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ABSTRACT

The thesis comprises three papers covering different topics in quantum many-body
physics. The first paper examines translationally invariant Pauli stabilizer codes,
introducing invariants called charge modules and discussing their properties. The
second paper explores invertible (𝐺-invariant) states of 1D bosonic quantum lattice
systems (or spin chains), demonstrating a full classification using group cohomology.
The third paper analyzes the relation between ordinary correlators and Kubo’s
canonical correlators for thermal states of systems with short-range interactions.
Overall, the thesis highlights the power of mathematics, especially homological
methods, in understanding quantum states.
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C h a p t e r 1

OVERVIEW

The thesis is about states of quantum spin systems. We focus on identifying structures
underlying entire classes of states that can be analyzed using mathematical techniques,
particularly homological algebra. In this overview, we first define a quantum spin
system and its states using the language of 𝐶∗-algebra. Then, we introduce three
classes of quantum states relevant to our discussion.

1.1 Quantum spin system and its states
Quantum spin systems are widely used for studying the behavior of many-body
quantum systems. They have applications in a variety of fields including condensed
matter physics, quantum information theory, and quantum statistical mechanics.
In recent years, they have gained attention and popularity among mathematicians
due to their intriguing connections to several mathematical disciplines, including
representation theory, topology, and operator algebra. These connections have
spurred new developments in both mathematics and physics, with quantum spin
systems serving as a bridge between the two fields.

A quantum spin system consists of an infinite discrete space (Γ, 𝑑), often called a
lattice1, as well as an algebra of observables A . Let 𝑃0(Γ) be the set of finite subsets
of Γ. The algebra of local observables is

Aloc = lim−−→
𝑋∈P0 (Γ)

⊗
𝑥∈𝑋

𝑀𝑑𝑥 , (1.1)

where 𝑀𝑑𝑥 is the algebra of 𝑑𝑥 × 𝑑𝑥 matrices with sup𝑥∈𝑋 𝑑𝑥 < ∞. We also denote⊗
𝑥∈𝑋 𝑀𝑑𝑥 by A𝑋 for all 𝑋 ∈ P0(Γ). The 𝐶∗-algebra A of quasi-local observables

is the norm completion of Aloc. Later we impose additional assumptions on (Γ, 𝑑):

• in Chapter 2, Γ = Z𝐷 for any positive integer 𝐷;

• in Chapter 3, Γ = Z. These models are also known as spin chains;

• in Chapter 4, (Γ, 𝑑) satisfies a growth bound. For a finite subset 𝑋 ∈ P0(Γ),
we define 𝐵𝑟 (𝑋) = {𝑦 ∈ Γ : 𝑑 (𝑦, 𝑋) < 𝑟}. We assume there is a constant

1The use of the term “lattice” does not necessarily indicate that all systems possess an abelian
group as their lattice, although it is often the case.
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𝐷 > 0, such that for all 𝑋 ∈ P0(Γ) there exists 𝐶 > 0 with

|𝐵𝑟 (𝑋) | ≤ 𝐶 |𝑋 | (1 + 𝑟)𝐷 .

Remark 1. When concerning a system on an infinite lattice, it is necessary to use
𝐶∗-algebra of observables instead of Hilbert space of states. The latter is more
commonly seen in the context of quantum information where the Hilbert space is a
tensor product of C𝑑 called qudits. These two approaches are equivalent for a system
on a finite lattice. However, the latter breaks down on infinite lattices since infinite
tensor product of Hilbert spaces is ill-defined [1].

A state is a positive linear function 𝜓 : A → C such that 𝜓(Id) = 1. Here Id ∈ A is
the identity operator. The set 𝔖 of all states is clearly convex. A state is called pure
if it is extremal2 and mixed otherwise. Sometimes, we want to “stack” two systems
A1 and A2 to produce a new system A1 ⊗ A2. For two respective states 𝜓1 and 𝜓2,
this produces a new state 𝜓1 ⊗ 𝜓2 on the stacked system.

The rest of this chapter provides a summary of three distinct classes of states of
physical and mathematical interests. We defer precise definitions and detailed
references to later chapters.

1.2 Stabilizer states
Let U (Aloc) denote the group of unitary elements in Aloc. For anyU ∈ U (Aloc)
and 𝜓 ∈ 𝔖, a new state 𝜓U is defined by

𝜓U (A) = 𝜓(U∗AU),

where A ∈ A . Thus it defines an action of U (Aloc) on 𝔖. There is a special
subgroup P of U (Aloc) called the Pauli operators. A stabilizer state is a pure state
invariant under action of certain abelian subgroup of P . This abelian subgroup is
sometimes referred to as the stabilizers (of the state). In order to understand stabilizer
states, it is sufficient to study their respective groups of stabilizers. Surprisingly, this
leads us to the world of commutative algebra.

Any two Pauli operators A,B satisfies the commutation relation

AB = 𝜉BA,

where 𝜉 is always a root of unity. Moreover, there exists a mapping from P to
certain 𝑅-module3 𝑃, equipped with a pairing 𝜔 : 𝑃 × 𝑃 → 𝑅, such that 𝜉 is

2An extremal point of a convex set is a point within the set that cannot be expressed as a convex
combination of any two distinct points within the set.

3Here 𝑅 is always a Gorenstein ring dependent on details of the lattice.
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computable from 𝜔. Assuming states are translation-invariant, then their groups
of stabilizers correspond precisely to submodules L of 𝑃 such that 𝐿𝜔 := {𝑥 ∈
𝑃 | 𝜔(𝑥, 𝑙) = 0 for all 𝑙 ∈ 𝐿} = 𝐿. We call them Lagrangian submodules of 𝑃
due to their resemblance to Lagrangian subspaces of a symplectic vector space.
Finally, homological methods from commutative algebra are brought in to study
Lagrangian submodules. Previously discovered invariants of stabilizer states are
found to correspond to derived functors such as Ext1

𝑅
(𝑃/𝐿, 𝑅). More importantly,

additional homological invariants, such as higher Ext and local cohomologies, are
used to further our understanding of stabilizer states.

1.3 Invertible states
Motivated by physical notions of quantum phases, an equivalence relation on states
is defined called LGA-equivalence. A goal is to completely classify states modulo
LGA-equivalence. This goal is attained on spin chains for a class of states that are
invertible. Below, we sketch the definition of invertibility.

A state 𝜓 is called factorized if 𝜓(AB) = 𝜓(A)𝜓(B) whenever A and B are local
observables supported on two different sites. While all factorized pure states of A

are LGA-equivalent, the converse is far from being true. In fact, a pure state that is
LGA-equivalent to a factorized pure state is known as short-range entangled (SRE).
A pure state is called invertible if it stacks with another pure state and produces an
SRE state.

1.4 KMS states
KMS states are the only mixed states this thesis studies. They satisfy the so-called
Kubo-Martin-Schwinger condition requiring a certain “time-periodicity”. This
condition relates the expectation values of observables in the system at different
times, and it is a condition for a state to be in thermal equilibrium.

For a quantum spin system, time evolution 𝜏 : R→ Aut(A ) is a strongly continuous
one-parameter group of𝐶∗-algebra automorphisms. Given 𝜏 and a number 𝛽 ∈ [0,∞)
called inverse temperature, a state 𝜙 is called 𝛽-KMS4 if for all 𝐴, 𝐵 ∈ A𝑙𝑜𝑐 there
exists a function 𝐹𝐴,𝐵 (𝑡) which is holomorphic on the open strip 𝑆𝛽 = {𝑧 ∈ C : 0 <
Im𝑧 < 𝛽}, and bounded and continuous on 𝑆𝛽, such that

𝐹𝐴,𝐵 (𝑡) = 𝜙(𝐴𝜏𝑡 (𝐵)) (1.2)
4KMS stands for Kubo-Martin-Schwinger.
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and
𝐹𝐴,𝐵 (𝑡 + 𝑖𝛽) = 𝜙(𝜏𝑡 (𝐵)𝐴), (1.3)

for all 𝑡 ∈ R.

The holomorphic nature of 𝐹𝐴,𝐵 allows us to apply the residue theorem from complex
analysis, which enables us to study the decay rates of functions that measure the
static linear response of the state.
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C h a p t e r 2

TRANSLATION-INVARIANT PAULI STABILIZER CODE

2.1 Introduction
Pauli stabilizer codes are spin systems whose ground state (and excitations) are
described by eigenequations for a set of mutually commuting operators, each of
which is a tensor product of finitely many Pauli matrices, or generalizations thereof
called clock and shift matrices. Initially these models were studied as a class of
quantum error-correcting codes [2, 3]. Due to their mathematical tractability and
nontrivial properties, they have also become popular as exactly solvable models of
exotic phases of quantum matter. Qubits (or qudits) are typically placed on sites of a
𝐷-dimensional square lattice. Perhaps the most famous example is the toric code [4].

One may ask which quantum phases can be realized as Pauli stabilizer codes. It
has been shown [5, 6] that for codes on Z2 lattice with prime-dimensional qudits,
stacks of toric codes are the only nontrivial phases with a unique ground state in
infinite volume. The story is richer for qudits of composite dimension. Namely, it
was shown [7] that every abelian anyon model which admits a gapped boundary [8]
may be represented by a Pauli stabilizer code. It was conjectured that the list of
models constructed therein is exhaustive (up to finite depth quantum circuits and
stabilization). This proposal depends on several assumptions, one of which is that all
local excitations are mobile and hence can be created at endpoints of string operators.
In this chapter we prove this, extending earlier results for prime-dimensional qudits.
The situation is even more complicated for 𝐷 > 2 [9] due to existence of so-called
fractons. These results show that mathematical study of stabilizer codes is an
interesting and nontrivial problem. It is also closely related to classification of
Clifford Quantum Cellular Automata [10, 11].

Let us recall how similar classification problems were handled in algebraic topol-
ogy. Historically, researchers first discovered some basic invariants, such as Euler
characteristic or fundamental group. Later they developed more systematic methods,
including (co)homology and homotopy theory. In our situation, the module of
topological point excitations [12] and (for the case 𝐷 = 2) topological spin and
braiding [6] are the known invariants. It is natural to look for machinery that produces
their generalizations in order to make progress in the classification problem.
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In this chapter, we develop such tools for translationally invariant Pauli stabilizer
codes with qudits of arbitrary (perhap not even uniform) dimension placed on a lattice
described by a finitely generated abelian group Λ. This setup incorporates infinitely
extended as well as finite spatial directions. Of course physics crucially depends on
𝐷 = rk(Λ) (the number of independent infinite directions). We describe stabilizer
codes by symplectic modules over a group ring 𝑅 of Λ and their Lagrangian (or more
generally, isotropic) submodules. This is closely related to the approach developed
in [12]. In contrast to treatment therein, the emphasis is on modules with direct
physical interpretation, rather than their presentations with maps from free modules1.

We propose a definition of modules 𝑄𝑝 of charges of 𝑝-dimensional excitations
(anyons, fractons, strings, etc.) for every non-negative integer 𝑝. The construction
of 𝑄𝑝 uses standard homological invariants of modules. In the case of local
excitations (𝑝 = 0), our definition agrees with the known one. For general 𝑝, the
physical interpretation of mathematically defined 𝑄𝑝 is most justified under the
assumption that all charge modules have zero Krull dimension (which we interpret
as the requirement that the excitations are mobile). In this case, we define for
every element of 𝑄𝑝 an operator with (𝑝 + 1)-dimensional support which creates an
excitation on its boundary. This excitation is uniquely defined modulo excitations
which can be created by 𝑝-dimensional operators. Its mobility (moving around with
𝑝-dimensional operators) is established. We show also that every element of 𝑄𝑝

gives rise to a (𝐷 − 𝑝 − 1)-form symmetry [13]. Furthermore, a braiding pairing
between 𝑄𝑝 and 𝑄𝑞 (with 𝑝 + 𝑞 = 𝐷 − 2) is defined and its basic properties (such as
symmetry) are established.

It is natural to expect that for codes with only mobile excitations, the underlying
abelian groups of 𝑄𝑝 and pairings between them described above are (a part of) data
of some Topological Quantum Field Theory (TQFT), e.g., an abelian higher gauge
theory2. Such correspondence exists in every example known to authors. Modules
𝑄𝑝 have more structure, which does not seem to be captured by a TQFT: they are
acted upon by the group of translations. In some cases this allows us to distinguish
models with the same topological order which are distinct as Symmetry Enriched
Topological (SET) phases with translational symmetry.

Section 2 details the mathematical set-up of translationally invariant stabilizer codes
1The latter approach is very useful in concrete computations. We prefer ours in general

considerations.
2Say, with action 1

4𝜋
∑𝐷−1

𝑝=1
∑

𝑖, 𝑗 𝐾
𝑖 𝑗
𝑝

∫
𝐴𝑖
𝑝d𝐴 𝑗

𝐷−𝑝 , where 𝐴𝑖
𝑝 are 𝑝-form U(1) gauge fields and 𝐾

matrices are non-degenerate and satisfy 𝐾 𝑖 𝑗
𝑝 = (−1) 𝑝+1𝐾 𝑗𝑖

𝐷−𝑝 .
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in terms of commutative algebra. Rudiments of symplectic geometry over group
rings of Λ are laid out here. Section 3 makes the connection between topological
excitations and the functor Ext. Section 4 discusses operations on stabilizer codes,
e.g., coarse-graining and stacking. In particular we prove that charge modules are
invariant to coarse-graining and that they provide obstructions to obtaining a system
from a lower dimensional one by stacking. Section 5 ventures a definition of mobility
for excitations in any dimension. We also include a proof for the conjecture that in any
2D code with unique ground state, all excitations are mobile and can be created with
string operators. In Section 6, we specialize to codes with only mobile excitations.
It is shown that in this case, charges may be described by cohomology classes of a
certain Čech complex. We show how to obtain interesting operators and physical
excitations from Čech cocycles. Moreover, we define braiding in terms of a cup
product in the Čech complex and show that our proposal reduces to what is expected
for 𝐷 = 2. Several examples are worked out in Section 7. Some known mathematical
definitions and facts used in the main text are reviewed in appendices: Gorenstein
rings in Appendix A, local cohomology in Appendix B, and Čech cohomology in
Appendix C.

Let us mention some problems which are left unsolved in this work. Firstly, results
of Section 6 are restricted to so-called Lagrangian stabilizer codes such that charge
modules have Krull dimension zero. We would like to remove some of these
assumptions in the future, for example to treat models with spontaneous symmetry
breaking or fractons. Secondly, we did not prove that braiding is non-degenerate.
We expect that this can be done by relating braiding to Grothendieck’s local duality,
in which we were so far unsuccessful. We expect also that the middle-dimensional
braiding admits a distinguished quadratic refinement for 𝐷 = 4𝑘 +2 (which is already
known to be true for 𝐷 = 2 from previous treatments) and that it is alternating (rather
than merely skew-symmetric) for 𝐷 = 4𝑘 . Thirdly, it is not known in general to what
extent invariants we defined determine a stabilizer code, presumably up to symplectic
transformations (corresponding to Clifford Quantum Cellular Automata), coarse
graining, and stabilization. We hope that in the future a one-to-one correspondence
between equivalence classes of stabilizer codes with only mobile excitations and
some (abelian) TQFTs will be established.

2.2 Stabilizer codes and symplectic modules
In order to obtain homological invariants of a stabilizer code, we need to translate it
to the language of modules. In this section we generalize [12] to codes with arbitrary
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(prime or composite) qudit dimensions. Multiple qudits are placed on each lattice
site. A 𝑑-dimensional qubit is acted upon by shift and clock matrices 𝑋, 𝑍 , which
satisfy

𝑋𝑍 = e
2𝜋i
𝑑 𝑍𝑋, 𝑋𝑑 = 𝑍𝑑 = 1. (2.1)

For brevity, products of 𝑍 and 𝑋 (possibly acting on finitely many different qudits)
and phase factors will be called Pauli operators. Unlike [12], our framework does not
require qudits in a model to have a uniform dimension. Instead, an array of qudits
with various dimensions populates each lattice site. We let 𝑛 be a common multiple
of dimensions of all qudits in a model.

All rings are commutative with unity and Z𝑛 is the ring Z/𝑛Z.

Definition 1. Let 𝑛 be a positive integer and Λ a finitely generated abelian group.
Z𝑛 [Λ] is the group ring of Λ over Z𝑛. When 𝑛 and Λ are clear from the context, we
denote 𝑅 = Z𝑛 [Λ]. For 𝜆 ∈ Λ, we denote the corresponding element of 𝑅 by 𝑥𝜆. If
𝑟 =

∑
𝜆∈Λ 𝑟𝜆𝑥

𝜆 (with all but finitely many 𝑟𝜆 ∈ Z𝑛 equal to zero), we call 𝑟0 the scalar
part of 𝑟. Moreover, we let 𝑟 =

∑
𝜆∈ 𝑟𝜆𝑥

−𝜆. Operation 𝑟 ↦→ 𝑟 is called the antipode.

Example 2. Suppose that Λ = Z𝐷 . Then 𝑅 is the ring of Laurent polynomials in
𝐷 variables 𝑥1, . . . , 𝑥𝐷 , corresponding to 𝐷 elements of a basis of Z𝐷 . A general
element of 𝑅 is a sum of finitely many monomials 𝑥𝜆1

1 · · · 𝑥
𝜆𝐷
𝐷

with Z𝑛 coefficients;
exponents 𝜆𝑖 are in Z. Here we use the more economical notation in which such a
monomial is simply denoted 𝑥𝜆. One may think of 𝜆 as a multi-index.

For a lattice Λ with the same array of qudits on each site, ring 𝑅 = Z𝑛 [Λ] describes
certain basic operations on Pauli operators. An element 𝑥𝜆 translates a Pauli operator
on the lattice by 𝜆 ∈ Λ, while a scalar 𝑚 ∈ Z𝑛 raises a Pauli operator to 𝑚-th
power. As 𝑛 is a common multiple of qudit dimensions, taking the 𝑛-th power of any
Pauli operator gives a scalar. This action endows the collection 𝑃 of all local Pauli
operators modulo overall phases with an 𝑅-module structure. We will sometimes call
elements of 𝑃 operators for conciseness. Addition in 𝑃 corresponds to composition
of operators, which is commutative because we are disregarding phases. Specifically,
if qudits on each site have respective dimensions 𝑛1, . . . , 𝑛𝑞, then 𝑃 is isomorphic to
the module

⊕𝑞

𝑗=1 Z𝑛 𝑗 [Λ]⊕2. It is not a free module unless 𝑛 = 𝑛1 = 𝑛2 = · · · = 𝑛𝑞.
We will see that it nevertheless shares some homological properties of free modules,
which is important in the study of invariants. In most cases, understanding of proofs
is not necessary to read the remainder of the chapter.
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We will also define an antipode-sesquilinear symplectic form 𝜔 : 𝑃 × 𝑃→ 𝑅 on 𝑃,
which captures commutation relations satisfied by Pauli operators. More precisely, if
𝑇,𝑇 ′ are Pauli operators corresponding to elements 𝑝, 𝑝′ ∈ 𝑃, then

𝑇𝑇 ′ = exp
(
2𝜋i
𝑛
𝜔(𝑝, 𝑝′)0

)
𝑇 ′𝑇. (2.2)

Thus it is the scalar part of 𝜔 which has most direct physical interpretation, whereas
𝜔(𝑝, 𝑝′) encodes also commutation rules of all translates of 𝑇,𝑇 ′. Algebraically
𝜔 is much more convenient to work with, essentially because the scalar part map
𝑅 → Z𝑛 is not a homomorphism of 𝑅-modules. Sesquilinearity of 𝜔 implies that
𝜔(𝑥𝜆𝑝, 𝑥𝜆𝑝′) = 𝜔(𝑝, 𝑝′), which is the statement that commutation relations of Pauli
operators are translationally invariant.

Stabilizer code is a collection of eigenequations for a state3 Ψ of the form

𝑇Ψ = Ψ, (2.3)

where 𝑇 are Pauli operators (with phase factors chosen so that 1 is in the spectrum of
𝑇). If such equations are imposed for two operators 𝑇,𝑇 ′, then existence of solutions
requires that 𝑝, 𝑝′ ∈ 𝑃 satisfy 𝜔(𝑝, 𝑝′)0 = 0. In a translationally invariant code, the
same condition has to be satisfied for all translates of 𝑇,𝑇 ′, i.e., 𝜔(𝑝, 𝑝′) = 0. It
follows that the images in 𝑃 of operators defining the code generate a submodule 𝐿
with 𝜔 |𝐿 ≡ 0. Such submodules of (𝑃, 𝜔) are called isotropic. The stabilizer code
determines a unique state if 𝐿 is Lagrangian, i.e., it is isotropic and every 𝑝 ∈ 𝑃 such
that 𝜔(𝑝, 𝑝′) = 0 for every 𝑝′ ∈ 𝐿 is in 𝐿. Throughout the chapter, we refer to codes
with this property as Lagrangian codes.

In quantum computation, one wishes to use spaces of states satisfying (2.3) to store
and protect information. When error occurs, there are violations of eigenequations
called syndromes. On the other hand, one may also think of solutions of (2.3)
as ground states of a certain Hamiltonian. Then syndromes are also regarded as
energetic excitations. Excited states are described by

𝑇Ψ = e
2𝜋i
𝑛
𝜑(𝑝)Ψ, (2.4)

where 𝑝 ∈ 𝐿 corresponds to 𝑇 and 𝜑 is a Z𝑛-linear functional. The excitation is local
(supported in a finite region) if 𝜑(𝑥𝜆𝑝) vanishes for all but finitely many 𝜆 ∈ Λ.

3Here we regard Ψ as a vector in some Hilbert space on which Pauli operators act. This Hilbert
space is not specified a priori. However, one can reinterpret the eigenequations as Ψpre (𝑇) = 1, where
Ψpre is a state on the algebra of local operators. The Hilbert space and Ψ may be then constructed
from Ψpre using the GNS construction.
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The discussion above establishes a correspondence between a translationally invariant
Pauli stabilizer code and an isotropic submodule of (𝑃, 𝜔). This correspondence
will allow us to tap into the power of homological algebra. For the rest of the section,
we develop the right-hand side of the correspondence with additional generality.

Definition 3. For a Z𝑛-module 𝑀 , let 𝑀# = HomZ𝑛
(𝑀,Z𝑛). If 𝑀 is an 𝑅-module,

then 𝑀# is made an 𝑅-module as follows: 𝑟𝜑(𝑚) = 𝜑(𝑟𝑚) for 𝑟 ∈ 𝑅, 𝜑 ∈ 𝑀# and
𝑚 ∈ 𝑀 . Moreover, we can define

𝑀#
Λ = {𝜑 ∈ 𝑀# | ∀𝑚 ∈ 𝑀 𝜑(𝑥𝜆𝑚) ≠ 0 for finitely many 𝜆 ∈ Λ}. (2.5)

Definition 4. Let 𝑀 be an 𝑅-module. We define 𝑀 to be the 𝑅-module which
coincides with 𝑀 as an abelian group, but with antipode 𝑅-action. In other words,
if 𝑚 ∈ 𝑀, we denote the corresponding element of 𝑀 by 𝑚 and put 𝑥𝜆𝑚 = 𝑥−𝜆𝑚.
Furthermore, we let 𝑀∗ = Hom𝑅 (𝑀, 𝑅). 𝑀∗ is identified with the module of
Z𝑛-linear maps 𝑓 : 𝑀 → 𝑅 such that 𝑓 (𝑟𝑚) = 𝑟 𝑓 (𝑚) for 𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀 .

The following Lemma provides a useful description of 𝑀∗.

Lemma 5. Let 𝑀 be an 𝑅-module. The map taking 𝜑 ∈ 𝑀∗ to its scalar part
𝜑0 ∈ 𝑀

#
Λ (i.e., 𝜑0(𝑚) = 𝜑(𝑚)0 for 𝑚 ∈ 𝑀) is an 𝑅-module isomorphism with

inverse given by the formula

𝜑(𝑚) =
∑︁
𝜆∈Λ

𝜑0(𝑥𝜆𝑚)𝑥𝜆. (2.6)

Definition 6. We denote the total ring of fractions of 𝑅 by 𝐾 .

Please see Appendix A.1 for some definitions referred to below.

Lemma 7. 𝑅 is a Gorenstein ring of dimension rk(Λ), the free rank of Λ. Its total
ring of fractions 𝐾 is a QF ring.

Proof. Z𝑛 is a QF ring by Baer’s test. Thus (−)# is an exact functor and 𝑅# is an
injective 𝑅-module, as Hom𝑅 (−, 𝑅#) = (−)#. Now suppose that rk(Λ) = 0. Then 𝑅
is finite, so dim(𝑅) = 0. We have a bilinear form

𝑅 × 𝑅 ∋ (𝑟, 𝑟′) ↦→ (𝑟𝑟′)0 ∈ Z𝑛, (2.7)

which yields an isomorphism 𝑅 � 𝑅#. Hence 𝑅 is a QF ring.
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Next, let Λ be arbitrary. We can split Λ = Λ1⊕Λ2, where Λ1 is finite and Λ2 free. We
have 𝑅 = Z𝑛 [Λ1] [Λ2], which is a Laurent polynomial ring in 𝐷 = rk(Λ) variables
over the QF ring Z𝑛 [Λ1]. By Lemmas 61, 63, 𝑅 is a Gorenstein ring. Standard
dimension theory shows that dim(𝑅) = 𝐷.

Invoking 61, 𝐾 is also Goreinstein. It remains to show that dim(𝐾) = 0. As
Z𝑛 [Λ1] is Artinian, it is the product

∏𝑠
𝑖=1 𝐴𝑖 of some Artin local rings 𝐴𝑖. Thus

𝑅 =
∏𝑠
𝑖=1 𝐴𝑖 [Λ2]. An element of 𝑅 is a zero-divisor if and only if its component in

some 𝐴𝑖 [Λ2] is a zero divisor, so 𝐾 =
∏𝑠
𝑖=1 𝐾𝑖, where 𝐾𝑖 is the total ring of fractions

of 𝐴𝑖 [Λ2]. We will show that each 𝐾𝑖 is Artinian.

Let 𝔪𝑖 be the maximal ideal of 𝐴𝑖. Then 𝔪𝑖 is nilpotent and every element of 𝐴𝑖 \𝔪𝑖

is a unit. Clearly 𝔪𝑖 [Λ2] is a prime ideal in 𝐴𝑖 [Λ2]. We claim that it is the unique
minimal prime. Indeed, if 𝔮 ⊂ 𝐴𝑖 [Λ2] is a prime ideal, then 𝔮 ∩ 𝐴𝑖 is prime in 𝐴𝑖,
hence equal to 𝔪𝑖. Thus 𝔪𝑖 [Λ] ⊂ 𝔮 and the claim is established. Next, McCoy
theorem [14] and nilpotence of 𝔪𝑖 imply that 𝔪𝑖 [Λ2] is the set of zero divisors of
𝐴𝑖 [Λ2], so every non-minimal prime ideal of 𝐴𝑖 [Λ2] is killed in 𝐾𝑖.

Recall that an element of 𝑅 is said to be regular if it is not a zero divisor. The torsion
submodule of an 𝑅-module M is the set of all elements of 𝑀 annihilated by a regular
element of 𝑅. Equivalently, it is the kernel of the natural map 𝑀 → 𝑀 ⊗𝑅 𝐾 . If 𝑀
coincides with its torsion submodule, it is called a torsion module. If the torsion
submodule of 𝑀 is 0, then 𝑀 is said to be torsion-free. Quotient of any module by
its torsion submodule is torsion-free.

Lemma 8. Let 𝑀 be an 𝑅-module.

1. 𝑀 is torsion if and only if 𝑀∗ = 0.

2. If 𝑀 is finitely generated, then 𝑀 is torsion-free if and only if it can be
embedded in some free module 𝑅𝑡 .

Proof. 1. ⇐= : Let 𝑀∗ = 0. Then Hom𝐾 (𝑀 ⊗𝑅 𝐾, 𝐾) = 𝑀∗ ⊗𝑅 𝐾 = 0 (since Hom
commutes with localization), so 𝑀 ⊗𝑅 𝐾 = 0 by Lemmas 7, 64. Thus 𝑀 , and hence
𝑀 , is a torsion module.

2. =⇒ : As 𝑀 is torsion-free, it embeds in 𝑀 ⊗𝑅 𝐾, which in turn embeds in 𝐾 𝑡

by Lemmas 7 and 64. Let 𝑒1, . . . , 𝑒𝑡 be a basis of 𝐾 𝑡 . Since 𝑀 is finitely generated,
there exists a regular element 𝑑 ∈ 𝑅 such that the image of 𝑀 in 𝐾 𝑡 is contained in
the 𝑅-linear span of 𝑑−1𝑒1, . . . , 𝑑

−1𝑒𝑡 , which is 𝑅-free.
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Definition 9. Quasi-symplectic module is a finitely generated 𝑅-module 𝑀 equipped
with a Z𝑛-bilinear pairing 𝜔 : 𝑀 × 𝑀 → 𝑅 satisfying:

1. 𝜔(𝑚′, 𝑟𝑚) = 𝑟𝜔(𝑚′, 𝑚) = 𝜔(𝑟𝑚′, 𝑚) for 𝑟 ∈ 𝑅 and 𝑚, 𝑚′ ∈ 𝑀 ,

2. 𝜔(𝑚, 𝑚)0 = 0 for every 𝑚 ∈ 𝑀 ,

3. the map ♭ : 𝑀 ∋ 𝑚 ↦→ 𝜔(·, 𝑚) ∈ 𝑀∗ is injective.

We write 𝑀∗/𝑀 for the quotient of 𝑀∗ by the image of ♭. If 𝑀∗/𝑀 = 0, i.e.,
♭ is an isomorphism, (𝑀,𝜔) is called a symplectic module. If 𝑁 is another
quasi-symplectic module, an isomorphism 𝑓 : 𝑀 → 𝑁 is said to be symplectic if
𝜔( 𝑓 (𝑚), 𝑓 (𝑚′)) = 𝜔(𝑚, 𝑚′) for every 𝑚, 𝑚′ ∈ 𝑀 .

Proposition 10. Let 𝑀 be a quasi-symplectic module. Then

1. 𝑀 is torsion-free.

2. For every 𝑚, 𝑚′ ∈ 𝑀 we have 𝜔(𝑚, 𝑚′) = −𝜔(𝑚′, 𝑚).

3. 𝑀∗/𝑀 is a torsion module. More generally, if 𝑁 ⊂ 𝑀 is a submodule, the
cokernel of 𝑀 ∋ 𝑚 ↦→ 𝜔(·, 𝑚) |𝑁 ∈ 𝑁∗ is a torsion module.

Proof. 1. If 𝑚 ∈ 𝑀 is a torsion element, then 𝑚 ∈ ker(♭) = 0.

2. For 𝑟 ∈ 𝑅, let 𝑟𝜆 be the coefficient of 𝑥𝜆 ∈ 𝑅. One has 𝑟𝜆 = (𝑟𝑥−𝜆)0. Plugging
into 𝜔(𝑚, 𝑚)0 = 0 an element 𝑚 = 𝑚′ + 𝑚′′ gives

𝜔(𝑚′, 𝑚′′)0 = −𝜔(𝑚′′, 𝑚′)0. (2.8)

Taking 𝑚′′ = 𝑥𝜆𝑚 yields 𝜔(𝑚′, 𝑚)−𝜆 = −𝜔(𝑚, 𝑚′)𝜆, establishing the claim.

3. For this part, we denote the functor Hom𝐾 (−, 𝐾) by (−)∨. We have a short exact
sequence

0→ 𝑀 ⊗𝑅 𝐾
♭′−→ 𝑀∗ ⊗𝑅 𝐾 → (𝑀∗/𝑀) ⊗𝑅 𝐾 → 0, (2.9)

where ♭′ = ♭ ⊗𝑅 id𝐾 . We may identify 𝑀∗ ⊗𝑅 𝐾 with (𝑀 ⊗𝑅 𝐾)∨, since Hom
commutes with localization. As ♭′ is injective, the homomorphism

♭′′ = Hom𝐾 (♭′, 𝐾) : (𝑀 ⊗𝑅 𝐾)∨∨ → (𝑀 ⊗𝑅 𝐾)∨ (2.10)
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is surjective by Lemma 7. We identify (𝑀 ⊗𝑅 𝐾)∨∨ = 𝑀 ⊗𝑅 𝐾, by Lemma 64.
Using 2. we find that for any 𝑚, 𝑚′ ∈ 𝑀 and 𝑘, 𝑘′ ∈ 𝐾:

♭′′(𝑚 ⊗ 𝑘) (𝑚′ ⊗ 𝑘′) = −♭′(𝑚 ⊗ 𝑘) (𝑚′ ⊗ 𝑘′). (2.11)

It follows at once that also ♭′ is surjective. Thus the short exact sequence (2.9) yields
(𝑀∗/𝑀) ⊗𝑅 𝐾 = 0, i.e., 𝑀∗/𝑀 is a torsion module.

Now let 𝑁 ⊂ 𝑀 be a submodule. We have a short exact sequence

0→ 𝑁 → 𝑀 → 𝑀/𝑁 → 0. (2.12)

Applying ∗ gives

0→ (𝑀/𝑁)∗ → 𝑀∗ → 𝑁∗ → Ext1𝑅 (𝑀/𝑁, 𝑅). (2.13)

We have Ext1
𝑅
(𝑀/𝑁, 𝑅) ⊗𝑅𝐾 = Ext1

𝐾
(𝑀/𝑁 ⊗𝑅𝐾, 𝐾) = 0, since Ext commutes with

localization. Hence Ext1
𝑅
(𝑀/𝑁, 𝑅) is a torsion module. As both homomorphisms

𝑀 → 𝑀∗ and 𝑀∗ → 𝑁∗ have torsion cokernel, so does their composition.

Corollary 11. Suppose that Λ is finite and let 𝑀 be a quasi-symplectic 𝑅-module.
Then 𝑀 is symplectic. More generally, if 𝑁 ⊂ 𝑀 is a submodule, then the map
𝑀 ∋ 𝑚 ↦→ 𝜔(·, 𝑚) |𝑁 ∈ 𝑁∗ is surjective.

Proof. The assumption guarantees that 𝑅 is a finite ring, so every element is either a
zero-divisor or invertible. Hence torsion modules vanish.

Definition 12. Let 𝑀 be a quasi-symplectic module and 𝑁 ⊂ 𝑀 a submodule. Set
𝑁𝜔 = {𝑚 ∈ 𝑀 | 𝜔(·, 𝑚) |𝑁 = 0}. 𝑁 is called isotropic (resp. Lagrangian) if 𝑁 ⊂ 𝑁𝜔

(resp. 𝑁 = 𝑁𝜔).

Recall that the saturation sat𝑀 (𝑁) of a submodule 𝑁 ⊂ 𝑀 is defined to be the module
of all 𝑚 ∈ 𝑀 such that 𝑟𝑚 ∈ 𝑁 for some regular element 𝑟 ∈ 𝑅. If 𝑁 = sat𝑀 (𝑁),
then 𝑁 is said to be saturated (in 𝑀). This is equivalent to 𝑀/𝑁 being torsion-free.

Proposition 13. Let 𝑁 be a submodule of a quasi-symplectic module 𝑀 .

1. If 𝐿 ⊂ 𝑁 , then 𝑁𝜔 ⊂ 𝐿𝜔.

2. 𝑁𝜔 = 𝑁𝜔𝜔𝜔.

3. If 𝑁 is isotropic, 𝑁 ⊂ 𝑁𝜔𝜔 ⊂ 𝑁𝜔, with equalities if 𝑁 is Lagrangian.
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4. 𝑁𝜔𝜔 = sat𝑀 (𝑁).

5. 𝑁𝜔𝜔/𝑁 is a torsion module.

Proof. Points 1–3 are established with simple manipulations.

4. Clearly sat𝑀 (𝑁) ⊂ 𝑁𝜔𝜔. For the reverse inclusion, it is sufficient to check that if
𝑁 is saturated then 𝑁𝜔𝜔 ⊂ 𝑁 . Let 𝑚 ∈ 𝑀 \ 𝑁 . We will construct 𝑧 ∈ 𝑁𝜔 such that
𝜔(𝑚, 𝑧) ≠ 0, showing that 𝑚 ∉ 𝑁𝜔𝜔.

Put 𝐿 = 𝑁 + 𝑅𝑚. As 𝑁 is saturated, 𝐿/𝑁 is torsion-free. Hence by Lemma 8 we
have (𝐿/𝑁)∗ ≠ 0. Choose a nonzero element 𝜑 ∈ (𝐿/𝑁)∗. Composing with the
quotient map 𝐿 → 𝐿/𝑁 we obtain 𝜑′ ∈ 𝐿∗ which annihilates 𝑁 and 𝜑′(𝑚) ≠ 0.
By Proposition 10 there exists a regular element 𝑟 ∈ 𝑅 and 𝑧 ∈ 𝑀 such that
𝑟𝜑′ = 𝜔(·, 𝑧) |𝐿 . The element 𝑧 is as desired.

5. Follows immediately from 4 and the definition of sat𝑀 (𝑁).

Corollary 14. Suppose that Λ is finite and let 𝑀 be a quasi-symplectic 𝑅-module.
Then for every submodule 𝑁 ⊂ 𝑀 we have 𝑁𝜔𝜔 = 𝑁 .

Proof. As in Corollary 11.

Proposition 15. Let 𝑀 be a quasi-symplectic module and 𝑁 ⊂ 𝑀 an isotropic
submodule.

1. 𝑁𝜔𝜔/𝑁 is the torsion module of 𝑁𝜔/𝑁 .

2. There exists an induced quasi-symplectic module structure on 𝑁𝜔/𝑁𝜔𝜔.

3. There exists a canonical embedding 𝑀/𝑁𝜔 → 𝑁∗ with torsion cokernel.

4. There exists a canonical embedding 𝑁𝜔 → (𝑀/𝑁)∗ with torsion cokernel. If
𝑀 is symplectic, this embedding is an isomorphism.

Proof. 1 follows from Proposition 13. The bilinear form 𝜔 on 𝑀 restricted to 𝑁𝜔

has kernel 𝑁𝜔𝜔, which establishes 2. By Proposition 10, we have a map 𝑀 → 𝑁∗

with torsion cokernel. Its kernel is clearly 𝑁𝜔, proving 3.

4. Dualizing the short exact sequence 0→ 𝑁 → 𝑀 → 𝑀/𝑁 → 0 gives

0→ (𝑀/𝑁)∗ → 𝑀∗ → 𝑁∗, (2.14)
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so (𝑀/𝑁)∗ may be identified with the set of 𝜑 ∈ 𝑀∗ with trivial restriction to 𝑁 .
Next we note that ♭(𝑁𝜔) = ♭(𝑀) ∩ (𝑀/𝑁)∗, so

(𝑀/𝑁)∗/♭(𝑁𝜔) = (𝑀/𝑁)∗/(♭(𝑀) ∩ (𝑀/𝑁)∗) ⊂ 𝑀∗/𝑀. (2.15)

Definition 16. Let 𝑀 be an 𝑅-module. We say that 𝑀 is quasi-free if there exists a
Z𝑛-module 𝑀0 such that 𝑀 � 𝑀0⊗Z𝑛

𝑅. We will also interpret elements of 𝑀0⊗Z𝑛
𝑅

as polynomials in 𝑥𝜆 with coefficients in 𝑀0, thus writing 𝑀0 ⊗Z𝑛
𝑅 = 𝑀0 [Λ].

Remark 17. Let 𝑀, 𝑀0 be as in Definition 16. Then 𝑀0 is determined by 𝑀 up to
isomorphism. 𝑀 is finitely generated over 𝑅 if and only if 𝑀0 is finitely generated
over Z𝑛. Moreover, an 𝑅-module 𝑀 is free if and only if it is quasi-free and free as a
Z𝑛-module.

Proposition 18. Let 𝑃0 be a finitely generated Z𝑛-module equipped with a bilinear
form 𝜔0 : 𝑃0 × 𝑃0 → Z𝑛 which is

• alternating: 𝜔0(𝑝0, 𝑝0) = 0 for every 𝑝0 ∈ 𝑃0,

• nondegenerate: 𝜔0(·, 𝑝0) = 0 implies 𝑝0 = 0.

Let 𝑃 = 𝑃0 [Λ] and define a Z𝑛-bilinear form 𝜔 : 𝑃 × 𝑃→ 𝑅 by

𝜔(𝑝0𝑥
𝜆, 𝑝′0𝑥

𝜇) = 𝜔0(𝑝0, 𝑝
′
0)𝑥

𝜇−𝜆, for 𝑝0, 𝑝
′
0 ∈ 𝑃0, 𝜆, 𝜇 ∈ Λ. (2.16)

Then (𝑃, 𝜔) is a symplectic module.

Proof. First note that 𝑃0 and 𝑃#
0 have the same number of elements. Thus the map

𝑃0 ∋ 𝑝0 ↦→ 𝜔0(·, 𝑝0) ∈ 𝑃#
0, being injective by definition, is bĳective.

A short calculation shows that conditions 1 and 2 in the Definition 9 are satisfied.
Using the description of 𝑃∗ in Lemma 5, it is easy to see that ♭ is an isomorphism.

Physically, 𝑃0 is the group generated by clock and shift matrices acting on qubits on
a single lattice site, considered modulo phases.

Definition 19. A stabilizer code is a tuple ℭ = (𝑛,Λ, 𝐿, 𝑃), where 𝑃 is symplectic
module over 𝑅 = Z𝑛 [Λ] as constructed in Proposition 18 and 𝐿 ⊂ 𝑃 is an isotropic
submodule. We will also abbreviate ℭ = (Λ, 𝐿, 𝑃) or (𝐿, 𝑃) when there is no danger
of confusion. To ℭ we associate
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• integer dimension 𝐷 = rk(Λ), the free rank of Λ,

• quasi-symplectic module 𝑆(ℭ) = 𝐿𝜔/𝐿𝜔𝜔,

• torsion module 𝑍 (ℭ) = 𝐿𝜔𝜔/𝐿,

• torsion module 𝑄(ℭ) = 𝐿∗/(𝑃/𝐿𝜔).

We say that ℭ is saturated if 𝐿 ⊂ 𝑃 is saturated (𝑍 (ℭ) = 0) and Lagrangian if
𝐿 ⊂ 𝑃 is Lagrangian (𝑍 (ℭ) = 𝑆(ℭ) = 0). An isomorphism of stabilizer codes
(𝐿, 𝑃) → (𝐿′, 𝑃′) is a symplectic isomorphism 𝑃→ 𝑃′ taking 𝐿 to 𝐿′.

Let us interpret physically objects defined above. Let H be a Hilbert space on
which local Pauli operators act irreducibly and letH0 ⊂ H be the space of solutions
of (2.3) in H . We assume that H0 ≠ 0. One can show that operators in 𝐿𝜔 act
irreducibly inH0. Since they commute with operators in 𝐿𝜔𝜔, the latter act inH0 as
scalars. This is a trivial statement for operators in 𝐿, but for operators in 𝐿𝜔𝜔 \ 𝐿 the
conclusion relies on the irreducibility ofH , through Schur’s lemma. Values of the
latter operators may be changed by acting on a state with a suitable automorphism
of the local operator algebra (more precisely, a non-local Pauli operator) which
preserves all operators in 𝐿. This gives a state which is not representable by an
element of H (belongs to a different superselection sector). Hence we have the
following interpretations:

• 𝑍 (ℭ) labels order parameters for spontaneously broken symmetries. If 𝐿𝜔𝜔

is Lagrangian, isomorphism classes of representationsH withH0 ≠ 0 are in
bĳection with 𝑍 (ℭ)# (and hence also with 𝑍 (ℭ) if 𝑍 (ℭ) is finite).

• Elements of 𝑆(ℭ) are Pauli operators acting inH0 (sometimes called logical
operators) modulo operators which act in H0 as scalars. Hence dim(H0) is
the square root of the number of elements4 of 𝑆(ℭ).

By the discussion around (2.4) and Lemma 5, module 𝐿∗ parametrizes local exci-
tations. Therefore 𝑄(ℭ) = 𝐿∗/(𝑃/𝐿𝜔) is the module of local excitations modulo
excitations which can be created by acting with local operators.

4𝑆(ℭ) is at most countably infinite. It is is not finite, dim(H0) in this statement has to be
interpreted as the Hilbert dimension, not the algebraic dimension.
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2.3 Topological charges
In this section we define a series of homological invariants 𝑄𝑖, with 𝑄0 isomorphic
to 𝑄 in Definition 19. Moreover, we show that 𝑄0 is isomorphic to the module of
topological point excitations defined in [12] and derive some general properties of𝑄𝑖.
Firstly, we show that 𝑄𝑖 (ℭ) = 0 for 𝑖 > 𝐷 − 1 (and also for 𝑖 = 𝐷 − 1 for saturated
codes). Secondly, we obtain bounds on Krull dimensions of 𝑄𝑖 (ℭ). We expect 𝑄𝑖

to describe 𝑖-dimensional excitations (or defects). This is shown in Section 6 for
Lagrangian codes such that all 𝑄𝑖 have Krull dimension zero. Computations of 𝑄𝑖

for certain specific codes are presented in Section 7.

We remark that it follows immediately from our results that for saturated codes ℭ
with 𝐷 = 2, the module 𝑄(ℭ) either vanishes or has Krull dimension zero. Together
with the discussion in Section 5 it implies that all point excitations are mobile, i.e.,
they can be transported around by suitable string operators. This result has previously
been shown only for codes with qudits of prime dimension [12]. Methods adapted
therein do not generalize to the case of composite qudit dimension due to the failure
of Hilbert’s syzygy theorem, a crucial ingredient of the proof.

Lemma 20. If 𝑀 is a quasi-free module and 𝑁 is free over Z𝑛, then for 𝑖 > 0

Ext𝑖𝑅 (𝑀, 𝑁) = 0, Tor𝑅𝑖 (𝑀, 𝑁) = 0. (2.17)

Proof. Every Z𝑛-module is a direct sum of cyclic modules, so without loss of
generality 𝑀 = Z𝑘 [Λ] with 𝑘 |𝑛. Let 𝑙 = 𝑛

𝑘
. We have a free resolution

· · · → 𝑅
𝑘−→ 𝑅

𝑙−→ 𝑅
𝑘−→ 𝑅

mod 𝑘−−−−→ 𝑀 → 0. (2.18)

Erasing 𝑀 and applying Hom𝑅 (−, 𝑁) we obtain the sequence

0→ 𝑁
𝑘−→ 𝑁

𝑙−→ 𝑁 → . . . (2.19)

which is exact in every degree 𝑖 > 0. This establishes the claim for Ext. The argument
for Tor is analogous.

Proposition 21. Let ℭ = (𝐿, 𝑃) be a stabilizer code. We have

𝑄(ℭ) � Ext1𝑅 (𝑃/𝐿, 𝑅). (2.20)

Proof. Consider the short exact sequence

0→ 𝐿 → 𝑃→ 𝑃/𝐿 → 0. (2.21)
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We apply ∗, use Lemma 20, and identify (𝑃/𝐿)∗ = 𝐿𝜔, 𝑃∗ = 𝑃 to get

0→ 𝐿𝜔 → 𝑃→ 𝐿∗ → Ext1𝑅 (𝑃/𝐿, 𝑅) → 0, (2.22)

so Ext1
𝑅
(𝑃/𝐿, 𝑅) � 𝐿∗/(𝑃/𝐿𝜔) = 𝑄(ℭ).

Proposition 21 motivates the definition of generalized charge modules.

Definition 22. Generalized charge modules of a stabilizer code ℭ = (𝐿, 𝑃) are
defined as

𝑄𝑖 (ℭ) = Ext𝑖+1𝑅 (𝑃/𝐿, 𝑅), 𝑖 ≥ 0. (2.23)

Proposition 23. For 𝑖 > 0 we have a canonical isomorphism

𝑄𝑖 (ℭ) � Ext𝑖𝑅 (𝐿, 𝑅). (2.24)

Proof. Inspect the long exact sequence obtained by applying (−)∗ to (2.21).

The next proposition shows that our definition of 𝑄(ℭ) agrees with topological point
excitations in [12].

Proposition 24. Let (𝐿, 𝑃) be a stabilizer code and let 𝜎 : 𝐹 → 𝑃 be a homomor-
phism with 𝐹 quasi-free and im(𝜎) = 𝐿. Let 𝑇 be the torsion submodule of the
cokernel of 𝜎∗ : 𝑃∗ → 𝐹∗. Then 𝑇 � 𝑄0(ℭ).

Proof. Choose a quasi-free module 𝐹′ and a homomorphism 𝜄 : 𝐹′→ 𝐹 with image
ker(𝜎). One may extend it to a quasi-free resolution of 𝑃/𝐿:

· · · → 𝐹′
𝜄−→ 𝐹

𝜎−→ 𝑃→ 𝑃/𝐿 → 0. (2.25)

By Lemma 20 this resolution may be used to compute Ext•(𝑃/𝐿, 𝑅). Thus we erase
𝑃/𝐿 and apply (−)∗, yielding the complex

0→ 𝑃∗
𝜎∗−−→ 𝐹∗

𝜄∗−→ 𝐹′∗ → . . . (2.26)

whose homology ker(𝜄∗)/im(𝜎∗) in degree 1 is 𝑄0(ℭ). This exhibits 𝑄0(ℭ) as
a submodule of coker(𝜎∗). It is contained in 𝑇 because 𝑄0(ℭ) is torsion. It only
remains to show that every 𝜑 ∈ 𝐹∗ representing an element of 𝑇 is in ker(𝜄∗). Indeed,
let 𝑟𝜑 = 𝜎∗(𝜓) for some 𝑟 ∈ 𝑅 not a zero-divisor and 𝜓 ∈ 𝑃∗. Then 𝑟 𝜄∗(𝜑) = 0, so
𝜄∗(𝜑) = 0 since 𝐹′∗ is torsion-free.
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Recall that the dimension dim(𝑀) of an 𝑅-module 𝑀 is defined as the Krull
dimension of the quotient ring 𝑅/Ann(𝑀), where Ann(𝑀) is the annihilator of 𝑀 .
A nonzero module has a nonnegative Krull dimensions. By convention, the zero
module has Krull dimension −∞.

Proposition 25. Let ℭ be a stabilizer code.

1. 𝑄𝑖 (ℭ) = 0 for 𝑖 ≥ 𝐷.

2. 𝑄𝐷−1(ℭ) � Ext𝐷
𝑅
(𝑍 (ℭ), 𝑅). In particular 𝑄𝐷−1(ℭ) = 0 if ℭ is saturated.

3. dim(𝑄𝑖 (ℭ)) ≤ 𝐷 − 1 − 𝑖. In particular 𝑄𝑖 (ℭ) is a torsion module.

4. If ℭ is saturated, then dim(𝑄𝑖 (ℭ)) ≤ 𝐷 − 2 − 𝑖.

In particular, saturated 1D codes have no topological charge.

Proof. 1 follows from the definition of a Gorenstein ring. 3 follows from Lemma 66.
Now suppose that ℭ is saturated. Then 𝑃/𝐿 is torsion-free, so by Lemma 8 there
exists a short exact sequence

0→ 𝑃/𝐿 → 𝐹 → 𝑀 → 0 (2.27)

with 𝐹 finite free. Applying (−)∗ gives a long exact sequence from which

Ext𝑖+1𝑅 (𝑃/𝐿, 𝑅) � Ext𝑖+2𝑅 (𝑀, 𝑅), 𝑖 ≥ 0. (2.28)

In particular Ext𝐷
𝑅
(𝑃/𝐿, 𝑅) = 0. Invoking Lemma 66 establishes 4.

2. We have a short exact sequence

0→ 𝐿𝜔𝜔/𝐿 → 𝑃/𝐿 → 𝑃/𝐿𝜔𝜔 → 0. (2.29)

Apply ∗ and use Ext𝐷
𝑅
(𝑃/𝐿𝜔𝜔, 𝑅) = 0, established in the proof of 2.

2.4 Operations on Pauli stabilizer codes
One Pauli stabilizer code may give rise to various other codes. For example, one may
“compatify” some (even all) spatial directions, i.e., replace Λ by a quotient group.
Another possibility is stacking of infinitely many copies of a certain code to create
a code with higher dimension. Finally, one has coarse-graining, which does not
change the code, but forgets about some of its translation symmetry. In this section
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we discuss stacking and coarse-graining (in particular how they affect invariants of a
code), but compactifications are postponed to future work. Moreover, we explain
that the choice of 𝑛 (which has to be a common multiple of qubit dimensions) does
not matter and that the whole theory reduces to the case when 𝑛 is a prime power.

Definition 26. Let ℭ = (𝑛,Λ, 𝐿, 𝑃) be a stabilizer code and let 𝑘 be a positive integer
divisible by 𝑛. Then we may regard 𝐿 and 𝑃 as Z𝑘 [Λ]-modules, yielding a stabilizer
code ℭ′ = (𝑘,Λ, 𝐿, 𝑃). We will not distinguish between ℭ and ℭ′. The proposition
below shows that this does not affect charge codes. Given data (Λ, 𝐿, 𝑃) we choose 𝑛
(needed to define the ring 𝑅) as the smallest positive integer annihilating the abelian
group 𝑃.

Proposition 27. Let ℭ, ℭ′ be as above. Then 𝑆(ℭ′) coincides with 𝑆(ℭ) regarded
as a Z𝑘 [Λ]-module. Similarly, 𝑍 (ℭ) = 𝑍 (ℭ′) and 𝑄𝑖 (ℭ′) = 𝑄𝑖 (ℭ).

Proof. If 𝑀 ⊂ 𝑃 is a submodule, 𝑀𝜔 is the same over Z𝑛 [Λ] and Z𝑘 [Λ]. This
establishes the first two equalities. For the last one, note that Ext•

𝑅
(−, 𝑅) may be

computed using quasi-free resolutions by Lemma 20, a quasi-free Z𝑛 [Λ]-module is
also quasi-free over Z𝑘 [Λ], and for any Z𝑛 [Λ]-module 𝑀 we have

HomZ𝑘 [Λ] (𝑀,Z𝑘 [Λ]) � HomZ𝑛 [Λ] (𝑀,Z𝑛 [Λ]). (2.30)

Definition 28. Direct sum of stabilizer codes is defined by

(𝑛,Λ, 𝐿, 𝑃) ⊕ (𝑚,Λ, 𝐿′, 𝑃′) = (gcd(𝑛, 𝑚),Λ, 𝐿, 𝑃). (2.31)

Clearly 𝑆(ℭ), 𝑍 (ℭ) and 𝑄𝑖 (ℭ) are additive.

Proposition 29. Let ℭ = (𝑛,Λ, 𝐿, 𝑃) be a stabilizer code and let 𝑛 =
𝑟∏
𝑖=1
𝑝
𝑛𝑖
𝑖

be the

prime decomposition of 𝑛. Then

ℭ =

𝑟⊕
𝑖=1
(𝑝𝑛𝑖
𝑖
,Λ, 𝐿𝑖, 𝑃𝑖), (2.32)

where 𝑃𝑖 = {𝑚 ∈ 𝑃 | 𝑝𝑛𝑖𝑖 𝑚 = 0}, 𝐿𝑖 = 𝐿 ∩ 𝑃𝑖.

Proof. Chinese remainder theorem.
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Note that Proposition 29 implies that the study of stabilizer code with general 𝑛
reduces to the case when 𝑛 is a prime power.

Definition 30. Let Γ be a finitely generated abelian group and let 𝜄 : Λ→ Γ be a
homomorphic embedding. For any Z𝑛 [Λ]-module 𝑀 let 𝜄∗𝑀 = 𝑀 ⊗Z𝑛 [Λ] Z𝑛 [Γ].
Then 𝜄∗ is an exact functor because Z𝑛 [Γ] is free over Z𝑛 [Λ]. In particular for
a stabilizer code (Λ, 𝐿, 𝑃) we have 𝜄∗𝐿 ⊂ 𝜄∗𝑃, allowing us to define

𝜄∗(Λ, 𝐿, 𝑃) = (Γ, 𝜄∗𝐿, 𝜄∗𝑃). (2.33)

The operation introduced in Definition 30 may be thought of as stacking of Γ/Λ
layers of the system described by (Λ, 𝐿, 𝑃). Let us note that

𝑆(𝜄∗ℭ) = 𝜄∗𝑆(ℭ), 𝑍 (𝜄∗ℭ) = 𝜄∗𝑍 (ℭ), 𝑄𝑖 (𝜄∗ℭ) = 𝜄∗𝑄𝑖 (ℭ). (2.34)

Due to these simple formulas, the structure of charge modules may be used to show
that a certain system can not be obtained from a lower dimensional system by stacking.
Here we note only a simple criterion based on whether charge modules vanish.

Proposition 31. Suppose that ℭ is a stabilizer code with 𝑄𝑖 (ℭ) ≠ 0. Then ℭ is not
isomorphic to any 𝜄∗(Λ, 𝐿, 𝑃) with rk(Λ) < 𝑖 + 1. If ℭ is saturated, rk(Λ) = 𝑖 + 1 is
also excluded.

Proof. Formula (2.34) and Proposition 25.

Proposition 32. Suppose that ℭ is a stabilizer code which is not saturated. Then ℭ

is not isomorphic to any 𝜄∗(Λ, 𝐿, 𝑃) with rk(Λ) = 0.

Proof. Zero-dimensional systems have 𝑍 (ℭ) = 0 by Corollary 14. The claim follows
from (2.34).

Definition 33. Let 𝜄 : Γ→ Λ be a finite index embedding. If 𝑀 is a Z𝑛 [Λ] module,
we let 𝜄∗𝑀 be 𝑀 treated as Z𝑛 [Γ]-module. We define

𝜄∗(Λ, 𝐿, 𝑃) = (Λ, 𝜄∗𝐿, 𝜄∗𝑃). (2.35)

This operation is called coarse graining.

Proposition 34. Coarse graining satisfies

𝑆(𝜄∗ℭ) = 𝜄∗𝑆(ℭ), 𝑍 (𝜄∗ℭ) = 𝜄∗𝑍 (ℭ), 𝑄𝑖 (𝜄∗ℭ) = 𝜄∗𝑄𝑖 (ℭ). (2.36)
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Proof. Let 𝑀 ⊂ 𝑃 be a submodule and 𝑝 ∈ 𝑃. Then 𝑝 ∈ 𝑀𝜔 if and only if the
scalar part of 𝜔(𝑚, 𝑝) vanishes. The scalar part is unchanged by coarse graining, so
(𝜄∗𝑀)𝜔 = 𝜄∗(𝑀𝜔). This establishes first two equalities in (2.36). For the last one, 𝜄∗

is an exact functor which takes free modules to free modules and commutes with
(−)∗, as one verifies using Lemma 5.

2.5 Mobility theorem
A local excitation is said to be mobile if there exist local Pauli operators which “move”
it in all non-compact directions of the lattice. By “move”, we mean destroying the
excitation and creating its displaced copy, without creating additional excitations.

Recall that 𝑄 = 𝐿∗/(𝑃/𝐿𝜔) describes all local excitations modulo those creatable by
local Pauli operators. According to the previous paragraph, an excitation 𝑒 ∈ 𝐿∗ can
be displaced by an element 𝛾 ∈ Λ if and only if (𝑥𝛾 − 1)𝑒 ∈ 𝑃/𝐿𝜔. In conclusion,
mobility of all local excitations is equivalent to the existence of a subgroup Γ ⊂ Λ of
finite index such that 𝑥𝛾 − 1 annihilates 𝑄 for each 𝛾 ∈ Γ. We now show that this
condition is also equivalent to the vanishing of the Krull dimension of 𝑅-module 𝑄.

Lemma 35. If 𝑛, 𝑟 are positive integers, let 𝐿𝑛 (𝑟) be the largest integer such that
(𝑥 −1)𝐿𝑛 (𝑟) divides 𝑥𝑛𝑟 −1 in Z𝑛 [𝑥]. For example, 𝐿𝑝 (𝑟) = 𝑝𝑟 for any prime number
𝑝. One has lim sup

𝑟→∞
𝐿𝑛 (𝑟) = ∞.

Proof. Factorization 𝑥𝑛 − 1 = −(𝑥 − 1)2
𝑛−1∑
𝑗=0
( 𝑗 + 1)𝑥 𝑗 implies that 𝐿𝑛 (1) ≥ 2. We

will show that 𝐿𝑛 (2𝑟) ≥ 𝐿𝑛 (𝑟)2. Write 𝑥𝑛𝑟 − 1 = (𝑥 − 1)𝑛𝑟 𝑓 (𝑥). Then

𝑥𝑛
2𝑟 − 1 = (𝑥𝑛𝑟 )𝑛𝑟 − 1 = (𝑥𝑛𝑟 − 1)𝐿𝑛 (𝑟) 𝑓 (𝑥𝑛𝑟 ) (2.37)

= (𝑥 − 1)𝐿𝑛 (𝑟)2 𝑓 (𝑥)𝐿𝑛 (𝑟) 𝑓 (𝑥𝑛𝑟 ).

Proposition 36. If 𝔞 ⊂ 𝑅 is an ideal, then dim(𝑅/𝔞) = 0 if and only if there exists a
subgroup Γ ⊂ Λ of finite index such that 𝑥𝛾 − 1 ∈ 𝔞 for every 𝛾 ∈ Γ.

Proof. ⇐= : 𝑅/𝔞 is a finite ring, so dim(𝑅/𝔞) = 0.

=⇒ : choose 𝜆1, . . . , 𝜆𝐷 ∈ Λ which generate a subgroup of finite index and put
𝑥𝑖 = 𝑥

𝜆𝑖 . If 𝔪 ⊂ 𝑅 is a maximal ideal, then 𝑅/𝔪 is a finite field, so there exists a
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positive integer such that 𝑥𝑟
𝑖
− 1 ∈ 𝔪. As dim(𝑅/𝔞) = 0, there exist finitely many

maximal ideals 𝔪 ⊂ 𝑅 containing 𝔞. Thus it is possible to choose 𝑟 such that

(𝑥𝑟1 − 1, . . . , 𝑥𝑟𝐷 − 1) ⊂
⋂
𝔪⊃𝔞

𝔪 =
√
𝔞. (2.38)

Since 𝑅 is Noetherian,
√
𝔞
𝑁 ⊂ 𝔞 for large enough 𝑁 . Lemma 35 implies that there

exist 𝑁, 𝐿 such that

(𝑥𝐿1 − 1, . . . , 𝑥𝐿𝐷 − 1) ⊂ ((𝑥𝑟1 − 1)𝑁 , . . . , (𝑥𝑟𝐷 − 1)𝑁 ) ⊂ 𝔞. (2.39)

We may take Γ to be the span of 𝐿𝜆1, . . . , 𝐿𝜆𝐷 .

Corollary 37. All local excitations of a stabilizer code ℭ are mobile if and only if
dim(𝑄(ℭ)) = 0. In particular this is true if 𝐷 = 1 or ℭ is saturated and 𝐷 = 2.

Proof. The second part of the statement follows from dimension bounds in Proposition
25.

Though logically equivalent, the condition dim(𝑅/𝔞) = 0 avoids mentioning a finite
index subgroup of Λ. It is also the easier condition to establish in a proof, due to the
large number of results in dimension theory. An example is given by Corollary 37
above.

A direct characterization of mobility for 𝑖-dimensional topological charges in𝑄𝑖, 𝑖 > 0
may be possible, given an interpretation of charges in terms of extended excitations.
We leave this to future efforts. Instead we make the conjectural definition that
mobility for 𝑄𝑖 is still equivalent to dim(𝑄𝑖) = 0. We sometimes call a code ℭ

mobile if dim(𝑄𝑖 (ℭ)) = 0 for all 𝑖. In the next section we will see that under this
assumption elements of 𝑄𝑖 (ℭ) may indeed be interpreted as excitations, which are
mobile in a suitable sense.

2.6 Codes with only mobile excitations
This section is devoted to analysis of topological charges for mobile codes. Mobility
allows us to describe topological charges in terms of Čech cocycles. Cup product
for Čech cohomology fits a physical process commonly known as braiding. It
furnishes an algebraic description of exchange relations for mobile excitations. A
direct physical interpretation of Čech cocycles is also given.
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Mathematical preliminaries
If 𝐴 is a ring and 𝑀 an 𝐴-module, let E𝐴 (𝑀) be the injective envelope of 𝑀. We
refer to Appendix A.2 for other definitions and facts used below.

Proposition 38. Let 𝔞 ⊂ 𝑅 be an ideal such that dim(𝑅/𝔞) = 0. Then

Γ𝔞 (𝑅#) �
⊕
𝔪

E𝑅 (𝑅/𝔪), (2.40)

the sum being taken over maximal ideals of 𝑅 containing 𝔞.

Proof. Lemma 69 allows us to reduce to the case of 𝔞 being itself a maximal ideal 𝔪.
We put 𝑘 = 𝑅/𝔪. 𝑅-module 𝑅# represents the exact cofunctor (−)# on the category
of 𝑅-modules, so it is injective. By [15, Proposition 3.88], Γ𝔪 (𝑅#) is also injective.
It is easy to see that 𝑘# � {𝜑 ∈ 𝑅# |𝔪𝜑 = 0} is an essential submodule of Γ𝔪 (𝑅#),
so Γ𝔪 (𝑅#) = E𝑅 (𝑘#). The proof will be completed by showing that 𝑘# � 𝑘 as an
𝑅-module. As 𝑘# is annihilated by 𝔪, it is a 𝑘-vector space. We have to argue that its
dimension over 𝑘 is 1. Let 𝑝 be the characteristic of 𝑘 . Every element of 𝑘# factors
through Z𝑝, so

dimZ𝑝
(𝑘#) = dimZ𝑝

(HomZ𝑝
(𝑘,Z𝑝)) = dimZ𝑝

(𝑘), (2.41)

and hence dim𝑘 (𝑘#) = dimZ𝑝 (𝑘#)
dimZ𝑝 (𝑘)

= 1.

Lemma 39. Every maximal ideal of 𝑅 has height 𝐷.

Proof. 𝑅 is a product of rings Z𝑝𝑡 [Λ] where 𝑝 is prime and 𝑡 ∈ N, so we may assume
that 𝑛 = 𝑝𝑡 with no loss of generality. Then 𝑅 is an extension of 𝑆 = Z𝑝 [Λ] by a
nilpotent ideal, so its poset of prime ideals is isomorphic to that of 𝑆. The result for
𝑆 is standard, see e.g., [16, Corollary 13.4].

Proposition 40. Let 𝔞 ⊂ 𝑅 be an ideal such that dim(𝑅/𝔞) = 0 and let 𝑀 be a
quasi-free module. Then H 𝑗

𝔞 (𝑀) = 0 for 𝑗 ≠ 𝐷 and

H𝐷
𝔞 (𝑀) �

(⊕
𝔪

E𝑅 (𝑅/𝔪)
)
⊗ 𝑀, (2.42)

the sum being taken over maximal ideals of 𝑅 containing 𝔞.

Proof. Lemma 69 allows us to reduce to the case of 𝔞 being a maximal ideal 𝔪.
First consider the case 𝑀 = 𝑅. By maximality of 𝔪 and H 𝑗

𝔪 (𝑅) being 𝔪-torsion,
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every element of 𝑅 \𝔪 acts as an invertible endomorphism of H 𝑗
𝔪 (𝑅). Thus we have

𝑅-module isomorphisms H 𝑗
𝔪 (𝑅) � H 𝑗

𝔪 (𝑅)𝔪 � H 𝑗

𝔪′ (𝑅𝔪), where 𝔪′ is the extension
of 𝔪 in 𝑅𝔪. The second isomorphism follows from Lemma 72. By Lemma 39, 𝑅𝔪
is a Gorenstein ring of dimension 𝐷, so Lemma 70 gives H 𝑗

𝔪 (𝑅) = 0 for 𝑗 ≠ 𝐷 and
H𝐷
𝔪 (𝑅) � E𝑅𝔪 (𝑅𝔪/𝔪′) � E𝑅 (𝑅/𝔪).

Local cohomology can be computed using the Čech complex, so the result for
𝑀 = 𝑅 shows that Č•(t, 𝑅) is a flat resolution of E := E𝑅 (𝑅/𝔪), up to a degree
shift. Since Č•(t, 𝑀) � Č•(t, 𝑅) ⊗𝑅 𝑀 , this implies that for any module 𝑀 we have
Ȟ𝑝 (t, 𝑀) � Tor𝑅

𝐷−𝑝 (𝐸, 𝑀). Now specialize to the case of 𝑀 being quasi-free and
invoke Lemma 20.

Let Γ ⊂ Λ be a subgroup such that Λ/Γ is finite and let 𝛾1, . . . , 𝛾𝐷 be a basis of Γ.
We put

𝑥𝑖 = 𝑥
𝛾𝑖 , 𝑡𝑖 = 1 − 𝑥𝛾𝑖 , 𝔞 = (𝑡1, . . . , 𝑡𝐷), (2.43)

and consider the Čech complex Č•(t, 𝑅) (see Appendix A.3). Lemma 71 and
Propositions 38, 40 show that its only nonzero cohomology module Ȟ𝐷 (t, 𝑅) is
isomorphic to Γ𝔞 (𝑅#). Our next goal is to construct an explicit isomorphism.

Definition 41. Let Z𝑛 [[Λ]] be the set of formal sums
∑
𝜆∈Λ 𝑟𝜆𝑥

𝜆. This is an abelian
group, but in general not a ring: the product(∑︁

𝜆∈Λ
𝑟𝜆𝑥

𝜆

) ©­«
∑︁
𝜇∈Λ

𝑟′𝜇𝑥
𝜇ª®¬ =

∑︁
𝜆∈Λ

©­«
∑︁
𝜇∈Λ

𝑟𝜆−𝜇𝑟
′
𝜇

ª®¬ 𝑥𝜆 (2.44)

is well-defined only if for every 𝜆 ∈ Λ there are only finitely many 𝜇 ∈ Λ such that
both 𝑟𝜆−𝜇 and 𝑟′𝜇 is nonzero. This condition is always satisfied if one of the two
factors is in 𝑅, so Z𝑛 [[Λ]] is an 𝑅-module. Using the pairing

Z𝑛 [Λ] × Z𝑛 [[Λ]] ∋ (𝑟, 𝑟′) ↦→ (𝑟𝑟′)0 ∈ Z𝑛, (2.45)

we identify Z𝑛 [[Λ]] with 𝑅#.

Recall that Č𝐷 (t, 𝑅) = 𝑅𝑡1...𝑡𝐷 and that Ȟ𝐷 (t, 𝑅) is the quotient of 𝑅𝑡1...𝑡𝐷 by the sum
of images of 𝑅𝑡1...𝑡 𝑗−1𝑡 𝑗+1...𝑡𝐷 (module of coboundaries).

Definition 42. We consider formal Laurent expansions of 1
𝑡𝑖

(regarded as elements
of 𝑅#) into positive and negative powers of 𝑥𝑖:(

1
𝑡𝑖

)
+
=

∞∑︁
𝑗=0
𝑥 𝑗 ,

(
1
𝑡𝑖

)
−
= −

∞∑︁
𝑗=1
𝑥− 𝑗 . (2.46)
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The residue homomorphism Res : 𝑅𝑡1...𝑡𝐷 → 𝑅# is defined by

𝑟

𝑡
𝑘1
1 · · · 𝑡

𝑘𝐷
𝐷

↦→ 𝑟

𝐷∏
𝑖=1

[(
1
𝑡𝑖

) 𝑘𝑖
+
−

(
1
𝑡𝑖

) 𝑘𝑖
−

]
. (2.47)

This is well-defined because 𝑡𝑖
(

1
𝑡𝑖

)
±
= 1.

Proposition 43. ker(Res) is the module of coboundaries and the image of Res is
Γ𝔞 (𝑅#). Therefore Res induces an isomorphism Ȟ𝐷 (t, 𝑅) → Γ𝔞 (𝑅#).

Proof. A Čech coboundary is a sum of elements as on the left-hand side of (2.47)
with at least one 𝑘𝑖 equal to zero, each of which is annihilated by Res. Moreover,
the right-hand side of (2.47) is annihilated by 𝑡𝑘𝑖

𝑖
, so it belongs to Γ𝔞 (𝑅#). We have

obtained an induced homomorphism Ȟ𝐷 (t, 𝑅) → Γ𝔞 (𝑅#). From now on the symbol
Res refers to this induced homomorphism. Let 𝑧 be the cohomology class of 1

𝑡1...𝑡𝐷
.

Clearly 𝔞 ⊂ Ann(𝑧). We evaluate

Res(𝑧) =
∑︁
𝛾∈Γ

𝑥𝛾 . (2.48)

One checks that the annihilator of the right-hand side is 𝔞, so Ann(𝑧) ⊂ 𝔞. We
deduce that the submodule 𝑀 of Ȟ𝐷 (t, 𝑅) generated by 𝑧 intersects ker(Res) trivially.
Clearly 𝑀 is an essential submodule of Ȟ𝐷 (t, 𝑅), so Res is injective. Propositions
38, 40 imply that it is an isomorphism.

Physical interpretations of charges
For the rest of this section we assume that ℭ = (Λ, 𝐿, 𝑃) is a Lagrangian stabilizer
code such that dim(𝑄𝑖 (ℭ)) = 0 for every 𝑖. Proposition 36 allows us to choose a
subgroup Γ ⊂ Λ of finite index such that 𝑥𝛾 − 1 annihilates all 𝑄𝑖 (ℭ). With this Γ,
we consider the Čech complex as discussed around (2.43).

Charges as Čech cocyles

Proposition 44. We have 𝑄𝑖 (ℭ) � Ȟ𝑖+1(t, 𝑃/𝐿) for 0 ≤ 𝑖 ≤ 𝐷 − 2.

Proof. We can continue the quotient map 𝑃 → 𝑃/𝐿 to a quasi-free resolution
𝑃• → 𝑃/𝐿 with 𝑃0 = 𝑃. Applying (−)∗ yields a complex

0→ 𝐿 → 𝑃→ 𝑃∗1 → 𝑃∗2 → . . . , (2.49)
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where we used isomorphisms (𝑃/𝐿)∗ � 𝐿 and 𝑃∗ � 𝑃. From this we have also a
cochain complex 𝐾• with 𝐾0 = 𝑃/𝐿, 𝐾 𝑖 = 𝑃∗

𝑖
for 𝑖 > 0:

𝐾• : 0→ 𝑃/𝐿 → 𝑃∗1 → 𝑃∗2 → . . . (2.50)

Its cohomology is trivial in degree zero and Ext•
𝑅
(𝑃/𝐿, 𝑅) elsewhere. Next, we form

a double complex Č•(t, 𝐾•), with the following properties:

• Č0(t, 𝐾•) � 𝐾• has cohomology described above. If 𝑝 > 0, the complex
Č𝑝 (t, 𝐾•) is exact because Č𝑝 (t,−) = Č𝑝 (t, 𝑅) ⊗𝑅 − is an exact functor
annihilating the cohomology of 𝐾•.

• Č•(t, 𝐾0) has cohomology Ȟ•(t, 𝑃/𝐿). If 𝑞 > 0, the complex Č•(t, 𝐾𝑞) has
nonzero cohomology only in degree 𝐷, by Proposition 40.

The isomorphism is established either by a diagram chase or using the double
complex spectral sequence. For a reader not familiar with these techniques, we
sketch the more elementary approach below.

We let 𝑑 be the differential induced from 𝐾• and 𝛿 the Čech differential. Let
𝑖 ∈ {1, . . . 𝐷−1} and consider 𝑞 ∈ Ext𝑖

𝑅
(𝑃/𝐿, 𝑅) represented by an element 𝑞 (0) ∈ 𝐾 𝑖

annihilated by 𝑑. Then also 𝛿𝑞 (0) is annihilated by 𝑑, so by exactness of Č1(t, 𝐾•)
there exists 𝑞 (1) ∈ Č1(t, 𝐾𝑖−1) such that 𝑑𝑞 (1) = 𝛿𝑞 (0) . Hence 𝛿𝑞 (1) is annihilated by
𝑑. If 𝑖 = 1, this implies that 𝛿𝑞 (1) = 0 because 𝑑 : Č2(t, 𝐾0) → Č2(t, 𝐾1) is injective.
If 𝑖 > 1, we conclude that there exists 𝑞 (2) ∈ Č2(t, 𝐾𝑖−2) such that 𝑑𝑞 (2) = 𝛿𝑞 (1) .
Continuing like this inductively we obtain a sequence of elements 𝑞 ( 𝑗) ∈ Č 𝑗 (t, 𝐾𝑖− 𝑗 ),
0 ≤ 𝑗 ≤ 𝑖, such that

𝑑𝑞 (0) = 0, 𝑑𝑞 ( 𝑗) = 𝛿𝑞 ( 𝑗−1) for 𝑗 ≠ 0, 𝛿𝑞 (𝑖) = 0. (2.51)

The Čech cohomology class of 𝑞 (𝑖) is declared to be the image of 𝑞 in Ȟ𝑖 (t, 𝑃/𝐿).
With similar reasoning one checks that this cohomology class does not depend on
arbitrary choices in the construction of 𝑞 (𝑖) . Thus a well-defined homomorphism
ℎ : Ext𝑖

𝑅
(𝑃/𝐿, 𝑅) → Ȟ𝑖 (t, 𝑃/𝐿) is obtained. Performing the same steps reversed

yields a homomorphism in the opposite direction, easily seen to be an inverse of
ℎ.

Remark 45. If we assume that 𝑥𝛾 − 1 annihilates 𝑄𝑖 (ℭ) for every 𝑖 ≤ 𝑑 for some
0 ≤ 𝑑 ≤ 𝐷 − 2, we may still obtain 𝑄𝑖 (ℭ) � Ȟ𝑖+1(t, 𝑃/𝐿) for 0 ≤ 𝑖 ≤ 𝑑. The
proof of Proposition 44 goes through with essentially no modifications. Moreover,
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even with no restrictions on dim(𝑄𝑖 (ℭ)) we may construct a homomorphism
Ȟ𝑖 (t, 𝑃/𝐿) → Ext𝑖

𝑅
(𝑃/𝐿, 𝑅) for 1 ≤ 𝑖 ≤ 𝐷 − 1. If dim(Ext𝑖

𝑅
(𝑃/𝐿, 𝑅)) ≠ 0, this

homomorphism can not be surjective.

Charges as topological excitations

Next we provide a concrete interpretation of our charge modules𝑄𝑖 (ℭ) (reinterpreted
as Čech cocycles by Proposition 44) in terms of operators and physical excitations.

Definition 46. We define 𝑃 = 𝑃 ⊗𝑅 𝑅#. Recall that 𝑃 � 𝑃0 [Λ] for some finite
abelian group Λ, so 𝑃 � 𝑃0 [[Λ]]. We will sometimes multiply elements of 𝑅# and
𝑃. Such product is well-defined under a condition analogous to the one discussed in
Definition 41. Symplectic form on 𝑃 extends to a pairing between 𝑃 and 𝑃 valued in
𝑅#. Under suitable conditions one may also pair two elements of 𝑃.

Elements of 𝑃 describe products of Pauli operators (up to phase) with possibly infinite
spatial support. Such expressions do not necessarily define bona fide operators
on a Hilbert space, but they make sense as automorphisms of the algebra of local
operators. Hence they may be applied to states, in general yielding a state in a different
superselection sector. The extended symplectic forms captures their “commutation
rules” with local Pauli operators.

Definition 47. Let 𝑠 = (𝑠1, . . . , 𝑠𝐷) be a tuple of elements of the multiplicative
group {±}. We think of 𝑠 as a label of an orthant in Γ � Z𝐷 . For every 𝑠 we
define an embedding of 𝑃𝑡1...𝑡𝐷 (and hence also of every 𝑃𝑡𝑖0 ...𝑖𝑝 for a sequence
1 ≤ 𝑖0 < · · · < 𝑖𝑝 ≤ 𝐷, since 𝑃 is torsion-free) in 𝑃 as follows:

𝑝

𝑡
𝑘1
1 · · · 𝑡

𝑘𝐷
𝐷

↦→ 𝑝

𝐷∏
𝑖=1

(
1
𝑡𝑖

) 𝑘𝑖
𝑠𝑖

. (2.52)

If 𝜋 is an element of 𝑃𝑡1...𝑡𝐷 , we denote the element of 𝑃 obtained this way by 𝜋𝑠, to
emphasize dependence on 𝑠.

Consider a cocycle 𝜑 ∈ Č𝑝 (t, 𝑃/𝐿). We lift 𝜑 to a cochain 𝜑 ∈ Č𝑝 (t, 𝑃). Then
𝜎 = 𝛿𝜑 ∈ Č𝑝+1(t, 𝐿) is a cocycle. Note that the map taking the cohomology class of
𝜑 to the cohomology class of 𝜎 is the connecting homomorphism in the long exact
sequence of Čech cohomology. Consider images in 𝑃 of components of 𝜑 and 𝜎.
Two observations are in order. Firstly, 𝜑𝑠

𝑖1...𝑖𝑝
describes an infinite Pauli operator

whose support is extended only in directions 𝑖1 . . . 𝑖𝑝, and moreover is contained in a
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shifted orthant specified by 𝑠. Secondly, each 𝜎𝑠
𝑖0...𝑖𝑝

is 𝜔-orthogonal to 𝐿. Hence
we have an identity

𝑝∑︁
𝑗=0
(−1) 𝑗𝜔

(
·, 𝜑𝑠𝑖0...𝑖 𝑗−1𝑖 𝑗+1...𝑖𝑝

)���
𝐿
= 0 in 𝐿#

. (2.53)

Let us rewrite this as

𝜔

(
·, 𝜑𝑠𝑖1...𝑖𝑝

)���
𝐿
=

𝑝∑︁
𝑗=1
(−1) 𝑗𝜔

(
·, 𝜑𝑠𝑖0...𝑖 𝑗−1𝑖 𝑗+1...𝑖𝑝

)���
𝐿
. (2.54)

By comparing supports of the two sides of this equation we can see that action of
𝜑𝑠
𝑖1...𝑖𝑝

creates an excitation (violation of the stabilizer condition) which is supported
on a thickened boundary of the support of 𝜑𝑠

𝑖1...𝑖𝑝
. Hence 𝜑𝑠

𝑖1...𝑖𝑝
represents a 𝑝-

dimensional extended operator which creates an excitation on the (𝑝−1)-dimensional
boundary of its support. This excitation does not depend on the lift of the cocycle 𝜑
to 𝜑.

Next, let us suppose that 𝜑 represents the trivial cohomology class. That is, we have
𝜑 = 𝛿𝜓 for some 𝜓 ∈ Č𝑝−1(t, 𝑃/𝐿). We lift 𝜓 to a cochain 𝜓 valued in 𝑃 and choose
𝜑 = 𝛿𝜓. Then

𝜑𝑠𝑖1...𝑖𝑝 =

𝑝∑︁
𝑗=1
(−1) 𝑗−1𝜓𝑠𝑖1...𝑖 𝑗−1𝑖 𝑗+1...𝑖𝑝

, (2.55)

which shows that the (𝑝 − 1)-dimensional excitation created by 𝜑𝑠
𝑖1...𝑖𝑝

can be created
by operators 𝜓𝑠

𝑖1...𝑖 𝑗−1𝑖 𝑗+1...𝑖𝑝
, each of which is extended in only 𝑝 − 1 (rather than 𝑝)

directions.

Note that even though an excitation corresponding to a 𝑝-cocycle 𝜑 is created by
an operator with 𝑝-dimensional support, it can be shifted by an element of Γ by the
action of a (𝑝 − 1)-dimensional operator. Indeed, 𝑥𝛾 − 1 annihilates cohomology, so
(𝑥𝛾 − 1)𝜑 is a coboundary. The result follows from the discussion of the previous
paragraph.

Summarizing, an element of 𝑄𝑝 (ℭ) � Ȟ𝑝+1(t, 𝑃/𝐿) gives rise to an excitation
extended in 𝑝 dimensions, determined modulo excitations created by 𝑝-dimensional
operators.

Charges as higher form symmetries

Now let 𝜑 ∈ Č𝑝 (t, 𝑃/𝐿) be a cocycle. We consider the expression

𝜑Res
𝑖1...𝑖𝑝

=
∑︁

𝑠𝑖1 ,...,𝑠𝑖𝑝∈{±}
𝑠𝑖1 · · · 𝑠𝑖𝑝 𝜑𝑠𝑖1...𝑖𝑝 . (2.56)



30

This makes sense because 𝜑𝑠
𝑖1...𝑖𝑝

does not depend on 𝑠 𝑗 for 𝑗 ∉ {𝑖1, . . . , 𝑖𝑝}. 𝜑Res
𝑖1...𝑖𝑝

is
a 𝑝-dimensional extended operator. By the earlier discussion, the excitation it creates
is supported in the union of a finite collection of subsets infinitely extended in at most
𝑝 − 1 directions. On the other hand, there exists some 𝑘 such that each 𝑡𝑘

𝑖 𝑗
annihilates

it. One checks that a nonzero element with such property must be infinitely extended
in all 𝑝 directions. We obtain the conclusion that 𝜔(·, 𝜑Res

𝑖1...𝑖𝑝
)
���
𝐿
= 0, i.e., 𝜑Res

𝑖1...𝑖𝑝

preserves the state defined by the stabilizer condition.

Since the cochain 𝜑 allows to construct a symmetry 𝜑Res
𝑖1...𝑖𝑝

of the ground state for
every coordinate 𝑝-plane (labeled by 𝑖1 < · · · < 𝑖𝑝), it defines a (𝐷 − 𝑝)-form
symmetry of ℭ. Let us now investigate to what extent this (𝐷 − 𝑝)-form symmetry
is uniquely determined by the cohomology class of 𝜑.

Firstly, let us fix the cocycle 𝜑 and ask for the dependence on the choice of the lift
𝜑. For two different lifts 𝜑, 𝜑′, the difference 𝜑′Res

𝑖1...𝑖𝑝
− 𝜑Res

𝑖1...𝑖𝑝
is an infinite sum of

elements of 𝐿, i.e., it represents a product of local operators separately preserving
the ground state. A 𝑝-dimensional (𝑝 ≥ 1) operator of this form should be regarded
as a trivial (𝐷 − 𝑝)-form symmetry.

To understand the dependence on the cocycle 𝜑 representing a given cohomology
class, let us suppose that 𝜑 = 𝛿𝜓. We lift 𝜓 and choose 𝜑 = 𝛿𝜓. With this choice,
expression (2.56) vanishes on the nose.

Summarizing, we have argued that the definition (2.56) defines a (𝐷 − 𝑝)-form
symmetry of ℭ, which depends only on the cohomology class of 𝜑. This means
that we have an alternative interpretation of 𝑄𝑝 (ℭ) as a group of (𝐷 − 𝑝 − 1)-form
symmetries of ℭ (possibly nontrivially acted upon by Λ).

Braiding

Definition 48. Let 𝜑 ∈ Ȟ𝑝 (t, 𝑃/𝐿), 𝜓 ∈ Ȟ𝑞 (t, 𝑃/𝐿). The cup product defined in
the Appendix A.3 yields an element

𝜑 ⌣ 𝛿𝜓 ∈ Ȟ𝑝+𝑞 (t, 𝑃/𝐿 ⊗𝑅 𝐿), (2.57)

where 𝛿 is the connecting homomorphism Ȟ𝑞 (t, 𝑃/𝐿) → Ȟ𝑞+1(t, 𝐿) in a long exact
sequence. Using the map (with a slight abuse of notation) in Čech cohomology
induced by the symplectic pairing 𝜔 : 𝑃/𝐿 ⊗𝑅 𝐿 → 𝑅 we obtain a class

𝜔(𝜑 ⌣ 𝛿𝜓) ∈ Ȟ𝑝+𝑞 (t, 𝑅). (2.58)
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This class is trivial if 𝑝 + 𝑞 ≠ 𝐷, by Proposition 40. Let us suppose that 𝑝 + 𝑞 = 𝐷.
Then we may define

Ω(𝜑, 𝜓) = Res (𝜔(𝜑 ⌣ 𝛿𝜓)) ∈ Γ𝔞 (𝑅#). (2.59)

Proposition 49. Let 𝜑 ∈ Ȟ𝑝 (t, 𝑃/𝐿), 𝜓 ∈ Ȟ𝐷−𝑝 (t, 𝑃/𝐿). We have:

1. Graded skew-symmetry: Ω(𝜑, 𝜓) = −(−1)𝑝(𝐷−𝑝)Ω(𝜓, 𝜑).

2. Translation covariance: Ω(𝜑, 𝑟𝜓) = Ω(𝑟𝜑, 𝜓) = 𝑟Ω(𝜑, 𝜓).

3. Commutation rule of operators introduced in Subsection 2.6:

Ω(𝜑, 𝜓) = Res(𝜔(𝜑1...𝑝, 𝜓𝑝+1...𝐷)) = 𝜔(𝜑Res
1...𝑝, 𝜓

Res
𝑝+1...𝐷). (2.60)

Proof. 1 follows from the graded commutativity and graded Leibniz rule of the cup
product and antipode skew-symmetry of 𝜔. 2 is obvious.

3. From the relevant definitions we have

Ω(𝜑, 𝜓) = Res
𝐷−𝑝∑︁
𝑗=0
(−1) 𝑗𝜔(𝜑1...𝑝, 𝜓𝑝...𝑝+ 𝑗−1,𝑝+ 𝑗+1...𝐷). (2.61)

Let 0 < 𝑗 ≤ 𝐷 − 𝑝. The 𝑗-th term on the right-hand side of (2.61) is the residue
of an element of 𝑅𝑡1...𝑡𝑝− 𝑗−1𝑡𝑝− 𝑗+1...𝐷 , so it vanishes. The 0-th term is equal to the
right-hand side of (2.60).

We propose to interpret the scalar part of Ω as a higher dimensional version of
braiding. Thus Ω(𝜑, 𝜓) encodes braiding of excitations described by 𝜑, 𝜓 as well
as their translates. We will see later that for 𝐷 = 2 our proposal reduces to known
expressions, providing evidence for our interpretation.

Recall that we have a decomposition Ȟ𝑝+1(t, 𝑃/𝐿) =
⊕

𝔪 Γ𝔪Ȟ𝑝+1(t, 𝑃/𝐿), where
𝔪 are maximal ideals of 𝑅 containing 𝔞. Its summands are charges characterized
by specific behavior under translations, so we interpret 𝔪 as momentum “quantum
numbers”. Note that for every 𝔪, the ideal 𝔪 obtained by acting with the antipode
also contains 𝔞, as 𝔞 = 𝔞. We think of 𝔪 as momentum opposite to 𝔪. The following
proposition shows that two charges with fixed momentum may braid nontrivially
only if their momenta are opposite.

Proposition 50. Suppose that 𝜑 ∈ Γ𝔪Ȟ𝑝+1(t, 𝑃/𝐿), 𝜓 ∈ Γ𝔪′Ȟ𝐷−𝑝−1(t, 𝑃/𝐿). If
𝔪 ≠ 𝔪′, then Ω(𝜑, 𝜓) = 0.
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Proof. For some 𝑗 , 𝜑 is annihilated by 𝔪 𝑗 and 𝜓 by 𝔪′ 𝑗 . Therefore Ω(𝜑, 𝜓) is
annihilated by 𝔪

𝑗 +𝔪′ 𝑗 . If 𝔪 ≠ 𝔪′, this sum is 𝑅.

Decomposition of Ȟ𝑝+1(t, 𝑃/𝐿) into 𝔪-torsion parts is not invariant to coarse-
graining. In fact, after sufficient coarse-graining we can assure that 𝔞 contains all
𝑥𝜆 − 1. Then, for 𝑛 being a prime power, 𝔞 is contained in only one maximal ideal.
Decomposition into 𝔪-torsion parts (and more generally, the module structure on
𝑄𝑖 (ℭ)) is an invariant protected by the translation symmetry and hence in principle
can be used to distinguish SET phases with the same topological order.

Braiding and spin in 2D
We will now specialize to 2D Lagrangian codes. The assumption dim(𝑄) = 0 is
automatically satisfied, as stated in Corollary 37. Hence we have well-defined braiding.
Expression (2.60) agrees with the standard braiding formula as a commutator of two
orthogonal string operators. Let us explain this in more detail.

Consider a Lagrangian ℭ = (Z2, 𝑃, 𝐿). We have 𝑅 = Z𝑛 [𝑥±1 , 𝑥
±
2 ]. There exists

some 𝑙 > 0 such that 𝑡𝑖 = 1 − 𝑥𝑙
𝑖
∈ Ann(𝑄(ℭ)). Therefore we have the following

commutative diagram with exact rows

0 𝑃/𝐿 𝐿∗ 𝑄(ℭ) 0

0 Č1(t, 𝑃/𝐿) Č1(t, 𝐿∗) 0.

𝜄0

𝛿

𝜄1

For any 𝑒 ∈ 𝐿∗, we have 𝛿𝑒 = (𝑒, 𝑒) = 𝜄1( 𝑝1
𝑥𝑙1−1 ,

𝑝2
𝑥𝑙2−1 ) with 𝑝𝑖 = (𝑥𝑙𝑖 − 1)𝑒 ∈ 𝑃/𝐿.

One may check that 𝑒 ↦−→ ( 𝑝1
𝑥𝑙1−1 ,

𝑝2
𝑥𝑙2−1 ) defines an isomorphism between 𝐿∗ and

1-cocycles, with elements of 𝑃/𝐿 mapped onto coboundaries. In particular this map
induces an isomorphism 𝐿∗/(𝑃/𝐿) → Ȟ1(t, 𝑃/𝐿). A lift of 𝑝𝑖 to 𝑃 represents a
Pauli operator which moves the excitation 𝑒 by 𝑙 units in the 𝑖-th direction. For this
reason, 𝑝𝑖 is sometimes called an 𝑖-mover.

Let 𝑒1, 𝑒2 ∈ 𝐿∗ be two excitations and let 𝑝𝑖 (𝑒 𝑗 ) be their movers. We can then form
arbitrarily long string operators

(𝑥−𝑐𝑙𝑖 + · · · + 1 + · · · 𝑥𝑐𝑙𝑖 )𝑝𝑖 (𝑒 𝑗 ), (2.62)

which transport (displaced) excitations described by 𝑒 𝑗 by (2𝑐 + 1)𝑙 units of length.
Braiding may be related [6, 17] to the commutator phase

𝜔((𝑥−𝑐𝑙1 + · · · + 𝑥𝑐𝑙1 )𝑝1(𝑒1), (𝑥−𝑐𝑙2 + · · · + 𝑥𝑐𝑙2 )𝑝2(𝑒2))0 (2.63)



33

with sufficiently large 𝑐. This expression is asymptotically independent of 𝑐 because
the two strings operators cross at most along a finite set. Taking 𝑐 to infinity, this
expression matches the scalar part of (2.60) with

𝜑 =

(
𝑝1(𝑒1)
𝑥𝑙1 − 1

,
𝑝2(𝑒1)
𝑥𝑙2 − 1

)
, 𝜓 =

(
𝑝1(𝑒2)
𝑥𝑙1 − 1

,
𝑝2(𝑒2)
𝑥𝑙2 − 1

)
. (2.64)

We remark that it is also equal to the evaluation of the Laurent polynomial
𝜔(𝑝1(𝑒1), 𝑝2(𝑒2)) at 𝑥1 = 𝑥2 = 1.

One can also define the topological spin function

𝜃 (𝑒) =𝜔((𝑥−𝑐𝑙1 + · · · + 𝑥−𝑙1 )𝑝1(𝑒), (𝑥−𝑐𝑙2 + · · · + 𝑥−𝑙2 )𝑝2(𝑒))0
−𝜔((𝑥−𝑐𝑙2 + · · · + 𝑥−𝑙2 )𝑝2(𝑒), (1 + 𝑥𝑙1 + · · · + 𝑥

𝑐𝑙
1 )𝑝1(𝑒))0

−𝜔((1 + 𝑥𝑙1 + · · · + 𝑥
𝑐𝑙
1 )𝑝1(𝑒), (𝑥−𝑐𝑙1 + · · · + 𝑥−𝑙1 )𝑝1(𝑒))0 (2.65)

with sufficiently large 𝑐 (the right-hand side, as a function of 𝑐, is eventually constant).
It is a quadratic refinement of the braiding pairing. Formula (2.65) appeared first in
[6], where the case of prime-dimensional qudits was studied.

2.7 Examples
In this section we discuss examples with concrete codes. They serve several purposes.
Firstly, they show that invariants we proposed are nontrivial, calculable, and yield
what is expected on physical grounds in models which are already well understood.
Secondly, they support our physical interpretation of mathematical objects and the
conjecture that braiding is non-degenerate. Finally, the last example illustrates certain
technical complications that do not arise for codes with prime-dimensional qudits.

In examples presented below we take 𝑃 to be a free module 𝑅2𝑡 with the symplectic
form

𝜔

((
𝑎

𝑏

)
,

(
𝑎′

𝑏′

))
=

(
𝑎† 𝑏†

) (
0 −1
1 0

)
︸    ︷︷    ︸

denote 𝜆

(
𝑎′

𝑏′

)
, (2.66)

where 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ 𝑅𝑡 and † denotes transposition composed with antipode. Follow-
ing [12], we represent 𝐿 as the image of a homomorphism 𝜎 : 𝑅𝑠 → 𝑅2𝑡 , described
by a 2𝑡 × 𝑠 matrix with entries in 𝑅.

We will also work with cocycles in Č•(t, 𝑃/𝐿). In calculations it is convenient to
identify them with cochains in Č•(t, 𝑃) which are closed modulo Č•(t, 𝐿), with two
cochains identified if they differ by a cochain in Č•(t, 𝐿).



34

3D Z𝑛-toric code
We take Λ = Z3 and denote generators of 𝑅 corresponding to three basis vectors by
𝑥, 𝑦, 𝑧, so that 𝑅 is a Laurent polynomial ring in three variables 𝑥, 𝑦, 𝑧. 3D toric code
is defined by 𝑃 = 𝑅6, 𝐿 = im(𝜎) with

𝜎 =

©­­­­­­­­­­«

1 − 𝑥 0 0 0
1 − 𝑦̄ 0 0 0
1 − 𝑧 0 0 0

0 0 𝑧 − 1 𝑦 − 1
0 𝑧 − 1 0 1 − 𝑥
0 1 − 𝑦 1 − 𝑥 0

ª®®®®®®®®®®¬
. (2.67)

We have the following free resolution of 𝑃/𝐿

0→ 𝑅
𝜏−→ 𝑅4 𝜎−→ 𝑅6 → 𝑃/𝐿 → 0, 𝜏 =

©­­­­­«
0

𝑥 − 1
1 − 𝑦
𝑧 − 1

ª®®®®®¬
. (2.68)

Erasing 𝑃/𝐿 and applying (−)∗ we obtain

0→ 𝑃
𝜎†𝜆−−−→ 𝑅4 𝜏†−→ 𝑅 → 0. (2.69)

Here matrix 𝜖 = 𝜎†𝜆 (rather than 𝜎†) is present because the canonical isomorphism
𝑃→ 𝑃∗ is given by 𝜆 if both 𝑃 and 𝑃∗ are identified with 𝑅6. From this resolution
we easily get

Ext1𝑅 (𝑃/𝐿, 𝑅) � Z𝑛, generated by the class of
(
1 0 0 0

)T
∈ 𝑅4,

Ext2𝑅 (𝑃/𝐿, 𝑅) � Z𝑛, generated by the class of 1 ∈ 𝑅. (2.70)

Both Ext modules are annihilated by 𝑥 − 1, 𝑦 − 1, 𝑧 − 1.

Let us show how Čech cochains can be obtained from classes found above. In the
construction of the Čech complex we may take (𝑥1, 𝑥2, 𝑥3) = (𝑥, 𝑦, 𝑧). Recall that

we defined 𝑡𝑖 = 1 − 𝑥𝑖. Now consider
(
1 0 0 0

)T
∈ 𝑅4. Applying the Čech
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differential gives

𝑅4
𝑡1 ⊕ 𝑅

4
𝑡2 ⊕ 𝑅

4
𝑡3 ∋

©­­­­­«
©­­­­­«
1
0
0
0

ª®®®®®¬
,

©­­­­­«
1
0
0
0

ª®®®®®¬
,

©­­­­­«
1
0
0
0

ª®®®®®¬
ª®®®®®¬

(2.71)

=

©­­­­­­­­­­«
𝜖

©­­­­­­­­­­«

0
0
0
−𝑡−1

1
0
0

ª®®®®®®®®®®¬
, 𝜖

©­­­­­­­­­­«

0
0
0
0
−𝑡−1

2
0

ª®®®®®®®®®®¬
, 𝜖

©­­­­­­­­­­«

0
0
0
0
0
−𝑡−1

3

ª®®®®®®®®®®¬

ª®®®®®®®®®®¬
.

The final expression is the image through 𝜖 of a certain element of Č1(t, 𝑃). Let us
call this cochain 𝜑. By construction, it is closed modulo 𝐿. Let us show how this
can be checked by an explicit computation:

Č2(t, 𝑅6) = 𝑅6
𝑡2𝑡3 ⊕ 𝑅

6
𝑡1𝑡3 ⊕ 𝑅

6
𝑡1𝑡2 ∋ 𝛿𝜑

=

©­­­­­­­­­­«

©­­­­­­­­­­«

0
0
0
0
𝑡−1
2
−𝑡−1

3

ª®®®®®®®®®®¬
,

©­­­­­­­­­­«

0
0
0
𝑡−1
1
0
−𝑡−1

3

ª®®®®®®®®®®¬
,

©­­­­­­­­­­«

0
0
0
𝑡−1
1
−𝑡−1

2
0

ª®®®®®®®®®®¬

ª®®®®®®®®®®¬
(2.72)

=

©­­­­­«
𝜎

©­­­­­«
0

−𝑡−1
2 𝑡−1

3
0
0

ª®®®®®¬
, 𝜎

©­­­­­«
0
0

−𝑡−1
1 𝑡−1

3
0

ª®®®®®¬
, 𝜎

©­­­­­«
0
0
0

−𝑡−1
1 𝑡−1

2

ª®®®®®¬
ª®®®®®¬
.

One can go through a similar procedure with the element generating Ext2. Let us
record the final result:

Č2(t, 𝑅6) ∋ 𝜓 =

©­­­­­­­­­­«

©­­­­­­­­­­«

𝑡
−1
2 𝑡
−1
3

0
0
0
0
0

ª®®®®®®®®®®¬
,

©­­­­­­­­­­«

0
−𝑡−1

1 𝑡
−1
3

0
0
0
0

ª®®®®®®®®®®¬
,

©­­­­­­­­­­«

0
0

𝑡
−1
1 𝑡
−1
2

0
0
0

ª®®®®®®®®®®¬

ª®®®®®®®®®®¬
. (2.73)
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Having these formulas in hand we evaluate

Ω(𝜑, 𝜓)0 = 1 ∈ Z𝑛. (2.74)

Hence braiding is a non-degenerate pairing in this example.

It is well known that toric code is closely related to Z𝑛 gauge theory. With this
interpretation, line operators corresponding to 𝜑 are Wilson lines. They create
electric excitations at their endpoints. Cocycle 𝜓 corresponds to electric flux
(surface) operators, which create a magnetic field on the boundary. Braiding between
the two excitations is an Aharonov-Bohm type phase. We remark also that the
relation between generators of 𝐿, described by the map 𝜏, corresponds to Bianchi
identity.

4D Z𝑛-toric code
In a 4D version of the Z𝑛 toric code we have 𝑃 = 𝑅8. We let 𝑥1, . . . , 𝑥4 be
four variables corresponding to generators of Z4 and denote basis vectors of 𝑃 by
𝑒1, . . . , 𝑒4, 𝑎1, . . . , 𝑎4. Consider the free module 𝑅7 with basis {𝑔} ∪ { 𝑓𝑖 𝑗 }1≤𝑖< 𝑗≤4.
We define 𝐿 = im(𝜎), where 𝜎 : 𝑅7 → 𝑃 is given by

𝜎(𝑔) =
4∑︁
𝑖=1
(1 − 𝑥𝑖)𝑒𝑖, 𝜎( 𝑓𝑖 𝑗 ) = −(𝑥𝑖 − 1)𝑎 𝑗 + (𝑥 𝑗 − 1)𝑎𝑖 . (2.75)

Elements 𝜎(𝑔), 𝜎( 𝑓𝑖 𝑗 ) generate 𝐿. To continue 𝜎 to a resolution of 𝑃/𝐿, we need
to describe relations between generators. Consider the free module 𝑅4 with basis
{𝑏𝑖 𝑗 𝑘 }1≤𝑖< 𝑗<𝑘≤4. Define 𝜏1 : 𝑅4 → 𝑅7 by

𝜏1(𝑏𝑖 𝑗 𝑘 ) = (𝑥𝑖 − 1) 𝑓 𝑗 𝑘 − (𝑥 𝑗 − 1) 𝑓𝑖𝑘 + (𝑥𝑘 − 1) 𝑓𝑖 𝑗 . (2.76)

Then im(𝜏1) = ker(𝜎), but we still have to take care of relations between relations.
Let 𝜏2 : 𝑅 → 𝑅4 be given by

𝜏2(1) = (𝑥1 − 1)𝑏234 − (𝑥2 − 1)𝑏134 + (𝑥3 − 1)𝑏124 − (𝑥4 − 1)𝑏123. (2.77)

We have constructed a free resolution

0→ 𝑅
𝜏2−→ 𝑅4 𝜏1−→ 𝑅7 𝜎−→ 𝑅8 → 𝑃/𝐿 → 0. (2.78)

Proceeding as in the 3D case we found

𝑄0 � Z𝑛, 𝑄1 = 0, 𝑄2 � Z𝑛, (2.79)
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all annihilated by 𝑥𝑖 − 1. After some tedious calculations we found also the Čech
cochains 𝜑 ∈ Č1(t, 𝑃) and 𝜓 ∈ Č3(t, 𝑃) corresponding to generators of 𝑄0 and 𝑄2:

𝜑𝑖 =
𝑎𝑖

𝑥𝑖 − 1
, 𝜓𝑖𝑐 =

(−1)𝑖𝑒𝑖∏
𝑗≠𝑖 (𝑥 𝑗 − 1) , (2.80)

where 𝑖𝑐 denotes the triple of indices complementary to 𝑖. Given these expressions it
is easy to check that

Ω(𝜑, 𝜓)0 = 1. (2.81)

Again, braiding is non-degenerate.

4D Z𝑛 2-form toric code
By a 2-form version of the toric code we mean a code in which degrees of freedom are
assigned to lattice plaquettes. Starting from dimension 4, such a code is neither trivial
nor equivalent to the standard (“1-form”) toric code. Module 𝑃 � 𝑅12 has basis
{𝑒𝑖 𝑗 , 𝑎𝑖 𝑗 }1≤𝑖< 𝑗≤4, with nontrivial symplectic pairings of the form 𝜔(𝑒𝑖 𝑗 , 𝑎𝑖 𝑗 ) = 1.
Consider the free module 𝑅8 with basis {𝑔𝑖, 𝑓𝑖𝑐 }4𝑖=1. We define 𝐿 = im(𝜎), where
𝜎 : 𝑅8 → 𝑃 is given by

𝜎(𝑔𝑖) = −
∑︁
𝑗<𝑖

(1 − 𝑥 𝑗 )𝑒 𝑗𝑖 +
∑︁
𝑗>𝑖

(1 − 𝑥 𝑗 )𝑒𝑖 𝑗 , (2.82)

𝜎( 𝑓𝑖 𝑗 𝑘 ) = −(𝑥𝑖 − 1)𝑎 𝑗 𝑘 + (𝑥 𝑗 − 1)𝑎𝑖𝑘 − (𝑥𝑘 − 1)𝑎𝑖 𝑗 .

ker(𝜎) coincides with the image of 𝜏 : 𝑅2 → 𝑅8 such that

𝜏

(
1
0

)
=

∑︁
𝑖

(1 − 𝑥𝑖)𝑔𝑖, 𝜏

(
0
1

)
=

∑︁
𝑖

(−1)𝑖 (𝑥𝑖 − 1) 𝑓𝑖𝑐 . (2.83)

This defines a free resolution

0→ 𝑅2 𝜏−→ 𝑅8 𝜎−→ 𝑅12 → 𝑃/𝐿 → 0, (2.84)

from which we derive

𝑄0 = 0, 𝑄1 � Z𝑛 ⊕ Z𝑛, 𝑄2 = 0, (2.85)

with 𝑄1 annihilated by all 𝑥𝑖 − 1. Two Čech cochains corresponding to generators of
𝑄1 take the form

𝜑𝑖 𝑗 =
𝑎𝑖 𝑗

(𝑥𝑖 − 1) (𝑥 𝑗 − 1) , 𝜓𝑖 𝑗 =
(−1)𝑖+ 𝑗𝑒𝑖 𝑗𝑐
(𝑥𝑖 − 1) (𝑥 𝑗 − 1) , (2.86)

where 𝑖 𝑗 𝑐 is the pair of indices complementary to 𝑖 𝑗 . We find

Ω(𝜑, 𝜓)0 = 1, (2.87)

so braiding is non-degenerate.



38

Z𝑛 Ising model
For the Ising model in zero magnetic field we have 𝑃 = 𝑅2 and

𝜎 =

(
𝑥1 − 1 · · · 𝑥𝐷 − 1

0 · · · 0

)
, (2.88)

where 𝐷 ≥ 1 is arbitrary. We see that

(
1
0

)
∈ 𝐿𝜔𝜔 \𝐿 and 𝐿𝜔𝜔/𝐿 � Z𝑛, in accord with

the interpretation of 𝐿𝜔𝜔/𝐿 in terms of order parameters for spontaneously broken
symmetries. Next, we note that 𝑃/𝐿 � 𝑅 ⊕ 𝑅/𝔞, where 𝔞 = (𝑥1 − 1, · · · , 𝑥𝐷 − 1).
Hence for every 𝑖 > 0 we have

Ext𝑖𝑅 (𝑃/𝐿, 𝑅) � Ext𝑖𝑅 (𝑅/𝔞, 𝑅). (2.89)

As elements 𝑥𝑖 − 1 form a regular sequence in 𝑅, this Ext vanishes for 𝑖 ≠ 𝐷 and
Ext𝐷

𝑅
(𝑃/𝐿, 𝑅) � 𝑅/𝔞. Therefore the only nonzero 𝑄𝑖 is 𝑄𝐷−1 � Z𝑛. This is

consistent with the interpretation of 𝑄𝑖 in terms of 𝑖-dimensional excitations: the
Ising model features domain walls, which are objects of spatial codimension 1.
However, our formalism does not provide a systematic construction of this domain
wall (Ising model is not a Lagrangian code). Let us also remark that we expect that
there exists a generalization of braiding that allows us to pair 𝑄𝐷−1 with 𝐿𝜔𝜔/𝐿.
Physically such pairing should describe how the value of order parameter changes as
the domain wall is crossed.

Z𝑛 toric code on a cylinder
Consider the 2D cylinder geometry Λ = Z𝐿 × Z. Thus 𝑅 = Z𝑛 [𝑥, 𝑦±]/(𝑥𝐿 − 1). We
let 𝑃 = 𝑅4 and 𝐿 = im(𝜎), where

𝜎 =

©­­­­­«
1 − 𝑥 0
1 − 𝑦 0

0 𝑦 − 1
0 𝑥 − 1

ª®®®®®¬
. (2.90)

Let us put𝑊𝑥 =
∑𝐿−1
𝑗=0 𝑥

𝑗−1 ∈ 𝑅. Note that (𝑥 − 1)𝑊𝑥 = 0, so

(𝑦 − 1)
©­­­­­«

0
0
𝑊𝑥

0

ª®®®®®¬
= 𝑊𝑥

©­­­­­«
0
0

𝑦 − 1
𝑥 − 1

ª®®®®®¬
∈ 𝐿. (2.91)
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Since 𝑦 − 1 is a regular element, it follows that
(
0 0 𝑊𝑥 0

)T
∈ 𝐿𝜔𝜔. A similar

calculation shows that
(
0 𝑊𝑥 0 0

)T
∈ 𝐿𝜔𝜔. Classes of these two elements

generate 𝐿𝜔𝜔/𝐿 � Z𝑛 × Z𝑛. One may check also that 𝐿𝜔 = 𝐿𝜔𝜔. Hence there exist
𝑛2 superselection sectors containing a ground state, and in each of these sectors the
ground state is unique. This is different than for the toric code on a torus, for which
there is only one superselection sector containing an 𝑛2-dimensional space of ground
states. This illustrates the difference in physical interpretations of modules 𝑍 (ℭ)
and 𝑆(ℭ).

Let us also mention that in the present example 𝑄(ℭ) � Z𝑛 × Z𝑛, as on a plane (but
not on a torus). Even though the code is effectively one-dimensional (one direction
being finite), this does not contradict Proposition 25 because 𝑍 (ℭ) ≠ 0.

Z𝑝𝑡 plaquette model
Let 𝑛 = 𝑝𝑡 , where 𝑝 is a prime number and 𝑡 a positive integer. We consider a Z𝑝𝑡

version of Wen’s plaquette model [18] on a plane. Thus we take 𝑃 = 𝑅2 and let 𝐿

be the span of 𝑠 =
(
1 − 𝑥𝑦 𝑥 − 𝑦

)T
. 𝐿 is freely generated by 𝑠, so there exists an

element 𝜑 ∈ 𝐿∗ such that 𝜑(𝑠) = 1. Clearly (𝑥 − 𝑦)𝜑 and (𝑥𝑦−1)𝜑 are representable
by elements of 𝑃 and we have

𝑄 � 𝑅/(𝑥 − 𝑦, 𝑥𝑦 − 1). (2.92)

There exists an abelian group isomorphism 𝑄 � Z𝑛 × Z𝑛 (as for the toric code), but
in contrast to the case of toric code 𝑄 is acted upon nontrivially by translations.
Hence this model is in a different SET phase (with translational symmetry) than
the toric code. On the other hand, these models are well-known to be equivalent if
translational symmetry is ignored.

For a subgroup of Λ acting trivially on 𝑄, we can take the subgroup of index 4
generated by 𝑥2, 𝑦2. With this choice, we found the following Čech cocycle 𝜑
representing the generator of 𝑄 (corresponding via the isomorphism (2.92) to the
class of 1):

𝜑1 =

(
𝑥 𝑥2

)T

1 − 𝑥2 , 𝜑2 =

(
−𝑦 𝑦2

)T

1 − 𝑦2 . (2.93)

Classes of cocycles 𝜑 and 𝑥𝜑 form a Z𝑛 basis of Čech cohomology.

We will find the decomposition of 𝑄 into 𝔪-torsion parts. If 𝑝 ≠ 2, maximal ideals
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of 𝑅 containing the annihilator of 𝑄 are of the form

𝔪± = (𝑝, 𝑥 ∓ 1, 𝑦 ∓ 1). (2.94)

The case 𝑝 = 2 is special because then 𝔪+ = 𝔪−. We assume that 𝑝 ≠ 2 from now
on. 𝔪±-torsion submodules of 𝑄 correspond to cocycles 𝜑± = (1 ± 𝑥)𝜑. They also
form a Z𝑛 basis of Čech cohomology. By Proposition 50, 𝜑+ is Ω-orthogonal to 𝜑−.
Indeed, a calculation gives

Ω(𝜑, 𝜑) = (𝑥 + 𝑦)
∑︁
𝑘,𝑙∈Z

𝑥2𝑘 𝑦2𝑙 , (2.95)

and therefore

Ω(𝜑+, 𝜑−) = (1 + 𝑥) (1 − 𝑥)Ω(𝜑, 𝜑) = 0, (2.96)

Ω(𝜑±, 𝜑±) = (1 ± 𝑥) (1 ± 𝑥)Ω(𝜑, 𝜑) = ±2
∑︁
𝑘,𝑙∈Z
(±𝑥)𝑘 (±𝑦)𝑙 .

Remark 51. Redefining 𝑠 to
(
1 + 𝑥𝑦 𝑥 + 𝑦

)
gives a second code, which is related

to the one above by a local unitary transformation (which is 𝑦2-invariant but not
𝑦-invariant). Simple calculation gives 𝑄 � 𝑅/(𝑥 + 𝑦, 𝑥𝑦 + 1), so this code is in a
different SET phase than the previous one.

Haah’s code and 𝑋-cube model
Haah’s code and 𝑋-cube model (over Z2) are defined by

𝜎Haah =

©­­­­­«
1 + 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 0

1 + 𝑥 + 𝑦 + 𝑧 0
0 1 + 𝑥 + 𝑦̄ + 𝑧
0 1 + 𝑥𝑦̄ + 𝑦̄𝑧 + 𝑧𝑥

ª®®®®®¬
, (2.97)

𝜎𝑋-cube =

©­­­­­­­­­­«

1 + 𝑥 + 𝑦̄ + 𝑥𝑦̄ 0 0
1 + 𝑦̄ + 𝑧 + 𝑦̄𝑧 0 0
1 + 𝑥 + 𝑧 + 𝑥𝑧 0 0

0 1 + 𝑧 0
0 1 + 𝑥 1 + 𝑥
0 0 1 + 𝑦

ª®®®®®®®®®®¬
.

In both cases 𝜎 is injective, so 𝐿 is free. This implies that 𝑄𝑖 = 0 for 𝑖 > 0, so
our approach confirms that corresponding phases of matter do not admit nontrivial
spatially extended excitations. Computation of 𝑄0 of course agrees with what is
known.
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Z4 toric code with condensation
We consider a code with composite-dimensional qudits. Let 𝑅 = Z4 [𝑥±, 𝑦±], 𝑃 = 𝑅4

and 𝐿 = im(𝜎), where

𝜎 =

©­­­­­«
2 + 2𝑥 0 0 0
2 + 2𝑦̄ 0 0 0

0 1 − 𝑦 2 0
0 1 − 𝑥 0 2

ª®®®®®¬
. (2.98)

Let us define a matrix

𝜏 =

©­­­­­«
2 0 0 0
0 2 0 0
0 1 − 𝑦 2 0
0 1 − 𝑥 0 2

ª®®®®®¬
. (2.99)

We have an infinite free resolution

· · · → 𝑅4 𝜏−→ 𝑅4 𝜏−→ 𝑅4 𝜏−→ 𝑅4 𝜎−→ 𝑃→ 𝑃/𝐿 → 0 (2.100)

from which one obtains

𝑄0 � Z2 ⊕ Z2, 𝑄𝑖 = 0 for 𝑖 > 0, (2.101)

as in the ordinary toric code. In spite of vanishing of higher 𝑄𝑖, there exists no finite
free resolution–see characterization in Proposition 52 below.

We remark also that Ext𝑖
𝑅
(𝐿, 𝑅) = 0 for 𝑖 > 0. If 𝑛 was prime, we would be able

to deduce from this that 𝐿 is a free module. In the present example, 𝐿 is not
even quasi-free. Indeed, if 𝐿 was quasi-free, 𝐿/2𝐿 would be a free module over
𝑆 = Z2 [𝑥±, 𝑦±]. On the other hand, it is not difficult to check that Ext1

𝑆
(𝐿/2𝐿, 𝑆) ≠ 0.

This motivates the following result.

Proposition 52. Let 𝑛 = 𝑝𝑡 for a prime number 𝑝. An 𝑅-module has finite projective
dimension if and only if it is free over Z𝑛. If this condition is satisfied, there exists a
free resolution of length not exceeding 𝐷.

Proof. =⇒ : A projective 𝑅-module 𝑃 is a summand of a free 𝑅-module, which is
clearly free over Z𝑛. Thus 𝑃 is also projective over Z𝑛. Projective modules over Z𝑛
are free.

Now let 𝑃• → 𝑀 be a finite projective resolution of a module 𝑀 . By the paragraph
above, this is also a free resolution of 𝑀 considered as a Z𝑛 module. Thus 𝑀 has
finite projective dimension over Z𝑛. Such Z𝑛-modules are free.



42

⇐= : Let 𝑀 be free over Z𝑛. We choose a Z𝑝 [Λ]-free resolution

0→ 𝑃𝐷 → · · · → 𝑃1
𝜕1−→ 𝑃0

𝜕0−→ 𝑀/𝑝𝑀 → 0 (2.102)

of length 𝐷. This is possible by Hilbert’s syzygy theorem. We will lift the resolution
of 𝑀/𝑝𝑀 to a resolution of 𝑀 of the same length. Let 𝐾𝑖 = ker(𝜕𝑖).

For the purpose of this proof it will be convenient to denote reduction of an element
mod 𝑝 by an overline. We have

𝜕0


𝑟1
...

𝑟𝑛

 =

𝑛∑︁
𝑖=1

𝑟𝑖𝑚𝑖 (2.103)

for some 𝑚1, . . . , 𝑚𝑛 ∈ 𝑀 such that 𝑚𝑖 generate 𝑀/𝑝𝑀. Then by Nakayama, 𝑚𝑖
generate 𝑀 . Define 𝑃0 = 𝑅𝑛 and 𝜕0 : 𝑅𝑛 → 𝑀 by

𝜕0


𝑟1
...

𝑟𝑛

 =

𝑛∑︁
𝑖=1

𝑟𝑖𝑚𝑖 . (2.104)

By construction, 𝜕0 is surjective. Let 𝐾0 = ker(𝜕0). Reducing the short sequence

0→ 𝐾0 → 𝑅𝑛
𝜕0−→ 𝑀 → 0 mod 𝑝 yields

0→ 𝐾0/𝑝𝐾0 → 𝑃0
𝜕0−→ 𝑀/𝑝𝑀 → 0, Tor𝑅1 (𝐾0, 𝑅/(𝑝)) = 0. (2.105)

Here we used the simple fact that an 𝑅-module 𝑁 is free over Z𝑛 if and only if
Tor𝑅1 (𝑁, 𝑅/(𝑝)) = 0, which can be verified using the resolution

· · · → 𝑅
𝑝
−→ 𝑅

𝑝𝑡−1

−−−→ 𝑅
𝑝
−→ 𝑅 → 𝑅/(𝑝) → 0. (2.106)

Results in (2.105) imply that 𝐾0/𝑝𝐾0 may be identified with 𝐾0, and 𝐾0 is free over
Z𝑛.

Now replace 𝑀 by 𝐾0 and 𝑃0 by 𝑃1 and repeat. Proceeding like this inductively we
find short exact sequences

0→ 𝐾𝐷 → 𝑃𝐷 → 𝐾𝐷−1 → 0,

. . . ,

0→ 𝐾1 → 𝑃0 → 𝑀 → 0,
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such that each 𝑃𝑖 is free and 𝐾𝑖/𝑝𝐾𝑖 � 𝐾𝑖. In particular 𝐾𝐷 = 0 by Nakayama. Short
sequences compose into a free resolution of 𝑀 of length 𝐷:

0→ 𝑃𝐷 → · · · → 𝑃0 → 𝑀 → 0. (2.107)

[1] Blazej Ruba and Bowen Yang. “Homological invariants of pauli stabilizer
codes”. In: arXiv preprint arXiv:2204.06023 (2022). doi: 10.48550/
arXiv.2204.06023. url: https://doi.org/10.48550/arXiv.
2204.06023.

https://doi.org/10.48550/arXiv.2204.06023
https://doi.org/10.48550/arXiv.2204.06023
https://doi.org/10.48550/arXiv.2204.06023
https://doi.org/10.48550/arXiv.2204.06023


44

C h a p t e r 3

SYMMETRY PROTECTED TOPOLOGICAL SPIN CHAIN

3.1 Introduction
Gapped phases of lattice systems in 1d are well understood by now [19, 20]. Their
classification depends on whether one considers bosonic or fermionic systems, as
well as whether other symmetries are present. For example, without imposing
any symmetry there is only one bosonic phase (the trivial one). Fermionic phases
without symmetries beyond the fermion parity Z𝐹2 are classified by Z2, where the
non-trivial element can be realized by the Kitaev chain. Bosonic phases with a
unitary on-site symmetry 𝐺 are classified by the abelian group 𝐻2(𝐺,𝑈 (1)), while
fermionic phases with a symmetry 𝐺 × Z𝐹2 are classified by Z2 × F where F is an
extension of 𝐻1(𝐺,Z2) by 𝐻2(𝐺,𝑈 (1)). An element of an abelian group describing
the phase will be called its index. Most of these classification results have been
obtained by assuming that every phase of a 1d lattice system can be described by an
injective Matrix Product State (MPS).

Although ground states of generic gapped Hamiltonians are not MPS, for finite 1d
systems one can find an MPS approximation of any such state. There is an efficient
numerical procedure (DMRG) for doing this. Thus from a practical standpoint
the situation in 1d is very satisfactory: given a gapped Hamiltonian, there is an
algorithmic procedure for identifying its phase. But from a theoretical standpoint the
MPS approach leaves much to be desired. For example, it is not obvious that the
index determined through a highly non-unique MPS approximation depends only on
the original state. Neither is it obvious that it is an invariant of the phase (i.e., that it
depends only on an appropriately defined equivalence class of states).

Recently, Y. Ogata and collaborators [21, 22, 23] (see also [24]) developed an
approach to the classification of phases of 1d systems which does not rely on using an
injective MPS. Instead they work with arbitrary 1d states satisfying the split property.
The split property is the statement that the weak closure of the algebra of observables
on any half-line is a Type I von Neumann algebra. In the bosonic case, this is
equivalent to saying that the Hilbert space of the system can be written as a tensor
product of Hilbert spaces Ȟ− ⊗ Ȟ+, so that observables localized on the positive (resp.
negative) half-line act non-trivially only on Ȟ+ (resp. Ȟ−). The split property, while
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seemingly obvious, typically fails for gapless systems in infinite volume, because
von Neumann algebras more exotic than algebras of bounded operators in a Hilbert
space show up. Nevertheless, it was shown by T. Matsui [25] that states of 1d lattice
systems satisfying the area law (and in particular all gapped ground states of local
Hamiltonians [26]) satisfy the split property. It is possible in this approach to define
an index of a state and show that it is invariant with respect to a natural notion of
equivalence (automorphic equivalence). This property ensures that the index is
unchanged under continuous deformations of the Hamiltonian which do not close
the gap [27, 28].

In this chapter we use a variant of this approach to classify bosonic phases of matter
with a certain additional property ("invertibility", see the next paragraph). Our
definition of a quantum phase of matter is along the lines of Refs. [29, 30] and is
based on the notion that a quantum phase of matter is a pattern of entanglement in a
many-body wave-function, a point of view expounded in the monograph Ref. [30].
In Ref. [30] two states were said to be in the same phase if, after stacking with some
unentangled state of an ancillary system, they could be connected by a finite-depth
quantum circuit. For the case of systems with a unitary symmetry, one additionally
requires the quantum circuit to preserve the symmetry. Our definition is the same,
except we replace quantum circuits with their fuzzy analogs, locally-generated
automorphisms (LGAs) [31]. This notion of a phase does not make reference to
Hamiltonians and applies to arbitrary pure states of lattice systems.

To focus on ground states of gapped Hamiltonians, Refs. [21, 22, 23] impose the split
property. In this chapter we focus on states which are “invertible” in the sense of A.
Kitaev [32]. Loosely speaking, an invertible state is a state which lacks long-range
order. More precisely, a system is in an invertible state if, when combined with
some ancillary system, it can be completely disentangled by applying an LGA. The
ancillary degrees of freedom may be entangled between themselves but not with the
original system. We show that for states of 1d systems invertibility implies the split
property, but unlike the latter, it has a clear physical meaning and can be generalized
to higher dimensions. Our definition of a quantum phase of matter applies both to
bosonic and fermionic systems, but in this chapter we focus on bosonic systems,
since the fermionic case is more technically involved.

Our main results are as follows. If no symmetry is imposed, then we show that every
invertible bosonic 1d state is in the trivial phase. In the case when a finite unitary
on-site symmetry 𝐺 is present, we define an index valued in an abelian group for
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arbitrary 𝐺-invariant invertible 1d systems and prove that it is a complete invariant
of such phases. That is, two 𝐺-invariant invertible 1d states are in the same phase if
and only if their indices coincide. Our definition of the index is equivalent to that in
[21, 22] but is formulated in terms of properties of domain walls for symmetries.
We also show that a non-trivial index is an obstruction for a system to have an edge
which preserves both the symmetry 𝐺 and invertibility.

The organization of the chapter is as follows. In Section 2 we formulate our definition
of phases and invertible phases as suitable equivalence classes of pure states of
lattice systems. In Section 3 we define an index for invertible 1d states with unitary
symmetries and show that entangled pair states realize all possible values of the index.
A reader who is mostly interested in the properties of systems without symmetries
can skip this section and proceed to Section 4. In Sections 4.1 and 4.2 we study
invertible states of 1d systems without symmetries. We show that any such state is in
a trivial phase. In Section 4.3 we classify phases of invertible 1d states with a finite
unitary symmetry. In Appendix A we show that 𝐺-invariant pure factorized states of
1d systems are all in the trivial phase according to our definition. In Appendix B
we show that the index of a state can be determined provided one has access to a
sufficiently large but finite piece of the system. This implies that a non-trivial index
is an obstruction for a system to have an edge which preserves both the symmetry 𝐺
and invertibility.

3.2 States and phases of 1d lattice systems
A 1d system is defined by its algebra of observables A . In the bosonic case, this is a
𝐶∗-algebra defined as a completion of the ∗-algebra of the form

Aℓ = lim−−→
𝑀

⊗
𝑗∈[−𝑀,𝑀]

A 𝑗 , (3.1)

where A 𝑗 = End(V 𝑗 ) for some finite-dimensional Hilbert space V 𝑗 . The numbers
𝑑 𝑗 = d𝑖𝑚V 𝑗 are not assumed to be bounded, but we assume that log 𝑑 𝑗 grows at
most polynomially with | 𝑗 |. Elements of the algebra A are called (quasi-local)
observables. For any finite subset Γ ⊂ Z we define a sub-algebra AΓ = ⊗ 𝑗∈ΓA 𝑗 . Its
elements are called local observables localized on Γ. The union of all AΓ is the
algebra of local observables Aℓ.

There is a distinguished dense ∗-sub-algebra A𝑎ℓ of A which we call the algebra of
almost local observables. A ∈ A is an almost local observable if its commutators
with observables in A 𝑗 decay faster than any power of | 𝑗 |. More precisely, there
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exists 𝑘 ∈ Z and a monotonically-decreasing positive (MDP) function ℎ : R→ R

which decays faster than any power such that for any B ∈ A 𝑗 one has ∥ [A,B]∥ ≤
∥A∥ · ∥B∥ℎ( | 𝑗 − 𝑘 |). We will say that A is ℎ-localized on 𝑘 .

Almost local observables are the building blocks for Hamiltonians with good locality
properties. Such a Hamiltonian is a formal linear combination

𝐹 =
∑︁
𝑗∈Z

𝐹𝑗 , (3.2)

where 𝐹𝑗 is a self-adjoint almost local observable which is ℎ localized on 𝑗 (with the
same function ℎ for all 𝑗), and such that the sequence ∥𝐹𝑗 ∥, 𝑗 ∈ Z, is bounded. One
may call a Hamiltonian of this kind an almost local Hamiltonian. Note that 𝐹 is not a
well-defined element of A unless the sum is convergent. To emphasize this, we prefer
to call such a formal linear combination a 0-chain rather than a Hamiltonian. Note
also that ad𝐹 (A) = [𝐹,A] =

∑
𝑗 [𝐹𝑗 ,A] is a well-defined almost local observable

for any A ∈ A𝑎ℓ. It is easy to see that ad𝐹 is an derivation of A𝑎ℓ.

The main use of 0-chains is to define a distinguished class of automorphisms of A

which preserve the sub-algebra A𝑎ℓ. Consider a self-adjoint 0-chain 𝐹 (𝑠) which
depends continuously1 on a parameter 𝑠 ∈ [0, 1]. Then we define a one-parameter
family of automorphisms 𝛼𝐹 (𝑠), 𝑠 ∈ [0, 1], as a solution of the differential equation

𝑑

𝑑𝑠
𝛼𝐹 (𝑠) (A) = 𝛼𝐹 (𝑠) (𝑖[𝐹 (𝑠),A]), (3.3)

with the initial condition 𝛼𝐹 (0) = Id. One can show that this differential equation has
a unique solution for any 0-chain 𝐹 (𝑠) [33]. It follows from Lieb-Robinson bounds
that 𝛼𝐹 (𝑠) maps A𝑎ℓ to itself (see Lemma A.2 of [31]). We will use a short-hand
𝛼𝐹 (1) = 𝛼𝐹 .

Automorphisms of the form 𝛼𝐹 for some 𝐹 (𝑠) will be called locally-generated
automorphisms (or LGAs). They are “fuzzy" analogs of finite-depth unitary quantum
circuits. Note that locally-generated automorphisms form a group. Indeed, the
composition of 𝛼𝐹 and 𝛼𝐺 can be generated by the 0-chain

𝐺 (𝑠) + 𝛼𝐺 (𝑠)−1(𝐹 (𝑠)). (3.4)

The inverse of 𝛼𝐹 is an automorphism generated by

−𝛼𝐹 (𝑠) (𝐹 (𝑠)). (3.5)
1We say that a 0-chain 𝐹 (𝑠) depends continuously on 𝑠 if 𝐹𝑗 (𝑠) depends continuously on 𝑠 for all

𝑗 ∈ Z.
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A state on A is a positive linear function 𝜓 : A → C such that 𝜓(Id) = 1. Given a
state 𝜓 and a locally-generated automorphism 𝛼𝐹 , we can define another state by
𝛼𝐹 (𝜓) := 𝜓 ◦ 𝛼𝐹 (A) = 𝜓(𝛼𝐹 (A)). We will say that 𝛼𝐹 (𝜓) is related by an LGA to
𝜓, or LGA-equivalent to 𝜓. We denote by Φ(A ) the set of LGA-equivalence classes
of pure states on A .

The notion of LGA-equivalence makes sense for arbitrary pure states of lattice systems.
If the states in question are unique ground states of gapped almost local Hamiltonians,
then they are LGA-equivalent if and only if the corresponding Hamiltonians can
be continuously deformed into each other without closing the gap [27, 28]. It is
also easy to see that if a pure state 𝜓 is a unique ground state of a gapped almost
local Hamiltonian, then so is every state which is LGA-equivalent to 𝜓. Thus for
gapped ground states, LGA-equivalence is the same as homotopy equivalence. More
generally, it has been proposed to define a zero-temperature phase as an equivalence
class of a (not necessarily gapped) pure state under the action of finite-depth quantum
circuits [30]. One obvious defect of such a definition is that quantum circuits cannot
change the range of correlations by more than a finite amount. Thus according to
this definition, ideal atomic insulators which have a finite correlation range are not
in the same phase as any state with exponentially decaying correlations. Replacing
finite-depth quantum circuits with LGAs fixes this defect.

A state 𝜓 is called factorized if 𝜓(AB) = 𝜓(A)𝜓(B) whenever A and B are local
observables supported on two different sites. It is easy to see that all factorized
pure states of A are LGA-equivalent.2 Thus factorized pure states on A define a
distinguished element τ(A ) ∈ Φ(A ). Following [30], we will say that a state on A

is Short-Range Entangled (SRE) if it is LGA-equivalent to a pure factorized state on
A .

To compare states on different 1d lattice systems, we define the notion of stable
equivalence following A. Kitaev [32]. We say that a pure state 𝜓1 on a system A1 is
stably equivalent to a pure state 𝜓2 on a system A2 if there exist systems A ′1 and A ′2
and factorized pure states 𝜓′1 and 𝜓′2 on them such that the pairs (A1 ⊗A ′1 , 𝜓1 ⊗ 𝜓′1)
and (A2 ⊗ A ′2 , 𝜓2 ⊗ 𝜓′2) are LGA-equivalent.

A 1d phase is defined to be a stable equivalence class of a pure state 𝜓 on a 1d system
A . We will denote the set of (1d) phases by Φ. Any two factorized pure states on
any two 1d systems are stably equivalent. Thus it makes sense to say that the stable

2It is important here that we are dealing with bosonic systems. The statement is not true in the
fermionic case.
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equivalence class of factorized pure states is the trivial phase τ ∈ Φ. It is also easy
to see that the tensor product of systems and their states descends to a commutative
associative binary operation ⊗ on Φ, and that τ is the neutral element with respect to
this operation. In other words, (Φ, ⊗, τ) is a commutative monoid.

Next we define what we mean by an invertible phase. Following A. Kitaev [32], we
will say that a pure state 𝜓 on A is in an invertible phase if there is a 1d system A ′

and a pure state 𝜓′ on it such that 𝜓 ⊗ 𝜓′ is in a trivial phase. In other words, 𝑥 ∈ Φ
is an invertible phase if it has an inverse. Therefore invertible phases form an abelian
group which we denote Φ∗.

Note that we defined a phase without any reference to a Hamiltonian. In general,
given a pure state, it is not clear whether it is a ground state of any almost-local
Hamiltonian.

It will be shown below that all invertible 1d systems are in a trivial phase3, i.e.,
Φ∗ consists of a single element τ. To get a richer problem, we will study systems
and phases with on-site symmetries. Recall that we assumed that each A 𝑗 is a
matrix algebra, i.e., it has the form A 𝑗 = End(V 𝑗 ) for some finite-dimensional vector
space V 𝑗 (the “on-site Hilbert space"). One says that a group 𝐺 acts on a system
A by unitary on-site symmetries if one is given a sequence of homomorphisms
𝑅 𝑗 : 𝐺 → 𝑈 (V 𝑗 ), 𝑗 ∈ Z, where 𝑈 (V 𝑗 ) is the unitary group of V 𝑗 . Since each
V 𝑗 is finite-dimensional, it decomposes as a sum of a finite number of irreducible
representations of 𝐺.

Homomorphisms 𝑅 𝑗 give rise to a 𝐺-action on A , Aℓ and A𝑎ℓ: (𝑔,A) ↦→
Ad𝑅(𝑔) (A) = 𝑅(𝑔)A𝑅(𝑔)−1, where

𝑅(𝑔) =
∏
𝑗∈Z

𝑅 𝑗 (𝑔), 𝑔 ∈ 𝐺. (3.6)

The latter is a formal product of unitary local observables 𝑅 𝑗 (𝑔) ∈ A 𝑗 such that
the automorphism Ad𝑅(𝑔) is well-defined. A state 𝜓 on a system A with an on-site
action of 𝐺 is said to be 𝐺-invariant if it is invariant under Ad𝑅(𝑔) for all 𝑔 ∈ 𝐺:
𝜓 ◦ Ad𝑅(𝑔) = 𝜓 for all 𝑔 ∈ 𝐺.

When defining LGA-equivalence of 𝐺-invariant states on A , one needs to restrict to
those LGAs which are generated by𝐺-invariant self-adjoint 0-chains, i.e., self-adjoint
0-chains 𝐹 (𝑠) = ∑

𝑗 𝐹𝑗 (𝑠) such that all observables 𝐹𝑗 (𝑠) are 𝐺-invariant. As a
3This is not true for fermionic systems, the Kitaev chain is a counter-example.
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result, the automorphism it generates is called 𝐺-equivariant as it commutes with the
action of the group. We denote by Φ𝐺 (A ) the set of𝐺-equivariant LGA-equivalence
classes of 𝐺-invariant pure states of A (with some particular 𝐺-action which is not
indicated explicitly).

There is a distinguished element τ𝐺 ∈ Φ𝐺 (A ), but its definition is not completely
obvious. The most general𝐺-invariant factorized pure state on A is uniquely defined
by the condition that when restricted to A 𝑗 it takes the form

𝜓(A 𝑗 ) = ⟨𝑣 𝑗 |A 𝑗 |𝑣 𝑗 ⟩, A 𝑗 ∈ A 𝑗 , (3.7)

where 𝑣 𝑗 ∈ V 𝑗 is a unit vector which transforms in a one-dimensional representation
of 𝐺. Not every A admits such states. If such states on A exist, they need not all
correspond to the same element in Φ𝐺 (A ). For example, consider a system where V 𝑗

is the trivial one-dimensional representation of 𝐺 = Z2 for all 𝑗 except 𝑗 = 0, while
V0 is a sum of the trivial and the non-trivial one-dimensional representations with
normalized basis vectors 𝑒+ and 𝑒−. There are two different Z2-invariant factorized
pure states corresponding to 𝑣0 = 𝑒+ and 𝑣0 = 𝑒−, and they are clearly not related
by a 𝐺-equivariant LGA. We will call a state of the form (3.7) where all 𝑣 𝑗 are
𝐺-invariant a special 𝐺-invariant factorized pure state. We will define τ𝐺 ∈ Φ𝐺 (A )
to be the 𝐺-equivariant LGA-equivalence class of a special 𝐺-invariant factorized
pure state. This definition makes sense because for any particular A all special
𝐺-invariant factorized pure states are in the same 𝐺-equivariant LGA-equivalence
class.

Next we define the notion of a 𝐺-invariant phase. We say that a 𝐺-invariant pure
state 𝜓1 of a system A1 is 𝐺-stably equivalent to a pure state 𝜓2 on a system A2

if there exist systems A ′1 and A ′2 and special 𝐺-invariant factorized pure states 𝜓′1
and 𝜓′2 on them such that the pairs (A1 ⊗A ′1 , 𝜓1 ⊗ 𝜓′1) and (A2 ⊗A ′2 , 𝜓2 ⊗ 𝜓′2) are
related by a 𝐺-equivariant LGA. A 𝐺-invariant phase is defined to be a 𝐺-stable
equivalence class of a 𝐺-invariant pure state 𝜓 of a 1d system A . We will denote
the set of 𝐺-invariant phases by Φ𝐺 . Φ𝐺 is a commutative monoid, with the trivial
𝐺-invariant phase as the neutral element τ𝐺 . Invertible elements in this monoid
form an abelian group which we denote Φ∗

𝐺
. Elements of this group will be called

𝐺-invertible phases.

It is shown in Appendix A that any 𝐺-invariant factorized pure state (that is, a state
of the form (3.7) where all 𝑣 𝑗 ∈ V 𝑗 transform in one-dimensional representations
of 𝐺) belongs to the trivial 𝐺-invariant phase. This provides a sanity check on our
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definition of a phase: from a physical viewpoint, a nontrivial state must exhibit some
entanglement and cannot be factorized.

In this chapter we will be studying 𝐺-invariant phases which are also invertible,
that is, 𝐺-invariant phases which are mapped to Φ∗ by the forgetful homomorphism
Φ𝐺 → Φ. It is easy to see that every 𝐺-invertible phase is invertible. Less obviously,
we will show that every 𝐺-invariant phase which maps to Φ∗ is 𝐺-invertible. We
will define an index taking values in an abelian group which classifies such phases.
This abelian group is nothing but Φ∗

𝐺
⊂ Φ𝐺 .

3.3 An index for invertible 1d systems
Domain wall states
Consider a 𝐺-invariant pure state 𝜓 of A . For any 𝑔 ∈ 𝐺 we let

𝜌
𝑔

> 𝑗
=

∏
𝑘> 𝑗

Ad𝑅𝑘 (𝑔) , (3.8)

which is a restriction of a locally generated automorphism Ad𝑅(𝑔) to a half-line 𝑗 > 0.
Clearly, 𝜌𝑔

> 𝑗
◦ 𝜌ℎ

> 𝑗
= 𝜌

𝑔ℎ

> 𝑗
. We define the domain wall state 𝜓𝑔

> 𝑗
by

𝜓
𝑔

> 𝑗
(A) = 𝜓(𝜌𝑔

> 𝑗
(A)). (3.9)

From now on we suppose that 𝜓 defines a 𝐺-invariant invertible phase. Thus
there exists a system A ′, a factorized pure state 𝜓′ on A ′, and a locally-generated
automorphism 𝛼 of A ⊗ A ′ that transforms the state Ψ = 𝜓 ⊗ 𝜓′ to a factorized
pure state Ω on A ⊗ A ′, i.e., Ψ = Ω ◦ 𝛼. We can extend the action of 𝜌𝑔 on A to
an action on A ⊗ A ′ by making it trivial on A ′. Then the automorphism

𝜌̃𝑔 =
∏
𝑘∈Z

Ad𝛼(𝑅𝑘 (𝑔)) . (3.10)

preserves the state Ω, and its restriction to a half-line 𝑘 > 𝑗 is given by 𝜌̃
𝑔

> 𝑗
=

𝛼 ◦ 𝜌𝑔
> 𝑗
◦ 𝛼−1.

We will need the following result from Appendix C of [31] whose proof we reproduce
here for convenience.

Proposition 53. Let Ω be a factorized pure state on A . Let 𝛼 be an automorphism of
A which asymptotically preserves Ω, in the sense that there exists a monotonically
decreasing positive function ℎ(𝑟) = 𝑂 (𝑟−∞) on [0,∞) such that for anyA localized
on [𝑟,∞) or (−∞,−𝑟] one has |Ω(𝛼(A)) − Ω(A)| ≤ ℎ(𝑟)∥A∥. Then the state
Ω𝛼 : A ↦→ Ω(𝛼(A)) is unitarily equivalent to Ω.
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Proof. Let A+ and A− be the 𝐶∗-subalgebras of A corresponding to 𝑗 > 0 and
𝑗 ≤ 0, respectively. Let Ω± be the restriction of Ω to A±, and Ω𝛼

± be the restriction
of Ω𝛼 to A±. By Cor. 2.6.11 in [34], the state Ω𝛼

+ is quasi-equivalent to Ω+ and
the state Ω𝛼

− is quasi-equivalent to Ω−. Therefore Ω = Ω+ ⊗ Ω− is quasi-equivalent
to Ω𝛼

+ ⊗ Ω𝛼
−. Since both Ω and Ω𝛼 are pure states, it remains to show that Ω𝛼 is

quasi-equivalent to Ω𝛼
+ ⊗ Ω𝛼

−.

Let 𝜌 𝑗 , 𝜌𝛼𝑗 ∈ A 𝑗 be the density matrices for the restriction of Ω and Ω𝛼 to A 𝑗 .
The density matrix 𝜌 𝑗 is pure, while 𝜌𝛼

𝑗
is mixed, in general. But since for any

A ∈ A 𝑗 we have |T𝑟 (𝜌𝛼
𝑗
− 𝜌 𝑗 )A| ≤ ℎ( | 𝑗 |) ∥A∥, we have ∥𝜌 𝑗 − 𝜌𝛼𝑗 ∥1 ≤ ℎ( | 𝑗 |),

where ∥ · ∥1 is the trace norm. Thus for large | 𝑗 | the entropy 𝑆𝛼
𝑗

of 𝜌𝛼
𝑗

rapidly
approaches zero. Specifically, by Fannes’ inequality, for all sufficiently large | 𝑗 | we
have 𝑆𝛼

𝑗
≤ ℎ( | 𝑗 |) log(𝑑 𝑗/ℎ( | 𝑗 |)). Here 𝑑2

𝑗
= dim A 𝑗 . Since we assumed that log 𝑑 𝑗

grows at most polynomially with | 𝑗 |, 𝑆𝛼 =
∑
𝑗 𝑆

𝛼
𝑗
< ∞. Therefore the entropy of the

restriction of Ω𝛼 to any finite region of Z is upper-bounded by 𝑆𝛼. By Proposition
2.2 of [35] (where the proof of equivalence of (i) and (ii) does not use translation
invariance) and Theorem 1.5 of [25], the state Ω𝛼 is quasi-equivalent to Ω𝛼

+ ⊗Ω𝛼
−.

The automorphism 𝜌
𝑔

> 𝑗
does not preserve 𝜓, but it asymptotically preserves it, by

Lemma A.4 of [31]. Therefore 𝜌̃𝑔>𝑔 asymptotically preserves Ω. Then the above
proposition implies that the state Ω𝑔

> 𝑗
defined by Ω

𝑔

> 𝑗
(A) = Ω( 𝜌̃𝑔

> 𝑗
(A)) is unitarily

equivalent to Ω. Since Ω ◦ 𝛼 = Ψ and 𝜌𝑔
> 𝑗

acts non-trivially only on A , the states 𝜓
and 𝜓𝑔

> 𝑗
are also unitarily equivalent.

Let (Π, Ȟ, |0⟩) be the GNS data of the original state 𝜓 constructed in the usual
way. We can identify Π(𝜌𝑔

> 𝑗
(A)) with the GNS representation of 𝜓𝑔

> 𝑗
. Specifically,

let (Π𝑔

> 𝑗
, Ȟ𝑔

> 𝑗
, |0⟩𝑔

> 𝑗
) be the GNS data of 𝜓𝑔

> 𝑗
. In particular, this coincides with

(Π, Ȟ, |0⟩) when 𝑔 is the identity. Ȟ𝑔

> 𝑗
is the completion of A /𝐼𝑔

> 𝑗
where the left

ideal
𝐼
𝑔

> 𝑗
:= {A|𝜓(𝜌𝑔

> 𝑗
(A∗A)) = 0}. (3.11)

Since 𝜌𝑔
> 𝑗
(𝐼ℎ
> 𝑗
) = 𝐼ℎ𝑔

−1

> 𝑗
, 𝜌𝑔

> 𝑗
induces a linear isometry of Hilbert spaces

𝜄
𝑔

> 𝑗
: Ȟℎ

> 𝑗 → Ȟℎ𝑔−1

> 𝑗
,

such that 𝜄𝑔
> 𝑗
◦ 𝜄ℎ

> 𝑗
= 𝜄

𝑔ℎ

> 𝑗
for all 𝑔, ℎ ∈ 𝐺. Note 𝜄 does not have a fixed source or target.

It is a (categorified) group action over all Hilbert spaces Ȟ𝑔

> 𝑗
. It then follows that

𝜄
𝑔

> 𝑗
Π
𝑔

> 𝑗
(A)(𝜄𝑔

> 𝑗
)−1 = Π(𝜌𝑔

> 𝑗
(A)). (3.12)
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This, together with the unitary equivalence proven above, implies that for any 𝑔 ∈ 𝐺
and any 𝑗 ∈ Z there exists a unitary operator𝑈𝑔

> 𝑗
such that

Π(𝜌𝑔
> 𝑗
(A)) = 𝑈𝑔

> 𝑗
Π(A)

(
𝑈
𝑔

> 𝑗

)−1
. (3.13)

Since the commutant of Π(A ) consists of scalars, this equation defines𝑈𝑔

> 𝑗
up to a

multiple of a complex number with absolute value 1.

Finally, we are ready to define the index. From Equation (3.13) and 𝜌𝑔
> 𝑗
◦ 𝜌ℎ

> 𝑗
= 𝜌

𝑔ℎ

> 𝑗
,

we infer that

𝑈
𝑔

> 𝑗
𝑈ℎ
> 𝑗Π(A)(𝑈

𝑔

> 𝑗
𝑈ℎ
> 𝑗 )−1 = 𝑈

𝑔ℎ

> 𝑗
Π(A)(𝑈𝑔ℎ

> 𝑗
)−1. (3.14)

Since the commutant of Π(A ) consists of scalars, it follows that

𝑈
𝑔

> 𝑗
𝑈ℎ
> 𝑗 = 𝜈> 𝑗 (𝑔, ℎ)𝑈

𝑔ℎ

> 𝑗
, (3.15)

where 𝜈> 𝑗 (𝑔, ℎ) is a complex number with absolute value 1. Associativity of operator
product implies that 𝜈> 𝑗 (𝑔, ℎ) is a 2-cocycle of the group 𝐺. Its cohomology class is
independent of the different choices of {𝑈𝑔

> 𝑗
: 𝑔 ∈ 𝐺}. We claim this cohomology

class is an index for bosonic systems. Firstly we show that it is independent of
𝑗 . Then we demonstrate that any 𝐺-equivariant locally generated automorphism
preserves the index. Lastly, we verify that the index of a state in the trivial phase is
trivial.

Given 𝑖 < 𝑗 , we let
𝑅
𝑔

(𝑖, 𝑗] =
∏
𝑖<𝑘≤ 𝑗

𝑅𝑘 (𝑔). (3.16)

By (3.13), Π(𝑅ℎ(𝑖, 𝑗]) = Π(𝜌𝑔
> 𝑗
(𝑅ℎ(𝑖, 𝑗])) = 𝑈

𝑔

> 𝑗
Π(𝑅ℎ(𝑖, 𝑗]) (𝑈

𝑔

> 𝑗
)−1, i.e., Π(𝑅ℎ(𝑖, 𝑗]) and

𝑈
𝑔

> 𝑗
commute. Also it is easy to see that

𝑈
𝑔

>𝑖
= 𝜇(𝑔)Π(𝑅𝑔(𝑖, 𝑗])𝑈

𝑔

> 𝑗
, (3.17)

where 𝜇(𝑔) is a complex number with absolute value 1. Therefore,

𝜈>𝑖 (𝑔, ℎ)𝜇(𝑔ℎ)Π(𝑅𝑔ℎ(𝑖, 𝑗])𝑈
𝑔ℎ

> 𝑗
(3.18)

=𝜈>𝑖 (𝑔, ℎ)𝑈𝑔ℎ

>𝑖
= 𝑈

𝑔

>𝑖
𝑈ℎ
>𝑖

=𝜇(𝑔)Π(𝑅𝑔(𝑖, 𝑗])𝑈
𝑔

> 𝑗
𝜇(ℎ)Π(𝑅ℎ(𝑖, 𝑗])𝑈

ℎ
> 𝑗

=𝜇(𝑔)𝜇(ℎ)Π(𝑅𝑔ℎ(𝑖, 𝑗])𝑈
𝑔

> 𝑗
𝑈ℎ
> 𝑗

=𝜇(𝑔)𝜇(ℎ)𝜈> 𝑗 (𝑔, ℎ)Π(𝑅𝑔ℎ(𝑖, 𝑗])𝑈
𝑔ℎ

> 𝑗
.
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It is important here that 𝑅 𝑗 (𝑔) is an ordinary (non-projective) representation of 𝐺.
From now on, we fix a domain wall position 𝑗 as it does not affect the index. We
also omit this choice from all notations, for example 𝜌𝑔

> 𝑗
becomes simply 𝜌𝑔>.

Next, we prove that the index is invariant under an automorphism 𝛽 := 𝛽(1) generated
by a 𝐺-equivariant self-adjoint 0-chain 𝐹 (𝑡) = ∑

𝑗 𝐹𝑗 (𝑡). Note the site 𝑗 here is not
the domain wall position which has been fixed. In general 𝜌𝑔> ◦ 𝛽 ≠ 𝛽 ◦ 𝜌𝑔>, however
their commutator 𝛽 ◦ 𝜌𝑔> ◦ 𝛽−1 ◦ 𝜌𝑔

−1

> = AdB𝑔 for an almost local observable B𝑔.
Furthermore,

B𝑔ℎ = B𝑔𝜌𝑔> (Bℎ). (3.19)

Before giving the proof, we notice that these facts indeed lead us to the desired
invariance of cohomology.

Define a new state
𝜓𝛽 (A) := 𝜓(𝛽(A)). (3.20)

Repeating the argument above for state 𝜓𝛽, we get

Π(𝛽(𝜌𝑔> (A))) = 𝑊
𝑔
>Π(𝛽(A))(𝑊

𝑔
>)−1. (3.21)

However,

Π(𝛽(𝜌𝑔> (A))) (3.22)

=Π(𝛽 ◦ 𝜌𝑔> ◦ 𝛽−1 ◦ 𝜌𝑔
−1

> (𝜌
𝑔
> (𝛽(A))))

=Π(B𝑔)𝑈𝑔
>Π(𝛽(A))(𝑈

𝑔
>)−1Π(B𝑔)−1.

Therefore,
𝑊
𝑔
> = 𝜇(𝑔)Π(B𝑔)𝑈𝑔

>, (3.23)

where 𝜇(𝑔) is a complex number with norm 1. And finally,

𝑊
𝑔
>𝑊

ℎ
> =𝜇(𝑔)𝜇(ℎ)Π(B𝑔)𝑈𝑔

>Π(Bℎ)𝑈ℎ
> (3.24)

=𝜇(𝑔)𝜇(ℎ)Π(B𝑔𝜌𝑔> (Bℎ))𝑈
𝑔
>𝑈

ℎ
>

=𝜇(𝑔)𝜇(ℎ)𝜇(𝑔ℎ)−1𝜈(𝑔, ℎ)𝑊𝑔ℎ.

To prove that such B𝑔 exists, notice that the automorphism 𝛽(𝑡) ◦ 𝜌𝑔> ◦ 𝛽−1(𝑡) ◦ 𝜌𝑔
−1

>

is generated by the 0-chain 𝐹𝑔 (𝑡) := 𝜌𝑔> ◦ 𝛽(𝑡) (𝜌
𝑔−1

> (𝐹 (𝑡)) − 𝐹 (𝑡)), which is almost
local. For any almost local self-adjoint A(𝑡) depending continuously on 𝑡, we can
define an almost local unitary observable 𝐸A (𝑡) satisfying the equation

−𝑖 𝑑
𝑑𝑡
𝐸A (𝑡) = 𝐸A (𝑡)A(𝑡). (3.25)
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When viewed as a 0-chain, the automorphism generated by A(𝑡) is simply Ad𝐸A (𝑡) .
We let 𝐸𝑔 (𝑡) := 𝐸𝐹𝑔 (𝑡), then it follows that B𝑔 = 𝐸𝑔 (1). To establish identity (3.19),
we need two properties of the observables 𝐸A (𝑡):

𝛼(𝐸A (𝑡)) = 𝐸𝛼(A) (𝑡), (3.26)

and
𝐸A (𝑡)𝐸B (𝑡) = 𝐸C (𝑡), (3.27)

where C(𝑡) = 𝛼−1
B (𝑡) (A(𝑡)) + B(𝑡). Both are easily checked from Equation (3.25).

Then

𝐸𝑔 (𝑡) · 𝜌𝑔> (𝐸ℎ (𝑡)) = 𝜌
𝑔
> (𝐸𝐺 (𝑡) · 𝐸ℎ (𝑡)) = 𝜌

𝑔
> (𝐸𝑋 (𝑡)). (3.28)

By the first property, 𝐺 (𝑡) = 𝛽(𝑡) (𝜌𝑔
−1

> (𝐹 (𝑡)) − 𝐹 (𝑡)). By the second property,

𝑋 (𝑡) =𝛼−1
𝐹ℎ
(𝑡) (𝐺 (𝑡)) + 𝐹ℎ (𝑡) (3.29)

=𝜌ℎ> ◦ 𝛽(𝑡) ◦ 𝜌ℎ
−1

> ◦ 𝛽−1(𝑡) ◦ 𝛽(𝑡)
(
𝜌
𝑔−1

> (𝐹 (𝑡)) − 𝐹 (𝑡)
)

(3.30)

+ 𝜌ℎ> ◦ 𝛽(𝑡) (𝜌ℎ
−1

> (𝐹 (𝑡)) − 𝐹 (𝑡)) (3.31)

=𝜌ℎ> ◦ 𝛽(𝑡)
(
𝜌
(𝑔ℎ)−1

> (𝐹 (𝑡)) − 𝐹 (𝑡)
)
. (3.32)

Therefore, 𝜌𝑔> (𝑋 (𝑡)) = 𝐹𝑔ℎ (𝑡), which is what we need.

At last, we verify that the index of the trivial phase is trivial. By the previous result,
it suffices to compute the index of a factorized state. Since 𝜓(𝜌𝑔> (A)) = 𝜓(A) for
any factorized 𝐺-invariant pure state 𝜓, the GNS representation Π = Π𝑔. Equations
(3.12) and (3.13) imply

𝜄
𝑔
>Π(A)(𝜄

𝑔
>)−1 = 𝜄

𝑔
>Π

𝑔
> (A)(𝜄

𝑔
>)−1 = Π(𝜌𝑔> (A)) = 𝑈

𝑔
>Π(A)(𝑈

𝑔
>)−1. (3.33)

As 𝜄𝑔>𝜄ℎ> = 𝜄
𝑔ℎ
> , the index is trivial.

Taken together, these results imply that the index of an invertible 𝐺-invariant pure
state on A depends only on its 𝐺-invariant phase.

Remark 2. Let A> 𝑗 = ⊗𝑘> 𝑗A𝑘 and A≤ 𝑗 = ⊗𝑘≤ 𝑗A𝑘 . We can define commuting von
Neumann algebras acting in Ȟ𝜓 by lettingM> 𝑗 = Π𝜓 (A> 𝑗 )′′ andM≤ 𝑗 = Π𝜓 (A≤ 𝑗 )′′.
These two algebras are each other commutants and generate the whole 𝐵(Ȟ𝜓). Then
the definition of 𝑈𝑔

> 𝑗
implies that 𝑈𝑔

> 𝑗
∈ M> 𝑗 . Similarly, replacing in (3.13) the

automorphism 𝜌
𝑔

> 𝑗
with 𝜌𝑔≤ 𝑗 = 𝜌𝑔

(
𝜌
𝑔

> 𝑗

)−1
, we can define a unitary 𝑈𝑔

≤ 𝑗 ∈ M≤ 𝑗 .
Then it is easy to see that the index we defined above is the same as the index defined
in [21].



56

The stacking law agrees with the group structure of 𝐻2(𝐺,𝑈 (1)). This is seen by
taking the domain wall unitary of the stacked system to be the tensor product of the
domain wall unitary operators of the respective subsystems. According to (3.15), the
stacked 2-cocycle is the product of the 2-cocycles of the subsystems.

An important property of the index is that it is locally computable: it can be evaluated
approximately given the restriction of the state to any sufficiently large segment of the
lattice. This is shown in Appendix B. Local computability of the index implies there
can be no 𝐺-invariant invertible interpolation between a state with a non-trivial index
and a 𝐺-invariant factorized pure state. Put more concisely, an invertible 𝐺-invariant
system with a non-trivial index cannot have a 𝐺-invariant non-degenerate edge.

Examples
In this section we compute the index of some standard examples of non-trivial
invertible states.

In the bosonic case, Matrix Product States furnish examples of invertible states
invariant under a (finite) symmetry group 𝐺. To construct such an example, we pick
a projective unitary representation 𝑄 of 𝐺 on a finite-dimensional Hilbert space W .
Thus we are given unitary operators 𝑄(𝑔) ∈ 𝑈 (W ), 𝑔 ∈ 𝐺, satisfying

𝑄(𝑔)𝑄(ℎ) = 𝜈(𝑔, ℎ)𝑄(𝑔ℎ), (3.34)

where 𝜈(𝑔, ℎ) is a 2-cocycle with values in𝑈 (1). We take the local Hilbert space V 𝑗

to be W 𝑗 ⊗ W ∗
𝑗

, where W 𝑗 is isomorphic to W for all 𝑗 ∈ Z. Then 𝐺 acts on V 𝑗 via
𝑅(𝑔) = 𝑄(𝑔) ⊗ 𝑄(𝑔)∗. This is an ordinary (non-projective) action.

To define a 𝐺-invariant state on A , we first specify it on A𝑙 and then extend by
continuity. We note first that

Aℓ = ⊗𝑘∈Z End(W𝑘 ⊗ W ∗
𝑘 ) = ⊗𝑘∈Z End(W ∗

𝑘 ⊗ W𝑘+1). (3.35)

It is understood here that in both infinite tensor product all but a finite number of
elements are identity elements. Thus we can get a 𝐺-invariant pure state on Aℓ

by picking a 𝐺-invariant vector state on End(W ∗
𝑘
⊗ W𝑘+1) for all 𝑘 ∈ Z. If the

representation 𝑄 is irreducible, there is a unique choice of such a state: the one
corresponding to the vector 1√

𝑑
1W ∈ W ∗ ⊗ W , where 𝑑 is the dimension of W . In

the physics literature such a state on Aℓ is known as an entangled-pair state. Let us
denote this state 𝜓.
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Note that 𝜓 is in an invertible phase. Indeed, any vector state on End(W ∗
𝑘
⊗W𝑘 ) can

be mapped to a factorized vector state by a unitary transformation. The product of
these unitary transformations for all 𝑘 gives us a locally-generated automorphism
connecting 𝜓 with a factorized pure state on A . In fact, it is easy to see that the
𝐺-invariant phase of 𝜓 is 𝐺-invertible. The inverse system is obtained by replacing
W with W ∗ and 𝑄 with 𝑄∗.

To describe the GNS Hilbert space corresponding to𝜓, let us pick an orthonormal basis
|𝑛⟩, 𝑛 = 1, . . . , 𝑑, in W and denote by | 𝑗 , 𝑛⟩, ⟨ 𝑗 , 𝑛| the corresponding orthonormal
basis vectors for W 𝑗 and W ∗

𝑗
. Let us also denote by |1′

𝑗
⟩ ∈ W ∗

𝑗
⊗ W 𝑗+1 the vector

1√
𝑑

∑𝑑
𝑛=1⟨ 𝑗 , 𝑛| ⊗ | 𝑗 + 1, 𝑛⟩. Then the GNS Hilbert space is the completion of the span

of vectors of the form(⊗
𝑘<𝐽

|1′𝑘⟩
)
⊗⟨𝐽, 𝑛𝐽 | ⊗ |𝐽+1, 𝑚𝐽⟩⊗ . . .⊗⟨𝐽′, 𝑛𝐽′ | ⊗ |𝐽′+1, 𝑚𝐽′⟩⊗

(⊗
𝑙>𝐽′
|1′𝑙⟩

)
, (3.36)

where 𝐽, 𝐽′ (𝐽 ≤ 𝐽′) are integers.

It is easy to check that the operator𝑈𝑔

> 𝑗
is given (up to a scalar multiple) by

𝑈
𝑔

> 𝑗
=

⊗
𝑘≤ 𝑗

1𝑘 ⊗ 𝑄 𝑗+1(𝑔) ⊗
⊗
𝑙> 𝑗

𝑅′𝑙 (𝑔), (3.37)

where 𝑄 𝑗+1(𝑔) ∈ End(W 𝑗+1) is given by 𝑎 ↦→ 𝑄(𝑔)𝑎, 𝑅′
𝑙
(𝑔) ∈ 𝐸𝑛𝑑

(
W ∗
𝑙
⊗ W𝑙+1

)
is given by 𝑎 ⊗ 𝑏 ↦→ 𝑄(𝑔)∗𝑎 ⊗ 𝑄(𝑔)𝑏, and 1𝑘 ∈ End(W𝑘 ⊗ W ∗

𝑘+1) is the identity
operator. This is a well-defined operator because |1′

𝑙
⟩ is invariant under 𝑅′

𝑙
(𝑔). Now,

since the operators 𝑅′
𝑙
(𝑔) define an ordinary (non-projective) representation of 𝐺,

we see that the index of the state 𝜓 is given precisely by the 2-cocycle 𝜈(𝑔, ℎ).

3.4 A classification of invertible phases of bosonic 1d systems
Preliminaries
In the following, for a state 𝜓 we denote by Ȟ𝜓 and Π𝜓 the corresponding GNS
Hilbert space and GNS representation. For a region 𝐴 of the lattice, we denote by
𝜓 |𝐴 the restriction of a state 𝜓 to A𝐴.

An LGA 𝛼 generated by 𝐹 which is 𝑓 -local can be represented by an ordered
conjugation with

−→∏
𝑗∈Λ𝑒𝑖𝐺 𝑗 for almost local observables 𝐺 𝑗 which are 𝑔-localized

for some 𝑔(𝑟) that depends on 𝑓 (𝑟) only. Indeed, suppose we have an 𝑓 -localized
0-chain. The automorphism

𝛼𝐹(−∞,𝑘+1] ◦
(
𝛼𝐹(−∞,𝑘 ]

)−1
(3.38)
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is a conjugation by an almost local unitary 𝑒𝑖𝐺 𝑗 which is 𝑔-localized for some 𝑔(𝑟)
that depends on 𝑓 (𝑟) only.

We define a restriction 𝐺 = 𝐹 |𝐴 of a 0-chain 𝐹 to a region 𝐴 by

𝐺 𝑗 =

∫ ∏
𝑘∈ 𝐴̄

𝑑𝑉𝑘 Ad∏
𝑘∈ 𝐴̄𝑉𝑘 (𝐹𝑗 ), (3.39)

where the integration is over all on-site unitaries 𝑉𝑘 ∈ A𝑘 with Haar measure. Note
that [𝐺,A] = 0 for any A ∈ A𝐴̄, i.e., 𝐺 = 𝐹 |𝐴 is localized on 𝐴. It is also easy to
see that 𝐹 − 𝐹 |𝐴 is almost localized on 𝐴̄.

These properties of restriction have several immediate consequences. Let 𝐴 and 𝐵
be a left and a right half-chain, correspondingly. We can represent 𝐹 as

𝐹 = 𝐹 |𝐴 + F0 + 𝐹 |𝐵 (3.40)

for some almost local observable F0. By Lemma A.4 from [31] we can represent 𝛼𝐹
as a product

𝛼𝐹 = 𝛼𝐹 |𝐴 ◦ 𝛼𝐹 |𝐵 ◦ AdU0 (3.41)

for some almost local unitary observable U0. Similarly, let 𝐴, 𝐵, and 𝐶 be three
regions (−∞, 𝑗), [ 𝑗 , 𝑘], and (𝑘,∞), correspondingly, for some sites 𝑗 and 𝑘 . Then
Lemma A.4 from [31] implies

𝛼𝐹 = 𝛼𝐹 |𝐴 ◦ 𝛼𝐹 |𝐶 ◦ 𝛼𝐹 |𝐵 ◦ AdU 𝑗
◦AdU𝑘

(3.42)

for some almost local unitariesU𝑗 andU𝑘 𝑔-localized at sites 𝑗 and 𝑘 , correspond-
ingly. Here 𝑔(𝑟) does not depend on 𝑗 and 𝑘 .

Here and below we will denote by Γ𝑟 ( 𝑗) the interval [ 𝑗 − 𝑟, 𝑗 + 𝑟]. If 𝑗 = 0, we use
a shorthand Γ𝑟 . Let 𝑓 : Z+ → R+ be an MDP function such that 𝑓 (𝑟) = 𝑂 (𝑟−∞).
Let 𝐴 be a subset of Z and 𝑗 ∈ Z. We will say that two states 𝜓1 and 𝜓2 on A are
𝑓 -close on 𝐴 far from 𝑗 if for any observable A localized on 𝐴 ∩ Γ̄𝑟 ( 𝑗) we have
|𝜓1(A) − 𝜓2(A)| ≤ ∥A∥ 𝑓 (𝑟). Note that since all our algebras of observables are
simple, all representations of A are faithful, and thus ∥A∥ can be replaced with
∥Π(A)∥ in any representation Π of A .

Lemma 3.4.1. Let 𝜓 be a pure state on A which is 𝑓 -close on Z far from 𝑗 = 0 to
a pure factorized state 𝜓0 for some MDP function 𝑓 (𝑟) = 𝑂 (𝑟−∞). Then 𝜓 and 𝜓0

are unitarily equivalent and one can be produced from the other by a conjugation
with 𝑒𝑖G , where G is an almost local self-adjoint observable 𝑔-localized at 𝑗 = 0 and
bounded ∥G∥ ≤ 𝐶 for some 𝑔(𝑟) and 𝐶 which only depend on 𝑓 (𝑟).
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Proof. Unitary equivalence of states 𝜓 and 𝜓0 follows from Corollary 2.6.11 of [34].
Let (Π0, Ȟ0, |0⟩) be the GNS data for 𝜓0. The state 𝜓 is a vector state corresponding
to |𝜓⟩ ∈ Ȟ0. LetV𝑛 be a subspace of Ȟ0 spanned by vectors which can be produced
from |0⟩ by an observable localized on Γ𝑛. Note thatV1 ⊂ V2 ⊂ V3 ⊂ ....

Let 𝑛0 be such that 𝑓 (𝑛0) < 1/2. Let us temporarily fix 𝑛 ≥ 𝑛0 and not indicate
it explicitly. Let us estimate the angle between the vector |𝜓⟩ and the subspace
V = V𝑛. The Hilbert space Ȟ0 is isomorphic to ȞΓ ⊗ ȞΓ̄, where the Hilbert spaces
ȞΓ and ȞΓ̄ carry representations of AΓ and AΓ̄, respectively. The restrictions of
vector states 𝜓 and 𝜓0 to AΓ̄ can be described by density matrices 𝜌 and 𝜌0 on ȞΓ̄.
The density matrix 𝜌0 is pure, but 𝜌 is mixed, in general. We have

∥𝜌 − 𝜌0∥1 ≤ 𝜀, (3.43)

where 𝜀 = 𝑓 (𝑛) ∈ (0, 1). Fuchs–van de Graaf inequality implies that for fidelity we
have

𝐹 (𝜌, 𝜌0) := ∥(𝜌)1/2(𝜌0)1/2∥1 ≥ 1 − 𝜀
2
. (3.44)

Let

|𝜓⟩ =
𝑁∑︁
𝑖=1

√︁
𝜆𝑖 |𝜂𝑖⟩ ⊗ |𝜉𝑖⟩. (3.45)

be the Schmidt decomposition of |𝜓⟩. Here 𝑁 ≤ d𝑖𝑚ȞΓ, |𝜂𝑖⟩, 𝑖 = 1, . . . , 𝑁, are
orthonormal vectors in ȞΓ, |𝜉𝑖⟩, 𝑖 = 1, . . . , 𝑁, are orthonormal vectors in ȞΓ̄, and 𝜆𝑖,
𝑖 = 1, . . . , 𝑁, are positive numbers satisfying

∑
𝑖 𝜆𝑖 = 1. Since |0⟩ is factorized, its

Schmidt decomposition contains only a single term:

|0⟩ = |0Γ⟩ ⊗ |0Γ̄⟩. (3.46)

Let 𝑎𝑖 = ⟨𝜉𝑖 |0Γ̄⟩. The fidelity of 𝜌 and 𝜌0 can be expressed in terms of 𝜆𝑖 and 𝑎𝑖:

𝐹 (𝜌, 𝜌0) =
(∑︁
𝑖

𝜆𝑖 |𝑎𝑖 |2
)1/2

. (3.47)

We define |𝑣⟩ = ∑
𝑖

√
𝜆𝑖𝑎
∗
𝑖
|𝜂𝑖⟩ and let

|𝜒⟩ =
(∑︁
𝑘

𝜆𝑘 |𝑎𝑘 |2
)−1/2

|𝑣⟩ ⊗ |0Γ̄⟩. (3.48)

Then it is easy to see that

|⟨𝜓 |𝜒⟩| =
(∑︁
𝑖

𝜆𝑖 |𝑎𝑖 |2
)1/2

= 𝐹 (𝜌, 𝜌0) ≥ 1 − 𝜀
2
. (3.49)
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Since 𝜀 < 1/2, |𝜓⟩ is not orthogonal to the subspaceV.

For any 𝑛 ≥ 𝑛0 let |𝜒𝑛⟩ ∈ V𝑛 be as above (geometrically, it is the normalized
projection of |𝜓⟩ toV𝑛). The estimate (3.49) implies

|⟨𝜒𝑛 |𝜒𝑛+1⟩| ≥ 1 − 2𝜀𝑛, (3.50)

where 𝜀𝑛 = 𝑓 (𝑛). LetU𝑛0 = 𝑒
𝑖G𝑛0 be a unitary localized on Γ𝑛0 that implements a

rotation of |0⟩ to |𝜒𝑛0⟩ with ∥G𝑛0 ∥ ≤ 𝜋. We can also choose unitary observablesU𝑛
for 𝑛 ≥ 𝑛0 localized on Γ𝑛+1 and satisfying ∥1 −U𝑛∥ ≤ (4𝜀𝑛)1/2 which implement
rotations of |𝜒𝑛⟩ to |𝜒𝑛+1⟩, and which therefore can be written as U𝑛 = 𝑒𝑖G𝑛 for
an observable G𝑛 local on Γ𝑛+1 with ∥G𝑛∥ ≤ 2(2𝜀𝑛)1/2. The ordered product of
all such unitaries over 𝑛 ≥ 𝑛0 can be written as U = 𝑒𝑖G. By construction, this
unitary maps |0⟩ to |𝜓⟩. Moreover, since ∥G𝑛∥ ≤ 2(2 𝑓 (𝑛))1/2 for 𝑛 ≥ 𝑛0, G is
𝑔-localized for some MDP function 𝑔(𝑟) = 𝑂 (𝑟−∞) that only depends on 𝑓 (𝑟), and
∥G∥ ≤ ∑∞

𝑛=𝑛0 2(2 𝑓 (𝑛))1/2 + 𝜋, a quantity that also depends only on 𝑓 (𝑟).

Corollary 3.4.1.1. Let 𝜓0 and 𝜓 be distinct vector states on A which satisfy the
conditions of the above lemma. Let 𝜓𝑠, 𝑠 ∈ [0, 1], be a path of vector states
corresponding to a normalization of the path of vectors 𝑠 |0⟩ + (1− 𝑠) |𝜓⟩. Then there
exists a continuous path of self-adjoint almost local observables G(𝑠) ℎ-localized
at 𝑗 = 0 such that 𝜓𝑠 = 𝛼G (𝑠) (𝜓0) and ∥G(𝑠)∥ ≤ 𝐶, for some MDP function
ℎ(𝑟) = 𝑂 (𝑟−∞) and 𝐶 > 0 which only depend on 𝑓 .

Proof. By the above lemma |𝜓⟩ = Π0(U)|0⟩ for some 𝑔-localizedU. Therefore the
states 𝜓𝑠 are all 𝑔-close to the state 𝜓0. The vectors |𝜒𝑛,𝑠⟩ depend continuously on 𝑠,
therefore we can choose the unitariesU𝑛,𝑠 and the observables G𝑛,𝑠 so that they are
continuous functions of 𝑠. Let Ũ𝑛,𝑠 be a productU1,𝑠 · · · U𝑛,𝑠 generated by an almost
local observable G̃𝑛,𝑠. It follows from Equation (3.4) that ∥G̃𝑛+1,𝑠−G̃𝑛,𝑠∥ ≤ 2(2𝜀𝑛)1/2.
Therefore, the limit G(𝑠) = lim𝑛→∞ G̃𝑛,𝑠 is a continuous function of 𝑠.

Corollary 3.4.1.2. Lemma 3.4.1 and Corollary 3.4.1.1 hold if we replace 𝜓0 by an
SRE state 𝜙 and 𝜓 by a state 𝜙 which is 𝑓 -close to 𝜙.

Proof. Let 𝛼𝐹 be an LGA, such that 𝜙 ◦ 𝛼𝐹 = 𝜓0. The state 𝜙 ◦ 𝛼𝐹 is 𝑔-close to
𝜓0 for some 𝑔(𝑟) = 𝑂 (𝑟−∞) that depends on 𝑓 (𝑟) only. Both Lemma 3.4.1 and
Corollary 3.4.1.1 hold for 𝜙 ◦ 𝛼𝐹 and 𝜙 ◦ 𝛼𝐹 , and therefore they both hold for 𝜙 and
𝜙.
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A classification of invertible phases without symmetries
Short-Range Entangled states are invertible by definition. In this section we show
that the converse is also true,4 and thus all invertible phases of bosonic 1d systems
without symmetries are trivial.

We will say that a pure 1d state has bounded entanglement entropy if the entanglement
entropies of all intervals [ 𝑗 , 𝑘] ⊂ Z are uniformly bounded.

Remark 3. It was shown by Matsui [25] that if 𝜓 has bounded entanglement entropy
then it has the split property: the von Neumann algebras M𝐴 = Π𝜓 (A𝐴)′′ and
M 𝐴̄ = Π𝜓 (A𝐴̄)′′ for a half-line 𝐴 are Type I von Neumann algebras. Since they are
each other’s commutants and generate 𝐵(𝐻𝜓), they must be Type I factors. Thus
M𝐴 ≃ 𝐵(Ȟ𝐴) for some Hilbert space Ȟ𝐴, and the restriction 𝜓 |𝐴 to a half-line 𝐴
can be described by a density matrix 𝜌𝐴 on Ȟ𝐴. In fact, [25] shows that Ȟ𝐴 can be
identified with the GNS Hilbert space of one of the Schmidt vector states of 𝜓, which
are all unitarily equivalent.

Lemma 3.4.2. Both SRE 1d states and invertible 1d states have bounded entanglement
entropy.

Proof. Suppose we have a state 𝜓 obtained from a factorized pure state 𝜓0 by
conjugation with almost local unitariesU𝑗 andU𝑘 which are 𝑔-localized at sites 𝑗
and 𝑘 , correspondingly. Since conjugation byU𝑗 ,𝑘 is an automorphism of A which
is almost localized on 𝑗 , 𝑘 , for any A𝑙 ∈ A𝑙 we have

|𝜓0(U𝑗U𝑘A𝑙U∗𝑘U
∗
𝑗 ) − 𝜓0(A𝑙) | ≤ (𝑔( | 𝑗 − 𝑙 |) + 𝑔( |𝑘 − 𝑙 |)) ∥A𝑙 ∥. (3.51)

By Fannes’ inequality [36], the entropy of the site 𝑙 in the state 𝜓 is bounded by
ℎ( | 𝑗 − 𝑙 |) + ℎ( |𝑘 − 𝑙 |) for some MDP function ℎ(𝑟) = 𝑂 (𝑟−∞) that depends only on
𝑔(𝑟) and the asymptotics of 𝑑 𝑗 for 𝑗 → ±∞. Therefore such a state has a uniform
bound on the entanglement entropy of any interval [ 𝑗 , 𝑘]. The decomposition
Equation (3.42) then implies that the same is true for any SRE or invertible state.

Let 𝜓 be a possibly mixed state on a half-line 𝐴 which is 𝑓 -close to a pure factorized
state 𝜓0 on 𝐴. By Corollary 2.6.11 of [34], 𝜓 is normal in the GNS representation of
𝜓0 and can be described by a density matrix.

4This is not true in the case of fermionic systems: Kitaev chain provides a counter-example.
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Lemma 3.4.3. Let 𝜓 be a pure 1d state on A . Suppose there is an 𝑅 > 0 such that
𝜓 is 𝑓 -close far from 𝑗 = 0 to a pure factorized state 𝜔+ on (𝑅, +∞) and is 𝑓 -close
far from 𝑗 = 0 to a pure factorized state 𝜔− on (−∞,−𝑅). Then it is 𝑔-close on Z far
from 𝑗 = 0 to 𝜔+ ⊗ 𝜔− for some MDP function 𝑔(𝑟) = 𝑂 (𝑟−∞) which depends only
on 𝑓 and the asymptotics of 𝑑 𝑗 for 𝑗 → ±∞.

Proof. Since the states are split, we can describe them using density matrices on
appropriate Hilbert spaces. The decomposition of Z into the union (−∞,−𝑛) ⊔ Γ𝑛 ⊔
(𝑛, +∞) gives rise to a tensor product decomposition Ȟ = Ȟ−𝑛 ⊗ ȞΓ𝑛 ⊗ Ȟ+𝑛 . Let 𝜓+𝑛
and 𝜔+𝑛 be restrictions of 𝜓 and 𝜔+ to (𝑛, +∞), and 𝜓−𝑛 and 𝜔−𝑛 be restrictions of 𝜓
and 𝜔− to (−∞,−𝑛). Let 𝜌±𝑛 and 𝜎±𝑛 be the corresponding density matrices. Let 𝜓𝑛
be a restriction of 𝜓 to (−∞,−𝑛) ∪ (𝑛, +∞) with the corresponding density matrix
𝜌𝑛. For 𝑛 > 𝑅 we have

∥𝜌±𝑛 − 𝜎±𝑛 ∥1 ≤ 𝑓 (𝑛). (3.52)

Since trace norm is multiplicative under tensor product, we have

∥(𝜌−𝑛 ⊗ 𝜌+𝑛 ) − (𝜎−𝑛 ⊗ 𝜎+𝑛 )∥1 ≤ ∥𝜌−𝑛 − 𝜎−𝑛 ∥1 + ∥𝜌+𝑛 − 𝜎+𝑛 ∥1 ≤ 2 𝑓 (𝑛). (3.53)

On the other hand, Fannes’ inequality implies that for sufficiently large 𝑛 the entropy
of 𝜌±𝑛 is upper-bounded by MDP function ℎ(𝑛) = 𝑂 (𝑛−∞), where ℎ(𝑛) depends only
on 𝑓 (𝑛) and the asymptotics of 𝑑 𝑗 for 𝑗 → +∞. Therefore mutual informations
𝐼 (𝜌−𝑛 : 𝜌+𝑛 ) are also upper-bounded by ℎ(𝑛), and the quantum Pinsker inequality
implies

∥𝜌𝑛 − (𝜌−𝑛 ⊗ 𝜌+𝑛 )∥1 ≤ 2
√︁
ℎ(𝑛). (3.54)

Combining this with Equation (3.53), we get

∥𝜌𝑛 − (𝜎−𝑛 ⊗ 𝜎+𝑛 )∥1 ≤ 2 𝑓 (𝑛) + 2
√︁
ℎ(𝑛). (3.55)

We say that a set of (ordered) eigenvalues {𝜆 𝑗 } has 𝑔(𝑟)-decay if 𝜀(𝑘) ≤ 𝑔(log(𝑘))
for some MDP function 𝑔(𝑟) = 𝑂 (𝑟−∞), where 𝜀(𝑘) = ∑∞

𝑗=𝑘+1 𝜆 𝑗 .

Lemma 3.4.4. Let 𝜓 be a state on a half-line 𝐴 which is 𝑓 -close far from the origin
of 𝐴 to a pure factorized state 𝜓0. Then its density matrix (in the GNS Hilbert space
of this factorized state) has eigenvalues with 𝑔(𝑟)-decay for some 𝑔(𝑟) = 𝑂 (𝑟−∞)
that depends only on 𝑓 (𝑟) and the asymptotic behavior of 𝑑 𝑗 = d𝑖𝑚V𝑗 for 𝑗 →∞.
Conversely, for any density matrix on a half-line 𝐴 (in the GNS Hilbert space of
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a pure factorized state) whose eigenvalues have 𝑔(𝑟)-decay there is a state on that
half-line which has the same eigenvalues and is 𝑓 -close far from the origin of 𝐴 to
this pure factorized state. Furthermore, one can choose 𝑓 (𝑟) so that it depends only
on 𝑔(𝑟) and the asymptotic behavior of 𝑑 𝑗 = d𝑖𝑚V𝑗 for 𝑗 →∞.

Proof. Suppose 𝜓 is 𝑓 -close to a pure factorized state far from the origin. It can
be purified on the whole line (e.g., in a system consisting of the given system on a
half-line and its reflected copy on the other half-line). Moreover, by Lemma 3.4.3 we
can choose this pure state to be 𝑓 ′-close far from the origin to a pure factorized state
on the whole line for some MDP function 𝑓 ′(𝑟) = 𝑂 (𝑟−∞) that depends only on 𝑓 .
By Lemma 3.4.1, it can be produced from a pure factorized state on the whole line
by a unitary observableU which is ℎ-localized for some ℎ which depends only on
𝑓 ′. Let |𝜓0⟩ be a GNS vector for the corresponding factorized state 𝜓0. By Lemma
A.1 of [31], there is an MDP function ℎ′(𝑟) = 𝑂 (𝑟−∞) such that for any 𝑟 > 0 there
is a unitary observableU (𝑟) localized on a disk Γ𝑟 of radius 𝑟 such that

∥Π𝜓0 (U)|𝜓0⟩ − Π𝜓0 (U (𝑟)) |𝜓0⟩∥ ≤ ℎ′(𝑟). (3.56)

On the other hand we have

∥Π𝜓0 (U)|𝜓0⟩ − Π𝜓0 (U (𝑟)) |𝜓0⟩∥ ≥ ∥𝜌 − 𝜌(𝑟) ∥1, (3.57)

where 𝜌 is the density matrix for 𝜓 and 𝜌(𝑟) is the density matrix for Π𝜓0 (U (𝑟)) |𝜓0⟩
on 𝐴. The tracial distance between any two density matrices 𝜌 and 𝜌′ can be bounded
from below in terms of their eigenvalues [37]:

∥𝜌 − 𝜌′∥1 ≥
∞∑︁
𝑗=1
|𝜆 𝑗 (𝜌) − 𝜆 𝑗 (𝜌′) |, (3.58)

where the eigenvalues 𝜆𝑖 are ordered in decreasing order. Applying this to 𝜌 and 𝜌(𝑟)

and noting that 𝜌(𝑟) has rank at most dim Ȟ𝐴∩Γ𝑟 , we get

∥𝜌 − 𝜌(𝑟) ∥1 ≥ 𝜀(dim Ȟ𝐴∩Γ𝑟 ). (3.59)

Combining (3.56), (3.57), and (3.59) we get

𝜀(dim Ȟ𝐴∩Γ𝑟 ) ≤ ℎ′(𝑟). (3.60)

Since dim Ȟ𝐴∩Γ𝑟 is upper-bounded by exp(𝑐𝑟𝛼) for some positive constants 𝑐 and 𝛼,
we have 𝜀(𝑘) ≤ 𝑔(log(𝑘)) for some 𝑔(𝑟) = 𝑂 (𝑟−∞) which depends only on 𝑓 (𝑟), 𝑐
and 𝛼.
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Conversely, suppose we are given a density matrix on a half-line 𝐴 with eigenvalues
𝜆1 ≥ 𝜆2 ≥ .... We may assume that the dimension of A𝐴 is infinite, since otherwise
the statement is obviously true. Pick any pure factorized state 𝜓0 on 𝐴 and choose a
basis in each on-site Hilbert spaceV𝑗 , 𝑗 ∈ 𝐴, such that for all 𝑗 the first basis vector
gives the state 𝜓0 |A 𝑗

. This gives a lexicographic basis |𝑛⟩, 𝑛 ∈ N, in the GNS Hilbert
space of 𝜓0. By our assumption on the growth of dimensions of 𝑑 𝑗 = d𝑖𝑚 V𝑗 , there
are positive constants 𝑐 and 𝛼 such that for any 𝑟 and any 𝑛 < 𝑒𝑐𝑟𝛼 the vector state
|𝑛⟩⟨𝑛| coincides with 𝜓0 outside of Γ𝑟 . Therefore the state

∑∞
𝑛=1 𝜆𝑛 |𝑛⟩⟨𝑛| is 𝑓 -close

to 𝜓0, where 𝑓 (𝑟) = 𝑔(𝑐𝑟𝛼) = 𝑂 (𝑟−∞).

By Lemma 3.4.4 any restriction 𝜓 |𝐴 of a state 𝜓 with 𝑔(𝑟)-decay of Schmidt
coefficients to a half-line 𝐴 can be purified by a state on 𝐴̄, which is 𝑓 -close far from
the origin of 𝐴 to a pure factorized state for some 𝑓 (𝑟) that depends on 𝑔(𝑟) only.
We call such state a truncation of 𝜓 to 𝐴. Clearly, if 𝜔 is a truncation of 𝜓 to 𝐴, then
𝜔|𝐴 = 𝜓 |𝐴. The following lemma shows that truncations exist for all invertible states.

Lemma 3.4.5. Let𝜓 be an invertible state with an inverse𝜓′, such that thatΨ = 𝜓⊗𝜓′

can be produced by an 𝑓 -local LGA (𝛼𝐹)−1 from a pure factorized state Ψ0 = 𝜓0⊗𝜓′0.
Then 𝜓 has 𝑔(𝑟)-decay of Schmidt coefficients for some 𝑔(𝑟) = 𝑂 (𝑟−∞) that depends
only on 𝑓 (𝑟).

Proof. By Lemma 3.4.2 and the results of [25], Ψ, 𝜓, and 𝜓′ have the split property.
Therefore for any half-line 𝐴 ⊂ Z the corresponding GNS Hilbert spaces factorize
into Hilbert spaces for 𝐴 and Hilbert spaces for 𝐴̄, and the restrictions 𝜓 |𝐴, 𝜓′|𝐴,
Ψ|𝐴 can be described by density matrices 𝜌𝐴, 𝜌′

𝐴
and 𝑃𝐴 in the Hilbert spaces for 𝐴

[25]. The restriction of Ψ ◦ 𝛼𝐹 | 𝐴̄ on 𝐴̄ is 𝑓 -close far from the origin of 𝐴 to a pure
factorized state, and therefore by Lemma 3.4.4 the density matrix 𝑃𝐴 has 𝑔(𝑟)-decay
of Schmidt coefficients for some MDP function 𝑔(𝑟) = 𝑂 (𝑟−∞) that depends on 𝑓 .
Since 𝑃𝐴 = 𝜌𝐴 ⊗ 𝜌′𝐴, the same is true for 𝜌𝐴 and 𝜌′

𝐴
.

Lemma 3.4.6. Any truncation of an invertible state 𝜓 to any half-line is in a trivial
phase.

Proof. Let 𝜓 be an invertible state on A with an inverse 𝜓′ such that that Ψ = 𝜓 ⊗𝜓′

can be produced by an 𝑓 -local LGA (𝛼𝐹)−1 from a pure factorized state Ψ0 = 𝜓0⊗𝜓′0.
Here 𝑓 (𝑟) = 𝑂 (𝑟−∞) is an MDP function.
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Let 𝜙𝑘 be a truncation of 𝜓 to [𝑘,∞), and let 𝜙′
𝑘

be a truncation of 𝜓′ to [𝑘,∞).
Since (𝜙𝑘 ⊗ 𝜙′𝑘 ) ◦𝛼𝐹 | [𝑘,∞) is 𝑔-close to 𝜓0 ⊗𝜓′0 for some 𝑔(𝑟) = 𝑂 (𝑟−∞) that depends
on 𝑓 (𝑟) only, Lemma 3.4.1 implies that 𝜙𝑘 is invertible with the inverse 𝜙′

𝑘
. Let 𝜙𝑘

be a pure state on A (1) ⊗A (2) , where A (1) and A (2) are two copies of A , with the
following two properties: (1) its restriction to (−∞, 𝑘) coincides with the factorized
pure state (𝜓0 ⊗ 𝜓0) | (−∞,𝑘); (2) its restriction to 𝐴 = [𝑘, +∞) is a purification of
𝜓 |𝐴 on A (1)

𝐴
by some state on A (2)

𝐴
which is 𝑓 ′-close to a factorized state for some

𝑓 ′(𝑟) = 𝑂 (𝑟−∞) that depends on 𝑓 only. The existence of such a state follows from
Lemma 3.4.5. Similarly, we can define a state 𝜙′

𝑘
on A ′(1) ⊗ A ′(2) which is an

inverse of 𝜙𝑘 . We let 𝛼𝐺̃ be an LGA that maps 𝜙𝑘 ⊗ 𝜙′𝑘 to 𝜓0 ⊗ 𝜓0 ⊗ 𝜓′0 ⊗ 𝜓
′
0. This

LGA can be chosen to be the identity on (−∞, 𝑘) and 𝑔′-local with 𝑔′(𝑟) = 𝑂 (𝑟−∞)
depending on 𝑔(𝑟) only.

Let us first show that the state 𝜓0⊗ 𝜙𝑘 ⊗𝜓′0⊗𝜓0 can be transformed into 𝜙𝑘 ⊗𝜓′0⊗𝜓0

by applying a certain LGA 𝛽, then an LGA ℎ2-localized at 𝑘 (for some MDP function
ℎ2(𝑟) = 𝑂 (𝑟−∞)), and finally the inverse of 𝛽. The sequence of steps is shown
schematically in Figure 3.1, where it is also indicated that 𝛽 is a composition of two
LGAs described in more detail below.

Equivalently, we can apply 𝛽 to both states and then show that the resulting states
are related by an LGA ℎ2-localized at 𝑘 . 𝛽 is a composition of two LGAs. The first
one has the form Id ⊗ Id ⊗𝛼𝐺 , where 𝛼𝐺 maps 𝜓′0 ⊗ 𝜓0 to 𝜙′

𝑘
⊗ 𝜙𝑘 , see Figure 3.1.

The second one has the form Id ⊗𝛼𝐹 | [𝑘+1,∞) ⊗ Id. The product of these two LGAs
maps the two states of interest to the states Ξ𝑘 ⊗ 𝜙𝑘 and Ξ̃𝑘 ⊗ 𝜙𝑘 , where both Ξ𝑘 and
Ξ̃ are ℎ1-close on Z far from 𝑘 to the same pure factorized state on A ⊗ A ⊗ A ′.
Here ℎ1(𝑟) = 𝑂 (𝑟−∞) is an MDP function which depends only on 𝑓 (𝑟). By Lemma
3.4.1 Ξ𝑘 and Ξ̃𝑘 are related by a conjugation with a unitary observable which is
ℎ2-localized at 𝑘 for some ℎ2(𝑟) = 𝑂 (𝑟−∞) depending only on 𝑓 (𝑟).

Let us fix 𝐿 ∈ N. Since the state 𝜙′
𝑘

on A (1) ⊗ A (2) is invertible, by Lemma
3.4.5 its restriction to (−∞, 𝑘 + 𝐿) has 𝑔̃(𝑟)-decay of Schmidt coefficients with 𝑔̃(𝑟)
depending only on 𝑓 (𝑟). Also, since the restriction of the state 𝜙′

𝑘
to (−∞, 𝑘) is

factorized, the nonzero Schmidt coeffients are the same as for the state 𝜙𝑘 | [𝑘,𝑘+𝐿) . In
particular, the number of nonzero Schmidt coefficients does not exceed the dimension
of A[𝑘,𝑘+𝐿) ⊗ A[𝑘,𝑘+𝐿) .

Let us tensor A (1) ⊗A (2) with A (3) ⊗A (4) . By the proof of Lemma 3.4.4 one can
find a state 𝜒𝑘 on A (1)

[𝑘,𝑘+𝐿) ⊗A (2)
[𝑘,𝑘+𝐿) ⊗A (3)

[𝑘,𝑘+𝐿) ⊗A (4)
[𝑘,𝑘+𝐿) which is a purification of

𝜙𝑘 | [𝑘,𝑘+𝐿) on A (1)
[𝑘,𝑘+𝐿) ⊗ A (2)

[𝑘,𝑘+𝐿) and such that its restriction to A (3)
[𝑘,𝑘+𝐿) ⊗ A (4)

[𝑘,𝑘+𝐿)
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is ℎ-close to a factorized state far from 𝑘 + 𝐿 for some ℎ(𝑟) = 𝑂 (𝑟−∞) that depends
on 𝑓 (𝑟) only. The state 𝜒𝑘 can be produced from (𝜓0 ⊗ 𝜓0 ⊗ 𝜓0 ⊗ 𝜓0) | [𝑘,𝑘+𝐿) by a
conjugation with a unitaryV (0) ∈ A (1)

[𝑘,𝑘+𝐿) ⊗ A (2)
[𝑘,𝑘+𝐿) ⊗ A (3)

[𝑘,𝑘+𝐿) ⊗ A (4)
[𝑘,𝑘+𝐿) .

Consider the states 𝜓0 | [𝑘,∞) ⊗𝜓0 | [𝑘,∞) ⊗ 𝜙𝑘 | [𝑘,∞) and 𝜒𝑘 ⊗ (𝜓0 | [𝑘+𝐿,∞) ⊗𝜓0 | [𝑘+𝐿,∞) ⊗
𝜙𝑘+𝐿) on the algebra A (3)

[𝑘,∞) ⊗ A (4)
[𝑘,∞) ⊗ A (1)

[𝑘,∞) ⊗ A (2)
[𝑘,∞) (see Figure 3.2). They

are stably related by an almost local unitary which is ℎ′-localized at 𝑘 + 𝐿, with
ℎ′(𝑟) = 𝑂 (𝑟−∞) which depends only on 𝑓 (𝑟). Indeed, we can first tensor both states
with 𝜓′0 ⊗ 𝜓

′
0 ⊗ 𝜓0 ⊗ 𝜓0 restricted to [𝑘, +∞), then produce on these ancillas the

state 𝜙′
𝑘
⊗ 𝜙𝑘 with a 𝑔′-local LGA, and apply 𝛼𝐺̃ | (−∞,𝑘+𝐿) ◦ 𝛼𝐺̃ | [𝑘+𝐿,∞) acting on the

tensor product of the original states and 𝜙′
𝑘

in an obvious way. In the same way as in
the previous paragraph one can argue that these states are related by an almost local
at 𝑘 + 𝐿 unitary. This implies that the original states are also related by almost local
at 𝑘 + 𝐿 unitaryU (0) .

We have shown that the states 𝜙𝑘 and 𝜙𝑘+𝐿 are related (after tensoring with a total of
six copies of factorized states 𝜓0 and 𝜓′0) by a conjugation with an almost local unitary
U (0) followed by a conjugation with a strictly local unitaryV (0) . Similarly, we can
construct such unitaries U (𝑛) , V (𝑛) relating stabilizations of 𝜙𝑘+𝑛𝐿 and 𝜙𝑘+(𝑛+1)𝐿 .
By Lemma B.3.2 we can choose 𝐿 such that an ordered product of conjugations
with

∏∞
𝑛=0U (𝑛) is an LGA. SinceV (𝑛) commute withU (𝑛′) for 𝑛 < 𝑛′, an ordered

product
∏∞
𝑛=0V (𝑛)U (𝑛) is equal to

∏∞
𝑚=0V (𝑚)

∏∞
𝑛=0U (𝑛) and therefore is also an

LGA. By construction it relates 𝜙𝑘 to a factorized state, and therefore 𝜙𝑘 is in the
trivial phase.

Theorem 54. Any invertible bosonic 1d state 𝜓 is in a trivial phase.

Proof. Let 𝜓′ be an inverse state for 𝜓, and let (𝛼𝐹)−1 be an 𝑓 -local LGA that
produces (𝜓 ⊗ 𝜓′) from a pure factorized state (𝜓0 ⊗ 𝜓′0). It enough to show that the
state 𝜓0 ⊗ 𝜓 ⊗ 𝜓′0 ⊗ 𝜓0 on A (1) ⊗ A (2) ⊗ A ′(3) ⊗ A (4) is stably SRE.

Let 𝐴 be a half-line [0,∞). Since A (1)
𝐴

is identical to A (2)
𝐴

there is a pure state
on A (1)

𝐴̄
⊗ A (2)

𝐴
identical to 𝜓. Let 𝜔− its truncation to 𝐴̄. Similarly, let 𝜔+ be a

truncation to 𝐴 of a pure state on A (2)
𝐴̄
⊗ A (1)

𝐴
identical to 𝜓. By Lemma 3.4.6,

the state (𝜔− ⊗ 𝜔+) ⊗ 𝜓′0 ⊗ 𝜓0 is stably SRE. Therefore it is enough to show that
(𝜔− ⊗ 𝜔+) ⊗ 𝜓′0 ⊗ 𝜓0 and 𝜓0 ⊗ 𝜓 ⊗ 𝜓′0 ⊗ 𝜓0 are related by an LGA. In fact, as we
show below, such an LGA can be generated by an almost local observable.
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Figure 3.1: The sequence of steps that transforms 𝜓0⊗𝜙𝑘 ⊗𝜓′0⊗𝜓0 into 𝜙𝑘 ⊗𝜓′0⊗𝜓0.
The regions shaded in blue denote the entangled parts of 𝜓, while the regions shaded
in red denote the entangled parts of 𝜓′. The regions where the state is close to a
factorized state are schematically indicated by a faded shading.

Figure 3.2: States 𝜙𝑘 and 𝜒𝑘 ⊗ (𝜓0 |𝑘+𝐿,∞ ⊗ 𝜓0 |𝑘+𝐿,∞ ⊗ 𝜙𝑘+𝐿).

First we apply to both states an LGA which acts only on the last two factors and
produces 𝜓′⊗𝜓 out of 𝜓′0⊗𝜓0. This gives us 𝜓0⊗𝜓⊗𝜓′⊗𝜓 and (𝜔−⊗𝜔+) ⊗𝜓′⊗𝜓.

Second, we apply a composition of 𝛼𝐹 | 𝐴̄ and 𝛼𝐹 |𝐴 on A (2) ⊗ A ′(3) to states
(𝜔− ⊗ 𝜔+) ⊗ 𝜓′ and 𝜓0 ⊗ 𝜓 ⊗ 𝜓′ on A (1) ⊗ A (2) ⊗ A ′(3) . This transformation is
shown schematically in Figure 3.3. By Lemma 3.4.3 this gives two states which are
both 𝑔-close far from 0 to a pure factorized state 𝜓0⊗𝜓0⊗𝜓′0 on A (1) ⊗A (2) ⊗A ′(3) ,
for some MDP function 𝑔(𝑟) = 𝑂 (𝑟−∞). By Lemma 3.4.1 these states are related by
a conjugation with an almost local unitary. Applying the first two steps backwards,
we conclude that the two original states are related by an LGA generated by an almost
local observable.

A classification of invertible phases with symmetries
In this section we show that the index defined in Section 3 completely classifies
invertible phases of 1d bosonic lattice systems with unitary symmetries.

Theorem 55. A 𝐺-invariant invertible 1d state 𝜓 is in the trivial 𝐺-invariant phase
if and only if it has a trivial index.
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Figure 3.3: The sequence of steps that transforms 𝜓0 ⊗ 𝜓 ⊗ 𝜓′0 ⊗ 𝜓0 into (𝜔− ⊗
𝜔+) ⊗ 𝜓′0 ⊗ 𝜓0. The coloring in the same as in Figure 3.1.

In order to prove the theorem, we need the following result from representation
theory. Its proof can be found in various sources such as Theorem 4.4 in [38].

Lemma 3.4.7. Let 𝑉 be a finite dimensional faithful representation of a finite group
𝐺. For any irreducible representation𝑊 of 𝐺, 𝑑 (𝐿) = dim Hom𝐺 (𝑊,𝑉⊗𝐿) > 0 for
large enough 𝐿. Moreover, 𝑑 (𝐿) grows exponentially with 𝐿.

Proof of theorem. Let 𝑉 be a finite dimensional representation of 𝐺 whose subrep-
resentations contain every irreducible representation of 𝐺 (including the trivial one).
Such a 𝑉 always exists, with C[𝐺] being one example. Clearly 𝑉 is faithful. For
all 𝑗 ∈ Z, letV′

𝑗
= 𝑉 , A ′

𝑗
= E𝑛𝑑 (V′

𝑗
), and let A ′ be the norm-completion of ⊗ 𝑗A ′𝑗 .

Let 𝜓′ be a special 𝐺-invariant factorized pure state on A ′ (it exists because 𝑉
contains the trivial representation).

Further, for any 𝑗 ∈ Λ we pick a one-dimensional representation𝑊 𝑗 of 𝐺 (to be fixed
later) and let A ′′

𝑗
be the norm-completion of ⊗ 𝑗E𝑛𝑑 (𝑊 𝑗 ⊕ 𝑇𝑗 ), where 𝑇𝑗 ≃ C is the

trivial representation of 𝐺. We also choose normalized basis vectors 𝑤 𝑗 ∈ 𝑊 𝑗 and
𝑡 𝑗 ∈ 𝑇𝑗 . If we ignore the𝐺-action, then A ′′ corresponds to an infinite chain of qubits.
We denote by 𝜓′′ a 𝐺-invariant factorized pure state 𝜓′′ on A ′′ whose restriction to
A ′′
𝑗

is given by ⟨𝑤 𝑗 | · |𝑤 𝑗 ⟩. Note that 𝜓′′ is a special 𝐺-invariant factorized pure
state if and only if all𝑊 𝑗 are trivial representations.

We will show that with appropriate choice of representations 𝑊 𝑗 the state Ψ =

𝜓 ⊗ 𝜓′ ⊗ 𝜓′′ on A ⊗A ′ ⊗A ′′ tensored with a finite number of copies of factorized
pure states can be disentangled by a 𝐺-equivariant LGA (that is, can be mapped by
a 𝐺-equivariant LGA to a 𝐺-invariant factorized pure state). Since, as shown in
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Appendix A, any 𝐺-invariant factorized pure state is 𝐺-stably equivalent to a special
𝐺-invariant factorized pure state, this implies that 𝜓 is in a trivial 𝐺-invariant phase.

By Lemma 3.4.2 and [25], the state 𝜓 has the split property. Thus the von Neumann
algebraM>𝑘 = Π𝜓 (A>𝑘 )′′ on a half-line (𝑘,∞) is a Type I factor. In other words,
M>𝑘 is isomorphic to the algebra of bounded operators on a Hilbert spaceW>𝑘 . By
Remark 2 and triviality of the index, the operators𝑈𝑔

>𝑘
define a unitary representation

of 𝐺 onW>𝑘 . The split property also implies that 𝜓 restricted to (𝑘,∞) is a normal
state with a density matrix 𝜌𝑘 (a positive operator onW>𝑘 with unit trace). As the
restriction of 𝜓 to A>𝑘 is 𝐺-invariant, each eigenspace of 𝜌𝑘 is a representation of 𝐺.
Therefore, each summand in the direct sum decomposition ofW>𝑘 into irreducible
(necessarily finite dimensional) representations of 𝐺 is spanned by eigenvectors of
𝜌𝑘 with equal eigenvalues.

By Lemma 3.4.7 each of these irreducible summands is contained in 𝑉⊗𝐿 for large
enough 𝐿 with exponentially growing multiplicity (with respect to 𝐿). Therefore in
the same way as in Lemma 3.4.4 we can construct a 𝐺-invariant state on A>𝑘 ⊗A ′

>𝑘

which is 𝑓 -close to a 𝐺-invariant factorized pure state, has the same eigenvalues as
𝜌𝑘 , and the eigenspace for each eigenvalue transforms in the same representation of
𝐺 as the corresponding eigenspace of 𝜌𝑘 . Here 𝑓 (𝑟) = 𝑂 (𝑟−∞) is an MDP function
which depends only on the localization of the LGA which produces 𝜓 ⊗ 𝜓′ from
a pure factorized state and in particular is independent of 𝑘 . Therefore there is a
𝐺-invariant pure state Ξ(𝑘) on A ⊗A ′ that coincides with 𝜓 ⊗ 𝜓′ on (−∞, 𝑘], while
on (𝑘, +∞) it is 𝑓 -close far from 𝑘 to a 𝐺-invariant factorized pure state. In other
words, Ξ(𝑘) is a truncation of the invertible state 𝜓 ⊗ 𝜓′ to (−∞, 𝑘].

Similarly to the proof of Lemma 3.4.6 we can also define 𝐺-invariant states Ξ̃(𝑘)

on A (1) ⊗ A ′(1) ⊗ A (2) ⊗ A ′(2) which have the following properties: (1) Ξ̃(𝑘) is
pure factorized when restricted to (𝑘,∞), and (2) its restriction to (−∞, 𝑘] is a
purification of (𝜓 ⊗ 𝜓′) | (−∞,𝑘] by a state on A (2)

(−∞,𝑘] ⊗ A ′(2)(−∞,𝑘] which is 𝑔-close to
a pure factorized state for some 𝑔(𝑟) = 𝑂 (𝑟−∞) which depends only on 𝑓 . In the
following we assume that all states are tensored with a finite number of copies of
factorized states, so that all stable equivalences correspond to equivalences without
stabilization.

Let us fix 𝐿 ∈ N. By the proof of Lemma 3.4.6 the state Ξ̃(𝑘−𝐿) can be stably produced
from Ξ̃(𝑘) by first conjugation with an almost local at 𝑘 + 𝐿 unitary, producing a
𝐺-invariant state Θ̃(𝑘−𝐿) , followed by a conjugation with a unitary strictly local on
[𝑘, 𝑘 + 𝐿). Let |Ξ̃(𝑘)⟩ and |Θ̃(𝑘−𝐿)⟩ be vectors representing the states Ξ̃(𝑘) and Θ̃(𝑘−𝐿)
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in the GNS Hilbert space ȞΞ̃(𝑘 ) . The vector Ξ̃(𝑘) is the vacuum vector and thus
is 𝐺-invariant. The vector |Θ̃(𝑘−𝐿)⟩, in general, transforms in a one-dimensional
representation of 𝐺. We choose𝑊𝑘 to be the dual of this representation, while𝑊𝑙

for 𝑘 − 𝐿 < 𝑙 < 𝑘 to be the trivial representation.

For each 𝑘 ∈ Z let Υ(𝑘) be a pure factorized state on A ′′ which coincides with
𝜓′′ on (−∞, 𝑘] and whose restriction to A ′′

𝑗
, 𝑗 ∈ (𝑘, +∞), is given by ⟨𝑡 𝑗 | · |𝑡 𝑗 ⟩.

This state is 𝐺-invariant and restricts to pure factorized 𝐺-invariant states both on
(−∞, 𝑘] and on (𝑘, +∞). Thus Υ(𝑘−𝐿) can be obtained from Υ(𝑘) by a conjugation
with a strictly local at 𝑘 unitary. Therefore the vector |Υ(𝑘−𝐿)⟩ in the GNS Hilbert
space of the state Υ(𝑘) transforms in the representation 𝑊𝑘 . Consequently, the
vector |Θ̃(𝑘−𝐿) ⊗ Υ(𝑘−𝐿)⟩ ∈ ȞΞ̃(𝑘 )⊗Υ(𝑘 ) is 𝐺-invariant, just like the vacuum vector
|Ξ̃(𝑘) ⊗ Υ(𝑘)⟩. Therefore their arbitrary linear combinations are also 𝐺-invariant.

Let Ω𝑠, 𝑠 ∈ [0, 1], be the path of of vector states corresponding to the normalization
of the path of vectors 𝑠 |Ξ̃(𝑘) ⊗ Υ(𝑘)⟩ + (1 − 𝑠) |Θ̃(𝑘−𝐿) ⊗ Υ(𝑘−𝐿)⟩. By Corollary
3.4.1.2 there is an LGA 𝛼𝑃 generated by an almost local observable 𝑃(𝑠), such
that Ω𝑠 = 𝛼𝑃 (𝑠) (Ξ̃(𝑘) ⊗ Υ(𝑘)). Let 𝑃𝐺 (𝑠) be the observable obtained from 𝑃(𝑠)
by averaging over the group action. Then 𝑃𝐺 (𝑠) generates an automorphism 𝛼𝑃𝐺

which is 𝐺-equivariant, and since the state Ω𝑠 is 𝐺-invariant for all 𝑠, we still
have Ω𝑠 = 𝛼𝑃𝐺 (𝑠) (Ξ̃(𝑘) ⊗ Υ(𝑘)). The automorphism 𝛼𝑃𝐺 is a conjugation by
some 𝐺-invariant almost local unitary 𝑒𝑖G𝑘 which is ℎ′-localized at 𝑘 − 𝐿 for some
ℎ′(𝑟) = 𝑂 (𝑟−∞) which depends only on 𝑓 (𝑟). The state Θ̃(𝑘−𝐿) ⊗ Υ(𝑘−𝐿) can be
obtained from Ξ̃(𝑘) ⊗ Υ(𝑘) by conjugation with this observable.

A similar averaging argument shows that Ξ̃(𝑘−𝐿) ⊗ Υ(𝑘−𝐿) can be obtained from
Θ̃(𝑘−𝐿) ⊗ Υ(𝑘−𝐿) by a conjugation with a strictly local on (𝑘 − 𝐿, 𝑘] 𝐺-invariant
observable. Therefore, in the same way as in the proof of Lemma 3.4.6 and Theorem
54, by taking 𝐿 large enough we can construct a 𝐺-invariant LGA that disentangles
Ψ tensored with several factorized states.

Corollary 55.1. The index defines a group isomorphism betweenΦ∗
𝐺

and𝐻2(𝐺,𝑈 (1)).

Proof. In Section 3, we have shown that the index defines a group homomorphism
from Φ∗

𝐺
to 𝐻2(𝐺,𝑈 (1)). The MPS construction in Section 3 implies that the

homomorphism is surjective. Moreover, the theorem shows that this homomorphism
has trivial kernel. Therefore, it defines a group isomorphism.

Corollary 55.2. Every 𝐺-invariant invertible system is 𝐺-invertible.
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Proof. Let (A , 𝜓) be a𝐺-invariant invertible system. Construct another𝐺-invariant
system (A ′, 𝜓′) whose index is the group inverse to that of (A , 𝜓). This can be
done using to the Entangled Pair State construction in Section 3. The stacked system
(A ⊗ A ′, 𝜓 ⊗ 𝜓′) has trivial index according to the stacking rule shown in Section
3. The theorem implies that this stacked system is in the trivial 𝐺-invariant phase.
Hence, (A , 𝜓) is 𝐺-invertible.

[1] Anton Kapustin, Nikita Sopenko, and Bowen Yang. “A classification of
invertible phases of bosonic quantum lattice systems in one dimension”.
In: Journal of Mathematical Physics 62.8 (2021), p. 081901. doi: 10.
1063/5.0055996. url: https://doi.org/10.1063/5.0055996.
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C h a p t e r 4

STATIC LINEAR RESPONSE FOR QUANTUM SPIN SYSTEMS

4.1 Introduction
Condensed matter experiments often measure the linear response to a small local
perturbation of a system in thermodynamic equilibrium in order to gain information
about the unperturbed system. One of the simplest quantities to measure is the static
response [39] to an infinitesimal perturbation 𝐻 → 𝐻 +𝜆𝐵 on the Hamiltonian by an
observable 𝐵. The change in the equilibrium expectation value of an observable 𝐴 is
determined by a function ⟨⟨𝐴, 𝐵⟩⟩ called Kubo’s canonical correlation function. It is
natural to measure the rate at which this function decays with respect to the spatial
distance between 𝐴 and 𝐵. In the theoretical study of quantum many body systems,
knowledge of this decay rate is important. For example, the assignment of a local
temperature to a subsystem relies crucially on the exponential decay of canonical
correlators [40]. Another example is the proof of the energy Bloch’s theorem [41]
which assumes a fast enough decay rate as well.

A study of decay rates of canonical correlators in general quantum systems is,
therefore, warranted. While there has been some progress for finite quantum spin
system at high temperature (see [40]), our understanding of the topic is far from
complete. On the other hand, a lot is known about ordinary correlation functions
and their decay in thermal states. In 1969, Araki [42] proved the exponential and
uniform clustering of ordinary correlators for one dimensional quantum spin chains
at positive temperature. The clustering of ordinary correlators has been proved for
certain higher dimensional spin systems, both classical [43] and quantum [44]. It
would be interesting to prove analogous results for canonical correlators. There
could be two applications if such results exist. Firstly, it would justify the theoretical
assumptions about rapid decay of canonical correlators away from phase transition.
Secondly, near a continuous phase transition, ordinary correlators have power-like
decay. The exponents of the decay rates are believed to be universal. A natural
question is whether this translates into power-like decay with the same exponents for
canonical correlators. The answer is affirmative for classical systems where ordinary
and canonical correlators are exactly equal. It would be interesting to verify if this
result holds also for quantum systems at positive temperature.
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In this chapter we prove such results in the framework of infinite-volume quantum
spin systems at positive temperature. We believe our methods can be adapted to
many other discrete or continuous models.

4.2 Setup and statement of the main result
Setup and notation
We consider a quantum spin system defined on an infinite discrete metric space
(Γ, 𝑑). Let 𝑃0(Γ) be the set of finite subsets of Γ. For a finite subset 𝑋 ∈ P0(Γ), we
define 𝐵𝑟 (𝑋) = {𝑦 ∈ Γ : 𝑑 (𝑦, 𝑋) < 𝑟}. We also assume there is a constant 𝐷 > 0,
such that for all 𝑋 ∈ P0(Γ) there exists 𝐶 > 0 with

|𝐵𝑟 (𝑋) | ≤ 𝐶 |𝑋 | (1 + 𝑟)𝐷 . (4.1)

The algebra of local observables is

Aloc = lim−−→
𝑋∈P0 (Γ)

⊗
𝑥∈𝑋

𝑀𝑑𝑥 , (4.2)

where 𝑀𝑑𝑥 is the algebra of 𝑑𝑥 × 𝑑𝑥 matrices with sup𝑥∈𝑋 𝑑𝑥 < ∞. We also denote⊗
𝑥∈𝑋 𝑀𝑑𝑥 by A𝑋 for all 𝑋 ∈ P0(Γ). The 𝐶∗-algebra A of quasi-local observables

is the norm completion of Aloc. For 𝐴 ∈ Aloc, its support supp 𝐴 is the smallest
𝑋 ∈ P0(Γ) such that 𝐴 ∈ A𝑋 .

In a system of finite volume, time evolution is generated by a self-adjoint operator
called the Hamiltonian. This is replaced by an interaction in an infinite-volume system.
An interaction Φ is a function from P0(Γ) to A such that Φ(𝑋) = Φ(𝑋)∗ ∈ A𝑋 . In
order to determine a time evolution on the infinite system, an interaction has to be
reasonably local. Mathematically, this translates into a decay condition on ∥Φ(𝑋)∥
as 𝑋 grows in size. Various viable conditions have been explored by others (see [45,
44, 46, 47]). For clarity we shall follow a single convention and assume for all 𝑥 ∈ Γ
the following holds for some positive constants 𝜇 and 𝑣:∑︁

𝑍∋𝑥
∥Φ(𝑍)∥ |𝑍 |exp(𝜇diam(𝑍)) ≤ 𝑣/2 < ∞, (4.3)

where diam(𝑍) = max𝑦,𝑧∈𝑍 𝑑 (𝑦, 𝑧) for 𝑍 ∈ P0(Γ). Under this condition, we are
able to determine an infinite-volume time evolution 𝜏 : R→ Aut(A ) as a strongly
continuous one-parameter group of 𝐶∗-algebra automorphisms. Specifically, it is
shown (see [48, 49, 50, 51]) that for all 𝐴 in a dense subset of A , the following limit
is well-defined

𝛿(𝐴) = lim
|Λ|→∞

∑︁
𝑋⊂Λ
[Φ(𝑋), 𝐴], (4.4)
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where Λ ∈ P0(Γ) grows to eventually include any point in Γ. Then 𝜏𝑡 is obtained on
a dense subset by the exponentiation of 𝛿 through a Taylor series. The convergence of
both 𝛿 and 𝜏 are shown in the references above. In particular, 𝜏𝑡 (𝐴) is differentiable
with respect to 𝑡 ∈ R for all 𝐴 ∈ Aloc (see Lemma 3.3.5 in [51]). We will use this
fact later.

When working with the algebra of observables (instead of the Hilbert space of pure
states), a state 𝜙 : A −→ C is a positive linear functional of norm 1, or equivalently
𝜙 is bounded with ∥𝜙∥ = 𝜙(1) = 1. This immediately implies that for any observable
𝐴 ∈ A , we have a bound |𝜙(𝐴) | ≤ ∥𝐴∥ .

Given a time evolution 𝜏 and an inverse temperature 𝛽 ∈ [0,∞], a state 𝜙 is called
𝛽-KMS 1 if for all 𝐴, 𝐵 ∈ A𝑙𝑜𝑐 there exists a function 𝐹𝐴,𝐵 (𝑡) which is holomorphic
on the open strip 𝑆𝛽 = {𝑧 ∈ C : 0 < Im𝑧 < 𝛽}, and bounded and continuous on 𝑆𝛽,
such that

𝐹𝐴,𝐵 (𝑡) = 𝜙(𝐴𝜏𝑡 (𝐵)) (4.5)

and
𝐹𝐴,𝐵 (𝑡 + 𝑖𝛽) = 𝜙(𝜏𝑡 (𝐵)𝐴), (4.6)

for all 𝑡 ∈ R. For 𝛽 > 0 the KMS condition implies that 𝜙 is invariant under the
automorphisms 𝜏 [49]. The KMS states are well studied as an infinite-volume
thermal state at temperature 𝑇 = 1/𝛽. In particular, it has been shown [52] that such
a state always exists in a quantum spin system for any 𝛽. More detailed exposition on
the topic can be found in [49, 50] . For a fixed 𝛽-KMS state the ordinary and Kubo’s
canonical correlators are respectively

⟨𝐴, 𝐵⟩𝜙 = 𝜙(𝐴𝐵) − 𝜙(𝐴)𝜙(𝐵) (4.7)

and
⟨⟨𝐴, 𝐵⟩⟩𝜙 =

1
𝛽

∫ 𝛽

0
𝐹𝐴,𝐵 (𝑖𝑏)𝑑𝑏 − 𝜙(𝐴)𝜙(𝐵). (4.8)

Main result
Given a KMS state at positive temperature, we establish spatial decay for its canonical
correlators assuming spatial decay for the ordinary correlators. Only two other
ingredients are needed: approximate locality (see the next section) and the KMS
condition. The large number of existing results on correlators decays often come in
two forms: exponential clustering or power-like decay (see [44, 46, 47, 42, 43, 40,

1KMS stands for Kubo-Martin-Schwinger.
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53]). We choose to use a general monotone decreasing function 𝑔 : R≥0 → R≥0 as
the decay rate instead. While this has the benefit of generality, it may appear opaque
for applications. Thus, we also discuss our result for 𝑔(𝑙) = 𝑒−𝑙/𝜉 and 𝑔(𝑙) = 𝑙−𝑛

with some 𝑛, 𝜉 > 0.

Theorem 1. In a quantum spin system as defined above, let 𝜙 be a 𝛽-KMS state with
0 < 𝛽 < ∞. Given 𝑋,𝑌 ∈ P0(Γ) with 𝑙 = 𝑑 (𝑋,𝑌 ) > 0, if for all 𝐴 ∈ A𝑋 , 𝐵 ∈ A𝑌 ,

|⟨𝐴, 𝐵⟩𝜙 | ≤ 𝑐 ∥𝐴∥ ∥𝐵∥min{|𝑋 |, |𝑌 |}𝑔(𝑙), (4.9)

where 𝑐 is a constant, then

|⟨⟨𝐴, 𝐵⟩⟩𝜙 | ≤ 𝑐′ ∥𝐴∥ ∥𝐵∥min{|𝑋 |2, |𝑌 |2}𝑔′(𝑙), (4.10)

where 𝑐′ is another constant and 𝑔′(𝑙) is 𝑔(𝑙/4) or 𝑒−𝜇𝑙/2 whichever one has slower
decay. In particular, if 𝑔(𝑙) = 𝑙−𝑛 then 𝑔′(𝑙) = 𝑙−𝑛. If 𝑔(𝑙) = 𝑒−𝑙/𝜉 , then 𝑔′(𝑙) = 𝑒−𝑙/𝜉′

where 𝜉′ is another constant independent of 𝐴, 𝐵, and 𝑙.

4.3 Approximate locality
Locality in a physical system broadly refers to a limit on the propagation speed of
information. In relativistic systems, no information is allowed to travel faster than the
speed of light. However, non-relativistic systems often do not possess such a sharp
bound. Nevertheless, an approximate version of locality can emerge in a multitude
of many body systems. In this section, we first define approximate locality for a
quantum spin system. Then we state the Lieb-Robinson bounds which guarantees
approximate locality for the spin systems considered in this chapter.

Definition 56. In a quantum spin system with time evolution 𝜏, we say the system is
approximately local if for any 𝐴 ∈ A𝑋 and 𝑟 > 0, there exists a family of operators
𝐴𝑟 (𝑡) ∈ A𝐵𝑟 (𝑋) differentiable with respect to 𝑡 ∈ R, such that 𝐴𝑟 (0) = 𝐴 and

∥𝜏𝑡 (𝐴) − 𝐴𝑟 (𝑡)∥ ≤ 𝑐 ∥𝐴∥ |𝑋 |𝑒−2𝜇𝑟 (𝑒𝑣 |𝑡 | − 1), (4.11)

where 𝑐, 𝜇, 𝑣 are positive absolute constants.

Remark 57. The condition can be interpreted as a bound on information leaked
out of an effective light-cone. In relativistic field theory, the condition above holds
without any leakage.

It turns out many non-relativistic quantum spin systems possess approximate locality.
This fact was originally observed by Lieb and Robinson in [54] and became known
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as the Lieb-Robinson bounds. There exists many improved versions of this result for
example in [55, 45, 47, 56] just to name a few. Below, we state a version discussed
in [55].

Theorem 2. In a quantum spin system on (Γ, 𝑑), assume the interaction Φ is such
that for all 𝑥 ∈ Γ, the following holds:∑︁

𝑍∋𝑥
∥Φ(𝑍)∥ |𝑍 |exp(𝜇diam(𝑍)) ≤ 𝑣/2 < ∞, (4.12)

for some positive constants 𝑐, 𝜇, and 𝑣. Let 𝐴, 𝐵 be operators supported on sets 𝑋,𝑌 ,
respectively. Then, if 𝑙 = 𝑑 (𝑋,𝑌 ) > 0,

∥ [𝐵, 𝜏𝑡 (𝐴)] ∥ ≤ 𝑐 ∥𝐴∥ ∥𝐵∥min( |𝑋 |, |𝑌 |)𝑒−𝜇𝑙 (𝑒𝑣 |𝑡 | − 1). (4.13)

Proposition 58. A spin system satisfying the Lieb-Robinson bounds possesses
approximate locality and vice versa.

Proof. (⇒): Given quasi-local 𝐴 ∈ A and 𝑋 ∈ P0(Γ), we define for an integer
𝑛 > 0

T 𝑛𝑋 (𝐴) =
∫
𝐵𝑛 (𝑋)\𝑋

𝑑𝑈𝑈𝐴𝑈†, (4.14)

where the integral is over all unitary matrices of the form𝑈 =
⊗

𝑥∈𝐵𝑛 (𝑋)\𝑋 𝑈𝑥 with
𝑈𝑥 ∈ A{𝑥} using the Haar measure. We also assume the Haar measure in the integral
is normalized so that

∥T 𝑛𝑋 (𝐴)∥ ≤
∫
𝐵𝑛 (𝑋)\𝑋

𝑑𝑈∥𝑈𝐴𝑈†∥ = ∥𝐴∥
∫
𝐵𝑛 (𝑋)\𝑋

𝑑𝑈 = ∥𝐴∥. (4.15)

Moreover, {T 𝑛
𝑋
(𝐴)}𝑛 is a Cauchy sequence: given 𝜀 > 0, there exists 𝑇 ∈ Aloc such

that ∥𝑇 − 𝐴∥ < 𝜀/2. For any large 𝑚, 𝑛 such that supp 𝑇 ⊂ 𝐵𝑛 (𝑋) and 𝑚 > 𝑛,

∥T𝑚𝑋 (𝐴) − T
𝑛
𝑋 (𝐴)∥

≤
∫
𝐵𝑛 (𝑋)\𝑋

𝑑𝑈∥𝑈 (T𝑚−𝑛
𝐵𝑛 (𝑋) (𝐴) − 𝐴)𝑈

†∥

=





∫
𝐵𝑚 (𝑋)\𝐵𝑛 (𝑋)

𝑑𝑊𝑊𝐴𝑊† − 𝑇 + 𝑇 − 𝐴






≤




∫

𝐵𝑚 (𝑋)\𝐵𝑛 (𝑋)
𝑑𝑊𝑊 (𝐴 − 𝑇)𝑊†





 + ∥𝑇 − 𝐴∥ < 𝜀, (4.16)

where the last step relies on the fact [𝑇,𝑊] = 0 for all 𝑊 ∈ A𝐵𝑚 (𝑋)\𝐵𝑛 (𝑋) . Let
T𝑋 (𝐴) = lim𝑛→∞ T 𝑛𝑋 (𝐴). It is easy to see that

∥T𝑋 (𝐴)∥ ≤ ∥𝐴∥. (4.17)
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Thus T𝑋 is a bounded linear operator on A .

We are now ready to show approximate locality. Given 𝐴 ∈ A𝑋 and 𝑟 > 0, we define

𝐴𝑟 (𝑡) = T𝐵𝑟 (𝑋) (𝜏𝑡 (𝐴)), (4.18)

and for 𝑛 > 𝑟,
𝐴𝑟𝑛 (𝑡) = T 𝑛−𝑟𝐵𝑟 (𝑋) (𝜏𝑡 (𝐴)), (4.19)

Clearly 𝐴𝑟 (0) = 𝐴. From (4.17),

∥𝐴𝑟 (𝑡)∥ ≤ ∥𝐴∥. (4.20)

Since𝑈𝜏𝑡 (𝐴)𝑈† = 𝜏𝑡 (𝐴) +𝑈 [𝜏𝑡 (𝐴),𝑈†], Theorem 2 implies

𝜏𝑡 (𝐴) − 𝐴𝑟𝑛 (𝑡)

 ≤ ∫
𝐵𝑛 (𝑋)\𝐵𝑟 (𝑋)

𝑑𝑈


[𝑈†, 𝜏𝑡 (𝐴)]

 ≤ 𝑐∥𝐴∥𝑒−𝜇𝑟 (𝑒𝑣 |𝑡 | − 1). (4.21)

Let 𝑛→∞ on both sides, we have

∥𝜏𝑡 (𝐴) − 𝐴𝑟 (𝑡)∥ ≤ 𝑐∥𝐴∥𝑒−𝜇𝑟 (𝑒𝑣 |𝑡 | − 1). (4.22)

As 𝜏𝑡 (𝐴) is differentiable with respect to 𝑡 for local 𝐴 ∈ A𝑋 and T𝐵𝑟 (𝑋) is bounded
and linear, 𝐴𝑟 (𝑡) = T𝐵𝑟 (𝑋) (𝜏𝑡 (𝐴)) is also differentiable.

(⇐): Given 𝐴 ∈ A𝑋 , 𝐵 ∈ A𝑌 with 𝑙 = 𝑑 (𝑋,𝑌 ) > 0, we can take 𝑟 = 𝑙/2 and deduce
from approximate locality the following:

∥ [𝐵, 𝜏𝑡 (𝐴)] ∥ ≤ ∥[𝐵, 𝜏𝑡 (𝐴) − 𝐴𝑟 (𝑡)] ∥ ≤ 𝑐 ∥𝐴∥ ∥𝐵∥ |𝑌 |𝑒−𝜇𝑙 (𝑒𝑣 |𝑡 | − 1), (4.23)

where we assume min( |𝑋 |, |𝑌 |) = |𝑌 | without loss of generality. In the first step, we
used the fact [𝐵, 𝐴𝑟 (𝑡)] = 0 for 𝑟 = 𝑙/2.

4.4 Proof of main result
By the KMS condition, 𝑓 (𝑧) := 𝐹𝐴,𝐵 (𝑧) is bounded and analytic on 𝑆𝛽. At positive
temperature 𝛽 is finite, so the interval [0, 𝛽] is compact. It is, therefore, sufficient
to establish the desired decay for the integrand 𝑓 (𝑖𝑏) − 𝜙(𝐴)𝜙(𝐵). As long as the
bound is uniform in 𝑏 ∈ [0, 𝛽], it survives after the integration. This approach would
not apply to systems at zero temperature where 𝛽 = ∞.
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𝑥 = Re(𝑧)

𝑦 = Im(𝑧)

𝑖𝛽

𝑇𝑂−𝑇

Contour Integration
Fix 𝑏 ∈ (0, 𝛽) and let 𝑤(𝑧) = 𝑒−𝑧2−𝑏2 . The function 𝑤 is bounded and analytic on
the strip 𝑆𝛽. Its exponent is conveniently chosen so that 𝑤(𝑖𝑏) = 1. We integrate the
function 𝑓 (𝑧)𝑤(𝑧)

𝑧−𝑖𝑏 along the contour Γ𝑇 shown on the figure above. By an extended
version of the residue theorem [57],

2𝜋𝑖 𝑓 (𝑖𝑏)𝑤(𝑖𝑏) =
∫
Γ𝑇

𝑓 (𝑧)𝑤(𝑧)
(𝑧 − 𝑖𝑏) 𝑑𝑧

=

∫ 𝑇

−𝑇

𝑓 (𝑡)𝑤(𝑡)
𝑡 − 𝑖𝑏 𝑑𝑥 + 𝑖

∫ 𝛽

0

𝑓 (𝑇 + 𝑖𝑦)𝑤(𝑇 + 𝑖𝑦)
𝑇 + 𝑖𝑦 − 𝑖𝑏 𝑑𝑦

−
∫ 𝑇

−𝑇

𝑓 (𝑡 + 𝑖𝛽)𝑤(𝑡 + 𝑖𝛽)
𝑡 + 𝑖𝛽 − 𝑖𝑏 𝑑𝑡 − 𝑖

∫ 𝛽

0

𝑓 (−𝑇 + 𝑖𝑦)𝑤(−𝑇 + 𝑖𝑦)
−𝑇 + 𝑖𝑦 − 𝑖𝑏 𝑑𝑦.

(4.24)

𝑓 (𝑧) and 𝑤(𝑧) are bounded on 𝑆𝛽, therefore, the 2nd and 4th terms vanish as 𝑇 →∞.

𝑓 (𝑖𝑏) = 1
2𝜋𝑖

( ∫ ∞

−∞

𝑓 (𝑡)𝑤(𝑡)
𝑡 − 𝑖𝑏 𝑑𝑡 −

∫ ∞

−∞

𝑓 (𝑡 + 𝑖𝛽)𝑤(𝑡 + 𝑖𝛽)
𝑡 + 𝑖𝛽 − 𝑖𝑏 𝑑𝑡

)
=

1
2𝜋𝑖

∫ ∞

−∞

𝑤(𝑡) 𝑓 (𝑡) (𝑡 + 𝑖𝛽 − 𝑖𝑏) − 𝑤(𝑡 + 𝑖𝛽) 𝑓 (𝑡 + 𝑖𝛽) (𝑡 − 𝑖𝑏)
(𝑡 − 𝑖𝑏) (𝑡 + 𝑖𝛽 − 𝑖𝑏) 𝑑𝑡

=
1

2𝜋𝑖

∫ ∞

−∞

𝑤(𝑡 + 𝑖𝛽) ( 𝑓 (𝑡) − 𝑓 (𝑡 + 𝑖𝛽))
𝑡 + 𝑖𝛽 − 𝑖𝑏 𝑑𝑡

+ 1
2𝜋𝑖

∫ ∞

−∞

𝑤(𝑡) 𝑓 (𝑡)𝑖𝛽 + (𝑤(𝑡) − 𝑤(𝑡 + 𝑖𝛽)) 𝑓 (𝑡) (𝑡 − 𝑖𝑏)
(𝑡 − 𝑖𝑏) (𝑡 + 𝑖𝛽 − 𝑖𝑏) 𝑑𝑡

=
1

2𝜋𝑖

∫ ∞

−∞

𝑤(𝑡 + 𝑖𝛽)𝜙( [𝐴, 𝜏𝑡 (𝐵)])
𝑡 + 𝑖𝛽 − 𝑖𝑏 𝑑𝑡

+ 1
2𝜋𝑖

∫ ∞

−∞

𝑤(𝑡) 𝑓 (𝑡)𝑖𝛽 + (𝑤(𝑡) − 𝑤(𝑡 + 𝑖𝛽)) 𝑓 (𝑡) (𝑡 − 𝑖𝑏)
(𝑡 − 𝑖𝑏) (𝑡 + 𝑖𝛽 − 𝑖𝑏) 𝑑𝑡, (4.25)
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where in the last equality we used the fact 𝑓 (𝑡 + 𝑖𝛽) = 𝜙(𝜏𝑡 (𝐵)𝐴). If we substitute
𝐴 = 𝐼, the above identity reduces to

1
2𝜋𝑖

∫ ∞

−∞

𝑤(𝑡)𝜙(𝐵)𝑖𝛽 + (𝑤(𝑡) − 𝑤(𝑡 + 𝑖𝛽))𝜙(𝐵) (𝑡 − 𝑖𝑏)
(𝑡 − 𝑖𝑏) (𝑡 + 𝑖𝛽 − 𝑖𝑏) 𝑑𝑡 = 𝜙(𝐵), (4.26)

or
1

2𝜋𝑖

∫ ∞

−∞

𝑤(𝑡)𝑖𝛽 + (𝑤(𝑡) − 𝑤(𝑡 + 𝑖𝛽)) (𝑡 − 𝑖𝑏)
(𝑡 − 𝑖𝑏) (𝑡 + 𝑖𝛽 − 𝑖𝑏) 𝑑𝑡 = 1. (4.27)

This identity can be verified more directly using the residue theorem bearing in mind
that 𝑤(𝑖𝑏) = 1. With this identity we write

𝑓 (𝑖𝑏) − 𝜙(𝐴)𝜙(𝐵)

=
1

2𝜋𝑖

∫ ∞

−∞

𝑤(𝑡 + 𝑖𝛽)𝜙( [𝐴, 𝜏𝑡 (𝐵)])
𝑡 + 𝑖𝛽 − 𝑖𝑏 𝑑𝑡

+ 1
2𝜋𝑖

∫ ∞

−∞

𝑤(𝑡) ( 𝑓 (𝑡) − 𝜙(𝐴)𝜙(𝐵))𝑖𝛽 + (𝑤(𝑡) − 𝑤(𝑡 + 𝑖𝛽)) ( 𝑓 (𝑡) − 𝜙(𝐴)𝜙(𝐵)) (𝑡 − 𝑖𝑏)
(𝑡 − 𝑖𝑏) (𝑡 + 𝑖𝛽 − 𝑖𝑏) 𝑑𝑡

=
1

2𝜋𝑖

∫ ∞

−∞

𝑤(𝑡 + 𝑖𝛽)𝜙( [𝐴, 𝜏𝑡 (𝐵)])
𝑡 + 𝑖𝛽 − 𝑖𝑏 𝑑𝑡

+ 1
2𝜋𝑖

∫ ∞

−∞

⟨𝐴, 𝜏𝑡 (𝐵)⟩𝜙 (𝑤(𝑡)𝑖𝛽 + (𝑤(𝑡) − 𝑤(𝑡 + 𝑖𝛽)) (𝑡 − 𝑖𝑏))
(𝑡 − 𝑖𝑏) (𝑡 + 𝑖𝛽 − 𝑖𝑏) 𝑑𝑡. (4.28)

Therefore,

2𝜋 |𝜙(𝜏−𝑖𝑏 (𝐴)𝐵) − 𝜙(𝐴)𝜙(𝐵) |

≤
���� ∫ ∞

−∞

𝑤(𝑡 + 𝑖𝛽)𝜙( [𝐴, 𝜏𝑡 (𝐵)])
𝑡 + 𝑖𝛽 − 𝑖𝑏 𝑑𝑡

����
+

���� ∫ ∞

−∞

⟨𝐴, 𝜏𝑡 (𝐵)⟩𝜙𝑤(𝑡)
(𝑡 − 𝑖𝑏) 𝑑𝑡

����
+

���� ∫ ∞

−∞

⟨𝐴, 𝜏𝑡 (𝐵)⟩𝜙𝑤(𝑡 + 𝑖𝛽)
(𝑡 + 𝑖𝛽 − 𝑖𝑏) 𝑑𝑡

����. (4.29)

We proceed to bound each term separately. Throughout the next sections, we absorb
all constant coefficients into a symbol 𝑐. Thus 𝑐 may change from step to step.
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First Term
The decay for this term relies completely on approximate locality:���� ∫ ∞

−∞

𝑤(𝑡 + 𝑖𝛽)𝜙( [𝐴, 𝜏𝑡 (𝐵)])
𝑡 + 𝑖𝛽 − 𝑖𝑏 𝑑𝑡

����
≤

∫ 𝜇𝑙/2𝑣

−𝜇𝑙/2𝑣

|𝑤(𝑡 + 𝑖𝛽) | ∥ [𝐴, 𝜏𝑡 (𝐵)] ∥
|𝑡 + 𝑖𝛽 − 𝑖𝑏 | 𝑑𝑡

+
∫
|𝑡 |>𝜇𝑙/2𝑣

|𝑤(𝑡 + 𝑖𝛽) | ∥ [𝐴, 𝜏𝑡 (𝐵)] ∥
|𝑡 + 𝑖𝛽 − 𝑖𝑏 | 𝑑𝑡

≤
∫ 𝜇𝑙/2𝑣

−𝜇𝑙/2𝑣

|𝑤(𝑡 + 𝑖𝛽) | ∥ [𝐴, 𝜏𝑡 (𝐵)] ∥
|𝑡 | 𝑑𝑡

+ 2 ∥𝐴∥ ∥𝐵∥
∫
|𝑡 |>𝜇𝑙/2𝑣

|𝑤(𝑡 + 𝑖𝛽) |
|𝑡 | 𝑑𝑡. (4.30)

Finally we substitute |𝑤(𝑡 + 𝑖𝛽) | = 𝑒−𝑡2+𝛽2−𝑏2 and then use approximate locality (or
the Lieb-Robinson bounds) to show exponential decay:

𝑒𝛽
2−𝑏2

∫ 𝜇𝑙/2𝑣

−𝜇𝑙/2𝑣

∥ [𝐴, 𝜏𝑡 (𝐵)] ∥
|𝑡 | 𝑒−𝑡

2
𝑑𝑡

≤𝑐 ∥𝐴∥ ∥𝐵∥min( |𝑋 |, |𝑌 |)𝑒𝛽2−𝜇𝑙
∫ 𝜇𝑙/2𝑣

0

𝑒𝑣𝑡 − 1
𝑡

𝑒−𝑡
2
𝑑𝑡

≤𝑐 ∥𝐴∥ ∥𝐵∥min( |𝑋 |, |𝑌 |)𝑒𝛽2−𝜇𝑙
( ∫ 1

0

𝑒𝑣𝑡 − 1
𝑡

𝑒−𝑡
2
𝑑𝑡 +

∫ 𝜇𝑙/2𝑣

1
𝑒𝑣𝑡𝑑𝑡

)
=𝑐 ∥𝐴∥ ∥𝐵∥min( |𝑋 |, |𝑌 |)𝑒𝛽2−𝜇𝑙

( ∫ 1

0

𝑒𝑣𝑡 − 1
𝑡

𝑒−𝑡
2
𝑑𝑡 + 𝑒

𝜇𝑙/2

𝑣
+ 𝑒

𝑣

𝑣

)
≤𝑐 ∥𝐴∥ ∥𝐵∥min( |𝑋 |, |𝑌 |)𝑒−𝜇𝑙/2. (4.31)

The second integral becomes

4 ∥𝐴∥ ∥𝐵∥
∫
𝑡>𝜇𝑙/2𝑣

𝑒𝛽
2−𝑏2−𝑡2

𝑡
𝑑𝑡

≤𝑐 ∥𝐴∥ ∥𝐵∥
∫
𝑡>𝜇𝑙/2𝑣

𝑒−𝑡
2

𝑡
𝑑𝑡. (4.32)

This decays exponentially in 𝑙2 which is faster than the previous integral, so overall���� ∫ ∞

−∞

𝑤(𝑡 + 𝑖𝛽)𝜙( [𝐴, 𝜏𝑡 (𝐵)])
𝑡 + 𝑖𝛽 − 𝑖𝑏 𝑑𝑡

���� ≤ 𝑐 ∥𝐴∥ ∥𝐵∥min( |𝑋 |, |𝑌 |)𝑒−𝜇𝑙/2. (4.33)

Note this term decays exponentially with 𝑙 regardless of the rate of decay assumed
for the ordinary correlator. The bound obtained is manifestly independent of 𝑏.



81

Second and Third Terms
Bounding the second and third terms similar, so we only provide the detail of the
former: ���� ∫ ∞

−∞

⟨𝐴, 𝜏𝑡 (𝐵)⟩𝜙𝑤(𝑡)
𝑡 − 𝑖𝑏 𝑑𝑡

����
≤
���� ∫ 𝜇𝑙/2𝑣

−𝜇𝑙/2𝑣

⟨𝐴, 𝜏𝑡 (𝐵)⟩𝜙𝑤(𝑡)
𝑡 − 𝑖𝑏 𝑑𝑡

����
+ 2 ∥𝐴∥ ∥𝐵∥

∫
|𝑡 |>𝜇𝑙/2𝑣

|𝑤(𝑡) |
|𝑡 | 𝑑𝑡. (4.34)

We have used the simple bound |⟨𝐴, 𝜏𝑡 (𝐵)⟩𝜙 | = |𝜙(𝐴𝜏𝑡 (𝐵)) − 𝜙(𝐴)𝜙(𝐵) | ≤
∥𝐴𝜏𝑡 (𝐵)∥ + ∥𝐴∥ ∥𝐵∥ ≤ 2 ∥𝐴∥ ∥𝐵∥ for the last step.

Since 𝑤(𝑡) = 𝑒−𝑡2−𝑏2 , the second integral clearly decays exponentially with respect
to 𝑙2.

By approximate locality, let 𝐵3𝑙/4(𝑡) be the local approximation to 𝜏𝑡 (𝐵). Then���� ∫ 𝜇𝑙/2𝑣

−𝜇𝑙/2𝑣

𝑤(𝑡)
𝑡 − 𝑖𝑏 ⟨𝐴, 𝜏𝑡 (𝐵)⟩𝜙𝑑𝑡

����
=

���� ∫ 𝜇𝑙/2𝑣

−𝜇𝑙/2𝑣

𝑤(𝑡)
𝑡 − 𝑖𝑏

(
⟨𝐴, 𝐵3𝑙/4(𝑡)⟩𝜙 + 𝜙(𝐴(𝜏𝑡 (𝐵) − 𝐵3𝑙/4(𝑡))) − 𝜙(𝐴)𝜙((𝜏𝑡 (𝐵) − 𝐵3𝑙/4(𝑡)))

)
𝑑𝑡

����
≤
���� ∫ 𝜇𝑙/2𝑣

−𝜇𝑙/2𝑣

𝑤(𝑡)
𝑡 − 𝑖𝑏 ⟨𝐴, 𝐵

3𝑙/4(𝑡)⟩𝜙𝑑𝑡
���� + 2 ∥𝐴∥

∫ 𝜇𝑙/2𝑣

−𝜇𝑙/2𝑣

|𝑤(𝑡) |
|𝑡 − 𝑖𝑏 |




𝜏𝑡 (𝐵) − 𝐵3𝑙/4(𝑡)



 𝑑𝑡.

(4.35)

By approximate locality, the second integral is bounded as follows,

2 ∥𝐴∥
∫ 𝜇𝑙/2𝑣

−𝜇𝑙/2𝑣

|𝑤(𝑡) |
|𝑡 − 𝑖𝑏 |




𝜏𝑡 (𝐵) − 𝐵3𝑙/4(𝑡)



 𝑑𝑡

≤2 ∥𝐴∥
∫ 𝜇𝑙/2𝑣

−𝜇𝑙/2𝑣

𝑒−𝑡
2

|𝑡 |




𝜏𝑡 (𝐵) − 𝐵3𝑙/4(𝑡)



 𝑑𝑡

≤𝑐 ∥𝐴∥ ∥𝐵∥min( |𝑋 |, |𝑌 |)𝑒−3𝜇𝑙/2
∫ 𝜇𝑙/2𝑣

0

𝑒𝑣𝑡 − 1
𝑡

𝑒−𝑡
2
𝑑𝑡

≤𝑐 ∥𝐴∥ ∥𝐵∥min( |𝑋 |, |𝑌 |)𝑒−3𝜇𝑙/2
( ∫ 1

0

𝑒𝑣𝑡 − 1
𝑡

𝑒−𝑡
2
𝑑𝑡 + 𝑒

𝜇𝑙/2

𝑣
+ 𝑒

𝑣

𝑣

)
≤𝑐 ∥𝐴∥ ∥𝐵∥min( |𝑋 |, |𝑌 |)𝑒−𝜇𝑙 . (4.36)

We are now left with ���� ∫ 𝜇𝑙/2𝑣

−𝜇𝑙/2𝑣

𝑒−𝑡
2−𝑏2

𝑡 − 𝑖𝑏 ⟨𝐴, 𝐵
3𝑙/4(𝑡)⟩𝜙𝑑𝑡

����, (4.37)
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whose decay rate depends on 𝑔 the decay rates of ordinary correlators.

By (4.9), we have

|⟨𝐴, 𝐵3𝑙/4(𝑡)⟩𝜙 | ≤ 𝑐min( |𝑋 |, |𝑌 |) ∥𝐴∥ ∥𝐵∥ 𝑔(𝑙/4). (4.38)

Remark 59. We have min( |𝑋 |, |𝑌 |) above instead of |𝑋 | because we could have
switched the roles of 𝐴 and 𝐵 in the entire proof.

Now, we fix an 𝜖 > 0 and estimate���� ∫ 𝜇𝑙/2𝑣

−𝜇𝑙/2𝑣

𝑒−𝑡
2−𝑏2

𝑡 − 𝑖𝑏 ⟨𝐴, 𝐵
3𝑙/4(𝑡)⟩𝜙𝑑𝑡

����
=

���� ∫ 𝜇𝑙/2𝑣

0

𝑒−𝑡
2−𝑏2

𝑡 − 𝑖𝑏 ⟨𝐴, 𝐵
3𝑙/4(𝑡)⟩𝜙 −

𝑒−𝑡
2−𝑏2

𝑡 + 𝑖𝑏 ⟨𝐴, 𝐵
3𝑙/4(−𝑡)⟩𝜙𝑑𝑡

����
≤
���� ∫ 𝜖

0

𝑒−𝑡
2−𝑏2

𝑡 − 𝑖𝑏 ⟨𝐴, 𝐵
3𝑙/4(𝑡)⟩𝜙 −

𝑒−𝑡
2−𝑏2

𝑡 + 𝑖𝑏 ⟨𝐴, 𝐵
3𝑙/4(−𝑡)⟩𝜙𝑑𝑡

����
+

���� ∫ 𝜇𝑙/2𝑣

𝜖

𝑒−𝑡
2−𝑏2

𝑡 − 𝑖𝑏 ⟨𝐴, 𝐵
3𝑙/4(𝑡)⟩𝜙 −

𝑒−𝑡
2−𝑏2

𝑡 + 𝑖𝑏 ⟨𝐴, 𝐵
3𝑙/4(−𝑡)⟩𝜙𝑑𝑡

����
≤
���� ∫ 𝜖

0

𝑒−𝑡
2−𝑏2

𝑡 − 𝑖𝑏 ⟨𝐴, 𝐵
3𝑙/4(𝑡)⟩𝜙 −

𝑒−𝑡
2−𝑏2

𝑡 + 𝑖𝑏 ⟨𝐴, 𝐵
3𝑙/4(−𝑡)⟩𝜙𝑑𝑡

����
+

∫ ∞

𝜖

𝑒−𝑡
2

𝑡
|⟨𝐴, 𝐵3𝑙/4(𝑡)⟩𝜙 | +

𝑒−𝑡
2

𝑡
|⟨𝐴, 𝐵3𝑙/4(−𝑡)⟩𝜙 |𝑑𝑡. (4.39)

To get the desired decay of the last term in Equation (4.39), we apply (4.38) to
|⟨𝐴, 𝐵3𝑙/4(𝑡)⟩𝜙 | as well as to |⟨𝐴, 𝐵3𝑙/4(−𝑡)⟩𝜙 |. Note

∫ ∞
𝜖

𝑒−𝑡
2

𝑡
𝑑𝑡 is a finite constant

for a fixed 𝜖 , so∫ ∞

𝜖

𝑒−𝑡
2

𝑡
|⟨𝐴, 𝐵3𝑙/4(𝑡)⟩𝜙 |+

𝑒−𝑡
2

𝑡
|⟨𝐴, 𝐵3𝑙/4(−𝑡)⟩𝜙 |𝑑𝑡 ≤ 𝑐min( |𝑋 |, |𝑌 |) ∥𝐴∥ ∥𝐵∥ 𝑔(𝑙/4).

(4.40)
Finally, we are left with the terms���� ∫ 𝜖

0

𝑒−𝑡
2−𝑏2

𝑡 − 𝑖𝑏 ⟨𝐴, 𝐵
3𝑙/4(𝑡)⟩𝜙 −

𝑒−𝑡
2−𝑏2

𝑡 + 𝑖𝑏 ⟨𝐴, 𝐵
3𝑙/4(−𝑡)⟩𝜙𝑑𝑡

����
≤

∫ 𝜖

0
𝑒−𝑡

2−𝑏2 |⟨𝐴, 𝐵3𝑙/4(𝑡)⟩𝜙 (𝑡 + 𝑖𝑏) − ⟨𝐴, 𝐵3𝑙/4(−𝑡)⟩𝜙 (𝑡 − 𝑖𝑏) |
𝑡2 + 𝑏2 𝑑𝑡

≤
∫ 𝜖

0

|⟨𝐴, 𝐵3𝑙/4(𝑡)⟩𝜙 |𝑏 + |⟨𝐴, 𝐵3𝑙/4(−𝑡)⟩𝜙 |𝑏
𝑡2 + 𝑏2 𝑑𝑡

+
∫ 𝜖

0

𝑡 |⟨𝐴, 𝐵3𝑙/4(𝑡)⟩𝜙 − ⟨𝐴, 𝐵3𝑙/4(−𝑡)⟩𝜙 |
𝑡2 + 𝑏2 𝑑𝑡. (4.41)
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To the first integral, apply (4.38) again while noting that the remaining integral∫ 𝜖

0
𝑏

𝑡2+𝑏2 𝑑𝑡 gives arctan(𝜖/𝑏) which is bounded for any 𝑏. Therefore,∫ 𝜖

0

|⟨𝐴, 𝐵3𝑙/4(𝑡)⟩𝜙 |𝑏 + |⟨𝐴, 𝐵3𝑙/4(−𝑡)⟩𝜙 |𝑏
𝑡2 + 𝑏2 𝑑𝑡 ≤ 𝑐min( |𝑋 |, |𝑌 |) ∥𝐴∥ ∥𝐵∥ 𝑔(𝑙/4).

(4.42)
To estimate the final integral, recall that 𝐵3𝑙/4(𝑡) is differentiable with respect to 𝑡.
By the mean value theorem,∫ 𝜖

0

𝑡 |⟨𝐴, 𝐵3𝑙/4(𝑡)⟩𝜙 − ⟨𝐴, 𝐵3𝑙/4(−𝑡)⟩𝜙 |
𝑡2 + 𝑏2 𝑑𝑡

≤
∫ 𝜖

0

|⟨𝐴, 𝐵3𝑙/4(𝑡)⟩𝜙 − ⟨𝐴, 𝐵3𝑙/4(−𝑡)⟩𝜙 |
𝑡

𝑑𝑡 (4.43)

≤4𝜖 sup
−𝜖<𝑡<𝜖

���� 𝑑𝑑𝑡′ ��𝑡′=𝑡 ⟨𝐴, 𝐵3𝑙/4(𝑡′)⟩𝜙
���� = 4𝜖 sup

−𝜖<𝑡<𝜖

����⟨𝐴, 𝑑𝐵3𝑙/4(𝑡′)
𝑑𝑡′

��
𝑡′=𝑡⟩𝜙

���� . (4.44)

Since 𝐵3𝑙/4(𝑡′) is supported on 𝐵3𝑙/4(𝑌 ) for all 𝑡′, the support of 𝑑𝐵3𝑙/4 (𝑡′)
𝑑𝑡′

��
𝑡′=𝑡 is also

contained in 𝐵3𝑙/4(𝑌 ). Next we bound its norm,



𝑑𝐵3𝑙/4(𝑡′)
𝑑𝑡′

��
𝑡′=𝑡





 ≤ 



 𝑑𝑑𝑡′ ����𝑡′=0
𝜏𝑡+𝑡′ (𝐵)





 = 




 lim
|Λ|→∞

∑︁
𝑍⊂Λ
[Φ(𝑍), 𝜏𝑡 (𝐵)]







≤ lim
|Λ|→∞






 ∑︁
𝑍⊂Λ:𝑍∩𝑌≠∅

[Φ(𝑍), 𝜏𝑡 (𝐵)]





 + lim
|Λ|→∞






 ∑︁
𝑍⊂Λ:𝑍∩𝑌=∅

[Φ(𝑍), 𝜏𝑡 (𝐵)]





 . (4.45)

We bound the former term using (4.3),

lim
|Λ|→∞






 ∑︁
𝑍⊂Λ:𝑍∩𝑌≠∅

[Φ(𝑍), 𝜏𝑡 (𝐵)]





 ≤ 2 ∥𝐵∥

∑︁
𝑦∈𝑌

∑︁
𝑍∋𝑦
∥Φ(𝑍)∥ ≤ 𝑣 |𝑌 | ∥𝐵∥ . (4.46)

As for the latter, apply (4.13) and then (4.3)

lim
|Λ|→∞






 ∑︁
𝑍⊂Λ:𝑍∩𝑌=∅

[Φ(𝑍), 𝜏𝑡 (𝐵)]







≤
∑︁
𝑍∩𝑌=∅

∥ [Φ(𝑍), 𝜏𝑡 (𝐵)] ∥

≤
∑︁
𝑍∩𝑌=∅

2 ∥Φ(𝑍)∥ ∥𝐵∥ |𝑍 |𝑒−𝜇𝑑 (𝑍,𝑌 ) (𝑒𝑣 |𝑡 | − 1)

≤2 ∥𝐵∥ (𝑒𝑣𝜖 − 1)
∑︁
𝑍∩𝑌=∅

∥Φ(𝑍)∥ |𝑍 |𝑒−𝜇𝑑 (𝑍,𝑌 )

≤2 ∥𝐵∥ (𝑒𝑣𝜖 − 1)
∞∑︁
𝑟=1

𝑒−𝜇𝑟
∑︁

𝑑 (𝑧,𝑌 )∈(𝑟−1,𝑟]

∑︁
𝑍∋𝑧
∥Φ(𝑍)∥ |𝑍 |

≤𝑣 ∥𝐵∥ (𝑒𝑣𝜖 − 1)
∞∑︁
𝑟=1

𝑒−𝜇𝑟𝐷 (𝑟), (4.47)
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where |𝑡 | < 𝜖 and 𝐷 (𝑟) := |{𝑧 ∈ Γ : 𝑑 (𝑧,𝑌 ) ∈ (𝑟 − 1, 𝑟]}|. Clearly, 𝐷 (𝑟) grows
polynomially with respect to 𝑟, so

∑∞
𝑟=1 𝑒

−𝜇𝑟𝐷 (𝑟) is bounded by a constant linearly
dependent on 𝐷 (1). This is dominated by |𝑌 | due to (4.1). Overall,



𝑑𝐵3𝑙/4(𝑡′)

𝑑𝑡′
��
𝑡′=𝑡





 < 𝐶 (𝜇, 𝑣, 𝜖) ∥𝐵∥ |𝑌 |. (4.48)

Then we apply (4.9) to
��⟨𝐴, 𝑑𝐵3𝑙/4 (𝑡′)

𝑑𝑡′

��
𝑡′=𝑡⟩𝜙

�� and obtain∫ 𝜖

0

𝑡 |⟨𝐴, 𝐵3𝑙/4(𝑡)⟩𝜙 − ⟨𝐴, 𝐵3𝑙/4(−𝑡)⟩𝜙 |
𝑡2 + 𝑏2 𝑑𝑡 ≤ 𝑐 ∥𝐴∥ ∥𝐵∥min( |𝑋 |, |𝑌 |) |𝑌 |𝑔(𝑙/4).

(4.49)

Furthermore, the canonical correlator is symmetric, so if we swap 𝐴 and 𝐵 from the
very beginning, we get the same overall bound except an additional factor of |𝑋 |
instead of |𝑌 |. Thus, we actually have∫ 𝜖

0

𝑡 |⟨𝐴, 𝐵3𝑙/4(𝑡)⟩𝜙 − ⟨𝐴, 𝐵3𝑙/4(−𝑡)⟩𝜙 |
𝑡2 + 𝑏2 𝑑𝑡 ≤ 𝑐 ∥𝐴∥ ∥𝐵∥min( |𝑋 |2, |𝑌 |2)𝑔(𝑙/4).

(4.50)

The procedure for bounding the third term is entirely similar.

Summary
In summary,

|⟨⟨𝐴, 𝐵⟩⟩𝜙 | ≤ 𝑐 ∥𝐴∥ ∥𝐵∥min{|𝑋 |2, |𝑌 |2}𝑔′(𝑙), (4.51)

where 𝑔′(𝑙) is the slower decaying one between 𝑔(𝑙/4) and 𝑒−𝜇𝑙/2.

4.5 Discussion
In the present chapter, we focus on quantum spin systems with short-range interactions.
In particular, interactions are assumed to satisfy a concrete condition (4.3). However,
our analysis can be adapted readily if we substitute (4.3) with many other conditions
for short-range interactions such as those analyzed in [44, 45]. Lieb-Robinson bounds
have also been proven for certain spin systems with long-range interactions (see [44,
45, 58]). However, these bounds may not lead to approximate locality defined here.
For example, [58] demonstrates that systems with long-range interactions could have
unbounded information propagation speeds. Therefore, it is interesting to investigate
decay rates of canonical correlators in systems with long-range interactions.
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A p p e n d i x A

NOTIONS IN COMMUTATIVE ALGEBRA

A.1 Gorenstein rings
Definition 60. Noetherian ring 𝐴 is called a Gorenstein ring if its injective dimension
(as a module over itself) is finite. If it is zero, i.e., 𝐴 is an injective 𝐴-module, then
𝐴 is called a QF1 ring.

Lemma 61. Let 𝐴 be a Gorenstein ring. Every localization of 𝐴 is a Gorenstein ring.
The injective dimension of 𝐴 is equal to the Krull dimension.

Proof. Corollaries 1.3 and 5.6 in [59].

Remark 62. It is popular to define the Gorenstein property first for Noetherian local
rings and then declare a general Noetherian ring to be Gorenstein if its localization
on any prime ideal is Gorenstein. Such rings do not necessarily have finite dimension.
This situation is not encountered in this thesis, so it is more convenient to stick to the
more restrictive Definition 60.

Lemma 63. If a ring 𝐴 is Gorenstein, so is the polynomial ring 𝐴[𝑥].

Proof. Follows immediately from [Stacks, Tag 0A6J].

Lemma 64. Let 𝐴 be a QF ring. Every 𝐴-module 𝑀 embeds in a free mod-
ule (of finite rank if 𝑀 is finitely generated). The natural module map 𝑀 →
Hom𝐴 (Hom𝐴 (𝑀, 𝐴), 𝐴) is injective (an isomorphism if 𝑀 is finitely generated). In
particular 𝑀 = 0 if and only if Hom𝐴 (𝑀, 𝐴) = 0.

Proof. See [15, Theorem 15.11].

Lemma 65. Let 𝐴 be a commutative ring, 𝑀 an 𝐴-module and 𝑟 ≥ 0 an integer.
If dim(𝑀) ≤ 𝑟, then the localization 𝑀𝔭 vanishes for all prime ideals 𝔭 ⊂ 𝐴 with
dim(𝐴/𝔭) > 𝑟. If 𝑀 is finitely generated, the converse is true.

1QF stands for quasi-Frobenius.

https://stacks.math.columbia.edu/tag/0A6J
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Proof. Observe that dim(𝑀) ≤ 𝑟 if and only if Ann(𝑀) is not contained in any
prime ideal 𝔭 ⊂ 𝐴 with dim(𝐴/𝔭) > 𝑟. Suppose that this condition is satisfied
and let 𝔭 be such that dim(𝑅/𝔭) > 𝑟. Then 𝑅 \ 𝔭 contains an element of Ann(𝑀),
so 𝑀𝔭 = 0. Next, let 𝑀 be finitely generated. Then 𝑆−1𝑀 = 0 for a multiplicative
set 𝑆 ⊂ 𝑅 if and only if 𝑆 ∩ Ann(𝑀) ≠ ∅. Thus 𝑀𝔭 = 0 for a prime ideal 𝔭 if and
only if Ann(𝑀) is not contained in 𝔭.

Lemma 66. Let 𝐴 be a Gorenstein ring of dimension 𝐷 and let 𝑀 be a finitely
generated 𝐴-module. Then dim(Ext𝑖

𝐴
(𝑀, 𝐴)) ≤ 𝐷 − 𝑖.

Proof. Let 𝔭 ⊂ 𝐴 be a prime ideal with dim(𝐴/𝔭) ≥ 𝐷 − 𝑖. Then 𝐴𝔭 is a Gorenstein
ring with dim 𝐴𝔭 ≤ 𝐷 − 𝑖, so Ext𝑖+1

𝐴
(𝑀, 𝐴)𝔭 � Ext𝑖+1

𝐴𝔭
(𝑀𝔭, 𝐴𝔭) = 0. Now invoke

Lemma 65.

A.2 Local cohomology
Definition 67. Let 𝐴 be a Noetherian commutative ring and 𝔞 ⊂ 𝐴 an ideal. If 𝑀 is
an 𝐴-module, Γ𝔞 (𝑀) = {𝑚 ∈ 𝑀 | ∃ 𝑗 ∈ N 𝔞 𝑗𝑚 = 0} is called 𝔞-torsion submodule
of 𝑀 . Modules 𝑀 such that 𝑀 = Γ𝔞 (𝑀) are said to be 𝔞-torsion. Γ𝔞 is a left exact
functor. Its right derived functors H 𝑗

𝔞 are called local cohomology functors. More
explicitly, H 𝑗

𝔞 (𝑀) is defined as the 𝑗-th degree cohomology of the complex Γ𝑎 (𝐼•),
where 𝑀 → 𝐼• is an injective resolution.

Note that by construction, every H 𝑗
𝔞 (𝑀) is a subquotient of an 𝔞-torsion module and

hence is 𝔞-torsion. Moreover, H0
𝔞 (𝑀) � Γ𝔞 (𝑀).

Lemma 68. Let 𝑀 be an 𝐴-module.

1. H 𝑗
𝔞 (𝑀) � H 𝑗√

𝔞
(𝑀), where

√
𝔞 = {𝑎 ∈ 𝐴 | ∃ 𝑗 ∈ N 𝑎 𝑗 ∈ 𝔞}.

2. If 𝔞1, . . . , 𝔞𝑡 are coprime, then H 𝑗
𝔞1...𝔞𝑡 (𝑀) �

𝑡⊕
𝑖=1

H 𝑗
𝔞𝑖
(𝑀).

Proof. 1. As 𝐴 is Noetherian, (
√
𝔞)𝑁 ⊂ 𝔞 for some 𝑁 , so Γ𝑎 = Γ√𝑎.

2. By induction, for any 𝑖 ≠ 𝑗 and 𝑘 ∈ N ideals 𝔞𝑘
𝑖
, 𝔞𝑘

𝑗
are coprime. Letting

𝐾 (𝐼) = {𝑚 ∈ 𝑀 | 𝐼𝑚 = 0} for an ideal 𝐼, Chinese remainder theorem gives
𝐾 (𝔞𝑘1 . . . 𝔞

𝑘
𝑡 ) =

⊕𝑡

𝑖=1 𝐾 (𝔞𝑘𝑖 ). Next use Γ𝔞1...𝔞𝑡 (𝑀) =
⋃∞
𝑘=0 𝐾 (𝔞𝑘1 . . . 𝔞

𝑘
𝑡 ).
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Lemma 69. Let 𝔞 be an ideal such that dim(𝐴/𝔞) = 0. Then for any 𝐴-module 𝑀
and any 𝑗 we have a natural isomorphism

H 𝑗
𝔞 (𝑀) �

⊕
𝔪

H 𝑗
𝔪 (𝑀), (A.1)

where the sum is over maximal ideals 𝔪 ⊂ 𝐴 containing 𝔞.

Proof. We have
√
𝔞 =

⋂
𝔪 𝔪. Moreover, there exists finitely many maximal ideals

containing 𝔞 and they are pairwise coprime. In particular their intersection coincides
with the product. We invoke Lemma 68.

Lemma 70. Let 𝐴 be a local Gorenstein ring with maximal ideal 𝔪 and residue field
𝑘 and let 𝐷 be the dimension of 𝐴. Then H 𝑗

𝔪 (𝐴) = 0 for 𝑗 ≠ 𝐷 and H𝐷
𝔪 (𝐴) is an

injective envelope of 𝑘 .

Proof. See [60, Theorem 11.26].

A.3 Čech complex
Now let t = (𝑡1, . . . , 𝑡𝑟) be a sequence of elements of 𝐴 and let 𝑀 be an 𝐴-module.
We define in terms of its localizations

Č0(t, 𝑀) = 𝑀, Č𝑝 (t, 𝑀) =
⊕

1≤𝑖1<···<𝑖𝑝≤𝑟
𝑀𝑡𝑖1 ...𝑡𝑖𝑝

. (A.2)

If 𝜑 ∈ Č𝑝 (t, 𝑀), we let 𝜑𝑖1...𝑖𝑝 be its component in 𝑀𝑡𝑖1 ...𝑡𝑖𝑝
for every sequence

1 ≤ 𝑖1 < · · · < 𝑖𝑝 ≤ 𝑟. A differential 𝛿 : Č𝑝 (t, 𝑀) → Č𝑝+1(t, 𝑀) is defined by

(𝛿𝜑)𝑖0...𝑖𝑝 =

𝑝∑︁
𝑗=0
(−1) 𝑗𝜑𝑖0...𝑖 𝑗−1𝑖 𝑗+1...𝑖𝑝 , (A.3)

in which 𝜑𝑖0...𝑖 𝑗−1𝑖 𝑗+1...𝑖𝑝 is implicitly mapped from 𝑀𝑡𝑖0 ...𝑡𝑖 𝑗−1 𝑡𝑖 𝑗+1 ...𝑡𝑖𝑝
to 𝑀𝑡𝑖0 ...𝑡𝑖𝑝

by
the localization homomorphism. This makes Č•(t, 𝑀) a cochain complex. Its
cohomology is denoted by Ȟ•(t, 𝑀) and called Čech cohomology.

Lemma 71. One has Ȟ•(t, 𝑀) � H•𝔞 (𝑀), where 𝔞 = (𝑡1, . . . , 𝑡𝑟).

Proof. See [60, Theorem 7.13].

Lemma 72. Let𝑈 be a multiplicatively closed subset of 𝐴, 𝐴′ = 𝑈−1𝐴 and let 𝔞′ be the
extension of 𝔞 in 𝐴′. Then for any 𝐴-module 𝑀 we have H 𝑗

𝔞′ (𝑈−1𝑀) � 𝑈−1H 𝑗
𝔞 (𝑀).
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Proof. Follows from Lemma 71 because the corresponding property of Čech coho-
mology is easy to verify.

Clearly we have Č•(t, 𝑀) = Č•(t, 𝐴) ⊗𝐴 𝑀. Since modules Č𝑝 (t, 𝐴) are flat, this
implies that Č•(t,−) takes short exact sequences of modules to short exact sequences
of complexes. Hence every short exact sequence of modules induces a long exact
sequence in Čech cohomology.

Let 𝜑 ∈ Č𝑝+1(t, 𝑀), 𝜓 ∈ Č𝑞+1(t, 𝑁) with 𝑝, 𝑞 ≥ 0. We define the cup product
𝜑 ⌣ 𝜓 ∈ Č𝑝+𝑞+1(t, 𝑀 ⊗𝐴 𝑁) by

(𝜑 ⌣ 𝜓)𝑖0...𝑖𝑝+𝑞 = 𝜑𝑖0...𝑖𝑝 ⊗ 𝜓𝑖𝑝 ...𝑖𝑝+𝑞 . (A.4)

It is associative and satisfies the graded Leibniz rule

𝛿(𝜑 ⌣ 𝜓) = 𝛿𝜑 ⌣ 𝜓 + (−1)𝑝𝜑 ⌣ 𝛿𝜓, (A.5)

hence induces a product Ȟ𝑝+1(t, 𝑀) ⊗𝐴 Ȟ𝑞+1(t, 𝑁) → Ȟ𝑝+𝑞+1(t, 𝑀 ⊗𝐴 𝑁).

Let 𝜏 : 𝑁 ⊗𝐴 𝑀 → 𝑀 ⊗𝐴 𝑁 be the standard isomorphism. For brevity we denote
induced maps of Čech complexes and in Čech cohomology with the same symbol.
Mimicking formulas in [61] we define products

⌣1 : Č𝑝+1(t, 𝑀) ⊗𝐴 Č𝑞+1(t, 𝑁) → Č𝑝+𝑞 (t, 𝑀 ⊗𝐴 𝑁), (A.6)

(𝜑 ⌣1 𝜓)𝑖0...𝑖𝑝+𝑞−1 =

𝑝−1∑︁
𝑗=0
(−1) (𝑝− 𝑗) (𝑞+1)𝜑𝑖0...𝑖 𝑗 𝑖 𝑗+𝑞 ...𝑖𝑝+𝑞−1 ⊗ 𝜓𝑖 𝑗 ...𝑖 𝑗+𝑞 .

They satisfy the following identity:

𝜑 ⌣ 𝜓 − (−1)𝑝𝑞𝜏(𝜓 ⌣ 𝜑) (A.7)

=(−1)𝑝+𝑞+1 [𝛿(𝜑 ⌣1 𝜓) − 𝛿𝜑 ⌣1 𝜓 − (−1)𝑝𝜑 ⌣1 𝛿𝜓] .

If 𝜑, 𝜓 are cocycles and [𝜑], [𝜓] are their cohomology classes, this gives

[𝜑] ⌣ [𝜓] = (−1)𝑝𝑞𝜏 ( [𝜓] ⌣ [𝜑]) . (A.8)

In this sense the cup product is graded commutative.

Remark 73. The Čech complex and the cup product depend on the ordering of
elements 𝑡𝑖 howeover, cohomologies (and the cup products) do not. We refer for
example to [Stacks, Tag 01FG], and discussion in [61].

https://stacks.math.columbia.edu/tag/01FG
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A p p e n d i x B

TECHNICAL RESULTS ON SPIN CHAIN

B.1 Stable equivalence of G-invariant factorized pure states
In this section we study 𝐺-invariant factorized pure states defined by (3.7) where the
vectors 𝑣 𝑗 may transform in non-trivial one-dimensional representations of 𝐺. We
will show that all such states are in the trivial 𝐺-invariant phase.

Consider first a 1d system where for 𝑗 ≠ 0 V 𝑗 = C is the trivial representation of
𝐺, while V0 = W is a finite-dimensional representation containing a unit vector
𝑤 transforming in a non-trivial one-dimensional representation of 𝐺. Consider a
𝐺-invariant factorized pure state where 𝑣0 = 𝑤 (all other 𝑣 𝑗 are unique up to a scalar
multiple). Physically, this corresponds to a non-trivial 𝐺-invariant ground state of a
0d system regarded as a 𝐺-invariant state of a 1d system. We are going to show that
this 1d state is in a trivial 𝐺-invariant stable phase.

Without loss of generality we may assume that W contains a 𝐺-invariant vector 𝑤′.
Indeed, if this is not the case, we can tensor the above system with a similar system
where W is replaced with W ∗ ⊕ C · 𝑒, where 𝐺 acts on the second summand by the
trivial representation, and 𝑣0 = 𝑒. The auxiliary system is in the trivial 𝐺-invariant
phase, so this does not affect the 𝐺-invariant phase of the system we are interested
in. Then the composite system has V0 = W ⊗ W ∗ ⊕ W ⊗ C · 𝑒, with a 𝐺-invariant
factorized pure state corresponding to 𝑣0 in the second summand. The first summand
now contains a 𝐺-invariant vector 𝑤 ⊗ 𝑤∗.

Consider now an auxiliary system A ′ where V ′
𝑗
= C is the trivial representation for

𝑗 ≤ 0 and V ′
𝑗
= W ∗ ⊗ W for 𝑗 > 0. The algebra of local observables A ⊗ A ′ has

the form
End(W ) ⊗ End(W ∗ ⊗ W ) ⊗ End(W ∗ ⊗ W ) ⊗ . . . (B.1)

We pick a 𝐺-invariant factorized pure state 𝜓′ on A ′ defined by the condition that for
any 𝐴 ∈ A ′

𝑗
= End(V ′

𝑗
), 𝑗 > 0, it is a vector state corresponding to 𝑤∗ ⊗ 𝑤 which

is 𝐺-invariant. Consider now the state 𝜓 ⊗ 𝜓′ on A ⊗ A ′. As 𝐺 acts trivially on
the vector state in A ′

𝑗
for all 𝑗 , the composite state belongs to the same 𝐺-invariant

phase as (𝜓,A ).
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After re-writing the algebra of observables as

End(W ⊗ W ∗) ⊗ End(W ⊗ W ∗) ⊗ . . . (B.2)

it is easy to see that the state 𝜓 ⊗ 𝜓′ is related by a 𝐺-equivariant LGA to a special
factorized pure state. Indeed, since W contains a 𝐺-invariant vector 𝑤′, W ⊗ W ∗

contains a 𝐺-invariant 2-plane spanned by vectors 𝑤 ⊗ 𝑤∗ and 𝑤′ ⊗ 𝑤′∗. Let𝑈 be a
unitary operator on W ⊗ W ∗ which acts by identity on the orthogonal complement
of this plane and rotates 𝑤 ⊗ 𝑤∗ into 𝑤′ ⊗ 𝑤′∗. Consider a local unitary circuit on
A ⊗A ′ which acts on A ⊗A ′ by conjugation with𝑈 ⊗𝑈 ⊗𝑈 ⊗ . . .. It maps 𝜓 ⊗𝜓′

to a factorized pure state on A ⊗ A ′ with 𝑣0 = 𝑤′ and 𝑣 𝑗 = 𝑤′∗ ⊗ 𝑤′ for 𝑗 > 0. All
these vectors are 𝐺-invariant. Thus 𝜓 is a special 𝐺-invariant factorized pure state.1

In general, we can write the algebra A as a tensor product of sub-algebras A≥0

and A<0 corresponding to 𝑗 ≥ 0 and 𝑗 < 0. Since the state 𝜓 on A is assumed
factorized, it is sufficient to consider the restriction of 𝜓 to one of these sub-algebras,
say A≥0. Then we apply the argument of the above paragraph to each of the factors
A 𝑗 separately. Note that the auxiliary system A ′ in this case has log 𝑑′

𝑗
growing

with 𝑗 even if the dimension 𝑑 𝑗 of A 𝑗 is bounded. However, it is easy to see that if
log 𝑑 𝑗 grows at most as a power of 𝑗 , then so does log 𝑑′

𝑗
. Thus it is still true that 𝜓

is in the trivial 𝐺-invariant phase.

B.2 Local computability of the index
An important property of the index is its local computability, i.e., that one can
compute 𝜈(𝑔, ℎ) up to 𝑂 (𝐿−∞) accuracy while having access only to a disk of radius
𝐿. Let us fix a disk Γ𝐿 = [−𝐿, 𝐿], and let 𝑅𝑔

𝐿
be a unitary

∏
𝑗∈Γ𝐿

𝑅 𝑗 (𝑔). By Theorem
54 for any invertible state 𝜓 there is a pure factorized state 𝜓′0 on A ′ (with a trivial 𝐺
action) such that 𝜓 ⊗ 𝜓′0 can be produced from a pure factorized state Ω on A ⊗ A ′

by some LGA 𝛼𝐹 for an 𝑓 -local 𝐹 for some MDP function 𝑓 (𝑟) = 𝑂 (𝑟−∞). In what
follows we redefine 𝜓 to be the SRE state 𝜓 ⊗ 𝜓′0.

First, note that by Lemma 3.4.3 and Corollary 3.4.1.2 we have

𝑈
𝑔

> 𝑗
|𝜓⟩ = Π(V𝑔

> 𝑗
) |𝜓⟩, (B.3)

for some observableV𝑔

> 𝑗
which is 𝑔-localized at 𝑗 for some function 𝑔 that depends on

𝑓 only. We can find an observableV𝑔

𝐿
local on Γ𝐿 such that ∥V𝑔

> 𝑗
−V𝑔

𝐿
∥ = 𝑂 (𝐿−∞).

1This argument is a version of the Eilenberg swindle.
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The index can be computed as

𝜈(𝑔, ℎ) = ⟨𝜓 | (𝑈𝑔ℎ

> 𝑗
)−1𝑈

𝑔

> 𝑗
𝑈ℎ
> 𝑗 |𝜓⟩ = ⟨𝜓 |Π(V

𝑔ℎ

> 𝑗
)−1𝑈

𝑔

> 𝑗
Π(Vℎ

> 𝑗 ) |𝜓⟩

= ⟨𝜓 |Π(V𝑔ℎ

> 𝑗
)−1Π(𝜌𝑔

> 𝑗
(Vℎ

> 𝑗 ))Π(V
𝑔

> 𝑗
) |𝜓⟩ = 𝜓

(
(V𝑔ℎ

> 𝑗
)−1𝜌

𝑔

> 𝑗
(Vℎ

> 𝑗 )V
𝑔

> 𝑗

)
. (B.4)

Therefore
𝜈(𝑔, ℎ) = 𝜓

(
(V𝑔ℎ

𝐿
)−1𝑅

𝑔

𝐿
Vℎ
𝐿 (𝑅

𝑔

𝐿
)−1V𝑔

𝐿

)
+𝑂 (𝐿−∞). (B.5)

Note that the 𝑂 (𝐿−∞) term depends on 𝑓 (𝑟) only, and by taking 𝐿 large enough we
can compute the index with any given accuracy. Therefore if we have an interpolating
𝐺-invariant invertible state 𝜓 which is 𝑓 -close to a 𝐺-invariant invertible state 𝜓1

on the left half-chain and 𝑓 -close to a 𝐺-invariant invertible state 𝜓2 on the right
half-chain, then the indices of 𝜓1 and 𝜓2 must be the same. In particular, a non-trivial
index for 𝜓1 is an obstruction for the existence of such an interpolation between 𝜓1

and a pure factorized state 𝜓2.

B.3 Multiplicative Lieb-Robinson bound

Lemma B.3.1. LetA𝑖, 𝑖 = 0, 1, 2, . . . be quasi-local observables such that
∑
𝑖 ∥A𝑖−1∥

converges. Then the sequence of observables 𝐶𝑛 =
∏𝑛
𝑖=1A𝑖 is norm-convergent.

Proof. Let C𝑛 =
∏𝑛
𝑖=0A𝑖 and B𝑖 = A𝑖+1 − 1. Then

C𝑛 =
𝑛−1∑︁
𝑖=0
C𝑖B𝑖 + C0. (B.6)

This implies ∥C𝑛∥ ≤
∑𝑛−1
𝑖=0 ∥B𝑖∥∥C𝑖∥+∥C0∥, which by the discrete Gronwall inequality

[62] implies

∥C𝑛∥ ≤ ∥C0∥ exp

(
𝑛−1∑︁
𝑖=0
∥B𝑖∥

)
≤ ∥C0∥ exp

( ∞∑︁
𝑖=0
∥B𝑖∥

)
< ∞.

Thus the right-hand side of Equation (B.6) converges in norm as 𝑛→∞.

Corollary B.3.1.1. Let V𝑘 , 𝑘 = 0, 1, 2, . . . be local unitaries localized on [(−𝑘 −
1/2)𝐿, (𝑘 +1/2)𝐿] and satisfying ∥V𝑘 −1∥ ≤ ℎ((𝑘 +1/2)𝐿) for some MDP function
ℎ(𝑟) = 𝑂 (𝑟−∞). Then productV0V1V2... exists. Furthermore, it is 𝑓 -local at 0 for
some MDP function 𝑓 (𝑟) = 𝑂 (𝑟−∞) determined by ℎ.
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Proof. As ℎ(𝑟) = 𝑂 (𝑟−∞) and ∥V𝑘−1∥ ≤ ℎ((𝑘+1/2)𝐿), ∑𝑘 ∥V𝑘−1∥ ≤ ∑
𝑘 ℎ((𝑘+

1/2)𝐿) converges. Therefore, the product C∞ = V0V1V2 . . . exists by the lemma
above. Let C𝑛 = V0V1V2...V𝑛 and B𝑖 = V𝑖+1 − 𝐼. Then

C𝑛 =
𝑛−1∑︁
𝑖=0
C𝑖B𝑖 + C0. (B.7)

For any A ∈ A 𝑗 ,

∥ [C∞,A]∥ = ∥ [
∞∑︁
𝑖=0
C𝑖B𝑖 + C0,A]∥ ≤

∑︁
(𝑖+ 1

2 )𝐿> 𝑗

∥ [C𝑖B𝑖,A]∥

≤ 2∥A∥
∑︁

(𝑖+ 1
2 )𝐿> 𝑗

∥B𝑖∥ ≤ 2∥A∥
∑︁

(𝑖+ 1
2 )𝐿> 𝑗

ℎ((𝑖 + 1/2)𝐿). (B.8)

Thus we may let 𝑓 (𝑟) = ∑
𝑠>𝑟 ℎ(𝑠) = 𝑂 (𝑟−∞).

In what follows for any sequence of automorphisms 𝛼𝑛, 𝑛 ∈ Z, we let
−−→∏
𝑛𝛼𝑛 be

the formal expression . . . ◦ 𝛼−1 ◦ 𝛼0 ◦ 𝛼1 ◦ . . .. Similarly, we denote by
←−−∏
𝑛𝛼𝑛 the

formal expression . . . ◦ 𝛼1 ◦ 𝛼0 ◦ 𝛼−1 ◦ . . .. These expressions are well-defined
automorphisms if all but a finite number of 𝛼𝑛 are identities. The following lemma
describes a class of situations when the formal expressions make sense even if an
infinite number of 𝛼𝑛 are nontrivial.

Lemma B.3.2. Let Λ = Z ⊂ R. For any MDP function 𝑓 (𝑟) = 𝑂 (𝑟−∞) there is
𝐿 ∈ N such that any ordered composition

−−−−−→∏∞
𝑛=−∞𝛼B (𝑛) of LGAs generated by 𝑓 -local

at 𝑗 = 𝑛𝐿 observables B (𝑛) for 𝑛 ∈ Z is an LGA.

Proof. First, note that it is enough to show this for
−−−−→∏∞
𝑛=0𝛼B (𝑛) . Second, to prove the

latter it is enough to show that with an appropriate choice of 𝐿 for any 𝑓 -local at 0
observable A the observable (

←−−−−∏𝑁
𝑛=1𝛼B (𝑛) ) (A) is almost local at 0 with localization

depending on 𝑓 only (in particular, independent of 𝑁), and that as 𝑁 → ∞ it
converges in norm to some element of A .

LetU (𝑛) := 𝑒𝑖B (𝑛) be a unitary that corresponds to 𝛼B (𝑛) . It can be represented as
a product (V (𝑛)0 V

(𝑛)
1 V

(𝑛)
2 ...) of strictly local unitaries V (𝑛)

𝑘
on 𝐵𝑛 ((𝑘 + 1

2 )𝐿) :=
[(𝑛 − 𝑘 − 1

2 )𝐿, (𝑛 + 𝑘 +
1
2 )𝐿], so that ∥V (𝑛)

𝑘
− 1∥ ≤ ℎ((𝑘 + 1

2 )𝐿) for some MDP
function ℎ(𝑟) = 𝑂 (𝑟−∞) that depends on 𝑓 (𝑟) only. This is achieved by letting
(V (𝑛)0 V

(𝑛)
1 ...V (𝑛)

𝑘
) = 𝑒

𝑖B|
𝐵𝑛 ( (𝑘+ 1

2 )𝐿) .
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Since conjugation of a strictly local observable A with a unitaryU strictly local in
the localization set of A does not change the property ∥A − 1∥ < 𝜀 and preserves
the localization set, we can rearrange unitariesV (𝑛)

𝑘
in the product

(V (1)0 V
(1)

1 V
(1)

2 ...) (V (2)0 V
(2)

1 V
(2)

2 ...)...(V (𝑁)0 V (𝑁)1 V (𝑁)2 ...) (B.9)

in the following order:

(Ṽ (1)0 ) (Ṽ
(2)

0 Ṽ
(1)

1 ) (Ṽ
(3)

0 Ṽ
(2)

1 Ṽ
(1)

2 )...(Ṽ
(𝑛)

0 Ṽ
(𝑛−1)

1 ...Ṽ (1)
𝑛−1)..., (B.10)

where Ṽ (𝑛)
𝑘

is obtained from V (𝑛)
𝑘

by conjugation with V (𝑚)
𝑙

with 𝑚, 𝑙 satisfying
𝑛 + 1 ≤ 𝑚 ≤ 𝑛 + 𝑘 and 0 ≤ 𝑙 ≤ 𝑛 + 𝑘 − 𝑚. Importantly, Ṽ (𝑛)

𝑘
is strictly local on

the same interval asV (𝑛)
𝑘

and still satisfies ∥Ṽ (𝑛)
𝑘
− 1∥ ≤ ℎ((𝑘 + 1

2 )𝐿). The infinite
product Equation (B.10) is a well-defined almost local observable by Corollary
B.3.1.1. Indeed, ∥Ṽ (𝑛)0 Ṽ

(𝑛−1)
1 ...Ṽ (1)

𝑛−1−1∥ ≤ ∑𝑛
𝑖=1 ∥Ṽ

(𝑖)
𝑛−𝑖−1∥ by repeatedly applying

the inequality ∥AB − 1 − A + A∥ ≤ ∥A∥∥B − 1∥ + ∥A − 1∥. Since for any fixed
𝑁 we have V (𝑛)

𝑘
= 1 for 𝑛 > 𝑁 , ∥Ṽ (𝑛)0 Ṽ

(𝑛−1)
1 ...Ṽ (1)

𝑛−1 − 1∥ ≤ ∑𝑁
𝑖=1 ∥Ṽ

(𝑖)
𝑛−𝑖 − 1∥ ≤∑𝑁

𝑖=1 ℎ((𝑛 − 𝑖 +
1
2 )𝐿) satisfies the assumption of Corollary B.3.1.1. After this

rearrangement the infinite product Equation (B.10) still converges to the same unitary
observable as Equation (B.9).

Let Ũ (𝑛) = Ṽ (𝑛)0 ...Ṽ (1)
𝑛−1. We can represent A =

∑∞
𝑝=0A𝑝 with

∑𝑛
𝑝=0A𝑝 =

A|𝐵0 (𝑛+1/2) . Let A (0)𝑝 := A𝑝, A (𝑛)𝑝 :=
∑𝑛−1
𝑘=0 Ũ (𝑛)∗ [A

(𝑘)
𝑝 , Ũ (𝑛)]. Note that A (𝑛)𝑝 ∈

A |𝐵0 (𝑝+ 1
2 )

for 𝑛 ≤ 𝑝, and A (𝑛)𝑝 ∈ A |𝐵0 (𝑛+ 1
2 )

for 𝑛 > 𝑝. Therefore we have

∥A (𝑛)0 ∥ =
𝑛−1∑︁
𝑘=0
∥ [A (𝑘)0 , Ũ (𝑛)] ∥ ≤

𝑛−1∑︁
𝑘=0

𝑛−1∑︁
𝑙> 𝑛−𝑘−1

2

∥ [A (𝑘)0 , Ṽ (𝑛−𝑙)
𝑙
] ∥ ≤

≤
𝑛−1∑︁
𝑘=0

∞∑︁
𝑙> 𝑛−𝑘−1

2

2∥A (𝑘)0 ∥ℎ((𝑙 +
1
2
)𝐿) ≤ 2

𝑛−1∑︁
𝑘=0
∥A (𝑘)0 ∥𝑔𝑛−𝑘 , (B.11)

where 𝑔𝑛 := 𝑔(𝑛𝐿/2) for 𝑔(𝑛) :=
∑∞
𝑙≥𝑛 ℎ(𝑙).

Any MDP function 𝑔(𝑟) = 𝑂 (𝑟−∞) can be upper-bounded by a reproducing MDP
function 𝑔̃ = 𝑂 (𝑟−∞) for lattice Λ ⊂ R [63], i.e., an𝑂 (𝑟−∞) MDP function satisfying

sup
𝑗 ,𝑘∈Λ

∑︁
𝑙∈Λ

𝑔̃( | 𝑗 − 𝑙 |)𝑔̃( |𝑙 − 𝑘 |)
𝑔̃( | 𝑗 − 𝑘 |) < ∞. (B.12)

We can further upper-bound 𝑔̃(𝑟) by a reproducing 𝑂 (𝑟−∞) MDP function 𝑔′(𝑟) =
𝐴𝑔̃(𝑟)𝛼/𝑟𝜈 = 𝑂 (𝑟−∞) for some constants 𝐴, 0 < 𝛼 < 1 and 𝜈 > 𝑑. Since 1/𝑟𝜈 is
also reproducing, we have
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𝐴2
𝑛−1∑︁
𝑘=1

𝑔̃(𝑘𝐿/2)𝛼𝑔̃((𝑛 − 𝑘)𝐿/2)𝛼
(𝑘𝐿/2)𝜈 ((𝑛 − 𝑘)𝐿/2)𝜈 <

𝐶

𝐿𝜈
𝐴
𝑔̃(𝑛𝐿/2)𝛼
(𝑛𝐿/2)𝜈 , (B.13)

and therefore for 𝑔′𝑛 := 𝑔′(𝑛𝐿/2) ≥ 𝑔𝑛 we have
∑𝑛−1
𝑘=1 𝑔

′
𝑘
𝑔′
𝑛−𝑘 < (𝐶/𝐿

𝜈)𝑔′𝑛 for some
constant 𝐶. For 𝐿 sufficiently large, we have (𝐶/𝐿𝜈) < 1/2. Therefore, for such 𝐿
after setting 𝑎𝑛 = 2𝑛𝑔′𝑛 we get

2(𝑔𝑛 · 1 + 𝑔𝑛−1𝑎1 + 𝑔𝑛−2𝑎2 + ... + 𝑔1𝑎𝑛−1) ≤
≤ 2(𝑔′𝑛 · 1 + 2𝑔′𝑛−1𝑔

′
1 + 4𝑔′𝑛−2𝑔

′
2 + ... + 2(𝑛 − 1)𝑔′1𝑔

′
𝑛−1) ≤ 2𝑛𝑔′𝑛 = 𝑎𝑛. (B.14)

Together with Equation (B.11) this implies that ∥A (𝑛)0 ∥/∥A0∥ can be upper-bounded
by 𝑎𝑛 = 𝑂 (𝑛−∞), and the sequence

∑𝑛
𝑘=0A

(𝑘)
0 converges in norm to some almost

local observable. By construction, it is ℎ-localized at 0 for some MDP function
ℎ(𝑟) = 𝑂 (𝑟−∞) which depends on 𝑓 only.

In the same way one can estimate the norms of A (𝑛+𝑝)𝑝 for 𝑛, 𝑝 > 0 and bound
∥A (𝑛+𝑝)𝑝 ∥/∥A𝑝 ∥ by a sequence 𝑎𝑛 = 𝑂 (𝑛−∞). Together with ∥A𝑝 ∥ = ∥

∑𝑝

𝑞=0A
(𝑞)
𝑝 ∥

that ensures convergence of
∑∞
𝑝=0

∑∞
𝑛=0A

(𝑛)
𝑝 to some almost local at 0 observable

whose localization depends on 𝑓 only.
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