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ABSTRACT 

The ability to move freely and to connect with others through communication is invaluable for 

human independence. In this thesis, we explore how brain-machine interfaces (BMIs) can help 

patients affected by movement or speech deficits to recover lost human experiences. This work 

builds on previous findings indicating that premotor and posterior parietal areas are involved in 

movement generation and language processes. These higher-level brain areas do not only engage 

in movement execution, but also during planning, representing rich behavioral patterns that can be 

leveraged for BMI applications. In this work, we investigated how the ventral premotor cortex 

(PMv), the posterior parietal cortex (PPC), and the sensorimotor cortex (S1) represent grasp and 

speech processes at a single-neuron level. Using multielectrode Utah arrays, neuronal populations 

were recorded in tetraplegic human participants. We found that the supramarginal gyrus (SMG), 

PMv and S1 significantly encode motor imagery of grasping. By studying the cognitive processes 

underlying neural activity during the cue phase of grasping, we found a transition from cue-modality 

dependent to cue-modality independent grasp representation in SMG, the anterior intraparietal 

cortex (AIP) and PMv. Our findings suggest SMG integrates audio, written, and image cue modalities, 

but more similarly represents audio and written cues, indicating language involvement. We 

confirmed this hypothesis by demonstrating that SMG encodes spoken words, engaging different 

motor plans for speech compared to grasping even when the semantic content remained 

unchanged. These results suggest a BMI could be trained to decode both grasp motor imagery and 

speech from one brain area. Lastly, we showed that SMG is highly involved in language processes, 

modulating for written word recognition, auditory tones, vocalized speech, and internal speech. As 

a proof-of-concept, we built a real-time internal speech BMI from signals recorded in SMG that can 

decode eight words with high accuracy. This work is the first of its kind, demonstrating internal 

speech can be robustly decoded from an implant in a single brain area. We find high neural SMG 

generalization between seeing a written word, saying it internally and vocalizing the word, 

suggesting shared cognitive functions between different language processes. Furthermore, words 

in different languages are represented in SMG. This thesis advances the BMI field by providing a 

better understanding of the neural processes that underly grasp motor imagery and language. To 

summarize, our findings suggest that studying higher-level brain areas can lead to the development 

of more effective and versatile brain-machine interfaces. 
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NOMENCLATURE 

SMG Supramarginal gyrus 

PMv Ventral premotor cortex 

S1 Primary somatosensory cortex 

PPC Posterior parietal cortex 

M1 Primary motor cortex 

AIP Anterior intraparietal cortex 

IPS Intraparietal Sulcus 

BMI Brain-Machine Interface 

ECoG  Electrocorticography  

EMG Electromyography 

fMRI Functional magnetic resonance imaging 

ROI Region of interest 

sEEG Stereo-electroencephalography 

S2 Participant in the study with implants in SMG, PMv, and S1 

N1 Participant in the study with implant in AIP 

SCI Spinal cord injury 

LFP Local field potential 

Spike Action potential  

Unit A neuron 

Spike sort  Sort action potentials through clustering methods into single neurons 

PCA/ dPCA Principal component analysis / demixed PCA 

c.i. Confidence interval 
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Chapter 1: 

Introduction 

 

Catching up with your family and friends while grabbing a steaming cup of coffee are ordinary 

activities of everyday life. For individuals affected by spinal cord injuries, or who suffered strokes or 

neurological diseases, these essential abilities can unexpectedly be stripped away. Those affected 

by movement disorders may find themselves unable to perform basic tasks due to paralysis or 

confinement to a bed. In severe cases, patients may even lose the ability to speak, rendering them 

isolated and confined to their own thoughts. Imagine, now, a technology that would allow the 

recovery of these crucial human experiences by controlling a robotic arm or communicating with 

just your mind. This is the hope of brain-machine interfaces. 

In this thesis, I will explore the potential of brain-machine interfaces (BMIs) to restore critical human 

experiences to those who have lost them. Specifically, I will focus on BMI applications in the human 

cortical grasp circuit and investigate how this network of brain regions represents motor imagery of 

grasp and speech processes at a single neuron level. By studying lesser understood higher-level 

brain areas such as the posterior parietal cortex (PPC) and the ventral premotor cortex (PMv), I aim 

to understand the cognitive signals that can be recovered from these brain regions and offer new 

insights into the possible applications of intracortical BMIs.   

In Chapter 2 I will provide background information on invasive and non-invasive BMIs, and dive into 

the different components of the human cortical grasp circuit and their role in hand function and 

motor planning. I will summarize the role of the premotor and posterior parietal cortex as target 

sites for grasp BMI applications and recent efforts of decoding speech and internal speech from 

these areas.  

In Chapter 3, we will show how the supramarginal gyrus (SMG), PMv, and the somatosensory cortex 

(S1) encode planning and execution of grasp motor imagery at a single neural level. We find all three 

regions were significantly modulated in response to motor imagery of five grasps. Additionally, the 

higher-level brain areas SMG and PMv also represent grasp-related activity when cued with a visual 

image, aligning with findings from nonhuman primate studies. This early cue phase activity is not 
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merely a visual response but also contains motor or semantic characteristics. Moreover, we 

demonstrated through a neuron-dropping analysis that neurons in SMG and PMv are similarly 

informative for grasp decoding, suggesting that excellent grasp classification accuracies can be 

obtained when recording from a substantial number of neurons in either area simultaneously. To 

summarize, this study highlights the potential of SMG and PMv for future grasp BMI applications. 

Chapter 4 delves deeper into the cognitive processes represented during the cueing of grasps in 

higher-level brain areas of the cortical grasp circuit. Specifically, we investigated how sensory cue 

modalities affect motor imagery of five grasps, posing the following question: is grasp motor 

imagery invariable to the sensory cue modality? We cued tetraplegic patients with a visual image, 

an auditory cue, and a written cue in the SMG, PMv, and anterior intraparietal cortex (AIP). Our 

findings revealed a transition from modality-dependent representation during the cue phase to 

modality-invariant representation during motor imagery. Brain areas PMv and AIP exhibited cue-

dependent neural modulation to the image cue, but not auditory or written cues, while SMG 

responded distinctively to all three cue modalities. Moreover, our analysis indicated that in SMG, 

auditory and written processes are more similarly represented than image processes, suggesting 

that SMG also plays a role in language processes.  

In Chapter 5, we investigated SMG’s, PMv’s and S1’s involvement in language by performing a 

vocalized speech task. Additionally, we compare these brain regions’ activity to a grasp motor 

imagery task. Our findings show that SMG not only encodes grasp names, but also color names, 

indicating that the modulation of SMG to speech is not solely driven by action words.  Furthermore, 

grasp and speech motor processes appeared to be distinctly represented in SMG, even when the 

semantic content remained the same. In the context of BMIs, these findings suggest we can train a 

decoder to represent both speech and grasp processes at the same time.  

In Chapter 6 we provided a proof-of-concept for a real-time internal speech BMI from signals 

recorded in an area of the SMG, which can decode eight different words with high accuracy. Indeed, 

an ideal speech BMI should represent movement-independent internal speech (also known as 

imagined or covert speech), which would allow locked-in patients to use the device. This work is the 

first of its kind, demonstrating internal speech can be robustly decoded from an implant in a single 

brain area. We find high neural SMG generalization between seeing a written word, saying it 
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internally, and vocalizing the word, suggesting shared cognitive functions between different 

language processes. We investigate phonetic and semantic representation by decoding words with 

identical semantic meanings as well as homophones and found evidence for both processes being 

represented within SMG. 

This thesis advances the BMI field by increasing our understanding of the neural processes 

underlying grasp motor imagery and language. We show SMG not only robustly represents motor 

imagery but is also strongly involved in vocalized and internal speech processes. By building the first 

real-time internal speech BMI, we provide evidence that studying higher-level brain areas has 

important implications for the development of more effective and versatile brain-machine 

interfaces that can decode both grasp-related and language-related signals from the same brain 

area. 
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Chapter 2: 

Background  

 

BMI methods and techniques 

Brain-machine interfaces (BMIs) are devices that interface with the central or peripheral nervous 

system and read out biological signals related to cognitive functions, bypassing the usual output 

modalities such as hand movement or speech. Typically, these signals are then used to control an 

external device, for instance by controlling a cursor on a screen, moving a robotic hand or displaying 

decoded words on a screen (Simeral et al. 2011; Hochberg et al. 2006; Collinger et al. 2013; Klaes et 

al. 2015; Moses et al. 2021). BMIs can also write information into the brain, allowing to evoke 

sensation through intracortical microstimulation (ICMS) (Flesher et al. 2016; Armenta Salas et al. 

2018). For individuals who have experienced interruptions in their communication pathways from 

brain to limbs due to spinal cord injury, stroke, or disease, BMIs offers the hope of recovering some 

of their lost motor and sensory abilities.  

 

One target group for BMI applications is people suffering from tetraplegia. Tetraplegia is defined by 

the loss of motor function and/or sensory function in all four limbs and the torso and can be caused 

by spinal cord injuries (SCI), stroke, or disease. Approximately 300,000 people in the US alone are 

thought to live with SCI injury, with about 18,000 new cases per year. Worldwide, this number is 

estimated to be close to 1 million (Ding et al. 2022). Close to 60% of SCI injuries lead to complete or 

incomplete tetraplegia, and less than 1% of patients will experience complete neurological recovery 

by the time of hospital discharge (National Spinal Cord Injury Statistical Center 2022). Another cause 

for severe loss of mobility is degenerative neurological diseases like amyotrophic lateral sclerosis 

(ALS) and brainstem strokes. In ALS, the progressive degeneration of motor neurons can even lead 

to a locked-in state (LIS), a condition that severely limits limb, speech, and facial movements. These 

patients are awake and conscious, unable to communicate or move, but may retain vertical eye 

movement (Smith and Delargy 2005; Norris et al. 1993; Chaudhary, Birbaumer, and Curado 2015). 

In 2015, around 16,500 people were reported to live with ALS in the US (Mehta 2018). For patients 
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affected by these conditions, tapping directly into the brain to read out their intentions could 

facilitate movement and communication.  

 

BMIs offer a promising solution by capturing the electrical signals, also called action potentials or 

“spikes”, that neurons use to communicate. These signals allow the processing and transmission of 

information throughout the brain and underlie our ability to perceive, think, learn, and execute 

complex behaviors. Various monitoring techniques exist to either directly or indirectly identify 

neural activity in the brain, and the acquisition methods can result in varying temporal and spatial 

resolution as well as quality of the obtained signal, which should be considered for real-time BMI 

applications. 

 

Functional magnetic imaging (fMRI) indirectly measures neural activity by tracking changes in blood 

oxygenation levels in the brain due to task demands. While being non-invasive, fMRI has slow 

temporal and limited spatial resolutions, and is expensive to perform. Despite its limitation for real-

time BMI applications, it can be useful for informing target brain areas for implantable BMIs. For 

instance, patients that meet the requirements to be scanned will often perform fMRI experiments 

to highlight which patch of the cortex is most active during tasks of interest (Tyson Aflalo et al. 2015; 

Armenta Salas et al. 2018).  

 

Another non-invasive recording technique is electroencephalography (EEG). EEG records the 

voltage changes that are generated during neural communication through surface electrodes. While 

surgery is not required, the acquired signal is often subject to noise, has limited spatial resolution, 

and a lower signal-to-noise ratio than more invasive methods (Choi et al. 2018). As a result, these 

signals are insufficient to reconstruct natural movement and speech processes in patients affected 

by paralysis or strokes. For example, state-of-the art EEG-based imagined speech decoding 

performances in 2022 ranged from approximately 60 – 80% binary classification (Lopez-Bernal et al. 

2022).  

 

Magnetoencephalography (MEG) measures the electrochemical properties of neurons, providing 

similar temporal and spatial resolution as EEG (Malmivuo 2012). Similar to fMRI, they are currently 

expensive and immobile, limiting their use in BMI applications (Kauhanen et al. 2006; Dash, Ferrari, 
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and Wang 2020a). However, the neurotech company Kernel has been working on addressing these 

limitations by developing a portable MEG system based on optically pumped magnetometer (OPT) 

(Pratt et al. 2021), which might enable portable MEG-BMI systems in the future.  

 

Invasive devices require the implantation of electrodes on the surface of the cortex through 

craniotomy. Electrocorticography (ECoG) places a grid of macro electrodes on the cortex, allowing 

coverage of a wide area and simultaneously offers increased signal quality and spatial resolution 

compared to EEG. Due to the size of the employed electrodes and their impedances, ECoG picks up 

local fluctuations of field potentials from multiple neural sources (Shokoueinejad et al. 2019). These 

local field potentials (LFP) contain useful information for movement and speech processes, as 

evidenced by successful ECoG-based BMIs (Moses et al. 2021; Anumanchipalli, Chartier, and Chang 

2019; Kellis et al. 2010; Angrick et al. 2018; Hotson et al. 2016). However, they are not typically 

employed for the recording of action potentials of individual neurons in humans. 

 

Stereotactic-EEG (sEEG) involves the implantation of penetrating depth electrodes using 

stereotactic guidance and allows sampling subcortical single-neuron activity. During sEEG, 

electrodes get inserted into targeted brain areas through small burr holes in the skull, which were 

shown to lead to less surgical complications than the craniotomies required for ECoG and 

multielectrode arrays (Iida and Otsubo 2017). While sEEG allows targeting deeper cortical regions, 

coverage per area is sparse, and is currently not in use for chronic recordings. Nonetheless, sEEG 

shows potential for BMI applications, and has been employed for grasp decoding and internal 

speech detection (Herff, Krusienski, and Kubben 2020; Meng Wang et al. 2020; Angrick et al. 2021). 

 

Multielectrode arrays, such as the Utah array, involve placing densely spaced electrodes a few 

millimeters into the cortex. Each Utah array measures approximately 4 mm x 4 mm, allowing high-

quality recordings of continuous electrical activity of the brain as well as the action potentials of 

individual neurons. With high signal-to-noise ratio, spatial, and temporal resolution, these arrays 

have shown great success in capturing information-rich signal variations required for high-quality 

decoding of movement related activity (Nicolas-Alonso and Gomez-Gil 2012; Brandman, Cash, and 

Hochberg 2017; Meijian Wang and Guo 2020). Invasive BMIs can be especially useful for patients 

that have suffered spinal cord injury (SCI) and are in the need of chronic BMI devices. For these 
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patients, cortical neural circuity remains intact, while the spinal cord lesion prevents communication 

between the brain and downstream muscles and nerves. Several groups, such as our own, have 

shown that useful neural signals can still be obtained seven years after microelectrode implantation 

without major side effects or complications (Mullin 2022, data from Chapter 6). 

 

In this work, intracortical microelectrodes were used to obtain high quality recordings of movement 

and speech processes. After the neural signals are acquired, they undergo a series of processing 

steps, including filtering and amplification. Specifically, the signal obtained from multielectrode 

Utah arrays is filtered between 0.3-7500 Hz and thresholded to detect spiking activity. For BMI 

applications, the obtained signals are then mapped to behaviors using machine-learning algorithms. 

For example, these algorithms can learn to predict what hand gesture a participant is imagining. 

Once a model is trained, it can be used to control an external device, such as a robotic arm, based 

on the participant's intentions. 

 

Figure 2-1A depicts a typical setup for a grasp or speech BMI experiments. A tetraplegic participant 

with implanted microelectrode arrays sits in front of a screen and is cued to perform an action such 

as motor imagery or speech vocalizations. The cue can be presented with different sensory 

modalities, including visual images of a grasp, auditory sounds, or written words. After a short delay, 

the participant performs the instructed action. Depending on the desired goal of the BMI 

application, the participant may imagine executing a specific grasp, attempt to reach an object, or 

vocalized a word. While the participant performs the task, neural responses are recorded and 

processed.  
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Here, we can distinguish between offline and online BMIs. Offline, or so-called asynchronous BMIs, 

record neural activity while the participant performs the task but do not provide immediate control 

of an output device. The data is then analyzed post hoc to design machine-learning algorithms that 

Figure 0-1 | Example setup of a BMI experiment. A) A tetraplegic participant implanted with microelectrode arrays is 
sitting in front of a screen and is cued with a visual image of an action to perform. After a short delay, the participant 
imagines perming the action, while neural responses are recorded and processed. B) During online control of then 
experiment, the action type is decoded from neural signals in real time.  
 
Adapted from: Edmondson, Laura R., and Hannes P. Saal. "Getting a grasp on BMIs: Decoding prehension and speech 
signals." Neuron 110.11 (2022): 1743-1745. 
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predict actions the participant may want to perform. Once a model is trained, it can be employed 

for online BMI applications (Figure 1B). In online BMI, neural data is received in real-time and 

translated into an action using the trained model. This approach allows for real-time control of a 

robotic arm or decoding of words for communication (Hochberg et al. 2012; Collinger et al. 2013; 

Klaes et al. 2015; Moses et al. 2021).  

 

Beyond motor cortex: studying areas of the cortical grasp circuit for BMI 

applications 

BMIs for grasp decoding 

A crucial factor to consider when designing BMIs is the location of the implant, as it determines what 

type of cognitive processes can be recovered. People affected by tetraplegia often consider the 

restoration of hand function the most crucial skill they would like to regain (Anderson 2004). For 

grasp applications, implanting BMIs into brain regions involved in grasp planning and execution are 

therefore an obvious choice. The grasping and manipulations of objects is planned and executed 

through a complex neural system involving several brain regions that together are referred to as the 

cortical grasp circuit. Main areas involve parietal and premotor areas for grasp planning, the motor 

cortex for execution, and the sensorimotor cortex for sensory feedback. The first human target site 

for chronic motor BMI application was the primary motor cortex, and it has remained a popular 

target site ever since (Brandman, Cash, and Hochberg 2017; Hochberg et al. 2006; Collinger et al. 

2013; F. R. Willett et al. 2021; Hochberg et al. 2012). Due to its proximity to output effectors, it 

contains a variety of useful signals for trajectory, reach, and grasp BMI applications (Brandman, 

Cash, and Hochberg 2017; Kalaska 2009; Rizzolatti, Luppino, and Matelli 1998). While the hand 

representation in the primary motor cortex (M1) is the final stage of grasp execution and generates 

the signals for the underlying finger joints for grasping, movement planning takes place in the 

higher-level premotor cortex and parietal areas. There, sensorimotor transformations for grasping 

are thought to occur (Andersen and Buneo 2002). Therefore, exploring brain regions outside the 

motor cortex may allow BMIs to represent richer behavioral patterns (Andersen, Aflalo, and Kellis 

2019; Gallego, Makin, and McDougle 2022). In this work, we study three previously untested areas 

in human for grasp BMI applications: the ventral premotor cortex (PMv), the supramarginal gyrus 

(SMG), and the somatosensory cortex (S1).   
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In primate electrophysiology studies, both areas in the posterior parietal cortex (PPC) and the 

ventral premotor cortex (PMv, putative area F5 in primate) have shown selectivity for object 

features such as size, shape, and orientation (A. Murata et al. 2000; Akira Murata et al. 1997; Sakata 

1995; Schaffelhofer, Agudelo-Toro, and Scherberger 2015a). Neurons recorded here show a variety 

of activation patterns. The neurons that process grasping intendent of visual input are called motor-

dominant cells, while those that react stronger to grasping in well-lit conditions are called visuo-

motor neurons. Additionally, visuo-dominant neurons process the visual cue even if no grasping is 

being performed (Sakata 1995; Taira 1998).  

 

PPC is thought to play a central role in multisensory integration and to coordinate transformations 

at the earliest stages of movement planning. Indeed, parietal and premotor areas are not only active 

during grasp planning, but also at cue presentation (Townsend, Subasi, and Scherberger 2011; Klaes 

et al. 2015; Schaffelhofer and Scherberger 2016). Lesions in PPC lead to deficits in apraxia, an 

inability in planning movements, or optic ataxia, leading to inaccuracies in reaching to visual targets 

in the periphery. The presence of these goal-related signals for reaching could translate into faster 

decoding of movement intentions (Andersen et al. 2014a; Andersen and Buneo 2002; Bruni et al. 

2017). Furthermore, a study found that many action variables are encoded in a partially mixed 

representation within PPC, allowing to decode movement intentions from most of the body in a 

small population of neurons (Zhang et al. 2017). PMv involvement in grasp planning and execution 

has been described on the single-neuron level in primates (A. Murata et al. 2000; Townsend, Subasi, 

and Scherberger 2011; Carpaneto et al. 2011; Schaffelhofer, Agudelo-Toro, and Scherberger 2015a; 

Schaffelhofer and Scherberger 2016; Bonini et al. 2010; Bruni et al. 2017), but it remains unclear 

whether these results translate to humans. These findings make parietal and premotor areas 

excellent alternative target sites for grasp BMI applications (Andersen, Aflalo, and Kellis 2019).  

 

In human subjects, few papers have studied grasp and finger decoding in areas located outside the 

motor cortex. (Klaes et al. 2015) showed how single neurons in the anterior intraparietal cortex 

(AIP) encode five different grasp shapes in a participant with tetraplegia. Neurons were selectively 

active for specific hand shapes, but also strongly activated to the visual grasp cue. Offline, decoding 

of three different grasps achieved over 90% classification accuracy, while five different grasps could 
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be decoded with up to 65% accuracy. Online brain control of three grasps was also demonstrated, 

achieving above 80% classification accuracy. (Zhang et al. 2017) found neuronal modulation in AIP 

to hand squeezes. Recently, (Guan et al. 2022) achieved contralateral and ipsilateral finger 

movement decoding in two tetraplegic participants from AIP. Offline, right- and left-hand individual 

finger decoding accuracies of 70% and 66% were obtained, while online, six classes were decodable 

with 86% and 92%.  

 

SMG is believed to play a crucial role in various grasp-related activities. It is hypothesized to have 

evolutionarily duplicated from human AIP specifically for tool use (Orban and Caruana 2014). A 

study conducted on human participants found that observation of tool use robustly activates left 

SMG. However, this response was not observed in non-human primates, even after training them 

how to use the involved tools (R. Peeters et al. 2009; R. R. Peeters, Rizzolatti, and Orban 2013). 

Furthermore, deficits in tasks involving tool usage are observed in patients with lesions near SMG 

(Goldenberg and Spatt 2009). Transcranial magnetic stimulation (TMS) over SMG while grasping 

objects for tool use leads to erroneous online corrections, further suggesting a causal role in tool 

use (McDowell et al. 2018). Studies have also confirmed SMG activity is modulated during grasping 

and manipulation of objects, reaching, and tool use (Sakata 1995; Filimon et al. 2009; Gallivan et al. 

2013; Buchwald, Przybylski, and Króliczak 2018). (Johnson-Frey 2004a) also demonstrated SMG's 

involvement in both the planning and execution of pantomimed tool use. These characteristics 

underscore the rich potential of SMG as a source of grasp-related neural signals in the human cortex, 

that could be utilized for the BMI control of a prosthetic hand. 

 

While the somatosensory cortex (S1) does not contribute to grasp planning per se, recent studies 

suggest it may serve as a promising target site for BMI applications in patients with tetraplegia. 

Human and NHP studies have shown that hand kinematics can be decoded during executed hand 

gestures (Branco et al. 2017) and before object grasping (Okorokova et al. 2020) respectively in S1. 

These findings suggest that neural signals may also be present during imagined movement (Zhang 

et al. 2017). Additionally, modulation of S1 neurons during motor imagery of reaching (Jafari et al. 

2020) and decoding of imagined cutaneous and proprioceptive sensations (Bashford et al. 2021) 

have been demonstrated for the same participant whose data is the basis of this work. If grasp 

motor imagery can be reliably decoded, a single implant in S1 could facilitate a bidirectional BMI 
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capable of decoding grasp intentions and using ICMS to elicit somatosensations (Armenta Salas et 

al. 2018). Therefore, we evaluated S1 contributions to grasp motor imagery decoding.  

BMIs for speech decoding 

Patients with paralysis or condition like ALS may not only face challenges with movement, but also 

communication. In ALS, speech loss is often already apparent at time of diagnosis, and within 18 

months, 60% of patient lose their ability to speak (Makkonen et al. 2018). This loss of speech is 

considered one of the most difficult aspects of the disease by ALS patients themselves (Hecht et al. 

2002), underscoring the critical need for the development of high-performing assistive 

communicative devices. In recent years, the field of speech BMIs has been rapidly evolving, allowing 

to translate neural signals into texts (Moses et al. 2021; J. G. Makin, Moses, and Chang 2020) and 

acoustic speech features (Anumanchipalli, Chartier, and Chang 2019; Angrick et al. 2018). For review 

see (Luo, Rabbani, and Crone 2022; Cooney, Folli, and Coyle 2022).   

 

Non-invasive recording techniques like fMRI, EEG, or magnetoencephalography (MEG) can be 

useful for identifying regions of the brain involved in vocalized and internal speech production 

(Dash, Ferrari, and Wang 2020b; Dash et al. 2020), however, they may lack the necessary 

spatiotemporal resolution, signal-to-noise ratio, and/or portability required to build an online 

speech BMI (Luo, Rabbani, and Crone 2022; Martin et al. 2018; Rabbani, Milsap, and Crone 2019).  

 

When discussing speech BMI applications, it is important to distinguish the type of speech signals 

they are decoding (Figure 2-2). Indeed, while vocalized speech decoding has yielded excellent 

results, these findings have yet to translate to internal speech (see below). Therefore, it is still 

unclear if findings in vocalized speech decoding will translate to patients who have already lost part 

or all of their speech abilities.  
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Vocalized and attempted 

speech involve the 

production of sound through 

the vocal cords. Vocalized 

speech has successfully been 

decoded using a variety of 

intracortical BMIs, using 

ECoG (Kellis et al. 2010; J. G. 

Makin, Moses, and Chang 

2020), sEEG (Angrick et al. 

2018; Herff et al. 2019), and 

multielectrode arrays 

(Wilson et al. 2020; Stavisky 

et al. 2019). 

(Anumanchipalli, Chartier, 

and Chang 2019) demonstrated intelligible speech synthesis from neural ECoG features is possible 

by decoding spoken sentences from five participants who underwent intracranial monitoring for 

epilepsy. In a patient that had lost the ability to articulate speech but was still able to attempt 

speech, (Moses et al. 2021) decoded individual words from a vocabulary of 50 words. Using natural-

language models and their vocabulary set, they were able to decode sentences with a median rate 

of 15.2 words per minute and an error rate of 25.6%.  

 

Mimed speech, also sometimes referred to as silent speech, retains the same facial expressions and 

motor commands as vocalized speech, however no sound is being produced. Miming signals can 

also be used as an effective means of communication in speech BMIs (Bocquelet et al. 2016). In a 

recent study by (Metzger et al. 2022), it was shown that miming 26 words from the NATO phonetic 

alphabet enabled rapid and highly accurate spelling of sentences in the same participant as in the 

previous mentioned study.  

 

Internal speech, also referred to as covert speech, imagined speech, or self-talk, refers to the 

process of silently talking to oneself in one’s mind, without associated motor output. Importantly, 

Figure 0-2 | Type of speech signals decoded by speech BMI applications. 
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internal speech is distinct from internal thoughts that are more abstract and refer to a much broader 

range of mental processes occurring in one’s mind. In contrast to vocalized and mimed speech, 

highly accurate real-time internal speech decoding has not yet been achieved. The main problem 

resides in the lack of external behavioral output. While vocalized and attempted speech produce 

acoustic signals that can be captured by a microphone, and mimed speech can be detected by using 

electromyography (EMG), no such signal exists for internal speech. However, these signals are 

required for the optimal training of speech decoding algorithm. These algorithms require knowing 

which timepoints in the neural signals correspond to spoken words or sentences. For example, the 

model employed by (Metzger et al. 2022) for real-time miming detection required supervised 

learning, where each datapoint in the neural data was labeled as either “rest”,  

“speech preparation”, “motor” or “speech”. Furthermore, lower signal-to-noise ratio and decreases 

in cortical activation compared to vocalized speech make for particularly challenging internal speech 

decoding (Angrick et al. 2018; Martin et al. 2018; Luo, Rabbani, and Crone 2022; Proix et al. 2022).  

 

Nonetheless, a few studies have shown above chance classification of internal speech in offline 

decoding analysis. (Pei, Barbour, et al. 2011) conducted a study on patients with ECoG grids 

implanted over frontal, parietal, and temporal regions, where participants silently read or vocalized 

written words displayed on a screen. The study successfully decoded vowels (37.5%) and 

consonants (36.3%) from internal speech, surpassing the chance level of 25%. In a similar study, 

(Ikeda et al. 2014) employed ECoG to decode three internally spoken vowels (chance level 33.3%) 

using frequencies in the beta band, with up to 55.6% accuracy from Broca area. Also using ECoG 

(Martin et al. 2018) investigated the decoding of six words during internal speech, achieving an 

average pair-wise classification of 58%, that reached up to 88% percent for the highest pair (chance 

level 50%). In a study conducted by (Dash, Ferrari, and Wang 2020b), the decoding of five internally 

spoken sentences using non-invasive MEG signals achieved up to 93% classification accuracy. 

However, the study had some limitations, including the considerable variation of the length of the 

tested sentences (“Goodbye” vs. “Do you understand me”), and the potential conflation of internal 

speech with speech preparation, both which may have contributed to higher classification 

accuracies. To our knowledge, the only study attempting to decode internal speech in real-time was 

recently conducted by (Angrick et al. 2021) using sEEG. While results were encouraging, as internal 

speech could be detected, the reconstructed audio was not yet discernable. Moreover, it is 



 

 

16 

important to note that the model utilized in the study required vocalized speech for training, which 

may not be feasible to obtain depending on the severity of the participant's condition. 

 

Speech decoding in areas of the cortical grasp circuit.  

Recent studies have shown that speech signals can be found in areas of the cortical grasp circuit. 

For instance, (Stavisky et al. 2019) and (Wilson et al. 2020) demonstrated speech decoding from the 

“hand knob” area in M1. Moreover, evidence for language processing has also been documented in 

PPC (Geranmayeh et al. 2012). (T. Aflalo et al. 2020) found a shared neural substrate for action verbs 

and observed actions, suggesting PPC may contribute to giving words their meaning. Additionally, 

(Zhang et al. 2017) found AIP modulation for spoken words. Investigating speech signals in the 

cortical grasp circuit could have promising applications, particularly for patients who suffer from 

both speech and movement deficits as in ALS. Implanting only one brain area that can represent 

both movement and speech processes would reduce surgery time and associated risks. 

SMG involvement in speech processing 

SMG involvement in language processing is apparent in several studies, however, to the best of our 

knowledge, its speech-related activity has not been characterized on the single-neuron level. 

Imaging studies have often observed preferred SMG activation for phonological over semantic 

decisions on visually presented words (C. J. Price et al. 1997; Seghier et al. 2004; Oberhuber et al. 

2016). For instance, activation is stronger when participants have to decide on the number of 

syllables of a word, or if the presented word is an animal.  Additionally, SMG activity also appears 

stronger for pseudowords (words composed of letters that conform to English orthographic pattern 

and are pronounceable, but have no semantic meaning), than for lexical words (Seghier et al. 2004). 

TMS over SMG can affect phonetic and semantic visual reading tasks (Stoeckel et al. 2009; 

Hartwigsen et al. 2010) and verbal working memory (Deschamps, Baum, and Gracco 2014). 

Furthermore, direct cortical electrostimulation of SMG was found to interfere with pseudoword 

reading (Roux et al. 2012). These findings provide evidence that SMG is involved in phonological 

aspects of language generation and could contain useful signals for speech BMIs.  

SMG activation for speech production and during aspects of speech comprehension has been 

described by several studies (Cathy J. Price 2010). Using electrocorticography, (Pei, Leuthardt, et al. 

2011a) found high-gamma SMG modulation during both vocalized and internal speech. Recently, (J. 
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G. Makin, Moses, and Chang 2020) decoded speech using ECoG signals, and found that electrodes 

located in SMG contributed to speech decoding. Furthermore, a study performed in people suffering 

from aphasia found lesions in SMG and its adjacent white matter affected inner speech rhyming 

tasks (Geva et al., 2011). These studies suggest that SMG is involved in various aspects of language 

processing, including word production, decoding, and phonological and semantic processing. 

Overall, we covered how neurons in the ventral premotor cortex, the posterior parietal cortex, and 

the somatosensory cortex are implicated in grasp and speech generation. In this thesis, we will 

evaluate their potential for BMI applications by recording their activity with multielectrode Utah 

array and characterizing activity for grasp and speech processes at the single-neuron level.  
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Chapter 3: 

Decoding grasp signals from the cortical grasp circuit in a tetraplegic 

human 

 

The following chapter’s contents are taken and adapted from Wandelt et al. 2022, with 

modifications done to fit the dissertation format. Work of this paper related to grasp processes 

is covered in this chapter. For work related to speech signals, see Chapter 5. 

Wandelt, S. K., Kellis, S., Bjånes, D. A., Pejsa, K., Lee, B., Liu, C., & Andersen, R. A. (2022). Decoding 

grasp and speech signals from the cortical grasp circuit in a tetraplegic human. Neuron, 110(11), 

1777-1787 

 

Abstract  

Tetraplegia from spinal cord injury leaves many patients paralyzed below the neck and unable to 

perform most activities of daily living. Brain-machine interfaces (BMIs) could give these patients 

greater independence by directly utilizing brain signals to control external devices such as robotic 

arms or hands. The cortical grasp network has been of particular interest because of its potential to 

facilitate the restoration of dexterous object manipulation. Neural activity from the cortical grasp 

network related to motor intentions for grasping was recorded in a tetraplegic patient in the 

supramarginal gyrus (SMG), the ventral premotor cortex (PMv), and the somatosensory cortex (S1). 

In high-level brain areas SMG and PMv, five imagined grasps were well represented by firing rates 

of neuronal populations during visual cue presentation. During motor imagery, grasps could be 

significantly decoded from all brain areas. At identical neuronal population sizes, SMG and PMv 

achieved similar highly significant decoding abilities, demonstrating their potential for grasp BMIs. 

These findings suggest that grasp signals can be robustly decoded at a single-unit level from the 

human cortical grasping circuit.  
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Introduction  

The ability to grasp and manipulate everyday objects is a fundamental skill, required for most daily 

tasks of independent living. Functional loss of this ability, due to partial or complete paralysis from 

a spinal cord injury (SCI), can irrevocably degrade an individual’s autonomy. People with tetraplegia 

have consistently rated recovery of hand and arm function as the highest priority for increasing their 

quality of life (Anderson 2004; Snoek et al. 2004).  

Brain-machine interfaces (BMI) could give tetraplegic individuals greater independence by directly 

recording neural activity from the brain and decoding these signals to control external devices such 

as a robotic arm or hand (Tyson Aflalo et al. 2015). Intracortical BMIs use microelectrode arrays to 

capture the action potentials of individual neurons with a high signal-to-noise ratio (SNR) and high 

spatial resolution (Nicolas-Alonso and Gomez-Gil 2012). If placed in brain areas of the human grasp 

circuit, these devices are well suited to extract the neuronal signals supporting the control of a high-

dimensional prosthetic hand (Collinger et al. 2013). 

In this work, we evaluated the encoding of grasp motor imagery in human supramarginal gyrus 

(SMG), a sub region of the posterior parietal cortex (PPC), the ventral premotor cortex (PMv) and 

the primary sensory cortex (S1). These brain areas are key components of the cortical grasp circuit. 

PPC and PMv each encode complex cognitive processes, like goal and end-target directed signals 

(Tyson Aflalo et al. 2015), but, similar to M1, have also been shown to encode low level trajectory 

and joint-angle motor commands (Andersen et al. 2014; Schaffelhofer and Scherberger 2016). 

Decoding movement intentions from upstream brain areas such as PPC and PMv, instead of 

decoding individual finger movements from M1, may allow for more rapid and intuitive control of a 

grasp BMI (Andersen, Aflalo, and Kellis 2019). S1 processes incoming sensory feedback signals from 

the peripheral nervous system. While it is not thought to participate in grasp planning per se, it 

processes proprioceptive signals during movement (Goodman et al. 2019) and imagined 

somatosensations (Jafari et al. 2020), (Bashford et al. 2021), which could be used for a grasp BMI.  

The grasp circuit was first identified in a non-human primate model (NHP), a network of cerebral 

pathways involved from visual object presentation to grasp execution. During an object 

manipulation task, neurons in anterior intraparietal cortex (AIP), a sub-region of PPC, and F5 (a PMv 
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analog in NHP) have both shown selectivity for object features, such as size, shape, and 

orientation (Akira Murata et al. 1997), (A. Murata et al. 2000), (Sakata 1995), (Taira 1998). In 

contrast to M1, information about the attempted grasp can already be decoded during cue 

presentation with high accuracy, implicating a role in motor planning (Carpaneto et al. 2011), 

(Townsend, Subasi, and Scherberger 2011), (Michaels and Scherberger 2017), (Schaffelhofer and 

Scherberger 2016). In human electrophysiological studies, some of these results have been 

replicated in AIP [-38 lateral, -53 posterior, 46 superior], demonstrating the ability to decode grasp 

planning and intention while a human participant performed motor imagery of one of five cued 

grasps (Klaes et al. 2015). However, it remains to be seen if an analogous relationship exists between 

pre-clinical results in NHP F5 and human PMv. 

The supramarginal gyrus (SMG) has been hypothesized as a region specialized for complex tool use, 

evolutionarily evolving from a duplicate region of NHP AIP (Orban and Caruana 2014). Functional 

magnetic resonance imagining (fMRI) studies have shown activation of SMG during observed tool 

use, a finding which could not be replicated in presumed analogous anatomical regions of cortex in 

NHP (R. Peeters et al. 2009). Other studies confirmed SMG activity modulates during grasping and 

manipulation of objects (Sakata 1995), reaching (Filimon et al. 2009), and tool use (Gallivan et al. 

2013), (Orban and Caruana 2014), (McDowell et al. 2018), (Buchwald, Przybylski, and Króliczak 

2018), (Reynaud et al. 2019). Additionally, one study demonstrated SMG’s involvement in both the 

planning and execution of (pantomimed) tool use (Johnson-Frey 2004b). Furthermore, different 

functional connectivity in left SMG has been demonstrated for tool use and tool transport gesturing 

(Garcea and Buxbaum 2019).  These characteristics highlight SMG’s rich potential as a source of 

grasp related neural signals in the human cortex, which could be used for BMI control of a prosthetic 

hand.  

Recent studies in S1 indicate its potential as a target site for BMI applications in patients with 

tetraplegia. Human and NHP studies have demonstrated decoding of hand kinematics during 

executed hand gestures (Branco et al. 2017) and before contact during object grasping (Okorokova 

et al. 2020), respectively. These results suggest that neural signals could also be present during 

imagined movement (Zhang et al. 2017). Furthermore, modulation of S1 neurons during motor 

imagery of reaching (Jafari et al. 2020), as well as decoding of imagined cutaneous and 
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proprioceptive sensations (Bashford et al. 2021), has been demonstrated for the same participant 

whose data underlies this work. If grasping motor imagery can be robustly decoded, a single implant 

in S1 could allow for a bidirectional BMI, able to decode grasp intentions and utilize electrical 

stimulation to evoke somatosensations (Armenta Salas et al. 2018).  

In this work, a tetraplegic participant performed motor imagery of several different grasps, while 

neurophysiological responses were captured from three implant sites using recording 

microelectrode arrays, the supramarginal gyrus (SMG), the ventral premotor cortex (PMv) and the 

primary sensory cortex (S1). We evaluated the decodability of these imagined grasps in the context 

of evaluating suitability for BMI applications. We hypothesized that grasp motor imagery would 

modulate activity in all three brain areas, while only the higher-level brain areas SMG and PMv 

would modulate during visual cue presentation.  

Methods 

Data and code availability 

All analyzes were conducted in MATLAB using previously published methods and packages. MATLAB 

analyses scripts and preprocessed data are available on GitHub 

(https://doi.org/10.5281/zenodo.6330179). 

 

Experimental model and subject details 

A tetraplegic participant was recruited for an IRB- and FDA-approved clinical trial of a brain-machine 

interface, and he gave informed consent to participate. The participant suffered a spinal cord injury 

at cervical level C5 two years prior to participating in the study. 

 

Implants 

The targeted areas for implant were the left ventral premotor cortex (PMv), supramarginal gyrus 

(SMG), and primary somatosensory cortex (S1). Exact implant site within PPC and PMv was 

identified using fMRI while the participant performed imagined reaching and grasping tasks. The 

subject performed precision grip, power grip, or reaches without hand shaping of objects in 

different orientations (Aflalo, Kellis et al., 2015). For localization of the S1 implant, the subject was 

touched on areas with residual sensation on the biceps, forearm, and thenar eminence during fMRI, 

https://doi.org/10.5281/zenodo.6330179
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and reported the number of touches (Armenta Salas et al. 2018).  In November 2016, the 

participant underwent surgery to implant one 96-channel multi-electrode array (Neuroport Array, 

Blackrock Microsystems, Salt Lake City, UT) in SMG and PMv each, and two 7 x 7 sputtered iridium 

oxide film-tipped microelectrode arrays with 48 channels each in S1. 

 

Data collection 

Recording began two weeks after surgery and continued one to three times per week. Data for this 

work were collected between 2017 and 2019. Broadband electrical activity was recorded from the 

NeuroPort arrays using Neural Signal Processors (Blackrock Microsystems, Salt Lake City, UT). Analog 

signals were amplified, bandpass filtered (0.3-7500 Hz), and digitized at 30,000 samples/sec. To 

identify putative action potentials, these broadband data were bandpass filtered (250-5000 Hz), and 

thresholded at -4.5 the estimated root-mean-square voltage of the noise. Waveforms captured at 

these threshold crossings were then spike sorted by manually assigning each observation to a 

putative single neuron, and the rate of occurrence of each "unit", in spikes/sec, are the data 

underlying this work. Units with firing rate <1.5 Hz were excluded from all analyses. To allow for 

meaningful analysis of individual datasets, recording sessions where high levels of noise prevented 

us from isolating more than three units on an array were excluded. This resulted in the removal of 

three PMv datasets. The rounded average number of recorded units per session was 55 +/- 17 for 

SMG, 12 +/- 9 for PMv, and 119 +/- 48 for S1.  

 

Experimental Task   

We implemented a task that cued five different grasps with visual images taken from the Human 

Grasping Database (Feix et al. 2016) to examine the neural activity related to imagined grasps in 

SMG , PMv and S1. The grasps were selected to cover a range of different hand configurations and 

were labeled “Lateral”, “WritingTripod”, “MediumWrap”, “PalmarPinch”, and “Sphere3Finger” 

(Figure 3-1A). 

 

Go task 

Each trial consisted of four phases, referred to in this paper as ITI, cue, delay, and action (Figure 3-

1B). The trial began with a brief inter-trial interval (2 sec), followed by a visual cue of one of the five 

specific grasps (4 sec). Then, after a delay period (gray circle onscreen; 2 sec), the participant was 
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instructed to imagine performing the cued grasp with his right (contralateral) hand (Go trials; 

green circle on screen; 4 sec). Three datasets had a longer action phase. For these, only data from 

the first four seconds of the action phase were included in the analysis.  

 

Go/No-Go task 

In a Go/No-Go version of this task, the participant was presented with either a green circle (Go 

condition) or a red circle (No-Go condition) after the delay, with instructions to imagine performing 

the cued grasp as normal during the Go condition (Go trials), and to do nothing for the No-Go 

condition (No-Go trials). In both variations of the task, conditions and grasp types were pseudo 

randomly interleaved and balanced with eight trials collected per combination (Figure 3-1B).  

Table 2-1  illustrates the number of recording sessions for each task variation.  

The participant was situated 1 m in front of a LED screen (1190 mm screen diagonal), where the task 

was visualized. The task was implemented using the Psychophysics Toolbox (Brainard, 1997; Pelli, 

1997; Kleiner et al, 2007) extension for MATLAB (MATLAB. (2018). 9.7.0.1190202 (R2019b). Natick, 

Massachusetts: The MathWorks Inc.).  

 

Neural firing rates  

Firing rates of sorted units were computed as the number of spikes that occurred in 50ms bins, 

divided by the bin width, and smoothed using a Gaussian filter with kernel width of 50ms to form 

an estimate of the instantaneous firing rates (spikes/sec). For the Go condition, 40 trials (8 

repetitions of 5 grasps) were recorded per block. For the No-Go condition, two consecutive blocks 

of 40 trials (4 repetitions of 5 Go and 5 No-Go grasps) were recorded and combined, to 

accommodate the participant with shorter tasks. 

 

 
Area 

Go 
task 

Go/No-Go 
task 

SMG 6 9 

PMV 6 6 

S1 6 7 
 

Task 

Table 0-1 | Number of recording sessions per task for each brain area. 
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Quantification and statistical analysis 

All analyses were performed using MATLAB R2020b. 

Linear regression analysis 

To identify units that exhibited selective firing rate patterns (or tuning) for the different grasps, 

linear regression analysis was performed in two different ways: 1) step by step in 50ms time bins to 

allow assessing changes in neuronal tuning over the entire trial duration; 2) averaging the firing rate 

of specified time windows during the cue (1.5s) and action phase (2s), allowing to compare tuning 

between both phases. The model returns a fit that estimates the firing rate of a unit based on the 

following variables:  

 

FR = βo + β1X1 + β2X2 + β3X3 + β4X4 + β5X5  

 

where FR corresponds to the firing rate of that unit, and β corresponds to the estimated regression 

coefficients. A 48 x 5 indicator variable, X, indicated which data corresponded to which grasp. The 

first 8 rows were the average firing rate of the ITI phase, and indicated the offset term βo, or baseline 

condition. These rows had only zeros. The next 40 rows indicated the trial data, for example, if the 

first trial was “Lateral” (grasp 1), it would have a 1 in column 1, and zeros in all other columns.  

In this model, β symbolizes the change of firing rate from baseline for each grasp. A student’s t-test 

was performed to test the hypothesis of β = 0. A unit was defined as tuned if the hypothesis could 

be rejected (p < 0.05, t-statistic). This definition allows for tuning of a unit to zero, one, or multiple 

grasps during different time points of the trial.  

 

Linear regression significance testing 

To assess significance of unit tuning, a null dataset was created by repeating linear regression 

analysis 1000 times with shuffled labels. Then, different percentile levels of this obtained null 

distribution were computed and compared to the actual data. Data higher than the 95th percentile 

of the null - distribution was denoted with a * symbol, higher than 99th percentile was denoted with 

**, and higher than 99.9th percentile was denoted with ***. 
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Classification 

Using the neuronal firing rates recorded in this task, a classifier was used to evaluate how well the 

set of grasps could be differentiated during each phase. For each session and each array individually, 

linear discriminant analysis (LDA) was performed, assuming an identical diagonal covariance matrix 

for data of each grasp. These assumptions, compared to a full diagonal covariance matrix, resulted 

in best classification accuracies. Classifiers were trained using averaged data from each phase, which 

were either 2s (ITI, delay) or 4s (cue, action). We applied principal component analysis (PCA) and 

selected the 10 highest principal components (PCs), or PCs explaining more than 90% of the variance 

(whichever was higher), for feature selection on the training set. When less than 10 PCs were 

available, all features were used. This feature selection method allowed us to compare if there was 

a correlation between the number of tuned units and classification accuracy, without selecting 

tuned units as features. The unit yield in PMv was generally lower than in SMG and S1; however, 

significant classification accuracies were still obtained with a limited number of features. Between 

12 and 21 PCs were used in SMG, 6 and 16 in PMv, and 18 and 27 in S1. Leave-one-out cross-

validation was performed to estimate decoding performance. A 95% confidence interval was 

computed by the student's t-inverse cumulative distribution function. 

 

Classification performance significance testing 

To assess the significance of classification performance, a null dataset was created by repeating 

classification 1000 times with shuffled labels. Then, different percentile levels of this null distribution 

were computed and compared to the mean of the actual data. Mean classification performances 

higher than the 95th percentile were denoted with a * symbol, higher than 99th percentile were 

denoted with **, and higher than 99.9th percentile were denoted with ***. 

 

Neuron dropping curve and cross-phase classification 

The neuron dropping curve represents the evolution of the classification accuracy based on the 

number of neurons used to train and test the model. All available neurons were used for all brain 

areas. Cross-phase classification was performed to investigate how well a model trained on data of 

the cue phase can predict data of the action phase, and vice-versa. Classification with eightfold cross 

validation was performed for each subset of neurons selected for classification. First, one of the 

neurons was randomly selected, and the classification accuracy on the cue and action phase was 
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computed with a model trained on either the action phase or the cue phase. Then, a new subset 

of two random neurons was selected, and classification accuracy was again computed. This was 

performed until all available neurons were randomly added. PCA was performed on the dataset. To 

avoid overfitting by using more features than observations (40), the maximum number of principal 

components used was 20, and the process was repeated 100 times. The prediction accuracy was 

averaged over the cross-validation folds, and the mean with 95% confidence interval (bootstrapped) 

was plotted against the number of neurons. 

Results 

Grasp representation in SMG, PMv, and S1 was characterized by decoding five imagined grasps, 

cued with visual images taken from the Human Grasping Database (Feix et al. 2016). We evaluated 

the brain regions’ potential for a grasp BMI in two ways; firstly, by quantifying grasp tuning in the 

neuronal population and secondly, by assessing how well individual grasps were decodable from 

each area. SMG, PMv, and S1 neural populations showed significant grasp selectivity, making them 

candidates for grasp BMI implantation sites. Additionally, if large enough neuronal populations are 

present, both SMG and PMv show high grasp selectivity, making them noteworthy candidates for 

grasp BMI implantation sites. 

Motor imagery task design 

The motor imagery task contained four phases: an inter-trial interval (ITI), a cue phase, a delay 

phase, and an action phase (Figure 3-1A). The Go variation of the task consisted of only Go-trials, 

with performed motor imagery during the action phase. A Go/No-Go variation of the task contained 

an action phase with randomly intermixed Go trials and No-Go trials. This control condition verified 

the participant could control motor imagery-related activity at will.  

Go trial results were quantitatively similar in both the Go and Go/No-Go variations of the task, as 

assessed through a t-test between classification accuracies (p > 0.05 for all). Therefore, neurons 

involved during Go-trials in both tasks were pooled over all session days (see Table 1), resulting in 

819 SMG Go task units, 504 SMG No-Go task units, 146 PMv Go task units, 78 PMv No-Go task units, 

1551 S1 task Go units, and 948 S1 No-Go task units. 
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SMG, PMv, and S1 show significant tuning to grasps during motor imagery 

Smoothed firing rates of example units for SMG and PMv during the Go/No-Go version of the task 

displayed neuronal modulation to the grasp “Sphere3Finger” in Figure 3-1B. Motor imagery evoked 

a strong response during the action phase of Go trials compared to the action phase of No-Go trials, 

where firing rate decreased back to baseline activity. 

After establishing individual neural firing rate modulation during motor imagery for different grasps, 

we quantified the entire neuronal population’s selectivity for each grasp. To compare selective 

neural activity within task epochs (image cue, Go-task action phase, No-Go task action phase), we 

determined the duration of selective (or tuned) activity of the neural population during each phase. 

Tuning of a neuron to a grasp was determined by fitting a linear regression model to the firing rate 

in 50ms time bins (see methods).   

 

Figure 0-1 | Neurons in the cortical grasp circuit encode grasp types. A) Grasp images from the Human Grasping 
Database (Feix et al., 2016) were used to cue motor imagery in a tetraplegic human. The task was composed of an inter-
trial interval (ITI), a cue phase displaying one of the grasp images, a delay phase, and an action phase. The action phase 
was composed of intermixed Go trials (green), during which the participant performed motor imagery and No-Go trials 
(red), during which the participant rested. B) Example smoothed firing rates of neurons in SMG and PMv during Go 
(left) and No-Go (right) trials. The plots show the smoothed average firing rate of two example units (solid line, shaded 
area 95% bootstrapped confidence interval) for 8 trials of each grasp, with vertical lines representing the beginning of 
each phase.  
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Population analysis (Figure 3-2A) of Go trials revealed two main peaks of activation in SMG and PMv, 

one at cue presentation (54.8% SMG, 41.1% PMv) and another during the action phase (37.4% SMG, 

39.0% PMv). For S1, only a minor increase in neural tuning was observed during the action phase. 

During No-Go trials, neuronal activity decreased around 1s after start of the action phase (Figure 3-

2B, action phase). This pattern could indicate the formation of a motor plan during the cue phase, 

and a brief period of activity during the action phase when this plan was canceled.  

The peaks of activity were selected to compute individual grasp tuning. Time windows incorporating 

the peaks began 250ms after the start of either the cue or action phase (to account for processing 

latencies), and were respectively 1.5s and 2s long (gray lines, top of Figure 3-1C,D). A longer time 

window was chosen for the action phase, as the exact onset of motor imagery is not possible to 

measure.  

To assess if grasp tuning was significant, results were compared to a shuffled condition, where grasp 

labels were randomly reassigned (see methods). As linear regression uses the ITI phase as a baseline 

condition, shuffled results were proportional to the general increase of activity in the neuronal 

population. Tuning was significant during the Go-trial peak activity for all brain areas (Figure 3-2C). 

As expected, tuning was not significant in the ITI condition. During the cue phase, results were 

significant in SMG and PMv, but not significant in S1. During the action phase, no significance was 

found during No-Go trials for all brain areas (Figure 3-2D). These results highlight grasp-dependent 

neuronal activity during cue presentation in SMG and PMv, and during instructed motor imagery in 

all brain areas.  
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Figure 0-2 | Population analysis of grasp tuning. A) Percentage of tuned units to grasps for Go trials in 50ms time bins 
in SMG, PMv and S1, over the trial duration. The gray lines represent cue and action analysis windows for Figures B,C 
and D. B) Same as A) for NoGo trials. C) Stacked percentage of units tuned for each grasp in ITI, cue phase and action 
phase window during Go trials. Significance was calculated by comparing data (right bar) to a shuffle distribution 
(striped lines, left bar). D) Same as C) for No-Go trials. E) Stacked percentage of units tuned to one, two, three, four, 
and five grasps during the cue phase and the action phase analysis window during Go trials. Significance was calculated 
as described previously. F) Same as E) for No-Go trials. G) Overlap of tuned units between cue and action analysis 
window during Go trials for SMG and PMv. 
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How many different grasps were individual units able to represent? Results were consistent 

across all brain areas with most tuned units selective to one grasp (Figure 3-2E). In SMG and PMv, 

additional units were tuned to multiple grasps, demonstrating mixed grasp encoding within the 

population. As before, results were significant during cue presentation in SMG and PMv, during Go-

trial action phase in all brain areas, but not during the ITI, or during the No-Go trial action phase 

(Figure 3-2E,F).  

Similar to previous analysis methodologies (Akira Murata et al. 1997), (Sakata 1995), (Taira 1998), 

(Klaes et al. 2015), we separated tuned units into three categories: those tuned during the cue phase 

(“visual units”), those tuned during Go-trial action phase (“motor-imagery units”), and those tuned 

during both (“visuo-motor units”). All three neuron types were found in SMG and PMv (Figure 3-1B, 

Figure 3-2G).  

SMG, PMv, and S1 show significant classification accuracy during grasp motor imagery  

To assess each brain region’s potential use for BMI applications, we evaluated decodability of 

individual imagined grasps using linear discriminant analysis (LDA; see Methods). Significant motor 

imagery decoding was observed in all brain areas (Figure 3-3A). Black dots indicate individual session 

results; red dots indicate averaged shuffled results. The mean +/- 95% confidence interval (c.i.) was 

computed over individual sessions. Significant classification accuracies were obtained for cue, delay 

and Go-action phases in SMG (p < 0.001), cue (p < 0.01), delay (p < 0.05), Go-action phases (p < 

0.001) in PMv, and Go-action phase (p < 0.5) in S1. For No-Go trials, significant classification 

accuracies were obtained in the cue and delay phase for SMG (p < 0.001, p < 0.01), and the cue 

phase in PMv (p < 0.05), but not the action phase (Figure 3-3B). Importantly, these results mirror 

the findings in Figure 3-2C,E, indicating that significant grasp tuning can predict significant 

classification accuracies. A confusion matrix averaged over all sessions of Go-trials in SMG and PMv 

during the action phase suggests that all grasps can be decoded (Figure 3-3C,D).  
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Figure 0-3 | Significantly decodable grasps from all brain areas during motor imagery. A)  Classification was performed 
for each session day individually using leave-one-out cross-validation (black dots). PCA was performed. 95% c.i.s for the 
session means were computed. Significance was evaluated by comparing actual data results to a shuffle distribution 
(averaged shuffle results = red dots, * = p < 0.05, ** = p < 0.01, *** = p < 0.001). B) Same as A) for No-Go trials. C) Error 
matrix during Go-trial action phase for SMG, averaged over all session days. D) Same as C) for PMv. 

SMG and PMv show high generalizability of grasp encoding in the neural population 

We addressed generalizability of grasp encoding in the neural population via two analyses: cross-

phase classification and stability across different population sizes. 

Cross-phase classification examined the similarities of neural processes across the cue and action 

phases (see methods). We trained a classification model on a subset of the data of one phase (e.g. 

cue phase), and tested it on two different subsets taken from the cue and action phases. If a model 

trained on the cue phase does not generalize to the action phase, distinct neural processes might 
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be present in each phase. However, if the model generalizes well, common cognitive processes 

might be occurring in both phases. In parallel, a neuron dropping analysis tracked the evolving 

classification accuracy as units were removed or added to the pool of predictors (see methods). The 

analysis was performed separately for each of the implanted brain regions, with 100 repetitions of 

eight-fold cross-validation. 

Results were averaged over 8-folds and bootstrapped confidence intervals (c.i.s.) of the mean were 

computed over 100 repetitions (Figure 3-4). Stable results led to small c.i.s, ranging from ±2.88% to 

±0.05% for SMG, ±2.83% to ±0.54% for PMv, and ±2.36% to ±0.8% for S1, decreasing with the 

number of available units. SMG and PMv showed strong shared activity between the cue and action 

phases. When training on the cue phase, and testing on the cue and action phases, we observed 

good generalization of the model in SMG, with overlapping c.i.s, diverging only at high unit counts. 

In PMv, the generalization was lower, but showed similar trends, while decoding remained at 

chance level for S1 (Figure 3-4 A,B,C Train: Cue Phase). However, when training on the action phase, 

and evaluating on the cue phase, lower generalization of the model was observed in SMG and PMv 

(Figure 3-4 A,B,C Train: Action Phase). 
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Figure 0-4 | SMG and PMv show high generalizability of grasp encoding in neuronal populations. A-C) Neuron 
dropping curves were performed in SMG, PMv and S1 over 100 repetitions of eight-fold cross validation. The first 20 
PC’s were used as features. The model was trained once on the cue phase and applied on both cue and action phases 
(Train: Cue phase), and vice-versa (Train: Action phase). The mean classification accuracy with bootstrapped 95% c.i.s 
are plotted. D) The first 140 units of each brain area were plotted together to compare the number of units required 
for 80% classification accuracy. SMG and PMv results were similar, with less units needed for classification during the 
action phase compared to the cue phase. 

During the action phase, SMG peaked at 99% decoding accuracy when all recorded units were 

included in the analysis (Figure 3-4A). In S1, decoding accuracy during the action phase peaked 

around 32%, even when the pool of available neurons increased (Figure 3-4C). As PMv did not 

reach its peak decoding accuracy due to fewer number of units recorded (Figure 3-4B), 

performance of SMG and PMv at the same population levels was compared directly. Figure 3-4D 

depicts the number of features needed to obtain 80% classification accuracy during cue (left) and 

action (right) phase. During the cue phase, 94 units in SMG and 86 units in PMv were needed. 
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During the action phase, 80% classification accuracy was obtained with 50 units in SMG, and 63 

units in PMv. These results demonstrate SMG’s and PMv’s potential for comparable grasp 

decoding. If higher neuronal population counts were available, excellent grasp classification results 

can be expected in both brain areas.  

 

PMv had a limited number of neurons available for each daily session. It is possible that some units 

were included multiple times across multiple days, potentially reducing the amount of independent 

available information. However, since the highest classification accuracy during the action phase 

was higher for the neuron dropping curve (90%) than for individual session days (65%, Figure 3-2A), 

new grasp information was available by combining units across several days. 

Discussion 

In this work, we demonstrated that motor imagery of five unique grasps was well represented by 

the firing rates of neuronal populations, and could be decoded significantly above chance level in 

the supramarginal gyrus (SMG), the ventral premotor cortex (PMv), and the primary sensory cortex 

(S1). SMG and PMv encoded grasp information both during cue presentation and during motor 

imagery with similar neuronal activity patterns. Equal numbers of units in the neuronal populations 

of SMG and PMv showed comparably excellent grasp encoding capabilities, demonstrating high 

potential for grasp BMI applications in both areas.  

 

To demonstrate the participant had volitional control of motor imagery during the action phase, 

and observed activity was not due to some external factor, interleaved No-Go trials served as a 

control. During No-Go trials in the action phase, unit tuning was not significantly different from a 

shuffled distribution (Figure 3-2D,F), and classification was not significantly different from chance 

(Figure 3-3A). A non-significant peak in tuning was observed in Figure 3-2B (No-Go action phase 

trials), potentially indicating the formation of a motor plan before the No-Go cue that then 

dissipated in the action phase. Similar cancelled plans have been previously observed in PPC of NHPs 

for reach and saccade plans (Cui and Andersen 2007).  
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S1 encodes imagined grasps significantly, but does not improve with population size 

While S1 grasp motor imagery classification was significant (Figure 3-3A), performance did not 

improve with increased population sizes as was seen with SMG and PMv (Figure 3-4D). This could 

be an indication of limited grasp information within the S1 population, or highly correlated firing 

units. Firstly, no actual movement was performed, likely decreasing the occurrence of 

proprioceptive signals (limited available information). Secondly, the task design might have only 

weakly engaged the neural populations we recorded from, as the electrode implant mostly covered 

the contralateral arm area (Armenta Salas et al. 2018). A different task, that involved the arm by 

reaching to grasp an object, may have elicited stronger neuronal activity (Jafari et al. 2020). Thirdly, 

units in S1 showed mostly grasp independent increases in activity compared to baseline (Figure 3-

2C,E), possibly indicating that the grasp-related responses were not different enough to support 

stronger decoding in S1 (correlated information). 

SMG and PMv show significant grasp activity during the visual cue and motor imagery 

SMG’s cue phase activity rose faster, and peaked higher compared to activity during motor imagery 

(Figure 3-2A). A study showed grasp planning in SMG was disrupted by TMS as early as 17ms after 

cue presentation, suggesting a causal role in grasp planning and execution (Potok et al. 2019).  

Evidence for mixed visual and motor activity during the action phase  

While human participants can self-report strategies employed while performing internal cognitive 

tasks, cue processing and motor imagery do not have independently observable behavioral outputs 

to correlate with the measured neural data. Our analysis showed generalizable representation 

(Figure 3-4A,B) and overlapping tuning (Figure 3-2G) in both SMG and PMv during both the cue and 

action phases. Multiple explanations for generalized neural activity observed during these tasks are 

plausible. During cue presentation, an increase in neural activity could represent visual feature 

extraction of the presented cue (visual processes). Alternatively, activity could be independent of 

visual input and represent planning activity of the cued grasp (motor processes). Additionally, 

activity could be related to memory or semantic meaning, as the participant remembers the 

instructed grasp (cognitive processes). Finally, a combination of all these processes might be at play. 

While proving a definitive answer to these questions is beyond the scope of this paper, performing 
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cross-phase classification between the cue and action can help identify similar or distinct 

cognitive processes within the observed data. 

Cross-phase classification found similar neuronal activity in the cue and action phases in both SMG 

and PMv (Figure 3-4A,B). This agrees with our finding of overlapping neuronal populations tuned 

during both the cue and action phase (Figure 3-2G). One explanation for these similarities could be 

that the participant is performing “visual imagery” rather than motor imagery during the action 

phase, by recalling a mental image of the grasp (Figure 3-4A,B Train: Cue Phase). Cue phase activity 

can partly be explained during the action phase (classification performance 80% SMG, 55% PMv) 

(Figure 3-4A,B Train: Action Phase), but neuronal activity unique to the action phase exists 

(classification performance 99% SMG, 89% PMv). This generalization from the cue to action phase 

is not bidirectional (from action to cue phase). Furthermore, training a classifier on neural data from 

spoken grasps during the action phase did not generalize to neural data from motor imagery during 

the action phase (Figure 3-5C), while partly generalizing with neural data during cue phase (Figure 

3-S1A). Therefore, we argue this additional information during the action phase is likely motor-

related and thus fundamentally differs from neural activity during the cue phase.  

Good generalization of the model to both cue and action phases when training on the cue phase 

could indicate motor components as well as visual components. PMv has been shown to represent 

planning activity of the grasp in NHP experiments (Schaffelhofer and Scherberger 2016). Therefore, 

planned hand shape as well as visual object features can modulate neuronal firing rates within the 

cortical grasp circuit during a grasp task. In SMG, a fMRI study demonstrated planning activity for 

grasping tools that were previously manipulated without vision, hinting that SMG’s cue phase 

activity is likely not to be only visual (Styrkowiec, Nowik, and Króliczak 2019). 

Cue phase activity could represent semantic or memory processing, i.e., the abstract concept of 

each cued grasp. During tool use, SMG is hypothesized to integrate the appropriate grasp type with 

the knowledge of how to use the tool (Osiurak and Badets 2016; Vingerhoets 2014), which requires 

access to semantic information. As our current task design does not allow the differentiations of 

these cognitive processes, further experimentation is necessary. For instance, cueing grasps with 

non-visual sensory cues and observing if cue phase activity is still present, might allow the 
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dissociation between visual, motor, and semantic processes, and help clarify the roles of SMG 

and PMv in the human grasp circuit.  

 

When analyzing SMG and PMv for potential grasp BMI applications, both performed similarly.  While 

SMG displays stronger encoding of grasps than PMv on a session-to-session basis (Figure 3-3A), 

these results are likely due to the small number of units we were able to record from the PMv array 

on individual days. The neuron dropping analysis illustrates that when identical neuronal population 

are present, SMG and PMv have similar grasp decoding abilities (Figure 3-4D).  

 

Conclusion 

In this study, we demonstrate grasps are well represented by single unit firing rates of neuronal 

populations in human SMG and PMv during cue presentation. During motor imagery, individual 

grasps could be significantly decoded in all brain areas. SMG and PMv achieved similar highly-

significant decoding performances, demonstrating their viability for a grasp BMI.  
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Chapter 4: 

Grasp concept encoding through different sensory modalities in 

human posterior parietal cortex 

 

The following chapter’s contents are taken and adapted from a conference talk given at the 8th 

international BCI meeting, 2021, with modifications done to fit the dissertation format.  

S.K. Wandelt, S. Kellis, L. Bashford, B. Lee, C. Li, R. A. Andersen (2021) Grasp concept encoding 

through different sensory modalities in human posterior parietal cortex, talk, 8th international BCI 

meeting, 2021. 

Abstract 

Grasping and manipulation of objects are important aspects of human independence and represent 

critical losses in paralysis due to spinal cord injury (SCI). Intracortical recordings from posterior 

parietal cortex (PPC) and the ventral premotor cortex (PMv) in participants with tetraplegia have 

previously been shown to exhibit planning and execution activity during motor imagery of different 

grasp shapes using visual images of grasps or objects. However, areas of the cortical grasp circuit 

are also involved in a variety of other cognitive tasks, such as visual word recognition and 

phonological processing. These different sensory and behavioral paradigms could potentially 

modulate preparatory activity and how grasps are represented during motor imagery. To 

understand how cue modalities affect motor imagery in different brain areas of the cortical grasp 

circuit, we instructed two tetraplegic participants to perform a grasp motor imagery task. Participant 

1 had implants in the supramarginal gyrus (SMG), and PMv and participant 2 had an implant in the 

anterior intraparietal cortex (AIP). We tested image, auditory, and written cue modalities and 

evaluated how grasp-related information was represented in different phases of the task. We found 

cue-independent grasp motor imagery, suggesting the underlying meaning of the grasp concept 

remained the same. During the cue phase, modulation to different sensory modalities depended on 

the observed brain area, with SMG showing cue-modality dependent activity for image, audio, and 

written cues. Generalization between auditory and written cue modality was higher than for the 

image modality, suggesting SMG represents language processes. To summarize, we show that 

certain areas of PPC can performs visual, auditory, and written cue integration, as well as motor 

planning activity, while performing a grasp motor imagery task.  
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Introduction 

Brain-machine interfaces (BMIs) have emerged as a promising tool for restoring lost motor functions 

in individuals with paralysis. Of particular interest for grasp motor imagery applications are 

intracortical BMI implants located in the human cortical grasp circuit. Neuronal signals recorded 

from these brain areas have allowed for high-accuracy decoding of reach and grasp movements 

(Collinger et al. 2013; Klaes et al. 2015; Tyson Aflalo et al. 2015; Andersen, Aflalo, and Kellis 2019). 

In recent years, the posterior parietal cortex (PPC) and the ventral premotor cortex (PMv) within 

the cortical grasp circuit have been explored for grasp motor imagery (Andersen, Aflalo, and Kellis 

2019; Wandelt et al. 2022b; Schaffelhofer, Agudelo-Toro, and Scherberger 2015b; Meng Wang et 

al. 2020; Klaes et al. 2015). These higher-level brain areas are thought to play critical roles in 

sensorimotor transformations that allow for flexible and adaptive grasp control, and could allow for 

improved BMI applications (Andersen and Buneo 2002; Andersen et al. 2014a; Cui and Andersen 

2007; Andersen, Aflalo, and Kellis 2019; Gallego, Makin, and McDougle 2022).  

 

Standard motor imagery experiments are composed of a cueing phase during which the participant 

gets instructed which grasp to perform, followed by a delay phase, and an action phase, during 

which motor imagery is being performed. The employed cued is often visual, depicting a hand 

position, an object, or an abstract image (Schaffelhofer and Scherberger 2016; Klaes et al. 2015; 

Wandelt et al. 2022b; Schaffelhofer, Agudelo-Toro, and Scherberger 2015b). Both PPC and PMv 

increase their firing rate already during cue presentation and motor planning, distinguishing them 

from downstream primary motor cortex (Wandelt et al. 2022b; Schaffelhofer and Scherberger 2016; 

Klaes et al. 2015). 

 

Although these brain areas are known to play a critical role in grasp planning and execution in both 

human and non-human primates (NHP) (Wandelt et al. 2022a; Klaes et al. 2015; Schaffelhofer and 

Scherberger 2016; Townsend, Subasi, and Scherberger 2011), they also show involvement in a 

variety of other cognitive tasks, such as memory processing, written word recognition and phonetics 

(Rutishauser et al. 2018; T. Aflalo et al. 2020; Stoeckel et al. 2009; Sliwinska et al. 2012a; Oberhuber 

et al. 2016). Therefore, which cognitive process they represent during grasp preparation in unclear. 

Indeed, when cueing a participant with a visual image of a grasp or an object, several cognitive 
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processes could be at play. The activity could be visual in nature, as grasping requires extracting 

visual features of an object for appropriate grasp shaping. The activity could also be motor and joint 

position related, as the participant is planning a motor imagery grasp. Moreover, when the 

participant recognizes the grasp, memory and semantic processing are occurring. Finally, higher-

level brain areas could also represent a mix of these processes at the same time. Therefore, different 

sensory and behavioral paradigms could potentially modulate preparatory activity and how grasps 

are represented during motor imagery in the cortical grasp circuit.  

 

To understand the cognitive process represented during grasp cueing and planning on the neuronal 

level in human PPC and PMv, and to study impact of cue modality on motor imagery, we designed 

a grasp motor imagery task using three different sensory cues: a visual image cue, an auditory cue, 

and a written cue. These parameters allowed us to ask several questions. Firstly, which cognitive 

processes drives neural activity in PPC and PMv? Secondly, how similar are sensory modalities 

processed in different regions of the cortical grasp circuit? Lastly, is motor imagery representation 

invariable to cue modality? For instance, it is unclear if non-visual cues would allow a participant to 

transmit the same precise and detailed information required for fine grasp motor control as visual 

images of a grasp.  

In our experiment, two tetraplegic patients performed grasp motor imagery of five different grasps 

using one of three sensory cue modalities. The first patient had intracortical implants in the 

supramarginal gyrus (SMG) and PMv, and the second participant had intracortical implants in the 

anterior intraparietal cortex (AIP).  

We found that regardless of the employed cue modality, motor imagery was decoded equally well. 

During the cue phase, while AIP and PMv preferentially encoded the visual image cue, SMG showed 

unique neural modulation to all cues. Generalization between the auditory and written cue modality 

was higher than for the image modality, suggesting SMG may represent language processes. 

Understanding which cognitive processes are represented in areas of the cortical grasp circuit could 

allow tailoring cues to individual users’ preferences and guide new applications for BMI devices.  
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Methods  

For “Data and code availability”, “Experimental model and subject details”, “Method details”, “Data 
collection” and “Quantification and statistical analysis” paragraphs, see Chapter 3, as methods were 
identical. This methods section only contains novel methods and experimental setups that have not 
been described in Chapter 3.  
 
 
Subjects and implants  

Two tetraplegic subjects were recruited for an IRB- and FDA-approved clinical trial of a brain-

machine interface and gave informed consent to participate. The first subject, s2, suffered a spinal 

cord injury at cervical level C5 two years prior to participating in the study. The targeted areas for 

implant were the supramarginal gyrus (SMG), the ventral premotor cortex (PMv), and the primary 

somatosensory cortex (S1). In this work, only the SMG and PMv array were of interest. To identify 

exact implant sites within these regions, the subject performed imagined reaching and grasping 

tasks during functional magnetic resonance imaging (fMRI), see (Armenta Salas et al. 2018) for 

additional details. In 2015, s2 underwent surgery to implant one 96-channel multi-electrode array 

(Neuroport Array, Blackrock Microsystems, Salt Lake City, UT) in each of these areas. 

 

Participant N1 suffered a spinal cord at level C4-C5 approximately two years before this study. He 

has residual movements in his upper arms but cannot move or feel his hands (Guan et al. 2022). 

 

Data collection  

Data for this work were collected between January and April 2020 for participant s2. For participant 

n1, data were collected between November 2021 and May 2022. Broadband electrical activity was 

recorded from the NeuroPort arrays using Neural Signal Processors (Blackrock Microsystems, Salt 

Lake City, UT). Analog signals were amplified, bandpass filtered (0.3-7500 Hz), and digitized at 

30,000 samples/sec. To identify putative action potentials, these broadband data were bandpass 

filtered (250-5000 Hz), and thresholded at -4.5 the estimated root-mean-square voltage. 

Waveforms captured at these threshold crossing were spike sorted by manually assigning each 

observation to a putative single neuron. On each session day, all three tasks were recorded, and 

spikes were sorted in combination. This allowed observation of the behavior of each unit in the 

three different tasks.  
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Experimental Tasks 

We implemented three tasks that evaluated the effect of different cue modalities on motor imagery 

in areas of the human cortical grasp circuit. The “Image” task cued five different grasps with visual 

images taken from the Human Grasping Database (Feix et al. 2016) to examine the neural activity 

related to imagined grasps in SMG , PMv, and AIP. The grasps were selected to cover a range of 

different hand configurations and were labeled “Lateral”, “WritingTripod”, “MediumWrap”, 

“PalmarPinch”, and “Sphere3Finger” (Figure 4-1A). The “Auditory” tasks cued the participant with 

the auditory name of the grasp, while the “Written” task cued the participant with the written name 

of the grasp on the screen.  

 

Image task:    

Each trial consisted of four phases, referred to in this paper as ITI, cue, delay, and action. The trial 

began with a brief inter-trial interval (2 sec), followed by a visual cue of one of the five specific grasps 

(2 sec). Then, after a delay period (gray circle onscreen; 2 sec), the participant was instructed to 

imagine performing the cued grasp with his right (contralateral) hand (Go trials; green circle on 

screen; 4 sec).  

 

Auditory task 

An auditory variation of the task was constructed with the same task design outline above. During 

the cue phase, the visual image was replaced with the sound of the name of the grasp. Importantly, 

no visual information was shown on the screen during the cue phase.  

 

Written task  

In the written version of the task, the participants were cued with grasp name in written white text 

on black background.   

 

On each of seven session days, a “Visual task”, a “Auditory task” and a “Written task” were 

performed to allow comparisons between tasks.  
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The participants were situated 1 m in front of a LED screen (1190 mm screen diagonal), where 

the task was visualized. The tasks were implemented using the Psychophysics Toolbox (Brainard, 

1997; Pelli, 1997; Kleiner et al, 2007) extension for MATLAB (MATLAB. (2018). 9.7.0.1190202 

(R2019b). Natick, Massachusetts: The MathWorks Inc.).  

 

Cross-task classification  

To evaluate the similarity of neuronal firing in the “Visual cue”, the “Auditory cue” and the “Written 

cue” tasks, cross-task classification was performed. This method consisted of training a classifier on 

the averaged neuronal firing rates recorded during one of the tasks (e.g., “Visual cue”) and 

evaluating it on the neuronal firing rates of all three tasks. A LDA with PCA and Leave-one-out cross 

validation was performed for each individual phase (see Methods section “Classification” in Chapter 

3).  

 

Results  

To characterize which cognitive processes are occurring during grasp cueing and preparation in 

brain areas SMG, PMv, and AIP, and to understand their effect on grasp motor imagery, three 

different tasks were designed. The task varied the sensory modality employed for grasp cueing. The 

“Visual cue” task showed the visual image of the grasp, the “Auditory cue” task required listening 

to the audio sound of the grasp name, and the “Written cue” task required reading the written name 

of the grasp on the screen (Figure 4-1). The visual image did not require knowledge of the grasp 

name, in contrast to the auditory and the written cue. To ensure performance was not affected by 

not knowing which motor imagery to perform, and that the participants knew the correct names, a 

quiz was performed at the beginning of each session.  
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Figure 0-1 | Task design. Three tasks was designed to study the effect of different sensory cue modalities on grasp 
motor imagery. Tasks were composed of an inter-trial interval (ITI), a cue phase displaying one of three cue modalities, 
a delay phase, and an action phase. During the action phase, the participant was instructed to perform motor imagery 
of the instructed grasp. The Image cue tasked used visual images of a grasp as a cue (see Chapter 1). The Auditory cue 
task used the auditory sound of the name of the grasp. During the Auditory cue, the screen remained dark. For the 
Written cue task, the white name of the instructed grasp on black background appeared on the screen.  

PMv and AIP preferentially encode visual cues  

During each of seven session days, a “Visual cue”, an “Auditory cue”, and a “Written cue” task were 

run. Data were spike sorted, resulting in a total of 173 SMG units, 86 PMv units, and 606 AIP units 

for each task. First, tuning of units to different task parameters was computed using a linear 

regression analysis. The percentage of tuned units over trial duration for each of the tasks and brain 

regions was plotted in 50ms time bins (Figure 4-2). During the action phase, temporal dynamics for 

each cue modality were similar, suggesting sensorimotor transformation occurred regardless of the 

employed cue. Due to software constraints, the auditory cue was played ~250 ms later than the 
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image and written cue appeared. Therefore, to compare activity during the cue phase for the 

“Auditory task”, neural data was aligned to the start of the cue phase. We observed differences in 

the strength of activity depending on the investigated brain area. While AIP and PMv neuronal 

populations appeared to modulate fasted and strongest to the image cue condition, neurons in SMG 

were the most engaged during the written cue. These results suggest areas in PPC and PMv may 

represent different cognitive processes during grasp planning.   

 

Figure 0-2 | Neuronal population dynamics to sensory modalities differ per brain area. The percentage of tuned 
channels was computed using linear regression analysis and plotted over the task duration in 50ms time bins for the 
“Image cue” task (green), “Auditory cue” task (blue), and “Written cue” task (yellow). In total, 173 SMG, 86 PMV, and 
606 AIP units were obtained. While PMv and AIP show preferential modulation to the image cue, SMG had the highest 
percentage of tuned units to the written cue condition.  

Next, we evaluated how well each brain region could decode five different grasps for each of the 

different grasp cues, and in each of the task phases. For each session day, leave-one-out cross-
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validation was performed, PCA was performed on the training dataset, and PCs explaining 90% 

of the variance were kept. Average session results with 95% c.i. were plotted, and significance was 

evaluated by comparing results to a shuffled distribution. We found significant grasp motor imagery 

decoding in SMG, PMv, and AIP (p < 0.01), while results during the cue phase varied. Significant 

classification of grasps was possible for all cue modalities in SMG and AIP (p < 0.01). In PMv, 

decoding between grasp audio sounds was not significant, and slightly significant for written grasp 

words  (p < 0.05). (Figure 4-3A).  

We evaluated if classification accuracies in the cue and action phase were significantly different 

between data from different task modalities with a two-sample t-test (Figure 4-3B). Results 

mirrored the finding of the tuning analysis. PMv and AIP showed significantly higher decoding of 

grasp images than of grasp audio sounds and written grasp names. In SMG, decoding of written 

grasp words elicited significantly higher decoding accuracies. During motor imagery, classification 

accuracies were not significantly different for each task.  
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Sensory modality specific grasp encoding varies in SMG and AIP 

The decoding analysis confirmed that regardless of the employed cue modality, grasp motor-

imagery could significantly be decoded in all brain areas. Furthermore, grasps could significantly be 

decoded during the cue phase for all three sensory modalities in SMG and AIP, albeit with different 

Figure 0-3 | AIP and PMv preferentially encode 
image cues. A) Classification was performed for 
each session day individually using leave-one-out 
cross-validation (black dots), for each task and in 
each brain area. PCA was performed and 95% c.i.s 
for the session means were computed. 
Significance was evaluated by comparing actual 
data results to a shuffle distribution (averaged 
shuffle results = red dots, * = p < 0.05, ** = p < 
0.01). Significant motor imagery decoding was 
achieved in all brain areas, for all tasks. Grasp 
decoding during the cue phase differed for 
different brain areas.  B) Cue phase and action 
phase classification results from A) were plotted 
together for visualization. Significant differences 
in classification accuracy were calculated with a 
two-sample t-test and designated by a 
significance bracket (*** p < 0.001, ** p < 0.01, * 
p < 0.05). 
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decoding accuracies. To characterize which cognitive process the neuronal populations represent 

during the cue phase, we assessed the similarity of information content between the image cue, the 

auditory cue, and the written cue through a cross-task classification analysis. PMv was excluded 

from the analysis, as it only weakly or not significantly encoded written and auditory sensory 

modalities respectively. 

 

Cross-task classification consists of training a classification model on data recorded during the cue 

phase of one of the tasks, e.g., the “Image cue” task, and using that model to decode grasps during 

the cue phase of all three tasks. Figure 4-4A illustrates some potential outcomes of the analysis. If 

activity during the cue phase is completely sensory modality dependent, a model trained on image 

data might not generalize at all to auditory and written cue data. This outcome could suggest neural 

activity during the image cue is due to a visual process (Figure 4-4A, possible outcome 1). On the 

other hand, if a model trained on the cue phase were to generalize with no significant difference in 

classification accuracy between the three sensory modalities, it would suggest sensory modality 

independent activity. Semantic, memory, or planning processes may generate such an outcome 

(Figure 4-4A, possible outcome 2). Finally, if the model would partly generalize to auditory and 

written cue data, but with lower classification accuracy, that may indicate a mix of sensory and 

generalized activity (Figure 4-4A, possible outcome 3). The analysis was performed by varying the 

task used for training the model. As a control, the analysis was performed with ITI phase data and 

significance was assessed by comparing data to a shuffled distribution. Similarity in information 

content during the cue phase was assessed through a two-sample t-test (p < 0.05). 

 

We found higher sensory cue-specific activity in SMG than in AIP (Figure 4-4B). Indeed, models 

trained on neural data recorded during one of the cue modalities had significantly lower 

classification accuracies when tested on data recorded during the other cue modalities in SMG. 

Interestingly, models trained on auditory cue generalized better to written cue data, and vice versa, 

suggesting a shared cognitive process between hearing the name of a grasp and silently reading the 

name of the grasp. In AIP, cue-dependent neural encoding was only observed for the image cue 

condition. When training a model on auditory cue or written cue data, the model decoded grasps in 

the other cue modalities equally well. These findings suggest AIP represents a shared neural 

cognitive process during grasp preparation.   
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Figure 0-4 | Shared neural representations between image, auditory, and written cue processes. A) Schematic 
illustrating expected cross-task classifier behavior if neural cue phase activity is 1) sensory modality dependent, 2) 
sensory modality independent, or 3) mixed sensory and generalized activity. B) Performance of decoders trained on 
data of each cue modality (Image, Auditory, Written), for each brain area in ITI and Cue phase. Significant classification 
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result compared to shuffled chance distribution are denoted in ** or * (** p < 0.01, * p < 0.05). Significant differences 
in classification accuracy were calculated with a two-sample t-test and designated by a classification bracket if p < 0.05. 

We evaluated the generalizability of grasp motor imagery cued with different sensory modalities by 

computing a neuron dropping curve combined with cross-task classification. This method allowed 

investigation of how motor representation for grasp encoding evolves when adding units to the pool 

of predictors. Results were averaged over 8-folds and bootstrapped confidence intervals (c.i.s.) of 

the mean were computed over 100 repetitions (Figure 4-5). We found high generalizability of the 

different models, suggesting grasp motor imagery can be cued successfully with a variety of sensory 

modalities. Furthermore, classification accuracies in SMG and PMv were consistent with findings 

from an earlier study (Figure 3-4, Chapter 3), indicating robust grasp motor imagery representation.  
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Figure 0-5 | Grasp motor imagery is stable across cue modalities. Neuron dropping curves were performed in SMG, 
PMv and AIP over 100 repetitions of eight-fold cross validation. The first 20 PCs were used as features. The model was 
trained on action phase data from the Image cue task (e.g., Train: Image) and tested on action phase data of all tasks. 
The analysis was repeated by training the model on the Auditory cue task (Train: Auditory) and the Written cue task. 
The mean classification accuracy with bootstrapped 95% c.i.s. of the mean are plotted.  

Discussion  

In this work, we showed that participants with tetraplegia can robustly generate cue-modality 

independent grasp motor imagery. Different higher-level brain regions of the cortical grasp circuit 
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showed preferential representation of different cue modalities. While PMv and AIP encoded 

images of grasps significantly higher than audio or written word grasp representations, SMG 

exhibited sensory-specific encoding for all cue modalities. In SMG, auditory and written shared 

stronger neural representation, potentially indicating linguistic processes. 

Grasp motor imagery is cue-independent  

Intracortical recordings from the cortical grasp circuit exhibit planning and execution activity during 

motor imagery of different grasp shapes using visual cues (image of grasp). However, these higher-

level brain areas are also involved in other tasks, such as visual word recognition and phonological 

processing. We aimed to understand if these different sensory and behavioral paradigms could 

potentially modulate grasp preparatory and motor activity, by cueing tetraplegic participants to 

perform motor imagery using three different sensory cues, an image cue, an auditory cue, and a 

written cue. First, by computing the percentage of tuned units to grasp motor imagery over time 

(Figure 4-2), we found that temporal dynamics during motor imagery were preserved in each task. 

Through classification analysis, we demonstrated that evoked grasp motor imagery not only was 

similarly strong in each task (Figure 4-3B), but also preserved the same neural code (Figure 4-5). 

These results confirm visual images of grasps are not necessary to generate significant grasp motor 

imagery in areas of the cortical grasp circuit.  

 

Other studies have evaluated different cues for motor applications, suggesting cue-independent 

motor imagery for other motor processes as well (T. Aflalo et al. 2020; Guan et al. 2022). In (T. Aflalo 

et al. 2020), motor imagery of finger flexion was cued with abstract images as a control, and resulted 

in similar temporal dynamics to motor imagery cued with action verbs (Figure S10). In (Guan et al. 

2022), motor imagery of finger presses were cued with interleaved text and spatial cues. However, 

to our knowledge, the evoked motor imagery using different cues was not directly compared as in 

our study. 

 
Unique sensory representation in brain areas of the cortical grasp circuit 

SMG, AIP, and PMv are part of the cortical grasp circuit. Our finding suggest they may process 

different cognitive processes during grasp preparation. AIP and PMv preferentially encode image 

cues depicting a grasp and an object, demonstrated by a higher percentage of tuned units (Figure 
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4-2) and significantly higher classification accuracies (Figure 4-3B). These results are consistent 

with non-human primate studies, which have shown AIP and PMv (putative NHP areas F5) strongly 

respond to visual presentations of objects and to their size, shape, and orientation (Schaffelhofer 

and Scherberger 2016; A. Murata et al. 2000; Taira 1998; Baumann, Fluet, and Scherberger 2009). 

Additionally, Klaes et al. found in human AIP that when grasps were simultaneously cued with non-

congruent images and auditory stimuli, only the image cue was decodable (Klaes et al. 2015). These 

studies further highlight AIP’s preferred role in the processing of visual cues.  

While significant classification of the auditory and the written cue were found in AIP (Figure 4-3A), 

that activity emerged later compared to the image cue (Figure 4-2) and did not appear specific to 

the sensory cues. Indeed, when training classifier models on these datasets, strong shared neural 

representations were found (Figure 4-4, Train modality: Auditory, Train modality: Written), 

suggesting a shared cognitive process was represented in all three cue modalities. These results 

could be consistent with findings in (Schaffelhofer and Scherberger 2016), showing AIP maintained 

coding for visual object properties during movement execution in the dark, suggesting involvement 

in working memory. (T. Aflalo et al. 2020)  found that passive viewing of abstract symbols did not 

evoke neural selectivity in PPC, while passive viewing of action verbs did. Further investigation is 

required to establish if passive viewing of the different cue modalities would evoke neural activity 

during the cue phase and may elucidate if activity is intrinsic, or task dependent.  

SMG neurons showed strongest ability in differentiate written words, demonstrated both by the 

highest percentage of tuned units (Figure 4-2) and significantly higher classification accuracy 

compared to the other cues (Figure 4-3B). However, SMG exhibited cue-specific encoding for the 

image cue and auditory cue as well. Classification accuracies during auditory and image cue phase 

were significant (Figure 4-3A), and cross-task classification was significantly higher for the cue 

modality the decoder was trained on compared to other cue modalities (Figure 4-4B).These results 

suggest neurons in SMG can integrate a variety of different sensory modalities. In the literature, we 

find different possible explanations for this observation. Firstly, studies using functional magnetic 

imaging (fMRI) posit that SMG functions as a sort of hub in tool use, integrating visual features of 

the tool, as well as the semantic knowledge of how to use it (McDowell et al. 2018; Johnson-Frey 

2004b; Osiurak and Badets 2016; Vingerhoets 2014; Garcea and Buxbaum 2019). These 
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characteristics may require processing of different sensory modalities during grasping. Secondly, 

a different body of work from the imaging and TMS literature describes SMG involvement in 

linguistic processes. Repeatedly, SMG activation or disruption has been observed in tasks involving 

written word recognition, phonetic, and verbal memory processing (Stoeckel et al. 2009; Sliwinska 

et al. 2012a; Oberhuber et al. 2016; Deschamps, Baum, and Gracco 2014; Seghier et al. 2004), 

suggesting SMG’s involvement in  language. In our work, we observed stronger shared neural 

representations between auditory and written word grasp representation (Figure 4-3B, Train 

modality: Auditory, Train modality: Written), than for a grasp images. These processes involve silent 

reading of the cue and auditory understanding of the cue, which require access to language 

representation, and therefore may suggest SMG processes linguistic aspects. Directly studying 

SMG’s involvement in speech may allow to answer this question.  

Impact for BMI applications  

In this study, we found that grasp motor imagery was well decodable from SMG, PMV, and AIP. 

Classification accuracies in SMG and PMv were consistent with findings from an earlier study (Figure 

4-5, Figure 3-4, Chapter 3). As data from this study were obtained 6 – 10 months later than from the 

first study, these findings indicate robust and long-term grasp motor imagery representation for 

BMI applications.  

The ability to cue BMIs with a variety of different sensory modalities without affecting decoding 

abilities can have several advantages. It allows tailoring cues to the individual user’s preferences or 

abilities and may enhance their engagement or satisfaction with the system. For instance, auditory 

cues do not require the presence of a screen, and can be presented through headphones or 

speakers, making cue presentation quicker, more private, and more efficient. Furthermore, 

understanding which cognitive processes are represented in the location of BMI implants may 

inform the development of novel BMI applications.  

Conclusion:  

In this work, we studied the effect of the sensory cue modality on grasp motor imagery in different 

areas of the cortical grasp circuit. Our findings show motor imagery can be decoded with high 

accuracy regardless of the employed cue modality. Moreover, we show neurons in PMv and AIP 

preferentially encoded visual images. AIP neurons furthermore showed cue-independent 
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modulation, suggesting representation of a common cognitive process such as working memory 

(Schaffelhofer and Scherberger 2016). In SMG, neurons showed cue-specific activity for image, 

auditory, and written grasp representation. Additionally, shared neural generalization between 

auditory and written cue processes suggest SMG’s involvement in linguistic processes (Oberhuber 

et al. 2016; Deschamps, Baum, and Gracco 2014). These findings provide new insights into the 

neural mechanisms underlying motor imagery and other cognitive processes. To conclude, these 

results suggest BMI users could tailor cues to individual users’ preferences and could help guide new 

applications for BMI devices.  
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Chapter 5: 

Grasp and speech motor imagery representation in the 

supramarginal gyrus 

 

The following chapter’s contents are taken and adapted from Wandelt et al. 2022, with 

modifications done to fit the dissertation format. Work of this paper comparing grasp and 

speech processes is covered in this chapter. For work related to grasp signals, see Chapter 3.  

 

Wandelt, S. K., Kellis, S., Bjånes, D. A., Pejsa, K., Lee, B., Liu, C., & Andersen, R. A. (2022). 

Decoding grasp and speech signals from the cortical grasp circuit in a tetraplegic 

human. Neuron, 110(11), 1777-1787 

Abstract 

Brain-machine interfaces (BMIs) have the potential to increase the independence of people living 

with paralysis due to spinal cord injury, stroke, or neurological diseases. BMIs located in the human 

cortical grasp circuit have shown promising results for decoding intended arm and grasps 

movement. Recently, studies have shown that certain regions in the cortical grasp circuit also 

encodes useful signals for BMI speech applications. In this study, we investigated three brain areas 

in the ventral premotor cortex (PMv), the posterior parietal cortex (PPC) and the somatosensory 

cortex (S1) for grasp motor imagery and vocalized speech signals on the single neuron level. A 

tetraplegic participant performed grasp motor imagery and spoke words related to grasping and 

colors while we recorded neural activity in the supramarginal gyrus (SMG), PMv, and the arm areas 

of S1. We found that all brain areas showed modulation for grasp processes, but only SMG 

significantly encoded spoken grasp and spoken color words. We found evidence that SMG engages 

different motor plans for speech and grasp processes by analyzing which neuronal populations were 

actively involved in both processes, and through cross classification. These findings suggesting a BMI 

could be trained to represent both grasp and speech processes at the same time. Overall, our study 

provides insights into the types of neural signals that can be recorded in the cortical grasp circuit, 

and suggest that neural signals in high-level brain areas in the human cortex can be exploited for 

grasp and speech related BMI applications.  
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Introduction 

Brain-Machine Interfaces (BMI’s) represent a novel technological pathway to bypass functional 

losses due to paralysis caused by spinal cord injuries, strokes or diseases. People with tetraplegia 

have consistently rated recovery of hand and arm function as the highest priority for increasing their 

quality of life (Anderson 2004), (Snoek et al. 2004). Similarly, patients suffering from certain 

neurological disorders, such as amyotrophic lateral sclerosis (ALS), consider loss of speech among 

the worst aspects of their disease (Hecht et al. 2002).  

 

Extensive previous work has shown that the human cortical grasp circuit is an excellent target for 

intracortical BMI applications, allowing to read out reaching and grasping signals (Tyson Aflalo et al. 

2015; Collinger et al. 2013; Klaes et al. 2015; Wandelt et al. 2022a; Guan et al. 2022; F. R. Willett et 

al. 2021). However, recent work has shown that a variety of other sensorimotor signals can be 

decodable from neurons recorded in this pathway. (Stavisky et al. 2019) and (Wilson et al. 2020) 

demonstrated speech decoding from the “hand knob” area in M1, an important step towards 

speech-BMIs for people suffering from neurological disorders or strokes. Evidence for language 

processing has also been documented in PPC. (T. Aflalo et al. 2020) found PPC activation for reading 

action words and (Zhang et al. 2017) for spoken words. In SMG, transcranial magnetic stimulation 

(TMS) and fMRI studies have extensively documented its involvement in language processing 

(Stoeckel et al. 2009), (Sliwinska et al. 2012a), (Oberhuber et al. 2016) and verbal working memory 

(Deschamps, Baum, and Gracco 2014), suggesting potential involvement in speech production. 

Furthermore, we found neurons in SMG share neural representation of auditory and written 

sensory cues, further suggesting involvement in language processing (Chapter 4). Using ECoG, (J. G. 

Makin, Moses, and Chang 2020) showed that electrodes over SMG contributed to speech decoding. 

However, to our knowledge, speech decoding has not previously been demonstrated from spiking 

activity in SMG alone.  

 

In this work, we aimed to further characterize how different brain areas of the cortical grasp circuit 

represent grasp and speech motor processes. A tetraplegic participant performed motor imagery or 

performed verbal speech of words related to grasping and to colors, while neurophysiological 

responses were captured from three implant sites using recording microelectrode arrays, the 



 

 

58 
supramarginal gyrus (SMG), the ventral premotor cortex (PMv) and the primary sensory cortex 

(S1). We hypothesized SMG would modulate during speech processes, due to its involvement in 

visual word recognition (Chapter 4) and phonological processing (Oberhuber et al. 2016).  

Methods  

For “Data and code availability”, “Experimental model and subject details”, “Method details”, “Data 
collection” and “Quantification and statistical analysis” paragraphs, see Chapter 3, as experiment 
were published together. This method section only contains novel methods that have not been 
described in Chapter 3. 
 
Experimental task   

We implemented three tasks that evaluated grasp and speech processes in areas of the human 

cortical grasp circuit. The “Motor Imagery” task cued five different grasps with visual images taken 

from the “Human Grasping Database” (Feix et al. 2016) to examine the neural activity related to 

imagined grasps in SMG , PMv and S1. The grasps were selected to cover a range of different hand 

configurations and were labeled “Lateral”, “WritingTripod”, “MediumWrap”, “PalmarPinch”, and 

“Sphere3Finger” (Figure 5-1A). The “Spoken Grasps” tasks instructed the participant to vocalize the 

name of the different grasps, while the “Spoken Colors” task instructed the participant to vocalize 

the name of different colors.  

 

Motor imagery task   

Each trial consisted of four phases, referred to in this paper as ITI, cue, delay, and action (Figure 5-

1B). The trial began with a brief inter-trial interval (2 sec), followed by a visual cue of one of the five 

specific grasps (4 sec). Then, after a delay period (gray circle onscreen; 2 sec), the participant was 

instructed to imagine performing the cued grasp with his right (contralateral) hand (Go trials; green 

circle on screen; 4 sec). Three datasets had a longer action phase. For these, only data from the first 

four seconds of the action phase were included in the analysis.  

 

Spoken grasps task 

A speaking variation of the task was constructed with the same task design outline above, but 

instead of performing motor imagery during the action phase, the participant was instructed to 

vocalize once the name of the grasp.  
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Spoken colors task 

Another variation of this speaking task used five squares of different colors instead of five grasps, 

and the participant was instructed to vocalize once the color during the action phase (Figure 5-

1A,B).  

On each of five total session days, a “Motor Imagery task”, a “Spoken Grasps task” and a “Spoken 

Colors task” was performed, to allow comparisons between tasks.  

The participant was situated 1 m in front of a LED screen (1190 mm screen diagonal), where the task 

was visualized. The task was implemented using the Psychophysics Toolbox (Brainard, 1997; Pelli, 

1997; Kleiner et al, 2007) extension for MATLAB (MATLAB. (2018). 9.7.0.1190202 (R2019b). Natick, 

Massachusetts: The MathWorks Inc.).  

 

Quantification and statistical Analysis  

Cross-task classification 

To evaluate the similarity of neuronal firing in the “Motor Imagery”, the “Spoken Grasps” and the 

“Spoken Colors” tasks, cross-task classification was performed. This method consisted of training a 

classifier on the averaged neuronal firing rates recorded during one of the tasks (e.g., “Motor 

Imagery”), and evaluating it on the neuronal firing rates of all three tasks. For “Spoken Colors”, data 

was only averaged over the first 2s of the cue phase, as neuronal activity for this condition was 

shorter than for the other tasks. A LDA with PCA and leave-one-out cross validation was performed 

for each individual phase (see Methods section “Classification”).  

 

Combined classification  

To evaluate if a classification model can be trained to represent motor imagery and speech 

processes at the same time, multiunit activity from 96 channels was combined over five session 

days, resulting in 40 trials per condition. Five motor imagery, five spoken grasps and five spoken 

colors were tested, leading to 15 classes in total. A multiclass support vector machine (SVM) 

algorithm with radial basis function kernel was used to train a model and evaluated with 16-fold 

cross validation. A confusion matrix was computed showing classification accuracies per 

condition. 

 



 

 

60 
 

Results  

SMG significantly decodes spoken grasps and colors 

Grasp and speech representations in SMG, PMv, and S1 were characterized by implementing three 

tasks that cued a human participant to perform motor imagery of five different grasps, vocalize five 

grasps or vocalize five colors (Figure 5-1A). The tasks contained four phases: an inter-trial interval 

(ITI), a cue phase, a delay phase, and an action phase, during which the participant performed motor 

imagery or vocalized the cues word. By comparing each region’s evoked activity between motor 

imagery and speech cognitive processes, we aimed to uncover evidence for language-processing 

activity at the single unit level. During each session, a “Motor Imagery”, a “Spoken Grasps” and a 

“Spoken Colors” version of the task were run (Figure 5-1A,B, see Methods). Importantly, both the 

“Motor Imagery” and the “Spoken Grasps” task were cued with the same images. This allowed us 

to investigate if the cue representation of the grasps remained similar, even if different motor 

outputs (grasping vs. speaking) were planned.   

Classification results during the action phase corroborate SMG’s involvement during language 

processing (Figure 5-1C) (Oberhuber et al., 2016), (Deschamps, Baum, and Gracco 2014), (Stoeckel 

et al. 2009) (Chapter 4). In the motor imagery task, neurons in SMG, PMv, and S1 were able to 

significantly decoded grasps. However, only SMG showed significant classification results during 

vocalization of grasp names and colors. A confusion matrix demonstrated the different grasp motor 

types, spoken grasp names, and colors were well represented within SMG’s neuronal population 

(Figure 5-1D). 
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Figure 0-1 | SMG encodes speech.  Three tasks were designed studying grasp and speech processes, a “Motor Imagery” 
task, a “Spoken Grasps” task, and a “Spoken Colors” task. A) Grasps images were used to cue the “Motor Imagery” and 
“Spoken Grasps” tasks. Colored squares were used to cue the “Spoken Colors” task. B) The tasks were composed of an 
inter-trial interval (ITI), a cue phase displaying the image of one of the grasp or colored squares, a delay phase and an 
action phase. During the action phase, the participant was instructed to perform grasp motor imagery in the “Motor 
Imagery” task, say out loud the name of the cued grasp during the “Spoken Grasps” task or vocalize the name of the 
color (“Spoken Colors” task). C) Classification was performed for each session day individually using leave-one-out cross-
validation (black dots) for “Motor Imagery”, “Spoken Grasps” and “Spoken Colors” task. 95% c.i. for the session mean 
was computed. Results during the action phase are shown. Significance was computed by comparing actual data results 
to a shuffle distribution (averaged shuffle results = red dots, * = p < 0.05, ** = p < 0.01, *** = p < 0.001). SMG, PMv, 
and S1 showed significant classification results when motor imagery was performed. Only SMG showed significant 



 

 

62 
classification results during spoken grasps and spoken colors. D) SMG confusion matrix for each of the tasks. Results 
were averaged over all session days.  F) Percentage of tuned units to grasps or colors in 50ms time bins in SMG for each 
task. The gray lines represent cue and action analysis windows for Figure 6A and B.  

To assess selectivity of SMG neurons to the different task parameters, tuning in 50ms bins was 

computed using linear regression analysis for each task (Figure 5-1E). As the exact identification of 

motor imagery onset is not feasible (having no observable behavioral output), neural data was not 

aligned to spoken word onset during the speech task, keeping analysis as similar as possible. The 

population analysis revealed similar temporal dynamics during the cue phase for the “Motor 

Imagery” and “Spoken Grasps” tasks. This result was expected; both conditions employed the same 

grasp cue. However, responses for the “Spoken Colors” cues were shorter in time and of lower 

amplitude, even though they were presented for the same duration as the grasp cues on the screen. 

During the action phase, temporal dynamics between motor imagery and spoken words were 

comparable, possibly indicating similar underlying cognitive processes.  

We evaluated this hypothesized similarity between motor imagery and speech production by 

investigating if similar neuronal populations were active in both tasks, and by performing cross-task 

classification. Tuning analysis allowed us to investigate if similar neural populations were engaged 

in both tasks. Cross-task classification additionally allowed us to probe if the neural code remained 

the same.   

 

Using a Venn diagram, we assessed the overlap of tuned units to their respective task parameters 

during the cue phase (Figure 5-2A), and during the action phase (Figure 5-2B). During the cue phase, 

a high overlap of units active both in the “Motor Imagery” and “Spoken Grasps” task (29%) indicated 

similar neuronal populations were engaged. This suggests the neuronal representation of the grasp 

images stayed consistent regardless of the planned output modality (Figure 5-2A). Analysis of the 

action phase activity allowed us to probe if the output modality (speech vs. motor imagery) or the 

semantic content (grasps vs. colors) were represented by more similar neural populations (Figure 

5-2B). We found that a notably higher number of units were active during both speech conditions 

(31%), than between grasp speech and motor imagery condition (8.2%). These results suggest that 

the output modality drives similarity among neuronal subsets more than semantic content. 

However, do these findings generalize to classification? 
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Cross-task classification involved training a classification model on the neuronal firing rate observed 

in one task, and evaluating the model on all three tasks, performed separately for each phase (see 

methods). We averaged firing rates over the entire phase duration except during the cue phase for 

“Spoken Colors”. Only the first 2s were analyzed, as neuronal activity for this condition was shorter 

than for the other tasks (Figure 5-1E). During the cue phase, decoding of grasps nicely generalized 

between the “Motor Imagery” and the “Spoken Grasps” task (Figure 5-2C, Train: Motor Imagery; 

Train: Spoken Grasps). This effect weakened during the delay phase, potentially indicating the 

formation of separate motor plans for speech and motor imagery. During the action phase, 

generalization between grasp motor imagery and grasp speech was weak or absent, even if the 

semantic content was identical. No generalization between the “Spoken Colors” and “Spoken 

Grasps” tasks occurred, demonstrating that even if similar neuronal populations are active during 

speech (Figure 5-2B), the population activation patterns are different for each spoken word. 
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Figure 0-2 | Unique neural representations of motor imagery and speech production in SMG. A) Overlap of units 
tuned to their respective task parameters during the cue phase between “Motor Imagery”, “Spoken Grasps” and 
“Spoken Colors” task.  The overlap of units active for both the motor imagery and the spoken grasps task was notably 
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higher (29%) compared to motor imagery and spoken colors (5.7%) and spoken colors and spoken grasps (11%). B) 
Same as A but during the action phase. Here, the overlap of units tuned both to spoken grasps and spoken colors is 
highest (31%). C) Cross-task classification was performed by training a classification model on one task (e.g., Motor 
Imagery) and evaluating it on all three tasks, for each phase separately. Confidence intervals and significance were 
computed as described in Figure 5C). During the cue phase, generalization between tasks using the same image cue 
(“Motor Imagery” and “Spoken Grasps”) was observed. During the action phase, weak (*) or no generalization was 
observed. D) PCA of the z-scored action phase data was computed for each task. Data was projected onto the first two 
principal components. Clustering of task parameters (grasps for “Motor Imagery” and “Spoken Grasps”, colors for 
“Spoken Colors”) was not consistent between tasks, demonstrating that speech and motor imagery are represented 
differently in SMG. 

We compared encoded feature spaces of the neuronal population during the action phase of the 

three tasks. The principal components of each z-scored action phase dataset were computed and 

projected onto the first two principal components. Results are depicted in Figure 5-2D. During 

motor imagery, “Lateral” and “PalmarPinch” occupied neighboring areas in the feature space, 

suggesting they are more similarly represented in the neural data. During speech conditions, we 

observed different clustering. Here, “MediumWrap” and “WritingTripod” are represented closer to 

each other, as well as “PalmarPinch” and “Sphere3Finger”. The word with fewest syllables 

(“Lateral”) is represented the furthest away in the neural space. For Spoken Colors, most words 

were intermixed.  

 

To assess similarities between the cue and the action phase during spoken tasks, we performed a 

neuron dropping analysis combined with cross-phase classification. Results were similar to the 

motor imagery results when training on the action phase (See Chapter 3, Figure 3-4). When training 

on the cue phase, seemingly less generalization occurred between the cue and action phase during 

the “Spoken Grasps” task than during the “Motor Imagery” task (Figure 5-3A). For the “Spoken 

Colors” task, the neural code was similar during the cue and action phases when training on the cue 

phase; however, it reached a lower average maximum classification accuracy compared to motor 

imagery and grasp speech (an accuracy of 71% when training on the cue phase of spoken colors vs. 

93% for the cue phase of motor imagery, and 95% for the cue phase of spoken grasps) (Figure 5-

3B).              

 

Finally, we evaluated how well a classification model can distinguish grasp and speech processes 

simultaneously. Multiunit data from five session days was combined, resulting in 40 trials for each 

of the 15 conditions (5 grasp motor imagery, 5 spoken grasps, 5 spoken colors). A SVM algorithm 
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was used to train the model and evaluated with 16-fold cross validation and a confusion matrix 

was calculated. We found all conditions were well separable from each other, suggesting a 

classification model may be trained to represent both grasp and speech processes at the same time.    

                                                                                       

 

Figure 0-3 | SMG shows less generalizability between the cue and action phase during spoken words than motor 
imagery. A) A neuron dropping curve analysis was performed on SMG activity using data from the “Spoken Grasps” 
task over 100 repetitions of eight-fold cross validation. To avoid overfitting, the first 20 PCs were used as features for 
classification. The analysis was performed once by training the model on the cue phase, and applying it to both cue and 
action phases (Train: Cue phase), and by training it on the action phase and applying it on both cue and action phase 
(Train: Action phase). The mean classification accuracy with bootstrapped 95% c.i. was plotted. Less generalization 
occurred between the cue and action phase during the “Spoken Grasps” task than during “Motor Imagery” task (Figure 
3) B) Same as A), but for “Spoken Colors” task. Training on the cue phase reached a lower average classification accuracy 
(71%) compared to the “Motor Imagery” (93% - Chapter 3, Figure 3-4) and “Spoken Grasps” (95%) tasks. This suggests 
color might be a less important feature than grasp images in SMG. 
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Figure 0-4 | Confusion matrix for combined tasks. For this analysis data from all session days were combined, 
resulting in 600 trials (200 for grasp motor imagery, 200 for spoken grasp words and 200 for spoken color words). 
Support vector machine (SMV) classification with radial basis function kernel was performed and evaluated with 16 
fold cross-validation.   

Discussion  

In this work, we showed how speech and grasp motor imagery are represented in the neural 

populations of SMG, PMv, and S1 of a chronically implanted tetraplegic participant. We found PMv 

and S1 preferentially represent grasping, while SMG robustly represents spoken grasp and color 

names. While temporal dynamics for both motor processes were similar, different motor plans were 

engaged for speaking vs. motor imagery. These characteristics allowed a classifier to represent both 

processes at the same time, suggesting SMG as a target site for grasp and speech BMI applications.  

 
SMG encodes speech 

During speech, SMG and PMv showed vastly different results. Spoken words (both grasp names and 

colors) were decodable equally or better than only motor imagery of grasps in SMG. In contrast, 

PMv and S1 showed neither significant classification of spoken grasp names nor of spoken colors 

(Figure 5-1C).  

 

Tuning to task parameters in 50ms time bins allowed us to observe how neuronal activity changed 

over trial duration for all three tasks. Interestingly, tuning to different color squares was lower in 
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amplitude than to tuning of grasp images (Figure 5-1E), indicating that color might be a less 

important feature than the shape and size of different grasps in SMG. 

 

The motor imagery and speech tasks showed strong similarities in tuning during the action phase 

(Figure 5-1E). These results could indicate that SMG processes semantics, regardless of the 

performed task. To answer this question, we performed two different analyses: cross-task tuning, 

and cross-task classification. 

 

Distinct SMGs encoding for grasp and speech processes  

To observe similarities between the neuronal subpopulations involved in the task, cross-task tuning 

was computed. During the cue phase (Figure 5-2A), a high overlap of units tuned during both “Motor 

Imagery” and “Spoken Grasps” tasks suggests the representation of the cue did not change based 

on the engaged motor plan. However, during the action phase, (Figure 5-2B) this relationship 

disappeared. We observed a higher overlap of neuronal populations tuned for the output modality 

(speaking of colors and grasps) than for semantic content (grasp motor imagery and speaking of 

grasps). At first glance, these results suggest that a similar neuronal population could be active for 

"Motor Imagery” and “Spoken Grasps” during the cue phase, and for “Spoken Grasps” and “Spoken 

Colors” during the action phase. However, this evidence does not confirm the neuronal code was 

identical. Cross-task classification allowed us to answer this question (Figure 5-2C).  

 

During the cue phase, the model generalized nicely between the grasp motor imagery and spoken 

grasps tasks, confirming the neural code of the grasp image cue remained similar. This effect 

decreased during the delay phase and became weak or absent during the action phase. These 

results indicate that SMG engaged different motor plans when motor imagery or speech was 

performed, even if the meaning of the word remained the same.  

 

During the action phase, none of the models trained during one task generalized to a different task. 

Even if similar neuronal populations were active during speech (Figure 5-2B), a different activation 

pattern was observed for each word. Furthermore, accurate classification of color words confirmed 

SMG’s role is not confined to only action verbs, even if classification accuracy of spoken colors was 

lower than that for spoken grasps. Possibly, the novelty of the words affected the amplitude of 
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neural representation, as color words are more common than the grasp names we employed. 

However, our participant was well versed in the names of the grasps, having used them repeatedly 

during other experiments.  

 

To investigate the underlying feature space encoded in SMG’s neuronal population during motor 

imagery and speech, principal components were computed on the z-scored action phase data of 

each task. By representing the feature space of the action data in a 2D PCA space, similarities 

between representations of each grasp could be appreciated through several groupings (Figure 5-

2D). During motor imagery, “Lateral” and “PalmarPinch” were grouped closely together. Intuitively, 

this could be due to a similar pinch with the thumb in these grasp shapes compared to the other 

grasps. However, the square-shaped objects represented in the grasp images also bear certain 

similarities. If similarity in object size and shape could predict related population activity, then 

“MediumWrap” and “WritingTripod” should have been represented in close proximity, as they both 

depict cylinders of different diameter. This was not observed, as “MediumWrap” was closer to 

“Sphere3Finger” in the PCA space. Furthermore, in an fMRI study, object size was not shown to 

modulate SMG activity (Perini et al. 2020). Therefore, we hypothesize that hand posture rather than 

object shape and size are encoded in the neural data during motor imagery in SMG.  

 

During speech, the representation of the grasps in the neural space changed. This result was 

expected, as cross-task classification did not generalize well between grasp motor imagery and 

grasp speech (Figure 5-2C). 

 

Implication for BMI applications  

Other studies have characterized simultaneous grasp and speech representation in SMG. Using 

fMRI, (Andric et al. 2013) showed that left SMG is active both during the observation of grasp 

actions, emblems (gesture that have a symbolic meaning, e.g. “thumbs-up”), and speech matching 

the meaning of the emblems. However, authors suggested the activity was not necessarily due to 

the semantic meaning of the stimuli. These results are consistent with ours, demonstrating SMG 

activity for both processes, but that semantic meaning was not as strongly encoded as the output 

modality.  
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Taken together, these findings suggest neurons in SMG have different neural codes for grasp and 

speech applications, indicating a BMI could be trained for both processes simultaneously without 

affecting classification accuracy substantially. Figure 5-4 showed classes were highly decodable, 

confirming the model learned well how to differentiate between the different functions. A caveat 

of the analysis is that data was not recorded as intermixed trials, but in consecutive blocks. By 

randomizing the order of each task block, and combining data from different session days together, 

we hope the effect of task classification accuracy was negligible. Nonetheless, these results are 

promising and suggest a single implant site may allow building grasp and speech BMI applications 

for people suffering from paralysis.  

Conclusion  

During speech, SMG achieved significant classification performance, in contrast to PMv and S1, 

which were not able to significantly decode individual spoken words. While temporal dynamics 

between motor imagery and speech were similar, we observed different motor plans for each 

output modality. These results are evidence for a larger role of SMG in language processing. Given 

the flexibility of neural representations within SMG, this brain area may be a candidate implant site 

for BMI speech and grasping applications. 
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Chapter 6: 

Online internal speech decoding from single neurons in a human 

participant 

 

The following chapter’s contents are taken and adapted from a preprint by Wandelt et al. 2022 

b, with modifications done to fit the dissertation format.  

Sarah K. Wandelt, David A. Bjånes, Kelsie Pejsa, Brian Lee, Charles Liu, Richard A. Andersen. 

Online internal speech decoding from single neurons in a human participant. medRxiv 

2022.11.02.22281775; doi: https://doi.org/10.1101/2022.11.02.22281775 

Abstract  

Speech brain-machine interfaces (BMI’s) translate brain signals into words or audio outputs, 

enabling communication for people having lost their speech abilities due to diseases or injury. While 

important advances in vocalized, attempted, and mimed speech decoding have been achieved, 

results for internal speech decoding are sparse, and have yet to achieve high functionality. Notably, 

it is still unclear from which brain areas internal speech can be decoded. In this work, a tetraplegic 

participant with implanted microelectrode arrays located in the supramarginal gyrus (SMG) and 

primary somatosensory cortex (S1) performed internal and vocalized speech of six words and two 

pseudowords. We found robust internal speech decoding from SMG single-neuron activity, 

achieving up to 91% classification accuracy during an online task (chance level 12.5%). Evidence of 

shared neural representations between internal speech, word reading, and vocalized speech 

processes were found. SMG represented words in different languages (English/ Spanish) as well as 

pseudowords, providing evidence for phonetic encoding. However, neural data in SMG also 

separated homophones, suggesting word meaning may also modulate activity. Furthermore, our 

decoder achieved high classification with multiple internal speech strategies (auditory imagination/ 

visual imagination). Activity in S1 was modulated by vocalized but not internal speech, suggesting 

no articulator movements of the vocal tract occurred during internal speech production. This works 

represents the first proof-of-concept for a high-performance internal speech BMI.  
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Introduction  

Speech is one of the most basic forms of human communication, a natural and intuitive way for 

humans to express their thoughts and desires. Neurological diseases like amyotrophic lateral 

sclerosis (ALS) and brain lesions can lead to the loss of this ability. In the most severe cases, 

patients who experience full-body paralysis might be left without any means of communication. 

Patients with ALS self-report loss of speech as their most serious concern (Hecht et al. 2002). Brain-

machine Interfaces (BMIs) are devices offering a promising technological path to bypass 

neurological impairment by recording neural activity directly from the cortex. BMIs have 

demonstrated potential to restore independence to tetraplegic participants by reading out 

movement intentions directly from the brain (Tyson Aflalo et al. 2015; Andersen et al. 2014a; 

Andersen, Aflalo, and Kellis 2019; Andersen 2019). Similarly, reading out internal (also reported as 

inner, imagined, or covert) speech signals could allow the restoration of communication to people 

who have lost it.  

Decoding speech signals directly from the brain presents its own unique challenges. While non-

invasive recording methods like functional magnetic imaging (fMRI), electroencephalography 

(EEG), or magnetoencephalography (MEG) (Dash, Ferrari, and Wang 2020b; Dash et al. 2020) are 

important tools to locate speech and internal speech production, they lack the necessary 

temporal and spatial resolution, adequate signal-to-noise ratio, or portability for building an 

online speech BMI (Luo, Rabbani, and Crone 2022; Martin et al. 2018; Rabbani, Milsap, and Crone 

2019). Intracortical electrophysiological recordings have higher signal-to-noise ratios, excellent 

temporal resolution (Nicolas-Alonso and Gomez-Gil 2012), and are a more suitable choice for 

internal speech decoding device.  

Invasive speech decoding has predominantly been attempted with electrocorticography (ECoG) 

(Rabbani, Milsap, and Crone 2019) or stereo-electroencephalographic (sEEG) depth arrays (Herff, 

Krusienski, and Kubben 2020), as they allow sampling neural activity from different parts of the 

brain simultaneously. Impressive results in vocalized and attempted speech decoding and 

reconstruction have been achieved using these techniques (Angrick et al. 2018; Herff et al. 2019; 

Kellis et al. 2010; J. G. Makin, Moses, and Chang 2020; Moses et al. 2021). However, vocalized 

speech has also been decoded from small-scale microelectrode arrays located in the motor cortex 
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(Stavisky et al. 2019; Wilson et al. 2020) and the supramarginal gyrus (SMG) (Wandelt et al. 

2022a), demonstrating vocalized speech BMIs can be built using neural signals from localized 

regions of cortex.  

While important advances in vocalized speech (J. G. Makin, Moses, and Chang 2020), attempted 

speech (Moses et al. 2021), and mimed speech (Bocquelet et al. 2016; Anumanchipalli, Chartier, 

and Chang 2019) decoding have been made, highly accurate internal speech decoding has not 

been achieved. Lack of behavioral output, lower signal-to-noise ratio, and differences in cortical 

activation have resulted in much lower classification accuracies of internal speech (Angrick et al. 

2018; Martin et al. 2018; Luo, Rabbani, and Crone 2022; Proix et al. 2022). In Pei, Barbour, et al., 

2011 patients implanted with ECoG grids over frontal, parietal, and temporal regions silently read 

or vocalized written words from a screen. Researchers significantly decoded vowels (37.5%) and 

consonants (36.3%) from internal speech (chance level 25%). (Ikeda et al. 2014) decoded three 

internally spoken vowels using ECoG arrays using frequencies in the beta band, with up to 55.6% 

accuracy from Broca area (chance level 33%). Using the same recording technology, Martin et al., 

2016 investigated the decoding of six words during internal speech. The authors demonstrated 

an average pair-wise classification accuracy of 58%, reaching 88% for the highest pair (chance 

level 50%). These studies were so-called open-loop experiments, in which the data was analyzed 

offline after acquisition. A recent paper demonstrated real-time (closed loop) speech decoding 

using stereotactic depth electrodes (Angrick et al. 2021). Results were encouraging as internal 

speech could be detected; however, the reconstructed audio was not discernable and required 

audible speech to train the decoding model.  

While to our knowledge internal speech has not previously been decoded from SMG, evidence 

for internal speech representation in SMG exists. In a review of 100 fMRI studies, (Cathy J. Price 

2010) described SMG activity not only during speech production, but also suggested its 

involvement in subvocal speech (Langland-Hassan and Vicente 2018; Perrone-Bertolotti et al. 

2014). Similarly, an ECoG study identified high-frequency SMG modulation during vocalized and 

internal speech (Pei, Leuthardt, et al. 2011b). Additionally, fMRI studies demonstrated SMG 

involvement in phonologic processing; for instance, the participant decided if two words rhyme 

(Oberhuber et al. 2016). Performing such tasks requires the participant to internally “hear” the 
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word, indicating potential internal speech representation (Binder 2017). Furthermore, a study 

performed in people suffering from aphasia found lesions in SMG and its adjacent white matter 

affected inner speech rhyming tasks (Geva et al., 2011). Recently, (J. G. Makin, Moses, and Chang 

2020) showed electrode grids over SMG contributed to vocalized speech decoding. Finally, 

vocalized grasps and color words were decodable from SMG from the same participant involved 

in this work (Wandelt et al. 2022a). These studies provide evidence for the possibility of an internal 

speech decoder from neural activity in SMG.  

The relationship between inner speech and vocalized speech is still debated. The general 

consensus posits similarities between internal and vocalized speech processes (Pei, Leuthardt, et 

al. 2011b), but the degree of overlap is not well understood (Cooney, Folli, and Coyle 2022; 2022; 

Martin et al. 2018; Perrone-Bertolotti et al. 2014; Alderson-Day and Fernyhough 2015). 

Characterizing similarities between vocalized and internal speech could provide evidence that 

results found with vocalized speech could translate to internal speech. However, such a 

relationship may not be guaranteed. For instance, some brain areas involved in vocalized speech 

might be poor candidates for internal speech decoding.  

In this work, a participant with tetraplegia performed internal and vocalized speech of six words 

and two pseudowords, while neurophysiological responses were captured from two implant sites. 

We investigated representations of various language processes at the single-neuron level using 

recording microelectrode arrays from the supramarginal gyrus (SMG) located in the posterior 

parietal cortex (PPC) and the arm region of the primary somatosensory cortex (S1). Words were 

presented with an auditory or a written cue, and were produced internally as well as orally. We 

hypothesized SMG and S1 activity would modulate during vocalized speech and SMG activity 

would modulate during internal speech. Shared representation between internal speech, 

vocalized speech, auditory comprehension, and word reading processes were investigated.  
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Methods 

Experimental model and subject details 

A tetraplegic participant was recruited for an IRB- and FDA-approved clinical trial of a brain-

machine interface and he gave informed consent to participate. The participant suffered a spinal 

cord injury at cervical level C5 two years prior to participating in the study. 

Method details 

Implants 

The targeted areas for implant were the supramarginal gyrus (SMG), and primary somatosensory 

cortex (S1) and the left ventral premotor cortex (PMv). In this study, SMG and S1 data was 

considered. For description of localization fMRI tasks and implant locations see (Armenta Salas et 

al. 2018). In November 2016, the participant underwent surgery to implant one 96-channel multi-

electrode array (Neuroport Array, Blackrock Microsystems, Salt Lake City, UT) in SMG and PMv 

each, and two 7 x 7 sputtered iridium oxide film-tipped microelectrode arrays with 48 channels 

each in S1. Data were collected between July 2021 and August 2022.  

Data collection 

Recording began two weeks after surgery and continued one to three times per week. Data for 

this work were collected between 2021 and 2022. Broadband electrical activity was recorded from 

the NeuroPort arrays using Neural Signal Processors (Blackrock Microsystems, Salt Lake City, UT). 

Analog signals were amplified, bandpass filtered (0.3–7500 Hz), and digitized at 30,000 

samples/sec. To identify putative action potentials, these broadband data were bandpass filtered 

(250-5000 Hz), and thresholded at -4.5 the estimated root-mean-square voltage of the noise. For 

some of the analyses, waveforms captured at these threshold crossings were then spike sorted 

by manually assigning each observation to a putative single neuron, for others, multiunit activity 

was considered. On average, 33 sorted SMG units (between 22–56) and 83 sorted S1 units 

(between 59–96) were included in the analysis. Auditory data was recorded at 30k Hz 

simultaneously to the neural data. Background noise was reduced post-recording by using the 

noise reduction function of the program “Audible”.  
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Experimental Tasks 

We implemented different tasks to study language processes in the SMG. The tasks cued six words 

informed by Martin et al., 2016 (Spoon, Python, Battlefield, Cowboy, Swimming, Telephone) as 

well as two pseudowords (Bindip, Nifzig). The participant was situated 1m in front of a LED screen 

(1190 mm screen diagonal), where the task was visualized. The task was implemented using the 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al, 2007) extension for MATLAB.  

Auditory cue task 

 Each trial consisted of six phases, referred to in this paper as ITI, Cue, D1 (delay 1), Internal, D2 

(delay 2), and Speech. The trial began with a brief inter-trial interval (2s), followed by a 1.5s long 

cue phase. During the cue phase, a speaker emitted the sound of one of the eights words (e.g., 

Python). Word duration varied between 842 and 1130 ms. Then, after a delay period (gray circle 

on screen; 0.5s), the participant was instructed to internally say the cued word (orange circle on 

screen; 1.5 sec). After a second delay (gray circle on screen; 0.5s), the participant vocalized the 

word (green circle on screen, 1.5 seconds).  

Written cue task 

The task was identical to the Auditory cue task, except words were cued in writing instead of 

audio. The written word appeared on the screen for 1.5 seconds during the cue phase. The 

auditory cue was played ~ 250ms later than the written cue appeared on the screen, due to 

software constraints. 

The auditory cue task and written cue task were recorded on 10 different session days. 

Control experiments 

Three experiments were run to investigate internal strategies and phonetic vs. semantic 

processing.  

Internal strategy task 

 The task was designed to vary the internal strategy employed by the participant during the 

internal speech phase. Two internal strategies were tested: a sound imagination and a visual 

imagination. For the “sound imagination” strategy, the participant was instructed to imagine what 
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the sound of the word sounded like. For the “visual imagination” strategy, the participant was 

instructed to perform mental visualization of the written word. We also tested if the cue modality 

(auditory or written) influenced the internal strategy. A subset of four words were used for this 

experiment. This led to four different variations of the task:  

Task variation Cue modality  Internal strategy 

Auditory - Sound Auditory Sound imagination 

Written – Visual Written Visual imagination 

Auditory – Visual Auditory Visual imagination 

Written – Sound Written Sound imagination 

 

English/Spanish task 

The task was designed to understand if SMG stronger encodes semantic or phonetic information. 

For this task, we made use of the participant’s bilingual abilities and asked him to translate a 

subset of the words into their Spanish counterparts. This ensured the semantic meaning of words 

remained the same, while varying the phonetic content. Those words were used to design the 

Spanish version of the task. On each session day, an English and a Spanish version of the task was 

run. 

Homophone task 

The task was designed to test if word meaning and context were represented in SMG’s neural 

activity. We tested two groups of three homophones (words that have different semantic 

meanings but same pronunciation): Scent, Sent, Cent and Ware, Wear, Where. 

The internal strategy task was run on one session day, the English/Spanish task was run on three 

session days, and the Homophone task was run on four session days.  

Online task 

The “Written cue task” was turned into a closed-loop experiment. To obtain training data for the 

online task, a written cue task was run. Then, a classification model was trained only on the 

internal speech data of the task (see classification subsection). The closed-loop task was nearly 

identical to the “Written cue task” but replaced the vocalized speech phase by a feedback phase. 
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Feedback was provided by showing the decoded word on the screen either in green if correctly 

classified, or in red if wrongly classified. See Supplementary Video 1 for an example of the 

participant performing the online task.  

Error trials 

Trials were the participants accidentally spoke during the internal speech part (3) or said the 

wrong word during the vocalized speech part (20) were removed from all analysis.  

Quantification and statistical analysis 

Analyses were performed using MATLAB R2020b and Python, version 3.8.11. 

Neural firing rates  

Firing rates of sorted units were computed as the number of spikes occurring in 50ms bins, divided 

by the bin width, and smoothed using a Gaussian filter with kernel width of 50ms to form an 

estimate of the instantaneous firing rates (spikes/sec).  

Linear regression analysis 

To identify units exhibiting selective firing rate patterns (or tuning) for each of the eight words, 

linear regression analysis was performed in two different ways: 1) step by step in 50ms time bins 

to allow assessing changes in neuronal tuning over the entire trial duration; 2) averaging the firing 

rate in each task phase to compare tuning between phases. The model returns a fit that estimates 

the firing rate of a unit based on the following variables:  

FR = βo + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 + + β8X8, 

where FR corresponds to the firing rate of the unit, βo to the offset term which was the average 

ITI data of the unit, and β corresponds to the estimated regression coefficients (see (Wandelt et 

al. 2022)).  

In this model, β symbolizes the change of firing rate from baseline for each word. A student’s t –

test was performed to test the hypothesis of β = 0. A follow-up analysis was performed to adjust 

for false discovery rate between the p-values (Benjamini and Hochberg 1995) (Benjamini and 

Yekutieli 2001). A unit was defined as tuned if the hypothesis could be rejected (adjusted p-value 
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< 0.05, t-statistic) for at least one word. This definition allowed for tuning of a unit to zero, one, 

or multiple words during different time points of the trial. Linear regression was performed for 

each session day individually. A 95% confidence interval was computed by performing the 

student’s t-inverse cumulative distribution function over the 10 sessions.  

Classification 

Using the neuronal firing rates recorded during the tasks, a classifier was used to evaluate how 

well the set of words could be differentiated during each phase. Classifiers were trained using 

averaged firing rates over each task phase. A model for each phase was built using linear 

discriminant analysis (LDA), assuming an identical covariance matrix for each word, which resulted 

in best classification accuracies. Principal component analysis (PCA) was applied on the training 

data and PCs explaining more than 95% of the variance were selected as features, and applied to 

the testing set. Leave-one-out cross-validation was performed to estimate decoding performance. 

A 95% confidence interval was computed as described above. 

Cross-phase classification 

To estimate shared neural representations between different task phases, we performed cross-

phase classification. The process consisted in training a classification model (as described above) 

on one of the task phases (e.g., ITI) and to test it on the ITI, cue, imagined speech, and vocalized 

speech phases. The method was repeated for each of the 10 sessions individually, and a 95% 

confidence interval of the mean was computed. Significant differences in classification accuracies 

between phases decoded with the same model were evaluated using a paired t-test, with alpha = 

0.001.  

English/Spanish task classification 

To evaluate if semantic or phonetic processes are encoded within SMG, data from an English and 

a Spanish version of the task were merged. Multiunit activity from 96 channels was combined 

over three session days, resulting in 24 trials per condition. A multiclass support vector machine 

(SVM) algorithm with radial basis function kernel was used to train a model on one task phase 

(e.g., ITI), and to test it on the ITI, cue, imagined speech, and speech phases. 10-fold cross 

validation was performed for model evaluation. A confusion matrix was computed showing 

classification accuracies per word. 
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Classification performance significance testing 

To assess the significance of classification performance, a null dataset was created by repeating 

classification 100 times with shuffled labels. Then, different percentile levels of this null 

distribution were computed and compared to the mean of the actual data. Mean classification 

performances higher than the 95th percentile were denoted with a * symbol and higher than 99th 

percentile were denoted with **. 

Demixed principal component (dPCA) analysis  

dPCA analysis was performed to break down the activity of the neuronal population into individual 

components, also called marginalizations, and to observe the explained variance contained in the 

data for each marginalization. This analysis showed the contribution of each signal variable in the 

observed data. We followed the method and code (https://github.com/machenslab/dPCA) 

described in (Kobak et al. 2016)and adapted it to our dataset.  

Our dataset had three parameters: timing, cue modality, (e.g., auditory or visual), and word (8 

different words). As in the original manuscript, data were decomposed into five parts: condition-

independent, cue modality-dependent, word-dependent, dependent on the cue modality-word 

interaction, and noise. Similar to the covariance decomposition done in ANOVA, individual terms 

were given by a series of averages. Some of the terms were grouped together as they were 

individually of lesser interest for this analysis. The Timing marginalization combined the time, and 

cue modality–word–time interaction. The Cue Modality marginalization combined the cue 

modality, cue modality-time interaction, and cue modality-word interaction. The Word 

marginalization combined the word and word-time interaction. To avoid overfitting, a 

regularization term lambda was used. The analysis was performed as described in in (Kobak et al. 

2016). 

Results 

Task design 

We characterized neural representations of four different language processes within a population 

of SMG neurons: auditory comprehension, word reading, internal speech, and vocalized speech 

production. In this thesis, internal speech refers to engaging a prompted word internally (“inner 
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monologue”), without correlated motor output, while vocalized speech refers to audibly 

vocalizing a prompted word. 

The task contained six phases: an inter-trial interval (ITI), a cue phase (Cue), a first delay (D1), an 

internal speech phase (Internal), a second delay (D2), and a vocalized speech (Speech) phase. 

Words were cued with either an auditory or a written version of the word (Figure 5-1A). Six of the 

words were informed by Martin et al., 2016 (Battlefield, Cowboy, Python, Spoon, Swimming, 

Telephone). Two pseudowords (Nifzig, Bindip) were added to explore phonetic representation in 

SMG.  

Single neurons modulate firing rate during internal speech in SMG 

For each of the four language processes, we observed selective modulation of individual neurons’ 

firing rates (Figure 5-1B,C). In general, firing rates of neurons increased during the active phases 

(Cue, Internal, Speech) and decreased during rest phases (ITI, D1, D2). A variety of activation 

patterns were present in the neural population. Example neurons were selected to demonstrate 

increases in firing rates during internal speech (Figure 5-1B, Spoon); neurons were also active 

during the cue and vocalized speech (Figure 5-1B, Figure 5-S1). Regardless of the cue modality 

(auditory in Figure 5-1B,C, written in Figure 5-1D,E), internal speech highly modulated individual 

neuron firing rates. 
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Figure 0-1 | Neurons in the supramarginal gyrus represent language processes. A) Written words and sounds were 
used to cue six words and two pseudowords in a tetraplegic participant. The “Audio cue” task was composed of an 
inter-trial interval (ITI), a cue phase during which the sound of one of the words was emitted from a speaker 
[between 842 – 1130ms], a first delay (D1), an internal speech phase, a second delay (D2) and a vocalized speech 
phase. The “Written cue” task was identical to the “Audio cue” task, apart that written words appeared on the screen 
for 1.5 seconds. Eight repetitions of eight words were performed per session day and per task. B,C) Example 
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smoothed firing rates of neurons tuned to four words in SMG during the “Audio cue”, and D,E) the “Written cue” 
task. The top part of each word figure shows the average firing rate over eight trials (solid line: mean, shaded area: 
95% bootstrapped confidence interval). The bottom part of each figure shows one out of eight example trials with 
associated audio amplitude (gray). Vertically dashed lines indicate the beginning of each phase. 

These stereotypical activation patterns were evident at the single-trial level (Figure 6-1A,B,C,D 

bottom panel). When the auditory recording was overlaid with firing rates from a single trial, a 

heterogeneous neural response was observed (Figure 6-S1A), with some SMG neurons preceding 

or lagging peak auditory levels during vocalized speech. In contrast, neural activity from primary 

sensory cortex (S1) only modulated during vocalized speech, and produced stereotyped firing 

patterns regardless of the vocalized word (Figure 6-S1B). 

Population activity represented selective tuning for individual words 

Population analysis in SMG mirrored single-neuron patterns of activation, showing steep 

increases in tuning during the active task phases (Figure 6-2A). Tuning of a neuron to a word was 

determined by fitting a linear regression model to the firing rate in 50 ms time bins (methods). 

Representation of the auditory cue was lower compared to the written cue (Figure 6-2B, Cue). 

However, this difference was not observed for other task phases. The tuned population activity 

in S1 increased during vocalized speech, but not during the cue and internal speech phases (Figure 

6-S2A).  

To quantitatively compare activity between phases, we computed selectivity for individual words 

from the average FR in each task phase (Figure 6-2B,C). Tuning during the cue, internal speech, 

and vocalized speech phases was significantly higher compared to their preceding rest phases ITI, 

D1, and D2 (t-test, ** = p < 0.01, *** = p < 0.001). Representation for all words was observed in 

each phase, including pseudowords (Bindip and Nifzig) (Figure 6-2C).  
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Figure 0-2 | Neuronal population activity modulates for individual words. A) Average percentage of tuned neurons to 
words in 50ms time bins in SMG over the trial duration for “Auditory cue” (blue) and “Written cue” (green) tasks (solid 
line: mean over 10 sessions, shaded area: 95% confidence interval). The written cue appeared on average 250ms earlier 
on the screen than the auditory sound. B) Average percentage of tuned neurons computed on firing rates per task 
phase, with 95% confidence interval over 10 sessions. Tuning during action phase (Cue, Internal, Speech) following rest 
phases (ITI, D1, D2) was significantly higher (t-test: **p < 0.01, ***p < 0.001). C) Number of neurons tuned to each 
individual word in each phase for the “Auditory cue” and “Written cue” tasks. 
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The neural population in SMG simultaneously represented several distinct aspects of language 

processing: temporal changes, input modality (auditory, written), and unique words from our 

vocabulary list (Figure 6-3). We used demixed Principal Components Analysis (dPCA) to 

decompose and analyze contributions of each individual component: Timing, Cue Modality, and 

Word.  

The Timing component revealed temporal dynamics in SMG peaked during all active phases 

(Figure 6-3A). In contrast, temporal S1 modulation peaked only during vocalized speech 

production, indicating a lack of synchronized lip and face movement of the participant during the 

other task phases (Figure 6-3B). While Cue Modality components were separable during the cue 

phase, they overlapped during subsequent phases. Thus, internal and vocalized speech 

representation may not be influenced by the cue modality. Pseudowords had similar separability 

to lexical words (Figure 6-3C). The explained variance between words was close to zero in S1.  
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Figure 0-3 Demixed principal component analysis (dPCA) highlights SMG’s involvement in language processing. dPCA 
was performed to investigate variance within three marginalizations: Timing, Cue Modality, and Word. Demixed 
principal components explaining the highest variance within each marginalization were plotted over time. A) The Timing 
marginalization demonstrates SMG modulation during cue, internal speech, and vocalized speech, while S1 only 
represents vocalized speech. B) The Cue Modality marginalization suggests internal and vocalized speech 
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representation in SMG are not affected by the cue modality. C) The Word marginalization shows high variability for 
different words in SMG, but near zero for S1.  

Internal speech is highly decodable in SMG  

Separable neural representations of both internal and vocalized speech processes implicate SMG 

as a rich source of neural activity for real-time speech BMI devices. All words in our vocabulary 

list were highly decodable, averaging 55% offline decoding and 84% online decoding from neurons 

during internal speech (Figure 6-4AB). Words spoken during the vocalized phase were also highly 

discriminable, averaging 74% offline (Figure 6-4A).  

For offline analysis, trial data from both types of cues (auditory and written) were concatenated, 

since SMG activity was only differentiable between the type of cue during the cue phase (Figure 

6-2A, Figure 6-3B). This resulted in 16 trials per condition. Features were selected via principal 

component analysis (PCA) on the training dataset, and principal components (PCs) which 

explained 95% of the variance were kept. A linear discriminant analysis (LDA) model was 

evaluated with leave-one-out cross-validation (CV). Significance was computed by comparing 

results to a null distribution (Methods). 

Significant word decoding was observed during all phases, except during the ITI (Figure 6-4A, null 

distribution, turquoise - p < 0.001 = ***). Decoding accuracies were significantly higher in the cue, 

internal speech, and speech condition, compared to rest phases ITI, D1 and D2 (Figure 6-4A, t-

test, black - p < 0.001 = ***). Significant cue phase decoding suggested that modality-independent 

linguistic representations were present early within the task (Leuthardt et al. 2012). Internal 

speech decoding averaged 55% offline, with the highest session at 72%, and a chance level of 

~12.5% (Figure 6-4A, red line). Vocalized speech averaged even higher, at 74%. All words were 

highly decodable (Figure 6-4C). As suggested from our dPCA results, individual words were not 

significantly decodable from neural activity in S1 (Figure 6-S2B), indicating generalized activity for 

vocalized speech in the S1 arm region (Figure 6-3C).                  
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Figure 0-4 | Words can significantly be decoded during internal speech in SMG. A) Offline decoding accuracies: “Audio 
cue” and “Written cue” tasks data were combined for each individual session day, and leave one out cross-validation 
was performed (black dots). PCA was performed on the training data, a LDA model was constructed, and classification 
accuracies were plotted with 95% c.i., over the session means. Significance of classification accuracies was evaluated 
by comparing results to a shuffled distribution (averaged shuffle results = red dots, * = p < 0.05, ** = p < 0.01). 
Classification accuracies during action phases (Cue, Internal, Speech) following rest phases (ITI, D1, D2) were 
significantly higher (t-test: ***p < 0.001). B) Online decoding accuracies: Classification accuracies for internal speech 
were evaluated in a closed-loop internal speech BMI application. 72%, 88%, and 91% classification accuracies were 
achieved using respectively 8, 12, and 16 trials per word to train the classification model. C) Offline confusion matrix: 
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Confusion matrices for each of the different task phases were computed on the tested data, and averaged over all 
session days. D) Online confusion matrix: A confusion matrix was computed combing the three online runs.                                                          

High accuracy online speech decoder 

We developed an online, closed-loop internal speech BMI with the highest achievable accuracy of 

91% in an eight-word vocabulary (Figure 6-4B). A training dataset was generated using the written 

cue task, with 8 repetitions of each word. An LDA model was trained on the internal speech data 

of the training set, corresponding to only 96 seconds of neural data. The trained decoder 

predicted internal speech during the online task. During the online task, the vocalized speech 

phase was replaced with a feedback phase. The decoded word was shown in green if correctly 

decoded, and in red if wrongly decoded (Video S1). The classifier was retrained after each run of 

the online task, adding the newly recorded data. The first online run was trained on 8 repetitions 

per word and achieved 72% internal speech decoding. The second was trained on 12 trial 

repetitions and achieved 88% classification accuracy, while the third run was trained on 16 trial 

repetitions and achieved 91% classification accuracy. All words were well represented, illustrated 

by a confusion matrix (Figure 6-4D).  

Shared representations between internal speech, written words, and vocalized speech 

Several different language processes are engaged during the task: auditory comprehension or 

visual word recognition during the cue phase, and internal speech and vocalized speech 

production during the speech phases. It has been widely assumed each of these processes are 

part of a highly distributed network, involving multiple cortical areas (Indefrey and Levelt 2004). 

In this work, we observed significant representation of each of these processes in a common 

cortical region, SMG. To explore the relationships between each of these processes, we used 

cross-phase classification to identify the distinct and common neural codes. By training our 

classifier on the representation found in one phase (e.g. the cue phase) and testing the classifier 

on another phase (e.g. internal speech), we quantified generalizability of our models across neural 

activity of different language processes (Figure 6-5). The generalizability of a model to different 

task phases was evaluated through a t-test. No significant difference between classification 

accuracies indicated good generalization of the model, while significantly lower classification 

accuracies suggested poor generalization of the model.  
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The strongest shared neural representations were found between visual word recognition, 

internal speech, and vocalized speech (Figure 6-5B). A model trained on internal speech was 

highly generalizable to both vocalized speech and written cued words, evidence for a possible 

shared neural code (Figure 6-5B, Internal). In contrast, the model’s performance was significantly 

lower when tested on data recorded in the auditory cue phase (Figure 6-5A, Internal, t-test, p < 

0.001).  

Additionally, a model trained on vocalized speech generalized equally well to internal speech and 

written words (Figure 6-5B, Speech). However, the model generalized significant better to 

internal speech than the representation found during the auditory cue (Figure 6-5A, Speech, 

Internal vs. Auditory Cue).  

Neuronal representation of words at the single-neuron level was highly consistent between 

internal speech, vocalized speech, and written cue phases. A high percentage of neurons were 

not only active during the same task phases, but also were tuned to the same words (Figure 6-

5C,D). 82-85% of neurons active during internal speech were also active during vocalized speech. 

In 53-56% of neurons, tuning was preserved between the internal speech and vocalized speech 

phases (Figure 6-5C). During the cue phase, 79% of neurons active during internal speech were 

also active during the written cue (Figure 6-5D, right).  However, a significantly lower percentage 

of neurons (49%, t-test, p < 0.01 for all three other comparisons) were active during the auditory 

cue phase (Figure 6-5D, left). Similarly, 56% of neurons were tuned to the same words during the 

written cue phase as during the internal speech phase, while a significantly lower 21% of neurons 

were tuned to the same words during the auditory cue phase as during the internal speech phase.  
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Figure 0-5 | Shared representations between internal speech, vocalized speech, and written word processing. A) 
Evaluating the overlap of shared information between different task phases in the “Auditory cue” task. For each of 
the 10 session days, cross-phase classification was performed. It consisted in training a model on a subset of data 
from one phase (e.g., Cue) and applying it on a subset of data from ITI, cue, internal, and speech phases. This analysis 
was performed separately for each task phase. PCA was performed on the training data, a LDA model was 
constructed, and classification accuracies were plotted with a 95% c.i. over session means. Significant differences in 
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performance between phases were evaluated between the 10 sessions (t-test, p < 0.001). For easier visibility, 
significant differences between ITI and other phases were not plotted. B) Same as A) for “Written cue” task. C) 
Percentage of neurons tuned during the internal speech phase which are also tuned during the vocalized speech 
phase. Neurons tuned during the internal speech phase were computed as in Figure 2B separately for each session 
day. From these, the percentage of neurons that was also tuned during vocalized speech was calculated. More than 
80% of neurons during internal speech were also tuned during vocalized speech (85% in the “Auditory cue” task, 82% 
in the “Written cue” task). 53% of “Auditory cue” and 56% “Written cue” neurons also showed tuning to the same 
words during internal speech and vocalized speech phases. D) Percentage of neurons tuned during the internal 
speech phase which are also tuned during the cue phase. 79% of neurons tuned during internal speech were also 
tuned during the written cue phase (right side). A smaller 49% of neurons tuned during the internal speech phase 
were also tuned during the auditory cue phase. Percentages between Internal-Speech (85%, 82%) and Internal-
Written cue (79%) were not significantly different. However, the overlapping Internal-Auditory cue percentage (49%) 
was significantly lower compared to the other overlaps (pairwise t-test, p < 0.01 for each comparison). 56% of 
neurons were tuned to the same words during the written cue phase and the internal speech phase. A significantly 
lower 21% of neurons were tuned to the same words during the auditory cue and the internal speech phase (pairwise 
t-test, p < 0.01 for each comparison). 

Together with the cross-phase analysis, these results suggest strong shared neural 

representations between internal speech, vocalized speech, and written cue phase, both at the 

single-neuron and population level. 

Robust decoding of multiple internal speech strategies within SMG 

This shared neural representation between written, inner, and vocalized speech suggests that all 

three partly represent the same cognitive process or all cognitive processes share common neural 

features. While internal and vocalized speech have been shown to share common neural features 

(Pei, Leuthardt, et al. 2011b), similarities between internal speech and the written cue could have 

occurred through several different cognitive processes. For instance, the participant’s observation 

of the written cue could have activated silent reading. This process has been self-reported as 

activating internal speech, which can involve “hearing” a voice, thus having an auditory 

component (Alderson-Day and Fernyhough 2015; Alderson-Day, Bernini, and Fernyhough 2017). 

However, the participant could also have mentally pictured an image of the written word while 

performing internal speech, involving visual imagination in addition to language processes. Both 

hypotheses could explain the high amount of shared neural representation between the written 

cue and the internal speech phases (Figure 6-5B).  

We therefore compared two possible internal sensory strategies: a “sound imagination” strategy 

in which the participant imagined hearing the word, and a “visual imagination” strategy in which 



 

 

93 
the participant visualized the picture of the word (Figure 6-S3A). Both strategies were cued by 

each modality tested previously (auditory and written words).  

Both employed strategies highly represented the four-word dataset (Figure 6-S3B, highest 94%, 

chance level: 25%). Furthermore, the participant described the “sound imagination” strategy as 

being easier and more similar to the internal speech condition of the first experiment. The 

participant’s self-reported strategy suggests no visual imagination was performed during internal 

speech. Correspondingly, similarities between written cue and internal speech phases may stem 

from internal speech activation during the silent reading of the cue. These results suggest our 

speech BMI decoder is robust to multiple types of internal speech strategies.  

Evidence of phonetic and semantic representation in SMG 

Shared neural representations of the observed activation patterns could also have occurred if 

SMG encoded the semantic content of words. The native bilingual participant translated a four-

word English vocabulary into Spanish, ensuring the semantic meaning of each word remained the 

same, while changing the phonetic content (Figure 6-S4A). Then, an English version of the task 

and a Spanish version of the task were run on three separate session days. Data were aggregated 

over languages and days, a support vector machine classifier model was used to evaluate the 

testing set with 8-fold cross-validation, and a confusion matrix was calculated. Both English and 

Spanish words were highly represented and separable. The offline model rarely confused words 

with the same semantic meaning, suggesting strong neural representation of phonetic content in 

SMG.  

We then tested if homophones (words with the same pronunciation, but different meaning) 

would be decodable from SMG. Two groups of 3 homophones were tested: Scent, Sent, Cent, and 

Ware, Wear, Where. Data were analyzed as for the English/Spanish task. Interestingly, we found 

that words within the same homophone group were decodable above chance as well (Figure 6-

S5A). Classification was higher during the cue phase than during internal and vocalized speech 

phases, suggesting neural data was more distinct when seeing the different spellings of the words 

than when pronouncing it. Nonetheless, decoding during internal and vocalized speech was well 

above chance (33.3%). Together, findings suggests both phonemes and semantics modulate 

neural activity in SMG. 



 

 

94 

Discussion  

In this work, we demonstrated a robust decoder for internal and vocalized speech, capturing 

single-neuron activity from the supramarginal gyrus. A chronically implanted, speech-abled 

participant with tetraplegia was able to use an online, closed-loop internal speech BMI to achieve 

up to 91% classification accuracy with an eight-word vocabulary. Furthermore, high decoding 

required only 24 seconds of training data per word. Firing rates recorded from S1 showed 

generalized activation only during vocalized speech activity, but individual words were not 

classifiable. In SMG, shared neural representations between internal speech, the written cue, and 

vocalized speech suggest the occurrence of common processes. Robust control could be achieved 

using multiple internal speech strategies and for both English and Spanish vocabularies. 

Representation of pseudowords provided evidence for phonetic word encoding in SMG.  

Single neurons in the supramarginal gyrus encode internal speech 

We demonstrated internal speech decoding of six different words and two pseudowords in SMG. 

Single neurons increased their firing rates during internal speech (Figure 6-1, S1), which was also 

reflected at the population level (Figure 6-2A,B). Each word was well represented in the neuronal 

population (Figure 6-2C, 3C). Classification accuracy and tuning during the internal speech phase 

were significantly higher than during the previous delay phase (Figure 6-2B, Figure 6-4A). This 

evidence suggests we did not simply decode sustained activity from the cue phase, but activity 

generated by the participant performing internal speech. We obtained up to 72% offline 

classification accuracy of internal speech, and up to 91% during closed-loop online experiments 

(Figure 6-4A). These findings provide strong evidence for internal speech processing at the single-

neuron level in SMG.  

Neurons in primary somatosensory cortex are modulated by vocalized but not internal speech 

Neural activity recorded from S1 served as a control for synchronized face and lip movements 

during internal speech. While vocalized speech robustly activated sensory neurons, no increase 

of baseline activity was observed during the internal speech phase or the auditory and written 

cue phases (Figure 6-3, S1). These results underline no synchronized movement inflated our 

decoding accuracy of internal speech (Figure 6-S2).  



 

 

95 
A previous imaging study achieved significant decoding of several different internal speech 

sentences performed by patients with mild ALS (Dash et al. 2020). Together with our findings, 

these results suggest a BMI speech decoder that does not rely on any movement may translate 

to communication opportunities for patients suffering from ALS and locked-in syndrome.  

Different face activities are observable but not decodable in arm area of S1 

The topographic representation of body parts in S1 has recently been found to be less rigid than 

previously thought. Generalized finger representation was found in a presumably S1 arm region 

of interest (ROI) (Rosenthal et al. 2022). Furthermore, a fMRI paper found observable face and lip 

activity in S1 leg and hand ROIs. However, differentiation between two lip actions was restricted 

to the face ROI (Muret et al. 2022). Correspondingly, we observed generalized face and lip activity 

in an predominantly S1 arm region (see Armenta Salas et al., 2018 for implant location) during 

vocalized speech (Figure 6-3A, Figure 6-S1, Figure 6-S2A). Recorded neural activity contained 

similar representations for different spoke words (Figure 6-3C) and was not significantly 

decodable (Figure 6-S2B). 

Shared neural representations between internal and vocalized speech  

The extent to which internal and vocalized speech generalize is still debated (Cooney, Folli, and 

Coyle 2018; Perrone-Bertolotti et al. 2014; Alderson-Day and Fernyhough 2015), and depends on 

the investigated brain area (Pei, Leuthardt, et al. 2011a; Soroush et al. 2022). In this work, we 

found on average stronger representation for vocalized (74%) than internal speech (Figure 6-4A, 

55%). Additionally, cross-phase decoding of vocalized speech from models trained on data during 

internal speech resulted in comparable classification accuracies to those of internal speech 

(Figure 6-5A,B, Internal). However, in certain contexts we observed identical or better 

classification accuracy during internal speech than vocalized speech (Figure 6-4A, Online 

decoding). Better decoding of individual internal words than vocalized words was also observed 

during the phonetic task (Figure 6-S4, Swimming). Most neurons tuned during internal speech 

were also tuned to the same words during vocalized speech (53-56%, Figure 6-5C). However, 

some neurons were only tuned during internal speech, or to different words. These observations 

also applied to firing rates of individual neurons. Here, we observed neurons that had higher peak 

rates during the internal speech phase than the vocalized speech phase (Figure 6-1: Spoon, Nifzig; 
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Figure 6-S1: Swimming, Cowboy). Together, these results suggest SMG does not present a strict 

nested hierarchy of internal and imagined speech, where all channels involved during imagined 

speech are a subset of channels involved during vocalized speech (Soroush et al. 2022).   

Similar observations were made when comparing internal speech processes to visual word 

processes. 79% of neurons were active both in the internal speech phase and the written cue 

phase, and 56% preserved the same tuning (Figure 6-5D, Written Cue). Additionally, high cross-

decoding between both phases was observed (Figure 6-5B). 

Shared representation between speech and written cue presentation  

Observation of a written cue may engage a variety of cognitive processes, such as visual feature 

recognition, semantic understanding and/or related language processes, many of which modulate 

similar cortical regions as speech (Leuthardt et al. 2012). Studies have found silent reading can 

evoke internal speech; it can be modulated by presumed author’s speaking speed, voice 

familiarity, or regional accents (Perrone-Bertolotti et al. 2014; Alderson-Day and Fernyhough 2015; 

Alderson-Day, Bernini, and Fernyhough 2017; Alexander and Nygaard 2008; Filik and Barber 2011; 

Lœvenbruck et al. 2005). During silent reading of a cued sentence with a neutral vs. increased 

prosody (madeleine brought me vs. MADELEINE brought me), one study in particular found 

increased left SMG activation correlated with the intensity of the produced inner speech 

(Lœvenbruck et al. 2005).  

Our data demonstrated high cross-phase decoding accuracies between both written cue and 

speech phases (Figure 6-5B). Due to substantial shared neural representation, we hypothesize the 

participant’s silent reading during the presentation of the written cue may have engaged internal 

speech processes. However, this same shared representation could have occurred if visual 

processes were activated in the internal speech phase. For instance, the participant could have 

performed mental visualization of the written word instead of generating an internal monologue, 

as the subjective perception of internal speech may vary between individuals. 

Investigating internal speech strategies  

In a separate experiment, the participant was prompted to execute different mental strategies 

during the internal speech phase, consisting of “sound imagination” or “visual word imagination” 
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(Figure 6-S3A). We found robust decoding during the internal strategy phase, regardless of 

which mental strategy was performed (Figure 6-S3B). The participant reported the sound strategy 

was easier to execute than the visual strategy. Furthermore, the participant reported the sound 

strategy was more similar to the internal speech strategy employed in prior experiments. This 

self-report suggests the patient did not perform visual imagination during the internal speech 

task. Therefore, shared neural representation between internal and written word phases during 

the internal speech task may stem from silent reading of the written cue. Since multiple internal 

mental strategies are decodable from SMG, future patients could have flexibility with their 

preferred strategy. For instance, people with a strong visual imagination may prefer performing 

visual word imagination.  

Phonetic and semantic processing in SMG 

Since substantial shared neuronal representation was observed across the different task phases, 

semantic information in SMG might be responsible. Our native bilingual participant performed 

the same internal speech experiment using a four-word English and four-word Spanish vocabulary 

of words with the same meaning. If semantics were encoded, we hypothesized a classification 

model trained on English and Spanish words would confuse words of the same meaning. Instead, 

we observed stronger representation of phonetic information, including robust representation of 

pseudowords with no semantic content (Figure 6-2C, Figure 6-3C, Figure 6-S4). Our findings in 

SMG agree with previous literature reports of stronger SMG representation for phonetic rather 

than semantic decisions on words (Oberhuber et al. 2016; C. J. Price et al. 1997; Seghier et al. 2004; 

Sliwinska et al. 2012b). To test if word meaning also modulate SMG activity, two groups of 

homophones were tested. Interestingly, these words were distinguishable from each other as well 

(Figure 6-S5), suggesting both phonetic and semantics modulate SMG activity.  

Audio contamination in decoding result 

Prior studies examining neural representation of attempted or vocalized speech must potentially 

mitigate acoustic contamination of electrophysiological brain signals during speech production 

(Roussel et al. 2020). During internal speech production, no detectable audio was captured by the 

audio equipment or noticed by the researchers in the room. In the rare cases the participant spoke 

during internal speech (3 trials), the trial was removed. Furthermore, if audio had contaminated 
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the neural data during the auditory cue or vocalized speech, we would have likely observed 

significant decoding in all channels. However, no significant classification was detected in S1 

channels. We therefore conclude acoustic contamination did not artificially inflate observed 

classification accuracies during vocalized speech in SMG.  

Impact on BMI applications  

In this work, an online internal speech BMI achieved high-performance from single-neuron 

activity in SMG. The online decoders were trained on as little as eight repetitions of 1.5 seconds 

per word, demonstrating meaningful classification accuracies can be obtained with merely a few 

minutes’ worth of training data per day. This proof-of-concept suggests SMG may be able to 

represent a much larger internal vocabulary. By building models on internal speech directly, our 

results may translate to people who cannot vocalize speech or are completely locked in. Recently, 

(Metzger et al. 2022) demonstrated a BMI speller that worked by decoding attempted speech of 

the letters of the NATO alphabet, and using those to construct sentences. Scaling our vocabulary 

to that size could allow for unrestricted internal speech communication. 

To summarize, we demonstrate SMG as a promising candidate to build an internal brain-machine 

speech device. Different internal speech strategies were decodable from SMG, allowing patients 

to use the methods and languages with which they are most comfortable. We found evidence for 

phonetic representation during internal and vocalized speech. Adding to previous findings 

indicating grasp decoding in SMG (Wandelt et al. 2022a), we pose SMG as a multipurpose brain-

machine interface area.  
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Figure S6-1 | SMG shows firing rate modulation during cue, internal speech, and vocalized speech; S1 shows 
firing rate modulation during vocalized speech. A) Additional example smoothed firing rates of neurons tuned to four 
words in SMG during the “Auditory cue” and the “Written cue” task. The top part of each word figure shows the average 
firing rate over eight trials (solid line: mean, shaded area: 95% bootstrapped confidence interval). The bottom part of 
each figure shows an example trial with associated audio amplitude (gray). Vertically dashed lines indicate the beginning 
of each phase. B) Example smoothed firing rates for S1 over task duration. Tuning of a neuron to all words 
simultaneously was shown to emphasize generalized speech activity to vocalized words.   

 

 

Figure S6-2 | S1 shows generalized word activity during vocalized speech. A) Average percentage of tuned neurons to 
words in 50ms time bins in S1 over the trial duration for “Auditory cue” (blue) and “Written cue” (green) tasks (solid 
line: mean over 10 sessions, shaded area: 95% confidence interval). B) “Auditory cue” and “Written cue” tasks data 
were combined for each individual session day, and leave-one-out cross-validation was performed (black dots). PCA 
was performed on the training data, a LDA model was constructed, and results were plotted with 95% c.i., of the session 
means. Significance of classification accuracies was evaluated by comparing results to a shuffled distribution (averaged 
shuffle results = red dots). No classification accuracy was significant. However, classification accuracy during vocalized 
speech was significantly higher than during the previous delay period (t-test: *p < 0.05). These results show while lip 
and face activity are represented in putative arm area in S1, it is not significantly decodable. 
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Figure S6-3 | Different internal speech strategies are represented in SMG. A) The task was designed to vary the internal 
strategy the participant was performing during the internal speech phase. Two internal speech strategies were tested: 
a sound imagination and a visual imagination strategy. For the “sound imagination” strategy, the participant was 
instructed to imagine the sound of the word. For the “visual imagination” strategy, the participant was instructed to 
perform mental visualization of the written word. To test if the cue modality (auditory or written) could influence the 
internal strategy, each internal strategy was run once with an auditory cue, and once with a written cue, resulting in 
four different task versions (Auditory/Sound, Auditory/Visual, Written/Sound, Written/Visual; see Methods). A subset 
of four words was used for this experiment.  B) Cross-phase classification was performed by training the model on a 
subset of data from one phase (e.g. Cue) and applying it on a subset of data from each phase. This analysis was 
performed separately for each phase, and for each of the four task versions. Plotted here are the results when training 
on the internal speech phase, and evaluating it on ITI, Cue, Internal, and Speech phases. High classification accuracies 
(up to 94%) while performing the internal strategy were achieved using both visual and sound imagination strategy.  
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Figure S6-4 | SMG encodes sound phonetics.  A) The task was designed to probe if SMG encodes stronger the semantics 
(e.g. the concept of a word) or the phonetics of a word. The bilingual Spanish participant translated four English words 
into their Spanish counterparts, to ensure the semantic meaning of the word remained the same. The Spanish version 
of the task was composed of the translated words. On three session days, an English version and a Spanish version of 
the task were run, resulting in 24 trials per word. The task design remained identical to task 1.  B) Data was concatenated 
over session days and languages. A support-vector class model was trained and evaluated with 8-fold cross validation 
on multiunit channel activity. The confusion matrix during the internal speech phase (left) and vocalized speech phase 
(right) was calculated. Results indicate the classifier rarely got confused between words with the same meaning, 
suggesting SMG processes phonetics stronger than semantics both during internal and vocalized speech. 
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Figure S6-5 | SMG encodes word meaning. The task was designed to probe if SMG represents the semantic meaning 
of words. On four session days, two groups of three homophones were run, resulting in 78-80 trials per word. The task 
design remained identical to task 1. Data was concatenated over session days. A support-vector class model was trained 
and evaluated with 8-fold cross validation on multiunit channel activity. The confusion matrix during the cue phase, 
internal speech phase, and vocalized speech phase was calculated. Results indicate the classifier was able to decode 
words with same phonetics above chance, suggesting neural activity in SMG is also modulated by word meaning. 
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Chapter 7: 

Conclusion 

 

The ability to move freely and to connect with others through communication is invaluable for 

human independence. For individuals who have lost these crucial skills, regaining them is their main 

priority (Anderson 2004; Hecht et al. 2002). In this thesis, we demonstrated novel applications of 

brain-machine interfaces for patients suffering from paralysis and speech impairments. Our work 

builds on previous research indicating that premotor and posterior parietal areas are involved in 

both reach and grasp movements and language processes (Andersen et al. 2014a; Andersen, Aflalo, 

and Kellis 2019; Tyson Aflalo et al. 2015; Klaes et al. 2015; T. Aflalo et al. 2020; Oberhuber et al. 

2016).  

Using 4 mm x 4 mm multielectrode Utah arrays, we recorded populations of single neurons and 

found that the supramarginal gyrus (SMG), the ventral premotor cortex (PMv), and primary 

somatosensory cortex (S1) significantly encode motor imagery of grasping. These findings 

strengthen the idea of BMI target sites in higher level brain areas, that are involved in both grasp 

planning and execution. We further investigated the cognitive processes underlying neural activity 

during the cue phase of grasping and found a transition from cue modality-dependent to cue 

modality-independent grasp representation in SMG, the anterior intraparietal cortex (AIP) and PMv. 

Our findings suggest SMG integrates audio, written, and image cues modalities, but more similarly 

represents audio and written cues, indicating language involvement. We confirmed this hypothesis 

by demonstrating that SMG encodes both grasp and speech processes and engages different motor 

plans for each. For BMI applications, these results suggest that a classifier could be trained to 

represent both processes simultaneously, thus reducing the number of required implantable target 

sites. Lastly, we showed SMG involvement during internal speech and identified it as a promising 

candidate for developing an internal brain-machine speech device, that decoded eight words with 

high accuracy. Different internal speech strategies as well as English and Spanish words 

modulated SMG activity, suggesting participants can use the methods and languages with which 

they are most comfortable. Our findings also provide evidence for phonetic as well as semantic 

representation during internal and vocalized speech. These results are proof-of-concept that 
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internal speech BMIs can be constructed from brain signals obtained from the PPC. To increase 

the effectiveness of the current device, increasing the vocabulary size, the amount of training 

data, and improving the decoding algorithm are all important considerations. Constructing a 

speller by decoding words of the NATO alphabet (Moses et al. 2021), or phonemes paired with a 

language model (F. Willett et al. 2023) could allow to scale the vocabulary substantially. 

In this work, we provided proof-of-concept for grasp and speech BMI applications from the posterior 

parietal cortex. An important future step to validate their effectiveness and potential benefits is by 

replicating the results in additional participants. This task can be challenging, as invasiveness of the 

procedure, specific medical conditions, and limited access to resources can prevent potential 

participants from enrolling in studies of this caliber. Additionally, each participant tends to have 

unique brain structures and individual variabilities. Nonetheless, the findings in this thesis are 

promising for developing more natural and intuitive BMI applications.  

Overall, this thesis highlights the potential of BMI applications to improve the quality of life for 

those affected by the loss of essential skills for human independence.  
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