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ABSTRACT

Motivated by the study of the local and global Langlands correspondence from
a geometric prespective, we establish two results of a general nature regarding
categories of sheaves in algebraic geometry. The first result, motivated by the work
of Drinfeld and Lafforgue on the Langlsnds correspondence over function fields,
establishes a categorical enhancement of the Künneth formula for categories of Weil
sheaves, generalizing a famous result of Drinfeld. In the second part, motivated by
the geometric approach to the study of representations of reductive groups over local
fields, we develop a method to calculate the categorical trace of monoidal categories
arising from convolution pattern in algebraic geometry.
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C h a p t e r 1

OVERVIEW

This thesis can be divided into two parts which are mathematically independent but
philosophically related. In this part, we give an informal introduction to the moti-
vations and results. The guiding question of this thesis comes from the Langlands
program and specifically the geometric approach to it.

Let 𝐹 be a global field, such as a number field or the field of rational functions on
a projective curve over a finite field. The Langlands program (Langlands, 1970)
consists of many results and conjectures establishing a deep connection between rep-
resentation theory of analytic nature with arithmetic properties of the field 𝐹. Let’s
recall the main protagonist of this program1, the space of automorphic functions.

For every place 𝑣 of 𝐹 we denote by 𝐹𝑣 the 𝑣-adic completion of 𝐹 at 𝑣. We will
denote by O𝐹 the ring of integers of 𝐹 and for every non-archimedean place 𝑣 of 𝐹,
we will denote by O𝑣 the ring of integers of 𝐹𝑣. For every finite set 𝑆 of places of 𝐹
which contains all the archimedean places, we denote

A𝐹,𝑆 =
∏
𝑣∈𝑆

𝐹𝑣 ×
∏
𝑣∉𝑆

O𝑣

considered as a topological ring with the product topology. We denote by A𝐹 the
adele ring of 𝐹. Recall that it can be described, as a topological ring, as the direct
limit

A𝐹 = lim−−→
𝑆

A𝐹,𝑆 .

This is sometimes referred to as the "restricted product" of the fields 𝐹𝑣.

Let 𝐺 be a connected reductive group over 𝐹, i.e. SL𝑛, GL𝑛, Sp2𝑛. We can now
define the space of auytomnorphic functions:

A2
𝐺 = 𝐿2(𝐺 (𝐹)\𝐺 (A𝐹)),C)

namely, it is the space of functions that are square-integrable with respect to some
invariant measure on the coset space 𝐺 (𝐹)\𝐺 (A𝐹). This space of functions carries
an action of 𝐺 (A𝐹) by the left action on the coset space. It is sometimes easier to

1From the point of view of representation theorists.
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focus on specific subspaces of the automorphic space. For any compact subgroup
𝐾 ⊆ 𝐺 (A𝐹) we can consider the space of automorphic functions of level 𝐾:

A2
𝐺,𝐾 = 𝐿2(𝐺 (𝐹)\𝐺 (A𝐹)/𝐾),C)

Example 1.0.1. Take 𝐹 = Q and 𝐺 = SL2 and 𝐾 =
∏

𝑝 SL2(Z𝑝). We can relate the
space of automorphic functions in the adelic description to a more familiar object.
By the strong approximation theorem (Kneser, 1966), for element 𝑔 ∈ SL2(AQ)
represented as elements (𝑔𝑣)𝑣 where 𝑔𝑝 ∈ SL2(Q𝑝) for prime 𝑝 and 𝑔∞ ∈ SL2(R),
there exists a matrix 𝛾 ∈ SL2(Q) such that for 𝛾𝑔 we have (𝛾𝑔)𝑝 ∈ SL2(Z𝑝) for all
prime 𝑝. This means that we can identify the double coset spaces

SL2(Q)\SL2(AQ)/𝐾 � (SL2(Q) ∩ 𝐾)\SL2(R)

Finally, the intersection SL2(Q) ∩𝐾 consists of matrices whose entries are rational
numbers that are integral for any prime 𝑝, which is the same as being integers. This
gives an identification:

SL2(Q)\SL2(AQ)/𝐾 � SL2(Z)\SL2(R)

relating the automorphic functions in the adelic description to the more familiar
notion.

An important way to study representations in general is to find symmetries of them
in the form of commuting linear operators. An important family of such operators
are the Hecke operators. For every non-archimidean place 𝑣 of 𝐹 we consider the
spherical Hecke algebra:

H𝑣 = 𝐶𝑐 (𝐺 (O𝑣)\𝐺 (𝐹𝑣)/𝐺 (O𝑣),C).

This algebra is commutative and acts on the space of automorphic functions by
convolution:

ℎ ∗ 𝑓 (𝑔) =
∫
𝐺 (𝐹𝑣)

𝑓 (𝑔𝑠−1)ℎ(𝑠) d𝑠

In the revolutionary seminal work (V. Lafforgue, 2018), Vincent Lafforgue showed
how to expand this algebra of commuting operators in the function field case by
introducing the excursion operators. In the next section, we will try to give a sense
of the structures involved and the motivations for the first part in the next chapter.
Finally, we will mainly focus on results that come from the algebraic-geometric
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approach to stufying the space of automorphic functions. In that case, we focus our
attention on the subset of continuous compactly supported automorphic functions:

A𝐺 = 𝐶𝑐 (𝐺 (𝐹)\𝐺 (A𝐹)),C)

The second part of the thesis concerns the local side of the Langlands program. The
main question considered is understanding representations of𝐺 (𝐹𝑣) for all the places
𝑣. These are significant for the study of local fields but can also help understand the
global picture. For example, Every irreducible continuous representation 𝜋 of the
adele group 𝐺 (A𝐹) is equivalent to a "restricted product"

𝜋 =

′⊗
𝑣

𝜋𝑣,

but we will not go into this more deeply here. In the second part of this overview,
we will review the geometric and categorical structures surrounding Hecke, and
Iwahori-Hecke algebras, and the categorical trace, which motivates the second part
of this thesis.
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C h a p t e r 2

DRINFELD’S LEMMA AND THE GLOBAL FUNCTION FIELD
LANLGANDS CORRESPONDENCE

2.1 The Langlands Correspondence over function fields
Let 𝑋 be a projective curve over a finite field F𝑞 with function field 𝐹. Let 𝐺 be a
split reductive group defined over 𝐹 For simplicity, we will assume in this section
that the center of𝐺 is trivial and we will focus our attention to the unramified part of
the space of automorphic functions. Namely, we consider the subspace of functions

𝐶𝑐 (𝐺 (𝐹)\𝐺 (A𝐹)/𝐺 (O),Qℓ) ⊆ 𝐶𝑐 (𝐺 (𝐹)\𝐺 (A𝐹 ,Qℓ)

where O =
∏
𝑥∈𝑋 O𝑋,𝑥 . These are the functions which invariant under the action of

a maximal compact subgroup corresponding to the integral points on the function
field. This double coset space is a discrete groupoid.

The study of the function field version of the Langlands correspondence enjoys a rich
connection to algebraic geometry thanks to the existance of an algebraic-geometric
description of the double cosets 𝐺 (𝐹)\𝐺 (A𝐹/𝐺 (O). Namely, it can be identified
with the set of rational point of an algebraic stack, the stack of 𝐺-bundles on the
curve. We will describe geometric objects such as schemes and stacks via their
functor of points (Stacks, Tag 01J5). For convenience, for every scheme 𝑌 over F𝑞
and an 𝑏𝐹𝑞 algebra 𝑅, we will denote by 𝑌𝑅 the fiber product 𝑌 ×SpecF𝑞 Spec 𝑅.

Let Bun𝐺 (𝑋) denote the moduli stack of 𝐺-bundles on the curve 𝑋 . This is the
stack described by the following moduli problem: for a commutative F𝑞-algebra 𝑅,
the groupoid of 𝑅-points of Bun𝐺 (𝑋) is given by the groupoid

Bun𝐺 (𝑋) (𝑅) = {E a 𝐺-torsor on 𝑋𝑅}.

The connection to the automorphic space comes from the existance of a natural
isomorphism of groupoids

Bun𝐺 (𝑋) (F𝑞) ≃ 𝐺 (𝐹)\𝐺 (A𝐹)/𝐺 (O) (2.1)

this is known as adelic uniformization. This equivalence is based on the fact that
any 𝐺-torsor can be trivialized outside a finite set of points. For example, let’s
fix a set 𝑆 of points 𝑥1, . . . , 𝑥𝑛𝑖𝑛|𝑋 |. By a fundamental result of Beauville and

https://stacks.math.columbia.edu/tag/01J5
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Laszlo(Beauville and Laszlo, 1995), to describe a 𝐺-bundle which is trivial on
𝑋 \ 𝑆, it is enough to specify the "gluing data" consisting of modifications of the
trivial bundle around each of the points 𝑥1, . . . , 𝑥𝑛. More explicitly, for every point
𝑥𝑖 we can consider the "disc" and "punctured disc"

D𝑖 = SpecO𝑥𝑖 , D∗𝑖 = Spec 𝐹𝑥𝑖

A modification of the trivial bundle E0 around a point 𝑥𝑖 is an automorphism of the
restriction E0 |𝐷∗

𝑖
. These are exactly given by elements 𝑔𝑖 ∈ 𝐺 (𝐹𝑥𝑖 ), so any given

choice of elements 𝑔1, . . . , 𝑔𝑛 specifies such a bundle. However, some sets of these
choices correspond to isomorphic bundles. First, two modifications that differ by
an automatism of the restriction E0 |𝐷𝑖

to the disc give rise the same bundles. So,
accounting for these means a choice of an element in the product of coset spaces:∏

𝑖

𝐺 (𝐹𝑥𝑖 )/𝐺 (O𝑋,𝑥𝑖 )

Finally, two such choices can give isomorphic bundles if they differ by an au-
tomorphism of the trivial bundle restricted to 𝑋 \ 𝑆. Such automorphisms are
parameterized by 𝐺 (O𝑋 [𝑥−1

1 , . . . , 𝑥−1
𝑛 ]). Thus, the groupoid of 𝐺-bundles which

are trivial on 𝑋 \ 𝑆 can be identified with

𝐺 (O𝑋 [𝑥−1
1 , . . . , 𝑥−1

𝑛 ])\
(∏

𝑖

𝐺 (𝐹𝑥𝑖 )/𝐺 (O𝑋,𝑥𝑖 )
)

taking the direct limit over all finite subsets of |𝑋 | results in the description (2.1).

Such a description for the space of unramified automorphic functions comes to use
when combined with the function-sheaf dictionary. Namely, this is a map:

Dctf (Bun𝐺 (𝑋),Qℓ) → 𝐶𝑐 (Bun𝐺 (𝑋) (F𝑞),Qℓ)

taking a constructible complex F ∈ Dctf (Bun𝐺 (𝑋),Qℓ) to the function

𝑓F : Bun𝐺 (𝑋) (F𝑞) → Qℓ

defined by sending a point 𝑥 ∈ |𝑋 | to

𝑓F (𝑥) =
∑︁
𝑖

(−1)𝑖 · Tr(Frob,H𝑖 (F𝑥 ,Qℓ)),

where F𝑥 is the stalk of F at 𝑥, considered as a chain complex of Qℓ vector
spaces. Thus, studying sheaves on Bun𝐺 (𝑋) could help us understand the space of
automorphic functions.
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As a first attempt, let us try to follow the classical way automorphic function spaces
are studied and try to port that into the geometric setting. An important symmetry
of the space of unramified automorphic functions is the action of Hecke algebras.
These can be understood in a geometric way. For every 𝑥 ∈ |𝑋 | we can parameterize
the modifications of a bundle at the point 𝑥. Namely, consider the following moduli
problem

Hecke𝐺,𝑥 (𝑅) =
{
(E0, E1, 𝛼) |E0, E1 ∈ Bun𝐺 (𝑋) (𝑅), 𝛼 : E0 |𝑋𝑅\{𝑥𝑅} ≃ E1 |𝑋𝑅\{𝑥𝑅}

}
where 𝑥𝑅 is the subset Spec 𝑅

𝑥−→ 𝑋𝑅. The functor Hecke𝐺,𝑥 is ind-representable
and is related to the affine Grassmannian, which parameterized modifications of the
trivial bundle, see (Zhu, 2016a). Such a structure gives rise to an integral transform
map. Namely, we have a correspondence:

Hecke𝐺,𝑥

Bun𝐺 (𝑋) Bun𝐺 (𝑋)

ℎ𝑟ℎ𝑙

given by ℎ𝑙 (E0, E1, 𝛼) = E0 and ℎ𝑟 ((E0, E1, 𝛼) = E1. We can use this corre-
spondence to get an action of Dctf (Hecke𝐺,𝑥) on the category Dctf (Bun𝐺 (𝑋),Qℓ).
Namely, for every K ∈ Dctf (Hecke𝐺,𝑥) we have a functor:

𝑆K : Dctf (Bun𝐺 (𝑋),Qℓ) → Dctf (Bun𝐺 (𝑋),Qℓ)

given by the "integral transform":

𝑆K (F ) = (ℎ𝑟)!(ℎ∗𝑙 (F ) ⊗ K), F ∈ Dctf (Bun𝐺 (𝑋),Qℓ)

Under the function-sheaf dictionary, 𝑆K (F ) is identified with the usual Hecke
operator. This presentation connects the Hecke operator at the point (or place) 𝑥
with a geometric version of it. One may ask how to make sense of the variation of
the point 𝑥? how can we endode the fact that the Hecke operators depend on the
choice of a point?

We can consider a version of the Hecke stack which lets the point vary. Namely,
consider the moduli problem:

Hecke𝐺 (𝑅) =
{
(𝑥, E0, E1, 𝛼) |𝑥 ∈ 𝑋𝑅, 𝛼 : E0 |𝑋𝑅\{𝑥𝑅} ≃ E1 |𝑋𝑅\{𝑥𝑅}

}
which gives rise to the correspondence:

Hecke𝐺

𝑋 × Bun𝐺 (𝑋) Bun𝐺 (𝑋)

ℎ𝑟ℎ𝑙
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Such a structure gives us a richer theory of integral transforms. Namely, for every
lisse sheaf L ∈ Dlis(𝑋,Qℓ) and K as before, we get a functor

𝑆L,K : Dctf (Bun𝐺 (𝑋),Qℓ) → Dctf (Bun𝐺 (𝑋)

given by
𝑆L,K (F ) = (ℎ𝑟)!

(
ℎ∗𝑙 (L ⊠ F ) ⊗ K

)
.

The connection to arithmetic of the function field comes in through the equivalence

Dlis(𝑋,Qℓ) ≃ D𝑏 (Rep(𝜋𝑒𝑡1 (𝑋),Qℓ).

The geometric Lanlgands program, which informed the work of Lafforgue suggests
that it would be necessary to consider multi-point modifications. Namely, for every
finite set 𝐼 we consider the moduli of modification of a bundle at 𝐼 points:

Hecke𝐺,𝐼 (𝑅) =
{(
(𝑥𝑖)𝑖∈𝐼 , E0, E1, 𝛼 : E0 → E1

) ���𝑥𝑖 ∈ 𝑋𝑅, E0 |𝑋\{𝑥𝑖}𝑖∈𝐼 ≃ E1 |𝑋\{𝑥𝑖}𝑖∈𝐼
}

which give rise to the compatible family of correspondences:

Hecke𝐼 (𝑋)

𝑋 𝐼 × Bun𝐺 (𝑋) Bun𝐺 (𝑋)

𝑝𝑟

However, unlike the case of |𝐼 | = 1, there is no way to relate lisse sheaves on 𝑋 𝐼

with the fundamental group 𝜋𝑒𝑡1 (𝑋). This is because in general, the natural map

𝜋𝑒𝑡1 (𝑋
𝐼) → 𝜋𝑒𝑡1 (𝑋)

𝐼

is not an isomorphism. This issue was solved by Drinfeld in the seminal paper
Vladimir Gershonovich Drinfeld, 1980, with the realization that the prospective
presented above did not bring into account the Frobenius symmetry. Namely, note
that rather than just one Frobenius morphism on 𝑋 𝐼 , we should take into account
the partial Frobenius morphisms. For every 𝑖 ∈ 𝐼 we have a map

𝜑𝑖 : 𝑋 𝐼 → 𝑋 𝐼

given by the Frobenius map on the 𝑖-th component and the identity on the other
components. These morphism commute and satisfy

𝜑1 ◦ · · · ◦ 𝜑𝑛 = Frob𝑋 𝐼
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where Frob𝑋 is the 𝑞-Frobenius on 𝑋 𝐼 and where 𝑛 is the size of 𝑖.

Drinfeld realized that we should require this symmetry on the representations as well.
Namely, instead of considering all representations of 𝜋𝑒𝑡1 (𝑋

𝐼), we should consider
the representations 𝑉 of 𝜋𝑒𝑡1 (𝑋

𝐼) equipped with pair-wise commuting morphisms:

𝜓𝑖 : 𝑉 → 𝑉

as 𝜋𝑒𝑡1 (𝑋
𝐼)-representations, such that the total composition 𝜓1, . . . , 𝜓𝑛 is equivalent

to the action of Frob𝑋 𝐼 . Informally, Drinfeld established an equivalence between
representations of 𝜋𝑒𝑡1 (𝑋

𝐼) with a partial Frobenius equivariant structure as above
and representations of 𝜋𝑒𝑡1 (𝑋)

𝐼 . Our first main result is a generalization of Drinfeld’s
lemma to the entire derived category of constructible sheaves.

2.2 Drinfeld’s lemma and the Künneth formula for Weil sheaves
To state the partial Frobenius equivariance conditions and our results, it is convenient
to shift our prespective and formulate the theory in terms of Weil sheaves and Weil
prestacks. We give an informal account here, the full details are in Chapter 6.

We will use the formalism of prestacks and constructible sheaves on them, for a
review of these, see Section 7.2. Fix F = F𝑞. Instead of working with schemes
over F𝑞 and keeping track of the partial and absolute Frobenius maps, we find it
preferable to work with geometric object over F. We can do this by associating
to a scheme the formal quotient of the base change to the algebraic closure F by
Frobenius. Namely, let Let 𝑋 be a scheme over F𝑞 and denote by 𝑋F it’s base change
to F. Let

𝜙𝑋 : 𝑋F → 𝑋F

be defined by 𝜙𝑋 = Frob𝑋 × idSpecF.

Definition 2.2.1. Let 𝑋 be a scheme over F𝑞. The Weil prestack is defined as

𝑋Weil := colim
(
𝑋 ×F𝑞 F

𝜙𝑋
⇒
id
𝑋 ×F𝑞 F

)
∈ PreStkF,

i.e., it is the prestack sending 𝑅 ∈ CAlgF to the colimit

This description works well with products. Namely, for schemes 𝑋1, 𝑋2 over F𝑞 we
have

𝑋1 ×F𝑞 𝑋2 ×F𝑞 SpecF = 𝑋1,F ×F 𝑋2,F



10

We can consider the product of the corresponding Weil prestacks:

𝑋Weil = 𝑋Weil
1 ×F 𝑋Weil

2 .

For every prestack, we have a well defined∞-category of constructible sheaves. The
main result of the first part of the thesis can be formulated as follows:

Theorem 2.2.2. Let 𝑋1, 𝑋2 be schemes of finite type over F𝑞. The external product
functor (𝑀1, 𝑀2) ↦→ 𝑀1 ⊠ 𝑀2 induces an equivalence of categories

Dcons
(
𝑋Weil

1 ,Λ
)
⊗Λ Dcons(𝑋Weil

2 ,Λ) → Dcons
(
𝑋Weil

1 ×𝑘 · · · ×𝑘 𝑋Weil
𝑛 ,Λ

)
For Λ a discrete ℓ-torsion ring, an algebraic extension ofQℓ and its ring of integers.

Remark 2.2.3. For lisse sheaves, this holds if Λ is a torsion ring or an extension of
Zℓ, and always holds for lisse if 𝑋1, . . . , 𝑋𝑛 are geometrically unibranch.

In particular, we have an equivalence

D
(
Repcts(Weil(𝑋),Qℓ)

)⊗𝐼 → Dlis
(
(𝑋Weil) 𝐼 ,Qℓ

)
(2.2)

2.3 Application to the moduli of bundles and shtukas
We can now come back to the situation of the moduli stack of bundles and review the
ideas behind the construction of Lafforgue from the perspective of Weil prestacks.
First, it was realized by Drinfeld, and later Lafforgue, that in order to take the
Frobenius structure into account, we should not only consider bundles but the
moduli of shtukas. A full account of this work is well beyond the scope of this
introduction, but we will try to convey the main geometrical constructions. First,
for every finite set 𝑆, we can consider the prestack of shtukas with |𝑆 |-legs defined
by the moduli problem whose groupoid of points for every 𝑅 ∈ CAlgF is given by

Sht𝐺,𝑆 (𝑋) (𝑅) =
{
((𝑥𝑖)𝑖∈𝑆, E, 𝛾) | (𝑥𝑖) ∈ (𝑋Weil) |𝑆 |, E ∈ Bun𝐺 (𝑋𝑅),

𝛾 : E|𝑋𝑅\𝑥𝑖 ≃ Φ∗𝑋 (E)|𝑋𝑅\𝑥𝑖

}
We can then define a corresponding Hecke stack which parameterize modifications
of two shtukas. These depend on three finite sets 𝑆, 𝑇, 𝐼 and given by

Hecke𝐺,𝑆,𝑇,𝐼 (𝑋) (𝑅) =


((𝑥𝑖)𝑖∈𝐼 ,S0,S1, 𝛼) | (𝑥𝑖) ∈

(
𝑋Weil) 𝐼 ,

S0 ∈ Sht𝐺,𝑆 (𝑋) (𝑅), S1 ∈ Sht𝐺,𝑇 (𝑋) (𝑅)
𝛼 : E0 |𝑋𝑅\𝑥𝑖 ≃ E1 |𝑋𝑅\𝑥𝑖
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where E0, E1 are the underlying 𝐺-bundles corresponding to the shtukas S0, S1,
respectively. We then have the Hecke correspondences

Hecke𝐺,𝑆,𝑇,𝐼 (𝑋)

(𝑋Weil) 𝐼 × Sht𝐺,𝑆 (𝑋) Sht𝐺,𝑇 (𝑋)

ℎ𝑟ℎ𝑙

Using the equivalence

Dlis((𝑋Weil) 𝐼) ≃ D𝑏 (Repcts(Weil(𝑋) 𝐼 ,Qℓ))

we can get a family of integral transform functors which generalize the family used in
Lafforgue’s work. Namely, for every representation 𝑉 ∈ D𝑏 (Repcts(Weil(𝑋) 𝐼 ,Qℓ))
and a complex K ∈ Dcons(Hecke𝐺,𝑆,𝑇,𝐼 (𝑋,Qℓ))) we have the functor

𝑆𝑆,𝑇,𝐼,K,𝑉 : Dcons(Sht𝐺,𝑆 (𝑋),Qℓ)) → Dcons(Sht𝐺,𝑇 (𝑋),Qℓ))

given by
𝑆𝑆,𝑇,𝐼,K,𝑉 (F ) = (ℎ𝑟)!

(
ℎ∗𝑙 (L ⊠ F ) ⊗ K

)
.

These functors are the key component in constructing the "spectral action", see
(Zhu, 2021).
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C h a p t e r 3

THE CATEGORICAL TRACE IN THE CATEGORICAL LOCAL
LANLGANDS PROGRAM

3.1 Loop groups
We consider the situation where 𝐹 a non-archimedean local field, e.g. Q𝑝, F𝑞 ((𝑡)),
and 𝑊𝐹 ⊆ Γ𝐹 its Weil group and Galois group. The goal of the local Langlands
program is to understand the smooth representations of the group 𝐺 (𝐹). Fix a
prime ℓ not equal to 𝑝. We denote by Rep(𝐺 (𝐹),Qℓ) the category of smooth
representations of 𝐺 (𝐹) with coefficients in Qℓ. We denote by D(Rep(𝐺 (𝐹),Qℓ))
the unbounded derived category of Rep(𝐺 (𝐹),Qℓ). In the categorical variant of the
local Langlands program, one wishes to understand the category D(Rep(𝐺 (𝐹),Qℓ)).
In this chapter, we will review some of the ways to use algebraic geometry to achieve
better understanding of this category.

As with the global correspondence, the rich connection to algebraic geometry arises
from the realization of some of the structures involved as sets of rational points of
an algebraic-geometric object. We begin by describing the corresponding structures
for 𝐺 (𝐹) itself.

For the sake of simplicity, we will assume 𝐹 is of equal characteristic. Namely, of
the form F𝑞 ((𝑡)) for a finite field F𝑞. However, the definitions and results can be
modified to include the mixed-characteristic case as well.

We recall the arc-group and loop group associated to 𝐺, these are given by the
group-functors sending a F𝑞 algebra 𝑅 to the groups:

𝐿+𝐺 (𝑅) = 𝐺 (𝑅[[𝑡]]), 𝐿𝐺 (𝑅) = 𝐺 (𝑅((𝑡))).

The functor 𝐿+𝐺 is represented by a perfect affine scheme. In particular,

𝐺 (F𝑞) = 𝐺 (F𝑞 [[𝑡]]), 𝐿𝐺 (F𝑞) = 𝐺 (F𝑞 ((𝑡))).

Let 𝐿𝐺/𝐿+𝐺 be the associated affine Grassmannian. It is represented by an ind-
projective perfect ind-scheme. We will denote by 𝐿𝐺F and 𝐿+𝐺F the base change
of the loop and arc-group to the fixed algebraic closure F of F𝑞.

In the global case, the connection from algebraic object (i.e. sheaves) into the
automorphic objects was facilitated by the function-sheaf dictionary. The function
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sheaf dictionary can be seen as a way to take the "trace of the Frobenius" of an
object. However, in the local theory, our target object is not a function space, but
a category. This suggests the need to have a categorical way of taking the trace.
This is exactly what is achieved by the categorical trace constructions. These ideas
originated by Drinfeld, Gaitsgory, and others. See (Dennis Gaitsgory, 2016) for a
review. We will see how these ideas work in the setting of unipotent representations.

3.2 Convolution Patterns and the Iwahori-Hecke category
The abstract results of the second part of the thesis are motivated by the understand-
ing of unipotent representations. It is the subcategory of smooth representations of
𝐺 generated by the compact induction from an Iwahori subgroup.

Fix a Borel subgroup 𝐵 ⊆ 𝐺 and recall that the corresponding Iwahori subgroup
𝐼 ⊆ 𝐺 (F𝑞 [[𝑡]]) is the inverse image of 𝐵(F𝑞) under the surjection

𝐺 (F𝑞 [[𝑡]]) → 𝐺 (F𝑞).

We can then consider the compactly induced representation 𝑐-ind𝐺 (𝐹)
𝐼
(Qℓ). The

endomorphism algebra:

H𝐼 = EndRep(𝐺 (𝐹)) (𝑐-ind𝐺 (𝐹)
𝐼

, 𝑐-ind𝐺 (𝐹)
𝐼
),

is known as the Iwahori-Hecke algebra. Up to a choice of Haar measure on 𝐺 (𝐹),
there is a canonical isomorphism:

H𝐼 = 𝐼\𝐺 (F𝑞 ((𝑡)))/𝐼 .

The composition action on 𝐻𝐼 corresponds to the convolution operation on the
double coset space.

A complex 𝑉 ∈ D(Rep(𝐺),Qℓ) is called unipoitent if it is in the full subcategory
generated by 𝑐-ind𝐺 (𝐹)

𝐼
by colimits and retracts. Equivalently, 𝑉 is unipotent if

the cohomologies 𝐻𝑖 (𝑉) are unipotent representations in the sense of (Lusztig,
1995). The full subcategory of unipotent representations is equivalent to the derived
category of left-𝐻𝐼 modules. This equivalence is obtained via:

𝑉 ↦→ HomD(Rep(𝐺),Qℓ ) (𝑐-ind𝐺 (𝐹)
𝐼

, 𝑉).

We can use algebraic geometry to study the category of unipotent representations.
We denote by 𝜋+ : 𝐿+𝐺 → 𝐺 the map corresponding to sending 𝑡 to zero. This
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subgroup can also be lifted to an algebraic geometric object. Namely, we define the
functor Iw by

Iw(𝑅) = {𝑔 ∈ 𝐺 (𝑅[[𝑡]]) | 𝜋+(𝑔) ∈ 𝐵(𝑅)}.

Then the Iwahori-Hecke algebra 𝐻𝐼 identifies with the F𝑞-points of the Iwahori-
Hecke stack. This stack can be described by the the fpqc-quotient

IwHecke ≃ [Iw\𝐿𝐺/Iw] .

The category of constructible sheaves Dcons(IwHecke𝐼,F,Qℓ) on the base change to
the algebraic closure carries a monoidal structure given by convolution.

In order to get a sense of how this works, it would be useful to consider the general
situation of convolution monoidal structures. In general, these arise from a "nice-
enough" morsphism 𝑓 : (𝑋, 𝜙𝑋) → (𝑌, 𝜙𝑌 ). In such a situation,Dcons(𝑋 ×𝑌 𝑋) has
a convolution monoidal structure, given by

𝑋 ×𝑌 𝑋 ×𝑌 𝑋 (𝑋 ×𝑌 𝑋) × (𝑋 ×𝑌 𝑋)

𝑋 ×𝑌 𝑋

Δ

𝑚

Namely, the monoidal operation is given by:

F ★G := 𝑚∗Δ!(F ⊠ G), F ,G ∈ D(𝑋 ×𝑌 𝑋)

In our case, we will take 𝑋 to be the classifying stack 𝐵(IwF) and 𝑌 to be the
classifying stack 𝐵(𝐿𝐺F) of the loop group. For many purposes, the morphism
𝐵(IwF) → 𝐵(𝐿𝐺F) behaves like a proper morphism. For more details, see (Zhu,
2021) and (Bouthier, Kazhdan, and Varshavsky, 2020). Under the identifications

𝑋 ×𝑌 𝑋 ≃ Iw\𝐿𝐺/Iw, 𝑋 ×𝑌 𝑋 ×𝑌 𝑋 ≃ Iw\𝐿𝐺 ×Iw 𝐿𝐺/Iw

the general convolution monoidal structure identifies with the familiar description
of convolution on Iwahori-Hecke algebras.

As we did with the function sheaf dictionary, we can relate this monoidal category
to the category of unipotent representations by taking the "trace of the Frobenius".
Namely, the Frobenius map on Iw and 𝐿𝐺 give corresponding maps on IwF and
𝐿𝐺F and a corresponding map on the classifying spaces.
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3.3 The Categorical trace construction
Given a Λ-linear monoidal∞-categoryA together with a monoidal endomorphism
𝜙 : A → A, its categorical trace is given by the Hochschild homology

Tr(A, 𝜙) := HH(A, 𝜙A) = A ⊗A⊗Arev 𝜙A

Roughly speaking, it is determined by the following universal property: a functor
Tr(A, 𝜙) → C is equivalent to a functor F : A → C equipped with equivalences

𝐹 (𝑎 ⊗ 𝑏) ≃ 𝐹 (𝑏 ⊗ 𝜙(𝑎)), 𝑎, 𝑏 ∈ Ob(A)

together with all the necessary higher coherence data. In particular, there is a
tautological functor

Tr𝜙 : A → Tr(A, 𝜙)

sending an object 𝑎 to its universal 𝜙-twisted trace.

The trace Tr(A, 𝜙) always exists for general reasons, and it can be computed as the
using the cyclic bar resolution. Namely, as the homotopy colimit of the simplicial
object

HH𝑛 (A, 𝜙A) = A⊗(𝑛+1) = A ⊗ · · · ⊗ A, 𝑛 ≥ 0

which has boundary maps

𝑑𝑖 (𝑎0 ⊗ . . . , 𝑎𝑖−1 ⊗ 𝑎𝑖 ⊗ · · · ⊗ 𝑎𝑛) =

𝑎0 ⊗ · · · ⊗ 𝑎𝑖−1𝑎𝑖 ⊗ · · · ⊗ 𝑎𝑛 𝑖 ≠ 0

𝑎1 ⊗ 𝑎2 ⊗ · · · ⊗ 𝑎𝑛𝜙(𝑎0) 𝑖 = 0

In general, it is difficult to compute such homotopy colimits, however, under certain
conditions it is possible to say more in the case of convolution patterns as in the
previous section.

For monoidial structures arising from convooution patters, it is sometimes possible
to realize the 𝜙-twisted trace as a full subcategory of the category of sheaves of a
certain geometric object. Namely, consider the "fixed point object"

L𝜙 (𝑌 ) 𝑌

𝑌 𝑌

Δ𝑌

id𝑌×𝜙𝑌

We have a correspondence

L𝜙 (𝑌 ) ×𝑌 𝑋 𝑋 ×𝑌 𝑋

L𝜙 (𝑌 )
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Using the identification 𝑋 ×𝑌 L𝜙 (𝑌 ) ≃ 𝑋 ×𝑌×𝑌 𝑌 . The main result of the second
part of the thesis can be informally formulated as follows:

Theorem 3.3.1. Proposition (Ben Zvi-Nadler, H.-Zhu) Under suitable assumptions,
there is a canonical commutative diagram

D(𝑋 ×𝑌 𝑋) D(𝑋 ×𝑌 L𝜙 (𝑌 ))

Tr(D(𝑋 ×𝑌 𝑋), 𝜙) D(L𝜙 (𝑌 ))

with the bottom horizontal arrow fully faithful

Let’s try to apply this paradigm to our case of 𝐵(IwF) → 𝐵(𝐿𝐺F) and 𝜙 given by
the Frobenius which we denote by 𝜎. In this case we have the fixed point object

𝐿𝐺/Ad𝜎 (𝐿𝐺) 𝐵𝐿𝐺

𝐵𝐿𝐺 𝐵𝐿𝐺

Δ

id×𝜎

and we can also identify:

𝑋 ×𝑌 𝑋 ≃ 𝐿𝐺F/Ad𝜎 (IwF)

This means, given the correct definitions of categories of sheaves on the correspond-
ing geometric objects, that our main result gives a fully faithful functor

𝑡𝑟 (Dcons(Iw\𝐿𝐺/Iw,Qℓ), 𝜙) → D(𝐿𝐺/Ad𝜎 (𝐿𝐺),Qℓ).

These definitions and its implication to the study of the category of unipotent
representations are the subject of a joint project with Xinwen Zhu and are beyond
the scope of this thesis.
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C h a p t e r 4

RECOLLECTIONS ON INFINITY CATEGORIES

Throughout this part, Λ denotes a unital, commutative ring. We briefly collect some
notation pertaining to ∞-categories from (Lurie, 2017; Lurie, 2009). As in (Lurie,
2009, Section 5.5.3), PrL denotes the∞-category of presentable∞-categories with
colimit-preserving functors. It contains the subcategory PrSt ⊂ PrL consisting of
stable∞-categories.

4.1 Monoidal aspects
The category PrL carries the Lurie tensor product (Lurie, 2017, Section 4.8.1). This
tensor product induces one on the full subcategory PrSt ⊂ PrL consisting of stable
∞-categories (Lurie, 2017, Proposition 4.8.2.18). For our commutative ring Λ, the
∞-category ModΛ of chain complexes of Λ-modules, up to quasi-isomorphism, is
a commutative monoid in PrSt with respect to this tensor product. This structure
includes, in particular, the existence of a functor

ModΛ ×ModΛ → ModΛ

which, after passing to the homotopy categories is the classical derived tensor
product on the unbounded derived category of Λ-modules.

We define PrSt
Λ

to be the category of modules, in PrSt, over ModΛ. Noting that
modules over ModΛ are in particular modules over Sp, the∞-category of spectra, PrSt

Λ

can be described as the ∞-category consisting of stable presentable ∞-categories
together with a Λ-linear structure, such that functors are continuous and Λ-linear.
Therefore PrSt

Λ
carries a symmetric monoidal structure, whose unit is ModΛ. We will

also denote by PrSt
𝜔 the category of compactly generated presentable with functors

that send compact objects to compact objects (equivalently, those whose right adjoint
is continuous).

In order to express monoidal properties of∞-categories consisting, say, of bounded
complexes, recall from (Lurie, 2017, Corollary 4.8.1.4 joint with Lemma 5.3.2.11) or
(Ben-Zvi, Francis, and Nadler, 2010, Proposition 4.4) the symmetric monoidal struc-
ture on the ∞-category CatEx

∞ (Idem) of idempotent complete stable ∞-categories
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and exact functors: it is characterized by

𝐷1 ⊗ 𝐷2 :=
(
Ind(𝐷1) ⊗ Ind(𝐷2)

)𝜔 (4.1)

that is, the compact objects in the Lurie tensor product of the Ind-completions. With
respect to these monoidal structures, the Ind-completion functor (taking values in
compactly generated presentable ∞-categories with the Lurie tensor product) and
the functor forgetting the compact generated-ness:

CatEx
∞ (Idem) Ind−−→ PrSt

𝜔 ↩→ PrSt (4.2)

are both symmetric monoidal (Lurie, 2017, Lemmas 5.3.2.9, 5.3.2.11).

The subcategory of compact objects in ModΛ is given by perfect complexes of
Λ-modules (Lurie, 2017, Proposition 7.2.4.2.). It is denoted PerfΛ. Under the
equivalence in Equation (4.2), the category PerfΛ ⊆ CatEx

∞ (Idem) corresponds to
ModΛ. Moreover, PerfΛ is a commutative monoid in CatEx

∞ (Idem), so that we can
consider its category of modules, denoted as CatEx

∞,Λ(Idem). This category inherits
a symmetric monoidal structure denoted by 𝐷1 ⊗PerfΛ 𝐷2.

Any stable∞-category𝐷 is canonically enriched over the category of spectra Sp. We
write Hom𝐷 (−,−) for the mapping spectrum. Any category in PrSt

Λ
is canonically

enriched over ModΛ, so that we refer to Hom𝐷 (−,−) ∈ ModΛ as the mapping
complex. For example, for 𝑀, 𝑁 ∈ ModΛ, then HomModΛ (𝑀, 𝑁) is commonly also
denoted by Hom(𝑀, 𝑁). Its 𝑛-th cohomology is the Hom-group Hom(𝑀, 𝑁 [𝑛]) in
the classical derived category.

4.2 Fixed points of infinity categories
A basic structure in Drinfeld’s lemma is the equivariance datum for the partial
Frobenii. In this section, we assemble some abstract results where such ∞-
categorical constructions are carried out.

Definition 4.2.1. Let 𝜙 : 𝐷 → 𝐷 be an endofunctor in CatEx
∞ (Idem). The category

of 𝜙-fixed points is

𝐷𝜙=id := Fix(𝐷, 𝜙) := lim
(
𝐷

𝜙

⇒
id𝐷

𝐷

)
.

Recall that for a symmetric monoidal∞-category 𝐷, a commutative monoid object
Λ ∈ CAlg(𝐷), the forgetful functors CAlg(𝐷) → 𝐷 and ModΛ(𝐷) → 𝐷 preserve
limits (Lurie, 2017, Corollary 3.2.2.5, Corollary 4.2.3.3). In particular, if 𝐷 is in
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addition Λ-linear, that is, an object in CatEx
∞,Λ(Idem), and 𝜙 is also Λ-linear, then

Fix(𝐷, 𝜙) admits a natural Λ-linear structure as well.

Because of these facts, we will usually not specify where the limit above is formed.
Note that all functors

CatEx
∞ (Idem) Ind−→

�
PrSt
𝜔

(∗)−→ PrSt −→ PrL −→ �Cat∞ (4.3)

except for the forgetful functor marked (∗) preserve limits, see (Lurie, 2017, Corol-
lary 4.2.3.3) and (Lurie, 2009, Proposition 5.5.3.13) for the rightmost two functors.

To give a concrete example of that failure in our situation, note that Fix(𝐷, id𝐷) =
Fun(𝐵Z, 𝐷), that is, objects are pairs (𝑀, 𝛼) consisting of some 𝑀 ∈ 𝐷 and some
automorphism 𝛼 : 𝑀 � 𝑀 .

Now consider𝐷 = Vectf.d
Λ

, the (abelian) category of finite-dimensional vector spaces
over a field Λ. The natural functor

Ind
(
lim

(
Vectf.d

Λ
⇒ Vectf.d

Λ

) )
→ lim

(
Ind

(
Vectf.d

Λ

)
⇒ Ind

(
Vectf.d

Λ

) )
= lim

(
VectΛ ⇒ VectΛ

)
is fully faithful, but not essentially surjective: given an automorphism 𝛼 of an
infinite-dimensional vector space 𝑀 , there need not be a filtration 𝑀 =

⋃
𝑀𝑖 by

finite-dimensional subspaces 𝑀𝑖 that is compatible with 𝛼.

Fixed point categories inherit t-structures as follows:

Lemma 4.2.2. Let 𝜙 : 𝐷 → 𝐷 be a functor in CatEx
∞ (Idem). Suppose 𝐷 carries a

t-structure such that 𝜙 is t-exact. Then Fix(𝐷, 𝜙) carries a unique t-structure such
that the evaluation functor is t-exact. There is a natural equivalence

Fix(𝐷♥, 𝜙) �−→ Fix(𝐷, 𝜙)♥.

Proof. Let us abbreviate 𝐷 := Fix(𝐷, 𝜙). For • being either “≤ 0” or “≥ 0”, we
put 𝐷• := Fix(𝐷•, 𝜙), which is a (non-stable) ∞-category. This is clearly the only
choice for a t-structure making ev a t-exact functor. It satisfies the claim about the
hearts of the t-structure by definition.

We need to show that it is a t-structure. Being a limit of full subcategories, the
categories 𝐷• are full subcategories of 𝐷. Since 𝜙, being t-exact, commutes with
𝜏≤0
𝐷

and 𝜏≥0
𝐷

, these two functors also yield truncation functors for 𝐷. For 𝑀 ∈ 𝐷≤0,
𝑁 ∈ 𝐷≥1 (we use cohomological conventions), we have

Hom
𝐷

(
𝑀, 𝑁

)
= lim

(
Hom𝐷 (𝑀, 𝑁) ⇒ Hom𝐷 (𝑀, 𝑁)

)
,
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where on the right hand side 𝑀 , 𝑁 denote the underlying objects in 𝐷. Since
𝑀 ∈ 𝐷≤0, 𝑁 ∈ 𝐷≥1, we have H𝑖Hom𝐷 (𝑀, 𝑁) = 0 for 𝑖 = −1, 0. Thus,
H0Hom

𝐷
(𝑀, 𝑁) = 0 as well. □

4.2.1 can be generalized as follows: Let 𝜑 : 𝐵Z𝑛 → CatEx
∞ (Idem) be a diagram.

For example, for 𝑛 = 1, this amounts to giving 𝐷 = 𝜑(∗) ∈ CatEx
∞ (Idem) and an

equivalence 𝜙 = 𝜑(1) : 𝐷 → 𝐷. For 𝑛 = 2, such a datum corresponds to giving 𝐷,
equivalences 𝜙1, 𝜙2 : 𝐷

�→ 𝐷 together with an equivalence 𝜙1 ◦ 𝜙2
�→ 𝜙2 ◦ 𝜙1. So

we define the∞-category of simultaneous fixed points as

Fix(𝐷, 𝜙1, . . . , 𝜙𝑛) := lim 𝜑 ∈ CatEx
∞ (Idem).

Remark 4.2.3. The statement of 4.2.2 carries over verbatim assuming that 𝐷 has a
t-structure and all 𝜙𝑖 are t-exact, noting that 𝐵Z𝑛 = (𝑆1)𝑛 is a finite simplicial set.

Lemma 4.2.4. Let 𝜑 : 𝐵Z𝑛 → CatEx
∞ (Idem) be a diagram. Denote 𝐷 = 𝜑(∗) and

𝜙𝑖 = 𝜑(𝑒𝑖) for the 𝑖-th standard vector 𝑒𝑖 ∈ Z𝑛. The functor

Fix
(
𝐷, 𝜙1, . . . , 𝜙𝑛

)
→ Fix

(
Ind(𝐷), 𝜙1, . . . , 𝜙𝑛

)
induced from the inclusion 𝐷 ⊂ Ind(𝐷) is fully faithful and takes values in compact
objects. In particular, it yields a fully faithful functor

Ind
(
Fix(𝐷, 𝜙1, . . . , 𝜙𝑛)

)
→ Fix

(
Ind(𝐷), 𝜙1, . . . , 𝜙𝑛

)
.

Proof. Let 𝑀 ∈ Fix(𝐷, 𝜙1, . . . , 𝜙𝑛) and denote its underlying object in 𝐷 by the
same symbol. For every 𝑁 ∈ Fix

(
Ind(𝐷), 𝜙1, . . . , 𝜙𝑛), we have a limit diagram of

mapping complexes

HomFix(Ind(𝐷)) (𝑀, 𝑁) � Fix
(
HomInd(𝐷) (𝑀, 𝑁), 𝜙1, . . . , 𝜙𝑛

)
.

Since filtered colimits commute with finite limits in the ∞-category of anima
(a.k.a. spaces) (Lurie, 2009, Proposition 5.3.3.3.), we see that 𝑀 is compact in
Fix(Ind(𝐷)) because 𝑀 is so in Ind(𝐷). □

Lemma 4.2.5. Let 𝜑𝑖 : 𝐵Z → CatEx
∞,Λ(Idem), 𝑖 = 1, . . . , 𝑛 be given. Denote 𝐷𝑖 =

𝜑𝑖 (∗), 𝜙𝑖 = 𝜑𝑖 (1) and 𝐷𝑖 = Ind(𝐷𝑖). Then there is a canonical equivalence

Fix
(
𝐷1, 𝜙1

)
⊗ModΛ . . . ⊗ModΛ Fix

(
𝐷𝑛, 𝜙𝑛

) �→ Fix
(
𝐷1 ⊗ModΛ . . . ⊗ModΛ 𝐷𝑛, 𝜙1, . . . , 𝜙𝑛

)
.
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Proof. The categories Fix(𝐷𝑖, 𝜙𝑖) are compactly generated: the forgetful functor
𝑈 : Fix(𝐷𝑖, 𝜙𝑖) → 𝐷𝑖 = Ind(𝐷𝑖) preserves colimits, so its left adjoint 𝐿 preserves
compact objects. Moreover,𝑈 is conservative, so that the objects 𝐿 (𝑑𝑖), for 𝑑𝑖 ∈ 𝐷𝑖,
form a family of compact generators. Then, we use that any compactly generated
category in PrSt

Λ
is dualizable (Lurie, 2018, Remark D.7.7.6 (1)) so that tensoring

with it preserves limits. □
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C h a p t e r 5

LISSE AND CONSTRUCTIBLE SHEAVES

In order to state and prove the categorical Künneth formula for Weil sheaves, we use
the framework for lisse and constructible sheaves provided by (Hemo, Richarz, and
Scholbach, 2021). For the convenience of the reader, we collect here some basics
of the formalism.

Throughout, Λ denotes a condensed ring, for example any T1-topological ring such
as discrete rings, algebraic extensions 𝐸/Qℓ or their ring of integers O𝐸 . In the
synopsis below, we refer to the latter choices of Λ as the standard coefficient rings.
We write Λ∗ for the underlying ring. Let D(𝑋,Λ) be the derived category of sheaves
of Λ-modules on the proétale site 𝑋proét.

Definition 5.0.1. For every scheme 𝑋 and every condensed ring Λ, there are the
full subcategories

Dlis(𝑋,Λ) ⊂ Dcons(𝑋,Λ) ⊂ D(𝑋,Λ) (5.1)

By definition, the left hand category of lisse sheaves consists of the dualizable
objects in the right-most category. An object (henceforth referred to as a sheaf) 𝑀
in the right hand category is constructible, if on any affine 𝑈 ⊂ 𝑋 there is a finite
stratification into constructible locally closed subschemes𝑈𝑖 ⊂ 𝑈 such that 𝑀 |𝑈𝑖

is
lisse, that is, dualizable. Finally, an ind-lisse (respectively, ind-constructible) sheaf
is a filtered colimit, in the category D(𝑋,Λ), of lisse (respectively, constructible)
sheaves. The corresponding full subcategories of D(𝑋,Λ) are denoted by

Dindlis(𝑋,Λ) ⊂ Dindcons(𝑋,Λ) ⊂ D(𝑋,Λ).

For the standard coefficient rings Λ above and quasi-compact quasi-separated (qcqs)
schemes 𝑋 , that definition of lisse and constructible sheaves agrees with the classical
ones, see loc. cit. for details.

(i) Via the natural functor ModΛ∗ → D(𝑋,Λ), 𝑀 ↦→ 𝑀 ⊗Λ∗ Λ𝑋 , the category
D(𝑋,Λ) is an object in PrSt

Λ∗
. The functor restricts to a functor PerfΛ∗ →

Dlis(𝑋,Λ), and the categories Dlis(𝑋,Λ) ⊂ Dcons(𝑋,Λ) are objects of the
category CatEx

∞,Λ(Idem). In particular, all categories listed in Equation (5.1)
are stable idempotent complete Λ∗-linear∞-categories.
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(ii) The extension-by-zero functor along any constructible locally closed immer-
sion and quasi-compact étale morphisms preserves constructibility.

(iii) The functors 𝑋 ↦→ Dcons(𝑋,Λ) and 𝑋 ↦→ Dlis(𝑋,Λ) satisfy proétale hyperde-
scent, and the functor 𝑋 ↦→ Dindcons(𝑋,Λ), resp. 𝑋 ↦→ Dindlis(𝑋,Λ) satisfies
hyperdescent for quasi-compact étale, resp. finite étale covers.

(iv) If Λ = colimΛ𝑖 is a filtered colimit of condensed rings and 𝑋 is qcqs, then the
natural functors

colim Dlis(𝑋,Λ𝑖)
�−→ Dlis(𝑋,Λ), colim Dcons(𝑋,Λ𝑖)

�−→ Dcons(𝑋,Λ)

are equivalences.

The categories enjoy the following properties:

(v) If 𝑋 is qcqs, then any constructible sheaf is bounded with respect to the
t-structure on D(𝑋,Λ).

(vi) For 𝑋 locally Noetherian (and much more generally), the t-structure on
D(𝑋,Λ) restricts to one on Dlis(𝑋,Λ) and Dcons(𝑋,Λ) provided that Λ is
t-admissible in the sense of (Hemo, Richarz, and Scholbach, 2021). The
topological condition on the condensed structure of Λ is satisfied for all the
standard coefficient rings listed above.

(vii) For 𝑋 locally Noetherian (and again more generally), a sheaf is lisse if and
only if it is proétale locally the constant sheaf associated to a perfect complex
of Λ∗-modules.

(viii) Let 𝑋 be a qcqs scheme. If the Λ-cohomological dimension is uniformly
bounded for all proétale affines 𝑈 = lim𝑖𝑈𝑖 over 𝑋 , then Ind(Dcons(𝑋,Λ)) =
Dindcons(𝑋,Λ) and likewise for ind-lisse sheaves. If 𝑋 is of finite type over F𝑞
or a separably closed field, this condition holds for any of the above standard
rings. For discrete 𝑝-torsion rings, algebraic extensions 𝐸/Q𝑝 and their ring
of integers O𝐸 , this holds for arbitrary qcqs schemes in characteristic 𝑝.

For schemes 𝑋1, . . . , 𝑋𝑛 over a fixed base scheme 𝑆 (for example, the spectrum of a
field) and a condensed ring Λ, we denote the external product in the usual way:

⊠ : D(𝑋1,Λ) × . . . × D(𝑋𝑛,Λ) −→ D (𝑋1 ×𝑆 . . . ×𝑆 𝑋𝑛,Λ) ,
(𝑀1, . . . , 𝑀𝑛) ↦−→ 𝑀1 ⊠ . . . ⊠ 𝑀𝑛 := 𝑝∗1(𝑀1) ⊗Λ𝑋

. . . ⊗Λ𝑋
𝑝∗𝑛 (𝑀𝑛).
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Here 𝑝𝑖 : 𝑋 := 𝑋1 ×𝑆 . . . ×𝑆 𝑋𝑛 → 𝑋𝑖 are the projections. This functor induces the
functor

⊠ : D(𝑋1,Λ) ⊗ModΛ∗ . . . ⊗ModΛ∗ D(𝑋𝑛,Λ) → D (𝑋1 ×𝑆 . . . ×𝑆 𝑋𝑛,Λ) , (5.2)

in PrSt
Λ∗

. Here we regard D(𝑋𝑖,Λ) as objects in PrSt
Λ∗

, like in Item i in the synopsis
above. The external tensor product of constructible sheaves is again constructible,
and hence induces a functor

⊠ : Dcons(𝑋1,Λ) ⊗PerfΛ∗ . . . ⊗PerfΛ∗ Dcons(𝑋𝑛,Λ) → Dcons (𝑋1 ×𝑆 . . . ×𝑆 𝑋𝑛,Λ) ,
(5.3)

in CatEx
∞,Λ∗ (Idem) and likewise for the categories of ind-constructible, resp. (ind-

)lisse sheaves.
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C h a p t e r 6

CONSTRUCTIBLE WEIL SHEAVES

In this section, we introduce the categories

Dlis
(
𝑋Weil,Λ

)
⊆ Dcons

(
𝑋Weil,Λ

)
⊆ D

(
𝑋Weil,Λ

)
consisting of lisse, resp. constructible, resp. all Weil sheaves. These are the cate-
gories featuring in the categorical Künneth formula (2.2.2).

Throughout this section, 𝑋 is a scheme over a finite field F𝑞 of characteristic 𝑝 > 0.
Unless the contrary is mentioned, we impose no conditions on 𝑋 . Moreover, Λ
is a condensed ring. We fix an algebraic closure F of F𝑞, and denote by 𝑋F :=
𝑋 ×F𝑞 SpecF the base change. Denote by 𝜙𝑋 (resp. 𝜙F) the endomorphism of 𝑋F
that is the 𝑞-Frobenius on 𝑋 (resp. SpecF) and the identity on the other factor.

Let
Dlis(𝑋F,Λ) ⊂ Dcons(𝑋F,Λ) ⊂ D(𝑋F,Λ)

be the categories of lisse, resp. constructible, resp. all proétale sheaves ofΛ-modules
on 𝑋F (5.0.1). These categories are objects in CatEx

∞,Λ∗ (Idem), that is,Λ∗-linear stable
idempotent complete symmetric monoidal ∞-categories where Λ∗ = Γ(∗,Λ) is the
underlying ring.

6.1 The Weil-proétale site
The Weil-étale topology for schemes over finite field is introduced in (Lichtenbaum,
2005) see also (Geisser, 2004). Our approach for the proétale topology is slightly
different:

Definition 6.1.1. The Weil-proétale site of 𝑋 , denoted by 𝑋Weil
proét, is the following

site: Objects in 𝑋Weil
proét are pairs (𝑈, 𝜑) consisting of 𝑈 ∈ (𝑋F)proét equipped with

an endomorphism 𝜑 : 𝑈 → 𝑈 of F-schemes such that the map 𝑈 → 𝑋F intertwines
𝜑 and 𝜙𝑋 . Morphisms in 𝑋Weil

proét are given by equivariant maps, and a family
{(𝑈𝑖, 𝜑𝑖) → (𝑈, 𝜑)} of morphisms is a cover if the family {𝑈𝑖 → 𝑈} is a cover in
(𝑋F)proét.

Note that 𝑋Weil
proét admits small limits formed componentwise as

lim(𝑈𝑖, 𝜑𝑖) = (lim𝑈𝑖, lim 𝜑𝑖).
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In particular, there are limit-preserving maps of sites

(𝑋F)proét → 𝑋Weil
proét → 𝑋proét (6.1)

given by the functors (in the opposite direction)𝑈 ←� (𝑈, 𝜑) and (𝑈F, 𝜙𝑈) ←� 𝑈. We
denote by D(𝑋Weil,Λ) the unbounded derived category of sheaves of Λ𝑋-modules
on 𝑋Weil

proét. The maps of sites (6.1) induce functors

D(𝑋,Λ) → D(𝑋Weil,Λ) → D(𝑋F,Λ), (6.2)

whose composition is the usual pullback functor along 𝑋F → 𝑋 .

Remark 6.1.2. The functor D(𝑋,Λ) → D(𝑋Weil,Λ) is not an equivalence in gen-
eral. This relates to the difference between continuous representations Galois versus
Weil groups. See, however, Proposition 6.6.1 for filtered colimits of finite discrete
rings Λ.

We have the following basic functoriality: Let 𝑗 : 𝑈 → 𝑋 be a weakly étale mor-
phism and consider the corresponding object (𝑈F, 𝜙𝑈) of 𝑋Weil

proét. Then the slice
site (𝑋Weil

proét)/(𝑈F,𝜙𝑈) is equivalent to 𝑈Weil
proét. This gives a functor (𝑋proét)op → PrSt

Λ
,

𝑈 ↦→ D(𝑈Weil,Λ) which is a hypercomplete sheaf of Λ∗-linear presentable stable
categories.

Also, we obtain an adjunction

𝑗! : D(𝑈Weil,Λ) ⇄ D(𝑋Weil,Λ) : 𝑗∗

that is compatible with the (( 𝑗F)!, ( 𝑗F)∗)-adunction under (6.2). The category
D(𝑋Weil,Λ) is equivalent to the category of 𝜙𝑋-equivariant sheaves on 𝑋F, as we
will now explain.

For each 𝑖 ≥ 0, consider the object (𝑋𝑖,Φ𝑖) ∈ 𝑋Weil
proét with 𝑋𝑖 = Z𝑖+1 × 𝑋F the

countably disjoint union of 𝑋F, the map 𝑋𝑖 → 𝑋F given by projection and the
endomorphism Φ𝑖 : 𝑋𝑖 → 𝑋𝑖 given by (𝑛, 𝑥) ↦→ (𝑛− (1, . . . , 1), 𝜙𝑋 (𝑥)) on sections.

The inclusion Z𝑖 → Z𝑖+1, 𝑛 ↦→ (0, 𝑛) induces a map of schemes 𝑋𝑖−1 → 𝑋𝑖 where
𝑋−1 := 𝑋F. By pullback, we get a limit-preserving map of sites

(𝑋𝑖−1)proét →
(
𝑋Weil

proét

)
/(𝑋𝑖 ,Φ𝑖)

(6.3)

Lemma 6.1.3. For each 𝑖 ≥ 0, the map (6.3) induces an equivalence on the associ-
ated 1-topoi.
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Proof. As universal homeomorphisms induce equivalences on proétale 1-topoi
(Bhatt and Scholze, 2015, Lemma 5.4.2), we may assume that 𝑋 is perfect. In
this case, the sites (6.3) are equivalent because 𝜙𝑋 is an isomorphism. Explicitly, an
inverse is given by sending an object 𝑈 ∈ (𝑋𝑖−1)proét to the object 𝑉 =

⊔
𝑛∈Z𝑖+1 𝑉𝑛,

𝑉𝑛 → {𝑛} × 𝑋F defined by

𝑉𝑛 = 𝑈(𝑛2−𝑛1,...,𝑛𝑖+1−𝑛1) ×𝑋F,𝜙𝑛1
𝑋
𝑋F,

and with endomorphism 𝜑 : 𝑉 → 𝑉 defined by the maps𝑉𝑛 = 𝑉𝑛−(1,...,1)×𝑋F,𝜙𝑋 𝑋F →
𝑉𝑛−(1,...,1) . □

Weil sheaves admit the following presentation as the 𝜙∗
𝑋
-fixed points of D(𝑋F,Λ),

see 4.2.1:

Proposition 6.1.4. The last functor in (6.2) induces an equivalence

D(𝑋Weil,Λ) � lim

(
D(𝑋F,Λ)

𝜙∗
𝑋

⇒
id

D(𝑋F,Λ)
)
. (6.4)

Remark 6.1.5. Objects in Equation (6.4) are pairs (𝑀, 𝛼) where 𝑀 ∈ D(𝑋F,Λ)
and 𝛼 is an isomorphism 𝑀 � 𝜙∗

𝑋
𝑀 . Note that the composition 𝜙𝑋 ◦ 𝜙F is the

absolute 𝑞-Frobenius of 𝑋F. In particular, it induces the identity on proétale topoi,
see (Bhatt and Scholze, 2015, Lemma 5.4.2). Therefore, replacing 𝜙∗

𝑋
by 𝜙∗F in

Equation (6.4) yields an equivalent category.

Proof of Proposition 6.1.4. The structural morphism (𝑋0,Φ0) → (𝑋F, 𝜙𝑋) is a
cover in 𝑋Weil

proét. Its Čech nerve has objects (𝑋𝑖,Φ𝑖) ∈ 𝑋Weil
proét, 𝑖 ≥ 0 as above. By

descent, there is an equivalence

D
(
𝑋Weil,Λ

) �−→ Tot
(
D

(
(𝑋Weil

proét)/(𝑋•,Φ•) ,Λ
) )
. (6.5)

Under Lemma 6.1.3, the cosimplicial 1-topos associated with (𝑋Weil
proét)/(𝑋•,Φ•) is

equivalent to the cosimplicial 1-topos associated with the action of 𝜙∗
𝑋

on (𝑋F)proét.
The equivalence Equation (6.5) then becomes

D
(
𝑋Weil,Λ

) �−→ lim
𝐵Z

D(𝑋F,Λ),

for the diagram 𝐵Z → PrSt
Λ

corresponding to the endomorphism 𝜙∗
𝑋

of D
(
𝑋F,Λ

)
.

That is, D(𝑋Weil,Λ) is equivalent to the homotopy fixed points of D(𝑋F,Λ) with
respect to the action of 𝜙∗

𝑋
, which is our claim. □
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6.2 Weil sheaves on products
The discussion of the previous section generalizes to products of schemes as follows.
Let 𝑋1, . . . , 𝑋𝑛 be schemes over F𝑞, and denote by 𝑋 := 𝑋1 ×F𝑞 . . . ×F𝑞 𝑋𝑛 their
product. For every 1 ≤ 𝑖 ≤ 𝑛, we have a morphism 𝜙𝑋𝑖 : 𝑋𝑖,F → 𝑋𝑖,F as in the
previous section. We use the notation 𝜙𝑋𝑖 to also denote the corresponding map on
𝑋F = 𝑋1,F ×F . . . ×F 𝑋𝑛,F which is 𝜙𝑋𝑖 on the 𝑖-th factor and the identity on the other
factors.

We define the site (𝑋Weil
1 × . . . × 𝑋Weil

𝑛 )proét whose underlying category consists of
tuples (𝑈, 𝜑1, . . . , 𝜑𝑛) with 𝑈 ∈ (𝑋F)proét and pairwise commuting endomomor-
phisms 𝜑𝑖 : 𝑈 → 𝑈 such that the following diagram commutes

𝑈
𝜑𝑖 //

��

𝑈

��
𝑋F

𝜙𝑋𝑖 // 𝑋F,

for all 1 ≤ 𝑖 ≤ 𝑛. As before, we denote by D
(
𝑋Weil

1 ×. . .×𝑋Weil
𝑛 ,Λ

)
the corresponding

derived category of Λ-sheaves.

Using a similar reasoning as in the previous section, we can identify this category
of sheaves with the homotopy fixed points

D
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

) �−→ Fix
(
D(𝑋F,Λ), 𝜙∗𝑋1

, . . . , 𝜙∗𝑋𝑛
)

(6.6)

of the commuting family of the functors 𝜙∗
𝑋𝑖

, see Remark 4.2.3. Explicitly, for 𝑛 = 2,
this is the homotopy limit of the diagram

D
(
𝑋F,Λ

) 𝜙∗
𝑋1 //

id
//

id
��

𝜙∗
𝑋2
��

D
(
𝑋F,Λ

)
id
��

𝜙∗
𝑋2
��

D
(
𝑋F,Λ

) 𝜙∗
𝑋1 //

id
// D

(
𝑋F,Λ

)
.

Roughly speaking, objects in the category D(𝑋Weil
1 × . . . × 𝑋Weil

𝑛 ,Λ) are given by
tuples (𝑀, 𝛼1, . . . , 𝛼𝑛) with 𝑀 ∈ D(𝑋F,Λ) and with pairwise commuting equiv-
alences 𝛼𝑖 : 𝑀 � 𝜙∗

𝑋𝑖
𝑀 . That is, equipped with a collection of equivalences

𝜙∗
𝑋 𝑗
(𝛼𝑖) ◦ 𝛼 𝑗 ≃ 𝜙∗𝑋𝑖 (𝛼 𝑗 ) ◦ 𝛼𝑖 for all 𝑖, 𝑗 satisfying higher coherence conditions.

6.3 Partial-Frobenius stability
For schemes 𝑋1, . . . , 𝑋𝑛 over F𝑞, we denote by 𝑋 := 𝑋1 ×F𝑞 · · · ×F𝑞 𝑋𝑛 their product
together with the partial Frobenii Frob𝑋𝑖 : 𝑋 → 𝑋 , 1 ≤ 𝑖 ≤ 𝑛.
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To give a reasonable definition of lisse and constructible Weil sheaves, we need to
understand the relation between partial-Frobenius invariant constructible subsets in
𝑋 and constructible subsets in the single factors 𝑋𝑖:

Definition 6.3.1. A subset 𝑍 ⊂ 𝑋 is called partial-Frobenius invariant if for all
1 ≤ 𝑖 ≤ 𝑛 we have Frob𝑋𝑖 (𝑍) = 𝑍 .

The composition Frob𝑋1 ◦ · · · ◦ Frob𝑋𝑛 is the absolute 𝑞-Frobenius on 𝑋 and thus
induces the identity on the topological space underlying 𝑋 . Therefore, in order
to check that 𝑍 ⊂ 𝑋 is partial-Frobenius invariant, it suffices that, for any fixed 𝑖,
the subset 𝑍 is Frob𝑋 𝑗

-invariant for all 𝑗 ≠ 𝑖. This remark, which also applies to
𝑋F = 𝑋1 ×F𝑞 . . . ×F𝑞 𝑋𝑛 ×F𝑞 SpecF, will be used below without further comment.

We first investigate the case of two factors with one being a separably closed field.
This eventually rests on Drinfeld’s descent result (V. G. Drinfeld, 1987, Proposition
1.1) for coherent sheaves:

Lemma 6.3.2. Let 𝑋 be a qcqs F𝑞-scheme, and let 𝑘/F𝑞 be a separably closed field.
Denote by 𝑝 : 𝑋𝑘 → 𝑋 the projection. Then 𝑍 ↦→ 𝑝−1(𝑍) induces a bĳection

{constructible subsets in 𝑋 } ↔ {partial-Frobenius invariant, constructible subsets in 𝑋𝑘 }

Proof. The injectivity is clear because 𝑝 is surjective. It remains to check the
surjectivity. Without loss of generality we may assume that 𝑘 is algebraically closed,
and replace Frob𝑋 by Frob𝑘 which is an automorphism. Given that 𝑍 ↦→ 𝑝−1(𝑍)
is compatible with passing to complements, unions and localizations on 𝑋 , we are
reduced to proving the bĳection for constructible closed subsets 𝑍 and for 𝑋 affine
over F𝑞. By Noetherian approximation (6.3.4), we reduce further to the case where
𝑋 is of finite type over F𝑞 and still affine. Now we choose a locally closed embedding
𝑋 → P𝑛F𝑞 into projective space. A closed subset 𝑍′ ⊂ 𝑋𝑘 is 𝜙𝑘 -invariant if and only
if its closure inside P𝑛

𝑘
is so. Hence, it is enough to consider the case where 𝑋 = P𝑛F𝑞

is the projective space. Let 𝑍′ be a closed Frob𝑘 -invariant subset of 𝑋𝑘 . When
viewed as a reduced subscheme, the isomorphism 𝜙𝑘 restricts to an isomorphism
of 𝑍′. In particular, O𝑍 ′ is a coherent O𝑋𝑘

-module equipped with an isomorphism
O𝑍 ′ � 𝜙∗𝑘O𝑍 ′ . Hence, Drinfeld’s descent result (V. G. Drinfeld, 1987, Proposition
1.1) (see also (Kedlaya, 2019, Section 4.2) for a recent exposition) yields 𝑍′ = 𝑍𝑘

for a unique closed subscheme 𝑍 ⊂ 𝑋 . □
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The following proposition generalizes the results (Lau, 2004, Lemma 9.2.1) and
(V. Lafforgue, 2018, Lemme 8.12) in the case of curves.

Proposition 6.3.3. Let 𝑋1, . . . , 𝑋𝑛 be qcqs F𝑞-schemes, and denote 𝑋 = 𝑋1 ×F𝑞
. . .×F𝑞 𝑋𝑛. Then any partial-Frobenius invariant constructible closed subset 𝑍 ⊂ 𝑋
is a finite set-theoretic union of subsets of the form 𝑍1×F𝑞 . . .×F𝑞 𝑍𝑛, for appropriate
constructible closed subschemes 𝑍𝑖 ⊂ 𝑋𝑖.

In particular, any partial-Frobenius invariant constructible open subscheme𝑈 ⊂ 𝑋
is a finite union of constructible open subschemes of the form𝑈1 ×F𝑞 . . . ×F𝑞 𝑈𝑛, for
appropriate constructible open subschemes𝑈𝑖 ⊂ 𝑋𝑖.

Proof. By induction, we may assume 𝑛 = 2. By Noetherian approximation
(Lemma 6.3.4), we reduce to the case where both 𝑋1, 𝑋2 are of finite type over
F𝑞. In the following, all products are formed over F𝑞, and locally closed subschemes
are equipped with their reduced subscheme structure. Let 𝑍 ⊂ 𝑋1 × 𝑋2 be a partial-
Frobenius invariant closed subscheme. The complement 𝑈 = 𝑋1 × 𝑋2 \ 𝑍 is also
partial-Frobenius invariant.

In the proof, we can replace 𝑋1 (and likewise 𝑋2) by a stratification in the following
sense: Suppose 𝑋1 = 𝐴′ ⊔ 𝐴′′ is a set-theoretic stratification into a closed subset
𝐴′ with open complement 𝐴′′. Once we know 𝑍 ∩ 𝐴′ × 𝑋2 =

⋃
𝑗 𝑍
′
1 𝑗 × 𝑍

′
2 𝑗 and

𝑍 ∩ 𝐴′′× 𝑋2 =
⋃
𝑗 𝑍
′′
1 𝑗 × 𝑍

′′
2 𝑗 for appropriate closed subschemes 𝑍′1 𝑗 ⊂ 𝐴

′, 𝑍′′1 𝑗 ⊂ 𝐴
′′

and 𝑍′2 𝑗 , 𝑍
′′
2 𝑗 ⊂ 𝑋2, we have the set-theoretic equality

𝑍 =
⋃
𝑗

𝑍′1𝑖 × 𝑍
′
2 𝑗 ∪

⋃
𝑗

𝑍′′1 𝑗 × 𝑍
′′
2 𝑗 ,

where 𝑍′′1 𝑗 ⊂ 𝑋1 denotes the scheme-theoretic closure. Here we note that taking
scheme-theoretic closures commutes with products because the projections 𝑋1 ×
𝑋2 → 𝑋𝑖 are flat, and that the topological space underlying the scheme-theoretic
closure agrees with the topological closure because all schemes involved are of finite
type.

The proof is now by Noetherian induction on 𝑋2, the case 𝑋2 = ∅ being clear (or, if
the reader prefers the case where 𝑋2 is zero dimensional reduces to Lemma 6.3.2).
In the induction step, we may assume, using the above stratification argument, that
both 𝑋𝑖 are irreducible with generic point 𝜂𝑖. We let 𝜂𝑖 be a geometric generic point
over 𝜂𝑖, and denote by 𝑝𝑖 : 𝑋1 × 𝑋2 → 𝑋𝑖 the two projections. Both 𝑝𝑖 are faithfully
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flat of finite type and in particular open, so that 𝑝𝑖 (𝑈) is open in 𝑋𝑖. We have a
set-theoretic equality

𝑍 =
(
(𝑋1 \ 𝑝1(𝑈)) × 𝑋2

)
∪

(
𝑋1 × (𝑋2 \ 𝑝2(𝑈))

)
∪

(
𝑍 ∩ 𝑝1(𝑈) × 𝑝2(𝑈)

)
.

Once we know 𝑍∩𝑝1(𝑈)×𝑝2(𝑈) =
⋃
𝑗 𝑍1 𝑗×𝑍2 𝑗 for appropriate closed 𝑍𝑖 𝑗 ⊂ 𝑝𝑖 (𝑈),

we are done. We can therefore replace 𝑋𝑖 by 𝑝𝑖 (𝑈) and assume that both 𝑝𝑖 : 𝑈 → 𝑋𝑖

are surjective.

The base change 𝑈 ×𝑋2 𝜂2 is a 𝜙𝜂2-invariant subset of 𝑋1 × 𝜂2. By Lemma 6.3.2, it
is thus of the form𝑈1 × 𝜂2 for some open subset𝑈1 ⊂ 𝑋1. There is an inclusion (of
open subschemes of 𝑋1×𝜂2): 𝑈×𝑋2𝜂2 ⊂ 𝑈1×𝜂2. It becomes a set-theoretic equality,
and therefore an isomorphism of schemes, after base change along 𝜂2 → 𝜂2. By
faithfully flat descent, this implies that the two mentioned subsets of 𝑋1 × 𝜂2 agree.
We claim 𝑈1 = 𝑋1. Since the projection 𝑈 → 𝑋2 is surjective, in particular its
image contains 𝜂2, so that 𝑈1 is a non-empty subset, and therefore open dense in
the irreducible scheme 𝑋1. Let 𝑥1 ∈ 𝑋1 be a point. Since the projection 𝑈 → 𝑋1

is surjective, 𝑈 ∩ ({𝑥1} × 𝑋2) is a non-empty open subscheme of {𝑥1} × 𝑋2. So it
contains a point lying over (𝑥1, 𝜂2). We conclude 𝑋1 × 𝜂2 ⊂ 𝑈.

We claim that there is a non-empty open subset 𝐴2 ⊂ 𝑋2 such that

𝑋1 × 𝐴2 ⊂ 𝑈 or, equivalently, 𝑋1 × (𝑋2 \ 𝐴2) ⊃ 𝑋1 × 𝑋2 \𝑈.

The underlying topological space of 𝑉 = 𝑋1 × 𝑋2 \ 𝑈 is Noetherian and thus has
finitely many irreducible components𝑉 𝑗 . The closure of the projection 𝑝2(𝑉 𝑗 ) ⊂ 𝑋2

does not contain 𝜂2, since 𝑋1 × 𝜂2 ⊂ 𝑈. Thus, 𝐴2 :=
⋂
𝑗 𝑋1 \ 𝑝2(𝑉 𝑗 ) satisfies our

requirements.

Now we continue by Noetherian induction applied to the stratification 𝑋2 = 𝐴2 ⊔
(𝑋2 \ 𝐴2): We have 𝑍 ∩ 𝑋1× 𝐴2 = ∅, so that we may replace 𝑋2 by the proper closed
subscheme 𝑋2 \ 𝐴2. Hence, the proposition follows by Noetherian induction. □

The following lemma on Noetherian approximation of partial Frobenius invariant
subsets is needed for the reduction to finite type schemes:

Lemma 6.3.4. Let 𝑋1, . . . , 𝑋𝑛 be qcqsF𝑞-schemes, and denote 𝑋 = 𝑋1×F𝑞 . . .×F𝑞 𝑋𝑛.
Let 𝑋𝑖 = lim 𝑗 𝑋𝑖 𝑗 be a cofiltered limit of finite type F𝑞-schemes with affine transition
maps, and write 𝑋 = lim 𝑗 𝑋 𝑗 , 𝑋 𝑗 := 𝑋1 𝑗 ×F𝑞 . . . ×F𝑞 𝑋𝑛 𝑗 (see Let 𝑍 ⊂ 𝑋 be a
constructible closed subset. Then the intersection

𝑍′ =
𝑛⋂
𝑖=1

⋂
𝑚∈Z

Frob𝑚𝑋𝑖 (𝑍)
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is partial Frobenius invariant, constructible closed and there exists an index 𝑗 and
a partial Frobenius invariant closed subset 𝑍′

𝑗
⊂ 𝑋 𝑗 such that 𝑍′ = 𝑍′

𝑗
×𝑋 𝑗

𝑋 as
sets.

We note that each Frob𝑋𝑖 induces a homeomorphism on the underlying topological
space of 𝑋 so that 𝑍′ is well-defined. This lemma applies, in particular, to partial
Frobenius invariant constructible closed subsets 𝑍 ⊂ 𝑋 in which case we have
𝑍 = 𝑍′.

Proof. As 𝑍 is constructible, there exists an index 𝑗 and a constructible closed
subscheme 𝑍 𝑗 ⊂ 𝑋 𝑗 such that 𝑍 = 𝑍 𝑗 ×𝑋 𝑗

𝑋 as sets. We put 𝑍′
𝑗
= ∩𝑛

𝑖=1 ∩𝑚∈Z
Frob𝑚𝑋𝑖 𝑗 (𝑍 𝑗 ). As 𝑋 𝑗 is of finite type over F𝑞, the subset 𝑍′

𝑗
is still constructible

closed. As partial Frobenii induce bĳections on the underlying topological spaces,
one checks that Frob𝑚𝑋𝑖 𝑗 (𝑍 𝑗 ) ×𝑋 𝑗

𝑋 = Frob𝑚𝑋𝑖 (𝑍) as sets for all 𝑚 ∈ Z. Thus,
𝑍′ = 𝑍′

𝑗
×𝑋 𝑗

𝑋 which, also, is constructible closed because 𝑋 → 𝑋 𝑗 is affine. □

6.4 Lisse and constructible Weil sheaves
In this subsection, we define the subcategories of lisse and constructible Weil sheaves
and establish a presentation similar to (6.4). Let 𝑋1, . . . , 𝑋𝑛 be schemes over F𝑞,
and denote 𝑋 := 𝑋1 ×F𝑞 . . . ×F𝑞 𝑋𝑛. Let Λ be a condensed ring.

Definition 6.4.1. Let 𝑀 ∈ D
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
.

1. The Weil sheaf 𝑀 is called lisse if it is dualizable. (Here dualizability refers
to the symmetric monoidal structure on D

(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
, given by

the derived tensor product of Λ-sheaves on the Weil-proétale topos.)

2. The Weil sheaf 𝑀 is called constructible if for any open affine 𝑈𝑖 ⊂ 𝑋𝑖

there exists a finite subdivision into constructible locally closed subschemes
𝑈𝑖 𝑗 ⊆ 𝑈𝑖 such that each restriction𝑀 |𝑈Weil

1 𝑗 ×...×𝑈
Weil
𝑛 𝑗
∈ D

(
𝑈Weil

1 𝑗 × . . .×𝑈
Weil
𝑛 𝑗

,Λ
)

is lisse.

The full subcategories of D
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
consisting of lisse, resp. con-

structible Weil sheaves are denoted by

Dlis
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
⊂ Dcons

(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
.

Both categories are idempotent complete stable Γ(𝑋,Λ)-linear symmetric monoidal
∞-categories.
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From the presentation (6.6), we get that a Weil sheaf 𝑀 is lisse if and only if the
underlying object 𝑀F ∈ D(𝑋F,Λ) is lisse. So (6.6) restricts to an equivalence

Dlis
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
� Fix

(
Dlis

(
𝑋F,Λ

)
, 𝜙∗𝑋1

, . . . , 𝜙∗𝑋𝑛

)
. (6.7)

The same is true for constructible Weil sheaves by the following proposition:

Proposition 6.4.2. A Weil sheaf 𝑀 ∈ D
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
is constructible if

and only if the underlying sheaf 𝑀F ∈ D(𝑋F,Λ) is constructible. Consequently,
Equation (6.6) restricts to an equivalence

Dcons
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
� Fix

(
Dcons

(
𝑋F,Λ

)
, 𝜙∗𝑋1

, . . . , 𝜙∗𝑋𝑛

)
. (6.8)

Proof. Clearly, if 𝑀 is constructible, so is 𝑀F by 6.4.1. Let 𝑀 ∈ D
(
𝑋Weil

1 × . . . ×
𝑋Weil
𝑛 ,Λ

)
such that 𝑀F is constructible. We may assume that all 𝑋𝑖 are affine. We

claim that there is a finite subdivision 𝑋F = ⊔𝑋𝛼 into constructible locally closed
subsets such that 𝑀F |𝑋𝛼

is lisse and such that each 𝑋𝛼 is partial Frobenius invariant.

Assuming the claim we finish the argument as follows. By 6.3.3, any open stratum
𝑈 = 𝑋 𝑗0 ⊂ 𝑋F is a finite union of subsets of the form 𝑈1,F ×F . . . ×F 𝑈𝑛,F and the
restriction of 𝑀 to each of them is lisse. In particular, the complement 𝑋F\𝑈 is
defined over F𝑞 and arises as a finite union of schemes of the form 𝑋′ = 𝑋′1 ×F𝑞
. . . ×F𝑞 𝑋′𝑛 for suitable qcqs schemes 𝑋′

𝑖
over F𝑞. Intersecting each 𝑋′F with the

remaining strata ⊔ 𝑗≠ 𝑗0𝑋 𝑗 , we conclude by induction on the number of strata.

It remains to prove the claim. We start with any finite subdivision 𝑋F = ⊔𝑋′𝑗 into
constructible locally closed subsets such that 𝑀F |𝑋 ′

𝑗
is lisse. Pick an open stratum

𝑋′
𝑗0

, and set

𝑋 𝑗0 =

𝑛⋃
𝑖=1

⋃
𝑚∈Z

𝜙𝑚𝑋𝑖 (𝑋
′
𝑗0
). (6.9)

This is a constructible open subset of 𝑋F by 6.3.4 applied to its closed complement.
Furthermore, 𝑀F |𝑋 𝑗0

is lisse by its partial Frobenius equivariance, noting that 𝜙∗
𝑋𝑖

induces equivalences on proétale topoi to treat the negative powers in (6.9). As
before, 𝑋F\𝑋 𝑗0 is defined over F𝑞. So replacing 𝑋′

𝑗
, 𝑗 ≠ 𝑗0 by 𝑋′

𝑗
∩ (𝑋F\𝑋 𝑗0), the

claim follows by induction on the number of strata. □

In the case of a single factor 𝑋 = 𝑋1, the preceding discussion implies

D•
(
𝑋Weil,Λ

)
� lim

(
D•(𝑋F,Λ)

𝜙∗
𝑋

⇒
id

D•(𝑋F,Λ)
)
, (6.10)

for • ∈ {∅, lis, cons}.
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6.5 Relation with the Weil groupoid
In this subsection, we relate lisse Weil sheaves with representations of the Weil
groupoid. Throughout, we work with étale fundamental groups as opposed to their
proétale variants in order to have Drinfeld’s lemma available, see Section 7.4. The
two concepts differ in general, but agree for geometrically unibranch (for example,
normal) Noetherian schemes, see (Bhatt and Scholze, 2015, Lemma 7.4.10).

For a Noetherian scheme 𝑋 , let 𝜋1(𝑋) be the étale fundamental groupoid of 𝑋 as
defined in (Revêtements étales et groupe fondamental (SGA 1) 2003, Exposé V, §7
and §9). Its objects are geometric points of 𝑋 , and its morphisms are isomorphisms
of fiber functors on the finite étale site of 𝑋 . This is an essentially small category.
The automorphism group in 𝜋1(𝑋) at a geometric point 𝑥 → 𝑋 is profinite. It is
denoted 𝜋1(𝑋, 𝑥) and called the étale fundamental group of (𝑋, 𝑥). If 𝑋 is connected,
then the natural map 𝐵𝜋1(𝑋, 𝑥) → 𝜋1(𝑋) is an equivalence for any 𝑥 → 𝑋 . If 𝑋 is
the disjoint sum of schemes 𝑋𝑖, 𝑖 ∈ 𝐼, then 𝜋1(𝑋) is the disjoint sum of the 𝜋1(𝑋𝑖),
𝑖 ∈ 𝐼. In this case, if 𝑥 → 𝑋 factors through 𝑋𝑖, then 𝜋1(𝑋, 𝑥) = 𝜋1(𝑋𝑖, 𝑥).

Definition 6.5.1. Let 𝑋1, . . . , 𝑋𝑛 be Noetherian schemes over F𝑞, and write 𝑋 =

𝑋1 ×F𝑞 . . . ×F𝑞 𝑋𝑛. The Frobenius-Weil groupoid is the stacky quotient

FWeil(𝑋) = 𝜋1(𝑋F)/⟨𝜙Z𝑋1
, . . . , 𝜙Z𝑋𝑛⟩, (6.11)

where we use that the partial Frobenii 𝜙𝑋𝑖 induce automorphisms on the finite étale
site of 𝑋F.

For 𝑛 = 1, we denote FWeil(𝑋) = Weil(𝑋). Even if 𝑋 is connected, its base
change 𝑋F might be disconnected in which case the action of 𝜙𝑋 permutes some
connected components. Therefore, fixing a geometric point of 𝑋F is inconvenient,
and the reason for us to work with fundamental groupoids as opposed to fundamental
groups. The automorphism groups in Weil(𝑋) carry the structure of locally profinite
groups: indeed, if 𝑋 is connected, then Weil(𝑋) is, for any choice of a geometric
point 𝑥 → 𝑋F, equivalent to the classifying space of the Weil group Weil(𝑋, 𝑥) from
(Deligne, 1980, Définition 1.1.10).

Recall that this group sits in an exact sequence of topological groups

1→ 𝜋1(𝑋F, 𝑥) →Weil(𝑋, 𝑥) →Weil(F/F𝑞) ≃ Z, (6.12)

where 𝜋1(𝑋F, 𝑥) carries its profinite topology and Z the discrete topology. The
topology on the morphism groups in Weil(𝑋) obtained in this way is independent
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from the choice of 𝑥 → 𝑋F. The image of Weil(𝑋, 𝑥) → Z is the subgroup 𝑚Z
where 𝑚 is the degree of the largest finite subfield in Γ(𝑋,O𝑋). In particular, we
have 𝑚 = 1 if 𝑋F is connected. Let us add that if 𝑥 → 𝑋F is fixed under 𝜙𝑋 , then
the action of 𝜙𝑋 on 𝜋1(𝑋F, 𝑥) corresponds by virtue of the formula 𝜙∗

𝑋
= (𝜙∗F)

−1

to the action of the geometric Frobenius, that is, the inverse of the 𝑞-Frobenius in
Weil(F/F𝑞).

Likewise, for every 𝑛 ≥ 1, the stabilizers of the Frobenius-Weil groupoid are
related to the partial Frobenius-Weil groups introduced in (V. G. Drinfeld, 1987,
Proposition 6.1) and (V. Lafforgue, 2018, Remarque 8.18). In particular, there is an
exact sequence

1→ 𝜋1(𝑋F, 𝑥) → FWeil(𝑋, 𝑥) → Z𝑛,

for each geometric point 𝑥 → 𝑋F. This gives FWeil(𝑋) the structure of a locally
profinite groupoid.

Let Λ be either of the following coherent topological rings: a coherent discrete
ring, an algebraic field extension 𝐸 ⊃ Qℓ for some prime ℓ, or its ring of integers
O𝐸 ⊃ Zℓ. For a topological groupoid𝑊 , we will denote by RepΛ(𝑊) the category of
continuous representations of𝑊 with values in finitely presented Λ-modules and by
Repf.p

Λ
(𝑊) ⊂ RepΛ(𝑊) its full subcategory of representations on finite projectiveΛ-

modules. Here finitely presented Λ-modules 𝑀 carry the quotient topology induced
from the choice of any surjection Λ𝑛 → 𝑀 , 𝑛 ≥ 0 and the product topology on Λ𝑛.

Lemma 6.5.2. In the situation above, the category RepΛ(𝑊) is Λ∗-linear and
abelian. In particular, its full subcategory Repf.p

Λ
(𝑊) is Λ∗-linear and additive.

Proof. Let𝑊disc be the discrete groupoid underlying𝑊 , and denote by RepΛ(𝑊disc)
the category of 𝑊disc-representations on finitely presented Λ-modules. Evidently,
this category isΛ∗-linear. It is abelian sinceΛ is coherent. We claim that RepΛ(𝑊) ⊂
RepΛ(𝑊disc) is a Λ∗-linear full abelian subcategory. If Λ is discrete (and coherent),
then every finitely presented Λ-module carries the discrete topology and the claim is
immediate, see also (Stacks, Tag 0A2H). ForΛ = 𝐸,O𝐸 , one checks that every map
of finitely presented Λ-modules is continuous, every surjective map is a topological
quotient and every injective map is a closed embedding. For the latter, we use
that every finitely presented Λ-module can be written as a countable filtered colimit
of compact Hausdorff spaces along injections, and that every injection of compact
Hausdorff spaces is a closed embedding. This implies the claim. □

https://stacks.math.columbia.edu/tag/0A2H
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We apply this for𝑊 being either of the locally profinite groupoids 𝜋1(𝑋), 𝜋1(𝑋F) or
FWeil(𝑋). Note that restricting representations along 𝜋1(𝑋F) → FWeil(𝑋) induces
an equivalence of Λ∗-linear abelian categories

RepΛ
(
FWeil(𝑋)

)
� Fix

(
RepΛ

(
𝜋1(𝑋F)

)
, 𝜙𝑋1 , . . . , 𝜙𝑋𝑛

)
, (6.13)

and similarly for the Λ∗-linear additive category Repf.p
Λ

(
FWeil(𝑋)

)
.

Definition 6.5.3. For an integer 𝑛 ≥ 0, we write D{−𝑛,𝑛}lis (𝑋,Λ) for the full subcate-
gory of Dlis(𝑋,Λ) of objects 𝑀 such that 𝑀 and its dual 𝑀∨ lie in degrees [−𝑛, 𝑛]
with respect to the t-structure on D(𝑋,Λ).

Lemma 6.5.4. In the situation above, there is a natural functor

RepΛ
(
FWeil(𝑋)

)
→ D

(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)♥
, (6.14)

that is fully faithful. Moreover, the following properties hold if Λ is either finite
discrete or Λ = O𝐸 for 𝐸 ⊃ Qℓ finite:

1. An object 𝑀 lies in the essential image of Equation (6.14) if and only if its
underlying sheaf 𝑀F is locally on (𝑋F)proét isomorphic to 𝑁 ⊗Λ∗ Λ𝑋F for some
finitely presented Λ∗-module 𝑁 .

2. The functor (6.14) restricts to an equivalence of Λ∗-linear additive categories

Repf.p
Λ

(
FWeil(𝑋)

) �−→ D{0,0}lis
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
.

3. If Λ∗ is regular (so that Λ is t-admissible, cf. Chapter 5 Item vi), then Equa-
tion (6.14) restricts to an equivalence of Λ∗-linear abelian categories

RepΛ
(
FWeil(𝑋)

) �−→ Dlis
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)♥
.

If all 𝑋𝑖, 𝑖 = 1, . . . , 𝑛 are geometrically unibranch, then (1), (2) and (3) hold for
general coherent topological rings Λ as above.

Proof. There is a canonical equivalence of topological groupoids 𝜋1(𝑋F) �
�
𝜋

proét
1 (𝑋F)

with the profinite completion of the proétale fundamental groupoid, see (Bhatt and
Scholze, 2015, Lemma 7.4.3). It follows from (Bhatt and Scholze, 2015, Lemmas
7.4.5, 7.4.7) that restricting representations along 𝜋proét

1 (𝑋F) → 𝜋1(𝑋F) induces full
embeddings

RepΛ
(
𝜋1(𝑋F)

)
↩→ RepΛ

(
𝜋

proét
1 (𝑋F)

)
↩→ D(𝑋F,Λ)♥, (6.15)
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that are compatible with the action of 𝜙𝑋𝑖 for all 𝑖 = 1, . . . , 𝑛. So we obtain the fully
faithful functor (6.14) by passing to fixed points, see (6.13), (6.7) and Lemma 4.2.2
(see also 4.2.3).

Part Item 1 describes the essential image of RepΛ
(
𝜋

proét
1 (𝑋F)

)
↩→ D(𝑋F,Λ)♥. So

if Λ is finite discrete or profinite, then the first functor in (6.15) is an equivalence,
and we are done. Part Item 2 is immediate from Item 1, noting that an object in
the essential image of Equation (6.15) is lisse if and only if its underlying module
is finite projective. Likewise, part Item 3 is immediate from Item 1, using Item vii.
Here we need to exclude rings like Λ = Z/ℓ2 in order to have a t-structure on lisse
sheaves.

Finally, if all 𝑋𝑖 are geometrically unibranch, so is 𝑋F which follows from the
characterization (Stacks, Tag 0BQ4). In this case, we get 𝜋1(𝑋F) � 𝜋proét

1 (𝑋F) by
(Bhatt and Scholze, 2015, Lemma 7.4.10). This finishes the proof. □

6.6 Weil-étale versus étale sheaves
We end this section with the following description of Weil sheaves with (ind-)finite
coefficients. Note that such a simplification in terms of ordinary sheaves is not
possible for Λ = Z,Zℓ,Qℓ, say.

Proposition 6.6.1. Let 𝑋 be a qcqs F𝑞-scheme. Let Λ be a finite discrete ring or a
filtered colimit of such rings. Then the natural functors

Dlis(𝑋,Λ) → Dlis
(
𝑋Weil,Λ

)
, Dcons(𝑋,Λ) → Dcons

(
𝑋Weil,Λ

)
,

are equivalences.

Proof. Throughout, we repeatedly use that filtered colimits commute with finite
limits in Cat∞. Using compatibility of Dcons with filtered colimits in Λ (Chap-
ter 5 Item iv), we may assume that Λ is finite discrete. By the comparison result
with the classical bounded derived category of constructible sheaves, we can identify
the categories D•(𝑋,Λ), resp. D•(𝑋F,Λ) for • ∈ {lis, cons} with full subcategories
of the derived category of étale Λ-sheaves D(𝑋𝑒𝑡 ,Λ), resp. D(𝑋F,𝑒𝑡 ,Λ). Write
𝑋 = lim 𝑋𝑖 as a cofiltered limit of finite type F𝑞-schemes 𝑋𝑖 with affine transition
maps (Stacks, Tag 01ZA). Using the continuity of étale sites (Stacks, Tag 03Q4),
there are natural equivalences

colim D•(𝑋𝑖,Λ)
�−→ D•(𝑋,Λ), colim D•(𝑋Weil

𝑖 ,Λ) �−→ D•(𝑋Weil,Λ) (6.16)

https://stacks.math.columbia.edu/tag/0BQ4
https://stacks.math.columbia.edu/tag/01ZA
https://stacks.math.columbia.edu/tag/03Q4
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for • ∈ {lis, cons}. Hence, we can assume that 𝑋 is of finite type over F𝑞.

To show full faithfulness, we claim more generally that the natural map

D(𝑋𝑒𝑡 ,Λ) → lim

(
D(𝑋F,𝑒𝑡 ,Λ)

𝜙∗
𝑋

⇒
id

D(𝑋F,𝑒𝑡 ,Λ)
)
=: D

(
𝑋Weil
𝑒𝑡 ,Λ

)
is fully faithful. AsΛ is torsion, this is immediate from (Geisser, 2004, Corollary 5.2)
applied to the inner homomorphisms between sheaves.

Let us add that this induces fully faithful functors

D+(𝑋𝑒𝑡 ,Λ) → D+
(
𝑋Weil
𝑒𝑡 ,Λ

)
→ D

(
𝑋Weil,Λ

)
(6.17)

on bounded below objects, see (Bhatt and Scholze, 2015, Proposition 5.2.6 (1)).

It remains to prove essential surjectivity. Using a stratification as in 6.4.1, it is
enough to consider the lisse case. Pick 𝑀 ∈ Dlis(𝑋Weil,Λ). It is enough to show
that 𝑀 lies is in the essential image of Equation (6.17), noting that the functor
detects dualizability. As 𝑀 is bounded, this will follow from showing that for every
𝑗 ∈ Z, the cohomology sheaf H 𝑗 (𝑀) ∈ D(𝑋Weil,Λ)♥ is in the essential image of
Equation (6.17).

Fix 𝑗 ∈ Z. As 𝑀 is lisse, the underlying sheaf H 𝑗 (𝑀)F ∈ D(𝑋F,Λ)♥ is proétale-
locally constant (Chapter 5 Item vii) and valued in finitely presented Λ-modules.
By Lemma 6.5.4 Item 1, it comes from a representation of Weil(𝑋). Restriction of
representations along Weil(𝑋) → 𝜋1(𝑋) fits into a commutative diagram

RepΛ
(
𝜋1(𝑋)

)
��

� // RepΛ
(
Weil(𝑋)

)
��

D(𝑋𝑒𝑡 ,Λ)♥ // D
(
𝑋Weil,Λ

)♥
,

where the upper horizontal arrow is an equivalence sinceΛ is finite. In particular, the
object H 𝑗 (𝑀) is in the essential image of the fully faithful functor Equation (6.17).

□
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C h a p t e r 7

THE CATEGORICAL KÜNNETH FORMULA

7.1 The main result
We continue with the notation of Chapter 6. In particular, F𝑞 denotes a finite field
of characteristic 𝑝 > 0. Recall from Chapter 4 the tensor product of Λ∗-linear
idempotent complete stable ∞-categories. The external tensor product of sheaves
(𝑀1, . . . , 𝑀𝑛) ↦→ 𝑀1 ⊠ . . . ⊠ 𝑀𝑛 as in Equation (5.2) induces a functor

D•
(
𝑋Weil

1 ,Λ
)
⊗PerfΛ∗ . . . ⊗PerfΛ∗ D•

(
𝑋Weil
𝑛 ,Λ

)
→ D•

(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
, (7.1)

for • ∈ {lis, cons}. Throughout, we consider the following situation. In Re-
mark 7.1.3 we explain the compatibility of Equation (7.1) with certain (co-)limits
in the schemes 𝑋𝑖 and coefficients Λ, which allows to relax these assumptions on 𝑋
and Λ somewhat.

Situation 7.1.1. The schemes 𝑋1, . . . , 𝑋𝑛 are of finite type over F𝑞, and Λ is the
condensed ring associated with one of the following topological rings:

(a) a finite discrete ring of prime-to-𝑝-torsion;

(b) the ring of integers O𝐸 of an algebraic field extension 𝐸 ⊃ Qℓ for ℓ ≠ 𝑝 (for
example Z̄ℓ);

(c) an algebraic field extension 𝐸 ⊃ Qℓ for ℓ ≠ 𝑝 (for example Q̄ℓ);

(d) a finite discrete 𝑝-torsion ring that is flat over Z/𝑝𝑚 for some 𝑚 ≥ 1.

Theorem 7.1.2. In Situation 7.1.1, the functor Equation (7.1) is an equivalence in
each of the following cases:

1. • = cons and Λ is as in Item a, Item b or Item c;

2. • = lis and Λ is as in Item a, Item b, Item d or as in Item c if all 𝑋𝑖, 𝑖 = 1, . . . , 𝑛
are geometrically unibranch (for example, normal).

In the 𝑝-torsion free cases Item a, Item b and Item c, the full faithfulness is a direct
consequence of the Künneth formula applied to the 𝑋𝑖,F. In the 𝑝-torsion case Item d,
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we use Artin–Schreier theory instead. It would be interesting to see whether this
part can be extended to constructible sheaves using the mod-𝑝-Riemann–Hilbert
correspondence as in, say, (Bhatt and Lurie, 2019). In all cases, the essential
surjectivity relies on a variant of Drinfeld’s lemma for Weil group representations.

Before turning to the proof of Theorem 7.1.2, we record the following compatibility
of the functor Equation (7.1) with (co-)limits. This can be used to reduce the case
of an (infinite) algebraic extension 𝐸 ⊃ Qℓ in cases Item b and Item c above to
the case where 𝐸 ⊃ Qℓ is finite. In the sequel we will therefore assume 𝐸 is finite
in these cases. Remark 7.1.3 can further be used to extend Theorem 7.1.2 to qcqs
F𝑞-schemes 𝑋𝑖 and finite discrete rings like Z/𝑚 for any integer 𝑚 ≥ 1 in cases
Item a and Item d.

Remark 7.1.3 (Compatibility of (7.1) with certain (co-)limits). Throughout, we
repeatedly use that filtered colimits commute with finite limits in CatEx

∞,Λ∗ (Idem): the
forgetful functors CatEx

∞,Λ∗ (Idem) → CatEx
∞ (Idem) → Cat∞ create these (co)limits

(Lurie, 2017, Theorem 1.1.4.4), (Lurie, 2009, Corollary 4.4.5.21), and the statement
holds in any compactly generated ∞-category, such as Cat∞ (Bhatt and Mathew,
2021, Example 3.6(3)). We will also throughout use that in all the stable ∞-
categories encountered below the tensor product preserves colimits and in particular
finite limits.

1. Filtered colimits in Λ. First off, extension of scalars along any map of
condensed rings Λ→ Λ′ induces a commutative diagram in CatEx

∞,Λ∗ (Idem):

D•
(
𝑋Weil

1 ,Λ
)
⊗PerfΛ∗ . . . ⊗PerfΛ∗ D•

(
𝑋Weil
𝑛 ,Λ

)
//

��

D•(𝑋Weil
1 . . . × 𝑋Weil

𝑛 ,Λ)

��
D•

(
𝑋Weil

1 ,Λ′
)
⊗PerfΛ′∗

. . . ⊗PerfΛ′∗
D•

(
𝑋Weil
𝑛 ,Λ′

)
// D•(𝑋Weil

1 . . . × 𝑋Weil
𝑛 ,Λ′)

It follows from the compatibility of Dcons with filtered colimits in Λ (Chap-
ter 5 Item iv) that both sides of Equation (7.1) are compatible with filtered
colimits in Λ.

2. Finite products inΛ. LetΛ =
∏

Λ𝑖 be a finite product of condensed rings. For
any scheme 𝑋 , the natural map D•(𝑋,Λ) →

∏
D•(𝑋,Λ𝑖) is an equivalence

for • ∈ {∅, lis, cons}, and likewise for Weil sheaves if 𝑋 is defined over F𝑞. As
Λ∗ =

∏
Λ𝑖,∗, we see that (7.1) is compatible finite products in the coefficients.
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3. Limits in 𝑋𝑖 for discrete Λ. Assume that Λ is finite discrete, see Situation 7.1.1
Item a, Item d. Let 𝑋1, . . . , 𝑋𝑛 be qcqs F𝑞-schemes. Write each 𝑋𝑖 as a
cofiltered limit 𝑋𝑖 = lim 𝑋𝑖 𝑗 of finite type F𝑞-schemes 𝑋𝑖 𝑗 with affine transition
maps (Stacks, Tag 01ZA). As Λ is finite discrete, we can use the continuity of
étale sites as in Equation (6.16) to show that the natural map

colim
𝑗

D•
(
𝑋Weil

1 𝑗 × . . . × 𝑋
Weil
𝑛 𝑗 ,Λ

) �−→ D•
(
𝑋Weil

1 . . . × 𝑋Weil
𝑛 ,Λ

)
,

is an equivalence for • ∈ {lis, cons}. Thus, Equation (7.1) is compatible with
cofiltered limits of finite type F𝑞-schemes with affine transition maps.

7.2 A formulation in terms of prestacks
Before turning to the proof, we point out a formulation of the results of the previous
subsection in terms of symmetric monoidality of a certain sheaf theory. This
formulation makes the connection with constructions in the geometric approaches
to the Langlands program (Dennis Gaitsgory, Kazhdan, et al., 2022; Zhu, 2021; V.
Lafforgue and Zhu, 2019) more manifest. Readers not familiar with prestacks and
formulations of sheaf theories on them can safely skip this section. The categories of
constructible, resp. lisse Λ-sheaves assemble into a lax symmetric monoidal functor

D•,Λ : (SchF)op → CatEx
∞,Λ(Idem) (• = lis or cons). (7.2)

Namely, as a functor it sends a scheme 𝑋 to the category of constructible, resp. lisse
Λ-sheaves on 𝑋 , and a morphism 𝑓 : 𝑋 → 𝑌 to the functor 𝑓 ∗ : D•(𝑌,Λ) →
D•(𝑋,Λ). These are objects, resp. maps in the ∞-category CatEx

∞,Λ(Idem) :=
ModPerfΛ (CatEx

∞ (Idem)), cf. Section 4.1 for notation. The lax monoidal structure is
given by the external tensor product of sheaves:

⊠ : D•(𝑋proét,Λ) ⊗PerfΛ D•(𝑌proét,Λ) → D•((𝑋 ×F 𝑌 )proét,Λ).

That is, we consider the category of schemes as symmetric monoidal with respect
to the fiber product over F, and the external tensor product is natural on 𝑋 and 𝑌 in
the appropriate sense, see (Dennis Gaitsgory and Lurie, 2019, Section 3.1), (Dennis
Gaitsgory and Rozenblyum, 2017b, Section III.2) for details and precise statements.
This functor ⊠ often fails to be an equivalence, so D•,Λ is not symmetric monoidal.
The assertion of Theorem 7.1.2 is that this issue is resolved by replacing sheaves
with Weil sheaves.

In order to formulate 7.1.2 as the monoidality of a certain functor, we need to replace
the category of schemes by a category of objects that model Weil sheaves. We will

https://stacks.math.columbia.edu/tag/01ZA
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represent these by taking the appropriate formal quotient by the partial Frobenius
automorphism. Such formal quotients can be taken in the category of prestacks.

We denote by PreStkF the category of (accessible) functors from the category CAlgF
of commutative algebras over F to the ∞-category Ani of Anima. The functor of
taking points embeds the category of schemes fully faithfully into PreStkF.

We denote by
D•,Λ : (PreStkF)op → CatEx

∞,Λ(Idem) (7.3)

the functor obtained by right Kan extension (Lurie, 2009, §4.3.2) along the inclusion
(Schfp

F )
op ⊂ (PreStkF)op. Concretely, (Lurie, 2018, Proposition 6.2.1.9, Proposition

6.2.3.1), given a prestack 𝑌 which can be written as a colimit of schemes 𝑌𝛼 over
some indexing category 𝐴 we have a canonical equivalence

D•(𝑌,Λ) � lim
𝛼

D•(𝑌𝛼,Λ). (7.4)

This limit is formed in CatEx
∞,Λ(Idem); recall from around (4.3) that the Ind-

completion functor to CatEx
∞,Λ(Idem) → PrSt

Λ
does not preserve (even finite) limits.

With this general sheaf theory in place, we can restrict our attention to the class of
prestacks that is relevant to the derived Drinfeld lemma.

Definition 7.2.1. Let 𝑋 be a scheme over F𝑞. The Weil prestack is defined as

𝑋Weil := colim
(
𝑋 ×F𝑞 F

𝜙𝑋
⇒
id
𝑋 ×F𝑞 F

)
∈ PreStkF,

i.e., it is the prestack sending 𝑅 ∈ CAlgF to the colimit

𝑋Weil(𝑅) = colim
(
𝑋 (𝑅)

𝜙𝑋
⇒
id
𝑋 (𝑅)

)
. (7.5)

We denote by Schfp
Weil the smallest full monoidal subcategory of PreStkF containing

the Weil prestacks of finite type schemes 𝑋/F𝑞. Equivalently, this is the full
subcategory consisting of finite products of the form 𝑋Weil

1 × · · · × 𝑋Weil
𝑛 .

Lemma 7.2.2. Let 𝑋1, . . . , 𝑋𝑛 be schemes over F𝑞. There is a canonical equivalence

D•(𝑋Weil
1 ×F · · · ×F 𝑋Weil

𝑛 ) �−→ Fix
(
D•(𝑋F,Λ), 𝜙∗𝑋1

, . . . , 𝜙∗𝑋𝑛
)

(7.6)

Proof. Let Φ : BZ𝑛 → PreStkF be the functor corresponding to the commuting
automorphisms 𝜙𝑋𝑖 . Then the claim follows immediately from the identification of
𝑋Weil

1 ×F · · · ×F 𝑋Weil
𝑛 with the colimit of Φ (as an object in PreStkF). □
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Theorem 7.2.3. Suppose • and Λ are as in 7.1.2. Then the restriction of D•,Λ to
Weil prestacks, i.e., the following composite

D•,Λ : (Schfp
Weil)

op ⊂ PreStkF → CatEx
∞,Λ(Idem), (7.7)

is symmetric monoidal.

Proof. As was noted above, the functor in Equation (7.2) is lax symmetric monoidal.
By (Torii, 2022, Proposition 2.7), the Kan extension in Equation (7.3) is still lax
symmetric monoidal. To check its restriction to the (symmetric monoidal) subcate-
gory Schfp

Weil is symmetric monoidal it suffices to show that the lax monoidal maps
are in fact isomorphisms. This is precisely the content of Theorem 7.1.2. □

7.3 Full faithfulness
In this section, we prove that the functor Equation (7.1) is fully faithful under the
conditions of Theorem 7.1.2. We first consider the 𝑝-torsion free cases:

Proposition 7.3.1. Let 𝑋1, . . . , 𝑋𝑛 and Λ be as in Situation 7.1.1 Item a, Item b or
Item c. Then the functor Equation (7.1) is fully faithful for • ∈ {lis, cons}.

Proof. In a nutshell, this is an instance of the Künneth formula: for constructible
sheaves on 𝑋𝑖,F (as opposed to 𝑋Weil

𝑖
), this interpretation of the Künneth formula ap-

pears already in (Dennis Gaitsgory, Kazhdan, et al., 2022, Section A.2). Throughout,
we drop Λ from the notation. It is enough to verify that for all 𝑀𝑖, 𝑁𝑖 ∈ Dcons(𝑋Weil

𝑖
)

the natural map

𝑛⊗
𝑖=1

HomD(𝑋Weil
𝑖
) (𝑀𝑖, 𝑁𝑖) → HomD(𝑋Weil

1 ×...×𝑋Weil
𝑛 ) (𝑀1 ⊠ . . . ⊠ 𝑀𝑛, 𝑁1 ⊠ . . . ⊠ 𝑁𝑛)

(7.8)
is an equivalence. As Equation (7.8) is functorial in the objects and compatible with
shifts, it suffices, by Definition 6.4.1, to consider the case where 𝑀𝑖, 𝑖 = 1, . . . , 𝑛
is the extension by zero of a lisse Weil Λ-sheaf on some locally closed subscheme
𝑍𝑖 ⊂ 𝑋𝑖. Using the adjunction

(𝜄𝑖)! : Dcons(𝑍Weil
𝑖 ) ⇄ Dcons(𝑋Weil

𝑖 ) : (𝜄𝑖)!,

and the dualizability of lisse sheaves, we reduce to the case 𝑀𝑖 = Λ𝑋𝑖 , 𝑖 = 1, . . . , 𝑛.
That is, Equation (7.8) becomes a map of cohomology complexes.
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By Proposition 6.1.4, we have

RΓ
(
𝑋Weil
𝑖 , 𝑁𝑖

)
= Fib

(
RΓ(𝑋𝑖,F, 𝑁𝑖)

𝜙∗
𝑋𝑖
−id
−→ RΓ(𝑋𝑖,F, 𝑁𝑖)

)
.

A similar computation holds for the mapping complexes in D(𝑋Weil
1 × . . . × 𝑋Weil

𝑛 ),
see Equation (6.6). Such finite limits commute with the tensor product in ModΛ.

Thus, Section 7.3 reduces to the Künneth formula

RΓ
(
𝑋1,F, 𝑁1

)
⊗ . . . ⊗ RΓ

(
𝑋𝑛,F, 𝑁𝑛

) �−→ RΓ
(
𝑋1,F ×F . . . ×F 𝑋𝑛,F, 𝑁1 ⊠ . . . ⊠ 𝑁𝑛

)
,

where we use that the 𝑋𝑖 are of finite type and the coprimality assumptions on Λ,
see (Stacks, Tag 0F1P). □

Next, we consider the 𝑝-torsion case:

Proposition 7.3.2. Let 𝑋1, . . . , 𝑋𝑛 and Λ be as in Situation 7.1.1 Item d. Then the
functor (7.1) is fully faithful for • = lis.

Proof. As in the proof of Proposition 7.3.1, we need to show that the map
𝑛⊗
𝑖=1

RΓ
(
𝑋Weil
𝑖 , 𝑁𝑖

)
→ RΓ

(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 , 𝑁1 ⊠ . . . ⊠ 𝑁𝑛

)
(7.9)

is an equivalence for any 𝑁𝑖 ∈ Dlis(𝑋Weil
𝑖
). Using Zariski descent for both sides, we

may assume that each 𝑋𝑖 is affine. As Λ is finite discrete (see also the discussion
around (6.16)), the invariance of the étale site under perfection reduces us to the
case where each 𝑋𝑖 is perfect. The proof now proceeds by several reduction steps:
1) reduce to 𝑁𝑖 = Λ𝑋𝑖 ; 2) reduce to Λ = Z/𝑝; 3) reduce to 𝑞 = 𝑝 being a prime. The
last step 4) is then an easy computation.

Step 1): We may assume 𝑁𝑖 = Λ𝑋𝑖 . In order to show Equation (7.9) is a quasi-
isomorphism, it suffices to show this after applying 𝜏≤𝑟 for arbitrary 𝑟. The com-
plexes𝑁𝑖 are bounded (Chapter 5 Item v). By shifting them appropriately, we may as-
sume 𝑟 = 0. Note that RΓ(𝑋Weil

𝑖
, 𝑁𝑖) � RΓ(𝑋𝑖, 𝑁𝑖), see Proposition 6.6.1. By right

exactness of the tensor product, we have 𝜏≤0 (⊗
𝑖 RΓ(𝑋𝑖, 𝑁𝑖)

)
=

⊗
𝑖 𝜏
≤0RΓ(𝑋𝑖, 𝑁𝑖).

Using the compatibility with the classical notion of constructible sheaves, there is
an étale covering 𝑈𝑖 → 𝑋𝑖 such that 𝑁𝑖 |𝑈𝑖

is perfect-constant. Let 𝑈𝑖,• be the Čech
nerve of this covering. By étale descent, we have

RΓ(𝑋𝑖, 𝑁𝑖) = lim
[ 𝑗]∈Δ

RΓ(𝑈𝑖, 𝑗 , 𝑁𝑖).

https://stacks.math.columbia.edu/tag/0F1P
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For each 𝑟 ∈ Z, there is some 𝑗𝑟 such that

𝜏≤𝑟 lim
[ 𝑗]∈Δ

RΓ(𝑈𝑖, 𝑗 , 𝑁𝑖) = lim
[ 𝑗]∈Δ, 𝑗≤ 𝑗𝑟

𝜏≤𝑟RΓ(𝑈𝑖, 𝑗 , 𝑁𝑖).

This can be seen from the spectral sequence (note that it is concentrated in degrees
𝑗 ≥ 0 and degrees 𝑗 ′ ≥ 𝑟 for some 𝑟, since the complexes 𝑁𝑖 are bounded from
below)

H 𝑗 ′ (𝑈𝑖, 𝑗 , 𝑁𝑖) ⇒ H 𝑗 ′+ 𝑗 lim
𝑗∈Δ

RΓ(𝑈𝑖, 𝑗 , 𝑁𝑖) = H 𝑗 ′+ 𝑗 (𝑋𝑖, 𝑁𝑖).

As the tensor product in Equation (7.9) commutes with finite limits, we may thus
assume that each 𝑁𝑖 is perfect-constant. Another dévissage reduces us to the case
𝑁𝑖 = Λ𝑋𝑖 , the constant sheaf itself.

Step 2): We may assumeΛ = Z/𝑝. By assumption,Λ is flat overZ/𝑝𝑚 for some𝑚 ≥
1. We immediately reduce to Λ = Z/𝑝𝑚. For any perfect affine scheme 𝑋 = Spec 𝑅
in characteristic 𝑝 > 0, we claim that RΓ(𝑋,Z/𝑝𝑚) ⊗Z/𝑝𝑚 Z/𝑝𝑟 � RΓ(𝑋,Z/𝑝𝑟).
Assuming the claim, we finish the reduction step by tensoring Equation (7.9) with
the short exact sequence of Z/𝑝𝑚-modules 0 → Z/𝑝𝑚−1 → Z/𝑝𝑚 → Z/𝑝 → 0,
using that finite limits commutes with tensor products.

It remains to prove the claim. The Artin–Schreier–Witt exact sequence of sheaves
on 𝑋𝑒𝑡 yields

RΓ(𝑋,Z/𝑝𝑚) = [𝑊𝑚 (𝑅)
𝐹−id→ 𝑊𝑚 (𝑅)] .

Now we use that 𝑊𝑚 (𝑅) ⊗Z/𝑝𝑚 Z/𝑝𝑟
�→ 𝑊𝑟 (𝑅) compatibly with 𝐹, which holds

since 𝑅 is perfect. This shows the claim, and we have accomplished Step 2).

Step 3): We may assume 𝑞 is prime. Recall that 𝑞 = 𝑝𝑟 is a prime power. In
order to reduce to the case 𝑟 = 1, let 𝑋′

𝑖
:= 𝑋𝑖, but now regarded as a scheme over

F𝑝. We have 𝑋′
𝑖,F =

⊔𝑟
𝑖=1 𝑋𝑖,F. The Galois group Gal(F𝑞/F𝑝) is generated by the

𝑝-Frobenius, which acts by permuting the components in this disjoint union. Thus,
we have D((𝑋′

𝑖
)Weil) = D(𝑋Weil

𝑖
). The same reasoning also applies to several factors

𝑋Weil
𝑖

, so we may assume our ground field to be F𝑝.

Step 4): Set 𝑅 :=
⊗

𝑖,F𝑝
𝑅𝑖, 𝑅F := 𝑅 ⊗F𝑝 F. We write 𝜙𝑖 for the 𝑝-Frobenius on 𝑅𝑖

and also for any map on a tensor product involving 𝑅𝑖, by taking the identity on the
remaining tensor factors. By Artin–Schreier theory, we have

RΓ(𝑋Weil
𝑖 ,Z/𝑝) 6.6.1

= RΓ(𝑋𝑖,Z/𝑝) = [𝑅𝑖
𝜙𝑖−id
→ 𝑅𝑖],

RΓ(𝑋1,F ×F . . . ×F 𝑋𝑛,F,Z/𝑝) = [𝑅F
𝜙−id
→ 𝑅F],
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where 𝜙 is the absolute 𝑝-Frobenius of 𝑅F. Thus, the right hand side in (7.9) is the
homotopy orbits of the action of Z𝑛+1 on 𝑅F, whose basis vectors act as 𝜙1, . . . , 𝜙𝑛

and 𝜙. Note that 𝜙 is the composite 𝜙F ◦ 𝜙1 ◦ · · · ◦ 𝜙𝑛, where 𝜙F is the Frobenius
on F. Thus, the previously mentioned Z𝑛+1-action on 𝑅F is equivalent to the one
where the basis vectors act as 𝜙1, . . . , 𝜙𝑛 and 𝜙F. We conclude our claim by using
that [𝑅F

id−𝜙F→ 𝑅F] is quasi-isomorphic to 𝑅[0]. □

7.4 Drinfeld’s lemma
The essential surjectivity in Theorem 7.1.2 is based on the following variant of
Drinfeld’s lemma (V. G. Drinfeld, 1980, Theorem 2.1) (see also (L. Lafforgue, 1997,
IV.2, Theorem 4), (Lau, 2004, Theorem 8.1.4), (V. Lafforgue, 2018, Lemme 8.11),
and (Kedlaya, 2019, Theorem 4.2.12), (Heinloth, 2018, Lemma 6.3), (Scholze and
Weinstein, 2020, Theorem 16.2.4) for expositions). Its formulation is close to (Lau,
2004, Theorem 8.1.4), and in this form is a slight extension of (V. Lafforgue, 2018,
Lemme 8.2) for Zℓ-coefficients and (Xue, 2020b, Lemma 3.3.2) for Qℓ-coefficients.
We will drop the coefficient ring Λ from the notation whenever convenient.

Let 𝑋1, . . . , 𝑋𝑛 be Noetherian schemes over F𝑞, and denote 𝑋 = 𝑋1 ×F𝑞 . . . ×F𝑞 𝑋𝑛.
Recall the Frobenius–Weil groupoid FWeil(𝑋), see Definition 6.5.1. The projections
𝑋F → 𝑋𝑖,F onto the single factors induce a continuous map of locally profinite
groupoids

𝜇 : FWeil(𝑋) →Weil(𝑋1) × . . . ×Weil(𝑋𝑛). (7.10)

Theorem 7.4.1 (Drinfelds’s lemma). Let Λ be as in Situation 7.1.1. Restriction
along the map Equation (7.10) induces an equivalence

RepΛ
(
Weil(𝑋1) × . . . ×Weil(𝑋𝑛)

) �→ RepΛ
(
FWeil(𝑋)

)
, (7.11)

between the abelian categories of continuous representations on finitely presented
Λ-modules.

Proof. For all objects 𝑥 ∈ FWeil(𝑋), that is, all geometric points 𝑥 → 𝑋F, passing
to the automorphism groups induces a commutative diagram of locally profinite
groups

1 // 𝜋1(𝑋F, 𝑥) //

��

FWeil(𝑋, 𝑥) //

𝜇𝑥

��

Z𝑛

1 //∏𝑛
𝑖=1 𝜋1(𝑋𝑖,F, 𝑥) //∏𝑛

𝑖=1 Weil(𝑋𝑖, 𝑥) // Z𝑛.
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The left vertical arrow is surjective (Stacks, Tag 0BN6)0385. Thus 𝜇𝑥 is surjective
as well and hence (7.11) is fully faithful. For essential surjectivity, it remains to show
that any continuous representation FWeil(𝑋, 𝑥) → GL(𝑀) on a finitely presentedΛ-
module 𝑀 factors through 𝜇𝑥 . The key input is Drinfeld’s lemma: it implies that 𝜇𝑥
induces an isomorphism on profinite completions. Therefore, it is enough to apply
Lemma 7.4.2 below with 𝐻 := FWeil(𝑋, 𝑥) → Weil(𝑋1) × . . . ×Weil(𝑋𝑛) =: 𝐺
and 𝐾 := 𝜋1(𝑋F, 𝑥). This completes the proof of (7.11). □

The following lemma formalizes a few arguments from (Xue, 2020b, §3.2.3), and
we reproduce the proof for the convenience of the reader:

Lemma 7.4.2 (Drinfeld, Xue). Let Λ be as in 7.1.1. Let 𝜇 : 𝐻 → 𝐺 be a continuous
surjection of locally profinite groups that induces an isomorphism on profinite
completions. Assume that there exists a compact open normal subgroup 𝐾 ⊂ 𝐻

containing ker 𝜇 such that 𝐻/𝐾 is finitely generated and injects into its profinite
completion. Then 𝜇 induces an equivalence

RepΛ(𝐺) � RepΛ(𝐻)

between their categories of continuous representations on finitely presented Λ-
modules.

Proof. The case where Λ is finite discrete is obvious, and hence so is the case
Λ = O𝐸 for some finite field extension 𝐸 ⊃ Qℓ. The case Λ = 𝐸 is reduced to
Λ = Qℓ. As 𝜇 is surjective, it remains to show that every continuous representation
𝜌 : 𝐻 → GL(𝑀) on a finite-dimensional Qℓ-vector space factors through 𝐺, that is,
ker 𝜇 ⊂ ker 𝜌. One shows the following properties:

1. The group ker 𝜇 is the intersection over all open subgroups in 𝐾 which are
normal in 𝐻.

2. The group ker 𝜌∩𝐾 is a closed normal subgroup in𝐻 such that 𝐾/ker 𝜌∩𝐾 �
𝜌(𝐾) is topologically finitely generated.

These properties imply ker 𝜇 ⊂ ker 𝜌 ∩𝐾 as follows: For a finite group 𝐿, let𝑈𝐿 :=
∩ ker(𝐾 → 𝐿) where the intersection is over all continuous morphisms 𝐾 → 𝐿 that
are trivial on ker 𝜌 ∩ 𝐾 . Because of the topologically finitely generatedness in (2),
this is a finite intersection so that 𝑈𝐿 is open in 𝐾 . Also, it is normal in 𝐻, and

https://stacks.math.columbia.edu/tag/0BN6
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hence ker 𝜇 ⊂ 𝑈𝐿 by (1). On the other hand, it is evident that ker 𝜌 ∩ 𝐾 = ∩𝐿𝑈𝐿
because 𝐾 is profinite.

For the proof of (1) observe that ker 𝜇 agrees with the kernel of 𝐻 → 𝐻∧ � 𝐺∧

by our assumption on the profinite completions. Using ker 𝜇 ⊂ 𝐾 and the injection
𝐻/𝐾 → (𝐻/𝐾)∧ implies (1).

For (2) it is evident that ker 𝜌 ∩ 𝐾 is a closed normal subgroup in 𝐻. Since 𝐾 is
compact, its image 𝜌(𝐾) is a closed subgroup of the ℓ-adic Lie group GL(𝑀), hence
an ℓ-adic Lie group itself. The final assertion follows from (Serre, 1964, théorème
2). □

For the overall goal of proving essential surjectivity in Theorem 7.1.2, we need
to investigate how representations of product groups factorize into external tensor
products of representations. In view of Lemma 6.5.2 and its proof, it is enough to
consider representations of abstract groups, disregarding the topology. This is done
in the next section.

7.5 Factorizing representations
In this subsection, letΛ be a Dedekind domain (Stacks, Tag 034X). Thus, sinceΛ is
Noetherian and of projective dimension ≤ 1, any submodule 𝑁 of a finite projective
Λ-module 𝑀 is again finite projective.

Given any group 𝑊 , we write Repf.p
Λ
(𝑊) for the category of 𝑊-representations on

finite projective Λ-modules.

As in (Curtis and Reiner, 2006, Sections 73.8, 75), we say that such a𝑊-representation
𝑀 is fp-simple if any subrepresentation 0 ≠ 𝑁 ⊂ 𝑀 has maximal rank. By induction
on the rank, every non-zero representation in Repf.p

Λ
(𝑊) admits a non-zero fp-simple

subrepresentation. The proof of the following lemma is left to the reader. It parallels
(Curtis and Reiner, 2006, Theorem 75.6).

Lemma 7.5.1. A representation 𝑀 ∈ Repf.p
Λ
(𝑊) is fp-simple if and only if 𝑀 ⊗Λ

Frac(Λ) is fp-simple (hence, simple).

The following proposition will serve in the proof of Theorem 7.1.2 using Theo-
rem 7.4.1, where we will need to decompose representations of a product of Weil
groups into decompositions of the individual Weil groups.

https://stacks.math.columbia.edu/tag/034X
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Proposition 7.5.2. Let𝑊 = 𝑊1×𝑊2 be a product of two groups. Let𝑀 ∈ Repf.p
Λ
(𝑊)

be fp-simple. Fix a 𝑊1-subrepresentation 𝑀1 ⊂ 𝑀 that is fp-simple. Consider the
𝑊2-representation 𝑀2 := Hom𝑊1 (𝑀1, 𝑀) and the associated evaluation map

ev: 𝑀1 ⊠ 𝑀2 → 𝑀.

1. If Λ is an algebraically closed field, then ev is an isomorphism and 𝑀2 is
simple.

2. If Λ is a perfect field, then ev is a split surjection and 𝑀2 is semi-simple.

3. If Λ is a Dedekind domain of Krull dimension 1 with perfect fraction field,
then there is a short exact sequence

0→ 𝑀 ⊕ ker(ev) → 𝑀1 ⊠ 𝑀2 → 𝑇 → 0, (7.12)

where 𝑇 is Λ-torsion.

Proof. Note that ev is a map in Repf.p
Λ
(𝑊). Its image has maximal rank by the

fp-simplicity of 𝑀 . Thus, if Λ is a field, then it is surjective.

In case Item 1, we claim that ev is an isomorphism. The following argument was
explained to us by Jean-François Dat: for injectivity, observe that 𝑀1 ⊠ 𝑀2 =

𝑀
⊕ dim𝑀2
1 as 𝑊1-representations. Hence, if the kernel of ev is non-trivial, then

it contains 𝑀1 as an irreducible constituent. Therefore, it suffices to prove that
Hom𝑊1 (𝑀1, ev) is injective. Since Λ is algebraically closed, we have End𝑊1 (𝑀1) =
Λ by Schur’s lemma. Hence, the composition

𝑀2 = Hom𝑊1 (End𝑊1 (𝑀1), 𝑀2) � Hom𝑊1 (𝑀1, 𝑀1⊠𝑀2) → Hom𝑊1 (𝑀1, 𝑀) = 𝑀2

is the identity. This shows that Hom𝑊1 (𝑀1, ev) is an isomorphism.

In case Item 2, we claim that 𝑀1 ⊠ 𝑀2 is semi-simple, and hence that 𝑀 appears
as a direct summand. Using (Bourbaki, 2012, Section 13.4 Corollaire) applied to
the group algebras it is enough to show that 𝑀1 and 𝑀2 are absolutely semi-simple.
SinceΛ is perfect, any finite-dimensional representation is semi-simple if and only if
it is absolutely semi-simple, see (Bourbaki, 2012, Section 13.1). Hence, it remains
to check that𝑀2,Λ̄ = 𝑀2⊗ΛΛ̄ is semi-simple where Λ̄/Λ is an algebraic closure. The
module 𝑀2,Λ̄ = Hom𝑊1 (𝑀1,Λ̄, 𝑀Λ̄) splits as a direct sum according to the simple
constituents �̄�1 ⊂ 𝑀1,Λ̄ and �̄� ⊂ 𝑀Λ̄. Finally, each �̄�2 = Hom𝑊1 (�̄�1, �̄�) is either
simple or vanishes: if there exists a non-zero𝑊1-equivariant map �̄�1 → �̄� , then it
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must be injective by the simplicity of �̄�1. As Λ̄ is algebraically closed, the proof of
Item 1 shows that �̄� � �̄�1 ⊠ �̄�2 so that �̄�2 must be simple because �̄� is so. This
shows that 𝑀2 is absolutely semi-simple as well.

In case Item 3, abbreviate Λ′ := FracΛ, 𝑀′ := 𝑀 ⊗Λ Λ′ and so on. We will
repeatedly use that (−) ⊗ΛΛ′ preserves and detects fp-simplicity of representations,
see Lemma 7.5.1. By Item 2, the evaluation map ev′ := ev ⊗ Λ′ admits a Λ′-linear
section 𝑖 : 𝑀′ → (𝑀1 ⊠ 𝑀2)′. As 𝑀′ is finitely presented, there is some 0 ≠ 𝜆 ∈ Λ
such that 𝜆𝑖 arises by scalar extension of a map 𝑖 : 𝑀 → 𝑀1 ⊠𝑀2. By construction,
the map 𝑖 ⊕ incl : 𝑀 ⊕ ker(ev) → 𝑀1 ⊠ 𝑀2 is an isomorphism after tensoring with
Λ′. So its cokernel is Λ-torsion, and it is injective as both modules at the left are
projective (hence Λ-torsion free). This finishes the proof of the proposition. □

7.6 Essential surjectivity
In this section, we prove the essential surjectivity asserted in Theorem 7.1.2.
Throughout, we freely use the full faithfulness proven in Proposition 7.3.1 and
Proposition 7.3.2.

Recall that 𝑋1, . . . , 𝑋𝑛 are finite type F𝑞-schemes, and write 𝑋 := 𝑋1×F𝑞 . . .×F𝑞 𝑋𝑛.
Let Λ be either a finite discrete ring, a finite field extension 𝐸 ⊃ Qℓ for ℓ ≠ 𝑝 or its
ring of integers O𝐸 . Note that this covers all cases from Situation 7.1.1.

First, we show that it suffices to prove containment in the essential image étale
locally:

Lemma 7.6.1. Let 𝑈𝑖 → 𝑋𝑖 be quasi-compact étale surjections for 𝑖 = 1, . . . , 𝑛.
Then the following properties hold:

1. An object 𝑀 ∈ D
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
belongs to the full subcategory

Dcons
(
𝑋Weil

1 ,Λ
)
⊗PerfΛ∗ . . . ⊗PerfΛ∗ Dcons

(
𝑋Weil
𝑛 ,Λ

)
if and only if its restriction 𝑀 |𝑈Weil

1 ×...×𝑈Weil
𝑛

belongs to the full subcategory

Dcons
(
𝑈Weil

1 ,Λ
)
⊗PerfΛ∗ . . .⊗PerfΛ∗ Dcons

(
𝑈Weil
𝑛 ,Λ

)
⊂ D

(
𝑈Weil

1 × . . .×𝑈Weil
𝑛 ,Λ

)
.

2. Assume that all𝑈𝑖 → 𝑋𝑖 are finite étale. Then Item 1 holds for the categories
of lisse sheaves.

Proof. The only if direction in part Item 1 is clear. Conversely, assume that
𝑀 |𝑈Weil

1 ×...×𝑈Weil
𝑛

lies in the essential image of the external tensor product. By étale
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descent, we have an equivalence:

D
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

) �−→ Tot
(
D

(
𝑈Weil

1,• × . . . ×𝑈
Weil
𝑛,• ,Λ

) )
.

In particular, we get an equivalence | ( 𝑗•)! ◦ 𝑗∗•𝑀 |
∼−→ 𝑀 where 𝑗• := 𝑗1,• × . . .× 𝑗𝑛,•

with 𝑗𝑖,• : 𝑈𝑖,• → 𝑋𝑖 for 𝑖 = 1, . . . , 𝑛. For each 𝑚 ≥ 0, the object 𝑗∗𝑚𝑀 lies in

Dcons
(
𝑈Weil

1,𝑚 ,Λ
)
⊗PerfΛ∗ . . . ⊗PerfΛ∗ Dcons

(
𝑈Weil
𝑛,𝑚 ,Λ

)
.

It follows from Chapter 5 Item ii that these subcategories are preserved under ( 𝑗𝑚)!.
So we see

( 𝑗𝑚)! 𝑗∗𝑚 (𝑀) ∈ Dcons
(
𝑋Weil

1 ,Λ
)
⊗PerfΛ∗ . . . ⊗PerfΛ∗ Dcons

(
𝑋Weil
𝑛 ,Λ

)
for all𝑚 ≥ 0. For every𝑚 ≥ 0, let 𝑀𝑚 denote the realization of the𝑚-th skeleton of
the simplicial object ( 𝑗•)! ◦ 𝑗∗•𝑀 so that we have a natural equivalence colim𝑀𝑚

�−→
𝑀 in D(𝑋Weil

1 × . . .× 𝑋Weil
𝑛 ,Λ). We claim that 𝑀 is a retract of some 𝑀𝑚, and hence

lies in Dcons
(
𝑋Weil

1 ,Λ
)
⊗PerfΛ∗ . . .⊗PerfΛ∗Dcons

(
𝑋Weil
𝑛 ,Λ

)
by idempotent completeness.

To prove the claim, note that the sheaf 𝑀F ∈ Dcons(𝑋F,Λ) underlying 𝑀 is compact
in the category of ind-constructible sheaves Dindcons(𝑋F,Λ), see Chapter 5 Item viii.
As taking partial Frobenius fixed points is a finite limit, so commutes with filtered
colimits, we see that the natural map of mapping complexes

colim HomD(𝑋Weil
1 ×...×𝑋Weil

𝑛 ,Λ) (𝑀, 𝑀𝑚)
�−→ HomD(𝑋Weil

1 ×...×𝑋Weil
𝑛 ,Λ) (𝑀, colim𝑀𝑚)

is an equivalence. In particular, the inverse equivalence 𝑀
�−→ colim𝑀𝑚 factors

through some 𝑀𝑚, presenting 𝑀 as a retract of 𝑀𝑚. This proves the claim, and
hence Item 1.

For Item 2, note that if 𝑈𝑖 → 𝑋𝑖 are finite étale, then the functors ( 𝑗𝑚)! preserve
the lisse categories, see Chapter 5 Item ii. In particular, for every 𝑚 ≥ 0 the object
( 𝑗𝑚)! 𝑗∗𝑚 (𝑀) is lisse and so is 𝑀𝑚. We conclude using compactness as before. □

Using Lemma 4.2.4 and Chapter 5 Item viii, the fully faithful functor Equation (7.1)
uniquely extends to a fully faithful functor

Ind
(
D•(𝑋Weil

1 ,Λ)
)
⊗ModΛ∗ . . .⊗ModΛ∗ Ind

(
D•(𝑋Weil

𝑛 ,Λ)
)
→ D(𝑋Weil

1 × . . .×𝑋Weil
𝑛 ,Λ)

(7.13)
for • ∈ {lis, cons}.

We use this in the following variant of Lemma 7.6.1.
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Lemma 7.6.2. The statements Item 1 and Item 2 of Lemma 7.6.1 hold for the functor
Equation (7.13) with • ∈ {lis, cons}. Namely, to check that an object lies in the
essential image of Equation (7.13), one can pass to a quasi-compact étale cover if
• = cons, and to a finite étale cover if • = lis.

Proof. This is immediate from the proof of Lemma 7.6.1: Arguing as above and
using étale descent for ind-constructible, resp. ind-lisse sheaves (Chapter 5 Item iii),
we see that 𝑀 � colim𝑀𝑚 with

𝑀𝑚 ∈ Ind
(
D•(𝑋Weil

1 ,Λ)
)
⊗ModΛ∗ . . . ⊗ModΛ∗ Ind

(
D•(𝑋Weil

𝑛 ,Λ)
)

for all 𝑚 ≥ 0 and • = cons, resp. • = lis. As the essential image of Equation (7.13)
is closed under colimits, 𝑀 lies in the corresponding subcategory as well. □

Now we have enough tools to prove the categorical Künneth formula alias derived
Drinfeld’s lemma:

Proof of 7.1.2. In view of Proposition 7.3.1 and Proposition 7.3.2, it remains to show
the essential surjectivity of the external tensor product functor on Weil sheaves
Equation (7.1) under the assumptions in Theorem 7.1.2. Part Item 1, the case
of constructible sheaves, is reduced to part Item 2, the case of lisse sheaves, by
taking a stratification as in Definition 6.4.1 Item 2 and using the full faithfulness
already proven. Here we note that by refining the stratification witnessing the
constructibility if necessary, we can even assume all strata to be smooth, so in
particular geometrically unibranch. Hence, it remains to prove part Item 2, that is,
the essential surjectivity of the fully faithful functor

⊠ : Dlis
(
𝑋Weil

1 ,Λ
)
⊗PerfΛ∗ . . . ⊗PerfΛ∗ Dlis

(
𝑋Weil
𝑛 ,Λ

)
→ Dlis

(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
,

(7.14)
when either Λ is finite discrete as in cases Item a, Item d in Theorem 7.1.2 Item 2,
or Λ = O𝐸 for a finite field extension 𝐸 ⊃ Qℓ, ℓ ≠ 𝑝 as in case Item b, or Λ = 𝐸

and the 𝑋𝑖 are geometrically unibranch as in the remaining case Item c. In fact,
the latter two cases are easier to handle due to the presence of natural t-structures
on the categories of lisse sheaves (Chapter 5 Item vi). So we will distinguish two
cases below: 1) Λ = O𝐸 , or Λ = 𝐸 and all 𝑋𝑖 geometrically unibranch; 2) Λ is finite
discrete.

Now pick 𝑀 ∈ Dlis(𝑋Weil
1 × . . . × 𝑋Weil

𝑛 ,Λ). By Chapter 5 Item v, 𝑀 is bounded in
the standard t-structure on D(𝑋Weil

1 × . . .×𝑋Weil
𝑛 ,Λ). So 𝑀 is a successive extension
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of its cohomology sheaves H 𝑗 (𝑀), 𝑗 ∈ Z. As 𝑀 is lisse, Lemma 6.5.4 Item 1 shows
in both cases 1) and 2) that each H 𝑗 (𝑀) comes from a continuous representation on
a finitely presented Λ-module in

RepΛ
(
FWeil(𝑋)

) 7.4.1
� RepΛ(𝑊), (7.15)

where we denote𝑊 := 𝑊1 × . . . ×𝑊𝑛 with𝑊𝑖 := Weil(𝑋𝑖).

Throughout, we repeatedly use that the functor (7.14) is fully faithful, commutes
with finite (co-)limits and shifts, and that its essential image is closed under retracts
(as the source category is idempotent complete, by definition) and contains all
perfect-constant sheaves.

Case 1): Assume Λ = O𝐸 , or Λ = 𝐸 and all 𝑋𝑖 geometrically unibranch. In
this case, we have a t-structure on lisse Weil sheaves so that each H 𝑗 (𝑀) belongs
to Dlis(𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ)♥. By induction on the length of 𝑀 , using the full

faithfulness of Equation (7.14), we reduce to the case where 𝑀 is abelian, that is, a
continuous𝑊-representation on a finitely presented Λ-module. The external tensor
product induces a commutative diagram

RepΛ(𝑊1) × . . . × RepΛ(𝑊𝑛) ⊠ //

�
��

RepΛ(𝑊)
�
��

Dlis(𝑋Weil
1 ,Λ)♥ × . . . × Dlis(𝑋Weil

𝑛 ,Λ)♥ ⊠ // Dlis(𝑋Weil
1 × . . . × 𝑋Weil

𝑛 ,Λ)♥,

where the vertical equivalences are given by Lemma 6.5.4. Note that 𝑀 splits into
a direct sum 𝑀tor ⊕ 𝑀f.p where the finitely presented Λ-module underlying 𝑀tor is
Λ-torsion and 𝑀f.p is projective. So we can treat either case separately. Using that
the essential image of Equation (7.14) is closed under extensions (by full faithful-
ness) and retracts, the finite projective case is reduced to the fp-simple case and,
by Proposition 7.5.2, to the finite torsion case. Note that the 𝑊𝑖-representations
constructed in, say Lemma 7.5.1 (7.12), are obtained from 𝑀f.p by taking subquo-
tients and tensor products, so are automatically continuous. Next, as the Λ-module
underlying 𝑀tor is finite torsion, the Λ-sheaf 𝑀tor is perfect-constant along some
finite étale cover. So we conclude by 7.6.1 Item 2.

Case 2): Assume Λ is finite discrete as above. In a nutshell, the argument is similar
to the last step in case 1), but a little more involved due to the absence of natural
t-structures on the categories of lisse sheaves in general, see Chapter 5 Item vi.
More precisely, in the special case, where Λ is a finite field, the argument of case
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1) applies, but not so if Λ = Z/ℓ2, say. So, instead, we extend Equation (7.14) by
passing to Ind-completions to a commutative diagram

Dlis
(
𝑋Weil

1 ,Λ
)
⊗PerfΛ∗ . . . ⊗PerfΛ∗ Dlis

(
𝑋Weil
𝑛 ,Λ

) ⊠ //

��

Dlis
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
��

Ind
(
Dlis(𝑋Weil

1 ,Λ)
)
⊗ModΛ∗ . . . ⊗ModΛ∗ Ind

(
Dlis(𝑋Weil

𝑛 ,Λ)
) Ind(⊠)// Ind

(
Dlis(𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ)

)
,

of full subcategories of D(𝑋Weil
1 × . . . × 𝑋Weil

𝑛 ,Λ), see the discussion around Equa-
tion (7.13). Note that the fully faithful embedding Equation (7.13) factors through
Ind(⊠). Both vertical arrows are the inclusion of the subcategories of compact
objects by idempotent completeness of the involved categories and Equation (4.1).
Thus, if 𝑀 lies in the essential image of Ind(⊠), then it is a retract of a finite colimit
of objects in the essential image of ⊠, so lies itself in this essential image. As 𝑀 is
a successive extension of its cohomology sheaves H 𝑗 (𝑀), it suffices to show

H 𝑗 (𝑀) ∈ Ind
(
Dlis(𝑋Weil

1 ,Λ)
)
⊗ModΛ∗ . . . ⊗ModΛ∗ Ind

(
Dlis(𝑋Weil

𝑛 ,Λ)
)
,

for all 𝑗 ∈ Z. So fix 𝑗 and denote 𝑁 := H 𝑗 (𝑀) viewed as a continuous 𝑊-
representation on a finitely presented Λ-module. As Λ is finite, 𝑁 comes from a
continuous representation of 𝜋1(𝑋1)× . . . 𝜋1(𝑋𝑛) on which some open subgroup acts
trivially. Hence, there exist finite étale surjections 𝑈𝑖 → 𝑋𝑖 such that the subgroup
𝜋1(𝑈1) × . . . × 𝜋1(𝑈𝑛) acts trivially on 𝑁 . In particular, 𝑁 |𝑈Weil

1 ×...×𝑈Weil
𝑛

is constant,
and hence lies in the essential image of the functor

Mod𝑅 � Ind
(
Perf𝑅

)
→ Ind

(
Dlis(𝑈Weil

1 × . . . ×𝑈Weil
𝑛 ,Λ)

)
,

where 𝑅 := Γ(𝜋0(𝑈1) × . . .×𝜋0(𝑈𝑛),Λ). As the sets 𝜋0(𝑈𝑖) are finite discrete, each
𝑅𝑖 := Γ(𝜋0(𝑈𝑖),Λ) is a finite free Λ∗-algebra, and we have 𝑅 � 𝑅1 ⊗Λ∗ . . . ⊗Λ∗ 𝑅𝑛.
Thus, the external tensor product induces a commutative diagram

Mod𝑅1 ⊗ModΛ∗ . . . ⊗ModΛ∗ Mod𝑅𝑛

� //

��

Mod𝑅

��
Ind

(
Dlis(𝑈Weil

1 ,Λ)
)
⊗ModΛ∗ . . . ⊗ModΛ∗ Ind

(
Dlis(𝑈Weil

𝑛 ,Λ)
) Ind(⊠)// Ind

(
Dlis(𝑈Weil

1 × . . . ×𝑈Weil
𝑛 ,Λ)

)
,

where the upper horizontal arrow is an equivalence. So 𝑁 |𝑈Weil
1 ×...×𝑈Weil

𝑛
lies in the

essential image of Ind(⊠), and we conclude by Lemma 7.6.2 applied to the finite
étale covers𝑈𝑖 → 𝑋𝑖 and • = lis. □
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C h a p t e r 8

IND-CONSTRUCTIBLE WEIL SHEAVES

In this section, we introduce the full subcategories

Dindlis
(
𝑋Weil,Λ

)
⊂ Dindcons

(
𝑋Weil,Λ

)
of D

(
𝑋Weil,Λ

)
consisting of ind-objects of lisse, resp. constructible sheaves equipped

with partial Frobenius action. That is, the partial Frobenius only preserves the ind-
system of objects, but not necessarily each member. We will define analogous
categories for a product of schemes. Similarly to the lisse, resp. constructible case,
there is a fully faithful functor

Dindcons
(
𝑋Weil

1 ,Λ
)
⊗ModΛ∗ . . .⊗ModΛ∗Dindcons

(
𝑋Weil
𝑛 ,Λ

)
→ Dindcons

(
𝑋Weil

1 ×. . .×𝑋Weil
𝑛 ,Λ

)
,

which, however, will not be an equivalence in general, see Remark 8.1.6. Neverthe-
less, we can identify a class of objects that lie in the essential image and that include
many cases of interest such as the shtuka cohomology studied in (V. Lafforgue,
2018; V. Lafforgue and Zhu, 2019; Xue, 2020b; Xue, 2020c).

8.1 Ind-constructible Weil sheaves
Let F𝑞 be a finite field of characteristic 𝑝 > 0, and fix an algebraic closure F. Let
𝑋1, . . . , 𝑋𝑛 be schemes of finite type over F𝑞. Let Λ be a condensed ring associated
with the one of the following topological rings: a discrete coherent torsion ring (for
example, a discrete finite ring), an algebraic field extension 𝐸 ⊃ Qℓ, or its ring of
integers O𝐸 . We write 𝑋 := 𝑋1 ×F𝑞 . . . ×F𝑞 𝑋𝑛, and denote by 𝑋𝑖,F := 𝑋𝑖 ×F𝑞 SpecF
and 𝑋F := 𝑋 ×F𝑞 SpecF the base change. Recall that under these assumptions, by
Chapter 5 Item viii, we have a fully faithful embedding

Ind
(
Dcons(𝑋F,Λ)

) �−→ Dindcons(𝑋F,Λ) ⊂ D(𝑋F,Λ), (8.1)

and likewise for (ind-)lisse sheaves.

Definition 8.1.1. An object 𝑀 ∈ D(𝑋Weil
1 × . . . × 𝑋Weil

𝑛 ,Λ) is called ind-lisse,
resp. ind-constructible if the underlying sheaf 𝑀F ∈ D(𝑋F,Λ) is ind-lisse, resp. ind-
constructible in the sense of Definition 5.0.1.
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We denote by

Dindlis
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
⊂ Dindcons

(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
the resulting full subcategories of D(𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ) consisting of ind-lisse,

resp. ind-constructible objects. Both categories are naturally commutative algebra
objects in PrSt

Λ∗
(see the notation from Chapter 4), that is, presentable stableΛ∗-linear

symmetric monoidal∞-categories where Λ∗ := Γ(∗,Λ) is the ring underlying Λ.

It is immediate from Definition 8.1.1 that the equivalence (6.6) restricts to an
equivalence

D•
(
𝑋Weil

1 × . . . × 𝑋Weil
𝑛 ,Λ

)
� Fix

(
D•(𝑋F,Λ), 𝜙∗𝑋1

, . . . , 𝜙∗𝑋𝑛

)
for • ∈ {indlis, indcons}.

Remark 8.1.2. Note that that we have a fully faithful embedding of 𝐷cons(𝑋Weil)
into Dindcons(𝑋Weil) whose image consists of compact objects. However, the latter
category is not generated by this image. Indeed, even in the case of a point,
the ind-cons category consists of Λ-modules with an action of an endomorphism,
whereas the image of the embedding consists of Λ-modules with an action of an
automorphism. This automorphism does not have to fix any finitely generated
submodule, which would be the case for any objects generated by the image of the
constructible Weil complexes.

Our goal in this chapter is to obtain a categorical Künneth formula for the categories
of ind-lisse, resp. ind-constructible Weil sheaves. In order to state the result, we
need the following terminology. Under our assumptions on Λ, each cohomology
sheaf H 𝑗 (𝑀), 𝑗 ∈ Z for 𝑀 ∈ Dlis(𝑋F,Λ

)
is naturally a continuous representation of

the proétale fundamental groupoid 𝜋proét
1 (𝑋F) on a finitely presented Λ-module, see

6.5.4. Further, the projections 𝑋F → 𝑋𝑖,F induce a full surjective map of topological
groupoids

𝜋
proét
1 (𝑋F) → 𝜋

proét
1 (𝑋1,F) × . . . × 𝜋proét

1 (𝑋𝑛,F). (8.2)

Definition 8.1.3. Let 𝑀 ∈ D(𝑋F,Λ).

1. The sheaf 𝑀 is called split lisse if it is lisse and the action of 𝜋proét
1 (𝑋F) on

H 𝑗 (𝑀) factors through (8.2) for all 𝑗 ∈ Z.
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2. The sheaf 𝑀 is called split constructible if it is constructible and there exists a
finite subdivision into locally closed subschemes 𝑋𝑖,𝛼 ⊆ 𝑋𝑖 such that for each
𝑋𝛼 =

∏
𝑖 𝑋𝑖,𝛼 ⊆ 𝑋 , each restriction 𝑀 |𝑋𝛼

is split lisse.

Definition 8.1.4. An object 𝑀 ∈ D(𝑋Weil
1 × . . .× 𝑋Weil

𝑛 ,Λ) is called ind-(split lisse),
resp. ind-(split constructible) if the underlying object 𝑀F ∈ D(𝑋F,Λ) is a colimit of
split lisse, resp. split constructible objects.

As the category D•(𝑋F,Λ), • ∈ {indlis, indcons} is cocomplete, every ind-(split
lisse) object is ind-lisse, and likewise, every ind-(split constructible) object is ind-
constructible.

Theorem 8.1.5. Assume that Λ is either a finite discrete ring of prime-to-𝑝 torsion,
an algebraic field extension 𝐸 ⊃ Qℓ for ℓ ≠ 𝑝, or its ring of integers O𝐸 . Then the
functor induced by the external tensor product

D•(𝑋Weil
1 ,Λ) ⊗ModΛ∗ . . . ⊗ModΛ∗ D•(𝑋Weil

𝑛 ,Λ) → D•(𝑋Weil
1 × . . . × 𝑋Weil

𝑛 ,Λ) (8.3)

is fully faithful for • ∈ {indlis, indcons}. For • = indlis, resp. • = indcons the
essential image contains the ind-(split lisse), resp. ind-(split constructible) objects.

Proof. For full faithfulness, it is enough to consider the case • = indcons. Using
Lemma 4.2.5, it remains to show that the functor⊗

𝑖

Dindcons
(
𝑋𝑖,F,Λ) � Ind

(⊗
𝑖

Dcons(𝑋𝑖,F,Λ)
)
→ D•(𝑋F,Λ) (8.4)

is fully faithful. In view of Equation (8.1), this is immediate from the Künneth
formula for constructible Λ-sheaves as explained in Section 7.3.

To identify objects in the essential image, we note that the fully faithful functors
Equation (8.3) and Equation (8.4) induce a Cartesian diagram (see Lemma 4.2.5):⊗

𝑖 D•
(
𝑋Weil
𝑖

,Λ) //

��

D•(𝑋Weil
1 × . . . × 𝑋Weil

𝑛 ,Λ)

��⊗
𝑖 D•(𝑋𝑖,F,Λ) // D•(𝑋F,Λ),

(8.5)

for • ∈ {indlis, indcons}. Thus, it is enough to show that the object 𝑀F underlying
an ind-split object 𝑀 lies in the image of the lower horizontal arrow. Since this
essential image is closed under colimits, it remains to show it contains the split lisse
objects for • = indlis, resp. the split constructible objects for • = indcons.
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By the full faithfulness of Equation (8.4), the split constructible case reduces to the
split lisse case, see also the proof of 7.1.2 in Section 7.6. So assume • = indlis and
let 𝑀F ∈ D(𝑋F,Λ) be split lisse. As each cohomology sheaf H 𝑗 (𝑀F), 𝑗 ∈ Z is at
least ind-lisse, an induction on the cohomological length of 𝑀F reduces us to show
that H 𝑗 (𝑀F) lies in the essential image. By definition, being split lisse implies that
the action of 𝜋proét

1 (𝑋F) on H 𝑗 (𝑀F) factors through 𝜋proét
1 (𝑋1,F) × . . . × 𝜋proét

1 (𝑋𝑛,F).
Then the arguments of Section 7.6 show that H 𝑗 (𝑀F) lies is in the essential image of
the lower horizontal arrow in Equation (8.5). We leave the details to the reader. □

Remark 8.1.6. The functor Equation (8.3) is not essentially surjective in general.
To see this, note that the functor Dindcons(𝑋Weil,Λ) → Dindcons(𝑋F,Λ) admits a
left adjoint 𝐹 that adds a free partial Frobenius action. Explicitly, for an object
𝑀 ∈ Dindcons(𝑋F,Λ) the object 𝐹 (𝑀) has underlying sheaf 𝐹 (𝑀)F given by a
countable direct sum of copies of 𝑀 . If 𝑀 was not originally in the image of
the external tensor product, then 𝐹 (𝑀) will not be either. This is, however, the
only obstacle for essential surjectivity: as noted in the proof of Theorem 8.1.5, the
diagram Equation (8.5) is Cartesian.

8.2 Cohomology of shtuka spaces
Finally, let us mention a key application of Theorem 8.1.5. Let 𝑋 be a smooth
projective geometrically connected curve over F𝑞. Let 𝑁 ⊂ 𝑋 be a finite subscheme,
and denote its complement by 𝑌 = 𝑋\𝑁 . Let 𝐸 ⊃ Qℓ, ℓ ≠ 𝑝 be an algebraic field
extension containing a fixed square root of 𝑞. Let O𝐸 be its ring of integers and
denote by 𝑘𝐸 the residue field. Let Λ be any of the topological rings 𝐸,O𝐸 , 𝑘𝐸 . Let
𝐺 be a split (for simplicity) reductive group over F𝑞. We denote by𝐺 the Langlands
dual group of 𝐺 considered as a split reductive group over Λ.

In the seminal works (V. G. Drinfeld, 1980; L. Lafforgue, 2002) (𝐺 = GL𝑛) and (V.
Lafforgue, 2018; V. Lafforgue and Zhu, 2019) (general reductive 𝐺) on the Lang-
lands correspondence over global function fields, the construction of the Weil(𝑌 )-
action on automorphic forms of level 𝑁 is realized using the cohomology sheaves
of moduli stacks of shtukas, defined in (Varshavsky, 2004) and (V. Lafforgue, 2018,
Section 2). As explained in (V. Lafforgue and Zhu, 2019; Dennis Gaitsgory, Kazh-
dan, et al., 2022; Zhu, 2021), the output of the geometric construction of Lafforgue
can be encoded as a natural transformation

H𝑁,𝐼 : Repf.p
Λ

(
𝐺 𝐼

)
→ Repcts

Λ

(
Weil(𝑌 ) 𝐼

)
, 𝐼 ∈ FinSet (8.6)
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of functors FinSet → Cat from the category of finite sets to the category of 1-
categories. Here the functor Repf.p

Λ

(
𝐺•

)
assigns to a finite set 𝐼 the category of

algebraic representations of 𝐺 𝐼 on finite free Λ-modules, and Repcts
Λ

(
Weil(𝑌 )•

)
the

category of continuous representations of Weil(𝑌 ) 𝐼 in Λ-modules. In both cases,
the transition maps are given by restriction of representations.

Let us recall some elements of its construction. For a finite set 𝐼, (Varshavsky, 2004)
and (V. Lafforgue, 2018, Section 2) define the ind-algebraic stack Cht𝑁,𝐼 classifying
𝐼-legged 𝐺-shtukas on 𝑋 with full level-𝑁-structure. The morphism sending a
𝐺-shtuka to its legs

𝔭𝑁,𝐼 : Cht𝑁,𝐼 → 𝑌 𝐼 (8.7)

is locally of finite presentation. For every 𝑊 ∈ Repf.p
Λ

(
𝐺 𝐼

)
, there is the normalized

Satake sheaf F𝑁,𝐼,𝑊 on Cht𝑁,𝐼 , see (V. Lafforgue, 2018, Définition 2.14). Base
changing to F and taking compactly supported cohomology, we obtain the object

H𝑁,𝐼 (𝑊) := (𝔭𝑁,𝐼,F)!(F𝑁,𝐼,𝑊,F) ∈ Dindcons
(
𝑌 𝐼F ,Λ

)
see (V. Lafforgue, 2018, Définition 4.7) and (Xue, 2020a, Definition 2.5.1). Under
the normalization of the Satake sheaves, the degree 0 cohomology sheaf

H𝑁,𝐼 (𝑊) := H0(H𝐼 (𝑊)) ∈ Dindcons
(
𝑌 𝐼F ,Λ

)♥
corresponds to the middle degree compactly supported intersection cohomology of
Cht𝑁,𝐼 . Using the symmetries of the moduli stacks of shtukas, the sheaf H𝑁,𝐼 (𝑊)
is endowed with a partial Frobenius equivariant structure (L. Lafforgue, 2002, §6).
So we obtain objects

H𝑁,𝐼 (𝑊) ∈ Dindcons
(
(𝑌Weil) 𝐼 ,Λ

)♥ (8.8)

Next, using the finiteness (Xue, 2020b) and smoothness (Xue, 2020c, Theorem
4.2.3) results, the classical Drinfeld’s lemma (Theorem 7.4.1) applies to give objects
H𝑁,𝐼 (𝑊) ∈ Repcts

Λ

(
Weil(𝑌 ) 𝐼

)
. The construction of the natural transformation (8.6)

encodes the functoriality and fusion satisfied by the objects {H𝑁,𝐼 (𝑊)} for varying
𝐼 and𝑊 .

However, in order to analyze construction Equation (8.6) further, it is desirable to
upgrade the natural transformation of functors Equation (8.6) to the derived level.
Namely, to have construction for the complexes {H𝐼 (𝑊)}𝐼,𝑊 and not just for their
cohomology sheaves, compare with (Zhu, 2021). Such an upgrade is possible using
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the derived version of Drinfeld’s lemma, as given in the following proposition. A
further study of this construction will appear in future work of the first named author
(T. H.).

Proposition 8.2.1. For Λ ∈ {𝐸,O𝐸 , 𝑘𝐸 } and any 𝑊 ∈ RepΛ(𝐺 𝐼), the shtuka
cohomology (8.8) lies in the essential image of the fully faithful functor

Dindlis(𝑌Weil,Λ)⊗𝐼 → Dindcons
(
(𝑌Weil) 𝐼 ,Λ

)
(8.9)

Proof. By (Xue, 2020c, Theorem 4.2.3), the ind-constructible sheaf H𝑁,𝐼 (𝑊) is
ind-lisse. By (Xue, 2020b, Proposition 3.2.15), the action of FWeil(𝑌 𝐼) on H𝑁,𝐼 (𝑊)
factors through the product Weil(𝑌 ) 𝐼 . In particular, the action of 𝜋1(𝑋 𝐼F) on H𝑁,𝐼 (𝑊)
factors through the product 𝜋1(𝑋F) 𝐼 . So it is ind-(split lisse) in the sense of Defini-
tion 8.1.4, and we are done by Theorem 8.1.5. □

Remark 8.2.2. One can upgrade the above construction in a homotopy coherent way
to show that the whole complex H𝑁,𝐼 (𝑊) lies in Dindcons

(
(𝑌Weil) 𝐼 ,Λ

)
. If 𝑁 ≠ ∅ so

thatH𝑁,𝐼 (𝑊) is known to be bounded, then Proposition 8.2.1 implies thatH𝑁,𝐼 (𝑊)
lies in the essential image of Equation (8.9).
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C h a p t e r 9

MORE RECOLLECTIONS ON∞-CATEGORIES

We review some more required categorical preliminaries mainly following (Lurie,
2009) (Lurie, 2017) and (Dennis Gaitsgory and Rozenblyum, 2017a), in the (sim-
plified) set-up suitable for our purpose.

Let Cat denote the (∞, 1)-category of small categories, and Cat the category of
all (not necessarily small) (∞, 1)-categories. For a(n ordinary) commutative ring
Λ with unit, let Lincatsm

Λ
denote the ∞-category of Λ-linear small idempotently

complete stable categories with functors being Λ-linear exact functors, and let
LincatΛ denote the (∞, 1)-category of all presentable Λ-linear stable categories
with functors being continuous functors. For C ∈ LincatΛ, and 𝑋,𝑌 ∈ C, we write
HomC (𝑋,𝑌 ) ∈ ModΛ representing MapModΛ (𝑀,HomC (𝑋,𝑌 )) = MapC (𝑀⊗𝑋,𝑌 ).
Then MapC (𝑋,𝑌 ) = 𝜏≤0HomC (𝑋,𝑌 ).

Definition 9.0.1. Let
C C′

D D′

𝑓

𝑣 𝑢

𝑔

be a commutative square in LincatΛ. That is, we are given a specified equivalence
𝑢 ◦ 𝑔 ≃ 𝑔 ◦𝑉 . Then we say that the square above is left adjointable if 𝑓 and 𝑔 admit
left adjoints 𝑓 𝐿 and 𝑔𝐿 , and the Beck-Chevalley map 𝛽 : 𝑔𝐿 ◦ 𝑢 → 𝑣 ◦ 𝑓 𝐿 given by

𝑔𝐿 ◦ 𝑢 → 𝑔𝐿 ◦ 𝑢 ◦ 𝑓 ◦ 𝑓 𝐿 ≃ 𝑔𝐿 ◦ 𝑔 ◦ 𝑣 ◦ 𝑓 𝐿 → 𝑣 ◦ 𝑓 𝐿

is an equivalence. If 𝑓 and 𝑔 has right adjoints 𝑓 𝑅 and 𝑔𝑅 then we say that the
square is right adjointable is the map 𝛾 : 𝑣 ◦ 𝑓 𝑅 → 𝑔𝑅 ◦ 𝑢, obtained by a dual
construction to the one above, is an equivalence.

Let 𝑆 be a small infinity category. We denote by FunLAd(𝑆,LincatΛ) (resp.
FunRAd(𝑆,LincatΛ)) the subcategory of Fun(𝑆,LincatΛ) consisting of functors
𝐹 : 𝑆 → Lincat so that for all arrows 𝑠 → 𝑠′ in 𝑆 the functor 𝐹 (𝑠) → 𝐹 (𝑠′)
admits a continuous right adjoint (resp. a left adjoint) and morphisms 𝛼 : 𝐹 → 𝐹′
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such that for every 𝑠→ 𝑠′ the square

𝐹 (𝑠) 𝐹 (𝑠′)

𝐹′(𝑠) 𝐹′(𝑠′)

is left (resp. right) adjointable. We recall (Lurie, 2017, Corollary 4.7.4.18.):

Proposition 9.0.2. The ∞-categories FunLAd(𝑆,LincatΛ), FunRAd(𝑆,LincatΛ) are
presentable and the inclusion functors FunLAd(𝑆,LincatΛ) ⊆ Fun(𝑆,LincatΛ) and
FunRAd(𝑆,LincatΛ) ⊆ Fun(𝑆,LincatΛ) preserve small limits.

In particular, if we have an indexing category I and diagrams C,D : I → LincatΛ
with a natural transformation 𝜙 : C → D, which is equivalent to having a func-
tor 𝐹 : I → Fun(Δ1,LincatΛ), then 𝐹 factors through FunLAd(Δ1,LincatΛ) (resp.
FunRAd(Δ1,LincatΛ)) if for every vertex 𝑖 of I, the functor 𝜙𝑖 : C𝑖 → D𝑖 has a left
(right) adjoint 𝜓𝑖 : D𝑖 → C𝑖 and for all arrows 𝑖 → 𝑗 in I the commutative square

C𝑖 D𝑖

C𝑗 D 𝑗

is left (resp. right) adjointable. Denote C = lim𝑖 C𝑖 and D = lim𝑖D𝑖. Then the
proposition says that under the conditions above the functor 𝜙 : C → D induced
on the limits has a left (resp. right) adjoint 𝜓 and for all 𝑖 ∈ I the composition
D

𝜓
−→ C → C𝑖 is equivalent to the composition D → D𝑖

𝜓𝑖−→ C𝑖.

Let 𝐹 : 𝑆 → LincatΛ be a diagram. For an arrow 𝜑 : 𝑠→ 𝑠′, we have that the corre-
sponding functor 𝐹 (𝜑) : 𝐹 (𝑠) → 𝐹 (𝑠′) preserves colimits morphism and therefore
by (Lurie, 2009, Corollary 5.5.2.9) admits a right adjoint 𝐹𝑅 (𝜑). By passing to right
adjoints we get a diagram 𝐹𝑅 : 𝑆𝑜𝑝 → Cat. By (Lurie, 2009, §5.5.3) the morphism

colim
𝑠∈𝑆

𝐹 (𝑠) → lim
𝑠∈𝑆𝑜𝑝

𝐹𝑅 (𝑠) (9.1)

determined by the maps right adjoint to ins𝑠 : 𝐹 (𝑠) → colim𝑆 𝐹 is an equivalence,
where the left is computed in LincatΛ and then is mapped to Cat and the right is
computed in Cat. In addition, if all 𝐹𝑅 (𝜑) are continuous, then the r.h.s. can also
be computed in LincatΛ. Denote by ev𝑠 the right adjoint of ins𝑠. It follows from
adjunction that for every object 𝑐 ∈ lim𝑆 𝐹, the natural map

colim
𝑠∈𝑆
(ins𝑠 ◦ ev𝑠 (𝑐)) → 𝑐 (9.2)

is an equivalence in colim𝑆 𝐹.
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Remark 9.0.3.

1. Assume that for each 𝜑 : 𝑠 → 𝑠′ the functor 𝐹 (𝜑) : 𝐹 (𝑠) → 𝐹 (𝑠′) preserves
compact objects (equivaletnly, 𝐹 (𝜑) preserves compact objects, the right
adjoint 𝐹𝑅 (𝜑) is continuous). Then the functors ins𝑠 : 𝐹 (𝑠) → colim𝑆 𝐹 also
preserve compact objects.

2. Assume in addition that each of the categories 𝐹 (𝑠) is compactly generated,
that is, 𝐹 (𝑠) ≃ Ind(𝐹0(𝑠)). Then the colimit colim𝑆 𝐹 is also compactly
generated, with compact objects given by retracts of objects coming from
𝐹0(𝑠) for 𝑠 ∈ 𝑆. In particular, if 𝑆 is filtered, we have

colim
𝑆

𝐹 ≃ Ind(colim
𝑠∈𝑆

𝐹0(𝑠))

with the colimit taken in the category of small infinity categories.

3. If 𝑆 is filtered and the morphisms in the image of 𝐹 have continuous right ad-
joints, then for an object 𝑠 in 𝑆 the composition ev𝑠◦ins𝑠 : 𝐹 (𝑠) → colim𝑆 𝐹 ≃
lim𝑆𝑜𝑝 𝐹

𝑅 → 𝐹 (𝑠) is equivalent to the colimit

ev𝑠 ◦ ins𝑠 ≃ colim
𝜑 : 𝑠→𝑠′

𝐹𝑅 (𝜑) ◦ 𝐹 (𝜑).

Using the equivalence (9.1) and Proposition 9.0.2 it is also possible to get that
adjointability preserved under taking colimits (Lurie, 2017, Proposition 4.7.4.19).

Proposition 9.0.4 (Lurie). Let 𝑆, 𝑇 be small ∞-categories and let 𝐹 : 𝑆 × 𝑇 →
LincatΛ be a functor. Assume that for all 𝑠→ 𝑠′ in 𝑆 and 𝑡 → 𝑡′ in 𝑇 the square

𝐹 (𝑠, 𝑡) 𝐹 (𝑠′, 𝑡)

𝐹 (𝑠, 𝑡′) 𝐹 (𝑠′, 𝑡′)

is right adjointable. Then there is an extension 𝐹 : 𝑆⊲ × 𝑇 → LincatΛ of 𝐹 such
that:

1. For each 𝑡 ∈ 𝑇 , the diagram 𝐹 : 𝑆⊲ × {𝑡} → LincatΛ is a colimit diagram in
LincatΛ.
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2. For all 𝑠→ 𝑠′ in 𝑆⊲ and 𝑡 → 𝑡′ in 𝑇 the square

𝐹 (𝑠, 𝑡) 𝐹 (𝑠′, 𝑡)

𝐹 (𝑠, 𝑡′) 𝐹 (𝑠′, 𝑡′)

is right adjointable.

We will also need (cohomological) descent. In this setting we are usually dealing
with a functor C• : Δ→ Cat, also called a cosimplicial ∞-category, and we would
like to say something about the totalization

Tot(C•) = lim
[𝑛]∈Δ
C𝑛

of C•. Usually the totalization is difficult to compute. However, under certain
left adjointability conditions it is possible to deduce that the evaluation functor
Tot(C•) → C0 is monadic. Recall that for an ∞-category D a monad on D is
an associative algebra object 𝑇 in the monoidal category Fun(D,D). Informally,
this means that we are gives a multiplication map 𝑇 ◦ 𝑇 → 𝑇 and a unit map
idD → 𝑇 which satisfy associativity and unit conditions up to coherent homotopy.
For example, if 𝐺 : E → D is a functor between ∞-categories which admits a left
adjoint 𝐹, the composition 𝑇 = 𝐺 ◦ 𝐹 has the structure of a monad on D with
identity given by the unit map idD → 𝐺 ◦ 𝐹 of the adjunction and composition map
induced by the co-unit 𝐹 ◦ 𝐺 → idE via

𝑇 ◦ 𝑇 = (𝐺 ◦ 𝐹) ◦ (𝐺 ◦ 𝐹) ≃ 𝐺 ◦ (𝐹 ◦ 𝐺) ◦ 𝐹 → 𝐺 ◦ 𝐹.

Given a monad 𝑇 on D one can consider the category LMod𝑇 (D) of left modules
over 𝑇 . Informally, this category consists of objects 𝐴 in D equipped with a map
𝑇 (𝐴) → 𝐴 giving an action of the algebra 𝑇 on 𝐴 and morphisms giving by
morphisms preserving that structure. The forgetful functor

𝐺 : LMod𝑇 (D) → D

has a left adjoint given by the free construction 𝐴 ↦→ 𝑇 (𝐴). An adjunction 𝐹 : D ⇄
E : 𝐺 is called monadic if E is equivalent to LMod𝑇 (D) for 𝑇 = 𝐺 ◦ 𝐹 and 𝐺 given
by the forgetful functor.

For that purpose, we recall (Lurie, 2017, Theorem 4.7.5.2, Corollary 4.7.5.3).
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Theorem 9.0.5 (Lurie). Let C• : Δ → Cat be a cosimplicial ∞-category. Assume
that for any 𝛼 : [𝑚] → [𝑛] in Δ, the induced diagram

C𝑚 C𝑚+1

C𝑛 C𝑛+1

𝑑0

𝑑0

is left adjointable. We denote the left adjoint of 𝑑0 : C𝑛 → C𝑛+1 by 𝐹 (𝑛). Let
C = Tot(C•). Then

1. The functor 𝐺 : C → C0 admits a left adjoint 𝐹.

2. The diagram
C C0

C0 C1

𝐺

𝐺 𝑑1

𝑑0

is left adjointable. That is, the canonical map 𝐹 (0) ◦ 𝑑1 → 𝐺 ◦ 𝐹 is an
equivalence.

3. The adjunction 𝐹 : C0 ⇄ C : 𝐺 is monadic. That is, C is equivalent to the
category of left modules LMod𝑇 (C0) with 𝑇 = 𝐹 (0) ◦ 𝑑1 ≃ 𝐺 ◦ 𝐹.

Corollary 9.0.6 (Lurie). Let C• : Δ+ → Cat be an augmented cosimplicial ∞-
category. Denote 𝐺 : C−1 → C0. Assume that

1. The category C−1 admits geometric realizations of 𝐺-split simplicial objects
that are preserved by 𝐺.

2. for any 𝛼 : [𝑚] → [𝑛] in Δ+ the diagram

C𝑚 C𝑚+1

C𝑛 C𝑛+1

𝑑0

𝑑0

is left adjointable.

Then the canonical map 𝜙 : C−1 → Tot(C•) admits a fully faithful left adjoint. If,
in addition C−1 → C0 is conservative, 𝜙 is an equivalence.

Remark 9.0.7. There is also a dual (co-monadic) version replacing "left adjoint"
with "right adjoint", and "realizations of 𝐺-split simplicial objects" with "totaliza-
tions of 𝐺-split cosimplicial objects" in the statement above.
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9.1 Dual categories
Recall (e.g. (Lurie, 2018, §D.7)) that every object C ∈ LincatΛ which is compactly
generated is dualizable. If C = Ind(C0) for some C0 ∈ CatΛ we can identify the dual
C∨ of C with Ind(C𝑜𝑝). Explicitly, the evaluation map C∨ ⊗ C → ModΛ is given
by the unique continuous extension of the functor given by the unique continuous
extension of the functor

Ind(C𝑜𝑝) ⊗ C → ModΛ
(F ,G) → HomC (F ,G).

Let A = Ind(A0) and B = Ind(B0) be objects of LincatΛ which are compactly
generated and let 𝐹 : A → B be a continuous functor that preserves compact
objects. We have a tautological functor

𝐹
𝑜𝑝

0 : A𝑜𝑝

0 → B
𝑜𝑝

0 .

Taking its ind-extension, we get a functor

𝐹𝑜 : A∨ → B∨ (9.3)

which is called the conjugate functor to 𝐹. The construction

A ↦→ A∨, 𝐹 ↦→ 𝐹𝑜

can be upgraded to an endofunctor on the subcategory of LincatΛ consisting of
compactly generated Λ-linear categories and continuous functors which preserve
compact objects.

Remark 9.1.1. In terms of the duality on LincatΛ, the functor 𝐹𝑜 is equivalent to
the left adjoint of 𝐹∨. Equivalently, the functor 𝐹𝑜 is the dual of the right adjoint to
𝐹, see (Dennis Gaitsgory, 2012, §1.5).

Let I → LincatΛ be a cofiltered diagram of Λ-linear categories such that of each
𝑖 the category 𝑖 ↦→ A𝑖 compactly generated and all transition functors A𝑖 → A 𝑗

preserve compact objects. Denote A = colim𝑖∈I A𝑖. It follows from (Dennis
Gaitsgory and Rozenblyum, 2017a, Proposition 6.3.4) that the natural map

colim
𝑖∈I
A∨𝑖 → A∨ (9.4)

obtained by passing to conjugate functors, is an equivalence.
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9.2 Relative tensor product
Let us first review the general formalism of relative tensor products. Let R be a
monoidal category with 1R its unit. Let Alg(R) denote the category of associative
algebra objects in R. Let LMod(R) (resp. RMod(R)) the category of left (resp.
right) module objects in R. I.e., objects in LMod(R) (resp. RMod(R)) consist
of pairs (𝐴, 𝑀) with 𝐴 ∈ Alg(R) and 𝑀 a left (resp. right) 𝐴-module. For
𝐴 ∈ Alg(R) we denote by LMod𝐴 (R) = LMod(R)×Alg(R) {𝐴} (resp. RMod𝐴 (R) =
{𝐴} ×Alg(R) LMod(R)).

Similarly, let BMod(R) denote the category of bimodule objects in R. For 𝐴, 𝐵 ∈
Alg(R) we denote by 𝐴BMod𝐵 = {𝐴}×Alg(R)BMod(R) ×Alg(R) {𝐵} the category of
𝐴-𝐵-bimodules. An 𝐴-𝐴-bimodule is also called as an 𝐴-bimodule. For example,
𝐴 itself can be regarded as 𝐴-bimodule via the left and the right multiplication.
See (Lurie, 2017, §4.3) for detailed discussions. Given associative algebra objects
𝐴, 𝐵, 𝐶 ∈ Alg(𝑅) and bimodules 𝑀 ∈ 𝐴BMod𝐵 and 𝑁 ∈ 𝐵BMod𝐶 , the relative
tensor product𝑀⊗𝐵𝑁 , if exists, is the unique object (up to equivalence) in 𝐴BMod𝐶 ,
corepresenting the functor sending 𝑋 ∈ 𝐴BMod𝐶 to the space of 𝐵-bilinear 𝐴-𝐶-
bimodule maps 𝑀 ⊗ 𝑁 → 𝑋 (in appropriate homotopy sense, see (Lurie, 2017,
Definition 4.4.2.3)). On the other hand, there is the two-sided bar construction

LMod(R) ×Alg(R) RMod(R) → (𝐴BMod𝐶)Δ
op
, (𝑀, 𝑁) ↦→ Bar𝐵 (𝑀, 𝑁)•,

where Bar𝐵 (𝑀, 𝑁)• is a simplicial object in the category of 𝐴-𝐶-bimodules, given
informally as

Bar𝐵 (𝑀, 𝑁)𝑛 = 𝑀 ⊗ 𝐵𝑛 ⊗ 𝑁

with boundary maps induced by the multiplication on 𝐵 and actions on 𝑀 and 𝑁 ,
and degeneracy maps given by insertions of the unit of 𝐵. See (Lurie, 2017, Notation
4.4.2.4, Construction 4.4.2.7). If 𝐴 = 𝐵 = 𝐶 and 𝑀 = 𝑁 = 𝐴, we simply denote
Bar𝐴 (𝐴, 𝐴)• by Bar(𝐴)•, called the bar construction of the bimodule 𝐴.

We do not know in general whether 𝑀 ⊗𝐵 𝑁 is always given by the geometric
realization of Bar𝐵 (𝑀, 𝑁)• as soon as the latter exists. This is the case if R admits
geometric realizations and such that the monoidal product ⊗ : R×R → R preserves
geometric realizations in each variable, by (Lurie, 2017, Theorem 4.4.2.8). It is also
the case in the following two examples.

Example 9.2.1. Assume that𝑀 = 𝑀0⊗𝐵with𝑀0 a left 𝐴-module (resp. 𝑁 = 𝐵⊗𝑁0

with 𝑁0 a right 𝐶-module). Then 𝑀 ⊗𝐵 𝑁 exists and is represented by 𝑀0 ⊗ 𝑁
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(resp. 𝑀 ⊗ 𝑁0). To see this, we follow the argument of (Lurie, 2017, Proposition
5.2.2.6). If R admits geometric realizations and such that the monoidal product
⊗ : R × R → R preserves geometric realizations in each variable, then 𝑀 ⊗𝐵 𝑁
exists and is isomorphic to 𝑀0 ⊗ 𝑁 (resp. 𝑀 ⊗ 𝑁0) by (Lurie, 2017, Proposition
4.4.3.14, 4.4.3.16). The general situation reduces this case via Yoneda embedding.

Example 9.2.2. Using a similar argument, one can also prove the relative tensor
product exists in the following situation. Let C be a (small) category admitting finite
limits. Let pt denote the final object. Then it Cop has the coCartesian symmetric
monoidal structure: for 𝑋,𝑌 ∈ C, the tensor product 𝑋 ⊗ 𝑌 in Cop is the finite
product 𝑋 × 𝑌 in C. We note that every object 𝑋 is a commutative algebra object
in Cop, with the multiplication given by the diagonal map Δ𝑋 : 𝑋 → 𝑋 × 𝑋 in C
and the unit given by the structural map 𝑝𝑋 : 𝑋 → pt. In addition, every morphism
𝑓 : 𝑋 → 𝑌 in C gives a commutative algebra homomorphism in Cop. Now given
two morphisms 𝑎 : 𝑀 → 𝑋, 𝑏 : 𝑁 → 𝑋 in C, we regard 𝑀, 𝑁 as 𝑋-modules in
Cop. We claim that 𝑀 ⊗𝑋 𝑁 exists and is representable by 𝑀 ×𝑋 𝑁 . Namely, the
two-sided bar complex as the cosimplicial object in C is

Δ→ C : 𝑀 × 𝑁
id×𝑎×id
−→
−→

id×𝑏×id
𝑀 × 𝑋 × 𝑁−→−→−→𝑀 × 𝑋 × 𝑋 × 𝑁 · · ·

We will consider the embedding Cop → Ind(Cop), where Ind(Cop) denotes the ind-
completion of Cop, equipped with the induced symmetric monoidal structure so that
the tensor product preserves colimits in each variable. Again, by the argument of
(Lurie, 2017, Proposition 5.2.2.6), it is enough to show that the geometric realization
of this simplicial object Δop → Ind(Cop) is represented by 𝑀 ×𝑋 𝑁 . By (Lurie,
2009, Lemma 6.1.4.7), its geometric realization can be computed as the colimit of
the truncated colimit diagram (Δ≤1)op → Ind(Cop), which in turn is the limit of
𝑀 × 𝑁−→−→𝑀 × 𝑋 × 𝑁 in C. But this is exactly 𝑀 ×𝑋 𝑁 .
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C h a p t e r 10

THE FORMALISM OF CORRESPONDENCES

In this subsection, we review the formalism of correspondences, as first appeared
in (Liu and Zheng, 2012, §6.1) and (Dennis Gaitsgory and Rozenblyum, 2017a,
Chapter 7). There are mainly two (closely related) usages of this formalism in
the paper. First, it provides a convenient framework to discuss convolution pattern
arising from algebraic geometry and representation theory and therefore is useful
for our study of (geometric) trace. Second, it encodes various sheaf theories in
algebraic geometry in a concise way, as first observed by Lurie.

10.1 Category of correspondences
Let C be an∞-category that admits finite limits and coproducts. The category C will
play the role of the category of geometric objects. We denote by pt the final object
in C. Let 𝑣𝑒𝑟𝑡, ℎ𝑜𝑟𝑖𝑧 be two classes of morphisms in C, each of which contains all
equivalences in C and is stable under composition and base change. Note that the
classes 𝑣𝑒𝑟𝑡, ℎ𝑜𝑟𝑖𝑧 are stable under products. That is, if 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖, 𝑖 = 1, 2 are
in 𝑣𝑒𝑟𝑡 (resp. ℎ𝑜𝑟𝑖𝑧) then the product 𝑓1 × 𝑓2 : 𝑋1 × 𝑋2 → 𝑌1 × 𝑌2 is a member of
𝑣𝑒𝑟𝑡 (resp. ℎ𝑜𝑟𝑖𝑧). We denote by C𝑣𝑒𝑟𝑡 (resp. Cℎ𝑜𝑟𝑖𝑧) the 1-full subcategory of C
consisting of morphisms in 𝑣𝑒𝑟𝑡 (resp. ℎ𝑜𝑟𝑖𝑧).

Let Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 denote the category of correspondences. Informally, objects of
Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 are the same as those of C and morphisms from 𝑋 to 𝑌 are given
by diagrams

𝑍 𝑋

𝑌

𝑔

𝑓 (10.1)

with 𝑔 ∈ ℎ𝑜𝑟𝑖𝑧 and 𝑓 ∈ 𝑣𝑒𝑟𝑡. We sometimes just write such diagram by𝑌
𝑓
←− 𝑍

𝑔
−→ 𝑋

for short. In addition, to emphasize that such a morphism in Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 is

a correspondence rather than an actual map, we sometimes write it as 𝑋
𝑓 ◦𝑔−1

d 𝑌

or simply as 𝑋 d 𝑌 . The composition of the correspondences 𝑌 ← 𝑆 → 𝑋 and
𝑍 ← 𝑇 → 𝑌 is given by the correspondence 𝑍 ← 𝑊 → 𝑋 which is formed by
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taking the pullback:
𝑊 𝑆 𝑋

𝑇 𝑌

𝑍

.

Given 𝑔 : 𝑌 → 𝑋 in ℎ𝑜𝑟𝑖𝑧 we will sometimes identify it with the correspondence
𝑌

id←− 𝑌
𝑔
−→ 𝑋 and we refer to such morphisms as horizontal. Similarly, given a

morphism 𝑓 : 𝑋 → 𝑌 in 𝑣𝑒𝑟𝑡 we will identify it with the correspondence 𝑌
𝑓
←−

𝑋
id−→ 𝑋 and refer to such morphisms of Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 as vertical. If 𝑣𝑒𝑟𝑡, ℎ𝑜𝑟𝑖𝑧

are all morphisms, we simply write Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 by Corr(C). We refer to
(Dennis Gaitsgory and Rozenblyum, 2017a, §7.1) and (Liu and Zheng, 2012, §6.1)
for precise definition of it as an∞-category.

Remark 10.1.1. The category Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 admits an (∞, 2)-categorical en-
hancement Corr(C)𝑎𝑑𝑚

𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 of the category of correspondences, depending on a
certain class 𝑎𝑑𝑚 of morphisms of C. A 2-morphism in Corr(C)𝑎𝑑𝑚

𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 is given
by a diagram

𝑆′

𝑆 𝑋

𝑌

𝑟

with 𝑟 ∈ 𝑎𝑑𝑚. See (Dennis Gaitsgory and Rozenblyum, 2017a, §7.1.1.2) for details.

As C admits finite limits it is a symmetric monoidal category under the Cartesian
monoidal structure. This induces a symmetric monoidal structure on Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧
constructed in (Dennis Gaitsgory and Rozenblyum, 2017a, Chapter 9) (see also
(Liu and Zheng, 2014, §6.1)). Namely, the tensor product of objects 𝑋,𝑌 in
Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 is their product 𝑋 × 𝑌 as objects of C. Note that in general 𝑋 × 𝑌
is not the product of 𝑋 and 𝑌 in Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧. For this reason, sometimes we
write 𝑋 ⊗ 𝑌 to emphasize we regard 𝑋 × 𝑌 as the tensor product of 𝑋 and 𝑌 in
Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧. We note that the 1-full subcategories C𝑣𝑒𝑟𝑡 and (Cℎ𝑜𝑟𝑖𝑧)op are
symmetric monoidal subcategories.

In particular, it makes sense to talk about associative and commutative algebra
objects in Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧.
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Example 10.1.2. Every object 𝑋 ∈ C with the diagonal map Δ𝑋 : 𝑋 → 𝑋 × 𝑋
and the structural map 𝜋𝑋 : 𝑋 → pt belonging to ℎ𝑜𝑟𝑖𝑧 has a natural commutative
algebra structure in (Cℎ𝑜𝑟𝑖𝑧)op with the multiplication given by Δ𝑋 and the unit given
by 𝜋𝑋 . In addition, if 𝑋 and 𝑌 are two objects satisfying the above properties and
𝑓 : 𝑋 → 𝑌 is a morphism belonging to ℎ𝑜𝑟𝑖𝑧, then we have a commutative algebra
homomorphism in (Cℎ𝑜𝑟𝑖𝑧)op from 𝑌 to 𝑋 induced by 𝑓 . In particular, 𝑋 is a (left)
𝑌 -module.

As (Cℎ𝑜𝑟𝑖𝑧)op → Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 is a symmetric monoidal subcategory, we obtain
the corresponding (maps between) commutative algebra objects in Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧.
If in addition 𝑓 ∈ C𝑣𝑒𝑟𝑡 , then 𝑓 : 𝑋 → 𝑌 is naturally a morphism of𝑌 -modules from
𝑋 to 𝑌 on Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧.

10.2 Monads and modules in the category of correspondences
We will be interested in a particular class of algebra objects and their bimodules
arising from monads in Corr(C). We review the description of algebras in terms of
Segal objects and note how these constructions generalize to describe bimodules.

Consider the (∞, 2)-category Corr(C)𝑎𝑙𝑙 . For every 𝑋, 𝑋′ ∈ C we have a category
HomCorr(C) (𝑋′, 𝑋). If 𝑋 = 𝑋′ this category is denoted by EndCorr(C) (𝑋). It carries
a canonical monoidal structure induced by composition. In general, the category
HomCorr(C) (𝑋′, 𝑋) is equipped with a left action of EndCorr(C) (𝑋) and a right action
of EndCorr(C) (𝑋′).

10.3 Monads and Segal objects
First recall the definition of Segal objects (also known as category objects) in an
∞-category.

Definition 10.3.1. A simplicial object 𝑋• : Δ𝑜𝑝 → C is called a Segal object if for
every 𝑛 ≥ 1, the map

𝑋𝑛 → 𝑋1 ×𝑋0 𝑋1 ×𝑋0 · · · ×𝑋0 𝑋1

induced by the maps 𝛿𝑖 : [1] � {𝑖, 𝑖 + 1} ⊂ [𝑛] for 𝑖 = 0, 1, . . . , 𝑛 − 1, is an
equivalence.

Remark 10.3.2. If C is an ordinary category, a Segal object is fully determined
by the objects 𝑋0, 𝑋1, the boundary maps 𝑑1, 𝑑0 : 𝑋1 → 𝑋0, 𝑑1 : 𝑋2 → 𝑋1 and the
degeneracy map 𝑠 : 𝑋0 → 𝑋1. These define a category object of C in the usual
sense. Namely, 𝑋0 is the class of objects, 𝑋1 the morphism objects, the morphisms
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𝑑1, 𝑑0 : 𝑋1 → 𝑋0 as source and target. The composition is given by the morphism
𝑑1 : 𝑋2 → 𝑋1 and unit by 𝑑1 : 𝑋2 → 𝑋1.

Example 10.3.3. Let 𝑓 : 𝑋 → 𝑌 be a morphism in C. The Čech nerve 𝑋• → 𝑌 of
𝑓 (see (Lurie, 2009, §6.1.2)), where

𝑋𝑛 =

𝑛+1︷                  ︸︸                  ︷
𝑋 ×𝑌 𝑋 × · · · ×𝑌 𝑋,

is easily seen to be a Segal object of C. Indeed, it is even a groupoid object, in the
sense of (Lurie, 2009, Definition 6.1.2.7)). This will be our main example.

Example 10.3.4. A Segal object 𝑋• with 𝑋0 = pt is a monoid object (in the sense
of (Lurie, 2009, p. 4.1.2)). Giving such a monoid object is equivalent to giving an
associative algebra object in C by (Lurie, 2009, Proposition 4.1.2.10, 4.1.2.11).

This last example admits the following generalization. Let 𝑋 ∈ C and consider
the monoidal category EndCorr(C) (𝑋). Then (Dennis Gaitsgory and Rozenblyum,
2017a, Proposition 9.4.1.5, Theorem 9.4.4.2) gives:

Theorem 10.3.5. 1. There is a natural lax monoidal functor

Sp: EndCorr(C) (𝑋) → Corr(C).

2. There is a canonical equivalence between Segal objects 𝑋• in C with 𝑋0 = 𝑋

and associative algebra objects in EndCorr(C) (𝑋).

Roughly speaking, the functor Sp from (1) sends 𝑋 ← 𝑍 → 𝑋 to the object 𝑍 ∈ C
with the lax structure given by horizontal arrow 𝑍 ×𝑋 𝑍 → 𝑍 × 𝑍 .

To construct the equivalence from (2), let 𝐴 ∈ EndCorr(C) (𝑋). Then 𝑋 itself is an
𝐴-𝐴-bimodule of 𝐴 in EndCorr(C) (𝑋). Then we have the two-sided Bar complex
Bar𝐴 (𝑋, 𝑋)• as a simplicial object in EndCorr(C) (𝑋). Its image under Sp gives a
simplicial object in C. which is the desired Segal object in C. Conversely, a segal
object 𝑋• in C gives rise to an algebra object in 𝑋1 ∈ Corr(C) with multiplication
given by the correspondence

𝑋1 ×𝑋0 𝑋1 ≃ 𝑋2 𝑋1 × 𝑋1

𝑋1

𝑑1

𝑑0×𝑑2
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and the unit given by the correspondence

𝑋0 pt

𝑋1

𝑠

𝜋𝑋0

Remark 10.3.6. Assume that the Segal object 𝑋• is such that:

• All morphisms of the simplicial object 𝑋• are in C𝑣𝑒𝑟𝑡;

• The diagonal map Δ𝑋0 : 𝑋0 → 𝑋0 × 𝑋0 and the structural map 𝜋𝑋0 : 𝑋0 → pt
are in Cℎ𝑜𝑟𝑖𝑧.

Then the associative algebra object 𝑋1 can be realized as an associative algebra
object of the monoidal category Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧.

10.4 The action on bimodules
Given 𝑋0, 𝑋

′
0 ∈ C and an associative algebra objects 𝑋1 ∈ Alg(EndCorr(C) (𝑋0)),

𝑋′1 ∈ Alg(EndCorr(C) (𝑋′0)) the lax-monoidal functor from Theorem 10.3.5 (1) in-
duces a functor

Sp: 𝑋1BMod𝑋 ′1 (HomCorr(C) (𝑋′0, 𝑋0)) → 𝑋1BMod𝑋 ′1 (Corr(C)).

Letting 𝑋0 = 𝑋′0 and 𝑋1 = 𝑋′1, we have a lax monoidal functor

Sp𝑋1
: 𝑋1BMod𝑋1 (EndCorr(C) (𝑋0)) → 𝑋1BMod𝑋1 (Corr(C)).

The unit of the monoidal category BMod(EndCorr(C) (𝑋0)) is sent by Sp𝑋1
to the

algebra 𝑋0 with multiplication given by the horizontal arrow 𝑋0 → 𝑋0 × 𝑋0 (it cor-
responds to the Segal object given by the constant simplicial object 𝑋0). Moreover,
it is clear that as an algebra, 𝑋 rev

0 is isomorphic to 𝑋0. Then Theorem 10.3.5 (1)
upgrades to a lax monoidal functor

Sp𝑋0
: EndCorr(C) (𝑋0) → 𝑋0BMod𝑋0 (Corr(C)) (10.2)

Explicitly, an object 𝑄 ∈ EndCorr(C) (𝑋0) has left and right actions given by the
two maps 𝑋0 ← 𝑄 → 𝑋0. The simple structure of such modules gives a simple
description of the relative tensor product over such bimodules in the category of
correspondences.

Remark 10.4.1. Let𝑄 ∈ 𝑋1BMod𝑋1 (EndCorr(C) (𝑋0))with 𝑋1, 𝑋0 as in Remark 10.3.6.
If the action maps 𝑋1 ×𝑋0 𝑄 → 𝑄 and 𝑄 ×𝑋0 𝑋1 → 𝑄 are in C𝑣𝑒𝑟𝑡 , then the corre-
sponding module under (10.2) is an object of Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧.
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C h a p t e r 11

SHEAF THEORIES

11.1 The notion of a sheaf theory
We fix C as before. By definition, a sheaf theory of C is a lax symmetric monoidal
functor

D : Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 → LincatΛ. (11.1)

For a horizontal morphism 𝑌
id←− 𝑌

𝑔
−→ 𝑋 we will denote the corresponding functor

by 𝑔★ : D(𝑋) → D(𝑌 ). For a vertical morphism 𝑌
𝑓
←− 𝑋

id−→ 𝑋 we denote the
corresponding functor by 𝑓† : D(𝑋) → D(𝑌 ). Then for a general correspondence

𝑌
𝑓
←− 𝑍

𝑔
−→ 𝑋 the associated functor is equivalent to 𝑓† ◦ 𝑔★.

Let us spread out some structures encoded by such a functor.

1. We can pass to right adjoints. For (𝑔 : 𝑋 → 𝑌 ) ∈ Cℎ𝑜𝑟𝑖𝑧, let 𝑔★ be the (not
necessarily continuous) right adjoint of 𝑔★, and for ( 𝑓 : 𝑋 → 𝑌 ) ∈ C𝑣𝑒𝑟𝑡 , let
𝑓 † be the (not necessarily continuous) right adjoint of 𝑓†.

2. The functoriality of D encodes a "base change theorem". Namely, let

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑔′

𝑓 ′ 𝑓

𝑔

(11.2)

be a pullback square in C. Then if 𝑓 ∈ 𝑣𝑒𝑟𝑡 and 𝑔 ∈ ℎ𝑜𝑟𝑖𝑧, we have that
𝑓 ′ ∈ 𝑣𝑒𝑟𝑡, 𝑔′ ∈ ℎ𝑜𝑟𝑖𝑧 and part of the data of the functor D is to give an
equivalence

( 𝑓 ′)† ◦ (𝑔′)★ ≃ 𝑔★ ◦ 𝑓†. (11.3)

3. The lax symmetric monoidal structure of D provides a functor

⊠ : D(𝑋) ⊗ D(𝑌 ) → D(𝑋 × 𝑌 ), 𝑋,𝑌 ∈ C (11.4)

together with all necessary higher coherence conditions. Let 𝑋 be as in
Example 10.1.2. This induces a symmetric monoidal structure on the cat-
egory D(𝑋). Informally, the symmetric monoidal structure is given by the
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composition

D(𝑋) ⊗ D(𝑋) ⊠−→ D(𝑋 × 𝑋)
Δ★
𝑋−−→ D(𝑋), F ,G ↦→ F ⊗ G := Δ★𝑋 (F ⊠ G).

(11.5)
We let Λ𝑋 ∈ D(𝑋) denote the unit object with respect to this symmetric
monoidal structure, which corresponds to the functor

ModΛ → D(pt)
𝜋★
𝑋−−→ D(𝑋). (11.6)

This symmetric monoidal structure is closed. That is, for every pair of objects
F1, F2 ∈ D(𝑋) there is an object Hom(F1, F2) such that for every G ∈ D(𝑋)
there is a canonical equivalence

MapD(𝑋)
(
G,Hom(F1, F2)

)
≃ MapD(𝑋)

(
G ⊗ F1, F2

)
. (11.7)

Note we have

Hom(F1 ⊗ F2, F3) = Hom(F1,Hom(F2, F3). (11.8)

4. Let 𝑓 : 𝑋 → 𝑌 in Cℎ𝑜𝑟𝑖𝑧 as in Example 10.1.2. Then 𝑓★ : D(𝑌 ) → D(𝑋)
is a symmetric monoidal functor. In particular, it endows D(𝑋) with a
structure of a D(𝑌 ) monoidial category. If in addition 𝑓 ∈ C𝑣𝑒𝑟𝑡 as well,
then 𝑓† : D(𝑋) → D(𝑌 ) is a morphism of D(𝑌 )-modules. In particular, for
F ∈ D(𝑋), G ∈ D(𝑌 ) we have a canonical equivalence

𝑓†(F ) ⊗ G ≃ 𝑓†(F ⊗ 𝑓★(G)). (11.9)

which encodes a "projection formula" for 𝑓† and 𝑓★. Along with the co-unit
of the adjunction ( 𝑓†, 𝑓 †), it gives, for every F ,G ∈ D(𝑌 ), a natural map

𝑓 †(G) ⊗ 𝑓★(F ) → 𝑓 †(G ⊗ F ) (11.10)

adjoint to

𝑓†( 𝑓 †(G) ⊗ 𝑓★(F )) ≃ 𝑓† 𝑓 †(G) ⊗ F → G ⊗ F ,

In particular, one has the natural transformation of functors

𝑓 †(Λ𝑌 ) ⊗ 𝑓★→ 𝑓 † (11.11)

In addition, we have

𝑓 †Hom(F ,G) ≃ Hom( 𝑓★F , 𝑓 †G), 𝑓★Hom(F , 𝑓 †G) ≃ Hom( 𝑓†F ,G).
(11.12)
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5. Assume that 𝑝 : 𝑋 → pt belongs to 𝑣𝑒𝑟𝑡. Let

D𝑋 : D(𝑋)op → D(𝑋), D𝑋F := Hom(F , 𝑝†
𝑋
Λpt). (11.13)

Then for 𝑓 : 𝑋 → 𝑌 in 𝑣𝑒𝑟𝑡 ∩ ℎ𝑜𝑟𝑖𝑧, the isomorphisms in (11.12) specialize
to isomorphisms D𝑋 𝑓★ = 𝑓 †D𝑌 and 𝑓★D𝑋 = D𝑌 𝑓†.

Remark 11.1.1. In many examples of a sheaf theory, the functor 11.4 is fully faithful
and admits a continuous right adjoint. Indeed, fully faithfulness is equivalent to a
Künneth type formula.

Remark 11.1.2. Let 𝑆 ∈ C be as in Example 10.1.2. Then there is the (non-full)
embedding

Corr(C/𝑆)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 → Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧

which is a lax symmetric monoidal functor. Therefore, one can restrict D along
this embedding to obtain a sheaf theory on C/𝑆, denoted byD/𝑆. The lax symmetric
monoidal structure is provided by

D(𝑋) ⊗ D(𝑌 ) → D(𝑋 × 𝑌 )
Δ★
𝑆−−→ D(𝑋 ×𝑆 𝑌 )

Remark 11.1.3. Let 𝑋 ∈ C such that both 𝜋𝑋 and Δ𝑋 are in C𝑣𝑒𝑟𝑡 ∩ Cℎ𝑜𝑟𝑖𝑧, then 𝑋
is self-dual in Corr(C). Then the evaluation and the unit maps are given by

pt
𝜋𝑋←−− 𝑋 Δ𝑋−−→ 𝑋 × 𝑋, 𝑋 × 𝑋 Δ𝑋←−− 𝑋 𝜋𝑋−−→ pt

It follows that if the sheaf theory D is symmetric monoidal (rather than just lax
symmetric monoidal), then D(𝑋) is self-dual.

11.2 Additional base change theorems
The sheaf theory D in practice often satisfies certain additional base change theo-
rems for certain class of morphisms. The general setting is as follows.

Let C𝑠𝑚 ⊆ Cℎ𝑜𝑟𝑖𝑧 and C𝑝𝑟𝑜𝑝 ⊆ C𝑣𝑒𝑟𝑡 be another two classes of morphisms of C
stable under composition and base change and containing equivalences. We make
the following assumptions on these classes:

(a). For 𝑓 ∈ C𝑝𝑟𝑜𝑝, the functor 𝑓 † is continuous.

(b). For 𝑔 ∈ C𝑠𝑚, the functor 𝑔★ is continuous.
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We make the following assumptions on various compatibilities between these ad-
joints. Consider the Cartesian square (11.2). Then consider the following assump-
tions.

Assumptions 11.2.1. The adjoint pairs ((−)★, (−)★), ((−)†, (−)†) satisfy the fol-
lowing conditions:

(1) If 𝑓 ∈ C𝑝𝑟𝑜𝑝 and 𝑔 ∈ C𝑣𝑒𝑟𝑡 the natural map 𝑓 ′† ◦𝑔
′† → 𝑔† ◦ 𝑓† is an equivalence.

(2) If 𝑓 ∈ C𝑠𝑚 and 𝑔 ∈ Cℎ𝑜𝑟𝑖𝑧 then the natural map 𝑓★ ◦ 𝑔★ → 𝑔′★ ◦ 𝑓 ′★ is an
equivalence.

(3) If 𝑓 ∈ C𝑝𝑟𝑜𝑝 and 𝑔 ∈ C𝑠𝑚 the natural map 𝑔′★◦ 𝑓 † → 𝑓 ′†◦𝑔★ is an equivalence.

(4) If 𝑓 ∈ C𝑝𝑟𝑜𝑝 and 𝑔 ∈ Cℎ𝑜𝑟𝑖𝑧 the natural map 𝑓† ◦𝑔′★→ 𝑔★◦ 𝑓 ′† is an equivalence.

(5) For 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 in C𝑝𝑟𝑜𝑝 with 𝑖 = 1, 2, and F𝑖 ∈ D(𝑌𝑖) the natural map

𝑓
†
1 (F1) ⊠ 𝑓 †2 (F2) → ( 𝑓1 × 𝑓2)†(F1 ⊠ F2)

is an equivalence.

(6) For 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 in C𝑠𝑚 with 𝑖 = 1, 2, and F𝑖 ∈ D(𝑋𝑖) the natural map

( 𝑓1)★(F1) ⊠ ( 𝑓2)★(F2) → ( 𝑓1 × 𝑓2)★(F1 ⊠ F2)

is an equivalence.

We make some additional assumptions. They are satisfied in certain sheaf theories,
but not always.

1. Let 𝑓 ∈ 𝐶𝑣𝑒𝑟𝑡 . For 𝑔 ∈ C𝑝𝑟𝑜𝑝, the natural map 𝑓† ◦ 𝑔† → 𝑔′† ◦ 𝑓 ′† is
an equivalence. For 𝑔 ∈ C𝑠𝑚, the natural map 𝑓† ◦ 𝑔′★ → 𝑔★ ◦ 𝑓 ′† is an
equivalence.

2. Let 𝑓 ∈ 𝐶ℎ𝑜𝑟𝑖𝑧. For 𝑔 ∈ C𝑝𝑟𝑜𝑝, the natural map 𝑓 ′★ ◦ 𝑔† → 𝑔′† ◦ 𝑓★ is
an equivalence. For 𝑔 ∈ C𝑠𝑚, the natural map 𝑓★ ◦ 𝑔′★ → 𝑔★ ◦ 𝑓★ is an
equivalence.

(IX) For 𝑓 ∈ C𝑝𝑟𝑜𝑝 ∩ Cℎ𝑜𝑟𝑖𝑧, 𝑓 † � 𝑓★;

(X) For 𝑓 ∈ C𝑣𝑒𝑟𝑡 ∩ C𝑠𝑚, 𝑓★ � 𝑓† [𝑛] for some 𝑛 𝑓 ∈ Z.
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Example 11.2.2. We have the following basic example of a sheaf theory. Let
D : Cop → LincatΛ be a lax symmetric monoidal functor. Then let ℎ𝑜𝑟𝑖𝑧 = 𝑎𝑙𝑙 and
let 𝑣𝑒𝑟𝑡 consist of the following class of morphisms: 𝑓 : 𝑋 → 𝑌 belongs to 𝑣𝑒𝑟𝑡 if
the functorD( 𝑓 ) : D(𝑌 ) → D(𝑋) admits a continuous left adjointD( 𝑓 )𝐿 and for
every diagram as (11.2), the induced Beck-Chevalley map is an equivalence

D( 𝑓 ′)𝐿 ◦ D(𝑔) � D(𝑔′) ◦ D( 𝑓 )

Then D extends to a sheaf theory D : Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 → LincatΛ, such that for
𝑔 ∈ ℎ𝑜𝑟𝑖𝑧, 𝑔★ = D(𝑔) and 𝑓 ∈ 𝑣𝑒𝑟𝑡, 𝑓† = D( 𝑓 )𝐿 . In this case, we can let
𝑝𝑟𝑜𝑝 = 𝑣𝑒𝑟𝑡. Then Assumptions 11.2.1 1 4 5 automatically hold.

11.3 Category of cohomological correspondences
The sheaf theoryD can also be (largely) encoded as a symmetric monoidal category
CorrD (C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧, usually called the category of cohomological correspondences.
Namely, let D be a sheaf theory on C as above. Applying the symmetric monoidal
Grothendieck construction ((Lurie, 2017, Proposition 2.4.3.16)) to the lax symmetric
monoidal functor

Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 → LincatΛ → Cat,

one obtains a coCartesian fibration CorrD (C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 → Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧. Objects
of CorrD (C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 consist of pairs (𝑋, F ) where 𝑋 ∈ C and F ∈ D(𝑋), and mor-
phisms been (𝑋, F ) and (𝑌,G) consist of pairs (𝐶, 𝑢), where 𝐶 a correspondence

𝑌
←−𝑐←− 𝐶

−→𝑐−→ 𝑋 , with←−𝑐 in 𝑣𝑒𝑟𝑡 and −→𝑐 in ℎ𝑜𝑟𝑖𝑧, and 𝑢 : −→𝑐 ★F →←−𝑐 †G.

There is a natural symmetric monoidal structure on CorrD (C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧, with the
symmetric monoidal structure given by (𝑋, F ) ⊗ (𝑌,G) = (𝑋 × 𝑌, F ⊠ G). The
unit is given by (pt,Λpt). We refer to (Xiao and Zhu, 2017, Appendix A) and (Lu
and Zheng, 2020) for more detailed discussions of constructions in this category.

We recall some results about dualizable objects in CorrD (C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧. We make the
following assumption throughout the rest of the section.

Assumptions 11.3.1. Assume that ℎ𝑜𝑟𝑖𝑧 consist of all morphisms in C and the class
𝑣𝑒𝑟𝑡 has the following property: for a sequence of morphisms 𝑍1 → 𝑍2 → 𝑍3 in C,
if 𝑍1 → 𝑍3 belongs to 𝑣𝑒𝑟𝑡, so is 𝑍1 → 𝑍2.

Assume that the structural map 𝜋𝑋 : 𝑋 → pt belongs to 𝑣𝑒𝑟𝑡. Then as argued in (Lu
and Zheng, 2020, Lemma 2.8), for (𝑋, F ), (𝑌,G) and (𝑍,H) ∈ CorrD (C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧,
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we have

Map
(
(𝑍,H) ⊗ (𝑋, F ), (𝑌,G)

)
= Map

(
(𝑍,H), (𝑋 ×𝑌,Hom((𝑝𝑋)★F , (𝑝𝑌 )†G))

)
,

where Hom is the bifunctor from (11.7) (for 𝑋 × 𝑌 ), and 𝑝𝑋 : 𝑋 × 𝑌 → 𝑋, 𝑝𝑌 :
𝑋×𝑌 → 𝑌 are the two natural projections. That is, the internal hom between (𝑋, F )
and (𝑌,G) exists and is represented by (𝑋 × 𝑌,Hom(𝑝★

𝑋
F , 𝑝†

𝑌
G)). The following

lemma then follows by general facts about symmetric monoidal categories.

Lemma 11.3.2. 1. An object (𝑋, F ) ∈ CorrD (C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 is dualizable if and
only if the natural map

F ⊠ D𝑋F → Hom((𝑝1)★F , (𝑝2)†F )

is an isomorphism, where 𝑝𝑖 : 𝑋2 → 𝑋, 𝑖 = 1, 2 are two projections.

2. If (𝑋, F ) is dualizable, then its dual is (𝑋,D𝑋F ), with the evaluation map
given by the tautological map

𝑒(𝑋,F ) : (Δ𝑋)★(F ⊠ D𝑋F ) = F ⊗ D𝑋F → (𝜋𝑋)†Λpt, (11.14)

and with the unit map is given by the dual of 𝑒(𝑋,F ) . (Note that (𝑋 × 𝑋, F ⊠
D𝑋F ) is self-dual in CorrD (C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧.)

Lemma 11.3.3. Let (𝑋, F ) be a dualizable object in CorrD (C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧. If (Δ𝑋)†
sends compact objects to compact objects, and if Λ𝑋 is compact in D(𝑋), then
F ∈ D(𝑋) is compact.

Proof. Note that (Δ𝑋)† and HomD(𝑋) (Λ𝑋 ,−) commute with colimits. Therefore,

HomD(𝑋) (F , colim
𝑖
G𝑖) = HomD(𝑋) (Λ𝑋 , (Δ𝑋)†(D𝑋F ⊠ (colim

𝑖
G𝑖)))

= colim
𝑖

HomD(𝑋) (Λ𝑋 , (Δ𝑋)†(D𝑋F ⊠ G𝑖)) = colim
𝑖

HomD(𝑋) (F ,G𝑖)

□
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C h a p t e r 12

THE CATEGORICAL TRACE

12.1 Hochschild homology
Let R be a symmetric monoidal category. The trace of an endomorphism of a
dualizable object in R is a classical notion. Namely, if 𝑋 is a dualizable object in R
equipped with an endomorphism 𝑓 : 𝑋 → 𝑋 , its trace tr(𝑋, 𝑓 ) ∈ End(1R) is given
by the composition

1R
𝑢−→ 𝑋∨ ⊗ 𝑋

id𝑋∨⊗ 𝑓−−−−−−→ 𝑋∨ ⊗ 𝑋 � 𝑋 ⊗ 𝑋∨ 𝑒−→ 1R . (12.1)

On the other hand, in this article, we will also need a difference type of trace con-
struction, known as the categorical trace. Let us first review the general formalism.
We refer to Section 9.2 for a review of bimodules and relative tensor products.

Let 𝐴 and 𝐵 be two associative algebras in R. By (Lurie, 2017, Proposition
4.6.3.11)1, an 𝐴-𝐵-bimodule can also be regarded as a left (𝐴 ⊗ 𝐵rev)-module or a
right (𝐵 ⊗ 𝐴rev)-module, where 𝐴rev (resp. 𝐵rev) is the algebra 𝐴 (resp. 𝐵) with the
multiplication reversed. For an associative algebra 𝐴, and an 𝐴-𝐴-bimodule 𝐹, the
Hochschild homology of 𝐹, if exists, is defined as

Tr(𝐴, 𝐹) = 𝐴 ⊗𝐴⊗𝐴rev 𝐹 ∈ R. (12.2)

We write
[−]𝐹 : 𝐹 → Tr(𝐴, 𝐹) (12.3)

for the natural morphism, sometimes called the universal trace morphism.

On the other hand, there always exists the Hochschild complex of 𝐹 defined as

HH(𝐴, 𝐹)• = Bar(𝐴)• ⊗𝐴⊗𝐴rev 𝐹 = 𝐴⊗• ⊗ 𝐹, (12.4)

regarded as a simplicial object Δop → R. Explicitly, on the level of simplicies and
morphisms, for every 𝑛 ≥ 0 we have an equivalence

HH(𝐴, 𝐹)𝑛 ≃ 𝐴⊗𝑛 ⊗ 𝐹. (12.5)
1Note that assumption (★) of loc. cit. is not essential, as explained before (Lurie, 2017, Notation

4.6.3.3).
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Under this identification, for 0 < 𝑖 < 𝑛 the face map 𝑑HH
𝑖

is given by the multiplica-
tion map applied to the 𝑖-th and the (𝑖 + 1)-th factors in 𝐴⊗𝑛, and the face map 𝑑HH

0
is given by multiplying the first factor in 𝐴⊗𝑛 to 𝑄 from the right and the face map
𝑑HH
𝑛 is given by multiplying the 𝑛-th factor in 𝐴⊗𝑛 to 𝑄 from the left. If R admits

geometric realizations and the tensor product preserves geometric realizations in
each variable, then the Hochschild homology of 𝐹 exists and can be computed as
the geometric realization of the Hochschild complex.

Remark 12.1.1. Associated toR, there is a symmetric monoidal 2-category Morita(R)
whose objects are associative algebras in R and whose morphism categories are
given by categories of bimodules:

MapMorita(R) (𝐴, 𝐵) = 𝐵BMod𝐴

and compositions are given by the relative tensor products (assuming relative tensor
products exist in R). Then every 𝐴-bimodule 𝐹 gives an endomorphism of 𝐴 in
Morita(R). In addition, every algebra 𝐴 is a dualizable object in Morita(R).
Under the equivalence 𝐴BMod𝐴 � 1RBMod𝐴rev⊗𝐴 � 𝐴⊗𝐴revBMod1R , the natural
𝐴-bimodule structure on 𝐴 itself gives unit and evaluation maps

𝐴𝑒 ∈ 𝐴⊗𝐴revBMod1R , 𝐴𝑐 ∈ 1RBMod𝐴rev⊗𝐴, (12.6)

which identify the dual of 𝐴 (in Morita(R)) as 𝐴rev. Then the Hochschild homology of
(𝐴, 𝐹) is nothing but the trace 𝐹 in the sense of (12.1), regarded as an endomorphism
of 𝐴 in Morita(R). This justifies our choice of notations. However, we will not
systematically explore this approach in this article. On the one hand, we do not
want to systematically review the formalism of (∞, 2)-categories. On the other
hand, in our applications where R will mainly be LincatΛ, we implicitly need some
3-category structure on Morita(LincatΛ).

Example 12.1.2. If the 𝐴-bimodule 𝐹 = 𝑀 ⊗ 𝑁 , where 𝑀 is a left 𝐴-module and
𝑁 a right 𝐴-module. Then

Tr(𝐴, 𝐹) = 𝐴 ⊗𝐴⊗𝐴rev (𝑀 ⊗ 𝑁) � 𝑁 ⊗𝐴 𝑀.

In fact, HH(𝐴, 𝐹)• � Bar𝐴 (𝑁, 𝑀)•.

Example 12.1.3. Of particular importance in this paper is the following type of
bimodules. Let 𝜙 be an endomorphism of the algebra 𝐴. For an 𝐴-bimodule 𝐹 we
will denote by 𝜙𝐹 the bimodule obtained by the same action on the right but with
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a pre-composition with 𝜙 for the left action. In this case we will also denote the
Hochschild homology of the bimodule 𝜙𝐴 by Tr(𝐴, 𝜙). That is,

Tr(𝐴, 𝜙) ≃ 𝐴 ⊗𝐴⊗𝐴rev 𝜙𝐴. (12.7)

In addition, 𝜙 = id, we simply write Tr(𝐴, id) by Tr(𝐴).

Now let R = LincatΛ. Then an algebra object 𝐴 in LincatΛ is a presentable Λ-linear
monoidal category with monoidal product commutes with colimits separately in
each variable. Let 𝐹 be an 𝐴-bimodule category. In this case, Tr(𝐴, 𝐹) always
exists, and is sometimes called the categorical trace of (𝐴, 𝐹). Note that it is a
presentable Λ-linear category.

12.2 Functoriality of Hochschild homology
Let 𝐴, 𝐵 ∈ Alg(R) be associative algebras and let 𝑀 ∈ 𝐴BMod𝐵. Recall (Lurie,
2017, §4.6.2) that a left dual of 𝑀 is given by an object 𝑁 ∈ 𝐵BMod𝐴 together with
a unit (or co-evaluation)

𝑢 : 𝐵→ 𝑁 ⊗𝐴 𝑀 (12.8)

which is a morphism in 𝐵BMod𝐵, and a co-unit (or evaluation)

𝑒 : 𝑀 ⊗𝐵 𝑁 → 𝐴 (12.9)

which is a morphism in 𝐴BMod𝐴, such that the compositions

𝑀 ≃ 𝑀 ⊗𝐵 𝐵
id⊗𝑢−−−→ 𝑀 ⊗𝐵 𝑁 ⊗𝐴 𝑀

𝑒⊗id−−−→ 𝐴 ⊗𝐴 𝑀 ≃ 𝑀 (12.10)

𝑁 ≃ 𝐵 ⊗𝐵 𝑁
𝑢⊗id−−−→ 𝑁 ⊗𝐴 𝑀 ⊗𝐵 𝑁

id⊗𝑒−−−→ 𝑁 ⊗𝐴 𝐴 ≃ 𝑁. (12.11)

are equivalent to the identities on 𝑀 and 𝑁 . Specializing to 𝐵 = 1R , we obtain the
notion of a left dual of a left 𝐴-module.

Remark 12.2.1. By (Lurie, 2017, Proposition 4.6.2.1) such data are equivalent to
giving a right adjoint to the functor

𝑀 ⊗𝐵 (−) : LMod𝐵 (R) → LMod𝐴 (R).

Namely, right adjoint is given by 𝑁 ⊗𝐴 (−).

Now let 𝐹𝐴 ∈ 𝐴BMod𝐴 and 𝐹𝐵 ∈ 𝐵BMod𝐵 be two bimodules. Assume that we are
given left dualizable 𝑀 ∈ 𝐴BMod𝐵 together with a morphism of bimodules

𝛼 : 𝑀 ⊗𝐵 𝐹𝐵 → 𝐹𝐴 ⊗𝐴 𝑀. (12.12)
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Then we can associate to (𝑀, 𝛼) a morphism in R

Tr(𝑀, 𝛼) : Tr(𝐵, 𝐹𝐵) → Tr(𝐴, 𝐹𝐴), (12.13)

given by

Tr(𝐵, 𝐹𝐵) = 𝐵 ⊗𝐵⊗𝐵rev 𝐹𝐵
𝑢⊗id−−−→ (𝑁 ⊗𝐴 𝑀) ⊗𝐵⊗𝐵rev 𝐹𝐵 ≃ 𝐴 ⊗𝐴⊗𝐴rev (𝑀 ⊗𝐵 𝐹𝐵 ⊗𝐵 𝑁)

id⊗𝛼⊗id−−−−−−→ 𝐴 ⊗𝐴⊗𝐴rev (𝐹𝐴 ⊗𝐴 𝑀 ⊗𝐵 𝑁)
id⊗id⊗𝑒−−−−−−→ 𝐴 ⊗𝐴⊗𝐴rev 𝐹𝐴 = Tr(𝐴, 𝐹𝐴),

where the isomorphism

(𝑁 ⊗𝐴 𝑀) ⊗𝐵⊗𝐵rev 𝐹𝐵 ≃ 𝐴 ⊗𝐴⊗𝐴rev (𝑀 ⊗𝐵 𝐹𝐵 ⊗𝐵 𝑁)

can be established by the same way as in Example 12.1.2.

In the particular case when 𝐵 = 𝐹𝐵 = 1R is the unit object of R, 𝑀 is just a left
𝐴-module, and 𝛼 is a map 𝑀 → 𝐹𝐴 ⊗𝐴 𝑀 . Then the above definition of Tr(𝑀, 𝛼)
is simplified as

1R
𝑢−→ 𝑁 ⊗𝐴 𝑀 ≃ 𝐴 ⊗𝐴⊗𝐴rev (𝑀 ⊗ 𝑁)
id⊗(𝛼⊗id)
−−−−−−−−→ 𝐴 ⊗𝐴⊗𝐴rev (𝐹𝐴 ⊗𝐴 𝑀 ⊗ 𝑁)

id⊗𝑒−−−→ 𝐴 ⊗𝐴⊗𝐴rev 𝐹𝐴 = Tr(𝐴, 𝐹𝐴).
(12.14)

In this case, we also denote Tr(𝑀, 𝛼) as [𝑀, 𝛼]𝐹 , thought as a point in the space
Map(1R ,Tr(𝐴, 𝐹𝐴)).

Example 12.2.2. Let 𝑀 = 𝐴, regarded as a left 𝐴-module. Then 𝑀 admits a left
dual given by 𝑁 = 𝐴 regarded as the right 𝐴-module. The unit and evaluation maps
are

1R
1𝐴−−→ 𝐴 � 𝐴 ⊗𝐴 𝐴, 𝐴 ⊗ 𝐴 𝑚−→ 𝐴.

Giving a left 𝐴-module morphism 𝛼 : 𝑀 → 𝐹𝐴 ⊗𝐴 𝑀 is equivalent to giving a
map 𝛼0 : 1R → 𝐹𝐴. Then [𝐴, 𝛼]𝐹𝐴 : 1R → Tr(𝐴, 𝐹𝐴) is canonically equivalent to
[−]𝐹𝐴 ◦ 𝛼0 : 1R → 𝐴→ 𝐹𝐴.

In the particular case R = LincatΛ, giving 𝛼0 : 1R → 𝐹𝐴 is equivalent to giving
an object 𝑋 ∈ 𝐹𝐴. We denote the corresponding left 𝐴-module morphism 𝑀 →
𝐹𝐴 ⊗𝐴 𝑀 by 𝛼𝑋 . Then we have a canonical isomorphism in Tr(𝐴, 𝐹𝐴)

[𝐴, 𝛼𝑋]𝐹𝐴 � [𝑋]𝐹𝐴 .
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Now suppose R = LincatΛ and 𝐴 and 𝐵 two algebras in LincatΛ. Then we say
an 𝐴-𝐵-bimodule 𝑀 is fully dualizable if the maps (12.8) and (12.9) admit con-
tinuous right adjoint 𝑢𝑅 and 𝑒𝑅 respectively, and 𝑢𝑅 (resp. 𝑒𝑅) is a 𝐵-bimodule
(resp. 𝐴-bimodule) homomorphism. Suppose 𝑀 is fully dualizable, and suppose 𝛼
also admits continuous right adjoint 𝛼𝑅, and suppose 𝛼𝑅 is also an 𝐴-𝐵-bimodule
homomorphism, then Tr(𝑀, 𝛼) admits continuous right adjoint Tr(𝑀, 𝛼)𝑅.

Example 12.2.3. We consider the situation as in Example 12.2.2 with R = LincatΛ.
We call 𝐴 a rigid monoidal category if 𝑀 = 𝐴 as a left 𝐴-module is fully dualizable.
This is equivalent to the following conditions:

1. The unit object 1𝐴 is compact;

2. The multiplication functor 𝑚 : 𝐴 ⊗ 𝐴→ 𝐴 admits a continuous right adjoint
𝑚𝑅;

3. The functor 𝑚𝑅 : 𝐴→ 𝐴 ⊗ 𝐴 is a functor of 𝐴-bimodules.

So the above definition of rigidity is exactly the same as the one from (Dennis
Gaitsgory and Rozenblyum, 2017a, §1.9.1). If 𝐴 is also compactly generated
this agrees with the more familiar defintion requiring that compact objects of 𝐴
admit both left and right duals, see (Lurie, 2018, Definition D.7.4.1)) and (Dennis
Gaitsgory and Rozenblyum, 2017a, Lemma 1.9.1.5).

Now, let 𝑋 ∈ 𝐹𝐴, giving 𝛼𝑋 : 𝑀 → 𝐹𝐴 ⊗𝐴 𝑀 . Then 𝛼𝑋 admits a continuous
right adjoint (𝛼𝑋)𝑅 if and only if 𝑋 is a compact object in 𝐹𝐴, in which case
(𝛼𝑋)𝑅 is automatically a left 𝐴-module homomorphism as it is a right-lax functor,
see (Dennis Gaitsgory and Rozenblyum, 2017a, Lemma 9.3.6.). It follows that
[𝑋]𝐹𝐴 = [𝐴, 𝛼𝑋]𝐹𝐴, regarded as a functor ModΛ → Tr(𝐴, 𝐹𝐴) admits a continuous
right adjoint. That is, [𝑋]𝐹𝐴 is a compact object in Tr(𝐴, 𝐹𝐴). This can also be
deduced from Corollary 12.3.3 below.

12.3 Categorical traces of rigid monoidal categories
We let R = LincatΛ. Categorical traces of rigid monoidal categories have particu-
larly nice formal properties. Namely, the rigidity implies (in fact is equivalent to)
the monadicity of Hochschild complex.
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Lemma 12.3.1. Assume that 𝐴 is rigid and 𝐹 is an 𝐴-bimodule. Then for every
𝛼 : [𝑛] → [𝑚], the diagram

HH(𝐴, 𝐹)𝑚+1 //

𝑑HH
0
��

HH(𝐴, 𝐹)𝑛+1
𝑑HH

0
��

HH(𝐴, 𝐹)𝑚 // HH(𝐴, 𝐹)𝑛

(12.15)

is right-adjointable. I.e., the cosimplicial object HH(𝐴, 𝐹)• obtained from HH(𝐴, 𝐹)•
by passing to the right adjoints satisfies the Beck-Chevalley conditions. In particu-
lar,

|HH(𝐴, 𝐹)• | � Tot(HH(𝐴, 𝐹)•) � LMod𝑇 (𝐹),

with 𝑇 the monad given to 𝑑HH
0 ◦ (𝑑HH

1 )
𝑅.

Proof. To prove the first statement, we may assume that 𝛼 is either a coboundary
map or a coface map. In the case that 𝛼 is a coboundary map, the induced map
HH(𝐴, 𝐹)𝑚 = 𝐴⊗𝑚 ⊗ 𝐹 → HH(𝐴, 𝐹)𝑛 = 𝐴⊗𝑛 ⊗ 𝐹 is a right 𝐴-module morphism
with respect to the right 𝐴-action on the last factor 𝐹. As such morphism is induced
by inserting the unit at an appropriate position, it admits a continuous right adjoint,
which by (Dennis Gaitsgory and Rozenblyum, 2017a, Lemma 1.9.3.6) is an 𝐴-
module morphism. This exactly means that the commutative diagram in the lemma
is right-adjointable when 𝛼 is a coboundary map.

Next, assume that 𝛼 = 𝑑𝑖 is a coface map. As explained in (Dennis Gaitsgory
and Rozenblyum, 2017a, Lemma 1.9.3.2), for a left 𝐴-module 𝑀 , the action map
𝑎 : 𝐴 ⊗ 𝑀 → 𝑀 admits a continuous right adjoint 𝑎𝑅 given by

𝑀 � ModΛ ⊗ 𝑀
(𝑚𝑅◦1𝐴)⊗id𝑀−−−−−−−−−−−→ 𝐴 ⊗ 𝐴 ⊗ 𝑀 id𝐴⊗𝑎−−−−→ 𝐴 ⊗ 𝑀

and moreover the functor 𝑎𝑅 is a morphism of 𝐴-modules (a-priori it is only lax).
Similar statements hold for right 𝐴-modules. From these facts, one sees that the
commutative diagram is right-adjointable for 𝛼 = 𝑑𝑖. Indeed, since each of the
functors only these claim reduce to the diagrams with [𝑛] ≤ 1. and the requirement
of right adjointability is exactly the fact that 𝐹 → 𝐴 ⊗ 𝐹 and 𝐴 → 𝐴 ⊗ 𝐴 are
morphisms of 𝐴-modules.

That |HH(𝐴, 𝐹)• | � Tot(HH(𝐴, 𝐹)•) follows from (9.1) and the last equivalence
follows from the first assertion and Theorem 9.0.5. □

The following statements directly follow from the proof.
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Corollary 12.3.2. Assume that 𝐴 is rigid. Let 𝐹1 → 𝐹2 be a fully faithful functor of
𝐴-bimodules. Then the induced functor

Tr(𝐴, 𝐹1) → Tr(𝐴, 𝐹2)

is fully faithful.

Proof. By Lemma 12.3.1 the functor between the trace categories can be realized
as a limit of functors between Hochschild complexes, so to get fully faithfulness it is
enough to have level-wise fully faithfulness of the functors 𝐴⊗𝑛 ⊗Λ 𝐹1 → 𝐴⊗𝑛 ⊗Λ 𝐹2

for all 𝑛 ≥ 0. Each of these can be realized via a bar construction with ModΛ so
it is enough to show that As 𝐴 is rigid, it is canonically self-dual as an object of
R, it is enough to show that the functor LFunΛ(𝐴, 𝐹1) → LFunΛ(𝐴, 𝐹2) between
categories of Λ-linear functors, is fully faithful. Fully faithfulness is then known
(see for example (Gepner, Haugseng, and Nikolaus, n.d., Lemma 5.2.) □

Corollary 12.3.3. An 𝐴-bimodule functor 𝐹1 → 𝐹2 induces a functor between
cosimplicial objects HH(𝐴, 𝐹1)• → HH(𝐴, 𝐹2)•. In addition, the following diagram
is right adjointable

𝐹1
[−]𝐹1 //

��

Tr(𝐴, 𝐹1)

��
𝐹2
[−]𝐹2 // Tr(𝐴, 𝐹2)

If 𝐹1 → 𝐹2 admits a continuous right adjoint (as plain Λ-linear presentable stable
categories), then the following diagram is right adjointable

𝐹1

[−]𝐹1
��

// 𝐹2

[−]𝐹2
��

Tr(𝐴, 𝐹1) // Tr(𝐴, 𝐹2)

Remark 12.3.4. Assume that 𝐴 is rigid. Let 𝑀 be a left 𝐴-module. Let ModΛ →
𝑁 ⊗𝐴 𝑀 and 𝑀 ⊗ 𝑁 → 𝐴 be the duality datum for 𝑀 as a left 𝐴-module. Then it
follows easily from the above corollary that 𝑁 is the dual of 𝑀 in LincatΛ with the
duality datum given by

ModΛ → 𝑁 ⊗𝐴 𝑀
[−]𝑅
−−−→ 𝑁 ⊗ 𝑀, 𝑀 ⊗ 𝑁 → 𝐴

Hom(1𝐴,−)−−−−−−−−→ ModΛ,

where [−]𝑅 denotes the continuous right adjoint of [−]𝑀⊗𝑁 .
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One can also easily deduce the following corollary, which has appeared in (D.
Gaitsgory et al., 2019, Theorem 3.8.5).

Corollary 12.3.5. Assume that 𝐴 is rigid, equipped with a monoidal endomorphism
𝜙 : 𝐴→ 𝐴. Then

tr(𝐴, 𝜙) � EndTr(𝐴,𝜙) ( [1𝐴] 𝜙𝐴)

asΛ-algebras. Let𝑀 be a left 𝐴-module equipped with an 𝐴-module homomorphism
𝛼 : 𝑀 → 𝜙𝐴 ⊗𝐴 𝑀 = 𝜙𝑀 . Assume that 𝑀 is dualizable in LincatΛ. Then under
the above isomorphism, HomTr(𝐴,𝜙) ( [1𝐴] 𝜙𝐴, [𝑀, 𝛼] 𝜙𝐴) is isomorphic to tr(𝑀, 𝜙)
as modules.

Proof. Applying the monad from Lemma 12.3.1 to 1𝐴, we see that EndTr(𝐴,𝜙) ( [1𝐴] 𝜙𝐴)
is isomorphic to Hom𝜙𝐴 (1𝐴, 𝑇 (1𝐴)) as algebras, which is given by

ModΛ
1𝐴−−→ 𝐴

𝑚𝑅

−−→ 𝜙𝐴 ⊗ 𝐴
sw
� 𝐴 ⊗ 𝜙𝐴

𝑚−→ 𝐴
1𝑅
𝐴−−→ ModΛ.

By (Dennis Gaitsgory and Rozenblyum, 2017a, §9.2.1), the pair ModΛ
𝑚𝑅◦1𝐴−−−−−→ 𝐴⊗𝐴

and 𝐴 ⊗ 𝐴
1𝑅
𝐴
◦𝑚

−−−−→ ModΛ form a duality datum of 𝐴 (regarded as object in LincatΛ).
It follows that Hom𝜙𝐴 (1𝐴, 𝑇 (1𝐴)) � tr(𝐴, 𝜙). The case of module is similar. □

The following description of hom spaces between certain objects in Tr(𝐴, 𝜙) is
useful in practice.

Corollary 12.3.6. Assume that 𝐴 is rigid and is compactly generated, with {𝑐𝑖}
being a set of compact generators. Then for 𝑋,𝑌 ∈ 𝐴 with 𝑋 compact in 𝐴,

HomTr(𝐴,𝜙) ( [𝑋] 𝜙𝐴, [𝑌 ] 𝜙𝐴) � colim
𝐶⊗𝐶/𝑚𝑅 (𝑌 )

Hom𝐴 (𝑋, 𝑐 𝑗 ⊗ 𝜙(𝑐𝑖)),

where 𝐶 ⊗ 𝐶 ⊂ 𝐴 ⊗ 𝐴 denotes the full subcategory spanned by {𝑐𝑖 ⊠ 𝑐 𝑗 }𝑖, 𝑗 .

Note that a morphism 𝑐𝑖⊠𝑐 𝑗 → 𝑚𝑅 (𝑌 ) in 𝐴⊗𝐴 is equivalent to a morphism 𝑐𝑖⊗𝑐 𝑗 →
𝑌 in 𝐴. So informally, this corollary says that every morphism [𝑋] 𝜙𝐴 → [𝑌 ] 𝜙𝐴 in
Tr(𝐴, 𝜙) can be represented as a pair of morphisms (𝑋 → 𝑐 𝑗 ⊗ 𝜙(𝑐𝑖), 𝑐𝑖 ⊗ 𝑐 𝑗 → 𝑌 )
in 𝐴 (compare with (Zhu, 2016b, §3.1)).

Proof. We have

HomTr(𝐴,𝜙) ( [𝑋] 𝜙𝐴, [𝑌 ] 𝜙𝐴) � Hom𝜙𝐴 (𝑋, 𝑚 ◦ sw ◦ 𝑚𝑅 (𝑌 )).
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As 𝐴 is compactly generated, so is 𝐴 ⊗ 𝐴 with a set of compact generators given by
{𝑐𝑖 ⊠ 𝑐 𝑗 }𝑖, 𝑗 . Then 𝑚𝑅 (𝑌 ) = colim𝑐𝑖⊠𝑐 𝑗→𝑌 𝑐𝑖 ⊠ 𝑐 𝑗 . As 𝑋 is compact, the corollary
follows. □

Remark 12.3.7. In fact, the above corollary admits a more economic form. Namely,
suppose we write 𝑚𝑅 (1𝐴) � colim𝑖 (𝑐𝑖,1 ⊠ 𝑐𝑖,2) as a filtered colimit of compact
objects in 𝐴 ⊗ 𝐴. Then as 𝑚𝑅 is a right 𝐴-module homomorphism, we have
𝑚𝑅 (𝑌 ) � colim𝑖 (𝑐𝑖,1 ⊠ (𝑐𝑖,2 ⊗ 𝑌 )). Therefore,

HomTr(𝐴,𝜙) ( [𝑋] 𝜙𝐴, [𝑌 ] 𝜙𝐴) � colim
𝑖

Hom𝐴 (𝑋, 𝑐𝑖,2 ⊗ 𝑌 ⊗ 𝜙(𝑐𝑖,1)).

As mentioned above, if 𝐴 is rigid, then it is dualizable as object in LincatΛ. It
follows from (Dennis Gaitsgory and Rozenblyum, 2017a, Proposition 9.5.3) that
𝐴𝑐 and 𝐴𝑒 from (12.6) admit left duals, denoted by 𝑆𝐴 and 𝑇𝐴 respectively, which
we can identify with 𝐴-bimodules under the equivalence 𝐴rev⊗𝐴BMod1 � 𝐴BMod𝐴
(resp. 1BMod𝐴⊗𝐴rev � 𝐴BMod𝐴). By (Lurie, 2017, Remark 4.6.5.4), there is an
automorphism 𝜎𝐴 of 𝐴 (as a monoidal category), usually called the Serre functor
of 𝐴, such that 𝑆𝐴 = 𝜎𝐴𝐴 as 𝐴-bimodules.

Example 12.3.8. We recall that a pivotal category is a rigid monoidal category
equipped with an isomorphism id𝐴 � 𝜑𝐴. If 𝐴 is compactly generated, this means
that for 𝑎 ∈ 𝐴 compact, 𝑎∨,𝐿 and 𝑎∨,𝑅 are functorially isomorphic.

Assume that 𝐴 is pivotal. Assume that𝑄 is an 𝐴-bimodule, dualizable as a Λ-linear
category, with ∨𝑄 its left dual. Then Tr(𝐴,𝑄) is dualizable with Tr(𝐴,𝑄∨) is dual.
The unit is given by

ModΛ
𝑢−→ 𝐴

[−]𝐴−−−→ Tr(𝐴, 𝐴) → Tr(𝐴, ∨𝑄 ⊗𝐴 𝑄) → Tr(𝐴,𝑄) ⊗ Tr(𝐴, ∨𝑄).
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C h a p t e r 13

GEOMETRIC TRACES IN SHEAF THEORY

Following ideas of (Ben-Zvi and Nadler, 2009) (Ben-Zvi, Nadler, and Preygel,
2017) to develop a method to calculate the (twisted) categorical trace of monoidal
categories arising from convolution pattern in algebraic geometry. As mentioned
before, Compared with the work of loc. cit., we will first calculate a geometric
version of categorical trace. Then we will compare the geometric version with
the usual version in favorable cases. Our approach allows us to bypass integral
transform of sheaf theories, which usually do not hold in the ℓ-adic setting.

13.1 Geometric Hochschild homology
We use the formalism of category of correspondences and sheaf theory as in Chap-
ter 10.

Let 𝐴 be an associative algebra object in Corr(C)𝑣𝑒𝑟𝑡,ℎ𝑜𝑟𝑖𝑧, and let 𝑀 be a left 𝐴-
module object in Corr(C)𝑣𝑒𝑟𝑡,ℎ𝑜𝑟𝑖𝑧. AsD is a lax symmetric monoidal functor,D(𝐴)
is an algebra object in LincatΛ andD(𝑀) is aD(𝐴)-module object in LincatΛ, with
multiplication and action maps given by

D(𝐴) ⊗ D(𝐴) ⊠−→ D(𝐴 × 𝐴) → D(𝐴)

D(𝐴) ⊗ D(𝑀) ⊠−→ D(𝐴 × 𝑀) → D(𝑀)

Similarly, if 𝐹 is an 𝐴-bimodule, then D(𝐹) is an D(𝐴)-bimodule. Then one can
form its Hochschild homology (a.k.a categorical trace) of (D(𝐴),D(𝐹))

Tr(D(𝐴),D(𝐹)) = D(𝐴) ⊗D(𝐴)⊗D(𝐴)rev D(𝐹) ∈ LincatΛ.

In practice, however, we need to consider a variant Trgeo(D(𝐴),D(𝐹)), which we
call the geometric trace of D(𝐹). Namely, we consider the Yoneda embedding

Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 → P(Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧),

whereP(Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧) is the category of presheaves on Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 equipped
with the induced symmetric monoidal structure, which by definition preserves col-
imits in each variable (see (Lurie, 2017, Corollary 4.8.1.12). Then we have the
Hochschild homology of the 𝐴-bimodule 𝐹 in P(Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧)

Tr(𝐴, 𝐹) := |HH(𝐴, 𝐹)• | ∈ P(Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧).
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By the universal property ofP(Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧), the functorD : Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 →
LincatΛ extends to a continuous functorD : P(Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧) → LincatΛ. Then
we define the geometric trace of D(𝐹) as

Trgeo(D(𝐴),D(𝐹)) := D(Tr(𝐴, 𝐹)).

Explicitly, Trgeo(D(𝐹),D(𝐴)) can be computed in the following way. We first apply
the functorD to the standard Hochschild complex (12.4) (which now is a simplicial
object in Corr(C)𝑣𝑒𝑟𝑡,ℎ𝑜𝑟𝑖𝑧) to obtain a simplicial object D(HH•(𝐴, 𝐹)) in LincatΛ.
Then the geometric trace Trgeo(D(𝐴),D(𝐹)) is the geometric realization of this
simplicial object in LincatΛ

Trgeo(D(𝐴),D(𝐹)) � |D(HH(𝐴, 𝐹)•) |. (13.1)

We emphasize that Trgeo(D(𝐴),D(𝐹)) depends not only on D(𝐹), but on the
𝐴-bimodule 𝐹 itself (and of course the functor D).

In particular, for 𝐴 equipped with an algebra endomorphism 𝜙 : 𝐴 → 𝐴 we have
the 𝐴-bimodule 𝐹 = 𝜙𝐴 in Corr(C)𝑣𝑒𝑟𝑡,ℎ𝑜𝑟𝑖𝑧 as before. We write

Trgeo(D(𝐴), 𝜙) = Trgeo(D(𝐴),D(𝜙𝐴)).

Remark 13.1.1. As D is equipped with a lax monoidal structure we get a natural
comparison functor

Tr(D(𝐴),D(𝐹)) ≃ |D(𝐴)⊗• ⊗ D(𝐹) | → |D(𝐴⊗• ⊗ 𝐹) | = Trgeo(D(𝐴),D(𝐹))
(13.2)

from the usual trace of D(𝐹) to the geometric trace. This functor is not an equiva-
lence in general. Of course, if for each 𝑛, the functorD(𝐴)⊗𝑛⊗D(𝑄) → D(𝐴𝑛×𝑄)
is an equivalence, then the comparison map (13.2) is an equivalence. We will see
later that this functor is an equivalence in many more cases of interest.

13.2 Fixed point objects and geometric traces of convolution categories
We specialize the previous constructions to the situation appearing in our applica-
tions. Let 𝑋 ∈ C satisfying conditions as in Example 10.1.2 (that is,Δ𝑋 : 𝑋 → 𝑋×𝑋
and 𝜋𝑋 : 𝑋 → pt belong to 𝐶ℎ𝑜𝑟𝑖𝑧). Let 𝑓 : 𝑋 → 𝑌 in C𝑣𝑒𝑟𝑡 and assume that the
relative diagonal map Δ𝑋/𝑌 : 𝑋 → 𝑋 ×𝑌 𝑋 belongs to 𝑣𝑒𝑟𝑡. Let 𝑋• → 𝑌 denote
the Čech nerve of 𝑓 . From Example 10.3.3 and Remark 10.3.6, it gives rise to an
object Alg(EndCorr(C) (𝑋)) which induces

𝑋1 := 𝑋 ×𝑌 𝑋
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with the structure of an associative algebra object in Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧. The multi-
plication and unit maps are given by

𝑋 ×𝑌 𝑋 ×𝑌 𝑋 (𝑋 ×𝑌 𝑋) × (𝑋 ×𝑌 𝑋)

𝑋 ×𝑌 𝑋

id×Δ𝑋×id

id× 𝑓×id ,

𝑋 pt

𝑋 ×𝑌 𝑋

Δ𝑋/𝑌 ,

Let 𝑍 ∈ C equipped with two morphisms 𝑔𝑖 : 𝑍 → 𝑌, 𝑖 = 1, 2 in C and let

𝑄 = 𝑋 ×𝑌 𝑍 ×𝑌 𝑋 = 𝑍 ×𝑌×𝑌 (𝑋 × 𝑋).

Then via the construction of Section 10.4 the object 𝑄 admits the structure of an
(𝑋 ×𝑌 𝑋)-bimodule in Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧. In particular, the left action is given by the
diagram

𝑋 ×𝑌 𝑋 ×𝑌 𝑍 ×𝑌 𝑋 (𝑋 ×𝑌 𝑋) × (𝑋 ×𝑌 𝑍 ×𝑌 𝑋)

𝑋 ×𝑌 𝑍 ×𝑌 𝑋

id× 𝑓×id×id

and we have a similar diagram for the right action. Consider the following diagram

𝑋 ×𝑌×𝑌 𝑍
𝛿0=(Δ𝑋×id𝑍 ) //

𝑞=( 𝑓×id𝑍 )
��

(𝑋 × 𝑋) ×𝑌×𝑌 𝑍

𝑌 ×𝑌×𝑌 𝑍,

(13.3)

which induces a functor 𝑞† ◦ (𝛿0)★ : D(𝑋 ×𝑌 𝑍 ×𝑌 𝑋) → D(𝑌 ×𝑌×𝑌 𝑍).

Proposition 13.2.1. The following diagram is commutative

D(𝑋 ×𝑌 𝑍 ×𝑌 𝑋)
(𝛿0)★ //

��

D(𝑋 ×𝑌×𝑌 𝑍)

𝑞†

��

Tr(D(𝑋 ×𝑌 𝑋),D(𝑋 ×𝑌 𝑍 ×𝑌 𝑋))

��
Trgeo(D(𝑋 ×𝑌 𝑋),D(𝑋 ×𝑌 𝑍 ×𝑌 𝑋)) // D(𝑌 ×𝑌×𝑌 𝑍).

Assume that the sheaf theory D satisfies Assumptions 11.2.1 1-3, and assume that:

1. Δ𝑋 : 𝑋 → 𝑋 × 𝑋 ∈ C𝑠𝑚,

2. 𝑓 : 𝑋 → 𝑌 ∈ C𝑝𝑟𝑜𝑝,
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3. Δ𝑋/𝑌 : 𝑋 → 𝑋 ×𝑌 𝑋 is in C𝑝𝑟𝑜𝑝.

Then the bottom horizontal functor of the above diagram is fully faithful, with the
essential image is generated under colimits by the image of 𝑞† ◦ 𝛿★0 .

The proof of the proposition will be given at the end of Section 13.3. We note that
there is no assumption on (𝑔1, 𝑔2) : 𝑍 → 𝑌 × 𝑌 .

We specialize Proposition 13.2.1 to the following two cases. First, assume we are
given morphisms 𝜙𝑋 : 𝑋 → 𝑋 and 𝜙𝑌 : 𝑌 → 𝑌 in C intertwined by 𝑓 , that is,
equipped with an equivalence 𝑓 ◦ 𝜙𝑋 ≃ 𝜙𝑌 ◦ 𝑓 . We will usually abuse notation and
denote both maps by 𝜙 if it is clear from context. We let 𝑍 = 𝑌 with the map 𝑔1 = id
and 𝑔2 = 𝜙. In this case, 𝑍 ×𝑌×𝑌 𝑌 is nothing but the 𝜙-fixed point object L𝜙 (𝑌 ),
defined by the pullback

L𝜙 (𝑌 ) 𝑌

𝑌 𝑌 × 𝑌 .

𝑝𝜙 Δ𝑌

id×𝜙

(13.4)

We assume in addition that 𝜙𝑋 is an equivalence. In this case the (𝑋 ×𝑌 𝑋)-module
𝑋×𝑌 𝑍×𝑌 𝑋 is isomorphic to the 𝜙-twisted module 𝜙 (𝑋×𝑌 𝑋), with the isomorphism
sending (𝑥, 𝑧, 𝑥′) ∈ 𝑋 ×𝑌 𝑍 ×𝑌 𝑋 to (𝜙(𝑥), 𝑥′) ∈ 𝜙 (𝑋 ×𝑌 𝑋). Then (13.3) becomes

𝑋 ×𝑌 L𝜙 (𝑌 )
𝛿0 //

𝑞

��

𝑋 ×𝑌 𝑋

L𝜙 (𝑌 )

Corollary 13.2.2. Under the same assumption as in Proposition 13.2.1 and given
𝜙𝑋 , 𝜙𝑌 as above, there is a canonical factorization

D(𝑋 ×𝑌 𝑋) D(𝑋 ×𝑋×𝑋 (𝑋 ×𝑌 𝑋))

Trgeo(D(𝑋 ×𝑌 𝑋), 𝜙) D(L𝜙𝑌 )

(𝛿0)★

𝑞†

with the lower horizontal arrow is fully faithful. The essential image is generated
under colimits by the image of 𝑞† ◦ 𝛿★0 .

Another case we need to consider is 𝑍 = 𝑊1 ×𝑊2 with 𝑔𝑖 : 𝑊𝑖 → 𝑌 two maps in C.
In this case,

𝑍 ×𝑌×𝑌 𝑌 = 𝑊1 ×𝑌 𝑊2, 𝑍 ×𝑌×𝑌 (𝑋 × 𝑋) = (𝑊1 ×𝑌 𝑋) × (𝑋 ×𝑌 𝑊2),
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We denote:

D(𝑊1 ×𝑌 𝑋) ⊗geo
D(𝑋×𝑌 𝑋) D(𝑋 ×𝑌 𝑊2) := Trgeo(D(𝑋 ×𝑌 𝑋),D(𝑍 ×𝑌×𝑌 (𝑋 × 𝑋)),

(13.5)
which is the geometric analogue of the relative tensor product.

Corollary 13.2.3. Under the same assumption as in Proposition 13.2.1, we have a
canonical square

D((𝑊1 ×𝑌 𝑋) × (𝑋 ×𝑌 𝑊2))
(id𝑊1×Δ𝑋×id𝑊2 )

★

//

��

D(𝑊1 ×𝑌 𝑋 ×𝑌 𝑊2)
(id𝑊1× 𝑓×id𝑊2 )†
��

D(𝑊1 ×𝑌 𝑋) ⊗geo
D(𝑋×𝑌 𝑋) D(𝑋 ×𝑌 𝑊2) // D(𝑊1 ×𝑌 𝑊2)

with the bottom functor fully faithful. The essential image is generated under colimits
by the image of (id𝑊1 × 𝑓 × id𝑊2)† ◦ (id𝑊1 × Δ𝑋 × id𝑊2)★.

Again, there is no assumption on 𝑔1 and 𝑔2.

13.3 The geometric trace and relative resolutions
Now we prove Proposition 13.2.1. In fact, (to save notations) we will prove a slightly
general statement. We consider the geometric trace for pair BMod(Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧)
arising from an associative algebra 𝑋1 ∈ Alg

(
EndCorr(C) (𝑋0)

)
and a bi-module

object 𝑄 ∈ 𝑋1BMod𝑋1 (EndCorr(C) (𝑋0)). Roughly speaking, these are pairs (𝑋1, 𝑄)
seen as objects in the category BMod(Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧) consisting of an algebra
𝑋1 ∈ Alg(Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧) whose multiplication and unit maps are of the form

𝑋1 ×𝑋0 𝑋1 𝑋1 × 𝑋1

𝑋1

𝜂

𝑚 ,

𝑋0 pt

𝑋1

𝜋𝑋0

𝑢 , (13.6)

and an 𝑋1-bimodule 𝑄 ∈ 𝑋1BMod𝑋1 (Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧) whose action maps are of
the form

𝑋1 ×𝑋0 𝑄 𝑋1 ×𝑄

𝑄

𝜉𝑙

𝑎𝑙 ,

𝑄 ×𝑋0 𝑋1 𝑄 × 𝑋1

𝑄

𝜉𝑟

𝑎𝑟 . (13.7)

Here we require Δ𝑋0 : 𝑋0 → 𝑋0 × 𝑋0 and 𝜋𝑋0 : 𝑋0 → pt belong to Cℎ𝑜𝑟𝑖𝑧 (so
𝜂, 𝜉𝑙 , 𝜉𝑟 ∈ Cℎ𝑜𝑟𝑖𝑧 as well) and 𝑚, 𝑢, 𝑎𝑙 , 𝑎𝑟 ∈ C𝑣𝑒𝑟𝑡 . See Remark 10.4.1 for more
details and references.
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We can then consider the geometric trace

Trgeo(D(𝑋1),D(𝑄)) = D(Tr(𝑋1, 𝑄)) � |D(HH(𝑋1, 𝑄)•) |

defined in the previous section. On the other hand, the extra structure on the algebra
and module allows one to construct a variant of the geometric trace.

In the monoidal category EndCorr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 (𝑋0) we consider the Bar complex of
the algebra object 𝑋1, which we denoted by Bar𝑋0 (𝑋1)•. Under the lax monoidal
functor EndCorr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 (𝑋0) → Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧, it gives a simplicial object in
Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 (in fact in C𝑣𝑒𝑟𝑡), denoted by the same notation, which can be
written as

Bar𝑋0 (𝑋1)• � 𝑋• ×𝑋0×𝑋0 (𝑋1 × 𝑋1),

where the two maps 𝑋𝑛 → 𝑋0 corresponds to {0} ⊂ {0, 1, . . . , 𝑛} and {𝑛} ⊂
{0, 1, . . . , 𝑛} respectively and 𝑋1 × 𝑋1 → 𝑋0 × 𝑋0 is given by (𝑑1, 𝑑0). The action
of (𝑋1 × 𝑋1) ×𝑄 → 𝑄 by right and left multiplication gives

Bar𝑋0 (𝑋1)• ⊗ 𝑄 = 𝑋• ×𝑋0×𝑋0 (𝑋1 × 𝑋1) ×𝑄 → 𝑋• ×𝑋0×𝑋0 𝑄 =: HH𝑋0 (𝑋1, 𝑄)•

which is (𝑋1 ⊗ 𝑋1)-bilinear and therefore induces

Bar𝑋0 (𝑋1)• ⊗𝑋1⊗𝑋1 𝑄 → HH𝑋0 (𝑋1, 𝑄)•

The lax monoidal functor EndCorr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 (𝑋0) → Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 also induces a
natural map of simplicial objects

Bar(𝑋1)• → Bar𝑋0 (𝑋1)•

in Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧. It follows that we obtain a map of simplicial objects in
Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧

𝛿• : HH(𝑋1, 𝑄)• = Bar(𝑋1)• ⊗𝑋1⊗𝑋1 𝑄 → Bar𝑋0 (𝑋1)• ⊗𝑋1⊗𝑋1 𝑄 → HH𝑋0 (𝑋1, 𝑄)•,
(13.8)

which is given on each level 𝑛 ≥ 0 by the horizontal arrow

𝑋𝑛 ×𝑋0×𝑋0 𝑄
id←− 𝑋𝑛 ×𝑋0×𝑋0 𝑄

𝛿𝑛−−→ 𝑋𝑛1 ×𝑄.

Now we define the 𝑋0-relative Hochschild homology of 𝑄 as

Tr𝑋0 (𝑋1, 𝑄) = |HH𝑋0 (𝑋1, 𝑄)• | ∈ P(Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧),
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and define the 𝑋0-relative geometric trace of D(𝑄) as the geometric realization in
LincatΛ

Tr𝑋0
geo(D(𝑋1),D(𝑄)) := D(Tr𝑋0 (𝑋1, 𝑄)) � |D(HH𝑋0 (𝑋1, 𝑄)•) |.

Then (13.8) gives a functor

𝛿★ : Trgeo(D(𝑋1),D(𝑄)) → Tr𝑋0
geo(D(𝑋1),D(𝑄)),

which fits into a commutative diagram

D(𝑄) D(𝑋0 ×𝑋0×𝑋0 𝑄)

Tr(D(𝑋1),D(𝑄))

Trgeo(D(𝑋1),D(𝑄)) Tr𝑋0
geo(D(𝑋1),D(𝑄)).

(𝛿0)★

𝛿★

(13.9)

Proposition 13.3.1. Assume that the sheaf theory D satisfies Assumptions 11.2.1
1-3. In addition, in the notations of (13.6) and (13.7) assume that

1. 𝑚 : 𝑋1 ×𝑋0 𝑋1 → 𝑋1 and 𝑢 : 𝑋0 → 𝑋1 are in C𝑝𝑟𝑜𝑝,

2. 𝑎𝑙 : 𝑋1 ×𝑋0 𝑄 → 𝑄 and 𝑎𝑟 : 𝑄 ×𝑋0 𝑋1 → 𝑄 are in C𝑝𝑟𝑜𝑝,

3. the diagonal Δ𝑋0 : 𝑋0 → 𝑋0 × 𝑋0 is in C𝑠𝑚,

4. 𝜋𝑋0 : 𝑋0 → pt is in Cℎ𝑜𝑟𝑖𝑧.

Then the functor 𝛿★ from (13.9) is fully faithful. The essential image is generated un-

der colimits by the image ofD(𝑄)
(𝛿0)★−−−−→ D(𝑋0×𝑋0×𝑋0𝑄) → Tr𝑋0

geo(D(𝑋1),D(𝑄)).

Proof. Passing to right adjoints gives a natural transformation

(𝛿•)★ : D(HH𝑋0 (𝑋1, 𝑄)•) → D(HH(𝑋1, 𝑄)•)

of cosimplicial categories. To prove the left adjoint 𝛿★ is fully faithful we will use
Theorem 9.0.5 and Corollary 9.0.6. The first step is to verify each of the cosimplicial
categories satisfies the Beck-Chevalley conditions.

Lemma 13.3.2. Under the assumptions of Proposition 13.3.1, the cosimplicial cate-
gories obtained from the simplicial categoriesD(HH(𝑋1, 𝑄)•) andD(HH𝑋0 (𝑋1, 𝑄)•)
by passing to right adjoints satisfy the Beck-Chevalley conditions.
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Proof. For the cosimplicial categoryD(HH𝑋0 (𝑋1, 𝑄)•), the face maps correspond-
ing to 0 ↦→ 0 ∈ [𝑛] are given by the right adjoints (𝑑0)† of (𝑑0)†. All the morphisms
𝑚, 𝑎𝑙 , 𝑎𝑟 are in C𝑝𝑟𝑜𝑝 by assumption and therefore all maps of the simplicial object
D(HH𝑋0 (𝑋1, 𝑄)•) are in C𝑝𝑟𝑜𝑝 as well. Then from Assumptions 11.2.11 all the
necessary Beck-Chevalley maps are equivalences.

It is left to deal with D(HH•(𝑋1, 𝑄)). For every map 𝛼 : [𝑚] → [𝑛], we have the
diagram

𝑋𝑚1 ×𝑄 𝑋𝑚+11 ×𝑄

𝑋𝑛1 ×𝑄 𝑋𝑛+11 ×𝑄

𝑑0
𝑚

𝑑0
𝑛

(13.10)

in Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 (see (10.1) and after for notations). We need to show that the
induced diagram

D(𝑋𝑚1 ×𝑄) D(𝑋𝑚+11 ×𝑄)

D(𝑋𝑛1 ×𝑄) D(𝑋𝑛+11 ×𝑄)

𝑑0
𝑚

𝑑0
𝑛

(13.11)

is left adjointable. Clearly, it is enough to consider the case when 𝛼 is either a
co-face or a co-degeneracy map.

In the case of co-face map, we may assume that 𝛼 = 𝑑𝑛 : [𝑛] → [𝑛 + 1], that is,
𝛼(𝑖) = 𝑖 for all 𝑖. (The proof is similar in all other cases.) Then the diagram (13.10)
is explicitly given by

𝑋𝑛1 ×𝑄 𝑋𝑛1 ×𝑄 ×𝑋0 𝑋1 𝑋𝑛+11 ×𝑄

𝑋𝑛1 × 𝑋1 ×𝑋0 𝑄 𝑋𝑛1 × 𝑋1 ×𝑋0 𝑄 ×𝑋0 𝑋1 𝑋𝑛+11 × 𝑋1 ×𝑋0 𝑄

𝑋𝑛+11 ×𝑄 𝑋𝑛+11 ×𝑄 ×𝑋0 𝑋1 𝑋𝑛+21 ×𝑄,

𝜉𝑟 ,𝑛𝑎𝑟 ,𝑛

𝑎𝑙,𝑛

𝜉𝑙,𝑛

𝜉𝑟�̃�𝑟

�̃�𝑙

𝜉𝑙

𝑎𝑙,𝑛+1

𝜉𝑙,𝑛+1

𝜉𝑟 ,𝑛+1𝑎𝑟 ,𝑛+1

as a diagram in C, where 𝑎𝑙,𝑛 = id𝑋𝑛
1
× 𝑎𝑙 , etc. Note that all squares are Cartesian in

C.

We have 𝑑0
𝑘
= (𝜉𝑙,𝑘 )★ ◦ (𝑎𝑙,𝑘 )† (for 𝑘 = 𝑛, 𝑛 + 1) with the left adjoint (𝑎𝑙,𝑘 )† ◦ 𝜉★𝑙,𝑘 ,

and the vertical arrows in (13.11) are given by (𝜉𝑙,𝑘 )★ ◦ (𝑎𝑙,𝑘 )†. Left adjointability
of 13.11 then means that the natural map

(𝑎𝑙,𝑛+1)† ◦ (𝜉𝑟,𝑛+1)★ ◦ (𝜉𝑙,𝑛+1)★ ◦ (𝑎𝑙,𝑛+1)† → (𝜉𝑙,𝑛)★ ◦ (𝑎𝑙,𝑛)† ◦ (𝑎𝑟,𝑛)† ◦ (𝜉𝑟,𝑛)★
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is an equivalence. It is enough to show that the Beck-Chevalley maps

(�̃�𝑟)† ◦ (�̃�𝑙)† → (𝑎𝑙,𝑛)† ◦ (𝑎𝑟,𝑛)†, (𝜉𝑟,𝑛+1)★ ◦ (𝜉𝑙,𝑛+1)★→ (𝜉𝑙)★ ◦ (𝜉𝑟)★

(13.12)

(𝜉𝑟)★ ◦ (𝑎𝑙,𝑛+1)† → (�̃�𝑙)† ◦ (𝜉𝑟,𝑛)★, (𝑎𝑟,𝑛+1)† ◦ (𝜉𝑙)★→ (𝜉𝑙,𝑛)★ ◦ (�̃�𝑟)† (13.13)

are equivalences. Note that the maps 𝑎𝑙,𝑘 , 𝑎𝑟,𝑘 , �̃�𝑙 , �̃�𝑟 are in C𝑝𝑟𝑜𝑝. So the left
equivalence of (13.12) holds by Assumptions 11.2.11. As the maps 𝜉𝑙,𝑘 , 𝜉𝑟,𝑘 , 𝜉𝑙 , 𝜉𝑟
belong to C𝑠𝑚, the right equivalence of (13.12) holds by Assumptions 11.2.12 and
the equivalences (13.13) hold by Assumptions 11.2.1 3 and 4.

In the case of co-degeneracy map, we can assume 𝛼 = 𝑠0 : [𝑛 + 1] → [𝑛] given by
𝑠(0) = 0 and 𝑠(𝑖) = 𝑖−1 for 1 ≤ 𝑖 ≤ 𝑛. As in the previous case, the diagram (13.10)
is explicitly given as

𝑋𝑛+11 ×𝑄 𝑋𝑛+11 ×𝑄 ×𝑋0 𝑋1 𝑋𝑛+21 ×𝑄

𝑋𝑛1 × 𝑋0 ×𝑄 𝑋𝑛1 × 𝑋0 ×𝑄 ×𝑋0 𝑋1 𝑋𝑛+11 × 𝑋0 ×𝑄

𝑋𝑛1 ×𝑄 𝑋𝑛1 ×𝑄 ×𝑋0 𝑋1 𝑋𝑛+11 ×𝑄,

𝜉𝑟 ,𝑛+1𝑎𝑟 ,𝑛+1

𝑢𝑛

𝜋𝑛

𝜉𝑟�̃�𝑟

�̃�

�̃�

𝑢𝑛+1

𝜋𝑛+1

𝜉𝑟 ,𝑛𝑎𝑟 ,𝑛

where all squares are Cartesian. As before, in order to show the corresponding
adjointability equivalence it is enough to show the corresponding commutativity in
each square. As the map 𝑢 : 𝑋0 → 𝑋1 is in C𝑝𝑟𝑜𝑝, the upper two squares of the
diagram can be handled as in the co-face map case. For the remaining squares, we
need the maps

(𝜉𝑟,𝑛)★ ◦ (𝜋𝑛+1)★→ (�̃�)★ ◦ (𝜉𝑟)★, (𝑎𝑟,𝑛)† ◦ (�̃�)★→ (𝜋𝑛)★ ◦ (�̃�𝑟)†

to be equivalences. As 𝜋𝑋0 : 𝑋0 → pt is in Cℎ𝑜𝑟𝑖𝑧 the same is true for 𝜋𝑘 , �̃� so the
equivalences hold by Assumptions 11.2.1, 2 and 4. □

We continue to prove Proposition 13.3.1. Passing to the right adjoint of (13.9) gives

D(𝑄) D(𝑋0 ×𝑋0×𝑋0 𝑄)

Trgeo(D(𝑋1),D(𝑄)) Tr𝑋0
geo(D(𝑋1),D(𝑄)).

(𝛿0)★

𝛿★
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with horizontal arrows monadic (by Lemma 13.3.2). Let 𝑇 denote the monad
corresponding to the cosimplicial category D(HH𝑋0 (𝑋1, 𝑄)•) and by 𝑉 the monad
corresponding toD(HH(𝑋1, 𝑄)•). Then to show that 𝛿★ is fully faithful it is enough
to show that the natural map

𝑉 → (𝛿0)★ ◦ 𝑇 ◦ (𝛿0)★,

is an equivalence. The monad 𝑇 is given by (𝑑0)† ◦ (𝑑1)† with

𝑑1, 𝑑0 : 𝑋1 ×𝑋0×𝑋0 𝑄 → 𝑋0 ×𝑋0×𝑋0 𝑄.

Recall that the map 𝑑1 is induced by the left action of 𝑋1 on𝑄 in EndCorr(C) (𝑋0) by

𝑋1 ×𝑋0×𝑋0 𝑄 ≃ 𝑋0 ×𝑋0×𝑋0 (𝑋1 ×𝑋0 𝑄) → 𝑋0 ×𝑋0×𝑋0 𝑄

Likewise, the map 𝑑0 is induced by the right action via

𝑋1 ×𝑋0×𝑋0 𝑄 ≃ 𝑋0 ×𝑋0×𝑋0 (𝑄 ×𝑋0 𝑋1) → 𝑋0 ×𝑋0×𝑋0 𝑄.

The monad 𝑉 is given by

𝑉 ≃ (𝑎𝑟)† ◦ (𝜉𝑟)★ ◦ (𝜉𝑙)★ ◦ (𝑎𝑙)†.

These maps fit into a commutative diagram diagram in C:

𝑋1 ×𝑄 𝑋1 ×𝑋0 𝑄 𝑄

𝑄 ×𝑋0 𝑋1 𝑋1 ×𝑋0×𝑋0 𝑄 𝑋0 ×𝑋0×𝑋0 𝑄

𝑄 𝑋0 ×𝑋0×𝑋0 𝑄

𝑎𝑙𝜉𝑙

𝑎𝑟

𝜉𝑟

𝑑1

𝑑0

𝜁

𝜒

𝛿0

𝛿0

(13.14)

such that the two upper squares are Cartesian. Then it is enough to show that the
natural maps

(𝜉𝑟)★ ◦ (𝜉𝑙)★→ 𝜒★ ◦ 𝜁★, 𝜁★ ◦ (𝑎𝑙)† → (𝑑1)† ◦ (𝛿0)★, (𝑎𝑟)† ◦ 𝜒★→ (𝛿0)★ ◦ (𝑑0)†

are equivalences, which hold by Assumptions 11.2.1, 2, 3 and 4, respectively, and
the fact that 𝜉𝑙 , 𝜉𝑟 , 𝜁 , 𝜒 ∈ C𝑠𝑚 and 𝑎𝑙 , 𝑎𝑟 , 𝑑0, 𝑑1 ∈ C𝑝𝑟𝑜𝑝. □
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Now we specialize the above discussions to the case 𝑋1 = 𝑋×𝑌 𝑋 and𝑄 = 𝑋×𝑌 𝑍×𝑌 𝑍
as in Proposition 13.2.1. In this case, the relative Hochschild complex has a simple
interpretation. Consider the fiber product

𝑌 ×𝑌×𝑌 𝑍 𝑌

𝑍 𝑌 × 𝑌

Δ𝑌

𝑔=𝑔1×𝑔2

in C and consider the map 𝑞 = 𝑓 × id𝑍 : 𝑋 ×𝑌×𝑌 𝑍 → 𝑌 ×𝑌×𝑌 𝑍 .

Lemma 13.3.3. There is a canonical equivalence of simplicial objects in 𝐶.

HH𝑋 (𝑋 ×𝑌 𝑋, 𝑋 ×𝑌 𝑍 ×𝑌 𝑋)• ≃ 𝑋• ×𝑌×𝑌 𝑍

where the right hand side is the Čech nerve of 𝑞 : 𝑋 ×𝑌×𝑌 𝑍 → 𝑌 ×𝑌×𝑌 𝑍 . Under
the identification, the map 𝛿0 from (13.8) is the horizontal map in (13.3).

Proof. The construction of the left hand side is natural in 𝑋 and applying it to
the identity map 𝑌 → 𝑌 gives the right hand side. Thus, 𝑓 : 𝑋 → 𝑌 induces an
augmentation HH𝑋 (𝑋 ×𝑌 𝑋, 𝑋 ×𝑌 𝑍 ×𝑌 𝑋)• of the corresponding simplicial object.
In order to identify this augmented simplicial object with the Čech nerve of 𝑞, can
use the characterization (Lurie, 2009, Proposition 6.1.2.11) as it is easy to check
that the necessary squares are pullbacks. □

Proof of Proposition 13.2.1. Only fully faithfulness requires a proof. Consider the
augmented simplicial category associated to the Čech nerve of 𝑞. As 𝑓 ∈ C𝑝𝑟𝑜𝑝 so
is the map 𝑋 ×𝑌×𝑌 𝑌 → 𝑌 ×𝑌×𝑌 𝑍 . Using Lemma 13.3.3 we identify the Čech nerve
of this map with the relative Hochschild complex. By passing to right adjoints and
using Corollary 9.0.6 we get a fully faithful functor��D(HH𝑋 (𝑋 ×𝑌 𝑋, 𝑍 ×𝑌×𝑌 (𝑋 × 𝑋))•)

��→ D(𝑍 ×𝑌×𝑌 𝑌 ). (13.15)

Composition with the fully faithful functor from Proposition 13.3.1 gives the desired
functor. The essential image of (13.15) is generated by the image of 𝑞† so the
description of the essential image follows. □

We record the following functorality for later purpose. Let ( 𝑓 : 𝑋 → 𝑌 ) ∈ C𝑣𝑒𝑟𝑡 ,
with Δ𝑋 , 𝜋𝑋 ∈ Cℎ𝑜𝑟𝑖𝑧 and Δ𝑋/𝑌 ∈ C𝑣𝑒𝑟𝑡 . Let 𝑍 ← 𝐶 → 𝑍′ be a morphism in
Corr(C/𝑌×𝑌 )𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧, i.e. all 𝑍, 𝑍′, 𝐶 are equipped with morphisms to 𝑌 × 𝑌 and
𝐶 → 𝑍 and 𝐶 → 𝑍′ are (𝑌 × 𝑌 )-morphisms in C.
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Let 𝑋• be as above and let 𝑄′ = 𝑋 ×𝑌 𝑍′ ×𝑌 𝑋 and 𝑄 = 𝑋 ×𝑌 𝑍 ×𝑌 𝑋 . Then the
following diagram is commutative

D(𝑄′) //

��

Tr(D(𝑋1),D(𝑄′)) //

��

Trgeo(D(𝑋1),D(𝑄′)) //

��

D(𝑌 ×𝑌×𝑌 𝑍′)

��
D(𝑄) // Tr(D(𝑋1),D(𝑄)) // Trgeo(D(𝑋1),D(𝑄)) // D(𝑌 ×𝑌×𝑌 𝑍).

(13.16)

Remark 13.3.4. When we take C to be the category of (nice) algebraic stacks over
C and the sheaf theory D to be D-modules, one always has Trgeo(D(𝑋 ×𝑌 𝑋), 𝜙) =
Tr(D(𝑋 ×𝑌 𝑋), 𝜙) as D(𝑋) ⊗ D(𝑌 ) � D(𝑋 × 𝑌 ). Therefore, Corollary 13.2.2
recovers (Ben-Zvi and Nadler, 2009, Theorem 6.6). In loc. cit., instead of directly
considering D(HH𝑋 (𝑋×𝑌 𝑋, 𝑋×𝑌 𝑋)•), the authors used the relative bar resolution
for the monoidal category D(𝑋 ×𝑌 𝑋) and then used integral transforms to embed
each level in the resulting simplicial object of this relative resolution fully faithfully
into the corresponding level of D(HH𝑋 (𝑋 ×𝑌 𝑋, 𝑋 ×𝑌 𝑋)•). Our method bypasses
using the integral transforms, which might fail in other sheaf theoretic content. See
Section 13.4 for discussions.

13.4 Comparison between geometric and ordinary traces
In practice, we need to compare the geometric trace defined and studied as above
with the ordinary traces reviewed in Section 12.1. The easiest situation has been
discussed in Remark 13.1.1. On the other hand, the monadicity of the simplicial
objects in Lemma 13.3.2 can be used to compare the usual trace and the geometric
trace in other situations. Recall notations in (13.6).

Proposition 13.4.1. Assume that the sheaf theory D : Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 → LincatΛ
satisfies the following condition: for every 𝑋,𝑌 ∈ C, the exterior tensor product

⊠ : D(𝑋) ⊗ D(𝑌 ) → D(𝑋 × 𝑌 )

is fully faithful and admits a continuous right adjoint ⊠𝑅 (see Remark 11.1.1.) In
addition, Assumptions 11.2.1 1-6 hold for D.

Let 𝑋•, 𝑄 as in the statement of Proposition 13.3.1. Assume that

1. the unit object Λ𝑋0 ∈ D(𝑋0) (for the symmetric monoidal structure ofD(𝑋0)
as in Section 11.1) is compact;
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2. the image of Λ𝑋0 under the functor 𝜂★ ◦𝑚† ◦𝑢† belongs toD(𝑋1) ⊗D(𝑋1) ⊂
D(𝑋1 × 𝑋1).

ThenD(𝑋1) is rigid and the comparison map Tr(D(𝑋1),D(𝑄)) → Trgeo(D(𝑋1),D(𝑄))
(see (13.2)) is an equivalence.

Proof. We first show that D(𝑋1) is rigid. We need to check the conditions of
Example 12.2.3. The unit 1𝑋1 is equivalent to 𝑢†(Λ𝑋0), which is compact as Λ𝑋0

is compact. The multiplication map is given by the composition 𝑚† ◦ 𝜂★ ◦ ⊠, with
the continuous right adjoint given by ⊠𝑅 ◦ 𝜂★ ◦ 𝑚†. It remains show that that this
right adjoint is a D(𝑋1)-bimodule homomorphism. To see that it is a left D(𝑋1)-
module morphism (the case of right D(𝑋1)-module structure is similar), consider
the following diagram

D(𝑋1) ⊗ D(𝑋1)
id⊗(𝜂★◦𝑚†) //

⊠
��

D(𝑋1) ⊗ D(𝑋1 × 𝑋1)
⊠
��

id⊗⊠𝑅 // D(𝑋1) ⊗ D(𝑋1) ⊗ D(𝑋1)

��
D(𝑋1 × 𝑋1)

(id×𝜂)★◦(id⊗𝑚)† //

𝑚†◦𝜂★
��

D(𝑋1 × 𝑋1 × 𝑋1)
(𝑚×id)†◦(𝜂×id)★
��

D(𝑋1 × 𝑋1) ⊗ D(𝑋1)

��
D(𝑋1)

𝜂★◦𝑚† // D(𝑋1 × 𝑋1) ⊠𝑅 // D(𝑋1) ⊗ D(𝑋1).

By Assumptions 11.2.1 5-6, the left upper square is commutative. By Lemma 13.3.2,
the left lower square is commutative. In other words, the functor 𝜂★ ◦ 𝑚† is a left
D(𝑋1)-module homomorphism. Then Assumption (2) of the proposition implies
that the essential images of the functor ⊠𝑅 ◦ 𝜂★ ◦ 𝑚† belong to D(𝑋1) ⊗ D(𝑋1) ⊂
D(𝑋1 × 𝑋1). Therefore, the outer square of the above diagram is commutative.
(However we do not claim the right square is commutative.)

Next we show that the comparison map (13.2) is an equivalence. Recall that it is
induced by the morphism of simplicial objects

HH(D(𝑋1),D(𝑄))• = D(𝑋1)⊗• ⊗ D(𝑄) → D(𝑋•1 ×𝑄) = D(HH(𝑋1, 𝑄)•).

The 0-th objects of both simplicial objects are given byD(𝑄). We use 𝑑𝑖𝑚 to denote
the 𝑖th face map 𝑑𝑖 : D(HH(𝑋1, 𝑄)𝑚+1) → D(HH(𝑋1, 𝑄)𝑚).

By Lemma 12.3.1, the co-simplicial objectD(𝑋1)⊗•⊗D(𝑄) obtained by passing to
right adjoints on HH(D(𝑋1),D(𝑄))•, satisfies the Beck-Chevalley conditions, and
that the resulting monad onD(𝑄) is given by 𝑑0◦⊠◦⊠𝑅 ◦ (𝑑1)𝑅. By Lemma 13.3.2,
D(HH(𝑋1, 𝑄)•) also satisfies the Beck-Chevallay conditions, and that the resulting
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monad on D(𝑄) is given by 𝑑0 ◦ (𝑑1)𝑅. It remains to show that the two monads
are identified which will imply the proposition. Note that (𝑑1)𝑅 is given by the
composition of the bottom functors in the following commutative diagram

D(𝑋1) ⊗ D(𝑋1) ⊗ D(𝑄)
id⊗((𝑎𝑙)†◦(𝜉𝑙)★◦⊠)//

⊠⊗id
��

D(𝑋1) ⊗ D(𝑄)

D(𝑄)
1𝑋1⊗id

// D(𝑋1) ⊗ D(𝑄)
⊠
��

(𝜂★◦𝑚†)⊗id //

(⊠𝑅◦𝜂★◦𝑚†)⊗id
33

D(𝑋1 × 𝑋1) ⊗ D(𝑄)
⊠
��

D(𝑋1) ⊗ D(𝑄)
⊠
��

D(𝑄)
(𝑢×id)†◦(𝜋𝑋0×id)★

// D(𝑋1 ×𝑄)
(𝜂×id)★◦(𝑚×id)† // D(𝑋1 × 𝑋1 ×𝑄)

(id×𝑎𝑙)†◦(id×𝜉𝑙)★ // D(𝑋1 ×𝑄).

We remark that the commutativity of the triangle follows from Assumption (2), and
the commutativity of the square below the triangle follows from Assumptions 11.2.1
5-6. It follows that ⊠ ◦ ⊠𝑅 ◦ (𝑑1)𝑅 = (𝑑1)𝑅. In particular, the two monads are
identified. □

Corollary 13.4.2. Assume that the sheaf theory D is as in ??. Let 𝑋,𝑌, 𝑍 be as
in Proposition 13.2.1. Assume that Λ𝑋 is compact and its image under the functor
(id × Δ𝑋 × id)★ ◦ (id × 𝑓 × id)† ◦ (Δ𝑋/𝑌 )† belongs to D(𝑋 ×𝑌 𝑋) ⊗ D(𝑋 ×𝑌 𝑋),
then the canonical map

Tr(D(𝑋 ×𝑌 ×𝑋),D(𝑋 ×𝑌 𝑍 ×𝑌 𝑋)) → D(𝑌 ×𝑌×𝑌 𝑍)

is fully faithful. If in addition, 𝑍 = 𝑊1 × 𝑊2 as in Corollary 13.2.3, then the
canonical map

D(𝑊1 ×𝑌 𝑋) ⊗D(𝑋×𝑌 𝑋) D(𝑋 ×𝑌 𝑊2) → D(𝑊1 ×𝑌 𝑊2).

is fully faithful.

Remark 13.4.3. If the sheaf theory D satisfies ???, i.e. for 𝑓 ∈ C𝑝𝑟𝑜𝑝 ∩ Cℎ𝑜𝑟𝑖𝑧,
𝑓 † = 𝑓★, and for 𝑔 ∈ C𝑠𝑚 ∩ C𝑣𝑒𝑟𝑡 , 𝑔★ = 𝑔† then under the assumption that
𝑓 ∈ C𝑝𝑟𝑜𝑝 ∩ Cℎ𝑜𝑟𝑖𝑧 and Δ𝑋 ∈ C𝑠𝑚 ∩ C𝑣𝑒𝑟𝑡 , we have

(id × Δ𝑋 × id)★ ◦ (id × 𝑓 × id)† ◦ (Δ𝑋/𝑌 )†(Λ𝑋) � (Δ𝑋1)†(𝜋𝑋1)†Λ.

Proof. The first statement is a combination of Proposition 13.2.1 and ??. AsD(𝑋×𝑌
𝑊1) ⊗ D(𝑊2 ×𝑌 𝑋) → D(𝑋 ×𝑌 𝑊1 ×𝑊2 ×𝑌 𝑋) is a fully faithfulD(𝑋1)-bimodule
homomorphism, the second statement follows from the first and Corollary 12.3.2.

□



105

Example 13.4.4. Consider the case 𝑍 = 𝑊 × 𝑋 for some 𝑔 : 𝑊 → 𝑌 . Then we have
a split augmented simplicial object

HH(𝑋 ×𝑌 𝑋, (𝑊 × 𝑋) ×𝑌×𝑌 (𝑋 × 𝑋))• → 𝑊 ×𝑌 𝑋

with the last map given by the action of 𝑋 ×𝑌 𝑋 on𝑊 ×𝑌 𝑋 . In this case, we reduce
to the tautological equivalence

D(𝑊 ×𝑋 𝑋) ⊗D(𝑋×𝑌 𝑋) D(𝑋 ×𝑌 𝑋)
∼−→ D(𝑊 ×𝑌 𝑋).

13.5 Functoriality of categorical traces in geometric setting
Next we discuss functoriality of categorical traces arising from convolution patterns.

We start with the following observation. Let 𝑓 : 𝑋 → 𝑌 be as in Section 13.2. Let
𝑍 d 𝑍′ be a morphism in Corr(C/𝑌×𝑌 )𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧, given as 𝑍′← 𝐶 → 𝑍 .

Lemma 13.5.1. Assumptions are as in Corollary 13.4.2 and assume that the sheaf
theory D satisfies Assumptions 11.2.1 1-2. Then the following diagram is right
adjointable.

Tr(D(𝑋 ×𝑌 𝑋),D(𝑋 ×𝑌 𝑍 ×𝑌 𝑋)) //

��

D(𝑌 ×𝑌×𝑌 𝑍)

��
Tr(D(𝑋 ×𝑌 𝑋),D(𝑋 ×𝑌 𝑍′ ×𝑌 𝑋)) // D(𝑌 ×𝑌×𝑌 𝑍′).

Proof. As D(𝑋 ×𝑌 𝑋) is rigid, using Lemma 12.3.1 it is enough to show that the
following diagram is right adjointable

D(𝑋 ×𝑌 𝑍 ×𝑌 𝑋) //

��

D(𝑌 ×𝑌×𝑌 𝑍)

��
D(𝑋 ×𝑌 𝑍′ ×𝑌 𝑋) // D(𝑌 ×𝑌×𝑌 𝑍′).

But this follows from our assumption of D (in particular Assumptions 11.2.1 1-
2). □

Next we discuss duality of modules arising from the convolution patterns. Let
( 𝑓 : 𝑋 → 𝑌, 𝑔 : 𝑍 → 𝑌 × 𝑌 ) and let ( 𝑓 ′ : 𝑋′ → 𝑌 ′, 𝑔′ : 𝑍′ → 𝑌 ′ × 𝑌 ′) be as in
Section 13.2.. Let𝑊 → 𝑌 × 𝑌 ′ be a morphism. Let

𝑋1 = 𝑋 ×𝑌 𝑋, 𝑄 = 𝑋 ×𝑌 𝑍 ×𝑌 𝑋, 𝑋′1 = 𝑋′ ×𝑌 ′ 𝑋′, 𝑄′ = 𝑋′ ×𝑌 ′ 𝑍′ ×𝑌 ′ 𝑋′,
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and let
𝑀 = 𝑋 ×𝑌 𝑊 ×𝑌 ′ 𝑋′.

We would like to know when D(𝑀) is dualizable as a D(𝑋1)-D(𝑋′1)-bimodule,
with the dual of given by D(𝑁) where 𝑁 = 𝑋′ ×𝑌 ′ 𝑊 ×𝑌 𝑋 . We will assume that

• 𝑊 → 𝑌 ′ and𝑊 → 𝑊 ×𝑌 ′ 𝑊 belong to Cℎ𝑜𝑟𝑖𝑧;

• 𝑊 → 𝑌 and𝑊 → 𝑊 ×𝑌 𝑊 belongs to C𝑣𝑒𝑟𝑡 .

Then we have the morphism 𝑢geo : 𝑌 ′ d 𝑊 ×𝑌 𝑊 in Corr(C)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧 given by
𝑊 ×𝑌 𝑊 ← 𝑊 → 𝑌 ′ and 𝑒geo : 𝑊 ×𝑌 ′ 𝑊 d 𝑌 given by 𝑌 ← 𝑊 → 𝑊 ×𝑌 ′ 𝑊 . They
induce

D(𝑋′1)
D(id×𝑢geo×id)
��

D(𝑁) ⊗D(𝑋1) D(𝑀) // D(𝑋′ ×𝑌 ′ 𝑊 ×𝑌 𝑊 ×𝑌 ′ 𝑋′).

(13.17)

and
D(𝑀) ⊗D(𝑋 ′1) D(𝑁) //

𝑒 **

D(𝑋 ×𝑌 𝑊 ×𝑌 ′ 𝑊 ×𝑌 𝑋)
D(id×𝑒geo×id)
��

D(𝑋1).

(13.18)

Here 𝑒 is defined to be the composition.

Lemma 13.5.2. If the vertical morphism in (13.17) factors through a D(𝑋′1)-
bimodule morphism

𝑢 : D(𝑋′1) → D(𝑁) ⊗D(𝑋1) D(𝑀)

(e.g. ifD(𝑁) ⊗D(𝑋1) D(𝑀) → D(𝑋′ ×𝑌 ′ 𝑊 ×𝑌 𝑊 ×𝑌 ′ 𝑋′) is an equivalence), then
𝑢 and 𝑒 from (13.18) give the duality datum of D(𝑀) as a D(𝑋1)-D(𝑋′1)-module.

Proof. Write 𝑅 = 𝑋′×𝑌 ′𝑊 ×𝑌 𝑊 ×𝑌 ′ 𝑋′ and 𝑆 = 𝑋 ×𝑌 𝑊 ×𝑌 ′𝑊 ×𝑌 𝑋 for simplicity.
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Note that (using (13.16)) we have the following commutative diagram

D(𝑋′1) ⊗D(𝑋 ′1) D(𝑁)

𝑢⊗id

��

D(𝑋′1) ⊗D(𝑋 ′1) D(𝑁)

��

� // D(𝑁) = D(𝑋′ ×𝑌 ′ 𝑌 ′ ×𝑌 ′ 𝑊 ×𝑌 𝑋)

D(id×𝑢geo×id×id)

��

D(𝑅) ⊗D(𝑋 ′1) D(𝑁)

++
D(𝑁) ⊗D(𝑋1) D(𝑀) ⊗D(𝑋 ′1) D(𝑁)

33

id⊗𝑒

��

++

D(𝑋′ ×𝑌 ′ 𝑊 ×𝑌 𝑊 ×𝑌 ′ 𝑊 ×𝑌 𝑋)

D(id×id×𝑒geo×id)

��

D(𝑁) ⊗D(𝑋1) D(𝑆)

33

��
D(𝑁) ⊗D(𝑋) D(𝑋) D(𝑁) ⊗D(𝑋1) D(𝑋1) � // D(𝑁) = D(𝑋′ ×𝑌 ′ 𝑌 ′ ×𝑌 ′ 𝑊 ×𝑌 𝑋)

The composition of functors in the right column is isomorphic to the identity functor
by the base change isomorphism (11.2). It follows that (12.11) in the current setting
holds. The same reasoning implies that (12.10) in the current setting also holds. □

In practice, the assumption in Lemma 13.5.2 may not hold. But under some certain
technical assumptions, we can still understand the duality datum.

Lemma 13.5.3. Suppose the sheaf theory D satisfies assumptions as in Corol-
lary 13.4.2, and let 𝑓 : 𝑋 → 𝑌 and 𝑓 ′ : 𝑋′ → 𝑌 ′ be as in Corollary 13.4.2 (so in
particularD(𝑋1) andD(𝑋′1) are rigid). SupposeD(𝑀) ⊗ D(𝑇) → D(𝑀 ×𝑇) is
an equivalence for every 𝑇 ∈ C. Then

𝑢 : D(𝑋′1) → D(𝑋
′ ×𝑌 ′ 𝑊 ×𝑌 𝑊 ×𝑌 ′ 𝑋′) −→ D(𝑁) ⊗D(𝑋1) D(𝑀),

where the last functor is the right adjoint of the vertical morphism in (13.17) and 𝑒
from (13.18) form a duality datum.

Proof. As in the proof of Lemma 13.5.2, it is enough to establish the following
commutative diagram

D(𝑋′1) ⊗D(𝑋 ′1) D(𝑁)

𝑢⊗id

��

D(𝑋′1) ⊗D(𝑋 ′1) D(𝑁)

��

� // D(𝑁)

��

D(𝑅) ⊗D(𝑋 ′1) D(𝑁)
(∗∗)

ss ++
D(𝑁) ⊗D(𝑋1) D(𝑀) ⊗D(𝑋 ′1) D(𝑁)

id⊗𝑒

��

++

D(𝑋′ ×𝑌 ′ 𝑊 ×𝑌 𝑊 ×𝑌 ′ 𝑊 ×𝑌 𝑋)

��

(∗∗)

ss
D(𝑁) ⊗D(𝑋1) D(𝑆)

��
D(𝑁) ⊗D(𝑋) D(𝑋) D(𝑁) ⊗D(𝑋1) D(𝑋1) � // D(𝑁),
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where the arrows labelled by (∗∗) are right adjoint of the corresponding arrows in
the diagram from the proof of Lemma 13.5.2.

Only the commutativity of the middle parallelogram and the lower right trapzoid
requires justification. For the middle parallelogram, first consider the commutative
diagram

D(𝑁 × 𝑀 × 𝑁) //

��

D(𝑅 × 𝑁)

��
D(𝑁 × 𝑆) // D(𝑋′ ×𝑌 ′ 𝑊 ×𝑌 𝑊 ×𝑌 ′ 𝑊 ×𝑌 𝑋).

with horizontal morphisms are induced by the correspondence𝑌 ← 𝑋 → 𝑋×𝑋 and
vertical morphisms induced by𝑌 ′← 𝑋′→ 𝑋′×𝑋′. As 𝑓 , 𝑓 ′ ∈ C𝑝𝑟𝑜𝑝 andΔ𝑋 ,Δ𝑋 ′ ∈
C𝑠𝑚, the above diagram is right adjointable by the same proof as in Lemma 13.3.2.
Under our assumption thatD(𝑀) ⊗D(𝑇) → D(𝑀 ×𝑇) is an equivalence for every
𝑇 ∈ C, we may replace D(𝑁 × 𝑀 × 𝑁) by D(𝑁) ⊗ D(𝑀) ⊗ D(𝑁), D(𝑅 × 𝑁) by
D(𝑅) ⊗ D(𝑁) and D(𝑁 × 𝑆) by D(𝑁) ⊗ D(𝑆). Then as D(𝑋′1) and D(𝑋1) are
rigid, using Lemma 12.3.1, we obtain the commutativity of the parallelogram.

Similarly, the lower right trapzoid is commutative by Lemma 13.5.1 and that
D(𝑁) ⊗D(𝑋1) D(𝑆) � D(𝑁) ⊗

geo
D(𝑋1) D(𝑆) := Trgeo(D(𝑋1),D(𝑁 × 𝑆)). □

Now suppose we are given a D(𝑋1)-D(𝑋′1)-bimodule homomorphism

𝛼 : D(𝑀) ⊗D(𝑋 ′1) D(𝑄
′) → D(𝑄) ⊗D(𝑋1) D(𝑀).

Then as explained above, under certain dualizability assumption of D(𝑀), there is
a functor

Tr(D(𝑀), 𝛼) : Tr(D(𝑋′1),D(𝑄
′)) → Tr(D(𝑋1),D(𝑄)).

On the other hand, suppose we are given a correspondence

𝛼geo : 𝑊 ×𝑌 ′ 𝑍′ d 𝑍 ×𝑌 𝑊

in Corr(C/𝑌×𝑌 ′)𝑣𝑒𝑟𝑡;ℎ𝑜𝑟𝑖𝑧. One can form the correspondence

𝐶 (𝑊, 𝛼geo) : 𝑌 ′ ×𝑌 ′×𝑌 ′ 𝑍′ d 𝑌 ×𝑌×𝑌 𝑍

given by the composition

𝑌 ′ ×𝑌 ′×𝑌 ′ 𝑍′
𝑢geo×id
d (𝑊 ×𝑌 𝑊)𝑌 ′×𝑌 ′𝑍′ � 𝑌 ×𝑌×𝑌 (𝑊 ×𝑌 ′ 𝑍′ ×𝑌 ′ 𝑊)

id×𝛼geo×id
d 𝑌 ×𝑌×𝑌 (𝑍 ×𝑌 𝑊 ×𝑌 ′ 𝑊)

id×id×𝑒geo
d 𝑌 ×𝑌×𝑌 𝑍. (13.19)
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The sheaf theory D then induces a functor

D(𝐶 (𝑊, 𝛼geo)) : D(𝑌 ′ ×𝑌 ′×𝑌 ′ 𝑍′) → D(𝑌 ×𝑌×𝑌 𝑍).

We would like to relate Tr(D(𝑀), 𝛼) with the above functor under certain assump-
tions.

Assumptions 13.5.4. (I) We assume that the following diagram is commutative

D(𝑀) ⊗D(𝑋 ′1) D(𝑄
′) //

𝛼

��

D(𝑋 ×𝑌 𝑊 ×𝑌 ′ 𝑍′ ×𝑌 ′ 𝑋′)
D(id×𝛼geo×id)
��

D(𝑄) ⊗D(𝑋1) D(𝑀) // D(𝑋 ×𝑌 𝑍 ×𝑌 𝑊 ×𝑌 ′ 𝑋′).

(13.20)

(II) We assume that the following diagram is commutative

D(𝑀) ⊗D(𝑋 ′1) D(𝑄
′)

𝛼

��

D(𝑋 ×𝑌 𝑊 ×𝑌 ′ 𝑍′ ×𝑌 ′ 𝑋′)oo

D(id×𝛼geo×id)
��

D(𝑄) ⊗D(𝑋1) D(𝑀) D(𝑋 ×𝑌 𝑍 ×𝑌 𝑊 ×𝑌 ′ 𝑋′).oo

(13.21)

where the horizontal arrows are right adjoint of the natural ones.

Remark 13.5.5. Note that Assumptions 13.5.4 holds in the case 𝑍′ = 𝑌 ′ with
𝑔′1 = 𝜙𝑌 ′ : 𝑌 ′ → 𝑌 , 𝑍 = 𝑌 with 𝑔2 = 𝜙𝑌 : 𝑌 → 𝑌 and there is 𝜙𝑊 : 𝑊 → 𝑊

compatible with 𝜙𝑌 ′ and 𝜙𝑌 .

Proposition 13.5.6. Under the assumption in Lemma 13.5.2 and Assumptions 13.5.4
I, then the following diagram is commutative

Tr(D(𝑋′1),D(𝑄
′)) Tr(D(𝑀),𝛼) //

��

Tr(D(𝑋1),D(𝑄))

��
D(𝑌 ′ ×𝑌 ′×𝑌 ′ 𝑍′)

D(𝐶 (𝑊,𝛼geo)) // D(𝑌 ×𝑌×𝑌 𝑍).

Under the assumption in Lemma 13.5.3 and Assumptions 13.5.4 II, the following
diagram is commutative

Tr(D(𝑋′1),D(𝑄
′)) Tr(D(𝑀),𝛼) //

��

Tr(D(𝑋1),D(𝑄))

D(𝑌 ′ ×𝑌 ′×𝑌 ′ 𝑍′)
D(𝐶 (𝑊,𝛼geo)) // D(𝑌 ×𝑌×𝑌 𝑍)

OO
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Proof. The first case follows from the following commutative diagram

D(𝑋′1) ⊗D(𝑋 ′1)⊗D(𝑋 ′1)rev D(𝑄′)

𝑢⊗1
��

// D(𝑌 ′ ×𝑌 ′×𝑌 ′ 𝑍′)
D(𝑢geo×id)
��

(D(𝑁) ⊗D(𝑋1) D(𝑀)) ⊗D(𝑋 ′1)⊗D(𝑋 ′1)rev D(𝑄′)
�

��

// D((𝑊 ×𝑌 𝑊) ×𝑌 ′×𝑌 ′ 𝑍′)
�

��
D(𝑋1) ⊗D(𝑋1)⊗D(𝑋1)rev (D(𝑀) ⊗D(𝑋 ′1) D(𝑄

′) ⊗D(𝑋 ′1) D(𝑁)) //

1⊗𝛼⊗1
��

D(𝑌 ×𝑌×𝑌 (𝑊 ×𝑌 ′ 𝑍′ ×𝑌 ′ 𝑊))
D(id×𝛼geo×id)
��

D(𝑋1) ⊗D(𝑋1)⊗D(𝑋1)rev (D(𝑄) ⊗D(𝑋1) D(𝑀) ⊗D(𝑋 ′1) D(𝑁)) //

1⊗1⊗𝑒
��

D(𝑌 ×𝑌×𝑌 (𝑍 ×𝑌 𝑊 ×𝑌 ′ 𝑊))
D)id×id×𝑒geo)
��

D(𝑋1) ⊗D(𝑋1)⊗D(𝑋1)rev D(𝑄) // D(𝑌 ×𝑌×𝑌 𝑍)
(13.22)

The second case follows from a similar diagram

D(𝑋′1) ⊗D(𝑋 ′1)⊗D(𝑋 ′1)rev D(𝑄′)

𝑢⊗1
��

// D(𝑌 ′ ×𝑌 ′×𝑌 ′ 𝑍′)
D(𝑢geo×id)
��

(D(𝑁) ⊗D(𝑋1) D(𝑀)) ⊗D(𝑋 ′1)⊗D(𝑋 ′1)rev D(𝑄′)
�

��

D((𝑊 ×𝑌 𝑊) ×𝑌 ′×𝑌 ′ 𝑍′)oo

�

��
D(𝑋1) ⊗D(𝑋1)⊗D(𝑋1)rev (D(𝑀) ⊗D(𝑋 ′1) D(𝑄

′) ⊗D(𝑋 ′1) D(𝑁))

1⊗𝛼⊗1
��

D(𝑌 ×𝑌×𝑌 (𝑊 ×𝑌 ′ 𝑍′ ×𝑌 ′ 𝑊))oo

D(id×𝛼geo×id)
��

D(𝑋1) ⊗D(𝑋1)⊗D(𝑋1)rev (D(𝑄) ⊗D(𝑋1) D(𝑀) ⊗D(𝑋 ′1) D(𝑁))
1⊗1⊗𝑒

��

D(𝑌 ×𝑌×𝑌 (𝑍 ×𝑌 𝑊 ×𝑌 ′ 𝑊))oo

D(id×id×𝑒geo)
��

D(𝑋1) ⊗D(𝑋1)⊗D(𝑋1)rev D(𝑄) D(𝑌 ×𝑌×𝑌 𝑍),oo

(13.23)
where the horizontal left arrows are obtained by the corresponding horizontal right
arrows in (13.22) by passing to the right adjoint. We need to justify the commuta-
tivity of this diagram. First we have the commutativity of the following diagram

D(𝑋′1) ⊗D(𝑋 ′1)⊗D(𝑋 ′1)rev D(𝑄′)
𝑢⊗1

rr ��

// D(𝑌 ′ ×𝑌 ′×𝑌 ′ 𝑍′)
D(𝑢geo×id)
��

(D(𝑁) ⊗D(𝑋1) D(𝑀)) ⊗D(𝑋 ′1)⊗D(𝑋 ′1)rev D(𝑄′) D(𝑅) ⊗D(𝑋 ′1)⊗D(𝑋 ′1)rev D(𝑄′)oo D((𝑊 ×𝑌 𝑊) ×𝑌 ′×𝑌 ′ 𝑍′)oo

Indeed, the left triangle is commutative as we are in the case as in Lemma 13.5.3,
and the right square is commutative as the natural functor D(𝑅) ⊗D(𝑋 ′1)⊗D(𝑋 ′1)rev

D(𝑄′) → D((𝑊 ×𝑌 𝑊) ×𝑌 ′×𝑌 ′ 𝑍′) is fully faithful by Corollary 13.4.2. This
justifies the commutativity of the top square in (13.23).

For the commutativity of the third square in (13.23), by our assuption it is enough



111

to show that

D(𝑋1) ⊗D(𝑋1)⊗D(𝑋1)rev (D(𝑋 ×𝑌 𝑊 ×𝑌 ′ 𝑍′ ×𝑌 ′ 𝑋′) ⊗D(𝑋 ′1) D(𝑁))

��

D(𝑌 ×𝑌×𝑌 (𝑊 ×𝑌 ′ 𝑍′ ×𝑌 ′ 𝑊))oo

��
D(𝑋1) ⊗D(𝑋1)⊗D(𝑋1)rev (D(𝑋 ×𝑌 𝑍 ×𝑌 𝑊 ×𝑌 ′ 𝑋′) ⊗D(𝑋 ′1) D(𝑁)) D(𝑌 ×𝑌×𝑌 (𝑍 ×𝑌 𝑊 ×𝑌 ′ 𝑊))oo

is commutative. Under the assumption that D(𝑀) ⊗ D(𝑇) → D(𝑀 × 𝑇) is an
equivalence for any 𝑇 ∈ C, we can use Lemma 13.5.1 twice to conclude.

Similar argument also shows that the last square in (13.23) is commutative. □

Example 13.5.7. Take 𝑌 ′ = pt and 𝑊 = 𝑋 . Then the naive class identifies with the
element L𝜙 ( 𝑓 )†(𝑒𝑋) of D(L𝜙 (𝑌 )) considered as a functor from ModΛ.

Example 13.5.8. If 𝑌 → pt is in Cℎ𝑜𝑟𝑖𝑧 we can take 𝑍 = 𝑌 and 𝑔 = id𝑌 . Then
(Δ𝑌/𝑌 )† = id. Then the geometric class inD(L𝜙 (𝑌 )) is equivalent to PTrgeo (𝑒L𝜙 (𝑌 )).
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