
Ultrafast dynamics of photo-doped Mott antiferromagnets

Thesis by
Omar Mehio

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2023
Defended May 15, 2023



ii

© 2023

Omar Mehio
ORCID: 0000-0001-7923-2178

All rights reserved



iii

ACKNOWLEDGEMENTS

During my time at Caltech, I was blessed to make countless friends, collaborators,
and connections that not only enabled the completion of the work in this thesis, but
will likely impact me for the rest of my life. It was truly one of the most beautiful
times of my life, despite the difficulty of the PhD itself, mostly owing to these
relationships. I know that I will look back at my time in Pasadena fondly, with a bit
of sadness that it has come to a close, and a bit of excitement for what is to come.
In these acknowledgments, I hope to impart the feeling of gratitude towards those
who made this experience possible.

I start by thanking my advisor Professor David Hsieh. The impacts of Dave’s
mentorship are readily visible in every aspect of my work. His caring and empathetic
advising style fosters a vibrant atmosphere that made it possible for me to thrive
during my time at Caltech. Much of the work presented in this thesis departs
quite significantly from the established research directions of our group; it was only
possible because of Dave’s continued trust in me and the independence that he gave
me as a student and researcher. Dave is very generous with his time and resources,
and is always ready to support our work in any way possible. I cannot thank Dave
enough for the guidance he provided over the previous years, and for helping me
grow to be the scientist I am today.

The ideas that underlie the presented results were almost all borne out of close
collaborations rich with stimulating discussions and passionate debates. I now
thank those that made these collaboartions possible, beginning with Hoglie Ning.
I learned how to be a scientist alongside Honlgie, as we were partners from the
start of my time in Dave’s group. Working alongside each other on almost every
project, we learned everything from assembling optics and ordering parts to writing
manuscripts and pushing works towards publication. I still remember the early days
of our PhD when we were still scrapping to get our experiments going, and we
would end the long days in the lab with a feast of delicious food and tea. It was an
honor to work with him for all these years, and to develop the strong friendship that
continues to flourish.

Just like a super hero, Xinwei Li joined the group right when I needed him the most.
He helped me solve some of the most challenging issues I faced in building the THz
setup and analyzing the data collected. I still remember the day that Xinwei and I



iv

decided to begin our collaboration in the lab during the winter holiday of 2018, and
I am still thankful for that decision. It has been an inspiration to watch Xinwei work,
as his dedication towards his craft is almost unparalleled. Working with him on the
projects in this thesis has been a pleasure, and I would not be the same scientist
today without this collaboration.

As soon as I met Yuchen Han when she was a prospective student, I knew that I
would love working with her. She has become one of my closest friends during our
time collaborating. Yuchen has seen me go through one of the most difficult times
of my PhD from a perspective that few others have, and she has always handled
it with such grace during our collaboration. I want to sincerely thank her for her
empathy and support in these moments. She has also been there for the happiest of
times as well, and it is always a pleasure to share a cup of coffee or bowl of noodles
with her or to talk about the most recent anime releases and her recent experiences
travelling. Aside from her wonderful character, Yuchen is a brilliant scientist who
quickly surpassed me as the THz expert in the group and I am so excited to see what
her future holds. I will truly miss working with her.

I also want to thank my other lab mates. Chen Li and I joined Caltech at the same
time, and she has become a great friend over the past six years. I will miss her
company. I want to thank Nicholas Laurita for teaching me about the fundamentals
of THz spectroscopy and for helping me set up the original experiment. It was a sad
day when Alberto de la Torre left the lab; he had become a great friend and mentor
during his time at Caltech, and I look forward to crossing paths again in the future.
Finally, I would like to thank all the other group members that accompanied my time
at Caltech: Junyi Shan, Kyle Seyler, Mingyao Guo, Daniel Van Beveren, Alon Ron,
Preston Zhou, Ryo Noguchi, Youngjoon Han, Carina Belvin, Tejas Deshpande,
and Hoon Kim. One of the best aspects of Dave’s group is the culture, and my
discussions with each of these valued group members were invaluable to the success
of my PhD.

Many collaborations from around the world enabled the work presented in this thesis.
I thank Zala Lenarčič, whose theoretical work has been crucial to understanding
many of the ideas presented in this thesis. I also thank Michael Buchhold for
discussing these results with me, and for providing fresh perspectives on my results.
My experiments would not have been possible without the samples grown by Zach
Porter and Stephen Wilson; I am indebted to them for their efforts. Finally, I want
to thank Leon Balents, Mengxing Ye, Rick Averitt, Patrick Lee, Matteo Mitrano,



v

Michele Buzzi, Scott K. Cushing, and Victor Galitski for useful discussions about
my work.

I hope that the friendships I made at Catelch will last a lifetime. I was blessed to
make many companions during this time, all of whom I will miss and hope to keep in
touch with: Sunghyuk Park, Hesham Zaini, Hamza Raniwala, Eray Atay, Sammmy
Shaker, Basel Mostafa, Sina Booeshaghi, Albert Wandui, Varun Raj, Alexander
Dalzell, Alexander Moss, Tom Naragon, Benjamin Riviere, and many others. A
special note goes out to Aidan Fenwick. He has become my brother during this
period of my life, which would not have been the same without him. There is
nobody else that I would have shared these formative years with. I will honestly and
sincerely miss his company.

Finally, I want to thank my family. Nada Mehio is not only my sister, but my friend
and my mentor. My PhD was always much easier becuase I watched my sister go
through hers, and becuase of her unconditional and unwavering support. No matter
what I was going through, I knew that I could go to Nada for comfort and advice.
The daily (hourly) pictures of my nephew Abraham that she sends to the family chat
really have gotten me through some tough moments. I am so blessed to have Nada
in my life, and I hope that I play a similar role in hers.

I met my wife Lina Demis right as I was starting my final year of my PhD. I feel
as though I have lived two lives: a life before meeting her, and a new life after.
Her support was so important and critical to me during this year that I am honestly
unsure how I was able to complete the first five years.

My most sincere thanks is extended to my parents Mohamad Mehio and Rola Mehio.
My parents have truly seen me at my lowest, and have supported me unconditionally
through every single moment. This PhD is as much yours as it is mine.



vi

ABSTRACT

Strong coupling between spin and charge degrees of freedom in two-dimensional
spin-1/2 Mott antiferromagnets (AFMs) creates a rich platform to study quantum
many-body physics. For decades, the consequences of these interactions have been
intensely studied in thermal equilibrium, where the introduction of charge carriers
through chemical doping has been shown to generate a vibrant phase diagram rich
with unconventional types of charge, spin, and orbital ordering. In recent years,
however, attention has grown to include the study of these materials as they are
driven far from equilibrium using intense pulses of light produced by femtosecond
laser sources. In addition to fundamental interest in the resultant dynamics, recent
experimental and theoretical studies have suggested that driven Mott insulators can
host states of matter that cannot be accessed in thermal equilibrium.

While many driving protocols have been developed—spanning from the selective
excitation of bosonic modes to photon-dressing via coherent time-periodic driving—
the simplest conceptual approach to engineering Mott insulators with light is known
as photo-doping. In this procedure, the material is impulsively driven resonantly
with a transition from a filled band to an empty band, transiently producing charge
carriers. Given the impact of chemical doping in thermal equilibrium, photo-doping
has garnered interest as an important tool in the study of driven Mott insulators.
Early successes in the study of photo-doped Mott AFMs include the observation of
ultrafast demagnetization and the prediction of non-thermal magnetic states, charge
density waves, and superconductivity. Photo-doping thus holds promise to generate
an out-of-equilibrium phase diagram that is equally rich to that found in equilibrium.

Yet, many open questions about the basic properties of photo-doped Mott insulators
remain unresolved. Whether charge instabilities exist as a result of interactions
between the photo-dopants has yet to be examined. Moreover, while theoretical
studies have suggested that antiferromagnetic correlations can enhance attractive
interactions between photo-dopants, evidence of the resultant bound states remain
elusive. Even the light-matter interactions that generate the photo-dopants are in
need of investigation, as the fate of a Mott insulator driven by strong electric fields
remains a fundamental open theoretical and experimental problem.

In this thesis, I present a series of experiments designed to answer each of these
questions. After describing the properties of Mott insulators in Chapter 1, I present
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the experimental details of the tools that enable these studies in Chapter 2. Taking
a multi-messenger approach to ultrafast spectroscopy, a suite of ultrafast probes
simultaneously track the spin and charge degrees of freedom to paint a holistic
picture of the out-of-equilibrium state. In Chapter 3, I use ultrafast THz conductivity
to establish the existence of an insulating photo-excited fluid of Hubbard excitons
(HEs), which are bound states that are thought to form as a result of attractive
spin-mediated interactions. This magnetic binding mechanism is studied in more
detail in Chapter 4 by examining the properties of these HEs in the magnetic critical
region of several materials that lie in different magnetic universality classes. In
Chapter 5, I study the effects of HE formation on the ultrafast demagnetization that
is known to occur following photo-doping. Finally, I turn my attention towards the
photo-dopant generation mechanism in Chapter 6, exploring the effects of strong
electric field driving in Mott insulators. I find signatures of the so-called Keldysh
crossover from a multiphoton-absorption- to a quantum-tunneling-dominated pair
production regime. Altogether, this work establishes photo-doped Mott insulators as
a rich playground to engineer non-equilibrium phases of matter and study quantum
many-body dynamics.
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C h a p t e r 1

INTRODUCTION

At a conference in Bristol in 1937, Jan Hendrick de Boer and Evert Verwey presented
a perplexing issue to their peers [165, 166]. They found that many materials,
especially transition metal oxides, demonstrate insulating behavior when they were
theoretically predicted to be metals. This observation was astounding because it was
the first reported violation of the band theory of solids, which is hailed as one of the
great early successes of quantum mechanics. Band theory predicts that electrons in
crystalline materials lie in energy windows known as bands, which host a continuum
of states for the electrons to occupy. Because these bands are separated by energy
gaps, they create a clear criterion to distinguish between metals and insulators.
In the former, the highest occupied electron state lies within a band, allowing for
infinitesimal excitation of the electrons. In the latter, the highest occupied band is
full, so its excitation is blocked by the energy gap separating the next band. By
these considerations, the transition metal oxides studied by Verwey and de Boer
should in principle be metals, because a simple counting of the electrons per unit
cell demonstrates that the valence band should only be partially occupied.

It was quickly pointed out by Rudolf Peierls that correlations between electrons
must be the reason behind these anomalous insulating behaviors [165, 166]. Band
theory relies on models that consider the electrons to be nearly free, only interacting
with each other indirectly through screening. Indeed, in each of the materials that
band theory describes successfully—such as the noble metals or semiconductors—
correlations between electrons can be ignored, ensuring the validity of the predic-
tions. When electron-electron interactions are no longer negligible, however, these
models break down, and so do the predictions of band theory. Subsequent work
by Sir Nevill Mott [163, 164, 166], John Hubbard [95–97], Martin Gutzwiller [85],
Junjiro Kanamori [107], and others showed that these transition metal oxides were
insulating because of an interaction-driven metal-to-insulator transition: electrons
in the system localize one another due to the intense Coulomb repulsion between
them. Since then, these types of insulators have been known as Mott insulators.

While the source of the insulating state was unraveled, the properties of Mott insula-
tors continue to confound and fascinate physicists to this day. Aside from the strong
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Figure 1.1: Diagram showing the interactions that exist between the charge, spin,
orbital and lattice degrees of freedom in Mott insulators and other strongly correlated
electron systems. Image of the orbitals was adapted from Reference [101].

Coulomb interaction, a myriad of different interactions between different degrees of
freedom—charge, spin, orbital and lattice—have been identified in Mott insulators
(Figure 1.1). The interplay between these interactions gives rise to a vast range of
collective phenomena, the most striking of which are revealed when these materials
are doped with charge carriers [126]. If electrons or holes are added to the system,
typically through chemical substitution, the Mott insulating state quickly collapses
and from its remains emerge a series of exotic phases. Most importantly, it was dis-
covered in 1986 that copper-oxide Mott antiferromagnets exhibit superconductivity
at extraordinarily high temperatures [21], surpassing liquid Nitrogen temperatures
[243]. The community quickly realized that the physics of strong correlations must
be invoked to understand this observation, inspiring an ongoing decades-long effort
to understand how the coupling of spin and charge degrees of freedom can drive the
formation of bound states of charge carriers. Aside from superconductivity, a wealth
of other phases litter the rich temperature-doping phase diagram, spanning charge
density wave orders to strange metallic phases to pseudogap phenomena (Figure
1.2) [18, 49, 126].

Traditionally, searches for these phases of matter have focused on the ground state
of materials in thermal equilibrium. This approach relies on the iterative—and
often serendipitous—process synthesizing chemically stable compounds and spec-
troscopically characterizing them to determine whether they demonstrate the desired



3

Figure 1.2: Schematic temperature-doping phase diagram of the electron- and hole-
doped cuprate superconductors. From Reference [206].

physics. While this method has successfully allowed us to survey the quantum phases
that nature has made available to us, it leaves little control in the hands of the re-
searcher in what those phases are and the emergent properties they possess. For this
reason, efforts in condensed matter physics and materials science have increasingly
focused on the development of experimental protocols that allow for the intentional
design of quantum phases [19].

The external driving of materials with light has become a promising tool in this
endeavor [27, 53]. The rich phase space of light-matter interactions can be exploited
to directly modify the microscopic degrees of freedom that generate the phases of
interest, and have been shown to induce long-lived non-equilibrium states. Several
theoretical and experimental breakthroughs have been made in the past decade.
While these examples are plentiful, highlights include putative superconductivity
induced by resonant driving of optical phonons [32, 36, 40, 67, 139, 158], topological
phases of matter generated with photon-dressed states [151], and ultrafast switching
into thermally inaccessible states [213]. Each of these examples demonstrate that
light creates novel pathways towards inherently non-equilibrium phenomena.

A light-based engineering protocol that is quite relevant to the case of Mott insulators
is photo-doping, which involves exciting the material resonantly with a transition
from a filled band to an empty band. This technique is thought to simulate chemical
doping in the sense that it introduces or removes charges from the bands involved
with the photo-excitation process. These charge carriers create a metastable out-of-
equilibrium state since their immediate recombination is inhibited by the presence
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of the charge gap [60, 129, 157, 198, 211], requiring the transfer of the excess
energy to external degrees of freedom. Given that charge doping has such profound
effects on the behavior of Mott insulators in equilibrium, photo-doping is a promis-
ing avenue for electronic property control in these materials. However, a flurry of
recent work has suggested that photo-doping should not be viewed simply as an
ultrafast and reversible alternative to chemical doping. Led primarily by theoretical
predictions [7, 62, 62, 75–77, 108, 133, 154, 168, 237, 239], studies have revealed
that photo-doping can potentially generate novel phases and phenomena that are not
accessible in thermal equilibrium. Examples of the proposed phenomena include
metal-to-insulator transitions [193], bad metallic behavior [61], nonthermal antifer-
romagnetic states [15, 238], ferromagnetism [168], charge orders [25, 143, 168], the
formation of excitons [26, 46, 78, 84, 129, 130, 202, 223, 224], 𝑠-wave [25, 168], 𝑑-
wave [215, 234], spin-triplet [240], and 𝜂-paired [64, 110, 111, 132, 136, 168, 222]
superconducting states, hidden spin-orbital ordered phases [133, 135], and transient
trapping into metastable states [214]. Altogether, these predictions suggest the tan-
talizing possibility that photo-doping can generate a non-equilibrium phase diagram
just as rich as its equilibrium counterpart.

On the other hand, progress on the experimental front is far more nascent. Despite
several pioneering results—which have primarily focused on excitation and relax-
ation dynamics [48, 92, 142, 159, 172, 173, 183, 185, 186], photo-induced melting
of ordered phases [2, 54, 55, 123, 146, 147, 150, 182], and transient metallicity
[14, 39, 140, 141, 179, 180, 217, 247, 247]—the vast majority of the predicted
phenomena have yet to be discovered, and many fundamental questions about the
photo-excited state remain unresolved. The primary experimental challenge that
hinders progress is the difficulty in spectroscopically probing the out-of-equilibrium
state. Due to the strong coupling between different microscopic degrees of freedom
in Mott insulators, it is crucial to probe multiple material properties simultaneously
in order to reconstruct a complete picture of the transient state of matter. Moreover,
strong correlations often make spectral features a challenge to interpret [18, 126].
Conventional models used to interpret optical, scattering, and photo-emission scat-
tering spectra often break down in the presence of strong correlations, leading to
multiple competing theories. In some cases, certain phenomena are hidden from de-
tection altogether, further inhibiting characterization of the transient state of matter.
These complications—paired with the requirement of ultrafast time resolution—
have made the experimental characterization of photo-doped Mott systems a great
challenge that is starting to be overcome by advances in ultrafast science.
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This uncertainty can be contrasted against weakly correlated rigid-band insulators,
where photo-doping has been extensively studied and is well-understood. In these
materials, the photo-doping process generates holes and electrons in the valence
and conduction bands, respectively. Since intra-band relaxation is much faster than
electron-hole recombination, a quasi-equilibrium population of photo-dopants can
be maintained [10, 114]. Much of the phenomenology thereafter is centered around
the formation of bound electron-hole pairs known as excitons [41, 89, 120, 204, 232].
The presence of excitons has many important consequences on the non-equilibrium
state. Not only do they determine the recombination properties of the material
[105, 188, 249], but interactions between them results in the formation of a many-
body phase diagram rich with phenomena such as Mott metal-to-insulator transitions
[10, 98, 105, 114, 249] and Bose-Einstein condensation [33, 35, 162, 184, 205].
Whether the photo-doped Mott insulator is also well-described by the formation of
excitons is still a critical open question. Unlike semiconductors, photo-doping in
a Mott insulator generates local many-body states described by empty or doubly
occupied sites in the material’s lattice, known as holons and doublons respectively
[168]. While a quasi-equilibrium population of these quasiparaticles will also
form [129, 157, 198, 211], their subsequent dynamics are starkly different than their
counterparts in rigid band insulators, which are described by single-particle theories.
In weakly correlated materials, many body interactions can be reduced to screening
effects and the photo-doped electrons and holes are nearly free, interacting with
one another only through the Coulomb interaction. On the other hand, holons and
doublons interact heavily with their environments, especially with magnetic degrees
of freedom [68]. These interactions are predicted create novel pathways for exciton
formation that are unavailable in rigid band insulators [46, 84, 129, 130, 221].
However, the existence and stability of these excitons is still an open question,
with some evidence against their formation [168, 202] and some supporting it
[4, 46, 84, 129, 221, 227, 242]. As such, an understanding of their properties has
been largely limited to the theoretical domain.

The presence of excitons in photo-doped Mott antiferromagnets will have profound
ramifications on the character of the out-of-equilibrium state of matter and the resul-
tant phase diagram. Whether excitons in Mott insulators can form excitonic phases
of matter—such as excitonic fluids—is not yet known owing to uncertainty with
regards to their metastability [202]. Aside from this possibility, exciton formation
will also have important consequences on charge and magnetic dynamics. With
regards to the former, excitons are predicted to recombine through multi-magnon
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emission processes that explain the ultrafast (∼1 ps) charge relaxation times ob-
served in Mott antiferromagnets [129, 130]. From the point of view of the magnetic
properties, excitons are less destructive to the long-range antiferromagnetic order
than free holons and doublons [46, 84, 221, 242]. However, the impact of excitons
on the photo-doped magnetic phase diagram has yet to be considered, precluding a
complete understanding of the observed magnetic dynamics.

Finally, while these questions have been centered around the dynamics of photo-
dopants after they have been introduced into the system, it is equally important to
understand the mechanisms by which holons and doublons are generated. The most
straightforward method to generating a holon-doublon (HD) pair is through photo-
excitation resonant with an optically-active transition from a filled band to an empty
band. However, by driving the material below its band gap where no electronic
transitions exist, alternative nonlinear pathways to HD generation become available
[175, 226]. These can be parameterized with the so-called Keldysh adiabicity
parameter, which describes whether light with a given wavelength and intensity
will generate HD pairs through a quantum tunneling mechanism or a multiphoton
absorption mechanism [175, 226]. The point at which one mechanism dominates
over the other in the space of photon energy to electric field strength is known as
the Keldysh crossover, a predicted hallmark of which is a change in width of the
nonthermal distribution of HD pairs in momentum space [175]. Thus, by controlling
the experimental parameters of the pump pulse, the distribution of photo-excited
carriers in the material’s band structure can be tuned. This possibility creates a
novel tuning knob in the design of photo-doped phases that has yet to be explored
owing to a lack of experimental study of Mott insulators in the Keldysh crossover
regime.

The starting point for understanding each of these aspects of photo-doping is to con-
sider the basic properties of a Mott insulator and the expected behavior of a single
charge dopant introduced into the system. From that point, different complications—
such as bound pair formation and magnetic order parameter dynamics—can be con-
sidered to reconstruct an overall picture of the photo-induced state. This discussion
begins with the Hubbard model, which is the simplest theoretical description of a
Mott insulator. In this thesis, we specifically focus on the case of two-dimensional
spin-1/2 systems, as these ingredients are thought to be essential to the phenomenol-
ogy described above [23, 126].



7

1.1 The Hubbard Model
The Hubbard model is designed to capture the essential features of Mott insulators
using minimal number of free parameters and interactions. This tight binding
model considers a square lattice in which each site can host up to two electrons.
These electrons can hop from one site to another, and they interact with one another
through the Coulomb interaction. Despite this simplicity, the Hubbard model and its
various extensions are still actively studied until this day and are thought to capture
a vast extent of the phenomenology of Mott insulators. Its success underscores the
importance of local interactions in Mott systems. Our discussion will closely follow
that of Reference [68], with additional details obtained from Reference [71] and
Reference [166].

We begin by considering the assumptions that underlie the development of this
model. First, we assume that only one band is present near the Fermi energy (𝜀𝐹)
and that all other bands are far away energetically. This assumption is justified
because bands far above and far below 𝜀𝐹 should be minimally affected by the
presence of electron-electron interactions since the electron-ion interaction will
dominate. Using this assumption, if a Bloch state of energy 𝜀𝑝, momentum ®𝑝,
and band index 𝛼 has a wave function Ψ ®𝑝,𝛼, then a series of Wannier states can be
constructed:

Ψ𝛼 (®𝑟𝑖) =
1
√
𝑁

∑︁
®𝑝∈BZ

𝑒𝑖 ®𝑝·®𝑟𝑖Ψ ®𝑝,𝛼 (®𝑟𝑖) (1.1)

where ®𝑟𝑖 is the location of the 𝑖th electron and ®𝑝 ∈ BZ means all momenta included
within the Brillouin Zone. Since the first assumption is that only one band is
physically relevant, we can drop the index 𝛼.

Using these states, we can write the full extent of the Coulomb interaction matrix
elements as:

𝑈𝑖 𝑗 ,𝑖′ 𝑗 ′ =

∫
𝑑3𝑟1𝑑

3𝑟2Ψ
∗
𝑖 (®𝑟1)Ψ∗𝑗 (®𝑟2)𝑉̃ (®𝑟1 − ®𝑟2)Ψ𝑖′ (®𝑟1)Ψ 𝑗 ′ (®𝑟2). (1.2)

Here, 𝑉̃ is the screened Coulomb interaction. The second assumption of the Hubbard
model is that only the maximal "on-site" matrix element is relevant, 𝑈𝑖𝑖,𝑖𝑖 ≡ 𝑈. We
can make this assumption for two reasons. First, the overlap between Wannier states
decreases exponentially with the distance, and so we should expect that the matrix
elements 𝑈𝑖, 𝑗 ,𝑖′, 𝑗 ′ should decrease rapidly with the distance |®𝑟1 − ®𝑟2 |. Second, 𝑉̃
itself falls off with distance, as expected for a Coulomb potential.
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We are now ready to assemble the Hamiltonian. Since this is a tight binding model
with tunneling between sites and the Coulomb interaction, we only have two terms:

𝐻 = −
∑︁
®𝑟𝑖 ,®𝑟 𝑗
𝜎=↑,↓

(
𝑐†𝜎 (®𝑟𝑖)𝑡𝑖 𝑗𝑐𝜎 (®𝑟 𝑗 ) + 𝑐†𝜎 (®𝑟 𝑗 )𝑡𝑖 𝑗𝑐𝜎 (®𝑟𝑖)

)
+ 1

2

∑︁
𝑖, 𝑗 ,𝑖′, 𝑗 ′

𝜎,𝜎′=↑,↓

𝑈𝑖 𝑗 ,𝑖′ 𝑗 ′𝑐
†
𝜎 (®𝑟𝑖)𝑐†𝜎′ (®𝑟 𝑗 )𝑐𝜎′ (®𝑟 𝑗 ′)𝑐𝜎 (®𝑟𝑖′).

(1.3)

In this second-quantized notation, 𝑐†𝜎 (®𝑟 𝑗 ) creates an electron at site ®𝑟 with spin 𝜎.
These creation operators satisfy the following:

{𝑐𝜎 (®𝑟), 𝑐†𝜎′ (®𝑟
′)} = 𝛿𝜎,𝜎′𝛿®𝑟, ®𝑟 ′

{𝑐𝜎 (®𝑟), 𝑐𝜎′ (®𝑟′)} = 0.
(1.4)

The first term represents tunneling from one site to another. In the simplest form of
the Hubbard model, this tunneling is restricted to nearest-neighbor hopping such that
𝑡𝑖, 𝑗 ≡ 𝑡 if 𝑖 and 𝑗 are nearest neighbor, and zero otherwise. The second term, which
accounts for the Coulomb interaction can also be simplified using our assumption
that only the on-site Coulomb interaction is present, giving

𝑈𝑖 𝑗 ,𝑖′ 𝑗 ′ = 𝑈𝛿𝑖 𝑗𝛿𝑖′ 𝑗 ′𝛿𝑖𝑖′ . (1.5)

With these considerations, we are left with the following Hamiltonian known as the
Hubbard model:

𝐻 = −𝑡
∑︁
⟨®𝑟,®𝑟 ′⟩
𝜎=↑,↓

(
𝑐†𝜎 (®𝑟)𝑐𝜎 (®𝑟′) + h.c.

)
+𝑈

∑︁
®𝑟
𝑛↑(®𝑟)𝑛↓(®𝑟) (1.6)

where the notation ⟨®𝑟, ®𝑟′⟩ indicates that ®𝑟 and ®𝑟′ are on nearest-neighboring sites.
𝑛𝜎 (®𝑟) = 𝑐

†
𝜎 (®𝑟)𝑐𝜎 (®𝑟) is the counting operator. Since each site can host up to two

electrons, they must be of opposite spin due to the Pauli exclusion principle. Thus,
the 𝑛𝜎 (®𝑟) will only return 0 or 1, and the Hilbert space is the tensor product of the
following four states per site: |0⟩, | ↑⟩, | ↓⟩, | ↑↓⟩. The empty site |0⟩ is commonly
known as a holon, while a doubly-occupied site | ↑↓⟩ is commonly known as a
doublon. Both of these states are spin singlets, meaning their total spin is 𝑆 = 0.
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1.1.1 The strong-coupling limit
This model cannot be solved exactly in dimensions greater than one. However, we
can consider its properties in certain limits relevant to Mott insulating systems. To
do this, we begin by defining certain operators to re-cast the Hamiltonian into a
more convenient form. First, we define operators to count the charge and spin on
each site. For the former, we can count the total number of electrons each site:

𝑒𝑛(®𝑟) = 𝑒
∑︁
𝜎

𝑛𝜎 (®𝑟) = 𝑒
∑︁
𝜎

𝑐†𝜎 (®𝑟)𝑐𝜎 (®𝑟) ≡ 𝑒𝑐†𝜎 (®𝑟)1𝜎𝜎′𝑐𝜎′ (®𝑟). (1.7)

The following expression can be used to calculate the total charge:

𝑄 = 𝑒
∑︁
®𝑟
𝑛(®𝑟) ≡ 𝑒𝑁𝑒 . (1.8)

In the last step, the Einstein summation convention is used. To determine the spin
at each site, the following operator can be used:

®𝑆(®𝑟) = ℏ

2
𝑐†𝜎 (®𝑟) ®𝜏𝜎𝜎′𝑐𝜎′ (®𝑟) (1.9)

where ®𝜏 is a vector of the three Pauli matrices:

𝜏1 =

(
0 1
1 0

)
𝜏2 =

(
0 −𝑖
𝑖 0

)
𝜏3 =

(
1 0
0 −1

)
. (1.10)

This operator can be used to re-write the Coulomb interaction term of the Hubbard
model Hamiltonian. Consider the following operator

∑︁
®𝑟

(
®𝑆(®𝑟)

)2
=

∑︁
®𝑟

𝑎=1,2,3

𝑆𝑎 (®𝑟)𝑆𝑎 (®𝑟). (1.11)

By expanding the components, and making use of the following identity

∑︁
𝑎=1,2,3

𝜏𝑎𝛼𝛽𝜏
𝑎
𝛾𝛿 = 2𝛿𝛼𝛿𝛿𝛽𝛾 − 𝛿𝛼𝛽𝛿𝛾𝛿 (1.12)

we can re-write this operator as
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∑︁
®𝑟

(
®𝑆(®𝑟)

)2
=

∑︁
®𝑟

(
3
4
𝑛(®𝑟) − 3

2
𝑛↑(®𝑟)𝑛↓(®𝑟)

)
. (1.13)

The first term gives a constant of 𝑁𝑒𝑈
2 , which can be dropped. Thus, the Coulomb

interaction term of the Hamiltonian can be re-written as

𝐻𝑖𝑛𝑡 = 𝑈
∑︁
®𝑟
𝑛↑(®𝑟)𝑛↓(®𝑟) = −

2
3
𝑈

∑︁
®𝑟

(
®𝑆(®𝑟)

)2
. (1.14)

This form allows us to easily study the properties of the Hubbard model under two
constraints. The first constraint is that the system is at half filling. Since each
site can host two electrons, this constraint means that the total number of electrons
𝑁𝑒 is equal to the total number of sites in the lattice 𝑁 . The half-filled case is
an important starting point for the understanding of the Hubbard model and Mott
insulators. Deviations from half-filling will be considered thereafter.

Second, we will consider the strong-coupling limit of the Hubbard model, in which
𝑈 →∞. In this case, the interaction term will completely dominate the Hamiltonian,
allowing the hopping term to be neglected. From Equation 1.14, it is apparent that
when𝑈 is infinite the total spin ®𝑆(®𝑟) on each site should be maximized and doubly-
occupied sites are forbidden. Thus, because the system is at half-filling each site will
be occupied by one electron that will be either a | ↑⟩ state or a | ↓⟩ state. With this, we
have arrived at the origin of the Mott insulating state: when the Coulomb interaction
dominates over the hopping strength, the electrons are localized onto each site as
hopping in the lattice will create double occupied sites, which are forbidden. As a
result, a charge gap on the order of 𝑈 will open in the conduction band. The newly
created valence and conduction bands are known as the lower Hubbard band (LHB)
and the upper Hubbard band (UHB), respectively. A hole-like excitation in the LHB
corresponds to an empty site in the Hubbard lattice known as a holon, while an
electron-like excitation in the UHB corresponds to a doubly-occupied site known as
doublon.

1.1.2 Magnetism in the strong-coupling limit
Aside from encompassing the physics of the Mott insulating state, the Hubbard
model in the strong-coupling limit is also naturally captures the magnetic present
in these systems. To see this, we start by noting that when only 𝐻𝑖𝑛𝑡 is present
in the Hamiltonian, the resulting insulating state is massively degenerate, as any
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spin configuration is allowed. The degeneracy can be lifted by allowing for virtual
exchange processes enabled by fluctuations of the hopping term, which leads to an
expansion of the order 𝑡/𝑈. If the system is originally in some spin configuration with
every site occupied by one electron, the perturbative term will create intermediate
states in which an electron is transferred from one site to another, creating one site
is doubly occupied and one site that is empty. This state is 𝑈 above the ground
state energetically and its matrix element is 𝑡2. Thus, we should expect that the
energetic parameter of the effective Hamiltonian describing this process should be
2𝑡2/𝑈, where the factor of 2 comes from the fact that this process can be performed
in two different ways. When the electron returns to its original position, the final
spin configuration will either be the same as the original state, or differ by one spin
exchange. An explicit calculation of this degenerate perturbation theory expansion
will confirm that the effective Hamiltonian is the quantum Heisenberg magnet,
giving the following Hamiltonian:

𝐻𝐻𝑒𝑖𝑠𝑒𝑛𝑏𝑒𝑟𝑔 = 𝐽
∑︁
⟨®𝑟,®𝑟 ′⟩

®𝑆(®𝑟) · ®𝑆(®𝑟′). (1.15)

𝐽 is a factor known as the spin exchange interaction and is equal to 2𝑡2/|𝑈 |. This
result is valid for any dimension and any lattice. From this result, it is apparent that
the Hubbard model at half filling and in the strong-coupling limit naturally produces
magnetic interaction. 𝐽 in most Mott insulators is negative, meaning that most of
these materials host antiferromagnetic correlations and form long-range order below
some critical temperature.

1.2 The single hole problem
In the previous section, the Hubbard model was derived and its properties were
explored at half-filling in the strong-coupling limit. In particular, we found that
the Mott insulating state occurs when double occupancy becomes prohibitively
expensive, and that quantum Heisenberg interactions naturally emerge from this
model when fluctuations are considered. We are now ready to consider how the
properties of this model are affected as we leave half filling through charge doping.
As a starting point, we consider the case where a single electron is removed from the
system, creating an empty site—a holon—in the lattice (|0⟩). This scenario, which
is commonly referred to as single-hole problem captures the essence of the strong
spin-charge interactions that drive much of the interesting phenomenology of Mott
insulators and their doped variants.
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Figure 1.3: Schematic of a free holon (purple) moving through a square lattice with
AFM interactions. With each hopping action away from its starting position (left
panel), the length of the string will increase (middle and right panels). Excited
bonds are shown in magenta.

Once the holon is added to the system, a new term in the Hamiltonian must be
included to capture the kinetic energy associated with the motion of the holon.
Using a hopping term similar to that written in Equation 1.6, since a holon hopping
from one site to another is equivalent to a spin hopping into the site of the holon
[68]. The total Hamiltonian can be written as

𝐻𝑡−𝐽 = −𝑡
∑︁
⟨®𝑟,®𝑟 ′⟩
𝜎=↑,↓

(
𝑐†𝜎 (®𝑟)𝑐𝜎 (®𝑟′) + h.c.

)
+ 𝐽

∑︁
⟨®𝑟,®𝑟 ′⟩

®𝑆(®𝑟) · ®𝑆(®𝑟′) (1.16)

where 𝐽 is still equal to 2𝑡2/𝑈. Equation 1.16 is known as the 𝑡 − 𝐽 model and often
serves as the starting point for any discussion of a doped Mott insulator in the strong
coupling limit. The key to its relevance is that it captures the competition between
the kinetic energy of the holon and the antiferromagnetic correlations of the spins.

To visualize this competition, consider a holon in an antiferromagnetic Mott insula-
tor (Figure 1.3). The presence of the holon creates a defect in the antiferromagnetic
motif, as a single spin will be removed from the lattice to accommodate it. When the
holon hops to a nearest neighboring site, it does so by trading places with the spin at
that site. Since neighboring sites are on opposite sublattices of the antiferromagnetic
motif, the newly spaced spin will now be oppositely aligned to its new neighbors
creating an energy cost in the spin sector. As the holon continues to travel, it will
continue to flip spins, leaving in its wake a string of magnetic excitations. From this,
it is apparent that the kinetic energy of the holon and energy of the spins cannot be
simultaneously minimized. This competition underlies much of the phenomenology
unique to doped two-dimensional spin-1/2 Mott insulators and has many important
consequences that must be considered when studying photo-doped materials.



13

Figure 1.4: Schematic of a bound holon pair moving in a square lattice with AFM
interactions. Holons are depicted as purple spheres. When one holon hops away
from the other (middle panel), it will increase the length of the string of magnetic
excitations compared to its original position (left panel). However, if the second
holon coherently follows the first (right panel), it will repair the spin excitations,
maintaining the overall cost to the spin sector. Excited bonds are shown in magenta.

In the Ising limit, the holon will become infinitely massive because the string serves
as a linear confining potential that binds it to its original position. When the
perpendicular components of the Heisenberg spin exchange are included, however,
pairs of spins can be flipped spontaneously because they are no longer eigenstates of
the new Hamiltonian [68]. In other words, these quantum fluctuations will eventually
heal the spin excitations along the path, thereby relaxing the tension of the string
[29, 68, 109, 145, 195]. This healing process mobilizes the holon. Due to this
healing process, the holon essentially pulls a finite-length string along with it as it
travels through this lattice. One can think of the string and the holon as a composite
entity known as a polaron. Polarons were first studied in the mid-20th century to
understand the effect of excess charge carriers in a polarizable material [69]. The
electron or holon locally deforms the ions around it, creating a potential well that
it can become trapped in. The resulting composite quantum object—the charge
carrier and the deformed lattice—can be considered as a quasiparticle consisting
of a charge carrier dressed by a cloud of lattice excitations. This concept lends
itself naturally to the situation of Mott insulators, where instead of a deformations
of the crystal lattice, the holon produces a deformation of the antiferromagnetic
spin background. This spin background in turn induces a localizing potential that
enhances the mass of the holon. Thus, we consider the holon to be dressed by a
cloud of spin excitations and call this composite quasiparticle a spin polaron. The
properties of these spin polarons have been extensively studied theoretically and
experimentally and have been reviewed elsewhere [126].
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1.3 Bound state formation in Mott AFMs
An important outcome of doping a Mott insulator is the emergence of superconduc-
tivity. In the cuprate family of Mott antiferromagnets, superconductivity seems to be
driven by mechanisms that depart from the traditional Bardeen-Copper-Schrieffer
theory for superconductivity [126]. Since the strongest energy scales in these sys-
tems are the on-site Coulomb interaction 𝑈 (∼ 1 eV) and the antiferromagnetic
exchange interaction 𝐽 (∼ .1 eV) [5, 126], many theories have emerged describing
possible spin-mediated mechanisms for the formation of Cooper pairs, along with
a prodigious list of spectroscopic characterizations in an attempt to quantitatively
falsify or verify these theories [126].

While the specific mechanism that drives the hole pairing of a cuprate superconduc-
tor still remains up to debate, we can arrive at a simple picture of how pairing of
charge carriers can occur in a doped Mott insulator by building upon the discussion
of polaron formation in the case of as single holon. As discussed, a polaron forms
because the charge carrier is dressed by the spin excitations that its motion generates.
This spin-dressing dramatically enhances the mass of the holon, thereby greatly re-
ducing its mobility it to some extent. An intuitive way to think about this is to
consider that the holon auto-localizes itself because the string serves as a confining
linear potential. If—instead of the single hole problem—we consider the presence
of two charge carriers, a novel situation can arise in which the mobility of the charge
carriers is re-established. Suppose the two carriers are originally on neighboring
sites. If one carrier travels away from the other, a string will be formed creating a
confining potential that connect the two [28, 46, 84, 94, 129, 130, 202, 242]. Now,
the second carrier coherently has the opportunity to coherently follow the first, trac-
ing its path. In doing so, it will repair the spin excitations that he first charge carrier
left in its wake. This spin-flip restoration process allows for the charge carriers
to be mobile while simultaneously preserving the spin-exchange energy since the
extent of spin excitations will always be limited only to the distance between the two
carriers, unlike the individual carrier whose motion leads to a continuous increase
in magnetic cost. The correlated motion of the pair—which can also be seen as the
bound state of two spin polarons [242]—represents the formation of a bound state
driven by the interplay between the kinetic energy of the charge carriers and the
potential energy of the spin background.

Recently, the viability of string-mediated pairing has been suggested both exper-
imentally and theoretically. Quantum gas microscopes designed to simulate the
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Figure 1.5: Schematic of Hubbard exciton formation. a Schematic of a free holon
(purple) and a free doublon (orange) moving through a square lattice with AFM
interactions. With each hopping action away from its starting position (top panel),
the length of the string will increase (middle and bottom panels). Excited bonds
are shown in magenta. b Schematic of a HE moving in a square lattice with AFM
interactions. When the holon (purple) hops away from the doublon (orange) (middle
panel), it will increase the length of the string of magnetic excitations compared
to its original position (top panel). However, if the doublon coherently follows the
holon (bottom panel), it will repair the spin excitations, maintaining the overall cost
to the spin sector. Excited bonds are shown in magenta.

Hubbard model [83] have directly visualized both the formation of spin polarons
[102, 121] as well as the formation of geometric strings [43]. These efforts have
been expanded to explicitly demonstrate the magnetically-mediated formation of
two-holon bound states [91]. Theoretical calculations have supported these results,
demonstrating that charge carriers indeed gain energy by coherently following one
another in antiferromagnetic Hubbard systems [28, 84].

1.3.1 Hubbard excitons
These notions of magnetically mediated pair formation were initially motivated to
explain the presence superconductivity in chemically doped Mott antiferromagnets
[84]. However, they have also been invoked to predict the presence of bound carriers
that are unique to photo-doped antiferromagnetic Mott insulators [28, 46, 84, 94,



16

129, 130, 202, 242]. When a photo-excitation is resonant with the Mott gap, a
holon and a doublon are simultaneously created. These two charge carriers can
interact with one another via the same string-binding mechanism since—just like
holons—doublons also generate strings as they travel through the lattice (Figure
1.5a). The bound state that results from this interaction between a holon and a
doublon is known as a Hubbard exciton (HE) (Figure 1.5b). Unlike conventional
excitons in weakly correlated rigid-band semiconductors—which are purely bound
through Coulomb interaction—the properties of HEs are theoretically predicted to
depend sensitively on the magnetic degrees of freedom that bind them [28, 46,
84, 94, 129, 130, 202, 242]. Numerical studies have revealed that excitons should
host rich internal structures [129, 130], which spectra and binding energies that are
dependent on 𝐽 [94, 242]. The excited levels in these spectra have been shown to be
vibrational and rotational modes of the string that connects the holon and doublon
[84]. Moreover, the dynamics of HEs have been predicted to be intimately related to
the magnetic degrees of freedom as well [129, 130]. Unlike Coulombic excitons—
which tend to recombine radiatively or through exciton-exciton interactions—HEs
are thought to recombine through multi-magnon emission, reflecting the strong spin-
charge coupling in these systems. The radii and masses of HEs are also predicted
to be correlated with the strength of the magnetic interactions in the system [94].

Experimentally, however, many basic questions about HEs remain unresolved. The
reason for his experimental uncertainty is the lack of clear spectral probes of HEs
in real compounds. Traditionally, excitons are detected in the optical spectra of
materials as a series of peaks below the optical band gap—known as the free
particle continuum—which marks the energy at which free electrons and holes are
generated by light [113, 232]. The excitonic peaks are often sharp and well-separated
from the continuum, indicating that they are stable against decay intro free carriers.
Observations of these excitonic states are quite ubiquitous within the study of weakly
correlated rigid band insulators [11, 12, 16, 17, 59, 74, 112, 113, 152, 156, 160,
190, 220, 246], ranging III-V semiconductors to transition-metal dichalcogenides
to molecular systems. On the other hand, spectral fingerprints of HEs have only
been observed in a small handful of compounds [4, 80, 86, 142, 172, 221, 233],
and demonstrate characteristics that have called into question as to whether they
are stable quasiparticles. Most importantly, peaks in equilibrium optical spectra
that have been interpreted as HE states are not well-separated from the free holon-
doublon continuum [80, 86, 202, 233], implying that the excitons are unstable against
decay into free carriers [202].
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The uncertainty with regards to Hubbard excitonic stability poses several important
open questions, and creates experimental challenges that must be overcome. First,
it is unclear what role HEs play in the photo-excited state and dynamics of Mott
antiferromagnets. In photo-doped semiconducting systems, the free carriers initially
generated by the pulse of light will begin to decay towards the band edge through
intra-band relaxation processes [105, 249]. However, the return to equilibrium—
marked by the recombination of all photo-excited holes and electrons—is bottle-
necked by the large amount of energy that must be emitted to overcome the charge
gap. In the interim, excitons form to lower the total energy, creating a photo-excited
insulating state [105, 106, 249]. In the case of Mott insulators, however, it is un-
known whether excitons will form during the evolution of the photo-excited state
owing to their proximity to the holon-doublon continuum. This question is not only
important to understanding the recombination pathways of photo-excited Mott sys-
tems, but has important implications on the dynamics of the magnetic subsystem as
will be discussed in the following chapters. Second, while theoretically predicted,
the spin-binding mechanism has not been experimentally confirmed to drive the
formation of HEs. Since holons and doublons are oppositely charged, they should
also be prone to forming bound states due to the Coulomb interaction. Thus, it is
unclear to what extent the magnetic interaction is responsible for exciton formation
in real Mott insulators.

1.4 Current progress in photo-doped Mott antiferromagnets
We conclude this introduction with a brief overview of current progress in photo-
doped antiferromagnetic Mott insulators. Specifically, our attention will be focused
on the parent phases of the copper-oxide family of Mott insulators that demonstrate
high-𝑇𝑐 superconductivity, as well as the material Sr2IrO4 which demonstrates much
of the same phenomenology upon chemical doping. While the cuprates have been
studied somewhat extensively using out-of-equilibrium optical techniques, the vast
majority of the efforts have focused on the dynamics of materials that have already
been chemically doped out of the Mott insulating state and into the superconducting
regime. Instead, the efforts of this thesis are focused on understanding the effects of
photo-doping on the Mott insulating state, which is relatively under-studied.

To this end, we organize the section as follows. First, we will introduce the material
Sr2IrO4 as a model Hubbard system. We focus our discussion on Sr2IrO4 because it
is the primary platform upon which the work presented this thesis was performed. A
more exhaustive review can be found in Reference [23]. The cuprate phenomenology
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has been reviewed extensively elsewhere [18, 49, 126]. Second, results pertaining
primarily to charge degrees of freedom after photo-doping will be presented. Finally,
we will conclude by examining the evolution of the magnetic properties in these
systems following the photo-doping process.

1.4.1 Sr2IrO4 as a model Hubbard system
Historically, 5𝑑 transition metal oxides were not considered to be candidates for
Mott insulating physics. The large spatial extent of the valence electron wave func-
tions in these systems increase sufficiently increase the overlap between neighbor-
ing sites—and ultimately the electronic bandwidth—such that the strong-coupling
regime cannot be reached. However, unlike the more localized 3𝑑 transition metal
oxides that traditionally host Mott insulating phases, the heavy atomic weights in
5𝑑 systems like the Iridates generate strong spin-orbital coupling (SOC) that has
profound impacts on the electronic structure. Importantly, they can reduce the band-
width of the valence band enough such that a moderate value of 𝑈 can induce a
Mott instability.

To understand this SOC-driven Mott transition, we begin with a description of
the microscopic structure of Sr2IrO4. This 𝑑5 material has a K2NiF4 structure,
isostructural to La2CuO4 [37]. As such, it hosts a quasi-2D structure, with Ir-O
planes separated Sr atoms. The Ir-O planes are composed of a square lattice of Ir
atoms, each of which are surrounded by an octahedral cage of O atoms which form a
corner-shared network. Due to the crystal fields of the octahedral cage, lifts the five
degenerate 𝑑 orbitals of the Ir atoms into three lower orbitals with 𝑡2𝑔 symmetry and
two higher orbitals with 𝑒𝑔 symmetry separated by the crystal field energy 10𝐷𝑞
[1]. Since the crystal field splitting is large, the system organizes into the low-spin
configuration in accordance with the Aufbau principle. Thus, two of the 𝑡2𝑔 orbitals
are filled and one is half filled, while both 𝑒𝑔 orbitals remain empty [1, 115]. The
bandwidth of the valence band formed from the partially-filled 𝑡2𝑔 orbitals is much
too large (∼ 1 eV) for the moderate on-site Coulomb interaction of ∼ 2 eV to induce
a Mott transition [115].

The orbital angular momentum 𝐿 in the 𝑡2𝑔 states is partially quenched owing to a
relation known as the𝑇−𝑃 equivalence [209], which shows that the matrix elements
of 𝐿 = 2 the 𝑡2𝑔 states can be mapped onto the 𝑝 states of free atoms with 𝐿 = 1
character. Thus, the 𝑡2𝑔 form an effective angular momentum 𝐿𝑒 𝑓 𝑓 = 1 subsystem
with 𝐿𝑧,𝑒 𝑓 𝑓 = −1, 0, 1. Since there are five electrons in the low-spin configuration.
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Including the effects of SOC, which is quite strong in this system (∼ 0.5 eV), the 𝑡2𝑔
orbitals will further split into a lower 𝐽𝑒 𝑓 𝑓 = 3/2 quartet and a 𝐽𝑒 𝑓 𝑓 = 1/2 Kramers
doublet [1, 115]. The former is completely filled, while the latter hosts one electron
and is half-filled. Note that, though Hund’s rules seem to be broken by the fact that
the 𝐽𝑒 𝑓 𝑓 = 1/2 orbital is higher in energy than the 𝐽𝑒 𝑓 𝑓 = 3/2 orbitals, its true (non-
effective) angular momentum is actually 𝐽 = 5/2, while the true angular momentum
of the 𝐽𝑒 𝑓 𝑓 = 3/2 quartet is still 𝐽 = 3/2 [115]. Importantly, the bandwidth of this
new 𝐽𝑒 𝑓 𝑓 = 1/2 valence band is greatly reduced (∼0.5 eV) as compared to that of the
original 𝑡2𝑔 bands, allowing for the moderate 𝑈 to induce a Mott transition. Thus,
the 𝐽𝑒 𝑓 𝑓 = 1/2 splits into a filled LHB and an empty UHB. The resultant density of
states and corresponding optical conductivity of Sr2IrO4 is shown in Figures 1.6a
and b, respectively. Two broad peaks appear in the optical conductivity at ∼ 0.5 eV
and ∼ 1.0 eV [115, 161, 199, 244]. The former, known as the 𝛼 peak, represents the
transition from the 𝐽𝑒 𝑓 𝑓 = 1/2 LHB to the 𝐽𝑒 𝑓 𝑓 = 1/2 UHB. The latter, known as
the 𝛽 peak is predominantly formed by transitions from the 𝐽𝑒 𝑓 𝑓 = 3/2 band to the
𝐽𝑒 𝑓 𝑓 = 1/2 UHB [115, 244].

An important consequence of the SOC-mediated Mott transition is that each Ir site
hosts a localized moment with 𝐽𝑒 𝑓 𝑓 = 1/2 character [1, 23, 115, 116]. These mo-
ments are formed even in the absence of long-range magnetic order, as is typical for
a Mott insulator. Importantly, they serve the same role as the 𝑆 = 1/2 moments in
the cuprates, and we refer to them as the pseudospin hereafter. They interact with
one another via superexchange through the O sites, endowing them with the usual
antiferromagnetic Heisenberg interactions [101]. Indeed, as measured through res-
onant inelastic x-ray scattering (RIXS), Sr2IrO4 demonstrates pseudospin dynamics
that are remarkably similar to that of La2CuO4 [117], which is known to be a nearly
ideal Heisenberg antiferromagnet. However, strong SOC and tetragonal slightly
affect the low-energy pseudospin dynamics [23], with the most significant impact
being a large out-of-plane spin wave gap that reflects a moderate 𝑋𝑌 anisotropy
present in this system [229]. Nevertheless, it is remarkable that the in-plane spec-
trum Sr2IrO4 is so well-described by the Heisenberg model [70, 117] despite the
fact that its SOC is orders of magnitude larger than in the cuprates, and it is
clear that strong-coupling theories accurately describe the pseudospin dynamics.
Altogether, it is well-established that Sr2IrO4 is a SOC-driven, quasi-2D Mott insu-
lator pseudospin-1/2 moments that demonstrate strong Heisenberg-like interactions.
Moreover, unlike the cuprates which are actually charge-transfer insulators, Sr2IrO4

is a true manifestation of the single-band Hubbard model and thus serves as an
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Figure 1.6: Electronic structure of Sr2IrO4. a Electronic density of states of Sr2IrO4.
The 𝐽𝑒 𝑓 𝑓 = 1/2 LHB→ 𝐽𝑒 𝑓 𝑓 = 1/2 UHB (𝛼) and 𝐽𝑒 𝑓 𝑓 = 3/2→ 𝐽𝑒 𝑓 𝑓 = 1/2 UHB
(𝛽) transitions are shown as arrows and labeled. b Optical conductivity of Sr2IrO4
[199]. Peaks corresponding to the 𝛼 and 𝛽 transitions are labeled. Inset: Real-space
depiction of a photo-excitation resonant with 𝛼. A doubly occupied site (doublon)
and an empty site (holon) are simultaneously created.

excellent starting point for the study of photo-doping effects.

1.4.2 Electronic dynamics
Pioneering work was performed by Matsuda et al. in 1994 [148], who were the first
to study the femtosecond scale photo-doping dynamics in insulating cuprates. They
used a time-resolved white light spectroscopy technique in the transmission geom-
etry to study the evolution of the charge-transfer peak—which marks the transition
from the copper bands into the oxygen bands—following the injection of holons and
doublons using an above-gap driving pulse. They found that the transmission rapidly
drops following the photo-excitation process, indicating the formation of transient
metallic behavior. Interestingly, they saw that the relaxation back towards equilib-
rium occurred on a rapid timescale, with the initial decay of the photo-induced signal
occurring between 0.6 to 0.9 ps. This ultrafast decay could not be explained by the
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typical radiative recombination observed in semiconducting compounds. Instead,
they conjectured that it could be explained by the ultrastrong coupling between spin
and charge in these compound: the photo-excited holons and doublons recombined
by emitting their excess energy into the magnon bath.

This result was the first glimpse of a recurring theme in the study of photo-doped
Mott insulators. Namely, these systems nearly universally demonstrate ultrafast
dynamics that can only be explained by invoking the physics of strong coupling
between the spin and charge degrees of freedom. Building upon this seminal work,
Okamoto et al. [178, 180] published a series of results in which they analyzed the
photo-induced spectra of La2CuO4 and Nd2CuO4 under varying pumping condi-
tions, probing conditions, and with much faster time resolutions (40 fs) than the
earlier work. Several important outcomes of the photo-doping process were identi-
fied. First, they found that not only was the decay time of the photo-induced signal
fast, but so was the rise time. The system entered its photo-induced metallic state on
time scales much faster than the instrumental time resolution of 40 fs. Second, by
comparing the photo-induced spectrum against that of a chemically doped sample,
they deduced that the photo-dopants were inducing a Mott insulator-to-metal transi-
tion. The metallic phase decays rapidly, within 40 fs, owing to intraband relaxation
effects. Finally, following the relaxation of the photo-induced metallic state, they
identified the formation of two mid-gap peaks, which they assigned to polaronic
origins. They examine the dynamics of these peaks in each material and relate them
to the electron-phonon coupling strengths.

From these works, we can draw several conclusions. First, the photo-doping process
will induce a transient metallic response in the material owing to the injection of
photo-dopants. There are some signatures that this metallic response replicates that
of chemical doping, but that the photo-doped system will rapidly evolve thereafter
as the carriers localize via intra-band relaxation processes. The subsequent recom-
bination dynamics of these carriers must be understood in terms of strong coupling
with the phononic and magnonic baths. It turns out that this general phenomenology
is rather ubiquitous within the study of Mott insulators. Similar dynamics have been
demonstrated in Sr2IrO4. Piovera et al. [186] studies the photo-dopant dynamics
of this compound using photo-emission techniques. Similar to the cuprates, they
found that a metallic state was generated immediately following the pump pulse, and
rapidly decayed into in-gap states near the chemical potential. However, unlike the
cuprates, Hsieh et al. [92] found that the ultrafast decay times depend sensitively
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on the presence of antiferromagnetic order. This behavior was interpreted in light
of the intermediate coupling character of Sr2IrO4.

1.4.3 Magnetic dynamics
When discussing the single hole problem, we noted that the motion of a holon
scrambles the antiferromagnetic motif by creating spin excitations. One can imag-
ine that beyond a certain threshold of dopants, long-range order can no longer be
supported as the spin configuration will be sufficiently disrupted. This phenomenol-
ogy is rather apparent in chemically doped compounds, as the magnetic ordering
temperature is suppressed immediately upon the introduction of dopants. Beyond
a critical doping value, long-range order melts and the system is paramagnetic at
all temperatures. Interestingly, however, short-range correlations remain persistent
in this paramagnetic regime in both the cuprates and Sr2IrO4, as denoted by the
continued presence of a magnetic excitation spectrum.

Aspects of this phenomenology are reproduced in the photo-doped case. Dean et al.
[55] used resonant x-ray scattering techniques to study the magnetic dynamics in
Sr2IrO4 following a drive resonant with the Mott gap (0.6 eV pump photon energy).
By first tracking the evolution of the magnetic Bragg peak, they found that the long-
range magnetic order is suppressed and fully melts beyond a critical fluence of ∼ 5
mJ/cm2. Moreover, they measure the scattered photons as a function of momentum
transfer, energy loss, and time to track the evolution of the entire magnon spectrum,
thereby elucidating the behavior of the short-range magnetic correlations following
the drive. Similar to the chemical doped system, the magnetic excitation spectrum
survives even in the photo-induced paramagnetic regime.

Similar results were produced with ultrafast optical probes. de la Torre et al. [54]
used time resolved second harmonic generation polarimetry to track the evolution of
the magnetic order parameter following a photo-doping drive (1.0 eV pump photon
energy). This technique will be discussed in Chapter 2. They found that, similar to
the work by Dean et al., the magnetic order parameter disappears. However, they
found that this occurs beyond a critical fluence of 0.9 mJ/cm2. Afanasiev et al.
[2] were able to observe the demagnetization using the magneto-optical Kerr effect
and studied the relationship between the charge dynamics and the demagnetization
dynamics as a function of temperature.

Finally, an important point to note from these three studies is that the value of the
critical fluence is different in each report. This fact is likely due to the use of different
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pump photon energies for each experiment. As a result, each experiment creates
transitions between different bands, and likely produces different photo-induced
states. This notion showcases a unique opportunity of photo-doping, as chemical
doping can only affect the valence and conduction bands. As of now, however, the
microscopic mechanisms that drive these differences are not yet understood.
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1.5 Overview of the results
In this introduction, we have laid out many open questions surrounding the properties
of photo-doped Mott insulators. We summarize these questions here:

• Charge instabilities in the photo-doped state: Unlike chemical doping,
the photo-doping process simultaneously creates a hole-like and electron-like
excitation. It is currently unknown whether interactions between the two can
result in the formation of excitons or other charge instabilities, and if so, how
these excitons affect the dynamics of the photo-induced states.

• Properties of spin-bound excitons: In two-dimensional spin-1/2 antiferro-
magnetic Mott insulators, excitons are theoretically predicted to be bound
through the antiferromagnetic spin-exchange interaction. Many open ques-
tions about these HEs remain experimentally unresolved. In particular, it
is unknown whether they are stable bound states, and to what extent the
spin-exchange interaction is necessary for their formation.

• Dynamics of antiferromagnetic order: A central topic of investigation in
photo-doped Mott antiferromagnets is the evolution of the long-range mag-
netic order. While ultrafast demagnetization has been theoretically predicted
experimentally observed predicted, a full picture of the non-equilibrium dy-
namics remains unclear. Particularly important questions are how bound states
would affect the transient magnetic properties, and the effects of photo-doping
from different bands.

• Nonlinear holon-doublon generation mechanisms: Nonlinear holon-doublon
generation is possible through intense subgap driving with an AC electric field.
Direct experimental tests of the resultant photo-carrier dynamics and momen-
tum space distributions remain elusive. A detailed ultrafast spectroscopic
study of Mott insulators subject to intense electric fields is thus an impor-
tant question in the field of photo-doping and the general research area of
light-matter interactions in strongly correlated electron systems.

In the remaining chapters of this thesis, we present results from a series of exper-
iments designed to answer each of these questions. In Chapter 2, we present the
experimental details of the ultrafast spectroscopic tools that enable these studies. In
Chapter 3, we report the transient formation of a Hubbard excitonic fluid in Sr2IrO4
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using ultrafast terahertz conductivity. This result establishes not only the metastabil-
ity of HEs, but reveals the role that they play in the evolution of photo-doped state. In
Chapter 4, we build upon these results to establish that magnetic correlations are crit-
ical to the existence of HEs in the Ruddlesden-Popper series iridates Sr𝑛+1Ir𝑛O3𝑛+1.
We do this by leveraging the differences in the magnetic universality classes of the
different elements in the series, which endow them with distinct magnetic critical
properties. The attention is turned towards the effects of photo-doping on antiferro-
magnetic order in Chapter 5. By using time-resolved second harmonic polarimetry
as a probe of the magnetic order parameter, we establish that photo-doping from
different bands will melt the magnetic order at different rates. We attribute this
effect to the fact that different photo-doping processes will create different ratios
of holons, doublons, and HEs, each of which impacts the AFM motif differently.
Finally, in Chapter 6, we move away from resonant excitation to explore the ef-
fects of subgap driving on Mott insulators and their photo-excited properties. We
find signatures of the so-called Keldysh crossover from a multiphoton-absorption-
to quantum-tunneling-dominated pair production regime, and demonstrate that the
momentum space distribution of the charge carriers can be controlled using this
criterion. We also find signatures of ultrafast bandwidth renormalization.
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C h a p t e r 2

ULTRAFAST SPECTROSCOPY OF MOTT INSULATORS

Experimentally, photo-doping is enabled by femtosecond laser technologies. While
the energy of a continuous-wave (CW) laser is distributed over all time, the energy
in these pulsed sources is compressed into femtosecond bursts of light. As a result,
the peak electric field within each of these pulses is much higher than what can
be achieved in a CW source, while simultaneously benefiting from significantly
lower average heating. This unique set of properties creates the opportunity to
drive materials using strong electric fields while preventing the sample from being
destroyed by heat. The myriad light-matter interactions that emerge as a result can
be leveraged to engineer materials.

While the photo-doping process is conceptually quite simple, probing the resulting
state of matter is a much more complicated affair. When a correlated electron system
is driven with an intense pulse of light, many microscopic degrees of freedom will
simultaneously be affected either through the light itself or through interactions
with one another. Probing this highly non-equilibrium state is a challenge because
different reporters for each of the affected degrees of freedom is needed. Indeed,
a serious effort has been undertaken in the past decades to develop a vast portfolio
of ultrafast spectroscopic tools to monitor the evolution of the photo-induced phase
of matter, each of which is sensitive to different material properties. Similar to the
astronomical principle of multi-messenger spectroscopy—in which the details of
an astronomical event are pieced together through various reporters spanning from
light to neutrinos to gravitational waves—simultaneously probing several degrees of
freedom in a driven solid state system allows us to paint a picture of the dynamical
light-induced phase.

With regards to our specific task of photo-doping Mott systems, the relevant degrees
of freedom are charge and spin. As such, we employ a suite of techniques sensitive
to both of these degrees of freedom. For the former, we employ a combination of
time-resolved time-domain THz spectroscopy (tr-TDTS) and transient reflectivity.
These tools allow us to probe changes in the optical conductivity following the
photo-doping drive across a broad range of frequencies spanning from the THz
to the visible. Both techniques also boast the ability to detect and track bosonic
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excitations of different ordered subsystems in the material. To track the magnetic
subsystem, we utilize time-resolved second harmonic polarimetry, which can detect
the presence of long-range order through its impact on the material’s nonlinear
optical susceptibility tensors.

In the following, we introduce the principles of ultrafast optics by providing an
overview of the laser system used in this thesis. We then describe the optical
properties of strongly correlated electron systems and the various features that one
can expect in optical spectra. Finally, we provide a detailed description of each
of the probes utilized in the results reported in the remaining chapters. However,
before delving into the details of ultrafast experiments, we begin by introducing the
principles of second order nonlinear optics. This subject is crucial to understanding
many of the physical principles that underpin the techniques used in this thesis.

2.1 Prelude: Second-order nonlinear optics
Nonlinear optics is a class of light-matter interactions that describes situations in
which materials respond nonlinearly to the application of light. These effects are
usually only observable for high electric field strengths, making them especially
relevant when dealing with amplified femtosecond pulses. We are especially inter-
ested in second-order nonlinearity, which gives rise to a wealth of phenomena that
enable the functionality of our laser systems, the driving protocols used to create
the out-of-equilibrium states, and the probing techniques used to monitor them.
Usually, the material property of interest is the optical polarization, and so we begin
our treatment with a definition of this quantity. Our treatment will closely follow
the discussion in Reference [6].

The electric flux density D is defined as

D = 𝜀0E + P (2.1)

where 𝜀0 is the permittivity of free space, E is the electric field of the light and P is
the optical polarization in the material. In the linear response regime, P is directly
proportional to the electric applied electric field:

𝑃 = 𝜀0𝜒𝑒𝐸. (2.2)

Here, 𝜒𝑒 is the electric susceptibility of the material. In the linear response, the
susceptibility is a scalar. For now, we also assume that the polarization and the
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electric field are scalars for simplicity. Moving beyond the linear regime, we can
write the polarization as

𝑃 = 𝜀0

[
𝜒(1)𝐸 + 𝜒(2)𝐸2 + 𝜒(3)𝐸3 + · · ·

]
. (2.3)

Here, 𝜒(1)𝐸 represents the linear term, while the terms proportional to multiple
factors of 𝐸 are the nonlinear terms. Their coefficients 𝜒(𝑛) are tensors known as
the 𝑛-th order susceptibilities.

We now narrow our focus towards the second-order linearity, featuring the second-
order susceptibility 𝜒(2) and two input electric fields. In the general case, these
electric field can have different frequencies 𝜔2 and 𝜔2, giving

𝐸 =
1
2

[
𝐸̃ (𝜔1)𝑒𝑖𝜔1𝑡 + 𝐸̃ (𝜔2)𝑒𝑖𝜔2𝑡 + c.c.

]
. (2.4)

Expanding the nonlinear polarization given from the second-order term gives

𝑃
(2)
𝑁𝐿

=
𝜀0
4

{
𝜒(2) (2𝜔1 : 𝜔1, 𝜔1)𝐸̃2(𝜔1)𝑒𝑖2𝜔1𝑡 + 𝜒(2) (2𝜔2 : 𝜔2, 𝜔2)𝐸̃2(𝜔2)𝑒𝑖2𝜔2𝑡

+ 2𝜒(2) (𝜔1 + 𝜔2 : 𝜔1, 𝜔2)𝐸̃ (𝜔1)𝐸̃ (𝜔2)𝑒𝑖(𝜔1+𝜔2)𝑡

+ 2𝜒(2) (𝜔1 − 𝜔2 : 𝜔1,−𝜔2)𝐸̃ (𝜔1)𝐸̃∗(𝜔2)𝑒𝑖(𝜔1−𝜔2)𝑡

+ 𝜒(2) (0 : 𝜔1,−𝜔1)𝐸̃ (𝜔1)𝐸̃∗(𝜔1) + 𝜒(2) (0 : 𝜔2,−𝜔2)𝐸̃ (𝜔2)𝐸̃∗(𝜔2)
}

+ c.c.
(2.5)

It is clear that the second-order nonlinearity mixes the input fields, resulting in several
terms. The parenthetical notation following the instances of 𝜒(2) in Equation 2.5
indicates which fields are being mixed, and the resultant frequency of the output
field. For example, 𝜒(2) (𝜔1 + 𝜔2 : 𝜔1, 𝜔2) indicates that the two input fields have
frequencies 𝜔1 and 𝜔2, while the output field has frequency 𝜔1 +𝜔2. Four different
frequency mixing effects can be seen in Equation 2.5, which we have organized by
line. The 2𝜔1 and 2𝜔2 terms are known as second harmonic generation, the 𝜔1 +𝜔2

and𝜔1−𝜔2 are known as sum and difference frequency generation, respectively, and
the zero frequency terms are known as optical rectification. Each of these terms will
play an important role in this thesis: sum and difference frequency generation enable
the photo-doping driving protocols, optical rectification underpins the generation of
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Figure 2.1: A schematic depicting the various elements that comprise the amplified
femtosecond laser system used in this thesis.

the THz frequencies with which we will probe low-energy electronic dynamics, and
second harmonic generation enables the second harmonic polarimetry technique
with which we will detect changes to the magnetic order parameter. Accordingly,
each of these second-order nonlinearities will be discussed in more depth as we
approach each of these experimental techniques later in this chapter.

2.2 A brief introduction to ultrafast optics
A femtosecond laser source is comprised of a series of lasers that work in tandem
to produce the final intense ultrafast pulse train. A schematic of the specific laser
system used in the majority of this thesis is shown in Figure 2.1. Our specific
model is the Coherent Astrella. This system is a Ti:Sapphire-based regenerative
amplifier that produces 1 kHz pulse train of 35 fs pulses centered at 800 nm with 5
W of total output power. However, while we will describe the specifics of our laser
setup, the general structure of this apparatus is quite general and applies to most
commercial femtosecond laser sources in use today, as do the physical principles that
its operation is based on. Our discussion will closely follow that of Reference [6],
within which much more detail can be found about each of the presented subjects.
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2.2.1 Generating femtosecond pulses: The oscillator
The journey begins with the Coherent Verdi-G, which is a CW diode-pumped green
laser centered at 532 nm. This source pumps the gain medium in a Ti:Sapphire laser
oscillator system that is capable of producing femtosecond pulses. Our specific
model is the Coherent Vitara, which produces pulses with a 70 nm bandwidth. The
method by which the oscillator system produces a femtosecond pulse train is known
as mode locking.

Figure 2.2: A depiction of the principle of mode locking. Seven oscillations (blue)
of different but equally separated frequencies constructively interfere when phase-
locked to produce a train of short pulses (red).

To understand mode locking, we must first understand the factors that determine the
frequency content of a laser. The first determining factor is the geometry of the laser
cavity. To be specific, here we consider the simplest case known as the Fabry-Pérot
cavity which consists of two mirrors facing each other. Such a cavity is capable of
only hosting certain, discrete frequencies of light due to constraints on the phase of
the light as it makes a round trip through the cavity. These frequencies are given by

𝑓𝑚 =
𝑚𝑐

2𝑙
(2.6)
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where 𝑚 is an integer, 𝑐 is the speed of light, and 𝑙 is the length of the cavity (the
distance between the two mirrors). These are known as the longitudinal modes of
the laser cavity. The spacing between each mode is given by

Δ 𝑓 = 𝑓𝑚+1 − 𝑓𝑚 =
𝑐

2𝑙
. (2.7)

The second factor that determines the frequency output of the laser is the frequency
bandwidth of the gain medium. If the bandwidth is broad enough, several longitudi-
nal modes will be included in the output spectrum of the laser. We denote the total
number of modes included in the bandwidth as 𝑁 . When these modes have no fixed
phase relationship with one another, they can be treated as a series of independent
emitters and their collective output intensity will fluctuate randomly over a charac-
teristic timescale of 1/𝑁Δ 𝑓 . However, if an optical element is introduced to fix the
phase of each emitter, then they will constructively interfere to produce an intensity
profile consisting of a periodic series of short pulses (Figure 2.2). The period of
this pulse train will be 1/Δ 𝑓 , while the duration of each pulse is approximately
1/𝑁Δ 𝑓 . The Coherent Vitara used in our laboratory has a period of 12.5 ns between
pulses, corresponding to a frequency spacing of 80 MHz. Since Ti:Sapphire has a
bandwidth of roughly 1014 Hz, more than 106 longitudinal modes can potentially
be supported. Thus, the minimum pulse width that can be achieved is ∼10 fs. In
typical systems, however, oftentimes the full bandwidth of the Ti:Sapphire crystal
is not achieved in the final pulse, reducing the total number of modes. For example,
the factory specifications for our Vitara quote a bandwidth of 70 nm and a pulse
width of < 20 fs.

Having conceptually described the principle of mode locking, we are now ready to
address how is practically accomplished within the oscillator. To fix and stabilize
the phase between the longitudinal modes, an optical element must be included in
the cavity that will modulate the light as a function of time. The simplest method
to accomplish this is known as active mode locking, in which an external electrical
signal is used to drive a modulator, such as an amplitude modulator. If the amplitude
modulator is driven to act as a shutter that "opens" once per round trip within the
cavity 𝜏, allowing just a single pulse to pass back and forth within the cavity. In
the frequency domain, this driving serves to generate side bands of the longitudinal
modes at 𝑓𝑚 ±𝑛𝜏 where 𝑛 is an integer. Since all the side-bands are generated by the
same driving pulse—hence are driven in phase—each mode 𝑓𝑚 will be locked with



32

its adjacent modes. A major drawback of active mode locking is that its response
time is too slow, preventing its use from generating ultrafast pulses.

This drawback can be overcome with passive mode locking. In this technique,
a nonlinear optical element is used to modulate the light instead of an externally
driven modulator. Due to the nonlinear optical properties of this element, which is
known as a saturable absorber, its absorption decreases as the intensity of the light
passing through it increases. In this way, the light in the cavity itself can generate
the periodic modulation needed to induce mode locking through its interaction with
the saturable absorber. In the time domain, the saturable absorber will allow intense
spikes of intensity within the cavity to pass while attenuating the CW light that
exists outside of these spikes. As the light continues to make round trips through the
cavity, these spikes will continue to sharpen and as they interact with the absorber
they serve as the time-periodic modulator.

In the Vitara, as well as most commercial Ti:Sapphire lasers with ∼ 10 fs pulse
widths, a special type of passive mode locking is known as Kerr lens mode locking
is used. The optical Kerr effect is a nonlinear optical process in which refractive
index of the medium is dependent on the applied field strength:

𝑛 = 𝑛0 + 𝑛2𝐼 (𝑡) (2.8)

where 𝑛 is the total index of refraction of the material, 𝑛0 is the un-pumped index
of refraction, and 𝑛2 is the nonlinear index of refraction. 𝐼 (𝑡) is the intensity of the
light, which is proportional to the modulus squared of the electric field. Since the
spatial distribution of the light in the cavity has a Gaussian power distribution, the
field is much more intense at the center of the beam. Thus, the light passing through
the Kerr medium will create a spatially varying index of refraction, which serves
as a lens that focuses the light. In this way, the high intensity modes are focused
more tightly within the Kerr medium than the low intensity modes. In the so-called
soft aperture operation of a Kerr lens mode locked laser, the gain medium (i.e., the
Ti:Sapphire rod) itself acts as the Kerr medium. Thus, the light that is focused more
tightly has a better cross section with the pump light in the gain medium—in our
case the green light from the Verdi G. As a result, the more tightly focused light
is amplified much more strongly than the less tightly focused light. Thus, similar
to the saturable absorber, continued round trips will lead to selective amplification
of the spikes and serve as a time-periodic modulator of the intensity in the cavity,
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leading to mode locking. The benefit of Kerr lens mode locking are the fast response
times of the optical Kerr effect (estimated to be 1 or 2 fs) allowing incredibly short
pulses to be achieved. Moreover, since the gain medium itself acts as the modulating
element, the full bandwidth of the gain medium can be preserved since no additional
optical elements must be introduced such as driven optical modulators or saturable
absorbers, each of which will have their own bandwidths.

Figure 2.3: Schematic of a cavity in a regenerative amplifier. Adapted from Refer-
ence [6].

2.2.2 Amplifying femtosecond pulses: The regenerative amplifier
While the oscillator is able to produce a stable femtosecond pulse train through mode
locking, these pulses are quite weak with typical pulse energies on the order of 1 nJ.
For the experiments performed in this thesis, pulse energies on the order of 1 mJ are
needed to achieve both the requisite pumping conditions and seed the spectroscopic
probes. This amplification factor of 106 can be achieved in an apparatus known as
a regenerative amplifier. The specific model used in the experiments reported in
this thesis is the Coherent Astrella. A simple schematic of a generic regenerative
amplifier is shown in Figure 2.3. The key elements of the regenerative amplifier
cavity are the seed pulse that will be amplified, the gain medium and the laser that
pumps it, a polarizing element (P) that reflects light of a certain polarization and
transmits the perpendicular polarization, a quarter waveplate (𝜆/4), and an electro-
optic Pockels cell. A Pockels cell is an optical device whose polarizing properties
depend on the voltage applied across it. In the regenerative amplifier, it will either
be set for zero retardation, or it will be set to serve as a quarter waveplate.

Regenerative amplification involves three distinct steps designed to first charge the
gain medium, then trap the seed pulse within the cavity to enable amplification, and
finally to release the amplified pulse [6]:
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1. Charging stage: The objective of this stage is to allow the gain medium
accumulate energy from the pump laser. Any spontaneous emission by the
gain medium is first polarized by the polarizer, then is rotated by 90° as it
makes a double-pass through the quarter waveplate, and is reflected out of the
cavity as it reaches the polarizer again. At this point, the Pockels cell is set to
zero retardation.

2. Amplification stage: A pulse from the oscillator is directed into the polarizer
using a pulse picker. Its polarization is set such that it reflects into the cavity.
At this point, the Pockels cell is still set to zero retardation, so when the
pulse makes its double-pass through the quarter waveplate its polarization
has rotated by 90° so it now transmits through the polarizer towards the gain
medium to be amplified. During the time that it the pulse makes its double-
pass through the gain medium, before it again reaches the Pockels cell, the
retardation is set such that the Pockels cell serves as a quarter waveplate.
Now, as the pulse does its double-pass through the quarter waveplate and the
Pockels cell, which collectively serve as a half waveplate, its polarization will
be unchanged and it will continue to pass through the polarizer. At this point,
the pulse is trapped within the regenerative amplifier and will continue to
make round trips through the gain medium.

3. Output stage: After the desired number of round trips have been performed,
the Pockels cell is deactivated before the pulse reaches it. Accordingly, the
next double-pass through the waveplate will rotate the polarization of the
pulse by 90°, allowing it to reflect off the polarizer and out of the regenerative
amplifier.

This regenerative amplification scheme is technically achieved through a process
known as chirped pulse amplification. During the amplification process, a challenge
arises in that the pulse becomes so strong that it will eventually start to catastroph-
ically damage the optical elements of the amplifier. To overcome this challenge,
the pulse is first stretched in time—often up to hundreds of picoseconds—before it
enters the regenerative amplifier. In doing so, the overall pulse energy remains the
same, but the peak electric field is reduced drastically. This less intense pulse can
now be safely amplified. As it exits the amplifier, it is compressed in time again to
its original temporal width, resulting in an intense, femtosecond-width pulse. To
stretch the pulse, a grating or prism pair is used to separate the different colors within
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the broadband pulse. Each color is then sent along a different path, such that longer
wavelengths have a shorter path length than the shorter wavelengths. Then, all the
colors spatially recombined via a second pass through the grating or prism pair.
The resultant pulse—known as a chirped pulse—is now much longer in time since
the shorter wavelengths are lagging behind the longer wavelengths. The pulse is
compressed by passing through the same prism or grating apparatus but in reverse.

Finally, a note on the gain medium and pumping laser. The gain medium in our
amplifier is another Ti:Sapphire crystal. Similar to the oscillator, the gain medium
is pumped by a green laser. In the case of the Astrella, the pump laser used in the
regenerative amplification cavity is also another pulsed laser in order to maximize
the energy stored in the gain medium. This laser is the Coherent Revolution, which
is a Q-switched, diode-pumped, intra-cavity doubled Nd:YLF laser with a central
output frequency of 527 nm.

2.2.3 Generating different frequencies: The optical parametric amplifier
The amplified pulse that escapes the regenerative amplifier is the starting point for
all experimentation in our lab. It not only can be used to drive materials into an
non-equilibrium state for us to investigate, but it also serves as the seed for the
probes we use for that investigation. However, a limitation of the amplified pulse
is that its frequency is fixed by the Ti:Sapphire gain medium at ∼800 nm. For
many experiments, it is crucial to obtain light at different frequencies in order to be
resonant with different features within a material’s optical spectrum. For example,
when photo-doping, tuning the photon energies allows for control over which bands
are being driven. For Mott insulators, relevant energies are often in the infrared
and visible regimes. Conveniently, it is possible to generate these energies using
the amplified 800 nm pulse via a frequency conversion process known as optical
parametric amplification.

The resulting apparatus is known as an optical parametric amplifier (OPA). In our
lab, we have two commercial Light Conversion TOPAS Prime OPAs, both of which
are capable of producing pulses between 1200 nm and 2400 nm. The first (dubbed
OPA 1) receives a 3.5 mJ pulse from the Astrella as an input, generating a peak
converted wavelength output of 1 mJ. This OPA is primarily used for driving the
samples into an out of equilibrium state, as the pulses are quite energetic. The
second OPA (OPA 2) receives a 0.5 mJ pulse from the Astrella, generating a peak
output of 0.05 mJ. As such OPA 2 is primarily used to probe the near-infrared
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Figure 2.4: Diagram of the optical parametric amplification process.

transient reflectivity response at various photon energies.

The working principle of the OPA is optical parametric frequency conversion,
which is a consequence of the second-order nonlinear effects described in Section
2.1. Consider the following relation:

𝜔0 = 𝜔𝑠 + 𝜔𝑖 . (2.9)

This process describes the down-conversion of an incoming photon 𝜔0 with some
energy—known as the fundamental energy—into two other photons 𝜔𝑠 and 𝜔𝑖—
known as the signal and idler, respectively—with lower photon energies that sum
to that of the fundamental. As a matter of convention, we denote the output beam
with the higher photon energy as the signal that with the lower photon energy as
the idler. In practice, parametric amplification is performed by sending photons of
two energies—the fundamental and the signal—into a nonlinear crystal. There, the
crystal will mediate an interaction that results into the conversion of fundamental
photons into two photons with the signal wavelength and the idler wavelength (Figure
2.4. In this way, the signal is effectively amplified. The energy of the signal—and
hence that of the idler—can be changed by tuning elements in the optical path of the
OPA, as will be seen shortly.

Technically, the OPA is composed of three beams split from the input pulse, which
will serve as the fundamental in the parametric amplification. We use the pa-
rameters from OPA 1 for concreteness. The first contains 4% of the total input
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power is focused tightly onto a piece of sapphire to generate a broadband pulse
via supercontinuum generation, a nonlinear optical process in which an intense
femtosecond pulse generates an ultra-broadband spectrum of energy running from
the near infrared through visible. Importantly, it contains within its bandwidth the
signal wavelength. The second section (16% of the power) of the fundamental is
directed onto a nonlinear crystal along with the white light pulse at a non-collinear
angle. Before they reach the crystal, one pulse is delayed with respect to the other.
This is done in order to tune which portion of the supercontinuum pulse—which is
chirped—interacts with the fundamental, thereby selecting the signal wavelength.
This selection can be buttressed by tuning the polar rotation angle of the nonlin-
ear crystal which affects the phase-matching between the two wavelengths. Since
the two pulses are non-collinearly incident onto the crystal, they can be spatially
separated after the amplification process. The residual fundamental and idler are
blocked. The signal proceeds to a second nonlinear crystal for a second amplification
stage with the remaining 80% of the fundamental power. Again, the efficiency of the
parametric amplification process can be controlled via the temporal delay between
the signal and the fundamental and the angle of the nonlinear crystal. Following
the second amplification stage, which is performed in the co-linear geometry, the
residual fundamental is blocked with a filter and the signal and idler are separated
with a wavelength separator.

Both the signal and the idler can directly be used in the experiments. However, it is
possible to reach even longer wavelengths using a differential frequency generation
(DFG) apparatus. Performed outside of the OPA, this is done by directing both
the signal and the idler onto another nonlinear crystal, where their frequencies are
mixed to give their difference 𝜔𝐷𝐹𝐺 = 𝜔𝑠 − 𝜔𝑖. The DFG in our lab technically
allows us to access wavelengths up to 10 𝜇m, but the power becomes quite weak
above 5 or 6 𝜇m, preventing use of these longer wavelengths in most experiments.

2.3 Interlude: Optical spectroscopy of solids
Optical spectroscopy is an essential tool in the study of condensed matter. Its fre-
quency resolution is unparalleled, even reaching 5 neV in some cases. Moreover,
current laser technology can generate photons in the 1 meV to 10 eV range in a
laboratory setting. This broad spectral range covers the fundamental energy scales
of the microscopic interactions in these systems—and accordingly, the physical
phenomena that they produce. Each of these features will impart a unique spec-
tral fingerprint onto the optical spectra in these materials, creating a macroscopic
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Figure 2.5: A depiction of various processes in correlated electron systems and their
typical time and energy scales. Each one of these phenomena has a unique spectral
fingerprint that will appear in a material’s optical conductivity. From Reference
[18].

window to peer into their microscopic nature. These processes include a variety of
interband transitions, structural and magnetic bosonic excitations, electronic reso-
nances, excitons, and many more fundamental features of condensed matter systems
(Figure 2.5). Optical probes rely on a wealth of different light-matter interactions,
each of which are mediated by different degrees of freedom in the material. As
a result, by building different probes, different degrees of freedom can be moni-
tored to enable the multi-messenger approach of experimentation. From a practical
perspective, several different optical apparatuses can be comfortably built from a
single laser system, facilitating this sort of study. This superb energy selectivity and
experimental flexibility allows for a careful exploration of the energetic landscape
of materials, and has led to significant contributions to our understanding of weakly
correlated and strongly correlated electron systems alike.

For the specific use case scenario of photo-doping Mott insulators, optical spec-
troscopies satisfy the demanding requirements of probing the quantum many-body
out-of-equilibrium state. Aside from their sensitivity to both the charge and magnetic
degrees of freedom, these techniques can be constructed to resolve the evolution of
the photo-doped system as a function of time. By using a pulsed laser source, such
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as those described in Section 2.2 and introducing a variable delay between a strong
driving pulse—commonly known as the pump—and a weaker probing pulse, the
transient response of the material can be stroboscopically recorded. This so-called
"pump-probe" scheme of measurement is nearly universally employed in all ultrafast
spectroscopic techniques.

2.3.1 A description of optical responses
The primary objective of optical techniques is to leverage the material’s electrody-
namic response to extract their response functions. A particularly important example
is that of the optical conductivity 𝜎̃(𝜔) which is the linear response function that
describes the current 𝑗 (𝜔) generated by an applied electric field [8]:

𝑗 (𝜔) = 𝜎̃(𝜔)𝐸̃ (𝜔). (2.10)

𝜎̃(𝜔) is a complex quantity, and the real and imaginary parts are referred to as 𝜎1

and 𝜎2, respectively. Each of the various excitations generated in solids will have
absorption properties that will affect the functional form of 𝜎̃(𝜔). To calculate these
functional forms, the most commonly implemented method is the Kubo-Greenwood
model [8]:

𝜎1(𝜔) =
𝑒2

(2𝜋𝑚)2𝜔
|⟨ 𝑓 |𝑝 |𝑖⟩|2𝐷 𝑓 𝑖 (ℏ𝜔). (2.11)

We see that the conductivity depends on two physical quantities: the dipole matrix
element ⟨ 𝑓 |𝑝 |𝑖⟩ and the joint density of states (DOS)𝐷 𝑓 𝑖 (ℏ𝜔). The former considers
dipole-active optical transitions from an initial state |𝑖⟩ to a final state | 𝑓 ⟩, and
incorporates the effects of symmetry constraints and selection rules into 𝜎1(𝜔). The
latter accounts for the fact that for an optical transition to occur, there must be a finite
density of occupied states at the initial energy, and a finite density of unoccupied
states the final energy. Thus, the joint DOS reflects how many optical transitions
are available to occur at a given energy, and is determined by the electronic band
structure and the carrier distribution.

The imaginary part can be found through the Kramers-Kronig relation [8]:

𝜎2(𝜔) = −
2𝜔
𝜋

∫ ∞

0
𝑑𝜔′

𝜎1(𝜔′)
𝜔′2 − 𝜔2 . (2.12)

Similarly, 𝜎1(𝜔) can be found using 𝜎2(𝜔):
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Figure 2.6: Optical conductivity of Sr2IrO4 [199]. The 𝐽𝑒 𝑓 𝑓 = 1/2 LHB →
𝐽𝑒 𝑓 𝑓 = 1/2 UHB (𝛼) and 𝐽𝑒 𝑓 𝑓 = 3/2 → 𝐽𝑒 𝑓 𝑓 = 1/2 UHB (𝛽) transitions are
labeled.

𝜎1(𝜔) =
2
𝜋

∫ ∞

0
𝑑𝜔′

𝜔′𝜎2(𝜔′)
𝜔′2 − 𝜔2 . (2.13)

These Kramers-Kronig relations arise from constraints on the real and imaginary
parts of the 𝜎̃(𝜔) stemming from the principle of causality. In fact, they apply
to any causal response function—including the dielectric function and the index
of refraction. Later in this thesis, we will use Kramers-Kronig relations to extract
the amplitude and phase of the complex reflectivity form the absolute reflectance.
Using 𝜎̃(𝜔), we can extract other optical constants. The dielectric function, for
example, is given by 𝜀(𝜔) = 𝑖𝜎̃(𝜔)

𝜀0𝜔
[8, 18]. In turn, the index of refraction is given

by 𝑛̃(𝜔) =
√︁
𝜀(𝜔).

𝜎̃(𝜔) can be measured in multiple ways. For certain frequency regimes, it is
possible to perform a phase-resolved measurement of the electric field in the time
domain after it reflects or transmits through the sample. By comparing this data
to an absolute reference, both the real and imaginary parts of 𝑛̃(𝜔), and hence
the real and imaginary parts of 𝜎̃(𝜔), can be directly extracted without resorting
to Kramers-Kronig relations. Technological limitations prevent this sort of phase-
resolved detection in the majority of frequency regimes, and is limited to mid- and
far-infrared frequencies. For the near-infrared, visible, and ultraviolet regimes, the
most common tool is to measure 𝑅𝑠/𝑝 (𝜔) for as broad of a frequency range as
possible and to perform a Kramers-Kronig analysis to extract the reflected phase,
allowing one to reconstruct the real and imaginary parts of 𝑛̃(𝜔) and eventually
𝜎̃(𝜔).
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2.3.2 Basic features of an optical spectrum
Having understood the physical mechanisms that generate an optical spectrum, we
are now in a position to interpret these spectra. In Figure 2.6, we plot the optical
conductivity of Sr2IrO4 as an example of the spectrum of a prototypical Mott
insulator (reproduced from Figure 1.6b). Since the material is an insulator, there is
minimal low-energy spectral weight. The sharp peaks below 100 meV are attributed
to absorption from infrared-active phonon modes, while the broader higher energy
𝛼 and 𝛽 peaks at ∼0.5 eV and ∼1.0 eV, respectively, are attributed to inter-band
transitions. Each of these absorptions is well-described by a Lorentzian line shape
[8]:

𝜎(𝜔) = 𝑁𝑒2

𝑚

𝜔

𝑖(𝜔2
0 − 𝜔2) + 𝜔/𝜏

(2.14)

where 𝜔0 is the central frequency of the resonance and 𝜏 is the relaxation rate of the
absorption, and is inversely proportional to the width of the peak. The constants 𝑁 ,
𝑒, and 𝑚 are the electron density, charge, and mass, respectively.

Metals, on the other hand, feature low-energy spectral weight that peaks at 𝜔 = 0,
giving the dc value of conductivity. This is usually modelled with the Drude formula,
which is the 𝜔→ 0 limit of Equation 2.14:

𝜎(𝜔) = 𝑁𝑒2𝜏

𝑚

1
1 − 𝑖𝜔/𝜏 . (2.15)

Interestingly, in addition to a more rigorous calculation using the Kubo formalism,
these results can be obtained through classical arguments describing the motion of
a charge subjected to external forces from the driving field and internal restoring
forces. They are exceptionally successful at describing the general absorption
features of materials, especially those that are weakly correlated. While still effective
in strongly correlated systems such as Mott insulators, these materials will often
feature strong deviations from these models. For example, the extended-Drude
model accounts for a frequency-dependent 𝑚 and 𝜏 and is used to explain the
heavy, strongly-interacting nature of electrons in correlated systems. In reality,
interpretation of optical conductivity can be an arduous, and oftentimes messy,
affair reflecting the fact that strongly interacting degrees of freedom will each leave
their unique fingerprint on the spectrum. However, it is precisely this fact that
has allowed for optical spectroscopy to lead to such great advancements in our
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understanding of correlated electron systems, as each wiggle and peak is indicative
of an underlying process that can be studied.

2.4 Time-resolved time-domain THz spectroscopy
In solid state systems, the fundamental energy scales for a vast range of phenomena
often fall within the region spanning 0.1 meV to 100 meV. As a result, this energy
window is rich with spectroscopic features that arise from these low-energy phe-
nomena, including carrier lifetimes, bosonic excitations, superconducting and hy-
bridization gaps, cyclotron resonances, plasmons, localization peaks, intra-excitonic
transitions, and so on (Figure 2.5). Indeed, nearly every degree of freedom renders
some sort of spectroscopic manifestation within this frequency range, colloquially
known as the THz regime (.1 - 20 THz). Probing within this energy window thus
grants access to a wealth of information about the material.

Though interesting from a condensed matter physics perspective, access to this
energy window is challenging as much of it lies within the so-called THz gap in
which there are very few technologies to emit and detect radiation. However, the
use of femtosecond laser technologies helps to overcome this challenge as we can
leverage the high electric field strengths associated with the ultrashort pulses. As
alluded to in Section 2.1, nonlinear optical processes can be used for photon energy
conversion through frequency mixing. These effects scale quadratically with the
electric field, making them a viable pathway to extend the experimentally accessible
wavelengths into the THz gap. In the following, we will discuss the methods behind
generating, detecting, and analyzing THz-frequency light. The resulting technique
that uses this THz radiation to analyze the electrodynamic properties of materials
is known as time-domain THz spectroscopy (TDTS). We start with a method to
generate light via optical rectification in pumped nonlinear crystals.

2.4.1 Optical rectification
In Equation 2.5, the two zero-frequency terms describe a process known as optical
rectification, in which the electric field produces a polarization with the form [6]:

𝑃𝑁𝐿 (𝑡) ∼ |𝐸̃ (𝑡) |2. (2.16)

In other words, the nonlinear polarization will follow the optical intensity of the
input pulse. Note that the current associated with the motion of bound charge
carriers in the nonlinear crystal is equal to the time derivative of the polarization
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Figure 2.7: The THz electric field amplitude (a) and polarization (b) as a function
of the azimuthal angle of the nonlinear crystal within which optical rectification is
achieved. The azimuthal angle is defined as the angle between the [001] axis of the
crystal and the polarization of the optical pulse. From Reference [250].

𝜕𝑃/𝜕𝑡. Accordingly, just how time varying currents of free charges will generate
radiation, so too will the motion of these bound charges. The time varying nonlinear
polarization thus produces a radiated field with the following form [6]:

𝐸rad ∼
𝜕2𝑃𝑁𝐿

𝜕𝑡2
. (2.17)

As with most nonlinear processes that originate from bound-charge motion, optical
rectification is likely exceptionally fast. As a result, the bandwidth of the emitted
THz pulse is only limited by the frequency components contained within the input
optical pulse that drives the nonlinear crystal in the ideal case. From the frequency-
domain perspective, optical rectification can be seen as difference frequency mixing
of the frequencies contained within the bandwidth of the input pulse. This point of
view helps to further understand how the input pulse width limits the bandwidth of
the output THz pulse. The shorter the optical pulse is in time, the broader it is in
the frequency domain, resulting in a larger breadth of frequency differences.

In reality, the crystal itself will also impose its own bandwidth constraints on the
emitted THz pulse, stemming from the presence of optical phonons THz regime
and the difference in refractive index between the optical pulse and the emitted THz
pulse. In the case of the former, THz-frequency phonons in the nonlinear crystal
will strongly absorb any radiation, thereby preventing their emission. In the case
of the latter, the refractive index differences will cause the optical pulse to travel
at a different speed than the THz radiation inside the nonlinear crystal. A large
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mismatch between these two will prevent the generation of THz radiation. More
specifically, since the shape of the THz field is determined by the envelope function
of the optical pulse, phase matching requires that the group velocity of the optical
pule is matched with the phase velocity of the THz pulse [169]:

𝑘 (𝜔THz)
𝜔THz

≈
(
𝜕𝑘

𝜕𝜔

)
opt
. (2.18)

This phase matching condition can be used to determine the maximum distance
over which THz generation will still occur in the crystal, which is known as the
coherence length [169]. Crystals should be chosen such that their thickness is less
than or equal to the coherence length. In general, there is an inverse relationship
between THz bandwidth and crystal thickness owing to the phonons and the phase
matching constraints effects.

The most popular materials for THz generation via optical rectification are (110)-
oriented ZnTe and GaP crystals. They both have long coherence lengths at the 800 nm
wavelength pertinent to Ti:Sapphire lasers, and they have relatively large nonlinear
optical coefficients. Typical bandwidths are 0.3 THz—2.5 THz for the former and
0.5 THz—6 THz for the latter. While GaP boasts a much larger bandwidth, it is
nearly 4.5 times less efficient in THz field generation and detection [38]. Both
of these crystals have a zincblende structure with a 43𝑚 point group symmetry
[38, 187, 250]. To simultaneously achieve maximal phase matching and to fix the
polarization of the emitted THz pulse, the relationship between the crystal axes
and the polarization of the optical pulse must be fixed with respect to one another.
For crystals with the same structure as GaP and ZnTe, the relationship between the
emitted THz field and the THz polarization can be found in Figure 2.7 [250]. The
azimuthal angle is defined as the angle between the [001] axis of the crystal and the
polarization of the optical pulse.

2.4.2 Electro-optic sampling
The THz electric field is detected through a technique known as electro-optic sam-
pling (EOS). EOS leverages yet another second-order nonlinear effect with a sus-
ceptibility of the form 𝜒(2) (𝜔;𝜔, 0). Essentially, a low-frequency electric field (i.e.,
the THz pulse) and an optical field (i.e., an 800 nm pulse from the amplifier) interact
to form a second-order polarization at the optical frequency. During this process,
known as the Pockels effect, the THz electric field generates a birefringence in the
crystal proportional to its field strength [6, 169, 187]. The polarization of the optical
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Figure 2.8: A schematic of a typical electro-optic sampling setup. The THz radiation
is in light blue while the sampling pulse is shown in red.

pulse will rotate due to this birefringence. Thus, by detecting that polarization
rotation of the optical pulse, the THz electric field strength can be determined. In
practice, this technique is enabled by the fact that the optical pulse—known as the
sampling pulse—has a much shorter duration (35 fs) than the THz pulse (∼1 ps).
As a result, the sampling pulse can be temporally delayed with respect to the THz
pulse to sample different portions of the electric field profile. Through iterative
measurement, the entire THz pulse can be resolved as a function of time, granting
access to its full spectrum through a fast Fourier transform.

A schematic of an EOS optical path is shown in Figure 2.8. The THz pulse and the
sampling pulse are each focused onto an electro-optic crystal. They are collinear
to maintain spatial overlap through the entire crystal length. The sampling pulse
then passes through a half- or quarter-waveplate before a Wollaston prism spatially
separates the s- and p-polarized components of the pulse. Each polarization is
then detected in the pair of sensors on a balanced photodiode. These signals are
subtracted from one another, and the difference is the ultimate measured quantity.
The waveplate is used to set this difference to be zero in the absence of THz
pulse, allowing any rotation caused by the THz to be measured without a constant
background. This differential "balanced detection" scheme is known to facilitate
low-noise measurements of the THz pulse that are often limited by the shot-noise
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Figure 2.9: Relative orientation of THz polarization, sampling pulse polarization,
crystal axes in the electro-optic sampling scheme. a Definition of the relative angles
between the of THz electric field polarization, the sampling pulse polarization, and
the nonlinear crystal axes in the electro-optic sampling scheme. b Dependence of
the detected THz electric field for various polarization configurations as a function
of the crystalline azimuthal angle. From Reference [187].

Figure 2.10: Example of a THz electric field obtained with electro-optic sampling. a
Time-domain THz electric field transient 𝐸 (𝑡) obtained with electro-optic sampling.
b,c The corresponding frequency-domain amplitude (b) and phase (c) obtained
through a FFT.

of the laser.

To maximize the detection efficiency, a particular relationship between the THz
pulse polarization, the sampling pulse polarization, and the electro-optic crystal
orientation must be achieved [187]. These angles are defined in Figure 2.9a for
the particular case of (110)-oriented ZnTe crystal, which is a common electro-optic
detector along with GaP. The measured dependence on the detected THz electric
field and these angles is shown in Figure 2.9b.

An example of a pulse obtained with EOS is shown in Figure 2.10a. This field was
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generated via optical rectification with a 1 mm thick ZnTe crystal pumped by a 0.6 mJ
800 nm pulse with a width of 35 fs. It was detected in a 1 mm thick ZnTe crystal using
an 800 nm 35 fs sampling pulse with 0.01 mJ of pulse energy. Since the full electric
field profile of the THz pulse is being resolved as a function of time, we have access
to both the amplitude (Figure 2.10b) and the phase (Figure 2.10c) of the spectrum,
which can be accessed through a fast Fourier transform (FFT). This information
allows us to calculate complex material parameters such as the index of refraction
and the optical conductivity without resorting to Kramers-Kronig transformations.

2.4.3 Introducing time resolution
To study the effects of photo-doping, time resolution must be introduced into the
EOS measurement scheme. This task can be achieved through the introduction of a
driving pulse that is delayed with respect to the THz pulse and the sampling pulse.
There are now two time axes to keep track of. The first is the axis along which the
sampling pulse is delayed with respect to the THz pulse for the EOS measurement
scheme. We denote this THz pulse measurement axis as 𝑡𝐸𝑂𝑆. Since the electric field
profile is mapped out along 𝑡𝐸𝑂𝑆, it is the Fourier conjugate to the THz frequency
𝜔. The second is the delay 𝑡 between the pump pulse that drives the sample and the
sampling pulse, which is a measure of the time elapsed since photo-excitation. The
definition of 𝑡 = 0 is somewhat arbitrary, but here we define it as the time at which
the pump first reaches the sample, as will be seen in the following sections.

Figure 2.11: Schematic representation of the time-resolved time-domain THz mea-
surement scheme. The relationship between the THz electric field, the sampling
pulse, and the pump pulse in time is shown.

A schematic of the relationship between the three pulses is shown in Figure 2.11.
Note that the THz pulse is much longer than both the pump and the sampling
pulses. The time resolution is not set by the THz pulse duration, however, due to
the advantages of the EOS sampling scheme [47, 99]. To measure the transient
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spectrum at a given pump-probe time delay 𝑡, the relative delay between the pump
pulse and the sampling pulse is fixed, and both are swept together along the 𝑡𝐸𝑂𝑆
axis to measure the pump-induced THz electric field profile. In this way, each part
of the THz electric field profile only records the response of the sample only at the
time delay 𝑡. In a conventional spectrally-resolved pump probe experiment, such
as white-light spectroscopy, the delay between the pump and probe would be fixed,
then the spectrum would be measured after both fields have interacted with the
sample. In our case, measuring the spectrum corresponds to the Fourier transform
of the electric field profile in the time-domain, and so the EOS measurement axis
can be measured for an arbitrarily long time without sacrificing the time resolution.

2.4.4 The time-domain THz spectrometer
Figures 2.12 and 2.13 displays schematics of the specific time-domain THz spec-
trometers used to collect the data presented in this thesis. Each of the setups is
built within an environment purged with 𝑁2 gas in order to minimize atmospheric
absorption of the THz radiation. All of the photo-induced spectra were collected
in the reflection geometry using the time-resolved time-domain THz spectrometer
shown in Figure 2.12a. This setup was seeded by 800 nm, 35 fs pulses produced
by a Ti:sapphire amplifier operating at 1 kHz, which was split into three arms. The
first arm (3.5 mJ pulse energy) was sent into an optical parametric amplifier (OPA)
that served as the tunable near-infrared (NIR) pump source. The second arm (0.6
mJ pulse energy) was used to generate the broadband THz-frequency probe through
optical rectification of the 800 nm pulses. The third arm (1 𝜇J pulse energy) was
reserved for the electro-optic sampling (EOS) sampling pulse used to measure the
THz electric field 𝐸 (𝑡EOS). The temporal delay 𝑡EOS between the 800 nm EOS
sampling pules and the THz probe was controlled with a motorized delay stage.
The optical path of the NIR pump pulse also included a motorized delay stage that
was used to control the temporal delay 𝑡 relative to the sampling pulse. The THz
pulse was fixed in time. Each of these three paths was carefully measured during
the construction of the apparatus in order to ensure that they all had the same length,
guaranteeing that there was temporal overlap between them.

The THz generation path begins with pumping a nonlinear optical crystal using
the 0.6 mJ 800 nm pulse, such as ZnTe or GaP. A Teflon filter was used as a
low-pass filter to block the residual 800 nm radiation while transmitting the THz
radiation. The THz pulse was then sent into a 1:3 telescope constructed of two 90
° off axis parabolic mirrors to expand the THz beam, allowing for a tighter focus



49

Figure 2.12: Schematic of a reflection geometry time-domain THz spectrometer. a
Schematic of the reflection-based tr-TDTS used in this thesis. The light blue path
is the THz radiation, the red paths represent the 800 nm THz generation pulse and
the 800 nm EOS probe pulse, respectively, and the orange path is the tunable NIR
pump. b An image of the setup in the lab with lines depicting the optical paths of
the sampling, THz, and NIR pump pulses. Color coding is the same as in a.

at the sample position. The expanded beam is then passes through a wire-grid
polarizer (InfraSpecs model P01) before being directed into an alignment apparatus
that contains two flat mirrors and two 30° off-axis parabolic mirrors (Figure 2.12b).
This alignment tool facilitates the challenging task of guiding the THz pulse into
the 30° off-axis parabolic mirrors that focus the THz pulse onto the sample surface
and collect its reflection. It was built such that the cryostat could fit between the two
flat mirrors, as closely as possible to the parabolic mirrors, in order to minimize the
working distance. After the collimated beam leaves the sample alignment apparatus,
it enters one final 90° off-axis parabolic mirror and is focused onto the EOS detection
crystal. The final parabolic mirror has a small hole drilled through it to pass the
sampling pulse.

The sampling pulse is split from the 0.6 mJ 800 nm pulse using a wedged beam
sampler. It then passes into a retro-reflector mounted atop a motorized delay stage,
which introduces the temporal control needed for the EOS measurement scheme.
The pulse then passes through a long focal length lens positioned such that the
focus is on the nonlinear detector crystal. Before it reaches the crystal, the beam
first passes through a linear polarizer and a half-waveplate to control the power and
polarization of the pulse. The half-waveplate is placed after the polarizer in order to
keep the power constant as the polarization is rotated. The beam then passes through
the hole into the final off-axis parabolic mirror in the THz path before reaching the
detector crystal. It then passes into the EOS apparatus described in Figure 2.8.
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The path of the NIR pump pulse is relatively simple compared to the THz and
sampling paths. After exiting the OPA, the pump pulse is directed towards the THz
setup. Before reaching the sample, it passes into a retro-reflector mounted atop a
motorized delay stage, which introduces the temporal control needed to introduce
time resolution. It is then guided between the two 30° off-axis parabolic mirrors
in the THz path before striking the sample at normal incidence. Because the THz
spot size is quite large (∼ 1 mm), the entire sample is often pumped in order to
ensure complete spatial overlap between the pump beam and the THz beam. For
this reason, the pump pulse is left collimated when it reaches the sample. The spot
size can be controlled via an upstream telescope if needed (not shown).

An important consideration is that the pump pulse can scatter into the THz detection
path after it arrives to the sample. This can be detrimental to the measurement
because the scattered light can interact with the sampling pulse in the detector
crystal, creating spurious signals that interfere with the desired measurement. As
such, a filter must be placed between the sample and the detector to block pump
scatter. Strangely enough, we found that black garbage bags worked rather well for
this purpose. They completely blocked the pump scatter while fully transmitting
the THz pulse, unlike more traditional low-pass filters such as Teflon and silicon.
However, it can only be used in an extremely low-power situation such as the case
of the scattered pump light, otherwise it has the tendency to burn. It is for this
reason that we do not use it to block the residual 800 nm light that pumps the THz
generation crystal.

Two different configurations of detection and generation crystals were used in these
measurements. The first utilized a 0.2 mm thick <110> GaP crystal for generating
the THz pulse and a 0.2 mm thick <110> GaP crystal mounted on 1 mm thick
<100> GaP for EOS detection, yielding a bandwidth of 0.5 THz to 6 THz. The
second utilized 1.0 mm thick <110> ZnTe crystals for both generation and EOS
detection, yielding a bandwidth of 0.35 THz to 2 THz.

The spectrometer constructed in the transmission geometry shown in Figure 2.13
was used to measure equilibrium optical properties. This setup is similar to the
reflection-based spectrometer. The main difference the THz radiation is focused
onto the sample surface at normal incidence using a 90° off-axis parabolic mirror.
The transmitted light is then collected for detection with a second 90° off-axis
parabolic mirror following its transmission through the sample. The EOS path is
essentially the same between the two setups.
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Figure 2.13: Schematic of the transmission-based tr-TDTS used in this thesis.
The light blue path is the THz radiation, the red paths represent the 800 nm THz
generation pulse and the 800 nm EOS probe pulse, and the orange path is the tunable
NIR pump.

2.4.5 Detection protocols
Measurement of both the equilibrium THz electric field profile 𝐸 (𝑡EOS) and its
pump induced changes Δ𝐸 (𝑡EOS, 𝑡) = 𝐸𝑃𝑢𝑚𝑝𝑒𝑑 (𝑡EOS, 𝑡) − 𝐸 (𝑡EOS) at a fixed time
delay 𝑡 are enabled through differential lock-in detection. To measure the former,
a mechanical chopper is placed in the THz path and is set to rotate at half the
repetition rate of the laser, thereby allowing only every other THz pulse to transmit.
The sampling pulse is kept at the laser repetition rate. Accordingly, the polarization
of only every other sampling pulse is modified by the THz pulse. The balanced
detection scheme will then produce a signal at half the repetition rate of the laser.
The mechanical chopper serves as the reference trigger for a lock-in amplifier, which
filters the EOS signal from a balanced photodiode. Such a detection technique yields
a "THz-on" minus "THz-off" detection of the THz electric field. The signal from the
lock-in amplifier is then fed to a computer which iteratively varies 𝑡𝐸𝑂𝑆 and records
the differential signal, thereby yielding 𝐸 (𝑡𝐸𝑂𝑆).

To measure Δ𝐸 (𝑡EOS, 𝑡), two different protocols can be used. In the first, only one
chopper is utilized to chop the NIR pulse at half the repetition rate of the laser.
As a result, only half of the THz pulses will reflect off of a photo-excited sample,
while the other half will reflect off of the equilibrium sample. Accordingly, the
probe pulses will successively detect the effects of 𝐸 (𝑡𝐸𝑂𝑆) and 𝐸𝑃𝑢𝑚𝑝𝑒𝑑 (𝑡𝐸𝑂𝑆, 𝑡).
The mechanical chopper again serves as the reference trigger for a lock-in amplifier,
which filters the EOS signal from a balanced photodiode. Now, the signal will yield
the difference of 𝐸𝑃𝑢𝑚𝑝𝑒𝑑 (𝑡𝐸𝑂𝑆, 𝑡) and 𝐸 (𝑡𝐸𝑂𝑆), producing Δ𝐸 (𝑡𝐸𝑂𝑆, 𝑡).
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The second protocol utilizes two choppers and two lock-in amplifiers. The first
chopper chops the THz pulse at half the repetition rate of the laser, and is used to
reference the first lock-in. The second chopper chops the NIR pump pulse at half
the repetition rate of the THz pulse (one fourth the repetition rate of the laser) and
is used as a reference for the second lock-in. When this is done, the 𝐸 (𝑡𝐸𝑂𝑆) can be
detected simultaneously with Δ𝐸 (𝑡𝐸𝑂𝑆, 𝑡), ensuring that any spectral artifacts due
to long-term drift are eliminated. The cost is a reduction in the signal-to-noise ratio
by half owing to the reduction in the duty cycle of the measurement. We utilized
both detection protocols in our experiments depending on the strength of the signal;
both yielded identical results. When the single-chopper method was used, the static
THz electric field and its transient changes were measured sequentially at each 𝑡
to ensure that there were no spectral artifacts owing to long-term drift of the laser
system.

Finally, in some cases it is desirable to measure Δ𝐸 (𝑡fixed, 𝑡), in which the photo-
induced THz electric field is measured at a fixed point 𝑡fixed in the 𝑡𝐸𝑂𝑆 axis.
Sweeping 𝑡 allows us to measure the time-evolution of this fixed point. While
these "pump-probe" traces do not yield a frequency-resolved response, they provide
frequency-integrated information about the dynamics when 𝑡fixed is anchored to the
peak of 𝐸 (𝑡EOS) [188]. Importantly, these traces are over 100 times faster to acquire
than the full mapping of Δ𝐸 (𝑡EOS, 𝑡).

2.4.6 Characterizing performance
We use two different metrics to characterize the response of our system. The first
is the dynamic range of the spectrum. We define this quantity as the ratio of the
peak in the spectrum divided by the average value of the noise. For the ZnTe-based
experiment, a dynamic range of 1000-2000 is consistently achieved (Figure 2.14a).
On the other hand, when GaP crystals are used for generation and detection, our
dynamic range drops to roughly 500 (Figure 2.14b). This reduction stems from the
fact that GaP is a less efficient THz emitter and detector than ZnTe. Moreover, our
GaP crystals are 5 times thinner than the ZnTe crystals in order achieve a broader
bandwidth.

The second metric we use serves as a frequency-resolved measure of the noise and
allows us to define our bandwidth. We begin by taking three identical scans of
𝐸 (𝑡𝐸𝑂𝑆) consecutively (Figures 2.14a and b). Then, we transform each scan to the
frequency domain, and divide the spectra with one another. An example of the



53

Figure 2.14: Performance characteristics of the time-domain THz spectrometer.
a,b THz electric field spectra 𝐸 (𝜔) obtained through FFT of time-domain spectra
captured with the EOS measurement scheme for ZnTe- (a) and GaP-based (b) setups.
The three measurement runs were taken back-to-back. In the ZnTe-based setup, the
(110)-oriented generation and detection crystals were both 1 mm thick. In the GaP-
based setup, the (110)-oriented generation crystal was 0.2 mm thick while the 0.2
mm thick (110)-oriented detection crystal was mounted on a (100)-oriented 1 mm
thick crystal. c,d Ratios of the three runs taken for ZnTe (c) and GaP (d).

resulting curves are plotted in Figure 2.14c for ZnTe and Figure 2.14d for GaP. It
is apparent that for some region in frequency space, the three curves hover closely
to 1, and deviate dramatically beyond a certain point. We define the flat region
close to 1 as our bandwidth, as the THz electric field has enough strength at these
frequencies to allow for reproducible measurement. Outside of this flat region, the
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noise begins to dominate, resulting in the large deviations from 1. Usually, our
maximum deviation from 1 within the flat range is less than 1% for ZnTe across the
whole bandwidth. For GaP, the deviation was less than 1% between 0.5 THz and 3
THz, and less than 3% between 3 THz and 6 THz.

2.4.7 Sample preparation, sample mounting, and cryogenics
We now discuss how the sample is introduced into the spectrometer. More often
than not, the samples must be cooled to cryogenic temperatures in order to access
different electronic phases of the material. To do this, we use a continuous flow
microscopy cryostat (CryoIndustries RC102). For the window, we mostly use a
polymer material known as TPX because of its ability to transmit most of the GaP
THz bandwidth and much of the OPA frequency range. For normal incidence
experiments, we can also use z-cut quartz. However, its birefringent properties
prevent its use in experiments in which the THz pulse is obliquely incident onto
the sample surface. For the reflection geometry, the cryostat is fixed onto a mount
that allows us to tip and tilt it through a series of spring-loaded knobs, thereby
controlling the direction of the reflected pulse. This mount is then attached onto a
series of translation stages that are in turn mounted onto the table, allowing us to
move the sample in space. For the transmission geometry, a T-slot construction is
used to fix a steel plate on top of the spectrometer. A hole is cut out of this steel
plate for the cryostat to hang through, thereby exposing both sides of the cryostat to
allow for transmission of the THz pulse. For this geometry, the translation stages
are also fixed onto the steel plate using tapped holes that are machined into the plate.
The cryostat is attached to the translation stages using an L-shaped bracket.

To mount the sample into the cryostat, we use different sample holders for each
spectrometer. For the reflection geometry, the sample is mounted onto the tip of
a copper cone (Figure 2.15a). This sample holder was designed to accommodate
samples that are smaller than the THz spot size to ensure that reflections from the
sample holder do not enter the detection path. For the transmission geometry, we
use a copper sample holder that has two apertures on it (Figure 2.15b). We mount
the sample over one of the apertures, while leaving the other aperture exposed for
referencing. The cryostat is translated laterally to access each of the aperture. Before
the sample is mounted, scans are taken through each aperture to ensure that they are
identical.

When attaching these sample holders to the cryostat, Apiezon N Grease is used
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Figure 2.15: Sample holders used in the time-domain THz spectrometers. a Sample
holder used in the reflection-based tr-TDTS mounted in the cryostat. The inset shows
the side-view of the sample holder outside of the cryostat. b Sample holder used
in the transmission geometry tr-TDTS mounted in the cryostat. In a, the radiation
shield is attached to the cryostat, while in b it is removed to better show the full
extent of the sample holder.

to ensure good thermal contact. The samples are attached to the sample holder
using either conductive silver epoxy (EPO-TEK H2OE), conductive silver paint
(e.g., PELCO Conductive Silver Paint, 30g), or Apiezon N Grease depending on
the application. For the THz measurements, the sample surfaces were polished to a
mirror finish using diamond lapping paper with a grit size of 1 𝜇m.

2.4.8 Extracting equilibrium optical properties
The goal of TDTS is to experimentally determine the complex index of refraction
𝑛̃(𝜔) of a material. The first step is to measure the complex transmission 𝑡 (𝜔) of
the sample. To do this, the THz electric field was first measured after transmission
through the sample, which was sitting over an aperture in the sample holder. Then,
immediately after, the sample holder is translated such that the THz pulse instead
transmits through a bare aperture that is identical to the one used to measure the
sample. An example sample holder with the two apertures can be seen in Figure
2.15b. All other parameters are kept fixed. These two field transients were divided
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in the frequency domain to obtain the experimental complex transmission 𝑡𝐸𝑥𝑝. (𝜔).

To extract 𝑛̃ (𝜔) from this data, 𝑡𝐸𝑥𝑝. (𝜔) is compared against the expected theoretical
response 𝑡𝑇ℎ. (𝜔). 𝑡𝑇ℎ. can be found by considering the process of a plane wave of
frequency 𝜔 transmitting through a slab of thickness 𝑑 and index of refraction 𝑛̃(𝜔)
[174]. We assume that the plane wave is normally incident onto the first face of
the slab. Assuming that the index of refraction outside of the slab is equal to 1, the
radiation will experience the following transmission coefficient:

2𝑛̃(𝜔)
𝑛̃(𝜔) + 1

. (2.19)

Inside the sample, the wave will accumulate a phase given by:

exp
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)
. (2.20)

Finally, as the light exits the sample, it will incur a second transmission coefficient
given by:
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. (2.21)

Thus, the total transmission through the sample is given by:
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On the other hand, as the light passes through the aperture, it will only require a
phase as there are no interfaces through which it must transmit:

𝑡𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 (𝜔) = exp
(
𝑖
𝜔𝑑

𝑐

)
. (2.23)

Dividing 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 (𝜔) and 𝑡𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 (𝜔) yields the 𝑡𝑇ℎ. (𝜔):

𝑡𝑇ℎ. (𝜔) =
4𝑛̃(𝜔)

(𝑛̃(𝜔) + 1)2
exp

(
𝑖
𝜔𝑑

𝑐
(𝑛̃(𝜔) − 1)

)
. (2.24)

𝑛̃(𝜔) can now be quantitatively extracted by minimizing the difference between
𝑡𝐸𝑥𝑝. (𝜔) and 𝑡𝑇ℎ.. (𝜔) using a least-squares algorithm at each 𝜔 with 𝑛̃(𝜔) as the
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variable of interest. Once 𝑛̃(𝜔) is determined, all other optical constants including
the complex optical conductivity 𝜎̃(𝜔) and the complex dielectric constant 𝜀(𝜔).

Note that this process can in principle be done in the reflection geometry also by
measuring the absolute reflection 𝑟𝐸𝑥𝑝. (𝜔) from the sample and comparing against
the theoretical expectation 𝑟𝑇ℎ. (𝜔). This task is challenging to accomplish experi-
mentally, however. The difficulty lies in identifying a proper way to reference the
electric field from the sample. In the transmission geometry, the electric transmitted
through the sample can be referenced to obtain the absolute transmission 𝑡𝜔 by sim-
ply removing the sample from the system and measuring the electric field again (i.e.,
measuring the bare aperture). In the reflection geometry, a nearly perfect reflector,
such as gold, would need to be put in place of the sample. The challenge is that the
position of the reflector would need to be identical to that of the sample in order
to maintain the phase of the electric field transient. While this perfect placement
can often not be achieved, an alternative is to evaporate a thin layer of gold onto
the sample surface in situ. However, this method would require an evaporator to
be within the cryogenic environment in order to access the sample surface, which
is not possible with most optical cryostats. In addition, the gold evaporation can
permanently damage the sample surface.

2.4.9 Extracting transient optical properties
Time-resolved (tr-) TDTS can be used measure photo-induced changes to the optical
constants of a driven material. The experimental value that is measured is the
pump-induced change of the electric field reflected from the sample normalized by
its equilibrium value Δ𝐸̃ (𝜔,𝑡)

𝐸̃ (𝜔) . This quantity is equal to Δ𝑟 (𝜔,𝑡)
𝑟 (𝜔) =

𝑟 ′ (𝜔,𝑡)−𝑟 (𝜔)
𝑟 (𝜔) where

𝑟 (𝜔) and 𝑟′(𝜔, 𝑡) are the equilibrium and photo-induced complex reflectivity of
the sample, respectively [99]. Similarly to how we found the equilibrium index of
refraction 𝑛̃(𝜔) in the previous section, we can calculate the theoretically expected
value of Δ𝑟 (𝜔,𝑡)

𝑟 (𝜔) and minimize its difference from the experimental quantity Δ𝐸̃ (𝜔,𝑡)
𝐸̃ (𝜔)

to extract the optical constants of the photo-induced state. This process is facilitated
by the fact that 𝑟 (𝜔) is a known quantity that can be calculated from 𝑛̃(𝜔), which
can be experimentally found through an equilibrium TDTS measurement. Thus the
only unknown quantity is the photo-induced complex index of refraction 𝑛̃′(𝜔, 𝑡),
which will appear in 𝑟′(𝜔, 𝑡).

We are now left with the task of determining the theoretical value of Δ𝑟 (𝜔,𝑡)
𝑟 (𝜔) . An

important consideration in tr-TDTS experiments is the penetration depth mismatch
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between the pump pulse and the THz probe pulse. Since the photo-induced optical
constant will only exist within the regions of the sample that are influenced by the
pump, the THz probe may be sensitive to both pumped and un-pumped portions of
the material if its penetration depth is longer than the pump. Thus, depending on
the level of mismatch, different models will need to be used to determine the optical
response of the material.

The first scenario we will consider is when the THz pulse penetrates much deeper
into the sample than the pump pulse. In this case, the pumped region can be
considered as a thin film atop an unperturbed bulk. The film will have a thickness
equal to the penetration depth of the pump 𝑑, and the THz electric is taken to be
a constant within the film. This situation can be analytically solved by considering
the boundary conditions of the electromagnetic field between the vacuum and the
unperturbed bulk, which includes a contribution from the surface current density 𝑗𝑠 =
Δ𝜎̃(𝜔)𝐸̃ (𝜔) where Δ𝜎̃(𝜔) is the pump-induced change to the optical conductivity.
An analysis of this situation yields an analytic solution for Δ𝜎̃(𝜔) [99]:

Δ𝜎̃(𝜔) =
(

1
377 × 𝑑

) Δ𝐸̃ (𝜔)
𝐸̃ (𝜔)

(
𝑛̃2(𝜔) − 1

)
Δ𝐸̃ (𝜔)
𝐸̃ (𝜔)

[
cos(𝜃0) −

√︃
𝑛̃2(𝜔) − sin2(𝜃0)

]
+ 2 cos(𝜃0)

(2.25)

where 𝑑 is the penetration depth of the pump pulse and 𝜃0 is the angle of incidence.

In situations where the penetration depth mismatch is not so extreme, we can instead
model the system using the so-called stratified medium approach. This model
assumes the pump decays exponentially inside the sample with a characteristic
length-scale equal to the penetration depth. We break this exponential profile into
𝑁 layers. Then, we assume that each layer has a unique photo-induced index of
refraction that approaches the bulk index of refraction as the layers go deeper into
the sample:

𝑛̃′ (𝑧, 𝜔) = 𝑛̃ (𝜔) + Δ𝑛̃ (𝜔) 𝑒−𝛼𝑧 (2.26)

where 𝜔 is the frequency, 𝑧 is the layer depth into the sample, 𝛼 is the penetration
depth of the pump, 𝑛̃ (𝜔) is the complex equilibrium index of refraction, and Δ𝑛̃ (𝜔)
is the complex photo-induced change to the index of refraction. The reflection from
this stratified medium is modeled using a characteristic matrix 𝑀 (𝑧) that relates the
field at some depth in the medium 𝑧 to the field at 𝑧 = 0 [30, 99]:
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𝑀 (𝑧) =
[

cos(𝑘0𝑛̃
′(𝑧)𝑧 cos 𝜃) − 𝑖

𝑝
sin(𝑘0𝑛̃

′(𝑧)𝑧 cos 𝜃)
−𝑖𝑝 sin(𝑘0𝑛̃

′(𝑧)𝑧 cos 𝜃) cos(𝑘0𝑛̃
′(𝑧)𝑧 cos 𝜃)

]
(2.27)

where 𝜃 is the angle of incidence and 𝑝 = 𝑛̃ cos 𝜃. Note that the argument 𝜔 has
been dropped from 𝑛̃′(𝑧, 𝜔) because this matrix must be calculated for each value
of 𝜔.

The total response from all the layers 𝑀 (𝑧𝑁 ) is given by the product of the charac-
teristic matrix 𝑀 𝑗 (𝑧 𝑗 − 𝑧 𝑗−1) that describes each layer 𝑧 𝑗 − 𝑧 𝑗−1. From this global
characteristic matrix, the reflectivity can be calculated as [30, 99]:

𝑟′ =
(𝑚11 + 𝑚12𝑝𝐿)𝑝1 − (𝑚21 + 𝑚22𝑝𝐿)
(𝑚11 + 𝑚12𝑝𝐿)𝑝1 + (𝑚21 + 𝑚22𝑝𝐿)

(2.28)

where 𝑝1 = cos 𝜃 and 𝑝𝐿 = 𝑛̃(𝐿) cos 𝜃𝐿 . 𝑛̃(𝐿) is the index of refraction evaluated
at the probe penetration depth 𝐿 and 𝜃𝐿 is the angle that the electric field would
have as it leaves the probed region. 𝜃𝐿 can be found via Snell’s law as cos 𝜃𝐿 =√︁

1 − (sin 𝜃0/𝑛̃(𝐿))2.

Having modeled the theoretical expectation for the THz reflectivity from the strati-
fied medium (Equation 2.28), the transient refractive index defined in Equation 2.26
can be determined through a least-squares algorithm that minimizes the difference
from Δ𝐸̃ (𝜔,𝑡)

𝐸̃ (𝜔) . Note that this minimization must be performed for each 𝑡 and 𝜔, each
of which will have a unique characteristic matrix.

Extraction of transient optical conductivity in Sr2IrO4

In Chapters 3 and 4, we perform tr-TDTS measurements on Sr2IrO4. There, we use
the thin-film approximation due to the large penetration depth mismatch between
the IR pump (73 nm) [24] and the THz probe, which transmits through the ∼100 𝜇m
thick sample. To prove that the thin film approximation is accurate, we also extracted
the transient optical conductivity using the stratified medium approach. The results
are summarized in Figure 2.16. The numerically solved stratified medium solution
is nearly identical with the analytical thin film approximation, indicating the validity
of the thin-film approximation. Similar arguments can be applied to the case of
Sr3Ir2O7, which exhibits similar penetration depth mismatches to Sr2IrO4 [3].
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Figure 2.16: Transient optical conductivity in Sr2IrO4 obtained with different mod-
els. a,b Comparison of the real (a) and imaginary (b) parts of the optical conductivity
obtained with the thin-film approximation and stratified medium approach.

2.5 Time-resolved reflectivity
While TDTS allows for a direct extraction of the complex index of refraction of a
material, the technique is limited to a very narrow range of energies. The reason
is that the EOS measurement protocol relies on the fact that the THz electric field
transient is much slower than the sampling pulse width. When dealing with higher
energy probes—ranging from the mid infrared to the visible—this condition no
longer holds and the conventional femtosecond pulse can no longer sample the
pulse. On the other hand, detector technologies based on photodiodes are readily
available in these energy ranges. It is thus possible to measure the intensity 𝐼 ∝ |𝐸̃ |2

of the light. From this, both the phase and magnitude of 𝑟 (𝜔) can be determined
via a Kramers-Kronig transformation if it is measured over a broad enough energy
range. Doing so allows for 𝑛̃(𝜔) and related constants to be determined.

Reflectivity measurements have proven to be particularly useful probe of photo-
induced phenomena. In these experiments, the photo-induced change in the reflec-
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tivity normalized to its equilibrium value Δ𝑅(𝜔, 𝑡)/𝑅(𝜔) is measured. These data
can be analyzed as follows [18]:

Δ𝑅

𝑅
(𝜔, 𝑡) = 𝜕 ln(𝑅(𝜔))

𝜕𝜀1(𝜔)
Δ𝜀1(𝜔, 𝑡) +

𝜕 ln(𝑅(𝜔))
𝜕𝜀2(𝜔)

Δ𝜀2(𝜔, 𝑡) (2.29)

where 𝜀1 and 𝜀2 are the photo-induced changes in the real and imaginary parts of the
dielectric function Δ𝜀(𝜔, 𝑡), respectively. This formula implies that important in-
formation about the photo-induced optical properties can be deduced from transient
reflectivity spectra. As covered in Section 2.3, the optical conductivity is dependent
on the joint density of states and the symmetry properties of the material (i.e., the se-
lection rules associated with a given transition). As such, the photo-induced changes
to the reflectivity can be interpreted in light of these considerations. For example,
if there is no reason to believe that the selection rules of a transition at a given
probe frequency 𝜔 will not change following photo-excitation, then Δ𝑅(𝜔, 𝑡)/𝑅(𝜔)
will reflect changes to the joint density of states. These changes can be caused
by photo-induced modifications of the band structure or changes in the carrier dis-
tribution. Moreover, since different physical processes have different fundamental
timescales, the dynamics of Δ𝑅(𝜔, 𝑡)/𝑅(𝜔) can provide further information about
the underlying mechanism driving the photo-induced changes.

Finally, a quick note that transient reflectivity is also sensitive to the excitation of
bosonic modes. Most often, these modes are phonons, which are excited through the
displacive excitation of coherent phonons or impulsive stimulated Raman scattering
mechanisms. Other bosonic excitations, such as magnons and collective charge
density wave modes, can also be detected. Each of these modes will appear as
oscillations as a function of time in the dynamics of Δ𝑅(𝜔, 𝑡)/𝑅(𝜔).

2.5.1 Experimental apparatus
A schematic of a transient reflectivity setup is shown in Figure 2.17. In our lab,
the apparatus is seeded by the two OPAs described in Section 2.2 (Figure 2.1). The
stronger OPA (OPA1) is used for the pump line that photo-excites the sample, while
the weaker OPA (OPA2) serves as the probe line to measure Δ𝑅/𝑅. This design
provides the flexibility to independently tune the wavelength of both the pump and
probe through the entire OPA range of 1200 nm to 2400 nm. Moreover, the use of
a second harmonic generation stage allows us to access visible wavelengths also.

In the pump line, the beam first passes through a lens pair that serves as a telescope
to control the spot size. Making the collimated beam bigger (smaller) will create a
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Figure 2.17: Schematic of the transient reflectivity setup used in this thesis.

tighter (wider) focus on the sample surface after the objective lens. The beam then
passes through a half-waveplate and a polarizer. The pair allows for independent
control over the pump polarization and power. The beam is then directed into a
retro-reflector mounted atop a motorized delay stage which generates the tunable
temporal delay between the pump and the probe. Finally, the pulse passes through a
mechanical chopper that enables the use of a differential lock-in detection scheme,
before passing into an objective optic—such as a lens or an off-axis parabolic
mirror—that focuses the beam onto the sample surface at normal incidence. The
probe beam simply travels through a polarizer and half-waveplate before being
focused onto the sample by the objective optic. Unlike the pump, the probe is
obliquely-incident onto the sample surface such that the reflection can be collected
and passed into a photo-diode, which passes its signal into a lock-in amplifier for
detection.

The differential lock-in detection scheme is similar to that used to detect THz-
induced polarization rotation of the sampling pulse in Section 2.4. The mechanical
chopper in the pump line rotates at half the repetition rate of the laser, such that
every other pulse is blocked. As a result, half of the probe pulses are modulated by
the pump (i.e., they are reflected from a photo-excited sample), while the other half
are not (i.e., they are reflected from the equilibrium sample). Since lock-in amplifier
is referenced by the chopper, it will filter the signal from the photo-diode to yield
the difference of the pumped and un-pumped signals (Δ𝑅). 𝑅 can be measured by
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blocking the pump and setting the lock-in reference to the laser repetition rate.

2.5.2 Data analysis
A typical signal obtained from a pump-probe style experiment consists of a sharp
onset followed by an exponential decay. The former indicates the arrival of the
pump. Since transient reflectivity probes electronic degrees of freedom, which
respond quickly (∼1-10 fs) to the light, this response is often limited by the time
resolution of the experimental setup. The term "time zero" refers to the moment that
the maximum of the pump pulse arrives at the sample surface. The exponential decay
represents the various carrier relaxation processes that occur folowing the photo-
excitation process. These can include inter- and intra-band relaxation, coupling to
different bosonic baths such as magnons or phonons, radiative processes, or higher
order multi-partite recombination processes such as Auger recombination [18]. Most
of the time, the signal is well-described by the following phenomenological model
[253]:

1
2

[
1 + erf

(
2
√

2
(
𝑡 − 𝑡0
𝑡𝑟

) )]
×

[∑︁
𝑖

[
𝐴𝑖 exp

(
− 𝑡 − 𝑡0

𝜏𝑖

)]
+ 𝑏

]
(2.30)

where 𝑡 is the pump-probe time delay, and the fitting parameters 𝑡0, 𝑡𝑟 , and 𝐴𝑖

and 𝜏𝑖 are time zero, the rise time, and the strength and decay constant of each
exponential 𝑖, respectively. The pump-induced offset 𝑏 captures much slower decay
processes (∼ns) such as heat diffusion out of the pumped region of the sample. The
number of exponential is determined by the number of carrier relaxation processes
present in the system. The most common forms of Equation 2.30 are single- and
double-exponential expressions.

2.6 Time-resolved second harmonic polarimetry
Thus far, our discussion of measurement techniques has focused on probes of a
material’s optical conductivity. While this is an important quantity to measure,
it is only one facet of a material that mainly provides information about its band
structure and excitation spectra. An important question that often cannot be directly
answered by these probes is whether certain symmetries are present in a material.
Much of our understanding of condensed matter systems is based on the notion that
ordered phases spontaneously break the symmetries of the un-ordered phase. For
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this reason, probes of symmetry are crucial in the study of phase transitions, and have
been a cornerstone of the characterization of solids. Traditionally, these efforts have
focused on diffraction techniques. However, for the femtosecond-scale investigation
of the photo-doped systems studied in this thesis, an optical measurement would be
preferable as it can be more easily interfaced with the laser systems that seed the
other techniques.

Nonlinear harmonic generation polarimetry techniques have emerged as a viable
alternative to diffraction techniques in the study of material symmetries. The most
widely adopted variant is that focused on second harmonic generation (SHG). In
this measurement, the intensity of SHG light generated by the crystal is recorded
as the crystal rotates about its surface normal. Since the SHG process is controlled
by nonlinear optical susceptibility tensors such as those described in Section 2.1,
the resulting intensity patterns will reflect the symmetries of these tensors. The
nonlinear optical susceptibility tensors, in turn, must remain invariant under trans-
formations that respect the symmetry of the crystal, as per Neumann’s principle.
Therefore, the SHG patterns can be used to deduce the underlying symmetries of
the material. SHG polarimetry has been widely adopted to study the symmetry
properties of crystalline, magnetic, and other more exotic electronic orders.

2.6.1 Physical principle
We begin by discussing the physical principles that underpin the second-harmonic
generation polarimetry, following the discussions in References [225, 252]. Con-
sider an electric field 𝐸𝑖 of polarization 𝑖 = (𝑥, 𝑦, 𝑧) that is radiated due to the
interaction of an incident field with a medium. 𝐸𝑖 is determined by the inhomoge-
neous wave equation:

(
∇2 − 1

𝑐2
𝜕2

𝜕𝑡2

)
𝐸𝑖 = 𝑆𝑖 (2.31)

𝑆𝑖 is the source term induced in the medium by the incident field. When electromag-
netic radiation passes through a medium, it will induce electric dipole 𝑃𝑖, magnetic
dipole 𝑀𝑖, electric quadrupole 𝑄𝑖, 𝑗 , and higher rank moments all of which can will
have their own contributions to the source term. Keeping only 𝑃𝑖, 𝑀𝑖, and 𝑄𝑖 𝑗 , 𝑆𝑖
can be described as:

𝑆𝑖 = 𝜇0
𝜕2𝑃𝑖

𝜕𝑡2
+ 𝜇0

(
𝜀𝑖 𝑗 𝑘∇ 𝑗

𝜕𝑀𝑘

𝜕𝑡

)
− 𝜇0

(
∇ 𝑗
𝜕2𝑄𝑖 𝑗

𝜕𝑡2

)
(2.32)
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where 𝜇0 is the vacuum permeability and 𝜀𝑖 𝑗 𝑘 is the Levi-Civita tensor. Each of the
terms within 𝑆𝑖 can be expanded in powers of the incident radiation:

𝑃𝑖 ∝ 𝜒𝑃𝐸𝑖 𝑗 𝐸 𝑗 + 𝜒𝑃𝑀𝑖 𝑗 𝐻 𝑗 + 𝜒𝑃𝐸𝐸𝑖 𝑗 𝑘 𝐸 𝑗𝐸𝑘 + 𝜒𝑃𝐸𝑀𝑖 𝑗 𝑘 𝐸 𝑗𝐻𝑘 + 𝜒𝑃𝑀𝑀𝑖 𝑗 𝑘 𝐻 𝑗𝐻𝑘 + · · ·

𝑀𝑖 ∝ 𝜒𝑀𝐸𝑖 𝑗 𝐸 𝑗 + 𝜒𝑀𝑀𝑖 𝑗 𝐻 𝑗 + 𝜒𝑀𝐸𝐸𝑖 𝑗 𝑘 𝐸 𝑗𝐸𝑘 + 𝜒𝑀𝐸𝑀𝑖 𝑗 𝑘 𝐸 𝑗𝐻𝑘 + 𝜒𝑀𝑀𝑀𝑖 𝑗 𝑘 𝐻 𝑗𝐻𝑘 + · · ·

𝑄𝑖 𝑗 ∝ 𝜒𝑄𝐸𝑖 𝑗 𝑘 𝐸𝑘 + 𝜒
𝑄𝑀

𝑖 𝑗 𝑘
𝐻𝑘 + 𝜒𝑄𝐸𝐸𝑖 𝑗 𝑘𝑙

𝐸𝑘𝐸𝑙 + 𝜒𝑄𝐸𝑀𝑖 𝑗 𝑘𝑙
𝐸𝑘𝐻𝑙 + 𝜒𝑄𝑀𝑀𝑖 𝑗 𝑘𝑙

𝐻𝑘𝐻𝑙 + · · ·
(2.33)

where we have only retained terms up to the second order in the incident electric (𝐸𝑖)
or magnetic fields (𝐻𝑖). The tensors 𝜒 are the susceptibility tensors associated with
each of these processes. The superscript can be read as the origin of the induced
source, followed by the fields that are involved. Due to Neumann’s principle, these
tensors will encode the point group symmetries of the medium. In other words, the
tensors should remain invariant under transformations that respect the symmetries
of the material. As a result, the number of independent, non-zero tensor elements
will greatly be reduced since these symmetry transformations will enforce a set of
relationships among them.

Note that in Section 2.1, we presented an expression for the nonlinear polarization 𝑃𝑖
induced in a material by an electric field in (Equation 2.5). This formula was in fact
an expansion of the 𝜒𝑃𝐸𝐸

𝑖 𝑗 𝑘
𝐸𝑖𝐸𝑘 term—commonly referred to as the ED term—of

𝑃𝑖. Four nonlinear optical processes were identified to originate from this term,
including SHG, sum and difference frequency generation, and optical rectification.
In actuality, each of the second-order terms in Equation 2.33 will produce these
processes. These additional terms were previously neglected because the ED con-
tribution to 𝑆𝑖 is orders of magnitude stronger than the second-order magnetic dipole
(MD) and electric quadrupolar (EQ) term. In materials that preserve inversion sym-
metry, however, the ED term vanishes. In these systems, other contributions to the
measured SHG intensity must be considered.

Once the appropriate process is determined, the theoretically expected pattern for
the radiation must be compared against the experimental data. The experimentally
measured quantity is a SHG intensity as the crystal is rotated about its surface normal.
Thus far, however, we have only discussed the nonlinear densities 𝑃𝑖, 𝑀𝑖, and 𝑄𝑖 𝑗 .
To convert from these quantities to the emitted electric field 𝐸𝑖, Maxwell’s equations
and the Fresnel equations must be solved with the correct boundary conditions at
the sample-vacuum interface. For terms stemming from 𝑃𝑖 the radiated light is
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Figure 2.18: Schematic of a time-resolved rotational-anisotropy second harmonic
generation setup used in this thesis. The red path tracks the fundamental probe
light, the blue path tracks the second-harmonic generated light, and the off-white
path tracks the pump light. The black curved arrows indicate the optics that are
rotated together to generate the enable the collection of the RA pattern. The CCD
camera shows an example of images collected at three different time delays for
Sr2IrO4. From Reference [54]

proportional the absolute value squared of the term. Specific expressions for the
radiated intensity can be derived by considering the polarizations of the incoming
and outgoing light. Since each can be either 𝑠− or 𝑝−polarized, there are four
unique polarization channels to consider. The experimental data can then be fit with
these expressions.

2.6.2 Experimental apparatus
The goal of SHG polarimetry is to measure the SHG intensity as the sample rotates
about its surface normal. However, due to our use of cryogenics, the task of rotating
the sample is a technical challenge as it is contained within the high vacuum of the
cryogenic environment. One avenue to overcome this challenge is to simulate the
sample rotation by keeping the sample stationary, but instead to rotate the scattering
plane while keeping the polarizations of the incoming and outgoing light locked to
the scattering plane. A detailed description of the resulting apparatus can be found
in Reference [88].
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Figure 2.19: Equilibrium second harmonic polarimetry measurements of Sr2IrO4. a
Crystal structure of Sr2IrO4 as viewed from the (001) orientation. The inset depicts
a single Ir atom ensconced in a octahedron of O atoms. b A schematic depiction
of the RA-SHG measurement. c RA-SHG pattern of Sr2IrO4 collected at 295 K for
both the 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 and 𝑃𝑖𝑛 − 𝑆𝑜𝑢𝑡 polarization configurations. Solid lines are fits
of the RA patterns to the crystalline bulk EQ term. d RA-SHG pattern of Sr2IrO4
collected at 170 K for both the 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 and 𝑃𝑖𝑛 − 𝑆𝑜𝑢𝑡 polarization configurations.
Solid lines are fits to the RA patterns for a combination of the crystalline bulk EQ
term and the 𝐶1 ED term that onsets below 𝑇𝑁 . From Reference [251].

A schematic of the specific setup used in this thesis can be found in Figure 2.18 [54].
The experiment is seeded by Ti:sapphire regenerative amplifier producing 100 fs
pulses centered at 800 nm at a repetition rate of 100 kHz. The light is first circularly
polarized using a quarter wave plate before passing through a linear polarizer that
sets the input polarization to be 𝑠− or 𝑝− polarized. It then passes through a lens
pair that serves to telescope the beam size. Near the focus, a fused silica binary
phase mask is used to separate the beam into many orders, all of which are blocked
except the +1 order. The beam will come out of the phase mask at an angle that
deviates from the original optical path. This angle is what enables the rotation of the
scattering plane angle: rotating the phase mask will result in a procession of the beam
about the original beam path. The processing beam is then passed through a lens
that directs the beam to be parallel with the original beam path, allowing it to draw
a circle as the phase mask rotates. The beam is then focused onto the sample using
an objective lens. The reflected light is collected through the objective and is passed
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Figure 2.20: SHG intensity measured at the dominant lobe in the 𝑃𝑖𝑛 − 𝑆𝑜𝑢𝑡 RA
pattern measured as a function of temperature. The insets show the full RA pattern
at several temperatures, with the dominant lobe highlighted in red. From Reference
[54].

through a second linear polarizer that sets the output polarization to 𝑠 or 𝑝. Note that
the input polarizer and the output polarizer both rotate along with the PM to ensure
that the polarizations are locked to the scattering plane. The light is then directed
through a periscope consisting of dichroic mirrors that filter out the fundamental
light, ensuring that only second harmonic light reaches the detector. Finally, the
beam passes through another set of filters that further eliminate the fundamental
frequency before arriving at an electron-multiplying CCD for detection. On the
CCD, a circle will be drawn out as the phase mask rotates. Each position on the
circle marks a different scattering plane angle. Thus, but integrating over this circle,
the intensity of the SHG as a function of scattering plane angle is recorded and ready
to be analyzed using the methods described above.

A pump can be introduced into this setup to study out-of-equilibrium phenomena.
The pump beam is sourced from an OPA pumped by the same regenerative ampli-
fier that seeds the SHG setup. Before reaching the sample, the pump beam passes
through a retro-reflector mounted on a motorized delay stage that controls the tem-
poral delay with respect to the probe. However, unlike the TDTS and transient
reflectivity experiments, it is not possible to implement a differential lock-in tech-
nique to measure the pump-induced changes. Instead, the absolute SHG intensity is
measured at each time delay on the CCD.
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Figure 2.21: Temperature dependence of the SHG intensity in static Sr2IrO4 mea-
sured as a function of magnetic field. a,b SHG intensity measured at the dominant
lobe in the 𝑃𝑖𝑛 − 𝑆𝑜𝑢𝑡 RA pattern measured as a function of temperature for 𝐻 = 0
(a) and 𝐻 = 370 mT, which is greater than 𝐻𝑐. From Reference [200].

2.6.3 Second harmonic polarimetry of Sr2IrO4

We conclude this section by summarizing the work that has been done to study
magnetism in Sr2IrO4 using SHG polarimetry. This discussion follows the works
of Zhao et al. [251] in which the connection between SHG and magnetism Sr2IrO4

was first discovered, Seyler et al. [200] in which the origin of the magnetic signal
was elucidated, and de la Torre et al. [54] in which the effects of photo-doping on
the magnetic order were studied.

The crystal structure and axes of Sr2IrO4 are defined in Figure 2.19a. In the para-
magnetic phase, the rotational-anisotropy (RA) SHG pattern—that is, the pattern
obtained by rotating the scattering plane angle 𝜙 (Figure 2.19b) and measuring
the SHG intensity—exhibits a clear 𝐶4 symmetry (Figure 2.19c) [251]. Since
the crystal structure preserves inversion symmetry, the ED contribution 𝑃𝑖 (2𝜔) ∝
𝜒𝑃𝐸𝐸
𝑖 𝑗 𝑘

𝐸 𝑗 (𝜔)𝐸𝑘 (𝜔) is not allowed. The next leading-order term from the bulk is the
electric quadrupolar (EQ) term described by 𝑃𝑖 (2𝜔) ∝ 𝜒𝑄𝐸𝐸𝑖 𝑗 𝑘𝑙

𝐸 𝑗 (𝜔)∇𝑘𝐸𝑙 (𝜔), which
completely accounts for the data (Figure 2.19c). No contribution from the surface,
which naturally breaks inversion symmetry, was detected. However, when the mate-
rial was cooled down to below its Néel temperature (𝑇𝑁 = 230 K), the symmetry of
the RA pattern was reduced from𝐶4 to𝐶1 (Figure 2.19d) [251]. Tracking the inten-
sity of the strongest lobe as a function of temperature, a clear order-parameter-like
onset is observed (Figure 2.20) [251]. The reduction the RA symmetry is not com-
patible with the reported Néel structure. Since the antiferromagnetically-aligned
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Figure 2.22: Dependence of the RA-SHG pattern in Sr2IrO4 as a function of the
magnetic field direction. (a) RA-SHG patterns acquired in 𝑃𝑖𝑛−𝑆𝑜𝑢𝑡 geometry at 80
K for different applied magnetic field angles (𝛽). The magnetic field strength was
fixed to 370 mT. Solid black lines are fits to the EQ + MD model. Other than the
rotation of 𝛽, the susceptibility tensor elements were fixed. (b) Summation of the
field-dependent RA data over all 𝛽. Solid lines show fits to a model that includes
both the bulk EQ + MD terms and the anomalous 𝐶1 term, where the latter either
rotates with 𝛽 (black) or is independent of 𝛽 (red). From Reference [200].

magnetic moments in Sr2IrO4 are canted, a net ferromagnetic moment appears in
each layer. These ferromagnetic moments are stacked in a − + +− pattern, which
preserves𝐶2 symmetry. The reduction in symmetry also cannot be accounted for by
any structural distortions since there are no reports of a reduction in crystallographic
symmetry that onsets below 𝑇𝑁 .

Instead, the𝐶1-symmetric pattern indicates the onset of a new radiation source. Sev-
eral mechanisms were proposed, including a formation of a magnetoelectric loop-
current order that would generate ED radiation [251], laser-based re-arrangement of
the ferromagnetic stacking order [57], and enhanced sensitivity to surface magnetic
order [57]. Laser-based re-arrangement was ruled out by the fact that the results
were unaffected by the intensity of the probe light [200]. To distinguish between
the remaining two possibilities, the field dependence of the anomalous 𝐶1 SHG
signal was studied [200]. In an in-plane magnetic field, Sr2IrO4 undergoes a meta-
magnetic transition from the 𝐶2-preserving − + +− ferromagnetic layer stacking to
a 𝐶2-breaking + + ++ stacking above a critical field 𝐻𝑐 [189]. Whereas the net
ferromagnetic moment of this order should rotate rigidly with the magnetic field
[189], the magnetoelectric order cannot couple linearly to magnetic field except in
the presence of an additional electric field [201].
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Figure 2.23: Correlated topographic mapping and SHG imaging of Sr2IrO4. (a) An
SHG image captured in the 𝑃𝑖𝑛−𝑃𝑜𝑢𝑡 geometry. The temperature was fixed to 80 K,
and the RA angle 𝜙 was fixed to a point in the pattern that would allow for different
magnetic domains to be distinguished. The orientations of the 𝐶1 order parameter
(purple arrows) were determined by taking full RA SHG scans in each region. (b)
Topographic height profile along a line cut shown by the dashed line in (a) obtained
with atomic force microscopy. Insets show the local 𝑃𝑖𝑛 − 𝑆𝑜𝑢𝑡 RA pattern in each
domain. Black lines are fits to the bulk EQ + ED model. (c) Orientation of the 𝐶1
order parameter at 80 K after successive thermal cycles from 80 K to 295 K and
back to 80 K in each of the four regions. From Reference [200].

When measured in a field of 370 mT, above 𝐻𝑐, the RA SHG pattern still demon-
strates the anomalous 𝐶1 contribution and the crystallographic EQ term [200].
However, an additional bulk-magnetization-dependent term is strongly enhanced in
the + + ++ state. As a result, the low-temperature SHG intensity in the + + ++
state is much larger than in the zero-field state (Figure 2.21). To examine how the
anomalous 𝐶1 term couples to the field, the field orientation was rotated about the
surface normal. The pattern rotates by 180° upon rotation of the field from 𝐻 to −𝐻,
implying that both the bulk-magnetization dependent SHG and 𝐶1 SHG processes
couple linearly to the field, ruling out the magnetoelectric order scenario (Figure
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Figure 2.24: SHG intensity measured at the dominant lobe in the 𝑃𝑖𝑛 − 𝑆𝑜𝑢𝑡 RA
pattern in photo-doped Sr2IrO4 measured as a function of fluence. The insets show
the full RA pattern at several fluences, with the dominant lobe highlighted in red.
From Reference [54].

2.22).

The remaining possibility is that the𝐶1 term originates from a surface magnetization-
induced SHG process. To confirm this scenario, a widefield SHG image of the
sample surface was taken in the absence of a magnetic field, revealing the presence
of many domains (Figure 2.23a) [200]. Within each domain, the orientation of the
RA pattern was rotated by either 90° or 180° from its neighboring domain (Figure
2.23a,b). By comparing the SHG image to a topographic survey of the sample
taken with atomic force microscopy, it was found that the domain pairs with a
relative 90° rotation were on an atomically-flat region of the sample and are likely
caused by crystallographic twin boundaries in which the in-plane 𝑎 and 𝑏 axes were
interchanged (Figure 2.23b). On the other hand, the 180° rotations only occurred
across steps on the sample surface where the height changes by a bilayer (Figure
2.23c). This observation is consistent with surface-magnetization-induced SHG
from the established − + +− stacking in the zero-field case. This SHG process is
of the ED type and can be expressed as 𝑃𝑖 (2𝜔) ∝ 𝜒𝑖 𝑗 𝑘𝑙𝑀𝑠,𝑙𝐸 𝑗 (𝜔)𝐸𝑘 (𝜔), where the
vector M𝑠 is the surface magnetization. Since M𝑠 reverses every two layers in the
material from − + +− to + − −+, the SHG pattern will exhibit a 180° rotation across
the bilayer.

This understanding can be further confirmed by thermally cycling the sample from
80 K to 295 K and back to 80 K [200]. As can be seen in Figure 2.23c, the patterns
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Figure 2.25: Out-of-equilibrium magnetic phase diagram of Sr2IrO4 obtained by
tracking the critical fluence 𝐹𝑐 at which the 𝐶1 order parameter disappears in the
RA-SHG patterns at various temperatures. From Reference [54].

in regions that border a step (regions 1 and 2, regions 3 and 4) in the sample are
always anti-correlated, while no correlation is observed for regions on a single level
(regions 1 and 4, regions 2 and 3). This behavior indicates that regions that border
the step are a part of a single magnetic domain, while those on a single level are
not. Instead, the differences between regions on the same level result from structural
twinning defects.

Building upon these results, SHG was also used to study the evolution of the
magnetic order in Sr2IrO4 in response to a photo-doping drive [54]. The pump
photon energy was tuned to be resonant with the 𝛽 peak in the optical conductivity
that marks transitions from the filled 𝐽𝑒 𝑓 𝑓 = 3/2 band to the empty upper Hubbard
band. As the fluence of the pump pulse was increased, the 𝐶1 SHG term was
slowly reduced until it vanished beyond a critical fluence 𝐹𝑐 of roughly 1.0 mJ/cm2,
corresponding to a photo-dopant density 𝑛𝑒𝑥 = 0.06 excitations per Ir atom (Figure
2.24). The experiment was repeated as a function of temperature, revealing an out-
of-equilibrium phase diagram that closely resembles that obtained with chemical
doping (Figure 2.25).
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C h a p t e r 3

THE HUBBARD EXCITONIC FLUID

3.1 Excitons in Mott insulators
An important distinction between chemically-doped materials and photo-doped ma-
terials is the simultaneous presence of an electron-like excitation and a hole-like
excitation. Interactions between the two can lead to excitonic bound states. Ex-
citons have been extensively studied within the realm of weakly correlated rigid
band insulators, in which they are bound through the Coulomb interaction. Aside
from the impact they have on the opto-electronic properties of these materials [144],
excitons also play a critical role in determining their out-of-equilibrium properties.
The photo-excitation process can lead to a metastable population of excitons since
particle-hole recombination is slowed by the presence of the charge gap. The ex-
citons within this ensemble can interact with one another, forming unique phases
of matter including insulating fluids [105, 249], Bose-Einstein condensates [205],
density wave orders [34], and electron-hole droplet states [254].

The presence of excitons is also important in determining the recombination dy-
namics of the photo-doped system. Depending on the symmetries of their host
crystal, their spatial and energetic properties, and their coupling to different degrees
of freedom in the material, excitons demonstrate a strikingly broad range of life-
times explained by a myriad of microscopic mechanisms. For example, the spatial
separation of the electron and hole that constitute an electron can lead to extremely
stable excitons, with lifetimes exceeding 100 ns [103]. On the other hand, ultrafast
(∼100 fs) radiative recombination has been observed in excitons that couple strongly
to light [188]. Studying excitonic dynamics can thus reveal important aspects of the
material and its out of equilibrium properties, including its charge distribution, the
presence of microscopic interactions, and the presence of different excitonic phases.

While excitons are routinely studied in driven semiconductors, they have not been
extensively considered in the photo-excited properties of Mott antiferromagnets
(AFMs). Recently, however, evidence has been emerging that excitons also are also
important in the properties of photo-doped Mott insulators. A theoretical study of
the photo-excited recombination dynamics in the cuprates, for example, has revealed
that the ultrafast (∼1 ps) timescales can be explained by the presence of spin-bound
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Figure 3.1: A photo-doping induced HD plasma transforms into a fluid of bound
HEs as a function of time. Transitions between internal HE levels (green arrows),
which are populated upon HD plasma decay, are probed by a THz pulse.

Hubbard excitons (HEs) [129, 130]. Due to their the strong coupling magnetic
degrees of freedom, these HEs can efficiently emit magnons, thereby facilitating a
rapid recombination across the gap. In addition to the charge dynamics, excitons have
also been invoked to explain the magnetic excitation spectra of photo-doped Mott
AFMs. Both time-resolved resonant inelastic x-ray scattering and time-resolved
Raman scattering have revealed the emergence of low-energy spectral weight below
the single- and two-magnon excitation energies. A recent theoretical study has
assigned this weight to the presence of HEs that form at the absorption edge [227].

These results suggest that it is crucial to unravel the previously unappreciated role
the HEs play in the photo-doped states of Mott AFMs. Progress in this endeavor is
currently limited by the lack of a suitable experimental probe of the excitonic states.
As discussed in Section 1.3.1, the potential Hubbard excitonic states identified thus
far overlap heavily with the Mott gap edge [80, 86, 221], implying that excitons
are unstable against decay into the free holon-doublon (HD) continuum [202]. Not
only does this fact call into question to what extent HEs survive in the out-of-
equilibrium state, but it poses an experimental challenge. Since the HE states and
the HD continuum occur at the same energies, it is not possible to distinguish
their dynamics when probing at the near-infrared energies associated with these
transitions.

This challenge can be overcome by instead looking towards much lower energies.
A direct approach to distinguishing between a plasma of unbound HD pairs and a
fluid of bound HEs is to exploit their unique spectral features at THz frequencies.
Whereas the former exhibits a metallic Drude response, the latter should exhibit an
insulating response characterized by finite energy peaks corresponding to transitions
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between different excitonic bound states (Figure 3.1), which are predicted to lie in
the meV range [46, 105, 242, 249]. Tracking HE dynamics via intra-excitonic peaks,
rather than via excitonic resonances in interband optical spectra, is also advantageous
because it enables access to optically dark HEs with finite center-of-mass momenta
and is not obscured by the effects of photo-doping induced bandgap renormalization
and mid-gap state formation, which are pronounced in Mott insulators [180].

Figure 3.2: Optical conductivity of Sr2IrO4 [199]. Inset: Real-space depiction of
HD creation via photo-excitation that is resonant with the Mott gap transition 𝛼.

3.2 THz Intra-excitonic Spectroscopy of Sr2IrO4

Here, we use time-resolved time-domain THz spectroscopy (tr-TDTS) to probe
the transient low energy dynamics of photo-doped holons and doublons in the
square lattice AFM Mott insulator Sr2IrO4. As covered in Section 1.4.1, the low
energy electronic structure of Sr2IrO4 consists of a completely filled band of spin-
orbital entangled pseudospin 𝐽𝑒 𝑓 𝑓 = 3/2 states and a narrow half-filled band of
𝐽𝑒 𝑓 𝑓 = 1/2 states, which splits into a lower Hubbard band (LHB) and an upper
Hubbard band (UHB) due to on-site Coulomb repulsion [115]. Optical conductivity
measurements show the LHB→UHB transition peak (dubbed the𝛼 transition) lying
just below 0.6 eV (Figure 3.2) [161, 199]. The localized 𝐽𝑒 𝑓 𝑓 = 1/2 moments are
coupled through strong Heisenberg-type exchange interactions (J = 60 meV) [117],
which is in principle conducive to spin-mediated HD binding, and undergo long-
range Néel-type AFM ordering below a temperature 𝑇𝑁 = 230 K [37]. Although
resonant inelastic x-ray scattering measurements have shown evidence of a spin-
orbital resonance inside the HD continuum, associated with an intra-site 𝐽𝑒 𝑓 𝑓 = 3/2
to 𝐽𝑒 𝑓 𝑓 = 1/2 excitation [117], no direct evidence of HEs—generated through
inter-site LHB to UHB excitation—has been reported.

Ultrafast tr-TDTS measurements were performed in reflection geometry on (001)
single crystals of Sr2IrO4. HD pairs are optically generated using a near-infrared
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Figure 3.3: Time-resolved THz spectrum of Sr2IrO4. a Schematic of the tr-TDTS
setup. The sample is excited by an intense near-infrared pulse (magenta) resonant
with the 𝛼 transition. The transient response at a fixed time-delay 𝑡 is then probed
by a weak broadband THz pulse (blue). An 800 nm pulse (maroon) measures
pump-induced changes of the reflected THz pulse through EOS (see Section 2.4).
b Equilibrium (blue) THz pulse 𝐸 (𝑡EOS) and its pump induced change (magenta)
𝐸 (𝑡EOS, 𝑡 = 2.55 ps). c Differential change in the reflected THz spectrum of Sr2IrO4
taken at 80 K in response to 𝛼 peak-resonant photo-excitation with fluence 2 mJ/cm2.
Top: Spectrum at 𝑡 = 1.5 ps. Gray box highlights the broad peak. Right: Frequency-
integrated response as a function of 𝑡.

100 fs (FWHM) pump pulse tuned on-resonance with the 𝛼 transition (0.6 eV). After
a variable time delay 𝑡, the low energy charge response is probed by a phase-locked
broadband (2→ 24 meV) THz pulse, whose electric field profile in the time domain
is measured by electro-optic sampling (EOS) as a function of the recording time
𝑡EOS (Figure 3.3a). Figure 3.3b shows the reflected THz field transient E(𝑡EOS) from
the un-pumped crystal overlaid with its pump-induced change ΔE(𝑡EOS, 𝑡) recorded
at a fixed time delay of 𝑡 = 2.55 ps. The predominant features of ΔE(𝑡EOS, 𝑡) track
E(𝑡EOS) with minimal phase offset, indicating that the presence of photo-dopants
increases the THz reflectance as expected.

Pump-induced differential THz spectra in the frequency domain are obtained by
Fourier transforming the field transients with respect to 𝑡EOS. Figure 3.3c shows
typical spectra from Sr2IrO4 acquired at a temperature 𝑇 = 80 K and a pump fluence
of 2 mJ/cm2 plotted as a function of 𝑡. At all frequencies, we observe a fast rise in
the reflected field amplitude upon injection of photo-dopants at 𝑡 = 0, followed by a
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slower exponential decay over several picoseconds. Four peaks clearly appear in the
spectra after pump-excitation. There are three sharp peaks above 3 THz that match
the three lowest frequency infrared-active phonon modes in Sr2IrO4 [51, 161, 199],
as well as one broader peak centered near 1.5 THz, which lies more than 1 THz above
the highest energy zone-center magnon mode [13, 55, 117]. Our measurement of
the refractive index of un-pumped Sr2IrO4 by TDTS in transmission geometry (see
Section 2.4) shows no evidence of phonon or magnon peaks in the vicinity of 1.5
THz (Figure 3.4), consistent with previous reports. These results suggest that the
broad peak is not an excitation of a structural or magnetic origin, and can potentially
be attributed to an excitonic origin.

Figure 3.4: Real and imaginary parts of the index of refraction of Sr2IrO4 in the
THz regime (shaded gray energy window in Figure 3.2).

This conclusion is supported through an analysis of the full dielectric response of the
photo-doped state, which is extracted from the differential THz spectra through stan-
dard electrodynamical relations using the thin film approximation (Section 2.4.9).
Figure 3.5 show the pump-induced change to the realΔ𝜎1(𝜔) and imaginaryΔ𝜎2(𝜔)
parts of the optical conductivity at different 𝑡. Immediately upon injection of photo-
dopants (𝑡 = 0) there is a positive increase in bothΔ𝜎1(𝜔) andΔ𝜎2(𝜔), as is expected
from a conducting plasma of unbound holons and doublons [180, 210, 249]. Over
the next several hundred femtoseconds, Δ𝜎1(𝜔) evolves into a peak shape centered
around 1.5 THz, while Δ𝜎2(𝜔) develops a dispersive lineshape with a zero-crossing
at the same frequency. These are signatures of a Lorentzian dielectric function,
consistent with the absorptive response of a bound Hubbard excitonic state. In fact,
this evolution from a Drude-like response into an absorptive Lorentzian response
is a hallmark of exciton formation following photo-excitation resonant with the 𝛼
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Figure 3.5: Photo-doping induced optical conductivity transients of Sr2IrO4. a-f
Δ𝜎1(𝜔) (top panels) and Δ𝜎2(𝜔) (bottom panels) extracted from differential THz
spectra at various 𝑡. Fits to the Drude-Lorentz model (Equation 3.1) are displayed
as solid lines.

transition, with the Lorentzian representing a transition from one internal excitonic
level to another [105, 210, 249].

To understand the temporal interplay between free and bound HD states,Δ𝜎1(𝜔) and
Δ𝜎2(𝜔) were simultaneously fit to a sum of Drude and Lorentz oscillator functions
at each 𝑡:

𝐷

2

[
1

𝛾Drude − 𝑖𝜔

]
+ 𝐿HE

2

[
𝜔

𝑖
(
𝜔HE2 − 𝜔2 )

+ 𝜔𝛾HE

]
+
𝐿Bgd.

2

[
𝜔

𝑖
(
𝜔Bgd.2 − 𝜔2 )

+ 𝜔𝛾Bgd.

] . (3.1)

The first term is a Drude term. The second term is a Lorentzian term representing
the HE mode. The final Lorentzian term describes a weak background, likely caused
by pump-induced changes of higher energy features such as the phonon transitions.
One or two background Lorentzians were used depending on the dataset. The fitting
constants 𝐷, 𝐿HE, and 𝐿Bgd. are the strengths of the Drude, HE, and background
terms, respectively. The fitting constants 𝛾Drude, 𝛾HE, and 𝛾Bgd. are the widths of
the Drude, HE, and background terms, respectively. The fitting constants 𝜔HE and
𝜔Bgd. are the central frequencies of the HE and background terms, respectively. For
𝑡 ≤ 450 fs, the value of 𝛾Drude was left as a free parameter, while for later 𝑡 it was
fixed to its average fitted value in order to constrain the number of free parameters
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and improve the quality of the fit. In Figure 3.6, a representative dataset is shown
along with each of the individual components of the fit.

Figure 3.6: Individual components of the Drude-Lorentz fitting of a Δ𝜎1(𝜔) and
b Δ𝜎2(𝜔) plotted with the original data at 𝑡 = 1.5 ps. The pump energy was fixed
at 0.6 eV, resonant with the 𝛼 transition, and set to a fluence of 2 mJ/cm2. The
temperature of the sample was 80 K.

A high quality of fit is achieved at each 𝑡 as shown in Figure 3.5. The spectral
weights (SW) associated with the Drude and intra-excitonic Lorentzian components,
defined as the area under the fits to Δ𝜎1(𝜔), are proportional to the number of free
and bound carriers, respectively [106]. As shown in Figure 3.7, the Drude SW
increases from zero starting at 𝑡 = 0 and reaches a maximum (𝑡 ≈ 0.4 ps) after the
pump pulse has been completely absorbed. Previous time-resolved near-infrared
reflectivity [55, 92] and angle-resolved photoemission spectroscopy measurements
[186] on Sr2IrO4 showed that intraband cooling of photo-dopants occurs on an
ultrashort timescale of around 60 fs, which is typical for AFM Mott insulators
[180]. Therefore, by 𝑡 = 0.4 ps, the unbound holons and doublons have relaxed near
the Hubbard band edges. At these early times, the system exhibits a finite Drude SW
with a relatively low scattering rate (3.9 ± 0.1 THz at 𝑡 = 0.3 ps) compared to 15 %
Rh doped metallic Sr2IrO4 crystals [244], indicating conducting behavior. Between
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Figure 3.7: SW of the Drude and HE Lorentzian terms versus 𝑡 obtained by the
Drude-Lorentz fitting of the data in Figure 3.5. The solid lines are fits to a single
exponential function (Equation 2.30). Error bars are obtained from the standard
deviation of the least-squares-fitting algorithm.

𝑡 = 0.4 ps and 1 ps, there is a rapid decay of the Drude SW that coincides with a rise
in the Lorentzian SW from zero, demonstrating a SW transfer from the former to the
latter component. This aligns with our expectation that free holons and doublons
can only bind into stable HEs when their kinetic energy falls below a threshold
value. At 𝑡 = 1 ps, the Lorentzian SW reaches a maximum and subsequently decays
over a timescale of several picoseconds due to HE recombination. During this
decay, there is a time window when the system possesses a finite Lorentzian SW but
vanishing Drude SW within our experimental resolution, thus realizing a transient
insulating HE fluid. A dynamical crossover from a conducting electron-hole plasma
to an insulating excitonic fluid was previously identified in the photo-doped rigid
band semiconductor GaAs through analogous features in tr-TDTS data [105, 249].
However, the characteristic timescales for exciton formation and decay in Sr2IrO4

are three orders of magnitude shorter.

3.3 Pump photon energy dependence
Thus far, we have performed experiments resonant with the 𝛼 transition that marks
LHB→ UHB transition. However, another possibility would be to pump the 𝐽𝑒 𝑓 𝑓
=3/2→ UHB transition, known as the 𝛽 transition. Doing so will initially excite a
𝐽𝑒 𝑓 𝑓 = 3/2 electron to the 𝐽𝑒 𝑓 𝑓 = 1/2 upper Hubbard band, leaving behind a hole in



82

the 𝐽𝑒 𝑓 𝑓 = 3/2 band [115, 244]. It is well known that in Sr2IrO4 the photo-carrier
relaxation towards the gap edge occurs on an ultrafast (∼10 fs) timescale [92]. Due
to this rapid thermalization process, we should expect that some subset of the holes
produced in the 𝐽𝑒 𝑓 𝑓 = 3/2 band should relax into the lower Hubbard band, leaving
them available for Hubbard exciton formation with electrons in the upper Hubbard
band. However, because some subset of the 𝐽𝑒 𝑓 𝑓 = 3/2 holes will directly recombine
with 𝐽𝑒 𝑓 𝑓 = 1/2 electrons, the number of excitons generated relative to the total
number of photo-excited carriers should be reduced as compared to the case of
directly pumping the 𝛼 transition. Thus, we can compare the fraction of the total
photo-carriers that become excitons when pumping the 𝛼 versus 𝛽 transitions to
provide further evidence for our interpretation of the data.

Figure 3.8: a-f Δ𝜎1(𝜔) (top panels) and Δ𝜎2(𝜔) (bottom panels) extracted from
differential THz spectra at various 𝑡. The pump was set to 1.0 eV (resonant with
the 𝛽 transition) and the data were taken at 80 K. Fits to the Drude-Lorentz model
(Equation 3.1) are displayed as solid lines.

Accordingly, we performed additional experiments at a pump photon energy of
1 eV, which is resonant with the 𝛽 transition. In line with our expectations, we
see the emergence of a Drude response immediately after the arrival of the pump
followed by an ultrafast spectral weight transfer into a finite energy peak, similar to
pumping the 𝛼 transition (Figure 3.8). To characterize this spectral weight transfer,
we performed the same Drude-Lorentz fitting described in Equation 3.1. In Figure
3.9, we plot the Drude and Lorentzian spectral weights for both the 𝛼 and 𝛽 pumping
cases. As can be seen, while a Drude-to-Lorentz spectral weight transfer is observed
in both cases, the spectral weight ratio between the two terms is not the same for
each pumping case. While the 𝛼 case produces a Lorentz to Drude ratio of roughly
0.64 at their peaks, the 𝛽 case produces a ratio of 0.23. Since the Drude spectral
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weight is indicative of the number of free carriers and the Lorentzian spectral
weight is indicative of the number of bound carriers [106], we can conclude that
the conversion efficiency from free carriers to bound pairs is significantly reduced
in the 𝛽 case as compared to the 𝛼 case. This is consistent with the expected result
described in the previous paragraph, providing further evidence for our assignment
of the Lorentzian component to an excitonic origin.

Figure 3.9: Temporal evolution of the spectral weight in 𝛼- and 𝛽-pumped Sr2IrO4.
a,b Spectral weight of the Drude and HE Lorentzian terms versus time delays 𝑡 for
the 𝛼 pumping case (a) and the 𝛽 pumping case (b). The data is normalized to the
maximum of the Drude spectral weight in each of the panels. The solid lines and
shaded regions are guides to the eye. Error bars are obtained from the standard
deviation of the least-squares-fitting algorithm.

3.4 Determining the Hubbard excitonic recombination pathway
Since tr-TDTS probes excitons with center-of-mass momenta lying both inside and
outside of the light cone [105, 188], it is sensitive to all radiative and non-radiative
recombination pathways. In WSe2, for example, an ultrafast radiative recombination
of bright excitons and a slower Auger recombination of dark excitons was clearly
manifested through a two-step decay of the 1𝑠-2𝑝 intra-excitonic peak [188]. To
uncover the pathway underlying the ultrafast HE recombination in Sr2IrO4, we
measured the decay dynamics of the total SW about the 1.5 THz mode—obtained
by integrating Δ𝜎1(𝜔) from 0.8 to 2 THz—at a series of temperatures from 80 K
to 300 K (Figure 3.10a). The functional form of the decay for 𝑡 > 1 ps, which
is dominated by the Lorentzian term (Figure 3.7), is well described by a single
exponential at all temperatures (Figure 3.10a), suggesting one predominant exciton
recombination pathway. Although sub-picosecond radiative recombination has been
reported in semiconductors with large interband dipole moments [188, 210], this
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Figure 3.10: Temperature dependence of Hubbard exciton decay properties. a
Temperature dependence of the photo-induced changes to Δ𝜎1(𝜔) integrated from
0.8 THz to 2.0 THz. Solid lines are fits to a single exponential function (Equation
2.30). The white dashed line in the 80 K dataset is the exponential fit to the
Lorentzian SW shown in Figure 3.7, showing excellent agreement. b, Temperature
dependence of the exponential decay constants extracted from the data in panel a and
from the infrared reflectivity transients (Δ𝑅/𝑅) shown in Figure 3.12. Details of this
measurement can be found in Section 2.5. The solid line is a fit to the multi-magnon
emission model described in Reference [129]. Error bars are the standard deviation
from the least-squares-fitting algorithm.

process is unlikely in Sr2IrO4 owing to the 𝑑-𝑑 character of the 𝛼 transition [115]
and the complete absence of excitonic peaks in interband optical spectra [161, 199]
(Figure 3.2). Auger recombination can also be ruled out because the exponential
decay time is fluence independent (Figure 3.11), indicating a monomolecular rather
than multi-molecular recombination process.

Given the strong coupling of charges to the pseudospin [117, 161] and lattice
[93, 138, 161] degrees of freedom in Sr2IrO4, we examine the possible role of
collective bosonic excitations in the recombination of HEs. The highest energy
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Figure 3.11: Fluence independence of THz frequency decay dynamics. a Δ𝐸(𝑡EOS,
𝑡) traces taken with 𝑡EOS fixed to the time where 𝐸(𝑡EOS) is maximal (see Section
2.4 for details) plotted as a function of the fluence of the 𝛼-resonant (0.6 eV) photo-
excitation. Data was collected at a sample temperature of 80 K. b Decay constants
extracted from an exponential fitting (Equation 2.30) of the traces in panel a. The
solid line is a guide to the eye. Error bars are the standard deviation from the
least-squares-fitting algorithm.

magnon [117] and phonon [51] modes in Sr2IrO4 lie near 200 meV and 90 meV,
respectively, well below the Mott gap scale (Figure 3.2). Therefore HEs can in
principle recombine through multi-magnon or higher-order multi-phonon emission
channels [129–131]. This mechanism naturally explains the strong temperature
dependence of the exponential HE decay time 𝜏, which clearly contrasts with the
largely temperature independent decay of the infrared charge response (Figure 3.10b,
Figure 3.12), for the following reason. Optical conductivity measurements have
shown that upon cooling from 300 K to 80 K, the Mott gap Δ(𝑇) of Sr2IrO4 is
significantly enhanced [161, 199]. This means that a greater number of bosons
must be emitted in order for HEs to relax across the Mott gap, leading to a larger
𝜏 [211]. In fact, numerical studies of the 2D square lattice Hubbard model have
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predicted that HEs can rapidly recombine through multi-magnon emission on the
picosecond timescale with 𝜏 ∝ exp [𝜁Δ(𝑇)/𝐽], where 𝐽 is the magnetic exchange
energy and 𝜁 is a factor of order unity [129, 130]. Using the experimentally reported
values of Δ(𝑇) [161] and 𝐽 = 60 meV [117], we find that this equation provides
a good fit to the measured temperature dependence of 𝜏 (Figure 3.10b), with a
fitted value of 𝜁 = 0.76(2). Such strong coupling of HEs to magnons supports the
idea that AFM correlations play a significant role in HD binding. Note that even
though 3D long-range AFM order is lost above 𝑇𝑁 , individual 2D layers continue
to exhibit pronounced AFM correlations with a well-defined magnon spectrum in
the paramagnetic phase since the scale of 𝐽 far exceeds 𝑇𝑁 [70, 81, 82]. Since it
is in-plane correlations that are critical to the stability of HEs [46, 130, 202, 221],
this behavior is consistent with the absence of anomalies in 𝜏 near 𝑇𝑁 . Further
evidence for this recombination process can be obtained through measurements of
the bosonic excitation spectra in Sr2IrO4 via time-resolved inelastic x-ray scattering
[55], time-resolved absorption [13], or time-resolved Raman spectroscopy [81], and
is a critical direction of future work.

Figure 3.12: Δ𝑅/𝑅 traces taken on Sr2IrO4 as a function of temperature. The probe
energy was fixed at 1.55 eV. The pump energy was fixed at 0.6 eV, resonant with 𝛼,
and a fluence near 2 mJ/cm2 was used. The black dashed lines are fits to a double
exponential function (Equation 2.30).

3.5 Microscopic modeling of the excitonic states
To identify the specific intra-excitonic transition responsible for the 1.5 THz peak,
we compare our data with many-body model calculations. Sr2IrO4 is well-described
theoretically by the single-band Hubbard model [115, 231] in the presence of the
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nearest-neighbor (NN) Coulomb interaction:

𝐻 = −𝑡𝑁𝑁
∑︁
⟨𝑖 𝑗⟩𝑠
(𝑐†
𝑗 𝑠
𝑐𝑖𝑠 + ℎ.𝑐.) +𝑈

∑︁
𝑖

𝑛𝑖↑𝑛𝑖↓, +𝑉
∑︁
⟨𝑖 𝑗⟩

𝑛𝑖𝑛 𝑗 . (3.2)

The sum runs over NN pairs of sites ⟨𝑖 𝑗⟩ on the 2D square lattice and 𝑐 𝑗 𝑠 are
the fermionic annihilation operators for the electron with spin 𝑠 = ±1

2 on site 𝑗 .
Before the arrival of the pump pulse, the half-filled system is in its ground state.
The pump pulse excites an electron across the Mott gap, creating a holon in the
LHB and a doublon in the UHB. It is known that through intraband cooling, the
photo-excited holons and doublons quickly (∼ 60 fs) relax to the band minimum
[55, 92, 180, 186]. However, further relaxation via recombination across the Mott
gap is bottlenecked by the large amount of energy (∼ 0.5 eV) that needs to be
transferred to other bosonic degrees of freedom (spins, phonons) with much smaller
energy scales (∼ 1-100 meV), leading to typical timescales exceeding 1 ps [92,
180]. Because intraband relaxation and recombination occur on drastically different
timescales, we canonically transform the Hubbard model so as to separate them
evidently in different orders of the small 1/𝑈 parameter [129, 130]. While the exact
canonical transformation preserves the model, we drop the terms that appear with
parametrically small prefactors (1/𝑈𝑛, 𝑛 > 2) or are subleading compared to terms
already included in lower orders of the 1/𝑈 expansion. We end up with an effective
model 𝐻̃ = 𝐻𝑡𝐽𝑉 + 𝐻𝑟𝑐, where 𝐻𝑡𝐽𝑉 captures holon and doublon hopping, on-site
and NN Coulomb interaction, and the interaction-mediated spin exchange, while
𝐻𝑟𝑐 captures the recombination processes that can be treated as a perturbation:

𝐻̃ = 𝐻𝑡𝐽𝑉 + 𝐻𝑟𝑐 (3.3)

𝐻𝑡𝐽𝑉 = 𝑡NN
∑︁
⟨𝑖 𝑗⟩,𝑠
(ℎ†
𝑖𝑠
ℎ 𝑗 𝑠 − 𝑑†𝑖𝑠𝑑 𝑗 𝑠 + ℎ.𝑐.) +𝑈

∑︁
𝑖

𝑛𝑑𝑖

−𝑉
∑︁
⟨𝑖 𝑗⟩
(𝑛𝑑𝑖𝑛ℎ 𝑗 + 𝑛ℎ𝑖𝑛𝑑𝑗 ) + 𝐽

∑︁
⟨𝑖 𝑗⟩

(
S𝑖 · S 𝑗 −

1
4
𝛿1,𝑛𝑖𝑛 𝑗

) (3.4)

𝐻𝑟𝑐 = 𝑡𝑟𝑐

∑︁
(𝑖 𝑗 𝑘),𝑠𝑠′

(
ℎ𝑘𝑠𝑑 𝑗 𝑠′ ®𝜎𝑠𝑠′ · S𝑖 + ℎ.𝑐.

)
, 𝑡𝑟𝑐 =

2𝑡2

𝑈
=
𝐽

2
. (3.5)

We have introduced holon and doublon creation operators, ℎ†
𝑖𝑠
= 𝑐𝑖𝑠 (1−𝑛𝑖𝑠), 𝑑

†
𝑖𝑠
=
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𝑐
†
𝑖𝑠
𝑛𝑖𝑠, and corresponding density operators 𝑛ℎ𝑖 = (1/2)

∑
𝑠 ℎ
†
𝑖𝑠
ℎ𝑖𝑠, 𝑛𝑑𝑖 = (1/2)

∑
𝑠 𝑑
†
𝑖𝑠
𝑑𝑖𝑠.

Here 𝑠 = −𝑠 is the opposite spin of 𝑠 and ®𝜎 = {𝜎𝑥 , 𝜎𝑦, 𝜎𝑧} is a vector of Pauli matri-
ces so that in the above notation 𝜎𝑎

𝑠,𝑠′ corresponds to the ( 32 − 𝑠,
3
2 − 𝑠

′) component of
the 𝜎𝑎 matrix. The sum over (𝑖 𝑗 𝑘) runs over 𝑖, 𝑗 , 𝑘 , where 𝑗 ≠ 𝑘 are the NN sites to
site 𝑖. The values of the nearest-neighbor hopping 𝑡NN = 0.26 eV, nearest-neighbor
inter-site Coulomb energy 𝑉 = 0.39 eV and exchange 𝐽 = 4𝑡2NN/𝑈 = 0.06 eV were
chosen consistently with reported values for Sr2IrO4 [117, 231, 236], with 𝑈 being
the on-site Coulomb energy.

Motivated by the fluence independent tr-TDTS response (Figure 3.11), indicating
the irrelevance of exciton-exciton interactions, we assume low densities of photo-
excited HD pairs. Having already separated sectors with different number of HD
pairs on the level of the Hamiltonian—𝐻𝑡𝐽𝑉 conserves the number of HD pairs while
𝐻𝑟𝑐 perturbatively changes it—we can extract the metastable states at the bottom
of the UHB using the Lanczos algorithm for exact diagonalization of 𝐻𝑡𝐽𝑉 within
the sector with one HD pair, while neglecting 𝐻𝑟𝑐. These states are ostensibly the
terminal point of the intraband relaxation process and, as we will point out with
several indicators, correspond to excitonic states of bound HD pairs that lead to the
formation of the transient insulating phase. The Lanzcos approach is ideal for this
problem because it is suited for the calculation of the lowest eigenstates within the
sector with one HD pair. Moreover, the Lanczos approach allows us to treat the
system using periodic boundary conditions on 𝑁 = 26 sites, which is larger than
what would be possible if we had considered the full exact diagonalization of the
Hubbard model directly. We use 𝑁𝐿𝑎𝑛 = 160, 180 Lanczos basis vectors for which
the lowest eigenstates are well converged.

Eigenstates within the subspace of a single HD pair are calculated via exact diagonal-
ization of 𝐻𝑡𝐽𝑉 on a 26-site square cluster using the Lanczos algorithm [129, 130].
As shown in Figure 3.13a, the eigenvalue spectrum at zero center-of-mass momen-
tum features four discrete bound HE levels spaced by several THz, separated from a
higher energy HD continuum. In order to determine the symmetry of these excitonic
states, we calculate the matrix elements |⟨𝜓ℎ𝑑®𝑘,𝑚 |𝑂𝑠𝑦𝑚 |𝜓ℎ𝑑®𝑘,1⟩|

2 at a fixed center-of-mass

momentum ®𝑘 from the lowest eigenstate 𝜓ℎ𝑑®𝑘,1 to the excited states 𝜓ℎ𝑑®𝑘,𝑚 with respect
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Figure 3.13: HE spectrum and characteristics obtained from effective model numer-
ics. a Eigenstates of𝐻𝑡𝐽𝑉 in the sector of a single HD pair at zero center-of-mass mo-
mentum calculated via exact diagonalization (see main text). Vertical arrows mark
the optically-allowed internal HE transitions. b The real space HD distribution on a
square lattice represented through the density correlator 𝐷 𝑗 = ⟨𝜓ℎ𝑑𝑚 |𝑛ℎ 𝑗𝑛𝑑0 |𝜓ℎ𝑑𝑚 ⟩ for
each of the four excitonic states labeled by𝑚. The doublon is fixed at the center. The
size and shade of each point indicate the strength of 𝐷 𝑗 , and therefore the probability
of finding the holon at site 𝑗 . c Relative deviation of the spin correlator from the
Heisenberg ground-state with the holon and doublon fixed at their most probable
locations. The size and shade of each bond indicate the deviation normalized by the
AFM ground state value, with dashed lines representing negative changes.

to operators with a different (sym={𝑠, 𝑝, 𝑑}) symmetry, for example,

𝑂𝑠 =
∑︁
𝑖

𝑑
†
𝑖→𝑑𝑖 + 𝑑

†
𝑖←𝑑𝑖 + 𝑑

†
𝑖↑𝑑𝑖 + 𝑑

†
𝑖↓𝑑𝑖, (3.6)

𝑂𝑑 =
∑︁
𝑖

𝑑
†
𝑖→𝑑𝑖 + 𝑑

†
𝑖←𝑑𝑖 − 𝑑

†
𝑖↑𝑑𝑖 − 𝑑

†
𝑖↓𝑑𝑖, (3.7)

𝑂𝑝 =
∑︁
𝑖

𝑑
†
𝑖→𝑑𝑖 − 𝑑

†
𝑖←𝑑𝑖 (3.8)
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Figure 3.14: Eigenenergies of 𝐻𝑡𝐽𝑉 in the sector of a single HD pair projected onto
the 𝑘𝑥 axis throughout the entire reciprocal space of the 26 site lattice. At zero
center-of-mass momentum, ®𝑘 = [0, 0], the four lowest states are colored to indicate
which excitonic states are depicted in Figure 3.13.

where 𝑑𝑖 =
∑
𝑠 𝑑𝑖𝑠 and 𝑖 → /𝑖 ← /𝑖 ↑ /𝑖 ↓ are right/left/top/bottom neighboring

sites of site 𝑖. Depending on the symmetry of both states, the matrix element
will be zero or finite. The lowest excitonic state at ®𝑘 = [0, 0] has 𝑠-wave symmetry
[129, 221, 223]. From the above procedure, we can determine that the other excitonic
states at ®𝑘 = [0, 0] also have a definite symmetry: 𝑑-, 𝑠-, and 𝑝-wave, listed from
lowest to highest energy, respectively (Figure 3.13a, Figure 3.14). This excitation
spectrum clearly departing from the hydrogenic series as previously predicted [94,
130, 223, 242].

These symmetries can be directly visualized in real space through the density cor-
relator 𝐷 𝑗 = ⟨𝜓ℎ𝑑𝑚 |𝑛ℎ 𝑗𝑛𝑑0 |𝜓ℎ𝑑𝑚 ⟩, where |𝜓ℎ𝑑𝑚 ⟩ is the HD pair wave function, which
describes the probability of measuring a holon at site 𝑗 given a doublon at the origin
for the four different excitonic states 𝑚 = 1 → 4 (Figure 3.13b). Whereas 𝐷 𝑗 for
the 𝑠- and 𝑑-states is 4-fold rotational symmetric, that for the 𝑝-state is only 2-fold
symmetric.

Our numerical simulations confirm that the observed 1.5 THz peak lies within the
predicted frequency scale of low-lying intra-excitonic excitations in Sr2IrO4, which
is an order of magnitude smaller than 𝐽. A leading candidate is the dipole-allowed
𝑠- to 𝑝-state transition appearing at 2.85 THz in our calculations (Figure 3.13a).
Since HEs are generated by excitation across the Mott gap in our experiments, a
finite initial population of excited HE states is expected. Moreover, the proximity
of the 𝑝-state to the HD continuum (Figure 3.13a, Figure 3.14) implies a shortened
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𝑝-state lifetime, which may explain the broad linewidth of the observed 1.5 THz
mode. Magnon emission could also contribute to the broadness of the peak. For
any momentum, there are a few excitonic states, with energies that depend on the
momentum (Figure 3.14). While the symmetry of excitonic states is definite for
®𝑘 = [0, 0] and ®𝑘 = [𝜋, 𝜋], this is not the case for other ®𝑘 . An intra-excitonic
transition accompanied by a magnon emission is allowed by symmetry and would
imply that the final exciton would be at a different momentum, which spreads the
possible energy range for the final state and makes the peak broader. We note that
while the experimental detection of a single mode is not sufficient to pin down the
excitonic spectrum, our theoretical results show that its energy scale is consistent
with an intra-HE transition.

To verify that 𝐽, in addition to 𝑉 , contributes to binding the HEs identified in our
simulations, we evaluated the relative deviation of the spin correlator relative to the
AFM ground state for each HE state, defined as 𝛿⟨S𝑖 · S 𝑗 ⟩ =

⟨S𝑖 ·S 𝑗 ⟩HD−⟨S𝑖 ·S 𝑗 ⟩AFM
⟨S𝑖 ·S𝑖+1⟩AFM

. For
this calculation, we fix the holon and doublon to their most probable locations as
determined by the value of 𝐷 𝑗 . As seen in Figure 3.13c, it is clear that the presence
of the HD pair disrupts the AFM motif, and that the extent of this disruption becomes
larger for the higher-energy excitonic states. This behavior supports the notion of a
spin binding mechanism.

3.5.1 System size dependence
We now consider the effect of the system size 𝑁 on the results of the simulation.
In Figure 3.15, the results for 𝑁 = 20 and 𝑁 = 26 are shown. We find the
existence of several excitonic states below a densely spaced continuum for both
system sizes. These excitons have definite symmetries at high symmetry points
®𝑘 = [0, 0], ®𝑘 = [0, 𝜋], ®𝑘 = [𝜋, 0], and ®𝑘 = [𝜋, 𝜋] and mixed symmetries at other
®𝑘 . However, a few details change depending on the values of 𝑁 . Most importantly,
the binding energies of the excitons, the number of excitonic states, and the order
in which different symmetries of excitons appear at the high symmetry points of
the spectrum can change. The latter two can be particularly sensitive to 𝑁 , since
the shapes of the lattices, which feature periodic boundary conditions, can favor
different symmetries. We believe that this is a clear finite size effect that would
eventually diminish with larger system sizes.

We believe that our conclusions remain qualitatively robust despite these finite
size effects, since there are always optically-allowed intra-excitonic transitions that
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Figure 3.15: System size dependence of the spectra calculated with 𝐻𝑡𝐽𝑉 . a,b
Spectra obtained from the exact diagonalization procedure performed for two system
sizes, 𝑁 = 20 (a) and 𝑁 = 26 (b). The latter is projected onto the 𝑘𝑥 axis. Due to
the symmetry of the 𝑁 = 20 lattice, the spectrum is projected onto the 𝑘𝑥 + 0.5(𝑘𝑦)
axis to prevent the overlap of different states from different momenta. Large gray
markers are states with s-wave symmetry, medium black markers are states with d-
wave symmetry, and small violet markers are states with p-wave symmetry. Mixed
symmetry states have multiple markers overlapped with one another. We define 0
eV to be the energy of the lowest-energy state.

appear at a fraction of 𝐽, in agreement with the peak observed in experiment,
regardless of these choices. Also, we find that the excitons appear to be more stable
(more clearly below the continuum) as the system size is increased.

3.6 Ruling out alternative explanations
While the data strongly points towards the presence of a Hubbard excitonic fluid
in photo-doped Sr2IrO4, it is important to rule out alternative explanations for our
transient spectra and dynamics. In this section, we list several mechanisms that can
be ruled out using our experimental observations and the reported literature.

3.6.1 Transient phase separation
In this section, we show that our photo-induced optical spectra cannot be explained
by the formation of a phase-separated state following the photo-doping process. To
do this, we rely on the effective medium approximation to simulate the response of a
heterogeneous photo-excited medium. We start by solving the Bruggeman formula
to determine a model for the effective dielectric response of the phase-separated
material. Since we are considering a mixture of metallic and insulating phases, we
included two terms giving [212]:
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Figure 3.16: Drude-Lorentz Fitting of the transient changes to the optical conduc-
tivity at 𝑡 = 0.3 ps. a,b Photo-induced changes to the real (a) and imaginary (b)
parts of the optical conductivity. The solid lines represent various parts of the
Drude-Lorentz fit (Section 3.2), while the dot-dashed line indicates the total fit.

𝑝1
𝜀1 − 𝜀𝑒 𝑓 𝑓

𝜀1 + (𝑑 − 1)𝜀𝑒 𝑓 𝑓
+ 𝑝2

𝜀2 − 𝜀𝑒 𝑓 𝑓
𝜀2 + (𝑑 − 1)𝜀𝑒 𝑓 𝑓

= 0 (3.9)

where 𝑝1 is the metallic area fraction, 𝑝2 is the insulating area fraction, 𝑑 is the
dimension, 𝜀1 is the dielectric function of the metallic areas, 𝜀2 is the dielectric
function of the insulating areas, and 𝜀𝑒 𝑓 𝑓 is the effective response of the total area.
Solving for 𝜀𝑒 𝑓 𝑓 gives:

𝜀𝑒 𝑓 𝑓 =
1

2(𝑑 − 1)

[
𝑑𝜀𝑎𝑣𝑔 − 𝜀1 − 𝜀2 ±

√︃
(𝑑𝜀𝑎𝑣𝑔 − 𝜀1 − 𝜀2)2 + 4(𝑑 − 1)𝜀1𝜀2

]
(3.10)

where 𝜀𝑎𝑣𝑔 = 𝑝1𝜀1+ 𝑝2𝜀2 and 𝑝𝑖 sum to unity. From this expression, we can retrieve
the effective light-induced changes to the conductivity of the heterogeneous film:

Δ𝜎𝑒 𝑓 𝑓 = −𝑖(𝜀𝑒 𝑓 𝑓 − 𝜀2)𝜔𝜀0 (3.11)
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where 𝜔 is frequency.

To define 𝜀1, we note that the system only contains metallic puddles after it is photo-
excited. Indeed, the dataset at the early time delay of 𝑡 = 0.3 ps can only be fit using
a Drude term and a broad background term that primarily affects the imaginary
part of the optical conductivity and is likely caused by higher energy changes to
the conductivity (Figure 3.16). This result implies that the photo-induced layer
is completely metallic at this time delay, suggesting that 𝑝1 = 1 and 𝑝2 = 0.
Accordingly, we can define the response of the metallic portions using this fitted
Drude response at this early time delay (see Chapter 3.2):

Δ𝜎𝐷𝑟𝑢𝑑𝑒 =
𝐷

2

[
1

𝛾 − 𝑖𝜔

]
(3.12)

where the fitting constants 𝐷 and 𝛾 and are the Drude strength and width, respec-
tively. At 𝑡 = 0.3 ps, these values are 330 ± 7 Ω−1cm−1ps−1 and 3.9 ± 0.1 THz,
respectively. Thus, we get the following result for 𝜀1:

𝜀1 = 𝜀2 +
𝑖Δ𝜎𝐷𝑟𝑢𝑑𝑒

𝜔𝜀0
(3.13)

𝜀2 can be defined using the measured equilibrium response of the material:

𝜀2 = (𝑛 + 𝑖𝑘)2 (3.14)

where 𝑛 and 𝑘 are the real and imaginary parts of the index of refraction, respectively
(Figure 3.4). However, our results do not change significantly with or without this
condition.

With these considerations in mind, we can obtain a series of curves showing the
expected response for the phase-separated material with different volume fractions of
metallic and insulating puddles (Figure 3.17). Here, we enforce charge conservation
by keeping Δ𝜎𝐷𝑟𝑢𝑑𝑒 (𝜔 = 0) · 𝑝1 to be constant. There are several important
features that contrast starkly with our measured data on both a qualitative and
quantitative level, ultimately ruling out phase-separation and heterogeneity as a
possible explanation of our results:

• Spectral discrepancies: While a finite energy peak does emerge (Figure
3.17) as the volume fraction of the insulating phase grows, its characteristics
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Figure 3.17: Results of the Bruggeman effective medium approximation analysis.
a,b Simulated effective light-induced changes to the real (a) and imaginary (b) parts
of the optical conductivity of the heterogeneous film. These curves were generated
by using experimental inputs into the Bruggeman formula and varying the volume
fraction of the metallic and insulating portions of the sample.

are qualitatively and quantitatively different from the experimentally observed
finite energy peak. First, the peak that emerges from the effective medium
analysis is significantly broader, spanning a frequency window of larger than
10 THz . On the other hand, the width of our observed resonance is always
less than 2 THz (Figure 3.5). Moreover, the central frequencies of the finite
energy peak that emerge from the Bruggeman analysis range from right above
0 THz to beyond 10 THz, as it is extremely sensitive to the volume fraction.
In contrast, the central frequency of the measured mode is always between 1.5
and 2 THz.

• Temporal dependence: In our experimental data, we observe that the Drude
spectral weight at early time delays evolves into a finite energy peak. For
this to be explained by the heterogeneity hypothesis, the area fraction of the
metallic regions 𝑝1 would have to decrease as time evolves. However, as
shown in Figure 3.17, as 𝑝1 is decreased the finite energy peak will strongly
blue-shift. It is clear from Figure 3.5 that our experimentally measured finite
energy peak does not blue-shift, thereby ruling out this scenario.

• Fluence dependence: As mentioned above, the central frequency of the
finite energy peak in the Bruggeman analysis is highly dependent on the ratio
of metallic and insulating areas. We also found that it is highly sensitive
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Figure 3.18: Dependence of the experimental and simulated finite energy peaks
on photo-carrier density. a,b Simulated effective light-induced changes to the real
(a) and imaginary (b) parts of the optical conductivity of the heterogeneous film
extracted from the Bruggeman formalism. These curves were generated by using
experimental inputs into the Bruggeman formula and varying the value of the Drude
strength (𝐷, see Equation 3.1). The values shown in the legend are normalized
to the maximum 𝐷 used, and the curves in the plots are normalized to the 𝐷 = 1
curve. The value of 𝑝1 was fixed to a representative value of 0.2. c,d Real (top)
and imaginary (bottom) parts of the experimental optical conductivity obtained with
pump fluences of 0.26 mJ/cm2 (c) and 1.4 mJ/cm2 (d). This data was taken at 𝑡 =
2.55 ps and at 80 K.

to the Drude spectral weight within the metallic regions as well (Figures
3.18a,b). This behavior possibly stems from the fact that this feature has
been attributed to the formation of a plasmon [212, 248], and is accordingly
highly sensitive to the carrier density. Experimentally, we can control the
carrier density by varying the pumping fluence. Thus, if the phase separation
hypothesis were to correctly explain our observations, the central frequency
of our observed resonance should vary drastically with the fluence of the
driving pulse, strongly blue-shifting as the fluence is increased. To test this
hypothesis, we performed spectrally-resolved experiments as a function of
pump fluence. As seen in Figures 3.18c,d, we do not observe such behavior.
Instead, we observe that the central frequency of the measured peak remains
largely unchanged as the fluence is changed by more than 5 times, in contrast
to the result predicted by the Bruggeman analysis. This result again rules out



97

the inhomogeneity hypothesis.

For these reasons, we believe that our data cannot be explained by the heterogeneity
hypothesis and that the Drude-Lorentz model used in our manuscript is the most
accurate representation of our data. Moreover, these results are consistent with our
expectations based on physical reasoning. The metallic patches in chemically doped
Sr2IrO4 samples nucleate from the sites of the chemical dopants [177], which tend to
not be distributed evenly across the sample. The insulating patches appear in regions
that are away from any chemical dopants. This sort of phase separation should not
appear in our experiment, which is photo-doped as opposed to chemically doped.
Unlike chemical dopants, we expect that photo-dopants will initially be distributed
evenly across the sample because the pump beam is homogeneous, creating a uniform
response. This assumption is supported by the fact that the system is well-described
by the Drude model at early time delays.

3.6.2 Defect capture and charge trapping
In the following, we provide arguments and data to rule out defect capture as a
possible explanation of our observed dynamical and spectral responses.

Figure 3.19: Temperature dependence of the tr-TDTS spectrum of Sr2IrO4. a,b
tr-TDTS spectra obtained at temperatures of 80 K (a) and 300 K (b). Data were
taken with a pump fluence of 2 mJ/cm2.
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Dynamics

Our picosecond-scale recombination dynamics cannot be mediated by defect cap-
ture. In this scenario, self-trapped excitons, either of intrinsic (through polaron
formation) or extrinsic (through trapping by defects) origin, should show different
intra-excitonic transition energies compared to free excitons due to the local trapping
potential. Assuming that such behavior is at play, there are two options: (1) excitons
are trapped within our accessible time and energy windows but the frequency shift
is small; or (2) the peak frequency of trapped excitons is so different that it lies
outside of our bandwidth.

To rule out case (1), we first note that because the trapped excitons would have a
different intra-excitonic transition energy than the free excitons, we should observe
two distinct Lorentzian peaks within our bandwidth. However, as can be seen
in Figure 3.6, our data is well-fit by a single finite energy Lorentzian. We can
further rule out scenario (1) by considering the fact that free excitons and trapped
excitons typically have very different recombination times (usually much slower in
the case of trapped excitons [137]). If there were contributions from both free and
trapped excitons within our bandwidth, our decay dynamics would show at least two
exponential components. In contrast, our decay dynamics remain well described by
a single exponential throughout our temperature, energy, and fluence range (Figure
3.7, Figure 3.10, Figure 3.11). Thus, by considering both the spectral characteristics
of our data as well as the temporal dynamics, we believe that we can safely rule out
scenario (1).

For case (2), the spectral weight decay observed within our bandwidth would cor-
respond to a spectral weight transfer to a separate peak corresponding to trapped
excitons that lies outside our bandwidth. The percentage of excitons that is trans-
ferred into the trapped state should decrease upon heating because thermal energy
in general works against exciton trapping. Moreover, the excitons should stay free
for longer times for the same reason, extending the lifetime of our observed peak.
However, this contradicts our observation that the decay becomes faster at higher
temperatures (Figure 3.10b), and that the strength of the excitonic peak does not
decrease at higher temperatures (Figure 3.19). Both of these experimental obser-
vations contradict the expected behavior for the trapping hypothesis, thereby ruling
out scenario (2).
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Spectral Response

Charge trapping is not a possible explanation for the existence of the 1.5 THz peak
in the photo-induced change to the optical conductivity. If our data were to be
explained by charge trapping into an impurity level, it would have to be extremely
shallow, as we observe the peak frequency to be around 1.5 THz. This frequency
corresponds to a temperature of 72 K. As such, we would expect that these impurity
states should thermally dissociate in our experimental temperature range of 80 K
to 300 K. However, we observe that the exciton remains stable across this entire
temperature range, ruling out this scenario (Figure 3.19).

3.6.3 Strong bosonic coupling
For the following reasons, the 1.5 THz peak observed in our transient optical con-
ductivity spectra cannot be attributed to a sideband arising from strong coupling to
bosonic modes. First, the peak should be separated from the Drude peak by around
the bosonic mode energy [18]. However, as seen in Figure 1c, there are no optically
active bosonic modes in our measured energy region. Although sideband formation
does not necessarily require the boson to be optically active, we note that previous
inelastic x-ray scattering experiments [51, 197] on Sr2IrO4 measured no optical
phonon modes at all (optically active or inactive) in the energy range of interest
over the full Brillouin zone. While there are acoustic modes spanning the energy
range of 0 to 5 meV [51, 197], their density of states is vanishingly small [51, 181].
Moreover, the formation of a sideband arises from the coupling of electrons to a
bosonic mode with well-defined energy, often modeled as a dispersionless Einstein
phonon mode exhibiting a large phonon density of states at one particular energy.
In contrast, a highly dispersive acoustic phonon (or magnon) mode has a featureless
density of states, which is incompatible with our observation of a Lorentzian peak
with well-defined energy in the optical conductivity spectrum.

Second, the dynamics of the sideband should be similar to the dynamics of the
main Drude peak (with a possible time delay in formation) as the spectral weight
of the sideband is being redistributed from the Drude spectral weight [18]. It is
clear from Figure 3.7 that the Drude and Lorentzian components of our data show
completely different dynamics. Crucially, at later time delays (𝑡 > 1 ps), the Drude
spectral weight is vanishing while the Lorentzian spectral weight is still near its peak
(Figure 3.7). Moreover, between 0.5 and 1 ps, the two show opposite trends, with
the Drude spectral weight decreasing and the Lorentzian spectral weight increasing.
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Figure 3.20: Real (top panel) and imaginary (bottom panel) parts of the pump-
induced change of optical conductivity extracted from differential THz spectra
measured using a ZnTe-based spectrometer. The pump was tuned to 0.6 eV (resonant
with the 𝛼 transition) and a fluence of 2.0 mJ/cm2. The data was taken at 80 K. Fits
to the Drude-Lorentz model (Equation 3.1) are displayed as solid lines.

We believe that these dynamics rule out the possibility of electron-boson coupling
as an explanation of the observed 1.5 THz mode.

Third, if the observed Lorentzian peak were a sideband of a Drude peak, this would
imply a Drude peak width below our lowest measured frequency of 0.35 THz (Figure
3.20). However, chemically-doped samples show a Drude peak that is much broader
than 0.35 THz [244], and our THz data at short time delays show that photo-doped
samples exhibit a Drude peak that is much broader than 0.35 THz (See Figure 3.5
and Figure 3.16). The temporal evolution of our THz data also shows that the Drude
peak does not suddenly sharpen to below 0.35 THz after the onset of the Lorentzian
component. We are not aware of any physical mechanism that would cause such
a drastic change of the photo-induced Drude response. Such a scenario would be
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rather exotic, as Drude peaks sharper than 0.35 THz (1.45 meV) are usually only
resolved in the rare cases of heavy fermion systems [194] and nearly-perfect or
highly-mobile conductors [8]. Neither of these scenarios apply to Sr2IrO4.

Finally, electron-boson coupling should generate a unique spectral response that can
be detected through an extended Drude model analysis of the optical conductivity
data. The effective mass 𝑚∗(𝜔) should be enhanced below the bosonic mode
frequency, while the scattering rate 1/𝜏(𝜔) should begin to increase above the
bosonic mode frequency. These quantities can be experimentally extracted using
the following relations [8]:

𝑚∗(𝜔) ∝ − 1
𝜔

Im
[

1
𝜎̃(𝜔)

]
1

𝜏(𝜔) ∝ Re
[

1
𝜎̃(𝜔)

] . (3.15)

We calculated the frequency dependent effective mass and scattering rate using
Equation 3.15 for a characteristic dataset showing the Lorentzian peak. The results
are shown in Figure 3.21. Within our resolution 1/𝜏(𝜔) is not enhanced above some
characteristic energy and remains rather constant. More importantly, 𝑚∗ is mostly
below 0, indicating a breakdown of the model. These results further rule out the
electron-boson coupling scenario.

3.6.4 Pseudogap formation
In chemically doped Sr2IrO4 samples, the characteristics of the pseudogap are highly
dependent on both the number of charge carriers that are doped into the system as
well as the temperature of the sample [52, 118, 119]. Thus, to determine whether a
photo-induced pseudogap might explain our data, we can compare the temperature
and pump fluence dependence of our photo-induced spectra with the spectra of
chemically doped Sr2IrO4.

We find that both the temperature and fluence dependencies are not consistent with
the expected behavior of the pseudogap. At a fixed temperature below the onset of
the pseudogap, previous works found that the energy scale of the pseudogap can vary
drastically with the doping level, reaching up to 80 meV [118]. On the other hand,
as shown in Figure 3.18c and Figure 3.18d, the energy scale of our observed finite
energy peak does not change as the fluence—and thus the photo-dopant density—is
varied.
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Figure 3.21: Results of the extended Drude model analysis. 𝑚∗(𝜔) (left) and 1/𝜏(𝜔)
(right) calculated using Equation S7. This data was collected with an 𝛼-resonant
pump at a fluence of 2.0 mJ/cm2 and 𝑡 = 1.2 ps. The temperature was 80 K.

Similarly, the pseudogap energy scale is highly dependent on the temperature of the
sample, forming below a critical temperature around 110 K for a reported electron
concentration of∼3 % [118] and enhancing as the temperature is reduced [118, 119].
On the other hand, in our case we observe that the energy scale of the finite energy
peak remains unchanged as the temperature is varied (Figure 3.19). This observation
is at odds with the physics of pseudogap formation.

Moreover, we find that the spectral characteristics of our finite energy peak are
not compatible with pseudogap physics. First, the energy scale of our feature is
roughly 6 meV, which is much smaller than the value of the pseudogap observed
by photoemission spectroscopy (50-80 meV are typical maximum values over the
reported doping and temperature ranges). Second, as shown in Figure 3.6, our finite
energy peak is perfectly consistent with the Lorentzian lineshape, indicating that it
originates from a dipole-active optical transition as opposed to a pseudogap feature.
This can be confirmed by comparing against the optical response in the pseudogap
phase, for example in the cuprates [228] or in Sr2IrO4 [199, 244]. In both cases, the
low-energy response in the pseudogap phase is marked by a finite but spectrally flat
optical response.

Given these reasons, we believe that the simplest explanation for our transient optical
conductivity spectra would be the formation of excitons, which is consistent not only
with our spectral properties as a function of energy, temperature, and photo-dopant
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density, but also is the more likely scenario given the simultaneous presence of both
holes and electrons.

3.7 Conclusions and outlook
Our tr-TDTS and theoretical results together establish that HEs can exist as metastable
neutral quasiparticle excitations in a 2D AFM Mott insulator. Moreover, they
demonstrate a pathway to prepare a HE fluid through photo-excitation resonant with
the Mott gap. The energetic and dynamical properties of the HEs can in prin-
ciple be controlled in situ by tuning 𝐽 using mechanical or optical perturbations
[153], serving new technological applications while also further confirming their
exchange-bound nature. More generally, these results suggest that 2D magnetic
Mott insulators, which host myriad ordered and quantum disordered phases, are a
promising platform for discovering novel excitonic states.
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BEYOND RESONANT EXCITATION: KELDYSH-SPACE
TUNING IN A MOTT INSULATOR

Xinwei Li, Honglie Ning, Omar Mehio, Hengdi Zhao, Min-Cheol Lee, Kyung-
wan Kim, Fumihiko Nakamura, Yoshiteru Maeno, Gang Cao, and David Hsieh.
Keldysh Space Control of Charge Dynamics in a Strongly Driven Mott Insulator.
Physical Review Letters, 128(18):187402, May 2022. doi: 10.1103/PhysRevLett.
128.187402.
O.M. contributed to the experimental effort and analyzed the data.

In each of the preceding chapters, we described experiments designed to characterize
the charge and magnetic properties of Mott insulators as they are photo-doped with
charge carriers. As such, the focus of these results was on the dynamics that follow
the arrival of the pump pulse. In this chapter, we shift gears to instead study the
photo-doping mechanism itself. Unlike the resonant drives used previously, here we
explore the effects of driving the material with photons at energies that lie inside the
Mott gap. We will find that doing so not only enables momentum-space control over
the resulting charge distribution, but creates opportunities to produce non-thermal
phenomena that are inaccessible with a resonant drive.

6.1 Non-resonant driving protocols in a Mott insulator
The response of a Mott insulator to a strong electric field is a fundamental question in
the study of non-equilibrium correlated many-body systems [9, 44, 58, 60, 63, 127–
129, 134, 157, 176, 178, 198, 211, 230]. In the DC limit, a breakdown of the
insulating state occurs when the field strength exceeds the threshold for producing
pairs of doubly-occupied (doublon) and empty (holon) sites by quantum tunneling,
in analogy to the Schwinger mechanism for electron-positron pair production out
of the vacuum [196]. Recently, the application of strong low frequency AC electric
fields has emerged as a potential pathway to induce insulator-to-metal transitions
[73, 149, 167, 245], realize efficient high-harmonic generation [100, 203], and
coherently manipulate band structure and magnetic exchange interactions in Mott
insulators [20, 45, 90, 153, 155, 235]. Therefore, there is growing interest to
understand doublon-holon (HD) pair production and their non-thermal dynamics in
the strong field AC regime.



107

Strong AC field induced HD pair production has been theoretically studied using
Landau-Dykhne adiabatic perturbation theory [175] along with a suite of non-
equilibrium numerical techniques [100, 167, 175, 203, 216, 219, 226]. Notably,
HD pairs are primarily produced through two nonlinear mechanisms: multi-photon
absorption and quantum tunneling [122, 175]. The two regimes are characterized by
distinct electric field scaling laws and momentum space distributions of HD pairs.
By tuning the Keldysh adiabaticity parameter 𝛾K = ℏ𝜔pump/(𝑒𝐸pump𝜉) through
unity, where 𝜔pump is the pump frequency, 𝐸pump is the pump electric field, 𝑒 is
electron charge, and 𝜉 is the HD correlation length, a cross-over from a multi-photon
dominated (𝛾K > 1) to a tunneling dominated (𝛾K < 1) regime can in principle be
induced. However, direct experimental tests are lacking owing to the challenging
need to combine strong tunable low frequency pumping fields with sensitive ultrafast
probes of non-equilibrium distribution functions.

We devise a protocol to study these predicted phenomena using ultrafast broad-
band optical spectroscopy. As a testbed, we selected the multiband Mott insulator
Ca2RuO4. Below a metal-to-insulator transition temperature 𝑇MIT = 357 K, a Mott
gap (Δ = 0.6 eV) opens within its 2/3-filled Ru 4𝑑 𝑡2𝑔 manifold [66, 79, 87, 104],
with a concomitant distortion of the lattice [31]. Upon further cooling, the material
undergoes an antiferromagnetic transition at 𝑇N = 113 K into a Néel ordered state.
It has recently been shown that for temperatures below 𝑇MIT, re-entry into a metallic
phase can be induced by a remarkably weak DC electric field of order 100 V/cm
[171], making Ca2RuO4 a promising candidate for exhibiting efficient nonlinear pair
production.

6.2 Demonstration of the Keldysh crossover in Ca2RuO4

To estimate the response of Ca2RuO4 to a low frequency AC electric field, we
calculated the HD pair production rate (Γ) over the Keldysh parameter space using
a Landau-Dykhne method developed by Oka [175]. Experimentally determined
values of the Hubbard model parameters for Ca2RuO4 were used as inputs (Appendix
A). As shown in Figure 6.1(a), Γ is a generally increasing function of 𝐸pump and
ℏ𝜔pump. For a fixed 𝜔pump, the predicted scaling of Γ with 𝐸pump is clearly different
on either side of the Keldysh cross-over line (𝛾K = 1), evolving from power law
behavior Γ ∝ (𝐸pump)𝑎 in the multi-photon regime to threshold behavior Γ ∝
exp(−𝑏/𝐸pump) in the tunneling regime [Figure 6.1(b)].

At time delays where coherent nonlinear processes are absent, the transient pump-
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Figure 6.1: Resolving Keldysh tuning using pump-probe spectroscopy. (a) Γ calcu-
lated across Keldysh space using the Landau-Dykhne method. (b) Constant energy
cuts along the red lines shown in (a) plotted on a logarithmic scale. Black dots mark
the Keldysh cross-over. Gray dashed lines: scaling relation in the multi-photon
regime. Schematics of the multi-photon and tunneling processes are shown above.
(c) Equilibrium reflectivity (top) and conductivity (bottom) spectra of Ca2RuO4 at
20 K. The 0.3 eV and 0.56 eV pump energies are marked by vertical red lines. The
probe energy range is shaded grey. (d) Select 0.3 eV pump 1.77 eV probe Δ𝑅/𝑅
traces at fluences of 3, 9, 15, 22, and 30 mJ/cm2 (top to bottom). Dashed lines are fits
detailed in (Appendix A). Inset: Peak Δ𝑅/𝑅 versus fluence showing nonlinearity.
(e, f) Experimental cuts through the same regions of parameter space as in (b). Error
bars are smaller than data markers. Scaling relations for multi-photon and tunneling
behavior are overlaid as red and blue dashed lines, respectively.

induced change in reflectivity of a general gapped material is proportional to the
density of photo-excited quasi-particles [42, 56, 72], which, upon dividing by a
constant pump pulse duration (∼100 fs), yields Γ. Differential reflectivity (Δ𝑅/𝑅)
transients from Ca2RuO4 single crystals were measured at 𝑇 = 80 K using several
different subgap pump photon energies (ℏ𝜔pump < Δ) in the mid-infrared region, and
across an extensive range of probe photon energies (ℏ𝜔probe) in the near-infrared
region spanning both the 𝛼 and 𝛽 absorption peaks [Figure 6.1(c)]. These two
band edge features can be assigned to optical transitions within the Ru 𝑡2𝑔 manifold
[50, 104]. Figure 6.1(d) shows reflectivity transients at various fluences measured
using ℏ𝜔pump = 0.3 eV and ℏ𝜔probe = 1.77 eV. Upon pump excitation, we observe
a rapid resolution-limited drop in Δ𝑅/𝑅. With increasing fluence, the minimum
value of Δ𝑅/𝑅 becomes larger, indicating a higher value of Γ within the pump pulse
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Figure 6.2: Non-thermal pair distribution through the Keldysh crossover. (a) Cal-
culated 𝑃𝑝 for conditions i to iii using the Landau-Dykhne method. (b) Simulated
non-equilibrium reflectivity spectra for subgap pumping. (c, d) Analogues of (a)
and (b) but simulated for above-gap pumping. Fluence increases from i to iii. Black
curves in (b) and (d) are the equilibrium spectra. Arrows in (b) mark the crossing
points between the non-equilibrium and equilibrium curves. Experimental Δ𝑅/𝑅
maps of Ca2RuO4 for (e) 0.3 eV pump (fluence: 30 mJ/cm2) and (f) 1 eV pump
(fluence: 7 mJ/cm2). Two representative constant energy cuts (yellow: 1.77 eV,
purple: 0.56 eV) are overlaid. (g) Enlargement of Δ𝑅/𝑅 maps for 0.3 eV pump
using three pump fluences [marked in Figure 6.1(e)] corresponding to conditions
(i) to (iii) in (a). (h) Enlargement of Δ𝑅/𝑅 maps for 1 eV pump using three pump
fluences indicated above. White dashed lines mark 𝑡 = 0.1 ps. Red dashed lines:
guides to the eye for the ℏ𝜔probe where Δ𝑅/𝑅 changes sign at 𝑡 = 0.1 ps.

duration. This is followed by exponential recovery as the HD pairs thermalize and
recombine (Appendix A). By plotting Γ against the peak value of 𝐸pump (measured in
vacuum), we observe a change from power law scaling to threshold behavior when
𝐸pump > 0.07 V/Å [Figure 6.1(e)], in remarkable agreement with our calculated
Keldysh cross-over [Figures 6.1(a),(b)]. In contrast, measurements performed using
0.56 eV pumping exhibit exclusively power law scaling over the same 𝐸pump range
[Figure 6.1(f)], again consistent with our model.

6.3 Momentum-space control of the photo-carrier distribution
A predicted hallmark of the Keldysh cross-over is a change in width of the non-
thermal distribution of HD pairs in momentum space [175]. In the multi-photon
regime, doublons and holons primarily occupy the conduction and valence band
edges, respectively, resulting in a pair distribution function (𝑃𝑝) sharply peaked
about zero momentum (𝑝 = 0). In the tunneling regime, the peak drastically broad-
ens, reflecting the increased spatial localization of HD pairs. Using the Landau-
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Dykhne method (Appendix A), we calculated the evolution of 𝑃𝑝 for Ca2RuO4

as a function of 𝐸pump through the Keldysh cross-over. Figure 6.2(a) displays 𝑃𝑝
curves at three successively larger 𝐸pump values corresponding to (i) 𝛾K = 1.49, (ii)
𝛾K = 0.75 and (iii) 𝛾K = 0.47, which show a clearly broadening width along with
increasing amplitude.

To demonstrate how signatures of a changing 𝑃𝑝 width are borne out in experiments,
we simulate the effects of different non-thermal electronic distribution functions on
the broadband optical response of a model insulator. Assuming a direct-gap quasi-
two-dimensional insulator with cosine band dispersion in the momentum plane (𝑝𝑥 ,
𝑝𝑦), the optical susceptibility computed using the density matrix formalism can be
expressed as [192] (Appendix A):

𝜒 =
∑︁
𝑝𝑥 ,𝑝𝑦

𝐶L[ℏ𝜔probe − Δ(𝑝𝑥 , 𝑝𝑦)] [𝑁𝑣 (𝑝𝑥 , 𝑝𝑦) − 𝑁𝑐 (𝑝𝑥 , 𝑝𝑦)]

where 𝐶 is a constant incorporating the transition matrix element, L represents a
Lorentzian oscillator centered at the gap energy Δ(𝑝𝑥 , 𝑝𝑦), and 𝑁𝑣 and 𝑁𝑐 are the
occupations of the valence and conduction bands, respectively. As will be shown
later [Figure 6.3(a)], it is valid to assume that Δ(𝑝𝑥 , 𝑝𝑦) decreases in proportion to
the number of excitations (Appendix A). Figure 6.2(b) shows simulated reflectivity
spectra around the band edge—converted from 𝜒 via the Fresnel equations—using
Gaussian functions for 𝑁𝑣 and 𝑁𝑐 of variable width to approximate the 𝑃𝑝 line-
shapes [Figure 6.2(a)] (Appendix A). As 𝑃𝑝 evolves from condition (i) to (iii), we
find that the intersection between the non-equilibrium and equilibrium reflectivity
spectra shifts to progressively higher energy. For comparison, we also performed
simulations under resonant photo-doping conditions using the direct-gap insulator
model. Figure 6.2(c) displays three 𝑃𝑝 curves at successively larger 𝐸pump values,
which were chosen such that the total number of excitations match those in Figure
6.2(a). Each curve exhibits maxima at non-zero momenta where ℏ𝜔pump = Δ( |𝑝 |) is
satisfied. In stark contrast to the subgap pumping case, the amplitude of 𝑃𝑝 increases
with 𝐸pump but the width remains unchanged. This results in the non-equilibrium
reflectivity spectra all intersecting the equilibrium spectrum at the same energy,
forming an isosbestic point [Figure 6.2(d)]. The presence or absence of an isos-
bestic point is therefore a key distinguishing feature between Keldysh space tuning
and photo-doping. This criterion can be derived from a more general analytical
model (Appendix A), which shows that a key condition for identifying a Keldysh
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crossover is that Δ𝑅/𝑅 spectra at different fluences do not scale.

Probe photon energy-resolved Δ𝑅/𝑅 maps of Ca2RuO4 were measured in both the
Keldysh tuning (ℏ𝜔pump = 0.3 eV) and photo-doping (ℏ𝜔pump = 1 eV) regimes. As
shown in Figures 6.2(e) & (f), the extremum inΔ𝑅/𝑅, denoting the peak HD density,
occurs near a time 𝑡 = 0.1 ps measured with respect to when the pump and probe
pulses are exactly overlapped (𝑡 = 0). This is followed by a rapid thermalization of HD
pairs as indicated by the fast exponential relaxation inΔ𝑅/𝑅, which will be discussed
later (Appendix A). Figure 6.2(g) showsΔ𝑅/𝑅maps acquired in the subgap pumping
regime for three different pump fluences corresponding to conditions (i) to (iii) in
Figure 6.2(a) and 6.1(e). Focusing on the narrow time window around 𝑡 = 0.1 ps
where the HD distribution is highly non-thermal, we observe that Δ𝑅/𝑅 changes
sign across a well-defined probe energy (dashed red line), marking a crossing point
of the transient and equilibrium reflectivity spectra. As 𝛾K decreases, the crossing
energy increases, evidencing an absence of an isosbestic point. Analogous maps
acquired in the photo-doping regime [Figure 6.2(h)] also exhibit a sign change.
However, the crossing energy remains constant over an order of magnitude change
in fluence, consistent with an isosbestic point. These measurements corroborate
our simulations and highlight the unique distribution control afforded by Keldysh
tuning.

6.4 Coherent bandwidth renormalization
To study the HD thermalization dynamics in more detail, we used a Kramers-
Kronig transformation to convert our differential reflectivity spectra into differential
conductivity (Δ𝜎) spectra (Appendix A). Figure 6.3(a) shows the real part of the
transient conductivity measured in the thermalized state (𝑡 = 0.5 ps) following an
0.3 eV pump pulse of fluence 26 mJ/cm2 (𝛾K = 0.5), overlaid with the equilibrium
conductivity. Subgap pumping induces a spectral weight transfer from the 𝛽 to 𝛼
peak and a slight red-shift of the band edge, likely due to free carrier screening of
the Coulomb interactions [76]. Unlike in the DC limit, there is no sign of Mott gap
collapse despite 𝐸pump exceeding 109 V/m. To verify that the electronic subsystem
indeed thermalizes by 𝑡 = 0.5 ps, we compare the real parts of Δ𝜎0.3 eV (fluence:
26 mJ/cm2) and Δ𝜎1 eV (fluence: 4 mJ/cm2), the change in conductivity induced by
subgap and above-gap pumping respectively, at both 𝑡 = 0.1 ps and 0.5 ps. A scaling
factor 𝐴 is applied to Δ𝜎1 eV to account for any differences in excitation density. As
shown in Figure 6.3(b), the 𝑡 = 0.1 ps curves do not agree within any scale factor.
This is expected because the linear and nonlinear pair production processes initially
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Figure 6.3: Non-equilibrium conductivity transients. (a) Conductivity spectra of
Ca2RuO4 in the un-pumped equilibrium state at 80 K and the 0.3 eV pumped
non-equilibrium state at 𝑡 = 0.5 ps (fluence: 26 mJ/cm2). (b) Comparison of
differential conductivity spectra between 0.3 eV pump (Δ𝜎0.3 eV) and scaled 1 eV
pump (𝐴Δ𝜎1 eV) cases at 𝑡 = 0.1 ps and (c) 𝑡 = 0.5 ps. Red and blue shades
indicate error estimated from the 𝜔probe-dependent fluctuations of the experimental
Δ𝜎 spectra.

give rise to very different non-thermal distributions (Figure 6.2). Conversely, by
𝑡 = 0.5 ps, the curves overlap very well [Figure 6.3(c)], indicating that the system has
lost memory of how the HD pairs were produced and is thus completely thermalized.

Based on the observations in Figures 6.3(b) and (c), the non-thermal window can be
directly resolved by evaluating the time interval over which the quantity Δ(Δ𝜎) =
Δ𝜎0.3 eV − 𝐴 × Δ𝜎1 eV is non-zero (Appendix A). Figure 6.4(a) shows the complete
temporal mapping of Δ(Δ𝜎) spectra. The signal is finite only around 𝑡 = 0 ps
and is close to zero otherwise, supporting the validity our subtraction protocol. By
taking a constant energy cut, we can extract a thermalization time constant of around
0.2 ps [Figure 6.4(b)]. Interestingly, Δ𝑅/𝑅 and Δ𝜎0.3 eV, which both track the HD
pair density, peak near 0.1 ps whereas Δ(Δ𝜎) peaks earlier at 𝑡 = 0 when the HD
pair density is still quite low. This implies the existence of an additional coherent



113

(a)

Time (ps)
0.5 1

2

1.6

1.2

0.8

ΔRe(Δ𝜎) (Ω-1 cm-1)

0

0 -6060

ℏ
𝜔
p
ro
b
e

(e
V

)

N
o
rm

a
liz

e
d
 c

u
ts

  
(a

.u
.)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4
Time (ps)

Re(Δ𝜎)

ΔRe(Δ𝜎)

(b)

(c) (d)

(e)

Instrumental 

response

DFT 

Simulation

Epump (V/Å)
0.04 0.08 0.12

Time (ps)
0 0.1 0-0.1

0

0.5

1.5

1

𝑊
−
𝑊
𝑒
𝑞

𝑊
𝑒
𝑞

(%
)

Floquet

0.5 1 1.5 2

R
e
(𝜎
𝑊
−
𝜎
𝑊
e
q
) 

(Ω
-1

 c
m

-1
)

-100

0

100

200

ℏ𝜔probe (eV)

Δ
R

e
(Δ
𝜎

) 
(Ω

-1
 c

m
-1

)

1 1.5 2
ℏ𝜔probe (eV)

0

40

-40

@ 0 ps

(f)

0 ps 0.1 ps 0.2 ps

ThermalizationPair creationUBR

Figure 6.4: Ultrafast coherent bandwidth renormalization. (a) Δ(Δ𝜎) map obtained
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cut at 1.65 eV [dashed horizontal line in (a)] plotted together with Δ𝜎0.3 eV. (c) A
constant time cut at 𝑡 = 0 [dashed vertical line in (a)]. (d) DFT simulation of the
spectrum change induced by bandwidth broadening. 𝜎𝑊 (𝜎𝑊eq): conductivity with
(without) bandwidth broadening. (e) (left) Quantitative extraction of pump-induced
bandwidth modification versus 𝑡 (with 𝐸pump = 0.12 V/Å) and (right) versus 𝐸pump
(with 𝑡 = 0 ps) based on fitting to DFT calculations. Red shaded region: error
bar. Blue shaded region: Floquet theory prediction based on a periodically driven
two-site cluster Hubbard model. Upper and lower bounds assume 𝑈 = 3 eV [104]
and 𝑈 = 3.5 eV [79], respectively, where 𝑈 is the on-site Coulomb energy, with no
other adjustable parameters. (f) Chronology of non-thermal processes following an
impulsive subgap drive.

non-thermal process that scales with 𝐸pump, which peaks at 𝑡 = 0, rather than with
the HD density.
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To identify the physical process responsible for the 𝑡 = 0 signal, we examined how
the electronic structure of Ca2RuO4 would need to change in order to produce
the Δ(Δ𝜎) profile observed at 𝑡 = 0 [Figure 6.4(c)]. Using density functional
theory (DFT), we performed an ab initio calculation of the optical conductivity
of Ca2RuO4 based on its reported lattice and magnetic structures below 𝑇N. The
tilt angle of the RuO6 octahedra was then systematically varied in our calculation
as a means to simulate a changing electronic bandwidth (Appendix A). We find
that both the real and imaginary parts of the measured Δ(Δ𝜎) spectrum at 𝑡 = 0
are reasonably well reproduced by our calculations if we assume the bandwidth of
the driven system (𝑊) to exceed that in equilibrium𝑊eq [Figure 6.4(d)] (Appendix
A). This points to the coherent non-thermal process being a unidirectional ultrafast
bandwidth renormalization (UBR) process that predominantly occurs under subgap
pumping conditions [Figure 6.4(f)].

Coherent UBR can in principle occur via photo-assisted virtual hopping between
lattice sites, which has recently been proposed as a pathway to dynamically engineer
the electronic and magnetic properties of Mott insulators [20, 45, 90, 153, 155, 235].
To quantitatively extract the time- and 𝐸pump-dependence of the fractional bandwidth
change (𝑊 −𝑊eq)/𝑊eq, we collected Δ(Δ𝜎) spectra as a function of both time delay
and pump fluence and fit them to DFT simulations (Appendix A). As shown in Fig-
ure 4(e), the bandwidth change exhibits a pulse-width limited rise with a maximum
𝑡 = 0 value that increases monotonically with the peak pump field, reaching up to a
relatively large amplitude of 1.5 % at 𝐸pump = 0.12 V/Å, comparable to the band-
width increases induced by doping [66] and pressure [170]. Independently, we also
calculated the field dependence of (𝑊 −𝑊eq)/𝑊eq expected from photo-assisted vir-
tual hopping by solving a periodically driven two-site Hubbard model in the Floquet
formalism [153] (Appendix A), using the same model parameters for Ca2RuO4 as
in our Landau-Dykhne calculations [Figure 6.1(a)]. We find a remarkable match to
the data without any adjustable parameters [Figure 6.4(e)]. Since bandwidth renor-
malization increases with the Floquet parameter (𝑒𝑎𝐸pump)/ℏ𝜔pump in the case
of photo-assisted virtual hopping, where 𝑎 is the inter-site distance, this naturally
explains why subgap pumping induces the much larger UBR effect compared to
above-gap pumping.
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C h a p t e r 7

CONCLUSIONS AND OUTLOOK

In the past decade, light-based engineering of quantum materials has emerged as
a central pillar of modern condensed matter physics. Mott insulators have been a
primary target of these efforts because the myriad quantum many-body interactions
that they host create a fertile playground to explore out-of-equilibrium phenomena.
A primarily tool used in this endeavor is photo-doping. Though it is a conceptually
simple technique, the transient states it induces are quite complicated owing to the
strong interaction between charge and spin degrees of freedom in these materials.

The goal of this thesis was to address many of these complications by simultane-
ously tracking the ultrafast magnetic and charge dynamics of photo-doped Mott
insulators. The first experimental result that was presented was the observation of a
Hubbard excitonic fluid. This finding had several important ramifications. First, it
established that not only are Hubbard excitons (HEs) metastable neutral excitations
of the two-dimensional Mott antiferromagnet (AFM), but that they are critical to
the out-of-equilibrium dynamics of the material. From the perspective of the charge
degrees of freedom, HEs facilitate the formation of a photo-induced insulating state
that lies between the photo-excitation process and the return to equilibrium. This
previously overlooked phenomenon is vitally important to the spin degrees of free-
dom, since HEs have a unique relationship with the AFM order. Since HEs are
much less destructive to the AFM motif than their free carrier counterparts, we
found that their presence greatly diminishes the efficiency of photo-doping-induced
demagnetization.

We built upon these efforts by also exploring the properties of HEs themselves.
We demonstrated that short-range correlations are critical for the stability of bound
HEs in Mott AFMs. While an attractive Coulombic interaction is in principle
present between a holon and doublon, our experimental evidence suggests that the
magnetic binding mechanism is the dominant factor that leads to the formation
of a bound state. We identified a consequence of this spin-binding by examining
the ultrafast (∼1 ps) Hubbard excitonic recombination pathway. We found that the
HEs recombine through a multi-magnon emission process, reflecting the intimate
connection between the spin and charge degrees of freedom.
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Finally, our work on subgap driving provides a novel method to rationally tune a Mott
insulator 𝑖𝑛 𝑠𝑖𝑡𝑢 over Keldysh space, enabling targeted searches for exotic out-of-
equilibrium phenomena such as strong correlation assisted high harmonic generation
[100, 203], coherent dressing of quasiparticles [173], Wannier-Stark localization
[127], AC dielectric breakdown [175] and dynamical Franz-Keldysh effects [207,
219], which are predicted to manifest in separate regions of Keldysh space. It
also provides control over the nonlinear holon-doublon pair production rate—the
primary source of heating and decoherence under subgap pumping conditions—
in Mott systems, which is crucial for experimentally realizing coherent Floquet
engineering of strongly correlated electronic phases. Moreover, the control over
the carrier distribution in momentum space promised by Keldysh tuning can be an
important tool for the engineering of novel photo-doped phases.

These results establish many important directions of future work. From the per-
spective of excitonics, HEs present an opportunity to develop devices that can-
not exist in conventional semiconducting systems. Mott insulators host a myriad
of magnetic interactions that have the potential to enable an entire ecosystem of
magnetically-bound excitons. By devising experimental protocols to tune exchange
interactions—through Floquet engineering, heterostructuring, or material growth,
for example—HE properties can be engineered on-demand to facilitate novel ex-
citonic technologies. More generally, these results provide a new perspective on
the rich non-equilibrium phase diagrams that photo-doped Mott insulators can host.
The Hubbard excitonic instability must be carefully considered when characterizing
photo-induced phenomena in these materials and when analyzing their transient
spectra. Finally, it is interesting to consider whether ensembles of HEs can serve
as a platform for simulating quantum many-body dynamics, potentially hosting
phenomena that are borne out of the strong interactions that are unique to these
systems.
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A p p e n d i x A

APPENDIX TO CHAPTER 6

A.1 Density functional theory simulations
The electronic structure of Ca2RuO4 was calculated from first principles with den-
sity functional theory implemented in the QUANTUM ESPRESSO package. The
calculation used a plane-wave basis set and scalar relativistic norm-conserving Van-
derbilt pseudopotentials. The energy cutoff was set to 60 Ry. A self-consistent
calculation using a 4×4×4 Monkhorst-Pack grid was run at first, followed by a
non-self-consistent calculation with a denser user defined grid. Convergence was
tested for the energy cutoff and the grid density. The calculation was set to the
spin-polarized mode to take into account the low-temperature antiferromagnetic
structure of Ca2RuO4, and to the DFT+𝑈 mode to take into account the Coulomb
correlation. The real and imaginary parts of the optical conductivity were calculated
by the epsilon.x package after the non-self-consistent calculation. Finite interband
and intraband smearings were used to avoid sharp spikes in the spectra caused by
numerical issues.

To unambiguously confirm the modification of the electronic structure made by the
pump field, we performed calculations using different input material parameters of
Ca2RuO4 to account for different scenarios. The UBR scenario was implemented
by changing the crystal structural input by tuning the tilting angles of the RuO6

octahedra; the tilting angle changes the Ru-O-Ru bond angle, and thereby modifies
the bandwidth. The case of Hubbard-𝑈 modification was simulated by directly
tuning the 𝑈 value in the DFT+𝑈 input. Details of the simulation results and how
we chose different input parameters of Ca2RuO4 to simulate different cases are
discussed in detail in the Section A.6.

A.2 Differential reflectivity spectra
A.2.1 Fitting analysis
Here we discuss the analysis procedure for the differential reflectivity data reported
in this paper. [Δ𝑅/𝑅] (𝑡) transients at ten consecutive probe photon energies were
measured within the range of 0.55 - 2.2 eV, forming the three-dimensional colormaps
in Figure 6.2(e), (f) in the main text. Figure A.1(a) shows another example of a
colormap of similar type for 0.3 eV pump at a fluence (𝐹) of 15.2 mJ/cm2.
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For all probe energies, the dynamics of [Δ𝑅/𝑅] (𝑡) transients can be described by
three consecutive steps as expressed in the double exponential function

𝑓 (𝑡) =


0, for 𝑡 < 0 ps

𝐴1𝑒
−𝑡/𝑡1 + 𝐴2𝑒

−𝑡/𝑡2 + 𝐶, for 𝑡 ≥ 0 ps,
(A.1)

namely, the initial excitation upon pump arrival at 𝑡 = 0 ps (Step 0), followed by a
fast exponential process with 𝑡1 ∼ 0.1 ps (Step 1), and a slow exponential process
with 𝑡2 ∼ 1 ps (Step 2) which settles the signal down to a constant plateau that decays
on much longer time scales. However, depending on the probe photon energy, the
signs and magnitudes of 𝐴1, 𝐴2, and 𝐶 can change, leading to four types of traces
as schematically summarized in Figure A.1(a). The signs of the coefficients for
different probe energies are summarized in Table A.1. Four horizontal cuts to the
experimental data marked by red dashed lines in Figure A.1(a) are shown in Figure
A.1(b)-(e) to represent these four types of transients.

𝐴1 + 𝐴2 + 𝐶 𝐴1 𝐴2 𝐶

1.2 - 2.2 eV < 0 < 0 < 0 < 0
0.8 - 1.1 eV < 0 < 0 < 0 > 0

0.7 eV < 0 < 0 > 0 > 0
0.55 - 0.7 eV > 0 < 0 > 0 > 0

Table A.1: Signs of coefficients for different probe energies.
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Then, we fit the experimental [Δ𝑅/𝑅] (𝑡) with a convolution [ 𝑓 ⊗ 𝐼𝑅𝐹] (𝑡), where
𝑓 (𝑡) is the intrinsic dynamics (Equation A.1), and the instrumental response function
(IRF) takes the form of a Gaussian

𝐼𝑅𝐹 (𝑡) = 1
𝜎
√

2𝜋
exp[−−(𝑡 − 𝑡0)

2

2𝜎2 ], (A.2)

where𝜎 is the instrumental time resolution and 𝑡0 is the time zero of the measurement
at which the pump and probe pulses reach temporal overlap. Fitting parameters are
𝐴1, 𝑡1, 𝐴2, 𝑡2, 𝐶, 𝑡0, and 𝜎.

The black dashed lines in Figure A.1(b)-(e) are the fitted curves, which are in close
agreement with the experimental transients. There is a slight change in 𝜎 depending
on pump and probe photon energies, ranging from 50 fs to 120 fs. The fitted 𝜎
values are used to infer the pump pulse widths. The pulse duration for 0.3 eV pump
is around Δ𝑡 = 100 fs, which is used for estimating the pump electric field strength
𝐸pump through the expression for the energy density 𝑢 = 1

2𝜀0(𝐸pump)2 = 𝐹/(𝑐Δ𝑡),
where 𝐹 is the fluence in vacuum and 𝑐 is the speed of light. Determination
of 𝑡0 allows us to align transients at different probe energies temporally with a
common time zero. Robustness of the fitted 𝑡0 can be seen in the coherent phonon
oscillation map in Figure A.2. The map is obtained by subtracting the [Δ𝑅/𝑅] (𝑡)
map (temporally aligned with 𝑡0) with the fitted electronic backgrounds. Good
alignment of the oscillation phase of the coherent phonon across the entire probe
energy range suggests that the fitting procedure for 𝑡0 is reliable.
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Figure A.2: Coherent phonon oscillation map obtained by subtracting the [Δ𝑅/𝑅] (𝑡)
map in Figure A.1(a) with the fitted electronic background.
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A.2.2 Time dynamics of zero-crossing feature
In Figure 6.2 of the main text, the evolution of the zero-crossing feature of the
[Δ𝑅/𝑅] (𝑡) spectra versus pump fluence is used as a metric to distinguish the subgap
Keldysh tuning scenario and the above-gap photodoping scenario. What is visually
unclear when showing colormaps as in Figures 6.2(e)-(h) is the evolution of the
energy of the zero crossing features after 𝑡 = 0.1 ps, the time delay we identified
to have the highest HD pair density and most nonthermal distribution. Here, we
show the time dynamics of the zero-crossing feature a lot more clearly by plotting
| [Δ𝑅/𝑅] | (𝑡), the absolute value of [Δ𝑅/𝑅] (𝑡) on a logarithmic scale.

Figure A.3 shows three representative maps of | [Δ𝑅/𝑅] | (𝑡) with different pumping
conditions. The zero crossing feature is where | [Δ𝑅/𝑅] | (𝑡) is smallest, correspond-
ing to the valleys marked by blue lines in the graphs. The feature clearly continues
to shift in energy after 𝑡 = 0.1 ps (red vertical cuts), indicating that the optical
response of the sample undergoes subsequent stages of evolution, including pair
thermalization, interband recombination, and heating, each with a characteristic
timescale. A notable example is at 𝑡 = 3 ps, where pairs have mostly recombined
and the electronic and the lattice systems have equilibrated at a higher transient
temperature; the energy of the zero-crossing is an indicator of sample heating [124].
The fluence of Figure A.3(b) is higher, and creates more heat than that in Figure
A.3(a), which naturally explains why its zero-crossing is at higher energy at 𝑡 = 3 ps.
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Figure A.3: Time dynamics of the zero-crossing feature highlighted in the loga-
rithmic plot of | [Δ𝑅/𝑅] | (𝑡) map. (a) and (b), Two fluences for the 0.3 eV pump
scenario. (c) Highest fluence for the 1 eV pump scenario. Blue lines are guides
to the eye for the minimum of | [Δ𝑅/𝑅] | (𝑡), highlighting the shift of zero-crossing
versus time. Red lines mark the cuts at 𝑡 = 0.1 ps, where the pair distribution is
nonthermal.
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A.3 Calculation of the Keldysh parameter space
The Keldysh parameter space is formed by the subgap pump field strength and
pump photon energy. In Figures 6.1 and 6.2 of the main text, we plot the total HD
pair production rate Γ in the Keldysh space as well as the momentum dependent
transition probability 𝑃𝑝. These calculations were obtained by using the Landau-
Dykhne method combined with the Bethe Ansatz, as reported in Ref. [175].

A.3.1 The Landau-Dykhne method
The Landau-Dykhne method combined with the Bethe Ansatz has been used to
model the nonlinear HD pair production process in Mott insulators across the entire
Keldysh parameter space, from the multiphoton regime to the tunneling regime.
We closely followed the procedure developed by Oka [175]; the theory was applied
to a 1-dimensional (1D) Hubbard model in the original paper, but results and
equations therein have been widely referenced by dielectric breakdown experiments
on materials with higher dimensions [149, 245]. Therefore, we anticipate that
the model can provide important qualitative guidance to our experiments, even
though the 1D Hubbard model cannot fully reflect the realistic electronic structure
or multiband Mott nature of Ca2RuO4.

For a 1D Hubbard model in a time-dependent electric field, the adiabatic perturbative
theory expands the time-dependent state into the linear combination of adiabatic
eigenstates

Ψ(𝑡) = 𝑎(𝑡)0;Φ(𝑡) + 𝑏(𝑡)𝑝;Φ(𝑡)𝑑ℎ, (A.3)

where 𝑝 is momentum,Φ(𝑡) is the Peierls phase, and 𝑎(𝑡) and 𝑏(𝑡) are the probability
amplitudes for the channel at 𝑝 to be in the ground state (no pair) or in the excited
state (with a pair). The 𝑝-dependent transition probability 𝑃𝑝 = [𝑏(𝑡)]2 can be
calculated as

𝑃𝑝 = exp(−2ImD𝑝), (A.4)

whereD𝑝 is the difference between the dynamical phase of the ground state and the
excited state. After more treatments, Ref. [175] gives

ImD𝑝 = ImD𝑝1 + ImD𝑝2, (A.5)

and

ImD𝑝1 =

∫ 0

𝑝

Δ𝐸 (𝑙)Im
(

1
𝐹 (𝑝 − 𝑙)

)
𝑑𝑙, (A.6)

ImD𝑝2 =

∫ 1/𝜉

0
Δ𝐸 (𝑖𝑙)Im

(
𝑖

𝐹 (𝑝 − 𝑖𝑙)

)
𝑑𝑙. (A.7)
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Here, Δ𝐸 is the gap function, 𝐹 (Φ) = ±
√︃
𝐹2

0 −Ω2Φ2 is the time-dependent field
with sinusoidal oscillations, 𝜉 is the HD correlation length, Ω is the pump frequency,
and 𝐹0 is the amplitude of 𝐹. After 𝑃𝑝 is calculated, the total HD pair production
rate can be obtained by an integral

Γ =
Ω

2𝜋

∫ 𝜋

−𝜋

𝑑𝑝

2𝜋
𝑃𝑝 . (A.8)
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Figure A.4: Field-dependent nonlinear excitation for 𝑈 = 8, Δ = 4.6, Ω = 1.
(a) Total HD production rate Γ versus field strength 𝐹0. (b) Same as (a) but on
a logarithmic scale. (c)-(f) Momentum dependent transition probability 𝑃𝑝 at the
four different field strengths marked with black circles in (b). The corresponding
Keldysh parameters are also labeled. (g) Width of 𝑃𝑝 versus 𝛾𝐾 .

Figure A.4 shows a validating calculation using Hubbard 𝑈 = 8, Mott gap Δ = 4.6,
pump frequency Ω = 1, at various field strengths 𝐹0. The energy unit is the hopping
energy 𝑡hop, 𝐹0 is in the unit of 𝑡hop/𝑎, where 𝑎 is the lattice parameter. The
nonlinear production rate Γ versus 𝐹0 is shown in Figures A.4(a) and (b) on linear
and logarithmic scales, respectively; in (b), the Keldysh crossover is observed as the
line deviates from the power law scaling of the multiphoton process as 𝐹0 increases.
𝑃𝑝’s at the four representative 𝐹0’s marked by black circles in Figure A.4(b) are
shown in Figures A.4(c)-(f). Drastic broadening of 𝑃𝑝 is clearly seen in the vicinity
of the Keldysh crossover 𝛾𝐾 ∼ 1, while in the deep multiphoton regime (𝛾𝐾 ≫ 1)
the broadening effect is minimal; see Figure A.4(g), and the comparison between
Figures A.4(c) and (d). These results all well reproduce findings in Reference [175].

A.3.2 Band parameters of Ca2RuO4 used in the calculation
Band parameters of Ca2RuO4 and realistic subgap pumping conditions were plugged
in the equations above to calculate the Keldysh map and the 𝑃𝑝 curves in Figures
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6.1 and 6.2 of the main text. We used the parameters reported in the dynamical
mean-field theory calculations for Ca2RuO4 [79], with 𝑈 = 3.5 eV, Δ = 0.6 eV
(from optical measurements in [104]), 𝑎 = 5.6 Å (in-plane lattice parameter), and
𝑡hop = 0.23 eV (the hopping integral between 𝑥𝑦 orbitals, since joint density of
states near the Mott gap is mostly contributed by 𝑑𝑥𝑦 → 𝑑𝑥𝑧/𝑦𝑧 transitions). The
correlation length [208] can be calculated with 𝜉 = [ln(𝑈/4.377𝑡hop)]−1𝑎 in the
strong-coupling limit (which holds for Ca2RuO4 since 𝑈/𝑡hop = 15 [208]). We
estimate 𝜉 = 4.45 Å. This value is the same order of magnitude as 𝜉 = 2.1 Å
estimated for VO2 [149], which is another Mott insulator showing a cooperative
charge-lattice response across a temperature-driven metal-to-insulator transition.

A.4 Simulation of optical properties of a photoexcited insulator
To understand how photo-induced band filling affects the Δ𝑅/𝑅 spectrum, we per-
formed simulations assuming a simplified insulator model. Figure A.5(a) shows
the band structure of the simulated insulator. Due to the quasi-2D nature of the
electronic structure of Ca2RuO4, we considered a cosine-type dispersion in the 2D
momentum plane formed by 𝑝𝑥 and 𝑝𝑦. Conduction and valence bands are symmet-
ric about zero energy, each with a bandwidth of 0.8 eV, and separated by a direct gap
of 0.9 eV (which, upon considering the band edge smearing effect due to dephasing,
gives an optical gap of 0.6 eV). These parameters were chosen to produce simi-
lar band-edge optical properties as Ca2RuO4. The optical susceptibility spectrum
resulting from interband transitions can be obtained by [192]

𝜒(𝜔) =
∑︁
𝑝𝑥 ,𝑝𝑦

𝑒2𝑥𝑣𝑐 (𝑝𝑥 , 𝑝𝑦)𝑇2

𝜖0ℏ

[𝜔probe −
Δ(𝑝𝑥 ,𝑝𝑦)

ℏ
]𝑇2 − 𝑖

[𝜔probe −
Δ(𝑝𝑥 ,𝑝𝑦)

ℏ
]2𝑇2

2 + 1
[𝑁𝑣 (𝑝𝑥 , 𝑝𝑦)−𝑁𝑐 (𝑝𝑥 , 𝑝𝑦)],

(A.9)
where 𝑒 is the electron charge, 𝜖0 is vacuum permittivity, ℏ is Planck’s constant
divided by 2𝜋, 𝑥𝑣𝑐 is the matrix element of the vertical interband transition at a
particular momentum (assumed to be a constant for all momenta for simplification),
𝑇2 (assume to be constant) is the band dephasing time, 𝜔probe represents probe
frequency, Δ(𝑝𝑥 , 𝑝𝑦) represents the gap energy, and 𝑁𝑣 and 𝑁𝑐 are the electron
occupations of the valence and conduction bands, respectively. The physical picture
of the equation is that the bands are viewed as an ensemble of vertical two-level
systems (TLSs) in the 𝑝𝑥- 𝑝𝑦 plane with level separations Δ(𝑝𝑥 , 𝑝𝑦) = ℏ(𝜔𝑐 −
𝜔𝑣); each TLS contributes a Lorentzian oscillator, weighted by its corresponding
occupation factor, to the total susceptibility.

In equilibrium (𝑁𝑣 = 1, 𝑁𝑐 = 0 for all 𝑝𝑥 and 𝑝𝑦), we calculated the susceptibility
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by Equation A.9 and converted it into static real and imaginary parts of conductivity
𝜎 and reflectivity, as shown in Figures A.5(c)-(e). The values and trends of the
curves are similar to those of Ca2RuO4 measured around its 𝛼 peak onset energy
(Mott band edge), but the higher energy transitions that involve multiple orbitals in
Ca2RuO4, such as the 𝛽 and 𝛾 peaks, are not accounted for by the model.

0.7 0.9 1.1

Energy (eV)

0

5e-4

-5e-4

0

5e-3

-5e-3

1e-2

0

2e-2

∆
𝑅
/𝑅

0.7 0.9 1.1

Energy (eV)

0

2e-3

0

8e-3

0

1e-2

2e-2

0.5

0

1

-0.5

-1

02
-2

0 2
-2

E
n
e
rg

y
 (

e
V

)

px
py

(a)

0

2

-2 0
2

-2

px

py

P
p

(a
.u

.)

(b)

(c)

(d)

(e)

(f) (g)

R
e
𝜎

(Ω
−
1
cm

−
1
)

Im
𝜎

(Ω
−
1
cm

−
1
)

R
e
fl
e
c
ti
v
it
y

Energy (eV)

0.4 0.8 1.2 1.6
0.18

0.20

0.22

0.24

-800

-400

0

0

400

800

0.9 eV

0.8 eV

wp

N: 0.2%

w: 0.1 eV

N: 0.6%

w: 0.2 eV

N: 1.2%

w: 0.3 eV

N: 0.2%

N: 0.6%

N: 1.2%

Figure A.5: Simulation of optical properties of a photoexcited insulator. (a) Band
structure. (b) Momentum dependent photocarrier distribution. 𝑤𝑝 (𝑤) represents
the width of the distribution in the momentum (energy) space. (c)-(e) Equilibrium
optical properties calculated from the band structure in (a) with no photocarriers.
(f) Differential reflectivity spectrum (spectrum with photocarriers subtracted by
that without photocarriers) at various carrier densities (𝑁) and width of distribution
𝑤. (g) Same as (f) except that the 𝑃𝑝 is adjusted to the 1-eV-pump nonthermal
distribution. 𝑁 changes consistently, while the width of distribution stays constant
for the three panels.

Next, we consider the laser-driven case. We used the Gaussian distribution to
account for a total of 𝑁 photoexcited nonthermal carriers

𝑁 =
∑︁
𝑝𝑥 ,𝑝𝑦

𝑁𝑐 (𝑝𝑥 , 𝑝𝑦) =
∑︁
𝑝𝑥 ,𝑝𝑦

𝐴

𝑤
√

2𝜋
exp
−[𝜔𝑐 (𝑝𝑥 , 𝑝𝑦) − 𝜔0]2

2𝑤2 , (A.10)

where we specified width 𝑤, peak center 𝜔0, and 𝑁 to determine 𝐴 and 𝑁𝑐 (𝑝𝑥 , 𝑝𝑦);
for 0.3 eV pump experiments, we set 𝜔0 to be half of the direct gap (assuming zero
energy centers the gap), and 𝑤 progressively increases with 𝑁 to mimic the width
evolution of the 𝛾𝐾-dependent 𝑃𝑝 distribution obtained from the Landau-Dykhne
theory, while for 1 eV pumping, we set 𝜔0 = 0.5 eV, and 𝑤 remains constant with
increasing 𝑁 . A representative Gaussian distribution landscape is shown in Figure
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A.5(b), mimicking the situation for subgap pumping at a relatively low fluence,
where the states at the band edge (where the gap is smallest) are mostly occupied.
The nonthermal photocarrier distribution affects 𝑁𝑐 (𝑝𝑥 , 𝑝𝑦) and 𝑁𝑣 (𝑝𝑥 , 𝑝𝑦) = 1 −
𝑁𝑐 (𝑝𝑥 , 𝑝𝑦), and therefore, modifies the nonequilibrium 𝜎 and reflectivity. By
applying the Fresnel equations, we simulated Δ𝑅/𝑅 spectra for various photocarrier
densities 𝑁 and distribution widths 𝑤, and plotted three scenarios in Figure A.5(f);
𝑁 is expressed as the percentage of the pair density within the maximum allowed
number of pairs in the bands. One detail we noticed was that simply considering
the filling-induced optical bleaching will only lead to negative Δ𝑅/𝑅 for all probe
energies. This is because the equilibrium reflectivity develops a peak structure
around the energy where the gap onsets (see Figure A.5(c) and (e)), and filling will
only bleach the gap feature, and therefore, lead to a suppression of the reflectivity
peak. We found that, to match the experimental fact that positive Δ𝑅/𝑅 regions are
present in the experimental data, a term considering the photocarrier-induced band
edge redshift has to be included. Therefore, we assumed the photoinduced change
in Δ to be proportional to 𝑁 (If the change is small, only the linear term in the
Taylor expansion is retained.). This assumption is reasonable because quantitative
extraction of band edge energy shift versus fluence in the 1 eV pump experiments
indeed recovers linearity; see Figure A.6.
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Figure A.6: Band edge energy redshift versus fluence for 1 eV pump experiments.
This graph is obtained by performing a Kramers-Kronig transform detailed in the
next section.

For the three scenarios plotted in Figure A.5(f), we included both the filling effect
through 𝑁𝑣 (𝑝𝑥 , 𝑝𝑦) and 𝑁𝑐 (𝑝𝑥 , 𝑝𝑦) and the band edge redshift through Δ. For the
three rows in Figure A.5(f), the simultaneous increase of 𝑁 and 𝑤 is for simulating
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the fluence dependence of our subgap pumping experiment, where pair density
increases with fluence, and 𝑤 increases as 𝛾𝐾 decreases (predicted by the Landau-
Dykhne theory). An apparent expansion of the Δ𝑅/𝑅 > 0 region is observed from
the top panel to the bottom panel. This key feature is present in the simulations
and experimental data in Figure 6.2 of the main text, because this type of evolution
of Δ𝑅/𝑅 prohibits an isosbestic point in the nonequilibrium reflectivity spectra in
the subgap pumping scenario. On the other hand, the simulations shown in Figure
A.5(g), which are adapted to the experimental 1 eV pumping condition, and accounts
for both the increase of 𝑁 and the band edge redshift (∝ 𝑁) but not the increase of 𝑤
or any change in the nonthermal probability distribution function, fails to reproduce
the expansion of the Δ𝑅/𝑅 > 0 region. The fact that the entire Δ𝑅/𝑅 spectrum
seems to scale with 𝑁 for a constant distribution function in Figure A.5(g) leads to
the appearance of an isosbestic point in the nonequilibrium reflectivity spectra for
the 1 eV pumping case; which was exactly observed in experiments.

A.5 Kramers-Kronig transform and differential optical conductivity
Figures 6.3 and 6.4 of the main text shows differential optical conductivity spectra
(Δ𝜎), which were obtained by a Kramers-Kronig (KK) analysis of theΔ𝑅/𝑅 spectra.
In this section, we first discuss our KK algorithm, which converts experimental
Δ𝑅/𝑅 spectra within a limited probe energy range to Δ𝜎, provided that the static
broadband optical conductivity 𝜎 is known. Second, we will discuss details of
identifying modifications to differential conductivity for 0.3 eV pumping (Δ𝜎0.3 eV)
by Floquet bandwidth renormalization.

A.5.1 The regional KK transform algorithm
KK transform is a powerful technique that enables calculation of intrinsic complex-
valued optical constants of a material from the reflectivity data alone. If the re-
flectivity spectrum 𝑅(𝜔) is known, the reflection phase 𝜃 (𝜔) can be calculated
as

𝜃 (𝜔) = 1
𝜋

∫ ∞

0
ln
𝜔
′ + 𝜔

𝜔
′ − 𝜔

𝑑ln
√︁
𝑅(𝜔′)
𝑑𝜔

′ 𝑑𝜔
′

(A.11)

without directly measuring it in experiments, and the real and imaginary parts of
refractive index can be calculated by

Re(𝑛) = 1 − 𝑅
1 + 𝑅 − 2 cos𝜃

√
𝑅

(A.12)

Im(𝑛) = −2 sin𝜃
√
𝑅

1 + 𝑅 − 2 cos𝜃
√
𝑅
. (A.13)
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The optical conductivity 𝜎 can be obtained by 𝜎 = (𝑛2 − 1)𝜔𝜖0/𝑖. However, to
use Equation A.11, 𝑅(𝜔) must be known from zero to infinite frequencies, which is
impractical for experiments. Various methods exist that extrapolate 𝑅(𝜔) within a
limited measurement range to high and low frequencies to complete the calculation.

Our situation is the following. The static optical constants of Ca2RuO4 without
optical pumping have already been determined by measuring broadband 𝑅(𝜔) from
80 meV to 6.5 eV, followed by data extrapolation and KK transform. However, the
key issue is that our pump-probe measurement that gives Δ𝑅/𝑅 covers a smaller
frequency range (0.5 eV to 2.2 eV), and we hope to obtain Δ𝜎 in the same range.
Equation A.11 cannot be directly applied because no model exists to extrapolate
Δ𝑅/𝑅. But Equation A.11 shows a strong resonance at 𝜔 ∼ 𝜔′ , suggesting that
frequencies that are away from the range of interest contribute less to 𝜃. And when
Δ𝑅/𝑅 ≪ 1, it is possible that, numerically, simply considering the Δ𝑅/𝑅 only in the
measurement range is accurate enough to give Δ𝜎 in the same range. We followed
the discussions in Ref. [191] to perform such a regional KK analysis.

The 𝜃 integral can be written as the sum of three frequency ranges, namely, the
low-frequency range, the measurement range, and the high-frequency range:

𝜃 (𝜔) = −1
𝜋

∫ 0.5 eV

0
𝑓 (𝑅, 𝜔)𝑑𝜔′ − 1

𝜋

∫ 2.2 eV

0.5 eV
𝑓 (𝑅, 𝜔)𝑑𝜔′ − 1

𝜋

∫ ∞

2.2 eV
𝑓 (𝑅, 𝜔)𝑑𝜔′ ,

(A.14)
where

𝑓 (𝑅, 𝜔) = ln
√︁
𝑅(𝜔′) 𝑑

𝑑𝜔
′

(
ln
𝜔
′ + 𝜔

𝜔
′ − 𝜔

)
. (A.15)

Applying the generalized mean value theorem to first and third integrals in Equation
A.14, and defining the second term as 𝜙 gives

𝜃 (𝜔) = 𝐴 ln
0.5 eV + 𝜔
0.5 eV − 𝜔 + 𝜙(𝜔) + 𝐵 ln

2.2 eV + 𝜔
2.2 eV − 𝜔, (A.16)

where 𝐴 and 𝐵 are coefficients.

We fitted 𝐴 and 𝐵 from the known static 𝜎 data at 20 K. In the nonequilibrium
scenario, Δ𝑅/𝑅 due to the optical pump will enter 𝜙(𝜔) to affect 𝜃 (𝜔). 𝐴 and 𝐵 are
also expected to change slightly due to nonzero Δ𝑅/𝑅 in these unmeasured ranges.
However, we found that when Δ𝑅/𝑅 ≪ 1, it is still numerically accurate to keep
the nonequilibrium 𝐴 and 𝐵 constants to be the same as their equilibrium values,
because the first and third terms in Equation A.16 are off resonant in frequency.

We did a benchmark test to prove the validity of this protocol. Figure A.7(a) shows
the static𝜎 at various temperatures. In Figure A.7(b), the 20 K curve is still the static
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Figure A.7: Benchmark test for the regional KK algorithm using the temperature
dependent data set. (a) Temperature dependent optical conductivity spectra directly
from experiment used as the benchmark. (b) Regional KK output, where the known
20 K conductivity spectrum is used to fit the 𝐴 and 𝐵 coefficients, and the reflectivity
spectra for the rest of the temperatures are input into regional KK to output their
respective conductivity spectra. Close agreement of conductivity spectra for all
temperatures with (a) is observed.

one, while the 110 K, 150 K, 180 K curves are outputs from Equation A.16, where
𝐴 and 𝐵 coefficients are results from fitting to the 20 K data, and the differences
of reflectivity, Δ𝑅𝑥 = 𝑅𝑥 − 𝑅20 K (𝑥 =110 K, 150 K, 180 K), were input to the
𝜙 term. The close agreement between regional KK output at 110 K, 150 K, and
180 K in Figure A.7(b) and the experimental data in Figure A.7(a) suggests that the
regional KK algorithm is accurate enough to give Δ𝜎 when Δ𝑅/𝑅 is small. None of
our pump induced Δ𝑅/𝑅 exceeds that induced by temperature (difference between
180 K and 20 K), and therefore, the method is expected to work well for our entire
measurement.

Empirically speaking, we found that the most critical factor impacting the robustness
of the algorithm is the probe energy width of the experiment. For wider measurement
ranges, the definite integral term for calculating the reflection phase (the middle
term of Equation A.14) becomes more dominant, and the algorithm appears more
robust. This is because the equation used for fitting the reflection phase in Equation
A.16 contains two poles that are located exactly at the energy boundaries of the
measurement. The KK transformed signals are inevitably subject to numerical
artifacts at the poles and energies around the poles, but empirically we found that
the artifact can be mitigated when the energy boundaries get further and further
apart, that is, the range within which Δ𝑅/𝑅 is experimentally measured gets wider.
In our case, we did find artifacts associated with the poles (see the slight upturns
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of a few curves in Figure A.7(b) at the low-energy boundary for example), but our
measurement range (0.55 eV to 2.2 eV) is large enough so that the artifacts are
contained within a manageable extent.

A.5.2 Subtracting the differential optical conductivity
The regional KK transform outputs pump-induced differential conductivity spectra
Δ𝜎 for both the 0.3 eV pump (Δ𝜎0.3 eV) and the 1 eV pump (Δ𝜎1 eV) cases at various
fluences and time delays. In Figure 6.4 of the main text, we report analysis of
difference spectra Δ(Δ𝜎) = Δ𝜎0.3 eV − 𝐴 × Δ𝜎1 eV, where 𝐴 is the scale factor,
to account for the unique spectral signatures of the coherent non-thermal regime
that are exclusively related to the subgap strong-field drive but not the photocarrier
doping effect. Here, we describe how this subtraction was performed, and our way
to determine the proper scaling factor multiplying Δ𝜎1 eV in the subtraction.

ℏ𝜔probe (eV)
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Figure A.8: Comparison of Δ𝜎 spectra for 0.3 eV pump (a) and 1 eV pump (b) at
𝑡 = 0 ps. Curves from blue to orange represent low to high fluences. 0.3 eV pump
fluences range from 3 mJ/cm2 to 30.4 mJ/cm2. 1 eV pump fluences range from
0.57 mJ/cm2 to 6.9 mJ/cm2. Blue and red shaded regions in (a) highlight spectral
ranges where additional modifications develop on the 0.3 eV pump data compared
to the 1 eV pump data.

Figures A.8(a) and (b) show a comparison between Δ𝜎0.3 eV and Δ𝜎1 eV across all
fluences at time zero (𝑡 = 0 ps). The probe energy ranges that show apparent
modifications in Δ𝜎0.3 eV data compared to Δ𝜎1 eV are marked by the blue shade,
where the positive peak looks flattened out, and the red shade, where a bump
appears in the negative portion of the signal. In addition, a robust isosbestic
point can be identified in both data sets at the same probe energy (1.2 eV) for
all fluences. Generally speaking, for spectroscopic studies, an isosbestic point
represents a frequency where measurement is most accurate, and is usually used as
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a reference point [65]. In our case, the fact that it lies outside the blue and red shades
(where spectral modifications obviously take place) strongly suggests that the probe
energy of 1.2 eV, and energies that are right in the vicinity of it, are not influenced
by the strong-field modification effect. Therefore, we chose the probe energy range
between 1.1 eV to 1.3 eV as the reference, scaled Δ𝜎1 eV to obtain the best matching
with Δ𝜎0.3 eV data in this range, and calculated Δ(Δ𝜎) = Δ𝜎0.3 eV− 𝐴×Δ𝜎1 eV. This
procedure was repeated for all time delays, producing the colormap in Figure 6.4(a)
of the main text.

(a)

R
e
(Δ
𝜎
)

(a
.u

.)

(b)

0.8 1.2 1.6 2.0 0.8 1.2 1.6 2.0

Im
(Δ
𝜎
)

(a
.u

.)

ℏ𝜔probe (eV)

Figure A.9: Scaling analysis for the real (a) and imaginary (b) parts of Δ𝜎 for 1 eV
pump at 𝑡 = 0 ps. Curves from blue to orange represent low to high fluences, and
are multiplied by their respective scaling factors to make the traces overlap to the
largest extent. Nice overlap is seen after scaling for both the real and the imaginary
parts.

As shown in Figure A.9, both the real and the imaginary parts of Δ𝜎1 eV at 𝑡 = 0 ps
scale well for all fluences, so the scaling factor in the Δ(Δ𝜎) equation can simply
account for the amplitude difference, and it is not important which fluence of Δ𝜎1 eV

is selected for the subtraction.

A.6 Density functional theory simulations for bandwidth broadening
In Figures 6.4(d) and (e) of the main text, we report the expected change to opti-
cal conductivity by considering a bandwidth broadening process. The simulation
outcomes were used to fit experimental Δ(Δ𝜎) spectra to quantify the amount of
bandwidth modification (𝑊 − 𝑊eq)/𝑊eq as a function of fluence and time delay.
Here we present details of the density functional theory (DFT) simulation and the
way to fit data.

We used the structural parameters in Ref. [31], considered the collinear antifer-
romagnetic (AFM) structure along the 𝑏 axis, and applied the DFT+𝑈 (static
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Figure A.10: Static electronic properties of Ca2RuO4 calculated by DFT. (a) Band
structure. (b) Total density of states (DOS). Blue arrows indicate the 𝛼, 𝛽, and 𝛾
transition peaks in (c). (c) Optical conductivity spectrum. Dashed lines show Fermi
levels.

𝑈 = 3.5 eV) method to simulate the static electronic properties of Ca2RuO4. Fig-
ures A.10(a), (b), and (c) show the calculated band structure, total density of states
(DOS), and conductivity spectrum, respectively. The Mott gap clearly opens up
around the Fermi level when both the AFM structure and the Coulomb correlation
are considered. Flat bands near the Fermi level are mostly contributed by 𝑑 orbitals
of Ru, leading to concentrated DOS peaks. Three optical transitions across the
DOS peaks clearly manifest in the optical conductivity spectrum as 𝛼, 𝛽, and 𝛾
transition peaks. This is in agreement with previous DFT and experimental studies
on Ca2RuO4 [66, 104].

To simulate the effect of bandwidth broadening, we changed the structural input
parameters. In Ca2RuO4, each RuO6 octahedron undergoes two types of distortions
compared to the K2NiO4 structure (I4/mmm), leading to significant modifications
to the in-plane hopping amplitudes, and therefore, the bandwidth. Figure A.11(a)
summarizes the two types of distortions, the rigid rotation of the octahedron around
the 𝑐 axis by the angle 𝜙, and the rigid tilting of the octahedron around an in-plane
(𝑎𝑏 plane) axis by the angle 𝜃. In the static low temperature AFM state, 𝜙 = 12◦

and 𝜃 = 12◦, and the Ru-O-Ru bond angle ∠(Ru-O-Ru) = 150.1◦.

We broadened the bandwidth𝑊 in the simulation by reducing the tilting angle 𝜃 of
the structure (blue arrows in Figure A.11(a) bottom panel), while keeping all other
structural parameters the same; this will make ∠(Ru-O-Ru) approach 180◦, and
broaden the bandwidth according to the empirical formula𝑊 ∝ [cos∠(Ru-O-Ru)]2

[241]. It is worth noting that the logic of choosing 𝜃 to change while keeping 𝜙 a
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Figure A.11: Method to simulate the effect of bandwidth broadening. (a) There are
two angles related to the lattice distortion in Ca2RuO4. Top: the rotation angle 𝜙
about the 𝑐 axis. Bottom: the tilting angle 𝜃 about an in-plane axis. (b) Examples
of how tuning 𝜃 affects the Ru-O-Ru bond angle and therefore, the bandwidth.
Top: table displaying combinations of angles and the resulting modification to the
bandwidth 𝑊 from the equilibrium 𝑊eq. Bottom: band structures using the red
and blue parameter conditions from the top table with a nonmagnetic structure and
𝑈 = 0 eV. Red (blue) bands correspond to the red (blue) parameter set.

constant is based on the well-known fact that 𝜃 responds much more sensitively to
Sr doping [66], temperature [31], and applied current [22] than 𝜙. In addition, the
coherent 𝐴𝑔 phonon mode at 3.8 THz, which consists majorly of the tilting motion
of RuO6 octahedra, shows robust anomalies across the AFM ordering [125] and
orbital ordering [124] temperatures. These all suggest that the tilting distortion is a
crucial structural parameter in Ca2RuO4 which responds sensitively to magnetic and
electronic ground states. This justifies us adjusting 𝜃 for simulating the bandwidth
renormalization induced by the strong-field drive, even though the drive does not
directly modify 𝜃. The table in Figure A.11(b) shows examples of combinations of
structure parameters, and the resulting ratio of the modified bandwidth to the static
equilibrium bandwidth,𝑊/𝑊eq, estimated from𝑊 ∝ [cos∠(Ru-O-Ru)]2. To make
sure that𝑊 is actually modified, we simulated the nonmagnetic crystal with𝑈 = 0 eV
using the red and blue parameter sets in the table; the calculated bands are shown
in the bottom panel of Figure A.11(b). The nonmagnetic setting with 𝑈 = 0 eV
fully collapses the Mott gap, making it easier for us to identify a bandwidth change.
As clearly observed in the bottom panel of Figure A.11(b), the blue parameter set
indeed leads to a broadened bandwidth compared to the red parameter set.

Figures A.12(a) and (b) show calculated modifications to conductivity by changing
the bandwidth by various amounts;𝑊/𝑊eq are labeled on each curve. Both the real
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Figure A.12: DFT simulation outcomes of bandwidth modification. Calculated
change in the real (a) and imaginary (b) parts of conductivity due to bandwidth
broadening. Bandwidth narrowing would give spectra off from these traces by a
minus sign. 𝑊/𝑊eq values are labeled. (c) Calculated change in conductivity due
to dynamical𝑈 modification. Values of𝑈 are labeled. (d) and (e) show an example
of scaling the simulated DFT spectra to fit the experimental Δ(Δ𝜎) data to quantify
𝑊/𝑊eq. Real and imaginary parts are scaled by a common factor. Curves are offset
for clarity from (a) to (c).

and the imaginary part show agreement with the experimental Δ(Δ𝜎) = Δ𝜎0.3 eV −
𝐴 × Δ𝜎1 eV. In contrast, if we consider another scenario where modification to
Coulomb correlation 𝑈 occurs [218], the change in conductivity would look very
different, and would not match Δ(Δ𝜎); see Figure A.12(c). Finally, given the
simulation results of bandwidth modification, the method we used to quantitatively
determine experimental 𝑊/𝑊eq is scaling the 𝑊/𝑊eq = 1.052 curve (Since the
difference in 𝜎 roughly grows in proportion with (𝑊 −𝑊eq)/𝑊eq, it does not matter
which curve to pick here.) in Figures A.12(a) and (b) by a common factor to fit
experimental data, as shown in Figures A.12(d) and (e). The same factor is then
multiplied to the (𝑊 − 𝑊eq)/𝑊eq ratio set for the simulation to give the actual
experimental (𝑊 −𝑊eq)/𝑊eq, assuming linear proportionality when the fractional
modification is small. Error bars in the main text are quantified by the standard
deviation between the calculation and experiment.

A.7 Floquet calculation of bandwidth renormalization
In the main text, we discussed that the ultrafast bandwidth renormalization (UBR)
observed in the subgap strong-field pump data at exactly time zero originates from a
Floquet engineering mechanism. To give a quantitative estimate of the UBR due to



134

the Floquet mechanism and compare with our experiment, we followed Reference
[153] and used the Floquet-driven two-site cluster model therein. The two-site
cluster model takes the periodic-field-dependent electronic hopping into account,
but significantly simplifies the problem. Dynamical mean-field theory for systems
with extended dimensions also show good agreement with the two-site model.
According to Reference [153], when the Mott insulator is strongly coupled (𝑈 ≫ 𝑡),
the ratio between the light-modified bandwidth and the static bandwidth is

𝑊

𝑊eq
=

√√ ∞∑︁
𝑛=−∞

𝐽𝑛 (E)2
1 + 𝑛𝜔/𝑈 , (A.17)

where E = 𝑒𝑎𝐸0/(ℏ𝜔) is the Floquet parameter, 𝑎 is the lattice constant, 𝐸0 is the
field amplitude, 𝜔 is the pump frequency, and 𝐽𝑛 (𝑥) is the 𝑛th Bessel function.

We input our experimental pumping conditions into the equation, 𝑎 = 5.6 Å, and a
range of 𝑈 from 3 eV to 3.5 eV, with no other adjustable parameter. Since hopping
𝑡 = 0.23 eV, the 𝑡/𝑈 ≪ 1 condition holds. The result of this calculation using
Equation A.17 is reported in Figure 6.4(e) of the main text.

A.8 Relation between differential reflectivity and HD pair density
In this section, we present additional clarifications of the relation between the
differential reflectivity and the HD pair density. Two specific problems will be
addressed. One is the proof of proportionality between differential reflectivity and
the pair generation rate. We will then expand the model to take into account pair
distribution functions, and show that the pair distribution function must undergo
a crossover in the fluence scaling whenever the differential reflectivity spectra at
different fluences cannot scale.

First, we identify that any pump-induced spectral modification at 0.1 ps (time delay
at which Δ𝑅/𝑅 peaks) should originate from the photo-excited pairs. The coherent
Floquet modification and heating is expected to provide negligible contribution since
these processes are separated in time from 0.1 ps. For photo-excited HD pairs with
a density of 𝑛, their impact on the reflectivity spectrum can be expanded as

Δ𝑅(𝜔) = 𝑅(𝑛, 𝜔) − 𝑅(𝑛 = 0, 𝜔) ≈ 𝑛 𝜕𝑅(𝑛, 𝜔)
𝜕𝑛

����
𝑛=0

(A.18)

where we retain only the linear term in the Taylor series (given the condition of
Δ𝑅/𝑅 ≪ 1, which holds for our entire fluence range), and assume that the coefficient
𝜕𝑅(𝑛,𝜔)
𝜕𝑛

���
𝑛=0

is nonzero in general. Note that the expression remains valid for all types
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of photo-induced spectral modifications, including peak shift and broadening, and
the resulting relation of Δ𝑅(𝜔) ∝ 𝑛 has been frequently used by the ultrafast optical
community to describe quasiparticle dynamics in various photo-excited gapped
systems [42, 56, 72]. Assuming a simplified scenario where pair generation is
uniform in rate within the pump pulse duration Δ𝑡, one can write the rate Γ = 𝑛/Δ𝑡.
This relation, combined with Equation A.18, establishes Δ𝑅(𝜔) ∝ 𝑛 ∝ Γ. The
reason we leave Γ in arbitrary units is because the coefficient relating Δ𝑅(𝜔) with
Γ is not determined quantitatively. But establishing the proportionality is sufficient
for us to perform the scaling analysis in this work.

We then consider an expanded model where Δ𝑅 is influenced by, not one, but mul-
tiple species of HD pairs distinguished by the pair energies. For the nonequilibrium
situation where photo-excited HD pairs are occupying the upper and lower Hub-
bard bands, the pairs can be labeled in the joint density of states spectrum by their
energies (doublon and holon energies combined for each pair) 𝜔𝑖. If we represent
the number of pairs with energy 𝜔𝑖 as 𝑛𝜔𝑖

, and divide the energy window within
which pairs populate into a total of 𝑁 bins, the pair distribution function can then
be represented by a collection of {𝑛𝜔𝑖

} for 𝑖 ∈ {1, 2, ..., 𝑁}; see Figure A.13 for a
schematic.

Figure A.13: Schematic showing the HD pair population on the optical conductivity
(joint density of states) spectrum that can be distinguished by the pair energy.

We are interested in finding the influence of {𝑛𝜔𝑖
} on the reflectivity spectrum.

Consider the general case where pairs with different energies impact the spectrum
differently, the photo-carrier induced reflectivity change can be expanded into the
Taylor series as

Δ𝑅(𝐹, 𝜔) = 𝑅(𝑛𝜔1 , 𝑛𝜔2 , ..., 𝑛𝜔𝑁
, 𝜔) − 𝑅(𝑛𝜔1 = 𝑛𝜔2 = ... = 𝑛𝜔𝑁

= 0, 𝜔) (A.19)

≈
𝑁∑︁
𝑖=1

𝑛𝜔𝑖
(𝐹)

𝜕𝑅(𝑛𝜔1 , 𝑛𝜔2 , ..., 𝑛𝜔𝑁
, 𝜔)

𝜕𝑛𝜔𝑖

����
𝑛𝜔1=𝑛𝜔2=...=𝑛𝜔𝑁

=0
(A.20)
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where again only the linear terms are retained, and 𝑛𝜔𝑖
depends on pump fluence 𝐹

as 𝑛𝜔𝑖
(𝐹). For two fluence values 𝐹1 and 𝐹2, the ratio of the reflectivity spectra

Δ𝑅(𝐹1, 𝜔)
Δ𝑅(𝐹2, 𝜔)

=

∑𝑁
𝑖=1 𝑛𝜔𝑖

(𝐹1)
𝜕𝑅(𝑛𝜔1 ,𝑛𝜔2 ,...,𝑛𝜔𝑁

,𝜔)
𝜕𝑛𝜔𝑖

���
𝑛𝜔1=𝑛𝜔2=...=𝑛𝜔𝑁

=0∑𝑁
𝑖=1 𝑛𝜔𝑖

(𝐹2)
𝜕𝑅(𝑛𝜔1 ,𝑛𝜔2 ,...,𝑛𝜔𝑁

,𝜔)
𝜕𝑛𝜔𝑖

���
𝑛𝜔1=𝑛𝜔2=...=𝑛𝜔𝑁

=0

(A.21)

should be 𝜔-dependent in general. However, in certain regimes of photo-excitation,
the pair distribution follows well-defined scaling functions, that is, for ∀𝑖, 𝑗 ∈
{1, 2, ...𝑁}, there always exists a constant 𝐶, that makes 𝐶 · 𝑛𝜔𝑖

(𝐹)/𝑛𝜔 𝑗
(𝐹) = 1.

This is equivalent to writing 𝑛𝜔𝑖
(𝐹) = 𝐶𝑖 𝑓 (𝐹), where𝐶𝑖 is 𝐹-independent and 𝑓 (𝐹)

is a universal scaling function.

We give three concrete cases where such scaling functions exist:
(1) For above-gap photo-doping pump, 𝑓 (𝐹) = 𝐹.
(2) Within the deep multi-photon regime [175] (𝛾𝐾 ≫ 1), 𝑓 (𝐹) = 𝐹𝑎/2 (𝑎 > 2).
(3) Within the deep tunneling regime [175] (𝛾𝐾 ≪ 1), 𝑓 (𝐹) = 𝑒−𝑏/

√
𝐹 .

The fluence dependence can then be factored out as

Δ𝑅(𝐹, 𝜔) = 𝑓 (𝐹)
𝑁∑︁
𝑖=1

𝐶𝑖 ·
𝜕𝑅(𝑛𝜔1 , 𝑛𝜔2 , ..., 𝑛𝜔𝑁

, 𝜔)
𝜕𝑛𝜔𝑖

����
𝑛𝜔1=𝑛𝜔2=...=𝑛𝜔𝑁

=0
(A.22)

so that the ratio Δ𝑅(𝐹1,𝜔)
Δ𝑅(𝐹2,𝜔) =

𝑓 (𝐹1)
𝑓 (𝐹2) becomes 𝜔-independent. The Δ𝑅(𝜔) spectrum

therefore "scales" for various pump fluences, and we refer to this scenario as success-
ful scaling. For the specific case of insulating systems, photo-excitation typically
causes spectral weight transfers, which manifest as zero crossing features in Δ𝑅(𝜔).
For this type of spectra, a successful scaling ensures that the zero-crossing energy
does not shift with fluence (as observed in Figure 6.2(h) of the main text), leading
to an isosbestic point in the reflectivity spectrum, 𝑅(𝜔) = Δ𝑅(𝜔) + 𝑅eq(𝜔), where
𝑅eq(𝜔) represents the spectrum in equilibrium.

On the other hand, according to Eq. A.21, unsuccessful scaling, defined as Δ𝑅(𝐹1,𝜔)
Δ𝑅(𝐹2,𝜔)

being 𝜔-dependent, occurs for the Keldysh crossover [175] during which there is no
universal scaling function 𝑓 (𝐹) that can be factored out from 𝑛𝜔𝑖

; pair distribution
change during the Keldysh crossover causes 𝑛𝜔𝑖

at different 𝜔𝑖 to scale differently
with 𝐹. Absence of an isosbestic point in 𝑅(𝜔) = Δ𝑅(𝜔) + 𝑅eq(𝜔), which is
equivalent to the statement that the zero-crossing energy in Δ𝑅(𝜔) shifts with
fluence, should be a manifestation of unsuccessful scaling, and therefore, can serve
as evidence for the Keldysh crossover.
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A.9 Lorentz model fitting of transient conductivity
Here we examine if the UBR due to Floquet engineering can be directly identified
from the conductivity spectra. The idea is to fit 𝛼 and 𝛽 peaks with Lorentzians,
and see if UBR manifests in their peak widths as a function of pump electric field
strength 𝐸pump.

We set up a fitting equation that expresses conductivity 𝜎 versus probe photon
energy 𝐸 as

Re(𝜎) = 𝑝0 + 𝑝1𝐸 + 𝑝2𝐸
2 + 𝐴𝛼Δ𝐸𝛼

(𝐸 − 𝐸𝛼)2 + (Δ𝐸𝛼)2
+

𝐴𝛽Δ𝐸𝛽

(𝐸 − 𝐸𝛽)2 + (Δ𝐸𝛽)2
, (A.23)

which contains polynomial terms up to quadratic order to account for the background
spectral weight, and two Lorentzians to account for the 𝛼 and 𝛽 peaks. 𝐴𝛼 (𝐴𝛽), 𝐸𝛼
(𝐸𝛽), Δ𝐸𝛼 (Δ𝐸𝛽) represent spectral weight, center energy, and peak width of the 𝛼
(𝛽) peak, respectively. Figure A.14(a) shows the agreement between the fit and the
equilibrium conductivity spectrum using Equation A.23.
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Figure A.14: Lorentz model fitting of optical conductivity. (a) Equilibrium con-
ductivity at 20 K fitted by Equation A.23. (b) Peak widths and (c) amplitudes for
the 𝛼 and 𝛽 bands versus pump field. (d) First order derivative of conductivity to
show earlier onset of 𝛽 peak conductivity in the laser-driven sample (blue) than the
sample in equilibrium (red).

The similar fitting procedure is carried out for nonequilibrium Re(𝜎) at various
𝐸pump values. In order to only take the Floquet effect into account, we express 𝜎 =

𝜎eq+Δ(Δ𝜎(𝑡 = 0)), where 𝜎eq is the equilibrium conductivity, and Δ(Δ𝜎(𝑡 = 0)) is
the time-zero nonthermal signal identified using the subtraction process (explained
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in Section A.5.2). Figure A.14(b) shows the extracted peak widths versus 𝐸pump.
Although the 𝛼 peak narrows with 𝐸pump, the 𝛽 peak clearly shows a broadening
with 𝐸pump whose trend matches closely with that in Figure 6.4(e) of the main
text. In addition, the 𝛼 peak spectral weight transfers to the 𝛽 peak with increasing
𝐸pump (Figure A.14(c)). The 𝛽 peak broadening can be directly identified in the
conductivity spectra by performing an energy derivative; see Figure A.14(d) for a
comparison of 𝑑𝜎/𝑑𝐸 between the equilibrium and the laser-driven scenarios. The
fact that the driven scenario shows an earlier onset of the beta peak in the 1.4 eV -
1.8 eV range corroborates the conclusion from our fitting.

The broadening of the 𝛽 peak suggests a bandwidth increase of the 𝑑𝑥𝑧 and 𝑑𝑦𝑧
orbitals, which agrees with the conclusion from the DFT simulations reported in
the main text. The observation of the 𝛼 peak narrowing, however, requires more
interpretations by future work. At a qualitative level, the 𝛼 peak is expected to
closely correlate with the hole population within the 𝑑𝑥𝑦 orbital (which arises from
orbital mixing of 𝑑𝑥𝑦 into 𝑑𝑥𝑧/𝑦𝑧 due to crystal field distortions), the appearance of
the peak can thus respond sensitively to conditions other than a pure 𝑑𝑥𝑦 bandwidth
broadening effect. Indeed, the spectral weight decrease of the 𝛼 peak suggests a
decrease of the 𝑑𝑥𝑦 hole population versus 𝐸pump, which should be expected when
DFT simulates a less distorted, bandwidth-broadened crystal by "straightening" the
Ru-O-Ru bonds [104]. Therefore, a narrowing of the 𝛼 peak can still be consistent
with bandwidth broadening provided microscopic details are fully considered as in
our first-principles calculations.
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