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ABSTRACT

This thesis investigates the temperature dependence of physical adsorption or ph-
ysisorption energy using theoretical, computational, and experimental approaches.

Chapter 1 provides an overview of the van der Waals potential as the driving energy
for physical adsorption and reviews various methods for calculating this potential,
from the Lennard-Jones potential to recent DFT algorithms.

Chapter 2 reviews the thermodynamics of physical adsorption and emphasizes the
importance of considering the motions of adsorbed gas molecules, which are de-
termined by the potentials. Henry’s law and variants of the Langmuir model are
derived based on different potentials, and different forms of adsorption energy are
presented.

Chapter 3 focuses on experiments and reports a significant weakening of the ad-
sorption energy by 13% and 15% for two different materials with the temperature
increase, as obtained from adsorption isotherms collected for krypton adsorption on
active carbon materials over a temperature range of 250 K to 330 K and analyzed
using Henry’s law.

Chapter 4 is the central part of the work, where density functional theory calcu-
lations with the many-body dispersion energy method are used to calculate the
adsorption potentials and derive corresponding adsorption energies for different
sizes of pores. The study demonstrates that the structures of the pores significantly
influence the surface dynamics and the internal energies of the adsorbates at differ-
ent temperatures. Gas molecules adsorbed in pores of different sizes have different
heat capacities larger than the gas phase. The computations use the slit-pore model
with the 2-dimensional ideal gas assumption in the classical limit, and comparisons
are made with quantum analysis, non-ideal slit-pore model, and slit-pores with mul-
tiple layers in the latter three subsections of the second section. The third section
simulates the thermal displacements of the adsorbent at different temperatures with
the stochastic Temperature Dependent Effective Potential method and reveals that
thermal displacement has a small impact on the van der Waals potential but cannot
change the adsorption energy.

Chapter 5 combines the experimental and computational results and shows 5% and
15% of adsorption energy weakening for two different materials. The reasons for
this temperature dependence are proposed, including the larger heat capacities in the
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adsorbed phase mentioned in Chapter 3 and the fact that pores with higher energies
become more accessible at high temperatures due to Boltzmann statistics, which
weakens the statistically averaged internal energy. Other possible reasons are also
discussed, and further research projects are proposed.
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C h a p t e r 1

ENERGY OF PHYSICAL ADSORPTION

Physical adsorption, also known as physisorption, occurs when a fluid comes into
contact with a surface. The fluid that adheres to the surface is called the adsorbate,
while the surface substrate is called the adsorbent. Unlike absorption, the adsorbate
does not penetrate the adsorbent. Instead, the adsorbate generates a thin layer on
the surface of the adsorbent, referred to as the adsorbed phase (Nicholson and
Parsonage, 1982; Toth, 2002; Ruthven, 2006).

Physisorption is used widely in our daily lives. With physisorption, activated carbons
in air purifiers can separate odorous chemicals. Physisorption is also critical in the
industry. Heterogeneous catalysis is an example. In the Haber–Bosch process,
nitrogen (N2) and hydrogen (H2) are physically adsorbed on the catalyst and react
to form ammonia (NH3) (Haber and Le Rossignol, 1913). There are many new
developing fields using physisorption principles, including gas storage (Chen et al.,
1997; Menon and Komarneni, 1998; Poirier, Chahine, and Bose, 2001; Panella,
Hirscher, and Roth, 2005; Jorda-Beneyto et al., 2007) and energy storage (Lefebvre
and Tezel, 2017).

As its name implies, physisorption is primarily driven by physical interactions, such
as van der Waals forces, hydrogen bonding, and electrostatic interactions, without
forming chemical bonds. Among the physical forces, one of the most significant
interactions for physisorption is the van der Waals (vdW) interaction, named after
the Dutch physicist Johannes Diderik van der Waals.

1.1 vdW Force
The origin of the vdW force is illustrated in Fig. 1.1. Starting from Fig. 1.1(a), the left
part shows two non-polarized particles without vdW interaction. Assume these two
particles are two single-atom molecules, and the red parts are nuclei while the blue
parts are electron clouds. When these two molecules are put together, according to
the Born–Oppenheimer approximation, their nuclei positions are almost fixed while
their electron clouds quickly reach a new equilibrium position. To minimize the
potential energy, the electron clouds will move further from each other, creating two
"instantaneous induced dipoles." In this case, the vdW interaction is the interaction
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Particals without 

vdW interaction

Particals with

vdW interaction

(a)

(b)

(c)

Keesom force

Debye force

London dispersion force

Figure 1.1: Illustration of the vdW interaction on different types of molecules. The
red parts represent the positive charges, mostly given by the nuclei of the atoms.
The blue parts represent the negative charges, mostly given by the electrons of the
atoms. On the left are the particles without vdW interactions, and on the right are
the particles under vdW interactions. The dashed blue lines are the positions of
negative electrons without vdW forces, and the solid blue lines are with vdW forces.
(a) London dispersion force: the vdW interaction between non-polarized particles
(London, 1937; Leite et al., 2012). (b) Debye force: the vdW interaction between
non-polarized and polarized particles (Leite et al., 2012). (c) Keesom force: the
vdW interaction between polarized particles (Keesom, 1915; Leite et al., 2012)

.

between these two induced dipoles, named the "London dispersion force." Fig. 1.1(b)
and (c), show the molecules with initial polarizations. These dipoles change both
the orientations and the magnitudes (Kittel, 2004; Leite et al., 2012).

1.2 LJ Expression of vdW Potential
In 1924, John Lennard-Jones proposed a potential to characterize the London dis-
persion interaction, which was later called the "Lennard-Jones (LJ) potential":

𝜀LJ(𝑅) = −4𝜀0

[(𝜎
𝑅

)12
−
(𝜎
𝑅

)6
]
, (1.1)

where 𝑅 is the distance between the adsorbent and adsorbate. 𝜀0 is a negative
constant describing the magnitude of the potential. 𝜎 is a constant with the unit
of distance. When 𝑅 < 𝜎, the repulsive potential dominates, and when 𝑅 > 𝜎,
this potential turns attractive. This energy reaches extrema 𝜀0 when 𝑅 = 21/6 · 𝜎
(Lennard-Jones, 1931; Kittel, 2004).



3

In Eq. (1.1), the −4𝜀0𝜎
6/𝑅6 part shows the dipole-dipole interaction. Meanwhile,

the −4𝜀0𝜎
12/𝑅12 part represents the repulsion by Pauli exclusion theory. although

different forms of repulsion potentials are also proposed, Eq. (1.1) is precise enough
to describe the interaction between inert gas molecules.

Although LJ potential is an empirical-based model, the −4𝜀0𝜎
6/𝑅6 term can be

given by simple analysis with the harmonic oscillator model, shown below and in
Fig. (1.2).

+ −

Rr
1

r
2

+ −

Figure 1.2: Illustration of the interaction between two harmonic oscillators. The red
parts are positive charges, and the blue parts are negative charges. 𝑅 is the distance
between the positive charges, which is fixed according to the Born–Oppenheimer
approximation. 𝑟1 and 𝑟2 are the distance between the positive and negative charges.
𝑅 is much larger than 𝑟1 and 𝑟2.

Assuming the electron cloud in the atom behaves like a harmonic oscillator around
the nucleus, and the frequency is 𝜔. The initial Hamiltonian without the vdW force
is given by:

𝐻0 =
𝑝2

1
2𝑚

+
𝑚𝜔2𝑟2

1
2

+
𝑝2

2
2𝑚

+
𝑚𝜔2𝑟2

2
2

. (1.2)

With the Coulombic potential, the additional inter-molecule Hamiltonian is:

𝐻1 =
𝑘e𝑞

2
e

𝑅
+

𝑘e𝑞
2
e

𝑅 − 𝑟1 + 𝑟2
−

𝑘e𝑞
2
e

𝑅 − 𝑟1
−
𝑘e𝑞

2
e

𝑅 + 𝑟2
, (1.3)

where 𝑞e is the quantity of electric charge and 𝑘e is the Coulomb constant. By doing
a second-order Taylor expansion on Eq. 1.3, it becomes:

𝐻1 = −
2𝑘e𝑞

2
e𝑟1𝑟2

𝑅3 . (1.4)
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By defining:

𝑟s ≡
𝑟1 + 𝑟2√

2
, 𝑟a ≡

𝑟1 − 𝑟2√
2

; (1.5)

and

𝑝s ≡
𝑝1 + 𝑝2√

2
, 𝑝a ≡

𝑝1 − 𝑝2√
2

; (1.6)

where the subscript s means symmetric while a means anti-symmetric. Taking 𝐻0

and 𝐻1 together, the total Hamiltonian 𝐻𝑡 is:

𝐻t =

[
𝑝2
𝑠

2𝑚
+
𝑚𝑟2

s
2

(
𝜔2 −

2𝑘e𝑞
2
e

𝑚𝑅3

)]
+
[
𝑝2
𝑎

2𝑚
+
𝑚𝑟2

a
2

(
𝜔2 +

2𝑘e𝑞
2
e

𝑚𝑅3

)]
. (1.7)

Eq. (1.7) shows the Hamiltonian of two harmonic oscillators with the frequency of
𝜔s = (𝜔2 − 2𝑘e𝑞

2
e/𝑚𝑅3)1/2 and 𝜔a = (𝜔2 + 2𝑘e𝑞

2
e/𝑚𝑅3)1/2. The ground state

energy is then: 1/2 ℏ(𝜔a + 𝜔s). Compared with the initial harmonic oscillators
without Coulombic interaction with a ground state energy of 2 · 1/2 ℏ𝜔 = ℏ𝜔, the
difference in energy is 𝑘2

e𝑞
4
e/ 2𝑚2𝑅6, which is in proportion to 1/ 𝑅6 (Kittel, 2004).

1.3 DFT Algorithms for vdW Potential
Density functional theory (DFT) is a popular method for calculating the energies
of electrons and nuclei. Before DFT, the Hartree–Fock (HF) method was used for
solving the Schrödinger equation and getting the energy. The system wave function
was a Slater determinant containing the wave functions of all electrons. Assuming
the system contains 𝑁 electrons, the HF method has to solve 𝑁 independent wave
functions, which is difficult for complex systems (D. R. Hartree and W. Hartree,
1935; Echenique and Alonso, 2007; Sholl and Steckel, 2009).

DFT emerged after Pierre Hohenberg and Walter Kohn proved the Hohenberg-Kohn
theorems in 1964. They proved that the properties of a system in its ground state,
including the system wave function, could be determined from only the density of
electrons (Hohenberg and Kohn, 1964; Gilbert, 1975). Based on this, the DFT
method only needs to solve the density of the electrons rather than to solve the
individual electron wave functions, which significantly reduces the complexity of
analyzing many-electron systems.

With the density functional and the Schrödinger equation, the system energy turns
into:

𝜖DFT [𝜌(®𝑟)] = 𝑇 [𝜌(®𝑟)] +𝑈 [𝜌(®𝑟)] +
∫
𝑉 (®𝑟)𝜌(®𝑟)𝑑 ®𝑟3. (1.8)
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where 𝜖DFT is the energy of the system, 𝑇 is the kinetic energy, 𝑈 is the elec-
tron–electron interaction energy and 𝑉 is the potential energy. 𝜌 is the electron
density and 𝑟 is the spatial vector.

To solve Eq. (1.8), Walter Kohn and Lu Jeu Sham proposed a method in 1965
(Kohn and Sham, 1965; Sholl and Steckel, 2009). They regard the electron-electron
interaction as part of the potential, so the total potential is given by:

𝑉s(®𝑟) = 𝑉 (®𝑟) +𝑈 (®𝑟), (1.9)

and the Schrödinger equation becomes:[
− ℏ2

2𝑚
∇2 +𝑉s(®𝑟)

]
𝜙(®𝑟) = 𝜖DFT𝜙(®𝑟). (1.10)

This equation is known as the Kohn–Sham equation. In practice, an initial guess for
𝜌(®𝑟) is used for the 𝑈 (®𝑟) in Eq. (1.9). Taking that into Eq. (1.10), the system wave
function 𝜙(®𝑟) can be solved. This wave function 𝜙(®𝑟) is used for generating electron
density 𝜌(®𝑟) for the next iteration. With the new 𝜌(®𝑟) and Eq. (1.10), a new 𝜙(®𝑟)
is achieved. By repeating this process for multiple iterations, the 𝜙(®𝑟) and 𝜖 should
converge.

DFT is good for analyzing system energies. However, it becomes less accurate when
it comes to the vdW interaction. An intuitive idea would be that the vdW energy
is too small, and the algorithm cannot distinguish this energy with possible error.
However, there are other more important reasons. First, standard DFT functionals
focus on short-range interactions, where the electron clouds of two atoms overlap.
Second, DFT only gives a time-averaged electron density, and the time-dependent
waves of each electron are unclear. Reviewing the derivation of the 𝑅−6 potential
in the last section, the Coulombic potential impacts harmonic oscillators, and two
different vibrational modes emerge. The correlation between the two harmonic
oscillators is time-dependent, and the electron clouds do not overlap. Therefore,
standard DFT functionals can not unveil these long-range correlated two modes
(Klimes and Michaelides, 2012; Stohr, Voorhis, and Tkatchenko, 2019).

In principle, analyzing the individual electron wave functions with the HF method
can give the vdW interaction accurately. Methods like the coupled cluster (CC)
follow this track. The results given by CCSD(T), a certain type of CC method, are
usually used as the benchmarks for computation (Stohr, Voorhis, and Tkatchenko,
2019). However, these methods are resource-consuming, and therefore, corrections
for DFT are needed. Here, three different types of corrections will be discussed.
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1.3.1 DFT-D and DFT-D2
The simplest idea of correction is adding the 𝑅−6 potential on the total DFT energy:

𝜖t = 𝜖DFT +
∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

𝐶𝑖 𝑗/𝑅6
𝑖 𝑗 , (1.11)

where 𝑖 and 𝑗 are the indexes of the atoms. 𝐶𝑖 𝑗 =
√︁
𝐶𝑖𝑖 · 𝐶 𝑗 𝑗 is the potential constant,

where 𝐶𝑖𝑖 and 𝐶 𝑗 𝑗 are the constant of the same species. 𝑅𝑖 𝑗 is the distance between
the 𝑖tℎ and 𝑗 tℎ atom.

As the initial attempt of adding vdW potential, DFT-D is cheap in computational
cost but obviously inaccurate. Compared with the LJ potential, DFT-D ignores
the Pauli exclusion repulsion and is only suitable for very long-range interactions.
To improve accuracy in the short-range interaction, Stefan Grimme developed the
DFT-D2 algorithm in 2006 (Grimme, 2006). Compared with DFT-D, DFT-D2 adds
a damping function to the correction:

𝜖t = 𝜖DFT +
∑︁
𝑖, 𝑗 ,𝑖≠ 𝑗

𝑓6(𝑖, 𝑗 , 𝑅𝑖 𝑗 ) · 𝐶𝑖 𝑗/𝑅6
𝑖 𝑗 , (1.12)

and the damping function is:

𝑓6(𝑖, 𝑗 , 𝑅𝑖 𝑗 ) =
𝑠6

1 + exp
[
−𝑑 ·

(
𝑅𝑖 𝑗 / 𝑠𝑅 · 𝜎𝑖 𝑗 − 1

) ] , (1.13)

where 𝑠6 is a global scaling factor determined by the DFT functional. 𝑠𝑅 is the
scaling factor usually set as 1. 𝑑 is the damping factor, usually set as 20. 𝜎𝑖 𝑗 =
0.5 (𝜎𝑖𝑖 + 𝜎𝑗 𝑗 ) is the constant similar to the 𝜎 in Eq. (1.1). This damping function
has the following features. When 𝑅𝑖 𝑗 is small and close to 0, the damping function
is 𝑠6/[1 + exp(𝑑)] ≈ 0. When 𝑅𝑖 𝑗 = 𝑠𝑅 · 𝜎𝑖 𝑗 , the damping function is 𝑠6/2. When
𝑅𝑖 𝑗 is large, the damping function is 𝑠6.

1.3.2 DFT-D3 and Tkachenco-Scheffler (TS)
With the damping function, the DFT-D2 method successfully generates the LJ-like
potential. However, the upcoming problem is that the factors in DFT-D2 only depend
on the type of the atoms but not their environments. For example, the carbon atoms
in methane, ethylene, acetylene, and benzene have the same factors. However, that
is physically not true, as their electrons are in completely different orbits. To get
more precise results, algorithms at the next level are developed.

Grimme et al. improved the DFT-D2 to DFT-D3 in 2010 (Grimme et al., 2010;
Grimme, 2011). Compared with DFT-D2, DFT-D3 adds an extra 𝑅−8 potential and
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corresponding damping function. This potential arises from higher order Taylor
expansion in Eq. (1.3) and Eq. (1.4). More importantly, the 𝐶𝑖 𝑗 in Eq. (1.12) is
adjusted according to the coordinates of the atoms. Atoms are squeezed by their
nearby neighbors, and the electrons are less polarizable. The vdW potentials are
then smaller.

Meanwhile, Alexandre Tkatchenko and Matthias Scheffler developed another im-
proved algorithm, the Tkatchenko-Scheffler (TS) method (Tkatchenko and Scheffler,
2009). The form of the TS potential is the same as Eq. (1.12). However, The com-
bination rules of 𝐶𝑖 𝑗 and 𝑅𝑖 𝑗 are no longer quadratic and arithmetic mean values
of the single-type molecule parameters. They modified the combination rules by
considering the electron density near the atoms calculated by DFT.

1.3.3 Many-Body Dispersion (MBD)
Beyond the environmental-dependent vdW potential, the many-body interactions
become important, as the corrections mentioned before consider only pair-by-pair
interactions. The difference between the pairwise and many-body interactions is
clearly shown in Fig. (1.3) adopted from Tkatchenko and co-workers’ paper. Without
the many-body effects, the interaction between the A and B atoms can not feel the
electron from the C atom. However, as Fig. (1.3) shows, this assumption cannot
show the coupling interaction among the three atoms, for example, the out-of-plane
fluctuation.

C

A

B

AB

AB
BC

BC

AC

AC

C

A

B

(a) (b)

Figure 1.3: Illustration of the difference between the pairwise and the many-atom
vdW interaction. The three spheres are inert gas molecules. The arrows are the
alignment of fluctuating, instantaneous dipoles, which show the "eigenmodes" of
the electron density fluctuations. The red arrows in (b) are perpendicular to the
plane. Figure inspired by the citation (Stohr, Voorhis, and Tkatchenko, 2019).
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To include the many-body effects, Tkatchenko and co-workers developed the Many-
Body Dispersion (MBD) algorithm (Tkatchenko, Distasio, et al., 2012; Ambrosetti
et al., 2014). It starts from the adiabatic-connection fluctuation-dissipation (ACFD)
theorem, analyzing the Coulomb-coupled system energy. Then it uses the random
phase approximation (RPA) to simplify the expression for the energy. For the
atoms, the coupled fluctuating dipole model (CFDM) is employed, and the atoms
are regarded as three-dimensional (3D) quantum harmonic oscillators (QHOs). The
MBD algorithm shows a better correspondence with the Benchmark data (Gould
et al., 2016; Kim et al., 2016; Stohr, Voorhis, and Tkatchenko, 2019).
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C h a p t e r 2

THERMODYNAMIC ANALYSIS OF PHYSISORPTION

The previous chapter described the origin of the physisorption on the molecular
scale. However, physisorption is generally observed on a much larger scale. For
working with experimental investigations, thermodynamic analysis of physisorption
is important. This section summarizes several well-established thermodynamic the-
ories that explore the relationship between adsorption energy and the vdW potential
energy.

2.1 Clausius-Clapeyron Equation
The Clapeyron equation is one of the most important equations in phase change
(Sandler, 2017). It derives the enthalpy of phase change with the following equation:

Δℎ

𝑇 · Δ𝑣 =
ℎ𝛼 − ℎ𝛽

𝑇 · (𝑣𝛼 − 𝑣𝛽)
=

(
𝜕𝑃

𝜕𝑇

)
𝑛

, (2.1)

where ℎ is the enthalpy and 𝑣 is the volume. 𝑃 and 𝑇 are pressure and temperature.
𝑛 represents the number of molecules already changed from the 𝛼 phase to the 𝛽
phase. The derivation of this equation is not complicated. In the phase change
process, the chemical potentials of different phases are equivalent:

𝜇𝛼 = 𝜇𝛽. (2.2)

In the 𝑃 −𝑇 − 𝜇 space, the condition in Eq. (2.2) corresponds to a surface called the
binodal surface or the coexistence surface. On this surface,

d𝜇𝛼 = d𝜇𝛽. (2.3)

Taking the Gibbs-Duhem equation:

d𝜇 = −𝑠d𝑇 + 𝑣d𝑃 (2.4)

into Eq. (2.3), it becomes:

(𝑠𝛼 − 𝑠𝛽) d𝑇 = (𝑣𝛼 − 𝑣𝛽) d𝑃 (2.5)

which is equivalent to:

(𝑠𝛼 − 𝑠𝛽)
(𝑣𝛼 − 𝑣𝛽)

=
d𝑃
d𝑇
. (2.6)
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At a phase transition, the difference between the Gibbs free energy of the two phases
is zero. That means:

0 = 𝑔𝛼 − 𝑔𝛽 = (ℎ𝛼 − ℎ𝛽) − 𝑇 (𝑠𝛼 − 𝑠𝛽). (2.7)

Taking Eq. (2.7) in Eq. (2.6), the Clapeyron equation shown in Eq. (2.1) is derived.
The Clapeyron equation gives the enthalpy for phase change by several parameters,
including temperature, pressure, and volume, and these parameters are observable
in experiments. For the phase transition between the gas and a condensed phase, the
adsorbed phase, for example, the volume is considered very small compared with
the gas phase. By implementing the ideal gas condition, Eq. (2.1) turns into:

Δℎst = ℎads − ℎgas = − 𝑘B𝑇
2

𝑃

(
𝜕𝑃

𝜕𝑇

)
𝑛

, (2.8)

which is a form of the Clausius-Clapeyron equation. Here, ℎst is the isosteric
enthalpy of adsorption of one molecule, and isosteric means the same amount of
adsorption (Huang, 1972; Shen et al., 2000; Farrusseng et al., 2009; Helmy, Ferreiro,
and Bussetti, 1996; Son et al., 2018; Yu et al., 2021). For the ideal gas, its internal
energy is:

𝑢gas = ℎgas − 𝑃𝑣gas = ℎgas − 𝑘B𝑇. (2.9)

Assuming the volume is negligible for the adsorbed phase, its internal energy equals
its enthalpy. Taking these in Eq. (2.8), the isosteric energy is given by:

Δ𝑢st = 𝑢ads − 𝑢gas = − 𝑘B𝑇
2

𝑃

(
𝜕𝑃

𝜕𝑇

)
𝑛

+ 𝑘B𝑇. (2.10)

Note that both Δ𝑢st and Δℎst are negative values. Because of the 𝑘B𝑇 term in
Eq. (2.10), the magnitude of Δ𝑢st is smaller than Δℎst.

2.2 Henry’s Law
The previous section described fixed adsorption amount cases, also called isosteric
cases. However, the isosteric condition is not easy to maintain in experiments,
while the isothermal condition is used more often. The amount of adsorption versus
pressure at the same temperature is named the "isotherm", and Henry’s law is the
most straightforward method to fit the isotherms:

𝑛 = 𝐾H · 𝑃, (2.11)
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where 𝐾H is Henry’s constant, which changes with the temperature 𝐾H(𝑇) (Hill,
1994; Sandler, 2017). In this thesis, 𝑛 is the number of molecules.

Henry’s law was proposed by William Henry over two hundred years ago. The
limitation of Henry’s law is that it is only valid for low-pressure and small amounts
of adsorption. However, it is still a good method to evaluate the isosteric adsorption
energy. For the same adsorption amount, taking this relationship in Eq. (2.10), the
isosteric energy is:

Δ𝑢st = 𝑢ads − 𝑢gas =
𝑘B𝑇

2

𝐾H

(
𝜕𝐾H

𝜕𝑇

)
𝑛

+ 𝑘B𝑇. (2.12)

2.3 Langmuir Model
In 1916, Irving Langmuir proposed the following law of adsorption, named the
Langmuir adsorption model:

𝜃 =
𝑛

𝑁
=

𝐾L · 𝑃
1 + 𝐾L · 𝑃, (2.13)

where 𝑁 is the total number of sites allowed for adsorption, and 𝜃 is the fraction
of coverage. 𝐾L is a constant. This Langmuir model describes the single layer of
adsorption, and it turns into Henry’s law at low pressure or low coverage (Langmuir,
1916).

The statistical-mechanical derivation of the Langmuir model starts from the two-
state model (Hill, 1994; Swenson and Stadie, 2019). For the 𝑁 sites, there are the
occupied and vacancy states. Each occupied site acquires an additional energy of 𝜀.
Here, 𝜀 is a negative value generally considered constant with temperature.

The canonical partition function of the system, 𝑄, contains two parts. First is the
configurational entropy of picking 𝑛 adsorbed sites from 𝑁 sites. Second is the
partition function of the single particle, corresponding to the energy of the adsorbed
phase. Therefore, it goes by:

𝑄(𝑛, 𝑁, 𝑇) = 𝑁!
𝑛!(𝑁 − 𝑛)!𝑞

𝑛
ads =

𝑁!
𝑛!(𝑁 − 𝑛)! exp(− 𝑛𝜖

𝑘B𝑇
). (2.14)

Here, 𝑞ads is the partition function of a single adsorbed molecule. 𝑁 is similar to
the 𝑉 in the classical 𝑛 −𝑉 − 𝑇 ensemble. The Helmholtz free energy is then given
by:

𝐹 = 𝑈ads − 𝑇𝑆ads = −𝑘B𝑇 ln𝑄 = 𝑛𝜖 − 𝑘B𝑇 ln
𝑁!

𝑛!(𝑁 − 𝑛)! ,

≈ 𝑛𝜖 − 𝑘B𝑇 [𝑁 ln 𝑁 − (𝑁 − 𝑛) ln(𝑁 − 𝑛) − 𝑛 ln 𝑛],

(2.15)
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where Stirling’s approximation ln 𝑛! ≈ 𝑛 ln 𝑛 − 𝑛 is used. The chemical potential of
the adsorbed phase is then:

𝜇ads =

(
𝜕𝐹

𝜕𝑛

)
𝑁,𝑇

= 𝜖 + 𝑘B𝑇 ln
𝑛

𝑁 − 𝑛 . (2.16)

Meanwhile, the ideal gas chemical potential is:

𝜇gas = 𝑘B𝑇 ln
𝑃Λ3

𝑘B𝑇
, (2.17)

where Λ is the thermal de Broglie wavelength:

Λ ≡

√︄
2𝜋ℏ2

𝑚𝑘B𝑇
, (2.18)

where 𝑚 is the mass of the adsorbed molecule (Hill, 1994). During the adsorption,
the two chemical potentials should be equal:

𝜇ads = 𝜇gas. (2.19)

Taking Eq (2.16) and Eq (2.17) in Eq (2.19), the Langmuir model is:

𝜃 =
𝑛

𝑁
=

𝑃Λ3 exp(−𝜖/𝑘B𝑇)/𝑘B𝑇

1 + 𝑃Λ3 exp(−𝜖/𝑘B𝑇)/𝑘B𝑇
. (2.20)

Compared with Eq (2.13), with this derivation, 𝐾L = Λ3 exp(−𝜖/𝑘B𝑇)/𝑘B𝑇 . Here,
𝐾L is in proportion to 𝑇−5/2 if 𝜖 is temperature-independent.

Another equivalent derivation uses the grand canonical ensemble:

Ω(𝜇, 𝑁, 𝑇) =
𝑁∑︁
𝑛=0

𝑁!
𝑛!(𝑁 − 𝑛)!𝑞

𝑛
ads exp( 𝑛𝜇

𝑘B𝑇
),

=

𝑁∑︁
𝑛=0

𝑁!
𝑛!(𝑁 − 𝑛)! exp(− 𝑛𝜖

𝑘B𝑇
) exp( 𝑛𝜇

𝑘B𝑇
),

=

[
1 + exp

(
𝜇 − 𝜖
𝑘B𝑇

)]𝑁
.

(2.21)

The expected number of adsorbed molecules is:

⟨𝑛⟩ =
[

𝜕 lnΩ
𝜕 (𝜇/𝑘B𝑇)

]
𝑁,𝑇

=
𝑁 exp[(𝜇 − 𝜖)/𝑘B𝑇]

1 + exp[(𝜇 − 𝜖)/𝑘B𝑇]
. (2.22)
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During the adsorption, the chemical potential 𝜇 equals the gas phase chemical
potential shown in Eq. (2.17). Taking this condition in Eq. (2.22), Eq. (2.20) then
follows.

Taking Eq. (2.13) in the Clausius-Clapeyron equation, Eq. (2.10), the isosteric en-
ergy is:

Δ𝑢st = 𝑢ads − 𝑢gas =
𝑘B𝑇

2

𝐾L

(
𝜕𝐾L

𝜕𝑇

)
𝑛

+ 𝑘B𝑇, (2.23)

which is similar to Eq. (2.12). Using the 𝐾L derived in Eq. (2.20), Eq. (2.23) be-
comes:

Δ𝑢st = 𝜖 − 2.5𝑘B𝑇 + 𝑘B𝑇 = 𝜖 − 1.5𝑘B𝑇. (2.24)

2.4 Surface Dynamics
Although the Langmuir model fits the experimental results well for many studies, it
has several limitations in thermodynamics. First, it ignores the interaction between
adsorbate molecules. This issue can be addressed by working in the low coverage
limit at low pressure. Second, compared with Henry’s law, the Langmuir model
Eq. (2.13) has two fitting parameters. When fitting a series of isotherms of the same
type of material, a uniform 𝑁 and several different 𝐾L are required. However, the
selection of the 𝑁 and 𝐾L can create uncertainty, as different groups of parameters
can show similar small errors. Third, the statistical-mechanical derivation shown in
the previous section completely ignores the dynamics of adsorbate molecules on the
surface and simply uses an undefined 𝜖 as the energy. However, the adsorbed phase
is generally regarded as a supercritical phase, and the dynamic is not neglectable
(Nicholson and Parsonage, 1982; Hill, 1994; Sprowl, Campbell, and Arnadottir,
2016; Maiga and Gatica, 2018).

To make corrections to the surface dynamics of adsorbates, a good method is
considering the single particle partition function. Here, to simplify the discussion,
the adsorbed molecules are considered noble gases, which have no internal vibration
or rotation. The single particle partition function of the ideal gas atom is then:

𝑞ads =
∑︁

exp(−𝜖 𝑗/𝑘B𝑇), (2.25)

where 𝜖 corresponds to the energy of all the possible quantum states and can be
given by the Schrödinger equation:[

− ℏ2

2𝑚
∇2 + 𝜀vdW(𝑥, 𝑦, 𝑧)

]
𝜙(𝑥, 𝑦, 𝑧) = 𝜖𝜙(𝑥, 𝑦, 𝑧), (2.26)
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where 𝑚 is the mass of gas molecule and 𝜙 is the wave function. The 𝜀vdW is the
vdW potential in the 3D space. However, solving the 3D Schrödinger equation with
an arbitrary potential is not a simple task. Considering the mass of gas is large, and
quantum effects are not big for adsorption, the non-quantum classical limit can be
applied. The total energy is the sum of kinetic energy and potential energy:

𝜖 = 𝜀vdW(𝑥, 𝑦, 𝑧) +
𝑝2
𝑥

2𝑚
+
𝑝2
𝑦

2𝑚
+
𝑝2
𝑧

2𝑚
, (2.27)

where 𝑝𝑥 , 𝑝𝑦, and 𝑝𝑧 are the momentum in the 𝑥, 𝑦, and 𝑧 directions. As the
momentum has no correlation with the vdW potential, by changing the sum into the
integral in the momentum space and the position space, the single particle partition
function is:

𝑞ads =
8𝜋3

ℏ3

∫
exp(−

𝑝2
𝑥

2𝑚𝑘B𝑇
)d𝑝𝑥 ·

∫
exp(−

𝑝2
𝑦

2𝑚𝑘B𝑇
)d𝑝𝑦

·
∫

exp(−
𝑝2
𝑧

2𝑚𝑘B𝑇
)d𝑝𝑧 ·

∭
exp

(
−𝜀vdW

𝑘B𝑇

)
d𝑥d𝑦d𝑧.

(2.28)

By using the results of Gaussian integrals for the momentum integrals, Eq. (2.28)
becomes:

𝑞ads =
1
Λ3

∭
exp

(
−𝜀vdW

𝑘B𝑇

)
d𝑥d𝑦d𝑧. (2.29)

The quantum volume Λ3 is defined as Eq. (2.18). For the 𝜀vdW, if there is no
correlation in the 𝑥, 𝑦 and 𝑧 directions, then 𝜀vdW = 𝜀x + 𝜀y + 𝜀z, and Eq. (2.29) can
be rewritten in the following form:

𝑞ads = 𝑞𝑥𝑞𝑦𝑞𝑧 exp(−𝜀00/𝑘B𝑇), (2.30)

where 𝜀00 is the minimum of the vdW potential in 3D space. The 𝜀𝑥 , 𝜀𝑦, and 𝜀𝑧 are
single variable potentials determined only by the coordinates 𝑥, 𝑦, and 𝑧. 𝑞𝑥 , 𝑞𝑦,
and 𝑞𝑧 are partition functions in different directions. For example, 𝑞𝑧 is:

𝑞z =
1
Λ

∫
exp

(
−𝜀z − 𝜀00

𝑘B𝑇

)
d𝑧. (2.31)

With the expression of the single particle partition function determined, the next step
is choosing a suitable 3D vdW potential and relating this potential to the isotherms.
The statistical mechanical analysis of several isotherm fitting methods is discussed
below.
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2.4.1 Variants of Langmuir Model
As previously discussed, the initial statistical mechanical derivation of the Langmuir
Model ignores the dynamics of the adsorbed phase. However, it is not impossible
to add the dynamics and keep the form of the Langmuir model shown in Eq. (2.13)
at the same time. Going back to the statistical mechanics of the Langmuir model in
the previous section, a configurational entropy can be included:

𝑆ads =

(
𝜕𝐹

𝜕𝑇

)
𝑛,𝑁

= 𝑘B ln
𝑁!

𝑛!(𝑁 − 𝑛)! , (2.32)

which comes from the different methods of choosing 𝑛 occupied sites from 𝑁

sites (Hill, 1994). However, the premise of this configuration is that the adsorbed
molecules and sites are all identical. That means although the adsorbed molecules
are still moving, they are trapped in the sites, and the process of jumping between
sites is ignored. Then to characterize these trapping sites, the next step is creating
the potentials for Eq. (2.29). It is much easier to assume 𝜀vdW has no correlation in
the 𝑥, 𝑦, and 𝑧 directions, and the simplification in Eq. (2.31) can be implemented.
Fig. 2.1 shows three elementary potentials to characterize the adsorbate molecule
on a site.

(a) (b) (c)

delta function square potential quadratic potential

ε
00

z

ε
00

ε
00

z z

ε
z

ε
z

ε
z

+∞ +∞

Figure 2.1: Illustration of three different 1D potentials to characterize the potential
near the sites for adsorption. The origin of the axis is set at the position where the
lowest potential energy 𝜀00 lies.

In Fig. (2.1a), the delta function potential is infinitely large along most of the axis.
The origin point is the only possible state where its energy equals 𝜀00 and has no
momentum. In this case, the classical limit shown from Eq. (2.27) to Eq. (2.29) is
not applicable, and the partition function 𝑞𝑧 is then:

𝑞𝑧DF = exp
(
−𝜀00 − 𝜀00

𝑘B𝑇

)
= 1, (2.33)

where "DF" means delta function.
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In Fig. (2.1b), the square potential well is 𝜀00 for the length between −𝐷𝑧/2 to
𝐷𝑧/2, where 𝐷𝑧 is the width of the potential well. The other part of the axis has an
infinitely large potential. Taking this potential in Eq. (2.31), the partition function
𝑞𝑧 is:

𝑞𝑧SP =
1
Λ

∫ 𝐷𝑧/2

−𝐷𝑧/2
exp

(
−𝜀00 − 𝜀00

𝑘B𝑇

)
d𝑧 =

𝐷𝑧

Λ
, (2.34)

where "SP" means square potential.

The quadratic potential has the following form:

𝜀𝑧 = 𝜀00 +
1
2
𝑚𝜔2𝑧2, (2.35)

where𝜔 is the angular frequency. Substituting into Eq. (2.31), the partition function
𝑞𝑧 is:

𝑞𝑧QP =
1
Λ

∫ +∞

−∞
exp

(
−𝑚𝜔

2𝑧2

2𝑘B𝑇

)
d𝑧 =

𝑘B𝑇

ℏ𝜔
, (2.36)

where "QP" means quadratic potential.

The 3D partition function 𝑞ads is the combination of the 1D partition functions
according to Eq. (2.30). Then according to the similar steps shown in Eq (2.14) to
Eq (2.16), the chemical potential of the adsorbed phase is:

𝜇ads =

(
𝜕𝐹

𝜕𝑛

)
𝑁,𝑇

= −𝑘B𝑇 ln 𝑞ads + 𝑘B𝑇 ln
𝑛

𝑁 − 𝑛 . (2.37)

Then according to Eq (2.17) and Eq (2.19), the generalized Langmuir model is:

𝜃 =
𝑛

𝑁
=

𝑃Λ3𝑞ads/𝑘B𝑇

1 + 𝑃Λ3𝑞ads/𝑘B𝑇
. (2.38)

and 𝐾L = Λ3𝑞ads/𝑘B𝑇 for this Langmuir model. Substituting into Eq (2.23), the
isosteric adsorption energy is then:

Δ𝑢st =
𝑘B𝑇

2

𝑞ads
· 𝜕𝑞ads

𝜕𝑇
− 2.5𝑘B𝑇 + 𝑘B𝑇 =

𝑘B𝑇
2

𝑞ads
· 𝜕𝑞ads

𝜕𝑇
− 1.5𝑘B𝑇. (2.39)

Considering the expression in Eq (2.30), the isosteric adsorption energy becomes:

Δ𝑢st =
𝑘B𝑇

2

𝑞𝑥
· 𝜕𝑞𝑥
𝜕𝑇

+ 𝑘B𝑇
2

𝑞𝑦
·
𝜕𝑞𝑦

𝜕𝑇
+ 𝑘B𝑇

2

𝑞𝑧
· 𝜕𝑞𝑧
𝜕𝑇

+ 𝜀00 − 1.5𝑘B𝑇. (2.40)

For the three different partition functions corresponding to the potential shown in
Fig. (2.1), the partial derivatives with the temperature are:

𝜕𝑞DF

𝜕𝑇
= 0;

𝜕𝑞SP

𝜕𝑇
=
𝑞SP

2𝑇
;
𝜕𝑞QP

𝜕𝑇
=
𝑞QP

𝑇
. (2.41)
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Assigning 𝑞DF, 𝑞SP and 𝑞QP to 𝑞𝑥 , 𝑞𝑦 and 𝑞𝑧, 10 different combinations are shown
in Table (2.1). Among all these combinations, several situations deserve further
discussion.

The models with three potentials of the same type indicate symmetry along the
three directions. However, the model with spherical symmetry might be a better
choice to describe the symmetry along the 𝑥, 𝑦, and 𝑧 axes. By using the spherical
coordinate system, the gradient in the Schrödinger equation has a different form. In
the classical limit, taking the spherical symmetry in Eq. (2.29), it turns into:

𝑞ads =
1
Λ3

∭
exp

(
−𝜀vdW(𝑟)

𝑘B𝑇

)
𝑟2d𝑟d𝜃d𝜑,

=
4𝜋
Λ3

∫
exp

(
−𝜀vdW(𝑟)

𝑘B𝑇

)
𝑟2d𝑟.

(2.42)

Table 2.1: The combination of partition functions of typical potentials. The 𝐾L
for the Langmuir model and the corresponding isosteric adsorption energy are both
shown. The subscript 1, 2, and 3 can be any of 𝑥, 𝑦, and 𝑧. Meanwhile, 𝐷𝑥 , 𝐷𝑦, and
𝐷𝑧 are the lengths of the square potentials.

𝑞𝑥 , 𝑞𝑦, and 𝑞𝑧 𝐾L Δ𝑢st

3 𝑞DF Λ3 exp(−𝜀00/𝑘B𝑇)/𝑘B𝑇 𝜀00 − 1.5𝑘B𝑇

3 𝑞SP 𝐷1𝐷2𝐷3 exp(−𝜀00/𝑘B𝑇)/𝑘B𝑇 𝜀00

3 𝑞QP Λ3𝑘2
B𝑇

2 exp(−𝜀00/𝑘B𝑇)/ℏ3𝜔3 𝜀00 + 1.5𝑘B𝑇

2 𝑞DF and 1 𝑞SP Λ2𝐷1 exp(−𝜀00/𝑘B𝑇)/𝑘B𝑇 𝜀00 − 𝑘B𝑇

2 𝑞DF and 1 𝑞QP Λ3 exp(−𝜀00/𝑘B𝑇)/ℏ𝜔 𝜀00 − 0.5𝑘B𝑇

2 𝑞SP and 1 𝑞DF Λ𝐷1𝐷2 exp(−𝜀00/𝑘B𝑇)/𝑘B𝑇 𝜀00 − 0.5𝑘B𝑇

2 𝑞SP and 1 𝑞QP Λ𝐷1𝐷2 exp(−𝜀00/𝑘B𝑇)/ℏ𝜔 𝜀00 + 0.5𝑘B𝑇

2 𝑞QP and 1 𝑞DF Λ3𝑘B𝑇 exp(−𝜀00/𝑘B𝑇)/ℏ2𝜔2 𝜀00 + 0.5𝑘B𝑇

2 𝑞QP and 1 𝑞SP Λ2𝐷1𝑘B𝑇 exp(−𝜀00/𝑘B𝑇)/ℏ2𝜔2 𝜀00 + 1𝑘B𝑇

1 𝑞DF, 1 𝑞SP and 1 𝑞QP Λ2𝐷1 exp(−𝜀00/𝑘B𝑇)/ℏ𝜔 𝜀00

For the square potential where 𝜀vdW(𝑟) = 𝜀00 when 𝑟 ≤ 𝑅0 while 𝜀vdW(𝑟) = +∞
when 𝑟 > 𝑅0, the single particle partition function is:

𝑞ads =
4𝜋
Λ3 exp

(
− 𝜀00

𝑘B𝑇

) ∫ 𝑅0

0
𝑟2d𝑟 =

4𝜋𝑅3
0

3Λ3 exp
(
− 𝜀00

𝑘B𝑇

)
. (2.43)

With Eq. (2.38) and (2.39), the corresponding Langmuir constant 𝐾L and adsorption
energyΔ𝑢st are: 4𝜋𝑅3

0 exp(−𝜀00/𝑘B𝑇)/3𝑘B𝑇 and 𝜀00. Compared with the Cartesian
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coordinate system results, it has a similar form, as 𝑅0 and 𝐷1𝐷2𝐷3 are both fitting
parameters.

For the spherical quadratic potential where 𝜀vdW(𝑟) = 𝜀00 + 0.5𝑚𝜔2𝑟2, the single
particle partition function is:

𝑞ads =
4𝜋
Λ3 exp

(
− 𝜀00

𝑘B𝑇

) ∫ +∞

0
exp

(
−𝑚𝜔

2𝑟2

2𝑘B𝑇

)
𝑟2d𝑟 =

(
𝑘B𝑇

ℏ𝜔

)3
exp

(
− 𝜀00

𝑘B𝑇

)
.(2.44)

The corresponding 𝐾L and Δ𝑢st are: Λ3𝑘2
B𝑇

2 exp(−𝜀00/𝑘B𝑇)/ℏ3𝜔3 and 𝜀00 +
1.5𝑘B𝑇 . These results are exactly the same as the results of the Cartesian coordinate
system, as the quadratic potential 𝜀vdW = 𝜀00 + 0.5𝑚𝜔2𝑟2 = 𝜀00 + 0.5𝑚𝜔2𝑥2 +
0.5𝑚𝜔2𝑦2 + +0.5𝑚𝜔2𝑧2, and there is no correlation between the three directions.

Considering that the surfaces of materials are generally 2D, the models with two
same types of potential indicate the symmetry parallel to the surface. Similar to
the discussion above, the analysis with the Cartesian coordinate system shown in
Table (2.1) also shows a universality. These results show that choosing different
potentials leads to different 𝐾L and Δ𝑢st. The temperature dependence of Δ𝑢st is
determined once a model is chosen.

Considering the 𝐾L in the Langmuir model has the following generalized form:

𝐾L =
Λ3𝑞ads

𝑘B𝑇
= 𝛾 · exp

(
− 𝜀00

𝑘B𝑇

)
, (2.45)

where this 𝛾 is a prefactor term, which is a power of temperature. The 𝜀00 is invariant
with temperature. Taking into Eq (2.23), the adsorption energy is given by:

Δ𝑢st =
𝜕 𝛾

𝛾
· 𝑘B𝑇

2

𝜕𝑇
+ 𝜀00 + 𝑘B𝑇. (2.46)

2.4.2 2D Ideal Gas Model
A fundamental piece of the Langmuir model is configurational entropy in Eq. (2.32),
and it assumes the adsorbed particles and sites are identical. However, once the
particles are able to move out from the trap sites, the identical site model fails. This
is highly possible at high temperatures like room temperature, as the mobility of
the molecules in the supercritical phase at high temperatures is large. Therefore, a
different model is required.

Again, as the surfaces are considered 2D, the intuitive idea is to treat the adsorbed
molecule as free translational gas parallel to the surface and trapped horizontally
to the surface. This is known as the "2D ideal gas model." (Hill, 1994; Campbell
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and Sellers, 2012; Campbell, Sprowl, and Arnadottir, 2016) Regarding the 𝑥 and 𝑦
directions are parallel to the surface and the 𝑧 direction is horizontal to the surface,
then 𝑞𝑥 and 𝑞𝑦 are both 1/Λ, while 𝑞𝑧 follows the discussion of the previous
subsection. In this case, Eq (2.29) turns into:

𝑞ads =
𝑞𝑧

Λ2 exp
(
− 𝜀00

𝑘B𝑇

) ∬
d𝑥d𝑦 =

𝐴𝑞𝑧

Λ2 exp
(
− 𝜀00

𝑘B𝑇

)
, (2.47)

where 𝐴 is the size of the surface, and 𝐴/𝑛 is the average area taken by one
molecule. The entropy of molecules replaces the configurational entropy of sites,
and the canonical partition function is:

𝑄 =
1
𝑛!
𝑞𝑛ads =

1
𝑛!

(
𝐴𝑞𝑧

Λ2

)𝑛
exp

(
−𝑛𝜀00

𝑘B𝑇

)
. (2.48)

The Helmholtz free energy and the chemical potential of the adsorbed phase are:

𝐹ads = −𝑘B𝑇 ln𝑄 = 𝑛𝑘B𝑇 ln 𝑛 − 𝑛𝑘B𝑇 − 𝑛𝑘B𝑇 ln
(
𝐴𝑞𝑧

Λ2

)
+ 𝑛𝜀00; (2.49)

𝜇ads =

(
𝜕𝐹ads

𝜕𝑛

)
𝑇

= 𝑘B𝑇 ln 𝑛 − 𝑘B𝑇 ln
(
𝐴𝑞𝑧

Λ2

)
+ 𝜀00. (2.50)

According to Eq (2.17) and Eq (2.19), this model gives the following isotherm:

𝑛 =
𝑃Λ𝐴𝑞𝑧

𝑘B𝑇
exp

(
− 𝜀00

𝑘B𝑇

)
, (2.51)

which has the same expression as Henry’s law shown in Eq (2.11). The Henry’s
constant is𝐾H = Λ𝐴𝑞𝑧 exp(𝜀00/𝑘B𝑇)/𝑘B𝑇 . Substituting into Eq (2.12), the isosteric
adsorption energy is:

Δ𝑢st = 𝜀00 +
𝑘B𝑇

2

𝑞𝑧

𝜕𝑞𝑧

𝜕𝑇
− 0.5𝑘B𝑇. (2.52)

If 𝑞𝑧 corresponds to one of the potentials shown in Fig. (2.1), the 𝐾H and Δ𝑢st of the
2D ideal gas model is shown in Table (2.2).

Compared with the results in Table (2.1), some fitting parameters have exactly the
same form. For example, the 3 𝑞SP in Table (2.1) and the 𝑞SP in Table (2.2). However,
physically, they are not equivalent. At low pressure, the Langmuir model turns into
Henry’s law, and Henry’s constant is: 𝑁 · 𝐾L = 𝑁𝐷1𝐷2𝐷3 exp(−𝜀00/𝑘B𝑇)/𝑘B𝑇 .
Here, 𝐷1𝐷2𝐷3 corresponds to the 𝐷𝑥𝐷𝑦𝐷𝑧, and 𝐷𝑥𝐷𝑦 is the area of the site.
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Table 2.2: Several typical partition functions possible for the direction horizontal
to the surface. The Henry’s law constants 𝐾H and the corresponding isosteric
adsorption energies are both shown.

𝑞𝑧 𝐾H Δ𝑢st

𝑞DF Λ𝐴 exp(−𝜀00/𝑘B𝑇)/𝑘B𝑇 𝜀00 − 0.5𝑘B𝑇

𝑞SP 𝐷𝐴 exp(−𝜀00/𝑘B𝑇)/𝑘B𝑇 𝜀00

𝑞QP Λ𝐴 exp(−𝜀00/𝑘B𝑇)/ℏ𝜔 𝜀00 + 0.5𝑘B𝑇

Compared with the total surface area 𝐴, 𝑁𝐷𝑥𝐷𝑦 is the total area of the sites, which
is smaller.

Similar methods discussed in this subsection can be used for all the mobile gas
molecules. The difference is that the calculation of the single particle partition
function should follow Eq. (2.29) rather than Eq. (2.47).

2.5 Multi-Site Adsorption
The discussion in the previous sections is based on a single type of site. However,
for real materials, there are multiple types of sites with different single particle
partition functions 𝑞1, 𝑞2 ... 𝑞𝑖 .... This section focuses on the generalization of
both Henry’s law and the Langmuir model. The basis is that, at equilibrium, the
chemical potentials of these different sites are all equal to the chemical potential of
the gas phase.

Using the 2D ideal gas model, assuming the total surface area is 𝐴, and the fractions
of each type of surface are 𝛼1, 𝛼2, ...𝛼𝑖 ..., the numbers of adsorbed molecules on
𝑖th type of surface are:

𝑛𝑖 =
𝑃Λ𝛼𝑖𝐴𝑞𝑧,𝑖

𝑘B𝑇
exp

(
−𝜀00,𝑖

𝑘B𝑇

)
. (2.53)

The total amount of adsorption is the sum of 𝑛𝑖, and the total Henry’s constant is:

𝐾H =
∑︁
𝑖

Λ𝛼𝑖𝐴𝑞𝑧,𝑖

𝑘B𝑇
exp

(
−𝜀00,𝑖

𝑘B𝑇

)
. (2.54)

Substituting Eq. (2.54) into the Clausius-Clapeyron equation, the adsorption energy
is given by:

Δ𝑢st = −0.5𝑘B𝑇 +
∑
𝛼𝑖𝑞𝑧,𝑖𝜀00,𝑖 exp

(
−𝜀00,𝑖/𝑘B𝑇

)∑
𝛼𝑖𝑞𝑧,𝑖 exp

(
−𝜀00,𝑖/𝑘B𝑇

)
+ 𝑘B𝑇

2
∑
𝛼𝑖 exp

(
−𝜀00,𝑖/𝑘B𝑇

) (
𝜕𝑞𝑧,𝑖/𝜕𝑇

)∑
𝛼𝑖𝑞𝑧,𝑖 exp

(
−𝜀00,𝑖/𝑘B𝑇

) .

(2.55)



21

Another equivalent method of getting the isosteric adsorption energy is calculating
the partition function from Eq. (2.30). Similar to Eq. (2.47), for multiple sites, the
partition function is:

𝑞ads =
1
Λ2

∑︁
𝑞𝑧,𝑖 exp

(
−𝜀00,𝑖

𝑘B𝑇

) ∬
𝑖

d𝑥d𝑦 =
𝐴

Λ2

∑︁
𝛼𝑖𝑞𝑧,𝑖 exp

(
−𝜀00,𝑖

𝑘B𝑇

)
. (2.56)

The adsorbed phase internal energy is then:

𝑢ads =
𝑘B𝑇

2

𝑞ads
· 𝜕𝑞ads

𝜕𝑇
=

∑
𝛼𝑖𝑞𝑧,𝑖𝜀00,𝑖 exp

(
−𝜀00,𝑖/𝑘B𝑇

)∑
𝛼𝑖𝑞𝑧,𝑖 exp

(
−𝜀00,𝑖/𝑘B𝑇

)
+ 𝑘B𝑇

2
∑
𝛼𝑖 exp

(
−𝜀00,𝑖/𝑘B𝑇

) (
𝜕𝑞𝑧,𝑖/𝜕𝑇

)∑
𝛼𝑖𝑞𝑧,𝑖 exp

(
−𝜀00,𝑖/𝑘B𝑇

) + 𝑘B𝑇.

(2.57)

Substituting Eq. (2.57) into Eq. (2.10), Eq. (2.55) is also obtained.

For the multi-site Langmuir model, assuming the total number of sites is 𝑁 , and the
fractions of each type of site are 𝛼1, 𝛼2, ...𝛼𝑖 ..., then according to Eq (2.37), the
chemical potential of the 𝑖th type of site is:

𝜇ads,𝑖 = −𝑘B𝑇 ln 𝑞ads,𝑖 + 𝑘B𝑇 ln
𝑛𝑖

𝛼𝑖𝑁 − 𝑛𝑖
. (2.58)

Then, according to Eq (2.19) there is:

𝑛𝑖 = 𝛼𝑖𝑁
𝑃Λ3𝑞ads,𝑖/𝑘B𝑇

1 + 𝑃Λ3𝑞ads,𝑖/𝑘B𝑇
, (2.59)

and the total adsorption amount is the sum of 𝑛𝑖 (Stadie, 2013). At low pressure,
the adsorption energy is similar to Eq. (2.55). At higher temperatures, however, it
is easier to calculate the energy numerically.

2.6 Slit-Pore Model and NLDFT Method
The slit-pore model, illustrated in Fig. (2.2), is widely used to simulate porous
materials. It regards the pore as a slit between two flat surfaces with a distance
of 𝐷. Beyond the surfaces, there exist several extra layers of adsorbent. The
spacing between these outer layers is 𝐷b, which means the bulk distance. Similar
to the 2D ideal gas model, the potential energy contribution from the adsorbent is
homogeneous potential along the 𝑥 − 𝑦 plane and is only a function of the position
in the 𝑧 direction (Lastoskie, Gubbins, and Quirke, 1993).

Based on the slit-pore model, a non-local density functional theory (NLDFT) shows
an approach to characterize the pore size distribution (Olivier, 1995; Olivier, 1998;
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Figure 2.2: An illustration of the slit-pore model.

Kupgan, Liyana-Arachchi, and Colina, 2017; Jagiello and Kenvin, 2019). Compared
with the multi-site adsorption discussed above, the NLDFT method still regards the
pores with different surface distances as individual and equilibrium to the gas phase.
However, the NLDFT method expands the discussion to the higher-pressure region.
At a fixed temperature 𝑇 , the total adsorption amount is given by:

𝑛(𝑃,𝑇) =
∫
𝐷

𝑛𝐷 (𝑃,𝑇) 𝑓 (𝐷)d𝐷 =

∫
𝐷

∫
®𝑟3
𝜌𝐷 (𝑃,𝑇, ®𝑟)d ®𝑟3 𝑓 (𝐷)d𝐷, (2.60)

where 𝑛𝐷 is the adsorption amount by the pores with the width of 𝐷. 𝑓 (𝐷) is the
pore size distribution fraction, and 𝜌𝐷 is the density of gas.

To calculate the 𝜌, compared with the DFT, NLDFT only uses the non-local vdW
potential and follows the thermodynamic idea of minimizing the grand potential
functional:

Ω [𝜌𝐷 (®𝑟)] = 𝐹 [𝜌𝐷 (®𝑟)] −
∫

𝜌𝐷 (®𝑟) [𝜇 −𝑉ext (®𝑟)] d ®𝑟3, (2.61)

where 𝐹 is the intrinsic Helmholtz free energy, 𝜇 is the chemical potential and 𝑉ext

is the external potential. Here, the adsorbate-adsorbate interactions are included in
the 𝐹, while the adsorbate-adsorbent interactions are included in the 𝑉ext. Different
NLDFT models have different expressions of 𝐹 and 𝑉ext. As one of the earliest
models, the 2D carbon-nitrogen model used the LJ potential and the mean-field
theory (Jagiello, 1994). Recently, the Heterogeneous Surface model was proposed,
which used curve surfaces rather than flat surfaces to describe the pores (Jagiello
and Kenvin, 2019). The gas density can be calculated when the model is decided
and when 𝐷 and 𝜇(𝑃,𝑇) are given. Then 𝑛𝐷 (𝑃,𝑇) is calculated by integral, as
shown in Eq. (2.60). The series of 𝑛𝐷 functions are named "kernels."
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C h a p t e r 3

EXPERIMENTAL OBSERVATION OF THE TEMPERATURE
DEPENDENCE OF PHYSISORPTION ENERGY

3.1 Experimental Setup
This study chooses porous carbon materials and krypton as the adsorbent and
adsorbate. Porous carbon materials have high surface areas and suitable pore sizes
for adsorbent materials. These materials are also widely used and easily accessible.
For the adsorbate, krypton has large polarizability (2.498 Å3) (Olney et al., 1997),
which means the adsorption of krypton is easily observable. This polarizability
is also close to methane’s polarizability (2.448 Å3) (Olney et al., 1997), and the
study of methane adsorption is an important topic in environmental and energy
sciences. Compared with methane, krypton is isotropic and has no internal degrees
of freedom, which is easier for thermodynamic theory study and vdW potential
calculation.

Figure 3.1: Picture of the two types of porous carbon materials. Left: CNS-201.
Right: MSC-30. CNS-201 is made from the coconut shell and has the shape of
small grain. MSC-30 is a powder material. The size of the plastic plates is 10 cm ×
10 cm.

Two types of porous carbon were used as the adsorbent: MSC-30 from Kansai
Coke & Chemicals Company Ltd. (Japan) and CNS-201 from A. C. Carbone Inc.
(Canada), shown in Fig. 3.1. The ultra-high purity argon gas with a purity of
99.999% was from Airgas company. The research-grade krypton gas with a purity
of 99.998% was from Air Liquide Corp.
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Generally speaking, there are two major methods to study isosteric adsorption energy
or enthalpy. The direct method uses calorimetry to measure the heat evolved during
adsorption (Fang et al., 2012; Rubes et al., 2018; Hyla et al., 2019; Shen et al., 2000).
The indirect method is fitting isotherms at different temperatures and calculating the
adsorption enthalpy from the Clausius-Clapeyron equation (Huang, 1972; Helmy,
Ferreiro, and Bussetti, 1996; Shen et al., 2000; Farrusseng et al., 2009; M. Murialdo
et al., 2015; Son et al., 2018; Yu et al., 2021). This work uses the indirect method.
The TriStar II 3020 system from Micromeritics was used to collect argon adsorption
isotherms for the measurement of the pore size and surface area distribution and
was used to collect krypton adsorption isotherms for the adsorption energy analysis.

Figure 3.2: The setup of the krypton adsorption measurement at different tempera-
tures. The refrigerator cycles methanol at different temperatures. The methanol in
the refrigerator goes through the condensing coil in the bath bottle and delivers heat
to the methanol in the bath. After waiting for enough time and when the two types
of methanol reach equilibrium, the methanol bath bottle is raised up and the sample
tube is sunk inside the bath. One thermometer sensor is attached to the sample tube,
and another sensor is sunk inside the bath. Temperature is measured every second
during the experiment.

Argon adsorption isotherms were measured at 87 K. Liquid argon in the dewar
was used to stabilize the temperature. Pore-size distributions were given by the
NLDFT analysis in the Micromeritics system with the "Carbon-Ar-87 K, 2D-NLDFT
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Heterogeneous Surface" model (Jagiello and Kenvin, 2019). The densities of the
materials are set as 2.1 g/cm3 according to previous research(Stadie, 2013; M.
Murialdo et al., 2015).
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Figure 3.3: NLDFT analysis results of CNS-201 (orange) and MSC-30 (green).
(a) Surface area distributions. (b) Pore volume distributions. Results are given by
NLDFT analysis of argon adsorption measurements at 87 K. The surface distance is
the absolute pore width rather than the effective pore width.

Krypton equilibrium adsorption isotherms were measured from 250 K to 330 K.
The quantities of adsorbed krypton were recorded at different pressure values set
in advance. A methanol bath kept the temperature stable during the data collection
process, and the temperature fluctuations were within 0.5 K. The setup of these
measurements is shown in Fig. (3.2). The temperature range is decided by the
melting point and flash point of methanol.
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3.2 Pore-Size Measurement and Isotherms
The NLDFT surface area distributions and pore volume distribution of CNS-201 and
MSC-30 are shown in Fig. (3.3). The prominent surface distance for CNS-201 are
10.7 Å and 12.1 Å. For MSC-30, there are two peaks at 9.0 Å and 12.2 Å, containing
around 13% and 35% of the surface area. The cumulative NLDFT pore volumes
are 0.419 cm3/g and 1.593 cm3/g, and the cumulative NLDFT surface areas for the
two materials are 960 m2/g and 2371 m2/g. As a reference, the BET surface area
for CNS-201 and MSC-30 are 977 m2/g and 3359 m2/g.

The equilibrium excess adsorption at different temperatures and pressures of krypton
on CNS-201 and MSC-30 are shown in Fig. (3.4a) and (3.4b). At the same pres-
sure and temperature, the adsorption amounts on these two materials are similar.
However, the isotherm curvatures of CNS-201 are more obvious than MSC-30.

For a typical adsorption amount of 0.5 mmol in Fig. (3.4), the average NLDFT
surface areas taken by one molecule are 318 Å2 for CNS-201 and 787 Å2 for MSC-
30, and the average BET surface areas for one molecule on CNS-201 and MSC-30
are 324 Å2 and 1116 Å2. These values are not small, as the average distance
between the gas atoms is more than 18 Å for CNS-201 and 28 Å for MSC-30. As
a comparison, for the ideal gas at 300 K and under 5 × 104 Pa, the average distance
between molecules is 43 Å.

3.3 Data Analysis
3.3.1 Henry’s Law Analysis
The experimental results are first analyzed with Henry’s law. To fulfill the appli-
cability of Henry’s law, only the data points with adsorption below 0.3 mmol are
adopted for calculating Henry’s constant at low temperatures. At high temperatures,
only the first 15 data points are adopted. The results of Henry’s constants and the
linear fitting results are shown in Fig. (3.5).

The zero-adsorption Henry’s constants at different temperatures are acquired from
the intercepts at the vertical axes. Taking these zero-adsorption Henry’s constants
into Eq. (2.12) and using 𝛿𝐾/𝛿𝑇 as 𝜕𝐾/𝜕𝑇 , the adsorption energies at different
temperatures are shown in Fig. (3.6). The circles are the changes in the internal
energies during adsorption, and the trend is that, with the temperature increase, the
adsorption energies for both materials turn weaker. The dash lines in Fig. (3.6) are
linear fittings, and the slopes of these lines are 4.35𝑘B and 3.65𝑘B for CNS-201 and
MSC-30. From 250 K to 330 K, the adsorption energy changes from -0.221 eV to
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Figure 3.4: Equilibrium excess adsorption of krypton on (a) CNS-201 and (b) MSC-
30 at different temperatures. The dots show the experiment numbers of adsorbed
molecules per gram of adsorbent. Henry’s constants are obtained according to the
data below the dash line threshold to ensure the coverage is dilute.

-0.194 eV for CNS and from -0.173 eV to -0.148 eV for MSC. The changing rates
are 13% and 15%.

Assuming the gas is ideal, and considering the volume of the adsorbed phase is
ignorable, the adsorbed phase heat capacity is:

𝑐ads =
𝜕ℎads

𝜕𝑇
=
𝜕𝑢ads

𝜕𝑇
=
𝜕 (Δ𝑢st + 𝑢gas)

𝜕𝑇
=
𝜕Δ𝑢st

𝜕𝑇
+ 1.5𝑘B𝑇. (3.1)
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Figure 3.5: Henry’s constants of krypton adsorption on (a) CNS-201 and (b) MSC-
30 at different temperatures. For high temperatures, the linear fitting lines are
acquired by the initial 15 data points. The results are based on the adsorbent per
gram.

Taking the slopes into Eq. (3.1), the adsorbed phase heat capacities for CNS-201
and MSC-30 are 5.85𝑘B and 5.16𝑘B. This adsorbed phase heat capacity is much
larger than the 3D ideal krypton constant volume heat capacity, which is 1.5𝑘B.

3.3.2 Langmuir Model Analysis
The experimental results are also analyzed with the Langmuir model. Universal 𝑁
values are picked to minimize the total square errors. The fitting isotherms are shown
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in Fig. (3.7). The 𝑁 values for a gram of CNS-201 and MSC-30 are 2.10 mmol and
5.57 mmol, and the 𝐾𝐿 values are shown in Fig. (3.8).

By taking the 𝐾𝐿 in Eq. (2.23) and using 𝛿𝐾/𝛿𝑇 as 𝜕𝐾/𝜕𝑇 , the adsorption energies
are given in Fig. (3.9). Similar to Henry’s law analysis, the slopes and corresponding
adsorbed phase heat capacities are also shown. The slopes of these lines are 2.10𝑘B

and 1.21𝑘B for CNS-201 and MSC-30. From 250 K to 330 K, the adsorption energy
changes from -0.204 eV to -0.189 eV for CNS and from -0.159 eV to -0.151 eV for
MSC. The changing rates are 8% and 5%.

According to the Langmuir model analysis, the adsorbed phase heat capacities are
smaller than the results from Henry’s law analysis. However, they are still much
larger than the 3D ideal krypton constant volume heat capacity. Comparing Fig (3.9)
and Table. (2.1), the slope of Δ𝑢st of CNS-201 is even larger than the "3𝑞QP," while
the slope of Δ𝑢st of MSC-30 is between the "3𝑞QP" and "2𝑞QP & 1𝑞SP" situations.

Using the temperature depend slopes shown in Fig (3.9) and Eq. (2.46), the prefactors
of 𝐾L for CNS-201 and MSC-30 are in proportion to 𝑇2.10 and 𝑇1.21. The fittings
of 𝐾L based on these prefactors are shown with dash lines in Fig (3.8). The 𝜀00 for
CNS-201 and MSC-30 are −0.273 eV and −0.208 eV.

Although the prefactor forms given by Fig (3.9) show a good fitting with the results in
Fig (3.8), the fitting with other forms of prefactors are also practiced, and the results
are shown in Fig. (3.10). These fittings are based on the prefactor in proportion to
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𝑇1.0, 𝑇1.5, 𝑇2.0, and 𝑇2.5. The R-square values of these fittings are all more than
0.9999, and the total square errors are all smaller than 0.002. These parameters
mean that all these models are reasonable for fitting the isotherms.

However, when considering the values of the thermodynamic terms, these mod-
els show completely different results. The 𝜀00 for CNS-201 of these models are
−0.248 eV, −0.260 eV, −0.271 eV, and −0.282 eV. The 𝜀00 for MSC-30 of these
models are −0.204 eV, −0.214 eV, −0.227 eV, and −0.239 eV. Meanwhile, as men-
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Figure 3.7: The dots are the experimental results shown in Fig. (3.4). The lines are
the Langmuir fitting isotherms of CNS-201 and MSC-30 at different temperatures.
Fittings are based on the results below the black lines.



31

250 260 270 280 290 300 310 320 330

T (K)

CNS-201

MSC-30

0

1×10-5

2×10-5

3×10-5

4×10-5

5×10-5

6×10-5

K
L
·N

A
-1
 (

P
a-1

)

MSC-30

CNS-201

MSC-30MSC-30

7×10-5

Figure 3.8: Langmuir fitting parameter 𝐾𝐿 for CNS-201 (orange) and MSC-30
(green) at different temperatures. The fittings with Eq. (2.45) are shown with dash
lines.

Δu
st
 (eV)

c
ads

 = 3.60 k
B

c
ads

 = 2.71 k
B

Δu
st
 (kJ·mol-1)

slope = 2.10 k
B

slope = 1.21 k
B

-0.22

-0.21

-0.2

-0.19

-0.18

-0.17

-0.16

-0.15

-0.14

-0.13

-21

-20

-19

-18

-17

-16

-15

-14

-13

250 260 270 280 290 300 310 320 330

T (K)

CNS-201

MSC-30

Figure 3.9: Isosteric adsorption energies Δ𝑢𝑠𝑡 at zero adsorption of krypton adsorp-
tion on CNS-201 (orange) and MSC-30 (green) given by Langmuir model.

tioned before, the changing rates of Δ𝑢st with temperature are 1.0 𝑘B, 1.5 𝑘B, 2.0 𝑘B,
and 2.5 𝑘B, which may not be suitable for fitting the results in Fig (3.9). There-
fore, the prefactor’s exact form should not be assigned before fitting to study the
adsorption energy’s temperature dependence.
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C h a p t e r 4

COMPUTATIONAL CALCULATION OF ADSORBED PHASE
INTERNAL ENERGIES

In this chapter, DFT calculations give the adsorbed phase internal energies of pores
with different sizes. The first section will compare different DFT vdW algorithms
mentioned in the first chapter based on the model of krypton adsorption on carbon
layers. The MBD algorithm is chosen among all the models due to its ability to cap-
ture many-body effects. The second section will use DFT-calculated vdW potentials
and slit-pore thermodynamic analysis to calculate the adsorbed phase internal ener-
gies. The first two subsections show the results obtained from a simplified model,
while the other subsections validate the simplification. The third section investi-
gates the impact of atom displacements caused by thermal vibration on the adsorbed
phase internal energy. It demonstrates that the effects of thermal displacements can
be ignored in adsorption.

4.1 Comparison Between Different DFT Algorithms
In the first chapter, several different DFT algorithms for the vdW potential were
proposed, including DFT-D2, DFT-D3, TS, and MBD (Grimme, 2006; Grimme
et al., 2010; Grimme, 2011; Tkatchenko and Scheffler, 2009; Tkatchenko, Distasio,
et al., 2012). These methods are all good for simple pairwise interactions. However,
the many-body effect is not neglectable for surfaces with multiple atoms. In this
section, the surface adsorption potentials given by these algorithms are compared.

The Vienna Ab Initio Simulation Package (VASP) was used for all ab initio DFT
calculations (Kresse and Hafner, 1993; Kresse and Furthmuller, 1996a; Kresse and
Furthmuller, 1996b) with plane wave basis sets, projector augmented wave (PAW)
pseudopotentials, and the Perdew-Burke-Ernzerhof (PBE) functional (Kresse and
Hafner, 1994; Kresse and Joubert, 1999). All calculations used a 3×3×1 𝑘-grid and
a default kinetic energy cutoff.

The first model is shown in Fig. (4.1), where a krypton atom is placed above a
graphene layer. The cell in this model contains 3×3 graphene unit cells with 18
carbon atoms. In the vertical direction, the cell is 50 Å long, which has enough
vacuum space to avoid the impact from adjacent cells. The krypton is moved
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along the dash lines shown in Fig. (4.1a) and (4.1c) from 2 Å to 18 Å away from
the graphene with the step of 0.1 Å. A smooth fitting of the potential is applied
to increase the resolution to 0.025Å. The vdW adsorption potential was calculated
with the following equation:

𝜀vdW = 𝜖 sys − 𝜖 C − 𝜖Kr (4.1)

where the 𝜖 sys, 𝜖 C, and 𝜖Kr are the DFT calculated energy of the system, the carbon
adsorbent, and the krypton adsorbate. Due to the limitation on VASP, the direct
calculated 𝜖Kr is inaccurate for Eq (4.1). To get the 𝜖Kr, an indirect method with the
model in Fig. (4.1a) is used. When the krypton atom is 18 Å away from the carbon
layer, 𝜀vdW is assumed to be 0. The difference between the system energy and the
carbon energy in this situation is regarded as the energy of the krypton. The results
of the vdW potentials are shown in Fig. (4.1b) and (4.1d). The locations and the
energies of the potential wells are presented in Table. (4.1).

Table 4.1: The positions and energies of the potential wells shown in Fig. (4.1).

DFT-D2 DFT-D3 TS MBD

center site
position (Å) 3.425 3.575 3.575 3.600
energy (eV) -0.131 -0.120 -0.134 -0.101

corner site
position (Å) 3.475 3.625 3.625 3.650
energy (eV) -0.123 -0.117 -0.127 -0.097

In Fig. (4.1b) and (4.1d), all the potentials have a similar shape, where with the
increase of distance, the potentials first quickly go to the bottom well and then
gradually go back to 0. The results of DFT-D2 can be regarded as a reference
where the most straightforward LJ potential is used, and no electronic structure is
considered.

It is widely known, however, that graphene electrons form two large pi bonds on
the two sides of the graphene. The vdW potential is then the interaction between
krypton and two dipoles formed by the carbon nucleus and the pi bonds, and each
dipole has a similar form of vdW potential with the DFT-D2 result. By considering
the electronic structure of these dipoles, there are several effects. First, the position
of the potential well should be further to the carbon layer. It is due to the repulsion
from the pi bond above the graphene layer. When moving the krypton atom further
to the graphene, the weakening in the vdW potential with the pi bond below the
graphene layer is less significant than the enhancement in the vdW potential with
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Figure 4.1: The model with a krypton atom above a single graphene layer and the
corresponding vdW potentials. (a) shows a krypton above the center of the carbon
hexagon. (c) shows a krypton above the corner of the carbon hexagon. (b) and (d)
show the calculated vdW potential along the dash line in (a) and (c). Results with
different algorithms are shown with different line styles and colors.

the pi bond above the graphene layer. The DFT-D3, TS, and MBD algorithms all
show this change in position. Second, the vdW potential should be shallower, as the
potential wells of these two dipoles are no longer at the same position. The DFT-D3
and MBD methods reproduce this effect.

Comparing the results of the center site and corner site, the center site potential
wells are deeper (Maiga and Gatica, 2018). It is because the center sites have 6
nearest neighbors, and these carbon atoms all contribute the most substantial vdW
potential. The corner sites have only 1 nearest and 3 second nearest neighbors, and
the potential wells for these neighbors are not at the same position. However, due to
the formation of the pi bonds, the electron distribution should be more even. That
means the difference between the potential wells of the corner and center sites is
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smaller when considering electronic structure. The percentage differences between
the energies of these two wells are 6.69% (DFT-D2), 2.87% (DFT-D3), 5.21% (TS),
and 4.15% (MBD). The DFT-D3, TS, and MBD methods all show smaller energy
changes compared with DFT-D2.

The second testing model is shown in Fig. (4.2), with two layers of carbon and one
krypton above the carbon layers. The two carbon layers are extracted from the 3×3×1
graphite unit cells, and the distance between the two layers is 3.325 Å. The krypton
atom above the corner site of the top layer is above the center site of the bottom
layer, and vice versa. The potentials shown in Fig. (4.2b) and (4.2d) correspond to
the structure in Fig. (4.2a) and (4.2c). The reference potential is given by a sum of
the individual potentials from the two layers, and the individual potentials are given
by Fig. (4.1).

Table 4.2: The positions and energies of the potential wells shown in Fig. (4.2). The
sites are based on the top layer.

DFT-D2 DFT-D3 TS MBD

center site
position (Å) 3.400 3.550 3.550 3.600
energy (eV) -0.141 -0.129 -0.159 -0.112

corner site
position (Å) 3.475 3.600 3.600 3.625
energy (eV) -0.132 -0.125 -0.148 -0.107

The potentials are similar to those of the previous model. Compared with the
reference potentials, the results of the DFT-D2 method are exactly the same. It
is because DFT-D2 is based on the sum of pairwise LJ potentials. The results of
DFT-D3 are also almost the same. The vdW potential given by the DFT-D3 method
is still the sum of pairwise LJ potentials. The DFT-D3 method only modifies the
parameters in the LJ potential by the coordinates of the nearby atoms, and it can not
feel the non-local impact from another layer of carbon.

Compared with the reference, the potential wells of the TS method are 8.6% deeper
at the center site and 8.9% deeper at the corner site. The potential wells of the
MBD method are 4.3% deeper at the center site and 4.4% deeper at the center site.

Table 4.3: The positions and energies of the potential wells shown in Fig. (4.3).

DFT-D2 DFT-D3 TS MBD
position (Å) +0.050 +0.025 +0.025 +0.025

potential (eV) -0.240 -0.236 -0.254 -0.194
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Figure 4.2: The model with a krypton atom above two graphene layers and the
corresponding vdW potentials. (a) shows a krypton atom above the center of the
carbon hexagon of the top layer. (c) shows a krypton atom above the corner of the
carbon hexagon of the top layer. (b) and (d) show the calculated vdW potential
along the dash line in (a) and (c). Results with different algorithms are shown with
different line styles and colors. The reference lines are shown with thin blue lines.
These reference lines are given by direct adding the vdW potential from the two
carbon layers.

This can be illustrated as the two layers of carbon polarize the krypton electrons in
the same direction. The krypton electrons are repulsed further to the carbon layers
by the carbon pi bonds. The total polarization of the krypton is the sum effects
of the two layers and is larger than the individual effect of any one layer. This
larger polarized electron structure is then used for calculating the interactions with
the two carbon layers, and the total vdW potential turns out to be larger. These
observable deeper potential wells compared to the reference indicate that TS and
MBD algorithms successfully show the non-local many-body effects.
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The third testing model is shown in Fig. (4.3), with two layers of carbon and one
krypton atom between the two layers. The two carbon layers are extracted from
the 3×3×1 graphite unit cells and separated for 7.3 Å. The krypton atom above the
corner site of the top layer is above the center site of the bottom layer, and vice
versa. The potentials shown in Fig. (4.3b) correspond to the structure in Fig. (4.3a).
The reference potential is still given by a sum of the individual potentials given by
Fig. (4.1).

In this model, the DFT-D2 potential still overlaps with the reference potential and
is clearly non-symmetry. That’s due to the large difference between the corner site
potential and center site potential, as shown in Fig. (4.1). The potentials are more
symmetric for all the other potentials due to the pi bond. The DFT-D3 potential also
overlaps with its reference, while the TS and MBD algorithms show the many-body
effects. Compared with the results in Fig. (4.2), these potentials are smaller than the
reference. That’s because the polarization of the krypton atom by the two carbon
layers is in opposite directions, and the total polarization of krypton is then smaller.

By comparison of the results by different vdW algorithms, the MBD model shows
advantages over other algorithms. It can show the effects of the pi bonds in one
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Figure 4.3: The model with a krypton atom between four layers of graphene. (a)
The dash line shows a krypton atom above the carbon hexagon corner and below
the carbon hexagon center. (b) The calculated vdW potential along the dash line in
(a). Results with different algorithms are shown with different line styles and colors.
The reference lines are shown with thin blue lines. These reference lines are given
by direct adding the vdW potential from the two carbon layers.
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graphene layer and the non-local effects of the two carbon layers in the graphite.
Therefore, the MBD algorithm is chosen for later analysis.

4.2 Slit-Pore Model
4.2.1 Potentials of the Pores
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Figure 4.4: Computed vdW potential energies 𝜀vdW for selected layer distances
along the dash line in Fig. (4.3). Different types of lines are used for distinguishing.
The legend shows the color corresponding to different layer distances.

According to the results in Fig. (4.1), the energy change is small along the carbon
surfaces. According to the results in Fig. (4.3), the energy change is large vertically
to the carbon surfaces. Therefore, the structure shown in Fig. (4.3) is adapted for
further slit-pore model analysis discussed in Chapter 2. The two layers of carbon
are separated for various distances from 6.0 Å to 12.0 Å to simulate the potential of
the pores with different sizes, and the results are given in Fig. (4.4).

In Fig. (4.4), when the layer distance is smaller than 6.2 Å, the vdW potential is
almost positive, which means the carbon can hardly adsorbed the gas. The two
layers are too close to each other, and the repulsive potentials from the two layers
dominate. When the layer distance increases to around 7.3 Å, the potential wells from
two different layers overlap, and the total adsorption energy reaches an extremum.
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In the layer distance range from 6.2 Å to 7.3 Å, the potential well is similar to a
quadratic function, while the curvature of this quadratic function is smaller with the
layer distance increase. This trend can be seen by comparing the potential wells of
6.4 Å, 6.7 Å, and 7.3 Å shown in Fig. (4.5). For their fitting results, the coefficients
of the quadratic terms for these potentials are 2.15, 2.03, and 1.82, and the unit is
eV/Å2. These results correspond to the harmonic oscillators with ℏ𝜔 of 14.6 meV,
14.2 meV, and 13.5 meV. Also, with larger layer distances, the potential deviates
more from the quadratic fitting. The quadratic functions increase slower than the
real potential because the bottoms of the potential wells begin to flatter at a 7.3 Å
layer distance.
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Figure 4.5: Computed van der Waals potential wells subtracting their bottoms
𝜀vdW − 𝜀00 for selected layer distances along the dash line in Fig. (4.3). The solid
color lines are the results in Fig. (4.4), and the dash color lines are the corresponding
fitting results with quadratic functions. The fitting only uses points below 0.05 eV,
which are below the dash grey line.

When the layer distance further increases to around 8.4 Å, the bottoms of the potential
wells turn obviously flat. Referring to Fig (4.6a), the potentials from two layers are
almost linear when the distance to the middle plane ranges from −0.5 Å to +0.5 Å.
The overlapping of the linear potentials results in a linear sum in that range. As the
potential well of the center site is deeper than the corner site, the linear part slightly
tilts toward the top layer direction. With a further increase in the layer distance,
the potential turns into the shape of "W" with two energy extrema. These two
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points correspond to the potential extrema of the two individual layers, as shown in
Fig (4.6b). Also, in Fig (4.6), by comparing the potentials with the direct sum of
individual potentials, with the layer distance increase, the correlation between the
two layers is smaller. At 9.5 Å layer distance, the difference is almost not observable.
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Figure 4.6: Computed vdW potential energies 𝜀vdW for (a) 8.4 Å layer distance width
and (b) 9.5 Å layer distance. The color lines are from Fig. (4.4). The potentials from
individual layers and the sum of the individual potentials are shown with dash black
lines.

The minimum energies 𝜀00 are given in Fig. (4.7). As the correlation between the
two layers is negligible with separations larger than 9.5 Å, the potential is given by
the direct sum of the single-layer potentials from Fig. (4.1) for distances larger than
12.0 Å. This 𝜀00 has a similar shape to the results in Fig. (4.1). The value decreases
quickly as the layer distance increases from 6.0 Å to 7.3 Å. In this region, the position
of minimum potential is near the center between the two layers. Then the minimum
potential slowly increases to a platform. At large layer separations, the spatial
location of the minimum potential is around 3.6 Å to the top layer, corresponding to
the potential bottom of the top layer. The final stabilized potential corresponds to
the potential bottom in Fig. (4.1a).

4.2.2 Thermodynamic Analysis of Internal Energy of the Pores
Taking the adsorption energy curves in Eq. (2.31), the 𝑧 direction partition functions
from 251 K to 329 K, which is the temperature range of the experiments, are given
in Fig. (4.7a). The internal energies corresponding to these partition functions are
shown in Fig. (4.7b). These results are given by:

𝑢𝑧 =
𝑘B𝑇

2

𝑞𝑧
· 𝜕𝑞𝑧
𝜕𝑇

≈ 𝑘B𝑇
2

𝑞𝑧
· 𝛿𝑞𝑧
𝛿𝑇

. (4.2)
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Figure 4.7: The minimum energies 𝜀00 of the potentials in Fig. (4.4).

which is shown in Eq. (2.40). A 1 K temperature step is used for 𝛿𝑇 and 𝛿𝑞𝑧. The
corresponding heat capacities are given from the derivatives of the internal energies,
and the results are shown in Fig. (4.7c).

In Fig. (4.8a), for small layer distances, the partition functions are small because
the potentials increase quickly from the bottom, as the 6.4 Å potential shown in
Fig. (4.5). The adsorbed gas molecules are highly likely to locate around the bottoms
of the potentials in the temperature region studied in this work. With the increase
in layer distance, the potentials increase much slower, and the partition functions
increase. For example, for the potential of 8.4 Å shown in Fig. (4.6), the flat potential
bottom significantly contributes to the partition function. For the layer distance
increases from 8.4 Å, two major changes in the potentials affect the partition function.
First, the length of the region between the two energy extrema increases. Second,
the energy in the middle part of this region goes up. The former effect raises
the partition function, while the latter effect reduces the partition function. From
8.4 Å to 9.0 Å, the former change dominates, and the partition functions continue to
increase. From 9.0 Å to 9.5 Å, these two changes evenly compete with each other.
In Eq. (2.31), at low temperatures, the partition function is more sensitive to the
change in energy, and the partition function decreases as the middle part energy
increases. At high temperatures, the partition function is less sensitive to the energy
change, but the length of the interval where the integral has large values. Thus, the
partition function increases at high temperatures. From 9.5 Å to 12.0 Å, the latter
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Figure 4.8: Thermodynamic quantities corresponding to the vdW potentials shown
in Fig. (4.4) in the classical limit. (a) The partition functions given by the classi-
cal limit calculation with potentials subtracting their bottoms, which is shown in
Eq. (2.31). (b) The corresponding internal energies of the partition functions given
by Eq. (4.2) with 𝛿𝑇 = 1𝐾 . (c) The heat capacities given from the derivatives of the
results in (b).

change dominates, and the partition function decreases. With a further increase in
temperature, the energy between the energy extrema is close enough to 0, as the two
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layers are so far from each other. Then the impact of the latter change reaches its
maximum, and the impact of the former change suppresses the latter again. But as
the potential in this region is much higher than the bottom, the total impact is small
and only observable at high temperatures.

For the internal energies, as discussed in Chapter 2, a 0.5𝑘B𝑇 kinetic energy in the 𝑧
direction comes from the classical limit approximation of the partition function. The
rest of the energy comes from the Boltzmann distribution of the potential energy.
As a reference, for 251 K, 270 K, 290 K, 310 K, and 329 K, the kinetic energies are
10.81 meV, 11.63 meV, 12.50 meV, 13.36 meV, and 14.18 meV. The internal energies
are all much larger than the kinetic part. Typically, at around 6.0 Å, the internal
energies are almost exactly double the kinetic energies. With the increase in layer
distance to around 8.4 Å, the internal energies decrease to the minimum because
the bottom of the potential turns flat. The flat bottom at 8.4 Å has high Boltzmann
probabilities and low energies. With the further increase of the layer distance, two
energy extrema and the middle potential barrier appear. The middle energy barrier
contributes to the internal energy increase.

The 0.5𝑘B𝑇 kinetic energy contribute 0.5𝑘B to the heat capacity. The heat capacity
beyond this comes from the change in potential energy. At 6.0 Å, the internal energy
is almost 𝑘B𝑇 . Therefore, its heat capacity is 𝑘B. The potential at this layer distance
has almost exactly the quadratic form, which corresponds to the harmonic oscillator
model. Compared with the results in Chapter 2, the internal energy and the heat
capacity of a classical harmonic oscillator are respectively 𝑘B𝑇 and 𝑘B. At around
8.4 Å, the potential with the flat bottom is similar to the square potential, which has
only 0.5𝑘B heat capacity. However, the edges of the potential are less steep than the
square potential, and the heat capacity becomes larger. For larger layer distances,
with higher temperatures, the Boltzmann probability of the energy barrier between
the two energy extrema increases. This increase is faster at lower temperatures
due to the form of Boltzmann probability. Therefore, the lower temperature heat
capacities are larger than the higher temperature heat capacities. With the increase
in layer distance, the energies of the barriers increase, and the energy change for the
gas molecule jumping from the bottom to the barrier increases, which also leads to
the heat capacities increasing.
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4.2.3 Classical Versus Quantum
The results in Fig. (4.8) are all based on the partition functions in the classical
limit approximation. A more rigorous way is using the definition of the partition
function in Eq. (2.25) and solving the 𝜖 from the Schrödinger equation Eq. (2.26).
The slit-pore model only considers energy change in the 𝑧 direction. Therefore, the
1D Schrödinger equation given by:[

− ℏ2

2𝑚
𝜕2

𝜕𝑧2
+ 𝜀vdW(𝑧)

]
𝜙(𝑧) = 𝜖𝜙(𝑧). (4.3)

The 𝑧 direction partition function is:

𝑞𝑧 =
∑︁

exp
(
−𝜖 − 𝜀00

𝑘B𝑇

)
, (4.4)

while the adsorbed phase partition function 𝑞ads is given by Eq. (2.47). In 1D, the
eigenstates and the eigenenergies can be numerically solved. For each potential
shown in Fig. (4.4), the first 400 eigenenergies are calculated and used for the
partition function calculation. The results and corresponding energies and heat
capacities are shown in Fig. (4.9).

Compared with the results in Fig. (4.8), the partition functions and the internal
energies are almost exactly the same in Fig. (4.9). That means the classical limit
calculation of the partition functions is a suitable approximation in the experimental
temperature region. For the heat capacity, however, there is a small difference
around 6.0 Å. In the quantum case, the heat capacity changes from 0.954𝑘B𝑇 to
0.969𝑘B𝑇 with the temperature increase. In the classical case, however, the heat
capacity is around 0.990𝑘B𝑇 . There are two reasons behind this effect. First, the
heat capacity of the quantum harmonic oscillator is not exactly 𝑘B𝑇 . Second, the
shape of the potential is not exactly a quadratic form.

For the quantum harmonic oscillator approximation, the energy states of the quantum
harmonic oscillator are:

𝜖QHO, 𝑗 = ℏ𝜔

(
𝑗 + 1

2

)
, (4.5)

where 𝑗 is the number of states ranging starting from 0. The partition function is
then:

𝑞QHO =
∑︁

exp
(
−𝜖QHO, 𝑗/𝑘B𝑇

)
= exp

(
−1

2
· ℏ𝜔

𝑘B𝑇

)
/
[
1 − exp

(
− ℏ𝜔

𝑘B𝑇

)]
. (4.6)



46

u
z
 (

e
V

)

251 K
270 K
290 K
310 K
329 K

0.02

0.03

0.04

c
z
 (

k
B
)

0.6

1.0

1.4

1.8

251 K
270 K
290 K
310 K
329 K

(b)

(c)

251 K
270 K
290 K
310 K
329 K

0

4

8

12

16

20

q
z

6 7 8 9 10 11 12 13 14 15 16

Layer Distance (A)

6 7 8 9 10 11 12 13 14 15 16

Layer Distance (A)

6 7 8 9 10 11 12 13 14 15 16

Layer Distance (A)

(a)

Figure 4.9: Thermodynamic quantities corresponding to the vdW potentials shown
in Fig. (4.4) with quantum mechanics. (a) The partition functions given by the
calculation with 1D Schrödinger equation, which is shown in Eq. (4.3) and Eq. (4.4).
(b) The corresponding internal energies of the partition functions given by Eq. (4.2).
The temperature step is 1 K. (c) The heat capacities given from the derivatives of
the results in (b).

The internal energy is:

𝑢QHO =
𝑘B𝑇

2

𝑞QHO
·
𝜕𝑞QHO

𝜕𝑇
=
ℏ𝜔

2
+ ℏ𝜔

exp (ℏ𝜔/𝑘B𝑇) − 1
. (4.7)
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The heat capacity is then:

𝑐QHO =
𝜕𝑢QHO

𝜕𝑇
=

[
ℏ𝜔

exp (ℏ𝜔/𝑘B𝑇) − 1

]2
· exp (ℏ𝜔/𝑘B𝑇)

𝑘B𝑇2 . (4.8)

For 𝑘B𝑇 ≫ ℏ𝜔, 𝑐QHO ≈ 𝑘B. For the quadratic fitting of the 6.0 Å potential,
the quadratic fitting coefficient is 2.35 eV/Å2, which corresponds to ℏ𝜔 = 15.3 meV.
Taking them into Eq (4.8), the heat capacity is 0.971𝑘B, for 251 K and 329 K, the heat
capacities are 0.959𝑘B and 0.976𝑘B, which corresponds to the heat capacity increase
shown in Fig. (4.9c). This quantum effect can also illustrate the difference between
Fig. (4.8b) and Fig. (4.9b), at 6.0 Å. In Fig. (4.8b), the internal energy changes from
21.5 meV to 28.2 meV. In Fig. (4.9b), the internal energy changes from 22.4 meV
from 28.9 meV. For the quantum harmonic oscillator, the internal energy changes
from 22.5 meV to 29.0 meV, which is close to the results in Fig. (4.9b).

For the non-ideal quadratic potential shape, Fig. (4.10a) shows the eigenenergy
differences between the two adjacent levels 𝜖 𝑗+1 − 𝜖 𝑗 of the 6.0 Å layer distance. For
an ideal quantum harmonic oscillator, this value should be ℏ𝜔. However, the value
in Fig. (4.10a) obviously increases with the index of states. This can illustrate the
small differences between the results of the quantum harmonic oscillator and the
results in Fig. (4.9).

In quantum language, describing the adsorbed phase for large layer distances is
easier. Take 12.0 Å layer distance as an example. Fig. (4.10b) shows its eigenen-
ergies. For the energies less than 0.07 eV, the shape of the curve increases step
by step. One step corresponds to two states with similar eigenenergies. This pair
of states describe the gas molecule trapped like a harmonic oscillator near the two
potential extrema, as shown by the blue curve in Fig. (4.10c). For example, the 2nd
energy state belongs to the wave function within the left potential well and has an
energy of 5.52 meV. The 3rd energy state belongs to the wave function within the
right potential well and has an energy of 5.61 meV. The 4th energy state belongs
to the wave function within the left potential well and has an energy of 9.11 meV.
The energy difference between the 2nd and 3rd energy states is much lower than
that of jumping from the 2nd to the 4th state. Therefore, the step-like increase in
Fig. (4.10b) emerges.

When the energy is above 0.07 eV, in Fig. (4.10b), the energy increases more slowly.
Therefore the density of energy states is larger, especially for energy states lower
than 0.10 eV because the energy state is higher than the potential barrier and then
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Figure 4.10: Quantum mechanics discussion of several typical layer distances. (a)
The eigenenergy differences between the two adjacent levels 𝜖j+1 − 𝜖j of the 6.0 Å
potential in Fig. (4.4). (b) The eigenenergies of the 12 Å layer distance. (c) The
blue solid line is the 12 Å layer distance potential shown in Fig. (4.4). The black
solid line and the black dash line are the probability functions of the 56th state and
the 57th state. These states are the first states which overcome the energy barrier
between the potential bottoms. These probability functions are given by the square
of the wave functions.

the molecule can travel between the potential wells. The black lines show the
probability functions of the first two states that can travel between the two wells. As
the barrier on the left side is shallower than on the right side, the dashed probability
function in the right potential well is higher than the solid probability function in the
left potential well. With similar energy, this traveling between the wells provided
more possible states for the molecule other than trapped inside the individual wells.
Therefore, there are more states in this energy range.

At lower temperatures, the krypton molecule mostly occupies the lower energy
states. At higher temperatures, the gas molecule can occupy the higher energy
states, but the increase in state energies is smaller. Therefore, the heat capacity is
smaller at higher temperatures.
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Figure 4.11: Comparison between quantum mechanics and classical limit approx-
imation. (a)(b) The 𝑧 direction internal energies. (c)(d) The 𝑧 direction heat
capacities. (a)(c) The results with the classical limit approximation. (b)(d) The
results given by solving the Schrödinger equation.

For a further comparison between the classical and quantum theories, the calcu-
lations were performed with a larger temperature range from 10 K to 410 K. The
results are shown in Fig. (4.11). The differences are only observable for small layer
distances or low temperatures. For example, a near-zero heat capacity is observed
at around 6.0 Å at 10 K. This can be illustrated by Eq. (4.8) where ℏ𝜔 is much larger
than 𝑘B𝑇 . Also at 10 K, the heat capacities are around 𝑘B for larger layer distances
like 12.0 Å, because the gas molecules get trapped in the potential wells shown in
Fig. (4.11c), and act like quantum harmonic oscillators with a smaller ℏ𝜔. As men-
tioned, the ℏ𝜔 results for 6.0 Å and 12.0 Å are respectively 15.3 meV and 9.6 meV.
However, for the temperature studied in this work, which ranges from 250 K to
330 K, it is proper to use the classical limit approximation.
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4.2.4 2D Ideal Gas Versus Non-Ideal Gas
In the slit-pore model discussed above, the potential along the dashed line in
Fig. (4.3) is considered homogeneous along the surface. However, it is also shown
in Table (4.1) that the center sites and corner sites have a 0.05 eV energy difference.
Compared with the 𝑘B𝑇 at 300 K, which is around 0.025 eV, this energy difference
is not small. Therefore, using the 2D ideal gas model and the potential shown in
Fig. (4.4) needs further discussion.

×1
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×2

×1
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×2
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(a) (b)
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Figure 4.12: Top view illustration of the structure shown in Fig. (4.3). The color
dots are the lines picked for the 2D non-ideal gas model. The solid black lines and
dash black lines show the two different carbon planes. The blue dash lines show the
edge of the unit cells along the 𝑥 − 𝑦 plane. The dash line in Fig. (4.3) is shown in
(a) with the purple dot, which connects one center site and one corner site. (b), (c)
and (d) show different choices of lines. The color of dots in (d), from top to bottom
and from left to right, are named red, pink, purple, brown, blue, orange, green, and
cyan. The numbers of dots in one unit cell are also shown.

The previous subsection pointed out that even for the large potential change, like the
potential for 6.4 Å layer distance, it is still proper to use classical limit approximation
to calculate the partition function in the temperature range studied experimentally.
The later discussion will continue from the classical partition function expression
Eq. (2.30) and the multi-site calculation Eq. (2.56). When the total number of 𝑖 is
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large enough, Eq. (2.56) can be considered the integral along the successive plane.
Therefore, multiple lines similar to the dash line in Fig. (4.3) are picked to calculate
the 𝜀vdW,𝑖. The choice of lines are shown in Fig. (4.12), and the corresponding vdW
potentials are shown in Fig. (4.13).

Evidently, the potentials in Fig. (4.13) have no significant differences. The most
observable difference comes from the potential of 6.2 Å. For the purple one in
Fig. (4.13c), this 6.2 Å potential goes deepest, while for the red and cyan lines in
Fig. (4.13a) and (4.13h), the 6.2 Å potentials are almost above 0. Another difference
is the potential of 12.0 Å. For the purple line potential in Fig. (4.13c), the depth
of the two wells has a slight difference, as described before. For other potentials,
however, the difference is almost indistinguishable.

For a certain layer distance 𝐷, with this series of 𝜀vdW,𝑖,𝐷 and the multi-site adsorp-
tion theory Eq. (2.56), the total partition function is:

𝑞ads =
𝐴

Λ3

∑︁
𝛼𝑖

∫ +𝐷/2

−𝐷/2
exp

(
−
𝜀vdW,𝑖,𝐷

𝑘B𝑇

)
d𝑧. (4.9)

Here, the origin of the 𝑧 direction is the middle between the planes. The internal
energies and corresponding heat capacities of the adsorbed phase are calculated
from this partition function. In Fig. (4.12b), (4.12b), and (4.12d), the cells are
evenly divided into 4, 9, and 36 parts. The 𝛼𝑖 terms are given by the geometry
shown in these figures.

Fig. (4.14a) corresponds to the results in Fig. (4.8b) adding the 𝜀00 in Fig.(4.7). As
𝜀00 does not change with temperature, the corresponding heat capacity is the same
as Fig. (4.8c). In Fig. (4.14c) to (4.14g), the biggest differences are around 6.2 Å,
as the potential has the biggest differences with this layer distance. For most of
the results in Fig. (4.13), the potentials around 6.2 Å are higher than Fig. (4.13c).
Therefore, the thermally averaged potentials become larger. Also, the 𝜀00 terms are
no longer unique. Along the 𝑥 − 𝑦 plane, the potential changes from a delta function
to periodic functions. As discussed, the delta function has the smallest heat capacity.
Thus, the heat capacities around 6.2 Å become larger. With increasing temperature,
the thermally average effect is more important, and therefore the changes in heat
capacities are smaller. For large layer distances, most of the potentials in Fig. (4.14)
have shallower potential wells than the right one in Fig. (4.14c), but these potential
wells are deeper than the left one in Fig. (4.14c). However, as the differences are
small, the changes in internal energies and heat capacities are also small.
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Figure 4.13: Smooth fitting of the computed vdW potential energies 𝜀vdW for
selected layer distances along the different lines in Fig. (4.12). The interval of the
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Figure 4.14: Thermodynamic analysis of the structures in Fig. (4.12). (a) The
results of the structure in Fig. (4.3) or Fig. (4.12a). The 𝑢ads is the adsorbed phase
internal energy while the 𝑘B𝑇 corresponds to the 𝑥− 𝑦 kinetic energy. (b)(c) Results
correspond to Fig. (4.12b). (d)(e) Results correspond to Fig. (4.12c). (f)(g) Results
correspond to Fig. (4.12d). (b),(d) and (f) show the internal energies subtracting the
energies of reference in (a). (c), (e) and (g) show the heat capacities subtracting the
results in Fig. (4.8c). The legends of all figures are the same as shown in (a).
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According to the results in Fig. (4.14), the largest difference in the adsorption ener-
gies and heat capacities is less than 10%. Also, according to Fig.(4.7), the largest
changes occur for the energetically less favorable layer distances. The differences
are negligible for layer distances larger than 7.0 Å. Therefore, using only the results
in Fig.(4.4) for a 2D ideal gas model is proper.

4.2.5 Two Layers Versus Four Layers
In the previous discussions, the krypton molecule is put between two layers of carbon.
However, the volume outside the pores is not a vacuum for real materials. Multiple
layers are also considered for slit-pore models shown in Fig. (2.2). Therefore, two
extra layers of carbon were introduced into computation as a comparison, and the
new model is shown in Fig. (4.15a). The distances between the layers on the same
side of the krypton are 𝐷b = 3.325 Å, which are the same as the model in Fig. (4.2).
Similar to the calculation before, the vdW potential along the dash line is shown in
Fig. (4.15b).

Compared with Fig. (4.4), the shapes of the potentials are almost similar. The major
difference is that the potentials are deeper because of the vdW potential from the two
extra layers. The vdW potentials in Fig. (4.15b) are close to the sum of potentials of
two double layers with the layer distances of 𝐷 and 𝐷 + 2𝐷b, while 2𝐷b is a large
distance. Take 𝐷 = 6.2 Å layer distance as an example, the 𝐷+2𝐷b is nearly 12.9 Å.
The potential of 12.9 Å layer distance is weak in the middle part between the two
inner layers, where the 6.2 Å layer distance has the strongest potential. Similarly, for
layer distances ranging from 6.2 Å to around 8.0 Å, the deepest parts of the potentials
are the parts near the middle plane, while the contributions from the outer layers to
the total potentials are weaker and weaker with the layer distance increase. For large
layer distance, however, the deepest parts of the potential are around 3.4 Å away
from one inner layer. The changes in the potential bottoms are then approximately
always adding the potential 6.8 Å away from one outer layer.

Based on the results in Fig. (4.15b), the 𝑧 direction internal energies and heat
capacities are also calculated with Eq. (4.2) and corresponding derivatives, and the
results are shown in Fig. (4.15c) and Fig. (4.15d). The results are similar compared
with Fig. (4.8). The most significant difference is for large layer distances, where
the internal energies slightly turn smaller.

Therefore, it can be concluded that compared with two layers, the multiple layers
slit-pore model has differences in the vdW potential, which comes from the potential
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from outer layers. These differences in potentials are the same as the differences
in internal energies. However, for the temperature dependence of the internal
energies and the heat capacities, the differences between two and multiple layers are
insignificant.

4.3 Thermal Vibration
Previous sections assume that the shapes of potentials do not change with tem-
perature. However, the displacements caused by thermal vibration can change the
location of the adsorbent, and the vdW potentials are then altered. For the 2D
ideal gas model, the 𝜀00 in the single particle partition function Eq. (2.47) is also
temperature dependent. The adsorbed phase internal energy is then:

𝑢ads = 𝜀00 − 𝑇
𝜕𝜀00

𝜕𝑇
+ 𝑘B𝑇

2

𝑞𝑧

𝜕𝑞𝑧

𝜕𝑇
+ 𝑘B𝑇. (4.10)

Compared with the energy in Eq. (2.52), the second term𝑇𝜕𝜀00/𝜕𝑇 emerges. When
considering the heat capacity, it turns into:

𝑐ads = −𝑇 𝜕
2𝜀00

𝜕𝑇2 + 𝜕

𝜕𝑇

(
𝑘B𝑇

2

𝑞𝑧

𝜕𝑞𝑧

𝜕𝑇

)
+ 𝑘B. (4.11)

The extra term 𝜕2𝜀00/𝜕𝑇2 has to be considered if the potentials are temperature
dependent.

4.3.1 Simulation with TDEP Method
The stochastic Temperature Dependent Effective Potential (TDEP) method simulates
the thermal vibration of the adsorbent. Developed by Olle Hellman and Nina
Shulumba, this software package can calculate the force constants between atoms
from the energy of displaced systems (Hellman, Abrikosov, and Simak, 2011;
Hellman and Abrikosov, 2013; Hellman, Steneteg, et al., 2013). Multiple equal-
probability thermally displaced configurations can then be generated from the force
constants. Similar to the Born–Oppenheimer approximation, the thermal vibration
of the adsorbent atoms is much faster than the translation of the adsorbate molecules.
Therefore, the adsorbate molecules can only feel a time-averaged vdW potential field.
According to the Monte Carlo calculation, this average potential field is simulated
by averaging the potentials of multiple thermally displaced configurations.

Fig. (4.16) shows the process of thermally displacement simulation. The 3 × 3 × 2
bulk graphite cell with 72 carbon atoms is initially picked. Then with the TDEP
package, multiple thermally displaced configurations at different temperatures are
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generated. Next, two layers of carbon are extracted from the bulk cell and separated
with layer distances of 6.4 Å, 6.7 Å, 7.3 Å, 8.4 Å, and 9.5 Å. One krypton molecule
is put between these two layers, and a large vacuum space is added to avoid the
influence of adjacent cells. The vdW potential is calculated along the dash line, and
the final vdW potential is given by averaging 50 different configurations.

3×3×2
graphite

0 K

a) …
…

…
…

…
…

3×3×2
graphite

500 K

TDEP

Layer
Distance

Free
Volume

Not
Accessible

2.7 Å

b) c)
Vacuum Space

Figure 4.16: Illustration of the generation process of thermally displaced config-
urations. (a) The 3 × 3 × 2 graphite cell without thermal displacement. (b) One
simulated thermally displaced configuration of the cell at 500 K. (c) One system
used for the vdW potential calculation. The double-layer structure is similar to
Fig. (4.3), and the dash line is the same. However, the carbon atoms are thermally
displaced in this system.

As the phonon describes the vibration, the accuracy of the TDEP thermally dis-
placement simulation is checked by comparing the phonon dispersion relationship
by TDEP and experiments (Wirtz and Rubio, 2004; Maultzsch et al., 2004; Mohr et
al., 2007). The comparison is shown in Fig. (4.17). Compared with the experiments,
the simulated phonon dispersion relationship is accurate enough, which means the
simulation of the thermally displaced configurations is valid.

4.3.2 Monte Carlo Calculation
The Monte Carlo calculation results are shown in Fig. (4.18). For small layer
distances like 6.4 Å, with the temperature increase, the vdW potentials turn weaker.
However, the shapes of the potentials do not change too much. For the large layer
distances like 9.5 Å, the shapes of potentials change little with temperature increase.
Therefore, it can be approximated that the 𝜀vdW − 𝜀00 in 𝑞𝑧 expressed in Eq. (2.31)
is temperature independent. In Eq. (4.10) and Eq. (4.11), only the 𝜀00 parts need
consideration.

The 𝜀00 results are shown in Fig. (4.19). For small layer distances, with the temper-
ature increase, the minimum of the vdW potential wells turns smaller in magnitude.
For large layer distances, the minimum potential energies hardly change. The slopes
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Figure 4.17: The green lines are the phonon dispersion relationship of graphite
calculated by the sTDEP method. The background is reference data adopted from
the cited paper (Mohr et al., 2007). The red triangles and blue circles are inelastic
X-ray scattering experiment results. The solid lines are reference calculation results.
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Figure 4.18: The MC calculation results of krypton adsorption potentials between
two thermally displaced carbon layers.

of the linear fittings for layer distance from small to large are 0.168𝑘B, 0.104𝑘B,
0.030𝑘B, −0.004𝑘B, and 0.020𝑘B. These changes are all much smaller than 𝜀00.
Also, linear temperature dependences are canceled out by the first two terms in
Eq. (4.10). Meanwhile, no distinct second-order temperature dependence is shown
in Fig. (4.19). Thus, thermal vibration has no major impact on the adsorbed phase’s
internal energy and heat capacity.

Although Monte Carlo calculation shows that thermal vibration does not impact the
heat capacity, some results still deserve discussion. In Fig. (4.18), for all the layer
distances, with the temperature increase, the changes in adsorption potentials are
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Figure 4.19: Bottoms of the vdW potentials 𝜀00 by MC calculation for selected layer
distances at different temperatures. The dash lines are linear fits.

less distinct on the center site (right side). It is because six carbon atoms equally
contribute the potential on the center site, and it is less possible for them to have a
homogeneous trend. For the potentials on the corner site (left side), however, they
show observable weakening because the potential is highly affected by the vibration
of the most adjacent carbon atom.

In Fig. (4.19), the temperature dependence of the 𝜀00 is initially large with small
layer distances. With the layer distances increase, the temperature dependence turns
smaller and then becomes slightly larger. This trend can be illustrated with an LJ
potential analysis. Assuming the vdW potential has an LJ form in Eq. (1.1), then
the time-averaged adsorption energy 𝜀LJ can be expressed as:

𝜀LJ(𝑅) = [ 𝜀LJ(𝑅 + Δ𝑅) + 𝜀LJ(𝑅 − Δ𝑅)] /2, (4.12)

where Δ𝑅 is an average deviation caused by the vibration of the adsorbent atom. By
assuming Δ𝑅 is much smaller than 𝑅 and doing second-order Taylor expansions of
Eq. (4.12), the change in vdW potential caused by the thermal vibration is:

Δ𝜀LJ(𝑅) = −4𝜀0

[
78

(𝜎
𝑅

)12
− 21

(𝜎
𝑅

)6
] (

Δ𝑅

𝑅

)2
, (4.13)

where Δ𝜀LJ = 𝜀LJ − 𝜀LJ.

Compared with Eq. (1.1), the terms in the square bracket amplify the repulsive
potential more than the attractive potential. When 𝑅 = 𝜎 and 𝑅 = 21/6 · 𝜎, Δ𝜀LJ

is −228 𝜀0 · (Δ𝑅/𝜎)2 and −28.6 𝜀0 · (Δ𝑅/𝜎)2, which are all repulsive. Only when
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𝑅 > 1.24𝜎, Δ𝜀LJ turns attractive. This Δ𝜀LJ reaches extrema 2.97 𝜀0 · (Δ𝑅/𝜎)2

when 𝑅 = 1.37𝜎, which is small compared with the repulsive potential mentioned
before.
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Figure 4.20: Calculation of the thermal displacement impact with LJ potential. (a)
The model used for the LJ potential calculation. The orange atoms are carbon and
the purple atom is krypton. (b) The blue line with the left axis shows the LJ potential
from the left carbon atom. The orange line with the right axis shows the LJ potential
change due to the Δ𝑅 displacement. (c) The blue line with the left axis shows the
LJ potential minima versus the distance between the two carbon atoms. The orange
line with the right axis shows the corresponding potential change due to the Δ𝑅

displacements.

The calculation above discusses the situation with only two atoms. To illustrate
the slit-pore model results shown in Fig. (4.19), the model with a krypton molecule
between two carbon atoms is calculated, as shown in Fig. (4.20a). The two carbon
atoms are separated for distances from 6.0 Å to 10.0 Å. For the krypton interaction
with one carbon atom, the potential given by Eq. (1.1) is shown with the blue line
and left axis in Fig. (4.20b). The constants in Eq. (1.1) are: 𝜀0 = 5.96 meV and
𝜎 = 3.5 Å (Maiga and Gatica, 2018). Meanwhile, The orange line and the right axis
in Fig. (4.20b) describe the change in LJ potential shown in Eq. (4.13). The Δ𝑅 is
set as 0.1 Å.

The total potential is the sum of two krypton-carbon LJ potentials. In Fig. (4.20c), the
blue curve shows the potential minima 𝜀00 for different layer distances. The lowest
point of the blue curve is 11.92 meV, when the distance is 7.86 Å. At this point, the
distances between the krypton and the two carbons are both 21/6𝜎 = 3.93Å. Similar
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to the results in Fig. (4.4), when the distance between the two carbons is smaller
than 7.86 Å the location where the krypton can find the lowest potential energy is in
the middle between the carbons. When the distance is much larger than 7.86 Å the
location of the lowest potential is 21/6𝜎 = 3.93 Å to the carbon.

The impact of thermal vibration on the potential minima 𝜀00 is shown in Fig. (4.20c)
with the orange line. With the increase in carbon distance, the Δ𝜀00 initially
decreases and reaches the minimum when the distance is 8.72 Å. Then the value
increases again, but for a smaller magnitude. This is due to the change in the
location of the potential minima away from the center between carbon atoms. The
trend shown by this orange line corresponds to the Monte Carlo calculation results
in Fig. (4.19), where the slopes of linear fits decrease first and then increase slightly
with the layer distance increase.

4.3.3 Impact of vdW Potentials on Thermal Vibration
In the previous discussion in this section, the vdW potential is approximated to
have no impact on thermal vibration. However, this assumption requires validation.
According to the references, the phonon dispersion relationships of graphene and
graphite are similar, including in the out-of-plane 𝑧 direction. Apart from this
indirect evidence, the calculation with LJ potential can further prove the applicability
of this approximation.

Using the Einstein solid model and referring to the "ZO" mode frequency in
Fig. (4.17), the carbon atoms can be initially regarded as a harmonic oscillator
with ℏ𝜔 = 100 meV. The ground state probability function is a Gaussian function
with a height of 9.56 Å−1 and a standard deviation of 0.022 Å. As ℏ𝜔 is large energy
compared with room temperature 𝑘B𝑇 , the thermal averaged probability functions
have no significant deviation from the ground state probability function.

The model with one carbon atom and one krypton molecule is then analyzed.
However, the Δ𝑅 is no longer used to describe the carbon displacement. On the
contrary, the probability function given by the Schrödinger equation describes the
thermal displacement of the carbon atom. With the krypton molecule taken into
consideration, the vdW potential is also included in the Schrödinger equation.

Compared with the original harmonic oscillator results, The probability and vdW
potential changes are shown in Fig. (4.21), where the distances between the carbon
atom and the krypton molecule are selected as 3.0 Å, 3.5 Å, 3.93 Å, and 4.0 Å.
These atom distances represent the situation with a strong repulsive potential, zero
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potential, maximum adsorption potential, and a weaker adsorption potential. For
𝑅 = 3.0 Å, in Fig. (4.21a), the change in probability function is on the same order of
magnitude as the initial ground state probability function. For all the temperatures,
the two atoms significantly move further due to the high repulsive potential shown in
Fig. (4.21b). Without considering the impact of vdW potential on thermal vibration,
the energy increase around 93.6 meV, which is comparable to the ℏ𝜔 and much larger
than 𝑘B𝑇 . However, considering the impact of vdW potential, the interaction energy
turns more than 6 meV smaller. For 𝑅 = 3.5 Å, the LJ potential should be 0 if the
carbon atom is regarded as a static point. However, the thermal vibration increases
the vdW potential without considering the impact of vdW potential, as shown in
Fig. (4.20b). With the vdW potential impact, the interaction energy decreases for
0.06 meV. However, the change in probability function shown in Fig. (4.21c) is an
order of magnitude smaller than in (4.21a). For 𝑅 = 3.93 Å, in Fig. (4.20b), the
vdW interaction reaches the minimum. The probability function narrows to the
center, and the vdW energy decreases slightly. However, the change in probability
function is three orders of magnitude lower than Fig. (4.21a). For 𝑅 = 4.0 Å, the
atoms tend to move closer to each other, but this change in probability function is
also tiny. The decrease in vdW potential is around 10−3 meV, which is only around
0.017% change.

In summary, vdW interaction leads the vibration to lower energy. However, this
impact is significant only when the atoms are very close, and the repulsive potential
is substantial. However, these distances are energetically less favorable. Thus it
is appropriate to assume the vdW potential does not impact the thermal vibration
and use the bulk graphite thermal displacements for the slit-pore model analysis.
Another phenomenon in Fig. (4.21b), (4.21d), (4.21f) and (4.21h) is that the vdW
potential has no significant second-order temperature dependence, which validates
the previous conclusion that thermal vibration has no major impact on the internal
energy and heat capacity of the adsorbed phase.
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Figure 4.21: The impact of vdW potential on thermal vibration. Left: The changes
in probability functions caused by the vdW potential compared with the original
harmonic oscillator model. Right: The vdW potentials of a krypton atom and a
thermally vibrating carbon atom. The dash lines represent the vibration not affected
by the vdW potential. The solid lines represent the vibration under the impact of
the vdW potential.



64

C h a p t e r 5

DISCUSSION ON THE TEMPERATURE DEPENDENCE OF
ADSORPTION ENERGY

The third chapter of this work investigates the temperature dependence of krypton
adsorption energy and the heat capacity of the adsorbed phase. Experimental ob-
servations have shown that the adsorption energy of krypton exhibits a significant
temperature dependence, while the adsorbed phase has a large heat capacity. This
chapter explains the observed temperature dependence using theoretical, experi-
mental, and computational results from the second, third, and fourth chapters.

5.1 Boltzmann Effects
In Chapter 2, the multi-site adsorption theory is discussed. Pores with different
sizes can be regarded as different sites, and the 𝛼𝑖 can be calculated from the
NLDFT surface area density in Fig. (3.3). Meanwhile, their partition functions,
internal energies, and heat capacities are shown in Fig. (4.8). These results are taken
into equations from Eq. (2.53) to Eq. (2.57), and selected results are shown in the
following figures.

Fig. (5.1a) and (5.1b) show the densities of Henry’s constant for two materials, which
are the continuous function form of the 𝐾H, 𝑖 in Eq. (2.54). The integrals of these
functions are the total 𝐾H at different temperatures. These results show that Henry’s
constants decrease quickly with temperature. By substituting Henry’s constants into
Eq. (2.12) or directly using Eq. (2.57), the isosteric adsorption energies are given in
Fig. (5.2).

In Fig. (5.2), the isosteric adsorption energy of MSC-30 changes from −0.101 eV to
−0.087 eV from 250 K to 330 K, and the slope is 2.03𝑘B. For CNS-201, the change
in adsorption energy is from −0.090 eV to −0.086 eV, and the slope is 0.62𝑘B. Both
results clearly show that with increasing temperature, the magnitude of adsorption
energy decreases almost linearly. The experimental results analyzed by Henry’s law
and the Langmuir model are also shown as references. The slopes of these results
are compared in Table (5.1).

The reason for these changes in adsorption energy are suggested by Fig. (5.3).
For CNS-201, referring to the results in Fig. (4.8c), the first peak of the surface
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area distribution around 10.6 Å corresponds to an adsorption energy changing rate
around 0.4𝑘B, which is smaller than the 0.62𝑘B in Fig. (5.2). The second peak
around 12.1 Å has an around 0.7𝑘B adsorption energy changing rate, contributing
to the increase in energy change. Additionally, with increasing temperature, the
gas distribution shifts slightly from the first peak to the second peak, while the two
peaks with lower surface area distributions at around 15.5 Å and 17.9 Å also attract
more gas. These larger pores have higher heat capacities and internal energies.
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Figure 5.1: The density of Henry’s constant at different temperatures, which is a
continuous function form of the right part in Eq. (2.54). The black dash lines are
the surface area distribution functions shown in Fig. (3.3a). (a) Results of CNS-201.
(b) Results of MSC-30.
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Figure 5.2: The solid lines are calculated isosteric adsorption energies of krypton
on CNS-201 (orange) and MSC-30 (green). The dash lines are the experimental fits
shown in Fig. (3.6) and (3.9) given by Henry’s law and Langmuir model.

Table 5.1: The internal energies changing rate with temperature given by different
methods.

Henry’s Law Langmuir Model 2D Ideal Gas Model
CNS-201 4.35𝑘B 2.10𝑘B 0.62𝑘B

MSC-30 3.65𝑘B 1.21𝑘B 2.03𝑘B

The transfer of the gas from the lower energy peak to higher energy peaks also
leads to an extra temperature dependence of the internal energies. For MSC-30, the
transfer of the gas molecules has larger effects. Despite their lower total population,
the energetically favorable sites smaller than 10.7 Å adsorb more gas than the sites
around 12.2 Å. With increasing temperature, there is a decrease in the number of
gas molecules in these energetically favorable sites, while pores with larger widths
attract more gas. According to Fig. (4.8c), even the maximum adsorption energy
changing rate can only reach 1.0𝑘B for a single pore width. But because of the gas
transfer, MSC-30 can have a much larger slope of 2.03𝑘B in Fig. (5.2).

Considering the results in Fig. (4.14a), it is possible to infer that increasing tem-
perature leads to a reduction in the favorability of the sites with lower energies,
while the sites with higher energies become more accessible. A consequence of
this phenomenon is that the overall average energy of the gas phase decreases in
magnitude, leading to a decrease in the magnitude of the isosteric adsorption energy.
This effect can be referred to as the "Boltzmann effect."
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Figure 5.3: The distribution of the adsorbed gas, which corresponds to the 𝑛𝑖 in
Eq. (2.53) over the total adsorption amount 𝑛. These distributions can also be given
by 𝑛𝑖/𝑛 = 𝐾H, 𝑖/𝐾H. The black dash lines are the surface area distribution functions
shown in Fig. (3.3a).

For the 𝑖th sites with 𝑞ads,𝑖, 𝛼𝑖, 𝑞𝑧,𝑖 and 𝜀00,𝑖 as given in the multi-site adsorption
section, for a same number of adsorbate molecule 𝑛0, the adsorbed phase Helmholtz
free energy 𝐹ads,𝑖0, chemical potential, and internal energy 𝑢ads,𝑖0 of the 𝑖th site are:

𝐹ads,𝑖0 = −𝑘B𝑇 ln𝑄ads,𝑖0 = −𝑘B𝑇 ln
𝑞
𝑛0
ads,𝑖

𝑛0!
,

= 𝑛0𝑘B𝑇 ln 𝑛0 − 𝑛0𝑘B𝑇 ln 𝑞𝑧,𝑖 − 𝑛0𝑘B𝑇 ln
(
𝛼𝑖𝐴

Λ2

)
+ 𝑛0𝜀00,𝑖;

(5.1)

𝜇ads,𝑖0 =

(
𝜕𝐹ads,𝑖

𝜕𝑛0

)
𝑇

= 𝑘B𝑇 ln 𝑛0 − 𝑘B𝑇 ln
(
𝛼𝑖𝐴𝑞𝑧,𝑖

Λ2

)
+ 𝜀00,𝑖; (5.2)
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𝑢ads,𝑖 =
𝑘B𝑇

2

𝑛𝑖𝑄ads,𝑖

𝜕𝑄ads,𝑖

𝜕𝑇
= 𝜀00,𝑖 +

𝑘B𝑇
2

𝑞𝑧,𝑖

𝜕𝑞𝑧,𝑖

𝜕𝑇
+ 𝑘B𝑇. (5.3)

Then the average adsorption energy is:

𝑢ads =

∑
𝑢ads,𝑖 exp(−𝜇ads,𝑖0/𝑘B𝑇)∑

exp(−𝜇ads,𝑖0/𝑘B𝑇)
=

∑
𝛼𝑖𝑞𝑧,𝑖𝜀00,𝑖 exp

(
−𝜀00,𝑖/𝑘B𝑇

)∑
𝛼𝑖𝑞𝑧,𝑖 exp

(
−𝜀00,𝑖/𝑘B𝑇

)
+ 𝑘B𝑇

2
∑
𝛼𝑖 exp

(
−𝜀00,𝑖/𝑘B𝑇

) (
𝜕𝑞𝑧,𝑖/𝜕𝑇

)∑
𝛼𝑖𝑞𝑧,𝑖 exp

(
−𝜀00,𝑖/𝑘B𝑇

) + 𝑘B𝑇,

(5.4)

which is the same as Eq. (2.57).

To verify the impact of the non-ideal gas and multi-layers of carbon, the results
in Fig. (4.14) and (4.15) are also used as a reference, and the results are shown in
Fig. (5.4). For all three non-ideal models, the internal energy changes are almost the
same, and therefore only one set of lines is used. The energies slightly increase for
the non-ideal gas model, while for the 4 layers model, the energies decrease for less
than 0.02 eV. For both the two different models, the slopes are almost identical to the
2 layer 2D ideal gas model. Therefore, the model with 2 surface layers is sufficient
to study the temperature dependence of adsorption energy. However, more layers in
bulk should be included to study the exact value of adsorption energy.

5.2 Other Possible Effects
In Fig. (5.2), all the computational energies are significantly smaller than the exper-
imental result for both materials. The changes in internal energies in Table (5.1)
also indicate that the computational results are lower than those with Henry’s law,
particularly for CNS-201. There are several possible reasons for these discrepancies.

First, the computational method ignores gas-gas interactions. The experimental
zero-coverage adsorption energy is given by fitting the higher coverage data to zero-
coverage, and higher coverage data contains the gas-gas interaction. The gas-gas
interaction can be significant if the initial gas adsorption occurs in a process similar to
the nucleation, where the other gas atoms also attract the newly adsorbed gas atoms.
Then the gas-gas vdW potential can enhance the adsorption by the surface and
provide more energy states for Boltzmann distribution. However, the LJ potential
constant between krypton molecules 𝜀0,Kr is only 14.7 meV, which is about a half of
the 𝑘B𝑇 at room temperature (Maiga and Gatica, 2018). By taking the LJ potentials
ranging from 3.0 Å to 16.0 Å into Boltzmann distribution, the averaged attraction
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Figure 5.4: The dot lines above the solid lines are the isosteric adsorption energies
for the non-ideal gas model. The solid lines with stars are the energies of 4 layers
of carbon. Other reference results are from Fig. (5.2). "IG" means ideal gas in the
figure legends.

potential between two krypton atoms is only 2.3 meV at 300 K. This number is much
smaller than the krypton adsorption energies in the slit pores, and the formation of
the 2D crystal is almost impossible. Therefore, the impact of gas-gas interaction is
not critical at room temperature.

Second, the NLDFT method is limited in detecting energetically favorable pores
smaller than 8.0 Å, as it mainly focuses on large pore detection at lower tempera-
tures. However, by adding a small number of small pores to the two materials, the
temperature dependence of adsorption energy can be different. The surface area
distributions of added pores are shown in Fig. (5.5a) with dash lines. These distri-
butions are Gaussian functions with standard deviations of 0.2 Å. The mean values
of these two Gaussian functions are 7.3 Å for CNS-201 and 7.0 Å for MSC-30. The
total added surface areas are both 100 m2·g−1, which is about 10.4% and 4.2% of the
original NLDFT surface areas of CNS-201 and MSC-30. The adsorption energies
of the new surface area distributions are shown in Fig. (5.5b). From 250 K to 330 K,
the adsorption energies change from -0.147 eV to -0.120 eV for CNS-201 and from
-0.120 eV to -0.098 eV for MSC-30. The slopes of these new fittings are 3.91𝑘B and
3.19𝑘B, which are close to Henry’s law analysis in Table (5.1). Fig. (5.6) shows the
gas distribution with the smaller size pores. Compared with the results in Fig. (5.3),
these small pores are extremely favorable for the gas. Meanwhile, with increasing
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temperature, the gas molecules accumulated in these small pores transfer to larger
pores.

250 260 270 280 290 300 310 320 330
T (K)

-0.22

-0.20

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

-22

-20

-18

-16

-14

-12

-10

-8

Δu
st
 (eV) Δu

st
 (kJ·mol-1)

5 10 15 20 25 30 35
0

100

200

300

400

500

600

S
u

rf
a

ce
 A

re
a

 D
e

n
si

ty
 (

m
2
·g

-1
·Å

-1
)

Surface Distance (Å)

MSC-30

CNS-201
(a)

(b)

Old

Henry
New

Figure 5.5: The impact of small-size pores on adsorption energies. (a) The dash lines
are surface area distributions of added pores with small layer distances. The solid
lines are the surface area distribution shown in Fig. (3.3). (b) Isosteric adsorption
energies with the new modified surface area distribution are shown with the dash
lines. Other results are the same as Fig. (5.2) as references.

Third, the slit-pore model does not consider the effects at the boundaries between
pores of different sizes. Although different pores are at equilibrium, the process
where gas molecules transfer between pores is ignored. If the slit pores are tilted at
the boundary between the pores, the non-ideal surface dynamic can provide extra
heat capacity in the 𝑥 − 𝑦 directions.
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Figure 5.6: The distribution of the adsorbed gas with the new modified surface area
distribution for (a) CNS-201 and (b) MSC-30. Similar to Fig. (5.3), the black dash
lines are the surface area distribution functions shown in Fig. (5.5a) as reference.

Finally, active carbon materials are amorphous and contain elements other than car-
bon, such as oxygen and nitrogen, which can introduce extra errors to the adsorption
energies.

5.3 Future Outlook
In the future, several potential projects could build upon this study. Current work
can be expanded to investigate more adsorbate materials, especially materials with
known crystal structures, including zeolite, MOF, zeolite-template carbons, etc.
These structures would provide more accurate information on element types and
pore and surface area distributions, enabling more precise calculations of the tem-
perature dependence of adsorption energy. By comparing computational results



72

with experimental data, the accuracy of the methods discussed in this work could
be further verified. Meanwhile, different adsorbents, including carbon dioxide,
methane, nitrogen, etc., can be studied. Compared with krypton, most of these
gases are anisotropic. Therefore, their rotations and vibrations should also be con-
sidered apart from the translation. Further computational studies can reveal how the
vdW potential hinders these degrees of freedom. For example, the carbon dioxide
molecule, which has the shape of a rod, may prefer to be parallel to the surface
for small layer distances and perpendicular to the surface for large layer distances.
The changes in these internal degrees of freedom can lead to extra shifts in the
temperature dependence of the adsorption energies.

Furthermore, based on the slit-pore results in this work, a new model for pore size
measurement could be developed. The NLDFT method uses mean-field theory
and is based only on one adsorption isotherm at one temperature. However, the
model discussed in this thesis is based on multiple isotherms and more accurate
DFT-calculated potentials. Meanwhile, the NLDFT method focuses on low temper-
atures and large pores. But this work analyzed smaller pores with high-temperature
results. To develop the new model, several improvements could be made based
on the possible effects discussed in the last subsection. For example, the gas-gas
interactions are not negligible for more adsorption and lower temperatures. To add
these interactions in the slit-pore model, methods including grand canonical Monte
Carlo are possible choices (Maiga and Gatica, 2018).

Finally, an ambitious idea is to abandon the slit-pore model to measure pore size.
Referring to the experimental and computational results in Fig. (5.2) and Fig. (4.15b),
the largest 𝜀00 of the slit-pore model is smaller than Δ𝑢st of CNS-201. Also,
according to the TEM figures, CNS-201 has pores with structures of tubes and
spheres (M. R. Murialdo, 2017). Therefore, the slit-pore model is not the best
choice to characterize CNS-201.

Going back to Eq. (2.29), with the single particle partition function, the single
particle internal energy is:

𝑢ads = 𝑘B𝑇
2 · 𝜕 ln 𝑞ads

𝜕𝑇
,

= 𝑘B𝑇
2 ·

[
𝜕
∭

exp (−𝜀vdW/𝑘B𝑇) d𝑥d𝑦d𝑧

𝜕𝑇 ·
∭

exp (−𝜀vdW/𝑘B𝑇) d𝑥d𝑦d𝑧
− 3
Λ

𝜕Λ

𝜕𝑇

]
,

=

∭
𝜀vdW · exp (−𝜀vdW/𝑘B𝑇) d𝑥d𝑦d𝑧∭

exp (−𝜀vdW/𝑘B𝑇) d𝑥d𝑦d𝑧
+ 1.5𝑘B𝑇,

(5.5)
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where the first term is the Boltzmann average of the vdW potential over the whole
space. It can be rewritten as:

𝑢ads =

∫
𝜀vdW · 𝑓 (𝜀vdW) exp (−𝜀vdW/𝑘B𝑇) d𝜀vdW∫

𝑓 (𝜀vdW) exp (−𝜀vdW/𝑘B𝑇) d𝜀vdW
+ 1.5𝑘B𝑇, (5.6)

where 𝑓 (𝜀vdW) is the distribution function of the vdW potential.

In Eq. (5.5), . Considering the ideal gas internal energy is 1.5𝑘B𝑇 , the adsorption
energy is then the Boltzmann averaged vdW potential:

Δ𝑢st =

∭
𝜀vdW · exp (−𝜀vdW/𝑘B𝑇) d𝑥d𝑦d𝑧∭

exp (−𝜀vdW/𝑘B𝑇) d𝑥d𝑦d𝑧
,

=

∫
𝜀vdW · 𝑓 (𝜀vdW) exp (−𝜀vdW/𝑘B𝑇) d𝜀vdW∫

𝑓 (𝜀vdW) exp (−𝜀vdW/𝑘B𝑇) d𝜀vdW
.

(5.7)

While this Δ𝑢st can be given from experiments at various temperatures, an intuitive
ideal is finding the 𝑓 (𝜀vdW). If 𝑓 (𝜀vdW) is solved, the next step is to generate a
periodic structure that fits this potential distribution. This was tried for MSC-30 in
2017 (Sarkisov, Centineo, and Brandani, 2017).
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CONCLUSION

This thesis comprehensively investigated the temperature dependence of physi-
cal adsorption energy, combining theoretical, computational, and experimental ap-
proaches. A thermodynamic analysis of the 2D ideal gas and the slit-pore models
highlighted the role of vdW potentials in the adsorption energy and isotherm fitting
methods, including Henry’s law and the Langmuir model. Experimental data of
krypton adsorption on CNS-201 and MSC-30 porous carbon materials revealed a
significant weakening in the isosteric adsorption energy with temperatures from
250 K to 330 K. By using the zero-coverage Henry’s constants, the changing rates
of adsorption energy per atom are 4.35 𝑘B for CNS-201 and 3.65 𝑘B for MSC-30.
By including higher coverage results with the Langmuir model, the changing rates
of adsorption energy per atom are 2.10 𝑘B for CNS-201 and 1.21 𝑘B for MSC-30.

The DFT-based computational study with the slit-pore model showed the vdW po-
tentials of different-sized pores. Then it showed how the structures of the pores
significantly influence the surface dynamics and the internal energies of the ad-
sorbates at different temperatures. Gas molecules adsorbed in pores of different
sizes have different heat capacities larger than the gas phase, leading to a tem-
perature dependence of adsorption energy. Monte Carlo calculation indicated that
displacements of adsorbent atoms caused by thermal vibration slightly weaken the
vdW potentials, but have a negligible effect on the temperature dependence of the
adsorption energy.

The distribution of pore sizes plays a crucial role in the temperature dependence
of the overall adsorption energy. With increasing temperature, the pores with
higher energy states become more accessible due to the Boltzmann distribution,
weakening the statistically averaged internal energy. Adsorption energy changing
rates of 0.62 𝑘B for CNS-201 and 2.03 𝑘B for MSC-30 are given by combining the
computational vdW potentials and experimentally measured pore sizes.
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A p p e n d i x A

ADSORBED PHASE PRESSURE AND VOLUME

Chapter 2 discussed the Clausius-Clapeyron equation Eq. (2.1), which assumes the
pressure and temperature of the two phases are the same in equilibrium. In the 2D
ideal gas model, the pressure in the 𝑧 direction has no physical meaning, as 𝐷 is
a constant for a slit-pore. This pressure in the 𝑥 and 𝑦 directions is defined as the
adsorbed phase pressure 𝑃ads. However, according to the ideal gas equation:

𝑃 =
𝑛𝑘B𝑇

𝑉
=
𝑘B𝑇

𝑣
, (A.1)

the adsorbed phase pressure 𝑃ads is larger than the gas phase pressure 𝑃gas due to
higher adsorbate molecule densities: 𝜌ads = 1/𝑣ads.

ads phase P
ads

P
vdW

 + P
gas

gas phase

slit pore with D
1

slit pore with D
2

equilibrium

equilibrium

gas phase

Figure A.1: Illustration of edge effects and pressure balance of the 2D ideal gas
multi-site model. The slit pores with 𝐷1 and 𝐷2 are not directly connected but are
both in equilibrium with the gas phase. The adsorbate molecules cannot directly
transit between the pores, but go through an intermediate gas state.

The edge effect must be considered to maintain a pressure balance, illustrated in
Fig. (A.1). For the plane shown with the dash line, the adsorbate molecules feel
the adsorbed phase’s pressure 𝑃ads and the gas phase’s pressure 𝑃gas. As 𝑃ads

is larger than 𝑃gas in the dilute, room temperature conditions, the net effect of
these two pressures is pushing adsorbate molecules away from the adsorbed phase.
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Meanwhile, at the edge of the slit-pore, adsorbate molecules also feel the 𝑥 − 𝑦

direction vdW force. This force can become a pressure, attracting the adsorbate
to the adsorbed phase. The three pressures in Fig. (A.1) balance and maintain the
adsorption equilibrium.

In thermodynamics, the work done by the edge vdW force does not introduce new
terms in the vdW potential. However, the 𝑃ads𝑉ads was ignored in most of the
previous discussions. This approximation gives a simple and self-consistent theory,
but the error led by this approximation also deserves discussion.

To include the 𝑃𝑉 energy, a rigorous expression of the chemical potential 𝜇gas,G is
acquired from the Gibbs energy. While in Chapter 2, the 𝜇gas is from the Helmholtz
energy. The ideal gas chemical potential is:

𝜇gas,G =

(
𝜕𝐺gas

𝜕𝑛

)
𝑇

=

(
𝜕𝑃gas· · 𝑉gas

𝜕𝑛

)
𝑇

+
(
𝜕𝐹gas

𝜕𝑛

)
𝑇

,

= 𝑘B𝑇 + 𝑘B𝑇 ln
(
𝑃Λ3

𝑘B𝑇

)
,

(A.2)

where 𝐺gas is the Gibbs energy of the gas phase. This 𝜇gas,G is a function of 𝑃 and
𝑇 . Meanwhile, the adsorbed phase chemical potential is:

𝜇ads,G =

(
𝜕𝐺ads

𝜕𝑛

)
𝑇

=

(
𝜕𝑃ads· · 𝑉ads

𝜕𝑛

)
𝑇

+
(
𝜕𝐹ads

𝜕𝑛

)
𝑇

,

= 𝑃ads· · 𝑣ads + 𝜇ads.

(A.3)

Compared with the chemical potential acquired from Helmholtz energy 𝜇ads, the
rigorous expression 𝜇gas,G includes 𝑃ads· ·𝑣ads. For the 2D ideal gas, 𝑃ads· ·𝑣ads = 𝑘B𝑇

is also applicable. Subsituting Eq. (2.50) into Eq. (A.3):

𝜇ads,G = 𝑘B𝑇 + 𝑘B𝑇 ln
(
𝑛Λ2

𝐴𝑞𝑧

)
+ 𝜀00. (A.4)

In Eq. (A.4), the surface area 𝐴 and the potential minimal 𝜀00 are both constants.
Then 𝜇ads,G is a function of 𝑛 and 𝑇 . In the isosteric condition, 𝑛 is a constant. Then
𝜇ads,G is only a function of 𝑇 . The 𝑃ads can also be expressed by:

𝑃ads =
𝑘B𝑇

𝑣ads
=
𝑛𝑘B𝑇

𝑉ads
=
𝑛𝑘B𝑇

𝐴𝐷
, (A.5)

which is also a function of 𝑇 .

In the isosteric condition, for the Clausius-Clapeyron equation, the Gibbs-Duhem
equation turns from Eq. (2.4) into:

d𝜇gas,G = −𝑠gasd𝑇 + 𝑣gasd𝑃gas ;

d𝜇ads,G = −𝑠adsd𝑇 + 𝑣adsd𝑃ads .
(A.6)
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As mentioned, 𝑃ads is a function of 𝑇 , then Eq. (A.6) turns into:

d𝜇gas,G = −𝑠gasd𝑇 + 𝑣gasd𝑃gas ;

d𝜇ads,G = −𝑠adsd𝑇 + 𝑘Bd𝑇 .
(A.7)

Taking into Eq. (2.2), there is:

𝑣gasd𝑃gas = (𝑠gas − 𝑠ads)d𝑇 + 𝑘Bd𝑇, (A.8)

According to Eq. (2.7), where the Gibbs energy is the same in equilibrium, the
entropy turns into the enthalpy:

𝑘B𝑇
d𝑃gas

𝑃gas
= (ℎgas − ℎads + 𝑘B𝑇)

d𝑇
𝑇
, (A.9)

Then the isosteric enthalpy is:

Δℎst = ℎads − ℎgas = − 𝑘B𝑇
2

𝑃gas

(
𝜕𝑃gas

𝜕𝑇

)
𝑛

+ 𝑘B𝑇. (A.10)

Compared with Eq. (2.8), it is shown that the Clausius-Clapeyron equation is still
applicable for the equilibrium between the 3D ideal gas phase and the 2D ideal
gas adsorbed phase. However, the ignoring of 𝑣ads leads to an error of 𝑘B𝑇 in the
enthalpy, which is the ideal gas 𝑃𝑣 energy. For the Δ𝑢st, as ℎ is now 𝑢 + 𝑘B𝑇 for
both phases,

Δ𝑢st = Δℎst = − 𝑘B𝑇
2

𝑃gas

(
𝜕𝑃gas

𝜕𝑇

)
𝑛

+ 𝑘B𝑇, (A.11)

which is the same as Eq. (2.10). That shows that for the 2D ideal gas model, the 𝑃𝑣
energy is still 𝑘B𝑇 and will not affect the isosteric adsorption energy.

For the other models, the models in Table (2.1) for example, the pressure and
volume need definitions before applying the Clausius-Clapeyron equation. The
isosteric condition can be used if the grand potential is used for the 𝑃𝑉 energy.

The approximation of ignoring the adsorbed phase volume also leads to errors
in the excess adsorption 𝑛e and absolute adsorption 𝑛a. Their relationship is:
𝑛a = 𝑛e + 𝜌gas · 𝑉ads, where 𝜌gas is the gas phase molecule density. Absolute
adsorption is used for theory, while experiments give excess adsorption.

If 𝑉ads is not ignored, for the ideal gas, the molecule density is:

𝜌gas = 𝑃/𝑘B𝑇, (A.12)
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Figure A.2: Isosteric adsorption energies Δ𝑢st at zero adsorption of krypton adsorp-
tion on CNS-201 (orange) and MSC-30 (green) given by Henry’s law. The dash
lines and unfilled circles are the results of excess adsorption. The solid lines and
filled circles are the results of absolute adsorption.

then the relationship between excess and absolute adsorptions is:

𝑛a = 𝑛e + 𝑃𝑉ads/𝑘B𝑇. (A.13)

The corresponding Henry’s constants are:

𝐾Ha = 𝐾He +𝑉ads/𝑘B𝑇. (A.14)

Using the NLDFT accumulated pore volumes for CNS-201 and MSC-30 and sub-
stituting Eq. (A.14) into Eq. (2.12), the adsorption energies are shown in Fig. (A.2).
As the figure refers, the two results have no big difference.
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A p p e n d i x B

FINITE LAYER APPROXIMATION

B.1 Comparison to Infinite Layers
In the future outlook section in Chapter 5, it is mentioned that: "the strongest 𝜀00 of
the slit-pore model is smaller than Δ𝑢st of CNS-201." This was shown in Fig. (4.4).
In Chapter 5, It was also checked that even with 4 layers on each side of the krypton
atom, the strongest 𝜀00 is still smaller Δ𝑢st. This part will discuss 100 layers on each
side to simulate infinite layers.

Assuming the vdW potential has an LJ form:

𝜀LJ(𝑅) = −4𝜀0

[(𝜎
𝑅

)12
−
(𝜎
𝑅

)6
]
, (B.1)

then for an infinite surface with a homogeneous atom density 𝜌2D, the total potential
is:

𝜀(𝑧) = −8𝜋𝜀0𝜌2D

[∫ +∞

0

𝜎12𝑟d𝑟(
𝑟2 + 𝑧2

)6 −
∫ +∞

0

𝜎6𝑟d𝑟(
𝑟2 + 𝑧2

)3 ] , (B.2)

where 𝑧 is the distance between the gas molecule and the surface, while 𝑟 is the
cylindrical coordinate radial distance. By calculating the integrals, Eq. (B.2) be-
comes:

𝜀2D(𝑧) = −4𝜋𝜀0𝜌2D

(
𝜎12

5𝑧10 − 𝜎6

2𝑧4

)
. (B.3)

For infinite number of layers with layer distance of 𝐷b, the total potential is:

𝜀tot,2D(𝑧) = − 4𝜋𝜀0𝜌2D𝜎
12

5

[
1
𝑧10 + 1

(𝑧 + 𝐷b)10 + 1
(𝑧 + 2𝐷b)10 + ...

]
+ 4𝜋𝜀0𝜌2D𝜎

6

2

[
1
𝑧4

+ 1
(𝑧 + 𝐷b)4 + 1

(𝑧 + 2𝐷b)4 + ...
]
.

(B.4)

For the krypton-graphite system we discussed, 𝐷b = 3.325 Å, 𝜌2D = 0.3816 Å−2.
The other constants are 𝜀0 = −5.96 meV and 𝜎 = 3.5 Å, as mentioned in Chapter 4
(Maiga and Gatica, 2018).
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The comparison of 𝜀tot,2D with different number of layers considered is shown
in Fig. (B.1). For the 1 layer case, the vdW potential is 𝜀2D(𝑧). The minimal
energy locates at 𝑧 = 𝜎 = 3.5 Å, and the value is 6𝜋𝜀0𝜌2D𝜎

2/5 = −0.106 eV.
The calculation of 2 layers and 100 layers is also shown. For these results, the
minimal energies locate at 3.4800 Å and 3.4775 Å, and the values are −0.118 eV
and −0.122 eV. Typically, with the resolution of Fig. (B.1), the results of 4 layers up
to 100 layers are almost identical.

1 layer 2 layers 100 layers(a)

(b)

  1   layer
  2   layers
100 layers

ε
vdW

 (eV)

z (Å)

-0.12

-0.08

-0.04

0

0.04

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Figure B.1: The comparison of vdW potential with different numbers of layers
considered. (a) The illustration of different configurations. The layers are assumed
infinitely large. (b) The vdW potential of different configurations.

In Fig. (B.1), the first layer contributes the most vdW potential for the multi-layer
configurations. The contributions from the other layers are much smaller. At the
3.5Å, the first layer, the first two layers, and the first four layers contribute 86.8%,
96.7%, and 99.4% of the potential. Therefore, it can be concluded that for the multi-
layer configurations, having 2 layers on one side is already a good approximation.
Having 4 layers on one side is almost the same as having infinite layers, as the further
layers’ contributions are negligible.
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B.2 Comparison to Continuum Adsorbent
Meanwhile, the continuum approximation is another method of simulating the
infinite-size adsorbent, as Fig. (B.2a) shows. The adsorbent atoms are evenly dis-
tributed in 3D, and the layers turn into a bulk material with an atom density of
𝜌3D = 𝜌2D/𝐷b. The total vdW potential is:

𝜀tot,3D(𝑧) =
∫ ∞

𝑧

𝜌3D

𝜌2D
· 𝜀2D(𝑧0)d𝑧0 = −4𝜋𝜀0𝜌3D

(
𝜎12

45𝑧9
− 𝜎6

6𝑧3

)
. (B.5)

ε
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-0.04
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2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

bulk

Figure B.2: The illustration and vdW potential of the continuum approximation.
(a) The illustration of turning non-continuous into continuous bulk. (b) The vdW
potential of the bulk adsorbent.

The vdW potential can be calculated with the constants used before, and the results
are shown in Fig. (B.2b). The minimal energy locates at 𝑧 = 0.4−1/6𝜎 ≈ 3.0050 Å,
and the value is 0.702𝜋𝜀0𝜌3D𝜎

3 = −0.065 eV. Compared with Fig. (B.1), the bulk
vdW potential significantly underestimated the magnitude of vdW potential.

For the continuum approximation, it is equivalent to decrease 𝜌2D and 𝐷b propor-
tionally in Eq. (B.4). This will decrease the contribution from the first layer. As
mentioned in the last section, the vdW potential comes mainly from the first layer.
Therefore, the continuum approximation will lead to a weakening in the total vdW
potential.

Compared with the experiment data, this continuum approximation potential is too
weak. Therefore, using finite layer approximation is a better choice.
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