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-ABSTRACT

The equations governing the behavior of beam-type, crossed-field,
traveling-wave tubes are formulated and presented. The geometry is
assumed to be two-dimensional. The electron beam is treated as a num-
ber of cylinders of charge (it can be regarded as a number of layers of
pencils the axes of which are parallel; these pencils can move in the two
dimensions perpendicular to their axes) and space-charge forces are in-
cluded by calculating the field due to these chlinders when they are placed
between two perfectly conducting planes. The nonlinear equations are re-
expressed in terms of normalized variables suitable for machine com-
putation, and the procedure for solving these equations numerically is
discussed. The equations are solved for a number of thin-beam, small-
signal cases and the results are compared with previmis analytical work,
Numerical difficulties are encountered because the electric field ap-
proaches infinity in the neighborhood of a line charge. These difficulties
are circumvented by a modification of the electric field in the vicinity of
a line charge. Large-signal calculations are carried out for the special
case of a thin sheet beam which would travel in a straight line in the ab-
sence of r-f effects. The computations are carried out for both forward-
and backward-wave interaction by using several values of a space-charge

parameter that cover typical operating conditions,
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I. INTRODUCTION
(1)

The development in recent years of successful amplifiers and
voltage tunable oscillators for microwave frequencies that employ a
stream of electrons traveiing at right angles to mutually perpendicular
static electric and magnetic fields has resulted in a renewed interest in
the analysis of this type of device. These tubes exhibit the same high
efficiency common to well-designed magnetrons and suffer from the
same lack of quantitative understanding of their operation also common
to magnetrons. The difficulty lies in the complicated nature of the elec-
tron trajectories and the seemingly inherent nonlinear nature of the
interaction between the electrons and the propagating electromagnetic
wave. The purpcse of the work presentedv here is to obtain a set of
equations which describe a physical model that retains the basic char-
acteristics of these devices and to solve these equations for some par-
ticular cases of interest and investigate the effects of various parameters
on the operating characteristics of crossed-field devices. The solutions
actually carried out are mainly for backward-wave interaction at large-
éignallevels with various values of a defined space—chargé parameter
that cover typical operating situations. A few forward-wave cases are
also computed and the results compared with the backward-wave cases.
The equations obtained here are of sufficient scope that one might hope
for quantitative agreement with experimental results in certain cases,
Crossed-field traveling-wave tubes can be grouped into two major

categories:
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1. Devices in which the beam is formed by an electron gun system
and injected into the interaction region between a slow-wave circuit and
a flat plate parallel to the circuit called the sole (Fig. la). This type
of device will be referred to as a beam-type, crossed-field, traveling-
wave tube,

2. Devices in which the electrode parallel to the circuit is an e-
mitting surface and forms the cathode (Fig. 1lb). This type of device
will be referred to as a magnetron-type, crossed-field, traveling-wave
tube,

Although this work was instigated by some experimental results
related to a re-entrant beam amplifier device which falls into the sec-
ond category, this analysis will be concerned with devices which lie
exclusively in Group 1. The restriction to this group has been made
because the beam is more clearly defined in such a device, and it is
not necessary to make any basic assumptions about the nature of the
beam that might predetermine to some degree the results that may be
obtained., It is felt that the results obtained are qualitatively useful in
discussing devices which fall into Group 2. The problem to be treated
can be stated in very general terms. An electron beam focused by
crossed static electric and magnetic fields is injected into a region in
which an electromagnetic wave is propagating parallel to the direction
of electron flow; determine the effects of the interaction between the
wave and the beam. A brief qualitative description of this interaction
in the absence of space-charge fields will serve both as a review and

as an introduction to the problems encountered in the analysis of such
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a system. Electron motion in static electric and magnetic fields will
be discussed first, The fields associated with the waves on a typical
slow-wave circuit will then be introduced, and the wave-beam inter-
action described.

If an electron is injected into a region in which there is a static
electric field —Eoé\y and a static magnetic field +Bo/e\X (Fig. 2) with a
velocity W which lies entirely in the yz plane, the trajectory of this
electron will be some form of cycloid also in the yz plane. Ifu is
acé\z’ where ug = Eo/Bo’ the electron trajectory will be a straight line
described by y = Vo and z = z_ + uotl, where Vo Zg is the position of
the electron at time t = 0. If the injection velocity is anything other
than uo‘é\z’ the average drift vélocity in the z direction will still be
u = Ed/Bo’ but there will be an additional circular motion superim-
posed on this drift velocity. This result is easily seen by writing the
equations of motion for the electron

2 2

m3Y. g -e¥2p . mdz_.g I (I.1)
3i.2 o dt "o qt2 o dt

where m is the electronic mass and -e the electronic charge, and then
making a nonrelativistic transformation to a coordinate system vy, z'

moving in the z direction with a velocity a ({the entire treatment is

nonrelativistic).
2 2
dy __dz' d7z' _ dy
IR i a3 (f.2)

The electric field disappears and the problem reduces to finding
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Fig. 2a. Hypocycloidal electron trajectory in crossed electric and
magnetic fields
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Fig. 2b. Epicycloidal electron trajectory in crossed electric and
magnetic fields
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the motion of an electron in a plane perpendiculé,‘r to a magnetic field
Bo“ This motion is circular with an angular frequency w, = eBo/m
and a radius r = v'/mc, where v' is the electron velocity in the moving
coordinate system. The actual trajectories in the fixed system can be
visualized by considering the motion of a point located at r = v'/t,nC on
the radius of a wheel of radius r = uo/u;C as the wheel rolls. If v'is
less than us the trajectory will be a hypocycloid as illustrated in
Fig. 2a, and if v' is greater than us the trajectory will be an epicy-~
cloid as shown in Fig. 2b. An ideal injection system for a beam-~type
tube would have v' = 0, and the trajectories would be straight lines.

In order to obtain a net interaction effect, the circuit must propa-
gate an electromagnetic wave at approximately the same velocity as the
electron drift velocity u, = Eo/Bo' This velocity is, of course, less
than the velocity of light so that some complicated form of circuit must
be used to reduce the phase velocity of the electromagnetic wave. A
typical slow-wave circuit is shown in Fig. 3. The wave supported by
such a structure can be expressed as an infinite sum of spatial har-
monic components, and a frequenc?=propagation constant diagram for
such a circuit including the harmonics would be similar to that shown
in Fig. 4a. This diagram is for a forward-wave fundamental circuit
because the phase and group velocities of the harmonic with the small-
est phase shift have the same sign. Different forms of slow-wave cir-
cuits can be backward-wave fundamental and have w-p diagrams
similar to those in Fig. 4b. The electric fields associafed with one

of thelspatial harmonics of one of these circuits are pictured in F1g 5.
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Fig. 3.

A typical slow-wave circuit for crossed-field devices
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This entire pattern is moving in the z direction at the phase velocity of
the wave, The magnetic fields-associated with the wave are perpendicu-
lar to the plane of the paper, but they are‘ not shown because the forces
due to the alternating magnetic field are of the order of (‘uO/c)Z times
the electric forces and will be neglected.

A very simple qualitative description of the interaction can be given
for the case in which the average electron drift velocity is equal to the
phase velocity of the wave. If one transforms to a coordinate system
moving with this velocity, the field pattern is a static pattern as shown
in Fig. 5, and the electrons in the beam are initially at rest in this
pattern. The static electric field disappears, but the magnetic field
Bé is still present, and if the magnetic field is large, the electrons
move approximately at right angles to the applied electric field,' as in-
dicated by the small arrows on the dots representing the electron
stream in Fig. 5. Rather than being slowed down or speeded up and
exchanging kinetic energy for wave energy or vice versa, the electrons
<ontinue to move at essentially the same velocity, but they move into
regions of different potential energy, and it is this difference in poten-
tial energy that appears as a difference in wavé energy, It.can be seen
from Fig. 5 that the field pattern is such as to cause bunching in the
region where the electrons are giving up potential energy so that more
electrons are losing energy than are gaining it, The net effect is a
decrease in potential energy of the beam, which results in wave ampli-

fication.
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The quantitative analysis of the beam-type, crossed-field, travel-
ing-wave tube has been treated by a number of workers under a variety

(2) and Muller“) have treated the case

of assumed conditions. Pierce
in which the space-charge forces are neglected, the beam is assumed
to be a thin sheet in the transverse direction which travels in a straight
line in the absence of r-f effects, and the amplitudes of all alternating
quantities are small so that the equations can be lirearized. This anal-
ysis was carried out by replacing the circuit with an equivalent trans-
mission line and determining the current that drives this transmission
line by converting the transverse motions of the electrons into an
equivalent alternating charge density at the plane of the circuit.

(4)

Feinstein and Kino have treated the same case but have not re-
quired that the equations be linearized. They do assume that the beam
drift velocity and the wave velocity are in synchronism, and that the
electric fields decay exponentially away from the circuit (this is equiva-
lent to assuming that the sole is removed to infinity). Under these con-
ditions, an integral equation is obtained for the circuit field which can
be sclved numerically.

Gould(S) has presented a field analysis of the linearized case which
included space-charge forces, and allowed for a beam of finite thickness
in laminar Briliouin flow. The differential equation for the electric field
inside the beam is obtained, and for the special case where the electron
drift velocity is approximately equal to the phase velocity of the circuit

waves, the a-c charge density in the beam is zero, so that the equation

~ for the field reduces to Laplace's equation (uo<<c)., The field solutioun
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is carried out by replacing the rippled boundary of the beam with an
equivalent surface-charge density and matching the beam admittance to
the admittance of the region outside of the beam across this equivalent
plane boundary. The boundary condition at the circuit is matched by
assuming that the admittance presented by the circuit to the interaction
region is the same as the admittance with no beam present for all the
space harmonics except the one nearly in synchronism with the beam.
The admittance that this harmonic presents to the interaction region is
expanded in a Taylor's series in the propagation constant about the value
with no beam present, and the new propagation constant is determined
by matching this admittance with the beam admittance. Gould (6} has
also presented a simplified analysis of this type for a thin sheet beam,
including space-charge effects.

The analysis presented here will eliminate as many as possible of
the restrictive assumptions necessary in the above work and still leave
a tractable set of equations. Specifically, the equations derived here
will include space-charge forces, finite beam thickness, nonlaminar
electron trajectories, nonsynchronism between circuit-wave velocity
and average electron drift velocity, and nonlinear interaction effects.

{7)

The techniques employed are similar to those used by Nordsieck,

(9) (10)

Poulter, (8) Tien, and Rowe in the large-signal analysis of the

ordinary traveling-wave tube., The beam is regarded as a finite number
of charged particles, and the motion of each of these particles under the
influence of the circuit fields and of all the other particles is computed,

The effect of the beam on the circuit wave is determined by summing
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the effects of all the individual particles. The equations obtained have
been solved numerically on IBM 704 equipment for a number of simpli-
fied cases. It has been assumed that the beam is thin, and the electron
trajectories in the absence of r-f effects are straight lines parallel to
the circuit. These cases were chosen because, in the limit of linear
interaction effects, the results can be compared with some of the analy-
ses mentioned above. There is no fundamental problem involved in
solving the equations for the general case; the main difficulty is simply
one of computing time.

The present work is divided into four sections. In Chapter II, the
model assumed is discussed, and a set of equations describing this
model is derived and placed in a form suitable for numerical work. In
Chapter III, the numerical techniques employed in the solution of these
equations are described, and some of the difficulties encountered are
pointed out. Chapter IV compares some of the solutions obtained here
with the results presented in the papers mentioned above, and estab-
lishes the general validity of the equations. In Chapter V, the results

of the nonlinear calculations are presented.



1. THE SYSTEM EQUATIONS

2.1 The Physical Model

The configuration of the model analyzed is illustrated in Fig. 6,
This system consists of a slow-wave circuit located a distance d above
a ground plane (the solé), the circuit having transitions to external
transmission lines at z = 0 and z = L., The coordinate system is ori-
ented so that the circuit is at y = d/2, and the sole at y = - d/2, and
the circuit waves propagate in the z direction. Electromagnetic energy
can be supplied or removed at either z = 0 or z = L to allow for either
forward- or backward-'wave interaction, and the phase velocity of a
wave on the circuit is less thén the velocity of light so that the electron
beam can be made to travel at approximately the wave velocity. The
electron beam is formed by a gun system to the left of z = 0 and is in-
jected into the interaction region at any desired y position with any de~
sired velocity (this means that the cathode potential is not necessarily

the same as the sole potential). There is a static magnetic field + BOQX

into the paper and a static electric field FEo/e\y so that in the absence of
a circuit wave or space-charge interaction forces the electrons have an
average drift velocity u = Eo/Bo in the z direction., The beam is even-

tually collected on the circuit itself or on a collector to the right of z= L.,

2.2 Assumptions

The main assumptions necessary to carry out this analysis are
listed here. They are discussed more completely during the derivation
of the equations.

1. All quantities are assumed to be independent cf the x coordinate
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over the width of fhe tube. There is no motion in the x-direction.

2. The solution will be a steady-state, periodic solution, i.e.,
all time-varying quantities repeat in a period wt = 2r. The problem can
be solved by beginning with a set of conditions at z = 0 and integrating
the equations with respect to z.

3. The actual slow-wave circuit is replaced by an equivalent,
distributed-constant transmission line which propagates a wave with
the velocity of the desired spatial harmonic component of a wave on the
actual periodic structure. The inﬁpedance of the transmission line is
so chosen that when the transmission line and the actual circuit are
carrying the same power the electric field of the spatial harmonic is
exactly equal to the field Ez = - bV/bz given by the voltaée on the equiva-
lent transmission line. q

4. The electron stream is treated as a finite number of charged
particles. The stream is divided into a number of cylindrical volume
elements, and these elements are replaced by an equivalent line charge
or 'electron' the motion of which is representative of the motion of all
the charge in that elemient. This technique is used because the pres-
ence of electrons with different velocities at the same position in time
and space, as can.occur when there are electron crossovers in the beam,
introduces no further complication into the analysis.

5. In computing the space-charge fields, the irregularities of
the circuit are neglected. The space-charge interaction forces are
computed by calculating the forces between the equivalent line charges
whenvthey are located between two parallel, conducting plates at y =d/2

and y = -d/2, one representing the circuit and one representing the sole.
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6. The effect of the beam on the circuit wave is obtained by ac-
tually computing the displacement current flowing into the circuit be-
cause of the motion of the equivalent line charges.

7. In order to actually carry out Assumptions 5 and 6, it is nec-
essary to know the positions of all the equivalent charges in the beam,
buf the positions are known only up to the last point of integration in z.
It is assumed that the future positions of the charges can be predicted
from a knowledge of velocity at the present positions.

8. It is assumed that only charge within a limited range of the
point inrquestion is effective in producing a field at that point. Numer-
ical calculations for some typical geometries indicate that this is a valid
assumption for ranges that are practical in terms of computation time.
This result lends some strength to Assumption 7, since as the error in
predicting the position of a charge increases, the effect of that charge
decreases.

9. The force between two line charges approaches infinity as the
line charges approach each other. In order to circumvent the difficulty
which this situation introduces into the numerical work, it is assumed
that the force between line charges drops suddenly to zero when the
charges approach within a range ¢ of one another. This range is selected
from numerical considerations. The neglect of the short-range force
causes a reduction in the effective space-charge forces. A factor is
introduced into the defined space-charge parameter to bring the results
into agreement with small-signal theory.

10. Only one spatial harmonic component acts on the electron

beam. This assumption is possible because, in general, the other spatial
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harmonics ére traveling at quite different velocities and produce no net
effect on the beam.

11. Although the electron beam will, in general, contain harmon-
ics, it is assumed that only the fundamental frequency component of
voltage is present on the circuit, and that only the fundamental frequency
component of beam current is effective in inducing fields on the circuit.
The impedance of any wave at a harmonic of the fundamental frequency
is generally much lower than the impedance of the fundamental, and the
phase velocity of the harmonic would, in general, be quite different
from that of the fundamental so that net interaction effects would be small
even if there were a harmonic wave present. The same argument applies
to the excitation of waves by the harmonics of the beam current.

12.. The analysis is nonrelativistic, and the forces due to alter-
nating magnetic fields are neglected since the magnetic forces are of
the order of (uo/c)2 times the electric forces.

No assumptions are made about the state of the electron beam
other than that it is injected into the interaction region from the left.

The beam could be modulated, it could have a distribution of velocities,
or it could be performing some kind of cycloidal motion. The beam
can have width in the y direction, and different parts of the beam are
?cted on by the fields appropriate to the distance that the beam is away
from the circuit.

The derivation of the equations is treated in three parts: the
equations describing propagation on the circuit, the equations des-

cribing the motion of the electron beam, and those dealing with the
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effects of the space-charge fields. The problem is first treated by
using a straightforward choice of variables, and then a set of variables
suitable for use in making numerical computations is introduced.

2.3 The Circuit Equation

The equation used to describe the circuit in this analysis is the
familiar transmission-line equation for the voltage as a function of dis-
tance and time along a distributed-constant transmission line. The pur-
pose of this section is to relate the constants of the transmission-line
equation to the characteristics of the crossed-field device represented
schematically in Fig. 6.

The equation for the voltage on a distributed-constant transmis-
sion line driven by a distributed current such as the one shown in Fig. 7

is

Xv 1 azv_j/L 1 i
5% TC 5 Ve g & e

V(z,t) = the voltage across the line at any point
i{z,t) = the current per unit length flowing into the line at any
point

L = the inductance per unit length

C = the capacitance per unit length.
It has been assumed that the circuit is lossluess; this assumption is
merely for convenience; a finite value of R introduces only a slight
complication in the numerical work. The constants 1/LC and L/C are

chosen to relate the transmission line to the actual slow-wave circuit
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Fig. 7.

A distributed constant transmission line driven by a
distributed current



21

in much the same manner as is done in the small-signal analysis of the
ordinary traveling-wave tube.(z) The quantity 1/LC is chosen equal to
vg where vy is the phase velocity of the desired spatial harmonic of a
free wave on the actual periodic circuit. The homogeneous solution to
equation II. 1 is then a voltage wave propagating with velocity vy

The choice of L./C is a little more complicatéd, It is clear that
since equation II. 1 is a function of z and t only, it cannot describe the
val:iations of the fields in the transverse direction. For a circuit prop-
agating a slow wave in the z direction with propagation constant § and
assumed to have no variations with x, the voltage can be shown to vary
as sinh By in the y direction (Appendix A). ‘Since it is anticipated that
the velocity of propagation of waves in the combined circuit and beam
system will be near the average drift velocity of the electrons, it is as-

sumed that the voltage variation as a function of y, z, and t is

sinh ﬁe(y + %)

V(Y,Z,t) ZV(Z,t) sinhﬁed

(IL. 2)

\xrhe;e Be = (».)/uo = wBO/EO is the propagation constant of a wave travel-
ing ‘;t the electron drift velocity and V(z,t)is a solution to e.quation I1.1.
The factor multiplying V(z,t) in equation II. 2 is the appropriate varia-
tion of field with distance away from the circuit so that the character-
istic impedance of the transmission line, Zo = VL /C, must be chosen
so that E_ = ~-dV(z,t)/0z is exactly equal to the field, at y = d/2, of the
vdesired spatial harmonic of the slow-wave circuit when the equivalent
transmission line and the slow-wave circuit are carrying the same

power. In the analysis of the ordinary traveling-wave tube, ZO is
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defined in terms of an average field over the region of the beam because
it is assumed that the same field acts on all electrons at a particular
position in z; in this case the correct field acts. on all electrons. The
average power carried by a distributed-constant transmission line in
terms of the voltage on the circuit is P = "Vzl /2Z . Since E_ =
) ave, o z
- OV(z,t)/dz, for a free wave with propagation constant f the proper

choice for Zo is

v E;
ZO = -Z..P___ = —— (I1. 3)
ave. 2p°P
ave,

where lEz ’ is the magnitude of Ez of the desired spatial harmonic evalu-
ated at the edge of the circuit, y = d/2, when the slow-wave circuit is

carrying Pave with a propagation constant 8. Equation II.1 can now be

written
2 2 .
XV _2dV._ L, 2 (I1. 4)
btz o b 2 o o bt

The distributed current i(z,t) driving the transmission line is the
displacement current flowing into the line due to the motion of charges
in the electron stream. The procedure for evaluating i{z,t) in terms of
the motion of the charge in the electron beam will be discussed in the
section on space charge. The assumptions made in the Introduction re-
garding i will be reiterated., The characteristic impedance Zo in equa-
tion II. 4 is in reality a function of frequency for a periodic circuit. In
general, it decreases for frequencies outside of the band for which the

circuit was designed. In addition, the phase velocity of an
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electromagnetic wave on a periodic circuit is also a function of fre-
quency so that net interaction effects are small for frequencies other
than those for which the velocity of wave propagation is approximately
the same as the electron drift velocity. Because of these facts, al-
though bi/bt will, in general, contain harmonics, it is assumed that
only the fundamental frequency component of voltage is present on the
circuit and that only the fundamental frequency component of driving
current is effective in equation II. 4.

The circuit equation becomes

2 2 Oi
vV _ 23V _, 1
3 o 3,7 T oo B e

where il has been written for the fundamental component of i(z,t). The
plus and minus signs have been included to allow for both forward- and
backward-wave interaction; the plus sign for forward-wave interaction,
and the minus sign for backward-wave interaction. The signs can be
deduced from a consideration of an equivalent circuit of a backward-

(2)

wave structure
(11)

or from a field analysis of an actual periodic

circuit.

2.4 The Equations of Motion

The general force equation for an electron moving in electric

and magnetic fields is

m d2§—=|e|E= IeIdFXI—S 7 (11.6)
w x |
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where

e = magnitude of the electronic charge

m = electronic mass
T = radius vector to the electron.
Equation II. 6 can be separated into two equations in the y and z com-

ponents since it has been assumed that there is no motion in the x

direction.
2
dy _ . . dz
dzz dy
2 =-nE_+n —a—FBX (II. 8)
where
_ e
n=m

The electric field can now be separated into three parts: the
field due to the energy on the circuit, the applied d-c field, | and the
field due to the combined effect of all the charges present. The fields
due to the wave on the circuit can be obtained from the potential func-

tion defined in the preceding section.

d
coshB (v + )

Ey == @ﬂ%ﬁ_ = -B, Viz.t) smheped 2 (11. 9)
OViy, z, t) oV(z,t) sinhﬁe(y +-CZl)

Ez - - Z;Z‘ = - ‘bz,’ =T 5ed (II. 10)

8

The applied d-c field is in the negative y direction only, -EO -
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The fields due to space charge will be denoted.ESy and Esz' They will
be determined explicitly in the next section. Since the a-c magnetic
fields are neglected, the‘only magnetic field to be considered is the
A

applied d-c magnetic field, + Boex. The equations of motion can now

be written

d
dZ cosh ﬁe(y + ?:) dz

2 +11§3€ vz, t) sinhﬁed - Esy T Eoy “Nar Box (IL. 11)

]

|

: d
nhp _(y + =)
d“z __ dV(z,t) °'PPPe 2 dy
=N Ty stahp_a " Esz T a Box: (I 12)

In the numerical solution of this problem the motion of each represen-
tative "electron' must be obtained; therefore equations (II. 11) and
{II.12) really represent 2N equations, where N is the number of "elec-
trons' chosen to represent the beam.

2.5 The Effects of Space Charge

The fields due to space charge enter into both the circuit equation
and the equations of motion, The fields produced byz a line charge lo-
cated between two infinite, conducting plates will be determined first,
The relation between these fields and the fields due to the charge in
the beam will then be obtained, and the terms due to space charge in
the circuit equation (II.5) and the equations of motion (II.11) and (IL. 12}
will be written out explicitly.

The electric field from an infinite line charge located between
two infinite, conducting plates can be obtained by writing the expres~

sion for the potential of a line charge above a conducting plate and
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performing a simple, conformal transformation to obtain the case ofa

(12) The problem

line charge between two parallel conducting plates.
could also be solved by images, but if more than two images are re-
quired for sufficient accuracy, the computing time involved is greater

than the time required for the analytical expressions presented below.

The fields at y and z due to a line charge qfat y' and z' are

] o

ESY = (II.13)
y y LI 7Y ol TV

s q/ (sm—a-cos-——-) [51n—-a—s1n?+cosha( )] sm-—a—cos q-cos K

2¢ed 2 i

[ s1n—a—- s1n-—-X + cosha (z - 2 )] - cc)s2 1_'%_(:052 —dX
i

l q/ cos -T-%- cos -1%7- sinh’%,(z - z'")

E - .
= 7Zed

2
Y gin Y -] -
[sm 3 sin o+ coshd(z z') CO§” —3-COS —

- {I1. 14)
The conducting plates are located at y = d/2 and y = -d/2, and the line
charge is parallel to the x axis.

The fiélds due to a cylindrical volume of charge pdy'dz', lo-
cated at y', z', are assumed to be the fields calculated from equations
I1.13 and II. 14 with qx = pdy'dz'. This approximation is good as long
as the point of interest y, z is far enough away from the circuit so that
the irregularities of the surface are unimportant and as long as
(z - z') >dz'/2 and (y - y') >dy'/2 since the fields external to a cir-

cular cylinder of charge are exactly the same as if all the charge were
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concentrated on the axis of the cylinder. When (z - z') and (y - v')
approach zero, equation II. 13 and II. 14 approach infinity. This does
not represent the physical situation accurately; some artifice must be
used to eliminate this infinity. The technique actually used is to make
the short-range fields be zero out to some fairly arbitrary distance and
then suddenly let the fields be those of the line charge: a space-charge
correction factor is then determined to account for the fields excluded.

Since the difficulty just discussed is associated with the finite
size of the elements dy'! and dz', it introduces no complication into the
derivation of the equations. It will be discussed further in the section
céncerned with the numerical solution of the equations.

With the aid of equation II.13, it is now possible to determine the
driving term bil/bt of the circuit equation in terms of an integral over
the charge in the electron stream. The total displacement current
flowing into the circuit at z due to the cha.rge in the beam is
d° d

% (z,t) = W—‘"“Dy('z s 2y t) (11. 15)

>t
where Dy( %’ z,t) is the displacement flux terminating on the circuit at
z, and w is the width of the actual circuit in the x direction. From

equation II.13

™
T cos =5 vy!
a [D (3, 2, t)] _ply'y 2", t) 2 dz'dy,
y' 2 2d LMo ™ \
» -sinsy +cosh-&(z-wz)

(I1. 16)



28
and defining

L
cOos a Y
F = , (I 17)

- sin 1Y Tz - 2
sin d+coshd(z z')

Wa D g, v, t)
btz

I
K

3 vd/2
..b___j fd/z {(y',2z',t}F dy'dz’

Retardation effects have been neglected in writing equation II, 18; the

1
(IL. 18)

flux at %, z is assumed to have propagated instantaneously from y', z'.
This assumption is permissible because the wave velocity and the elec-
tron velocity are much less than the velocity of light and because the
function F decreases rapidly with increase in (z - z') so that as the
effect of retardation becomes more important, the strength of the re-
tarded fields becomes less. The subscript 1 on the brackets of equa-
tion II, 18 indicates that the fundamental frequency component of this
equation is to be ta‘ken in accordance with the assumptions made in

obtaining the circuit equation. The equation for the circuit voltage can

now be written

2 2 VO Z W | 32 d/2
b;\[-vzbg-:-& b j j ply',z',t) Fdy'dz’
dt dz d/2

(II. 19)
The expressions for the space-charge fields Esy and Esz of

equations II.11 and 1I.12 can be obtained in a similar fashion. Define
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Y = (I1. 20)
. L ;
[sinlray-vcos%r—] [ sm—a— s1n— + coshd(z - ')] -sm—g—cos —E—cos -1:-1}-’

\ 2
—sin®Y gin ™Y T omoz| - cost
[ sin— s1n—a——-+ cc:shd (z-2 )] cos”—r-cos 3
and

ny' Ty T .
cos cos sinh —=(z ~ z')
Z = d_ d d . (I1.21)

2
i Y Ty M ,] _ 2 wy! 2wy
[ sm-—a-sm—a—+cosha(z z') cos —g—-cos -

Then

| , po d/2
E_ (y.z,t) = Hf ply',z',t) Ydy'dz' (I1.22)
sy ae -0 o-d/2
and
1 o pd/2
E_, (v,2,1) =’2"€f ply',z',t) Zdy'dz' . (IL. 23)
Cd-m J-d/2

The fact that it is possible to have electron crossovers in a nonlinear
problem of this type means that the electron stream can no longer be
treated as a fluid; the Lagrange rather than the Eulerian equation of
continuity must be used. The Lagrange equation of cfontinuif;y in two

dimensions is

po(yo, Z s 0) dy’odzo = p(y, z,t) dy dz . (11. 24)

This equation simply states that all the charge initially in the region
dy dz at Yo %o 0 is contained in the region dydz at y, z,t. If the
electrons at the corners of the element dyodzO end on the corners of
the elemént dydz after a time t, then the total charge in the element
dyodzo must be the same as the total charge in the element dydz. The

area elements can be related to give
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- Jy, OV,

o .
Py, 2.t = p (¥, 2, 0) | O 97 (11 25)
dz_ Oz
—° _o
oY 9%

In order to apply equation II. 25, the trajectory equations for a repre-
sentative set of electrons must be known; that is, y and z must be known

as a function of time for the particular electron that was at Vor 2, 2t

o
it

y(yo_, Z t) (II. 26)
z = Z(Yd’ Z t) (IL. 27)

These are exactly the quantities that are obtaiped from integration of
the force equations.

There is a complication in the use of equation II. 25 when there
are electron crossovers. y_and z are not single-valued functions of
y and z, and the right-hand side of equation II.25 should be written as
a sum over the different branches of the functions. Rather than use
equation II. 25 and integrate over y' and z', however, it is easier to
use equation II.24 and convert the integrals in equations II.19, II. 22,
and II.23 into integrals over the initial positions and then use equa-
tions II.26 and II. 27 to convert F, Y, and Z into functions of the initial
positions, because y and z are always single-valued functions of Vo and

EIN Equations II.19, II.22, and II. 23 become

bzv ] azv Z W | 32 o pd/2
1y r

p (y',z',0)Fdy' dz!
Zdvo 51;2 0 J-d/2 o o "o

o’o
1

(II. 28)
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p (o d/2
— g ]
Esy(y’ z,t) _mu-oo _a/2 PO(YO»ZOSO)Ydy;dzi} {II.29)
1 P® d/2
— ] ] ] ]
E vzt =53 J-co J-a/2 Po(Yy 2o OV Z dyy dzg) (I. 30)

Equations II.11, II. 12, and II.28 together with equations 11,29 and II, 30
are the equations describing the system,

2.6 The System Equations in Reduced Variables

The choice of variables used to describe the problem has been
straightforward. Since these variables are not a practicél choice for
numerical work, a set of reduced variables has been chosen to sim-
plify the numerical computations and to eliminate duplications in the
work. These variables have been chosen to give agfeement with the
small-signal analyses of crossed-field devices as much as possible,
Other variables ha‘\“re been chosen similar to the variables of the large-
signal analysis of the ordinary traveling-wave tube. ’.E‘he variables are
listed here with some of the reasons for their choice, The system

equations are then written in terms of the new variables.

The voltage on the circuit is assumed to be of the form

2
alozeﬁ

D

d

Viy, z,t) = A(z) sinh {Se(y + 2—) cos ¢ (z,t)

4 (I, 31)
sinh ﬁe(y + -2-}

KA(2) —57m B_d

il

CO8

where
2
zzozoﬁ

= 5 sinh ﬁed
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A(z) is the amplitude function and it is assumed to vary slowly with
Z,* IO is the total current in the unperturbed electron beam defined as
a positive number. Zo is defined by equation II.3, and D is defined by

the equation

2
172§
2w o 0 .
D —a)—; ———Zv;———a, (11.32)

the small-signal gain of a crossed-field tube is proportional to D, VO
is a voltage corresponding to the energy of the electrons at the aver-

age drift velocity;

ui 1 Ei
VO =_T_]-=-2-ﬁ ; . (II. 33)
(o)

:@is a factor which relates the impedance at the beam entrance position
to the impedance at the circuit;

2 d
sinh™ B8 (y_ + =)
_ e’’o 2" _ 2
Zy,) = Z, — =2 .90%. (II. 34)
- sinh {Sed

a is the magnitude of the ratio of the r-f electric field in the y direc-
tion to that in the z direction at the beam entrance position Ve
—7—7EV(Y°) hp dly, +3) (11. 35)
a= = cot VY o+ =) I1.
Ez Vo e o 2
w, is the cyclotron angular frequency;
W, = nBO . (1II.36)

The phase of the voltage wave

#(z,t) = o(Z - t) - 8(z) o (11.37)
(o]
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defines 6(z) as the negative of the difference between the actual phase
of the wave and the phase of a wave traveling with a velocity equal to
the average drift velocity of the‘ electrons, It is anticipated that 6 will
be a slowly varying function of z. A direct consequence of equation

1I.37 is

Sat_ =-w§3 ] (II.38)
z z

The normalized y and z coordinates are

r ='% (I1.39)
and

s =D ﬁez ‘ (I1. 40)
di is the phase of the circuit wave that the ith "electron'' sees when it
is at z. = 0, and ri) is the normalized y position of the ith electron when
itisatz =0,

wz
o

,50 = W (I1.41)

where ul(y) is the z velocity of the electrons as they enter the inter-
action region. Equation II.37 can be written

. u . . .
1 O 1 i 1,
z = [fﬁ(s,ro,éo) +8(s)| +u t (II. 42)

in this form it represents the z position of the ith electron in terms of

the phase of the voltage wave on the circuit as seen by the ith electron

when it is at z.  The equations

dyi _ i, i ‘
— = 2u Dp (r, s,ngo) (I1. 43)
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i .. ,
idgt_ =u_ |1+ ZDql(r:), s, ,5;)] (11. 44)

define the velocity components of the electrons. When a quantity is
written as a function of rg, 5, ﬁ;, as in some of the preceding equations,
it simply means that at some position s these quantities are different
for electrons that started in different phases and at different r positions.
- Equations II, 34 and II.41 can be used to convert the left-hand side

of equation II.24 to

dr_ d;éo ’ (II. 45)

_d
po(yo’ 2o 0) .dyo dZo ) l"ll(yo) po(yo’ 0, do)

ul(yo,) po(yo, 0, gﬁo) must be independent of do since the stream is un-

modulated at z = 0, Let

i = \u1<Vo) P (v,) (I1. 46)

be the current density in the unmodulated electron stream and let

i = IO/'TW (11.47)

be the average current density in the unmodulated electron stream,
Tisthe beam thickness in the y direction at z = 0 and w is the beam-

width in the x direction. The quantity

o

Do

Py = — (I1.48)

(1I.49)

is a plasma frequency. A space-charge parameter



g’m (I1. 50)
(9) (10)

is defined similar to those used by Tien and Rowe in the large-

signal analysis of the ordinary traveling-wave tube and is easily re-

lated to the parameter used by Gould(s)

in the small-signal analysis
of beam-~type, crossed-field devices. The expression

u = vo(l + Db) (II. 51)

defines a velocity injection parameter b, similar to that used by Pierce
and others in various traveling-wave-tube analyses. The quantityu@ in
equation II.51 is the average drift velocity of the electrons in the ab-
sence of space-charge effects; the actual injection velocities are speci-
fied by the initial values of pi and qi,

2.7 The Circuit Equation in Reduced Variables

With the aid of equation II.38, the equation for the circuit voltage

canh be written

2
2 2 2 w 'WZ d/2
XV(z,t) _w V) ¢ j f S, 2 ) Fdy! da!
- = o’ y'dz
dz vi 5552 ZVod gf d/Z ° ¢ o
(I1.52)

Equation II.31 defining the circuit voltage can be used to rewrite the

terms on the left-hand side of equation II.52,
oV _ dA T
<= KDB,_ a-gcos,zé - Asm,zﬁg_«s- (1. 53)

of _ 1 _de
5D ® (I1.54)
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2

2 2
2 :(Dﬁe)ZK :ﬂd—z-cosé_zsA singf—%é——Acosgf(%g-) —Asin¢§§_.2é ,
Z =] s
(I1. 55)
2 .
‘g“‘zY = - AKcosg . : (I1. 56)

The right-hand side of equation II.52 can be expanded in a Fourier
series in ¢ since, for constant z, 4 is difectly proportional tot. If
only the fundamental component of this expansion is retained, the
right-hand side of equation II.52 becomes

wszo IZn oo pd/2

* 2Zrv d p,Fdy, dz; cos g'(z,t)dg' 5cos g

0 ¢-o0 oJ-d/2
(I1.57)

21 poo  pd/2
+ J; pOde'o dzg sin g'(z, t) dd' {sin;ﬁ
Q/

-0 o-d/2

The functions sin g'and cos ¢' have been written outside of the yi), Zé,
integrals becausg‘ g' is not a function of yé) or zé). S}nce sing and cos g
are orthogonal functions, the coefficients multiplying sind and cos @

in the circuit equation can be equated individually, thereby yielding

two equations for the circuit.

2
d A 1
— - Al

ds

4]

2
ilg) + AK

(Dp) K 5- 7

o nd €

w WZ 2w oo Fd/Z
w i ! - f 1
t Zevd f I d/Z p, Fdyl da! cos ¢' dg (II. 58)
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2

2 d’e dA , 1 de
;(Df-”e) K<A — - 2 ?i-é_'(-ﬁ' - -J-S“")
ds
w@ wZ 2m poo pd/2
) ] 3 ] 1 .
I j fd/z pode odzo sind' dg’. (II.59)

. Equation II.,51 defining the velocity injection parameter b can be used
to reduce equations II.58 and II.59 to
2

2
a“A 1 _de 1+ Db “| _
P A[(T)""‘) S )]“

| 27 poo pd/2
+ & EDb) I I I p, Fdy! dz! cosg'dg’
d4nl @ smhﬁ d

{I1. 60)
Ad8_ L8 1 _do
42 ds ‘D ds’ ~
S
1 + Db u w 2w poo pd/2
+ () o f j p degdzgsinﬁ'dw,
: d4nl § sinh _d a/2 °
{11.61)

Equations II.39, II.40, II.46, and II.47 can be used to convert the

right-hand sides of equations II. 60 and II.61 to integrals over é:} and

!,

o]
2 2 2
d°A 1 de 1 + Db
oz “A[%”a‘*s" ] == =

2w ppl+
5 (1L Db I “’f K ____’Fdradén cosd g

4n2@2 sinhp_dp 7
(11. 62)
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2
d“e dA ,1 de, _
A 7 %% Iprae -t
s
2 ¢'+'n' 11
(IBDb) 5 ff der dé' sing'dg!
4w§ sinh B_d B _7 gl -wo-1 2

(II. 63)
Equations II.62 and II.63 are the circuit equations in reduced variables.
The range of the integral in 55") has been changed from -co to o to y% -
to ng(“)+-rr° That is, only charge that started within phase 1 w of the
charge that is at z at time t is effective in producing a field at z.
After the beam is bunched, the electrons may not be in the same or-
der as at starting, so that in the numerical work the integral is car-
ried out to include those electrons which are actually nearest to the
electron of interest. This will be discussed in the section concerning
numerical solutions. Ch@ppiﬁg off the integral is an assumption that
is based on the fact that ¥ is a rapidly decreasing function of z - z'.
The same assumption will be made for the integrals involving Y and Z.

2.8 The Equations of Motion in Reduced Variables

The equations of motion, II.11 and II.12, can now be written in
terms of the new variables. The acceleration in the y direction is

d dsa

( Sl ?-T"as ) 2, D Zui [:Hzm}gp (11, 64)

and the acceleration in the z direction is

d ,dz, _ds & ,dz, _ 2 2 29
G -FS G- D u?[1 + 2Dq] < (11, 65)

Equations 1I.11 and il. 12 become
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d
coshf_(y+)
2, 2 dp _ 08hPe 2
28, D% |1+ ZDq]”b_ =B KA —prpgs cos
(I1. 66)
d/2
+’qE —nBu [1+2Dq ZEdI Jd/ZpOYdy'odz'o
and
. d
hp _{y+=)
2 2 da SIMPAY T fgA
ZpeD Yo [1 + ZDql s Kﬁed sinhﬁed -a-s-cosyﬁ Asmg‘['ﬁ-T]
(L. 67)
Equations II. 66 and II. 67 can be reduced to '
[l+2Dq]%§-= (II. 68)
W B d gL+ pl i
D-C- écosh—-—(l+r) cosd - q+ .—'l-Ydr' dg!
w | a 55' crdor 12 o "o
o
[1 + ZDq]—%g =
d
dA | Pe
1'5(% [{a—s—cosé As1n¢( a"l}“ 1nh-—— (I+r)+p+ (I1. 69)

L" +1Tj __Ideg@{ }

It should be recognized that p, q, r, and 4 in equations II, 68 and II‘e 69

are functions of s, T and ng . In the integral terms, il is a function

of rz); riz is a constant, and Y and Z are functions of Ty r ;zf 4" , and s,
Two additional equations are necessary to complete the problem,

equations relating r and ¢ to the velocities. By definition, dy/dt = ZuODp,

and for a particular electron,

dy _ds 3y _ p, [Hznqj% (I1.70)
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dr _ 2 P
55 = ‘3;{ T Dq (I11.71)

The equation for ¢ is cbtained by taking the time derivative of equation

II.42 and setting it equal to equation 1I.44.

(T1.72)

. Equations II.62, I1.63, 1I.68, I1.69, 11.71, and II.72 comprise the gen-
eral working equations for a beam-type, crossed-field device.

2.9 The System Equations for Small D

If D <<{1 so that terms of first order and higher in D can be neg-

lected, the equations above reduce to

2 yﬁ“ +w m) i
= 1 F " P " ( m]-’-Fdr“dgﬁ“ cosgdg
8+ AT sinh B ds'rofo .Jsémwnl 12

g-g +b=7F
(11.73)

1A 1 Z‘ﬂ’ uﬁéu '%'?T {“1 1

4 . J L Fdr! A, sinddf  (i1.74)
81’1’ g@“mnhﬁ ap.7 gﬁﬂ - wel 12

N o @@d 5 Mgv + 1 ;’“1 i 7
[1 *254’@}"-@“-&[ﬁcoshm;(l+'r}cos¢mq+m“g Po o Lydrr ag |
ps Do o 2 T4 a1 12 o o

=}

(11.75)
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W T. B d g Pl
[l ¥ ZD%Q% = ﬁ%{% cosh%—(1+r) sing+p+ -%%j © _{}-Zdrédgﬁg}
;A;)-n -1 72 :
(I1.76)
dr 2w P
, (I1.77)
os B.d [1 ¥ ZDq]
o) a8 _  2g _
s T3 T T¥zpg (1. 78)

The terms containing p and q multiplied by D have been retained in
these equations because it is possible for these terms to be large even
if D is small, if the electrons are poorly injected into the focusing fields.

2.10 The Thin-Beam Equations

The case for which the beam thickness in the transverse direc-
tion is so small that all electrons at a given z position are acted on by
the same fields has received considerable attention in the small-signal
case, (1).42), (3), (5}, .(Q If the electron stream can be considered thin
so that the integral in LR reduces to multiplication by a constant, il; = i‘z

and drz)t = w7/d, the equations for small D reduce to

P2w PRl 4w
%2; +b=TF ; ‘ f ° F dg! cos g'dg' (I1.79)
sw@edﬁ sinhp _dA 0 Yg! -«
21 g +w
%ﬁ‘; -+ }:2 f f ° Fag sindag' (I1. 80)
s gnp_d “sinhp d 0 Lo ‘

. W B d ‘ B +ar
{MfZDq}—B—g = e {% cosh —5-(1 +%r)cosg§—q+—2%;a J;vo_n ngﬁﬂo}
O

(i1.81)
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5 A B é\l
[]1,+2Dc1 55 ;]'523 [,.. E—smh—z—(l+r)smyﬁ+p+m f Zdyé
(. 82)
or _ 2w 11. 83
35 " F.a TvIDg (11 83)
gfg _ +2qu “ (I1. 84)

The constant S in equations II.81 and II. 82 has been defined to be simi-

lar to that used by Gould. (6)
o

S = HOTﬁ (11.85)
o oo
where o, = Io/uow is a surface~charge density. S is a space-charge
parameter that is typically of the order of 0.5 toc 3. BeDS is actually
the gain constant for the growth of space-charge waves on a thin beam
of electrons mid-way between two flat, conducting plates,

The equations derived here describe the beam-type, crossed-
field, traveling-wave tube in a quite general manner. The choice of
reduced variables is arbitrary in most cases, and to become familiar
with the variables is no insignificant task, The computational results

will be presented in a fashion that will not require a detailed knowledge

of the variables,
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III. NUMERICAL SOLUTION OF THE SYSTEM EQUATIONS

The equations as derived in the preceding chapter are specifically
designed for solution on a high-speed digital computer. The complexity
of the space-charge functions and the number of electrons necessary to
obtain reasonable accuracy in the cases in which space-charge is in-
cluded are such that only a large-scale machine is practical. The solu-
tions were actually carried out on IBM 704 equipment. This chapter
will describe in detail the procedure for solving the small-D, thin-beam
equations numerically. Although the discussion is restricted to this
particular case, with minor modifications the method applies to the
more general cases. The equations will first be written in finite dif-
ference form. The general procedure for solving the equations will
then be discussed and a specific format set down. Finally, a brief
discussion of the errors and the amount of computing time involved
will be given.

3.1 The Small-D, Thin-Beam Equations in Finite Difference Form

The small-D, thin-beam equations II1.79, II.80, II.81, II.82,
II.83, and II. 84 must be converted to equations relating a finite num-
ber of points in order for the problem to be programmed for a digital
computer. The finite difference forms selected were chosen for their
simplicity rather than for extreme accuracy for two reasons, The
chief reason is that more storage space and more computing time are
required for the more refined techniques. Admittedly, more accurate
approximations would allow the integration interval to be larger and

thus reduce the computing time, but there is still the storage-space
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requirement. This problem was first coded for a Univac Scientific
Computer with only 1024 words of high-speed storage, and a fair share
of the computing time was used in transferring between low-speed and
high-speed storage. On the IBM 704, the entire problem can be carried
in the high~speed storage, and the storage problem is not particularly
acute, at léast for the thin-beam case. The second reason for select-
ing simple difference forms in the space-charge terms is that the ap-
proximations regarding the near and far fields are so severe that
refining the numerical techniques for the rest of the terms isunwarranted.

It has been pointed out previously that the terms involving Dp and
Dq in the small-D equations have been retained to allow for cases in
which the electron trajectories would not be straight lines in the ab-
sence of circuit and space-charge fields. The discussion will now be
confined to cases where it can be assumed that Dp and Dq are negligible
compared with unity,

A few more definitions must be introduced before the equations
can be written in finite difference form. The equations are to be in-
tegrated with respect to s; the integration interval in s and the integra-
tion step are defined by

s=mh; m=0,1,2,3 ....; h = constant. (I11. 1)
A subscript m on any quantity means that quantity evaluated at s = mh.
The beam is divided into N equal intervals (N '"electrons'’) in a phase
period of 2m at the beginning of the tube, m = 0, and these electrons
are numbered from 1 to N. A superscript i will denote the electrons as

originally numbered, and a superscript j will denote a running index in
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terms for a particular i.

- &ni (III.2)

Ad = aw , A
AN PN

£% TR R | ' :

Y¥Y, 27, and FY are the values of the functions Y, Z, and F computed

m’ Tm m

when electron i is located at m and electron j is located at its corre-

sponding position.

The integration rule used in determining A and 6 is

da (III. 3)

Am+lem=l+ZhE§

-de
9m+lzem=~1+2h§§‘ \ (III. 4)
m
1.3d°A
The lowest-order term neglected in equation III.3 is + £y h —
ds m -1
and similarly for equation III.4. The integration rule used in determin-

ing r and 4 is

‘ e hldr dr
"m+ 1l Tm || TE| L (1. 3)
h[dd dg )
ém + 17 Sé:e::rz + ‘2‘5?&‘5’! + ds L (1L 6)
Voolm wt 1
¥ 3 l
o s s e i ,3dr
The lowest-order term neglected in equation III.5 is - ¥ h —5
' ds™ |
im

and similarly for equation III. 6. The integration rule used in forming

e LAY ?
po W (ug«ﬁ +w gzﬁ + 1
L ° yag, | © Z4dg! . and f ° Fag

wgﬁjﬁ/ =T o

i

[ A . 1A

4 ki1 ut =
O

is simply the rectangle rule. For example,
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{ ‘Z{i)-*'n / 2w ij
n Ydée =3 Z Yoo (I11. 7)

The j's are selected to include all electrons with phases ?Sin in the range
‘Z{i‘n + w. Since Dq is small compared with unity, all the electrons are
traveling with nearly the same velocity; hence this range in 4 is almost
equivalent to including electrons within a fixed distance on either side
of electron i. The trapezoidal rule was not used for these integrals be-
cause it results ’essentially in a correction on the end terms of the sum-
mation, and the integrals have already been chopped off at the ends in a

rather arbitrary fashion, The integration rule usedin forming

& ¢!°+“Fd¢' sin g dd; r ! Fdé" cos ¢'d¢ (T 8)
0 og' -w

is the trapezoidal rule, As soon as there is any bunching of electrons,

the yﬁn“s are not equally spaced in phase and, since we have computed

4

@'+ .
f © Fd;éz) for the particular g's, dzn, the increments in the preced-
JFI -

e’

ing integrals are not equally spaced. Actually, it would be possible to

Pt
compute j © ngﬁg for equally spaced phase intervals, but numeri-
1
gl -
cally it is much easier to compute it for the same é¢'s necessary for the
space~charge terms Y and Z because all the individual terms necessary
to make up F have already been calculated in that case. The term

gl -
Jé © Fdé(”) is periodic in phase so that by using the trapezoidal rule
R

for unequal increments equation III.8 can be written
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The small-D, thin-beam equations can now be written in finite difference

form, The equations of motion become

, A Bd . . .
Prnyq = o Sinh-S— (r. +1)sing T_GT zJ (I1I. 10)
j
L _._Am cosh el (rl + cosd S Z YlJ (III. 11)
Im+1© , 2" Y'm Nﬁ d -
rt L . (I11. 12)
m+1l "m Fd Pm+1 7 Pm .
i i i i i
fL{m-frl~’5m+6m O m+1 F Ay 4y T 4y) (II. 13)
and the circuit equations become
N-1 . .
- h i+1 i-1, . ij
A=A T g Ysingt DF

t (B - F L amsingy ) T+ (24 4 2m)singy YL (mn14)
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The functions ¥, Y, and Z can be written
ii cost:‘i
FY = - - (I1L. 16)
(:oshsJ - sint‘] :
m m
. [cosh sl‘} -sintl‘] sin rl }sin r']’ cos tl‘] - sintlJ cos tl‘] cos2 r!
ij - m m m m m m m m
m i i RE iy i 14
[coshs‘] ~sintJ sinr ] - [cost cosr ]
m m m m m
(111, 17)
i cos tg cos r:’rnsinh sgl
Zrﬂz = — . s (II1. 18)
{cosh s¥ - sintY sinrt ] - [cos tY cos r' }
m m m m m
where
iy _ . J ,
toy = Tm (III. 19)
and
ij _ i . i
s = pd (;&m gﬁm) . (III, 20)

t:% is the predicted r position of electron j when electron i is at m, and
slﬁl is the predicted value of the difference between the s positions of

electrons i and j when i is at m. These quantities will be treated in
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more detail in the discussion of the procedure for solving the equations.

3.2 Procedure for Solution

The general procedure for solving the system equations is as fol-
lows. Assume that at m = 0 the beam is unmodulated and that the am-
plitude A and the phase 60 associated with the wave on the circuit are
known. Now allow sufficient time so that the voltage goes through a
period of 27 in phase and compute the acceleration of the N equivalent
electrons uniformly distributed in phase representing the electron beams.,
- The electron numbered N + 1 will experience the same acceleration as
the electron numbered 1 sojthat it is only necessary to consider the N
electrons distributed over a period 2m in phase. With this knowledge of
the accelerations of the electrons it is possible to find the time it takes
for the individual electrons to reach the next plane in s {or z}, m = 1,
and to find the r positions of these electrons. Since each of these elec-
trons is accelerated in a different manner, they will not arrive at m = 1
at the equally spaced intervals in time (or phase) with which they arrived
at m = 0, In addition, the presence of the beam causes the phase ve-
locity of the circuit wave to vary as a function of m; hence the absolute
time of arrival of a particular electron at m = 1 is of no immediate
value, The quantity that must be known in order to compute the accel-
eration of the electrons at m = 1 is the phase of the voltage wave ¢§]i
that the electrons see at m = 1. From this and the ﬁ.ew voltage ampli-
tude at m = 1, the time necessary to get tom = 2 can be computed. As
far as the electrons are concerned, the information that is being ob-

tained is the time at which each electron of a representative set is at
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a given m position and the velocities and the r positions of these electrons
when they have arrived at that position. The timé is obtained in terms
of the phase of the voltage wave as seen by the electrons rather than in
terms of the actual time, since it is the phase that is important to the
motion of the electrons.

Nothing was said about the space-charge force terms in the pre-
ceding discussion. It is clear, however, that since the position of the
electrons is known only up to the plane at which the force is being com-
puted, it is impossible to compute the space~charge forces exactly. In
order to compute the space-charge force on electron i when it is at a
particular position m, it would be necessary to know the position of all
other electrons at that time. The procedure that is used to obtain these
positions approximately is linear extrapolation. The velocity of all the
electrons is known for a particular m, and the times that these electrons
are at this plane are also known. It is assumed that the electrons con-
tinue to travel at the same velocity after they leave this particular plane
so that their position as a function of time can be computed. Using the
definition of ¢§9' equation II. 36, the difference in time between the arrival

of electron i and that of electron j at position m is

P
m m‘w

éin - éﬂn) : (111, 21)

Electron j is traveling with z velocity

j
dz” _ u, [1 + 2D¢’ }%uo (111, 22)

dt m
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‘and vy velocity
gl

dy'° _ o
- = 2u_Dp) =20, (I1L. 23)

so that to a first approximation electron j is located at r‘ln and a

distance

. . u
] 1 (o]
zZ¥ - 7 T —
m w

B~ oo
away from electron i, when i is at m. tgl and S11:;]r1 can now be written‘

™ Ty
and

et

- With this information it is now possible to compute Flél, Yii and

Zgl from equations III.16, III.17, and III, 18. It is possible to make this
simple approximation for the electron positions because, for typical
values of Bed; the functions ¥, Y, and Z are rapidly decreasing functions
of zj - zi so that as the approximation becomes worse, the relative ef-
fects of these electrons become less. In the numerical work, only elec-
trons within a phase 1+ m of the particular electron in question are used in
computing the force on that electron. Another difficulty encountered in
computing the space-charge forces is that introduced by replacing a cy-
lindrical volume of charge by an equivalent line charge. The force be-
tween two line charges goes to infinity as the charges approach each other
so that some assumption must be made about the short-range forces.
These are assumed to be zero within a radius ¢ of the line charge. The

radius ¢ is chosen from numerical considerations and a correction factor
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must be applied to the space-charge parameter to account for the fields
eliminated. This point is discussed further in Chapter IV in comparing
the computional results with previous small-signal results.

The effect of the beam on the circuit wave is computed in the fol-
lowing manner. The actual flux terminating on the circuit at m due to
all the charges is computed at the time that each different electron is at
m so that when this procedure has been completed a graph of EYm at the
circuit as a funtion of time (or phase) can be plotted. The second time
derivative is taken to obtain the time rate of change of displacement cur-
rent, which is the driving term in the circuit equation, and this is
Fourier analyzed to obtain the fundamental component in accordance
with the assumptions concerning the circuit.

The actual procedure for solution of the equations may be sum-
marized as follows:

1. A _, 08 _, p]L , ql , r , andng1 areknownatm=0fori=1,2,3,.
m’ m’ *m’ ‘m’ "m m
2. Select a particular electron i and another electron j and compute tgl
ij . ij ij ij
and s from equations III.19 and II1.20, and F*, Y, and Z* from
m m’ “m m
equations III. 16, III.17, and III.18,

3.- Repeat this procedure for the N different j's that have l¢11rn - ¢inl <w.

This means that,at times, j corresponds to an electron outside of

.., N.

the range 1 to N, but since ng‘l:N = ’Z{in + 2w, there is no complication.

4. Form the ZYIJ, Zz”, and ZF”. Use equations III.11, III.12,
m m m
j j j

i i i
m+1° Tm+1 27 P + 1:

and 6
m

III. 13, and III. 14 to compute p;H ;4

store ZF” for use in computing A
m m

J

+1 +1°
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5.- Repeat steps (2), (3}, and (4) fori=1,2,3, .....N,

6. Use the values of ZFU obtained in step (4) to compute A and
m m+1
J

e ~ All of the quantities in step (1) are now known at m + 1, and

m‘+ 1’
the cycle can be repeated to advance tom + 2, etc,.

The oscillation conditions for a backward-wave oscillator(lz) (13)
are determined by assuming a value of Ao’ the amplitude function, and
b, the velocity difference parameter, and integrating the equations. If
A decreases to zero at some point along the tube, the gain in the back-
ward direction will be infinite and the tube will oscillate. Only one value
of b will cause the amplitude to go to zero for any particular value of
Aoa The velocity parameter actually determines the oscillation fre-
quency for a particular circuit since b and u determine Ve the circuit
phase velocity, and for a dispersive circuit vy determines a particular
frequency. The point at which the amplitude goes to zero determines
the starting length of the tube as an oscillator. Experimentally, the
tube is generally of fixed length and the current is varied. Since the
normalized z coordinate is proportional to'\/_I:, a different value of
starting length can be regarded as a change in the tube current, and
the different values of b associated with different values of A0 actually
determine the frequency pushing with tube current. (13)

The forward-wave-amplifier cases are carried out by assuming
a value of A0 and a value of b and integrating the equations until most

of the electrons are collected on the circuit or the amplitude function

bégin.s to decrease because the electrons have gone into the wrong phase.
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In this case the frequency is regarded as fixed, and the value of the ve-
locity parameter b determines how far from synchronism the beam ve-
locity and circuit~-wave velocity are.

3.3 Errors and Computing Time

The problem of numerical errors in the computations was attacked
from an experimental point of view. The errors considered here are
errors only with respect to the accuracy of solution of the integral-
differential equations describing the system and not with respect to the
accuracy with which these equations describe the physical situation.

The choice of the integration interval h, the number of electrons N, and
the computation time resulting for a particular choice of h and N are
discussed. The selection of h and N was made by computing the same
cases for different values of h and different values of N. From the
standpoint of accuracy, one would like to choose a value of h small
enough and a value of N large enough so that making h smaller or N
larger would have no effect on the solution. However, to minimize the
computing time one would like to choose h as large as possiblé and N
as small as possible since the computational time is inversly propor-

_ tional to h and approximately proportional to NZ,

Two sample cases were calculated for various values of h. With
the space-charge parameter S equal to zero, there is virtually no dif- .
ference between solutions for h = 1/32 and h = 1/64 and only a slight
difference between solutions for h = 1/16 and h = 1/32. The value

h = 1/16 changed the starting length for a small-signal, backward-wave-

: §
oscillator case by about 1 part in 100 over the value for h = 1/32. The
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value h = 1/16 would be suitable for S = 0. With the space-charge pa-
rameter S = 3, a set of solutions was run for h = 1/16, 1/32, 1/64, 1/128,
and 1/256, The amplitude function still differed by about 1 part in 20 at
the end of the tube for t}.1e two cases h = 1/128 and h = 1/256, The solu-
tions appeared to be converging, however, and there was no difference
in the nature of the results; hence a value of h = 1/64 was finally chosen
for all computations. Since the equation for 6 has a factor A in the de-
nominator, in the backward-wave-oscillator cases where the circuit
amplitude A is approaching zero %—2— is very large and an error in A that
is small in magnitude can produce an error in 0 that is large in magni-
tude. The error in A is relatively insigniﬂcant, but the error in 6 means
that the electrons are shifted into the wrong phase and this significantly
affects the solution. Fortunately, this occurs over only a relatively
short region as A approaches zero; although it is difficult to obtain the
start-oscillation conditions precisely, there is no difficulty in determin-
ing a range within which these conditions must lie that will determine
the starting length within about five percent. A value of N = 33 was se-
lected primarily on the basis of minimizing computing time. A larger
value of N would be desirable, particularly for those cases in which
the space-charge parameter is large. The nature of the results is not
affected when N is changed from 33 to 67, and it was felt that the gain
in accuracy does not justify the large increase in computing time. If
the space-charge parameter is zero, there is only a slight difference in
the results for cases in which N = 16 and N = 33, In the large-signal

analysis of the ordinary traveling-wave tube a value of N = 24 was found
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to be satisfactory for most cases, although a larger value of N becomes
necessary as the space~charge parameter is increased to correspond to
very high current density beams. (9) (10)

The computing time pér integration m for N = 33 on IBM 704 equip-
ment is about 20 seconds. Since the starting lengths for the backward-
wave-oscillator cases are in the neighborhood of s = 1.5, a complete
case requires about 30 minutes. The computing time is approximately
proportional to N2 because for each individual electron the space-charge
terms must be computed for all other electrons. Therefore,the space-
charge terms must be computed N2 tirﬁes per integration step. Because

Y, Z, and F are quite complicated functions, a major part of the com-

putational time is devoted to computing the space-charge functions.
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IV. COMPARISON OF RESULTS WITH PREVIOUS WORK

During the course of checking out the computer program, a num-
ber of small-signal, backward-wave-oscillator cases were computed
for comparison with previous theoretical results. The agreement with
these results is good and creates confidence in the large-signal calcu-
lations. Some difficulties were experienced in the space-charge cases
because of the nature of the short-range force between line charges that
was assumed initially. A "breakup'' of the beam similar to that reported
in hollow electron beau:ns(‘“l 2 developed very rapidly and masked the cir-
cuit interaction effects. By modifying the force law at short ranges so
as to reduce the force between two elements of charge, it was possible
to substantially eliminate the beam breakup. It was then necessary to
introduce a space-charge correction factor to bring these results into
agreement with the small-signal analytical results.

Numerical calculations are compared with previous work in three
different situations. In the first section, results for small-signal and
no space charge are compared with previous work for a variety of the
parameters that must be specified in the numerical calculations. In the
next section, results for small signals, including space charge, are com-
pared with previous work and a space-charge correctionfactor isintroduced.
In the last section, some large-signal, no space-charge cases are com-
pared in a qualitative fashion with the work of Feinstein and Kino.

4.1 Small-Signal, No Space-Charge Results

The start-oscillation conditions for a thin-beam, crossed-field,

backward-wave oscillator under small-signal conditions, neglecting
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space-charge effects,have been determined analytically by Muller(3)
using the theory of Pierce, (2) The result is that the amplitude ‘of the
circuit wave varies as cos BeDz (or cos s), so that the length of tube re-
quired to start oscillation is s = /2, The velocity difference parameter
b is zero for this case; the circuit wave and the beam are in exact syn-
chronism. In this type of small-signal énalysis it is assumed that the
beam moves only very slightly from its equilibrium position so that the
ratio Ey/Ez = a does not change and the‘beam position can be specified

in terms of a alone. In the analysis presented here, it was anticipated
that,under large-signal conditions, the beam would change its position

and that thei‘efore the ratic of the fields acting on the beam would change,
depending on its actual location. The position of the beam and the circuit~
to-sole spacing must be specified; these quantities determine a. The
starting iengths of a backward-wave oscillator as computed from the
equation‘s presentedherearegiven in Table 1 for several values of the
circuit-to-sole spaci,ng in electronic wavelengths, ped. ‘The velocity

difference parameter b is zero in all cases,

Table 1, The computed starting length of a crossed-field, backward-
wave oscillator with space-charge effects neglected. The small-signal

analytiéal result is s = w/2%F 1,57,

‘ﬁed r {b)start {s)start
2,0 0 0 1.57
2.0 -0, 25w 0 1.56
2.5 -0,30%w 0 1.54
3.0 -0.33n 0 1.50
3.5 -0, 36w 0 1.44
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The first two cases shown in the Table are for Bed = 2 and for the beam
one-half of the:way from the sole to the circuit and one-fourth of the way
from the sole to the circuit, respectively. The first case checks the
analytical result very accurately and the second case is very close, but
s is a little small. The next three cases are for Bed =2.5, 3, and 3.5,
with the beam injected relatively close to the sole in each case; the cal-
culated starting length becomes progressively shorter as Bed is increased,
The small-signal analytical result is s = n/2 and b = 0 for all cases. The
increased error for large 5ed is due to the neglect of electrons beyond
+ 7 of the phase for which the field terminating on the circuit is being
computed.

- Consider a beam perturbed as illustrated in Fig. 8a; the pattern
can be regarded as sliding towards the right and we will consider the
. phase at z to be g = w/2. The charge that is included in computing the
flux terminating on the circuit at z at @4 = w/2 is that charge contained
between the short vertical lines at ¢ = -n/2 and 3w/2. In Fig. 8b, the
field terminating on the circuit at z, Esy(g-, z), is plotted as a function
of the phase at z. The horizontal dashed line is a line of constant Esy
as a function of phase that would result if the beam were unperturbed,
If all the charge were included, a curve of Esy versus ¢ might appear
as the one marked exact computation, and if only charge within a phase
4m were included, the curve might appear similar to the one marked ap-
proximate calculation in Fig. 8b., This can be demonstrated by consider-
ing two phases, @ = n/2 as indicated in Fig. 8a and another case in which

the phése is 7 later so that the beam shape in Fig. 8a has slipped to the
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right until § = - 7/2 is at z. The total charge included is always less in
the approximate calculations than in the exact calculations so that the
field terminating on the circuit will be smaller for all phases in the ap-
proximate calculations. For ¢ = n/2 the charge nearest to z that is ex-
cluded is the charge at ¢ = - w/2 or 3w/2, which is further away from the
circuit in the y direction than the average, whereas for ¢ = - 7/2 (orb 3w/2)
the nearest charge excluded is that at ¢ = n/2 or -3w/2, which is closer
to the circuit than the average so that, in effect, more field has been
neglected at - 7/2 (or 3w/2) than at w/2, and the curve of Esy’ instead
of being simply displaced downward,is displaced downward more at 3r/2
than at w/2. The alternating component of Esy is therefore larger in the
approximate case than in the exact case and, since this is the driving
term in the circuit equation, the beam modulation appears to be larger
than it actually is and the starting length is shorter. For larger Bed the
fields from a given charge effectively extend further in the z direction
and the terms neglected become larger.

The errors described above could be reduced by including éharge
further from the point of interest if necessary. To compute the fields
for these added electrons by means of the space-charge functions F, Y,
and Z would increase the computing time proportionally to the square of
the number of electrons included. It was decided to carry out the cal-
culations for Bed = 2.5 and the beam one-fifth of the way from the sole
toward the circuit. This is a fairly representative value of Bed; magne-
trons are normally designed with fd equal to 3, and backward-wave am-

plifiers are generally designed to operate between Bd = 2 and fd = 3.
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For this value of (3ed the error in starting length is only about 1 part in

50 and no additional charge was included in the calculations.

4.2 Small-Signal, Space-Charge Results; A Space-Charge Correction
Factor '

The problem of a beam in crossed electric and magnetic fields
interacting with a slow-wave circuit under small-signal conditions and
including space-charge interaction effects has been attacked most suc-
cessfully by Gould. (5) (6) The comparison made here is with the second
paper by Gould, which is concerned with the case in which the beam can
be considered to be thin. The results presented here are in one sense a
comparison and in another sense a justification of the procedure used in
calculating the space-charge effects, One of the difficulties encountered
in replacing a volume element of charge by a line charge is that such re-
placement introduces an infinity in the electric field at the charge. In
order to remove this infinity, it is necessary to make some assumption
about the behavior of field in the vicinity of the line charge. The fields
are assumed to be zero in the immediate vicinity of the charge. The
calculated forces are therefore less than would be obtained if the exact
fields were used, and a correction must be applied to the space-charge
parameter. The agreement between the results cobtained here and the
analytical work by Gould is relatively good when this correction factor is
included.

The first assumption made regarding the field in the vicinity of a
line charge was based on the fact that, within a circular cylinder of

charge, the electric field increases linearly from zeroc at the center to
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a maximum at the edge, a maximum which is exactly equal to the field
of a line charge located at the center and having a charge equal to the
total charge in the cylinder. In early computations it was assumed that
the field increased linearly from zero at the charge to the value given by
the functions Y and Z at some arbitrary distance ¢ away from the charge,
as illustrated in Fig. 9. The distance ¢ was chosen to be of the order of
the separation between line charges in the unperturbed beam. Compu-
tations carried out with this short-range force law were not very success-
ful; computer errors built up and masked the interaction effects. Some
electron phase diagrams for typical cases are shown in Figs. 10 and 11.
These diégrams show the transverse position of the electrons as a func-
tion of phase after the electrons have traveled a distance along the tube,
The points have not been marked on these curves, but they are connected
by straight lines. Since the electron drift velocity is always very nearly
U these diagrams are approximate pictures of the beam shape at vari-
ous positions along the tube, Figs. 10 and 11 are drawn for the same
tube parameters but were computed by using 33 and 67 electrons, re-
spectively; the scale in r is the same for both figures. The total dis-
placement of the beam from equilibrium is very small so that these cases
truly correspond to small-signal calculations and the actual numerical
value of r is not significant., The distance ¢ was chosen to be exactly
the separation between line charges in the unperturbed beam in each
case so ¢ in Fig.ll is one-half of ¢ in Fig. 10. The errors build up

faster for 67 electrons than for 33 electroms; the curve for N = 33 is at
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s = 1,35 whereas the curve for N = 67 is only at s = 0.8 and the perturba-
tions are already larger for N = 67 than for N = 33, The jagged appear-
ance of the electron beam which develops as the beam progresses down
the tube is a result of the discrete nature of the numerical solutions,
Adjacent line charges produce very strong forces on each other that are
nearly balanced by the other charges. A slight error in the location of
one of these charges results in a force which is not properly counterbal-
anced by the other charges and the charge is forced further out of posi-
tion and causes unbalanced forces on the neighboring charges. The
process grows very rapidly until it predominates over the originél motion.
Going to a smaller integration interval does not alleviate the difficulty,
which would indicate that the errors are in the subroutines and not in the
integration techniques. Increasing the value ofe improves the situation
only very gradually.

The breakup of the smooth beam shape described above is a short~
wavelength manifestation of the growth of space-charge waves on a beam
of electrons in crossed electric and magnetic fields {termed the diocotron
effect by the French). It is alsc closely related to a situation observed
(15}

experimentally in thin, hollow, cylindrical beams of electrons and

(16) (17}

treated theoretically by several workers In this case the elec-
trons are traveling parallel to a strong magnetic field, and the cross sec-
tion of the beam starts out as a thin, circular strip at the cathode and
eventually breaks up into a number of filamentary beams located around

the circumference of the circle, If the motion along the direction of the

magnetic field is disregarded and if the radius of the beam is large,the
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situation is similar to a thin beam in crossed fields viewed from a co-
ordinate system moving with velocity ug = Eo/Bo so that the static elec-

(18)

tric field disappears. Kompfner carried out some numerical
calculations for this case and found that due to computer errors, the
line charges would eventually tend to break up into pairs quite similarly
to what happens in Figs. 10 and 11.

The solution for space-charge waves on a thin beam of electrons
drifting in crossed electric and magnetic fields shows that the perturba-
tions grow exponentially with time in a coordinate system moving with
the electrons and the exponent is inversely proportional to the wave length
of the disturbance so that the shortest wavelength disturbance grows
faster than all others. (6) For the numerical calculations carried out
here, the shortest effective wavelength is that corresponding to twice the
separation between two electrons, and a disturbance in the positions of
any individual pair of electrons would tend to grow much faster than the
effects of the circuit interaction. The difference in the rates of growth
for the circuit wavelength and the perturbations is the ratic of the ef-
fective wavelengths (33/2 for 33 electrons and 67/2 for 67 electrons).

- Since this factor appears in the exponent, it would be extremely diffi-
cult to reduce the computer errors so as to completel.y eliminate this
effect,

" A rather drastic assumption regarding the fields in the vicinity
of a line charge was necessary to circumvent the difficulty described

above. It was assumed that the fields were zero out some distance ¢

and that they then behaved exactly like the fields from a line charge
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(Fig. 12). The distance ¢ was chosen to be 3/2 times the spacing be-
tween electrons so that in an unperturbed beam an electron produced no
force on the immediate neighbor electron on either side. This force
law successfully eliminated the error buildup described above. No dif-
ficulties were encountered for the values of S used in the calculations.
One question that arises here is that since this buildup is in a sense re-
lated to an actual physical situation, should it be eliminated? The ans-
wer is that (1) the buildup in the computations is due to computational
errors, not to actual perturbations on the electron beam and (2) in the
case of a beam of finite thickness the rate of growth of space-charge
waves does not increase monotonically with decreasing wavelength but

(5] The problem as

reaches a maximum and then decreases to zero.
'.:tll‘;eated here may be regarded as representing a sort of equivalent thick
beam.
The small-signal start-oscillation conditions were determined for

Bed = 2,5, r = -0.3wm, and S=0, 1.5, 3, and 4 The space-charge
correction factor that will be introduced makes the effective values of
Sbe 0, 1.1, 2.2, and 2.92. Fig. 13 is a plot of s(start)/2w, which

is equal to D times the number of electronic wavelengths on the cir-
cuit, as a function of the space-charge parameter S. A similar curve
taken from Reference 4 is plotted on the same graph; although the
curves have the same general shape, which shows the familiar reduc-

tion in starting length with increase in space charge, there is an

appreciable quantitative difference. Fig. 13 is for ﬁed = 2.5 and
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-0.3w and Fig. 14 is a similar set of curves for Bed = 2.0 and

r, = 0. The dashed curve in each of these figures is the calculated
curve replotted with S reduced by a factor of 0. 73, which will be re-
garded as a space-charge correction factor applicable to the particu-
lar computations in which 33 electrons are used and the short-range
forces behave as described in Fig. 12 with e¢ chosen to be 3/2 times
the separation between line charges in the unperturbed beam. The in-
troduction of this factor is empirical and is supported by the fact that
the same factor works quite well in cases which have the same geome-
try but different values of S and also in cases which have quite
different geometries. One would certainly not expect that the nature
of the results would be determined by the immediately neighboring
charge; therefore it seems reasonable to introduce a correction factor
to account for the neglected charge. Actually, another, better type of
correction factor might be one which would weight the nearer charges
more heavily than the distant charges. However, such a factor was
not used because of the complications it would have introduced into the
computer programming. The factor 0.73 has been applied to S in all
the large-signal calculations.

Fig. 15 is a curve of the velocity injection parameter b for
small-signal oscillation as a fur{ction of the space-charge parameter
S. It should be emphasized that b is defined in terms of the phase
velocity of a free wave on the circuit and the average drift velocity of
an electron in the absence of space charge,

E
U = =2 =V

(o] B o(
o

1 + Db) (IV. 1)
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so that if the space-charge effects are included, there will be an average
drift velocity which differs from Eo/Bo and depends on the space-charge
parameter and the location of the beam with respect to the circuit. The
value of b necessary to make the average drift velocity of the electrons
equal to the free-wave velocity is shown as a dashed line in Fig. 15,
The velocity injection parameter as obtained from the thin-beam ana-
lytical work is also plotted in Fig. 15; it is appreciably different from
ti1e value obtained here. This difference may be due to numerical errors
because some calculations indicate that reducing the integration interval
to a value less than 1/64 increases the value of b required for start
oscillation. The data are nof sufficient to show that the magnitude of
the change in b is enough to account for the difference shown in Fig. 15,
The reason for the error in b is that d6/ds is inversely proportional to
the circuit amplitude so that near the end of the tube, where the ampli-
tude is approaching zero, the error in © can become quite large,but it
can be compensated for by a change in b which keeps the beam near
synchronism.

" As the space-charge parameter is increased, the beam must be
injected at higher velocity to ob‘-cain oscillation. The interesting point
to note about this effect is that the actual phase velocity of the circuit
wave at oscillation is not affected by a change in the space-charge
parameter. Although the electron trajectories change appreciably as
the space-charge parameter is increased, the velocity of the circuit
wave is still the free-wave velocity. Figs. 16 and 17 are electron

phase plots for a small-signal, start-oscillation case with S = 0 and
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Fig. 17. Electron phase plot for start oscillation case with S = 2,92
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S=2.92, respectively; the total r deviation of the beam in each case is
very small. The solid lines indicate the motion in phase of a typical set
of electrons; the dashed lines indicate the beam surface at a particular
position along the tube. The straight, horizontal line is the unperturbed
beam surface at the beginning of the tube. In Fig. 16, the case with S=0,
the electrons tend to bunch about phase 7/2 and always remain in syn-
éhronism with the wave. In the space-charge case (Fig. 17}, the elec-
trons are slipping through the wave, but they slip at just such a rate that
the beam boundary always remains sinusoidal, with the maximum at
nearly g = v/2, just as in the no spacé-—charge case, and there is little
tendency for the phase velocity of the wave to change. The electrons do
not particularly tend to bunch in the space-charge case; they remain
more or less uniformly distributed in phase,

The results presented here appear to agree quite well with small-
signal analytical results and create a certain amount of confidence that
the equations are correct and that the computer program is operating
properly., The result that the circuit wave velocity does not change even
when space-charge effects are present could be of use in other analytical
approaches to the problem because it is quite easy to determine the rate
of change of the amplitude of the circuit wave but more difficult to de-
termine the rate of change of the phase.

4.3 Large-Signal, No Space-Charge Results

The only previous work of this sort known to the author is that of

{

Feinstein and Kino. 4) The comparison with their work is only qualita-

tive for the following reasons., In order to simplify their calculations
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where), but they still collected electrons on a fictitious sole at a position

they placed the sole essentially at infinity (this makes = ] every-

corresponding to Bed = 3.5. In order to accomplish the same effect in the
present computations, ﬁed would have to be equal to abodt 6 or larger,
and the beam would then have to be introduced near the circuit and elec-
trons collected on a fictitious sole at a distance Bed = 3.5 away from the
circuit. Unfortunately, since the value Bed = 6 is large enough to p‘roduce
a significant error in the approximations, as was noted previously, this
particular case was not attempted. The artifice of using a fictitious sole
actually produces results different from those that would be obtained with
a conducting sole because the tangential electric field on the artificial
sole is not zero. Since under the assumptions used here, electrons move
perpendicular to the electric field, electrons would be collected on the
artificial sole that would not ordinarily be collected when the tangential
field is zero. The results with space-charge effects neglected will be
described qualitatively here and presented in more detail in the next
chapter, along with the other large-signal computations.

If space-charge effects are neglected, the oscillation condition,
even with large signals, is that the veloéity parameter b equal zero and
that the phase velocity of the wave remain unchanged. This result _'could
be anticipated from a consideration of the small-signal phase diagram
presented in Fig. 16 and is one of the assumptions used by Feinstein and
Kino in carrying out their analysis. Initially, the starting length of the
oscillator decreases with increasing amplitude and then increases again.

The reason for the initial decrease in length is that the beam is moved
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nearer to the circuit into regions of higher field strength. Eventually,
part of the beam is collected on the circuit before the end of the tube,

and the starting length increases until the amplitude is so large that all
the beam is collected before the oscillation condition has been reached.

(4)

This result is similar to that obtained by Feinstein and Kino.
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V. LARGE-SIGNAL CALCULATIONS

The results of large-signal calculations for typical cases are pre-
sentad in this section. The saturation power that is available from the
system is discussed first, and an upper bound for the normalized circuit
amplitude is determined for a backward-wave oscillator.- Computations
covering a varieﬁr of backward-wave-oscillator, backward-wave-ampli-
fier and forward-wave-amplifier cases are then discussed.

5,1 Saturation Effects

An effect commonly observed in high-power traveling-wave tubes
is that as the r-f input powex‘° is increased, the output power increases
initially, eventually reaches a maximum value, and then decreases again.
In the ordinary traveling-wave tube 'in which the beam is confined by a
strong axial magnetic field so that it moves only along the axis of the tube,
this saturation is a result of the fact that the electrons give energy to the
wave by decreasing their kinetic energy. The electrons that are initially
in a decelerating phase of the wave slow down until eventually they are
moving more slowly than the circuit wave; they slip into an accelerating
phase and abstract energy from the wave and the output no longer in-
creases. If the tube is still longer, electrons continue to interact w‘ith
the wave past the point of maximum amplitude, the circuit amplitude be-
gins to decrease again and at the output it may actually be less than it is
at some preceding point along the tube. For an ordinary traveling-wave
tube the attainable efficiency increases with an increase in C, the gain
parameter (similar to D defined here), and also in some cases with an

increase in the space-charge parameter. Reducing the phase velocity
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of the wave toward the end of the tube in order to prevent electrons from
slipping into the accelerating phase has been proposed as a means of
keeping them in phase with the wave and thus increasing the efficiency.
This technique has been tried with some success.

Saturation effects are also observed in crossed-field traveling-
wave tubes, but in this case the nature of the effect is quite different.
The power output increases with power input up to a point, and there-
after the power output remains at essentially the maximum value. The
power output may increase by the amount of increase of the r-f input
power or it may decrease slightly if the circuit is lossy. This type of
saturation results from the fact that the electrons which have given up
all their available potential energy are collected on the circuit. The
electrons tend to be focused into the proper phase to give up energy and
if the circuit is long enough, eventually they are all collected and the
circuit wave is affected only by the losses in the circuit itself. To a
first approximation the limiting efficiency in a tube with a lossless cir-
cuit does not depend upon the gain parameter or the space-charge pa-
rameter in the case of forward-wave interaction, but only on the relative
amounts of kinetic energy of the beam and the potential energy available
between Vthe position of the beam and the slow-wave circuit.

An estimate of the maximum value of the circuit voltage amplitude
can be obtained from a consideration of the beam and circuit geometry.
The system used is that shown in Fig. 6, in which a beam containing
current Io is injected at y = Yo into the region between the circuit at

y = d/2 and the sole at y = -d/2. The static electric field is-Eoéy, and
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A
the magnetic field is B_e_; the beam is injected at velocity u_ = EO/BO

and an equivalent potential is defined by Vo =1/2 % ui, The total pow-
er available from the beam is then
_ d
Pavailable - IoVo + Eo (7 Yo) Io (V. 1)

where Iovo is the power available in the form of kinetic energy in the
beam motion and EO-(% - yo) IO is the power that could be obtained if the
beam traveled through the potential difference between its injection po-

sition and that of the circuit. Since

Eo ZnEO W,
2= =28 (v.2)
V0 E 2 a
o
B
o
and
LA
B D (V.3)
the power available from the beam can be written
e 2
Pavailable = Iovo 1+ —Eﬁed (L - :ffro) ’ (V. 4)
The average power carried by the wave on the circuit is
2
2 w_ sinh B d
By iV _anl cC e T2 ]
Pave, =277 =" 5 —— UL,V (V.5
in terms of the entrance position of the beam this equation can be written
2 W sii*ﬂmZ E%ﬂ {1+ 2 ro>
P = 4A“T V& I . (V.6)
ave, 0 0 W > P d 2

coth® S (L +=r)
2 T O
If the assumption is made that the average electron velocity does not
change, so that IOVO is really not available for conversion to wave ener-

gy, then the ratio of circuit power to available power can be written
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B d
P 4A% sinh® “S (14 %1 )
ave. _ 2 ™ O
P, vailable 2 Ped 2 .7
avallia e (S}
ﬁed(l “Fro) COthT(l +;T—I‘o)

Since the largest possible value for this ratio is one, the maximum value

that A can have is

d
/ 2 ﬁ.e 2
A =-\J ﬁed(l - Fro)coth T (1 + Fro) (V 8)
max. B d > .
sinh —e— {1+ =1 )
o}
For the case B d=2.5andr = -0.3w, the value of A is
e o) max.
Amax, =2.82. (V.9

This value of A is not really the maximum permissible value but only an
estimate, since the r-{ input power and the kinetic energy in the beam
have been disregarded. A circuit amplitude approaching this value would
certainly indicate excellent efficiency in terms of the conversion of
available potential energy to wave energy.

In order to bé able to consider actual numerical values of efficiency;
it is necessary to make some assumption about the potential V0 defined
by the kinetic energy in the electron beam. Since in magnetron-type
tubes the cathode is the sole, VO is just the d-c potential correspond=-
ing to the beam position. In beam type tubes the cathode is usually
operated at some potential above the sole potential, and Vo corresponds
to a potential less than the d-c potential ofthebeam positiczn. Throughout
the rest of this discussion.i_t will be assumed that the beam originates

from an electrode that is at the same potential as the sole and that it is
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collected on an electrode at the potential of the circuit. Under this as-
sumption the efficiencies obtained will be slightly lower than those that
could possibly be obtained by operating the cathode positive with respect

to the sole. If the r-f input power is neglected, the efficiency is

B d

2A°% sinh —3— (1+3‘er)
n = = n x 100 %, (V.10)

B
e 2
ﬁed coth —-—2-:-— (l + ?ro)

and for the case Bed = 2.5 and Ty = - 0.3mw, :
2 9 |
n = 10A" Y. (V.11)

Under the assumption that the gain parameter D is small, the efficiency
does not depend on D.

5.2 Backward-Wave Oscillator and Amplifier Calculations

The large-signal calculations, including space-charge effects,
produced a number of interesting results. Some of these are listed
here as a guide to the discussion that follows.

1. At small-signal levels, the phase velocity of the circuit wave
is unaffected by the presence of the electron beam even when space-
charge effects are included. At large-signal levels, the phase velocity
of the circuit wave is only slightly altered by the presence of the beam.

2. The value of the velocity-difference parameter b required for
oscillation changes significantly when space-charge effects are included
at small-signal levels. The change in b is small at large-signal levels,

3. The starting length of a backward-wave oscillator decreases

initially with an increase in the output voltage amplitude when
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space~-charge effects are small. - When these effects are large, the start-
ing length increases at all times for an increase in the output amplitude.

4, The large-signal gain of a backward-wave amplifier decreases
with an increase in spacive-charge effects.,

5. A major part of the current is coHected\ on a very short section
of the circuit. This limits the average power capabilities of a crossed-
field device since a short section of the circuit must dissipate most of the
beam power.

6. The electron trajectories at large-signal levels differ appre-
ciably when cases in which space-charge effects have been included are
compared with similar cases in which space-charge effects are neglected.
The shape of the bunched beam is not significantly changed.

7. A typical value for D is 0.01l. For this value of D an appreciable
error is introduced at large-signal levels by neglecting the acceleration
terms in the equations of motion.

The conditions for backward-wave oscillation were determined as
a function of the output voltage amplitude for four values of the space-
charge parameter S, i.e., for S=0, 1.1, 2.2, and 2.9, The procedure
for determining the oscillation conditions is to assume a value of Ao and
60, the amplitude and phase of the circuit voltage, respectively, at the
beginning of the tube (this is actually the output in the éase of backward-
wave interaction), and a value of b, the velocity difference parameter;
the equations are then integrated until the circuit amplitude passes through
zero or until it reaches a minimum and begins to increase again, or until

it continues to decrease but so slowly that it is impractical to continue the
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integration. If the amplitude reaches zero, output occurs for zero input
and the tube will oscillate if it is somehow excited into this state, * If
the amplitude reaches a minimum and begins to increase again, the ve-
locity parameter was chosen incorrectly for oscillation at the assumed
output amplitude and the electron bunches have slipped out of the proper
wave phase, Ifthe amplitude continues to decrease slowly, the assumed
output amplitude is so large that most of the electrons have been col-
lected on the circuit and very little current remains for interaction with
the circuit wave. The last two situations describe a backward-wave
amplifier since the application of a signal at the end of the tube having
the amplitude given by such a solution and having a frequency correspond-
ing to the value of b would cause the output amplitude Ao” For a given
value of Ao’ ‘the velocity difference b is varied until the amplitude can
be integrated to zero. The length of tube required to maintain oscillation
at the amplitude Ao is given by the position at which A reaches zero,

© An excellent way to find the value of b required for oscillation is
to plot the values of 8 as a function of position along the tube. At small-
signal levels, 6 will be a straight line corresponding to the unperturbed
circuit-wave velocity. Fig. 18 is a plot of 6 as a function of sfor two
values of b that caused A to integrate to zero, The calculations refer
to a small-signal case for which S = 2.9 and the starting length is s = 1.05.

Values of b =>3.66 or b <3.62 did not cause A to integrate to zero, and

" In general, the oscillations build up from noise, There are exceptions
in which large-signal oscillations would not start spontaneously. These
exceptions are discussed later with regard to the starting length of a
backward-wave oscillator.
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a plot of @ versus s for such cases would deviate from a straight line at
an earlier point in s. For b < 3.62, 0 will eventually increase positively
at a faster rate than 3.62 s; for b >3, 66, 0 will eventually increase
negatively at a faster rate than -3.66s. If space-charge effects are
neglected at large-signal levels, 0 will still be a straight line (b = 0
always), but when space-charge effects are included, © will not corre-
spond to the unperturbed circuit velocity (8 = -bs corresponds to the
free-wave velocity). It is still easy to determine the correct value of
b because the large rate of change of @ with s still occurs at the end of
the tube for incorrect values of b. Fig. 19 is a plot of @ versus s for a
large-signal case. Computations for a value of b corresponding to
oscillation and for a value of b on either side of the correct value are
shown.

A plot of the velocity difference parameter for oscillation as a
function of the output amplitude is shown in Fig. 20 for four values of
the space-charge parameter S, i.e., S= 0, 1.1,2.2, and 2.9. As the
output amplitude increases, the velocity difference decreases and by
the time Ao = 2.0, the velocity difference parameter is small and only
slightly different for different values of the space-charge parameter.
Since the beam spends part of the time near the circuit and part of the
time near the sole, the average drift velocity is nearly U - Part of the
beam is collected on the circuit at large-signal levels and this effectively
reduces the space-charge parameter.

' The amplitude of the circuit wave as a function of the normalized
distance along the tube is plotted in Figs. 21 and 22 for four values of

the space-charge parameter S =0,1.1,2.2, and 2.9, with the output
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Fig. 2la. Voltage amplitude versus normalized distance,
S=0
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S=1.1
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voltage AO as the parameter. In Fig. 2la, for S = 0, the tube length re-
quired for oscillation decreases as A0 is increased until Ao reaches
about 1, 75; then the length increases rapidly as Ao is increased. The
solutions were carried out only as far as s = 3 because the rate of de-
crease of Ao with the tube length becomes very small by the time the
value s = 3 has been reached. The reason for the initial decrease in
starting length* as the amplitude is increased is that as the beam moves
closer to the circuit and into regions of stronger fields the effective cir-
cuit impedance is increased. Eventually, a part of the beam is collected
on the circuit and the starting length increases because the interaction
impedénce is reduced by the loss of current.

The reduction in st:‘ztrtfmg length with increasing amplitude is also
evident for S = 1.1, but it is not so pronounced; for S=2.2and S= 2.9
there is no initial reduction in starting length as the amplitude is increased.
The incr;aase in starting length with increase in amplitude for the larger
values of S can be attributed to the fact that, when space charge is in-
cluded, the average drift velocity of the beam depends on the location of
the beam relative to the circuit and the sole and the phase velocity of the
 circuit wave changes a little along the length of the tube. This means
that a beam which under small-signal conditions was at all times proper-

ly phased with respect to the wave, alters its effective drift velocity as

* Starting length is really a misnomer when applied to these cases; al-
though a tube of this length would oscillate if it were excited, the oscil-
lation would not build up from noise because the small-signal starting
length is actually greater than the tube length.
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it proceeds down the tube under large-signal conditions and that the ve-
locity cannot be ideal for interaction at all times but must be reasonably
good over the entire length of the tube. The ‘cases in Figs. 21 and 22 in
which Ao is so large that the amplitude has not reached zero were com-
puted with b = 0. Values of b in the neighborhood of zero were tried but
the wave amplitude did not decrease any more rapidly. Several values
of b appreciably different from zero were also used, and the gain de-
creased rapidly as b was varied about the optimum value. For example,
a case with Ao = 2,0, S=2.2, and b = 3 was integrated to a minimum of
A = 1.1 and then began increasing again.

A comparison of the circuit amplitude at s = 2 for the different
space-charge cases with A_ = 2.5 in Figs. 21 and 22 éhows that the gain
decreases as the space-charge parameter is increased. For S = 0 the
voltage gain is 2.5/0.45 = 5, 6, for S=1,11itis 2.5/0.74 = 3.4, and for
S = 2.2 it has dropped to 2.5/0.9 = 2.8. For S = 2.2 the rate of de-
crease of A with s is so small toward the end of the tube that it would
not be practical to try to increase the voltage gain beyond about three
by increasing the tube length. This decrease in gain with an increase
in space-charge effects can be attributed to the fact tha’; because the cir-
cuit velocity is chosen for the best over-all interaction, the electrons
that have not been collected in the first part of the tube will not neces-
sarily be in the proper phase or travel with the proper velocity for opti-

mum interaction near the end of the tube.™ In addition, when space-charge

*This effect is more important in the backward-wave cases than in the
forward-wave cases because of the "narrow-band' nature of backward-
wave interaction; i,e., if the electron bunch travels more slowly than
the wave, it tends to increase the wave-velocity and to increase the
velocity difference. In forward-wave interaction, the electron bunch
tends to pull the wave along with it and to maintain synchronism.



96

éffeéts are included, those electrons that are in such a phase as to re-
ceive energy from the wave initially, are forced closer to the sole by
the space-charge forces and therefore are in regions of weaker circuit
fields than when space-~charge forces are neglected.

In Fig. 23 the percentage of the electrons that have been collected
on the circuit is plotted as a function of distance along the circuit for
Ao =2.5and S = 0and 2.2. There is little difference in the rate at
which electrons are collected on the circuit for S = 0and S = 2.2, There
are two interesting effects to be noted in this curve. The first is that
about 50 percent of the electrons are collected on a very short section
of the circuit. This severely restricts the average power that a back-
ward-wave, crossed-field device can deliver since the circuit itself
must be capable of dissipating the beam power. Since s is proportional
to the interaction parameter, a smaller value of D would imply that the
beam was being collected on a longer physical length of circuit and there-
fore such a device would be able to operate at a higher average power
level. The second point of interest in Fig. 23 is that the number of
electrons collected is leveling off at about 70 percent. Equations V.9
and V.11 indicate that 100 percent conversion of available beam energy
would correspond toc 80 percent over-all efficiency. Seventy percent
electronic efficiency would therefore imply aﬁ over-all efficiency of
about 55 percent and this value is probably close to the practical limit
of efficiency for a beam-type backward-wave amplifier. The reason
for this limit is that in a backward-wave device, the circuit fields are

weak near the end of the tube and the part of the beam that remains has
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been moved down toward the sole. It is not practical to build the tube
long enough to make use of this remaining current which is in a very un-~
favorable position for interaction.

An electron-phase plot for a large-signal case with Ao = 1,75 and
S = 0 is shown in Fig. 24 and a similar plot with Ao =2,0and S =2.2is
given in Fig. 25. The solid lines represent the electron trajectories in
transverse position and phase, and tI;e dashed lines correspond very
closely to the beam shape at several different values of s. The trajec-
tory curves are plotted for only half of the electrons actually used in the
computations. Fig. 24 shows the formation of the so-called ""spoke' of
electrons (in magnetron terminology) in a symmetric pattern about d=n/2.
it is clear from this figure why the circuit phase is unchanged in the
absence of space charge. The field terminating on the circuit is sym-
metric about @ = n/2; therefore, the fundamental component is purely a
sine term and since the circuit phase vel'ocity is proportional to the
cosine term alone under small-D assumptions, it does not change.
From a;l equivalent circuit point of view, the bunches of charge form
at a maximum of the longitudinal electric field or at a zero of the volt-
age. The displacement current flowing into the circuit is the time rate
of change of the field terminating on the circpit and this rate of change
is zero at the center of the bunch. The displacement current is w out
of phase with the voltage, and the electron beam appears as a pure
negative resistance to ground. If this equivalent resistance is large
compared'.with the impedance of the shunt elements in the equivalent

c{rcuitp, the phase velocity will not be affected appreciably. This

-
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Fig. 24. Large-signal electron phase trajectory plot, AO =1.75, S=0
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Fig. 25. Large-signal electron phase trajectory plot, AO =2.0, S=2.2
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condition is met by the small-D approximations. An electron '"spoke' is
also apparent in the phase trajectory plot for Ao =2.0, S=2.2 (Fig, 25),
but the spoke is not symmetric about ¢ = w/2. If the spoke were to form
as it does when space charge is neglected, then the space-charge forces

would tend to force the top of the spoke ahead in phase, and the charge

z
2

between ¢ = T!"/Z and 3w/2 would be forced away from the circuit, As a

between ¢ = - and% would be pushed toward the circuit, while that
result the effective bunch would be located at <n/2 and the circuit wave
would be speeded up. The general shape of the spoke is quite similar
for the two cases shown in Figs. 24 and 25,

An examination of the magnitude of some of the terms neglected
in the equations of motion reveals that in the large-signal calculations,
terms as large as 20D were neglected with respect to one. This could
mean that there would be considerable error in applying these results
to a tube for which the value of D is 0,01, Since the large errors éccur
for electrons that are close to the circuit and are about to be collected,
it is possible that the over-all effect is not great. These errors could
be eliminated by specifying a value of D and including all the terms in
.the equations of motion.

- Another possible source of error in the large-signal computations
shouldbe pointedout. In order to compute the driving term in the cir-
cuit equation, a Fourier analysis in time (or phase) of the fields ter-
minating on the circuit at the particular z position corresponding to m

must be carried out. One way to do this would be to specify a phase at

N

, locate the positions of all the electrons when the phase at z is as
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specified, and compute the flux terminating on the circuit at z due to all
the electrons. Now allow the phase to advance by a fixed increment and
repeat the procedure. Continue to repeat this procedure for a period

of 27 in phase and then apply a Fourier analysis to the results. To save
computing time, instead of specifying the phases independently, they were
specified by the time of arrival of the individual electrons at the particu-
lar z position, In this way, in the process of computing the space-charge
force on an electron when it is at z, all the functions necessary to com-
pute the flux terminating on the circuit are also obtained. The disad-
vantage of this method, however, is that the increments in phase are not
equal. There is also some difficulty when electrons are collected on the
circuit. In order to use the same integration routine, it is convenient

to have the same number of points in phase at all times. The procedure
that was used was to include a fictitious e].ect';ron (a point in phase) when-
ever an electron was collected on the circuit. The phase of this fictitious
electron was chosen as the average phase of the nearest two electrons.
Unfortunately, all the electrons are collected at almost the same phase
so that, although the number of increments in phase rermained constant,
most of the increments were very small and the effective number was
just the number of uncollected electrons. This is a difficulty that could
be eliminated by choosing the phase of the fictitious electron to be in a
region where there are few electrons.

5.3 Forward-Wave Amplifier Calculations

A limited number of large-signal calculations were carried out

under forward-wave interaction conditions with S =0 and S = 2.2. The
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procedure in this case is to assume a value of AOQ 909 and b and then
integrate the equations until the voltage amplitude no longer increases
with s, Calculations were carried out only for A@ =0.2, 0,5, and 0,75
because, for smaller Ao’ the tube must be unreasonably long for satu-
rated output (small-signal analytical work could be used to determine the
behavior for small A), and for larger Ao the possible voltage gain is
small. The results are subject to the same errors discussed at the end
of the preceding section. The errors introduced by the collection of
electrons on the circuit are even more significant in this case because
virtually all the electrons are collected on the circuit. Some of the in-
teresting results obtained are:

1. The circuit phase velocity is only slightly affected by including
sPacewcharge forces.

2. The large-signal gain appears to be slightly decreased by the
presence of space-charge, although the effect may be within the limit of
computational errors (the small-signal gain is increased by space-charge
(—?:ffects((é)})°

3.  The obtainable efficiency does not seem to be affected by space
charge.

4, A large fraction of the beam current is collected on a relatively
short section of the circuit.

A graph of the phase difference 0 as a function of position along the
tube is shown for Ao = 0,75 and S = 2.2 in Fig. 26, The curves are plotted
for three values of the velocity difference parameter b=-0.125, 0, and

0.25. Although the value b = 0 gave maximum gain, the gain was only
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slightly higher than in the other two cases. The change in wave velocity
is small, just as it was in the case of backward-wave interaction,

In Fig. 27 the voltage amplitude as a function of position along the
tube is plotted for S =0 and S = 2, 2. The space-charge computations
are for the value of b that gave the maximum gain for a given value of
AO,' A comparison of the amplitudes at s = 2 for the cases in which
Ao = 0175 would imply that the large-signal gain when space charge ef-
fects are included is somewhat less than if space charge is neglected.
For S = 2.2, the gain is 2.42/0.75 = 3.23, and for S = 0, the gain is
2.55/0.75 = 3.4, The limiting value of A appears to be about the same
for both cases; it is about 2.9 for Ao = 0,75. The efficiency in this
case is

2

10042 - 4% = 10[(2.9) _<o,75)2] = 79%,

Since "maximum' efficiency is 80 percent for the geometry used in
these computations, the efficiency of conversion of potential energy to
wave energy is almost 100 percent. The same situation is true for the
cases with smaller values of AQ. The reason for this excellent effi-
ciency in the case of forward-wave interécti@n is that the wave ampli-
tude is large at the end of the tube and even the electrons close to the
sole can be captured and used.

The percentage of the electrons collected on the circuit is shown
as a function of position for several forward-wave-interaction cases in
Fig. 28. A large percentage of the electrons are collected on a short

length of tube just as in backward-wave interaction, but thereafter
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forward-wave interaction, S = 2.2
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The percentage of the electrons collected on the circuit as a
function of position for large-signal forward-wave interaction
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electrons continue to be collected until virtually all the charge is gone
from the beam. The efficiency does not appear to depend on the space-

charge parameter S for forward-wave interaction.



109
Vi. CONCLUSION

The integro-differential equations describing beam-type, crossed-
field, traveling~wave tubes presented in Chapter II and the largemsignal
calculations presented in Chapter V constitute the major results of this
investigation. In this section, some of the significant effects that are
indicated by the computations will be pointed out and a few comments
will be made regarding this technique for solving the problem.

1. The effects of space charge are more important in backward-
wave interaction than in forward-wave interaction. In backward-wave
interaction, the disorder in the beam that results from the nonlinear ef-
fects increases as the amplitude of the circuit wave decreases and the
wave is unable to interact as favorably with the beam. The "narrow-
band" nature of backward-wave interaction contributes to this decrease
in favorable interaction.

2. The large~signal starting length of a backward-wave oscillator
is increased and the gain of a backward-wave amplifier is decreased.
Practically speaking, this implies that the efficiency of a backward-
wave oscillator is also decreased because, for a given length of tube,
the oscillation will occur at a lower level, The computations for a rela-
tively large value of the space-charge parameter indicate that a gain of
about 10db and an efficiency of 60 percent constitute good performance
characteristics for a large-signal, backward-wave amplifier,

3. There appears to be very little difference in the results for
forward-wave interaction regardless of whether space-charge forces
are inéluded or neglected; however, the large-signal gain is possibly

reduced a little.
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4. The efficiency does not depend on the gain parameter D; i.e.,
for the same normalized length of tube, the efficiency is the same. This
result follows from writing the system equations in normalized variables.
Under the assumption that D<<1, the average power carried by the cir-
cuit wave {equation V.5) does not depend on D. This conclusion must be
tempered by a practical consideration, however, since loss on the circuit
and beam defocusing reduce the efficiency as D is made smaller. (The
tube length is normalized, s = ﬁeng so that a smaller value of D means
that the tube must be physically longer.)

5. Alarge fraction of the beam is collected on a short length of
cireuit. A smaller value of D means that the beam is collected on a
greater physical length of circuit and this would increase the average
power capabilities of the tube.

The scolution of the equations presented in Chapter Il can be car-
ried out only on a large-scale digital computer. The computation of the
space-charge forces by summing the forces due to the individual equiva-
lent electrons is extremely time-consuming. With IBM 704 equipment
a single integration step in s requires 20 seconds for a thin-beam case
with N = 33. Since the integration interval used was s = 1/64, it requires
20 minutes to integrate from s = 0 to s = 1. A brief study of the numeri-
cal errors indicates that it would be desirable to use As<\1/64 and
N >33 for some of the space-charge cases. Since the computing time
is inversely proportional to As and approximately proportional to NZy
it is impractical to attempt to achieve great accuracy in the numerical

solutions.
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Replacing the thin electron beam by a set of equivalent line charges
resulted in a buildup of computer errors that masked the beam-wave
interaction effects. This buildup is similar to that observed physically
in thin hollow, cylindrical beams of electrons. The buildup of computer
errors was eliminated by assuming that the short-range force between
line charges was zero, and an equivalent space-charge parameter was
defined to bring the results into agreement with small-signal theory,

The buildup of computer errors might also have been eliminated by using
an electron beam of finite thickness. Simulation of a thick beam, which
might require five layers of N electrons, would be completely impracti-
cal in terms of computing time. A new and clever means of calculating
the space-charge forces would be the only possible way such a problem
could be solved in a reasonable time on presently available computing
machines.

" An interesting calculation that might be carried out dsing the thin-
beam equations would be to allow for cycloidal trajectories in the unper-
turbed electron beam. Since a calculation of this type would require
specifying a value for D, it would also be possible to include the accel-
eration terms in the equations of motion with no additional loss of gener-
ality. An examination of the magnitudes of some of the terms neglected
under the small-D assumption indicated that these terms were not always
negligible when a value of D = 0.01 was assumed.

It would appear that for the values of the space-charge parameter

considered in this study, forward-wave calculations could be carried out
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without any consideration of space-charge forces, It would then be pos-

sible to allow for a finite thickness of the electron beam.
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APPENDIX

THE FIELDS OF A SLOW WAVE ON A TWO-DIMENSIONAL CIRCUIT

Consider a system which has a slow-wave circuit at y = d/2 which
will propagate a wave in the z direction, and a flat conducting plate at
y = -d/2. The actual circuit structure is of no consequence since we
are interested only in the variation of the fields with distance across the
interaction space, provided that the circuit will support a slow wave.
We will consider only transverse magnetic waves so that all field com-
ponents can be derived from the z component of electric field. In the
absence of any charge in the region between the circuit and the sole,
EZ must satisfy
d°E,

€ —s = 0 (Aol)
0 0 dtz

2
V E, -u

j{wt - Bz)

If time and z dependence e’ are assumed, and there are no

variations with x, equation A.]l can be written
2
J'E,
2
Ay

if the phase velocity of the wave is much less than the velocity of light

_ ﬁZ)E = 0; (A.2)

+ (wuoe 2

@]

wauoeo can be neglected with respect to [32 and the solutions to equation

A. 2 are just
E_ = (A sinhpy + B coshpy) ot - Bz) (A, 3)

where A and B are arbitrary constants to be determined by the boundary
conditions. The boundary condition at the sole is that the tangential

electric field be zero, so that
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E_ = Asinhﬁ(y+%) (et - B2} | (A.4)

The remaining fields can be derived from equation A.4. The only nonzero

fields are

~ 9% aEz jweo d, jlwt-pz)
sz “—é—i— —a—y—'— = ‘—B-— ACOShp(Y+~Z)e (A,S)
and 3
. E .
Ey’g% ayz = jAcoshB(y + %) e‘](wt - Bz) (A.6)

The fact that the expression wzuoeo can be neglected with respect to BZ
means that Ez satisfies Laplace's equation; hence the electric fields

could equally well be derived from a potential function.
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LIST OF SYMBOLS

A(z) Normalized amplitude of the circuit wave
B0 Static magnetic field in the x direction
b

Velocity difference parameter; u, = vo(l + Db)

C Capacitance per unit length of the equivalent transmission line
D Crossed-field tube gain parameter; (equation II.32)

d Distance between the circuit and the ground plate (sole)

E0 Static electric field between the circuit and the sole in the

absence of space charge
E E Total electric field
E E Electric field due to space charge
sy’ Sz
e Magnitude of electronic charge
AN A . . . . .
e ey, e Unit vectors in the directions of the coordinate axes
F Function relating the flux terminating on the circuit at z to the

charge at y', z'; (equation II.17)

Space-charge parameter for thick beams; (equation II.50)

h Integration interval in s;0s = h

Io Total current in the unperturbed beam

i(z,t) Current per unit length flowing into the equivalent transmission
line

il(z, t) Fundamental component (in time) of current per unit length
flowing into the transmission line
il(yo) Current density in the unmodulated beam

iz Average current density in the unmodulated beam



Py q

V(z,t)

Viy,z,t)
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Combination of constants; (equation II, 31)

Inductance per unit length of the equivalent transmission line
Integer giving z (or s) position in difference equations (also
used for electronic mass in Chapter II)

Number of equivalent line charges (''electrons'') in a phase
period of 2«

Normalized y and z velocities of the electrons

Charge per unit length of a line charge

Normalized y and z coordinates; r = ny/d, s = Dﬁez
Difference between s positions of electrons i and j when i is
at m

Space-charge parameter for ‘thin beams;(equation II. 85)
Difference in r positions of electrons i and j when i is at m
Time, seconds

Average electron drift velocity in the z direction in the absence
of space charge; u_ = Eo/Bo

Velocity of the electrons in the z direction as they enter the
interaction region

Voltage on the equivalent transmission line

Potential function describing the fields of a single spatial har-
monic of a wave on the slow-wave circuit

Voltage corresponding to kinetic energy of the beam; 1 mui = eVo

2

Phase velocity of a free wave on the transmission line;




X,V,2

zZ
Yo %o
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Width of the circuit in the x direction

Rectangular coordinates; z is along the direction of beam flow

and y is across the interaction space
Coordinates of charge in the beam at time t = 0

Function relating the electric field in the y direction at y, z to the

charge at y', z';(equation II, 20)

Function relating the electric field in the z direction at y, z to
tﬁe charge at y', z';(equation II, 21)

Impedance paraméter at the plane of the circuit;(equation II. 3)
Magnitude of the ratio of the r-f electric field of the circuit in
the y direction to thét in the z direction at the beam entrance
position

Propagation constant of a wave B = o

Vphase
Propagation constant of electrons, ﬁe = w/u

o

Dielectric constant of vacuum

Magnitude of electronic charge to mass ratio (also used for
efficiency in Chapter V)

Negative of the difference between the actual wave phase and
the phase of a wave traveling with velocity u

Charge density

Average charge density in unmodulated beam

Beé.m thickness in y direction

Phase of the circuit wave

Factor which relates impedance at the circuit to impedance at

the beam; Z(yo) = Zoﬁz



118

Radian frequency of r-f signal
Cyclotron frequency; w, = npo

Plasma frequency defined by the average charge density Py
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