
Polyelectrolytes near Solid Surfaces

Thesis by
Christopher Balzer

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy in Chemical Engineering

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2023
Defended April 7, 2023



ii

© 2023

Christopher Balzer
ORCID: 0000-0002-9767-8437

All rights reserved



iii

ACKNOWLEDGEMENTS

I am privileged to have friends, family, colleagues, and mentors that have supported
and guided my academic journey. I am beyond grateful for all of these people as they
have fostered stimulating conversations, provided healthy distractions, and created
lifelong memories for me. I am especially thankful to Dr. Mitchell Armstrong,
Dr. Bin Mu, the Winston Churchill Foundation, Prof. Zhen-Gang Wang, and
the Department of Energy Computational Science Fellowship program for taking a
chance on me and giving me the opportunity to grow beyond what I thought myself
capable.

I impart my deepest appreciation to Prof. Zhen-Gang Wang. His guidance, moti-
vation, patience, and enthusiasm for research emboldened my research and helped
me persevere during the various stages of my PhD. Besides my advisor, I would like
to thank my thesis committee: Prof. John Brady, Prof. Kim See, and Dr. Amalie
Frischknecht, for their encouragement and guidance during my time at Caltech. I
give a special thanks to Amalie for hosting and advising me at Sandia National Lab-
oratories for a summer; I thoroughly enjoyed our discussions and the opportunity to
work outside of my usual area.

I would also like to thank all of the members of the Wang group. In particular, Dr.
Yasemin Basdogan and Dr. Sriteja Mantha have been a constant source of joy for me
and always manage to brighten my day. Over the years, my office mates, Dr. Chang
Yun Son, Dr. Huikuan Chao, Dr. Leying Qing, Dr. Yasemin Basdogan, and Dr.
Shensheng Chen, have always been willing to discuss research and the journey of
life with me. I have learned more from them than they know. Outside of the Wang
group, I am thankful for Dr. Andy Ylitalo, Dr. Camilla Kjeldbjerg, Dr. Austin
Dulaney, Dr. Hyeongjoo Row, and Dr. Zhiwei Peng, for their friendship, support,
and mentorship.

Above all else, I thank my father and late mother, who always provided me with the
support and space to develop and pursue my wide interests.



iv

ABSTRACT

Polyelectrolytes are ubiquitous in nature and in the products we use daily. The
combination of their connectivity and charge lead to many useful properties in
solution and near surfaces. Electrostatic forces dominate much of the behavior of
charged species near solid surfaces; however, nonelectrostatic forces arising ion
specific interactions or from varying polymer chemistry play an important role
in tuning electrolyte and polyelectrolyte properties. The balance of these forces
depends on factors like the salt concentration, solution pH, and properties of the
surface. The current work outlines the thermodynamics of charged systems and
investigates the structure and phase behavior of polyelectrolytes near solid surfaces.
In particular, the work covers the thermodynamic aspects of preferential adsorption
of small ions in electric double layers, polyelectrolyte adsorption, polymer-mediated
interactions of surfaces using strong and weak electrolytes, surface phase transitions
and contact angles of complex coacervates on solid surfaces, complexation-induced
conformational phase transitions of polyelectrolyte brushes, and electro-swelling of
weak polyelectrolyte brushes. The wide variety of problems addressed here reflects
the variety of applications of polyelectrolytes and contexts in which polyelectrolytes
appear.
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C h a p t e r I

INTRODUCTION

This introductory chapter gives an overview of polyelectrolytes, their uses, and the
challenges associated with understanding their behavior near solid surfaces. The
subsequent chapters address the theoretical description of inhomogenous charged
systems in a variety of contexts, ranging from the structuring of small ions near a
charged surface to surface phase transitions of polyelectrolytes.

This chapter includes content from our previously published article:

Balzer, C.; Jiang, J.; Marson, R. L.; Ginzburg, V. V.; Wang, Z.-G. Langmuir 2021,
37, 5483–5493, DOI: 10.1021/acs.langmuir.1c00139

Balzer, C.; Zhang, P.; Wang, Z.-G. Soft Matter 2022, 18, 6326–6339, DOI: 10.
1039/D2SM00859A
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I.1 Polyelectrolytes
Foundation
Polyelectrolytes are polymers with ionizable groups. When immersed in a solvent
(usually water), the ionizable groups dissociate their counterions and impart positive
or negative charge on the polymer. The most popular synthetic polyelectrolytes
are poly(acrylic acid) (PAA) and poly(styrene sulfonate) (PSS). Naturally occurring
biopolymer examples include alginate, pectin, and chitosan [3, 4]. Common proteins
typically contain a collection of positive and negative ionizable groups based on the
charge of amino acid residues, such as glutamic acid, arginine, aspartic acid, or
lysine [5].

The presence of charge on a polymer leads to diverse structural and thermodynamic
properties. Interactions between charges are long-ranged. Like-charges along the
chain repel one another, yet the polymer connectivity prevents charges from sep-
arating. Compared to their neutral counterparts, polyelectrolytes take on a more
extended conformation due to this internal repulsion, looking more like a rigid rod
or so-called cigar rather than a random coil [6] (Figure I.1). In addition to intrachain
interactions, the polymer interacts with other chains and small ions in solution, lead-
ing to polyelectrolyte conformations that depend on the local charge environment
from other chains and solution, the sequence of ionizable groups, and the strength
of the charge–charge interaction [7–10]. For example, adding salt, such as sodium
chloride, to a polyelectrolyte solution will screen the charge–charge interactions,
making the polymer conformation appear closer to that of a neutral polymer. Many
other properties of polymer systems, such as the viscosity and overlap concentration,

Figure I.1: Schematic of neutral polymer versus polyelectrolyte conformations. The
scaling relationships show how the polymer size (radius of gyration) scale with the
chain length. In the case of polyelectrolytes, the scaling is linear with the degree
of polymerization 𝑁 , but also depends on the strength of electrostatic interactions
(Bjerrum length, 𝑙𝐵) and the fraction of charged monomers 𝑓 in the backbone.
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are derived from the polymer conformation, so the behavior of polyelectrolytes can
differ greatly from neutral polymers [11]. Despite the vast conceptual and practical
understanding gained since the term “polyelectrolyte“ was coined by Fuoss [12], a
deceivingly simple question remains at the heart of polyelectrolyte research: how
does the local ionic environment couple to the internal modes of polyelectrolytes?

Uses
Polyelectrolytes are truly ubiquitous materials, both in nature and in the products
we use daily. The prevalence in nature and research interest is driven by their innate
water solubility, ionic conductivity, strong ionic interactions that give rise to useful
and sometimes befuddling solution properties, interaction with ions in solution, and
surface activity [13]

Nature creatively and efficiently uses polyelectrolytes. DNA and RNA are polymers
that carry a highly negative charge due to their phosphate backbones. Viruses,
eukaryotes, and bacteria have all evolved to pack large amounts of DNA, despite
the high charge density, into small volumes of the cell [14] in a way that must
be accessible and reconfigurable. Cells create compartmentalized regions of cel-
lular material via polyelectrolyte liquid–liquid phase separation to mediate cellular
processes [15–17]. Even the disposal of said droplets is mediated by wetting of poly-
electrolyte droplets in a elastocapillary-driven autophagy process [18, 19]. Several
other compelling examples exist and are reviewed elsewhere [9].

Modern consumer products, emerging energy technologies, and novel biomedical
technologies rely on the properties of polyelectrolytes [20–23]. The earliest and
most popular application of polyelectrolytes is in colloidal dispersions [24, 25].
Inorganic colloids, such as metal-oxides, are often are used to modify the flow or
optical properties of a solution. For example, titanium dioxide is the main white
pigment used in paint formulations. These lyophobic colloidal particles tend to ag-
gregate in solution, which degrades material performance. Polyelectrolytes can be
added to the formulation to interact with the colloid surface and prevent aggregates
from agglomerating (Figure I.2). If the polymer-colloid interaction is specifically
tuned, a polyelectrolyte can act as a flocculant or coagulating agent, allowing separa-
tion of solid-liquid mixtures [22]. In personal care, shampoo products are complex
formulations that rely on cation polyelectrolytes to carry anionic, dirt-finding sur-
factants to the hair and also lubricate the hair for better manageability [26, 27].
In the human body, the main component of mucous membranes are proteoglycans
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(anionic polyelectrolytes), and researchers use the complexation between cationic
biopolymers and these anionic polyelectrolytes to increase the efficacy in drug deliv-
ery [4]. Suffice to say that polyelectrolytes exist all around us and there are a myriad
of ways that they are leveraged for practical uses. Many other applications will be
discussed in the subsequent chapters. One can also read more about the historical
developments of polyelectrolytes in the fantastic review by Dobrynin [28].

Figure I.2: Schematic showing polyelectrolyte adsorption and polymer-mediated
interaction between surfaces. (left) Depiction of polyelectrolyte adsorption. (right)
Depiction of two colloidal sized particles with adsorbed polyelectrolyte. The ad-
sorbed polyelectrolyte provides an electrostatic and steric barrier that prevents the
colloidal particles from aggregating.

The design space one must explore for polyelectrolytes (architecture and chemical
sequence) and solution conditions (salt concentration, polyelectrolyte concentra-
tion, pH, solvent type, etc.) to address all of the applications above is too difficult to
accomplish by experiments alone. Predicting and designing materials to have desir-
able properties for the applications above requires accurate theoretical descriptions
of polyelectrolytes.

I.2 Challenges and Opportunities of Surfaces
Polyelectrolytes interact with themselves and the surrounding solution at multiple
length-scales. The long-range nature of the electrostatic interactions leads polyelec-
trolytes to strongly interact with species of opposite charge. In an effort to minimize
the electrostatic free energy, oppositely charged polyelectrolytes often form com-
plexes or counterions may condense on the polyelectrolyte backbone [29–31]. The
theoretical description of polyelectrolytes in bulk solutions relies on accurately de-
scribing the electrostatic correlations, which arise based on the local environment
that surrounds a charged species [32]. Wolfgang Pauli said that “God made the
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bulk. Surfaces were designed by the devil” [33]. The quote was not necessarily
intended for thermodynamics of charged systems but the statement rings true. Sur-
faces take the complexity of bulk systems and add new length-scales, interactions,
and inhomogeniety; however, the strong inhomogeniety imposed by a solid surface
can sometimes simplify the electrostatic interactions. The presence of a solid sur-
face, or other interface, permits local net charge in an electrolyte solution that is not
possible in a bulk solution. In such a case, charge assembly is conceptually sim-
ple and many of the simpler electrostatic descriptions, such as mean-field theories,
perform well since the relative effect of electrostatic correlations is reduced. To
illustrate this idea, consider polyelectrolyte multi-layers prepared by layer-by-layer
assembly, where a series of adsorption and washing steps of a polyelectrolyte on
a charged substrate (Figure I.3). The attraction of opposite charges drives strong
adsorption of the initial polyelectrolyte layer. Subsequent layers adsorb, or complex,
due to the same electrostatic forces. The high degree of charge separation leads to
layer-by-layer assembly being a reliable and robust way to create multi-layers of
controlled thickness [34], enabling their use in a wide variety of contexts, such as
encapsulation and preparation of films for drug delivery [35–37].

Figure I.3: Schematic of layer-by-layer assembly of polyelectrolyte multi-layer films.
Reproduced from Izumrudov, V. A.; Mussabayeva, B. K.; Murzagulova, K. B.
Russian Chemical Reviews 2018, 87, 192, DOI: 10.1070/RCR4767.

Much of the interesting behavior and applications of polyelectrolytes occur near
surfaces. The applications follow two main themes: using polyelectrolytes to
modify surface properties or using a surface to localize and mediate a process. For
the first theme, the diversity of polymer chemistry and generality of charged assembly
near a surface leads surface modification in many areas, such as lubrication [38,
39], biosensing [40], anti-fouling [41–43], and assembly of nanoparticles [44, 45].
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The second theme is more elusive and underlies important of the open questions in
polyelectrolyte research. Surface-mediated processes, like assembly, are often multi-
component and seen in biological systems. For example, recently, Gozen posited
that solid surfaces, such as rocks and minerals, enabled the origin of life by providing
a platform for surface-mediated subcompartmentalization of lipid assemblies and
other non-trivial protocell structures, networks, and colonies [46] (Figure I.4).

Figure I.4: Subcompartmentalization in surface-adhered model protocells. Confo-
cal micrograph, reconstructed in 3D, showing a model protocell on a solid surface
enveloping several subcompartments. Reproduced from Spustova, K.; Köksal, E. S.;
Ainla, A.; Gözen, I. Small 2021, 17, 2005320, DOI: 10.1002/smll.202005320.

In the following chapters, we will traverse various aspects of polyelectrolytes near
solid surfaces. A central theme of this work is the interplay between electrostatic and
nonelectrostatic forces near a solid surface. Chapter II overviews the main princi-
ples of surface thermodynamics of charged systems, focusing on small ion systems,
and applies a robust thermodynamic theory known as classical density functional
theory to study the effect of preferential ion adsorption on the energy extraction
from mixing fresh and salt water. Chapter III explores the interplay between non-
electrostatic and electrostatic adsorption in determining colloidal stability for both
strong and weak polyelectrolyte dispersants. Chapter IV addresses the formation
and growth of polyelectrolyte complexes as films and droplets on a solid surface for
applications in underwater adhesives and other surface coatings. Chapter V investi-
gates the responsive nature of strong and weak polyelectrolyte brushes by exploring
complexation of oppositely charged polyelectrolytes and the electroresponsiveness
of weak polyelectrolytes.



7

References

(1) Balzer, C.; Jiang, J.; Marson, R. L.; Ginzburg, V. V.; Wang, Z.-G. Langmuir
2021, 37, 5483–5493, DOI: 10.1021/acs.langmuir.1c00139.

(2) Balzer, C.; Zhang, P.; Wang, Z.-G. Soft Matter 2022, 18, 6326–6339, DOI:
10.1039/D2SM00859A.

(3) Lee, K. Y.; Mooney, D. J. Progress in polymer science 2012, 37, 106–126,
DOI: 10.1016/j.progpolymsci.2011.06.003.

(4) Cazorla-Luna, R.; Martín-Illana, A.; Notario-Pérez, F.; Ruiz-Caro, R.; Veiga,
M.-D. Polymers 2021, 13, 2241, DOI: 10.3390/polym13142241.

(5) Zhou, H.-X.; Pang, X. Chemical Reviews 2018, 118, 1691–1741, DOI:
10.1021/acs.chemrev.7b00305.

(6) Dobrynin, A. V.; Rubinstein, M. Journal de Physique II 1995, 5, 677–695,
DOI: 10.1051/jp2:1995157.

(7) Overbeek, J. T. G. In Macromolecular Chemistry–11, Eisenberg, H., Ed.;
Pergamon: 1977, pp 91–101, DOI: 10.1016/B978- 0- 08- 020975-
3.50004-9.

(8) Förster, S.; Schmidt, M. In Physical Properties of Polymers; Advances in
Polymer Science; Springer: Berlin, Heidelberg, 1995, pp 51–133, DOI:
10.1007/3-540-58704-7_2.

(9) Rubinstein, M.; Papoian, G. A. Soft Matter 2012, 8, 9265–9267, DOI:
10.1039/C2SM90104H.

(10) Visakh, P. M. 2014, 1–17, DOI: 10.1007/978-3-319-01680-1_1.

(11) Kitano, T.; Taguchi, A.; Noda, I.; Nagasawa, M. Macromolecules 1980, 13,
57–63, DOI: 10.1021/ma60073a011.

(12) Fuoss, R. M. Science 1948, 108, 545–550, DOI: 10.1126/science.108.
2812.545.

(13) Schanze, K. S.; Shelton, A. H. Langmuir 2009, 25, 13698–13702, DOI:
10.1021/la903785g.

(14) Carrivain, P.; Cournac, A.; Lavelle, C., et al. Soft Matter 2012, 8, 9285–
9301, DOI: 10.1039/C2SM25789K.

(15) Brangwynne, C. P.; Tompa, P.; Pappu, R. V. Nature Physics 2015, 11, 899–
904, DOI: 10.1038/nphys3532.

(16) Yewdall, N. A.; André, A. A. M.; Lu, T.; Spruĳt, E. Current Opinion in
Colloid & Interface Science 2021, 52, 101416, DOI: 10.1016/j.cocis.
2020.101416.



8

(17) Dinic, J.; Marciel, A. B.; Tirrell, M. V. Current Opinion in Colloid &
Interface Science 2021, 54, 101457, DOI: 10.1016/j.cocis.2021.
101457.

(18) Agudo-Canalejo, J.; Schultz, S. W.; Chino, H., et al. Nature 2021, 591, 142–
146, DOI: 10.1038/s41586-020-2992-3.

(19) Kusumaatmaja, H.; May, A. I.; Knorr, R. L. Journal of Cell Biology 2021,
220, e202103175, DOI: 10.1083/jcb.202103175.

(20) Scranton, A. B.; Rangarajan, B.; Klier, J. In Biopolymers II, ed. by Peppas,
N. A.; Langer, R. S., Springer: Berlin, Heidelberg, 1995, pp 1–54, DOI:
10.1007/3540587888_13.

(21) Bhatia, S. R.; Khattak, S. F.; Roberts, S. C. Current Opinion in Colloid &
Interface Science 2005, 10, 45–51, DOI: 10.1016/j.cocis.2005.05.
004.

(22) Farinato, R. S. In Polyelectrolytes and Polyzwitterions; ACS Symposium
Series 937, Vol. 937; American Chemical Society: 2006, pp 153–168, DOI:
10.1021/bk-2006-0937.ch009.

(23) Papagiannopoulos, A. Macromol 2021, 1, 155–172, DOI:10.3390/macromol1020012.

(24) De Vasconcelos, C. L.; Pereira, M. R.; Fonseca, J. L. C. Journal of Dis-
persion Science and Technology 2005, 26, 59–70, DOI: 10.1081/DIS-
200040170.

(25) Hierrezuelo, J.; Sadeghpour, A.; Szilagyi, I.; Vaccaro, A.; Borkovec, M.
Langmuir 2010, 26, 15109–15111, DOI: 10.1021/la102912u.

(26) Llamas, S.; Guzmán, E.; Ortega, F., et al. Advances in Colloid and Interface
Science 2015, 222, 461–487, DOI: 10.1016/j.cis.2014.05.007.

(27) Cornwell, P. A. International Journal of Cosmetic Science 2018, 40, 16–30,
DOI: 10.1111/ics.12439.

(28) Dobrynin, A. V. Polymer 2020, 202, 122714, DOI: 10.1016/j.polymer.
2020.122714.

(29) Manning, G. S. The Journal of Chemical Physics 1969, 51, 924–933, DOI:
10.1063/1.1672157.

(30) Priftis, D.; Laugel, N.; Tirrell, M. Langmuir 2012, 28, 15947–15957, DOI:
10.1021/la302729r.

(31) Overbeek, J. T.; Voorn, M. J. Journal of Cellular Physiology 1957, 49, 7–26,
DOI: 10.1002/jcp.1030490404.

(32) Shen, K.; Wang, Z. G. Journal of Chemical Physics 2017, 146, 84901, DOI:
10.1063/1.4975777.

(33) Mudunkotuwa, I. A.; Grassian, V. H. Journal of Environmental Monitoring
2011, 13, 1135, DOI: 10.1039/c1em00002k.



9

(34) Izumrudov, V. A.; Mussabayeva, B. K.; Murzagulova, K. B. Russian Chem-
ical Reviews 2018, 87, 192, DOI: 10.1070/RCR4767.

(35) Jaber, J. A.; Schlenoff, J. B. Current Opinion in Colloid & Interface Science
2006, 11, 324–329, DOI: 10.1016/j.cocis.2006.09.008.

(36) Su, X.; Kim, B.-S.; Kim, S. R.; Hammond, P. T.; Irvine, D. J. ACS Nano
2009, 3, 3719–3729, DOI: 10.1021/nn900928u.

(37) Anselmo, A. C.; McHugh, K. J.; Webster, J.; Langer, R.; Jaklenec, A. Ad-
vanced Materials 2016, 28, 9486–9490, DOI: 10.1002/adma.201603270.

(38) Kreer, T. Soft Matter 2016, 12, 3479–3501, DOI: 10.1039/C5SM02919H.

(39) Zhulina, E. B.; Rubinstein, M. Macromolecules 2014, 47, 5825–5838, DOI:
10.1021/ma500772a.

(40) Ali, M.; Yameen, B.; Neumann, R., et al. Journal of the American Chemical
Society 2008, 130, 16351–16357, DOI: 10.1021/ja8071258.

(41) Ma, S.; Ye, Q.; Pei, X.; Wang, D.; Zhou, F. Advanced Materials Interfaces
2015, 2, 1500257, DOI: 10.1002/admi.201500257.

(42) Higaki, Y.; Kobayashi, M.; Murakami, D.; Takahara, A. Polymer Journal
2016, 48, 325–331, DOI: 10.1038/pj.2015.137.

(43) Borzęcka, N. H.; Kozłowska, I.; Gac, J. M.; Bojarska, M. Applied Surface
Science 2020, 506, 144658, DOI: 10.1016/j.apsusc.2019.144658.

(44) Pincus, P. 1991, 2912–2919, DOI: 10.1021/ma00010a043.

(45) Marins, J. A.; Montagnon, T.; Ezzaier, H., et al. ACS Applied Nano Materials
2018, 1, 6760–6772, DOI: 10.1021/acsanm.8b01558.

(46) Gözen, İ. Life 2021, 11, 795, DOI: 10.3390/life11080795.

(47) Spustova, K.; Köksal, E. S.; Ainla, A.; Gözen, I. Small 2021, 17, 2005320,
DOI: 10.1002/smll.202005320.



10

C h a p t e r II

ELECTRIC DOUBLE LAYERS

A starting point to understand polyelectrolytes near solid surfaces is understanding
the electric double layer (EDL) structure and thermodynamics of an electrolyte
solution. The following chapter outlines the thermodynamics of a solution of
small ions in contact with a charged (or uncharged) solid surface. The first half
focuses on general surface thermodynamics for charge systems and the simplest
model of the electrolyte system, known as Poisson-Boltzmann theory. All of the
relevant thermodynamics for charged systems can be formulated at the Poisson-
Boltzmann level. Next, we use a density-explicit thermodynamic framework to study
preferential ion adsorption in capacitive double layer expansion (CDLE), where the
controlled mixing of fresh and salty water can generate energy. The available blue
energy (or salinity gradient energy) in a CDLE process is directly determined by
the interplay between adsorption and release of ions from the electrodes at different
salt concentrations. We explore the effect of asymmetric preferential ion adsorption
at nanoporous anode and cathode surfaces as a means to enhance the available blue
energy.

This chapter includes content from our previously published articles:

Bruch, D.; Balzer, C.; Wang, Z.-G. The Journal of Chemical Physics 2022, 156,
174704, DOI: 10.1063/5.0089260

Balzer, C.; Qing, L.; Wang, Z.-G. ACS Sustainable Chemistry & Engineering 2021,
9, 9230–9239, DOI: 10.1021/acssuschemeng.1c01326

I am thankful to Dorian Bruch and Dr. Leying Qing for their devotion to the projects
we shared and their eagerness to understand the thermodynamics of charged systems.
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II.1 Surface Thermodynamics of Electric Double Layers
We begin with a general discussion of surface thermodynamics for charged systems
that will be used in subsequent chapters. Consider a planar, charged solid surface
in contact with a fluid as depicted in Figure II.1. The internal energy for the system

Figure II.1: Simple schematic of planar solid–liquid interface.

is described by the extensive variables 𝑆, 𝑉 , 𝐴, 𝑁 , and 𝑄, corresponding to the
entropy, volume, particle number, and surface charge, respectively.

𝑈 = 𝑇𝑆 − 𝑃𝑉 + 𝛾𝐴 +
∑︁
+,−

𝜇𝑖𝑁𝑖 + Ψ𝑄 (II.1)

where 𝑇 is temperature, 𝑃 is pressure, 𝛾 is the surface tension, 𝜇 is the chemical
potential of species 𝑖, and Ψ is the electrostatic potential of the surface. The
differential form of the internal energy is

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝛾𝑑𝐴 +
∑︁
+,−

𝜇𝑖𝑑𝑁𝑖 + Ψ𝑑𝑄 (II.2)

From the geometry, the volume and area are related, 𝑉 = 𝐴𝐿. A key idea from Ref.
1 is that the surface charge 𝑄 and the surface potential Ψ are (1) thermodynamic
quantities and (2) thermodynamic conjugate pairs for a charged planar surface. The
consequences of this idea are clear when calculating thermodynamic quantities. For
instance, if we have the grand free energy, or Landau energy,𝑊 = 𝑈−𝑇𝑆−∑+,− 𝜇𝑖𝑁𝑖,
the differential is

𝑑𝑊 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝛾𝑑𝐴 −
∑︁
+,−

𝑁𝑖𝑑𝜇𝑖 + Ψ𝑑𝑄 (II.3)

Calculating a pressure from this expression requires the derivative with respect to
the volume, 𝑃 = −

(
𝜕𝑊
𝜕𝑉

)
𝑇,𝐴,{𝜇},𝑄

. The derivative is taken at constant 𝑄 and 𝐴,
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which indicates that the surface charge density remains constant. Likewise, the
surface tension has the derivative 𝛾 =

(
𝜕𝑊
𝜕𝐴

)
𝑇,𝑉,{𝜇},𝑄

, where changing 𝐴 at constant
𝑄 leads to a varying surface charge density. In this way, the grand potential is not the
natural thermodynamic potential for calculating the surface tension. Increasing 𝐴
with constant𝑄 effectively discharges a surface. The natural way to think of surface
tension is to consider a free energy change when increasing the area without changing
the nature of the surface. The preferred thermodynamic potential is a grand-like
potential 𝑌 = 𝑊 − Ψ𝑄, where the surface tension is calculated as 𝛾 =

(
𝜕𝑌
𝜕𝐴

)
𝑇,𝑉,𝜇,Ψ

.
Here, the surface is unchanged and only the area is perturbed in the differentiation.

The grand-like potential energy 𝑌 is also compatible with the Gibbsian picture of
surface thermodynamics. The thermodynamic definition of surface tension intro-
duced by Gibbs [3] is commonly used to calculate surface tension. The basis of
Gibbs’s formulation is to divide the inhomogeneous system into homogeneous bulk
phases separated by a surface region. The surface tension is commonly evaluated
using the integral form of the free energy such that 𝛾𝐴 = Ω − Ωbulk = Ω + 𝑃bulk𝑉 ,
where Ω is a type of grand free energy. The bulk subscript indicates that the surface
region is in contact with a macroscopic, bulk phase. For a charged system, the
common expression for surface tension is only valid when Ω is the “grand-like“
free energy 𝑌 , not the grand free energy 𝑊 , regardless of whether the system is
characterized by constant surface charge or constant surface potential.

The thermodynamic potential 𝑌 leads to a useful Maxwell relation involving the
surface tension. The differential form of the free energy is

𝑑𝑌 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝛾𝑑𝐴 − 𝑁𝑑𝜇 −𝑄𝑑Ψ (II.4)

One has the following Maxwell relation,(
𝜕𝛾

𝜕Ψ

)
𝑇,𝑉,𝜇

= −
(
𝜕𝑄

𝜕𝐴

)
𝑇,𝑉,𝜇

= −𝜎 (II.5)

where𝜎 is the surface charge density. The equation above is known as the Lippmann
equation [4], which has been noted by several authors [5–9]. Because the capacitance
is positive, the Lippmann equation shows that the surface tension is at a maximum
when the surface charge density is zero.

What is the free energy of the fluid?
The thermodynamic arguments above are general and assume one has access to the
free energy of the system, 𝐹 or𝑊 . In reality, the challenge is determining the correct
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free energy of the system. For an electrolyte solution, the minimum reasonable
model is an ideal gas of point charges. Even for such a model, approximations are
made to simplify the theory to a mean-field level, known as Poisson–Boltzmann
theory. As we will later see, adding in effects beyond mean-field can be done in a
perturbative manner by adding free energy contributions relative to a known free
energy functional, such as that given by Poisson–Boltzmann theory.

II.2 Poisson-Boltzmann Theory
Theories of EDLs date back to Helmholtz and Perrin who captured the fundamental
picture of the EDL [10]. As shown in Figure II.2, if a solid electrode surface carries
charge, co-ions of the surface are repelled and the counter-ions are attracted to the
surface. The double layer stores charge due to the polarization of the electrolyte
solution. Guoy and Chapman built on the Helmholtz–Perrin framework to account
for the fact that the ions can diffuse, leading to what is known as the Poisson–
Boltzmann theory [11, 12]. Stern offered the next conceptual leap, describing the
first layer of ions as bound to the surface with an adjacent diffuse layer [13]. In
more recent years, several theories have been developed for electrolyte solutions
to incorporate electrostatic correlation, finite size of the ions, image charges at an
interface [14]. Some of these aspects will be discussed later in the chapter. The goal
of the current section is develop the surface thermodynamics for a charged system.
Consider the system depicted in Figure II.2. Poisson–Boltzmann theory can be

Figure II.2: Schematic of charged surface in contact with electrolyte solution.

derived by considering an ideal gas of point charges [15, 16]. The free energy of
such a system includes 1) the translational entropy of each ion and 2) the Coulomb
interactions between charges, 𝐹 = 𝐹Ideal + 𝐹Coul.. For a system of monovalent ions
(𝑍+ = −𝑍− = 1) with a bulk density of 𝜌𝑏±, the Helmholtz free energy is
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𝛽𝐹 =
∑︁
𝛼=+,−

∫
dr 𝜌𝛼 (r)

(
ln [𝜌𝛼 (r)𝑣𝛼] − 1

)
+ 𝛽𝑒

2

8𝜋𝜖

∫
dr

∫
dr′

𝜌𝑐 (r)𝜌𝑐 (r′)
|r − r′| (II.6)

where 𝛽 = 1/𝑘𝐵𝑇 is the inverse temperature, 𝑣 is the ion volume scale, 𝑒 is
the elementary charge, 𝜖 is the dielectric constant of the medium, and 𝜌𝑐 (r) =
𝜌+(r) − 𝜌−(r) + 𝜌ex is the charge density. 𝜌ex are the fixed external charges. Using a
standard field transformation for the Coulomb interactions [17], the free energy can
be written as

𝛽𝐹 =
∑︁
𝛼=+,−

∫
dr 𝜌𝛼 (r)

(
ln [𝜌𝛼 (r)𝑣𝛼] − 1

)
+

∫
dr

[
𝜌𝑐 (r)𝜓(r) −

1
8𝜋𝑙𝐵

(∇𝜓)2
]

(II.7)

where 𝜓 is the reduced electrostatic potential and 𝑙𝐵 = 𝛽𝑒2/4𝜋𝜖 is the Bjerrum
length. For a single surface in contact with an electrolyte solution, the relevant
free energy is the grand potential energy, which is obtained through the Legendre
transform of the Helmholtz free energy, 𝑊 = 𝐹 − 𝜇+𝑁+ − 𝜇−𝑁−. To obtain equi-
librium configurations, the grand potential energy is minimized with respect to the
ion densities and maximized with respect to the electrostatic potential field. After
applying the bulk condition, the following mean field equations govern the system.

𝜌±(r) = 𝜌𝑏±𝑒∓𝜓(r) (II.8)

4𝜋𝑙𝐵∇2𝜓(r) = 2𝜌± sinh(𝜓) − 𝜌ex (II.9)

The first equation gives the density profiles for the ions, which only depend on the
local value of the electrostatic potential. The second equation is the familiar Poisson
equation. The corresponding grand potential energy is given as

𝛽𝑊 =

∫
dr

[
− 1

8𝜋𝑙𝐵
(∇𝜓)2 + 𝜌ex𝜓 − 2𝜌𝑏± cosh (𝜓)

]
(II.10)

Poisson–Boltzmann theory continues to be a popular approach to describe charged
systems but is only a starting point for describing the structure and thermodynamics
of EDLs. The Poisson–Boltzmann level treatment of electrostatics fails to capture
realistic electrolyte behavior [18–21], such as charge-inversion. For electrolyte solu-
tions, classical density functional theory (cDFT) provides an alternative framework
that addresses some of the limitations of Poisson–Boltzmann theory.
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Classical Density of Functional Theory
The mathematical formalism of cDFT originates from the same seminal works
of electronic DFT by Hohenberg and Kohn in 1964 [22] and Kohn and Sham in
1965 [23]. Hohenberg and Kohn proved that the ground-state energy of an electron
gas is a unique functional of the electron density for any external potential. Further,
the ground-state density can be found variationally – by minimizing the ground-
state energy. Kohn and Sham postulated that a many-electron system could be
represented by a noninteracting electron gas in an effective potential, providing a self-
consistent method of arriving at the effective potential. Combined with Mermin’s
extension to non-zero temperatures in 1965 [24], these theorems enable straight-
forward calculation of a classical equilibrium density profile given knowledge of the
intrinsic free energy of a system.

The key idea, and main challenge, of cDFT (and electronic DFT) lies in creating
the free energy functional. Before considering construction of the free energy
functional, the general grand potential energy for a one-component, small particle
system will be derived.

For a system at constant temperature, volume, and external field 𝜙(r), the grand
free energy can be written as a Legendre transform of the intrinsic Helmholtz free
energy F [𝜌(r)] with respect to the number density 𝜌(r) and external field 𝜓(r).
The intrinsic free energy is the Helmholtz free energy that is independent of the
external field.

𝑊 [𝜌(r)] = F [𝜌(r)] −
∫

𝑑r𝜙(r)𝜌(r) (II.11)

According to the Hohenberg and Kohn theorems, the minimum of the grand potential
energy occurs at the equilibrium density distribution 𝜌(r) so that 𝛿𝑊

𝛿𝜌
= 0. From

thermodynamics, the following is also true, where 𝑉 is the external potential.

𝐹 = 𝑊 + 𝜇
∫

𝑑r𝜌(r) = F [𝜌(r)] +
∫

𝑑r𝑉 (r)𝜌(r) (II.12)

Equating the first variations of Equations (II.11) and (II.12) with respect to the
density evaluated at the equilibrium density shows that

𝜙(r) = 𝜇 −𝑉 (r) (II.13)
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Thus, the grand potential energy we seek to minimize can be written in terms of the
intrinsic Helmholtz free energy and a contribution from the external and chemical
potential.

𝑊 [𝜌(r)] = F [𝜌(r)] − 𝜇
∫

𝑑r𝜌(r) +
∫

𝑑r𝑉 (r)𝜌(r) (II.14)

Finally, one can divide the intrinsic free energy into an ideal part and excess part.
The ideal part is the free energy of an ideal gas, while the excess contribution
accounts for all deviations from ideality. In the equation below, Λ is the thermal de
Broglie wavelength and 𝛽 is the inverse temperature.

𝛽𝑊 [𝜌(r)] =
∫

𝑑r𝜌(r)
[
ln(𝜌(r)Λ3) − 1)

]
+ 𝛽

∫
𝑑r𝑉 (r)𝜌(r)

−𝛽𝜇
∫

𝑑r𝜌(r) + 𝛽F𝑒𝑥 [𝜌(r)]
(II.15)

Here, it is worth noting the similarity to electronic DFT, where the intrinsic free
energy is the sum of the Hartree energy of the electrons (known analytical form) and
the exchange-correlation energy. The treatment of the exchange-correlation energy
functional is where Kohn-Sham DFT can widely vary, including local density,
gradient-corrected, and even second derivative functionals [25]. In the case of
electronic DFT, the external potential arises from surrounding nuclei while the
external potential in cDFT can originate from a number of different origins, such as
a surface.

Minimization of the free energy in Equation (II.15) leads to an Euler-Lagrange
equation for the equilibrium density. Note that Λ3 has no effect on the density
as it can be absorbed into the reference potential in the ideal part of the chemical
potential.

𝜌(r)Λ3 = exp
[
𝛽𝜇 − 𝛽𝑉 (r) − 𝛽𝛿F𝑒𝑥 (r)

𝛿𝑛(r)

]
(II.16)

Excess Free Energy

As is clear in Equation (II.16), the excess free energy plays an essential role in
dictating the equilibrium density profile. Deciding what physics to include in the
excess free energy is the crux of cDFT. In addition to choosing physics to include in
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the excess free energy, one must also choose from a variety of theoretical approaches
to capture desired phenomena. For example, to include a finite size via a hard
sphere contribution to the excess free energy, one could choose from early works of
weighted/local density approximations or use one of the variations of fundamental
measure theory (FMT) [26]. While there may be rules of thumb and room for
intuition in deciding the functional, there is no “silver bullet” in choosing a free
energy functional. The tailorability of cDFT is a considerable challenge to as well
as an opportunity to use DFT for a wide variety of problems.

The initial applications of cDFT in the 1970’s emphasized phase transitions and
the structure of density distributions where different phases meet [27]. Excess free
energy functionals consisted of local density or mean field approximations. To cap-
ture strong inhomogenieties in density and more complex phenomena like hydrogen
bonding, weighted density approximations (WDAs), Rosenfeld’s FMT [26], and the
general class of statistically associating fluid theories (SAFTs) by Chapman were in-
troduced [28]. With more robust free energy representations, applications extended
to wetting transitions, freezing/melting transitions, complex fluid phenomena, and
surfactant and gas adsorption [29]. Alongside those developments, cDFT has fo-
cused on the treatment of charged components, polymers or monomeric ions. The
historical development of cDFT is linked to the refinements and new approaches
in defining the excess free energy functional [27]. While these refinements are
still ongoing [30–34], many recent applications in cDFT are focused on charged
systems, specifically for energy applications. The following section will use the
cDFT framework to study energy extraction from mixing fresh and saltwater.
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II.3 Preferential Ion Adsorption in Blue Energy Applications
Introduction
Renewable alternatives to fossil fuels are urgently needed to address energy shortages
and avoid further adverse environmental consequences [35]. The ocean provides
several potential renewable energy sources, including wave power, ocean thermal
energy, tidal energy, marine current energy, and salinity gradient energy [36, 37].
Salinity gradient energy (or so-called “blue energy”) is the energy extracted from
mixing freshwater and saltwater. Such mixing occurs in large quantities when rivers
flow into the ocean, whereby part of the released free energy of the mixing process
can be converted to useful work. This interesting approach to energy extraction was
proposed by Pattle in 1954 [38], and then further developed by many researchers
[39–42]. Popular engineered technologies include pressure retarded osmosis (PRO),
reverse electrodialysis (RED), and capacitive mixing (CapMix) [43, 44]. The former
two technologies are membrane-based and obtain high power density but widespread
use is limited by low cost-efficiency and fouling [45, 46]. CapMix is an electrode-
based technology and was originally proposed by Brogioli [47] in a seminal paper
outlining what is now known as capacitive double layer expansion (CDLE) [48].
Subsequently, CapMix expanded to include two other variants based on CDLE:
mixing entropy battery (MEB) [49] and capacitive Donnan potential (CDP) [50].
These processes have three corresponding reverse processes: capacitive deionization
[51–53], desalination battery [54], and membrane capacitive deionization [55],
respectively. Each variant of CapMix shows promise and has drawbacks, but CDLE
has the benefit that no chemical reactions or ion-selective membranes are required
as in MEB and CDP, respectively. CDLE uses two porous electrodes assembled as a
capacitor to accumulate charged ions in the electrical double layer (EDL) to achieve
the energy extraction from the saltwater and the freshwater [56]. Compared with
other CapMix variants, CDLE also has a longer cycle life and favorable operating
conditions, showing promise for several applications [57].

Figure II.3a shows the four states of the CDLE process involving two open and
two closed circuits during the charging/discharging process. The corresponding
thermodynamic cycle is shown in Figure II.3b. By alternating between saltwater
and freshwater and switching between open/closed circuit states during the charg-
ing/discharging process, the enclosed area 𝑊 in the thermodynamic cycle is the
total useful work that can be extracted from the mixing process of the saltwater and
the freshwater. A more detailed description of the CDLE process is available in
previous literature [47, 56, 58] and is included in the Appendix for completeness.



19

Figure II.3: Blue energy process graphic. (a) Schematic representation of the four
states in CDLE process including two open-circuit and two closed-circuit states. (b)
Thermodynamic cycle in the CDLE process. Δ𝑉𝑠 is the surface voltage difference
(working voltage) between the positive and negative electrodes in the capacitor. 𝑄𝑠

is the surface charge density of the electrodes.

The available energy to extract 𝑊 is closely associated with the fabrication and
arrangement of porous electrode pair in electrolyte. Based on the idea proposed
by Brogioli in 2009 [47], Brogioli and coworkers fabricated a larger dimensional
prototype cell in a lab-scale stack with 8 cells [41]. Sales et al. increased the
extracted efficiency of the Brogioli system by employing a membrane-modified su-
percapacitor and achieved the direct auto-generation of the current by alternating
the saltwater and the freshwater [50]. Additionally, many experimental and the-
oretical studies have focused on the geometrical structure of the pore, interfacial
interaction, and type of electrolytes on the energy extraction. For example, Jiménez
et al. investigated the multi-ionic solution (i.e., Mg2+,Na+,Cl−) both theoretically
and experimentally to find that divalent ions and larger ion sizes decrease the avail-
able energy [59, 60]. Using classical density functional theory (cDFT), Lian et
al. found that hydrophilic electrodes can extract more blue energy compared to
hydrophobic electrodes [58]. They further reported that multi-layer graphene elec-
trodes can increase the extracted energy [61]. Furthermore, microporous electrodes
show significant viability for energy extraction in the CDLE process and capacitive
deionization [62, 63] due to the anomalous increase of capacitance at nanoscale
pore size [64–67]. For supercapacitors, the capacitance was shown to be maximized
when the pore size is close to the size of the ion diameter [68]; whereas, for the
CDLE process, the ratio of the net energy output to the variation in the Gibbs free
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energy between saltwater and freshwater (defined as the thermodynamic efficiency)
was maximized when pore size is a few times the ion size [69].

The vast majority of experimental and theoretical work related to blue energy has
focused on systems where both electrodes have the same properties. Experiments of
different carbon-based electrodes have shown that a cell with two different electrode
materials can give rise to differing “spontaneous potentials” due to specific ion
adsorption and parasitic electrochemical reactions at the electrodes [40]. In the
same experiments, the authors showed that operating the CDLE process close to
the “spontaneous voltage” (difference between spontaneous potentials for the two
electrodes) can significantly reduce, or even eliminate, the effect of self-discharge,
which is a major limiting factor in the practical realization of CDLE.

As shown in Figure II.3b, the optimal energy extraction is given by the area en-
closed in the thermodynamic curves of freshwater and saltwater at a given potential
difference. Recent work by Chao and Wang suggested that the maximum of the
differential capacitance shifts from zero voltage to finite voltage when there is pref-
erential attraction of ions to the surface, which can significantly increase the energy
storage capacity of supercapacitor (up to a 3-fold increase for some conditions) [70].
We expect that such a preferential attraction will similarly shift the operating curves
of saltwater and the freshwater in the thermodynamic cycle for CDLE. For instance,
at a positively charged surface, preferential attraction of cations will increase the
surface potential. Since the different ion concentrations of freshwater and saltwater
shift the potential by a different amount on each electrode, the degree of preferen-
tial attraction of ions can then be used to tune the available blue energy and shift
the value of the potential difference Δ𝑉 where the maximum available energy oc-
curs. The general effect of specific ion adsorption has been explained by a simple,
Langmuir-like adsorption model [71]. However, to the best of our knowledge, the
effects of asymmetric preferential adsorption on the operation of CapMix and on
energy storage have not been systematically studied theoretically.

In this work, we use classical density functional theory (cDFT) to investigate the
effect of preferential adsorption and pore size in like-charged slit-pores for the
CDLE process. Our results show that preferential adsorption of counterions to
the surface can increase the available blue energy, while preferential adsorption
of coions decreases the available blue energy. Generally, the amount of available
energy depends on the chosen potential difference and the pore size. However,
when the pore size is more than a few times the ion size, we find a wide range of
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operability. We also find that preferential adsorption shifts the maximum in the
available energy closer to the spontaneous voltage and that significant energy can
be extracted even at zero potential difference under certain conditions.

The rest of the article is organized as follows. We outline the model used to
study the like-charged slit-pore with preferential attraction. From the prediction of
density profiles using cDFT, we outline the process of calculating the available blue
energy. We then systematically study the effects of the pore size and the strength of
preferential attraction on the maximum extracted blue energy and the corresponding
potential difference.

Methodology
We model an individual pore in the microporous electrodes as a like-charged slit-
pore, where the surfaces carry either positive or negative charge as seen in Figure
II.4. The slit-pore is a structure-less hard wall with pore size 𝐻. We use the the
restricted primitive model (RPM) to describe the electrolyte solutions (i.e. saltwater
and the freshwater) confined in the slit-pore. The solution is assumed to be a
dielectric continuum, described by a relative dielectric constant, 𝜖𝑟 = 78.50. The
cations and the anions are modeled as hard spheres with the same ion diameter,
𝜎+ = 𝜎− = 𝜎 = 0.425 nm. The valency of cation and anion has 𝑍+ = −𝑍− = 𝑍 = 1.
The difference between saltwater and freshwater is only the bulk concentration.
Approximately, the ion concentrations of saltwater and freshwater are 0.60M and
0.024M respectively, corresponding to the ionic strength of ocean and river water.

We focus on a 1:1 electrolyte to clearly present the effect of asymmetry between
electrode materials. We note that using the RPM for a 1:1 electrolyte does not
reflect the multi-ionic nature of any natural water source. In particular, seawater is
made up of ions of differing size and valency. Further, the RPM ignores changes
in the ions’ hydration shell, which alters the solvated ion size and double layer
structure as well as the dielectric constant at interfaces [72], in confinement [64,
73, 74], and with changing salt concentration [75, 76]. There is currently no
widely accepted theory to describe the strong electrostatic correlation of multivalent
ions [32] or to incorporate all solvation effects into cDFT [77]. While solvation, ion
size disparity, and electrolyte valency are important for an accurate description of
real electrolytes, tackling these issues is beyond the scope of this work; we expect the
qualitative conclusions based on our simple 1:1 RPM model to hold. We direct the
reader to works that have used cDFT for electric double layers to study size/valency



22

asymmetry [20, 21, 78], explicit solvent dipoles [79, 80], and ion hydration in
confinement [81], as well as works that used a Poisson-Boltzmann level description
to study at multi-ion effects for blue energy applications [59, 60].

After applying an external voltage, the counterions in the bulk solution adsorb into
the porous electrodes due to the electrostatic attraction, resulting in the accumulation
of counterions at the surface of the slit-pore and depletion of coions from the
surface. These phenomena represent the typical adsorption and diffusion of ions
in electrochemical system [21, 82]. To describe the preferential attraction between
electrode materials and ions, we introduce a nonelectrostatic potential, described by
a modified 9-3 potential.

𝛽𝑢93(𝑧) = 2𝜋𝛽𝜖

[
1
9

(
𝜎

2𝑧

)9
− 1

3

(
𝜎

2𝑧

)3
]

(II.17)

where 𝑧 is the distance away from the surface of a single plate and 𝜖 is the energy
parameter normalized by 𝛽 = 1

𝑘𝐵𝑇
. 𝑘𝐵 is the Boltzmann constant and 𝑇 is the system

temperature. The nonelectrostatic 9-3 potential is identical for both surfaces in the
slit-pore. Therefore, the nonelectrostatic preferential attraction on the ions comes
from both surfaces in the slit-pore, which is more pronounced in small slit-pore. In
addition, ions are excluded from the surface at distances less than the radius of the
ion, 𝜎/2. Consequently, the nonelectrostatic external preferential attraction on the
ions 𝑉ext is

𝑉ext(𝑧) =
{
𝑢93(𝑧) + 𝑢93(𝐻 − 𝑧) 𝜎/2 ≤ 𝑧 ≤ 𝐻 − 𝜎/2
∞ otherwise

(II.18)

The 9-3 potential has a minimum at the contact distance from the surface. Therefore,
𝑉ext is negative in the available space of the slit-pore, providing a purely attractive
force on ions.

To minimize the number of adjustable parameters, we consider three situations
( 𝑓 = 0, 𝑓 < 0 and 𝑓 > 0) to characterize the preferential attraction of electrode
materials on the ions. Particularly, 𝑓 < 0 corresponds to adsorption of counterions
on the surface (Fig. II.4a), while 𝑓 > 0 corresponds to adsorption of the coions
on the surface of the slit-pore (Fig. II.4b). For 𝑓 = 0, there is no nonelectrostatic
preferential attraction in the slit-pore, in which case the ion adsorption is determined
only by the electrostatic and hard sphere interactions at the charged surfaces. Sim-
plifying the system to these three cases amounts to considering symmetric ( 𝑓 = 0)
and antisymmetric ( 𝑓 < 0 and 𝑓 > 0) electrodes, which are limiting cases for
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the combination of two electrode materials. This has important implications when
comparing to previous experiments, which will be detailed later on.

Figure II.4: Schematic representation of two preferential attraction on the ions in
state I. (a) 𝑓 < 0, where electrodes have a preferential adsorption for the counteri-
ons.(b) 𝑓 > 0, where electrodes have a preferential adsorption for the coions. Note
that anions are counterions for positive electrode, and cations are counterions for the
negative electrode. Likewise, cations are coions for positive electrode, and anions
are coions for negative electrode.

cDFT has been extensively employed to investigate the adsorption and diffusion of
ions in electrochemical systems [83, 84]. For an open system, the grand potential
Ω[{𝜌𝑖 (r)}] is expressed as a functional of the density profiles of ions, {𝜌𝑖 (r)},

Ω[{𝜌𝑖 (r)}] = 𝐹 [{𝜌𝑖 (r)}] +
∑︁
𝑖

∫
𝑑r𝜌𝑖 (r) [𝑉ext

𝑖 (r) − 𝜇𝑖] (II.19)

where 𝜇𝑖 is the chemical potential of component 𝑖. 𝐹 [{𝜌𝑖 (r)}] is the Helmholtz free
energy including two parts: the ideal gas contribution 𝐹 id [{𝜌𝑖 (r)}] and the excess
part due to the intermolecular interaction 𝐹ex [{𝜌𝑖 (r)}],

𝐹 [{𝜌𝑖 (r)}] = 𝐹 id [{𝜌𝑖 (r)}] + 𝐹ex [{𝜌𝑖 (r)}] (II.20)

The ideal part has a known form but the excess part must be approximated. In
an electrochemical system, the excess free energy includes several contributions:
the excluded volume effects 𝐹hs [{𝜌𝑖 (r)}], the electrostatic correlation 𝐹el [{𝜌𝑖 (r)}],
and the direct (mean-field) Coulomb interaction 𝐹c [{𝜌𝑖 (r)}], and the van der Waals
interaction between ions 𝐹vdW [{𝜌𝑖 (r)}].

𝐹ex [{𝜌𝑖 (r)}] = 𝐹hs [{𝜌𝑖 (r)}]+𝐹el [{𝜌𝑖 (r)}]+𝐹c [{𝜌𝑖 (r)}]+𝐹vdW [{𝜌𝑖 (r)}] (II.21)
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In this work, we neglect the effects of van der Waals interactions (𝐹vdW [{𝜌𝑖 (r)}] =
0). For the hard sphere interactions, we use the modified fundamental measure
theory (MFMT) [85], which has been shown to accurately predict hard sphere
packing near a planar surface. In addition to the mean-field Coulomb contribution,
the electrostatic correlation contribution is added to account for the local electrostatic
environment around an ions with finite size. Several theoretical approaches exist for
approximating electrostatic correlation [32]. We use a 2nd order perturbation theory
around a bulk reference fluid using the mean spherical approximation (MSA) [86],
which adequately describes the ion density profiles for a 1:1 electrolyte of the same
size [21, 32]. Without electrostatic correlation and hard sphere interactions, our
theory would be identical to the classical Poisson-Boltzmann theory. The expression
of Helmholtz free energy functional is given in the Appendix.

Minimizing Eq. II.19, 𝛿Ω[{𝜌𝑖 (r)}]
𝛿𝜌𝑖 (r) = 0, we obtain the density profile of ions at

equilibrium.

𝜌𝑖 (r) =
1
Λ3
𝑖

exp
[
𝛽

(
𝜇𝑖 −𝑉 𝑒𝑥𝑡𝑖 (r) −

𝛿𝐹𝑒𝑥 [{𝜌𝑖 (r)}]
𝛿𝜌𝑖 (r)

)]
(II.22)

where Λ𝑖 is the thermal wavelength, which has no thermodynamic effects on the
density distribution and can be absorbed into the definition of the bulk density. The
last term in Eq. II.22 defines the local excess chemical potential 𝜇𝑒𝑥

𝑖
(r). Because

the slit-pore surface is homogeneous, we only consider density and field variations
perpendicular to the surface, i.e. in the 𝑧 direction. The excess chemical potential
due to the direct Coulomb interaction is 𝜇𝑐

𝑖
(𝑧) = 𝑍𝑖𝑒𝜓(𝑧), where 𝑒 is the elementary

charge and 𝜓(𝑧) is the average electrostatic potential that is found by solving the
Poisson equation. For a like-charged slit-pore with both surfaces carrying surface
charge density, 𝑄𝑠, the Poisson equation can be written as

𝜖0𝜖𝑟∇2𝜓(𝑧) = −[𝜌𝑐 (𝑧) +𝑄𝑠𝛿(𝑧) +𝑄𝑠𝛿(𝑧 − 𝐻)], (II.23)

where 𝜌𝑐 (𝑧) = 𝑒
∑
𝑖

𝑍𝑖𝜌𝑖 (𝑧); 𝜖0 is the vacuum permittivity; and 𝛿(𝑧) is the Dirac

delta function. By integrating Eq. II.23 between 0− and 0+, the boundary condition
for 𝜓(𝑧) at 𝑧 = 0 is obtained

−𝜖0𝜖𝑟
𝜕𝜓(𝑧)
𝜕𝑧

����
𝑧=0

= 𝑄𝑠 (II.24)

Since both sides of the slit-pore have the same charges (negative or positive), the
system is symmetric across the mid-plane, and the boundary condition for 𝑧 = 𝐻 is
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similarly 𝜖0𝜖𝑟𝜓′(𝐻) = 𝑄𝑠. Integrating Eq. II.23 from 𝑧 = 0− to 𝑧 = 𝐻+ and noting
the potential is constant inside the conducting electrodes,

2𝑄𝑠 +
∫ 𝐻

0
𝜌𝑐 (𝑧)𝑑𝑧 = 0 (II.25)

The full potential profile can be obtained by integrating Eq. II.23 from 0− to 𝑧 twice,

𝜓(𝑧) = 𝑉𝑠 −
𝑄𝑠

𝜖0𝜖𝑟
𝑧 − 1

𝜖0𝜖𝑟

∫ 𝑧

0
(𝑧 − 𝑧′)𝜌𝑐 (𝑧′)𝑑𝑧′ (II.26)

where 𝑉𝑠 is the surface potential. The density profiles and electric potential are
solved iteratively and self-consistently. Starting from a given𝑄𝑠 and an initial guess
of the density profiles (the bulk concentrations), the local chemical potential from
hard sphere and electrostatic correlations are calculated. The Poisson equation (Eq.
II.23) is then solved with Eq. II.26 up to a constant 𝑉𝑠. The surface potential 𝑉𝑠 is
then determined such that electroneutrality is preserved (Eq. II.25), where𝑉𝑠 enters
in the Boltzmann weight in the charge density. Eq. II.22 is used to obtain an updated
guess for the density profile. The new guess and previous guess are linearly mixed
in a Picard updating scheme. The iterative process is repeated until the maximum
relative error between the input guess and newly obtained density is less than an
error threshold (< 10−6).

Results and Discussion
The EDL structure at the electrode surface depends on both the pore size and the
strength of the attractive potential between the electrode surface and ions. Figure
II.5 shows density profiles for ions in freshwater at a variety of wall-ion attractive
strengths (Fig. II.5a&b) and pore sizes (Fig. II.5c&d) for a representative surface
charge density. In Figure II.5a, the counterions have preferential attraction to the
surface ( 𝑓 < 0), leading to enhanced counterion adsorption at the surface and
decreased width of the counterion adsorption layer. The thinner adsorption layer
is evident in the length scale required for the density profile to return to the bulk
value. Increasing 𝛽𝜖 within reasonable range has a negligible effect for 𝑓 > 0
as the preferential adsorption of coions is not favorable enough to overcome the
electrostatic repulsion near the surface (Figure II.5b). As a result, the density profiles
for the counterions appear to overlap for a wide range of 𝛽𝜖 . In Figure II.5c, with
preferential adsorption of counterions to the surface ( 𝑓 < 0), the contact-density
varies non-monotonically with the pore size. In the figure, one can see that the
contact-density increases from a pore size of𝐻/𝜎 = 1.5 (black) to𝐻/𝜎 = 3.0 (blue)
but then slightly decreases for larger pore sizes. Without preferential adsorption,
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Figure II.5: Density profiles for anions in freshwater (0.024 M) near positively
charged surface for various pore sizes (𝐻) and surface affinities (𝛽𝜖). The top row
shows the effect of 𝛽𝜖 at constant 𝐻 for (a) 𝑓 < 0 and (b) 𝑓 > 0. The bottom row
shows the effect of pore size at constant 𝛽𝜖 for (c) 𝑓 < 0 and (d) 𝑓 > 0.

one would expect monotonic decrease of the contact density with pore size – similar
to 𝑓 > 0 (see Fig. II.5d), where the coions have preferential adsorption [87]. These
density profiles indicate a complex interplay between the pore size and the balance
of nonelectrostatic and electrostatic adsorption. When the pore size is much larger
than the width of the EDL, the density of ions returns to the bulk value far from
the surface. If the pore size is smaller than the width of the EDL, the midplane
value of the density exceeds the bulk value for counterions so that the ion adsorption
structure is dominated by the first layer of adsorbed counterions [88].

The relationship between surface charge density (𝑄𝑠) and surface potential (𝑉𝑠) is
central to calculating the available electrical energy in the thermodynamic cycle
of the CDLE process. This relationship is directly accessible in our cDFT cal-
culations as we fix the surface charge density and calculate the surface potential
self-consistently with the density profiles. In the absence of preferential adsorption,
we expect the surface potential to increase monotonically with the surface charge
density and be symmetric about the origin for both electrodes. In particular, with
zero surface charge density, the surface potential is zero. However, with preferential
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adsorption, there can be a non-zero surface potential even with zero surface charge
density – either cations or anions accumulate on the surface. Figure II.6 shows the
effect of asymmetric preferential adsorption at the anode and cathode in fresh and
saltwater on the relationship between 𝑄𝑠 and 𝑉𝑠. Figures II.6a&d show that for
an uncharged cell (𝑄𝑠 = 0), the cathode (black/red) and anode (blue/green) have a
non-zero surface potential. The surface potential for 𝑄𝑠 = 0 in the saltwater curves
is equal to the “spontaneous potential” [40] for an electrode material in the absence
of parasitic electrochemical reactions. This is the point where 𝑄𝑠 vs. 𝑉𝑠 curves
have zero potential difference if one used the same material for both electrodes,
which does not correspond to the 𝑓 > 0 or 𝑓 < 0 cases. Generally, the spontaneous
potential does not need to occur with𝑄𝑠 = 0 but does here because we do not model
any electrochemical reactions. The sign of the surface potential for 𝑄𝑠 = 0 depends
on whether 𝑓 < 0 or 𝑓 > 0. For 𝑓 < 0, at the anode, anions accumulate at the elec-
trode surface, leading to a negative surface potential. The preferential adsorption
effectively shifts the𝑉𝑠-𝑄𝑠 curve for both the anode and the cathode. Because 𝑓 < 0
and 𝑓 > 0 are each antisymmetric cases, the shift on the anode and cathode are
equal in magnitude but opposite in sign. The degree to which preferential adsorption

Figure II.6: Relationship between electric potential and surface charge density for
𝐻/𝜎 = 10 and surface affinity 𝛽𝜖 = 2. (a) Surface potential versus the surface
charge density for 𝑓 < 0. (b) Illustration of working voltage calculation obtained
from matching the magnitude of the surface charge density at in the anode and
cathode curves in (a). (c) Working voltage versus surface charge density for 𝑓 < 0.
(d-f) are the same as (a-c) with 𝑓 > 0.
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impacts the surface potential depends on the salt concentration (Fig. II.6a&d). A
higher salt concentration will result in more ions being accumulated on the neutral
surface driven by the wall-ion attractive potential, which results in the larger shift of
the surface potential in saltwater. Here, the saltwater and freshwater curves have a
surface potential of |𝑉𝑠 (𝑄𝑠 = 0) | ≈ 17 mV and |𝑉𝑠 (𝑄𝑠 = 0) | ≈ 7 mV, respectively.
The magnitude of this shift will also increase as the strength of preferential attraction
increases, which we will explore later on.

The working voltage (Δ𝑉𝑠) is calculated as the difference between the anode and
cathode surface potential at the same magnitude of the surface charge density.
This is indicated in Figures II.6b&e by the arrows for Δ𝑉𝑠 at a given |𝑄𝑠 |. For
a given surface charge density, the working voltage is decreased for 𝑓 < 0 and
increased for 𝑓 > 0 compared to the case with no preferential adsorption. For the
conditions in Figure II.6, the point where the anode/cathode curves cross occurs at
|𝑄𝑠 | ≈ 0.03 C/m2 and |𝑄𝑠 | ≈ 0.005 C/m2 for the salt and freshwater respectively.
The “spontaneous voltage” in previous literature [40] is the difference between
the spontaneous potentials of the two different electrode materials. Because of the
antisymmetry of 𝑓 < 0 and 𝑓 > 0, the spontaneous voltage is twice the value of the
spontaneous potential at the anode (positive electrode). Figures S2 and S3 show the
spontaneous voltage for different pore sizes and strengths of preferential attraction.
The key feature is that the spontaneous voltage is negative for 𝑓 < 0 and positive
for 𝑓 > 0 if 𝛽𝜖 > 0.

Figures II.6c&f show the relationship between the working voltage and the surface
charge density at two different salt concentrations for 𝑓 < 0 and 𝑓 > 0. The amount
of energy available to extract is directly related to the area between the freshwater
and saltwater curves. The difference in working potential when switching from
saltwater to freshwater is known as the voltage rise [71]. Because the magnitude of
the preferential adsorption effect depends on the salt concentration, the magnitude
of the shift in the saltwater Δ𝑉𝑠 versus 𝑄𝑠 curve is greater than the shift in the
freshwater curve. For 𝑓 < 0, such an effect increases the voltage rise (provides
more energy output) compared to no preferential adsorption. Conversely, the two
curves can shift closer together so that voltage rise, and hence the available energy,
is reduced when 𝑓 > 0. We will quantitatively analyze the effect on the available
energy later in this work.

Figure II.7 highlights the relationship between the pore size and salt concentration
for the Δ𝑉𝑠 vs. 𝑄𝑠 curves. For most applications, the saltwater concentration is
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Figure II.7: Working voltage versus surface charge density for various salt concen-
trations and pore sizes with (a) 𝑓 < 0 and (b) 𝑓 > 0. The depth of the ion-wall
potential is fixed at 𝛽𝜖 = 2.0.

fixed, whether from a natural reservoir or industrial process. However, saltwater can
have a higher salt concentration than seawater so we include 2.0 M for comparison.
For moderate surface charge density, the working voltage decreases with increasing
salt concentration. This indicates that a larger difference in fresh and saltwater
concentrations increases the voltage rise and the available energy available per
cycle. At sufficiently high surface potential, the number of ions in the slit-pore
and the surface charge density will saturate. On the Δ𝑉𝑠 vs. 𝑄𝑠 curves, saturation
corresponds to a divergence of Δ𝑉𝑠. In the relevant voltage range (less than 1 V),
saturation is not reached, but we see effects of approaching saturation for small pore
sizes, indicated in Figure II.7 for 𝐻/𝜎 = 1.5 (red) by the fast rise of Δ𝑉𝑠 for each salt
concentration. Such a fast rise in Δ𝑉𝑠 is prevalent to a lesser extent for 𝐻/𝜎 = 2.0
(blue) and not present for𝐻/𝜎 = 10.0 (black), signifying that the saturation value for
𝑄𝑠 increases with pore size. The prominence of saturation effects at small pore size
is due to the fact that only a smaller amount of ions can be drawn into the nano-sized
slit than a larger pore. Saturation of the surface charge density is relevant for blue
energy as the saturation surface charge density is insensitive to salt concentration.
As saturation is approached, the difference in Δ𝑉𝑠 vs. 𝑄𝑠 curves for different salt
concentrations becomes smaller, resulting in less energy being extracted from the
CDLE process.

The potential difference Δ𝑉 uniquely determines the four states involved in the
CDLE process as seen graphically in Figure II.3. In CDLE literature, Δ𝑉 is referred
to as the “base voltage“ and is equal to the “external voltage“ for infinite charging
time [40]; however, we use a generic “potential difference“ to avoid confusion with
the external potential in the cDFT framework. From a choice of Δ𝑉 , we identify
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the 𝑄𝐿
𝑠 and 𝑄𝐻

𝑠 (Figure 1) and then numerically integrate between the freshwater
and saltwater curves (Δ𝑉𝑠 vs. 𝑄𝑠). We note that this ideal thermodynamic cycle
does not take into account the power loss from self-discharge, which results from the
tendency of the electrodes to move toward their spontaneous potential in open-circuit
conditions, such as when switching from saltwater to freshwater. Self-discharge will
be present when the potential difference is different from the spontaneous voltage.
This power loss can be significant and increases as the distance between the potential
difference and spontaneous voltage increases [40, 57].

Figure II.8 shows the energy available to extract from the CDLE process as a function
of Δ𝑉 for various pore sizes. Two important parameters are the maximum available
energy 𝑊𝑀 and the Δ𝑉𝑀 that give the maximum energy. For pore sizes less than
𝐻/𝜎 = 3, the energy has a maximum near Δ𝑉 = 0.25𝑉 and exhibits a notably lower
maximum value in the available energy than pore sizes greater than 𝐻/𝜎 = 3. Both
phenomena can be explained by the electrode surface approaching saturation of the
surface charge density as described above. Below 𝐻/𝜎 = 3, the available energy
also exhibits multiple shoulders, rather than a single, smooth peak. The shoulders

Figure II.8: Available blue energy𝑊 versus the potential difference Δ𝑉 for various
pore sizes and types of interaction with the surface. Panels show cases (a) without
preferential attraction ( 𝑓 = 0), (b) counterions attracted to surface ( 𝑓 < 0), and (c)
coions attracted to the surface ( 𝑓 > 0).
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are not numerical artifacts but, rather, reflect the strong oscillatory nature of the
capacitance when the pore size is only a few times larger than the ion size [82].
For pore sizes above 𝐻/𝜎 = 3, the available energy reaches a maximum around
Δ𝑉 = 0.4𝑉 . After the pore size has reached𝐻/𝜎 ≈ 4, the energy profile is relatively
insensitive to pore size, which is consistent with findings from previous work [69].
With preferential adsorption of counterions ( 𝑓 < 0), the amount of available energy
increases for pore sizes above 𝐻/𝜎 = 1.5. The pore size that provides the maximum
available energy is closer to 𝐻/𝜎 = 3, indicated by the pink curve in Figure II.8b.
However, the more significant effect is that the locations of the maximums Δ𝑉𝑀 are
shifted to lower potential differences (Δ𝑉𝑀 ≈ 0.3𝑉), an effect that results from the
shift in the 𝑉𝑠-𝑄𝑠 curves. For 𝑓 > 0, increasing 𝛽𝜖 has nearly the opposite effect
compared to 𝑓 < 0. Namely, Δ𝑉𝑀 slightly increases and 𝑊𝑀 decreases. We say
nearly opposite because for the pore size 𝐻/𝜎 = 1.5, the maximum energy 𝑊𝑀

decreases with increasing 𝛽𝜖 , which is also true for 𝑓 < 0.

To further highlight one of the key effects of preferential adsorption on the available
energy, Figure II.9 shows the effect of increasing the depth of nonelectrostatic
potential at a given pore size of 𝐻/𝜎 = 5. For 𝑓 < 0, increasing 𝛽𝜖 leads to a lower
Δ𝑉𝑀 , which is beneficial for the stability of the CDLE process as high working
voltages can lead to electrolyte/electrode decomposition. More importantly, the
ability to tune Δ𝑉𝑀 has practical implications as experiments [40, 57] have shown
that matching Δ𝑉 to the spontaneous voltage offsets the power loss due to self-
discharge. An important note for 𝑓 < 0 is that with sufficient 𝛽𝜖 , a considerable
amount of energy is available even for Δ𝑉 = 0. For 𝑓 > 0, Δ𝑉𝑀 increases with
increasing 𝛽𝜖 , and increasing 𝛽𝜖 only decreases the available energy. An essential

Figure II.9: Available blue energy𝑊 versus the potential difference Δ𝑉 for various
strengths of interaction with the surface. Panels (a) and (b) show the case where
counterions and coions are attracted to the surface, respectively.



32

relationship is the relation between the shifting Δ𝑉𝑀 and spontaneous voltage at
different conditions. Namely, Δ𝑉𝑀 decreases with increasing 𝛽𝜖 for 𝑓 < 0 but,
as previously noted, the spontaneous voltage also decreases. Figures S4 and S5
show the relationship between pore size and 𝛽𝜖 on the distance of Δ𝑉𝑀 from the
spontaneous voltage. The negative slopes in these plots indicates that surfaces with
any degree of preferential adsorption (for both 𝑓 < 0 and 𝑓 > 0) moves Δ𝑉𝑀 closer
to the spontaneous voltage than indifferent surfaces (𝛽𝜖 = 0). In other words, the
shift in Δ𝑉𝑀 with changing 𝛽𝜖 is faster than the change in the spontaneous voltage
for 𝑓 < 0 and slower than the change in the spontaneous voltage for 𝑓 > 0. For
either case, the preferential adsorption shifts Δ𝑉𝑀 toward the spontaneous voltage.

The maximum of the available energy clearly varies non-monotonically with the
depth of the external potential, evidenced by the peak of the curve for 𝛽𝜖 = 2.0 being
the largest value for 𝑊𝑀 . The available energy relies on the difference in the EDL
response at different salt conditions. For small 𝛽𝜖 , the addition of nonelectrostatic
adsorption enhances the electrostatic effects for 𝑓 < 0. However, at high values of
𝛽𝜖 , the strong adsorption at the surface can lead to saturation of the surface charge
density, regardless of salt concentration.

The above results suggest a nontrivial relationship in the available energy and
potential difference as a function of the pore size and strength of nonelectrostatic
potential. To present a complete picture, we computed the maximum available
energy with various wall-ion attraction strengths and pore sizes. The maximum
available energy 𝑊𝑀 and the corresponding potential difference Δ𝑉𝑀 are given in
Figure II.10 as a heat map. We find the non-monotonic behavior in the maximum
energy with increasing 𝛽𝜖 for 𝑓 < 0 persists for all pore sizes above 𝐻/𝜎 = 2.
However, a monotonically decreasing behavior exists for 𝑓 > 0 and 𝐻/𝜎 < 2. Both
results are consistent with the previous discussion. By tuning 𝛽𝜖 and the pore size
𝐻/𝜎, we obtain the optimal condition for energy extraction. Comparing the optimal
energy and the operation condition for 𝑓 < 0 and 𝑓 > 0, we find that the optimal
energy for 𝑓 < 0 (30.7 mJ/m2) is larger than that for 𝑓 > 0 (28.0 mJ/m2). For
𝑓 < 0, the globally optimal value for 𝑊𝑀 occurs with 𝛽𝜖 ≈ 2.8 and 𝐻/𝜎 ≈ 3;
however, the peak is broad so the values of 𝛽𝜖 ∈ [2, 3] result in similar values for
𝑊𝑀 . The potential difference Δ𝑉𝑀 decreases as 𝛽𝜖 increases for all pore sizes for
𝑓 < 0 as expected, while the behavior ofΔ𝑉𝑀 as 𝛽𝜖 increases for 𝑓 > 0 is a function
of the pore size. In total, Figure II.10 suggests that electrode materials should be
designed (1) with a large enough pore size to avoid the detrimental performance
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effects of surface charge saturation and (2) with characteristics consistent with 𝑓 < 0
to maximize the available energy and lower the potential difference.

Figure II.11 shows the heat map of the maximum available energy𝑊𝑀 and the corre-
sponding potential difference Δ𝑉𝑀 in the plane of 𝛽𝜖 and 𝐻/𝜎 for a higher saltwater
concentration (2.0 M). The extracted maximum energy significantly increases for
this higher saltwater concentration. An important difference between 0.6 M and 2.0
M for saltwater is where the peak of the available energy is for 𝑓 < 0. For 2.0 M,
the peak is at a much lower value of 𝛽𝜖 than for saltwater of 0.6 M, which indicates
that the effect of preferential adsorption is more accessible with a higher saltwater
concentrations. By comparing the contours at 𝛽𝜖 = 0 and 𝛽𝜖 where 𝑊𝑀 has an
absolute maximum in Figures II.10a & II.11a, the peak value for 2.0 M saltwater is
only ≈3% higher compared to no preferential adsorption, while for the 0.6 M case
it is ≈10% higher (we note that our calculations do not consider the diffusion of
ions into the pore or the energy cost associated with self-discharge [57] so such a
10% overall increase may not be practically obtainable). This suggest that while the
optimal value is more accessible (in terms of 𝛽𝜖) at higher salt concentrations, the

Figure II.10: Heat map of (a) the maximum available energy 𝑊𝑀 and (b) the
corresponding potential difference Δ𝑉𝑀 in the plane of 𝛽𝜖 and 𝐻/𝜎 for 𝑓 < 0.
Panels (c-d) are identical to (a-b) with 𝑓 > 0. The concentration of freshwater is
0.024 M, and the concentration of saltwater is 0.6 M.
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effect of preferential adsorption is more beneficial closer to seawater concentrations
(0.6 M). For both saltwater concentrations, for 𝑓 < 0, the absolute maximum occurs
with pore sizes near 𝐻/𝜎 = 3.0. Kong et al. reported that the thermodynamic
efficiency was maximized around 1 nm, suggesting that the pore size for maximum
energy extraction and maximum efficiency may coincide. However, the definition
of thermodynamic efficiency for the CDLE cycle is unsettled as several measures
have been proposed to calculate the maximum amount of work from the cycle [52,
69, 89]. Figures S6 and S7 show the same heat maps as Figures II.10 and II.11,
respectively, with the per area energy divided by 2𝐻 to give a per electrolyte volume
measure of the energy. These figures indicate that the smallest pore sizes give the
most available energy, but this measure clearly neglects the electrode volume and is
specific to the planar geometry in this study.

Figure II.11: Heat map of (a) the maximum available energy 𝑊𝑀 and (b) the
corresponding potential difference Δ𝑉𝑀 in the plane of 𝛽𝜖 and 𝐻/𝜎 for 𝑓 < 0.
Panels (c-d) are identical to (a-b) with 𝑓 > 0. The concentration of freshwater is
0.024 M, and the concentration of saltwater is 2.0 M.
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Conclusion
In this work, we use preferential adsorption of counterions or coions to tune the
relationship between voltage difference and surface charge density for freshwater
and saltwater in the CDLE thermodynamic cycle. We systematically investigated
the effect of nonelectrostatic preferential adsorption between the surface and the ions
on the energy extraction. Compared to pure electrostatic adsorption, we find that
the preferential adsorption of counterions increases the available energy extraction
while decreasing the potential difference of maximum energy for most pore sizes.
With sufficient preferential adsorption, significant energy can be extracted even with
zero applied potential difference. The preferential adsorption of coions decreases
the available energy extraction and increases the potential difference of maximum
energy. We also show that preferential adsorption shifts the potential difference of
maximum energy closer to the spontaneous voltage (for both 𝑓 < 0 and 𝑓 > 0),
though it is not possible to quantify the energy cost of operating away from the
spontaneous voltage within a purely thermodynamic framework. Furthermore,
we find that above 𝐻/𝜎 ≈ 4, the available energy extraction is roughly constant,
indicating a wide range of pore sizes for material design. We have also shown that a
larger concentration difference between the freshwater and the saltwater significantly
increases the available energy, but the effect of preferential adsorption is weaker.
The results presented here give insight to selection and design of electrode materials
that can utilize the preferential adsorption to optimize the amount of energy that can
be extracted in blue energy applications.

Appendix
Description of CDLE Process
Figure II.12a shows the four states of the CDLE process involving two open and
two closed circuits during the charging/discharging process. The corresponding
thermodynamic cycle is shown in Figure II.12b. The charging process takes the
system from state I to state II. In state I, the external circuit is closed and the porous
electrodes are surrounded by saltwater. The cell is charged from 𝑄𝐿

𝑠 to 𝑄𝐻
𝑠 , which

has a corresponding adsorption of charged counterions to the electrode surfaces.
The surface voltage increases from Δ𝑉 𝐿𝑠 to the potential difference Δ𝑉 (also called
the “base voltage” and “external voltage” in the limit of infinite charging time).
From state II to III, the external circuit is opened and the saltwater is replaced with
the freshwater. In this process, the surface charge density remains fixed because
the circuit is open, and the surface voltage difference increases to a higher surface
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voltage, Δ𝑉𝐻𝑠 . The surface voltage increases due to the inverse relation between
the electrostatic potential difference and the ion concentration of the solution [47].
In state III, the two porous electrodes are surrounded by freshwater. After closing
the external circuit, the surface charge density gradually decreases from 𝑄𝐻

𝑠 to 𝑄𝐿
𝑠 ,

and the corresponding surface voltage difference from Δ𝑉𝐻𝑠 to Δ𝑉 , resulting in a
reverse current in the closed circuit. In state IV, the circuit is opened again, and the
freshwater is replaced with the saltwater. The surface voltage difference decreases
from Δ𝑉 to Δ𝑉 𝐿𝑠 with a surface charge density 𝑄𝐿

𝑠 .

Figure II.12: Blue energy process graphic. (a) Schematic representation of the four
states in CDLE process including two open-circuit and two closed-circuit states.
(b) Thermodynamic cycle in the CDLE process. Δ𝑉𝑠 is the applied surface voltage
difference between the positive and negative electrodes in the capacitor. 𝑄𝑠 is
the surface charge density of the electrodes. Same as Figure 1 in the main text.
Reproduced here for completeness.

Classical Density Functional Theory for Electrolyte System
In an inhomogeneous and open system with fixed chemical potential, system tem-
perature, and volume, the grand potential is minimized at the equilibrium state
[90],

𝛿Ω[{𝜌𝑖 (r)}]
𝛿𝜌𝑖 (r)

= 0, (II.27)

In general, the grand potential is expressed as a functional of the local density
profiles of species, Ω[{𝜌𝑖 (r)}].

Ω[{𝜌𝑖 (r)}] = 𝐹 [{𝜌𝑖 (r)}] +
∑︁
𝑖

∫
𝑑r𝜌𝑖 (r) [𝑉 𝑒𝑥𝑡𝑖 (r) − 𝜇𝑖], (II.28)
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where 𝜇𝑖 is the chemical potential of species, 𝑖, and determined by the thermody-
namic condition of bulk system. 𝑉 𝑒𝑥𝑡

𝑖
(r) is the external potential. The key quantity

in the grand potential is the intrinsic Helmholtz free energy, 𝐹 [{𝜌𝑖 (r)}], which is
separated into two contributions: the ideal gas part 𝐹𝑖𝑑 [{𝜌𝑖 (r)}] and the excess
term due to the intermolecular interaction 𝐹𝑒𝑥 [{𝜌𝑖 (r)}].

𝐹 [{𝜌𝑖 (r)}] = 𝐹𝑖𝑑 [{𝜌𝑖 (r)}] + 𝐹𝑒𝑥 [{𝜌𝑖 (r)}] (II.29)

The ideal gas term is

𝛽𝐹𝑖𝑑 [{𝜌𝑖 (r)}] =
∑︁
𝑖

∫
𝑑r𝜌𝑖 (r){ln[𝜌𝑖 (r)Λ3

𝑖 ] − 1}, (II.30)

and taking derivative of the ideal gas free energy with respect to the density, we
obtain the ideal chemical potential

𝜇𝑖𝑑𝑖 (r) = ln[𝜌𝑖 (r)Λ3
𝑖 ] (II.31)

Combining Eqs. (II.27), (II.28), (II.29) and (II.31), the density profiles of ion species
have

𝜌𝑖 (r) =
1
Λ3
𝑖

exp
[
𝛽

(
𝜇𝑖 −𝑉 𝑒𝑥𝑡𝑖 (r) −

𝛿𝐹𝑒𝑥 [{𝜌𝑖 (r)}]
𝛿𝜌𝑖 (r)

)]
(II.32)

The excess free energy 𝐹𝑒𝑥 [{𝜌𝑖 (r)}] captures additional physical effects by account-
ing for any intermolecular interactions beyond the ideal gas. For the electrochemical
system, three contributions are included: the hard-sphere repulsions (also call ex-
cluded volume effect or steric effect), 𝐹ℎ𝑠 [{𝜌𝑖 (r)}], the electrostatic correlation
contribution, 𝐹𝑒𝑙 [{𝜌𝑖 (r)}], and the direct coulomb interaction, 𝐹𝑐 [{𝜌𝑖 (r)}].

𝐹𝑒𝑥 [{𝜌𝑖 (r)}] = 𝐹ℎ𝑠 [{𝜌𝑖 (r)}] + 𝐹𝑒𝑙 [{𝜌𝑖 (r)}] + 𝐹𝑐 [{𝜌𝑖 (r)}] (II.33)

In Eq. (II.33), the first term is obtained by the modified fundamental measure theory
(MFMT) extended by Yu and Wu [85], according to the original FMT proposed by
Rosenfeld. [91]

𝛽𝐹ℎ𝑠 [𝜌(r)] =
∫

Φℎ𝑠 [𝑛𝛼 (r)]𝑑r, (II.34)

where Φℎ𝑠 is the reduced excess Helmholtz energy density, and depends on six
weighted densities, 𝑛𝛼 (r). [92]

Φℎ𝑠 = −𝑛0 ln(1 − 𝑛3) +
𝑛1𝑛2 − n𝑉1 .n𝑉2

1 − 𝑛3
+
𝑛3

2 − 3𝑛2n𝑉2 · n𝑉2

36𝜋

[
ln(1 − 𝑛3)

𝑛2
3

+ 1
𝑛3(1 − 𝑛3)2

]
(II.35)
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where six weighted densities 𝑛0(r), 𝑛1(r), 𝑛2(r), 𝑛3(r), n𝑉1 (r), and n𝑉2 (r) are
related to the weight functions 𝜔(𝛼)

𝑖
(r), 𝛼 = 0, 1, 2, 3, 𝑉1, 𝑉2.

𝑛𝛼 (r) =
∑︁
𝑖

𝑛𝛼,𝑖 (r) =
∑︁
𝑖

∫
𝜌𝑖 (r′)𝜔(𝛼)𝑖 (r − r′)𝑑r′ (II.36)

The weight functions is employed to describe the geometry of the hard-sphere
particle, mainly including two scalar functions associated with the volume and
surface area, and a surface vector function.

𝜔
(3)
𝑖
(r) = 𝜃 (𝜎𝑖/2 − |r|) (II.37)

𝜔
(2)
𝑖
(r) = 𝛿(𝜎𝑖/2 − |r|) (II.38)

𝜔
(𝑉2)
𝑖
(r) = r

|r| 𝛿(𝜎𝑖/2 − |r|) (II.39)

Another three weight functions are

𝜔
(1)
𝑖
(r) = 𝜔(2)

𝑖
(r)/(2𝜋𝜎𝑖) (II.40)

𝜔
(0)
𝑖
(r) = 𝜔(2)

𝑖
(r)/(𝜋𝜎2

𝑖 ) (II.41)

𝜔
(𝑉1)
𝑖
(r) = 𝜔(𝑉2)

𝑖
(r)/(2𝜋𝜎𝑖) (II.42)

𝜃 (r) is the Heaviside step function, and 𝛿(r) is the Dirac delta function. In Eq.(II.33),
the second term because of the electrostatic correlation is obtained by a quadratic
functional Taylor expansion with respect to the bulk density of ions by neglecting
the higher-order correlations.

𝛽𝐹𝑒𝑙 [{𝜌𝑖 (r)}] =𝛽𝐹𝑒𝑙 [{𝜌𝑖 𝑏}] +
∑︁
𝑖

∫
𝑑rΔ𝐶 (1)𝑒𝑙

𝑖
[𝜌𝑖 (r) − 𝜌𝑖 𝑏]

− 1
2

∑︁
𝑖, 𝑗

∫ ∫
𝑑r𝑑r′Δ𝐶 (2)𝑒𝑙

𝑖 𝑗
( |r − r′|) × [𝜌𝑖 (r) − 𝜌𝑖 𝑏] × [𝜌 𝑗 (r′) − 𝜌 𝑗 𝑏]

(II.43)

where 𝜌 𝑗 𝑏 is the bulk density of ions. Δ𝐶 (1)𝑒𝑙
𝑖

and Δ𝐶
(2)𝑒𝑙
𝑖

represent one-order and
two-order direct correlation functions, respectively.

Δ𝐶
(1)𝑒𝑙
𝑖

= − 𝛿𝛽𝐹
𝑒𝑙

𝛿𝜌𝑖 (r)

����
𝑏

(II.44)

Δ𝐶
(2)𝑒𝑙
𝑖 𝑗
( |r − r′|) = − 𝛿2𝛽𝐹𝑒𝑙

𝛿𝜌𝑖 (r)𝛿𝜌 𝑗 (r′)

����
𝑏

(II.45)



39

The one-order DCF is clearly proportional to the excess chemical potential in the
bulk fluid; the two-order DCF can be expressed as

Δ𝐶
(2)𝑒𝑙
𝑖 𝑗
(𝑟) = 𝐶𝑖 𝑗 (𝑟) − 𝐶ℎ𝑠𝑖 𝑗 (𝑟) − 𝐶𝑐𝑖 𝑗 (𝑟) (II.46)

where 𝐶𝑐
𝑖 𝑗
(𝑟) = −𝑙𝐵𝑍𝑖𝑍 𝑗/𝑟 is the direct Coulomb correlation. The two-body DCF

can be obtained from the mean-spherical approximation (MSA). [86, 93] For 0 ≤
𝑟 ≤

��𝜎𝑖 − 𝜎𝑗 �� /2,

𝐶𝑖 𝑗 (𝑟) − 𝐶ℎ𝑠𝑖 𝑗 (𝑟) = −2𝑙𝐵 [−𝑍𝑖𝑁 𝑗 + 𝑋𝑖 (𝑁𝑖 + Γ𝑋𝑖) −
𝜎𝑖

3
(𝑁𝑖 + Γ𝑋𝑖)2] (II.47)

and for
��𝜎𝑖 − 𝜎𝑗 �� /2 ≤ 𝑟 ≤ (𝜎𝑖 + 𝜎𝑗 )/2,

𝑟𝐶𝑖 𝑗 (𝑟) − 𝑟𝐶ℎ𝑠𝑖 𝑗 (𝑟) = 𝑙𝐵 [(𝜎𝑖 − 𝜎𝑗 )𝐿1 − 𝑟𝐿2 + 𝑟2𝐿3 + 𝑟4𝐿4] (II.48)

where

𝐿1 =
𝑋𝑖 + 𝑋 𝑗

4
(𝑆𝑖 − 𝑆 𝑗 ) −

𝜎𝑖 − 𝜎𝑗
16

[(𝑆𝑖 + 𝑆 𝑗 )2 − 4𝑁𝑖𝑁 𝑗 ] (II.49)

𝐿2 = (𝑋𝑖 − 𝑋 𝑗 ) (𝑁𝑖 − 𝑁 𝑗 ) + (𝑋2
𝑖 + 𝑋2

𝑗 )Γ + (𝜎𝑖 + 𝜎𝑗 )𝑁𝑖𝑁 𝑗 −
𝜎𝑖𝑆

2
𝑖
+ 𝜎𝑗𝑆2

𝑗

3
(II.50)

𝐿3 =
𝑋𝑖

𝜎𝑖
𝑆𝑖 +

𝑋 𝑗

𝜎𝑗
𝑆 𝑗 + 𝑁𝑖𝑁 𝑗 −

𝑆2
𝑖
+ 𝑆2

𝑗

2
(II.51)

𝐿4 =
𝑆2
𝑖

6𝜎2
𝑖

+
𝑆2
𝑗

6𝜎2
𝑗

(II.52)

The parameters used in here have 𝑆𝑖 = 𝑁𝑖 +Γ𝑋𝑖, Γ =

√︂
𝜋𝑙𝐵

∑
𝑖

𝜌𝑏
𝑖
𝑋2
𝑖
, and 𝑁𝑖 = 𝑋𝑖−𝑍𝑖

𝜎𝑖
.

In addition, 𝑋𝑖 can be solved through the following two equations:

(1 + Γ𝜎𝑖)𝑋𝑖 + 𝜈𝜎2
𝑖

∑︁
𝑗

𝜌𝑏𝑗𝜎𝑗𝑋 𝑗 = 𝑍𝑖 (II.53)

𝜈 ≡ (𝜋/2)
[
1 − (𝜋/6)

∑︁
𝑖

𝜌𝑏𝑖 𝜎
3
𝑖

]−1

(II.54)

Then, we have

𝑋𝑖 =
𝑍𝑖

1 + Γ𝜎𝑖
−

𝜈𝜎2
𝑖

1 + Γ𝜎𝑖

[∑︁
𝑗

𝜌𝑏
𝑗
𝜎𝑗𝑍 𝑗

1 + Γ𝜎𝑗

/ (
1 + 𝜈

∑︁
𝑗

𝜌𝑏
𝑗
𝜎3
𝑗

1 + Γ𝜎𝑗

)]
(II.55)

In Eq. (II.33), the last term from the direct coulomb interaction has

𝐹𝑐 [{𝜌𝑖 (r)}] =
∑︁
𝑖

𝜓(r)𝑍𝑖𝑒𝜌𝑖 (r) −
𝜖0𝜖𝑟
2
[∇𝜓(r)]2 (II.56)

where 𝜓(r) is the average electrostatic potential. In general, 𝜓(r) can be solved by
Poisson equation.
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Trends in Spontaneous Voltage

Figure II.13: Spontaneous voltage for 𝑓 < 0 and a variety of pore sizes and
preferential adsorption strengths. The concentration of saltwater is 0.6 M.

Figure II.14: Spontaneous voltage for 𝑓 > 0 and a variety of pore sizes and
preferential adsorption strengths. The concentration of saltwater is 0.6 M. The lines
for 𝐻/𝜎 = 6 and 𝐻/𝜎 = 10 overlap.
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Figure II.15: Difference between the potential difference of maximum energy and the
spontaneous voltage for 𝑓 < 0 and a variety of pore sizes and preferential adsorption
strengths. The concentration of freshwater is 0.024 M, and the concentration of
saltwater is 0.6 M.

Figure II.16: Difference between the potential difference of maximum energy and the
spontaneous voltage for 𝑓 > 0 and a variety of pore sizes and preferential adsorption
strengths. The concentration of freshwater is 0.024 M, and the concentration of
saltwater is 0.6 M.
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Maximum Energy per Volume of Electrolyte

Figure II.17: Heat map of (a) the maximum available energy 𝑊𝑀 per volume of
electrolyte and (b) the corresponding potential difference Δ𝑉𝑀 in the plane of 𝛽𝜖
and𝐻/𝜎 for 𝑓 < 0. Panels (c-d) are identical to (a-b) with 𝑓 > 0. The concentration
of freshwater is 0.024 M, and the concentration of saltwater is 0.6 M.
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Figure II.18: Heat map of (a) the maximum available energy 𝑊𝑀 per volume of
electrolyte and (b) the corresponding potential difference Δ𝑉𝑀 in the plane of 𝛽𝜖
and𝐻/𝜎 for 𝑓 < 0. Panels (c-d) are identical to (a-b) with 𝑓 > 0. The concentration
of freshwater is 0.024 M, and the concentration of saltwater is 2.0 M.
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C h a p t e r III

REVERSIBLE POLYELECTROLYTE ADSORPTION AND
MEDIATED INTERACTIONS BETWEEN SURFACES

The connectivity innate to polyelectrolytes distinguishes their adsorption behav-
ior from the small ion systems discussed in the previous chapter. A connected
chain has a limited number of conformations near a planar surface compared to a
bulk solution, leading to an entropic force that depletes polymer. The presence of
charges along the polymer further influences the chain conformation and leads to
rich adsorption behavior near a solid surface, especially when changing solution
conditions (i.e. salt concentration). The polymer-mediated interaction between two
solid surfaces is directly connected to the properties of the adsorbed polymer layers.
Nonelectrostatic interactions with a surface can significantly impact the adsorption
of polyelectrolytes to charged surfaces. This chapter explores the interplay between
nonelectrostatic and electrostatic adsorption adsorption of strong and weak polyelec-
trolytes to planar surfaces and the resultant polymer-mediated surface interaction.
For strong polyelectrolytes, polymer classical density functional theory is utilized
to capture all of the relevant and competing forces. For weak polyelectrolytes, to
focus on the charge regulation, a self-consistent field theory is developed.

This chapter includes content from our previously published article:

Balzer, C.; Jiang, J.; Marson, R. L.; Ginzburg, V. V.; Wang, Z.-G. Langmuir 2021,
37, 5483–5493, DOI: 10.1021/acs.langmuir.1c00139

I am thankful to the Dow Chemical Company for their partial support of the work in
this chapter and the wonderful discussions during the course of the project with Dr.
Chang Yun Son, Dr. Valeriy Ginzburg, Dr. Tom Kalantar, Dr. Christopher Tucker,
and Dr. Anthony Van Dyk. For the weak polyelectrolytes, much of theory stems
Prof. Zhen-Gang Wang’s initial notes on the topic.
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III.1 Strong Polyelectrolytes
Introduction
The adsorption of polyelectrolytes to solid surfaces has been widely studied for
several decades. Interest in the topic has persisted due to the wide parameter space of
polyelectrolyte solutions and the corresponding variety of adsorption behaviors and
mediated interactions that arise from the subtle interplay among electrostatic effects,
excluded volume, and chain connectivity of polyelectrolyte near a solid surface [2–
9]. Forsman summarized the difficulty in isolating the effect of these subtleties
and how they manifest in experimental measurements and theoretical predictions
of polyelectrolyte-mediated forces[10]. Forsman concluded that despite significant
progress, there is a lack of consensus on the effect of polyelectrolyte addition on the
resulting force. Such unresolved issues in polyelectrolyte adsorption and mediated
interaction of solid surfaces are relevant for many industrial applications, including
stabilization of colloidal suspensions, waste water treatment, papermaking, and
biomedical applications [11–15].

The vast majority of studies of polyelectrolyte adsorption and mediated interaction
– both experimental [6, 16–21] and theoretical [19, 22–33] – focus on surfaces that
carry an opposite charge to the polyelectrolyte backbone, where the adsorption is pri-
marily driven by electrostatic attraction to the surface. There have also been efforts
focused on electrostatically driven like-charged polyelectrolyte adsorption to induce
long-range repulsion [34–37], where multivalent ion adsorption provides enough
overcharging to drive adsorption of a like-charged polymer secondary layer[31, 38].
Whether like-charged or oppositely charged, the adsorption is driven by electro-
statics in these works. When the adsorption is purely electrostatic, bringing two
surfaces with adsorbed polymer results in long-range repulsion and short-range at-
traction due to the overlap of adsorbed polymer layers and a bridging effect between
the polymer and both surfaces, respectively [5, 33, 35–37, 39–42].

A particularly interesting facet is the role of nonelectrostatic adsorption on the ad-
sorption behavior and the resulting polymer-mediated interaction. Nonelectrostatic
interactions include any non-ionic interactions, such as hydrogen bonding or hy-
drophobic interactions. The presence of nonelectrostatic adsorption complicates
the balance of electrostatic effects near the surface, particularly upon salt addition.
Adding salt to a polyelectrolyte solution can lead to monotonically increasing[27,
43–49], decreasing[31, 50, 51], or non-monotonic[32, 38, 49, 52–54] behavior in
the adsorbed amount of polyelectrolyte. A recent review states that the adsorbed
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mass “normally increases“ with monovalent salt addition [42], while mean-field
theory would suggest only decreasing adsorption with salt addition for pure elec-
trostatic adsorption [55]. The wide range of qualitatively different behaviors for the
adsorbed amount upon salt addition have been historically attributed to effects of
nonelectrostatic polymer-surface affinity[44]. More recently, Forsman showed that
including electrostatic correlation in a classical density functional theory (cDFT)
captures the non-monotonic behavior of the adsorbed amount upon salt addition
for oppositely-charged systems without the inclusion of nonelectrostatic affinity to
the surface [32]. The system-dependent behavior upon salt addition and seemingly
conflicting explanations in the literature demonstrate the need to understand and
isolate the role of nonelectrostatic adsorption. Nonelectrostatic attraction to the
surface and the corresponding balance with electrostatic interactions undoubtedly
plays a role in the polyelectrolyte-mediated interactions.

In this work, we use a previously developed cDFT framework [56] to characterize
the effect of the strength of nonelectrostatic adsorption, salt addition, and polyelec-
trolyte charge density on the polyelectrolyte adsorption and corresponding mediated
interaction. The cDFT framework has two main advantages over self-consistent
field theory (SCFT) approaches from previous works [22, 39, 57] : cDFT is better
able to describe density profiles even in the absence of electrostatics[58], and cDFT
takes into account electrostatic correlations not present in mean-field treatment of
electrostatics [29, 33, 56, 59]. Previous works have not focused specifically on the
role of nonelectrostatic attraction in relation to both adsorption and polyelectrolyte
mediated-interactions. We focus on the surfaces that carry the same charge as the
polymer to reflect common systems where nonelectrostatic adsorption likely plays
a prominent role. For example, polyacrylic acid has been shown to adsorb to a like-
charge surface, such as silica or titanium dioxide at high pH, where zeta potentials
on the order of −10 mV have been measured [37, 60, 61]. Our results show that
the presence of nonelectrostatic attraction can substantially enhance polyelectrolyte
adsorption, which displaces counterion adsorption at the surface. Interestingly, we
find that upon salt addition the adsorbed amount can decrease, increase, or vary
non-monotonically for a neutral surface depending on the nonelectrostatic attraction
strength, while only increasing for sufficiently negatively charged surface within the
parameters studied. The interplay between the surface charge density and strength
of the nonelectrostatic attraction determine which of the the three regimes is domi-
nant. Further, we show that with sufficient strength of nonelectrostatic attraction, the
polyelectrolyte forms thin adsorption layer that leads to an extended double-layer,
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providing a long-range repulsive barrier between two like-charge surfaces that can
overcome the dispersive (Hamaker) attraction between two colloids. Despite the
variety of regimes for adsorption upon salt addition, the height of the repulsive
barrier always decreases with salt addition.

Methodology
To study the polyelectrolyte adsorption and interaction, we model a polyelectrolyte
solution in a slit-pore between homogeneous surfaces as shown in Figure III.1. The
density functional theory with incompressibility used here was reported in a previous
work [56] so only the main details will be reproduced. The polyelectrolyte solution
is made up of polyions with 𝑁 segments, small ions, and solvent. The species have
diameter 𝜎𝑖, and each non-solvent species has valence 𝑍𝑖 – the solvent is neutral. 𝑍𝑖
is positive for positively charged species and negative for negatively charged species.
The polyelectrolyte chains are represented by tangentially-connected charged hard
spheres [62]. The counterion to the polyelectrolyte is treated as identical to the salt
ions.

The incompressible cDFT assumes a fixed local packing fraction, 𝜂 =
∑
𝑖 𝜌𝑖 (r)𝑣𝑖,

where 𝜌𝑖 (r) is the local density and 𝑣𝑖 is the species volume. 𝑖 refers to the solvent,
small ions (±), and polyelectrolytes (𝑝). We have chosen a packing fraction of

Figure III.1: Generic schematic of polyelectrolyte solution in a slit-pore geometry.
The polymer (green) is uniformly charged and is linear. The polymer, salt ions, and
solvent (gray) are in contact with a bulk reservoir.
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𝜂 = 0.5 throughout this work. Note that the incompressibility condition is added to
the free energy functional as a constraint. In the cDFT framework, the free energy
is fully specified as a functional of the density profiles {𝜌𝑖 (r)}. For the system
considered in this work, the grand potential can be written as

𝑊 [𝜌𝑝 (R), {𝜌𝛼 (r)}, 𝜌𝑠 (r), 𝜙(r), 𝜆(r)] = 𝐹id +
∫

𝑑r 𝑓ex [{𝜌𝑖 (r)}, 𝜙(r); r]

+
∫

𝑑R𝜌𝑝 (R)
[
Ψ𝑝 (R)−𝜇𝑝

]
+
∑︁
𝛼

∫
𝑑r𝜌𝛼 (r)

[
𝜓𝛼 (r)−𝜇𝛼

]
+
∫

𝑑r𝜌𝑠 (r)
[
𝜓𝑠 (r)−𝜇𝑠

]
+

∫
𝑑r𝜆(r)

[∑︁
𝑖

𝑣𝑖𝜌𝑖 (r) − 𝜂
]

(III.1)

where 𝐹id is the ideal contribution, R represents the 3𝑁-dimensional position vector
for the entire chain and 𝑑R =

∏𝑁
𝑚=1 𝑑r𝑚. 𝛼 refers only to small ions (salts and

counterions). 𝜙(r) is the electric potential. Ψ𝑝 (R) is the external potential that acts
on individual polymer segments, and 𝜓𝛼 (r) and 𝜓𝑠 (r) are the external potential for
small ions and solvent respectively. 𝜇𝑖 is the chemical potential. 𝜆(r) is a Lagrange
multiplier used to enforce the incompressibility condition. The overall segment
density 𝜌𝑝 (r) is related to the polymer chain density 𝜌𝑝 (R) as

𝜌𝑝 (r) =
𝑁∑︁
𝑚=1

𝜌𝑠𝑚 (r) =
𝑁∑︁
𝑚=1

∫
𝑑R𝛿(r − r𝑚)𝜌𝑝 (R) (III.2)

where 𝛿(r) is the Dirac-delta function. The ideal free energy is given by

𝛽𝐹id =

∫
𝑑R𝜌𝑝 (R)

[
ln(𝜌𝑝 (R)𝑎𝑁𝑝 ) − 1

]
+

∫
𝑑R𝜌𝑝 (R)𝛽𝑉𝑏 (R)+∑︁

𝛼

∫
𝑑r𝜌𝛼 (r)

[
ln(𝜌𝛼 (r)𝑎𝛼) − 1

]
+

∫
𝑑r𝜌𝑠 (r)

[
ln(𝜌𝑠 (r)𝑎𝑠) − 1

]
(III.3)

where 𝑎𝑖 is a volume scale that has no thermodynamic consequence as it merely
shifts the chemical potential by a constant. The bonding potential 𝑉𝑏 (R) is given
for a freely-jointed chain model.

exp[−𝛽𝑉𝑏 (R)] = 𝑎𝑁−1
𝑝

𝑁−1∏
𝑚=1

𝛿( |r𝑚+1 − r𝑚 | − 𝜎𝑝)
4𝜋𝜎2

𝑝

(III.4)

The excess free energy density 𝑓ex can be written as the sum of 𝑓hs, 𝑓C, 𝑓el, 𝑓ch, and
𝑓vdW which respectively account for hard-core excluded volume interaction, mean-
field Coulomb interaction, nonbonded electrostatic correlation, chain connectivity
correlation, and van der Waals attraction. In this work, we ignore the effect of
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van der Waals attraction between system components, 𝑓vdW = 0. The Coulomb
interaction is given by

𝑓C [𝜙(r), {𝜌𝑖′ (r)}; r] =
∑︁
𝑖′
𝜙(r)𝑍𝑖′𝑒0𝜌𝑖′ (r) −

𝜖𝑟𝜖0
2

[
∇𝜙(r)

]2 (III.5)

where 𝜙(r)) is the electrostatic potential. 𝑖′ refers to non-solvent components –
small ions and polyelectrolytes. We use a functional Taylor expansion to account
for nonbonded electrostatic correlation [59]

𝑓el [{𝜌𝑖′ (r)}; r] ≈ 𝑓el [{𝜌ref
𝑖′ (r)}; r] +

∑︁
𝑖′

∫
𝑑r
𝛿 𝑓el [{𝜌ref

𝑖′ (r)}]
𝛿𝜌ref

𝑖′ (r)

[
𝜌𝑖′ (r) − 𝜌ref

𝑖′ (r)
]
+ . . .

(III.6)
where the nonbonded electrostatic correlation for the reference fluid is obtained
using the mean spherical approximation (MSA) [63–65],

𝛽 𝑓el [{𝜌ref
𝑖′ (r)}; r] = Γ3(r)

3𝜋
− 𝑙𝐵

∑︁
𝑖

𝜌𝑖𝑍𝑖

(
𝑍𝑖 − 𝑍eff

𝑖

𝜎𝑖

)
(III.7)

In Equation III.7, Γ(r) is the MSA screening parameter; 𝑙𝐵 = 𝛽𝑒2
0/4𝜋𝜖𝑟𝜖0 is the

Bjerrum length with 𝑒0 and 𝜖𝑟𝜖0 being the elementary charge and electric permit-
tivity, respectively; and 𝑍eff

𝑖
= (𝑍𝑖 − 𝜒𝜎2

𝑖
)/(1 + Γ𝜎𝑖) can be considered an effective

valence. The screening parameter Γ is given by the implicit relationship

Γ2(r) = 𝜋𝑙𝐵
∑︁
𝑖′
𝜌ref
𝑖′ (r)

(
𝑍eff
𝑖′

)2
(III.8)

and 𝜒 is given by

𝜒 =
∑︁
𝑖′

𝜌ref
𝑖′ (r)𝜎𝑖′𝑍𝑖′
1 + Γ𝜎𝑖′

/ [
2(1 − 𝜂)

𝜋
+

∑︁
𝑖′

𝜌ref
𝑖′ (r)𝜎3

𝑖′

1 + Γ𝜎𝑖′

]
(III.9)

In this work, we use the Reference Fluid Density (RFD) scheme developed by
Gillespie and co-workers [66] for the reference density as opposed to using the bulk
density as a reference. We use a first-order approximation in Eq. III.6, which is
shown to be nearly as accurate as the second-order expansion with RFD in our
previous work [59].

We use first-order TPT (TPT-1) [67–70] to account for the connectivity correlation,
which has been successfully used for uncharged polymer systems [71–73]. The free
energy density can be written as the sum of hard-sphere and electrostatic correlation
contributions.

𝑓ch [{𝜌𝑖′ (r)}; r] = 𝑓 hs
ch [{𝜌𝑖′ (r)}; r] + 𝑓 el

ch [{𝜌𝑖′ (r)}; r] (III.10)
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The hard sphere part can be written in terms of the pair distribution function at
contact 𝑔(𝜎𝑝, {𝜌𝑖′ (r)})

𝛽 𝑓 hs
ch [{𝜌𝑖′ (r)}; r] =

(1 − 𝑁)𝜌𝑝 (r)
𝑁

ln 𝑔(𝜎𝑝, {𝜌𝑖′ (r)}) (III.11)

The electrostatic correlation part can be written as a functional Taylor expansion

𝑓 el
ch [{𝜌𝑖′ (r)}; r] ≈ 𝑓 el

ch [{𝜌
ref
𝑖′ (r)}; r]+

∑︁
𝑖′

∫
𝑑r
𝛿 𝑓 el

ch [{𝜌
ref
𝑖′ (r)}]

𝛿𝜌ref
𝑖′ (r)

[
𝜌𝑖′ (r)−𝜌ref

𝑖′ (r)
]
+. . .

(III.12)
where we use a first-order approximation to maintain consistency with the non-
bonded electrostatic correlation. The energy density for a reference density is given
by

𝛽 𝑓 el
ch [{𝜌

ref
𝑖′ (r)}; r] =

(1 − 𝑁)𝑙𝐵𝜌ref
𝑝 (r)

[
𝑍2
𝑖
− (𝑍eff

𝑖
)2

]
𝑁𝜎𝑝

(III.13)

To account for the hard sphere excluded volume effect, we use a functional based
on a local density approximation (LDA) combined with the Boublík-Mansoori-
Carnarhan-Starling-Leland (BMCSL) equation of state [74, 75]. The functional has
the form

𝛽 𝑓hs [{𝜌𝑖 (r)}; r] = −𝜉0 ln(1 − 𝜉3) +
𝜉1𝜉2

1 − 𝜉3
+
𝜉3

2
36𝜋

[
ln(1 − 𝜉3)

𝜉2
3

+ 1
𝜉3(1 − 𝜉3)2)

]
(III.14)

where 𝜉3 = 𝜋
∑
𝑖 𝜌𝑖 (r)𝜎3

𝑖
/6, 𝜉2 = 𝜋

∑
𝑖 𝜌𝑖 (r)𝜎2

𝑖
, 𝜉1 =

∑
𝑖 𝜌𝑖 (r)𝜎𝑖/2, 𝜉0 =

∑
𝑖 𝜌𝑖 (r).

Clearly, 𝜉3 is the equal to the local packing fraction and is equal to 𝜂 by the
incompressibility condition. The effects of excluded-volume interactions in Eq.
III.14 are especially important for systems where the solvent, monomers, and ions
have different sizes. In the limit where all species have the same size, 𝜎, and the
packing fraction 𝜂 is uniform, the variables 𝜉0, 𝜉1, 𝜉2, and 𝜉3 become constants,
and the free energy from excluded-volume becomes a pure additive constant. In
this regard, the cDFT calculation with 𝜎𝑝 = 𝜎𝛼 = 𝜎𝑠 = 𝜎 and constant 𝜂 is
similar to a “compressible" self-consistent field theory, where the incompressibility
condition is enforced by adding a “void“ component with volume fraction equal
to 1 − 𝜂. Jain et al. showed that cDFT and compressible SCFT predict similar
thermodynamic behavior for neutral polymers between hard walls if 𝜂 ≥ 0.5 [58,
76]. The advantage of cDFT over SCFT stems from a more accurate description
of the density fluctuations near the walls (even for the equal diameter case) and
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also, from the straight-forward generalization to the case of non-equal diameters, in
addition to being more compatible with the treatment of electrostatic correlations.

Extremizing the grand potential (Eq. III.1) with respect to the densities and intro-
duced fields - 𝜆(r) and 𝜙(r) - results in the following equations,

𝜌𝑝 (R)𝑎𝑁𝑝 = exp

{
𝛽

[
𝜇𝑝 −𝑉𝑏 (R) −

𝑁∑︁
𝑚=1

Λ𝑝 (rm)
]}

(III.15)

𝜌𝛼 (r)𝑎𝛼 = exp {𝛽 [𝜇𝛼 − Λ𝛼 (r)]} (III.16)

𝜂𝜆(r)𝑣𝑠 = 𝛽
[
𝜇𝑠 − 𝜓𝑠 −

𝜕 𝑓ex
𝜕𝜌𝑠 (r)

]
− ln

(
𝜌𝑠 (r)𝑎𝑠

)
(III.17)

𝜖𝑟𝜖0∇2𝜙(r) =
∑︁
𝑖′
𝑍𝑖𝑒𝑜𝜌𝑖′ (r) (III.18)

𝜂 =
∑︁
𝑖

𝜌𝑖 (r)𝑣𝑖 (III.19)

where Λ𝑝 and Λ𝛼 are effective fields for monomers and small ions, respectively:

Λ𝑝 (r) =
𝜕 𝑓ex
𝜕𝜌𝑝 (r)

+ 𝜓𝑝 (r) + 𝑍𝑝𝑒0𝜙(r) + 𝜆(r)𝑣𝑝 (III.20)

Λ𝛼 (r) =
𝜕 𝑓ex
𝜕𝜌𝛼 (r)

+ 𝜓𝛼 (r) + 𝑍𝛼𝑒0𝜙(r) + 𝜆(r)𝑣𝛼 (III.21)

In this work, we consider the effect of non-electrostatic adsorption of the polymer.
This effect is accounted for using the external potential 𝜓𝑝 (r), which acts on each
monomer independently. We use a modified 9-3 potential for this interaction with
the surface, 𝑢𝑝93. Because we consider a slit-pore geometry, 𝜓𝑝 and 𝑢𝑝93 only vary in
the 𝑧-direction, perpendicular to the surface.

𝑢
𝑝

93(𝑧) = 2𝜋𝜖

[
1
9

(
𝜎𝑝

2𝑧

)9
− 1

3

(
𝜎𝑝

2𝑧

)3
]

(III.22)

Such a potential has a minimum at 𝜎𝑝/2. Combined with the hard sphere condition
near the surface, the external potential for the monomer can be written as follows

𝜓𝑝 (𝑧) =
{
𝑢
𝑝

93(𝑧) + 𝑢
𝑝

93(𝐻 − 𝑧) 𝜎𝑝/2 ≤ 𝑧 ≤ 𝐻 − 𝜎𝑝/2
∞ otherwise

(III.23)
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Numerical Implementation
The density of monomers and small ions vary only in the 𝑧-direction. The monomer
density is obtained using Equations III.2, III.4, and III.15.

𝜌𝑝 (𝑧)𝑎𝑝 = exp[𝛽𝜇𝑝]
𝑁∑︁
𝑚=1

exp[−𝛽Λ𝑝 (𝑧)]𝐺𝑚 (𝑧)𝐺
′
𝑚 (𝑧) (III.24)

For small ions,
𝜌𝛼 (𝑧)𝑎𝛼 = exp[𝛽𝜇𝛼 − 𝛽Λ𝛼 (𝑧)] (III.25)

The chain propagators are given by the recurrence relation

𝐺𝑚 (𝑧) =
1

2𝜎𝑝

∫ 𝑧+𝜎𝑝

𝑧−𝜎𝑝

𝑑𝑧′ exp[−𝛽Λ𝑝 (𝑧′)]𝐺𝑚−1(𝑧′) (III.26)

for 𝑚 = 1, . . . , 𝑁 with the initial condition of 𝐺1(𝑧) = 1. The complementary
propagator for linear homopolymers satisfies𝐺′𝑚 (𝑧) = 𝐺𝑁+1−𝑚 (𝑧). In this work, we
fix the surface charge density on the surfaces in the slit-pore, 𝑄. The electrostatic
potential from Eq. III.18 can be exactly solved in 1D to give

𝛽𝑒0𝜙(𝑧) = 𝛽𝑒0𝜙(0) + 4𝜋𝑙𝐵
∑︁
𝑖

∫ 𝐻

0
𝑍𝑖𝜌𝑖 (𝑧′) (𝑧 − 𝑧𝑧′/𝐻)𝑑𝑧′

+ 4𝜋𝑙𝐵
∑︁
𝑖

∫ 𝑧

0
𝑍𝑖𝜌𝑖 (𝑧′) (𝑧′ − 𝑧)𝑑𝑧′ (III.27)

with boundary conditions 𝑑𝜓(𝑧)/𝑑𝑧 |𝑧=0 = −𝑑𝜓(𝑧)/𝑑𝑧 |𝑧=𝐻 = −𝑄/𝜖𝑟𝜖0 and charge
neutrality condition

2𝑄 = −
∑︁
𝑖

∫ 𝐻+

0−
𝑍𝑖𝑒0𝜌𝑖 (𝑧′)𝑑𝑧′ (III.28)

The density profiles {𝜌𝑖 (𝑧)} are solved with Picard iterations, starting from uniform
density profiles corresponding to the bulk densities of individual components.

Results and Discussion
We consider the polyelectrolyte solution where the monomers of polyelectrolyte, salt
ions (and counterions), and solvent have the same diameter (𝜎 = 5 Å). The salts to
be monovalent (𝑍+ = −𝑍− = 1). Recall that we treat the polyelectrolyte counterion
as identical to the salt ions. In this work, we exclusively consider polyanions so that
the counterion is identical to the salt cation. We treat the polyelectrolyte as a weak
acid where only a portion of the monomers have dissociated. In our model, this
amounts to smearing the charge over all monomers so that 𝑍𝑝 = −0.5 if 50% are



58

dissociated. This valency is fixed and does not change with the local environment.
Unless otherwise noted, we use 𝑁 = 50 and 𝑍𝑝 = −0.5 for the results shown. We
model the solution to have a constant dielectric constant (𝜖𝑟 = 80) and temperature
(𝑇 = 300 𝐾).

Using a fractional valency is an approximation and reflects a drawback of TPT-1 in
its treatment of intrachain correlation; TPT-1 can only capture connectivity at the
level of nearest neighbor [77, 78]. Although it is desirable to consider a model where
only some of the monomers are charged, doing so will lose the chain connectivity
contribution to the electrostatic correlation if the charges are not nearest-neighbors
on the chain. Using fractional charge on every monomer allows us to maintain
the effects of chain connectivity on the electrostatic correlation, which can be
important for certain phenomena [79]. Accounting for electrostatic correlation in
an inhomogenous polyelectrolyte solution is a challenging, multiscale problem [80,
81]. To date, there is no widely accepted theory that fully captures electrostatic
correlation at all length scales and concentration regimes. Tackling this issue is
beyond the scope of this work.

To highlight the effect of nonelectrostatic adsorption in this work, we start by
considering the salt-free adsorption profile near a single surface in the absence of
nonelectrostatic attraction. Salt-free indicates only the polyelectrolyte, counterion,
and solvent are in the system. Near a like-charge surface, we expect depletion due
to the entropic penalty that restricts conformations near the surface and electrostatic
repulsion of the like-charge polymer. Figure III.2 shows the density profiles for the
polyanion and counterions near a like-charge surface for different bulk densities.
Note that the densities are normalized relative to the bulk concentration. The
thickness of the polyanion depletion layer decreases as the bulk density increases
due to increased screening of the surface and the increased osmotic pressure of the
polyanion [56]. For low bulk densities, a double-layer forms near the surface due
to the strong adsorption of counterions near the surface to compensate the surface
charge. Such strong counterion adsorption causes a slight enhancement in polyanion
density away from the surface. For the highest bulk densities, the counterion is also
slightly depleted at the surface and replaced by solvent at the surface. This occurs
because with higher bulk density, less adsorption (relative to the bulk) is necessary
to compensate the surface charge density so counterions tend to associate with the
polyelectrolytes that are depleted at the surface. For clarity of presentation, through
the rest of this work, we fix the bulk monomer density of polyelectrolyte to be
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Figure III.2: Polyelectrolyte (top) and counterion (bottom) adsorption profiles with
no added salt for varying bulk polymer concentrations without nonelectrostatic
adsorption. The polymer chain length is 𝑁 = 50; the valency of the polyelectrolyte
is 𝑍𝑝 = −0.5; and the surface carries a negative charge of 𝑄 = −0.1 e/nm2.

𝜌𝑝,𝑏𝜎
3 = 0.01, corresponding to a volume fraction ≈ 0.5%. Results for varying

monomer density can be found in the Supporting information and will be referred
to throughout the article.

Upon addition of salt in the absence of nonelectrostatic adsorption, an increase of
screening decreases the width of the depletion layer (Figure III.3). In Figure III.3,
above a threshold of added salt, there is no enhancement of the polymer density far
from the surface as polyelectrolyte no longer participates in the electric double-layer
(EDL). In other words, the surface charge density is screened by the salt ions within
the depletion layer of the polyelectrolyte. This is reflected by the fact that the cation
density for 𝜌𝑠,𝑏 = 0.1 drops to the bulk value within the depletion region of the
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Figure III.3: Polyelectrolyte (top) and counterion (bottom) adsorption profiles for
varying salt concentrations polymer concentration without nonelectrostatic adsorp-
tion. The polymer chain length is 𝑁 = 50; the valency of the polyelectrolyte is
𝑍𝑝 = −0.5; and the surface carries a negative charge of 𝑄 = −0.1 e/nm2.

polymer density < 1 nm. At such a salt concentration, the polyanion effectively
behaves like a neutral polymer near the surface.

If the effect of a nonelectrostatic potential can overcome the entropic penalty and
electrostatic repulsion, we expect strong adsorption at the surface. Figure III.4 shows
the adsorption profiles for polyelectrolyte near the surface with various strengths of
nonelectrostatic attraction. Increasing 𝛽𝜖 increases the depth of the nonelectrostatic
potential. With increasing 𝛽𝜖 , the polymer forms a thin layer at the surface. The
presence a discontinuous derivative in the monomer density profile in Figure 4 at
0.75 nm (1.5𝜎) is a common feature in polymer cDFT and is a direct result of using
a freely-jointed chain model, where the propagator is excluded from the surface



61

Figure III.4: Polyelectrolyte adsorption profiles with no salt for varying depths of
nonelectrostatic potential between the surface and monomers. The inset depicts
the same adsorption profile in a semi-log format to highlight the depletion. The
bulk polyelectrolyte monomer density is 𝜌𝑝,𝑏𝜎3 = 0.01; the polymer chain length
is 𝑁 = 50; the valency of the polyelectrolyte is 𝑍𝑝 = −0.5; and the surface carries a
negative charge of 𝑄 = −0.1 e/nm2.

when there is strong adsorption in the first layer near the surface. The monomer
density changes from depletion to adsorption at 𝛽𝜖 ≈ 2.0, which corresponds to
a potential well depth of just under 3 𝑘𝑇 . The inset of Figure III.4 indicates that
as the adsorption at the surface increases, there is more depletion in the secondary
adsorption layer due to enhanced adsorption of the counterions. This indicates that as
the nonelectrostatic attraction strength increases so does the local charge separation
to form an electric double layer. The increased polyelectrolyte adsorption both
draws in more counterion to balance the charge with more polymer adsorption at the
surface and displaces counterions from the adsorption layer adjacent to the surface.
Note the difference from Figure III.2, where the counterion formed the initial layer
at the surface and the polymer provided the secondary adsorption layer.

The transition from depletion to adsorption depends on the salt concentration. In
particular, overcoming the electrostatic barrier to adsorb on a like-charge surface
requires sufficient strength of nonelectrostatic attraction. For a high salt concen-
tration, increased charge screening dampens the electrostatic repulsion such that
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the nonelectrostatic attraction only needs to overcome the entropic penalty at the
surface. Figure III.5a illustrates this by showing the adsorbed amount as a function
of the nonelectrostatic attraction strength. The adsorbed amount is calculated as
Γ𝑒𝑥 =

∫ ∞
0 (𝜌𝑝 (𝑧) − 𝜌𝑝,𝑏)𝑑𝑧. The point where the adsorbed amount crosses zero is

roughly where the polyelectrolyte crosses from being depleted to being adsorbed.
For higher salt concentration, electrostatic effects are not as dominant so that the
transition occurs at lower 𝛽𝜖 . It is well known that nonelectrostatic effects become
more prominent in high salt regimes [28]. Also, the effect of salt addition is apparent
by looking at the adsorbed amount from low salt (purple/green) to high salt (red)
for any given 𝛽𝜖 . Salt addition increases the adsorbed amount for all 𝛽𝜖 for the
like-charge surface.

Due to the variety of qualitative behaviors upon salt addition that have been reported,
we also present the adsorbed amount of the polyanion for a neutral surface in Figure
III.5b. As 𝛽𝜖 is increased, the effect of salt addition transitions from monotonically
decreasing to monotonically increasing the adsorbed amount. This transition is
clear when observing the two end points of 𝛽𝜖 = 0 and 𝛽𝜖 = 3. For 𝛽𝜖 = 0, the
adsorbed amount decreases when adding salt as salt ions displace the polymer at
the surface, while the adsorbed amount increases upon salt addition for 𝛽𝜖 = 3,
where increased screening reduces intrachain repulsion. For the parameters studied
here, the transition occurs around 𝛽𝜖 = 1.0, which corresponds to a potential-well
depth of 1.2 𝑘𝑇 . Such a depth of nonelectrostatic interaction should be within
a reasonable range to see experimentally. The balance of nonelectrostatic and
electrostatic effects with adsorbed amount presented here agrees qualitatively with
the concept of screening-enhanced or screening-reduced adsorption [44].

The effect of salt addition is more interesting near the transition. As stated above, as
the salt concentration increases, the transition from depletion to adsorption requires
a lower threshold of the nonelectrostatic attraction strength. Because the threshold
value of 𝛽𝜖 decreases with salt, there will be a portion of the 𝛽𝜖 axis where the
adsorbed amount is non-monotonic with increasing salt (inset of Figure III.5b). In
the non-monotonic regime, the adsorbed amount initially decreases with increasing
salt and then increases. To the best of our knowledge, such a non-monotonic
salt trend has not been previously reported. In oppositely-charged systems, the non-
monotonic relationship of adsorbed amount goes from increasing to decreasing with
added salt [19, 32, 44]. While the results presented here are not for an oppositely-
charged surface, these three different regimes in the adsorbed amount upon salt
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addition highlight the complexity that nonelectrostatic effects can bring and help
contextualize the variety of results from polyelectrolyte adsorption measurements
cited in the introduction.

By our prediction, the non-monotonic range is unlikely to be seen experimentally
as the difference in the adsorbed amounts across all salt concentrations is relatively
small and the range of 𝛽𝜖 for this regime is narrow. However, identical calculations
without electrostatic correlation yield an even narrower range of the non-monotonic
regime (Figure S1), suggesting that stronger electrostatic correlation will likely make
this non-monotonic regime more prominent. The TPT-1 treatment of the chain
connectivity is known to underestimate the electrostatic correlation [81]. Other
theories with different treatment of the electrostatic correlation, including that by
Forsman and Nordholm [33], could produce a more pronounced non-monotonic
regime. We further note that the presence of only one regime (monotonically
increasing) upon salt addition for the like-charge surface (𝑄 = −0.1 e/nm2) is not a
universal phenomenon. We expect that increasing the bulk polymer concentration or
decreasing the magnitude of the surface charge density will lead to all three regimes
being present as seen for the neutral surface in Figure III.5b. The effect of the bulk
polymer concentration on the excess adsorption can be found in Figures S2 and S3.
Figure S2 shows that the negatively charged surface can achieve the three regimes
for higher bulk monomer concentrations, as evidenced by the adsorbed amount for
the highest salt concentration crossing the curves for the lower salt concentrations.

The above analysis discussed the adsorption of polyelectrolytes onto an isolated
surface. We now turn our attention to the role of polyelectrolytes in mediating
colloidal forces between two adjacent particles. As one brings the two surfaces
together, the polyelectrolyte-mediated interaction force (referred to as “force" from
hereafter) between the surfaces depends on the salt concentration and the strength
of the nonelectrostatic adsorption. Note that because of the slit-pore geometry, it is
convenient to use the force per unit area, which can be calculated byΠ = −(𝜕𝑊/𝜕𝐻)
(obtained via numerical differentiation), where 𝐻 is the surface separation. Fig-
ure III.6 shows the effect of increasing 𝛽𝜖 on the force. In Figure III.6a, when
𝛽𝜖 = 0.0, polyelectrolyte is depleted from the slit-pore, leading to monotonically
decaying force profile with the separation distance. Note that in the absence of
polyelectrolyte, the force should indeed monotonically decay with the separation
distance, as described by Poisson-Boltzmann theory. A decaying force profile is
maintained until the nonelectrostatic adsorption is strong enough to keep polymer
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Figure III.5: Adsorbed amount as a function of the depth of the nonelectrostatic
potential for varying salt concentrations. (a) Adsorption on like-charge surface with
𝑄 = −0.1 e/nm2. (b) Adsorption on neutral surface. The curves for 𝜌𝑠𝑎𝑙𝑡,𝑏𝜎3 = 0.0
and 𝜌𝑠𝑎𝑙𝑡,𝑏𝜎3 = 1×10−4 are indistinguishable in both panels. The inset in (b) shows
the transition region for the salt effects. The bulk polyelectrolyte monomer density
is 𝜌𝑝,𝑏𝜎3 = 0.01; and the polymer chain length is 𝑁 = 50 and the valency of the
polyelectrolyte is 𝑍𝑝 = −0.5

on the surface on close approach. For 𝛽𝜖 = 3, the adsorbed polyelectrolyte layer
creates an extended double layer of counterions, providing a repulsive barrier start-
ing from ≈ 4 𝑛𝑚. At 2 𝑛𝑚, the adsorbed polyelectrolyte layers begin to overlap.
At separations closer than 2 𝑛𝑚, there is short range attraction, corresponding to
the bridging effect where the polymer feels the attractive potential to both surfaces.
While the polymer effectively adsorbs to both surfaces here, bridging generally
does not imply that the polymer is strictly adsorbed to both surfaces, but only that
the polymer chains favor being stretched between both surfaces [30, 40]. With
stronger nonelectrostatic adsorption, the repulsive barrier heightens due to more
adsorption/overlap of the polyelectrolyte and EDL layers and the attractive region
deepens due to more favorable bridging. Experimentally, this has consequences in
direct force measurements using an AFM probe as polymers that provide the largest
repulsive barrier on approach could also show the deepest attraction on retraction
of the AFM probe. For 𝛽𝜖 = 2, the prominent repulsive barrier at 𝐻 ≈ 1.5 results
from the overlap of adsorbed polyelectrolyte. This effect is also seen in 𝛽𝜖 = 3 as a
“shoulder“ peak to the left of the main repulsive barrier. The combined effects of
bridging and overlap of strongly adsorbed polymer are difficult to separate.
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An important question is whether the polymer-mediated repulsion is strong enough
to overcome the dispersive interactions that generally cause colloidal particles to at-
tract each other. The attraction between macroscopic particles can be modeled using
a Hamaker potential [82]. For two flat surfaces, the force between the two surfaces
is Πℎ = −𝐴/6𝜋𝐻3, where 𝐴 is the Hamaker constant. Adding the Hamaker contri-
bution to the force calculated from the cDFT model results in Figure III.6a, Figure
III.6b shows that with sufficiently strong non-electrostatic adsorption, the repulsive
barrier resulting from polyelectrolytes can overcome the Hamaker attraction. With
no polyelectrolyte, the EDL repulsion is not sufficient to create a repulsive barrier,
leading to aggregation of the colloids. Due to the depletion when 𝛽𝜖 = 0, the force
profile for 𝛽𝜖 = 0 is nearly identical to that of a system with no polyelectrolyte for
the same salt concentration. Figures S4 and S5 show the interaction profiles for
various bulk monomer concentrations. In Figure S4, one can see that increasing
the bulk monomer concentration leads to depletion effects at small separations for
𝛽𝜖 = 0 and generally a smaller repulsive barrier, likely due to combined depletion
and increased screening of the surface charge and interchain repulsion. As seen in
Figure S5, because the Hamaker potential decays rapidly, these subtle changes in
the length scale and strength of the repulsive interaction can significantly impact the
behavior across 𝛽𝜖 values. Most notably, the peak height of the repulsive barrier
decreases with increasing bulk monomer concentration.

Increasing the salt concentration increases the adsorbed amount for the like-charge
surface, but does not increase the repulsive barrier. Figure III.7 shows the force
profile for a given value of 𝛽𝜖 at various salt concentrations. The height of the
repulsive barrier significantly decreases with increasing salt content, which is at-
tributed to the shorter range of the double-layer at high salt concentration due to
screening. When the double layers do overlap, the length scale is within the range
where bridging causes short-range attraction. The depth of the attractive bridging
region also increases because adsorption is more favorable at high salt concen-
trations. The net effect is that increasing salt concentration in the presence of
nonelectrostatic repulsion turns the long-range repulsive surface interaction into a
predominantly attractive surface interaction. The same qualitative salt trend can be
seen for different bulk monomer concentrations (Figure S6). We note that in systems
where there is pure electrostatic adsorption on an oppositely charged surface, others
have reached similar conclusions of weakened repulsion and stronger short-range
bridging attraction upon salt addition [42].
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Figure III.6: Polyelectrolyte-mediated force between surfaces as a function of sur-
face separation for varying strengths of nonelectrostatic attraction to the surface. (a)
Without Hamaker attractive potential. The curves for 𝛽𝜖 = 0.0 and 𝛽𝜖 = 1.0 are
indistinguishable. (b) With Hamaker attractive potential. The Hamaker constant
is 5 × 10−20 𝐽. The bulk polyelectrolyte monomer density is 𝜌𝑝,𝑏𝜎3 = 0.01; the
bulk salt concentration is 𝜌𝑠𝑎𝑙𝑡,𝑏𝜎3 = 0.01; the polymer chain length is 𝑁 = 50;
the valency of the polyelectrolyte is 𝑍𝑝 = −0.5; and the surface carries a negative
charge of 𝑄 = −0.1 e/nm2.

Figure III.7: Polyelectrolyte-mediated force between surfaces for varying bulk
concentrations of added salt. The bulk polyelectrolyte monomer density is
𝜌𝑝,𝑏𝜎

3 = 0.01; the polymer chain length is 𝑁 = 50; the valency of the polyelec-
trolyte is 𝑍𝑝 = −0.5; and the surface carries a negative charge of 𝑄 = −0.1e/nm2.
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Figure III.8: Polyelectrolyte-mediated force between surfaces for varying polyelec-
trolyte charge densities. The bulk polyelectrolyte monomer density is 𝜌𝑝,𝑏𝜎3 = 0.01
and the polymer chain length is 𝑁 = 50; and the surface carries a negative charge
of 𝑄 = −0.1 e/nm2.

The polyelectrolyte charge density plays an important role in like-charge adsorption
as one of the barriers to adsorption is the electrostatic repulsion from the surface.
Figure III.8 illustrates the effect of the backbone charge density on the force pro-
file. 𝛼 is the fraction of charged monomers that goes into the calculation of 𝑍𝑝
for the polyelectrolyte. At one extreme of 𝛼 = 0, where the polymer is neutral,
nonelectrostatic adsorption leads to enhanced adsorption of the polymer. However,
the polymer only contributes to the bridging-type attraction with no repulsive bar-
rier. Increasing the polyelectrolyte charge density yields a repulsive barrier and a
shallower short-range attraction from bridging. Notably, for 𝛼 = 1 (all monomers
dissociated so that 𝑍𝑝 = −1), the repulsive barrier appears to be shorter range than,
say, 𝛼 = 0.5. This repulsive peak at 𝐻 ≈ 1.5 𝑛𝑚 is different in character from
the long-range repulsion that results from mutual repulsion from EDL layers seen
in 𝛼 = 0.5. The peak arises due to the overlap of adsorbed polyelectrolyte layers,
rather than the double-layer repulsion. This difference is similar to what is seen for
𝛽𝜖 = 2 in Figure III.6. Such an effect occurs when the adsorption is not favorable
enough to induce bridging.

Lastly, we examine the effect of chain length on the force profile. As explained
in our earlier work [56], the force profile is insensitive to the chain length at fixed
monomer density (Fig. III.9). Even with nonelectrostatic polyelectrolyte adsorption,
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Figure III.9: Polyelectrolyte-mediated force between surfaces for varying polyelec-
trolyte chain lengths. The bulk polyelectrolyte monomer density is 𝜌𝑝,𝑏𝜎3 = 0.01;
the valency of the polyelectrolyte is 𝑍𝑝 = −0.5; and the surface carries a negative
charge of 𝑄 = −0.1 e/nm2.

the dominant length scale for the interaction in the semi-dilute regime is set by the
Debye length. Strictly speaking, the length scale is set by the correlation length,
but cDFT cannot capture the coupled effects of electrostatic correlation and chain
conformation [81]. at the given salt and polylelectrolyte concentration. Additionally,
Figure III.9 implies that the width of the adsorption layer does not change with the
chain length as the length scale for the repulsion is the same for all curves.

Conclusion
In this work, the effect of nonelectrostatic adsorption affinity of polyelectrolytes
near a like-charged surface was characterized for a variety of polyelectrolyte and
solution conditions. Upon salt addition, three regimes of adsorbed amount are
observed for the neutral surface as a function of the strength of nonelectrostatic
potential (decreasing, non-monotonic, increasing). The non-monotonic trend of
initially decreasing then increasing has not previously been reported in literature.
For the negatively charged surface, the adsorbed amount only increases with added
salt at low bulk monomer concentration but can achieve all three regimes for higher
bulk concentration. Such a result underscores the delicate balance between the
electrostatic and nonelectrostatic forces and rationalizes the variety of behaviors
observed in experimental measurements upon salt addition. Experimentally, the
salt behaviors also suggests that minor changes in the nonelectrostatic potential or
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surface charge density that can occur from varying pH, for example, can qualitatively
change the salt effects for adsorption. Increasing the strength of the nonelectrostatic
potential generally increases the height of the long-range repulsive peak in the
mediated interaction but also deepens the short-range bridging attractive region.
The long-range nature of the repulsive barrier results from an extended double-layer
created from the polymer displacing counterions at the surface. When adding salt,
the height of the repulsive barrier decreases and the bridging attraction deepens.
Such a salt trend is also found when adding salt for pure electrostatic adsorption,
indicating that adsorption profile rather than the interaction force, is more reflective
of the effect of nonelectrostatic adsorption. Further, the results for the polyelectrolyte
charge density indicate that adsorption alone does not provide a repulsive barrier
- sufficient charge along the backbone is required to create a long-range electric
double layer. The range of the repulsive barrier tends to decrease with increasing
charge fraction. All of these results together have implications for selection and
design of polyelectrolytes and solution conditions (i.e., salt, pH) for coating and
dispersion applications.

Appendix
No Electrostatic Correlation

Figure III.10: Adsorbed amount as a function of the depth of the nonelectrostatic
potential for varying salt concentrations with no electrostatic correlation. (a) Ad-
sorption on like-charge surface with 𝑄 = −0.1 e/nm2. (b) Adsorption on neutral
surface. The curves for 𝜌𝑠𝑎𝑙𝑡,𝑏𝜎3 = 0.0 and 𝜌𝑠𝑎𝑙𝑡,𝑏𝜎3 = 1 × 10−4 are indistinguish-
able in both panels. The inset in (b) shows the transition region for the salt effects.
The bulk polyelectrolyte monomer density is 𝜌𝑝,𝑏𝜎3 = 0.01; and the polymer chain
length is 𝑁 = 50 and the valency of the polyelectrolyte is 𝑍𝑝 = −0.5
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Varying Monomer Bulk Concentration - Adsorption

Figure III.11: Adsorbed amount as a function of the depth of the nonelectrostatic
potential for varying salt concentrations for a negatively charged surface (𝑄 =

−0.1e/nm2). Each panel is for a different bulk concentration. The curves for
𝜌𝑠𝑎𝑙𝑡,𝑏𝜎

3 = 0.0 and 𝜌𝑠𝑎𝑙𝑡,𝑏𝜎3 = 1 × 10−4 are indistinguishable in most panels. The
polymer chain length is 𝑁 = 50 and the valency of the polyelectrolyte is 𝑍𝑝 = −0.5.
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Figure III.12: Adsorbed amount as a function of the depth of the nonelectrostatic
potential for varying salt concentrations for a neutral surface. Each panel is for a
different bulk concentration. The curves for 𝜌𝑠𝑎𝑙𝑡,𝑏𝜎3 = 0.0 and 𝜌𝑠𝑎𝑙𝑡,𝑏𝜎3 = 1×10−4

are indistinguishable in most panels. The polymer chain length is 𝑁 = 50 and the
valency of the polyelectrolyte is 𝑍𝑝 = −0.5.
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Varying Monomer Bulk Concentration - Interaction

Figure III.13: Polyelectrolyte-mediated force between surfaces as a function of
surface separation for varying strengths of nonelectrostatic attraction to the surface
without the Hamaker attractive potential. The bulk salt concentration is 𝜌𝑠𝑎𝑙𝑡,𝑏𝜎3 =

0.0; the polymer chain length is 𝑁 = 50; the valency of the polyelectrolyte is
𝑍𝑝 = −0.5; and the surface carries a negative charge of 𝑄 = −0.1 e/nm2.
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Figure III.14: Polyelectrolyte-mediated force between surfaces as a function of
surface separation for varying strengths of nonelectrostatic attraction to the surface
with the Hamaker attractive potential. The Hamaker constant is 5 × 10−20 𝐽. The
bulk salt concentration is 𝜌𝑠𝑎𝑙𝑡,𝑏𝜎3 = 0.0; the polymer chain length is 𝑁 = 50; the
valency of the polyelectrolyte is 𝑍𝑝 = −0.5; and the surface carries a negative charge
of 𝑄 = −0.1 e/nm2.
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Figure III.15: Polyelectrolyte-mediated force between surfaces for varying bulk
concentrations of added salt. The polymer chain length is 𝑁 = 50; the valency
of the polyelectrolyte is 𝑍𝑝 = −0.5; and the surface carries a negative charge of
𝑄 = −0.1e/nm2.
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III.2 Weak Polyelectrolytes
Introduction
Weak polyelectrolytes are polyelectrolytes where the backbone charge is not fixed.
Monomer units, or even multiple sites on a monomer, have the ability to protonate
or deprotonate according to the acid-base equilibrium. The ubiquitous examples are
those of amino acids, such as glutamic acid, arginine, aspartic acid, or lysine [83].
Experiments on synthetic weak polyelectrolytes started in the late 1930s [84–86],
where the pH response of common polyelectrolytes was measured.

The power and promise of weak polyelectrolytes stems from the fact that they are
responsive materials. The charge state depends on the local electrostatic potential
and the local solution conditions. By tuning the local environment and changing
the charge along a polymer backbone, the conformational properties can change
dramatically. This section will give an overview of weak polyelectrolytes, derive a
mean-field theory that accounts for acid-base equilibrium, and apply the theory to
adsorption of weak polyelectrolytes to a planar surface.

Toy Example
First, we will consider a toy example of proton binding using a cell model outlined
by Koper [87]. The benefit of the cell model is that one can gain intuition for
the weak polyelectrolyte system without worrying about the chain conformation or
model details. The system is a polymer chain with 𝑁 discrete sites (monomers).
Each monomer has a site where a proton can either be bound or dissociated. The
result is that each monomer can take on two states, charged or uncharged. The
charge state of a polymer chain can be described by 𝜎 = {𝜎1, 𝜎2, ..., 𝜎𝑁 }, where
𝜎 is either zero or one, charged or uncharged, respectively. Figure III.16 shows an
example of states for a short chain. The state of the system is fully specified by 𝜎.

Figure III.16: Schematic of charge states along a polymer chain with 𝑁 = 5

Following the result from Koper [87], the system can be viewed as a grand canonical
system with a fixed proton chemical potential (𝜇𝑝), binding sites (𝑁), and tempera-
ture. The energy of a given microstate with only pairwise interactions is captured in
the equation below. The proton chemical potential can be related to the pH and pKa
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of the polymer and the coupling constant 𝐽 is positive to indicate a repulsive inter-
action between occupied (protonated) sites. In general 𝐽𝑖, 𝑗 depends on the distance
between sites.

𝐸 ({𝜎}) = −𝜇𝑝
𝑁∑︁
𝑖=1

𝜎𝑖 +
1
2

𝑁∑︁
𝑖≠ 𝑗

𝐽𝑖, 𝑗𝜎𝑖𝜎𝑗 (III.29)

The partition function is the weighted sum over all of the microstates,

Ξ =
∑︁
{𝜎}

𝑒−𝐸 ({𝜎}) =
∑︁

𝜎1={0,1}

∑︁
𝜎2={0,1}

...
∑︁

𝜎𝑁={0,1}
𝑒
𝜇𝑝

∑𝑁
𝑖=1 𝜎𝑖−

1
2
∑𝑁

𝑖≠ 𝑗 𝐽𝑖, 𝑗𝜎𝑖𝜎𝑗

(III.30)

Relationship between 𝜇𝑝 and pH

Koper defines the effective chemical potential of the proton to be the following [87]

𝛽𝜇𝑝/ln(10) = pKa − pH (III.31)

where pH = − log(ap) and pKa = − log(K). 𝑎𝑝 is the activity of a proton and 𝐾 is
the microscopic constant corresponding to proton binding when all other sites are
dissociated. Intuitively, if the pH of the solution is higher than the pKa, then there
is a penalty for a proton to bind to a monomer.

Only Nearest Neighbor Interactions

With only nearest neighbor interactions, the energy of a microstate is

𝐸 ({𝜎}) = −𝜇𝑝
𝑁∑︁
𝑖=1

𝜎𝑖 + 𝐽
𝑁−1∑︁
𝑖=1

𝜎𝑖𝜎𝑖+1 (III.32)

where 𝐽 is now constant for each interacting site. The partition function can be
written as the following.

Ξ =
∑︁

𝜎1={0,1}

∑︁
𝜎2={0,1}

...
∑︁

𝜎𝑁={0,1}
𝑒𝛽𝜇𝑝 (𝜎1+𝜎2+...+𝜎𝑁 )−𝛽𝐽 (𝜎1𝜎2+𝜎2𝜎3+...+𝜎𝑁−1𝜎𝑁 )

(III.33)

Rewriting,

Ξ =
∑︁

𝜎1={0,1}

∑︁
𝜎2={0,1}

...
∑︁

𝜎𝑁={0,1}
𝑒𝛽𝜇𝑝𝜎1−𝛽𝐽𝜎1𝜎2+𝛽𝜇𝑝𝜎2−𝛽𝐽𝜎2𝜎3+...

(III.34)

Ξ =
∑︁

𝜎1={0,1}

∑︁
𝜎2={0,1}

...
∑︁

𝜎𝑁={0,1}
𝑒𝛽𝜇𝑝𝜎𝑁

𝑁−1∏
𝑖=1

𝑒𝛽𝜇𝑝𝜎𝑖−𝛽𝐽𝜎𝑖𝜎𝑖+1 (III.35)
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Defining 𝑧 = 𝑒𝛽𝜇𝑝 and 𝑢 = 𝑒−𝛽𝐽 ,

Ξ =
∑︁

𝜎1={0,1}

∑︁
𝜎2={0,1}

...
∑︁

𝜎𝑁={0,1}
𝑧𝜎𝑁

𝑁−1∏
𝑖=1

𝑧𝜎𝑖𝑢𝜎𝑖𝜎𝑖+1 (III.36)

One can write the product term as a matrix consisting of the four elements from the
four different possibilities for site states. Namely, the combinations are {𝜎1, 𝜎2} =
{[1, 1], [1, 0], [0, 1], [0, 0]}. Here, specifying a state {𝜎1, 𝜎2} gives the index in
the matrix.

𝑇𝜎𝑖 ,𝜎𝑖+1 =

[
1 1
𝑧 𝑧𝑢

]

Ξ =
∑︁

𝜎1={0,1}

∑︁
𝜎2={0,1}

...
∑︁

𝜎𝑁={0,1}
𝑇𝜎1,𝜎2𝑇𝜎2,𝜎3 ...𝑇𝜎𝑁−2𝜎𝑁−1 (𝑇𝜎𝑁−1𝜎𝑁

𝑧𝜎𝑁 )

Each monomer takes the same states so that this is a product of identical sums,

Ξ =
∑︁

𝜎1={0,1}
𝑇𝑁−2

∑︁
𝜎𝑁−1={0,1}

∑︁
𝜎𝑁={0,1}

(𝑇𝜎𝑁−1𝜎𝑁
𝑧𝜎𝑁 )

Where 𝑇 is the generic transfer matrix. Summing over the last monomer,

Ξ =
∑︁

𝜎1={0,1}
𝑇𝑁−2

∑︁
𝜎𝑁−1={0,1}

([
1
𝑧

]
+ 𝑧

[
1
𝑧𝑢

])
The last product can be written as the product of 𝑇2(1, 0)𝑇 .

Ξ =
∑︁

𝜎1={0,1}
𝑇𝑁

[
1
0

]
Summing over all values of 𝜎 is equivalent to the following matrix multiplication,

Ξ =

[
1 1

]
𝑇𝑁

[
1
0

]
Explicitly,

Ξ =

[
1 1

] [
1 1
𝑧 𝑧𝑢

]𝑁 [
1
0

]
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Small and Long Chain Limits

In the small chain limit 𝑁 = 1, then the partition function is exactly

Ξ = 1 + 𝑧 = 1 + 𝑒𝛽𝜇𝑝 (III.37)

One can obtain the average occupancy via the proper derivative of the partition
function or through the definition of the average 𝜎.

⟨𝜎⟩ = 𝜃 = 1 × 0 + 𝑒𝛽𝜇𝑝 × 1
1 + 𝑒𝛽𝜇𝑝

=
𝑒𝛽𝜇𝑝

1 + 𝑒𝛽𝜇𝑝
(III.38)

⟨𝜎⟩ = 𝜃 = 𝜕 lnΞ
𝜕𝛽𝜇

=
1

1 + 𝑒𝛽𝜇𝑝
𝜕 (1 + 𝑒𝛽𝜇𝑝 )

𝜕𝛽𝜇
=

𝑒𝛽𝜇𝑝

1 + 𝑒𝛽𝜇𝑝
(III.39)

In either case, one can write this in a more familiar style utilizing the definition of
the effective chemical potential from above.

𝜃 =
1

1 + 𝑒𝛽(𝑝𝐻−𝑝𝐾𝑎)
=

1
1 + 𝐾𝑎

𝑎𝑝

(III.40)

In the long chain limit 𝑁 = ∞, then the partition function is dominated by the largest
eigenvalue of 𝑇 . The eigenvalue can be computed analytically as

Ξ = 𝜆𝑁𝑚𝑎𝑥 (III.41)

The maximum eigenvalue can be calculated

𝜆𝑚𝑎𝑥 =
1 + 𝑧𝑢 +

√︁
(1 − 𝑧𝑢)2 + 4𝑧
2

(III.42)

Taking the proper derivative, one can calculate the average occupancy

𝜃 =
1
𝑁

𝜕 lnΞ
𝜕𝛽𝜇

= 𝑧
𝜕 ln𝜆𝑚𝑎𝑥
𝜕𝑧

=
𝑧

𝜆𝑚𝑎𝑥

𝜕𝜆𝑚𝑎𝑥

𝜕𝑧
=

[
2 + 𝜆𝑚𝑎𝑥

𝑧

1 − 𝑧𝑢
1 − 𝑢 − 𝜆𝑚𝑎𝑥𝑢

]−1
(III.43)

In these two limits, one can plot the average occupancy as a function of the 𝑝𝐻 as
shown in Figure III.17. The penalty arising from nearest neighbor interactions leads
to the step-like profile for the occupancy.



79

Figure III.17: Degree of protonation (average occupancy) as a function of the
pH in short (blue) and long (red) chain limit. Parameters 𝛽𝐽 = 5 and 𝛽𝜇𝑝 =

ln(10) (pH − pKa) with pKa = 7

.

Theory
Consider a polyelectrolyte solution made up pH-responsive, linear polyelectrolytes,
salt ions and water. Each monomer in the chain is a pH-responsive group whose
charge state is determined by local acid-base equilibria. For simplicity, we consider
each monomer to have only one dissociable proton and one available protonation
site.

𝐻𝑀 + 𝐻2𝑂 ←→ 𝑀− + 𝐻3𝑂
+

𝐻𝑀 + 𝐻2𝑂 ←→ 𝑀𝐻+2 +𝑂𝐻
− (III.44)

In the equations above, 𝑀 is a generic monomer that can be basic or acidic. The reac-
tions above are dictated by acid-dissociation, 𝐾𝑎,1 and 𝐾𝑎,2, respectively. Similarly,
water can dissociated and at room temperature pure water has 𝑝𝐾𝑎 = 7.

2𝐻2𝑂 ←→ 𝑂𝐻− + 𝐻3𝑂
+ (III.45)

We consider the salt ions, denoted + and − to be strong electrolytes with valency
𝑍+, 𝑍− with 𝑍− < 0. In the following theory, we make several simplifications. We
neglect the size of the bare proton and assume all of the other species have the same
size, denoted 𝑏. This length scale also sets our volume scale for all species to be
𝑣 = 𝑏3.
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From the acid-base relationships, the monomers and water can each take on 3
distinct states – neutral, protonated, or deprotonated. To model the protonation
and deprotonation, we introduce protonation variables. For example, we use 𝑠𝑤

𝑖
to

denote the state of a given water molecule 𝑖. 𝑠𝑤
𝑖

can take on values of -1, 0, or 1,
corresponding to deprotonated, neutral, or protonated, respecitvely. Likewise, the
monomer state of the 𝑗-th monomer on the 𝑖-th chain can be tracked the same way
using 𝑠𝑀

𝑖, 𝑗
. Such a model is similar to that of Nakamura and Wang [88] in the context

of salt-doped block copolymers and more recently, in classical density functional
theory by Gallegos, Ong, and Wu [89].

Figure III.18: Schematic of Ising-like configurational states for monomers and
water.

For a system of 𝑛𝑤 water molecules, 𝑛𝑝 polymer chains with 𝑁 total segments, 𝑛+
cations, and 𝑛− anions, the Hamiltonian can be written as follows.

𝛽𝐻 = −𝛽𝑎𝑤
𝑛𝑤∑︁
𝑖=1
(𝑠𝑤𝑖 )2 +

𝑛𝑝∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝛽𝑎
𝑗

𝑀
(𝑠𝑀𝑖, 𝑗 )

+
𝑛𝑝∑︁
𝑖=1

𝑁−1∑︁
𝑗=1

𝛽ℎ(r𝑖, 𝑗+1 − r𝑖, 𝑗 ) +
∫

𝑑r𝛽𝑢surf (r) 𝜌̂𝐻𝑀 (r)

+ 𝛽
2

∫
𝑑r

∫
𝑑r′𝜌̂𝑐 (r)𝐶 (r, r′) 𝜌̂𝑐 (r′)

(III.46)

The first two terms in Eq. III.46 account for the binding and unbinding of protons
from the water and monomers, respectively. The third term accounts for the con-
nectivity of the polymer chain. Later on, we will specify the form of ℎ(r) to be
Gaussian. The fourth term is an attractive potential between the neutral form of the
monomers and the surface. While we don’t specify the form of 𝑢surf , the fact that it
is attractive is important for the following field theory. The last term is the energy
from electrostatics, where 𝐶 (r, r′) is the Coulomb operator.
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The system is open since all components can exchange with the bulk reservoir. The
partition function for the system is below, where 𝜇𝑖 is the chemical potential of
component 𝑖. The partition function is given below with incompressibility and the
“protonation potential", 𝜆.

Ω =
∑︁
𝑛𝑝

∑︁
𝑛𝑤

∑︁
𝑛+

∑︁
𝑛−

exp(𝛽𝜇𝑝𝑛𝑝 + 𝛽𝜇𝑤𝑛𝑤 + 𝛽𝜇+𝑛+ + 𝛽𝜇−𝑛−)
𝑛𝑝!𝑣𝑛𝑝𝑁𝑛𝑤!𝑣𝑛𝑤𝑛+!𝑣𝑛+𝑛−!𝑣𝑛−

×
∫
D{R}

∑︁
{𝑠𝑤}

∑︁
{𝑠𝑀 }

𝛿( 𝜌̂𝑤 (r) + 𝜌̂𝑀 (r) + 𝜌̂+(r) + 𝜌̂−(r) − 1/𝑣)

× exp
[
− 𝛽𝐻 + 𝛽𝜆

( 𝑛𝑤∑︁
𝑘=1

𝑠𝑤𝑘 +
𝑛𝑝∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑠𝑀𝑖, 𝑗

)] (III.47)

Performing the field transformations for the incompressibility and the electrostatic
interactions, the Hamiltonian and the partition function become

𝛽𝐻 = −𝛽𝑎𝑤
𝑛𝑤∑︁
𝑖=1
(𝑠𝑤𝑖 )2 +

𝑛𝑝∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝛽𝑎
𝑗

𝑀
(𝑠𝑀𝑖, 𝑗 ) +

𝑛𝑝∑︁
𝑖=1

𝑁−1∑︁
𝑗=1

𝛽ℎ(r𝑖, 𝑗+1 − r𝑖, 𝑗 )

+
∫

𝑑r𝛽𝑢surf 𝜌̂𝐻𝑀 (r) + 𝛽
∫

𝑑r
[
𝜌̂𝑐 (r)𝑖𝜓(r) −

1
2
𝜖
(
∇𝜓(r)

)2
]

−𝑖𝛽𝜂(r)
(
𝜌̂𝑤 (r) + 𝜌̂𝑀 (r) + 𝜌̂+(r) + 𝜌̂−(r) − 1/𝑣

) (III.48)

Ω =
∑︁
𝑛𝑝

∑︁
𝑛𝑤

∑︁
𝑛+

∑︁
𝑛−

exp(𝛽𝜇𝑝𝑛𝑝 + 𝛽𝜇𝑤𝑛𝑤 + 𝛽𝜇+𝑛+ + 𝛽𝜇−𝑛−)
𝑛𝑝!𝑣𝑛𝑝𝑁𝑛𝑤!𝑣𝑛𝑤𝑛+!𝑣𝑛+𝑛−!𝑣𝑛−∫

D𝜂
∫
D𝜓

∫
D{R}

∑︁
{𝑠𝑤}

∑︁
{𝑠𝑀 }

exp
[
− 𝛽𝐻 + 𝛽𝜆

( 𝑛𝑤∑︁
𝑘=1

𝑠𝑤𝑘 +
𝑛𝑝∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑠𝑀𝑖, 𝑗

)]
(III.49)

Introducing a field for the protonated density with 𝛿(𝜌𝐻𝑀 (r) − 𝜌̂𝐻𝑀 (r)) and using
identify transformations, the Hamiltonian becomes

𝛽𝐻 = −𝛽𝑎𝑤
𝑛𝑤∑︁
𝑖=1
(𝑠𝑤𝑖 )2 +

𝑛𝑝∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝛽𝑎
𝑗

𝑀
(𝑠𝑀𝑖, 𝑗 ) +

𝑛𝑝∑︁
𝑖=1

𝑁−1∑︁
𝑗=1

𝛽ℎ(r𝑖, 𝑗+1 − r𝑖, 𝑗 )

+𝛽
∫

𝑑r
[
𝜌̂𝑐 (r)𝑖𝜓(r) −

1
2
𝜖
(
∇𝜓(r)

)2
]

−𝑖𝛽𝜂(r)
(
𝜌̂𝑤 (r) + 𝜌̂𝑀 (r) + 𝜌̂+(r) + 𝜌̂−(r) − 1/𝑣

)
+

∫
𝑑r𝛽𝑢surf (r)𝜌𝐻𝑀 (r)

+𝑖
∫

𝑑r𝛽𝑤𝐻𝑀 (r)𝜌𝐻𝑀 (r) −
𝑛𝑝∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑖𝑤𝐻𝑀 (r𝑖, 𝑗 ) (1 − |𝑠𝑀𝑖, 𝑗 |)

(III.50)
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Carrying out the summation over the binding variables in the partition function
gives

Ω =

∫
D𝜌𝐻𝑀

∫
D𝜂

∫
D𝜓 exp

[
𝑒𝛽𝜇𝑤𝑞𝑤 (𝜓, 𝜂) + 𝑒𝛽𝜇+𝑞+(𝜓, 𝜂) + 𝑒𝛽𝜇−𝑞−(𝜓, 𝜂)

+𝑒𝛽𝜇𝑝𝑄𝑝 (𝑤𝐻𝑀 , 𝜓, 𝜂) +
∫

𝑑r
( 1
8𝜋𝑙𝐵

(
∇(𝑖𝛽𝑒𝜓)

)2 − 𝑖𝛽𝜂
𝑣

)
−

∫
𝑑r𝛽𝑢surf (r)𝜌𝐻𝑀 − 𝑖

∫
𝑑r𝛽𝑤𝐻𝑀𝜌𝐻𝑀

]
(III.51)

The single particle partition functions are

𝑞𝑤 (𝜓, 𝜂) =
1
𝑣

∫
𝑑r

(
𝑒𝑖𝛽𝜂 + 𝑒𝑖𝛽𝜂−𝑖𝛽𝑒𝜓+𝛽𝜆+𝛽𝑎𝑤 + 𝑒𝑖𝛽𝜂+𝑖𝛽𝑒𝜓−𝛽𝜆+𝛽𝑎𝑤

)
(III.52)

𝑞+(𝜓, 𝜂) =
1
𝑣

∫
𝑑r𝑒𝑖𝛽𝜂−𝑖𝛽𝑒𝜓𝑍+ (III.53)

𝑞−(𝜓, 𝜂) =
1
𝑣

∫
𝑑r𝑒𝑖𝛽𝜂−𝑖𝛽𝑒𝜓𝑍− (III.54)

The single chain partition function is

𝑄𝑝 (𝑤𝐻𝑀 , 𝜓, 𝜂) =
1
𝑣𝑁

∫
𝑑r𝑁 exp

[
−
𝑁−1∑︁
𝑗=1

𝛽ℎ(r 𝑗+1 − r 𝑗 ) +
𝑁∑︁
𝑗=1

𝛽𝜉 𝑗 (rj)
]

(III.55)

where 𝜉𝑖 (r) is the effective field for each monomer. The monomer-specificity goes
into the microscopic binding constant 𝛽𝑎𝑖.

𝛽𝜉 𝑗 (r) = 𝑖𝛽𝜂 + ln
[
exp(𝑖𝛽𝑤𝐻𝑀) + exp(𝑖𝛽𝑒𝜓 − 𝛽𝜆 + 𝛽𝑎 𝑗

𝑀1
) + exp(−𝑖𝛽𝑒𝜓 + 𝛽𝜆 − 𝛽𝑎 𝑗

𝑀2
)
]

(III.56)

At this point, we will redefine and nondimensionalize some quantities for con-
venience and clarity in manipulating the equations. The dissociation constants:
𝐾𝑊 = exp(𝛽𝑎𝑤) and 𝐾𝐷𝑘

𝑗
= exp(𝛽𝑎 𝑗

𝑀𝑘
). All of the integrations of r can be nondi-

mensionalized by the segment length 𝑏. Knowing that the fluctuating fields will
turn out to be purely imaginary from the saddle point approximation, we can rewrite
drop the imaginary parts of the above equations. The partition functions become
the following.



83

Ω =

∫
D𝜌𝐻𝑀

∫
D𝜂

∫
D𝜓 exp

[
𝑒𝛽𝜇𝑤𝑞𝑤 (𝜓, 𝜂) + 𝑒𝛽𝜇+𝑞+(𝜓, 𝜂) + 𝑒𝛽𝜇−𝑞−(𝜓, 𝜂)

+𝑒𝛽𝜇𝑝 ln𝑄𝑝 (𝑤𝐻𝑀 , 𝜓, 𝜂) +
∫

𝑑r
( 1
8𝜋𝑙𝐵

(
∇(𝛽𝑒𝜓)

)2 − 𝛽𝜂
)

−
∫

𝑑r𝛽𝑢surf (r)𝜌𝐻𝑀 −
∫

𝑑r𝛽𝑤𝐻𝑀𝜌𝐻𝑀
]

(III.57)

𝑞𝑤 (𝜓, 𝜂) =
∫

𝑑r
(
𝑒𝛽𝜂 + 𝐾𝑊𝑒𝛽𝜂−𝛽𝑒𝜓+𝛽𝜆 + 𝐾𝑊𝑒𝛽𝜂+𝛽𝑒𝜓−𝛽𝜆

)
(III.58)

𝑞+(𝜓, 𝜂) =
∫

𝑑r𝑒𝛽𝜂−𝛽𝑒𝜓𝑍+ (III.59)

𝑞−(𝜓, 𝜂) =
∫

𝑑r𝑒𝛽𝜂−𝛽𝑒𝜓𝑍− (III.60)

𝑄𝑝 (𝑤𝐻𝑀 , 𝜓, 𝜂) =
∫

𝑑r𝑁 exp
[
−
𝑁−1∑︁
𝑗=1

𝛽ℎ(r 𝑗+1 − r 𝑗 ) +
𝑁∑︁
𝑗=1

𝛽𝜉 𝑗 (rj)
]

(III.61)

𝛽𝜉 𝑗 (r) = 𝛽𝜂 + ln
[
exp(𝛽𝑤𝐻𝑀) + 𝐾𝐷1

𝑗
exp(𝛽𝑒𝜓 − 𝛽𝜆) + 𝐾𝐷2

𝑗
exp(−𝛽𝑒𝜓 + 𝛽𝜆)

]
(III.62)

Writing out the single chain partition function

𝑄𝑝 (𝑤𝐻𝑀 , 𝜓, 𝜂) =
∫

𝑑r𝑁 exp
[
𝛽𝜉1(r1)

]
exp

[
− 𝛽ℎ(r2 − r1) + 𝛽𝜉2(r2)

]
× ...

exp
[
− 𝛽ℎ(r 𝑗+1 − r 𝑗 ) + 𝛽𝜉 𝑗 (rj)

]
exp

[
− 𝛽ℎ(r𝑁 − r𝑁−1) + 𝛽𝜉𝑁 (rN)

]
(III.63)

Defining a recursive propagator

𝑞( 𝑗 , r) = exp
[
𝛽𝜉 𝑗 (r)

] ∫
𝑑r′ exp

[
− 𝛽ℎ(r − r′)

]
𝑞( 𝑗 − 1, r′) (III.64)

with initial condition 𝑞(1, r) = exp
[
𝛽𝜉1(r)

]
. We similarly have the complimentary

propagator

𝑞∗( 𝑗 , r) = exp
[
𝛽𝜉 𝑗 (r)

] ∫
𝑑r′ exp

[
− 𝛽ℎ(r − r′)

]
𝑞( 𝑗 + 1, r′) (III.65)

with initial condition 𝑞∗(𝑁, r) = exp
[
𝛽𝜉𝑁 (r)

]
.
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Saddle Point Approximation

For convenience, we start by defining the density operators. With 𝑣 = 𝑏3, the
reduced density is the same as the volume fraction. We’ll use the volume fraction
for convenience 𝜙.

𝜙𝑤 (r) = 𝑒𝛽𝜇𝑤
𝛿𝑞𝑤 (𝜓, 𝜂)
𝛿𝛽𝜂

= 𝑒𝛽𝜇𝑤
(
𝑒𝛽𝜂 + 𝐾𝑊𝑒𝛽𝜂−𝛽𝑒𝜓+𝛽𝜆 + 𝐾𝑊𝑒𝛽𝜂+𝛽𝑒𝜓−𝛽𝜆

)
(III.66)

𝜙+(r) = 𝑒𝛽𝜇+
𝛿𝑞+(𝜓, 𝜂)
𝛿𝛽𝜂

= 𝑒𝛽𝜇+𝑒𝛽𝜂−𝛽𝑒𝜓𝑍+ (III.67)

𝜙−(r) = 𝑒𝛽𝜇−
𝛿𝑞−(𝜓, 𝜂)
𝛿𝛽𝜂

= 𝑒𝛽𝜇−𝑒𝛽𝜂−𝛽𝑒𝜓𝑍− (III.68)

𝜙𝑀 (r) = 𝑒𝛽𝜇𝑝
𝑁∑︁
𝑗=1

𝛿𝑄𝑝

𝛿𝛽𝜉 𝑗
= 𝑒𝛽𝜇𝑝

𝑁∑︁
𝑗=1

𝛿𝑄𝑝

𝛿𝛽𝜉 𝑗
= 𝑒𝛽𝜇𝑝

𝑁∑︁
𝑗=1
𝑞( 𝑗 , r) exp

[
− 𝛽𝜉 𝑗 (r)

]
𝑞∗( 𝑗 , r)

(III.69)

The variation with respect to the density field 𝜌𝐻𝑀 gives the following

𝑤𝐻𝑀 = −𝑢surf (III.70)

Taking the variation with respect to the incompressibility and electric potential fields
give

𝜙𝑤 + 𝜙+ + 𝜙− + 𝜙𝑀 = 1 (III.71)

−1
4𝜋𝑙𝐵
∇2𝜓 = 𝜙𝑐 (III.72)

Or equivalently (useful later)

𝑒𝛽𝜇𝑤+𝛽𝜂 =
1 − 𝜙+ − 𝜙− − 𝜙𝑀

1 + 𝐾𝑊𝑒−𝛽𝑒𝜓+𝛽𝜆 + 𝐾𝑊𝑒𝛽𝑒𝜓−𝛽𝜆
= 𝑓𝐻2𝑂 (1 − 𝜙+ − 𝜙− − 𝜙𝑀) (III.73)

−1
4𝜋𝑙𝐵
∇2𝜓 = 𝜙𝑤

(
𝑓𝐻3𝑂+ − 𝑓𝑂𝐻−

)
+ 𝜙𝑀

(
𝑓𝐻2𝑀+ − 𝑓𝑀−

)
+ 𝑍+𝜙+ + 𝑍−𝜙− (III.74)

with the following fractions defined

𝑓𝐻2𝑂 =
1

1 + 𝐾𝑊𝑒−𝛽𝑒𝜓+𝛽𝜆 + 𝐾𝑊𝑒𝛽𝑒𝜓−𝛽𝜆
(III.75)

𝑓𝐻3𝑂+ =
𝐾𝑊𝑒−𝛽𝑒𝜓+𝛽𝜆

1 + 𝐾𝑊𝑒−𝛽𝑒𝜓+𝛽𝜆 + 𝐾𝑊𝑒𝛽𝑒𝜓−𝛽𝜆
(III.76)

𝑓𝑂𝐻− =
𝐾𝑊𝑒𝛽𝑒𝜓−𝛽𝜆

1 + 𝐾𝑊𝑒−𝛽𝑒𝜓+𝛽𝜆 + 𝐾𝑊𝑒𝛽𝑒𝜓−𝛽𝜆
(III.77)
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The fractions for the monomers are weighted by the segment densities

𝑓𝐻𝑀 𝑗
=

𝑒−𝛽𝑢surf

𝑒−𝛽𝑢surf + 𝐾𝐷1
𝑗
𝑒𝛽𝑒𝜓−𝛽𝜆 + 𝐾𝐷2

𝑗
𝑒−𝛽𝑒𝜓+𝛽𝜆

(III.78)

𝑓𝐻𝑀 =

∑𝑁
𝑗=1 𝜙𝑀, 𝑗 𝑓𝐻𝑀 𝑗∑𝑁

𝑗=1 𝜙𝑀, 𝑗
(III.79)

𝑓𝑀−
𝑗
=

𝐾
𝐷1
𝑗
𝑒𝛽𝑒𝜓−𝛽𝜆

𝑒−𝛽𝑢surf + 𝐾𝐷1
𝑗
𝑒𝛽𝑒𝜓−𝛽𝜆 + 𝐾𝐷2

𝑗
𝑒−𝛽𝑒𝜓+𝛽𝜆

(III.80)

𝑓𝑀− =

∑𝑁
𝑗=1 𝜙𝑀, 𝑗 𝑓𝑀−𝑗∑𝑁
𝑗=1 𝜙𝑀, 𝑗

(III.81)

Determining Binding Constants

To obtain values for 𝐾𝑤 and 𝐾𝐷
𝑗

for the acid-base reactions, we must connect the
expressions to the conventional acid-base equilibrium. To do this, we will use the
fact that for pure water, 𝐾𝑊𝑎 ≈ 10−14(𝑀2) and 𝑐0

𝑤 ≈ 1000/18 = 55.56𝑀 . From our
definitions,

𝑓𝐻3𝑂+ 𝑓𝑂𝐻−

𝑓𝐻2𝑂
= (𝐾𝑊 )2 (III.82)

In terms of molarity,

[𝐻3𝑂
+] [𝑂𝐻−]
[𝐻2𝑂]2

=
10−14

[𝐻2𝑂]2
= (𝐾𝑊 )2 (III.83)

Since the fraction of 𝑓𝐻2𝑂 ≈ 1, then 𝐾𝑊 = 10−8.74. Similarly for the equilibria for
each monomer in the absence of an electric field,

[𝐻3𝑂
+] [𝑀−

𝑗
]

[𝐻2𝑂] [𝐻𝑀 𝑗 ]
= 𝐾𝑊𝐾

𝐷1
𝑗

= 𝐾
𝑀 𝑗

𝑎,1/𝑐
0
𝑤

(III.84)

[𝑂𝐻−] [𝐻2𝑀
+
𝑗
]

[𝐻2𝑂] [𝐻𝑀 𝑗 ]
= 𝐾𝑊𝐾

𝐷2
𝑗

= 𝐾
𝑀 𝑗

𝑎,2/𝑐
0
𝑤

(III.85)

In either case, 𝐾𝐷𝑘

𝑗
= 𝐾

𝑀 𝑗

𝑎𝑘 /(𝐾𝑊𝑎 )1/2 = 107−𝑝𝐾
𝑀𝑗
𝑎𝑘 . By specifying the 𝑝𝐾𝑎 of the

monomer sequence, all of the dissociation constants can be obtained.

The protonation potential 𝛽𝜆 is determined by the 𝑝𝐻 and the total water concen-
tration in the absence of an electric field. Starting with the definition of 𝑓𝐻3𝑂+ ,

𝑓𝐻3𝑂+ =
𝐾𝑊𝑒𝛽𝜆

1 + 𝐾𝑊𝑒𝛽𝜆 + 𝐾𝑊𝑒−𝛽𝜆
(III.86)
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Making a quadratic equation

𝐾𝑊 ( 𝑓𝐻3𝑂+ − 1)𝑒2𝛽𝜆 + 𝑓𝐻3𝑂+𝑒
𝛽𝜆 + 𝐾𝑊 𝑓𝐻3𝑂+ = 0 (III.87)

Solving the quadratic and taking the only possible solution

𝑒𝛽𝜆 =

𝑓𝐻3𝑂+ +
√︃
𝑓 2
𝐻3𝑂+
+ 4(𝐾𝑊 )2 𝑓𝐻3𝑂+ (1 − 𝑓𝐻3𝑂+)

2𝐾𝑊 (1 − 𝑓𝐻3𝑂+)
(III.88)

Substituting 𝑓𝐻3𝑂+ = [𝐻3𝑂
+]/𝑐𝑤,

𝑒𝛽𝜆 =

[𝐻3𝑂
+]/𝑐𝑤 +

√︂(
[𝐻3𝑂+]/𝑐𝑤

)2
+ 4(𝐾𝑊 )2 [𝐻3𝑂+]/𝑐𝑤 (1 − [𝐻3𝑂+]/𝑐𝑤)

2𝐾𝑊 (1 − [𝐻3𝑂+]/𝑐𝑤)
(III.89)

𝑒𝛽𝜆 = [𝐻3𝑂
+]

1 +
√︃

1 + 4 𝑐𝑤 (𝐾
𝑊 )2

[𝐻3𝑂+] (1 − [𝐻3𝑂+]/𝑐𝑤)
2𝑐𝑤𝐾𝑊 (1 − [𝐻3𝑂+]/𝑐𝑤)

(III.90)

We know in pure water that [𝐻3𝑂
+] = 10−𝑝𝐻 (𝑐𝑤 = 𝑐0

𝑤),

𝑒𝛽𝜆 = 10−𝑝𝐻
1 +

√︁
1 + 4𝑐0

𝑤 (𝐾𝑊 )2 × 10𝑝𝐻 (1 − 10−𝑝𝐻/𝑐0
𝑤)

2𝑐0
𝑤𝐾

𝑊 (1 − 10−𝑝𝐻/𝑐0
𝑤)

(III.91)

Results
While the theory above is developed above for polyacids and polybases, we will
consider a polyacid for the results below. For polymer dispersants, formulations
typically have a basic pH and use a polyacid. We consider a linear, homopolymer,
polyacid dispersant with pKa = 5. The strong polyelectrolytes considered in our
earlier work interacted with the surface via electrostatic interactions and also non-
electrostatic interactions. For weak polyelectrolytes, we model the nonelectrostatic
interaction with the surface as only applying to the protonated form of the acid.
Namely, the interaction of protonated states interacts with the surface via the fol-
lowing attractive potential, which coarsely represents a favorable coordination with
the surface groups (i.e. hydrogen bonding).

𝑢surf (𝑧) = −𝛽𝜖 (1 − 𝑧)Θ(1 − 𝑧) (III.92)

Potential of mean force calculations for polyacrylic on aluminum oxide indicate that
the neutral residue has a more attractive interaction than the protonated1. From the

1Unpublished simulation results by Chang Yun Son as part of the Dow University Partnership
Initiative



87

theory, the spatially-dependent, average ionized fraction is

𝑓𝑀− (𝑧) =
𝐾𝐷𝑒𝛽𝑒𝜓(𝑧)−𝛽𝜆

𝑒−𝛽𝑢surf (𝑧) + 𝐾𝐷𝑒𝛽𝑒𝜓(𝑧)−𝛽𝜆
≈ 10pH−pKa𝑒𝛽𝑒𝜓(𝑧)

𝑒−𝛽𝑢surf (𝑧) + 10pH−pKa𝑒𝛽𝑒𝜓(𝑧)
(III.93)

For 𝜖 = 0 (no surface preference), Equation III.93 indicates that the charge fraction
increases with increasing pH, decreasing pKa, or increasing electrostatic potential.
The parameter 𝛽𝜖 shifts local equilibrium in the vicinity toward the neutral state to
have a picture like Figure III.19. For adsorption to a negatively charged surface, as

Figure III.19: Schematic showing neutral state preferred in the vicinity of the
surface.

is the case of alumina or titanium oxide at a basic pH, the electrostatic potential and
the preferential adsorption create a neutral favored environment near the surface.
Figure III.20 shows the monomer density profiles as for different values of 𝛽𝜖 . As 𝛽𝜖
increases, the fraction of ionized monomers in vicinity of the surface significantly
decreases with almost no ionized monomers for 𝛽𝜖 = 12. At the same time, the
monomer density dramatically increases (though not discontinuously), raising to
nearly 100 times the bulk concentration at the surface.

A key point to keep in mind is the length scale of the effect on the charge fraction
and the density profiles. The charge fraction is only affected from the bulk value
on the length scale of the potential 𝑢surf . In Figure III.20, the fraction returns to
a bulk value at approximately 0.2 nm. However, the density profiles clearly vary
over a larger length scale. This indicates that the first layer of adsorption, which is
primarily neutralized, is dragging a significant amount of charge monomers along
with it. The physical picture is that of neutral trains adsorbed to the surface with
charge tails extending from the surface (Figure III.21).

The physical picture presented above is encouraging for the mediated interaction
between surfaces. The extended, charged tails can overlap and provide a barrier to
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Figure III.20: Monomer density (left) and ionized monomer fraction (right) profiles
for a polymer dispersant with pKa = 5 in a pH=9 solution with no added salt (only
counterions) in contact with a surface with fixed surface charge density of -0.1 e

nm2 .
The bulk density of monomers is 𝜙bulk

𝑀
= 0.1% and 𝛽𝜖 values range from 9 to 12.

Figure III.21: Schematic for adsorption of weak polyelectrolyte with preferential
interaction of neutral residues with the surface.

Figure III.22: Interaction force between two surfaces (left) for various neutral
residue–surface interaction strengths 𝛽𝜖 ranging from 9 to 12 and (right) for various
salt concentrations from no added salt to 1 M. Polymer dispersant pKa = 5, pH=9,
fixed surface charge density of -0.1 e

nm2 . The bulk density of monomers is 𝜙bulk
𝑀

=

0.1%.
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further approach for two colloidal sized particles. Figure III.22 shows the disjoining
pressure between two surfaces. With increasing 𝛽𝜖 , the amount of adsorbed polymer
increases, including the charged tails. When bringing the two surfaces together, the
adsorbed layers overlap. The ion repulsion in the charged tails leads to net repulsion
between the surfaces. Increasing the salt concentration decreases penalty of tails
overlapping due to screening.

Conclusion
We presented a microscopic model that naturally accounts for the charge regulation
of weak polyelectrolytes at the mean-field level based on Ising-like configurational
states. By building in a preferential adsorption of neutral monomers for a polyacid,
monomers near the surface are neutralized, leading to trains of neutral monomers
and extended tails of charged monomers. Such a conformation is ideal for imparting
repulsion between two particles. Indeed, a repulsive barrier is seen when two layers
of charged tails overlap. Unfortunately, for all of the systems here, none of the
repulsive barriers are strong enough to overcome the Hamaker potential. There are
a few possible reasons. The self-consistent field theory underestimates the packing
and other correlation effects that would be present with such strong adsorption. We
aim to incorporate these real ion effects into a more realistic model. Nevertheless, the
self-consistent field framework captures the main physics of weak polyelectrolytes
near a solid surface.
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C h a p t e r IV

SURFACE PHASE TRANSITIONS

Phase separation is usually thought of and studied in the context of macrophase
separation, where two coexisting form arbitrarily large domains. When the domain
size is finite, the phase separation is deemed microphase separation. The canonical
example of microphase separation is that of a diblock copolymer, where unfavorable
interaction between A- and B-type blocks leads to regions of A-rich (B-poor) and B-
rich (A-poor) that cannot be macroscopic due to the chain connectivity [1]. Surface
phase transitions are similar to microphase separation in that the surface effects and
phases are localized to a finite region. The strength and length scale of the surface
interaction plays a significant role in the phase behavior near a solid interface. This
chapter considers the wetting behavior of polyelectrolyte complex coacervates and
controlling wettability using electrostatic manipulation of the surface.

This chapter includes content from our previously published article:

Balzer, C.; Zhang, P.; Wang, Z.-G. Soft Matter 2022, 18, 6326–6339, DOI: 10.
1039/D2SM00859A

I am thankful to Prof. Pengfei Zhang for the initial notes and guidance on the
inhomogeneous theory used throughout this chapter. I would also like to thank
Dr. Andy Ylitalo for enticing me to pursue polyelectrolyte complex coacervation.
Andy’s excitement for the topic was contagious, and our shared project was one of
the highlights of my time at Caltech. I also thank Sam Varner for fruitful discussions
on surface phase transitions over the years.
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IV.1 Wetting Behavior of Complex Coacervates
The wetting behavior of complex coacervates underpins their use in many emerg-
ing applications of surface science, particularly wet adhesives and coatings. Many
factors dictate if a coacervate phase will condense on a solid surface, including solu-
tion conditions, the nature of the polymer–substrate interaction, and the underlying
supernatant–coacervate bulk phase behavior. In this work, we use a simple inhomo-
geneous mean-field theory to study the wetting behavior of complex coacervates on
solid surfaces both off-coexistence (wetting transitions) and on-coexistence (contact
angles). We focus on the effects of salt concentration, the polycation/polyanion
surface affinity, and the applied electrostatic potential on the wettability. We find
that the coacervate generally wets the surface via a first order wetting transition with
second order transitions possible above a surface critical point. Applying an electro-
static potential to a solid surface always improves the surface wettability when the
polycation/ polyanion–substrate interaction is symmetric. For asymmetric surface
affinity, the wettability has a nonmonotonic dependence with the applied potential.
We use simple scaling and thermodynamic arguments to explain our results.

Introduction
Polyelectrolyte complex coacervation is a type of associative liquid-liquid phase
separation where oppositely charged polyelectrolytes separate into a coacervate
phase (polymer-rich) and a supernatant phase (polymer-depleted) [3]. In the past few
decades, there has been broad interest in complex coacervation due to its wide range
of applications across scientific disciplines. For example, complex coacervation has
proven to be an efficient means of encapsulation [4], enabling its use in the food [5–8],
textile [9–12], and agricultural industries [13]. Emerging technologies of complex
coacervates include targeted drug delivery [14, 15], fabrication of hydrogels [16],
and development of wet adhesives [17].

Utilizing complex coacervation relies on understanding the factors that influence
the bulk phase behavior and interfacial properties. Knowing the location of the two-
phase boundary for a variety of solution conditions is crucial to exploit the phase
transition. There are many factors that contribute to the bulk phase behavior, such
as the salt concentration, valency of salt ions, charge state of the polyelectrolytes,
chain length, temperature, and sequence of the polymer backbone, which have each
been explored with experiments and theory [3, 18–20]. In the past decade, there
has also been significant progress in characterizing the interfacial properties of the
coacervate–supernatant interface — notably, the interfacial tension [21, 22]. Exper-
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iments and theory of symmetric mixtures of polyelectrolytes have characterized the
scaling of interfacial tension with the salt concentration relative to the critical salt
concentration [23–31] (𝛾 ∼ [𝜙crit

± − 𝜙±]3/2) and with the chain length [24, 26, 32].
Simulations and theory also give access to additional interfacial properties, such
interface thickness and excess adsorption [27]. Access to the interfacial profiles
is particularly important for asymmetric mixtures of polyelectrolytes, where local
charge separation can lead to spatially varying, and usually nonmonotonic, profiles
of the electrostatic potential [30, 33].

Compared to the coacervate–supernatant interface, the supernatant and coacervate
phases near solid surfaces are relatively unexplored. Of central importance for solid
substrates is the adsorption and corresponding wetting (or drying) behavior of the
coacervate phase. The contact angle (at the substrate-coacervate-supernatant equi-
librium) will determine the coacervate’s ability to coat a surface. Few works have
reported contact angles for these systems, partly due to the difficultly of measuring
the contact angle in situ [22]. Contact angles are predominantly reported for their
relevance to experimental measurements of the interfacial tension, such as colloidal
probe atomic force microscopy (CP-AFM) and surface force apparatus (SFA). For
example, in measuring interfacial tension with CP-AFM, Spruĳt and coworkers
presented the contact angle of a coacervate phase in the corresponding supernatant
phase on a silica surface for different salt concentrations, reporting contact angles
less than 45◦ and a transition to complete wetting (zero contact angle) above 1
M [23]. Lim et al. found that salt solutions in the Hofmeister series at a single salt
concentration give contact angles ranging from 25◦ to above 90◦ (nonwetting) [34].
In SFA measurements, the interfacial tension is measured via an extrapolation of
the pull-off force to zero separation 𝛾 = (1/4𝜋) (𝐹pull,0/𝑅) cos 𝜃, where 𝑅 is related
to the geometry of the probe. In these measurements, the contact angle has been
assumed to be zero (complete wetting) so that cos 𝜃 ≈ 1 [21, 24, 35]. Such an
assumption dismisses the role of the surface. Overall, the lack of experimental
data leaves many open questions. For instance, how do different surface types and
solution conditions affect wettability?

Understanding how complex coacervates wet surfaces can inform design of complex
coacervates for applications on solid surfaces, like wet adhesives. The performance
of wet adhesives critically depends on their ability to wet a substrate in complex and
challenging environments, such as the human body [36]. Recently, there has been a
proliferation of wet adhesive materials inspired by the adhesives created by marine
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organisms [17, 37], notably the sandcastle worm [38–42] and seawater mussel [35,
43–47]. Both of these creatures secrete glue-like proteins that undergo coacervation
(complex coacervation or single-component coacervation), wet the adhering surface,
and cure into a strong adhesive [48]. Most of the bio-inspired adhesives mimic these
glue protein sequences, particularly in their inclusion of 3,4-dihydroxyphenylalanine
(DOPA) residues, which serve to both enhance adsorption of the adhesive to the
surface and aid in curing the adhesive after oxidation [38, 49]. As emphasized by
Waite [49], mimicking the residue composition of marine life proteins alone does
not capture the complexity of mussel adhesion. The success of mussels in adhering
to a variety of surfaces [44] depends on their ability to intricately prepare the surface
properties and solution in the proximity of the surface for their adhesive proteins.
Replicating the versatility of marine life requires a fundamental understanding of
the important factors that influence, and can be used to control, the wetting process.

In this work, we seek to understand and characterize the wetting behavior of sym-
metric polyelectrolyte complexes near a charged surface. Motivated by the variety
of adsorption mechanisms proposed in biological systems [47], we study the effect
of salt concentration on the wetting transitions and the contact angle when the poly-
electrolyte complexes have nonelectrostatic and/or electrostatic interaction with the
surface. To elucidate the main physics in this system, we use a simple inhomoge-
neous mean-field theory extended from a theory for studying the interfacial behavior
of polyelectrolyte complex coacervates developed by Zhang and Wang [30]. The
central difference from Ref. 30 is that the polyelectrolyte solution, either coacervate
or supernatant, is in contact with a solid surface rather than its coexisting phase.
Under the conditions studied, we find that the supernatant to coacervate wetting
transition generally occurs via a first order prewetting transition with a second order
transition occurring as one approaches the bulk critical salt concentration. Applying
an electrostatic potential to the surface shifts the surface critical point away from
the bulk critical point and always improves the wettability (lowers contact angles)
when polycation and polyanion have identical nonelectrostatic attraction to the sur-
face. However, asymmetry in nonelectrostatic attraction can lead to nonmonotonic
changes of the contact angle with the applied potential. Our main finding is that
electrostatic manipulation of the substrate is an efficacious method for controlling
wettability. Contact angles can be substantially altered by applying small potentials
(∼ 10 mV), which is a direct result of the low supernatant–coacervate interfa-
cial tension. By studying the effects of electrowetting and nonelectrostatic affinity
(i.e. polymer chemistry), this work can serve to guide future design of coacervate
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materials for applications such as encapsulation, coatings, and adhesives.

Theoretical Formulation
To study the wetting behavior, we model a polyelectrolyte solution in contact with a
solid surface. Both the model and the theory are similar to that presented by Zhang
and Wang [30] so only the main details will be reproduced. The polyelectrolyte
solution consists of polycations (𝑝+), polyanions (𝑝−), salt ions (+ and−), and solvent
(𝑠), which we describe as coarse-grained beads. The polyanions and polycations have
𝑁𝑝+ and 𝑁𝑝− segments where each segment represents a coarse-grained monomer.
The monomers and salt ions have valency 𝑍𝑖, where 𝑖 is the species. 𝑍𝑖 is positive for
positively charged species and negative for negative charges. For the current work,
we treat the polyelectrolytes as strong polyelectrolytes where all monomers are
fully dissociated and carry the same charge. We treat all species as having the same
volume scale of 𝑣with a corresponding length scale𝜎 = 𝑣1/3. Further, for simplicity,
the counterions dissociated from the polyelectrolytes are assumed to be the same as
the corresponding salt ions. Far from the solid surface, the polyelectrolyte solution
can be considered uniform with its composition described by the corresponding
bulk densities, 𝜌B = {𝜌B

𝑝+ , 𝜌
B
𝑝− , 𝜌

B
+ , 𝜌

B
− , 𝜌

B
𝑠 }. Here, the polyelectrolyte density 𝜌𝑝±

is the segment (monomer) density. Because the volume scale is the same for all
components, it is convenient to work with the volume fractions of each component,
and assume incompressibility

∑
𝑖 𝜙𝑖 = 𝑣

∑
𝑖 𝜌𝑖 = 1.

In a homogeneous solution, the Helmholtz free energy density 𝑓B can be written as
the sum of three different parts, 𝑓id, 𝑓el, and 𝑓ch. These additive free energy terms
respectively account for the mixing entropy of the species, electrostatic correlation
of a solution of disconnected ions, and the additional electrostatic correlation due to
the connectivity of charges along the polyelectrolyte backbone. We do not include
any other inter-species interactions like (i.e. Flory–Huggins 𝜒) into the theory in
order to focus on the effect of electrostatics; however, these terms can be easily
included. The mixing entropy is given by

𝛽𝑣 𝑓id =
∑︁

𝑖=𝑝+,𝑝−

𝜙𝑖

𝑁𝑖
ln (𝜙𝑖) +

∑︁
𝑖=+,−

𝜙𝑖 ln (𝜙𝑖) +(
1 −

∑︁
𝑖=𝑝+,𝑝− ,+,−

𝜙𝑖

)
ln

(
1 −

∑︁
𝑖=𝑝+,𝑝− ,+,−

𝜙𝑖

)
(IV.1)

where 𝛽 = 1/𝑘𝐵𝑇 is defined by the Boltzmann constant 𝑘𝐵 and temperature 𝑇 . The
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electrostatic correlation is treated at the Debye–Hückel level,

𝛽𝑣 𝑓el = −
1

4𝜋

[
ln(1 + 𝜅𝜎) − 𝜅𝜎 + (𝜅𝜎)

2

2

]
(IV.2)

where 𝜅 is the inverse Debye screening length defined as 𝜅𝜎 =

√︃
4𝜋(𝑙B/𝜎)

∑
𝑖=𝑝±,± 𝑍

2
𝑖
𝜙𝑖.

The Bjerrum length has the usual definition of 𝑙B = 𝛽𝑒2/4𝜋𝜖0𝜖𝑟 , where 𝑒 is the el-
ementary charge, 𝜖0 is the vacuum permitivity, and 𝜖𝑟 is the relative dielectric
constant of the medium. The first order thermodynamic perturbation theory [50]
(TPT1) framework is commonly used to describe the chain connectivity contribution
to the electrostatic correlation, but Zhang and Wang recently developed a TPT1-like
expression for electrostatic correlation at the Debye–Hückel level that we employ
here. We direct readers to Ref. 30 for the full discussion on the derivation. For
polyelectrolytes with charge on each segment, the free energy contribution is

𝛽𝑣 𝑓ch =
𝑙B/𝜎

1 + 𝜅𝜎
∑︁

𝑖=𝑝+,𝑝−

𝑁𝑖 − 1
𝑁𝑖

𝑍2
𝑖 𝜙𝑖 (IV.3)

With the homogeneous free energy, one can study the bulk phase behavior by
calculating the coexisting supernatant–coacervate phase diagram. Since the focus
of this work is the role of the solid surface, we provide only a brief description of
the supernatant–coacervate phase diagram and direct interested readers to our other
works that give a more detailed description [51–53]. For a symmetric polyelectrolyte
mixture (𝜌B

𝑝+ = 𝜌B
𝑝− , 𝑁𝑝+ = 𝑁𝑝− , 𝑍𝑝+ = −𝑍𝑝− ), as considered in this work, the

coexisting concentrations are determined by the equality of chemical potential for
each component in the coexisting phases (i.e. 𝜇𝐼

𝑖
= 𝜇𝐼 𝐼

𝑖
) and equality of osmotic

pressure, ΠB =
∑
𝑖=𝑝±,± 𝜇𝑖𝜌𝑖 − 𝑓B. The set of chemical potentials {𝜇𝑖}𝑖=𝑝±,± are

measured with respect to the chemical potential of the solvent, which can be taken
as a constant (zero) due to incompressibility. When the polyelectrolyte mixture
is symmetric, the polycation/polyanion and cation/anion concentrations are equal
within the same phase. For a given 𝑙B, there are 4 unknowns (𝜌𝐼𝑝± ,𝜌

𝐼 𝐼
𝑝± , 𝜌

𝐼
±, and

𝜌𝐼 𝐼± ) with 3 independent equations (2 for chemical potential equality and one for
osmotic pressure equality). The phase diagram is constructed by specifying one of
the unknown components and solving for the other 3 unknowns using a Newton-
Raphson approach. By scanning over 𝜌𝐼 𝐼± , for example, one can construct a phase
diagram in the salt–polymer plane.

We extend the homogeneous free energy 𝑓B to the inhomogeneous case by using
a local approximation of the bulk free energy density and introducing additional
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mean-field level free energy contributions to account for the inhomogeneous spatial
densities. Namely, the Helmholtz free energy for a polyelectrolyte solution in contact
with a planar, homogeneous surface is

𝐹 = 𝐴

∫ ∞

0
𝑑𝑧

[
𝑓B({𝜌(𝑧)}) +

∑︁
𝑖=𝑝+,𝑝−

𝑘𝐵𝑇 𝑏
2

6

(
𝑑
√︁
𝜌𝑖 (𝑧)
𝑑𝑧

)2

+

∑︁
𝑖=𝑝±,±

𝑒𝑍𝑖𝜌𝑖 (𝑧)𝜓(𝑧) −
𝜖0𝜖𝑟
2

(
𝑑𝜓(𝑧)
𝑑𝑧

)2

+ 𝑒𝑄𝑠𝜓(𝑧)𝛿(𝑧) + 𝑏
∑︁

𝑖=𝑝+,𝑝−

𝜂𝑖𝜌𝑖 (𝑧)𝛿(𝑧)
]

(IV.4)

where 𝐴 is the area of the planar surface, 𝑏 is the Kuhn length (equivalent to 𝜎 in
this work), 𝜓(𝑧) is the mean electrostatic potential, 𝑒𝑄𝑠 is the surface charge density,
𝜂 is a nonelectrostatic interaction parameter between the polyelectrolyte and solid
surface, and 𝛿(𝑧) is the Dirac delta function. In the expression above, we have
assumed that the density variation only takes place in the direction perpendicular
to the surface. The first term in Eq. (IV.4) is the free energy density of the
homogeneous solution evaluated with the local density. The second term is the
Lifshitz entropy that arises from the ground-state dominance approximation in mean-
field theory to account for the conformation entropy penalty of the polymer chains
due to density inhomogeneity [54]. The third and forth terms are the mean-field
energy contributions that arise from local net charge. The final two terms in Eq.
(IV.4) account for the solid surface. The term involving𝑄𝑠 is the surface contribution
to the electrostatic free energy that arises from the charge accumulated on the
solid surface. The last term accounts for the nonelectrostatic interaction between
monomer residues and the surface, which is localized to the surface via the Dirac
delta function. We do not include any nonelectrostatic surface interaction for the salt
ions in order to focus on the polyelectrolyte adsorption. Treating the polyelectrolyte–
substrate interaction this way follows previous studies of neutral polymer [55, 56]
and polyelectrolyte adsorption [57, 58]. Physically, 𝜂𝑝± does not represent the bare
interaction of the monomers with the surface. Instead, 𝜂𝑝± is a combination of the
hard wall repulsion and short range attraction with the surface. As we will see
below, a value of zero for 𝜂𝑝± corresponds to a polyelectrolyte that is indifferent to
the surface (neither adsorbing or depleted).

At this point, we emphasize that our theory is a simplified representation of an
inhomogeneous system. Treating the electrostatic correlation at the Debye–Hückel
level is only valid when electrostatic correlation is relatively weak (i.e. low salt
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concentration or small surface potentials) and is known to generally overestimate
the electrostatic correlation for disconnected beads, while the TPT1 approach un-
derestimates the electrostatic correlation for polyelectrolytes [59]. The majority of
works studying complex coacervation have employed a Debye–Hückel electrostatic
correlation term with no size correction and no chain connectivity correction, as is
the case in VO theory [3]. Currently, there is no widely accepted theory to describe
electrostatic correlation in polyelectrolyte solutions, especially for inhomogeneous
systems. Additionally, using a local incompressibility assumption only coarsely
captures the solvent–monomer or solvent–ion contacts that exist in real solutions.
A hard sphere model may be more realistic but requires commensurate theoretical
treatment of electrostatic correlation.

Throughout this work, we will consider systems with a constant electrostatic poten-
tial on the surface or constant surface charge density. For a solution in contact with
a single surface maintained at constant surface potential 𝜓0, the thermodynamic
potential that is minimized at equilibrium is

𝑌 = 𝐹 − 𝑒𝑄𝑠𝐴𝜓0 −
∑︁
𝑖=𝑝±,±

𝜇𝑖N𝑖 =

= 𝐴

∫ ∞

0
𝑑𝑧

[
𝑓B({𝜌(𝑧)}) +

∑︁
𝑖=𝑝±,±

𝑒𝑍𝑖𝜌𝑖 (𝑧)𝜓(𝑧) −
𝜖0𝜖𝑟
2

(
𝑑𝜓(𝑧)
𝑑𝑧

)2

+ 𝑘𝐵𝑇 𝑏
2

6

∑︁
𝑖=𝑝+,𝑝−

(
𝑑
√︁
𝜌𝑖 (𝑧)
𝑑𝑧

)2

+ 𝑏
∑︁

𝑖=𝑝+,𝑝−

𝜂𝑖𝜌𝑖 (𝑧)𝛿(𝑧)

−
∑︁
𝑖=𝑝±,±

𝜇𝑖𝜌𝑖 (𝑧)
]

(IV.5)

where N𝑖 = 𝐴
∫ ∞
0 𝜌𝑖 (𝑧)𝑑𝑧. Note that the electrostatic surface term is subtracted

by the Legendre transform to account for the energy of charging/discharging the
surface [60]. For a fixed surface charge density, the relevant free energy is 𝑊 =

𝐹 −∑
𝑖=𝑝±,± 𝜇𝑖N𝑖. 𝑌 and 𝑊 are equivalent when either 𝑄𝑠 or 𝜓0 are zero. We note

again that the salt and polyelectrolyte chemical potentials are measured with respect
to the pure solvent, which naturally results from the incompressibility condition
(𝑣

∑
𝑖=𝑝±,±,𝑠 𝜌𝑖 = 1). To obtain equilibrium configurations, we extremize the relevant

inhomogeneous free energy with respect to the densities and electrostatic potential
field to obtain the mean-field equations. Starting with the electrostatic potential, we
obtain the Poisson equation∑︁

𝑖=𝑝±,±
𝑒𝑍𝑖𝜌𝑖 (𝑧) + 𝜖0𝜖𝑟

𝑑2𝜓

𝑑𝑧2
= 0 (IV.6)
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For the polyelectrolyte densities,

𝛿 𝑓B({𝜌(𝑧)})
𝛿𝜌𝑝± (𝑧)

+ 𝑏𝜂𝑝±𝛿(𝑧) −
𝑘𝐵𝑇 𝑏

2

6
√︁
𝜌𝑝± (𝑧)

𝑑2√︁𝜌𝑝± (𝑧)
𝑑𝑧2

+ 𝑒𝑍𝑝±𝜓(𝑧) − 𝜇𝑝± = 0 (IV.7)

For small ions,
𝛿 𝑓B({𝜌(𝑧)})
𝛿𝜌±(𝑧)

+ 𝑒𝑍±𝜓(𝑧) − 𝜇± = 0 (IV.8)

For fixed surface charge density, the boundary condition for the electrostatic potential
is 𝜖0𝜖𝑟 𝑑𝜓𝑑𝑧

���
𝑧=0

= −𝑒𝑄𝑠 . For fixed surface potential, the boundary condition is simply
given by the specified potential at the surface, 𝜓(0) = 𝜓0. In either case, far from
the surface, the potential can be defined to be zero, 𝜓(𝑧 → ∞) = 0, where we also
have 𝑑𝜓

𝑑𝑧

���
𝑧→∞

= 0. For the polymer volume fraction, the boundary condition near
the surface can be obtained by integrating Eq. (IV.7) from 0− to 0+. Only the terms
defined at the surface remain, and one obtains

𝑑
√︁
𝜌𝑝± (𝑧)
𝑑𝑧

�����
𝑧=0

= 6𝑏−1𝛽𝜂𝑝±

√︃
𝜌𝑝± (0) (IV.9)

As mentioned above, 𝜂𝑝± is not the bare interaction with the surface but serves as an
effective boundary condition for the polymer density. In the absence of a polymer–
substrate interaction, the entropic penalty of a polymer chain near a solid surface
should lead to depletion [55]. A value of zero for 𝜂𝑝± indicates the slope of the
density profile is zero at the surface, which corresponds to some degree of attraction
to overcome the usual depletion arising from loss of conformations near the surface.
Likewise, in the absence of electrostatic effects, the sign of 𝜂𝑝± determines whether
the polyelectrolyte is adsorbing or depleted from the surface. These subtleties result
from using a continuous chain model (Lifshitz entropy) and have been discussed
in detail elsewhere [1]. Far from the surface, the polyelectrolyte volume fractions
return to the bulk solution conditions.

We conclude this section by writing the functional form of the surface tension. The
surface tension is equal to the excess grand potential energy for constant surface
potential system [60]. Subtracting the grand potential energy of the homogeneous
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system (𝑌0 = −ΠB𝑉) gives

𝛾 =
𝑌 − 𝑌0
𝐴

=

∫ ∞

0
𝑑𝑧

[
𝑓B({𝜌(𝑧)}) − 𝑓B({𝜌B})

+ 𝑒
∑︁
𝑖=𝑝±,±

𝑍𝑖𝜌𝑖 (𝑧)𝜓(𝑧) −
𝜖0𝜖𝑟
2

(
𝑑𝜓(𝑧)
𝑑𝑧

)2

+ 𝑘𝐵𝑇𝑏
2

6

∑︁
𝑖=𝑝+,𝑝−

(
𝑑
√︁
𝜌𝑖 (𝑧)
𝑑𝑧

)2

−
∑︁
𝑖=𝑝±,±

𝜇𝑖

(
𝜌𝑖 (𝑧) − 𝜌B

𝑖

)]
+ 𝑏

∑︁
𝑖=𝑝+,𝑝−

𝜂𝑖𝜌𝑖 (0) (IV.10)

The expression above can be used to compute either the supernatant–solid or
coacervate–solid surface tension. The only difference is the choice of bulk com-
position. Namely, the choice of {𝜌B} will specify whether the bulk solution is on
the supernatant or coacervate side of the phase diagram. We note that the surface
tension obtained from Eq. IV.10 is not the true surface tension but the excess surface
tension relative to that of a pure solvent. However, the (constant) contribution to the
surface tension from the pure solvent has no bearing on the properties of interest in
this work (e.g. the contact angle).

Numerical Considerations
The mean-field equations above are solved by discretizing the spatial coordinate from
the surface to a distance far enough from the surface where the volume fraction is
sufficiently close to the bulk concentration (𝑧 > 50𝑏). The set of discretized
mean-field equations can be written as F(X) = 0, where X = [{𝜙(𝑧)}, 𝜓(𝑧)]. This
nonlinear system of equations can be solved in a variety of ways, including relaxation
methods or quasi-Newton approaches. We found that reformulating the problem in
terms of fixed-point iterations, where one solves X = G(X) = X+F(X), and solving
using Anderson Acceleration [61] led to the fastest convergence. The convergence
criterion was considered met when the maximum value of F(X) was less than an
error tolerance (10−10).

Results and Discussion
We will explore the wetting behavior both off- and on-coexistence. Both refer to
locations or trajectories relative to the supernatant–coacervate phase diagram. As
the name implies, off-coexistence refers to starting with a system prepared in the
one-phase region of the phase diagram and changing a state variable that brings the
system closer to the two-phase region. On-coexistence refers to trajectories of the
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phase diagram that are restricted to the binodal surface, where the contact angle is
defined. In this work, in order to reduce the overall number of parameters, we will
focus on a single phase diagram constructed in the salt–polyelectrolyte plane. We
fix the number of segments for each chain 𝑁𝑝+ = 𝑁𝑝− = 𝑁 = 100, the Bjerrum
length 𝑙B/𝜎 = 1.785, and valencies of each species 𝑍𝑝+ = −𝑍𝑝− = 𝑍+ = −𝑍− = 1
to mimic similar conditions in our earlier work [30]. For 𝜎 = 0.4 nm, the Bjerrum
length corresponds to a relative dielectric of 𝜖𝑟 ≈ 80 at room temperature.

The resulting supernatant–coacervate phase diagram is shown in Figure IV.1. Fig-
ure IV.1 shows that the tie-lines connecting the supernatant (dilute) and coacervate
(dense) phases are slightly negatively sloped and that above a threshold salt concen-
tration (𝜙B

± = 0.115), the two phases are indistinguishable. One common feature in
the theoretical prediction of bulk phase diagrams of complex coacervates is that the
polyelectrolyte concentration in the supernatant phase is exceedingly low [62–67].
In most current theories, including this work, the physical picture of the super-
natant phase is a uniformly mixed polyelectrolyte solution. In reality, the oppositely
charged polyions in the supernatant phase are likely to form dispersed clusters made
up of two or more polyions [68–72]. Such a distinction undoubtedly influences the
behavior of the supernatant near a solid surface. We recognize this as a limitation
of our study; however, using a uniformly mixed assumption allows for the complete
phase diagram (Fig. IV.1), which is useful for mapping surface phase transitions
relative to the binodal. The phase diagram near the critical salt concentration is not
available when accounting for the polyion clusters in the supernatant phase [71].
Further, we expect many aspects of the wetting behavior to be similar, which we
will revisit later on.

The focus of off-coexistence trajectories is whether, and how, the coacervate phase
forms on the surface from an unsaturated solution. From Cahn’s classical wetting
theory [73], reaching coexistence starting from an undersaturated solution generally
leads to one of two scenarios. The first is complete wetting, where a macroscopi-
cally large, dense film forms on the surface at coexistence. Complete wetting is a
surface transition that can be first or second order, depending on whether the film
thickness diverges discontinuously or continuously at coexistence, respectively [74].
The second scenario is partial wetting, where the film thickness remains finite at
coexistence. To study this, we increase the bulk polymer concentration (𝜙B

𝑝±) from
an undersaturated solution to the saturated solution at a fixed bulk salt concentration,
which is a horizontal path (left to right) on the phase diagram in Figure IV.1. Note
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Figure IV.1: Supernatant–coacervate bulk phase diagram in the salt–polyelectrolyte
plane for 𝑁 = 100 and 𝑙B/𝜎 = 1.785. Dashed black lines indicate tie-lines. Red
point indicates the bulk critical point.

that 𝜙B
± is the overall salt concentration that includes the added salt ions and counte-

rions to the polyelectrolytes so that increasing 𝜙B
𝑝± for fixed 𝜙B

± amounts to removing
added salt. We calculate the excess adsorption Γex,𝑖𝑏

2 =
∫ ∞
0

[
𝜙𝑖 (𝑥) − 𝜙B

𝑖

]
𝑑𝑥 to

measure the presence of the coacervate film.

Nonelectrostatic Wetting

Figure IV.2: Adsorption isotherms and density profiles for nonelectrostatic adsorp-
tion. (a) Polyelectrolyte adsorption isotherms for various nonelectrostatic attraction
strengths at a constant bulk salt concentration of 𝜙B

± = 0.1. Δ𝛽𝜇𝑝± = 𝛽𝜇𝑝± − 𝛽𝜇coex
𝑝±

is a measure of the distance from coexistence. Corresponding (b) polyelectrolyte and
(c) salt density profiles before and after the prewetting transition for 𝛽𝜂𝑝+± = −0.05.
Line colors match the circular markers in (a). For (a), values of 𝛽𝜂± < −0.01
undergo complete wetting via a prewetting transition.



107

Figure IV.2 shows adsorption isotherms and interfacial profiles for symmetrically
adsorbing polyelectrolytes on a charge-neutral surface for 𝜙B

± = 0.1. Symmetric
adsorption means that both polycation and polyanion have identical nonelectrostatic
affinity to the surface (𝜂𝑝+ = 𝜂𝑝− = 𝜂𝑝±). Without an applied potential on the
surface or non-zero surface charge density, there is no charge separation so the
positive/negative interfacial profiles are identical. The quantity Δ𝛽𝜇𝑝± = 𝛽𝜇𝑝± −
𝛽𝜇coex

𝑝± measures the chemical potential difference from the chemical potential of
the supernatant phase at coexistence. Δ𝛽𝜇𝑝± < 0 corresponds to an undersaturated
supernatant phase in contact with the surface while Δ𝛽𝜇𝑝± < 0 corresponds to a
supersaturated, metastable supernatant phase in contact with the surface. Figure
IV.2a shows the adsorption isotherms for representative values of 𝜂𝑝± . A key feature
in this plot is the presence of turning points in the excess adsorption curves. The
turning points mark surface spinodals and thus, are an indication of a first order
transition. The section of the adsorption isotherm connecting two surface spinodals
is thermodynamically unstable. See the Appendix for more detail on turning points
and thermodynamic stability.

Surface phase coexistence is determined by the crossing of the relevant surface
excess free energy (Figure IV.13). For 𝛽𝜂𝑝± = −0.1 (purple line in Figure IV.2a), a
first order transition happens near Δ𝛽𝜇𝑝± ≈ −0.06 and then the excess adsorption
diverges continuously. A surface transition off-coexistence where the excess adsorp-
tion jumps to a finite value is known as a prewetting transition [75], corresponding
to coexistence between a thin and thick coacervate layer on the surface [76]. Such
a transition is illustrated in the interfacial profiles in Figure IV.2b. The red and
green lines correspond to coexisting surface phases before and after the transition,
respectively. Before the transition (green line), a small amount of polyelectrolyte
adsorbs on the surface. After the prewetting transition (red line), there is strong
adsorption in the immediate vicinity of the surface, which continuously grows into
a macroscopically thick film upon further increase in the bulk concentration (black
line). The black curve in Figure IV.2b reaches a plateau around 𝑧/𝑏 = 10. The
same is true in the salt density profiles. As the bulk concentration approaches the
binodal, the composition of the plateau approaches the coexisting coacervate phase
determined by the phase diagram in Figure IV.1. The negative tie-lines explain why
the coacervate layer depletes salt from the surface. The behavior of the tie-line slope
is an active research area [3]. Neitzel and coworkers recently measured positively
sloped tie-lines for low charge density polyelectrolytes [77], which would change
the trend in salt composition of the wetted coacervate layer.
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In Figure IV.2a, a less favorable polymer–surface interaction shifts or eliminates
the prewetting transition. The curve for 𝛽𝜂𝑝± = −0.01 exhibits partial wetting. As
opposed to the other curves, there is no crossing of the supernatant and coacervate
surface excess free energy (Figure IV.14). In other words, a coacervate layer on
the surface can only exist as metastable state on the supernatant side of the phase
diagram for 𝛽𝜂𝑝± = −0.01. For 𝛽𝜂𝑝± = 0.01, the excess adsorption is actually
negative and decreases with bulk concentration, which indicates drying rather than
wetting. In that case, the surface also cannot support a coacervate layer. The results
presented at this point are similar to that of Monteillet and coworkers that studied
coacervation at an oil–water interface using self-consistent field theory [78]. In their
work, the formation of a coacervate at the oil-water interface also proceeded via a
first order prewetting transition.

By scanning over many salt concentrations, we track the full behavior of the wetting
transition. Figure IV.3 shows the surface phase diagram for 𝛽𝜂𝑝± = −0.05 plotted
on top of the bulk phase diagram. The green line is the surface spinodal for the
supernatant on the surface. Crossing this line from left to right on the diagram
results in spontaneous formation of the coacervate layer on the surface (wetting).
When the green line falls below the binodal (red), the surface spinodal exists in the
metastable region for the bulk supernatant phase. The pink line is the coacervate
surface spinodal, where the (metastable) coacervate surface layer must dewet the
surface. The black line is the surface coexistence point determined by the crossing
point of the relevant free energy (see Figure IV.13). Because the surface coexistence
line extends off the bulk binodal (red), this line is also known as the prewetting
line. As one approaches the critical bulk salt concentration, there is no distinction
of supernatant or coacervate phases so the surface transition should be second order
in the proximity of the bulk critical point [73]. Indeed, the three lines in the surface
phase diagram converge on a surface critical point. Above that point but below the
bulk critical point, a horizontal trajectory on the phase diagram leads to a continuous
divergence of the excess adsorption, which is consistent with a second order wetting
transition. For low salt, the surface coexistence line eventually intersects with the
bulk binodal, which we define as the wetting salt concentration, 𝜙wet

± . For the
conditions in Figure IV.3, this occurs at 𝜙wet

± ≈ 0.053. One can draw analogy to
the wetting temperature typical in liquid-vapor systems [79, 80]. The existence of
surface spinodals below the wetting salt concentration, called extended wetting, is
also expected from classical wetting theory when polyelectrolyte–surface interaction
is favorable [81]. When this occurs, the wetted coacervate surface phase can only
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exist on the surface as a metastable state since there is no crossing of the free energy
(see Figure IV.14).

When the nonelectrostatic adsorption is asymmetric (𝜂𝑝+ ≠ 𝜂𝑝− ), the interfacial
profiles for the polyions will differ from one another and this charge separation gives
rise to a spatially varying electrostatic potential. Figure IV.4 shows the adsorption
isotherms for asymmetric adsorption on a charge-neutral surface (𝑄𝑠 = 0), where
we keep 𝜂𝑝− = 0 while varying the strength of the polycation attraction to the surface
𝜂𝑝+ . With 𝜂𝑝− = 0, polyanions are indifferent to the surface so the formation of the
coacervate on the surface must be driven by the adsorption of polycation. Compared
to Figure IV.2, the values of 𝜂𝑝+ to induce complete wetting are necessarily higher
since polycations must drag polyanions to the surface via electrostatic attraction
to induce a surface phase transition. The curve for 𝛽𝜂𝑝+ = −0.1 in Figure IV.4
looks qualitatively similar to 𝛽𝜂𝑝± = −0.05 in Figure IV.2a. Another noticeable
difference for asymmetric adsorption is the disappearance of turning points for
𝛽𝜂𝑝+ ≤ −0.15. The excess adsorption diverges continuously, which indicates a
second order transition (Figure IV.15). Second order wetting transitions are usually
associated with systems where long range fluid–fluid interactions are dominant over
the short range fluid-solid interaction [82], as is the case near the bulk critical point.

Figure IV.3: Surface phase diagram for 𝛽𝜂𝑝+± = −0.05 superimposed on bulk
phase diagram (red). Lines correspond to supernatant surface spinodal (green),
supernatant–coacervate surface coexistence (black), and coacervate surface spinodal
(pink). Symbols correspond to the wetting salt concentration ( ), the surface critical
point ( ), and the bulk critical point ( ).
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Figure IV.4: Polyelectrolyte adsorption isotherms for asymmetric nonelectrostatic
attraction strengths (𝜂𝑝+ < 0 and 𝜂𝑝− = 0) at a constant bulk salt concentration of
𝜙B
± = 0.1. Δ𝛽𝜇𝑝± = 𝛽𝜇𝑝± − 𝛽𝜇coex

𝑝± is a measure of the distance from coexistence.

The emergence of a second order transition indicates that the electrostatic attraction
between adsorbed polycation and indifferent polyanion has an enhanced role in the
wetting transition compared to its role in symmetric adsorption, pushing the surface
critical point to lower salt concentrations. This result may at first seem nonintuitive
since the second order transition develops when the short range polycation–surface
interaction (𝜂𝑝+) becomes more favorable. However, increasing 𝜂𝑝+ increases the
local charge separation near the surface. There must be sufficient charge separation
to see the effect of long range electrostatics. At the same salt concentration, for
symmetric adsorption, we find only first order transitions when increasing 𝛽𝜂𝑝± .
The balance of the long range and short range forces is tied to both the strengths
and intrinsic length scales of those forces, so we expect nontrivial phenomena to
arise from this competition when varying factors like the monomer charge fraction
or the salt concentration. Exploring each of these factors is beyond the scope of the
current work.

Electrowetting
Now, we consider the effect of applying an electric potential on the surface transition
and surface phase diagram. We consider symmetric adsorption where 𝛽𝜂𝑝± =

−0.05 with a positive applied surface potential (𝜓0 > 0). A positive electrostatic
potential will enhance the attraction of the polyanion to the surface and repel the
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Figure IV.5: Polycation adsorption isotherms with 𝛽𝜂𝑝± = −0.05 for various surface
potentials 𝛽𝑒𝜓0 at a constant bulk salt concentration of 𝜙B

± = 0.1. Δ𝜇𝑝± = 𝜇𝑝±−𝜇coex
𝑝±

is a measure of the distance from coexistence. (Inset) Polyanion density profiles for
𝛽𝑒𝜓 = 0.3 corresponding to the matching solid colored points on the adsorption
isotherm. For reference, 1 𝛽𝑒𝜓 ≈ 22 mV.

polycation. The adsorption of salt ions will similarly be affected. For a single salt
concentration of 𝜙B

± = 0.1, we show the adsorption isotherm of the polycation for
various applied potentials in Figure IV.5. We show the polycation adsorption since
the main driving force for its adsorption is the nonelectrostatic interaction with the
surface. The polyanion will have higher adsorption for increasing applied potentials
to compensate for the positive surface charge density. Figure IV.5 indicates that
as the applied potential increases, the surface transition evolves from a first order
prewetting transition to a second order transition. The switch is reflected in the
absence of turning points in the curve for 𝛽𝑒𝜓0 = 0.5. This result is similar to
the asymmetric nonelectrostatic adsorption discussed previously, where the charge
separation enhances the role of long range electrostatic forces.

The inset of Figure IV.5 shows the polyanion density profiles along the adsorption
isotherm for 𝛽𝑒𝜓0 = 0.3. In the region very close to the surface, the adsorption of
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polyanion is greatly enhanced. Upon approaching the binodal, the coacervate layer
grows out of the strongly adsorbing surface layer. The coacervate layer that grows
approaches same composition for all values of 𝛽𝑒𝜓0, since, as stated earlier, the
eventual composition of the coacervate film is determined by the tie-line on Figure
IV.1. The interfacial profiles for all species, potential profiles, and charge density are
shown in Figure IV.16 for 𝛽𝑒𝜓0 = 0.3. The charge density and potential profile return
to bulk values of zero within 𝑧/𝑏 = 5. After this distance, despite the coacervate
layer on the surface, the effect of electrostatic adsorption is screened out. Further,
Figure IV.16 shows that the potential profile and charge density crosses zero, which
is a sign of strong charge accumulation at the surface and is typical of polyelectrolyte
adsorption [83–85]. Practically, these findings are advantageous since one can alter
the wetting properties (order of the transition, wetting salt concentration, etc.) by
applying a potential without disrupting the coacervate film composition far from the
surface. We briefly note that because the nonelectrostatic parameters for polycation
and polyanion are equal (𝛽𝜂𝑝± = −0.05), applying a negative surface potential rather
than a positive one has the same overall effect with the labels for positive/negative
species reversed.

The wetting transition is intimately tied to our description of the supernatant phase
as uniformly mixed. Figures IV.16a&b show that the wetting transition proceeds by
initially forming a dense layer of one polyion. We hypothesize that obtaining the
same degree of charge separation is unlikely if the supernatant phase is made up
of polyion clusters. For this reason, we expect that the assumption of a uniformly
mixed supernatant phase overestimates the prevalence of charge separation and thus,
the electrostatic effect on the order of the wetting transition. However, we do not
currently have a method of describing the adsorption of such polyion clusters to a
solid surface.

The crossover from a first order to second order wetting transition in Figure IV.5
indicates that the salt concentration corresponding to the surface critical point (𝜙∗±)
has moved below 𝜙B

± = 0.1 for applied potentials greater than 𝛽𝑒𝜓0 = 0.2. There are
several works that describe how the surface or interfacial tension decreases for small
applied potentials (within the linear regime) for solid surfaces [86, 87] and even
liquid–liquid interfaces [88]. However, the location of the surface critical point does
not have an obvious scaling relationship. Using a simple scaling analysis, we hope
to give a physical reason for movement of 𝜙∗±. The wetting transition corresponds
to replacing the supernatant–solid interface with coacervate–solid and supernatant–



113

Figure IV.6: Rescaled salt concentration of the surface critical point, 𝜙∗±, versus the
applied potential for 𝛽𝜂𝑝± = −0.05. Rescaled variables are Δ𝜙∗± = 𝜙∗± −

(
𝜙∗±

)
𝜓0=0

with
(
𝜙∗±

)
𝜓0=0

= 0.11 (Figure IV.3). The solid black line indicates the scaling of

−Δ𝜙∗±/
(
𝜙∗±

)1/2
∼ 𝜓2

0 fit to the first 3 points predicted points.

coacervate interfaces. Along the prewetting line (black line in Figure IV.3), the
condition for surface phase coexistence is 𝑆 = 𝛾sup,co + 𝛾co,solid − 𝛾sup,solid = 0,
where 𝑆 is the spreading coefficient. Below the bulk critical point, 𝛾sup,co > 0 and
we can combine the other two terms to represent the effect of adsorption of the
coacervate phase compared to the supernatant phase, 𝐹ads/𝐴 = 𝛾co,solid − 𝛾sup,solid.
For favorable adsorption, 𝐹ads/𝐴 < 0. Thus, the prewetting line is determined by
balancing 𝛾sup,co and 𝐹ads/𝐴. When applying an electric potential, we consider how
𝜙∗± should change. We maintain that 𝑆 = 0 so that Δ𝛾sup,co + Δ𝐹ads/𝐴 = 0, where
the Δ indicates the change from no applied potential (𝜓0 = 0). As mentioned in
the introduction, the scaling of the interfacial tension with salt concentration is well
studied, 𝛾sup,co ∼ (𝜙crit

± − 𝜙±)3/2. Further, Δ𝐹ads/𝐴 should scale with the energy
stored in the electric double layer,Δ𝐹ads/𝐴 ∼ −𝑒𝑄𝑠𝜓0. Small applied potentials lead
to small changes in 𝜙∗±. Expanding the difference from zero potential to linear order,
Δ𝛾sup,co ∼

(
𝜙∗±

)
𝜓0=0
−𝜙∗± ≡ −Δ𝜙∗±, and for small potentials,𝑄𝑠 ∼ 𝜅𝜓0/𝑙B. Assuming

the salt concentration is much larger than the polyion concentration at the surface

critical point, 𝜅 ∼
(
𝜙∗±

)1/2
. Thus, Δ𝐹ads/𝐴 ∼ −

(
𝜙∗±

)1/2
𝜓2

0 and 𝜓2
0 ∼ −Δ𝜙

∗
±/

(
𝜙∗±

)1/2
.

Figure IV.6 shows this scaling relationship by plotting −Δ𝜙∗±/
(
𝜙∗±

)1/2
versus 𝜓2

0,
where the linear relationship validates the scaling for small applied potential.
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Contact Angle
Finally, we consider wetting behavior on-coexistence. The central quantity in
studying on-coexistence wetting is the contact angle. The contact angle stems
from the three-phase coexistence between the surface, supernatant, and coacervate
phases [79] and is determined from Young’s equation.

cos(𝜃) =
𝛾sup,solid − 𝛾co,solid

𝛾sup,co
(IV.11)

where the terms in the numerator are the supernatant–solid and coacervate–solid
surface tension, respectively, and are determined separately from Eq. IV.10 using
bulk conditions from coexisting phases from Figure IV.1. Although both terms in
the numerator should be the total interfacial tension, the contribution from the pure
solvent cancels out upon taking the difference, so that only the excess supernatant–
solid and coacervate–solid surface tensions are needed. The denominator in Eq.
IV.11 is the interfacial tension, which we calculate using the methods described in
our earlier work [30]. Figure IV.17 gives 𝛾sup,co for the phase diagram in Figure
IV.1. The contact angle is only defined for partially wet systems. For complete
wetting or complete drying, the contact angle will take the values of 0◦ and 180◦,
respectively, since one phase will form a macroscopic layer on the surface.

Figure IV.7 shows the contact angle versus the supernatant salt fraction (𝜙±)sup for
symmetric and asymmetric nonelectrostatic adsorption. Starting with the symmet-
ric case, negative values of 𝛽𝜂𝑝± correspond to an favorable (attractive) interaction,
while positive values are a repulsive interaction with the surface. Increasing the salt
concentration toward the bulk critical salt concentration leads to either complete
wetting or complete drying. Complete wetting only occurs for 𝜂𝑝± < 0, which indi-
cates that a favorable nonelectrostatic interaction is required for complete wetting in
the absence of electrostatic effects. For 𝛽𝜂𝑝± = −0.05, the wetting salt concentra-
tion is (𝜙±)sup ≈ 0.053, which is equivalent to the wetting salt concentration in the
surface phase diagram in Figure IV.3. Increasing the magnitude of the attractive,
or repulsive, polyelectrolyte–surface interactions leads to smaller 𝜙wet/dry

± . Figure
IV.7b indicates that complete wetting or drying still occurs when only one compo-
nent has an interaction with the surface. Compared to the same values of 𝛽𝜂𝑝+ as
in Figure IV.7a, the wetting and drying salt concentrations are higher. Such a result
is expected since the driving force for adsorption is not as strong when only one
component has an attractive, or repulsive, interaction with the surface.
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Figure IV.7: Contact angle versus supernatant salt fraction for various (a) symmetric
adsorption parameters 𝛽𝜂𝑝± and (b) asymmetric adsorption parameters (𝛽𝜂𝑝− = 0).
Critical salt concentration is 𝜙crit

± = 0.115. Contact angles calculated by Eq. IV.11.
In (a) and (b), the electrostatic potential at the surface is zero (𝛽𝑒𝜓0 = 0). For
asymmetric adsorption, the overall potential profile, 𝜓(𝑧), is non-zero due to the
asymmetric interaction with the surface. Coexisting concentrations determined by
phase diagram in Figure IV.1.



116

Figure IV.8: Contact angle versus salt concentration in the supernatant phase.
Line represents symmetric adsorption with a nonelectrostatic adsorption strength
𝛽𝜂𝑝± = −0.06, which was determined by fitting described in the text. Experimental
data reproduced from Ref. 23 with permission from the Royal Society of Chemistry.

Qualitatively, the curves featuring complete wetting in Figure IV.7 resemble data
reported by Spruĳt and coworkers [23]. To make a direct comparison, we assume a
length scale of𝜎 = 𝑏 = 0.4 nm and fit 𝛽𝜂𝑝± such that the wetting salt concentration is
1 M, which is consistent with the transition to complete wetting in their work. Figure
IV.8 shows semi-quantitative agreement between the measured and predicted contact
angles. We note that we have assumed symmetric adsorption with no electrostatic
potential to minimize the number of fitted parameters. While not shown here, one
can also achieve similar agreement using the same fitting approach for asymmetric
adsorption (𝜂𝑝+ < 0, 𝜂𝑝− = 0).

Applying a positive electrostatic potential to the surface increases the favorability of
the surface interaction for the polyanion but penalizes adsorption for the polycation.
As seen in the shift of the surface critical point for symmetric adsorption, applying
a surface potential actually improves the overall wettability (Figure IV.6). In Figure
IV.9, we show the effect of an applied potential on the contact angle for symmetric
adsorption. For no applied potential, complete drying occurs upon increasing the
salt concentration. With an applied potential of 𝛽𝑒𝜓0 = 0.2, the system exhibits
complete wetting. Further increases in the applied potential move the wetting point
lower on the phase diagram. The kink in the contact angle for 𝛽𝑒𝜓0 = 0.5 is due to a
prewetting transition that occurs for high applied potentials at low salt concentration
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(see Figure IV.18). The existence of multiple prewetting transitions is well-known
for highly favorable adsorption [89]. Physically, these transitions correspond to
layering-type transitions, where the strongly adsorbing component (polyanion here)
is highly enriched at the surface. We generally find that additional prewetting tran-
sitions occur when 𝛽𝑒𝜓0 ≥ 0.5 for almost all of the values of 𝜂𝑝± studied. While we
expect our theory to qualitatively identify layering transitions, fully describing lay-
ering transitions requires a more sophisticated treatment of electrostatic correlation
and packing effects, which is beyond the scope of this work.

The observation of layering phenomena seen with applied potentials prompts reeval-
uation of the underlying physical picture of our theory. At the start of Section 3, we
claimed that some aspects of wetting behavior are similar when using the assumption
of uniformly mixed polyions compared to explicitly considering polyion clusters in
the supernatant phase. In Figure IV.19, we compare 𝛾sup,solid from two different
representations of the supernatant phase — a solution of uniformly mixed polyelec-
trolytes and a polyelectrolyte-free solution of salt ions. Both representations have the
same osmotic pressure as the coacervate phase. As shown in the Appendix, 𝛾sup,solid

is not meaningfully affected by the presence of polyelectrolytes in the supernatant
phase, except when there is an applied potential to the surface. In other words, the
presence of polyelectrolyte in the supernatant phase does not appreciably influence
the contact angle for symmetric and asymmetric nonelectrostatic adsorption without
an applied potential. We hypothesize that explicitly considering the nonelectrostatic
adsorption of clusters will similarly have little influence on 𝛾sup,solid compared to
the 𝛾co,solid so that the contact angles would be unaffected. When applying a surface
potential, strong polyelectrolyte adsorption leads to deviations in 𝛾sup,solid from the
polyelectrolyte-free case (Figure IV.19b). Figure IV.20 compares the contact angle
prediction when using the excess surface tension from the two representations of the
supernatant phase. With electrostatic-driven adsorption, we expect polyion clusters
would have different adsorption behavior at the coexisting supernatant composition
than the uniformly mixed solution. Such differences would be enhanced as the in-
fluence of electrostatic effects near the surface increases. We bring these subtleties
to the readers’ attention to emphasize the limitations and assumptions in our theory.
Despite these limitations, we maintain that the essential physics of wetting is cap-
tured by the uniformly mixed approach, and we reserve any improved description of
adsorption in the supernatant phase to future work.
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Figure IV.9: Contact angle versus the supernatant salt fraction when applying a
surface potential for 𝛽𝜂± = 0.01. Critical salt concentration is 𝜙crit

± = 0.115. For
reference, 1 𝛽𝑒𝜓 ≈ 22 mV.

Figure IV.10 shows the contact angle as a function of the applied potential for fixed
bulk salt concentrations. In either panel, one can see that increasing the applied
surface potential decreases the contact angle, eventually leading to complete wetting.
Most notably, in Figure IV.10a, we see that a system with 𝛽𝜂 = 0.03 initially exhibits
complete drying and transitions to complete wetting with an applied potential of
less than 15 mV. Lower salt concentrations, like Figure IV.10b, are further from the
critical point so the tendency to wet and dry the surface is lessened. In other words,
for all values of 𝛽𝜂𝑝± the contact angle moves toward 90◦ for 𝜓0 = 0. Upon applying
the potential, all systems transition to complete wetting. However, we again note
the kinks in the curves that correspond to additional prewetting transitions. The
important aspect from the additional prewetting transition is that the effect of the
applied potential is diminished, evidenced by the decrease in the magnitude of the
slope of the curves after the kink. For 𝛽𝜂𝑝± = 0.03, one can see that the applied
potential to induce complete wetting occurs closer to 𝛽𝑒𝜓0 = 1.3, which is nearly
double the value in Figure IV.10a.

We can explain and quantify how the contact angle changes with the applied potential
using a simple thermodynamic argument. Consider varying the applied potential
for a given supernatant–coacervate tie-line on the phase diagram. Taking the partial
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derivative of the contact angle with respect to the potential(
𝜕 cos(𝜃)
𝜕𝜓0

)
𝑇,𝐴,{𝜇}

=

1
𝛾sup,co

[(
𝜕𝛾sup,solid

𝜕𝜓0

)
𝑇,𝐴,{𝜇}

−
(
𝜕𝛾co,solid

𝜕𝜓0

)
𝑇,𝐴,{𝜇}

]
(IV.12)

with {𝜇} signifying the chemical potentials of all species. The derivatives on the
right-hand side are related to the surface charge density by the Maxwell relation [60,
90]; thus (

𝜕 cos(𝜃)
𝜕𝜓0

)
𝑇,𝐴,{𝜇}

=
𝑒 [(𝑄𝑠)co − (𝑄𝑠)sup]

𝛾sup,co
(IV.13)

where the surface charge densities correspond to that of the coexisting coacervate
and supernatant phases each on the solid surface. The second derivative is related
to the capacitance of each phase on the solid surface [86].(

𝜕2 cos(𝜃)
𝜕𝜓2

0

)
𝑇,𝐴,{𝜇}

=
𝑒 [(𝐶)co − (𝐶)sup]

𝛾sup,co
(IV.14)

The capacitance generally increases with concentration so that Eq. IV.14 is positive.
Together, Equations IV.13 and IV.14 indicate that cos(𝜃) is minimized when the
surface charge of the coacervate and supernatant on the surface is the same. For
symmetric adsorption, (𝑄𝑠)co = (𝑄𝑠)sup = 0 for no applied potential so that the
contact angle will always decrease with an applied potential (positive or negative).

Figure IV.10: Contact angle versus applied surface potential for symmetric adsorp-
tion at a fixed salt concentration. Bulk salt concentrations are fixed at (a) 𝜙B

± = 0.1
and (b) 𝜙B

± = 0.0385 (1 M). For reference, 1 𝛽𝑒𝜓 ≈ 22 mV.
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Near layering transitions, the capacitance of the supernatant phase can be larger than
the coacervate phase for the same potential, resulting from the strong adsorption of
one polyion type associated with the transition. This phenomena can been seen as
positive curvature in the curves in Figure IV.10.

Figure IV.11 shows the wetting/drying salt concentration as a function of the applied
potential for various situations. As a reminder, the wetting/drying salt concentra-
tion is the salt concentration where the coacervate/supernatant phase completely
wets/drys the surface. In Figure IV.11a, wetting and drying salt concentrations are
plotted on the same curve and are differentiated by the line styles. The solid curves
denote wetting and the dashed ones indicate drying. One can read each curve as a
phase diagram, where vertically crossing the curves from low to high salt concen-
tration corresponds to the transition from partial to complete wetting/drying. We
can further interpret an increase in 𝜙dry

± or decrease in 𝜙wet
± as improving the overall

wettability below 𝜙
wet/dry
± . For instance, with 𝛽𝜂𝑝± = 0.01 (magenta curve), by ap-

plying no potential, one can only cross the dashed line, corresponding to complete
drying. By applying a negative or positive potential, the drying salt concentration
increases, eventually passing through the bulk critical point, indicating the system
has switched to complete wetting rather than drying. For the same parameters,
this transition from a drying salt concentration to a wetting salt concentration is
illustrated in Figure IV.9. For all of the curves in the symmetric case in Figure
IV.11a, applying a positive or negative potential improves the overall wettability,
where drying switches to wetting and/or 𝜙wet

± moves to lower salt concentrations.

Figure IV.11: Wetting/drying salt concentration 𝜙wet/dry
± versus applied potential for

(a) symmetric adsorption and (b) asymmetric adsorption. In (a), dashed lines denote
the drying salt concentration, 𝜙dry

± . In both panels, solid lines denote the wetting
salt concentration, 𝜙wet

± .
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For asymmetric adsorption in Figure IV.11b, we only plot systems that undergo
complete wetting. For all parameters considered, the wetting salt concentration has
a maximum at positive potentials. This result can best be explained by Equation
IV.13. For no applied potential, polycations adsorb on the surface due to the favorable
nonelectrostatic interaction. Polycation adsorption induces a negative surface charge
density, and due to the density differences in supernatant and coacervate phases,
(𝑄𝑠)co < (𝑄𝑠)sup. Because the capacitance of the coacervate is higher than the
capacitance of the supernatant (𝐶)co > (𝐶)sup, applying a positive applied potential
will lead to faster changes in (𝑄𝑠)co than (𝑄𝑠)sup so that condition (𝑄𝑠)co = (𝑄𝑠)sup

requires a positive applied potential. The net result is a nonmonotonic dependence of
the wetting salt concentration on the applied potential. For the conditions in Figure
IV.11b, applying a positive potential initially diminishes the wettability (increases
contact angles below 𝜙wet

± ), then improves wettability after the maximum condition.
On the other hand, applying a negative potential will only improve the surface
wettability.

Conclusions
In this work, we study wetting transitions and contact angles of complex coacer-
vates at solid surfaces. As expected from classical wetting theory, the wettability
improves when approaching the bulk critical point. The wetting transition is found
to be primarily first order with metastable regions that span multiple orders of mag-
nitude of the polyelectrolyte concentration. Long range electrostatic forces arising
from local charge separation can shift the surface critical point to lower salt concen-
trations, extending the range of second order wetting transitions if there is sufficient
nonelectrostatic adsorption asymmetry or an applied surface potential. Many of the
results presented here are similar to wetting behavior of simple fluids and polymer
blends [91–94]. The essential difference is the presence of electrostatic forces that
influence both the phase separation of the polyelectrolytes and possibly their inter-
action with the surface. The locations of the surface critical point and wetting salt
concentration can be tuned by the polymer chemistry (nonelectrostatic interaction)
and an applied electrostatic potential on the surface. We rationalize the effect of the
electrostatic potential on wettability using arguments from surface thermodynamics.

The issues addressed in this work are relevant to several features seen in nature’s
underwater adhesives. One aspect is related to symmetric and asymmetric adsorp-
tion in biological systems. DOPA residues are prevalent in several of mussel foot
proteins [49] compared to the sandcastle worm’s adhesive proteins, where DOPA is
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primarily present in only one of the proteins [38]. Our results indicate that complete
wetting is possible when only one component has nonelectrostatic adsorption but
such asymmetry generally requires a more favorable polyion–substrate interaction
and the wettability is dependent on the electrostatic potential of the surface. As
discussed in the introduction, mussels have the ability to tune the surface character-
istics. For example, they induce a pH change from 8 (seawater) to less than 5, which
will impart a negative zeta potential on most surfaces. As we highlight in our work,
electrostatic manipulation of the surface is a powerful method to tune surface wetta-
bility, requiring only potential changes on the order of 10 mV to dramatically affect
the contact angle. Conversely, given a surface condition (e.g. fixed pH), there are
optimal polycation/polyanion characteristics best suited to wet the substrate. Tuning
design parameters requires understanding the delicate interplay of nonelectrostatic
adsorption with electrostatic-driven adsorption. Overall, we hope that our work
can serve as a guide for designing systems that use complex coacervates on solid
surfaces.

Recently, the wetting behavior of protein condensates on solid surfaces has also
been associated with the origin of life [95]. The general class of surface-mediated
processes in biological systems extends beyond solid surfaces. Many of the prin-
ciples of wetting a solid, rigid surface can be applied to the wetting of soft, elastic
substrates [96, 97]. Zhao et al. used a thermodynamic approach to study how
membrane surfaces decorated with surface bound molecules improve the wetting
of neutral protein condensates [89]. While complex coacervates represent only one
type of protein condensate, we expect that extensions of the present work could be
used to probe the combined effects of electrostatics and membrane elasticity on the
wetting of biological membranes.

We also hope to extend our work to capture some of the physics that our inhomo-
geneous mean-field theory does not address. As mentioned throughout, treating
the supernatant phase as uniformly mixed dismisses the presence of polyion clus-
ters. Forming a coacervate phase on the surface would require the cluster–surface
interaction to overcome the translational entropy of the clusters, and in asymmetric
adsorption, the energy to rearrange the cluster to facilitate local charge separa-
tion [98]. Other important effects not included in this work are strong electrostatic
correlation and packing effects near the surface. Substantial adsorption or large ap-
plied potentials can lead to layering transitions [76, 99, 100] and other non-intuitive
phenomena [85, 101, 102] where the Debye–Hückel treatment of electrostatics and



123

a point-particle representation are not expected to be accurate. Capturing each of
these effects requires a more sophisticated theory, which remains an outstanding
challenge.

Appendix
Numerics of Turning Points

Computing the adsorption isotherms with a first order surface transition cannot be
done via natural parameter continuation of the bulk polyelectrolyte density due to the
presence of turning points. To overcome this, we use pseudo-arclength continuation
(PAC) [103, 104] to vary the bulk polyelectrolyte density when computing adsorption
isotherms. Such an approach is commonly used to study wetting [105–108]. We
will highlight the differences in our approach compared to the usual PAC.

Consider the nonlinear system F(X;𝜆) = 0, where X can be thought of as the
discretized density and electrostatic potential fields, F(X;𝜆) are the corresponding
mean-field equations, and 𝜆 is a continuation parameter, such as the bulk polyelec-
trolyte density. For a given value of 𝜆, one can solve the equation F(X;𝜆) = 0.
Natural continuation of 𝜆 would proceed by starting with 𝜆0 and taking steps in
Δ𝜆. However, if there are turning points in | |X| | versus 𝜆, corresponding to sin-
gular points, natural continuation will fail [109]. To address this, we can instead
solve the extended system 𝐺 = [F(X(𝑠), 𝜆(𝑠)), 𝑁 (X(𝑠), 𝜆(𝑠))] where 𝜆 is now un-
determined and X and 𝜆 are parameterized over an arclength variable 𝑠. Instead
of taking steps of Δ𝜆, one takes steps of the arclength variable of size Δ𝑠. The
extended system requires specifying a new equation related to the arclength step,
𝑁 (X(𝑠), 𝜆(𝑠)) = ¤x0 · (X − X0) + ¤𝜆(𝜆 − 𝜆0) − Δ𝑠. Here, ¤x0 = 𝑑X/𝑑𝑠 |X=X0 and
¤𝜆 = 𝑑𝜆/𝑑𝑠 |𝜆=𝜆0 with | | ¤x0 | |2 + | ¤𝜆0 |2 = 1. The extended system corresponds to finding
a solution that lies on the plane perpendicular to ( ¤x0, ¤𝜆0) that intersects the solution
curve, which is shown graphically in Figure IV.12.

With access to the Jacobian of the system (𝑑F/𝑑X), one can obtain the tangent vector
( ¤x0, ¤𝜆0) exactly (up to the sign of ¤𝜆0). In this work, the Jacobian is inconvenient.
We approximate the tangent vector by taking natural continuation steps (5 usually)
in 𝜆 using then switch to PAC by using approximating ( ¤x0, ¤𝜆0) based on previous
solution points. To solve for the next point, we take a predictor step to the point
(X0+ ¤x0Δ𝑠, 𝜆0+ ¤𝜆0Δ𝑠) and use Anderson Acceleration to solve the extended system.
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Figure IV.12: Graphical illustration of pseudo-arclength continuation. Contin-
uation proceeds along the solution curve defined by F(X) = 0 from an ini-
tial point (X0, 𝜆0) to (X1, 𝜆1) by solving the extended system of equations
𝐺 = [F(X(𝑠), 𝜆(𝑠)), 𝑁 (X(𝑠), 𝜆(𝑠))].

Thermodynamic Stability and Turning Points

Figure IV.13 shows a prototypical example of the adsorption isotherm and corre-
sponding excess grand potential energy (equivalent to the surface tension). Each plot
is divided into multiple colors that indicate the phase adjacent to the surface. The
red lines indicate a thermodynamically unstable region. From thermodynamics of a
single component system, thermodynamic stability requires that the 2nd derivative
of the free energy with respect to chemical potential be negative [110]. This is true
for a multicomponent system if the other chemical potentials are kept constant. In
the adsorption process in Figure IV.13, the salt ion chemical potentials change along
with the polyelectrolyte chemical potentials so rigorously, one cannot determine
stability from Figure IV.13 alone. However, practically, for the conditions here, the
change in the chemical potential of the salt ions is small. The 2nd derivative is
clearly negative for the blue and black regions and positive for the red region of
Figure IV.13b. Further, we can see from Figure IV.13b that there are regions of
metastability. For example, there is a section where the free energy (surface tension)
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is higher for the supernatant phase, yet a stable phase exists on the surface. The
same is true for the coacervate layer. Finally, the crossing of the blue and black
curves in Figure IV.13b is the coexistence point of the supernatant and coacervate
phase on the surface.

Figure IV.14 shows the surface free energy for one of the adsorption isotherms
in Figure 2 of the main text. Namely, for 𝛽𝜂𝑝± = −0.01 and overall salt fraction
𝜙B
± = 0.1, the system is below the wetting salt concentration so partial wetting takes

place. With partial wetting, it is possible to have a metastable coacervate film on
the surface with diverging film thickness, but the film does not cross the supernatant
branch to be globally stable.
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Figure IV.13: Example adsorption isotherm and surface tension for first order
transition. (a) Symmetric adsorption isotherm with 𝛽𝜂𝑝± = −0.05 for a constant
overall salt fraction 𝜙B

± = 0.1. (b) Corresponding surface tension (excess grand
potential) for the adsorption isotherm in (a).
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Figure IV.14: Surface tension corresponding to adsorption isotherm with 𝛽𝜂𝑝± =

−0.01 for a constant overall salt fraction 𝜙B
± = 0.1.
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First to Second Order Surface Transition

Figure IV.15: Surface tension (surface excess grand potential energy) for (a) 𝛽𝜂𝑝+ =
−0.05 and (b) 𝛽𝜂𝑝+ = −0.15. Δ𝜇𝑝± = 𝜇𝑝± − 𝜇coex

𝑝± is a measure of the distance
from coexistence. Panel (a) shows the typical surface tension profile for a first order
transition, featuring metastable and unstable regions. Panel (b) shows the typical
surface tension profile for a second order transition, where the surface tension and
first derivative of the surface tension transition smoothly from a supernatant to a
coacervate surface phase. Corresponding adsorption isotherms can be found in
Figure 4 of the main text.
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Symmetric Adsorption with Applied Potential

Figure IV.16: Interfacial profiles for an applied potential. (a) Polyelectrolyte ad-
sorption isotherms for 𝛽𝑒𝜓0 = 0.3 at a constant bulk salt concentration of 𝜙B

± = 0.1
with 𝛽𝜂𝑝± = −0.05. Corresponding (b) polycation, (c) polyanion, (d) cation, (e)
anion, (f) electrostatic potential, and (g) charge density for the solid points in (a).
Notably, the surface potential and charge density cross zero in panels (f) and (g),
respectively. Based on initially weak adsorption of polycation in (a) and strong
adsorption of polyanion in (b) (green curves), we state in the main text that the
wetting transition proceeds predominantly from the electrostatic attraction between
adsorbed polyanion attracting polycation to the surface.
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Interfacial Tension in Contact Angle Calculation

Figure IV.17: Interfacial tension of supernatant–coacervate phase versus the super-
natant salt concentration calculated via the same method in Zhang and Wang [30].
The interfacial tension vanishes at the bulk critical point. The parameters in this
figure correspond to that of the phase diagram in Figure 1 in the main text.
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Additional Prewetting Transition (Layering Transition)

Figure IV.18: Prewetting transition induced by applied potential. (left) Excess grand
potential (surface tension) versus supernatant salt concentration for 𝛽𝜂𝑝± = 0.01 and
𝛽𝑒𝜓0 = 0.5. (right) Interfacial profile for polycation (dashed) and polyanion (solid)
before and after the prewetting transition, corresponding to (𝜙±)sup = 0.038 and
(𝜙±)sup = 0.039, respectively. The before and after profiles overlap for the polyca-
tion, indicating the polyanion drives the transition. The wetting salt concentration
for these conditions is 𝜙wet

± = 0.083 so the transition occurs below the wetting salt
concentration. A first order transition below the wetting salt concentration is an ad-
ditional prewetting transition. Multiple prewetting transitions of the same kind are
possible, which correspond to polyelectrolyte multi-layers forming on the surface.
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Effect of Polyelectrolyte Adsorption on Supernatant Surface Tension

Figure IV.19: Comparison of supernatant descriptions - surface tension. (a) Com-
parison of 𝛾sup,solid for asymmetric nonelectrostatic adsorption (𝛽𝜂𝑝− = 0). Solid
lines correspond to uniformly mixed description and dashed lines correspond to a
polyelectrolyte-free solution at the same osmotic pressure as the coacervate phase.
All lines overlap, which indicates that the polyelectrolyte adsorption (or desorption)
does not appreciably affect the supernatant–solid surface tension. (b) Comparison
of 𝛾sup,solid for symmetric nonelectrostatic adsorption (𝛽𝜂𝑝± = 0.01) for different ap-
plied potentials. Solid lines correspond to uniformly mixed description and dashed
lines correspond to a polyelectrolyte-free solution at the same osmotic pressure as
the coacervate phase. The green and red lines show differing behavior between
the uniformly mixed polyelectrolytes and polyelectrolyte-free cases, indicating the
effect of polyelectrolyte adsorption on the supernatant–solid surface tension.
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Figure IV.20: Contact angle versus the supernatant salt fraction when applying a
surface potential for 𝛽𝜂± = 0.01. Critical salt concentration is 𝜙crit

± = 0.115. The
calculation of the contact angle uses the supernatant–solid surface tensions from
Figure IV.19. Solid lines correspond to uniformly mixed description and dashed
lines correspond to a polyelectrolyte-free solution at the same osmotic pressure as
the coacervate phase. Again, the effect of the polyelectrolyte adsorption is enhanced
as the applied potential increases in magnitude.

IV.2 Extension of Wetting Behavior
There are two natural extensions to the preceding section. The first is to consider
the wetting behavior in confinement. Often, one surface cannot support a liquid
(coacervate) film, whereas the presence of two surfaces can stabilized the liquid
film, which shifts the surface phase diagram for the wetting transition. The second
extension is to reconsider the physical picture of the supernatant phase. The theory
explored in Section IV.1 considers the supernatant phase to be uniformly mixed. In
reality, in dilute solution, polycations and polyanions will pair to form clusters [71,
111]. This section briefly outlines these two extensions.

Capillary Condensation
Phase behavior under confinement greatly differs from bulk systems due to the
strong interactions with the surface [112]. The dilute to dense phase transition often
occurs at a pressure lower than the saturation pressure. For wetting transitions of
polyelectrolyte complex coacervates, the transition already occurs via a prewetting
transition below the saturation pressure.

The inclusion of another surface is not expected to introduce any new physics but
may have a complex interplay with the prewetting transitions. Figure IV.22 shows
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Figure IV.21: Schematic for two-surface system used to study capillary condensa-
tion.

polyelectrolyte adsorption isotherms for different pore sizes compared to the result
for a single surface. With two surfaces, confinement prevents the film growth from
diverging diverging at coexistence. Importantly, as the pore width decreases, the
adsorption isotherm begins to qualitatively differ from that of the single surface. For
𝐿 = 20𝑏, the prewetting transition exists around Δ𝛽𝜇𝑝± = −12×10−3 and there is an
additional surface transition near Δ𝛽𝜇𝑝± = −5×10−3. The surface phase transitions
are clear from the turning points in adsorption isotherm, which correspond to surface
spinodals. The second phase transition is the condensation event that only occurs
in the confined system. As the pore width decreases, for example 𝐿 = 7𝑏, only one
surface transition remains, which is a combination of the usual prewetting transition
and the condensation transition. The polyelectrolytes want to form a thin coacervate
layer at the surface but cannot do so without filling the pore. The favorability of
adsorbing to both surfaces shifts the prewetting transition further from coexistence.
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Figure IV.22: Polyelectrolyte adsorption isotherms for various pore separations
with 𝛽𝜂± = −0.05 at a constant bulk salt concentration of 𝜙B

± = 0.1. Δ𝛽𝜇𝑝± =

𝛽𝜇𝑝± − 𝛽𝜇coex
𝑝± is a measure of the distance from coexistence. Excess adsorption for

two surfaces divided by 2 to compare with single surface.

Clusters in the Supernatant Phase
As discussed in Section IV.1, the assumption that the supernatant phase is made up
of uniformly mixed polyelectrolytes is not the correct physical picture. The driving
force for complexation is strong in dilute solutions [72]. Zhang and Wang accounted
for the formation of neutral polyelectrolyte clusters in the supernatant phase in their
work [71]. From their analysis, the presence of clusters (1) leads to a higher overall
polymer concentration in the supernatant phase and (2) nearly all of the clusters
consist of a single polyanion-polycation pair.

We adjust our theory to account for the cluster-modified supernatant phase. The
structure and thermodynamics of the clusters are extensively discussed in Ref.
71. For the purposes of wetting behavior, we only consider single polyanion and
polycation pairs forming clusters. The clusters have the form of a spherical globule,
as shown in Figure IV.24. Outside of the globule is a salt solution, denoted as
a salt reservoir. The concentration of polyion in the cluster generally follows the
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Figure IV.23: Schematic showing difference between uniformly mixed supernatant
and a cluster-modified supernatant phase.

same trends for the coacervate phase for bulk phase phase behavior. For instance,
increasing the salt concentration decreases the cluster polyion concentration. From
the single cluster calculation, the monomer chemical potential can be determined,
which is used in determining the inhomogeneous density near a solid surface.

Figure IV.24: Cluster density profile in the supernatant phase. Cluster is symmetric
for polycation/polyanion. The chain length is 𝑁 = 100 for a Bjerrum length of
𝑙𝑏 = 1.785𝑏. The salt reservoir concentration is (solid) 𝜙𝑟± = 0.04 and (dashed)
𝜙𝑟± = 0.01.

To study the contact angle with the cluster-modified supernantant phase, the co-
existing coacervate condition must be determined. The key assumption in finding
coexistence is that the clusters do not contribute to the osmotic pressure of the
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supernatant phase. Coexistence is then determined by finding the coacervate phase
where the salt chemical potential and the osmotic pressure are equal in each phase.
Because of the assumption that the clusters do not contribute to the osmotic pres-
sure, the theory is only valid for relatively low cluster concentration, since, to first
order, the contribution to the osmotic pressure increases linearly with the cluster
concentration.

To discuss the contact angle results, we compare to Figure IV.20, where the contact
angle is shown for the uniformly mixed system and that with no polyelectrolyte
in the supernatant phase. Thus, the figure compares the effect of polyelectrolyte
adsorption in the supernatant phase on the contact angle. Figure IV.25 shows that the
contact angle is relatively unchanged for no applied potential and 𝛽𝑒𝜓0 = 0.3. Only
for 𝛽𝑒𝜓0 = 0.5 does the cluster-modified curve start to deviate from the uniformly
mixed case. The deviation is the result of strong adsorption of the clusters. The
limitations of the cluster-modified theory prevent studying the contact angle to the
point of complete wetting. The wetting salt concentration generally occurs close to
the critical point, which is too high of a cluster concentration for the cluster-modified
theory to be valid. Future development of the theory may overcome this limitation.

Figure IV.25: Contact angle versus the supernatant salt fraction when applying
a surface potential for 𝛽𝜂± = 0.01. Critical salt concentration is 𝜙crit

± = 0.115.
Solid colored lines correspond to uniformly mixed description and dashed lines
correspond to a polyelectrolyte-free solution at the same osmotic pressure as the
coacervate phase. Black lines indicate the cluster-modified supernatant phase.
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C h a p t e r V

POLYELECTROLYTE BRUSHES

Polyelectrolyte brushes are fascinating materials that exhibit a rich set of interfacial
phenomena. The localization of a high density of charge density at the surface
leads to strong stretching of chains away from the surface. Because the polyelec-
trolytes are fixed to the surface, one can modulate the brush conformations and
utilize the surface layer to functionalize surfaces and control surface properties. In
this chapter, two different polyelectrolyte brush systems are considered. The first
are strong polyelectrolyte brushes that undergo complexation. Such complexation
can be used in multi-layer assembly, to enable nanoparticle assembly, and to modify
a surface. The brush conformation and other interfacial properties dramatically
change upon complexation, which we describe using a simple inhomogeneous ther-
modynamic theory. As done in the previous chapter, we make connection between
surface phase transitions (brush conformation transition) and complexation in a bulk
polyelectrolyte solution. The second brush system is that of weak polyelectrolytes.
The charge state of weak polyelectrolytes can be modulated by changing solution
properties or as we explore, by changing the the electrostatic properties of the sur-
face. We explore the effect of the surface electrostatic potential on the brush height
and connect the swelling of the brush to the capacitive performance of the weak
polyelectrolyte brush.

I am thankful to Dr. Alejandro Gallegos for many productive discussions on weak
polyelectrolyte brushes. His insights helped refine many of the ideas presented in
this chapter.
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V.1 Complexation in Polyelectrolyte Brushes
Introduction
Polyelectrolyte complexation has long been used as a means to efficiently and
robustly self assemble polyelectrolytes [1]. The relative ease and safety of poly-
electrolyte multi-layers has particularly led to use in drug delivery [2–4] and other
areas where encapsulation is important [5–10]. Complexation-driven self assem-
bly also enables nontrivial morphologies in multicomponent systems, such as in
micellar interpolyelectrolyte complexes [11], and so-called zipper brushes, where
complexation reliably attaches a surface modifier (usually neutral) to surface grafted
with polyelectrolyte. More recently, nanoparticles grafted with stimuli responsive
polyelectrolytes have gained attention due to ability to control dispersion state and
morphology of nanoparticle formulations [12]. All of these applications rely on
the thermodynamics of polyelectrolyte complexation, and can be tuned by varying
parameters like the electric field [13] or other environmental variables, such as the
pH or salt concentration.

Many theoretical descriptions exist for bulk polyelectrolyte complexation, several
of which are reviewed by Sing and Perry [14]. Even still, the theoretical description
of surface-mediated complexation lags behind. Castelnovo and Joanny developed
scaling laws and proposed the mechanism of complexation for the formation of poly-
electrolyte multi-layers [15]. Molecular dynamics simulations by Patel et al. gave
a molecular picture of polyelectroylte multi-layers that highlights the importance of
the electrostatic assembly confirms a high degree of penetration upon deposition
of each layer [16]. Cao et al. showed rich conformational and adsorption proper-
ties in the complexation of polyelectrolyte brushes with charged surfactants using
Brownian dynamics simulations [17]. Simulations by Sethuraman have looked at
the effect of charge sequence and polymer dispersity on the structure of zipper
brushes [18, 19]. There is general agreement that complexation plays an essential
role in all of studies listed above; however, the connection to bulk phase separation
of polyelectrolyte complexes is limited. In our own recent work, we explored the
connection between polyelectrolyte complexes wetting solid surfaces and the bulk
phase behavior [20]. Recently, Debais and Tagliazucchi demonstrated a unified
theory for the description of polyelectrolyte coacervation and layer-by-layber depo-
sition, which generally agreed with experiments [21]. In their work, they dub the
complexation in both cases to be “two sides of the same coin.“ In this work, we
revisit the thermodynamics of polyelectrolyte complexation near a solid surface by
considering complexation in a polyelectrolyte brush.
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Theory
We will consider the simplest case of a polycation brush in contact with a poly-
electrolyte solution made up of salt and polyanion. For simplicity, we will consider
the monomers, salt, and solvent to all have the same effective size (𝜎). For the
monomers, we further state that 𝜎 is equal to the Kuhn length 𝑏. Thus, all species
have the same volume scale 𝜎3 = 𝑏3 = 𝑣. For the polyelectrolytes, we will con-
sider fully charged chains, where each monomer carries a charge of +1 or -1. For
generality, we will consider the bulk system to have polycation, polyanion, salt, and
solvent. Later, we can specify the bulk concentration of the grafted component to
be zero. Much of the theory follows that of Ref. 20.

𝑓 = 𝑓𝑖𝑑 + 𝑓𝑒𝑣 + 𝑓𝐷𝐻 + 𝑓𝑐ℎ (V.1)

The ideal part is

𝛽 𝑓𝑖𝑑𝑣 =
∑︁

𝑝=𝑝+,𝑝−
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[
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𝛼=+,−
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(V.2)

For excluded volume,

𝛽 𝑓𝑒𝑣𝑣 = (1 −
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[
ln
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(V.3)

The electrostatic correlation is

𝛽 𝑓𝐷𝐻𝑣 = −
1

4𝜋

[
ln(1 + 𝜅𝜎) − 𝜅𝜎 + 1

2
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]
(V.4)

The contribution from association/chain connectivity

𝛽 𝑓𝑐ℎ𝑣 = −
∑︁
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(V.5)

For the inhomogeneous theory, we’ll use a local approximation using the bulk free
energy [20, 22]. The free energy will be formulated using the density functional
approach

𝐹 = 𝐹𝑖𝑑 + 𝐹𝑒𝑥 (V.6)

𝛽𝐹id =
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(V.7)
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where 𝑉𝑏 (R) is the bonding potential, which we’ll later assign to be Gaussian. The
excess free energy is made up of all other parts of the bulk free energy with additional
terms corresponding to the charge separation (electrostatic potential). In the grand
canonical ensemble, the Euler-Lagrange equations become the following

𝜌𝑝 (R)𝑣𝑁 = exp

{
𝛽

[
𝜇𝑝 −𝑉𝑏 (R) −

𝑁∑︁
𝑚=1

Λ𝑝 (rm)
]}

(V.8)

𝜌𝛼 (r)𝑣 = exp {𝛽 [𝜇𝛼 − Λ𝛼 (r)]} (V.9)

𝜖𝑟𝜖0∇2𝜙(r) =
∑︁
𝑖

𝑧𝑖𝑒𝜌𝑖 (r) (V.10)

where Λ𝑝 and Λ𝛼 are effective fields for monomers and small ions, respectively:

Λ𝑝 (r) =
𝜕 𝑓ex
𝜕𝜌𝑝 (r)

+ 𝑧𝑝𝑒𝜙(r) (V.11)

Λ𝛼 (r) =
𝜕 𝑓ex
𝜕𝜌𝛼 (r)

+ 𝑧𝛼𝑒𝜙(r) (V.12)

The polymer density is related to the monomer density as

𝜌𝑝 (r) =
𝑁∑︁
𝑚=1

∫
𝑑R𝛿(r − r𝑚)𝜌𝑝 (R) (V.13)

The monomer density is then

𝜌𝑝 (r)𝑣 = exp[𝛽𝜇𝑝]
𝑁∑︁
𝑚=1

exp[𝛽Λ𝑝 (r)]𝑞(r, 𝑚)𝑞𝑐 (r, 𝑚) (V.14)

where 𝑞(r) and 𝑞𝑐 (r) are chain propagators.

The normalized bond transition probability between two monomers is Φ( |r − r′|).
When we have spatial variation in only one direction, we consider the case of grafted
and non-grafted polymer chains.

Chain Propagators

When the chains are not grafted, the forward propagator is 𝑞(𝑧, 𝑚) is symmetric to
the complimentary propagator 𝑞𝑐 (𝑧, 𝑚) since we have a linear homopolymer.

𝑞(𝑧, 1) = 𝑒−𝛽Λ𝑝 (𝑧) (V.15)

𝑞(𝑧, 𝑖 + 1) = 𝑒−𝛽Λ𝑝 (𝑧)
∫

𝑑𝑧′Φ(𝑧 − 𝑧′)𝑞(𝑧′, 𝑖) (V.16)
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𝑞𝑐 (𝑧, 𝑁) = 𝑒−𝛽Λ𝑝 (𝑧) (V.17)

𝑞𝑐 (𝑧, 𝑖 − 1) = 𝑒−𝛽Λ𝑝 (𝑧)
∫

𝑑𝑧′Φ(𝑧 − 𝑧′)𝑞𝑐 (𝑧′, 𝑖) (V.18)

Only the forward propagator is changed to fix the first bead on the surface 𝑞(𝑧, 𝑚)

𝑞(𝑧, 1) = 𝑒−𝛽Λ𝑝 (𝑧)𝛿(𝑧/𝑏) (V.19)

𝑞(𝑧, 𝑖 + 1) = 𝑒−𝛽Λ𝑝 (𝑧)
∫

𝑑𝑧′Φ(𝑧 − 𝑧′)𝑞(𝑧′, 𝑖) (V.20)

The density of the first bead then becomes

𝜌1
𝑝 (𝑧)𝑣 = exp[𝛽𝜇𝑝] exp[𝛽Λ𝑝 (𝑧)]𝑞(𝑧, 1)𝑞𝑐 (𝑧, 1)

= exp[𝛽𝜇𝑝]𝑞𝑐 (𝑧, 1)𝛿(𝑧/𝑏)
(V.21)

Integrating gives ∫
𝑑𝑧𝜌1

𝑝 (𝑧)𝑣 = 𝜎𝑔𝑏2 = exp[𝛽𝜇𝑝]𝑞𝑐 (𝑧 = 0, 1) (V.22)

which determines the chemical potential of the polymer chain.

For a single surface with one-dimensional density variation, the free energy per unit
area is

𝐹 =
1
𝛽

∑︁
𝑝

∫
𝑑R𝜌𝑝 (R)

[
ln(𝜌𝑝 (R)𝑣𝑁 ) − 1

]
+ 1
𝛽

∑︁
𝑝

∫
𝑑R𝜌𝑝 (R)𝛽𝑉𝑏 (R)

+ 1
𝛽

∑︁
𝛼

∫
𝑑r𝜌𝛼 (r)

[
ln(𝜌𝛼 (r)𝑣) − 1

]
+

∫
𝑑r

[
𝑓 𝑒𝑥𝑏 (r, {𝜙(r)}) + 𝑒𝜌𝑐 (r)𝜓(r) −

𝜖𝑟𝜖0
2
(∇𝜓)2

] (V.23)

where 𝜌𝑐 (r) = 𝜌𝑒𝑥 +
∑
𝑖 𝑧𝑖𝜌𝑖 (r). Using Eq. V.8,

𝐹 =
1
𝛽

∑︁
𝑝

∫
𝑑R𝜌𝑝 (R)

[
𝛽𝜇𝑝 −

𝑁∑︁
𝑚=1

𝛽Λ𝑝 (rm) − 1
]

+ 1
𝛽

∑︁
𝛼

∫
𝑑r𝜌𝛼 (r)

[
ln(𝜌𝛼 (r)𝑣) − 1

]
+

∫
𝑑r

[
𝑓 𝑒𝑥𝑏 (r, {𝜙(r)}) + 𝑒𝜌𝑐 (r)𝜓(r) −

𝜖𝑟𝜖0
2
(∇𝜓)2

] (V.24)
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We can remove the multidimensional R integrals. To consistently treat the polymer
and small ions, we also use Eq. V.9

𝐹 =
1
𝛽

∑︁
𝑝

∫
𝑑r𝜌𝑝 (r)

[
𝛽𝜇𝑝/𝑁 − 𝛽Λ𝑝 (r) − 1/𝑁

]
+ 1
𝛽

∑︁
𝛼

∫
𝑑r𝜌𝛼 (r)

[
𝛽𝜇𝛼 − 𝛽Λ𝛼 (r) − 1

]
+

∫
𝑑r

[
𝑓 𝑒𝑥𝑏 (r, {𝜙(r)}) + 𝑒𝜌𝑐 (r)𝜓(r) −

𝜖𝑟𝜖0
2
(∇𝜓)2

] (V.25)

Using the definitions of Λ𝑖 (r), the grand potential energy is

𝑊 = 𝐹 −
∑︁
𝑖

𝜇𝑖N𝑖

=

∫
𝑑r

[
𝑓 𝑒𝑥𝑏 (r, {𝜙(r)}) −

∑︁
𝑝

𝜕 𝑓 𝑒𝑥
𝑏

𝜕𝜌𝑝 (r)
𝜌𝑝 (r) −

∑︁
𝛼

𝜕 𝑓 𝑒𝑥
𝑏

𝜕𝜌𝛼 (r)
𝜌𝛼 (r)

+ 𝑒𝜌𝑒𝑥𝜓(r) −
𝜖𝑟𝜖0
2
(∇𝜓)2 − 1

𝛽

∑︁
𝑝

𝜌𝑝 (r)/𝑁 −
1
𝛽

∑︁
𝛼

𝜌𝛼 (r)
] (V.26)

If we only consider density variation in one direction (z-direction),

𝑊 = 𝐴

∫
𝑑𝑧

[
𝑓 𝑒𝑥𝑏 (𝑧, {𝜙(𝑧)}) −

∑︁
𝑝

𝜕 𝑓 𝑒𝑥
𝑏

𝜕𝜌𝑝 (𝑧)
𝜌𝑝 (𝑧) −

∑︁
𝛼

𝜕 𝑓 𝑒𝑥
𝑏

𝜕𝜌𝛼 (𝑧)
𝜌𝛼 (𝑧)

+𝑒𝜌𝑒𝑥𝜓(𝑧) −
𝜖𝑟𝜖0
2

(
𝜕𝜓

𝜕𝑧

)2
− 1
𝛽
𝜌𝑝 (𝑧)/𝑁 −

1
𝛽

∑︁
𝛼

𝜌𝛼 (𝑧)
] (V.27)

Assuming the external charge is from a single surface 𝜌𝑒𝑥 = 𝑄𝑠𝛿(𝑧)/𝐴, we can write

𝑊 = 𝐴

∫
𝑑𝑧

[
𝑓 𝑒𝑥𝑏 (𝑧, {𝜙(𝑧)}) −

∑︁
𝑝

𝜕 𝑓 𝑒𝑥
𝑏

𝜕𝜌𝑝 (𝑧)
𝜌𝑝 (𝑧) −

∑︁
𝛼

𝜕 𝑓 𝑒𝑥
𝑏

𝜕𝜌𝛼 (𝑧)
𝜌𝛼 (𝑧)

−𝜖𝑟𝜖0
2

(
𝜕𝜓

𝜕𝑧

)2
− 1
𝛽
𝜌𝑝 (𝑧)/𝑁 −

1
𝛽

∑︁
𝛼

𝜌𝛼 (𝑧)
]
+ 𝑒𝑄𝑠𝜓0

(V.28)

If the system volume is sufficiently large (rigorously infinite), the osmotic pressure
𝑃 can be determined from the bulk solution. From Bruch, Balzer, and Wang, then
we have

𝛾𝐴 = 𝑊 + 𝑃𝑉 − 𝑒𝑄𝑠𝜓0 (V.29)

Calculating Thermodynamic Quantities
Consider the brush system confined between two surfaces. For a fixed grafting
density, the chemical potential of the brushes will change with the separation 𝐿.
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The appropriate ensemble to calculate the pressure from is a semi-grand potential.
Namely, from the grand potential for fixed surface potential 𝑌 ,

𝑃 = −
(
𝜕𝑌

𝜕𝑉

)
𝑇,{𝜇𝑖},𝜓0,𝜓𝐿

(V.30)

The correct ensemble is the Legendre transform of the above expression

𝑃 = −
(
𝜕𝑋

𝜕𝑉

)
𝑇,{𝜇𝑖}𝑖≠𝑔,{𝜎𝑔},𝜓0,𝜓𝐿

(V.31)

where 𝑋 = 𝑌 +∑
𝑔 𝜇𝑔𝜎𝑔𝐴.

Results and Discussion
To reduce the parameter space, all of the results will focus on the simplified case of
a strong polycation brush in contact with a monovalent salt solution. We will study
the effect of titrating the brush with free polyanion chains. Both the brush and free
polyion chains have length 𝑁 = 50, and the Bjerrum length is 𝑙𝐵 = 1.785𝑏, which
corresponds to the dielectric constant of water at room temperature when 𝑏 = 0.4
nm.

Brush Structure and Salt Response

With no free polyanion, a polycation brush grafted to a charge neutral surface will
extend to minimize the ion repulsion within the brush. Counterions from the salt
solution enter the brush region to neutralize the charge of the brush. Figure V.1
shows the brush profiles for various grafting densities. With increasing grafting
density, more salt ions are required to compensate the brush charge, leading to a
increasing osmotic pressure in the brush region [23] and thus, brush extension.
Figure V.2 shows the plot of 𝜙−(𝑧) − 𝜙+(𝑧), which is an indication of the charge
compensation from small ions. In the bulk, this quantity goes to zero and values
greater than zero indicate accumulation of anions.

The brush response to the bulk salt concentration also indicates the scaling regime of
the brush [24]. For low salt concentrations, the brush only feels the influence of the
counterions that compensate the charge in the brush so the a strong polyelectroylte
brush is insensitive to changes in the bulk salt concentration. This regime is the
osmotic brush regime. For higher bulk salt concentration, the increasing the bulk
salt concentration reduces the osmotic pressure difference between the bulk solution
and the brush region, leading to contraction of the brush. This is the salted-brush
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regime. The results from the grafting density in Figure V.1 indicate this system is
in the salted brush regime for 1 M. Figure V.3 shows the brush height is relatively
insensitive to salt until 10 mM, when adding salt begins to contract the brush.

Figure V.1: Density profile for polycation brush grafted to a neutral surface. Bulk
salt solution has bulk density 𝜙± = 0.04, corresponding to approximately 1 M for
𝑏 = 0.4 nm.

Figure V.2: Charge compensation for brush from small ions corresponding to the
system in Figure V.1.
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Figure V.3: Density profile for polycation brush grafted to a neutral surface for
various bulk salt concentrations. 𝑁 = 50 and 𝜎𝑔𝑏2 = 5 × 10−3.

Swollen-Collapsed Transition

When adding free polyanion, we expect that anions compensating the brush charge
will be replaced by polyanion. A single polyanion chain has more efficacy for
compensating the brush charge, and contributes less to the osmotic pressure than a
small ion (per charge). Figure V.4 shows the brush and free polyion profiles before
and after adding free polyanion. There are two main features of the figure. The
first is that, indeed, the brush contracts when adding free polyanion. The second
is that the free polyanion profile nearly overlaps with the brush profile. In fact, for
the condition shown, there appears to be more free polyanion in the brush region
than the brush. This result indicates the strong degree of penetration of the free
polyanion.

The displacement of small anions with polyanion in the brush region leads to several
interesting phenomena. The small anions are dispelled from the brush and when the
free polyanion exceeds the density of polycation brush, small cations are migrate
into the brush region (Figure V.5). This behavior is akin to a charge reversal for
the brush region. Here, a charge reversal corresponds to a change in sign of the
electrostatic potential, since the surface charge density is fixed to be neutral. For no
free polyanion, the electrostatic potential in the brush is positive. Adding enough
free polyanion eventually leads to a change in sign, which is not shown but is
indicated from the small ion profiles in Figure V.5.
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Figure V.4: Density profile for polycation brush grafted to a neutral surface for
no free polyanion (black) and 𝜙𝑝− = 1 × 10−5 (blue). The grafting density is
𝜎𝑔𝑏

2 = 5 × 10−3 and the bulk salt concentration is 𝜙± = 0.04.

Figure V.5: Charge compensation for brush from small ions for no free polyanion
(black) and 𝜙𝑝− = 1 × 10−5 (blue). Conditions are the same as Figure V.4.
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Now, we shift our focus to the thermodynamics of the swollen-collapsed transition
that results from adding free polyanion. To do so, we develop a measure of the
complexation of the free polyanion and the polycation brush to be the ratio of the
excess number of chains of polyanion to the number of chains of polycation. The
excess number of chains of polyanion can be calculated from the excess adsorption.

𝑛𝑒𝑥𝑝−

𝑛𝑝+
=

∫ ∞
0

(
𝜙𝑝− (𝑧) − 𝜙𝑝𝑏𝑢𝑙𝑘−

)
𝑑𝑧

𝑁𝜎𝑔𝑏
2

(V.32)

When there is no free polyanion in the brush, this ratio is zero. The excess polyanion
chains may exceed the number of polycation chains so the ratio may exceed unity.
Figure V.6 shows how the ratio and brush height change upon adding free polyanion.
The change in the brush height and the excess polyanion are both continuous and
coupled. For the conditions given, there is no effect on the brush until the bulk
polyanion exceeds 10−12 at which point the complexation rapidly increases and the
brush collapses to half of the swollen height.

Figure V.6: Ratio of excess polyanion chains (left axis) and the brush height (right
axis) as a function of the amount of added bulk free polyanion. The grafting density
is 5 × 10−3 and the bulk salt fraction is 𝜙± = 0.04.

The smooth transition from swollen to collapsed in Figure V.6 does not tell the
full story. The conformational transition has two distinct surface phases that are
driven by the complexation. Figure V.7 shows the excess polyanion chains and
the electrostatic potential at the surface for three different grafting densities. For
𝜎𝑔𝑏

2 = 10−2, there is a high degree of complexation even at the lowest polyanion
fraction, whereas for 𝜎𝑔𝑏2 = 10−3, the complexation measure only increases toward
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the highest values of the amount of free polyanion added. Between those two curves,
the curve 𝜎𝑔𝑏2 = 5×10−3 shows a typical continuous transition between no polyion
penetration into the brush and what is considered full complexation. What is striking
in the plot of the surface potential (right-hand plot) is that there are two apparent
regimes of the surface electrostatic potential, corresponding to the either the swollen
or collapsed states of the brush.

Figure V.7: Ratio of excess polyanion chains (left) and the electrostatic potential
at the surface (right) as a function of the amount of added bulk free polyanion for
different grafting densities. The bulk salt fraction is 𝜙± = 0.04.

In fact, if one goes searching, there are regions where the transition between swollen
and collapsed is first order. The conditions where this transition should occur are
that of low salt concentration, where the driving force for complexation is highest,
and low grafting density, where small changes in the complexation can drive rapid
contraction of the brush. In that regime, Figure V.8 shows coexistence between the
two conformational states. A first order transition indicates that there will hysteresis
in the brush height upon addition and removal of free polyanion. First order transi-
tions have been seen in finite-length chains in poor solvent conditions [25]; however,
from mean field theory, only continuous transitions are expected in this system for
finite-length chains. The electrostatic correlation embedded in the theory gives rise
to the first-order transition.

All of the results shown so far are for a neutral surface. Practically, one may be
interested in tuning the amount of complexation, or at least understanding how
various surface properties influence the complexation [13] One such example is
the surface electrostatic potential. Intuitively, for a polycation brush, a positive
electrostatic potential should encourage negative charge to accumulate in the brush,
compared to zero surface potential. Figure V.9 shows the effect of the surface
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potential on the swollen-collapsed transition. Changes in much less than 1 V can
dramatically shift the transition point for complexation. Further, the behavior of the
brush height at fixed potential is nontrivial. For instance, comparing the plots for
𝜓0=0, 25, and 50 mV, there is a nonmonotonic dependence on the surface potential,
owing to the different degrees of complexation. For applications where the brush
height is of central importance, such trends deserve further study.

Figure V.8: Brush height (left), ratio of excess polyanion chains (middle) and the
excess surface free energy (right) as a function of the amount of added bulk free
polyanion. Colors and legend indicate the conformational state of the brush, which
are determined from the free energy profile (right). The grafting density is 1× 10−3

and the bulk salt fraction is 𝜙± = 0.01.

Figure V.9: Ratio of excess polyanion chains as a function of the amount of added
bulk free polyanion for various surface potentials. The grafting density is 5 × 10−3

and the bulk salt fraction is 𝜙± = 0.04.
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Constructing Phase Diagrams

To what extent is the complexation in the brush similar to complexation in bulk
phases? If the transition can be fully understood by the same driving force as that of
complex coacervation of bulk phases, then all of the rules-of-thumb and physics for
those systems can be applied to the brush system. In experiments, phase diagrams
for a variety of charge complexation problems are determined via salt-resistance
measurements [26, 27]. A salt resistance measures the salt concentration at which
there is no evidence of complexation, which is deemed the barrier a one- and two-
phase region. From our theory, we can conduct the same measurements. However,
as established above, the conformational transition is usually continuous, making the
selection of a single point somewhat fuzzy. A reasonable and physically motivated
choice is to pick the salt concentration at which the ratio of excess polyanion
to grafted polycation chains is unity. Salt resistance curves are shown in Figure
V.10, indicating the points where the ratio crosses unity for a grafting density of
𝜎𝑔𝑏

2 = 5× 10−3 for fixed amounts of free polyanion in the bulk solution. The basic
trend is that a higher amount of salt is required to suppress complexation as the
amount of free polyanion increases.

Figure V.10: Salt resistance curves for 𝜎𝑔𝑏2 = 5 × 10−3 and a neutral surface. The
dotted line and points indicate the chosen point where the system transitions.

The chosen transition point on the salt resistance curves was chosen strategically
so that we may compare the location of the conformational transition with that of
the bulk binodal. In particular, we extract a salt concentration for each value of the
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free polyanion and can compare that with the supernatant phase of the bulk binodal.
The premise is that the brush region forms a dense, coacervate-like surface phase
so that the bulk solution serves the role of a coexisting supernatant phase. The bulk
phase diagram for this system can be constructed using the procedures outlined in
our previous work [20, 28, 29]. Figure V.11 shows the comparison between phase
diagrams. Qualitatively, the conformational transitions follow the same general
trend as the bulk phase behavior, which is surprising given (1) the inhomogeniety
in the system (i.e. electrostatic potential) and (2) the inability of the brush to form
a macroscopic dense phase.

Figure V.11: Comparison of bulk binodal (red line) with conformational transition
points extracted from salt resistance curves (points). Two phase region of binodal
is shaded in gray. The bulk critical point is marked with a red point.

Conclusion
This work explored the structure and complexation in strong polycation brushes
upon titrating with an oppositely charged polyion solution. Penetration of the
free polyanion into the polycation brush drives a conformational transition in the
brush. The transition is generally continuous but can be first order at low salt
concentration, where the driving force for complexation is highest. Various factors
influence the transition, including the electrostatic condition of the surface and the
salt concentration of the bulk solution in contact with the brush. As seen in previous
studies of complex coacervation near a solid surface [30], the electrostatic potential
can dramatically shift the ability to complex near the surface.
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Much remains unsolved regarding the driving force for complexation, and whether
there is a more direct mapping to bulk phase separation. In the brush system, the
driving force for polyion penetration into the brush is the release of counterions
confined to the brush region. While this hypothesis has been widely proposed for
the bulk system [14], the bulk phase behavior is driven by the solvent entropy and
electrostatic correlation [28, 31]. Our work will hopefully motivate future studies
of the phase behavior near solid surfaces to elucidate this connection further.

Appendix
Nondimensionalizing

The nondimensional form of the free energy is more general and easier to work with
numerically. Starting from Eq. V.28. we can start to nondimensionalize the free
energy by multiplying by 𝛽 and using 𝑥 = 𝑧/𝑏,

𝛽𝑊/𝐴𝑏 =

∫ ∞

0
𝑑𝑥

[
𝛽 𝑓 𝑒𝑥𝑏 (𝑥, {𝜙(𝑥)}) −

∑︁
𝑝

𝜕𝛽 𝑓 𝑒𝑥
𝑏

𝜕𝜌𝑝 (𝑥)
𝜌𝑝 (𝑥) −

∑︁
𝛼

𝜕 𝑓 𝑒𝑥
𝑏

𝜕𝜌𝛼 (𝑥)
𝜌𝛼 (𝑥)

− 𝛽𝜖𝑟𝜖0
2𝑏2

(
𝜕𝜓

𝜕𝑥

)2
−

∑︁
𝑝

𝜌𝑝 (𝑥)/𝑁 −
∑︁
𝛼

𝜌𝛼 (𝑥)
]
+𝑄𝑠𝛽𝑒𝜓0/𝐴/𝑏

(V.33)

𝛽𝑊/𝐴𝑏 =

∫ ∞

0
𝑑𝑥

[
𝛽 𝑓 𝑒𝑥𝑏 (𝑥, {𝜙(𝑥)}) −

∑︁
𝑝

𝜕𝛽 𝑓 𝑒𝑥
𝑏

𝜕𝜌𝑝 (𝑥)
𝜌𝑝 (𝑥) −

∑︁
𝛼

𝜕 𝑓 𝑒𝑥
𝑏

𝜕𝜌𝛼 (𝑥)
𝜌𝛼 (𝑥)

− 𝜖𝑟𝜖0

2𝛽𝑒2𝑏2

(
𝜕𝛽𝑒𝜓

𝜕𝑥

)2
−

∑︁
𝑝

𝜌𝑝 (𝑥)/𝑁 −
∑︁
𝛼

𝜌𝛼 (𝑥)
]
+𝑄𝑠𝛽𝑒𝜓0/𝐴/𝑏

(V.34)

Using the usual definition of the Bjerrum length 𝑙𝐵 = 𝛽𝑒2/4𝜋𝜖𝑟𝜖0 and multiplying
the entire expression by 𝑣 = 𝑏3 gives

𝛽𝑊𝑏2/𝐴 =

∫ ∞

0
𝑑𝑥

[
𝛽 𝑓 𝑒𝑥𝑏 𝑣(𝑥, {𝜙(𝑥)}) −

∑︁
𝑝

𝜕𝛽 𝑓 𝑒𝑥
𝑏
𝑣

𝜕𝜙𝑝 (𝑥)
𝜙𝑝 (𝑥) −

∑︁
𝛼

𝜕 𝑓 𝑒𝑥
𝑏
𝑣

𝜕𝜙𝛼 (𝑥)
𝜙𝛼 (𝑥)

− 1
8𝜋𝑙𝐵/𝑏

(
𝜕𝛽𝑒𝜓

𝜕𝑥

)2
−

∑︁
𝑝

𝜙𝑝 (𝑥)/𝑁 −
∑︁
𝛼

𝜙𝛼 (𝑥)
]
+𝑄𝑠𝑏

2/𝐴𝛽𝑒𝜓0

(V.35)
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V.2 Electroresponsive Weak Polyelectrolyte Brushes
Introduction
Grafting surfaces with polyelectrolytes is a promising route to functionalize surfaces
for a wide variety of applications, including lubrication [32, 33], biosensing [34],
anti-fouling [35–37], and assembly of nanoparticles [38, 39]. The conformation
of a polyelectrolyte brush intimately depends on the charge state of the chains [23,
40]. The charge state of weak polyelectrolytes depends on the local solution condi-
tions [41–45], chemical details of the polymer sequence [46–48], and external forces
(e.g. electric fields, confinement, etc.) [49, 50]. In this way, surfaces grafted with
weak polyelectrolytes are smart materials and the responsiveness to controllable
variables enables surface properties to be readily tuned.

The electroresponsiveness of weak polyelectrolyte brushes is a particularly useful
knob to turn since changing the electrostatic condition of a surface can be done rather
easily in practice through a voltage change. The brush response to an electric field
is coupled to all of the solution parameters and the conformations near the surface.
Despite several theoretical studies on the electroresponsiveness of polyelectrolyte
brushes [51–55], open questions remain about the electroresponsiveness of weak
polyelectrolyte brushes [56]. Recently, Senechal et al. observed two phenomena
without clear origin: (1) applying a negative (positive) electrostatic potential to a
polyacid (polybase) leads to brush swelling, and (2) strong hysteresis in the brush
height upon cycling the electrostatic potential. The first phenomena has been seen in
other experimental studies [57, 58] and observed in the theoretical study by Okrugin
et al., but has not been fully explained [54]. The second phenomena of hysteresis
upon charging and discharging has been seen in other weak polyelectrolyte brush
studies when varying the pH [59]. We expect the origin of the hysteresis to be similar
in electroresponsive brushes. The open questions for each phenomena deserve an
unambiguous mechanistic explanation in order to better design electroresponsive
weak polyelectrolyte brushes.

In this work, we focus on the first question above: why does a polyacid brush swell
when a negative potential is applied? To answer this question, we develop and
apply a simple inhomogeneous thermodynamic theory to study the effect of the
surface voltage on the swelling and de-swelling of a weak polyacid. The swelling
of a polyacid upon applying a negative potential results from the free salt ions
compensating the change in surface charge density. We extend the classical scaling
of polyelectrolytes to rationalize this behavior. Finally, we explore implications of
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this mechanism by studying the capacitance of the weak polyacid brush, where the
brush swelling is coupled to peaks in the capacitance curves.

Theory
No Correlations

In Section III.2, we developed a mean-field theory for weak polyelectrolytes starting
from the Hamiltonian. Up until making the saddle-point approximation, that theory
is an exact statistical field representation of the underlying microscopic model.
Namely, the theory exactly captures all of the correlations, including intrachain
correlation. However, we only focused on the mean-field for weak polyelectrolyte
adsorption. Here, we include correlations through a different route. We start with
a density-explicit free energy in the spirit of classical density functional theory. To
begin, we will derive the mean-field theory from III.2 using the DFT approach.

Consider a polyelectrolyte solution made up pH-responsive, linear polyelectrolytes,
salt ions and water. Each monomer in the chain is a pH-responsive group whose
charge state is determined by local acid-base equilibria. For simplicity, we consider
each monomer to have only one dissociable proton (acid residue).

𝐻𝑀 + 𝐻2𝑂 ←→ 𝑀− + 𝐻3𝑂
+ (V.36)

In the equations above, 𝑀 is a generic acidic monomer. The reactions above are
dictated by the acid-dissociation constant, 𝐾𝑎. Similarly, water can dissociated and
at room temperature pure water has pKa = 7.

2𝐻2𝑂 ←→ 𝑂𝐻− + 𝐻3𝑂
+ (V.37)

We consider the salt ions, denoted + and − to be strong electrolytes with valency
𝑧+, 𝑧− with 𝑧− < 0. In the following theory, we make several simplifications. We
neglect the size of the bare proton and assume all of the other species have the same
size, denoted 𝑏. This length scale also sets our volume scale for all species to be
𝑣 = 𝑏3.

From the acid-base relationships, the monomers and water can each take on distinct
states - neutral, protonated, or deprotonated. For an acid, only two states are
available. To model the protonation and deprotonation, we introduce protonation
variables. For example, we use 𝑠𝑤

𝑖
to denote the state of a given water molecule

𝑖. 𝑠𝑤
𝑖

can take on values of -1, 0, or 1, corresponding to deprotonated, neutral, or
protonated, respecitvely. Likewise, the monomer state of the 𝑗-th monomer on the
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𝑖-th chain can be tracked the same way using 𝑠𝑀
𝑖, 𝑗

. Such a model is similar to that of
Nakamura and Wang [60] in the context of salt-doped block copolymers and more
recently, in classical density functional theory by Gallegos, Ong, and Wu [61].

The mean-field free energy is

𝛽𝐹 =
∑︁
𝛼=+,−

∫
𝑑r [𝜌𝛼 (r) ln(𝜌𝛼 (r)𝑣𝛼) − 𝜌𝛼 (r)]

+
∫

𝑑r
∑︁
𝑠𝑤

[𝜌𝑤 (r, 𝑠𝑤) ln(𝜌𝑤 (r, 𝑠𝑤)𝑣𝑤) − 𝜌𝑤 (r, 𝑠𝑤)]

+
∫

𝑑R
∑︁
{𝑠𝑀 }

[
𝜌𝑀 (R, {𝑠𝑀}) ln(𝜌𝑀 (R, {𝑠𝑀})𝑣𝑁𝑀) − 𝜌𝑀 (R, {𝑠𝑀})

]
+

∫
𝑑R

∑︁
{𝑠𝑀 }

𝜌𝑀 (R, {𝑠𝑀})𝛽𝑉𝐵 (R, {𝑠𝑀})

+
∫

𝑑r
∑︁
𝑠𝑤

𝜌𝑤 (r, 𝑠𝑤)
[
𝛽𝜖𝑤 (𝑠𝑤)2 − 𝛽𝜆𝑠𝑤

]
+

∫
𝑑R

∑︁
{𝑠𝑀 }

𝜌𝑀 (R, {𝑠𝑀})
𝑁∑︁
𝑖=1
[−𝛽𝜖𝑀 − 𝛽𝜆] 𝑠𝑀𝑖

+
∫

𝑑r
[
𝜌𝑐 (r)𝜓(r) −

1
8𝜋𝑙𝐵

(∇𝜓)2
]

+
∫

𝑑r𝛽𝜂(r)
(
1 −

∑︁
𝛼=+,−

𝑣𝛼𝜌𝛼 (r) −
∑︁
𝑠𝑤

𝑣𝑤𝜌𝑤 (r, 𝑠𝑤) −
𝑁∑︁
𝑖=1

∑︁
𝑠𝑀
𝑖

𝑣𝑀𝜌
𝑀
𝑖 (r, 𝑠𝑀𝑖 )

)
(V.38)

where 𝜌𝑐 (r) = 𝑧+𝜌+(r) + 𝑧−𝜌−(r) +
∑
𝑠𝑤
𝜌𝑤 (r, 𝑠𝑤)𝑠𝑤 +

∑𝑁
𝑖=1

∑
𝑠𝑀
𝑖
𝜌𝑀
𝑖
(r, 𝑠𝑀

𝑖
)𝑠𝑀
𝑖

. We
will lump together the spatial degrees of freedom and the configurations into one
variable X.

𝛽𝐹 =
∑︁
𝛼=+,−

∫
𝑑r𝜌𝛼 (r) [ln(𝜌𝛼 (r)𝑣𝛼) − 1 + 𝑧𝛼𝜓(r) − 𝑣𝛼𝛽𝜂(r)]

+
∫

𝑑x𝜌𝑤 (x)
[
ln(𝜌𝑤 (x)𝑣𝑤) − 1 + 𝛽𝜖𝑤 (𝑠𝑤)2 − 𝛽𝜆𝑠𝑤 + 𝜓(r)𝑠𝑤 − 𝑣𝑤𝛽𝜂(r)

]
+

∫
𝑑X𝜌𝑀 (X)

[
ln(𝜌𝑀 (X)𝑣𝑁𝑀) − 1 + 𝛽𝑉𝐵 (X) +

𝑁∑︁
𝑖=1
[−𝛽𝜖𝑀 − 𝛽𝜆 + 𝜓(r𝑖)] 𝑠𝑀𝑖 −

𝑁∑︁
𝑖=1

𝛽𝜂(r𝑖)
]

+
∫

𝑑r
[
𝛽𝜂(r) − 1

8𝜋𝑙𝐵

(
∇𝜓

)2
]

(V.39)
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Note that 𝜌𝑀
𝑖
(r, 𝑠𝑀

𝑖
) =

∫
𝑑X′𝜌𝑀 (X′)𝛿(r − r′𝑖)𝛿𝑠𝑀

𝑖
,𝑠𝑀
′

𝑖
. Taking the first variation of

the grand potential energy Ω, we obtain the mean field equations for the densities

𝛿𝛽Ω

𝛿𝜌𝛼 (r)
= ln(𝜌𝛼 (r)𝑣𝛼) + 𝑧𝛼𝜓(r) − 𝑣𝛼𝛽𝜂(r) − 𝛽𝜇𝛼 = 0

𝜌𝛼 (r)𝑣𝛼 = exp
[
𝛽𝜇𝛼 − 𝑧𝛼𝜓(r) + 𝑣𝛼𝛽𝜂(r)

] (V.40)

𝛿𝛽Ω

𝛿𝜌𝑤 (x)
= ln(𝜌𝑤 (x)𝑣𝑤) + 𝛽𝜖𝑤 (𝑠𝑤)2 − 𝛽𝜆𝑠𝑤 + 𝜓(r)𝑠𝑤 − 𝑣𝑤𝛽𝜂(r) − 𝛽𝜇𝑤 = 0

𝜌𝑤 (x)𝑣𝑤 = exp
[
𝛽𝜇𝑤 − 𝛽𝜖𝑤 (𝑠𝑤)2 + 𝛽𝜆𝑠𝑤 − 𝜓(r)𝑠𝑤 + 𝑣𝑤𝛽𝜂(r)

]
𝜌𝑤 (r)𝑣𝑤 =

∑︁
𝑠′𝑤

𝜌𝑤 (x)𝑣𝑤𝛿𝑠𝑤 ,𝑠′𝑤 = 𝑒𝛽𝜇𝑤+𝑣𝑤𝛽𝜂(r)
(
1 + 𝑒−𝛽𝜖𝑤+𝛽𝜆−𝜓(r) + 𝑒−𝛽𝜖𝑤−𝛽𝜆+𝜓(r)

)
(V.41)

𝛿𝛽Ω

𝛿𝜌𝑀 (X)
= ln(𝜌𝑀 (X)𝑣𝑁𝑀) + 𝛽𝑉𝐵 (X) +

𝑁∑︁
𝑖=1
[−𝛽𝜖𝑀 − 𝛽𝜆 + 𝜓(r𝑖)] 𝑠𝑀𝑖

−
𝑁∑︁
𝑖=1

𝛽𝜂(r𝑖) − 𝛽𝜇𝑀 = 0

𝜌𝑀 (X)𝑣𝑁𝑀 = exp
[
𝛽𝜇𝑀 − 𝛽𝑉𝐵 (X) +

𝑁∑︁
𝑖=1
[𝛽𝜖𝑀 + 𝛽𝜆 − 𝜓(r𝑖)] 𝑠𝑀𝑖 +

𝑁∑︁
𝑖=1

𝛽𝜂(r𝑖)
]

(V.42)

where the bonding potential is a normalized Gaussian, exp[−𝑉𝐵 (X)] = 𝑣𝑁−1
𝑀

∏𝑁−1
𝑗=1 Φ( |r 𝑗+1−

r 𝑗 |). The equations become

𝜌𝑀 (X)𝑣𝑀 = 𝑒𝛽𝜇𝑀 𝑒𝛽𝜔(r1,𝑠
𝑀
1 )Φ( |r2 − r1 |)𝑒𝛽𝜔(r2,𝑠

𝑀
2 )Φ( |r3 − r2 |) × . . .

. . . × 𝑒𝛽𝜔(r𝑁−1,𝑠
𝑀
𝑁−1)Φ( |r𝑁 − r𝑁−1 |)𝑒𝛽𝜔(r𝑁 ,𝑠

𝑀
𝑁
) (V.43)

where

𝛽𝜔(r 𝑗 , 𝑠𝑀𝑗 ) =
[
𝛽𝜖𝑀 + 𝛽𝜆 − 𝜓(r 𝑗 )

]
𝑠𝑀𝑗 + 𝛽𝜂(r 𝑗 ) (V.44)

Solving for the monomer density (configurationally dependent)

𝜌𝑀𝑗 (r, 𝑠𝑀𝑗 )𝑣𝑀 = =

∫
𝑑X′𝜌𝑀 (X′)𝑣𝑀𝛿(r − r′ 𝑗 )𝛿𝑠𝑀

𝑗
,𝑠𝑀
′

𝑗

= 𝑒𝛽𝜇𝑀 𝑒
−𝛽𝜔(r,𝑠𝑀

𝑗
)
𝑞( 𝑗 , r, 𝑠𝑀𝑗 )𝑞∗( 𝑗 , r, 𝑠𝑀𝑗 )

(V.45)

where the propagators are defined recursively,

𝑞( 𝑗 , r, 𝑠𝑀𝑗 ) = 𝑒
𝛽𝜔(r,𝑠𝑀

𝑗
)
∫

𝑑r′Φ( |r − r′|)
∑︁
𝑠𝑀
𝑗−1

𝑞( 𝑗 − 1, r′, 𝑠𝑀𝑗−1) (V.46)
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𝑞∗( 𝑗 , r, 𝑠𝑀𝑗 ) = 𝑒
𝛽𝜔(r,𝑠𝑀

𝑗
)
∫

𝑑r′Φ( |r − r′|)
∑︁
𝑠𝑀
𝑗+1

𝑞( 𝑗 + 1, r′, 𝑠𝑀𝑗+1) (V.47)

with the initial conditions 𝑞(1, r, 𝑠𝑀1 ) = 𝑒𝛽𝜔(r,𝑠
𝑀
1 ) and 𝑞∗(𝑁, r, 𝑠𝑀

𝑁
) = 𝑒𝛽𝜔(r,𝑠

𝑀
𝑁
) .

For the brush problem, the first monomer is constrained to the surface so that the
propagator is given by

𝑞(1, r, 𝑠𝑀1 ) = 𝑒
𝛽𝜔(r,𝑠𝑀1 )𝛿(𝑥 − 𝑥⊥)𝛿(𝑦 − 𝑦⊥)𝛿(𝑧) (V.48)

When the spatial variation is only in the z-direction (dimensionless 𝑧),

𝑞(1, 𝑧, 𝑠𝑀1 ) = 𝑒
𝛽𝜔(𝑧,𝑠𝑀1 )𝛿(𝑧) (V.49)

Likewise, we have the condition related to the grafting density∫
𝑑𝑥𝜌𝑀1 (𝑥) = 𝑏

∫
𝑑𝑧𝜌𝑀1 (𝑧) =

𝑒𝛽𝜇𝑀

𝑣𝑀/𝑏
∑︁
𝑠𝑀1

𝑞∗(1, 0, 𝑠𝑀1 ) = 𝜎 (V.50)

so that the chemical potential is determined 𝑒𝛽𝜇𝑀 =
𝜎𝑣𝑀/𝑏∑

𝑠𝑀1
𝑞∗ (1,0,𝑠𝑀1 )

. And the density

of all monomers is then

𝜌𝑀𝑗 (𝑧, 𝑠𝑀𝑗 ) =
𝜎/𝑏∑

𝑠𝑀1
𝑞∗(1, 0, 𝑠𝑀1 )

𝑞( 𝑗 , 𝑧, 𝑠𝑀𝑗 )𝑒
−𝛽𝜔(𝑧,𝑠𝑀

𝑗
)
𝑞∗( 𝑗 , 𝑧, 𝑠𝑀𝑗 ) (V.51)

with the first being

𝜌𝑀1 (𝑧, 𝑠
𝑀
1 ) =

𝜎/𝑏∑
𝑠𝑀1
𝑞∗(1, 0, 𝑠𝑀1 )

𝑞∗(1, 𝑧, 𝑠𝑀1 )𝛿(𝑧) (V.52)

These are all the same mean-field equations as the derivation from field theory in
Section III.2. The key difference is that 𝜉 (r) is the composite field for different
states. Here, the 𝜔(r, 𝑠𝑀

𝑗
) field is the effective field for each state. By keeping each

state separate, we can more easily deal with the sequence dependence in the excess
free energy in the next section.

Debye-Hückle Correlations

We use the same general approach as that above to derive the mean field equations
with electrostatic correlations.

𝐹 − 𝐹no
correlation = 𝐹𝐷𝐻 + 𝐹𝑐ℎ𝐷𝐻 =

∫
𝑑r 𝑓𝐷𝐻 (r) +

∫
𝑑X 𝑓 𝑐ℎ𝐷𝐻 (X) (V.53)
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where the free energy density for disconnected ions and the chain connectivity
contribution are given by

𝛽 𝑓𝐷𝐻 (r) =
1

4𝜋𝑑3

[
ln

(
1 + 𝜅(r)𝑑

)
− 𝜅(r)𝑑 + 1

2
𝜅(r)2𝑑2

]
(V.54)

where 𝑑 is the Debye radius (or equivalent estimate) and 𝜅 is the inverse Debye
length defined as

𝜅(r) =

√√√√√
4𝜋𝑙𝐵

𝑧2+𝜌+(r) + 𝑧2−𝜌−(r) +
∑︁
𝑠𝑤

𝜌𝑤 (r, 𝑠𝑤) (𝑠𝑤)2 +
𝑁∑︁
𝑖=1

∑︁
𝑠𝑀
𝑖

𝜌𝑀
𝑖
(r, 𝑠𝑀

𝑖
) (𝑠𝑀

𝑖
)2


(V.55)

For the connectivity,

𝛽 𝑓 𝑐ℎ𝐷𝐻 (X) = −𝜌(X) ln
(
𝑔(X)

)
(V.56)

where 𝑔(X) is the distribution function. Using the TPT-1 approximation [62, 63]
and the Debye-Hückel approximation for the correlation function[22], we have the
following

𝛽 𝑓 𝑐ℎ𝐷𝐻 (X) = 𝜌(X)
𝑁−1∑︁
𝑗=1

𝑠𝑀
𝑗
𝑠𝑀
𝑗+1𝑙𝐵/𝑑 𝑗

1 + 𝜅(r 𝑗 )𝑑 𝑗
=

𝑁−1∑︁
𝑗=1

𝜌(X)𝜁 (r 𝑗 , 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1) (V.57)

Taking the variation with respect to the density

𝛿𝛽Ω

𝛿𝜌𝛼 (r)
= ln(𝜌𝛼 (r)𝑣𝛼) + 𝑧𝛼𝜓(r) − 𝑣𝛼𝛽𝜂(r) +

𝛿𝛽 𝑓𝐷𝐻

𝛿𝜌𝛼 (r)
+
𝛿𝛽 𝑓 𝑐ℎ

𝐷𝐻

𝛿𝜌𝛼 (r)
− 𝛽𝜇𝛼 = 0

𝜌𝛼 (r)𝑣𝛼 = exp
[
𝛽𝜇𝛼 − 𝑧𝛼𝜓(r) + 𝑣𝛼𝛽𝜂(r) −

𝛿𝛽 𝑓𝐷𝐻

𝛿𝜌𝛼 (r)
−
𝛿𝛽 𝑓 𝑐ℎ

𝐷𝐻

𝛿𝜌𝛼 (r)

]
(V.58)

𝛿𝛽Ω

𝛿𝜌𝑤 (x)
= ln(𝜌𝑤 (x)𝑣𝑤) + 𝛽𝜖𝑤 (𝑠𝑤)2 − 𝛽𝜆𝑠𝑤 + 𝜓(r)𝑠𝑤 − 𝑣𝑤𝛽𝜂(r) − 𝛽𝜇𝑤

+ 𝛿𝛽 𝑓𝐷𝐻
𝛿𝜌𝑤 (x)

+
𝛿𝛽 𝑓 𝑐ℎ

𝐷𝐻

𝛿𝜌𝑤 (x)
= 0

(V.59)

𝜌𝑤 (x)𝑣𝑤 = exp
[
𝛽𝜇𝑤 − 𝛽𝜖𝑤 (𝑠𝑤)2 + 𝛽𝜆𝑠𝑤 − 𝜓(r)𝑠𝑤 + 𝑣𝑤𝛽𝜂(r) −

𝛿𝛽 𝑓𝐷𝐻

𝛿𝜌𝑤 (x)
−
𝛿𝛽 𝑓 𝑐ℎ

𝐷𝐻

𝛿𝜌𝑤 (x)

]
(V.60)
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𝜌𝑤 (r)𝑣𝑤 =
∑︁
𝑠′𝑤

𝜌𝑤 (x)𝑣𝑤𝛿𝑠𝑤 ,𝑠′𝑤 (V.61)

𝛿𝛽Ω

𝛿𝜌𝑀 (X)
= ln(𝜌𝑀 (X)𝑣𝑁𝑀) + 𝛽𝑉𝐵 (X) +

𝑁∑︁
𝑖=1
[−𝛽𝜖𝑀 − 𝛽𝜆 + 𝜓(r𝑖)] 𝑠𝑀𝑖

−
𝑁∑︁
𝑖=1

𝛽𝜂(r𝑖) +
𝛿𝛽 𝑓𝐷𝐻

𝛿𝜌𝑀 (X)
+
𝛿𝛽 𝑓 𝑐ℎ

𝐷𝐻

𝛿𝜌𝑀 (X)
− 𝛽𝜇𝑀 = 0

(V.62)

𝜌𝑀 (X)𝑣𝑁𝑀 = exp
[
𝛽𝜇𝑀 − 𝛽𝑉𝐵 (X) +

𝑁∑︁
𝑖=1
[𝛽𝜖𝑀 + 𝛽𝜆 − 𝜓(r𝑖)] 𝑠𝑀𝑖 +

𝑁∑︁
𝑖=1

𝛽𝜂(r𝑖) −
𝛿𝛽 𝑓𝐷𝐻

𝛿𝜌𝑀 (X)
−
𝛿𝛽 𝑓 𝑐ℎ

𝐷𝐻

𝛿𝜌𝑀 (X)

]
(V.63)

where the local potentials for the excess free energy are given in the Appendix.
Substituting the normalized Gaussian potential for the connectivity,

𝜌𝑀 (X)𝑣𝑀 = 𝑒𝛽𝜇𝑀 𝑒𝛽𝜔(r1,𝑠
𝑀
1 ,𝑠

𝑀
2 )Φ( |r2 − r1 |)𝑒𝛽𝜔(r2,𝑠

𝑀
2 ,,𝑠

𝑀
3 )Φ( |r3 − r2 |) × . . .

. . . × 𝑒𝛽𝜔(r𝑁−1,𝑠
𝑀
𝑁−1,𝑠

𝑀
𝑁
)Φ( |r𝑁 − r𝑁−1 |)𝑒𝛽𝜔(r𝑁 ,𝑠

𝑀
𝑁
)

(V.64)

where the effective field 𝜔 generally depends on r 𝑗 , 𝑠 𝑗 , and 𝑠 𝑗+1.

𝛽𝜔(r 𝑗 , 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1) =
[
𝛽𝜖𝑀 + 𝛽𝜆 − 𝜓(r 𝑗 )

]
𝑠𝑀𝑗 + 𝛽𝜂(r 𝑗 ) +

(𝑠𝑀
𝑗
)2𝜅(r 𝑗 )𝑙𝐵

2(1 + 𝜅(r 𝑗 )𝑑)

+𝜁 (r 𝑗 , 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1)
[
𝜌(r 𝑗 , 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1)𝑑
(1 + 𝜅(r 𝑗 )𝑑)

2𝜋𝑙𝐵 (𝑠𝑀𝑗 )2

𝜅(r 𝑗 )
− 1

] (V.65)

with the last monomer only depending on its own state

𝛽𝜔(r𝑁 , 𝑠𝑀𝑁 ) =
[
𝛽𝜖𝑀 + 𝛽𝜆 − 𝜓(r 𝑗 )

]
𝑠𝑀𝑗 + 𝛽𝜂(r 𝑗 ) +

(𝑠𝑀
𝑖
)2𝜅(r 𝑗 )𝑙𝐵

2(1 + 𝜅(r 𝑗 )𝑑)
(V.66)

Writing the one-body density,

𝜌𝑀𝑗 (r, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1)𝑣𝑀 = =

∫
𝑑X′𝜌𝑀 (X′)𝑣𝑀𝛿(r − r′ 𝑗 )𝛿𝑠𝑀

𝑗
,𝑠𝑀
′

𝑗
𝛿𝑠𝑀

𝑗+1,𝑠
𝑀′
𝑗+1

= 𝑒𝛽𝜇𝑀 𝑒
−𝛽𝜔(r,𝑠𝑀

𝑗
,𝑠𝑀

𝑗+1)𝑞( 𝑗 , r, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1)𝑞
∗( 𝑗 , r, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1)

(V.67)

where the propagators are defined recursively,

𝑞(1, r, 𝑠𝑀1 , 𝑠
𝑀
2 ) = 𝑒

𝛽𝜔(r,𝑠𝑀1 ,𝑠
𝑀
2 ) (V.68)

𝑞( 𝑗 , r, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1) = 𝑒
𝛽𝜔(r,𝑠𝑀

𝑗
,𝑠𝑀

𝑗+1)
∫

𝑑r′Φ( |r − r′|)
∑︁
𝑠𝑀
𝑗−1

𝑞( 𝑗 − 1, r′, 𝑠𝑀𝑗−1, 𝑠
𝑀
𝑗 )

(V.69)
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𝑞∗(𝑁, r, 𝑠𝑀𝑁 ) = 𝑒𝛽𝜔(r,𝑠
𝑀
𝑁
) (V.70)

𝑞∗(𝑁 − 1, r, 𝑠𝑀𝑁−1, 𝑠
𝑀
𝑁 ) = 𝑒𝛽𝜔(r,𝑠

𝑀
𝑁−1,𝑠

𝑀
𝑁
)
∫

𝑑r′Φ( |r − r′|)𝑞(𝑁, r′, 𝑠𝑀𝑁 ) (V.71)

𝑞∗( 𝑗 , r, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1) = 𝑒
𝛽𝜔(r,𝑠𝑀

𝑗
,𝑠𝑀

𝑗+1)
∫

𝑑r′Φ( |r − r′|)
∑︁
𝑠𝑀
𝑗+2

𝑞( 𝑗 + 1, r′, 𝑠𝑀𝑗+1, 𝑠
𝑀
𝑗+2)

(V.72)

One can obtain the total density, or state density, by summing over the configurational
variables

𝜌𝑀𝑗 (r, 𝑠𝑀𝑗 ) =
∑︁
𝑠𝑀
𝑗+1

𝜌𝑀𝑗 (r, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1)

𝜌𝑀𝑗 (r) =
∑︁
𝑠𝑀
𝑗

𝜌𝑀𝑗 (r, 𝑠𝑀𝑗 )
(V.73)

As long as the number of states is relatively small, tracking 𝜌𝑀
𝑗
(r, 𝑠𝑀

𝑗
, 𝑠𝑀
𝑗+1) for each

monomer type should not be too intensive.

Grafted Propagators

Starting from the density, where the first monomer is grafted to the surface,

𝜌𝑀𝑗 (𝑧, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1)𝑣𝑀 = 𝑒𝛽𝜇𝑀 𝑒
−𝛽𝜔(𝑧,𝑠𝑀

𝑗
,𝑠𝑀

𝑗+1)𝑞( 𝑗 , 𝑧, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1)𝑞
∗( 𝑗 , 𝑧, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1) (V.74)

with

𝜌𝑀1 (𝑧, 𝑠
𝑀
1 , 𝑠

𝑀
2 )𝑣𝑀 = 𝑒𝛽𝜇𝑀 𝑒−𝛽𝜔(𝑧,𝑠

𝑀
1 ,𝑠

𝑀
2 )𝑞(1, 𝑧, 𝑠𝑀1 , 𝑠

𝑀
2 )𝑞

∗(1, 𝑧, 𝑠𝑀1 , 𝑠
𝑀
2 ) (V.75)

where the propagators are defined recursively,

𝑞(1, 𝑧, 𝑠𝑀1 , 𝑠
𝑀
2 ) = 𝑒

𝛽𝜔(𝑧,𝑠𝑀1 ,𝑠
𝑀
2 )𝛿(𝑧) (V.76)

𝑞(2, 𝑧, 𝑠𝑀2 , 𝑠
𝑀
3 ) = 𝑒

𝛽𝜔(𝑧,𝑠𝑀2 ,𝑠
𝑀
3 )Φ(𝑧)

∑︁
𝑠𝑀1

𝑒𝛽𝜔(0,𝑠
𝑀
1 ,𝑠

𝑀
2 )

(V.77)

𝑞( 𝑗 , 𝑧, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1) = 𝑒
𝛽𝜔(𝑧,𝑠𝑀

𝑗
,𝑠𝑀

𝑗+1)
∫

𝑑𝑧′Φ( |𝑧 − 𝑧′|)
∑︁
𝑠𝑀
𝑗−1

𝑞( 𝑗 − 1, 𝑧′, 𝑠𝑀𝑗−1, 𝑠
𝑀
𝑗 ) (V.78)
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The complimentary propagators are defined the same as above. The grafting condi-
tion determines the chemical potential∫

𝑑𝑧
∑︁
𝑠𝑀1

∑︁
𝑠𝑀2

𝜌𝑀1 (𝑧, 𝑠
𝑀
1 , 𝑠

𝑀
2 )𝑣𝑀 = 𝜎𝑏2

= 𝑒𝛽𝜇𝑀
∑︁
𝑠𝑀1

∑︁
𝑠𝑀2

∫
𝑑𝑧′𝑒−𝛽𝜔(𝑧

′,𝑠𝑀1 ,𝑠
𝑀
2 )𝑞(1, 𝑧′, 𝑠𝑀1 , 𝑠

𝑀
2 )𝑞

∗(1, 𝑧′, 𝑠𝑀1 , 𝑠
𝑀
2 )

= 𝑒𝛽𝜇𝑀
∑︁
𝑠𝑀1

∑︁
𝑠𝑀2

𝑞∗(1, 0, 𝑠𝑀1 , 𝑠
𝑀
2 )

(V.79)

𝑒𝛽𝜇𝑀 =
𝜎𝑏2∑

𝑠𝑀1

∑
𝑠𝑀2
𝑞∗(1, 0, 𝑠𝑀1 , 𝑠

𝑀
2 )

(V.80)

The grafted monomer can then be treated as an external, fixed charge where the
charge state varies. The charge density arising from the grafted monomer is

𝑄𝑔𝑟𝑎 𝑓 𝑡𝑏
2 =

∫
𝑑𝑧

∑︁
𝑠𝑀1

∑︁
𝑠𝑀2

𝜌𝑀1 (𝑧, 𝑠
𝑀
1 , 𝑠

𝑀
2 )𝑣𝑀 𝑠

𝑀
1 =

∑︁
𝑠𝑀1

∑︁
𝑠𝑀2

𝑒𝛽𝜇𝑀𝑞∗(1, 0, 𝑠𝑀1 , 𝑠
𝑀
2 )𝑠

𝑀
1

= 𝜎𝑏2

∑
𝑠𝑀1

∑
𝑠𝑀2
𝑞∗(1, 0, 𝑠𝑀1 , 𝑠

𝑀
2 )𝑠

𝑀
1∑

𝑠𝑀1

∑
𝑠𝑀2
𝑞∗(1, 0, 𝑠𝑀1 , 𝑠

𝑀
2 )

(V.81)

Results and Discussion
Bulk Titration

We begin by considering the bulk titration behavior of the polyelectrolyte in an
electrolyte solution. From the mean-field result, the charge state of the monomers
in a uniform bulk solution only depends on the pH and the pK𝑎. Electrostatic
correlations enable the charge state to be dependent on properties like the degree of
polymerization and the local salt concentration (Figure V.12). Adding in the Debye–
Hückel correlations for disconnected ions favors ionization of the monomers due to
the local screening environment. Like-charged ions have less repulsion arising from
the ion structuring around each ion. For a connected chain, the correlations at the
nearest-neighbor level suppress ionization since there is a penalty for two adjacent
monomers to be ionized.

The nearest-neighbor (TPT-1) level approach to the electrostatic contribution to
the chain connectivity correlations creates a weak dependence of the charge state
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Figure V.12: Bulk titration of polyacid for various degrees of polymerization, 𝑁 .
The mean-field result does not depend on the degree of polymerization. The rest of
the curves included the Debye-Hückel correlations.

on the chain length. TPT-1 level treatment of electrostatic correlation is known
to underestimate the electrostatic correlation and be relatively insensitive to chain
length [64]. Figure V.13 shows the bulk titration behavor for a dilute acid solution
for different chain lengths. As expected, increasing the chain length decreases
the ionized fraction due to the penalty of adjacent monomers being ionized. The
effect saturates rather quickly with 𝑁 = 5 and 𝑁 = 100 being quite similar. The
largest effects differences from the mean-field result occur for pH values above
the pK𝑎 since the polymer is more likely to be ionized at those conditions. For a

Figure V.13: Bulk titration of polyacid for various chain lengths. The mean-field
result does not depend on the degree of polymerization. The rest of the curves
included the Debye–Hückel correlations.
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fixed chain length, adding salt increases the amount of screening and decreases the
penalty for adjacent ionized monomers. Figure V.14 shows that increasing the salt
concentration increases the degree of ionization. Even for a 1 M solution, there is
still a noticable difference between the mean-field result and that with correlations.
These differences will undoubtedly play a role in the brush system, where the strong
inhomogeneity induced by the surface creates widely varying local conditions for
the weak polyelectrolyte. We briefly offer a comparison to experiments in Figure

Figure V.14: Bulk titration of polyacid for various salt concentrations. The mean-
field result does not depend on the salt concentration. The rest of the curves included
the Debye–Hückel correlations.

V.15. The experimental value for the pK𝑎 used was 4.35 [65]. Clearly, the mean-
field result fails to capture the correct ionization behavior, overestimating due to
the lack of connectivity correlations. The result with correlations yields the correct
slope of the titration curve but appears shifted. If one uses a pK𝑎 value of 5.22,
the predictions with correlations nearly overlap with the experimental data. For this
reason, we are optimistic that even at the Debye–Hückel, we are able to capture the
salient physics of ionization in weak polyelectrolytes.
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Figure V.15: Comparison of bulk titration behavior across mean-field, Debye–
Hückel correlations, and experiment. Experiment values are for poly(acrylic acid)
from [66, 67].

Brush Structure

The structure of a polyelectrolyte brush intimately depends on its charge state [24].
A highly charged polyelectrolyte grafted to a surface will tend to extend away
from the surface to minimize the ion-ion repulsion with other grafted chains. The
chains cannot stretch arbitrarily far owing to the entropic cost of chain stretching –
chain conformations are reduced in the extended state. The balance between these
two effects gives rise to the equilibrium brush height [23]. Figure V.16 shows a
well-known but important result of the brush profile on a charge neutral surface
for different values of the pH. For a polyacid, as the pH increases, the average
ionization in the brush increases, similar to the bulk titration behavior. Clearly, in
Figure V.16, the brush takes on a more extended conformation at a pH of 8 versus
that of 3. While not shown, counterions from the salt solution enter the brush
region to compensate the charge from the brush. What is important to note is that
changing the pH dramatically influences the charge state. For this reason, one can
see dramatic changes in the brush conformation by changing the pH. Indeed, the
average fraction of ionized monomers in the brush significantly depends on pH.
Figure V.17 indicates that in both the mean-field and theory with correlations, the
average ionization fraction can span the full range from 0 to nearly fully ionized
by changing the pH from 3 to 9. What is somewhat surprising is how similar the
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Figure V.16: Polyacid brush density profile near a neutral surface for different values
of pH. The salt concentration is 10 mM, the chain length is 𝑁 = 50 and the grafting
density is 𝜎𝑔𝑏2 = 0.01.

mean-field result is to the theory with correlations, despite their differences in the
bulk titration behavior. The reason is that the local electrostatic potential plays an
important role in determining the charge state of each monomer, representing a one-
body term on each monomer. The similarity between theories in Figure V.17 is an
indication of the strong inhomogeniety in the local electrostatic potential [61]. At a
fixed pH, the addition of salt screens the ion-ion repulsion, which generally reduces
the penalty for ionization, leading to a higher ionized fraction with increasing salt.
There are multiple options for the brush height upon the addition of salt. Figure
V.18 shows that adding salt decreases the brush height, which indicates that we are
in the salted brush regime [68]. The onset of the salted brush regime is known to
occur in the range of 10 mM [59].
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Figure V.17: Average fraction of ionized monomers for a polyacid brush grafted to
a neutral surface versus the solution pH. The chain length is 𝑁 = 50 and the grafting
density is 𝜎𝑔𝑏2 = 0.01.

Figure V.18: Polyacid brush density profile near a neutral surface for different salt
concentrations. The pH is 7, the chain length is 𝑁 = 50 and the grafting density is
𝜎𝑔𝑏

2 = 0.01.

Electrostatic Manipulation

Up to this point, we have considered polyacid brushes grafted to neutral surfaces. For
the electroresponsive behavior, the guiding parameter is the electrostatic potential
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at the surface. When the surface is neutral, a grafted polyacid will induce a negative
surface potential. The point of zero potential usually refers to a positively charged
surface. Figure V.19 shows the effect of the surface potential on the brush height.
The abscissa in the plot is given as the negative value of the applied potential since
that is language of the motivating experimental work [56]. There are a few clear
trends. for any given pH: (1) a more negative applied potential swells the polyacid
brush and (2) the brush height rapidly changes in the range of zero potential, mostly
in the range of −Δ𝑉 ≈ 0.05 V. At the same time, the average ionized fraction in the
brush monotonically decreases for negative potentials. The central question posed
in Ref. 56 is founded on this question: how can the brush swell if the ionized
fraction decreases?

Figure V.19: Effect of applied potential on the brush conformation and charge. (left)
Brush height and (right) average ionized fraction as a function of the negative of the
applied electrostatic potential on the surface. The chain length is 𝑁 = 20 and the
grafting density is 𝜎𝑔𝑏2 = 0.01.

To answer this question, we turn to classical scaling arguments of polyelectrolyte
brushes [69]. Many of the main ideas that follow have been extensively considered
by Borisov and coworkers [54, 70]; however, the open question calls for a simple
explanation. Viewing the problem through a brush-centric lens does not work —
the surface condition plays an essential role. When a negative potential is applied
to a surface, the surface charge density will decrease since the capacitance must
be positive. When the surface charge density decreases, the polyacid will either
be less attracted to a positively charged surface or will be more repelled from a
negatively charged surface. This explanation captures the essential physics. From
scaling in the salted brush regime, the equilibrium height of the brush is determined
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by the balance of ion-ion repulsion in the brush region and the stretching of the
brush. Dividing the system into a bulk solution in contact with a brush region,
the ion-ion repulsion in the brush region can be directly related to the difference in
the osmotic pressure between the bulk solution and the brush region. The force of
chain stretching is 𝑓𝑒𝑙 ∼ 𝐻/𝑁𝑏2 ∼ 𝑏𝜎/𝜙brush and the ion-ion repulsion for a neutral
surface is 𝑓𝑖𝑜𝑛−𝑖𝑜𝑛 ∼

𝑓 2𝜙2
brush

𝜎𝑔𝑏
6𝐶𝑠

, where 𝜙brush = 𝑁𝑏3𝜎𝑔/𝐻 is the average monomer
volume fraction in the brush region. The balance of these two forces leads to the
classic scaling relation for the brush height, 𝐻 ∼ 𝑁𝑏2/3𝜎1/3

𝑔 𝐶
−1/3
𝑠 𝑓 2/3. From this

relationship, applying a negative potential decreases the average ionization 𝑓 and the
brush should contract. In the brush region if one includes the contribution from the
surface charge density, the scaling relationship changes. To add this contribution,
we treat it similarly to the fixed, immobilied charge of the monomers in the brush
region so that the ions in the bulk solution see a charge of 𝑄𝑠/𝐻 from the surface.

The ion-ion repulsion is then 𝑓𝑖𝑜𝑛−𝑖𝑜𝑛 ∼
𝑓 2𝜙2

brush

(
1− 𝑄𝑠

𝑁 𝑓 𝜎𝑔

)2

𝜎𝑔𝑏
6𝐶𝑠

for a polyacid where 𝑓 > 0.

The brush height scaling becomes 𝐻 ∼ 𝑁𝑏2/3𝜎1/3
𝑔 𝐶

−1/3
𝑠

(
𝑓 − 𝑄𝑠

𝑁𝜎

)2/3
.

The scaling analysis above indicates that the brush height is determined by the
effective charge fraction, 𝑓 − 𝑄𝑠

𝑁𝜎
, that the counterions in the bulk solution see in the

brush region. For a fixed charge fraction for a negatively charged polyelectrolyte,
the effective charge fraction is clearly monotonic with the surface charge density.
Namely, the effective charge fraction increases with a negatively charged surface and
decreases with a positively charged surface. Of course, the scaling analysis above
is not applicable in the regime where the polyelectrolyte is fully collapsed on the
surface. In that case, the relevant force balance is the attraction of the brush to the
surface and the force required to confine the brush to a thin surface layer [71]. For
weak polyelectrolytes, the charge fraction 𝑓 decreases as −𝑄𝑠 increases, leading to a
competition between change in ionization and the change in surface charge density.
In other words, when applying a negative potential to the surface, the energy can
either go toward neutralizing monomers or confining more small ions in the brush
region. One can also coarsely work out a condition on the capacitance from the
scaling relationship, where brush extension upon applying a negative potential will
occur when 𝐶𝑑 > 𝑁𝜎

𝜕 𝑓

𝜕Δ𝑉
. The dependence of 𝑓 on the surface potential is not

obvious, but can be calculated numerically. Figure V.20 shows that the effective
charge fraction for the polyacid brush considered here is monotonically increasing
with the negative applied potential, indicating that the brush should swell. While not
shown, the same trend is true for salt concentrations of 10mM and 1000mM as well.
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We do not expect the scaling exponents to be accurate for this system because we
are considering short chains and the electrostatic correlations adjust the expression
for the ion-ion repulsion. Other brush systems also have shown scaling that deviates
from the predicted scaling, even at the mean field level [72].

Figure V.20: Effective fraction as a function of the negative of the applied electro-
static potential on the surface. The chain length is 𝑁 = 20 and the grafting density
is 𝜎𝑔𝑏2 = 0.01.

Having established the swelling behavior from pure electrostatic arguments, we
investigate some implications of the electroresponsiveness. Namely, we will analyze
the capacitance of the polyacid brush in different solvent conditions. Figure V.21
shows the brush height when applying a negative potential and the corresponding
capacitance for two different solvent conditions. The Appendix shows how we
incorporate the solvent quality into our theory. Looking at the left-hand panels,
the region where the brush height rapidly changes corresponds to a peak in the
differential capacitance. The reason for this is that as the brush expands, counterions
rush into the brush region, potentially leading to a large change in the charge stored
in the EDL. So for the polyacid brush, the brush height response to the potential is
intimately connected to the capacitance performance. The right-hand panels show
the same plots for the brush in a better solvent 𝜒 = 5.0. Increasing the solvent quality
increases the ability of the brush to extend, where the brush can resist electrostatic
forces that may collapse the brush on the surface. The net result is that the brush
height changes more slowly when applying a surface potential. For the capacitance,
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a less dramatic change in the brush height leads to a less dramatic peak in the
capacitance. So for capacitance applications, the optimal conditions are to have a
poor enough solvent to cause rapid extension upon charging without having too poor
of a solvent, where the electrostatic forces cannot overcome the barrier to extend the
brush.

Figure V.21: Brush extension and capacitance as a function of the negative of the
applied electrostatic potential for different solvent qualities. The chain length is
𝑁 = 20 and the grafting density is 𝜎𝑔𝑏2 = 0.01.

The capacitance has a nontrivial dependence on the pH and the salt concentration.
For each individual pH and salt concentration, the peak of interesting the capacitance
can be understood using the argument above. Figure V.22 shows the varying behavior
in the capacitance with pH and salt concentration. A benefit of the analysis above
is that one can tune the capacitance by understanding the electroresponse of the
brush height, rather than having to measure surface properties that may be difficult
to access experimentally.
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Figure V.22: Capacitance for different values of pH. The chain length is 𝑁 = 20 and
the grafting density is 𝜎𝑔𝑏2 = 0.01.

Conclusion
For weak polyelectrolyte brushes, the interplay of the charge state, solution con-
ditions, and electrostatic interaction with the surface lead to a variety of brush
conformations. Recent experiments described an apparent paradox where applying
a negative potential to a polyacid swells the brush. One may expect that a neg-
ative potential should decrease the ionized fraction and contract the brush. This
brush-centric view neglects the role of the fixed, immobilized surface charges. We
rationalize the experimental observations through a scaling analysis that includes
the surface charges and provide numerical results from an inhomogeneous thermo-
dynamic theory. The mechanism for the brush swelling is related to the surface
charge compensation by the small ions. Future work in this area includes elucidat-
ing the origin of hysteresis upon charging and discharging a surface with a weak
polyelectrolyte brush, as seen in Ref. 56. Nonelectrostatic effects likely play an
important role in the conformation persisting in a metastable collapsed or swollen
state.
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Appendix
Potentials for Debye-Hückle Correlations

For clarity, we explicitly calculate the local chemical potential when all of the species
are the same size

𝛿𝛽 𝑓𝐷𝐻

𝛿𝜌𝛼 (r)
= −

𝑧2𝛼𝜅(r)𝑙𝐵
2(1 + 𝜅(r)𝑑)

(V.82)

𝛿𝛽 𝑓𝐷𝐻

𝛿𝜌𝑤 (x)
= − (𝑠𝑤)

2𝜅(r)𝑙𝐵
2(1 + 𝜅(r)𝑑)

(V.83)

𝛿𝛽 𝑓𝐷𝐻

𝛿𝜌𝑀 (X)
= −

𝑁∑︁
𝑗=1

(𝑠𝑀
𝑗
)2𝜅(r 𝑗 )𝑙𝐵

2(1 + 𝜅(r 𝑗 )𝑑)
(V.84)

𝛿𝛽 𝑓 𝑐ℎ
𝐷𝐻

𝛿𝜌𝛼 (r)
= −

𝑁−1∑︁
𝑗=1

∑︁
{𝑠𝑀

𝑗
}

∑︁
{𝑠𝑀

𝑗+1}
𝜌(r, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1)

𝜁 (r, 𝑠𝑀
𝑗
, 𝑠𝑀
𝑗+1)𝑑

(1 + 𝜅(r)𝑑)
2𝜋𝑙𝐵𝑧2𝛼
𝜅(r) (V.85)

𝛿𝛽 𝑓 𝑐ℎ
𝐷𝐻

𝛿𝜌𝑤 (x)
= −

𝑁−1∑︁
𝑗=1

∑︁
{𝑠𝑀

𝑗
}

∑︁
{𝑠𝑀

𝑗+1}
𝜌(r, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1)

𝜁 (r, 𝑠𝑀
𝑗
, 𝑠𝑀
𝑗+1)𝑑

(1 + 𝜅(r)𝑑)
2𝜋𝑙𝐵 (𝑠𝑤)2
𝜅(r) (V.86)

𝛿𝛽 𝑓 𝑐ℎ
𝐷𝐻

𝛿𝜌𝑀 (X)
=

𝑁−1∑︁
𝑗=1

𝜁 (r, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1) −
𝑁−1∑︁
𝑗=1

𝜌(r, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1)
𝜁 (r, 𝑠𝑀

𝑗
, 𝑠𝑀
𝑗+1)𝑑

(1 + 𝜅(r)𝑑)
2𝜋𝑙𝐵 (𝑠𝑀𝑗 )2

𝜅(r)
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𝛿𝛽 𝑓 𝑐ℎ
𝐷𝐻

𝛿𝜌𝑀 (X)
=

𝑁−1∑︁
𝑗=1

𝜁 (r, 𝑠𝑀𝑗 , 𝑠𝑀𝑗+1)
[
1 −

𝜌(r, 𝑠𝑀
𝑗
, 𝑠𝑀
𝑗+1) 𝑑

(1 + 𝜅(r)𝑑)
2𝜋𝑙𝐵 (𝑠𝑀𝑗 )2

𝜅(r)

]
(V.88)

Free energy and potentials for 𝜒-parameters

For a single component, the 𝜒 potential can be written as

𝐹𝜒 = 𝜒

∫
𝑑r′𝜌(r′)2 (V.89)
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Taking the variation with respect to the total density

𝛿𝐹𝜒

𝛿𝜌(X) = 2𝜒
∫

𝑑r′𝜌(r′) 𝛿𝜌(r
′)

𝛿𝜌(X) = 2𝜒
∫

𝑑r′𝜌(r′)
𝑁∑︁
𝑗=1

∫
𝑑r′𝑗

𝛿𝜌(r′)
𝛿𝜌 𝑗 (r′𝑗 )

𝛿𝜌 𝑗 (r′𝑗 )
𝛿𝜌(X)

= 2𝜒
∫

𝑑r′𝜌(r′)
𝑁∑︁
𝑗=1

𝛿𝜌 𝑗 (r′)
𝛿𝜌(X)

= 2𝜒
∫

𝑑r′𝜌(r′)
𝑁∑︁
𝑗=1
𝛿(r′ − r)

= 2𝜒
𝑁∑︁
𝑗=1

∫
𝑑r′𝜌(r′)𝛿(r′ − r)

= 2𝜒
𝑁∑︁
𝑗=1

𝜌(r)

(V.90)

For relevance to the free energy,

−
∫

𝑑X′𝜌(X′)
𝛿𝐹𝜒

𝛿𝜌(X′) = −2𝜒𝑁
∫

𝑑X′𝜌(X′)
𝑁∑︁
𝑘=1

𝜌𝑘 (r′𝑘 )

= −2𝜒𝑁
𝑁∑︁
𝑘=1

∫
𝑑r′𝑘𝜌𝑘 (r

′
𝑘 )

∫
𝑑X′′𝜌(X′′)𝛿(r′𝑘 − r′′)

= −2𝜒𝑁
𝑁∑︁
𝑘=1

∫
𝑑r′𝑘𝜌

2
𝑘 (r
′
𝑘 )

(V.91)

We can also treat a 𝜒-parameter that is only applied to specific states. For example,
to model hydrogen bonding, one could define a 𝜒-parameter between the protonated
form of acid and (any) water,

𝐹𝜒𝐻 = 𝜒𝐻

∫
𝑑r′ [𝜌𝑤 (r′) + 𝜌𝑀 (r′, 0)]2 (V.92)

Taking the variation with respect to the total density

𝛿𝐹𝜒

𝛿𝜌(X) = 2𝜒𝐻
∫

𝑑r′ [𝜌𝑤 (r′) + 𝜌𝑀 (r′, 0)]
(
𝛿𝜌𝑤 (r′)
𝛿𝜌(X) +

𝛿𝜌𝑀 (r′, 0)
𝛿𝜌(X)

)
= 2𝜒𝐻

∫
𝑑r′ [𝜌𝑤 (r′) + 𝜌𝑀 (r′, 0)]

𝑁∑︁
𝑗=1
𝛿(r − r′)𝛿𝑠 𝑗 ,0

= 2𝜒𝐻
𝑁∑︁
𝑗=1
[𝜌𝑤 (r′) + 𝜌𝑀 (r′, 0)] 𝛿𝑠 𝑗 ,0

(V.93)
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𝛿𝐹𝜒

𝛿𝜌𝑤 (x)
= 2𝜒𝐻

∫
𝑑r′ [𝜌𝑤 (r′) + 𝜌𝑀 (r′, 0)]

(
𝛿𝜌𝑤 (r′)
𝛿𝜌𝑤 (x)

+ 𝛿𝜌𝑀 (r
′, 0)

𝛿𝜌𝑤 (x)

)
= 2𝜒𝐻

∫
𝑑r′ [𝜌𝑤 (r′) + 𝜌𝑀 (r′, 0)]

∑︁
𝑠′
𝑊

𝛿(r − r′)𝛿𝑠𝑤 ,𝑠′𝑤

= 2𝜒𝐻 [𝜌𝑤 (r) + 𝜌𝑀 (r, 0)]

(V.94)
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