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ABSTRACT 

The sense of touch is critical to executing basic motor tasks and generating a feeling of embodiment.  

To construct touch percepts, the brain integrates information from tactile mechanoreceptors with 

inputs from other senses and top-down variables such as attention and task context. In this thesis, we 

investigate how these factors influence neural activity within the somatosensory system at different 

stages of tactile processing, using electrophysiological and behavioral data from a human tetraplegic 

participant implanted with microelectrode arrays. First, we find that neural responses to imagined 

touches of different types are decodable in the primary somatosensory cortex, ventral premotor 

cortex, and the supra-marginal gyrus, and these responses remain stable over many months. 

Following this analysis, the primary somatosensory cortex is explored in greater depth to better 

characterize early-stage cortical tactile processing. Touches to the arm and finger are examined during 

a passive task, in a variety of conditions including visually observed physical touches, physical 

touches without vision, and visual touches without physical contact. Analysis of the two touch 

locations suggests that touch encoding in primary somatosensory cortex may be less rigid than in the 

classical topographic view. Additionally, this experiment uncovers a modulatory effect of vision in 

the primary somatosensory cortex when it is paired with a physical touch, but no effect of vision 

alone. Finally, we investigate how visual information impacts artificial tactile sensations, which can 

be elicited using intra-cortical microstimulation to the primary somatosensory cortex. The ability to 

elicit reliable, naturalistic artificial touch sensations is vital to the implementation of a tactile brain-

machine interface, which would benefit patients with spinal cord injury and others with 

somatosensory impairments. We find that visual information biases the qualitative percept of artificial 

stimulation towards an interpretation that is visually plausible. The temporal binding window between 
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vision and stimulation is found to be larger when visual information is biologically relevant, 

suggesting that the brain’s ability to causally relate artificial stimulation to visual cues depends on 

visual context. Additionally, recordings from the primary somatosensory cortex indicate that visual 

information relevant to artificial stimulation is represented across contexts, during an active task. The 

effect of task on the responsiveness of the primary somatosensory cortex to visual information points 

to a role of attention in mediating early cortical tactile processing. In combination, the findings 

presented in this thesis provide insight into the basic neuroscience of how tactile experiences are 

constructed by the brain, suggesting that early tactile processing is influenced by multisensory, 

contextual factors. These findings also have clinical applications to developing a brain-machine 

interface capable of providing naturalistic sensations within a complex real world environment.  
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NOMENCLATURE 

 

Brodmann areas: cortical regions originally anatomically delineated by Korbinian Brodmann 

according to histological structure. 

BMI: brain-machine interface; any system capable of decoding neural information to affect the 

environment and/or directly stimulating the brain to provide relevant information to the user. 

Cutaneous sensations: tactile sensations including texture, vibration, and pressure. 

ECoG:  electrocorticography; a type of electrophysiology in which electrodes are typically 

configured in a grid and placed on the cortex during a craniotomy to record LFPs. 

EEG: electroencephalography; a non-invasive method of recording electrical activity in the brain 

through scalp electrodes. 

Electrophysiology: the measurement of voltage changes in the brain to detect neural activity. 

Embodiment:  the physical intuition of one’s one body and the sense that its components belong to 

oneself as a whole. 

Firing rate: the number of action potentials generated per second by a neuron or group of neurons. 

MRI: magnetic resonance imaging; a method of neuroimaging that measures blood-oxygen levels in 

the brain as a correlate of neural activity. 

Homunculus: a representation of the human body that is proportioned to reflect the amount of cortex 

dedicated to each body part in sensorimotor areas such as S1 (e.g., large hands and small feet). 

ICMS: intra-cortical microstimulation; the electrical stimulation of cortex using microelectrodes. 
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JND: just-noticeable difference; the amount of change in a stimulus necessary for it to be detected a 

significant fraction of the time. 

LFP: local field potential; the voltage generated by the combined neural activity of a population of 

neurons. 

PPC: posterior parietal cortex; a brain region known for multisensory integration and representing 

motor intentions. 

PMv: ventral premotor cortex; a brain region involved in motor planning and action selection. 

Proprioception: the tactile sense of where one’s limbs are relative to the environment and oneself. 

M1: primary motor cortex; a brain region known for executing motor actions. 

MEG: magnetoencephalography; a method of neuroimaging that measures the magnetic fields 

generated by neural activity. 

Neural prosthetic: a BMI which uses implanted electrodes to record and/or stimulate the brain. 

Qualia: the perceptual conscious nature of experiences. 

Rubber hand illusion: a classic illusion in which a fake, realistic hand is touched or moved at the 

same time as one’s real hand is touched or moved, resulting in the illusory embodiment of the fake 

hand. 

S1: primary somatosensory cortex; a brain region known to represent tactile sensations with a 

topographic organization. 

SCI: spinal cord injury. 

SMG: supra-marginal gyrus, a sub-region of PPC involved in grasping, tool use, and language. 
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Somatosensation: the sense of touch, including cutaneous and proprioceptive information. 

Temporal binding window: the window of time in which two stimuli from different sensory 

modalities are percieved to occur simultaneously. 

TMS: transcranial magnetic stimulation; a non-invasive method of stimulating the brain by using a 

magnetic coil on the scalp to affect the electrical activity of neurons. 

Tetraplegia: paralysis of all four limbs and the torso, typically caused by a high-level SCI. 

Topographic organization: a schema in which body parts that are anatomically adjacent to one 

another are represented by neural populations that are close to one another along the cortical surface. 

Tuning: when a neuron exhibits different activity in a condition compared to baseline or another 

condition. 

VET: visual enhancement of touch; a phenomenon in which tactile acuity is enhanced when 

observing the touched limb even when the visual information  is non-informative.
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C h a p t e r  1  

CHAPTER 1:  

INTRODUCTION 

We depend on our senses to understand our environments and how best to interact with them. The 

sense of touch is particularly important because in addition to supplying highly useful information 

about the world, like the texture, shape, and size of objects in an environment, it also contributes to 

the natural physical intuition of what it feels like to inhabit our own bodies. When the sense of touch 

is lost, motor abilities are drastically impaired, as is the ability to keep track of where the body is in 

the environment (Miall et al., 2019; Robles-De-La-Torre, 2006; Sobinov and Bensmaia, 2021). Touch 

experiences are generated as part of the sensorimotor loop, which is the cycle of performing actions, 

collecting and interpreting the sensory feedback from those actions, and using this information to 

decide on new actions. It is known that touch experiences are affected by multisensory stimuli, such 

as visual information (Kennett et al., 2001; Tipper et al., 2001), but our understanding of how–and 

where–tactile and visual information are integrated together in the brain continues to evolve as more 

studies are conducted and recording technologies become more advanced. 

Individuals with spinal cord injury (SCI) lose somatosensory and motor abilities below the level of 

their injury. Over 50% of cases of SCI in the United States are tetraplegic, meaning that the patient is 

impaired to some degree in all four limbs (National SCI Statistical Center, 2022). Brain-machine 

interfaces (BMIs) are a potential method of restoring some motor ability and providing artificial 

tactile sensations to tetraplegic patients. Motor BMIs have made impressive strides in recent years 

(Dekleva et al., 2021; Keshtkaran et al., 2022; Willsey et al., 2022). While intra-cortical 

microstimulation (ICMS) is a known method to elicit artificial tactile sensations, a generalizable, 
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robust somatosensory BMI remains in the proof-of-concept stage (Flesher et al., 2021). In order to 

create a viable somatosensory BMI, the neural underpinnings of tactile experiences, how they are 

influenced by multisensory factors, and how ICMS is integrated into the somatosensory processing 

hierarchy, must be better understood. 

To better understand this issue, an overview of the importance of somatosensation, the neuroanatomy 

of touch, and the implementation of brain-machine interfaces (BMIs) is given in Chapter 2. This 

background will provide a foundation for Chapters Chapter 3,Chapter 4, andChapter 5, which 

focus on current research on tactile experiences and their neural encoding.  

In Chapter 3, the brain’s representation of tactile imagery is investigated. Specifically, the primary 

somatosensory cortex (S1), the supramarginal gyrus (SMG), and ventral premotor cortex (PMv) are 

examined as they represent a diverse set of cortical locations within the sensorimotor loop. S1 is an 

early-stage tactile processing area, SMG is a higher order location involved in multisensory 

integration and action intentions, and PMv is a region which represents motor planning. 

Chapter 4 explores how S1 represents touches that occur in different body locations, and how vision 

is integrated into these representations. This work adds nuance to the conventional representation of 

S1 as an area with a highly segregated topographic organization (Ejaz et al., 2015; Penfield and 

Boldrey, 1937), and also presents a hypothesis involving task design as to why prior studies have 

found conflicting results concerning S1’s responses to visual information (Blakemore et al., 2005; 

Keysers et al., 2004). 

Chapter 5 departs from the study of real touches in order to better understand how ICMS is processed 

and experienced. In particular, we examine how ICMS is combined with visual information to evoke 

tactile percepts, and how visual context affects the perceived timing of these percepts. The results 

suggest that vision can bias ICMS percepts towards qualia that are plausible in a multisensory 
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environment, and also supports the hypothesis advanced in Chapter 4 regarding the effect of task 

design on S1 representations of visual information. 

Finally, Chapter 6 summarizes these findings and contextualizes them within the current literature. 

In particular, we consider possible experiments to address the questions raised by these investigations, 

and how to use our findings to better understand the requirements of a viable somatosensory BMI. 
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C h a p t e r  2  

CHAPTER 2:  

BACKGROUND 

1.1 The importance of tactile sensations 

Like all the senses, tactile experiences are formed by the brain through a constructive process. This 

process relies on mechanoreceptors embedded throughout the body, as well as information from other 

sensory inputs and the brain’s priors about the environment which are used to interpret the incoming 

information cohesively. Cutaneous sensors in the skin are used to form a detailed understanding of 

the environment around us, like the texture, shape, and size of objects. While tactile acuity varies 

across the body, the human somatosensory system can detect changes in texture down to 10 

nanometers in amplitude on the pad of the index finger (Skedung et al., 2013). Additionally, 

proprioceptive sensors in muscles and tendons convey information about the posture and movement 

of one’s body with respect to itself and to the environment (Sobinov and Bensmaia, 2021). Both 

cutaneous and proprioceptive signals are carried through thousands of nerve fibers through the spinal 

cord to the brain (Johansson and Vallbo, 1979). These signals are integrated by the brain to yield 

embodied experiences of existing in, and interacting with, the environment. In other words, the 

somatosensory system provides us with the sensation of what it feels like to exist in our bodies and 

in the world at large. 

1.1.1 Somatosensation in everyday life  

Accomplishing basic motor coordination tasks, like picking up a pen, may appear trivial, but without 

a sense of touch, the ability to perform such manual dexterity tasks becomes highly impaired even 

when the motor system remains intact (Miall et al., 2019; Sobinov and Bensmaia, 2021). In studies 
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of healthy participants where local anesthetic was applied to abolish touch sensations, reaching to 

towards objects became slower and less accurate, and the participants were unable to generate grasps 

with correctly graded force (Augurelle et al., 2003; Gentilucci et al., 1997). More drastically, patients 

who selectively lose their sense of touch due to nerve damage find themselves having to relearn 

foundational motor skills, like how to chew food, walk, or speak. In one patient, relearning how to 

stand upright took over a year to accomplish, and required constant, conscious control of his limbs, 

heavily supported by visual information (Robles-De-La-Torre, 2006). In another study, patients with 

sensory neuropathy attempted to draw straight lines from one target to another (Ghez et al., 1995). 

Due to their lack of proprioception, the patients were unable to draw lines of the right length or 

direction without using vision to guide them. Even when they were able to see both targets, the lines 

they drew were wobbly and imprecise.  

While such studies provide strong evidence for the brain’s reliance on tactile information to execute 

and adapt motor plans, it is relatively rare to find clinical cases where the sense of touch is lost and 

motor pathways remain intact. Cases with combined tactile and motor impairment are much more 

common, such as patients with spinal cord injury (SCI). According to the National SCI Statistical 

Center in 2022, in the United States, there are approximately 300,000 people living with SCI, with 

an estimated 18,000 new cases every year. In these cases, damage to the spinal cord severs the 

connection between the brain and the peripheral nervous system everywhere below the level of the 

injury, resulting in an inability to move or sense in these locations. If the SCI is not complete, this 

loss of ability may be only partial, allowing some motion and sensation below the level of the injury 

to remain or be recovered over time. Surveying patients with SCI, regaining motor and sensory 

abilities in the arm and hand is listed as a top priority for improving quality of life (Anderson, 2004).  
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1.1.2 Tactile experiences and the sense of embodiment 

Embodiment is the physical intuition of one’s own body, and the sense that its component parts belong 

to the whole (Longo et al., 2008). The sense of embodiment typically applies solely to one’s true 

body, but can become distorted in cases of brain damage or mental illness (Blakemore et al., 2003; 

Daprati et al., 1997; Feinberg et al., 2010). In healthy people, the sense of embodiment usually 

remains relatively stable, due to top-down processes retaining a consistent concept of what constitutes 

the body, but this concept is also highly dependent on bottom-up information from the somatosensory, 

motor, vestibular, and visual systems (Giummarra et al., 2008).  

This dependency on sensory information can be exploited by illusions that trigger altered states of 

embodiment–for instance, the sense of embodying a virtual reality avatar (Banakou et al., 2013; 

Lenggenhager et al., 2007; Petkova and Ehrsson, 2008; Slater et al., 2010). In these experiments, 

typically the participant is shown a first person perspective of a surrogate body which either moves 

synchronously with the participant (Banakou et al., 2013; Kilteni et al., 2012b), or is depicted being 

touched at the same time as the participant is being touched (Petkova and Ehrsson, 2008), or both 

(Slater et al., 2010). Many studies of embodiment do not examine the entire body, but instead focus 

on just one hand. The illusion in which a fake, lifelike hand is embodied by viewing touches or motion 

on that hand at the same time as touches or motion occur on one’s own hidden hand (the “rubber hand 

illusion”) has been extensively studied (Botvinick and Cohen, 1998; Dummer et al., 2009; Kilteni 

and Ehrsson, 2017; Tsakiris and Haggard, 2005). 

Whether focused on the entire body or just the hand, the mechanism of the illusion remains the same: 

it arises from visuotactile and/or visuomotor temporal synchrony linking the actual body with a virtual 

one (Maselli et al., 2016), and disappears if the stimuli have too large of a temporal offset between 

them (Bekrater-Bodmann et al., 2014). Specifically, a 500ms offset is sufficient to dispel the rubber 
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hand illusion (Shimada et al., 2014), and at 300ms the effect occurs more weakly (Bekrater-Bodmann 

et al., 2014), with the just-noticeable difference (JND) occurring approximately at 150ms, although 

these numbers vary substantially across individuals (Costantini et al., 2016). This effect proves that 

tactile experiences are capable of having a modulatory effect on how embodiment is generated in the 

brain. 

In addition to tactile experiences influencing embodiment, the opposite is also true–embodiment can 

influence how tactile information is interpreted. When visual input meshes with the known body 

image and can be easily embodied, touches are perceived differently than with non-embodied visual 

input. For instance, when participants viewed either two sticks or two hands from a first person 

perspective and were asked to detect the temporal order of a visual cue relative to a touch on one of 

the sticks or hands, the JND was larger in the hands condition (Maselli et al., 2016). In other words, 

the participants were less able to detect a difference in timing between a tactile stimulus and a visual 

stimulus when the visual stimulus was biologically plausible and more easily embodied. However, 

not all studies have replicated this effect (Smit et al., 2019), leaving open the question of how the 

temporal binding window is affect by embodiment. 

In patients with missing limbs or SCI, embodiment of virtual, mirrored, or artificial limbs can help 

alleviate phantom limb pain (Chan et al., 2019; Pozeg et al., 2017; Ramachandran and Rogers-

Ramachandran, 1996). Embodiment of a fake hand has also been used to elicit illusory tactile 

sensations in SCI patients (Lenggenhager et al., 2013).  

Proprioceptive inputs have also been found to have an effect on the process of attributing actions to 

oneself, which contributes to the sense of embodiment (Kilteni et al., 2012a). In a study of a 

chronically deafferented patient, the patient was significantly impaired at identifying which cursor 

movements were controlled by him, and which were controlled by the computer (Balslev et al., 2007).  
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Given the strong link between tactile sensations and embodiment, restoring the sense of touch to 

patients who have lost it represents not just another sensory modality with which to navigate their 

environment but also a means by which these patients can more easily feel embodied in their limbs 

or prosthetics (Maimon-Mor and Makin, 2020; Marasco et al., 2011). In addition to feeling more 

natural, an embodied prosthetic can have other benefits: for example, in one participant missing a 

lower leg, it was found that they perceived their prosthetic to be lighter when the prosthetic was 

equipped with intraneural sensory feedback (Preatoni et al., 2021). 

1.2 The sensorimotor loop 

Traditionally, the computations encompassing the process of making an action plan, executing the 

action, and interpreting the sensory consequences of the action, are known as the sensorimotor loop. 

In this loop, planning areas in the brain, such as the premotor cortex, send action plans to the motor 

cortex, which transmits motor commands down the spinal cord to the muscles. Mechanoreceptors in 

the skin and muscles send cutaneous and proprioceptive information during the action back up the 

spinal cord to the primary somatosensory cortex, and this tactile feedback is integrated with other 

sensory information in higher order sensory areas and the posterior parietal cortex to decide on the 

next action. In reality, this process is much less linear, and the somatosensory and motor processing 

pathways are highly intertwined, containing many lateral and recurrent connections (de Haan and 

Dijkerman, 2020).  

In this work, we will primarily focus on the primary somatosensory cortex (S1), which is classically 

known as an early-stage tactile processing area (Delhaye et al., 2018), but we will also consider the 

ventral premotor cortex (PMv) which is involved in motor planning, and the supramarginal gyrus 

(SMG), which represents higher-order multisensory integration and action planning.  
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1.2.1 Primary somatosensory cortex (S1) 

S1 is one of the first cortical areas to receive incoming tactile information, passed from 

mechanoreceptors in the skin, muscles, and tendons, up the spinal cord, and through the cuneate 

nucleus in the medulla and the ventroposterior complex of the thalamus (Delhaye et al., 2018; 

Sobinov and Bensmaia, 2021). S1 is located immediately caudal to the central gyrus and forms the 

rostral edge of the parietal lobe, and is typically characterized as representing tactile stimuli 

characteristics rather than the perceptual experiences they elicit (de Lafuente and Romo, 2006, 2005; 

Hernandez et al., 2000; Long et al., 2022). Motor planning also modulates S1, which may be due to 

representations of anticipated tactile information from the upcoming movement (Gale et al., 2021). 

S1 encompasses Brodmann areas 1, 2, 3a, and 3b: Area 3b receives thalamic inputs, and is thus 

considered the base level of hierarchical processing within S1 (Kaas, 1983; Keysers et al., 2010), 

while areas 1 and 2 are thought to be more integrative, with neurons exhibiting more complex 

response properties than areas 3b or 3a (Felleman and Van Essen, 1991; Iwamura, 1998; Keysers et 

al., 2010). However, all four areas are interconnected with one another and have outputs to either S2, 

posterior parietal cortex, or both (Delhaye et al., 2018). Generally speaking, areas 3b and 1 respond 

to cutaneous stimuli, area 3a responds primarily to proprioceptive stimuli, and area 2 responds to both 

cutaneous and proprioceptive stimuli (Goodman et al., 2019; Iwamura et al., 1993; Kaas, 1983; 

Krubitzer et al., 2004; Long et al., 2022).  While there are four distinct types of mechanoreceptors 

that respond to cutaneous stimuli, area 3b and area 1 of S1 appear respond to an amalgamation of the 

responses from these receptors, rather than segregating these inputs (Pei et al., 2009; Saal et al., 2015).  

Given area 1’s location at the top of the postcentral gyrus, it is more easily surgically accessed than 

area 3b (Pandarinath and Bensmaia, 2022). It is therefore a prime target for human 

electrophysiological studies that embed microelectrode arrays in the cortical surface of S1 (Armenta 
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Salas et al., 2018; Flesher et al., 2016). This work will primarily examine electrophysiological data 

from area 1 for this reason. 

1.2.1.1 The cortical homunculus 

S1 is known for having a distinct topographic organization in which body parts that are adjacent to 

one another anatomically are represented in cortical locations that are close to each other (Ejaz et al., 

2015; Penfield and Boldrey, 1937; Sanders et al., 2019). This layout of the body along the surface of 

cortex is not to scale – instead, body parts with higher tactile acuity have substantially more cortical 

area devoted to them (Kolasinski et al., 2016). The representation of the body that reflects the amount 

of cortex assigned to each body part is known as the homunculus, which has very large hands, 

especially the thumbs, as well as an oversized face, while the torso and legs are much smaller (Kaas, 

1983; Qi and Kaas, 2004; Sobinov and Bensmaia, 2021). Originally it was thought S1 formed one 

topographic map as a whole (Marshall et al., 1937) but it has since been found that area 3a, 3b, 1, and 

2 each have their own distinct maps which run parallel to one another along the post-central gyrus 

(Kaas et al., 1979).  

Although the S1 cortical homunculus was discovered in the early days of human cortical stimulation 

(Marshall et al., 1937; Penfield and Boldrey, 1937) and has been verified in many experiments since 

(Ejaz et al., 2015; Kaas et al., 2019, 1979; Kolasinski et al., 2016; Sanchez-Panchuelo et al., 2010; 

Sanders et al., 2019), recent work has suggested that tactile encoding in S1 may be more complex 

than previously assumed (Arbuckle et al., 2022; Muret et al., 2022; Thakur et al., 2012; Wesselink et 

al., 2022). For instance, Arbuckle et al. (2021) used 7T MRI to find nonlinear interactions in S1 areas 

3b, 1, and 2 when stimulating multiple digits at the same time, suggesting touches in different 

locations result in a neural representation that is more than the sum of its parts. This work is supported 

by similar findings in area 3b of S1 in non-human primates (Qi et al., 2016; Thakur et al., 2012). 
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Most recently, fMRI in humans has shown that information about body parts is represented (albeit 

more weakly) outside of their traditionally defined areas in S1 (Muret et al., 2022), and that selectively 

anesthetizing a digit results in changes to the neural representations of other digits (Wesselink et al., 

2022). In combination, these results indicate that S1 is not a purely linear readout of tactile input, but 

has multiple encoding schemes beyond the cortical homunculus. 

1.2.1.2 Multisensory modulation of S1 

Tactile experiences are constructed primarily from information relayed by cutaneous and 

proprioceptive mechanoreceptors, but are also affected by other types of stimuli such as visual 

information (Popovich and Staines, 2014; Staines et al., 2014). For example, the sight of a body part 

is known to improve tactile acuity and decrease reaction times to tactile stimuli, even when the visual 

input provides no information about the touch itself; this phenomenon is known as the visual 

enhancement of touch (VET) (Cardini et al., 2012; Colino et al., 2017; Haggard et al., 2007; Heller, 

1982; Kennett et al., 2001; Press et al., 2004). VET has been shown to occur on a variety of body 

parts including the arm, the hand, the back of the neck, and the face (Colino et al., 2017; Kennett et 

al., 2001; Press et al., 2004; Tipper et al., 2001). Furthermore, detecting touches on a body part 

becomes more difficult when viewing a different body part (Tipper et al., 2001), although the 

limitations on what counts as the “same” body part are still being investigated–the fingertips and the 

back of the hand for instance may be distinct enough to fail to trigger VET (French et al., 2022).  

Clearly, visual input affects how tactile stimuli are perceived. If touch experiences are constructed in 

a hierarchical manner, then the question is raised: at what stage of this processing is visual information 

integrated with tactile representations? S1 is the primary cortical site to receive mechanoreceptor-

based tactile information from the thalamus before passing it to higher order processing regions, so 

visual information could be integrated in S1 to affect early processing or it could be integrated at a 
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later, more integrative stage of the tactile processing stream. Work in EEG has shown an effect of 

VET on the P50 and P80 somatosensory evoked potentials, which are thought to arise from S1 activity 

(Cardini et al., 2012, 2011; Deschrijver et al., 2016; Dionne et al., 2013; Taylor-Clarke et al., 2002). 

Using MEG, it has been shown that the topographic mapping of S1 shifts based on the relative timing 

of tactile stimuli relative to viewed touches of an embodied fake hand (Schaefer et al., 2006), or based 

on the level of magnification of the fake hand during touches (Schaefer et al., 2008). The application 

of transcranial direct stimulation (TMS) over S1 leads to impaired detection and discrimination of 

tactile stimuli, if viewing a human hand simultaneously, but not if viewing a neutral object like a 

wooden block (Fiorio and Haggard, 2005). Interestingly, this effect holds even if the stimuli are 

simply observed touches, not felt touches, suggesting that S1 has a role in processing touches that are 

purely observed (Bolognini et al., 2011; Rossetti et al., 2012).  

A large body of literature spanning the last 20 years has examined the role of observed touch in S1, 

but the extent to which visual stimuli depicting touches are represented in S1 remains unclear. Many 

studies have found that S1 does respond to observation of touch in others or in first-person perspective 

(Blakemore et al., 2005; Ebisch et al., 2008; Kuehn et al., 2018, 2013; Longo et al., 2011; Meyer et 

al., 2011; Pihko et al., 2010; Schaefer et al., 2009). For example, in one EEG study, it was shown that 

S1 responses correlated with the intensity but not the unpleasantness of touch stimuli delivered to 

others (Bufalari et al., 2007). S1 also exhibited activity to a variety of observed touches including 

those that are accidental or intentional and those delivered by animate or inanimate objects (Ebisch 

et al., 2008). Notably, activity in S1 is much stronger to physical touches than observed touches 

(Pihko et al., 2010). 

However, other studies in both humans and non-human primates have failed to find any substantial 

effect of observed touches on S1 at all (Chan and Baker, 2015; Keysers et al., 2004; Morrison et al., 
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2004; Sharma et al., 2018).  Using MRI, Keysers et al. (2004) found an effect of visual touches in S2 

but not S1, and Morrison et al. (2004) found that S1 responded to painful, cutaneous sensations but 

not visual observation of these sensations being delivered to others. In another study of 40 

participants, posterior parietal cortex adjacent to S1 was found to be modulated by observed touch, 

but S1 itself was not modulated (Chan and Baker, 2015). In combination, these studies indicate that 

S1’s encoding of observed touches is nuanced and yet to be fully untangled. 

In the real world, visual information is often paired with, and highly relevant to deciphering tactile 

stimuli. S1 has been shown to have an increased response to visuotactile stimuli in comparison to 

tactile stimuli alone (Dionne et al., 2013; Staines et al., 2014). Similarly, it was found that some 

neurons in S1 in non-human primates respond to visual cues when they had established associations 

with tactile stimuli (Zhou and Fuster, 2000). In fact, visual cues that are predictive of tactile events 

have bene shown to modulate S1 approximately 300ms before the tactile event (Kimura, 2021). 

Considering the literature as a whole, it seems apparent that S1 is not a mono-sensory area. While it 

is primarily concerned with the processing of tactile information, there are clearly cases where it is 

modulated by vision (Blakemore et al., 2005; Bolognini et al., 2011; Dionne et al., 2013; Kuehn et 

al., 2013; Taylor-Clarke et al., 2002). It is likely that these effects are not due to direct connections 

between the primary visual cortex and S1; rather, it is probable that S1 has recurrent connections with 

multimodal integrative areas which receive information from other sensory sources and allow S1 to 

be modulated by relevant stimuli (Schaefer et al., 2008). 

1.2.1.3 Higher order cognitive factors 

If S1 is modulated by higher order integrative brain areas to represent multisensory information, it 

follows that the same pathways could allow it to be affected by other context-dependent factors 

relevant to touch. 
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One of the most ubiquitous context-dependent factors is attention. In non-human primates, it has been 

found that some S1 neurons increase their firing rates during tactile stimuli when the primates’ 

attention was directed towards the tactile stimuli (Chapman and Meftah, 2005; Meftah et al., 2002). 

In humans, EEG was used to show an analogous finding: S1 activity was modulated by the task-

relevance of tactile stimuli (Dionne et al., 2013). 

S1 also appears to reflect more nuanced social contexts of touch. For instance, early onset S1 activity 

was shown to be modulated by whether the visual stimulus paired with a physical touch was a human 

hand or a wooden hand, as well as whether the touched finger on the observed hand matched the 

touched finger of the hand feeling the physical stimulus (Deschrijver et al., 2016). In addition to this 

effect which the authors ascribed to “animacy” of the hand, S1 also is capable of being modulated by 

self/other dynamics: tactile responses are larger when the touch comes from an outside source than 

when it is self-generated (Blakemore et al., 1998). This attenuation of self-touches may be due to a 

forward model generated by the brain which predicts the sensory outcomes of planned movements, 

such that S1 responds more to unpredicted tactile inputs (Blakemore et al., 1999). S1 has also been 

implicated in affective processing; in a study where heterosexual men experienced caresses with the 

belief that the caresses came from either a man or a woman, S1 was modulated by the perceived 

gender of the caresser (Gazzola et al., 2012). These studies all support the idea that complex 

environmental contexts can affect tactile processing even at early stages. 

S1 is also recruited during tactile imagery, when no physical or visual stimulus is presented at all, and 

the S1 sub-areas activated by tactile imagery overlap with those which respond to real tactile stimuli 

(Yoo et al., 2003), suggesting a degree of commonality between imagined and real tactile 

representations. 
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In addition to representing a wide variety of touch types in different contexts, the neural encoding 

patterns of S1 can also be altered based on experience (Miller et al., 2019; Schaefer et al., 2004; 

Schettler et al., 2019). Schaefer et al. (2004) showed that the topography of S1 changed when 

participants manipulated an object with their hands in comparison to using a pair of tongs – widening 

the distance between the thumb and pinky representations. Following up on this finding, it was shown 

that S1 encodes touch locations on a hand-held stick immediately once it is in hand (Miller et al., 

2019), corresponding with the idea that the brain is able to refer touches to tools directly instead of 

the hand in which the tool is held (Yamamoto et al., 2005; Yamamoto and Kitazawa, 2001). Thus S1 

plays a role in allowing the brain to treat tools as natural extensions of the body (Miller et al., 2019, 

2018). 

1.2.2 Motor and premotor cortex 

Just as the primary somatosensory cortex is one of the first cortical areas to receive tactile information, 

the primary motor cortex (M1) is one of the final cortical areas which sends motor commands down 

the spinal cord to the muscles, and this region contains a similarly-scaled topographic map which 

represents desired direction of movements (Georgopoulos et al., 1982; Sobinov and Bensmaia, 2021; 

Woolsey et al., 1979). The map is not as highly segregated at S1 and contains overlapping 

representations of body parts (Graziano and Aflalo, 2007; Sanes et al., 1995). The close relationship 

between M1 and the movements produced by the body is causally established: electrically stimulating 

M1 elicits movements (Baldwin et al., 2018), and lesions in M1 result in pronounced motor 

impairments, especially with respect to motion requiring dexterity or individuated finger movements 

(Lang and Schieber, 2003; Murata et al., 2008; Rouiller et al., 1998). 

Before motor commands can be sent out of motor cortex, actions and motor plans must be decided 

upon and refined in higher-order areas (Gallivan et al., 2018). Premotor cortex, which lies 
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immediately frontal to motor cortex, has inputs from posterior parietal cortex (see Section 1.2.3) and 

is highly involved in refining motor plans (Kaufman et al., 2014; Schaffelhofer and Scherberger, 

2016; Umilta et al., 2007). Neurons in premotor cortex have been found to be tuned to a variety of 

sensorimotor variables, including 3D object shape, as well as planned grasps (Schaffelhofer et al., 

2015; Theys et al., 2013; Wandelt et al., 2022), and visual, tactile, and proprioceptive information 

(Fogassi et al., 1996; Graziano, 1999; Graziano et al., 1997). Stimulating the premotor cortex directly 

during awake brain surgery has been shown to disrupt conscious awareness of whether movements 

are successfully performed (Fornia et al., 2020). Using fMRI, premotor cortex has been shown to be 

affected by embodiment illusions, and is capable of representing embodied fake limbs (Alchalabi et 

al., 2019; Ehrsson et al., 2004; Gentile et al., 2015), with a preference for stimuli that appear visually 

and proprioceptively congruent (Limanowski and Blankenburg, 2016; Petkova et al., 2011). 

Given its role in representing desired movements, premotor cortex is a viable target for 

electrophysiological studies seeking to decode sensorimotor variables in the context of neural 

prosthetics (Armenta Salas et al., 2018; Willett et al., 2020). 

1.2.3 Posterior parietal cortex (PPC) 

PPC represents a large swath of the brain located dorsal to the central sulcus, with S1 forming its 

frontal border. As a whole, PPC is thought of as a higher level, integrative brain area, where 

information from different sensory inputs meet and are combined with contextual variables to better 

inform action plans (Chivukula et al., 2019; de Haan and Dijkerman, 2020). PPC is composed of 

many sub-regions, each of which appear to be concerned with a subset of sensory, contextual, and 

motor factors (Hadjidimitrakis et al., 2019). For instance, in non-human primates, the anterior 

intraparietal area (AIP) is known to be selective for object characteristics like shape, size, and 

orientation, during grasping tasks or even during simple fixation (Murata et al., 2000; Schaffelhofer 
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and Scherberger, 2016). In humans, PPC neurons have been shown to exhibit tuning to both real 

touches and imagined ones (Chivukula et al., 2021), as well as touches on hand-held tools (Miller et 

al., 2019). PPC also appears to play a role in maintaining representations of bodily posture within the 

external environment (Azañón et al., 2010; Bolognini and Maravita, 2007), and fMRI studies have 

shown PPC responds to embodiment illusions (Petkova et al, 2011; Ehrsson et al, 2004).  

In addition to sensory characteristics, PPC neurons represent movement intentions before the 

movement is initiated (Snyder et al., 1997). Electrical stimulation of PPC with long-train stimulation 

in non-human primates has elicited complex, biologically relevant movements like hand grasps 

(Baldwin et al., 2018). Human electrophysiology work has demonstrated that PPC representations 

include imagined movements, trajectories, and goals (Aflalo et al., 2015). Because of its high level 

encoding of task variables and motor intentions, PPC has been identified as a target site for neural 

prosthetics seeking to restore motor function (Andersen and Buneo, 2002; Chivukula et al., 2019). 

Recordings from PPC are sufficient to decode the 2D movement of a computer cursor, and can be 

dynamically modulated through the use of different cognitive strategies (Sakellaridi et al., 2019). 

Due to the diverse and multifaceted nature of representations in PPC, there are many sub-regions that 

would be viable, interesting targets for human electrophysiology studies (Chivukula et al., 2019). 

This work will principally focus on the supramarginal gyrus (SMG), one sub-region of PPC with 

potential use to neural prosthetics, with the understanding that the findings there may not generalize 

to other sub-regions, and that further work will be needed to characterize PPC as a whole. 

SMG is a region on the ventral side of PPC, located just dorsal of the Sylvian fissure. It is near 

Weirnicke’s area, which is instrumental for the understanding of speech (Bogen and Bogen, 1976; 

Harpaz et al., 2009), as well as the temporo-parietal junction which is implicated in theory of mind, 

morality judgements and maintaining the sense of embodiment (Saxe and Kanwisher, 2003; Tsakiris 
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et al., 2008; Young et al., 2007). The precise functionality of SMG itself remains under investigation, 

but it is thought to be part of association cortex, with well-documented responses to language 

processes (Sliwinska et al., 2012; Wandelt et al., 2022) and sensorimotor stimuli, like tool use 

(McDowell et al., 2018; Orban and Caruana, 2014; Peeters et al., 2009) and grasps (Sakata et al., 

1995; Wandelt et al., 2022). Thus SMG is a brain region in which variables of interest could 

potentially be decoded to restore function to patients with sensorimotor impairments along multiple 

axes, such as speech, somatosensory responses, and movement planning. 

1.2.4 Sensory remapping in the brain 

When the body’s sensorimotor abilities are altered, how does the somatosensory brain map change? 

Initial evidence seemed to point to a strong remapping effect. In cases of impaired arm and hand 

somatosensation, it has been found that touching the face activates the traditional “hand area” of S1 

(Pons et al., 1991; Ramachandran et al., 1992). However, the extent of remapping varies depending 

on the source of limb loss: those born with one hand (congenital one-handers) exhibit significant 

remapping of facial sensations whereas amputees show much less remapping (Root et al., 2022). This 

result suggests that remapping may not occur if the hand is lost later in life, due to neural pathways 

being more fully developed. In cases of SCI, evidence from the rubber hand illusion seems to suggest 

remapping does occur: tetraplegic patients are able to sense the illusion while observing the hand and 

feeling strokes to the face (Scandola et al., 2014; Tidoni et al., 2014).  

However, if S1 contains multiple layers of encoding (Muret et al., 2022) rather than just a simple 

topography, then referral of facial sensations to the hand area could occur without meaning that the 

original primary pathways are removed (Makin and Bensmaia, 2017). Recent work in fMRI has 

shown that individuals with tetraplegia exhibit hand somatotopy that is highly similar to healthy 

controls, even years after injury (Kikkert et al., 2021). Similarly, representations of attempted hand 
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movements in PPC in a tetraplegic patient retained strong correspondences to the representations of 

hand movements in healthy humans (Guan et al., 2022). 

It is also possible that somatosensory topography in the brain is highly plastic, able to adapt to current 

tactile demands while preserving prior pathways. For instance, just 5 days of wearing an artificial 

“third thumb” on one hand was sufficient for healthy humans to exhibit an altered neural 

representation of the fingers in that hand (Kieliba et al., 2021). Thus, it is perhaps unsurprising that 

when the sensory system faces a massive change such as SCI or limb loss, the dominant topography 

of sensory encoding changes, but this fact does not necessarily mean the original topography has been 

entirely overwritten. 

1.3 Brain-Machine Interfaces (BMIs) 

The term “brain-machine interface,” also commonly referred to as a “brain-computer interface,” is a 

broad one, which can refer to any system which reads neural information and uses it to affect the 

environment, or additionally any system which provides information to the brain bypassing the 

peripheral nervous system. Here, we will consider the subtype of BMIs known as neural prosthetics, 

which typically directly record from the brain using implanted electrodes in order to decode motor 

intentions, such as desired movement of a robotic limb (Collinger et al., 2013; Fagg et al., 2007) or 

articulating a spoken phrase (Metzger et al., 2022; Moses et al., 2021; Stavisky et al., 2019). In an 

open-loop BMI, the implanted patient usually relies on visual cues in order to decide what motor 

actions to perform with the BMI, but has no tactile feedback (Collinger et al., 2013; Dekleva et al., 

2021). In a closed-loop BMI, artificial tactile sensations carrying task-relevant information are also 

provided by electrically stimulating the brain (Armenta Salas et al., 2018; Flesher et al., 2021, 2016). 

In general, neural prosthetics have the twin goals of collecting data to understand the science of how 
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the sensorimotor loop is implemented, and using this understanding to develop viable technology for 

people with motor and sensory impairments to regain lost functionality.  

Historically, the field of neural prosthetics has focused more on decoding motor intentions than on 

restoring sensation, possibly because recording information from motor areas is more simply 

implemented and contains fewer safety concerns that using electrical current to stimulate sensory 

areas. Additionally, speed and accuracy in motor tasks can be easily measured as a tractable external 

metric of BMI performance (Collinger et al., 2013; Dekleva et al., 2021), while understanding 

artificial qualia and how they impact quality of life is a more nuanced task often relying on subjective 

internal reports (Armenta Salas et al., 2018; Flesher et al., 2016). 

Motor BMIs have seen a good deal of performance improvement over the last 15 years and can be 

used to decode arm and finger movements (Collinger et al., 2013; Willsey et al., 2022) as well as 

cursor clicks and movements on a computer screen (Dekleva et al., 2021; Santhanam et al., 2006) 

with high fidelity. Up to seven dimensions of arm movement can successfully be decoded from motor 

cortex (Collinger et al., 2013), and there have even been recent efforts to make a fully at-home BMI 

that is operable through the patient’s smartphone or tablet with only minimal assistance from 

caregivers (Davis et al., 2022; Simeral et al., 2021). There has also been substantial computational 

work to make BMIs more robust over time by mapping neural activity to lower dimensional spaces 

so less recalibration data is needed day-to-day (Keshtkaran et al., 2022; Pandarinath et al., 2018). 

While motor BMIs continue to improve, a viable, widely-applicable somatosensory BMI has yet to 

be developed, although it has been demonstrated that percepts elicited through artificial stimulation 

are distinguishable (O’Doherty et al., 2019, 2011), and that they can lead to performance 

improvements to motor tasks (Bensmaia and Miller, 2014; Flesher et al., 2021; Klaes et al., 2014). 
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Current work, including this thesis, aims to better understand how to elicit reliable, replicable 

sensations across individuals using electrical stimulation. 

1.3.1 Methodology 

Typically, patients enrolled in neural prosthetics clinical trials undergo neurosurgery in order to have 

microelectrode arrays (Blackrock Neurotech, Salt Lake City, Utah) implanted in motor and/or sensory 

locations in the surface of the cortex. Arrays are usually 4.2mm square grids of 96 electrodes, each 

1.5mm long. Given this length, it is likely that the bulk of electrodes are recording in layers 3 or 4 of 

cortex, although the curved nature of the cortical surface combined with the flat array may result in 

some electrodes being embedded in different layers.  

Typical locations for implants include M1, premotor cortex, PPC, and S1 (Armenta Salas et al., 2018; 

Collinger et al., 2013; Flesher et al., 2016; Sakellaridi et al., 2019; Willett et al., 2020). Once 

implanted, the arrays can be used to record electrophysiological data–and in some cases, stimulate 

the cortex electrically–for many years, although there is some degradation of the recording quality as 

the electrodes age (Hughes et al., 2021b; Woeppel et al., 2021). Neural data is recorded at a very high 

temporal resolution (30,000 Hz) as well as a high spatial resolution within the microelectrode array 

locations, but this spatial resolution is limited to the relatively small surface area covered by the 

arrays. Given that currently no more than 6 arrays have been implanted in any one participant, the 

arrays’ limited recording area renders their accurate placement in the brain critical. 

1.3.2 Intra-cortical microstimulation (ICMS) 

Electrical stimulation of the human brain has been used for nearly 100 years to better understand the 

purpose of different regions by eliciting qualia relevant to their function–for example, tactile 

sensations are evoked by stimulating S1 (Penfield and Boldrey, 1937; Sagar et al., 2019; Woolsey et 

al., 1979). Intra-cortical microstimulation (ICMS) refers specifically to electrical stimulation within 
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the cortex, passed through microelectrodes. Foundational work in macaques demonstrated that the 

frequency of ICMS through electrodes in S1 can be discriminated qualitatively (London et al., 2008; 

Romo et al., 1998), and that performance in a tactile detection or discrimination task with ICMS can 

equal to that with real tactile stimuli (Berg et al., 2013; Tabot et al., 2015). Further work in macaques, 

and later in humans, proved that virtual objects explored only using ICMS feedback could be 

discriminated from each other (Klaes et al., 2014; O’Doherty et al., 2011; Osborn et al., 2021). 

While it is now well-established that ICMS is capable of conveying tactile information to some 

degree, it remains under investigation how well the properties of ICMS match up to the properties of 

real tactile sensation. In one study where macaques explored ridged gratings to discriminate textures 

with ICMS, their discrimination accuracy conformed to Weber’s law (O’Doherty et al., 2019), which 

states that the JND of a sensory percept should increase proportionally to the change in the stimulus– 

in this case, the distance between the grating ridges (Ekman, 1959). Another study found that JNDs 

do not increase proportionally to the stimulation current amplitude, although only two amplitudes 

were assessed (Kim et al., 2015b). In contrast, it was shown that in rats, JNDs do follow Weber’s law 

with respect to ICMS current amplitude and pulse-width (Bjånes and Moritz, 2019). More 

investigation is needed to determine in what aspects ICMS does obey Weber’s law, if there are some 

properties which reliably violate it, and if there are meaningful differences across species.  

While the neural activation patterns during ICMS remain poorly understood, one study used calcium 

imaging of mice during 30s ICMS trains to demonstrate that low frequencies of ICMS result in 

neurons remaining active throughout stimulation while high frequencies cause neurons to become 

inactive by the end of stimulation (Michelson et al., 2019). Computational modeling work has also 

shown that with increased ICMS current amplitude, the density of activated neurons at the stimulation 
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site increases, but the volume occupied by activated neurons remains relatively stable (Kumaravelu 

et al., 2022). 

One major benefit of working with human participants over non-human animal models is that humans 

can report qualia elicited by ICMS. This has allowed for an exploration of what type of parameters 

elicit what type of sensations, but has also highlighted how little is understood about of these 

methods–experiences of ICMS appear to vary widely between participants, and the same parameters 

even within one participant do not always elicit the same sensation at the same location (Armenta 

Salas et al., 2018; Flesher et al., 2016). However, a few rule-of-thumb guidelines have emerged. 

Continuous high-frequency stimulation leads to extinguishing of sensations while low-frequency 

stimulation leads to longer percepts, but this effect can be alleviated with intermittent stimulation 

(Hughes et al., 2022). Increasing the ICMS current amplitude or stimulation duration leads to more 

intense sensations overall (Armenta Salas et al., 2018; Flesher et al., 2016; Hughes et al., 2021a). 

Location of percepts tend to follow the topographic organization of S1 (Armenta Salas et al., 2018; 

Flesher et al., 2021). 

When it comes to designing ICMS inputs, one approach is to create arbitrary stimuli and rely on the 

user to learn how these stimuli encode real-world variables de novo. However, it is generally agreed 

that a biomimetic approach, where ICMS is designed to best replicate real sensory inputs, would be 

best if it is viable because it would be the most intuitive for a user to adopt (Tabot et al., 2015). In this 

framework, ICMS should aim to create sensations that are close to what would be experienced with 

an intact nervous system. One attempt at biomimicry in peripheral nerve stimulation of trans-radial 

amputees has been to modulate pulse frequency and current amplitude to be more similar to natural 

nerve responses to the onset and offset of touch  (Saal and Bensmaia, 2015). This approach has 
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resulted in increased sensation naturalness and tactile sensitivity (Valle et al., 2018), but it remains to 

be seen if this result replicates with ICMS. 

1.3.3 Benefits of a BMI with sensory capabilities 

The tight link between somatosensation and motor abilities has been well-established (Miall et al., 

2019; Robles-De-La-Torre, 2006; Sainburg et al., 1995), as has the link between somatosensation and 

embodiment (Balslev et al., 2007; Giummarra et al., 2008; Kilteni et al., 2012a). Additionally, 

amputees equipped with artificial sensory feedback pertaining to a prosthetic hand via intraneural 

stimulation have shown improved manual dexterity, enhanced prosthetic embodiment, and perceive 

the prosthesis to be lighter (Page et al., 2018; Preatoni et al., 2021; Valle et al., 2018). It is highly 

likely that an advanced BMI could provide comparable benefits, which would be critical for it to be 

able to deliver meaningful improvements in patient quality of life. 

In a recent study, a tetraplegic patient used a motor BMI recording from their motor cortex to perform 

a task involving reaching to an object with a robotic limb, picking the object up, and transporting it 

to a target destination (Flesher et al., 2021). When equipped with ICMS sensory feedback from the 

robotic limb, the patient performed the task twice as fast, primarily saving time during object 

grasping. This finding clearly shows that ICMS can supplement visual information to improve motor 

dexterity improvements. However, it is important to note that the ICMS feedback provided was quite 

crude: electrodes mapped to the finger topography of S1 delivered stimulation varying in current 

amplitude based on torque measurements from the robotic fingers. The substantial potential, yet 

unrealized, to improve the sensitivity and dimensionality of ICMS feedback means that assessing the 

full extent of performance improvements, or the effects on the sense of embodiment, is not yet 

possible (Beckerle et al., 2018). 
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1.3.4 Multisensory integration of ICMS 

Studies of the effects of ICMS often consider it alone, without any outside context (Armenta Salas et 

al., 2018; Flesher et al., 2016; Hughes et al., 2022, 2021a). However, just like the natural sense of 

touch, ICMS feedback should exist as part of a rich multisensory environment (Risso and Valle, 

2022). When the qualia elicited by ICMS are unreliable, even over repetitions of the same parameters 

(Armenta Salas et al., 2018; Flesher et al., 2016), it is possible that the addition of context, particularly 

in the form of visual information, will allow for stabilization of these percepts. 

While it might seem intuitive that the relative time between onset of an artificial tactile stimulus and 

its evoked sensation would be as fast or faster than a physical tactile stimulus given the immediacy 

of the injected input to S1, ICMS is perceived approximately 50ms more slowly than an intensity-

matched physical vibrotactile stimuli (Christie et al., 2022). This discrepancy suggests that the brain 

may have difficulty synchronizing visual and ICMS input if it assumes the same processing speed for 

ICMS and real physical touches. Other studies have corroborated this finding, showing that reaction 

times to single-channel ICMS cues are slower than visual or tactile cues (Godlove et al., 2014), and 

that electrocorticographic (ECoG) stimulation is also perceived more slowly slower than tactile 

stimuli (Caldwell et al., 2019). Similarly, it was shown using peripheral intraneural stimulation in 

amputees that stimulation felt synchronous with visual stimuli at different offsets depending on 

whether the lower or upper limb was stimulated (Christie et al., 2019b). This study also tested the 

temporal binding window for peripheral stimulation and vision–in other words, the maximum length 

of time between the two stimuli in which they still felt synchronous–which was approximately 100ms. 

Understanding the temporal binding window of ICMS and vision will be critical because it will 

provide a sense of what latencies are permissible in a functional sensory BMI. 
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ICMS paired with visual information can improve motor task performance better than either sensory 

modality alone (Dadarlat et al., 2015; Flesher et al., 2021), but it is unclear how this multisensory 

integration occurs in the brain. It will be important to understand the weight that the brain assigns to 

incoming tactile information based on the sensory modality it comes from, and how it reconciles 

sensory information that conflicts with ICMS (Risso et al., 2019). For instance, trans-tibial amputees 

who experienced intraneural stimulation localized to their missing foot while watching touches being 

applied to a prosthetic foot attached to them were biased to interpret the location of the touch based 

on visual information (Christie et al., 2019a).  

Ideally, visual information could provide a lens through which ICMS is interpreted, which could 

contribute to the stabilization of unpredictable qualia. Encouragingly, the rubber hand illusion has 

been successfully elicited in epilepsy patients using a combination of vision and stimulation of ECoG 

channels (Collins et al., 2017). This indicates that the interpretation of artificial tactile stimulation can 

be biased by vision in how it contributes to the sense of embodiment, just as vision biases the 

interpretation of real physical touches in the classic version of the illusion.  

1.3.5 Current challenges 

Every year, new research pushes forward our understanding of the somatosensory system and how to 

better interface with it to create restorative devices for patients with impaired sensorimotor abilities. 

However, major obstacles exist that must be reckoned with before a BMI capable of truly providing 

an artificial sense of touch can be created.Firstly, because of the highly specialized and technical 

nature of this research, patients who enroll in BMI clinical trials are rare. In order to establish a 

potential BMI as useful to a broad patient population, it will be necessary to conduct studies with 

sample sizes large enough to be sure that individual differences are not confounding the results, and 
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protocols must be established to map neural responses to motor output, and sensory stimuli to ICMS, 

in a generalizable fashion. 

Another massive challenge is that the relationship between ICMS and the qualia of evoked sensations 

remains to be elucidated. While it is encouraging that microelectrode arrays remain usable for years 

after implantation, the properties of the electrodes change and degrade over time, making it difficult 

to establish a map of sensation in even one individual (Hughes et al., 2021b). Even across weeks, 

stimulating with a given set of parameters multiple times frequently generates results that differ in 

intensity, location, and qualitative aspects (Armenta Salas et al., 2018; Flesher et al., 2016), and the 

relationships between parameters and percepts seem to change between electrodes on the same 

microelectrode array (Callier et al., 2020). Without a better understanding of how to elicit a specific 

sensation at the appropriate location on the body on demand, it will be very difficult to create a BMI 

that approximates the experience of real touch. 

A persistent difficulty in establishing this better understanding is that the parameter space of possible 

ICMS frequencies, amplitudes, pulse widths, and durations is massive, even before considering 

stimulating on multiple electrodes simultaneously or in one of a near-infinite number of patterns. It 

is simply not possible to test all permutations in a single participant, let alone in a significant sample 

size of people. However, studies are beginning to break this problem down into manageable pieces 

by selectively examining subsections of this parameter space (Armenta Salas et al., 2018; Callier et 

al., 2020; Flesher et al., 2016; Hughes et al., 2022, 2021a), including differences between single 

channel and multiple channel ICMS (Kim et al., 2015b; Sombeck and Miller, 2020). One promising 

result is that stimulating with multiple channels appears to lower reaction times to ICMS, potentially 

minimizing the lag between ICMS and other sensory modalities (Sombeck and Miller, 2020). 
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Hopefully, moving forward, other findings of this type will contribute to a better understanding of 

how to improve ICMS experiences and make them more naturalistic. 
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C h a p t e r  3   

CHAPTER 3:  

IMAGINED SOMATOSENSORY PERCEPTS IN HUMAN CORTEX 

The following chapter’s contents are taken and adapted from Bashford et al. (2021) with 

modifications done to fit the dissertation format. 

Bashford, L., Rosenthal, I., Kellis, S., Pejsa, K., Kramer, D., Lee, B., Liu, C., Andersen, R.A., 

2021. The neurophysiological representation of imagined somatosensory percepts in human 

cortex. J. Neurosci. 41, 2177–2185. https://doi.org/10.1523/JNEUROSCI.2460-20.2021  

3.1 Introduction 

In recent studies, intra-cortical microstimulation (ICMS) in the primary somatosensory cortex (S1) 

has been successfully used to elicit somatosensory sensations in tetraplegic humans below the level 

of spinal cord lesion (Armenta Salas et al., 2018; Flesher et al., 2016). Many parameters of the 

electrical stimulus, such as amplitude, frequency, duration, and electrode location, have been found 

to manipulate the qualitative experience of elicited sensory responses in both non-human primates 

and humans (Armenta Salas et al., 2018; Callier et al., 2020; Flesher et al., 2016; Kim et al., 2015a, 

2015b; Sombeck and Miller, 2020). It is therefore important to develop our understanding of the 

correspondence between stimulation parameters and the sensations they elicit if we are to further 

understand the mode of action of ICMS and elicit specific sensations more reliably via ICMS. To 

begin, we seek to uncover the neurophysiology underlying those sensations previously elicited by 

ICMS.  

In previous work (Armenta Salas et al., 2018), we found the top five most elicited somatic sensations 

https://doi.org/10.1523/JNEUROSCI.2460-20.2021
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with ICMS in S1 of a human participant. These were naturalistic sensations which the subject had not 

experienced in deafferented locations since being injured. We seek to examine for the first time the 

intra-cortical electrophysiological behavior of human sensorimotor circuits while experiencing these 

same sensations. Since it is not possible to use normal touch to elicit a sensation below the level of 

paralysis in a tetraplegic individual, we performed our experiment using “somatosensory imagery,” 

the vivid recollection of a somatosensory experience, to evoke activity in these circuits specific to the 

same sensations experienced during electrical stimulation. We chose to use sensations that were 

previously elicited by ICMS, rather than any sensation the subject was able to imagine, because these 

sensations were elicited with known stimulation parameters in the same cortical area we record from 

during somatosensory imagery.  

Somatosensory imagery has previously been shown in functional magnetic resonance imaging  

(fMRI) studies to activate the somatosensory system (Fitzgibbon et al., 2012; Hodge et al., 1996). 

Both primary and secondary somatosensory areas are activated by tactile imagery (Yoo et al., 2003) 

in areas that respond to actual touch. Imagined movements after amputation of the fingers have also 

been shown to produce neural activation in somatosensory cortex (Rosén et al., 2001). We record 

intra-cortically from three areas of human cortex (Figure 3.1a), S1, ventral premotor cortex (PMv), 

and  the supramarginal gyrus (SMG). Each of these areas is involved in somatosensory processing. 

Neurons in S1 respond to cutaneous and proprioceptive stimuli (Hyvärinen and Poranen, 1978; 

Iwamura et al., 1993; Seelke et al., 2012; Taoka et al., 2000) and electrical stimulation in this area 

produces naturalistic somatosensory percepts (Armenta Salas et al., 2018; Flesher et al., 2016). The  

SMG array, on the SMG near the anterior end of the intraparietal sulcus (Figure 3.1a), is in a region 

of cortex often studied in the context of grasp for both human (Binkofski et al., 1998; Culham et al., 

2003) and non-human primate (Baumann et al., 2009; Dong et al., 1994) studies. There is not yet 
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Figure 3.1 Implant locations and task design 

a) Array implant locations. b) Task paradigm: (1) ITI, 4 s; (2) cue phase displaying the sensation to be imagined, 2 s; (3) 

delay phase, 2 s; (4) imagery phase during which time the participant recalls as vividly as possible the sensation presented 

during the cue, 5 s. 

enough evidence in this literature and our study to make exact homological assignments between the 

two species. Similarly, this same region of cortex responds to somatosensory stimuli in both species 

(Dong et al., 1994; Leinonen et al., 1979) and has reciprocal connections to other sensorimotor 

regions such as BA1, BA2, BA5, S2 (Neal et al., 1990), and premotor cortex (Gregoriou et al., 2006).  

Broadly, posterior parietal cortex is a higher order area in sensorimotor and somatosensory processing 

(Aflalo et al., 2015; Romo et al., 1998; Romo and de Lafuente, 2013). PMv neurons respond to tactile 

and proprioceptive somatosensory stimuli (Fogassi et al., 1996; Graziano, 1999; Graziano et al., 

1997). Given the role of these areas in somatosensory processing, we expect to observe 

neurophysiological modulation because of somatosensory imagery.  

In this work we investigated the neural correlates of imagined sensations and how this representation 

is distributed across different sensorimotor cortical areas. We used the sensations previously 

experienced by our participant during ICMS (Armenta Salas et al., 2018) and sought to demonstrate 

a discriminable representation of the sensations in the brain. We examined neurophysiological 

responses to somatosensory imagery from intra-cortical human recordings across three brain areas, 

each implanted with recording microelectrode arrays (Utah Array, Blackrock Neurotech): S1, SMG, 
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and PMv. We found a highly significant classification accuracy between sensations was attainable 

using both threshold crossing spiking activity and spectral power of various common frequency bands 

in the continuous brain signal.  

Our results demonstrate that unique sensory experiences can be classified from human neural signals 

during somatosensory imagery and explore how the encoding of different aspects of sensation are 

distributed across different brain areas. The correspondence between the neural signal during 

somatosensory imagery and the stimulation parameters that elicit the same sensations may inform the 

choice of stimulation parameters for eliciting novel and robust sensations via ICMS in future work. 

3.2 Methods 

3.2.1 Participant 

We recruited and consented a male participant with C5-level incomplete spinal cord injury (34 years 

old, three years and six months post-injury, and one year and eight months post-implant, at the time 

of the first experiment) to participate in a clinical trial of a brain-machine interface (BMI) system 

with intra-cortical recording and stimulation. All data were recorded through electrode arrays that 

were implanted in three locations of the left hemisphere (Figure 3.1a): SMG, PMv, and S1. One 96-

channel, platinum tipped Neuroport microelectrode recording array (Blackrock Neurotech, Salt Lake 

City, UT) was implanted in each of SMG and PMv. Two 48-channel SIROF-tipped (sputtered iridium 

oxide film) microelectrode arrays were implanted in S1. Further information regarding specific 

surgical planning and implantation details are described in (Armenta Salas et al., 2018). All 

procedures were approved by the Institutional Review Boards (IRB) of the California Institute of 

Technology, University of Southern California, and Rancho Los Amigos National Rehabilitation 

Hospital. 
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3.2.2 Task 

Based on the outcome of S1-only stimulation mapping we identified the five most commonly elicited 

sensations with ICMS: “squeeze,” “tap,” “rightward movement,” “vibration,” and “blowing.” These 

sensations represented 24.9%, 17.3%, 9.7%, 8.1%, and 6.6%, respectively, of 381 total ICMS elicited 

sensations (for full details of ICMS mapping see, Salas et al., 2018). These sensations were 

experienced in the same body locations of the contralateral forearm and upper arm. In our 

somatosensory imagery experiment, each trial consisted of an intertrial interval (ITI), a cue, a delay, 

and an imagery phase. During the ITI, a black screen with a gray circle (1-cm diameter) in the middle 

was shown for 4 s during which time the participant was instructed to rest and fixate gaze on the 

circle, although gaze was not measured. In the cue phase, one of the sensations listed above was 

presented as a written word for 2 s, then in the 2-s delay phase, only a black screen with the fixation 

circle was shown. In the final 5-s imagery phase of the task, the fixation circle changed to green and 

the participant began somatosensory imagery. The instruction for the imagery phase given at the 

beginning of each experiment was to “imagine the sensation as you experienced it during electrical 

stimulation as vividly as possible” (Figure 3.1b). The participant confirmed to us that the sensations 

were all imagined in the same location at the forearm, thus controlling for the inadvertent 

classification of location rather than sensation. In each run of the task, each individual sensation was 

imagined 10 times (total 50 trials per run), pseudo-randomly shuffled. The full dataset consists of 400 

trials with N =80 repetitions of each imagined sensation. 

3.2.3 Experiment design and data collection 

Data were collected from each array site using a 128-channel Neural Signal Processor (Blackrock 

Neurotech). Broadband signals were recorded at 30,000 samples/s. Spectral power was computed for 

each phase of each trial using MATLAB’s pspectrum function (MathWorks Inc. MA). Unsorted 
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threshold crossings (Christie et al., 2015; Dai et al., 2019; Oby et al., 2016) extracted from the 

broadband signal using a threshold of -3.5 times the noise RMS of the continuous signal voltage, were 

used as spike activity. The first full data set (herein referred to as experiment 1) was collected across 

10 d. The second full data set was collected 11 months later, across 24 d (herein referred to as 

experiment 2). This time delay allowed us to explore the stability of the representations initially 

observed. ICMS sensory mapping (Armenta Salas et al., 2018) that produced the percepts used for 

imagery in this study were collected 16 months before experiment 1 began. 

3.2.4 Statistics and analysis methods 

Classification was performed independently for each array and each phase of the somatosensory-

imagery task using linear discriminant analysis (LDA) with the fitcdiscr function in MATLAB. For 

analysis using spike firing rates, the average threshold crossing rates from each channel, calculated 

from the entirety of each phase in 50-ms time bins, were passed as features to the classifier. For 

analysis of the spectral power data, power in the 4–8 (θ), 8–12 (α), 12–30 (β), 30–70, 70–150, and 

150–300 Hz (γ) bands, computed for each channel, were used as features. Classification was 

performed separately for each frequency band. We note that in these very high-frequency bands the 

signal is likely to reflect the spiking activity of local neurons.  

For both threshold crossings and spectral power, LDA was performed over 1000 repetitions. In each 

repetition, all 400 trials were randomly divided in a 50/50 cross-validation training and testing 

paradigm. Following 1000 repetitions, mean classification accuracy and 95% confidence intervals 

were computed. This procedure was repeated in a null condition where class labels were randomly 

shuffled during each repetition to generate a chance-level distribution of classification accuracies. 

Significance for classification performance was calculated by comparison of the overlapping 

percentile values of the actual and null data set. The full results are available in Table 3.1. 
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In order to test the ability of our datasets to generalize to one another, a decoder was trained on all of 

experiment 1 data and tested on all of experiment 2 data (another decoder was trained using the 

opposite train/test regime). This analysis yielded only one accuracy for each phase and electrode array 

as opposed to a distribution over 1000 iterations, because of the nature of testing which used one 

specific split of the data. However, the null condition was calculated as before, by shuffling the trial 

labels of both train and test datasets randomly over 1000 iterations. For this reason, in the 

generalization analysis, for each phase and electrode array, a single accuracy value was compared 

with the percentiles of the null distribution. For instance, we report p > 0.05 if the accuracy was 

greater than the value at the 97.5th percentile of the null distribution. Initially we performed LDA 

without preprocessing (e.g., without performing dimensionality reduction) as this allows for a direct 

analysis of the relationship between the neural activity recorded on each channel and imagined 

sensations. However, since the absence of preprocessing results in a small trade-off in classification 

accuracy, we separately repeated the classification using singular value decomposition (SVD) feature 

selection before model fitting. For threshold-crossing features, SVD was computed on mean-centered 

firing rates averaged within each task phase (svd function in MATLAB). Average firing rate data 

were projected onto the top N features that represent the dimensions of greatest variance in the data. 

N was determined by examining accuracy scores across phases and electrode arrays in experiment 1. 

N was calculated separately for spike decoding and for each frequency band in spectral power 

decoding. N was initially set to 5 features, and then increased in increments of 5. Each run yielded a 

mean accuracy across phases (cue, delay, imagery) and arrays (SMG, PMv, S1) over 1000 iterations. 

For each of these accuracies, the current run was compared with the previous run with N–5 features. 

In all cases, accuracies as N increased followed a curve with a single peak or plateau at some N > 0 

and smaller than the original number of features. The run with the greater number of superior 
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accuracies was chosen as the “better” run. In the case of a tie, the lower number of features was 

chosen. The number of features N is given in Table 3.1, dimensions. The number of features 

determined to be best for experiment 1 data were also used to decode experiment 2 data, and to 

perform the cross-experiment decoding (i.e., training on experiment 1 and testing on experiment 2 

and vice versa). The best number of features was recomputed with the combined data from 

experiment 1 and experiment 2 following the same procedure. For spectral-power classification, the 

same approach was used to determine the optimal number of features for each frequency band 

individually. As appropriate, p values were corrected for multiple comparisons using the Bonferroni–

Holm method. 

3.3 Results 

In this study, a human tetraplegic participant with intra-cortical microelectrode arrays in the SMG, 

PMv, and S1 performed somatosensory imagery, the vivid recollection of sensory experiences, of 

five sensations. These sensations were the most common ones that the same participant experienced 

in a previously published sensory mapping of S1 by ICMS (Armenta Salas et al., 2018). We 

investigated the hypothesis that somatosensory imagery would generate unique representations for 

each sensation, which could be classified from the neural signal. 

3.3.1 Classifying sensations 

Using unsorted threshold crossings recorded during experiment 1 (see Methods), we trained an LDA 

classifier to identify the five sensations we tested. We trained the classifier on half of the trials (see 

Methods) at a single phase of the task and on data from a single array, using the average firing rate 

during the phase at each channel as features. We tested the classification on the other half of the trials 

in the same phase and array. We found a significant classification accuracy for the cue, delay and 

imagery phases of the task in SMG and in the imagery phase in S1 (Figure 3.2a; Table 3.1). To 
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Table showing the classification accuracy as a percentage and significance (n/s = not significant, *p < 0.05, **p < 0.01, 

***p < 0.001) from each of the experiments in which the five sensations tested were classified with LDA and SVD. 

Classification was performed separately for each data type (spike or spectral power band), each trial phase (cue, delay, 

and imagery), and for each brain area (SMG, PMv, and S1). The number of features used for each classification is listed 

in the dimensions column (see Methods). 

improve the classification accuracy, we applied SVD feature preprocessing before the LDA was 

trained (see Methods). We found significant classification for the cue, delay and imagery phases of 

  SMG   PMv   S1    

  Cue Delay Imagery Cue Delay Imagery Cue Delay Imagery Dimensions 

Experiment 

1 
Spikes 78%, *** 69%, *** 82%, *** 24%, n/s 30%, n/s 37%, ** 18%, n/s 23%, n/s 38%, *** 35 

 4-8Hz 33%, * 22%, n/s 24%, n/s 23%, n/s 21%, n/s 24%, n/s 19%, n/s 19%, n/s 20%, n/s 45 

 8-12Hz 32%, n/s 21%, n/s 34%, ** 20%, n/s 22%, n/s 33%, * 19%, n/s 22%, n/s 20%, n/s 20 

 12-30Hz 31%, * 21%, n/s 28%, n/s 17%, n/s 16%, n/s 27%, n/s 17%, n/s 20%, n/s 23%, n/s 15 

 30-70Hz 35%, ** 27%, n/s 60%, *** 18%, n/s 19%, n/s 24%, n/s 16%, n/s 17%, n/s 27%, n/s 30 

 70-150Hz 57%, *** 44%, *** 75%, *** 20%, n/s 22%, n/s 28%, n/s 19%, n/s 22%, n/s 28%, n/s 40 

 150-300Hz 63%, *** 46%, *** 77%, *** 22%, n/s 21%, n/s 32%, * 19%, n/s 20%, n/s 34%, * 45 

Experiment 

2 
Spikes 92%, *** 62%, *** 75%, *** 27%, n/s 35%, ** 54%, *** 21%, n/s 20%, n/s 31%, n/s 35 

 4-8Hz 34%, * 24%, n/s 25%, n/s 21%, n/s 20%, n/s 25%, n/s 18%, n/s 18%, n/s 21%, n/s 45 

 8-12Hz 37%, ** 23%, n/s 27%, n/s 20%, n/s 22%, n/s 32%, * 18%, n/s 19%, n/s 20%, n/s 20 

 12-30Hz 31%, * 20%, n/s 30%, n/s 20%, n/s 18%, n/s 25%, n/s 18%, n/s 17%, n/s 21%, n/s 15 

 30-70Hz 36%, ** 28%, n/s 53%, *** 24%, n/s 26%, n/s 38%, ** 17%, n/s 16%, ** 20%, n/s 30 

 70-150Hz 62%, *** 39%, *** 71%, *** 35%, * 30%, n/s 51%, *** 19%, n/s 19%, n/s 25%, n/s 40 

 150-300Hz 64%, *** 43%, *** 69%, *** 31%, n/s 28%, n/s 52%, *** 21%, n/s 20%, n/s 25%, n/s 45 

Combined 

1 & 2 
Spikes 75%, *** 59%, *** 73%, *** 23%, n/s 27%, n/s 31%, ** 19%, n/s 21%, n/s 33%, *** 60 

 4-8Hz 31%, ** 22%, n/s 24%, n/s 19%, n/s 20%, n/s 27%, n/s 19%, n/s 18%, n/s 19%, n/s 10 

 8-12Hz 31%, ** 21%, n/s 32%, *** 20%, n/s 21%, n/s 31%, ** 18%, n/s 21%, n/s 20%, n/s 25 

 12-30Hz 30%, * 20%, n/s 29%, * 19%, n/s 18%, n/s 26%, n/s 17%, n/s 19%, n/s 21%, n/s 25 

 30-70Hz 35%, *** 28%, n/s 52%, *** 21%, n/s 21%, n/s 30%, * 17%, n/s 17%, n/s 22%, n/s 75 

 70-150Hz 53%, *** 37%, *** 68%, *** 24%, n/s 23%, n/s 36%, *** 20%, n/s 20%, n/s 27%, n/s 75 

 150-300Hz 57%, *** 37%, *** 67%, *** 23%, n/s 22%, n/s 37%, *** 19%, n/s 19%, n/s 29%, * 60 

2 trained on 

1 
Spikes 21%, n/s 23%, n/s 30%, *** 19%, n/s 23%, n/s 16%, n/s 20%, n/s 17%, n/s 21%, n/s 35 

 4-8Hz 24%, n/s 20%, n/s 20%, n/s 23%, n/s 18%, n/s 18%, n/s 21%, n/s 19%, n/s 22%, n/s 45 

 8-12Hz 27%, *** 21%, n/s 29%, *** 22%, n/s 23%, n/s 26%, *** 21%, n/s 22%, n/s 25%, * 20 

 12-30Hz 32%, *** 20%, n/s 26%, *** 17%, n/s 20%, n/s 22%, n/s 21%, n/s 23%, n/s 22%, n/s 15 

 30-70Hz 27%, *** 22%, n/s 24%, * 24%, ** 19%, n/s 24%, *** 20%, n/s 19%, n/s 21%, n/s 30 

 70-150Hz 24%, * 30%, *** 20%, n/s 20%, n/s 23%, n/s 21%, n/s 18%, n/s 20%, n/s 21%, n/s 40 

 150-300Hz 27%, *** 22%, n/s 22%, n/s 21%, n/s 21%, n/s 20%, n/s 19%, n/s 19%, n/s 20%, n/s 45 

1 trained on 

2 
Spikes 29%, *** 33%, *** 35%, *** 19%, n/s 23%, n/s 23%, n/s 18%, n/s 18%, n/s 21%, n/s 35 

 4-8Hz 26%, ** 20%, n/s 21%, n/s 22%, n/s 23%, n/s 26%, ** 22%, n/s 20%, n/s 24%, * 45 

 8-12Hz 27%, *** 22%, n/s 31%, *** 22%, n/s 23%, n/s 29%, *** 18%, n/s 22%, n/s 22%, n/s 20 

 12-30Hz 23%, n/s 21%, n/s 23%, n/s 21%, n/s 21%, n/s 23%, n/s 19%, n/s 21%, n/s 21%, n/s 15 

 30-70Hz 26%, ** 26%, ** 25%, ** 23%, n/s 19%, n/s 22%, n/s 20%, n/s 21%, n/s 19%, n/s 30 

 70-150Hz 20%, n/s 23%, n/s 20%, n/s 22%, n/s 23%, ** 20%, n/s 19%, n/s 18%, n/s 18%, n/s 40 

 150-300Hz 24%, * 21%, n/s 29%, *** 20%, n/s 22%, n/s 19%, n/s 23%, n/s 19%, n/s 21%, n/s 45 

Table 3.1 Classification accuracies 
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the task in SMG and in the imagery phase in both S1 and PMv (Figure 3.2b, experiment 1; Table 

3.1). In all cases, classification accuracy was compared with that of a null distribution (Figure 3.2b, 

null), where the classification was performed identically but the trial labels were randomly shuffled. 

LDA analysis determines discriminability across the population activity of the whole array; however, 

we also observed individual channel firing activity capable of significantly discriminating between 

two or more sensations (exemplary channels shown in Figure 3.3a). The total percentage of channels, 

96 in each brain area, whose activity significantly discriminated between two or more sensations in 

the imagery phase only (p < 0.05) was 49% in SMG, 22% in PMv, and 20% in S1. This metric was 

calculated per channel, pooling across all trials, using a Kruskal–Wallis test with the averaged firing 

rate in the imagery phase of the task. Data were corrected for multiple comparisons with the 

Bonferroni-Holm method. To compare the correspondence between results from both stimulation (in 

previous work) and imagery for all individual channel-sensation pairs (96 channels x 5 sensations, N 

= 480), we identified tuning of the channel to the sensation by looking for a significant difference in 

firing rate across all trials of a pair between the ITI and imagery phase of the task, using a Wilcoxon 

signed rank test (p < 0.05). We identified responses to ICMS for each channel-sensation pair by 

looking for at least one instance of the pair during ICMS mapping in the previous study (Salas et al., 

2018). We found 89 (18.5%) pairs (38/96 unique channels, 5/5 unique sensations) which had both 

neurophysiological tuning and a response to ICMS. We also used the same method as above to 

perform a classification using the spectral power in various frequency bands of the raw neural signal 

as features (see Methods; Figure 3.2; Table 3.1). In SMG, we found significant classification 

accuracy in the cue phase across several frequency bands. We also found significant classification 

accuracy in the delay phase in higher frequency bands only. In the imagery phase we saw significant 

classification accuracy across several frequency bands. In PMv, we found significant classification  
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Figure 3.2 Sensation classification 

a) Classification accuracy of sensations with LDA using the spike activity on all channels as features from experiment 

1. b) Improved classification accuracy when classifying the sensations using LDA with the spike activity and SVD feature 

selection from experiment 1 (red), experiment 2 (blue), and the combined experiments 1 and 2 data (black). Each with 

their own null distribution. C) Classification using spectral power in different frequency bands for experiment 1 (top 

row), experiment 2 (middle row), and combined experiments 1 and 2 (bottom row). In all subplots, error bars show 95% 

confidence interval, asterisks denote classification significantly above null distribution. Gray dotted line shows the 

classification chance level. 
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accuracy only in the imagery phase at high and low frequencies. Likewise, in S1, we found significant 

classification accuracy only in the imagery phase and only in the highest frequency band (150–300 

Hz). 

During the ITI phase of the trial, while the subject was at rest, we never achieved classification 

performance different to chance level with any method or neural signal used. This confirms that the 

discriminable activity in other task phases is related specifically to the somatosensory imagery task. 

3.3.2 Longitudinal representational of sensations 

We have demonstrated above that different sensations can be uniquely represented in distributed 

cortical areas. However, to what extent are the representations stable over time? Recordings of the 

human neural signal can be unstable over time (Aflalo et al., 2015), so to assess longitudinal stability, 

the participant performed experiment 2, repeating the imagery task ~11 months after the initial 

experiment 1. We found that sensations could be classified from threshold crossings in SMG during 

cue, delay, and imagery phases as in the earlier data (Figure 3.2b; Table 3.1). We found a significant 

classification in the delay and imagery phase in PMv. Using spectral power features from experiment 

2 only to examine longitudinal stability, as above with threshold crossings, showed a similar trend. 

In SMG significant classification was observed in all frequency bands during the cue but in the delay 

phase was only observed in higher frequency bands (Figure 3.2c, middle row; Table 3.1). Additional 

lower bands became significant in the imagery phase. In PMv, significant classification accuracy was 

only achieved in the cue phase at a single high-frequency band and in the imagery phase across a 

range of bands. No significant classification using spectral power was achieved in S1 during 

experiment 2.  

To determine how similar activity was between experiments 1 and 2 within each task phase and each 

array, we performed a split training and testing using all trials of experiment 1 to train and all trials 
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Figure 3.3 Sample firing rates and mean power 

a) Mean firing rates across all trials for each sensation on an exemplary channel in each recording location. b) Mean 

power in the 150- to 300-Hz LFP band across all trials for each sensation on an exemplary channel in each recording 

locations. Channels show significantly different activity for multiple individual sensations. In all subplots, error bars 

show 95% confidence interval. 

of experiment 2 to test (and vice versa). A null distribution was created using shuffled labels over N 

= 1000 repetitions of the classification. Using threshold crossings, significant classification accuracy 

was only observed in SMG during the imagery phase when testing on experiment 2. When testing on 

experiment 1, significant classification accuracy was observed only in SMG during the cue, delay 

and imagery phases of the task (Figure 3.4).  

To evaluate the longitudinal stability of spectral power representations, we trained and tested on both 

the experiments 1 and 2 datasets, as described above for threshold crossing features. When training 

on experiment 1 and testing on experiment 2, SMG showed significant classification accuracy in the 
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cue and imagery phase across a broad range of bands and significance in one band in the delay phase. 

In PMv, significant classification accuracy also occurred in the cue and imagery phase. In S1, 

significant classification accuracy was observed in the imagery phase at only a low-frequency band 

(Figure 3.4a). When training on experiment 2 and testing on experiment 1, significant classification 

accuracy was observed in SMG during the cue, delay and imagery phase. In PMv, significant 

classification accuracy occurred during the delay and imagery phase. In S1, significant classification 

accuracy only occurred during the imagery phase (Figure 3.4b; Table 3.1). Longitudinal 

classification from both spike and LFP signals performs well especially where the signal has a high 

decoding accuracy within either experiment 1 or 2 alone. In the longitudinal analysis, taking all brain 

regions together, there are some additional task phases and array locations with significant 

classification accuracy in the spectral power data compared with the spike data. This indicates a 

tendency toward more general stability in the spectral power.  

To ensure that classification accuracy could not be further improved with more data we combined 

threshold crossing datasets from both experiment 1 and experiment 2 to use all trials recorded (N = 

800) in the same classifier, with the same LDA and SVD method as before. Note, data across the two 

experiments is combined in this model. The significant classification accuracies in this result 

corroborate stability over time as in the longitudinal analysis above. However, combining data does 

not take into consideration changes in signal or noise over time as addressed specifically in the 

longitudinal analysis above. This analysis yielded significant classification accuracy for the cue, 

delay, and imagery phases of the task in SMG, in the imagery phase in S1 and in the imagery phase 

of PMv (Figure 3.2b, combined; Table 3.1). Finally, we combined the full spectral power data set as 

above (Figure 3.2c, bottom row) and found significant classification accuracy for SMG in the cue 

phase across a broad range of frequency bands, in the delay phase in only the higher frequency bands 
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Figure 3.4 Longitudinal decoding 

Classification accuracy calculated per phase and per brain region. a) An LDA with SVD model was trained on all trials 

in experiment 1 and tested on all trials in experiment 2. b) The same method was used to train on all trials in experiment 

2 and test on all trials in experiment 1. Different colors indicate different frequency bands. Gray dotted line shows the 

classification chance level. Stars indicate significance calculated with respect to the null distribution (see Methods). 

and imagery phase again across a broad range of bands. In PMv and S1, significant classification 

accuracy was achieved in the imagery phase only. For PMv, this was achieved in a broad range of 

frequency bands, while for S1, this was only achieved in the highest frequency band. 

3.4 Discussion 

As cortical stimulation methods are becoming more widely used it is increasingly important to 

understand the relationship between intervention (i.e., ICMS) and evoked perception/behavior (i.e., 
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sensations). In order to achieve the goal of restoring sensation in humans, we need to produce 

consistent effects across participants and robustly deliver specific sensations relevant to the task. We 

believe understanding this begins with exploring the neural representation of the sensations that we 

are able to elicit, for example, uncovering the neural features that represent unique sensations. In the 

work presented here, we demonstrate that different sensations are uniquely represented in the neural 

activity of human cortex. We measured spiking activity and spectral power during somatosensory 

imagery with intra-cortical recording arrays in SMG, PMv, and S1 of a single human participant with 

a high-level spinal cord injury (see Methods). We demonstrate that individual sensations can be 

accurately classified using these signals (Figure 3.2; Table 3.1). Here, we observe activity through 

somatosensory imagery, a powerful tool to elicit sensation-relevant neural activity, as physical 

interaction with the environment is not possible because of the nature of the injury in the tetraplegic 

patient population. We explore sensations that the participant had experienced both naturally before 

the injury and reported during ICMS mapping. Previously, individual aspects of somatosensation 

have been studied in isolation such as responses to different textures, the frequency of vibration, 

individual forces, etc. In somatosensory imagery, all these components are combined as a naturalistic 

sensation. With recordings across human cortical areas we can further characterize the distributed 

response in the brain to somatosensation (Delhaye et al., 2018). We show sensations can be classified 

in S1 during somatosensory imagery with threshold crossing activity, when the participant vividly 

recalls a previously experienced sensation (Figure 3.2a; Table 3.1). Additionally, in S1 the 

sensations are only classifiable in the imagery phase in high-frequency spectral power of 150–300 

Hz, again likely reflecting spiking activity (Figure 3.2c, top row; Table 3.1). This finding suggests 

S1 does not encode the planning or anticipation of sensation during imagery with no significant 

classification occurring in the cue or delay phase. In PMv, we found activity in the imagery phase 
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similar to S1, but with additional low-frequency components of 4–8 and 8–12 Hz, which may be 

responsible for driving coordinated networks over a larger area (Canolty et al., 2006). In experiment 

2, we were able to classify sensations from threshold crossing activity in PMv during the delay phase. 

This result reinforces the trend seen in experiment 1 for PMv (Figure 3.2b), suggesting that it encodes 

the planning or anticipation of the sensation in addition to the sensation itself (Fogassi et al., 1996). 

In SMG, we saw the highest classification performance of any area tested during the cue, delay and 

imagery phases of the task, both in threshold crossing activity and the spectral power in high-

frequency bands. This finding demonstrates SMG contains somatosensory information, both during 

imagery and in the planning/ anticipation of somatosensory imagery (Delhaye et al., 2018). 

Classification during the cue phase, which uniquely included θ band activity, suggests a 

representation of the semantic aspect of the cued sensation within SMG, which further supports the 

higher order cognitive encoding of sensorimotor control in posterior parietal cortex (Aflalo et al., 

2015; Andersen and Buneo, 2002; Zhang et al., 2017). We observe a large difference in the decoding 

performance between SMG and S1/PMv. A hypothesis for this difference may be that since 

somatosensory imagery is a top-down cognitive process, without somatosensory input, the 

representation is stronger in SMG as this is a higher order, cognitive area in somatosensory 

processing. Our results show imagery produces discriminable activity in S1 and PMv; however, the 

reduced decoding accuracy may reflect the primary role of this neural population to process input 

from the somatosensory system.  

We explicitly test somatosensory imagery to determine whether neural activity encodes the imagined 

sensation. This is motivated entirely because of the nature of injury in our patient population. We do 

not assume that these areas would represent the sensations in exactly the same way if they were 

experienced through interaction with the environment in the absence of injury. Indeed, the 
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representations found from somatosensory imagery have intrinsic value to efforts aimed at restoring 

sensation in injured people. However, it is likely that there would be a high degree of correspondence 

between the neural representation of sensations during somatosensory imagery and actual 

somatosensation (Fitzgibbon et al., 2012; Hodge et al., 1996; Rosén et al., 2001; Yoo et al., 2003). 

As seen in the motor system (Hardwick et al., 2018; Jeannerod, 1994), research into motor control, 

motor learning and motor BMIs have shown a high degree of similarity between the neural activity 

of imagined and executed behavior.  

In the longitudinal comparison of the neural representation of sensation (Figure 3.4), classification 

accuracy decreased in most phases and locations compared with testing within the experiments 

(Figure 3.2), with the biggest decrease in performance observed in S1. While it is unclear what caused 

this change in classification accuracy, it is interesting to note that it was accompanied by the 

participant’s comments during experiment 2 that the passage of time between the two experiments 

“made it much harder to imagine the sensation [evoked by ICMS] because I have not felt them in a 

while.” This anecdotal evidence might suggest a link between the strength of responses in S1 to the 

clarity with which the sensations could be recalled, as may be intuitively expected in a somatosensory 

imagery task. Nevertheless, threshold crossing S1 activity was still able to yield significant 

longitudinal classification accuracy after 11 months, comparable to that measured initially. In SMG, 

the presence of significant classification across experiments may suggest a stronger representation of 

the task than PMv or S1. The cross-classification performance across the two experiments suggests 

that while each of these areas encode the sensations after 11 months, the representation over all brain 

areas differs over time. While physiological changes in the representation of the sensations or the 

quality of the imagery could contribute to this, there are many additional factors unrelated to the 

neurophysiology of the task that likely contribute as well. For example, small movements in the array, 
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degradation of the array over time and changes at the electrode-tissue interface may all account for 

the reduced performance.  

Identifying a stable relationship between aspects of the neural signal representing sensations during 

somatosensory imagery and features of stimulation that evoke those sensations could allow us to 

efficiently identify protocols for artificially eliciting sensation. This is relevant to closed loop BMIs 

where during robotic or computer control, task-relevant sensations must be identified and delivered 

via ICMS. It remains to be investigated whether correspondence between features of the neural signal 

during imagery and the neural signal evoked during stimulation could reduce the time to map the 

relationship between sensations and stimulation. If so, somatosensory imagery could be used to 

improve sensory mapping by stimulation and potentially elicit more varied responses in future work. 

Furthermore, S1 was originally chosen as a stimulation site because of its known neurophysiological 

relationship to sensation. Here, we confirm a relationship between imagined sensations and S1 

neurophysiology for sensations previously elicited with S1 stimulation in the same array. 

Somatosensory imagery of the sensations shows an even stronger relationship between 

neurophysiological activity and imagined sensation in SMG. Therefore, SMG may also be a potential 

target for ICMS to elicit sensation. Stimulation in parietal cortex has previously been shown to have 

connections with (Baldwin et al., 2017) and relate to behavior of (Desmurget et al., 2018; Hanks et 

al., 2006; Mirpour et al., 2010) the sensorimotor system.  

In conclusion, we present evidence that human somatosensory imagery can be uniquely and robustly 

encoded in the activity of distributed cortical areas. In future work it would be essential to identify 

the evoked neurophysiology from certain stimulation parameters and compare this, instead of 

stimulation parameters alone, to the evoked sensations and representation of the sensations during 

imagery or experience. Such information would likely elucidate further the relationship between the 
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stimulation parameters, their ability to elicit certain sensations, and the representation of the 

sensations elicited in the brain. 
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C h a p t e r  4  

CHAPTER 4:  

THE ROLE OF VISUAL INFORMATION AND THE CORTICAL 

HOMUNCULUS IN S1 

 

The following chapter’s contents are taken and adapted from Rosenthal et al. (2023) with 

modifications done to fit the dissertation format. 

Rosenthal, I.A., Bashford, L., Kellis, S., Pejsa, K., Lee, B., Liu, C., Andersen, R.A., 2023. S1 

represents multisensory contexts and somatotopic locations within and outside the bounds of the 

cortical homunculus. Cell Reports 42, 112312. https://doi.org/10.1016/j.celrep.2023.112312  

4.1 Introduction 

The sense of touch is important for implementing dexterous, adaptable action plans (Ghez et al., 1995; 

Miall et al., 2021, 2019; Robles-De-La-Torre, 2006; Sainburg et al., 1995) and creating a sense of 

ownership and agency over one’s body (Ehrsson, 2020; Jeannerod, 2003; Tsakiris et al., 2010). The 

primary source of information for tactile sensations is input from peripheral mechanoreceptors, but 

multisensory integration (Ernst and Banks, 2002; Körding and Wolpert, 2004) plays a role as well, 

especially visual information (Botvinick and Cohen, 1998; Ghazanfar and Schroeder, 2006; Johnson 

et al., 2006; Kandula et al., 2015; Tipper et al., 2001).  

The primary somatosensory cortex (S1) is one of the first cortical areas to receive incoming tactile 

information, relayed via the cuneate nucleus and the thalamus (Delhaye et al., 2018). S1’s 

responsiveness to physical touch and its topographic organization have been extensively documented 

https://doi.org/10.1016/j.celrep.2023.112312
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(Ejaz et al., 2015; Kaas et al., 2019; Kolasinski et al., 2016; Penfield and Boldrey, 1937; Sanders et 

al., 2019), but the extent to which multisensory information is represented in S1 remains under 

investigation. A large body of literature addressing this precise question has found that S1 responds 

to observed touch when it occurs in others but not oneself (Blakemore et al., 2005; Bufalari et al., 

2007; Ebisch et al., 2008; Kuehn et al., 2018, 2013; Longo et al., 2011; Meyer et al., 2011; Pihko et 

al., 2010; Schaefer et al., 2009). However, a significant number of studies have failed to find evidence 

of this phenomenon (Chan and Baker, 2015; Keysers et al., 2004; Morrison et al., 2004; Sharma et 

al., 2018). 

A similar but distinct question concerns whether S1 is modulated by vision when it is paired with a 

physical touch event. Psychophysically, the visual enhancement of touch has been well-established: 

tactile acuity is enhanced when a touched area is observed, even when the visual input is non-

informative (Colino et al., 2017; Haggard et al., 2007; Kennett et al., 2001; Press et al., 2004; Tipper 

et al., 2001), although the precise conditions necessary to trigger the effect are still unclear39. EEG 

experiments have shown that combining visual and tactile stimuli modulates the P50 somatosensory 

evoked potential, which is thought to originate in S1 (Cardini et al., 2012, 2011; Deschrijver et al., 

2016; Dionne et al., 2013; Taylor-Clarke et al., 2002). MEG studies have suggested that the 

topographic mapping of fingers shifts in S1 based on the relative timing of visual and tactile signals 

(Schaefer et al., 2008, 2006). Transcranial magnetic stimulation (TMS) over S1 negatively affects the 

ability to detect or discriminate touches, if the accompanying visual information incorporates a human 

hand rather than a neutral object (Bolognini et al., 2011; Fiorio and Haggard, 2005; Rossetti et al., 

2012). Thus biologically relevant visual information appears to be used as a predictive signal and 

modulate S1 encodings of tactile events.  
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Like its role in integrating multisensory stimuli, S1’s topographic organization appears to be more 

nuanced than first thought. Recent experiments suggest that although S1 maintains a gross 

topographic representation of the body as laid out in the earliest human cortical stimulation studies 

and observed many times since (Cunningham et al., 2013; Ejaz et al., 2015; Kaas et al., 2019; 

Kolasinski et al., 2016; Penfield and Boldrey, 1937; Sanders et al., 2019), it also contains other more 

complex levels of tactile representation (Arbuckle et al., 2022; Enander and Jörntell, 2019; Thakur et 

al., 2012). Studies of the non-human primate hand have shown that S1 neural activity contains non-

linear interactions across different digits (Arbuckle et al., 2022; Qi et al., 2016; Thakur et al., 2012), 

supporting the idea that S1 carries information beyond a linear report of inputs from tactile receptors. 

In humans, S1 has recently been shown to represent body parts outside of their traditionally defined 

areas (Muret et al., 2022; Wesselink et al., 2022).  

 To interrogate S1’s representations of touch across body locations and multisensory contexts, 

electrophysiological recordings in a human tetraplegic patient with two microelectrode arrays 

(Blackrock Microsystems, Salt Lake City, UT) implanted in the putative area 1 of the S1 arm region 

(Armenta Salas et al., 2018) were collected. The patient retained enough tactile ability after spinal 

cord injury to sense short stroking stimuli delivered to his arm and finger. Touch conditions occurred 

on either the patient’s arm, finger, or an inanimate object, in a variety of multisensory contexts (Table 

4.1). Our results provide evidence that tactile information in S1 is encoded as part of the well-

established cortical homunculus as well as in a more general manner which encompasses larger areas 

of the body. Additionally, we find that S1 does not respond to observed touches to oneself, another 

person, or an object, but that vision does modulate neural activity when it is paired with physical 

tactile stimulation. This finding suggests that passively observing visual information depicting 

touches fails to meet some threshold of relevance or attention necessary to activate S1 neurons. 
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Table 4.1 Experimental task conditions 

Touch modality conditions are each presented with the color code representing that touch type throughout the paper. 

Each modality with a physical touch stimulus is coded with ‘*’. All modalities with a stimulus on the arm end in ‘a’; all 

modalities with a stimulus on the finger end in ‘f.’ Touches were single strokes delivered by an experimenter using a 

pressure-sensing rod; in *BL and VrFP trials the participant wore a Vive Pro Eye headset. 

4.2 Methods 

4.2.1 Participant and implant details 

A C5-level incomplete tetraplegic participant (male, 32 years old) was recruited and consented for a 

brain-machine interface (BMI) clinical trial including intra-cortical recording and stimulation. At the 

beginning of data collection, the participant was 6.5 years post-injury and 5 years post-implant. All 

procedures were approved by the Institutional Review Boards (IRB) of the California Institute of 

Technology, University of Southern California, and Rancho Los Amigos National Rehabilitation 

Hospital. 

The participant was implanted with microelectrode arrays in three locations in the left hemisphere: 

the supra-marginal gyrus (SMG), ventral premotor cortex (PMv), and the primary somatosensory 

cortex (S1) (Figure 4.1a). This paper only examines data in S1, which was recorded using two 48- 

channel 1.5mm SIROF-tipped (sputtered iridium oxide film) microelectrode arrays (Blackrock  

Modality Location Touch Type Description 

*FPa Arm (a)  *FP The participant observed, in first person (FP) perspective, a real 

physical touch to his body. 
*FPf Finger (f) 

*BLa Arm  *BL The participant fixated on a non-informative dot in virtual reality, 

effectively blindfolding (BL) him during a real physical touch to 

his body. 
*BLf Finger 

VrFPa Arm  VrFP The participant observed, via virtual reality and in first person 

perspective (VrFP), a touch to his body without any physical 

contact. 
VrFPf Finger 

TPa Arm  TP The participant observed, in third person (TP) perspective, a real 

physical touch to another person’s body. 
TPf Finger 

Obj Object   Obj The participant observed a real physical touch to an inanimate 

object (Obj), a wooden block. 
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Figure 4.1 Experimental methods and paradigm 

a) Microelectrode array implant locations on the cortical surface of the left hemisphere, rendered with MRI. Only data 

from the two S1 arrays were analyzed in this study. Inset: in situ array locations. Figure reproduced from Armenta Salas 

et al. (2018). b) Task time course. Visual initiation of touch motion was only perceived by the participant in touch types 

with visual content (*FP, VrFP, TP, Obj). c) Sample frame from a VrFPa trial, presented using a virtual reality headset. 

See Supplemental video 1. d) Example smoothed firing rate of one S1 channel to each tested modality of touch (n=70 

trials/modality). Shaded area surrounding each line indicates standard error of the mean (SEM). e) and f) depict activity 

of the same channel averaged across modalities to isolate touch type and effector respectively (i.e., *FPa and *FPf in (d) 

are averaged to yield *FP in (e). 

Microsystems, Salt Lake City, UT). Given the curvature of sensorimotor cortex and the need to 

implant arrays on the gyral surface, it is likely the S1 micro-electrode arrays are located in Brodmann 

area 1 (BA 1). Additional details pertaining to the arrays and the specifics of surgical planning are 
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described in (Armenta Salas et al., 2018). 

4.2.2 Experimental paradigm 

Two anatomical locations were examined across a set of tactile and visual conditions. The two 

locations selected were a “finger” location on the back of the thumb where the participant reported 

naturalistic sensations, and an “arm” location near the back of the elbow where the participant 

reported numb sensation. These locations were selected on the basis of a preliminary mapping of the 

participant’s tactile capabilities on the arm and hand using Semmes-Weinstein filaments at varying 

strengths, which took place two days prior to the first experimental session. 

Although the different task conditions (Table 4.1) did not all include both a physical and a visual 

component, all employed the same style of touch: a 1-second stroke over approximately 6cm of skin. 

The touch was delivered by a plastic rod (or a virtual facsimile of one), built in-house, which had a 

raised button on one end (1.5 x 2 cm) that was passed along the touch location. The rod housed a load 

cell which was used to record the pressure applied and align the onset of touch to neural recordings.  

Each trial consisted of an inter-trial-interval (ITI) of 5s with an additional 0-3s jitter, followed by a 

1s touch stimulus and 1s post-touch phase. In trials with a visual component, the visual component 

(approach towards the touch target) began approximately 0.5s before touch onset.  The experimenter 

performing the touch was positioned at approximately a one o’clock position relative to the 

participant’s head, such that the participant could clearly see the experimenter and the approach 

trajectory of the touch stimulus (Figure 4.1c, Supplemental video legends). The uniform and direct 

nature of the approach trajectory meant that the participant could approximately anticipate when a 

touch would begin using visual information once the approach began. A total of 11 conditions were 

examined, incorporating 6 touch types and 3 touch locations (Table 4.1).  
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4.2.3 Data collection 

Neural data was recorded from each microelectrode array using a 128-channel Neural Signal 

Processor (Blackrock Microsystems) as 30,000 Hz broadband signals. Data was collected in 8 

sessions over 6 months, in two sets (see Table 4.1 for task condition descriptions). In the first set, the 

participant observed real physical touches to his body in first person (*FP), the same touches delivered 

to someone else (third person; TP), and touches to an inanimate object (Obj). This set was collected 

over the first two months in 4 sessions with up to 3 weeks between sessions. In the second set, the 

participant experienced real physical touches without visual touch information (blind; *BL), and saw 

touches being delivered to him in first person using virtual reality, without any physical touch 

component (VrFP). The second set was collected over the third to sixth months in 4 sessions with up 

to 9 weeks between sessions. 

Within a session, data was collected in series of 11-trial runs. Each run contained 10 trials of the same 

condition and one catch trial. Within the two sets, runs were pseudorandomly shuffled so there were 

no two runs of the same condition back to back in any session. 1-2 runs of each condition within a set 

were collected in each session. 70 trials (7 runs) were collected in every condition. At the start of each 

run, the participant was informed which type of stimuli would be delivered and was instructed to 

attend to the stimuli while visually fixating on the touch location except for BL trials in which he 

fixated on a non-informative dot centered in his field of view. 

In third person (TP) trials, the third person being touched (an experimenter familiar to the participant) 

was positioned so their arm and hand were adjacent and parallel to the participant’s own arm and 

hand. In object (Obj) trials, the participant observed a wooden block approximately the size of his 

hand being touched along its flat surface while it lay on a desk in front of him.  
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The conditions in set two required a virtual reality headset; a Vive Pro Eye was used to display a 

virtual environment run with Unity, which closely mimicked the data collection room and gave the 

participant a first-person perspective over a virtual body with a size, gender, and posture reflecting 

his own body. In the virtual environment, a virtual experimenter was animated to deliver touches in 

a manner resembling the real experimenter (Figure 4.1c, Supplemental video legends). The human 

avatar for the virtual experimenter was taken from the Microsoft Rocketbox Avatar Library 

(Gonzalez-Franco et al., 2020) (https://github.com/microsoft/Microsoft-Rocketbox/). For *BL 

conditions, the headset was used as a blindfold, and displayed a non-informative white dot in the 

center of a black field of view which the participant was instructed to fixate on. 

To verify that the fundamentals of the neural signal remained unchanged across the two sets, SNR 

was analyzed using two different metrics. 1) In every run, the ratio of the mean waveform’s peak 

value on each channel to the root mean square of the noise estimate for that channel was computed. 

2) The ratio of the mean waveform on each channel to the standard deviation of the waveform within 

every run was also computed. Both these metrics were averaged across runs within each set; neither 

metric was different across the two sets (Wilcoxon sign rank test, [1] p=0.28, [2] p=0.08).  

The mean and standard deviation of ITI firing rates taken from the time period [4s to 1s] before each 

touch stimulus began, were also examined. All firing rates were normalized by dividing by the mean 

of the baseline within a run, then averaged across all trials and runs within a set and compared across 

sets. Both the mean (Wilcoxon sign rank test, p=0.18) and the standard deviation (p=0.53) of ITI 

firing rates were not significantly different between sets. 

Although outside the scope of this paper, additional conditions were collected along with the ones 

analyzed here. In set one, conditions in which the participant imagined the touches being delivered 

without any external tactile stimuli were also obtained. In set two, a touch type identical to VrFP 

https://github.com/microsoft/Microsoft-Rocketbox/
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except that the participant’s virtual body was composed of abstract blocks rather than a realistic 

human body was collected, and a condition in which the participant viewed an inanimate object being 

touched in virtual reality was also acquired. 

4.2.4 Quantification and statistical analysis 

All analyses were performed using MATLAB R2019b (MathWorks, Natick, MA) unless otherwise 

indicated. 

4.2.4.1 Preprocessing and temporal alignment of data 

Firing rates for each electrode were extracted in 50ms bins from the broadband signal in a multi-unit, 

unsorted fashion (Christie et al., 2015; Dai et al., 2019), using a threshold of -3.5 times the noise RMS 

of the continuous signal voltage. This multi-unit channel activity was aligned within each trial to the 

physical or virtual moment of contact between the touch sensor and the item being touched (i.e., touch 

onset). In conditions with a physical touch component, touch onset was calculated using the pressure 

readings obtained from the rod used to deliver touches; in conditions with only a virtual touch 

component, touch onset was calculated using the timing of Unity animations. 

To normalize firing rates, within each run and each channel, a mean baseline firing rate was calculated 

from the time period 4s to 2.5s prior to each touch onset and averaged across trials. The firing rates 

of each channel at every time point were divided by this baseline. 

4.2.4.2 Decoding analysis 

Linear Discriminant Analysis (LDA) pairwise classifiers were used to probe the linearly decodable 

information within and across task conditions (Figure 4.2a, Figure 4.3). Normalized firing rate data 

was binned into either 0.5s or 0.1s bins, depending on the analysis. Within each bin, data was 

randomly split equally into train/test partitions, regardless of session collected. This split occurred
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Figure 4.2 Pairwise decoding and RSA 

a) Pairwise identity decoding results. At each 0.5s time bin, a LDA classifier was trained to distinguish between each 

pair of modalities based on the top 40 principle components of multiunit activity. The 70 trials per modality were 

randomly divided in half to generate train and test data 1000 times, and the accuracies of the resulting decoders were 

averaged together to yield the values in the confusion matrices. Asterisks represent significantly different accuracies 

relative to a null distribution which was generated by training the same decoder on data with shuffled labels 1000 times. 

* = significantly different 95% confidence intervals (CIs); ** = 97.5% CIs; *** = 99% CIs. See also Supplemental video 

legends. b) Representational similarity analysis was performed on touch-onset-aligned multi-unit S1 channel activity, 

and resulting representational dissimilarity matrices (RDMs) are shown. Distances between conditions (plotted on log 

axis) are cross-validated Mahalanobis distance with multivariate noise correction; a distance of 0 indicated conditions 

are statistically indistinguishable. c) Multi-dimensional scaling (MDS) plots of RDMs in (b). Axes are arbitrary but have 

been rotated for consistency across time bins. Gray lines between condition icons are “rubber bands” whose thickness is 

based on the goodness of fit of the scaling. A relatively thinner, more “stretched” band between conditions indicates that 

in a plot that fully captures neural geometry, the conditions would be closer together.  

1000 times and was balanced each time to include equal numbers of trials from every condition tested 

(70 trials per condition = 35 trials each in train and test).  

Singular value decomposition (SVD) was used to perform dimensionality reduction on the initial 96 

multi-unit channels of the training dataset. Average firing rate data from both train and test datasets 
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in each bin was projected on the top 40 features capturing the most variance in the training data.  

LDA classifiers were fit to the resulting data using MATLAB’s fitcdiscr function across the 1000 

iterations. The overall performance of each classifier was taken as the average performance and 95% 

confidence intervals on this estimate were taken from the distribution of accuracies across iterations. 

This analysis was repeated on a null dataset in which condition labels were shuffled across trials in 

order to generate chance-level performance of the classifier. Significance was calculated by 

comparing the accuracy percentile values of the classifiers with their null counterparts. 

4.2.4.3 RSA and MDS 

Representational Similarity Analysis (RSA) was employed on normalized firing rate data to assess 

the relationships between touch conditions (Figure 4.2b,c) (Kriegeskorte, 2008; Nili et al., 2014). 

Cross-validated Mahalanobis distance with multivariate noise normalization was used as the measure 

of dissimilarity (Walther et al., 2016). The noise covariance matrix was estimated from the data and 

regularized towards a diagonal matrix to ensure that it would be invertible. The cross-validated 

Mahalanobis distance is an unbiased measure of square Mahalanobis distance with the added benefit 

of having a meaningful zero-point (Diedrichsen et al., 2021; Walther et al., 2016). The larger the 

Mahalanobis distance between two conditions, the more discriminable their neural patterns. If the 

patterns are fully indiscriminable, their distance is 0. This continuous measure is directly related to 

discrete classification performance with pairwise LDA. Cross-validated Mahalanobis distance is thus 

less affected by common activation patterns across conditions in comparison to other measures such 

as Pearson correlation. The python package rsatoolbox (https://github.com/rsagroup/rsatoolbox) was 

used to compute noise covariance and generate representational dissimilarity matrices (RDMs).  

https://github.com/rsagroup/rsatoolbox
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Data was cross-validated across 7 splits, divided by the 10-trial runs the data was originally collected 

in, and RDMs were generated independently on data divided into 0.5s bins. The resulting RDMs were 

symmetric across the diagonal, with meaningless values on the diagonal itself. 

RDMs were visualized with multi-dimensional scaling (MDS) using the MATLAB toolbox 

rsatoolbox (https://github.com/rsagroup/rsatoolbox_matlab) (Nili et al., 2014). MDS allows for 

distances in RDMs to be visualized intuitively in a lower-dimensional space while preserving these 

distances as much as possible. The MDS visualizations used a metric stress criterion to arrange 

conditions without assuming any category structure a priori. The stress is visualized on MDS plots 

(Figure 4.2c) in the form of grey “rubber bands” stretched between points–the thinner the band, the 

more the true distances between points are distorted by the low dimensional MDS mapping to be 

further apart than in the high dimensional RDM.  

4.2.4.4 Tuning and onset analysis 

Tuning properties of multi-unit channels were assessed via linear regression analysis. In each 500ms 

bin corresponding to 1s before touch onset to 2s after touch onset, normalized firing rates for each 

channel were fit to a linear regression model based on the following equation: 

𝐹 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ 𝛽𝐶𝑋𝐶 

where F = vector of firing rates on each trial, X = one-hot-encoded matrix signaling condition identity 

for each trial, 𝛽 = estimated regression coefficients indicating level of tuning to each condition, and 

C = number of conditions tested. In addition to data from every trial, F also included 70 entries (to 

match the number of trials per condition), corresponding to 𝛽0, containing the baseline firing rate of 

the channel across all trials. This baseline was calculated as a mean of channel activity 4s to 2.5s 

before touch onset in every trial. For each channel and condition fit with linear regression, a student’s 

https://github.com/rsagroup/rsatoolbox_matlab
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t test was performed to assess the null hypothesis 𝛽 = 0. If the null hypothesis was rejected, the 

channel was determined to be tuned to that condition in comparison to its baseline firing rate. P values 

were corrected for multiple comparisons using the Bonferroni-Holm method within each channel.  

A bootstrap analysis was run for 1000 iterations, in which all conditions were randomly sampled with 

replacement to yield 70 trials each, to assess significant differences in numbers of tuned channels 

across conditions (Figure 4.4). 

The channels identified as tuned to any condition in the period of 1s before touch onset to 2s after 

touch onset were analyzed to determine the average timing onsets and offsets of their tuned responses. 

Within a condition, firing rates of all tuned channels were averaged together in 50ms bins, and the 

95th percentile of the distribution of average baseline firing rates was computed. The onset time for 

the condition was the middle of the first time bin in which the firing rate rose above the 95th percentile 

of the average baseline. The offset time was calculated as the middle of the first time bin in which the 

firing rate dipped below the 95th percentile of the average baseline, after onset. 95% confidence 

intervals were constructed for the onset and offset times by bootstrapping over trials within the tuned 

channels 10,000 times. 

4.3 Results 

S1 responses to visual and tactile stroking stimuli along the arm and finger in a human tetraplegic 

participant were recorded via two intra-cortical microelectrode arrays. Within arm and finger 

locations, neural responses to four touch types were examined (Table 4.1; Figure 4.1). A fifth touch 

type (Obj) used an inanimate object as a control rather than a body location, resulting in a total of 9 

conditions across locations and touch types. 70 trials were collected in each condition.  
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Multi-unit channel activity (Figure 4.1a) recorded during these trials was aligned to the physical or 

virtual moment of contact between the touch sensor and the item being touched (touch onset). In 

visual conditions (*FP, VrFP, TP, Obj), visual information predicting the touch was available 

beginning approximately 0.5s before touch onset, as the experimenter could be seen beginning the 

motion towards the touch target (Figure 4.1b, Supplemental video legends). In totality, the task 

comprised 9 conditions (Table 4.1); the average firing rate of a single channel to each condition is 

plotted as an example (Figure 4.1d). The task was designed such that data could be averaged across 

location (Figure 4.1e) or averaged across touch type (Figure 4.1f) to better isolate neural responses 

to these factors. 

4.3.1 Condition identity decoding 

Linear discriminant analysis (LDA) was performed on the top 40 dimensions of the multi-unit channel 

data, sub-selected over 1000 train/test divisions for equal class sizes and averaged together (Figure 

4.2a). Classifiers were trained on every pair of conditions, using average firing rates binned in 0.5s 

increments. No significant decoding occurs prior to touch onset. In the first 0.5s following touch 

onset, conditions containing a physical touch (*FP, *BL) can be meaningfully distinguished from 

purely visual conditions (VrFP, TP, Obj) in all cases, and can be significantly distinguished from one 

another in every case except *BLa vs *BLf (accuracy = 70% [60-80%]), which only becomes 

significant 0.5s later (72% [61-81%]). *FPa vs *BLa is highly decodable with an accuracy of 87.7% 

[80-94.3%] despite the two classes only varying on the basis of visual information; similarly, *FPf vs 

*BLf obtains an accuracy of 83.7% [74.3-91.4%].   

Overall in the first time bin post touch onset, *FPa and *FPf are highly distinguishable from other 

conditions, especially those without physical touch. *BLa and *BLf are less significantly 

distinguishable. In the following time bin (0.5-1s), this relative disparity in classification accuracies 
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remains true, but classifications are overall weaker (pairwise one-sided t test across all accuracies, 

p=3x10-9).  

In the [1-1.5s] bin which occurs immediately post touch offset, *FPa is the only condition that can be 

distinguished from the other conditions. 1.5s post touch onset, no classifiers obtain significant 

decoding accuracy.  

To examine decoding on a finer time scale, the same LDA classifiers as described above were run in 

touch-onset aligned 0.1s bins (Supplemental video legends). No significant decoding occurs before 

the 0-0.1s bin. In this bin, *FPa can be significant decoded from all conditions apart from *FPf and 

*BLa, but no other classifiers are significant. In the following 100ms (0.1-0.2s post touch onset) 

*FP/*BL can be significantly distinguished from all other conditions with the exception of *FPf vs 

*BLf. By 0.3-0.4s post touch onset, decoding is overall weaker than in the first bin suggesting the 

time period of 0-0.2s following touch onset contains the strongest touch representations. By 0.7-0.8s 

post touch onset, nearly all classifiers cease to be significantly accurate. 

4.3.2 Representational Similarity Analysis (RSA) 

To better visualize the relationships between different task conditions, RSA (Kriegeskorte, 2008) was 

used on the same multi-unit activity as analyzed with the linear classifier (Figure 4.2b). 

Representational dissimilarity matrices (RDMs) were computed based on the cross-validated 

Mahalanobis distance with multivariate noise correction (Walther et al., 2016). For visualization 

purposes, multi-dimensional scaling (MDS) was used to scale the relationships captured in the RDMs 

into two dimensions (Figure 4.2c) (Nili et al., 2014) .  

There is a high level of similarity between pairwise decoding (Figure 4.2a) and the RDMs (Figure 

4.2b) during touch encoding (for the three consecutive time bins post touch onset, r>0.89; p<1x10-12 
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in all cases, Bonferroni corrected). This similarity is expected since both methods assess the 

discriminability of neural activity averaged across conditions.  

In the 0.5s prior to touch onset, distances between conditions form a pattern which shares a mild 

correlation with activity post touch onset; activity is most correlated between the -0.5-0s RDM and 

the 1-1.5s RDM (Figure 4.2b, Pearson correlations between -0.5-0s RDM and RDMs 0-2s, in 

chronological order: r = 0.67, 0.61, 0.70, 0.38; p = 3x10-11, 3x10-9, 1x10-12, 5x10-4, Bonferroni 

corrected). 

Once touch occurs, the initial RDM within 0-0.5s post touch onset contains a strong pattern that 

remains stable during the touch and afterwards, although it becomes weaker as time elapses (Pearson 

correlations between 0-0.5s RDM and RDMs 0.5-2s, in chronological order: r = 0.96, 0.86, 0.62; p = 

2x10-43, 1x10-24, 9x10-10, Bonferroni corrected). 

Within the 0-0.5s bin, touch types with only visual stimuli (VrFP, TP, Obj) are less distinguishable 

and tightly grouped together, while the physical touch types (*FP, *BL) are more distinct from one 

another and therefore more spread out (two-sample t test on distances within VrFP/TP/Obj vs 

distances within *FP/*vBL: p=9x10-5). 

*FP and *BL vary in their level of separation from the non-physical touch types (Figure 4.2c, 0-0.5s 

bin). *FP (mean=0.17; std=0.03) is more distant to the non-physical touch types than *BL 

(mean=0.04; std=0.03). These sets of distances are significantly different from each other (paired t 

test, p=3x10-5). Additionally, during and immediately after the touch, *FP/*BL arm representations 

are grouped distinctly from the finger representations: on the MDS plots (Figure 4.2c), arm 

conditions are consistently grouped separately (above) finger conditions. 
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Figure 4.3 Generalization decoding results 

a) Effector was decoded across all pairs of touch types. For example, the bottom left square of each grid represents the 

average accuracy when a decoder is trained to distinguish Arm v Finger on TP trials and tested on *FP trials. See also 

Supplemental video legends. b) Pairs of touch types were decoded, training on Finger trials and testing on Arm trials. 

For example the bottom left square of each grid represents the average accuracy when a decoder is trained to distinguish 

TP vs *FP on Finger trials and tested on Arm trials. See also Supplemental video legends.  c) The same procedure as in 

(b) except that training occurred on Arm trials and testing on Finger trials. See also Supplemental video legends. All 

decoders used 140 trials in training and testing respectively, 70 of each effector. All statistics and plotting conventions 

as in Figure 4.2a. 

4.3.3 Location and touch type generalization decoding 

To investigate if body location information generalizes across touch types, LDA classifiers were 

trained to differentiate arm/finger conditions within one touch type and tested on another (Figure 

4.3a). During the touch (0-1s), body location information generalizes within physical touch 

conditions; it is possible to train the classifier on *FP and decode body location from *BL, or vice 

versa. The strongest decoding is achieved in the 0-0.5s bin by the decoder that trained on *BL and 

tested on *FP (accuracy = 79.6% [68.6-90%]). Post touch offset, generalization is no longer possible. 
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When the same decoding problem is performed in 0.1s bins (Supplemental video legends), the only 

significant accuracies is at 0.1-0.2s post touch onset for the same subset of conditions significant in 

the 0-0.5s bin, indicating a small window of time when body location can generalize strongly across 

touch types. The opposite question was also interrogated: can a classifier trained on one body location 

successfully decode the type of touch presented using another body location? In this case, for both 

classifiers that trained on finger data and tested on arm data (Figure 4.3b), and classifiers that trained 

on arm data and tested on finger data (Figure 4.3c), the only significantly decodable instances occur 

in the 0-0.5s time bin. 

Decoding is notably asymmetric between training on finger/testing on arm and the opposite paradigm: 

*FP can be strongly distinguished from all other conditions when training on finger and testing on 

arm, but cannot be significantly distinguished from any conditions when training on arm and testing 

on finger. Additionally, there are smaller asymmetries in significance across the two paradigms when 

distinguishing *BL from VrFP or TP. Decoding in 0.1s time bins is overall weaker, and only is 

significant in the 0.2-0.3s time bin for training on finger, testing on arm (Supplemental video 

legends), while training on arm, testing on finger never reaches significance at any time point 

(Supplemental video legends).  

4.3.4 Individual channel tuning analysis 

To investigate the tuning properties of individual channels within the S1 arrays, linear regression 

analysis was performed in 0.5s bins aligned to touch onset. The most channels are tuned to *FPa (34 

[95% CI=30, 45] out of 96 channels total), a number significantly greater than the number of channels 

tuned to *FPf (21 [18, 26]) or *BLa (13 [10, 22]; Figure 4.4a). *FPf elicits more tuned channels than 

*BLf, which trails at 8 [6, 16] channels. Of the non-physical touch conditions, only 1 [1, 8] channel 

is tuned to VrFPf. The number of time bins that tuned channels are responsive to a given condition is  
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Figure 4.4 Tuning analysis 

Channels selective for any touch modality (p<0.05, Bonferroni-corrected linear regression analysis) at any time bin in 

the -1 to 2s range relative to touch onset were examined. a) Total number of channels tuned within arm and finger touch 

conditions. Asterisks indicate non-overlapping 95% CIs. b) Histogram indicating the range of time that channels were 

tuned. Tuning was performed in 0.5s non-overlapping time bins (maximum bins a channel could be tuned to in the -1 to 

2s range was 6. c) Circles indicate the specific set of modalities each channel was tuned to, within arm touch modalities, 

and have a diameter proportional to the number n channels tuned to that set. d) Plotting as in (c) but based on finger touch 

conditions. e) Distribution of channels tuned to arm (solid line circle), finger (dashed line circle), or both, across all touch 

conditions (left) or within touch types (middle, right). f) Array map of implanted electrodes, indicating locational tuning 

across all conditions. 
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quantified (Figure 4.4b). No tuning to finger conditions occurs for longer than 2 bins (1s). *BLa 

tuning follows the same rule, but *FPa trials elicits up to 5 bins (2.5s) of responsive activity. 

The overlap across tuned arm conditions within channels was calculated (Figure 4.4c). 22 channels 

are tuned to *FPa solely, while 12 channels are tuned to *FPa and *BLa together. Similarly, 13 

channels are tuned to *FPf solely, while 7 channels are tuned to *FPf and *BLf together. In finger 

conditions (Figure 4.4d), fewer channels are tuned overall. Within arm and finger, channels are 

nearly all tuned to *FP conditions (Figure 4.4c, d). 

The overlap of tuned channels across all arm and finger conditions was determined (Figure 4.4e). 

Overall, most channels are tuned to both arm and finger (n=19), while 16 channels are only tuned to 

arm conditions. Only 2 channels are tuned to solely finger conditions. Within touch types, a similar 

pattern emerges. In *FP, 19 channels are tuned to both arm and finger, 15 to just arm, and 2 channels 

to just finger. In *BL, 6 channels are tuned to arm and finger, 7 to just arm, and 2 to just finger. Lastly, 

the position of tuned channels across all arm and finger conditions was plotted on diagrams of the 

microelectrode arrays (Figure 4.4f). Channels tuned to both arm and finger are clustered together, 

surrounded by channels tuned to arm only. The two exclusively finger-tuned channels are located on 

the opposite array from the other channels. 

The average tuned response curves of channels tuned to *FP and *BL conditions were examined 

(Figure 4.5), calculated as deviation from the distribution of baseline activity: *FPa onset = -25ms 

[95% CI= -75, 75]; *FPf onset = 125ms [75, 125]; *BLa onset = 25ms [25, 75]; *BLf onset = 75ms 

[75, 125]. The average offset times of tuned activity were also determined, relative to onset of the 

touch stimulus: *FPa offset = 1125ms [575, 1575]; *FPf offset = 825ms [625, 875]; *BLa offset = 

875ms [575, 925]; *BLf offset = 875ms [525, 925].  
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Figure 4.5 Neural dynamics of tuned channels 

a) Onset and offset of channel tuning. Onset of tuning was calculated based on the average normalized firing rate across 

all tuned channels and condition trials, as the first time bin where average activity exceeded the 95th percentile of the 

distribution of average baseline responses. Offset was calculated on the same data as the first time bin to dip below the 

95th percentile of baseline activity after the peak firing rate. Error bars represent 95% CI obtained by bootstrapping 10,000 

times over trials. b) Average responses to individual conditions in tuned channels, relative to touch onset (vertical black 

line at 0s); touch offset is plotted as a vertical black line at 1s. Vertical dotted lines indicates onset and offset of response 

with colored background depicting 95% CIs. n=number of tuned channels. 

While there is substantial variance across trials and electrodes, a major trend emerges from this 

analysis. Within *FP and *BL, arm onset times always occur before finger onset times, while offset 

times are similar across conditions with the exception of the wide variance of *FPa (Figure 4.5a). 

Within arm and within finger, onsets times are not statistically different although the mean of *FPa 

onsets occurs slightly prior to touch onset. In all conditions (Figure 4.5b), activity peaks sharply 

immediately following touch onset, followed by a gradual decrement of activity back to baseline.  

4.4 Discussion 

To examine how S1 represents tactile events based on their location and their multisensory context, 

electrophysiology data from the putative area 1 of the S1 arm region were examined (Figure 4.1a). 

Within arm and finger locations, touch types varying in their tactile and visual content were tested 
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(Table 4.1). It is worth noting that the participant’s long-term tactile impairment could have resulted 

in representations of touch in S1 that are altered relative to healthy humans. This is unlikely to be a 

major effect on the findings of this study, because recent work has shown that topographic 

representations in S1 are highly preserved in tetraplegic people, even years post-injury, although these 

representations can weaken over time (Kikkert et al., 2021; Makin and Bensmaia, 2017). 

Analysis of this rich, exploratory dataset suggested two main conclusions about local neural activity 

where the multi-electrode arrays were implanted: 1) This S1 area is specialized for arm 

representations but is capable of representing touch information from the finger in a more general 

manner; 2) This S1 area is modulated by vision during physical touches, but is not activated by vision 

on its own.  

4.4.1 Neural activity is specialized for arm touches and represents finger touches more 

generally 

Immediately after touch onset in FP* and BL*, arm conditions are separated from finger conditions, 

based on neural activity visualized using MDS (Figure 4.2c). This division based on touch location 

continues until the touch ceases. *FP and *BL are both separable by touch location, although *BL is 

significantly less separable. This pattern is also evident in the linear decoding analysis, where *FPa 

vs *FPf is immediately highly decodable upon touch onset, while *BLa vs *BLf is only significantly 

decodable one time step (0.5s) later (Figure 4.2a). *FPa can be distinguished from all other conditions 

for much longer than any other condition–up to 1.5s post touch onset–and is the first condition to 

become decodable in the 0.1s bin classifier (Supplemental video legends). 

Despite *FP seeming to contain more robust location information than *BL, classifiers trained on 

either *FP or *BL and tested on the other to distinguish arm from finger trials achieve significant 

decoding (Figure 4.3a). Locational information is therefore sufficiently present in *BL conditions to 
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allow for generalization to and from *FP conditions. Through analysis of the 0.1s bin decoders, it 

appears the bulk of this locational information is present 0.1-0.2s post touch onset.  

While arm and finger touches are both represented in S1, an asymmetry becomes apparent when 

training classifiers to decode touch type while generalizing across body locations. In particular, *FP 

trials can be distinguished from all other touch types when classifiers are trained on finger data and 

tested on arm data (Figure 4.3b), but the reverse is not true (Figure 4.3c): *FP trials are 

indistinguishable from other touch types when classifiers are trained on arm data and tested on finger 

data. As the data were recorded in a putative arm area, it is likely that this asymmetry is due to 

different levels of encoding specificity. Arm touches may be represented in a highly specific manner 

that does not generalize to other touch locations, while finger touches (and potentially touches from 

other areas) may be represented more generally as they are outside of their primary topographic S1 

location. 

The tuning analysis further demonstrates the differences in arm and finger neural representations. 

More channels overall are tuned to arm than finger conditions (Figure 4.4a), and *FPa trials elicit 

tuning for up to 5 time bins (2.5s) while *FPf tuning only lasted up to two time bins (1s; Figure 4.4b). 

The vast majority of tuned channels are either tuned to solely arm conditions or both arm and finger 

conditions (Figure 4.4e). Only two channels are tuned to solely finger conditions, suggesting the bulk 

of the neural population recorded is not selective to finger touches specifically, but may be activated 

by body touches more generally in addition to arm touches specifically. *FP and *BL each contain 

roughly equivalent numbers of channels tuned to solely arm or to both finger and arm, and very few 

channels tuned solely to finger (Figure 4.4e). Onset analysis of *FP and *BL reveal a trend that 

appears to mesh with this pattern–*FPa onset occurs 0.15s before *FPf onset, and *BLa onset occurs 
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0.05s before *BLf (Figure 4.5a). In other words, arm conditions elicit sharply tuned neural responses 

that begin before the tuned responses to finger conditions (Figure 4.5b). 

To summarize, neural activity elicited by physical touches delivered to the arm forms patterns distinct 

from the activity elicited by touches to the finger. Individual channels tend to be tuned to both arm 

and finger, or just arm conditions, but rarely just finger conditions. Tuned activity starts earlier for 

arm conditions than finger conditions. This evidence builds a picture of a region of S1 which is 

primarily geared towards representing arm touches. A neural sub-population of this region is also is 

capable of representing finger touches, albeit less strongly or specifically.  

There could be several reasons for this difference between the two tested locations. One is that, due 

to the spinal cord injury, the participant was able to sense one location more strongly and 

naturalistically than the other. The patient reported finger sensations to be more natural, yet neural 

finger representations were weaker. This makes the participant’s uneven tactile impairment an 

unlikely culprit for the differences in location encoding.  

If the differences between arm and finger representations are not primarily due to differences in spinal 

cord damage and tactile impairment, then they are likely due to differences in the neural 

representations of these locations. The distribution of tuned channels appear geographically 

distributed when mapped to the implanted micro-electrode arrays–the upper array contains the bulk 

of activity, with a nucleus of channels tuned to both arm and finger conditions and a surrounding of 

channels tuned solely to arm conditions (Figure 4.4f). The only two finger-specific channels are 

located on the lower array. Cortical curvature may have resulted in electrodes recording from varying 

cortical layers within S1. 
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From prior work with this participant, it is known that intra-cortical microstimulation (ICMS) of the 

S1 arrays studied here elicits cutaneous and proprioceptive sensations primarily in the arm, with a 

much smaller number of sensations in the fingers (Armenta Salas et al., 2018). It is likely the arrays, 

especially the dorsal array (Figure 4.4f), are located in the arm region of area 1 within S1. The neural 

response to finger touches detailed here contribute to the growing literature suggesting that although 

S1 overall does maintain a gross representation of the body along the lines of the homunculus laid 

out in the earliest human cortical stimulation studies and observed many times since (Ejaz et al., 2015; 

Kaas et al., 2019; Kolasinski et al., 2016; Penfield and Boldrey, 1937; Sanders et al., 2019), it also 

contains other more complex levels of tactile representations (Arbuckle et al., 2022; Enander and 

Jörntell, 2019; Muret et al., 2022; Qi et al., 2016; Thakur et al., 2012). Most recently, Muret et al. 

(2022) used MRI to show that different body locations are represented in S1 in areas beyond their 

primary topographic area both in area 3b specifically and S1 overall. Our findings support and expand 

this finding, indicating that S1 area 1 encodes highly specific and rapid responses to touches through 

its established topography, but tactile information from other anatomical areas outside this 

topography may activate area 1 in a more general manner.  

4.4.2 Visual information modulates neural activity if accompanied by a physical stimulus 

S1 neural activity is restricted to conditions which contain a physical tactile stimulus, and less than 

2% of channels are tuned to visual-only conditions (Figure 4.4a). Although several variations on 

visual touches without physical stimuli were tested (VrFP, TP, Obj), they are not represented in a 

discriminable manner from one another in S1 (Figure 4.2). VrFP and TP do not elicit representations 

of touch location information in S1 activity, whether decoded in an identity or generalization problem 

(Figure 4.2a, Figure 4.3a). Across all methods in this study, there is no detectable encoding of tactile 

information in S1 from purely visual stimuli.  
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In contrast, *FP trials contain visual information paired with a physical stimulus and, immediately 

after touch onset, they can be easily discriminated from all non-physical conditions and from *BL 

trials which contain the same physical stimulus minus the visual content (Figure 4.2a). The strong 

performance of *FPa vs *BLa and *FPf vs *BLf classifiers indicate the presence of visual information 

is sufficient to change the touch encoding in S1. Visual information also appears to affect the length 

of time a touch representation occurred in S1, as *FPa is decodable for much longer than any other 

condition.  

RSA demonstrates that the pattern of responses immediately prior to touch onset is mildly correlated 

with activity during the touch itself, suggesting there is some effect of a visual approach of a tactile 

stimulus before an expected touch occurs (Figure 4.2b). However, a much stronger stable pattern of 

activity emerges once the touch actually begins, as indicated by the correlations between the RDM of 

the first 0.5s to the following RDMs. This relationship is evident in the MDS plots generated based 

on neural activity (Figure 4.2c). In the second following touch onset, *FP and *BL conditions are 

separated from all other touch types and from each other. In particular, *FPa and *FPf are highly 

dissociated from the other conditions. The presence of visual information generalizes across touch 

location to some extent–a classifier trained on finger trials can distinguish *FP vs *BL in arm trials, 

but not vice versa (Figure 4.3b,c). The ability to decode visual information in a manner than 

generalizes across body location also appears to be present quite late relative to touch onset; the 0.1s 

bin decoder only achieves any significance in the 0.2-0.3s time bin relative to touch onset. These 

findings speak to a more general distinction between visual and blind physical touches existing in S1 

finger touches, which is overridden by more specific information in arm touches that are not able to 

generalize to other body parts.  
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There are large populations of channels tuned to *FPa and *FPf, and within these populations there 

are sub-groups also tuned to *BLa and *BLf respectively (Figure 4.4c, d). Blind and visual touches 

appear to activate the same population of neurons, but touches with a visual component activate 

additional neurons on top of this population. 

These results suggest that visual information is enough to distinguish two otherwise identical physical 

touches in S1, but visual information on its own, whether it relates to oneself (VrFP), another person 

(TP) or an inanimate object (Obj) is not sufficient to engage S1. This finding is especially intriguing 

because while it is clear that visual information affects experiences of touch (Botvinick and Cohen, 

1998; Gazzola et al., 2012; Press et al., 2004), a rapidly evolving scientific literature is still deciding 

the role of vision in modulating S1 (Blakemore et al., 2005; Chan and Baker, 2015; Keysers et al., 

2004; Kuehn et al., 2013; Longo et al., 2011; Meyer et al., 2011; Morrison et al., 2004; Schaefer et 

al., 2009; Zhou and Fuster, 2000).  

The results presented here examine the effect of vision on S1 using human electrophysiology, 

specifically in a highly localized sub-region of S1, with high spatial resolution of spiking activity. 

The bulk of prior literature has used fMRI, MEG, and EEG to address this question, data which 

capture whole brain dynamics at a relatively low spatial resolution, and likely include membrane 

potentials that do not produce spikes. These experiments have for the most part examined S1 as a 

whole, and results have varied, finding either that S1 has no response to observed touch (Chan and 

Baker, 2015; Keysers et al., 2004; Morrison et al., 2004) or does respond to observed touch 

(Blakemore et al., 2005; Longo et al., 2011; Meyer et al., 2011; Schaefer et al., 2009; Zhou and Fuster, 

2000). From the studies examining Brodmann areas more specifically, we see evidence that area 3b 

(Kuehn et al., 2018) and areas 1 and 2 (Kuehn et al., 2013) are capable of responding to observed 
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touch. One potential method to reconcile these findings and the results found here in area 1 would be 

to examine the type of task employed.  

The majority of experiments finding S1 modulation to observed touches employ a touch-relevant task 

during data collection, whether it be counting touches (Ebisch et al., 2008; Schaefer et al., 2009), 

answering qualitative questions about the touch type (Bufalari et al., 2007; Kuehn et al., 2018, 2013; 

Longo et al., 2011), or rating touch intensity (Blakemore et al., 2005). The experiments which find 

no effect of observed touch on S1 tend to employ either non-touch-related tasks (Chan and Baker, 

2015) or simply ask participants to passively observe the stimuli (Keysers et al., 2004; Morrison et 

al., 2004).  Thus it is possible that a relevance threshold, modulated by higher order brain areas, must 

be exceeded in order for S1 to represent observed touches (Dionne et al., 2013). If this is true, the fact 

that S1 does not respond to visual stimuli when the participant passively observes touches in this 

study agrees with the existing literature, despite the differences in data types. This effect could also 

explain why visual information does modulate tactile representations of physical touch–the physical 

component of the touch activates S1 as it would in a blind touch, but additionally higher order areas 

integrate the visual input as sufficiently relevant to the tactile input such that vision affects S1 

simultaneously.  

What might be the role of this modulation? It is known that vision modulates experiences of touch in 

a variety of ways, including effects like visual enhancement of touch (Colino et al., 2017; Haggard et 

al., 2007; Kennett et al., 2001; Press et al., 2004; Tipper et al., 2001) in which non-informative vision 

of a body part improves tactile perception. Our results suggest that touch-relevant visual information 

elicits an earlier tuned response over more neurons, and results in a representation of touches that are 

highly distinguishable in terms of location and multisensory content. All of these attributes have the 

potential to contribute to visual enhancement of touch. Indeed, these results agree with prior literature 
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which has suggested that S1 is modulated by paired visual and tactile stimuli (Cardini et al., 2012, 

2011; Deschrijver et al., 2016; Dionne et al., 2013, 2010; Eck et al., 2013; Schaefer et al., 2006; 

Taylor-Clarke et al., 2002; Zhou and Fuster, 2000), and has also shown that S1 is a necessary 

component of body-centered visuotactile integration (Bolognini et al., 2011; Fiorio and Haggard, 

2005; Rossetti et al., 2012) and reflects predictions of tactile events from visual signals (Kimura, 

2021). 

S1 can be modulated by concepts as high-level as affective significance, as was shown in a study 

which examined the effect of perceived gender of a person delivering a caress to heterosexual men 

(Gazzola et al., 2012). S1 is also affected by motor planning, presumably expecting the sensory 

consequences of upcoming actions (Ariani et al., 2022; Gale et al., 2021), and by imagining touch 

sensations (Bashford et al., 2021; Yoo et al., 2003). It is likely that when S1 is modulated by visual 

information, it is not directly interacting with the visual system but instead affected by upstream areas 

which are implementing some version of a forward model to determine expected tactile inputs. 

4.4.3 Conclusion 

This study represents a broad exploration of how different types and locations of touch affect a small 

area in the putative arm region of S1. It contributes to the growing body of literature suggesting that 

area 1 within S1 contains highly specific topographic organization as classically depicted, but 

additionally encodes touches outside this topography in a less specific manner. We also find that 

visual information depicting touches, either to oneself, to another person, or to an object, are not 

sufficient to activate S1 in a measurable way. However, a blindly sensed physical touch and a visually 

seen physical touch are represented distinguishably in S1–both elicit strong responses that share 

commonalities, such as how touch location is encoded, but they are not identical. 
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Taken as a whole, these findings demonstrate that S1 contains a nuanced and complex encoding of 

tactile experiences that is to some degree multisensory. Future endeavors should aim to examine these 

same conditions in a larger population of individuals, both healthy and with a variety of levels of 

sensorimotor impairment. There are many practical applications for a better understanding of S1, 

including the improvement of restorative devices seeking to artificially generate tactile sensations in 

deafferented limbs and prosthetics (Armenta Salas et al., 2018; Christie et al., 2019a; Flesher et al., 

2016; Pandarinath and Bensmaia, 2022). By better understanding how naturalistic tactile sensations 

are encoded in S1, and how they interact with cues from other sensory modalities, we can improve 

our ability to generate biomimetic artificial stimuli.  

4.4.4 Limitations of the study 

The dataset examined here, while informative, is limited in several ways. Recordings from more 

locations of S1 would have allowed for a better understanding of the differences between Brodmann 

areas 1, 2, 3a, and 3b within S1, as well as differences along the topographic map within areas. 

Examining only two body parts leaves room for the possibility that other body parts are represented 

differently than the ones tested; since array localization was based on subjective ICMS responses 

(Armenta Salas et al., 2018) these locations have some uncertainty and limited precision. Visual 

information within the task may have contributed to a variety of processes, including 

expectation/prediction of touch onset, face processing, peri-personal space processing, and attentional 

factors. The different conditions tested here may be more or less salient, but these differences occur 

as part of our biologically relevant task design, and part of the experiment was explicitly addressing 

how different visuotactile contexts affect S1. Data from only one participant can confound individual 

differences with population trends, and while unlikely, it is possible the participant’s spinal cord 

injury has caused some remapping of S1 (Kikkert et al., 2021; Makin and Bensmaia, 2017). Finally, 
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due to restrictions on data collection, recordings were collected over the course of six months and 

some conditions were tested in separate sessions, which may have affected decoding and introduced 

confounds associated with neural recordings drifting over time. 
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4.5 Supplemental video legends 

Supplemental Video 4.1 Sample stimulus from the VrFPa condition 

Related to Figure 4.1c. Stimulus was presented using a virtual reality headset. The virtual reality environment was 

constructed to mimic the room in which the experiment was performed. 

Supplemental Video 4.2 Pairwise identity decoding at 0.1s resolution 

Related to Figure 4.2a. All decoding, statistics and plotting conventions as in Figure 4.2a., except decoding bins are 

0.1s wide instead of 0.5s. Bins are aligned relative to touch onset. 

Supplemental Video 4.3 Generalization decoding of effector across all pairs of touch types at 0.1s resolution 

Related to Figure 4.3a. All decoding, statistics and plotting conventions as in Figure 4.3a., except decoding bins are 

0.1s wide instead of 0.5s. Bins are aligned relative to touch onset. 

Supplemental Video 4.4 Generalization decoding of touch type, training on Finger trials and testing on Arm trials 

at 0.1s resolution 

Related to Figure 4.3b. All decoding, statistics and plotting conventions as in Figure 4.3b., except decoding bins are 

0.1s wide instead of 0.5s. Bins are aligned relative to touch onset. 

Supplemental Video 4.5 Generalization decoding of effector, training on Arm trials and testing on Finger trials, 

at 0.1s resolution 

Related to Figure 4.3c. All decoding, statistics and plotting conventions as in Figure 4.3c., except decoding bins are 0.1s 

wide instead of 0.5s. Bins are aligned relative to touch onset. 
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C h a p t e r  5  

CHAPTER 5:  

THE INTEGRATION OF ICMS AND VISUAL CONTEXT 

5.1 Introduction 

Tactile sensation is highly important for executing dexterous, adaptable movements (Ghez et al., 

1995; Miall et al., 2021, 2019; Robles-De-La-Torre, 2006; Sainburg et al., 1995) and providing a 

sense of embodiment within one’s own body (Giummarra et al., 2008; Jeannerod, 2003; Tsakiris et 

al., 2010). In cases of spinal cord injury (SCI), motor and somatosensory abilities are impaired or 

fully lost below the level of the injury. Brain-machine interfaces (BMIs) provide a potential method 

to restore these abilities, by decoding motor intentions from neural activity (Collinger et al., 2013; 

Dekleva et al., 2021; Moses et al., 2021), and by using intra-cortical microstimulation (ICMS) in the 

primary somatosensory cortex (S1) to elicit artificial tactile sensations (Armenta Salas et al., 2018; 

Flesher et al., 2016).  

Motor BMIs have become more accurate and sophisticated over the last 15 years (Dekleva et al., 

2021; Keshtkaran et al., 2022; Simeral et al., 2021; Willsey et al., 2022). In contrast, broadly viable 

somatosensory BMIs remain at the proof-of-concept stage (Flesher et al., 2021), although some 

principles mapping the relationship between ICMS and sensations have emerged. A higher ICMS 

current amplitude elicits sensations more often than a lower current amplitude, and the sensations 

tend to be rated as more intense (Armenta Salas et al., 2018; Flesher et al., 2016; Hughes et al., 2021a). 

The perceived location of elicited sensations reflects the topographic organization of S1 according to 

where the stimulation microelectrode arrays are implanted (Armenta Salas et al., 2018; Flesher et al., 

2016). However, it remains poorly understood how to achieve reliable, replicable sensations with 
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controllable qualia because experiences of ICMS can vary widely across electrodes, participants, and 

experiments, even when stimulation parameters are kept constant (Armenta Salas et al., 2018; Callier 

et al., 2020; Flesher et al., 2016). 

A somatosensory BMI implemented in the real world will necessitate ICMS being processed by the 

brain as part of a complex multisensory environment (Risso and Valle, 2022). To this end, 

understanding how ICMS is integrated with, and influenced by, other sensory inputs to produce 

perceptual experiences is highly important. Studies have shown that artificial tactile sensations have 

slower reactions times compared to real tactile inputs or visual stimuli (Caldwell et al., 2019; Christie 

et al., 2022; Godlove et al., 2014). However, while relative processing speeds between sensory 

modalities have been investigated, the dynamics of how they are integrated together are still unclear. 

Given that visual and tactile stimuli are often paired together in the real world, the characteristics of 

the temporal binding window, or the period of time in which two stimuli are perceived as 

simultaneous events, needs to be mapped out with respect to ICMS and visual stimuli. It has been 

shown that the optimal timing needed to perceive peripheral nerve stimulation and visual stimuli as 

simultaneous is not always the same. This timing appears to change based on whether the stimulation 

occurs in the upper or lower limb, with stimulation in the leg needing to occur earlier than in the hand 

(Christie et al., 2019b). Yet the temporal binding window between ICMS and vision remains unclear, 

and it is unknown what timings would be optimal to perceive ICMS and a visual cue as simultaneous.  

In addition to timing considerations, it is also possible that vision can affect the qualia of ICMS-

elicited sensations. Some work in lower limb amputees has shown that visual information can bias 

the localization of sensations elicited through peripheral nerve stimulation (Christie et al., 2019a). 

However, there has been little research on the potential effects of visual context on the neural 

processing and perceptual results of ICMS. 
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In this work, we explore the behavioral and neural results of pairing ICMS and visual stimuli in a 

tetraplegic patient implanted with microelectrode arrays in the primary somatosensory cortex (S1) 

(Figure 5.1a). In order to understand the importance of biologically relevant visual information to 

the perception of ICMS sensations, two visual conditions are used which differ in their level of 

realism (Figure 5.1b). The visual stimuli are presented at varying temporal offsets relative to ICMS 

in order to better characterize the temporal binding window between ICMS and vision, and recordings 

of S1 are examined during catch trials to examine the effects of ICMS-related visual information on 

early tactile processing. We find evidence that both visual context and ICMs current amplitude are 

capable of biasing qualitative aspects of ICMS-elicited sensations, and that the temporal binding 

window changes based on the biological relevance of visual context. Additionally, vision and ICMS 

are perceived as optimally synchronous when ICMS precedes vision in both visual conditions. 

Finally, we show that S1 represents information from visual stimuli relevant to ICMS in a context-

independent manner. This study lays the groundwork for the implementation of BMIs using ICMS to 

elicit naturalistic sensations which can be temporally and perceptually integrated with the real-world 

environment.  

5.2 Methods 

5.2.1 Participant 

As part of a brain-machine interface (BMI) clinical trial involving intra-cortical recording and 

stimulation, a C5-level tetraplegic participant (male, 32 years old) was recruited and consented. The 

participant’s microelectrode array implants were placed in three locations in the left hemisphere: the 

supra-marginal gyrus (SMG), ventral premotor cortex (PMv), and primary somatosensory cortex 

(S1). This work only examines the arrays in S1 (Figure 5.1a). The implants in S1 were two 48-

channel 1.5mm SIROF-tipped (sputtered iridium oxide film) microelectrode arrays (Blackrock 
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Figure 5.1 Experimental methods and paradigm 

a) Microelectrode array implant location in a human tetraplegic patient (n=1), visualized using MRI on the cortical 

surface of the left hemisphere. Inset: in situ array location. Figure modified from Armenta Salas et al. (2018). b) Task 

time course. In the baseline, only ICMS was delivered. In the main task (either abstract or realistic), a visual cue was 

temporally linked to the ICMS at a given offset (either -300, -150, 0, 150, or 300ms); 300ms offset is depicted. c) Sample 

frames from visual cues. In the abstract condition, the dot moved down to contact the end of the line. In the realistic 

condition, the robotic arm moved down to contact the virtual body. See Supplemental Video 5.1, Supplemental Video 

5.2. d) Behavioral accuracy across experimental sessions, quantified as the percentage of the trials where the participant 

reported a sensation, in which the participant’s reported order of stimuli (either vision first, ICMS first, or simultaneous) 

matched the ground truth stimulus order. The average number of trials felt per session was 18.2 (std=1.2) for realistic 

runs and 19.7 (std=3.2) for abstract runs. Black line = mean across abstract and realistic runs. See also Supplemental 

Figure 5.1 for accuracy by ICMS current. 

Neurotech, Salt Lake City, UT). Given the constraints of implanting arrays on the surface of cortex 

and the anatomy of S1, it is likely the microelectrode arrays in S1 are located in Brodmann area 1 

(BA 1) (Pandarinath and Bensmaia, 2022). Additional information on the arrays and surgical 

methodology is available in (Armenta Salas et al., 2018). 

At the first experimental session, the participant was 5.5 years post-implant and 7 years post-injury. 

All procedures were approved by the Institutional Review Boards (IRB) of the California Institute of 

Technology, University of Southern California, and Rancho Los Amigos National Rehabilitation 

Hospital. 
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5.2.2 Experimental paradigm 

Each experimental session consisted of three runs: the baseline, the realistic condition, and the 

abstract condition (Figure 5.1b). During all runs, visual stimuli were shown to the participant using 

a Vive Pro Eye virtual reality headset (HTC Corporation, Taoyuan City, Taiwan) which was 

programmed using Unity. 

In the baseline condition (18 trials total per session), which always occurred first, the participant 

viewed grids of the upper body and hand on a gray background which remained static throughout the 

task.  Each trial contained a 2s ITI, a 2s stimulation phase, and a response phase without a time limit. 

In each trial, 0.5s of ICMS was delivered immediately upon entering the stimulation phase, at one of 

three amplitudes (30, 60, 100 µAmps) which were evenly sampled (5 trials each). All stimulation 

occurred on the same single channel, at 300 Hz, with a pulse-width of 200ms and an interphase of 

60ms. The baseline also contained 3 catch trials where no stimulation was delivered. During the 

response phase, the participant was given an auditory cue (a beep) to verbally indicate whether or not 

he experienced a tactile sensation from ICMS. In the affirmative case he used the grids as references 

to indicate the sensation location. He also relayed the duration (‘Short,’ ‘Medium,’ or ‘Long’), a 

qualitative descriptor of the sensation (free word choice), and the intensity (on a subjective scale).  

In the realistic and abstract conditions (40 trials total per session each), the experimental phases and 

ICMS parameters were identical to the baseline, except a visual component was now included 

(Figure 5.1c). In the abstract condition, the participant viewed a 2D black dot positioned at the top 

of a black line on a gray background (Supplemental Video 5.1).  In the realistic condition, the VR 

headset was used to give the participant a first-person perspective of a body with a size, gender, and 

posture reflecting his own body, which was taken from the Microsoft Rocketbox Avatar Library 

(Gonzalez-Franco et al., 2020) (Supplemental Video 5.2) (https://github.com/microsoft/Microsoft-

https://github.com/microsoft/Microsoft-Rocketbox/
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Rocketbox/). The body was located in a VR environment which closely mimicked his vantage point 

in the real room in which he was located. The only object without a real analog was a virtual robotic, 

articulated arm with a narrow rod protruding from the end that was positioned over his virtual arm.  

During the stimulation phase, both a visual and ICMS cue (same parameters as in the baseline) were 

delivered. In the realistic condition, the visual cue was the robotic arm performing a single tap of the 

participant’s virtual arm, and in the abstract condition it was the dot moving along the line to tap the 

bottom (Figure 5.1c, Supplemental Video 5.1, Supplemental Video 5.2). In both conditions, the 

virtual cue was composed of 0.5s motion downwards, 0.5s contact (“visual touch”), and 0.5s motion 

upwards to the original position (Figure 5.1b). 

The visual point of contact either to the virtual first-person body or to the end of the abstract line was 

depicted at varying times relative to the ICMS cue (-300, -150, 0, 150, 300ms). In 12 of the 40 trials 

in a section, they were presented simultaneously (0ms). In 12 trials, visual contact occurred before 

ICMS began (-300 or -150ms; 6 trials each). In 12 trials, visual contact occurred after ICMS began 

(300 or 150ms; 6 trials each). There were also 4 catch trials where the visual cue was delivered without 

ICMS. ICMS amplitudes (30, 60, 100µA) were sampled evenly within timing conditions.  

Within conditions, trials were pseudo-randomly shuffled. The order of the realistic and abstract 

conditions was alternated across days.  

5.2.3 Data collection 

In total, nine experimental sessions were collected on unique days over a 6-month period. Neural data 

was recorded from the S1 microelectrode arrays using a Neural Biopotential Signal Processor as 

30,000 Hz broadband signals, and a CereStim96 device was used to deliver ICMS in S1 (Blackrock 

Neurotech, Salt Lake City, UT). 

https://github.com/microsoft/Microsoft-Rocketbox/
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A central computer used custom MATLAB (MathWorks, Natick, MA) code with synchronized 

ICMS and visual outputs, the latter of which were displayed on a virtual reality headset (Vive Pro 

Eye, HTC Corporation, Taoyuan City, Taiwan). Latencies to stimulus delivery were calculated and 

compensated for, resulting in a negligibly small unintended temporal offset of ICMS occurring 5ms 

on average (std = 2ms) before visual outputs across sessions. 

5.2.4 Quantification and statistical analysis 

All analyses were performed using MATLAB R2019b (MathWorks, Natick, MA) unless otherwise 

noted. Throughout the analysis, when multiple comparisons were performed, Bonferroni-Holm 

correction was performed to correct the p-values. 

5.2.4.1 Data preprocessing  

Data from the arrays in S1 were passed through a 180Hz notch filter in order to remove an electrical 

artifact which occurred throughout all recording sessions. Multi-unit firing rates were computed from 

each channel’s broadband signals in 50ms bins without spike sorting (Christie et al., 2015; Dai et al., 

2019), with a threshold of -3.5 times the noise RMS of the continuous signal voltage. These firing 

rates were aligned within each trial to the ICMS and visual stimuli presented.  Firing rates were 

normalized within each run and each channel by calculating the mean baseline firing rate across the 

entire 2s ITI period, and dividing all firing rates in the session by this value. 

5.2.4.2 Gaussian curve fitting 

The percentages of trials where the participant reported simultaneous ICMS and visual percepts were 

fit to Gaussian curves (Figure 5.3b,c). Gaussians were fit to the raw percentages reported in Figure 

5.3a, using MATLAB’s fit function, and restricted to peaks bounded by [0, 100] since the physical 

limits of simultaneous reports are 0% and 100%. A parametric bootstrap with 1000 iterations was 

used to assess variance (Christie et al., 2022). In the bootstrap, a binomial distribution B(n,p) was fit 
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to the raw data at every time point, in which n=the number of trials at that time point and p=the 

percentage of trials that were reported as simultaneous. On every iteration of the bootstrap, these 

binomial distributions were sampled using MATLAB’s binornd function and Gaussian curves were 

fit to the resulting synthetic data. 95% confidence intervals on the Gaussians and their peaks were 

computed by examining the distribution of Gaussians generated over the bootstrap. 

The point of subjective simultaneity was taken as the peak of the fitted Gaussians. The just-noticeable 

difference (JND) was taken as average of the absolute value of the times when the fitted Gaussians 

crossed the 25% line on either side of the peak.  

A Gaussian model was chosen for its simplicity, given that only 5 temporal offsets were sampled in 

the data (-300, -150, 0, 150, 300ms). A more complex model runs the risk of overfitting to the data, 

and would require a larger number of time samples to better characterize the shape of the temporal 

binding window. 

5.2.4.3 Tuning analysis 

The tuning of multi-unit activity in each visual condition was assessed using the catch trials (n=36) 

collected during the realistic and abstract conditions, in which the visual cue was presented and the 

participant expected an ICMS-elicited sensation, but no ICMS was delivered. Tuning was computed 

via linear regression analysis in 250ms bins. In each time bin, normalized firing rates were compared 

to baseline firing rates, which were computed as the mean firing rates in the ITI, 1750ms to 75ms 

before the onset of the “stimulation” phase (Figure 5.1b).  Data for each channel was fit to a linear 

regression model based on this equation: 

𝐹 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ 𝛽𝐶𝑋𝐶 
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where F = vector of firing rates on each trial, X = one-hot-encoded matrix of time bin identity for 

each trial, 𝛽 = estimated regression coefficients indicating level of tuning in each time bin, and C = 

number of time bins tested. F also included 36 additional entries corresponding to 𝛽0 (to match the 

total number of catch trials tested), which contained the baseline firing rate calculated as indicated 

above. The null hypothesis 𝛽 = 0 was assessed using a student’s t test within each channel and time 

bin, and if the null hypothesis was rejected then the channel was determined to be tuned to the visual 

information in comparison to the baseline firing rate. Within each channel, P values were corrected 

for multiple comparisons across time bins using the Bonferroni-Holm method. 

To assess significant differences in numbers of tuned channels across time bins and conditions, a 

bootstrap analysis was run for 1000 iterations. In each iteration, the catch trials were randomly 

sampled with replacement to yield 36 trials which were then reassessed for tuning in each channel 

and time bin (Figure 5.4a). 

5.2.4.4 RSA and MDS 

Normalized firing rate data, binned in 0.5s phases, was examined using Representational Similarity 

Analysis (RSA, Figure 5.4d) (Kriegeskorte, 2008; Nili et al., 2014). The python package rsatoolbox 

(https://github.com/rsagroup/rsatoolbox) was used to compute representational dissimilarity matrices 

(RDMs). The measure of dissimilarity used was cross-validated Mahalanobis distance with 

multivariate noise normalization (Walther et al., 2016), in which the noise covariance matrix is 

estimated and regularized towards a diagonal matrix to ensure that it is invertible. The cross-validated 

Mahalanobis distance is an unbiased measure of square Mahalanobis distance which also has a 

meaningful zero-point (Diedrichsen et al., 2021; Walther et al., 2016). A distance of zero between 

two conditions indicates the underlying neural data is fully indiscriminable, and the larger the 

Mahalanobis distance, the more these neural patterns are discriminable.  

https://github.com/rsagroup/rsatoolbox
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Data was cross-validated across 9 splits, each containing the 4 catch trials collected per run for each 

condition and divided into 0.5s bins (‘ITI,’ ‘Down,’ ‘Touch,’ ‘Up’). ‘ITI’ was composed of the last 

0.5s of the ITI before the ‘Down’ phase began. The RDM generated from this data is symmetric 

across the diagonal, with meaningless zeros on the diagonal itself (Figure 5.4d).  

To better visualize the relationships in the RDM, multi-dimensional scaling (MDS) was applied using 

the MATLAB toolbox rsatoolbox (Figure 5.4e, https://github.com/rsagroup/rsatoolbox_matlab)(Nili 

et al., 2014). MDS allows for distances in RDMs to be mapped to the 2D plane as faithfully as 

possible, using a metric stress criterion to arrange points without any assumptions of category 

structure. The stress between points is visualized with grey lines between points, stretched like rubber 

bands – the thinner the band, the more the true distances between points should be closer together to 

be fully accurate to the original high dimensional RDM. 

5.3 Results 

To understand the relationship between ICMS and visual context, behavioral and neural responses 

were recorded from a human tetraplegic patient (n=1) implanted with microelectrode arrays in S1 

(Figure 5.1a) (Blackrock Neurotech, Salt Lake City, Utah) as ICMS was delivered. Experimental 

sessions were composed of three conditions: the baseline, a realistic condition, and an abstract 

condition (Figure 5.1b, c). During the baseline, the participant reported when a sensation was elicited, 

that sensation’s anatomical location and intensity, and a one-word descriptor for the sensation’s 

qualitative nature. During the main task, the participant reported the same information, but also was 

tasked with reporting the relative order of ICMS and a visual cue which either depicted an abstract or 

realistic touch (Figure 5.1c, Supplemental Video 5.1, Supplemental Video 5.2). The visual cues 

were delivered at varying offsets relative to ICMS (-300, -150, 0, 150, 300ms). In all conditions, the 

participant only reported sensations localized to the right arm, between the wrist and the shoulder.  

https://github.com/rsagroup/rsatoolbox_matlab
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Figure 5.2 ICMS-elicited tactile 

percepts 

a) Percentage of trials eliciting a sensation 

across conditions, sorted by ICMS 

current. Error bars represent bootstrapped 

values across 1000 iterations sampling 

from trials with replacement. b) Data and 

analysis identical to (a) except abstract 

and realistic trials are separated by timing 

offsets between the visual stimulus and 

ICMS. A negative timing offset indicates 

the visual stimulus preceded ICMS. c) 

Violin plot and histogram of reported 

sensation intensity separated by ICMS 

current and combined across abstract and 

realistic trials. Red line = median value. 

Histograms are to scale with the number 

of trials (n for 100µA = 83, 60µA = 67, 

30µA =3 trials). d) Pie charts of sensation 

descriptors by condition. Only one word 

was used to describe each sensation. 

(baseline n=90, abstract n=177, realistic 

n=164 trials). e) Data and analysis 

identical to (d) except analysis is 

separated by ICMS current. Top = 100µA 

(baseline n=45, abstract n=106, realistic 

n=102 trials). Bottom = 60µA (baseline 

n=43, abstract n=69, realistic n=59 trials). 

Throughout all runs, catch trials in 

which no ICMS was delivered 

were pseudo-randomly intermixed.  

Behavioral accuracy was 

computed by comparing the 

participant’s assessments of 

relative ICMS and visual stimulus 

order with the ground truth. There 

was no learning effect: accuracy 

did not meaningfully change over 

the different session days (Figure 
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5.1d, F-test vs constant model, p=0.58). Additionally, behavioral performance was unaffected by 

visual condition (Figure 5.1d, logistic regression test p=0.34), indicating the conditions were 

equivalent in terms of difficulty. Performance was also not affected by the current amplitude 

(Supplemental Figure 5.1, p=0.72), but was affected by the relative offsets of the visual and ICMS 

(p=0.005). An effect of timing is unsurprising as the larger timing offsets (-300, 300ms) are easier to 

detect than the shorter ones (-150, 150ms). 

5.3.1 ICMS-elicited tactile sensations 

On each trial, the participant reported whether or not he sensed a tactile percept. Three different ICMS 

current amplitudes were tested (100, 60, 30µA), and catch trials were also collected where no ICMS 

was delivered. The participant never reported a sensation in a catch trial. There was a strong effect of 

ICMS current amplitude on the probability of the participant reporting a percept on a trial in the 

baseline trials (logistic regression test, p=1.1x10-33) as well as in both visual conditions of the main 

task (logistic regression test, p=3.2x10-33, Figure 5.2a). At 100µA, sensation detection was essentially 

at ceiling in all conditions (baseline mean=100%, 95%CI=[100,100]; abstract mean=98.2%, 

[95.4,100]; realistic mean=94.4%, [89.8,98.2]). At 30µA, sensation detection was at floor in all 

conditions (baseline mean=4.4%%, 95%CI=[0,11.1]; abstract mean=1.2%, [0, 6.5]; realistic 

mean=2.8%, [0,4.6]).  

In 60µA ICMS trials, in contrast, an effect of condition on the probability of reporting a sensation 

was evident (Figure 5.2a, baseline mean=95.6%, 95%CI=[88.9,100]; abstract mean=63.9%, [54.6, 

72.2]; realistic mean=55.1%, [44.9,65.0]). The probability of a trial yielding a sensation was not 

different between realistic and abstract conditions (logistic regression test, p=0.12), but the baseline 

elicited more sensations than either the realistic or abstract conditions. Within 60µA ICMS realistic 

and abstract trials, there was also an effect of the varying ICMS/visual temporal offsets (logistic 
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regression test, p=5. 5x10-4, Figure 5.2b). In particular, rates of reported sensations were low in the 

realistic condition when vision preceded ICMS by 150ms (mean=11.1%, [0, 28.0]). 

When the participant reported a sensation, he also reported the intensity of the sensation using a 

subjective number scale (Figure 5.2c) and a single word descriptor about how the sensation felt 

(Figure 5.2d,e). Within realistic and abstract trials, there was no effect of condition or stimulus timing 

on intensity ratings, but there was an effect of ICMS current amplitude (3-way ANOVA, condition 

p=0.69, timing p =0.49, current p = 1.5x10-17, all interaction effects p>0.05). Comparing 100µA and 

60µA specifically, the greater amplitude led to greater intensity ratings (unpaired t-test, p=1.2x10-21). 

The single words used by the participant were generated entirely by him with no suggested 

vocabulary. Across the 9 experimental sessions, the word “touch” was used to describe the sensation 

in realistic trials a higher proportion of the time than in the baseline (Figure 5.2d, Wilcoxon rank sum 

test, p=0.016), but the difference between abstract and baseline uses of “touch” was insignificant 

(p=0.13). This trend remained true when examining only 100µA trials (Figure 5.2e, realistic vs 

baseline p=8x10-4, abstract vs baseline p=0.24) but not within 60µA trials (Figure 5.2e, realistic vs 

baseline p=0.21, abstract vs baseline p=0.21). Additionally, the word “touch” was used more in 60µA 

trials than 100µA trials, across all conditions (p=0.014). 

5.3.2 The temporal binding window between vision and ICMS 

In every trial of the realistic and abstract conditions that the participant reported an ICMS-elicited 

sensation, he also reported the perceived order of the ICMS and visual cue. Specifically, he was 

instructed to report when the “visual touch” occurred relative to the ICMS (Figure 5.1b), and could 

either state that one stimulus came before the other or that they occurred simultaneously (Figure 

5.3a). In both conditions, the participant was able to detect the correct order in the -300 and 300ms 

offset trials with near perfect accuracy. In the -150, 150ms and 0ms offset trials, answers had more 
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Figure 5.3 The temporal binding window between vision and ICMS 

a) Reports of stimulus order relative to the ground truth. A negative timing offset indicates the visual stimulus preceded 

ICMS. Horizontal dotted line indicates 25% mark. Error bars represent SEM. b) Gaussian curves fit to the “simultaneous” 

points (black lines) in (a). Black dots indicate curve peaks. Shaded area and error bars on peaks represent 95% CIs 

generated through a parametric bootstrap fit to 1000 synthetic versions of the data modeled with a binomial distribution 

(see Methods). c) Data and analysis identical to (a) and (b) except results are separated by ICMS current. 

variability and were more likely to be “simultaneous” than in the -300 and 300ms offset trials. Across 

sessions, rates of “simultaneous” answers in the 150ms offset were higher in the realistic than the 

abstract condition (paired t-test, p=0.001), but not different across visual conditions in the other 
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offsets (p>0.1 for all tests). The area under the “simultaneous” curves was different between realistic 

and abstract trials (paired t-test, p=3.6x10-4). 

To better quantify when stimuli were perceived as occurring synchronously, the “simultaneous” 

curves (Figure 5.3a) were fit to Gaussians which allowed for interpolation between the 5 offsets 

tested (Figure 5.3b). The variability in the data was assessed using a parametric bootstrap (see 

Methods)(Christie et al., 2022). The point of subjective simultaneity (PSS), defined as the peak of the 

fitted Gaussians, occurred when ICMS preceded the visual cue for both visual conditions 

(abstract=58.6ms, 95% CI = [6x10-42, 83.4]; realistic=112.5ms [84.7, 139.4]). The just-noticeable 

difference (JND) in realistic trials (161.7ms [124.8, 190.1]) was larger than in abstract trials (72.5ms 

[17.8, 101.5]). The 25% point on the left side of the Gaussian was not different between realistic (-

49.1ms [-91.1, -14.2]) and abstract (-13.9ms [-47.1, 21.5]) conditions. The 25% point on the right 

side was not the same across conditions: the realistic condition (274ms [204.7, 326.1]) had a larger 

offset than the abstract condition (131.1ms [-151.6 190.9]). 

The temporal analysis was repeated, separating out trials into 100µA and 60µA ICMS (Figure 5.3c). 

Within the raw data for each ICMS current amplitude, the areas under the “simultaneous” curves 

were different between realistic and abstract conditions (100µA: p=6x10-4; 60µA: p=0.012). The PSS 

for each ICMS current amplitude followed the same pattern as the overall data but the differences 

between conditions were lessened: for 100µA, realistic PSS = 124.2ms [87.0 166.8]; abstract PSS = 

72.3ms [8x10-27, 94.2ms]. For 60µA, realistic PSS = 98.8ms [61.5 149.5]; abstract PSS = 48.2ms [0, 

80.3ms]. The JND for 100µA was 164.0ms [87.6, 167.2] in realistic trials and 72.4ms [29.4, 90.5] in 

abstract trials; the JND for 60µA was 164.0ms [114.2, 202.2] in realistic trials and 66.6ms [11.0, 

92.2] in abstract trials.  
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Figure 5.4 Neural activity during catch trials 

a) Percentage of channels tuned during catch trials relative to baseline (n=96 channels), separated by condition. Time is 

aligned to the onset of the “touch” phase of the visual stimulus. Shaded area indicates 95% CIs computed by bootstrapping 

across trials (n=36 trials) over 1000 iterations. Tuning was assessed by linear regression analysis (see Methods). b) Four 

example tuned channels with firing rates averaged across catch trials, by condition. For visualization only, firing rates 

were smoothed using a first order Savitzky-Golay filter. Asterisks indicate the 250ms bins in which the channels were 

tuned relative to baseline, color-coded by condition. Shaded area corresponds to SEM (n=36 trials per condition). c) Venn 

diagram depicting the overlap in channels tuned to abstract and realistic conditions. Percentages are based on the total 

number of channels tuned overall (15 channels; 15.6% of all S1 channels). d) Representational dissimilarity matrix 

(RDM) of multi-unit neural activity across all channels. Heatmap indicates distances between neural activity patterns 

associated with each condition and task phase (e.g.. realistic ITI in top left), which are computed as the cross-validated 

Mahalanobis distance with multivariate noise correction; a distance of 0 indicated conditions are statistically 

indistinguishable. Each phase represents 0.5s of averaged firing rates; the ITI is based on the 0.5s immediately prior to 

“down” phase of visual stimulus. e) Multi-dimensional scaling (MDS) plot of the RDM in (d). Axes are arbitrary. Grey 

lines between icons are “rubber bands” whose thickness is based on the goodness of fit of the scaling (Pearson’s r=0.92; 

p=2.6x10-10). Thinner, more “stretched” bands indicate that the icons are closer together in the original high-dimensional 

space than they are shown to be. 
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5.3.3 S1 neural responses to visual stimuli 

Neural activity was recorded in the S1 microelectrode arrays during catch trials, when no ICMS was 

delivered, and multi-unit channel firing rates were computed. The tuning of channels relative to 

baseline while visual stimuli were delivered was assessed using a linear regression analysis (Figure 

5.4a, b). Both abstract and realistic conditions had a peak of tuned channels in the 0 to 0.25s bin 

immediately following the “visual touch” phase onset. In this bin, 13.5% (95% CI = [6.3, 19.8]) of 

channels (n=96) were tuned to the abstract condition and 13.5% [10.4, 21.9] were tuned to the realistic 

condition. In the realistic condition, 6.3% [5.2, 14.6] of channels were also tuned in the -0.25 to 0s 

bin prior to visual touch, during the “motion down” phase. The timecourse of four example tuned 

channels are shown in Figure 5.4b. The overlap in channels tuned to realistic and abstract conditions 

during the 0 to 0.25s bin was quantified (Figure 5.4c). 73% of tuned channels (n=11) were tuned to 

both conditions, while 13% (n=2) were tuned only to realistic and a further 13% (n=2) were tuned 

only to abstract.  

To understand the population response in S1 to the visual stimuli, Representational Similarity 

Analysis (RSA) was employed on the firing rates of all 96 channels (Figure 5.4d) (Kriegeskorte, 

2008), using cross-validated Mahalanobis distance with multivariate noise correction (Walther et al., 

2016). Multi-dimensional scaling (MDS) was used to visualize the computed distances between 

condition phases (Figure 5.4e) (Nili et al., 2014). The data were grouped more tightly by task phase 

(ITI, down, touch, up) than by condition (abstract, realistic), as assessed by an unpaired t-test on 

distances within phases/across conditions vs distances within conditions/across phases (p=0.044). 

Qualitatively, this is apparent in the MDS where icons are grouped by phase, but the conditions are 

intermixed together (Figure 5.4e).  
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5.4 Discussion 

Behavioral and neural data from a tetraplegic participant receiving ICMS in S1 (Figure 5.1a) while 

observing visual abstract or realistic touch cues (Figure 5.1b,c) were examined. Visual cues were 

delivered at varying temporal offsets relative to ICMS and the participant reported the perceived order 

of these cues as well as descriptive information about the ICMS-elicited tactile sensation. Across the 

9 experimental sessions, there was no change in the participant’s ability to accurately assess stimulus 

order, and the task was also controlled for difficulty across visual conditions (Figure 5.1d) and current 

amplitudes (Supplemental Figure 5.1). ICMS only elicited sensations in the participant’s arm 

through all conditions tested, corroborating the idea that the arrays are implanted in the arm region of 

S1 area 1 (Armenta Salas et al., 2018; Rosenthal et al., 2023).  

This experiment yielded three main findings: 1) the perception of ICMS-elicited sensations is 

influenced by visual information and ICMS current amplitude; 2) the temporal binding window 

between ICMS and vision varies based on the biological relevance of the visual stimuli; 3) S1 

represents visual information relevant to ICMS in a context-independent fashion. 

5.4.1 ICMS-elicited sensations are affected by visual information and ICMS current amplitude 

This work replicates the previously known result that higher ICMS current amplitudes tend to elicit 

sensations more frequently, and the sensations tend to be of higher intensity (Figure 5.2a,c) (Armenta 

Salas et al., 2018; Flesher et al., 2016; Hughes et al., 2021a). However, we also find an interaction 

between current amplitude and vision. During 60µA trials, the percentage of trials which elicited a 

sensation through ICMS were significantly higher in the baseline than in either of the visual 

conditions (Figure 5.2a). Since 60µA ICMS is typically perceived to be lower intensity than 100µA 

ICMS (Figure 5.2c), it is closer to the perceptual detection threshold. The added cognitive load of 
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attending to a visual stimulus as well as attending to ICMS may be responsible for lower rates of 

reported sensations.  

The effect of vision on rates of reported sensations was not uniform across all temporal offsets 

presented (Figure 5.2b). While the nature of the interaction between ICMS and the timing of visual 

cues will need further investigation, it is possible that the very low reported rates of sensation in the 

realistic 60µA -150ms offset bin is due to a forward masking effect. In other words, it may be that the 

movement of the visual stimulus in the “down” phase occupied sufficient attentional resources to 

mask the majority of ICMS percepts that would otherwise have been elicited. 

We also demonstrate an effect of ICMS current on the qualia of sensations: “touch” was used as a 

descriptor more often at 60µA than at 100µA (Figure 5.2e). This may be because, within the 

participant’s subjective framework, the word “touch” could represent a tactile stimulus that is 

inherently of a lower intensity than other descriptors like “squeeze” or “grab.” 

Furthermore, the qualitative nature of ICMS-elicited sensations was affected by visual content. The 

participant was more likely to use the word “touch” to describe sensations in the realistic condition 

than in the baseline (Figure 5.2d).  Of the words the participant used to describe sensations, which 

were freely chosen by him, “touch” appears to be the one which most closely matches the visual touch 

depicted in the realistic condition. This effect is the first evidence to our knowledge that visual 

information can bias the qualitative experience of ICMS sensations, although previous work has 

shown that visual information can bias the perceived location of peripheral intraneural stimulation 

(Christie et al., 2019a). When ICMS is employed on the same electrode, with the same parameters, 

in the same participant, widely varying qualia often result (Figure 5.2d, baseline) (Armenta Salas et 

al., 2018; Flesher et al., 2016). A viable neural prosthetic would ideally be able to elicit naturalistic 

sensations of specific qualia as needed (Tabot et al., 2015). If visual information can stabilize ICMS 
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percepts to some extent, this has the potential to be highly important to the development of a such 

tactile neural prosthetic.  

In addition to the significantly increased rate of “touch” descriptions between baseline and realistic 

trials, there was also a smaller increase between baseline and abstract. Although this increase failed 

to reach statistical significance, it may be present due to a priming effect. Realistic and abstract 

conditions were tested in the same experimental session, consecutively with one another, so the 

participant may have noticed the similarities between the two and extended tactile associations from 

the realistic condition to the abstract one, whether consciously or unconsciously. 

5.4.2 The biological relevance of visual stimuli influences the temporal binding window 

Visual stimuli were presented at five different temporal offsets relative to ICMS (Figure 5.3). In both 

the realistic and abstract condition, the PSS occurred when ICMS preceded the visual cue, with a lag 

of approximately 50-120ms (Figure 5.3b). This result supplements work which has showed that 

reaction times are slower for ICMS than for visual or tactile stimuli (Christie et al., 2022; Godlove et 

al., 2014). ECoG stimulation has also been shown to be slower than tactile stimuli (Caldwell et al., 

2019).  

The slower processing time for ICMS relative to vision may seem counterintuitive because ICMS 

directly interfaces with S1 while the visual information must travel through the photoreceptors in the 

eyes and the thalamus before reaching the primary visual cortex. However, ICMS is a highly 

unnatural input, and typically during a tactile stimulus an entire network of brain regions is activated, 

rather than just S1. The larger reaction times may be due to the processing time needed to make sense 

of this irregular activation pattern (Godlove et al., 2014). Regardless, the perceptual lag between 

vision and ICMS indicates that the parameters used here, which are standard in the field, do not allow 

ICMS to be perfectly integrated into a temporally well-aligned multisensory experience.  
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Although the PSS was offset in both visual conditions tested, the temporal binding window varied in 

shape between these conditions (Figure 5.3b). Both the area under the curve of “simultaneous” 

answers and the JND were larger in realistic trials compared to abstract trials, indicating the temporal 

binding window between ICMS and vision is larger in the realistic condition. In other words, the 

participant was more likely to perceive ICMS and vision as occurring synchronously in the realistic 

condition, and more likely to assign an order to the stimuli in the abstract condition. This difference 

was not symmetric: the “simultaneous” curves were highly similar across conditions on the left side 

(vision preceding ICMS) but on the right (ICMS preceding vision) the realistic curve extended past 

the abstract curve.  These changes remained relatively constant across ICMS current amplitudes 

(Figure 5.3c).  

These results indicate that a biologically relevant touch input allows the brain to more easily link 

visual and ICMS inputs together causally, and view them as happening as part of the same event, 

while in an abstract context, visual and ICMS inputs are interpreted as more likely to be part of 

separate events. Since a somatosensory neural prosthetic using ICMS would be deployed in a real 

world environment, this result is encouraging because it supports the idea that the brain is able to 

combine multisensory realistic inputs with artificial stimulation to generate visually plausible 

sensations (Christie et al., 2019a). 

5.4.3 S1 represents ICMS-relevant visual content in a context-independent fashion 

Examining catch trials which contained only visual stimuli without ICMS, we find that a significant 

percentage of channels are tuned to visual touches relative to baseline activity (Figure 5.4a). In 

particular, S1 activity peaks during the first 250ms of the visual touch during both abstract and 

realistic trials. Given that up to 12.5% of channels in S1 were tuned to the realistic condition, it is 

clear that S1 reflects some component of the visual stimulus even when there is no ICMS or physical 



 

 

102 

tactile event. Realistic trials also elicited tuned activity 250ms before visual touch, during the “motion 

down” period, indicating possible preparatory or predictive activity (Kimura, 2021). 

Furthermore, there was overlap between S1 responses to abstract and realistic trials. Many of the 

channels tuned to the realistic condition were also tuned to the abstract condition (Figure 5.4c). In a 

population-level analysis, RSA demonstrated that neural activity was relatively similar between 

abstract and realistic trials, but separated out by task phase (Figure 5.4d, e). These results indicate 

that S1 represents information within the visual stimulus, and furthermore that this information 

generalizes across abstract and realistic conditions to some degree. Given that abstract and realistic 

stimuli are very visually distinct (Figure 5.1c, Supplemental Video 5.1, Supplemental Video 5.2), 

this means that it is unlikely S1 is representing the actual visual inputs themselves. Rather, S1 is 

representing some aspect of the visual information that is relevant to the tactile aspect of the task and 

which generalizes across the two visual contexts in order to differentiate baseline and visual touch 

activity. 

Prior work with the same participant tested in this study showed that S1 did not respond to visually 

depicted touches without a physical tactile stimulus accompanying them (Rosenthal et al., 2023). In 

contrast, this study shows that S1 does reflect information in visual stimuli without any tactile stimuli 

or ICMS. This difference in results supports a hypothesis which suggests that task design has a large 

effect on whether S1 represents visual information related to touch (Dionne et al., 2013; Rosenthal et 

al., 2023). The first study used a passive design, in which the participant merely observed tactile 

stimuli, whereas this study implemented a more active task in which the participant was required to 

describe perceived tactile sensations and report the order of ICMS and visual stimuli. This effect of 

task design on S1 modulation by visual stimuli can also be seen in the neuroimaging literature. 

Experiments with an active task tend to find that S1 responds to observed touches (Blakemore et al., 
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2005; Bufalari et al., 2007; Ebisch et al., 2008; Kuehn et al., 2018, 2013; Longo et al., 2011; Schaefer 

et al., 2009), while experiments with a passive task, or a task that is not touch-related, tend to find the 

opposite (Chan and Baker, 2015; Keysers et al., 2004; Morrison et al., 2004). Visual information not 

related to the tactile stimulation also does not modulate somatosensory cortex (Espenhahn et al., 

2020). 

Given that S1 can reflect visual stimuli based on task relevance, it is likely that attention plays some 

role in what S1 represents in a given context (Chapman and Meftah, 2005; Dionne et al., 2013; 

Popovich and Staines, 2014). Such attentional modulation may also underlie the visual enhancement 

of touch, a phenomenon in which tactile perception is improved when the body part being touched is 

visible, even if the visual input is non-informative about the touch (Colino et al., 2017; Haggard et 

al., 2007; Kennett et al., 2001; Press et al., 2004; Tipper et al., 2001). It may also play a role in S1’s 

ability to reflect top-down concepts like affective significance, motor planning, and imagined touches 

(Ariani et al., 2022, 2022; Bashford et al., 2021; Gale et al., 2021; Yoo et al., 2003). This attentional 

effect is likely implemented by higher order brain areas which represent the task requirements and 

compute a relevance threshold for different sensory inputs which can then be implemented in 

modality specific early processing areas like S1.  

Finally, the fact that the results in this work are consistent with other characterizations of S1 in tactile 

studies indicates that S1 processes visual stimuli related to ICMS in some similar ways to visual 

stimuli related to real physical touches. This suggests that ICMS is can be a valid substitute for 

physical touches in tactile tasks, not only in terms of behavioral performance (Berg et al., 2013; Klaes 

et al., 2014; Tabot et al., 2015), but also in terms of how the stimulation is processed within the 

somatosensory system. 
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5.4.4 Conclusion 

In order to understand the behavioral and neural relationship between ICMS and vision, we examined 

responses to paired visual and ICMS stimuli at varying temporal offsets in a tetraplegic patient. This 

dataset yielded two behavioral findings. The first is that the interpretation of ICMS-elicited sensations 

is affected by ICMS current amplitude, as well as by visual content. The second is that the temporal 

binding window between ICMS and vision peaks when ICMS is delivered shortly before the onset of 

the visual stimulus, and that the size of the temporal binding window is affected by the biological 

relevance of the visual stimulus. Studies of ICMS frequently examine elicited sensations without 

including any other type of sensory context (Armenta Salas et al., 2018; Flesher et al., 2016; Hughes 

et al., 2022, 2021a). While these studies represent important foundational work, it will be important 

to fully understand how ICMS interacts with a richly complex sensory environment, both for the 

purpose of stabilizing touch percepts and creating temporally aligned, unified multisensory 

experiences. 

By examining the neural encoding of catch trials in which visual touches were present without ICMS, 

this work also adds to our understanding of how S1 represents visual information related to tactile 

sensations. We find that in an active task, S1 firing rates change during a visual touch relative to 

baseline, in a relatively constant way across visual contexts. This finding supports the idea that high 

level task-related variables in visual stimuli are represented in S1 and modulated by higher order 

cognitive brain areas based on attention.  

Further experiments should aim to investigate these findings in a larger population of patients, to 

better understand individual differences. Additionally, it will be important to explore in more depth 

how ICMS is integrated with other sensory systems and with different environmental contexts, as 

well as how S1 processes these inputs. By understanding multisensory ICMS integration both 
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behaviorally and neurally, we can better use ICMS to design stable, naturalistic artificial tactile 

sensations.  

5.4.5 Limitations of the study 

While this experiment adds to our understanding of how vision is integrated with ICMS, it is limited 

in scope. A limited set of ICMS parameters was examined, in only one participant, so it is possible 

results will be different to some extent using other parameters and in other individuals. Additionally, 

only five temporal offsets were examined, leading to a relatively coarse resolution of the temporal 

binding window. Examining a larger set of time points could refine the results and allow for a more 

complex modeling of the temporal binding window beyond using Gaussian curves. Finally, it is 

possible that demand characteristics of the task influenced the participant’s description of sensation 

qualia, although we note that the participant never reported a sensation in a catch trial, and reported 

significantly fewer sensations at lower current amplitudes, despite never being informed of the current 

amplitude being delivered on any given trial. 
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5.5 Supplemental figure 

 
Supplemental Figure 5.1 Behavioral accuracy by ICMS current 

Accuracy averaged across visual conditions across experimental sessions, quantified as the percentage of the trials where 

the participant reported a sensation, in which the participant’s reported order of stimuli (either vision first, ICMS first, or 

simultaneous) matched the presented stimulus order. The average number of trials felt per session was 11.6 (std=0.86) 

for 100µA and 7.1 (std=2.3) for 60µA trials. Black line = mean across all trials per session.  
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5.6 Supplemental video legends 

Supplemental Video 5.1 Sample abstract visual stimulus 

Related to Figure 5.1c. Stimulus was presented using a virtual reality headset. The virtual reality environment was 

constructed to mimic the room in which the experiment was performed. 

Supplemental Video 5.2 Sample realistic visual stimulus 

Related to Figure 5.1c. Stimulus was presented using a virtual reality headset. The virtual reality environment was 

constructed to mimic the room in which the experiment was performed, and the human arm was chosen to be visually 

similar to the participant’s own arm. 
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C h a p t e r  6  

CHAPTER 6:  

CONCLUSION 

In this thesis, we explore how the somatosensory system constructs tactile sensations based on a 

variety of bottom-up and top-down variables, using human behavioral and electrophysiological data. 

Imagined (Chapter 3), real (Chapter 4), and artificial (Chapter 5) tactile sensations are all 

considered, each with two goals in mind: building a better understanding of the neuroscientific 

underpinnings of tactile experiences, and applying this knowledge to implementing somatosensory 

neural prosthetics.  

In particular, S1 is a region of interest in neural prosthetics, as it is a brain region that can both 

represent real tactile sensations and be used to elicit artificial tactile sensations through ICMS 

(Armenta Salas et al., 2018; Delhaye et al., 2018; Flesher et al., 2016; Hernandez et al., 2000). All 

experiments presented in this thesis are conducted with the same microelectrode arrays in the same 

human tetraplegic participant, allowing for an unprecedented level of detail and nuance to be 

extracted from a specific sub-region of area 1 of S1. 

Building on prior work showing activity in S1 during tactile imagery (Yoo et al., 2003), in Chapter 

3, we find that imagined sensations can be decoded from one another in S1, SMG, and PMv, which 

are all part of the sensorimotor loop. These sensations are generated by cueing the participant via a 

written word, and then after a delay giving a generic “go” signal to begin the tactile imagery. Thus, 

tactile representations here are the result of top-down modulation, and are shown to be encoded 

distinctly in both firing rate and LFP data. This result is shown to be stable across data collected 11 

months apart, indicating that tactile representations remain highly stereotyped over time. 
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In Chapter 4, real touches that vary in their location and multisensory context are examined, yielding 

several findings. S1 arm area is shown to encode touches in the arm, as well as finger touches in a 

more generalized manner. This result adds complexity to the classical notion of the cortical 

homunculus (Ejaz et al., 2015; Penfield and Boldrey, 1937), supporting the hypothesis that the 

topographic delineation is not as rigid as previously thought (Muret et al., 2022; Wesselink et al., 

2022). Additionally, we find that during a passive task, visual information paired with a physical 

touch modulates S1 in comparison to a blind touch, but visual information on its own does not trigger 

any detectable S1 activity. Based on this finding, we advance a hypothesis based on task design that 

provides a way to reconcile literature which has found varying findings on the ability of S1 to 

represent visual information (Blakemore et al., 2005; Chan and Baker, 2015; Kuehn et al., 2018, 

2013; Sharma et al., 2018). 

In Chapter 5, we build upon our work using real touches to examine artificial tactile sensations. Most 

research in ICMS considers it in isolation from other stimuli (Armenta Salas et al., 2018; Flesher et 

al., 2016; Hughes et al., 2022, 2021a). Our research supplements this literature by examining artificial 

tactile sensations in a multisensory context. The qualitative interpretation of ICMS is found to be 

affected by both visual context and the current amplitude of stimulation. Additionally, the temporal 

binding window between ICMS and vision becomes larger when visual stimuli are more biologically 

relevant, allowing for more ICMS-elicited sensations to be perceived as temporally synchronous with 

visual stimuli. Finally, S1 is also shown to reflect the moment of a visual “touch” during catch trials 

in which ICMS is not delivered, suggesting that in an active touch-relevant task, S1 does represent 

visual information even in the absence of a physical touch. This encoding of visual information 

corroborates the task design hypothesis advanced in Chapter 4, and appears to be context-

independent: S1 activity is highly similar across a realistic and an abstract visual condition. 
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These results contribute to the neuroscientific literature on how experiences of touch are neurally 

constructed, especially in the early cortical tactile processing area of S1. We see that S1 encodes many 

modes of touch, including imagined touches, real physical touches, and visual information relating to 

touches, all in a small sub-region of area 1. The extent to which S1 represents visual stimuli depends 

on if the task at hand is active or passive, suggesting a role of attention, and is abstract enough to 

generalize across conditions which have the same underlying task structure but highly different 

presented visual stimuli. Furthermore, different locations of touch are present in this area, and the 

strength and specificity of their encoding vary according to the established S1 topography. Taken 

together, S1 is shown to be a location with complex representations of tactile information which are 

modulated by multisensory inputs and top-down cognitive factors such as imagination and attention 

(Blakemore et al., 2005; Dionne et al., 2013; Fiorio and Haggard, 2005; Kennett et al., 2001; Kimura, 

2021; Morrison et al., 2004). Additionally, the visual information that S1 does reflect is abstracted 

across visual contexts. The influence of these conceptual, top-down variables suggests recurrent 

connections between S1 and higher order cognitive processing areas capable of multisensory 

integration, such as PPC or the frontal cortex. In other words, S1 processes tactile information for 

upstream cortical areas, but is likely receiving feedback from these areas about how to interpret this 

information as well.  

Future neuroscientific experiments should interrogate neural representations in the somatosensory 

system before and after ICMS is delivered in order to understand which brain areas are capable of 

representing sensation qualia, or even if a sensation is perceived at all, and the time course of these 

representations. Additionally, examining the results described above in a larger set of participants, 

including those with varying levels of somatosensory impairment, will be important to distinguish 

individual differences from population trends. 
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These findings also provide information as to how ICMS could be used to implement a viable 

somatosensory BMI with reliable, naturalistic tactile sensations. Given that imagined sensations are 

represented in SMG and PMv as well as S1, it is possible that novel sensations could be decoded or 

elicited from these areas as well. While current human studies demonstrate the potential of 

electrophysiology and ICMS, novel methods currently being tested exclusively in animal models, 

such as optogenetics, may be able to provide more nuanced feedback in the distant future (Sahel et 

al., 2021). More concretely, we also see that visual information and attention modulate S1, and visual 

context affects the interpretation of ICMS when delivered through S1. Given that visual stimuli can 

bias ICMS-elicited sensations towards a specific type of percept, it is possible that visual information 

can be harnessed to better stabilize ICMS percepts more generally. Overall, these results indicate 

strongly that a multisensory, biomimetic environment must be considered when testing how to elicit 

specific types of ICMS sensations (Risso and Valle, 2022). If a somatosensory prosthetic is to be 

implemented in the rich, complex, real world environment, then the effects of different sensory 

modalities and of attention must be understood in order to generate sensations that feel temporally 

and qualitatively natural. 

To validate these theories, it will be necessary to further explore the relationship between ICMS 

parameters, perceived sensations, and multisensory environments. The results discussed here 

examine only a narrow subset of ICMS parameters and only use one channel for stimulation. 

Examining a larger set of channels, as well as multichannel stimulation, will be necessary to map the 

full range of potential sensations and their interactions with the environment (Kim et al., 2015b; 

Sombeck and Miller, 2020). It is possible that a different pattern of stimulation will also yield a 

different temporal binding window between ICMS and vision. It would also be instructive to try to 

implement the rubber hand illusion (Botvinick and Cohen, 1998; Tsakiris and Haggard, 2005) using 
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ICMS, since this illusion traditionally combines vision and touch to manipulate the sense of 

embodiment. Prior work has shown that artificial embodiment of a prosthetic can be elicited in 

epilepsy subjects implanted with ECoG grids using the rubber hand illusion (Collins et al., 2017). If 

ICMS can similarly be used to trigger the illusion in SCI patients, this will mean that it can be used 

to aid embodiment of a prosthetic device (Maimon-Mor and Makin, 2020; Marasco et al., 2011). An 

embodied neural prosthetic may have more accurate motor decoding and higher naturalness of use, 

providing a substantive improvement in quality-of-life for patients (Marasco et al., 2021; Preatoni et 

al., 2021). 

In summary, this thesis explores varying types of tactile sensations across different contexts in order 

to better understand how sensations of touch are constructed. This work contributes to the 

neuroscientific literature on the somatosensory system, suggesting that early tactile processing is 

affected by complex, multisensory, contextual factors. These findings also have clinical applications 

towards generating artificial sensations in a BMI with naturalistic properties, which would be an 

invaluable step in providing restorative care for individuals with impaired somatosensation 

(Anderson, 2004).  
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