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ABSTRACT

My Ph.D. projects centered on using computational structural biology tools to de-
velop protein engineering methods for targeted therapeutic delivery, emphasizing
delivering molecules to the brain. In this thesis, I focus on three main projects.
First, utilizing computational structural biology techniques, I investigate the molec-
ular mechanism that enables engineered adeno-associated viral (AAV) capsids to
cross the blood-brain barrier (BBB). I develop a pipeline to model the vast and
dynamic complex between engineered AAV capsids and their BBB receptors. I also
apply a tool, recently developed by myself and discussed in Chapter 3, to distin-
guish capsids that bind to different receptors. The findings of this study can lead
to novel approaches for developing chemicals and biologicals that can penetrate the
human brain (Chapter 2). Second, I describe the development of Automated Pair-
wise Peptide-Receptor AnalysIs for Screening Engineered proteins (APPRAISE).
This computational pipeline predicts the receptor binding propensity of engineered
proteins based on competitive modeling and physics-grounded analysis. I show that
APPRAISE is capable of distinguishing between receptor-dependent and receptor-
independent adeno-associated viral vectors and ranking various engineered proteins,
such as miniproteins binding to the SARS-CoV-2 spike and nanobodies binding to
a G-protein-coupled receptor. A top performer in an in silico screening using AP-
PRAISE was validated experimentally (Chapter 3). Third, I show an example to
engineer a genetically encoded transmitter indicator (GETI), which may eventually
be a cargo delivered to the brain. The GETI has a novel scaffold based on bacterial
repressors, a class of transcriptional regulators that are critical for bacteria to respond
to environmental chemicals. I repurposed an antibiotic-sensing repressor protein to
bind a neurotransmitter, melatonin, using machine-learning-guided directed evolu-
tion. A melatonin indicator was then created by integrating the repurposed receptor
with a fluorescent protein. This engineering platform may be adapted to create
bio-orthogonal GETIs for various neurotransmitters (Chapter 4).
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C h a p t e r 1

INTRODUCTION

The efficacy and safety of therapeutics rely not only on their capability to correct the
disease-causing mechanism but also on how they’re delivered (Langer, 1998). To
produce a drug’s intended efficacy, the drug molecules must reach their target site
of action. Similarly, drug safety also depends on how specifically the molecules are
distributed. This is because potent drugs are often double-edged swords, and much
of the toxicity and adverse side effects are caused by healthy tissues being exposed
to a drug. Thanks to its ability to promote efficacy and safety, targeted therapeutic
delivery is a fundamental pillar for modern precision medicine (Manzari et al.,
2021).

1.1 Targeted therapeutic delivery
Targeted delivery aims to guide drugs to their intended action site, enhance the
amount of drug that reaches the target area, and decrease the amount of drug wasted
on non-specific targets. To attain these goals, there are two categories of approaches:
physical targeting and chemical targeting.

Physical targeting approaches

Controlling the injection route. Opting for the proper injection site and the route
is the most mature physical targeting method. For instance, for slow and sustained
delivery of drugs to a target tissue adjacent to the skin or muscle, intramuscular
(IM) injection (administering drugs into a muscle) or subcutaneous (SC) injection
(administering drugs below the skin) can be employed (Jin et al., 2015). Another
example is specific delivery to the central nervous system (CNS), such as intrathecal
(IT) injection or intracerebroventricular (ICV) injection. Both techniques involve
injecting directly into the cerebrospinal fluid (CSF) surrounding the spinal cord and
the brain (Atkinson Jr, 2017).

Injection-based targeted drug delivery provides accurate, regulated administration
of drugs to specific sites, improving treatment effectiveness and limiting contact with
healthy tissues. However, drawbacks include: (1) Limited target sites: injection-
based delivery is restricted by target site accessibility, such as veins, muscles, or
spinal fluid; (2) Invasiveness: some injection routes, especially targeting the CNS,
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can be invasive, raising the risk of complications (e.g., infection, bleeding, nerve
damage); (3) Low repeatability: if the target area is deep in the body or the drug get
easily metabolized, repeated injections may not be possible or results inconsistent.

Magnetic or ultrasound-mediated drug targeting. Non-invasive physical modalities
penetrating biological tissues, like magnetism or ultrasound, have been used to ma-
nipulate therapeutics (Owen, Pankhurst, and Stride, 2012) spatially. Both modalities
enable accurate, dynamic control of drugs in deep tissues.

The core idea of magnetic delivery is to conjugate magnetic materials, usually
magnetic nanoparticles, to small molecules, proteins (McBain, Yiu, and Dobson,
2008), or even probiotic bacteria (Buss et al., 2021), and to use a magnetic field to
guide the particles to target tissues. On the other hand, ultrasound-mediated delivery
typically uses ultrasound’s penetrant mechanical energy to reversibly disrupt the
local tissue structures, such as the blood-brain barrier, permitting the entrance of
therapeutic molecules (Szablowski, Bar-Zion, and Shapiro, 2019).

Despite being emerging drug delivery technologies, magnetic and ultrasound-
mediated drug targeting faces difficulties. One main difficulty is the technical com-
plexity: both technologies necessitate specialized equipment and expertise, which
may impede the technologies’ extensive application in clinical settings. Moreover,
creating magnetic particles or ultrasound contrast agents for drug delivery is a com-
plex process still being improved. Because of these reasons, most studies involving
magnetic or ultrasound-mediated drug targeting have been limited to animal models
(McBain, Yiu, and Dobson, 2008).

Chemical targeting approaches

Modifying the physicochemical properties of the drug. Therapeutic molecules ex-
hibit various physicochemical properties that influence their biodistribution profiles.
Modifying these properties, including lipid solubility, surface activity, charge, and
molecular weight, may can lead to improved passive diffusion to desired tissues.
One notorious example is the creation of heroin, an internationally controlled opioid
drug derived from morphine. Two hydroxyl groups of morphine are acetylated to
increase the molecule’s lipid solubility, yielding a two orders-of-magnitude increase
in BBB-crossing capability (Oldendorf et al., 1972). However, such improvement
in delivery efficiency is rare, as similar modifications often result in physiologically
unstable compounds (Dong, 2018; Pardridge, 2012). Besides the stability issue, this
strategy do not provide high specificity and can only apply to small-molecule drugs.
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Engineering therapeutics for specific receptor binding. Receptor-mediated targeted
drug delivery takes advantage of the specific interaction between a drug molecule
and a membrane receptor protein on specific target cells or tissues. This strategy
often involves conjugating drugs to a receptor-binding targeting module. This ra-
tional approach improves the specificity of drug distribution, as the molecules are
preferentially delivered to cell populations that express the targeted receptor. An
important advantage of this strategy is its versatility — the strategy is compatible
with various therapeutic modalities, including small molecules, peptides, and bio-
logics. Moreover, because of the clear mechanisms involved, this strategy makes
the translatability of the biodistribution from animal models to humans theoretically
predictable (Figure 1.1).

Receptor-mediated targeted therapeutic delivery faces several practical challenges,
including the limited availability of known receptors on target tissues and promiscu-
ous ligands binding to multiple receptors. Identifying specific binders to a receptor
is currently a technically challenging and costly process that necessitates specialized
knowledge and equipment.

In summary, targeted therapeutic delivery can dramatically alter how diseases are
treated, enhancing both the efficacy and safety of existing treatments and reducing
the dosage needed. Despite the promises, both physical and chemical approaches
for targeted delivery have challenges and limitations. The following thesis will focus
on our endeavor to enhance brain delivery through the receptor-mediated approach.

1.2 Targeting therapeutics to the brain through receptors

The blood-brain barrier (BBB)
The Blood-Brain Barrier (BBB) is a highly selective membrane that isolates the CNS
from the bloodstream. It is formed by the tight junctions between the endothelial
cells that line the blood vessels in the brain, which restrict the free diffusion of
many substances from the bloodstream into the CNS. Will the BBB preserves the
equilibrium of the CNS and shields the brain from hazardous substances in the
bloodstream (Sweeney et al., 2019; Profaci et al., 2020), the protective barrier
also keeps most therapeutic medications from penetrating the brain (Banks, 2016;
Sweeney et al., 2019; Zhao and Zlokovic, 2020; Terstappen et al., 2021a).

The BBB is not completely impenetrable, and specific membrane proteins on the
BBB can facilitate the passage of specific substances into the CNS. These so-
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Difficult-to-access disease 
environments

Unpredictable biodistribution 
in human patients

High dosage requirement and 
related side effects

Mechanism-based specific delivery with 
more predictable translatability

Cross-barrier delivery Lowered dosage 
requirement

Traditional systemic delivery

Targeted delivery based on specific receptor binding

Figure 1.1: Benefits of targeted delivery based on specific receptor binding
Systemic drug delivery faces several major challenges, including inaccessibility to
the disease environment, inconsistent biodistribution in human patients, and the
need for high and risky doses. Receptor-mediated targeted delivery is a promising
approach to address these challenges.

called BBB receptors are paramount in allowing selective drug uptake into the
CNS (Jones and Shusta, 2007; Watts and Dennis, 2013; Pulgar, 2019; Terstappen
et al., 2021b). The most well-characterized BBB receptors include transferrin
receptors, insulin receptors, low-density lipoprotein receptors, and solute carrier
family proteins(Fishman et al., 1987; Zuchero et al., 2016; Zhang et al., 2020;
Terstappen et al., 2021b).
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Receptor-mediated transcytosis (RMT)
Binding between a ligand and a BBB receptor may trigger transcytosis across the
barrier, and such receptor-mediated transcytosis (RMT) is a popular approach to
transport drugs into the CNS. In this process, drugs are often conjugated to specific
receptor-binding ligands, and the complex thus formed is then taken up by the
BBB and transported beyond the barrier (Jones and Shusta, 2007; Terstappen et
al., 2021a). The success of RMT-based delivery strategies depends heavily on the
availability and specificity of BBB receptor proteins.

Transferrin receptor (TfR). TfR has been extensively studied and is the most com-
monly used BBB receptor (Jefferies et al., 1984; Fishman et al., 1987; Friden et al.,
1991; Roberts, Fine, and Sandra, 1993; Yu et al., 2011; Couch et al., 2013; Yu et al.,
2014; Johnsen et al., 2019; Logan et al., 2021). TfR is a widely expressed on the
BBB with a natural function to transport transferrin, an iron-binding protein, into
the CNS. Studies utilizing TfR as a model system to achieve RMT have yielded nu-
merous insights, for example: 1) finetuning TfR binding affinity can improve brain
uptake and peripheral exposure of antibodies (Yu et al., 2011; Couch et al., 2013),
2) monovalent binding is more effective than bivalent binding in inducing RMT of
an antibody (Niewoehner et al., 2014), and 3) binding to a specific epitope on the
receptor (e.g., the apical lobe of TfR) is essential to initiate RMT (Niewoehner et al.,
2014; Terstappen et al., 2021b). Some of these insights may generally apply to other
BBB receptors.

CD98 heavy chain (CD98hc). CD98 heavy chain (CD98hc), a solute carrier family
transporter that exchanges amino acids between the cytoplasm and the extracellu-
lar fluid, was recently identified as a BBB receptor (Zuchero et al., 2016). Too
prove CD98hc’s BBB receptor function, bispecific antibodies targeting both 𝐴𝛽 and
CD98hc were developed, and these antibodies indeed show a significantly boosted
brain accumulation and a robust pharmacodynamic response following intravenous
administration (Zuchero et al., 2016).

Interestingly, latest studies revealed a striking difference in the pharmacokinetics of
antibodies targeting CD98hc v.s. those targeting TfR receptors (Chew et al. and
Lucas et al., presentations at Drug Delivery to the Brain Conference 2023). First,
CD98hc-binding antibodies have a steady and prolonged presence in the brain, while
TfR-binding antibodies have a fast yet short brain distribution. Second, in contrast
to TfR binders, CD98hc-binding antibodies do not cause down-regulate the recep-
tor’s membrane level, which explains the antibodies’ more steady pharmacokinetic
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profiles. Third, unlike TfR, which is broadly expressed in the peripheral organs,
the off-target distribution for CD98hc-targeting antibodies is mainly restricted to the
spleen. These differences between antibodies targeting the two receptors suggest
that there is no single solution for all in the quest for receptor-mediated CNS de-
livery, and more BBB receptor options will serve patients with diverse biological
backgrounds.

Discovery of novel receptors
The demand for diverse BBB receptors has incentivized research campaigns to
discover novel receptors. These campaigns sped up in recent years thanks to the ad-
vancement in molecular biology, cell biology, and bioinformatic techniques. These
techniques are used in combination following two different strategies.

Forward engineering strategy. Forward engineering strategy studies brain endothe-
lial cells to identify potential BBB receptors. A typical forward engineering cam-
paign was demonstrated in the aforementioned CD98hc’s case (Zuchero et al., 2016).
Such campaign begins with extensive transcriptomic and proteomic analysis of brain
endothelial cells and control tissues. Bioinformatics is then employed to analyze
large and noisy multi-omics datasets and look for promising candidate receptors
with high expression in brain endothelial cells, low expression in peripheral tissues,
and steady expression on the apical side (but not the basolateral side) of endothelial
cells. Finally, ligands against the putative receptors are created to validate these
receptors’ function in transporting cargo across the BBB.

Reverse engineering strategy. BBB receptors can also be identified through a "re-
verse engineering" strategy – hypothetical receptors were first postulated based on
the membrane proteins’ interactions with a known BBB-crossing cargo, such as en-
dogenous transferrin and insulin (Jefferies et al., 1984; Pardridge et al., 1995). Such
"reverse engineering" has become more feasible in recent years thanks to the avail-
ability of many more engineered BBB-crossing molecules. For example, directed
evolution techniques have enabled developing a variety of brain-targeting AAV cap-
sids (Choudhury et al., 2016; Deverman et al., 2016; Ojala et al., 2017; Hudry et al.,
2018; Hanlon et al., 2019; Davidsson et al., 2019; Ravindra Kumar et al., 2020;
Weinmann et al., 2020; Nonnenmacher et al., 2021; Challis et al., 2022), which are
enriched in the CNS after systemic dosing. To identify the BBB receptors underly-
ing the brain transduction of these AAV capsids, in vitro, high-throughput screening
can be conducted using either cultured cells or organoids, and the BBB-crossing
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protein’s cellular uptake level is measured in these assays. To confirm whether the
cellular uptake is dependent on a candidate receptor, genetic perturbation techniques
such as over-expression, RNA interference, or CRISPR/Cas9-mediated gene editing
can be used to alter the expression level of the candidate. Recently, some commer-
cial services emerged to facilitate such high-throughput screenings. For instance,
Retrogenix provides a chip-based platform that can detect the binding between a
protein and thousands of putative membrane receptors expressed in cultured cells.

1.3 Structure-guided protein engineering techniques for receptor targeting
As a protein’s structure dictates its function (A.Petsko and Ringe, 2003), structural
knowledge is valuable in guiding the engineering of therapeutic proteins like IgG
antibodies, antibody-like proteins, or viral vectors for receptor-mediated targeted
delivery.

Common scaffolds to engineer for receptor targeting

IgG antibodies. Traditional engineering of IgG antibody (Diskin et al., 2011; Barnes
et al., 2020) has focused on the complementarity-determining regions (CDRs), par-
ticularly the CDR3, as this region is essential for the precise antigen recognition
of IgG molecules. This CDR engineering alone, however, is not enough to create
IgG antibodies with receptor-mediated targeting. The latter requires the molecule to
bind to multiple different proteins, including the therapeutic target and the tropism-
determining receptor, with specificity (Watts and Dennis, 2013). Innovative designs,
such as ’knobs-into-holes’ engineering, generate this bi-specificity by allowing the
controlled heterodimerization between two variable fragments (Ridgway, Presta,
and Carter, 1996; Merchant et al., 1998). Other designs focus on adding targeting
capability to the Fc domain, such as appending an additional single-chain vari-
able fragment (scFv) or single-domain antibodies (nanobodies or VHHs) to the
C-terminal end of the Fc domain (Brinkmann and Kontermann, 2017). Another
creative way to engineer an Fc domain is to substitute particular surface exposed
loops in the domain (Kariolis et al., 2020) with receptor-binding sequences. One
example is the so-called Fc-based transport vehicle (TV), which binds to a BBB
receptor and induces RMT to transport IgG or other cargo across the BBB (Kariolis
et al., 2020).

Adeno-associated viral (AAV) capsids. AAV is a non-pathogenic virus widely
used as a gene therapy delivery vector. Its safety, effectiveness, and broad and
engineerable tropism have made recombinant AAV a promising agent for treating
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various genetic disorders (Bedbrook, Deverman, and Gradinaru, 2018; Wang, Tai,
and Gao, 2019; Challis et al., 2022). The surface of an AAV capsid contains several
variable regions (VRs) that are not conserved between serotypes, making them ideal
targets for engineering efforts(Agbandje-McKenna and Kleinschmidt, 2011). Due
to their structural flexibility and proximity to receptor binding sites, VR VIII and
VR IV are most frequently used VRs for peptide display libraries (Choudhury et al.,
2016; Deverman et al., 2016; Ojala et al., 2017; Hudry et al., 2018; Hanlon et al.,
2019; Davidsson et al., 2019; Ravindra Kumar et al., 2020; Weinmann et al., 2020;
Nonnenmacher et al., 2021; Bedbrook, Deverman, and Gradinaru, 2018; Wang, Tai,
and Gao, 2019; Challis et al., 2022).

Directed evolution for protein engineering
Directed evolution combines genetic and biochemical methods to create mutations
in a targeted protein and then chooses the variants with the desired characteristics via
selection or screening procedures (Romero and Arnold, 2009). Through directed
evolution, protein engineers have been able to modify proteins, such as AAV capsids
and antibodies, to enhance their desired characteristics, like receptor binding.

In vivo selection methods have been highly successful in targeting AAV vectors to
desired tissues, particularly the brain, as demonstrated by several studies (Choudhury
et al., 2016; Deverman et al., 2016; Ojala et al., 2017; Hudry et al., 2018; Hanlon
et al., 2019; Davidsson et al., 2019; Ravindra Kumar et al., 2020; Weinmann et
al., 2020; Nonnenmacher et al., 2021; Challis et al., 2022). Additionally, in vitro
receptor-based selection methods have recently been developed (Huang et al., 2022)
to find BBB receptor binders and the resulting capsids were shown to cross the BBB
in vivo.

Directed evolution has been extensively utilized to engineer antibodies and antibody-
like proteins for specific targeting. The adaptive immune system is sophisticated
for performing "in vivo directed evolution" to generate therapeutic agents against
invading pathogens. In addition to such in vivo directed evolution, in vitro directed
evolution has been employed to select specific receptor binders, for instance, Fc
fragments targeting TfR (Kariolis et al., 2020).

Despite its successes, directed evolution is a time-consuming and costly, especially
for in vivo selections. It should be complemented with rational design and insights
from mechanism studies, such as structural biology studies and computational mod-
eling, to make the process more efficient and cost-effective.
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Computational tools for protein structure prediction
Computational structure prediction, popularly known as the protein folding problem,
predicts the three-dimensional protein structures based on the primary sequences,
i.e., finds out the P(structure|sequence) distribution. This concept has a long past,
beginning in the early days of molecular biology and computer science. In recent
years, computational protein structure prediction accuracy has been significantly
enhanced due to the introduction of deep learning-based methods and the accumu-
lation of high-quality experimental structural data over the decades. As a result,
such computational methods have become critical supplementary tools for protein
engineers in addition to experimental structural biological methods. This section
will briefly overview the most influential tools made available.

Rosetta. One of the first widely adopted protein structure-prediction tools was the
Rosetta software suite (Simons et al., 1999; Leaver-Fay et al., 2011). The key idea
behind Rosetta was to search the structural space using fragment recombination
and evaluates each candidate pose using an "energy function" based on physical
principles and statistical knowledge. Due to its unique physics-based features, to
date Rosetta is still a popular tool used for many purposes, such as analyzing interface
energy or relaxing local structure.

AlphaFold1 and trRosetta. Protein structure prediction came to a new era by
adopting deep learning techniques and coevolutionary information from multiple
sequence alignments (MSAs). The key idea behind using MSAs was that protein
contact is evolutionarily conserved, and the contacting residues tend to co-evolve
together (Yanofsky, Horn, and Thorpe, 1964). Therefore, a "contact map" of a
target protein can be inferred from MSAs by measuring coevolution. Such contact
maps can then be used to interpret inter-residue interactions and resulting tertiary
structures. One successful example was AlphaFold1 from DeepMind, a neural
network-based structure-prediction method that uses MSAs as a major input Senior
et al., 2020, which topped in the blinded competition CASP13 (2018) (Kryshtafovych
et al., 2019). A similar approach, trRosetta, further improved the prediction precision
(Yang et al., 2020).

AlphaFold2 and the latest MSA-based methods. The release of AlphaFold2 is a
revolutionary landmark in the field of protein structure prediction. AlphaFold2 uses
a novel architecture that integrates both coevolutionary information from MSAs and
geometrical/physical information from solved templates (Jumper et al., 2021). The
model won the CASP14 (2020) competition with dominant scores by predicting
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single-chain protein structures with near-experimental accuracy (Kryshtafovych et
al., 2021). At present, models with AlphaFold2-like architectures (Baek et al.,
2021; Evans et al., 2021; Mirdita et al., 2022; Aderinwale, Christoffer, and Kihara,
2022; Motmaen et al., 2022; Ruffolo et al., 2022; Li et al., 2022; Wu et al., 2022;
Wang et al., 2022a; Cheng et al., 2022; Liu et al., 2022) still the most accurate
structure-prediction tools available.

ESMFold and protein language model-based methods. In addition to AlphaFold2-
like architectures, another emerging class of tools first "embed" protein sequences as
vectors using pre-trained protein language models and subsequently use the lower-
dimensional vectors to predict the structure. Examples in this class include ESMFold
(Lin et al., 2022), RGN2(Chowdhury et al., 2022) or trRosettaX-Single (Wang, Peng,
and Yang, 2022), which have achieved comparable accuracy to that of AlphaFold2 in
proteins with small sizes, with superior performance in "orphan" proteins with few
homologous sequences. In addition to the improved performance in orphan proteins,
another main advantage of these language model-based prediction tools is their fast
inference speed, which is often orders of magnitude higher than AlphaFold2-like,
MSA-based methods.

Other neural networks for specialized prediction tasks. Some recent structure-
prediction tools have been tailored for specific targets such as antibody monomers
(Ruffolo et al., 2022) or MHC-peptide complexes (Motmaen et al., 2022). Other
tools were built to enhance the functionality of AlphaFold2. For example, AlphaFill
can transfer small-molecule ligands and ions from experimentally-solved structures
to AlphaFold2-predicted apoprotein structures (Hekkelman et al., 2022).

In summary, computational structural modeling has seen significant progress over
the years, and modern tools such as AlphaFold and ESMfold provide novel insights
into protein structures that may accelerate the development of new drugs and thera-
pies. However, the current capabilities of the structure-prediction tools are limited,
particularly when dealing with large complexes, dynamic complexes, protein-ligand
complexes, post-translational modifications, and lipids surrounding membrane pro-
teins (Phillips et al., 2009), etc. These missing yet critical functions call for further
method development.

Computational tools for protein design
Protein design finds coding sequences for proteins with the desired structure or
function. To date, it is still challenging to directly design proteins with specific
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functions, although promises start to emerge with the progress in large protein
language models (Madani et al., 2023). In comparison, designing protein structures
is a much more achievable goal thanks to the breakthroughs in its inverse problem,
i.e., protein structure prediction, which I just discussed above. The overarching goal
of protein structure design is to find primary amino acid sequences that fold to a
given structure, i.e., to figure out the P(sequence|structure) distribution of proteins.

Rosetta. In addition to the aforementioned structure prediction functions, the Rosetta
software suite (Simons et al., 1999; Leaver-Fay et al., 2011) also features protein
design functions. The software generates protein sequences that fold into a desired
structure through a Monte Carlo search that explores the sequence space using a
physics-and-statistics-based energy function. Numerous landmark de novo proteins
were designed using Rosetta, with examples including TOP7(Kuhlman et al., 2003),
the first protein with an artificially designed protein fold, and I53-50(Bale et al.,
2016), an ultrastable self-assembling protein nanocage used for antigen display.

Hallucination and inpainting. RoseTTAFold Design, or RFdesign, takes advantage
of the well-established architecture of protein prediction neural networks like tr-
Rosetta (Yang et al., 2020) or RoseTTAFold (Baek et al., 2021) and inverse it for the
protein design problem (Wang et al., 2022b). Importantly, RFdesign provides two
methods, "hallucination" and "inpainting", that are especially useful when a design
task demands the preservation of functional sites required for protein-protein inter-
action or enzymatic activity. In protein design, "hallucination" refers to generating
novel protein backbones using protein structure prediction networks by iteratively
introducing mutations and accepting mutations that sharpen the contact map (An-
ishchenko et al., 2021). Built upon this basic idea, the RFdesign-Hallucination
method was equipped with customized loss functions that ensure protein backbones
include a desired functional motif. The second method, RFDesign-Inpainting, uses
a retrained structure prediction network that can "restore" both the masked sequence
and the entire protein structure when only the active site of a protein is known (Wang
et al., 2022b).

Diffusion. RosettaFold Diffusion (RFdiffusion) (Watson et al., 2022) is a gen-
eral protein design framework inspired by denoising diffusion probabilistic models
(DDPMs). DDPMs have recently succeeded in generative image models (e.g.,
DALL-E 2) that can create realistic pictures by "denoising". Like image-generating
DDPMs, RFdiffusion employs the RoseTTAFold structure prediction network to
conduct a "denoising" task on protein structure, yielding highly "realistic" protein
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backbones suitable for downstream sequence design. According to Watson et al.,
2022, RFdiffusion outperformed hallucination and inpainting in all protein design
tasks examined and successfully created de novo protein binders, new scaffolds with
functional motifs, and symmetrical proteins.

ProteinMPNN. Whereas hallucination, inpainting, and diffusion focus on the issue
of protein backbone generation, ProteinMPNN uses a novel graph neural network-
based architecture to address the problem of designing the optimal amino acid
sequence based on a fixed backbone (Dauparas et al., 2022). When generating
sequences for backbones from nature proteins, ProteinMPNN has a much higher
sequence recovery rate of 52.4 % compared to 32.9 % for Rosetta. ProteinMPNN can
also improve the solubility and expression level of previously failed designs created
with Rosetta or Alphafold (Dauparas et al., 2022). ProteinMPNN has frequently
been used downstream of other design methods that generate initial backbones to
improve overall design success rates.

1.4 Utilizing the computational protein engineering methods for targeted de-
livery

Although many powerful methods for computational protein engineering have be-
come available in recent years, these methods have been under-utilized in research
efforts for targeted delivery due to a lack of customized tools. This thesis aims
to bridge this gap by developing and applying tools and pipelines based on state-
of-the-art computational tools to facilitate the development of targeted therapeutic
delivery systems like receptor-targeting Adeno-associated viral (AAV) vectors.
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C h a p t e r 2

UNDERSTANDING MOLECULAR MECHANISM
UNDERLYING BBB-CROSSING AAV CAPSIDS

2.1 Abstract
The blood-brain barrier (BBB) presents a major challenge to delivering large
molecules to study and treat the central nervous system (CNS). This is due in
part to the scarcity of effective targets for BBB crossing, the identification of which
is the crucial first step of drug development. Here, we leveraged a panel of adeno-
associated viruses (AAVs) previously identified through directed evolution for im-
proved BBB transport to reverse engineer protein targets for enhanced BBB crossing.
We identify both murine-restricted LY6C1 and primate-conserved carbonic anhy-
drase IV (CA-IV; CA4) as receptors for crossing the BBB. We demonstrate how
these receptors can unlock experimental and computational target-focused engineer-
ing strategies by creating the enhanced LY6C1-binding vector AAV-PHP.eC and by
applying AlphaFold-enabled in silico methods to rank capsids against identified re-
ceptors and generate capsid-receptor binding models. The identification of CA-IV
and structural insights from computational modeling enable receptor-targeted paths
toward efficient human brain-penetrant chemicals (drugs) and biologicals (including
gene delivery).

2.2 Introduction
The blood-brain barrier (BBB) presents a fundamental bottleneck to the development
of effective research tools and therapeutics for the central nervous system (CNS)
(Banks, 2016; Sweeney et al., 2019; Zhao and Zlokovic, 2020). This complex
structure, comprised mainly of brain endothelial cells (Sweeney et al., 2019; Profaci
et al., 2020), requires large molecules to be delivered via invasive intracranial
injections, technically challenging focused ultrasound (Szablowski, Bar-Zion, and
Shapiro, 2019), or receptor-mediated transcytosis (Watts and Dennis, 2013; Pulgar,
2019). Rational design of BBB-crossing large molecules has long been hampered
by our imperfect understanding of the mechanisms involved in transcytosis, with
only a handful of targets, such as transferrin receptor (Friden et al., 1991; Yu et al.,
2011; Johnsen et al., 2019; Logan et al., 2021), validated for research and therapies
(Pulgar, 2019; Terstappen et al., 2021b; Cho et al., 2017; Bergmann et al., 2018).



14

Directed evolution is a powerful method for generating biomolecules with enhanced
fitness for desired properties despite an incomplete understanding of the underlying
biological systems (Romero and Arnold, 2009). Importantly, the outcomes of
directed evolution libraries could in turn be used to unlock previously unknown
biology by probing the mechanism of action for molecules with evolved properties.
We have decided to apply this paradigm of reverse-engineering directed evolution
hits to the accumulating wealth of data resulting from selective pressure on adeno-
associated virus (AAV) libraries for CNS enrichment after systemic administration
(Choudhury et al., 2016; Deverman et al., 2016; Ojala et al., 2017; Hudry et al.,
2018; Hanlon et al., 2019; Davidsson et al., 2019; Ravindra Kumar et al., 2020;
Weinmann et al., 2020; Nonnenmacher et al., 2021; Challis et al., 2022).

One such improved rodent BBB-crossing AAV capsid is PHP.eB (Chan et al., 2017)
which we previously identified by Cre-recombination-based AAV targeted evolution
(CREATE) method (Deverman et al., 2016) on the parent capsid AAV9 (Gao et al.,
2004; Foust et al., 2009). Following systemic injection in genetically divergent
mouse strains mice, capsids such as PHP.eB can either show potent CNS tropism (as
in C57BL/6J, FVB/NCrl, and DBA/2J) or akin to AAV9 (as in BALB/cJ) (Hordeaux
et al., 2018; Matsuzaki et al., 2019; Challis et al., 2019). This is explained by the
receptor for PHP.eB, the GPI-anchored protein Ly6a, being strongly expressed in
C57BL/6J (the directed evolution selection host), FVB/NCrl and other mouse strains
but non-functional in the BALB/cJ strain and other mammals (Hordeaux; Batista
et al., 2020; Huang et al., 2019). Consistently, in non-human primates (NHPs),
PHP.eB and others display AAV9-like CNS infectivity (Hordeaux et al., 2018;
Liguore et al., 2019; Matsuzaki et al., 2018; Goertsen et al., 2022a). As AAVs have
become the vector of choice for human gene therapies, including for therapies of the
CNS (Samulski and Muzyczka, 2014; Kuzmin et al., 2021; Burdett and Nuseibeh,
2022), complications from directly applying mouse-evolved AAVs in diverse genetic
backgrounds contributed to a shift toward performing AAV directed evolution in
NHPs. In so doing, researchers hope to increase the likelihood of identifying
AAVs whose enhanced tropism will translate to humans. As both the pre-clinical
validation and, increasingly, the generation of engineered capsids occurs in NHPs
however (Tabebordbar et al., 2021; Goertsen et al., 2022a; Chen et al., 2022a), the
animals’ scarcity (Tian, 2021; Subbaraman, 2021) and costs slow the identification
of engineered capsids while the risk of NHP-specific AAVs entering clinical trials
remains. Nevertheless, examples are beginning to accumulate of capsids that can
cross both rodent and NHP BBB (Goertsen et al., 2022a) but, of utter importance,
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also of at least one capsid reported to cross the macaque but not the rodent BBB
(Chen et al., 2022a). Collectively, this diverse set of capsids engineered over the
past decade by many groups represents, through their yet unexplored mechanisms
of action, an unprecedented opportunity to start unraveling new targets for crossing
the BBB across strains and species.

As patients treated with any AAV are likely to develop neutralizing antibodies toward
most future AAVs and preclude them from future AAV treatments (Samulski and
Muzyczka, 2014; Kuzmin et al., 2021; Burdett and Nuseibeh, 2022), methods to
efficiently identify targets of brain-enhanced AAVs are critically necessary. Thus,
NHP-optimized and validated AAV capsids that might not cross the human BBB
are a concerning possibility. Here, we demonstrate a path forward by identifying
protein targets or BBB-crossing mechanisms that may directly translate to human
drug development. Using brain-enhanced engineered AAVs previously identified
by directed evolution selections in mice (Hanlon et al., 2019; Ravindra Kumar et al.,
2020; Nonnenmacher et al., 2021; Goertsen et al., 2022a), we validate a pipeline
to reverse engineer targets for potent BBB crossing. Focusing on engineered AAVs
whose enhanced CNS infectivity upon systemic injection in mice is conserved
across both C57BL/6J and BALB/cJ strains (Hanlon et al., 2019; Ravindra Kumar
et al., 2020; Nonnenmacher et al., 2021), we identified using an in vitro screening
model with in vivo validation two novel receptors for enhanced BBB crossing
by engineered AAVs: murine-restricted LY6C1 and primate-conserved carbonic
anhydrase IV (Car4; CA4).

To demonstrate how a known target can unlock new engineering strategies, (1) we
created an enhanced LY6C1-binding AAV variant, AAV-PHP.eC, (2) we utilized a
new method for Automated Pairwise Peptide-Receptor Analysis for Screening En-
gineered AAVs (APPRAISE-AAV for short) that uses AlphaFold-Multimer(Jumper
et al., 2021) to screen peptides against potential receptors in silico and (3) we gen-
erated AAV-receptor interaction models, including the first high-resolution binding
model of PHP.eB with LY6A. Our experimental and computational pipeline for
learning how evolved AAVs enact their enhanced BBB crossing tropisms demon-
strates target-driven capsid engineering with LY6C1 and establishes in vivo that
primate-conserved carbonic anhydrase IV is a receptor target for enhanced CNS
transduction by AAVs. In this thesis, I will report and discuss my contributions to
this work, particularly points (2) and (3).
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Figure 2.1: In silico ranking of AAV variants by their receptor-binding propen-
sities. A, Overview of AlphaFold-based in silico Automated Pairwise Peptide-
Receptor Analysis for Screening Engineered AAVs (APPRAISE-AAV for short)
(Ding et al., 2023) Surface peptides from AAV variants are put in pairwise binding
competition using AlphaFold-Multimer. A peptide competition metric is calculated
according to each peptide’s interface energy, binding angle, and pocket depth (see
Materials and Methods section for details) before being assembled into broader
ranked matrices of interaction likelihood. Competition results reflect the relative
peptide binding probability encoded in the AlphaFold neural network. B, Table of
engineered AAV capsids, their confirmed receptor, and the capsid peptide sequence
used in APPRAISE-AAV. References: 1(Gao et al., 2004), 2(Deverman et al., 2016),
3(Chan et al., 2017), 4(Nonnenmacher et al., 2021), 5(Ravindra Kumar et al., 2020)
C, Matrices ranking AAV peptides by their average competition metric over ten
replicate conditions for LY6A, LY6C1, and mouse CA-IV. AAV peptide labels in
bold indicate those experimentally identified to interact with the corresponding re-
ceptor. Metric values out of range (-100 - 100) were capped to range limits.

2.3 Results
Identifying receptor-binding capsids using structure modeling
Having identified a panel of receptor and AAV capsid pairings using a reverse
engineering strategy (see the full version of the receptor identification story in Shay
et al., 2023), we aimed to see if we could capitalize on rapid advances in protein
structure prediction to generate binding poses for engineered AAVs and their newly
identified receptors.

We began by applying an AlphaFold2-based computational method (Evans et al.,
2021; Jumper et al., 2021) for Automated Pairwise Peptide Receptor Analysis
for Screening Engineered AAV (APPRAISE-AAV for short) (Ding et al., 2023).
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Figure 2.2: Engineered AAV interactions with LY6A. A, AlphaFold-Multimer-
predicted LY6A-PHP.eB peptide complex structure. PHP.eB peptide is colored by
pLDDT (predicted Local Distance Difference Test) score, a per-residue estimate
of the model confidence. The highest confidence side chains, P5’ and F6’, are
shown as spheres. LY6A A58R mutation, chosen to disrupt the predicted peptide
interaction, resulted in reduced potency in the cell culture infectivity assay. Extent
of infection (Max: 0.29, Min: 0.03), Total brightness per signal area (Max: 0.61,
Min: 0.16). B, LY6A residues with at least 2 atoms within 5 angstroms (Å) of
the modeled PHP.eB peptide. C, Complete model of the PHP.eB trimer and LY6A
complex. The AlphaFold-Multimer structural prediction from A was combined
with a capsid monomer-receptor structural prediction and optimized using Rosetta
Remodel within the context of the AAV trimer (Figure 2.3A). D, Zoom-in view of the
PHP.eB-LY6A binding interface in modeled PHP.eB-LY6A complex and PHP.eB
residues with at least 2 atoms within 5 Å of LY6A.

Inspired by recent work (Chang and Perez, 2022a), this method uses AlphaFold-
Multimer to place surface-exposed peptides spanning mutagenic insertions (AA587
– 594) from two distinct AAV variants in competition to interact with a poten-
tial receptor (Figure 2.1A). This comprises the minimal peptide encompassing the
solvent-exposed residues of capsid variable region VIII. A combination of physical
and geometric scoring parameters that include interface energy, binding angle, and
binding pocket depth calculations are used to generate a peptide competition metric.
Results from these individual pairwise competitions can be assembled into larger
matrices that rank sets of AAV capsid insertion peptides according to their receptor-
binding probability encoded in the AlphaFold2 neural network. When applied to
LY6A and our newly identified receptors, we found that the experimentally-verified
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LY6A, LY6C1, and CA-IV insertion peptides rise to the top of their respective
rankings (Figure 2.1B-C). Some false negatives were also observed, however, as in
9P08 with LY6A or 9P36 with CA-IV.

AlphaFold2-based methods to understand the structural basis underlying re-
ceptor binding
In addition to predictions of whether a peptide binds to a receptor, we can also com-
putationally interrogate the structural details of the binding interaction. We gener-
ated binding poses by pairing the top AAV insertion peptide with its receptor and
validated the binding pose for each pairing by repeating our cell culture screen with
receptors containing point mutations hypothesized to disrupt the high-confidence
region of the binding interface (as determined by the per-residue estimated model
confidence pLDDT score and consistency between replicate models) in these pre-
dicted poses. The PHP.eB peptide is predicted to nestle in a groove in LY6A,
forming strong interactions at Pro5’ and Phe6’ (Figure 2.2A) with several LY6A
residues (Figure 2.2B). We therefore introduced a point mutation in this groove,
LY6A Ala58Arg, and found that it disrupts PHP.eB’s enhanced infectivity with the
wild-type receptor. This experimental result further bolsters confidence in in silico
APPRAISE-AAV rankings.

To gain a full picture of the AAV-receptor interaction, we next modeled the PHP.eB
insertion peptide and LY6A receptor complex within the context of the AAV capsid
three-fold symmetry spike. This structure is challenging for standard modeling tools
because of the large size of an AAV capsid ( 200kDa per trimer) as well as the often
weak and dynamic binding interactions between engineered capsids and receptors
(µM affinities possible without avidity (Xu et al., 2022)). AlphaFold-Multimer failed
to capture direct contact between full-length PHP.eB capsid and LY6A in either a
monomer-receptor or trimer-receptor configuration (data not shown). To address this
challenge, we developed an integrative structure modeling pipeline. In this pipeline,
an initial model of a AAV capsid trimer predicted using AlphaFold-Multimer (Evans
et al., 2021) is structurally aligned with an AlphaFold2-predicted peptide-receptor
complex model through the high-confidence Pro5’ and Phe6’ residues of the peptide
insertion and RosettaRemodel (Huang et al., 2011) optimization of the linking
peptide residues within the context of the AAV capsid three-fold symmetry spike
(Figure 2.3A). This complete binding model (Figure 2.2C) provides a snapshot of
a dynamic interaction that has thus far proven resistant to high-resolution structural
characterization (Xu et al., 2022).
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The PHP.eB-LY6A model is consistent with available experimental results. RMSD
(root mean square deviation) between our monomeric PHP.eB model and a cryo-
EM-based model (PDB ID: 7WQO) is 0.36 angstrom. RMSD increases in PHP.eB’s
engineered loop to 1.36 angstroms. The only high-confidence deviation from cryo-
EM structures of un-complexed PHP.eB is the side chain of Phe6’, which shows no
substantial electron density, indicating flexibility, but forms a stable interaction with
LY6A in our model (Figure 2.3B, right). The high confidence prediction of Pro5’
and Phe6’ aligns with recent evidence showing that PFK 3-mer insertion alone is
sufficient to gain LY6A binding (Jang et al., 2022). While LY6A can bind any
insertion loop of a trimer, additional interactions induce steric clashes supporting
a ratio of one LY6A per capsid trimer. Interestingly, a PHP.eB-LY6A complex
ensemble image forced to contain 60 bound copies of LY6A resembles a recently
reported CryoEM map, whose analysis pipeline would average over all 60 singly-
occupied binding sites to form a composite map (Figure 2.3C) (Xu et al., 2022).
Our model shows that a single copy of both LY6A and AAVR PKD2 domain may
bind to the same three-fold spike simultaneously without clashing (Figure 2.3D),
in agreement with saturation binding experiments (Xu et al., 2022). Consistent
with previous work showing the LY6A SNP D63G does not affect PHP.eB binding
(Huang et al., 2019), the residue is greater than 10 angstroms from the PHP.eB
peptide atoms in our models. The PHP.eB-LY6A complex model includes several
interactions involving AAV insertion-adjacent residues, which is consistent with a
previous report (Figure 2.2D) (Martino et al., 2021).

Application of the structure modeling methods to new receptors
We next applied these structural modeling methods to our newly identified receptors.
Interestingly, unlike for LY6A and CA-IV, the predicted binding pose for PHP.C2
peptide with LY6C1 was found to vary with the version of AlphaFold-Multimer used,
with v1 predictions closely matching mutational data from our cell culture infectivity
assay (Figure 2.5A). Such complementarity between versions has been reported
previously (Johansson-Åkhe and Wallner, 2022). In mouse CA-IV, 9P31 peptide
invades the catalytic pocket of the enzyme (Figure 2.4A). The 9P31 tyrosine residue
shared with 9P36 approaches the enzyme active site and 9P31’s divergent tryptophan
finds purchase in an ancillary pocket (Figure 2.4B). This predicted binding pose is
competitive with the binding site of brinzolamide (PDB ID 3NZC) (Stams et al.,
1998), a broad carbonic anhydrase inhibitor that is prescribed for glaucoma60. In
our cell culture infectivity assay, brinzolamide shows a dose-dependent inhibition
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of 9P31 and 9P36 potency while PHP.eB is unaffected (Figure 2.4B). The smaller
brinzolamide binds deep in the catalytic core of CA-IV where side chains are largely
conserved between species (Figure 2.4C). 9P31 peptide however extends to the
surface of the enzyme where there is considerable sequence divergence. Similarly,
while brinzolamide binds to both mouse and human CA-IV(Stams et al., 1998;
Supuran, Scozzafava, and Casini, 2003), 9P31 and 9P36 are selective for mouse
CA-IV (Figure 2.4D). Chimeric receptors that swap a highly divergent loop of the
9P31 binding site show that this region is necessary but not sufficient to control
9P31 and 9P36 potency. A second potential CA-IV binding site is also suggested
by lower-ranked poses with 9P31 and 9P36, but mutagenesis experiments show
inconsistent effects (Figure 2.5B). Engineering a human CA4-binding AAV with
optimal BBB crossing properties is both critically important and not trivial without
ready in vivo model systems for validation, as illustrated by the extensive, multi-year
efforts realizing the transferrin receptor’s potential.
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Figure 2.3: An integrative structure modeling method yields a snapshot of
PHP.eB-LY6A interaction. A, A workflow for modeling engineered AAV-receptor
complex structures (PHP.eB: colored by pLDDT score, LY6A: grey). B, Com-
parison between computationally modeled PHP.eB-LY6A (PHP.eB: blue, LY6A:
grey) and CryoEM structure of unbound PHP.eB (purple, PDB ID: 7WQO). All
high-confidence residues (pLDDT > 45, see left panel arrow) within the inserted
peptide showed consistent conformations between the two models except for F6’,
which did not have clear side chain density in the CryoEM map. The side chain
of F6’ predicted in the unbound PHP.eB model would cause a steric clash in the
predicted complex model. C, Assembled PHP.eB capsid-LY6A model representing
an ensemble of all LY6A binding states, despite steric clashes, as would occur in
cryo-EM particle reconstruction (PHP.eB: rainbow, LY6A:grey). Top: cross section
of the assembled capsid model. Middle: zoom-in of a 3-fold spike, highlighting
steric clashes (red) between three different binding states. D, Overlaid structures
of computationally modeled PHP.eB-LY6A (PHP.eB: rainbow, LY6A: grey) and
CryoEM model of PHP.eB-AAVR PKD2 (AAVR PKD2: red, PDB ID: 7WQP).
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Figure 2.4: Engineered AAV interactions with carbonic anhydrase IV. A,
AlphaFold-predicted mouse CAR4-9P31 peptide complex structure. 9P31 peptide
is colored by pLDDT score at each residue with the highest confidence side chains
shown as spheres. B, Cut-away view of mouse CAR4 catalytic pocket with modeled
9P31 peptide binding pose (top left) and crystallographic brinzolamide binding pose
(PDB ID: 3ZNC, top right). Cell culture infectivity assay of brinzolamide’s effects
on engineered AAVs (bottom). Extent of infection (Max: 0.63, Min: 0.04), Total
brightness per signal area (Max: 0.75, Min: 0.18) C, Views of amino acid side
chains that differ between mouse (PDB ID: 3ZNC) and human (PDB ID: 1ZNC)
carbonic anhydrase IV in relation to brinzolamide and 9P31 peptide binding poses.
D, Potency in cell culture infectivity assay of 9P31 and 9P36 in HEK293T cells
transfected with mouse, rhesus macaque, or human carbonic anhydrase IV recep-
tors, as well as two chimeric receptors of mouse and human carbonic anhydrase IV
that exchange the loop sequences depicted. Extent of infection (left, Max: 0.52,
Min: 0.05, right, Max: 0.65, Min: 0.03), Total brightness per signal area (left, Max:
0.78, Min: 0.46, right, Max: 0.75, Min: 0.13)
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2.4 Discussion
The blood-brain barrier restricts access to the CNS by large molecule research
tools and therapeutics, limiting our ability to study and treat the brain (Banks, 2016;
Sweeney et al., 2019; Zhao and Zlokovic, 2020; Profaci et al., 2020). Here we sought
to expand the roster of protein targets through which biologicals and chemicals may
access the CNS by de-orphanizing engineered AAVs selected through directed
evolution for enhanced brain potency. While directed evolution methods have
identified several engineered AAVs with enhanced tissue potency after systemic
injection (Challis et al., 2022), the mechanisms by which engineered AAVs gain
their enhancements are, with a few recent notable exceptions (Tabebordbar et al.,
2021; Havlik et al., 2021), largely unknown. This is particularly true for engineered
AAVs with enhanced potency in the CNS, where PHP.eB, which was found to use
LY6A in many mouse strains (Hordeaux; Batista et al., 2020; Huang et al., 2019),
stands alone in being de-orphanized. The strain dependence and murine restriction
of PHP.eB’s LY6A interaction accelerated a push toward NHPs for engineered
capsid identification and validation for translational vectors. However, human gene
therapy’s increasing embrace of engineered AAV capsids in human clinical trials
(Kuzmin et al., 2021; Burdett and Nuseibeh, 2022) coupled with the scarcity and
costs of NHP(Tian, 2021; Subbaraman, 2021), highlight the need for higher through-
put methods to validate engineered AAVs with diverse, and conserved, mechanisms
for crossing the BBB. By screening a curated pool of 40 candidate receptors selected
for the intersection of their CNS expression level and endothelial-cell specificity, we
were able to identify LY6C1 and carbonic anhydrase IV as molecular receptors for
enhanced blood-brain barrier crossing of ten LY6A-independent engineered AAVs
(as well as LY6A-dependent PHP.N) (see the full version of Shay et al., 2023). These
findings allow for more efficient allocation of NHPs, inform future directed evolution
library designs, and enable receptor-guided engineering directly for human protein
interaction.

Interestingly, neither LY6C1 nor CA-IV had been identified as among the most
enriched proteins in CNS endothelial cells compared to peripheral endothelial cells
(Munji et al., 2019). Given the distinct capsid sites for peptide insertion and galactose
(Penzes et al., 2021) or AAVR interaction (Zhang et al., 2019; Meyer et al., 2019)
and our model predicting simultaneous AAVR PKD2 and LY6A interaction without
steric clashes, it is likely that the receptors identified here work in concert with
AAV9’s endogenous interaction partners to shape each AAV’s tropism.
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Using our integrative modeling pipeline, we generated a complete, experimentally-
validated receptor complex model for PHP.eB with LY6A, which has otherwise
resisted high-resolution structural characterization (Xu et al., 2022; Jang et al.,
2022). This model illustrates the complementarity of PHP.eB to LY6A and pre-
dicts additional interactions outside of the insertion peptide. This insight provides
opportunities for improved capsid engineering by both rational design (via in vitro
selection for Ly6 family members with desirable expression patterns or conservation
across species) and directed evolution (via negative selection pre-screens against pu-
rified Ly6 family proteins to encourage other BBB-crossing solutions). Our new
APPRAISE-AAV in silico method is well suited to such screens. This method is
also readily applied to any existing engineered capsid library dataset to mine for
capsid variants likely to interact with a chosen target receptor, including CA-IV. Our
modeling pipeline also provides high-confidence binding models for AAV receptor
complexes that have proven difficult to structurally resolve. We note that the AP-
PRAISE methodology is not limited to AAVs, and the pipeline for generating full
AAV trimer complex structures may readily be employed to guide the translation
of engineered peptide insertions identified through directed evolution in AAVs to
other protein modalities.

Carbonic anhydrase IV is broadly conserved across vertebrates and has similar CNS
expression profiles in humans (Tolvanen et al., 2013; Le Roy et al., 2014), with a
recent single cell analysis of human brain vasculature confirming CA4’s expression
in the human BBB (Yang et al., 2022). Thus, CA4-interacting AAVs are attractive
candidates for translation across diverse model organisms and potentially in human
gene therapies. Both 9P31 and 9P36 display enhanced potency with mouse CA-IV
but not rhesus macaque or human CA4. While neither virus would be expected
to translate from mice to these species, we have identified a therapeutic target and
mechanism for BBB crossing that may. The potential for specific engineered AAV
binding epitopes to experience genetic drift between even closely related species
confronts all products of directed evolution whose intended final use differs from
their selection conditions. This potential takes on increasing importance when
considering the potential for failed trials to preclude patients from future AAV treat-
ments by eliciting cross-reactive neutralizing antibodies (Tenenbaum, Lehtonen, and
Monahan, 2003; Ronzitti, Gross, and Mingozzi, 2020; Rapti and Grimm, 2021).
Future rational engineering of new AAVs against species-appropriate CA4, aided
by our APPRAISE-AAV method, is a promising new avenue for the generation of
non-invasive vectors with enhanced CNS potency. Targeting CA4 may also find
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application across diverse protein and chemical modalities.

2.5 Methods
Automated Pairwise Peptide Receptor Analysis for Screening Engineered AAVs
(APPRAISE-AAV) FASTA-format files containing a target receptor amino acid
sequence (mature protein part only) as well as peptide sequences corresponding to
amino acids 587 through 594 (wild-type AAV9 VP1 indices) from two AAV capsids
of interest were used for structural prediction using a batch version of ColabFold
(Mirdita et al., 2022) (alphafold-colabfold 2.1.14), a cloud-based implementation
of multiple sequence alignment (Mirdita et al., 2017; Mirdita, Steinegger, and
Söding, 2019; Mitchell et al., 2019; Steinegger et al., 2019) 85–88, and AlphaFold2
Multimer (Evans et al., 2021). The ColabFold Jupyter notebook was run on a Google
Colaboratory session using a GPU (NVIDIA Tesla V100 SXM2 16GB; we found
that the same model of the GPU yielded the most consistent results). We chose
alphafold-multimer-v2 as the default AlphaFold version unless otherwise specified.
Each model was recycled three times, and ten models were generated from each
competition. Models were quantified with PyMol (version 2.3.3) using a custom
script to count the total number of atoms in the interface (𝑁𝑃𝑂𝐼

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 , defined by a
distance cutoff of 5 angstroms), the total number of atoms in the peptide that are
clashing with the receptor (𝑁𝑃𝑂𝐼

𝑐𝑙𝑎𝑠ℎ
, defined by a distance cutoff of 1 Å), the binding

angle of the peptide (𝜃, defined as the angle between the vector from receptor
gravity center to receptor anchor and the vector from receptor gravity center to
peptide gravity center), and the binding depths (𝑑, defined as the difference of the
distance between the closest point on the peptide to the receptor center and the minor
radius of the ellipsoid hull of the receptor normalized by the minor radius) of the
peptide in each putative peptide-receptor complex model. The minor radii of the
ellipsoid hulls of receptors were measured using HullRad 8.1(Fleming and Fleming,
2018) (LY6A: 13.4 Å, LY6C1: 12.7 Å, mouse CA-IV: 23.0 Å). Finally, the metric
Δ𝐵(𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟) for ranking the propensity of receptor binding was calculated by
subtracting the total binding score of the competing peptide from the counterpart
score of the peptide of interest. The mean number of this metric across replicates
was used to form a matrix and plot a heatmap. Peptides in the heatmap were ranked
by the total number of competitions each peptide won minus the total number of
competitions it lost (competitions with Δ𝐵(𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟) scores that have p-values
greater than 0.05 in the one-sample Student’s t-test were excluded). Details of the
APPRAISE method can be found in Chapter 3 of this thesis.
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Computational structure modeling of receptor-AAV complexes Peptide-receptor
structures were modeled using a similar procedure as described in the APPRAISE-
AAV section but with only one single peptide of interest in the input file to achieve
higher accuracy. AAV trimer-receptor complex models were produced using an
integrative structure modeling method (Figure ??A). Trimers at the AAV three-fold
symmetry interface were chosen as the minimal complete binding interface with a
putative receptor that might recapitulate the entire viral particle while optimizing
computational efficiency. First, a peptide-receptor model was generated by modeling
the 15mer peptide sequence between the residues 587 and 594 (both in wild-type
AAV9 VP1 indices) from the AAV variant of interest in complex with the target
receptor as described above. Then, a trimer model of the AAV variant of interest was
modeled using AlphaFold2 Multimer. The two residues with the highest confidence
score (pLDDT score) in the 15mer peptide of the peptide-receptor model, Pro5’
and Phe6’, were structurally aligned to the corresponding residues on the first chain
of the trimer model. A coarse combined model was then generated by combining
the receptor and the two high-confidence AAV residues from the peptide receptor
model with the remaining AAV residues from the trimer model. The two loops
between Pro5’ and Phe6’ and the high-confidence AAV9 backbone in the coarse
combined model (corresponding to residues 588-(588+)4’ and residues (588+)7’-
590, respectively) were then individually remodeled using RosettaRemodel (Huang
et al., 2011) from the Rosetta software bundle (release 2018.48.60516). Finally,
these remodeled loops were merged to generate a final model. The pLDDT scores
for each residue from the original AlphaFold2 outputs were used to color images of
the final model.
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C h a p t e r 3

APPRAISE: FAST, ACCURATE RANKING OF ENGINEERED
PROTEINS BY RECEPTOR BINDING PROPENSITY USING

STRUCTURE MODELING

3.1 Abstract
Deep learning-based methods for protein structure prediction have achieved un-
precedented accuracy. However, the power of these tools to guide the engineering
of protein-based therapeutics remains limited due to a gap between the ability
to predict the structures of candidate proteins and the ability to assess which of
those proteins are most likely to bind to a target receptor. Here we bridge this
gap by introducing Automated Pairwise Peptide-Receptor AnalysIs for Screening
Engineered proteins (APPRAISE), a method for predicting the receptor binding
propensity of engineered proteins. After generating models of engineered proteins
competing for binding to a target using an established structure-prediction tool such
as AlphaFold-Multimer or ESMFold, APPRAISE performs a rapid (under 1 CPU
second per model) scoring analysis that takes into account biophysical and geo-
metrical constraints. As a proof-of-concept, we demonstrate that APPRAISE can
accurately classify receptor-dependent vs. receptor-independent adeno-associated
viral vectors and diverse classes of engineered proteins such as miniproteins target-
ing the SARS-CoV-2 spike, nanobodies targeting a G-protein-coupled receptor, and
peptides that specifically bind to transferrin receptor or PD-L1. APPRAISE can
be accessed through a web-based notebook interface using Google Colaboratory
(https://tiny.cc/APPRAISE). With its accuracy, interpretability, and generalizabil-
ity, APPRAISE promises to expand the utility of protein structure prediction and
accelerate protein engineering for biomedical applications.

3.2 Introduction
Many protein-based biologics rely on precise targeting. As a result, protein engineers
have devoted considerable efforts to create specific binders, using methods such as
directed evolution (Deverman et al., 2016; Ravindra Kumar et al., 2020; Ring et al.,
2013; Lee et al., 2001) and rational design (Cao et al., 2020; Chevalier et al., 2017;
Yin et al., 2021). Currently, the costly experimental evaluation of candidate binders
using in vitro and in vivo assays presents a bottleneck, which can be eased using
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computational prioritization. (Sliwoski et al., 2014).

Two strategies are employed to predict protein functions: end-to-end sequence-
function and two-step sequence-structure/structure-function. End-to-end, sequence-
function models can predict complex functions such as enzyme activities or ion
channel conductivity (Yang, Wu, and Arnold, 2019; Bedbrook et al., 2017), which
are challenging to calculate using physical principles (Bolon, Voigt, and Mayo,
2002). However, such specialized models require domain-specific, high-quality
training datasets for accurate prediction. In comparison, the two-step sequence-
structure/structure-function strategy offers a more generalizable solution, particu-
larly for functions with well-understood biophysical mechanisms such as protein-
protein binding.

The rapid development of deep learning-based methods has brought unprecedented
accuracy to the first step of the sequence-structure/structure-function strategy. Since
AlphaFold2 (AF2)’s outstanding performance in CASP14 in 2020 (Jumper et al.,
2021), several new deep learning-based structure-prediction tools have been released
(Baek et al., 2021; Evans et al., 2021; Mirdita et al., 2022; Aderinwale, Christoffer,
and Kihara, 2022; Motmaen et al., 2022; Ruffolo et al., 2022; Lin et al., 2022; Li
et al., 2022; Wu et al., 2022; Wang et al., 2022a; Cheng et al., 2022; Liu et al.,
2022), providing a diverse tool set for generating protein models with atomic-level
precision. While the original AlphaFold2 can predict peptide-protein complexes
(Tsaban et al., 2022), there are enhanced versions such as AlphaFold-Multimer
that can model multi-chain complexes with greater accuracy (Evans et al., 2021;
Motmaen et al., 2022). Importantly, these structure-prediction tools allow the
generation of models in less than one GPU hour each, a level of throughput that
experimental methods cannot match.

The second step, ranking target binding propensities based on structure predictions,
has been less attended than the first. Structure-prediction tools generate confidence
scores for predicted multimer models, such as pLDDT and pTM scores (used by
AF2)(Jumper et al., 2021), interface pTM scores (used by AF-Multimer)(Evans
et al., 2021), which have been used "off-label" as metrics to evaluate the probability
of binding (Bennett et al., 2022; Motmaen et al., 2022). However, previous reports
(Chang and Perez, 2022b) and our experience revealed that these scores alone are, in
some cases, not reflective of binding propensities, particularly when the interaction
is weak or transient. Extracting additional information stored in the 3D coordinates
using biophysical principles may help improve the accuracy of binder ranking.
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Ranking the binding probability of engineered proteins through modeled structures
presents unique challenges. For example, the high sequence similarity between
candidate molecules imposes a frequent challenge. Engineered protein variants are
often constructed by modifying a short variable region to a common scaffold. Due to
this similarity, the energy difference between the candidate binders can be very small,
sometimes buried in the error of the energy function used for candidate ranking
(Baker, 2019; Alford et al., 2017). This problem is compounded by structure-
prediction methods that rely heavily on co-evolutionary information or homology,
causing them to generate similar binding poses for the candidate proteins. Another
major challenge is assessing a large number of predicted structure models efficiently.
Direct quantification of protein-protein interface energy using interpretable, physics-
based methods trades off between accuracy and speed (Gonzalez et al., 2020). For
instance, molecular dynamics simulation methods can cost more than 103 CPU
hours per model. Faster, less rigorous methods with the better-than-random ability
to predict the impact of interface mutations still require 1 CPU minute to 1 CPU
hour per non-antibody-antigen model (Gonzalez et al., 2020). In the post-AlphaFold
era, an interpretable and efficient method of predicting the target binding of a large
number of models would greatly accelerate protein engineering efforts.

Recently, Chang and Perez utilized competitive modeling with AF-Multimer to
demonstrate a correlation between competition results and peptide binding affinities
(Chang and Perez, 2022b). Nevertheless, the study’s method to assess the competi-
tion results necessitates a comparison of the modeled structures to an experimentally
solved "native" structure, which is not available for many engineered proteins.

To bridge the remaining gap between structure prediction and protein engineer-
ing, here we present Automated Pairwise Peptide-Receptor AnalysIs for Screening
Engineered proteins (APPRAISE), a readily interpretable and generalizable method
for ranking the receptor binding propensity of engineered proteins based on com-
petitive structure modeling and fast physics-informed structure analysis.

3.3 Results
The workflow of APPRAISE (Figure 3.1) comprises four main components. In the
first step, pairs of peptides from 𝑁 candidate protein molecules (𝑁2 pairs total) are
modeled in complex with a target receptor using a state-of-the-art structure method
such as AF-Multimer (Evans et al., 2021). In the second stage, a simplified energetic
binding score is calculated for each peptide (i.e., the peptide of interest (POI) and its
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competitor). In the third optional step, geometrical constraints for effective binding
are applied to these scores. Finally, the result of each competition is decided using
the score difference between the POI and the competitor, and the peptides are ranked
based on the matrix of competition results.
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Figure 3.1: Workflow of Automated Pairwise Peptide-Receptor AnalysIs for
Screening Engineered proteins (APPRAISE). First, peptides from the engineered
protein candidates’ receptor-binding region are modeled in competing pairs with the
target receptor using tools like AF-Multimer or ESMFold. Second, a non-negative
energetic binding score based on atom counting is calculated for each peptide. Third,
in APPRAISE 1.1+, additional geometrical constraints critical for peptide binding,
including the binding angle and pocket depth, are considered. Finally, a relative
score for each match is calculated by taking the difference between the scores for
the two peptides. The averaged relative scores form a matrix that determines the
final ranking.

APPRAISE can accurately classify receptor-mediated brain transduction of
viral vectors
We first developed APPRAISE to predict the binding propensities of engineered
Adeno-Associated Viral (AAV) capsids for brain receptors. Recombinant AAVs are
widely used as delivery vectors for gene therapy due to their relative safety as well as
their broad and engineerable tropism. In vivo selections from libraries of randomized
peptide-displaying AAV variants have yielded capsids that can transduce the animal
brain (Deverman et al., 2016; Chan et al., 2017; Ravindra Kumar et al., 2020;
Nonnenmacher et al., 2021; Goertsen et al., 2022b; Chuapoco et al., 2022; Chen
et al., 2022b), an organ tightly protected by the blood-brain barrier (BBB). Widely-
known examples among these capsids are AAV-PHP.B (Deverman et al., 2016)
and AAV-PHP.eB (Chan et al., 2017), two AAV9-based (Gao et al., 2004) variants
displaying short (7aa-9aa) surface peptides. The two variants can efficiently deliver
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genetic cargo to the brains of a subset of rodent strains. Genetic and biophysical
studies have revealed that the BBB receptor for PHP.B/PHP.eB in these trains is
LY6A, a GPI-anchored membrane protein (Huang et al., 2019; Hordeaux et al.,
2019; Batista et al., 2019). A dataset comprising peptide-displaying AAV capsids
that were engineered in a similar way as PHP.B/eB was collected in order to train the
APPRAISE method(Figure 3.5). Although binding between the AAV and the LY6A
receptor is dynamic (Xu et al., 2022; Jang et al., 2022) and therefore challenging
to be quantitatively measured, we could infer the binary LY6A-binding profiles
of AAV capsids from their differential brain transduction profiles in mice strains
with and without the receptor, producing a training set of peptide-displaying AAV
capsids(Figure 3.5).

One challenge for modeling AAV capsids is that they are huge complexes made of
30,000+ amino acids (aa). In order to reduce computational costs for structure mod-
eling and avoid complications arising from non-specific interactions, we modeled
each AAV capsid variant using a single peptide spanning the engineered region (Fig-
ure 3.2a). This peptide (residues 587-594 in the VP1 sequence) includes 7 inserted
residues and 8 contextual residues flanking the insertion. All of these residues are
surface-exposed and may make direct contact with the receptor in the assembled
capsid. Modeling this surface peptide (15 aa) is far less computationally intensive
than modeling the entire capsid or even an asymmetric capsid subunit (500+ aa). In
addition, compared to the latter, it may improve accuracy by eliminating competing
interactions of residues normally buried in inter-subunit interfaces.

To discriminate relatively small differences in receptor binding propensities of can-
didate peptides, we modeled the peptides pairwise in competition for the target
receptor (Morrone et al., 2017; Chang and Perez, 2022b). To evaluate the com-
petition results efficiently, we designed a score based on simple atom counting as
a rough estimate of the interface free energy between the peptide of interest (POI)
and the receptor in a structure model (Figure 3.2b). This score, which we term
the energetic binding score (𝐵𝑃𝑂𝐼

𝑒𝑛𝑒𝑟𝑔𝑒𝑡𝑖𝑐
, simplified as 𝐵𝑃𝑂𝐼

0 ), is a non-negative value
calculated from the numbers of contacting and clashing atoms at the interface (Eq.
3.1). We describe the detailed rationale behind this score in Methods.

𝐵𝑃𝑂𝐼
0 = 𝐵𝑃𝑂𝐼

𝑒𝑛𝑒𝑟𝑔𝑒𝑡𝑖𝑐 = max(𝑁𝑃𝑂𝐼
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 − 103 · 𝑁𝑃𝑂𝐼

𝑐𝑙𝑎𝑠ℎ, 0) (3.1)

To take full advantage of the information encoded in the competitive models, we



34

further derived a “relative binding score”, inspired by the “specificity strategy” for
protein-protein interface design (Bolon et al., 2005). The relative score takes the
difference between the absolute scores for the POI and competitor peptide (Eq. 3.2),
rewarding POIs destabilizing competing peptides’ binding.

Δ𝐵
𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

0 = 𝐵𝑃𝑂𝐼
0 − 𝐵

𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

0 (3.2)

An engineered protein must meet certain geometrical constraints to effectively bind
to a membrane receptor (Figure 3.2c). To utilize this geometrical information,
which is likely unused by structure-prediction tools, we incorporated two essential
constraints for effective binding: the binding angle and the binding depth (Figure
3.2c-e).

The first constraint comes from the angle a binding protein can make (Figure 3.2c,d).
In modeling a peptide-receptor complex using the extracellular domain of the mem-
brane receptor (e.g., LY6A), most structure predictors (e.g., AF-Multimer) would
consider the whole surface of the domain to be accessible by the peptide. However,
in biological conditions, the membrane-facing side of the receptor is inaccessible to
the engineered peptide. This polarity of accessibility is a general property of any
receptor that is closely anchored to a larger complex. To account for the potentially
huge energy cost of an engineered peptide binding these inaccessible locations, we
used a steep polynomial term to penalize peptides that bind to the anchor-facing part
of the receptor (Figure 3.2d, defined in the Methods by Eq. 3.1). 𝐵𝑃𝑂𝐼

0 is adjusted by
this geometrical constraint term, rectified to be non-negative, andΔ𝐵𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

0 is
also re-calculated accordingly, yielding new scores 𝐵𝑃𝑂𝐼

1 and Δ𝐵
𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

1 (Eq.
3.3).

Δ𝐵
𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

1 = 𝐵𝑃𝑂𝐼
1 − 𝐵

𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

1 (3.3)

= max(𝐵𝑃𝑂𝐼
𝑒𝑛𝑒𝑟𝑔𝑒𝑡𝑖𝑐 + 𝐵𝑃𝑂𝐼

𝑎𝑛𝑔𝑙𝑒, 0)

− max(𝐵𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

𝑒𝑛𝑒𝑟𝑔𝑒𝑡𝑖𝑐
+ 𝐵

𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

𝑎𝑛𝑔𝑙𝑒
, 0)

The second constraint concerns the binding pocket depth (Figure 3.2c,e). We
hypothesized that peptides binding to a deeper pocket on the receptor surface might
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Figure 3.2: Binary classification of receptor-binding AAV capsids using physical
and geometrical principles. See the next page for the caption.

benefit from longer receptor residence time, which is vital for the efficacy of many
therapeutics (Copeland, 2016). Based on this hypothesis, we included a pocket
depth consideration in APPRAISE’s scoring function. We used a relative pocket
depth measurement instead of an absolute peptide-receptor distance measurement
to avoid possible bias caused by the sizes of different receptors. We then used an
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Figure 3.2: Binary classification of receptor-binding AAV capsids using physical
and geometrical principles. a, a structure model of AAV-PHP.eB, highlighting the
site for inserting the displayed peptide (orange) and the peptide used for APPRAISE
modeling (yellow or orange). The left image shows the AAV capsid of 60 structurally
identical subunits. The two images on the top right show a top view and a side view
around the 3-fold axis, respectively. The three subunits that make the trimer are
colored blue, cyan, and white. The sequence corresponding to the peptides is shown
in the bottom right. b, An example showing the calculation process of a relative
energetic binding score. The number of contacting atoms (< 5 Å) and the number
of clashing atoms (< 1 Å) for each peptide in the competition are counted, and
an absolute energetic binding score is calculated based on the counts according
to Eq. 3.1. A difference between the two numbers, or the relative energetic
binding score, is then calculated. The competition result between two peptides is
determined using the average of relative binding scores across 10 replicates. The
matrix of the mean scores is then used to rank the peptides of interest (POIs). c, A
simplified geometrical representation of a peptide-receptor model, where the hull of
the receptor is represented by an ellipsoid (blue). Point O: the center of mass of the
receptor. Point A: the receptor’s terminus attached to an anchor. Segment OB: the
minor axis of the ellipsoid receptor hull. Point C: the deepest point on the candidate
peptide (orange). 𝜃: the binding angle of the peptide. 𝑑: the binding pocket depth
of the peptide. d, The angle constraint function. Three representative scenarios
with different binding angles are highlighted. e, The depth constraint function.
Three representative scenarios with different binding depths are highlighted. f,
Comparison of the averaged relative binding energy scores before geometry-based
adjustments vs. after adjustments. g-i Heatmaps representing the matrix of mean
scores 22 AAV9-based capsid variants, including g mean absolute binding scores, h
mean relative binding scores, and i mean relative binding scores that have considered
both angle and depth constraints. All heatmap matrices were sorted by point-based
round-robin tournaments (Methods). Bracketed numbers in the row labels are
LY6A-binding profiles of the capsids inferred from experimental evidence (Figure
3.5). Each block in the heatmap represents the mean score measured from 10
independent models. j-k, comparison of different ranking methods used as binary
classifiers to predict the LY6A-binding profile of 22 AAV9-based capsid variants.j,
comparison between rankings given by different versions of APPRAISE scores using
AF-Multimer as the structure prediction tool. k, comparison between rankings given
by confidence scores of AF-Multimer versus rankings given by APPRAISE 1.2 using
either AF-Multimer or ESMFold as prediction engines. The sequence and shape
parameters of LY6A used for the modeling and analyses are included in Table 3.1.

odd polynomial term to reward peptides that insert into deep pockets on the receptor
while penalizing peptides that attach to surface humps (Figure 3.2e, defined in the
Methods by Eq. 3.2). The addition of the depth term gives us an adjusted score
Δ𝐵

𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

2 (Eq. 3.4).
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Δ𝐵
𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

2 = 𝐵𝑃𝑂𝐼
2 − 𝐵

𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

2 (3.4)

= max(𝐵𝑃𝑂𝐼
𝑒𝑛𝑒𝑟𝑔𝑒𝑡𝑖𝑐 + 𝐵𝑃𝑂𝐼

𝑎𝑛𝑔𝑙𝑒 + 𝐵𝑃𝑂𝐼
𝑑𝑒𝑝𝑡ℎ, 0)

− max(𝐵𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

𝑒𝑛𝑒𝑟𝑔𝑒𝑡𝑖𝑐
+ 𝐵

𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

𝑎𝑛𝑔𝑙𝑒
+

𝐵
𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

𝑑𝑒𝑝𝑡ℎ
, 0)

We compared different versions of scoring methods based on competitive modeling
results using AF-Multimer modeling (Figure 3.2g-i). Individual matching scores
with statistical significance were used to determine wins and losses, and the total
matching points in a tournament were used to rank all candidate proteins (Methods).
We found that simple atom-counting-based 𝐵𝑃𝑂𝐼

0 can already differentiate LY6A-
binding peptides from non-binders(Figure 3.2g, j). Compared to 𝐵𝑃𝑂𝐼

0 alone, the
relative score Δ𝐵

𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

0 showed improved prediction power, a ROC-AUC of
0.800 and an AUPRC of 0.756 for the training dataset (Figure 3.2h, j, k). Adding
both geometrical terms, 𝐵𝑎𝑛𝑔𝑙𝑒 and 𝐵𝑑𝑒𝑝𝑡ℎ, into consideration indeed improved the
prediction accuracy of the binding score (Figure 3.2i-k), yielding a ROC-AUC of
0.838 and an AUPRC of 0.845 (Figure 3.2j, k). Importantly, the improvement in
ROC-AUC mainly came from the low-false-positive-rate segment of the ROC curve,
which is crucial for in silico screening of engineered proteins. For clarity, we name
the version that considers only the angle constraint (through score Δ𝐵1) APPRAISE
1.1 (Figure 3.6a) and the version that considers both angle and depth constraints
(through score Δ𝐵2) APPRAISE 1.2 (Figure 3.2i).

We then compared AF-Multimer-based APPRAISE 1.2 with other structure-based
peptide affinity ranking methods on the AAV dataset (Figure 3.2k). With this
particular dataset, the model confidence scores pLDDT, pTM, and interface pTM fail
to differentiate whether an AAV variant is an LY6A binder, producing worse-than-
random prediction (ROC AUC < 0.5). This is possibly due to the dynamic nature
of the interaction between LY6A-binding AAV variants and the receptor (Xu et al.,
2022; Jang et al., 2022), which causes the confidence scores of the complex models
to be generally low. APPRAISE 1.2 utilizing ESMFold as the structure prediction
engine, however, performed at a comparable level to AF-Multimer-APPRAISE 1.2
(Figure 3.6b), with a ROC AUC of 0.895 and AUPRC 0f 0.818 (Figure 3.2k).
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AF-Multimer-APPRAISE 1.2 ranking outperformed all other ranking methods at
the low-false-positive-rate end of the ROC curve, with a true positive rate of 0.714
and no false positive predictions. The performance with stringent cut-off values is
particularly relevant for protein engineering applications, where the goal is typically
to identify a few positive binders from a large number of negative, non-binding
candidates. The superiority of AF-Multimer-APPRAISE 1.2 in dealing with this
kind of imbalanced library is also evidenced by its highest AUPRC. Because of this,
we chose to characterize AF-Multimer-APPRAISE 1.2 further. In the following text,
’APPRAISE’ will be used to refer to AF-Multimer-APPRAISE 1.2 unless otherwise
specified.

APPRAISE is generally applicable to diverse classes of engineered proteins
To determine the applicability of APPRAISE to different classes of engineered pro-
teins, we applied the method to four classes of engineered protein binders targeting
four representative receptors for therapeutics.

We first applied APPRAISE 1.2 to other short peptide binders (Figure 3.3a-d). In the
first trial, the method successfully ranked a peptide selected by phage display to bind
human transferrin receptor (Lee et al., 2001), a well-characterized BBB receptor,
over non-binding counterparts from the same selection (Lee et al., 2001) (Figure
3.3a). In the second trial, evaluating two 47aa-long, rationally-designed PD-L1
binding peptides (Yin et al., 2021)) against the scaffold and length-matched AAV
variable region fragments, both designed PD-L1 binding peptides were clear win-
ners, with the higher-affinity MOPD-1 peptide topping the list despite the sequence
similarity (Figure 3.3c, Figure 3.7a).

We next tested whether APPRAISE 1.2 can be used to evaluate larger proteins,
for example, computationally designed miniproteins (50-90 aa) that bind to the
receptor-binding domain (RBD) of SARS-CoV-2 spike protein (Cao et al., 2020)
(Figure 3.3e-g). Among the designed miniproteins, 5 can neutralize live SARS-
CoV-2 virus in vitro with IC50 from 20 pM to 40 nM (Cao et al., 2020). The
APPRAISE 1.2 rankings of the 5 neutralizing miniproteins matched well with their
IC50 rankings (Spearman’s 𝜌 = 0.90, 𝑝 = 0.037, Figure 3.3g). The predictive
accuracy of APPRAISE decreased when non-neutralizing miniproteins (Cao et al.,
2020) and control AAV fragments were included (Spearman’s 𝜌 = 0.88, 𝑝 < 0.001,
Figure 3.3g); nevertheless, the top 4 binders still remained on the top. In contrast,
the ranking given by the iPTM score of AF-Multimer only achieved a Spearman’s
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Figure 3.3: AF-Multimer-APPRAISE 1.2 accurately ranks binding propensities
of different classes of engineered proteins. See the next page for the caption

𝜌 of 0.67 (𝑝 = 0.035).

We also used APPRAISE to rank 6 nanobodies (120 aa) that were evolved experi-
mentally (Ring et al., 2013) with highly similar scaffolds (Figure 3.7b) to bind to
an activated conformation of 𝛽2 adrenergic receptor (𝛽2AR), a G-protein-coupled
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Figure 3.3: AF-Multimer-APPRAISE 1.2 accurately ranks binding propensi-
ties of different classes of engineered proteins. a-b, APPRAISE 1.2 ranking of
transferrin receptor-binding peptides and non-binding control peptides (Lee et al.,
2001). a, Pairwise score matrix and ranking of a panel of 12-aa peptides given
by APPRAISE 1.2. Bracketed numbers in the row labels are experimentally deter-
mined transferrin receptor-binding profiles of each peptide (Lee et al., 2001). b,
A representative AF-Multimer model result of a binding peptide (blue) competing
against a non-binding peptide (red) for binding to transferrin receptor. c-d, AP-
PRAISE 1.2 ranking of PD-L1-binding peptides and non-binding control peptides
(Yin et al., 2021). c, Pairwise score matrix and ranking of a panel of 47-aa peptides
given by APPRAISE 1.2. Bracketed numbers in the row labels show the PD-L1-
binding profile of each peptide determined either experimentally (for MOPD-1,
MNPD-1, and scaffold protein) or by expectation (for AAV9 and PHP.eB) (Yin
et al., 2021). d, A representative AF-Multimer model result of MOPD-1 (blue), a
designed binding peptide, competing against a non-binding scaffold peptide (red) for
binding to PD-L1. e-g, APPRAISE 1.2 ranking of SARS-CoV-2-S RBD-binding
miniproteins(Cao et al., 2020). e, Pairwise score matrix and ranking given by
APPRAISE 1.2. Bracketed rankings in the row labels are determined based on
experimentally measured IC50 of each miniprotein to neutralize live SARS-CoV-2
(Cao et al., 2020). f, A representative AF-Multimer model result of LCB1 (blue),
a SARS-CoV-2-S RBD-binding miniprotein, competing against an influenza virus-
binding miniprotein (Chevalier et al., 2017) (red). g, A scatter plot showing the
correlation between APPRAISE-predicted ranking and experimentally-measured
IC50 ranking of all miniproteins tested. Blue points highlight binders that showed
the capability of complete neutralization of the SARS-CoV-2 virus in the tested
range of concentration in vitro. h-j, APPRAISE 1.2 ranking of 𝛽2 adrenergic
receptor-binding nanobodies (Ring et al., 2013). h, Pairwise score matrix and
ranking given by APPRAISE 1.2. Bracketed numbers in the row labels are rank-
ings of experimentally measured binding of each nanobody (Ring et al., 2013).i,
A representative AF-Multimer model result of Nb6B9 (blue), the strongest evolved
binder to active 𝛽2AR, competing against Nb80 (red), the nanobody used for the
evolution. j, A scatter plot showing the correlation between APPRAISE-predicted
ranking and experimentally-measured ranking by 𝛽2AR binding of all nanobodies
tested. Each block in the heatmap represents the mean score measured from 10
independent models. For comparison, rankings given by AF-Multimer-APPRAISE
1.0, ESMFold-APPRAISE 1.2, and interface pTM of SARS-Cov2-S RBD binding
miniproteins and 𝛽2 adrenergic receptor-binding nanobodies are shown in Figure
3.8. k, A summary of APPRAISE rankings of eight miniproteins (Cao et al., 2022)
designed to bind to eight different target receptors. Figure 3.9 displays the score
matrices utilized for rankings with individual receptors. Tables 3.1 and 3.2 include
sequences and shape parameters of all receptors.

receptor (GPCR) (Figure 3.3h-j). APPRAISE 1.2 correctly found the strongest
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Figure 3.4: An in silico HT-APPRAISE screening of a medium-sized AAV
library identifies a LY6A-dependent variant with a distinct sequence. See the
next page for the caption.

evolved binder and placed the parent (the weakest binder among all candidates)
at the bottom (Figure 3.3h). The overall predicted ranking correlated well with



42

Figure 3.4: An in silico HT-APPRAISE screening of a medium-sized AAV
library identifies a LY6A-dependent variant with a distinct sequence. a, A
schematic showing the two-stage strategy for in silico screening of a variant library.
In the first stage, M variants of interest are randomly pooled into groups of 4 and
compete for receptor binding. At least two parallel groupings are used to reduce
bias. Each peptide’s mean absolute binding score in the pool competitions is used
for selecting the top N variants. In the second stage, the top N variants compete
pairwise using standard APPRAISE for a more accurate ranking. b-c, Results from
a proof-principle screening with 100 AAV9-based variants, including the wild-type
control and variants with 7aa insertions. Using a standard random algorithm, a
total of 97 variants were picked from a list of 9000 variants (Ravindra Kumar et al.,
2020) that demonstrated higher brain enrichment than the wild-type AAV9 after one
round of screening in C57BL/6J mice ("Round 2 library" in Ravindra Kumar et al.,
2020). PHP.B and PHP.D, two known brain-transducing capsids, and wild-type
AAV9, are spiked into the library. Table 3.4 shows the peptide sequences used
in the screening. b, Stage 1 result. Dots indicate absolute binding scores mea-
sured from individual structure models. Horizontal bars indicate the mean scores
of each variant. Scores of PHP.D (ranked 3𝑟𝑑), PHP.B (ranked 13𝑡ℎ), and AAV9
(ranked 100𝑡ℎ) are highlighted. c, Stage 2 result. Rows corresponding to scores of
PHP.D (ranked 1𝑠𝑡), PHP.B (ranked 4𝑡ℎ) are highlighted. Each block in the heatmap
represents the mean score measured from 10 independent models. d-g, Characteri-
zation of PHP.D, a variant that tops the in silico screening. d, Sequence alignment
and phylogenetic tree of known LY6A-dependent brain transducing variants. The
sequence of PHP.D is very different from all other variants. The alignment and
sequence distances were generated with Clustal Omega (Sievers et al., 2011). The
colored alignment is plotted with Snapgene software. Blue: conserved hydropho-
bic residues; green: conserved hydrophilic residues; orange or yellow: conserved
unique residues (glycine or proline). e, Sequence identity matrix of the LY6A-
dependent variants. f, In vitro infectivity assay in HEK293T cells. PHP.D and
PHP.eB showed LY6A-enhanced transduction, while the negative control PHP.C2
did not show LY6A-enhanced transduction. AAV capsids carrying a fluorescent
protein expression cassette were applied to HEK293T cells either transfected with
LY6A or not at 5 × 108 vg per well in a 96-well plate. Images were taken 24hr after
transduction. n=3 per condition. Scale bar, 250 µm g, In vivo brain transduction
of PHP.D vs. AAV9 in two mice strains. PHP.D showed transduction only in the
LY6A+ strain, C57BL/6J. AAVs carrying CAG-mNeonGreen transgene were in-
jected intravenously at 3 × 1011 vg per animal, and the tissues were harvested and
imaged 3 weeks after injection. n=3 per condition. Scale bar, 2 mm.

the ranking from experimentally determined binding readouts (Ring et al., 2013)
(Spearman’s 𝜌 = 0.89, 𝑝 = 0.02, Figure 3.3j), surpassing the prediction given by
the iPTM score of AF-Multimer (Spearman’s 𝜌 = 0.49, 𝑝 = 0.329, Figure 3.8f).
The ability of APPRAISE to rank the binding affinity of nanobodies, a widely-used



43

therapeutic modality, has the potential to expand its value in drug design and de-
velopment. However, predicting the structure of larger adaptive immune complexes
like IgG-antigen complexes is still considered a difficult task in general, and further
improvements in the underlying structure prediction methods that APPRAISE relies
on are required to generalize the ranking capability to these targets.

To evaluate the cross-receptor capabilities of APPRIASE, we used the method to
rank eight recently developed miniproteins binders targeting eight different thera-
peutically significant receptors (Cao et al., 2022). This ranking included all receptors
with a ligand binding domain of less than 250 amino acids in Cao and coworkers’
study. APPRAISE is capable of accurately identifying the correct binder within the
top 3 in every instance, and 6 out of 8 times, the correct binder was ranked as the
top 1 (Figure 3.3k, Figure 3.9).

Our analysis involved comparing the performance of AF-Multimer-APPRAISE 1.2
to alternative methods on both the miniprotein dataset and the nanobody datasets.
AF-Multimer-APPRAISE1.2 again yielded the most accurate predictions when com-
pared to AF-Multimer-APPRAISE 1.0, ESMFold-APPRAISE 1.2, or interface pTM
scores given by AF-Multimer (Figure 3.8), reflected by higher Spearman’s correla-
tion to experimental rankings. ESMFold-APPRAISE 1.2 failed completely with the
miniprotein dataset (Figure 3.8b). Upon further inspection, we found that the un-
folded SARS-Cov-2-S RBD structure in ESMFold-generated complex models can
explain the failed ranking prediction.

Without any fine-tuning, AF-Multimer-APPRAISE 1.2 demonstrated consistent pre-
diction ability for ranking all four classes of proteins, including experimentally-
selected and rationally-designed peptides, computationally-designed miniproteins,
and nanobodies. Realizing the potential general applicability of the APPRAISE
method, we have created a web-based notebook interface to make it readily acces-
sible to the protein engineering community (Figure 3.10).

HT-APPRAISE screening can identify novel receptor-dependent capsid vari-
ants
We next adapted APPRAISE 1.2 for in silico screening. The computational cost
in the pairwise competition mode grows quadratically with the number of input
variants, which is unsuitable for high-throughput screening. To address this scal-
ability issue, we designed a two-stage screening strategy named high-throughput
(HT)-APPRAISE (Figure 3.4a). The first stage aims to shrink the size of the variant
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library using a less accurate yet more scalable strategy. Variants are randomly pooled
into groups and compete for receptor binding. The variants are then ranked by their
absolute score 𝐵

𝑃𝑂𝐼

2 . The number of pooled competitions grows linearly with the
number of variants in the starting library, making the first stage of HT-APPRAISE
suitable for larger libraries. In the second stage, the top variants selected from
the first stage compete pairwise, yielding a matrix of Δ𝐵

𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

2 and a more
accurate ranking.

We used our HT-APPRAISE in silico screening to find LY6A binders in a library of
100 capsid variants (Figure 3.4b-c). This library is composed of 97 capsid variants
randomly chosen from a list of 9,000 variants showing superior brain enrichment in
C57BL/6J mice compared to the wild-type AAV9 capsid (Ravindra Kumar et al.,
2020) as well as three spiked-in capsids: the variants PHP.B and PHP.D, and the
wild-type AAV9 (Table 3.4). PHP.D is a brain-transducing capsid identified in a
recent directed evolution campaign in our lab, the relevant receptor for which was
unknown.

The HT-APPRAISE screening took 24 hours using 3 parallel Google Colaboratory
GPU sessions and a laptop computer. In both stages of the HT-APPRAISE, the
most time-consuming step was the structural prediction, which took approximately
0.1-1 GPU minute per peptide-LY6A model (a complex made of 114 aa total). In
comparison, the time cost for structural analysis was negligible, taking less than 1
second per model on a CPU.

After the first stage of screening, both PHP.D and PHP.B appeared in the top 15% of
the library (ranked by 𝐵

𝑃𝑂𝐼

2 ) (Figure 3.4b).). In the second stage, the top 18 capsids
were ranked using pairwise APPRAISE 1.2 (Figure 3.4c). PHP.D and PHP.B were
the 1𝑠𝑡 and the 4𝑡ℎ in the final ranking.

The most intriguing aspect of PHP.D’s result is that its variable region bears little
sequence similarity to any of the LY6A-dependent variants used to develop the
APPRAISE method (Figure 3.4d-e). To confirm this prediction result, we experi-
mentally tested PHP.D’s LY6A dependency. An in vitro viral infection assay showed
that PHP.D indeed exhibits LY6A-enhanced transduction of HEK293T cells (Figure
3.4f). In addition, in vivo systemic delivery of PHP.D packaging a ubiquitously-
expressed fluorescent protein revealed that the brain transduction capability of this
capsid variant is restricted to LY6A-expressing mouse strains (Figure 3.4g). The
ability of HT-APPRAISE to identify binders with distinct sequences highlights
the generalizability of the physics-informed, sequence-structure/structure-function
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strategy.

3.4 Discussion
Here we describe APPRAISE, a structure-based, physics-informed method that ac-
curately ranks receptor binding propensities of engineered proteins. APPRAISE
uses a competitive, pairwise modeling strategy to capture affinity differences be-
tween even proteins with similar sequences and takes into account biophysical and
geometrical principles.

The competition-based structure modeling strategy addresses the challenge of as-
sessing small differences in binding affinity with high accuracy. This challenge
was highlighted by a recent benchmarking study using AF2 models for molecular
docking of small-molecule antibiotic candidates. The authors reported that the pre-
diction power of the direct physics-based scoring is no better than a random model
(Wong et al., 2022). By contrast, a competition-based modeling strategy might have
helped cancel the shared noise and amplify the signal arising from the small affinity
differences. The competition setup, in many cases, forces the structure-prediction
neural network to put only the more probable binder close to the receptor (Figure
3.3 d, i), converting a small probabilistic difference into a binary output.

The generalizability of AF-Multimer-APPRAISE is shown by its accurate ranking
of five different classes of engineered proteins and twelve different receptors. This
generalizability may be grounded in the physical principles learned by AlphaFold
(PhysRevLett.129.238101; Chang and Perez, 2022b). For example, consistent with
the report of Chang and Perez, 2022b, we also observed a recurring trend in our
tests with AF-Multimer where binders ranked at the top are frequently predicted
with secondary structures, which may indicate a stable binding interface.

A key feature of APPRAISE is that its analysis module uses only information
stored in the 3D coordinates, making the modular pipeline compatible with other
computational tools for protein engineering. For example, the structure-prediction
tool used in APPRAISE can be replaced by any current or future structure-prediction
tool. Moreover, APPRAISE can be an orthogonal validation tool for structure-
based protein design methods (Ovchinnikov and Huang, 2021; Anand et al., 2022;
Dauparas et al., 2022), particularly those that rely on optimization of predicted
confidence scores (Wang et al., 2022b).

The scalable, two-stage HT-APPRAISE strategy we designed allows in silico screen-



46

ing of protein candidates for receptor binding (Figure 3.4). Such screening can help
prioritize leading candidates during drug discovery, reducing the huge time, finan-
cial, and environmental costs of experimental validation. For example, the compu-
tational tasks needed to screen 100 AAV variants that we presented here (Figure 3.4)
could be completed within 24hr with research-grade computational resources. In
vivo characterization of the capsids at a comparable scale would have taken several
months.

As a competition-based ranking method, APPRAISE faces several intrinsic limi-
tations. One such limitation is that APPRAISE only outputs the relative, not the
absolute, probability of binding. Therefore, unless there are positive controls with
known binding to compare against, a variant’s position at the top of the ranking
does not indicate that the variant has an experimentally detectable binding affinity.
Another limitation lies in APPRAISE’s assumption that the binding of competing
proteins is mutually exclusive. Counterexamples arise if the competing proteins
exhibit cooperative binding or attach to epitopes situated at a considerable distance.
Furthermore, certain candidate proteins may exhibit a tendency to interact with
one another rather than with the designated receptor. Additionally, the geometrical
scores utilized in APPRAISE 1.1+ were computed assuming the receptor has a pre-
dominantly convex structure. Thus, these scores are most effective when applied to
single protein domains with convex shapes.

Other limitations of APPRAISE may arise from the protein structure prediction en-
gine that it relies on. For example, ESMFold-APPRAISE fails when the language-
model-based structure prediction tool cannot properly fold the protein in a complex
(Figure 3.8b). At the same time, AF-Multimer-APPRAISE results can be biased by
the specific selection of multiple-sequence alignments due to the dependence on co-
evolutionary information by AF-Multimer. So far, the APPRAISE pipeline’s ability
to accurately rank IgG antibodies is limited due to the complexity of predicting
antibody-antigen complex structures. Moreover, the accuracy and speed of AP-
PRAISE may be compromised when the modeled proteins contain long disordered
regions or large domains that are unnecessary for binding. As a result, pre-screening
of several truncated protein constructs for minimal folding domains with the par-
ticular structure prediction tool (analogous to the common practice in structural
biology) is always helpful. Additionally, the APPRAISE method is ineffective in
ranking weak binders in a pool (e.g., Figure 3.3g), perhaps because the predicted
structures do not offer many opportunities for meaningful interaction, resulting in
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near-zero competition scores. Fortunately, this should not be a practical concern for
most protein engineering applications since the most valuable candidates usually
bind with higher affinities. Considering these limitations, it is essential to conduct
spot checks on model results to confirm their physical soundness.

While APPRAISE has succeeded in ranking the binding propensities of different
protein variants, its accuracy and speed could be further improved. For example, the
parameters of APPRAISE 1.2’s scoring function have only been minimally tuned
to proper orders of magnitudes to decrease the risk of over-fitting (Methods). With
further fine-tuning of parameters and the ever-growing power of protein structure
prediction, the APPRAISE method promises to streamline the process of engineering
protein-based therapeutics.



48

a

Variant 
name Ref.

Modeled peptide 
sequence

C57BL/6J 
brain?

BALB/c 
brain?

Inferred LY6A 
dependency

PHP.B Deverman et al. AQTLAVPFKAQAQTG ✓ ✕ True*

PHP.eB Chan et al. DGTLAVPFKAQAQTG ✓ ✕ True**

PHP.B2 Deverman et al. AQSVSKPFLAQAQTG ✓ ✕ True*

PHP.B3 Deverman et al. AQFTLTTPKAQAQTG ✓ ✕ True*

PHP.N Kumar et al. AQTLAVPFSNPAQTG ✓ ✕ True
PHP.V1 Kumar et al. AQTALKPFLAQAQTG ✓ ✕ True
PHP.V2 Kumar et al. AQTTLKPFLAQAQTG ✓ ✕ True
PHP.C1 Kumar et al. AQRYQGDSVAQAQTG ✓ ✓ False
PHP.C2 Kumar et al. AQWSTNAGYAQAQTG ✓ ✓ False
PHP.C3 Kumar et al. AQERVGFAQAQAQTG ✓ ✓ False
AAV9 Gao et al. AQ-------AQAQTG ✕ ✕ False**

MacPNS1 Chen et al. AQPHEGSSRAQAQTG ✕ - False
MacPNS2 Chen et al. AQPNASVNSAQAQTG ✕ - False
NB-1 Kumar et al. AQSLDTTKGAQAQTG ✕ - False
NB-2 Kumar et al. AQESRGLSLAQAQTG ✕ - False
NB-3 Kumar et al. AQMIRGLDTAQAQTG ✕ - False
NB-4 Kumar et al. AQNGDLTRSAQAQTG ✕ - False
NB-5 Kumar et al. AQTKREIDYAQAQTG ✕ - False
NB-6 Kumar et al. AQMHHGMEIAQAQTG ✕ - False
NB-7 Kumar et al. AQTPRMDTFAQAQTG ✕ - False
NB-8 Kumar et al. AQVHRDLNFAQAQTG ✕ - False
NB-9 Kumar et al. AQTARKEEFAQAQTG ✕ - False

* LY6A binding had been confirmed by cell binding assay
** LY6A dependency had been biochemical and genetic assays

c

b

Figure 3.5: Prior experimental studies revealing the receptor dependency of
some brain-transducing AAV variants. a, A schematic showing an AAV capsid
binding to a blood-brain barrier receptor (BBB) receptor that is only expressed at
a high level on the endothelial cells of certain mouse strains (Huang et al., 2019;
Hordeaux et al., 2019; Batista et al., 2019). b, A schematic showing how we can infer
whether an AAV capsid can use LY6A, a mouse BBB receptor, by characterizing
its brain transduction across different strains. A capsid with strain-restricted brain
transduction in C57BL/6J mice is likely LY6A-dependent, while a capsid with cross-
strain brain transduction or does not transduce the brain is not LY6A-dependent. c,
A table summarizing all 22 capsids used in Figure 3.2 with their source literature,
sequence, brain transduction profile, and inferred LY6A dependency.
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a b

Figure 3.6: Heatmaps representing score matrices of AF-Multimer-APPRAISE
1.1 and ESMFold-APPRAISE 1.2.

a b

AAV9

PHP.eB

Figure 3.7: Sequence identity between some engineered proteins. Sequence
identity matrix generated with Clustal Omega (Sievers et al., 2011) for a) PD-L1-
binding peptides and b) 𝛽2 adrenergic receptor-binding nanobodies, demonstrating
that these proteins share similar sequences.
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a b

d e

c

f

Figure 3.8: Ranking protein binders using alternative methods. Rankings of
two groups of peptides analyzed in Figure 3.3g, j based on a, d) AF-Multimer-
APPRAISE 1.0, b, e) ESMFold-APPRAISE 1.2, and c, f) interface pTM given by
AlphaFold-Multimer.
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a b c

d e f

hg

Figure 3.9: Score matrices for APPRAISE rankings of miniprotein binders with
individual receptors. Detailed rankings of miniproteins with individual receptors
summarized in Figure 3.3k using AF-Multimer-APPRAISE 1.2. The miniprotein
sequences were from Cao et al., 2022
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Figure 3.10: A screenshot of the interface of Colab-APPRAISE. APPRAISE
can be easily accessed by running a web-based notebook on Google Colaboratory
(https://tiny.cc/APPRAISE).

https://tiny.cc/APPRAISE
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Table 3.1: Receptor sequences and parameters used for APPRAISE analysis (part 1
of 2)

Receptor
name

Organism Uniprot
accession
ID

Domain
used for
modeling

Residue
indices

𝐷𝑚𝑎𝑥

(Å)
Axial
ratio

𝑅𝑚𝑖𝑛𝑜𝑟

(Å)
Anchor
site

Sequence used for
modeling

LY6A Mus
musculus
(Mouse)

P05533 Mature
protein

27-110 46.68 1.74 13.4 C-term LECYQCYGVPFETSCPSITCPY
PDGVCVTQEAAVIVDSQTRKVK
NNLCLPICPPNIESMEILGTKV
NVKTSCCQEDLCNVAVP

PD-L1 Homo
sapiens
(Human)

Q9NZQ7 V domain 18-132 46.50 1.51 15.4 C-term AFTVTVPKDLYVVEYGSNMTIE
CKFPVEKQLDLAALIVYWEMED
KNIIQFVHGEEDLKVQHSSYRQ
RARLLKDQLSLGNAALQITDVK
LQDAGVYRCMISYGGADYKRIT
VKVNA

Beta-2
adrenergic
receptor

Homo
sapiens
(Human)

P07550 TM1-TM7 29-342 93.8 2.23 21.0 N-term DEVWVVGMGIVMSLIVLAIVFG
NVLVITAIAKFERLQTVTNYFI
TSLACADLVMGLAVVPFGAAHI
LMKMWTFGNFWCEFWTSIDVLC
VTASIETLCVIAVDRYFAITSP
FKYQSLLTKNKARVIILMVWIV
SGLTSFLPIQMHWYRATHQEAI
NCYANETCCDFFTNQAYAIASS
IVSFYVPLVIMVFVYSRVFQEA
KRQLQKIDKSEGRFHVQNLSQV
EQDGRTGHGLRRSSKFCLKEHK
ALKTLGIIMGTFTLCWLPFFIV
NIVHVIQDNLIRKEVYILLNWI
GYVNSGFNPLIYCRSPDFRIAF
QELLCL

Transferrin
receptor 1

Homo
sapiens
(Human)

P02786 Ectodomain 122-760 86.50 1.47 29.4 N-term LYWDDLKRKLSEKLDSTDFTGT
IKLLNENSYVPREAGSQKDENL
ALYVENQFREFKLSKVWRDQHF
VKIQVKDSAQNSVIIVDKNGRL
VYLVENPGGYVAYSKAATVTGK
LVHANFGTKKDFEDLYTPVNGS
IVIVRAGKITFAEKVANAESLN
AIGVLIYMDQTKFPIVNAELSF
FGHAHLGTGDPYTPGFPSFNHT
QFPPSRSSGLPNIPVQTISRAA
AEKLFGNMEGDCPSDWKTDSTC
RMVTSESKNVKLTVSNVLKEIK
ILNIFGVIKGFVEPDHYVVVGA
QRDAWGPGAAKSGVGTALLLKL
AQMFSDMVLKDGFQPSRSIIFA
SWSAGDFGSVGATEWLEGYLSS
LHLKAFTYINLDKAVLGTSNFK
VSASPLLYTLIEKTMQNVKHPV
TGQFLYQDSNWASKVEKLTLDN
AAFPFLAYSGIPAVSFCFCEDT
DYPYLGTTMDTYKELIERIPEL
NKVARAAAEVAGQFVIKLTHDV
ELNLDYERYNSQLLSFVRDLNQ
YRADIKEMGLSLQWLYSARGDF
FRATSRLTTDFGNAEKTDRFVM
KKLNDRVMRVEYHFLSPYVSPK
ESPFRHVFWGSGSHTLPALLEN
LKLRKQNNGAFNETLFRNQLAL
ATWTIQGAANALSGDVWDIDNE
F

Spike SARS-CoV-2 P0DTC2 RBD 331-529 67.93 1.87 18.2 C-term NITNLCPFGEVFNATRFASVYA
WNRKRISNCVADYSVLYNSASF
STFKCYGVSPTKLNDLCFTNVY
ADSFVIRGDEVRQIAPGQTGKI
ADYNYKLPDDFTGCVIAWNSNN
LDSKVGGNYNYLYRLFRKSNLK
PFERDISTEIYQAGSTPCNGVE
GFNCYFPLQSYGFQPTNGVGYQ
PYRVVVLSFELLHAPATVCGPK
K
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Table 3.2: Receptor sequences and parameters used for APPRAISE analysis (part 2
of 2)

Receptor
name

PDB ID Chain ID Regions
used for
modeling

Construct
length

𝐷𝑚𝑎𝑥

(Å)
Axial
ratio

𝑅𝑚𝑖𝑛𝑜𝑟

(Å)
Anchor
site

Sequence used for
modeling

FGFR2 1DJS A Structured
region

216 105.223.06 17.19 C-term TLEPEGAPYWTNTEKMEKRLHA
VPAANTVKFRCPAGGNPMPTMR
WLKNGKEFKQEHRIGGYKVRNQ
HWSLIMESVVPSDKGNYTCVVE
NEYGSINHTYHLDVVERSPHRP
ILQAGLPANASTVVGGDVEFVC
KVYSDAQPHIQWIKHVEKNGSK
YGPDGLPYLKVLKAAGVNTTDK
EIEVLYIRNVTFEDAGEYTCLA
GNSIGISFHSAWLTVLPA

TGF-𝛽1 3KFD A Structured
region

112 65.88 2.4 13.73 C-term ALDTNYCFSSTEKNCCVRQLYI
DFRKDLGWKWIHEPKGYHANFC
LGPCPYIWSLDTQYSKVLALYN
QHNPGASAAPCCVPQALEPLPI
VYYVGRKPKVEQLSNMIVRSCK
CS

CD3𝛿 1XIW B Structured
region

74 48.7 2.06 11.82 C-term MKIPIEELEDRVFVNCNTSITW
VEGTVGTLLSDITRLDLGKRIL
DPRGIYRCNGTDIYKDKESTVQ
VHYRMCQS

VirB8 4O3V A Cytoplasmic
domain

143 56.27 1.62 17.37 C-term ANPYISVANIMLQNYVKQREKY
NYDTLKEQFTFIKNASTSIVYM
QFANFMNIDNSLSPVIRYQKLY
RRSINIISINNINNNEATVTFE
SLAQNNTGEILENMLWEAKIGF
IMDSISTSTLHNMPFHFIVTSY
KLKLLRNKNQQ

PDGFR 3MJG C Ig-like
C2-type
domains
2&3

202 86.04 2.33 18.46 C-term DERKRLYIFVPDPTVGFLPNDA
EELFIFLTEITEITIPCRVTDP
QLVVTLHEKKGDVALPVPYDHQ
RGFSGIFEDRSYICKTTIGDRE
VDSDAYYVYRLQVSSINVSVNA
VQTVVRQGENITLMCIVIGNEV
VNFEWTYPRKESGRLVEPVTDF
LLDMPYHIRSILHIPSAELEDS
GTYTCNVTESVNDHQDEKAINI
TVVE

TrkA 2IFG A Ig-like
C2-type
domain 2

100 50.52 1.8 14.03 C-term SFPASVQLHTAVEMHHWCIPFS
VDGQPAPSLRWLFNGSVLNETS
FIFTEFLEPAANETVRHGCLRL
NQPTHVNNGNYTLLAANPFGQA
SASIMAAFMDNP

IL-7R𝛼 3DI3 B Structured
region

193 70.65 2.07 17.07 C-term DYSFSCYSQLEVNGSQHSLTCA
FEDPDVNTTNLEFEICGALVEV
KCLNFRKLQEIYFIETKKFLLI
GKSNICVKVGEKSLTCKKIDLT
TIVKPEAPFDLSVVYREGANDF
VVTFNTSHLQKKYVKVLMHDVA
YRQEKDENKWTHVNLSSTKLTL
LQRKLQPAAMYEIKVRSIPDHY
FKGFWSEWSPSYYFRTP
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Table 3.3: Sequences of engineered proteins used in APPRAISE tests in Figure 3.3
Protein Name Description Source Protein sequence

12aa-B Peptide from a phage display
selection for Transferrin
binding (positive)

Lee et
al. 2001

THRPPMWSPVWP

12aa-B-scramble Scrambled sequence of 12aa-B Lee et
al. 2001

PWRPSHPVWMPT

12aa-NB1 Peptide from a phage display
selection for Transferrin
binding (negative)

Lee et
al. 2001

SSHMENTPDTLR

12aa-NB2 Peptide from a phage display
selection for Transferrin
binding (negative)

Lee et
al. 2001

SNIRLSNSPMNT

12aa-NB3 Peptide from a phage display
selection for Transferrin
binding (negative)

Lee et
al. 2001

YSYTPHATSMYS

12aa-NB4 Peptide from a phage display
selection for Transferrin
binding (negative)

Lee et
al. 2001

SDMYPSTTLPVI

MNPD-1 Peptide rationally designed to
bind to PD-L1

Yin et
al. 2021

AQIREYKRCGQDEERVRRECKERGERQNCVYNIYKE
GNCYVCGIICL

MOPD-1 Peptide rationally designed to
bind to PD-L1

Yin et
al. 2021

AQIREYKRCGQDEERVRRECKERGERQNCVYNIYKE
GNCYVCGIICL

Scaffold Scaffold of the designed
peptides

Yin et
al. 2021

GSEERRYKRCGQDEERVRRECKERGERQNCQYQIRK
EGNCYVCEIRC

AAV9_560-606 Negative control sequence for
PD-L1 binding (from AAV capsid
)

negative
control

ITNEEEIKTTNPVATESYGQVATNHQSAQAQAQTGW
VQNQGILPGMV

PHP.eB_560-606 Negative control sequence for
PD-L1 binding (from AAV capsid
)

negative
control

ITNEEEIKTTNPVATESYGQVATNHQSDGTLAVPFK
AQAQTGWVQNQGILPGMV

AHB1 Miniproteins designed to bind
to SARS-Cov-2-S

Cao et
al. 2020

DEDLEELERLYRKAEEVAKEAKDASRRGDDERAKEQ
MERAMRLFDQVFELAQELQEKQTDGNRQKATHLDKA
VKEAADELYQRVR

AHB2 Miniproteins designed to bind
to SARS-Cov-2-S

Cao et
al. 2020

ELEEQVMHVLDQVSELAHELLHKLTGEELERAAYFN
WWATEMMLELIKSDDEREIREIEEEARRILEHLEEL
ARK

Influenza Miniproteins designed to bind
to Influenza virus

Chevalier
et al.,
2017

CIEQSFTTLFACQTAAEIWRAFGYTVKIMVDNGNCR
LHVC

LCB1 Miniproteins designed to bind
to SARS-Cov-2-S

Cao et
al. 2020

DKEWILQKIYEIMRLLDELGHAEASMRVSDLIYEFM
KKGDERLLEEAERLLEEVER

LCB2 Miniproteins designed to bind
to SARS-Cov-2-S

Cao et
al. 2020

SDDEDSVRYLLYMAELRYEQGNPEKAKKILEMAEFI
AKRNNNEELERLVREVKKRL

LCB3 Miniproteins designed to bind
to SARS-Cov-2-S

Cao et
al. 2020

NDDELHMLMTDLVYEALHFAKDEEIKKRVFQLFELA
DKAYKNNDRQKLEKVVEELKELLERLLS

LCB4 Miniproteins designed to bind
to SARS-Cov-2-S

Cao et
al. 2020

QREKRLKQLEMLLEYAIERNDPYLMFDVAVEMLRLA
EENNDERIIERAKRILEEYE

LCB5 Miniproteins designed to bind
to SARS-Cov-2-S

Cao et
al. 2020

SLEELKEQVKELKKELSPEMRRLIEEALRFLEEGNP
AMAMMVLSDLVYQLGDPRVIDLYMLVTKT

AAV9_560-606 Negative control sequence for
SARS-Cov-2-S binding (from AAV
capsid )

Cao et
al. 2020

ITNEEEIKTTNPVATESYGQVATNHQSAQAQAQTGW
VQNQGILPGMV

PHP.eB_560-606 Negative control sequence for
SARS-Cov-2-S binding (from AAV
capsid )

Cao et
al. 2020

ITNEEEIKTTNPVATESYGQVATNHQSDGTLAVPFK
AQAQTGWVQNQGILPGMV

Nb80 Nanobody that binds to beta2
adrenergic receptor (parent)

Ring et
al. 2013

QVQLQESGGGLVQAGGSLRLSCAASGSIFSINTMGW
YRQAPGKQRELVAAIHSGGSTNYANSVKGRFTISRD
NAANTVYLQMNSLKPEDTAVYYCNVKDYGAVLYEYD
YWGQGTQVTVSS

Nb6A10 Nanobody selected to bind to
beta2 adrenergic receptor using
yeast display

Ring et
al. 2013

QVQLQESGGGLVQAGGSLRLSCAASGGIFGFNTMGW
YRQAPGKQRELVAAILSGGTTYYANSVKGRFTISRD
NAANTVYLQMNSLKPEDTAVYYCNVKDHGSIIYDYD
YWGQGTQVTVSS

Nb6B11 Nanobody selected to bind to
beta2 adrenergic receptor using
yeast display

Ring et
al. 2013

QVQLQESGGGLVQAGGSLRLSCAASGTIFSINTMGW
YRQAPGKQRELVAAIHSGGSTYYANSVKGRFTISRD
NAANTVYLQMNSLKPEDTAVYYCNVKDYGAVLYDYD
YWGQGTQVTVSS

Nb6A5 Nanobody selected to bind to
beta2 adrenergic receptor using
yeast display

Ring et
al. 2013

QVQLQESGGGLVQAGGSLRLSCAASGSIFTFNTMGW
YRQAPGKQRELVAAIHSGGNTDYANSVKGRFTISRD
NAANTVYLQMNSLKPEDTAVYYCNVKDYGAIIYEYD
YWGQGTQVTVSS

Nb6A9 Nanobody selected to bind to
beta2 adrenergic receptor using
yeast display

Ring et
al. 2013

QVQLQESGGGLVQAGGSLRLSCAASGSIFAINTMGW
YRQAPGKQRELVAAIHSGGSTNYANSVKGRFTISRD
NAANTVYLQMNSLKPEDTAVYYCNVKDYGAIVYEYD
YWGQGTQVTVSS

Nb6B9 Nanobody selected to bind to
beta2 adrenergic receptor using
yeast display

Ring et
al. 2013

QVQLQESGGGLVQAGGSLRLSCAASGSIFALNIMGW
YRQAPGKQRELVAAIHSGGTTNYANSVKGRFTISRD
NAANTVYLQMNSLKPEDTAVYYCNVKDFGAIIYDYD
YWGQGTQVTVSS

FGFR2_mb Miniprotein designed to bind to
FGFR2

Cao et
al. 2022

DRRKEMDKVYRTAFKRITSTPDKEKRKEVVKEATEQ
LRRIAKDEEEKKKAAYMILFLKTLG

TGF-𝛽1_mb Miniprotein designed to bind to
TGF-𝛽1

Cao et
al. 2022

HCTIEVVGVDPEKVEAIAAAYGAEVCEKDGKFEIHL
DDPHSAESAAVAISVLTNRPVRLQC

CD3𝛿_mb Miniprotein designed to bind to
CD3𝛿

Cao et
al. 2022

NHIACEIHNPEAAKEIAKVANVRRVYFIKQPGNRYF
VLLKNADPEGVKKVRSKYNVRCVIRE

VirB8_mb Miniprotein designed to bind to
VirB8

Cao et
al. 2022

NAEEITEKATLVGIEAWLLAKDEEQKKKVRTLNRQV
KKLLQQNDLDQAKRVLDQLKSVLEDLKS

PDGFR_mb Miniprotein designed to bind to
PDGFR

Cao et
al. 2022

DDERLATLAFRALIKRAGVKNLDVKVTNGKVRVTIT
GRDQASFKALQLVFALARLGLQVQIDTR

TrkA_mb Miniprotein designed to bind to
TrkA

Cao et
al. 2022

RDEIKERIFKAVVRAIVTGNPEQLKEAKKLLEKLKK
LGRLDQDAKKFEKAIRQVEKRLRS

IL-7R𝛼_mb Miniprotein designed to bind to
IL-7R𝛼

Cao et
al. 2022

SVIEKLRKLEKQARKQGDEVLVMLARMVLEYLEKGW
VSEEDADESADRIEEVLKK

LCB1 Miniproteins designed to bind
to SARS-Cov-2-S

Cao et
al. 2020

DKEWILQKIYEIMRLLDELGHAEASMRVSDLIYEFM
KKGDERLLEEAERLLEEVER
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Table 3.4: Peptides used for in silico screening
Peptide name Peptide sequence (residues 587-594

in VP1)
Original source

AAV9 AQ——-AQAQTG Gao et al., 2002
PHP.B AQTLAVPFKAQAQTG Deverman et al. 2016
PHP.D AQWKNMGLQAQAQTG Unpublished in vivo

selection
SRK-1 AQLYHGGSTAQAQTG Kumar et al. 2020
SRK-2 AQNNSVRQLAQAQTG Kumar et al. 2020
SRK-3 AQVNSTRNVAQAQTG Kumar et al. 2020
SRK-4 AQGNMTKFTAQAQTG Kumar et al. 2020
SRK-5 AQTAIQPPKAQAQTG Kumar et al. 2020
SRK-6 AQITTDQPFAQAQTG Kumar et al. 2020
SRK-7 AQDTANTARAQAQTG Kumar et al. 2020
SRK-8 AQTHDAQAWAQAQTG Kumar et al. 2020
SRK-9 AQQPLAEEAAQAQTG Kumar et al. 2020
SRK-10 AQTALANQKAQAQTG Kumar et al. 2020
SRK-11 AQTGTERLSAQAQTG Kumar et al. 2020
SRK-12 AQNGVTQSKAQAQTG Kumar et al. 2020
SRK-13 AQWTEQRLVAQAQTG Kumar et al. 2020
SRK-14 AQDTGLNNRAQAQTG Kumar et al. 2020
SRK-15 AQPLPPTSIAQAQTG Kumar et al. 2020
SRK-16 AQSDPGKFMAQAQTG Kumar et al. 2020
SRK-17 AQTTMGTMLAQAQTG Kumar et al. 2020
SRK-18 AQKQTQDSSAQAQTG Kumar et al. 2020
SRK-19 AQLAHNSALAQAQTG Kumar et al. 2020
SRK-20 AQVVPSTYRAQAQTG Kumar et al. 2020
SRK-21 AQFRHLTGAAQAQTG Kumar et al. 2020
SRK-22 AQSANLLSSAQAQTG Kumar et al. 2020
SRK-23 AQFSNTHALAQAQTG Kumar et al. 2020
SRK-24 AQFNSKLQLAQAQTG Kumar et al. 2020
SRK-25 AQFKTNISAAQAQTG Kumar et al. 2020
SRK-26 AQYPVPLKQAQAQTG Kumar et al. 2020
SRK-27 AQHVNHMAPAQAQTG Kumar et al. 2020
SRK-28 AQIVSNQMSAQAQTG Kumar et al. 2020
SRK-29 AQPRPERMYAQAQTG Kumar et al. 2020
SRK-30 AQNMKIQHVAQAQTG Kumar et al. 2020
SRK-31 AQNTNVPAMAQAQTG Kumar et al. 2020
SRK-32 AQSAQLRSSAQAQTG Kumar et al. 2020
SRK-33 AQSHHEQVSAQAQTG Kumar et al. 2020
SRK-34 AQGATGHLTAQAQTG Kumar et al. 2020
SRK-35 AQHNLRDSIAQAQTG Kumar et al. 2020
SRK-36 AQGPGTSFKAQAQTG Kumar et al. 2020
SRK-37 AQSPPVQGLAQAQTG Kumar et al. 2020
SRK-38 AQTLYNAIHAQAQTG Kumar et al. 2020
SRK-39 AQLGDITGFAQAQTG Kumar et al. 2020
SRK-40 AQGFNSMKPAQAQTG Kumar et al. 2020
SRK-41 AQSNGLNGLAQAQTG Kumar et al. 2020
SRK-42 AQVRIPGALAQAQTG Kumar et al. 2020
SRK-43 AQDMGTDNLAQAQTG Kumar et al. 2020
SRK-44 AQNYATKSQAQAQTG Kumar et al. 2020
SRK-45 AQSVTTSHVAQAQTG Kumar et al. 2020
SRK-46 AQTSGTDGIAQAQTG Kumar et al. 2020
SRK-47 AQARTAHGYAQAQTG Kumar et al. 2020
SRK-48 AQHSANMSKAQAQTG Kumar et al. 2020
SRK-49 AQHDERANMAQAQTG Kumar et al. 2020
SRK-50 AQNNFNASLAQAQTG Kumar et al. 2020
SRK-51 AQSASLVSHAQAQTG Kumar et al. 2020
SRK-52 AQAPRIDNAAQAQTG Kumar et al. 2020
SRK-53 AQLTSSNALAQAQTG Kumar et al. 2020
SRK-54 AQTLNSIRAAQAQTG Kumar et al. 2020
SRK-55 AQSGTGRQQAQAQTG Kumar et al. 2020
SRK-56 AQKTTLASGAQAQTG Kumar et al. 2020
SRK-57 AQMRVNTEEAQAQTG Kumar et al. 2020
SRK-58 AQFETLHKTAQAQTG Kumar et al. 2020
SRK-59 AQTQHRFEMAQAQTG Kumar et al. 2020
SRK-60 AQHTAEKAPAQAQTG Kumar et al. 2020
SRK-61 AQNHMVRELAQAQTG Kumar et al. 2020
SRK-62 AQRFQPSSAAQAQTG Kumar et al. 2020
SRK-63 AQRSVANVPAQAQTG Kumar et al. 2020
SRK-64 AQVFQATRTAQAQTG Kumar et al. 2020
SRK-65 AQEQRTPSPAQAQTG Kumar et al. 2020
SRK-66 AQGSSTASLAQAQTG Kumar et al. 2020
SRK-67 AQQVPHLHSAQAQTG Kumar et al. 2020
SRK-68 AQPSQPYTKAQAQTG Kumar et al. 2020
SRK-69 AQTHTRDQGAQAQTG Kumar et al. 2020
SRK-70 AQINPGITLAQAQTG Kumar et al. 2020
SRK-71 AQLQPTKSSAQAQTG Kumar et al. 2020
SRK-72 AQQDAKVTTAQAQTG Kumar et al. 2020
SRK-73 AQGASTHNAAQAQTG Kumar et al. 2020
SRK-74 AQIPVSIQAAQAQTG Kumar et al. 2020
SRK-75 AQVTSAHPVAQAQTG Kumar et al. 2020
SRK-76 AQTASLIASAQAQTG Kumar et al. 2020
SRK-77 AQDRGTRTVAQAQTG Kumar et al. 2020
SRK-78 AQTAYLEVKAQAQTG Kumar et al. 2020
SRK-79 AQATTQMSSAQAQTG Kumar et al. 2020
SRK-80 AQKYDASQSAQAQTG Kumar et al. 2020
SRK-81 AQTGTSHLHAQAQTG Kumar et al. 2020
SRK-82 AQTMTPSGIAQAQTG Kumar et al. 2020
SRK-83 AQTPSSSGNAQAQTG Kumar et al. 2020
SRK-84 AQKDVVNSNAQAQTG Kumar et al. 2020
SRK-85 AQRSPATMLAQAQTG Kumar et al. 2020
SRK-86 AQYDQKSLAAQAQTG Kumar et al. 2020
SRK-87 AQMGARNLPAQAQTG Kumar et al. 2020
SRK-88 AQLPISATEAQAQTG Kumar et al. 2020
SRK-89 AQTRHTSLTAQAQTG Kumar et al. 2020
SRK-90 AQNKLTANGAQAQTG Kumar et al. 2020
SRK-91 AQNGDSHSHAQAQTG Kumar et al. 2020
SRK-92 AQVRTDMDMAQAQTG Kumar et al. 2020
SRK-93 AQSVSTPRGAQAQTG Kumar et al. 2020
SRK-94 AQVSRQFEPAQAQTG Kumar et al. 2020
SRK-95 AQSANNVRGAQAQTG Kumar et al. 2020
SRK-96 AQIGTKSTNAQAQTG Kumar et al. 2020
SRK-97 AQGSELRTGAQAQTG Kumar et al. 2020
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3.5 Methods and Materials
Structure Modeling
Modeling of peptide-receptor complexes using AF2-multimer Peptide-receptor
models are modeled using Colabfold (Python package index: alphafold-colabfold
2.1.14), an implementation of integrated multiple-sequence alignment generation
with MMseqs2 and structure modeling with AF-Multimer-v2 (Mirdita et al., 2022;
Steinegger et al., 2019; Mitchell et al., 2019; Mirdita, Steinegger, and Söding,
2019; Mirdita et al., 2017; Evans et al., 2021). First, batches of *.fasta files
containing combined receptor sequences (Tables 3.1 and 3.2) and peptide se-
quences for the pairwise competition or pooled competition, where the protein
chains are separated by the ":" symbol, are prepared using the function (ap-
praise.input_fasta_prep.get_complex_fasta()). Second, the *.fasta files are used as
input files for the "batch" Jupyter notebook in Colabfold package, and the notebook
is run on Google Colaboratory using a V100 SXM2 16GB GPU or an A100 SXM4
40GB GPU. The settings used for the modeling are listed below:

msa_mode = "MMseqs2 (UniRef+Environmental)"

num_models = 5

num_recycles = 3

stop_at_score = 100

use_custom_msa = False

use_amber = False

use_templates = True

model_type = "auto" #or "AF2-multimer-v2"

Modeling of peptide-receptor complexes using ESMFold To model the peptide-
receptor complexes using ESMFold, a process analogous to the one employed for
AF2-multimer modeling is implemented. First, batches of *.fasta files containing
combined receptor sequences (Table 3.1) and peptide sequences for the pairwise
competition or pooled competition, where the protein chains are separated by a
poly-glycine linker (30 glycine residues), are prepared using the same Python func-
tion(get_complex_fasta()) mentioned above. Second, the *.fasta files are used as
input files for a custom Jupyter notebook with codes adapted from the Colabfold
package for batch modeling using ESMFold, and the notebook is run on Google
Colaboratory using an A100 SXM4 40GB GPU. The custom Colab notebook is
included in the APPRAISE package:
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appraise/misc_utilities/ColabFold_ESMFold_batch_run.ipynb.

Physics-informed analysis of individual structure models
The output folder containing *.pdb files generated by alphafold-colabfold is down-
loaded to a local computer for processing. Key parameters in a predicted structure
model are measured, and the measurements are used to generate binding scores for
each peptide in a model.

Automated quantification of the peptide-receptor models. The structure mod-
els are analyzed using PyMOL 2.3.3 using a custom PyMOL script. Briefly, the
script loads all *.pdb models in a directory, extracts metadata from the file names,
and measures the relevant contact atom numbers, angles, and distances. The mea-
surements are saved as a *.csv file. The custom PyMOL script is included in the
APPRAISE package:

appraise/pymol_quantify_peptide_binding.py.

Measurement of the 𝑅𝑚𝑖𝑛𝑜𝑟 of the receptor hull. The receptor shape parameter
𝑅𝑚𝑖𝑛𝑜𝑟 , which is necessary for APPRAISE 1.2, is obtained by measuring the shape
parameters of an AlphaFold-modeled receptor structure. Briefly, the monomeric
receptor (Table 3.1) is modeled using Colabfold (Python package index: alphafold-
colabfold 2.1.14). The top model is then analyzed using HullRad v8.1(Fleming and
Fleming, 2018) to obtain its major axis diameter 𝐷𝑚𝑎𝑥 and aspect ratio 𝑃. 𝑅𝑚𝑖𝑛𝑜𝑟

is then calculated using the formula 𝑅𝑚𝑖𝑛𝑜𝑟 = 𝐷𝑚𝑎𝑥/𝑃/2. Before the analysis,
𝑅𝑚𝑖𝑛𝑜𝑟 measurement is manually added as a column to the pandas dataframe storing
PyMOL measurements with the column "R_minor".

Construction and calculation of 𝐵𝑒𝑛𝑒𝑟𝑔𝑒𝑡𝑖𝑐. We defined a contact atom as a non-
hydrogen atom of either the receptor or the peptide within 5Å of the binding partner
in the peptide-receptor model since atoms within this distance cutoff are responsible
for most protein-protein interactions (Salamanca Viloria et al., 2017). We defined a
clashing term as the number of non-hydrogen atoms in the peptide that are within 1Å
of the receptor since this distance is smaller than the typical diameter of an atom and
can cause a huge Van der Waals strain. To find the suitable weight for the clashing
term, we estimated the relative energy scales using Lennard-Jones’ potential. We
concluded that an order of magnitude of 103 should be proper (Eq. 3.1). Since
most interfaces between the engineered peptide and the receptor have up to a few
hundred non-hydrogen atoms (tens of residues) in the interface, this heavy weight
for the clashing atom practically sets the 𝐵𝑃𝑂𝐼

0 of any peptide with steric clashing



59

against the receptor to 0. Thus, Eq. 3.1 is practically equivalent to:

𝐵
𝑝𝑒𝑝𝑡𝑖𝑑𝑒

𝑒𝑛𝑒𝑟𝑔𝑒𝑡𝑖𝑐
=


𝑁

𝑝𝑒𝑝𝑡𝑖𝑑𝑒
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 , if 𝑁 𝑝𝑒𝑝𝑡𝑖𝑑𝑒

𝑐𝑙𝑎𝑠ℎ
= 0

0, if 𝑁 𝑝𝑒𝑝𝑡𝑖𝑑𝑒

𝑐𝑙𝑎𝑠ℎ
>= 1

Construction and calculation of geometrical scores. The binding angle 𝜃 is
defined as the angle between the vector from receptor center of mass to receptor
anchor

−−→
𝑂𝐴 and the vector from receptor center of mass to peptide center of mass

−−−→
𝑂𝐶′ (Figure ??f. Note that the peptide center of mass 𝐶′ is usually very close to
the deepest point 𝐶, and therefore point 𝐶 and point 𝐶′ are undifferentiated in this
schematic). A steep function is used to penalize inaccessible binding angles that are
close to the anchor point:

𝐵
𝑝𝑒𝑝𝑡𝑖𝑑𝑒

𝑎𝑛𝑔𝑙𝑒
=


−103 · (1 − 𝜃

𝜋
2
)10, if 𝜃 < 𝜋

2

0, if 𝜋
2 <= 𝜃 <= 𝜋

(3.1)

The definition of binding depth 𝑑 is a simplification of previously defined travel
depth (Coleman and Sharp, 2006): we first calculate the hydrodynamic radius of the
hull of the receptor at the minor axis (𝑅𝑚𝑖𝑛𝑜𝑟) using HullRad (Fleming and Fleming,
2018), and then take the difference of the distance between the “closest point on the
peptide” to the receptor center and 𝑅𝑚𝑖𝑛𝑜𝑟 . The ratio between the difference and
𝑅𝑚𝑖𝑛𝑜𝑟 is defined as the depth. In other words, binding depth 𝑑 =

∥𝑂𝐵∥−∥𝑂𝐶∥
∥𝑂𝐵∥ where

∥𝑂𝐵∥ is the minor axis radius (in Å) of the receptor hull when considering it as an
ellipsoid (Figure ??f), and ∥𝑂𝐶∥ is the distance (in Å) between the center of mass
of the receptor and the closest point on the peptide (Figure ??f). An odd polynomial
function is used to construct the score to reflect both the positive effect of a deep
binding pocket and the negative effect of a convex binding site:

𝐵
𝑝𝑒𝑝𝑡𝑖𝑑𝑒

𝑑𝑒𝑝𝑡ℎ
= 102 · 𝑑3 (3.2)

Calculation of scores for each peptide in a model. The total binding scores for
each peptide in a model are calculated using Eqs. 3.1-3.4 in the main text.

Generation of the score matrix and a ranking. The total binding scores of a POI
vs. a competitor across 10 replicate models are averaged to getΔ𝐵

𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟
(Δ𝐵

𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

0
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for APPRAISE 1.0, Δ𝐵
𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

1 for APPRAISE 1.1, orΔ𝐵
𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

2 for AP-
PRAISE 1.2). These averaged competition scores are then used to create a matrix
and are plotted as a heatmap.

In the final score matrix, the POIs are ranked using a point-based round-robin
tournament system (McCarthy and Benjamin, 1996) to avoid the bias caused by
individual competitions with unusually high scores. Briefly, each Δ𝐵

𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟

in the matrix is considered as the match result between a POI and a competitor.
A POI gains 1 point for winning over each match and loses 1 point for losing
each match. (In the cases when |Δ𝐵𝑃𝑂𝐼,𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟 | does not reach the threshold of
𝑝 < 0.05 using a one-sample, two-sided, Student’s t test (degree of freedom=9), the
match is called a tie, and the POI gets 0 points from the match.)

Code Availability
All codes are available in a GitHub repository:

github.com/GradinaruLab/APPRAISE

In addition, APPRAISE is made accessible through a web-based notebook interface
using Google Colaboratory. The notebook can be found in the GitHub repository
above or be directly accessed through the link:

tiny.cc/APPRAISE

The Colab-APPRAISE notebook includes pre-filled templates that can be used to
demonstrate the workflow of APPRAISE. More demos can be found under demo
folder in the GitHub repository.

Experimental Validations
In vitro infectivity assay. HEK293T (ATCC, CRL-3216) cells were seeded in 6-well
plates at 80% confluency and maintained in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 5% fetal bovine serum (FBS), 1% non-essential amino
acids (NEAA), and 100 U/mL penicillin-streptomycin at 37°C in 5% CO2. Cells
were transiently transfected with 2.53 µg plasmid DNA encoding an expression
cassette for the LY6A receptor. The following day, receptor-expressing cells were
transferred to black, clear bottom 96-well plates at 20% confluency and maintained
in FluoroBrite™ DMEM supplemented with 0.5% FBS, 1% NEAA, 100 U/mL
penicillin-streptomycin, 1x GlutaMAX, and 15 µM HEPES at 37°C in 5% CO2.
Engineered AAV variants packaging a CAG-mNeonGreen transgene were dosed in
triplicate at 5E8 vg per well once the cells were attached. Plates were imaged 24

github.com/GradinaruLab/APPRAISE
tiny.cc/APPRAISE
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hours after AAV was introduced to cells with a Keyence BZ-X700 using a 4x ob-
jective and NucBlue™ Live ReadyProbes™ Reagent (Hoechst 33342) to autofocus
each well.

In vivo mouse experiment. For all the experiments performed in this study, the
animals were randomly assigned, and the experimenters were not blinded while
performing the experiments unless mentioned otherwise. All animal procedures in
mice were approved by the California Institute of Technology Institutional Animal
Care and Use Committee (IACUC), Caltech Office of Laboratory Animal Resources
(OLAR) and were carried out in accordance with guidelines and regulations.

For the profiling of the novel AAVs in C57BL/6J mice (The Jackson Laboratory,
000664) and BALB/cJ mice (The Jackson Laboratory, 000651), the AAV vectors
were injected intravenously via the retro-orbital route to 6-8 week-old adult mice
at a dose of 3 × 1011 vg per mouse. Retro-orbital injections were performed as
described previously (Challis et al., 2019). To harvest the tissues of interest after
3 weeks of expression, the mice were anesthetized with Euthasol (pentobarbital
sodium and phenytoin sodium solution, Virbac AH) and transcardially perfused
using 50 mL of 0.1 M phosphate-buffered saline (PBS) (pH 7.4), followed by 50
mL of 4% paraformaldehyde (PFA) in 0.1 M PBS. The organs were collected and
post-fixed 24 h in 4% PFA at 4°C. Following this, the tissues were washed with 0.1
M PBS and stored in fresh PBS-azide (0.1 M PBS containing 0.05% sodium azide)
at 4°C. Before imaging, the 100 µm tissue slices were cut using a Leica VT1000S.
Brain images were acquired with a Zeiss LSM 880 confocal microscope using a
Plan-Apochromat 10× 0.45 M27 (working distance 2.0 mm) objective. Zen Black
2.3 SP1 was used to process the images.

Ethical approval. All animal procedures in mice were approved by the California
Institute of Technology Institutional Animal Care and Use Committee (IACUC),
Caltech Office of Laboratory Animal Resources (OLAR) and were carried out in
accordance with guidelines and regulations.

Materials Availability
The plasmid expressing the AAV-PHP.D capsid reported in this manuscript is de-
posited to Addgene (ID: 197055).
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C h a p t e r 4

ENGINEERING A PROKARYOTIC REPRESSOR AS A
SCAFFOLD FOR AN ORTHOGONAL GENETICALLY

ENCODED TRANSMITTER INDICATOR

4.1 Abstract
The blood-brain barrier (BBB) presents a major challenge for delivering large
molecules to study and treat the central nervous system. This is due in part to
the scarcity of targets known to mediate BBB-crossing. To identify novel tar-
gets, we leverage a panel of adeno-associated viruses (AAVs) previously identified
through mechanism-agnostic directed evolution for improved BBB transcytosis.
Screening potential cognate receptors for enhanced BBB crossing, we identify two
targets: murine-restricted LY6C1 and widely-conserved carbonic anhydrase IV
(CA-IV; CA4). We apply AlphaFold-based in silico methods to generate capsid-
receptor binding models to predict the affinity of AAVs for these identified recep-
tors. Demonstrating how these new tools can unlock target-focused engineering
strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike
our prior PHP.eB, also works in Ly6a-deficient mouse strains such as BALB/cJ .
Combined with structural insights from computational modeling, the identification
of primate-conserved CA-IV opens a path for designing more specific and potent
human brain-penetrant chemicals and biologicals, including for gene delivery.

4.2 Introduction
Chemical transmission between neurons is crucial to the formation of neural circuitry
and computation in the nervous system. Genetically encoded transmitter indicators
(GETIs) that enable fluorescence imaging of such chemical transmissions by neu-
rotransmitters, neuromodulators, and neurohormones have become powerful tools
for neurobiologists (Andreoni, Davis, and Tian, 2019; Lin and Schnitzer, 2016;
Patriarchi et al., 2019; Robinson et al., 2019; Wang, Jing, and Li, 2018). Most
current GETIs are based on native membrane receptors, such as G-protein coupled
receptors (GPCRs). In such GPCR-based GETIs, the native-like ligand-binding
events at the GPCRs are coupled to either the transcription of a reporter protein (Lee
et al., 2017) or direct conformational change of fluorescent proteins (Feng et al.,
2019; Jing et al., 2018; Patriarchi et al., 2018; Sun et al., 2018). However, there are
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inevitable concerns about the unpredictable influence on normal signaling pathways
and cell physiology by the overexpression of such receptors.

One strategy to avoid such concerns is to use scaffolds that are “orthogonal” to the
native signaling pathway. GETIs based on bacterial periplasmic binding proteins
(PBPs) have been successfully developed for glutamate (Marvin et al., 2013; Marvin
et al., 2018) and GABA (-aminobutyric acid) (Marvin et al., 2019). However, the
PBP-based approach requires finding a natural bacterial PBP that natively binds to
the specific transmitter molecule of interest in bacteria, and the lack of availability
of such natural periplasmic binding proteins becomes a rate-limiting factor for the
development (Marvin et al., 2019).

We hypothesized that prokaryotic repressors, a class of allosteric transcriptional
regulators, can be engineered to be a new family of orthogonal sensing domains
for GETIs because they have highly diverse and convertible ligand specificities
(Dietrich, McKee, and Keasling, 2010; Tang and Cirino, 2011), a well-characterized
allosteric sensing mechanism (Hinrichs et al., 1994; Orth et al., 2000; Reichheld,
Yu, and Davidson, 2009), and a screenable functional readout (Ellefson, Ledbetter,
and Ellington, 2018; Kimura et al., 2020).

As an example, the TetR family of repressors, a family of one-component transcrip-
tional regulators with over 200,000 putative sequences, have been reported to sense
a large variety of bioactive small molecules such as antibiotics, metabolites, quo-
rum signaling molecules (Cuthbertson and Nodwell, 2013) with a variety of ligand
binding affinity and specificity (data not shown). A typical TetR family repressor
binds to a specific DNA sequence with its DNA-binding domain (DBD) in the ab-
sence of a specific “inducer” molecule. When an inducer molecule binds to the
regulatory domain of the repressor, it triggers an allosteric conformational change
in DBD which promotes dissociation of the repressor-DNA complex, allowing the
transcription of the set of genes being regulated (Figure 4.1A). The TetR family
members share the same protein fold, and their allosteric sensing mechanisms upon
ligand binding events have been characterized in atomic details by over 200 protein
structures in both bound and unbound states (Hinrichs et al., 1994; Orth et al., 2000)
as well as circular dichroism (Reichheld, Yu, and Davidson, 2009) (Figure 4.1B).

In this study, we provide a proof-of-principle example of developing a GETI based on
a TetR family bacterial repressor, TtgR, to sense a monoamine neurohormone, mela-
tonin (N-acetyl-5-methoxy tryptamine). Melatonin, a molecule produced mainly by
the pineal gland, carries out a diversity of roles including phasing circadian rhythms



65

and antagonizing inflammation and excitotoxicity by acting via GPCRs, nuclear
receptors, or other proteins. The molecule has been related to not only the control of
sleep, but also multiple diseases including metabolic syndromes, obesity, and type 2
diabetes (Hardeland et al., 2011; Reiter, Tan, and Fuentes-Broto, 2010). Despite its
intriguing functions in neurophysiology, to date, there hasn’t been a GETI reported
detecting the melatonin molecule.

4.3 Results
Our development pipeline includes three stages (Figure 4.1C). 1.) Parent selection:
identification of a natural parent repressor that shows promiscuous activity to the
target molecule. 2.) Directed evolution in bacteria: mutate the repressor sequence
and screen for variants with improved sensitivity and specificity for the target trans-
mitter molecule with a fluorescence-based assay; in each round of evolution, new
knowledge gained from structural analysis and machine learning models is incorpo-
rated into the diversification process to improve the efficiency of the evolution. 3.)
Backbone swap and test in mammalian cells: the evolved repressor is plugged into a
GETI backbone with a transcriptional reporter readout or an immediate fluorescence
intensity readout; the GETI is then tested for response to the target transmitter in
mammalian cells.

A critical component in the development pipeline is the rapid, high-throughput
screening of repressor variants. We developed a fluorescent assay-based directed
evolution method to improve the protein’s sensitivity and specificity to melatonin.
Random libraries of repressor variants are transformed into E.coli. Single colonies
are picked into multi-well plates semi-automatically, and the grid colonies are repli-
cated in multiple conditions to grow. In the backbone of the library plasmid (Rogers
et al., 2015), the repressor variant also regulates the expression of a fluorescent
reporter. Fluorescence intensities of each colony under different conditions are
recorded. In each round of evolution, only variants with improvement in both
specificity and induced fold change are chosen for the next steps (Figure 4.1D).

To identify a parent repressor for sensing melatonin, we performed a small-scale
prescreening on 17 different repressors (Stanton et al., 2014a) against melatonin in
a version of fluorescence-based screening in E.coli, and validated the promising hits
from the prescreening by repeating the experiment with quadruplicates (Figure S1).
One repressor protein, TtgR, stands out by showing a promiscuous, concentration-
dependent response to melatonin (Figure 4.2A). We found that the wild-type TtgR
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Melatonin-OFF Melatonin-ON

A B

C Parent selection

Figure 4.1: Overview of the sensor development pipeline. A, schematic showing
the mechanism of genetic regulation of a melatonin-inducible repressor in bacteria.
Melatonin binding promotes dissociation of the repressor-operator complex, thus
promoting a transcriptional readout of melatonin presence. B, allosteric sensing
mechanism of TetR family repressor. C, an overview of the development pipeline.

may cross-react, to a lower degree, with L-Dopa and arachidonic acid, but does not
respond to a panel of other molecules including DOPAC, dopamine, GABA, glycine,
glutamic acid, or serotonin (Figure S1). To improve the melatonin sensitivity of
wild-type TtgR to a more physiologically relevant concentration. We evolved TtgR
with the above-mentioned directed evolution approach with error-prone PCR to
generate random mutations across the whole coding gene of TtgR. The first three
rounds of evolution increased the specificity and induced fold change to melatonin.
The fluorescent response to 250uM melatonin increased from 0 in wild-type TtgR
to 1-fold in the hit of the third round of evolution (Figure 4.2B). Further evolution
kept improving the induced fold change by melatonin (Data not shown).

To better understand which residues might contribute to the ligand specificity of
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Figure 4.2: Evolution of a prokaryotic repressor for sensing melatonin. A, in an
LB agar plate-based fluorescent assay, wild type TetR family repressor TtgR showed
a concentration-dependent response to melatonin added to the culture medium. Each
data point is one E.coli colony. B, fluorescence response, specificity, and leakage of
the chosen repressors from the first three rounds of evolution, measured in the same
LB agar plate-based assay as described in panel C. C, Computational structural
model gives hints on the mechanism of the improvement from blindly-introduced
mutations. The model was obtained by docking melatonin to the crystal structure of
TtgR (PDB:2UIX) with RosettaLigand protocol. D, Linear SVC models revealed key
amino acid features that determine repressors’ melatonin-specificity and leakiness.
Binding pocket amino acid sequences predict selectivity and leakiness, but not
responsiveness of repressor variants.

TtgR, we performed computational docking of melatonin into the binding pocket
of TtgR (PDB: 2UIX) with RosettaLigand protocol (Figure 4.2C). We hypothe-
sized that the residues in close contact with the melatonin molecule and phloretin
molecule (PDB:2UIX) within the ligand-binding domain might be critical for the
repressor’s specificity. These residues include H67, N110, G140, and V175. Based
on the structural analysis, we hypothesize that combinatorial site saturation of these
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Figure 4.3: The engineered repressor can be transferred to mammalian cells as
a transcriptional sensor. A, schematic of a 3-plasmid system containing a reporter
plasmid (P-pMelR-EYFP), a repressor plasmid (P-con-TtgR) and an activator plas-
mid (P-con-GAL4-VP16) which transfers the repressor to mammalian cells, adapted
from Stanton et al., 2014b. B, Average fluorescence (a.u.) of HEK293T cells tran-
siently transfected with the 3-plasmids system measured by flow cytometry. Cells
were treated in medium containing specified drugs for 24 hours before the flow
cytometry. C, schematic of a 2-plasmid system based on split-GAL4 is designed
to reduce the number of plasmids while maintaining the flexibility of tuning the
repressor. D, average fluorescence (a.u.) of HEK293T cells transiently transfected
with the 2-plasmids system measured by flow cytometry. Cells were treated in
medium containing specified drugs for 24 hours before the flow cytometry.

residues will alter the volume and chemical properties of the binding pocket and
in doing so, alter both its relative affinity for phloretin, its native substrate, and
melatonin, the neurotransmitter of interest. In the screening of the library, we iden-
tified four mutations that are capable of dramatically changing the interaction and
chemical properties of the binding pocket. The construct with these four mutations
in initial screening showed a 35-fold improvement in 𝛿 and a 7-fold improvement
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Figure 4.4: TdTtgR, a genetic fusion of the repressor, a circularly permutated
GFP and a SpyLoop, is a fluorescent indicator for melatonin. A, schematic
showing the hypothetical structure of dimerized TtgR-cpGFP-SpyTag and TtgR-
SpyCatcher. B, average fluorescence (a.u.) of HEK293T cells transiently trans-
fected with TtgR-cpGFP-SpyTag and TtgR-SpyCatcher by flow cytometry. Cells
were treated in medium containing specified drugs for 20 minutes before the flow
cytometry.C, representative images showing the fluorescent aggregations of cells
expressing TtgR-cpGFP-SpyTag and TtgR-SpyCatcher (left), reduced aggregation
with non-reactive TtgR blockers (middle), and minimal aggregation in tandom
dimer TtgR (tdTtgR). D, average fluorescence (a.u.) of HEK293T cells transiently
transfected with two versions of TtgR-cpGFP-SpyTag and TtgR-SpyCatcher pairs
as well as tdTtgR. E, fluorescence of bacterial lysate expressing tdTtgR in response
to different concentrations of drugs. Fluorescence intensity is normalized to that of
untreated lysate. Each data point is an average of at least 3 measurements.

in specificity for melatonin over phloretin. This was the first construct identified
which showed a preference for melatonin over phloretin.

During the screening of the site-saturation mutagenesis library, we also generated
a data set that couples the residue identities of the binding pocket amino acids and
correspondent functional readouts. With interpretable machine learning models,
this data set would allow us to understand the key features in the sequence level that
determine the repressor functions(CB17; Yang, 2018). This is essential because
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our combinatorial site-saturation library has too many constructs to screen it its
entirety experimentally so being able to explore larger portions in silico would
greatly expand our abilities to engineer the repressors. With linear SVC models,
we identified three key amino acid features of the binding pocket residues (specify:)
that account for most of the repressors’ melatonin-specificity and leakiness (Figure
4.2D, left two boxes). (The mutations in the binding pocket predominantly changed
the electrochemical properties of the pocket but there was no appreciable change in
either the molecular weight of the amino acids present or their polarity.) However,
these binding pocket amino acid sequences do not but not predict the induced fold
changes of the repressor variants (Figure 4.2D, right box). This implies that the
repressor protein has evolved to function modularly, and mutations in the binding
pocket only affect inducer recognition, but not signal transduction.

One way to report neurotransmitter concentration with the engineered transmitter-
responsive repressor is by a transcriptional readout. To build such a transcriptional
sensor for melatonin in mammalian cells, we adapted a previously reported three-
plasmid system (Stanton et al., 2014b) which contains a repressor plasmid (P-con-
TtgR) that expresses the evolved melatonin-responsive TtgR, an activator plasmid (P-
con-GAL4-VP16) which expresses GAL4-VP16, and a reporter plasmid (P-pMelR-
EYFP) which expresses a fluorescent reporter under the regulation of both the
repressor and the activator. (Figure 4.3A)

After optimization of the plasmid ratio for repressor: activator: reporter, HEK293T
cells transfected with this three-plasmid system show inducible expression of the
reporter fluorescent protein at the presence of melatonin. Engineered TtgR showed
significantly improved fluorescence fold change by melatonin compared to wildtype
TtgR. (Figure 4.3B) It is worth noting that the engineered TtgRs still show cross-
response to phloretin, TtgR’s natural inducer. However, to our best knowledge,
phloretin is not expressed in animals, and thus the cross-response should not be a
concern for its application.

Although having three separate plasmids in the system allows easy tuning of the ratio
of components in the system, it also imposes a challenge on the co-delivery of the
system. We thus designed a two-plasmid system based on split-GAL4 to reduce the
number of plasmids while maintaining the flexibility of tuning the repressor-activator
ratio. The gene expression cassettes encoding two halves of intein-based split-GAL4
(Wang et al., 2018) were inserted to the reporter plasmid (P-pMelR-EYFP) and the
repressor plasmid (P-con-TtgR) respectively. (Figure 4.2C) After the optimization
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of the plasmid ratio and usage of promoters, the two-plasmid system produced
comparable inducibility to melatonin compared to the three-plasmid system.

Another way of reporting melatonin concentration is through direct coupling of
melatonin binding to the conformational change of fluorescence proteins. One
design to utilize the repressor as a ligand-binding domain is by expressing two
fusion proteins based on TtgR: TtgR-cpGFP-SpyTag and TtgR-SpyCatcher. The two
protein products would hypothetically react and dimerize to form Spyloop-cpGFP-
dTtgR (d stands for “dimer”), which couples ligand-induced conformational change
of TtgR (WT) directly to fluorescence change. Indeed, the Spyloop-cpGFP-TtgR
design shows drug-induced fluorescence change as measured by flow cytometry.
(Figure 4.4B)

However, the separately expressed TtgR-cpGFP-SpyTag and TtgR-SpyCatcher suf-
fer from severe aggregations in the cells. This phenomenon is hypothetically caused
by a chain reaction that oligomerizes the TtgR proteins. (Figure 4.4C left) Consistent
with the hypothesis, overexpressing non-reactive TtgR helped to reduce aggregation
by blocking chain reaction. (Figure 4.4C middle) A tandem-dimer design, tdTtgR
appears to show minimal aggregation while maintaining its negative response to
inducers in HEK293T cells. (Figure 4.4C right, Figure 4.4D) Furthermore, bac-
terial lysate expressing tdTtgR also showed a concentration-dependent response to
phloretin and melatonin, validating that the repressor-based fluorescent sensor re-
sponds to its native inducer in vitro. The tdTtgR molecule with evolved TtgR (R8)
showed a significantly larger response to melatonin compared to wildtype TtgR
(WT). (Figure 4.4E)

4.4 Discussion
Here we presented a generalizable method to neurotransmitter-sensing repressor
proteins, which can be used as an orthogonal ligand-binding module for building
GETIs. Our data showed that TtgR, a natural repressor, can be evolved to be
sensitive and specific to a chemical transmitter, melatonin. The melatonin-inducible
transcriptional regulation system can be transferred to mammalian cells by a 3-
plasmid or 2-plasmid system, allowing targeted expression of reporters or neural
modulators. The evolved repressor can be further used as a melatonin-sensing
module in a novel fluorescent GETI, tdTtgR.

To our knowledge, this is the first report of a GETI for melatonin. The current
sensitivity of the evolved repressor to melatonin ( 100uM) is close to the physiolog-
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ical concentrations of melatonin (10uM-200uM) in pineal glands in typical model
organisms.

The directed evolution method, the neurotransmitter-inducible genetic regulation
system and the fluorescent protein-based scaffold of a GETI presented here provide
a promising platform for the development of GETIs and targeted expression of other
chemical transmitters in the nervous system.

4.5 Methods
Plasmids

All plasmids were generated with standard molecular biology techniques: restriction
enzyme digestion (New England Biolabs), Q5 polymerase PCR (New England
Biolabs), and InFusion assembly (Takara). DNA was transformed into Stellar
competent E. coli cells (Takara) with carbenicillin (100 µg/ml) selection. Plasmid
DNA was isolated using plasmid miniprep or maxiprep kits (Qiagen). Sequences of
the inserted region are verified by Sanger sequencing (performed by Laragen).

1. The expression vector used for screening in E.coli., pJKR-H-ttgR, was a gift
from Dr. George Church (Addgene plasmid 62565). In round 8, a slightly modified
version of pJKR, pJ3 was generated by adding a terminator (BBa_B0062 (Shetty,
Endy, and Knight, 2008)) downstream of sfGFP coding region and adding an ex-
pression cassette for an mCherry reporter. 2. The three-plasmid expression system
in mammalian cells are constructed based on the system described in previous lit-
erature(Stanton et al., 2014b). The constitutive repressor plasmid, P-con-TtgR, was
synthesized (VectorBuilder) and assembled into a backbone with hEF1a promoter.
The reporter plasmid, P-pMelR-EYFP, was cloned based on The constitutive GAL4
plasmid, P-con-GAL4 was a gift of Dr. Chris Voigt. 3. The two-plasmid expression
system was cloned based on the constitutive repressor plasmid and the reporter plas-
mid, with two halves of split-intein inserted into each of the plasmid. 4. Inserts for
the cpGFP or splitGFP fusion plasmids are synthesized (IDT or Qinglan Biotech)
and cloned into pMV promoter.

Maps for all plasmids are included as a separate file. Plate-Based Binding Assay
for small-scale screening for natural TetR repressors We designed a plate-based
assay for comparing the induction levels of the parental constructs with the different
neurotransmitters. BL21(DE3) bacteria (NEB cat. C2527H) were transformed with
each construct. The vector has a promoter for the repressor gene which is repressed
by a Lac repressor protein which is itself induced by IPTG and a binding site for
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that repressor just upstream of the gene that transcribes YFP (Figure S1). In brief,
individual colonies were selected and inoculated in 200 L cultures for 16 hours to
generate homogeneous, saturated cultures of each construct. 1.5 L of this culture
was then plated onto treated M9 minimal media plates (recipe for 1L: 200 mL of
M9 salts, 20 mL of a 20% glucose solution, 2 mL of magnesium sulfate, 0.1 mL of
Calcium chloride, and 780 mL of water) for minimal background auto-fluorescence
of the media.

Each plate was treated prior to culture plating and dried at 37 °C for 1 hr for
better absorption in later steps. Then a solution of neurotransmitters at different
concentrations (and depending on the condition the corresponding amount of IPTG)
was spread onto the surface of the plate and allowed to dry and diffuse into the
plate. For each treatment condition (Table 2.2) the treatment was done for one
IPTG+ M9 plate and one IPTG- M9 plate. The E. coli containing the appropriate
construct were then aliquoted in 1.5 L droplets onto the plate spread about 2 cm
apart. After treatment and seeding of bacteria, the plates were left in the 37 °C
incubator overnight. The next day colonies were assayed for YFP fluorescence level
by imaging all the plates on a blue light gel imager at fixed exposure and focus
conditions. A python script was used for image processing to calculate the ratio of
the fluorescence of IPTG+ plates to IPTG- plates. The difference between IPTG+
vs IPTG- plates for each condition was compared.

Sequence diversification by Error-prone PCR

Error-prone PCR was performed with 200 µM MnCl2 in addition to 1x Taq Poly-
merase Mastermix (NEB). Primers (Forward: 5’- CTCTACAAATAATTTTGTT-
TAACTTTGAAATAAGGAGGTAATACAAATG -3’, Reverse: 5’- CATGTTG-
GTTTCCTACATTCAATTTTTTAGTCGCTTATTA -3’, synthesized by IDT) were
designed to have a predicted Tm of 57 ºC and 15 bp overhangs homologous to vector
backbone. PCR reactions were run on a C1000 Touch Thermal Cycler (Biorad) for
25 cycles with an annealing temperature of 52. PCR products were purified with
gel electrophoresis. Sequence diversification by Site-saturation mutagenesis Site-
saturation libraries were made using fragment PCR. Primers (synthesized by IDT)
are designed for each site to be saturatedly mutated. At each site, a pair of forward
and reverse primers was designed to contain NNK at the codon to be mutated. In-
dividual PCR were performed by the standard NEB Q5 protocol using the forward
primer from the upstream site and the reverse primer from the nearest downstream
site.
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Fragment 1. forward: 5’- CTCTACAAATAATTTTGTTTAACTTTGAAATAAG-
GAGGTAATACAAATG -3’, reverse: 5’- GCGTTTCMNNCAGAGAATCCAGCAG
-3’

Fragment 2. forward: 5’-CTGGATTCTCTGNNKGAAACGCATGATC-3’, re-
verse: 5’- GATTTCMNNAATGCGACGGGTACG -3’

Fragment 3. forward: 5’- CGTACCCGTCGCATTNNKGAAATCC-3’, reverse: 5’-
CCAGGGTGATMNNTTTATGACAATCC -3’

Fragment 4. forward: 5’-GATTGTCATAAANNKATCACCCTGGC-3’, reverse:
5’- CMNNCAGGCCATCCACATAGG-3’

Fragment 5. forward: 5’- CTATGTGGATGGCCTGNNKGGTC-3’, reverse: 5’-
CATGTTGGTTTCCTACATTCAATTTTTTAGTCGCTTATTA -3’

The fragments were then gel purified and amplified with the standard Q5 proto-
col (NEB) using the forward and reverse primers for ttgR (forward: 5’- CTC-
TACAAATAATTTTGTTTAACTTTGAAATAAGGAGGTAATACAAATG -3’, re-
verse: 5’- CATGTTGGTTTCCTACATTCAATTTTTTAGTCGCTTATTA -3’). This
full ttgR gene was then subcloned into the pJ3 vector.

Preparation of linearized vectors

Linearized vector was prepared in a 100 µL PCR reaction from pJ3 vector back-
bone with standard manufacturer’s PCR protocol and 2X Hot-Start Q5 Master
Mix (NEB). Primers (forward: 5’-TAGGAAACCAACATGTTCACACAGGAAAC-
3’, reverse: 5’-AAATTATTTGTAGAGGGAAACCGTTGTGGTC-3’) were synthe-
sized by IDT. PCR products were purified with gel electrophoresis.

Preparation of a variant library in E.coli. Step 1 - Measurement of mutation
rate with a test library: The insert was then recombined with the vector backbone
using Takara’s In-Fusion Cloning Kit with 40 ng of insert and 100 ng of linearized
vector following standard protocol from Takara. Reaction product was transformed
into Stellar chemically competent E. coli (Takara) using the manufacturer’s trans-
formation protocol. Mutation rates of this test library are measured by sequencing
>10 colonies from the test library.

Step 2 - Preparation of a variant library for screening: The same method used to
produce test library is scaled up to generate enough number of colonies for screening.
In parallel to transformation of the variant library, a glycerol stock of the parent of
the library was streaked onto an LB agar plates with 100 µg/ml carbenicillin so that
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the individual colonies could be isolated. Both the transformed library and streaked
parent were incubated overnight at 37 ºC before being screened with the 96-well
format fluorescent assay.

Screening with a 96-well format fluorescent assay

1. Preparation of the library cultured in 96-well plates. Each well in a 96-Well Deep
Well plate (VWR) was filled with 400 µL of LB media with 100mg/ml ampicillin.
Individual colonies from the variant library were then picked into this plate with
autoclaved pipette tips. The borders were left as sterile technique controls. 57
colonies were picked into the plate. In wells E6, F6, G6, individual colonies of the
parent of the library were picked from the streaked glycerol stocks. Cells were then
cultured in deep-well plate for 16 hours in a 37-degree shaker at 250 rpm.

2. Preparation of LB agar plates containing ligands. LB agar plates containing the
ligands of interest at appropriate concentrations and with 100mg/ml ampicillin. This
was done by preparing a 1000X stock solution in ethanol (200 Proof, KOPTEC)
for both phloretin (Sigma-Aldrich) and melatonin (Sigma-Aldrich). 40 µL of stock
solution was added to 40 mL of liquid LB Agar at about 50 ºC. Solutions were mixed
thoroughly. These solutions were then poured into OmniTrays (ThermoFischer) and
were allowed to cool with flame on.

3. Replication of 96-well-formatted library to LB agar plates containing ligands.
900 µL of fresh LB media with 100 mg/ml ampicillin was then added to each well
of the culture plate. Cultures were then replicated with a 96 standard pin replicator
(Scinomix) onto the LB Agar plates containing relevant ligands made in (6). The
LB agar plates were grown in a 37 ºC incubator for 16 hours.

4. Fluorescent imaging of the plates. Using a ChemiDoc MP fluorescence imaging
system (Biorad), a standard imaging protocol at three different channels (epi white
light: no filter, auto exposure for intense bands; blue epi-illumination, 530/28
filter, 3 ms exposure; red epi-illumination, 695/55 filter, 200 ms, exposure). Image
segmentation and measurements were performed using CellProfiler software and a
customized pipeline. Fold changes for individual colonies were calculated using a
customized python script. The variants shown with an increased response, increased
specificity, and decreased leakiness in the fluorescent assay were selected as hits
and streaked out onto LB agar plates with 100 µg/ml carbenicillin.

5. Validation of hits. Ten colonies were picked from each of the hit plates and
cultures were inoculated in 96-well deep well plates. The deep-well plate was
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then cultured overnight for 16 hours, replicated onto LB Agar plates containing
the neurotransmitters of interest, and grown for 16 hours before being imaged as
described in (4). Variants that exhibit the desired traits across replicates and trials
can then be used as the parents in future rounds of evolution.

Flow cytometry

At day 0, HEK293T cells were split into 24-well plates at 50% confluency, with
500ul DMEM media (with 5% FBS, wo antibiotics) in each well. 24hr later, each
well was transfected with 1 µg of total plasmids at the specified ratio with FuGENE6
(Promega).

48hr after transfection, each well was resuspended with 8 µL TryPLE EXPRESS
(Thermo Fisher), and then neutralized with 500 µL of resuspension buffer (HBSS
with 2.5% BSA, 0.5% DNAseI, and 1 mM MgCl2). Cells were spun down at 300 x g,
3min before being resuspended in 500 µL of resuspension buffer. The resuspended
samples were homogenized with 40um cell strainers before being transferred to 96-
well U-shaped plates. The samples were then analyzed with a MACSQuant VYB
Flow Cytometer (Miltenyi Biotech).
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C h a p t e r 5

FUTURE WORK

5.1 Computational design of BBB receptor binders.
Currently, there is a plethora of protein design tools available. Besides the es-
tablished Rosetta framework that combines physics and knowledge (Simons et al.,
1999; Leaver-Fay et al., 2011), there are now a number of deep learning-based pro-
tein design tools that have been experimentally validated, e.g. ProteinMPNN which
utilizes graph neural networks (Dauparas et al., 2022), and architectures inspired
by AlphaFold2 that incorporate deep learning concepts from computer vision in-
cluding hallucination, inpainting(Wang et al., 2022b), and diffusion (Watson et al.,
2022). These tools open the chance to computationally design peptide binders for
target BBB receptors. To ensure the optimal performance of protein design tools,
which are better suited for small proteins (< 200 aa), a pipeline will be developed
to integrate the binding modules and the desired scaffolds (e.g., AAV capsids).

5.2 High-throughput In silico screening of receptor-binding molecules.
The HT-APPRAISE pipeline (Figure 3.4) was able to process a library of 100
variants, however, trials with larger-sized libraries using the current version of
AlphaFold-Multimer-based HT-APPRAISE have been unsuccessful due to the long
computation hours and the increasing number of false-positive variants that impede
efficient pairwise APPRAISE. To extend the screening capability of HT-APPRAISE,
novel deep-learning-based structure prediction tools and techniques such as pre-
clustering will be implemented.

5.3 Engineering small molecule shuttles for brain targeting.
Carbonic anhydrase IV (CA-IV, CA4) is a primate-conserved BBB receptor that we
have recently identified and is known to bind to small molecule inhibitors, includ-
ing the FDA-approved, generic small molecule drug brinzolamide. The binding
pose of brinzolamide to CA-IV is remarkably similar to the binding pose between
BBB-crossing AAV capsid 9P31 and CA-IV (Figure 2.4). It is possible that the
binding of brinzolamide, or other CA-IV inhibitors, could be capable of inducing
transcytosis across the BBB in a manner similar to that of the CA-IV-dependent,
brain-transducing AAV capsids 9P31 and 9P36, which were reported in (Nonnen-
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macher et al., 2021; Shay et al., 2023). We, therefore, hypothesize that we can
use these CA-IV inhibitors as molecular shuttles to transport therapeutic molecules
across the BBB via CA-IV binding (Figure 5.1). To test this hypothesis, conjugates
of therapeutic molecules with varying sizes and CA-IV inhibitors with different
affinities will be evaluated for their ability to be uptaken by CA-IV-expressing cells
in vitro and cross CA-IV-expressing animals in vivo.

Figure 5.1: The concept of small molecule shuttle. A therapeutic cargo, conjugated
to a small CA-IV inhibitor such as brinzolamide, may be able to induce transcytosis
across the BBB when bound to the catalytic site of carbonic anhydrase IV, as
demonstrated by the CA-IV-dependent AAV capsids 9P31 or 9P36 (Nonnenmacher
et al., 2021; Shay et al., 2023).
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