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ABSTRACT

Current management of bacterial infections is limited by the slow turnaround time of
culture-based antibiotic susceptibility testing (AST). Culture-free phenotypic AST
methods, though faster, are limited not only by analytical sensitivity but also by the
low number, density, and purity of live pathogens present in clinical specimens before
culturing. Separating and concentrating pathogens from clinical specimen matrices
and improving the analytic sensitivity of phenotypic measurement technologies
remain active areas of research. However, to date, the literature lacks consensus
over what is a reasonable goal for the minimum number of pathogens in a clinical
specimen needed to accurately perform phenotypic AST.

I describe "bulk filtration AST" and "digital filtration AST," two new filtration-based
AST methods that improve an AST method previously published by others and my-
self. These methods use nucleic acid quantification to assess the activity of antibiotic
classes (and only those classes) targeting peptidoglycan turnover, specifically the
beta-lactams, which are the most frequently prescribed class of antibiotics. I use
filtration AST to quantify the in vitro pharmacodynamics of beta-lactam antibiotics
over time scales shorter than two hours, and I simultaneously validate the methods’
accuracies on clinical isolates of Enterobacteriaceae. To analyze filtration AST
results, either for fitting parameter values or for predicting susceptibility, I derive
probabilistic models for the outcomes of each of the two filtration AST methods,
then perform Bayesian parameter inference from my data.

I then propose a general mathematical framework for defining the concepts of the
phenotypic assay and the ideal phenotypic assay. Within this framework, I calculate
the ideal filtration AST performance as a function of the number of cells assayed, my
fitted pharmacodynamic parameters, and other variables. Interestingly, the observed
performance of my implementation of digital filtration AST is consistent with the
implementation’s approaching the ideal performance. I hope my demonstration of
these new methods and my theoretical framework will help guide future research
into rapid phenotypic AST.
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C h a p t e r 1

BACKGROUND AND CONTRIBUTIONS

1.1 Open challenges in antibiotic susceptibility testing
1.1.1 The clinical need for rapid AST and phenotypic AST
Bacterial infections are common afflictions or complications in virtually every pa-
tient population around the world [1]. Antimicrobial susceptibility testing (AST),
also often referred to as "culture and sensitivity," is an indispensable diagnostic
procedure that guides modern management of bacterial infections. AST informs
clinicians whether the causative bacterium is susceptible or resistant to a panel of
antibiotics. Knowledge of susceptibility allows clinicians to choose an antibiotic
with assured effectiveness, the narrowest range of target organisms, and the fewest
adverse effects. However, clinicians today must rely on slow culture-based pheno-
typic AST assays for definitive answers. It takes a median of 11–12 hours [2, 3] for
a typical venous blood draw to show positive bacterial growth by today’s automated
culture systems, another day (about 24 hours) for subculture on solid media to isolate
the pure microorganisms, and then 18–24 more hours of culture to perform the AST
itself [4]. The total sample-to-answer time for phenotypic AST in the USA was
found to last a median of 2.57 to 3.1 days, depending on species (overall median
2.76 and interquartile range 2.49–3.12), in a 2018 study [5].

The long delay in susceptibility information necessitates empiric antibiotic regi-
mens1, in which clinicians choose antibiotics by prior experience or guidelines, but
without precise knowledge of the cause of the suspected infection. Empiric ther-
apy creates several problems. First, although clinicians choose broader-spectrum
antibiotics to maximize the chance of covering the unknown pathogen, the empiric
regimen will fail if a resistant organism is present. Second, the uncertainty of em-
piric therapy has prematurely eliminated some older antibiotics in outpatient settings
where AST is too slow to be performed. When the community rate of resistance
against a drug has become non-negligible (e.g., >5%), an unacceptable number of
patients would be harmed by treatment failure if given that drug empirically, so no

1Empiric regimens are prescribed and administered based on prior experience instead of precise
knowledge of the suspected infection’s cause. The choice of antibiotics must contain sufficient
antibiotic coverage of all reasonably likely organisms that match the patient’s presentation and the
levels of resistance recently observed in the community.
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patients receive the drug even though most patients would still benefit. Third, sev-
eral classes of antibiotics have predictable or frequent adverse affects that may harm
the patient. However, if the chance is high enough that safer alternatives will not
cover the reasonably expected diversity of resistant taxa, then the benefit of treating
outweighs the risk. The riskier drug must still be given until proven extraneous.
Lastly, excessive use of first-line antibiotics has been shown to be accelerating the
emergence via natural selection of resistance in target pathogens, creating what
public health agencies nearly unanimously have identified as an urgent global crisis
[6].

Faster AST would reduce the duration of empiric therapy and thus mitigate all the
above quandaries. Inpatient providers can switch to targeted monotherapy earlier,
perhaps within the same hospital shift, simplifying treatment plans and slowing
the spread of resistance. Outpatient providers may be enabled to wait until AST
results return before sending prescriptions to patients seen earlier. In an ideal
world, the turnaround time for AST would be shorter than the length of time it
takes to physically prepare and administer intravenous antibiotics. Ultimately, a
point-of-care device that returns results within 30 minutes would have a chance of
eliminating empiric therapy altogether—but the possibility of such a device, at least
for phenotypic AST, is questionable and one of this thesis’s targets of inquiry.

AST methods can be classified as genotypic or phenotypic. Phenotypic tests measure
bacterial response directly regardless of a strain’s resistance mechanism. The current
phenotypic gold standard methods of disk-diffusion and broth microdilution read
population growth after 16–24 hours of incubation [4]. They also require pure
isolates, which entails culturing in liquid media and subculturing on solid media for
at least 2 days [5]. Phenotypic tests are cost effective and yield definitive answers.
Their main drawback is their slow turnaround time.

Genotypic tests (e.g., nucleic acid amplification tests (NAAT)) detect the presence
of known resistance genes, return results within hours without any culturing, and
have become standard of care for a number of pathogens. Unfortunately, genotypic
tests have failed to replace culture-based AST for most bacterial pathogens because
they measure resistance indirectly and in most cases can only rule in, not rule
out, resistance. Therefore, empiric antibiotics would still be continued even if a
genotypic test for resistance returns negative. Only a rapid phenotypic test would
be able to eliminate an antibiotic from a patient’s regimen. Genotypic test use has
mainly been limited to surveillance for resistance at large medical centers.
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An exception is the genotypic test for the SCCmec cassette in Staphlococcus aureus.
The SCCmec/mecA/mecC cassette is highly correlated with the methicillin-resistant
(MRSA) phenotype and therefore can eliminate the use of empiric vancomycin in in-
patients with suspected sepsis when the local MRSA prevalence is not too high. Un-
fortunately, no genotypic test exists for the most common Gram-negative pathogens.
Yet, Gram-negative pathogens incur the greatest morbidity and mortality among
the antibiotic-resistant pathogenic bacteria in bloodstream infections in developed
regions [1, 6].

1.1.2 Obstacles to rapid phenotypic AST methods
The fundamental obstacle in speeding up phenotypic AST is the low signal-to-noise
ratio (SNR) that can be elicited out of many types of clinical specimens. There are
four specific obstacles that create both the low AST signal and high background
of these clinical specimens. These four obstacles are also four tasks which any
phenotypic AST must overcome to perform accurately on the breadth of clinical
specimens on which it is deployed. First, a low density of bacteria may be present
in the specimen. Since any phenotypic AST signal must arise proportionally from
the bacteria assayed, at least in the AST methods envisioned to date, lower densities
of bacteria imply lower signals. Secondly, the technology used to measure bacterial
phenotypes will have a certain analytical sensitivity. Low analytical sensitivities will
cause low signal. Thirdly, the non-bacterial components of the specimen, mostly
human tissue, present a large mass of non-bacterial cells, many chemical species, a
complex physical structure, and variability in their chemical composition due to the
host’s reactive physiology. This host tissue will contribute background signal. If the
host tissue alters the bacterial phenotype, its unpredictable nature adds uncertainty
to the signal. Lastly, as asserted by this thesis, if low numbers of bacteria are present,
then the noise from biological stochasticity will obscure the signal from AST assays.

The traditional AST workflow overcomes each of these obstacles through the cul-
turing of bacteria. In the first step of the workflow, a blood culture bottle containing
growth media is cultured until bacteria growth is detected by continuous monitoring
of gases produced by microbial metabolism. Each bottle is usually part of a set
of bottles drawn at the same patient encounter. Allowing bacteria to replicate in-
creases the number of bacteria and increases the amount of bacteria-specific signal
from bacteria per unit volume relative to the non-replicating host tissue. At this
stage, the background from hosts tissues is high enough that AST methods are not
currently performed, though this is an area of current research [7]. The contents of
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blood vary widely depending on the patient’s physiology (e.g., antibiotics that were
possibly administered, white blood cell counts, lipoprotein content, liver or kidney
dysfunction) and contain thousands of different chemical species. Furthermore,
about 17% of blood cultures in a clinical lab (across all conditions) contain more
than one organism [5]. In the past, up to 25–31% [8, 9] of all polymicrobial cultures
contained non-informative contaminants. For hospitalized inpatients in the USA, it
is generally considered acceptable for a healthcare facility to have a contamination
rate of 3% [4].

The next step of the workflow is typically subculturing to obtain pure isolates. It is
during the act of streaking onto solid agar that host blood is diluted and physically
separated from the bacteria. As the bacteria replicate into a solid mass from single
colony-forming units (CFU), the separation is magnified to virtual completion, and
the density of bacteria per unit volume is maximized. It is at this high signal-to-
noise ratio that many analytical assays become usable, such as species identification
by MALDI-TOF mass spectrometry and, of course, phenotypic AST. For broth
microdilution specifically, the CLSI standard protocol requires a cell density of 0.5
McFarland, which is approximately 5 × 105 CFU/mL.

During the third step of the workflow, AST is performed. The gold standard
measurement methods of agar dilution, disk/gradient diffusion, and broth macro/
microdilution all rely on visual observation by certified technicians of the turbidity
of liquid cultures or the opacity of bacterial lawns. The exponentially-increasing
signal from the cultured bacteria, and the non-increasing signal of the growth media,
is what eventually provides sufficient signal-to-noise ratios for the naked eye.

Although culturing very effectively overcomes the four necessary obstacles to phe-
notypic AST, it takes up the largest proportion of the turnaround time for traditional
AST. This turnaround time is too long, as discussed in section 1.1.1. To speed
up phenotypic AST, the four tasks performed by culturing need to be optimized,
such as by automation, or to be performed by replacement techniques. (Automation
will not be further discussed because improvement in that aspect generally involves
mechanical and electrical engineering rather than knowledge of biology.)

The task for which humanity has made the most progress has been the substitution
of the phenotypic readout technology. The current gold standard protocols require
that the antibiotic exposures be incubated for 16–20 hours (for broth microdilution)
or 16–18 hours (disk diffusion), and up to 24 hours for certain antibiotic and taxa
pairings, to ensure that no positive growth is missed [4]. This is a comparatively
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long turnaround time for assays in clinical chemistry. Newer automated systems
are much faster than traditional assays, though generally at a higher cost. Besides
cost, a major benefit of using disk diameter or turbidity as the detected system state
variable is that a large body of data already exists for these traditional methods,
simplifying adoption of new devices. Any other form of readout must demonstrate
strong correlation to population growth or build up a substantial body of survey data
in order to displace the current usage of population size and the MIC. This benefit
is more economical and historical than scientific. End-point growth is not the most
fundamental, uniform, or clinically relevant metric; rather, it was the most clinically-
relevant and reproducible pharmacodynamic metric that could be measured with the
easy and cheap gold standard assays at the time antibiotics were discovered. The
guidelines for interpreting of disk diameter or minimal inhibitory concentration
(MIC) themselves contain many exceptional cases to account for atypical behaviors
in each taxa.

At least nine commercial automated systems have been developed so far that shorten
the readout of growth to 4–8 hours, or as short as 3 hours in some cases. A review
of these platforms can be found in Jacobs et al., 2021 [10]. The measurement
technologies employed by these commercial offerings include conventional meth-
ods (microdilution, turbidometry, and disk diffusion) as well as newer modalities
(laser nephelometry, live darkfield microscopy, volatile small molecule sensors).
Additional readout methods have been proposed in the literature. These include im-
proved photometric measurements (single-wavelength, non-spatial, and including
colorimetric and fluorimetric assays requiring exogenous chemicals); Raman and
other electromagnetic spectroscopy; other forms of live microscopy; electrochem-
ical signals by electrodes; mass measurement by cantilever balances; atomic force
microscopy; laser speckling patterns (for solid colonies); proteomic mass spectrom-
etry; and nucleic acid quantification, often benefiting from microfluidic devices
[11].

The task of host tissue separation has also been the subject of considerable research
by engineers. Particular attention has been placed on separating bacteria from whole
blood because of blood’s clinical importance. Techniques such as centrifugation/
sedimentation, filtration, selective lysis of human cells by saponin, chemical bind-
ing (by antibodies or lectin), field-flow fractionation, capillary zone electrophoresis,
dielectrophoresis, acoustophoresis, automatic cell sorting, and other microfluidic
phenomena (e.g., hydrodynamic focusing, droplet sorting, sieves) have been at-
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tempted in the literature, as reviewed in Pitt et al., 2016 [12]. However, many of
the reported methods suffer from drawbacks in overcoming the high density of host
cells and proteins in blood compared to other bodily fluids. Of the nine commer-
cialized rapid phenotypic systems, only two—the Accelerate Pheno and the Q-linea
ASTar—have been approved for use directly from positive blood cultures [10, 13].
The Accelerate Pheno device accomplishes host tissue removal through selective
lysis of host cells followed by filtration by gel chromatography, but the exact methods
of this device and the Q-linea ASTar device are trade secrets.

To address the obstacle of low bacterial spatial density, one may increase the density
of bacteria by increasing the number of cells (e.g., culturing) or concentrating them
into a smaller volume. The density is the important physical quantity because the
background signal from most measurement sensors scales in proportion with the
amount of space (or time) from which the sensor acquires signal. This statement is
true for photodetectors, images (since the probability of imaging artifacts increases
with the field of view), and Oftentimes, the signal measured by the measurement
device is also proportional to the density of the analytes detected. This statement
is true for colorimetric and electrochemical sensors. Of note, instead of physically
altering the spatial density of cells, one can restrict the volume of space and time
covered by one’s measurement to the sparse cells in a dilute specimen, raising the
effective density of the signal-generating bacteria [14, 15]. To do so, one must be
able to analyze the discrete particles of the analyte, which is easier for cells than for
molecules. In the literature, the task of increasing bacterial density without culturing
has generally been attempted while attempting to separate host tissue. However,
one of the reasons that some separation technologies have failed to progress to the
clinic is that the separation dilutes bacteria to even lower densities, even though host
cells density drops by many magnitudes more. Perhaps subsequent processing to
increase (e.g., centrifugation) then causes the loss of too many cells.

The last obstacle of low cell numbers, regardless of density, has not received sig-
nificant attention in the literature, though it has undoubtedly been encountered, and
maybe recognized, in fields such as circulating tumor cell detection or single-cell
AST.

Unlike the density of cells, which can be increased arbitrarily until one is making
measurements from single cells in comparably-sized volumes, the absolute number
of cells can only be increased by further collection or by culturing. During blood
donation, it is widely accepted that no more than 100 mL of blood per 1 kg of
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body weight, or 13% of an adult human’s total circulating blood volume, can be
removed within an 8 week window without risking symptoms of anemia [16]. For
very young children, no more than 1% of the total circulating blood should be drawn
[4]. The recommended volume per day of blood for blood cultures is 40 mL, or 4
sets of bottles, though there is evidence that larger volumes would improve yields
[4]. Larger volumes would create more labor for laboratory staff, however. There is
a practical limit to the amount of blood that can be collected for blood cultures, and
therefore a limit to the numbers of cells that can be collected. To date, no one has
demonstrated in humans the safe return of blood to the patient after the collection
of bacteria, though the idea was once explored in rodents [17].

If large numbers of cells were collected by blood draws in standard practice, then the
absolute number of cells would not be limiting to phenotypic AST assays. However,
this is not the case. As the next section describes, the number of bacteria collected
from the patient may be in the single digits.

1.1.3 The distribution of bacteria number in whole blood cultures
Whole blood is arguably the most important clinical specimen submitted for phe-
notypic AST today because it is used in the diagnosis of almost all infectious
syndromes2 that result in a systemic inflammatory response (which correlates to
serious infections with risk of mortality), or syndromes in which the infection is
not confined to a specific epithelium. Blood cultures are thus the most frequently
ordered clinical specimen in inpatient settings. The utility of blood cultures arises
from their ease of interpretation and the relative ease in obtaining them from pe-
ripheral draws. Blood is close to sterile in a healthy human being, and so any
organism cultured from blood, besides a handful of common skin flora contami-
nants, is clinically significant. (Other serous bodily fluids such as cerebrospinal,
pleural, pericardial, peritoneal, and synovial fluid are also expected to be sterile.)

Unfortunately, blood, and some serous fluids, typically have low densities of bac-
teria. One 1989 study found an average of 0.25 CFU/mL across positive blood
cultures from 224 patients [18]. In several studies utilizing the pour plate method
of quantitative culture for any bacteremic specimens, the percentage of blood spec-

2These syndromes include sepsis, catheter-associated bloodstream infections, and other blood-
stream infections; endocarditis; pyelonephritis; meningitis; pericarditis; spontaneous bacterial peri-
tonitis; pneumonia and empyema; gastrointestinal perforations/fistulas and septic pancreatitis; septic
arthritis and prosthetic joint infections; some severe skin and soft tissue infections like osteomyelitis
and gangrene; bacteria that invade the reticuloendothelial system like typhoid fever, legionellosis,
and listeriosis; and fevers of unknown origin.
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imens with <1 CFU/mL ranged between 35–54% , and the percentage of specimens
with <10 CFU/mL ranged between 58–83%. The percentage of specimens with
>100CFU/mL ranged between 6–10% [19]. The standard blood culture tube, into
which venous blood is drawn directly into growth media, is designed to accept
between 4 and 10 mL, which means that about half of all positive blood cultures
begin with less than 100 bacteria contained inside. It is also common for replicate
blood draws to yield positive cultures in only some of the replicates, explaining
why it is standard to draw at least three sets of blood culture draws for suspected
sepsis, each set containing one aerobic and one anaerobic culture [4]. Cases in
which some blood draws return negative indicate that the density of bacteria is low
enough that those draws returning positive have a high chance of having contained
a single bacterium (the chance being calculable using the Poisson distribution). For
example, a 1993 study, where six 5 mL replicates were drawn per case of suspected
bacteremia, found that only 35% of Escherichia coli and 62% of Staphylococcus
aureus cases had all 6 replicates return positive [20]. From the above studies, one
can infer that the distribution of bacterial densities in blood has a strong positive
skew, perhaps a power-law distribution. Many specimens contain few bacteria, often
missing bacteria altogether while companion replicates turn positive. Decreasing
fractions of specimens containing higher numbers of bacteria, ending with a thin
tail of specimens with >100 CFU/mL.

The rough estimates above of circulating bacterial density make the assumption of a
well-mixed, even distribution of bacteria in the blood. In reality, this assumption is
not at all true, with bacteria possibly released from the site of infection in waves or
aggregates. The precise distribution of densities in blood, unfortunately, has never
been directly studied on a large scale with clinical samples due to labor costs and
ethical limitations. Nonetheless, the numbers of cells in blood in the vast majority
of blood specimens before culturing is simply too low for any current or proposed
phenotypic AST method to achieve sufficient analytical sensitivity.

As a contrasting scenario, urine cultures are expected to have bacterial densities
higher than 102 to 105 CFU/mL, depending on patient age and symptoms. Lower
densities are in fact considered non-pathological3.

3The majority of urine cultures are done for non-urgent suspected urinary tract infections. Such
cultures are currently the most frequently requested type of culture [4], but AST is typically not
performed unless an unusual and urgent pathogen is found. In the minority of urinary tract infections
suspected of having escalated to pyelonephritis, the urine specimens would be accompanied by blood
specimens too.
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The specific type of infection and the specific taxa also affect the circulating density
of bacteria, with bacteria residing inside white blood cells (e.g., typhoid fever)
being sparser, while circulating densities in infectious endocarditis are 2–10 fold
higher4than other bacteremias [19].

As the blood culture is incubated, classic models from in vitro cultures of pure
isolates predict that the population will grow exponentially after a lag phase. No
study has yet followed the growth of bacteria during blood culture bottle incubation
however, due to the inability to non-destructively monitor growth until a large density
is reached. Changes in turbidity are not distinguishable from background created
by the opacity of whole blood (even if host cells are lysed). What is known is that
a density of 7.5 × 106 to 5 × 107 CFU/mL is present at the time three commercial
automated blood culture systems can confidently predict growth in the blood culture
bottle. Growth is detected from measurements at 10 minute intervals of carbon
dioxide and other metabolic gases in the headspace of the bottle [7].

By the time positive growth is detected in a blood culture, the number of cells has
increased by 5 to 7 orders of magnitude. Since the initial blood culture is one of the
longest steps in the traditional AST workflow, the question arises of whether blood
culture can be shortened. The growth rate of wild bacteria is not a controllable
variable, because it is believed that for the majority of human pathogens (those
labeled "non-fastidious"), the maximum rate of growth allowed by the biophysics of
macromolecule synthesis is already achieved by rich media, and because no amount
of human engineering of the biosphere can guarantee that wild organisms have not
deviated from expectations. Therefore, the duration of the initial blood culture
is tied to the number of cells that have so far accumulated in the blood culture
tube. Shortening or simply bypassing the duration of blood culture must address
the question of whether there are enough bacterial cells in existence to perform
subsequent analyses.

1.2 Thesis goals and intellectual contributions
In this thesis I will be examining the limits of low cells on the aspect of assay
sensitivity, specifically how the number of cells in the assay system affects the
outcome of the assay, the susceptibility calls.

4To clarify, fastidious agents of endocarditis like the HACEK organisms require prolonged
incubations to turn positive and would be recorded as false negatives if the microbiology lab is
not informed of clinical suspicion for endocarditis. Endocarditis from fast-growing pathogens like
Staphylococcus or Streptococcus appear in intermittently higher densities, and also may be negative
due to stochastic sample timing.
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I assert that there is a minimum number of cells needed for sufficiently sensitive
phenotypic measurements. Whatever processing is performed on a clinical speci-
men after collection must therefore produce at least that minimum number of cells
sometime before the susceptibility calls are made to achieve a sufficient accuracy.
Any attempt to remove host tissue and concentrate bacteria, such as the culturing of
bacteria in liquid media found in current standard protocols, is inherently included
in specimen processing and must also produce this minimum number. If the bac-
teria produced by the processing is too low, then the number of bacteria must be
increased by further collection or by culturing somewhere before or after the host
tissue separation, or—only if there are sufficient bacteria to begin with before the
separation—the separation efficiency must be improved. Thus, the minimum num-
ber of cells determines in part the manner of specimen processing and especially
the length of time required to process the specimen before (or possibly during) the
assay.

One pertinent question remaining is how to calculate this minimum number of cells.
One can easily theorize many factors controlling the minimum number of cells,
and each one must be ruled out as negligible or be included in one’s calculations.
Of note, the minimum number of cells will be a function of inherent biological
processes, such as the stochasticity in phenotypic responses, the pharmacodynamics
of the phenotypic response, and the population dynamics that are part of the phar-
macodynamic response. One would also expect these properties to vary between
different bacterial taxa, antibiotic compounds, and possibly host physiology. The
minimum number of cells also will depend on the measurement technology, by the
limit of detection of the technology, whether the observations are destructive or
non-destructive, and the type of physical quantities that can be measured. Lastly,
included in the measurement process, but not limited to specific technologies, are
factors such as the number of observations that can be made and the number of
experimental conditions tested. A more rigorous discussion of the definition of
the minimum number of cells and the definition of an ideal assay can be found in
Chapter 5.

The goals of this thesis are to 1) derive a theoretical definition for the minimum
number of cells for ideal and actual assays, 2) calculate the minimum number of
cells for a clinically relevant bacterium and antibiotic drug using physical data, 3)
describe a novel phenotypic AST assay for antibiotics that target peptidoglycan, and
4) assess the accuracy of the assay at low numbers of cells.
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To achieve these goals, the following intellectual contributions were made:

1. Invention and reduction to practice of bulk filtration AST as a diagnostic
method.

2. Preliminary validation of bulk filtration AST on clinical isolates of Enterobac-
teriaceae.

3. Application and successful fitting of a Bayesian mixed-effects compartment
model to in vitro beta-lactam pharmacodynamics.

4. Invention of digital filtration AST as a diagnostic method.

5. Derivation of novel algorithms for the analysis of digital filtration AST results,
including

• the well population status probabilities of the simple Markov birth-death
process and

• the maximum likelihood estimators of the death probability and loading
cell densities from well population status tallies in the simple Markov
death process.

6. Preliminary validation of digital filtration AST on clinical isolates of Enter-
obacteriaceae.

7. Proposal for a definition and mathematical framework for phenotypic assays
and ideal phenotypic assays.

8. Calculation of the minimum number of cells required by an ideal accessibility
AST assay as a function of pharmacodynamic parameters, exposure duration,
and a given assay performance.

9. Evidence showing that irreducible system stochasticity and dynamics are
sufficient to explain the limits of digital filtration AST so far observed.

1.3 Phenotypic NAAT and Accessibility AST
The AST methods described in this thesis, and in the preceding work by members
of the Ismagilov lab, use nucleic acid amplification (NAA) to measure antibiotic
resistance phenotypes.
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Figure 1.1: Accessibility of bacteria-derived molecules is a measurable phenotypic
response to beta-lactam antibiotics.

The main rationale for using nucleic acid amplification over other readout tech-
nologies is that it is easier to separate and concentrate nucleic acids from host
tissue than it is to separate and concentrate living bacteria from the same tissues.
Many well-known protocols for extracting nucleic acids from human tissues have
been developed over the decades. Their existence and relative robustness to host
tissue complexity explains why non-phenotypic NAA tests have been successful in
many aspects of laboratory medicine—except, of course, for antibiotic susceptibility
testing.

Unfortunately, all of the currently used methods for nucleic acid extraction include
chemicals such as alcohols, phenol, guanidinium chloride, and proteinases that kill
living cells. Killing living cells destroys any future phenotypic signal. However,
any phenotypic change in nucleic acid amounts or states elicited before extraction,
and not obscured by the extraction, can be measured. For example, in Schoepp et
al., 2017 [21], the difference in the total amount of uropathogenic Escherichia coli
nucleic acids between a treated and a control antibiotic exposure was measured using
fast (5–7 min) single-molecule digital LAMP. This method achieved phenotypic
AST in 30 min from clinical urine samples without pre-culture. In Khazaei et al.,
2018 [22], the changes in mRNA levels in Neisseria gonorrhoeae in response to
ciprofloxacin was measured using ddPCR.

In Savela et al., 2019 [23] and Schoepp et al., 2019 [24] (latter is included as
Chapter 2), a concept called "accessibility" was used as the phenotypic signal
for beta-lactam antibiotics. The accessibility AST methods utilize the fact that
beta-lactams cause physical disruptions in the peptidoglycan cell wall of bacteria
[25]. It is believed that the covalent bonds of peptidoglycan exerts a tensile force
that counteracts the osmotic pressure existing across all bacterial cell envelopes.
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Beta-lactams bind to and irreversibly inhibit enzymes, collectively called penicillin-
binding proteins (PBP), that remodel the peptidoglycan during normal growth [26].
When PBP activity is decreased, breakages in the peptidoglycan network appear.
Osmotic pressure causes the cell envelope (which comprises the outer and inner
lipid membranes as well as the peptidoglycan sacculus) to buckle and eventually
burst, killing the cell. This mechanism of action has been demonstrated in many
reports over the years [27, 28].

Any nucleic acid reagents introduced to the environment around the bacteria are un-
able to initiate amplification if they are topologically separated from their templates.
However, if beta-lactams disrupt the bacterial cell envelope, then these reagents are
able to initiate amplification, as depicted in Figure 1.1.

Accessibility AST differs from NAATs in other ASTs or other applications in that the
extraction of nucleic acids must not damage the cell wall, unless the extracellular and
intracellular nucleic acid fractions are first separated, as discussed in section 3.1.3.1.
In prior existing methods or applications of nucleic acid extraction, disrupting the
cell wall was a primary goal requiring enzyme activity, detergents, or vigorous
physical shearing like bead beating. This requirement of no cell lysis means that
nucleic acid extraction is not as simple as the measurement of total amounts. We
believe that separating non-living nucleic acids from clinical specimens will prove
easier than separating live cells from the same specimens nonetheless; this is an
opinion still awaiting future investigation.

It should be noted that accessibility AST only measures the activity of antibiotics that
cause lysis of the cell envelope. Thus, of the antibiotics currently in clinical use, the
method should only work when testing the following classes: beta-lactams (compris-
ing the penicillins, cephalosporins, monobactams, and carbapenems), fosfomycin,
glycopeptides (e.g., vancomycin), and cyclic lipopeptides (e.g., daptomycin).

The limitation of accessibility AST to cell-wall agents does not preclude clinical
adoption in the future because beta-lactams are the most widely prescribed class of
antibiotics in clinical practice. Beta-lactams remain popular because they are well-
tolerated with infrequent adverse reactions and have broad coverage. For example,
in pneumonia in a patient without a history of recent hospitalization and severe
enough to require hospitalization (i.e., inpatient community-acquired pnuemonia),
the first-line antibiotics usually comprise one IV beta-lactam (ceftriaxone, cefo-
taxime, ceftaroline, ertapenem, or ampicillin-sulbactam) and either a macrolide or
a tetracycline for coverage of atypicals (Mycoplasma, Legionella, and Chlamydia).
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Alternatively, levofloxacin or moxifloxacin monotherapy, which would not include a
beta-lactam, can be used; in practice both regimens are used with equal frequency by
hospitals [29]. For bloodstream infections (which always warrant hospitalization),
almost all empiric regimens include a beta-lactam. Even if the patient has a docu-
mented penicillin allergy (and the allergy is truly an allergy), it is still recommended
to include another class of beta-lactam (e.g., aztreonam) due to the effectiveness of
beta-lactams. For gram-negative bacteremias, a typical regimen includes a third or
fourth generation cephalosporin (ceftriaxone, ceftazidime, or cefepime) or a beta-
lactam/beta-lactamase inhibitor combination (e.g., piperacillin-tazobactam). If the
patient is immunocompromised or shows septic shock, then pseudomonal coverage
with another beta-lactam is added [30]. For Gram-positive bacteremias, a penicillin
or first/second generation cephalosporin is used (nafcillin, oxacillin, or cefazolin).
Vancomycin is added wherever MRSA is prevalent (which is frequent) [31]. If the
Gram stain is not yet available, then the presumed bloodstream infection must be
treated for both Gram-positive and Gram-negative possibilities, likely with a broad-
spectrum beta-lactam covering both. Furthermore, though it is discouraged, some
clinicians may opt to start with more powerful beta-lactams, including carbapen-
ems, if there is a reason to suspect a patient has a resistant organism, such as a prior
resistant infection or a prolonged hospital stay up to the point of infection.

Phenotypic AST for beta-lactams specifically would likely have a large clinical im-
pact if successfully sped up, thanks to the ubiquity of beta-lactams. Demand for AST
for beta-lactams is already ubiquitous in hospitals today, thanks to the widespread
use of beta-lactams and the fact that resistance to earlier classes of beta-lactams is
relatively common and increasing. As a specific example, if it were known that a
Staphylococcus aureus isolate was penicillin-susceptible, penicillin G monotherapy
would be the preferred approach instead of the broader first-line empiric regimen
described above for Gram-positive bacteremia. Similarly, narrowing regimens or
salvaging older antibiotics for Gram-negative bacteremia would also be encouraged
if clinicians received earlier, definitive AST results that allow them to let go of more
powerful options. For example, in practice, a de-escalation of meropenem, a broad-
spectrum carbapenem used in intensive care units for empiric treatment, could be a
switch to ertapenem, piperacillin-tazobactam, ceftriaxone and other third-generation
cephalosporins, and finally penicillins like amoxicillin, if any of the latter choices
were shown to be effective by phenotypic AST, with later choices being preferred
over choices listed earlier [32].
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The implementation and validation of the simplest form of accessibility AST, called
polymerase AST or "pol-aAST," is described in the next chapter.
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C h a p t e r 2

DIFFERENTIAL DNA ACCESSIBILITY TO POLYMERASE
ENABLES 30-MINUTE PHENOTYPIC 𝛽-LACTAM ANTIBIOTIC

SUSCEPTIBILITY TESTING OF CARBAPENEM-RESISTANT
ENTEROBACTERIACEAE

This chapter was published1as:

[1] Nathan G. Schoepp, Eric J. Liaw, Alexander Winnett, Emily S. Savela, Omai B.
Garner, and Rustem F. Ismagilov. Differential DNA accessibility to polymerase
enables 30-minute phenotypic 𝛽-lactam antibiotic susceptibility testing of
carbapenem-resistant Enterobacteriaceae. PLOS Biology, 18(3):e3000652,
March 2020. ISSN 1545-7885. doi: 10.1371/journal.pbio.3000652. URL https:
//journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000652.

NGS, EJL, AW, ESS, and RFI contributed to conceiving the method,
revising the manuscript, and interpretation of experimental results. NGS
developed the sample handling workflow and performed all experiments for
comparison of amplification methods, validation, and timed sample-to-answer
experiments. NGS was the major contributor to manuscript preparation and
prepared all figures. EJL performed filtration experiments, reviewed relevant
medical literature, and contributed to manuscript writing. NGS and AW
tested clinical samples using the modified workflow. ESS performed early
experimental work to link beta-lactam exposure to differential nucleic acid
readout, analyzed data from validation experiments, and developed TTPD
metrics. OBG provided clinical guidance on the selection of clinical isolates
and clinical samples and coordinated and provided oversight of clinical-sample
collection at UCLA, including technical assistance to UCLA staff. RFI
supervised and guided the project, and helped compose the manuscript.

2.1 Abstract
The rise in carbapenem-resistant Enterobacteriaceae (CRE) infections has created a
global health emergency, underlining the critical need to develop faster diagnostics
to treat swiftly and correctly. Although rapid pathogen-identification (ID) tests

1Contains sporadic differences in grammar and updated bibliographic references. The original
"Notes and References" section has been combined with the references for the rest of the thesis.

Additionally, error bars have been added to Figure 2.3 to show ddPCR Poisson 95% confidence
intervals after error propagation.

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000652
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000652
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are being developed, gold standard antibiotic susceptibility testing (AST) remains
unacceptably slow (1–2 days), and innovative approaches for rapid phenotypic ASTs
for CREs are urgently needed. Motivated by this need, in this manuscript we
tested the hypothesis that upon treatment with 𝛽-lactam antibiotics, susceptible
Enterobacteriaceae isolates would become sufficiently permeabilized, making some
of their DNA accessible to added polymerase and primers. Further, we hypothesized
that this accessible DNA would be detectable directly by isothermal amplification
methods that do not fully lyse bacterial cells. We build on these results to develop
the polymerase-accessibility AST (pol-aAST), a new phenotypic approach for 𝛽-
lactams, the major antibiotic class for gram-negative infections. We test isolates of
the 3 causative pathogens of CRE infections using ceftriaxone (CRO), ertapenem
(ETP), and meropenem (MEM) and demonstrate agreement with gold-standard AST.
Importantly, pol-aAST correctly categorized resistant isolates that are undetectable
by current genotypic methods (negative for 𝛽-lactamase genes or lacking predictive
genotypes). We also test contrived and clinical urine samples. We show that the pol-
aAST can be performed in 30 min sample-to-answer using contrived urine samples
and has the potential to be performed directly on clinical urine specimens.

2.2 Introduction
The evolution and global spread of carbapenem-resistant Enterobacteriaceae (CRE)
threatens to disrupt modern healthcare systems, which rely heavily on 𝛽-lactams
(especially carbapenems, the last-resort treatments) to control bacterial infections
[33–35]. Mortality rates for CRE infections are as high as 30%–49% [36–38], and
thus the global emergence and spread of CRE infections represents a public health
emergency [39–41]. The Centers for Disease Control and Prevention (CDC) places
CRE in its highest ("urgent") category of antimicrobial-resistant pathogen threats
[6, 40, 41], and the World Health Organization (WHO) labels CRE as a critical-
priority pathogen [39]. Escherichia coli, Klebsiella pneumoniae, and Enterobacter
spp. compose the majority of CRE infections and are the most commonly monitored
Enterobacteriaceae [40, 42–44].

To halt the further spread of CRE, patients need to be treated swiftly and correctly at
the point of care (POC); however, there is no fast and general method for determining
antibiotic susceptibility [45–47]. The current clinical workflow for treatment of
bacterial infections consists of an identification (ID) step followed by an antibiotic
susceptibility test (AST). Although progress is being made to develop faster ID tests
[48–50] and a rapid 20-min ID test is on the horizon [51–53], the gold-standard for
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AST remains a culture-based workflow using broth or agar dilution that requires 1
to 2 days and is thus far too slow [54, 55]. Because AST results are so delayed,
healthcare providers usually treat empirically, leading to inappropriate prescriptions
and even life-threatening outcomes [56], as well as the further spread of resistance.
To improve treatment and promote antibiotic stewardship, healthcare providers need
a rapid phenotypic AST [57–59].

ASTs are either genotypic or phenotypic. Genotypic tests predict resistance by
measuring the presence of genes known to be involved in resistance. Genotypic tests
can be fast [60] but often have limited clinical utility because they target defined
mechanisms of resistance. For example, rapid genotypic methods to detect gram-
negative 𝛽-lactamase genes have been developed [61–64], but these tests only detect
one of the many known 𝛽-lactamase classes and still require 30 to 40 min (estimated
from described methods). Similarly, the commercial Cepheid Xpert Carba-R assay
(Cepheid, Sunnyvale, CA), which detects 5 𝛽-lactamase gene families, was shown to
detect 50% of resistant isolates and took 88 min [65]. Moreover, although Carba-R
is Food and Drug Administration (FDA) approved, its utility in treatment scenarios
is limited (i.e., negative results are not actionable), so when prescribing antibiotics,
it must be used in conjunction with a phenotypic AST [66, 67]. Rapid methods for
measuring the activity of specific 𝛽-lactamases also exist [68–72]. However, these
tests only detect one mechanism of resistance, and sample-to-answer times have not
been reported.

Phenotypic ASTs are ideal because they determine susceptibility directly by expos-
ing the sample to antibiotics and measuring the target organism’s response. The
gold-standard AST (broth microdilution [54, 55]) is a phenotypic test. Most phe-
notypic tests require the growth of viable organisms isolated from patient samples,
a process that requires days and is thus too slow for the POC. Innovative, faster
phenotypic tests for 𝛽-lactams were developed based on in situ nucleic-acid staining
or fluorescence measurements [73–75], flow cytometry [76], microscopy [77–79],
optical density [80, 81], and mass spectrometry [82]. However, the majority of the
currently proposed methods still require 60- to 180-min antibiotic-exposure steps
in addition to the time needed to perform the assay, and no method has emerged
that achieves short (approximately 15 min) antibiotic exposure and short (approx-
imately 15 min) assay time but does not require excessively complex or delicate
instrumentation so the method can be deployed at the POC.

Rapid phenotypic methods based on quantification of nucleic acids (NAs) have
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shown great promise for a rapid POC AST due to the speed, specificity, and ro-
bustness of NA detection [83–88]. There is an additional advantage to using NA
quantification as a readout of the bacterial response to antibiotic: because rapid
pathogen ID from clinical samples is commonly performed via NA analysis, it
would likely be easier to integrate an NA-based phenotypic AST into a combined
ID/AST workflow performed from the same clinical sample. Additionally, the use
of NA-based methods provides molecular specificity towards the target pathogen,
which is important in clinical samples that can contain multiple organisms. For
antibiotics that directly or indirectly impact NA replication on short timescales,
we have demonstrated that the quantification of DNA [21, 89] or RNA [22] can
be used to rapidly (30 min) and reliably determine susceptibility to nitrofurantoin
and ciprofloxacin. Subsequent efforts have targeted the 𝛽-lactam class (the most
widely prescribed class of antibiotic [33, 34]) using these methods [90]. How-
ever, because 𝛽-lactams do not directly impact NA replication on short timescales,
this direct translation of the existing NA-based technique required a 2-h antibiotic
exposure, which is not sufficiently rapid for the POC. For a POC AST to impact
management of CRE infections, it must (i) determine susceptibility to 𝛽-lactams,
including carbapenems; (ii) be rapid (<30-min sample-to-answer) [91, 92]; and (iii)
be phenotypic [57, 58]. As discussed subsequently, rapid pathogen ID technologies
are becoming available, and therefore pathogen ID is not the focus of this work.

Here, we hypothesized that a new NA-based approach could be used to develop a
rapid phenotypic AST for multiple 𝛽-lactams. We hypothesized that upon treatment
with 𝛽-lactam antibiotics, susceptible Enterobacteriaceae isolates would become
sufficiently permeabilized so some of their DNA would become accessible to added
polymerase and primers. Further, we hypothesized that this accessible DNA would
be detectable directly by isothermal amplification methods that do not fully lyse
bacterial cells. To differentiate between resistant and susceptible organisms, rather
than measuring how total NA concentration is impacted by antibiotic exposure (as
in previous NA-based ASTs), we hypothesized that we could measure the accessi-
bility of NAs to polymerase following a short antibiotic exposure. Here, we test
these hypotheses and use them to design a new AST method, termed polymerase-
accessibility AST (pol-aAST). To validate the method, we performed 82 ASTs
using clinical isolates of 3 major CRE pathogens exposed to each of 3 commonly
prescribed 𝛽-lactams for gram-negative infections: ceftriaxone (CRO), ertapenem
(ETP), and meropenem (MEM). To further demonstrate that this method has po-
tential to be used clinically in POC relevant timescales, we (i) performed timed
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sample-to-answer experiments using contrived urine samples to ensure that the
whole assay can be performed in <30 min, and (ii) we performed a pilot study on
clinical urine samples from patients with urinary tract infections (UTIs).

2.3 Results
The pol-aAST relies on differential accessibility of NAs to polymerases as a result
of antibiotic exposure. In this manuscript, we define differential accessibility to
polymerase as a difference in the measured rate of amplification between control
and antibiotic-treated samples. In the first step of pol-aAST, a single sample is split
into control and treated aliquots of equal volume, and the treated aliquot is exposed
to a 𝛽-lactam. Antibiotic exposure is a critical step in any phenotypic AST because
phenotypic tests measure the response of bacteria to antibiotics. If the bacteria in the
sample are resistant, we hypothesized that no differences in NA amplification would
be observed between control and treated aliquots. If the bacteria are susceptible, we
hypothesized that antibiotic treatment would lead to a compromised peptidoglycan
cell wall (Figure 2.1A) and partial release of NAs (Figure 2.1B). We hypothesized
that both the compromised cell wall and partial release of NAs would increase the
accessibility of NAs to polymerase in a treated antibiotic-susceptible aliquot. In the
second step of pol-aAST, control and treated aliquots are exposed to polymerase in
amplification conditions (Figure 2.1C), and the rate of amplification is measured.

To successfully differentiate susceptible and resistant samples, ideal amplification
conditions must (i) not fully lyse cells, (ii) enhance alterations (damage) to the
cell wall caused by exposure to 𝛽-lactams, and (iii) increase NA release only from
antibiotic-damaged cells. The rate of amplification is dependent on the concentration
of polymerase-accessible NA. In susceptible samples, more NAs are released in the
treated aliquot, leading to faster amplification in susceptible treated aliquots (Figure
2.1D) relative to the controls. Resistant samples are not affected by the antibiotic,
so control and treated aliquots have similar NA release and time-to-positive (TTP).
In these samples, the low concentration of naturally occurring extracellular DNA
is ultimately amplified, but at a slower rate. Amplification rate in an isothermal
amplification reaction is quantified by measuring the TTP, the time it takes the
reaction fluorescence to reach a predetermined threshold. We found that using pol-
aAST, isolates susceptible to the 𝛽-lactam being tested show increased accessibility
of NAs to polymerase, manifesting in an earlier TTP relative to the control. The
TTPs of any two samples, such as the control and treated aliquots, can be compared
to generate a TTP difference (TTPD) value, which can then be used to determine
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Figure 2.1: Overview of the pol-aAST shown for susceptible and resistant samples
exposed to 𝛽-lactams. (a) Treated aliquots are exposed to a 𝛽-lactam. In susceptible
samples, 𝛽-lactams compromise cell wall integrity. (b) NAs are released from
compromised cells, increasing NA accessibility to polymerase.(c) Released NAs
in the susceptible treated aliquot amplify faster than NAs from intact cells in the
control aliquot, resulting in a difference in TTP. No difference in amplification
between control and treated aliquots is observed in resistant samples. (d) TTPD
between control and treated aliquots is used to assess susceptibility. ABX, antibiotic;
AST, antibiotic susceptibility testing; gDNA, genomic DNA; NA, nucleic acid; pol-
aAST, polymerase-accessibility AST; R, resistant; RFU, relative fluorescent units;
S, susceptible; TTP, time-to-positive; TTPD, time-to-positive difference.

susceptibility by comparing to a susceptibility threshold. Here, we used the DNA
polymerase Bst 3.0 (New England Biolabs [NEB], Ipswitch, MA) under loop-
mediated isothermal amplification (LAMP) conditions.

We hypothesized that the chemical environment in which amplification occurs would
significantly impact the result of pol-aAST and that—for pol-aAST to differentiate
susceptible and resistant samples—amplification conditions should not be fully
lysing. To test this, we performed pol-aAST using LAMP, as well as quantitative
PCR (qPCR) (Figure 2.2). LAMP is performed at a single temperature (70°C),
which we hypothesized would not be fully lysing, whereas qPCR is a thermocy-
cled amplification technique reaching a maximum temperature of 95°C, which we
hypothesized would be fully lysing. Indeed, we observed that pol-aAST was suc-
cessful in differentiating susceptible and resistant isolates when performed using
LAMP, but not when performed using qPCR (Figure 2.2). We tested qPCR with a
total of 2 susceptible and 2 resistant isolates, none of which showed a statistically
significant difference in quantitation cycle (Cq) between control and treated sam-
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Figure 2.2: The pol-aAST requires non-lytic amplification conditions. (a–b) Ther-
mal profiles of LAMP and PCR. (c–d) LAMP and PCR amplification curves for a
susceptible E. coli isolate exposed to ETP for 15 min. Blue and black lines are the av-
erage of triplicate samples. Grey lines represent standard deviation of triplicates. A
difference in TTP for control and treated aliquots is observed for susceptible isolates
when quantifying NAs using LAMP, but not PCR. Raw data are provided in S5 Table
of Schoepp et al. 2020 [24]. AST, antibiotic susceptibility test/testing; Cq, quanti-
tation cycle; ETP, ertapenem; LAMP, loop-mediated isothermal amplification; NA,
nucleic acid; PCR, polymerase chain reaction; pol-aAST, polymerase-accessibility
AST; RFU, relative fluorescent units; TTP, time-to-positive.

ples. When using LAMP, detectable differences were observed between control and
treated aliquots when using isolates susceptible to the target 𝛽-lactam (TTPD = 1.02
min). Additionally, the presence of cells not lysed during LAMP is evidenced by the
shorter TTPs seen when an aliquot of the same sample is lysed using an extraction
buffer prior to performing LAMP (explained in more detail subsequently). These
differences confirm that choice of amplification chemistry is critical to the success
of pol-aAST and are consistent with previous work evaluating thermal lysis [93].

To investigate the mechanism of pol-aAST, we performed experiments to separate
free NAs from NAs contained within structurally intact cells or associated with
cell debris. Susceptible and resistant clinical isolates were exposed to one or more
𝛽-lactams in parallel for 15 min, then filtered through 0.2 µm filters to remove cells
from free NAs. NAs in the sample and eluate were then quantified using droplet
digital PCR (ddPCR). We observed that following exposure to 𝛽-lactams, susceptible
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Figure 2.3: Two susceptible and two resistant E. coli isolates were exposed to no
antibiotic (control), CRO, ETP, or MEM for 15 min before filtering to separate
intact cells from extracellular DNA. Experiments were performed in triplicate for
all isolate/antibiotic combinations. Each point represents a single experiment; lines
represent the average and standard deviation of replicate experiments. Raw data
are provided in S6 Table of Schoepp et al. 2020 [24]. ABX, antibiotic; CRO,
ceftriaxone; ETP, ertapenem; MEM, meropenem; R, resistant; S, susceptible.

isolates treated with 𝛽-lactams released a significantly larger percentage of DNA
than resistant samples (Figure 2.3). The amount of DNA released depended on the
antibiotic being tested. Exposure to MEM resulted in an average of 21% of DNA
being released from susceptible isolates, with a slightly smaller average percent
(15%) released as a result of exposure to ETP. Interestingly, susceptible samples
only released an average of 6% of DNA when exposed to CRO, demonstrating that
NA release is dependent on choice of antibiotic and not, e.g., a universal stress
response. These results also demonstrate that the magnitude of the effect of a 𝛽-
lactam on cell wall integrity can be measured and is different depending on the
antibiotic used, even on short exposure timescales.

To validate the pol-aAST method, we first performed 82 ASTs using 12 clinical
isolates of E. coli, 8 clinical isolates of K. pneumoniae, 9 clinical isolates of 2
species of Enterobacter (E. aerogenes and E. cloacae, collectively "Ebs"), and the
𝛽-lactams CRO, ETP, and MEM. The set included isolates from each genus that were
susceptible and isolates that were resistant to each of the three antibiotics. In addition
to isolates obtained from the UCLA Clinical Microbiology Laboratory (CML; see
Methods), those tested included E. coli and K. pneumoniae isolates from the CDC
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Enterobacteriaceae Carbapenem Breakpoint panel [94], as well as all available
Enterobacter spp. isolates from the same panel. All samples were amplified using
quantitative LAMP, and categorical agreement was compared to gold-standard broth
microdilution AST. Two approaches for determining susceptibility were investigated
in all pol-aASTs performed.

The first approach we investigated was to compare the difference in TTP values
of the control and treated aliquots in each pol-aAST. This difference was defined
as TTPD control to treated (TTPDCT) (Figure 2.4a). Using the TTPDCT method,
we obtained 100% categorical agreement with gold-standard AST for all antibiotics
tested with E. coli (Figure 2.4b), K. pneumoniae (Figure 2.4c), and Ebs (Figure 2.4d)
isolates, even with resistant isolates for which the genotypic tests fail to correctly
predict the resistance phenotype (red points in Figure 2.4). The values of TTPDCT

were well-separated between susceptible and resistant isolates in all CRE-antibiotic
combinations. Note that the threshold values separating TTPDCT of susceptible and
resistant isolates depend on the antibiotic used (e.g., CRO gives a smaller response
and therefore requires a lower threshold), as well as the pathogen tested (e.g., K.
pneumoniae gives stronger response and requires a higher threshold). The area under
the curve (AUC) of the receiver operating characteristic (ROC) curve was 1.00 for
all isolates and antibiotics tested. There were no errors relative to gold-standard
AST when determining susceptibility by TTPDCT.

The second approach we investigated was to compare the difference in TTP values
of a fully lysed aliquot and the antibiotic-treated aliquot in each pol-aAST. The fully
lysed aliquot was created by extracting NA from the antibiotic-treated sample using
a single-step, LAMP-compatible extraction buffer. This difference was defined as
TTPD lysed-control to treated (TTPDLT) (Figure 2.5a). It is important to note
that TTPDLT only requires an antibiotic-treated sample during the exposure step
(the method does not require the use of a no-antibiotic control during exposure),
meaning that the original sample does not have to be split prior to exposure. Again,
the thresholds were defined individually for each antibiotic and pathogen. Using
the TTPDLT method, we obtained 100% categorical agreement with gold-standard
AST for all antibiotics tested only with E. coli (Figure 2.5b) and K. pneumoniae
(Figure 2.5c) isolates, and with resistant isolates for which the genotypic tests fail to
correctly predict the resistance phenotype (red points in Figure 2.5). When testing
Ebs (Figure 2.5d) isolates, we observed two errors in which an isolate classified as
CRO resistant was called susceptible, resulting in an overall categorical agreement
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Figure 2.4: Validation of the pol-aAST method using control and antibiotic-treated
aliquots. (a) Example calculation of TTPD between control and treated aliquots
(TTPDCT). The TTP (in minutes) of the control and treated aliquots are used to
calculate TTPDCT. (b–d) The pol-aAST results using E. coli (b), K. pneumoniae (c),
and Enterobacter spp. (d) isolates exposed to CRO, ETP, and MEM for 15 min. Red
points represent isolates with either no detectable carbapenemase genes (Ec and Kp
isolates) according to a published genotypic assay [95] and commercial assay [96]
or no predictive genotype (Ebs isolates) according to the whole genome sequencing
by the CDC [94]. S/R thresholds (dashed lines) were set halfway between the lowest
susceptible and the highest resistant TTPDCT values. Raw data are provided in
S3 Table of Schoepp et al. 2020 [24]. +ABX, antibiotic-treated; AST, antibiotic
susceptibility testing; CDC, Centers for Disease Control and Prevention; CRO,
ceftriaxone; CT, control to treated; ctrl, control; Ebs, E. aerogenes and E. cloacae
collectively; Ec, E. coli; ETP, ertapenem; Kp, K. pneumoniae; MEM, meropenem;
pol-aAST, polymerase-accessibility AST; R, resistant; RFU, relative fluorescent
units; S, susceptible; TTP, time-to-positive; TTPD, time-to-positive difference;
TTPDCT, TTPD control to treated.

of 88%. Because of these errors, the AUC for Ebs isolates tested with CRO was 0.94.
Aside from these errors, susceptible and resistant isolates were well separated in all
cases, with AUC = 1.000 for all antibiotics tested with E. coli and K. pneumoniae.
Although we observed two errors, using the TTPDLT metric still gave excellent
agreement with gold-standard AST and required no splitting of the sample prior to
exposure.

To demonstrate one of the major differences between pol-aAST, a phenotypic
method, and existing genotypic methods, we challenged the assay with 5 previ-
ously characterized isolates that had either (i) no detectable 𝛽-lactamase genes or
(ii) lacked any genotypic signature predictive of 𝛽-lactam resistance. We tested 2
E. coli and 2 K. pneumoniae isolates with no detectable 𝛽-lactamase genes as measured
by both a published genotypic assay designed to screen for 6 𝛽-lactamase gene fam-
ilies [95], as well as the Cepheid Xpert Carba-R test (a commercial, FDA-approved
genotypic assay designed to screen for 5 𝛽-lactamase gene families) [96]. These 4
isolates did not test positive in either assay because they lack the genes these assays
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Figure 2.5: Validation of the pol-aAST method using lysed control and antibiotic-
treated aliquots. (a) Example calculation of TTPD between the lysed control and
antibiotic-treated aliquots (TTPDLT). The TTP (in minutes) in the lysed control and
antibiotic-treated aliquots are used to calculate TTPDLT. (b–d) The pol-aAST results
using E. coli (b), K. pneumoniae (c), and Enterobacter spp. (d) isolates exposed
to CRO, ETP, and MEM for 15 min. Red points represent isolates with either no
detectable carbapenemase genes (Ec and Kp isolates) according to a published geno-
typic assay [95] and commercial assay [96], or no predictive genotype (Ebs isolates)
according to the CDC [94]. S/R thresholds (dashed lines) were set halfway between
the lowest susceptible and the highest resistant TTPDLT values except in the case of
Enterobacter spp. treated with CRO (see text). Raw data are provided in S3 Table.
+ABX, antibiotic-treated; AST, antibiotic susceptibility testing; CDC, Centers for
Disease Control and Prevention; ctrl, control; CRO, ceftriaxone; Ebs, E. aerogenes
and E. cloacae collectively; Ec, E. coli; ETP, ertapenem; Kp, K. pneumoniae; lc,
lysed control; MEM, meropenem; pol-aAST, polymerase-accessibility AST; R, re-
sistant; RFU, relative fluorescent units; S, susceptible; TTP, time-to-positive; TTPD,
time-to-positive difference; TTPDLT, TTPD lysed-control to treated.

screen for, despite being resistant (as determined by gold-standard broth microdilu-
tion). These 4 tested isolates were resistant to CRO and ETP, and one isolate from
each genus was also resistant to MEM. Additionally, we tested a single resistant Ebs

isolate from the CDC Enterobacteriaceae Carbapenem Breakpoint Panel (AR-Bank
#0007). Whole genome sequencing of this isolate (performed by the CDC) revealed
no known resistance markers [94], meaning that the mechanism of resistance was
uncharacterized. The pol-aAST performed excellently in all cases, and all 5 isolates
were correctly categorized as resistant (Figs 2.4 and 2.5, red points).

To investigate the sample-to-answer time of the pol-aAST, we performed timed
experiments using contrived urine samples (Figure 2.6). Sample-to-answer time is
a critical metric for any assay designed to be used at the POC but is often not reported
at all, even for methods claiming to be rapid. In timed experiments, we (i) reduced
the exposure time from 15 to 13 min to ensure that all handling could be performed
during the 15 min allocated for exposure and (ii) used an automated data-analysis
spreadsheet to provide a susceptibility call as soon as the LAMP reactions reached
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Figure 2.6: Timed sample-to-answer pol-aAST using contrived urine samples spiked
with either Ec or Kp. (a) Because minimal sample handling is required for pol-aAST,
all 4 contrived urine samples were run in parallel. (b) Urine samples were split into
control and antibiotic-treated aliquots and incubated at 37°C for 13 min. A timer was
started immediately after sample splitting. (c) All samples were added to pre-made
LAMP mix and run in technical triplicate. (d) Samples were amplified using LAMP,
and the fluorescence of reactions was monitored in real time. Once total fluorescence
passed a predetermined threshold (indicating successful amplification), reactions
were stopped and TTP values ported into an automated data-analysis spreadsheet.
The timer was stopped as soon as the spreadsheet gave susceptibility calls. (e)
Comparison of susceptibility calls with gold-standard AST categorization. Total
assay time was 29.5 min. Raw data are provided in S3 Table of Schoepp et al. 2020
[24]. ABX, antibiotic; AST, antibiotic susceptibility test/testing; cntrl, control; Ec,
E. coli; ETP, ertapenem; Kp, K. pneumoniae; LAMP, loop-mediated isothermal
amplification; pol-aAST, polymerase-accessibility AST; R, resistant; RFU, relative
fluorescent units; rt, real-time; S, susceptible; TTP, time-to-positive; TTPD, time-
to-positive difference.

a predetermined threshold (indicating successful amplification). At the initiation of
pol-aAST, a timer was started that ran for the duration of the experiment and was
stopped once a susceptibility call had been made. The susceptibility of 4 isolates
to ETP was tested simultaneously (Figure 2.6a). The pol-aAST consists of only 3
simple handling steps (Figure 2.6b–2.6d), which allowed us to perform pol-aAST
in a total time of just 29.5 min, with results in agreement with gold-standard AST
(Figure 2.6e).

We next ran the pol-aAST on clinical urine samples from patients diagnosed with
UTI. These samples were confirmed to be Enterobacteriaceae-positive UTIs by the
UCLA CML, and the pol-aASTs were run 3 to 5 days after collection. Initial
experiments running the pol-aAST directly on clinical urine samples revealed an
insufficient response to antibiotics in some samples. Because we analyzed urine
samples that had been stored in a chemical preservative (see Methods) for 3 to 5
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days after collection, some variation in the response to antibiotics was expected.
However, we wished to test whether the delays in the response were indeed due
to the phenotypic state of bacteria in these archived samples, and not due to the
intrinsic biology of the bacterial strains in these samples. To test, we obtained 25
clinical urine specimens that exhibited an expected heterogeneity, as indicated by
the wide range of urinalysis findings (see S2 Table of Schoepp et al. 2020 [24]):
pH ranged from <5 to 8, specific gravities ranged from <1.005 to >1.060 (above
and below the ranges detected in standard urinalysis), and protein, ketone, and
bilirubin contents ranged from absent to the maximum measurable by urinalysis.
Some samples contained red blood cells, leukocytes, and squamous epithelial cells.
Two of the samples were polymicrobial. To ensure a response from bacteria in these
specimens, we added a 30-min pre-incubation step of urine with media and increased
the duration of antibiotic exposure to 45 min (see Methods). We did not optimize
these conditions and did not attempt to identify the shortest possible incubation or
exposure time. Eight samples were tested for ampicillin (AMP) susceptibility, and
17 samples were tested for ETP susceptibility. Prior to testing clinical samples using
AMP, we tested 5 E. coli isolates using AMP (S1 Figure of Schoepp et al. 2020
[24]). Despite the heterogeneity in the urine matrix and the likely nutrient-deprived
condition of the bacteria in the urine samples, pol-aAST experiments yielded clean
separation between AMP-sensitive and -resistant E. coli. Additionally, we were able
observe a response to ETP in 14 of 17 ETP-sensitive urine samples tested. Overall,
we obtained 100% categorical agreement for determination of AMP susceptibility
(4/4 susceptible and 4/4 resistant; Figure 2.7) and observed a response indicating
susceptibility to ETP in 14 of 17 (82.4%) confirmed-susceptible samples (Figure
2.7), including the 2 polymicrobial samples. None of the samples received for
testing by the pol-aAST method were ETP-resistant.

2.4 Discussion
The pol-aAST method enables rapid, organism-specific measurement of suscep-
tibility to 𝛽-lactams—the most important class of antibiotic for gram-negative
infections—thus providing the critically missing piece needed to develop a POC
AST for this global health threat. The genera of isolates and the 𝛽-lactams used in
this proof-of-concept study were intentionally chosen—E. coli, K. pneumoniae, and
Ebs—and are responsible for the majority of CRE infections globally [40, 42–44] (in
some areas of the US, K. pneumoniae is responsible for up to 90% of CRE infections
[37]). It is for this reason that E. coli, K. pneumoniae, and Ebs together make up the
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Figure 2.7: Pilot testing of pol-aAST with clinical UTI samples with a modified
protocol (see Methods and Discussion). TTPDCT values for AMP and ETP suscep-
tibility obtained by pol-aAST, with clinical UTI samples containing E. coli. Each
point represents the TTPDCT value for one clinical sample tested once by pol-aAST
(S2 and S4 Tables of Schoepp et al. 2020). LAMP was performed in technical
triplicate, see S4 Table of Schoepp et al. 2020 [24] for values and statistical details.
AMP, ampicillin; AST, antibiotic susceptibility testing; ETP, ertapenem; LAMP,
loop-mediated isothermal amplification; pol-aAST, polymerase-accessibility AST;
R, resistant; S, susceptible; TTPD, time-to-positive difference; TTPDCT, TTPD
control to treated; UTI, urinary tract infection.

majority of isolates in the CDC’s Enterobacteriaceae Carbapenem Breakpoint panel,
a collection of isolates designed specifically to challenge carbapenem-susceptibility
tests in Enterobacteriaceae [94]. CRO, used broadly for a variety of infections
because of its broad coverage and tolerability, was chosen as a representative third-
generation cephalosporin. Similarly, ETP and MEM were chosen as clinically
representative carbapenems [97]. When testing clinical samples, AMP was chosen
because of its high resistance prevalence and thus availability of resistant samples
(55.8% of clinical urine samples received by the UCLA CML are AMP resistant
[98]). We chose ETP as a representative carbapenem.

The pol-aAST has two important requirements: (i) amplification conditions that are
not fully lytic and (ii) release of NAs only from cells that are susceptible to the
𝛽-lactam to which they are exposed. If cells fully lyse, as they do in PCR, there
is no difference in amplification between control and treated aliquots in susceptible
isolates (Figure 2.2). It is only under partial-lysis conditions, as in LAMP, that cell
integrity is preserved long enough to yield a substantial TTPD. Cell integrity, and
rate and degree of lysis, will also depend on the identity of the organism, as well as
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its growth rate. In partial-lysis conditions, most NAs are still protected inside cells
in the control aliquot, whereas a significant portion of NAs are released and start
amplifying immediately in the treated aliquot. We know from previous work [21]
that the speed of an optimized bulk LAMP reaction makes it is difficult to linearly
correlate TTP and NA concentration, unless very sensitive real-time measurements
are made. Based on the magnitude of the differences in TTP observed here and
the results measuring NA release (Figure 2.3), we suspect that both the state of
NAs (inside intact cells versus inside or outside damaged cells) and the differences
in concentration of free NAs contribute to the TTPDs observed. Cell-wall defects
and damage are also likely to increase the penetration of amplification reagents
into DNA trapped inside the remains of susceptible treated cells especially under
the elevated temperature of the amplification reaction. We chose LAMP because
we have shown previously that it is a rapid and specific isothermal amplification
chemistry [21]. However, other non-lytic isothermal amplification chemistries could
also be investigated. Additionally, DNA release (Figure 2.3) could be measured to
determine susceptibility using PCR if combined with a filtration step; we have not
evaluated the pros and cons of this approach in this paper. Lastly, alternative or
modified accessibility-based AST approaches will likely need to be developed for
different organisms, as we have done for Neisseria gonorrhoeae [23].

To demonstrate the flexibility of the pol-aAST method and the simplicity of the work-
flow, we investigated 2 approaches for determining susceptibility. The first, mea-
suring TTPDCT, gave 100% categorical agreement and uses a standard antibiotic-
exposure step wherein one aliquot serves as the control and the other aliquot is
exposed to an antibiotic. The second, measuring TTPDLT, differs in that only a sin-
gle aliquot of the original sample is used during the antibiotic-exposure step. After
exposure, this aliquot is compared with a fully lysed control aliquot, which could
be extracted at any point during the assay. Using only a single aliquot of the origi-
nal sample during exposure reduces the challenges of fluid handling and metering,
which will be valuable when developing fully integrated devices. When using a con-
trol and treated aliquot, both aliquots must have precisely metered volumes, and the
heating required during exposure must be performed on both aliquots. Both meth-
ods showed excellent categorical agreement with gold-standard broth microdilution,
and the choice of approach will be dictated by future device architecture.

To illustrate the value of phenotypic approaches, we evaluated pol-aAST using
isolates that tested negative for 𝛽-lactamase genes and isolates that lack a predic-
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tive genotype (e.g., no 𝛽-lactamase production, no modified porins, no modified
penicillin-binding proteins), based on published and commercial genotypic assays
[95], and CDC classification based on the ResFinder database [99], respectively.
The antibiotic susceptibility of isolates lacking 𝛽-lactamases cannot be detected
by current, FDA-approved genotypic methods, yet bacteria that do not produce 𝛽-
lactamases can constitute 11% to 71% of CRE infections [36, 100, 101]. Using
pol-aAST, all 5 of these isolates were correctly categorized as resistant.

Sample-to-answer time directly reflects the speed of diagnostics in practice and is
a major factor in how likely a diagnostic is to be adopted. In general, the shorter
the sample-to-answer time, the more valuable the test is and the more feasible for
use at the POC. With urine as the contrived sample matrix, pol-aAST was able to
be completed in <30 min. This timescale is on par both with suggested time-frames
for rapid POC diagnostics [91, 92] and measured times of patient visits [102].
Additionally, because urine involves relatively simple sample-handling steps, we
were able to perform four ASTs in parallel when testing contrived samples. The
ability to run several samples in parallel demonstrates the potential to multiplex
multiple antibiotics, which will be important for the next steps, including the design
of integrated devices.

We have demonstrated direct testing of 25 clinical UTI samples using the pol-aAST
with changes to the workflow (see Methods). However, even with the heterogeneity
of clinical urine specimens (see urinalysis in S2 Table of Schoepp et al. 2020
[24]), including 2 polymicrobial samples that were correctly classified as ETP-S,
the pol-aAST demonstrated good agreement with gold-standard broth dilution. The
ability to handle polymicrobial samples was predictable based on the molecular
specificity of NA-based methods. We expect this work to set the foundation for
future improvements when using clinical samples.

The pol-aAST method demonstrates a rapid NA-based phenotypic AST for 𝛽-
lactams and CREs. As with any academic report of an innovative diagnostic tech-
nology development, this work has limitations in the breadth of its scope and level
of technological maturity. The following work would further extend the clinical
applicability of this study and will be necessary for translation into a system suitable
for regulatory approval and clinical use. First, the pol-aAST needs to be further de-
veloped and evaluated with fresh clinical urine samples from patients; here, we have
used chemically preserved samples that were 3 to 5 days old, which likely decreased
the response time of bacteria to antibiotics. We expect fresh clinical samples to show
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more rapid and consistent responses; this hypothesis remains to be tested. We note
that many state-of-the-art phenotypic AST methods are initially published without
validation of performance directly on clinical samples, e.g., a recent breakthrough
demonstrating phenotypic AST on isolates and on blood cultures [88]. Urine is a
relevant matrix for a CRE diagnostic because UTIs are the most common source
of CRE isolates [103], and because of the large number of hospital-acquired in-
fections that involve catheters or other long-term indwelling medical devices [42],
where CRE infections cause major problems. Second, to expand the scope of this
approach, other sample types such as blood and blood cultures should be tested (in
combination with appropriate pathogen-isolation and pathogen-enrichment tech-
nologies). Third, only categorical (S/R) agreement with the gold-standard method
was tested here. While in the majority of cases a rapid categorical AST is clini-
cally actionable, testing samples with a range of minimum inhibitory concentrations
(MICs), including those with intermediate resistance, would further broaden the
scope of the method. Fourth, we have not tested pol-aAST against heteroresistant
samples. However, these are more common in gram-positive organisms [104] and
are not common in gram-negative organisms. Fifth, the pol-aAST chemistry should
be integrated with microfluidic devices so the AST can be performed directly on
clinical samples with minimal user intervention. Sixth, the performance of these
integrated devices will need to be evaluated in preclinical and clinical studies.

We emphasize that the specific pol-aAST described in this paper, just like other
innovative rapid ASTs [21, 105–108], is not intended to be the sole test to guide
treatment. Even though pol-aAST is based on detection of pathogen-specific NAs
and can therefore provide pathogen ID, we anticipate that in a clinical workflow
pol-aAST would be performed after a separate rapid pathogen ID step [48, 49, 51].
This ID step would then allow an unambiguous choice of the appropriate rapid
AST. Furthermore, pol-aAST would likely be combined with rapid AST for other
antibiotics, such as fluoroquinolones that can be used to treat CRE infections.
AST methods that rely on similar underlying chemistries are more likely to be
successfully integrated together. Isothermal amplification of pathogen-specific NAs
appears to be a promising approach for AST, and we have already shown how a
rapid fluoroquinolone AST can be performed in 30 min using digital LAMP [21].
Integration of pol-aAST with these complementary methods and translation to a
distributable diagnostic will enable (i) improved antibiotic stewardship by reducing
empiric use of carbapenems for Enterobacteriaceae, (ii) improved patient outcomes
by detecting CRE infections for which carbapenems would be ineffective, and (iii)
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more cost-effective surveillance of CRE outbreaks.

We envision that exploratory and mechanistic research inspired by pol-aAST will
lead to a new generation of AST diagnostics. Additional mechanistic studies, such
as those involving visualizing bacterial response to antibiotics [109, 110], would
clarify the effects of different antibiotics on the responses measured in pol-aAST for
different pathogens. To evaluate whether pol-aAST can be broadened beyond CREs
and 𝛽-lactams, these studies would include organisms with cell envelopes that differ
from Enterobacteriaceae (e.g., gram-positives) and other antimicrobials that affect
the cell envelope, such as antimicrobial peptides [111] or vancomycin. It would also
be desirable to evaluate pol-aAST with more amplification chemistries, including
modified LAMP assays [112, 113] and other isothermal chemistries [114–116], such
as recombinase polymerase amplification (RPA), that are actively being developed
and can be performed at lower temperatures. Ultimately, this new generation of
AST diagnostics will be integrated with the rapid ID methods being developed
[48, 49, 51] and with future rapid NA-based AST methods for additional antibiotics
and pathogens. For example, we have developed the nuclease-accessibility AST
(nuc-aAST) [23], which measures accessibility of DNA to nucleases and was used
to perform a rapid test of antibiotic susceptibility on the fastidious organism N.
gonorrhoeae. In contrast to the pol-aAST, the nuc-aAST enhances antibiotic-
induced damage using surfactants after the antibiotic-exposure step and performs full
cell lysis. Ultimately, to address the broad diversity of antibiotic-resistant pathogens,
it is clear that integrated, multiplexed POC devices that incorporate multiple rapid
phenotypic AST methods are needed. Innovative methods based on antibiotic-
induced accessibility of NAs to enzymes are promising for generating such ASTs
for multiple antibiotics and pathogens in an approach that is intrinsically compatible
with other rapid AST methods [21] and with rapid pathogen ID [48, 49, 52, 53].

2.5 Materials and methods
Ethics statement

Remnant urine samples from patients with confirmed UTI were received by UCLA
CML and released to the Caltech researchers under UCLA IRB #19–001098. The
UCLA IRB waived the requirement for informed consent and/or assent and/or parent
permission under 45 CFR 46.116(d) for the entire study. No identifying information
was obtained by the Caltech team, and the research was determined to be exempt by
Caltech IRB (applications #18–0858 and #19–0909).
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Study design

The objective of this study was to develop a rapid phenotypic AST for 𝛽-lactams
based on DNA accessibility to polymerase for use with Enterobacteriaceae. To
calculate the sample size necessary to validate the method (Figs 2.4 and 2.5), the
Methods and Equation 5 from Banoo and colleagues [117] were used as described
previously [21], namely, we suspected that the specificity and sensitivity of the nuc-
aAST method would be 95% with a desired margin of error of ±10%. Under these
conditions, 18.2 (or 19) samples must be tested with the nuc-aAST method and
compared to the gold standard. We performed 36 ASTs with isolates susceptible to
the antibiotic being tested and 46 ASTs with isolates resistant to the antibiotic being
tested.

Isolates, growth conditions, and antibiotic exposure conditions

We obtained 25 de-identified clinical isolates from the UCLA CML and the CDC’s
Enterobacteriaceae Carbapenem Breakpoint panel [94]. In the case of isolates
obtained from the UCLA CML, MICs were determined as described previously
[89]. Genotypic testing of the 2 E. coli and 2 K. pneumoniae isolates selected
for their lack of known 𝛽-lactamase genes was performed by UCLA CML using
a previously published assay [95] and separately at the Keck School of Medicine
of USC using the FDA-approved Cepheid Xpert Carba-R test. Whole genome
sequencing of the single Ebs isolate selected for its lack of known resistance genes
was performed by the CDC [94]. All isolates were stored as glycerol stocks at
-80°C. Glycerol stocks were streaked onto Trypticase Soy Agar with 5% sheep’s
blood (Becton Dickinson, Franklin Lakes, NJ) and grown overnight at 37°C or
resuspended directly in liquid media. Prior to experiments, a small clump of cells
was resuspended from plates or glycerol stocks in 2 mL Brain Heart Infusion Broth
(BHI; Becton Dickinson) at 37°C + 5% CO2 with 500 rpm shaking for 2 to 4 h until
visibly turbid. OD600 of the cultures was then measured, and working cultures were
prepared at an OD600 of 0.01–0.07 and grown for 50–145 min at 37°C + 5% CO2

with 500 rpm. Working cultures were then diluted 10X into control and treated
aliquots for antibiotic exposure. For validation experiments, antibiotic exposure
was performed in 100 µL volumes consisting of 80 µL Mueller Hinton II Broth
(MHB; Becton Dickinson), 5 µL nuclease-free H2O (NF-H2O), 5 µL 20X antibiotic
stock solution, and 10 µL of working culture. In control aliquots, antibiotic stock
solution was replaced with NF-H2O. For filtration experiments, antibiotic exposure
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was performed in 100 µL volumes consisting of 65 µL MHB (Becton Dickinson),
21 µL NF-H2O, 4 µL 25X antibiotic stock solution, and 10 µL of working culture.
In control aliquots, antibiotic stock solution was replaced with NF-H2O.

Antibiotic stocks

CRO disodium salt hemi(heptahydrate) (Sigma, St. Louis, MO), ETP sodium salt
(Research Products International, Prospect, IL), and MEM trihydrate (TCI, Portland,
OR) were used to create 1.0 mg/mL antibiotic stock solutions in NF-H2O based on
manufacturer-reported purity, aliquoted, and stored at -80°C. AMP sodium salt
(Sigma, St. Louis, MO) was used to create 10.0 mg/mL antibiotic stock solutions
in NF-H2O based on manufacturer-reported purity, aliquoted, and stored at -80°C.
Aliquots were only thawed and used once on the days of experiments.

Comparison of amplification methods

In order to compare amplification using LAMP and PCR, E. coli isolates were
exposed to 0.5 µg/mL ETP for 15 min. Samples were then transferred directly into
either PCR or LAMP mix on ice. Amplification was started immediately. qPCR was
performed on a Roche LightCycler 96 using SsoFast EvaGreen Supermix (BioRad,
Hercules, CA); 10 µL reactions were used. 10% of the final reaction volume was
template. Published primers targeting the 23S rRNA genes of Enterobacteriaceae
were used [118] at a final concentration of 500 nM. Cycling conditions consisted
of 3.0 min at 95°C, followed by 35 cycles of 95°C for 10 s, 60°C for 10 s, and
72°C for 15 s. Fluorescence was measured using the SYBR Green channel after
each 72°C extension step. LAMP was performed on a BioRad CFX96 using the
following conditions: 10 µL reaction volume containing 1X Isothermal Reaction
Buffer II (NEB), 5 mM MgSO4 (NEB), 1.4 mM dNTPs (NEB), 320 U/mL Bst 3.0
(NEB), and 2 µM Syto-9 (Thermo Fisher); 10% of the reaction volume was template.
Primer sequences (designed to target the 23S rRNA genes of Enterobacteriaceae) and
concentrations have been described previously [21]. Cycling conditions consisted
of 2.0 min at 12°C (while lid was heating), followed by 120 cycles of 70°C for 10 s.
Fluorescence was measured using the SYBR Green channel every 10 s (after each
cycle). We also ran an analogous LAMP reaction in the absence of Tween-20 (which
is normally present in Isothermal Reaction Buffer II; NEB), to test for a potential
difference in lysis efficiency; however, the resulting reaction rates were substantially
lower than when Tween-20 was included.
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Filtration experiments

Filtration experiments were performed using E. coli isolates exposed to 0.5 µg/mL
ETP for 15 min. Immediately following exposure, cultures were passed through
0.22 µm, 1.5 mL cellulose acetate centrifuge tube filters (Corning Costar Spin-X,
Corning, NY). DNA retention by the filters was <7% when measured by quantifying
purified Lambda phage DNA (NEB) before and after filtration. Quantification was
performed using ddPCR (QX200, BioRad). In filtration experiments, 50 µL of sam-
ple was added to the filter and centrifuged for 4 min at 1,000 rcf. DNA was extracted
from both the feed and filtrate using QuickExtract DNA Extraction Solution (Luci-
gen, Middleton, WI). Samples were diluted 10X into extraction buffer and extracted
according to manufacturer instructions. The concentration of the single copy E. coli
uidA gene was then quantified in the feed and filtrate extractions. The percentage
of E. coli DNA in the filtrate was calculated as the filtrate concentration divided
by the feed concentration. ddPCR was performed using QX200 ddPCR Supermix
for EvaGreen (BioRad); 10% of the final reaction volume was template. Published
primers targeting the uidA gene in E. coli were used [119] at a final concentration
of 500 nM. Cycling conditions consisted of 5.0 min at 95°C, followed by 40 cycles
of 95°C for 30 s, 60°C for 30 s, and 72°C for 30 s, with final dye stabilization steps
of 4°C for 5.0 min followed by 90°C for 5.0 min.

pol-aAST validation with clinical isolates

For pol-aAST validation experiments, E. coli and Enterobacter spp. isolates were
exposed to either 2.0 µg/mL CRO, 0.5 µg/mL ETP, or 1.0 µg/mL MEM. K. pneumo-
niae isolates were exposed to either 2.0 µg/mL CRO, 1.0 µg/mL ETP, or 1.0 µg/mL
MEM. Some isolates were run multiple times on different days. If this was the case,
the average TTPDCT and TTPDLT are reported for that isolate. All isolates were
exposed to antibiotics for 15 min in 100 µL reaction volumes in 200 µL PCR tube
strips. After 15 min of antibiotic exposure, 10 µL of samples were transferred as
template to LAMP reaction mix (as described earlier) on ice in technical triplicate.
Amplification was immediately started.

Timed sample-to-answer using contrived urine samples

Timed sample-to-answer experiments were performed in the same fashion as pol-
aAST validation experiments, except with the following modifications. Following
initial growth and measurement of OD, isolates were resuspended in fresh, never-
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frozen, pooled human urine from healthy donors (Lee BioSciences). Additionally,
a timer was started as soon as samples were added to the antibiotic exposure condi-
tions. E. coli and K. pneumoniae isolates were exposed to 0.5 and 1.0 µg/mL ETP
(respectively) for 13 min. The duration of 13 min was chosen to ensure that all
handling steps could be completed within the first 15 min of the assay. Amplifica-
tion was performed until all reactions reached a fluorescence value of 1,000 relative
fluorescent units (RFU) or greater. Amplification was then stopped, and TTP values
were copied into a spreadsheet pre-populated with formulas to automatically out-
put susceptibility calls. The timer was stopped once a susceptibility call had been
determined.

Testing of pol-aAST with clinical samples

UCLA CML performed urinalysis, confirmation of UTI, pathogen isolation and
ID, and subsequent gold-standard AST using broth microdilution. Gold-standard
AST results were sent to Caltech researchers on the same day samples were received.
Enterobacteriaceae-positive samples were shipped at ambient temperature to Caltech
in BD Vacutainer Plus C&S preservative tubes (Becton Dickinson, Catalog Number
364951) containing a boric acid preservative. The pol-aAST experiments were per-
formed directly on these samples within 3–5 days of their collection at UCLA. Urine
samples were first warmed up to 37°C without shaking for 30 min, to approximate
temperature of freshly collected urine. Then, 30 µL of urine was diluted into 70
µL of Cation-adjusted MHB (BD) containing 0.1% Tween-20 (Teknova, Hollister,
CA) and placed at 37°C with shaking at 750 rpm for 3 min. Samples were then
centrifuged at 5,000 rcf for 2 min. The supernatant was removed, and the sample
was resuspended in 100 µL of MHB. Samples were then incubated for 30 min at
37°C with 750 rpm shaking. Antibiotic exposure was performed in a final volume
of 100 µL, after transfer of 20 µL of incubated sample to 80 µL of the exposure
condition: 75 µL of MHB and 5 µL of 20X antibiotic stock solution in NF-H2O for
treated aliquots, or 75 µL of MHB with 5 µL of NF-H2O alone for control aliquots.
For measurement of ETP susceptibility, the exposure condition contained a final
concentration of 1 µg/mL of ETP. Aliquots were incubated at 37°C with shaking for
20 min. For measurement of AMP susceptibility, the antibiotic-exposure condition
contained a final concentration of 16 µg/mL of AMP, and aliquots were incubated
at 37°C with shaking for 45 min. The control and treated aliquots were subjected
to a set of dilutions to account for variable bacterial load of the samples and reso-
lution within the working range of the LAMP reaction. Following dilution, 1 µL
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of the control and treated aliquots was added to each LAMP reaction well. There
were 3 technical replicates (3 LAMP reaction wells) for each condition (control and
treated). We measured the TTP for the reactions at each dilution, and then selected
the dilution that yielded a control TTP value later than 4.7 min. The TTP results
from this dilution were used to calculate TTPDCT (and determine susceptibility).
Samples with a TTPDCT > 0.25 min were considered susceptible, while samples
with TTPDCT ≤ to 0.25 min were considered resistant. The susceptibility deter-
mination of the pol-aAST method was then compared to the gold-standard culture
results obtained by the UCLA CML to measure assay performance.

Statistical analysis

Significance referenced in the text for Figure 2.2 were calculated using GraphPad
Prism 8.0 software from an unpaired, two-tailed t test comparing the averages of 3
replicate Cq values of each control sample to each treated sample. A significance
value of 0.02 was used for statistical significance. All percent release values (Fig-
ure 2.3) and TTPD values (Figs 2.4–2.6) were calculated using Microsoft Excel.
Data were plotted using GraphPad Prism 8.0 software. Thresholds for determining
susceptibility in TTPDCT and TTPDLT plots were set halfway between the lowest
S and highest R values for each organism/antibiotic combination. For preliminary
tests with clinical samples, we defined a TTPDCT of above 0.25 min for a suscepti-
ble determination; this value would be further defined in a subsequent larger-scale
clinical trial.
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C h a p t e r 3

BULK FILTRATION AST

In this chapter, I describe a new form of accessibility AST that improves upon the
method described in Chapter 2, wherein the accessible and inaccessible nucleic acids
are physically separated. I also examine in vitro beta-lactam pharmacodynamics
using this new method of bulk filtration AST.

3.1 The bulk filtration AST protocol
3.1.1 Overview of protocol of bulk filtration AST
As practiced in this thesis, bulk filtration AST comprises the steps illustrated in 3.1.

The first step of bulk filtration AST is exposure of live bacterial cells to a chosen
dose of antibiotics. During the antibiotic exposure, cells which are susceptible to
the antibiotic at the dose provided lyse and die. Cells resistant to the dosage undergo
less or no lysis. A more detailed quantitative description of how often and how
quickly cells lyse was worked out from experiments described in the below sections
3.2.

After a chosen duration of antibiotic exposure, the filtration process converts the
original sample, or "feed" fraction, into at least two new fractions: the "filtrate"

Figure 3.1: Schematic of the bulk filtration AST protocol.
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containing extracellular nucleic acids and the "lysate" containing nucleic acids that
were intracellular at the time of filtration. I will use the term "feed" to refer
to any volume of the antibiotic-exposed specimen that is not filtered and which
has its nucleic acids quantified, because a nucleic acid concentration measured in
this way is generally representative of the concentration in the specimen prior to
filtration (as discussed later in section 3.1.2). The liquid that passes through the
filter is a fraction known as the "filtrate." The filtrate will contain freely-dissolved
nucleic acids released into the extracellular fluid space by the antibiotic-induced
lysis of bacterial cells that previously contained them. The second new fraction, the
"lysate," is created by treating the filter cake of intact cells retained by the filter with
a lysis buffer. Since in our experiments, the cake was not visible macroscopically
and was only detected after the deliberate application of a lysis buffer to the filter
membrane, I will call this fraction the "lysate" instead of the "cake" as is done in
traditional chemical engineering terminology. Note that the filtrate and the lysate
both contain the contents of cells that have been lysed—by antibiotics or by lysis
buffer, respectively—and so would both fit the typical definition of a lysate as "a
preparation of the products of lysed cells." However, in this thesis, I use the term
lysate to refer to the material retained on the filter membrane only.

Each fraction, or at least two of the three fractions, undergoes a nucleic acid ex-
traction by QuickExtract lysis buffer, followed by quantification by a nucleic acid
amplification chemistry such as droplet digital polymerase chain reaction (ddPCR).

Lastly, the numeric data from the nucleic acid quantification are used by a suscep-
tibility classification algorithm to generate either a final categorical susceptibility
call, with the possibility of first calculating a real-valued susceptibility metric en
route to the final categorical susceptibility call.

The rationale and specifications for each step of the protocol are now described in
detail below.

3.1.2 Detailed protocol for bulk filtration AST and design rationales
3.1.2.1 Contrived clinical samples by bacterial culture

The contrived clinical samples used in all bulk filtration AST experiments comprised
clinical isolates cultured in Brain Heart Infusion media (BD Diagnostics).

Up to a week prior to the experiment, a glycerol stock of the chosen strain was
streaked onto solid agar media, either Luria Broth (BD Diagnostics, for E. coli
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K12 only) or Tryptic Soy Agar + 5% sheep’s blood (BD Diagnostics) and incu-
bated overnight. The colonies were inoculated into 2 mL of Brain Heart Infusion
(BD Diagnostics) in an amount that was undetectable by a portable cell density
turbidometer (Biochrom Ultrospec 10) at 600 nm. This batch culture was incubated
at 37°C with shaking at 300 rpm. The optical density was monitored approximately
every 30 minutes until an OD600 between 0.2 and 0.5 was obtained. If the desired
turbidity was reached, then the antibiotic exposure proceeded immediately, with
a stopwatch already having been started. If proceeding to the antibiotic exposure
protocol was not possible immediately after reading turbidity in a biological safety
cabinet at a room temperature of approximately 22°C, then the batch culture was
incubated uninterrupted at 37°C for at least 5 more minutes before a second attempt.

The isolates in Table 3.1 below were included in order to have both susceptible and
resistant strains. As the mechanisms of resistance for the isolates from UCLA were
not known, resistance mechanisms were not used to select the isolates.

Strain Name ETP
MIC

CRO
MIC

Notes

E. coli K12
sub-strain MG1655

0.012, S
(Etest)

≤1, S Obtained commercially. MIC
values reported in [120, 121]

E. coli #2 (UCLA
Study 15-04A-02)

≤0.5, S ≤1, S From urine on 12/29/2014.

E. coli #11 (UCLA
Study 15-31-001)

≤0.5, S 16, R Isolated 2015.

E. coli #38 (UCLA
Study 15-31A-001)

>4, R >32, R From bile in 2017.

E. coli CDC AR
Bank 0001 (#44)

8, R >32, R Enterobacterales Carbapenem
Breakpoint panel. 𝛽-lactamases:
KPC-3, OXA-1. Other resistance
loci: aac(6’)-Ib-cr, aadA5,
ACRF, catB4, dfrA17, MDF(A),
mph(A), sul1, tet(A), tet(R)

Table 3.1: Clinical isolates used in bulk filtration AST. E. coli=Escherichia
coli, ETP=ertapenem, CRO=ceftriaxone, MIC=minimum inhibitory concentration.
MICs obtained by broth microdilution unless noted. UCLA = University of Califor-
nia Los Angeles Clinical Microbiology Lab.

3.1.2.2 Antibiotic exposure

To begin the antibiotic exposure step of the bulk filtration AST protocol, a stopwatch
was started when the batch culture of bacteria was removed from the incubator for
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the last time. 500 µL of the culture was diluted 1:2 in BHI or cation-adjusted
Mueller-Hinton Broth (MHB) growth media in a 1 cm cuvette, the batch culture
was returned to 37°C, and then the batch culture OD600 was measured in the cuvette
again at least three times. The density of bacterial CFUs/mL was calculated using
a ratio of 1.5 × 108 CFU/1.0 unit absorbance. A serial dilution using the remainder
of the sterile batch culture was promptly performed in pre-warmed MHB to yield
a target density of 5 × 105 CFU/mL in the antibiotic exposure. Each antibiotic
exposure comprised 14 µL of MHB, 1 µL of antibiotic dissolved in nuclease-free
water, and 10 µL of the serial dilution of cells in MHB. In most of the exposures, the
volume was mixed by repeated pipetting when the serial dilution containing bacteria
was added. The time that the cells were first added to the exposure was rounded to
the nearest second and recorded as the start of the exposure. The exposures were
then vortexed and placed at 37°C, 700 rpm in a shaking block heater (Benchmark
Scientific, MultiTherm Shaker or Eppendorf ThermoMixer C) for the remaining
duration of the antibiotic exposure.

Antibiotic stocks were prepared by measuring out the ertapenem sodium (Research
Products International, E32100) or ceftriaxone disodium hemiheptahydrate salt to
at least two significant digits on a mass balance using spatula washed with ethanol
and deionized water (Millipore), then dissolving in nuclease-free water to create a 1
mg/mL or 8 mg/mL stock. Only the weight of the antibiotic anion was considered,
and the weight was scaled by the percent purity listed on the lot’s certificate of
analysis. This stock was filter-sterilized, separated into 100 µL aliquots, and frozen
at -80°C. Aliquots were used within 24 hours of thawing.

In my experiments, I chose to expose cells to antibiotics by incubating cells in rich
liquid media in which the antibiotics are dissolved. This arrangement is the most
obvious choice for the following several reasons.

First, of the culture methods characterized for the majority of human pathogens,
rich liquid media achieves the highest known rate of growth. In most environments
supporting life, the growth of bacteria is limited by diffusion of aqueous nutrients
to the cell surface, due to the small size of bacteria. Most bacteria are cylindrical
rods <4 µm in length and about 1 fL in volume [122], and thus their environmental
context exhibits a low Reynolds number. The turbulence of shaking during liquid
media culture helps thin the narrow shell of nutrient depletion around planktonic
bacteria and thus speeds their growth.

Antibiotic activity is generally faster when cells are actively growing and dividing.
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This is because antibiotics generally work by disrupting a specific cell process,
especially those involved in the Central Dogma processes of DNA, RNA, or protein
replication. Quiescent cells have fewer active processes to disrupt beyond their
maintenance of a membrane proton gradient, and so conventional antibiotics do not
affect them.

Beta-lactam antibiotics target peptidoglycan cell wall turnover. A bacteria’s rate of
peptidoglycan turnover and synthesis is far greater when it is actively elongating or
synthesizing a new septum during cytokinesis than when it is not changing its shape
as a quiescent cell. Thus, beta-lactam antibiotic activity is also proportional to the
rate at which a bacteria gains biomass.

Second, exposure to antibiotics in liquid media has already been adopted as a
standard method for AST in the form of broth microdilution assays. Thus, in this
thesis, the antibiotic exposures were designed to most closely mimic the CLSI
standard conditions for broth microdilution: an inoculum no denser than 5 × 105

CFU/mL in cation-adjusted Mueller-Hinton Broth, shaking for at least 300 rpm at
37°C, with oxygenation (since the taxa tested are not strict anaerobes).

3.1.2.3 Separation and nucleic acid extraction

At the chosen time points, 10 µL of the antibiotic exposure was transferred, as
the feed fraction, to an equal volume of QuickExtractTM DNA Extraction Solution
(LGC/Lucigen QE09050, abbreviated as "DEB") and vortexed. The remainder of
the antibiotic exposure was transferred to a 0.22 µm pore size filter unit and cen-
trifuged to create the filtrate fraction. Earlier experiments utilized a cellulose acetate
(Corning) membrane and were centrifuged at 2000 rpm for 2 minutes (Eppendorf
A-2-MTP rotor), while later experiments used a hydrophilic polyvinylidene fluo-
ride (Millipore-Sigma MultiScreenHTS MSGVS2210) membrane in a 96-well plate
spun at at 2200 rcf (Eppendorf A-2-MTP) for 5 minutes. 10 µL of the collected
filtrate was then vortexed with an equal volume of DEB. In certain exposures, the
actual volume transferred differed from the target 10 µL, but always by a known
volume.

Due to time constraints, the vortexed feed and DEB buffer was left at room temper-
ature for 10–30 minutes while other steps were performed. At the earliest possible
time, the feed and DEB was heated to 65°C for 6 minutes, then 98°C for 4 minutes,
in a thermocycler with a heated lid (BioRad C1000). The sample was held at 4°C in
the thermocycler, then transferred to a refrigerator or ice bucket as soon as possible
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(both of which provide a temperature close to 4°C). Likewise, the vortexed filtrate
and DEB was also incubated as soon as possible for 6 minutes at 65°C, 4 minutes at
98°C, and then held at 4°C. At the end of the day’s experiment, the DEB extractions
were frozen at -80°C to ensure stability of both DNA and RNA in future nucleic
acid quantifications.

The timing of every action performed on the cells or nucleic acids during the above
manipulations was recorded by the stopwatch. Qualified actions included pipette
transfers; mixing or vortexing; heating, cooling, or other changes in environment
temperature; or centrifugation (including brief un-timed spins to collect liquid at the
bottom of tubes). For the feed fraction, the end of the exposure was set to be the time
of vortexing in DEB, because it was presumed, without evidence, that cells would
sense the harsher environment and down-regulate growth or die some short time
later. The start of the centrifugation was recorded as the end of the exposure for that
filtrate fraction measurement. It was presumed that no further increase or decrease
in the extracellular nucleic acids would occur in the absence of living cells (and
nucleases), and that the majority of the filtrate would be collected within the first
few seconds of centrifugation. In some centrifugations of unwashed polyvinylidene
fluoride filters interrupted at 1–2 minutes after reaching top speed, the filtrates were
either mostly filtered or completely unfiltered, suggesting that the passage of fluid
does occur suddenly, but that the commencement of fluid movement is variable and
random.

Lucigen’s proprietary QuickExtract buffer was employed for the nucleic acid ex-
traction step because it does not employ any further physical separations. Other
methods adsorb nucleic acids to a solid silica surface or partition them by liquid
phases in phenol-chloroform extractions. QuickExtract buffer contains a surfactant
and a proteinase and which stabilizes both DNA and RNA. Guanidinium thiocyanate
is another reagent employed in nucleic acid extraction, but the compound interferes
with downstream enzymatic reactions if it is not removed by another extraction
method.

3.1.2.4 Nucleic acid quantification

In the bulk filtration AST experiments reported herein, nucleic acids were quantified
by droplet digital PCR using the BioRad QX200 system. In 20 out of 30 amplifi-
cation batches, the DEB extractions from the AST protocol were used directly as
the templates in the ddPCR reaction. In the other 10 amplification batches, the
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DEB extractions were used as templates in a reverse transcription reaction, and the
reverse transcription reaction was the template of the ddPCR reaction. Each reverse
transcription reaction comprised 1.45 µL of nuclease-free deionized water, 0.5 µL
of 10X RapiDxFire buffer (LGC/Lucigen), 0.25 µL of 10 mM deoxyribonucleotides
(New England Biolabs), 0.2 µL of primer (reverse strand only, final concentra-
tion 0.4 nM), 0.1 µL of 3 U/µL RapiDxFire™ Thermostable Reverse Transcriptase
(LGC/Lucigen 30250-1), and 2.5 µL of the DEB extraction template. A master
mix of all components except the templates was created and distributed to separate
tubes. Individual templates were then added. The reactions were vortexed, then
incubated in the following thermocycler protocol: extension at 60°C for 5 minutes,
heat inactivation at 95°C for 5 minutes, and a hold indefinitely at 4°C.

Each ddPCR reaction comprised 10 µL of BioRad EvaGreen 2X ddPCR super-
mix, 0.8 µL of forward and reverse primer (final concentration 0.4 µm), 8.2 µL of
nuclease-free deionized water, and 1.0 µL of template. A master mix of all compo-
nents except the templates was created and distributed to separate tubes. Individual
templates were then added. The reactions were vortexed, then formed into an emul-
sion in QX200 droplet generation oil using the QX200 droplet generator, eight wells
at a time. The QX200 droplet generator creates 0.85 nL droplets. The droplet emul-
sion was then incubated in the following thermocycler protocol: enzyme activation
and droplet stabilization at 95°C for 5 minutes; 40 cycles of melting at 95°C for 30
seconds, then annealing and extension at 60°C for 1 minute; a post-cycling cooling
to 4°C for 5 minutes, 90°C for 5 minutes, then an indefinite hold at 4°C. The droplets
were read within 4 hours of the end of cycling in the QX200 droplet reader using
both FAM and HEX wavelength channels.

The droplet calls were made manually using the manufacturer’s QX200 QuantaSoft
software, which allows the counts of up to 4 labels to be exported at one time.
The labels were chosen to be 1) "positive" droplets that belonged to the roughly
Gaussian cluster of positive droplets 2) "negative" droplets that belonged to the
roughly Gaussian cluster of negative droplets, 3) "rain" droplets located along a
trajectory between the negative and positive clusters, and 4) "artifact" droplets with
extreme high or low values in either channel. The threshold between "positive"
and "rain" droplets was drawn using the FAM channel only. The threshold between
"negative" and "rain" droplets was a sloped line using both channel values. The
gating to assign labels was performed on groupings of the wells that showed similar
positions of their positive and negative droplet clusters. The thresholds between
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"positive" and "rain" droplets and between "negative" and "rain" droplets were
therefore shared between wells of the same gating group. For example, it was
common, especially when 48 or more samples were being amplified by ddPCR,
for the two columns of 8 wells whose droplets were generated earliest to have a
higher negative cluster fluorescence in the FAM channel than the rest of the wells.
Evaporation of the droplet generation oil was observed to be most noticeable in
these two columns of wells, due to up to 30 minutes passing between emulsion
generation and thermocycling. Therefore, the first two columns were placed in their
own groups, while the remaining columns were placed in a third group. Any wells
with aberrant fluorescence averages were separated into their own groups, if positive
and negative droplets could be discerned, or ignored.

The "uidA" primers (Forward: 5’-CAACGAACTGAACTGGCAGA-3’, Reverse:
5’-CATTACGCTGCGATGGAT-3’) used for ddPCR in the absence of reverse tran-
scription were taken from Chern et al., 2011 [119]. This primer pair targets the
beta-glucuronidase gene, which is located at position 1,695,547- 1,695,667 in the
4,641,652 bp E. coli K12 reference genome (NCBI Genbank U00096.3) [123].

The "23S" primers (Forward: 5’-GGTAGAGCACTGTTTTGGCA-3’, Reverse: 5’-
TGTCTCCCGTGATAACTTTCTC-3’), used for reverse transcription and ddPCR
in amplification batches, targeted a 88 bp amplicon in all seven 23S ribosomal RNA
genes in the E. coli genome and were adapted from Chern et al., 2011 [119]. Only
the reverse primer was used for the RT reaction.

3.1.2.5 Data processing

The concentration of nucleic acids in the ddPCR reaction 𝐶PCR was calculated from
the number of "negative" droplets 𝑁neg, the total number of "negative," "rain," and
"positive" droplets 𝑁tot, and the droplet volume𝑉drop = 8.5×10−4 µL using equation
3.1. In this thesis, the "rain" droplets were considered positive (counted in 𝑁tot but
not 𝑁neg. The "artifact" droplets were not counted in either 𝑁tot or 𝑁neg. The
inclusion or exclusion of "rain"-labeled droplets in the negative droplets was found
to have a noticeable influence on the final concentrations only in a few samples with
very low "positive" or "rain" droplet counts.

𝐶PCR = − 1
𝑉drop

ln
(
𝑁neg

𝑁tot

)
(3.1)

The concentration of nucleic acids in the antibiotic exposure𝐶expos was calculated as
𝐶expos =

𝐶PCR
𝑑

, where 𝑑 is the fraction of the exposure present in the ddPCR reaction.
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For example, in one of the experiments shown in Figure 3.6b, the untreated sample at
120 minutes exposure underwent the following dilutions: 25 µL of exposure + 25 µL
of DEB, a 2:20 dilution in water, a 2:800 dilution in water, 2.5 µL diluted DEB into
a 5 µL RT reaction, a 1:50 dilution of cDNA in water, and a 1:20 dilution of template
into ddPCR. The total dilution was 0.0000000625, or 1:16,000,000. Therefore, the
𝐶PCR =212.02333 copies/µL inferred by ddPCR corresponds to𝐶expos = 3.392×109

copies/µL. Subsequent analysis in this chapter in section 3.3 used this value of𝐶expos.

Unfortunately, the information of the number of each type of dilution is lost during
the above data processing. Inclusion of this information may improve statistical
modeling of nucleic acid amplification artifacts in the future, as mentioned in
section 3.2.3.

3.1.3 Validation of filtration AST
In the included bulk filtration AST experiments, only the feed and the filtrate were
measured. This choice was done because I believed that measuring the feed and
filtrate only was sufficient, and because lysate measurements would be more affected
by variation from manual operation during nucleic acid extraction than would the
other two fractions. (The lysate is measured in experiments involving the digital
filtration AST protocol, described in Chapter 4.)

To infer the lysate fraction outputs, it was assumed that the concentration in the feed
fractions 𝑇 should be the sum of the concentrations 𝐸 and 𝐼 in the filtrate and lysate
fractions, respectively.

𝑇 = 𝐼 + 𝐸 (3.2)

This equation only holds if the concentration of nucleic acids is high enough that
stochasticity in molecule loading is negligible (see section 4.1.3). Furthermore,
𝐼 cannot be solved for if other destinations for nucleic acids exist. In the actual
bulk filtration AST experiments herein, the density of cells was higher than 1 × 107

CFU/mL, so stochastic loading of cellular nucleic acids is highly unlikely to be
measurable.

Retention of nucleic acids by the filter was assessed in Figure 3.2 by measuring the
difference before and after filtration of spike-in nucleic acid controls. Decreases
and (smaller) increases were noted. Whether or not the observed decrease is due to
filtration needs to be further verified. Other effects such as the retained volume of
wash liquid (since the filters were washed with water to remove the manufacturer’s
surfactant coating), PCR inhibition by MHB media, improved PCR efficiency from
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DEB, the effects of DEB surface tension on pipette volume, and other pipette volume
errors also could appear as retention of nucleic acids on filter materials. In a separate
experiment where only the lambda phage DNA spike-in in water was filtered, a
difference of -6.7% and 2.4% (n=1, relative to 160 copies/µL unfiltered template)
were observed by ddPCR for cellulose acetate and PVDF filters, respectively. Given
these results as well as the results of the bulk filtration AST experiments in section
3.2 (i.e., the highest doses of ETP and longest exposure durations), the loss of
bacterial nucleic acids in the filtrate from retention by the filter is likely to be ≤ 6%
for cellulose acetate filters, and close to 0 for PVDF filters, during the bulk filtration
ASTs performed here.

Another deviation from equation 3.2 would be the destruction of nucleic acid
molecules, which would appear in neither the filtrate nor the lysate fractions. Exoge-
nous nucleases exist in the laboratory environment or may not be properly removed
during fabrication of laboratory plasticware. Bacteria also can produce non-specific
nucleases that are secreted or stored in the periplasm. In Figure 3.2, E. coli K12 cells
and DNA and RNA spike-ins (or water) were incubated in 1 µg/mL ertapenem for 15
minutes, then filtered. The feed was extracted 1:4 into DEB, while the filtrates were
not placed in DEB. One-step reverse transcription-ddPCR was performed using
NEB WarmStart RTx placed into QX200 supermix. Exposures without a spike-
in during the exposure were spiked with the same control during the preparation
of the RT-ddPCR reaction. To facilitate comparison, the observed concentrations
were corrected by the 0.025 dilution from the exposure (for feed fraction bacterial
23S and spike-ins during the exposure) or by the 0.1 dilution into the RT-ddPCR
reaction (for all other conditions). There was no significant trend in the spike-in
concentrations that correlated with cell number, suggesting that the bacteria do not
non-specifically degrade extracellular (or intracellular) DNA or RNA. The small
variation in spike-ins also argues against contamination by exogenous nucleases.

3.1.3.1 Differences between previous accessibility AST methods and
filtration AST

As mentioned in section 1.3, the accessibility AST methods previously published
relied on the topological, steric accessibility (or inaccessibility) of nucleic acids to
dissolved reagents such as polymerases or nucleases. The separation of the intra-
cellular and extracellular fractions occurred on a microscopic level of the individual
cells distributed randomly within the volume of the assay system.
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Figure 3.2: Spike-in control nucleic acids are not affected by the presence of bacteria.

Bulk filtration AST uses a physical separation process to spatially separate the
intracellular and extracellular fractions into volumes that can be located and inde-
pendently manipulated. Not only is the existence of the cell wall as a topological
barrier taken advantage of, but the physical coupling of intracellular nucleic acids
(and physical de-coupling of extracellular nucleic acids) is exploited when a separa-
tion process is performed. After an efficient separation, the cell wall of the bacteria
is no longer necessary for maintaining the signal of susceptibility; unless one plans
to perform additional separations later in a time series. Thus, performing a physi-
cal separation allows flexibility in how nucleic acids and bacteria are manipulated
during the AST protocol.

Another fundamental difference from the published methods is that the separation
process does not destroy or discard the nucleic acids of any of the specimen fractions,
or at least the majority of each fraction. Being able to infer the total nucleic acid
content of the specimen or replicate partitions of the specimen offers advantages
that are discussed later in section 4.1.3.

3.1.3.2 Filtration improves the signal-to-noise ratio of "polymerase
accessibility AST"

In Schoepp et al., 2019, no separation process is performed after the antibiotic
exposure. This circumvents the time and complexity of performing an efficient
separation process. However, the subsequent steps of nucleic amplification results
in some background cell lysis. This lysis becomes indistinguishable from the true
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Figure 3.3: Bulk AST by LAMP ± filtration. Filtration reduces the background
during LAMP pol-AST and proves that extracellular nucleic acids are sufficient for
pol-AST signal.

beta-lactam signal and lowers the signal-to-noise ratio.

If Figure 3.3, pol-AST was performed using the antibiotic exposure without filtration
or the filtrate of the same antibiotic exposures. With filtration, any intact cells are
removed from the system prior to addition to the LAMP reaction and so cannot
contribute to a background signal. A lower TTP indicates more template DNA
is present and accessible. As the total number of cells in the exposure decreases,
the background also decreases, and the signal-to-noise ratio increases. The low
TTPD seen at the highest inoculum can be explained by the non-linearity of LAMP;
the TTP of 5 minutes is already nearing the maximum speed at which LAMP can
operate.

To help illustrate how sensitive LAMP is to the presence of template molecules,
one can compare the LAMP TTPs to a similar experiment measured by ddPCR
in Figure 3.4. The amplification by ddPCR of two different genomic DNA target
loci shows a background of 0 copies/µL in the filtrate when 3.7510−6 CFU/mL of
Escherichia coli K12 cells were exposed to 1 µg/mL of ertapenem antibiotic for 15
minutes. Meanwhile a signal is seen in the filtrate that represents about 15% of the
feed fraction’s DNA.
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Figure 3.4: Bulk filtration AST does not depend on genome fragmentation and
accessible bacterial DNA has an effective diameter of less than 0.2 µm.

3.1.3.3 Complete lysis of cells is sufficient to explain bulk filtration AST
signal

The idea of polymerase accessibility was discovered when a beta-lactam treated and
an untreated culture of Escherichia coli K12 were placed into qPCR and ddPCR
reactions after heating to 70°C in Tris-EDTA buffer instead of a customary nucleic
acid extraction kit. It was expected that the nucleic acid readout of the treated
condition would be lower due to the cessation of growth [21]. However, in some
of the experiments, the treated condition gave a higher signal (Nathan Schoepp,
unpublished data). The same antibiotic exposures heated in DNA Extraction Buffer
did not show a large difference between treated and control conditions in one ex-
periment (n=3). In one experiment (n=3) increase was higher when ddPCR was
performed instead of qPCR.

At this time, there were several possibilities considered. One hypothesis posited that
the genome of the bacteria were fragmenting due to antibiotic stress. Since the E.
coli genome possesses multiple copies of the 23S gene, a fragmented genome would
yield more copies than an unfragmented genome in digital PCR. Another hypothesis
proposed that the ddPCR polymerase entered the cell through increased permeability
of the cell envelope. In this scenario, the openings in the cell envelope would be
large enough to allow enzymes to pass, but small enough that the intracellular
nucleic acids remained physically coupled to the rest of the cell’s mass. In a third
hypothesis, catastrophic lysis of the cell would create a hole large enough for the
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intracellular nucleic acids to become physically uncoupled from the rest of the cell
and accessible to polymerases.

The results of Figure 3.3 show that extracellular are sufficient for a robust accessibil-
ity signal in pol-AST. In the treated condition, a large TTP difference is present both
with and without filtration. This difference already indicates that the majority of
the signal remains after filtration, and so those template molecules are extracellular.
Since LAMP is only semiquantitative, quantifying the amount of signal lost from
filtration in this experiment should be interpreted carefully. Unfortunately, using a
more precise non-isothermal protocol like qPCR or ddPCR would raise questions
about lysis of cells from the multiple heating cycles instead of from antibiotics.

The TTP signal is slightly lower with filtration, especially at lower cell densities.
The slight prolonging of TTP indicate that some of the nucleic acids that contribute
signal during LAMP were physically coupled to the intact cells removed by filtration.
But this does not prove the existence of accessible but intracellular nucleic acids.
Instead, these nucleic acids could be inside intact cells prior to addition to the
LAMP reaction in an inaccessible and intracellular state, and then convert into an
accessible and extracellular state due to background lysis of cells at 70°C in the
LAMP reagents. Indeed, the existence of background lysis not due to antibiotics
is seen by the decrease in TTP caused by filtration in the untreated condition, a
decrease similar in magnitude to that of the treated condition.

From this experiment it is not possible to prove that accessible but intracellular
nucleic acids play no role in the effect measured by polAST. Since the accessible
but intracellular effect supposedly can only exist during LAMP, one would need an
experiment comparing the LAMP protocol without filtering to a condition in which
intact cells are collected and the extracellular nucleic acids removed. The absence
of signal would then show that being extracellular is necessary for nucleic acids to
be accessible. Later experiments with the bulk filtration AST protocol in Figure 3.6l
show that in the highest antibiotic doses and longest durations, the concentration of
nucleic acids in the filtrate essentially equals that in the feed. By that point in time
at least, the vast majority of all nucleic acids are both accessible and extracellular.

Figure 3.4 shows an attempt to measure the extent of genome fragmentation during
bulk filtration AST. The same DEB extraction of a 15-minute bulk filtration AST
were quantified using two different primer pairs without reverse transcription. In
ddPCR, if multiple templates are physically coupled, they will only be loaded into
one droplet. If the same templates were physically uncoupled, then more droplets
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would turn positive after amplification.

The uidA primer pair amplifies one genomic loci located opposite of the origin of
replication by sequence distance in the circular E. coli genome. Meanwhile, the
23S primers amplify an amplicon shared by the seven 23S rRNA loci found in the
E. coli genome (mostly near the origin of replication by sequence distance). In a
rapidly-dividing E. coli, genome replication requires more time than cytokinesis,
and so a single cell dividing every 40 to 20 minutes may contain up to 4–8 origins
of replication. Therefore, in each bacterium, there are up to ∼7-fold more 23S
templates in existence than uidA templates. If genome fragmentation occurs then
the 23S signal would be expected to be higher than the uidA signal.

The genome of E. coli can fragment in two conceivable ways. The two strands of
DNA can separate and fail to re-hybridize, creating two molecules from one. In
addition, there could be breaks in the DNA strands that would separate different
loci in the same genome. Additionally, in this protocol, there were two conceivable
causes of genome fragmentation: antibiotic action, and the DEB extraction protocol.
It is unlikely for the DEB buffer to cause genome fragmentation by strand breaks,
since such non-specific DNA cleavage would eventually destroy all nucleic acids
in the buffer despite its marketing as a nucleic acid preservative. Despite varying
incubation times at 65°C during extractions of bacteria (data not shown), I have
not observed any decrease in yield over time, ruling this mechanism out. However,
it is plausible that the 98°C heating step does cause separation of complementary
DNA strands. The genome fragmentation has been documented during exposure to
fluoroquinolones, an antibiotic class that targets DNA gyrase. Beta-lactams do not
target gyrase, but if there were any effect, it would be seen in Figure 3.4.

In actuality, the 23S primers resulted in a remarkably consistent increase in appar-
ent concentration regardless of antibiotic exposure or extracellular location. This
increase is consistent with the multiple copies of the 23S gene being physically un-
coupled. However, another explanation is that some primer sequence characteristic
causes this increase in efficiency. Even though digital PCR should be robust to
slight primer inefficiencies, if the templates were stochastically prevented from par-
ticipating in amplification, having multiple copies in the same droplet may increase
the chance of successful amplification.

There is an increase (n=1) between the untreated to treated feed fractions. Interest-
ingly, the same increase in the total DNA measured in the treated feed fraction is
observed repeatedly in ertapenem bulk filtration ASTs in Figures 3.6a-3.6c, 3.6g,
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Figure 3.5: Light microscopy of unfixed E. coli exposed to 1.0 µg/mL ertapenem
for 15 minutes shows large, midline cell envelope defects (yellow arrows).

3.6h, and 3.6j at time points earlier than than 30 minutes. The magnitude of this
early increase is within the range of measurement error, but the bias away from
50% increases indicates a real phenomenon. This trend could be explained by the
failure of DEB to lyse all cells and by antibiotic-induced lysis boosting the extraction
efficiency. In Figure 3.4, the magnitudes of the increase and the amount of extra-
cellular DNA coincides, consistent with this hypothesis. Alternatively, the presence
of DNA strand breaks also cannot be definitively ruled out. In this case, only the
fragmentation must be partial, since the increase is not close to the expected 1:7
ratio. In any case, the trend eventually reverses when the faster, non-negative cell
growth in the untreated condition outpaces the increase from beta-lactam treatment.

The literature reports that catastrophic lysis is readily observed during live cell
microscopy for several beta-lactam antibiotics [28], and the biophysics of this lysis
have been analyzed in detail [124]. Figure 3.5 also shows the results of microscopy
of a 15 minute ertapenem exposure performed in the same facility as all other
experiments in this thesis. The midline blebs reported in the literature were observed,
suggesting that the same conditions studied by live microscopy were also present
during bulk filtration AST.

None of the three proposed mechanisms for the bulk filtration AST signal have been
definitively ruled out with the experiments included above. However, the mechanism
of catastrophic lysis must be ruled in. It is sufficient to explain all of the above data,
and it is in line with the majority of the literature of beta-lactam mechanism of
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action. The other two mechanisms require more assumptions than the mechanism
of catastrophic lysis, and they are at odds with the existing literature. Therefore,
I believe that lysis of cells, with openings in the cell wall larger than any internal
molecule or particle, is the most likely, or at least the largest, mechanism by which
accessibility AST operates.

3.2 Bulk filtration AST reveals pharmacodynamics of beta-lactam antibiotics
at short time scales

A single bulk filtration AST condition yields one set of observations of the amount
of live and dead biomass at one time. One can use bulk filtration AST to understand
the state of the in vitro culture system, aside from its use as a diagnostic assay. To
better understand and optimize tradeoffs in assay design, 1186 ddPCR measurements
of 507 independent bulk filtration AST exposures, grouped into 18 AST runs and
30 ddPCR experiment batches, were performed on 5 strains of Escherichia coli
and 2 antibiotics. For each measurement, the choice of antibiotic compound, the
antibiotic dose, the duration of the antibiotic exposure, the starting number of
bacteria (the inoculum), and inclusion of reverse transcription were controlled by
the experimenter. The mapping between ddPCR The results are discussed below.

3.2.1 Pharmacodynamics at short time scales is a balance between cell growth
and cell death

Phenotypic ASTs, by their definition of being phenotypic, involve the culturing of
live bacteria in antibiotics, usually in controlled conditions that promote maximum
growth rates and thus fastest antibiotic action. Thus, during phenotypic ASTs, there
is necessarily continued population growth while antibiotic killing commences.
Studies in the literature not focusing on pharmacodynamics often ignore this balance
of growth and death [125].

In antibiotic treated exposures where the bacteria were susceptible, an initial increase
in the total nucleic acids and a lag in the extracellular nucleic acids was observed.
Eventually, total population growth slowed and both fractions plateaued at nearly
the same concentrations, indicating the cessation of population growth.

In exposures lacking antibiotics, the population of untreated cells increased ex-
ponentially. In 8 out of 11 relevant AST runs, no lag phase was seen despite a
transition to a different rich growth media and a room temperature interruption in
the 37°C incubation. A lack of an increase in the total nucleic acids in the initial
1–2 time points was seen in 3 AST runs and could be explained as a lag phase or as
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over time during in vitro antibiotic exposure.
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Figure 3.6: Bulk filtration AST measures total and extracellular gDNA or rRNA
over time during in vitro antibiotic exposure.
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Figure 3.6: Bulk filtration AST measures total and extracellular gDNA or rRNA over
time during in vitro antibiotic exposure. Lines connect points that were observed
during the same PCR run; each point is an independent antibiotic exposure.



59

Ec11 ETP:<0.5 CRO:16

0 20 40 60 80 100 120 140 160 180

1e+01

1e+02

1e+03

1e+04

1e+05

3e+00

3e+01

3e+02

3e+03

3e+04

Exposure duration (min)

N
uc

le
ic

 a
ci

d 
co

pi
es

/µ
L 

in
 th

e 
ex

po
su

re
(li

ne
ar

 s
ca

le
 b

el
ow

 0
.1

)
Amplification protocol

−RT (DNA)

Filtration fraction
Total
Extracellular

Antibiotic
none 0 µg/mL
ETP 0.03125 µg/mL
ETP 0.125 µg/mL
ETP 0.5 µg/mL
ETP 2 µg/mL
CRO 16 µg/mL
CRO 64 µg/mL
CRO 256 µg/mL

(j) AST Run 10.

Ec2 ETP:<0.5 CRO:<1

0 20 40 60 80 100 120 140 160 180

1e+02

1e+03

1e+04

1e+05

3e+01

3e+02

3e+03

3e+04

Exposure duration (min)

N
uc

le
ic

 a
ci

d 
co

pi
es

/µ
L 

in
 th

e 
ex

po
su

re
(li

ne
ar

 s
ca

le
 b

el
ow

 0
.1

)

Antibiotic
none 0 µg/mL
ETP 0.03125 µg/mL
ETP 0.125 µg/mL
ETP 0.5 µg/mL
ETP 2 µg/mL
CRO 0.25 µg/mL
CRO 1 µg/mL
CRO 4 µg/mL

Amplification protocol
−RT (DNA)

Filtration fraction
Total
Extracellular

(k) AST Run 11.

K12 ETP:0.012 CRO:<1

0 20 40 60 80 100 120 140 160 180

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

3e+00

3e+01

3e+02

3e+03

3e+04

Exposure duration (min)

N
uc

le
ic

 a
ci

d 
co

pi
es

/µ
L 

in
 th

e 
ex

po
su

re
(li

ne
ar

 s
ca

le
 b

el
ow

 0
.1

)

Amplification protocol
−RT (DNA)

Filtration fraction
Total
Extracellular

Antibiotic
none 0 µg/mL
ETP 1 µg/mL
ETP 32 µg/mL
CRO 2 µg/mL
CRO 128 µg/mL

(l) AST Run 12.
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measurement error. Slowing of population growth at longer durations, which would
be expected during entry into stationary phase or diauxic growth, was not observed
within the examined durations of exposure.

In Figure 3.6, the total nucleic acids increase before plateauing in all treated con-
ditions with susceptible strains. The increase is initially comparable to the rate of
untreated conditions. Thus, to model bulk filtration AST it will be necessary to
assume continued growth by surviving bacteria.

3.2.2 Lysis efficiency and background lysis
When comparing untreated and susceptible treated conditions, a slight increase in
the total amount of nucleic acids was observed in the latter in early time points.
One explanation for this effect is that lysis from beta-lactams contributes to a higher
nucleic acid extraction efficiency than from the lysis buffer alone. If true, it follows
that the lysis buffer’s efficiency is less than 100%. The uncertainty in the lysis buffer
efficiency will create a bias in the estimation of pharmacodynamic parameters,
but since the magnitude of the lysis efficiency should be small, the effect was not
included in the model. An alternative explanation is that the presence of antibiotic
salts changed the surface tension of the antibiotic-exposed specimen and increased
the volume drawn into the tips of micropipettors. In either case, the effect was not
modeled and allowed to be part of the stochastic noise term.

In untreated exposures, the amount of extracellular nucleic acids was always ≤ 1%
of the total nucleic acids, with the amount increasing over time, paralleling the
population growth. Since no antibiotics were present, the amount of extracellular
nucleic acids must be interpreted as a background lysis rate. Certain strains such as
E. coli #38 consistently had a higher background lysis rate than other strains such
as E. coli K12.

The nature of this background lysis rate was not determined in detail. It may
represent the small rate of death and then subsequent cell envelope degradation
from stochastic reasons during cultivation. The background lysis rate may also
represent a physiological extrusion of nucleic acids by living cells. Gram-negative
bacteria, such as the well-studied Pseudomonas aeruginosa, are known to secrete
DNA extracellularly (eDNA) as part of biofilm formation [126]. In Escherichia coli
and Klebsiella pneumoniae, only certain strains produce biofilms, and protein and
carbohydrate polymers form the bulk of the extracellular polymeric substance [127].
At least to the naked eye in the short time scales examined, only planktonic growth
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was seen in the strains examined. It is claimed in the literature that many bacteria
secrete extracellular vesicles that may contain ribosomal RNA; these extracellular
vesicles would also contribute to an apparent background lysis rate. No matter the
mechanism, the parameter for extracellular nucleic acid production in the absence
of antibiotics is captured in our models as a background lysis rate.

3.2.3 Cell density is directly proportional to gDNA and rRNA amplification,
without inoculum effects

When the starting inoculum of the antibiotic exposure was varied by a serial dilution,
the observed concentration of the targeted nucleic acid species measured after the
antibiotic exposure was found to vary according to a linear function. Furthermore,
the proportion of extracellular to total nucleic acids remains almost constant as
initial inoculum varies and the antibiotic dosage and exposure durations were held
constant.

These two relationship are expected if the copy number of the targeted nucleic
acid does not change in response to antibiotic exposure and if the magnitude of
the response to antibiotic is not affected by the density of cells at the start of the
antibiotic exposure. The latter condition is discussed in the next section (3.2.4).

The first condition is a result of the linearity of expectations and the law of large
numbers. The amount of variability in the copy number per cell of a nucleic acid
species does not affect our prediction that the concentration of nucleic acids we
measure, 𝑦obs, is linearly proportional to the number of cells 𝑁 . So long as the copy
number per cell 𝑥𝑖 is finite (which it is) and that the offspring of bacteria remain
similar enough to be in the same species (which they do) so that the 𝑥𝑖 have the
same distribution, then there will exist an average copy number per cell 𝑥. Our bulk
measurement, normalized by 𝑁 , will then always measure that average copy number
per cell in the limit of large inoculums, thanks to the law of large numbers. (The
copy numbers of both of these nucleic acid species are generally proportional to the
size of the cell anyways, and their variance is finite too.) In other words,

𝐸 [𝑦obs] = 𝐸
[
𝑁∑︁
𝑖=1

𝑥𝑖

]
=

𝑁∑︁
𝑖=1

𝐸 [𝑥𝑖] = 𝑥𝑁 (3.3)

lim
𝑁→∞

𝑦obs
𝑁

= lim
𝑁→∞

∑𝑁
𝑖=1 𝑥𝑖

𝑁
= 𝑥. (3.4)

However, if the average copy number per cell changes as a result of antibiotic
exposure, then 𝑥 becomes a variable, and 𝑦obs becomes a function of both 𝑥 and
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Figure 3.7: Total and extracellular gDNA or rRNA in bulk filtration AST as a
function of starting inoculum.
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Figure 3.7: Total and extracellular gDNA or rRNA in bulk filtration AST as a
function of starting inoculum (continued).

𝑁 . The two nucleic acid species targeted in Figure 3.7 were the uidA locus in the
genomic DNA and the 23S ribosomal RNA. An increase or decrease in the number
of genomes per cell as a response to beta-lactam antibiotics has not been described
in the literature. Likewise, there is no report of the average number of ribosomes in
a bacterial cell changing with beta-lactam exposure. I found it reasonable to assume
that neither gDNA nor rRNA copy number per cell were affected by antibiotic
dosage. Even if this were the case, the amount of increase would have to coincide
exactly with the magnitude of any inoculum effect present in order to achieve the
observed results. The principle of parsimony (Occam’s Razor) would lead us to
prefer the former hypothesis.

If the observed nucleic acid concentration was perfectly proportional to the bacterial
biomass, then the linear function between the two would have no intercept. In
actuality, at low inoculums, the measured concentrations for certain experiments
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plateaued at a constant low concentration, including when no cells were added.
This minimum concentration is readily apparent when reverse transcription was
performed. Rather than reflecting a biological phenomena, I interpret this as a
result of contamination and presumptive ddPCR artifacts sometimes observed.

For low concentrations, the possible set of ddPCR results is discrete. This means that
zero positive droplets is calculated as a concentration of 0, while 1 positive drop due
to ddPCR artifacts in approximately 15,000 droplets will jump the concentration to
about 0.078 copies/µL in the ddPCR reaction. When this concentration is corrected
for a typical dilution of 0.125 (no RT) or 0.0001 (RT), the resulting artifact is 0.63
and 784 copies/µL, respectively.

In the experiments with reverse transcription, it was noticed in template-less reac-
tions (separate from the data shown) that amplification using E. coli rRNA primers
detects an extrapolated 2500 copies/µL of contaminating rRNAs in the commercial
enzyme stock itself, due to the enzyme being produced in E. coli cultures. In the
bulk filtration AST experiments herein, the enzyme stock was diluted 1:100 in to the
RT reaction, which was further diluted 1:20 when creating the ddPCR mastermix.
We thus expect 1.25 copies/µL of contamination in the ddPCR. The observed con-
tamination concentration to which the model was fit is corrected by the dilutions of
the sample from the exposure to the ddPCR reaction. For example, the 0 CFU sam-
ples in AST Run 16 were diluted 1:2 in DEB, 1:10 in water, 1:2 in the RT reaction,
and 1:20 in the ddPCR reaction, so we would expect 1.25(2) (10) (2) (20) = 1000
copies/µL to be shown in the above figures. The observed background signal is
indeed at 1000 copies/µL.

3.2.4 Inoculum effects do not affect bulk filtration AST
An inoculum effect, specifically an increase in apparent susceptibility when the
inoculum is lowered, has been well documented in the literature for bacteria exposed
to beta-lactam antibiotics in liquid culture. Thus it is puzzling why no inoculum
effect was seen during bulk filtration AST in Figures 3.7a–3.7e. Of note, the strain
Escherichia coli CDC #1 is a known producer of 4 different beta-lactamase genes,
yet the proportion of lysed cells at 100 minutes of ertapenem exposure was constant
across 2 orders of magnitude of starting inoculum in Figure 3.8a. Interestingly,
replicate exposures cultured overnight did show an inoculum effect. The lowest
inoculum of 1250 CFU (1 × 104 CFU/mL) in both the ertapenem and ceftriaxone
doses failed to produce a cell pellet, in contrast with the two higher inocula.
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Figure 3.8: The inoculum effect of beta-lactamases does not affect short-term
antibiotic kill rates.

The currently accepted explanation of the inoculum effect is that certain strains of
bacteria produce beta-lactamases. The large the inoculum, the faster the beta-lactam
antibiotics in the exposure volume are degraded. When the beta-lactam antibiotic
concentration decreases past a certain point (possibly the concentration at which
the rate of killing is lower than the growth rate to a degree that the probability
of eventual extinction is small), the surviving cells rebound if not yet extinct, and
that particular antibiotic concentration is considered to not be inhibitory. Thus, at
the MIC, defined by the CLSI for an inoculum of about 5 × 105 CFU/mL, larger
inoculums than the standard inoculum will survive, while smaller inoculums do not.
A detail not often stated explicitly in the inoculum effect literature is the stochastic
nature of whether the population of bacteria goes extinct before sufficient antibiotic
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is degraded. A smaller inoculum may reach the same proportion of cells surviving
as a larger inoculum, for example 10−5 fold fewer cells, but since cells are discrete
entities, it is more likely for a starting inoculum of 106 cells to go extinct than it is
for a 107 inoculum [128].

If this model is correct, then one explanation for the constant proportion of lysis I
observed lies in the time scales examined and the experimental protocols followed.
In the bulk filtration AST experiments herein, the longest exposure times are between
2 and 3 hours, and the resolution of the time series is about 5 minutes. In contrast,
the typical time-kill curve in the literature examines up to 24 hours of incubation
with a resolution of 1 hour. Nucleic acid amplification also does not distinguish
between very low amounts of intact cells the way plating a serial dilution on solid
media can distinguish between 10−4 and 10−5 CFU/mL.

The MIC inoculum effect manifests only for endpoint measurements (i.e., the MIC)
of antibiotic exposures of long duration. The proportion of lysis, in contrast,
reflects a kinetic phenomena unaffected by the slight decrease in otherwise saturating
antibiotic concentration within the time frame examined.

3.2.5 The antibiotic death rate at short time scales is correlated with antibiotic
dosage

Another important function to understand about in vitro antibiotic exposure is the
dose-response curve, the function of some metric of antibiotic response to the dosage
of antibiotics in the exposure.

In Figures 3.9a and 3.9b, a statistic 𝜇∗ that I will call the "constant net growth rate"
(known as the net growth rate in Regoes et al., 2004 [129]) is plotted as a function
of antibiotic dosage for all bulk filtration data. The constant net growth rate is the
quantity

𝜇∗ =
1

𝑡𝑖 − 𝑡1
log

𝑇 [𝑡𝑖] − 𝐷 [𝑡𝑖]
𝑇 [𝑡1] − 𝐷 [𝑡1]

, (3.5)

where 𝑡𝑖 is the i-th time point, 𝑡1 is the earliest time point of the AST run, 𝑇 [𝑡]
is the total/feed nucleic acid amount at time 𝑡, and 𝐷 [𝑡] is the extracellular/filtrate
nucleic acid amount at time 𝑡. The constant net growth rate statistic makes the rough
assumption that the amount of live cells follows exponential growth in the following
manner: 𝐿 [𝑡𝑖] = 𝐿 [0]𝑒𝜇∗𝑡 , where 𝜇∗ is assumed to be constant. One can further
interpret 𝜇∗ = 𝜇 − 𝛽, the difference between a true growth rate 𝜇 and a death rate 𝛽.

Later, I show that the constant net growth rate model is a special case of a more
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Figure 3.9: Constant net growth rate as a function of antibiotic dose.
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general dynamic model which we use to fit the entire bulk filtration AST data set.
The constant net growth rate is nonetheless displayed here to compare with my
dose-response model fit because the former can be calculated arithmetically for all
but the first time point in each AST run and makes fewer assumptions. In contrast,
my later model only yields a single set of parameters for each pair of strain and
antibiotic compound included.

3.3 A dynamical compartment model quantifies the limiting parameters for
phenotypic assays of beta-lactams in general

As discussed above, there are many variables at play during the in vitro antibiotic
exposure. Qualitative trends of each variable that can be deduced from the data
have already been described above. In this section, I further propose a mathematical
model to quantitatively relate these variables and thus describe the state of the in vitro
antibiotic exposure, and I also model the observable, noisy output of the assay. There
are several purposes of modeling. First, being able to describe and predict the state
of the assay system is necessary to rationally optimize trade-offs between duration,
dose, and inoculum during in assay design. Second, predicting the outcome of the
assay, subjected to measurement noise, is necessary to rationally specify the limits of
assay performance. Third, the model can be used as the susceptibility classification
algorithm that is necessarily part of any diagnostic assay, and I hypothesize that an
algorithm that can remove the confounding variables of duration, dose, inoculum,
and other pharmacodynamic parameters from the variable of susceptibility will
show improved accuracy over algorithms that do not take the former other variables
into consideration.

Philosophically, any mathematical model of nature can only offer an approximate
level of accuracy. The possibility always remains that a model does not take into
consideration all existing and relevant variables, variables whose inclusion would
make the model more accurate but more complex. Furthermore, simplicity of
interpretation often decides which functional forms are chosen in the model to relate
the included variables in a model, even if a more complex equation would also be
plausible. As one makes more accurate and more frequent measurements, it becomes
increasingly more useful to model additional variables. With the experiments in
this thesis, it would already be plausible to assume variables or phenomena such
as medium richness (for growth rate), medium osmolarity (increase kill rates),
carrying capacity, aggregation or biofilm formation, gene regulation, or population
age structure when modeling in vitro antibiotic exposures. However, these variables
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were not necessary to make important conclusions and so their exploration was
postponed as future work.

3.3.1 Solving ordinary differential equations for in vitro antibiotic incubation
3.3.1.1 Compartment model assumptions

The main concern of our AST assay is the assessment of susceptibility. Susceptibility
is currently defined by changes cell growth or number caused by antibiotics, and
antibiotics must have some time to act. Thus, the number of bacterial cells and the
changes in that number over time are important to include in a model. By definition,
such a model is a pharmacodynamic model.

Ordinary differential equations, and in particular compartment models, are a popular
model for dynamical systems and pharmacodynamics in particular. The following
system of ordinary differential equations captures the interaction between cell growth
and cell death seen in my experiments.

𝑑𝐿 [𝑡]
𝑑𝑡

= (𝜇 − ℎ[𝑡])𝐿 [𝑡]
𝑑𝐷 [𝑡]
𝑑𝑡

= ℎ[𝑡]𝐿 [𝑡]

𝐷 [0] = 0

𝐿 [0] = 𝐿0

(3.6)

To the equations for Malthusian exponential growth, we add a term to represent
the death from antibiotics. The quantity ℎ[𝑡], in units of time−1, represents the
proportion of cells alive at time 𝑡 that die in the next instant of time due to antibiotics.
𝐿 [𝑡] and 𝐷 [𝑡] are the amount of live and dead bacteria, respectively, as functions
of time, 𝜇 is the intrinsic rate of growth in units of time−1, and 𝐿0 is the initial
inoculum of live cells.

Several assumptions were made in writing this system of equations. First, it was
assumed that the number of cells is a continuous, real-valued quantity. This as-
sumption is strongly violated when the number of cells is low, but it is reasonable
when the number of cells is large and the probability of stochastic extinction is low.
We discuss in Chapter 4 alternative population models where the number of cells is
an integer.

It is reasonable assumption that the absolute amount of live cells generated over a
period of time is proportional to the amount of live cells at the start of the period of
time, an assumption known as the law of mass action. Similarly, it is a reasonable
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assumption that the The exponential growth of bacterial cultures is indeed modeled
well by the Malthusian growth model (or simple exponential growth model), one of
the earliest models in the Western literature for population growth.

Both cell growth and cell death occur simultaneously during the in vitro antibiotic
exposure. Live cells only arise from other live cells, according to the long-standing
cell theory of biology. Dead cells are generated from live cells and do not produce
more dead cells. We assume that DNA and RNA are not degraded or lost in the
system, as no nuclease activity was observed in our batch cultures. We also assume
that nucleic acids are not secreted by the cells. Therefore, no further transitions
between the live and dead compartments are included in the model.

We assumed that cells during our assay did not enter stationary phase or diauxic
growth within the durations tested. Otherwise, the constant intrinsic growth rate
could be replaced with any of the density-dependent growth rate models known in
the literature. We also assumed no lag phase in growth.

Only two cell states, live and dead, were assumed in the compartment model. Entry
into a quiescent stage is described for bacteria exposed to bacteriostatic antibiotics.
Beta-lactam antibiotics are considered bacteriocidal antibiotics, and so quiescence
was not included in the model. Very small populations of quiescent cells called
persisters have been claimed in the literature to exist during beta-lactam exposure.
However, they were not modeled in this work due to the small proportion persister
cells represent and because of the short time durations examined.

Age of individuals in a population is another important variable often considered in
population dynamics. The evolution of age-structured populations can be described
by the McKendrick-von Foerster partial differential equations, but for this thesis,
no age structure was assumed because of the large, unsynchronized inoculums
examined.

3.3.1.2 General solution for antibiotic exposures

Without making assumptions about the form of h[t], one can derive a closed form
general solution to the system of equations 3.6. To do so, one first assumes that
ℎ[𝑡], the proportion of cells that die within the period of time 𝑡 + 𝑑𝑡, is equal to the
probability of a given cell dying within 𝑡 + 𝑑𝑡. ℎ[𝑡] now meets the definition of the
hazard rate of death from antibiotics, as defined in the survival analysis literature.
As discussed later, the assumption above is only valid when the number of live and



71

dead cells is large and can be approximated as a continuous quantity.

In survival analysis, the hazard rate is related to other quantities by the following
identities.

ℎ[𝑡] = 𝑓 [𝑡]
𝑆[𝑡] =

𝑓 [𝑡]
1 − 𝐹 [𝑡] = − 1

𝑆[𝑡]
𝑑𝑆[𝑡]
𝑑𝑡

(3.7)

𝑆[𝑡] = 𝑒−𝐻 [𝑡] (3.8)

𝑆[𝑡] is the probability of a cell surviving to time 𝑡 from start of drug exposure (t=0)
and called the survival function.. 𝐹 [𝑡] is cumulative probability function of cell
lifetimes from the start of exposure (𝑡 = 0), with 𝑆[𝑡] = 1 − 𝐹 [𝑡]. 𝑓 [𝑡] is the
probability density function of cell lifetimes from t=0, with 𝑓 [𝑡] = 𝑑𝐹 [𝑡]

𝑑𝑡
. 𝐻 [𝑡] is

the cumulative hazard function, with 𝐻 [𝑡] =
∫ 𝑡

0 ℎ[𝜏]𝑑𝜏.

Then, since the ODE system is linear and separable,

𝐿 [𝑡] = 𝐿0𝑒
∫ 𝑡

0 (𝜇−ℎ[𝜏])𝑑𝜏

= 𝐿0𝑒
(𝜇𝑡−0)−(𝐻 [𝑡]−0)

= 𝐿0𝑒
𝜇𝑡𝑆[𝑡]

(3.9)

𝐷 [𝑡] =
∫ 𝑡

0
ℎ[𝜏]𝐿 [𝜏]𝑑𝜏

=

∫ 𝑡

0
ℎ[𝜏] (𝐿0𝑒

𝜇𝜏𝑆[𝜏])𝑑𝜏

= 𝐿0

∫ 𝑡

0
𝑒𝜇𝜏 (ℎ[𝜏]𝑆[𝜏])𝑑𝜏

= 𝐿0

∫ 𝑡

0
𝑒𝜇𝜏 𝑓 [𝜏]𝑑𝜏.

(3.10)

Because a small increase in the extracellular DNA was observed in untreated con-
ditions, one can add a term 𝑘 to represent a background rate of extracellular DNA
creation independent of antibiotics and constant with respect to time. Equations 3.6
become

𝑑𝐿 [𝑡]
𝑑𝑡

= (𝜇 − 𝑘 − ℎ[𝑡])𝐿 [𝑡]
𝑑𝐷 [𝑡]
𝑑𝑡

= (𝑘 + ℎ[𝑡])𝐿 [𝑡]

𝐷 [0] = 0

𝐿 [0] = 𝐿0.

(3.11)
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First solving for 𝐿 [𝑡], then solving 𝐷 [𝑡] using integration by parts, the solutions are∫ 𝐿

𝐿0

𝑑𝐿 [𝑡]
𝐿 [𝜏] =

∫ 𝑡

0
(𝜇 − 𝑘 − ℎ[𝜏]) 𝑑𝜏

ln |𝐿 [𝑡] |
���𝐿
𝐿0

= (𝜇 − 𝑘)𝑡 − 𝐻 [𝑡]
���𝑡
0

𝐿 [𝑡] = 𝐿0𝑒
(𝜇−𝑘)𝑡𝑒−𝐻 [𝑡]

= 𝐿0𝑒
(𝜇−𝑘)𝑡𝑆[𝑡],

(3.12)

∫ 𝐷

𝐷0=0
𝑑𝐷 [𝑡] =

∫ 𝑡

0
(𝑘 + ℎ[𝜏]) 𝐿 [𝜏]𝑑𝜏

𝐷 [𝑡] =
∫ 𝑡

0
(𝑘 + ℎ[𝜏]) 𝐿0𝑒

(𝜇−𝑘)𝜏𝑆[𝜏]𝑑𝜏

= 𝑘𝐿0

∫ 𝑡

0

[
𝑆[𝜏]𝑒(𝜇−𝑘)𝜏𝑑𝜏

]
+ 𝐿0

∫ 𝑡

0

[
ℎ[𝜏]𝑒(𝜇−𝑘)𝜏𝑆[𝜏]𝑑𝜏

]
= 𝑘𝐿0

[
𝑒(𝜇−𝑘)𝑡

𝜇 − 𝑘 𝑆[𝑡]
���𝑡
0
−

∫ 𝑡

0

𝑒(𝜇−𝑘)𝜏

𝜇 − 𝑘 (− 𝑓 [𝜏])𝑑𝜏
]

+ 𝐿0

∫ 𝑡

0
𝑒(𝜇−𝑘)𝜏 𝑓 [𝜏]𝑑𝜏

=
𝑘𝐿0

(𝜇 − 𝑘)

[
𝑒(𝜇−𝑘)𝑡𝑆[𝑡] − 1

]
+ 𝑘𝐿0
(𝜇 − 𝑘)

∫ 𝑡

0
𝑒(𝜇−𝑘)𝜏 𝑓 [𝜏]𝑑𝜏

+ (𝜇 − 𝑘)𝐿0
(𝜇 − 𝑘)

∫ 𝑡

0
𝑒(𝜇−𝑘)𝜏 𝑓 [𝜏]𝑑𝜏

= 𝐿0

[(
𝑘

𝜇 − 𝑘

) (
𝑒(𝜇−𝑘)𝑡𝑆[𝑡] − 1

)
+

(
𝜇

𝜇 − 𝑘

) ∫ 𝑡

0
𝑒(𝜇−𝑘)𝜏 𝑓 [𝜏]𝑑𝜏

]
,

(3.13)

𝐷 [𝑡] =
(

𝑘

𝜇 − 𝑘

)
(𝐿 [𝑡] − 1) + 𝐿0

(
𝜇

𝜇 − 𝑘

) ∫ 𝑡

0
𝑒(𝜇−𝑘)𝜏 𝑓 [𝜏]𝑑𝜏. (3.14)

Further generalization is possible. Notice that the constant background rate of death
is mathematically equivalent to if a second antibiotic was present whose dosage
never changes and whose hazard function is a constant. Generalizing, one can solve
the following system of equations.

𝑑𝐿 [𝑡]
𝑑𝑡

= 𝐿 [𝑡]
(
𝜇 −

∑︁
𝑖

ℎ𝑖 [𝑡]
)

𝑑𝐷 [𝑡]
𝑑𝑡

= 𝐿 [𝑡]
∑︁
𝑖

ℎ𝑖 [𝑡]

𝐷 [0] = 0

𝐿 [0] = 𝐿0

(3.15)
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Because in this work, I did not study antibiotic interactions, the analysis of this
model was left for future work. Synergistic and antagonistic effects of antibiotics,
however, are well characterized and often used (or avoided) in clinical practice.

The assumption of constant growth rate in the above equations will break down
for longer antibiotic exposures or large initial inoculum since the nutrients in the
growth media will deplete, and the bacteria will enter stationary phase. The literature
contains many models for density-dependent population growth that generalize the
equation for 𝐿 [𝑡] into a more complex function, such as the logistic function or the
Gompertz equation. Since this work focused on short exposure durations and low
numbers of cells, the analysis of models with carrying capacities was left for future
work.

3.3.2 The multi-hit hazard rate and dose response curve
3.3.2.1 Single-hit hazard rate

Different choices of ℎ[𝑡], which uniquely determine 𝑓 [𝑡] and 𝑆[𝑡], yield different
solutions to equations 3.6 and 3.11.

For example, when ℎ[𝑡] = 𝛽 is constant over time, the cell lifetimes are exponentially
distributed.

ℎ[𝑡] = 𝛽 (3.16)

𝑆[𝑡] = 𝑒−𝛽𝑡 (3.17)

𝑓 [𝑡] = 𝛽𝑒−𝛽𝑡 (3.18)

Equations 3.9 and 3.10 then take the following forms:

𝐿 [𝑡] = 𝐿0𝑒
(𝜇−𝛽)𝑡 (3.19)

𝐷 [𝑡] = 𝐿0

(
𝛽

𝜇 − 𝛽

) (
𝑒(𝜇−𝛽)𝑡 − 1

)
= 𝐿0

(
𝛽

𝛽 − 𝜇

) (
1 − 𝑒−(𝛽−𝜇)𝑡

)
.

(3.20)

Similarly, equations 3.12 and 3.13 simplify to:

𝐿 [𝑡] = 𝐿0𝑒
(𝜇−𝛽−𝑘)𝑡 (3.21)

𝐷 [𝑡] = 𝐿0

(
𝛽 + 𝑘

𝜇 − 𝛽 − 𝑘

) (
𝑒(𝜇−𝛽−𝑘)𝑡 − 1

)
= 𝐿0

(
𝛽 + 𝑘

𝛽 + 𝑘 − 𝜇

) (
1 − 𝑒−(𝛽+𝑘−𝜇)𝑡

)
.

(3.22)
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The hazard rate ℎ[𝑡] from antibiotics is the only term where antibiotic action takes
place. It follows that ℎ[𝑡] should be a function, the dose-response curve, of the
antibiotic dose and the strain’s resistance. This function should not increase to
infinity as antibiotic dose increases, since an infinite kill rate is physically implausible
for all currently known antibiotic drugs. The function should also reach a value of
zero when no antibiotics are present. Of the possible functional forms for ℎ[𝑡], the
Hill function is a simple, popular choice for dose-response curves that satisfies the
two limiting behaviors. The Hill function is

ℎ[𝑡] = 𝛽 =
𝛽𝑚𝑎𝑥 [𝐴𝑏𝑥]𝛾

[𝐴𝑏𝑥]𝛾 + EC𝛾50
(3.23)

where 𝛽𝑚𝑎𝑥 is the maximum rate of antibiotic killing in units of time−1, [𝐴𝑏𝑥] is
the dosage or concentration of antibiotic in units of µg/mL or equivalent, and 𝛾
is the Hill coefficient, a dimensionless parameter which controls the steepness of
the Hill function’s sigmoidal shape. The EC50, or "effective concentration 50," is
the antibiotic concentration at which the antibiotic killing is half of the maximum
𝛽𝑚𝑎𝑥 . It is a metric of susceptibility of a given strain. In Mouton et al., 2005
[130], the EC50 is related to the MIC by the equation 3.24, assuming that a broth
microdilution well is inoculated with 5× 105 CFU/mL, becomes visibly turbid only
at 108 CFU/mL, and is read at 18 hours of incubation.

𝑀𝐼𝐶 =

(
𝜇 − 1

𝑡
ln 𝐿visible

𝐿0

𝛽max − (𝜇 − 1
𝑡

ln 𝐿visible
𝐿0

)

) 1
𝛾

EC50

=

(
𝜇 − 0.29hr−1

𝛽max − (𝜇 − 0.29hr−1)

) 1
𝛾

EC50.

(3.24)

With a constant antibiotic hazard rate, the bacterial lifetimes are exponentially
distributed. A constant hazard rate would arise if discrete events of antibiotic
damage occurred to the with a constant probability per time 𝛽, and if a single event
of antibiotic damage causing the death of the bacterium. I do not have evidence
that beta-lactam antibiotics cause discrete events of antibiotic damage, even though
mechanical gaps in the peptidoglycan cell wall caused by beta-lactam action would
be a plausible manifestation of discrete events of antibiotic damage. Nonetheless, it
is correct to say that a choice of a constant hazard rate implies an equivalence to a
single-hit model of antibiotic action.



75

3.3.2.2 Multi-hit hazard rate

In my data, I observed a significant delay in antibiotic killing despite no evidence
of a significant lag phase in growth in the untreated conditions. To model this
delay in antibiotic killing, we generalize the above single-hit model of antibiotic
action, where the hazard rate is constant, to a multi-hit model. If a bacterium dies
upon incurring 𝛼 events of antibiotic damage, and the events occur with a constant
probability per time 𝛽, then the lifetimes of the bacteria would be gamma distributed
with a shape parameter of 𝛼 and a rate parameter of 𝛽. Setting ℎ[𝑡] to be the gamma
distribution hazard rate introduces time-dependence to ℎ[𝑡]:

ℎ[𝑡] = 𝛽𝛼𝑡𝛼−1𝑒−𝛽𝑡

Γ[𝛼]𝑄 [𝛼, 𝛽𝑡] ,

𝛽 =
𝛽𝑚𝑎𝑥 [𝐴𝑏𝑥]𝛾

[𝐴𝑏𝑥]𝛾 + EC𝛾50
.

(3.25)

𝑆[𝑡] = 𝑄 [𝛼, 𝛽𝑡] . (3.26)

𝑓 [𝑡] = 𝛽𝛼𝑡𝛼−1𝑒−𝛽𝑡

Γ[𝛼] . (3.27)

where Γ[𝛼] =
∫ ∞

0 𝑢𝛼−1𝑒−𝑢𝑑𝑢 is the gamma function, and 𝑄 [𝛼, 𝑥] =

1
Γ[𝛼]

∫ ∞
𝑥
𝑢𝛼−1𝑒−𝑢𝑑𝑢 is the regularized upper incomplete gamma function.

Notice that when 𝛼 = 1, we recover the single-hit model where ℎ[𝑡] = 𝛽.

It would be elegant to interpret 𝛼 as truly representing the effective number of
damaging events that a cell needs to incur from antibiotic exposure to lyse and
die, since it is reasonable to assume that multiple defects in the cell wall must
accumulate to lead to catastrophic failure during beta-lactam activity. However,
alternative mechanisms would appear in the same way. A possible alternative would
be a pause in overall metabolic activity at the start of the exposure due to changes in
the growth media composition or temperature. Another possible alternative would
be the influence of cell age on the hazard rate, if the hazard rate only increases
when cells reach an older age. Thus, it is safer to conclude that the 𝛼 parameter
only captures the empirical or apparent magnitude of the delay in antibiotic killing,
without knowledge of the underlying mechanism.

It should be noted that there exists substantial literature on the dynamics of age-
structured populations. The generalization of the compartment model of section
3.3.1 is the McKendrick-von Foerster equation. This approach was not further
explored since the effects of cell age seemed adequately accounted for by the 𝛼
parameter of the multi-hit hazard rate.
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Combining equations 3.12, 3.14, 3.26, and 3.27, we arrive at the following solutions
for equation 3.11.

𝐿 [𝑡] = 𝐿0𝑒
(𝜇−𝑘)𝑡𝑄 [𝛼, 𝛽𝑡] (3.28)

𝐷 [𝑡] =
(

𝑘

𝜇 − 𝑘

)
(𝐿 [𝑡] − 1) + 𝐿0

(
𝜇

𝜇 − 𝑘

) ∫ 𝑡

0
𝑒(𝜇−𝑘)𝜏 𝑓 [𝜏]𝑑𝜏 (3.29)

= 𝐿0

[(
𝑘

𝜇 − 𝑘

) (
𝑒(𝜇−𝑘)𝑡𝑄 [𝛼, 𝛽𝑡] − 1

)
+

(
𝜇

𝜇 − 𝑘

) ∫ 𝑡

0
𝑒(𝜇−𝑘)𝜏 𝑓 [𝜏]𝑑𝜏

]
(3.30)

= 𝐿0

[ (
𝑘

𝜇 − 𝑘

) (
𝑒(𝜇−𝑘)𝑡𝑄 [𝛼, 𝛽𝑡] − 1

)
+

(
𝜇

𝜇 − 𝑘

) (
𝛽

𝛽 + 𝑘 − 𝜇

)𝛼
𝑃[𝛼, (𝛽 + 𝑘 − 𝜇)𝑡]

] (3.31)

where 𝑃[𝛼, 𝑥] = 1
Γ[𝛼]

∫ 𝑥

0 𝑢𝛼−1𝑒−𝑢𝑑𝑢 = 1 − 𝑄 [𝛼, 𝑥] is the regularized lower incom-
plete gamma function. Note that when 𝜇 > 𝛽 + 𝑘 , equation 3.31 generates two
complex numbers. For numerical calculations on a computer, it may be easier to
implement the integral of equation 3.30 with existing libraries than to work with
complex numbers.

When 𝛽 + 𝑘 > 𝜇, then the population eventually goes extinct, and the total amount
of nucleic acids plateaus as follows:

lim
𝑡→∞

𝐿 [𝑡] = 0 (3.32)

lim
𝑡→∞

𝐷 [𝑡] = 𝐿0

[(
𝜇

𝜇 − 𝑘

) (
𝛽

𝛽 + 𝑘 − 𝜇

)𝛼
−

(
𝑘

𝜇 − 𝑘

)]
. (3.33)

When 𝛽 + 𝑘 < 𝜇 and 𝜇, 𝛽, 𝑘 > 0, the population grows indefinitely because no
stationary phase is modeled.

Example trajectories from equations 3.28 and 3.31 are shown in Figure 3.10.

3.3.3 Hierarchical error model for batch effects
The above model now describes the assay system, but not the technical observations
made by the experimenter. To fit to the nucleic acid quantification data, one also
needs to specify the function relating the system state, namely the amount of live and
dead bacteria, to the measured outcome of nucleic acid in copies/µL. The following
hierarchical mixed-effects model in equation 3.36 was proposed.

The amount of both 23S genomic DNA loci and of 23S ribosomal RNA, 𝑌 , was
set to be a linear function of the amount of bacterial biomass 𝑋 with slope or
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Figure 3.10: Examples of population trajectories with a multi-hit hazard rate

proportionality constant 𝑚 and intercept 𝑏. The biomass 𝑋 represents either the
feed or filtrate fraction biomass. In the former case, 𝑋 = 𝐷 + 𝐿, while in the latter,
𝑋 = 𝐷. 𝐷 and 𝐿 were calculated specifically with equations 3.28 and 3.30. The
slope 𝑚 represents the amplification efficiency. The intercept 𝑏 is proportional to
the limit of detection (LOD) of the amplification and to the background level of
amplification. A non-zero limit of detection would promote a lower, more negative
intercept value, while a background signal, like contamination, would promote a
higher, more positive value. Whether the intercept overall is negative or positive
depends on which of these two effects is larger. However, if the LOD was reached for
a given amplification protocol (i.e., primer and reverse transcription combination),
and the intercept was negative, negative concentrations would not be seen. Instead,
either artifacts of ddPCR would be seen, causing a positive concentration to be
estimated, or a concentration of 0 copies/µL would be seen. Therefore, my model
assumes that the observed concentration 𝑌 is the maximum of a constant artifact
concentration 𝑐 or the concentration expected by the linear function of the bacteria
population, 𝑚𝑋 + 𝑏. Thus, the model so far, without stochasticity, is written as

𝑌𝑖 = max(𝑚𝑋𝑖 + 𝑏, 𝑐). (3.34)

where𝑌𝑖 and 𝑋𝑖 are the observed concentration and unobserved bacterial population
values of the i-th AST observation.

It is important to note that any deviations in the starting inoculum from the intended
target inoculum will proportionally change the value of 𝑚. The starting inoculum
𝐿0 factors out of 𝑋 as a constant, so𝑌 = 𝑚𝑋 ∝ 𝑚𝐿0. The deviations from the target
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inoculum could plausibly arise because of an incorrect conversion ratio between the
batch culture cell density and the measured OD600; this average deviation would be
shared by all experiments. Variations between batches could plausibly arise form
the variable time between the measuring of the OD600 and the start of the serial
dilution, which could approach up to half of a 30-minute doubling time, as well as
pipetting errors.

Each bulk filtration AST ddPCR batch, by definition, comprised the PCR measure-
ments of one AST run performed on the same day using a shared PCR protocol.
There were two such PCR protocols: reverse transcription + 23S primers, or no
reverse transcription + uidA primers. The ddPCR batches therefore fall into two ex-
changeable groups indicating shared PCR protocols. Accordingly, to fit the available
data, the slope and intercept of Equation 3.34 was split into two different amplifi-
cation efficiencies 𝑚𝑝 and two intercepts 𝑏𝑝, where 𝑝 = {1, 2} = {"-RT", "+RT"}
indicates which protocol was used.

The model so far now has one fixed effect of unknown magnitude representing
protocol effects, but it does not have a term for the stochastic noise one expects in
any real life measurement. Therefore, a random variable 𝜖 is added to represent
stochastic noise. For our data, two separate noise terms 𝜖𝑝 were introduced to capture
any difference in the relative noise across the two PCR protocols. The error 𝜖 was
assumed to be multiplicative and log-normally distributed with a multiplicative
standard deviation of 𝜎𝜖 :

𝑌𝑖 ∼ Log-normal
(
max(𝑚𝑝 [𝑖]𝑋𝑖 + 𝑏𝑝 [𝑖] , 𝑐), 𝜎𝜖

)
. (3.35)

A multiplicative error model was chosen because errors in the serial dilution of the
nucleic acid extractions caused by retention of a constant proportion of the volume
in the pipette tip would accumulate multiplicative errors, rather than additive errors.
Furthermore, the concentration of nucleic acids is always non-negative, while the
traditional assumption of normal noise predicts the possibility of negative values.
The log-normal distribution admits no negative values, and thus is a more natural
model for non-negative data. The log-normal distribution, however, does not admit
zero values. The inclusion of the artifact parameter 𝑐 was thus necessary for the
error to be modeled as log-normal.

The true distribution of ddPCR results should be a binomial distribution in the
number of positive and negative droplets, after the dilution from exposure to ddPCR
and other sources of droplet positivity are inputted. For computational simplicity,
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the droplet counts were not directly fitted, only the most likely estimate of the
concentrations.

The observed nucleic acid concentrations from the compartments of a single ex-
posure could be modeled as a multivariate random variable, such as a multivariate
Gaussian. This model was examined, and the estimated covariance between the two
compartments was almost zero. Thus, for computational simplicity, the noise of
each compartment’s nucleic acid concentrations were assumed to be independent.

The exact amplification efficiency and intercept appeared to vary between different
PCR batches run on different days, even among batches using the same PCR pro-
tocol. While the variation was within an order of magnitude, the fit of the lines
exhibited multimodality in the posteriors estimated for the amplification efficiency
𝑚𝑝. Therefore, each PCR batch was fitted to its own amplification efficiency 𝑚𝑒
and intercept 𝑏𝑒, where 𝑒 = {1, . . . , 30} indicates the PCR "experiment" or batch.
These experiment-specific parameters themselves were distributed around position
parameters of 𝑚∗

𝑝 and 𝑏𝑝, with scale parameters of 𝜎∗
𝑚𝑝

and 𝜎𝑏𝑝 , thus creating the
hierarchical mixed-effects model below.

𝑌𝑖 ∼ Log-normal
(
max(𝑐, 𝑚𝑒[𝑖]𝑋𝑖 + 𝑏𝑒[𝑖]), 𝜎𝜖𝑝[𝑖 ]

)
(3.36)

𝑚𝑒[𝑖] ∼ Log-normal
(
𝑚∗
𝑝 [𝑖] , 𝜎

∗
𝑚𝑝[𝑖 ]

)
(3.37)

𝑏𝑒[𝑖] ∼ exGaussian
(
𝑏𝑝 [𝑖] , 𝜎𝑏𝑝[𝑖 ] , 𝜆𝑏𝑝[𝑖 ]

)
(3.38)

Note that 𝑚∗
𝑝 is the mean of the logarithm of the 𝑚𝑒 values, not the mean value of

the 𝑚𝑒 parameters, which we denote 𝑚𝑝. Instead, 𝑚𝑝 = exp
(
𝑚∗
𝑝 +

(𝜎∗
𝑚𝑝

)2

2

)
.

In eight pairs of experiments/PCR batches, the same nucleic acid extraction sample
was quantified by PCR using two different primers. Of the thirty PCR batches, three
pairs comprised replicate PCR batches from different days but using the same PCR
protocol and nucleic acid extraction samples. The sharing of the DEB nucleic acid
extraction step by these pairs of PCR batches would represent a known source of
correlation between data. However, in the above model, these correlations are not
encoded. All PCR experiments are assumed to be independent, whether they arose
from different or the same nucleic acid extraction event. An additional hierarchical
level indexed by the nucleic acid extractions could have been introduced to reflect
these presumed correlations. However, for the 15 out of 18 batches of extraction
samples without PCR replicates using the same protocol and extraction sample batch,
there would be no way to separate the random effects from before the extraction
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from the random effects occurring after the extraction, except from the information
borrowed (via the hierarchical error structure) from the 3 pairs where the two
kinds of effects can be separated. Thus, adding correlated hierarchical parameters
with uninformative priors would create non-identifiabilities and geometries of high
curvature in the parameter space, and these phenomena disrupt the HMC algorithm.
Because the gain in accuracy about 𝑚𝑒[𝑖] and 𝑏𝑒[𝑖] would be outweighed by the
increased difficulty in interpreting the fitting results, this model was not pursued to
completion. A principled comparison of the possible hierarchical structures was
left as future work.

Plausible sources of PCR batch variation would include differences in the timing of
manual operations and thus the amounts of evaporation of the reactions, different
pipettors used, and different batches of reagents (especially the age of the droplet
generation oil). These noise sources affect the bulk filtration AST protocol both
before and after the nucleic acid extraction step. A source of noise occurring before
the nucleic acid extraction step would be errors in setting the starting inoculum of
the batch of antibiotic exposures during the serial dilution of a single batch culture.
The net effect of all these noise sources are empirically represented by the assumed
hierarchical error model above.

The literature does not offer reasons for choosing a particular way in which the
amplification efficiencies should vary around the mean amplification efficiency,
other than the need for a central tendency and a support restricted to the positive
real numbers. Therefore, I chose the log-normal distribution for the 𝑚𝑒 parameters
because it admitted a non-centered parameterization that Stan’s HMC algorithm fits
more efficiently.

For the intercepts, I elected to use the exponentially-modified Gaussian distribution
(exGaussian). The intercepts can be negative, should have a mode near 0, but
on occasion reach high values, as seen by visual inspection of figures 3.6. The
exGaussian distribution possesses these qualities1and is available or can be derived
from most statistical software libraries.

The other pharmacodynamic parameters were not hierarchically modeled due to the
1The normal distribution and the Student’s t-distribution (with a small, possibly fixed, degrees-

of-freedom parameter) could be considered. However, the normal distribution would be sensitive
to the outliers in the positive tail. The Student’s t-distribution would be robust to outliers, but
its location would still be biased by the presence of only positive outliers. Furthermore, Stan’s
HMC algorithm encountered issues with numerical stability and inefficient posterior exploration if a
fat-tailed distribution were used.
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small number (2) of antibiotics tested so far. After inclusion of more antibiotic
compounds in the future, especially if the data for some of the antibiotic compounds
and/or strains is limited, the modeling may benefit from hierarchical modeling of
the 𝐵max, 𝛾, 𝛼, and EC50 parameters. Modeling the growth rate 𝜇 and death rate
𝑘 hierarchically by strain or by experiment may also improve the model fitting by
loosening constraints on the other pharmacodynamic parameters, which may reduce
bias from underfitting in exchange for wider posteriors and more influential priors.

With two amplification protocols (two combinations of primer and reverse tran-
scription), 5 strains, 2 antibiotics, and 30 PCR batches, there are 93 parameters in
total.

3.3.4 Prior distributions for parameters of the model
In the previous sections of 3.3, the likelihood function of the nucleic acid concen-
tration data given model parameters was defined. To make the model a complete
Bayesian model, one must define the priors for the 31 of 91 parameters that do not
have ancestors in the graph formed by the conditional dependencies. The priors
are listed in Table 3.2. The probability distributions are parameterized using the
standard forms in Appendix A of Gelman et al., 2014 [131], and justifications are
given below.
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For the growth rate 𝜇, OD600 measurements using an automatic plate reader and
during the batch culture incubation suggest a doubling time of about 30 minutes.
These OD600 measurements are independent of the fitted data, except for the last
measurement, which is used to calculate the target starting inoculum. Therefore,
a moderately informative prior was chosen so that one (non-Gaussian) standard
deviation spanning the doubling times of 20 to 40 minutes.

The background death rate 𝑘 must be several orders of magnitude less than the
growth rate for a gut bacterium to survive natural selection. Therefore, for the mean
background lysis rate 𝑘 , a weak prior was chosen with a mean at 0.1% of the growth
rate and a standard deviation at least 2 times the mean. The mean was chosen based
on ratio of filtrate to feed in untreated conditions incubated for >1.5 hours.

The difference between population trajectories decreases to 0 as 𝛼 goes to infinity
(or to 0). Such high and low values are physically absurd and cause numerical
issues during HMC sampling, as well as poor efficiency since the amount of noise
precludes 𝛼 being identifiable in those regions. Therefore the prior for 𝛼 was
set to be moderately informative to avoid having a large cumulative probability at
those extremes. Most of the prior was kept close to 1, with the chosen mean of
2 being the next highest integer. Furthermore, values below 1 were excluded by
the reparameterization to 𝛼 − 1 because their interpretation was contradictory, and
because doing so improved HMC convergence. When 𝛼 < 1, the rate of antibiotic
activity would initially be faster than an exponential decay, then drop asymptotically
to zero. While a small fraction of surviving bacteria evokes the notion of persister
cells, persisters have been reported in percentages (< 10−5 [132]) far smaller than
would be visible in bulk filtration AST experiments. Heteroresistance would not be
expected in pure isolates. Induced resistance is a possibility in some strains, but the
rebound in growth should be apparent in the population trajectories, and the value
of 𝛼 would need to be close to 1 anyways to generate trajectories on the time scale
of gene transcription and translation.

For 𝛽max, an inverse gamma distributed prior was chosen to restrict 𝛽max > 0.
The literature reports values, all based on colony counts in time-kill experiments,
of 0.0532 ± 0.0232min−1 for piperacillin and E. coli [133]; 0.042 ± 0.011min−1,
0.023 ± 0.004min−1, and 0.027 ± 0.004min−1 for benzylpenicillin, cefixime, and
ceftriaxone and Neisseria gonorrhoeae [134]; 0.0598min−1 and 0.0428min−1 for
meropenem and ceftazidime in Pseudomonas aeruginosa [130]; 0.079±0.014min−1

for ampicillin and E. coli [129]; and 0.14 to 0.540min−1 for 5 penicillins and E. coli
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[135]. A value up to 10 times the growth rate seemed reasonable. The mean and
standard deviation of the prior was chosen to cover all these values, and the shape
of the gamma distribution was set to be greater than 1 to avoid extreme values while
remaining a weakly informative prior.

The Hill coefficient for ceftazidime and meropenem in Pseudomonas aeruginosa was
reported by Mouton et al., 2005 [130] to be 3.32 and 3.5 h-1, respectively. In Foerster
et al., 2019 [134], the Hill coefficient for ceftriaxone, cefixime, and benzylpenicillin
and Neisseria gonorrhoeae were reported as 1.1, 1.6, and 1.7, respectively. Nolting
et al., 1996 [133] fixes the value at one. Similar to 𝛼, extreme values near 0 and
∞ are indistinguishable by HMC and physically unlikely. Values less than 1 are
problematic to interpret and may have led to HMC numerical instability, while
a value of 1 has the interpretation of a lack of cooperativity in any underlying
binding kinetics of the antibiotic to target molecules in the bacterium. Therefore,
the exponential prior (a special case of the Gamma distribution) was chosen to have
the highest probabilities near a value of 1 and a mean of 1.7 to sit in the middle of
the literature values. Values below 1 were implicitly given a prior probability of 0.

The priors for the 8 MIC values covered by the bulk filtration AST experiments
were determined by first choosing a mean MIC value, then converting the MIC to an
EC50 value using the formula in Mouton et al., [130]. The gamma distribution was
employed since EC50 values must be positive. To avoid numerical instability from
extreme EC50 values during HMC sampling, the shapes of the gamma distributions
were all set to a value of 2. Moderately informative priors were appropriate given
the availability of external data on MICs. The external data comprised gold standard
MICs from the UCLA clinical laboratory (or the literature for strain K12) and non-
standard overnight incubations of replicate conditions during the bulk filtration AST
experiments themselves.

The prior for the intercept for no RT, 𝑏𝑝=1, was centered at 0 due to the absence of
evidence for systematic contamination by E. coli genomic DNA. The intercept can
also reflect the limit of detection (LOD), which is a function of both the enzyme
and of stochastic loading of molecules. In my case, the standard deviation of the
mean of the intercept was set at 30 copies/µL to cover up to an LOD of 90 CFU/25
µL exposure within the 99-th percentile (assuming an amplification efficiency of 1.0
copy/CFU).

One can also justify 𝑏𝑝=1 being on the order of ±30 cells by the approximately
1/27 chance of a molecule being included in the final ddPCR template volume.
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About 10 µL of the 25 µL exposure is transferred to each of the feed and filtrate
fractions. The average (between feed and filtrate) DEB volume after extraction
was about 18 µL, of which 1 µL was used as template. Thus, 10

25 × 1
18 = 1

45 of
the exposure is actually measured. The chance that none of 𝑁 cell genomes is
inside that 1/45 volume fraction is (44/45)𝑁 . For a ≥ 0.5 chance of no detection,
𝑁 = ln(0.5)/ln(44/45) ≤ 30.8 cells. This calculation ignores the fact that in some
exposures, genome replication will occur. The calculation also ignores the PCR
reagent characteristics, though this is justified since ddPCR is purported to be able
to detect single molecules (the effective concentration of template molecules relative
to the background amplification has a floor at 1 molecule per 0.85 nL droplet).

For 𝑏𝑝=2, the intercept of PCRs with a preceding RT step, contamination was as-
sumed to be a major factor as discussed in section 3.2.3. The expected contamination
was 1.25 copies/µL, and the most common dilution in experiments with RT was 1

800 ,
so the prior for 𝑏𝑝=2 was given a mean of 1000 copies/µL. The standard deviation
was assigned to be about one order of magnitude less than the mean.

In the future, the known dilution volumes after the antibiotic exposure should be
included in the model for more accurate model fitting, especially if the ddPCR
droplet counts are fitted instead of the extrapolated nucleic acid concentrations as
done herein.

The average nucleic acid amplification efficiency without RT, 𝑚𝑝=1, was given a
mean of 1/25 copies/CFU/µL because there are between 1 and 2 genomes in one
undivided cell and one uidA locus per genome, and because each CFU’s DNA is
dispersed into the 25 µL volume of the exposure. The standard deviation was set
to be the same as the mean. For 𝑚𝑝=2, the mean and standard deviation were set to
1000 copies/CFU/µL, since this was the average copies/µL seen during one digital
filtration AST experiment where ddPCR was performed. This concentration implies
25,000 copies/CFU are created, and indeed, approximately 26,000 ribosomes are
reported to exist in E. coli growing at a doubling time of 40 minutes [122]. The
variance of the number of ribosomes per cell is also well studied in the literature,
but to factor in additional amplification errors, the standard deviation was set to the
higher value of 1000. The parameters present in the model, however, are the mean
and standard deviation of the log-transformed nucleic acid amplification efficiencies
𝑚∗
𝑝. By setting the mean and standard deviation of 𝑚∗

𝑝 to be as shown in Table
3.2, the mean and standard deviation of the un-transformed, experiment-specific 𝑚𝑒
parameters will be the un-transformed values.
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The two parameters 𝜎𝜖𝑝 for the stochastic observation noise represent the typical
fold-change in in the observed nucleic acid concentrations, due to the assumption of
log-normal noise. A 2-fold change was deemed a reasonably broad representation
of the bulk filtration AST data, which varies over several orders of magnitude.

The mean of the final parameter, the ddPCR artifact 𝑐, was chosen as the concentra-
tion expected if 1 droplet out of a typical yield of 15,000 otherwise negative droplets
was erroneously called positive, but only in half of the ddPCRs run. The droplet
size is 0.85 nL, and the most common dilution from the exposure across all bulk
filtration AST measurements was 0.125.

3.4 Bayesian Hamiltonian Monte Carlo provides fitted parameter values
The above Bayesian model was fitted to the data using Stan version 2.29, CmdStanR
version 0.4.0, and R version 4.1.1 running on Ubuntu 16.04.7 LTS (GNU/Linux
4.4.0-210-generic x86_64). Stan is an open source Bayesian statistics library that
performs Hamiltonian Monte Carlo (HMC). The R package bayesplot 1.8.1 was used
to visualize some Stan results. The use of Bayesian statistics instead of a frequentist
maximum likelihood estimator or other heuristic optimizer was due to the ability of
Stan to fit models of arbitrary complexity without the need to re-derive formulas for
frequentist estimators, the ability to easily switch variables from being parameters
to being fixed constants in code, and the more intuitive interpretation of Bayesian
posteriors compared to frequentist frameworks.

The workflow for fitting the bulk filtration data comprised three steps: prior predic-
tive checks, HMC sampling, and posterior predictive checks.

3.4.1 Prior predictive checks
Prior predictive checks were performed to assess the appropriateness of the priors
chosen in the previous section 3.3.4.

Figure 3.11 shows the expected observed nucleic acid concentrations given the prior
for all combinations of hyperparameters and the lowest and highest values of the
three input variables. The density was calculated by Hamiltonian Monte Carlo
sampling for 1000 iterations. While any nucleic acid concentration value in the
interval (0,∞) is within the support of the prior distribution, the majority of the
values fall within the orders of magnitude expected from a liquid bacterial culture
like bulk filtration AST. The extremes of the resulting outcomes under the prior
distributions did not stray into unrealistic values that are physically impossible.
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Figure 3.11: Prior predictive checks for modeling bulk filtration AST results. All
combinations (x-axis, labels omitted for space) of a duration of 10 or 240 minutes,
a dose of 0 or 256 µg/mL, and an inoculum of 1 or 20000 were applied to all
combinations of antibiotic (ETP or CRO), amplification protocol (± RT), and five
strains’ EC50 priors (only 1 strain shown for space; effect was indistinguishable at
this scale). Y-axis shows the range of nucleic acid concentrations reached under the
prior assumptions. The minimum and maximum Y-axis ranges reached lie within
reasonable physical limits, assuring that the chosen priors do not preclude accurate
inference.

The trace (Figure 3.12) and autocorrelation (Figure 3.13) plots of the prior sampling
show no issues as well.

3.4.2 Hamiltonian Monte Carlo No-U-Turn Sampler calculates the parameter
posteriors

Five Monte Carlo chains were run for 5000 iterations each after a 3000 iteration
adaptation period. The convergence of the chains was usable but not perfect, with
some 𝑅̂ statistics being larger than 1.02. It appears in the trace plots of Figure 3.14b
that the posterior of the intercepts for some experiments are multimodal, and that
running more iterations may be necessary. Poor sampling is seen in the trace for
chain 1 of parameter 𝜎𝑏𝑝=-RT .

The majority of parameters showed low or slight autocorrelation, indicating efficient
sampling (Figure 3.15). Unfortunately, the parameters 𝑚𝑝=-RT, 𝑚𝑝=+RT, 𝜎𝑚𝑝=-RT ,
𝜎𝑚𝑝=+RT , 𝑏𝑝=-RT, and 𝜎𝑏𝑝=-RT exhibit moderately high autocorrelation in all chains.
The slope and intercepts for batch 6, PCR 2 (Figures 3.6f, 3.17j) batch 6, PCR 3
(Figures 3.6f, 3.17k) batch 10, PCR 1 (Figures 3.6j, 3.17q), batch 10, PCR 2 (Figures
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Figure 3.12: Monte Carlo chain traces of the prior distribution for the bulk filtration
AST dynamic model.
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Figure 3.13: Autocorrelation of Monte Carlo samples of the prior distribution for
the bulk filtration AST dynamic model.

3.6j, 3.17r), batch 13, PCR 1 (Figures 3.7a, 3.17u), and batch 15, PCR 2 (Figures
3.7c, 3.17y) exhibited moderate autocorrelation as well. Chain 1 exhibited high
autocorrelation in additional parameters. High autocorrelation does not indicate a
bias in the posterior, simply a lower computation efficiency.

3.4.3 Parameter posteriors and posterior predictive checks
The Monte Carlo samples of the posterior obtained by Stan represents the multidi-
mensional joint probability distribution of all the model parameters.

To summarize this joint distribution, the marginal means of the Monte Carlo sam-
pling are reported in Table 3.3.
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Figures 3.17a–3.17ad compare all data points used to fit the model to the posterior
predictive distribution. The posterior predictive distribution are the values predicted
by the model given the corresponding input variables of time, dose, inoculum, strain
identity, antibiotic identity, and PCR protocol identity as the original data point.

Underfitting of the model manifests as systematic mismatches between model predic-
tions and observations within the same experiment or PCR batch of an experiment.
There are differences in the slopes of lines in some of the untreated conditions,
indicating that the growth rate differed between experiments. A difference in lysis
efficiency between feed and filtrate fractions, as seen in Figure 3.4, may explain why
the growth rate was constrained to be the average of the slopes of the feed and filter
fractions. Another explanation is that the apparent contamination in experiments
with RT will be greater for higher nucleic acid concentrations due to the larger
dilution factor performed on those samples prior to ddPCR, yet all observations in
the experiment are modeled with an intercept that is more informed by the earlier
timepoints, when the background lysis cannot explain any filtrate signal seen in the
untreated conditions. A third explanation would be the inability of the model to
accurately capture the dose-response parameters due to lack of data at high antibiotic
doses. In Figure 3.16, uncertainty in the values of 𝛽max may have arisen due to a lack
of data at the highest doses. This uncertainty manifested as a correlation between
the fitted values of 𝛼 and 𝛽max, but was mitigated by the moderately informative
priors set for 𝛽max.

While some model mis-specification or underfitting is apparent, the overall agree-
ment between model and data suggests that the mean parameter values in Table 3.3
can be used with reasonable confidence.



97

−− −− − −−

−− −− − − −

− −− −−−−

−− − −− − −
− − −− −− −

−− −− −− −
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

−
−

−
−

−
−−

−−

−
−−

−−

−
−

−−

−
−−

−− −

−
−

−
−

−
−

−
−

−

−
−

−
−

−

−
−

−

−
−

−
−

−
−

−
−

−

−
−

−
−

−

−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−−−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
− −

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

−
−

−
−

−
−

−
−

−

−
−

−
−

−

−
−

−
−

−

−
−

−
−

−

−

E
c4

4 
E

T
P

:8
 C

R
O

:>
32

E
c1

1 
E

T
P

:<
0.

5 
C

R
O

:1
6

E
c2

 E
T

P
:<

0.
5 

C
R

O
:<

1

K
12

 E
T

P
:0

.0
12

 C
R

O
:<

1
E

c3
8 

E
T

P
:>

4 
C

R
O

:>
32

0.000

0.008
0.016
0.031
0.063
0.125
0.250
0.500
1.000
2.000
4.000
8.000

16.000
32.000

0.000

0.008
0.016
0.031
0.063
0.125
0.250
0.500
1.000
2.000
4.000
8.000
16.000
32.000

−
0.

05
0

−
0.

02
5

0.
00

0

0.
02

5

−
0.

05
0

−
0.

02
5

0.
00

0

0.
02

5

−
0.

05
0

−
0.

02
5

0.
00

0

0.
02

5

E
T

P
 d

os
e 

(µ
g/

m
L,

 li
ne

ar
 s

ca
le

 b
el

ow
 2

e−
10

)

Net constant growth rate (1/min)

5010
0

15
0

20
0

E
xp

os
ur

e
du

ra
tio

n
(m

in
)

al
ph

a.
co

rr
ec

tio
n

no ye
s

(a
)e

rta
pe

ne
m

−− −− − − − −−−−− −− −
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

−
−

−
−

−
−

−

−
−

−
−

−
−

−

−

−−
−−

−

− −
− −

−

− −
− −

−
− −

− −
− − −

−
−

−

−
−

−

−

−

−

−
−

−

−

−

−
−

−

−

−
−

−

−

−
−

−

−
−

− − −− −−− −−− − −− −− −− − −
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

−

E
c4

4 
E

T
P

:8
 C

R
O

:>
32

E
c1

1 
E

T
P

:<
0.

5 
C

R
O

:1
6

E
c2

 E
T

P
:<

0.
5 

C
R

O
:<

1

K
12

 E
T

P
:0

.0
12

 C
R

O
:<

1
E

c3
8 

E
T

P
:>

4 
C

R
O

:>
32

0.000

0.008
0.016
0.031
0.063
0.125
0.250
0.500
1.000
2.000
4.000
8.000

16.000
32.000
64.000

128.000
256.000
512.000

0.000

0.008
0.016
0.031
0.063
0.125
0.250
0.500
1.000
2.000
4.000
8.000

16.000
32.000
64.000

128.000
256.000
512.000

−
0.

04

−
0.

02

0.
00

0.
02

−
0.

04

−
0.

02

0.
00

0.
02

−
0.

04

−
0.

02

0.
00

0.
02

C
R

O
 d

os
e 

(µ
g/

m
L,

 li
ne

ar
 s

ca
le

 b
el

ow
 2

e−
10

)
Net constant growth rate (1/min)

5010
0

15
0

20
0

E
xp

os
ur

e
du

ra
tio

n
(m

in
)

al
ph

a.
co

rr
ec

tio
n

no ye
s

(b
)c

ef
tri

ax
on

e

Fi
gu

re
3.

16
:F

itt
ed

do
se

-r
es

po
ns

e
cu

rv
es

fo
ri

n
vi

tro
an

tib
io

tic
ex

po
su

re
.T

he
da

ta
sh

ow
n

ar
e

th
e

co
ns

ta
nt

ne
tg

ro
w

th
ra

te
sc

al
cu

la
te

d
fo

r
ea

ch
da

ta
po

in
tr

el
at

iv
e

to
th

e
ea

rli
es

td
at

a
po

in
to

ft
he

ex
pe

rim
en

tb
at

ch
.

Th
e

so
lid

re
d

lin
e

sh
ow

s
th

e
fit

te
d

va
lu

es
of
𝜇
−

𝛽
m

ax
𝐴
𝛾

EC
𝛾 50
+𝐴

𝛾
fo

r
th

e
do

se
𝐴

,w
hi

ch
is

th
e

ex
pe

ct
ed

in
sta

nt
an

eo
us

gr
ow

th
ra

te
at

lo
ng

er
ex

po
su

re
du

ra
tio

ns
.

Th
e

do
tte

d
re

d
lin

e
sh

ow
st

he
sa

m
e

fu
nc

tio
n

us
in

g
𝛽
∗ m

ax
=

𝛽
m

ax
𝛼

.
Th

is
fu

nc
tio

n
is

th
e

av
er

ag
e

in
sta

nt
an

eo
us

ne
tg

ro
w

th
ra

te
du

rin
g

sh
or

te
re

xp
os

ur
e

du
ra

tio
ns

an
d

w
ill

be
si

m
ila

ri
n

m
ag

ni
tu

de
to

th
e

em
pi

ric
al

ne
tg

ro
w

th
ra

te
.



98

3.5 Future work
As mentioned above, the inclusion of information about dilution volumes to model
the dilution of reagent contamination and the dilution of inhibiting MHB media may
negate the need for the exponentially-modified Gaussian distribution of amplification
intercepts.

Model fits also improve with improved data. Increasing the number of antibiotic
doses examined would better resolve the values of 𝛽max and 𝛼. The evaluation
of standard quality control strains, whose MICs are known with greater precision,
would help to improve the estimates of the pharmacodynamic parameters.

Exploration of additional taxa, including pseudomonads and Gram-positive Firmi-
cutes, would answer questions about whether these other clinically important taxa
are amenable to accessibility AST in general. Specific concerns include the release
of extracellular nucleic acids or secretion of extracellular nucleases.

Exploration of additional antibiotics that target the cell wall would also answer
questions about the distribution of the 𝛼 parameter among the beta-lactams. A
database of parameter values would be needed should accessibility AST ever be
adopted into clinical use.
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(a) Batch 1, PCR 1, -RT. Feed only, 18750
CFU.

ETP 1 µg/mL

none 0 µg/mL

0 25 50 75 100 125

0 25 50 75 100 125
1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

3e+00

3e+01

3e+02

3e+03

3e+04

10

100

1000

10000

3

30

300

3000

30000

Time (min)

C
op

ie
s/

µ
L 

in
 e

xp
os

ur
e

yrep

y

(b) Batch 4, PCR 1, -RT. Feed and filtrate
shown, 9375 CFU.
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(c) Batch 2, PCR 1, -RT. Feed only, 9375
CFU.
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(d) Batch 2, PCR 2, +RT. Feed only, 9375
CFU.
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(e) Batch 3, PCR 1, -RT. Feed only, 9375
CFU.
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(f) Batch 3, PCR 2, +RT. Feed only, 9375
CFU.

Figure 3.17: Posterior predictive distributions for the fitted bulk filtration AST
dynamic model.
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(g) Batch 5, PCR 1, -RT. 9375 CFU.
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(h) Batch 5, PCR 2, +RT. 9375 CFU.
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(i) Batch 6, PCR 1, -RT. 9375 CFU.
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(j) Batch 6, PCR 2, +RT. 9375 CFU.
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(k) Batch 6, PCR 3, +RT. Filtrate only,
9375 CFU.
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(l) Batch 18, PCR 1, -RT. 12500, 3750,
or 1250 CFU.

Figure 3.17: Posterior predictive distributions for the fitted bulk filtration AST
dynamic model (cont’d).
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(m) Batch 7, PCR 1, -RT. 20000 CFU.
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(n) Batch 8, PCR 1, -RT. 12500 CFU.

Figure 3.17: Posterior predictive distributions for the fitted bulk filtration AST
dynamic model (cont’d).
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(o) Batch 9, PCR 1, -RT. 12500 CFU.
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(p) Batch 12, PCR 1, -RT. 12500 CFU.

Figure 3.17: Posterior predictive distributions for the fitted bulk filtration AST
dynamic model (cont’d).
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(q) Batch 10, PCR 1, -RT. 12500 CFU.
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(r) Batch 10, PCR 2, -RT. 12500 CFU.

Figure 3.17: Posterior predictive distributions for the fitted bulk filtration AST
dynamic model (cont’d).
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(s) Batch 11, PCR 1, -RT. 12500 CFU.
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(t) Batch 11, PCR 2, -RT. 12500 CFU.

Figure 3.17: Posterior predictive distributions for the fitted bulk filtration AST
dynamic model (cont’d).
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(u) Batch 13, PCR 1, -RT. Feed only, 45
min.
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(v) Batch 14, PCR 1, -RT. Feed only, 60
min.
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(w) Batch 14, PCR 2, +RT. Feed only, 60
min.
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(x) Batch 15, PCR 1, -RT. Feed only, 60
min.
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(y) Batch 15, PCR 2, +RT. Feed only, 60
min.
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(z) Batch 15, PCR 3, +RT. Feed only, 60
min.

Figure 3.17: Posterior predictive distributions for the fitted bulk filtration AST
dynamic model (cont’d).
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(aa) Batch 16, PCR 1, -RT. 30 min.

ETP 1 µg/mL

none 0 µg/mL

1e+00 1e+01 1e+02 1e+033e−01 3e+00 3e+01 3e+02

1e+00 1e+01 1e+02 1e+033e−01 3e+00 3e+01 3e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

3e+02

3e+03

3e+04

3e+05

3e+06

3e+07

3e+08

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

3e+02

3e+03

3e+04

3e+05

3e+06

3e+07

Initial target CFU

C
op

ie
s/

µ
L 

in
 e

xp
os

ur
e

yrep

y

(ab) Batch 16, PCR 2, +RT. 30 min.
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(ac) Batch 17, PCR 1, -RT. 30 min.
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(ad) Batch 17, PCR 2, +RT. 30 min.

Figure 3.17: Posterior predictive distributions for the fitted bulk filtration AST
dynamic model (cont’d).
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C h a p t e r 4

DIGITAL FILTRATION AST

In this chapter, I describe a variation of filtration accessibility AST wherein batches
of parallel, digitally-loaded antibiotic exposures are employed and analyzed together,
increasing the amount of information gathered per experimental condition. The
analytic sensitivity of this new method of digital filtration AST approaches single
cell resolution.

4.1 Bulk assays are limited by low inoculums
The experimental protocol and analysis used in Chapter 3 assumed that the amount
of bacteria is a continuous, infinitely divisible quantity. This assumption was
reasonable when the total number of cells in the bulk filtration AST was large. At
low numbers of cells, however, the bulk filtration AST results diverge from the
expectations. The range of AST metrics increases, incorrect AST calls are more
frequent, and sometimes the impossible situation of more extracellular nucleic acids
than total nucleic acids arises, as seen in panels B and F of Figure 3.7.

It is important to understand the performance of phenotypic ASTs at low cell numbers
due to the low cells present in clinical samples like blood. There are three phenomena
in particular that I believe are likely to contribute the breakdown of bulk AST results
at low inocula. First, the ratio of nucleic acid amplification measurement errors
to signal is lower when the measured nucleic acids are more dilute. Second, the
inherent discreteness and stochasticity of bacterial cells is not captured by the mean
expected value present in the compartment model. Lastly, the physical splitting of
a liquid specimen, performed to create parallel experimental conditions, introduces
uncertainty in the total number of cells in the resulting partitions, and the uncertainty
is relatively larger at low cell counts.

It will always be possible, and likely, that additional unidentified phenomena affect
the the output of filtration AST than those listed here. For now, they are grouped
conceptually with the empirically defined "nucleic acid amplification measurement
errors." Future efforts to improve the implementation of filtration AST will investi-
gate these processes.
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4.1.1 Signal-to-noise ratios
The first phenomena, or group of phenomena, that may cause bulk filtration AST
errors at low cell numbers is the presence of random or otherwise uncontrolled
noise in nucleic acid concentration quantification, called nucleic acid amplification
measurement errors here. Source of noise in nucleic acid amplification, specifically
the ddPCR used in Chapter 3, include non-specific amplification from primer dimers,
contamination of samples or reagents by templates not derived from the sample,
artifacts that produce signal in the measured fluorescence channel but not from the
EvaGreen dye, inhibitors of the PCR reaction, and thermal noise. Processes outside
of the ddPCR reaction occur too, such as errors in pipette volume due to differing
surface tensions or improper pipette usage, evaporation of water from the sample
during the AST protocol, contamination of the sample by nucleases, omission of
mixing steps, and errors in the recording of other variables such as time or antibiotic
dosage. All of these nucleic acid amplification measurement errors are not functions
of target cell number, so their magnitude will be constant as cell number decreases.
(The exception are inhibitor compounds, which may be produced by the bacteria,
and whose dilution is also correlated with cell number. Analysis of these inhibitor
compounds may be performed as future work.)

The signal in bulk filtration AST comes only from the bacteria of interest, and its
magnitude therefore decreases as the cell number decreases. It follows then that the
probability of an incorrect assay call increases as the number of cells decreases.

The discrete of cells and the stochastic loading of discrete cells are two sources
of noise that can be separated logically from the rest of the empirically observed
measurement noise listed above. They do depend on cell number, and they cannot be
overcome by improving nucleic acid amplification noise or precision in preceding
steps of the bulk filtration AST protocol. While the statistical analysis of limits-of-
detection and signal-to-noise ratios from nucleic acid amplification measurement
errors are frequent in the NAAT literature, most papers do not separate out effect of
discreteness when measuring LOD with serial dilutions. Hence, the two phenomena
are discussed below.

4.1.2 Discrete, stochastic models versus continuous, deterministic models
The compartment model of section 3.3 makes an key assumption that the amount
of bacteria is a continuous, infinitely divisible quantity. However, bacterial cells
are actually discrete entities, varying in size within a range of 75–225 femptograms
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[136]. In liquid culture, bacteria are located randomly within the liquid specimen
volume, and when the specimen is split into smaller volumes, each bacteria must
wholly reside in one or the other volumes.

The inherent discreteness of cells makes it impossible for the system to assume all
the ratios predicted by the continuous model. In other words, if the model predicts
that 0.012 of total biomass will be extracellular, but there are only 4 cells, then the
closest possible system states will have 0.0 or 0.25 of the cells dead. Even if one
assumes that cells can have different masses, the situation with the least difference
between lysed and unlysed cells would require the dead cell to have a size of 0.012
units while the other 3 surviving cells each have a size of (1 − 0.012) 1

3 = 0.329
units. But it is not biologically implausible for one cell to be 0.012/0.329 = 0.036
the size of another. In an ideal population, the youngest bacteria are 1/2 the size
of the oldest, and in experiments, the coefficient of variation of cell sizes from the
ideal age distribution is only about 0.20 in an exponential phase culture [137]. Thus,
the discrete nature of cells imposes a minimum granularity on the possible system
states. This minimum granularity cannot be overcome by reducing measurement
noise.

4.1.3 Stochasticity in sample partitioning limits bulk assays with low inocu-
lums

In a separate phenomena, the discrete nature of cells violates the assumptions made
when splitting liquid samples to create experimental conditions. Although the
concept of stochastic loading is intuitive once pointed out and not novel, I attempt to
describe it in detail here because a comprehensive treatment is lacking in the recent
literature.

In the particular bulk filtration AST protocol used in Chapter 3, there were two
situations in the protocol where bacteria cells were split amongst multiple physical
partitions. Splitting was performed to create different experimental conditions to
test in parallel. First, a partitioning of the diluted batch culture was performed each
time a pipette tip was used to draw up some of the liquid culture, the pipette tip’s
contents then being used to inoculate and start one antibiotic exposure with a target
inoculum. Every batch of bulk filtration AST experiments included at least two
experimental conditions inoculated in the above fashion. Secondly, at the end of
each antibiotic exposure, a small partition of each antibiotic exposed specimen was
set aside to quantify the feed fraction’s nucleic acids, while the rest of the specimen
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proceeded as the feed of the filtration process.

In the first situation, it is common (but not necessary) to compare, across different
experimental conditions, the outputs (nucleic acid concentrations) from one of the
fractions. For example, this kind of simple analysis was done in Chapter 2 and in
other published rapid AST methods [21–24, 88, 125, 138]. It is assumed that the
comparison will reflect strain susceptibility if the output differs from the control
condition. In the second situation, the outputs of different fractions were compared
across two partitions of one antibiotic-exposed specimen (within one experimental
condition). It is assumed that the output in each partition is the same as it would
have been before partitioning.

In both situations, the comparisons were informative only because a certain assump-
tion was being made: that the amount of bacteria (and thus nucleic acids) was a
continuous quantities that were infinitely divisible, so that splitting a well-mixed
sample physically results in partitions with exactly the same density of cells. In
other words,

𝐶before = 𝐶1 = . . . = 𝐶i = . . . = 𝐶k, (4.1)

where 𝐶𝑖 is the concentration in partition i, which was always a pipette tip. Only
when the tip’s contents were expelled into a new vessel does the concentration in
the new volume after mixing obey the dilution equation:

𝐶tip𝑉tip = 𝐶final𝑉final. (4.2)

However, when the discrete nature of cells is considered, the above equations must
be modified, and the quantity𝐶 must be redefined for the model to be consistent and
to be in terms of an integer numbers of cells. First, because the cells are discrete,
when the liquid specimen is split into smaller volumes, each bacteria must wholly
reside in one or the other volumes. Furthermore, in liquid culture, bacteria are
located randomly within the liquid specimen volume. The numbers of bacteria in
the partitions become random variables instead of fixed constants as in Chapter 3.

As a random variable, the number of cells in each partition is no longer known
with certainty (unless the splitting is done a process that tracks and controls the
partitioning of cells, like automated cell sorters). The unknown total cell amount in
each partition becomes a confounding factor in the susceptibility calling algorithm.
By assuming different values of total cell amount, any outcome can be attained.
Such non-identifiabilities will lead to incorrect susceptibility calls.
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For example, in the first situation where it is assumed that experimental conditions
are inoculated with the same inoculum, if the strain is resistant in a particular
experimental condition, but the control condition began with more cell biomass, then
the treated condition’s output may appear to be lower than the control’s, indicating
susceptibility. Likewise, if the strain was susceptible, but the control condition began
with less cell biomass, then the treated condition’s total cell biomass will appear
similar to the control’s, indicating resistance. In the second situation, fluctuations
in the total number of cells in the two partitions would increase or decrease the
ratio between the feed and filtrate fraction outputs, potentially causing incorrect
susceptibility calls or even nonsensical results if the filtrate output exceeds the feed
output. Total cell amount in different experimental conditions is thus a limiting
factor in previous accessibility ASTs cited above.

The magnitude of the uncertainty caused by sample partitioning in any situation
can be calculated from theory. In the simplest model defining an integer number
of cells 𝑁 ∈ Z+, cell size is assumed to be a constant, so that the observed nucleic
acid amount 𝑌 ∈ R is a function of 𝑁 alone, as follows: 𝑌 = 𝑘𝑁 , where 𝑘 ∈ R is
a constant. Each cell has an independent chance of being in each of the partitions,
with the probability of being in a partition equal to the proportion of that partition’s
volume 𝑉part ≥ 0 to the total volume 𝑉total ≥ 𝑉part ≥ 0 currently occupied by the
bacteria. In this model, the number of bacteria in the partitions will be multinomially
distributed random variable with the probability parameters as described. If there
are only 2 partitions, as is the case for the bulk filtration AST experiments of
Chapter 3, and one examines the behavior of one of the partitions at a time, then
the multinomial distribution is equivalent to the binomial distribution. We can
calculate the coefficient of variation to measure the degree of expected dispersion.
(For simplicity, the moments of 𝑁 are discussed, since the moments of 𝑌 = 𝑘𝑁
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follow directly.)

𝑁part ∼ Binomial
(
𝑛 = 𝑁total, 𝑝 =

𝑉part

𝑉total

)
(4.3)

𝑝
(
𝑁part = 𝑥

)
=

(
𝑁total
𝑥

) (
𝑉part

𝑉total

)𝑥 (
1 −

𝑉part

𝑉total

)𝑁part−𝑥
(4.4)

𝐸
[
𝑁part

]
= 𝑁total

𝑉part

𝑉total
(4.5)

Var
[
𝑁part

]
= 𝑁total

𝑉part

𝑉total

(
1 −

𝑉part

𝑉total

)
(4.6)

CV
[
𝑁part

]
=

√︃
Var

[
𝑁part

]
𝐸

[
𝑁part

] =

√︄(
𝑉total −𝑉part

𝑉part

)
1

𝑁total
(4.7)

If one redefines the density of cells to be 𝐶 = 𝑁
𝑉

, then instead of equations 4.5 to
4.7, we have

𝐸
[
𝐶part

]
=

1
𝑉part

𝐸
[
𝑁part

]
=
𝑁total
𝑉total

= 𝐶total (4.8)

Var
[
𝐶part

]
=

1
𝑉2

part
Var

[
𝑁part

]
=
𝑁total
𝑉total

(
1
𝑉part

− 1
𝑉total

)
= 𝐶total

(
1
𝑉part

− 1
𝑉total

)
(4.9)

CV
[
𝐶part

]
=

√︄(
𝑉total −𝑉part

𝑉part

)
1

𝑁total
. (4.10)

The coefficient of variation for both 𝑁part and𝐶part (and thus𝑌 ) goes to 0 as the total
number of cells increases. (As a side note, the volume of the partition also affects
the CV, with a CV of 0 if the partition is the entire specimen or a CV approaching
∞ if the partition has no volume.) Thus, equation 4.8 becomes 4.1 as 𝑁 → ∞,
explaining why the assumption in equation 4.1 holds for large inoculums. At low
inoculums, however, the coefficient of variation for a given partition increases as 𝑁
decreases.

A more accurate model would account for cell size when relating the observed
nucleic acid amount𝑌 to the number of cells: 𝑌 = 𝐾𝑁 , where, instead of a constant,
𝐾 is another random variable representing the distribution of cell sizes. In this case,
the same conclusions about CV[𝑌 ] as a function of 𝑁 apply because 𝑁 and 𝐾 are
independent, and because 𝐸 [𝐾], Var[𝐾], and CV[𝐾] are all constant with respect
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to 𝑁 .

𝐸 [𝑌 ] = 𝐸 [𝐾𝑁] = 𝐸 [𝐾]𝐸 [𝑁] (4.11)

Var[𝑌 ] = Var[𝐾𝑁] = 𝐸 [𝑁]2Var[𝐾] + 𝐸 [𝐾]2Var[𝑁] + Var[𝐾]Var[𝑁] (4.12)

CV[𝑌 ] =
√︁

Var[𝑌 ]
𝐸 [𝑌 ] =

√︁
CV[𝐾]2 + CV[𝑁]2 + CV[𝐾]2CV[𝑁]2 (4.13)

=

√︄
CV[𝐾]2 +

(
1 + CV[𝐾]2) (

𝑉total −𝑉part

𝑉part

)
1

𝑁total
(4.14)

To understand how the result of our comparison is affected by stochastic splitting
of the specimen’s 𝑁total cells, we must now consider the joint distribution of the
partitions’ counts. Our comparison will be a function 𝑓 [𝑌𝐴, 𝑌𝐵] : R2 → R of the
outputs of partitions 𝐴 and 𝐵. The simplest functions are the difference function
𝑓diff [𝑌𝐴, 𝑌𝐵] = 𝑌𝐴 −𝑌𝐵 and the ratio function 𝑓ratio [𝑌𝐴, 𝑌𝐵] = 𝑌𝐴

𝑌𝐵
, though for analytic

reasons, I will discuss the relative difference 𝑓 [𝑌𝐴, 𝑌𝐵] = 𝑌𝐴−𝑌𝐵
𝑌𝐴+𝑌𝐵 . We now wish to

know the spread of a new random variable 𝑍 = 𝑓 [𝑌𝐴, 𝑌𝐵] as a function of 𝑁total.
For space, we again consider the case where 𝑌𝐴 = 𝑘𝑁𝐴 so that we redefine 𝑍 as
𝑍 = 𝑓 [𝑁𝐴, 𝑁𝐵]. We also will only consider the simple case where partitions A and
B together take up the entire specimen; that is,𝑉𝐴 +𝑉𝐵 = 𝑉total and 𝑁𝐴 +𝑁𝐵 = 𝑁total.

Because the ratio function can take on a value of ∞, the moments of its random
variable 𝑍ratio are not defined. The difference function remains finite, but it can take
on negative values that make the coefficient of variation unsuitable as a metric of
how its 𝑍 is dispersed. For the difference function, one could consider the variance
of 𝑍diff itself (instead of relative variance via the coefficient of variation), but
𝑉𝑎𝑟 [𝑍diff] = 4𝑁total

(
𝑉𝐴

𝑉total

) (
1 − 𝑉𝐴

𝑉total

)
scales with 𝑁total, so it is hard to understand

how much more𝑉𝑎𝑟 [𝑍diff] increases as a function of 𝑁total, as was done in equations
4.3 using the coefficient of variation. Therefore, I will discuss instead the relative
difference function. The relative difference is the difference function, but normalized
by 𝑁total. When a volume is split into equal halves, the expected value of the
difference and of the relative difference between the counts of the two halves is 0.
But, unlike the difference, which is bounded by and grows with 𝑁total, the relative
difference always takes on a value between -1 and 1. Thus, the (non-relative)
variance of the relative difference of 𝑌𝐴 ∝ 𝑁𝐴 and 𝑌𝐵 ∝ 𝑁𝐵 is a suitable measure of
how much relative deviations from the mean value will occur during splitting as a
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function of 𝑁total.

𝐸 [𝑍] =
∑︁
𝑁𝐴

∑︁
𝑁𝐵

𝑓 [𝑁𝐴, 𝑁𝐵]Prob (𝑁𝐴, 𝑁𝐵) (4.15)

=

𝑁total∑︁
𝑁𝐴=0

(𝑁𝐴 − (𝑁total − 𝑁𝐴))
𝑁total

(
𝑁total
𝑁𝐴

) (
𝑉𝐴

𝑉total

)𝑁𝐴
(
1 − 𝑉𝐴

𝑉total

)𝑁total−𝑁𝐴

(4.16)

= 2
(
𝑉𝐴

𝑉total

)
− 1 (4.17)

Var[𝑍] = 𝐸 [𝑍2] − 𝐸 [𝑍]2 (4.18)

= −𝐸 [𝑍]2 +
∑︁
𝑁𝐴

∑︁
𝑁𝐵

( 𝑓 [𝑁𝐴, 𝑁𝐵])2 Prob (𝑁𝐴, 𝑁𝐵) (4.19)

= −𝐸 [𝑍]2 +
𝑁total∑︁
𝑁𝐴=0

(𝑁𝐴 − (𝑁total − 𝑁𝐴))2
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×
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𝑁𝐴

) (
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)𝑁𝐴
(
1 − 𝑉𝐴
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(4.20)

=
4

𝑁total

(
𝑉𝐴

𝑉total

) (
1 − 𝑉𝐴

𝑉total

)
+

(
2
(
𝑉𝐴

𝑉total

)
− 1

)2
− 𝐸 [𝑍]2 (4.21)

=
4

𝑁total

(
𝑉𝐴

𝑉total

) (
1 − 𝑉𝐴

𝑉total

)
(4.22)

The variance of 𝑍 =
𝑁𝐴−𝑁𝐵

𝑁𝐴+𝑁𝐵
thus decreases to 0 as 𝑁total increases, but increases

as 𝑁total decreases, the exact value being a function of the relative evenness of the
partition volumes (i.e., 𝑉𝐴

𝑉total
) and 𝑁total.

In the worst case, only one cell is present in a specimen: 𝑁total = 1. There will
never be an equal number of cells in both conditions of the specimen is split into a
treated and an untreated condition, and the results of the AST will be nonsensical.
This is apparent because if the specimen is split evenly (𝑉𝐴 = 1

2𝑉total), then the
SD[𝑍] =

√︁
Var[𝑍] = 1, which spans the entire range of -1 to 1. (For uneven

splitting, the variance will be less, simply as a reflection of the Shannon information
gained.)

We have now discussed in detail the magnitude of the contribution of stochastic liquid
specimen partitioning on the observed measurement variation in any phenotypic
assay where the measurement technology assesses the population size of bacteria in
some way.

It is important to remember that if the total amount of cells in each partition is
somehow measured reliably, then in fact, the measurement error from stochastic
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liquid specimen partitioning can be subtracted, provided there is a model for how
the output measurement varies as a function of the total amount of cells.

For example, if the lysate fraction had been measured in the bulk filtration ASTs of
Chapter 3, then any discrepancies in cells between the specimen partition used to
measure the feed and the specimen partition undergoing filtration could be inferred.
Likewise, if the total inoculum of two different experimental conditions is measured
before the start of the antibiotic exposure during bulk filtration AST, then the output
measurements can be scaled by the starting inoculum. The model in equation
3.12-3.13 in particular states that the final output is simply linearly proportional to
the starting inoculum. Alternatively, by comparing an intrinsic metric such as the
percent extracellular (in which the total population amount is normalized out) or
the EC50 parameter in equation 3.25 instead of an extensive metric like the filtrate
concentration (which does scale with the total population amount), any contribution
from unequal inoculations is normalized out.

Of course, the magnitude of other error sources such as inefficiencies during the
nucleic acid extraction steps or nucleic acid amplification errors may be large enough
that the contribution solely from stochastic liquid specimen splitting cannot be
measured directly. If the number of observations is too low, or the design of control
measurements and blocking is inadequate, the ability to deconvolve different error
sources is also impaired. In such cases, one would need to model the total error
empirically.

4.2 Digital filtration AST is a more informative generalization of bulk filtra-
tion AST

4.2.1 Overview of protocol for digital filtration AST
We have discussed three ways in which low numbers of inoculating bacteria limit any
phenotypic AST assay where the measurement technology assesses the population
size of bacteria, such as in bulk filtration AST, where the population size is measured
by nucleic acid amplification. There is a technique, however, that addresses all three
of the obstacles posed by low inocula. This technique is called digitization, and it
has been used in several contexts such as in digital PCR or single-cell RNA-seq.

A digitized assay uses partitioning of a bulk liquid sample to make multiple indi-
vidual measurements of (nearly) individual particles instead of one measurement
for the population of particles. Digitizing assays takes advantage of the discrete
nature of analyzed particles, turning discreteness from a confounding factor into
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Figure 4.1: Schematic of the digital filtration AST protocol.

a source of additional information. Specifically, the discrete nature of bacterial
cells prevents cells from being split into fractional cells during the splitting of the
specimen containing them. Secondly, the minimum size of bacterial cells enables
one to distinguish the presence or absence of at least one bacterial cell in a partition
of the specimen.

In order for an assay to be digital, its partitions must be loaded "digitally" or in the
"digital range." Generally speaking, a set of partitions is digitally loaded when the
volume of the partitions is small enough relative to the density of bacteria that a
substantial number of partitions do not receive any bacterial cells and the remainder
receive a low number of cells that is Poisson distributed. A detailed definition and
discussion of the digital range is discussed in the following section 4.2.2.

I developed a digitally-loaded variation of filtration AST, which I will call digital
filtration AST. Digital filtration AST differs from bulk filtration AST in that the
bacteria are digitally loaded when the bacteria-containing liquid specimen is split
into multiple partitions.

In the digital filtration AST protocol performed herein, the bacteria-containing liquid
specimen was partitioned into a 96-well plate, where the antibiotic exposure occurs.
Each of the 96 partitions then undergoes a protocol similar to bulk filtration AST,
using a 96-well filter plate. Each partition undergoes a physical separation process,
namely filtration, and the resulting fractions from each partition are collected and
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tracked. Each fraction’s nucleic acids are extracted and then quantified by nucleic
acid amplification. Lastly, the set of nucleic acid concentration measurements are
used to estimate both the density (and total number) of bacteria and the susceptibility
of the strain. To achieve both aims, algorithms different than those used in bulk
filtration AST must be used to analyze the outcome of a digital filtration AST.
The inference of cell density uses the tally of empty wells, while the inference
of susceptibility includes information from the live-dead status of each population
descended from mostly single cells.

A detailed protocol of digital filtration AST is expounded in section 4.2.3.

Furthermore, by detecting single cells, or at least small numbers of cells per partition,
digitally loaded same-sample AST may make it easier to detect the detection of low
frequency heterogenous resistance phenomena (i.e., heteroresistance and persister
cells). Demonstrating this advantage remains as future work.

4.2.2 Defining the digital range
The basic statistical analysis of digital assays has been explained many times in the
literature on digital PCR. However, I will describe it in detail here for the reader’s
reference, and because some aspects I describe, such as the continuum between
digital and bulk assays, have not been explicitly addressed. Furthermore, most
derivations of equation 4.24 in the literature are superficial, and even some more
detailed treatments of digital PCR theory [139] do not fully explain how the Poisson
approximation of the binomial applies to equation 4.24.

A sample of discrete particles is "digitally" loaded into a given set of physical
partitions when there is a reliable chance that one or more of the partitions will not
receive any of the discrete particles in the sample, due to random chance and the
indivisibility of the particles. A sample is said to be in the digital range when it has
been diluted sufficiently to be digitally loaded into a given device of interest. When
a sample is loaded at a density higher than the digital range, the resulting loading is
a bulk loading condition.

How does one determine the probability by which partitions receive cells? Consider
a sample of 𝑁 discrete particles randomly distributed in a volume 𝑉 , then split
completely into a given set of 𝑀 physical partitions, each with a volume of 𝑉𝑚, so
that

∑
𝑚 𝑉𝑚 = 𝑉 . (Without loss of generality, one can consider one of the partitions,

say𝑚 = 1, to represent the remaining sample volume when only some of the sample
is split into the other partitions of interest, 𝑚 = 1 being differentiated by a change
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in intention only.) The probability of each particle ending up in a given partition
𝑝𝑚 is the ratio of that partition’s volume to the total volume of all the partitions,
𝑝𝑚 =

𝑉𝑚
𝑉

. It is reasonable to assume that the destination of one particle does not
affect the destination of the next particle loaded, so the number of particles in each
volume 𝑁𝑚 is multinomially distributed with size 𝑁 and probabilities 𝑝𝑚. This is a
generalization of equation 4.3.

When 𝑁 is given as a fixed number, the 𝑁𝑚 are dependent on each other, as can be
easily imagined if 𝑁 = 1. However, if the total number of particles 𝑁 is assumed
to be Poisson distributed, as opposed to being fixed, then it can be proven that
each 𝑁𝑚 becomes an independent Poisson-distributed random variable [140]. In
many situations of interest to us, 𝑁 is indeed not controlled or fixed, and instead
the assumption that 𝑁 is a Poisson random variable is justified for the following
reasons. We consider that some of the sample will remain behind in the partition
𝑚 = 1. Now, instead of 𝑁 , we become interested in the total number of particles
𝑁𝑚≠1 =

∑𝑁
𝑚=2 𝑁𝑚 loaded into the other partitions of interest (𝑚 = 2, . . . , 𝑀). 𝑁𝑚≠1

is binomially distributed as 𝑁𝑚≠1 ∼ Binomial
(
𝑛 = 𝑁, 𝑝 =

∑𝑁
𝑚=2 𝑉𝑚
𝑉

)
. When 𝑁 is

large and
∑
𝑚≠1𝑉𝑚 << 𝑉 , then the binomial distribution is approximated by the

Poisson distribution as 𝑁𝑚≠1 ∼ Poisson
(
𝜆 = 𝑁

∑
𝑚≠1 𝑉𝑚
𝑉

)
. Therefore, each 𝑁𝑚 where

𝑚 > 1 is Poisson distributed, and the number of cells in each partition of interest 𝑚
is related to the density of cells 𝐶 = 𝑁/𝑉 as follows:

𝑁𝑚 ∼ Poisson(𝜆 = 𝑉𝑚𝐶) ⇔ Prob(𝑁𝑚 = 𝑘) = (𝑉𝑚𝐶)𝑘𝑒−𝑉𝑚𝐶
𝑘!

. (4.23)

The quantity 𝑉𝑚 × 𝐶 represents the density of particles per partition, as opposed to
density per unit volume. Finally, the probability of an empty well is

Prob(𝑁𝑚 = 0) = 𝑒−𝑉𝑚𝐶 . (4.24)

Notice that in equation 4.23, there is no distinct mathematical difference between
the digital and bulk ranges; instead, the two loading schemes are two ends of
a continuous spectrum separated by a subjective threshold of what is a "reliable
chance." One can view a digital loading as a set of bulk loadings of low density,
complicated by the discrete nature of cells. One can also view a bulk loading as
an attempted digital loading that failed due to limitations on the number and size
of partitions available. Higher densities have a lower chance of a well being empty,
and lower densities have a higher chance of empty wells.
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A practical threshold for when bulk loading transitions to digital ranges is when
there are less than 3.5 cells per partition on average. At this density, there is a
𝑒−3.5 = 0.0302 chance of a given well being empty.

Note that the density in cells per partition is also function of the partition volume
𝑉𝑚. Controlling either the density of the cells or the volume of the partitions brings
the loading in or out of the digital range. Lowering the density or decreasing the
volume of the partitions moves one towards digital loading and vice versa.

During digital loading, it is preferable to have a high density of cells when loading
but a low density of cells per partition. Assuming that the volume of the specimen
has an upper limit, a high density of cells at loading will always mean that more
cells are available for analysis. Meanwhile, a lower density of cells per partition
makes it more likely for partitions containing some cells to be containing only one
cell, which makes interpretation of the partition’s contents easier. To achieve a
preferred digital loading, a practitioner usually cannot increase the density of cells
in the original specimen. One can decrease the density easily by dilution, include
more partitions, or reduce the size of the partitions. Devices intended to be digitally
loaded therefore should maximize the number of partitions and minimize the size
of the partitions, up to the limit imposed by manufacturing and hardware. Should
the digital range still not be reached by such a device design, then dilution of the
sample can be performed.

In contrast, during bulk loading, high density of cells and a high density of cells
per partition at loading is desired. At high densities of cells per partition, the
stochasticity of loading cells into partitions is overcome by the central limit theorem,
which states that the variance in well loading decreases relative to the mean well
loading as the mean increases. Thus, it is preferable to use a smaller number of
partitions in bulk loading, compared to a maximum number of partitions in digital-
loading.

Loadings that are only slightly above the digital range fall into a gray zone where
the stochasticity of loading is poorly overcome by inference using either Poisson
statistics or by the central limit theorem. Such loadings are not preferred, but
nonetheless can be analyzed as a bulk loading if they occur. The practitioner should
decide beforehand whether to use a bulk loading or a digital loading, then design
one’s device towards one end of the spectrum or another.
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4.2.3 Detailed protocol of filtration AST
The most typical digital filtration AST protocol is outlined below. Different runs
may have incorporated variations in the volumes used; these are noted in the attached
data set.

4.2.3.1 Contrived clinical samples by bacterial culture

Serial dilutions of 2 mL liquid batch cultures of pure isolates were used as contrived
clinical samples in the digital filtration AST experiments herein. The batch cultures
grown to an OD600 of 0.3 in the same way as bulk filtration AST experiments.
Typically, three dilutions in MHB media were performed to achieve a target CFU
density of 20–80 CFU/mL representing a clinical sample with a low density of cells.
To initiate an antibiotic exposure, 10 µL of this final dilution yields 0.2–0.8 CFU
per 25 µL antibiotic exposure partition.

Bacterial strains used in the digital filtration AST experiments are listed in Table
4.1.

Strain Name ETP
MIC

CRO
MIC

Notes

E. coli K12
sub-strain MG1655

0.012, S
(Etest)

≤1, S Obtained commercially. MIC
values reported in [120, 121]

E. coli #1 (UCLA
Study 15-04A-01)

≤0.5, S ≤1, S From urine on 12/29/2014.

E. coli #38 (UCLA
Study 15-31A-001)

>4, R >32, R From bile in 2017.

K. pneumoniae #3
(UCLA Study
15-31A-155)

≤0.5, S ≤1, S Isolated 5/27/2017.

K. pneumoniae
CDC AR Bank 0005

>8, R >32, R Enterobacterales Carbapenem
Breakpoint panel. Resistance
loci: aac(6’)-Ib, aph(3’)-Ia,
catA1, dfrA12, EMRD, KDEA,
KPC-2, mph(A), Omp35,
OmpK35, oqxA, oqxB, OXA-9,
SHV-11, sul1, TEM-1A

Table 4.1: Clinical isolates used in digital filtration AST. E. coli=Escherichia
coli, K. pneumoniae=Klebsiella pneumoniae, ETP=ertapenem, CRO=ceftriaxone,
MIC=minimum inhibitory concentration. MICs obtained by broth microdilution
unless noted. UCLA = University of California Los Angeles Clinical Microbiology
Lab.
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4.2.3.2 Antibiotic exposure

To initiate the antibiotic exposures, the final dilution of bacteria was transferred
using a multichannel pipette from a divided sterile reservoir to a 96-well plate
whose wells contained 15 µL of media and antibiotics. The 96 or fewer antibiotic
exposures created above were grouped into 2 or more experimental conditions
containing different antibiotic concentrations (or sometimes target inocula). In
most cases, the exposure volume was mixed by repeated pipetting upon addition of
cells, and the timing of the second pipette tip expulsion was recorded as the start
of the exposure. The median start time across all exposures in one experimental
condition was used during statistical analysis. Once all exposures had been started,
the plate was sealed with an adhesive seal (BioRad DNA/RNAse-free, not gas-
permeable), then incubated in a shaking thermoblock at 37°C, 700 rpm. The lid
of the thermoblock was not heated. In most AST experiments, a sterile 96-well
plate was loaded with bacteria seconds to minutes before, after, or both before and
after the addition of bacteria to the antibiotic exposures. The same volumes of the
contrived clinical sample was used during these transfers as during the antibiotic
exposure creation, and care was made to not introduce trace amounts of antibiotics
in residual tip volumes. The plate was later sealed and incubated overnight at 37°C
until pellets of cells were visually observed in some wells. The number of turbid
and clear wells were recorded. This "CFU count" plate serves as an orthogonal
measurement of the true density of bacteria in the contrived clinical sample, which
often differed from the target density by up to a factor of 2.

The antibiotic stock solutions were prepared in the same manner as for bulk filtration
AST experiments.

4.2.3.3 Separation and nucleic acid extraction

Prior to the start of the antibiotic exposure, a 96-well filter plate (Millipore-Sigma
MSGVS2210) was blocked with 30 µL of 50 µg/mL salmon-sperm DNA dissolved
in nuclease-free water. The blocking solution was centrifuged through the filters,
and then the filters were dried at 65°C for several hours or at room temperature
overnight. In the last 2 experiments, no blocking was performed.

Shortly before the target end time, the exposures were removed from 37°C incuba-
tion. The sealing membrane, with condensation that cannot be removed by brief
centrifugation, was carefully removed. The entire volume of each exposure was
then transferred to the 96-well filter plate and sealed with a new sealing membrane.
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The filter plate was sealed to a clean 96-well plate by tape, then centrifuged. The
start of the 5 minute, 2200 rcf centrifugation (Eppendorf A-2-MTP rotor) of the
filter plate was recorded as the end of the antibiotic exposure. After centrifugation,
the collected filtrates were set aside and covered to slow evaporation while the next
steps were performed. Any cells that were not lysed by the time the majority of
the filtrate passed through the filter would be measured in a subsequent filtration
fraction, and so they were considered intact at the recorded time point.

20–30 µL of sterile MHB media was placed into each filter plate well as wash fluid,
and a new 96-well plate was attached to the filter plate. The filters centrifuged for
5 minutes, 2200 rcf, and the collected wash fluid discarded, or treated in the same
manner as the filtrate for quantification as an additional fraction of the sample.

The lysates were collected using two different protocols. First, 20 µL of DEB was
added to each washed filter membrane. Then, in some experiments, the filter plate
was placed upon a nuclease-free foil (BioRad #1814040) to protect the filter plate
nozzles from contamination, then placed on a flat-bed heating block. The filter plate
was then heated to 65°C for 6–20 minutes without shaking and with a non-airtight
plastic lid without heating. The filter plate then was attached to a clean 96-well plate
and centrifuged. In other experiments, the filter plate with DEB was attached to the
clean 96-well plate first, then sealed with a sealing membrane. The filter plate and
collecting plate were then heating to 65°C for at least 40 minutes at 1200 rpm with
a heated lid (Eppendorf C). The lysates were then harvested by centrifugation. In
both protocols, the lysates were collected by centrifugation for 10 minutes total at
2200 rcf.

A known, recorded volume, typically 10 µL, of the filtrates were transferred as
early as possible (typically >30 minutes) to a new 96-well plate containing a known
amount of DEB. The volume of filtrate transferred was adjusted based on the amount
of collected filtrate, since <10 µL may have been available. The filtrate in DEB were
vortexed, then heated in a thermocycler to 65°C for 6 min and then 98°C for 4
minutes. The lysates were heated at 98°C for 4 minutes, the 65°C step having been
performed by heating the filter membranes. Both filtrate and lysate extractions were
then frozen at -80°C.

4.2.3.4 Nucleic acid quantification

In the digital filtration AST experiments reported herein, nucleic acids were quanti-
fied by reverse transcription and real time qPCR. Quantification with ddPCR yielded
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similar results for the same templates.

In the first 10 experiments, the reverse transcription reaction comprised 1.708 µL of
nuclease-free deionized water, 0.40 µL of 10X RapiDxFire buffer (LGC/Lucigen),
0.20 µL of 10 mM deoxyribonucleotides (New England Biolabs), 0.16 µL of primer
(reverse strand only, final concentration 0.40 nM), 0. 032 µL of 3 U/µL RapiDxFire
reverse transcriptase (LGC/Lucigen), and 1.50 µL of the DEB extraction template.
In the other 4 experiments, the reverse transcription reaction comprised 3.00 µL of
nuclease-free deionized water, 0.50 µL of 10X RapiDxFire buffer (LGC/Lucigen),
0.25 µL of 10 mM deoxyribonucleotides (New England Biolabs), 0.20 µL of primer
(reverse strand only, final concentration 0.40 nM), 0.05 µL of 3 U/µL RapiDxFire
reverse transcriptase (LGC/Lucigen), and 1.00 µL of the DEB extraction template.
A master mix of all components except the templates was created and distributed to
separate tubes. Individual templates were then added. The reactions were vortexed,
then incubated in the following thermocycler protocol: extension at 60°C for 5
minutes, heat inactivation at 95°C for 5 minutes, and a hold indefinitely at 4°C. In
the last 5 experiments, a 15 second interval at 75°C preceded the 60°C extension
step to encourage rRNA denaturation.

4.2.3.5 Susceptibility classification after pre-processing to well population
status calling

Multiple algorithms for calculating a susceptibility metric or call were employed in
parallel in this work to gauge their accuracy. The definitions of these algorithms
are discussed in section 4.5.1. A taxonomy of these and other algorithms, and the
pharmacodynamic models each one implies, are further discussed in sections 4.5.1
and 4.4, respectively.

One major dichotomy of the possible algorithms is discussed in this section: the use
of counts of an intermediate, categorical "well population status" call instead of the
real-valued nucleic acid concentration measurements. So far, all of the algorithms
used in this thesis did not utilize the results of the RT-qPCR directly, but rather the
tallies of well population statuses. The calling of well population status in this thesis
therefore serves as a data-processing stage upstream of the algorithms discussed in
4.5.1. This section details the procedures by which the well population statuses were
called (i.e., estimated) from the data. Section 4.4 discusses the theoretical models
that were assumed in order to motivate and explain the results of the well population
status calling algorithm discussed here. Section 4.5.1 explains how the tallies of
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well population status were interpreted by subsequent algorithms.

The intermediate step of calling well population statuses was done because the
spread in the qPCR and ddPCR values from non-empty wells differs by up to 30X
fold and is not normally distributed. It is difficult (though perhaps not impossible)
to distinguish the integer number of cells present in the population from such noisy
data from a manually-performed assay. It is easier, however, to distinguish whether
any nucleic acids (and thus cells) were present in each digital partition’s filtration
fractions, or if no nucleic acids and cells were present during the exposure.

Specifically, data pre-processing into well population statuses reduced the informa-
tion in the raw outputs of the many nucleic acid quantifications into four integers,
in exchange for noise reduction and the ability to easily compare different digital
filtration AST experiment batches. The raw output of the digital filtration AST, as
performed herein, are 𝐶 matrices with dimensions 𝑁𝐶 × 𝐹𝐶 containing nucleic acid
concentrations (absolute copies/µL or threshold cycles), and a pair of integers from
the inoculum control incubation. Here, 𝐶 is the number of experimental conditions,
𝑁𝐶 is the number of partitions in condition 𝐶, and 𝐹𝐶 is the number of fractions
observed in condition 𝐶. Usually 𝐹𝐶 = 2 but occasionally wash fractions were
observed. The input variables of duration, antibiotic dose, and starting inoculum
(measured, respectively, by a stop-watch; a mass balance and micropipettors; and a
spectrophotometer) can also be considered outputs if a measurement error model is
used. The melt curves from qPCR measurements were not used in this analysis but
could be used in future analyses. Together, the melt curves form an 𝑁𝐶 × 𝐹𝐶 × 𝑇
matrix, where 𝑇 is the number of temperatures observed.

Therefore, in this thesis, the digital partition’s bacterial populations were classified
as being empty, containing only intact cells, containing only antibiotic-lysed cells,
and containing both intact and antibiotic-lysed cells. If a well had no nucleic acids
in either its filtrate or lysate fractions, then its well population status was interpreted
to be empty, the well having received no cells during digital loading. If a well
had nucleic acids only in the filtrate fraction, then its well population status was
interpreted as having only antibiotic-lysed cells. If a well had nucleic acids only
in the lysate fraction, then its well population status was interpreted as having only
intact cells. Lastly, if a well had nucleic acids in both fractions, then its well
population status was interpreted as having only antibiotic-lysed cells

The number of wells of each well population status was tallied. For the rest of this
thesis, the integer number of wells with with no nucleic acids (empty) is denoted as
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𝑂. The number of wells with no deaths (all intracellular and intact) is 𝐼, the number
of wells with both intra- and extracellular nucleic acids present is 𝐵, and the number
of wells with extinct populations (all extracellular) is 𝐸 .

The well population statuses were called using either manual-drawn thresholds near
or at 35 qPCR cycles, or, if indicated, by K-means clustering.

The use of manual thresholds differing from 35 cycles was justified because of batch
effects in the chemical environment of the samples that led to different backgrounds.
Evaporation of water from samples and DEB extractions could be identified as a
source of such batch effects in at least two experiments because of the correlation
of Cq with the proximity of the well to the edge of the 96-well plate.

For the few experiments where a wash step was not included, there was a correlation
between the measured extracellular nucleic acid concentrations and the measured
intracellular nucleic acid concentrations. The intracellular nucleic acid concentra-
tions were interpreted as representing extracellular nucleic acids carried over from
the retained volume of exposure that could not be removed from the filter membrane.
In these experiments, wells that would have been called by manual thresholds as
having nucleic acids present in both fractions were instead called as only having
extracellular nucleic acids if the intracellular nucleic acid concentration was less
than half the extracellular nucleic acid concentration.

If K-means clustering was used, then the threshold depicted is the midpoint of the
two closest points along the axis in question. The choice of algorithm was decided
after visualizing the data, and the chosen thresholds are visible in Figures 4.4a
through 4.4d.

An automated composite algorithm could be written to attain the same end perfor-
mance, but this was not pursued for simplicity.

4.3 Validation and optimization of digital filtration AST
To enable digital filtration AST, one needs to be able to robustly detect single cells
by nucleic acid amplification.

As discussed in Chapter 3, the 23S rRNA loci in genomic DNA are present in
approximately 14 copies per cell. Obtaining nucleic acid amplification from single
cells. Amplification and detection of single copies of DNA have been reported.
However, these reactions require very low amplification backgrounds. In my proto-
col, I did not test if I could amplify low copies of DNA, since it appeared that in bulk



126

filtration AST, the signal-to-noise ratio was too low at low inocula. Instead, I chose
to amplify a nucleic acid species with higher copy number per cell. Of all the nu-
cleic acids in a typical bacteria, the transfer RNAs have the highest numerical copy
number. However, amplification of tRNAs is difficult due to their modified bases
and strong secondary structure. The second most abundant nucleic acid species are
the ribosomal RNAs, which are the most abundant nucleic acid by mass as well.
It is estimated, from biochemical fractionation and from cryo-electron microscopy,
that an Escherichia coli cell with a fast doubling time of 24 minutes contains 72,000
ribosomes on average (and 26,000 ribosomes for a doubling time of 40 minutes).
Thus, the ability to amplify the ribosomal RNA itself would offer a pre-existing
amplification in signal of about 10,000-fold.

4.3.1 The efficiency of reverse transcription of rRNAs is a function of amplicon
size

Several commercial RT kits based on retroviral reverse transcriptases were unable
to create cDNA detectable by ddPCR when the digitally-loaded cells were at an
effective concentration of 40 CFU/mL. However, the proprietary RapiDxFire re-
verse transcriptase was able to reverse transcribe rRNA at an estimated efficiency
of 25000/CFU. I speculate that reverse transcriptases descended from the Avian
Myeloblastosis Virus or Moloney Murine Leukemia Virus reverse transcriptases are
not efficient for reverse transcribing rRNAs, as these are the shared characteristics
of the enzymes tested that did not show detectable activity. RapiDxFire is claimed
to be isolated from a bacteriophage [141].

To investigate the limitations of rRNA-targeted reverse transcription, we assessed
the length distribution of cDNAs using RT-ddPCR using three different antisense
(complementary to the rRNA) primers, 2 targeting the 23S rRNA and 1 targeting
the 16S rRNA. For each antisense primer, a set of 5 sense primers with similar
melting temperatures was chosen so as to evenly span a distance of about 400 base
pairs. The same cDNA sample, generated by the antisense primer, was then used as a
template in a ddPCR reaction. The difference in apparent nucleic acid concentration
would therefore be attributable to the ability of the sense primer to hybridize with
the cDNA. Hybridization of the sense primer in turn is a function of whether the
cDNA was extended to the position of the sense primer, as well as any intrinsic
properties of the sense primer that occur despite attempts to keep primer lengths,
melting temperatures, and the absence of predicted secondary structures consistent.
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Figure 4.2: Ribosomal RNA cDNA creation is a function of amplicon length, not
sequence position.

All three antisense primers generated exponential distributions with similar mean
constants. This is consistent with a model where the secondary structure found
throughout the rRNA molecules imposes a constant probability per base pair of
enzyme dissociation, rather than three unique stepwise-decreasing distributions
expected if enzyme processivity were inhibited by distinct locations along the rRNA
molecule.

Further studies should include additional sense primers to better average out any
intrinsic properties of the sense primers, additional sets of antisense and sense
primers, and additonal replicates.

The effect of temperature during the extension phase and denaturants could also
be investigated, with the prediction that decreasing the strength of rRNA secondary
structure will increase RT efficiency, until balanced by a decrease in enzyme activity
or primer hybridization kinetics.

4.3.2 Single cells can be detected by rRNA reverse transcription
In Figure 4.3, the amplification of digitally-loaded Escherichia coli K12 was per-
formed without filtration. Instead, MHB media containing bacteria was directly
placed into to QuickExtract buffer at a 1:1 ratio, vortexed, and heated. Within
3 minutes, the same volumes of the same dilution of bacteria were transferred to
a sterile 96-well plate, sealed, and incubated overnight. The nucleic acid extrac-
tions underwent reverse transcription with RapiDxFire enzyme and quantification
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Figure 4.3: Empty and loaded partitions can be distinguished by threshold cycle and
by melt curves in qPCR.

by qPCR.

A clear separation by qPCR threshold cycles (or by melt curve peaks) enabled
manual calling of 8 empty wells and 24 loaded wells out of 32 total wells. (The high
Cq values in Figure 4.3 were rationalized by the accidental evaporation of DNA
extraction buffer, which inhibited qPCR polymerase activity.) Visual inspection of
the overnight incubation showed 20 clear wells and 76 turbid wells with cell pellets
out of 96 total wells. The hypothesis that these two loadings arose from the same
density of cells can be tested using Barnard’s unconditional test, which yields a
p-value of 0.727823 (R package ’Barnard’ vers 1.8). Thus, it is highly consistent
that the qPCR experiment detected the same cell density as the overnight incubation,
neither failing to amplify some cells or falsely amplifying empty wells.

4.3.3 Digital filtration AST results are consistent with gold-standard MIC
and with bulk filtration AST results

2464 qPCR or ddPCR measurements of 1247 digitally-loaded wells or AST expo-
sures, grouped into 52 conditions and 14 batches (i.e., sharing the same contrived
clinical specimen), were performed on 5 strains of Escherichia coli or Klebsiella
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pneumoniae and 2 antibiotics. 11 of the AST runs were accompanied by a CFU
count control. 15 batches containing 2848 qPCR or ddPCR measurements of 1247
digitally-loaded antibiotic exposures, grouped into 45 conditions, were performed
on 6 strains and 2 antibiotics. For each measurement, the choice of antibiotic com-
pound, the antibiotic dose, the duration of the antibiotic exposure, and the starting
number of bacteria (the inoculum) were controlled by the experimenter.

First, the validity of digital filtration AST was examined using two antibiotics and a
pair of strains, one susceptible and one resistant to the two antibiotics. Breakpoint
concentrations were used, and the antibiotic exposure lasted 60–70 minutes. Of the
eight conditions tested, only two involve a treated, susceptible strain. The other six
conditions are not expected to show any antibiotic killing.

The qPCR or ddPCR results in all experiments were easily separable into the four
well statuses. As expected, antibiotic-lysed cells were only seen in the conditions
where E. coli K12 was treated with antibiotics. At 70 minutes, in the susceptible
and treated conditions, all detected cells were killed by ertapenem, but only one well
showed killed cells when ceftriaxone was used. The most likely explanation is that
ceftriaxone’s activity is delayed until approximately 60 minutes after the start of the
exposure.

The effect of the starting inoculum on assay loading was also assessed in Figure 4.5.
A serial dilution of one batch culture was prepared prior to the digital filtration AST
to create 4 target inocula: 0, 0.5, 1, and 2 CFU/well. The antibiotic exposure totaled
80 minutes. As expected, the number of wells with detected cells increased as a
function of the starting inoculum, ruling out the possibility that the observed nucleic
acid concentrations were experimental artifacts. All ertapenem-treated non-empty
wells contained only killed cells, while non-treated non-empty wells contained only
intact cells, consistent with the true susceptibility.

The effect of exposure duration also was apparent in the digital filtration AST results.
Figure 4.6 shows one experiment where multiple durations of antibiotic exposure
(10, 35, 60, and 100 min) were performed using the same batch culture.

As expected, the untreated conditions contained only intact cells. The treated (and
susceptible) conditions contained only killed cells, except for 1/5 wells in the 35
minute exposure where only intact cells were seen. These findings are consistent
with the pharmacodynamics seen in the bulk, as the fraction of killed cells should
rise from 0 to 1 over time. The section 4.4 more precisely discusses how consistent
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Figure 4.4: Digital filtration AST at 60–70 minutes.



131

0 µg/mL 2 µg/mL

25303540 25303540

25

30

35

40

Intracellular threshold cycle (Cq)

E
xt

ra
ce

llu
la

r 
th

re
sh

ol
d 

cy
cl

e 
(C

q)

Inferred well
population status

empty
intact
both

(c) E. coli K12 (MIC: <1, S), 60 minutes, ceftriaxone

0 µg/mL 2 µg/mL

0.1 1 10 100 1000 0.1 1 10 100 1000

10

100

1000

Intracellular copies/µL (lysate, intact cells)

E
xt

ra
ce

llu
la

r 
co

pi
es

/µ
L

(f
ilt

ra
te

, k
ill

ed
 c

el
ls

)

Inferred well
population status

empty
intact

(d) E. coli #38 (MIC: >32, R), 70 minutes, ceftriaxone. Quantified by ddPCR.

Figure 4.4: Digital filtration AST at 60–70 minutes (continued).
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Figure 4.5: Effect of inoculum on digital filtration AST. E. coli K12 (MIC: 0.012,
S), 80 minutes, ertapenem. The untreated (white) and treated (black) loaded wells
separate by well population status.
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Figure 4.6: Effect of exposure duration on digital filtration AST. E. coli K12 (MIC:
0.012, S), 80 minutes, ertapenem. One of five treated wells at 35 minutes remained
in a state with no deaths.

the results are using a quantitative modeling.

The digital filtration AST results at earlier times sometimes had equivocal results.
Two experiments with 70 minute exposures were repeated with 40 minute exposures.
In one experiment (Figure 4.7a), extracellular rRNA was detected in the ertapenem
treated and untreated conditions of a resistant strain. The lysis in the untreated
condition cannot be due to antibiotics, and the amount of lysis in the treated condition
was not significantly more than the background lysis that must have occurred in this
batch (or strain).

In another experiment (Figure 4.7b), E. coli K12 exposed to ceftriaxone showed 2/15
wells with some killed cells, more than the 0/25 wells in the untreated condition.
However, at 60 minutes exposure in Figure 4.4c, 1/21 wells contained some killed
cells, which is less than at 40 minutes. The difference though is easily attributable
to random stochasticity, as the difference is not statistically significant (p=0.421,
two-sided Barnard’s test).

The effect of antibiotic dose was also examined in Figures 4.8 and 4.9. A susceptible
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Figure 4.7: Digital filtration AST at 30–40 minutes.
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Figure 4.8: Digital filtration AST with different ertapenem doses at 20 minutes, E.
coli K12.
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Figure 4.9: Digital filtration AST with different ceftriaxone doses at 40 minutes, E.
coli K12.

strain was exposed to two doses of ertapenem (in addition to a third dose of 0 µg/mL)
for 20 and 60 minutes. As expected, the higher dose caused a faster rate of antibiotic
killing overall. At 20 minutes, the higher dose caused extracellular rRNA to appear
in 2 wells, while the lower dose did not show any extracellular rRNA. At 60 minutes,
most of the wells in the higher dose had only killed cells, while most wells in the
lower dose still had both intact and killed cells.

Additional strains other than K12 and UCLA #38 were tested by digital filtration
AST in Figures 4.10 through 4.11. The results were all consistent with the known
susceptibilities of the strains.

The qPCR, ddPCR, and well population status tallies of all digital filtration ASTs
used in this thesis can be found in the accompanying data files.
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Figure 4.10: Digital filtration AST for Escherichia coli UCLA #1 (MIC: <1, S),
ceftriaxone, 70 minutes.
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Figure 4.11: Digital filtration AST for Klebsiella pneumoniae clinical isolates, 110
minutes.
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4.4 Pharmacodynamic models for discrete populations in digital filtration
AST

In comparing the results of disparate digital filtration AST to the gold standard
MIC values and bulk filtration AST results, it becomes desirable to more rigorously
and uniformly define our predictions, so as to know how far the results are from
our predictions. Modeling provides this quantitative precision. The motivation
of this section is to better understand the mechanism of digital filtration AST by
defining simple but usable discrete population and pharmacodynamic models for
the underlying system, the antibiotic exposures.

In section 4.4.4, the adequacy of these models and our understanding of digital
filtration AST are assessed by comparing fitted parameters with fits from the bulk
filtration AST data and models. The ability to fit pharmacodynamic parameters
from digital filtration AST results is also demonstrated. In contrast, section 4.5
explores how the same equations and pharmacodynamic models can be employed
as classification algorithms for calling susceptibility, as if in clinical practice.

In this section, I define two relatively simple population models for discrete popu-
lations that differ by the omission or inclusion of new cell births. The population
models are linked to pharmacodynamic models. I then derive equations that enable
one to infer the parameters of the pharmacodynamic model from the well population
statuses described in 4.2.3.5.

There are many other population models in the literature that could also be applied
to the digital filtration AST protocol, but these models were not further explored
in this work. They include age-structured stochastic processes such as branching
processes or kinetic theory. Such classes of models are mathematically more com-
plex than the Markov birth-death process. These models may have closed form
expressions for their moments, which can be fitted to data, but also may not. It is
also doubtful whether the parameters of these more complex models can be fit from
the censored well population statuses instead of the richer nucleic acid concentration
measurements.

4.4.1 Pharmacodynamics without cell division: the Markov death process
It is possible to assume a "no-births model" for the population and pharmacodynam-
ics of one’s antibiotic exposure system. In the no-births model, there is no further
creation of bacterial cells after the start of the antibiotic exposure. In other words,
no births and no cell division are assumed to occur, but bacterial cells may die and
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transition to a dead state. This model is sometimes known as the simple Markov
death process, when contrasted with the Markov birth-death process in the next sec-
tion (4.4.2). The no-births assumption is at odds with the results of bulk filtration
AST. However, keeping the total number of cells constant over time simplifies the
mathematics needed to describe and fit one’s models. The assumption of no births
is reasonable for short exposures, especially those at the same scale as the expected
doubling time, which for E. coli is between 20 and 40 minutes in rich broth. It is
common in the AST literature for this population model to be implicitly assumed
[88, 125].

When there are no new births, then the population of cells at the start of the exposure
form a cohort, a group of individuals experiencing a common event (the antibiotic
exposure). We ignore the age of cells by assuming they are of identical age that
begins at the start of the exposure. One can define the survival probability for this
cohort as the probability that a given cell has died by time 𝑡, as in section 3.3.1.

In the no-births model, I use the same survival probability function as in section
3.3.2, but with the background death rate and antibiotic-induced death rates com-
bined. The events of death from background death rate (analogous to equation 3.17)
and death from antibiotics (see equation 3.26) are independent, and to survive a cell
must have neither event occur. Therefore,

𝑆[𝑡] = 𝑒−𝑘𝑡𝑄 [𝛼, 𝛽𝑡]

𝛽 =
𝛽max𝐴

𝛾

EC𝛾50 + 𝐴𝛾
,

(4.25)

where parameters 𝛽max, EC50, and 𝛾 are defined as in section 3.3.2, and 𝐴 is the
antibiotic dose. Equation 3.28 in section 3.3.2 contains the same overall survival
function.

It is reasonable to assume that the bacterial cells in a nutrient-rich antibiotic exposure
react independently to antibiotics, so that the probability of one cell dying does not
influence the probability of another cell dying. Otherwise, one would be positing the
existence of cell-to-cell communication or cooperative survival. Such mechanisms
do exist in the form of biofilms and secreted beta-lactamases. But these effects
were not obvious during bulk filtration AST, and they were not further explored for
simplicity. Under the assumption of independent survival probabilities, and without
information about the number of live cells at a prior time point, the number of live
cells 𝐿 at each time point becomes binomially distributed with a size parameter
that is the total number of cells 𝐿0 and a probability parameter that is the survival
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probability at time 𝑡. The bacterial population in the "no-births" model therefore
obeys the following equation:

𝐿, 𝐷 |𝐿0 ∼ Multinomial (size = 𝐿0, prob = (𝑆[𝑡], 1 − 𝑆[𝑡])) , (4.26)

where 𝐷 = 𝐿0 − 𝐿 is the number of dead cells, 𝐿, 𝐷 |𝐿0 is the joint distribution of
𝐿 and 𝐷 given 𝐿0, and 𝑆[𝑡] is also parameterized by 𝐴, 𝛽max, EC50, and 𝛾. This
equation is a discrete, stochastic model for population dynamics and pharmacody-
namics.

In defining the survival probability, any contribution of cell age to the survival
probability is subsumed by the form of our survival function. In more complex
pharmacodynamic models, the distribution of cell lifetimes could be de-convolved
into the distribution of cell ages at the start of the antibiotic exposure and the
distribution of time to death as a function of antibiotic dosage and of cell age. The
theory of fragmentation processes or kinetic theory offer suitable frameworks, but
they were not further explored in detail. Some general arguments are made below.

If we were to model the hazard rate as a function of cell age, one reasonable
assumption would be to allow the probability of cell death to increase toward the
end of the cell lifespan when synthesis of the peptidoglycan septum separating
the daughter cells occurs. This is because experiments have shown that distinct
protein machinery, the MreB and FtsZ complexes, are responsible for peptidoglycan
synthesis during elongation and during cytokinesis in most bacteria, and the rate
of peptidoglycan synthesis is highest during cytokinesis [26]. Indeed, certain beta-
lactams at certain doses have been observed by live microscopy to cause cell lysis
specifically at the midpoint of the cell where cytokinesis is occurring [28, 124].
Another reasonable assumption to make is that the distribution of cell ages at the start
of the exposure reflects the population at steady state, a consequence of assuming
that the cells are in exponential growth and completely unsynchronized. An ideal
age distribution, Prob(𝑎) = 2𝜇𝑒−𝜇𝑎, 0 ≤ 𝑎 ≤ ln 2

𝜇
, convoluted with a normally-

distributed variation in age at division, was proposed by Koch in Chapter 103 of
Neidhardt et al. 2001 [137]. Together, these two assumptions imply that the extent
to which the probability of death concentrates around the time of septum formation
would correlate with the value of the 𝛼 parameter, analogous to the reasoning of
section 3.3.2.
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4.4.2 The Markov birth-death model is a mathematically tractable discrete
model for digital filtration AST

The Markov birth-death (MBD) model [142–144], also known as the Kendall pro-
cess, tracks the numbers of individuals (e.g., bacteria) in the population as the system
state variable. The population number increases by one at a rate proportional to
the number of individuals alive and to a birth constant 𝜇. Similarly, the population
decreases by one at a rate proportional to the number of individuals alive and to
a death constant B 1. The set of differential equations, together often called the
master equation, describing the MBD is below:

𝜕

𝜕𝑡
𝑃𝑛 [𝑡] = 𝜇(𝑛 − 1)𝑃𝑛−1 [𝑡] − (𝜇 + B)𝑛𝑃𝑛 [𝑡] + B(𝑛 + 1)𝑃𝑛+1 [𝑡], 𝑛 ≥ 1 (4.27)

𝜕

𝜕𝑡
𝑃0 [𝑡] = B𝑃1 [𝑡] . (4.28)

Here, 𝑛 is the number of individuals in the population, with 𝑛 ∈ Z, 0 ≤ 𝑛 ≤ ∞2.
𝑃𝑛 [𝑡] is the traditional notation for the probability of having 𝑛 individuals in the
population at time 𝑡; it is a function of both 𝑛 and 𝑡.

The boundary condition of interest is when there are 𝑛0 cells at time 𝑡:

𝑃𝑛0 [0] = 1

𝑃𝑛 [0] = 0 if 𝑛 ≠ 𝑛0.
(4.29)

The master equation can be rewritten in terms of a generating function 𝐺 [𝑧, 𝑡] by
taking the Z-transform of 𝑃𝑛 [𝑡], defined as 𝐺 [𝑧, 𝑡] =

∑∞
𝑛=0 𝑃𝑛 [𝑡]𝑧𝑛. Then, the

master equation implies that

𝜕𝐺 [𝑧, 𝑡]
𝜕𝑡

=

(
𝜇𝑧2 − (𝜇 + B)𝑧 + B

) 𝜕𝐺 [𝑧, 𝑡]
𝜕𝑧

. (4.30)

The initial condition for the initial number of cells is

𝐺 [𝑧, 0] = 𝑧𝑛0 . (4.31)

When B is a constant function of time, then the closed form for 𝑃𝑛 [𝑡] given 𝑛0 can
1Note that my choice of 𝜇 and B as symbols are opposite the convention used in the stochastic

process literature. Usually, the birth rate is denoted 𝑟 or 𝜆, and the death rate is denoted 𝜇.
2In the previous section, we denoted 𝑛0 as 𝐿0, and we denoted 𝑛 as 𝐿.
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be written as follows:

𝑃𝑛 [𝑡] =



( 𝜇
B

) min(𝐿,𝐿0)∑︁
𝑖=0

(−1)𝑖
(
𝐿 + 𝐿0 − 𝑖 − 1

𝐿 − 𝑖

) (
𝐿0
𝑖

)
×

(
1 − 𝑒(𝜇−B)𝑡

1 −
( 𝜇
B
)
𝑒(𝜇−B)𝑡

)𝐿+𝐿0−𝑖 ©­­«
1 −

(
B
𝜇

)
𝑒(𝜇−B)𝑡

1 − 𝑒(𝜇−B)𝑡

ª®®¬
𝑖 if 𝜇 ≠ B

(
𝜇𝑡

𝜇𝑡+1

)𝐿+𝐿0 ∑min(𝐿,𝐿0)
𝑖=0

(𝐿+𝐿0−𝑖−1
𝐿−1

) (𝐿0
𝑖

) (
1−𝜇2𝑡2

𝜇2𝑡2

) 𝑖
if 𝜇 = B.

(4.32)

The derivation of this equation can be found in Bailey 1964 [143]. The right-hand
side is the inverse Z transform of the generating function in equation 4.30.

For our purposes, in addition to the live cells 𝑛, we wish to also track another
random variable, the number of dead cells3 𝑚. The generating function for the joint
distribution of 𝑛 and 𝑚 is:

𝐺 [𝑧, 𝑤, 𝑡] =
∞∑︁
𝑛=0

∞∑︁
𝑚=0

𝑃𝑛,𝑚 [𝑡]𝑧𝑛𝑤𝑚 . (4.33)

The differential equation governing 𝐺 [𝑧, 𝑤, 𝑡] is:

𝜕𝐺 [𝑧, 𝑤, 𝑡]
𝜕𝑡

=

(
𝜇𝑧2 − (𝜇 + B)𝑧 + B𝑤

) 𝜕𝐺 [𝑧, 𝑤, 𝑡]
𝜕𝑧

. (4.34)

For 𝐺 [𝑧, 𝑤, 𝑡], with the relevant initial condition 𝐺 [𝑧, 𝑤, 0] = 𝑧𝑛0 , the solution to
the partial differential equation can be found using the method of characteristics:

𝐺 [𝑧, 𝑤, 𝑡] =
(
(𝑧 − 𝑧+)𝑧− − 𝑧+(𝑧 − 𝑧−)𝑒−𝛾𝑡
(𝑧 − 𝑧+) − (𝑧 − 𝑧−)𝑒−𝛾𝑡

)𝑛0

𝑧+ =
(𝜇 + B)

2𝜇

(
1 +

√︄
1 − 4𝜇B𝑤

(𝜇 + B)2

)
𝑧− =

(𝜇 + B)
2𝜇

(
1 −

√︄
1 − 4𝜇B𝑤

(𝜇 + B)2

)
𝛾 = 𝜇(𝑧+ − 𝑧−).

(4.35)

To relate the death rate B to pharmacodynamics (and to antibiotic dose and strain
susceptibility), we can use the single-hit model dose-response curve from section
3.3.2. Recall that in the single-hit model, ℎ[𝑡] = 𝛽 =

𝛽𝑚𝑎𝑥 [ABX]𝛾
EC𝛾

50+[ABX]𝛾 . Then,

B = 𝛽 + 𝑘 =
𝛽𝑚𝑎𝑥 [ABX]𝛾

EC𝛾50 + [ABX]𝛾
+ 𝑘, (4.36)

3Denoted as 𝐷 in the previous section.
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where 𝑘 is the antibiotic-independent, background death rate.

The multi-hit model of equation 3.25, with its delay in antibiotic killing 𝛼, was not
explored to maintain algebraic simplicity. In the multi-hit model, B would be a
non-constant function of overall elapsed time. A Markov birth-death process where
the birth and death rates are arbitrary functions of overall time (but not of cell age) is
called a time-inhomogeneous Markov birth-death process. The general solution for
time-inhomogeneous Markov birth-death processes was explored in Kendall 1948
[142]. It is possible our particular gamma-distribution multi-hit model yields closed
forms for quantities of interest, but this was not further explored in this thesis.

The following approximation enables one to compare the 𝛽 fitted when the single-hit
model is assumed to the 𝛽 fitted from the same data with a multi-hit model assumed.

𝛽single =
𝛽single

1
≈
𝛽multiple

𝛼
(4.37)

This works because the mean cell lifetime when lifetimes are gamma-distributed
with shape parameter 𝛼 and rate parameter 𝛽 is 𝛽

𝛼
. The coefficient of variation of

the lifetimes is 𝛼− 1
2 . Changing the value of 𝛼 and 𝛽 proportionally does not affect

the average. It is only the spread of the lifetimes around the average lifetime that
changes. By normalizing 𝛽multiple by an 𝛼 greater than one to obtain an equivalent
𝛽single, the lifetimes become less concentrated about the same mean lifetime. See
the curves in Figure 3.10 for a visualization.

The MBD’s algebraic simplicity is its major draw. Unfortunately, there is no state
variable for age in the model, and so the lineage and ages of the cells are not
recorded, only the current total count at time 𝑡. The model does not keep track of
which cell creates the next live or dead cell, and the chance of a cell to undergo a
birth or death event is the same at every instant in time, even if the cell was born the
instant prior. Such assumptions are not realistic for actual bacteria cells, which in
liquid culture should exhibit a relatively narrow range of doubling times (centered
around 20–25 minutes), as bacteria elongate with similar rate constants and only
divide upon reaching a size falling within a narrow range [137]. Unfortunately, the
short time scales and low inoculums examined in my digital AST experiments both
argue against the appropriateness of the Markov assumption; the behavior would
have converged after long times or with many cells per well.

Nonetheless, the casting of the assay state as a memoryless Markov process enables
a very significant simplification in the algebra needed to describe the system state
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over time, and so will be used here. Indeed, the MBD is likely the simplest stochastic
model for discrete populations that is continuous in time.

4.4.3 Derivation of well population status probabilities for discrete pharma-
codynamic models

To fit either of the discrete pharmacodynamic models above, the no-births or the
Markov birth-death process, one needs to relate its parameters to output variables that
one can measure. As discussed in section 4.2.3.5, the outputs of digital filtration
AST are the nucleic acid concentrations measured for each fraction from each
digital partition. The parameters of one’s model could be fitted to the nucleic acid
concentration matrices directly (see section 4.2.3.5), but I have not yet explored this
approach. The approach I have taken instead fits the well population status tallies
described in section 4.2.3.5.

As long as digital filtration AST is performed as intended without cross-
contamination, then each well represents an independent instance of filtration AST,
and the populations in each well progress stochastically and independently. I have
derived the commonly-assumed Poisson-loading model for the loading of the wells
in sections 4.1.3 and 4.2.2. We incorporate this model into our explanation of digital
filtration AST below.

Let 𝑠𝑂
𝑖

, 𝑠𝐼
𝑖
, 𝑠𝐵
𝑖
, and 𝑠𝐸

𝑖
be the mutually exclusive events that well 𝑖 has no cells, only

intact cells, both killed and intact cells, or only killed cells, respectively. Let 𝑠𝑖 be
the status of well 𝑖, a categorical random variable taking on a value of 𝑠𝑂

𝑖
, 𝑠𝐼
𝑖
, 𝑠𝐵
𝑖
, or

𝑠𝐸
𝑖

with a certain probability for each outcome.

Let 𝑂, 𝐼, 𝐵, and 𝐸 , as outputted by the procedures in section 4.2.3.5, be the
observed counts of wells with the corresponding well population statuses indicated
by their names. For these metrics, The total number of wells measured is denoted
𝑁 = 𝐼 + 𝐵 + 𝐸 + 𝑂. For example, 𝑂 =

∑𝑁
𝑖=1 1(𝑠𝑖 = 𝑠𝑂

𝑖
), where 1 is an indicator

random variable.

Let the vector S = [𝑂, 𝐼, 𝐵, 𝐸] ∈ Z4 represent the vector of well population status
tallies. Because the number of wells 𝑁 is fixed, and each 𝑠𝑖 is an independent
categorical random variable, S is then a multinomial random variable with a size
parameter of 𝑁 and a vector of probability parameters, the "well population status
probabilities," as denoted below.

S ∼ Multinomial
(
𝑁,

[
𝑝empty, 𝑝no deaths, 𝑝mixed, 𝑝extinct

] )
, (4.38)



143

where 𝑝empty = Prob
(
𝑠𝑖 = 𝑠

𝑂
𝑖

)
, 𝑝no deaths = Prob

(
𝑠𝑖 = 𝑠

𝐼
𝑖

)
, 𝑝mixed = Prob

(
𝑠𝑖 = 𝑠

𝐵
𝑖

)
,

and 𝑝extinct = Prob
(
𝑠𝑖 = 𝑠

𝐸
𝑖

)
.

The task now at hand is to define the four well population status probabilities as
functions of relevant pharmacodynamic parameters and the parameters that deter-
mines our model of digital loading. These likelihood equations will link the assumed
underlying pharmacodynamic parameters, including the EC50 susceptibility metric,
to the available and observed (or more precisely, "inferred" by the methods of sec-
tion 4.2.3.5) well loading statuses, allowing estimation or fitting of the underlying
parameters.

I derive the well population status probabilities without births, then with births.
For the Markov birth-death process, I derive the probabilities with and without a
lysis efficiency parameter that represents the probability of a given intact cell not
being collected and observed by the on-membrane lysis. Although the inclusion of
the lysis efficiency parameter complicates the equations algebraically and computa-
tionally, it addresses a key source of measurement error seen during the prototype
implementations of digital filtration AST herein.

Surprisingly, we can derive analytic expressions for the well status probabilities for
all of these cases. These analytic expressions enable fitting to be implemented by
basic statistical software.

4.4.3.1 Well population status probabilities without births

Let the density per well volume of bacteria be 𝐶, and let the probability that a given
bacteria will die be 𝑝, with 𝑞 = 1 − 𝑝 being the probability of a bacteria living. Let
𝑚𝑖 be the number of cells loaded into well 𝑖, 𝑖 = 1 . . . 𝑁 , there being 𝑁 wells. Let 𝑀
be the number of cells loaded into all 𝑁 wells, with 𝑀 =

∑𝑁
𝑖=1 𝑚𝑖. Let 𝐷 =

∑𝑁
𝑖=1 𝑑𝑖

and 𝐿 =
∑𝑁
𝑖=1 𝑙𝑖 be the total number of dead and live cells across all 𝑁 wells. We

can assert that 𝑀 = 𝐷 + 𝐿.

According to our model of digital loading, 𝑚𝑖 ∼ Poisson(rate = 𝐶). Let 𝑑𝑖 and 𝑙𝑖
be the number of dead and live cells in well 𝑖 after the exposure. It follows that
𝑚𝑖 = 𝑑𝑖 + 𝑙𝑖.

Because of the assumption of no births, 𝑑𝑖 |𝑚𝑖 ∼ Binomial(n trials = 𝑚𝑖, prob = 𝑝).
That is, the number of dead cells 𝑑𝑖 given a starting number of 𝑚𝑖 cells is binomially
distributed. Likewise, 𝑙𝑖 |𝑚𝑖 ∼ Binomial(n trials = 𝑚𝑖, prob = 𝑞). (In a model
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with births, one would generally need to distinguish between founder cells and new
progeny when defining 𝑑𝑖 and 𝑙𝑖.)

But by the multinomial-Poisson transformation, 𝑑𝑖 ∼ Poisson(rate = 𝐶𝑝) and
𝑙𝑖 ∼ Poisson(rate = 𝐶𝑞). Since the sum of Poisson random variables is also Poisson
distributed, we have 𝑀 ∼ Poisson(rate = 𝑁𝐶), 𝐷 ∼ Poisson(rate = 𝑁𝐶𝑝), and
𝐿 ∼ Poisson(rate = 𝑁𝐶𝑞), which is consistent with our assertion that 𝑀 = 𝐷 + 𝐿.
Thus, the no-births model is equivalent to a situation where the cells are balls of
two colors drawn with replacement from an urn containing the two kinds of balls at
a proportion 𝑝, then loaded into the 𝑁 wells as a Poisson process. The loading of
multiple cells into a well does not influence the propensity of each cell from dying
or not.

In our digital filtration AST, we do not directly observe 𝐷, 𝐿, and 𝑀 . Instead,
we have only observed the well population statuses S = [𝑂, 𝐸, 𝐼, 𝐵] defined in
the preceding section (4.4.3). The well population status probabilities in no-births
model are

𝑝empty = Prob
(
𝑠𝑖 = 𝑠

𝑂
𝑖

)
= Prob (𝑑𝑖 = 0) Prob (𝑙𝑖 = 0)
= 𝑒−𝐶𝑝𝑒−𝐶𝑞

= 𝑒−𝐶 ,

(4.39)

𝑝no deaths = Prob
(
𝑠𝑖 = 𝑠

𝐼
𝑖

)
= Prob (𝑑𝑖 = 0) Prob (𝑙𝑖 ≥ 1)

= 𝑒−𝐶𝑝
(
1 − 𝑒−𝐶𝑞

)
,

(4.40)

𝑝mixed = Prob
(
𝑠𝑖 = 𝑠

𝐵
𝑖

)
= Prob (𝑑𝑖 ≥ 1) Prob (𝑙𝑖 ≥ 1)

=

(
1 − 𝑒−𝐶𝑝

) (
1 − 𝑒−𝐶𝑞

)
,

(4.41)

𝑝extinct = Prob
(
𝑠𝑖 = 𝑠

𝐸
𝑖

)
= Prob (𝑑𝑖 ≥ 1) Prob (𝑙𝑖 = 0)

=

(
1 − 𝑒−𝐶𝑝

)
𝑒−𝐶𝑞 .

(4.42)
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Since S is then a multinomial random variable, the probability of observing S given
parameters 𝑝 and 𝐶 is

Prob(S|𝐶, 𝑝) = 𝑁!
𝑂!𝐼!𝐵!𝐸!

(
𝑒−𝐶

)𝑂 (
𝑒−𝐶𝑝

(
1 − 𝑒−𝐶𝑞

)) 𝐼
×

((
1 − 𝑒−𝐶𝑝

) (
1 − 𝑒−𝐶𝑞

))𝐵 ((
1 − 𝑒−𝐶𝑝

)
𝑒−𝐶𝑞

)𝐸
.

(4.43)

4.4.3.2 Well population status probabilities with births and without lysis
efficiency observation error

The chance of the well beginning with 𝐿0 cells, denoted 𝑝𝐿0 , is Poisson-distributed
with a mean parameter 𝐶 that is the mean number of cells per well, so

𝑝𝐿0 = 𝑃𝐿0 [0] =
𝐶𝐿0𝑒−𝐶

𝐿0!
. (4.44)

An empty well that does not receive any cells will always remain with 0 live and 0
dead cells, so

𝑝empty = 𝑃0 [0] = 𝑒−𝐶 . (4.45)

A well that only contains live cells must start with any number of non-zero live
cells, and then subsequently never experience a death event. From the generating
equation 4.35, we can derive the probability of no death events by time t, given 𝐿0,
since setting 𝑧 = 1 and 𝑤 = 0 generates the marginal probability (over all values of
𝑧) of having 0 dead cells.

𝑧+ =
𝜇 + 𝛽 + 𝑘

𝜇

𝑧− = 0

𝑝no deaths|𝐿0 = 𝐺 [1, 0, 𝑡]

=

[
−𝑧+𝑒−𝜇𝑧+𝑡

1 − 𝑧+ − 𝑒−𝜇𝑧+𝑡

] 𝐿0

=

[
𝜇 + 𝛽 + 𝑘

(𝛽 + 𝑘)𝑒(𝜇+𝛽+𝑘)𝑡 + 𝜇

] 𝐿0

(4.46)

To get to 𝑝no deaths, the probability of observing no deaths in a given well, one can
marginalize over the different starting inoculums of the well, using equation 4.44
for 𝑝𝐿0 . (The case for 𝐿0 = 0 is accounted for in 𝑝empty.)

𝑝no deaths =

∞∑︁
𝐿0=1

𝑝no deaths|𝐿0 𝑝𝐿0 (4.47)
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Similarly, we can find the probability of all the cells in a well dying, given 𝐿0. By
setting 𝑧 = 0 and 𝑤 = 1, the generating equation becomes the marginal probability
(over all values of 𝑤 dead cells) of having 0 live cells at time t. Then, we marginalize
over 𝐿0 in equation 4.49:

𝑧+ =
𝜇 + 𝛽 + 𝑘

2𝜇
+

√︄
1 − 4𝜇(𝛽 + 𝑘)

(𝜇 + 𝛽 + 𝑘)2

𝑧− =
𝜇 + 𝛽 + 𝑘

2𝜇
−

√︄
1 − 4𝜇(𝛽 + 𝑘)

(𝜇 + 𝛽 + 𝑘)2

𝑝extinct|𝐿0 = 𝐺 [0, 1, 𝑡]

=

[
−𝑧−𝑧+ + 𝑧−𝑧+𝑒−𝜇(𝑧+−𝑧−)𝑡

−𝑧+ + 𝑧−𝑒−𝜇(𝑧+−𝑧−)𝑡

] 𝐿0

=


𝛽 + 𝑘
𝜇

©­« 𝑒(𝜇−(𝛽+𝑘))𝑡 − 1
𝑒(𝜇−(𝛽+𝑘))𝑡 + 𝛽+𝑘

𝜇

ª®¬

𝐿0

(4.48)

𝑝extinct =

∞∑︁
𝐿0=1

𝑝extinct|𝐿0 𝑝𝐿0 . (4.49)

The last component of the well probability vector is 𝑝mixed. It is the remaining
probability not covered by empty, all alive, or extinct wells.

𝑝mixed|𝐿0 = 1 − 𝑝no deaths|𝐿0 − 𝑝extinct|𝐿0 (4.50)

𝑝mixed =

∞∑︁
𝐿0=1

𝑝mixed|𝐿0 𝑝𝐿0 (4.51)

4.4.3.3 Well population status probabilities with births and with lysis
efficiency observation error

In many digital filtration AST experiments, an imbalance in the observation of intact
cells versus killed cells is observed, and the null hypothesis of this imbalance being
due to stochastic loading was rejected at a significance of 0.05. Therefore, it was
decided to incorporate a lysis efficiency term to the Markov birth-death model. For
simplicity, cells lysed by antibiotics were considered always observable. In contrast,
intact cells were assumed to have an independent probability of lysing 𝜆 that could
be less than 1. Denote as 𝑝missed|𝐿 the probability that none of a well intact cells
were lysed by the lysis buffer and observed, given that the well contains 𝐿 intact
cells. Then,

𝑝missed|𝐿 = (1 − 𝜆)𝐿 . (4.52)
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Due to the lysis inefficiency, two more well statuses are created, each indistinguish-
able from another status. First, if a well has not experienced any death events, and
none of the intact cells are lysed and observed, then the well will appear to have been
empty. Let the probability of this event be called 𝑝missed,no deaths, and 𝑝¬missed,no deaths

to be the case that at least one intact cell is observed. Second, if a well contains both
intact and dead cells, yet none of the intact cells are lysed and observed, then the
well appears as one in which all the cells have died from antibiotics. The probability
of this well status is 𝑝missed,mixed, and its complement is 𝑝¬missed,mixed. The model
for our observed well status tallies becomes

S ∼ Multinomial

©­­­­­«
𝑁,


𝑝empty + 𝑝missed,no deaths

𝑝¬missed,no deaths

𝑝¬missed,mixed

𝑝extinct + 𝑝missed,mixed


ª®®®®®¬
. (4.53)

The formulas for 𝑝missed,no deaths and 𝑝missed,mixed are not immediately obvious, but by
factorizing the probability into simpler conditional terms, an analytical expression
is obtained that can be approximated by computational software.

First, we factor out the starting inoculum, skipping the term for an empty well. Then
we factor out the true well status.

𝑝missed,no deaths =

∞∑︁
𝐿0=1

𝑝missed,no deaths|𝐿0 𝑝𝐿0

=

∞∑︁
𝐿0=1

𝑝missed|no deaths,𝐿0 𝑝no deaths|𝐿0 𝑝𝐿0

(4.54)

Similarly,

𝑝¬missed,no deaths =

∞∑︁
𝐿0=1

𝑝¬missed,no deaths|𝐿0 𝑝𝐿0

=

∞∑︁
𝐿0=1

𝑝¬missed|no deaths,𝐿0 𝑝no deaths|𝐿0 𝑝𝐿0

=

∞∑︁
𝐿0=1

(1 − 𝑝missed|no deaths,𝐿0)𝑝no deaths|𝐿0 𝑝𝐿0 .

(4.55)

Repeating for mixed wells,

𝑝missed,mixed =

∞∑︁
𝐿0=1

𝑝missed|mixed,𝐿0 𝑝mixed|𝐿0 𝑝𝐿0 , (4.56)
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𝑝¬missed,mixed =

∞∑︁
𝐿0=1

(1 − 𝑝missed|mixed,𝐿0)𝑝mixed|𝐿0 𝑝𝐿0 . (4.57)

The expressions for 𝑝no deaths|𝐿0 and 𝑝mixed|𝐿0 were derived in equations 4.46 and
4.50.

Next, we factor 𝑝missed|no deaths,𝐿0 and 𝑝missed|mixed,𝐿0 by the number of intact cells 𝐿
present before the lysis buffer is added.

𝑝missed|no deaths,𝐿0 =

∞∑︁
𝐿=0

𝑝missed|𝐿,no deaths,𝐿0 𝑝𝐿 |no deaths,𝐿0

=

∞∑︁
𝐿=0

𝑝missed|𝐿 𝑝𝐿 |no deaths,𝐿0

(4.58)

𝑝missed|mixed,𝐿0 =

∞∑︁
𝐿=0

𝑝missed|𝐿,mixed,𝐿0 𝑝𝐿 |mixed,𝐿0

=

∞∑︁
𝐿=0

𝑝missed|𝐿 𝑝𝐿 |mixed,𝐿0

(4.59)

Above, I used the fact that in our model, the probability of an intact cell being lysed
by lysis buffer is independent of whether the well is in an "all alive" or "mixed"
state. Therefore, we can use the expression for 𝑝missed|𝐿 in equation 4.52.

The quantities 𝑝𝐿 |no deaths,𝐿0 and 𝑝𝐿 |mixed,𝐿0 are still not easily defined. But they can
be redefined using the definition of conditional probability.

𝑝𝐿 |no deaths,𝐿0 =
𝑝𝐿,no deaths|𝐿0

𝑝no deaths|𝐿0

(4.60)

𝑝𝐿 |mixed,𝐿0 =
𝑝𝐿,mixed|𝐿0

𝑝mixed|𝐿0

(4.61)

The denominators are known from equations 4.46 and 4.50. The numerators are
found as follows. The quantity 𝑝𝐿,no deaths|𝐿0 is equivalent to finding the inverse Z-
transform of the generating equation (equation 4.35) where 𝑤 = 0, while 𝑧 remains
a free dummy variable. This yields:

𝑝𝐿,no deaths|𝐿0 =


( 𝐿−1
𝐿0−1

)
𝑒−𝐿 (𝜇+𝛽+𝑘)𝑡

[
𝜇

𝜇+𝛽+𝑘

(
𝑒(𝜇+𝛽+𝑘)𝑡 − 1

)] 𝐿−𝐿0
if 𝐿 ≥ 𝐿0

0 if 𝐿 < 𝐿0.

(4.62)

The quantity 𝑝𝐿,mixed|𝐿0 can be found by subtracting the probability of mutually
exclusive sub-events from the probability of the event 𝐿 |𝐿0 of having 𝐿 cells at time
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𝑡 with a starting inoculum of 𝐿0.

𝑝𝐿,mixed|𝐿0 = 𝑝𝐿 |𝐿0 − 𝑝𝐿,no deaths|𝐿0 − 𝑝𝐿,extinct|𝐿0 (4.63)

The 𝑝𝐿,no deaths|𝐿0 term was derived above. The closed form for 𝑝𝐿 |𝐿0 was given in
equation 4.32, in which 𝑝𝐿 |𝐿0 was denoted 𝑃𝑛 [𝑡]. The remaining unspecified term
is 𝑝𝐿,extinct|𝐿0 .

Note that since a population is extinct only when 𝐿 = 0 has been reached, the
following equation holds:

𝑝𝐿,extinct|𝐿0 =


𝑝extinct|𝐿0 if 𝐿 = 0

0 if 𝐿 > 0.
(4.64)

The expression for 𝑝extinct|𝐿0 was derived earlier in equation 4.48.

The probabilities for the four possible well population statuses have now been
defined. Graphs of these probabilities, and their component probability terms, are
shown in Figure 4.12 for aid in understanding the model.

4.4.4 Estimates of pharmacodynamic parameter values from digital filtration
AST using Bayesian Hamiltonian Monte Carlo

In this section, we wish to know whether digital filtration AST results recapitulate
the in vitro pharmacodynamics observed in bulk filtration AST. Specifically, we wish
to rule out the existence of processes (natural or man-made design flaws) during
digital filtration AST that would cause the digital outputs to deviate significantly
from those predicted in bulk experiments. To do this, we fit digital filtration AST
data to the MBD model implied by the well population status probability equations
above, then for the pharmacodynamic parameters shared with the bulk filtration
AST’s model in section 3.3, compare their values.

Additionally, fitting pharmacodynamic models may be useful in the future for finding
values (or at least narrowing priors) of parameters not dependent on the clinical
specimen, namely the measurement error of lysis efficiency. One might do this in
clinical practice for quality control of one’s device.

To fit data (to an overdetermined system of equations), we must assume a source
of random error, which in some algorithms implies a loss function to minimize.
In the compartment model of bulk filtration AST, the error model comprised PCR
measurement errors modeled in section 3.3.3. For digital filtration AST, some of
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Figure 4.12: Probabilities in the Markov birth-death model related to the well
population status. The plot titles show the values of fixed parameters used to
generate the plots.
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the stochasticity in any measured data is assumed to arise from the stochasticity
of the underlying system. Specifically, the multinomial probability of equation
4.53 was assumed for the analysis below. Some of the error was also assumed
to arise from batch effects introduced during the human-operated measurement
process, as discussed in the next section. Unlike the bulk filtration AST data, PCR
measurement error was not modeled for the digital filtration AST data. Instead, the
PCR measurement error was implicitly assumed to have been corrected during well
population status calling.

Using Bayesian Monte Carlo methods, each parameter in the model/well population
status probability equations can be considered a random variables representing our
uncertainty in their values. Variables which we believe are fixed constants are simply
random variables with no spread and no uncertainty. Variables which we believe
are not shared across groups of data can be modeled hierarchically.

4.4.4.1 Digital filtration AST measurement error model

For this section’s purposes, the growth rate was assumed equal for all strains.
The EC50 parameters were assumed to be unique to each strain, and the maximum
antibiotic kill rate and Hill coefficient were assumed to be unique for each antibiotic.
For the batch parameters, the target inoculum 𝐼target was inputted as known data.

To account for variability beyond the multinomial stochasticity of the well statuses,
two sets of noise parameters were introduced.

First, the deviations from the target inoculum were modeled as hierarchically, gamma
distributed constants 𝐼 with a mean of 𝐼 and a standard deviation of 𝜎𝐼 . The mean
𝐼 was given a mean of 1 and a coefficient of variation of 0.5. The variance of 𝐼,
𝜎2
𝐼
, was assumed to be an inverse gamma distribution with a mean of 9 = 32 and a

standard deviation of 9.

𝐼 ∼ Gamma

(
shape=

𝐼
2

𝜎2
𝐼

, rate=
𝐼

𝜎2
𝐼

)
(4.65)

𝐼 ∼ Gamma (shape=2, rate=4) (4.66)

𝜎2
𝐼 ∼ InvGamma (shape=3, rate=18) (4.67)

𝐶 = 𝐼 · 𝐼target (4.68)

Second, each AST experiment batch was given an independent lysis efficiency
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parameter 𝑙 with a beta distribution prior:

𝑙 ∼ Beta (mean=0.5, concentration=3) . (4.69)

To clarify, the inoculum densities 𝐶 for each condition and the global lysis effi-
ciency 𝑙 were free (non-pharmacodynamic) parameters in equation 4.53. The prior
distributions required for Bayesian analysis are now given in the above equations.

The priors for the rest of the pharmacodynamic parameters were kept the same as
in the bulk filtration AST model of section 3.3.4. An exception was made for the
maximum antibiotic kill rate 𝛽max. The assumed mean of the prior of 𝛽max was
divided by the assumed mean for the prior of 𝛼. The justification for this crude
correction was explained in section 4.4.2.

4.4.4.2 Results and posterior predictive checks

All five Monte Carlo chains converged and sampled the posterior with low autocor-
relation, as seen in Figures 4.13–4.14b.

mu k Bmax[ETP] NA Hill[ETP] Hill[CRO] mean inoc err sd inoc err EC50[ETP,K12] EC50[ETP,Ec38] EC50[ETP,Ec11] EC50[ETP,Ec2] EC50[ETP,Ec44] EC50[CRO,K12] EC50[CRO,Ec38] EC50[CRO,Ec11] EC50[CRO,Ec2] EC50[CRO,Ec44]
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Figure 4.13: Autocorrelation of Monte Carlo chain sampling of the Markov birth-
death pharmacodynamic model.

The marginal posterior means of the fitted parameters are listed below in Table 4.2
alongside the values from Table 3.3 in the bulk compartment model.
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Parameter interpretation bulk
value

digital
value

𝜇 intrinsic growth rate (min−1) 0.0163 0.00183
𝑘 intrinsic death rate (min−1) 0.0000341 0.0000705

𝐵max[ETP] maximum kill rate for ertapenem
(min−1) 0.0843 0.0237

𝐵max[CRO] maximum kill rate for ceftriaxone
(min−1) 0.0617 0.0131

𝛼[ETP] delay in ertapenem activity 4.65 NA
𝛼[CRO] delay in ceftriaxone activity 5.17 NA
hill[ETP] Hill coefficient for ertapenem 1.11 1.58
hill[CRO] Hill coefficient for ceftriaxone 1.08 1.37

EC50[ETP, K12] EC50 for ertapenem + E. coli K12
(S, µg/mL) 0.0908 0.0196

EC50[CRO, K12] EC50 for ceftriaxone + E. coli K12
(S, µg/mL) 0.822 0.108

EC50[ETP, Ec38] EC50 for ertapenem + E. coli #38
(R, µg/mL) 9.39 14.2

EC50[CRO, Ec38] EC50 for ceftriaxone + E. coli #38
(R, µg/mL) 298 182

Table 4.2: Fitted marginal posterior mean values of the digital filtration AST phar-
macodynamic model.

The parameter with the biggest fold-change in value was the growth rate 𝜇. The
decrease may be related to the lysis inefficiency masking only live cells, not dead
cells, but further experiments are needed. The other parameters remained within
an order of magnitude of each other. The digital fitted value more resembles the
prior distributions, indicating that the digital AST data set is less informative, as is
expected given the fewer number of experiments. Although no new information is
gained from the digital data alone, the absence of strong value changes indicates
that the MBD model is sufficient for describing the observed results. No new
mechanisms are needed.

4.5 Diagnostic performance of digital filtration AST
Digital filtration AST is a novel rapid phenotypic AST method, and the accuracy of
the method across strains as a function of exposure duration and inoculum are of
interest for future investigators. In this section, I demonstrate that digital filtration
AST does infer susceptibilities accurately in a diagnostic setting resembling clinical
practice. In a diagnostic setting, the identities and susceptibilities of the strains used
are unknown. Furthermore, the goal of modeling shifts from accurate inference of
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all parameters to the maximal accuracy in classifying strains as susceptible.

In particular, the inference performed earlier in section 4.4.4 (and reported in Table
4.2) pooled data across experiments performed with the same strain. Informative
priors based on known strain MICs were assumed for the EC50 parameters. In
this section, Bayesian estimates were instead obtained by pretending that each
experiment tested a unique strain with unknown susceptibility. This is further
detailed in section 4.5.2.

In section 4.4.4, the EC50 is the only parameter in the model reflecting strain
susceptibility. However, the use of Bayesian Monte Carlo to estimate the EC50 is
also not the only way susceptibility can be called from the outputs of digital filtration
AST. In fact, there are infinite algorithms one can propose; only some of which will
approach the best possible classification accuracy. Six algorithms are discussed in
the next section (4.5.1), only one of which is the estimate of the EC50 by Bayesian
HMC.

4.5.1 Six susceptibility metrics and susceptibility classification algorithms
Six algorithms for calculating susceptibility were performed in this section in paral-
lel. Multiple algorithms were included to better summarize the performance of the
tangible steps of digital filtration AST as a method, and also to enable comparison
of the algorithms’ performances.

Every classification algorithm for susceptibility calls implicitly assumes a pharma-
codynamic system model, but only the algorithms that calculate the EC50 and 𝛽

metrics use the duration of exposure as an input. The other metrics are equivalent
to models in which the exposure comprises a single instant of time during which
cells die or not (e.g., a coin flip).

All of the metrics calculated utilized well population statuses instead of the un-
processed nucleic acid concentration measurements, as discussed in section 4.2.3.5.
The performance of algorithms directly using concentration measurements is left as
future work.

A digital filtration AST experiment batch comprises a set of antibiotic exposures
digitally loaded in parallel from the same 2 mL batch culture. An experimental
condition in that experiment batch is a subset of the exposures sharing the same
antibiotic dose, exposure duration, and inoculum. Two of the metrics (𝑃𝐸naive,
𝑃𝐸MLE) were calculated for each experimental condition. Three (𝑝binomial, the
RDI, and 𝛽) were calculated by comparing a treated experimental condition with
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an untreated condition within the same digital experiment batch. The sixth metric
(EC50) was defined and calculated for each strain, and therefore once for each batch
of experimental conditions.

The six algorithms herein all comprise calculating a real-valued susceptibility met-
ric first, then comparing the metric against a threshold to obtain the categorical
susceptibility classification. (An example of an algorithm that does not calculate a
metric would be a k-nearest neighbor classifier.)

One of the metrics is actually the p-value of a hypothesis test. Hypothesis testing
of universal truths is traditionally and theoretically a concept distinct from the
classification of specific instances [145]. Clinical diagnostics falls under the latter
framework, so I will cast hypothesis testing for susceptibility as a classification
algorithm in this thesis.

The six algorithms for the well statuses are now defined below.

4.5.1.1 The proportion or probability of death

The simplest metric 𝑃𝐸naive is an approximation for the proportion or percentage of
killed (extracellular) cells in a given experimental condition. In a crude approxima-
tion, it is assumed that all wells have 1 cell only, except that wells that have both
extracellular and intracellular are assumed to have 1 intact and 1 killed cell.

𝑃𝐸naive =
𝐸 + 𝐵

𝐸 + 2𝐵 + 𝐼 (4.70)

The second metric 𝑃𝐸MLE is a better approximation of the probability of antibiotic
killing than 𝑃𝐸naive. It is the frequentist maximum likelihood estimator 𝑝 for the
survival probability of the no-births model.

𝑃𝐸MLE = 𝑝 =


1
𝑐

ln
(
(𝐸−𝐼)+

√
(𝐸−𝐼)2+4(𝐵+𝐼) (𝐵+𝐸)𝑒−𝑐̂

2(𝐵+𝐸)𝑒−𝑐̂

)
, if 𝐸 + 𝐵 > 0

0, if 𝐸 + 𝐵 = 0
(4.71)

𝑐 = − ln
(
(𝑂 + 𝐸) (𝑂 + 𝐼)
(𝑂 + 𝐼 + 𝐵 + 𝐸)2

)
(4.72)



158

For the case where 𝐸 + 𝐵 > 0, one can substitute equation 4.72 into 4.71 to obtain:

𝑃𝐸MLE =

ln
(
𝑂+𝐼
𝑁

)
ln

(
(𝑂+𝐸) (𝑂+𝐼)

𝑁2

) (4.73)

= log (𝑂+𝐸 ) (𝑂+𝐼 )
𝑁2

[
𝑂 + 𝐼
𝑁

]
(4.74)

=

ln
(
𝑂+𝐼
𝑁

)
ln

(
𝑂+𝐼
𝑁

)
+ ln

(
𝑂+𝐸
𝑁

) , (4.75)

where 𝑁 = 𝑂 + 𝐼 + 𝐵 + 𝐸 .

To derive equations 4.71 and 4.72, we find the values of 𝑝 and 𝑐 that maximize
the likelihood L = Prob(S|𝐶, 𝑝) in equation 4.43. This is equivalent to finding the
maximum of the log-likelihood ℓ = ln(L). In other words,

ℓ = −𝑂𝐶 − 𝐼𝐶𝑝 + 𝐼 ln
(
1 − 𝑒−𝐶𝑞

)
− 𝐸𝐶𝑞 + 𝐸 ln

(
1 − 𝑒−𝐶𝑝

)
+ 𝐵 ln

(
1 − 𝑒−𝐶𝑝

)
+ 𝐵 ln

(
1 − 𝑒−𝐶𝑞

)
+ ln

(
𝑁!

𝑂!𝐼!𝐵!𝐸!

)
.

(4.76)

The maximum occurs when 𝜕ℓ
𝜕𝑝

= 0, 𝜕ℓ
𝜕𝑐

= 0. First solving for 𝑝, we write:

𝜕ℓ

𝜕𝑝
= 𝐸𝐶 + 𝐸𝐶𝑒−𝑝𝐶

1 − 𝑒−𝑝𝐶
− 𝐼𝐶 − 𝐼𝐶𝑒−𝑞𝐶

1 − 𝑒−𝑞𝐶
+ 𝐵𝐶𝑒−𝑝𝐶

1 − 𝑒−𝑝𝐶
− 𝐵𝐶𝑒−𝑞𝐶

1 − 𝑒−𝑞𝐶
. (4.77)

To solve for the MLE 𝑝 (and defining 𝑐 to be the MLE for 𝐶 and 𝑞 = 1 − 𝑝 for
convenience), we set the equation above to 0, eliminate a solution 𝑐 = 0 since
we are only interested in 𝐶 > 0, and define the change of variables 𝑢 = 𝑒𝑝𝑐 and
𝑣 = 𝑒𝑞𝑐 = 𝑒𝑐̂

𝑢
.

0 = 𝐸 + 𝐸𝑢−1

1 − 𝑢−1 − 𝐼 − 𝐼𝑣−1

1 − 𝑣−1 + 𝐵𝑢−1

1 − 𝑢−1 − 𝐵𝑣−1

1 − 𝑣−1 (4.78)

= 𝐸 + 𝐸

𝑢 − 1
− 𝐼 − 𝐼

𝑣 − 1
+ 𝐵

𝑢 − 1
− 𝐵

𝑣 − 1
(4.79)

=
(𝐸 − 𝐼) (𝑢 − 1) (𝑣 − 1) + (𝐸 + 𝐵) (𝑣 − 1) − (𝐵 + 𝐼) (𝑢 − 1)

(𝑢 − 1) (𝑣 − 1) (4.80)

=
(𝐸 − 𝐼) (𝑢 − 1) (𝑒𝑐 − 𝑢) + (𝐸 + 𝐵) (𝑒𝑐 − 𝑢) − (𝐵 + 𝐼) (𝑢 − 1)𝑢

(𝑢 − 1) (𝑒𝑐 − 𝑢)
. (4.81)
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0 = (𝐸 − 𝐼) (−𝑢2 + (𝑒𝑐 + 1)𝑢 − 𝑒𝑐) + (𝐸 + 𝐵) (𝑒𝑐 − 𝑢) − (𝐵 + 𝐼) (𝑢2 − 𝑢) (4.82)

= −(𝐵 + 𝐸)𝑢2 + 𝑒𝑐 (𝐸 − 𝐼)𝑢 + 𝑒𝑐 (𝐵 + 𝐼). (4.83)

𝑢 =
𝑒𝑐 (𝐸 − 𝐼) ±

√︁
𝑒2𝑐 (𝐸 − 𝐼)2 + 4(𝐵 + 𝐸)𝑒𝑐 (𝐵 + 𝐼)

2(𝐵 + 𝐸) (4.84)

𝑒𝑐𝑝 =
(𝐸 − 𝐼) +

√︁
(𝐸 − 𝐼)2 + 4(𝐵 + 𝐸) (𝐵 + 𝐼)𝑒−𝑐

2(𝐵 + 𝐸)𝑒−𝑐
(4.85)

Solving for 𝑝 yields equation 4.71. We have discarded extraneous solutions created
when we simplify the rational terms containing 𝑢, including the "-" solution in the
last equation. In the case that 𝐵 + 𝐸 = 0, the solution is 𝑝 = 0.

To solve for 𝑐, we define 𝑤 = 𝑒𝑐.

𝜕ℓ

𝜕𝑐
= −𝑂 − 𝐸𝑞 + 𝐸𝑝𝑒−𝑐𝑝

1 − 𝑒−𝑐𝑝 − 𝐼 𝑝 + 𝐼𝑞𝑒−𝑐𝑞

1 − 𝑒−𝑐𝑞 + 𝐵𝑝𝑒−𝑐𝑝

1 − 𝑒−𝑐𝑝 + 𝐵𝑞𝑒−𝑐𝑞

1 − 𝑒−𝑐𝑞 (4.86)

0 = −(𝐸 +𝑂)𝑞 − (𝐼 +𝑂)𝑝 + (𝐸 + 𝐵)𝑝
𝑤𝑝 − 1

+ (𝐼 + 𝐵)𝑞
𝑤𝑞 − 1

(4.87)

We then substitute in the solution for 𝑝 in equation 4.85 and solve for 𝑤.

4.5.1.2 The relative difference index (RDI)

The third metric is the batch run-specific relative difference index 𝑅𝐷𝐼 of any ex-
perimental condition-specific metric 𝑋 between a treated and an untreated reference
condition. For example, either of the 𝑃𝐸 metrics can be used for 𝑋; in this thesis,
𝑃𝐸MLE was used. The RDI is defined as

𝑅𝐷𝐼 =
𝑋treated − 𝑋reference
𝑋treated + 𝑋reference

. (4.88)

𝑅𝐷𝐼 takes on a value between -1 and 1. When there is no difference in the 𝑋’s,
𝑅𝐷𝐼 = 0. The RDI is more interpretable between experimental batch runs than
either the difference or the ratio of 𝑋treated and 𝑋reference.

4.5.1.3 Binomial hypothesis testing

The fourth metric 𝑝binomial is the p-value from a version of the one-tailed Barnard’s
exact test for binomially-distributed binary outcomes. A crude assumption is made
that each well represents 1 cell, except that cells with mixed populations have 1 intact
and 1 killed cell each. Let 𝐸𝑇 and 𝐸𝑈 be the number of wells with extinct populations
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in the treated and untreated conditions, and similarly for 𝐼𝑇 , 𝐼𝑈 , 𝐵𝑇 , 𝐵𝑈 ,𝑂𝑇 , and𝑂𝑈 .
Let 𝑁𝑇 and 𝑁𝑈 be the assumed total number of cells in each condition. We assume
that each cell/well dies or survives with an independent, identical probability. The
results in each condition is therefore binomially distributed, and Barnard’s test can
be applied to the 2x2 contingency table containing the numbers of live and dead
cells in each condition. In the null hypothesis, the probability of death 𝑝 is the same
across both treated and untreated conditions. 𝑝 is an unknown nuisance parameter.
In Barnard’s test, the value of 𝑝 giving the maximum (least-significant) p-value
is chosen. In calculating 𝑝binomial, we instead choose 𝑝 to be the 𝑃𝐸naive metric
described above when considering the treated and untreated conditions together as
one condition.

𝑝 = 𝑃𝐸naive,null =
𝐸𝑇 + 𝐸𝑈 + 𝐵𝑇 + 𝐵𝑈

𝑁𝑇 + 𝑁𝑈
=

𝐸𝑇 + 𝐸𝑈 + 𝐵𝑇 + 𝐵𝑈
𝐸𝑇 + 2𝐵𝑇 + 𝐼𝑇 + 𝐸𝑈 + 2𝐵𝑈 + 𝐼𝑈

(4.89)

To test the null hypothesis, we calculate 𝑝binomial to be the probability in each
condition of a result equal or more extreme than the observed result. Such results
are those values of 𝑆 whose 𝑃𝐸naive is ≥ 𝑝 for the treated condition, and ≤ 𝑝 for the
untreated condition. Because of our crude assumption that each well with a status
of 𝑠𝐸 or 𝑠𝐵 has 1 killed cell each, such results are those values of the status vector 𝑆
with a sum of 𝐸 and 𝐵 greater than observed.

𝑝binomial = Prob (𝐸 + 𝐵 ≥ 𝐸𝑇 + 𝐵𝑇 ; 𝑁𝑇 , 𝑝) Prob (𝐸 + 𝐵 ≤ 𝐸𝑈 + 𝐵𝑈 ; 𝑁𝑈 , 𝑝)

=

(
𝑁𝑇∑︁

𝑥=𝐸𝑇+𝐵𝑇

(
𝑁𝑇

𝑥

)
𝑝𝑥 (1 − 𝑝)𝑁𝑇−𝑥

)
×

(
𝐸𝑈+𝐵𝑈∑︁
𝑥=0

(
𝑁𝑈

𝑥

)
𝑝𝑥 (1 − 𝑝)𝑁𝑈−𝑥

)
(4.90)

We reject the null hypothesis if the p-value of the observed results, or a more
extreme result, is less than 0.05. Alternatively, we call a strain susceptible to the
dose of antibiotic in the treated condition if 𝑝binomial is less than a threshold that
we must choose beforehand. The threshold does not have to be the traditional 0.05
significance threshold of hypothesis testing.

It may be possible to derive the analogue of 𝑝binomial for 𝑃𝐸MLE. To do so, one needs
to define what is a "more extreme" result of the multinomially distributed random
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variable S than the observed results. Since the possible values of a multinomial
distribution are partially ordered, unlike the binomial distribution, the situation
constitutes a discrete optimization problem, similar to that discussed in Greenberg
1985 [146]. Unfortunately, I have not finished this investigation. Such a test would
be more accurate. On the other hand, 𝑝binomial is already a decent approximation for
𝑃𝐸MLE in the regime of the observed data, so the same may be true of the hypothesis
testing p-value.

4.5.1.4 The antibiotic kill rate and EC50

The fifth metric is the instantaneous antibiotic kill rate defined in the pharmacody-
namic model (with the lysis efficiency parameter) in 4.4. To calculate this metric,
one would need to either solve or fit the model equations for 𝛽. In this thesis, I used
Stan to fit 𝛽 for each experimental condition in all digital filtration AST experiment
batches. However, in contrast to the fitting done in section 4.4.4, the starting inocu-
lum, lysis efficiency, background lysis rate, and EC50 was estimated separately for
each batch. Treating each batch as a separate strain (even if not) emulates the level
of knowledge a clinical laboratory has when it receives a clinical specimen. Fur-
thermore, the rest of the pharmacodynamic parameters that were not strain-specific
were fixed at the value measured by the bulk experiments in section 3.4.3. This
emulates a situation in the future when these values could plausibly be taken from a
database compiled over the finite number of clinically useful antibiotics and known
bacterial pathogens or common contaminant species. In this situation, the Hamilto-
nian Monte Carlo performed by Stan essentially functions as a numerical equation
solver for the EC50 parameter, with the three other non-fixed nuisance parameters
marginalized out.

The sixth metric is the EC50 as defined by the Hill equation and is found simultane-
ously with the above fitting of 𝛽. Because 𝛽max and 𝛾 have been fixed, the values of
the EC50 is deterministic given 𝛽. Both are shown separately, however, because 𝛽
is defined for each treated condition, while the EC50 is defined for each strain.

The 𝛽 and EC50 parameters of the no-births model and the MBD model without
lysis efficiency could also be calculated using Stan. The results are not shown for
brevity.
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EC50[14] (ETP,K12)

EC50[10] (ETP,K12) EC50[11] (ETP,K12) EC50[12] (ETP,Ec38) EC50[13] (ETP,K12)
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Figure 4.15: Estimates of EC50, digital filtration diagnostic performance model.

4.5.2 Bayesian Hamiltonian Monte Carlo estimates of the EC50

The results of calculating the EC50, one of the six metrics of section 4.5.1, are shown
in Figures 4.15 and 4.16. The model was able to provide estimates for all parameters
without any NUTS divergences or high autocorrelation (Figure 4.17).

Some multimodality was seen in the traces of the EC50 for the two experiments
where background lysis was observed. This could indicate that the priors for the
background lysis rate may be too constrained.
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(a) Effective concentration 50. Note the log-scale y-axis

(b) Background lysis parameters

Figure 4.16: Markov chain traces during calculation of susceptibility metrics by
HMC for unknown strains.
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(c) Inoculum density in the batch culture

(d) Lysis efficiency observation error

Figure 4.16: Markov chain traces during calculation of susceptibility metrics by
HMC for unknown strains (cont’d).
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4.5.3 Results and diagnostic accuracy of digital filtration AST
The results of each susceptibility metric for all digital filtration ASTs performed are
shown in Figure 4.18. As a matter of convention, in this section, a positive AST
result occurs when a call of "resistant" is made.

There were only three experimental conditions where the phenotype was expected
to be resistant (including if no antibiotic was present), yet lysis was seen in a well.
All other resistant conditions had the maximum possible resistance signal of no
lysis. Therefore, regardless of the metric chosen, one can already conclude that the
two experiment batches (figures 4.7a and 4.4d) containing these three experimental
conditions are the only ones that cause false negative calls. For the susceptible
strains, there were two digital experiment batches (figures 4.8 and 4.4c) that had
results lower in magnitude, for at least one metric, than either a resistant condition
with the same antibiotic or an untreated condition. For the batch in 4.4c, the only
metrics where this happened were the two 𝑃𝐸 metrics, in which the background lysis
seen in 4.7a (part of a batch intended for ertapenem assessment, not ceftriaxone)
and 4.4d are eligible for comparison because the 𝑃𝐸 metrics are condition-specific.

With this information, for each of the metrics of section 4.5.1, one can trace the
effect of drawing a threshold to map the susceptibility metrics to a final susceptibility
call. The receiver-operating characteristic (ROC) curves in Figure 4.19 are created
by varying the threshold from its minimum to its maximum possible values.

It is important not to compare the area under the curves (AUC) for metrics that are
not defined over the same number of observations. The numbers of susceptible and
resistant data for ertapenem and ceftriaxone conditions available for each metric are
written in the captions of Figure 4.19.

Using the 𝑃𝐸naive and 𝑃𝐸MLE metrics, there are three errors for the ceftriaxone
conditions and seven errors for the ertapenem conditions.

Interesting, the 𝑃𝐸naive yields values surprisingly close to the 𝑃𝐸MLE. However, for
𝑃𝐸naive < 0.5, 𝑃𝐸naive is too high, while for 𝑃𝐸naive > 0.5, 𝑃𝐸naive is too low—an
intuitive result.

Using the 𝑅𝐷𝐼 metric on the 𝑃𝐸MLE metric, one sees no errors for the ceftriaxone
conditions and 1 error in the ertapenem conditions.

Figure 4.19d shows that there exists a significance threshold for which 𝑝binomial only
yields one error in the ertapenem condition. Indeed, any threshold between 0.46 and
0.25 would suffice. However, using the traditional a prior threshold of 0.05, there are



168

E. coli K12,
MIC: ETP=0.012, CRO<1

E. coli UCLA#38,
MIC: ETP>4, CRO>32

E. coli UCLA#1,
MIC: ETP<0.5, CRO<1

K. pneumo UCLA#3,
MIC: ETP<0.5, CRO<1

K. pneumo UCLA#8,
MIC: ETP>8, CRO>32

E
T

P
C

R
O

25 50 75 100 125 25 50 75 100 125 25 50 75 100 125 25 50 75 100 125 25 50 75 100 125

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Duration of exposure (min)

F
ra

ct
io

n 
of

 w
el

ls
 in

 e
xt

ra
ce

llu
la

r 
st

at
e,

do
ub

le
−

co
un

t m
ix

ed
 p

op
ul

at
io

ns
Total Non−empty wells

0
5
10
15
20
25

0.25

1.00

4.00

16.00
Antibiotic dose (µg/mL)

Expected phenotype

Susceptible
Resistant

(a) Naive proportion of wells extracellular

E. coli K12,
MIC: ETP=0.012, CRO<1

E. coli UCLA#38,
MIC: ETP>4, CRO>32

E. coli UCLA#1,
MIC: ETP<0.5, CRO<1

K. pneumo UCLA#3,
MIC: ETP<0.5, CRO<1

K. pneumo UCLA#8,
MIC: ETP>8, CRO>32

E
T

P
C

R
O

25 50 75 100 125 25 50 75 100 125 25 50 75 100 125 25 50 75 100 125 25 50 75 100 125

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Duration of exposure (min)

P
ro

ba
bi

lit
y 

of
 ly

si
s,

 M
LE

 e
st

im
at

e

Total Non−empty wells

0
5
10
15
20
25

0.25

1.00

4.00

16.00
Antibiotic dose (µg/mL)

Expected phenotype

Susceptible
Resistant

(b) MLE of the death probability

E. coli K12,
MIC: ETP=0.012, CRO<1

E. coli UCLA#38,
MIC: ETP>4, CRO>32

E. coli UCLA#1,
MIC: ETP<0.5, CRO<1

K. pneumo UCLA#3,
MIC: ETP<0.5, CRO<1

K. pneumo UCLA#8,
MIC: ETP>8, CRO>32

E
T

P
C

R
O

25 50 75 100 125 25 50 75 100 125 25 50 75 100 125 25 50 75 100 125 25 50 75 100 125

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Duration of exposure (min)

R
D

I.p
e.

m
le

Total Non−empty wells

0
5
10
15
20
25

0.25

1.00

4.00

16.00
Antibiotic dose (µg/mL)

Expected phenotype

Susceptible
Resistant

(c) Relative difference index of death probability MLE. 𝑅𝐷𝐼 = 0 implies no change relative
to the control.

Figure 4.18: Beta-lactam susceptibility measured by digital filtration AST using six
susceptibility metrics.
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Figure 4.18: Beta-lactam susceptibility measured by digital filtration AST using six
susceptibility metrics (cont’d).
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Figure 4.19: ROC curves of the metrics used to call digital filtration AST.
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five errors. All five errors involve susceptible, treated conditions that failed to reach
significance. (Multiple hypothesis correction is not needed because the p-value is
being used as a real-valued classification metric, not as an actual probability of
wrongly rejecting a null hypothesis about a single statement.)

Examining the 𝛽 metric, perfect classification is so far possible for the ceftriaxone
conditions. Among the ertapenem conditions, there are two errors: a pair of
conditions (the 0.25 µg/mL ETP condition in Figure 4.8 and the 1 µg/mL ETP
condition in Figure 4.7a) whose 𝛽 would allow perfect classification if flipped.

Using the EC50 metric, it is still the case that one of the two strains contributing
to misclassification with the 𝛽 metric must be misclassified by any threshold. The
difference in the EC50 has narrowed, however, because the signal in the other treated
conditions of those experimental batches pulls the estimates of EC50 towards their
respective true directions.

There is high categorical agreement between digital filtration AST and the gold-
standard susceptibility call, as shown in Table 4.3. Only the EC50 had a maximum
accuracy less than 90%, and the error was slight (see first two panels from top left
in Figure 4.18f. With appropriate thresholds, no false positives occurred where a
resistant strain was called susceptible.

For comparison, FDA approval of commercial AST devices requires that the false
positive rate of susceptibility classification, also known as a very major errors
(VME), be <1.5%. The rate of false negatives, or major errors, should be <3%.
The overall categorical agreement should be >90%. (There are additional error
categories for when the predicted MIC differs by >2 fold.)

It should be noted that the experimental batch in Figure 4.8, the source of false neg-
atives outside of the 𝑃𝐸 metrics, was performed with the shortest exposure duration
of the comparable experimental conditions. If one were to restrict performance of
digital AST to greater than 30 minutes for ertapenem, then 100% agreement is seen.

Similarly, imposing a minimum exposure duration of 75 minutes for ceftriaxone
is suggested by the lag in antibiotic activity seen in bulk filtration AST results
in Figures 3.6h to 3.6l. This would technically result in 100% agreement for all
metrics. However, the uncertainty in that duration threshold is large because only 2
data points are currently available.

To definitively answer whether digital filtration AST is accurate enough for clinical
use, one would need to perform a proper clinical trial on one implementation of
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Susceptibility metric ETP CRO
𝑃𝐸naive 30/32 = 0.9375 22/24 = 0.9167
𝑃𝐸MLE 30/32 = 0.9375 22/24 = 0.9167

𝑅𝐷𝐼 (𝑃𝐸MLE) 13/14 = 0.9286 6/6 = 1.000
𝑝binomial (𝑃𝐸naive) 13/14 = 0.9286 6/6 = 1.000

𝛽 14/15 = 0.9333 6/6 = 1.000
EC50 6/7 = 0.8571 6/6 = 1.000

Table 4.3: Maximum categorical agreement of digital filtration AST applied to
unknown strains.

digital filtration AST, as done for FDA approval. However, the optimization of
digital filtration AST has not progressed to the point where a clinical trial would be
worth the time and resources. Nonetheless, as a proof of principle, digital filtration
AST can distinguish susceptibilities from low numbers of cells, and the accuracy
improves with longer exposure durations and increased inoculum.

4.6 Future work
One pre-requisite of digital filtration AST is knowledge of which taxon is present,
such that compatible NAA primers are selected. In future uses, taxon identification
could be obtained separately. Alternatively, the design of the NAA primers can
be chosen to yield information about taxon identity. The ability to identify taxa
is particularly important to distinguish susceptibilities of polymicrobial infections
when isolation during sub-culture is not performed. Theoretically, this could be
achieved during digital filtration AST by the choice of primers. Primers could ignore
known contaminant taxa (e.g., Micrococcus, coryneform bacteria) and only amplify
the most prevalent pathogen groups. Multiplexed primers or probes could be used
to measure the responses of several target taxa. Targeted taxa could include taxons
that are usually contaminants but occasionally pathogens, like coagulase-negative
Staphylococcus or Cutibacterium. In digital filtration AST, the well population
status outputs of each primer set can be analyzed independently. Thus, species
identification and polymicrobial infections do not pose an inherent limitation of
digital filtration AST. Further primer optimization is needed to achieve multiplexed
digital filtration AST, nonetheless.

Lysis efficiency is as low as 25% in certain experiment runs. While this lysis
efficiency can be estimated in future experiments (if the experiment run contains
one susceptible and treated condition and one untreated condition), the variability
should be a target of optimization.
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Once the digital filtration AST method is optimized, perhaps automated, exploration
of more pathogen taxa and antibiotic compounds can be done. There are likely
phenomena that interfere with filtration AST in other taxa not seen in the strains and
antibiotics so far tested. When more data is available, the susceptibility metrics’
performance can be evaluated with separate test and training sets.

Filtration is not the only separation that can be performed to achieve accessibility
AST. Centrifugation in particular is a simple method that will separate out both
host tissue and intact bacteria from freely-dissolved extracellular nucleic acids.
Centrifugation has two benefits over filtration: it is not limited by the buildup of
a filter cake, and the separation is easily reversible. Filtering a sample containing
diluted whole blood would quickly lead to clogged filters. The filtrate would be easily
interpretable, but limiting in quantity. Resuspension and clearing of the filter cake is
difficult to perform completely, while resuspension and sedimentation of a centrifuge
pellet can be repeated many times. Washing of the pellet to improve separation
efficiency is possible as it was in filtration. The drawback of centrifugation is
that physical manipulation of the supernatant may dislodge single cells that are
sedimented and not anchored to the bottom of the tube. In filtration, the single cells
were sometimes lost but never would appear in the filtrate to cause a background
signal (which is why filtration was pursued in the first place).
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Figure 4.20: Bulk centrifugation AST pharmacodynamics and background signal
is equal to that of bulk filtration AST. The gDNA was quantified using qPCR, then
converted to relative amount assuming a PCR efficiency of 2.

Figure 4.20 shows a bulk centrifugation AST where the same antibiotic exposure
was separated, then re-suspended to continue the exposure as a time sequence. A
replicate exposure that did not undergo centrifugation was incubated in parallel.
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The difference in feed fraction measurements was not significant. A small amount
of fresh media was added to the sequential exposure to keep the total volume the
same. Similar population dynamics are seen as measured in Chapter 3.
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C h a p t e r 5

THE IDEAL PHENOTYPIC ASSAY

A motivation of this thesis was to investigate the possibility (or impossibility)
of performing phenotypic AST on blood clinical specimens without culturing, with
respect to the number of bacteria present. It was posited by some that below a certain
number of cells, a sufficiently accurate phenotypic AST would be "impossible," in
some way. The discussion of impossibilities makes relevant the concept of an "ideal
assay." Using the colloquial definition of "ideal," one would conclude that an ideal
assay would be an assay that no other assay can perform better than, according to
some metric of performance or accuracy.

As one can see, the above question of finding the minimum necessary number of
cells contains much ambiguity in its framing, and the definition of an ideal assay
remains vague. Unfortunately, the existing literature contains neither a precise
definition of an ideal assay nor a relevant discussion of the theoretical limits of assays,
including those not yet designed. There are decades of literature from the fields of
clinical chemistry, laboratory medicine, analytical chemistry, and metrology on how
to empirically quantify or calibrate the performance of a given diagnostic test or
instrument, either in the hands of a specific operator or more generally for the average
operator in clinical settings. These existing concepts, frameworks, and statistical
techniques include the concepts as diagnostic sensitivity and specificity, lower limits
of quantitation and analytic sensitivity, and traditional statistics (e.g., confidence
intervals, regression, propagation of uncertainty, and hypothesis testing). The above
techniques are generally applied to the results of clinical trials, and each such
clinical trial only examines a single specific, static, and finalized implementation of
a diagnostic assay [59, 117]. I am not aware of published examples of quantitative
predictions or optimizations being made for the performance of a class of clinical
diagnostic assay through statistical modeling (with or without empirically measured
random error). These kinds of forward predictions and theoretical benchmarks
would be useful to engineers during the earlier stages of assay design, prior to
committing to a costly clinical trial.

This chapter first describes a definition of an ideal phenotypic assay that also serves
as a theoretical framework for analyzing assays. Although an attempt has been made
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to be precise, the definition will remain outlined mathematically at an informal level.
A comprehensive mathematical definition, derived from axiomatic set theory and
covering all conceivable phenotypic assays, lies outside the current scope of this
thesis.

Next, this chapter will apply the above theoretical framework definition to filtration
AST. The results of Chapter 3 are plugged into the model of filtration AST to predict
the performance of an ideal filtration AST as a function of the number of bacterial
cells initially present in the assay system.

Lastly, this chapter will compare the real results of digital filtration AST shown
in Chapter 4 to the predicted ideal results. Because the experimental results and
predictions are compatible, I conclude that the predicted ideal results provide a
relevant estimate for the minimum number of cells needed for a phenotypic filtration
AST, and that the deductive approach of predicting ideal assay performance can
provide a useful performance benchmark for engineers. The amount of data is
not sufficiently powerful to prove that my implementation of filtration AST has
indeed reached its ideal performance, but thus far, the data is compatible with such
a conclusion.

5.1 A mathematical framework for describing phenotypic assays
5.1.1 Defining assay performance as accuracy
An ideal phenotypic assay is one with the best performance. More specifically,
the invocation of a "performance" implies the existence of one or more metrics of
performance, also known as "figures of merit," such as speed, cost, shelf life, safety,
and accuracy. The existence of metrics of performance imply that each assay can
be located at a point in the space of the metrics of performance. One of the points
in the space may possess the highest desirable value for all of the metrics. Let us
call it the point of maximum metrics. If that point can be occupied by an assay,
then that assay is the ideal assay. But there may also be a region of the space,
surrounding and including the point of maximum metrics, that no assay can occupy,
except perhaps asymptotically. The boundary of this inaccessible region delineates
the limit of what is possible or impossible. This boundary, which is a set of related
assays differing likely by some trade-off in its parameters, then constitutes the set of
ideal assays.

The defining purpose of an assay is to provide information about a specimen’s
physical properties. Concerns such as speed or cost, though important in actual
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clinical practice, do not affect the scientific consideration of whether a human-
made assay is at all possible. Thus, in this thesis, only accuracy (decomposed into
diagnostic specificity and sensitivity) is used as a metric of performance.

Accuracy, as used above, refers to the ability to infer the physical property from
the assay results, while inaccuracy refers to the total amount of error accumulated
during the measurement process. This definition of accuracy is compatible with
the definition put forth by the International Organization for Standardization (ISO)
[147].

Other definitions of accuracy exist in the literature. In metrology, which is concerned
with the measurement of physical properties that have numerical (e.g., real number)
values, "accuracy" traditionally refers to the closeness of real-valued measurements
to a true value and related to systematic error. Accuracy is contrasted with the
"precision," which measures the spread within a set of measurements and is related
to random error. In the ISO definition, "precision" retains the definition above.
However, a different term, "trueness," refers to closeness to a true value, while
"accuracy" instead refers to the combination of trueness and precision. In clinical
diagnostics, "accuracy" of binary diagnostic tests refers to the total fraction of calls
made correctly. Specifically,

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 = 𝑆𝑁 × 𝑃𝑟𝑒𝑣 + 𝑆𝑃 × (1 − 𝑃𝑟𝑒𝑣), (5.1)

with 𝐴𝐶𝐶, 𝑇𝑃, 𝑇𝑁 , 𝐹𝑃, 𝐹𝑁 , 𝑆𝑁 , 𝑆𝑃, and 𝑃𝑟𝑒𝑣 standing for accuracy, true
positives, true negatives, false positives, false negatives, sensitivity, specificity, and
prevalence, respectively.

In the existing literature, the ideal performance of an assay has been described
in terms of the above definitions. First, in the metrological definition, the phrase
"ideal assay" is typically understood to refer to an assay with perfect accuracy and
precision; that is, always returning the exact true value of a variable in a non-dynamic
system with each repeated measurement, and with systematic and random errors of
0. In clinical diagnostics, the phrase "ideal assay" is typically understood to refer
to an assay with perfect sensitivity and specificity (and thus an 𝐴𝐶𝐶 of 1), with the
assay somehow maintaining that perfect performance in every imaginable real-world
context in which the assay is performed, such as for all possible prevalences of the
positive and negative cases. This is because the most common occurrence of the
phrase "ideal diagnostic" arises when discussing a receiver operator characteristic
curve that lies along the x and y-axes. Although the above definitions are viable
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definitions of an ideal assay, I believe they are not as useful as the more detailed
framework I am proposing herein when serving as benchmarks for assay designers.
Simply requiring the assay to possess perfect, oracular powers sets a benchmark that
is trivial, does not provide much insight into how to improve an assay, and does not
enable one to discuss different sources of error.

In this thesis, I adopt the ISO definition of accuracy and state that an assay relays
information about unknowable, theoretically-defined system variables (real-valued
or categorical) into a format understood by humans. An assay has higher accuracy
if it relays information with less ambiguity or uncertainty in the system variables’
values.

The Guide to Uncertainty in Measurement 2008 does list, in prose, ten different
potential sources of uncertainty in a measurement, but leaves the details to indi-
vidual scenarios and does not attempt to group these sources of uncertainty into a
mathematical framework as I have [148].

5.1.2 The use of ideal models and deductive reasoning
Philosophically, an ideal assay can exist only as an abstract concept. Any empiric,
experimental approach that evaluates assays by inductive reasoning cannot not define
a performance limit because the possibility will always exist for the assay to be
improved in some yet-undiscovered way. Conversely, the inability of anyone to
achieve a better assay accuracy in practice does not prove that a better assay will not
be attained in the future.

In contrast, deductive reasoning does offer a framework to discuss ideals. In deduc-
tive reasoning, one must assume a set of axioms and assumptions about the universe
or system in which the relevant assays operate. The assumptions and axioms (for
what is in the system and how they behave) constitute a model of the assay. Deduc-
tive reasoning leads one to conclusion of what is possible or impossible given the
model. An assay can then be called ideal among the conceivable assays that satisfy
the given assumptions. The model of the assay defines the scope of one’s inquiry,
so the modeler should make the minimally necessary assumptions to be useful. The
real world may often be more complex than our assumed system. If experimental
results deemed impossible by one’s model are subsequently demonstrated, it will be
because one of the assumptions of the model has been transcended.

For comparison, there are many examples of theoretical limits in the physical sci-
ences or engineering, such as the diffraction limit of microscopy, the Carnot effi-
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ciency for heat engines, and the time complexity of integer factorization by conven-
tional computers. All are defined (or conjectured, for the last example) by deduction
from assumed axioms (including values of physical constants), rather than by em-
pirical experiments. A given physical implementation of a microscopy, engine, or
computer may not reach the theoretical limit due to suboptimal design or additional
limitations of implementation not modeled. For example, most man-made combus-
tion engines—which unlike the Carnot engine need to provide high power—do not
approach their Carnot efficiencies. On the other hand, super-resolution microscopy
and quantum computers have or may surpass their above respective limits. They do
so by circumventing assumptions defining the operation of a traditional microscope
or a computer.

Conditioning on assumptions makes it necessary to discuss ideal assays only for a
given type of assay. For example, it is hard to define what is a universally ideal
assay for every imaginable real-world scenario, but it is possible to define an ideal
accessibility AST assay, an ideal digital filtration AST assay, an ideal live-imaging
AST assay, or an ideal bioassay for pharmacologic potency. Each ideal type of
assay is defined by the assumptions comprising one’s definition of that type of
assay. As an analogous example, engineers often compare the important classes
of combustion engine designs so far invented (e.g., spark-ignition, diesel, and gas
turbine) to corresponding models of their ideal thermodynamic cycles (e.g., the
Otto, Diesel, and Brayton cycles).

5.1.3 What is a phenotypic assay?
In this section, I will propose a unified, general definition for a phenotypic assay.
This definition naturally leads to a mathematical framework introduced in the next
section. It was my hope that this general definition and mathematical framework
would offer some clarity in the classification and invention of new diagnostics assays.

An "assay" is a procedure performed on a particular specimen that yields information
about the quantity, or presence, of some property or quality of that specimen.
Meanwhile, the dictionary definition of a "phenotype" is "the sum total of the
observable characteristics of an individual," the individual usually being a biological
organism whose observable traits are being contrasted with an underlying, causal
genotype [149].

In contrast with the usage of "phenotype" in genetics, the term "phenotypic assay"
does not yet have an established, unified definition in the scientific literature, even
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though the term is widely used and generally understood by those in the life sciences.
A quick search of any publication database will show that the phrase "phenotypic
assay" or "phenotypic test" has been applied to several kinds of assays. The three
most established usages of the phrase are the phenotypic ASTs, phenotypic screen-
ings for drug discovery, and tests for human genetic disorders. In each of these
three cases, the term "phenotypic assay" was coined to contrast with an alternative,
existing "non-phenotypic" assay.

The non-phenotypic alternative to phenotypic AST is a genotypic AST, where the
possession of a resistance gene in an organism’s genome is used to conclude that a
microorganism is resistant to an antimicrobial compound. (See Chapter 1.)

In the field of drug discovery, a phenotypic screening examines a large library of
small molecules or natural products for a desired physiologic effect on cultured cells
or whole organisms [150–152]. The non-phenotypic alternative to the phenotypic
screening is a target-based screening [153]. A target-based screening measures
the effect of the candidate chemicals on (often purified) components of a specific
molecular pathway (e.g., binding affinity to an protein, affect on enzyme activity,
or even translation of a reporter construct) known to be relevant to the desired
physiologic effect.

Lastly, a phenotypic test for a genetic disorder generally involves measuring a
deficiency in an enzyme’s activity in a clinical specimen (e.g., circulating blood
cells or liver biopsy) or a human individual (e.g., the sweat test for cystic fibrosis
[154]). The non-phenotypic alternative for diagnosing a genetic disorder would be
the sequencing of the presumed causal gene—from any somatic genome-containing
clinical sample—to identify a known or predicted disease-causing allele.

Some careful deliberation reveals at least five distinct conceptual themes running
through the above three usages of the term "phenotypic." Not all themes are shared
by all cases, however. Only the themes that are shared in all cases should be part of
the unified definition of "phenotypic," unless there is also a compelling distinction
shared by the cases without the theme that can justify their being excluded.

5.1.3.1 The phenotype as genotype expression

First, notice that the original meaning of the word "phenotype" from the field of
genetics is present in the phenotypic AST and phenotypic tests for genetic disorders.
In this sense, the phenotype is the word describing all traits of an organism that
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arise from the expression of genetic information—that is, via transcription and
translation of genes, and subsequent interaction of the gene products. It would
be tempting to define phenotypic assays using the Central Dogma of molecular
biology and using the contrast with sequencing-based diagnostic assays. However,
this first attempt at a definition would exclude the phenotypic screenings for drug
discovery because genetic variation is not the cause of the phenotype of interest
measured in a pharmacological assay, and because target-based screening does not
use sequencing. Yet, there are still many aspects of drug discovery assays that seem
"phenotypic," like their being agnostic to mechanism or their focus on function, and
a better definition would capture these aspects.

5.1.3.2 The phenotype as the properties of biological life

A second theme, broadening the first, is that the above examples all include living
organisms as potential specimens: bacteria in AST, animals in drug screening, and
humans in certain diagnostics tests. A second attempt at defining a phenotypic
assay would thus require a phenotypic assay to be performed on a living organism.
This is the definition offered in Swinney 2013 [150]. The definition of biological
life most widely used recognizes several criteria that life fulfills, namely 1) main-
tenance of homeostasis through the metabolic extraction of environmental energy,
2) responsiveness to the environment, and 3) reproduction, with any heritable traits
subject to evolution. Additionally, biological life achieves these criteria by being
highly organized and complex, being organized as cells with a plasma membrane,
being comprised of a small finite number of macromolecular polymer classes (tra-
ditionally the carbohydrates, lipids, proteins, nucleic acids, and various secondary
metabolites), and using only nucleic acids as their genetic material.

However, specimens that are not living organisms can still be analyzed by a pheno-
typic test. For example, certain phenotypic tests for genetic disorders are performed
on extracts derived from biological specimens. As specific examples, glucose-6-
phosphate dehydrogenase (G6PD) deficiency is diagnosed by enzyme activity in
red blood cell lysates, and routine newborn screening for lysosomal storage diseases
assesses enzyme activity in dried blood spots. The extract specimens were once
living but now are non-living1. Yet these tests have been rightfully deemed more
phenotypic than the contrasting genotypic test, at least in the way they are agnostic
to mechanism.

1Should the definition of biological life be stretched to include extracts as living? In general we
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Furthermore, using biological life to define a phenotype conflates all of the properties
of life with the concept of the phenotype, but not all properties of life are necessary to
define the concept. For the above examples, I believe the only2relevant part of their
specimens’ biological nature is biological life’s responsiveness to environmental
perturbations.

5.1.3.3 The phenotype as system behavior

From the above discussion, we arrive at another attempt at a definition. All of the
above phenotypic assays involve measuring some sort of response to a perturbation
or behavior3. In AST, the response is death from antibiotics. In genetic testing,
the response can be the catalysis of an added substrate. In drug discovery, the
perturbation is the addition of the candidate compound, and the response is any of
the diverse read out technologies employed so far.

We can further refine what we mean by the terms response and behavior by renaming
them as a transformation. There must be a state the system is in. If after a
perturbation, the system remains in the same state, it has not responded. Taking
the contrapositive, if the system does respond, it must be in a new state. Thus, the
system must occupy at least two states, one before and one after the perturbation.
Occupying a sequence of different states is a transformation. Furthermore, because
there is an order to the states, one being before the transformation and one being
after, the transformation can be said to be dynamic, or changing over some notion
of time.

Intuitively, we would like our definition of a phenotypic assay to exclude all assays
that only measure the quantity (or presence) of an analyte at one point in time

consider cellular extracts to be non-living because they do not maintain homeostasis or reproduce
without interventions that are indistinguishable from attempting to resurrect the original cells, which
would be considered living.

2The maintenance of homeostasis is generally not required; as an example, bacteria that die during
antibiotic exposure in a phenotypic AST have failed to maintain homeostasis by definition. Neither
is population growth required for many phenotypic assays. The concept of being more complex or
more organized are subjective terms that would require definitions of their own. Meanwhile, the
particular structure and composition of extant biological life may turn out to be a coincidence rather
than fundamental physical law—a hypothesis testable by bio-orthogonal synthetic polymers or by
any discovery of alien life.

3The Merriam-Webster Dictionary similarly defines behavior either as "anything that an organism
does involving action and response to stimulation" or "the way in which something functions or
operates." Here, I use "behavior" interchangeably with any response to the environment. Similar
terms include "function" and "physiology." The Oxford English Dictionary defines "physiology" as
"the functional processes of an organism, organ, or system."
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because these assays do not measure a non-trivial "behavior." In such assays, the
specimen is assumed to be stable over time and structurally homogeneous. Clinical
examples would include the majority of assays measuring serum ions, metabolites,
or proteins, often through immunoassays or other photometric assays using dyes.
Non-clinical examples would include all of the elementary measurements in analyt-
ical chemistry or physics, such as gravimetric mass balances, volumetric pipettes,
photometry and spectroscopy, and measuring physical dimensions with calipers.
The majority of the examples of measurements given in the GUM, and in the liter-
ature on analytical chemistry and clinical chemistry, focus on assays making these
simplifying assumptions.

However, we must be careful in which transformations we consider to be a behavior.
For example, performing a titration to measure the amount of acid in a solution
is not a phenotypic assay, but the specimen of acid is transformed by the addition
of known amounts of base, and the indicator dye must transform in color. As
another example, consider the enzyme-linked immunosorbent assays or the lateral
flow assay for urine human chorionic gonadotropin (hCG), a well-known clinical
diagnostic test for pregnancy. These antibody-based tests transform the specimen by
binding the target protein to antibodies, yet we do not generally consider the bound
analyte to have exhibited an interesting behavior. The example of protein binding is
particularly relevant because it is sometimes the modality used in target-based drug
screenings.

In these assays lacking specimen transformation, the lack of dynamics in the model
does not impact assay accuracy, other than any specimen degradation from improper
storage or excessive delays. In contrast, phenotypic assays require, or at least benefit
from, acknowledging and modeling the dynamical changes in the assayed specimen
during the assay.

5.1.3.4 The phenotype as a dynamic transformation

As a refinement of our definition of a phenotypic assay, let us only include those
assays whose specimen’s transformation is influenced by the specimen system’s
internal dynamics, and where these internal dynamics are captured in the measure-
ment. A volumetric titration for acid does not measure the kinetics of the reaction
between the base and the acid, only the endpoint equilibrium concentrations. For
that (and other reasons discussed later), we tend not to call the acid-base titration a
phenotypic assay. Meanwhile, a phenotypic broth microdilution AST usually does
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not involve an explicit time series measurement, but the fact that all wells begin
without visible turbidity acts as a de facto time series measurement. Thus, the
internal dynamics of the system, the population growth of the bacteria, is observed
by the assay.

Unfortunately our definition is too broad, even with this requirement for an observed
transformation. As a specific example, note that some target-based drug screens
involve measuring the activity of an enzyme over time in response to the perturbation
of substrate addition. Since the system is transformed, and the dynamics of the
transformation are observed, this assay would be phenotypic. Thus, the existence
of a behavior or observed dynamic transformation should be part of an eventual
definition of a phenotypic assay, but not the sole criterion.

As a even more problematic example, some target-based drug screens include live
cells in their specimens. These cells may not be the correct target tissue but
have incorporated a recombinant genetic construct allowing the activity of the
target molecule to be quantified while the cells is alive (e.g., fluorescent protein
expression) or after the cells are killed (e.g., luciferase activity). The activity of the
target molecule is compared to pre-perturbation baseline levels (and/or to negative
controls). This use of cells fulfills all the criteria we have examined thus far:
possessing a phenotype caused by gene expression, being biologically alive, and
responding to a perturbation in a way that is measured. However, there is something
less phenotypic than a phenotypic drug screen on a whole animal. In a cell-based,
target-based screen, the living cells are not the system of interest, but are part of the
readout method. Furthermore, the mechanism of the phenotype is known, because
the underlying genetic construct was designed by humans to be orthogonal to any
preexisting natural process in the living cells. Two additional themes are suggested
by this example and some previous examples.

5.1.3.5 The phenotype as an empirical measurement

A fourth theme of phenotypic assays is their empirical design. In this thesis, we
use "empirical" to describe a measurement that is made in a manner agnostic to
any theory or model, apart from models defining the property itself, about the
specimen’s inner workings, nature, or behavior, especially where the inner workings
are expected to differ between specimens4. The definition of phenotypic screens

4The Oxford English Dictionary defines "empirical" as describing something "that pursues
knowledge by means of direct observation, investigation, or experiment (as distinct from deductive
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for drug discovery given by Moffat et al. 2017 also hinges on being agnostic to
mechanism [151].

The alternative to an empirical measurement of a phenotype would be to deductively
infer the phenotype via a mechanistic model after making measurements of other
properties that are not the objective of the query and therefore not part the phenotype,
even if those other properties influence or cause the phenotype.

When an assay is designed to be empirical, it is implied that the designer’s available
mechanistic models are expected beforehand not to adequately predict the specimen’s
behavior. The anticipated surprises in one’s specimen’s behaviors arise either from
an incomplete or incorrect model of the system, from the existence of multiple
plausible distinct mechanisms for the system, or both.

For systems where there is only one true mechanism in existence, more knowledge
about the system will eventually and asymptotically reduce the probability of un-
known phenomena toward zero. Very few biological specimens have completely
known ontologies—that is, knowledge about all components, their properties, and
their interactions. Even though "multiomics" studies and systems biology models
have become popular, it is still common practice in scientific research to always
assume that unexpected phenomena are present in the system one studies. In other
words, in the life sciences, the remaining hyperbolic doubt about the completeness
of the system’s ontology is treated as non-zero by convention, requiring one to
control for any such factor when performing assays on biological systems. As of
2023, no living organism I am aware of has been fully explained to the point where
the community believes its ontology has been completed. This explains why it is
intuitive to associate phenotypic tests with those performed on living specimens.

For some systems, it is further known (or just assumed) that there exists more than
one true mechanisms that could be present in the set of relevant specimens and
which can produce the phenotype in question, in addition to the possibility of yet
unknown mechanisms. Further studies of this class of specimens will not reduce to
zero the uncertainty of which mechanism will be present in a given specimen.

reasoning, abstract theorizing, or speculation); that relates to or derives from this method of pursuing
knowledge. Later also: relating to or espousing empiricism as a methodology" [155].

The use of "empiric" is synonymous with the later form "empirical." The meaning of "empiric"
in empiric antibiotic therapy, used in Chapter 1, is a separate, more specific meaning: "of medical
practice or a medical treatment: based on experience of the outcome of previous cases; based
on clinical judgement or diagnosis; (in later use) not dependent upon the results of laboratory
investigations or formal clinical trials" [155].
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In all three examples of AST, drug discovery, and genetic testing, more than one
true mechanism was anticipated. In AST, the same species of bacterium can achieve
beta-lactam resistance through acquisition of beta-lactamases, acquisition of efflux
pumps, mutations in porins, or mutations in their penicillin-binding proteins. A
phenotypic AST would detect resistance regardless of which genes and which alleles
are responsible for the resistance.

Similarly, the range of what we consider a single genetic syndrome can be caused by
a diversity of mutations that cause different levels of severity. The mutations may be
in different genes whose products acting at different steps in the same biochemical
pathway. There may also be alleles in other pathways that interact with the main
causal pathway to modulate the overall phenotype. A phenotypic test, instead of
genotyping, may be required in clinical practice in order to make a firm diagnosis.

An additional example of an assay that is not empirical is the lateral-flow hCG
pregnancy test. This test can give false positives due to ovarian or testicular tumors
and molar pregnancies instead of true, viable pregnancies, indicating that it is not a
phenotypic test5.

The agnostic nature of the empirical assay, considered in isolation, increases the
accuracy of an empirical assay in detecting phenotypes. If only one mechanism
is being detected by a non-empirical assay, but there exists a diversity of plausible
internal mechanisms that can produce the phenotype desired, then some specimens
possessing the phenotype will be missed by the non-empirical assay. In contrast,
the empirical assay would have a non-zero chance at detecting all specimens with
the phenotype. However, whether an empirical assay is overall more accurate than
a corresponding non-empirical assay depends on other reasons for inaccuracy. For
example, if an empirical measurement incurs higher instrumental measurement noise
than a non-empirical measurement, and the non-empirical measurement detects a
mechanism that is highly predominant, the non-empirical measurement may be more
accurate.

5There is no phenotypic test for pregnancy. The operational/definitive test for pregnancy is the
delivery of a living child. An alternative test is a prenatal ultrasound. This test fulfills the criteria
of relevance and empirical measurement because it directly addresses the question of whether a
pregnancy is present, and because the principle of ultrasound is agnostic to the different variations of
fetal implantation and development that still constitute a pregnancy. Whether the third criterion is met
is debatable. There is an inherent use of time, in that the specimen—the mother and fetus—is required
to transform—by the fetus growing in size—for at least 7 weeks so that the ultrasound interpretation
is unambiguous. However, if one narrows the scope of what is considered the ultrasound test to
only the operation of the ultrasound machine, then, like most non-functional imaging studies, the
ultrasound is not phenotypic.
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There is a special case in the above comparison of empirical and non-empirical assay
accuracy. If the phenotype is defined operationally6by the assay, then by definition,
the chance of detecting all specimens becomes one. One can then conclude generally
that the empirical phenotypic assay is always more accurate than a non-empirical
assay. For example, the MIC, breakpoint MICs, and susceptibility phenotypes of
bacteria are defined operationally by the gold standard phenotypic ASTs, so these
phenotypic ASTs are by definition always correct, even though the shortcomings of
in vitro phenotypic ASTs has been debated for decades [156, 157].

In summary, I define a phenotypic assay as one fulfilling the following criteria.

• Relevant: The quantity (or nominal) value [159] of the property of a specimen
measured by the assay exactly answers the question asked by the assay’s user.
The measured property is not a proxy or a marker for another property of
more fundamental interest to the user.

• Empirical: The property can be measured empirically—that is, agnostic to
any model about the specimen’s behavior.

• Dynamic: The specimen undergoes a dynamic transformation, such as by
changing over time or by responding to a perturbation. Though not required
by my definition, most specimens considered to possess a phenotype undergo
a transformation that is complex in some way. The transformation may even
vary stochastically.

Clinical examples of phenotypic assays thus defined, beyond those discussed above,
include the interferon-gamma release assay for tuberculosis exposure and recently
reported assays that detect sepsis by neutrophil mobility [160]. Diagnostic proce-
dures performed on intact human individuals to measure their metabolic activity or
other biological phenomena, like functional imaging studies (e.g., PET and fMRI),
drug pharmacokinetic studies, and hormone challenges (e.g., oral glucose tolerance
and cortisol tests), also count as phenotypic assays, even though we do not usually
call them assays. More examples of phenotypic assays can be found in research

6A physical property is defined operationally when its definition is based on a standard physical
operation. The idea comes from a school of thought called operationalism, "a form of positivism
which defines scientific concepts in terms of the operations used to determine or prove them" [158].
An operationalist would not define temperature as the theoretical average kinetic energy of atoms in
a specimen. Instead, he or she would define temperature by the mechanisms of different types of
thermometers that could be constructed.
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settings, sometimes under the term "bioassay." These include the LD50 assays in
toxicology, EC50 assays in pharmacology, assays for metabolic activity, and other
laboratory experiments one can perform on cultured tissues or organisms.

Interestingly, our definition of a phenotypic test now extends to entities that are
not biological, like man-made machines. Our discussion may have been motivated
by the life sciences, but it is now generally accepted that no fundamental physical
property, other than the particular organization assumed by biological life, separates
biological life and organic matter from dead, non-living, or inorganic substances7.
Therefore, activities such as measuring the real-life performance of a computer’s
processor, the charge capacity of a lithium ion battery over its lifetime, or even
measuring the Young’s modulus of a bar of metal alloy can all be considered
phenotypic assays.

5.1.4 All phenotypic assays can be modeled as four mappings
Modeling constitutes an inherent aspect of understanding a natural phenomenon.
Some level of mathematical modeling also anchors any reliable analysis of an assay’s
results in real-world practice. It is thus valuable to further define the phenotypic
assay in terms of mathematical entities beyond the semantics of the previous section.

The definition of a phenotypic assay suggests that any conceptual model of a phe-
notypic assay should comprise at least four mappings: a transformation mapping 𝐹
between system variables; a measurement mapping 𝐺 from system variables (and
measurement parameters) to measurement outcomes, a input error mapping 𝐽 from
system inputs (a subset of the system variables) to measured inputs, and a classifier
mapping 𝐻 from measurement outcomes to assay conclusions. These mappings
will be described in the following sections.

Figure 5.1 depicts this framework of four mappings applied to two models used
in Chapters 3 and 4. Table 5.1 shows how all models used in this thesis can be
organized according to this framework.

7The alternative theory of vitalism, which stated that living organisms and organic matter
possessed a special quality, would require that separate physical laws govern organic matter. Yet in
all cases examined, the existing laws for inorganic matter have been found to be sufficient. Thus,
the acceptance of only one set of physical laws is demanded by the principle of parsimony. The
observation that life only arises from previous life is merely a temporary cosmic circumstance that
synthetic biology may one day refute.
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Figure 5.1: Phenotypic assays can be modeled as four mappings.

5.1.4.1 The transformation mapping 𝐹: definition

The transformation mapping 𝐹 : T×X→ X takes as input a time variable 𝑡 ∈ T and a
set S, with size |S|, of system variables 𝑋1 ∈ X1, 𝑋2 ∈ X2, . . . , 𝑋𝑖 ∈ X𝑖, . . . , 𝑋|S| ∈
X|S|. The set X =

∏|S|
𝑖=1 𝑋𝑖 = X1 × X2 × · · · × X|S| is called the system space, and

it is the collection (here specified as an ordered tuple) of the sets of all the possible
values of the system variables 𝑋𝑖. The output of the mapping is a new set of values
of each 𝑋𝑖 in X.

At this general level, the variables 𝑋𝑖 may each be discrete, continuous, categorical.
Likewise, the time variable 𝑡 ∈ T can be discrete (T = Z+) or continuous (T = R+)—
whichever is appropriate for the phenotypic assay being discussed.

The system variables can be grouped into categories—namely, the system input
variables, the system parameters, and the system state variables—based on their
role in the model.

Some system variables have values not determined by the system state but rather by
an external force, the experimenter. Their value may (or may not) vary over time.
We will call the set𝑈 of these variables the system input variables, or system inputs.
The Cartesian product of the domains X𝑖 of the variables in 𝑈 is U, and a vector in
U will be denoted 𝑢. If all the variables in 𝑈 are real-valued, then we can simply
say 𝑢 ∈ R|𝑈 |.

Some system variables have constant values that do not change over time, and are
not set by an experimenter. We will call the set of these system variables the system
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parameters 𝜃𝐹 . The Cartesian product of the domains X𝑖 of the variables in 𝜃𝐹 is
named Θ𝐹 . If all the variables in 𝜃𝐹 are real-valued, then we can say Θ𝐹 = R|𝜃𝐹 |.

Some system variables describe an aspect of the system that changes over time, but
are not input variables because they are not controlled externally. Rather, they only
change in response to other system variables, including the system input variables.
As the system changes over time, different combinations of these changing system
variable values are assumed. We call these combinations of values a state. More
specifically, a state is one combination of values of a minimum set of system variables
required to predict future states by summarizing sufficient information about the past
history of the system and its inputs. The subset Sstate of the system variables in S
whose values form the system states are the system state variables8. The subset
Xstate =

∏
𝑋𝑖∈Sstate 𝑋𝑖 of the system space X is called the system state space.

In phenotypic AST, relevant system state variables would include the number of
types of cells (e.g., live, dead, arrested) or molecules; and the attributes of each cell,
like age, size, ancestry, expression of genes, and spatial location in the specimen.
Or, as another example, the state variables could just be the total biomass.

The categories of variables 𝜃𝐹 ,𝑈, andSstate are now three disjoint subsets ofS. In the
literature on dynamic systems, these three categories are usually defined separately.
I have given a name to them altogether as "system variables" in order to emphasize
how an entity in one category (e.g., system parameter) in one system may move to
a different category (e.g., system input variable or system state variable) in another
system. For example, if antibiotics were added during the antibiotic exposure by
the experimenter, then the added antibiotic concentration would become a system
input variable. If the bacteria create enzymes to degrade antibiotics, then the total
antibiotic concentration would need to be a system state variable.

In my definition, 𝐹 is the update rule of a dynamic system9 tracing a trajectory
through the state space X because of the presence of the time variable. A dy-

8Any remaining system variables would be those that change over time, are not input variables,
but are not necessary to predict future states. We could call these variables "alternative system state
variables," and we could swap them with some system state variables to create a reparameterized
model. Or, we could just ignore them and not include them in our model.

9Specifically, 𝐹 as we have defined implies a Markovian dynamic system, as the next state 𝑋𝑡0
does not depend on all previous states, only the previous state. In practice, I believe the Markov
assumption will not be noticeably restrictive because non-Markovian dependence on a finite number
of multiple previous states 𝑋𝑡−1 , 𝑋𝑡−2 , ... can be redefined as Markovian dependence on a single
previous state 𝑋 ′

𝑡=−1 that is a higher dimensional combination of the 𝑋𝑡−1 , 𝑋𝑡−2 , .... If the system
state is non-Markovian, with its evolution depending on all past states, further generalization of this
definition can be done. In this thesis, I am only covering the high-level framework.
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namic mapping is useful for modeling the transformation of a phenotypic assay
because most biological specimens exist in space-time, and so their behaviors and
transformations take place over time, not instantaneously.

𝐹 may be deterministic, where each system state maps to one subsequent system
state, or 𝐹 may be stochastic, where the system state maps to one of several possible
new system states according to a probability distribution. Whether one uses ordinary
differential equations or stochastic differential equations/processes to model the
evolution of the system state is up to the assay in consideration and may require
additional restrictions on the nature of 𝑋𝑖 or 𝐹 (e.g., measurability) to be rigorously
defined. A vast literature exists detailing how to model dynamical systems across
many academic fields, and it should be consulted for determining the appropriate
form of 𝐹.

The most familiar dynamic systems are those involving ordinary differential equa-
tions. In these cases, the mapping 𝐹 is a smooth flow, with 𝑋 (𝑡) = 𝐹 (𝑋 (0)).
Differentiating the flow with respect to time, and separating S into 𝜃𝐹 , 𝑈, and
Sstate, yields an ordinary differential equation 𝑑𝑋

𝑑𝑡
= 𝐹′(𝑡, 𝑥, 𝑢, 𝜃𝐹). When 𝐹 does

not change over time, then we can write 𝐹 as the familiar time-invariant state space
model 𝑑𝑋

𝑑𝑡
= 𝐹′(𝑥, 𝑢, 𝜃𝐹).

Another useful dynamic system are those modeled as discrete time difference equa-
tions. In these cases, the mapping 𝐹 can be the transition to the next state, or 𝐹 can
be the overall transition after several time steps. The latter case essentially becomes
an ordinary differential equation as the time step tends toward 0.

The takeaway of this rather general overview of systems modeling is that it will
be good practice for anyone studying diagnostics to model any dynamic behaviors
exhibited by the specimens of their assay.

5.1.4.2 The input error mapping 𝐽: definition

It is common to use information about the system inputs𝑈 in calculations during the
analysis of the outcomes 𝑌 (defined in the next section 5.1.4.3) of a measurement.
In the literature, 𝑈 is typically assumed to take on the exact values intended by the
assay user. However, a more general approach is to assume some amount of error
in the control of the inputs to the assay. In keeping with the philosophy of section
5.1.4.4, and with the convention in statistics literature10, we assume that the system

10An alternative would be to model the true input values as the outcome of a function of the
target input values. In real life, this framework appeals because we conceptualize the target value
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receives a true input value, which are the values of the system input variables in
𝑈, but that we only know and record the values of "measured input variables" (or
just "measured inputs") 𝑈target ∈ U after the intervention of an input error mapping
𝐽 : U × Θ𝐽 → U, such that 𝑈target = 𝐽 (𝑈, 𝜃𝐽). The symbol 𝜃𝐽 represents a set of
variables called the input error parameters. Each variable 𝜃𝐽𝑖 has a domain Θ𝐽𝑖, and
the combination of their domains I have denoted as Θ𝐽 : Θ𝐽 =

∏|𝜃𝐽 |
𝑖=1 Θ𝐽𝑖.

Models whose independent or input variables are assumed to be recorded with error
are known in the statistics literature as "measurement error models" or "errors-in-
variable models." In this thesis, to avoid confusion with the measurement mapping
defined in section 5.1.4.3, I refer to errors in the system input variable as input errors.

5.1.4.3 The measurement mapping 𝐺: definition

The measurement mapping𝐺 is a model for the measurement process accomplished
by instruments and sensors. 𝑀 can be deterministic or stochastic.

A deterministic measurement mapping can be defined as a function 𝐺 : X ×Θ𝐺 →
Y. This function takes as input the system variables 𝑋𝑖 in S and a set 𝑀 of
measurement parameters 𝜃𝐺1 ∈ Θ𝐺1, . . . , 𝜃𝐺𝑘 ∈ Θ𝐺𝑘 , . . . , 𝜃𝐺 |𝑀 | ∈ Θ𝐺 |𝑀 |, where
|𝑀 | is the number of variables (a.k.a. parameters) in 𝑀 . For brevity, we let
Θ𝐺 =

∏|𝑂 |
𝑘=1 Θ𝐺𝑘 = Θ𝐺1 × Θ𝐺2 × · · · × Θ𝐺 |𝑂 | be the measurement output space

of all possible combinations of measurement output variable values. 𝐺 outputs
a set 𝑂 of measurement output variables 𝑌1 ∈ Y1, . . . , 𝑌 𝑗 ∈ Y 𝑗 , . . . , 𝑌|𝑂 | ∈ Y|𝑂 |,
where Y 𝑗 is the set of all possible values variable 𝑌 𝑗 can assume, and |𝑂 | is the
number of measurement output variables. For brevity, I denote Y =

∏|𝑂 |
𝑗=1𝑌 𝑗 =

Y1 × Y2 × · · · × Y|𝑂 | to be the measurement output space of all combinations of
all the possible measurement output variable values. The vector 𝑌 ∈ Y with |𝑂 |
components represents one particular assay outcome. Similarly, 𝜃𝐺 ∈ Θ𝐺 are the
parameter values of one assay outcome.

A stochastic measurement mapping can be defined as a probability distribution over
Y parameterized by inputs S and 𝑀 , denoted as 𝑌 ∼ 𝐺

(
𝑋1, . . . , 𝑋|S| |𝜃1, . . . , 𝜃 |𝑀 |

)
.

In this more general stochastic case, the inputs can potentially map to multiple
members of Y. To clarify, the current state will map to one particular measurement
output, and the probability of mapping to each possible output has a probability
according to 𝐺. It is common to assume that random measurement errors account

as existing before the true value is realized. However, I have chosen to use the opposite direction,
where the target values are a function of the true value.
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for much of an assay’s stochasticity. Thus, the stochastic form for 𝐺 is appropriate
in many cases. For example, the most frequently seen form of 𝐺 for continuous
outputs, in my experience, is a linear regression with normal error:

𝑌 ∼ Normal (mean = 𝛽0 + 𝛽1𝑋1, sd = 𝜎) (5.2)

In this case, 𝑌 = R, Θ𝐺 = R3, 𝑀 = {𝛽0, 𝛽1, 𝜎}, 𝜃𝐺1 = 𝛽0, 𝜃𝐺2 = 𝛽1, and 𝜃𝐺3 = 𝜎.

The measurement outcome variables represent the directly measured quantities
produced by a measurement technology. In practice, it is often the case that the
physical quantity measured is not literally the values of 𝑋𝑖, but a correlated quantity
from which an estimate of the true value of 𝑋𝑖 will eventually be inferred. In different
wording, the outcomes in Y are generally in different units of measurement than
are natural for describing variables in X. For example, in microscopy-based AST
assays, the system state variables 𝑋𝑖 in Sstate may include the numbers, sizes, ages,
and ancestry of cells in an antibiotic exposure. The system input variables𝑈 would
include the time each frame is imaged. The measured input variables𝑈target are the
recorded timestamps of the images, while the measurement output parameters 𝜃𝐺
will include microscope settings like gain and total magnification. The measurement
outcome variables𝑌 𝑗 in𝑀 are a matrix of pixel intensities. Alternatively (see section
5.1.4.6), the measurement output variables can be some subset of the numbers, areas,
ages, and ancestry of cells inferred by an image processing software.

In a fluorimetric assay measuring the production of a fluorescent metabolic byprod-
uct such as resorufin (from resazurin), the system input variables𝑈 may include the
elapsed time, the volume of the exposure, the initial living biomass, and the initial
concentration of resazurin. The system parameters 𝜃𝐹 would include the rate of
resazurin conversion per unit biomass and other pharmacodynamic or population
dynamic parameters. The system state variables 𝑋𝑖 in Sstate would include the total
living biomass at a given time and the concentration of resorufin at a given time. The
measured input variables𝑈target are the target values of exposure duration, exposure
volume, initial resazurin concentration, and (unless the clinical specimen’s biomass
is not measurable) initial biomass. The measurement output parameters 𝜃𝐺 would
include the fluorescence per unit of resorufin and the autofluorescence of the chosen
growth media. The measurement outcome variable 𝑌 𝑗 in 𝑀 would be a relative
fluorescence unit measured by a camera.
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5.1.4.4 The system state is unobservable, while the measurement outputs
and measured inputs are observable

In some cases, it is hard to decide whether a variable belongs to the system variables
or is part of the measurement. I propose that the criteria for membership in the
system are 1) being shared across all measurement technologies in use and not
particular to one type of measurement technology, and 2) being an quantity defined
by a theoretical model and purported to exist in reality, as opposed to a value that is
objectively manifest in a measurement device.

For example, in filtration AST, the nucleic acid amplification reaction could be
considered part of the system. However, the purity of reagents and the primer
designs can be altered at will. PCR reactions can be repeated on the same sample
later on to create replicates. Furthermore the same antibiotic exposure could be
analyzed by a different measurement technology than PCR. Thus, it is more useful to
model phenomena seen in PCR measurements as part of the measurement mapping.
In contrast, the antibiotic exposure of cells in media prior to filtration is shared by
all phenotypic AST measurement technologies, being the optimal conditions for any
phenotypic AST. So, any entity present in that exposure is a system variable. The
bacteria assayed are by definition obtained from the wild, and so their characteristics
cannot be engineered beforehand.

Autofluorescence of media is a property of a chemical substance, and so it could
be considered a parameter of nature. However, it is a quantity that appears only
when an antibiotic exposure is subjected to an artificial excitation beam during
the measurement process. Furthermore, it is not a relevant quantity when, say,
a microscale cantilever is used as the measurement technology. Therefore, media
autofluorescence is a measurement output parameter rather than a system parameter.
On the other hand, the amount of resazurin and resorufin are not relevant in other
measurement technologies, so they could be considered measurement output param-
eters as well. However, the substrate molecules were physically introduced into the
exposure, where they exist and dynamically interact with the cells. Regardless of
whether a fluorescent measurement is made or what excitation wavelength is used,
any physical effect of the redox dyes on the growth of the cells will exist. Any such
effect would also influence non-fluorescent measurements of the system. I would
therefore model the amount of resazurin and resorufin as system variables.

The second criteria reveals an important property separating the system variables
from the measurement outputs and measured inputs: observability. In this frame-
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work for phenotypic assays, humans can only observe and record the measured
outcome variables 𝑌 𝑗 , never the system variables 𝑋𝑖. By definition, any attempt to
observe the system state simply generates measured outcomes. The true values of
the system state are inherently unknowable and only defined by a chosen model for
the system.

Though the nature of measurements and their relationship to theory is an active
philosophical topic, the stance used above (that the true value of a physical quality
is inherently unknowable, and only approximately estimable by measurements) is
the prevailing view in practice [159]. It is adopted by the BIPM (International
Bureau of Weights and Measures), the international governing metrology body, and
it underlies the traditional statistical tools we use to quantify uncertainty [161].

I believe it is important to further recognize and separately consider the stochas-
ticity caused by the system from the stochasticity of the measurement technology.
Doing so requires defining the system transformation mapping separately from the
measurement mapping, as we have done here. The alternatives to this choice would
be to consider the measurement stochasticity as caused by either the system only or
by the measurement only. In my experience, it is more common in the literature to
assume that the system evolves deterministically, if dynamics are even considered,
and then to model all variability as being due to measurement error (e.g., 5.2).

There are precedents in the literature for separating the system and measurement
stochasticity. An example of separating system and measurement stochasticity
is found in the state-space model paradigm [162] for analyzing time series data,
commonly used in control theory, economics, and ecology. State-space models are
hierarchical statistical models that take on the following form:

𝜕x(𝑡)
𝜕𝑡

= Ax(𝑡) + Bu(𝑡) + w

y(𝑡) = Cx(𝑡) + Du(𝑡) + v
(5.3)

where x ∈ R𝑛 is the state vector; u ∈ R𝑝 is the input or control vector; y ∈ R𝑞 is the
output vector; and 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑝, 𝐶 ∈ R𝑞×𝑛, and 𝐷 ∈ R𝑞×𝑝 are the state (or
system), input, output, and feedthrough matrices. To model stochasticity, Weiner
or Gaussian processes w and v are included, making the equations into stochastic
differential equations.

State-space models are a special case of the general phenotypic assay framework
described herein. The term "state-space model" traditionally implies the use of
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continuous stochastic dynamical systems like Gaussian or Weiner processes, for
which elegant algorithms for inference, like the Kalman filter, have been derived.
Phenotypic assays may be nonlinear or non-Gaussian however, which is the motiva-
tion to generalize the framework describing them in this Chapter. Each part of the
traditional state-space model can be understood to correspond to a part of the general
phenotypic assay framework. Specifically, the elements of A, B, and w are system
parameters; the components of x are the system state variables; and the components
of u are the system input variables. Together, A, B, x, w, and u are the system
variables 𝑋𝑖 in the set of system variables S. The state-space model output vector y
corresponds to the output variables 𝑌 𝑗 in the general framework. The elements of
C and v are the measurement output parameters 𝜃𝐺 in 𝑀 . The feedthrough matrix
D if often assumed to be zero and was not included in my framework. If included,
they would best be part of 𝜃𝐺 . Although D and 𝐽 both transform the system inputs,
they are not equivalents because the measured inputs should not be added to the
measurement outputs.

As an aside, there is a concept, definitional uncertainty11, which should not be
confused with the above concept of the system’s unobservability. The current BIPM
framework (since the 3rd edition of the International Vocabulary of Metrology12)
uses an "Uncertainty Approach," where error and uncertainty represent different
concepts [159]. Within the Uncertainty Approach, it is assumed that a range13of
true quantity values exists due to uncertainty in one’s definition or model of the
quantity. For example, in measuring the diameter of a sample cylinder, the sample
may not be perfectly cylindrical, and the diameter may be defined as a range of values
between the maximum inscribing and minimum circumscribing circles [161]. Thus,
multiple diameter values will arise during measurement that fit the definition of the
true value. The width of the range of true values is a definitional uncertainty.
The definitional uncertainty may be further compounded by additional uncertainties
during the measurement process. In my framework, the inherent stochasticity of
the natural system is an additional uncertainty compounded to the uncertainty of

11Definitional uncertainy is defined as a "component of measurement uncertainty resulting from
the finite amount of detail in the definition of a measurand" and "the practical minimum measurement
uncertainty achievable in any measurement of a given measurand" in the BIPM’s International
Vocabulary of Metrology [159]

12The preceding "Error Approach" assumed that a single true quantity value existed, and that
systematic measurement error could be defined as the difference between one’s (mean) measurements
and the one true quantity value.

13An exception is that fundamental constants of nature, like the Planck constant, can be assumed
to have a single true quantity value.
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the true value. Definitional uncertainty of a specimen system is not part of my
framework. The confusion may arise because both concepts are used to discuss
forms of uncertainty that cannot be reduced by improved measurement technologies.
(See section 5.1.5.)

5.1.4.5 The classification mapping 𝐻: definition

The classification algorithm 𝐻 : Y × U × Θ𝐻 → C, also called14 a classifier, a
hypothesis, or a prediction rule, is a function that takes in the measurement output
variables and returns a classification outcome or assay conclusion. The measurement
outputsY and measured inputsU from the measurement mapping above now serve as
an input space containing all possible examples or instances that can be classified.
Let 𝜃𝐻 be a set of classification parameters, and let Θ𝐻 stand for the combined
domain of the parameters in 𝜃𝐻 , as done earlier for 𝜃𝐹 , 𝜃𝐺 , and 𝜃𝐽 .

C is a set of discrete classification values such as "positive" and "negative," either
unordered or ordered, that represents all possible classification outcomes. We will
denote a particular output of 𝐻 as the variable 𝐶. The value of 𝐶 is denoted
𝑐 ∈ C. While often binary, C can have more categories, such as "susceptible,"
"intermediate," "resistant," and "error" for phenotypic AST. If C is real-valued, then
𝐻 is called a regression, especially when 𝐶 represents a property of a real entity.
Because clinicians are most concerned with taking discrete actions based on test
results, most real-valued diagnostic test results (e.g., units of a substance in serum)
end up being interpreted using thresholds or other guidelines to form categorical
outcomes (e.g., "within normal limits," "abnormal.") Therefore, I will assume that
C is categorical in the remainder of this thesis.

Most of the classifiers used in this thesis involve the calculation of a real-valued
metric or score. This metric is then compared to a threshold 𝜆 to make the final
classification call. Thus, for convenience, I will define a intermediate classification
metric ℎmetric ∈ R that is the output of a metric function 𝐻metric : Y×U×Θ𝐻metric →
R. The metric ℎmetric is then transformed by the thresholding function 𝐻thresh :
R × Θ𝐻 thresh → C to the final classification call 𝐶 = 𝑐. 𝜃𝐻 has been split into
𝜃𝐻metric and 𝜃𝐻 thresh, with respective domains of Θ𝐻metric and Θ𝐻 thresh. In the

14The discussion herein is compatible with the framework and terminology of decision theory
and the Probably Approximately Correct (PAC) learning model [163, 164], specifically the Agnostic
PAC model with generalized loss functions [165]. Note that the PAC framework is one of several
overlapping mathematical formulations of the learning task, of which classification is a subclass, that
have been put forth in the machine learning literature.
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examples in this thesis, 𝜃𝐻metric are all the classification parameters except for the
threshold 𝜆, and 𝜃𝐻 thresh is simply {𝜆}.

For the remainder of this section, the measured input variables𝑈 will be understood
to be part of the measurement outputs 𝑌 . Both sets of variables are treated the same
by 𝐻, and this notational shortcut will improve readability.

In our context of supervised classification, we assume that every specimen assayed
by a phenotypic assay possesses a correct classification that the assay user wishes to
know. Let 𝑦 ∈ Y be one instance of the measurements from one assayed specimen,
and let 𝑐 ∈ C be the correct classification of 𝑦. To adopt the more general Agnostic
PAC model, we allow that two instances 𝑦1 and 𝑦2 have the same value in Y (i.e.,
𝑦1 = 𝑦2), yet their correct classifications may differ (i.e., 𝑐1 ≠ 𝑐2).

Let the sample or test set Stest = {(𝑦1, 𝑐1), . . . , (𝑦 𝑗 , 𝑐 𝑗 ), . . . , (𝑦𝑁test , 𝑐𝑁test)} be a set
of 𝑁test labeled specimen measurement instances in Y × C. The test set Stest is
drawn from a domain set Y × C according to a distribution D. Formally, D is a
mapping from 𝐴, a𝜎-algebra ofY×C representing events, to the interval [0, 1] ⊂ R.
The joint distribution D describes the probability Pr(𝑦) of 𝑦 arising from Y (i.e.,
being drawn into Stest) times the probability Pr(𝑐 |𝑦) that 𝑦 carries label 𝑐, since
Pr(𝑐, 𝑦) = Pr(𝑐 |𝑦)Pr(𝑦) by the laws of probability. The distribution D is unknown
in practice to the learning algorithm and the assay user.

The purpose of the function 𝐻 is to output classifications 𝐻 (𝑦) ∈ C of 𝑦 that match
the correct classification 𝑐 as often as possible, in some way. A classifier 𝐻 that
makes correct classifications often is said to perform well. Mathematically, the
performance of 𝐻 on a single instance to be classified is defined by a loss function
ℓ : H × Y × C → R+ that reflects the (non-negative) difference between the true
classification and the predicted classification. Better performing classifiers exhibit
smaller losses. H is the "hypothesis class," the domain of the possible classifiers, a
set which is chosen beforehand by the practitioner in the PAC framework. The choice
of H determines the extent of overfitting, and whether learning is even possible (as
described by PAC theory).

The performance of 𝐻 on a set of instances to be classified is measured by a
risk function, also called an error function [164, 166]. When considering the
performance of 𝐻 in classifying the theoretical true population of instances Y, the
risk function is called the generalization risk or generalization error 𝑅(𝐻) : H→ R+,
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defined as
𝑅(𝐻) = E

(𝑦,𝑐)∼D
[ℓ(𝐻, 𝑦, 𝑐)] . (5.4)

When considering the performance of 𝐻 against a randomly drawn test set Stest, the
risk function is called the empirical risk or empirical error 𝑅̂(𝐻) : H→ R, defined
as

𝑅̂(𝐻) = 1
𝑁test

𝑁test∑︁
𝑗=1
ℓ(𝐻, 𝑦 𝑗 , 𝑐 𝑗 ) (5.5)

If the instances of Stest is drawn independently and identically distributed by D,
then the generalization risk is the expectation of the empirical risk:

𝑅(𝐻) = E
Stest

[𝑅̂(𝐻)] (5.6)

Furthermore, it is sometimes useful to define the conditional (generalization) risk
𝑅(𝐻 |𝑦) for a particular observation 𝑦 as follows:

𝑅(𝐻 |𝑦) = E
(𝑐 |𝑦)∼D

[ℓ(𝐻, 𝑦, 𝑐)] (5.7)

=
∑︁
𝑐

ℓ(𝐻, 𝑦, 𝑐)Pr(𝑐 |𝑦). (5.8)

The overall generalization risk can be written as the conditional risk averaged over
all possible observations: 𝑅(𝐻) =

∫
Y
𝑅(𝐻 |𝑦)Pr(𝑦)𝑑𝑦.

As with loss functions, better performing classifiers exhibit smaller risks. One can
therefore define an "ideal classifier," a concept discussed later in the next section
5.1.5, that has the minimal possible risk over Y. In fact, for our definition of
the phenotypic assay, the accuracy performance metric discussed in section 5.1.1
should be synonymous with the risk functions defined in this section. Whether the
generalization or empirical risk function is used as a performance metric depends
on whether one is discussing an ideal assay or an actual assay, respectively.

There are a number of logical choices for a loss function depending on one’s
application. The squared error loss function ℓSE(𝐻, 𝑦, 𝑐) = (𝐻 (𝑦) − 𝑐)2 is the most
commonly used loss function for regression (and sometimes classification), thanks
to its mathematical convenience. The hinge loss is another loss function used in
machine learning. For classification tasks, the simplest and an intuitive loss function
is the 0-1 loss function that records the number of errors of any kind. The 0-1 loss
function is

ℓ0-1(𝐻, 𝑦, 𝑐) = 1(𝐻 ((𝑦) ≠ 𝑐) =


0, if ℎ(𝑦) = 𝑐

1, if ℎ(𝑦) ≠ 𝑐.
(5.9)
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The corresponding generalization and empirical risks are, respectively,

𝑅0-1(𝐻) = E
(𝑦,𝑐)∼D

[1(𝐻 ((𝑦) ≠ 𝑐)]

= Pr
(𝑦,𝑐)∼D

[𝐻 (𝑦) ≠ 𝑐]

= D((𝑦, 𝑐) : 𝐻 (𝑦) ≠ 𝑐)

(5.10)

and

𝑅̂0-1(𝐻) =
1
𝑁test

𝑁test∑︁
𝑗=1

1(𝐻 ((𝑦) ≠ 𝑐) (5.11)

In many decisions in clinical practice, making an incorrect call of a false negative
(or a false positive) causes worse consequences than making the complementary
call. Thus, one can consider a "weighted 0-1 loss function":

ℓ0-1,weight(𝐻, 𝑦, 𝑐) =


0, if ℎ(𝑦) = 𝑐

𝑤𝐹𝑁 , if ℎ(𝑦) = Neg and 𝑐 = Pos

𝑤𝐹𝑃, if ℎ(𝑦) = Pos and 𝑐 = Neg,

(5.12)

where "Pos" and "Neg" are the elements of C = {Pos,Neg} representing positive
and negative classifications, and 𝑤𝐹𝑁 , 𝑤𝐹𝑃 ∈ R+ so that ℓ remains non-negative.

To choose𝐻, the engineer can either assume a class of functions from first principles
and/or use a learning algorithm to find improved classifiers, possibly after training on
a set Straining ∈ Y × C of known instances. How to further characterize, implement,
assess, and choose learning algorithms is a topic addressed by the large body of
literature on statistical machine learning [167], which I will not cover here.

For the purposes of this thesis, I wish to point out the following conclusions of how
the classification algorithm fits into the proposed framework for phenotypic assays.
First, all phenotypic assays inherently include a classification algorithm as the final
step of the assay, up to the trivial case where the measurement outcome space Y
is equal (or isomorphic) to the classification space C. (See the next section 5.1.4.6
for an explanation.) Secondly, the performance of the classification algorithm is
necessarily a component of the overall assay’s performance and must be considered
by anyone involved in assay development. I believe that future engineers will find
it helpful to conceptually modularize the contribution of assay errors due to data
analysis apart from the physical, "hardware" limitations from the system or the
measurement technology. The hardware and analysis components of an assay are
optimized, after all, by separate sets of techniques and literature.
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5.1.4.6 The boundary between the measurement mapping and the
classification algorithm is subjective

Data obtained by measurement technologies often undergoes processing to reduce
dimensionality and/or to smooth out random noise. It is the task of the modeler to
decide how much data processing is modeled as part of the measurement or the final
analysis algorithm.

For example, in digital filtration AST, the first transduction of the measurement
technology are the electronic signals from the sensors of the BioRad QX200 ddPCR
droplet reader device I used. Although proprietary and not seen by humans, if
these signals were digitized, they would be the first human-readable numbers during
the measurement process. These voltage changes are segmented and converted
at least to two-channel fluorescence intensities of individual droplet detections,
as displayed by the proprietary software. Droplets outside of pre-set tolerances
are discarded. Then, a thresholding is performed to denote positive and negative
droplets. Next, the counts of positive and negative droplets are used to calculate a
nucleic acid concentration. The outcomes of any of these steps could be considered
the measurement outcome variable𝑌 , and the subsequent steps considered part of the
classification algorithm. In Chapter 3, I modeled the measurement outcome variable
to be the nucleic acid concentration. Modeling the droplet counts would also have
been a conveniently simple choice for 𝑌 . In Chapter 4, I modeled the measurement
outcome variable as the well population status tallies, but could have also modeled
nucleic acid concentrations or droplet counts. The alternative choices for 𝑌 would
be more complex to model due to their higher dimensionality. Continuing with the
filtration AST example, C = {Susceptible,Resistant}, and the choices of 𝐹 include
the metrics of section 4.5.1.

Although there is subjectivity in separating the measurement mapping and the
classification algorithm, I believe modeling and discussing the two mappings as
two modules is the most useful generalization as the engineering optimization of
the measurement hardware and the statistical analysis software are performed in
different contexts (e.g., stages of bringing an assay to market) using different skill
sets.
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5.1.5 The ideal phenotypic assay is defined by minimizing all controllable
sources of stochasticity

As stated at the beginning of this chapter, an ideal phenotypic assay is one with the
highest accuracy. Since an assay comprises only the four mappings 𝐹, 𝐽, 𝐺, and 𝐻,
the overall inaccuracy of a phenotypic assay arises from the ambiguities introduced
by these four mappings15. In other words, the assay error is some composition of
the stochasticity of the system evolution in 𝐹, the stochasticity of input error from
𝐽, the stochasticity of measurement error during 𝐺, and the accuracy (in the binary
diagnostic sense) of the classification algorithm 𝐻. Specifically, inaccuracies or
errors arise when multiple system variable values can map to the same measured
input or measurement output, or when measurement outputs can map to multiple
final classifications.

Whether the inaccuracy created during a mapping can be minimized depends on
whether the mapping is controllable by humans. In the measurement mapping 𝐺,
all the components of the measurement technology are controlled by humans. We
design and manufacture the measurement technology to reduce uncertainty in its
specification, and we set the measurement input parameters that set the controlled
system variables. In practice, there is always stochasticity and ambiguity in mea-
surements due to random errors. But the notion of an ideal assay asks us to make
the unrealistic assumption that with infinite human resources and ingenuity, the
measurement uncertainty will tends towards zero. When the measurement technol-
ogy has no uncertainty, the measurement technology will be one-to-one mappable
to each system variable, such that the measurement space and the system space
become the same entity up to isomorphism. In other words, in an ideal assay, the
measurement space is simply the system space, as if the latter were magically know-
able to humans. Similarly, the input error mapping 𝐽 can theoretically be reduced
to the identity function in an ideal assay.

In transformation mapping 𝐹, the assayed system contains some variables in S that
humans can influence, namely the system input variables𝑈. By our definition,𝑈 is
not perfectly set by humans, but as the input errors asymptotically approach zero,
𝑈 will approach 𝑈target. But other components, such as the biological properties of
the bacteria and their stochastic response to antibiotics, are derived from the "wild"
and/or cannot logically be controlled by humans. Thus, biological stochasticity and

15As a reminder, I am ignoring definitional uncertainty (see section 5.1.4.4) created by the finite
amount of detail in the definition of the system variables.
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any ambiguity it generates cannot be engineered away, even in an ideal assay.

For the classification algorithm mapping 𝐻, there are two benchmarks relevant to
ideal performance. In a perfect classification, all instances are correctly classified.
However, if the same instance of measurement outputs can be labeled with more
than one true classifications, as in the Agnostic PAC model, then the measurement
outputs are not perfectly separable, and a perfect classification is not possible on
average when using the same classifier. Instead, classifiers must find a balance
between bias (underfitting) and variance (overfitting). Balancing bias and variance
is indeed a primary pre-occupation of anyone implementing a classier in the real
world. Nonetheless there is a benchmark performance for an ideal classifier that
can be defined, the Bayes optimal classifier, even when a perfect classifier cannot
be realized.

The Bayes optimal classifier 𝐻∗ is the classifier that possesses the minimal possible
(technically, the infimum) expected risk given the distribution D, which can be
proven to be of the form shown in equation 5.14. In practice, one cannot know
whether one’s classifier is a Bayes classifier because one does not know the nature of
D. Only samples of the distribution can be observed as training data. Nonetheless,
the concept serves as a general benchmark and is important in deriving bounds on
the total error [168]. Furthermore, in the ideal case, the domain of 𝑌 and how
it is generated is presupposed to exist, so the ideal classifier performance can be
calculated explicitly. For example, we do so in the next section, 5.2.

When one uses the 0-1 loss function, the corresponding Bayes optimal classifier
simply chooses the most likely classification. In the vocabulary of binary clinical
diagnostics, the Bayes optimal classifier with 0-1 loss maximizes the accuracy 𝐴𝐶𝐶
and the positive predictive value (𝑃𝑃𝑉) metrics.

𝐻∗
0-1(𝑦) = arg max

𝑐∈C
Pr(𝑐 |𝑦) (5.13)

In the general case with arbitrary loss function ℓ, the Bayes optimal classifier (also
known as the Bayes decision rule in decision theory) will choose the classification
that incurs the lowest conditional generalization risk (𝑅 |𝑦) for each encountered 𝑦,
thereby minimizing the overall generalization risk 𝑅(𝐻) of the classifier:

𝐻∗(𝑦) = arg min
𝐻 (𝑦)∈C

∑︁
𝑐

ℓ(𝐻, 𝑦, 𝑐)Pr(𝑐 |𝑦) (5.14)

To summarize, a phenotypic assay is an ideal phenotypic assay if and only if all the
following properties apply:
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• The number of uncontrolled system state variables is minimized to the extent
that can be logically justified, but some variables will remain uncontrolled.

• The system input variables are identical to the measured input variables,
indicating perfect control over the inputs.

• The measurement space is equal (up to isomorphism) to the system state space.
In other words, there is no measurement error and no loss of information about
the system state.

• The classification algorithm is a Bayes optimal classifier for the system
state/measurement space, with respect to some reasonable loss function.

• The assay’s generalization risk, with respect to the chosen loss function, is
minimized.

5.2 Calculation of the ideal performance for the accessibility AST assay
We now can apply our definition of the ideal phenotypic assay to answer the question
of what the ideal performance of accessibility AST should be.

We define an ideal accessibility AST assay and its component variables, fix the
constant system variables to our best estimates of their values for relevant strains,
and arrive at a function whose level set in the state space represents the ideal assay
performance.

5.2.1 Defining the assay system and model scope
For simplicity, we will assume the no-births model for the system described in
section 4.4.1. The system comprises the time variable 𝑡 ∈ T,T = R+; two non-
negative integer state variables, 𝐷 and 𝐿, in the state space X = 𝑍+ × 𝑍+; seven
constant real-valued parameters 𝐿0, 𝑘 , 𝛼, 𝛽max, 𝛾, EC50, and antibiotic dose 𝐴; and
an indicator parameter 𝑐 for the true susceptibility phenotype class. (The parameter
𝐴 was previously denoted [𝐴𝑏𝑥].) 𝐷 [𝑡] is the number of dead cells at time 𝑡, and
𝐿 [𝑡] is the number of live cells at time 𝑡. The parameter 𝐿0 ∈ Z+, the inoculum, is
the number of live cells at time 0, and also the total number of cells at any time 𝑡:
𝐿0 = 𝐿 [𝑡] + 𝐷 [[𝑡] = 𝐿 [0]. We assume no dead cells are present at time 0. Thus,
𝐿0 sets the initial conditions for the dynamics of the state variables.

Only one end-point measurement is made at time 𝑇 ∈ R+ to reflect the protocol used
for the available digital filtration AST data. Analysis of time-series filtration AST,
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in which information about population dynamics is available, will be left for future
work.

The variables 𝑇 , 𝐴, and 𝐿0 are controlled or assumed given, although 𝐿0 is not
actually controllable in real life filtration AST. The three variables are the system
input variables. In this ideal assay system, the system input variables are all constant.
Furthermore, no live or dead cells are re-introduced from outside the system after
the exposure has begun, so there is no need for system input variables representing
such immigration or emigration processes.

The phenotypic class 𝑐 takes on the values in the set C = {Pos,Neg}, where "Pos"
denotes "Resistant" and "Neg" denotes "Resistant." For each value of 𝑐, there is
a value of the EC50 denoted by EC50 [𝑐], with EC50 [Neg] < EC50 [Pos]. In this
section we will assume the two values of EC50 [𝑐] are a given constants. The
remaining parameters are defined the same way as in Chapter 3.

For convenience, I will often group together the nine non-state system parameters
(𝐿0, 𝐴, 𝑇 , 𝑘 , 𝛼, 𝛽max, 𝛾, EC50), or a subset of them depending on context, together
under the symbol 𝜃.

The transformation mapping 𝐹 is thus a stochastic mapping where the joint distri-
bution of 𝐷 and 𝐿 is multinomially distributed, and equation 4.25 (derived from
ODEs in section 3.3) and equation 4.26 govern the state evolution to time 𝑇 . (The
equations are repeated below for clarity.)

𝐿, 𝐷 |𝜃 ∼ Multinomial (size = 𝐿0, prob = (𝑆[𝜃], 1 − 𝑆[𝜃])) (5.15)

𝑆[𝜃] = 𝑒−𝑘𝑇𝑄 [𝛼, 𝛽𝑇] (5.16)

𝛽 =
𝛽max𝐴

𝛾

EC50 [𝑐]𝛾 + 𝐴𝛾
. (5.17)

The marginal distribution of 𝐿 (and of 𝐷) is binomial. For convenience we will only
discuss 𝐿 in the remainder of this chapter. Let us denote the cumulative probability
density function (CDF) of 𝐿 as a function 𝐹𝐿 , and the complementary CDF as 𝐹𝐿:

𝐹𝐿 [𝐿; 𝜃] =
𝐿∑︁
𝑙=0

(
𝐿0
𝑙

)
𝑆[𝜃] 𝑙 (1 − 𝑆[𝜃])𝐿0−𝑙 (5.18)

𝐹𝐿 [𝐿; 𝜃] = 1 − 𝐹𝐿 [𝐿; 𝜃], (5.19)

The probability mass function (PMF) of 𝐿 will be denoted

𝑓𝐿 [𝐿; 𝜃] =
(
𝐿0
𝑙

)
𝑆[𝜃] 𝑙 (1 − 𝑆[𝜃])𝐿0−𝑙 (5.20)
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5.2.2 Deriving the ideal classifier
Since this is an ideal assay, the measurement output space Y is the same as the
state space X, the measurement mapping 𝐺 can be ignored as it is trivially the
identity function, and the classification mapping could be written 𝐻 : X→ C. For
consistency, however, we will continue to denote 𝐻 in terms of Y.

To complete the ideal assay, the choice of the classification function 𝐻 must be an
ideal classifier. When using the weighted 0-1 loss function, the ideal classifier can
be shown to take the form of a scalar threshold. Starting from equations 5.12 and
5.14, we see that

𝐻∗(𝑦) = arg min
𝐻 (𝑦)∈C

∑︁
𝑐

ℓ0-1,weighted(𝐻, 𝑦, 𝑐)Pr(𝑐 |𝑦) (5.21)

= arg min
𝐻 (𝑦)∈C


0 · Pr(𝑐 = Neg|𝑦) + 𝑤𝐹𝑁 · Pr(𝑐 = Pos|𝑦), if 𝐻 (𝑦) = Neg

0 · Pr(𝑐 = Pos|𝑦) + 𝑤𝐹𝑃 · Pr(𝑐 = Neg|𝑦), if 𝐻 (𝑦) = Pos

(5.22)

=


Neg, if 𝑤𝐹𝑁 · Pr(𝑐 = Pos|𝑦) < 𝑤𝐹𝑃 · Pr(𝑐 = Neg|𝑦)

Pos, if 𝑤𝐹𝑁 · Pr(𝑐 = Pos|𝑦) ≥ 𝑤𝐹𝑃 · Pr(𝑐 = Neg|𝑦)
(5.23)

=


Neg, if 𝑤𝐹𝑁

𝑤𝐹𝑃
<

Pr(𝑐=Neg|𝑦)
Pr(𝑐=Pos|𝑦)

Pos, if 𝑤𝐹𝑁

𝑤𝐹𝑃
≥ Pr(𝑐=Neg|𝑦)

Pr(𝑐=Pos|𝑦)

(5.24)

where 𝑦 ∈ Y will be replaced16 by the random variable 𝐿 |𝜃 in our specific model,
and where we have arbitrarily chosen "Pos" to be the output in the case of equality17.
Note how 𝑐 ∈ C denotes both a system variable and the true classification label.
Meanwhile, 𝐻 (𝑦) ∈ C denotes the final assay output.

Equation 5.24 states that the ideal classifier for the weighted 0-1 loss function
simply checks if the likelihood ratio Pr(𝑐=Neg|𝑦)

Pr(𝑐=Pos|𝑦) of the classes is above or below the
threshold of 𝑤𝐹𝑁

𝑤𝐹𝑃
, which varies from 0 to ∞+. It is unknown, however, whether

there are multiple thresholds that are crossed as 𝑦 = 𝐿 |𝜃 varies, because the terms
for Pr(𝑐 |𝑦) have not yet been defined from this ideal assay model. The term for
Pr(𝑦 |𝑐) = Pr(𝐿 |𝑐, 𝜃), however, is defined in equations 5.15–5.17, and it is the
binomial PMF of equation 5.20. Therefore, the Pr(𝑐 |𝑦) terms can be factored using
Bayes’ Theorem and simplified to one unknown parameter—the prior distribution

16Notation not used in order to ease page formatting.
17An "Inconclusive" classifier output is also possible in practice, but setting boundaries for such

an output introduces details not necessary for the theoretical aims of this thesis.
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Pr(𝑐), also called the prevalence, for the frequency of the labels.

Pr(𝑐 |𝐿, 𝜃) = Pr(𝐿 |𝑐, 𝜃)Pr(𝑐)∑
𝑐 Pr(𝐿 |𝑐, 𝜃)Pr(𝑐) (5.25)

=

𝐿0!
𝐿!(𝐿0−𝐿)!𝑆[𝜃]

𝐿 (1 − 𝑆[𝜃])𝐿0−𝐿 Pr (𝑐)∑
𝑐

𝐿0!
𝐿!(𝐿0−𝐿)!𝑆[𝜃]

𝐿 (1 − 𝑆[𝜃])𝐿0−𝐿 Pr (𝑐)
. (5.26)

Alternative factorizations of Pr(𝑐 |𝐿, 𝜃) would not circumvent the fact that Pr(𝑐) is
not known. Note that

∑
𝑐 Pr(𝑐) = 1 by Kolmogorov’s second axiom of probability

[169].

The algebraic form for the argument of equation 5.26 is that of a |C|-dimensional
logistic function of 𝐿, except only at the points where 𝐿 is an integer. For clarity,
consider the equation when 𝑐 = Pos:

Pr(𝑐 = Pos|𝐿, 𝜃) =

(
𝑆[EC50 [Pos],𝜃]

1−𝑆[EC50 [Pos],𝜃]

)𝐿
𝜅𝑐=Pos(

𝑆[EC50 [Pos],𝜃]
1−𝑆[EC50 [Pos],𝜃]

)𝐿
𝜅𝑐=Pos +

(
𝑆[EC50 [Neg],𝜃]

1−𝑆[EC50 [Neg],𝜃]

)𝐿
𝜅𝑐=Neg

(5.27)

where 𝜅𝑐 = Pr(𝑐) · (1 − 𝑆[EC50 [𝑐], 𝜃])𝐿0 are terms constant with respect to 𝐿.
Since the survival likelihood ratio terms (the bases of the exponentiation by 𝐿) are
non-negative, 𝐻∗(𝐿 |𝜃) is always a monotonic function with respect to 𝐿. Similarly,
the likelihood ratio Pr(𝑐=Neg|𝑦)

Pr(𝑐=Pos|𝑦) is also a monotonic exponential function with respect
to 𝐿:

Pr(𝑐 = Neg|𝑦)
Pr(𝑐 = Pos|𝑦) =

(
𝑆[EC50 [Neg], 𝜃]
𝑆[EC50 [Pos], 𝜃] × 1 − 𝑆[EC50 [Pos], 𝜃]

1 − 𝑆[EC50 [Neg], 𝜃]

)𝐿
×

(
1 − 𝑆[EC50 [Neg], 𝜃]
1 − 𝑆[EC50 [Pos], 𝜃]

)𝐿0

× Pr (𝑐 = Neg)
1 − Pr (𝑐 = Neg) (5.28)

Thus, our ideal model’s classification algorithm always take the form of a indicator
function with a single threshold 𝜆 for 𝐿. We can calculate, in terms of the parameters
𝜃, the optimal threshold value 𝜆∗ ∈ R for 𝐿 for our ideal classifier by substituting
the integer 𝐿 with the real-valued 𝜆∗ in equations 5.24 and 5.28, then solving for 𝜆∗

and only keeping real solutions.

𝜆∗ =

log
(
𝑤𝐹𝑁

𝑤𝐹𝑃
× 1−Pr(𝑐=Neg)

Pr(𝑐=Neg) ×
(

1−𝑆[EC50 [Pos],𝜃]
1−𝑆[EC50 [Neg],𝜃]

)𝐿0
)

log
(
𝑆[EC50 [Neg],𝜃]
𝑆[EC50 [Pos],𝜃] ×

1−𝑆[EC50 [Pos],𝜃]
1−𝑆[EC50 [Neg],𝜃]

) . (5.29)
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The optimal classifier for our ideal assay model, with the weighted 0-1 loss function,
can now be written as:

𝐻∗(𝐿 |𝜃) =


Neg, if 𝐿 > 𝜆∗

Pos, if 𝐿 ≤ 𝜆∗.
(5.30)

It is tempting to envision thresholds for 𝐿 as elements ofY = {0, 1, . . . , 𝐿0−1, 𝐿0} ⊂
Z+, like 𝐿. However, note that the domain of 𝜆, as I prefer to define it, is continuous
and unbounded, while 𝐿 is discrete. So, 𝐿 will rarely exactly equal 𝜆, and the
behavior of 𝐻 (𝐿 |𝜃) will contain discontinuous jumps caused by 𝐿’s discrete nature.
Encoding these discontinuities into the definition of the threshold 𝜆 is possible by
using the floor function so that 𝜆 ∈ Y, but the complexity does not seem to yield
additional insights than the formulation above.

Furthermore, in some regions of its parameter space, 𝜆∗ lies outside of the interval
[0, 𝐿0] and cannot be reached by 𝐿 in our system, where reaching 𝜆 means to be
able to assume a value that is greater than and a value that is less than 𝜆 since 𝐿 do.
Specifically, there are asymptotes when the two survival probabilities become equal
to each other, or either one approaches 0 or 1. Extreme values of 𝑤𝐹𝑁

𝑤𝐹𝑃
or Pr(𝑐=Pos)

Pr(𝑐=Neg)
can also send 𝜆∗ out of the range of 𝐿. The optimum threshold in these cases should
be capped at either 0 or 𝐿0, respectively, if 𝜆 were to be defined with a domain
Y. Lastly, When 𝑆[EC50 [Neg], 𝜃] = 𝑆[EC50 [Pos], 𝜃], the optimum threshold is
degenerate as any threshold would yield the same poor assay performance.

5.2.3 Summarizing free parameters
At this point, 𝐻∗(𝐿 |𝜃) remains a multidimensional function with at least thirteen
arguments: three system input variables of interest (𝑇 , 𝐴, 𝐿0); seven pharmaco-
dynamic parameters (𝑘 , 𝛼, 𝛽max, 𝛾, EC50 [Pos], EC50 [Neg], 𝑐); the loss function
weights (𝑤𝐹𝑁 , 𝑤𝐹𝑃); and the prevalence Pr(𝑐).

Showing all possible instances of 𝐻∗(𝐿 |𝜃) with multiple free parameters could be
achieved with an interactive visualization software, capturing all the trade-offs made
necessary by the model’s mathematical structure. However, to more easily discuss
and visualize 𝐻∗, and to make the static figures featured in subsequent sections, it is
insightful to examine the function behavior only along a small subset of dimensions
at a time. To reduce the dimensions or our analysis, we summarize and collapse
certain parameters to interpretable constant values.

The pharmacodynamic parameters in 𝑆[𝜃] that are not assumed to be specific to the
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strain are 𝛼, 𝛽, 𝛾, and 𝑘 . These are held constant at the fitted values from the bulk
filtration experiments in Table 3.3.

In choosing the strain EC50 values, the two values must be chosen to yield in-
terpretable conclusions. There exist several reasonable choices for the values of
EC50 [𝑐] to represent the susceptible and resistant classes. First, one could choose
the two closest values to challenge the ideal assay with the worst case scenario. In
the currently accepted paradigm of the minimum inhibitory concentration, a mea-
sured MIC needs to be one multiplicative factor of 2 away from the breakpoint
concentration 𝐴break to be considered susceptible or resistant. Thus, one could
choose EC50 [Neg] = 1

2𝐴break and EC50 [Pos] = 2𝐴break. However, the factor of 2 is
an arbitrary constant close to the current measurement error of the standard broth
microdilution assay. The truly worst case scenario would be two concentrations
infinitesimally lower and higher than 𝐴break, which would be impossible and point-
less to classify. A second option for defining EC50 [𝑐] would be to find a summary
statistic (e.g., arithmetic or geometric mean, median, or mode) of the observed
susceptible and resistant MICs from a large sampling of healthcare facilities.

In this analysis, the values of the susceptible and resistant strain used most frequently
in this thesis (E. coli K12 and UCLA #38) were chosen on the premise that their
EC50 values were the most accurately estimated, and their MICs appeared sufficiently
representative (i.e., within an order of magnitude) of typical clinical isolates. There
is no reason why two strains with a smaller (and more challenging) difference in
EC50 could have been analyzed. Such an analysis could be performed in the future.

The three system input parameters—the exposure duration 𝑇 , the dose 𝐴, and
the inoculum 𝐿0—are the variables of highest interest to designers of AST assays
because they can be controlled at will by the designer. In particular, the inoculum 𝐿0

is the parameter that most limits phenotypic ASTs from whole blood, as discussed
in section 1.1.2. The inoculum is also the focus of this thesis. Thus, we do not need
to summarize these three variables.

Nonetheless, in the below analysis (Figure 5.2), the dose 𝐴 was fixed at the break-
point MIC concentration. By definition, the breakpoint MIC concentration is the
concentration chosen by standards organizations as the separation between suscep-
tible from resistant isolate MICs. The breakpoint MIC may not be the concentration
that yields the fastest signal, but it is interpretable by current physicians. The anal-
ysis can be repeated to examine the effect of 𝐴 on ideal assay performance, as done
in the next section in Figure 5.3.
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5.2.4 Plotting the expected accuracy
As mentioned in section 5.1.4.5, the generalization risk is the selfsame accuracy per-
formance metric (see section 5.1.1) we wish to examine with our ideal assay model.
Plotting the ideal assay’s generalization risk as a single value is not meaningful,
however. Even when the above pharmacodynamic parameters and system input
variables are held constant, the optimal classifier still comprises a continuous set or
family of thresholds parameterized by the loss function weights and the prevalence.
Each optimal classifier in this set may possess a different generalization risk than
another optimal classifier with different values for these parameters.

Certain conventional values exist for these remaining parameters: the FDA has set
guidelines for acceptable accuracy for antibiotic susceptibility tests, and one can
estimate resistance prevalence for various populations from epidemiological data.
However, the full ranges of these parameters are relevant to the question of this
thesis because they factor into the definition of the assay’s generalization risk.

To visualize these parameter ranges, and to link with the conventional terminology
for binary clinical diagnostic tests, we can reparameterize the relationship between
𝑤𝐹𝑁 , 𝑤𝐹𝑃, and Pr(𝑐) using quantities I call the expected diagnostic sensitivity and
specificity18. The expected diagnostic sensitivity, Sn[𝜆], of an assay is the the ex-
pected proportion of instances, or probability, that an assay makes a correct positive
(resistant) call given that the strain is resistant (𝑐 = Pos), while the expected diag-
nostic specificity, Sp[𝜆], is the probability that the assay makes a correct negative
(susceptible) call given that the strain is susceptible (𝑐 = Neg).

Sn[𝜆; 𝜃] = Pr(𝐿 ≤ 𝜆 |𝑐 = Pos, 𝜃) = 𝐹𝐿 [ ⌊𝜆⌋ ; EC50 [Pos], 𝜃] (5.31)

Sp[𝜆; 𝜃] = Pr(𝐿 > 𝜆 |𝑐 = Neg, 𝜃) = 𝐹𝐿 [ ⌊𝜆⌋ ; EC50 [Neg], 𝜃] . (5.32)

Sn[𝜆] and Sp[𝜆] are functions of the threshold 𝜆 ∈ R+. The trade-off between
𝑆𝑁 and 1 − 𝑆𝑃 as 𝜆 varies is what is depicted in the traditional receiver operating
characteristic (ROC) curve.

18For clarity, note that one can also define quantities that are best called the empirical or observed
diagnostic sensitivity 𝑆𝑁 = 𝑇𝑃

𝐹𝑁+𝑇𝑃
, observed diagnostic specificity 𝑆𝑁 = 𝑇𝑃

𝐹𝑁+𝑇𝑃
, and observed

accuracy 𝐴𝐶𝐶𝑈 (see Equation 5.1 for definition.) These quantities, used in Chapter 4 and section
5.1.1, are defined using observed results and used only in contexts where a set of assay performance
data is present. In this chapter’s context, the observed diagnostic sensitivity, diagnostic specificity,
and accuracy of an ideal assay would be random variables whose expected values are the expected
diagnostic sensitivity, diagnostic specificity, and accuracy of that ideal assay. Also note that Sn[𝜆],
Sp[𝜆], Accu[𝜆], 𝑆𝑁 , 𝑆𝑃, and 𝐴𝐶𝐶𝑈, as written above, are all only defined for binary classification
algorithms.
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The relationship between Sn[𝜆], Sp[𝜆], and the generalization risk for the weighted
0-1 loss function is derived below.

𝑅(𝐻 (𝐿;𝜆, 𝜃)) = E
(𝐿,𝑐)∼𝐷

[ℓ0-1,weight(𝐻, 𝐿, 𝑐)] (5.33)

=
∑︁
(𝐿,𝑐)

ℓ0-1,weight(𝐻, 𝐿, 𝑐)Pr(𝐿 |𝑐, 𝜃)Pr(𝑐) (5.34)

=
∑︁
𝐿≤𝜆

𝑤𝐹𝑃 · 𝑓𝐿 [𝐿; 𝑐 = Neg, 𝜃]Pr(𝑐 = Neg)

+
∑︁
𝐿>𝜆

0 · 𝑓𝐿 [𝐿; 𝑐 = Neg, 𝜃]Pr(𝑐 = Neg)

+
∑︁
𝐿≤𝜆

0 · 𝑓𝐿 [𝐿; 𝑐 = Pos, 𝜃]Pr(𝑐 = Pos)

+
∑︁
𝐿>𝜆

𝑤𝐹𝑁 · 𝑓𝐿 [𝐿; 𝑐 = Pos, 𝜃]Pr(𝑐 = Pos)

(5.35)

= 𝑤𝐹𝑃 · 𝐹𝐿 [ ⌊𝜆⌋ ; EC50 [Neg], 𝜃] · Pr(𝑐 = Neg)
+ 𝑤𝐹𝑁 · 𝐹𝐿 [ ⌊𝜆⌋ ; EC50 [Pos], 𝜃] · Pr(𝑐 = Pos)

(5.36)

= 𝑤𝐹𝑃 · (1 − Sp[𝜆; 𝜃]) · (1 − Pr(𝑐 = Pos))
+ 𝑤𝐹𝑁 · (1 − Sn[𝜆; 𝜃]) · Pr(𝑐 = Pos).

(5.37)

Let the expected accuracy, Accu[𝜆], of an assay be the expected proportion of
correct calls made by an assay.

Accu[𝜆; 𝜃] = Sn[𝜆; 𝜃]Pr(𝑐 = Pos) + Sp[𝜆; 𝜃]Pr(𝑐 = Neg) (5.38)

By comparing equation 5.37 and 5.38, one can see that −𝑅(𝐻) and Accu[𝜆] are
similar but not equivalent quantities, even though it is tempting to define an ideal
assay as maximizing Accu[𝜆]. Our ideal assay does not maximize Accu[𝜆] unless
the unweighted 0-1 loss function is assumed, since equation 5.37 yields equations
5.1 and 5.38 when one chooses 𝑤𝐹𝑁 = 𝑤𝐹𝑁 = 1 and then defines Accu[𝜆] =

E[𝐴𝐶𝐶𝑈] = 1 − 𝑅(𝐻).

Equation 5.37 shows that the generalization risk can be fully specified by the pa-
rameters 𝑤𝐹𝑁 , 𝑤𝐹𝑃, Pr(𝑐 = Neg), Sn[𝜆], Sp[𝜆]. The sensitivity and specificity are
not affected by the prevalence, since they are conditional on 𝑐. Thus, to visualize
𝑅(𝐻) as a function of all 5 of these parameters, it was decided that the Sn[𝜆] and
Sp[𝜆] would be fixed subjectively (e.g., according to FDA guidelines). The viewer
would be expected to vary the prevalence mentally. The choice of Sn[𝜆], Sp[𝜆], and
Pr(𝑐 = Neg) would then imply unique values of 𝑤𝐹𝑁 and 𝑤𝐹𝑃 that would minimize
𝑅(𝐻) and create 𝐻∗.
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5.2.5 Numerical computation of the ideal assay isosurface
Of the possible depictions of the ideal assay’s optimal classifier, the one most
related to the original query of this thesis is to show, for each starting inoculum 𝐿0,
the minimum exposure duration needed for the classifier to achieve a given assay
performance at a given antibiotic dose. If a minimum exposure duration did not
exist, then achieving that assay performance is impossible when starting from that
inoculum.

Figure 5.2 shows, for each value of 𝐿0, the minimum value of 𝑇 for which at least
one threshold can be drawn that classifies the system state/measurement output with
at least the desired diagnostic sensitivity (SN) and specificity (SP).

Finding 𝑇 subject to these constraints constitutes a discrete optimization problem.
The following algorithm was devised to calculate the isosurface of 𝐻∗ in Figure 5.2.

First, the threshold 𝜆 was reparameterized as a scaled threshold 𝜉 that varies from
0 to 1, such that 𝜉𝐿0 = 𝜆. As 𝜉 varies from 0 to 1, the expected sensitivity and
specificity trace out a convex curve C on an ROC plot19.

C(𝜉, 𝜃) =
(
𝐹𝐿 [⌊𝜉𝐿0⌋; EC50 [Pos], 𝜃], 𝐹𝐿 [⌊𝜉𝐿0⌋; EC50 [Neg], 𝜃]

)
(5.39)

This curve is not smooth, but rather advances to a new "achievable accuracy point"
𝑃𝑙 in ROC space every time 𝜉𝐿0 crosses an integer value. There are 𝐿0 + 1 integer
values 𝑙 between 0 and 𝐿0, each associated with a unique 𝑃𝑙 . C(𝜉, 𝜃), and the
location of the 𝑃𝑙 , shifts as 𝑇 is varied. (C(𝜉, 𝜃) also shifts when any of the other
parameters in 𝜃 are varied.)

The given target assay performance was specified as a tuple 𝑃̂ = ( ˆ𝑆𝑁, 𝑆𝑃) of a
particular expected sensitivity value ˆ𝑆𝑁 and expected sensitivity value 𝑆𝑃. At a
certain 𝑇 , the point ( ˆ𝑆𝑁 , 𝑆𝑃) may (or may never) lie along the convex hull of the
𝐿0 + 1 points. This 𝑇min is the minimum exposure duration at which it is possible to
classify the two strains. The threshold value 𝜉𝑇min at 𝑇min is not the only threshold
value that can satisfy the assay performance 𝑃̂, nor does it achieve the highest assay
performance as measured by −𝑅(𝐻) or Accu[𝜆; 𝜃].

The solutions for each 𝐿0 were found computationally as follows: For a given 𝐿0

and 𝑇 , use a binary search algorithm to find the closest pair of points 𝑃lower and
𝑃upper that straddled ˆ𝑆𝑁 . Then, the cross-product between the vectors 𝑃lower 𝑃̂ and
𝑃lower 𝑃upper determines whether 𝑃̂ lies within the convex hull of C. For a given 𝐿0,

19The convention of plotting the false positive rate 𝐹𝑃𝑅 = 1− 𝑆𝑃 as the x-axis was not followed.
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Figure 5.2: Minimum exposure duration for phenotypic AST as a function of initial
inoculum. Note that the contour lines shown in Figure 5.3 depict the minimum
number of cells as a function of exposure duration.
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the inclusion of 𝑃̂ in the convex hull is not a monotonic function (see Figure 5.3).
Therefore, to find the minimum 𝑇 where 𝑃̂ is reached, the time axis was searched
linearly starting with 𝑇 = 0 and progressing by a small time step20. Repeating
this linear search of the time axis for each 𝐿0, for three different 𝑃̂, and for two
antibiotics (each at one dosage only) generated Figure 5.2.

In Figure 5.2, the SN=0.95, SP=0.95 isocline represents the FDA benchmark for
an overall accuracy of 90%, assuming 50% prevalence for resistant strains. The
SN=0.985, SP=0.97 isocline represents the FDA benchmark for no more than 1.5%
very major errors and 3% major errors.

An alternative depiction of the ideal assay isosurface is to vary the exposure duration
𝑇 , then find the minimum inoculum 𝐿0 required to reach the given accuracy at the
given dose. A similar algorithm was followed, differing from Figure 5.2 in that the
search along the inoculum axis was nested inside the loop over the time axis.

Table 5.2 shows values of 𝐿0 found by this second algorithm for selected 𝑇 , ˆ𝑆𝑁 ,
and 𝑆𝑃, conditioned on the fitted parameters from Table 3.3. The level sets found
by the second algorithm for various antibiotic dosages are also visible in Figure 5.3.

5.3 Biological stochasticity is so far sufficient to explain the limits of digital
filtration AST

The preceding sections of this chapter have built up to Figure 5.2, in which the ideal
performance of a filtration AST assay with one endpoint measurement was defined
and quantitatively predicted. All parameter values used in the predictions were fitted
to bulk filtration AST data only.

The main question of academic interest now asks whether the deductive reasoning
that led to the model in Figure 5.2 is sufficiently useful for designing future assays.
Since I have not undergone many rounds of commercial/industrial assay develop-
ment in this thesis, I cannot definitively answer whether modeling is truly useful
in practice. However, in the spirit of Popperian falsifiability, I can at least assess
whether my model is insufficiently accurate for future assays.

Since digital filtration AST gives more information than bulk filtration AST, and
because no digital filtration AST data was used to predict assay performance, I will
compare the digital filtration AST results to the predictions of the model of Figure
5.2.

20Theoretically, the correctness of this brute-force approach is not guaranteed if the time step is
too large. A more rigorous algorithm is left as future work.
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Antibiotic Time (min) Sensitivity Specificity N
ETP 15 0.95 0.95 304
ETP 15 0.985 0.97 442
ETP 15 0.995 0.995 714
ETP 30 0.95 0.95 32
ETP 30 0.985 0.97 56
ETP 30 0.995 0.995 92
ETP 60 0.95 0.95 5
ETP 60 0.985 0.97 8
ETP 60 0.995 0.995 12
ETP 120 0.95 0.95 1
ETP 120 0.985 0.97 1
ETP 120 0.995 0.995 3
CRO 30 0.95 0.95 355
CRO 30 0.985 0.97 528
CRO 30 0.995 0.995 926
CRO 60 0.95 0.95 42
CRO 60 0.985 0.97 57
CRO 60 0.995 0.995 97
CRO 120 0.95 0.95 5
CRO 120 0.985 0.97 7
CRO 120 0.995 0.995 11

Table 5.2: Minimum number of cells needed for phenotypic AST.

Figure 5.3 shows the results of the comparison between the actual and ideal filtration
AST performance.

The PEMLE metric was chosen to be the final assay result because it is defined for
each experimental condition, and its performance metric space is therefore more
populated with the available data than other metrics’ spaces.

The fill color of each point is the PEMLE value. An experimental condition was
called as susceptible if the PEMLE metric was above 0.07 for either antibiotic. Note
however that only the shape of the point is affected by the 0.07 PEMLE threshold.
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The use of different shapes was meant to ease interpretation. The effect of alternative
thresholds can be inferred from the degree of color mismatch between the border
and fill of each point. (Note that it is not necessary for antibiotics to share the same
PEMLE threshold. However, in this figure, the optimal thresholds were coincidentally
both close to 0.07.)

Since the exact number of bacteria exposed in each digital filtration experimental
condition cannot be exactly controlled by a serial dilution, the depicted x-axis
position of each actual data point is the maximum likelihood estimate for the number
of bacteria exposed from the digital filtration AST results, without taking into
account the concurrent growth control. In contrast with the actual data points, the
accuracy contour lines, representing the ideal performance, are calculated assuming
an exact number of cells exposed.

Of the five errors incurred when using the optimal thresholds of 0.07 and 0.07
(circle and square shapes), all occurred when the specimen assayed lay to the left or
below the SN=0.985, SP=0.97 isocline representing the FDA requirements for AST
assays. There are seven potential errors (triangles with fill colors that do not match
the shape border) that were still correctly called using the 0.07 thresholds, of which
two occurred to the right of the SN=0.985, SP=0.97 isocline. Most of these errors
(9 of 12) were between the SN=0.75, SP=0.75 isocline depicted for scale and the
SN=0.985, SP=0.97 isocline.

The match between the model and data can be quantified by calculating a likelihood
L of the observed data in Figure 5.3. I will treat this likelihood as a p-value of a
hypothesis test, although this may violate some philosophical definitions of a p-value
favored by traditional statisticians. Specifically, I am testing the hypothesis that the
ideal assay model could have given rise to all 39 observed classification results,
at the target/estimated antibiotic dose, inoculum, exposure duration of each of the
observed points. To summarize the unspecified optimal classification algorithm
threshold of an ideal assay, I will define L to be the likelihood if the threshold
𝜉𝑝𝑀𝐿𝐸

∈ [0, 1] used for the observed data were applied to the ideal assay as well. It
is assumed that the fitted pharmacodynamic parameter values are part of the model.
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For the 𝑖-th data point, the likelihood L𝑖 of making the observed call is

L𝑖 = Pr(𝑐𝑖,obs |𝑐𝑖,true; 𝜃𝑖)

=



𝐹𝐿 [⌊𝜉𝑝𝑀𝐿𝐸
𝑐MLE𝑁𝑖⌋; EC50 [Susc], 𝜃𝑖] if 𝑐𝑖,obs = Susc, 𝑐𝑖,true = Susc

𝐹𝐿 [⌊𝜉𝑝𝑀𝐿𝐸
𝑐MLE𝑁𝑖⌋; EC50 [Susc], 𝜃𝑖] if 𝑐𝑖,obs = Resi, 𝑐𝑖,true = Susc

𝐹𝐿 [⌊𝜉𝑝𝑀𝐿𝐸
𝑐MLE𝑁𝑖⌋; EC50 [Resi], 𝜃𝑖] if 𝑐𝑖,obs = Susc, 𝑐𝑖,true = Resi

𝐹𝐿 [⌊𝜉𝑝𝑀𝐿𝐸
𝑐MLE𝑁𝑖⌋; EC50 [Resi], 𝜃𝑖] if 𝑐𝑖,obs = Resi, 𝑐𝑖,true = Resi,

(5.40)
where 𝜉𝑝𝑀𝐿𝐸

= 0.07 is a threshold for 𝑃𝐸𝑀𝐿𝐸 values; 𝑐MLE is the maximum
likelihood estimate (equation 4.72) for the cell concentration for the 𝑖-th datum
(representing the 𝑖-th condition); 𝑁𝑖 is the number of wells in the 𝑖-th condition;
𝑐obs ∈ C = {Susc,Resi} is the susceptibility phenotype observed by digital filtration
AST; 𝑐true ∈ C is the known susceptibility phenotype called by CLSI-compliant
broth microdilution at UCLA; 𝜃𝑖 stands for all the model parameters for the 𝑖-th
condition, including the classification threshold 𝜆 = 0.07, the 𝑖-th inoculum 𝐿0𝑖,
the 𝑖-th exposure duration 𝑡𝑖, the 𝑖-th dose 𝐴𝑖, and EC50 [𝑐𝑖,true]; the magnitude of
resistance EC50 [𝑐𝑖,true] changes value depending on 𝑐𝑖,true; and 𝐹𝐿 is defined in
equation 5.18.

Lastly, I also assume for simplicity that the data are independent and identically
distributed, so that L =

∏
𝑖 L𝑖.

For all 39 conditions (or 𝑃𝐸MLE outputs) of digital filtration AST included in this
thesis, L = 0.0000010855. This is a low likelihood, less than 0.001282, the tradi-
tional arbitrary cutoff of 0.05 after the Bonferroni correction for multiple hypothesis
testing. The multiple hypothesis correction is justified since 39 distributions were
tested to make one conclusion.

Looking more carefully at the data, however, one notices that one early experiment
(Figure 4.7a) contributed two outliers that pushed the overall likelihood low, with
individual likelihoods of 0.01800 and 0.005675, compared to the median individual
likelihood of 0.9930. In these two experiments, killed resistant cells or untreated
cells were observed at short durations and doses, when no extracellular nucleic
acids were expected under the assumed model. This extracellular signal could have
easily arises from an effect not modeled. Possible nuisance effects include cross
contamination of wells during extraction or PCR, or the culture conditions of the
batch culture may have promoted cell disruption not related to antibiotic activity.
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Upon removing the outlier experiment of Figure 4.7a, L1 = 0.010626. This like-
lihood is relatively high considering that the geometric mean of the likelihood
for each datum is 0.010626 1

37 = 0.884. Specifically, L is higher than 0.001351,
the conventional significance cutoff of 0.05 after the Bonferroni correction for 37
hypotheses.

Thus, I conclude that the observed digital filtration AST results, with the exception
of two conditions of one experiment, are consistent with the ideal performance
for any phenotypic filtration AST on the systems so far examined. When the two
outlier conditions, and the factors causing their outlier behavior, are included as part
of the assay, then I conclude that the observed digital filtration AST results are not
compatible with the ideal performance, specifically that the observed assay performs
worse than its ideal performance due to those factors causing outlier behaviors. It
should be noted, however, that in each of the above two situations (concluding that
the actual performance is consistent with the ideal performance or concluding that
the actual performance is worse than ideal), there is an alternative conclusion that
still needs to be considered.

In the situation where the observed data are considered compatible with the ideal
predictions, especially if the number of data points is low, it remains possible that
the actual performance differs and that the concordance of data and theory arose by
chance. After more observations, the observed actual performance would regress
to the mean, and the hidden difference would be revealed. On the other hand, as
the number of data points for observed performance increases to infinity, any dif-
ference, no matter how small, from the ideal performance would eventually become
discernible and statistically significant. The difference may not be practically rel-
evant, though. To balance between these two possible conclusions, a performance
gap that is practically meaningful should be chosen a priori, and then a statistical
power analysis performed to estimate the minimum number of data points required.

The power of a hypothesis test is the probability that the null hypothesis is rejected
when the alternative hypothesis is in fact true. In the typical statistical power anal-
ysis, the hypothesis test asks if two population means differ by a certain amount.
There are an infinite number of alternative hypotheses that could be true, but all
the alternative hypotheses are parameterized by one position parameter and often
parameters for normal distribution standard deviations. In such contexts, the ques-
tion the hypothesis testing needs to answer does not involve higher-level questions
such as whether the normal distribution is a good model for the populations sam-
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pled. Under these circumstances, the statistical power, effect size, sample size, and
significance threshold become related in a deterministic equation.

Applying the two-population power analysis framework to our hypothesis is difficult,
however. The questions with which this thesis grapples do involve questions about
whether fixed pharmacological parameters were properly fitted and whether the
specific ideal assay model is a close representation of reality. First, there is no
single position parameter that we can vary to distinguish our null and alternative
hypotheses. Instead, the ideal assay model is a function of at least 13 parameters.
One could choose a significant difference for each parameter of our ideal model,
and each parameter would either be shifted by this difference or not. A power
analysis would then need to cover every possible combination of parameter value
shifts. Secondly, we are also interested in alternative hypotheses where the structure
of the model changes, beyond shifts in parameter values. For example, if any
of the equations used to define our ideal assay model were altered, that model
mismatch would be a meaningful explanation for a mismatch between the ideal and
actual performances. There is no way, at least reported in the literature, to easily
parameterize an infinite collection of all plausible mathematical models. A third
complication is that our experiments test multiple hypotheses, that is, multiple points
in the parameters space, to answer one overall hypothesis about model adequacy.
The definition of statistical power needs to be generalized across these disparate
conditions. Unfortunately, deriving a new type of power analysis was left as future
work due to time constraints.

My null hypothesis states that a match between the ideal accessibility AST model
and actual digital filtration AST data exists. Because the data was consistent with
the match, I have failed to reject this null hypothesis. The power analysis would
have altered my belief that certain alternative hypothesis are false, decreasing it if
the power analysis did suggest the sample size was sufficiently large, and increasing
it otherwise at the expense of my belief in the null hypothesis. The more my
belief in alternative hypotheses decreases, ideally due to more data supporting the
null hypothesis, the more the null hypothesis appears to be "necessary" to explain
the data, even if it can never be completely accepted. But regardless of the power
analysis results, the main conclusion still holds that the ideal assay model is sufficient
to explain the currently-known performance of manually-performed digital filtration
AST.

In the situation where the observed performance of the digital filtration AST is
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considered worse than the predicted performance, one would like to conclude that the
realized protocol has limitations (known and/or unknown). However, an alternative
conclusion would be that the model is unsuitably specified. The difference between
these conclusions lies in whether one intellectually "blames" the performance gap on
the actual experiment or on the ideal model. In the case where the model’s validity
is rejected, any level of modeling could be the source of the unrealistic predictions.
For example, inclusion of originally omitted noise variables or influence quantities
may give rise to a lower ideal performance. The resulting more complicated model
would be a more relevant benchmark, but whether it is more useful than the current
simpler benchmark depends on how readily the additional variables can be fitted
to data. The pharmacodynamic model (equation 5.15) and the fitted parameters
constitute a part of the overall model which has a reasonable likelihood for future
improvement due to their justification by empirical observation instead of deduction.
Any underfitting or poor fitting of the pharmacodynamic parameters from the bulk
data would need to be overcome either with additional or cleaner bulk filtration
AST data or by a more complicated model. Differing pharmacodynamics of single
cells compared to bulk populations could also give rise to an irrelevant model, but
the lack of an inoculum effect in the short term bulk filtration AST data and the
lack of evidence for sub-populations with different pharmacodynamics makes this
interpretation less likely.

In the case where the model of the ideal assay is deemed reasonably specified, then
the gap between the actual and ideal performance indicates a flaw in the assay design,
present as unmodeled variables or "influence quantities." Knowing the magnitude
of these flaws is inherently useful to an engineer. In fact, as prior sections have
shown, the following specific factors are known to cause non-ideal performance
in the filtration AST protocol: 1) not being able to guarantee the observation of
single cells due to lack of control of the number of initial cells per partition and the
inability to create further subpartitions after the incubation, and 2) not being able to
infer the numbers or mass of the cells after incubation due to high RT-PCR noise,
3) having lysis inefficiency observation error, and 4) being manually performed and
therefore inconsistent compared to robotic machines due to unknown factors. The
lysis inefficiency observation error (reason 3) in particular confounds the ability to
assess model adequacy because higher probability of missing cells decreases the
inferred number of cells present, shifting the observed points to the left in Figure
5.3. Counteracting this tendency is the fact that the lysis inefficiency observation
error biases toward over-estimating the probability of cell death, which would lead
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to more false susceptible calls. Yet, a preponderance of false susceptible calls is not
observed in the actual data set, so we fail to reject the existence of a strong effect
from the lysis inefficiency observation error.

The parsimony of my current model, the known existence of variability during exe-
cution, and the lack of strong evidence for potential flaws in the current ideal model
therefore lead me to interpret any gap between the actual and ideal performance,
where the actual performance is worse, as the consequence of variable execution of
my protocol for digital filtration AST rather than a repudiation of the usefulness of
modeling.

Lastly, in a situation where the observed performance of the digital filtration AST
had been better than predictions, then the data would not be compatible with the
predictions. Somewhere in the long chain of justifications for model choices and
assumptions of the preceding sections, an assumed obstacle did not exist in reality.
One could have interpreted the faulty assumption either as a failure of the modeler’s
deductive reasoning or as a windfall to the engineer in exceeding a valid deductive
prediction.

5.4 Future work
Of the four caveats21 to section 5.3’s conclusion for worse actual performances,
caveats 1 and 3 can be addressed by further experiments. Although the analyses
that would address caveat 3 is present in section 4.18, they were not included in
this thesis partly because the metrics defined across multiple conditions outputted
fewer resulting points, and they offer no further insight beyond what can be gleaned
from Figure 5.3. Caveat 2 and 4 require richer models of the specimen system.
For caveat 4, the Markov birth-death model or an age-structured kinetic theory
model would be preferred. These more complicated models would add incremental
improvements to the truthfulness of the ideal performance predictions. However,
deriving their optimal classifiers would probably involve significant mathematical
labor, and so these models of ideal assays were not pursued in this thesis. Lastly,
although I have made efforts to make my framework of phenotypic assay modeling
as general and comprehensive as possible, the practice of mathematical modeling
inherently involves subjective choices. Applying the four mapping framework to
other phenotypic assays beyond AST will likely require further critical thinking and
possibly further generalizations or revisions of the framework herein.

211) the low number of data points, 2) not modeling lysis inefficiency observation error when
inferring inoculum, 3) the choice of metric, and 4) the lack of growth in the ideal system
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