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ABSTRACT

Motivated by the study of the local and global Langlands correspondence from
a geometric prespective, we establish two results of a general nature regarding
categories of sheaves in algebraic geometry. The first result, motivated by the work
of Drinfeld and Lafforgue on the Langlsnds correspondence over function fields,
establishes a categorical enhancement of the Kiinneth formula for categories of Weil
sheaves, generalizing a famous result of Drinfeld. In the second part, motivated by
the geometric approach to the study of representations of reductive groups over local
fields, we develop a method to calculate the categorical trace of monoidal categories

arising from convolution pattern in algebraic geometry.
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Part I

Introduction



Chapter 1
OVERVIEW

This thesis can be divided into two parts which are mathematically independent but
philosophically related. In this part, we give an informal introduction to the moti-
vations and results. The guiding question of this thesis comes from the Langlands

program and specifically the geometric approach to it.

Let F be a global field, such as a number field or the field of rational functions on
a projective curve over a finite field. The Langlands program (Langlands, [1970)
consists of many results and conjectures establishing a deep connection between rep-
resentation theory of analytic nature with arithmetic properties of the field F. Let’s

recall the main protagonist of this program(T} the space of automorphic functions.

For every place v of F we denote by F), the v-adic completion of F' at v. We will
denote by OF the ring of integers of F and for every non-archimedean place v of F,
we will denote by O, the ring of integers of F,. For every finite set S of places of F

which contains all the archimedean places, we denote

AVQS = I_I‘FL X I_I(7V

ves V¢S

considered as a topological ring with the product topology. We denote by A the
adele ring of F. Recall that it can be described, as a topological ring, as the direct
limit
AﬁF ::lyzglkpys.
S
This is sometimes referred to as the "restricted product” of the fields F,.

Let G be a connected reductive group over F, i.e. SL,, GL,, Sp,,. We can now

define the space of auytomnorphic functions:
AG = L*(G(P\G(AF)). )

namely, it is the space of functions that are square-integrable with respect to some
invariant measure on the coset space G (F)\G (AF). This space of functions carries

an action of G(Ar) by the left action on the coset space. It is sometimes easier to

"From the point of view of representation theorists.
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focus on specific subspaces of the automorphic space. For any compact subgroup

K € G(AF) we can consider the space of automorphic functions of level K:
Agx = L(GIF\G(Ar)/K).C)

Example 1.0.1. Take F = Q and G = SL and K =[], SL2(Z),). We can relate the
space of automorphic functions in the adelic description to a more familiar object.
By the strong approximation theorem (Kneser, |1960), for element g € SL,(Ag)
represented as elements (g,), where g, € SLy(Q),) for prime p and g € SL>(R),
there exists a matrix y € SLy(Q) such that for yg we have (yg), € SLo(Z),) for all

prime p. This means that we can identify the double coset spaces

SL2(Q)\SL2(Ag)/K = (SL2(Q) N K)\SL,(R)

Finally, the intersection SL,(Q) N K consists of matrices whose entries are rational
numbers that are integral for any prime p, which is the same as being integers. This

gives an identification:
SL2(Q)\SL2(Ag)/K = SLy(Z)\SL2(R)

relating the automorphic functions in the adelic description to the more familiar

notion.

An important way to study representations in general is to find symmetries of them
in the form of commuting linear operators. An important family of such operators
are the Hecke operators. For every non-archimidean place v of F we consider the

spherical Hecke algebra:
H, = C.(G(O)\G(F))/G(0,),0).

This algebra is commutative and acts on the space of automorphic functions by

convolution:

he flg) = /G L ) d

In the revolutionary seminal work (V. Lafforgue, [2018)), Vincent Lafforgue showed
how to expand this algebra of commuting operators in the function field case by
introducing the excursion operators. In the next section, we will try to give a sense
of the structures involved and the motivations for the first part in the next chapter.

Finally, we will mainly focus on results that come from the algebraic-geometric
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approach to stufying the space of automorphic functions. In that case, we focus our

attention on the subset of continuous compactly supported automorphic functions:
Ag = C(G(F)\G(AF)),C)

The second part of the thesis concerns the local side of the Langlands program. The
main question considered is understanding representations of G ( F,,) for all the places
v. These are significant for the study of local fields but can also help understand the
global picture. For example, Every irreducible continuous representation 7 of the

adele group G (Ap) is equivalent to a "restricted product”

’
=@
1%

but we will not go into this more deeply here. In the second part of this overview,
we will review the geometric and categorical structures surrounding Hecke, and
Iwahori-Hecke algebras, and the categorical trace, which motivates the second part
of this thesis.



Chapter 2

DRINFELD’S LEMMA AND THE GLOBAL FUNCTION FIELD
LANLGANDS CORRESPONDENCE

2.1 The Langlands Correspondence over function fields

Let X be a projective curve over a finite field IF, with function field F'. Let G be a
split reductive group defined over F' For simplicity, we will assume in this section
that the center of G is trivial and we will focus our attention to the unramified part of

the space of automorphic functions. Namely, we consider the subspace of functions
Co(G(F)\G(AF)/G(0), Q) € C(G(F\G(AF, Q)

where O = [],cx Ox.x. These are the functions which invariant under the action of
a maximal compact subgroup corresponding to the integral points on the function

field. This double coset space is a discrete groupoid.

The study of the function field version of the Langlands correspondence enjoys arich
connection to algebraic geometry thanks to the existance of an algebraic-geometric
description of the double cosets G(F)\G(Ar/G(O). Namely, it can be identified
with the set of rational point of an algebraic stack, the stack of G-bundles on the
curve. We will describe geometric objects such as schemes and stacks via their
functor of points (Stacks, Tag 01J5). For convenience, for every scheme Y over F,

and an bF, algebra R, we will denote by Y the fiber product ¥ XgspecF . Spec R.

Let Bung (X) denote the moduli stack of G-bundles on the curve X. This is the
stack described by the following moduli problem: for a commutative F,-algebra R,

the groupoid of R-points of Bung (X) is given by the groupoid
Bung (X)(R) = {&E a G-torsor on Xg}.

The connection to the automorphic space comes from the existance of a natural

isomorphism of groupoids
Bung (X) (Fq) =~ G(F)\G(AF)/G(0) (2.1)

this is known as adelic uniformization. This equivalence is based on the fact that
any G-torsor can be trivialized outside a finite set of points. For example, let’s

fix a set § of points xi,...,x,in|X|. By a fundamental result of Beauville and


https://stacks.math.columbia.edu/tag/01J5
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Laszlo(Beauville and Laszlo, [1995)), to describe a G-bundle which is trivial on
X \ S, it is enough to specify the "gluing data" consisting of modifications of the
trivial bundle around each of the points xy, . . ., x,. More explicitly, for every point

x; we can consider the "disc" and "punctured disc"
D; = SpecO,;, D! = Spec Fy,

A modification of the trivial bundle &y around a point x; is an automorphism of the
restriction Eo|p:. These are exactly given by elements g; € G(Fy,), so any given
choice of elements g1, . . ., g, specifies such a bundle. However, some sets of these
choices correspond to isomorphic bundles. First, two modifications that differ by
an automatism of the restriction &y|p, to the disc give rise the same bundles. So,

accounting for these means a choice of an element in the product of coset spaces:
| |6(F)/G(Ox )
i

Finally, two such choices can give isomorphic bundles if they differ by an au-
tomorphism of the trivial bundle restricted to X \ S. Such automorphisms are
parameterized by G(Ox [xl_l, ...,x;11). Thus, the groupoid of G-bundles which

*'n

are trivial on X \ S can be identified with
G(Oxlxy,- 5 D\([ ] 6(Fa) /G (Ox.0)

taking the direct limit over all finite subsets of | X| results in the description (2.1).

Such a description for the space of unramified automorphic functions comes to use

when combined with the function-sheaf dictionary. Namely, this is a map:
Deit(Bung (X), Q) — Ce(Bung (X)(F,), Qr)
taking a constructible complex ¥ € D¢ (Bung (X), @) to the function
fr+ Bung (X)(Fy) — Q¢

defined by sending a point x € | X| to

Fr(x) = ) (=1)" - Tr(Frob, H (%, Qr)),

where 7, is the stalk of # at x, considered as a chain complex of @ vector
spaces. Thus, studying sheaves on Bung (X) could help us understand the space of

automorphic functions.
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As a first attempt, let us try to follow the classical way automorphic function spaces
are studied and try to port that into the geometric setting. An important symmetry
of the space of unramified automorphic functions is the action of Hecke algebras.
These can be understood in a geometric way. For every x € | X| we can parameterize
the modifications of a bundle at the point x. Namely, consider the following moduli

problem
HeCkeG,X(R) = {(SOa Sl’a)|807 81 € BunG(X)(R)’ a: 80|XR\{)CR} = 81|XR\{XR}}

where xy is the subset Spec R 5 Xg. The functor Heckeg , is ind-representable
and is related to the affine Grassmannian, which parameterized modifications of the
trivial bundle, see (Zhu, |2016a). Such a structure gives rise to an integral transform

map. Namely, we have a correspondence:
Heckeg
Bung(X) Bun(;(X)

given by h;(&Eg, E1, @) = &y and h.((Eg, E1, @) = E;. We can use this corre-
spondence to get an action of D¢ (Heckeg ) on the category D¢ (Bung (X), @).

Namely, for every K € D¢ (Heckeg ) we have a functor:

Sgc: Dee(Bung (X), Q) — Der(Bung (X), Qp)

given by the "integral transform":
Sx(F) = (he ) (hj(F) ® K),  F € De(Bung (X), Qr)

Under the function-sheaf dictionary, Sg¢(%) is identified with the usual Hecke
operator. This presentation connects the Hecke operator at the point (or place) x
with a geometric version of it. One may ask how to make sense of the variation of
the point x? how can we endode the fact that the Hecke operators depend on the

choice of a point?

We can consider a version of the Hecke stack which lets the point vary. Namely,

consider the moduli problem:
Heckeg (R) = {(x, &0, E1, @) |x € Xg, @: Eolxp\(xx) = Stlxe\(ir} |
which gives rise to the correspondence:

Heckeg

X X Bung (X) Bung (X)
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Such a structure gives us a richer theory of integral transforms. Namely, for every
lisse sheaf £ € Dyi5(X, Q¢) and K as before, we get a functor

Sr.5c: Deg(Bung (X), Q7)) — Der(Bung (X)

given by
Scax(F) = (h)i(h (L& F) ® K).

The connection to arithmetic of the function field comes in through the equivalence
Diis(X, Q¢) = D?(Rep(n¢'(X), Qy).

The geometric Lanlgands program, which informed the work of Lafforgue suggests
that it would be necessary to consider multi-point modifications. Namely, for every

finite set / we consider the moduli of modification of a bundle at / points:

Heckeg ;(R) = {((Xi)iel,ao,al,ai &y — 81)‘)61' € Xg, Eolx\fxitics = 81|X\{x,»},»€1}
which give rise to the compatible family of correspondences:
Hecke; (X)
/ \
X! x Bung (X) Bung (X)

However, unlike the case of |I| = 1, there is no way to relate lisse sheaves on X 1

with the fundamental group n‘f’ (X). This is because in general, the natural map
ﬂfl(X]) SN ﬂft(X)I

is not an isomorphism. This issue was solved by Drinfeld in the seminal paper
Vladimir Gershonovich Drinfeld, 1980, with the realization that the prospective
presented above did not bring into account the Frobenius symmetry. Namely, note
that rather than just one Frobenius morphism on X/, we should take into account

the partial Frobenius morphisms. For every i € I we have a map
g X' - X!

given by the Frobenius map on the i-th component and the identity on the other

components. These morphism commute and satisfy

@100, =Froby:



where Froby is the g-Frobenius on X! and where 7 is the size of i.

Drinfeld realized that we should require this symmetry on the representations as well.
Namely, instead of considering all representations of ﬂf '(Xx"), we should consider

the representations V of Jrf’ (X') equipped with pair-wise commuting morphisms:
l,b i V-V

as ﬂf’ (X!)-representations, such that the total composition i1, . . ., 1, is equivalent
to the action of Froby:. Informally, Drinfeld established an equivalence between
representations of Jrf‘ (X!) with a partial Frobenius equivariant structure as above
and representations of ﬂ‘f "(X)!. Our first main result is a generalization of Drinfeld’s

lemma to the entire derived category of constructible sheaves.

2.2 Drinfeld’s lemma and the Kiinneth formula for Weil sheaves
To state the partial Frobenius equivariance conditions and our results, it is convenient
to shift our prespective and formulate the theory in terms of Weil sheaves and Weil

prestacks. We give an informal account here, the full details are in Chapter|[6]

We will use the formalism of prestacks and constructible sheaves on them, for a
review of these, see Section n Fix F = E. Instead of working with schemes
over F, and keeping track of the partial and absolute Frobenius maps, we find it
preferable to work with geometric object over F. We can do this by associating
to a scheme the formal quotient of the base change to the algebraic closure F by
Frobenius. Namely, let Let X be a scheme over F, and denote by X it’s base change
to F. Let
¢x: Xp — Xp

be defined by ¢x = Froby X idspecF.
Definition 2.2.1. Let X be a scheme over F,. The Weil prestack is defined as
Weil . ox
X :=colim [ X xp, F 3 X xp, F| € PreStkg,
id

i.e., it is the prestack sending R € CAlgg, to the colimit

This description works well with products. Namely, for schemes X, X; over F, we
have

X1 XIF’q Xo XIFq SpecIF = Xl,IF X X2,F



10

We can consider the product of the corresponding Weil prestacks:
Weil _ yWeil Weil
X =X xp X,

For every prestack, we have a well defined co-category of constructible sheaves. The

main result of the first part of the thesis can be formulated as follows:

Theorem 2.2.2. Let X, X, be schemes of finite type over F,. The external product

functor (M1, M) — M| ® M, induces an equivalence of categories
Weil Weil Weil Weil
Dcons (Xl ° s A) ®A Dcons(Xz “ s A) — Dcons (Xl “ X+ Xk Xn ° s A)
For A a discrete {-torsion ring, an algebraic extension of Qg and its ring of integers.

Remark 2.2.3. For lisse sheaves, this holds if A is a torsion ring or an extension of

Z¢, and always holds for lisse if X1, ..., X, are geometrically unibranch.

In particular, we have an equivalence
D (Repe, (Weil (X), 7)) — Diig(X™), Q) (2.2)

2.3 Application to the moduli of bundles and shtukas

We can now come back to the situation of the moduli stack of bundles and review the
ideas behind the construction of Lafforgue from the perspective of Weil prestacks.
First, it was realized by Drinfeld, and later Lafforgue, that in order to take the
Frobenius structure into account, we should not only consider bundles but the
moduli of shtukas. A full account of this work is well beyond the scope of this
introduction, but we will try to convey the main geometrical constructions. First,
for every finite set S, we can consider the prestack of shtukas with |S|-legs defined

by the moduli problem whose groupoid of points for every R € CAlgg, is given by

Y ‘ Weil | S|
Shte.s(X)(R) = {((x»,es,a,y) (x;) € (XS & € BunG<XR>,}

7: 8|XR\xi = ¢§((8)|XR\X,‘

We can then define a corresponding Hecke stack which parameterize modifications

of two shtukas. These depend on three finite sets S, 7, I and given by

((xp)ier, S0, S1, @) |(x;) € (XWeil)I’
Heckeg,5.7./(X)(R) = 1 So € Shig.s(X)(R), i € Shtgr (X)(R)

[0 80|XR\xi = 81|XR\X,‘
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where &g, &; are the underlying G-bundles corresponding to the shtukas Sy, Sy,

respectively. We then have the Hecke correspondences
Heckeg s.7.1(X)
(XWeih)! x Shtg s (X) Shtg 7(X)
Using the equivalence

Diis (X™e)') = D’ (Rep,(Weil(X)', Qy))

we can get a family of integral transform functors which generalize the family used in
Lafforgue’s work. Namely, for every representation V € D? (Rep, (Weil (X), Qp))
and a complex K € D¢ons(Heckeg s7.7(X, Qy))) we have the functor

SS,T,I,?(,V: Dcons(ShtG,S(X)’ @)) - Dcons(ShtG,T(X), @))
given by
Ssrrxv(F) = (A (b (L& F) © K).

These functors are the key component in constructing the "spectral action", see
(Zhu, 2021)).
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Chapter 3

THE CATEGORICAL TRACE IN THE CATEGORICAL LOCAL
LANLGANDS PROGRAM

3.1 Loop groups

We consider the situation where F a non-archimedean local field, e.g. Q,, F,((?)),
and Wr C I'r its Weil group and Galois group. The goal of the local Langlands
program is to understand the smooth representations of the group G(F). Fix a
prime ¢ not equal to p. We denote by Rep(G(F),Q,) the category of smooth
representations of G (F) with coefficients in @g. We denote by D(Rep(G (F), @»))
the unbounded derived category of Rep(G (F), Q;). In the categorical variant of the
local Langlands program, one wishes to understand the category D(Rep(G (F), Q;)).
In this chapter, we will review some of the ways to use algebraic geometry to achieve

better understanding of this category.

As with the global correspondence, the rich connection to algebraic geometry arises
from the realization of some of the structures involved as sets of rational points of
an algebraic-geometric object. We begin by describing the corresponding structures
for G(F) itself.

For the sake of simplicity, we will assume F is of equal characteristic. Namely, of
the form F,((z)) for a finite field F,. However, the definitions and results can be

modified to include the mixed-characteristic case as well.

We recall the arc-group and loop group associated to G, these are given by the

group-functors sending a F, algebra R to the groups:
L*G(R) = G(R[[t]]). LG(R)=G(R((1))).
The functor L*G is represented by a perfect affine scheme. In particular,

G(Fy) = GE4[[7]D).  LG(Fy) = G(Fy((2))).

Let LG/L*G be the associated affine Grassmannian. It is represented by an ind-
projective perfect ind-scheme. We will denote by LG and L*Gr the base change

of the loop and arc-group to the fixed algebraic closure F of F,.

In the global case, the connection from algebraic object (i.e. sheaves) into the

automorphic objects was facilitated by the function-sheaf dictionary. The function
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sheaf dictionary can be seen as a way to take the "trace of the Frobenius" of an
object. However, in the local theory, our target object is not a function space, but
a category. This suggests the need to have a categorical way of taking the trace.
This is exactly what is achieved by the categorical trace constructions. These ideas
originated by Drinfeld, Gaitsgory, and others. See (Dennis Gaitsgory, 2016) for a
review. We will see how these ideas work in the setting of unipotent representations.

3.2 Convolution Patterns and the Iwahori-Hecke category
The abstract results of the second part of the thesis are motivated by the understand-
ing of unipotent representations. It is the subcategory of smooth representations of

G generated by the compact induction from an Iwahori subgroup.

Fix a Borel subgroup B C G and recall that the corresponding Iwahori subgroup

I € G(F,[[t]]) is the inverse image of B(FF,;) under the surjection
G (Fq[[r]]) — G(Fy).

We can then consider the compactly induced representation c—indIG(F) (Q¢). The

endomorphism algebra:

H[ = EndRep(G(F)) (C-indIG(F), C-indIG(F)),
is known as the Iwahori-Hecke algebra. Up to a choice of Haar measure on G (F),

there is a canonical isomorphism:

H; = NG (F,((1)))/1.

The composition action on H; corresponds to the convolution operation on the

double coset space.

A complex V € D(Rep(G), Q) is called unipoitent if it is in the full subcategory
generated by c—indIG(F) by colimits and retracts. Equivalently, V is unipotent if
the cohomologies H'(V) are unipotent representations in the sense of (Lusztig,
1995). The full subcategory of unipotent representations is equivalent to the derived

category of left-H; modules. This equivalence is obtained via:

V i Hom (c-ind¥") ).

D(Rep(G),Qr)

We can use algebraic geometry to study the category of unipotent representations.

We denote by n,: L*G — G the map corresponding to sending ¢ to zero. This



14

subgroup can also be lifted to an algebraic geometric object. Namely, we define the

functor Iw by
Iw(R) = {g € G(R[[t]D] 7+(g) € B(R)}.

Then the Iwahori-Hecke algebra H; identifies with the F,-points of the Iwahori-
Hecke stack. This stack can be described by the the fpgc-quotient

IwHecke ~ [Iw\LG/Iw].

The category of constructible sheaves D¢ons (IWHecke; g, @g) on the base change to

the algebraic closure carries a monoidal structure given by convolution.

In order to get a sense of how this works, it would be useful to consider the general
situation of convolution monoidal structures. In general, these arise from a "nice-
enough" morsphism f: (X, ¢x) — (Y, ¢y). In such a situation, Deons(X Xy X) has

a convolution monoidal structure, given by

X Xy X Xy X —23% (X xy X) X (X Xy X)

I

XXy X

Namely, the monoidal operation is given by:
FxG =mA(FRG), F.GeDXxyX)

In our case, we will take X to be the classifying stack B(Iwg) and Y to be the
classifying stack B(LGrp) of the loop group. For many purposes, the morphism
B(Iwg) — B(LGF) behaves like a proper morphism. For more details, see (Zhu,
2021) and (Bouthier, Kazhdan, and Varshavsky,|2020). Under the identifications

X xy X ~Iw\LG/Iw, X Xy X xy X ~Iw\LG x" LG /Iw

the general convolution monoidal structure identifies with the familiar description

of convolution on Iwahori-Hecke algebras.

As we did with the function sheaf dictionary, we can relate this monoidal category
to the category of unipotent representations by taking the "trace of the Frobenius".
Namely, the Frobenius map on Iw and LG give corresponding maps on Iwg and

LGr and a corresponding map on the classifying spaces.
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3.3 The Categorical trace construction
Given a A-linear monoidal co-category (A together with a monoidal endomorphism

¢: A — A, its categorical trace is given by the Hochschild homology
Tr(A, ¢) := HH(A,* A) = A @ agar A

Roughly speaking, it is determined by the following universal property: a functor
Tr(A, ¢) — C is equivalent to a functor ¥ : A — C equipped with equivalences

F(a®b)~F(b® ¢(a)), a,be Ob(A)

together with all the necessary higher coherence data. In particular, there is a
tautological functor
Trg: A — Tr(A, ¢)

sending an object a to its universal ¢-twisted trace.

The trace Tr(A, ¢) always exists for general reasons, and it can be computed as the
using the cyclic bar resolution. Namely, as the homotopy colimit of the simplicial
object

HH,(A’A) = A" D = Ag-- - @A, n>0

which has boundary maps

ay®---®aji_1a;®--®a, i#0
di(ap®...,a;i-19a;---Qay) =
a1 ®a;®---Qayp(ao) i=0
In general, it is difficult to compute such homotopy colimits, however, under certain
conditions it is possible to say more in the case of convolution patterns as in the

previous section.

For monoidial structures arising from convooution patters, it is sometimes possible
to realize the ¢-twisted trace as a full subcategory of the category of sheaves of a

certain geometric object. Namely, consider the "fixed point object"

Ls(Y) —> Y

Ay

%

idy x¢y

Yy — Y

We have a correspondence

.£¢(Y) Xy X — X xy X

!

Ly(Y)
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Using the identification X Xy Lg(Y) = X Xyxy Y. The main result of the second

part of the thesis can be informally formulated as follows:

Theorem 3.3.1. Proposition (Ben Zvi-Nadler, H.-Zhu) Under suitable assumptions,

there is a canonical commutative diagram

D(X xy X) —— D(X xy Ly(Y))

l l

Tr(D(X xy X), ¢) —— D(Ly(Y))

with the bottom horizontal arrow fully faithful

Let’s try to apply this paradigm to our case of B(Iwg) — B(LGF) and ¢ given by
the Frobenius which we denote by o-. In this case we have the fixed point object

LG/Ad,(LG) —> BLG

! s

idxo

BLG ————— BLG
and we can also identify:
X Xy X ~ LGF/AdO-(IWF)

This means, given the correct definitions of categories of sheaves on the correspond-

ing geometric objects, that our main result gives a fully faithful functor
7 (Deons (IW\LG /1w, Qr). ¢) — D(LG/Ad(LG), Q).

These definitions and its implication to the study of the category of unipotent
representations are the subject of a joint project with Xinwen Zhu and are beyond

the scope of this thesis.
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Chapter 4

RECOLLECTIONS ON INFINITY CATEGORIES

Throughout this part, A denotes a unital, commutative ring. We briefly collect some
notation pertaining to co-categories from (Lurie, 2017; Lurie, |2009)). As in (Lurie,
2009, Section 5.5.3), Pr denotes the co-category of presentable co-categories with
colimit-preserving functors. It contains the subcategory Pr c Pr" consisting of

stable co-categories.

4.1 Monoidal aspects

The category Pr" carries the Lurie tensor product (Lurie, 2017, Section 4.8.1). This
tensor product induces one on the full subcategory Prt c Pr" consisting of stable
oo-categories (Lurie, 2017, Proposition 4.8.2.18). For our commutative ring A, the
oo-category Modp of chain complexes of A-modules, up to quasi-isomorphism, is
a commutative monoid in Pr3' with respect to this tensor product. This structure

includes, in particular, the existence of a functor
Modp X Mody — Modp

which, after passing to the homotopy categories is the classical derived tensor

product on the unbounded derived category of A-modules.

We define Plrit to be the category of modules, in Pr’, over Mod,. Noting that
modules over Mod, are in particular modules over Sp, the co-category of spectra, Prls\t
can be described as the co-category consisting of stable presentable co-categories
together with a A-linear structure, such that functors are continuous and A-linear.
Therefore Prls\t carries a symmetric monoidal structure, whose unit is Mod,. We will
also denote by Prcsut the category of compactly generated presentable with functors
that send compact objects to compact objects (equivalently, those whose right adjoint

is continuous).

In order to express monoidal properties of co-categories consisting, say, of bounded
complexes, recall from (Lurie, 2017, Corollary 4.8.1.4 joint with Lemma 5.3.2.11) or
(Ben-Zvi, Francis, and Nadler, 2010, Proposition 4.4) the symmetric monoidal struc-

ture on the co-category Cat*(Idem) of idempotent complete stable co-categories
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and exact functors: it is characterized by
Dy ® D, := (Ind(D;) ® Ind(D3))” 4.1)

that is, the compact objects in the Lurie tensor product of the Ind-completions. With
respect to these monoidal structures, the Ind-completion functor (taking values in
compactly generated presentable co-categories with the Lurie tensor product) and

the functor forgetting the compact generated-ness:
Cat™ (Idem) Ind, Prit s prt 4.2)

are both symmetric monoidal (Lurie, 2017, Lemmas 5.3.2.9, 5.3.2.11).

The subcategory of compact objects in Mod, is given by perfect complexes of
A-modules (Lurie, 2017, Proposition 7.2.4.2.). It is denoted Perf,. Under the
equivalence in Equation , the category Perf, C CatZ*(Idem) corresponds to
Modx. Moreover, Perf, is a commutative monoid in Catgx(ldem), so that we can
consider its category of modules, denoted as CatEo’f A(Idem). This category inherits

a symmetric monoidal structure denoted by D ®perr, Do.

Any stable co-category D is canonically enriched over the category of spectra Sp. We
write Homp (—, —) for the mapping spectrum. Any category in Pr/S\t is canonically
enriched over Mody, so that we refer to Homp(—,—) € Mod, as the mapping
complex. For example, for M, N € Mod,, then Hompjoq, (M, N) is commonly also
denoted by Hom(M, N). Its n-th cohomology is the Hom-group Hom(M, N[n]) in

the classical derived category.

4.2 Fixed points of infinity categories
A basic structure in Drinfeld’s lemma is the equivariance datum for the partial
Frobenii. In this section, we assemble some abstract results where such co-

categorical constructions are carried out.

Definition 4.2.1. Let ¢: D — D be an endofunctor in Catt* (Idem). The category
of ¢-fixed points is

¢=id ._ — 1 ¢
D :=Fix(D,¢) :=lim (D =3 D]|.

idp

Recall that for a symmetric monoidal co-category D, a commutative monoid object
A € CAlg(D), the forgetful functors CAlg(D) — D and Modp (D) — D preserve
limits (Lurie, 2017, Corollary 3.2.2.5, Corollary 4.2.3.3). In particular, if D is in
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addition A-linear, that is, an object in Ca\tfoX A(Idem), and ¢ is also A-linear, then

Fix(D, ¢) admits a natural A-linear structure as well.

Because of these facts, we will usually not specify where the limit above is formed.

Note that all functors

Cat® (1dem) 25 PrSt X prSt —, prl —, Car, 4.3)
except for the forgetful functor marked (*) preserve limits, see (Lurie, 2017, Corol-
lary 4.2.3.3) and (Lurie, 2009, Proposition 5.5.3.13) for the rightmost two functors.

To give a concrete example of that failure in our situation, note that Fix(D,idp) =
Fun(BZ, D), that is, objects are pairs (M, @) consisting of some M € D and some

automorphism a: M = M.

Now consider D = Vectf\'d, the (abelian) category of finite-dimensional vector spaces

over a field A. The natural functor
Ind (lim (Vectf\'d =3 Vectf\'d)) — lim (Ind(Vectf\'d) =3 Ind(Vectf\'d)) = lim (Vecty =3 Vecty)

is fully faithful, but nor essentially surjective: given an automorphism @ of an
infinite-dimensional vector space M, there need not be a filtration M = | J M; by

finite-dimensional subspaces M; that is compatible with «.

Fixed point categories inherit t-structures as follows:

Lemma 4.2.2. Let ¢: D — D be a functor in Cat2*(Idem). Suppose D carries a
t-structure such that ¢ is t-exact. Then Fix(D, ¢) carries a unique t-structure such

that the evaluation functor is t-exact. There is a natural equivalence

Fix(D?, ¢) —> Fix(D, ¢)°.

Proof. Let us abbreviate D := Fix(D, ¢). For e being either “< 0” or “> 07, we
put D* := Fix(D*, ¢), which is a (non-stable) co-category. This is clearly the only
choice for a t-structure making ev a t-exact functor. It satisfies the claim about the

hearts of the t-structure by definition.

We need to show that it is a t-structure. Being a limit of full subcategories, the

categories D* are full subcategories of D. Since ¢, being t-exact, commutes with

<0
L)

N € D=! (we use cohomological conventions), we have

and TSO, these two functors also yield truncation functors for D.ForM € D <0

Homp(M,N) = lim (Homp (M, N) = Homp(M, N)),
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where on the right hand side M, N denote the underlying objects in D. Since
M e D=, N € D>! we have HHomp(M,N) = 0 for i = —1,0. Thus,
HOHomE(M, N) =0 as well. O

can be generalized as follows: Let ¢: BZ" — Cat2*(Idem) be a diagram.
For example, for n = 1, this amounts to giving D = ¢(*) € Cat®*(Idem) and an
equivalence ¢ = ¢(1): D — D. For n = 2, such a datum corresponds to giving D,
equivalences ¢, ¢2: D ) together with an equivalence ¢; o ¢» 5 ¢ 0 ¢1. So

we define the co-category of simultaneous fixed points as
Fix(D, ¢1, . .., ¢y) := lim ¢ € CatZ*(Idem).

Remark 4.2.3. The statement of{.2.2)carries over verbatim assuming that D has a

t-structure and all ¢; are t-exact, noting that BZ" = (S")" is a finite simplicial set.

Lemma 4.2.4. Let ¢: BZ" — Cat®(Idem) be a diagram. Denote D = ¢(*) and
¢; = @(e;) for the i-th standard vector e; € Z". The functor

Fix(D, ¢1,...,¢,) — Fix(Ind(D), ¢1, ..., ¢u)

induced from the inclusion D C Ind(D) is fully faithful and takes values in compact
objects. In particular, it yields a fully faithful functor

Ind(Fix(D, ¢1, ..., ¢,)) — Fix(Ind(D), ¢1, ..., ¢).

Proof. Let M € Fix(D, ¢1,...,$,) and denote its underlying object in D by the
same symbol. For every N € Fix(Ind(D), &1, ..., 0,), we have a limit diagram of

mapping complexes
Homgix(ind(p)y) (M, N) = Fix(Homyng(py(M, N), ¢1, ..., ¢,).

Since filtered colimits commute with finite limits in the oco-category of anima
(a.k.a. spaces) (Lurie, 2009, Proposition 5.3.3.3.), we see that M is compact in
Fix(Ind(D)) because M is so in Ind(D). O

Lemma 4.2.5. Let ¢;: BZ — Catfo’fA(Idem), i =1,...,n be given. Denote D; =
@i(%), ¢; = (1) and D; = Ind(D;). Then there is a canonical equivalence

FiX(ﬁl, $1) ®Mod, - - - OMod, Fix(ﬁm ¢n) — Fix (51 ®Mod, - - - OMody Drs P15 - - - » ¢n) .
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Proof. The categories Fix(ﬁi, ¢;) are compactly generated: the forgetful functor
U : Fix(D;, ¢;) — D; = Ind(D;) preserves colimits, so its left adjoint L preserves
compact objects. Moreover, U is conservative, so that the objects L(d;), for d; € D;,
form a family of compact generators. Then, we use that any compactly generated
category in Pr;q'\t is dualizable (Lurie, 2018, Remark D.7.7.6 (1)) so that tensoring

with it preserves limits. O
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Chapter 5

LISSE AND CONSTRUCTIBLE SHEAVES

In order to state and prove the categorical Kiinneth formula for Weil sheaves, we use
the framework for lisse and constructible sheaves provided by (Hemo, Richarz, and
Scholbach, 2021)). For the convenience of the reader, we collect here some basics

of the formalism.

Throughout, A denotes a condensed ring, for example any T1-topological ring such
as discrete rings, algebraic extensions E/Qy or their ring of integers Og. In the
synopsis below, we refer to the latter choices of A as the standard coefficient rings.
We write A, for the underlying ring. Let D(X, A) be the derived category of sheaves
of A-modules on the proétale site Xprog.

Definition 5.0.1. For every scheme X and every condensed ring A, there are the
full subcategories
Dlis(XaA) - Dcons(X,A) C D(X,A) (51)

By definition, the left hand category of lisse sheaves consists of the dualizable
objects in the right-most category. An object (henceforth referred to as a sheaf) M
in the right hand category is constructible, if on any affine U C X there is a finite
stratification into constructible locally closed subschemes U; C U such that M|y, is
lisse, that is, dualizable. Finally, an ind-lisse (respectively, ind-constructible) sheaf
is a filtered colimit, in the category D(X, A\), of lisse (respectively, constructible)
sheaves. The corresponding full subcategories of D(X, A) are denoted by

Dindlis(X, A) - Dindcons(X» A) - D(X’ A)-

For the standard coeflicient rings A above and quasi-compact quasi-separated (qcqs)
schemes X, that definition of lisse and constructible sheaves agrees with the classical

ones, see loc. cit. for details.

(i) Via the natural functor Mod,, — D(X,A), M — M ®,, Ay, the category
D(X, A) is an object in Prls\t*. The functor restricts to a functor Perf A, —
Djis(X, A), and the categories Dys(X, A) C Deons(X, A) are objects of the
category Catfo’f A(Idem). In particular, all categories listed in Equation (5.1)

are stable idempotent complete A.-linear co-categories.



(ii)

(iii)

(iv)

v)

(vi)

(vii)

(viii)
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The extension-by-zero functor along any constructible locally closed immer-

sion and quasi-compact étale morphisms preserves constructibility.

The functors X + D¢ons(X, A) and X +— Dy5(X, A) satisfy proétale hyperde-
scent, and the functor X — Diygeons(X, A), resp. X + Dijnaiis(X, A) satisfies

hyperdescent for quasi-compact étale, resp. finite étale covers.

If A = colim A; is a filtered colimit of condensed rings and X is qcgs, then the

natural functors
colim Dyis (X, A;) — Dys(X, A), colim Deons (X, Aj) — Deons(X, A)

are equivalences.

The categories enjoy the following properties:

If X is gcgs, then any constructible sheaf is bounded with respect to the
t-structure on D(X, A).

For X locally Noetherian (and much more generally), the t-structure on
D(X, A) restricts to one on Dys(X, A) and Dcops(X, A) provided that A is
t-admissible in the sense of (Hemo, Richarz, and Scholbach, 2021). The
topological condition on the condensed structure of A is satisfied for all the

standard coefficient rings listed above.

For X locally Noetherian (and again more generally), a sheaf is lisse if and
only if it is proétale locally the constant sheaf associated to a perfect complex

of A.-modules.

Let X be a qcqs scheme. If the A-cohomological dimension is uniformly
bounded for all proétale affines U = lim; U; over X, then Ind(D¢ons (X, A)) =
Dindcons (X, A) and likewise for ind-lisse sheaves. If X is of finite type over F,
or a separably closed field, this condition holds for any of the above standard
rings. For discrete p-torsion rings, algebraic extensions £/Q, and their ring

of integers O, this holds for arbitrary qcqs schemes in characteristic p.

For schemes X1, ..., X,, over a fixed base scheme § (for example, the spectrum of a

field) and a condensed ring A, we denote the external product in the usual way:

®: D(Xi,A) X...xD(X,,A) — D(X; X5 ...Xs X, A),

(My,.... M) — M|R...RM, = PT(MI) OAx - - - OAy p:(Mn)
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Here p;: X := X| Xg5 ... Xs X,, — X; are the projections. This functor induces the

functor
X D(Xl,A) ®M0d,\* A ®M0d,\* D(Xn,/\) — D (X1 Xs ... Xg Xn,A) 5 (5.2)

in Prit*. Here we regard D(X;, A) as objects in Prjs\t*, like in Item fif in the synopsis
above. The external tensor product of constructible sheaves is again constructible,

and hence induces a functor

X: Dcons(Xl, A) ®PerfA* s ®PerfA* Dcons(Xn,A) — Dcons (Xl Xs ... Xs X, A) s
(5.3)
in Cat];:oX . (Idem) and likewise for the categories of ind-constructible, resp. (ind-

)lisse sheaves.
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Chapter 6

CONSTRUCTIBLE WEIL SHEAVES

In this section, we introduce the categories
DliS (XWeil, A) C Dcons (XWeil, A) C D(XWeil’ A)

consisting of lisse, resp. constructible, resp. all Weil sheaves. These are the cate-

gories featuring in the categorical Kiinneth formula (2.2.2).

Throughout this section, X is a scheme over a finite field F, of characteristic p > 0.
Unless the contrary is mentioned, we impose no conditions on X. Moreover, A
is a condensed ring. We fix an algebraic closure F of F,, and denote by Xz :=
X Xg, SpecF the base change. Denote by ¢x (resp. ¢r) the endomorphism of Xg
that is the g-Frobenius on X (resp. Spec F) and the identity on the other factor.

Let
Dlis(X]F,A) c Dcons(XF’ A) C D(XIF’ A)

be the categories of lisse, resp. constructible, resp. all proétale sheaves of A-modules
on Xp lb . These categories are objects in Cat]fo’f , (Idem), thatis, A.-linear stable
idempotent complete symmetric monoidal co-categories where A, = I'(x, A) is the

underlying ring.

6.1 The Weil-proétale site

The Weil-étale topology for schemes over finite field is introduced in (Lichtenbaum,
2005) see also (Geisser, 2004). Our approach for the proétale topology is slightly
different:

Definition 6.1.1. The Weil-proétale site of X, denoted by XVl is the following
. proé

site: Objects in X:Ygélt are pairs (U, ¢) consisting of U € (Xg)prost equipped with

an endomorphism ¢: U — U of F-schemes such that the map U — X intertwines

¢ and ¢x. Morphisms in X:;’gélt

{(Ui, ¢i) = (U, @)} of morphisms is a cover if the family {U; — U} is a cover in

(XF)proét-

are given by equivariant maps, and a family

Note that ngélt admits small limits formed componentwise as

lim(U;, ¢i) = (im U, lim ¢;).



27
In particular, there are limit-preserving maps of sites

(XIF)proét - ngélt — Xproét (6.1)
given by the functors (in the opposite direction) U «— (U, ¢) and (Ug, ¢y) < U. We
denote by D(XW¢il| A) the unbounded derived category of sheaves of Ax-modules

Weil - -
on X 7% The maps of sites (6.1) induce functors

D(X,A) - DXVl A) - D(Xg, A), (6.2)
whose composition is the usual pullback functor along Xg — X.

Remark 6.1.2. The functor D(X, A) — D(XWel A) is not an equivalence in gen-
eral. This relates to the difference between continuous representations Galois versus
Weil groups. See, however, Proposition for filtered colimits of finite discrete
rings A.

We have the following basic functoriality: Let j: U — X be a weakly étale mor-
phism and consider the corresponding object (Ug, ¢y) of X;’;’(f;lt Then the slice

. Weil . . Weil I N St
site (Xproét) /(Us,¢y) 1S €quivalent to Uproét. This gives a functor (Xpros)? — Pry,

U — D(UY! A) which is a hypercomplete sheaf of A.-linear presentable stable

categories.

Also, we obtain an adjunction
ji: DUYLA) 2 DXL A):

that is compatible with the ((jg);, (jr)*)-adunction under (6.2). The category
D(XxWVell A) is equivalent to the category of ¢x-equivariant sheaves on Xg, as we

will now explain.

For each i > 0, consider the object (X;, ®;) € ngélt with X; = Z*! x Xp the
countably disjoint union of Xg, the map X; — X given by projection and the

endomorphism ®@;: X; — X; givenby (n,x) — (n—(1,...,1), #x(x)) on sections.

The inclusion Z! — Z*!, n +— (0,n) induces a map of schemes X;_; — X; where

X_1 := Xg. By pullback, we get a limit-preserving map of sites

(Xi-Dprost = (Xveh (6.3)

)/(Xi@i)

Lemma 6.1.3. For eachi > 0, the map (6.3) induces an equivalence on the associ-

ated 1-topoi.
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Proof. As universal homeomorphisms induce equivalences on proétale 1-topoi
(Bhatt and Scholze, 2015, Lemma 5.4.2), we may assume that X is perfect. In
this case, the sites (6.3) are equivalent because ¢x is an isomorphism. Explicitly, an
inverse is given by sending an object U € (X;—1)proet to the object V = |, czis1 Vi,
Vu — {n} X Xg defined by

..... 1) X Xz,0x XF —
Va-(1,...1)- o

Weil sheaves admit the following presentation as the ¢ -fixed points of D(Xp, A),
see 2.1k

Proposition 6.1.4. The last functor in (6.2)) induces an equivalence
Weil %%
D(X™", A) =lim|D(Xg, A) = D(Xp, A)]. (6.4)
id

Remark 6.1.5. Objects in Equation are pairs (M, a) where M € D(Xg, A)
and « is an isomorphism M = ¢ M. Note that the composition ¢x o ¢r is the
absolute q-Frobenius of Xg. In particular, it induces the identity on proétale topoi,
see (Bhatt and Scholze, 2015, Lemma 5.4.2). Therefore, replacing ¢y by ¢r in
Equation vields an equivalent category.

Proof of Proposition[6.1.4] The structural morphism (Xp, ®9) — (X, ¢x) is a
-y Weil < : Weil

cover in Xprg'ét. Its Cech nerve has objects (X;, @;) € Xprgét, i > 0 as above. By

descent, there is an equivalence

D(XVel!, A) =5 Tot (D(CXR) (x, 001, A) ) (6.5)

Under Lemma |6.1.3] the cosimplicial 1-topos associated with (X:;’gélt) [(Xody) 1S

equivalent to the cosimplicial 1-topos associated with the action of ¢% on (Xz)prost.

The equivalence Equation (6.5]) then becomes
D(x Vel A) = lim D(Xg, A),

for the diagram BZ — Prf‘\t corresponding to the endomorphism ¢ of D(Xg, A).
That is, D(XWell, A) is equivalent to the homotopy fixed points of D(Xg, A) with

respect to the action of ¢§(, which is our claim. O
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6.2 Weil sheaves on products

The discussion of the previous section generalizes to products of schemes as follows.
Let X1, ..., X, be schemes over F,, and denote by X := X XF, -+ X5, Xn their
product. For every 1 < i < n, we have a morphism ¢y, : X;r — X;F as in the
previous section. We use the notation ¢y, to also denote the corresponding map on
Xr = X1 rXp...Xr Xyr Which is ¢x, on the i-th factor and the identity on the other

factors.

We define the site (vaeﬂ X ... X X,‘Zveﬂ)proét whose underlying category consists of
tuples (U, ¢1,...,¢,) With U € (Xg)pros: and pairwise commuting endomomor-

phisms ¢;: U — U such that the following diagram commutes

U—2-u

.

Xp —— Xp,

forall1 < i < n. Asbefore, we denote by D(XVeilx. . .x X V!l A) the corresponding

derived category of A-sheaves.

Using a similar reasoning as in the previous section, we can identify this category

of sheaves with the homotopy fixed points
D(xell x ... x X\l A) — Fix(D(Xe, A), 6y, - .., $%) (6.6)

of the commuting family of the functors ¢§Q , see Remark Explicitly, forn = 2,
this is the homotopy limit of the diagram
%,
D(Xg, A) - D(Xg, A)

id
idt lqﬁ’&z " idl jr&
X

D(Xe, A) —~ D(Xg, A).

id
Roughly speaking, objects in the category D(XfVeil X ... x XWel A) are given by
tuples (M, aq,...,a,) with M € D(Xg, A) and with pairwise commuting equiv-
alences a;: M = ¢§QM . That is, equipped with a collection of equivalences

¢}j () oa; = Py, (aj) o ; for all i, j satisfying higher coherence conditions.

6.3 Partial-Frobenius stability
For schemes Xi, . . ., X,, over F,, we denote by X := X; X, * X5, Xn their product

together with the partial Frobenii Froby,: X — X, 1 <i < n.
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To give a reasonable definition of lisse and constructible Weil sheaves, we need to
understand the relation between partial-Frobenius invariant constructible subsets in

X and constructible subsets in the single factors X;:

Definition 6.3.1. A subset Z C X is called partial-Frobenius invariant if for all
1 <i < nwe have Froby,(Z) = Z.

The composition Froby, o --- o Froby, is the absolute g-Frobenius on X and thus
induces the identity on the topological space underlying X. Therefore, in order
to check that Z C X is partial-Frobenius invariant, it suffices that, for any fixed 7,
the subset Z is Froby;-invariant for all j # i. This remark, which also applies to

Xrp = X1 Xg, ... Xg, Xn Xg, SpecF, will be used below without further comment.

We first investigate the case of two factors with one being a separably closed field.
This eventually rests on Drinfeld’s descent result (V. G. Drinfeld, |1987, Proposition

1.1) for coherent sheaves:

Lemma 6.3.2. Let X be a gcqs Fy-scheme, and let k /F, be a separably closed field.
Denote by p: X — X the projection. Then Z — p~'(Z) induces a bijection

{constructible subsets in X } < {partial-Frobenius invariant, constructible subsets in X }

Proof. The injectivity is clear because p is surjective. It remains to check the
surjectivity. Without loss of generality we may assume that k is algebraically closed,
and replace Froby by Frob; which is an automorphism. Given that Z — p~!(Z)
is compatible with passing to complements, unions and localizations on X, we are
reduced to proving the bijection for constructible closed subsets Z and for X affine
over F,. By Noetherian approximation (6.3.4), we reduce further to the case where
X is of finite type over F,; and still affine. Now we choose a locally closed embedding
X - P%q into projective space. A closed subset Z’ C Xy is ¢ -invariant if and only
if its closure inside P is so. Hence, it is enough to consider the case where X = P%q
is the projective space. Let Z’ be a closed Frobg-invariant subset of X;. When
viewed as a reduced subscheme, the isomorphism ¢ restricts to an isomorphism
of Z’. In particular, Oz is a coherent Ox, -module equipped with an isomorphism
Oy = ¢ZOZ'- Hence, Drinfeld’s descent result (V. G. Drinfeld, 1987, Proposition
1.1) (see also (Kedlaya, 2019, Section 4.2) for a recent exposition) yields Z’ = Z;,
for a unique closed subscheme Z C X. O



31

The following proposition generalizes the results (Lau, 2004, Lemma 9.2.1) and
(V. Lafforgue, 2018, Lemme 8.12) in the case of curves.

Proposition 6.3.3. Let X1, ..., X, be gqcqs F,-schemes, and denote X = X, XF,
... Xg, Xu. Then any partial-Frobenius invariant constructible closed subset Z C X
is a finite set-theoretic union of subsets of the form Zy Xg,, . . . Xg, Zy, for appropriate

constructible closed subschemes Z; C X;.

In particular, any partial-Frobenius invariant constructible open subscheme U C X
is a finite union of constructible open subschemes of the form Uy Xg,, . .. Xg, Uy, for

appropriate constructible open subschemes U; C X;.

Proof. By induction, we may assume n = 2. By Noetherian approximation
(Lemma [6.3.4), we reduce to the case where both X, X, are of finite type over
F,. In the following, all products are formed over F,, and locally closed subschemes
are equipped with their reduced subscheme structure. Let Z C X; X X, be a partial-
Frobenius invariant closed subscheme. The complement U = X X X; \ Z is also

partial-Frobenius invariant.

In the proof, we can replace X; (and likewise X;) by a stratification in the following
sense: Suppose X; = A’ U A” is a set-theoretic stratification into a closed subset
A’ with open complement A”. Once we know Z N A" X X, = |, Zij X Zéj and
ZNA"X Xy =, Zi’j X Zé’] for appropriate closed subschemes Zij C A, Zi’] c A”
and Zé . Zé’. C X, we have the set-theoretic equality

J 72

Z= Uz;,.ngj U Uz;'j x 23,
J J

where Z_{’] C Xj denotes the scheme-theoretic closure. Here we note that taking
scheme-theoretic closures commutes with products because the projections X; X
X, — X; are flat, and that the topological space underlying the scheme-theoretic

closure agrees with the topological closure because all schemes involved are of finite
type.

The proof is now by Noetherian induction on X», the case X, = () being clear (or, if
the reader prefers the case where X» is zero dimensional reduces to Lemma [6.3.2).
In the induction step, we may assume, using the above stratification argument, that
both X; are irreducible with generic point 77;. We let 77; be a geometric generic point

over 77;, and denote by p;: X; X X, — X; the two projections. Both p; are faithfully
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flat of finite type and in particular open, so that p;(U) is open in X;. We have a

set-theoretic equality
Z = ((X1\ p1(U)) x X2) U (X1 x (X2 \ p2(U))) U (Z N p1(U) x p2(UV)).

Once we know ZNp(U)xp2(U) = J; Z1;XZ,; for appropriate closed Z;; € p;(U),
we are done. We can therefore replace X; by p;(U) and assume thatboth p;: U — X;

are surjective.

The base change U Xx, 7, is a ¢y, -invariant subset of X; X 77,. By Lemma[6.3.2] it
is thus of the form U; X 77, for some open subset Uy C X;. There is an inclusion (of
open subschemes of X; Xn2): UXx,n2 C UpXn,. Itbecomes a set-theoretic equality,
and therefore an isomorphism of schemes, after base change along 17, — 7n,. By
faithfully flat descent, this implies that the two mentioned subsets of X X 17, agree.
We claim U; = X;. Since the projection U — X, is surjective, in particular its
image contains 775, so that U; is a non-empty subset, and therefore open dense in
the irreducible scheme X;. Let x; € X; be a point. Since the projection U — X
is surjective, U N ({x1} X X3) is a non-empty open subscheme of {x;} X X». So it

contains a point lying over (x,72). We conclude X; X, C U.
We claim that there is a non-empty open subset A, C X, such that
X1 X Ay Cc U or, equivalently, X1 X (X2 \ A2) DX XX, \ U.

The underlying topological space of V = X; X X, \ U is Noetherian and thus has

finitely many irreducible components V;. The closure of the projection p»(V;) C X»
does not contain 1, since X; X na € U. Thus, A :=(); X1 \ pa(V;) satisfies our

requirements.

Now we continue by Noetherian induction applied to the stratification X, = A, U
(X2\ A2): We have ZN X X Ay = 0, so that we may replace X by the proper closed

subscheme X; \ A;. Hence, the proposition follows by Noetherian induction. O

The following lemma on Noetherian approximation of partial Frobenius invariant

subsets is needed for the reduction to finite type schemes:

Lemma6.3.4. Let X1, ..., X, be qcqs F,-schemes, and denote X = X; XE, - - - XE, Xn-
Let X; = lim; X;; be a cofiltered limit of finite type F,-schemes with affine transition
maps, and write X = lim; X;, X; = Xj; XF, - Xg, Xnj (see Let Z C X be a

constructible closed subset. Then the intersection
n

7' = ﬂ m Froby (2)

i=1 meZ
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is partial Frobenius invariant, constructible closed and there exists an index j and
a partial Frobenius invariant closed subset Z;. C X; such that 7' = Z} Xx, X as

sets.

We note that each Froby, induces a homeomorphism on the underlying topological
space of X so that Z’ is well-defined. This lemma applies, in particular, to partial
Frobenius invariant constructible closed subsets Z C X in which case we have
zZ=27.

Proof. As Z is constructible, there exists an index j and a constructible closed
subscheme Z; C X; such that Z = Z; Xx; X as sets. We put Z;. = ﬂ?zl Nimez
Frob?}ij (Z;). As X; is of finite type over F,, the subset Z;. is still constructible
closed. As partial Frobenii induce bijections on the underlying topological spaces,
one checks that Frob?ij(Zj) Xx; X = Froby (Z) as sets for all m € Z. Thus,

7 = Z} Xx, X which, also, is constructible closed because X — Xj is affine. O

6.4 Lisse and constructible Weil sheaves
In this subsection, we define the subcategories of lisse and constructible Weil sheaves
and establish a presentation similar to (6.4). Let Xj, ..., X, be schemes over F,,

and denote X = X, XF, - - X5, Xn. Let A be a condensed ring.

Definition 6.4.1. Let M € D(X Vel ... x X Vil A).

1. The Weil sheaf M is called lisse if it is dualizable. (Here dualizability refers
to the symmetric monoidal structure on D(X?’veil X ... X X,fveﬂ, A), given by

the derived tensor product of A-sheaves on the Weil-proétale topos.)

2. The Weil sheaf M is called constructible if for any open affine U; C X;

there exists a finite subdivision into constructible locally closed subschemes
S . . Weil Weil

Ui; C U; such that each restriction M|U}’>{ellxme’\1&;eﬂ € D(UIJ. X... XU, A)

is lisse.

The full subcategories of D(X})veil X ...ox Xwveil A) consisting of lisse, resp. con-

structible Weil sheaves are denoted by
DliS(X?VCﬂ X ... x XVl A) € Deons (XIWeil X Lo XA

Both categories are idempotent complete stable I'( X, A)-linear symmetric monoidal

co-categories.
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From the presentation (6.6), we get that a Weil sheaf M is lisse if and only if the
underlying object My € D(XF, A) is lisse. So (6.6) restricts to an equivalence

Dis (X} x . x X%, A) = Fix (Dyo(Xe, A). 0%, 6%, ). (67)
The same is true for constructible Weil sheaves by the following proposition:

Proposition 6.4.2. A Weil sheaf M € D(X;’veil XXXV eil, A) is constructible if
and only if the underlying sheaf My € D(Xg, A) is constructible. Consequently,

Equation (6.0)) restricts to an equivalence

Deons (X! x ... x XMl A) = Fix (Dms (Xe, A), G- - ¢§n) . (68

Proof. Clearly, if M is constructible, so is Mg by Let M € D(vaeil X ... X
X,Yveﬂ, A) such that MF is constructible. We may assume that all X; are affine. We
claim that there is a finite subdivision Xg = LIX,, into constructible locally closed

subsets such that Mg|x,, is lisse and such that each X, is partial Frobenius invariant.

Assuming the claim we finish the argument as follows. By [6.3.3] any open stratum
U = X, C Xp is a finite union of subsets of the form U Xf ... Xg U, r and the
restriction of M to each of them is lisse. In particular, the complement Xg\U is
defined over F, and arises as a finite union of schemes of the form X’ = X { XF,
... Xg, Xj, for suitable qcqs schemes X/ over F;. Intersecting each X with the

remaining strata L, X;, we conclude by induction on the number of strata.

It remains to prove the claim. We start with any finite subdivision X = LIX;. into
constructible locally closed subsets such that M| X/ is lisse. Pick an open stratum
X’ , and set
Jo
n
X = erxy). 6.9)
i=1 meZ

This is a constructible open subset of Xg by [6.3.4]applied to its closed complement.
Furthermore, M]plxjo is lisse by its partial Frobenius equivariance, noting that ¢§(;
induces equivalences on proétale topoi to treat the negative powers in (6.9). As
before, Xr\Xj, is defined over F,. So replacing XJ’., J # jo by X]’. N (Xr\Xj,), the

claim follows by induction on the number of strata. O
In the case of a single factor X = X, the preceding discussion implies
Weil . X
Do (X", A) =lim|D¢(Xp, A) = Du(Xr, A) |, (6.10)
id

for e € {@, lis, cons}.
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6.5 Relation with the Weil groupoid

In this subsection, we relate lisse Weil sheaves with representations of the Weil
groupoid. Throughout, we work with étale fundamental groups as opposed to their
proétale variants in order to have Drinfeld’s lemma available, see Section The
two concepts differ in general, but agree for geometrically unibranch (for example,
normal) Noetherian schemes, see (Bhatt and Scholze, 2015, Lemma 7.4.10).

For a Noetherian scheme X, let 71 (X) be the étale fundamental groupoid of X as
defined in (Revétements étales et groupe fondamental (SGA 1)/2003, Exposé V, §7
and §9). Its objects are geometric points of X, and its morphisms are isomorphisms
of fiber functors on the finite étale site of X. This is an essentially small category.
The automorphism group in 71 (X) at a geometric point x — X is profinite. It is
denoted 71 (X, x) and called the étale fundamental group of (X, x). If X is connected,
then the natural map Br(X,x) — m1(X) is an equivalence for any x — X. If X is
the disjoint sum of schemes X;, i € I, then 71 (X) is the disjoint sum of the 71 (X;),
i € I. In this case, if x — X factors through X;, then (X, x) = 71 (X;, x).

Definition 6.5.1. Ler X, ..., X, be Noetherian schemes over F,, and write X =

X1 Xg, ... Xg, Xu. The Frobenius-Weil groupoid is the stacky quotient

FWeil(X) = 71 (Xe) /(6% - - - 85, ): (6.11)

where we use that the partial Frobenii ¢x, induce automorphisms on the finite étale
site of Xp.

For n = 1, we denote FWeil(X) = Weil(X). Even if X is connected, its base
change X might be disconnected in which case the action of ¢y permutes some
connected components. Therefore, fixing a geometric point of X is inconvenient,
and the reason for us to work with fundamental groupoids as opposed to fundamental
groups. The automorphism groups in Weil(X) carry the structure of locally profinite
groups: indeed, if X is connected, then Weil(X) is, for any choice of a geometric
point x — Xp, equivalent to the classifying space of the Weil group Weil (X, x) from
(Deligne, |1980, Définition 1.1.10).

Recall that this group sits in an exact sequence of topological groups
I — m1(Xp,x) — Weil(X, x) — Weil(F/F,) = Z, (6.12)

where 71 (Xg, x) carries its profinite topology and Z the discrete topology. The

topology on the morphism groups in Weil(X) obtained in this way is independent
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from the choice of x — Xp. The image of Weil(X,x) — Z is the subgroup mZ
where m is the degree of the largest finite subfield in I'(X, Ox). In particular, we
have m = 1 if Xz is connected. Let us add that if x — X is fixed under ¢y, then
the action of ¢x on 71 (Xp,x) corresponds by virtue of the formula ¢3 = (¢f;)‘1

to the action of the geometric Frobenius, that is, the inverse of the g-Frobenius in
Weil(F/F,).

Likewise, for every n > 1, the stabilizers of the Frobenius-Weil groupoid are
related to the partial Frobenius-Weil groups introduced in (V. G. Drinfeld, 1987,
Proposition 6.1) and (V. Lafforgue, 2018, Remarque 8.18). In particular, there is an
exact sequence

1 — m1(Xg,x) = FWeil(X,x) — Z",

for each geometric point x — Xp. This gives FWeil(X) the structure of a locally

profinite groupoid.

Let A be either of the following coherent topological rings: a coherent discrete
ring, an algebraic field extension £ O Q, for some prime ¢, or its ring of integers
Ok D Z¢. For atopological groupoid W, we will denote by Rep, (W) the category of
continuous representations of W with values in finitely presented A-modules and by
Repf\'p (W) c Rep, (W) its full subcategory of representations on finite projective A-
modules. Here finitely presented A-modules M carry the quotient topology induced

from the choice of any surjection A" — M, n > 0 and the product topology on A”".

Lemma 6.5.2. In the situation above, the category Rep, (W) is A.-linear and
abelian. In particular, its full subcategory Repf\'p(W) is A.-linear and additive.

Proof. Let Wyis be the discrete groupoid underlying W, and denote by Rep, (W4isc)
the category of Wjyis.-representations on finitely presented A-modules. Evidently,
this category is A,-linear. Itis abelian since A is coherent. We claim thatRep, (W) C
Repy (Wiise) s a A-linear full abelian subcategory. If A is discrete (and coherent),
then every finitely presented A-module carries the discrete topology and the claim is
immediate, see also (Stacks, Tag 0A2H). For A = E, O, one checks that every map
of finitely presented A-modules is continuous, every surjective map is a topological
quotient and every injective map is a closed embedding. For the latter, we use
that every finitely presented A-module can be written as a countable filtered colimit
of compact Hausdorff spaces along injections, and that every injection of compact

Hausdorff spaces is a closed embedding. This implies the claim. O


https://stacks.math.columbia.edu/tag/0A2H
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We apply this for W being either of the locally profinite groupoids 7y (X), 71 (Xg) or
FWeil(X). Note that restricting representations along 7 (Xr) — FWeil(X) induces
an equivalence of A.-linear abelian categories

Rep, (FWeil(X)) = Fix (Rep, (71(Xg)), dx,s - - - dx,) » (6.13)
and similarly for the A.-linear additive category Repf\’p (FWeil(X ).

Definition 6.5.3. For an integer n > 0, we write Dl{i;”’"} (X, A) for the full subcate-
gory of Diis(X, A) of objects M such that M and its dual M lie in degrees [—n, n]
with respect to the t-structure on D(X, A).

Lemma 6.5.4. In the situation above, there is a natural functor
Rep, (FWeil(X)) — D(X"el x ... x X Vel A), (6.14)

that is fully faithful. Moreover, the following properties hold if A is either finite
discrete or A = O for E D Qy finite:

1. An object M lies in the essential image of Equation (6.14)) if and only if its
underlying sheaf Mr is locally on (Xg)prost isomorphic to N ®, Ax; for some
finitely presented \.-module N.

2. The functor (6.14)) restricts to an equivalence of A.-linear additive categories
Rep|,P (FWeil (X)) —> D20 (X Vel 5 xVeil A).
3. If A, is regular (so that A is t-admissible, cf. Chapter 3| Item vi), then Equa-
tion (6.14) restricts to an equivalence of A.-linear abelian categories
Rep, (FWeil(X)) — Diig (X} x ... x XVl A)7,

Ifall X;, i = 1,...,n are geometrically unibranch, then (1), 2) and (3) hold for

general coherent topological rings A\ as above.

Proof. Thereis acanonical equivalence of topological groupoids 77 (Xg) = nll)mét (XF)
with the profinite completion of the proétale fundamental groupoid, see (Bhatt and
Scholze, 2015, Lemma 7.4.3). It follows from (Bhatt and Scholze, 2015, Lemmas
7.4.5,7.4.7) that restricting representations along nlfrOét(X]p) — 71 (Xp) induces full
embeddings

Rep, (71 (Xz)) < Rep, (77 (Xz)) < D(Xg, A)7, (6.15)
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that are compatible with the action of ¢y, foralli = 1,...,n. So we obtain the fully

faithful functor (6.14) by passing to fixed points, see (6.13)), and Lemma{.2.2]
(see also4.2.3).

Part Item |1| describes the essential image of Rep A(nrl’rOét(XF)) — D(Xg,A)Y. So
if A is finite discrete or profinite, then the first functor in is an equivalence,
and we are done. Part Item 2] is immediate from Item [T} noting that an object in
the essential image of Equation (6.15) is lisse if and only if its underlying module
is finite projective. Likewise, part Item [3]is immediate from Item [I] using Item [vii]
Here we need to exclude rings like A = Z/£? in order to have a t-structure on lisse

sheaves.

Finally, if all X; are geometrically unibranch, so is Xg which follows from the
characterization (Stacks, Tag 0BQ4). In this case, we get 71 (Xp) = nﬁ’mét(XF) by
(Bhatt and Scholze, 2015, Lemma 7.4.10). This finishes the proof. m]

6.6 Weil-étale versus étale sheaves

We end this section with the following description of Weil sheaves with (ind-)finite
coeflicients. Note that such a simplification in terms of ordinary sheaves is not
possible for A = Z, Z;, Qy, say.

Proposition 6.6.1. Let X be a qcgs F,-scheme. Let A be a finite discrete ring or a

filtered colimit of such rings. Then the natural functors
Dlis (X, A) - Dlis (XWeil’ A) P Dcons(Xa A) - Dcons (XWeil’ A) s

are equivalences.

Proof. Throughout, we repeatedly use that filtered colimits commute with finite
limits in Cats. Using compatibility of D¢ons With filtered colimits in A (Chap-
ter [5] Item [iv), we may assume that A is finite discrete. By the comparison result
with the classical bounded derived category of constructible sheaves, we can identify
the categories Do (X, A), resp. Do (Xw, A) for e € {lis, cons} with full subcategories
of the derived category of étale A-sheaves D(Xg, A), resp. D(Xgg, A). Write
X = lim X; as a cofiltered limit of finite type F,-schemes X; with affine transition
maps (Stacks, Tag 01ZA). Using the continuity of étale sites (Stacks, Tag 03Q4),

there are natural equivalences

colimD,(X;, A) — Du(X,A), colimD. (X", A) — Dy (X™ A) (6.16)


https://stacks.math.columbia.edu/tag/0BQ4
https://stacks.math.columbia.edu/tag/01ZA
https://stacks.math.columbia.edu/tag/03Q4

39

for e € {lis, cons}. Hence, we can assume that X is of finite type over F,,.

To show full faithfulness, we claim more generally that the natural map
. ’x Weil
D(Xét,/\) — lim D(XF’ét,A) :d; D(XF’e’[, A) = D(Xéte1 ,A)
1

is fully faithful. As A s torsion, thisis immediate from (Geisser, 2004, Corollary 5.2)

applied to the inner homomorphisms between sheaves.

Let us add that this induces fully faithful functors
D* (Xe, A) — D* (X2 A) — D(XWVE A) (6.17)
on bounded below objects, see (Bhatt and Scholze, 2015} Proposition 5.2.6 (1)).

It remains to prove essential surjectivity. Using a stratification as in [6.4.1] it is
enough to consider the lisse case. Pick M € D“s(Xweﬂ, A). It is enough to show
that M lies is in the essential image of Equation (6.17), noting that the functor
detects dualizability. As M is bounded, this will follow from showing that for every
j € Z, the cohomology sheaf H/ (M) € D(X"Well, A)? is in the essential image of

Equation (6.17).

Fix j € Z. As M is lisse, the underlying sheaf H/ (M)g € D(Xg, A)? is proétale-
locally constant (Chapter [5] Item and valued in finitely presented A-modules.
By Lemma Item |1} it comes from a representation of Weil(X). Restriction of

representations along Weil(X) — 71 (X) fits into a commutative diagram

Rep, (m1(X)) —= Rep, (Weil(X))

| |

D(X¢, A)Y D(xWeil, A)®,

where the upper horizontal arrow is an equivalence since A is finite. In particular, the
object H/ (M) is in the essential image of the fully faithful functor Equation (6.17).
O
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Chapter 7

THE CATEGORICAL KUNNETH FORMULA

7.1 The main result

We continue with the notation of Chapter 6} In particular, F, denotes a finite field
of characteristic p > 0. Recall from Chapter [] the tensor product of A,-linear
idempotent complete stable co-categories. The external tensor product of sheaves
(My,...,M,) » M| ®...R M, as in Equation induces a functor

Do (XY, A) ®@perty. - - - ®pert,, Do (X, A) — Do (XY x ... x X)L A), (7.1)

for @ € {lis,cons}. Throughout, we consider the following situation. In Re-
mark [7.1.3] we explain the compatibility of Equation (7.I) with certain (co-)limits
in the schemes X; and coefficients A, which allows to relax these assumptions on X

and A somewhat.

Situation 7.1.1. The schemes X\, ..., X, are of finite type over F,, and A is the

condensed ring associated with one of the following topological rings:

(a) a finite discrete ring of prime-to-p-torsion;

(b) the ring of integers O of an algebraic field extension E > Qg for £ # p (for

example Z¢);
(c) an algebraic field extension E > Qg for £ # p (for example Qg);
(d) a finite discrete p-torsion ring that is flat over Z/p™ for some m > 1.

Theorem 7.1.2. In Situation the functor Equation ((1.1)) is an equivalence in

each of the following cases:

1. e =cons and A is as in Item|d| Item[b|or Item|d;
2. e =lisand A is as in Item|d} Item[D} Item[d|or as in Item|difall X;, i = 1,...,n

are geometrically unibranch (for example, normal).

In the p-torsion free cases Item [a] Item [b]and Item|c] the full faithfulness is a direct

consequence of the Kiinneth formula applied to the X; r. In the p-torsion case Item[d]
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we use Artin—Schreier theory instead. It would be interesting to see whether this
part can be extended to constructible sheaves using the mod-p-Riemann—Hilbert
correspondence as in, say, (Bhatt and Lurie, |2019). In all cases, the essential

surjectivity relies on a variant of Drinfeld’s lemma for Weil group representations.

Before turning to the proof of Theorem|/.1.2] we record the following compatibility
of the functor Equation with (co-)limits. This can be used to reduce the case
of an (infinite) algebraic extension E D Q in cases Item [b| and Item [c| above to
the case where E D Qg is finite. In the sequel we will therefore assume E is finite
in these cases. Remark can further be used to extend Theorem to qcgs
F,-schemes X; and finite discrete rings like Z/m for any integer m > 1 in cases
Item [al and Ttem

Remark 7.1.3 (Compatibility of with certain (co-)limits). Throughout, we
repeatedly use that filtered colimits commute with finite limits in Catfox’ A, (Idem): the
forgetful functors Cati’f A, (Idem) — Catt*(Idem) — Cato, create these (co)limits
(Lurie, 2017, Theorem 1.1.4.4), (Lurie, | 2009, Corollary 4.4.5.21), and the statement
holds in any compactly generated oo-category, such as Cats, (Bhatt and Mathew,
2021, Example 3.6(3)). We will also throughout use that in all the stable co-
categories encountered below the tensor product preserves colimits and in particular

finite limits.

1. Filtered colimits in A. First off, extension of scalars along any map of

condensed rings A — N’ induces a commutative diagram in Cat](foX A, (Idem):

D, (XYL A) ®@perty, - - - ®pert,y, Do (X7, A) —— Do (XY x XV A)

| |

D (XY, ) ®pert,, - - - ®Pert, Do (X', A) ——Da (X x X,V AY)

It follows from the compatibility of Dcons with filtered colimits in A (Chap-
ter 5| Item [iV) that both sides of Equation (7.1) are compatible with filtered

colimits in A.

2. Finite products in A. Let A = [ A; be a finite product of condensed rings. For
any scheme X, the natural map Do(X,A) — [[De(X, A;) is an equivalence
for e € {@,lis, cons}, and likewise for Weil sheaves if X is defined over F,. As
A =[] A+, we see that is compatible finite products in the coefficients.
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3. Limits in X; for discrete A. Assume that A is finite discrete, see Situation[7.1.1|
Item |a) Item |d| Let X, ..., X, be qcqs Fy-schemes. Write each X; as a
cofiltered limit X; = lim X;; of finite type F,-schemes X;; with affine transition
maps (Stacks, Tag 01ZA). As A is finite discrete, we can use the continuity of
étale sites as in Equation to show that the natural map

co}imD. (XB(E’” X ... X Xgeil, A) =D, (X;Ne“ Coo X X,\ZV"“, A),

is an equivalence for e € {lis, cons}. Thus, Equation (7.1)) is compatible with

cofiltered limits of finite type F,-schemes with affine transition maps.

7.2 A formulation in terms of prestacks

Before turning to the proof, we point out a formulation of the results of the previous
subsection in terms of symmetric monoidality of a certain sheaf theory. This
formulation makes the connection with constructions in the geometric approaches
to the Langlands program (Dennis Gaitsgory, Kazhdan, et al., 2022} Zhu, 2021; V.
Lafforgue and Zhu, 2019) more manifest. Readers not familiar with prestacks and
formulations of sheaf theories on them can safely skip this section. The categories of

constructible, resp. lisse A-sheaves assemble into a lax symmetric monoidal functor

Do a: (Schp)®? — CatEo’fA(Idem) (e =lis or cons). (7.2)

Namely, as a functor it sends a scheme X to the category of constructible, resp. lisse
A-sheaves on X, and a morphism f: X — Y to the functor f*: Do(Y,A) —
D.(X,A). These are objects, resp. maps in the co-category Catfo’f A(dem) :=
Modpef, (CatE*(Idem)), cf. Section |4.1|for notation. The lax monoidal structure is

given by the external tensor product of sheaves:
=: D, (Xproét’ A) ®Perf), Do(Yproét’ A) - D.((X XF Y)proéta A)-

That is, we consider the category of schemes as symmetric monoidal with respect
to the fiber product over F, and the external tensor product is natural on X and Y in
the appropriate sense, see (Dennis Gaitsgory and Lurie, 2019, Section 3.1), (Dennis
Gaitsgory and Rozenblyum, [2017b, Section III.2) for details and precise statements.
This functor ® often fails to be an equivalence, so D, A is not symmetric monoidal.
The assertion of Theorem [7.1.2]is that this issue is resolved by replacing sheaves

with Weil sheaves.

In order to formulate[7.1.2)as the monoidality of a certain functor, we need to replace

the category of schemes by a category of objects that model Weil sheaves. We will
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represent these by taking the appropriate formal quotient by the partial Frobenius

automorphism. Such formal quotients can be taken in the category of prestacks.

We denote by PreStkr the category of (accessible) functors from the category CAlgg
of commutative algebras over F to the co-category Ani of Anima. The functor of
taking points embeds the category of schemes fully faithfully into PreStkg.

We denote by
D, (PreStkg)® — Cat, (Idem) (7.3)

the functor obtained by right Kan extension (Lurie, 2009, §4.3.2) along the inclusion
(SchIpr)Op C (PreStkg)°P. Concretely, (Lurie, 2018, Proposition 6.2.1.9, Proposition
6.2.3.1), given a prestack ¥ which can be written as a colimit of schemes Y, over

some indexing category A we have a canonical equivalence
Do(Y,A) = lim D4 (Y,, A). (7.4)
[0

This limit is formed in Cat* A(Idem); recall from around (4.3) that the Ind-

OO,

completion functor to Cat];:oX A(dem) — Pr/S\t does not preserve (even finite) limits.

With this general sheaf theory in place, we can restrict our attention to the class of

prestacks that is relevant to the derived Drinfeld lemma.

Definition 7.2.1. Let X be a scheme over F,. The Weil prestack is defined as
Weil - #x
X :=colim [ X xp, F 3 X xp, F| € PreStkp,
id
i.e., it is the prestack sending R € CAlgg, to the colimit

XWell(R) = colim (X(R) % X(R)) . (7.5)
id

We denote by Schif,eﬂ the smallest full monoidal subcategory of PreStkr containing
the Weil prestacks of finite type schemes X/F,. Equivalently, this is the full

subcategory consisting of finite products of the form X Vil x - - - x XVeil.

Lemma 7.2.2. Let Xy, ..., X, be schemes over F,. There is a canonical equivalence
D (X! xz - g X)) = Fix (D (X5, A), 6, - - -, & ) (7.6)

Proof. Let ®: BZ" — PreStkg be the functor corresponding to the commuting

automorphisms ¢yx,. Then the claim follows immediately from the identification of
XVell xz - -« xp XVl with the colimit of @ (as an object in PreStkg). O
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Theorem 7.2.3. Suppose e and A are as in Then the restriction of De p to
Weil prestacks, i.e., the following composite

D (Sch )P C PreStkz — Cat™, (Idem), (7.7)

is symmetric monoidal.

Proof. As was noted above, the functor in Equation is lax symmetric monoidal.
By (Torii, [2022], Proposition 2.7), the Kan extension in Equation is still lax
symmetric monoidal. To check its restriction to the (symmetric monoidal) subcate-
gory Sch{f,eﬂ is symmetric monoidal it suffices to show that the lax monoidal maps

are in fact isomorphisms. This is precisely the content of Theorem O

7.3 Full faithfulness
In this section, we prove that the functor Equation (7.1)) is fully faithful under the
conditions of Theorem We first consider the p-torsion free cases:

Proposition 7.3.1. Let X1, ..., X, and A be as in Situation Item|d| Item[p|or
Item|d Then the functor Equation (1.1)) is fully faithful for e € {lis, cons}.

Proof. In a nutshell, this is an instance of the Kiinneth formula: for constructible
sheaves on X; r (as opposed to Xlweil), this interpretation of the Kiinneth formula ap-
pears already in (Dennis Gaitsgory, Kazhdan, et al., 2022, Section A.2). Throughout,
we drop A from the notation. It is enough to verify that for all M;, N; € D¢ons (Xl.weﬂ)

the natural map

n

® HOI’nD(XWeil)(M,', Nl-) 4 HomD(X]WeileXXr\lNeil)(Ml R..RM,, NNR... R Nn)
i=1
(7.8)

is an equivalence. As Equation is functorial in the objects and compatible with
shifts, it suffices, by Definition [6.4.1] to consider the case where M;, i = 1,...,n
is the extension by zero of a lisse Weil A-sheaf on some locally closed subscheme

Z; c X;. Using the adjunction
(Li)! . Dcons(Z,'Weil) 2 Dcons(X,‘weil) : (Li)!’

and the dualizability of lisse sheaves, we reduce to the case M; = Ax,,i=1,...,n.

That is, Equation becomes a map of cohomology complexes.
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By Proposition [6.1.4] we have

. ¢ —id
RC(XYel N;) = Fib [RT(X; 5, N;) ~—— RT(X;z N;)| .

A similar computation holds for the mapping complexes in D(X ¥ x ... x XVell),

see Equation (6.6). Such finite limits commute with the tensor product in Mod,.

Thus, Section reduces to the Kiinneth formula
RI(X15,N1) ® ... ® R[ (X5 Ny) — RO(X Xz ... Xz Xum Ni B ... R N,),

where we use that the X; are of finite type and the coprimality assumptions on A,
see (Stacks| Tag OF1P). O

Next, we consider the p-torsion case:

Proposition 7.3.2. Let Xi,..., X, and A be as in Situation Item|d) Then the
Sfunctor ([1.1)) is fully faithful for e = lis.

Proof. As in the proof of Proposition|/.3.1, we need to show that the map

n
QQRO(XY, N) - RO(XM! . x X)L N & & N,)  (79)
i=1

is an equivalence for any N; € Dns(XlWeﬂ). Using Zariski descent for both sides, we

may assume that each X; is affine. As A is finite discrete (see also the discussion

around (6.16)), the invariance of the étale site under perfection reduces us to the

case where each X; is perfect. The proof now proceeds by several reduction steps:

1) reduce to N; = Ay,; 2) reduce to A = Z/p; 3) reduce to g = p being a prime. The

last step 4) is then an easy computation.

Step 1): We may assume N; = Ax,. In order to show Equation (7.9) is a quasi-
isomorphism, it suffices to show this after applying =" for arbitrary . The com-
plexes N; are bounded (Chapter[S|Item[v). By shifting them appropriately, we may as-
sume r = 0. Note that R['(X"!, N;) = R['(X;, N;), see Propositionm By right
exactness of the tensor product, we have 7=0 (), R['(X;, N)) = ), 7<'RT(X;, N;).
Using the compatibility with the classical notion of constructible sheaves, there is
an étale covering U; — X; such that N;|y, is perfect-constant. Let U; , be the Cech

nerve of this covering. By étale descent, we have

RF(X,‘,N,') = lim RF(U,',]',N,').
[/]eA
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For each r € Z, there is some j, such that

=" lim R[(U;;,N;) = _lim t=RT(U;, N)).
[/]eA [/1€A.j <

This can be seen from the spectral sequence (note that it is concentrated in degrees
Jj = 0 and degrees j/ > r for some r, since the complexes N; are bounded from
below)

H/'(U;;,N;) = B/ yerg RT(U; j, N;) = H™¥ (X;, Ny).

As the tensor product in Equation commutes with finite limits, we may thus
assume that each N; is perfect-constant. Another dévissage reduces us to the case
N; = Ay, the constant sheaf itself.

Step 2): We may assume A = Z/p. By assumption, A is flat over Z/ p™ for some m >
1. We immediately reduce to A = Z/p™. For any perfect affine scheme X = Spec R
in characteristic p > 0, we claim that R['(X,Z/p™) ®z,,m Z/p" = RI['(X,Z/p").
Assuming the claim, we finish the reduction step by tensoring Equation (7.9) with
the short exact sequence of Z/p™-modules 0 — Z/p™ ' — Z/p™ — Z/p — 0,

using that finite limits commutes with tensor products.

It remains to prove the claim. The Artin—Schreier—Witt exact sequence of sheaves
on X yields
F—id
RE(X.Z/p™) = [Wu(R) =" Wun(R)].
Now we use that W,,(R) ®z;,m Z/p" =t W, (R) compatibly with F, which holds

since R is perfect. This shows the claim, and we have accomplished Step 2).

Step 3): We may assume q is prime. Recall that ¢ = p” is a prime power. In
order to reduce to the case r = 1, let X l.’ := X;, but now regarded as a scheme over
Fp. We have X/ = LI, Xir. The Galois group Gal(F,/F,) is generated by the
p-Frobenius, which acts by permuting the components in this disjoint union. Thus,
we have D((X/ yWeil) = D(Xl.weﬂ). The same reasoning also applies to several factors

Xl.Weﬂ, so we may assume our ground field to be F),.

Step 4): Set R := ® PP, R;, Ry := R ®p, F. We write ¢; for the p-Frobenius on R;
and also for any map on a tensor product involving R;, by taking the identity on the

remaining tensor factors. By Artin—Schreier theory, we have

i 66 $i—id
RO(XY, 2/p) "2 RI(X;,Z/p) = [Ri — Ril,

$—id
RIO(X 1 XF ... X Xyp Z/p) = [RF — Rgl,
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where ¢ is the absolute p-Frobenius of Rg. Thus, the right hand side in (7.9)) is the

homotopy orbits of the action of Z"*! on R, whose basis vectors act as ¢1, . .., ¢,
and ¢. Note that ¢ is the composite ¢p o ¢; o - - - o ¢,, where ¢ is the Frobenius
on F. Thus, the previously mentioned Z"*!-action on R is equivalent to the one

where the basis vectors act as ¢, ..., ¢, and ¢r. We conclude our claim by using

o
that [Rg iy Rp] is quasi-isomorphic to R[0]. O

7.4 Drinfeld’s lemma

The essential surjectivity in Theorem is based on the following variant of
Drinfeld’s lemma (V. G. Drinfeld, |1980, Theorem 2.1) (see also (L. Lafforgue, 1997,
IV.2, Theorem 4), (Lau, 2004, Theorem 8.1.4), (V. Lafforgue, 2018, Lemme 8.11),
and (Kedlaya, 2019, Theorem 4.2.12), (Heinloth, 2018, Lemma 6.3), (Scholze and
Weinstein, |2020, Theorem 16.2.4) for expositions). Its formulation is close to (Lau,
2004, Theorem 8.1.4), and in this form is a slight extension of (V. Lafforgue, 2018,
Lemme 8.2) for Z,-coeflicients and (Xue, 2020b, Lemma 3.3.2) for Q,-coeflicients.

We will drop the coefficient ring A from the notation whenever convenient.

Let Xi, ..., X, be Noetherian schemes over F,, and denote X = X Xg, - Xp, Xn.
Recall the Frobenius—Weil groupoid FWeil(X), see Definition[6.5.1} The projections
Xr — X;r onto the single factors induce a continuous map of locally profinite
groupoids

w: FWeil(X) — Weil(X;) X ... x Weil(X},). (7.10)

Theorem 7.4.1 (Drinfelds’s lemma). Let A be as in Situation Restriction
along the map Equation ([/.10) induces an equivalence

Rep, (Weil(X)) X ... X Weil(X,)) — Rep, (FWeil(X)), (7.11)

between the abelian categories of continuous representations on finitely presented

A-modules.

Proof. For all objects x € FWeil(X), that is, all geometric points x — X, passing
to the automorphism groups induces a commutative diagram of locally profinite
groups

1

m1(Xg, x) FWeil (X, x) z"

| ]

1 —[1., m(Xip,x) — 1}, Weil(X;, x) —Z".
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The left vertical arrow is surjective (Stacks, Tag OBN6)0385. Thus g, is surjective
as well and hence ((7.11) is fully faithful. For essential surjectivity, it remains to show
that any continuous representation FWeil (X, x) — GL(M) on a finitely presented A-
module M factors through p,. The key input is Drinfeld’s lemma: it implies that z,
induces an isomorphism on profinite completions. Therefore, it is enough to apply
Lemma [7.4.2] below with H := FWeil(X,x) — Weil(X;) X ... x Weil(X,) = G
and K := 1 (Xg, x). This completes the proof of (7.1T]. ]

The following lemma formalizes a few arguments from (Xue, 2020b, §3.2.3), and

we reproduce the proof for the convenience of the reader:

Lemma 7.4.2 (Drinfeld, Xue). Let A be as in[/.1.1] Let u: H — G be a continuous
surjection of locally profinite groups that induces an isomorphism on profinite
completions. Assume that there exists a compact open normal subgroup K C H
containing ker u such that H/K is finitely generated and injects into its profinite

completion. Then u induces an equivalence
Rep, (G) = Repy (H)

between their categories of continuous representations on finitely presented A-

modules.

Proof. The case where A is finite discrete is obvious, and hence so is the case
A = Og for some finite field extension E D Q;. The case A = E is reduced to
A = Qy. As u is surjective, it remains to show that every continuous representation
p: H — GL(M) on a finite-dimensional Q,-vector space factors through G, that is,
ker u C ker p. One shows the following properties:

1. The group ker u is the intersection over all open subgroups in K which are

normal in H.

2. The group ker pN K is a closed normal subgroup in H such that K /ker pNK =
o(K) is topologically finitely generated.

These properties imply ker u C ker p N K as follows: For a finite group L, let U, :=
Nker(K — L) where the intersection is over all continuous morphisms K — L that
are trivial on ker p N K. Because of the topologically finitely generatedness in (2),

this is a finite intersection so that Uy, is open in K. Also, it is normal in H, and
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hence ker u € U by (1). On the other hand, it is evident that kerp N K = N UL

because K is profinite.

For the proof of (1) observe that ker u agrees with the kernel of H — H" = G"
by our assumption on the profinite completions. Using ker u C K and the injection
H/K — (H/K)" implies (1).

For (2) it is evident that ker p N K is a closed normal subgroup in H. Since K is
compact, its image p (K) is a closed subgroup of the £-adic Lie group GL(M), hence
an {-adic Lie group itself. The final assertion follows from (Serre, |1964, théoreme
2). O

For the overall goal of proving essential surjectivity in Theorem [/.1.2] we need
to investigate how representations of product groups factorize into external tensor
products of representations. In view of Lemma and its proof, it is enough to
consider representations of abstract groups, disregarding the topology. This is done

in the next section.

7.5 Factorizing representations
In this subsection, let A be a Dedekind domain (Stacks, Tag 034X)). Thus, since A is
Noetherian and of projective dimension < 1, any submodule N of a finite projective

A-module M is again finite projective.

Given any group W, we write Repf\'p(W) for the category of W-representations on

finite projective A-modules.

Asin (Curtis and Reiner, 2006, Sections 73.8, 75), we say that such a W-representation
M is fp-simple if any subrepresentation 0 # N C M has maximal rank. By induction
on the rank, every non-zero representation in Repf\'p(W) admits a non-zero fp-simple
subrepresentation. The proof of the following lemma is left to the reader. It parallels
(Curtis and Reiner, 2006, Theorem 75.6).

Lemma 7.5.1. A representation M € Repf\'p(W) is fp-simple if and only if M ®x
Frac(A) is fp-simple (hence, simple).

The following proposition will serve in the proof of Theorem [7.1.2] using Theo-
rem [/.4.1) where we will need to decompose representations of a product of Weil

groups into decompositions of the individual Weil groups.
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Proposition 7.5.2. Let W = W xW, be a product of two groups. Let M € Repf\'p( W)
be fp-simple. Fix a Wy-subrepresentation My C M that is fp-simple. Consider the

W,-representation M, := Homy, (M, M) and the associated evaluation map

ev.: Mir M, - M.

1. If A is an algebraically closed field, then ev is an isomorphism and M, is

simple.
2. If N is a perfect field, then ev is a split surjection and M, is semi-simple.

3. If A is a Dedekind domain of Krull dimension 1 with perfect fraction field,

then there is a short exact sequence
0—-> Meoker(ev) > MM, > T — 0, (7.12)

where T is A-torsion.

Proof. Note that ev is a map in Repf\'p(W). Its image has maximal rank by the
fp-simplicity of M. Thus, if A is a field, then it is surjective.

In case Item [I] we claim that ev is an isomorphism. The following argument was
explained to us by Jean-Frangois Dat: for injectivity, observe that M| ® M, =
MfB dim Mz og Wi-representations. Hence, if the kernel of ev is non-trivial, then
it contains M as an irreducible constituent. Therefore, it suffices to prove that
Homy, (M}, ev) is injective. Since A is algebraically closed, we have Endy, (M) =

A by Schur’s lemma. Hence, the composition
Mz = HOIIIW1 (EndW1 (Ml), Mz) =~ HOl’nW1 (M], M1 IZIMz) — HOIIIW1 (Ml, M) = Mz

is the identity. This shows that Homy, (M}, ev) is an isomorphism.

In case Item [2] we claim that M| ® M, is semi-simple, and hence that M appears
as a direct summand. Using (Bourbaki, 2012, Section 13.4 Corollaire) applied to
the group algebras it is enough to show that M| and M, are absolutely semi-simple.
Since A is perfect, any finite-dimensional representation is semi-simple if and only if
it is absolutely semi-simple, see (Bourbaki, 2012, Section 13.1). Hence, it remains
to check that M, 3 = Mr® A A is semi-simple where A/A is an algebraic closure. The
module M, 3 = Homy, (M, 3, M}) splits as a direct sum according to the simple
constituents M; C M| 3 and M C Mj. Finally, each M, = Homy, (M}, M) is either

simple or vanishes: if there exists a non-zero W;-equivariant map M; — M, then it
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must be injective by the simplicity of M;. As A is algebraically closed, the proof of
Item [1] shows that M = M; ® M, so that M, must be simple because M is so. This
shows that M, is absolutely semi-simple as well.

In case Item [3] abbreviate A’ := FracA, M’ := M ®, A’ and so on. We will
repeatedly use that (—) ® A’ preserves and detects fp-simplicity of representations,
see Lemma By Item 2] the evaluation map ev’ := ev ® A’ admits a A’-linear
sectioni: M’ — (M; ® M,)’. As M’ is finitely presented, there is some 0 # 1 € A
such that A7 arises by scalar extension of amap i: M — M; ® M,. By construction,
the map i @ incl: M & ker(ev) — M| R M, is an isomorphism after tensoring with
A’. So its cokernel is A-torsion, and it is injective as both modules at the left are

projective (hence A-torsion free). This finishes the proof of the proposition. O

7.6 Essential surjectivity

In this section, we prove the essential surjectivity asserted in Theorem
Throughout, we freely use the full faithfulness proven in Proposition [7.3.1] and
Proposition|/.3.2

Recall that X1, . . ., X, are finite type IF,-schemes, and write X := X, XF, - - - X5, Xn.
Let A be either a finite discrete ring, a finite field extension £ D Qg for £ # p or its
ring of integers Og. Note that this covers all cases from Situation [7.1.1]

First, we show that it suffices to prove containment in the essential image étale

locally:

Lemma 7.6.1. Let U; — X; be quasi-compact étale surjections fori = 1,...,n.

Then the following properties hold:

1. An object M € D(X\Vell x ... x X\Veil A) belongs to the full subcategory
Dcons (X1Wei1, A) ®PerfA* cee ®PerfA* Dcons (Xr\;veﬂ, A)
if and only if its restriction M |U}Veilx.“XU'\iVei1 belongs to the full subcategory

Deons (U}, A) ®perty., - - - ®pert,, Deons (Un' o, A) € D(UYx. .. x UYL A).

2. Assume that all U; — X; are finite étale. Then Item[l|holds for the categories

of lisse sheaves.

Proof. The only if direction in part Item [I] is clear. Conversely, assume that

M |U¥Veil><mey\:Veil lies in the essential image of the external tensor product. By étale
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descent, we have an equivalence:
D(xMeil x . x XVl A) =5 Tot (D(vaf“ X...% U,YYE“,A)) .

In particular, we get an equivalence |(jo)1 0 jiM| — M where jo := j1o X ... X jpe
with jie: Uje — X; fori =1,...,n. For each m > 0, the object j,, M lies in

Dcons(Uwell A) ®PerfA* s ®PerfA* Dcons(U,\Zgl, A)

1,m °

It follows from Chapter [5|Item [ij that these subcategories are preserved under (jy,):.

So we see
(jm)'j;; (M) € DCOHS (Xl“]ell’ A) ®PerfA* . e ®PerfA* DCOHS (Xr\lVell’ A)

forall m > 0. For every m > 0, let M,, denote the realization of the m-th skeleton of
the simplicial object (jo); o ji M so that we have a natural equivalence colim M,, N
M inD(XVellx . x XVell A). We claim that M is a retract of some M, and hence
lies in Deons (X V6!, A) ®perty, - - -®perfy, Deons (X', A) by idempotent completeness.
To prove the claim, note that the sheaf My € Dcons(XF, A) underlying M is compact
in the category of ind-constructible sheaves Dindcons (Xr, A), see Chapter [5|Item
As taking partial Frobenius fixed points is a finite limit, so commutes with filtered

colimits, we see that the natural map of mapping complexes

colim HOI’I]D(XIWeileXXr\lNeil’A) (M,M,,) — HomD(XY\/eileXXXJeil’A) (M, colim M,,)

is an equivalence. In particular, the inverse equivalence M — colim M,, factors
through some M,,, presenting M as a retract of M,,. This proves the claim, and
hence Item

For Item |2, note that if U; — X; are finite étale, then the functors (j,,), preserve
the lisse categories, see Chapter [5|Item il In particular, for every m > 0 the object

(Jm)1jm (M) is lisse and so is M,,. We conclude using compactness as before. O

Using Lemma.2.4]and Chapter [5|Item|viii] the fully faithful functor Equation (7.1)

uniquely extends to a fully faithful functor

Ind(De (X", A)) ®Mody, - - - ®Mod,, Ind(De (X!, A)) — DX x. .. x Xl A)
(7.13)

for e € {lis, cons}.

We use this in the following variant of Lemma
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Lemma 7.6.2. The statements Item[l|and Item[2|of Lemmal7.6.1 hold for the functor
Equation (7.13) with e € {lis,cons}. Namely, to check that an object lies in the
essential image of Equation (/.13)), one can pass to a quasi-compact étale cover if

e = cons, and to a finite étale cover if ® = lis.

Proof. This is immediate from the proof of Lemma [7.6.1} Arguing as above and
using étale descent for ind-constructible, resp. ind-lisse sheaves (Chapter [5|Item i),

we see that M = colim M,, with
Weil Weil
M, € Ind(Do(X,"", A)) ®Mod,. - - - ®Mod,, Ind(De (X, ", A))

for all m > 0 and e = cons, resp. ® = lis. As the essential image of Equation (7.13)

is closed under colimits, M lies in the corresponding subcategory as well. O

Now we have enough tools to prove the categorical Kiinneth formula alias derived

Drinfeld’s lemma:

Proof of In view of Proposition[7.3.T|and Proposition[7.3.2] it remains to show
the essential surjectivity of the external tensor product functor on Weil sheaves
Equation under the assumptions in Theorem Part Item [I| the case
of constructible sheaves, is reduced to part Item @, the case of lisse sheaves, by
taking a stratification as in Definition [6.4.1] Item 2] and using the full faithfulness
already proven. Here we note that by refining the stratification witnessing the
constructibility if necessary, we can even assume all strata to be smooth, so in
particular geometrically unibranch. Hence, it remains to prove part Item 2] that is,

the essential surjectivity of the fully faithful functor

®: Diis (X}, A) ®perty. - - - ®pert,, Diis (Xy e, A) — Dyig (XY x ... x Xyl A),

(7.14)
when either A is finite discrete as in cases Item [a] Item [d]in Theorem Item [2]
or A = O for a finite field extension £ D Qg, £ # p as in case Item @ orA=F
and the X; are geometrically unibranch as in the remaining case Item |c| In fact,
the latter two cases are easier to handle due to the presence of natural t-structures
on the categories of lisse sheaves (Chapter [5] Item [vi). So we will distinguish two
cases below: 1) A = O, or A = E and all X; geometrically unibranch; 2) A is finite

discrete.

Now pick M € Dy (XY x ... x XVl A). By ChapterItem M is bounded in
the standard t-structure on D(X lweﬂ X...xXWeil A). So M is a successive extension
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of its cohomology sheaves H/ (M), j € Z. As M is lisse, Lemma Itemshows

in both cases 1) and 2) that each H/ (M) comes from a continuous representation on

a finitely presented A-module in
Rep, (FWeil(X)) "2 Rep, (W), (7.15)

where we denote W := W x ... x W, with W; := Weil(X)).

Throughout, we repeatedly use that the functor (7.14)) is fully faithful, commutes
with finite (co-)limits and shifts, and that its essential image is closed under retracts
(as the source category is idempotent complete, by definition) and contains all

perfect-constant sheaves.

Case 1): Assume A = Og, or A = E and all X; geometrically unibranch. In
this case, we have a t-structure on lisse Weil sheaves so that each H/ (M) belongs
to Dhs(X?’V‘eil X ... x XWeil A)?. By induction on the length of M, using the full
faithfulness of Equation , we reduce to the case where M is abelian, that is, a
continuous W-representation on a finitely presented A-module. The external tensor

product induces a commutative diagram

Repy (W1) X ... X Repy (Wy) i Rep, (W)

D]is(X}Veﬂ, A)@ X... X D]is(XZVeﬂ, A)O é—x D]iS(X}Veﬂ X... X X,\lveﬂ,/\)v,

where the vertical equivalences are given by Lemma|[6.5.4] Note that M splits into
a direct sum Mo, ® My, where the finitely presented A-module underlying Mo, is
A-torsion and M, is projective. So we can treat either case separately. Using that
the essential image of Equation is closed under extensions (by full faithful-
ness) and retracts, the finite projective case is reduced to the fp-simple case and,
by Proposition to the finite torsion case. Note that the W;-representations
constructed in, say Lemma (7.12), are obtained from M; ;, by taking subquo-
tients and tensor products, so are automatically continuous. Next, as the A-module
underlying M., is finite torsion, the A-sheaf M, is perfect-constant along some
finite étale cover. So we conclude by [7.6.1]Item 2]

Case 2): Assume A is finite discrete as above. In a nutshell, the argument is similar
to the last step in case 1), but a little more involved due to the absence of natural
t-structures on the categories of lisse sheaves in general, see Chapter [5| Item

More precisely, in the special case, where A is a finite field, the argument of case
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1) applies, but not so if A = Z/£2, say. So, instead, we extend Equation (7.14) by

passing to Ind-completions to a commutative diagram

Dy (X?Veﬂ, A) ®perf,, - - - ®Perfy, Dlis (X,}Veﬂ, A) Diis (X1Wei1 X... X X}Y»’eil, A)

| |

Ind(Dyis (X)¥!, A)) ®Mod,, - - - ®Mody,, Ind(Dyis (X7, A)) Ind() Ind(Dys (X)¥el! ... x XV A)),
of full subcategories of D(X }Ne“ X ... X X,}V eil ), see the discussion around Equa-
tion (7.13)). Note that the fully faithful embedding Equation factors through
Ind(®). Both vertical arrows are the inclusion of the subcategories of compact
objects by idempotent completeness of the involved categories and Equation (4.1).
Thus, if M lies in the essential image of Ind(®), then it is a retract of a finite colimit
of objects in the essential image of K, so lies itself in this essential image. As M is

a successive extension of its cohomology sheaves H/ (M), it suffices to show
H/ (M) € Ind(Dyis(X"", A)) ®Mody. - - - ®Mod,, Ind(Dyis (X1, A)),

for all j € Z. So fix j and denote N := H/(M) viewed as a continuous W-
representation on a finitely presented A-module. As A is finite, N comes from a
continuous representation of 711 (X7) X. . . 71 (X},) on which some open subgroup acts
trivially. Hence, there exist finite étale surjections U; — X; such that the subgroup
i1 (Ur) x ... xm(U,) acts trivially on N. In particular, N |U?Veilxmel\1Neil is constant,
and hence lies in the essential image of the functor

Modg = Ind(Perfg) — Ind(Dyis (U x ... x UYL A)),

where R :=T'(mg(Uy) X...xmo(U,), A). As the sets mo(U;) are finite discrete, each
R; :=T'(no(U;), A) is a finite free A,-algebra, and we have R = R| ®,, ... ®a, R,.

Thus, the external tensor product induces a commutative diagram

14

MOde ®Mod,, - - - ®M0dA* MOan Modg

l |

. i Ind(m) i i
Ind (Diis (U, A)) @nod, - - - ®vtody, Ind(Dris (UYE, A)) == Ind (Diig (U x ... x UM, A)),

where the upper horizontal arrow is an equivalence. So N |U?Neilxmer\lNeil lies in the
essential image of Ind(x), and we conclude by Lemma applied to the finite

étale covers U; — X; and e = lis. a
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Chapter 8

IND-CONSTRUCTIBLE WEIL SHEAVES

In this section, we introduce the full subcategories
Weil Weil
Dindlis (X ° s A) - Dindcons (X ° s A)

of D(X Weil | A) consisting of ind-objects of lisse, resp. constructible sheaves equipped
with partial Frobenius action. That is, the partial Frobenius only preserves the ind-
system of objects, but not necessarily each member. We will define analogous
categories for a product of schemes. Similarly to the lisse, resp. constructible case,

there is a fully faithful functor
Dindcons (X?Veﬂ, A) ®M0d,\* .. ~®ModA* Dindcons (X,:Veﬂ, A) - Dindcons (X}Veﬂx- . -XX,:VCH, A) s

which, however, will not be an equivalence in general, see Remark [8.1.6] Neverthe-
less, we can identify a class of objects that lie in the essential image and that include
many cases of interest such as the shtuka cohomology studied in (V. Lafforgue,
2018; V. Lafforgue and Zhu, 2019; Xue, [2020bj; Xue, 2020c).

8.1 Ind-constructible Weil sheaves

Let IF, be a finite field of characteristic p > 0, and fix an algebraic closure F. Let
X1, ..., X, be schemes of finite type over F,. Let A be a condensed ring associated
with the one of the following topological rings: a discrete coherent torsion ring (for
example, a discrete finite ring), an algebraic field extension E O Qg, or its ring of
integers Op. We write X := X XF, - - - X5, Xn, and denote by X; g := X Xp, Spec F
and Xr := X Xp, SpecF the base change. Recall that under these assumptions, by
Chapter [5]Item we have a fully faithful embedding

Ind(Dcons(XF,A)) i) Dindcons(XIF,A) c D(XF, A)a (81)

and likewise for (ind-)lisse sheaves.

Definition 8.1.1. An object M € D(XYVeil X ... X X,fveﬂ, A) is called ind-lisse,
resp. ind-constructible if the underlying sheaf Mr € D(Xg, A) is ind-lisse, resp. ind-
constructible in the sense of Definition[5.0.1]
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We denote by

Weil Weil Weil Weil
Dindtis (X" X ... X X,/ ", A) C Dindcons (X]°" X ... X X", A)

the resulting full subcategories of D(X}’v eil ... x XWeil A) consisting of ind-lisse,
resp. ind-constructible objects. Both categories are naturally commutative algebra
objects in Prls\t (see the notation from Chapter, that is, presentable stable A.-linear

symmetric monoidal co-categories where A, := I'(x, A) is the ring underlying A.

It is immediate from Definition that the equivalence (6.6) restricts to an

equivalence
D (XY x . x XV, A) = Fix (Da(Xe, A), 6, 95, )
for e € {indlis, indcons}.

Remark 8.1.2. Note that that we have a fully faithful embedding of D cons(X Vel
into Dingcons (X V) whose image consists of compact objects. However, the latter
category is not generated by this image. Indeed, even in the case of a point,
the ind-cons category consists of A-modules with an action of an endomorphism,
whereas the image of the embedding consists of A-modules with an action of an
automorphism. This automorphism does not have to fix any finitely generated
submodule, which would be the case for any objects generated by the image of the

constructible Weil complexes.

Our goal in this chapter is to obtain a categorical Kiinneth formula for the categories
of ind-lisse, resp. ind-constructible Weil sheaves. In order to state the result, we
need the following terminology. Under our assumptions on A, each cohomology
sheaf H/ (M), j € Z for M € Dys(Xg, A) is naturally a continuous representation of
the proétale fundamental groupoid nll)rOét(XF) on a finitely presented A-module, see
[6.5.4] Further, the projections Xg — X; r induce a full surjective map of topological
groupoids

2N (Xe) — 7N (X1 8) XX AT (X ). (8.2)

Definition 8.1.3. Let M € D(Xg, A).

1. The sheaf M is called split lisse if it is lisse and the action of ﬂlfrOét(XF) on
H/ (M) factors through [8.2)) for all j € Z.
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2. The sheaf M is called split constructible if it is constructible and there exists a
finite subdivision into locally closed subschemes X; , € X; such that for each

Xo =11; Xiw € X, each restriction M|y, is split lisse.

Definition 8.1.4. An object M € D(X})Veil X ... x XWVell A) is called ind-(split lisse),
resp. ind-(split constructible) if the underlying object Mr € D(Xg, A) is a colimit of

split lisse, resp. split constructible objects.

As the category Do(Xp, A), ® € {indlis, indcons} is cocomplete, every ind-(split
lisse) object is ind-lisse, and likewise, every ind-(split constructible) object is ind-

constructible.

Theorem 8.1.5. Assume that A is either a finite discrete ring of prime-to-p torsion,
an algebraic field extension E D Qg for € # p, or its ring of integers Og. Then the

functor induced by the external tensor product
Do (XY, A) @Mody. - - - ®Mody, De(Xncl, A) — Do (X x ... x X3l A) (8.3)

is fully faithful for e € {indlis, indcons}. For e = indlis, resp. ® = indcons the

essential image contains the ind-(split lisse), resp. ind-(split constructible) objects.

Proof. For full faithfulness, it is enough to consider the case e = indcons. Using
Lemma4.2.3] it remains to show that the functor

(X) Dindeons (X5, A) = Ind - Du(Xe, A)  (84)

® Dcons (Xi,IF, A)
i

is fully faithful. In view of Equation (8.I), this is immediate from the Kiinneth

formula for constructible A-sheaves as explained in Section[7.3]

To identify objects in the essential image, we note that the fully faithful functors
Equation (8.3)) and Equation (8.4) induce a Cartesian diagram (see Lemma[4.2.5):

&X); Da (X Vel A) — Do (X Vil ... x XYoL A) (8.5)
®i D.(Xi,Fa A) DO(XIF, A),

for e € {indlis, indcons}. Thus, it is enough to show that the object My underlying
an ind-split object M lies in the image of the lower horizontal arrow. Since this
essential image is closed under colimits, it remains to show it contains the split lisse

objects for e = indlis, resp. the split constructible objects for @ = indcons.
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By the full faithfulness of Equation (8.4), the split constructible case reduces to the
split lisse case, see also the proof of in Section So assume e = indlis and
let Mz € D(Xg, A) be split lisse. As each cohomology sheaf H/ (M), j € Z is at
least ind-lisse, an induction on the cohomological length of Mg reduces us to show
that H/ (Mg) lies in the essential image. By definition, being split lisse implies that
the action of Jr‘fmét(XF) on H/ (Mg) factors through ﬂﬁ’mét(X LE) X ... X ﬂﬁ’mét(Xn,F).
Then the arguments of Section show that H/ (M) lies is in the essential image of
the lower horizontal arrow in Equation (8.5). We leave the details to the reader. O

Remark 8.1.6. The functor Equation (8.3)) is not essentially surjective in general.
To see this, note that the functor DindconS(Xweﬂ, A) — Dindcons (XF, A) admits a
left adjoint F that adds a free partial Frobenius action. Explicitly, for an object
M € Dingcons(Xr, A) the object F(M) has underlying sheaf F(M)g given by a
countable direct sum of copies of M. If M was not originally in the image of
the external tensor product, then F (M) will not be either. This is, however, the
only obstacle for essential surjectivity: as noted in the proof of Theorem the
diagram Equation (8.5) is Cartesian.

8.2 Cohomology of shtuka spaces

Finally, let us mention a key application of Theorem [§.1.5] Let X be a smooth
projective geometrically connected curve over F,. Let N C X be a finite subscheme,
and denote its complement by ¥ = X\N. Let E D Qg, £ # p be an algebraic field
extension containing a fixed square root of ¢g. Let Of be its ring of integers and
denote by kg the residue field. Let A be any of the topological rings E, O, k. Let
G be a split (for simplicity) reductive group over F,. We denote by G the Langlands
dual group of G considered as a split reductive group over A.

In the seminal works (V. G. Drinfeld, 1980; L. Lafforgue, [2002) (G = GL,,) and (V.
Lafforgue, |2018}; V. Lafforgue and Zhu, 2019) (general reductive G) on the Lang-
lands correspondence over global function fields, the construction of the Weil(Y)-
action on automorphic forms of level N is realized using the cohomology sheaves
of moduli stacks of shtukas, defined in (Varshavsky, 2004) and (V. Lafforgue, 2018,
Section 2). As explained in (V. Lafforgue and Zhu, 2019; Dennis Gaitsgory, Kazh-
dan, et al., 2022; Zhu, 2021)), the output of the geometric construction of Lafforgue

can be encoded as a natural transformation

Hy,;: Rep;’(G') — RepS®(Weil(Y)!), 1 € FinSet (8.6)
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of functors FinSet — Cat from the category of finite sets to the category of 1-
categories. Here the functor Repf\'p(é’) assigns to a finite set / the category of
algebraic representations of G' on finite free A-modules, and Repf\ts (Weil(Y)*) the
category of continuous representations of Weil(Y)! in A-modules. In both cases,

the transition maps are given by restriction of representations.

Let us recall some elements of its construction. For a finite set /, (Varshavsky, [2004)
and (V. Lafforgue, 2018, Section 2) define the ind-algebraic stack Chty ; classifying
I-legged G-shtukas on X with full level-N-structure. The morphism sending a
G-shtuka to its legs

pn.g: Chty; — Y/ (8.7)

is locally of finite presentation. For every W € Repf\'p (@’ ), there is the normalized
Satake sheaf ¥y ;w on Chty;, see (V. Lafforgue, 2018, Définition 2.14). Base

changing to F and taking compactly supported cohomology, we obtain the object

Hy.1 (W) := (Pn,15)1 (Fu,1w,F) € Dindeons (Yas A)

see (V. Lafforgue, 2018, Définition 4.7) and (Xue, [2020a, Definition 2.5.1). Under

the normalization of the Satake sheaves, the degree 0 cohomology sheaf
HN,I(W) = HO (HI(W)) € Dindcons (Y]]g’ A)O

corresponds to the middle degree compactly supported intersection cohomology of
Chty ;. Using the symmetries of the moduli stacks of shtukas, the sheaf Hy ; (W)
is endowed with a partial Frobenius equivariant structure (L. Lafforgue, 2002, §6).

So we obtain objects
Hy,1(W) € Dingeons (Y™)’, A)” (8.8)

Next, using the finiteness (Xue, 2020b) and smoothness (Xue, 2020c, Theorem
4.2.3) results, the classical Drinfeld’s lemma (Theorem[7.4.1)) applies to give objects
Hy (W) € Repj\ts (Weil(Y)’ ). The construction of the natural transformation (3.6)
encodes the functoriality and fusion satisfied by the objects {Hy ;(W)} for varying
Iand W.

However, in order to analyze construction Equation further, it is desirable to
upgrade the natural transformation of functors Equation (8.6)) to the derived level.
Namely, to have construction for the complexes {H;(W)};w and not just for their

cohomology sheaves, compare with (Zhu, 2021). Such an upgrade is possible using
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the derived version of Drinfeld’s lemma, as given in the following proposition. A
further study of this construction will appear in future work of the first named author
(T. H.).

Proposition 8.2.1. For A € {E,Og, kg} and any W € Rep,(G'), the shtuka
cohomology (8.8) lies in the essential image of the fully faithful functor

Dindlis(Yweﬂa A)®I - Dindcons ((YWeil)I’ A) (89)

Proof. By (Xue, [2020c, Theorem 4.2.3), the ind-constructible sheaf Hy ;(W) is
ind-lisse. By (Xue, 2020b, Proposition 3.2.15), the action of FWeil(Y’) on Hy ; (W)
factors through the product Weil(Y)’. In particular, the action of 7 (Xlé) onHy (W)
factors through the product 71 (Xz)’. So it is ind-(split lisse) in the sense of Defini-
tion[8.1.4] and we are done by Theorem [8.1.5] m]

Remark 8.2.2. One can upgrade the above construction in a homotopy coherent way
to show that the whole complex Hy (W) lies in Dingcons (YW, A). If N # @ so
that Hy (W) is known to be bounded, then Proposition implies that Hy j(W)
lies in the essential image of Equation (8.9).
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Chapter 9

MORE RECOLLECTIONS ON co-CATEGORIES

We review some more required categorical preliminaries mainly following (Lurie,
2009) (Lurie, 2017) and (Dennis Gaitsgory and Rozenblyum, 2017a)), in the (sim-

plified) set-up suitable for our purpose.

Let Cat denote the (oo, 1)-category of small categories, and Cat the category of
all (not necessarily small) (oo, 1)-categories. For a(n ordinary) commutative ring
A with unit, let Lincat)" denote the co-category of A-linear small idempotently
complete stable categories with functors being A-linear exact functors, and let
Lincaty denote the (oo, 1)-category of all presentable A-linear stable categories
with functors being continuous functors. For C € Lincaty, and X,Y € C, we write
Home (X, Y) € Mod representing Mapyq, (M, Home (X, Y)) = Map(M®X,Y).
Then Map (X, Y) = r=’Hom¢ (X, Y).

Definition 9.0.1. Let

c—1sc

Lol

D D
be a commutative square in Lincaty. That is, we are given a specified equivalence
uog =~ goV. Then we say that the square above is left adjointable if f and g admit
left adjoints f* and g", and the Beck-Chevalley map B: g% ou — v o fL given by

gLoquLouofoszgLogovofL—>vofL

is an equivalence. If f and g has right adjoints R and gR then we say that the
square is right adjointable is the map y: v o f& — gR o u, obtained by a dual

construction to the one above, is an equivalence.

Let S be a small infinity category. We denote by Fun“Ad(S,Lincats) (resp.
FunRA4(S, Lincat,)) the subcategory of Fun(S,Lincata) consisting of functors
F: S — Lincat so that for all arrows s — s” in S the functor F(s) — F(s’)

admits a continuous right adjoint (resp. a left adjoint) and morphisms a: F — F’
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such that for every s — s’ the square

F(s) —— F(5)

| |

F'(s) — F'(s)
is left (resp. right) adjointable. We recall (Lurie, 2017, Corollary 4.7.4.18.):

Proposition 9.0.2. The co-categories Fun™4($, Lincat,), Fun®44(S, Lincaty) are
presentable and the inclusion functors Fun*24(S, Lincaty) € Fun(S, Lincaty) and

FunRA4(S, Lincat,) C Fun(S, Lincata) preserve small limits.

In particular, if we have an indexing category 7 and diagrams C, 9 : 7 — Lincaty
with a natural transformation ¢: C — D, which is equivalent to having a func-
tor F: 7 — Fun(A!,Lincaty), then F factors through Fun"A4(A!, Lincat,) (resp.
FunRAd(Al , Lincaty)) if for every vertex i of 1, the functor ¢;: C; — D; has a left

(right) adjoint ¢; : O; — C; and for all arrows i — j in 7 the commutative square

C—— O

L

Ci— D;
is left (resp. right) adjointable. Denote C = lim; C; and O = lim; ;. Then the
proposition says that under the conditions above the functor ¢: C — D induced
on the limits has a left (resp. right) adjoint ¢ and for all i € 7 the composition

¥ . . .. Vi
D — C — (C; is equivalent to the composition D — D; — C,.

Let F: § — Lincaty be a diagram. For an arrow ¢: s — s’, we have that the corre-
sponding functor F(yp): F(s) — F(s") preserves colimits morphism and therefore
by (Lurie, 2009, Corollary 5.5.2.9) admits a right adjoint F® (). By passing to right
adjoints we get a diagram FX: §°? — Cat. By (Lurie, 2009, §5.5.3) the morphism

colim F(s) — lim FR(s) 9.1)
seS sesopr

determined by the maps right adjoint to insy: F(s) — colimg F is an equivalence,
where the left is computed in Lincaty and then is mapped to Cat and the right is
computed in Cat. In addition, if all F®(¢) are continuous, then the r.h.s. can also
be computed in Lincaty. Denote by evy the right adjoint of ins;. It follows from

adjunction that for every object ¢ € limg F, the natural map
coliSm(inss oevy(c)) — ¢ 9.2)
se

is an equivalence in colimg F.
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Remark 9.0.3.

1. Assume that for each ¢: s — s’ the functor F(p): F(s) — F(s") preserves
compact objects (equivaletnly, F(y) preserves compact objects, the right
adjoint FR (@) is continuous). Then the functors ins,: F(s) — colimg F also

preserve compact objects.

2. Assume in addition that each of the categories F(s) is compactly generated,
that is, F(s) =~ Ind(F°(s)). Then the colimit colimg F is also compactly
generated, with compact objects given by retracts of objects coming from
FO(s) for s € S. In particular, if S is filtered, we have

colim F =~ Ind(colim F(s))
S seS
with the colimit taken in the category of small infinity categories.

3. If S is filtered and the morphisms in the image of F' have continuous right ad-
Joints, then for an object s in S the composition evgoinsg: F(s) — colimg F =~

limgor FR — F(s) is equivalent to the colimit
evy oinsy = colim FR(p) o F(g).
p: s>
Using the equivalence (9.I)) and Proposition [9.0.2] it is also possible to get that
adjointability preserved under taking colimits (Lurie, 2017, Proposition 4.7.4.19).

Proposition 9.0.4 (Lurie). Let S,T be small oco-categories and let F: S X T —

Lincatp be a functor. Assume that for all s — s" in S andt — t" in T the square

F(s,t) —— F(s',1)

l l

F(s,t") —— F(s',t)

is right adjointable. Then there is an extension F: S” x T — Lincaty of F such
that:

1. Foreacht € T, the diagram F: §* x {t} — Lincaty is a colimit diagram in
Lincaty.
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2. Foralls — s"inS" andt — t" in T the square

F(s,t) —— F(s',1)

l l

F(s,t') —— F(s',1)

is right adjointable.

We will also need (cohomological) descent. In this setting we are usually dealing
with a functor C*: A — Cat, also called a cosimplicial co-category, and we would
like to say something about the totalization

Tot(C*®) = lim C"
[n]eA

of C*. Usually the totalization is difficult to compute. However, under certain
left adjointability conditions it is possible to deduce that the evaluation functor
Tot(C*) — C° is monadic. Recall that for an co-category D a monad on D is
an associative algebra object 7' in the monoidal category Fun(D, D). Informally,
this means that we are gives a multiplication map 7 o T — T and a unit map
idp — T which satisfy associativity and unit conditions up to coherent homotopy.
For example, if G: & — D is a functor between co-categories which admits a left
adjoint F, the composition 7 = G o F has the structure of a monad on D with
identity given by the unit map idp — G o F of the adjunction and composition map
induced by the co-unit F o G — idg via

ToT=(GoF)o(GoF)~Go(FoG)oF ->GoF.

Given a monad 7 on D one can consider the category LModr (D) of left modules
over T. Informally, this category consists of objects A in D equipped with a map
T(A) — A giving an action of the algebra 7 on A and morphisms giving by

morphisms preserving that structure. The forgetful functor
G: LMod; (D) - D

has a left adjoint given by the free construction A — T (A). An adjunction F': D 2
&: G is called monadic if & is equivalent to LMod7 (D) for T = G o F and G given
by the forgetful functor.

For that purpose, we recall (Lurie, 2017, Theorem 4.7.5.2, Corollary 4.7.5.3).
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Theorem 9.0.5 (Lurie). Let C*: A — Cat be a cosimplicial co-category. Assume
that for any a: [m] — [n] in A, the induced diagram

cm d° s Cm+1

C\»Ln d° ) Cn+1
is left adjointable. We denote the left adjoint of d°: C" — C™! by F(n). Let
C = Tot(C*®). Then

1. The functor G: C — C° admits a left adjoint F.

2. The diagram

is left adjointable. That is, the canonical map F(0) o d' — G o F is an

equivalence.

3. The adjunction F: C° 2 C: G is monadic. That is, C is equivalent to the
category of left modules LModr(C®) withT = F(0) od' ~ G o F.

Corollary 9.0.6 (Lurie). Let C*: Ay — Cat be an augmented cosimplicial co-
category. Denote G: C~' — C°. Assume that

1. The category C~' admits geometric realizations of G-split simplicial objects

that are preserved by G.
2. forany a: [m] — [n] in A; the diagram

cm d° s Cm+1
C\an d° s Cn+l
is left adjointable.

Then the canonical map ¢: C~' — Tot(C*®) admits a fully faithful left adjoint. If,
in addition C~' — C is conservative, ¢ is an equivalence.

"

Remark 9.0.7. There is also a dual (co-monadic) version replacing "left adjoint
with "right adjoint", and "realizations of G-split simplicial objects" with "totaliza-

tions of G-split cosimplicial objects" in the statement above.
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9.1 Dual categories

Recall (e.g. (Lurie, 2018, §D.7)) that every object C € Lincaty which is compactly
generated is dualizable. If C = Ind(Cp) for some Cy € Caty we can identify the dual
CY of C with Ind(C®P?). Explicitly, the evaluation map C¥ ® C — Mody, is given
by the unique continuous extension of the functor given by the unique continuous

extension of the functor

Ind(C°?) ® C — Mod,
(F,G) — Home (7, G).

Let A = Ind(Ap) and B = Ind(By) be objects of Lincaty, which are compactly
generated and let F: A — B be a continuous functor that preserves compact

objects. We have a tautological functor

op. Z7op op
FO .ﬂo —>Z30.

Taking its ind-extension, we get a functor
F°: AY - BY 9.3)
which is called the conjugate functor to F. The construction
A A, F F°

can be upgraded to an endofunctor on the subcategory of Lincaty consisting of
compactly generated A-linear categories and continuous functors which preserve

compact objects.

Remark 9.1.1. In terms of the duality on Lincaty, the functor F° is equivalent to
the left adjoint of F". Equivalently, the functor F° is the dual of the right adjoint to
F, see (Dennis Gaitsgory, 2012} §1.5).

Let 7 — Lincaty be a cofiltered diagram of A-linear categories such that of each
i the category i — A; compactly generated and all transition functors A; — A;
preserve compact objects. Denote A = colim;er A;. It follows from (Dennis
Gaitsgory and Rozenblyum, 2017al, Proposition 6.3.4) that the natural map
colim A — A" (9.4)
iel

obtained by passing to conjugate functors, is an equivalence.
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9.2 Relative tensor product

Let us first review the general formalism of relative tensor products. Let R be a
monoidal category with 1g its unit. Let Alg(R) denote the category of associative
algebra objects in R. Let LMod(R) (resp. RMod(R)) the category of left (resp.
right) module objects in R. ILe., objects in LMod(R) (resp. RMod(R)) consist
of pairs (A, M) with A € Alg(R) and M a left (resp. right) A-module. For
A € Alg(R) we denote by LMod 4 (R) = LMod(R) Xaig®) {A} (resp. RMod4(R) =
{A} Xalg(r) LM0d(R)).

Similarly, let BMod(R) denote the category of bimodule objects in R. For A, B €
Alg(R) we denote by s\BModp = {A} X1g(r) BMod(R) Xale(®) {B} the category of
A-B-bimodules. An A-A-bimodule is also called as an A-bimodule. For example,
A itself can be regarded as A-bimodule via the left and the right multiplication.
See (Lurie, 2017, §4.3) for detailed discussions. Given associative algebra objects
A,B,C € Alg(R) and bimodules M € 4BModg and N € gBModc, the relative
tensor product M ®p N, if exists, is the unique object (up to equivalence) in 4 BModc,
corepresenting the functor sending X € 4BMod¢ to the space of B-bilinear A-C-
bimodule maps M ® N — X (in appropriate homotopy sense, see (Lurie, 2017,
Definition 4.4.2.3)). On the other hand, there is the two-sided bar construction

LMOd(ﬂ) XA]g(R) RMOd(??) — (ABMOdc)AOP, (M, N) = BarB(M, N).,

where Barg(M, N), is a simplicial object in the category of A-C-bimodules, given
informally as
Barg(M,N), =M ® B"® N

with boundary maps induced by the multiplication on B and actions on M and N,
and degeneracy maps given by insertions of the unit of B. See (Lurie, 2017, Notation
4.4.2.4, Construction 4.4.2.7). If A=B =Cand M = N = A, we simply denote
Bary (A, A)e by Bar(A)., called the bar construction of the bimodule A.

We do not know in general whether M ®p N is always given by the geometric
realization of Barg(M, N), as soon as the latter exists. This is the case if R admits
geometric realizations and such that the monoidal product ® : R XR — R preserves
geometric realizations in each variable, by (Lurie, 2017, Theorem 4.4.2.8). It is also

the case in the following two examples.

Example 9.2.1. Assume that M = My® B with My a left A-module (resp. N = BN
with No a right C-module). Then M ®p N exists and is represented by My @ N
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(resp. M ® Ny). To see this, we follow the argument of (Lurie, | 2017, Proposition
5.2.2.6). If R admits geometric realizations and such that the monoidal product
®: R X R — R preserves geometric realizations in each variable, then M ®p N
exists and is isomorphic to My ® N (resp. M ® Ngy) by (Lurie, 2017, Proposition
4.4.3.14, 4.4.3.16). The general situation reduces this case via Yoneda embedding.

Example 9.2.2. Using a similar argument, one can also prove the relative tensor
product exists in the following situation. Let C be a (small) category admitting finite
limits. Let pt denote the final object. Then it C°P has the coCartesian symmetric
monoidal structure: for X,Y € C, the tensor product X ® Y in C°P is the finite
product X XY in C. We note that every object X is a commutative algebra object
in C°P, with the multiplication given by the diagonal map Ax : X — X X X in C
and the unit given by the structural map px : X — pt. In addition, every morphism
f X > Yin C gives a commutative algebra homomorphism in C°P. Now given
two morphisms a : M — X,b : N — X in C, we regard M, N as X-modules in
C°P. We claim that M ®x N exists and is representable by M Xx N. Namely, the

two-sided bar complex as the cosimplicial object in C is

idxaxid N
A=>C:MxXN 5 MXXXN=MXXXXXN---

idxbxid
We will consider the embedding C°? — Ind(C°P), where Ind(C°P) denotes the ind-
completion of C°P, equipped with the induced symmetric monoidal structure so that
the tensor product preserves colimits in each variable. Again, by the argument of
(Lurie, 2017, Proposition 5.2.2.6), it is enough to show that the geometric realization
of this simplicial object A°® — Ind(C°P) is represented by M Xx N. By (Lurie,
2009, Lemma 6.1.4.7), its geometric realization can be computed as the colimit of
the truncated colimit diagram (A<1)°® — Ind(C°P), which in turn is the limit of
M X N_M x X X N in C. But this is exactly M Xx N.
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Chapter 10

THE FORMALISM OF CORRESPONDENCES

In this subsection, we review the formalism of correspondences, as first appeared
in (Liu and Zheng, 2012, §6.1) and (Dennis Gaitsgory and Rozenblyum, 2017a,
Chapter 7). There are mainly two (closely related) usages of this formalism in
the paper. First, it provides a convenient framework to discuss convolution pattern
arising from algebraic geometry and representation theory and therefore is useful
for our study of (geometric) trace. Second, it encodes various sheaf theories in

algebraic geometry in a concise way, as first observed by Lurie.

10.1 Category of correspondences

Let C be an co-category that admits finite limits and coproducts. The category C will
play the role of the category of geometric objects. We denote by pt the final object
in C. Let vert, horiz be two classes of morphisms in C, each of which contains all
equivalences in C and is stable under composition and base change. Note that the
classes vert, horiz are stable under products. That is, if f;: X; — Y;,i = 1,2 are
in vert (resp. horiz) then the product f; X f>: X1 X Xp — Y| X Y3 is a member of
vert (resp. horiz). We denote by C.s (resp. Choriz) the 1-full subcategory of C

consisting of morphisms in vert (resp. horiz).

Let Corr(C)yers:horiz denote the category of correspondences. Informally, objects of
Corr(C)yert:nori; are the same as those of C and morphisms from X to Y are given
by diagrams

z S5 X

lf (10.1)

Y

. . . . . . f, 8
with g € horizand f € vert. We sometimes just write suchdiagramby Y <« Z — X
for short. In addition, to emphasize that such a morphism in Corr(C)yers:horiz 18

. . fog™!
a correspondence rather than an actual map, we sometimes write it as X " --> Y
or simply as X --» Y. The composition of the correspondences ¥ < S — X and

Z «— T — Y is given by the correspondence Z «— W — X which is formed by
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taking the pullback:

~
N

NN =

Given g: Y — X in horiz we will sometimes identify it with the correspondence
Y & Y £ X and we refer to such morphisms as horizontal. Similarly, given a
morphism f: X — Y in vert we will identify it with the correspondence Y L
X N X and refer to such morphisms of Corr(C)yers:horiz as vertical. If vert, horiz
are all morphisms, we simply write Corr(C)yers:horiz by Corr(C). We refer to
(Dennis Gaitsgory and Rozenblyum,|2017a, §7.1) and (Liu and Zheng, 2012, §6.1)

for precise definition of it as an co-category.

Remark 10.1.1. The category Corr(C)yers:horiz; admits an (oo, 2)-categorical en-

adm

hancement Corr(C)[78., .-

of the category of correspondences, depending on a

adm

certain class adm of morphisms of C. A 2-morphism in Corr(C’)WBrt,horiZ

S— X
!
Y

withr € adm. See (Dennis Gaitsgory and Rozenblyum,|2017a, §7.1.1.2) for details.

is given

by a diagram

As C admits finite limits it is a symmetric monoidal category under the Cartesian
monoidal structure. This induces a symmetric monoidal structure on Corr(C)yers:horiz
constructed in (Dennis Gaitsgory and Rozenblyum, 2017a, Chapter 9) (see also
(Liu and Zheng, 2014, §6.1)). Namely, the tensor product of objects X,Y in
Cort(C)yert:horiz 18 their product X X Y as objects of C. Note that in general X X Y
is not the product of X and Y in Corr(C)yers:horiz- For this reason, sometimes we
write X ® Y to emphasize we regard X X Y as the tensor product of X and Y in
Corr(C)verr:horiz- We note that the 1-full subcategories C,err and (Choriz)°P are

symmetric monoidal subcategories.

In particular, it makes sense to talk about associative and commutative algebra

objects in Corr(C)yert:horiz-
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Example 10.1.2. Every object X € C with the diagonal map Ax : X — X X X

and the structural map nx : X — pt belonging to horiz has a natural commutative
algebra structure in (Choriz) °P with the multiplication given by Ax and the unit given
by nx. In addition, if X and Y are two objects satisfying the above properties and
f : X = Y is a morphism belonging to horiz, then we have a commutative algebra
homomorphism in (Cpriz)° fromY to X induced by f. In particular, X is a (left)

Y-module.

As (Choriz)®® — Corr(C)yers:horiz IS a symmetric monoidal subcategory, we obtain
the corresponding (maps between) commutative algebra objects in Cort(C)yers:horiz-
If in addition f € Cyery, then f 1 X — Y is naturally a morphism of Y -modules from
X to Y on Cort(C)yert:horiz-

10.2 Monads and modules in the category of correspondences
We will be interested in a particular class of algebra objects and their bimodules
arising from monads in Corr(C). We review the description of algebras in terms of

Segal objects and note how these constructions generalize to describe bimodules.

Consider the (o0, 2)-category Corr(C)*!. For every X, X’ € C we have a category
Homc,, () (X', X). If X = X’ this category is denoted by Endcorr(c) (X). It carries
a canonical monoidal structure induced by composition. In general, the category
Homc(c) (X', X) is equipped with a left action of Endcrr(c)(X) and aright action
of Endcor(c) (X').

10.3 Monads and Segal objects
First recall the definition of Segal objects (also known as category objects) in an

co-category.

Definition 10.3.1. A simplicial object Xo: A°P — C is called a Segal object if for

every n > 1, the map
X, o X XXo X XXy " XXy X

induced by the maps 6;: [1] = {i,i+1} C [n] fori = 0,1,...,n—1, is an

equivalence.

Remark 10.3.2. If C is an ordinary category, a Segal object is fully determined
by the objects Xy, X1, the boundary maps dy,dy: X1 — Xo, di1: Xo — X and the
degeneracy map s: Xo — Xi. These define a category object of C in the usual

sense. Namely, X is the class of objects, X| the morphism objects, the morphisms
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di,dy: X1 — Xo as source and target. The composition is given by the morphism
dy: Xp = Xy and unit by di: Xo — X;.

Example 10.3.3. Let f: X — Y be a morphism in C. The Cech nerve X, — Y of
f (see (Lurie, 2009, §6.1.2)), where

n+1

Xy =XXy X X - Xy X,

is easily seen to be a Segal object of C. Indeed, it is even a groupoid object, in the
sense of (Lurie, |2009, Definition 6.1.2.7)). This will be our main example.

Example 10.3.4. A Segal object X, with Xo = pt is a monoid object (in the sense
of (Lurie, |2009, p. 4.1.2)). Giving such a monoid object is equivalent to giving an
associative algebra object in C by (Lurie, 2009, Proposition 4.1.2.10, 4.1.2.11).

This last example admits the following generalization. Let X € C and consider
the monoidal category Endcorr(c)(X). Then (Dennis Gaitsgory and Rozenblyum,
2017a, Proposition 9.4.1.5, Theorem 9.4.4.2) gives:

Theorem 10.3.5. 1. There is a natural lax monoidal functor

Sp: Endcor(c)(X) — Corr(C).

2. There is a canonical equivalence between Segal objects X, in C with Xo = X

and associative algebra objects in Endcor(c) (X).

Roughly speaking, the functor Sp from (I]) sends X « Z — X to the object Z € C

with the lax structure given by horizontal arrow Z Xy Z — Z X Z.

To construct the equivalence from (2), let A € Endcor(c)(X). Then X itself is an
A-A-bimodule of A in Endcgrc)(X). Then we have the two-sided Bar complex
Bary (X, X), as a simplicial object in Endcor(c)(X). Its image under Sp gives a
simplicial object in C. which is the desired Segal object in C. Conversery, a segal
object X, in C gives rise to an algebra object in X; € Corr(C) with multiplication

given by the correspondence

X xx, X1 = Xo 225 ¥, % X

ls

X
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and the unit given by the correspondence

ﬂXO
Xo — pt
X

Remark 10.3.6. Assume that the Segal object X, is such that:

o All morphisms of the simplicial object Xo are in Cy ey,

® The diagonal map Ax,: Xo — Xo X Xo and the structural map ny, : Xo — pt

are in Choriz.

Then the associative algebra object X can be realized as an associative algebra

object of the monoidal category Corr(C)yers:horiz-

10.4 The action on bimodules
Given Xp, X| € C and an associative algebra objects X; € Alg(Endcor(c)(Xo)),
X{ € Alg(Endcor(c) (X)) the lax-monoidal functor from Theorem [10.3.5| (I)) in-

duces a functor
Sp: XlBModXI(HomCOrr(C)(X(’),Xo)) — x,BModx; (Corr(C)).
Letting Xy = X(’) and X; = X{, we have a lax monoidal functor
Spy, : x;,BMody, (Endcor(c)(Xo)) — x,BMody, (Corr(C)).

The unit of the monoidal category BMod(Endcor(c)(Xo)) is sent by Spy, to the
algebra X with multiplication given by the horizontal arrow Xy — X X X (it cor-
responds to the Segal object given by the constant simplicial object Xp). Moreover,
it is clear that as an algebra, X(r)eV is isomorphic to Xo. Then Theorem
upgrades to a lax monoidal functor

pro : EndCorr(C) (Xo) — XOBMOdXo (COI‘I‘(C)) (102)

Explicitly, an object O € Endc(c)(Xo) has left and right actions given by the
two maps Xp < QO — Xp. The simple structure of such modules gives a simple
description of the relative tensor product over such bimodules in the category of

correspondences.

Remark 10.4.1. Let Q € x,BMody, (Endcor(c)(Xo)) with X1, Xo as in Remark|10.3.6]
If the action maps X1 Xx, O — Q and Q Xx, X1 — Q are in Cy¢r, then the corre-
sponding module under (10.2)) is an object of Cort(C)yers:horiz-
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Chapter 11

SHEAF THEORIES

11.1 The notion of a sheaf theory
We fix C as before. By definition, a sheaf theory of C is a lax symmetric monoidal
functor

D: Corr(C)yert:horiz — Lincaty. (11.1)

. . id . .
For a horizontal morphism Y < v 2 X we will denote the corresponding functor

by g*: D(X) — D(Y). For a vertical morphism Y <i X i, X we denote the

corresponding functor by fi: D(X) — D(Y). Then for a general correspondence

! . . .
Y & 7z 5 X the associated functor is equivalent to f; o g*.

Let us spread out some structures encoded by such a functor.

1. We can pass to right adjoints. For (g : X — Y) € Choriz, let g4 be the (not
necessarily continuous) right adjoint of g*, and for (f : X — Y) € C,epr, let

f7 be the (not necessarily continuous) right adjoint of f;.

2. The functoriality of D encodes a "base change theorem". Namely, let

x 5 x
lf/ lf (11.2)
y S5y

be a pullback square in C. Then if f € vert and g € horiz, we have that

f' € vert, g’ € horiz and part of the data of the functor D is to give an

equivalence

(f)io(g) =g"ofr. (11.3)
3. The lax symmetric monoidal structure of O provides a functor
K: D(X)@D(Y) » D(XXY), X, YeC (11.4)

together with all necessary higher coherence conditions. Let X be as in
Example [I0.1.2] This induces a symmetric monoidal structure on the cat-

egory D(X). Informally, the symmetric monoidal structure is given by the
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composition

A*
DX)@D(X) > D(XxX) =5 D(X), F.G-FOG=A(FRG).
(11.5)
We let Ax € D(X) denote the unit object with respect to this symmetric

monoidal structure, which corresponds to the functor

Mod, — D(pt) %, D(X). (11.6)

This symmetric monoidal structure is closed. That is, for every pair of objects
F1, F2 € D(X) there is an object Hom(F7, #7) such that for every G € D(X)

there is a canonical equivalence
Note we have

Hom(%, ® %7, ¥3) = Hom(%, Hom (%>, 73). (11.8)

. Let f: X — Y in Cpori; as in Example [10.1.2l Then f* : D(Y) — D(X)
is a symmetric monoidal functor. In particular, it endows D(X) with a
structure of a D (Y) monoidial category. If in addition f € C,.,; as well,
then fi: D(X) — D(Y) is a morphism of D (Y)-modules. In particular, for
F e D(X), G € D(Y) we have a canonical equivalence

[ (F)e g = f1(F ® f*(G)). (11.9)

which encodes a "projection formula" for f; and f*. Along with the co-unit

of the adjunction (f;, fT), it gives, for every ¥, G € D(Y), a natural map
fe e - riGeer (11.10)
adjoint to
UG e ()= (G eF -GeF,
In particular, one has the natural transformation of functors
flian e f*— ff (11.11)

In addition, we have

f'Hom(F, G) ~ Hom(f*F, f'G). fiHom(¥, ') ~ Hom(f£:F. G).
(11.12)
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5. Assume that p : X — pt belongs to vert. Let
Dx : D(X)® — D(X), Dx¥ :=Hom(F, plAp). (11.13)

Then for f : X — Y in vert N horiz, the isomorphisms in (T1.12) specialize
to isomorphisms Dy f* = f'Dy and f,Dx = Dy f;.

Remark 11.1.1. In many examples of a sheaf theory, the functor|l 1.4\is fully faithful
and admits a continuous right adjoint. Indeed, fully faithfulness is equivalent to a

Kiinneth type formula.

Remark 11.1.2. Let S € C be as in Example Then there is the (non-full)
embedding

Corr(C/S)vert;horiz - Corr(c)vert;horl’z

which is a lax symmetric monoidal functor. Therefore, one can restrict D along
this embedding to obtain a sheaf theory on Cys, denoted by Ds. The lax symmetric

monoidal structure is provided by

DX)@DY) > DX XY) ﬁ DX xsY)

Remark 11.1.3. Let X € C such that both nx and Ax are in Cyers N Choriz, then X

is self-dual in Corr(C). Then the evaluation and the unit maps are given by
Tx Ax Ax X
pte— X — XXX, XXX X —>npt

It follows that if the sheaf theory D is symmetric monoidal (rather than just lax
symmetric monoidal), then D (X) is self-dual.

11.2 Additional base change theorems

The sheaf theory D in practice often satisfies certain additional base change theo-

rems for certain class of morphisms. The general setting is as follows.

Let Csn € Choriz and Cprop S Cyerr be another two classes of morphisms of C
stable under composition and base change and containing equivalences. We make

the following assumptions on these classes:

(a). For f € Cprop, the functor f7 is continuous.

(b). For g € Cy, the functor g, is continuous.



79

We make the following assumptions on various compatibilities between these ad-
joints. Consider the Cartesian square (I1.2]). Then consider the following assump-

tions.

Assumptions 11.2.1. The adjoint pairs ((=)*, (=)x), ((=)+, (=)) satisfy the fol-
lowing conditions:

(1) If f € Cprop and g € C,ers the natural map fT’ og'm — gf o f+ is an equivalence.

(2) If f € Csm and g € Chopi; then the natural map f* o g, — g, o f'* is an

equivalence.
(3) If f € Cprop and g € Cyy, the natural map g'™ oft — f’T o g* is an equivalence.
(4) If f € Cprop and g € Choriz the natural map fi o gy, — g o f! is an equivalence.
(5) For fi: Xi = Y;in Cprop withi = 1,2, and F; € D(Y;) the natural map
DR L(F2) = (ix ) (Fim )
is an equivalence.

(6) For fi: X; = Y;in Cgy withi = 1,2, and F; € D(X;) the natural map

(fD+(F1) B (f2)x(F2) = (fi X f2)(F1 B F2)

is an equivalence.

We make some additional assumptions. They are satisfied in certain sheaf theories,

but not always.

1. Let f € Cyorr. For g € Cprop, the natural map fr o g" — g o fT/ is
an equivalence. For g € Cgy, the natural map f; o g, — g4 o fT, is an

equivalence.

2. Let f € Choriz. For g € Cprop, the natural map f™* o g" — g o fris
an equivalence. For g € Cyp, the natural map f* o g, — gy o f* is an
equivalence.

(IX) Forf € Cprop N Choriz, er = f*{

(X) For f € Cyert N Cym, fx = fi[n] for some ny € Z.
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Example 11.2.2. We have the following basic example of a sheaf theory. Let

D : C°? — Lincatp be a lax symmetric monoidal functor. Then let horiz = all and
let vert consist of the following class of morphisms: f : X — Y belongs to vert if
the functor D(f) : DY) — D(X) admits a continuous left adjoint D( f)* and for
every diagram as (11.2)), the induced Beck-Chevalley map is an equivalence

D(f)* o D(g) = D(g') o D(f)

Then D extends to a sheaf theory D : Corr(C)yer:horiz — Lincaty, such that for
g € horiz, g* = D(g) and f € vert, fr = D(f)L. In this case, we can let
prop = vert. Then Assumptions[I1.2.1|[I|4|5) automatically hold.

11.3 Category of cohomological correspondences

The sheaf theory O can also be (largely) encoded as a symmetric monoidal category
Corr? (C)vert:horiz» usually called the category of cohomological correspondences.
Namely, let D be a sheaf theory on C as above. Applying the symmetric monoidal
Grothendieck construction ((Lurie, 2017/, Proposition 2.4.3.16)) to the lax symmetric
monoidal functor

Corr(C)yert:hori; — Lincaty — Cat,

one obtains a coCartesian fibration Corr? (Cvert:horiz = Corr(C)yers:horiz- Objects
of Corr? (C)vert:horiz consist of pairs (X, ¥) where X € C and ¥ € D(X), and mor-

phisms been (X, ) and (Y, G) consist of pairs (C, u), where C a correspondence

Y < C 5 X, with Tin vert and @ in horiz, and u : ¢*F — crG.

There is a natural symmetric monoidal structure on Corr? (C)vert:horiz» With the
symmetric monoidal structure given by (X,7) ® (Y,G) = (X XY, F ® G). The
unit is given by (pt, Ap). We refer to (Xiao and Zhu, 2017, Appendix A) and (Lu
and Zheng, |2020) for more detailed discussions of constructions in this category.

We recall some results about dualizable objects in Corr? (C)vert:horiz- We make the

following assumption throughout the rest of the section.

Assumptions 11.3.1. Assume that horiz consist of all morphisms in C and the class
vert has the following property: for a sequence of morphisms Zy — Z, — Z3 in C,

if Zy — Z3 belongs to vert, sois Zy — Z.

Assume that the structural map 7y : X — pt belongs to vert. Then as argued in (Lu
and Zheng, 2020, Lemma 2.8), for (X, ), (Y,G) and (Z, H) € Coer(C)Vm;h,,r,-Z,
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we have

Map((Z,H) ® (X, F), (Y,G)) = Map((Z, H), (X xY,Hom((px)* T, (pv)'G))),

where Hom is the bifunctor from (I1.7) (for X x Y), and px : X XY — X,py :
X XY — Y are the two natural projections. That is, the internal hom between (X, )
and (Y, G) exists and is represented by (X x Y, Hom(p}F, p;g)). The following

lemma then follows by general facts about symmetric monoidal categories.

Lemma 11.3.2. 1. An object (X, F) € Cort® (C)yerr:horiz is dualizable if and

only if the natural map
F mDx¥ — Hom((p1)*F, (p2)"F)

is an isomorphism, where p; : X* — X, i = 1,2 are two projections.

2. If (X, %) is dualizable, then its dual is (X,DxF), with the evaluation map

given by the tautological map
ex.) - (M) (FrDxF) =F @ DxF — (x) A, (11.14)

and with the unit map is given by the dual of e x #). (Note that (X X X, F ®
DxF) is self-dual in Corr® (C)yerr-horiz-)

Lemma 11.3.3. Let (X, ) be a dualizable object in Coer(C)Ve,,;h,m-Z. If (Ax)+
sends compact objects to compact objects, and if Ax is compact in D(X), then
F € D(X) is compact.

Proof. Note that (Ax)" and Homgpx)(Ax, —) commute with colimits. Therefore,

Homgp(x)(F, colim G;) = Homp(x)(Ax, (Ax)" (DxF ® (colim G))))

= COPIH Homypx)(Ax, (Ax) (DxF ® G)) = COll.im Homgp x)(F, Gi)
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Chapter 12

THE CATEGORICAL TRACE

12.1 Hochschild homology

Let R be a symmetric monoidal category. The trace of an endomorphism of a
dualizable object in R is a classical notion. Namely, if X is a dualizable object in R
equipped with an endomorphism f : X — X, its trace tr(X, ) € End(1g) is given

by the composition
u v idX\/®f v v €
I > X" X — X' X =2X®X' — l1g. (12.1)

On the other hand, in this article, we will also need a difference type of trace con-
struction, known as the categorical trace. Let us first review the general formalism.

We refer to Section[9.2]for a review of bimodules and relative tensor products.

Let A and B be two associative algebras in R. By (Lurie, 2017, Proposition
4.6.3.11)1 an A-B-bimodule can also be regarded as a left (A ® B™")-module or a
right (B ® A™")-module, where A™" (resp. B™") is the algebra A (resp. B) with the
multiplication reversed. For an associative algebra A, and an A-A-bimodule F, the

Hochschild homology of F, if exists, is defined as
Tr(A,F) = A ®agarv F € R. (12.2)

We write
[-1F : F — Tr(A, F) (12.3)

for the natural morphism, sometimes called the universal trace morphism.
On the other hand, there always exists the Hochschild complex of F defined as

HH(A, F), = Bar(A)e @i F = A®* ® F, (12.4)

regarded as a simplicial object A°? — R. Explicitly, on the level of simplicies and

morphisms, for every n > 0 we have an equivalence

HH(A, F), ~ A®" ® F. (12.5)

'Note that assumption (x) of loc. cit. is not essential, as explained before (Lurie, 2017, Notation
4.6.3.3).
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Under this identification, for 0 < i < n the face map a’lHH is given by the multiplica-
tion map applied to the i-th and the (i + 1)-th factors in A®”, and the face map dé{H
is given by multiplying the first factor in A®*" to Q from the right and the face map
d is given by multiplying the n-th factor in A®" to Q from the left. If R admits
geometric realizations and the tensor product preserves geometric realizations in
each variable, then the Hochschild homology of F exists and can be computed as

the geometric realization of the Hochschild complex.

Remark 12.1.1. Associated to R, there is a symmetric monoidal 2-category Morita(R)
whose objects are associative algebras in R and whose morphism categories are

given by categories of bimodules:
MapMorita(‘R) (A, B) = BBMOdA

and compositions are given by the relative tensor products (assuming relative tensor
products exist in R). Then every A-bimodule F gives an endomorphism of A in
Morita(R). In addition, every algebra A is a dualizable object in Morita(R).
Under the equivalence \BMody = 1,BModarevgs = sgarevBModyy,, the natural

A-bimodule structure on A itself gives unit and evaluation maps
A€ € A®AreVBMOd1,R, A€ € 1RBMOdArev®A, (126)

which identify the dual of A (in Morita(R) ) as A™. Then the Hochschild homology of
(A, F) is nothing but the trace F in the sense of (12.1)), regarded as an endomorphism
of A in Morita(R). This justifies our choice of notations. However, we will not
systematically explore this approach in this article. On the one hand, we do not
want to systematically review the formalism of (oo, 2)-categories. On the other
hand, in our applications where R will mainly be Lincaty, we implicitly need some

3-category structure on Morita(Lincaty).

Example 12.1.2. If the A-bimodule F = M ® N, where M is a left A-module and
N a right A-module. Then

Tr(A,F) = A @agaey (M @N) = N @4 M.
In fact, HH(A, F)es = Bars (N, M)..

Example 12.1.3. Of particular importance in this paper is the following type of
bimodules. Let ¢ be an endomorphism of the algebra A. For an A-bimodule F we
will denote by *F the bimodule obtained by the same action on the right but with
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a pre-composition with ¢ for the left action. In this case we will also denote the
Hochschild homology of the bimodule ® A by Tr(A, ¢). That is,

Tr(A, ¢) ~ A @qeae PA. (12.7)

In addition, ¢ = id, we simply write Tr(A,id) by Tr(A).

Now let R = Lincat,. Then an algebra object A in Lincat, is a presentable A-linear
monoidal category with monoidal product commutes with colimits separately in
each variable. Let F be an A-bimodule category. In this case, Tr(A, F)) always
exists, and is sometimes called the categorical trace of (A, F). Note that it is a

presentable A-linear category.

12.2 Functoriality of Hochschild homology
Let A, B € Alg(R) be associative algebras and let M € 4BModp. Recall (Lurie,
2017, §4.6.2) that a left dual of M is given by an object N € pBMod, together with
a unit (or co-evaluation)

u:B—o> N, M (12.8)

which is a morphism in gBModp, and a co-unit (or evaluation)
e Mg N — A (12.9)

which is a morphism in 4BMod4, such that the compositions

M=MegB- 2 MegNeo M2 Ag, M~M (12.10)
3} .
N~BosN- 2L NesMosN 22 Ne,A~N. (12.11)

are equivalent to the identities on M and N. Specializing to B = 1g, we obtain the

notion of a left dual of a left A-module.

Remark 12.2.1. By (Lurie, 2017, Proposition 4.6.2.1) such data are equivalent to
giving a right adjoint to the functor

M ®p (-): LModg(R) — LMod4(R).

Namely, right adjoint is given by N ®4 ().

Now let F4 € 4BMod, and Fp € gBModg be two bimodules. Assume that we are
given left dualizable M € 4BModp together with a morphism of bimodules

a: M®pFg— FaQs M. (12.12)
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Then we can associate to (M, @) a morphism in R
Tr(M,a): Tr(B, Fg) — Tr(A, Fy), (12.13)
given by

u®id
Tr(B, Fp) = B ®pgpe Fp — (N ®4 M) ®pgpe Fp =~ A @~ (M ®p Fp ®p N)
id®a®id id®id
L0, A @apaes (Fi ®4 M @5 N) 2224 A @upare Fa = Tr(A, Fa),
where the isomorphism

(N ®4 M) ®pgpev Fp ~ A @agarey (M ®p Fp ®p N)

can be established by the same way as in Example|12.1.2)

In the particular case when B = Fp = 1g is the unit object of R, M is just a left
A-module, and @ is a map M — F4 ®4 M. Then the above definition of Tr(M, )

is simplified as

IR > N®4 M =~ A @ugaev (M ® N)

ide (a®id id
1de(aeid) A ®agarey (Fa®4 M ®N) A Qagary Fa =Tr(A, Fa).

(12.14)

In this case, we also denote Tr(M, @) as [M, a]F, thought as a point in the space
Map(1g, Tr(A, Fa)).

Example 12.2.2. Let M = A, regarded as a left A-module. Then M admits a left
dual given by N = A regarded as the right A-module. The unit and evaluation maps

are
1
lyg—A)AEA®AA, A®A1>A

Giving a left A-module morphism a : M — Fx ®4 M is equivalent to giving a
map «q : 1g — Fa. Then [A, a]F, : 1g — Tr(A, Fa) is canonically equivalent to
[-lr o0 :1g = A — Fy.

In the particular case R = Lincaty, giving ag : 1 — Fga is equivalent to giving
an object X € Fy. We denote the corresponding left A-module morphism M —

Fa ®4 M by ax. Then we have a canonical isomorphism in Tr(A, F4)

[A, ax]F, = [X]F,-
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Now suppose R = Lincaty and A and B two algebras in Lincaty. Then we say
an A-B-bimodule M is fully dualizable if the maps (12.8)) and (12.9) admit con-
tinuous right adjoint u® and e® respectively, and u® (resp. e®) is a B-bimodule
(resp. A-bimodule) homomorphism. Suppose M is fully dualizable, and suppose «
also admits continuous right adjoint a®, and suppose a® is also an A-B-bimodule

homomorphism, then Tr(M, ) admits continuous right adjoint Tr(M, a)X.

Example 12.2.3. We consider the situation as in Example|12.2.2\with R = Lincat,.
We call A a rigid monoidal category if M = A as a left A-module is fully dualizable.

This is equivalent to the following conditions:

1. The unit object 14 is compact;

2. The multiplication functor m : A ® A — A admits a continuous right adjoint

mR’.

3. The functor m®: A — A ® A is a functor of A-bimodules.

So the above definition of rigidity is exactly the same as the one from (Dennis
Gaitsgory and Rozenblyum, 20174, §1.9.1). If A is also compactly generated
this agrees with the more familiar defintion requiring that compact objects of A
admit both left and right duals, see (Lurie, 2018, Definition D.7.4.1)) and (Dennis
Gaitsgory and Rozenblyum, 2017a, Lemma 1.9.1.5).

Now, let X € Fy, giving ax : M — F4 ®4 M. Then ax admits a continuous
right adjoint (ax)® if and only if X is a compact object in Fa, in which case
(ax)® is automatically a left A-module homomorphism as it is a right-lax functor,
see (Dennis Gaitsgory and Rozenblyum, 20174, Lemma 9.3.6.). It follows that
[X]F, = [A, ax]F,, regarded as a functor Modp — Tr(A, F4) admits a continuous
right adjoint. That is, [X]|F, is a compact object in Tr(A, Fa). This can also be
deduced from Corollary[12.3.3| below.

12.3 Categorical traces of rigid monoidal categories
We let R = Lincaty. Categorical traces of rigid monoidal categories have particu-
larly nice formal properties. Namely, the rigidity implies (in fact is equivalent to)

the monadicity of Hochschild complex.
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Lemma 12.3.1. Assume that A is rigid and F is an A-bimodule. Then for every

a : [n] — [m], the diagram

HH(A, F)imt1 —HH(A, F)u4 (12.15)
d(‘jHL Ldg"*
HH(A, F),, HH(A, F),

is right-adjointable. I.e., the cosimplicial object HH(A, F)*® obtained fromHH(A, F),
by passing to the right adjoints satisfies the Beck-Chevalley conditions. In particu-

lar,
[HH(A, F)o| = Tot(HH(A, F)*®) = LModz(F),

with T the monad given to dé{H o (dIfH)R.

Proof. To prove the first statement, we may assume that « is either a coboundary
map or a coface map. In the case that @ is a coboundary map, the induced map
HH(A, F),, = A®" ® F — HH(A, F), = A®" ® F is a right A-module morphism
with respect to the right A-action on the last factor F'. As such morphism is induced
by inserting the unit at an appropriate position, it admits a continuous right adjoint,
which by (Dennis Gaitsgory and Rozenblyum, 2017a, Lemma 1.9.3.6) is an A-
module morphism. This exactly means that the commutative diagram in the lemma

is right-adjointable when « is a coboundary map.

Next, assume that @ = d; is a coface map. As explained in (Dennis Gaitsgory
and Rozenblyum, 2017a, Lemma 1.9.3.2), for a left A-module M, the action map

a:A®M — M admits a continuous right adjoint a® given by

M = Mody @ M U020 4 0a @ M 22 4 g m
and moreover the functor a® is a morphism of A-modules (a-priori it is only lax).
Similar statements hold for right A-modules. From these facts, one sees that the
commutative diagram is right-adjointable for @ = d;. Indeed, since each of the
functors only these claim reduce to the diagrams with [n] < 1. and the requirement
of right adjointability is exactly the fact that F - A® Fand A — A ® A are

morphisms of A-modules.

That |HH(A, F).| = Tot(HH(A, F)*) follows from (9.1)) and the last equivalence
follows from the first assertion and Theorem [9.0.5] O

The following statements directly follow from the proof.
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Corollary 12.3.2. Assume that A is rigid. Let | — F, be a fully faithful functor of
A-bimodules. Then the induced functor

Tr(A, Fy) — Tr(A, F)

is fully faithful.

Proof. By Lemma [12.3.1] the functor between the trace categories can be realized
as a limit of functors between Hochschild complexes, so to get fully faithfulness it is
enough to have level-wise fully faithfulness of the functors A®" @, F; — A®" ®) F>
for all n > 0. Each of these can be realized via a bar construction with Mod, so
it is enough to show that As A is rigid, it is canonically self-dual as an object of
R, it is enough to show that the functor LFuny (A, F;) — LFuny (A, F;) between
categories of A-linear functors, is fully faithful. Fully faithfulness is then known

(see for example (Gepner, Haugseng, and Nikolaus, n.d., Lemma 5.2.) m]

Corollary 12.3.3. An A-bimodule functor Fy — F, induces a functor between
cosimplicial objects HH(A, F1)* — HH(A, F>)®. Inaddition, the following diagram
is right adjointable

-]
Fi —~Tr(A, Fy)

(-]
F, —2Tr(A, F»)

If F1 — F, admits a continuous right adjoint (as plain A-linear presentable stable

categories), then the following diagram is right adjointable

Fy P

[_]Fl j L[_]Fz

Tr(A, F1) —=Tr(A, F»)

Remark 12.3.4. Assume that A is rigid. Let M be a left A-module. Let Mod, —
N ®s M and M ® N — A be the duality datum for M as a left A-module. Then it
Jollows easily from the above corollary that N is the dual of M in Lincaty with the
duality datum given by

1% Hom(14,-)
Modpy >  N®sM — NOM, MQ®®N —> A———— Modj,

where [=]R denotes the continuous right adjoint of [~] men-
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One can also easily deduce the following corollary, which has appeared in (D.
Gaitsgory et al., 2019| Theorem 3.8.5).

Corollary 12.3.5. Assume that A is rigid, equipped with a monoidal endomorphism
¢:A— A. Then

tr(A, ¢) = Endrra,¢)([1a]sa)
as A-algebras. Let M be a left A-module equipped with an A-module homomorphism
@: M — A4 M =M. Assume that M is dualizable in Lincaty. Then under
the above isomorphism, Homty(a ¢)([1a]ea, [M, a]s ) is isomorphic to tr(M, ¢)

as modules.

Proof. Applying the monad from Lemma|12.3.1|to 14, we see that Endry(4,4)([1a]¢4)

is isomorphic to Home 4 (14,7 (14)) as algebras, which is given by
lA mR ¢ SwW ¢ m lfi
Mody 5 A —7AQA =AQR%A — A — Mod,.

mRol
By (Dennis Gaitsgory and Rozenblyum, 2017a, §9.2.1), the pair Moda — 4 A®A
1Rom
and A ® A ——— Mod, form a duality datum of A (regarded as object in Lincaty ).

It follows that Home 4 (14,7 (14)) = tr(A, ¢). The case of module is similar. |

The following description of hom spaces between certain objects in Tr(A, ¢) is

useful in practice.

Corollary 12.3.6. Assume that A is rigid and is compactly generated, with {c;}
being a set of compact generators. Then for X,Y € A with X compact in A,

Homry(a,4)([X]oa, [Y]o4) = colim Homa(X,c; ® ¢(c;)),

/mR(v)

where C ® C C A ® A denotes the full subcategory spanned by {c; R c}; ;.

Note that a morphism ¢;®c; — m®(Y)in A®A is equivalent to a morphism ci®cj —
Y in A. So informally, this corollary says that every morphism [X]¢4 — [Y]s,4 in
Tr(A, ¢) can be represented as a pair of morphisms (X — ¢; ® ¢(c;),c;®c; = Y)
in A (compare with (Zhu, 2016b, §3.1)).

Proof. We have

Homry(a.g)([X]o4, [Y]s4) = Homs (X, m o sw o m®(Y)).
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As A is compactly generated, so is A ® A with a set of compact generators given by
{ci®c;}i ;. Then mR(Y) = colime,gc,—y ¢; ® ¢j. As X is compact, the corollary

follows. u

Remark 12.3.7. In fact, the above corollary admits a more economic form. Namely,
suppose we write mR(14) = colim;(c;| B ¢;2) as a filtered colimit of compact
objects in A ® A. Then as m®

mR(Y) = colim;(c;1 ® (cin» ®Y)). Therefore,

is a right A-module homomorphism, we have

Homry(a,¢) ([ X045 [Y]04) = CO{,im Homy (X, cin ®Y ® ¢(ci1)).

As mentioned above, if A is rigid, then it is dualizable as object in Lincaty. It
follows from (Dennis Gaitsgory and Rozenblyum, [2017al Proposition 9.5.3) that
A€ and A€ from admit left duals, denoted by S4 and T4 respectively, which
we can identify with A-bimodules under the equivalence grevgsBMody = 4BMody
(resp. 1BModggarer = 4BMody). By (Lurie, 2017, Remark 4.6.5.4), there is an
automorphism o4 of A (as a monoidal category), usually called the Serre functor
of A, such that S4 = “4A as A-bimodules.

Example 12.3.8. We recall that a pivotal category is a rigid monoidal category
equipped with an isomorphism ids = . If A is compactly generated, this means

that for a € A compact, a""" and a""® are functorially isomorphic.

Assume that A is pivotal. Assume that Q is an A-bimodule, dualizable as a A-linear
category, with ¥ Q its left dual. Then Tr(A, Q) is dualizable with Tr(A, Q") is dual.
The unit is given by

Mods “5 A % Tr(A, A) — Tr(A, Y0 @4 Q) — Tr(A, Q) ® Tr(A, " Q).
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Chapter 13

GEOMETRIC TRACES IN SHEAF THEORY

Following ideas of (Ben-Zvi and Nadler, 2009) (Ben-Zvi, Nadler, and Preygel,
2017) to develop a method to calculate the (twisted) categorical trace of monoidal
categories arising from convolution pattern in algebraic geometry. As mentioned
before, Compared with the work of loc. cit., we will first calculate a geometric
version of categorical trace. Then we will compare the geometric version with
the usual version in favorable cases. Our approach allows us to bypass integral

transform of sheaf theories, which usually do not hold in the ¢-adic setting.

13.1 Geometric Hochschild homology

We use the formalism of category of correspondences and sheaf theory as in Chap-

ter

Let A be an associative algebra object in Corr(C)yert horiz, and let M be a left A-
module objectin Corr(C)yert horiz- As D is alax symmetric monoidal functor, D (A)
is an algebra object in Lincaty and D (M) is a D (A)-module object in Lincat,, with
multiplication and action maps given by

D(A) @ D(A) = D(Ax A) = D(A)
D(A) @ D(M) = D(A X M) — D(M)

Similarly, if F is an A-bimodule, then D (F) is an D(A)-bimodule. Then one can
form its Hochschild homology (a.k.a categorical trace) of (D(A), D(F))

Tr(D(A), D(F)) = D(A) ®D(A)D(A)e PD(F) € Lincaty.

In practice, however, we need to consider a variant Treeo (D (A), D(F)), which we

call the geometric trace of D (F). Namely, we consider the Yoneda embedding
Corr(c)vert;horiz - P(Corr(c)vert;horiz),

where P (Corr(C)yers:horiz) 1S the category of presheaves on Corr(C)yers:horiz €quipped
with the induced symmetric monoidal structure, which by definition preserves col-
imits in each variable (see (Lurie, 2017, Corollary 4.8.1.12). Then we have the
Hochschild homology of the A-bimodule F in P (Corr(C)yers:horiz)

Tr(A, F) := [HH(A, F).| € P(Corr(C)yvers:horiz)-
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By the universal property of $ (Corr(C)yers:horiz), the functor D : Corr(C)yers:horiz —
Lincaty extends to a continuous functor D : P (Corr(C)yerr:horiz) — Lincaty. Then

we define the geometric trace of D(F) as
Trgeo(@(A)a D(F)) := D(Tr(A, F)).

Explicitly, Treeo (D (F), D(A)) can be computed in the following way. We first apply
the functor D to the standard Hochschild complex (12.4)) (which now is a simplicial
object in Corr(C)yert.horiz) to obtain a simplicial object D (HH4 (A, F)) in Lincat,.
Then the geometric trace Trgeo (D (A), D(F)) is the geometric realization of this

simplicial object in Lincaty
Treeo (D(A), D(F)) = |D(HH(A, F).)|. (13.1)

We emphasize that Treeo (D (A), D(F)) depends not only on D(F), but on the
A-bimodule F itself (and of course the functor D).

In particular, for A equipped with an algebra endomorphism ¢ : A — A we have
the A-bimodule F = ?A in Corr(C)yert.horiz as before. We write

Trgeo(@(A)’ ¢) = Trgeo(@(A), D(¢A))-

Remark 13.1.1. As D is equipped with a lax monoidal structure we get a natural

comparison functor

Tr(D(A), D(F)) = |D(A)®* @ D(F)| — |D(A®* ® F)| = Trgeo(D(A), D(F))
(13.2)
from the usual trace of D(F) to the geometric trace. This functor is not an equiva-
lence in general. Of course, if for each n, the functor D(A)*"@D(Q) — D(A"XQ)
is an equivalence, then the comparison map (13.2)) is an equivalence. We will see

later that this functor is an equivalence in many more cases of interest.

13.2 Fixed point objects and geometric traces of convolution categories

We specialize the previous constructions to the situation appearing in our applica-
tions. Let X € C satisfying conditions as in Example[T0.1.2](thatis, Ay : X — XXX
and myx : X — pt belong to Cjpriz). Let f: X — Y in C,,; and assume that the
relative diagonal map Ay/y : X — X Xy X belongs to vert. Let X, — Y denote

the Cech nerve of f. From Example [10.3.3/and Remark [10.3.6} it gives rise to an
object Alg(Endcor(c) (X)) which induces

X, =X xy X
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with the structure of an associative algebra object in Corr(C)yers:horiz- The multi-

plication and unit maps are given by

X Xy X xy X —Z8H oy s X) % (X Xy X) X — % pt
\Lidxfxid ) l/AX/Y )
XXy X X Xy X

Let Z € C equipped with two morphisms g;: Z — Y, i = 1,2 in C and let
Q:XXYZXYX:ZXYXy (XXX)

Then via the construction of Section [10.4] the object Q admits the structure of an
(X xy X)-bimodule in Corr(C)yers:horiz- In particular, the left action is given by the
diagram
XXy XXy Zxy X — (X Xy X) X (X Xy Z Xy X)
\Lidx fxidxid
XXy Zxy X
and we have a similar diagram for the right action. Consider the following diagram

X Xyy Z 2EEN2) v X Xyuy Z (13.3)

q=(f><idz)l
Y Xyxy Z,

which induces a functor g+ o (59)* : D(X Xy Z Xy X) = D(Y Xyxy Z).
Proposition 13.2.1. The following diagram is commutative

DX xy Z Xy X) — 2

|

TI'(Z)(X Xy X),Z)(X Xy Z Xy X)) qt

D(X Xyxy Z)

Trgeo(ﬂ(X Xy X), D(X Xy Z Xy X)) —= D(Y Xyxy Z).

Assume that the sheaf theory D satisfies Assumptions[I1.2.1|[I{3| and assume that:

]. AX:XHXXXECsm,

2. f: X — Y S Cpr()p,
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3. Axyy: X = X Xy X is in Cprop.

Then the bottom horizontal functor of the above diagram is fully faithful, with the

essential image is generated under colimits by the image of q; o 6.

The proof of the proposition will be given at the end of Section[13.3] We note that

there is no assumption on (g1, g2) : Z — Y X Y.

We specialize Proposition [[3.2.1] to the following two cases. First, assume we are
given morphisms ¢y: X — X and ¢y: ¥ — Y in C intertwined by f, that is,
equipped with an equivalence f o ¢x ~ ¢y o f. We will usually abuse notation and
denote both maps by ¢ if it is clear from context. We let Z =Y with the map g; = id
and g, = ¢. In this case, Z Xyxy Y is nothing but the ¢-fixed point object L4(Y),
defined by the pullback
Ly(Y) —— Y

l”“’ iAY (13.4)

vy — s yxy.
We assume in addition that ¢y is an equivalence. In this case the (X Xy X)-module
X Xy Z Xy X is isomorphic to the ¢-twisted module ¢ (X xy X), with the isomorphism
sending (x,z,x") € X Xy Z Xy X to (¢(x),x") € (X xy X). Then (13.3)) becomes

X xy Lo(¥) 22> X xy X
|
Ly(Y)
Corollary 13.2.2. Under the same assumption as in Proposition and given

ox, ¢y as above, there is a canonical factorization

DX xy X) — 2 4 DX xxxex (X Xy X))

| k

Trgeo(Z)(X Xy X),¢) ———— Z)(~£¢Y)
with the lower horizontal arrow is fully faithful. The essential image is generated
under colimits by the image of g+ o (53.
Another case we need to consider is Z = Wy X W, with g; : W; — Y two maps in C.

In this case,

ZxXyxy Y =Wixy Wa, ZxXyxy (X xX)=(W; Xy X)X (X xy W),
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We denote:

D(W1 xy X) ®§§?XXYX) D(X Xy W2) = Trgeo (D (X Xy X), D(Z Xyxy (X X X)),
(13.5)

which is the geometric analogue of the relative tensor product.
Corollary 13.2.3. Under the same assumption as in Proposition|13.2.1, we have a
canonical square

(ldW1 ><AX><idW2 )*

D((W1 xy X) x (X xy W2)) D (W xy X Xy W)
j L (idWl Xinsz)-;-

D(W1 xy X) @y, x) DX Xy Wa) D(Wy xy W)

with the bottom functor fully faithful. The essential image is generated under colimits
by the image of (idw, X f X idw,)+ o (idw, X Ax X idw,)*.

Again, there is no assumption on g; and g,.

13.3 The geometric trace and relative resolutions

Now we prove Proposition[I3.2.1] In fact, (to save notations) we will prove a slightly
general statement. We consider the geometric trace for pair BMod(Corr(C)yers:horiz)
arising from an associative algebra X; € Alg(Endco(c)(Xo)) and a bi-module
object Q € x,BMody, (Endcor(c)(Xo)). Roughly speaking, these are pairs (X1, Q)
seen as objects in the category BMod(Corr(C)yers:horiz) consisting of an algebra

X1 € Alg(Corr(C)yers:horiz;) Whose multiplication and unit maps are of the form

T
X1 xx, X1 — X X X Xo —2s pt

\Lm : l , (13.6)

X X

and an X;-bimodule Q € y,BMody, (Corr(C)yers:hnoriz) Whose action maps are of
the form

¢ &
X1><X0Q—I>X1><Q 0 XxXx, X1 — 00X X

lal ; la, : (13.7)

Q Q

Here we require Ay, : Xo — Xo X Xo and 7y, : X9 — pt belong to Cporiz (sO
n,é1,& € Choriz as well) and m, u,aj,a, € Cyer. See Remark [10.4.1] for more
details and references.
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We can then consider the geometric trace
Trgeo (D (X1), D(Q)) = D(Tr (X1, Q)) = [D(HH(X1, Q))]

defined in the previous section. On the other hand, the extra structure on the algebra

and module allows one to construct a variant of the geometric trace.

In the monoidal category EndCorr(C)ve,-,;h,,riZ(XO) we consider the Bar complex of
the algebra object X;, which we denoted by Bar*0(X;),. Under the lax monoidal
functor Endcorr(¢),erspori. (X0) — COIT(C)yers;horiz» it gives a simplicial object in
Cort(C)yerr:horiz (in fact in C,.r), denoted by the same notation, which can be
written as

Bar® (X))s = Xo Xxoxx, (X1 X X1),

where the two maps X,, — Xy corresponds to {0} c {0,1,...,n} and {n} C
{0,1,...,n} respectively and X; X X| — X X Xp is given by (d, dp). The action
of (X1 X X1) X Q — Q by right and left multiplication gives

Bar®(X1)e ® O = Xo Xx,xx, (X1 X X1) X Q — Xo Xx,xx, Q@ = HHX (X1, Q).
which is (X; ® X)-bilinear and therefore induces

BarX0(X)). ®x,0x, 0 — HHX (X}, Q).

The lax monoidal functor Endcorr(¢),erronis (Xo) = Corr(C)yert:noriz also induces a

natural map of simplicial objects
Bar(X;)e — Bar® (X)),

in Corr(C)yerr:horiz- 1t follows that we obtain a map of simplicial objects in
Corr(c)vert;horiz

de : HH(X1, Q)s = Bar(X1)e ®x,ex, Q — Bar®(X1)s ®x,0x, @ = HHY (X1, Q).,
(13.8)
which is given on each level n > 0 by the horizontal arrow

id 3
Xn Xxoxxy @ — Xn Xxoxx, Q — X? xQ.

Now we define the Xy-relative Hochschild homology of Q as

Tr*0 (X1, Q) = |[HHX (X}, Q)| € P(Corr(C)yert:horiz)»
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and define the Xy-relative geometric trace of D(Q) as the geometric realization in

Lincaty
Trado (D (X1), D(Q)) = D(TFX(X,,0)) = [DHH(X), 0).)].
Then (13.8) gives a functor
8*: Trgeo(D(X1), D(Q)) = Trple (D(X1), D(Q)),

which fits into a commutative diagram

(60)*

D(Q)

l

Tr(D(X1), D(Q)) (13.9)

|

Trgeo (D(X1), D(Q)) ——5 Trat, (D (X1), D(Q)).

> D (Xo Xx,xx, Q)

Proposition 13.3.1. Assume that the sheaf theory D satisfies Assumptions |11.2.1
I3l In addition, in the notations of (13.6) and (13.7) assume that

1. m: X1 xXx, X1 = X1andu: Xo — Xy arein Cprop,

2. a1: X1 Xx, Q > Qanda,: Q Xx, X1 — Q arein Cyrop,

3. the diagonal Ax,: Xo — Xo X Xo is in Csp,

4. X, - X() — pt isin Choriz-

Then the functor 6* from (13.9) is fully faithful. The essential image is generated un-

der colimits by the image of D(Q) & D (XoXxyxx, Q) = Trgé’o(D(Xl), D(Q)).

Proof. Passing to right adjoints gives a natural transformation
(60)x: D(HHY (X1, 0)s) — D(HH(X1,Q)s)

of cosimplicial categories. To prove the left adjoint 6* is fully faithful we will use
Theorem[9.0.5]and Corollary[9.0.6] The first step is to verify each of the cosimplicial
categories satisfies the Beck-Chevalley conditions.

Lemma 13.3.2. Under the assumptions of Proposition|l3.3.1} the cosimplicial cate-
gories obtained from the simplicial categories D (HH(X1, Q).) and D (HH* (X|, Q).)
by passing to right adjoints satisfy the Beck-Chevalley conditions.
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Proof. For the cosimplicial category D (HH* (X1, Q),), the face maps correspond-
ingto 0 — 0 € [n] are given by the right adjoints (do) of (do)+. All the morphisms
m, aj, a, are in Cp,,p by assumption and therefore all maps of the simplicial object
D(HHX(X{,Q).) are in Cprop as well. Then from Assumptions all the

necessary Beck-Chevalley maps are equivalences.

It is left to deal with D (HH,. (X, Q)). For every map a: [m] — [n], we have the
diagram
dO
X"xQ $-"- X"l xQ
0 + (13.10)

X X0 <

in Corr(C)yers:horiz (see (10.1)) and after for notations). We need to show that the

a

|
_ X{H'l x Q

induced diagram

DX x Q) —5 DX % Q)

l i (13.11)

DX x 0) =2 D(XI* x Q)

is left adjointable. Clearly, it is enough to consider the case when « is either a

co-face or a co-degeneracy map.

In the case of co-face map, we may assume that @ = d,, : [n] — [n + 1], that is,
a(i) =i for all i. (The proof is similar in all other cases.) Then the diagram (I3.10)
is explicitly given by

X{‘xQ#X?xQxonl érr%’"X?”xQ

Tal,n Td] Tal,nﬂ

i, £
XX X) Xx, @ 4—— X' x X Xx, O Xx, X —— X! x X xx, O

l/fl,n \L& \L‘f[,nﬂ

ar n+l ‘fr, 1
XIH'I X O + X{H'l X Q Xx, X1 LN Xi’l+2 x Q,

as a diagram in C, where a; , = idxil X ay, etc. Note that all squares are Cartesian in

C.

We have dY = (&)« © (arx)’ (for k = n,n + 1) with the left adjoint (az )+ o &,
and the vertical arrows in (I3.11)) are given by (&)« o (a;x)". Left adjointability
of[13.11|{then means that the natural map

(al,n+1)T o (fr,n+1)* © (‘fl,n+1)* © (al,n+l)T - (‘fl,n)* © (al,n)Jr ° (ar,n)T © (gr,n)*
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is an equivalence. It is enough to show that the Beck-Chevalley maps

(@) o (@) = (ar) o (@)t Erpr1)* 0 (ELnr)e = (EDx 0 (§)*
(13.12)

(&% o (arn)’ = (@) o (&0)*  (@rne1) 0 (EDx = (E1n)x 0 (@)s (13.13)

are equivalences. Note that the maps a;x,a,k,d;, d, are in Cyrop. So the left

equivalence of (T3.12)) holds by Assumptions [11.2.1]Il As the maps &4, &k, &1, &
belong to Csy, the right equivalence of (I3.12) holds by Assumptions [TT.2.1P] and

the equivalences (I3.13) hold by Assumptions[IT.2.1|3]and {4

In the case of co-degeneracy map, we can assume a = so: [n+ 1] — [n] given by
5(0) =0and s(i) =i—1for 1 <i < n. Asin the previous case, the diagram (13.10)
is explicitly given as

fr,n+l

XmlxQ XM x 0 xx, Xi ——— X2 xQ

XX Xo X Q d%’Xi’xXonxXOXl iy X x Xox Q

lnn l;, L

XIxQ 0 X0 0 xx, X) —y XM x Q,

Ar,n+l

where all squares are Cartesian. As before, in order to show the corresponding
adjointability equivalence it is enough to show the corresponding commutativity in
each square. As the map u: Xo — X is in Cyr0p, the upper two squares of the
diagram can be handled as in the co-face map case. For the remaining squares, we

need the maps

(gr,n)* o (My+1)x = (A)x 0 (é?r)*a (arn)s o (A)x = ()% 0 (dr)s
to be equivalences. As my, : Xo — ptis in Cpori; the same is true for mi, T so the
equivalences hold by Assumptions [IT1.2.1] [2]and 4] m|
We continue to prove Proposition[I3.3.1] Passing to the right adjoint of (I3.9) gives

Z)(Q) < G0 Z)(XO X XoxXo Q)

| !

Treeo (D (X1), D(Q)) <2— T (D(X1), D(Q)).
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with horizontal arrows monadic (by Lemma [[3.3.2). Let T denote the monad
corresponding to the cosimplicial category D (HH** (X1, Q).) and by V the monad
corresponding to D (HH(X, Q).). Then to show that 6* is fully faithful it is enough

to show that the natural map
V = (80)* o T o (60)%
is an equivalence. The monad T is given by (do)+ o (d1)" with
di,do: X1 Xxyxx, Q — Xo Xxyxx, O-

Recall that the map d is induced by the left action of X; on Q in Endcor(c) (Xo) by

X1 Xxoxxy O = Xo Xxoxx, (X1 Xx, Q) — Xo Xxyxx, O
Likewise, the map dy is induced by the right action via

X1 Xxpxxy O = Xo Xxyxx, (Q Xx, X1) — Xo Xxoxx, O-

The monad V is given by

V= (ay)to (&) o (éxo (an).
These maps fit into a commutative diagram diagram in C:

X1 X0 0 XXy 0 — 3 0

Tfr Tg Téo

d
0 Xx, X1 X— X1 Xxpxo @ — Xo Xxoxxy O (13.14)

la, \Ldo

5
Q ——— Xo Xxpxx, Q

such that the two upper squares are Cartesian. Then it is enough to show that the

natural maps

(€ 0 (EDx = xwo ™, Fo(a)’ = (d)T o (60)*,  (ar)s 0 xx = (80)x © (do)s

are equivalences, which hold by Assumptions [11.2.1] 2] 3] and 4] respectively, and
the fact that &,&,, {, x € Cyn and ay, a,, do, d1 € Cprop- O
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Now we specialize the above discussions to the case X| = XXy X and Q = XXyZXyZ
as in Proposition [I3.2.1] In this case, the relative Hochschild complex has a simple
interpretation. Consider the fiber product

YXysy Z ——— Y

8=81X82

Z ——— Y XY

in C and consider the map ¢ = f X idz : X Xyxy Z — Y Xyxy Z.
Lemma 13.3.3. There is a canonical equivalence of simplicial objects in C.
HHY (X xy X, X Xy Z Xy X)o = Xo Xyxy Z

where the right hand side is the Cech nerve of q : X Xyxy Z — Y Xyxy Z. Under
the identification, the map 6 from (13.8)) is the horizontal map in (13.3).

Proof. The construction of the left hand side is natural in X and applying it to
the identity map ¥ — Y gives the right hand side. Thus, f: X — Y induces an
augmentation HH* (X xy X, X Xy Z Xy X). of the corresponding simplicial object.
In order to identify this augmented simplicial object with the Cech nerve of ¢, can
use the characterization (Lurie, 2009, Proposition 6.1.2.11) as it is easy to check

that the necessary squares are pullbacks. m|

Proof of Proposition Only fully faithfulness requires a proof. Consider the
augmented simplicial category associated to the Cech nerve of g. As f € Cprop SO
is the map X Xyxy Y — Y Xyxy Z. Using Lemmawe identify the Cech nerve
of this map with the relative Hochschild complex. By passing to right adjoints and
using Corollary [9.0.6) we get a fully faithful functor

|DHH* (X Xy X, Z Xyxy (X X X))a)

— D(Z Xyxy Y). (13.15)

Composition with the fully faithful functor from Proposition[13.3.T|gives the desired
functor. The essential image of (I3.T5) is generated by the image of ¢, so the

description of the essential image follows. O

We record the following functorality for later purpose. Let (f : X — Y) € Cyerr,
with Ax,mx € Cpori; and Ax)y € Cyer. Let Z < C — Z' be a morphism in
Corr(Cryxy)vert:horiz» 1.€. all Z,Z’, C are equipped with morphisms to ¥ X Y and
C — Zand C — Z' are (Y X Y)-morphisms in C.



102
Let X, be as above and let Q" = X Xy Z’ Xy X and Q = X Xy Z Xy X. Then the

following diagram is commutative

D(Q) —=Tr(D(X1), D(Q")) — Trgeo (D(X1), D(Q)) — D (Y Xyxy Z')

| | | |

D(Q) —= Tr(D(X1), D(Q)) — Trgeo (D(X1), D(Q)) —= D (Y Xyxy Z).
(13.16)

Remark 13.3.4. When we take C to be the category of (nice) algebraic stacks over
C and the sheaf theory D to be D-modules, one always has Trgeo(D(X Xy X), ¢) =
Tr(D(X Xy X),¢) as D(X) ® D(Y) = D(X xY). Therefore, Corollary
recovers (Ben-Zvi and Nadler, 2009, Theorem 6.6). In loc. cit., instead of directly
considering DIHHX (X xy X, X Xy X).), the authors used the relative bar resolution
for the monoidal category D(X Xy X) and then used integral transforms to embed
each level in the resulting simplicial object of this relative resolution fully faithfully
into the corresponding level of D(HHX (X xy X, X Xy X).). Our method bypasses

using the integral transforms, which might fail in other sheaf theoretic content. See

Section for discussions.

13.4 Comparison between geometric and ordinary traces

In practice, we need to compare the geometric trace defined and studied as above
with the ordinary traces reviewed in Section [I2.1] The easiest situation has been
discussed in Remark [I3.1.1] On the other hand, the monadicity of the simplicial
objects in Lemma[I3.3.2] can be used to compare the usual trace and the geometric

trace in other situations. Recall notations in (13.6]).

Proposition 13.4.1. Assume that the sheaf theory D : Corr(C)yers:hori; — Lincaty

satisfies the following condition: for every X,Y € C, the exterior tensor product
X:DX)@DY) » DX XY)

is fully faithful and admits a continuous right adjoint &% (see Remark|11.1.1]) In
addition, Assumptions[I1.2.1 hold for D.

Let X, Q as in the statement of Proposition|l3.3.1| Assume that

1. the unit object Ax, € D(Xo) (for the symmetric monoidal structure of D(Xo)
as in Section[I1.1) is compact;
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2. the image of Ax, under the functor 1y o m' ou; belongs to D(X1) @ D(X;) C
Z)(Xl X Xl).

Then D(X1) is rigid and the comparison map Tr(D (X1), D(Q)) — Treeo(D(X1), D(Q))
(see (13.2)) is an equivalence.

Proof. We first show that D (X)) is rigid. We need to check the conditions of
Example The unit 1y, is equivalent to u+(Ay,), which is compact as Ay,
is compact. The multiplication map is given by the composition m; o n* o R, with
the continuous right adjoint given by ®% o 57, o m'. It remains show that that this
right adjoint is a D (X;)-bimodule homomorphism. To see that it is a left D(X;)-
module morphism (the case of right O (X;)-module structure is similar), consider

the following diagram

id®(n.om’) idomk
—_—

D(X1) ® D(X1) D(X1) ® D(X1 x X1) — D(X1) ® D(X1) ® D(X1)

(idxn)o(idom)"

D(X1 X Xy) D(X1 X X; X X1) D(X; X X)) @ D(Xy)
mfon*l L(mxid)To(r]Xid)* l
*omT R
D(X)) - DX x X)) —= D(X1) ® D(Xy).

By Assumptions[I1.2.T[5H6] the left upper square is commutative. By Lemma[13.3.2]
the left lower square is commutative. In other words, the functor 77, o m" is a left
D(X;)-module homomorphism. Then Assumption (2)) of the proposition implies
that the essential images of the functor ®% o 77, o m" belong to D(X;) ® D(X;) C
D(X; X X1). Therefore, the outer square of the above diagram is commutative.

(However we do not claim the right square is commutative.)

Next we show that the comparison map (13.2)) is an equivalence. Recall that it is

induced by the morphism of simplicial objects
HH(D(X1), D(Q))s = D(X1)®* ® D(Q) — D(X;] x Q) = D(HH(X1, Q)s).

The 0-th objects of both simplicial objects are given by D(Q). We use d', to denote
the ith face map d; : D(HH(X1, Q)m+1) = D(HH(X1, Q)m).

By Lemmal12.3.1] the co-simplicial object D(X)®* ® D(Q) obtained by passing to
right adjoints on HH(D(X1), D(Q))., satisfies the Beck-Chevalley conditions, and
that the resulting monad on D(Q) is given by dpomom” o (d;)X. By Lemmal[13.3.2]
D(HH(X;, Q),.) also satisfies the Beck-Chevallay conditions, and that the resulting
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monad on D(Q) is given by dy o (di)X. It remains to show that the two monads
are identified which will imply the proposition. Note that (d;)® is given by the

composition of the bottom functors in the following commutative diagram

D) e D) © DD (x) @ D(0)
(@ on.om)oi B®id
1x, ®id (nwom™)®id
D(0) D(X1) ® D(Q) — =" D(Xy X X)) @ D(Q) D(X)) & D(Q)

id), o0 ™ d +o(idxé;)*
(i7xid)xo(mxid) D(X; X X; X Q) (idxay);o(idxéy) DX, % Q).

H (uxid)o(mx, xid)*
Q) —D(X1 % Q)

We remark that the commutativity of the triangle follows from Assumption (2)), and
the commutativity of the square below the triangle follows from Assumptions[IT.2.1]
It follows that ® o ®% o (d{)® = (d;)R. In particular, the two monads are
identified. O

Corollary 13.4.2. Assume that the sheaf theory D is as in ??. Let X,Y,Z be as
in Proposition|l3.2.1) Assume that Ax is compact and its image under the functor
(id X Ax X id)x o (id X f X id)" o (Ax/y)+ belongs to D(X Xy X) ® D(X xy X),

then the canonical map
TI'(Z)(X Xy XX), Z)(X Xy Z Xy X)) - Z)(Y Xyxy Z)

is fully faithful. If in addition, Z = W) X Wy as in Corollary [13.2.3] then the

canonical map
D(W1 Xy X) ®p(xxyx) D(X Xy W2) — D(W; xy Wr).
is fully faithful.

Remark 13.4.3. If the sheaf theory D satisfies ???, i.e. for f € Cprop N Choriz
fT = f* and for g € Csm N Coerr, g« = g+ then under the assumption that
f € Cprop N C]’l()}’iz and AX € Csm N Cvert, we have

(id x Ay x id), o (id x £ xid)T o (Ax/y)+(Ax) = (Ax, )i (mx,) A

Proof. The first statement is a combination of Proposition(13.2.1|and ??. As D (X Xy
W1) @ D(W, xy X) = D(X xy Wi X Wy Xy X) is a fully faithful D (X;)-bimodule
homomorphism, the second statement follows from the first and Corollary [12.3.2]

o
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Example 13.4.4. Consider the case Z = W X X for some g: W — Y. Then we have

a split augmented simplicial object
HH(X Xy X, (W X X) Xyxy (X X X))e = WXy X

with the last map given by the action of X Xy X on W Xy X. In this case, we reduce

to the tautological equivalence
D(W xx X) ®p(xxyx) D(X Xy X) > DW xy X).
13.5 Functoriality of categorical traces in geometric setting

Next we discuss functoriality of categorical traces arising from convolution patterns.

We start with the following observation. Let f : X — Y be as in Section[I3.2] Let

Z --> Z' be a morphism in Corr(Cjyxy )vers;horiz> given as Z' «— C — Z.

Lemma 13.5.1. Assumptions are as in Corollary|l3.4.2|and assume that the sheaf
theory D satisfies Assumptions [I1.2.1|[I{2] Then the following diagram is right
adjointable.

TI‘(Z)(X Xy X), Z)(X Xy Z Xy X)) —>Z)(Y Xyxy Z)

| |

TI‘(Z)(X Xy X), D(X Xy A Xy X)) —— D(Y Xyxy Z,).

Proof. As D(X Xy X) is rigid, using Lemma [12.3.1]it is enough to show that the

following diagram is right adjointable

Z)(X Xy Z Xy X) —>D(Y Xyxy Z)

| l

Z)(X Xy Z' Xy X) —_— D(Y Xyxy Z’).
But this follows from our assumption of 9 (in particular Assumptions
2. O

Next we discuss duality of modules arising from the convolution patterns. Let
(f:X—>Y,g:Z->YxY)andlet (f: X' —>Y,¢g :Z - Y xY')beasin
Section . Let W — Y X Y’ be a morphism. Let

X=X xy X, Q:XXyZXy X, X{ =X Xy’ X’, Q/ZX/ Xy A Xy’ X’,
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and let
M =X Xy W Xy X'.

We would like to know when D (M) is dualizable as a D (X;)-D(X])-bimodule,
with the dual of given by D(N) where N = X’ Xy» W Xy X. We will assume that

e W—oY and W — W Xy W belong to Cporiz;

e W —-Yand W — W Xy W belongs to C,¢:.

Then we have the morphism ugeo : Y’ --> W xy W in Cort(C)yers;noriz given by
WxyW W — Y and egeo : W Xy W --> Y givenby ¥ < W — W Xy W. They

induce

D(X)) (13.17)
lD(idXMgeoxid)
D(N) D (X)) D(M) — D(X' xyr W xy W xy X').
and
D(M) ®p(x;) D(N) —= D(X xy W xyr W xy X) (13.18)
l@(idxegeoxid)

DX)).

e

Here e is defined to be the composition.

Lemma 13.5.2. If the vertical morphism in (13.17) factors through a D(X{)-

bimodule morphism
u: D(Xi) — D(N) D (X)) D(M)

(e.g. if D(N) ®px;) D(M) — D(X' xy: W xy W Xy X') is an equivalence), then
u and e from (13.18) give the duality datum of D(M) as a D(X1)-D(X|)-module.

Proof. Write R = X’ Xy WXy WXy, X" and S = X Xy W Xy W Xy X for simplicity.
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Note that (using (13.16)) we have the following commutative diagram

D (X)) ®p(x;) D(N) =——=D(X]) ®p(x;) D(N) —==D(N) = D(X’' Xy Y xy» W xy X)
u®id D(R) ®p( X)) D(N) D (idxugeoxidxid)
D(N) ®p(x,) D(M) ®p(x;) D(N) DX xyr Wxy W xy W xy X)
\
idee D(N) ®p(x;) D(S) D(idxidxegexid)
D(N) ®p(x) D(X) === D(N) ®p(x,) D(X1) —=D(N) = D(X' Xy Y’ xy: W Xy X)

The composition of functors in the right column is isomorphic to the identity functor
by the base change isomorphism (I1.2)). It follows that (I2.TT)) in the current setting
holds. The same reasoning implies that (12.10) in the current setting also holds. O

In practice, the assumption in Lemma [I3.5.2)may not hold. But under some certain

technical assumptions, we can still understand the duality datum.

Lemma 13.5.3. Suppose the sheaf theory D satisfies assumptions as in Corol-

lary(13.4.2 and let f : X — Y and f" : X' — Y’ be as in Corollary|13.4.2| (so in
particular D(X1) and D(X]) are rigid). Suppose D(M) @ D(T) — D(M XT) is

an equivalence for every T € C. Then
u: Z)(Xi) — D(X’ Xyr W Xy W Xy X’) - @(N) ®Z)(X1) D(M),

where the last functor is the right adjoint of the vertical morphism in (13.1°7)) and e

from (13.18) form a duality datum.

Proof. As in the proof of Lemma it is enough to establish the following

commutative diagram

D(X]) ®p(x;) D(N) =——=D(X]) ®p(x;) D(N) D(N)
ugid D(R) ®p(x;) D(N)
% \
D(N) ®D(X1) D(M) ®D(X]’) Z)(N) D(X/ Xy w Xy w Xy w Xy X)
(%)
id®e D(N) ®px,) D(S)
D(N) ®px) D(X) =———==D(N) ®px,) D(X1) D(N),
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where the arrows labelled by (xx) are right adjoint of the corresponding arrows in
the diagram from the proof of Lemma|[13.5.2]

Only the commutativity of the middle parallelogram and the lower right trapzoid
requires justification. For the middle parallelogram, first consider the commutative

diagram

D(N x M xN) D(R X N)

|

D(X’ Xy W Xy W Xy W Xy X)

D(N xS)

with horizontal morphisms are induced by the correspondence Y «+— X — XxX and
vertical morphisms induced by Y’ « X’ — X'xX". As f, f" € Cprop and Ax, Ax: €
Csm, the above diagram is right adjointable by the same proof as in Lemma[13.3.2]
Under our assumption that D(M) @ D(T) — D (M xT) is an equivalence for every
T € C, we may replace D(N XM X N) by D(N) @ D(M) ® D(N), D(R x N) by
D(R) ® D(N) and D(N x S) by D(N) ® D(S). Then as D(X]) and D(X;) are
rigid, using Lemma [I2.3.1] we obtain the commutativity of the parallelogram.

Similarly, the lower right trapzoid is commutative by Lemma [[3.5.1] and that

D(N) ®p(x,) D(S) = D(N) &y, D(S) := Trgeo(D(X1), D(N X 5)). O

Now suppose we are given a D (X1)-D(X])-bimodule homomorphism
a: D(M) ®px) D(Q') — D(Q) ®p(x,) D(M).

Then as explained above, under certain dualizability assumption of D (M), there is

a functor
Tr(D(M), @) : Tre(D (X)), D(Q)) — Tr(D(X,), D(Q)).
On the other hand, suppose we are given a correspondence
Qgeo : WXy Z' > Z Xy W
in Corr(Cjyxy’)ver:horiz- One can form the correspondence
C(W,ageo) : Y Xysyr Z' -5 Y Xyxy Z

given by the composition

, UgeoXid

Y Xyt Z -5 (W xy W)y Z' =Y Xyxy (W Xyr Z' Xy W)

idXageoxid idXidXegeo

--> Y Xyxy (Z Xy W Xy W) - Y Xywy Z. (13.19)
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The sheaf theory O then induces a functor
D(C(W,ge0)) : DY Xyrxyr Z') = DY Xyxy Z).

We would like to relate Tr(D (M), ) with the above functor under certain assump-

tions.

Assumptions 13.5.4. (1) We assume that the following diagram is commutative

D(M) ®D(X{) DQ)—=D(X xy W xy Z' Xy» X’) (13.20)
aL j@(idxageoxid)

D(Q) ®D(X|) D(M) —>Z)(X Xy Z Xy W Xy X’).
(II) We assume that the following diagram is commutative

D(M) ®D(X{) DQ)=—D(X xy Wxy Z' Xy: X') (13.21)
QL j’D(iangeoxid)

D(Q) ®Z)(X1) D(M) <—D(X Xy Z Xy W Xy X’).
where the horizontal arrows are right adjoint of the natural ones.

Remark 13.5.5. Note that Assumptions |13.5.4| holds in the case Z' = Y’ with
g =y Y =Y, Z=Ywithg, =¢y : Y —> Y and there is gy : W — W
compatible with ¢y and ¢y.

Proposition 13.5.6. Under the assumption in Lemmall 3.5.2\and Assumptions|l3.5.4

then the following diagram is commutative

Tr(D(M),a)

Tr(D (X)), D(Q) Tr(D(X1). D(Q))

, L , D(C(W,age)) L
DY’ xyxy Z') - DY Xyxy Z).

Under the assumption in Lemma and Assumptions [[3.5.4|[[l} the following
diagram is commutative

Tr(D(M),a)

Tr(D(X7), D(Q) Tr(D(X1), D(Q))

l D(C(W,age0 [\
DY xyryr 2/) —2 W) oy vy Z)
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Proof. The first case follows from the following commutative diagram

D(X]) ®p(xpenx)re D(Q) DY’ Xyrxyr Z')

u®l D(”geoXid)

(D(N) ®p(x;) D(M)) ®p(x)en(x)e D(Q') D((W xy W) Xyrxyr Z')

D(X1) ®p(xpenxe (D(M) @p(xi) D(Q') ®p(x)) D(N)) —=D(Y Xyxy (W Xy Z' Xy W)

1®a®]1 D (idxargeoxid)

D(X1) ®p(xpenxe (D(Q) ®p(x,) D(M) @p(x;) D(N)) ——=D(Y Xyxy (Z xy W Xy W))

1®1®e D)idxidxegeo)

D(X1) ®p(xpnenx)= D(Q) DY Xyxy Z)
(13.22)

The second case follows from a similar diagram

D(X]) ®p(xpenx)e D(Q') DY Xyrxy Z')

u®1 D(“geOXid)

(D(N) ®p(x,) D(M)) ®p(xnen(x)e D(Q')

D((W xy W) Xyxyr Z')

D(X1) @pxpenx e (D(M) @px;) D(Q) ®p(x;) D(N)) <— DY Xyxy (W Xy Z' Xy W)
1®a®1 D (idXageoxid)

D(X1) ®@p(xpenxe (D(Q) ®p(x,) D(M) @p(x1) D(N)) <——D(Y Xyxy (Z xy W Xy W))

1®1®e D (idxidxegeo)

D(X1) ®p(xenx)e D(Q) DY Xyxy Z),
(13.23)

where the horizontal left arrows are obtained by the corresponding horizontal right
arrows in (13.22)) by passing to the right adjoint. We need to justify the commuta-

tivity of this diagram. First we have the commutativity of the following diagram

D(X]) ®p(xpenx)y~ D(Q) DY’ Xyrxy Z')
usl l@(ugwxid)

(D(N) ®p(x)) D(M)) ®p(xpenx)r D(Q") <—— D(R) ®p(x)en(x)y D(Q) <— D((W xy W) Xyruyr Z7)

Indeed, the left triangle is commutative as we are in the case as in Lemma[[3.5.3]

and the right square is commutative as the natural functor D(R) ®qp X))@D(X])re
DQ) = D((W xy W) Xyxy: Z') is fully faithful by Corollary [13.4.2] This
justifies the commutativity of the top square in (13.23).

For the commutativity of the third square in (13.23)), by our assuption it is enough
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to show that
D(X1) ®pxpepx)e (DX Xy WXy Z' Xy X') @p(x;) D(N)) <—— DY Xyxy (W Xy Z' Xy» W))

D(X1) ®p(xpep(x)e (D(X Xy ZXy W Xy X') @p(x1) D(N)) <———D(Y Xyxy (ZXy W Xy W))

is commutative. Under the assumption that D(M) @ D(T) — D(M x T) is an

equivalence for any 7 € C, we can use Lemma [I3.5.T|twice to conclude.

Similar argument also shows that the last square in (I3.23)) is commutative. o

Example 13.5.7. Take Y’ = pt and W = X. Then the naive class identifies with the
element Ly(f)+(ex) of D(Ly(Y)) considered as a functor from Mod.

Example 13.58. If Y — ptis in Cyori; we can take Z =Y and g = idy. Then
(Ayjy)+ = id. Then the geometric class in D(Ly(Y)) is equivalent to Pry,, (€ £ ,(v))-
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