.5 by school using a common scale for 2006-2007
and 2018-2019 school years. A total of 1,312 schools are plotted in 2006 and 1,551
schools in 2018. Borough-wide PM2.5 averages for (Bronx, Brooklyn, Manhattan,
Queens, Staten Island) school days in 2006 were (13.49, 11.73, 13.44, 11.83, 11.77)
and in 2018 were (6.50, 5.71, 7.40, 6.36, 6.61)

the appendix, with no significant results. Thus, the main pollutants of interest are
PM2.5 and Ozone.10

For every school and every day over this period, I assigned each school the pollution
measurement from the closest PM2.5 or Ozone monitoring site. As described in Zou,
2021, many PM2.5 monitoring sites are active on 1-in-3 or 1-in-6 day schedules, so
individual schools are assigned multiple monitoring stations in a single year. The
median distance between schools and PM2.5 monitoring station across all days was
1.91 miles, 93% of all school-day monitor distances were below 5 miles, and 99.5%
of all distances were less than 10 miles. There are fewer Ozone monitoring stations,
so the median distance between schools and Ozone monitoring station across all
days was 4.14 miles, 97.2% of all school-day monitor distances were less than 10
miles, and 99.6% of all distances were less than 12 miles. Figure 3.1 shows the
average PM2.5 measurement for each school in school years 2006-2007 and 2018-
2019 across all school days. PM2.5 pollution in 2006 was highest in the Bronx
and Manhattan whereas in 2018 Manhattan is most polluted, but PM2.5 air quality
improved everywhere in NYC over this time. NYC is dense and so the absolute
difference in pollution between boroughs on the same day is not large, but there is
significant variation in average pollution across days and years. Wind is discussed

reported at maximum 1-hour concentration.
10Pollution is used here in direct atmospheric concentrations, whereas some other papers use the

scaled Air Quality Index (AQI) with Technical Documentation here.

https://www.airnow.gov/sites/default/files/2020-05/aqi-technical-assistance-document-sept2018.pdf
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in the next section and acts as a daily pollution shock common to all schools in
NYC.

Weather Data
Wind Data

As shown in Deryugina et al., 2019, wind-carried transport is responsible for sig-
nificant variation in daily PM2.5 pollution across the US. In this paper, I leverage
changes in wind direction using an instrumental variable analysis that exploits this
quasi-random pollution shock. Wind data comes from the North American Regional
Reanalysis (NARR) from 2006 to 201911, with implementation details borrowed
from Deryugina et al., 2019. NARR combines multiple data sets to produce con-
sistent and longitudinal atmospheric data at a 32 km by 32 km resolution. Wind
conditions are reported as an east-speed (u-component) and a north-south speed
(v-component). Simple trigonometric functions allow for the combination of u-
and v-wind into a wind direction.12 Specifically, the wind angle is calculated as
𝜃 = 180

𝜋
Arctan( |𝑣 ||𝑢 | ) and then converted from 0-360 degrees depending on the signs

of 𝑢 and 𝑣 following conventions in Deryugina et al., 2019 and elsewhere:

𝑊𝐼𝑁𝐷𝐷𝐼𝑅 =

270 − 𝜃 if 𝑢 > 0 and 𝑣 > 0

270 + 𝜃 if 𝑢 > 0 and 𝑣 < 0

90 + 𝜃 if 𝑢 < 0 and 𝑣 > 0

90 − 𝜃 if 𝑢 < 0 and 𝑣 < 0

In this form, 𝑊𝐼𝑁𝐷𝐷𝐼𝑅 of zero corresponds to wind blowing from the north into
the south, and increasing angle moves clockwise with 90 degrees corresponding to
east-west, 180 degrees south-north, and 270 degrees west-east. New York is covered
by a single 32km by 32km grid13, and all school-monitor pairs are assigned the same
daily wind direction.

Figure 3.2 shows a regression of average daily PM2.5 in NYC from 2006 to 2019
against daily wind directions. The median daily PM2.5 concentration across this
period was 8.05𝜇g/𝑚3 and so wind coming out of the south-to-southwest adding
an additional 6-7𝜇g/𝑚3 is a nearly 75% increase relative to wind from the north.

11Link to data at NARR Monolevel Data Catalog, data used is near-suface (10m) uwnd and vwnd.
Data description can be found at NARR homepage.

12The current model does not use wind speed, which is calculated as
√
𝑢2 + 𝑣2.

13Using NARR’s grid, the row coordinate is 259 and the columnn coordinate is 130, centered at
latitude and longitude of (40.656, -73.816), near JFK airport.

https://psl.noaa.gov/thredds/catalog/Datasets/NARR/Dailies/monolevel/catalog.html
https://psl.noaa.gov/data/gridded/data.narr.html
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Figure 3.2: Regression of average daily PM2.5 measurements against 10-degree
binned wind direction from 2006 to 2019 with Month by Year fixed effects. Re-
gression coefficients are in red with blue lines representing 95 percent confidence
intervals using robust standard errors. Omitted comparison angle is zero degrees.

This relationship between PM2.5 and wind in NYC is very similar to a figure in
the appendix of Deryugina et al., 2019 for King’s County, New York from 1999
to 2013. Figure 3.3 shows the same regression of average daily Ozone on wind
direction, and the effect size is significant but smaller (relative to the mean) than
for PM2.5 pollution. Against a median daily average of 32.6 PPB, an additional 10
PPB from south-west originating wind compared to east-originating wind adds 30%
more Ozone pollution.

Snow Data

NYC gets snow multiple times a year, and snow can lead to school delays or
closings as well as icy roads that cause individual students to be unable to get to
school. Controlling for snow is important in analyzing winter school absences, and
snow data from 2006 to 2019 is taken from NOAA’s Global Historical Climatology
Network (GHCN) of snowfall observations. Unfortunately, there are only a few snow
surface stations compared the pollution monitoring stations, and so most schools are
10 miles away from where their nearest snow measurements were taken. Even at that
distance measured snowfall has a large effect on each school’s daily absences, but it
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Figure 3.3: Regression of average daily Ozone measurements against 10-degree
binned wind direction from 2006 to 2019 with Month by Year fixed effects. Re-
gression coefficients are in red with blue lines representing 95 percent confidence
intervals using robust standard errors. Omitted comparison angle is zero degrees.

represents significant measurement error from the amount of snow on the roads near
each school. I create indicator variables for whether any snowfall was measured on
the day of absences or the day before, as well as additional indicator variables if
cumulative snowfall over the last four days was more than 30cm or 50cm. These
snow variables are included in an OLS regression for the robustness section, but the
main regressions are restricted to the months of April through November to avoid
snow’s effect on absences.

3.4 Methodology
This section considers how to analyze the effects of air pollution on school absences.
To inform policy, we want estimates of the harms of pollution that are either unbiased
or biased downwards. Daily records of absences and pollution allow for testing
multiple lag or dose-response functions, but require controlling for seasonal and
non-pollution related absences. I first describe the OLS specification of regressing
daily school absences on air pollution. The next subsection describes threats to
identification, particularly omitted variables that affect both pollution and absences.
I then propose using wind in an instrumental variable regression, because daily wind
direction is quasi-random and wind transports air pollution. This section concludes
by discussing snowfall, which is measured with error and violates the exclusion
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restriction.

OLS Regression Specification
The first regression specification directly regresses daily absences on daily pollutant
concentration:

𝑌 𝑡
𝑖 = 𝛽𝑐 [Pollution𝑡−𝑛𝑖 ] + 𝛿𝑑 + 𝛾𝑠 + 𝜃𝑠𝑦 + 𝜁𝑠𝑚 + 𝜖 𝑡𝑖 (3.1)

𝑌 𝑡
𝑖

is the percent of students absent for school 𝑖 at day 𝑡, the coefficient of interest
is 𝛽𝑐 for each different pollutant. I include 𝛿𝑑 as fixed effects for day-of-the-week
because absences are higher on Mondays and Fridays. I also include school fixed
effects (𝛾𝑠), school times year (𝜃𝑠𝑦), and school times month fixed effects (𝛾𝑠𝑚). I
test several lag structures using pollution from previous days (shown in Section 3.6)
and find different time-lags based on pollutant. The main results for PM2.5 uses the
same day of pollution (n = 0) on absences, but Ozone has delayed effect on absences
and so I use two-days lagged (n = 2). Results are presented in the main section for
PM2.5 and Ozone, while CO, NO2, and SO2 have non-significant results and are
relegated to the appendix.

Following papers such as Hales et al., 2016 and S. Chen, Guo, and Huang, 2018, I
use day-of-the-week fixed effects because absences are statistically more likely on
Mondays and Fridays compared to the middle of the week. To further control for
unobserved school and seasonal characteristics, I also include school, school times
month, and school times year fixed effects. The remaining error term 𝜖 𝑡

𝑖
is also

at the school 𝑖 and day 𝑡 level, with results weighted by school population and the
coefficients calculated using HC2 standard errors.

Threats to Identification
Consider the above OLS regression of daily air pollution on school absences. The
first problem we might encounter is selection, where students who live areas with
low pollution might have different probabilities of being absent than students who
live in areas with high pollution. I can control for differences in average absence
rates by using school and school times year fixed effects, so that kind of selection is
unlikely to be an issue. Differences in elasticity or response to pollution by school,
however, would lead to biased estimates. For this reason I also have a specification
where I directly analyze each school’s absences separately and then compare results
across schools. I find that type of school (elementary, middle, or high) changes the
elasticity for absences caused by Ozone or PM2.5, and school poverty has effects
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on absences caused by PM2.5 pollution.

The next possible threat to identification involves potential changes across years in
school absences or the way they are calculated. I am unaware of any such rule
changes, but over a period of 13 calendar years there might also be changes in
the availability of school busing or prevalence of mental health related absences.
Papers like Twenge et al., 2019 and Bitsko et al., 2018 find increases of anxiety and
depression among students over this sample period, which could translate into more
absences. Empirically, however, I document a significant decline in NYC average
absence rates from 2006 to 2019, combined with a decline in PM2.5 pollution
and a slight increase in Ozone pollution. My analysis uses day-to-day variation in
pollution that is present across all years and is thus an unbiased estimate of effects
across time.

The final threat to identification in the school absence context is omitted variables or
seasonality that affects both pollution and absences. For PM2.5, concentrations are
highest in winter months which have higher absences due to holiday breaks as well as
seasonal influenza. For Ozone, concentrations are highest in summer months which
have higher absences potentially due to end-of-year effects. Comparing school days
from different months could lead to coefficients biased either upwards or downwards
depending on the size of these seasonal correlations. For this reason I add month
fixed effects, which makes the comparison between high pollution and low pollution
days while attempting to keep seasonal effects constant by comparing days within
the same month. To analyze pollution variation that is uncorrelated with these kinds
of seasonal effects, I use wind direction in an instrumental variables specification.
This IV specification also prevents any possible issues of reverse causality, because
wind transports air pollution that causes absences but school absences have zero
effect on wind direction.

IV Regression Specification
Using wind direction as an instrument on daily pollution, this regression attempts
to determine the causal effects of air pollution. Following Deryugina et al., 2019 I
use wind direction as an instrument for pollution in 2SLS. Wind is binned into eight
45-degree indicator variables. The first-stage specification for PM2.5 is

𝑃𝑀2.5𝑡𝑖 = 𝛼𝑐 [
3∑︁

𝑘=0
WindDirection𝑡−𝑘𝑖 ] + 𝛿𝑑 + 𝛾𝑠 + 𝜃𝑠𝑦 + 𝜁𝑠𝑚 + 𝜖 𝑡𝑖 (3.2)
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Pollution is estimated for each day 𝑡 and school 𝑖. Deryugina et al., 2019 includes
two days lagged wind measurements, and I include three lags because absences are
calculated in the morning. In the second stage I use this estimated �𝑃𝑀2.5 based on
each school’s closest pollution monitor to get the daily measurements:

𝑌 𝑡
𝑖 = 𝛽𝑐 [ �𝑃𝑀2.5𝑡−𝑛

𝑖
] + 𝛿𝑑 + 𝛾𝑠 + 𝜃𝑠𝑦 + 𝜁𝑠𝑚 + 𝜖 𝑡𝑖 (3.3)

I use the same fixed effects as the OLS regression of day of the week (𝛿𝑑), school
(𝛾𝑠), school times year (𝜃𝑠𝑦), and school times month (𝜁𝑠𝑚) are used in both equa-
tions. Figure 3.2 shows a simplified version of the first-stage regression with large
variations in daily PM2.5 pollution based on wind direction. The above equations
are written in terms of PM2.5, but I repeat the 2SLS procedure for Ozone using
two-days lagged pollution and the corresponding lagged wind. Figure 3.3 shows a
version of the first-stage regression for Ozone, with significant variation based on
wind direction but smaller effects (relative to the mean concentration) compared to
the regression of PM2.5 on wind direction. The remaining error term 𝜖 𝑡

𝑖
is also

at the school 𝑖 and day 𝑡 level, with results weighted by school population and the
coefficients calculated using HC2 standard errors.

Individual School Regressions

To directly compare absences between students at the same school as well as examine
treatment heterogeneity across schools, I also run the OLS and IV regressions on
absences for each school individually in the Results section. I analyze both PM2.5
and Ozone and report coefficients for individual schools, as well as schools grouped
by type (elementary, middle, or high) and by fraction of students that are classified
as economically disadvantaged. The OLS and IV regressions are set up in the same
way as in equations 3.1, 3.2, and 3.3 except without school fixed effects (because
these regressions include only one school at a time); instead, the fixed effects are
𝛿𝑑 + 𝜃𝑦 + 𝛾𝑚 for day of the week, month, and year for all individual school results.

Snow Problems

Snow poses two challenges in analyzing school absences in New York City. The
first problem is that snow has large effects on school attendance but is measured
with error. As described in the Data section on snow, most schools are 10 miles
away from where their nearest snow measurements were taken. Even at that distance
snow has a large effect on each school’s daily absences, but it represents significant
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measurement error from the amount of snow on the roads near each school. Snow
might melt at different rates across NYC depending on plow timing and road salt
usage, so the effects on absences for following days might also vary. For this reason
the main OLS and IV regressions in the results section are run on months that do
not have snow, but I include OLS results using all months in Section 3.6.

The second issue with snow is that it is correlated with wind direction. For the
IV wind regression to satisfy the exclusion restriction, there must be no channel
by which daily wind affects school absences except through wind-carried pollution.
In a meteorological analysis Blechman, 2002 finds that “New York City exhibited
preferences for snow with east and northeast winds with few westerly wind events."
Figure 3.4 updates the analysis of wind direction on snowy days for NYC from 2006
to 2019, and shows there remains a strong correlation between wind direction and
snowfall. Specifically, snow most often occurs on days that have low PM2.5 pollution
due to winds from the north and north-east and rarely occurs on high PM2.5 days
with winds coming from the south and west. Snowfall has a strong effect on school
absences, so the IV exclusion restriction fails on those days and the coefficient is
biased downwards. The main IV results are thus run on months without snow, April
though November. More localized snow data or improved functional forms for the
snow-absence relationship could allow for analysis of winter months. I am unaware
of other omitted variables or correlations that would violate the exclusion restriction
for my IV regressions, but if there were, my OLS estimates still provide evidence of
the same magnitude and timing of absences caused by PM2.5 and Ozone pollution.

3.5 Results
OLS Results
This section provides OLS regression results for PM2.5 and Ozone across all years
from 2006 to 2019. As described in Section 3.4, snow is measured with error
and causes large amounts of absences unrelated to pollution, so the main OLS
regressions omit snow-containing months December through March. OLS estimates
for all months and directly controlling for snow are presented in Section 3.6.

Table 3.2 shows the PM2.5 OLS results of same-day pollution on absences. Against
an average of approximately 8% (8000 per 100,000 students) students absent per
day across NYC during this period, the coefficient represents absences per 100,000
students caused by an additional 1 𝜇g/𝑚3 of daily PM2.5 pollution. The coefficients
are positive in all specifications, although adding more fixed effects reduces the
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Figure 3.4: Wind direction of NYC days that had non-zero snowfall from 2006 to
2019. With a total of 456 days with snow accumulation over that range, 245 (53.7%)
had wind coming from north-to-northwest (270 to 360 degrees).

magnitude. The preferred specification is Model 5 with all fixed effects, showing
an extra 25.1 absences per 𝜇g/𝑚3 of PM2.5. Going from the median NYC day of
PM2.5 pollution of 8.05𝜇g/𝑚3 to the 90th percentile day of 16.98𝜇g/𝑚3 times that
coefficient implies an additional 224 absences per 100,000 students that day.

Table 3.2: OLS regression of same-day PM2.5 pollution on daily absences for months
without snow (April through November).

Dependent Variable:
Daily Absences Per 100,000 Students

(1) (2) (3) (4) (5)
𝛽1 - 𝜇g/𝑚3 PM2.5 83.66*** 60.18*** 39.14*** 48.45*** 25.06***

(1.33) (1.00) (0.89) (1.03) (0.92)
School FE Yes Yes Yes Yes
School × Month FE Yes Yes
School × Year FE Yes Yes
Observations 2103540 2103540 2103540 2103540 2103540
𝑅2 0.000 0.536 0.616 0.538 0.618

Table 3.3 shows the Ozone OLS results of two-days lagged pollution on absences.
Against an average of approximately 8% (8000 per 100,000 students) students absent
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per day across NYC during this period, the coefficient represents absences per
100,000 students caused by an additional part-per-billion (PPB) of daily Ozone
pollution two days earlier. As shown in later Section 3.6, Ozone has largest effects
on absences one or two days following exposure. The coefficients are positive in all
specifications, and school times month fixed effect especially reduces the coefficient
magnitude. This is because Ozone is highest in hot summer months, and comparing
absences between months may attribute seasonal effects to differences in average
Ozone, so it is important to include fixed effects to control for monthly variation.
The preferred specification is Model 5 with all fixed effects, showing an extra 20.9
absences per 100,000 students for every PPB of Ozone. Going from the median
NYC day of Ozone pollution of 32.6 PPB to the ninetieth percentile day of 60.8
PPB times that coefficient implies an additional 589 absences per 100,000 students
two days later.

Table 3.3: OLS regression of two-days lagged Ozone pollution on daily absences for
months without snow (April through November).

Dependent Variable:
Daily Absences Per 100,000 Students

(1) (2) (3) (4) (5)
𝛽2 - PPB of Ozone 57.42*** 76.31*** 16.71*** 79.82*** 20.91***

(0.52) (0.38) (0.42) (0.38) (0.42)
School FE Yes Yes Yes Yes
School × Month FE Yes Yes
School × Year FE Yes Yes
Observations 2103540 2103540 2103540 2103540 2103540
𝑅2 0.011 0.554 0.616 0.557 0.619

Wind IV Regression Estimates
This section provides IV regression results for PM2.5 and Ozone across all years
from 2006 to 2019. As described in Section 3.4, snow is measured with error and
causes large amounts of absences unrelated to pollution, so the main IV regressions
omit snow-containing months December through March. Figures 3.2 and 3.3 show
the first stage regressions of daily PM2.5 or two-days lagged Ozone on school
absences.

Table 3.4 shows the PM2.5 IV results of same-day pollution on absences. Against
an average of approximately 8% (8000 per 100,000 students) students absent per
day across NYC during this period, the coefficient represents absences per 100,000
students caused by an additional 1 𝜇g/𝑚3 of daily PM2.5 pollution. The coefficients
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are positive in all specifications, although adding more fixed effects reduces the
magnitude. The preferred specification is Model 5 with all fixed effects, showing an
extra 44.2 absences per 100,000 students for every 𝜇g/𝑚3 of PM2.5 pollution. Going
from the median NYC day of PM2.5 pollution of 8.05𝜇g/𝑚3 to the 90th percentile
day of 16.98𝜇g/𝑚3 times that coefficient implies an additional 395 absences per
100,000 students that day. Comparing the PM2.5 IV coefficient magnitude to the
OLS results, with no fixed effects the OLS coefficient is approximately 60% larger
than the IV coefficient, but in Model 5 the IV coefficient is 75% larger than the OLS
coefficient.

Table 3.4: IV regression of same-day PM2.5 pollution on daily absences for months
without snow (April through November).

Dependent Variable:
Daily Absences Per 100,000 Students

(1) (2) (3) (4) (5)
𝛽1 - 𝜇g/𝑚3 PM2.5 50.82*** 50.53*** 49.21*** 57.19*** 44.29***

(2.29) (1.59) (1.44) (1.63) (1.46)
School FE Yes Yes Yes Yes
School × Month FE Yes Yes
School × Year FE Yes Yes
Observations 2103540 2103540 2103540 2103540 2103540
𝑅2 0.013 0.508 0.597 0.511 0.600
𝑅2 Adj. 0.013 0.508 0.596 0.510 0.600

Table 3.5 shows the Ozone IV results of two-days lagged pollution on absences.
Against an average of approximately 8% (8000 per 100,000 students) students
absent per day across NYC during this period, the coefficient represents absences
per 100,000 students caused by an additional part-per-billion (PPB) of daily Ozone
pollution two days earlier. As shown in later Section 3.6, Ozone has largest effects
on absences one or two days following exposure. The coefficients are positive in
all specifications and, similarly to Table 3.3, the school-times-month fixed effect
especially reduces the coefficient magnitude. The preferred specification is Model
5 with all fixed effects, showing an extra 29.8 absences per 100,000 students for
every PPB of Ozone. Going from the median NYC day of Ozone pollution of 32.6
PPB to the ninetieth percentile day of 60.8 PPB times that coefficient implies an
additional 840 absences per 100,000 students two days later. Comparing the Ozone
IV coefficient magnitude to the OLS results, the IV coefficient is consistently larger
than the OLS coefficients regardless of fixed effects, and it is approximately fifty
percent larger in Model 5.



82

Table 3.5: IV regression of two-days lagged Ozone pollution on daily absences for
months without snow (April through November).

Dependent Variable:
Daily Absences Per 100,000 Students

(1) (2) (3) (4) (5)
𝛽2 - PPB of Ozone 79.05*** 88.00*** 30.16*** 91.38*** 29.83***

(1.48) (1.07) (1.04) (1.04) (1.03)
School FE Yes Yes Yes Yes
School × Month FE Yes Yes
School × Year FE Yes Yes
Observations 2103540 2103540 2103540 2103540 2103540
𝑅2 0.020 0.526 0.596 0.531 0.601
𝑅2 Adj. 0.020 0.525 0.596 0.531 0.600

Individual School IV Analysis
This section presents PM2.5 and Ozone IV results from individual schools, with the
corresponding OLS results relegated to the appendix. Results are shown first for
all schools in histogram form, then grouped by school type, and finally grouped by
percentage of students considered economically disadvantaged.

Figure 3.5 shows the PM2.5 IV results run on each individual school. The vertical
red line marks zero effects on absences, and 176 out of 1623 (10.8%) schools
have negative PM2.5 coefficients. Running each school individually increases the
standard errors, though, and so only 319 out of 1623 (19.7%) of schools have IV
coefficients that are significantly above zero. Comparing across all schools, the
median IV coefficient is 49.4 and the mean IV coefficient is 52.2, both of which
are slightly larger than the full regression IV coefficient of 44.3. This distribution
of effect size by school is consistent with PM2.5 causing absences combined with
some noise by school, but it is possible some schools do not have absences caused
by PM2.5 pollution.

Figure 3.6 shows the Ozone IV results run on each individual school. The vertical
red line marks zero effects on absences, and 188 out of 1623 (11.6%) schools
have negative coefficients. Running each school individually increases the standard
errors, though, and so only 321 out of 1623 (19.8%) of schools have IV coefficients
that are significantly above zero. Comparing across all schools, the median IV
coefficient is 32.2 and the mean IV coefficient is 38.6, both of which are slightly
larger than the full regression IV coefficient of 29.8. The distribution of effect size
by school is consistent with Ozone causing absences combined with some noise by
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Figure 3.5: PM2.5 IV regression with every school run individually. These models
include day of week, month, and year fixed effects, and the coefficient is reported in
bins for every school. The red line is at 0 and the blue line represents the coefficient
in the full data.

school, but it is also possible some schools do not have absences caused by Ozone.

Figure 3.7 presents a box plot of PM2.5 IV coefficients grouped into elementary,
middle, and high schools. The median PM2.5 coefficients by type are 53.9 for ele-
mentary schools, 55.6 for middle schools, and 35.3 for high schools. The difference
between the average elementary and middle school coefficient is not statistically sig-
nificant (p = 0.12), but both are statistically larger than the average coefficient among
high schools; in fact, 25% of all high schools have a negative PM2.5 coefficient.
Previous work has generally found that PM2.5 causes absences for elementary or
middle schools, but high schools’ absences are often not analyzed. I include all
types of schools in the main analysis, but this difference by school type fits with the
medical understanding that PM2.5 harms younger children more than high school
aged children.

Figure 3.8 presents a box plot of Ozone IV coefficients grouped into elementary,
middle, and high schools. The median Ozone coefficients by type are 30.5 for
elementary schools, 17.8 for middle schools, and 49.7 for high schools. Pairwise
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Figure 3.6: Ozone IV regression with every school run individually. These models
include day of week, month, and year fixed effects, and the coefficient is reported in
bins for every school. The red line is at 0 and the blue line represents the coefficient
in the full data.

Figure 3.7: PM2.5 IV regression with every school run individually and grouped
into school type. These models include day of week, month, and year fixed effects,
and the coefficient is reported in bins for every school.
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Figure 3.8: Ozone IV regression with every school run individually and grouped
into school type. These models include day of week, month, and year fixed effects,
and the coefficient is reported in bins for every school.

differences between school types are all statistically significant, with high schools
having statistically larger effects than elementary schools which have larger effects
than on middle schools. Most of the medical literature suggests that younger children
are generally more at risk because of their developing immune systems, so this large
Ozone effect on high school absences (and small effect on middle school absences)
is surprising. I conjecture that this difference might be due to after-school sports in
high schools, which would have them exercising outdoors during peak Ozone hours.
Previous analysis of school absences often focused only on elementary or middle
school, so these Ozone-caused absences among high school students warrant further
investigation.

Figure 3.9 presents a box plot of Ozone IV coefficients grouped by a school’s
percentage of students considered economically disadvantaged. Most of NYC public
school students are classified as poor, with poverty quartiles by school of Q4 = [0,
76.07], Q3 = (76.07, 87.92], Q2 = (87.92, 93.08], and Q1 = (93.08, 100], with Q1
being the richest schools and Q4 being the poorest schools. The median coefficients
by poverty quartile are 38.1 for Q1, 46.5 for Q2, 55.2 for Q3, and 68.9 for Q4.
Average effect sizes are increasing in poverty quartile, with statistically significant
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Figure 3.9: PM2.5 IV regression with every school run individually and grouped by
percentage of students considered economically disadvantaged, where Quartile 4 is
richest and Quartile 1 is poorest. These models include day of week, month, and
year fixed effects, and the coefficient is reported in bins for every school.

increases from Q4 to Q3 (p = 0.016), from Q3 to Q2 (p = 0.021), and from Q2 to
Q1 (p = 0.0001). Previous research has shown that socioeconomic status affects
both the frequency and severity of asthma, and higher asthma rates at schools with
more students in poverty could explain these findings. Alternatively, students from
families that are more well-off may have smaller cumulative exposure from pollution
or more ways to mitigate the harms of pollution through air filtration or increased
healthcare spending.

Figure 3.10 presents a box plot of Ozone IV coefficients grouped by a school’s per-
centage of students considered economically disadvantaged, using the same poverty
quartile bins as in the Figure 3.9 with Q1 being the richest schools and Q4 being
the poorest schools. The median coefficients by poverty quartile are 22.0 for Q1,
44.0 for Q2, 42.7 for Q3, and 45.6 for Q4. In contrast to PM2.5, average effect sizes
are not increasing in poverty quartile, with statistically significant increases from
Q4 to Q3 (p = 0.0000) but not from Q3 to Q2 (p = 0.652) or Q2 to Q1 (p = 0.248).
This analysis suggests that socioeconomic status has less of an intermediary effect
on absences caused by Ozone than on absences caused by PM2.5 pollution.
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Figure 3.10: Ozone IV regression with every school run individually and grouped
by percentage of students considered economically disadvantaged, where Quartile
4 is richest and Quartile 1 is poorest. These models include day of week, month,
and year fixed effects, and the coefficient is reported in bins for every school.

3.6 Extensions and Robustness
This section contains extensions of the main IV regressions and robustness tests. The
first subsection compares the effects of pollution on different days, which motivates
the choice of same-day PM2.5 pollution and two-days lagged Ozone. The final
subsection runs OLS regressions on all data (including winter months) and directly
controlling for snow.

Effects of Lagged Pollution
This section analyzes different pollution lag structures for Ozone and PM2.5 pollu-
tion. These two chemicals are measured differently (maximum 8-hour concentration
for Ozone, average 24-hour concentration for PM2.5) and the process of Ozone for-
mation is heavily influenced by heat, so Ozone is highest in the afternoon after
school absences are determined by morning attendance. For this reason, we might
expect different time-responses for absences caused by PM2.5 versus Ozone pol-
lution. PM2.5 measurements are averaged over the entire day, so it also includes
after-school hours, but ambient concentrations do not change as much throughout
the day as Ozone concentrations do.
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Table 3.6 runs the full fixed effects model of PM2.5 separately for each day of
pollution. For the IV models, in the first stage each day of pollution is regressed on
wind from that day and three additional days of lagged wind. In both the IV and
OLS models days 0 through 2 all have positive and significant coefficients, but day
3 has a negative and/or insignificant coefficient. This regression is evidence of the
timescale at which pollution causes respiratory issues that lead to absences, and it
appears that the short-run increase in absences caused by PM2.5 subsides after 2
days. Average PM2.5 over the past week or month is likely to affect school absences,
but my econometric design can only test for short-run changes in pollution. Effects
are largest on the same-day that PM2.5 increases, but there are (smaller) statistically
significant absence effects on the following day and two days later. Based on
this analysis of the effects by day, I run the main regressions on same-day PM2.5
concentrations, but results are similar if I include all pollution from days 0 through
2 as explanatory variables.

Table 3.6: PM2.5 IV and OLS regression comparing each day of lagged pollution separately
for months without snow (April through November) and including all fixed effects.

Dependent Variable:
Daily Absences Per 100,000 Students

IV(1) IV(2) IV(3) IV(4) OLS(5) OLS(6) OLS(7) OLS(8)
Same Day PM2.5 44.29*** 25.06***

(1.45) (0.92)
1 Days Lag 32.38*** 21.20***

(1.62) (0.90)
2 Days Lag 25.41*** 13.86***

(1.68) (0.91)
3 Days Lag -18.2*** -0.938

(1.60) (0.90)
Observations 2103540 2103540 2103540 2103540 2103540 2103540 2103540 2103540
𝑅2 0.600 0.600 0.600 0.600 0.618 0.618 0.618 0.618
𝑅2 Adj. 0.600 0.600 0.600 0.599

Table 3.7 runs the full fixed effects model of Ozone separately for each day of
pollution. For the IV models, in the first stage each day of pollution is regressed on
wind from that day and three additional days of lagged wind. In both the IV and OLS
models days 0 through 2 all have positive and significant coefficients, but day 3 has a
insignificant IV coefficient and smaller OLS coefficient. Same-day Ozone pollution
also has much smaller effects than lagged Ozone; the same-day coefficient magnitude
is three times smaller compared to two-days IV lagged coefficient and twelve times
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smaller than the comparable OLS coefficient. This regression is evidence of the
timescale at which Ozone causes minor respiratory issues that lead to absences, and
it appears that the short-run increase in absences caused is strongest one or two days
later, but then this increase subsides. As with PM2.5, average Ozone concentration
over the past week or month is likely to affect school absences, but my econometric
design can only test short-run changes in pollution. Based on this analysis of the
effects by day, I run the main regressions on two-days lagged Ozone concentrations,
but results are similar if I include all pollution from days 0 through 2 as explanatory
variables.

Table 3.7: Ozone IV and OLS regression comparing each day of lagged pollution separately
for months without snow (April through November) and including all fixed effects.

Dependent Variable:
Daily Absences Per 100,000 Students

IV(1) IV(2) IV(3) IV(4) OLS(5) OLS(6) OLS(7) OLS(8)
Same Day Ozone 9.37*** 16.7***

(0.85) (0.40)
1 Day Lag 26.11*** 19.80***

(0.91) (0.39)
2 Days Lag 29.83*** 20.91***

(1.03) (0.42)
3 Days Lag -1.57 11.65***

(0.99) (0.42)
Observations 2103540 2103540 2103540 2103540 2103540 2103540 2103540 2103540
𝑅2 0.600 0.601 0.601 0.600 0.618 0.619 0.619 0.618
𝑅2 Adj. 0.599 0.600 0.600 0.599

OLS Results Including Snow
This subsection runs OLS regressions on the full school absence data set and directly
controls for snow. Snow is included as binary indicators for {Any snow at 𝑡 or 𝑡 − 1,
between 0.1 and 0.5 meters of snow from 𝑡 to 𝑡 − 3, More than 0.5 meters of snow
from 𝑡 to 𝑡 − 3}. Table 3.8 shows the panel of fixed effects and coefficients on the
snow variables. The PM2.5 OLS coefficients in Model 1 and 2 are similar to the
corresponding coefficients in the main results, but adding school times year and
school times month fixed effects reduces the coefficient and makes it negative in
Model 5. The issue is that snow is measured with error and has much larger effects
on absences than pollution. Using coefficients from Model 5, any snow that day
or the day before causes 1862 absences per 100,000 students, which is added to
either 2539 or 6322 absences if there is more than 0.1 or 0.5 meters of accumulated
snow. A day of heavy snowfall can outweigh the average absence effects of a month
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of high-pollution, so month and year fixed effects end up fitting average snowfall
instead of average pollution. This is an econometric and measurement issue, though,
and pollution still causes absences during winter months.

Table 3.9 shows the Ozone OLS regression using all months of data and directly
controlling for snow. In contrast to PM2.5, the Ozone results are remarkably similar
to the main Ozone OLS results run on months without snow. Specifically, all
specifications for Ozone with snow are positive and significant and the Model 5
coefficient is only twenty percent larger in the comparable regression of non-winter
months. Ozone formation depends on heat and is lowest during winter months, so
it is not too surprising that this regression is able to distinguish snow absences from
Ozone-caused absences.

Table 3.8: OLS regression of same-day PM2.5 pollution on daily absences for all
months and directly controlling for snow.

Dependent Variable:
Daily Absences Per 100,000 Students

(1) (2) (3) (4) (5)
𝛽1 - 𝜇g/𝑚3 PM2.5 43.25*** 17.51*** 1.68** 2.72*** -16.30***

(0.96) (0.64) (0.64) (0.66) (0.67)
>0 Snow 1733*** 1895*** 1887*** 1899*** 1862***

(21.1) (15.8) (15.7) (15.6) (15.5)
10-50cm of Snow 2181*** 2310*** 2398*** 2447*** 2539***

(38.2) (32.0) (32.0) (32.1) (32.0)
>= 50cm of Snow 5097*** 6106*** 5962*** 6437*** 6322***

(242) (221) (220) (222) (221)
School FE Yes Yes Yes Yes
School × Month FE Yes Yes
School × Year FE Yes Yes
Observations 3499057 3499057 3499057 3499057 3499057
𝑅2 0.007 0.554 0.604 0.555 0.605
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Table 3.9: OLS regression of two-days lagged Ozone pollution on daily absences for
all months and directly controlling for snow.

Dependent Variable:
Daily Absences Per 100,000 Students

(1) (2) (3) (4) (5)
𝛽2 - PPB of Ozone 32.20*** 49.03*** 12.48*** 52.34*** 17.30***

(0.40) (0.29) (0.34) (0.29) (0.34)
>0 Snow 1973*** 2205*** 1904*** 2220*** 1894***

(21.1) (15.6) (15.5) (15.4) (15.4)
10-50cm of Snow 2332*** 2490*** 2462*** 2642*** 2603***

(38.1) (31.8) (31.9) (31.9) (32.0)
>= 50cm of Snow 5240*** 6203*** 6091*** 6544*** 6402***

(241) (220) (220) (220) (221)
School FE Yes Yes Yes Yes
School × Month FE Yes Yes
School × Year FE Yes Yes
Observations 3490118 3490118 3490118 3490118 3490118
𝑅2 0.024 0.532 0.580 0.536 0.584
𝑅2 Adj. 0.024 0.531 0.580 0.535 0.583

3.7 Conclusion
This paper estimates the causal effects of air pollution encountered in day-to-day life
in the United States. Previous papers analyzing the absences in the US took place
either at smaller scale or using less fine-grained data. I analyze 1669 schools in
NYC from 2006 to 2019 and using daily attendance data from millions of students
find absences caused by PM2.5 as well as Ozone. Because I can analyze responses
to wind-induced pollution shocks across different days, I show that PM2.5 pollution
causes absences the same day it increases but Ozone has largest effects on absences
one or two days later. I separately analyze schools by type and find, consistent with
the literature, that elementary and middle schools experience larger effects from
PM2.5 pollution than do high schools. For Ozone, by contrast, the largest absence
effect is on high schools, followed by elementary and then middle schools.

Although the magnitudes of the estimated absences caused by PM2.5 and Ozone are
not especially large, they are robust to multiple specifications, are estimated for all
NYC students, and can be interpreted as causal. This means that, across NYC with
an average yearly enrollment of 960,000, an additional 𝜇g/𝑚3 of PM2.5 pollution
causes 425 students to stay home sick that day and an extra PPB of Ozone causes 286
students to be sick from school two days later. Going from the median PM2.5 day
to the 90th percentile day causes 2150 students to be absent that day and going from
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the median Ozone day to the 90th percentile day causes 5654 students to be absent
two days later. The decline in average daily PM2.5 pollution of 5 𝜇g/𝑚3 from 2006
to 2019 caused a reduction in school absences of 2125 students per day, or 381024
total absences over the entire school year. The state of New York funds individual
schools on the basis of average daily attendance, with a school losing around $50
for every day that a student is absent, so this reduction in school absences increased
annual NYC school funding by approximately $19 million dollars in 2019. My
identification strategy compares school days in the same month to minimize bias
from seasonal trends, but if some of the difference in absences between months
is due to changes in pollution across months, then these are likely to be lower
bounds. For example, if school absences are high in summer months not because of
end-of-year reasons but only because Ozone concentrations are much higher, then
including School × Month fixed effects biases the results towards zero. Assuming
that all differences in absences across months are due to pollution corresponds to
Model 4 in my results, and the Ozone coefficients are approximately 3 times larger
than the corresponding Model 5 coefficients.

These pollutants were measured in NYC from 2006 to 2019 with concentrations
below the respective federal limits on approximately 99.3% of days for PM2.5 and
98.3% of days for Ozone. The measured harms were larger for days above those
thresholds, but there were absences caused by pollution below those thresholds as
well. I was able to identify effects of pollution at these levels because of daily
school absence data representing more than twelve million student years. Reporting
absences by school means that the absence data is not sensitive and is publicly
available in multiple settings. Student-level data allows for the tracking of students
exposed to high pollution and the long-run effects, but that data is harder to access
and typically can’t be released for replication. In contrast, the NYC school-level data
is available online and anyone can replicate this paper with different econometric
specifications. Other variables of interest to connect to absences in future work
include influenza rates, asthma rates, or seasonal allergies.

These absence results also have implications for the rest of the country. PM2.5
concentrations declined significantly over this period, but Ozone remained high,
and these pollutant concentrations are common to the US and other countries in the
modern era. A back-of-the-envelope calculation suggests that: counties containing
more than 140 million people have higher yearly average PM2.5 pollution than NYC;
counties containing more than 103 million people have higher 98th percentile daily
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PM2.5 compared to NYC; counties containing more than 76 million people have
higher Ozone concentrations.14 While those other counties might have different
distributions of polluted days, it suggests that schools in those counties would have
similar numbers of absences due to pollution.

14Calculation done using the EPA’s Air Quality Statistics by County data for 2021, Link Here, with
2010 Population. “Wtd AM” is weighted annual mean concentration, (24-hr) is the 98th percentile
24-hour PM2.5 concentration, and “O3” is the fourth daily maximum 8-hour concentration. NYC is
calculated as the mean of New York County (Manhattan), Kings County (Brooklyn), Bronx County
(The Bronx), Richmond County (Staten Island), and Queens County (Queens).

https://www.epa.gov/system/files/documents/2022-05/ctyfactbook2021.xlsx
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A p p e n d i x A

CHAPTER 1 APPENDIX

Additional Information

Note: We compute market share based on the average of 2006 to 2014 sales data. We
kept only the top twenty manufacturers for better readability of the table. The rest of the
35 manufacturers combined contribute 0.18% of total sales. During this sample period,
Purdue Pharma was the dominant manufacturer of high dosage oxycodone pills (≥ 40mg).
In the lower dosage market, three manufacturers (SpecGx, Actavis Pharma and Phar
Phamaceutical) had higher share of the market than Purdue Pharma.

Figure A.1: Market share of different opioid manufacturers.
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Note: The figure shows the misuse rate of OxyContin (OXYFLAG or OXY-
CONT2) and the misuse rate of Percocet, Percodan, and Tylox (PERCTYL2).
Data obtained from annual NSDUH. Percocet was a popular prescription
oxycodone to misuse in the pre-OxyContin period. We see in this graph that the
PERCTYL2 misuse rate increased 30% from 2002 to 2009, suggesting that the
lifetime misuse rate captures more than historical Percocet, Percodan, and Tylox
misuse.

Figure A.2: NSDUH national lifetime misuse rate.

Note: This graph shows the difference in oxycodone sales between Purdue and Endo
Pharma. The small market share of Endo Pharma leads us to believe that individuals
misreport the drugs they consume on the NSDUH.

Figure A.3: Comparison of sales of Purdue and Endo Pharma.



99

Note: Left is the absolute difference in market share (0.1 means that MSA share is 10%
higher than the state average) and right is percentage difference (10% means that MSA
share is 1.1 times the state average).

Figure A.4: Within-state variation in OxyContin market share.

Note: Left is the absolute difference in opioid mortality (0.1 means that MSA mortality
per 10,000 people is 0.1 higher than the state average) and right is percentage difference
(10% means that MSA mortality per 10,000 people is 1.1 times the state average).

Figure A.5: Within-state variation in opioid mortality.
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Note: We categorized all MSAs into high, mid, and low by the drop in the observed per
person OxyContin sales from 2009 to 2011. The series are population weighted and
Florida is excluded. The high group saw a 30% drop in OxyContin sales, mid group a
3.9% drop, and low group a 15% increase. The high group experienced a 46% increase in
generic oxycodone sales, mid group a 34% increase, and low group a 29% increase. The
three groups share similar oxycodone growth trends until the reformulation.

Figure A.6: Opioid sales by empirical OxyContin drop.

Note: Similarly to the previous figure, we categorized all MSAs into high, mid, and low
by the drop in the observed per person OxyContin sales from 2009 to 2011. The series
are population weighted and Florida is excluded. No trend break in opioid mortality in
the high drop group. The high group saw an 35% increase in heroin mortality, the mid
group 38%, and the low group 37%. The similar increases in heroin mortality post-reform
indicates that drops in OxyContin use post-reform did not lead to additional increase in
heroin use.

Figure A.7: Opioid mortality by empirical OxyContin drop.
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Table A.1: Testing constructed exposure measure against opioid mortality.

Opioid overdose deaths per 100,000
OxyContin Generic Oxycodone

(1) (2) (3) (4) (5) (6)
NSDUH misuse 10.235 2.909

(1.719) (0.570)
ARCOS sales 0.001 0.001

(0.0002) (0.0001)
Combined exposure 0.093 0.087

(0.012) (0.009)
Number of observations 379 379 379 379 379 379
R-square 0.086 0.089 0.130 0.065 0.178 0.189
Adjusted R-square 0.084 0.086 0.128 0.062 0.176 0.187

Notes: Standard errors are in parentheses. We report coefficients from OLS regressions of
opioid mortality on misuse, sales or exposure. NSDUH misuse rates is the 6-year average
OxyContin or Percocet lifetime misuse rate from pre-reform period (2004-2009). ACROS
sales is Oxycontin or generic oxycodone sales per person from 2009. Combined exposure
is the product of the previous two measures normalized (see Equation 1). Overdose from
2009. Regressions are weighted by MSA population.

Table A.2: Difference in difference regression results.

Opioid sales per person Overdose per 10,000
OxyContin Oxycodone Opioid Heroin

(1) (2) (3) (4)
Post -8.05 41.74 0.01 0.14

(2.86) (4.92) (0.02) (0.02)
High OxyContin 47.24 56.46 -0.05 -0.07

(5.78) (13.36) (0.03) (0.02)
High Oxycodone 26.84 95.90 0.14 0.08

(6.66) (15.47) (0.04) (0.05)
Post x High OxyContin -15.14 10.30 0.02 0.03

(6.39) (8.90) (0.02) (0.02)
Post x High Oxycodone -2.33 33.99 0.06 0.07

(6.37) (8.80) (0.02) (0.02)
Number of observations 2148 2148 2148 2148
R-square 0.665 0.737 0.517 0.469
Adjusted R-square 0.654 0.728 0.501 0.452

Notes: We report coefficients from the difference-in-difference estimation (see Equation
(3)). All MSAs in Florida are excluded. In all specifications, we include MSA-level
control variables, state fixed effects and year fixed effects. Standard errors are clustered
at the MSA level.
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Tables
Map

Note: Data from 2004-2009 NSDUH lifetime OxyContin misuse rate (NSDUH ticker OXXYR).
0.01 is interpreted as 1% of the state population have ever misused OxyContin.

Figure A.8: OxyContin lifetime misuse rate at state level.
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Note: Data from 2004-2009 NSDUH lifetime Percocet, Percodan, Tylox misuse rate (NSDUH ticker
PERCTYL2). 0.01 is interpreted as 1% of the state population have ever misused one of the three
drugs. Percocet lifetime misuse rate on average is much higher than OxyContin lifetime misuse rate.

Figure A.9: Percocet lifetime misuse rate at state level.
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Note: The figure plots the absolute difference in percentile ranking of the two state level lifetime
misuse rate. A 0.1 should be interpreted as a 10% difference in percentile ranking between
OxyContin lifetime misuse rate and Percocet lifetime misuse rate. For example, Colorado’s
OxyContin misuse rate is 0.0063 (42 percentile) and it’s Percocet misuse rate is 0.092 (97
percentile), which is a 55% difference in percentile ranking. We rely on the difference between two
misuse rate to separately identify the impact of OxyContin and oxycodone.

Figure A.10: Difference in state level misuse rates.
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Note: This figure shows OxyContin exposure by MSA. We show Florida here, which had very
low OxyContin exposure/sales, but omit it from analysis because it had abnormally high generic
oxycodone sales with large amounts being trafficked to other states.

Figure A.11: OxyContin exposure at MSA level.
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Note: Florida is excluded in this analysis. MSAs grouped by high vs low OxyContin exposure and
high vs low generic oxycodone exposure.

Figure A.12: Difference-in-difference regression categories.

Alternative Regression Specifications
MSA FE

Figure A.13: Regression on OxyContin sales with MSA FE. Shaded regions are the
95 percent confidence intervals with standard errors clustered at the MSA level.
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Figure A.14: Regression on oxycodone sales with MSA FE. Shaded regions are the
95 percent confidence intervals with standard errors clustered at the MSA level.

Figure A.15: Regression on opioid mortality with MSA FE. Shaded regions are the
95 percent confidence intervals with standard errors clustered at the MSA level.

Figure A.16: Regression on heroin mortality with MSA FE. Shaded regions are the
95 percent confidence intervals with standard errors clustered at the MSA level.
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Last Year OxyContin Misuse

Figure A.17: Regression on OxyContin sales with last-year OxyContin. Shaded
regions are the 95 percent confidence intervals with standard errors clustered at the
MSA level.

Figure A.18: Regression on oxycodone sales with last-year OxyContin. Shaded
regions are the 95 percent confidence intervals with standard errors clustered at the
MSA level.
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Figure A.19: Regression on opioid mortality with last-year OxyContin. Shaded
regions are the 95 percent confidence intervals with standard errors clustered at the
MSA level.

Figure A.20: Regression on heroin mortality with last-year OxyContin. Shaded
regions are the 95 percent confidence intervals with standard errors clustered at the
MSA level.
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State Level Regression

Figure A.21: Regression on OxyContin sales at state level. Shaded regions are the
95 percent confidence intervals with standard errors clustered at the MSA level.

Figure A.22: Regression on oxycodone sales at state level. Shaded regions are the
95 percent confidence intervals with standard errors clustered at the MSA level.
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Figure A.23: Regression on opioid mortality at state level. Shaded regions are the
95 percent confidence intervals with standard errors clustered at the MSA level.

Figure A.24: Regression on heroin mortality at state level. Shaded regions are the
95 percent confidence intervals with standard errors clustered at the MSA level.
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OxyContin Only

Figure A.25: Regression on OxyContin sales with OxyContin only. Shaded regions
are the 95 percent confidence intervals with standard errors clustered at the MSA
level.

Figure A.26: Regression on oxycodone sales with OxyContin only. Shaded regions
are the 95 percent confidence intervals with standard errors clustered at the MSA
level.
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Figure A.27: Regression on opioid mortality with OxyContin only. Shaded regions
are the 95 percent confidence intervals with standard errors clustered at the MSA
level.

Figure A.28: Regression on heroin mortality with OxyContin only. Shaded regions
are the 95 percent confidence intervals with standard errors clustered at the MSA
level.
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Oxycodone Only

Figure A.29: Regression on OxyContin sales with oxycodone only. Shaded regions
are the 95 percent confidence intervals with standard errors clustered at the MSA
level.

Figure A.30: Regression on oxycodone sales with oxycodone only. Shaded regions
are the 95 percent confidence intervals with standard errors clustered at the MSA
level.
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Figure A.31: Regression on opioid mortality with oxycodone only. Shaded regions
are the 95 percent confidence intervals with standard errors clustered at the MSA
level.

Figure A.32: Regression on heroin mortality with oxycodone only. Shaded regions
are the 95 percent confidence intervals with standard errors clustered at the MSA
level.
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A p p e n d i x B

CHAPTER 2 APPENDIX

Additional Tables
State PDMP ePDMP

(Horwitz)
ePDMP
(PDAPS)

MA-PDMP

Alabama 2005-11-01 2006-04-01 2007-06-28
Alaska 2008-09-01 2012-01-01 2012-01-01
Arizona 2007-09-01 2008-12-01 2008-12-01
Arkansas 2013-03-01 2013-05-01 2013-05-16
California 1939-01-01 2009-09-01 2009-09-01
Colorado 2005-06-01 2008-02-01 2008-02-04
Connecticut 2006-10-01 2008-07-01 2015-10-01
Delaware 2011-09-01 2012-08-01 2012-08-21 2012-03-01
District of
Columbia

2014-02-01 2016-10-01

Florida 2010-12-01 2011-10-01 2011-10-17
Georgia 2011-07-01 2013-05-01 2013-07-01 2014-07-01
Hawaii 1943-01-01 2012-02-01 1997-01-01
Idaho 1967-01-01 2008-04-01 1999-06-01
Illinois 1961-01-01 2009-12-01
Indiana 1997-01-01 2007-07-01 2004-12-29 2014-07-01
Iowa 2006-05-01 2009-03-01 2009-03-19
Kansas 2008-07-01 2011-04-01 2011-04-01
Kentucky 1998-07-01 1999-07-01 1999-07-01 2012-07-01
Louisiana 2006-07-01 2009-01-01 2009-01-01 2008-01-01
Maine 2004-01-01 2005-01-01 2005-01-01
Maryland 2011-10-01 2013-12-01 2013-12-20
Massachusetts 1992-12-01 2011-01-01 2011-01-01 2014-07-01
Michigan 1988-01-01 2003-01-01 2003-01-01
Minnesota 2009-01-01 2010-04-01 2010-04-15
Mississippi 2006-06-01 2008-07-01 2005-12-01
Missouri
Montana 2011-07-01 2012-10-01 2012-11-01
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Nebraska 2011-08-01 2017-01-01 2011-04-14
Nevada 1996-01-01 2011-02-01 1997-07-01 2007-10-01
New Hampshire 2012-06-01 2014-10-01 2014-10-16 2016-01-01
New Jersey 2009-08-01 2012-01-01 2012-01-05 2015-11-01
New Mexico 2004-07-01 2005-08-01 2005-08-01 2012-09-01
New York 1972-01-01 2013-06-01 2013-08-01
North Carolina 2006-01-01 2007-07-01 2007-10-01
North Dakota 2006-12-01 2008-10-01 2007-09-01
Ohio 2005-05-01 2006-10-01 2006-10-02 2012-03-01
Oklahoma 1991-01-01 2006-07-01 2006-07-01 2011-03-01
Oregon 2009-07-01 2011-09-01 2011-09-01
Pennsylvania 1972-01-01 2016-08-01
Rhode Island 1978-01-01 2012-09-01 2012-07-01 2016-06-01
South Carolina 2006-06-01 2008-02-01 2008-09-01
South Dakota 2010-03-01 2012-03-01 2012-03-01
Tennessee 2003-01-01 2010-01-01 2007-01-01 2013-07-01
Texas 1981-09-01 2012-08-01 2012-06-30
Utah 1995-07-01 2006-01-01 1997-01-01
Vermont 2008-06-01 2009-01-01 2009-04-01 2015-05-01
Virginia 2003-09-01 2006-01-01 2006-06-01 2015-07-01
Washington 2011-08-01 2012-01-01 2012-01-04
West Virginia 1995-06-01 2013-05-01 2004-12-01 2012-06-01
Wisconsin 2010-06-01 2013-06-01 2013-06-01
Wyoming 2003-07-01 2013-07-01 2004-10-01

Notes: Date in the first column is the enactment/legislated start date for any PDMP from
Horwitz et al. (2018). Date in the second column is the modern system operational date
from Horwitz et al. (2018). Date in the third column is the electronic access dates from
PDAPS. Date in the forth column is the must-access PDMP date from Sacks et al. (2021).
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Table B.1: Impact of ePDMP laws on opioid sales using PDAPS dates

Dependent variable:
Sales per person

(1) (2) (3) (4) (5)
𝛽1 - PDMP law -0.010*** -0.011*** -0.008** -0.008** -0.008**

(0.001) (0.002) (0.002) (0.002) (0.002)
𝛽2 - Border county 0.006*** 0.005*** 0.003*

(0.002) (0.001) (0.002)
𝛽3 - Law x border -0.009*** -0.008*** -0.009***

(0.002) (0.002) (0.003)
𝛽4 - Nearby law x border 0.003*

(0.002)
County FE Yes
State FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Controls Yes Yes
Observations 26,154 26,154 26,154 26,154 26,154
𝑅2 0.005 0.459 0.459 0.520 0.520

Notes: We run the same regressions as Table 2.2 using alternative ePMDP dates. The
results are very similar to our main findings: ePDMP reduces sales, but the reduction is
less once we control for border counties; border counties have higher level of sales and
they experience sharper decline when ePDMP is enacted; enactment of ePDMP in nearby
states increases sales in border counties of the local state.
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Table B.2: Impact of ePDMP laws on opioid mortality using PDAPS dates.

Dependent variable:
Mortality per 100,000 residents

(1) (2) (3) (4) (5)
𝛽1 - PDMP law -0.419*** -0.391*** -0.432*** -0.457*** -0.431***

(0.052) (0.071) (0.075) (0.073) (0.074)
𝛽2 - Border county -0.488*** -0.594*** -0.682***

(0.062) (0.062) (0.070)
𝛽3 - Law x border 0.146* 0.234*** 0.173*

(0.088) (0.086) (0.089)
𝛽4 - Nearby law x border 0.210***

(0.075)
County FE Yes
State FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Controls Yes Yes
Observations 26,154 26,154 26,154 26,154 26,154
𝑅2 0.001 0.283 0.286 0.318 0.319

Notes: We run the same regressions as Table 2.3 using alternative ePDMP dates. Again,
the results are almost identical to our main findings. Enactment of ePDMP laws reduces
overdose. Border counties start with lower opioid mortality but experience almost no drop
when the state enacts ePDMP. Nearby enactment of ePDMP has a spillover effect on the
mortality in the border counties of the local state.
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Table B.3: Impact of ePDMP laws on opioid sales using any PDMP dates, e-access
dates, and must-access dates.

Dependent variable:
Sales per person

(1) (2) (3) (4) (5)
(A) Any PDMP

𝛽1 - PDMP law 0.006*** 0.005*** 0.005** 0.004 0.003
(0.001) (0.002) (0.003) (0.002) (0.002)

𝛽2 - Border county 0.002 0.003 0.002
(0.003) (0.003) (0.003)

𝛽3 - Law x border 0.0001 -0.004 -0.004
(0.003) (0.003) (0.003)

𝛽4 - Nearby law x border -0.001
(0.002)

(B) Electronic access PDMP (main regression)
𝛽1 - PDMP law -0.006*** -0.005*** -0.002 -0.003 -0.003

(0.001) (0.002) (0.002) (0.002) (0.002)
𝛽2 - Border county 0.006*** 0.004*** 0.004***

(0.002) (0.001) (0.002)
𝛽3 - Law x border -0.009*** -0.008*** -0.008***

(0.002) (0.002) (0.002)
𝛽4 - Nearby law x border 0.0004

(0.002)
(C) Must access PDMP

𝛽1 - PDMP law 0.004*** 0.003 -0.001 0.001 0.001
(0.001) (0.003) (0.003) (0.003) (0.003)

𝛽2 - Border county 0.001 0.0001 -0.001
(0.001) (0.001) (0.001)

𝛽3 - Law x border 0.012** 0.006 0.006
(0.005) (0.004) (0.004)

𝛽4 - Nearby law x border 0.010***
(0.003)

County FE Yes
State FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Controls Yes Yes
Observations 26,154 26,154 26,154 26,154 26,154
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Additional Figures

Note: The horizontal blue rectangle marks our sample period (2006 to 2014). For ePDMP,
9 states adopted before the start of our sample period, 16 states adopted in the first half of
our sample, 18 states adopted in the second half, and 8 states had not adopted by the end
of our sample period.

Figure B.1: PDMP implementation dates by state.

Figure B.2: Map of border vs. inland counties.
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Note: This picture illustrates how we calculate nearby law for Litchfield County,
Connecticut (blue) in 2012 . The Litchfield County borders three counties
from nearby states: Dutchess County from New York (yellow), and Birkshire
County and Hampden County from Massachusetts (pink). In 2012, the state
of New York has not adopted ePDMP and the state of Massachusetts has.
To calculate nearby law for Litchfield County, we sum up the population
nearby with no ePDMP (294, 000) and the population nearby with ePDMPs
(125, 000 + 466, 000 = 591, 000). Since more people nearby live in counties
with ePDMP, nearby law for Litchfield County in 2012 is 1.

Figure B.3: Calculating nearby ePMDP status for counties bordering several states.

Figure B.4: ePDMP adoption over time in all counties.
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Note: For the ease of reference, we use the (my law, nearby
law) syntax to denote the ePDMP status of a border county.
A border county of (0, 0) has no ePDMP law and no nearby
ePDMP law and its cross-state neighbors also do not have
one; a border county of (1, 0) has an ePDMP law himself
but not nearby; a border county of (0, 1) does not have a
law himself it’s nearby state does; and a border county of
(1, 1) has an ePDMP law itself and so do its out-of-state
neighbors.

Figure B.5: ePDMP adoption over time in border counties.

Figure B.6: Visual presentation of the spillover framework.
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A p p e n d i x C

CHAPTER 3 APPENDIX

OLS Results Other Pollutants
Table C.1: OLS regression of same-day CO pollution on daily absences for months
without snow (April through November).

Dependent Variable:
Daily Absences Per 100,000 Students

(1) (2) (3) (4) (5)
𝛽3 - PPB of CO 1.381*** -4.260*** 7.466*** -11.54*** 2.792***

(0.22) (0.16) (0.15) (0.18) (0.17)
School FE Yes Yes Yes Yes
School × Month FE Yes Yes
School × Year FE Yes Yes
Observations 2103540 2103540 2103540 2103540 2103540
𝑅2 0.010 0.506 0.596 0.511 0.60
𝑅2 Adj. 0.010 0.506 0.596 0.511 0.600

Table C.2: OLS regression of same-day SO2 pollution on daily absences for months
without snow (April through November).

Dependent Variable:
Daily Absences Per 100,000 Students

(1) (2) (3) (4) (5)
𝛽4 - PPB of SO2 50.01*** -2.44** 35.95*** -56.94*** 1.35

(1.17) (0.78) (0.76) (1.01) (0.98)
School FE Yes Yes Yes Yes
School × Month FE Yes Yes
School × Year FE Yes Yes
Observations 2103540 2103540 2103540 2103540 2103540
𝑅2 0.012 0.506 0.597 0.511 0.600
𝑅2 Adj. 0.012 0.505 0.596 0.511 0.600
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Figure C.1: PM2.5 OLS regression with every school run individually. These
models include day of week, month, and year fixed effects, and the coefficient is
reported in bins for every school.

Table C.3: OLS regression of same-day NO2 pollution on daily absences for months
without snow (April through November).

Dependent Variable:
Daily Absences Per 100,000 Students

(1) (2) (3) (4) (5)
𝛽4 - PPB of NO2 9.08*** -1.56** 5.68*** -10.47*** -2.71***

(0.48) (0.32) (0.30) (0.33) (0.31)
School FE Yes Yes Yes Yes
School × Month FE Yes Yes
School × Year FE Yes Yes
Observations 2103540 2103540 2103540 2103540 2103540
𝑅2 0.010 0.506 0.596 0.510 0.600
𝑅2 Adj. 0.010 0.505 0.595 0.510 0.600

Additional PM2.5 OLS Regressions
Additional Ozone OLS Regressions
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Figure C.2: PM2.5 OLS regression with every school run individually and grouped
into school type. These models include day of week, month, and year fixed effects,
and the coefficient is reported in bins for every school.

Figure C.3: PM2.5 OLS regression with every school run individually and grouped
by percentage of students considered economically disadvantaged, where Quartile
4 is richest and Quartile 1 is poorest. These models include day of week, month,
and year fixed effects, and the coefficient is reported in bins for every school.
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Figure C.4: Ozone OLS regression with every school run individually. These
models include day of week, month, and year fixed effects, and the coefficient is
reported in bins for every school.

Figure C.5: Ozone OLS regression with every school run individually and grouped
into school type. These models include day of week, month, and year fixed effects,
and the coefficient is reported in bins for every school.
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Figure C.6: Ozone OLS regression with every school run individually and grouped
by percentage of students considered economically disadvantaged, where Quartile
4 is richest and Quartile 1 is poorest. These models include day of week, month,
and year fixed effects, and the coefficient is reported in bins for every school.
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