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ABSTRACT

Part 1: Measuring the kinematic Sunyaev-Zel’dovich (kSZ) effect is a promising
observational tool to constrain both cosmic growth and galaxy cluster formation.
As millimeter-wave telescopes gain sensitivity and angular resolution over multiple
frequency bands, high signal-to-noise imaging of the kSZ effect in large samples of
galaxy clusters will become increasingly feasible. However, maximizing the science
reach of these upcoming data will require more sophisticated analysis methods to
characterize and remove contamination from a range of unwanted signals, such as the
emission from dusty star forming galaxies. Current predictions of kSZ-derived con-
straints do not account for these effects in sufficient detail. Moreover, they typically
rely on Fisher matrix analyses, which cannot fully capture the degeneracies among
the physical parameters describing the cluster. We present a mock observation and
analysis pipeline to determine the science reach of kSZ galaxy cluster observations
that employs more detailed noise models and more sophisticated analysis methods.
From our mock observations, we derive new forecasts of the constraining power of
next-generation telescopes on cluster peculiar velocities for several instrument con-
figurations from the 10-m, 30-m, and 50-m classes. These forecasts will inform the
designs of next-generation telescopes targeting kSZ observations and will indicate
the optimal instrumentation for both cosmological and cluster-scale constraints. The
software pipeline we develop will also be directly usable as an analysis tool once
observations from such telescopes become available.

Part 2: Silicon optics can greatly benefit future millimeter and submillimeter
astronomical instruments thanks to silicon’s useful properties such as low loss,
high refractive index, and high strength. However, silicon’s high index (n = 3.4)
necessitates antireflection (AR) treatment, which has proven a major challenge,
especially for the multilayer treatments required for wide spectral bandwidths. We
present our approach to this challenge, in which we develop a wide-bandwidth
integral AR structure for silicon optics that uses a novel fabrication technique that
combines deep reactive ion etching (DRIE) and wafer bonding. We have previously
demonstrated a two-layer AR structure for windows over a 1.6:1 bandwidth and are
currently fabricating a four-layer coating for a 4:1 bandwidth. Here, we focus on
a design for a six-layer structure optimized to give -20 dB reflection between 80
and 420 GHz (5.25:1 bandwidth), which will be useful for future multicolor SZ
observations.
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C h a p t e r 1

INTRODUCTION

The cosmic velocity field is one of the most important observables in modern
cosmology. It encodes information relevant to some of the most fundamental
questions in physics: Does the dark energy equation of state evolve with time? Is
Einstein’s General Relativity (GR) valid on large scales? What is the sum of neutrino
masses? Several authors (e.g., Mueller et al., 2015a; Gil-Marín et al., 2016; Mueller
et al., 2015b) have predicted that a variety of cosmic velocity field measurements
can provide strong constraints on these physical properties of the universe.

There are several types of measurements that can constrain the cosmic velocity
field. Some of the most competitive options are optical surveys of large-scale
structure (LSS) that measure the apparent 3D clustering of galaxies, including
surveys of redshift-space distortions (RSD).1 As one example, the Sloan Digital
Sky Survey’s extended Baryon Oscillation Spectroscopic Survey (SDSS/eBOSS)
already provides velocity measurements with sufficient precision to rule out an
expansion-free universe (e.g., Zhao et al., 2021). In addition, RSD measurements
can test whether GR correctly describes gravity on large scales. They can do this by
constraining the cosmic growth rate index W, which has a value of 0.54 for GR and
different values for other gravity models (e.g., Gil-Marín et al., 2016). Currently,
measurements by, e.g., SDSS constrain this value at the level of f(W) ≈ 0.1 (Beutler
et al., 2014). In the coming years, the so-called “Stage IV” clustering surveys such as
the Dark Energy Spectroscopic Instrument (DESI; Levi et al. (2013)) will leverage
increased sensitivity to further improve this constraint; DESI is projected to achieve
a W constraint at the level of f(W) = 0.02 − 0.04 (A. G. Kim et al., 2020; DESI
Collaboration et al., 2016).

Another potentially powerful way to constrain the cosmic velocity field is to
measure the velocities of many individual, massive galaxy clusters. As the largest
structures to have formed in the universe, with masses of order 1015"�, galaxy
clusters are important tracers of cosmic evolution from redshifts 0 < I . 2. Bhat-
tacharya et al. (2008) and Kosowsky et al. (2009) first explored the possibility of

1RSD refers to fluctuations in the apparent line-of-sight clustering of galaxies due to their peculiar
velocities, which arise from their gravitational attraction to matter overdensities in the large-scale
structure.
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applying measurements of clusters’ velocities to constrain the cosmic velocity field,
predicting constraints that complement those from LSS measurements, which probe
lower mass scales. We shall explore this possibility in more detail in this work.

In addition, measurements of the internal velocity field within galaxy clusters,
especially of the intracluster medium (ICM), can aid in understanding the details
of large-scale structure formation. Several aspects of this process are not yet well
understood. As one example, hydrodynamical simulations predict that accreting
matter is not completely virialized during cluster formation (e.g., Lau et al., 2009;
Morandi et al., 2012; K. Nelson et al., 2014; Siegel et al., 2018), but there is not
yet a wealth of observational evidence to support these predictions. Indeed, there
is some evidence that these simulations may underpredict the level of virialization,
or conversely, that they overpredict the nonthermal pressure support, i.e., the extent
to which nonthermal processes such as bulk motion and turbulence provide support
against the ICM collapsing under gravity (Eckert et al., 2019).

Hydrostatic mass measurements, which are useful for cluster cosmology, also
depend on a better understanding of the ICM velocity structure to calibrate out
biases, although mass estimates using gravitational lensing, which are not subject
to this bias, are more common in recent cosmological measurements. Other poorly
understood ICM properties include viscosity and response to plasma instabilities;
these too can be investigated by imaging the ICM velocity (Lau et al., 2009; Nagai
et al., 2013; Parrish et al., 2012; ZuHone et al., 2018; Vazza et al., 2017). Clarifying
these points will require velocity reconstruction with precision at the level of f3 .
100 km/s (Nagai et al., 2013).

Measuring the ICM motions is becoming increasingly feasible thanks to im-
proving instrumentation on spectroscopic X-ray satellites, which can measure line
emission to trace gas velocity. Gas motions in the Perseus cluster have already been
measured by the Hitomi satellite (Hitomi Collaboration, 2016; Hitomi Collaboration
et al., 2018), which measured velocity dispersions with a precision of . 10 km s−1.
Future missions planned for launch (XRISM (XRISM Science Team, 2020)) or
under development (Athena (Barret et al., 2020), Lynx (Gaskin et al., 2018)) will
be able to map the velocity of more low-redshift clusters with precision ranging
from 10–100km s−1 out to roughly A500, meeting the criterion of Nagai et al. (2013).
The later observatories will likely have some sensitivity to higher-redshift clusters,
though the sensitivity degrades, by a factor of (1+ I)4 at worst, due to cosmological
dimming.



4

The kinematic Sunyaev-Zel’dovich (kSZ) effect (Sunyaev et al., 1972) provides
an alternative way to measure cluster peculiar velocities that complements optical
large-scale structure measurements. It also complements X-ray ICM measurements
in measuring internal cluster velocities. The kSZ effect is one of a few Sunyaev-
Zel’dovich (SZ) effects, the others being the thermal (tSZ), relativistic (rSZ), and
nonthermal (ntSZ) effects. All these SZ effects are caused by the scattering of cosmic
microwave background (CMB) photons off the electrons of the ionized ICM. The
kSZ effect is proportional to the line-of-sight velocity of the ICM; we discuss the
other SZ effects in more detail in Section 2.2.

The kSZ effect has distinct advantages for velocity field imaging. For one, its
magnitude is linear in ICMdensity, so it is sensitive to velocities even in the relatively
low-density cluster outskirts. This behavior complementsX-ray ICMmeasurements,
as the X-ray surface brightness scales as the square of the ICM density. In addition,
the kSZ effect is independent of redshift, while X-ray observations are most sensitive
at low redshifts, since the X-ray flux density falls off with the distance to the cluster.

Observations of the kSZ effect can also complement optical large-scale structure
(LSS) surveys in statistical measurements. Both kSZ and optical LSSmeasurements
can constrain the cosmic growth index W and the dark energy equation of state param-
eter F0, but the kSZ-derived constraints are subject to different degeneracy curves,
so they can help break the degeneracies in purely optically derived constraints: see,
e.g., Mueller et al. (2015a). In addition, kSZ observations can provide a cross-check
of such optical LSS constraints. In particular, kSZ observations can probe the mass
scale of a full galaxy cluster (> 1014"�), whereas optical LSS measurements are
most sensitive to galaxy- and group-scale objects (. 1013"�).

The kSZ effect is difficult to detect, however, and there have been few significant
kSZ detections in individual clusters. The kSZ effect competes with the dominant
tSZ effect, which is typically brighter by a factor of ∼ 10, and contaminants such
as dusty star-forming galaxies (DSFGs) and primary anisotropies of the CMB. As a
result, the previous detections of the kSZ effect in individual clusters have been (a)
in particularly energetic mergers and (b) only modestly significant, with velocities
differing from 0 with significance levels of 4.2 f (Sayers et al., 2013), 5.3f (Adam
et al., 2017), 2.8 f (Planck Collaboration et al., 2018), and 4 f (Sayers et al., 2019).

Studies such as Hand et al. (2012) have demonstrated that it is possible to
improve the sensitivity of statistical velocity field measurements with a technique
known as “pairwise kSZ.” The pairwise technique seeks to measure line-of-sight
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velocity differences rather than velocities. The statistical measurement is sensitive
mainly to 1013"� objects currently, which is a higher mass scale than that of RSD
but lower than that of cluster peculiar velocities. The technique involves CMBmaps
constructed to enhance the kSZ signal on the positions of optically detected galaxies.
This enhancement is accomplished by taking the difference in the CMB maps
between pairs of nearby objects and stacking on many such pairs.2 This pairwise
differencing scheme is effective because features intrinsic to the individual objects,
such as the tSZ signal, are the same on average, so they vanish in the stacks, unlike
the pairwise kSZ signal. Several groups have made kSZ measurements in this way:
see Hand et al. (2012), Soergel et al. (2016), Planck Collaboration et al. (2016b),
Schaan et al. (2016), De Bernardis et al. (2017), Li et al. (2018), and Sugiyama
et al. (2018). While the pairwise technique is effective for statistical cosmic velocity
measurements, it cannot be used to image the ICM velocity in individual clusters.
Moreover, it remains useful to develop a technique for analyzing individual cluster
observations to probe higher mass scales with different systematics. In this work,
therefore, we consider only the case of single-cluster detection.

To advance beyond the existing low-significance kSZ detections inmajormergers
to high-fidelity imaging of the ICM velocity structure, instruments with improved
sensitivity and angular resolution are needed. Several collaborations are planning
instruments to satisfy these criteria, including CMB-S4 (K. N. Abazajian et al.,
2016; Abitbol et al., 2017; K. Abazajian et al., 2019), CMB-HD (Sehgal et al.,
2019), and AtLAST (Klaassen et al., 2019). As these instruments’ designs have
not yet been finalized, there is a need to tune them based on our anticipation of the
details of the observations. In particular, designs with larger apertures and more
observing bands may have better ability to remove contamination, but there is a
trade-off in construction and development cost. Thus, it is desirable to know in
advance exactly how powerful the instruments must be.

To this end, several authors have made progress in developing techniques and
forecasts for next-generation instruments to maximize the science reach of kSZ
observations (e.g., Morandi et al., 2013; Mittal et al., 2018). However, these studies
do not fully encapsulate the complexity of the observational effects that will be
present in the deeper maps, as their modeling and analysis are based on simplifying
assumptions that are inadequate even for existing data from previous-generation

2Calculating this difference in a consistent way depends on knowledge of the distances to the
two objects, which can be estimated from the optical redshifts; in general, the bias due to the peculiar
velocities is small.
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facilities. Thus, our work provides more sophisticated mock observations to guide
design choices for next-generation mm/submm telescopes so they may detect and
measure the kSZ signal in massive galaxy clusters. Going forward, the software
pipeline in this project will also enable analysis of the next-generation telescope
data once it becomes available.

The specific advantages of this work over similar previous forecasting studies
are more detailed treatments of the contaminants of the kSZ signal, whose char-
acteristic spectra are shown in Figure 3.1. For one, we treat contamination from
dusty star-forming galaxies (DSFGs, discussed in Section 2.3.1) in a more detailed
way by modeling it as a collection of point sources. A common approach used
by large-scale analyses is to model DSFG contamination as a power spectrum like
that of the CMB and remove it by matching the various components in harmonic
space using a technique such as SMICA (e.g., Delabrouille et al., 2003). While this
approach is effective for, e.g., CMB power spectrum measurements, it misses the
non-Gaussianity of the residual contamination. We expect these residuals to become
significant at the smaller angular scales relevant for detailed cluster measurements:
see, e.g., Figure 3.3c. Thus, we use the approach of treating DSFGs as individual
sources in the modeling and subtracting each resolved source individually, as de-
scribed in Section 3.1. Existing analyses of observational data (Zemcov et al., 2003;
Zemcov et al., 2007; Lindner et al., 2015; Adam et al., 2017; Sayers et al., 2013;
Sayers et al., 2019; Butler et al., 2022) have demonstrated that this kind of careful
treatment of CIB removal is necessary for proper kSZ reconstruction, but existing
forecasts have not included it.

In addition, we take a more thorough approach to forecasting constraints on
cluster peculiar velocities. Forecasters, including Mittal et al. (2018), typically use
Fisher matrix analyses to predict constraining power. These analyses are expedient,
but they assume that the uncertainties on cluster velocity and other observables
(described in Section 2.2) are Gaussian and thus well-described by a covariance
matrix. This assumption can fail to hold when the observables suffer complicated
degeneracies that are not accurately described by Gaussians, which can lead to
biased velocity estimates. We solve the problem of capturing any such nontrivial
degeneracies among the cluster parameters by using an iterative, bootstrap-like
noise resampling method. This method enables us to robustly predict SZ parameter
constraints, in the presence of both instrument noise and astrophysical contaminants.

In this work, we apply the methods described above to predict constraints on
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kSZ-derived velocities and other galaxy cluster parameters such as temperature and
optical depth. We derive the SZ parameter constraints for a range of galaxy cluster
masses and redshifts. In addition, we explore the impact of telescope diameter on
such measurements. A number of additional aspects could be explored with the
existing pipeline, and some others, particularly instrumental effects, could be added
relatively straightforwardly; these are discussed in Section 6.2.

The remaining chapters of Part 1 are organized as follows. Chapter 2 describes
the pipeline used to generate the mock cluster observations. Chapters 3 and 4
describe the map cleaning and parameter extraction stages of the analysis pipeline,
respectively. In Chapter 5 we present cluster-level results derived from running
the full observation and analysis pipeline with several representative instrument
configurations. Finally, we discuss the results, applications, and future work in
Chapter 6.
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C h a p t e r 2

MOCK OBSERVATION PIPELINE

In this work, we use a two-stage pipeline to calculate constraints on the velocity of
each galaxy cluster. The first of these stages is to generate realisticmock observations
for each cluster; the second stage is to analyze these observations to recover the
cluster parameters and estimate constraints on their values. This chapter describes
the model for the first stage.

We generate the mock observations by combining the signal from the galaxy
cluster with other contaminating astrophysical signals. We first present the model
of the cluster itself (Section 2.1) and describe the calculation of the SZ signals from
that cluster model 2.2. We then discuss the models for the contaminants in Section
2.3, which include dusty star-forming galaxies (Section 2.3.1) and CMB (Section
2.3.2). We also model the gravitational lensing of the contaminant signals (Section
2.4). Finally, we describe our model for the other observational effects to generate
the images in Section 2.5.

2.1 Galaxy Cluster Model
When generating mock observations, we use one of two options to describe

a galaxy cluster’s physical properties: an analytical model based on a generalized
Navarro-Frenk-White (GNFW) profile (Nagai et al., 2007), or a more realistic model
based on the publicly available IllustrisTNG simulations (D. Nelson et al., 2019;
D. Nelson et al., 2018; Marinacci et al., 2018; Naiman et al., 2018; Pillepich et al.,
2018a; Springel et al., 2018). Both models give the spatial distributions of the SZ-
relevant properties of ICM temperature, velocity, and number density. In addition,
bothmodels describe themass distribution, which is relevant for gravitational lensing
(Section 2.4).

In the analytical model, the GNFW profile gives the ICM pressure as a function
of radius:

%(A) = %0

(A/AB)W [1 + (A/AB)] (V−W)/U
, (2.1)

where AB is the scale radius, %0 is the normalization, and the slope parameters U, V,
and W are taken to be the best-fitting values from Arnaud et al. (2010). We model the
ICM temperature distribution) (A) as in Vikhlinin et al. (2006) (corrected values are
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given in an erratum: Vikhlinin et al. 2015). In this case, we assume uniform motion
of the ICM along the line of sight. Finally, we model the total mass distribution
for lensing by matching an NFW profile to the GNFW model with a correction for
hydrostatic mass bias as described in Section 2.4. Overall, the analytical model is
useful as a starting point for developing the pipeline, since it is straightforward to
implement and test; we rely on the simulated clusters for a more realistic description
of the parameters’ spatial variation, including nontrivial velocity structures.

The IllustrisTNG simulations are hydrodynamical simulations that evolve galaxy
clusters in their cosmological context, accounting for both large- and small-scale
effects. The simulations are based on the quasi-Lagrangian AREPO code (Springel,
2010), which uses a moving Voronoi mesh for spatial discretization. They assume a
cosmological model based on Planck Collaboration et al. (2016a); in particular, they
assume ΩΛ,0 = 0.6911, Ω<,0 = 0.3089, Ω1,0 = 0.0486, f8 = 0.8159, =B = 0.9667,
and ℎ = 0.6774 (D. Nelson et al., 2018). The simulations also contain a variety of
baryonic effects, including: radiative cooling; ISM pressurization due to unresolved
supernovae; star formation, evolution, and feedback; and supermassive black hole
growth and feedback. The simulation parameters have been tuned tomatch a handful
of observed properties and statistics of I = 0 galaxies, including the stellar mass
function, the stellar-to-halo mass relation, the total gas masses within A500, the stellar
mass – stellar size relation, and the black-hole–galaxy mass relation, as well as the
cosmic star formation rate density as a function of I for I . 10 (Pillepich et al.,
2018b).

For our cluster sample, we use the largest simulation volume, TNG300, which
has a side length of 205ℎ−1 Mpc; mass resolutions of <DM = 7.5 × 106 "� and
<baryon = 1.1 × 107 "� for dark matter particles and baryons, respectively; and
a minimum spatial resolution of 0.25ℎ−1 kpc (comoving) set by the adaptive gas
gravitational softening. We selectmassive halos from the simulation’s existing group
catalog, which was generated with a friends-of-friends criterion (FoF; Huchra et al.,
1982; Davis et al., 1985). For the SZ effect calculations, we use the simulation’s
data on temperature, velocity, and electron number density, which are specified for
each Voronoi cell in the mesh at each simulation snapshot; we obtain total mass
data for the lensing calculation in an analogous way. We approximate a line-of-sight
projection of these quantities and their dispersions using Py-SPHViewer (Benitez-
Llambay, 2015).
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2.2 Intracluster Medium Observables
Given a model of the ICM from Section 2.1, the first goal of our pipeline is

to produce a map of the relevant SZ observables: a thermal (tSZ) component, a
kinematic (kSZ) component, and the corrections to both components due to their
relativistic thermal and bulk motion, which are sometimes considered as a separate
rSZ component. There is also a nonthermal (ntSZ) component, discussed below,
which we do not model in this work. The kSZ component is the most relevant in
this work, as it contains cluster velocity information, but we also model the other
components because they affect our ability to recover the velocities. We describe
the components in detail below.

The tSZ component is due to the inverse Compton scattering of CMB photons by
electrons of the hot ICM (e.g., Sunyaev et al., 1972; Rephaeli, 1995a; Birkinshaw,
1999; Carlstrom et al., 2002). It manifests as a change in the surface brightness
of the CMB (�a), and its magnitude can be expressed in terms of the Compton H
parameter, which is proportional to the electron thermal pressure integrated along
the line of sight:

H =

∫
=4f)

:�)4

<42
2 3;, (2.2)

where =4, f) , :�, )4, and <4 are the electron number density, Thomson scattering
cross section, Boltzmann constant, and electron temperature, respectively. The tSZ
signal’s spectral dependence can be encoded as a factor 5 (a, )4):

Δ�a

�a
= H 5 (a, )4). (2.3)

In the nonrelativistic limit (i.e., the limit of low ICM temperature), this spectral
dependence is purely a function of frequency:

Δ�a

�a
= H

G4G

4G − 1

[
G
4G + 1
4G − 1

− 4
]
, (2.4)

where the dimensionless frequency parameter G is given in terms of the CMB
temperature by G = ℎa

:�)CMB
. As the ICM temperature becomes high (:�)4/<422 &

0.01), relativistic corrections to the tSZ effect become important (e.g., Rephaeli,
1995b; Itoh et al., 1998; Nozawa et al., 1998b; Itoh et al., 2004). These relativistic
corrections, part of the rSZ component, have the effect of shifting the spectrum
toward higher frequencies; the magnitude of this effect increases with increasing )4.
In effect, the spectral shape of the SZ signal becomes dependent on )4.

The kSZ component is simply a Doppler shift of the CMB spectrum due to the
bulk motion of the ICM relative to the CMB rest frame (e.g., Sunyaev et al., 1972;
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Sunyaev et al., 1980; Birkinshaw, 1999; Carlstrom et al., 2002). Its magnitude is
proportional to the product g3I, where 3I is the line-of-sight velocity of the ICM,
and the optical depth for Compton scattering g is given by

g =

∫
=4f)3;. (2.5)

g is also proportional to H, and therefore also the tSZ signal, through the density-
weighted line-of-sight average of the gas temperature:

H = g

〈
:�)4

<42
2

〉
d

, (2.6)

where the subscript d indicates a density-weighted average. In the nonrelativistic
limit, the kSZ signal can be expressed as a frequency-independent change in the
CMB temperature:

Δ)CMB
)CMB

= −3Ig
2
, (2.7)

where positive 3I indicates motion away from the observer. Note that this implies
that the kSZ signal is spectrally degenerate with the primary CMB fluctuations. The
fractional change in CMB temperature can be converted to surface brightness in the
standard way:

Δ�a

�a
=

G4G

4G − 1
Δ)CMB
)CMB

, (2.8)

where G = ℎa/:�)�"� is the dimensionless frequency. There are also relativistic
corrections to the kSZ effect (e.g., Nozawa et al., 1998a; Sazonov et al., 1998);
while these do give the kSZ effect a distinct spectral signal, their magnitude is quite
small compared to the typically-dominant nonrelativistic tSZ and kSZ effects, and
so they do not offer much help in separating the kSZ signal from primary CMB
fluctuations.

Finally, there is another version of the SZ effect that may be relevant in certain
clusters, namely the nonthermal or ntSZ effect (e.g., Mroczkowski et al., 2019). The
ntSZ effect is analogous to the tSZ effect, except the ntSZ effect is caused by the
highly relativistic, nonthermal component of the ICM’s electron distribution. The
ntSZ effect is difficult to model because the electron momenta can be distributed
in a complicated way. Fortunately, it is a small effect, typically around 1% of the
tSZ surface brightness (CCAT-Prime Collaboration et al., 2022). Thus, we do not
model the ntSZ component in this work.

In the software pipeline, we model these effects, including relativistic correc-
tions, using the SZpack package of Chluba et al. (2012). Here, we note several
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simplifying assumptions made by the code, both within SZpack itself and as mod-
ifications of the output. For one, SZpack is based on the single scattering approx-
imation, which is the assumption that each CMB photon will interact with at most
one electron on its path to the observer. A correction for multiple scattering only
affects the SZ signal at the 0.1% level (Chluba et al., 2014), so it is safe to ignore for
near-term observations. In addition, SZpack offers several modes of calculation that
enable trading off accuracy for computational efficiency. The various modes have
different limitations that are discussed in Chluba et al. (2012), but the assumptions
common to all of them—)4 < 75 keV, 3I/2 < 0.01, and g . 0.01—are valid for the
clusters we consider. We have chosen to use the mode that calculates line-of-sight
projections of the SZ effects using projections of 3I, )4, g, and their higher-order
moments; for additional speed, we keep only the first-order terms. With this ap-
proximation, we avoid peforming a per-pixel, per-frequency line-of-sight integral
with an expensive SZ effect calculation in its integrand. However, we must still
calculate the projection of g numerically, which is also computationally expensive,
as Equation 2.5 does not have an analytical solution for our ICM model. Thus, we
optimize this calculation by using an adaptive quadrature routine and interpolating
the value of the g integral from a 1D profile onto the 2Dmap. These efficiency gains
are not crucial for mock image creation but are important for the analysis phase,
where we reuse parts of the mock image generation code; see Section 4.1 for details.

2.3 Contaminants
With increasingly sensitive instrumentation becoming available, SZ observa-

tions will become a more powerful tool to constrain cosmic growth and cluster
astrophysics. However, this increase in sensitivity also implies that astrophysical
backgrounds and foregrounds will engender systematic uncertainties comparable to
or greater than instrument noise. Indeed, the various contaminants are already the
dominant source of uncertainty in SZ parameter recovery (e.g., Butler et al., 2022).

To accurately characterize the capabilities of next-generation instruments, we
include a realistic suite of contaminants in our mock observation pipeline, priori-
tizing those that are most likely to bias SZ reconstruction in clusters. We model
emission from dusty star-forming galaxies (2.3.1), both in the field and within the
cluster, as the most prominent component of the contamination. We also consider
fluctuations in both the primary CMB and secondary kSZ signals (2.3.2), which
present a significant challenge in separation due to their spectral degeneracy with
cluster’s kSZ signal. Finally, we note our instrument noise model (2.3.3). Other



13

contaminants are the subject of future work—see Chapter 6 for details.

2.3.1 Dusty Star-Forming Galaxies
The first source of contamination we consider is emission from dusty star-

forming galaxies (DSFGs). DSFGs are defined by their emission at infrared and
submillimeter wavelengths, where the original examples of DSFGs were selected,
but they can belong to any of a few galaxy types, including gas-rich disks and
mergers of starbursting galaxies (Casey et al., 2014). As their name implies, DSFGs
tend to have very high star formation rates (SFR), on the order of thousands of
"� yr−1 (Robitaille et al., 2010), compared to ∼ 2"� yr−1 for the Milky Way. In
some cases, DSFGs are completely obscured by dust and thus are not visible at
optical wavelengths.1 Compared to the late-type galaxies that are common today,
the DSFGs we observe are often younger and at higher redshifts.

DSFGs are a significant SZ contaminant because they are generally brighter
than the SZ signal at a & 250GHz. DSFGs are bright at these frequencies because
of their combination of high star formation rates and dust. Specifically, the high
star formation rates of DSFGs imply that they have high UV luminosity (Kennicutt,
1998). The abundance of UV starlight is absorbed by dust grains along the line of
sight, which are heated to an average temperature )dust, typically in the range of 30
to 40 K. The heated dust grains then reemit in the infrared, while the UV absorption
suppresses their optical and UV brightness.

The infrared spectral energy distribution (SED) of a DSFG is best modeled as a
blackbody �a ()dust) modified by a number of properties of the interstellar medium
(ISM). These include temperature nonuniformity, source emissivity, and partial
opacity of the dust grains (Casey et al., 2014). These effects are encoded in the
optical depth ga, which has been empirically found to scale as

(
a
a0

) V
, where V is

the spectral index of emissivity and a0 is the frequency at which the dust becomes
optically thick. Using the radiative transfer equation (Rybicki et al., 1986), we can
solve for the observed SED as

((a, )) ∝ �a ()) (1 − 4−g(a)) =
(1 − 4−g(a))a3

4ℎa/:) − 1
. (2.9)

In the optically thin limit, which is valid for wavelengths & 450 `m (Casey et al.,
2014) as in our case, (2.9) reduces to:

((a, )) ∝ a3+V

4ℎa/:) − 1
. (2.10)

1This is particularly true for the earliest detected sources, known as starbursts.
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Beyond frequency-dependent dust emissivity, additional effects include multiple
temperature components and levels of dust obscuration.

The emission of the modified blackbody SED typically peaks around 100`m
(e.g., Magdis et al., 2012) in the rest frame. However, the galaxies are bright even in
the submillimeter band, as the SED has a long Rayleigh-Jeans tail, and the galaxies
have a typical redshift I obeying 1 < I < 3.

The other factor in DSFGs’ significance as a contaminant is that they are dense in
submm fields. This occurs because of the DSFGs’ strongly negative K-correction,
which is the factor used to convert a redshifted source’s flux density from the
observed frame to the rest frame; see, e.g., Casey et al. (2014) for details. The
negative K-correction is caused by the shape of the source SED (2.9): the sources’
steeply rising spectrum (up to ∼ 100 `m in the rest frame) implies that, as the
DSFG spectrum is redshifted, the flux near 1 mm stays roughly constant. Thus, we
are equally sensitive to a given source regardless of its redshift, which results in a
high density of sources in an image with similar brightness values. As a result, a
given resolution element can often contain multiple bright sources, which makes it
difficult to fully remove DSFG emission from the SZ maps. This is exacerbated by
the relatively poor angular resolution near 1 mm.

We consider DSFGs separately in the cases that they are field galaxies or cluster
members. We model the population of field DSFGs, known as the cosmic infrared
background (CIB or CIRB), using the SIDES simulated catalog (Béthermin et
al., 2017). SIDES is built on a halo distribution from the Bolshoi-Planck dark
matter simulation (Rodríguez-Puebla et al., 2016). It uses an abundance-matching
procedure to populate the halos according to stellar mass function measurements
for 0 ≤ I ≤ 7.5 (Kelvin et al., 2014; Moutard et al., 2016; Davidzon et al., 2017;
Grazian et al., 2015). These features make SIDES the first simulation of its kind to
correctly account for the spatial correlations and redshift distributions of DSFGs.

In addition to the field galaxies, we model a population of member galaxies
for each cluster, many of which may also be considered DSFGs. These cluster
member galaxies are particularly important to include because their emission tends
to be spatially correlated with the SZ signal. However, these galaxies have not been
studied as well as field galaxies, so we cannot simply model them with a mock
source catalog such as SIDES. Instead, we begin with the procedure of Melin et al.
(2018) to model the galaxies’ luminosity functions and SEDs based on a field galaxy
model (Cai et al., 2013). We then adjust the number counts according to Herschel
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and Spitzer observations in galaxy clusters using the work of Alberts et al. (2016).
We describe the cluster member dust model in more detail in Appendix A.1.3.

The central galaxy in a dynamically relaxed cluster, known as the brightest
cluster galaxy (BCG), deserves special consideration. There is a strong feedback
loop between the central galaxy and the ICM (e.g., Voit, 2005). This results in
significant AGN activity within that galaxy, including strong synchrotron emission
from theAGN core. This emission can be a significant fraction of the SZ signal, 10%
or more (e.g., Sayers et al., 2013; Coble et al., 2007; Cooray et al., 1998; Romero
et al., 2017). In practice, it would be ideal to jointly fit for the BCG emission and
the SZ signal; the synchrotron emission could be modeled as a simple powerlaw.
Alternatively, to avoid the complications related to the BCG’s size and systematic
errors in the fitting, it may be best to simply excise a beam-sized region around
the BCG from the map. We did not have time to develop and test either of these
alternatives in our pipeline, so we did not model the BCG emission in this work.

In addition, theremay be a diffuse component of dust emission in galaxy clusters.
The evidence for this component is a Planck detection of cluster-coincident dust
(Erler et al., 2018). However, the origin of this dust emission is unclear, and it may
be due entirely to cluster member galaxies. Thus, without a well-constrained model,
we do not attempt to include this emission in our mock observations.

A final potential source of dust contamination in SZ signals is far-IR emission
from the Milky Way. This component is known as the Galactic cirrus due to its
spatial structure. The cirrus emission is strongest at large angular scales, with a
power spectrum that scales with the angular wavenumber : as :−2.6 from 1′ to 200′

(Bracco et al., 2011). However, because this emission comes from the local universe,
it is not redshifted from its FIR peak, so it is less significant in the submm band.
Based on SPT observations, Reichardt et al. (2021) inferred that, even for relatively
large angular scales of ℓ ∼ 2000, the Galactic cirrus component was an order of
magnitude below DSFG emission at 220 GHz. In the context of SZ observations,
Butler et al. (2022) found that the uncertainty on SZ reconstruction due to cirrus
was 20% of the uncertainty due to DSFG emission in the 600 GHz and 850 GHz
bands of Herschel/SPIRE. Extrapolating their findings down to our bands,2 which
are at lower frequencies, we find that the uncertainty due to cirrus remains at roughly
20% of that due to DSFGs. We hope that similar fractional uncertainties will be

2For this extrapolation, we assume an SED (Equation 2.9) with ) = 10 K and V = 1.8 for the
DSFGs and ) = 20.1 K and V = 1.3 for the cirrus (Bracco et al., 2011).
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achievable in the future with improved instrumentation, but we have not investigated
this fully.

We note our assumption about source morphology, which is relevant to our
modeling of lensing (Section 2.4) and to our source subtraction procedure (Section
3.1). All the sources we include are assumed to be pointlike: that is, the angular
size of each source is less than that of the PSF. This assumption is justified in the
regime we consider: our highest-resolution instrument configuration, which uses
a 50m telescope, has a minimum beam FWHM of 4.5′′, while most DSFGs have
structure on the scale of < 1′′ (e.g., Casey et al., 2014). Thus, the full rasterized
CIB map consists of many scaled copies of the PSF.

We use two algorithms to generate these CIB maps: a fast, FFT-based version
and a slower but more accurate version that adds shifted PSF copies to the map.
The FFT-based version, which discretizes the source positions to a fraction of the
pixel size and convolves with the PSF, is used for map generation in the main
simulation loop, where efficiency is important due to the many sources included.
The slower version, which avoids the positional error from discretization, is used
for the reconstruction of resolved sources, as described in Section 3.1.

2.3.2 Primary CMB Anisotropies
The CMB temperature power spectrum peaks at an angular scale of approxi-

mately one degree (e.g., Planck Collaboration et al., 2020), so it is possible for the
primary CMB power to leak into SZ signal measurements. This is especially true for
local clusters, which can have virial diameters & 1 degree, while moderate redshift
clusters at I ∼ 0.5 are closer to 10′ in diameter. Moreover, the primary CMB and
kSZ signals are spectrally degenerate, so disentangling the two can be difficult. To
calculate the CMB power spectrum �ℓ =

ℓ(ℓ+1)
2c �ℓ, we use the CAMB code of Lewis

et al. (2000). Since the CAMB output stops at ℓ = 4000, we extrapolate to higher ℓ
by fitting an exponential decay model above ℓ = 3000 to trace the Silk damping tail
of the CMB spectrum. Finally, using the flat sky approximation, we apply a Fourier
transform to the power spectrum to generate map-space CMB realizations.

The CMB also contains additional secondary anisotropies apart from the SZ
signal of the galaxy cluster in question. These include the tSZ and kSZ signals
of other large-scale structure in the universe, in addition to the inhomogeneous
distribution of gas during the epoch of reionization (Gruzinov et al., 1998; Knox
et al., 1998). At angular scales ℓ & 2000 or \ . 6′, the secondary kSZ and tSZ
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signals are predicted to have relatively flat power spectra in �ℓ, where the combined
value of �ℓ is of order unity in units of `K2 (Battaglia et al., 2013; Calabrese et
al., 2014). Existing measurements are consistent with these predictions (Reichardt
et al., 2021). Thus, these background SZ signals are expected to dominate over the
primary CMB signal at small angular scales, ℓ & 4000 or \ . 3′, and so they may
be a significant contaminant to our images.

The background kSZ and tSZ anisotropies can be modeled by using the power
spectra of Reichardt et al. (2021). These power spectra can be converted to map
space realizations in a manner analogous to the method for the primary CMB.
They can then be scaled by the known tSZ and kSZ spectra. However, modeling
the gravitational lensing of these components (see Section 2.4) is a challenge, as
they exist at multiple redshifts that are not precisely constrained. Thus, we have
not included either these background models or the perturbations on them due to
lensing in this work.

2.3.3 Instrument Noise
Finally, we include instrument noise as an independent Gaussian white noise

term in each frequency channel. For each instrument configuration we consider, we
use the confusion noise level as a reference in each observing band. The confusion
noise level is equal to the RMS fluctuation per beam due to DSFGs after removing
the ones that are bright enough to be individually detected;3 confusion limits used in
this work are shown in Table 5.1, along with the expected integration times required
to reach these limits in practice. In the simple case of beam-sized pixels, this means
the RMS fluctuation in each map pixel is taken to be equal to the RMS fluctuation
in the confusion noise per beam:

fbeam =
fconfusion
Ωbeam

, (2.11)

where fconfusion has flux density units (as it is the 1f uncertainty on each source),
and fbeam has surface brightness units for consistency with the SZ signal. In our
case, however, the beam spans multiple pixels, so it is necessary to convert fbeam

to a per-pixel RMS fpixel. The conversion factor depends on the exact shape of the
beam; for a Gaussian beam, it implies the following expression for the per-pixel

3In particular, in this work, we calculate the confusion limit directly from SIDES by selecting
the 5f flux density threshold (lim such that the collection of sources below this threshold have a
per-beam RMS fluctuation equal to 1

5(lim.
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RMS:

fpixel =

√
2Ωbeam
Ωpixel

fconfusion
Ωbeam

. (2.12)

In other words, it can be shown that Gaussian white noise with a per-pixel RMS
following (2.12) leads to the same 1f uncertainty on the source’s flux density as a
background of sources with confusion RMS fconfusion.

2.4 Gravitational Lensing by the Cluster
2.4.1 Lensing of Pointlike Backgrounds

Gravitational lensing of background DSFGs by the cluster significantly affects
their observed properties (Zemcov et al., 2013; Sayers et al., 2019). In particular,
lensing of the CIB towards a massive cluster results in a deficit in the residual CIB
surface brightness after removing individual bright sources. Zemcov et al. (2013)
were the first to measure this effect at the centers of four massive clusters. Lima
et al. (2010) also find that lensing is a significant SZ contaminant based on BLAST
data. The findings of Sayers et al. (2019) are perhaps the best precedent for our
work in the context of SZ reconstruction. Using 10 clusters with mass models
constructed from HST data, they calculated the change in CIB surface brightness
in randomly generated lensed CIB realizations after removing bright sources. They
found that that this change amounted to an average reduction of 15% in the SZ
surface brightness at 270 GHz.

However, this effect has not always been addressed in prior SZ forecasts. We
include it in this work to determine the extent to which it can bias kSZ peculiar
velocity measurements in individual clusters. Our testing has determined that the
deficit can lead to a 1f to 2f bias in the kSZ velocity if it is neglected in the analysis;
see Section 3.3.

It is important to precisely state the scope and mechanics of this effect, hereafter
called the “lensing deficit,” in order to understand its relevance to our observational
scenario. A lensing deficit can arise in the presence of a magnification bias, which
is described by Turner (1980). The magnification bias can be positive or negative
depending on the background source counts 3#/3(. In the submillimeter band,
in which we detect DSFGs, 3#/3( is a steep function of (, so the magnification
bias is positive (A. W. Blain, 1997; A. Blain, 2002). This positive magnification
bias implies an increase in the flux density of each detected source, so it becomes
possible to detect more sources that are intrinsically dimmer. In addition, these
intrinsically dimmer sources reside on a flatter portion of the 3#/3( curve, so there
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are fewer sources remaining below the detection threshold. Thus, there is a net
deficit of the residual CIB after subtraction of all detectable sources. Given that
the residual CIB contaminates the SZ effect, we have therefore chosen to model
the lensing deficit to account for its local bias to the CIB. It must be emphasized
that the action of source removal is key to this effect: the lensing deficit manifests
even though lensing conserves the mean surface brightness in the map before source
removal.

To model the effect of gravitational lensing in our mock observations, we must
first calculate maps of the deflection angles α(θ), which are the input to the lens
equation (e.g., Blandford et al., 1992):

β = θ −α(θ), (2.13)

where α(θ) is the reduced deflection angle4 at position θ and β is the unlensed
source position on the sky. Calculating these deflection angles requires an assump-
tion about the total mass distribution in the fiducial cluster, which we separate
into the cases of an analytical cluster model and a map based on hydrodynamical
simulations.

We address the analytical case first. One can calculate maps of α with a
surface mass density profile Σ(A) by using the analytical lensing formalism of,
e.g. Bartelmann (1996). For the assumed Σ(A) profile, it is desirable to be as
consistent as possible with the GNFW profile we assume for the ICM density in
modeling the SZ component. However, the GNFW model has a non-analytical
projected mass density, and moreover, it contains no information about the dark
matter distribution within the cluster. Therefore, for simplicity, we assume that the
total mass profile, including both ICM and dark matter, is well-described by a pure
NFW model (Navarro et al., 1996; Navarro et al., 1997), which enables using the
analytical lensing formalism directly. To convert the GNFW ICMmodel to an NFW
mass profile, we assume hydrostatic equilibrium of the ICM with a correction for
the hydrostatic mass bias 1 = 0.15 based on the review given in Gianfagna et al.
(2021):

"enc(A) = −
1

1 − 1
A2

�dgas

3%

3A
, (2.14)

where"enc(A) is the total mass enclosed in a sphere of radius A, and the gas pressure
and density profiles %(A) and dgas(A) are given by the GNFW model, with a mean

4The reduced deflection angle is the change of position on the sky, in contrast to the unreduced
deflection angle, which is the angle by which the light ray itself changes direction. We revisit the
distinction below.
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molecular weight of ` = 0.59 assumed for the ICM. We then fit for the NFW
normalization d0 and scale radius AB that optimize the agreement with (2.14) by
minimizing the mean squared error in "enc(A) over the range 0.03 < A/'500 < 3.
Given the best-fitting NFW parameters, it is straightforward to project the NFW
mass density and calculate the deflection angles using, e.g., Equation 6 of Golse
et al. (2002). The angles can be expressed in terms of the total mass <(A) within a
cylinder of radius A:

α =
<(A)r
A2 , (2.15)

where <(G) is given in, e.g., Bartelmann (1996).

There is a difference between the reduced and unreduced deflection angles. The
reduced angles, usually written as α, are used in the lens equation to describe the
difference between the “true” and apparent position angles of the source as viewed
by the observer, while the unreduced angles α̂ describe the effective angle by which
a ray is deflected by the lens on its path to the observer. See Figure 5 of Blandford
et al. (1992) for an explanation.

The case of simulated cluster maps differs in its derivation of α, which cannot
be expressed analytically without spherical symmetry. Instead, one must solve the
Poisson equation for the 2D lensing potential (e.g., Blandford et al., 1992):

∇2k(θ) = 8c�Σ(θ), (2.16)

where k(θ) is the 2D lensing potential and Σ(θ) is the 2D projected mass density
of the cluster. We obtain maps of the 2D mass density by projecting the total mass
data from the simulations in the same way as for the gas properties. The unreduced
deflection angles α̂ are then obtained as the gradient of k, or more precisely,

α̂ = ∇k/22. (2.17)

We use code provided by M. Meneghetti to solve (2.16) numerically by Fourier
transformation and computing the gradient of k to obtain maps of α̂. Finally, we
convert the unreduced deflection angles α̂ to the reduced angles α by rescaling
according to the source-observer and lens-source angular diameter distances �s and
�ls (e.g., Blandford et al., 1992):

α =
�ls
�s
α̂. (2.18)

With deflection angle maps in hand, it is possible to proceed with the lens-
ing calculation. For implementing lensing of pointlike background sources, we
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separately consider the regimes of the strongly-lensed core and the weakly-lensed
cluster outskirts. In the cluster core, we rely on a ray tracing calculation, which is
performed using the SKYLENS code (Plazas et al., 2019; Meneghetti et al., 2020)
The code selectively samples the background at a higher resolution than the nominal
pixelization under the assumption that the galaxies are described by a Sersic model.
Using this high-resolution ray trace, we can capture strong lensing effects such as
arcs, distortion, and multiple images.

However, the ray trace is computationally expensive given the requirements
of our pipeline. In part, this is due to the aforementioned requirement of high-
resolution sampling for sources that may be strongly lensed. In addition, the ray
trace calculation must be performed separately for each observing band: while the
deflection angle maps themselves are independent of observing frequency, we do
not assume the source SEDs are identical, and so the “preimage” of the ray trace is
frequency-dependent.

Thus, we have developed an alternative mode for the cluster outskirts for im-
proved performance. This alternative mode is based on the assumption that each
source remains pointlike after lensing. We consider the sources to have modified
positions and flux densities according to the reduced deflection angles α and mag-
nifications `. The magnification is calculated from the determinant of the lensing
Jacobian A, also known as the inverse magnification tensor:

` = [detA]−1 =

[
det

mθ

mβ

]−1
. (2.19)

Under this assumption, the code’s performance does not scale as steeply with source
count, as there is no need to sample the map at higher than nominal resolution. This
approximation also mitigates the penalty of scaling with the number of observing
bands, as the deflection and magnification can be calculated just once per source.
Consequently, we can reuse the fast rasterization code of Section 2.3.1 with the
source positions adjusted and the SEDs uniformly rescaled by the `.

To calculate the modified source properties in the weak lensing regime, we again
use the code of M. Meneghetti, with some modifications for additional performance
gain. The original code uses a nominal-resolution ray trace to locate the images of
each source. This is necessary in the general case, which includes the strong lensing
regime, but the calculation is somewhat computationally expensive. We avoid this
ray trace by assuming that each source has only a single image, whose location we
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approximate by mapping the deflection angles α(θ) back to the source plane using
the implicit equation

αsrc(β) = αimg(θ −αimg(θ)). (2.20)

We calculate the source-plane deflection anglesαsrc(β) on a grid to enable partition-
ing the sources into redshift bins, which reduces the number of times the deflection
angles must be rescaled from α̂ and remapped to source-plane coordinates. In
addition, we sample αsrc(β) on a coarse grid relative to the nominal resolution to
take advantage of the angles’ slow variation with radius in the weak lensing regime.
We then calculate the lensed source positions θ8 from the unlensed positions β8:

θ8 = β8 +αsrc(β8). (2.21)

Finally, we calculate each source’s magnification `8 by sampling the Jacobian de-
terminant detA, as calculated with the original code, at the lensed positions θ8.

Ultimately, however, we have not used these optimizations to generate our results,
as the performance of SKYLENS has been sufficent for the small sample size. We
generated lensed maps of CIB realizations for each of the clusters in our sample
using high-performance computing infrastructure. For analyzing a larger cluster
sample or when sampling a continuum of cluster parameters, it may be worthwhile
to include these optimizations. It is a subject for future work to set sensible boundary
conditions in map space between the strong and weak lensing regimes.

2.4.2 Lensing of Smooth Backgrounds
Primary CMB fluctuations are also affected by gravitational lensing, so we also

model this in our pipeline. Since the CMB does not have significant structure below
the angular scale of the beam, and since it exists at a single redshift, the ray tracing
calculation is straightforward and efficient given deflection angle maps: it suffices
to sample the map of Δ)CMB at each pixel position θ offset by the deflection angles
α(θ) according to the lens equation (2.13). We use bilinear interpolation to sample
at non-integer pixel positions.

2.4.3 Demonstration
We include a demonstration of the lensing pipeline in Figure 2.1, which shows

example realizations of lensed CIB and CMB. To highlight the deflection effect,
we show the maps as differences between lensed and unlensed realizations. The
deflection of the sources in (a) can be clearly seen as dipoles in the residual. The
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lensing has a subtler effect on the CMB temperature, but it is still visible in the
difference map.

2.5 Observational Effects
The last ingredient in the mock observation pipeline is the instrument itself.

Imaging instruments have several nonidealities in practice, but we model only the
nonidealities that are most likely to interfere with the analysis and are common to
all observational scenarios. In particular, the effects we model are the point spread
function (PSF), spatial filtering, and finite spectral bandwidth. We describe our
treatment of these effects below.

2.5.1 Point Spread Function Model
The PSF is important to model in SZ observations chiefly because it limits

our ability to remove point source contamination and resolve cluster substructure.
There are two aspects of PSF modeling to consider: width (FWHM) and shape.
Most of the instrument configurations in Chapter 5 have published reference values
for the FWHM; we use these reference values where available but use default values
in Table 2.1 in all other cases. For the shape of the PSF, we assume a circular
Gaussian, which is simple to calculate and approximately accurate for a wide range
of telescopes.

Real PSFs, however, can have non-negligible non-Gaussian side lobes. These
side lobes may cause leakage of the SZ signal from the central region of the cluster to
the outskirts, which can impact the SZ constraints if the PSF shape is characterized
imperfectly. However, if the PSF shape can be characterized accurately enough
that it has a negligible effect on the SZ constraints, then it is reasonable to assume,
as we do, that the PSF is a perfectly-characterized Gaussian. In addition, the
strength of the side lobe contamination depends strongly on the properties of a given
instrument. Thus, we leave treatment of non-Gaussian PSFs to instrument-specific
analyses, although our formalism is fully capable of incorporating non-Gaussian
beams because no aspect of the analysis requires beam Gaussianity.

2.5.2 Signal Transfer Function
Next we consider the effect of the signal transfer function, which is a result of

the sky subtraction needed to mitigate contamination from the Earth’s atmosphere.
Emission from the atmosphere is brighter than the largest expected SZ signal by a
factor of∼ 104, and it varies with an angular power spectrum that follows a powerlaw
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(a) CIB

(b) CMB

Figure 2.1: Examples of the lensing calculation applied to point-like (a) and smooth
(b) backgrounds. Both images show the difference between the lensed background
and the unlensed background.
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Band Frequency 10 m FWHM 30 m FWHM 50 m FWHM
(GHz) (arcsec) (arcsec) (arcsec)
90 87.4 31.7 19.0
150 52.4 17.7 10.6
220 35.8 12.1 7.3
270 28.6 9.9 6.0
350 22.5 8.2 4.9
400 19.7 7.4 4.4

Table 2.1: Assumed FWHM values for PSFs in baseline 10m, 30m, and 50m
instrument configurations.

with an exponent of−11/3. Thus, some form of spatial high-pass filtering is required
to remove these fluctuations (e.g., Sayers et al., 2011; Bender, 2011; Romero et
al., 2020; Ruppin et al., 2018; Schaffer et al., 2011); in practice, this filtering is
implemented as a combination of common-mode subtraction among detectors and
explicit high-pass filtering of the timestream.

We base our transfer function model on an 8 arcminute FoV and increased
scan speed relative to the Bolocam instrument (e.g., Sayers et al., 2011). These
assumptions have the effect of moving the high-pass filter cutoff frequency down
by a factor of 5 in wavenumber. To calculate our transfer function model, we fit a
2-pole filter model to the Bolocam filter profile given in Sayers et al. (2011):

) (D) = D2

D2
cutoff + D2

, (2.22)

where D is the angular wavenumber and Dcutoff is the cutoff wavenumber; modes
with D < Dcutoff are attenuated by the filter. We found that a value of Dcutoff =

0.0945 arcmin−1 produced a good fit to the Bolocam transfer function, so for our
model we use a cutoff of 1

5Dcutoff = 0.0189 arcmin−1.

2.5.3 Finite Bandwidth Effects
Finally, we consider how finite bandwidth can affect the SZ observations. All

the instruments we consider in this work will perform photometric (i.e., non-
spectroscopic) measurements, so the signals we consider are band-integrated. Be-
cause the SZ effect and the contaminants have spectra that are nonlinear functions
of frequency, it is important in practice to model both the frequency response of the
instrument and the how the signals vary with frequency within each band.

Modeling this frequency dependence is computationally costly for the relativistic
SZ corrections, however, especially in the inner loop of our reconstruction procedure
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(Section 4.1). Thus, in our pipeline, we calculate single-frequency approximations
to the band-integrated SZ signals, which require only one call to SZpack per band.
Assuming top-hat instrument response functions, we found that the bias in this
approximation is typically . 1% in the kSZ signal and . 0.1% in the tSZ signal.
Refer to Appendix A.1.4 for details. The bias can be further reduced to below 0.1%
by calculating the SZ signal at 4 frequencies per band; adding this capability to the
pipeline is the subject of future work.

An additional complication in practice is uncertainty in the calibration of these
bandpasses. Given that this effect is strongly instrument-dependent, we leave the
task of modeling these calibration uncertainties to future studies.
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C h a p t e r 3

MAP CLEANING

Given the spectral overlap of the SZ signals with the primary CMB temperature
anisotropies and emissions from radio galaxies and dusty star-forming galaxies
(Figure 3.1), it is necessary in practice to consider these contaminants and remove
them from SZ observations. The tSZ signal can be recovered to roughly 10%
accuracy without map cleaning, but better accuracy is needed to constrain the
weaker rSZ and kSZ signals.

Prior forecasting by Mittal et al. (2018) considered contamination by DSFGs
and used high-frequency data to clean it, but the contamination was included as a
Gaussian noise term. In contrast, we consider DSFG contamination as a collection
of point sources, as described in Section 2.3.1. Accordingly, to clean this contami-
nation, we use an algorithm that accounts for the DSFGs’ point-like nature and their
correlation among bands. We describe our cleaning algorithm in detail below.

Mittal et al. (2018) also included primary CMB anisotropies in their maps but
did not attempt to subtract or filter them. Given the faintness of the signals we are
reconstructing, it is appropriate to model these effects more fully. In modeling the
map cleaning process, we reconstruct the signals and estimate biases and uncertain-
ties as similarly as possible to the process for real data in order to obtain maximally
realistic values for the precision on the reconstruction of SZ parameters.
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(a) Component spectra normalized to a 90-GHz beam

(b) Component spectra rescaled to have similar magnitudes

Figure 3.1: Example spectra of the relevant SZ components with contaminant
spectra. The SZ signals, which include the total SZ (solid blue), tSZ (solid orange),
kSZ (solid green), and rSZ (solid red), are shown for a cluster with H = 3 × 10−4,
)4 = 6.3 keV, and Epec = 500 km/s and are evaluated at a radius of A500. The
contaminant spectra are those of a DSFG (dashed purple) and the primary CMB
fluctuations (dashed brown); the DSFG spectrum matches the confusion limit at
400 GHz for a 30m telescope. The gray bars indicate six observing bands at the
atmospheric windows centered on 90, 150, 220, 270, 350, and 400 GHz.
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3.1 Point Source Removal
We have developed a procedure to remove point sources from the CIB maps,

which we generate as described in Section 2.3. We perform source detection using
the StarFinder IDL code (Diolaiti et al., 2000), which is tuned to detect sources
effectively in a crowded field.

By default, StarFinder works in three phases. In the first phase, it searches for
local peaks in the contaminated map that fall above a spatially varying background
estimate plus a detection threshold; the threshold is specified as a fraction of the per-
pixel noise RMSfpixel.1 In the second phase, it discards any peaks at which the local
correlation of the map with the PSF falls below a specified value.2 Finally, it refits a
model of the PSF shape at each peak to improve the accuracy of the estimates of the
source locations and flux densities (i.e., the astrometry and photometry). This full
process is iterated multiple times with decreasing noise thresholds, and including
previous detections in the background estimate, to better account for any blended
sources and remove spurious detections. StarFinder outputs a catalog of the sources
detected in the map, which contains each source’s position and flux density along
with uncertainties on both.

In principle, such a catalog is sufficient to reconstruct the CIB and remove it
from the map. However, StarFinder’s algorithm has two key limitations: it does not
account for the effect of flux boosting (described in, e.g., Crawford et al. (2010)), and
it can only detect sources in a single frequency band at a time. We have developed
machinery to apply StarFinder to our situation, where we have maps in multiple
bands and flux boosting may be a concern.

3.1.1 Accounting for Flux Boosting
The effect of flux boosting arises in the regime where the differential source

counts 3#/3( are a steep function of flux density. Because of the steeply rising
3#/3(, a source with an observed flux density (a is more likely to be a dimmer
source that has fluctuated upward in flux due to noise than a brighter source that
has fluctuated downward. In effect, the posterior distribution of true flux for a
given observed flux (a is biased to lower fluxes than (a, or, more simply put,
observed fluxes are biased high on average. Failing to account for flux boosting

1This convention for the threshold is not equal to the signal-to-noise ratio (SNR) of the detected
source when the PSF is multiple pixels wide. We apply an aggressive detection threshold of 1fpixel
and rely on a manual cut at the end to discard sources with SNR < 4.

2We use a value of 0.4 in this work.
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leads to the subtraction of too large a flux on a source-by-source basis, which causes
negative pointlike artifacts to appear in the source-subtracted map. StarFinder does
not perform a correction (“deboosting”) for this effect on the flux densities of the
sources it detects, so we manually implemented this functionality into our pipeline.

We considered two methods for accounting for flux boosting. The first of these
is the Bayesian formalism of Crawford et al. (2010), which gives the posterior
probability distribution of the flux density of the brightest source within a pixel
(max given the detected flux density of the source (?,< and the prior probability
distribution %((max) derived from the source counts. For the sake of computational
tractability, our implementation of the formalism makes the approximation (also
described in Crawford et al. (2010)) that the likelihood %((?,< |(max) is Gaussian,
which greatly simplifies the calculation at the cost of some accuracy. From the
posterior probability density function (PDF) %((max |(p,m), this method chooses a
single representative value of (max to be the true flux density for CIB reconstruction;
in practice, we use the median value of the posterior as a representative.

The second method we considered is to calibrate an empirical relation between
the known true flux density of a source (true and the flux density of the detection
(detected. There is some ambiguity inherent in the definition of (true, as a detected
source does not necessarily correspond exactly to a single true source in the CIB
realization, either in position or in flux density, due to the contributions of nearby
sources. Based on our testing, we have found that the most useful way to define
(true given a detection is as the amplitude of a fit of the PSF to the noiseless input
CIB map at the detected source position. Furthermore, we remove all contributions
to (true from sources above a 4f detection threshold that are outside StarFinder’s
minimum source separation of 1 FWHM. The calibration is performed on a noisy
map of the full field of the SIDES catalog; it consists of fitting a curve to (true vs.
(detected (Figure 3.2). We chose the form of a piecewise linear function for this
fitting curve as a compromise between the robustness of the fitting behavior and the
flexibility to deviate from linearity. Finally, the true flux density of an unknown
source can be estimated by evaluating the piecewise calibration function at (detected.

Figures of Merit

In tuning the parameters of the source removal algorithm, we have used several
figures of merit (FoM) to evaluate its performance. The simplest of these is the
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Figure 3.2: Empirical calibration of StarFinder’s flux estimate for all sources de-
tected in a large (2 deg2) map. For each detected source (blue), StarFinder’s estimate
(detected is compared to a fit to the true flux density (true within a beam of the detected
position in the noiseless map. The red curve shows the piecewise linear fit to the
calibration data, while the black line shows (true = (detected for comparison. (The
vertical black lines indicate boundaries of the piecewise linear fitting regions.) It
can be seen that, on average, (detected only exceeds (true in dim sources.

residual map-space RMS, calculated as the RMS of the difference between the input
map of source fluctuations "in and the map of reconstructed sources "out, where
both maps have been convolved with the beam and "in has been calculated before
the addition of instrument noise:

FoM = RMS("in − "out). (3.1)

A more informative figure of merit is the histogram of all the pixels of the residual
map "in−"out, which can be used to see deviations in the residual from a Gaussian
noise distribution. Another option is to consider the angular power spectrum of
residual map pixels. We use these FoM to compare the two techniques for boost
corrections, as shown in Figure 3.3.

The postage stamps stacked on source positions (Figure 3.3a) are the most
transparent way to visualize how each method affects the residual in the map.
Applying no correction results in a clear over-subtraction on average, while there is
apparently a trade-off between the two correction methods. The empirical method
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(a)

(b) (c)

Figure 3.3: Demonstrations of the performance of the boosting correction algorithm
in the case of a 30m telescope with confusion-limited noise at 270 GHz. a Postage
stamps of residual CIB maps ("in − "out) stacked on detected source positions,
where "out is uncorrected, corrected empirically, and corrected with the Bayesian
method of Crawford et al. (2010), respectively. The postage stamps are normalized
relative to the peak of the stack on the true CIB map. b Residual CIB power spectra
within postage stamps stacked on detected source positions, where the wavenumber
D is defined in the flat sky approximation such that when D has units of rad−1,
2cD = ℓ, where ℓ is the angular multipole. Power spectra are given for both the
residual CIB maps—with the Crawford et al. (2010) boost correction (blue), the
empirical correction (orange), and no correction (red)—and the true CIB map "in
(green). c Histograms of flux density values in each pixel within a postage stamp of
the source in the true CIB map (blue), the uncorrected residual map (orange), and
the empirically corrected residual map (green). Compare the performance to the 4f
detection threshold (dashed line). The map pixels have been rebinned by a factor of
5 to match the FWHM of the beam.
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reduces the over-subtraction but suffers from an annular feature in the stack at a
radius of slightly less than one FWHM of the beam (in this case, 10′′). This suggests
that the source positions are being slightly misestimated due to other nearby dim
sources. It is interesting to note that the annulus does not disappear in the case
where the sources in the map follow a uniform distribution in space (unlike SIDES,
where clustering is taken into account); hence, it seems that source clustering does
not cause the feature. The Crawford et al. (2010) method, on the other hand, lacks
the annular feature but tends to under-subtract sources, likely because it yields
the posterior PDF of only the brightest source within a beam without including
contributions from dimmer sources.

These characteristics can also be seen in the postage stamps’ power spectra
(Figure 3.3b): the Crawford et al. (2010) technique performs better at small angular
scales, while the empirical correction performs better on scales of the beam size and
larger. Since the SZ signal we seek occurs mostly at angular scales larger than that
of the beam, the SZ signal recovery is presumably less sensitive to sub-beam-scale
residuals; hence, we choose the empirical correction technique to apply to the main
analysis.

The histograms of Figure 3.3c illustrate how the algorithms’ performance affects
the entire recovered map. The histogram bins count residuals per beam by binning
the FoM map (Equation 3.1) into beam-sized pixels and only considers pixels
located at detected source positions. This procedure roughly corresponds to counting
the residual per source detection while avoiding the ambiguity in pairing detected
sources with one or more sources in the ground truth catalog. As these histograms
illustrate, any of the source subtraction methods (with or without boost correction)
modify the map histogram by removing the long positive tail of bright sources and
leaving a distribution resembling Gaussian noise. The effect of the boost corrections
is to reduce the negative tail where oversubtraction is occurring. The Crawford et al.
(2010) is arguably more effective in this regard, although perhaps at the expense of
undersubtraction for some sources.

3.1.2 Multiband Source Removal
The procedure described above applies to removing point sources from a single-

band map. However, given our multifrequency analysis, we must extend the pro-
cedure to make use of multiband data. It is possible to detect sources in multiple
channels independently, as done by past multiband SZ analyses (e.g., Sayers et al.,
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2013). However, we can improve the signal-to-noise ratio of the detections by using
a weighted multiband combination of single-channel maps. We implement this
source removal procedure in two steps—detection and refitting—which we describe
in detail below. The entire multiband source detection and refitting algorithm is
depicted in the diagram in Figure 3.6. We assume a 6-band instrument for the
procedure described in this section.

Our goal in the detection step is to obtain a maximally complete and accurate
catalog of source positions as an input to the multiband refitter. To combine the
single-channel maps into one, we must first rescale them by factors Aa = (ref/(a,
where (a is the source SED, with the highest-frequency flux density (ref as a
reference point. For this step, we assume that all sources obey an identical modified
blackbody SED (2.10), which depends on two parameters: the observed temperature
) and spectral index V. After rescaling the maps by the SED, we form an optimal
combination map using an inverse-variance-weighted average of the single-channel
maps. That is, we can express the map as a combination

"combined =
∑
a

AaFa"a∑
a Fa

, (3.2)

where "a are the single-band maps and Fa are the weight factors that maximize
the combined signal-to-noise ratio. See Appendix A.3.1 for a derivation of these
optimal weight factors. Finally, we use StarFinder to extract the source positions
from the combined map, setting the detection threshold at 4f relative to the noise
level, which we calculate from the noise levels of the individual maps.

There is an important detail in the choice of the source SED: since the sources in
SIDES have a range of SEDs, there is no single natural choice of the parameters )
and V. To find optimal values of ) and V, we fitted the modified blackbody template
to the observer-frame SEDs (a of the SIDES sources. We found that V = 1.8 is
a good match for most of the sources, but the best-fitting value of ) ranges from
∼ 5 K − 80 K. When forming the multiband combinations as described above, we
found that lower values of ) tend to detect more sources than high values, with a
3% increase in detected source count from ) = 10 K to ) = 5 K. Employing the
multiband map with any value of ) yielded a 40% gain in the number of detected
sources over simply using the 400 GHz band 3.

By one metric, however, we found that using the 10 K SED slightly improved
the positional accuracy of source detections compared to the 5 K SED. Specifically,

3These tests assumed a 30m telescope integrating to the confusion limit.
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we found that the RMS spread of deviations relative to the estimated uncertainty of
the centroid position—rms

(
ΔG
fG

)
—decreased from 1.6 with 5 K to 1.5 with 10 K. To

attempt to minimize such astrometry errors, we use a compromise in our algorithm:
we perform two detection passes, first fitting with ) = 5 K and refitting with
) = 10 K. However, there is a significant runtime penalty for performing this extra
fitting pass, typically ∼ 25% of the computational cost of the full multiband fitting
algorithm. We do not expect that the additional fitting pass significantly affects
the SZ reconstruction, particularly considering that another metric of the spread—
the median of

���ΔGfG ���—does not improve with the warmer SED. For future work, if
computation time is an important consideration, one should investigate whether this
additional step adds significant benefit in constraining the SZ signal.

With the source positions in hand, we proceed to fit an SED at each source
position. The first step is to repeat PSF photometry at each source position in each
single-band map. We perform this PSF photometry by simultaneously fitting an
image of the PSF and a sloped background component at each source position.
We also subtract initial estimates of the fluxes of the known nearby sources, as
determined by StarFinder from"combined and rescaled by the 10 K SED.We perform
two passes of this PSF fitting for all the sources to better account for overlapping
sources. Next, we correct for the boosting effect at each frequency as described
in Section 3.1.1. Finally, we fit a modified blackbody SED template (2.10) to the
deboosted flux densities, fixing V = 1.8 but varying both ) and the amplitude. To
check that this SED model is valid for SIDES sources, we performed a collection of
fits of the SED to SIDES photometry, which we report in Appendix A.1.2. However,
there are a few important complications in this photometry and SED refitting process
that we note below.

The first complication occurs when a bright source subsumes a nearby dim
source in the low-frequency channels. That is, the PSF photometry incorrectly
attributes the dim source’s flux density to the bright source, even when the dim
source is detected at high significance in the higher-frequency bands. Iterating PSF
photometry steps alone is not sufficient to solve this problem. Instead, we leverage
information from the higher-frequency bands to provide a first estimate of the dim
sources’ flux densities. To do this, we perform PSF photometry and SED fitting with
the three highest-frequency bands alone. We then extrapolate the SED to the low-
frequency bands and then repeat the photometry and SED fitting with all frequency
channels. To validate the SED fitting procedure, we checked that the distribution
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(a) j2, linear scale

(b) j2, logarithmic scale

Figure 3.4: j2 histogram for modified-blackbody SED fits (blue) compared to the
expected j2 distribution with 4 degrees of freedom (orange). We show both linear
(a) and logarithmic (b) scales to demonstrate the absence of extreme outliers.
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of the j2 values from the SED fits matches the expected j2 distribution with the
correct number of degrees of freedom; see Figure 3.4.

An additional complication is incorporating a boost correction in the regime of
multiband detection. The boosts can be computed in the empirical mode of the
single-band case described above (Section 3.1.1) by simply treating the combined
map "combined (Equation 3.2) as a single-frequency map. As before, (detected is the
StarFinder output flux, and (true is a proxy for the input flux density that is calculated
in map space. (detected − (true gives the level of boosting.

Figure 3.5 shows boosts calculated in the 10m and 30m cases, under the assump-
tion that the sources obey a 10 K modified blackbody SED. The 10m case (Figure
3.5a) shows boosting in the dim sources as before. However, the 30m case (Figure
3.5b) apparently no longer has any noticeable boosting, even for dim sources. It
is surprising that the 30m boost vanishes, but previous works have found substan-
tial variations in the level of boosting depending on the observational scenario and
details of the method. For example, Zavala et al. (2017) found a fractional boost
of only 10% at low measured flux densities, which quickly fell to zero for higher
measured flux densities, while Wang et al. (2017) found a boost of 30% for the
lowest measured flux densities that gradually approached zero. Thus, it does not
seem unreasonable that the 30m boost is apparently insignificant.

Integrating the boost correction into the pipeline requires a final step of redis-
tributing the boost among the observing bands. The optimal way to perform this
redistribution is not perfectly clear, and so it remains a subject for future work. One
possibility may be to distribute the combined boost Δ(combined proportionally to the
weight factors Fa. However, a few factors lead us to believe that it is not critical
to develop machinery for the multband boost correction. For one, as shown above,
the 30m case has an apparently negligible boost. In addition, we have not found
evidence that the residual source boosting leads to a bias in the SZ signal in the
multiband regime: see, e.g., Figure 5.1. Finally, we expect the bias to be subdomi-
nant to the lensing deficit of Section 2.4, and so any bias due to boosting could be
characterized in map space in an analogous way to the lensing deficit correction;
see Section 3.3.

As a final detail of the multiband source fitting procedure, we note that the
presence of the SZ signal may bias the recovered flux densities of the point sources
(and vice versa). To mitigate this effect, it is necessary to jointly fit for the source
fluxes and the SZ signal. We implement this joint fitting by an iteration cycle in
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(a) Combined 10m boosts

(b) Combined 30m boosts

Figure 3.5: Demonstration of boosting in multiband detections, showing detected
flux density as a function of true flux density for 10m (a) and 30m (b) telescope di-
ameters. Detections are binned by true flux density; within each bin, the distribution
of detected flux densities is indicated by the median (red dots), and 16% 84% levels
(blue bars). The dashed line represents equality between the detected and true flux
densities.
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Figure 3.6: Detailed diagram describing the steps of the multiband source removal
algorithm, beginning from the raw input maps (labeled “1-Band Maps”).

which we alternate between fitting for CIB sources and SZ signal, as illustrated in
the diagram in Figure 3.6.

3.2 CMB Removal
As described in Section 2.3.2, the mock observations include a model of the pri-

mary CMB anisotropies. The primary CMB anisotropies follow the same frequency
spectrum as the non-relativistic kSZ signal. In particular, in units of CMB temper-
ature, both of these components are independent of frequency. Thus, to recover the
kSZ signal without bias, it is important to remove the primary CMB anisotropies
from the maps as well as possible.

In our observational scenario, the relevant components are the primary CMB,
the tSZ signal, and the kSZ signal. The literature contains numerous examples of
CMB component separation methods; see, e.g., Leach et al. (2008) and Delabrouille
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et al. (2009b) for a review.4 We use a combination of two techniques to separate
these components. To separate the tSZ signal out from the other two components, we
use the well-known internal linear combination technique (ILC; e.g., Remazeilles
et al. (2011)). From the output of the ILC procedure, we use a technique known as
inpainting to separate the kSZ and CMB signals. At the end, we can recombine the
tSZ and kSZ signals as the input to the fitting technique described in Chapter 4. We
describe the component separation techniques in more detail below.

We note that our final set of mock observations and analyses in Chapter 5 does
not include any CMB anisotropies. This is because we have not had time to fully
incorporate the removal algorithms described below into our pipeline. However, we
have implemented them and tested them in isolation, and they give unbiased results
in these simplified scenarios. A future publication will show updated versions of
these simulations with the primary CMB component included and treated fully in
the analysis.

3.2.1 tSZ Separation by Internal Linear Combination
Our task is to separate the tSZ signal from the CMB and non-relativistic kSZ

signal in a multifrequency map. The ILC algorithm performs this separation based
on the known frequency dependences of the components. ILC is a good choice
because it is fast and easy to implement, and it only requires some conservative
assumptions about the data, although it can be biased if any of the unmodeled
components are correlated with the CMB (Delabrouille et al., 2009a).

To describe the ILC procedure, we follow the nomenclature of Remazeilles et al.
(2011), except that we work with quantities in 2D Fourier space as a function of `
instead of map pixels.5 We can first write the data map G8 (`) at each frequency 8 as
the sum of its components:

G8 (`) = 08B(`) + 18H(`) + =8 (`), (3.3)

where the 08 is the (constant) known frequency dependence of the CMB, B(`) is
the spatial dependance of the CMB plus the kSZ signal, 18 is the known frequency
dependence of the tSZ signal, H(`) is the spatial dependence of the tSZ signal, and
=8 (`) is the noise in the map. The noise term =8 (`) includes instrument noise as
well as any residual contamination from the point-source removal step described

4NASA Legacy Archive for Microwave Background Data Analysis (LAMBDA) provides a list
of techniques for CMB analysis: http://lambda.gsfc.nasa.gov/toolbox/tb_comp_separation.cfm.

5Under the flat sky approximation, ` is related to the angular multipole ℓ as |`| = ℓ.
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in Section 3.1. Rewriting in vector form, where the components of the vectors
correspond to the frequencies 8, this becomes:

x(`) = aB(`) + bH(`) + n(`). (3.4)

In terms of this nomenclature, the goal of the ILC procedure is to obtain a minimum-
variance estimate the combined CMB and kSZ signal B(`) given the frequency
dependences a and b. We want to estimate B(`) by forming a linear combination of
the frequency channels of the data map, that is:

B̂ = wCx, (3.5)

where w is a vector of weights.

The ILC formalism comes in two flavors, which have different criteria for the
optimalw besides minimum variance of B. The first of these is the standard version
of ILC, in which w is subject to the constraint of preserving the CMB spectrum:

wCa = 1, (3.6)

which is to say B̂(`) will perfectly match B(`) in the case that the other components
are zero. The standard ILC yields the following weights:

w =
0CR̂−1

0CR̂−10
x, (3.7)

where R̂ is the empirical covariance matrix among frequencies of the map x,
calculated by averaging over realizations (index :) of the noise and CMB as follows:

R̂ =
∑
:

∑
8, 9

x8,: (`)x 9 ,: (`), (3.8)

where 8 and 9 run over the frequency bands.6 However, these weights do not account
for the presence of the tSZ signal, so the standard ILC estimate B̂ is contaminated
by the tSZ signal. Such contamination is a problem when trying to recover the kSZ
signal from the CMB + kSZ map.

The other version, known as constrained ILC, imposes an additional constraint
on the weights, which is that they must zero out the tSZ signal:

wCb = 0. (3.9)
6The covariance matrix can also be computed by averaging over bins of ℓ. However, we have

found that this leads to a small bias in the recovered signals B̂ and Ĥ in some cases.
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Optimizing again for minimum variance subject to both Equations 3.6 and 3.9, one
finds

wC =
aCR̂−1 − (a

CR̂−1b)bCR̂−1

bCR̂−1b

aCR̂−1a − (aCR̂−1b)2
bCR̂−1b

. (3.10)

As an simple explanation of the behavior of Equation 3.10, we note that the first
term in the numerator estimates the CMB in a manner similar to Equation 3.7,
while the second term in the numerator removes any correlation between the tSZ
template and the map. The second term of the denominator is needed to adjust the
normalization to preserve the CMB and satisfy Equation 3.6, as the tSZ removal
from the numerator also subtracts some of the CMB on average due to its correlation
with tSZ.

With this result, the CMB + kSZ component can be estimated efficiently without
contamination from tSZ. The tSZ component can also be estimated by swapping
each instance of a and b. Given that we know the spectrum b of the tSZ signal,
there is no reason to prefer standard ILC over constrained ILC in our scenario. See
Eriksen et al. (2004) for a derivation of this result that uses the method of Lagrange
multipliers.

An important difference between our version of algorithm and the Remazeilles et
al. (2011) original is that we consider relativistic corrections to the SZ signal. To do
this, we reinterpret Equation 3.4 such that the bH(`) term includes the relativistic SZ
corrections. The relativistic corrections include both relativistic tSZ and relativistic
kSZ, which depend on the cluster’s temperature )4 and velocity 3I (Section 2.2).
Thus, if the )4 and 3I are known, then the frequency dependence b is known, and
so the ILC weights of Equation 3.10 can recover the CMB + nonrelativistic kSZ
component without bias. Figure 3.7 demonstrates this fact.

However, in practice, we do not have perfect knowledge of )4 and 3I. We may
improve the reconstruction of the relativistic tSZ corrections through a prior on )4,
which we shall motivate later in Section 4.1.2. With a 10% prior, we expect the error
in the rSZ reconstruction to be a modest perturbation on the CMB reconstruction.
Moreover, the relativistic kSZ signal is small to begin with, so it may be safe to
neglect, or it may be reconstructed iteratively with information on 3I from prior
fitting of the SZ signal. Ultimately, one must characterize the bias on velocity
reconstruction due to these effects.
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Figure 3.7: Demonstration of ILC performance in an ideal scenario. The top two
rows show 90-220 GHz, while the bottom two rows show 270-400 GHz. The
top panels (first and third rows) show the ground truth value of the CMB + kSZ
component compared to the ILC estimate, and the bottom panels (second and
fourth rows) show the residual at a fractional level of 10−9. In this test, the mock
observation contains the CMB anisotropies and the full relativistic SZ signal but no
noise, and the ILC weights are calculated with the exact value of the relativistically
correct SZ spectrum. The residuals contain oscillatory artifacts, which are due to
the Fourier-space reconstruction.
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3.2.2 kSZ Separation by Inpainting
Removing the tSZ signal as described in Section 3.2.1 yields an estimate of

the frequency-independent map B(?),7 which contains the primary CMB and the
nonrelativistic kSZ signal. The remaining problem is to separate these two signals
using spatial information alone. The CMB power spectrum peaks at large angular
scales (1◦; ℓ ∼ 200) and is exponentially damped at increasing ℓ, while the kSZ
signal of a galaxy cluster tends to peak at scales of a few arcminutes, or ℓ & 3000
(Alonso et al., 2016). We can improve the estimate of the spatial scale of the kSZ
signal if the tSZ signal is known, since the two SZ signals are spatially correlated.
Using this prior knowledge of the kSZ and CMB power spectra, it is possible to
separate the two signals in the map.

There are several practical ways to apply this prior knowledge to reconstruct the
kSZ signal. The simplest approach is to use aperture photometry with a radius set
to include the cluster signal (Alonso et al., 2016). However, this approach yields
relatively low S/N on the kSZ signal. Two other classes of techniques can improve
on aperture photometry: namely, matched filters and inpainting. A matched filter
can be constructed with knowledge of the CMB angular power spectrum and an
estimate of the SZ profile. We describe inpainting in more detail below. Both
techniques are useful in different cases, but, in this work, we use a technique based
on inpainting because it can effectively separate non-CMB signals without precise
knowledge of their power spectra.

Inpainting algorithms work based on the fact that the central part of the con-
strained ILC map is dominated by kSZ but has CMB contamination, while the outer
part is dominated by CMB. We use the outer parts of the map to make an estimate
of the CMB in the inner part, which we subtract to recover kSZ. Several authors
have developed methods for estimating the CMB component in the inner region of
the map. As one early example, (Forni et al., 2005) estimated the CMB in the inner
region by fitting a 2D spline to the outer region. One can improve on the spline
fits, however, by constructing CMB realizations that have the known correct power
spectrum. The realization must then be constrained to match the outer region of the
map. This is known as the method of constrained Gaussian realizations (Hoffman
et al., 1991). Several CMB lensing studies have used this latter variant of inpainting
to remove kSZ contamination (Benoit-Lévy et al., 2013; Raghunathan et al., 2019).

7? refers to the pixel in map space; B(?) is the inverse Fourier transform of B(`) from the prior
section.
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In addition, several analyses of Planck data (e.g., Planck Collaboration et al., 2018)
have used inpainting with constrained realizations to recover kSZ from CMB maps.

In this work, we use an inpainting algorithm based on the constrained realization
method of Raghunathan et al. (2019). The reference uses the variable ) for the true
CMB temperature field in the map— B(?) from the previous section is the sum of
) and the kSZ signal—but we note that this field is represented as a vector over
map pixels, so here we denote it with the bold symbol T . The algorithm begins by
defining a mask that separates T into an inner region (region 1), which is a circle of
radius '1, and an annular outer region (region 2) with outer radius '2. Both regions
are concentric with the centroid of the tSZ signal. The goal of the algorithm is to
find the most likely CMB signal T̂1 in region 1 given the signal T2 in region 2 and
the CMB covariance matrix Ĉ.

To estimate Ĉ for the region of our map, we generate random Gaussian real-
izations of the CMB in the same manner as in Section 2.3.2, using CAMB as the
source of the CMB power spectrum. We may then calculate Ĉ in the usual manner
for each Gaussian realizationG8; we average over = such realizations as follows:

Ĉ =
1

= − 1

=∑
8=0
(G − 〈G〉)(G − 〈G〉)) . (3.11)

We followRaghunathan et al. (2019) in choosing = = 50000 to produce a satisfactory
estimate. Ĉ can then be separated into parts with pixel indices corresponding to
regions 1 and 2:

Ĉ =

(
Ĉ11 Ĉ12

Ĉ21 Ĉ22

)
. (3.12)

With an estimate of the full covariance matrix, we can proceed to estimate T̂1.
Given T2, T1 follows a Gaussian probability distribution with a mean of

T 1 = Ĉ12Ĉ−1
22T2 (3.13)

and a covariance of
σ = Ĉ11 − Ĉ12Ĉ−1

22 Ĉ21 (3.14)

(Benoit-Lévy et al., 2013). The most likely T̂1, then, is simply given by Equation
3.13. Benoit-Lévy et al. (2013) argue for using an additional random realization T̃
(which is T̃1 in region 1 and T̃2 in region 2) to match the covariance f. When one
requires the mean of this realization to satisfy Equation 3.13, one obtains a corrected
estimator for T1:

T̂1 = T̃1 + Ĉ12Ĉ−1
22 (T2 − T̃2). (3.15)
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Raghunathan et al. (2019) follow this approach. However, in our tests, we have
found that Equation 3.13 is sufficent to reconstruct the kSZ signal.

As a caveat to the above, we note that T2 contains noisy small-scale modes,
whereas for reconstructing the CMB, we are only interested in preserving the large-
scale modes. These small-scale modes appear in T2 because the window function—
the outer region as defined above—has a hard cutoff in map space, which amounts to
a convolution in frequency space, i.e., mode mixing. To mitigate this mode mixing,
we apply a spatial low-pass filter to the input map before applying Equation 3.13
or 3.15 to estimate T1 (J. Kim, 2020, private communication). The filter is set to
remove modes above ℓ = ℓLPF, which corresponds to the inner radius '1 of the
mask.

We take a moment to indicate our preferred values for the mask parameters.
While '1 could be optimized for the particular cluster being considered, we have
chosen the generally applicable value of '1 = 5′ based on our testing. We use
ℓLPF = 2160 for the filter to match this value of '1. In addition, prior testing
by Benoit-Lévy et al. (2013) and Raghunathan et al. (2019) suggests that a small
annulus is sufficient (and desirable, for computational efficiency); we use '2 = 20′.

We note that a potential shortcoming of the above approach is the way in
which it assumes there is no CMB information in region 1 and there is only CMB
information in region 2. A smoother weighting scheme is probably closer to optimal
and less subject to bias. In the future, we plan to publish an updated version of the
Raghunathan et al. (2019) algorithm that uses such a smooth weighting scheme.

3.3 Lensing Bias Correction
As we described in Section 2.4, previous works have found that gravitationally

lensed CIB sources can lead to a bias in the SZ signal recovery. Indeed, in our tests,
we found a 1–2f bias in the cluster velocity estimate in maps that included lensed
CIB. In particular, to clarify the sign convention, we found

3I,estimate − 3I,true . −f3 (3.16)

for the cluster we tested, which had properties close to those of the real cluster
MACS J0329.6-0211. This bias remained after two iterations of CIB cleaning
(Section 3.1) and SZ fitting. Thus, we determined that there was a need to correct
for the effect of lensing to reduce the bias in the velocity estimate.
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Figure 3.8: Example maps of the mean lensing bias correction for 100 CIB real-
izations. A positive value in the map indicates that the source removal algorithm
overestimates the CIB (and thus underestimates the residual) on average. In the final
calculation, these maps are cropped by 5f of the lowest-frequency Gaussian beam
to remove edge effects. Units of the color scale are `Jy/pixel for a pixel size of 4
arcseconds.

To better characterize the lensing bias, wewish to understand how lensing affects
the CIB reconstruction independently of the SZ signal. To this end, we generate
an ensemble of 200 lensed CIB realizations using the mass model of the cluster we
wish to analyze.8 These realizations also include instrument noise, althoughwe have
found that it affects the calculation only modestly. With each realization, we identify
and fit for sources using the multiband removal procedure of Section 3.1. We then
calculate the average (over realizations) residual map in each frequency band. To
minimize effects from strongly-lensed sources, we calculate this combination as the
mean over all realizations of each pixel after clipping outliers with a 5f threshold.
The result is that, for a pixel with coordinates (G, H) and frequency a, we can express
the bias correction 1a (G, H) as follows:

1a (G, H) =
1

=(G, H)
∑
8

Aa,8 (G, H), (3.17)

where the Aa,8 (G, H) are the pixels of the =(G, H) residuals 8 that fall within the 5f
8In a real-world analysis, it would be necessary to estimate the cluster mass model either by

iteration or using an external data source.
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Figure 3.9: Flow chart illustrating the SZ reconstruction process with the lensing
bias correction included.

threshold. See Figure 3.8 for example maps of the bias correction.

Figure 3.9 illustrates how the lensing bias correction is integrated into the anal-
ysis pipeline. On each pass of CIB removal, which is slightly over-subtracted due
to lensing bias, we add back the CIB lensing bias determined in the above manner,
prior to the SZ fitting for that pass. Some iteration is still necessary to recover the
SZ signal in an unbiased way. In practice, we have found that two iterations of this
procedure are generally sufficient.

We have confirmed that applying the lensing bias correction reduces the bias
in our estimate of 3I to well below 1f. However, we have not had time to fully
incorporate the correction into our pipeline, so we have not included SZ constraints
with lensing in our results.
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C h a p t e r 4

EXTRACTING CLUSTER PHYSICAL PROPERTIES FROM
RECONSTRUCTED SZ MAPS

After the mock images have been cleaned of the relevant contaminants, we wish to
infer the cluster properties from the map-space data. In this chapter, we describe the
procedure used to analyze the cleaned maps and extract relevant cluster parameters
along with their uncertainties. Section 4.1 discusses the extraction of properties
defined as a scalar value for the entire cluster (e.g., the bulk velocity and mass-
weighted mean temperature), while section 4.2 describes a simple way to map out
constraints on internal cluster properties.

4.1 Bulk Cluster Properties
Our goal is to simultaneously constrain the bulk properties of the intracluster

medium—peculiar velocity (3I), ICM electron temperature ()4), and optical depth
(g, Equation 2.5)—given mock observational map data. Extracting these bulk
parameters provides the necessary inputs to several types of cosmological analyses.
The cluster peculiar velocity 3I, which can be used to constrain the behavior of dark
energy and gravity on large scales as in Bhattacharya et al. (2008) and Kosowsky et
al. (2009), is of primary interest in this work. The other parameters )4 and g, which
are degenerate with 3I in their effect on the total SZ signal, must be constrained
simultaneously as nuisance parameters.

The choice of parameterization in terms of 3I, )4, and g is not unique. One may,
for example, use the Compton H parameter (Equation 2.2) instead of g. This choice
is somewhat arbitrary, but we use g for the convenient fact that both the kSZ and
tSZ signals scale with it, so it is natural to calculate it as an intermediate component
of the cluster model.

4.1.1 Least-Squares Fitting
We constrain the ICM properties of our mock observations by fitting a noiseless

analytical model analogous to the one used to generate the mock observations as
described in Chapter 2. This model is composed of the ICM model of Section
2.1 and a description of the telescope’s beam and the signal transfer function as
in Section 2.5. The free parameters of this model include the GNFW pressure
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normalization %0, an isothermal temperature component )4, a single bulk velocity
component 3I, the scale radius AB, an G, H position on the sky, and, in certain cases,
the GFNW slope parameters U, V, and W. We assume the clusters are spherical for
simplicity. In addition, we assume that the beam and transfer function have been
fully characterized in advance, so we do not parameterize them in the fitting process.
The reported value of g is the average optical depth within a 1′ radius.

We chose this model because it is straightforward to implement and fit. More-
over, fitting a model in this way enables us to robustly characterize non-Gaussian
uncertainties, in contrast to Fisher matrix methods; see Section 4.1.2 below for
details. In addition, the form of the ICM model is a good match to the average
shape of hydrodynamically simulated clusters. While this approach does ignore
deviations from smooth radial profiles, we will show using simulated clusters that
this approach does not create significant biases.

We consider two different types of mock observations, each of which uses a
different description of the cluster: (a) a smooth, analytical, radial profile, referred
to as the “analytical case,” and (b) a map of a hydrodynamically simulated cluster
lacking azimuthal symmetry. The analytical case serves as a useful starting point
for which the computational machinery has already been implemented. The second
case, the “simulation-based case,” which can be viewed as a generalization of the
first, will be necessary for process validation and for application to real observations.
It is natural to discuss the analytical case first, as the machinery for fitting in the
simulation-based case builds upon that for the analytical case.

In the analytical case, it suffices to perform a least squares fit using the analytical
model described above. The goal of the fitter is to minimize the value of the j2:

j2 =
∑
8

(�8 − "8)2

n2
8

, (4.1)

where �8 is the data vector, "8 is the model vector, and n8 is the noise RMS per pixel;
the index 8 runs over all map pixels in all frequency channels. The data vector �8 is
the output of the mock observation pipeline, including noise and all contaminants,
while the model vector "8 consists of the projected SZ signal of the cluster alone.
While it is necessary in real observations to allow the noise rms n8 to vary from
pixel to pixel, we assume for simplicity in this work that n8 is a constant function of
position on the sky and varies only with observing frequency.

We explored two choices for the fitting algorithm, namely, the Levenberg-
Marquardt (Levenberg, 1944; Marquardt, 1963) and Nelder-Mead (Nelder et al.,
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1965) algorithms. The Levenberg-Marquardt (L-M) algorithm works by estimating
the gradient of the j2, while the Nelder-Mead algorithm uses the values of the
j2 directly.1 The L-M algorithm is a popular choice because it converges quickly
and fitters generally provide uncertainty estimates. The Nelder-Mead algorithm is
more robust, but it tends to converge more slowly and, since it does not calculate
derivatives, does not automatically give uncertainty estimates.

In the end, we chose to use the Nelder-Mead algorithm for its added robust-
ness. The L-M algorithm failed to converge in enough cases that it impacted our
constraints derived from bootstrapping over many noise realizations as described in
Section 4.1.2. The downside of slower convergence was mitigated by using high-
performance computing (HPC) resources, and, in any case, the least-squares fit was
not the computational bottleneck in the analysis pipeline.2 In addition, we relied on
noise resampling to determine the uncertainties (see Section 4.1.2), so we did not
need uncertainty estimates based on derivatives.

We have made some effort to adapt the least-squares fitter to work well in the
simulation-based case, that is, when the mock data map is more complicated than
a simple radial profile. Our tests of this regime have used SZ effect maps derived
from the IllustrisTNG simulations (D. Nelson et al., 2019). Although the GNFW
model was designed to agree well with hydrodynamical cluster simulations (Nagai
et al., 2007), achieving convergence has proven to be somewhat nontrival without
manually guiding the fitter, which would be intractable when analyzing a large
number of clusters, particularly when using bootstrap resampling as described in
the following section. This difficulty appears to be due to the behavior of the fitting
algorithm and not a deficiency in the freedom of the GNFW parameterization.

To help automate convergence, we considered (but have not tested) the approach
of fitting a one-dimensional profile to determine the shape parameters of the cluster’s
ICM before attempting to fit the full multiband map, in the hope that the reduced
degrees of freedom will improve the convergence of the fit. Here, we describe
the proposed steps in detail. First, locate the cluster center in a map by fitting a
cluster model using GNFW slope parameters U, V, and W fixed to the values given
in Arnaud et al. (2010), which should be a good match to the general case on
average. For simplicity, it should suffice to pick a single frequency band for the fit.
Next, calculate an approximate profile by averaging the map in single-pixel-wide

1Nelder-Mead is also known as the amoeba method. IDL, for example, uses this nomenclature.
2The bottleneck was generally the source cleaning algorithm (Section 3.1).
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annular bins. Fit this profile with a projected cluster model to obtain estimates
of the slope parameters along with the scale radius AB and the amplitude. There
is some degeneracy among these parameters, so it may be necessary to fix one or
more of them for the fit to converge. Allowing ellipticity in the GNFW model may
also be necessary for certain clusters in practice; one could calculate a profile by
averaging the map on ellipses instead of circles, and the ellipses’ axis ratios could
be determined by alternating with a 2D map fit. Finally, with this estimate of the
cluster shape, one may reattempt fitting the cluster model, with its shape parameters
fixed, to the full multiband map as described above. The full process—fitting the
profile, then fitting the full map—may be iterated to improve the fit.

4.1.2 Characterizing Parameter Uncertainties from Least-Squares Fits
The uncertainty estimates for the fit parameters are most simply described in

terms of the covariance matrix, which can be provided by an L-M fitter. However,
the use of a covariance matrix depends on the assumption that the uncertainties are
Gaussian, which is invalid when the fit parameters have complicated degeneracies.
Instead, we use a bootstrapping approach over multiple noise realizations to map out
the degeneracy contours. We consider the “degeneracy contours” to be the contours
of the 68% and 95% confidence regions in the two-dimensional spaces between
pairs of parameters, e.g., the 3I-g plane. It is important to consider the degeneracy
contours because they provide a more complete description of the uncertainty on
the value of a parameter than, e.g., 1-dimensional confidence intervals. In addition,
approximating the uncertainties as Gaussian can lead to biased estimates of their
values.

We note that the three parameters 3I, ) , and g occupy a three-dimensional space,
so describing the constraints in terms of 2D regions is an approximation. We have
produced an animated visualization (not shown in this thesis) that suggests that
the parameters lie on a 2D surface within the 3D parameter space. However, we
use the projected 2D contours for ease of visualization and relative simplicity of
parameterization.

The bootstrapping procedure begins with a complete fixed set of assumptions
about the galaxy cluster being analyzed, the instrument configuration, and the levels
of the relevant contaminants. These assumptions are sufficient to generate a mock
observation of the cluster up to the specific realizations of the contaminants. To
characterize how accurately the cluster properties can be recovered in practice,
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one may generate multiple noise realizations and then fit these realizations without
assuming foreknowledge of the cluster properties. Each realization allows all the
relevant noise sources to fluctuate: the instrument noise is realized as Gaussian
white noise with the given RMS; the CIB galaxies are drawn from a random field
of view within the SIDES catalog; and the CMB realization is generated with the
CAMB power spectrum as in Section 2.3. Each realization also accounts for the
effect of gravitational lensing of the CMB and CIB by the cluster. Coadding these
noise realizations with the mock cluster observation yields a full mock observation.

For each full mock observation, we then deduce the best-fitting set of cluster
parameters using a least-squares fit as described above. Finally, we consider the
locus of points given by the set of best-fitting parameters from all noise realizations
as the basis for constructing confidence regions. Since each set of full mock obser-
vations is computationally expensive to generate, we have developed an algorithm to
robustly derive degeneracy contours from a relatively small sampling of points. This
algorithm and the nature of these degeneracies are described in detail in Appendix
A.3.2.

However, even when properly accounting for the curvature of the degeneracies,
we find that the 1D parameter estimates are poorly constrained in our nominal
observing configuration (see Figure 4.2), which warrants improvement. To help
break the degeneracies, one can simulate adding information from a separate )4
measurement by adding a prior. We use a Gaussian prior with a 10% rms.

We considered two ways to obtain such a temperature prior in practice. One
possibility is through spectroscopic X-ray observations of the ICM. Current X-
ray temperature constraints are limited by calibration uncertainties of Chandra and
XMM-Newton, which are discrepant at a typical level of ∼ 10%, though this value
worsens with increasing temperature (Schellenberger et al., 2015). In addition, the
spectroscopic temperature measure )- provided by X-ray observations is distinct
from the temperature )(/ (or )H) that determines the observed rSZ effect,3 and so
using )- may introduce both bias and scatter, which must be estimated. Studies of
simulated clusters (Biffi et al., 2014; Lee et al., 2022) find that)- and)(/ are related
to the mass-weighted temperature )< by scaling relations with a scatter of ∼ 10%;
at worst, these scatters would add in quadrature for an additional factor of

√
2 in the

)-–)(/ relation, though this value would be lower if the individual scatters were
3The difference arises due to how )- and )(/ are measured: )- is weighted by the X-ray

luminosity, which scales as =2
4, while )(/ is weighted by g, which scales as =4.
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correlated. We optimistically assume that calibration uncertainties will improve in
the coming years such that the total uncertainty on )(/ approaches 10%.

An X-ray temperature prior is a good choice for detailed studies of individual
clusters. However, it will not soon be feasible to obtain such complementary X-ray
observations for the large sample sizes required to constrain cosmology. Thus, one
can alternatively obtain a temperature prior using scaling relations. For example, the
integrated Compton parameter .(/ 4 is correlated with the SZ temperature through
the .(/–)(/ scaling relation. One could obtain an initial estimate of .(/ by fitting
the map with 3I = 0 and an assumed )(/ , applying the scaling relation to estimate
)(/ , and then iterating and recalculating .(/ on each pass. However, the efficacy of
this process is limited by the .(/–)(/ scatter. Figure 5 of Lee et al. (2022) shows
the .(/–)(/ relation for a collection of simulations; the scatter is dominated by the
differences between simulations, but one can infer a ∼ 10% scatter by using only
the massive clusters within a single simulation.

In a Bayesian approach, as described in Section 4.1.3, it is straightforward to
include a prior on temperature or other fitted parameters as a multiplicative factor
in the posterior PDF. In our frequentist bootstrapping approach, however, we must
use a different method. Since each term of the j2 (4.1) corresponds to a single
pixel, our approach is to add an artificial pixel �= to our maps; its value in each
noise realization is equal to the known temperature of the cluster plus a Gaussian
fluctuation of the specified width. That is, �= = "= + #=, where "= is the model
value of )4 and #= is the specified Gaussian fluctuation with f = n=. We have
verified that this approach gives correct results in the limit that )4 is unconstrained
by the data, i.e. the constraint is fully driven by the prior: see, e.g., Figure 4.2.

Figure 4.1 shows how adding a temperature prior affects the degeneracies. It can
be seen that having external constraining power on a cluster’s )4 can significantly
reduce the uncertainty on 3I and g by cutting across the degeneracy contours. In
this example, a 6 keV cluster with a 10% )4 prior yields an 80 km/s constraint on 3I.
A 5% prior, which may be achievable in the longer term, can reduce uncertainties
even further, yielding a 40 km/s constraint on 3I.

4Calculating .(/ requires an aperture size, usually given as a characteristic overdensity radius,
e.g. '500. Such an aperture size can be obtained using either a . − " scaling relation or by using a
physical aperture size.
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(a) Parameter degeneracies with no prior on )4

(b) Parameter degeneracies with a 10% prior on )4

Figure 4.1: Comparison of recovered parameter uncertainties with (a) and with-
out (b) a prior on the gas temperature for an example cluster with )4 ≈ 6 keV,
3I ≈ 500 km/s and g ≈ 0.02. The extreme degeneracies among the model parame-
ters are apparent in (a); adding a 10% prior on )4 largely breaks these degeneracies
(b), significantly improving the constraints on 3I (∼ 15%) and g (∼ 10%). See
Figure 4.2 for marginalized 1D constraints.

(a) 10% prior on )4

Figure 4.2: Corner plots showing recovered parameter uncertainties in )4, g, and
3I with a 10% prior on the gas temperature for an example cluster with )4 ≈ 6 keV,
3I ≈ 500 km/s and g ≈ 0.02. With the degeneracies (Figure 4.1a) broken, the
parameters are distributed nearly log-normally and have substantially reduced un-
certainties: ∼ 15% on 3I and ∼ 10% on g. Moreover, this case demonstrates that
the recovery of 3I and g is not significantly biased.



56

4.1.3 Markov-Chain Monte Carlo Simulation
To improve the accuracy of the uncertainty estimation, it is likely possible to

instead use a Markov-Chain Monte Carlo (MCMC) simulation in lieu of the boot-
strapping approach described above. MCMC simulation is a Bayesian technique to
sample high-dimensional probability distributions. Compared to the bootstrapping
approach, MCMC has the advantage that it can reliably estimate uncertainties in-
dependent of the convergence criteria of a least-squares fitter. In addition, MCMC
provides a more natural and statistically rigorous method of incorporating prior
knowledge of the SZ parameters, especially of the gas temperature )4. Several
codes to perform MCMC simulation are available, such as Mahdavi (2014).

Rather than minimizing a j2 as above, MCMC seeks to sample the posterior
PDF %(θ |m), where θ is the vector of cluster model parameters andm is the map
data. We can calculate the posterior PDF as the product of the prior probability of
%(θ) and the likelihood L(m|θ). In practice, one operates on the logarithms of
these quantities, log % and logL, for numerical stability. The likelihood calculation
is mechanically similar to the j2 calculation above.

However, robust uncertainty estimation with MCMC requires drawing many
samples from the posterior PDF. If the log-likelihood is computationally expensive to
calculate, this procedure can become intractable. For the test cases with instrument
noise alone, it is sufficient to calculate the log-likelihood in terms of the cluster
model. With the optimizations described in Section 2.2, it may be tractable to
perform a robust MCMC with high-performance computing. However, for the test
cases that include contaminants, one should also vary the contaminant models as
nuisance parameters. Marginalizing over all CIB sources is particularly difficult,
although recent work (Feder et al., 2020) may provide a tractable approach. It
would likely require significant effort to adapt our pipeline to vary over all model
parameters. In view of the above difficulties and the limited computation time, we
rely exclusively on the bootstrapping technique to generate the results in this work.
Incorporating an MCMC simulation into our pipeline remains a topic for future
work.

4.1.4 Pipeline Validation
To confirm that our pipeline produces realistic outputs, we generated mock

observations and calculated a 3I constraint for a cluster in the analysis of Sayers
et al. (2019), which used data from a combination of Bolocam andHerschel/SPIRE.
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We present this comparison in Appendix A.1.1. We obtained a f3 within a factor
of 2 of the value found by the original analysis, and we believe that the differences
are likely attributable to complexities in the original analysis that we did not model
fully.

4.2 Beam-Scale Constraints
In addition to cluster-scale constraints, it would be useful to place constraints

on SZ parameters at the beam scale. Doing so would enable resolving the velocity
structure of the ICM within the cluster. We have not had time to calculate any
beam-scale constraints for our results, but we have considered how to adapt the
pipeline to generate them as a suject for future work. We envisioned a method that
makes use of the fitting machinery of Section 4.1: one could simply fit a GNFW
model with fixed cluster shape and position while setting the field of view to a small,
square region with the same angular scale as the beam. Varying the center of the
field of view would enable producing a map of 3I and f3.
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C h a p t e r 5

RELEVANT EXAMPLES

In this chapter, we present estimates of the line-of-sight velocity precision f3 from
runs of the mock observation and analysis pipeline described in Chapters 2, 3, and
4. We examine the effects of incrementally adding backgrounds and adjusting the
noise levels in the maps in Section 5.1. In addition, we explore the constraints
achievable with different choices of instrumentation in Section 5.2. We summarize
all these velocity constraints in Section 5.3, including reports of the constraints from
different galaxy clusters.

5.1 Effects of Backgrounds and Noise Levels
We expect that the precision of the SZ constraints will be chiefly limited by two

factors: the noise of the instrument, and the confusion noise. The noise level can be
reduced by increasing the number of detectors (or increasing the integration time),
while the confusion noise is fundamentally limited by the aperture diameter of the
telescope. We list confusion limits for our choice of instrument diameters in Table
5.1, along with estimates of the integration times required to reach each confusion
limit for a given diameter. Thus, we are interested in characterizing the effects of
our assumptions about noise and the CIB on the resulting SZ constraints.

In this investigation, we explored four different scenarios, which we refer to with
the numbers (1) through (4), or with the following shorthand:

1. “NoBkg”: confusion-limited instrument noise, no backgrounds;

2. “CIB”: confusion-limited instrument noise + CIB;

3. “LowNoise”: 10% of confusion-limited instrument noise, no backgrounds;

4. “LowNoiseCIB”: 10% of confusion-limited instrument noise + CIB.

Case (1) represents a roughly current-generation instrument, where the noise levels
correspond to the confusion limits in the sense of Section 2.3.3, but it includes only
instrument noise without astrophysical contaminants. Case (2) is a more realistic
version of case (1) that includes the non-Gaussian CIB component. We were also
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Frequency Band 5f Confusion Limit (mJy) Required Integration Time (s)
(GHz) 10m 30m 50m 10m* 30m 50m
90 0.4 0.12 0.06 4262 684 355
150 1.1 0.24 0.09 1038 315 290
220 2.1 0.38 0.14 455 201 192
270 3.0 0.47 0.17 469 276 274
350 4.0 0.62 0.20 241 145 181
400 4.6 0.70 0.22 626 391 512

Table 5.1: Comparison of confusion limits for the instrument configurations. These
values represent the 5f detection threshold for CIB sources. These confusion limits
were calculated using SIDES (Béthermin et al., 2017) with the formalism described
in Zmuidzinas (2018, private communication). Confusion limits may be converted
to map-space RMS values, with units of mJy/beam, by dividing by 5. We also
list estimates of the integration times required to reach these confusion limits in
practice, based on sensitivities at a high-altitude site such as the Chajnantor Plateau.
The integration times assume a focal plane with 0.5 (�/#) _ spacing at 350 and 400
GHz and (�/#) _ spacing at lower frequencies; appropriate penalty factors have
been taken for the lower frequencies to ensure sufficiently dense sampling of the
sky. *The integration times listed under 10m were in fact calculated for a diameter
of 10.4 m.

interested in exploring a longer-term scenario in case (3), where the instruments
are assumed to have noise levels well below the confusion limit; in particular, we
assume an improvement by a factor of 10 relative to case (1). Case (4) is the same as
case (3) but with a CIB component added. While cases (1) and (3) are less realistic
than cases (2) and (4), they provide a baseline for the behavior of the parameter
constraints. In addition, the factor-of-10 noise improvement of cases (3) and (4)
may not be achievable in practice (a factor of 3 may be more realistic), but we
include it to show the implications of a CIB-dominated scenario.

The mock observations to produce the constraints in this section are derived
from a cluster model based on the cluster MCXC J1056.9-0337 (also known as
MS 1054), which has a mass of "500 = 8.5 × 1014"· and a redshift I = 0.83. We
provide a comprehensive set of corner plots for different cluster models in Appendix
A.2.1. Additionally, we assume a fractional prior of 10% on the temperature ) (see
Section 4.1.2).

Figure 5.1 shows the constraints from all observational scenarios for this clus-
ter model. Results for other cluster models are shown in Appendix A.2.1 and
summarized in Section 5.3.
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(a) 10m Parameter Constraints

Figure 5.1: 1D histograms and 2D contours showing SZ parameter constraints with
different levels of noise and CIB contamination. The 1D histograms comprise the
best-fit parameter values for each noise realization, while the 2D contours are 68%
confidence regions based on curve fits to this distribution of optimal points for ease
of visualization. We consider instruments with aperture diameters of 10m (Figure a),
30m (b), and 50m (c). For each aperture diameter, we show the following scenarios,
corresponding to cases (1) through (4) in the text: instrument noise only, with noise
at confusion limit (“NoBkg,” blue); instrument noise + CIB, with noise at confusion
limit (“CIB,” orange); instrument noise only, with noise at 10% of the confusion
limit (green); and instrument noise + CIB, with noise at 10% of the confusion limit
(red). Ground-truth values are indicated with gray lines.
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(b) 30m Parameter Constraints

In general, none of the observational scenarios 1-4 shows a large bias in the
recovered parameters: all of the true parameter values (gray lines in Figure 5.1)
fall within the 68% contours. This suggests that the source subtraction and fitting
procedures are valid on at least a basic level.

We compare the constraints achieved by the different scenarios for each in-
strument class below. Many of these constraints behave similarly for the different
instrument classes; the main differences appear to be due to differences in the CIB
removal.

5.1.1 10m Diameter
We first address the cases without CIB: cases (1) and (3). The constraints scale

in a straightforward way with the noise level: reducing the noise by a factor of 10
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(c) 50m Parameter Constraints

simply shrinks the areas of the constraint regions while roughly maintaining their
shapes. Accordingly, the velocity constraint improves with reduced noise, although
the strength of this effect depends on the mass and redshift of the cluster as well as
the telescope diameter; see Table 5.2 for precise f3 ratios. Case (1) does not add
significant constraining power on ) beyond the 10% prior, suggesting that the data
are insufficient to constrain the rSZ component. Case (3) also improves upon the
rSZ constraint.

The inclusion of the CIB in case (2) significantly degrades the quality of the
3I constraint relative to case (1). This degradation is likely due to the degeneracy
between the CIB and the SZ signals. The level of this effect demonstrates the im-
portance of carefully considering the CIB contamination even when the instrument
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noise is confusion-limited.

It is surprising that the temperature constraint degrades in case (4) compared to
case (2) considering the lower noise in case (4). Indeed, the ) constraint in case (4)
appears to be less precise than the 10% temperature prior. A likely explanation for
this behavior is as follows. First, compared to the 30m and 50m cases, the 10m case
lacks the resolving power to enable deep CIB cleaning towards the SZ peak. The
residual CIB is degenerate with the SZ signals, so a given CIB realization can be fit
with a ) value that deviates from the prior. Finally, because of the low noise level,
the uncertainty estimate from the least-squares fitter is interpreted as having greater
precision than the 10% ) prior, so the fitter converges to the deviant ) value. We
have compared the spread of ) values for the realizations with the f) estimated by
the fitter, and we have found that the empirical ) spread is roughly 2 times as great,
which is consistent with the above explanation. However, rigorously confirming
the cause of this behavior is a subject for future investigation. In particular, it is
not known with certainty whether the behavior is a fundamental limitation or a
deficiency of the CIB removal algorithm.

Despite that case (4) yields a relatively poor ) constraint, it still constrains 3I
with significantly better precision than in case (2). This may be because a typical
dusty galaxy SED more closely resembles the rSZ spectrum than the kSZ spectrum.
In particular, the rSZ effect represents a larger fraction of the total SZ signal in the
highest frequency bands, from 270 to 400 GHz, while the kSZ effect is fractionally
strongest in the middle bands around 220 GHz; see Figure 3.1.

We note that the performance of case (4) is sensitive to the choice of the detection
threshold supplied to StarFinder in the source subtraction algorithm. The StarFinder
documentation indicates that the detection threshold should be set as the noise RMS
in the map. We have found this choice to be valid for the confusion limited case
(2), which was the context in which we developed the multiband detection and
subtraction algorithm. However, when the instrument noise is reduced, the effective
noise level becomes dominated by source confusion, and a threshold based on
instrument noise alone becomes too aggressive, resulting in spurious detections.
We varied the value of the threshold in case (4), trying factors of 1, 3, 5, and 10
of the instrument noise. We found that the optimal threshold, as determined by the
SZ constraints, varies as a function of telescope diameter. However, a factor of 5 is
close to optimal for each case, so we use it in the reported constraints for case (4)
for consistency. These results may not be fully general, and refining this threshold
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is a subject for future work.

5.1.2 30m Diameter
As in the 10m case, the constraints from the noise-only cases (1) and (3) simply

scale with the noise level. The constraints still degrade when the CIB is added,
though the effect is less pronounced than in the 10m diameter case. Cases (2) and
(4) improve more significantly due to the greater resolving power. Case (4) can now
constrain ) to a precision better than the prior’s, presumably due to the improved
CIB removal.

5.1.3 50m Diameter
The 50m case is qualitatively similar to the 30m case. This suggests that a 30m

telescope provides sufficient data to capture much of the behavior due to CIB. The
degeneracy shape in case (2) is slightly modified, such that its 3I constraint is only
slightly degraded relative to case (1). The improvement in the) constraint is greater,
which seems to be the primary benefit of the 50m telescope.

5.2 Effects of Instrumentation Choice
We consider three instrument classes, each with a characteristic diameter: 10m,

30m, and 50m. The primary benefit of large-diameter telescopes for SZ observation,
at least in the context of cosmology, is their greater ability to remove point source
contamination. At the 50m scale in particular, this mainly seems to improve the
) constraint, which makes sense because the ) constraint is driven more by high-
frequency data than the EI constraint. These telescopes can also better constrain
internal cluster dynamics, though investigating these benefits is a subject for future
work. In practice, however, a larger telescope diameter implies a higher construction
cost. Thus, it is worthwhile to quantify the benefits of the increased resolving power.

In Figure 5.2, we revisit the SZ constraints of the previous section but instead
show all instrument classes on the same axes for each observational scenario. This
alternative visualization highlights the incremental impact of each increase in tele-
scope diameter.

The behavior in the CIB-free cases (1) and (3) is not surprising. Increasing the
telescope diameter in these cases simply lowers the instrument noise since we scale
the instrument noise with the expected confusion noise, were CIB present, for the
given telescope diameter. The variation among the diameters in case (3) (Figure
5.2c) is purely a rescaling of elliptical constraint regions. This is also nearly true in
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(a) Case 1

(b) Case 2

Figure 5.2: Corner plots for cases 1-4, showing the difference in constraints between
telescope diameters. Shown: case 1 (a), case 2 (b), case 3 (c), and case 4 (d).
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case (1) (Figure 5.2a), though the constraint is less elliptical for the 10m diameter.

In the more realistic case (2) (Figure 5.2b), we see a more pronounced improve-
ment in the 3I constraint from increasing the aperture size, especially from 10m to
30m. None of the instrument choices can significantly constrain ) , but the added
resolving power seems to enable better CIB subtraction in the lower bands, which
in turn enables a better kSZ constraint.

In case (4), f3 surprisingly does not improve significantly from 30m to 50m
(Figure 5.2d). This behavior may not be correct, though it may be at least partially
explained by statistical fluctuations of order f3/

√
2# , where # = 200 is the number

of noise realizations. Investigating this behavior further is a subject for future work.
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(c) Case 3

(d) Case 4
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fE
"500/(1014"�) 3.7 3.0 10.9 8.5
I 0.49 0.89 0.54 0.83

Scenario Diameter

(1) NoBkg 10m 81 ± 4 155 ± 8 94 ± 5 148 ± 7
30m 62 ± 3 89 ± 4 73 ± 4 110 ± 6
50m 66 ± 3 81 ± 4 59 ± 3 94 ± 5

(2) CIB 10m 170 ± 8 349 ± 17 135 ± 7 346 ± 17
30m 113 ± 6 185 ± 9 93 ± 5 202 ± 10
50m 83 ± 4 132 ± 7 79 ± 4 151 ± 8

(3) LowNoise 10m 42 ± 2 63 ± 3 18 ± 1 32 ± 2
30m 23 ± 1 40 ± 2 12 ± 1 25 ± 1
50m 16 ± 1 32 ± 2 7 ± 0 17 ± 1

(4) LowNoiseCIB 10m 60 ± 3 185 ± 9 36 ± 2 118 ± 6
30m 51 ± 3 97 ± 5 29 ± 1 86 ± 4
50m 55 ± 3 97 ± 5 32 ± 2 81 ± 4

Table 5.2: Predictions of recovered velocity precision f3 for all combinations of
observational scenario, telescope diameter, and cluster parameters. Figure 5.3 gives
a graphical representation of these values. The uncertainties given here correspond
to the estimated 1f error bars given in Figure 5.3; in all cases, f3 is either flat or
monotonically decreasing with diameter within these errors.

5.3 Summary of Velocity Constraints
For each instrumentation case, we consider a realistic range of cluster param-

eters, as it is useful to understand which observing targets are best suited for each
instrument type. We vary both the cluster mass, expressed as "500, and the redshift
I. More massive clusters have stronger SZ signals, but lower-mass clusters are more
numerous, so it may be advantageous to explore both options. Thus, we consider
clusters of masses ∼ 3×1014"� and ∼ 1015"�. We also vary the redshift, consider-
ing I = 0.5 and I = 1. While the SZ signal strength does not depend on redshift, the
cluster’s angular diameter does, so the contaminants affect our ability to reconstruct
the SZ signal differently at different redshifts. We illustrate the dependence of f3
on cluster mass and size in Figure 5.3. We also include numerical values of f3 in
Table 5.2.1

There are a few obvious trends in the data. First, the lower-redshift clusters
generally have better constraining power on 3I: because of their larger angular
diameter, these clusters’ SZ signals occupy more pixels, yielding a higher total S/N.

1See also Appendix A.2.2 for tabulated values of f) and fg .
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Figure 5.3: Predictions of recovered velocity precision f3 for all combinations
of observational scenario, telescope diameter, and cluster parameters. Labels for
cluster masses are rounded to 3 × 1014"� and 1015"�, and redshift labels are
rounded to 0.5 and 0.85. Error bars indicate 1f uncertainties estimated as f3/

√
2# ,

where # = 200 is the number of noise realizations used to calculate f3. Numerical
values and uncertainties of f3 for these cases are shown in Table 5.2.

The higher-mass clusters also yield moderately improved constraints on 3I,
likely for two reasons. For one, they have larger optical depth g, which increases
the normalization of the kSZ signal. They also tend to have higher temperatures,
which may enable some constraining power on the rSZ signal. Even without an
rSZ constraint, the assumption of a 10% fractional ) prior together with a higher
) implies a more precise ) constraint in absolute terms, which in turn helps to
constrain g and therefore the kSZ signal.

Beyond these trends, these constraints provide additional confirmation of the
impact of telescope diameter and noise levels. In case (2) (confusion-limited noise
and CIB), the f3 precision improves with telescope diameter for all the clusters. In
case (4), f3 does not improve from 30m to 50m in three of the clusters, though it
does not degrade if the estimated uncertainties are accounted for. As noted above,
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Frequency Band Sub-Confusion RMS Fraction
(GHz) 10m 30m 50m
90 0.66 0.31 0.18
150 0.59 0.38 0.30
220 0.60 0.47 0.40

Table 5.3: Ratios of map-space RMS per beam at the low-frequency bands between
(a) sources that are below the 400 GHz confusion limit and (b) residuals after source
removal. For the 30m and 50m telescopes, these ratios are less than 1

2 , indicating
that the sub-confusion sources are subdominant to the residuals on subtracting the
detectable sources in the low-frequency bands.

this behavior may be explained by the fact that these results are based on a limited
sample size (# = 200).

Finally, we characterized the residual noise in the cleaned maps in the low-
frequency bands, which are most relevant for SZ fitting. In particular, we compared
(a) the RMS of the sources below the 400 GHz confusion limit to (b) the residual
map-space RMS after source cleaning. We list ratios of (a) to (b) for the low-
frequency bands (90 to 220GHz) in Table 5.3. The sub-confusion sources contribute
∼ 60% to the residuals for the 10m telescope but are subdominant for the larger
diameters. These results suggest that the residuals in the low-frequency bands are
more strongly affected by modeling uncertainties on the detectable sources than by
intrinsic fluctuations in the sources below the confusion limit.
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C h a p t e r 6

DISCUSSION

In this chapter, we consider the implications of the results presented in Chapter 5.
We also discuss the limitations of this work and possible future investigations.

6.1 Broader Implications
We return to the cosmological questions of Chapter 1. In particular, given the f3

values of Chapter 5, how well can we hope to constrain deviations from GR with a
kSZ galaxy cluster survey? One can distinguish between models with constraints of
the cosmic growth index W (e.g., Gil-Marín et al., 2016). Figure 1 of Kosowsky et al.
(2009) offers a prediction of the W precision in terms off3 assuming a survey of 4000
galaxy clusters. As a simplistic forecast, we translate our f3 values directly into
f(W) using that study’s mapping in Figure 6.1. Improving the noise and aperture
diameter yields only a modest improvement in the W constraint, from a maximum
of f(W) ∼ 0.07 to a minimum of f(W) ∼ 0.047.

We canmake amore accurate forecast by accounting for the number of detectable
clusters. As a concrete example, we consider the constraint on W that could be
attained by a wide-area survey with a 30m telescope such as CSST (Golwala,
2018). Given the relatively weak dependence of the f3 precision on the instrument
sensitivity, we assume confusion-limited noise. The W constraint from such a survey
depends on both (a) the mapping speed required to reach the assumed depth and (b)
the number of detectable clusters in the survey.

To find the required mapping speed, we use prior calculations for the 25m CCAT
observatory as a starting point. The CCAT noise levels are calculated in Morandi
et al. (2013) for a targeted observation. Based on a personal communication with
Jack Sayers, an instrument like CCAT could scan at a rate of 75 deg2 yr−1 with
the same noise RMS after extrapolating from a targeted observation to a dedicated
survey mode and after applying a correction for observing efficiency. To translate
this scanning speed to a CSST-like survey meeting our noise assumptions, we
can scale by both the squared noise RMS and the collecting area. We scale the
noise based on the 400 GHz band, for which Morandi et al. (2013) calculate an
RMS of 75 `Jy beam−1, including both instrument noise and CIB confusion, or
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Figure 6.1: Predictions of f(W) for a survey of 4000 clusters, generated by combin-
ing the velocity estimates of Section 5.3 with the scaling of Kosowsky et al. (2009).

75/
√

2 `Jy beam−1 for instrument noise alone. Scaling to our shallower RMS
of ∼ 140 `Jy beam−1 and larger collecting area, we find that the mapping speed
increases by the factor (

75
140
√

2

)2 (
30
25

)2
≈ 10, (6.1)

which implies a scan rate of 750 deg2 yr−1.

To estimate the number of available clusters, we look to the forecasts of Raghu-
nathan et al. (2022), which include estimates of cumulative tSZ-selected cluster
counts as a function of redshift for several planned surveys. We use the predicted
counts for the CMB-S4 wide-area survey as a match to the conservative mass thresh-
old of 2×1014"� for I . 1 in their Figure 3. In a full analysis, it would be necessary
to consider counts for each mass bin, but our f3 constraint depends only weakly on
mass, so we assume this single effective threshold. We can scale the forecast of
Raghunathan et al. (2022) in the regime to predict 2.5 detectable tSZ clusters per
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square degree in regions free from Galactic foregrounds.

Combining these cluster counts and the scanning rate above, we find that the
CSST-like survey could conservatively place f3 constraints on 1900 clusters per
year. For a five-year survey, this translates to roughly = = 104 clusters. The f(W)
relation of Kosowsky et al. (2009) relation scales as =− 1

2 . Thus, scaling the worst-
case confusion-limited 30m case from Figure 6.1, we obtain f(W) = 0.035 for the
wide-area survey.

To put this value in context in its ability to constrain modified gravity models,
we can compare to W forecasts for RSD measurements and pairwise kSZ surveys.
The most competitive current RSD survey is DESI, which is projected to achieve
f(W) = 0.02 − 0.04 (A. G. Kim et al., 2020; DESI Collaboration et al., 2016). This
constraint is comparable to the constraint for the dedicated kSZ survey described
above, and kSZ constraint can be brought closer to 0.02 if we assume that clusters
can be detected with a decreased mass threshold.

We can also compare to the W constraint achievable with a pairwise kSZ survey.
With a survey like CMB-S4, Mueller et al. (2015a) conservatively predict a 5%
fractional uncertainty on W, which translates to f(W) ∼ 0.027. The dedicated CSST-
like 30m survey is quite competitivewith this precision, and it probes complementary
mass scales.

6.2 Limitations and Future work
There are a number of features that could be included in the pipeline to make

the mock observations more realistic. Some of these have been mentioned earlier in
the text, but we summarize them here for convenience.

In some cases, we have been able to model these features in the mock obser-
vations, but we have not fully explored how to treat them in the analysis stage of
the pipeline. One such case is that of the primary CMB anisotropies, which may
significantly impact the bulk SZ velocity reconstruction. We have described a CMB
removal procedure in the text (Section 3.2), but future work should test the proce-
dure in the context of the full analysis pipeline, especially the kSZ reconstruction
via inpainting. One such feature is using hydrodynamical cluster simulations to
generate more accurate SZ maps and mass distributions for the lensing calculation.
Modeling the cluster morphology in this way is likely of secondary importance
for predicting cosmological SZ constraints, which require only a measurement of
the bulk velocity for each cluster, but it is likely important for usefully predicting
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measurements of the internal dynamics of the cluster. Future work should focus
on tuning the least-squares fitting algorithm to converge properly in these more
complicated maps.

There are other contaminants that we have not fully explored how to accurately
include in the mock observations. One such contaminant is synchrotron emission
from the brightest cluster galaxy (BCG), discussed in Section 2.3.1, and from field
radio galaxies. The spectra of these galaxies are well modeled as a powerlaw at our
wavelengths, and they can be cleaned from the maps with an algorithm analogous to
that of Section 3.1. For maximum accuracy, however, it may be worth accounting for
the correlation between radio and submmemission at the level of individual galaxies.
We have also neglected fluctuations in the emissivity of Earth’s atmosphere at the
observing site. While we have included a model of the transfer function, which is
used in practice to remove these fluctuations, there is still likely to be some residual
correlated noise in the maps that may degrade the SZ reconstruction. Future work
could also consider secondary kSZ and tSZ anisotropies, discussed in Section 2.3.2.
The kSZ anisotropies could be treated in the analysis as simply a part of the CMB
signal due to the degenerate spectra. The secondary tSZ signal and the gravitational
lensing of the secondary kSZ signal are less straightforward to model and constrain.
However, given their small amplitudes, they are likely subdominant to other sources
of contamination for reconstructing the cluster signal.

Finally, our pipeline could be further improved by accounting for calibration
systematics that may be relevant for practical observations. For one, future work
could characterize the impact of flux calibration uncertainties, which limit the
recovery of the overall SZ signal normalization. In addition, one could characterize
the effect of a non-Gaussian PSF model on interpreting the cluster morphology.

There are also some natural follow-up studies that could be performed to improve
the generality of these results. For one, we assume in this work that all clusters had
a velocity of 3I = +500 km s−1, but it is likely that the precision f3 depends to some
extent on the sign and magnitude of 3I.

In addition, one could explore the impact of the choice of frequency bands on
the SZ constraints. Several upcoming surveys, kSZ-optimized or otherwise, will use
different subsets of the mm/submm atmospheric windows. Some notable examples,
both planned and under construction, include LCT (Vial et al., 2020) and CMB-S4
(K. Abazajian et al., 2019) (10m); CSST (30m) (Golwala, 2018); and LMT/TolTEC
(Bryan, 2018) and AtLAST (Bertoldi, 2018) (50m). It would be informative to
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understand the extent to which additional bands can improve the constraints beyond
the increased sensitivity. We anticipate that having at least some high-frequency
bands is worthwhile to separate CIB contamination. As evidence, consider the
improvement in the f3 constraint from 10m to 30m: the precision increases more in
case (2) than in case (1).

Future work could also investigate the constraints possible at the beam scale
as mentioned in Section 4.2. Finally, it would be desirable to more thoroughly
investigate how the kSZ constraints affect cosmological constraints.
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C h a p t e r 7

A 6-LAYER ANTIREFLECTIVE STRUCTURE FOR SILICON
OPTICS

7.1 Introduction
In the first part of this thesis, I gave predictions for the ability of next-generation

millimeter- and submillimeter-wave observatories tomeasure the Sunyaev-Zel’dovich
effect. As I described before, these instruments will need broad frequency coverage
to properly separate contaminants and reconstruct the SZ signal; recall, e.g., that
the nominal instrument configuration has bands ranging from 90 to 400 GHz. In-
struments can achieve such broad frequency coverage by either (1) using multiple
receivers and multiple focal planes, with each optimized for a narrow frequency
band or (2) combining all the detectors in one multifrequency focal plane and cou-
pling to a single receiver. Both avenues are used in practice, but option (2) can
significantly lower construction costs and facilitate deployment to space platforms.
Pursuing option (2) can be difficult, however, as there are several components of
an instrument’s optical chain that can limit its frequency coverage. In this chapter,
I will focus on the task of improving the bandwidth of two optical components in
particular: windows and lenses.

7.1.1 Additional Scientific Background
Broadband silicon optics can simplify some other significant measurements in

astrophysics besides the SZ effect. I will briefly motivate two such measurements:
the polarization of the cosmic microwave background (CMB) and spectroscopy of
high-redshift galaxies.

The CMB is one of the most powerful probes of cosmology in general. The
polarization pattern of the CMB is particularly useful to study, as it can be used as a
direct probe of even the earliest moments of the universe’s existence. Models predict
that an inflationary epoch in the early universe would produce a cosmic gravitational
wave background (CGB), which would eventually leave its imprint as B-mode
(divergence-free) polarization patterns in the CMB (Kamionkowski et al., 1998).
A detection of the CGB would provide strong evidence for inflation’s existence
and would also be a direct probe of its energy scale. Combining information from
this energy scale with measurements of the scalar spectral index =B would yield
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tight constraints on the class of possible inflationary models, thus revolutionizing
our understanding of the physics of the early universe. However, detecting these
primordial B-modes has proven to be a significant observational challenge, as their
observed pattern is dominated by foregrounds, especially by galactic dust emission
and, to a lesser extent, synchrotron emission. Indeed, the claimed detection of
cosmic B-modes by BICEP2 in 2014 proved to be completely attributable to dust
foregrounds, as concluded by the joint analysis with Planck (Ade et al., 2015). To
disentangle these foregrounds, a future polarization study will need broad spectral
coverage to leverage the differing shapes of the CMB, synchrotron, and dust spectra.
Accordingly, instruments for detecting the primordial B-mode signature will likely
require large-format optics that can accommodate a wide frequency range from
around 40 to 300 GHz.

In the 0.1–2 THz range, the gas in high-redshift galaxies exhibits many spectral
lines that can be used to better understand both the star formation process and
cosmology. Molecular rotation lines, such as those of CO and HCN, trace the
mass of the cold molecular gas which is available for star formation. Atomic
fine structure lines–[CII], [NII], [OI], and [OIII]—can be used to measure the
properties of the actively star-forming ISM, including radiative cooling, density,
temperature, and the ionizing radiation field. We can also perform cosmological
measurements of baryon acoustic oscillations (BAO) and reshift-space distortions
(RSD) by using these galaxies’ spectral lines to measure redshifts. These BAO and
RSD measurements are analogous to optical measurements by the likes of the Dark
Energy Spectroscopic Instrument (DESI; DESI Collaboration et al. (2016)) and the
Subaru Prime Focus Spectrograph (PFS; Takada et al. (2014)) but can probe much
higher redshifts.

With any of these spectroscopic measurements, it is most efficient to measure
multiple spectral lines in many galaxies in a range of redshifts at once. This
procedure demands instrumentation with broad spectral coverage. Previously, it has
only been feasible to perform such THz spectroscopy in a few individual galaxies,
since current spectroscopic instruments are either not sensitive enough or have too
small a field of view to efficiently survey a wide area. Although such spectrometers
have only a few pixels, wideband optics would be useful because they would enable
coverage of a wide frequency range at one time. Implementing such a scheme
for integral-field-unit systems like SuperSpec and µSpec would enable mapping
spectroscopy over a similarly wide frequency range. However, as with the CMB,
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as described below, there is an economic tradeoff between a single focal plane
unit (FPU) covering a very wide frequency range versus multiple FPUs covering
narrower frequency ranges, ∼ 1 octave, and broadband optics are preferable in the
limit of a larger, more expensive primary mirror.

7.1.2 Lenses vs. Mirrors
Why is it advantageous for mm/submm optical designs to include lenses, as

opposed to just mirrors? To answer this question, we will first describe the state
of the art, especially in the context of CMB polarization measurements, and then
explain the advantages provided by wide-bandwidth lenses.

Technological advances in millimeter-wave observing have been driven primar-
ily by the search for a gravitational-wave B-mode polarization signal in the CMB,
as described above. The power of the B-mode measurement is commonly described
by the so-called tensor-to-scalar ratio A, which is because tensor perturbations from
primordial gravitational waves produce B-modes in the polarization signal. Improv-
ing the observational constraint on A is a matter of integrating to lower noise levels,
or equivalently, mapping the sky to the same depth more quickly. In practice, one
can integrate faster by observing with as many detectors as possible in a telescope.
In other words, the quality of the constraint on A scales with detector count per focal
plane.

Both ground-based and space-based observatories have made measurements to
constrain A in recent years, but they have taken different approaches to maximizing
the detector count. These approaches ultimately dictate the type of optics used, so
we will take a moment to explore them.

On the ground, where the size and weight of a telescope’s components are only
secondary considerations, many instrument teams have favored modular optical
designs. Such designs use multiple optics tubes, each of which contains a separate
monochromatic focal plane for each frequency band. Some current observatories
that use this design approach are ACTPol and the Simons Array (Henderson et al.,
2016; Arnold et al., 2014). Several planned observatories have also proposed to
use modular optics, including CMB-S4’s large-aperture telescope (LAT) design
(Niemack, 2016) in the intermediate term and AtLAST (Klaassen et al., 2019) and
CMB-HD (Sehgal et al., 2019) in the longer term.

With these modular optics tubes, it is convenient to use lenses as the so-called
reimaging optics, which couple light from the telescope to the focal plane, acting
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as the final stage of focusing in the optics chain. Since each optics tube only covers
a single frequency band, these lenses only need to perform well over a relatively
narrow range of frequencies. Thus, a single-layer AR coating is likely to be sufficient
for such configurations.

In space, observatories are constrained in terms of payload size and weight,
so their designs must be compact. Thus, most upcoming CMB space mission
concepts have tried to maximize the detector count within a single multichroic focal
plane. Some concepts that use this strategy are EPIC-IM (Bock et al., 2009), COrE
(Collaboration et al., 2011), and PICO (Hanany et al., 2019). The EPIC-CS concept
(Bock et al., 2008) is one exception, which uses lenses within a modular optical
design.

In these cases, any reimaging opticswould need to couple light from the telescope
to the entire focal plane. To illuminate the entire focal plane area and cover all
the detector frequencies, these designs would need a large-diameter lens with a
broadband AR coating. Producing such a lens has proved to be a substantial design
and fabrication challenge that has not yet been solved. While the required size
of the optics could be reduced by using an array of lenslets (e.g., Westbrook et al.,
2022), the problem of broadbandAR-coating remains. Thus, the above non-modular
concepts have eschewed reimaging optics in their designs. Accordingly, in these
designs, the focal plane is situated directly at the focus of the secondary mirror.

However, this choice comes at a cost. In particular, in designs without reimaging
optics (e.g., Bock et al., 2009), the image quality typically degrades away from the
center of the focal plane. Thus, where possible, it is desirable to use lenses to
improve the image quality over the whole focal plane (e.g., Niemack, 2016). The
improved image quality increases the potential mapping speed, which translates to
a shorter time required to obtain a given constraint on A.

In addition, the satellites with lens-free designs must include several absorbing
baffles to mitigate the spillover of light from the primary mirror. These baffles
can be heavy, and they must be cooled to mitigate optical loading and photon noise
(Niemack, 2016). In a design with reimaging optics, such baffling could be replaced,
or at least reduced, with a cold Lyot stop.

Thus, for both space-based and ground-based observatories, broadbandAR coat-
ings provide valuable flexibility in optical designs. For example, designs such as
EPIC-LC and EPIC-CS (Bock et al., 2008) would be possible if advanced broadband
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ARCs were available. A concept like EPIC-CS promises faster mapping speed than
its lens-free counterparts. A concept like EPIC-LC takes advantage of simplified
focal plane design to save on construction costs. Ground-based observatories can
similarly benefit from the ability to use different optical configurations, including
those that further increase detector coverage in a given focal plane. This is partic-
ularly true for telescopes at scales of 30m to 50m, as the telescope costs increase
much more quickly with diameter than focal plane unit (FPU) costs scale with focal
plane area. The CMB community at large has recognized these potential benefits,
with NASA calling for broadband lenses as part of its Program Annual Technology
report in both the PCOS and COR themes (PCOS PATR 2017; COR PATR 2017).

7.1.3 VacuumWindows
In addition to lenses, vacuum windows are another important component of

mm/submm optical chains. Vacuum windows are necessary to transmit light to a
cryogenic focal plane while preserving the insulating vacuum of the dewar. Given
that they transmit light, such windows are subject to the same optical requirements
as the lenses discussed above. In addition, low loss in vacuumwindows is important
for minimizing optical loading: with the window at a temperature of 300 K, even
1% loss gives more loading than the CMB signal itself. For example, where silicon
is not feasible, other materials are used, and the loss can reach, e.g., 1% at 150 GHz
(Zotefoam; Yoon et al. (2006)) and 5% at 220 GHz (high-density polyethylene
(HDPE); Sobrin et al. (2021)). The loss degrades further at higher frequencies
(e.g., Barkats et al., 2018). Thus, materials such as silicon are highly desirable to
minimize loss and therefore optical loading. The necessary AR treatments must
also have low loss to maintain these advantages, and so broadband AR coatings
on windows are advantageous in the same situations as on lenses. We note that
the designs given in this work may be directly used as AR treatments for vacuum
windows.

7.1.4 Antireflective Coatings for Silicon Optics
There are several possible choices of substrate material for mm/submm optics,

including silicon, alumina, and sapphire. Plastics, such as high-density polyethylene
(HDPE) have been used in these applications historically, but the field is moving to
favor the aforementioned alternatives, chiefly for their lower dielectric loss. This
work will focus on high-resistivity silicon, which has several properties that make
it advantageous for such uses compared to conventional alternatives: in addition to
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low dielectric loss, it also has high physical strength, achromaticity, high thermal
conductivity, and a high refractive index of 3.42. While silicon’s high refractive
index enables thinner optics with less curvature, it is problematic in that each
interface reflects away much of the incident light (approximately 30% reflection
at normal incidence). Silicon optics—both vacuum windows and lenses—must
therefore be given AR treatments to be effective.

The usual approach to AR coating is to apply a layer of dielectric material to
the surface of the optic to reduce reflections due to the mismatched indices of the
optic and the external medium. It is a well-known result that the optimal choice
for a single-layer dielectric AR coating has a thickness of _/4. However, such a
single-layer AR coating has limited bandwidth, so it is not suitable for our design
requirements, which demand broad spectral coverage.

To increase the bandwidth, it is necessary to add more layers to the AR coating:
as a rule of thumb, one needs = + 1 layers to achieve = : 1 fractional bandwidth with
low reflection. To be concrete, our design covers the range 80 to 420 GHz, equal to
a 5:25:1 fractional bandwidth, so we are targeting a design with six layers. However,
it is difficult to find materials that have the required indices while also maintaining
the advantages of using silicon, especially low loss, although some approaches to
varying the index of laminated dielectric layers have been explored in the literature,
e.g., Rosen et al. (2013), Jeong et al. (2016), Zhang et al. (2009), and Moseley et al.
(2017).

An alternative to using conventional dielectrics is to reduce silicon’s effective
index of refraction by applying a texture of sub-wavelength features to its surface.
Such an integral AR coating also has the advantage that it will not delaminate from
the surface of the optic under thermal cycling. This technique has been demonstrated
at mm wavelengths in silicon (as well as alumina and sapphire) by cutting features
into the substrate using a dicing saw (Datta et al., 2013; Young et al., 2017) or a
laser (Nitta et al., 2014; Matsumura et al., 2016; Drouet d’Aubigny et al., 2001;
Westbrook et al., 2022; Takaku et al., 2020; Takaku et al., 2021). Extending to
submm wavelengths and increasing the bandwidth requires finer features than such
techniques can produce, which has led us to pursue using deep reactive ion etching
(DRIE) to fabricate the AR structures. There have been a few demonstrations using
DRIE of flat single-layer coatings at THz frequencies (Gallardo et al., 2017; Wheeler
et al., 2014; Wagner-Gentner et al., 2006) A multi-depth DRIE technique (Jung-
Kubiak et al., 2016) can be used to stack layers of different indices to form a gradient
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with depth, and multiple wafers etched in this fashion can be bonded together to
create the thick, high layer-count structures needed for very wide-bandwidth AR
coatings.

A limitation of DRIE is that it has not been adapted to curved surfaces such
as conventional lenses. Some authors have mentioned an approach for slumping
a DRIE-etched wafer into a curved shape (e.g., Wheeler et al., 2014), but this
technique has not been demonstrated in practice. Thus, instead of curved lenses, we
plan to use gradient-index (GRIN) lenses, which will themselves be realized using
a DRIE-based technique. A flat cylindrical optic provides the same focusing as a
parabolic lens if its refractive index follows a radial gradient:

=(A) = =0 −
A2

2 5 C0
, (7.1)

where =0 is the bulk index, C0 is the center thickness, and 5 is the focal length. We
can vary the index radially in a single silicon wafer by varying the DRIE pattern,
and, as with the AR coating, we can bond such wafers together to form a focusing
optic of the desired thickness. The AR structure is thus integrated into the outer
layers of the optic, including the variation of the AR structure with radius.

7.1.5 Previous Work
Our group has previously demonstrated a wide-bandwidth 2-layer AR coating,

and we have demonstrated wafer bonding with . 1% loss per interface (Defrance
et al., 2018). Both examples were intended as intermediate demonstrations of a
DRIE-based ARC application technique, with the goal of progressing towards an
even wider-bandwith AR structure. We summarize the results of that work below.

2-Layer Antireflective Structures

The first design of Defrance et al. (2018) was intended to demonstrate that a DRIE-
based technique can produce an effective 2-layer AR coating. The design was
targeted to the 190–310 GHz band, which matches a wide atmospheric transmission
window. To determine the characteristics of the design, a multi-step design process
was used. First, an idealizedmodel with uniform layerswas used to calculate optimal
refractive indices and thicknesses for the two layers, with the criterion of minimizing
the peak reflection over the design band. This optimization was performed with a
standard formalism based on Chebyshev polynomials (Baumeister, 1986).
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Figure 7.1: Effective index =eff for various single-layer geometries as a function of
fill factor 5Si. The discrete markers indicate results from HFSS simulations, while
the curves indicate models that interpolate over the simulated data. The dashed
curves (B2003) are predictions of the performance of both holes and posts from the
effective capacitor model of Biber et al. (2003). From Defrance et al. (2018).

Next, the effective indices and thicknesses of the optimal model were converted
into a set of microstructure dimensions, or equivalently, the fill factor 5Si denoting
the fractional area of each layer that is occupied by silicon. The two layers used
microstructures consisting of square holes (inner layer) and square posts (outer
layer). Other geometries, such as crosses or hexagonal grids, did not demonstrate
any additional design flexibility, so they were not used. An inverse mapping of fill
factors to effective indices was calculated by simulating 1-layer structures with the
finite-element software HFSS (Figure 7.1). These curves were interpolated to find
dimensions matching the desired effective indices.

Finally, the performance of the full structure was verified by simulation with
HFSS. This step was necessary to account for any deviations from the assumption
of achromaticity in the effective index model. DRIE fabrication nonidealities,
discussed in more detail later, were also included in these simulations. This design
strategy formed the starting point for the one used in the present work, discussed in
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JPL LEI 3.0kV x140 100μm WD 15.9mm JPL LEI 3.0kV x180 100μm WD 15.0mm

JPL LEI 3.0kV x200 100μm WD 23.2mm

Figure 7.2: SEM images of the AR microstructures in the cleaved 2-layer sam-
ple, showing top-down (upper left), 30◦ (upper right), and cross-sectional views
(bottom). From Defrance et al. (2018).

Section 7.2.

This design was fabricated on a high-resistivity float-zone silicon wafer with
1 mm thickness and 100 mm (4 in.) diameter. The optics used a single silicon
wafer per sample, which was etched on both sides with the multidepth technique of
Jung-Kubiak et al. (2016). To confirm that the as-fabricated dimensions matched the
as-designed dimensions, the wafers were cleaved and imaged with scanning electron
microscopy (SEM); see Figure 7.2.

Finally, to test the performance of the fabricated structures, the reflection and
transmission of the structures were measured. Measurements were taken at 15◦

incidence with a quasi-optical test setup and confirmed with an alternative measure-
ment technique at normal incidence. These measurement techniques are described
in detail in Defrance et al. (2018). The results of these measurements are shown in
Figure 7.3. The reflection and transmission were found to agree with expectations
to a high degree of accuracy, especially when the dimensions used in the simulation
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Figure 7.3: Reflection and transmission of the 2-layer sample, with linear scale
(top) and logarithmic scale (bottom). The dashed lines show HFSS simulations
of the design; the dots and crosses show the measured optical performance of
the sample (dots measured at 15◦; crosses measured at normal incidence using a
different testbed); and the solid lines show HFSS simulations with microstructure
dimensions adjusted to the measured values. From Defrance et al. (2018).

were adjusted to match the measured dimensions of the fabricated wafer. In addi-
tion, these results imply an upper limit of 1−−2% on the dielectric loss in the optic,
as the sum of the reflected and transmitted power is equal to unity to that precision.
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Figure 7.4: SEM image of the wafer bond in the 1-layer sample. There are no
apparent gaps, indicating a successful bond. From Defrance et al. (2018).

Bonded Wafers With 1-Layer Antireflective Structure

The Jung-Kubiak et al. (2016) technique has two limitations that make it difficult
to scale to thick multi-layer structures. The first limitation, as stated above, is that
DRIE cannot etch at an aspect ratio & 20 : 1. In addition, some of the etched
layers in a multi-layer design require removing a significant fraction of the silicon,
which contributes to the DRIE loading effect (e.g., Laermer et al., 2015). This effect
makes it impractical to control the uniformity of a deep etch. Thus, extending to
GRIN lenses and multi-layer ARCs will require stacking multiple wafers together.
A convenient, and perhaps necessary, way to accomplish this stacking is by bonding
together multiple wafers. To this end, Defrance et al. (2018) tested a wafer-bonded
sample to determine whether the bond introduces any measurable artifacts.

The design of this sample consists simply of two wafers, each etched with a
quarter-wave ARC on one side and bonded together on the unetched surface. The
wafers used were of the same type and dimensions as with the two-layer design.
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Figure 7.5: Reflection and transmission of the wafer-bonded 1-layer samples, with
square posts (top) and square holes (bottom). The dashed lines show HFSS simula-
tions of the design; the dots show the measured optical performance of the sample;
and the solid lines show HFSS simulations with microstructure dimensions adjusted
to the measured values. From Defrance et al. (2018).

For the geometry of the ARC, both square posts and square holes were tested. The
dimensions of the geometry were chosen from the effective index model in the same
manner as for the two-layer design. As with the two-layer structures, these structures
were cleaved and imaged with SEM after the optical tests (Figure 7.4).
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Measurements agree well with finite-element analysis (Figure 7.5), although the
agreement is better for the square hole structures than for the square posts. Defrance
et al. (2018) concluded that the discrepancy in the latter case was not due to the
wafer bond but to nonuniformity in the etch. Given the single-layer structure of the
AR coating, this optic has a lower expected bandwidth than the two-layer version.
In addition, these measurements place limits on the reflection and transmission due
to the wafer bond, as measured in the frequency range where the full structure has
. 1% reflection. In the version with square posts, the transmission is > 95% and
reflection is < 1.2% in this region; in the version with square holes, the transmission
is > 97% and the reflection is < 1%. Together, these values imply a conservative
upper limit of 4% transmission loss due to the bond.

7.1.6 4-Layer Antireflective Structure Design
As an intermediate step towards a 6-layer AR structure, we are currently in the

process of fabricating a 4-layer AR structure. The full 4-layer design (Figure 7.6)
comprises a stack of four silicon wafers, where the two outer wafers are required to
overcome the aspect ratio limitations of DRIE. There are two versions of this design,
labeled A and B; the outer wafers in version A consist of post structures alone, while
in version B, the outer wafers include a connected third layer etched with holes,
which allows the wafers to hold together on their own. These designs are intended
to test the wafer bonding procedure on etched wafers. In addition, the 6-layer
optimization procedure, described in Section 7.2, was based on the optimization
procedure for these 4-layer designs.

The details of the 4-layer fabrication process are still in development at JPL. A
few preliminary samples with version B of the 4-layer ARC have been fabricated
using 50 mm wafers, which can be accommodated by the wafer bonder at JPL and
are less susceptible to bowing than larger wafers. Testing by Fabien Defrance has
shown that these optics can achieve 87% transmission when stacked and clamped
together and 95% transmission when bonded. A sample using 80 mm wafers is
currently in development.

7.1.7 Chapter Outline
In the remainder of this chapter, we first discuss the method we used to design

and optimize a 6-layer AR structure (Section 7.2). We then present the results of
HFSS simulations of the reflection and transmissions of the optimized designs in
Section 7.3. Finally, we discuss implications of this work and potential future work
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Figure 7.6: Diagrams showing the dimensions of the preliminary 4-layer ARC
structure design. (a) variant with post structures in the outer wafers 1 and 4; (b)
alternative variant with self-supporting outer wafers.
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in Section 7.4.

7.2 AR Structure Design
7.2.1 Design Description

Our ARC design consists of six layers of microstructures etched into silicon
wafers 4 inches (100 mm) in diameter. The six layers are necessary to achieve the
design frequency range of 80 to 420 GHz, which covers a fractional bandwidth of
5.25:1.

The basis for our design is a periodic square grid of microstructures with a pitch
(i.e., grid spacing) of 75 `m. We chose the value of the pitch based on the heuristic
that the scale of any etched features should be well below the maximum designed
wavelength. In particular, our maximum design frequency of 420 GHz implies a
minimum wavelength of 720`m, and 75`m is smaller by roughly a factor of 10. For
comparison, Defrance et al. (2018) used a 125`m grid spacing for amaximumdesign
frequency of 320 GHz. We chose a periodic grid for computational tractability, as
periodic boundary conditions enable us to simulate the ARC’s performance in a
single unit cell instead of a full grid of > 106 microstructures, which would be
intractable. For application to an optic such as a GRIN lens, where the effective
refractive index of the uncoated optic varies with the radius, the choice of a periodic
grid is no longer optimal, as the optimal AR coating in that case would itself
need to vary with radius to match the structure beneath it. Designing a radially
varying coating is outside the scope of this work, which focuses on an unpowered
optic as a prototype. However, it is possible to approximate the performance for
radially varying optics by simulating the microstructures within multiple annuli
(e.g., Defrance et al., 2020). We are also in the midst of adapting the technique
of Byrnes et al. (2016) to approach full electromagnetic simulation of optics with
radial variation.

Given this grid layout, the next choice in the AR structure design is that of the
microstructure geometry for each layer. When etching with our DRIE technique,
there are two categories of possible geometries: posts and holes. Two factors
constrain the choice of geometry. First, any walls and posts in the final structure
must be thick enough to be structurally stable with a 75 `m pitch. Past experience
of our JPL collaborators indicates that 10 `m wall thickness would be an aggressive
but possibly achievable goal. Second, DRIE is limited to a maximum aspect ratio
of roughly 20:1, which is the ratio of the etch depth to the width of the etched hole
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or groove. These constraints set the minimum and maximum fill factors achievable
with a given geometry. For a low refractive index, then, circular posts are generally
the best choice because they provide the largest minimum width for a given desired
fill factor. For a high refractive index, square holes tend to perform better, as they
have the largest minimum wall thickness for a given fill factor. We note our choices
of geometry for each layer in Table 7.1.

The next consideration in the design is how to combine multiple layers together.
The technique of Jung-Kubiak et al. (2016) enables multiple layers to be etched
into a single substrate. However, this technique is limited by the maximum DRIE
aspect ratio of ∼ 20 : 1. Thus, to etch deeper structures, it is necessary to take two
measures: (1) to etch each wafer from both sides and (2) to combine multiple wafers
in the axial direction by wafer bonding. These two measures imply two constraints
on the microstructure design. First, the full structure must be contiguous, otherwise
it will fall apart after fabrication. Second, there must be good contact between layers
at the boundary of wafers.

Based on our requirements for refractive index and layer thickness (discussed
in detail in Section 7.2.2), we opted for a full structure design consisting of three
silicon wafers. The middle wafer consists of 4 mm of silicon substrate, etched with
three AR layers on each surface. Each of the two identical outer wafers consists
of three layers, with two etched from the outside and one from the inside. A cross
section of the full design is depicted in Figure 7.7.

A GRIN lens produced with this technique would require additional wafers.
Specifically, in order to overcome the DRIE aspect ratio limitation, the single middle
wafer etched on two sides would be replaced by a stack of wafers etched with the lens
hole pattern sandwiched between two wafers etched with the three highest-index AR
layers. See Section 7.4 for more detail on this preliminary GRIN lens design.

We modeled and simulated three variants of the geometry for the final design,
which we compare in Section 7.3.1. In the “nominal” design, layer 3 (see Figure
7.7) consists of square posts. The nominal design has good simulated performance,
but it may prove difficult to fabricate in practice. In particular, the outer wafers
(wafers 1 and 3) consist entirely of posts, so they cannot be etched on their own, or
else the post structures will fall apart. Thus, the nominal design requires a sequence
of several fabrication steps: etch layer 3 in both outer wafers, etch layers 4 through
6 in Wafer 2, bond all the wafers together, then etch the outermost layers 1 and 2.
With this sequence, it is difficult to achieve good alignment of the posts in layers
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Wafer 1 (0.639 mm) 

Wafer 2 (4.681 mm) 

Wafer 3 (0.639 mm) 
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Figure 7.7: Isometric and cross-sectional views of the six-layer design showing nine
unit cells with wafer boundaries. In particular, this is the design variation where
Layer 3 (i.e., the innermost layer of the outer wafers) consists of square holes.
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3 and 4, which can result in poor bond quality. Indeed, we found in a test of the
4-layer process that one of the samples split apart during the final etch step due to
inadequate bonding during the previous step.

The two “alternative” designs aim to simplify the nominal design’s fabrication
process by using a structure of holes for layer 3. This ensures that the outer wafers
are contiguous on their own, so all three wafers can be fully etched before bonding.
The “aggressive” version performs very well in simulations—better, in fact, than
the nominal optimum; see Section 7.3.1—but the walls of layer 3 are only 10.5 `m
thick as designed, so it is not yet certain whether they will be structurally sound. The
“conservative” version sacrifices some performance for more structural integrity by
using thicker walls, with a minimum of 13.5 `m.

We note that it would also be possible to use circular posts in Layer 3 in the
nominal design. We have not simulated this case, but we briefly investigatedwhether
it could improve the integrity of the structure by increasing the bonded area between
layers 3 and 4. To do this, we estimated the contact area between layers 3 and
4 for both square and circular posts. In this comparison, the square posts have
the dimensions of the optimized nominal design, and the circular posts have the
dimensions implied by the slab model optimum; all other dimensions match the
fully optimized nominal design. As a fraction of cell area, the square posts have
36% contact area, while the circular posts have 43% contact area. As a fraction of
post area, the square posts have 61% contact area, while the circular posts have 72%
contact area. We concluded that the improvement in contact area for circular posts
is sufficiently modest that it does not yet warrant further investigation.

DRIE Nonidealities

In practice, the DRIE process introduces some fabrication nonidealities whereby the
final fabricated structure deviates from the as-designed geometry. Such nonidealities
fall into three categories: scalloping, tapered walls, and filleted edges. Scalloping
refers to the concave profile of the bottom of any etched hole or groove, which
arises even when the bottom is designed to be flat. Tapered walls occur because the
transverse dimension of the etch increases weakly with depth. Finally, sharp edges
in the design will come out filleted (i.e, rounded). We have previously found that
these nonidealities occur at a noticeable level in the 2-layer ARC design, shown in
Figure 7.8a.

Given that Defrance et al. (2018) found that nonidealities can affect the simulated
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(a)

Interior 
fillet

Exterior 
fillet

(b)

Figure 7.8: Illustrations of fabrication nonidealities. a SEM showing a cleaved
sample of a previously fabricated 2-layer AR structure (Defrance et al., 2018),
showing fabrication nonidealities. One can observe both the scalloping and tapering
effects: scalloping (red outline) is visible at the bottom of the etched hole and groove
structures, and tapering (yellow outline) can be seen in the upper layer, where the
gap between the walls becomes wider at the bottom of the structure. b Illustration
of the filleting effect, showing example interior and exterior fillets. The fillets are
too small to be easily seen in a.
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performance of the design by as much as a few dB, we also included them in
these simulations. We modeled the nonidealities with dimensions estimated from
measurements of previously fabricated structures. For the walls, we assumed a taper
of 0.6◦ from the vertical, such that the walls are slightly thinner at the base than at
the top. We modeled the scalloping in the square hole features as the intersection
of two circular arches whose axes are orthogonal; we assumed a 6 `m depth for
the scalloping. Finally, we modeled fillets around the interior corners of the bases
of posts and holes; these had the same arc-shaped profile and 6 `m depth as the
scalloping. We did not model filleted exterior corners, which were shown to have
the smallest effect of all the nonidealities on reflections in previous simulations.
Defrance et al. (2018) showed that similar models of the nonideal geometries can
reproduce the measured optical performance of the fabricated structures to high
accuracy.

7.2.2 Optimization Procedure
We now turn to the question of how to optimize the design described in Section

7.2.1. Loosely speaking, the goal of the optimization procedure is to minimize the
total power reflected from the optic across the 80–420 GHz band. In terms of the (
matrix, this is equivalent to minimizing |(11 |2. Our criterion for this minimization is
that |(11 |2 should stay below the level of -20 dB for the whole band. We have chosen
this -20 dB criterion to limit optical loading in addition to the “ghosting” effect (e.g.,
Aikin et al., 2010), in which multiple reflected images arrive at the focal plane. In
practice, we have found it difficult to achieve this exact criterion, so we have chosen
a slightly more lenient condition based on atmospheric observing windows, which
we will describe in detail below. A space-optimized design with similar fractional
bandwidths for the individual bands should be achievable with the same number
of layers via reoptimization. A space-optimized design that endeavors to meet the
-20 dB criterion over the entire window would likely require an additional layer.
Both of these space-optimized designs are topics for future work.

To optimize the ARC design, we divided the procedure into a few steps, as
follows: optimizing a slab model, mapping the slab model to structures, performing
a grid search over the structure dimensions, and confirming the convergence of the
grid search by 1-dimensional parameter sweeps. The steps are chosen to make the
optimization process as tractable as possible, with each step aiming to successively
improve the estimation of the optimal design parameters.
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We note that the optimization process may be made more tractable with addi-
tional computing power. We performed our optimization—most importantly, the
grid search—using up to 12 CPU cores on a shared 24-core machine, which en-
abled optimizing the design in a time on the order of two weeks. Since HFSS can
parallelize its computations for multiple frequencies and different design variations,
additional CPU cores—in the context of, e.g., high-performance computing—would
speed up the grid search by a linear factor.1 Such a speedup would enable additional
grid resolution and more accurate sampling in the same time, and it could also
enable simultaneously varying the layer widths and thicknesses.

Slab Model Optimization

The first step is to construct an analytical model of the entire AR-coated lens.
This analytical model, hereafter called the “slab model,” consists of a pure silicon
substrate (= = 3.42), which has six symmetric AR layers on each side and is
surrounded by vacuum (= = 1). The model has twelve free parameters, with two
for each AR layer: the thickness C8 and the refractive index =8 for 1 ≤ 8 ≤ 6. We
compute the ( parameters for this slab model analytically using the well-established
theory of optical thin films (e.g., Born et al., 1999), which is equivalent to the theory
of transmission-line impedance transformers (e.g., Pozar, 2012).

It is possible to optimize the slab model parameters C8 and =8 by using a for-
malism based on Chebyshev polynomials (e.g., Baumeister, 1986). This procedure
minimizes the ripple within the passband, and we use its results as a starting point for
further optimization. However, to bring the design into better agreement with our
-20 dB criterion, we improve the model further using an assortment of least-squares
minimization algorithms. We choose a cost function that strongly penalizes excess
reflections over %max = −18.2 dB and weakly penalizes those below %min = −21 dB
in the 80–420 GHz range. In particular, if we define � as the reflection in dB:

� = 20 log10 |(11 |, (7.2)

then the cost function is defined as

�opt =


0 � < %min

min( |%min − � |/3, 6) %min ≤ � ≤ %max

min(2|%max − � |, 6) %max < �

. (7.3)

1To take full advantage of the speedup from distributed computing, we note that our optimization
script may need to be modified to use the builtin optimetrics feature of HFSS.



98

Figure 7.9: Optimized slab model performance for the six-layer design, showing
both the Chebyshev-optimized design and the improved design.

We sample this cost function at 200 frequencies within the passband as the input to
the least-squares minimizers. The results of the slab model optimization are shown
in Figure 7.9.

From Slab Model to Structure

From this optimized slab-model design, we proceed to map the refractive indices
=8 to the layer geometries chosen as in Section 7.2.1. We first calculate the inverse
mapping of the effective index =eff as a function of 5Si for a single AR layer. For
the inverse mapping, we rely on the existing HFSS simulations of Defrance et al.
(2018), as described in Section 7.1.5. These simulations explored a variety of
structure geometries, including square posts, square holes, cross-shaped posts, and
cross-shaped holes. Defrance et al. (2018) summarized their simulation results by
computing =eff from the simulated ( parameters using the Fresnel formulas and then
fitting linear and quartic polynomial models to =eff as a function of 5Si. We use only
their models for square posts and square posts, as follows:

=eff = 1 + 5Si(=Si − 1) (7.4)
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for holes and
=eff = 4.9 5 4

Si − 6.28 5 3
Si + 3.11 5 2

Si + 0.66 5Si + 1 (7.5)

for posts. Finally, we invert the polynomials of Equations 7.4 and 7.5 numerically
to give 5Si, and thus the structure dimensions, as a function of =eff . This inversion is
valid because both polynomials aremonotonic over the interval [0, 1]. By evaluating
the inverted polynomials at the optimal =8 described above, we arrive at a first-pass
model of the entire AR structure. We list the first-pass layer dimensions for several
choices of geometry in Table 7.1.

We note a few caveats to thismethod. First, thesemodels and their corresponding
polynomial fits are not perfectly accurate for circular geometries, e.g., circular posts.
Second, for a given microstructure geometry, the refractive index =eff varies weakly
as a function of frequency. Thus, the structure whose =eff best matches =8 on average
will not perform perfectly in agreement with the slab model across a range of
frequencies. Despite these caveats, Equations 7.4 and 7.5 are suitable as a first-pass
estimate. We verify the optical performance of the structures by simulating the
entire AR structure in HFSS, which yields ( parameter values roughly in agreement
with the slab model predictions. We then optimize these structures as described
below.

Layer C8 (`m) =8 Width (`m) Width (`m) Diameter (`m) Diameter (`m)
Num. (Sq. Posts) (Sq. Holes) (Cir. Posts) (Cir. Holes)

1 257.9 1.17 30.8 72.3 34.8 -
2 212.2 1.43 44.9 68.1 50.6 -
3 168.9 1.79 58.1 61.5 65.5 69.4
4 134.3 2.26 66.4 52.0 75.0 58.7
5 110.1 2.75 71.1 39.5 - 44.5
6 96.0 3.15 73.8 24.9 - 28.0

Table 7.1: Slab model parameters C8 and =8 with corresponding approximations of
the best feature dimensions for each feature geometry: square posts, square holes,
circular posts, and circular holes. Missing entries indicate unrealizable dimensions,
i.e., those whose dimensions exceed the size of the 75 `m cell.

HFSS Grid Search

Using the dimensions in Table 7.1 as a starting point, we performed a grid search
to minimize the reflection |(11 |2 over realizable values of the layer dimensions. We
parameterized this grid search in terms of the width F8 of the features in each layer;
i.e., F8 is the width of the square posts and holes as well as the diameter of circular
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posts. Each point of the grid search consists of calculating the ( parameters for
the full six-layer AR structure, with nonidealities modeled as described in Section
7.2.1.2 The optimization criterion is described in detail below, but roughly speaking,
the goal is to minimize the mean reflected power ' across the 80–420 GHz band.

To perform the grid search, we vary each of the F8 in steps of ±3 `m about
the starting point. With 6 parameters to vary, this initial phase of the grid search
contains 36 = 729 points. Of these grid points, we consider the one that results
in the lowest value of '. If the minimum-' point is the starting point, the 3`m
grid search is complete, and we shrink the grid to a 1 − `m parameter spacing and
repeat the procedure. Otherwise, we extend the grid to include ±3`m steps about
the minimum-' point until a local minimum is found.

This procedure has some limitations, but we argue that the obvious remedies
are neither feasible nor necessary. For one, it is computationally intractable to
simultaneously vary both the feature widths F8 and the layer thicknesses C8 due to
the 12-dimensional parameter space combined with expensive HFSS simulations
of the full six-layer AR structure, so we did not vary the layer thicknesses C8 in
this grid search. We show below, however, that the optimization criterion depends
only weakly on the values of C8, so it is acceptable to omit C8 from the grid search.
Additionally, the grid search offers limited precision on constraining the parameter
values F8, but the DRIE technique offers only ∼ 1 `m manufacturing tolerance,
further confounded by imperfectly known nonidealities, so optimizing to greater
precision is unnecessary. Finally, we tried optimizing using a gradient descent
algorithm, but we found that it was not numerically stable when run with reasonable
accuracy parameters.

We now turn to the precise definition of the optimization criterion. First, we
define the mean reflected power across a band [a0, a1]:

'(a0, a1) =
∫ a1

a0

|(11 |2
a1 − a0

3a. (7.6)

In the context of space based missions, it is sensible to simply define the opti-
mization criterion as '(80 GHz, 420 GHz). However, for ground-based observing,
atmospheric transmission by water vapor limits observations to a handful of win-
dows in the submm (e.g., Pardo et al., 2001). Thus, it is possible to optimize more
aggressively, allowing the reflection to decrease within the windows at the expense

2We used a relatively relaxed set of simulation parameters for the grid search, including a
frequency spacing of 4 GHz, Δ( = 0.1, and a mesh refinement threshold of 0.1_.
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Band Number 1 2 3 4 5 6
Center Frequency (GHz) 90 150 225 285 350 400
Bandwidth (Wide) (GHz) 35 47 45 50 34 30
Bandwidth (Narrow) (GHz) 23.3 31.3 30.0 33.3 22.6 20.0

Table 7.2: Band definitions used to perform the optimizations and frequency scans.

of the reflection outside the windows. We model the observing windows as square
bandpasses for simplicity. For this work, then, we minimize the “max-of-means”
criterion ":

" = max
1
'(a1,0, a1,1), (7.7)

where a1,0 and a1,1 are the edges of band 1. We take these bands to be the ones
centered on 90, 150, 220, 270, 350, and 400 GHz, as used in the first part of this
thesis. Because the precise values of the atmospheric observing windows for a
given observatory are not known in advance, we performed each calculation for two
different sets of band definitions (Table 7.2). We refer to these definitions as the
“wide” and “narrow” bands, with the “narrow” bands having 2/3 the bandwidth of
the “wide” bands . We show the results of the optimization in Section 7.3.1.

Alternative Optimization Method Using Transfer Matrices

Having recognized that the optimization procedure described above is computation-
ally expensive, we also explored a cheaper alternative. Our strategy was to predict
the multi-layer ( matrix by combining the single-layer simulated ( matrices (8,
converting to transfer matrices "8, then multiplying:

"total = "1"2 · · ·"=, (7.8)

and finally converting this product back to an (matrix. This is a standard and correct
calculation for a slab model, but we needed to ensure its accuracy in the regime of
subwavelength structures with effective indices. If this prediction were accurate,
it would enable us to tune each layer to the required effective index and thickness
to optimize the multi-layer ( parameters while eschewing the costly operation of
simulating and modeling the entire structure in HFSS.

For the single-layer case, we succeeded in replicating the simulated ( parameters
to numerical precision for the full 80–420 GHz frequency range by using a model
where both the effective refractive index =eff and the effective thickness Ceff are
allowed to vary as functions of frequency. However, we found that this approach did
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Figure 7.10: Illustration of E-field calculated in HFSS simulations at the top of the
posts in a 2-layer structure. The field contains a component that is not tangential
to the surface, contrary to the boundary conditions assumed by the transfer matrix
method.

not scale accurately to multiple layers. We performed a simple test with two layers
of square posts, both in periodic grids in the XY plane, to show that this approach
cannot be accurate in general. In particular, we compared the ( parameters of
two different cases, where (1) the features’ Z axes are perfectly aligned and (2)
the Z axes are offset in the XY plane. We found that these two cases differ at a
maximum level of ∼ 10% over the design frequency range. To attempt to explain
this discrepancy, we inspected the E-field calculated for an example structure by
HFSS at the upper boundary of the structure, shown in Figure 7.10. We found
that the E-field contains a non-zero component perpendicular to the layer boundary,
which violates the boundary conditions of the transfer matrix method. Thus, we
concluded that even a frequency-dependent (matrix does not have sufficient degrees
of freedom to describe the behavior of a single AR layer when coupled to another AR
layer. Further efforts to implement this transfer matrix-based optimization method
are outside the scope of this work.

Parameter Scans to Confirm Optimization

Finally, to confirm that the grid search has converged to a local optimum, we perform
additional HFSS simulations that sweep over each relevant parameter in the design.
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Figure 7.11: Example 1-D parameter scan showing variations of F2 about the
optimum for the nominal design. See Appendix B.1 for the full set of parameter
scans.

That is, we individually vary the thickness C8 of each layer and the width F8 of each
feature to calculate and show the max-of-means criterion as a function of these
parameters. For these simulations, we use a rigorous set of simulation parameters,
including a frequency spacing of 0.25 GHz, a mesh refinement threshold of 0.1_,
and aΔ( of 0.01 (cf. Δa = 4GHz andΔ( = 0.1 for the grid search). Each scan yields
the “max-of-means” value as a function of a dimensional parameter. To confirm
that these parameters are sufficient for convergence, we plot the 1D scan curves for
increasingly coarse frequency spacing, ranging from the nominal 0.5 GHz to 4 GHz.
We show an example in Figure 7.11. For the full set of parameter scan plots, refer
to Appendix B.1.

7.3 Simulation Results
Below, we give the optimized dimensions of each design we considered along

with the performance for each case. We consider the three variants of the six-layer
design (Section 7.3.1) in addition to the single case of the five-layer design that we
attempted (Section 7.3.2).
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Name Layer Geometry Width [µm] Thickness [µm]
Nominal 1 Circular Posts 31 258

2 Circular Posts 51 212
3 Square Posts 56 169
4 Square Holes 51 134
5 Square Holes 40.5 110
6 Square Holes 21.5 96

Aggressive 1 Circular Posts 39 258
2 Circular Posts 55.5 212
3 Square Holes 63.5 169
4 Square Holes 49 134
5 Square Holes 37.5 110
6 Square Holes 21 96

Conservative 1 Circular Posts 38 258
2 Circular Posts 54.5 212
3 Square Holes 61.5 169
4 Square Holes 49 134
5 Square Holes 39.5 110
6 Square Holes 22 96

Table 7.3: Optimized 6-layer AR structure design dimensions with fabrication
nonidealities taken into account. All structures have a 75-µm pitch and are simulated
with 4 mm bulk thickness. The performance of each design is given in Table 7.4.

Name Mean In-Band Reflection (dB)
90 150 220 270 350 400

Nominal (wide bands) -19.1 -19.2 -19.8 -22.2 -21.4 -22.1
Nominal (narrow bands) -19.9 -19.8 -19.5 -21.9 -21.2 -23.8
Aggressive (wide bands) -22.0 -26.0 -23.0 -25.6 -22.1 -21.3
Aggressive (narrow bands) -22.5 -28.4 -22.8 -25.5 -21.8 -22.4
Conservative (wide bands) -18.6 -19.4 -19.7 -22.6 -23.2 -18.4
Conservative (narrow bands) -19.1 -20.2 -19.6 -22.9 -23.5 -18.2

Table 7.4: Optimized 6-layer AR structure design performance with fabrication
nonidealities taken into account. Reflection and transmission are calculated assum-
ing normal incidence. See Table 7.2 for the definitions of wide and narrow bands.
Dimensions of each design are given in Table 7.3.
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Figure 7.12: Variants of the six-layer ARC design, illustrating as-designed di-
mensions: nominal design (a), aggressive alternative design (b), and conservative
alternative design (c). In all cases, the uppermost layers are circular; the segmented
appearance is simply an artifact.
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(a)

(b)

(c)

Figure 7.13: Reflection and transmission for variants of the six-layer ARC design,
assuming as-designed dimensions: nominal design (a), aggressive alternative design
(b), and conservative alternative design (c). The gray shadings denote the observing
bands corresponding to the atmospheric transmission windows (Table 7.2), with the
wide bands in lighter shading and the narrow bands in darker shading.
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Figure 7.14: HFSS simulations showing reflection and transmission of designs with
2 mm and 4 mm bulk silicon thickness but with identical ARC dimensions. The
fringe spacing becomes tighter as the bulk thickness increases, but both versions
follow the same envelope.

7.3.1 Six-Layer Design
Here, we present optimization results for each of the nominal, aggressive alter-

native, and conservative alternative designs. Table 7.3 indicates the geometries and
dimensions of each layer in the optimized designs. Figure 7.12 shows drawings of
each version based on the optimal dimensions. Figure 7.13 shows the optimal reflec-
tion and transmission for each version of the design. Finally, Table 7.4 summarizes
the maximum in-band reflection for each design based on the band definitions of
Table 7.2. The dimensions were optimized according to the “wide” band definitions,
but results are shown for both the wide and narrow band definitions.

The full designs are simulated and optimized under the assumption that the
middle wafer contains a 4-mm thick layer of bulk silicon. This bulk silicon thickness
primarily dictates the number and positions of the Fabry-Pérot fringes, while the AR
structure dictates the envelope of the fringes. See Figure 7.14 for a demonstration
of the effect of changing the bulk silicon thickness.

In addition, we examined how significantly nonidealities affected the perfor-
mance in simulations. In Figure 7.15, we compare three scenarios: (1) the optimal
version of the design without nonidealities, (2) a version with nonidealites with the
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Figure 7.15: HFSS simulations showing optimal reflection of designs with and
without nonidealities. The ideal optimum is shown in blue; of the cases that include
nonidealities, the first (orange) has the same nominal dimensions as the optimized
ideal version, while the second (green) has had its dimensions retuned to minimize
reflections. For comparison, we also include the reflection of the optimized slab
model (red). For legibility, we show the envelopes in each case (solid curves), along
with the full simulated data including Fabry-Pérot fringes (dotted curves).

Name Mean In-Band Reflection (dB)
90 150 220 270 350 400

Ideal nominal (wide bands) -21.6 -25.6 -25.2 -23.7 -21.4 -23.0
Ideal nominal (narrow bands) -22.3 -28.7 -25.5 -24.3 -22.3 -23.2
Nominal (wide bands) -19.1 -19.2 -19.8 -22.2 -21.4 -22.1
Nominal (narrow bands) -19.9 -19.8 -19.5 -21.9 -21.2 -23.8

Table 7.5: Comparison of optimized 6-layer AR structure design performance
with and without fabrication nonidealities. Each version is optimized separately:
the “ideal nominal” cases correspond to case (1) in the text, while the “nominal”
cases correspond to case (3) in the text. Reflection and transmission are calculated
assuming normal incidence. See Table 7.2 for the definitions of wide and narrow
bands.
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same nominal dimensions as case (1), and (3) the design with nonidealities but reop-
timized to minimize in-band reflections. The third case is identical to the reflection
in Figure 7.13a. It is apparent that the presence of nonidealities changes the reflec-
tion spectrum significantly, especially in band 6 in this case. However, reoptimizing
the design with nonidealities taken into account reduces the in-band reflection back
to an acceptable level. The band-by-band difference in mean reflection between
cases (1) and (3) is given in Table 7.5.

We note that these simulations were performed under the assumption of nor-
mal incidence. Our previous measurements of two-layer structures (Defrance et
al., 2018) show only a modest difference in performance between normal and 15◦

incidence, so we expect these optima to generalize well to slightly off-axis measure-
ments. In practice, it would be prudent to verify the performance of any fabricated
optics over the range of incidence angles that the application requires.

7.3.2 Five Layer Design
We also considered a five-layer design as an alternative that may be simpler to

fabricate. We attempted to design such an alternative using the samemethodology as
for the six-layer design, except that we did not consider fabrication nonidealities. At
the final step, we optimized separately for the wide-band and narrow-band max-of-
means reflections. The performance of these optimized designs is shown in Figure
7.16. The wide-band optimized version (Figure 7.16a) has a maximum in-band
reflection of -17.3 dB, while narrow-band optimized version (Figure 7.16b) has a
maximum in-band reflection of -18.4 dB.

These values are a few dB higher than in the ideal version of the six-layer design.
Given that adding nonidealites tends to worsen the reflections, we expect that a
version of the five-layer design with nonidealities included would have unacceptably
high reflections for the bandwidths considered. Thus, we did not investigate the five-
layer case further.

7.4 Discussion and Future Work
With these six-layer designs, we have come close to the useful performance goal

of -20 dB reflection silicon optics covering the 80–420 GHz range. These results
are promising for the as-designed application of silicon vacuum windows.

We remind the reader of two important limitations in applying the ARC designs
to focusing optics. First, the DRIE procedure cannot yet be used on curved lenses
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(a)

(b)

Figure 7.16: Reflection and transmission of the optimized ideal five-layer ARC
design. (a) shows the performance when optimized for wide bands, and (b) shows
the performance optimized for narrow bands.
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(Section 7.1), so these ARC designs are not applicable to curved lenses. Second,
even for a flat GRIN lens design (see Section 7.2.1), these ARC designs will no
longer have optimal performance, as they do not account for the radial variation of
the refractive index.

Future work may focus on fabricating and testing the designs presented in this
work. Another useful possibility would be to reoptimize these designs for the GRIN
lens scenario. To do so, one possible approach would be to extend the design
strategy of Defrance et al. (2020), which is based on discrete annuli in the plane
perpendicular to the optical axis. Simulating the ARC within each annulus would
be possible under the assumption that the features are locally periodic. It would
likely be intractable, however, to simultaneously vary each AR parameter over all
annuli in a joint optimization. As an alternative, a simple intermediate step would
be to optimize the reflection within each annulus individually by assuming that the
substrate has an effective refractive index =eff,GRIN instead of =Si.

It may also be satisfactory to apply a radially uniformAR coating to a GRIN lens
structure, which would simplify the design process. Indeed, our group has already
designed, fabricated, and tested a prototype GRIN lens with such a relatively simple
AR coating. The prototype consists of a stack of 5 GRIN-etched wafers and a 3-layer
AR coating. No wafer bonding was used in fabricating this prototype; instead, the
wafers of the structure were clamped together for testing. In addition, keys were
etched into the wafers to ensure good and reproducible alignment.

Fabien Defrance has measured the prototype’s focusing performance from 220
to 330 GHz by illuminating the sample with a corrugated feedhorn and mapping
out the phase and magnitude with an XYZ scanning stage and a vector network
analyzer. The test results indicate very good focusing performance: the focused
beam is Gaussian and has a flat phase front near the focus. As an example, at
275 GHz (Figure 7.17), the beam waist size was measured to be 3.6mm (x axis) by
3.8mm (z axis), compared to the predicted waist size of 3.5mm. In addition, the
measured focal length was 229 mm, which differs from the design focal length of
238 mm by only 0.4%. Future work will include characterization of the effects of
any gaps between wafers, which may include scattering or imperfect reflection.

We must also note that the planned technique for fabricating the nominal design
of the AR coatings depends on wafer bonding, which may introduce dielectric
loss. We found in Defrance et al. (2018) that transmission losses from a single
wafer bond in a 2-wafer sample were below 1% (see again Figure 7.5). However,
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Figure 7.17: Example scans of the GRIN lens prototype at 275 GHz with 3-layer
AR structure. The bottom row shows 2-D maps of the focused beam, and the top
row shows 1-D profiles of these maps. The left hand column shows the magnitude,
and the right column shows the phase front. Parametric fits to the beam profiles are
also shown, confirming Gaussianity. The point (G = 0, I = 0) corresponds to the
design focus. Credit: Fabien Defrance.

we explored variations of the bonding process that can reliably produce a robust
bond, including bonding technologies provided by the third-party vendor Cactus
Materials (“Cactus”). We determined that the thermal oxidation typically required
for wafer bonding can introduce noticeable (>1%) loss and that the Cactus bonding
process, which uses chemical activation to obtain a bond at lower temperature
than conventional bonding processes, seems to result in higher loss than those
conventional processes.

This level of lossmay be acceptable for AR structures. For example, the structure
described in this work consists of three wafers, so it would require only two wafer
bonds in total (one bond for each interface). But such losses would be unacceptable
for GRIN lenses that contain ten to tens of wafers. However, the GRIN structures
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are sufficiently physically robust that clamping, without any bonding, should be
sufficient to hold the structure together. In the future, we plan to pursue a higher-
temperature bonding process, which may enable a good-quality, low-loss bond,
using a new wafer bonder at JPL. The new wafer bonder offers improved alignment
capabilities, whichmay enable fabrication of versionA of the 4-layer design (Section
7.1.6; akin to the nominal 6-layer design), which seems to be less fragile than version
B, provided that a strong bond is possible.
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A p p e n d i x A

MOCK KSZ OBSERVATIONS: SUPPLEMENTAL MATERIALS

A.1 Mock Observation Pipeline Validation
A.1.1 Constraint Validation

To test our pipeline, we attempted to recreate the f3 constraints published by
Sayers et al. (2019) using measurements from Bolocam and Herschel/SPIRE. We
selected the cluster RX J1347.5-1145 for the comparison because the SPIRE obser-
vations had relatively low noise. We generated mock observations with a GNFW
model matching the fit to this cluster from Czakon et al. (2015) and including instru-
ment noise, CIB, and a Bolocam-like transfer function. We assumed a noise RMS
of 2 mJy/beam for the SPIRE bands based on Butler et al. (2022). In addition, we
assumed a ) prior of ∼ 11% as a quadrature sum of the calibration uncertainty and
statistical uncertainty of the ) constraint used by Sayers et al. (2019).

We tried to match the assumptions of Sayers et al. (2019) as closely as possible;
however, the original analysis used some functionality not present in our pipeline. In
particular, the original observations had nonuniform noise in themap, had correlated
residual atmospheric fluctuations in the Bolocam bands, and modeled an overall
calibration uncertainty. We also neglected the CIB lensing for simplicity, although
we expect this to primarily result in a bias on 3I rather than a degradation on f3. We
attempted to correct for these shortcomings by degrading the Bolocam and AzTEC
noise by a factor of

√
2 in each band to account for the non-uniform coverage in the

observed map and by an additional factor of 1.1 in the 140 GHz band (Bolocam)
and a factor of 1.4 in the 270 GHz band (AzTEC) to account for the non-flat noise
power spectrum.

The constraints we obtained with our pipeline are shown in Figure A.1. Sayers
et al. (2019) obtained a constraint of 3I = 950+640

−680, while we find 3I = 890+500
−390. Our

uncertainty is somewhat lower than the Sayers et al. (2019) value, but the difference
is likely attributable to differences between the real and mock observations and
in the reconstruction procedures. Some possible sources of discrepancy include
nontrivial velocity structure in the real images, the overall SZ calibration uncertainty,
imperfection in our correction for nonuniform coverage and non-flat noise, and bright
CIB sources towards the cluster signal in the real observation.
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Figure A.1: Bulk motion constraint for the cluster RX J1347.5-1145 as generated
with our pipeline based on the observations of Sayers et al. (2019). The 2D contours
(blue) are fits to the collection of best-fitting parameters for each realization (black
dots). Vertical and horizontal lines are the published best-fitting values from Sayers
et al. (2019). We note that the g values are not directly comparable to those in Sayers
et al. (2019), as we calculate g within an aperture of 1′ rather than within A2500 as in
the original analysis.
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A.1.2 Validation of SED Fitting
We present a collection of modified blackbody fits to different galaxies from

SIDES, as described in Section 3.1, in Figure A.2. We include sources that are
best fit with both high and low values of the dust temperature ) to demonstrate the
performance of the model. All SED fits assume a value of the spectral index V = 1.8
(Equation 2.10), as the data are insufficient to constrain both V and ) .

A.1.3 Validation of Cluster Member Galaxy Model
Here, we describe our model of the dust emission from cluster member galaxies,

as introduced in Section 2.3.1. Cai et al. (2013) use a collection of infrared and
submillimeter observations to provide IR luminosity functions and SEDs for four
different types of sources: warm dusty galaxies, cool dusty galaxies, and active
galactic nuclei (AGN) of types 1 and 2. The “cool” dusty galaxies are the most
common type of galaxy, sometimes called late-type galaxies, which follow the
galactic main sequence in the relation between star formation rate and total stellar
mass (see, e.g., Rodighiero et al., 2011). The “warm” variety, which are known as
starburst galaxies, are outliers from the main sequence, having significantly higher
star formation rates per stellar mass. The two AGN types are distinguished by
their level of dust obscuration; according to the standard unified AGN model (e.g.,
Antonucci, 1993), these types are in fact the same class of object as viewed from
different angles relative to the dusty torus, with type 1 AGN being viewed through
torus’s axis (and thus having low dust obscuration) and type 2 AGN being viewed
through the lobes (high dust obscuration).

To implement the cluster member dust model, we must scale the Cai et al. (2013)
luminosity functions by the local matter overdensity within the cluster. To do this,
we infer a mass profile for the cluster’s total matter distribution based on the known
mass ("500) and redshift of the cluster. We assume that the mass density profile is
described by an NFW model (Navarro et al., 1996; Navarro et al., 1997), and we
calculate the model’s scale radius from the concentration-mass scaling relation of
Child et al. (2018). However, it is not sufficient to simply scale the field luminosity
function by the overdensity: we must also adjust for the abundance of different
types of galaxies relative to the field. Alberts et al. (2016) measured this “field-
relative fraction” of galaxies within clusters using Herschel/PACS and Spitzer data,
reporting abundance of each galaxy type as a function of radius and redshift. Thus,
we scale the Cai et al. (2013) luminosity functions by the Alberts et al. (2016) field-
relative fraction for each type. Finally, Alberts et al. (2014) found that the infrared
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(a) Cold sources

Figure A.2: Fitted SEDs for a selection of 60 sources detected by the removal
pipeline in a mock observation with the 30m telescope. A.2a and A.2b are the
30 sources with the lowest fitted values of )/(1 + I), while A.2c and A.2d were
randomly chosen among the remaining sources. The orange dashed curves represent
the SED fits, while the blue points represent photometry values for each bandpass
with estimated uncertainties.
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(b) Cold sources
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(c) Warm Sources
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(d) Warm Sources
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Figure A.3: Comparison of the normalized projected NFW profile with the mean
normalized simulated cluster profiles with (right) and without the (left) Alberts et al.
(2016) correction applied.

luminosity of cluster members differs from the field in a redshift-dependent way.
We follow the Melin et al. (2018) interpretation of the Alberts et al. (2014) findings
and rescale each galaxy’s luminosity by the function

5 (I) = 5.77e−0.34CGyr (I) , (A.1)

where CGyr is the cosmic time at redshift z.

Below, we include a few validation checks of our cluster member galaxy model.
As one caveat, these checks all depend on the assumption of azimuthal symmetry,
which may not be fully valid (Deshev et al., 2020).

Check 1 (Figure A.3): Comparison of the expected normalized projected NFW
profile to the mean normalized profile from the simulated cluster samples generated
with and without Alberts et al. (2016) correction applied.
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Figure A.4: Alberts et al. (2016) radial distribution corrections for each redshift
range and galaxy type. The values at A = 0 are extrapolated from Figure 5 in Alberts
et al. (2016). Right: Empirical values of the same radial distribution correction for
our simulated clusters, calculated as the ratio (with Alberts et al. (2016) correction /
without Alberts et al. (2016) correction) and sorted by galaxy type. Redshifts used
in simulating clusters with and without the Alberts et al. (2016) correction applied
are given in Figure A.5.

Figure A.5: Redshifts used for simulated cluster samples with (right) and without
(left) Alberts et al. (2016) correction applied. In both cases, redshifts used in the
simulated clusters are consistently at I < 1.

Check 2 (Figure A.4): Comparison of the ratio of normalized profiles for sim-
ulated clusters generated with and without Alberts et al. (2016) correction applied
with the expected Alberts et al. (2016) radial distribution correction.



142

Figure A.6: 857 GHz surface brightness profile for the simulated cluster sample.
Right: 857 GHz stacked PSZ2 profiles (Melin et al., 2018).

Check 3 (Figure A.6): 857 GHz simulated surface brightness profile comparison
with Melin et al. (2018) stacked PSZ2 profiles in the 857 GHz Planck band. The
simulated surface brightness profile is calculated using the SEDs from Cai et al.
(2013) and evaluated in 1′ radial bins. While the overall normalization is consistent
between our profile and that of Melin et al. (2018), their shapes are somewhat
discrepant. There are are some differences between the algorithm of our work and
the one used by Melin et al. (2018)—e.g., Melin et al. (2018) apply the Alberts et al.
(2016) correction at the cluster level while we apply it as a function of radius—
though we have not conclusively determined that the discrepancy is fully explained
by algorithmic differences.
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A.1.4 Accuracy of SZ Bandpass Calculation
As noted in Section 2.5, SZ effect photometry depends on the bandpass of

the instrument. When calculating this band-averaged SZ signal using a numerical
method such as SZpack, it is necessary to sample the bandpass and SZ signal at
discrete values of frequency. This procedure can become computationally expensive,
so it is worthwhile to examine how finely the frequency domain must be sampled
to accurately estimate the band average. In what follows, we assume that each
bandpass is a top-hat function of frequency.

We estimate the SZ signal 5 (a) with varying numbers of samples = and take
=<0G = 128 samples as the “true” value of the signal. At each band and for each
number of samples =, we choose a representative set of = sample frequencies as
follows: (1) partition the frequency domain into = equal bins from 8 = 0..=, (2)
calculate the average of 5 (a) over each bin (≡ 〈 5 〉a,8) by numerical integration, and
(3) numerically solve for the frequency a8 within each bin such that 5 (a8) = 〈 5 〉a,8.
The collection of a8 is the set of frequency samples, and the SZ signal can be
estimated for each = as

5̂= =
1
=

=∑
8=1

5 (a8). (A.2)

The above procedure can be used to optimize the reference frequencies a8 for a
particular spectral shape of 5 (a), i.e., for particular values of the cluster temperature
) and the velocity 3I. We use optimize the reference frequencies using the values
of ) = 5 keV and EI = 0, for which the estimate 5̂ correctly estimates 〈 5 〉 up to
the numerical tolerance of the integration in step (2). However, the estimation is no
longer perfect for other values of ) and EI. It is for these values that we wish to
characterize the accuracy of 5̂=. To this end, we compare the fractional deviations

�= =
5̂= − 5̂128

5̂128
(A.3)

in Figure A.7. We include estimates for both the tSZ signal (including relativistic
corrections) and the kSZ signal with EI = 500 km/s. We use values of ) ranging
from 2 keV to 30 keV and = ranging from 1 to 128. We set nominal accuracy goals
of �= = 0.1% for tSZ and �= = 1% for kSZ so that the error in the theoretical
SZ calculation is subdominant to the expected reconstruction errors. We mark each
case that meets these requirements with a red dot.

In most cases, 2 samples are sufficient to reconstruct both the tSZ and signals
for a wide range of temperatures. The few cases that exceed the accuracy threshold
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(a) tSZ

(b) kSZ

Figure A.7: Fractional deviation of band-averaged SZ estimate vs. the true value
for the tSZ (a) and kSZ (b) signals. Each grid shows the deviations for a given
frequency band, as defined in Table 7.2. The grid rows indicate the number of
frequency samples used to calculate the estimate, while the columns represent
different values of the ICM temperature ) in keV. The red dots indicate scenarios
that meet the accuracy goals of 0.1% (for tSZ) and 1% (for kSZ).
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with 2 samples are at unusually high temperatures, where rSZ becomes important.
The kSZ estimation works well in general despite that the reference frequencies are
optimized for 3I = 0 (i.e., no kSZ signal), likely due to the kSZ signal’s relatively
smooth spectral shape. As the accuracy goals above are relatively stringent, it is
not unreasonable to use just 1 sample, as we have done elsewhere in this work. To
obtain greater accuracy without incurring high computational overhead, one could
calculate a lookup table of reference frequencies based on estimates with = = 1 for
a grid of ) and 3I.

A.2 Additional SZ Constraints
A.2.1 kSZ Constraint Plots

In Figure A.8, we show corner plots of SZ parameter constraints from Chapter
5 for the cluster models that were not shown in Section 5.1.
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(a) "500 ∼ 8.5 × 1014"�, I ∼ 0.5; 10m diameter

Figure A.8: 1D histograms and 2D contours for clusters not shown in Section 5.1.
These include a cluster of∼ 8.5×1014"� at I ∼ 0.5 (a,bc), a cluster of∼ 3×1014"�
at I ∼ 0.5 (d,e,f), and a cluster of ∼ 8.5× 1014"� at I ∼ 0.85 (g,h,i). Observational
scenarios are labeled as in Chapter 5.
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(b) "500 ∼ 8.5 × 1014"�, I ∼ 0.5; 30m diameter
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(c) "500 ∼ 8.5 × 1014"�, I ∼ 0.5; 50m diameter
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(d) "500 ∼ 3 × 1014"�, I ∼ 0.5; 10m diameter
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(e) "500 ∼ 3 × 1014"�, I ∼ 0.5; 30m diameter
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(f) "500 ∼ 3 × 1014"�, I ∼ 0.5; 50m diameter
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(g) "500 ∼ 3 × 1014"�, I ∼ 0.85; 10m diameter
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(h) "500 ∼ 3 × 1014"�, I ∼ 0.85; 30m diameter
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(i) "500 ∼ 3 × 1014"�, I ∼ 0.85; 50m diameter
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f) × 102

"500/(1014"�) 3.7 3.0 10.9 8.5
I 0.49 0.89 0.54 0.83

Scenario Diameter

(1) NoBkg 10m 60 ± 3 55 ± 3 89 ± 4 115 ± 6
30m 54 ± 3 66 ± 3 82 ± 4 112 ± 6
50m 60 ± 3 65 ± 3 66 ± 3 109 ± 5

(2) CIB 10m 61 ± 3 58 ± 3 89 ± 4 121 ± 6
30m 53 ± 3 62 ± 3 78 ± 4 107 ± 5
50m 61 ± 3 64 ± 3 66 ± 3 108 ± 5

(3) LowNoise 10m 42 ± 2 56 ± 3 22 ± 1 43 ± 2
30m 22 ± 1 37 ± 2 12 ± 1 31 ± 2
50m 14 ± 1 32 ± 2 8 ± 0 21 ± 1

(4) LowNoiseCIB 10m 106 ± 5 100 ± 5 95 ± 5 185 ± 9
30m 48 ± 2 69 ± 3 38 ± 2 85 ± 4
50m 32 ± 2 44 ± 2 16 ± 1 44 ± 2

Table A.1: Predictions of recovered temperature precision f) in keV for all combi-
nations of observational scenario, telescope diameter, and cluster parameters. The
uncertainties represent estimated 1f error bars as in Table 5.2. f) values are shown
multiplied by a factor of 102 for brevity.

A.2.2 Summary of constraints on ) and g
In addition to the cluster velocity constraints presented in Table 5.2, we also cal-

culated constraints on the gas temperature ) and optical depth g. These calculations
were done in an analogous way from the same set of mock observations. We present
these values in Tables A.1 and A.2.
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fg × 105

"500/(1014"�) 3.7 3.0 10.9 8.5
I 0.49 0.89 0.54 0.83

Scenario Diameter

(1) NoBkg 10m 91 ± 5 64 ± 3 140 ± 7 60 ± 3
30m 80 ± 4 74 ± 4 118 ± 6 55 ± 3
50m 94 ± 5 72 ± 4 93 ± 5 56 ± 3

(2) CIB 10m 99 ± 5 72 ± 4 144 ± 7 64 ± 3
30m 82 ± 4 70 ± 4 116 ± 6 59 ± 3
50m 93 ± 5 69 ± 3 95 ± 5 56 ± 3

(3) LowNoise 10m 64 ± 3 61 ± 3 33 ± 2 21 ± 1
30m 34 ± 2 39 ± 2 18 ± 1 15 ± 1
50m 22 ± 1 34 ± 2 12 ± 1 10 ± 1

(4) LowNoiseCIB 10m 182 ± 9 126 ± 6 143 ± 7 95 ± 5
30m 75 ± 4 78 ± 4 61 ± 3 48 ± 2
50m 50 ± 2 49 ± 2 28 ± 1 24 ± 1

Table A.2: Predictions of recovered optical depth precision fg for all combinations
of observational scenario, telescope diameter, and cluster parameters. The uncer-
tainties represent estimated 1f error bars as in Table 5.2. fg values are shown
multiplied by a factor of 105 for brevity.
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A.3 Mock Observation Pipeline Implementation Details
A.3.1 Weight Factors for Multiband Detection

Our goal is to devise an optimal weighting scheme to combine CIB maps from
different bands to maximize the expected signal-to-noise ratio (S/N) on average,
which should maximize the effectiveness of source-finding algorithms.

We begin with some definitions. In what follows, we work with discretized
quantities where possible in order to match with the implementation. We consider
maps "a in all 6 SZ bands: 90, 150, 220, 270, 350, and 400 GHz. We use 9 as an
index over the map pixels, which have sky positions θ 9 and all have the same area
Ω?G in units of solid angle, e.g. arcsec2. The maps have units of flux density, in the
sense that the value of each map pixel is the total flux density of all point sources
within it (neglecting beam convolution, discussed below).

Each map "a can be written as the sum of its signal and noise components:

"a = CIBa + #a . (A.4)

The RMS of each pixel in the noise map #a is given by fa. The CIB is composed
of point sources with sky positions ϑ8 and spectral energy distributions (SEDs) (a,8
with units of flux density (e.g., Jy). We can write down how much flux density a
point source in pixel 8 contributes to a pixel 9 before beam convolution as

CIBa,8,beamless [θ 9 ] = (a,8X8 [θ 9 ], 1 (A.5)

where X8 is akin to a dimensionless, discretized delta function centered atϑ8, defined
such that X8 [θ 9 ] = X8 9 , and X8 9 is the usual Kronecker delta:

X8 9 =


1 if 8 = 9

0 if 8 ≠ 9 .
(A.6)

We now wish to convolve the point sources with the beam. The beam has a
discretized response function 5a [θ] for a pixel at position θ in frequency band a,
normalized such that it is dimensionless and obeys∑

9

5a [θ 9 ] = 1. (A.7)

1This assumes that a given source is perfectly centered within one of the map pixels; in practice,
one must decide how fine a pixelization is needed to achieve sufficient positional accuracy. In our
pipeline, we discretize source positions at 1/8 the nominal pixel size (nominal pixel size is 4′′, 2′′, and
1′′ for 10m, 30m, and 50m telescopes, respectively) and then degrade the resolution after convolving
with the beam.
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We define the convolution ∗ as a fully discrete operator that preserves the units of
the operands. E.g., for maps < [θ] and =[θ], we have

(< ∗ =) [θ 9 ] =
∑
:

< [θ: ]=[θ: − θ 9 ], (A.8)

where the sum runs over all map pixels : .2 To calculate the value of the full CIB
map, we convolve (A.5) with (A.7) and sum over all sources 8:

CIBa [θ 9 ] =
∑
8

(
(a,8X8 ∗ 5a

)
[θ 9 ] =

∑
8

(a,8 5a [θ 9 − ϑ8] . (A.9)

It can be seen that the sum over all the pixels of (A.9) gives the total flux density of
all the sources in the map (neglecting edge effects).

We also note that the effective beam area Ωa can be expressed in terms of the
peak value of 5a [θ]. To show this, we may introduce the analytic form of the
beam response, �a (θ), which has units of inverse solid angle (e.g., arcsec−2) and is
normalized such that it integrates to unity:∫

32θ�a (θ) = 1. (A.10)

The beam area Ωa is defined as the integral of the peak-normalized beam, i.e.:

Ωa =

∫
32θ

[
�a (θ)

maxθ′ �a (θ′)

]
=

1
maxθ �a (θ)

∫
32θ�a (θ)

=
1

maxθ �a (θ)
.

(A.11)

If the discretized beam 5a [θ] is well sampled, we can make the approximation

5a [θ] ≈ Ω?G�a (θ) (A.12)

and find that
Ωa ≈

Ω?G

max 9 5a [θ 9 ]
. (A.13)

The sources do not have identical SEDs in general, but we assume the SEDs
have the approximate form of a modified blackbody, with units of flux density:

(a ∝ �a ())aV ∝
(a/a0)3+V

4ℎa/:�) − 1
, (A.14)

2The maps may be zero-padded and cropped if they do not have the same dimensions.
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where ) is the (redshifted) dust temperature, V is the spectral index, and a0 is an
arbitrarily chosen reference frequency.

To find an appropriate weighting scheme, it is desirable to reframe our task in
terms of a standard problem, namely, that of combining multiple measurements of
a single value with different uncertainties. Assuming the uncertainties are indepen-
dent, the standard approach to this problem is to weight the measurements by the
inverses of their variances. The measurements we wish to combine are the signals
within each map pixel in the six observing bands, which have uncertainties fa.
However, the signals in each band are not measurements of the same quantity, as
the different bands scale by the SEDs. Thus, the combination we seek is a weighted
average of the bands after rescaling by factors Aa:

"combined =

∑
a "aAaFa∑

a Fa
, (A.15)

where the Fa are the weight factors. If each source SED perfectly followed the
same modified blackbody (A.14), it would be sufficient to set Aa equal to the band-
to-band ratios of signal values from (A.9), and weight the rescaled maps "aAa by
the rescaled per-pixel inverse variances (faAa)−2. However, if the underlying source
SED differs from the assumed template, the optimal weights vary with position due
to the differing beam sizes in each band, so it is not possible to choose a single set
of weights in this way.

Instead, we choose the weights and scale factors that maximize the total expected
S/N within a beam, corresponding to the expected S/N of a given source’s flux
density. To select the appropriate weight factors Fa, we consider the total RMS
fluctuation of "a due to noise within a beam, fa,tot, which corresponds to the RMS
uncertainty of the flux density of a point source. To derive fa,tot, we can write down
a single-source modelℳa, 9 for the value of the map "a, 9 at pixel index 9 in terms
of the flux density (a of the source and the known beam response:

ℳa, 9 = (a 5a [θ 9 ], (A.16)

where we have assumed without loss of generality that the source lies at position
o = 0. The value we seek, fa,tot, is the uncertainty on the model parameter (a given
the noise in the map. To calculate this value, we can write down the j2 for the
model over all pixels 9 as:

j2 =

∑
9 ("a, 9 −ℳa, 9 )2

f2
a

=

∑
9 ("a, 9 − (a 5a [θ 9 ])2

f2
a

, (A.17)
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where the index 9 runs over the map pixels, and take the second derivative with
respect to (a:

m2j2

m(2
a

= 2
∑
9 ( 5a [θ 9 ])2

f2
a

. (A.18)

Since our model has only one parameter, we can express the standard relationship
between the variance of (a and the second derivative (A.18) as follows:

f2
a,tot = 2

(
m2j2

m(2
a

)−1

. (A.19)

Finally, taking the square root, this yields the desired uncertainty on (a:

fa,tot =
fa√∑

9

(
5a [θ 9 ]

)2
. (A.20)

To simplify this expression, we may approximate 5a [θ] by its continuous coun-
terpart �a (θ) (Equation A.12) and approximate the sum over pixels θ 9 in Equation
A.20 as an integral over the full 2D plane:

fa,tot ≈
fa√∫

32θ(1/Ω?G)
(
�a (θ)Ω?G

)2
. (A.21)

Assuming the beam is Gaussian, as is the case in our analysis, we can evaluate this
integral and simplify to obtain the convenient approximation

fa,tot ≈ fa

√
2Ωa
Ω?G

, (A.22)

which also holds approximately for nearly-Gaussian (e.g., Airy) beams.

Returning to the question of the weights, we wish to combine beam-scale quan-
tities representing both the signal and the noise. The noise RMS per beam is simply
(A.21). The summation property of (A.9) tells us that the signal per beam is (a,8 for
a particular source 8, or simply (a (A.14) on average. Thus, to correctly rescale the
signals, we use scale factors proportional to the inverse of (a in flux density units:

Aa =
(ref
(a
, (A.23)

where (ref is the value of (a at an arbitrarily chosen reference band. Finally, by
rescaling (A.21) with (A.23), we arrive at the appropriate factors for inverse variance
weighting in (A.15):

Fa =
1(

Aafa,tot
)2 =

1
f2
a

(2
a

(2
ref

Ω?G

2Ωa
. (A.24)
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We can use these weights to determine the expected per-pixel noise of "combined

using the fact that the noise is rescaled by the same factors (A.23):

Var("combined) = Var
(∑

a "aAaFa∑
a Fa

)
=

∑
a f

2
a A

2
aF

2
a

(∑a Fa)2
; (A.25)

fcombined =
√

Var("combined) =
√∑

a (faAaFa)2∑
a Fa

; (A.26)

SNRcombined =
"combined
fcombined

=

∑
a "aAaFa√∑
a (faAaFa)2

. (A.27)

We can also use the weights (A.24) to form an effective multiband PSF:

5combined [θ 9 ] =
∑
a Fa 5a [θ 9 ]∑

a Fa
, (A.28)

which remains area-normalized, i.e., it satisfies Equation A.7. This effective PSF
can be used to detect sources in "combined; its solid angle Ωcombined is calculated as
in (??):

1
Ωcombined

=
max 9 5combined [θ 9 ]

Ω?G

=

∑
a (Fa/Ωa)∑

a Fa
, (A.29)

which is valid as long as the PSF peaks at the same location in each band. It is
also desirable to form a combined catalog of sources, with effective flux densities
(combined, for the purpose of calculating the boost correction:

(combined,8 =

∑
a (a,8AaFa∑

a Fa
. (A.30)

In the case that the true source SEDs exactly follow the assumedmodified blackbody,
it can be shown that convolving the combined source catalog with 5combined(θ 9 ) as in
(A.9) reproduces "combined in the absence of noise. In this case, (combined,8 reduces
to the reference flux density (ref,8 for each source, and we have:∑

8

(combined,8 5combined [θ − θ8] =
∑
8

(∑
a (ref,8Fa 5a [θ − θ8]∑

a Fa

)
=

∑
a AaFa

∑
8 (a,8 5a [θ − θ8]∑
a Fa

=

∑
a AaFa"a∑

a Fa

= "combined.

(A.31)
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A.3.2 Procedure for Estimating Uncertainties from Degeneracy Curves
Here, we describe our procedure for estimating the behavior of the SZ parameter

degeneracies (Section 4.1.2) for a small collection of # map realizations. We
initially tested the procedure for # = 100; we use # = 200 for the final results in
Chapter 5.

We begin with the collection of best-fitting SZ parameters 3I, ) , and g for all =
map realizations. Ideally, one would model the behavior of all three SZ parameters
jointly in terms of a 3D region. However, it was not obvious how to parameterize
such a region for fitting. Instead, we work in the three 2D planes specified by pairs
of the SZ parameters.

We observe that the degeneracies between the parameters roughly follow a curve
once the logarithms of the parameters are taken: see, e.g., Figure 4.1. However,
while ) and g are positive by definition, 3I is not necessarily positive. For the
examples in this work, we use an input value of 3I = +500 km s−1 and discard any
realizations where the best-fitting 3I < 0. In the cases we have studied that have
any useful constraining power on 3I, this procedure is sufficient to retain almost all
of the data. In general, to enable analyzing cases where 3I is negative or close to
0, one may instead use coordinates that are linear in 3I and logarithmic in ) and g.
Hereafter, we will assume that the logarithms have been taken, and we will refer to
each parameter pair as (G, H), e.g., (G, H) = (log), log 3I).

Given that each pair of parameters roughly follows a degeneracy curve, our
strategy is to characterize the degeneracy by fitting a curve and characterzing the
distribution of the residuals. We considered a number of functional forms for these
curves, but we settled on a polynomial curve %3 (G) with variable degree 3 for
simplicity and ease of fitting. In performing this fit, we minimize the residual '
with respect to the = pairs of data points G8, H8, where 0 ≤ 8 < =:

' =

#−1∑
8=0
(%3 (G8) − H8)2. (A.32)

This procedure requires that H be a single-valued function of G; for the degeneracies
we consider, this is always true. However, in some cases, Hmay be a steep function of
G, so in practice we renormalize both coordinates by their sample RMS before fitting
to give them similar units.3 To choose the degree 3, we run the full degeneracy-
fitting procedure with polynomials of degrees 2 through 6. We discard any cases

3This renormalization is not necessary for the fit itself, but the remaining steps in the procedure
can fail if the renormalization is not done.
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where %3 (G) has any extrema or inflection points within the range of the data. We
also discard any cases where the quality of the final fit, as measured by the PTE
(discussed below), is determined to be poor. From the remaining cases, we select
the degree that minimizes the area of the 68% confidence region in the GH plane,
which we calculate as described below.

Next, we wish to convert to a set of primed coordinates (G′, H′) in which the
degeneracy is well behaved. To do this, for each point (G8, H8), we first calculate
the point (G2, H2) on the fitted curve %3 (G) that is closest to (G8, H8). That is, we
numerically calculate the optimal value of G2 as

G2 = arg max
G

(
(G − G8)2 + (%3 (G) − H8)2

)
(A.33)

and plug in to %3 to obtain H2:

H2 = %3 (G2). (A.34)

We then take G′ to be the signed distance along the curve (G, %3 (G)) with respect to
a reference point (Gref , Href) on the curve and take H′ to be the signed distance from
(G2, H2) to (G8, H8). The signed distance along the curve is determined with the usual
formula from calculus:

G′8 =

∫ G2

Gref

√
1 + %′

3
(G)2 3G, (A.35)

where %′
3
is the derivative of %3 . The distance to (G8, H8) can be given a sign with

respect to the unit vector N̂8 normal to the curve at (G2, H2):

N8 = (−%′3 (G2), 1), (A.36)

and
N̂8 =

N8

|N8 |
, (A.37)

and so, writing the vector distanceD8 = (G8 − G2, H8 − H2), we obtain

H′8 =D8 · N̂8 . (A.38)

The reference point is arbitrary, but we use the value of %3 at the mean of the data:

Gref = 〈G8〉8; Href = %3 (Gref). (A.39)

The last step of the degeneracy fitting procedure is to fit a 2D Gaussian PDF to
the data in the primed coordinate plane. Rather than using a full parametric fit, we
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Fit 2D GaussianRevert to Unprimed Coordinates

Figure A.9: Illustration of the procedure for fitting degeneracy curves for example
parameters G = log V = log 3I

2
and H = log g. We show the major steps: the best-fit

curve %3 , the transformation to primed coordinates (G′, H′) (in this case (V′, g′)),
the 2D Gaussian fit in primed coordinates, and the contours returned to unprimed
coordinates after inverting the transformation. The green and red contours are the
68% and 95% confidence regions, respectively.

approximate the best-fitting Gaussian as follows. We estimate the rotation angle \
of the Gaussian by fitting a line to the data (G′

8
, H′
8
) and taking \ = arctan<, where <

is the slope. After rotating all the data by the angle −\, we determine the remaining
parameters of the Gaussian as the sample means and sample RMSes of the rotated
G′
8
and H′

8
. We illustrate the full procedure in Figure A.9.

To determine the quality of the fit, we use a Kolmogorov-Smirnov (KS) test.
In general, the KS test measures how consistent the samples of a given variable
are with a given theoretical probability distribution. To perform the KS test for a
variable E, one calculates the KS statistic as

max
E
|CDF(E) − EDF(E) |, (A.40)

where CDF denotes the theoretical cumulative distribution of E and EDF denotes
the empirical cumulative distribution of the samples of E. In our case, we choose
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E = A2, where A2 is the normalized squared radial distance4 from the mean of the
Gaussian µ = (`G , `H) to the point x′ = (G′, H′) in primed coordinates:

A2 = (x′ − µ))C−1(x′ − µ), (A.41)

where C is the covariance matrix of the 2D Gaussian. The EDF is simply calculated
as the cumulative distribution of A2 values for all the points x′

8
; we calculate the

KS statistic (Equation A.40) by comparing this to the theoretical CDF of a j2

distribution with 2 degrees of freedom, which describes the sum of two independent
1D Gaussians. Finally, we wish to calculate the probability to exceeed (PTE), i.e.,
the probability that a random realization drawn from a 2DGaussian has a KS statistic
higher than that of our data points x′

8
. To do this, we construct 10000 simulations

consisting of = random samples drawn from a 2D Gaussian and calculate the KS
statistic for each simulation5,6. We calculate the PTE as the quantile of our KS
statistic among those of the simulations. The PTE lies in the interval [0, 1], with a
low value indicating a poor fit and a high value a good fit. As mentioned above, we
use the PTE as one factor in selecting the degree 3 of the polynomial fit.

With a 2D Gaussian description of the degeneracies in the primed coordinates,
it is straightforward to draw random samples or calculate contours corresponding to
the desired confidence regions, e.g., the 68% region. To transform these degeneracy
contours back to the GH plane, we must invert the transformation from (G, H) to
(G′, H′). To perform this inversion for a given point (G′, H′), we invert Equation
A.35 using a standard library ODE solver to recover the corresponding G2 and H2
(Equations A.33 and A.34). We then add the normal along the curve N̂ (as in
Equation A.37) scaled by H′ to recover the unprimed coordinates (G, H). The 2D
contours in our results are the 68% contours generated in this manner.

4To be maximally rigorous, one could also apply an azimuthal variant of this KS test against a
uniform expected distribution of angles, but we did not investigate this variant of the test.

5We performed additional simulations with fewer random samples for cases where we had to
discard one or more outliers from the data.

6Such simulations are necessary except for a CDF that has a standard formula for the PTE, e.g.,
a 1D Gaussian.
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A p p e n d i x B

SIX-LAYER AR COATINGS: SUPPLEMENTAL PLOTS

B.1 1D Parameter Scans
Below we give the full set of 1D parameter scans to confirm the results of the

HFSS simulations described in Section 7.2.2. Each panel of each figure shows
how the “max-of-means” value for a particular design varies as a function of one
dimensional parameter (e.g., the width of the features layer 2.) We performed scans
each parameter about the nominal design (Figures B.1, B.2), the aggressive alterna-
tive design (Figures B.3, B.4), and the conservative alternative design (Figures B.5,
B.6). We also considered both the “wide” and “narrow” bandpass definitions for
the atmospheric windows (Table 7.2). The wide bands are used in figures B.1, B.3,
and B.5; the narrow bands are used in figures B.2, B.4, and B.6. In addition, to test
convergence of the results, we varied the frequency resolution used to compute the
max-of-means value. The values of the frequency resolution are indicated in the
legend of each panel.
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Figure B.1: Parameter scans for the nominal design, with wide bands.
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Figure B.2: Parameter scans for the nominal design, with narrow bands.
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Figure B.3: Parameter scans for the aggressive design, with wide bands.
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Figure B.4: Parameter scans for the aggressive design, with narrow bands.
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Figure B.5: Parameter scans for the conservative design, with wide bands.
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Figure B.6: Parameter scans for the conservative design, with narrow bands.
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