
HILBERT MODULAR FORMS OF WEIGHT 1/2

Thesis by

Sever Achimescu

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2005

(Defended September 27, 2004)



ii

c©2005

Sever Achimescu

All Rights Reserved



iii

Acknowledgement

I am grateful to my advisor, Professor Dinakar Ramakrishnan, for his

guidance and encouragement.

I thank Caltech for its financial support.



iv

Abstract

Let

H =
∑

N ,χ

M 1
2
(N , χ)

be the space of Hilbert modular forms of half integral weight of all levels

N and characters χ.

We denote by ϕN : OF → C a periodic function of period N .

Let Θ be the C-linear space of the functions f : H×H → C,

f(z) =
∑

t

∑

ξ∈OF

ϕNt(ξ)exp(tπi(ξ2z1 + ξ
′2z2))

where, for each f , t ∈ OF runs through a finite subset of totally positive

integers of F .

Main Theorem.

H = Θ

Using this theorem, for some fixed F ’s, an explicit basis can be found.

Some examples are given in Chapter4.
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Chapter 1

Introduction

Classically, a modular form of weight k ∈ Z for a congruent subgroup

Γ := Γ0(N) := {γ =
(

a b
c d

)
, N |c} < SL2(Z) is a holomorphic function

f on the upper-half plane H := {z ∈ C , Imz > 0} satisfying

f(γz) = (cz + d)kf(z) , ∀γ =
(

a b
c d

)
∈ Γ

and an additional property called “holomorphicity at the cusps.” Using the

natural inner product, namely, the Petterson inner product on the C-vector

space of modular forms, we get finite a dimensional Hilbert space for each

pair (Γ, k). There are Hecke operators {T (p)}p6 |N prime which preserve these

spaces.

A generalization is when we allow k ∈ Z[ 12 ] and we get the half inte-

gral weight modular forms. Shimura introduced a family of corresponding

Hecke operators {T (p2)}p prime. In [Serre-Stark], Serre and Stark proved

a theorem which gives explicit basis consisting of theta functions for some

spaces of half integral weight modular forms.
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The Hilbert modular forms (of half integral weight) are modular forms

(of half integral weight) of several variables. The main result in my disser-

tation is an analog, for certain real quadratic fields of class number one,

of the theorem of Serre-Stark which gives algorithms to compute basis of

spaces of half integral weight modular forms over Q. An alternative proof

of a part of the Serre-Stark theorem, which was outlined (using adellic rep-

resentations) by Pierre Deligne in a letter to Jean Pierre Serre, is expanded

and generalized in this thesis to some quadratic fields of class number one

in Chapter 3. Some of the results of Serre and Stark over Q, which Deligne

implicitly assumed, require different arguments over F . In particular, one

need to use certain nontrivial, structural results of Goro Shimura on Hilbert

modular forms of half integral weight.

There is already a vast generalization of the Serre-Stark theorem in

a slightly different form, due to Shimura, valid over all totally real fields,

but this method seems to only give generators, not a basis. The result

in Chapter 3 is in a more explicit form and hopefully more suitable for

applications. See Chapter 4 for examples.



3

In Chapter 5 we define the congruent number problem over F and we

take a few steps towards generalizing Tunnell’s results over Q. Here the

generalization is not trivial, since already for Q(
√

2) there are examples of

Q(
√

2)-congruent numbers α such that the associated elliptic curve Eα :

y2 = x3 − α2x over Q(
√

2) has zero rank; α corresponds to torsion points

which Eα acquires over Q(
√

2).
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Chapter 2

Preliminaries

Let F be a totally real number field with class number one and dis-

criminant D; F = Q(
√

d0) = Q(
√

D) with d0 square free and such that

OF = Z[
√

d0], where OF denotes the ring of integers of F . The two

real embeddings are a + b
√

d0 7→ a ± b
√

d0. The discriminant (of F ) is

DF/Q = d0, the different is D := DF/Q = 2
√

d0OF and the inverse differ-

ent is D−1 = 1
2
√

d0
OF .

For P prime ideal of OF we denote P = $OF , $ ∈ OF .

Put SL2(OF ) = {
(

a b
c d

)
, a, b, c, d ∈ OF , ad − bc = 1}. For ξ =

m + n
√

d0 ∈ OF we denote ξ′ = m− n
√

d0 its conjugate.

For N an ideal in OF we denote

Γ0(N ) = {
(

a b
c d

)
∈ SL2(OF ), c ∈ N}.

Put H = {z ∈ C, Imz > 0} and z = (z1, z2) ∈ H ×H.

Γ0(N ) acts on H × H as follows: first we view Γ0(N ) ↪→ GL2(R) ×
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GL2(R) via
(

a b
c d

)
7→ (

(
a b
c d

)
,

(
a′ b′

c′ d′

)
)

then GL2(R)×GL2(R) acts on H×H componentwise:

(
a b
c d

)
×

(
a′ b′

c′ d′

)
, (z1, z2) 7→ (

az1 + b

cz1 + d
,

a′z2 + b′

c′z2 + d′
)

All square roots of numbers in C−{x < 0} are to be taken in the right

half-plane.

Define θ : H×H → C as follows:

θ(z) :=
∑

ξ∈OF

exp(πi(ξ2z1 + ξ′2z2))

Observe that θ is holomorphic on H×H.

Recall that a function f on an open set in Cn is said to be holomorphic

iff it has an absolutely convergent power series expansion in each compact

polydisc in that open set. We have

|θ(z)| = |
∑

ξ∈OF

exp(πiξ2z1)exp(πiξ′2z2)| ≤

|
∑

ξ∈OF

exp(2πiξ2z1)| 12 |
∑

ξ∈OF

exp(2πiξ′2z2)| 12
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Because the one-dimensional theta function

H → C , z 7→
∑

n∈Z

exp(2πin2z)

is holomorphic, the series in the righthand side of the above inequality

converge absolutely on each compact (on H), therefore the series defining

θ converges absolutely on each compact (in H×H).

For a prime ideal pOF and β ∈ OF we define a quadratic symbol

(
β

pOF
) = +1 ifβ is a square in (OF /pOF )∗

(
β

pOF
) = −1 ifβ is a non square in (OF /pOF )∗

(
β

pOF
) = 0 if β ∈ pOF

We extend it by multiplicativity to all nonzero ideals of OF . For 0 6= α ∈

OF , write ( β
α ) = ( β

αOF
).

For γ ∈ Γ0(N ) we consider the automorphy factor of weight 1
2 , denoted

h(γ, z), introduced in [Shi2], Proposition 1.2 pg. 285. The definition is

intrinsic, though not explicit. This automorphy factor is a holomorphic
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function on H × H satisfying h(γ, z)2 = t(cz1 + d)(c′z2 + d′) where t is a

root of unity.

A multiplicative character modulo N is a group homomorphism χ :

(OF /N )∗ → C∗. We also view a character χ as a periodic function on OF

by putting χ(ν) = 0, ∀ν ∈ N .

Definition. A holomorphic Hilbert modular form of weight 1
2 , character

χ and level N is a function f : H×H → C which is holomorphic, both on

H×H and at the cusps, and satisfies

f(γz) = χ(d)h(γ, z)f(z) , ∀γ =
(

a b
c d

)
∈ Γ0(N ) , ∀z ∈ H ×H

Note that, since in our case [F : Q] > 1, by the Koecher principle,

the condition “holomorphic at the cusps” is superfluous. The definition of

Hilbert modular forms of weight k
2 , with k odd integer, is similar; but with

h(γ, z) replaced by h(γ, z)k.

We denote the C-vector space of holomorphic Hilbert modular forms

of weight 1
2 , character χ and level N by M 1

2
(N , χ).

Following [Shi1], for f, g ∈ M 1
2
(N , χ) we define their inner product
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< f, g > by

< f, g >=| Γ\H ×H |−1

∫

Γ\H×H
f(z)g(z)(y1y2)

1
2 dH(z)

where y =Imz and dH(x + iy) = (y1y2)−2dx1dx2dy1dy2. This integral

converges if one of the forms is a cusp form. But in fact < f, g > makes

sense, as noted by Deligne, for all f, g in M 1
2
(N ).

Given a function f : H×H → C we denote ft : H×H → C, ft(z) =

f(tz) where t totally positive, t ∈ OF . Also, for t totally positive, t ∈ OF ,

we define a “quadratic character” χt as follows: for d ∈ OF , d 6= 0,

χt(d) = (
t0
d

) if t0 ≡ 1(mod4)

χt(d) = (
4t0
d

) otherwise

χt(u) = 1 , ∀u ∈ (OF )∗

where t0 denotes the square-free part of N(t).

For a character ψ modulo N , define θψ : H×H → C as follows:

θψ(z) :=
∑

ξ∈OF

ψ(ξ)exp(πi(ξ2z1 + ξ′2z2))
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Theorem. θψ ∈M 1
2
(4(condψ)2, ψ).

Proof.

This is Lemma 4.3 pg. 784 of [Shi1]. In particular, θ ∈M 1
2
(4OF ).

Proposition 1. Let t ∈ OF be totally positive. Then

f ∈M 1
2
(N , χχt) ⇒ ft ∈M 1

2
(tN , χ)

In particular, since χ2
t = 1,

f ∈M 1
2
(N , χ) ⇒ ft ∈M 1

2
(tN , χχt)

Proof.

Need to prove

ft(γz) = χ(d)h(γ, z)ft(z) , ∀γ =
(

a b
c d

)
∈ Γ0(tN ) , ∀z ∈ H ×H

Fix γ =
(

a b
c d

)
∈ Γ0(tN ) and put γt =

(
a bt
c
t d

)
∈ Γ0(N ). By hypoth-

esis, f ∈M 1
2
(Γ0(N ), χχt) thus

f(γttz) = χ(d)χt(d)h(γt, tz)f(tz) , ∀z ∈ H ×H

The conclusion follows by noticing that γttz = tγz and using the fol-

lowing
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Lemma.

χt(d)h(γt, tz) = h(γ, z) , ∀z ∈ H ×H

Proof:

The squares of both sides are equal, by [Shi2] pg. 286. It suffices to

check the sign. Equivalently, since h(γ, z) = θ(γz)
θ(z) , it suffices to check the

Proposition for f = θ. But this is a known fact.
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Chapter 3

The main result

Let

H =
∑

N ,χ

M 1
2
(N , χ)

be the space of Hilbert modular forms of half integral weight of all levels

N and characters χ.

We denote by ϕN : OF → C a periodic function of period N , i.e.

ϕ(x) = ϕ(x + α) , ∀x ∈ OF , ∀α ∈ N .

Let Θ be the C-linear space of the functions f : H×H → C,

f(z) =
∑

t

∑

ξ∈OF

ϕNt(ξ)exp(tπi(ξ2z1 + ξ
′2z2))

where, for each f , t ∈ OF runs through a finite subset of totally positive

integers of F .

Main Theorem.

H = Θ

Proof:
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The inclusion

Θ ⊆ H

follows from Proposition 1 of the previous chapter and the following

Lemma. The function

z 7→
∑

ξ∈OF

ϕN (ξ)exp(πi(ξ2z1 + ξ
′2z2))

is a Hilbert modular form of weight 1
2 possibly with a character.

Proof:

This is a corollary of the Theorem on pg.154 from [Garrett].

Now we prove the key inclusion

H ⊆ Θ

Let Af denote the finite adeles of F . It is known that (cf. [Del], pg.

259) the metaplectic 2-covering S̃L2(Af ) of SL2(Af ) acts on H, preserves

the scalar product and leaves Θ stable.

Under this action, H decomposes into a direct sum of irreducible rep-

resentations. Let Hi be one of them. We want to prove that Hi is contained

in Θ.
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Proposition 1. For suitable (N , χ), Hi ∩M 1
2
(N , χ) 6= 0.

Proof:

There exists a family of compact open subgroups {K0(N )}N , which is

also a fundamental system of neighborhoods of the unity of ˜SL2(Af ), such

that Γ0(N ) = K0(N ) ∩ SL2(Af ), ∀N . Here we have used the fact that F

has class number 1. There is a character χ̃ whose restriction to Γ0(N ) is

χ. If V is a vector space on which ˜SL2(Af ) acts, we write V K0(N ),χ̃ for the

subgroup of vectors v ∈ V such that kv = χ̃(k)v. One knows

HK0(N ),χ̃ = M 1
2
(N , χ)

We have

HK0(N ),χ̃ = ⊕iH
K0(N ),χ̃
i

Now fix any Hi. Then the admissibility of Hi as an ˜SL2(Af )-module implies

that there exists (N , χ̃) such that H
K0(N ),χ̃
i 6= 0. Therefore there exists

(N , χ) such that Hi ∩M 1
2
(N , χ) 6= 0.

QED

One knows that for every prime ideal P of OF , including those dividing

N , there is a Hecke operator T (P 2) acting on M 1
2
(N , χ). They come
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from the action of SL2(Af ). If P,Q are primes, then T (P 2) commute

with T (Q2). The operators T (P 2) preserve the scalar product and have a

common eigenvector in M 1
2
(N , χ).

Proposition 2.

We have :

f(z) = Σµ∈OF
a(tµ2)exp(tπi(µ2z1 + µ

′2z2))

where t ∈ OF , t is totally positive, t|N , and, ∀α ∈ OF ,

a(αµ2) = a(α)ψ(µ) if (µ,N ) = 1

a(αP 2) = cP a(α) if P | N

where ψ is a multplicative character mod 2N and T (P 2)f = cP f .

Proof:

This is a consequence of the following lemmas:

Lemma 1. We have

(i) There is a basis of M 1
2
(N , χ) consisting of forms whose coefficients

belong to a number field,
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(ii) If f(z) =
∑

ξ∈OF
a(ξ)exp(πi(ξ2z1 + ξ

′2z2)) belongs to M 1
2
(N , χ)

and the a(ξ) are algebraic numbers then the a(ξ) have bounded denomina-

tors (i.e., there exists a nonzero integer D such that Da(ξ) is an algebraic

integer for all ξ).

Proof of Lemma 1:

The analogous results for integral weight forms are known. Also it is

known that there is an orthogonal decomposition M 1
2
(N , χ) = S 1

2
(N , χ)⊕

E 1
2
(N , χ) for the scalar product,where S 1

2
(N , χ) denotes the space of cusp

forms and E 1
2
(N , χ) denotes the space of Eisenstein forms. In [Shi2] it

is proved that there is a basis of E 1
2
(N , χ) consisting of forms whose co-

efficients belong to a number field and have bounded denominators. For

both (i) and (ii), it suffices to prove the analogous results for S 1
2
(N , χ).

By Prop 5.2, 5.3 from [Shi1], S 1
2
(N , χ) is spanned by Hecke eigenforms

for T (P 2) for almost all P . Write S 1
2
(N , χ) = Θ0 ⊕ Θ⊥0 where Θ0 is the

subspace of S 1
2
(N , χ) generated by theta series and Θ⊥0 is the subspace

perpendicular to Θ under the scalar product a corollary of the result of

this chapter is S 1
2
(N , χ) = Θ0 but we don’t know it yet. The analogous
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statements of (i) and (ii) hold for Θ0 by the explicit knowledge of theta

series. If S 1
2
(N , χ) = Θ0 then we are done. If not, then there exists a

Hecke eigenform f in Θ⊥0 . As in [Shi1], pg. 816, we associate to f an

integral weight form h. It may happen that different f ’s correspond to the

same h. We denote by S 1
2
(N , h, χ) the subspace of S 1

2
(N , χ) generated by

those f ’s corresponding to h. By prop 8.9(2) of [Shi1], S 1
2
(N , h, χ) has a

basis of forms whose coefficients belong to a number field and have bounded

denominators.

QED

Lemma 2. Let f(z) =
∑

ξ∈OF
a(ξ)exp(πi(ξ2z1 + ξ

′2z2)) be a nonzero

element of M 1
2
(N , χ) and let P be a prime with P 6 | N . Put P = $OF .

Assume that f | T (P 2) = cP f , with cP ∈ C. Let µ ∈ OF such that P 2 6 | µ.

Then:

(i) a(µP 2n) = a(µ)χ($)n( µ
P )n for every n ≥ 0 integer,

(ii) If a(µ) 6= 0 then P 6 | µ and cP = χ($)( µ
P )(1 + 1

N(P ) ).

Proof of Lemma 2:

Cf. Prop5.4 pg. 788 in [Shi], the operator T (P 2) maps forms with
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algebraic coefficients into themselves. Hence cP is algebraic and we may

assume that the coefficients a(ξ) of f are algebraic numbers. Fix µ and

consider the power series

A(T ) =
∞∑

n=0

a(µP 2n)Tn

where T is an indeterminate. As in the proof of Theorem 5.5, pg. 790

[Shi] we have

A(T ) = a(µ)
1− αT

(1− βT )(1− γT )

where α = χ(p)N(P )−1( µ
P ) and β + γ = cP , βγ = χ($2)N(P )−1.

If a(µ) = 0 then A(T ) = 0 thus a(µP 2n) = 0 for all n ≥ 0 therefore

(i).

Assume now a(µ) 6= 0. Using Lemma 1(ii), A(T ) converges in the

P -adic topology, if we view A(T ) as a nonzero P -adic rational function of

T , in the P -adic unit disc U defined by | T |P < 1; hence A(T ) cannot have

a pole in U . However, since βγ = χ($2)P−1, either β−1 or γ−1 belongs

to U ; assume it is β−1. Now A(T ) holomorphic at β−1 implies that the

factors 1− βT and 1− αT cancel each other. Thus α = β and

A(T ) =
a(µ)

(1− γT )
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thus

a(µP 2n) = γna(µ)

Now βγ 6= 0 ⇒ α 6= 0 ⇒ $ 6 | µ. Moreover,

γ =
βγ

α
=

χ($2)N(P )−1

χ($)N(P )−1( µ
$ )

= χ($)(
µ

$
)

which implies (i). Finally, (ii) follows from cP = β + γ = α + γ.

QED

Lemma 3. Let f(z) =
∑

ξ∈OF
a(ξ)exp(πi(ξ2z1 + ξ

′2z2)) be a nonzero

element of M 1
2
(Γ0(N , χ)) and let N ′ be a multiple of N . Assume that,

for all P 6 | N ′, we have f | T (P 2) = cP f , with cP ∈ C. Then there exists

a unique (up to multiplication by a unit) square-free nonzero t ∈ OF such

that a(ξ) = 0 if ξ
t is not a square in OF . Moreover:

(i) t | N ′,

(ii) cP = χ($)( t
$ )(1 + 1

N(P ) ) if $ 6 | N ′,

(iii) a(ξµ2) = a(ξ)χ(µ)( t
µ ) if (µ,N )′ = 1.

Proof of Lemma 3:

Let µ, µ′ ∈ OF such that a(µ) 6= 0 and a(µ′) 6= 0. For each P prime in
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OF , Pp 6 | N ′µµ′ we have, by Lemma 2(ii),

χ($)(
µ

$
)(1 +

1
N(P )

) = cp = χ($)(
µ′

$
)(1 +

1
N(P )

)

thus, for all $ prime in OF , $ 6 | N ′µµ′,

(
µ

$
) = (

µ′

$
).

This implies, for each prime q dividing µ and not dividing µ′, denoting by

vq(µ) the exponent of q in µ, that

(
qvq(µ)

$
) = 1

for all $ prime in OF , $ 6 | N ′µµ′. In particular, for a $ large enough, this

implies that vq(µ) is even. Therefore we may write µ = tµ2
1, µ′ = tµ′21 with t

square free. The uniqueness of t follows repeating the argument for another

pair µ, µ′′ instead of µ, µ′. We proved the first part of the Lemma 3. Now we

prove (i) and (ii). Fix a prime p not dividing N ′. Fix µ such that a(µ) 6= 0

and write µ = tµ2
1 = t$2nµ2

0 with $ not dividing µ0. We apply Lemma

2(i) to tµ2
0 and we get a(µ) = a(tµ2

0)χ($)( t
$ )(1 + 1

N(P ) ) thus a(tµ2
0) 6= 0.

By Lemma 2(ii), $ does not divide tµ2
0 hence $ does not divide t. So
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far Lemma 3(i) proved. Now, by Lemma 2(ii), cP = χ($)( t
$ )(1 + 1

N(P ) )

thus Lemma 3(ii) proved. Now we prove Lemma 3(iii). Because both sides

are multiplicative in µ, it suffices to check it for µ = $ with $ prime not

dividing N ′. Writing ξ = ξ0$
2n with $2 6 | N and applying Lemma 2(i) we

get qed.

QED

Lemma 4. We have a(µ$2) = cP a(µ) if $ | N .

Proof of Lemma 4:

It is a straightforward corollary of [Shi], p.788, Prop 5.4.

Consider now

g(z) = Σξ∈OF ,(ξ,N )=1a(tξ2)exp(tπi(ξ2z1 + ξ′2z2))

Proposition 3.

(i) g 6= 0;

(ii) g ∈ Θ;

(iii) g is (up to a scalar factor) the transform of

f(z) = Σξ∈OF a(tξ2)exp(tπi(ξ2z1 + ξ′2z2))
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by ΠP |NLP where P = $OF with $ totally positive and LP is the operator

which transforms h(z) into h(z)− cP h($2z1, $
′2z2).

(iv) Lp can be defined by the element

1− cP

(
$−1 0

0 $

)

of the group ring Z[S̃L2(FP )], where FP is the completion of F at P .

(v) g ∈ Hi.

Proof:

(i)g 6= 0 because f 6= 0;

(ii) Define ϕN (ξ) = a(tξ2) if (ξ,N ) = 1 and ϕN (ξ) = 0 otherwise. ϕ

is periodic of period N because ψ is so. Therefore

g(z) = Σξ∈OF ϕN (ξ)exp(tπi(ξ2z1 + ξ′2z2)) ∈ Θ.

(iii) Fix P = $OF | N with $ totally positive. We have

(LP f)(z) = Σξ∈OF
a(tξ2)exp(tπi(ξ2z1 + ξ′2z2))−

cpΣξ∈OF
a(tξ2)exp(tπi(ξ2$2z1 + ξ′2$′2z2)) =

Σξ∈OF a(tξ2)exp(tπi(ξ2z1 + ξ′2z2))−
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Σξ∈OF
a(t($ξ)2)exp(tπi(ξ2$2z1 + ξ′2$′2z2)) =

Σξ∈OF ,(ξ,$)=1a(tξ2)exp(tπi(ξ2z1 + ξ′2z2))

in other words LP “deletes” from the expansion of f those terms such

that $ | ξ. The conclusion follows noticing that ΠP |NLP means composi-

tion of operators.

(iv)

SL2(F ) embeds diagonally in S̃L2(A) = S̃L2(F∞) × S̃L2(Af ) with

componentwise multiplication. Write the elements of S̃L2(A) as (x∞, xf )

with x∞ ∈ S̃L2(F∞) and xf ∈ S̃L2(Af ). If γ ∈ SL2(F ) then γ∞ = γ

γf = γ and γ := (γ, γ) = (γ, 1)(1, γ).

Let γ =
(

$−1 0
0 $

)
∈ SL2(F ). Also note that

(
$−1 0

0 $

)
∈

S̃L2(FP ) ⊆ S̃L2(Af ). Since the automorphic forms are left invariant

under the diagonal action of SL2(F ), the action of γ in S̃L2(Af ) is the

inverse of the action of (γ, 1). By part (iii), γ ∈ S̃L2(Af ) sends h(z) to

h($2z1, $
′2z2). Since LP (h)(z) = h(z1, z2) − cP h($2z1, $

′2z2), the con-

clusion follows.

(v) follows from (iii),(iv) and the fact that Hi is invariant.
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Therefore Hi ∩Θ 6= ∅. Since Hi is irreducible, this implies Hi ⊆ Θ.

QED
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Chapter 4

Examples

Consider F = Q[
√

2] and N = 8Z[
√

2].

From the proofs in Chapter 4 follows that
∑

χM 1
2
(2nZ[

√
2], χ) is gen-

erated by {(gψ)t} where ψ is an even primitive character modulo N and t

is a totally positive integer of F dividing 2.

The coset representatives of OF /N are {a + b
√

2 + N} with a, b ∈

{0, ..., 7} so that OF /N has 64 elements. For α = a + b
√

2, we denote

[α] := a + b
√

2 + N . Since OF /N is finite, the elements of (OF /N )∗ are

exactly the nonzero divisors. Notice that [a + b
√

2] is a zero divisor in

OF /N if and only if a is even. Thus (OF /N )∗ has 32 elements. We list the

orders of all elements (and we conclude that (OF /N )∗ has exponent 8):

[3], [5], [7] and [a + 4
√

2], a odd, have order 2;

[a + 2
√

2], [a + 6
√

2], a odd, have order 4;

[a + b
√

2], a, b odd, has order 8.

Thus, counting the elements of order 2 in an abelian group of order
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32 and exponent 8, we conclude that (OF /N )∗ ∼= Z/8 × Z/2 × Z/2 since

they have the same maximum number of 7 elements of order 2. Any other

abelian group of order 32 and exponent 8 has less than 7 elements of order

2.

It is straightforward to check that [1 +
√

2] generates a subgroup of

order 8, that [−1] = [7] generates a subgroup of order 2, that [3 + 4
√

2]

generates a subgroup of order 2, that [7] 6∈< [1 +
√

2] >, and that [3 +

4
√

2] 6∈< [7] > × < [1 +
√

2] >. It follows that (OF /N )∗ =< [1 +
√

2] >

× < [7] > × < [3 + 4
√

2] >. The character group of (the finite abelian

group) (OF /N )∗ is therefore < ϕ0 > × < ϕ1 > × < ϕ2 > where

< ϕ0 >≡ 1 on < [7] > × < [3 + 4
√

2] >, hence < ϕ0 > can be viewed

as a character of < [1 +
√

2] >;

< ϕ1 >≡ 1 on < [1 +
√

2] > × < [3 + 4
√

2] >, hence < ϕ1 > can be

viewed as a character of < [7] >;

< ϕ2 >≡ 1 on < [7] > × < [1 +
√

2] >, hence < ϕ2 > can be viewed

as a character of < [3 + 4
√

2] >.

Any character ψ of (OF /N )∗ can be written as ψ = ϕj0
0 ϕj1

1 ϕj2
2 with
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j0 ∈ {0, ..., 7}, j1 ∈ {0, 1}, j2 ∈ {0, 1}. Recall that all the units of OF are

{±(1+
√

2)k, k ∈ Z}, so that ψ is even if and only if ψ ≡ 1 on < [7] > × <

[1 +
√

2] >, that is j0 = 0 and j1 = 0, therefore all the even characters of

(OF /N )∗ are {1, ψ := ϕ2}.

So far we got that {θ, θψ, θ2, (θψ)2, θ√2, (θψ)√2} is a set of generators

for
∑

χM 1
2
(8Z[

√
2], χ). Since these six generators have six distinct char-

acters, we conclude:

{θ} is a basis for M 1
2
(4Z[

√
2]);

{θψ} is a basis for M 1
2
(4Z[

√
2], ψ);

{θ√2} is a basis for M 1
2
(4
√

2Z[
√

2], χ√2);

{(θψ)√2} is a basis for M 1
2
(4
√

2Z[
√

2], ψχ√2);

{θ2} is a basis for M 1
2
(8Z[

√
2], χ2);

{(θψ)2} is a basis for M 1
2
(8Z[

√
2], ψχ2).

A generalization is :

OF = Z[
√

2], N = 2nZ[
√

2], n ∈ Z, n ≥ 4

With similar arguments we get that :
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(OF /N )∗ has 22n−1 elements and has exponent 2n;

All the elements of the form [a + b
√

2] of order two are a, a 6= 1 odd

(there are 2n−1 − 1 of them) and [a + 2n−1
√

2], a odd (there are 2n−1 of

them).

All the elements of order 2n are [a + b
√

2] with a, b odd.

Counting the elements of order 2, we conclude (OF /N )∗ ∼= Z/2n ×
∏n−1

j=1 Z/2. Its group of characters is generated by ϕ0 of order 2n and

ϕ1, ..., ϕn−1 each of order 2. Without loss of generality ϕ1 ≡ 1 on < [−1] >.

Any even characters ψ can be written as ϕj2
2 ....ϕ

jn−1
n−1 with j2, ..., jn−1 ∈

{0, 1}.

Proposition.

A basis for
∑

χM 1
2
(2nZ[

√
2], χ) is given by

{(θψ)t, ψ = ϕj2
2 ....ϕ

jn−1
n−1 , j2, ..., jn−1 ∈ {0, 1} , t | 2n−2, t > 0}.

Remark.

A character on OF is the pull-back of a character on Z via norm iff it

is invariant under the Galois action. For N = 8Z[
√

2], the forms θ and θψ
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have such characters, since every element of order 2 in (OF /N )∗ is invariant

under the Galois action. However, the forms {(θψ)√2, θ
√

2} are genuinely

new.
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Chapter 5

Towards the congruent number problem over F

Let F be a totally real number field. Below α ∈ F and τ : F → R

denotes a field embedding.

Definitions:

(i) x ∈ F is said to be τ-positive iff τ(x) > 0;

(ii) x ∈ F is said to be totally positive iff τ(x) > 0 , ∀τ

(iii) α ∈ F is said to be an F -congruent number with respect to

τ iff

∃τ−positiveX,Y, Z such that X2 + Y 2 = Z2 and
1
2
τ(X)τ(Y ) = τ(α)

Note that an F -congruent number with respect to τ is τ -positive. Also,

note that by applying τ−1 the last equality becomes

1
2
XY = α

(iv) α ∈ F is said to be an F -congruent number for all τ iff α is

an F -congruent number with respect to τ, ∀τ .



30

Our goal is to generalize the concept of Q-congruent number to F -

congruent number and give criteria for α to be an F -congruent number.

Note that there are two generalizations: “F -congruent number with respect

to a (fixed) τ” and “F -congruent number ∀τ .” These are distinct as as the

following example shows:

Example

Let F = Q , α = 78 + 58
√

2 , X = 3 + 4
√

2 , Y = 20 + 12
√

2 ,

Z = 21 + 12
√

2 , τ(a + b
√

2) = a + b
√

2 and observe that α is an F -

congruent number with respect to τ but α is not totally positive.

Important: From now on we fix a τ and by “positive” we mean “τ -

positive” and by “F-congruent number” we mean “F-congruent number

with respect to τ .”

Problem: Find criteria for α to be an F -congruent number.

Proposition 1. α ∈ F is an F-congruent number ⇒ ∀x ∈ F , x2α is an

F-congruent number.

Proof.
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By definition, ∃X, Y, Z > 0 such that X2 + Y 2 = Z2 and XY = 2α.

Multiplying both equalities by x2 we get that x2α is an F -congruent number

corresponding to the triple xX, xY, xZ by choosing x > 0.

Define an equivalence relation as follows:

α1 ∼ α2 ⇔ ∃x ∈ F ∗ such that α1 = x2α2

Definition. α ∈ OF is said to be square free iff 6 ∃P prime ideal in OF

such that P 2 | (α).

In particular, any unit of OF is square free.

Proposition 2.

∀α ∈ F , α > 0 , ∃α0 ∈ OF , α0 > 0 such that α ∼ α0

Proof.

Multiply α by the square of its denominator.

Important: From now on when we want to find out if α ∈ F , α > 0

is an F-congruent number we may assume that α ∈ OF , α > 0 and square

free.
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Lemma 1. Let Eα be the elliptic curve y2 = x3 − α2x. All the points of

Eα(F ) of order 2 are

{(0, 0), (α, 0), (−α, 0)}

Proof.

Let O 6= P = (xP , yP ) ∈ Eα(F ) , 2P = O. Cf. [Kob],pg.34 x2P =

(x2
P +α2

2yP
)2 thus 2P = O ⇒ yP = 0 ⇒ x3

P − α2xP = 0 ⇒ xP ∈ {0,±α}.

Conversely any (x, 0) ∈ Eα(F ) has order two.

QED

Proposition 3. Let Eα be the elliptic curve y2 = x3−α2x. If ∃P ∈ Eα(F )

such that 2P 6= O then α is an F-congruent number.

Proof.

Replacing P by 2P we may assume that P = (x, y) with x a square

in F , in particular x > 0. Because 2P 6= 0, we have that y 6= 0. Indeed,

assuming by contradiction y = 0, we get, from y2 = x3 − α2x, that P =

(x, y) ∈ {(0, 0), (α, 0), (−α, 0)} which are elements of order two in Eα(F ).

Eventually replacing P = (x, y) by −P = (x,−y) we may assume that
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y > 0.

Let X = (x+α)(x−α)
y , Y = 2αx

y . Note that XY = 2α and X2 + Y 2 =

( (x2+α2)
y )2. We have that Y > 0. Also X > 0 from XY = 2α. Taking

Z = (x2+α2)
y > 0 we get a triple X, Y, Z > 0 defining α to be an F -

congruent number.

QED

Fix α ∈ F ∗.

Proposition 4. If F/Q Galois then

ϕ(| Eα(F )tors |) ≤ 2[F : Q]

where ϕ denotes the totient Euler function.

Proof.

Denote K = Q(i). Let d be the density function as defined in [Neuk].

Let Y = {(p) prime ideal of Z such that p ≡ 3(mod 4) and p splits com-

pletely in OF }. We have that F ∩K = Q ⇒ d(Y ) = 1
2

1
[F :Q] using [Neuk],

cor(13.6)pg547. Let m =| Eα(F )tors |.
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Claim

m | p + 1 , ∀(p) ∈ Y but finitely many

Proof of Claim

Here we denote points on the elliptic curve with projective coordinates,

(x, y, z) satisfying y2z = x3 − n2xz2 so that we may assume Eα(F )tors =

Eα(OF )tors.

For any prime ideal P ∈ OF we define the “reduction mod P” map

ϕP : Eα(F )tors = Eα(OF )tors → Eα(OF /P )tors

(x, y, z) 7→ (x̄, ȳ, z̄)

For every (p) ∈ Y fix P ideal of OF dividing pOF and denote ϕp = ϕP .

Because p splits completely in OF we have that OF /P = Fp. From [Kob]

page 40 we get | Eα(Fp)tors |= p+1 (here we use p ≡ −1(mod 4)). Finally,

for all but finitely many (p) ∈ Y we have that ϕp is injective, by using

a similar argument to that one in [Kob] pp 44-45: first we notice that

(x̄1, ȳ1, z̄1) = (x̄2, ȳ2, z̄2) iff P divides the gcd(y1z2−y2z1, x2z1−x1z2, x1y2−

y2x1) then, because only finitely many P ’s divide this gcd, we conclude that

ϕp is injective for all but finitely many p’s.
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We proved the claim, that is

p ≡ −1(modm) , ∀(p) ∈ Y but finitely many

Let A = {p ∈ Z , p ≡ −1(modm)}. We have d(A) ≥ d(Y ) = 1
2

1
[F :Q] .

On the other hand Dirichlet density theorem (cf. [Neuk] pg.54) implies

that d(A) = 1
ϕ(m) .

QED.

Corollary 1. If [F : Q] = 2 then

| Eα(F )tors |∈ {4, 8, 12}

Proof.

It follows from Proposition 4 and Lemma 1.

Proposition 5. If [F : Q] = 2 and α is not a square in F then

| Eα(F )tors |6= 8

Proof.

By contradiction; assume, via Lemma1, that ∃P = (x, y) ∈ Eα(F )tors

of order four. Then 2P has order two thus y2P = 0 and x2P = (x2
P +α2

2yP
)2 ∈

{0,±α} that is it is equal to α thus α is a square in F , contradiction.
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QED

Proposition 6. 3 does not divide | Eα(F )tors |.

Proof.

In our case we know that 3 is inert in K = Q[i] so the associated

elliptic curve is supersingular there. Looking at the representation of GF

on E[3] one has the following possibilities:

(i) 3 is inert in F , in which case the representation is irreducible;

(ii) 3 splits in F , in which case the representation splits as χ⊕ χ with

χ a non-trivial character of GF .

Consequently, no vector (other than zero) in E[3] is fixed by GF , and

so there is no nonzero point of order 3 in E(F ).

QED

Corollary 2. If [F : Q] = 2 and α is not a square in F then

| Eα(F )tors |= 4

Proof.

It follows from Cor 1, Prop 5 and Prop 6.



37

Lemma2. ∃ a bijection between

S := {0 < X < Y < Z ∈ F , X2 + Y 2 = Z2 ,
1
2
XY = α}

and

T := {x ∈ F ∗ , x, x + α, x− α ∈ F 2}

Proof.

The following two functions

S −→ T

(X,Y, Z) 7→ x = (
Z

2
)2

and

T −→ S

x 7→ (X =
√

x + α−√x− α, Y =
√

x + α +
√

x− α, Z = 2
√

x)

are inverse each other.

QED

Proposition 7. If [F : Q] = 2 and α is not a square in OF TFAE:

(i) ∃P ∈ Eα(F ) such that P has infinite order;
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(ii)∃P ∈ Eα(F ) such that 2P 6= O;

(iii)α is an F -congruent number.

Proof.

(i)⇒ (ii) trivial;

(ii)⇒(iii) see Proposition 3;

(iii)⇒(i) for this implication only we need the hypothesis [F : Q] =

2 and α is not a square in OF . If α is an F -congruent number then

by Lemma2 ∃x ∈ F ∗ such that y :=
√

x(x + α)(x− α) ∈ F that is

(x, y) ∈ Eα(F ). We claim that (x, y) has infinite order in Eα(F ). As-

sume it doesn’t, then (x, y) ∈ Eα(F )tors which by Cor2 and Lemma1 is

{O, (0, 0), (α, 0), (−α, 0)}. Because (x, y) 6= O , it follows that y = 0 and

x ∈ {0,±α} but x ∈ F ∗ ∩ F 2 thus α = x is a square, contradiction.

QED
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