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ABSTRACT

Fundamental understanding of material behavior under extreme conditions is
crucial for designing high strength, light weight, and high temperature resis-
tance materials, and for modeling planetary physics problems such as behavior
of the core and impact phenomena. Under extreme conditions, materials not
only exhibit a different mechanical, thermal, and failure response but can
also undergo structural changes, such as phase transformations, which signifi-
cantly alters their material properties. This motivates studying their dynamic
response and developing constitutive models for applications such as hyper-
sonics, high speed manufacturing, impact and blast of structures, aircraft and
spacecraft shielding, meteorite impact, and collision of planets. Despite the
importance, experimental investigations of shock induced phase transitions,
inelastic material behavior, and elastic-plastic anisotropy under multi-axial
stress states and at microscopic length scales of metals still remains largely
unexplored. Thus, the focus of this thesis is on the shock compression behav-
ior of body-centered cubic (BCC) metals, specifically iron and molybdenum,
under compression-shear loading and at the atomistic-continuum spatial scales.
In particular, the role of solid-solid phase transformation of body-centered cu-
bic (BCC) iron on material strength and the orientation dependence of single
crystal molybdenum on its elastic-plastic transition is investigated.

Iron in its high pressure hexagonal close-packed (HCP) ϵ-phase is critical in
geological and planetary applications such as inner cores of rocky planets and
hypervelocity impacts of asteroids, and meteorites. Thus, understanding plas-
ticity behavior of iron under these condensed matter states is important to
develop more accurate models for such applications and to understand defor-
mation mechanisms of inner planetary cores. Because the ϵ-phase is unstable,
iron reverts to its ambient α-phase (BCC) upon release making it difficult to
probe the strength behavior using conventional methods. Additionally, solid-
solid phase transformations provide a unique opportunity to study material
strength as they are crucial for expanding the design space for various load-
bearing applications. In the first part of the thesis, the pressure dependent dy-
namic strength behavior of both the ambient BCC α-phase and high-pressure
HCP ϵ-phase of iron at strain rates on the order of 1 × 105 s−1 and pressures
up to 42 GPa is investigated. Pressure shear plate impact experiments are
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conducted using a sandwich configuration to decouple the effect of pressure
and shear thereby allowing to probe shear strength once the sample reaches an
equilibrated state of pressure but prior to release. The strength of the ϵ-phase
is observed to be more than double the strength of α-phase possibly due to
microstructural evolution during phase transformation. Additionally, the evo-
lution of yield properties with pressure, temperature, and strain is presented
for the first time, enabling more accurate modeling of extreme deformation
phenomena associated with iron-rich celestial bodies such as planetary colli-
sions.

Molybdenum, its alloys, and other body-centered cubic (BCC) refractory met-
als are critical in geological and planetary applications such as structural prop-
erties of terrestrial planetary composition, formation of the earth-moon sys-
tem, and hypervelocity impacts of rocky planets. Additionally, the high tem-
perature specific strength, creep resistance, and ductility of BCC refractory
metals make them ideal for aerospace and armor/anti-armor applications. Un-
der high strain-rate inelastic loadings, the macroscopic response of these metals
is often influenced by the atomistic mechanisms including dislocation motion
and deformation twinning. Current material models rely on investigations
that involve continuum measurements followed by postmortem microstructural
analysis of recovered samples. However, these may not reflect the material be-
havior during the passage of the shock wave and, thus, requires real-time in-situ
atomistic characterization to link the microstructure to macroscopic response.
In the second part of the thesis, plate impact experiments coupled with both
laser interferometry continuum measurements and in-situ dynamic Laue x-ray
diffraction (XRD), at the Advanced Photon Source (APS), are conducted on
single crystal molybdenum. Here, the role of crystal orientation, either [1 0 0]
or [1 1 1], on deformation mechanisms during the elastic-plastic transition and
the steady state response is explored at pressures ranging from 9 − 19 GPa.
Complementary simulation methodology is developed to analyze the evolution
of the Laue diffraction spots captured during impact. By extracting the lattice
strain and stresses from XRD images, dislocation slip along {1 1 0}⟨1 1 1⟩ and
{1 1 2}⟨1 1 1⟩ is found to be the probable deformation mechanism during com-
pression with negligible anisotropy observed at the Hugoniot state. For the
first time, real-time evidence of molybdenum undergoing deformation twin-
ning along {1 1 2}⟨1 1 1⟩ during shock release beyond a critical pressure of 16
GPa irrespective of the loading orientation is presented.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation

Characterizing the dynamic behavior of materials, specifically dynamic strength,
damage, failure processes, and the fundamental mechanisms governing high-
rate plasticity, is critical for developing and designing new materials for impact-
based applications. Specifically, the incentive to study dynamic material be-
havior is important for but not limited to applications including automobiles
[1], armor and anti-armor [2, 3], aircraft and spacecraft shielding [4, 5], and
hyper-velocity impacts of micrometeorites and planets [6]. In these applica-
tions, materials undergo extreme loading conditions involving high pressures,
high temperatures, large strains, and high strain rate deformation thereby
requiring complete characterization of their mechanics and thermodynamics
prior to their usage. While the macroscopic or continuum material response
is observed in practice, this problem is highly coupled with the microstruc-
ture and atomistic behavior such as role of dislocations, stacking faults, and
twinning thus demanding a complete spatio-temporal characterization as il-
lustrated in Figure 1.1.

Due to their high strain rate sensitivity and their superior ambient proper-
ties such as high hardness, body-centered cubic (BCC) metals and their alloys
are of importance in applications involving dynamic loading such as impact
and blast [7, 8]. A fundamental example is iron—one of the most techno-
logically important and abundant elements. When alloyed with carbon and
other metals such as manganese and nickel, one forms different variants of
steel which is the most commonly used structural metal for a variety of ap-
plications. Iron in its ambient α-phase has the BCC crystal structure but un-
dergoes both temperature-induced and pressure-induced solid-to-solid phase
transitions changing its crystal structure but drastically altering its material
properties which is critical for expanding the material design space. For exam-
ple, steel is often heated to high temperatures and rapidly quenched to increase
the hardness of the material [9]. Additionally, transformation-induced plastic
(TRIP) steels, which transform from austinite to martensite phase upon de-
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formation, exploit their thermodynamically unstable composition to leverage
the high ductility austinite and the high strength from the martensite [10]. On
a more geological and planetary applications point of view, iron, in its various
phases, forms the inner core of rocky planets, such as earth, and is abundant in
meteorites motivating not only studying its dynamic response and phase tran-
sitions, but also its equation of state (EOS) at these high condensed matter
states [11, 12].

In addition to iron, a subclass of BCC metals are the refractory metals which
include tantalum (Ta), molybdenum (Mo), and tungsten (W). Due to their
ability to retain strength at high temperatures, that exceeds the capabilities
of steel, these metals are important for a wide range of applications involv-
ing high operating temperatures including aerospace, chemical, and electronic
industries [13]. Specifically, molybdenum and its alloys are advantageous com-
pared to other refractory metals due to its availability as high purity crystals,
high temperature specific strength, and oxidization resistance [13]. For this
reason, molybdenum has been crucial for spacecraft propulsion systems, and
even applications for heat sinks in electronics, furnace fixtures for heat-treating
applications, and advanced circuitry [14, 15].

As discussed above, the applications of BCC metals in dynamic conditions is
of high importance and many scientific studies have probed important charac-
teristics such as dynamic strength, EOS, role of phase transition on dynamic
properties, and etc., and is discussed next.

1.2 Shock compression theory

Prior to discussing the dynamic behavior of various BCC crystals, an overview
of shock-induced phase transition and longitudinal shock waves traveling in
solid material is presented in a Lagrangian framework. A shock is defined
as a propagating discontinuity, traveling at the shock speed Us, resulting in
an abrupt and irreversible change in state variables such as normal stress
σ, temperature T , density ρ, and particle velocity up. The state variables
on either side of the wave can be related using the conservation laws and
are known as the Rankine-Hugoniot jump conditions. These relations are as
follows:
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Figure 1.1: Overview of the applications, experimental facilities, and measure-
ment techniques for full spatio-temporal characterization of materials.

Mass: ρ0Us

(
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ρ−

)
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)
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(
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=
(
(σup)− − (σup)+

)
. (1.3)

In addition to the conservation laws, the constitutive relation known as the
equation of state (EOS) of a material is required. Typically, this is expressed
as a relationship between the shock and particle velocity and termed the Mie-
Grüneisen EOS. For most metals a linear relation accurately represents the
equation of state and is of the form

Us = C0 + S
(
up − uHEL

p

)
. (1.4)

Here, uHEL
p is the particle velocity of the material at its Hugoniot elastic limit

(HEL), the elastic limit of a material under uniaxial strain conditions. Addi-
tionally, C0 =

√
K
ρ0

is the bulk wave speed of the material with K representing
the bulk modulus, and S is the experimentally determined linear slope that
typically ranges from 1 − 2 for most materials [8].
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(a) (b)

Figure 1.2: Schematic of a propagating shock wave. (a) Illustration of the
state variables ahead (+) and behind (−) the propagating shock wave and (b)
stress–specific volume Hugoniot where V = 1/ρ. Note V/V0 = 1 − ϵ where ϵ
is the uniaxial strain.

Assuming that the state ahead of the shock is known, there are a total of 5
unknowns in this system of equations: σ−, E−, ρ−, u−

p , and Us, but only 4
equations (Eqs. 1.1, 1.2, 1.3, 1.4). To close the system of equations, a variable
must be determined experimentally. Generally, the particle velocity or the free
surface velocity (ufs = 2up) is measured using laser interferometry techniques.
The locus of all achievable states behind the shock wave plotted in a two
variable space is regarded as a shock Hugoniot. It is important to mention
that the material does not traverse the Hugoniot but rather jump from one
state to the next across the Rayleigh line. An example of the σ − ρ Hugoniot
is depicted in Figure 1.2b.

In certain scenarios during shock compression, the primary plastic wave de-
composes into two different waves where the first wave is the plastic wave and
the second wave corresponds to a propagating phase boundary that initiates
a solid-solid phase transformation in the material. The most fundamental ex-
ample of this is iron which undergoes a martensitic phase transition at 13 GPa
of pressure from its ambient BCC α-phase to its high pressure HCP ϵ-phase
[16]. Since the time duration of shock compression is on the order of only a
few microseconds, these phase transformations are typically diffusionless. The
initiation and nucleation of the phase boundary is governed by thermodynam-
ics and kinetics while the stability is governed by external variables such as
pressure p and temperature T through the Gibbs free energy [8].



5

G = G(p, T ), dG =
(
∂G

∂p

)
T︸ ︷︷ ︸

V

dp+
(
∂G

∂T

)
p︸ ︷︷ ︸

−S

dT (1.5)

where G is the Gibbs free energy, V is the specific volume, and S is the entropy.

Phase transformations can be classified as either first order where ∂G/∂P is
discontinuous at the transformation pressure or second order where ∂2G/∂P 2

is discontinuous. For the first order transition, since V = ∂G/∂P , there is
an associated volume change due to the transformation [8] such as for iron
which undergoes a 6.5% volume collapse during its transition from ambient
BCC phase to its high pressure HCP phase [16, 17].

With the fundamentals established, the shock compression behavior of key
BCC metals is discussed in detail.

1.3 Shock compression of BCC metals

1.3.1 Iron

Studies on iron (Fe) have primarily revolved on the body-centered cubic (BCC)
to hexagonal closed-pack (HCP) phase transformation at 13 GPa of pressure,
discovered by Bancroft et al. [16], as it serves as a representative material
to understanding shock-induced phase transformations. The classic paper by
Barker and Hollenbach [17] explored the phase transformation in great de-
tail including determining the shock Hugoniot during the forward and reverse
phase transformation and its hysteresis, elastic release wave speeds, and phase
transition times at various normal stresses. When the phase transformation
was first discovered, Bancroft et al. [16] assumed iron had transformed from its
BCC phase to its γ-phase, similar to the high temperature phase, which has a
face-centered cubic crystal structure. However, it wasn’t until a few years later
when Jamieson et al. [18] conducted XRD measurements on quasi-statically
compressed iron in a diamond anvil cell (DAC) to report the transition was
actually to the ϵ-phase with an HCP crystal structure. Since then, numerous
works have focused on the extreme high pressure behavior of ϵ-iron in addition
to understanding the shock regime near the initiation pressure and character-
ize the transformation kinetics. For example, Jensen et al. [19] conducted
plate impact experiments (described in the next section) on polycrystalline
and single crystal iron oriented along the [1 0 0] direction. They observed the
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initiation pressures to be higher for single crystals than for polycrystalline sam-
ples suggesting that shear stresses from the isotropically oriented grains may
have contributed to this observation. The role of shear on the phase transfor-
mation has been an open-ended topic of research and still not has been fully
understood to this date. Caspersen et al. [20] and Lew et al. [21] conducted
extensive DFT calculations to understand the role of shear on the initiation of
the phase boundary claiming even a modest amount of shear is sufficient to re-
duce the transformation pressure. However, experimentally characterizing the
kinetics of this transformation and characterizing the mechanical properties of
ϵ-iron is extremely difficult and is still a topic of active research.

1.3.2 Molybdenum

Molybdenum (Mo) has been studied to high pressures both quasi-statically
and dynamically mostly to understand EOS, sound velocities [22], and spall
strength [23]. One of the most extensive studies is the work on Mo single crys-
tals at moderate pressures by Mandal et al. [24, 25]. The authors explored
crystal orientation dependence, time dependence, and propagation distance
on the elastic precursor wave prior to the shock arrival time. They showed
the crystal oriented along [1 1 1] direction exhibited a much larger elastic wave
amplitude compared to the [1 0 0] and [1 1 0] orientations and a decay in the
elastic precursor was observed as a function of time similar to BCC iron [17]
and tantalum [26]. In addition, the authors conducted crystal plasticity sim-
ulations to understand the role of micro mechanisms on the observed macro-
scopic behavior. Unfortunately, experimental determination of this atomistic
deformation is required to better explain the wave profiles and calibrate their
models. Oniyama et al. [27] explored the orientation dependence to much
higher stresses (∼ 100 GPa) validating the increased elastic limit of the [1 1 1]
orientation. Additionally, the authors showed the elastic precursor amplitude
scaled with impact stress but simultaneously observed the Us − up shock EOS
was almost the same across the three orientations [28]. This indicates only the
elastic limit is affected by the anisotropy but not the plastic shock Hugoniot
(steady state) behavior.
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1.3.3 Tantalum

Tantalum has gained significant interest recently as a representative material
to characterize the strength of metals to extreme pressures, temperatures, and
strain rate regimes and across various loading conditions [29, 30]. Ramp com-
pression experiments, which probe the isentropic behavior of the material, by
Brown et al. [31], explored the role of material processing on the observed shear
strength of the material up to 250 GPa of pressure using wave profile analysis.
The authors showed that work hardened samples were capable of supporting
30% more shear stress than annealed material. At much higher strain rates
(107 s−1) and pressures, Prime et al. [32] concluded the role of pressure was
more significant on the observed strength of the material. The fundamental
reason for this was speculated to be the role of the pressure dependent shear
modulus and its scaling on the work required to move dislocations generated
from the propagating shock wave [33] in addition to analysis on the role of
twinning, and phase transformation.

1.3.4 Tungsten

Several studies have been conducted to characterize the shock compression be-
havior of tungsten. Hixon and Fritz [34] have explored the high pressure EOS
models and isotherms of high purity polycrystalline tungsten. They tabulated
the Us −up data for the shock Hugoniot of tungsten to 680 GPa in addition to
developing an EOS model that mapped the hugoniot to isotherms. Based on
their results, the authors note that no phase transformation (both solid or melt
curve) was observed to these pressures based on the Hugoniot on contrary to
previous studies that probed wave velocities to determine possible phase tran-
sitions. At much lower pressures, work by Dandekar [35] and Asay et. al
[36] explored the shear strength of tungsten under shock compression. They
observed the material experiences a loss in strength and attributed the soft-
ening potentially to the formation, multiplication, and motion of dislocations
after the passage of the shock wave. However, real-time atomistic experiments
(XRD) need to be conducted to accurately determine the microscopic defor-
mation mechanisms responsible for this behavior.
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1.4 Experimental methods for characterizing dynamic behavior of
materials

Having established the importance of material characterization in the dynamic
regime and the fundamental studies undertaken to characterize the high pres-
sure and strain rate behavior of representative BCC metals, an overview on
the common experimental techniques is presented.

1.4.1 Split-Hopkinson (Kolsky) pressure bar

When characterizing the dynamic behavior of materials, the most common ex-
perimental technique is the split-Hopkinson pressure bar (SHPB), also known
as the Kolsky bar, due to its simplicity and high throughput. Here, the sam-
ple of interest is sandwiched between two long slender bars, the incident and
the transmitted. A striker impacts the incident bar generating an elastic stress
wave that travels down the bar towards the sample. Once the wave reaches the
sample-bar interface, it partially reflects back to the incident bar and partly
transmits into the transmitted bar. These reflected, transmitted, and incident
pulses are recorded using strain gages from which the stress-strain behavior of
the sample is derived [8, 37]. A schematic of the experimental setup is depicted
in Figure 1.3.

Figure 1.3: A schematic of the split-Hopkinson (Kolsky) pressure bar exper-
imental setup. The overall setup can be modified to test alternative loading
conditions such as tensile and/or torsional behavior.

In Hopkinson experiments, the material is under a uniaxial stress state where
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the achievable strain rates range from 102 −104 s−1 depending on the length of
the sample or impactor velocity. Additionally, since the setup requires elastic
wave propagation in the incident and transmitted bars, the achievable pres-
sures in the sample are limited to < 1 GPa [37]. Thus, one turns to alternate
experimental techniques for characterizing the high pressure and high strain
rate behavior of materials. While Figure 1.3 illustrates a compression split-
Hopkinson bar, much research has also been conducted to understand tensile
behavior [38], torsional behavior [39], dynamic fracture toughness [40], defor-
mation mechanisms of architected meta-materials [41], and shear compression
[42] using the Kolsky bar. These require modification of the setup and also an
alternative to strain gages to characterize the forces and displacements in the
sample such as digital image correlation (DIC) and load cells.

(a) (b)

Figure 1.4: Schematic of the experimental configuration for (a) Z pulsed power
facility and (b) laser ablation. Additionally, a typical profile of the time varying
current and laser power is illustrated for the Z pinch and laser ablation setups,
respectively.
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1.4.2 Z-machine

The Z pulsed power facility at Sandia National Laboratories is important
for characterizing isentropic compression of materials at high pressure (up to
TPa), high strain rates, and condensed matter states [31]. In the Z-machine,
a time varying current passes through a circuit generating a magnetic field in
the gap between the anode and cathode as shown in Figure 1.4a. The current
and magnetic field generate a Lorentz force perpendicular to the electrode and
drive a stress wave to ramp compress the sample [31]. Here, laser interferome-
try via velocity interferometer system for any reflector (VISAR) [43] is used to
measure the free surface or particle velocity in the sample to characterize its
high pressure behavior. These experiments are important to decouple effects
of pressure and strain rate on the strength behavior of materials [33] since
strain rates are limited to approximately 105 s−1.

1.4.3 Laser shock

Laser shock compression has gained significant interest for characterizing ma-
terial behavior at extreme pressures (GPa – TPa) and strain rates (105 − 109

s−1). In a laser ablation experiment illustrated in Figure 1.4b, an ablator is
heated using lasers which expands and ejects plasma away from the target.
Through conservation of momentum, this generates a loading wave, where the
magnitude is proportional to the intensity of the laser [44], that propagates
into the sample and a VISAR probe is used to conduct free surface velocity
measurements. Both shock or isentropic compression can be imparted by vary-
ing the rise time and shape of the laser power shown in Figure 1.4b. Due to
the capability of reaching extreme conditions, these experiments are critical for
characterizing material behavior under planetary core conditions and under-
standing phenomena such as EOS melt lines [45, 46], hyper velocity planetary
impacts, and material strength using hydrodynamic instabilities [6, 44].

1.4.4 Normal and pressure-shear plate impact experiments

Plate impact experiments are a conventional and robust method to generate
shock compression in materials and probe their high pressure and high strain-
rate behavior. Here, a flyer plate is accelerated to velocities ranging from
0.1 − 7 km/s and impacts a stationary target generating shock waves propa-
gating in the flyer-target assembly. Unlike the Hopkinson bar experiment, the
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material is under a state of uniaxial strain and the material behavior can be
probed to pressures up to 700 GPa, and strain rates ranging from 105 − 107

s−1. For a normal plate impact experiment, the flyer normal is aligned to
the travel direction of the projectile, whereas, in a pressure-shear plate impact
(PSPI) experiment [47], the flyer normal is angled. This implies that in a PSPI
experiment, the impact not only generates compressive waves in the materials
but also transverse shear waves. A schematic of the two experimental setups
is depicted in Figure 1.5.

(a) (b)

Figure 1.5: Experimental schematic for (a) normal and (b) pressure-shear plate
impact (PSPI) experimental configurations. Note the projectile’s direction of
travel is indicated by the vector V0 but the normal of the projectile in the
PSPI configuration is along u0.

As mentioned earlier, a normal impact generates longitudinal waves in the
material upon impact but simultaneously, a boundary wave traveling at the
elastic longitudinal wave speed is generated at the circular boundary of the
sample due to the traction free conditions. This means the sample remains
inertially confined only prior to the arrival of the boundary wave. For this
reason, typically, the free surface velocities are measured at the center of the
sample using laser interferometry such VISAR [43] or photonic Doppler ve-
locimetry (PDV) [48] where the material is under uniaxial strain conditions
the longest. The idea is to interfere reflected light from the sample free surface
with a delayed version of itself (velocity interferometer such as VISAR) or a
reference laser (displacement interferometer such as PDV) and phase difference
of these superposed beams is proportional to the normal velocity. Similarly, for
transverse velocity in a PSPI experiment, when the incident beam encounters
the diffraction grating, the beam splits into a 0th (the normal) and ±1st or-
der beams where the latter (±1st) are interfered with each other to determine
the transverse motion. The expressions relating normal (u(t)) and transverse
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(v(t)) velocity to the frequencies (f(t)) associated with the phase difference
are

u(t) = λ

2 (f(t) − fc) (1.6)

v(t) = d

2 (f(t) − fc) (1.7)

where, fc is the carrier frequency, λ is the wavelength of light, and d is the grat-
ing pitch. More information on the transverse interferometry will be discussed
later.

The measured free surface velocities can be used to extract fundamental ma-
terial behavior such as characterizing the equation of state of the material
(Us − up [27], phase transformations [16]), strength [49], spall strengths of
materials [50, 51], and even pressure-dependent wave speeds [52]. The last
application relies on holding the state of stress constant which can be done
by placing a transparent window behind the target and probing the interface,
known as window interferometry [53].

While laser interferometry are point-wise continuum-scale measurements, this
restricts measurements to characterize only homogeneous materials. Thus,
new advancements in velocity measurements have been developed to improve
the spatial resolution such as line-ORVIS [54] which uses streak cameras and
recently, 3D digital image correlation [55] using two high speed cameras. This
enables characterizing the mesoscale–macroscale behavior of homogeneous,
heterogeneous, and even architected materials.

It is understood that the macroscopic response of materials is strongly coupled
with its micromechanical behavior. However, as described here, the plate im-
pact experiments primarily probe the continuum scale response and typically,
molecular dynamic (MD) simulations are performed to explain the observed
macroscopic behavior. Thus, recent developments at the Dynamic Compres-
sion Sector (DCS) [56] at the Advanced Photon Source (APS) utilize in-situ
x-rays to probe the fundamental deformation behavior under shock compres-
sion. This has enabled real-time characterization of evolution of lattice dy-
namics during phase transformation [57–59] and characterizing the atomistic
deformation mechanisms during elastic-plastic compression. Here, during plate
impact, polychromatic x-ray bunches, with 153.4 ns interspacing, are directed
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towards the sample angled at some θg and the diffracted patterns are collected
on a scintillation screen which converts x-rays to visible light. These x-ray
measurements can be triggered to probe important features such as phase
transformation, shock compression, and even shock release during an impact
event. At DCS, two different configurations can be employed where the in-
cident x-ray bunch is allowed to fully penetrate through a very thin sample
(O(µm)) known as transmission geometry and reflection geometry where the
incident x-rays are reflected off a surface of the sample prior to being collected
on a detector. From the shift, mosaic spread, and the appearance or disap-
pearance of diffraction rings for polycrystalline sample or diffraction spots for a
single crystal sample, the lattice strains, and information on crystalline phases
can be determined.

As discussed above, normal plate impact experiments are advantageous to
study the shock compression behavior of materials. However, their main dis-
advantage is the material behavior is not probed under a multiaxial state
of stress limiting characterizing the pressure dependent strength of materi-
als and even shear-induced phase transformation behavior. For this reason,
PSPI experiments are critical. While there are various different configurations
of PSPI experiments to probe material strength [60], the focus of this thesis
is on the sandwich configuration depicted in Figure 1.5b used to probe ma-
terial strength at a constant pressure [61]. Here, the material of interest is
sandwiched between two high impedance, high strength anvils such that after
impact, the faster longitudinal wave arrives at the anvil-sample interface first
compressing it to an equilibrated state of pressure through a series of rever-
berations. The slower transverse wave arrives at a later time to shear the
sample at a constant pressure to probe its stress vs. strain behavior. Due to
the transverse motion, both normal and transverse free surface velocity mea-
surements are conducted at the rear free surface using PDV and heterodyne
transverse velocimetry (HTV) [62], respectively. Additional details regarding
the experimental methodology will be discussed in Chapter 2. Overall, this
is a convenient setup for probing strength of materials such as iron where a
constant state of stress is required in the material to prevent reverse phase
transformation during the shearing window.

Conventionally, the anvils are chosen such that they remain elastic during the
experiment [60, 61]. For this, there exist analytical solutions to the decoupled
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normal and transverse wave equations

∂2U

∂t2
= C2

L

∂2U

∂x2
1

∂2V

∂t2
= C2

s

∂2V

∂x2
1

(1.8)

where, U and V are normal and transverse displacements, respectively, CL

and Cs are the characteristic longitudinal and shear wave velocities, t is time,
and x1 is the Lagrangian spatial coordinate. Using the initial and boundary
conditions, the solutions to the wave equations yield the expressions for the
normal stress σs

11, shear stress σs
12, shear strain rate γ̇ and shear strain γ in

the sample as [60]

σs
11 = −(ρCL)a u0

2 (1.9a)

σs
12 = −(ρCs)avfs

2 (1.9b)

γ̇ = v0 − vfs

h
(1.9c)

γ =
∫
γ̇dt. (1.9d)

Here, (ρCL)a and (ρCs)a corresponds to the mechanical and shear impedance
of the anvil material, respectively, u0 and v0 are the normal and transverse
component of the impact velocity depicted in Figure 1.5b, h is the thickness
of the sample, and vfs is the measured transverse free surface velocity. It is
important to point out that generally, the Hugoniot elastic limits of anvils limit
the pressures in the sample to below 6 GPa to avail the elastic analysis (Eqs.
1.9). To characterize materials at even higher normal stresses, the plasticity
in the anvils must be accounted through a hybrid experimental-simulation
methodology as described in [49, 63].

1.5 Scope of the thesis

This thesis explores the continuum response, strength and deformation mech-
anisms of BCC metals, specifically iron and molybdenum, under shock com-
pression using plate impact experiments.

As mentioned earlier, iron undergoes a martensitic solid-to-solid phase trans-
formation when subjected to normal stresses beyond 13 GPa. Phase transitions
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provide a unique opportunity to study strength behavior as they play a cru-
cial role in enhanced material properties and expand the material design space
for various load-bearing applications. Thus, in Chapter 2, the role of shock-
induced phase transformation on the dynamic strength of iron is explored.
This is done experimentally using sandwich configuration pressure-shear plate
impact (PSPI) experiments coupled with photonic Doppler velocimetry (PDV)
measurements. In addition, finite element simulations are conducted to un-
derstand the effect of strain, temperature, and pressure on the evolution of the
yield surface of iron.

In Chapter 3, the underlying microstructural reasons for the anisotropy of
Hugoniot elastic limit (HEL) and, the governing plastic deformation mecha-
nisms at the Hugoniot (steady) shock state and during release are explored
for single crystal molybdenum. This is done using normal plate impact ex-
periments coupled with in-situ Laue x-ray diffraction conducted at Dynamic
Compression Sector [56] at the Advanced Photon Source [64]. To extract the
lattice strains and stresses from the experimental images, a forward simulation
methodology is developed. Using these results, the role of dislocation slip and
deformation twinning in BCC metals is explored.

Lastly, in Chapter 4, concluding remarks are presented and future works is
discussed.

References

[1] W. Zhang and J. Xu, “Advanced lightweight materials for Automobiles:
A review,” Materials & Design 221, 110994 (2022).

[2] D. Sandstrom, “Armor/Anti-Armor Materials by Design,” Los Alamos
Science Summer 17, 36–50 (1989).

[3] V. Madhu, K. Ramanjaneyulu, T. Balakrishna Bhat, and N. Gupta, “An
experimental study of penetration resistance of ceramic armour subjected
to projectile impact,” International Journal of Impact Engineering 32,
337–350 (2005).

[4] M. Itoh, M. Katayama, and R. Rainsberger, “Computer simulation of
a boeing 747 passenger jet crashing into a reinforced concrete wall,”
Materials Science Forum 465-466, 73–78 (2004).

[5] G. A. Graham, A. T. Kearsley, I. P. Wright, M. J. Burchell, and E. A.
Taylor, “Observations on hypervelocity impact damage sustained by multi-
layered insulation foils exposed in low earth orbit and simulated in the

https://doi.org/https://doi.org/10.1016/j.matdes.2022.110994
https://doi.org/10.1016/j.ijimpeng.2005.03.004
https://doi.org/10.1016/j.ijimpeng.2005.03.004
https://doi.org/10.4028/www.scientific.net/msf.465-466.73


16

laboratory,” International Journal of Impact Engineering 29, 307–316
(2003).

[6] R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks,
P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift,
and et al., “Equation of state of iron under core conditions of large rocky
exoplanets,” Nature Astronomy 2, 452–458 (2018).

[7] R. W. Armstrong and S. M. Walley, “High strain rate properties of metals
and alloys,” International Materials Reviews 53, 105–128 (2008).

[8] M. A. Meyers, Dynamic behavior of materials (John Wiley & Sons, 1994).

[9] K. Bhattacharya, Microstructure of martensite: why it forms and how it
gives rise to the shape-memory effect? (Oxford University Press, 2012).

[10] S. Harjo, N. Tsuchida, J. Abe, and W. Gong, “Martensite phase stress
and the strengthening mechanism in TRIP steel by neutron diffraction,”
Scientific Reports 7, 15149 (2017).

[11] A. V. Jain and M. E. Lipschutz, “Implications of shock effects in iron
meteorites,” Nature 220, 139–143 (1968).

[12] D. Batani, A. Morelli, M. Tomasini, A. Benuzzi-Mounaix, F. Philippe,
M. Koenig, B. Marchet, I. Masclet, M. Rabec, C. Reverdin, R. Cauble, P.
Celliers, G. Collins, L. Da Silva, T. Hall, M. Moret, B. Sacchi, P. Baclet,
and B. Cathala, “Equation of state data for iron at pressures beyond 10
mbar,” Physical Review Letters 88, 235502 (2002).

[13] J. Wadsworth, T. G. Nieh, and J. J. Stephens, “Recent advances in
aerospace refractory metal alloys,” International Materials Reviews 33,
131–150 (1988).

[14] J. A. Shields and P. Lipetzky, “Molybdenum applications in the electron-
ics market,” JOM 52, 37–39 (2000).

[15] P. Lipetzky, “Refractory metals: A primer,” JOM 54, 47–49 (2002).

[16] D. Bancroft, E. L. Peterson, and S. Minshall, “Polymorphism of iron at
high pressure,” Journal of Applied Physics 27, 291–298 (1956).

[17] L. M. Barker and R. E. Hollenbach, “Shock wave study of the α ⇌
ϵ phase transition in iron,” Journal of Applied Physics 45, 4872–4887
(1974).

[18] J. C. Jamieson and A. W. Lawson, “X-ray diffraction studies in the 100
kilobar pressure range,” Journal of Applied Physics 33, 776–780 (1962).

[19] B. J. Jensen, G. T. Gray, and R. S. Hixson, “Direct measurements of the
α-ϵ transition stress and kinetics for shocked iron,” Journal of Applied
Physics 105, 103502 (2009).

https://doi.org/10.1016/j.ijimpeng.2003.09.025
https://doi.org/10.1016/j.ijimpeng.2003.09.025
https://doi.org/10.1038/s41550-018-0437-9
https://doi.org/10.1179/174328008x277795
https://doi.org/10.1038/s41598-017-15252-5
https://doi.org/10.1038/220139a0
https://doi.org/10.1103/PhysRevLett.88.235502
https://doi.org/10.1179/imr.1988.33.1.131
https://doi.org/10.1179/imr.1988.33.1.131
https://doi.org/10.1007/s11837-000-0099-8
https://doi.org/10.1007/bf02822621
https://doi.org/10.1063/1.1722359
https://doi.org/10.1063/1.1663148
https://doi.org/10.1063/1.1663148
https://doi.org/10.1063/1.1777167
https://doi.org/10.1063/1.3110188
https://doi.org/10.1063/1.3110188


17

[20] K. J. Caspersen, A. Lew, M. Ortiz, and E. A. Carter, “Importance of
shear in the bcc-to-hcp transformation in iron,” Physical Review Letters
93, 115501 (2004).

[21] A. Lew, K. Caspersen, E. Carter, and M. Ortiz, “Quantum mechan-
ics based multiscale modeling of stress-induced phase transformations
in iron,” Journal of the Mechanics and Physics of Solids 54, 1276–1303
(2006).

[22] S. J. Wang, M. L. Sui, Y. T. Chen, Q. H. Lu, E. Ma, X. Y. Pei, Q. Z.
Li, and H. B. Hu, “Microstructural fingerprints of phase transitions in
shock-loaded iron,” Scientific Reports 3, 1–6 (2013).

[23] G. I. Kanel, S. V. Razorenov, A. V. Utkin, V. E. Fortov, K. Baumung,
H. U. Karow, D. Rusch, and V. Licht, “Spall strength of molybdenum
single crystals,” Journal of Applied Physics 74, 7162–7165 (1993).

[24] A. Mandal and Y. M. Gupta, “Elastic-plastic deformation of molybde-
num single crystals shocked along [100],” Journal of Applied Physics 121,
045903 (2017).

[25] A. Mandal and Y. M. Gupta, “Elastic-plastic deformation of molybde-
num single crystals shocked to 12.5 GPa: Crystal anisotropy effects,”
Journal of Applied Physics 125, 055903 (2019).

[26] J. N. Johnson, R. S. Hixson, D. L. Tonks, and G. T. Gray, “Shock com-
pression and quasielastic release in tantalum,” AIP Conference Proceed-
ings 309, 1095–1098 (1994).

[27] T. Oniyama, Y. M. Gupta, and G. Ravichandran, “Shock compression
of molybdenum single crystals to 110 GPa: elastic–plastic deformation
and crystal anisotropy,” Journal of Applied Physics 127, 205902 (2020).

[28] T. Oniyama, Y. M. Gupta, and G. Ravichandran, “Peak states of molyb-
denum single crystals shock compressed to high stresses,” Journal of Ap-
plied Physics 129, 245906 (2021).

[29] J. L. Brown, D. P. Adams, C. S. Alexander, J. L. Wise, and M. B.
Prime, “Estimates of Ta strength at ultrahigh pressures and strain rates
using thin-film graded-density impactors,” Physical Review B 99, 214105
(2019).

[30] M. B. Prime, A. Arsenlis, R. A. Austin, N. R. Barton, C. C. Battaile, J. L.
Brown, L. Burakovsky, W. T. Buttler, S.-R. Chen, D. M. Dattelbaum,
S. J. Fensin, D. G. Flicker, G. T. Gray, C. Greeff, D. R. Jones, J. M. D.
Lane, H. Lim, D. Luscher, T. R. Mattsson, J. M. McNaney, H.-S. Park,
P. D. Powell, S. T. Prisbrey, B. A. Remington, R. E. Rudd, S. K. Sjue,
and D. C. Swift, “A broad study of tantalum strength from ambient to
extreme conditions,” Acta Materialia 231, 117875 (2022).

https://doi.org/10.1103/PhysRevLett.93.115501
https://doi.org/10.1103/PhysRevLett.93.115501
https://doi.org/https://doi.org/10.1016/j.jmps.2005.11.009
https://doi.org/https://doi.org/10.1016/j.jmps.2005.11.009
https://doi.org/10.1038/srep01086
https://doi.org/10.1063/1.355032
https://doi.org/10.1063/1.4974475
https://doi.org/10.1063/1.4974475
https://doi.org/10.1063/1.5048131
https://doi.org/10.1063/1.46295
https://doi.org/10.1063/1.46295
https://doi.org/10.1063/5.0006559
https://doi.org/10.1063/5.0054395
https://doi.org/10.1063/5.0054395
https://doi.org/10.1103/PhysRevB.99.214105
https://doi.org/10.1103/PhysRevB.99.214105
https://doi.org/https://doi.org/10.1016/j.actamat.2022.117875


18

[31] J. L. Brown, C. S. Alexander, J. R. Asay, T. J. Vogler, D. H. Dolan, and
J. L. Belof, “Flow strength of tantalum under ramp compression to 250
GPa,” Journal of Applied Physics 115, 043530 (2014).

[32] M. B. Prime, W. T. Buttler, S. J. Fensin, D. R. Jones, J. L. Brown, R. S.
King, R. Manzanares, D. T. Martinez, J. I. Martinez, J. R. Payton, and
D. W. Schmidt, “Tantalum strength at extreme strain rates from impact-
driven Richtmyer-Meshkov instabilities,” Physical Review E 100, 053002
(2019).

[33] J. L. Brown, M. B. Prime, N. R. Barton, D. J. Luscher, L. Burakovsky,
and D. Orlikowski, “Experimental evaluation of shear modulus scaling
of dynamic strength at extreme pressures,” Journal of Applied Physics
128, 045901 (2020).

[34] R. S. Hixson and J. N. Fritz, “Shock compression of tungsten and molyb-
denum,” Journal of Applied Physics 71, 1721–1728 (1992).

[35] D. P. Dandekar, “Loss of shear strength in polycrystalline tungsten under
shock compression,” Journal of Applied Physics 47, 4703–4705 (1976).

[36] J. R. Asay, L. C. Chhabildas, and D. P. Dandekar, “Shear strength of
shock-loaded polycrystalline tungsten,” Journal of Applied Physics 51,
4774–4783 (1980).

[37] K. T. Ramesh, “High rates and impact experiments,” in Springer hand-
book of experimental solid mechanics, edited by W. N. Sharpe (Springer
US, Boston, MA, 2008), pp. 929–960.

[38] T. Nicholas, Dynamic Tensile Testing of Structural Materials Using a
Split Hopkinson Bar Apparatus, tech. rep. ADA092832 (Materials Labo-
ratory, Air Force Wright Aeronatical Laboratories, Wright-Patterson Air
Force Base, OH, 1980).

[39] J. Duffy, J. D. Campbell, and R. H. Hawley, “On the use of a torsional
split hopkinson bar to study rate effects in 1100-0 aluminum,” Journal
of Applied Mechanics 38, 83–91 (1971).

[40] A. Sreedhar S, S. Ravindran, G. Shankar, S. Suwas, and R. Narasimhan,
“Fracture mechanism and toughness of a rolled magnesium alloy under
dynamic loading,” Acta Materialia 202, 350–365 (2021).

[41] V. Deshpande and N. Fleck, “Isotropic constitutive models for metallic
foams,” Journal of the Mechanics and Physics of Solids 48, 1253–1283
(2000).

[42] D. Rittel, G. Ravichandran, and A. Venkert, “The mechanical response of
pure iron at high strain rates under dominant shear,” Materials Science
and Engineering: A 432, 191–201 (2006).

https://doi.org/10.1063/1.4863463
https://doi.org/10.1103/PhysRevE.100.053002
https://doi.org/10.1103/PhysRevE.100.053002
https://doi.org/10.1063/5.0012069
https://doi.org/10.1063/5.0012069
https://doi.org/10.1063/1.351203
https://doi.org/10.1063/1.322368
https://doi.org/10.1063/1.328309
https://doi.org/10.1063/1.328309
https://doi.org/10.1007/978-0-387-30877-7_33
https://doi.org/10.1007/978-0-387-30877-7_33
https://doi.org/10.1115/1.3408771
https://doi.org/10.1115/1.3408771
https://doi.org/https://doi.org/10.1016/j.actamat.2020.10.059
https://doi.org/https://doi.org/10.1016/S0022-5096(99)00082-4
https://doi.org/https://doi.org/10.1016/S0022-5096(99)00082-4
https://doi.org/10.1016/j.msea.2006.05.154
https://doi.org/10.1016/j.msea.2006.05.154


19

[43] L. Barker and R. Hollenbach, “Laser interferometer for measuring high
velocities of any reflecting surface,” Journal of Applied Physics 43, 4669–
4675 (1972).

[44] Z. Sternberger, “Determining strength of materials under dynamic load-
ing conditions using hydrodynamic instabilities,” PhD thesis (California
Institute of Technology, 2017).

[45] Y. Ping, F. Coppari, D. G. Hicks, B. Yaakobi, D. E. Fratanduono, S.
Hamel, J. H. Eggert, J. R. Rygg, R. F. Smith, D. C. Swift, D. G. Braun,
T. R. Boehly, and G. W. Collins, “Solid iron compressed up to 560 gpa,”
Physical Review Letters 111, 065501 (2013).

[46] S. J. Turneaure, S. M. Sharma, and Y. M. Gupta, “Crystal structure and
melting of Fe shock compressed to 273 gpa: In situ x-ray diffraction,”
Physical Review Letters 125, 215702 (2020).

[47] A. S. Abou-Sayed, R. J. Clifton, and L. Hermann, “The oblique-plate
impact experiment,” Experimental Mechanics 16, 127–132 (1976).

[48] O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W.
Kuhlow, “Compact system for high-speed velocimetry using heterodyne
techniques,” Review of Scientific Instruments 77, 083108 (2006).

[49] C. Kettenbeil, Z. Lovinger, S. Ravindran, M. Mello, and G. Ravichan-
dran, “Pressure-shear plate impact experiments at high pressures,” Jour-
nal of Dynamic Behavior of Materials, 489–501 (2020).

[50] A. Joshi, S. Ravindran, V. Gandhi, and G. Ravichandran, “Probing the
properties and mechanisms of failure waves in soda-lime glass,” Journal
of Applied Physics 129, 185902 (2021),

[51] D. Dandekar, Spall strength of tungsten carbide, tech. rep. ARL-TR-3335
(U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 2004).

[52] T. J. Volz and Y. M. Gupta, “Elastic moduli of hexagonal diamond and
cubic diamond formed under shock compression,” Physical Review B
103, L100101 (2021).

[53] L. M. Barker and R. E. Hollenbach, “Shock-wave studies of pmma, fused
silica, and sapphire,” Journal of Applied Physics 41, 4208–4226 (1970).

[54] D. Bloomquist and S. Sheffield, “Optically recording interferometer for
velocity measurements with subnanosecond resolution,” Journal of Ap-
plied Physics 54, 1717–1722 (1983).

[55] S. Ravindran, V. Gandhi, A. Joshi, and G. Ravichandran, “Three-dimensional
full-field velocity measurements in shock compression experiments using
stereo digital image correlation,” Review of Scientific Instruments 94,
025107 (2023).

https://doi.org/https://doi.org/10.1063/1.1660986
https://doi.org/https://doi.org/10.1063/1.1660986
https://doi.org/10.1103/PhysRevLett.111.065501
https://doi.org/10.1103/PhysRevLett.125.215702
https://doi.org/10.1007/bf02321106
https://doi.org/10.1063/1.2336749
https://doi.org/10.1007/s40870-020-00250-y
https://doi.org/10.1007/s40870-020-00250-y
https://doi.org/https://doi.org/10.1063/5.0047950
https://doi.org/https://doi.org/10.1063/5.0047950
https://doi.org/10.1103/PhysRevB.103.L100101
https://doi.org/10.1103/PhysRevB.103.L100101
https://doi.org/10.1063/1.1658439
https://doi.org/https://doi.org/10.1063/1.332222
https://doi.org/https://doi.org/10.1063/1.332222
https://doi.org/10.1063/5.0131590
https://doi.org/10.1063/5.0131590


20

[56] Y. M. Gupta, S. J. Turneaure, K. Perkins, K. Zimmerman, N. Argan-
bright, G. Shen, and P. Chow, “Real-time, high-resolution x-ray diffrac-
tion measurements on shocked crystals at a synchrotron facility,” Review
of Scientific Instruments 83, 123905 (2012).

[57] J. A. Hawreliak and S. J. Turneaure, “Probing the lattice structure of
dynamically compressed and released single crystal iron through the al-
pha to epsilon phase transition,” Journal of Applied Physics 129, 135901
(2021).

[58] S. J. Tracy, S. J. Turneaure, and T. S. Duffy, “In situ x-ray diffraction
of shock-compressed fused silica,” Physical Review Letters 120, 135702
(2018).

[59] S. J. Tracy, S. J. Turneaure, and T. S. Duffy, “Structural response of
α-quartz under plate-impact shock compression,” Science Advances 6,
eabb3913 (2020).

[60] R. Clifton and R. Klopp, “Pressure shear plate impact testing,” in, Vol. 8
(Metals Handbook, 1985), pp. 230–239.

[61] S. Grunschel, “Pressure-shear plate impact experiments on high-purity
aluminum at temperatures approaching melt,” PhD thesis (Brown Uni-
versity, 2009).

[62] C. Kettenbeil, M. Mello, M. Bischann, and G. Ravichandran, “Het-
erodyne transverse velocimetry for pressure-shear plate impact experi-
ments,” Journal of Applied Physics 123, 125902 (2018).

[63] S. Ravindran, V. Gandhi, Z. Lovinger, M. Mello, and G. Ravichandran,
“Dynamic strength of copper at high pressures using pressure shear plate
experiments,” Dynamic Behavior of Materials, 248–261 (2021).

[64] The Advanced Photon Source: a U.S. Department of Energy Office of
Science User Facility, https://www.aps.anl.gov/.

https://doi.org/10.1063/1.4772577
https://doi.org/10.1063/1.4772577
https://doi.org/10.1063/5.0042605
https://doi.org/10.1063/5.0042605
https://doi.org/10.1103/PhysRevLett.120.135702
https://doi.org/10.1103/PhysRevLett.120.135702
https://doi.org/10.1126/sciadv.abb3913
https://doi.org/10.1126/sciadv.abb3913
https://doi.org/10.1063/1.5023007
https://doi.org/10.1007/s40870-020-00287-z
https://www.aps.anl.gov/


21

C h a p t e r 2

DYNAMIC STRENGTH AND PLASTICITY OF IRON

V. Gandhi, S. Ravindran, and G. Ravichandran, “Dynamic strength of iron at
high pressures and strain rates,” Physical Review Letters 128, 015705 (2022)

Contributions: V.G. performed the experiments, prepared the experimental
data, performed the numerical simulations, and wrote the manuscript.

Abstract

Accurate modeling of meteorite impacts, and deformation of planetary cores
require characterization of the flow strength and in-elasticity of iron in its
different phases. In this letter, we investigate the flow strength of both the
ambient α-phase and high-pressure ϵ-phase of iron at strain-rates of 1×105 s−1

and pressures up to 42 GPa using high pressure–pressure shear plate impact
experiments. We report the strength of the ϵ-iron to be significantly higher
than α-phase but consequently one order smaller than the previously reported
dynamic strength at high pressures. The complete stress-strain response of
the ϵ-phase is reported for the first time.

2.1 Introduction

Iron has many geological and planetary implications as it is the primary con-
stituent in the inner core of outer planets such as Uranus and Neptune [1],
rocky exoplanets, and the inner rocky planets including earth where core pres-
sures exceed 330 GPa [2]. Understanding the dynamic inelastic behavior of iron
at high pressures is critical for many applications. These include modeling the
physics of hyper-velocity impacts of iron-rich meteorites [3], the formation of
craters on earth and moon [4], and planetary impact such as the giant-impact
hypothesis on the formation of the earth-moon system [5–7]. Plasticity be-
havior of iron is also important for describing deformation mechanisms of the
inner cores of rocky planets [8], for example due to seismic waves generated



22

from earthquakes. However, modeling iron at these high pressures is difficult
because it undergoes a martensitic phase transformation [9] from the body
centered cubic (BCC) α-phase to hexagonal closed-pack (HCP) ϵ-phase [10,
11] when subjected to 13 GPa of pressure.

Martensitic phase transformations, provide a unique opportunity to study
strength behavior as they play a crucial role in enhanced material properties
and expands the material design space for various applications. An illustra-
tive and important example of this are iron alloys. Martensitic steels formed
by rapid quenching yield high strength, high fatigue-resistant materials [12],
whereas transformation induced plastic (TRIP) steels partially transform to
martensite upon deformation thus resulting in improved strength and ductility
[13]. This further motivates the study of plasticity behavior of ϵ-phase iron as
it can help novel materials for load bearing applications.

While, the shocked equation of state [7, 14], the picosecond to nanosecond
range of characteristic transition times [15], and even the importance of shear
on the initiation of the BCC-HCP transformation [16] have provided consider-
able insight regarding the material behavior of the ϵ-phase, the strength and
plasticity behavior of this martensite under dynamic conditions is still not fully
explored. Iron completely reverts to its α-phase upon release of pressure hence
this unstable nature of ϵ-iron has severely limited the possibility of developing
a material model to describe its inelastic behavior.

Diamond anvil compression (DAC) experiments coupled with XRD have pro-
vided initial insight regarding the low strain-rate strength of iron at core pres-
sures. Hemley et al. [17] observed pressure hardening of ϵ-iron and deduced a
shear stress of τ ≈ 10 GPa at 200−300 GPa of pressure. This significantly dif-
fers from more recent DAC experiments [8, 18] which suggest half the strength
and indicate a linear relationship between shear strength and pressure. While
the static data is promising, the limitations include the determination of only
a single data point for strength measurements at a constant pressure and the
indirect nature of XRD yields high uncertainties.

Despite the importance, dynamic strength characterization of ϵ-iron has been
limited. Extended x-ray absorption fine structure (EXAFS) measurements on
laser shocked polycrystalline iron by Ping et al. [19] provide preliminary, and
indirect dynamic strength characterizations on ϵ-iron under quasi-isentropic
conditions. The authors interpolate plastic work contribution to the tempera-
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ture measurements to estimate the strength of ϵ-iron up to 560 GPa of pressure.
However, this measurement involves very high uncertainties on the order of
50%. A more recent study by Huntington et al. [20] utilizes Rayleigh-Taylor
instability experiments to observe the ripple growth of iron, laser shocked
to 100 GPa, to extract the material strength. The authors obtained yield
strengths of 40 GPa at these pressures which are comparable to Ping et al.
[19], but are on cusp of theoretical strength limits.

In this letter, we report the measurement of the pressure dependent dynamic
strength behavior of α- and ϵ-iron under quasi-isentropic loading conditions,
using the recently developed sandwiched high pressure - pressure shear plate
impact [21] (HP-PSPI) technique. Experiments are conducted on iron at pres-
sures ranging from 10 to 42 GPa and a constant compressive and shearing
strain-rate of 105 s−1. Additionally, simulations are conducted to model the
equation of state and plasticity of both phases of iron. By varying parameters
within the plasticity model, the simulated normal and transverse free surface
velocities are matched with experimentally determined quantities to determine
the first ever complete shear stress-strain behavior of iron.

2.2 Materials and methods

In PSPI experiments [22], the oblique impact generates both longitudinal and
shear waves in the front anvil, which first compresses and then shears the
sample at a constant pressure. The HP-PSPI experiments were performed on
annealed Armco iron (purity 99.8%) with an average grain size 70 µm using a
slotted barrel powder gun. A 150 µm thin iron sample was sandwiched between
tungsten carbide (WC) anvils to ensure the sample equilibrates to a constant
pressure before it is sheared. The sandwich is assembled by placing the iron
sample between the anvils such that the iron-WC interfaces are directly in
contact with one another and friction between the materials transmits the
shear wave. Both normal and transverse free surface velocity measurements
[23] were conducted using photon doppler velocimetry (PDV) [24]. Figure 2.1a
illustrates the experimental setup.

2.2.1 Iron Material

The chemical composition of the iron is displayed in Table 2.1. The stock
material was first stress relief annealed at 700 ◦C to achieve an average grain
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(a)

(b)

Figure 2.1: Experimental configuration used to characterize the dynamic
strength of iron. (a) Schematic of the pressure shear plate impact setup
in sandwich configuration. (b) Distance-time (x − t) diagram for tungsten
carbide-iron sandwich assuming elastic wave propagation.

size of 70 µm as shown in Figure 2.2. Next, a 30 mm diameter with 2 mm
thickness disk was extracted from this annealed material and lapped flat down
to 150 − 160 µm thickness with 1 − 2 µm parallelism.

2.2.2 Sample Preparation

PSPI experiments in a sandwich configuration require a flyer plate, front and
rear anvils, and a sample, iron. Here due to their high impedance and strength,
BC-00 grade tungsten carbide (WC) material, sourced from Basic Carbide
Corporation (Lowber, PA), was used for the anvils. Additionally, to ensure
symmetric conditions upon impact, WC was also used as the flyer material.
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Table 2.1: Composition of Armco iron [25]

Element wt.%
Fe 99.8
C 0.006
Si 0.021
Mn 0.058
P 0.003
S 0.002
Cr 0.023
Ni 0.027
Mo 0.003
V <0.0002
Wu <0.0007
Co 0.0041
Cu 0.01
Sn 0.004
Al 0.003
Ti 0.0004
Pb 0.0002
B 0.0001
Nb <0.0004
N 0.005

(a) (b)

Figure 2.2: Microstructure of Armco Iron obtained using (a) optical micro-
scope (OM) and (b) scanning electron microscope (SEM).
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The density and sound speeds of iron (measured) and WC (from literature
[26]) are summarized in Table 2.2.

Due to the stringent requirements in a PSPI experiment, tremendous precision
went into sample preparation. Thus, all anvil, and flyer plates were first lapped
flat and parallel to within 10 µm. Since the iron is very thin, the material was
sourced out to Production Lapping Co. (Monrovia, CA) for lapping to ensure
parallelism within 2 µm. The lapping roughens the surface of the material
giving the tungsten carbide a roughness of Rq = 200 nm and iron of Rq = 150
nm as seen in the atomic force microscopy (AFM) data in Figure 2.3. The
flatness was inspected using an optical flat and 550 nm monochromatic light
where two or less circular Fizeau fringes were deemed acceptable for the current
experiments. This corresponds to a flatness variation on the order of 0.5 µm
across the plate surface. Once the plates satisfy the required criteria, the flyer
is glued onto the projectile and the rear anvil is mirror polished on one side.
Here, a 400 lines/mm diffraction grating is deposited onto the center using e-
beam lithography. With the anvils and iron sample prepared, the sandwiched
target is assembled next.

Figure 2.3: Surface roughness of iron probed along a line from AFM data. The
average roughness across the entire area was measured to be Rq = 150 nm.

For the sandwich, the front anvil is first placed on a granite flat. The lapped
iron sample is placed directly on top of the front anvil such that the two
materials are directly in contact with each other. The rear anvil is similarly
placed on top of the iron sample with the diffraction grating facing out. A series
of weights are then placed on the sandwich to ensure the material interfaces
are directly in contact with one another and no air gaps are present. Epoxy
is next applied to the sides of the sandwich circumferentially. Once the epoxy
cures after 24 hours, the weights are removed and the total thickness of the
sandwich is measured once again to ensure no air gaps or epoxy are present at
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the interfaces. Since the interfaces have perfect contact, the friction between
the sample and the anvils transmit the shear wave in the target. The static
coefficient between the iron sample and the WC anvils was measured to be
0.53 ± 0.01.

2.2.3 Experimental Procedures

As stated earlier, high pressure–pressure shear plate impact (HP-PSPI) exper-
iments were conducted on high purity (99.8%) Armco iron in a powder gun
with a 3 meter long and 38.7 mm bore diameter slotted barrel. In a PSPI ex-
periment, the projectile is skewed with respect to its direction of travel. Due
to the obliqueness of the projectile, both longitudinal and shear waves prop-
agate within the flyer-target assembly. As discussed earlier, we employed a
sandwich configuration PSPI experiment where the thin iron plate was sand-
wiched between two tungsten carbide (WC) anvils. The front anvil thickness
is designed such that upon impact, the faster longitudinal wave pressurizes the
iron sample to an equilibrium state before the arrival of the shear wave. This
is illustrated in Figure 2.1b. The longitudinal wave continues to propagate
through the iron and into the rear anvil. Once it reaches the rear surface it
reflects back as a tensile unloading wave. The time at which the shear wave
arrives at the iron-front anvil interface to the time at which the unloading
wave reaches the iron-rear anvil interface is regarded as the shear window.
During this time, the friction between iron and the loading plates transmits
shear stress through the sample. The shear window is projected to the free
surface of the rear anvil. For a valid experiment, the end of the shear window
must reach the center of the free surface, where diagnostics are conducted,
before the arrival of boundary waves at this point. These lateral relief waves
are generated from the circular boundary of the front anvil and travel diago-
nally into the sample at the longitudinal wave speed. Therefore, the rear anvil
thickness is designed to maximize this shear window before the arrival of the
lateral relief wave at the center of the free surface.

To ensure a maximized shear window, the front anvil had a diameter of 34
mm and a thickness of 2 mm, the rear anvil had a diameter of 30 mm and
a thickness of 3.8 mm, and the flyer material had a 34 mm diameter and a
5 mm thickness. The exact dimensions of the plates for each experiment are
summarized in Table 2.3. It is important to mention that since the grain size
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of the iron sample is approximately 70 µm and the thickness ranges from 150−
160 µm, this implies there are only two grains along thickness direction and
thus, the sample cannot represent the representative volume element (RVE)
of the material. However, it was previously observed experimentally by laser
shocking single crystal iron samples that were 200-270 µm thick [27] and using
x-ray diffraction, that when the compression wave passes through the material,
the BCC to HCP transformation generates a nanocrystalline grain structure
with grain sizes of 2-15 nm within the material. In our experiments, the
material behavior due to the shear wave is observed after the material has
phase transformed. At first, in the direction of the applied shear, the total
number of grains are already significant. Once the phase transformation has
occurred, the nanocrystalline structure of iron ensures enough grains in the
thickness direction to represent an RVE. Thus, the response observed in our
experiments is assumed to be an average response rather than single crystal
behavior.

In these experiments, the out-of-plane velocity measurements were conducted
at the free surface of the rear anvil. This was done using photonic Doppler
velocimetry (PDV) and heterodyne transverse velocimtery (HTV) [28] with
a 1550 nm wavelength laser. Once this laser hits the grating, it diffracts
0th and ±1 order beams. The 0th order beam is interfered with a reference
laser to extract the normal free surface velocity measurement. The diffracted
+1 order beam is frequency shifted through an acousto-optical driver and
interfered with the diffracted -1 order beam to extract the transverse free
velocity measurements.

Table 2.2: Material properties

Material
ρ

(kg/m3)
CL

(m/s)
Cs

(m/s)
Tungsten Carbide [26] 15600 6921±97 4324±50

Armco Iron 7870±11 5969±54 3253±16

2.3 Experimental results

Five HP-PSPI experiments were conducted on iron ranging from the α-phase
(10 GPa) to ε-phase (42 GPa). A detailed summary of the experiments in-
cluding impact velocities, pressures, and impact angles is shown in Table 2.4.
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Table 2.3: Dimensions of flyer, anvils, and sample

Experiment Flyer [mm] Front Anvil [mm] Sample [mm] Rear Anvil [mm]
Fe-WC-1 4.969±0.002 1.969±0.002 0.159±0.001 3.774±0.002
Fe-WC-2 4.972±0.003 1.991±0.002 0.152±0.001 3.769±0.003
Fe-WC-3 4.986±0.003 1.988±0.003 0.150±0.001 3.748±0.002
Fe-WC-4 4.996±0.001 2.005±0.003 0.165±0.000 3.761±0.002
Fe-WC-5 4.949±0.005 1.994±0.002 0.156±0.001 3.835±0.003

**WC flyer and front anvil plates were 34 mm in diameter
**Iron sample and WC rear anvil plates were 30 mm in diameter

Additionally, the experimentally determined free surface velocities are plotted
in Figure 2.4.

Table 2.4: Summary of performed experiments.

Experiment Pressure
[GPa]

θ
u0

[m/s]
v0

[m/s]
ufs

[m/s]
vfs

[m/s]
Tilt

[mrad]
τ 10%

[GPa]
γ̇

[s−1]
Fe-WC-1 10.0±0.01 18◦ 203.83±0.02 66.22±0.01 196.66±0.18 19.13±0.14 0.7 0.60±0.03 2.5×105

Fe-WC-2 15.8±0.02 18◦ 344.83±0.01 112.04±0.00 327.37±0.42 53.06±0.19 2.0 1.46±0.07 3.2×105

Fe-WC-3 21.5±0.02 12.5◦ 473.17±0.02 104.89±0.01 454.74±0.37 54.05±0.25 0.2 1.80±0.09 2.4×105

Fe-WC-4 30.2±0.06 9◦ 676.47±0.03 107.14±0.01 649.23±1.34 56.42±0.46 1.3 1.96±0.10 1.5×105

Fe-WC-5 42.0±0.01 6◦ 930.72±0.08 97.82±0.01 898.92±0.09 48.26±0.38 0.6 2.15±0.11 1.5×105

**θ corresponds to the skew angle of the projectile
**u0 is the normal component of the impact velocity and also the measured velocity
**ufs and vfs are measured peak normal and transverse free surface velocities

(a) (b)

Figure 2.4: Experimental (a) normal and (b) transverse free surface velocities.
The profiles are shifted in time for visual purposes.

Due to plasticity within our WC anvils and the thickness of our iron sample,
no phase transformation wave is observed in the normal profile. Additionally,
the very thin sample does not affect the normal profile in terms of Hugoniot
elastic limit (HEL) and peak free-surface velocity. This is because the peak
velocity due to the arrival of the elastic wave (∼ 113 m/s) corresponds to the
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elastic limit of the tungsten carbide anvils. However, due to the impedance
mismatch between iron and WC, pressure reverberations upon the arrival of
the initial longitudinal wave slightly affect the rise times of the shock wave.
This further validates the quasi-isentropic loading condition in the sandwiched
sample. Additionally, as shown in Table 2.4, the initial condition on transverse
velocity (v0) is consistent throughout the experiments. Regardless, looking at
the transverse free surface velocity profiles, the peak velocities are much lower
than the imposed. This indicates the dispersion of the shear wave due to
plasticity from the sample and the anvils. Nonetheless, the elastic solutions
cannot be used here and thus, simulations are conducted. Prior to the discus-
sion on simulation methodology, a question then arises on the uncertainty of
the experimental velocity measurements.

The uncertainties within the measured velocity profiles are primarily due to
identifying peak frequencies in its power spectrum [23] and the impact tilt.
The quantification of the frequency uncertainty of the velocities was conducted
using Dolan’s [29] approach. The velocity uncertainty can be expressed as:

∆u̇i = Si

√
6
fsa

σ

π
τ−3/2, i = 1, 2. (2.1)

Here, ∆u̇1 corresponds to the normal velocity error and ∆u̇2 corresponds to
the transverse velocity error. Additionally, the terms Si correspond to the
interferometer sensitivities, fsa = 20 GSa/s is the sampling frequency, σ is
the signal noise fraction and τ is the hamming window. The interferometer
sensitivities are S1 = λ/2 for normal and S2 = d/2 for shear where d = 1/400
mm is the grating pitch. Based on Eq. 2.1, a smaller hamming window results
in a higher uncertainty in velocity. However, to capture the sharp rise times
associated with the elastic and plastic waves in the normal profile, a hamming
window of 40 ns was implemented resulting in uncertainties up to 1.4 m/s. For
the transverse velocity profile, the rise times are relatively high, especially at
higher pressures, thus a larger hamming window of 100 ns was used resulting
in uncertainties up to 0.5 m/s. From this analysis itself the uncertainties in
the transverse velocity profiles are on the order of 0.5%. We next consider
the effect of tilt on the transverse velocity profiles. Tilt affects the loss of
coupling efficiencies of the transverse probes. However, it was shown in [23]
that uncertainties caused by these small angle variations for transverse velocity
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due to tilt > 0.5 mrad is below 0.08%. Overall, the uncertainties in velocity
measurements are relatively low < 1%.

For the uncertainties associated with the strength calculations, there are also
numerical errors from the simulations which will be discussed in future sections.

2.4 Simulation methodology

Due to plasticity within the anvil material above its Hugoniot elastic limit
(HEL), conventional elastic analysis of extracting strength from transverse
velocity profiles is not feasible. For this reason, we conduct finite element sim-
ulations via ABAQUS Explicit [30] and match simulated velocities with the
experimental quantities [21, 26] to extract a material model for the iron sample.
In particular, the peak transverse velocity is directly related to the strength
and flow behavior of iron and thus we determine simulation parameters to
match peak velocities of the experimental data. This sandwich configuration
and plastically deforming anvil analysis methodology has been successfully
validated using various anvil materials on copper [26]. Thus, the key results
in this letter represent the physics of iron and are not from an unknown er-
ror in the experimental or analysis method. For a known tungsten carbide
material model [26], the only unknowns required to match our experimental
velocity profiles are equation of state and strength parameters for iron. For
α-iron, a Johnson-Cook strain and strain-rate hardening model with temper-
ature softening from Sadjadpour et al. [31] was implemented. For ϵ-iron, we
employ the Johnson-Cook hardening law with temperature dependence and a
Steinberg-Cochran-Guinan (SCG) [32] pressure dependence on yield strength
as follows:

Y = (Y0 +Bϵn) (1 − T ∗m)
(

1 +
(
Y ′

p

Y0

)
P

η1/3 −
(
µ′

T

µ0

)
(T − 300 K)

)
(2.2)

where µ0 = 83 GPa [8] is the shear modulus at ambient conditions, T ∗ = T −Tr

Tm−Tr

with T corresponding to the temperature, Tr = 300 K the reference tempera-
ture, Tm = 1811 K [31] the melting temperature, and η = ρ

ρ0
the compression

ratio with ρ being the density, and ρ0 = 7870 kg/m3 [31] the reference den-
sity. From Equation 2.2, the initial yield Y0, the strain hardening terms, B
and n, and the temperature softening exponent, m were varied in simulations
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to match experimental velocities whereas the other parameters were obtained
from previous literature. The strain-rate dependence in the Johnson-Cook
model was neglected as all experiments were conducted at a nominally con-
stant strain-rate, 105 s−1. Within our simulations, the temperature contribu-
tions include both plastic work from high strain-rate deformations (assuming
Taylor-Quinney factor of β = 1 [25, 31]) and shock heating due to high pressure
jumps which was modeled using an equation of state (EOS). The EOS of iron
for all experiments was modeled using a well calibrated Helmholtz potential
by Boettger and Wallace [14] in conjunction with a continuum time-dependent
phase transformation numerical scheme by Hayes [33] and Andrews [34]. This
was implemented to accurately capture the two-phase region, specifically for
the 15.8 GPa experiment.

When considering the yield strength scaling with respect to pressure, the SCG
model approximates a one-to-one relationship between the pressure depen-
dence behavior of shear modulus and yield strength

(
1

Y0
∂Y
∂P

= 1
µ0

∂µ
∂P

)
. However,

recent experiments on Tantalum [35] and Copper [26] have shown the yield
strength scaling to be 2 and 2.6 times that of shear modulus, respectively.
This was based on the decrease of dislocation mobility at higher pressures and
the shear modulus scaling of work required to move the dislocations [36]. In the
present study, a one-to-one scaling of shear modulus and yield strength with
respect to pressure was sufficient to simultaneously match both normal and
transverse velocities for ϵ-iron. We adapt the ϵ-iron shear modulus data from
static experiments [8]: 1

µ0

∂µ
∂P

= 0.0246 GPa−1 and 1
µ0

∂µ
∂T

= 1.08 kK−1. The plot
of the shear modulus as a function of pressure can be found in Mao et al. [37].
This governs the chosen parameters for the pressure hardening and tempera-
ture softening law. The other parameters in the Johnson-Cook model were fit
to match the free surface velocity profiles of the four experiments. Specifically,
we match the peak transverse velocities as they are directly related to material
strength and the flow behavior.

Detailed description of the EOS, the numerical scheme, and the methodology
for determining the strength parameters are presented next.

2.4.1 Helmholtz Free Energy

This multiphase equation of state (EOS) was implemented primarily to resolve
the transition region of iron where both α- and ϵ-phases coexist. The model
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followed the numerical scheme proposed by Andrews [34] and Hayes [33] using a
known Helmholtz free energy as a function of specific volume and temperature
from the work of Boettger and Wallace [14]. The functional form of the free
energy is as follows:

F (V, T ) = Φ0(V ) + FH (V, T ) + FA (V, T ) + FE(V, T ) (2.3)

where, Φ0(V ) is the static lattice potential, FH(V, T ) corresponds to the quasi-
harmonic phonon free energy, FA(V, T ) is the anharmonic contribution, and
FE(V, T ) is the thermal excitation of electrons from their ground state. Note
that the anharmonic contribution of the free energy is assumed to be of the
order of experimental error and therefore assumed negligible [14].

The static lattice potential term corresponds to the cold energy term and is a
modification of the Vinet-Ferrante-Rose-Smith (VFRS) universal form:

Φ0(V ) = Φ∗ + 4V ∗B∗

(B∗
1 −1)2 [1 − (1 + η)e−η]

η = 3
2 (B∗

1 − 1)
(

V
V ∗ − 1

) (2.4)

where, V ∗ is the volume at which Φ0(V ) is minimum, Φ∗ is the value of Φ0(V )
at V ∗, B∗ is the bulk modulus at V ∗, and B∗

1 is the derivative of bulk modulus
with pressure at V ∗.

The quasiharmonic phonon energy term is utilized at high temperatures and
is expressed as follows:

FH(V, T ) = 3NkT
− ln

(
T

θ0(V )

)
+ 1

40

(
θ2(V )
T

)2
 (2.5)

where, N is the Avogadro Number, k is the Boltzmann constant, θ0 is the
zeroth order Debye temperature, and θ2 is the second order Debye temperature.
The Debye temperatures satisfy γ0,2 = dlnθ0,2/d ln V . We assume that γ0 = γ2

[14] hence we obtain that the debye temperatures follow:

θ0,2 = θ̂0,2

(
V

V300

)−γ0,2

. (2.6)

The last term in the free energy is thermal excitation. This term can be
decomposed into two different contributions. The first contribution occurs due
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to normal conduction free energy and the second via magnetic free energy. The
conduction free energy is expressed as

Fcond(V, T ) = −1
2β0

(
V

V300

)κ

T 2

κ = d ln Γ/d lnV
(2.7)

where, β0 is the coefficient of linear aspect of the electronic specific heat, Γ is
the electronic Grüneisen parameter, and V300 is the specific volume at T = 300
K, and P = 1 Bar.

Additionally the magnetic term is the following,

Fmag(T ) = a3b

(1 − T

a2

)
ln
1 +

√
T/a2

1 −
√
T/a2

− 2
√
T

a2 + 4
3

(
T

a2

)3/2
 (2.8)

where, a3b and a2 are both fitting parameters. Note that the magnetic contri-
bution only occurs until the Curie temperature (Tc = 1043 K). This tempera-
ture has no pressure dependence, hence the magnetic contribution is volume
independent. It is important to note that only the α-phase is magnetic and not
the ϵ-phase, hence the magnetic contribution only occurs in the low pressure
phase.

The constants used in computing the free energy were obtained from experi-
mental results of previous literature and some fitting parameters were obtained
via matching experimental results from Barker and Hollenbach [14]. These
constants are shown in Table 2.5 below.

2.4.2 Continuum EOS Model

With the formulation of the thermodynamic variables, the continuum model
for the multiphase equation of state is developed next. We employ the Andrews
[34]/ Hayes [33] algorithm to formulate an explicit method.

We define the volume fraction of each phase, denoted λ with 0 ≤ λ ≤ 1, such
that λ = 0 is the α-phase and λ = 1 corresponds to the ϵ-phase. Note due to
the intensive nature of pressure (P ) and temperature (T ), the two quantities
in both of the phases of iron are the same at all times. Additionally, the
subscripts α and ϵ for each thermodynamic property are defined such that
they correspond to the thermodynamic variable of that respective phase. The
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Table 2.5: Parameters for the free energy of the two different phases (α, ϵ) of
iron.

Parameter α ϵ

V300 (m3/kg) 127.0123 x 10−6 120.512 x 10−6

θ0 (K) 301 264
θ2 (K) 420 364
γ0 1.82 2.8
β0 (J/kg K2) 44.767 x 10−3 44.767 x 10−3

d lnΓ/d lnV 1.3 1.3
a2 (K) 1135 -
a3b (J/kg) 83.803 x 103 -
V ∗ (m3/kg) 125.431 x 10−6 118.155 x 10−6

B∗ (GPa) 176.64 181.5
B∗

1 4.7041 5.74
Φ∗ (J/kg) 0 99.0778 x 103

total specific volume and total specific internal energy as a function of pressure,
temperature, and volume fraction are

V (P, T, λ) = (1 − λ)Vα(P, T ) + λVϵ(P, T ) (2.9a)

U(P, T, λ) = (1 − λ)Uα(P, T ) + λUϵ(P, T ). (2.9b)

Taking the differential of the total specific volume and specific internal energy:

dV = (1 − λ) dVα + λdVϵ + (Vϵ − Vα) dλ

=
(
∂V

∂p

)
T,λ

dp+
(
∂V

∂T

)
p,λ

dT +
(
∂V

∂λ

)
p,T

dλ
(2.10)

dU = (1 − λ) dUα + λdUϵ + (Uϵ − Uα) dλ

=
(
∂U

∂p

)
T,λ

dp+
(
∂U

∂T

)
p,λ

dT +
(
∂U

∂λ

)
p,T

dλ.
(2.11)

Assume for now that dV , dU , and the partials are known. The only unknowns
in equations 2.10 and 2.11 are the differentials dp, dT , and dλ but this indicates
that there are 2 equations and 3 unknowns. Fortunately, the intersection of
the Gibbs free energy in the pressure-temperature surface of the two phases
at the point of phase transformation provides the third equation. This third
equation is called the Clausius-Clapeyron relation and is expressed as:
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d (Gϵ −Gα) = (Vϵ − Vα) dp− (Sϵ − Sα) dT (2.12)

where, G and S are the Gibbs free energy and Entropy, respectively.

Under the condition that d (Gϵ −Gα) = 0 means that the mixed phases are
in equilibrium. However, this equation does not help explain the metastable
region that iron follows or describe the hysteresis experienced upon release of
pressure. An alternate approach (Hayes formulation [33]) can be used with
an assumption that dλ is known. Rearranging equations 2.10 and 2.11 while
recalling that

(
∂V
∂λ

)
p,T

= (Vϵ − Vα) (from Equation 2.9a) and similar for energy,

dVλ = dV − (Vϵ − Vα) dλ =
(
∂V

∂p

)
T,λ

dp+
(
∂V

∂T

)
p,λ

dT (2.13a)

dUλ = dU − (Uϵ − Uα) dλ =
(
∂U

∂p

)
T,λ

dp+
(
∂U

∂T

)
p,λ

dT. (2.13b)

This new problem can be rearragned into a linear system of equations and can
be expressed as:

 dVλ

dUλ

 =


(

∂V
∂p

)
T,λ

(
∂V
∂T

)
p,λ(

∂U
∂p

)
T,λ

(
∂U
∂T

)
p,λ


 dp

dT

 . (2.14)

Inverting the matrix to solve for dp, and dT ,

 dp

dT

 = 1
J


(

∂U
∂T

)
p,λ

−
(

∂V
∂T

)
p,λ

−
(

∂U
∂p

)
T,λ

(
∂V
∂p

)
T,λ


 dVλ

dUλ

 . (2.15)

Here, J =
(

∂V
∂p

)
T,λ

(
∂U
∂T

)
p,λ

−
(

∂V
∂T

)
p,λ

(
∂U
∂p

)
T,λ

is the determinant and the par-
tials are defined as
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(
∂V

∂p

)
T,λ

= (1 − λ)
(
∂Vα

∂p

)
T

+ λ

(
∂Vϵ

∂p

)
T

(2.16a)(
∂V

∂T

)
p,λ

= (1 − λ)
(
∂Vα

∂T

)
p

+ λ

(
∂Vϵ

∂T

)
p

(2.16b)(
∂U

∂p

)
T,λ

= (1 − λ)
(
∂Uα

∂p

)
T

+ λ

(
∂Uϵ

∂p

)
T

(2.16c)(
∂U

∂T

)
p,λ

= (1 − λ)
(
∂Uα

∂T

)
p

+ λ

(
∂Uϵ

∂T

)
p

. (2.16d)

Additionally, after simple manipulation of thermodynamic expressions, Maxwell
relations, and reciprocity relations, one can obtain the following expressions:

(
∂Vi

∂p

)
T

= −Vi/KT i (2.17a)(
∂Vi

∂T

)
p

= Viαi (2.17b)(
∂Ui

∂p

)
T

= pVi/KT i − TViαi (2.17c)(
∂Ui

∂T

)
p

= −pViαi + Cpi (2.17d)

where i = α, ϵ the two different phases.

Using these relations, the exact expression for the determinant in Equation
2.15 becomes

J = − (1 − λ)2 CpαVα

KSα

− λ2CpϵVϵ

KSϵ

+ λ (1 − λ)
(

2TVαVϵαααϵ − CpϵVα

KT α

− CpαVϵ

KT ϵ

)
. (2.18)

From this entire formulation, all the variables required to solve the system of
equation except for the volume fraction differential dλ are known. Using the
work of Hayes [33], the differential is assumed to take the form:

dλ = (Gϵ−Gα)(1−λ)
T

dt
τ

dV < 0

dλ = λ(Gϵ−Gα)
T

dt
τ

dV ≥ 0
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where, dt and τ are the time increment and the phase transition time, respec-
tively.

The last bit of information required are the initial conditions, and the incre-
ment in dV and dU . Regarding the initial conditions, the pressure, specific vol-
ume, and temperature are assumed to be at P0 = 0 GPa, V0 = 127.0123×10−6

m3/kg, and T0 = 300 K, respectively. Given the Helmholtz free energy expres-
sions in Equation 2.3 and the parameters in Table 2.5, the necessary Legendre
transformations can be conducted to obtain the initial specific internal energy,
and Gibbs free energy. Additionally, other necessary variables such as the
specific heats can also be extracted from the Helmholtz free energy. Now that
the initial conditions have been established, consider the increment in specific
volume and internal energy.

The increment in specific volume is obtained from the strain increment given
by ABAQUS/Explicit [30] where the volumetric strain is defined as ∆V/V0 =
tr(ε). The increment in energy must also account for irreversible work from
plastic deformation and is given as [38]:

dU = −PdV + V0τ̄ dγ̄p, τ̄ =
√

1
2SijSij, dγ̄p =

√
2dεp

ijε
p
ij. (2.19)

2.4.3 Iron parameters

To obtain the Johnson-Cook parameters, Y0, B, n, and m, a sensitivity study
was conducted. The initial values for each parameter were determined manu-
ally and assumed to be Y0 = 1.6 GPa, B = 3.4 GPa, n = 0.4, and m = 0.65 as
they provided a sufficient first-order match between simulated and experimen-
tal velocity profiles. For a more accurate calibration, a series of simulations
were conducted to assess the sensitivity of peak transverse velocity to each vari-
able. This was done by varying one variable while keeping the others constant
at the manually determined initial values. The results of these simulations are
displayed in Figures 2.5-2.8.

The peak velocities from these simulations were stored for each variable and
compared to the experimental peak velocities as shown in Figure 2.9. By
inspection, the variation of the peak velocity with respect to each variable is
approximately linear within the current range thus, a linear fit is obtained
between peak velocity and each individual parameter at each pressures. Next,
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Figure 2.5: Transverse velocity from the sensitivity study for 15.8 GPa exper-
iment for varying (a) Y0, (b) B, (c) n, and (d) m. The shading within the
experimental curve corresponds to the 5% uncertainty envelope.

the respective derivatives are evaluated and the sensitivities of peak velocity
to each variable at each respective pressure were determined. This provides a
matrix of derivatives that will be used to solve a minimization problem.

A =



∆V
∆Y0

∣∣∣
P =15

∆V
∆B

∣∣∣
P =15

∆V
∆n

∣∣∣
P =15

∆V
∆m

∣∣∣
P =15

∆V
∆Y0

∣∣∣
P =21

∆V
∆B

∣∣∣
P =21

∆V
∆n

∣∣∣
P =21

∆V
∆m

∣∣∣
P =21

∆V
∆Y0

∣∣∣
P =30

∆V
∆B

∣∣∣
P =30

∆V
∆n

∣∣∣
P =30

∆V
∆m

∣∣∣
P =30

∆V
∆Y0

∣∣∣
P =42

∆V
∆B

∣∣∣
P =42

∆V
∆n

∣∣∣
P =42

∆V
∆m

∣∣∣
P =42


(2.20)

Using the initial values for Y0, B, n, and m, the values for the simulated peak
velocities are known. Therefore, taking the difference between these initial
peak velocities and experimental peak velocities, we define the vector
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Figure 2.6: Transverse velocity from the sensitivity study for 21.5 GPa exper-
iment for varying (a) Y0, (b) B, (c) n, and (d) m. The shading within the
experimental curve corresponds to the 5% uncertainty envelope.

∆Vt =



∆V15

∆V21

∆V30

∆V42


. (2.21)

This vector corresponds to the desirable total change in velocity by varying
the JC parameters. Therefore, the goal is to determine the change in these
JC parameters which will allow us to obtain this velocity change from initial
values. This can be formulated as a linear system



41

0 0.5 1 1.5 2 2.5

Time [7s]

0

10

20

30

40

50

60

V
f
s

[m
/
s]

Exp
Y0 = 1.4 GPa
Y0 = 1.5 GPa
Y0 = 1.6 GPa
Y0 = 1.7 GPa
Y0 = 1.8 GPa

(a)

0 0.5 1 1.5 2 2.5

Time [7s]

0

10

20

30

40

50

60

V
f
s

[m
/
s]

Exp
B = 3.2 GPa
B = 3.3 GPa
B = 3.4 GPa
B = 3.5 GPa
B = 3.6 GPa

(b)

0 0.5 1 1.5 2 2.5

Time [7s]

0

10

20

30

40

50

60

V
f
s

[m
/
s]

Exp
n = 0.3
n = 0.35
n = 0.4
n = 0.45
n = 0.5

(c)

0 0.5 1 1.5 2 2.5

Time [7s]

0

10

20

30

40

50

60

V
f
s

[m
/
s]

Exp
m = 0.6
m = 0.625
m = 0.65
m = 0.675
m = 0.7

(d)

Figure 2.7: Transverse velocity from the sensitivity study for 30.2 GPa exper-
iment for varying (a) Y0, (b) B, (c) n, and (d) m. The shading within the
experimental curve corresponds to the 5% uncertainty envelope.

A · ∆x = ∆Vt, where ∆x =



∆Y0

∆B

∆n

∆m


. (2.22)

Since A is an invertible matrix and has full rank, there is an optimal solution
for this linear system however it leads to nonphysical JC parameters and con-
straints need to be imposed. Therefore, this can be converted to a linear least
squares problem with the objective

f = min
∆x

∥∥∥A · ∆x− ∆Vt

∥∥∥2

L2
(2.23)
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Figure 2.8: Transverse velocity from the sensitivity study for 42 GPa exper-
iment for varying (a) Y0, (b) B, (c) n, and (d) m. The shading within the
experimental curve corresponds to the 5% uncertainty envelope.

subjected to the constraints

0.5 GPa ≤ Y0 ≤ 2 GPa

2.4 GPa ≤ B ≤ 5 GPa

0 ≤ n ≤ 1

0.1 ≤ m ≤ 1.5

.

The optimal parameters for the ϵ-iron hardening model that satisfy the im-
posed constraints are
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Figure 2.9: Comparison of peak transverse velocities and their sensitivities to
(a) Y0, (b) B, (c) n, and (d) m. The error bars on the experimental data
corresponds to the 5% uncertainty envelope.
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Figure 2.10 compares the peak velocity from the final simulations with exper-
imental data.

To close the discussion on simulation methodology, the numerical errors need
to be considered. Simulations were conducted on elements that were 10 µm
along the normal shock propagation direction and the time steps were ∆t = 10



44

15 20 25 30 35 40 45

Pressure [GPa]

45

50

55

60

P
e
a
k

T
ra

n
sv

e
rs

e
V

e
lo

c
it

y
[m

/
s]

Exp
Sim

Figure 2.10: Final experimental and simulated peak transverse velocities plot-
ted against pressure. The error bars correspond to the 5% uncertainty enve-
lope.

ps. It was shown in [39] that spatial resolution below 20 µm element thickness
did not offer any improvement in accuracy. Therefore, the numerical error
associated with our simulations are assumed to be negligible. At last, we
compare the final simulated velocity profiles with the experimental velocity.
Since, four experiments were conducted and four parameters were fit, there is a
unique solution to this linear system. The solution to the linear system should
identically have no error. However, this would lead to nonphysical optimal
parameters. Therefore, constraints were imposed on the parameters Y0 and
others. A linear least squares solution with constraints was solved to minimize
the L2 norm of the true velocity and obtained peak velocity from simulations.
The peaks of the resulting velocity profiles with these optimized yield function
parameters were within 5% uncertainty range from the experimental measure-
ments. This is shown in Figure 2.10 where the error bars on the experimental
data corresponds to the 5% uncertainty regime. Thus, we claim the strength
measurements obtained from simulations are within 5% uncertainty.

2.5 Discussion

The experimentally measured normal and transverse velocity profiles along
with the simulated profiles at each corresponding pressure are displayed in
Figure 2.11. Unlike the normal velocity profile, the transverse profiles pri-
marily depict the strength behavior of iron. We note the imposed transverse
velocities in these experiments ranged from 100-110 m/s to ensure a shear
strain-rate on the order of 105 s−1 within the iron sample. The measured
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Figure 2.11: Plot of (a) normal and (b) transverse free surface velocity profiles
at varying pressures for pure iron. The solid lines correspond to experimental
records and the dashed curves correspond to simulated profiles. Both the
normal and transverse velocity profiles (except for the 15 GPa curves) have
been shifted for clarity in visualizing the results.

transverse velocities are below the imposed velocity at the impactor/target
interface indicating dispersion of the shear wave due to plasticity in the iron
sample. As the longitudinal wave traverses through the sample, at high pres-
sures, the material yields. Therefore, the shear wave traversing through this
yielded material will disperse [21]. For anvil materials stronger than iron, e.g.
tungsten carbide, the maximum dissipation of the shear wave occurs within
the sandwiched sample. We employ the von Mises yield criterion where the
yield condition for shear-normal coupling is 3

4s
2
xx + τ 2

xy = 1
3Y

2 [21] with Y as
the yield stress, τxy as the shear stress and sxx as the normal component of
the deviatoric stress tensor. Although the longitudinal wave is sufficient to
yield the material, the arrival of the shear wave increases τxy while decreasing
sxx to ensure the material stays on the yield surface. If the shear wave arrives
at an amplitude of τxy = Y/

√
3, the deviatoric stress vanishes and the shear

stress provides a direct measurement of the yield behavior of the material.
Therefore, the transverse velocity profiles correlate to the strength of the iron



46

in its respective phase.

From initial inspection, we observe a significant increase in transverse velocity
at 15.8 GPa compared to 10 GPa. This indicates ϵ-iron having a much higher
strength than the ambient α-iron. However, we cannot discern strength di-
rectly from the transverse velocity profile as the peak velocity at higher pres-
sures are similar to the peak at 15.8 GPa. The primary reason for this phe-
nomenon is due to increased plasticity in anvils at higher pressures resulting
in larger shear wave dispersion at the rear anvil. Therefore, the transverse
velocities themselves are insufficient to conclude strength behavior of iron at
high pressures highlighting the importance of forward modeling to extract the
stress-strain behavior. The dashed curves in Figure 2.11 corresponds to the
simulated velocity profiles.

By constraining the shear strain-rate at ∼ 105 s−1 through varying impact
angles, the complete pressure dependent strength and flow behavior of ϵ-iron
was extracted from the simulations for a full range of shear strains, Figure
2.12a. From our data we make two main conclusions, (1) the strength of iron
in its ϵ-phase is more than double that of the α-phase, and (2) the dynamic
strength of ϵ-iron is an order of magnitude lower than previously observed.

The yield strength (Y =
√

3τ) at γ = 0.1 of iron at 15.8 GPa of pressure
(∼ 78% ϵ-phase based of the EOS model [14]) is 2.69±0.13 GPa. In con-
trast, at 10 GPa of pressure, the yield strength of α-iron is 1.04±0.05 GPa
which is within reasonable limits when compared to strength data observed
from Kolsky bar experiments [25, 31] further validating our experimental tech-
nique. A reason for the increased strength lies within the partially higher
yield strength scaling due to pressure dependent shear modulus in the ϵ-phase
( 1

G0
∂G
∂P

= 0.0246 GPa−1) compared to α-phase ( 1
G0

∂G
∂P

= 0.0221 GPa−1) [40].
The ϵ-phase also exists at higher pressures so the scaling would result in higher
strength in the HCP phase. While BCC materials generally show higher
strength at these strain-rates than HCP materials [41, 42], the strength in-
crease may be explained by the transformation strain required to change the
crystal structure from BCC to HCP [12, 42] and also the microstructural evo-
lution during this phase transition. At approximately 13 GPa of pressure, iron
does not entirely transform into its ϵ-phase but rather a mixed phase region
is said to exist between 13-22 GPa [14, 31]. According to recent experimen-
tal observations [43] and molecular dynamics simulations [44], the evolution
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Figure 2.12: Plots of (a) shear stress vs shear strain of ϵ-iron for varying
pressures and (b) comparison of von Mises yield strength at 10% shear strain
with data from literature. The best fit curve (black dashed line) follows a
power law relation (Y ∝ P 0.35) compared to the linear relation obtained from
static experiments by Gleason and Mao [8]. The main plot compares our
data with other static experiments and the inset contains data from other
dynamic experimental studies alongside our best fit curve. The dashed red
curve corresponds to the theoretical yield strength (G/2π) obtained from shear
modulus data from [8].
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of the ϵ-phase begins at grain boundaries and these HCP clusters evolve into
needle like colonies which act as sub-grains within the original grains. Shock
experiments on single crystal iron [45] also indicate the formation of these
nanocrystalline structures based on the symmetry-related variants of the new
HCP phase from the parent BCC phase. In addition to these nanocrystals,
twins form within the material to ensure kinematic compatibility between the
two phases [46], but also due to the longitudinal wave during phase transfor-
mation [47] and the shear loading [25]. Given our loading conditions, it is
possible that deformation twinning due to the transverse wave persists within
our sample since the HCP phase favors twinning over slip as a deformation
mechanism. Ultimately, the formation of HCP clusters and twins tend to oc-
cur during the transition in addition to the nucleation of screw dislocations,
dislocation loops, stacking faults, and vacancies [44]. These twin boundaries
and nanocrystalline grain boundaries, through the dynamic Hall-Petch effect,
act as obstacles for dislocation motion therefore increasing dislocation pileup
and inherently increasing the yield strength.

The strength of ϵ-iron, at 10% shear strain, determined in the current study
differs significantly from the previously reported values, Figure 2.12b. Ping et
al. [19] have indirectly determined the yield strength of ϵ-iron up to pressures
of 560 GPa from temperature measurements via laser shock experiments cou-
pled with EXAFS data. The authors extrapolate their data and claim a yield
strength of ∼20 GPa and ∼30 GPa at pressures of 50 GPa and 100 GPa, re-
spectively. Huntington et al. [20] arrived at a similar conclusion as Ping et al.
and observed a flow strength of ∼40 GPa at 100 GPa of pressure by observing
the growth of Rayleigh-Taylor instabilities. These strength reportings seem
rather unexpected as they are on the cusp of the theoretical yield limit assum-
ing the limit is a function of the pressure dependent shear modulus and given
by Y ∝ G(P, T )/2π. By extrapolating our data to higher pressures we claim
these reporting to be an order of magnitude higher than the 4.3 and 5.1 GPa
yield strength we observe at pressures of 50 GPa and 100 GPa, respectively.
While this variability can be attributed to different grain sizes, strain-rates,
and heat treatment, these are not sufficient to explain a discrepancy of this
magnitude. For example, recent MD simulations on nano-crystalline iron at
strain-rates of 109 s−1 shows a shear stress of 2.5 GPa (yield stress of 4.3
GPa) at 30 GPa of pressure [44]. Additionally, Prime et al. [48] recently con-
ducted high strain-rate Richtmyer-Meshkov instability (RMI) experiments on
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tantalum and compared their results with Z-machine data [49]. The authors
concluded pressure effects on strength are more significant than strain-rate
effects in these extreme conditions. Hence, the main difference occurs due
to experimental technique and the interpretation of the measurements. PSPI
experiments are designed to probe the stress versus strain behavior and hence
the strength of a material whereas the laser shock experiments by Ping et
al. [19] were designed to understand density, and temperature of compressed
iron. This indirect determination of strength from temperature explains the
high strength, on the order of theoretical yield strength (G/2π), and large un-
certainties in their results. Smith et al. [2] note the strength data from static
experiments [8, 17] in pressure regimes below 300 GPa were required to match
the 300 K isotherm when converting their σxx − ρ data to an isentropic P − ρ

curve. The reported strength from static experiments is on the same order as
our results. However, our data does indicate an increased strength compared
to Gleason and Mao [8] because of strain-rate dependence of ϵ-iron. Diamond
anvil cell experiments are typically conducted at compressive strain-rates of
∼ 10−5 s−1 which is far lower than our experiments conducted at compressive
strain-rates of ∼ 105 s−1.

2.6 Conclusion

In summary, PSPI experiments were conducted to characterize the pressure
dependent plasticity and strength behavior of iron in its high pressure HCP
ϵ-phase. From free surface velocity measurements coupled with modeling,
we extract the complete stress-strain curve for ϵ-iron for the first time and
observe a substantial increase in the yield strength of the phase transformed
material compared to its ambient α-phase. Additionally, we find the dynamic
strength of ϵ-iron to be an order of magnitude lower than previous literature.
Current work relies on static literature data for shear modulus scaling with
pressure however, future experiments are planned to dynamically characterize
pressure dependent material properties for accurate construction of EOS and
flow strength scaling. These strength and material parameters will be used to
develop a sophisticated kinetics-based model for the phase transformation of
iron. Our experiments on ϵ-iron offer the potential to significantly extend our
knowledge of the deformation behavior of earth’s inner core and construct a
realistic model of the inner cores of rocky planets and meteorite impacts.
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Abstract

Characterizing the fundamental micromechanisms activated during plastic de-
formation is critical to explain the macroscopic shock response of materials
and develop accurate material models. In this letter, we investigate the ori-
entation dependence, and the mediated slip and twin systems on [1 0 0] and
[1 1 1] BCC molybdenum single crystals shock compressed up to 18 GPa with
real-time Laue x-ray diffraction measurements. We report that dislocation
slip along the {1 1 0}⟨1 1 1⟩ and {1 1 2}⟨1 1 1⟩ systems are the governing de-
formation mechanism during compression with negligible anisotropy observed
at the Hugoniot state. For the first time, we provide real-time evidence that
molybdenum undergoes deformation twinning along {1 1 2}⟨1 1 1⟩ during shock
release.

3.1 Introduction

When a metal undergoes shock compression beyond its Hugoniot elastic limit
(HEL), the plastic deformation is typically governed by generation and motion
of dislocations [1]. Generally, establishing the active atomistic mechanisms
during inelastic loading is difficult but is critical to explain the macroscopic
response of materials for shock applications involving high velocity impacts
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such as planetary impacts [2], aircraft collisions [3], spacecraft shielding [4],
and even armor and anti-armor applications [5]. The high strain-rates, tem-
peratures, and pressures experienced under shock compression may activate
different slip or twin systems than under quasi-static loading and thus, requires
real time characterization of the atomistics. However, most studies to date fo-
cus on post-mortem analysis of recovered sample which may not reflect the
material behavior during the passage of the shock wave. To that end, recent
efforts at the Dynamic Compression Sector (DCS) at the Advanced Photon
Source (APS) [6] has enabled real-time x-ray diffraction (XRD) measurements
in shock compression experiments and has been critical in understanding phe-
nomena such as phase transformations [7, 8], and equations of state (EOS)
[9–11].

Because of its high temperature specific strength, creep resistance, and duc-
tility [12], body-centered cubic (BCC) refractory metals, such as molybdenum
(Mo), and their alloys have significant technological implications motivating
studying their high-strain rate material response. Plasticity in BCC metals
is governed by dislocation slip along the [1 1 1] direction [13] and is mediated
by various factors such as interactions of defects with grain boundaries, the
influence of pre-existing defects, and crystal structure [14]. Here, we focus on
molybdenum single crystals as a representative refractory BCC metal since
single crystals help preclude the effect of grain boundaries on the deformation
response and provide key insights concerning the role of crystal orientation.

Considerable work has been conducted to understand the fundamental defor-
mation mechanisms of molybdenum in the quasi-static regime and it has been
shown that its deformation is governed by the mobility of screw dislocations
along the {1 1 0}⟨1 1 1⟩ and {1 1 2}⟨1 1 1⟩ slip systems. At low temperatures,
the deformation of molybdenum is governed by thermally activated kink pairs
and kink pair migration of screw dislocations along {1 1 0} slip planes [15–
17] while at higher temperatures, the deformation is governed by cross slip
along {1 1 2} planes [15]. Molybdenum also displays slip and yield tension-
compression asymmetry due to the different Peirels stress in the twinning and
anti-twinning [16, 18–21] direction, where the twinning is more prevalent at
lower temperatures [18, 22]. In addition to slip, deformation twinning in the
{1 1 2} planes along the ⟨1 1 1⟩ direction [23, 24] has been observed from post-
mortem analysis of molybdenum undergoing shock compression (high strain-
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rate) or low temperature deformation. It was shown that the volume fraction of
twinning increases with pressure [24] while homogeneous distribution of initial
dislocations from pre-straining prior to shock compression suppressed twin for-
mation [23]. Regardless, further experiments are required to understand these
deformation mechanisms.

Polycrystalline Mo has been studied over a wide range of high pressures (up
to 1 TPa) using diamond anvil cell (DAC) [25], plate impact [26, 27], and
laser ramp compression [28] experiments. However, limited plate impact ex-
perimental studies have been performed on Mo single crystals [29–33]. Studies
by Mandal et al. [30, 31] at low normal stresses (12.5 GPa) and Oniyama et
al. [32] at higher pressures (up to 110 GPa) both report strong orientation de-
pendence on the Hugoniot elastic limit (HEL) [30–32]. The [1 1 1] orientation
was shown to exhibit the highest elastic amplitude which increases propor-
tionally to the impact stress [32] while the behavior along [1 0 0] and [1 1 0]
were comparable. Additionally, the authors observed attenuation of the elas-
tic precursor as a function of time and propagation distance hypothesizing a
change in active slip systems during this transition [31]. To explore the funda-
mental mechanisms governing this observed anisotropy, Mandal et al. [30, 31]
performed complimentary crystal plasticity simulations but suggested in-situ
experiments to be performed.

In this letter, we explore the underlying microstructural reasons for the anisotropy
of HEL, and the governing plastic deformation mechanisms at the Hugoniot
(steady) shock state and during release using plate impact experiments coupled
with dynamic in-situ x-ray diffraction (XRD). The experimental observations
are quantified using complimentary XRD simulations for extracting the lattice
strains and stresses using which the active slip and twin deformation mecha-
nisms are characterized.

3.2 Experimental methods

Plate impact experiments were conducted on high purity (99.99%) molybde-
num single crystals oriented along the [1 0 0] and [1 1 1] directions at DCS. The
ambient properties of the single crystals are displayed in Table 3.1. The mate-
rial was procured from Accumet Materials Co. (Ossining, New York) as a 20
mm diameter cylindrical stock and powder diffraction was conducted at Cal-
tech to quantify the misalignment of the crystallographic orientation. If the
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misalignment exceeded 2◦, the stock was cut into cylindrical discs at an angle
to correct the misorientation. The Mo stock was cut to discs after which they
were lapped flat and polished on one surface for in-situ XRD measurements.

A front surface impact configuration using polycarbonate window and reflec-
tion geometry XRD, was implemented for the plate impact experiments at
DCS (Figure 3.1a). Here, a 2.5 − 4 mm thick Molybdenum single crystal is
impacted onto a ∼ 1.5 mm polycarbonate window target at velocities ranging
from 1800 − 2800 m/s corresponding to elastic normal stresses of 8 − 19 GPa.
The polycarbonate window limits the achievable stresses in the experiment to
below 22 GPa due to the x-ray transparency issues at higher pressures. Regard-
less, this configuration was implemented rather than using the molybdenum
as a target with a window attached to its rear because the high impedance
of molybdenum requires a high impedance window such as c-cut sapphire. In
addition, the thickness of the sapphire window required to hold the pressure
would result in x-rays being fully absorbed by the window at the experimental
incidence angle.

Table 3.1: Material properties of single crystal molybdenum [32]

Orientation ρ [kg/m3] CL [m/s] Cs [m/s] a0 [Å] Vc [Å3]
[1 0 0]

10220 ± 60
6836 ± 44 3300 ± 14

3.147 31.1616[1 1 0] 6432 ± 3 3264 ± 4
[1 1 1] 6319 ± 8 3666 ± 5

The experiments were conducted using the powder and two-stage light gas
guns in Sector 35-Hutch E of the DCS using the 24 bunch mode and reflection
geometry in-situ x-ray diffraction (XRD) measurements. The white x-ray
beam was generated using a U17.2 undulator and focused to a beam size of
100 × 800 µm. The reflection geometry was conducted at an x-ray-to-gun
angle of θg = 10 − 11 degrees using a 120 mm scintillation screen. The x-ray
parameter details are displayed in Table 3.2 and the spectral scan of the x-rays
of the 24-Bunch mode for the different APS cycles are displayed in Figure 3.2.
Notice the x-ray spectrum is polychromatic, and varies depending on the APS
cycle. The polychromatic spectrum is necessary since the dynamic experiments
were conducted at a constant inclination angle (θg), thus, to obtain diffraction
spots for varying d-spacings, the wavelength must vary according to Bragg’s
law.
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Figure 3.1: Experimental configuration at the Dynamic Compression Sector.
(a) Schematic of the front surface plate impact and reflection geometry XRD
configuration and (b) distance-time (x − t) diagram indicating the designed
XRD frame capture times. Here, time t = 0 corresponds to the impact time
and the first XRD frame, not illustrated, is designed to be obtained prior to
impact at t = −100 ns.
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Table 3.2: Details of the x-ray diffraction experimental configuration.

Undulator Scintillator Size Diffraction Geometry Beam Size (Horizontal × Vertical)
U17.2 (24 KeV, 1st harmonic) 120 mm Reflection 100 µm ×800 µm

Figure 3.2: X-ray spectral scan for the 24-Bunch mode for various runs at
APS.

Four XRD frames were obtained in each experiment spaced 153.4 ns apart.
The front surface impact experiments were designed such that the first frame
was obtained before impact (t = −100 ns) to calibrate the Laue diffraction
spots due to potential rotation of the projectile as it traverses the barrel. The
last three frames are obtained at the Hugoniot state to understand the time
dependent response of the material from the movement of diffraction spots. At
the pressures of interest (8 − 19 GPa), an overdriven wave traverses the poly-
carbonate sample and thus, with the current design for frame capture times,
for the higher velocity experiments, only frame 2 and 3 capture the Hugoniot
state. The 4th frame captures the release behavior of the molybdenum which
provides important information on the elastic unloading behavior of the crys-
tals. Additionally, due to uncertainties in gun powder explosion, the actual
impact velocities deviated slightly from the desired values thus, in some exper-
iments, the first frame was captured immediately after impact resulting in the
4th frame capturing the release behavior even for lower pressure experiments.
This late impact complicates the analysis of the diffraction spots but this will
be discussed in later sections. The experimental design is illustrated in the
time distance (x − t) diagram in Figure 3.1b. Here, time t = 0 corresponds
to the impact time and the first XRD frame, not illustrated, is designed to be
obtained at t = −100 ns. Evolution of the laue spots from the XRD measure-
ments were analyzed by simulating the experimental conditions in MATLAB®
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to extract the lattice strains and stresses for both single crystal orientations.
This requires knowledge of the detector distances which were obtained using
a polycrystalline silicon standard prior to every shot and the diffraction pat-
tern was analyzed using a combination of Dioptas software [34] and in-house
polycrystalline XRD simulations. The full details of the silicon calibration is
described in Section 3.3.3.

In addition to the x-rays, macroscopic laser interferometry measurements were
conducted to relate the microscopic information from the XRD with these
continuum measurements. Aluminum was vapor deposited (300 nm thickness)
onto half the impact surface of the polycarbonate window. The transparent re-
gion of the window is used to extract the impact velocity and the deposited re-
gion is used to measure the in-material particle velocity using photonic doppler
velocimetry (PDV) [35].

3.3 Simulation

The framework presented below describes the simulation process for in-situ
x-ray diffraction (XRD) experiments conducted at the Dynamic Compression
Sector (DCS) at the Advanced Photon Source (APS). The goal was to ex-
tract the lattice strains and obtain the corresponding stresses to elucidate the
governing deformation mechanisms during the elastic to plastic transition in
molybdenum. This analysis was done using x-ray diffraction (XRD) simula-
tions using an in-house code developed in MATLAB® [36]. Prior to analyzing
the in-situ diffraction data, powder XRD simulations, also using MATLAB®,
were conducted on the silicon calibrant to determine the sample-to-detector
distances at the location of impact. Before the silicon simulations can be
conducted, the sample and detector coordinate system was established.

3.3.1 Coordinate System

The formulation for the XRD analysis begins with defining the coordinate
system shown in Figure 3.3. The coordinates were decomposed into two main
frames, global or laboratory (xi) and sample or local (x̂i). The analysis occurs
in the sample coordinate system however, for the final plotting of the detector
screen, a transformation to the global system is necessary.

Based on the definition, the rotation tensor to transform from sample coordi-
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Figure 3.3: Definition of the global (xi) and sample coordinates (x̂i)

nates (x̂i) to global coordinates (xi) is:

xi = Rgsx̂i (3.1)

where,

Rgs =


cos θ̂ 0 sin θ̂

0 1 0

− sin θ̂ 0 cos θ̂

 , θ̂ = 180◦ + θ. (3.2)

3.3.2 Detector Geometry

Figure 3.4: Geometry of the detector screen.

Before the diffraction frame work can be discussed, the geometry of the de-
tector must be defined. As seen in Figure 3.4, the coordinates of the detector
screen are defined from the top left corner. Next, the center of the circular
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detector screen are defined by the points (Zc, Yc), and the beam center as
(zc, yc). The beam center and the detector distance from the sample are de-
termined from the silicon calibration described in later sections. To replicate
the images captured during experiments, the screen size is xD

1 ∈ [0, 2048] and
xD

2 ∈ [0, 2048] where the numerical values are in pixels (px). Additionally, the
circular portion of the experimental images correspond to the detector screen
which is physically 120 mm in diameter. This indicates that the length per
pixel is lpp = 68.966 µm/px.

Effectively, when the x-ray unit diffracting vectors are calculated in simulation,
they are initially in the sample frame. These vectors are transformed into the
global frame using Eq. (3.1). Given the x2, and x3, the y- and z-components
of the diffracting unit vector, the conversion to the detector frame is:

z = zc + ⌈x3/lpp⌉ (3.3)

y = yc − ⌈x2/lpp⌉. (3.4)

To close out the discussion of the detector geometry, the feasible range of
diffraction (2θ) angles must be considered. This is best visualized in Figure
3.5.

Figure 3.5: Range of diffraction angles.

Using Figure 3.5, the following relation for the limit of 2θ angles of diffraction
are:

θu = tan−1[((zc − Zc)lpp+R)/d] (3.5)

θl = max(tan−1[((zc − Zc)lpp−R)/d], θ). (3.6)
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3.3.3 Silicon Calibration

Having established the detector geometry, the detector distance, and the x-ray
properties, one can now focus on extracting the information using the silicon
calibrant. An iterative process was conducted to accurately determine the
sample-to-detector distances, the detector center, and beam center. Since the
x-ray spectrum is polychromatic, an initial pass using a public domain software
Dioptas [34] and the peak wavelength of the spectrum was conducted. Using
the parameters obtained from this initial guess, the powder simulations were
conducted, which account for the entire wavelength spectrum, by varying the
detector distance slightly. The simulated diffraction pattern was compared to
the experimental image via azimuthal integration and the finalized detector
distance was considered to minimize the distance between the simulated and
the experimental peaks. An example of the azimuthally integrated profiles are
shown in Figure 3.6.

(a) (b)

Figure 3.6: Silicon calibration for Shot 21–05–56 used to determine the geo-
metrical detector parameters for the experiment. (a) Azimuthally integrated
silicon pattern and (b) overlay of the simulated pattern on the experimen-
tal data. Here, the obtained parameters were as follows: Detector Distance:
101.70 mm, Detector Center: (998 px, 1053 px), Beam Center: (1884 px, 1020
px).

Having established the silicon calibration, the next section focuses on the single
crystal Laue simulations for Mo and describes the procedure to extract the
strains from the experimental measurements.
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3.3.4 Initialization

The formulation for the code used to simulate the diffraction spots observed
for the single crystal molybdenum experiments is discussed. The procedure
for initializing the information on molybdenum (Mo), which is summarized in
Table 3.1, is described below.

Figure 3.7: Atoms arranged within the single crystal sample.

Consider the arrangement of atoms within the single crystal sample in Figure
3.7. The direction of compression and x-ray imaging occurs along the x̂3

direction. Therefore, the orientation of the crystal must be aligned to the axis
of compression. This can be done by first defining the orientation vector O

(e.g. O = [1 1 1]T ) and its unit vector as Ô = O/∥O∥. Given the sample
normal to be n̂ = [0 0 1]T , the rotation tensor is defined as follows:

v = Ô × n̂. (3.7)

The skew symmetric matrix is constructed using the components of v:

W =


0 −v3 v2

v3 0 −v1

−v2 v1 0

 . (3.8)

The rotation tensor can then be written as:

RO = I + W +
(

1 − (n̂ · Ô)
∥v∥2

)
W 2. (3.9)

Once the orientation of the sample has been aligned to the sample coordinate
system, an alternate set of rotation tensors need to be constructed to charac-
terize misorientation of the single crystal sample. Figure 3.8 illustrates this
concept.
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Figure 3.8: Misorientation of the atomic orientation to the sample axis.

Instead of using Euler angles, one can effectively construct a rotation tensor
about some vector x and by some angle ϕ in the sample frame to simulate the
realistic arrangement of the atoms using the Rodrigues’ rotation formula. The
rotation tensor can be constructed as follows:

u = x/∥x∥ (3.10)

W =


0 −u3 u2

u3 0 −u1

−u2 u1 0

 (3.11)

Rm = I + W sinϕ+ W 2 · 2 sin2(ϕ/2). (3.12)

3.3.5 XRD Theory

With the coordinate systems defined, the procedure to model the diffraction
spots of single crystal molybdenum can be formulated. This work follows
Chapter 6 from the textbook by Fultz [37] and starts by introducing the con-
cept of real and reciprocal space. For real space, consider a crystal lattice with
primitive translation vectors a1, a2, and a3. All lattice sites are obtained by
the translations r from a reference site at the origin:

r = ma1 + na2 + oa3

where m,n, o are independent integers. One can further decompose the loca-
tions of the atoms in the crystal into the following parts:

r︸︷︷︸
crystal

= rg︸︷︷︸
lattice

+ rk︸︷︷︸
basis

. (3.13)
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Here, the defects present in the sample are neglected. For a body-centered cu-
bic (BCC) crystal structure, the crystal structure can be treated as a composite
simple cubic structure where one basis starts at the origin of the defined coordi-
nate system (choosing some arbitrary atom) and the second basis is shifted to
the center atom in the crystal. Thus, the basis vectors are rk1 = 0a1+0a2+0a3

(the origin) and rk2 = 1
2a1 + 1

2a2 + 1
2a3.

Simultaneously the reciprocal space lattice vectors g are defined with the prim-
itive translation vectors a∗

1, a∗
2, and a∗

3. The primitive vectors are obtained
by

a∗
1 = 2π a2 × a3

a1 · a2 × a3
(3.14)

a∗
2 = 2π a3 × a1

a2 · a3 × a1
(3.15)

a∗
3 = 2π a1 × a2

a3 · a1 × a2
. (3.16)

Thus, the reciprocal vector is defined as

g = ha∗
1 + ka∗

2 + la∗
3 (3.17)

where h, k, l are integers and define the crystallographic Miller indices. Thus,
the scattering vector ∆k is defined as:

∆k = k − k0 (3.18)

where k is the diffracted wave vector and k0 is the incident wave vector. For
elastic scattering to occur, the magnitude of both the diffracted and incident
wave vectors must be the same and therefore, ∥k∥ = ∥k0∥ = 2π/λ. Addi-
tionally, it is important to declare that ∥∆k∥ = ∥k − k0∥ = 2∥k∥ sin(θ) =
4π/λ · sin(θ). These quantities will be explicitly defined for the diffraction
problem in the subsequent sections.

Since diffraction is a wave interference phenomenon, the diffracted intensity is
defined as Iscatt = ψ∗ψ. Consider the expression for scattered wave [37]:

ψ(∆k) =
∑
rg

e−i2π∆k·rg

︸ ︷︷ ︸
S(∆k)

∑
rk

fat(rk)e−i2π∆k·rk

︸ ︷︷ ︸
F(∆k)

(3.19)
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here, S(∆k) is the shape factor and F(∆k) is the structure factor. One can
show that diffraction occurs when the Laue condition, ∆k = g, is satisfied.
For this case, since the system is considered as a composite simple cubic (SC),
it turns out that SSC(∆k) = N . If there is any deviation from an ideal lattice,
one must account for the deviation vector which complicates the determination
of the shape factor. This discussion is neglected and the reader is directed to
the textbook by Fultz [37]. Here, the shape factor is neglected and considered
that the scattering intensity scales as Iscatt ∝ |F(∆k)|2.

The structure factor must now be determined to close this discussion. For a
BCC lattice, there are two basis vectors. Thus, the two terms in the expression
defined in Eq. (3.19) is summed and the Laue condition ∆k = g is employed.
This yields

Fbcc(∆k) = fat(0)e0 + fat

(1
2 ,

1
2 ,

1
2

)
e−i2π(h 1

2 +k 1
2 +l 1

2). (3.20)

For a pure metal such as molybdenum, the atomic form factor at both of the
basis vectors will be the same since the atoms at these locations are the same.
Therefore, Eq. (3.20) reduces to the expected:

Fbcc(∆k) = 2fat, h+ k + l = even number. (3.21)

Here, the atomic scattering factor, fat, is tabulated for most materials as a
function of s = ∥∆k/4π∥ = sin(θ)/λ. Since x-ray spectrum is polychromatic,
the atomic scattering factors must be determined for each wavelength.

3.3.6 XRD Simulation

With the fundamentals established, the formulation is specialized for the spe-
cific experimental configuration at the Dynamic Compression Sector (DCS).
Consider the coordinate system in Figure 3.3. In the global coordinate sys-
tem, incident wave vector is defined as a function of wavelength λi to be
k0 = 2π/λix1 + 0x2 + 0x3. Working in the sample coordinate system is con-
venient thus, a rotation using RT

gs (Eq. (3.1)) and a gun angle of θg = 11◦ is
conducted to obtain,

k0i = 2π/λi [− cos(11◦)x̂1 + 0x̂2 + sin(11◦)x̂3] . (3.22)
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In addition to the incident wave vector, the known scattering wave vector is
defined:

∆ka
i = hia

∗
1+kia

∗
2+lia∗

3, h, k, l = −5,−4, ..., 5 and i = 1, ..., 1331. (3.23)

For simplicity, it is assumed that the lattice in the reciprocal space only spans
the first 5 Miller indices. This defines the crystal in the reciprocal space and
one can use structure factor calculations (Eq. (3.20)) to reduce the indices
to only the ones that satisfy the diffraction rules for BCC structure. Next,
these scattering vectors must be rotated to account for the orientation of the
crystal, Eq. (3.9), based on the experimental configuration. Simultaneously,
any misorientation of the crystal through rotation along the sample coordinate
(x̂i) system is accounted for using Eq. (3.12). Thus,

∆ki = 2π
a0

Rz(ϕ)Rx(θ2)Ry(θ1)RO∆ka
i (3.24)

where a0 corresponds to the initial lattice parameter and θ1, θ2, ϕ, correspond
to the misorientation angles along x̂2, x̂1, x̂3, respectively. Using the scattering
vector, the atomic structure factor is obtained by first evaluating the d-spacing,
dhkl = 2π/∥∆ki∥, followed by calculating s = 1/(2dhkl) from which the atomic
scattering factor, fat, is determined. As an aside, note the diffraction angle (2θ)
can be determined using the expression λi/(4π)·∥∆ki∥ = λi/(2dhkl) = sin(2θ).

The detector essentially displays the diffracted wave vectors, k. Thus, by
rearranging Eq. (3.18),

ki = ∆ki + k0i, i = 1, ..., 1331. (3.25)

Here, the determined diffracted wave vectors are in the sample frame. Also, as
mentioned earlier, XRD deals with elastic scattering and thus the L2-norm of
these vectors must equal ∥ki∥ = 2π/λi similar to the incident wave vector k0i.
Based on Eq. (3.25), it is not guaranteed that all vectors satisfy the constraint
for the norm thus, only the diffracted vectors and their corresponding indices
that satisfy the criteria 0.999 ≤ ∥ki∥/(2π/λi) ≤ 1.001 are considered. This
is another way to say the diffraction occurs only when the Ewald condition is
satisfied.
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The diffracted vectors can now be rotated back onto the global coordinates
(xi) and projected onto the detector. However, after applying the appropriate
rotation, the vectors must satisfy additional constraints. These constraints are
defined due to the physical geometry of the detector and the directionality of
the diffracted wave vector. Therefore, the allowable diffracted wave vectors
and the respective diffraction angles, θi, are

ki, θi s.t.



2θi ≤ θu

2θi ≥ θl

h = k = l ̸= 0
ki

∥ki∥ · x1 > 0∑
i(ki · k0i) ̸= 0

. (3.26)

With the allowable vectors determined, a corresponding intensity is assigned
to these vectors using

Ii = I0i(λi)|F(∆k)|2e−[LMo/AMo(λi)+LPC/APC(λi)] (3.27)

where, I0i(λi) is the intensity of the spectrum corresponding to the x-ray wave-
length, LMo is the x-ray penetration depth in the molybdenum, LPC is the
thickness of the polycarbonate window, AMo(λi) is the attenuation coefficient
of molybdenum for a given wavelength, and APC(λi) is the attenuation co-
efficient for polycarbonate. Given the allowable diffracted wave vectors and
their corresponding intensities, these quantities are projected onto a virtual
detector.

To simulate the detector screen, the diffracted wave vectors were first projected
onto the plane of the detector given the detector distance and the location of
the beam center. Next, the intersection of the vectors with the detector plane
were converted into a pixel coordinate system after which a Gaussian filter with
a FWHM was applied to emulate the x-ray broadening from the detector. This
was done using Eqs. (3.3) and (3.4) where the input was R0. It is important
to point out that the pixel coordinates of R0 that exceed the limit of the image
and the values outside of the detector circle were neglected.
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3.3.7 Lattice Strains

Once the general methodology for simulating the diffraction patterns is estab-
lished, these simulations are used to extract the lattice strains and rotations
for which the procedure is described below. The formulation here was based
on the notes by Miller [38].

This discussion begins by assuming that a deformation gradient F ij takes a
vector from the undeformed sample coordinate system x̂i to the deformed
sample coordinate system ŷi through the operation

ŷi = F ijx̂j. (3.28)

Recall that the crystal lattice was defined in the ai basis and thus, after some
applied deformation, the deformed lattice (ad

i ) can be expressed as

ad
i = F ijaj. (3.29)

For convenience, the lattice is defined in the reciprocal space. The relation be-
tween the deformed crystal lattice in the reciprocal space and the undeformed
can be shown by substituting Eq. (3.29) into Eqs. (3.14), (3.15), and (3.16)
and invoking vector identities. This relation simplifies to

ad∗
i = F −T a∗

i . (3.30)

Using the expression for the scattering vector, the expression for the diffracted
vector is rewritten as follows:

ki = F −T ∆ki + k0i. (3.31)

With this established, the goal is to determine the deformation gradient that
describes the shifting of the Laue diffraction spots observed in the experimental
images. This can be done by converting to an optimization problem using the
simulations developed for molybdenum here. First, the expression for the
diffracted wave vectors is rewritten as a function of wavelength by splitting its
magnitude and direction:

ki(λn) = k̂i

∥∥∥F −T ∆ki + k0i(λn)
∥∥∥ (3.32)
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where, k̂i corresponds to the direction of the diffracted wave vector.

The methodology goes as follows. First, a Lorentzian fit is applied to the ex-
perimental images to determine the pixel location corresponding to the peak of
each diffraction spot, Fig. 3.9. Next, given the known calibration parameters
and the pixel coordinates of the spots, the unit diffracted wave vectors (direc-
tions) are determined through an inverse mapping from the detector (see Fig.
3.10). Note there is however an inherent uncertainty to this methodology be-
cause multiple k̂i vectors could be mapped to the same pixel on the detector if
the variations are very small. Once the diffraction vectors are determined, the
goal is to find the deformation gradient that minimizes the following objective
function which is essentially a restatement of Eq. (3.31):

O = min
F −T

(
M∑

i=1

N∑
n=1

∥∥∥F −T ∆kn − k̂
n∥∥∥F −T ∆kn + kn

0 (λn
i )
∥∥∥+ kn

0 (λn
i )
∥∥∥) (3.33)

here, N corresponds to the number of diffraction spots and M corresponds
to the number of wavelengths in the spectrum. This minimization problem is
conducted using the fmincon function in MATLAB® [36]. Validation of this
technique is presented in the following section.

Figure 3.9: The centroid of the diffraction spots along the (a) x-pixel direction
and (b) the y-pixel direction are determined using the Lorentzian function
fits. (c) These centers are plotted on a representative XRD image from an
experiment.

3.3.8 XRD Verification

The verification of this technique using the simulation environment and vir-
tually applied deformations is presented next. For the first test case, no con-
straints on the deformation gradient are assumed and all nine components of
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Figure 3.10: Inverse mapping of the unit diffracted wave vectors from the
detector images used for the optimization procedure for determining the de-
formation gradient.

the tensor are determined using 9 diffraction spots. The second validation
case assumes that the material undergoes small strains. Thus, using a linear
approximation, the 6 components of the symmetric deformation gradient are
determined. Lastly, since a typical experiment on molybdenum yields two
to four diffraction spots, an additional constraint is applied to simplify the
deformation gradient. These will now be discussed in detail.

Table 3.3: Summary of the validation tests for the optimization scheme.

Parameter 9 Spots 6 Spots 3 Spots
Detector Distance 50e3 µm 75e3 µm 100e3 µm
θ1 0◦ 0◦ 0◦

θ2 0◦ 0◦ 0◦

ϕ 0◦ 0◦ 0◦

Beam Center (1883 px, 1022 px) (1883 px, 1022 px) (1883 px, 1022 px)
Detector Center (1000 px, 1051 px) (1000 px, 1051 px) (1000 px, 1051 px)
Orientation [1 0 0] [1 0 0] [1 0 0]

Deformation Gradient F =

1 0 0
0 1 0.005
0 0 0.95

 F =

1 0 0
0 1 0.005
0 0.005 0.95

 F =

1 0 0
0 1 0.005
0 0.005 0.95



Example: 9 Diffraction Spots

The deformation gradient shown in Table 3.3 is imposed within the simula-
tion. Since the deformation gradient is known, the minimization problem can
be solved to recover the same deformation gradient using the methodology
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Figure 3.11: Simulated diffraction spots for the 9-spot case.

described above. For this example, no constraints are imposed on the ob-
jective function since there are 9 spots and there are 9 components of the
deformation gradient. Note for the simulation, the values of the x-ray wave-
lengths that allow us to minimize the objective are already known. However,
for an actual experiment, a series of wavelengths need to be iterated between
to obtain the optimal solution to the objective function. This means one must
determine both the wavelength and the deformation gradient that minimizes
the objective.

For this particular example, the optimal deformation gradient is

F in =


1 0 0

0 1 0.005

0 0 0.95

 , F out =


1.0054 0.0008 −0.0003

0.0007 1.0002 0.0042

−0.0002 −0.0004 0.9514

 . (3.34)

Notice how different the above computed deformation gradient (F out) is com-
pared to the imposed (F in). As stated earlier, this is because multiple diffracted
wave vectors, k, can be mapped to the same pixel on the detector. Thus, when
projecting the detector spots back to the sample, since each pixel corresponds
to 68.966 µm of displacement physically, there is an inherent error in the con-
verged solution.
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Example: 6 Diffraction Spots

In a typical experiment, depending on the material and the x-ray beam proper-
ties, obtaining 9 diffraction spots may be difficult. Additionally, elastic strains
in these shock experiments at low pressures may not be significant and thus, it
is convenient to use the linearized approximation for the deformation gradient,
F = I +ε. Here, ε is the infinitesimal strain tensor thus, due to its symmetry,
the number of unknowns drop from nine to six. This means an additional
constraint must be applied to ensure a symmetric deformation gradient from
the converged solution. An example using this assumption and constraint is
presented below. For the imposed deformation gradient, the diffraction spots
obtained are

Figure 3.12: Simulated diffraction spots for the 6-spot case.

With this, the output optimized deformation gradient is,

F in =


1 0 0

0 1 0.005

0 0.005 0.95

 , F out =


1.0024 −0.0004 −0.0009

−0.0004 1.0002 0.0052

−0.0009 0.0052 0.9508

 . (3.35)

Note the deformation gradient from the converged solution to the objective
still has an inherent uncertainty to the values but they become lower due to
the imposed constraints.
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Example: 3 Diffraction Spots

In a typical experiment, the number of diffraction spots that are obtained
are on the order of 2-4 depending on how much the impactor rotates as it
travels along the barrel. This provides less data for obtaining the deformation
gradient and thus an additional constraint is imposed. Since plate impact
experiments are typically under uniaxial strain conditions macroscopically, a
plane strain constraint is imposed on the system. Thus for this case, the
simulated diffraction spots and the calculated deformation gradient are:

Figure 3.13: Simulated diffraction spots for the 3-spot case.

F in =


1 0 0

0 1 0.005

0 0.005 0.95

 , F out =


1.0000 0.0004 0.0004

0.0004 1.0003 0.0050

0.0004 0.0050 0.9504

 . (3.36)

Notice the output deformation gradient (F out) almost perfectly matches the
imposed conditions (F in). The possible reason for this result is once again due
to the symmetry constraints imposed while simultaneously, the components
0.999 ≤ F 11 ≤ 1.001, −0.0005 ≤ F 12 ≤ 0.0005 and −0.0005 ≤ F 13 ≤ 0.0005
are constrained due to plane strain conditions. These bounds are simply for
numerical reasons. Additionally, since the number of diffraction spots in this
test case are less than previous validation simulations and thus, the overall
error contribution from the inverse diffracted wave vector mapping is reduced.
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3.3.9 Stress Calculations

Using the deformation gradients, the stress tensor can be determined. The
Lagrangian elastic strain tensor is defined as:

Ee = 1
2
(
F T

e F e − I
)
. (3.37)

Using this, the stress tensor is

σij = CijklE
e
kl (3.38)

here, Cijkl is the elasticity moduli tensor of molybdenum and is rotated ac-
cordingly depending on which orientation is being loaded in the experiment.
The moduli tensor for the [1 0 0] and [1 1 1] orientations, respectively, are (units
of GPa):

C
[1 0 0]
ij =



466.1 162.6 162.6 0.0 0.0 0.0

162.6 466.1 162.6 0.0 0.0 0.0

162.6 162.6 466.1 0.0 0.0 0.0

0.0 0.0 0.0 109.5 0.0 0.0

0.0 0.0 0.0 0.0 109.5 0.0

0.0 0.0 0.0 0.0 0.0 109.5


(3.39)

C
[1 1 1]
ij =



423.8 176.7 190.8 −14.1 14.1 0.0

176.7 423.8 190.8 14.1 −14.1 0.0

190.8 190.8 409.7 0.0 0.0 0.0

−14.1 14.1 0.0 137.7 0.0 −14.1

14.1 −14.1 0.0 0.0 137.7 −14.1

0.0 0.0 0.0 −14.1 −14.1 123.6


. (3.40)

The resolved shear stresses (τrss) are extracted using,

τrss = n̂k · σb̂k (3.41)
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where, n̂ is the twin plane normal, and b̂ is the twinning shear direction.

When twinning occurs, a multiplicative decomposition of the deformation gra-
dient (F = F eF t) is employed where F e is the elastic deformation gradient
and F t is the twinning deformation gradient. The twinning deformation gra-
dient is expressed using

F t = I + γb̂ ⊗ n̂ (3.42)

where, I is the identity tensor, γ = 1√
2 is the twinning shear magnitude for

molybdenum [39].

3.4 Results and discussions

Front surface impact experiments were conducted using Molybdenum single
crystal impactors and a polycarbonate target which also acts as a window
for interferometry. A summary of the results and the window corrected free
surface velocities are displayed in Table 3.4 and Figure 3.14, respectively.

Table 3.4: Summary of experimental results for Mo single crystals using both continuum and XRD
analysis.

Experiment Orientation
Sample

Thickness
[mm]

Window
Thickness

[mm]

Impact
Velocity

[m/s]

up

[m/s]

Normal
Stress
[GPa]

1st Frame
[ns]

σvm

[GPa]

Mo100-10-1 [1 0 0] 2.490 ± 0.001 1.498 ± 0.001 1818.9 1668 9.04 -11.0 —
Mo100-10-2 [1 0 0] 2.490 ± 0.002 1.468 ± 0.004 1762.3 1617 8.63 18.0 4.6e9 ± 2.2e9
Mo100-10-3 [1 0 0] 4.045 ± 0.001 1.508 ± 0.001 1809.6 1658 8.97 27.2 4.9e9 ± 2.8e9
Mo100-15-1 [1 0 0] 2.499 ± 0.001 1.511 ± 0.001 2315.7 2095 13.01 29.0 6.4e9 ± 4.3e9
Mo100-20-1 [1 0 0] 2.525 ± 0.002 1.507 ± 0.003 2994.6 — — 68.4 —
Mo100-20-2 [1 0 0] 4.066 ± 0.001 1.512 ± 0.002 2849.7 2540 17.85 52.4 3.9e9 ± 0.8e9
Mo111-10-1 [1 1 1] 4.047 ± 0.005 1.526 ± 0.001 1842.2 — — -56.0 —
Mo111-10-2 [1 1 1] 4.050 ± 0.002 1.497 ± 0.002 1809.6 1662 9.00 -40.0 3.1e9 ± 1.5e9
Mo111-15-1 [1 1 1] 4.045 ± 0.003 1.469 ± 0.002 2341.3 2114 13.22 -91.0 3.8e9 ± 0.9e9
Mo111-15-2 [1 1 1] 3.966 ± 0.003 1.506 ± 0.001 2338.9 2114 13.20 -33.1 —
Mo111-20-1 [1 1 1] 4.028 ± 0.003 1.514 ± 0.001 2965.9 2637 19.00 14.7 —
Mo111-20-2 [1 1 1] 4.017 ± 0.004 1.481 ± 0.002 2703.2 2421 16.49 -72.9 5.5e9 ± 1.3e9
Mo111-20-3 [1 1 1] 4.055 ± 0.004 1.476 ± 0.001 2852.0 2543 17.88 -15.5 4.5e9 ± 2.1e9

** The samples refer to molybdenum (Mo) impactors
** σvm corresponds to the von Mises stress obtained from diffraction data

Since the interferometry measurements were conducted through the polycar-
bonate window, the change in index of refraction of the polycarbonate needs to
be accounted for in the velocity analysis. This is done using the standard win-
dow analysis by Barker and Hollenbach [40] and using the index of refraction
coefficients from Hawreliak et al. [7]. The equations are as follows:
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Figure 3.14: Corrected particle velocity measurements conducted using pho-
tonic Doppler velocimetry (PDV) for molybdenum (Mo) along (a) [1 0 0] and
(b) [1 1 1] orientations.

u(t) = ua(t) + Us(n1 − n0)
n1

. (3.43)

Here, u(t) corresponds to the corrected out-of-plane particle velocity of the
sample, ua(t) is the apparent velocity or the velocity calculated assuming no
window is present, Us is the shock wave velocity in the window material ob-
tained from the wave arrival at the polycarbonate free surface using raw fre-
quency data, n0 is the ambient index of refraction of polycarbonate, and n1 is
the index of refraction in the compressed region of the window. The index of
refraction scales as a function of density, ρ, such that n = a + bρ. From [7],
we use a = 0.9 and b = 0.5528 which are fitted coefficients from calibration
experiments. While these are purely continuum results, the more important
information from these experiments is the x-ray data.

The representative diffraction spots for molybdenum shocked at ∼ 10 GPa
and ∼ 20 GPa on are shown in Figure 3.15. During the shocked state, since
the material undergoes compression, the crystallographic d-spacing tends to
decrease resulting in the spots shifting to higher azimuthal angles based on
Bragg’s law. This is illustrated in the diffraction data in Figure 3.15b. The
radial and azimuthal shift of the Laue spots contain information on the elastic
lattice strains and rotations in the material. It can be shown that the ambi-
ent scattering vector ghkl in the reciprocal space is related to the scattering
vector of the deformed lattices, gd

hkl, through the deformation gradient (F ),
gd

hkl = F −T ghkl [38]. Since each experiment typically contains two to four
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diffraction spots and plate impact experiments are conducted under uniaxial
strain conditions, an infinitesimal strain (ε) linearization (F = I + ε) and
plane strain assumption was employed to uniquely determine the elastic strain
tensor.

Figure 3.15: Summary of experimental results. (a)-(d) Experimentally ob-
tained XRD frames which show both spots shifting due to compression and
deformation twinning at higher pressure during the unloading. The diffraction
spots are labeled using (e)-(h) for the respective XRD simulations incorporat-
ing both compression and twinning behavior. (i)-(j) The interferometry data
is also shown indicating the time instances of XRD frame captures.

XRD simulations were conducted for all experiments from which we conclude
that the shock compression behavior of molybdenum single crystals is gov-
erned by dislocation slip regardless of crystal orientation and impact stress.
To further investigate this observation, the resolved shear stresses along the
{1 1 0}⟨1 1 1⟩ and {1 1 2}⟨1 1 1⟩ slip systems were calculated and plotted in Fig-
ure 3.16. It is apparent that both these systems are active at the Hugoniot state
for the two orientations where the {1 1 0}⟨1 1 1⟩ contributes to slip in the anti-
twinning sense and {1 1 2}⟨1 1 1⟩ in the twinning. Additionally, the resolved
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shear stress magnitude are similar for both orientations with the {1 1 2}⟨1 1 1⟩
system being the most active. This explains the consistent peak Hugoniot
velocity observed from the continuum measurements for both orientations for
the same impact velocity and matches previous work by Oniyama et al. [33].
They reported the shock velocity-particle velocity (Us − up) equation of state
for the different molybdenum crystal orientations were very similar to within
experimental uncertainty similar to previous literature on FCC metals such as
copper [41] and aluminum [42]. This implies that while single crystals exhibit
orientation dependence at the elastic limit, no anisotropy may be present for
the Hugoniot response of cubic crystals.

Figure 3.16: Resolved shear stress (τrss) along the 12 different {1 1 0}⟨1 1 1⟩
and {1 1 2}⟨1 1 1⟩ slip systems of BCC single crystal for orientations, [1 0 0] and
[1 1 1] molybdenum crystals at pressures ranging from 10 − 20 GPa. Only the
data above the critical resolved shear stresses (dashed lines) are shown.

While the experiments in this study probed the diffraction spot evolution at
the Hugoniot state, using the resolved stresses in Figure 3.16, we anticipate
the anisotropy at the elastic limit could stem from the larger number of slip
systems activated for [1 0 0] orientation seen for the lowest stress experiment
(∼ 9 GPa) which are the closest to the elastic limit of the two orientations. An
alternate possibility is related to the cubic symmetry of the stiffness tensor. For
example, consider a uniaxial elastic strain of 1% for both the [1 0 0] and [1 1 1]
single crystals. The maximum and minimum principal stress for the [1 0 0] is
466 MPa and 163 MPa, respectively, whereas for [1 1 1] it is 410 MPa and 191
MPa. This clearly implies that the shear stresses along the [1 0 0] orientation
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will be larger due to the anisotropy in the stiffness tensor and thus, justifies
the observed lower elastic limit than for the [1 1 1] orientation. Using this
argument, the previous anisotropy in the elastic limit is justified as the lattice
strains obtained for these experiments on [1 0 0] and [1 1 1] molybdenum were
comparable at similar pressures. Thus, larger shear strains were present for
the [1 0 0] crystals than the [1 1 1] and is illustrated in Figure 3.16.

At the highest pressures (> 16 GPa), during unloading, new diffraction spots
were observed along with preexisting spots splitting up. An example of this is
shown in Figure 3.15d. This indicates that deformation twinning, which has
been previously observed for shock compressed molybdenum [23, 24], governs
the unloading behavior of Mo single crystals similar to what was observed
for magnesium [43]. To determine the relevant twin systems, an additional
contribution to the deformation gradient from twinning, F t, was incorporated
in the simulations such that F t = I + γb̂ ⊗ n̂. Here, I is the identity tensor,
γ = 1√

2 is the twinning shear magnitude [39], and n̂ and b̂ are the twin
plane normal and the twinning shear direction, respectively. The simulated
diffraction with twinning is shown in Figure 3.15h. By iterating through all
the possible {1 1 2}⟨1 1 1⟩ systems from Figure 3.16, it was determined that
twinning in both [1 0 0] and [1 1 1] molybdenum always occurred along the
{1 1 2}⟨1 1 1⟩ system. This is consistent with the largest resolved shear stress
observed along this system for all crystal orientations (Figure 3.16).

Multiple factors contribute to the nucleation and propagation of deformation
twinning in BCC crystals such as pressure, strain rate, pre-straining, and grain
size. Here, the Mo are single crystals and hence the grain size, d can be as-
sumed to be infinite. Thus, by the Hall-Petch scaling relation d−1/2 [14, 39,
44], larger grain sizes correspond to lower twinning shear stress. It was previ-
ously determined, using DFT calculations [45, 46], that a shear stress of 1.4
GPa is sufficient to nucleate twins. While the magnitude of resolved shear
stress along the {1 1 2}⟨1 1 1⟩ system is beyond this critical value during com-
pression, here, twinning only occurs during shock release. During unloading,
the macroscopic normal stress decreases faster than the lateral stresses which
results in a reverse yielding. Additionally, during release, the shear stress along
the {1 1 2}⟨1 1 1⟩ system reverses in direction. Since twinning is polarized [39]
unlike slip, the reversal in direction due to unloading is critical to induce the
nucleation of twins.
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The passage of the compressive shock wave contributes to pre-straining and
produces homogeneous nucleation of dislocations [39, 44]. Earlier work on
shock compressed molybdenum and post-mortem TEM analysis by Mahajan
et al. [23] demonstrated that homogeneous dislocation field and pre-straining
suppresses the formation of twins. However, during unloading, dislocation
annihilation tends to occur [14, 44] potentially generating a heterogeneous
distribution similar to what Mahajan et al. [23] observed in their shock re-
covered samples. With regards to pre-straining, Christian et al. [39] claim
that the amount of pre-straining required to suppress twinning depends on
the strain rate. Since the strain rates during release in our experiments are
lower than during compression but still beyond 105 s−1, this may be sufficient
to reduce the effect of pre-compression due to the shock wave. Additionally,
based on the experiments conducted here, both shock and release behavior
of molybdenum at lower pressure is primarily governed by dislocation slip,
however, the critical pressure describing the slip-to-twin transition [44] occurs
around 16 GPa. This is much lower than the transition pressure for [0 0 1] cop-
per [44] possibly due to the higher stacking fault energies in FCC metals. On
the contrary, previous work by Wongwiwat et al. [24] and Mahajan et al. [23]
observed twinning at lower pressures for polycrystalline Mo based on recovered
samples possibly due to higher deviatoric stresses from grain boundary inter-
actions. This is consistent with what is observed for iron single crystal where
the critical stress to induce phase transformation was lower for polycrystalline
iron due to generally higher deviatoric stresses present than [1 0 0] iron [47].

3.5 Conclusion

In summary, plate impact experiments with real-time x-ray diffraction were
conducted for the first time to characterize the deformation mechanisms gov-
erning the elastic-plastic compression of molybdenum single crystals. We ob-
serve that the shock compression and release behavior is dominated by dis-
location slip along {1 1 0}⟨1 1 1⟩ and {1 1 2}⟨1 1 1⟩ slip systems for both [1 0 0]
and [1 1 1] crystal orientations. However, at normal stresses beyond 16 GPa,
{1 1 2}⟨1 1 1⟩ twins are nucleated during unloading. This explains why the
loading orientation does not effect the Hugoniot response and the anisotropy
only affects the elastic-plastic transition. Future works will aim to explore the
shock-and-release behaviors at higher stress, at varying strain rates, and at
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varying pulse duration to better characterize the mechanisms contributing to
the onset of twinning and understand its role on material strength. Addition-
ally, exploring the role grain boundaries on the elastic-to-plastic transition and
the shock-release behavior would be an interesting next step.
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C h a p t e r 4

CONCLUSIONS

4.1 Summary

In this thesis, the governing deformation mechanisms, such as elastic-plastic
transition under uniaxial strain conditions and the role of phase transformation
on dynamic strength, in shock compressed body-centered cubic crystals is
investigated. Iron and molybdenum are chosen as representative BCC metals
to study these phenomena due to the well known phase transformation of iron
at 13 GPa of pressure and availability of molybdenum single crystals in high
purity form to study key mechanisms governing plasticity.

In Chapter 2, the role of phase transformation on the evolution of the yield
strength of iron at pressures ranging from 10-42 GPa is explored. This is done
using high pressure-pressure shear plate impact experiments where a thin iron
sample is sandwiched between two tungsten carbide anvils to decouple the
role of compression and shear. Using the measured normal and transverse free
surface velocity coupled with finite element simulations, the shear strength
of iron in its α- and ϵ-phase was obtained as a function of strain, pressure,
and temperature. It was observed the strength of iron in its phase transformed
state, 2.53 GPa, was more than twice that of the material in its ambient phase,
1.04 GPa, potentially due to the microstructure evolution during phase tran-
sition and the dynamic Hall-Petch effect. Lastly, it was shown that the cur-
rent strength model for ϵ-iron significantly under-predicted previous dynamic
strength models which postulate material strength to the cusp of theoretical
limits.

Finally, in Chapter 3, the elastic-to-plastic transition and the Hugoniot behav-
ior of BCC metals, specifically molybdenum, on an atomic scale using real-time
Laue x-ray diffraction, is investigated. Molybdenum single crystals oriented
along the [1 0 0] and [1 1 1] directions are impacted onto a polycarbonate win-
dow at velocities ranging from 1800 to 2800 m/s corresponding to pressures of
9−19 GPa. While the elastic limits are affected by the crystal orientation, the
Hugoniot steady state behavior is independent of the crystal axis as dislocation
slip along {1 1 0}⟨1 1 1⟩ and {1 1 2}⟨1 1 1⟩ systems governs shock compression
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for all single crystals. Interestingly, deformation twinning is observed for both
[1 0 0] and [1 1 1] molybdenum upon shock release beyond a critical Hugoniot
stress of 16 GPa possibly due to reversal of shearing direction and dislocation
structure evolution. However, it is still unknown what the exact reasons for
why twinning only occurs during release and what governs the critical stress.

Based on the investigations undertaken in this thesis, it becomes apparent
there are mechanics and physics still unexplored regarding the deformation
behavior and phase transformation of BCC crystals. These are outlined in the
next section.

4.2 Future work

4.2.1 Pressure Dependent Shear Modulus of Iron

It was previously shown that pressure effects on yield strength are more sig-
nificant than strain-rate dependence under these condensed matter states [1].
However, it is generally difficult to characterize the pressure dependence on
yield strength as inelasticity is associated with deviatoric components of stress.
However, elastic wave speeds and thus elastic constants, such as shear modulus,
have an inherent pressure dependence which indirectly relate the pressure and
yield strength. PSPI experiments shown in Chapter 2 on phase transformed
ϵ-iron have shown a significant strength increase compared to its ambient α-
phase with a change in the pressure dependent yield strength scaling as a
possible key mechanism. To further explore this topic, pressure shear plate
impact experiments with window interferometry can be conducted to probe
the pressure-dependent longitudinal and shear wave speeds of iron upon phase
transformation.

Essentially, a symmetric iron impact with a c-cut sapphire window can be
conducted at a low skew angle of approximately 3◦. The impedance match with
iron, and its low index of refraction sensitivity to density makes c-cut sapphire
an ideal optical window. A diffraction grating would be sandwiched between
the iron sample and a c-cut sapphire window which enables measurement of
in-material normal and transverse particle velocities. The shear wave arrival
time at the sample-window interface can be used to extract the shear modulus
data at constant pressure. Simultaneously, the arrival time of the normal
release wave from the impact surface provides information on the longitudinal
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moduli at constant pressure.

Here, the diffraction grating is the most critical element, however, also the
most challenging to implement as it is no longer at the free surface and must
now withstand the large stresses from the shock wave. Thus, to mitigate
damage during the experiment, a metallic grating must be used due to its
high strength and stiffness compared to conventional polymer gratings. This
introduces additional challenges in manufacturing, i.e., additional steps such
as lift-off process using electron-beam lithography and increased attention to
detail. Finally, to further protect the grating, specifically during the sand-
wich process, an Al2O3 layer must be deposited which acts as a buffer for the
sapphire (Al2O3) window.

These experiments provide information on pressure dependent elastic con-
stants and on the forward-reverse transformation under multi-axial states, due
to shear, via wave speeds. Ultimately, these data can be used to develop a
more robust strength model close to the transition pressure instead of extrap-
olating parameters from quasi-static experiments conducted at pressures an
order of magnitude higher. In addition, these data can aid in developing a
more robust EOS and kinetics based phase transformation model.

4.2.2 Shear-Induced Phase Transformation

The role of deviatoric stresses on the solid-solid phase transformations of quasi-
static and shock compressed metals has been an unanswered question that
has received significant attention in recent years [2–5]. While this provides
a fundamental understanding of the phase stability, hysteresis loop, phase
transition kinetics, and expands the P − T space into a third shear stress (τ)
axis, there have been no experimental quantification on the role of shear on
phase transformation. However, this serves as a natural extension to work
presented in both Chapter 2 and 3. For example, the questions regarding
whether the ϵ-phase can be initiated at a pressure lower than 13 GPa or
whether the reverse transition can be delayed are important to understand the
high strength and stiffness of this phase. This can be achieved by extending
the pressure shear plate impact (PSPI) experiments to thin samples (∼ 5 µm)
achieved via sputtering or electron beam deposition, and higher inclination
angles (18◦ − 25◦) using elastic anvils such as sapphire. Experiments would be
conducted at impact stresses ranging from 9-12 GPa, which are close to the
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initiation pressure, and the evolution of transverse velocity measured (thus
shear stress vs. strain curve) at the anvil free surface can be used to predict
the phase transition. This requires the anvils to remain elastic such that the
shear wave dissipation only occurs while it traverses the sample and the elastic
governing equations (Eqs. (1.9)) can be used to accurately determine the shear
stress as a function of time.

Using the above methodology, the phase transition is assumed from continuum
measurements but a more discrete method would require extending the work
in Chapter 3 using dynamic XRD. At The Dynamic Compression Sector at
APS, only normal plate impact experiments can be conducted, however, one
can use anisotropic crystals to generate a quasi-shear shear wave onto the
sample of interest. For example, a polycrystalline iron can be sandwiched
between a y-cut quartz front anvil and a c-cut sapphire rear anvil at DCS
and transmission geometry would have to be employed to reduce the x-ray
attenuation through the quartz and sapphire. Since iron is polycrystalline,
the formation and annihilation of diffraction rings at impact stresses ranging
from 10 − 20 GPa can be used to determine the initiation, stability, volume
fraction, and evolution of the phase transformation.

These experiments can significantly extend our understanding of the kinet-
ics, strain rate dependence on strength, and the effect of phase transition on
strength for more accurate material models involving these phase transforma-
tion phenomena.

4.2.3 Shock Recovery Experiments

As shown in Chapter 3, BCC metals may undergo deformation twinning upon
release thus altering the microstructure and possibly material properties. Ad-
ditionally, in Chapter 2, it the iron material at 15 GPa was inferred to be
approximately 78% ϵ-phase using models derived from normal impact experi-
ments which could differ since the state of stress was not uniaxial in our exper-
iments. The questions of interest then are, why the molybdenum twins only
during shock release and how this formation of twinning alters the mechanical
properties of the shocked BCC crystal. Alternatively, the volume fraction of
twinning observed for shock recovered iron samples can be used to approxi-
mate the volume fraction of phase transformation in the material under these
multiaxial stress states. To understand the kinetics for twinning in Mo and the
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evolution of the ϵ-phase in iron as a function of pressure, post-moretem analysis
is required. This can be done by using a more non-destructive momentum trap
to preserve and recover the samples for post-mortem analysis using electron
microscopy and mechanical characterization such as nano-indentation. Tran-
sition electron microscopy (TEM) can also be used to determine dislocation
densities of these shock recovered materials to possibly explain the observed
hardening and yield behavior during shock compression and release.

4.2.4 Dynamic strength during shock and release

The focus of experiments conducted in Chapter 3 was to resolve the orien-
tation dependence on elastic-plastic transition in the material and the key
microscopic governing mechanisms. While the elastic limit was sensitive to
loading orientation, both the Hugoniot steady state and the initial release were
independent. To better understand whether the peak state of Mo single crys-
tals are isotropic, sandwich configuration pressure shear plate impact (PSPI)
experiments can be conducted at various Mo orientations ([1 0 0], [1 1 0], and
[1 1 1]) where the material is first compressed to pressures ranging from 10−42
GPa and then sheared to probe its strength. The effect of crystal orientation
on strength may help shed light on the orientation-independent steady-state
response of these material as their deviatoric stresses may differ.

Additionally, based on the XRD frames in Chapter 3, twinning along the same
system and of the same volume fraction was observed immediately upon re-
lease after a critical pressure irrespective of the crystal orientation. The role of
twinning on crystal orientation and material strength can be probed by con-
ducting shock-release PSPI experiments using a layered impactor at pressures
above and below the critical value for twinning. Using this method, one can re-
lease the pressure in the sample during the shear window potentially initiating
twinning while probing the strength to understand the role of microstructural
changes on strength.
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