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Cavity Flows
by

Guillaume A. Bres
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Doctor of Philosophy

Abstract

Direct numerical simulations are performed to investigate the stability of com-
pressible flow over three-dimensional open cavities for future control applications.
First, the typical self-sustained oscillations, commonly referred as “shear-layer
(Rossiter) modes,” are characterized for two-dimensional cavities over a range of
flow conditions. A linear stability analysis is then conducted to search for three-
dimensional global instabilities of the 2D mean flow for cavities that are homoge-
neous in the spanwise direction. The presence of such instabilities is reported for
a range of cavity configurations. For cavities of aspect ratio (length to depth) of 2
and 4, the three-dimensional mode has a spanwise wavelength of approximately 1
cavity depth and oscillates with a frequency about one order of magnitude lower
than two-dimensional Rossiter (flow/acoustics) instabilities. A steady mode of
smaller spanwise wavelength is also identified for square cavities. The linear re-
sults indicate that the instability is hydrodynamic (rather than acoustic) in na-
ture and arises from a generic centrifugal instability mechanism associated with
the mean recirculating vortical flow in the downstream part of the cavity. These
three-dimensional instabilities are related to centrifugal instabilities reported in
flows over backward-facing steps, lid-driven cavity flows, and Couette flows.
Results from three-dimensional simulations of the nonlinear compressible Navier—

Stokes equations are also reported. The formation of oscillating (and, in some



cases, steady) spanwise structures is observed inside the cavity. The spanwise
wavelength and oscillation frequency of these structures agree with the linear anal-
ysis predictions. When present, the shear-layer (Rossiter) oscillations experience a
low-frequency modulation that arises from nonlinear interactions with the three-
dimensional mode. These results are consistent with observations of low-frequency
modulations and spanwise structures in previous experimental and numerical stud-

ies on open cavity flows.
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Chapter 1

Introduction

1.1 Motivation and review of previous work

From the canonical rectangular cut-out to more complicated shapes with internal
structures, resonant cavity instabilities are endemic to a number of aircraft com-
ponents including weapon bays, landing gear wells, and instrumentation cavities.
Self-sustained oscillations and intense acoustic loading inside the cavity can lead
to structural damage, optical distortion, and store separation problems. In partic-
ular, weapons bay noise suppression has been a major motivation for recent work
on cavity flow, including active flow control to replace traditional passive devices

such as spoilers, ramps, rakes, etc.

1.1.1 Rossiter mode

Dating back to the early work of Rossiter (1964), cavity oscillations in compressible
flow are typically described as a flow-acoustic resonance mechanism, as shown
in figure 1.1: small instabilities in the shear layer interact with the downstream
corner of the cavity and generate acoustic waves, which propagate upstream and
create new disturbances in the shear layer. For incompressible flow, the upstream
influence is instantaneous, while there is an acoustic delay for compressible flow.
Resonance occurs at a given frequency when the disturbances lead to reinforcement

and ultimately saturation. This type of instability is referred to as shear-layer (or
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Figure 1.1: Schematic of open cavity oscillations in compressible flows

Rossiter) mode, and can be distinguished from pure acoustic resonance where
frequency selection depends only on the sound speed and geometrical parameters.

Rossiter (1964) performed an extensive set of experiments for two-dimensional
rectangular cavities of different length to depth ratio, at different Mach numbers,
which identified a series of discrete frequencies of oscillation. He used the idea of
the feedback process to develop a semi-empirical formula to predict the resonant

frequencies:

_ful _m—ao

Stn =
U M+1

n=1,23.. (1.1)

where St,, is the Strouhal number corresponding to the n-th mode frequency, f,.
The empirical constants x and « correspond to the average convection speed of the
vortical disturbances in the shear layer, and a phase delay (typically 1/k = 1.75
and a = 0.25), respectively.

Data from a large number of experiments and simulations over the years show
reasonable agreement with equation 1.1, but with significant scatter. The scatter-
ing is mainly due to the discrepancies between experimental conditions, as differ-

ent cavity and flow parameters (L/D, L/6y, Rep) were used. These parameters



can have a significant influence on the resonant frequencies and do not appear
in Rossiter’s formula. Additionally, equation 1.1 does not give any indication of
whether such self-sustained oscillations do occur and, if so, which of several possible

modes are present and if a particular mode (if any) is dominant.

1.1.2 Wake mode

Apart from the instability mechanism proposed by Rossiter, other modes of oscilla-
tion have been observed in cavity flows. In their incompressible experiment for an
axisymmetric cavity, Gharib & Roshko (1987) observed a significant change in the
behavior of the cavity oscillation when the ratio of the cavity length relative to the
upstream boundary layer momentum thickness was increased. Direct numerical
simulations by Rowley et al. (2002b) showed similar results for a two-dimensional
rectangular cavity. In this mode, the flow is characterized by a large-scale vortex
shedding from the cavity leading edge, similar to that observed behind bluff bod-

“wake mode” used to describe the resulting flow regime. As

ies, hence the term
the large vortex (dimension of the cavity depth) forms near the leading edge, free
stream fluid enters the cavity and impinges on the cavity bottom. The vortex is
then shed from the leading edge and is violently ejected from the cavity, the all
process resulting in a drastic increase in drag.

The wake mode transition has been observed in several two-dimensional numer-
ical simulations (e.g., Fuglsang & Cain, 1992; Cain et al., 2000; Rowley et al., 2002b;
Larsson et al., 2004), but experimental evidence of this mode is fairly limited.
Three-dimensionality has been shown to play a role in suppressing the wake mode.
Large eddy simulations by Shieh & Morris (2000) showed that two-dimensional cav-
ities in wake mode return to shear-layer mode when three-dimensional disturbances
are present in the incoming boundary layer. Similarly, recent work by Suponitsky
et al. (2005) showed that the development of a three-dimensional flow field, gener-
ated by the introduction of the random inflow disturbance into a two-dimensional
cavity oscillating in wake mode, yielded the transition to the shear-layer mode,

regardless of the amplitude and shape of the inflow disturbance. These studies



highlight how a better understanding of the fundamental three-dimensional fea-
tures of cavity flows is crucial to accurately connect numerical results, experiments

and practical applications.

1.1.3 Self-sustained versus forced oscillations

There are additional acoustic resonances of typical cavity geometries that lead,
especially at lower Mach numbers and in confined laboratory experiments (e.g.,
wind tunnel resonance) to additional complications in the identification of cavity
resonance mechanisms. Purely acoustic resonance can lead to a “detuning” and/or
reinforcement of the flow/acoustic shear layer modes. Rowley et al. (2006) showed
that oscillations observed in experiments are not always of the self-sustaining type
envisioned by Rossiter . Indeed, in many cases it appears that the cavity oscilla-
tions are actually forced by boundary layer turbulence or other external sources
of noise. This clarification has major implications for the design of feedback con-
trollers (e.g., Rowley et al., 2002a). Recent models by Alvarez et al. (2004; 2005)
showed that there can be strong interactions with wind tunnel resonances, and

confirm analytically that oscillations are not always self-sustaining.

1.1.4 Flow control

Over the past decades, two-dimensional cavity flows have received significant atten-
tion (see for instance review articles from Rockwell & Naudascher, 1978; Colonius,
2001; Rowley & Williams, 2006), including several experimental and numerical
studies at the California Institute of Technology (e.g., Krishnamurty, 1956; Saro-
hia, 1975; Gharib, 1983; Rowley, 2001). Aside from numerical benchmarking, the
main motivations for studying cavity flow are noise reduction and flow control.
Fundamental research has been conducted recently to examine how active (open-
and closed-loop) flow control can be use to replace traditional passive devices such
as spoilers, ramps and rakes (e.g., Cattafesta III et al., 1999; Alvarez et al., 2004;
Rowley et al., 2006; Rowley & Williams, 2006). Model-based closed-loop control,

in particular, promises efficient (low energy input) tone suppression, while passive



devices may be more effective for broadband noise reductions.

In analyzing the behavior of the shear layer oscillations, most investigators
have implicitly assumed that the shear layer behavior can be described in isola-
tion, i.e., as if it were a free shear layer. In recent refinements to this model,
Alvarez et al. (2004; 2005) have developed linear theory that couples the shear
layer dynamics and acoustic behavior of the cavity (essentially using an unsteady
Kutta condition at the cavity leading and trailing edges), but non-parallel shear
layer effects and, in particular, the coupling of the flow inside the cavity have not
been studied.

An alternative analysis of the global instability modes is to consider the basic,
steady flow as two- or even three-dimensional. This viewpoint requires high-fidelity
steady flow solutions of the Navier-Stokes equations as input, and then solves a
partial-derivative eigenvalue problem for 2D and 3D instabilities of the basic flow.
The underlying theory and methodology for extracting these bi- and tri-global
instabilities are described by Theofilis (2003) in a recent review paper. Early efforts
have concentrated on incompressible flows, including backward-facing step, lid-
driven cavities, laminar separation bubbles, etc. A significant accomplishment of
the present work has been to extend this effort to compressible flows where in many
cases (including the cavity) small amplitude acoustic radiation is an important
aspect of the instabilities and must be treated with high-order-accurate numerics
in order to avoid spurious oscillations or numerical dissipation of the relevant

instabilities.

1.1.5 Three-dimensionality in cavity flow

Recently, some aspects of the three-dimensional cavity flow have been investi-
gated using Large Eddy Simulation (LES) methods (Rizzetta & Visbal, 2003;
Larchevéque et al., 2004; Chang et al., 2006) and Proper Orthogonal Decomposi-
tion (POD) (Podvin et al., 2006). These studies have been mainly focused on the
frequencies of oscillation and coherence of the (two-dimensional) Rossiter modes,

and the extent to which there is agreement with experimental measurements of



mean flow and spectra. Some observations regarding the three-dimensionality of
the large-scale turbulent structures are also reported but do not figure promi-
nently in these studies. Such LES data could be useful in future to examine the
instabilities identified in this study at higher values of Reynolds number.

Likewise, three-dimensional experimental data is fairly limited but several re-
searchers have reported observations of three-dimensionality in cavity flows. Ahuja
& Mendoza (1995) conducted an extensive set of experiments on the effect of cav-
ity dimensions, boundary layer, and temperature on cavity noise for subsonic flows
with turbulent boundary layer upstream of the cavity. They determined that the
parameter L/W, the cavity length to width ratio, provided a transition between
two- and three-dimensional flow. For L/W < 1, the cavity is classified as two-
dimensional, as the flow was found to be uniform over much of the span, with a
coherent shear layer spanning most of the cavity width. The cavity is said to be
three-dimensional for L/W > 1, as the flow cannot maintain a coherent shear layer
across its width because of the end-effects that cause significant spillage of flow over
the cavity side into the cavity. In that case, they reported three-dimensionality
in the mean flow, and much lower (about 15 dB) acoustic loads than the pre-
dominately two-dimensional flow. However, Ahuja and Mendoza’s classification of
wide cavities as two-dimensional is based on a time-averaged view of the flow field,
and the three-dimensionality is not related to the 3D instability we identify in our
present work.

Three-dimensional flow features have also been observed for wide cavities in
early wind tunnel experiments at low subsonic velocities by Maull & East (1963).
Using oil flow visualisation of surface streamlines at the bottom of the cavity
and surface static-pressure distributions, they showed the existence, under certain
conditions, of nearly steady spanwise cellular pattern within the cavity. They
observed that the width of each cell remained essentially independent of the total
cavity span but that the most regular pattern existed when the cavity span was an
integral number of preferred cell-width. Rockwell & Knisely (1980) also observed

three-dimensional pattern in a water channel experiment for a wide rectangular



cavity with laminar boundary layer upstream. A hydrogen bubble technique was
used to visualise the spanwise structure in the cavity. More evidence of three-
dimensional structures in cavity flows have been presented in the recent work of

Faure et al. (2007). The physics of these features has yet to be fully understood.

In conclusion, while observations of three-dimensionality in cavity flow have
been reported, the physics of these features has yet to be fully understood. As
a result, past efforts on cavity flow control have typically ignored non-parallel
and three-dimensional effects. These approaches may, on one hand, reduce the
effectiveness of model-based control, or on the other hand disregard important
three-dimensional mechanisms that could be exploited in passive ways to reduce

broadband noise.

1.2 Overview of present work

The focus of the present work is therefore to characterize the basic instabilities of
three-dimensional open cavity flows. Because the basic (steady or time-averaged)
cavity flow is complex and non-parallel, our stability analysis is focused on ex-
tracting global instabilities from Direct Numerical Simulations (DNS) of the full
and linearized compressible Navier—Stokes equations.

From the start, it must be acknowledged that accurate computation of realistic,
unsteady, three-dimensional aircraft cavities, at realistic flight Reynolds numbers,
is well beyond current computer resources. While realizable parameter regimes (es-
pecially small scale experiments) may be reached with LES, such computations are
sufficiently time consuming that they prohibit a significant portion of parameter
space from being investigated. By focusing our attention on low Reynolds number
direct numerical simulations of 2D and 3D spanwise periodic flows, we are able
to examine a large parameter space (Mach number, cavity dimensions, boundary
layer thickness). In inflectional shear layers, the instabilities of compressible flows

are inviscid. This observation has led, for example, to modeling of two-dimensional



shear layer oscillations in cavity flows using inviscid parallel flow stability. Models
and computations at low Reynolds numbers display the same instabilities as the
inviscid analysis.

As we show that the principle effect of the Reynolds number is to damp the
instabilities, any instabilities observed here are likely to be at play at full-scale
Reynolds numbers. Thus the low Reynolds number analysis and simulations can
bracket the behaviors that exist in experiments and flight conditions, and at the
same time understand in detail the instabilities and their parametric variations.
In general, simulations of simpler (even two-dimensional) flows can lead to insights
into the flow physics that directly carry over to full-scale complex flows, and provide
data for control and modeling efforts.

In the present work, we consider two- and three-dimensional instabilities to
basic cavity flows that are homogeneous in the spanwise direction, for low to mod-
erate Reynolds numbers. Chapter 2 gives an overview of the numerical methods
and the linear stability theory used in this study.

First, the onset of two-dimensional cavity instability is characterized as a func-
tion of Reynolds number, Mach number, cavity aspect ratio, and incident shear-
layer thickness. The two-dimensional modes are consistent, both in terms of oscilla-
tion frequency and eigenfunction structure with the typical Rossiter flow/acoustic
resonant modes that have been observed in many cavity experiments and flight
tests. For basic cavity flows that are two-dimensionally stable, we then search
for three-dimensional instabilities of the steady base flow, and identify, for the
first time, the presence of such instabilities. The 2D and 3D modes, and their
properties, are discussed in chapter 3.

For cavity length-to-depth ratios of 1, 2, and 4 considered here, the instability
appears to arise from a generic centrifugal instability mechanism associated with
the internal recirculation vortical flow that occupies the downstream part of the
cavity. The three-dimensional instabilities are related to centrifugal instabilities
reported in flows over backward-facing steps, lid-driven cavity flows, and Couette

flows. The instability mechanism is presented in chapter 4.



A few selected three-dimensional numerical simulations of the full compressible
Navier—Stokes equations are then performed. To our knowledge, this is the first
time that strict DNS of three-dimensional compressible cavity flows have been
reported. The results, in chapter 5, exhibit three-dimensional features in good
agreement with the linear analysis predictions, both in terms of spanwise structures
and oscillation frequencies.

In chapter 6, we discuss the connections between the 3D instabilities we report
here and observations of three-dimensionality in previous numerical studies and
experiments. Our numerical results are consistent with low-frequency modulations
and spanwise structures reported in previous studies on open cavity flows. In
particular, visual evidence of the 3D mode is found in recent low Reynolds number

experiments.
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Chapter 2

Numerical Methods and Stability Theory

2.1 Direct numerical simulations

Following previous work of Rowley et al. (2002b) on cavity flows, we develop a
DNS code to solve the full compressible Navier—Stokes (NS) equations and study
the flow over three-dimensional open cavities. The equations are solved directly,
meaning that no turbulence model is used and all the scales of the flow are re-

solved. The Navier—Stokes equations are written in conservative form as follows:

dp
E*'afj(ﬂuy)—o
opu; 0 1 0 0u; Ou; 20uy
. i + Po;i) = — — ]—*71"
ot ag, Pt PO = e Gt ey T 30w, 00
Oe 0 1 9 ou; Ou; 2 0uy 1 1 0°T
T Pu;) = — —(u; Jf,il.. - - 7=
6t+8$j((e+ Ju5) Re@a:j(u(&vj Ox; 30wy j))+RePr8$k8$k
(2.1)
with the equation of state
P:;lpT,
Y

where p, P, and T are the density, pressure, and temperature, and wu; is the
velocity in the direction of the Cartesian coordinate x;. The energy e is defined
by e = p(E + |u|?/2), where E is the internal energy per unit mass. The usual
compressible formulation is used to nondimensionalise these equations, where the

superscript d refers to the dimensional quantity, and the subscript oo denotes the
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freestream property.

d d d d
P P _ T%, e
P= P=——5 T=-"15 e= 5
(9] poooo [e'e] pOano
w — ugl x':xil 75:7fdaoo
" G ‘D D

Here, v is the ratio of specific heats, ¢, the specific heat at constant pressure, a the
speed of sound, and D the cavity depth. The Prandtl number and the Reynolds

numbers are defined respectively as

pp — fpHee Re:w 360:M7
k Moo Moo
where k is the thermal conductivity, p the dynamic viscosity and 6y the initial

boundary layer momentum thickness at the cavity leading edge.

A linearized version of the equations is also implemented: we assume that the
flow field q = [pu, pv, pw, p, e]T can be decomposed into q = q + q’, where q is
a steady solution of the equations and the perturbation field q’ verifies @' < q.
The Navier—Stokes equations are then linearised about q by neglecting higher-

order terms in q’ to give a first-order approximation. The perturbation field now

satisfies
8p’ 9 ,_, SN
E—Fa—xj(puj—i-puj) =0
o _, a ., L , 1 0 ou, Ouj 20u)
e A ol o L Pl = = C (T _ = »
at (pul + p U”L) + 8xj (p<u’bu] + ulu]) + p uluj + 5’5]) Re 8.’13] (aa?] 8.’1;1 3 8$k ’L])
oe’ 0 _ 1 0 ou,  ou  20u)
e Y (5 P / / P/ Ty — _i 7 J _ = k i
ot * 8xj((€+ Juj + (@ + Piy) Re Oz (@ <8xj * Oz, 30z 2

ou; adj 2 Ouy,
oz, " om 302,00
L1 eT

Re Pr Ox.0xy,

!/

+ u;(

(2.2)
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The existing DNS code can solve linear or nonlinear NS equations for both two-
dimensional and three-dimensional flows. The equations are solved on a structured
mesh, using a sixth-order compact finite-difference scheme for spatial discretization
in the x- and y-direction (Lele, 1992), and a fourth-order Runge-Kutta algorithm
for time-marching. The cavity is supposed homogeneous (periodic) in the span-
wise direction (z-direction) and the derivatives are computed using Fast Fourier
Transform (FFT) method with subroutines provided by the FFTW library (Frigo
& Johnson, 1997-2007). The boundary conditions are non-reflective for the inflow
and outflow, no slip, and constant temperature (7" = T, ) at the walls (Thompson,
1990; Poinsot & Lele, 1992). In addition, a buffer zone is implemented at the in-
flow, outflow, and normal computational boundaries to reduce acoustic reflections
(Colonius et al., 1993; Freund, 1997). Unless stated otherwise, the simulations are
initiated with a Blasius flat-plate boundary layer spanning the cavity and zero flow
within the cavity.

The code can handle any type of block geometry and is fully parallelized us-
ing Message-Passing Interface (MPI). The simulations were performed on high-
performance Beowulf clusters at the California Institute of Technology. Additional
computer resources were provided by the Air Force Office of Scientific Research
(AFOSR) and the Army Research Laboratory (ARL).

The cavity configuration and flow conditions are controlled by the following
parameters: the cavity aspect ratio L/D and spanwise extent A/D, the ratio of
the cavity length to the initial boundary layer momentum thickness at the leading
edge of the cavity L/fy, the Reynolds number Rey = Ufy/v, and the freestream
Mach number M = U/a (see figure 2.1). As temperature differences are expected
to remain small, the transport properties are assumed constant: we set Pr = 0.7
and v = 1.4, the values for air.

Typical grid sizes ranged from a few hundred thousand to several million grid
points. Each spanwise wavenumber is discretized on a stretched Cartesian grid,
with clustering of points near the walls and the shear layer spanning the cavity.

Numerical probes are set up to record all the flow field variables u, v, p, P (and



Buffer zone

Outflow

Outflow

Inflow

Figure 2.1: Basic configuration of the computational domain

w in 3D) at every time step. For 2D simulations, three approximately equi-spaced
probes are located in the shear layer at y = 0, and three more at the same stream-
wise positions inside the cavity at y = —0.5D. Additional probes in the spanwise
cross-section z = 0.5A and equally spaced along the span in the shear layer at
(z,y) = (0.5L,0) are considered for 3D simulations. Figure 2.2 shows a typical 3D

grid and the location of the probes.

On a side note, we also report that the numerical code we developed has been
successfully used to investigate other problems than cavity flows. Gudmundsson
& Colonius (2006) adapted the code to study jet noise and the linear stability
characteristics of the mean velocity profiles produced by chevron nozzles. Burnes
& Colonius (2007) are implementing a Large Eddy Simulation version of the code
to investigate the mixing and flame-holding characteristics of cavity flows at high
Reynolds numbers. Future applications of the code also include simulations of

ultrasonically absorptive coating for hypersonic laminar flow control.
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Figure 2.2: Visualisation of the computational grid. Only the mesh in the spanwise

0 is represented (shown every other point). The red spheres

cross-section z

indicate the location of the probes inside the cavity and in the shear layer.
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2.2 Linear stability theory

Based on the assumption that the shear layer may be decoupled from the acoustic
scattering and recirculating flow in the cavity, the classical approach to study the
stability of cavity flow uses the theory of linear stability of parallel shear flow.
The equations of motions are linearized about a parallel mean flow (known basic
flow, only function of one spatial direction) and the fluctuations are written in
normal mode form. In general, this formulation leads to an eigenvalue problem
and a dispersive relation, which relates frequencies of the perturbations to their
corresponding wavenumber. For the classical approach, non-parallel effects are
only included through the introduction of a quasi-parallel (or Parabolized) stability
approach that cannot account for the effects of the leading and trailing cavity edges
(and their acoustic coupling to the hydrodynamic disturbances). Recent work
by Alvarez et al. (2004; 2005) has extended the parallel flow stability analysis
to include the scattering/receptivity /acoustic feedback by using a Weiner-Hopf
technique, but non-parallel and three-dimensional effects have not been considered.

An alternative analysis, called bi-global linear stability theory, has been used
for non-parallel flows (Theofilis & Colonius, 2003; Theofilis et al., 2004; Theofilis,
2003). In this approach, the transient solution of the equations of motion q =

[pu, pv, pw, p, €]’ is decomposed into

q(x,y,z,t) ZQ(‘Tay)"—q,(x’y?th)v (23)

where q(z,y) is the unknown steady two-dimensional basic flow and q'(z, v, 2, t)
an unsteady three-dimensional perturbation with ||q|| < ||q@|| . As the domain is
homogeneous in the spanwise direction, a general perturbation can be decomposed
into Fourier modes with spanwise wavenumbers (3. At linear order, modes with
different wavenumbers are decoupled and the following eigenmode Ansatz can be

introduced:

q(z,y,2,t) = Z an(z,y)expli(Bz — Qut)] + c.c., (2.4)

n
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where the parameter 3 is taken to be a real and prescribed spanwise wavenumber,
related to a spanwise wavelength in the cavity by A = 27/3, q, and Q,, = w,, +io,
are the unknown complex eigenmodes and corresponding complex eigenvalues,
both dependent on 3. Complex conjugation is required in equation (2.4) since
q’ is real. The frequency and the growth/damping rate of the mode are given
by w, and o, respectively. The long-time behavior of the linear solution will be
dictated by the mode with the eigenvalue Q) = w + io of largest imaginary part.
The flow is said to be subcritical (stable) if o is strictly negative, neutrally stable
if o = 0, and supercritical (unstable) if o > 0.

Eventually, the determination of the least damped (or most unstable) modes
for a given wavelength 8 amounts to finding the eigenvalue ) and corresponding

eigenvector by integrating the governing equations directly in the time domain.

2.3 Residual method and L2 fitting routines

To determine the least-damped eigenvalue practically, a least-squares fitting method
(Press et al., 1992) is applied to the data time history when exponential decay or
growth was reached: given the long-time evolution of the vector field ¢’ at any
location (xg, Yo, z0) and an initial guess for the unknown parameters q(zo, yo, 20),
4, (o, Yo, 20), Qi(xo,vo0,20), w, and o, a set of “best-fit” parameters is computed
such that the “merit function” , which measures the agreement between the data
and the model (with a particular choice of parameters), is minimized. In our case,
the model depends nonlinearly on a set (ax,k = 1,2, ..., M) of unknown parame-

ters and the “merit function” y is defined as

Nyt 2
data; — X (a1, a2, ...,apr, t;)
2 _ 1 9 9 9 s Y1
=Y ,
i=1

where (data;,t;) is the set of Ny; data point to fit, X is a fixed function of t
and the parameters ai, and o; is the measurement error (standard deviation) on

the i-th data point. Since the measurement errors are not known, o; is set to 1.
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Following equation (2.4), the “merit function” takes the form

2

N
ast;

2= Z [q’(mo,yg, 20,t;) — (a1 + (a4 cos agt; — as sin ast;)e

i=1

Note that the method is sensitive to the initial guess (same order of magnitude
as the “best-fit” parameters needed for accurate results) and the length of data
to fit (namely, if N is too large and the data still contains transient components,
the fit may not be successful). Upon convergence, the mode frequency w = as and
growth /damping rate ¢ = ag, which are independent of the location (zg, 3o, 20),
can be recovered.

With the eigenvalue determined, equation (2.4) may be written at three differ-
ent times, t1, to = t1 + At, and t3 = t1 + 2At as a linear system of three unknowns
d, qr, and q;. With the transient solution q, = q(z,v, z,t,) available at these
times, the system can be solved to deliver the steady-state solution q and the

spatial structure (§,,q;) of the linear eigenmode:

q - q1e278t — 2q9e” 2 cos wAt + g3 (2.5)
eQC’At_— 2e748¢t cos w_At +1
6 - Slw ;22 - Zi;h -4 (2.6)
& = c1(q2 ;2‘:3 —Ziczll —q) (2.7)
where
1 = e coswt; g =eRcoswty  s1 =elsinwt;  s9 = €72 sinwts.

2.4 ARPACK

To validate the linear stability results, a direct approach was also considered,
where the eigenmodes are directly searched for using an Arnoldi method devel-

oped in the ARPACK software (Lehoucq et al., 1996-2007), rather then isolated
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through long-time integration. Following the nomenclature introduced in §2.2,
for a given wavenumber 3, the three-dimensional linearized NS equations can be

written symbolically in matrix notation as

oq’ 0 0

— =Al=—,,q]d 2.8
where q' is the vector of the perturbed conservative variables and A is a spatial
differential operator depending on the base flow and cavity parameters (aspect ra-

tio, spanwise wavenumber, Re, etc.). Once the equations are spatially discretized,

we may represent this equation as:
M _ aq, (2.9)

where now q’ is the discretized solution vector (length 5N where N is the number
of grid points), and A is a constant real 5N by 5N matrix. In this discrete ap-
proach, the matrix A is a function of the (discretized) known steady flow q and the
simulation parameters. The stability of this ordinary differential equation depends
on the eigensystem of A. The eigenvalues (A,,,n = 1, N) are N not necessarily dis-
tinct solutions of det(A — AI) = 0, and the corresponding eigenvectors z,, are the

linearly independent solutions of Az, = \,z,. For the non-defective cases where

there are N linearly independent eigenvectors, X ~1 = [z, 29, ..., x| ! exists and
the solution can be written symbolically as
d =e''d, (2.10)
where @’ is the initial perturbation and
et = Xdiag[eM?, e, .. XL (2.11)

Therefore, for any initial condition, the long-time decay or growth of the solu-

tion will be dictated by the eigenvalue A,, with the largest real part, and the same
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Figure 2.3: Contours of the streamwise velocity u’/U for the dominant eigenmode
of spanwise wavelength \/D = 1 for run 2M0325: ( ---- ) ARPACK solution;

( —— ) Linear stability result; (a) real part; (b) imaginary part

conclusion stands if the system is defective. Comparison of equations (2.4) and
(2.11) reveals that the continuous and discrete formalisms are simply related by
Am = —i82. Given a cavity configuration and flow conditions, the eigenvalue of A
with largest real part (i.e., the least damped or fastest growing three-dimensional
mode) could theoretically be directly computed using ARPACK, as well as the
corresponding eigenvector, to visualise the shape of the instability.

In practice, the use of ARPACK was significantly limited by the size and com-
plexity of our problem. The software was therefore only used here to validate our
time-domain methods. As expected, the dominant eigenmode and corresponding
eigenvalue computed with ARPACK for the same test case were in excellent agree-
ment with the results of the linear stability analysis, as shown in figure 2.3. Both
methods predicted three-dimensional instabilities with less than 1% difference on

the mode growth rate and frequency.

2.5 Validation

Throughout this study, several test cases were set to validate the method and its

implementation. The DNS code was successfully tested through comparison with
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simple acoustic problems and previous validated numerical results from Rowley
et al. (2002b). The two-dimensional basic flow calculations are performed on fine
grids (about half a million to a million grid points) and for supercritical cases, the
oscillation frequencies are in good agreement with Rossiter mode frequencies, as
further discussed in §3.1.2).

Additionally, the 2D simulation 2M06-K reproduces one of the experimental
configurations of Krishnamurty (1956) with laminar incoming boundary layer. The
flow parameters (L/D = 2, M = 0.6, L/0y = 80, Rep = 1500) match the condi-
tions of the experiment (apart from the Reynolds, which is higher by about a factor
20 in the experiment). We find good qualitative agreement between the structure
of the radiated acoustic field and schlieren pictures from the experiment. The
measured frequency is f ~ 29 000 Hz, which corresponds to a Strouhal number
Sty = fL/U = 0.73. This result matches the oscillation frequency St = 0.723 in
our numerical simulation (see appendix A). Using optical interferometry, Krish-
namurty (1956) estimated the sound pressure levels (SPL) to approximately 163
dB for different cavity configurations. This value is similar to the SPL we measure
and report in chapter 5.

For the stability analysis, it is particularly important to verify that the modes
observed are physical and not generated by any numerical artifact. Several initial
conditions with disturbances at different locations in the cavity were considered
in order to perturb the linear equations and study the flow response. Similarly,
to demonstrate grid convergence of the three-dimensional stability computations,
simulations were performed on a finer grid for the same test case. As expected for
a global instability, the dominant three-dimensional mode is independent of the
initial perturbation and grid spacing, as both the nondimensionalised frequency

Stp = wD/(2wU) and growth rate oD /U are identical in all cases.
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Chapter 3

Linear Stability Results

As described in chapter 2, the three-dimensional linear stability analysis relies on
the existence of subcritical conditions with a steady two-dimensional basic flow
d(x,y), an exact solution of the 2D NS equations. However, for most experiments
and realistic flight conditions, the flow parameters would be such that Rossiter
modes do occur and eventually saturate into a periodically oscillating flow. It
must be acknowledged that the presence of three-dimensional instabilities is likely
to alter the two-dimensional basic flow on which the present linear analysis is based.
With this in mind, our approach here is to investigate the three-dimensional linear
stability of a given base flow, regardless of potential interactions. Such approach
has been widely used to predict the stability and growth rate of boundary layers,
for instance. As discussed in chapter 5 and chapter 6, the features observed in the
linear results are in fact relevant to full nonlinear simulations and experiments.
Potential extension of the linear stability analysis to supercritical conditions is

presented in appendix C.

3.1 Two-dimensional simulations

The first step of the linear stability analysis is to characterize the onset of two-
dimensional cavity instability. We review here the general properties of the shear-

layer (Rossiter) oscillations in compressible flows over open cavities.



22

3.1.1 Shear-layer mode

As discussed in the introduction, the shear-layer (Rossiter) mode is characterized
by a flow-acoustic feedback process. Small disturbances in the shear layer are
amplified as they advect downstream through the shear layer and generate acoustic
waves upon impingement on the downstream edge of the cavity. These acoustic
waves propagate back upstream and interact with the shear layer to excite further
instabilities.

This mechanism is clearly observed in the 2D simulations. The vorticity, veloc-
ity and acoustic fields for run 2M06 (L/D =2, L /0y = 52.8, M = 0.6, Rep = 1500)
are shown in figures 3.1, 3.2, and 3.3 respectively. They are representative of all
the simulations with shear-layer mode oscillations. As mentioned in the validation
section in §2.5, good qualitative agreement is obtained between the density fluc-
tuations observed in the simulations and schlieren pictures from experiments (e.g.,
Krishnamurty, 1956). In the present case, the roll-up of vorticity in the shear
layer can be observed, but there is no shedding of vortical disturbances before
impingement at the downstream cavity edge. In general, the velocity magnitude
inside the cavity is only a fraction of the freestream velocity (less than 10% for
subcritical conditions and up to 30% for supercritical conditions) and the internal
flow is relatively weak.

One important feature of the cavity flow is the recirculating vortical flow (also
commonly referred as primary vortex) in the downstream half of the cavity. This
vortex is present in the steady state for subcritical conditions and in a time-
averaged sense for supercritical conditions. Figure 3.4 shows the 2D steady base
flow for different cavity configurations. As further discussed in § 3.2, the recirculat-

ing region plays a key role in the development of the three-dimensional instabilities.
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Figure 3.1: Vorticity field for the shear-layer mode (run 2M06) at four different

times (a-d) corresponding to approximately a quarter of a period of oscillation; 21

equi-spaced contours of the vorticity are shown between w,D/U = —5 and 5.
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Figure 3.2: Velocity field for the shear-layer mode (run 2M06) at four different
times (a-d) (same times as in figure 3.1); 19 equi-spaced contours of the velocity

magnitude are shown between ||u||/U = 0.05 and 0.95.
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Figure 3.3: Visualisation of the acoustic field for the shear-layer mode (run 2M06)
at four different times (a-d) (same times as in figure 3.1); 21 equi-spaced contours

of the dilatation are shown between VuD /U = —0.05 and 0.05.
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Figure 3.4: Vorticity contours and streamlines of the two-dimensional steady base
flow; Ten equally-spaced contours between w,D/U = —1 and 1 are shown: (a) run
H1Re200; (b) run 2M03; (b) run TK4MO3Re65. In each case, the shear-layer and the

primary vortex within the cavity are clearly identified.

3.1.2 Neutral stability curves

While Rossiter’s formula in equation 1.1 provides reasonable predictions for the
frequency of oscillations that occur in self-sustained oscillations, it says nothing
about whether such oscillations do occur and, if they do, which of many possible
unstable modes is selected, and at what amplitude such oscillations would saturate.
For the most part, it can be presumed that at realistic flight-values the parame-
ters M, Reg, L/D, and L/6 would be such that oscillations do indeed occur. The
critical values of, for example, the Reynolds at which the flow first becomes un-
stable is quite low. Nevertheless, it turns out that understanding the behaviour of
the instability near this critical transition has important consequences for cavity
oscillations at realistic Reynolds numbers.

The parameters for the different runs and the stability results are tabulated in
appendix A. Given a cavity configuration and different flow conditions, several two-
dimensional simulations are performed to construct the estimated neutral stability
curve for the two-dimensional instabilities of the basic cavity flow (e.g., figures 3.5,
3.6, 3.7, and 3.8(a)). The DNS results are classified according to whether the flow
is two-dimensionally stable (and thus a steady-state solution can be obtained) or
whether the flow results in self-sustaining oscillations. The oscillation frequencies

are computed for all the runs in shear-layer mode and are shown in these figures.
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(a) (b)
Figure 3.5: Results for cavity run series H1 (L/D =1, L/0y = 23.2): (a) Schematic
of the neutral stability curve from 2D nonlinear simulations (2D stable ( O ) and
unstable (M )) and from the 3D linear analysis in § 3.2 (3D stable ( o ) and unstable
(®)); (b) Strouhal numbers St;, = fL/U for the supercritical conditions in (a),

compared to equation 1.1. Only one dominant mode ( A ) is present in this case.

The results of the three-dimensional linear stability analysis from § 3.2 are also
presented in figures 3.5, 3.6, 3.7, and 3.8(a). The different shaded regions indicate
the approximate stability transitions. The critical conditions are estimated by
linear interpolation between stable and unstable conditions. Here, it must be
acknowledged that these figures represent a general stability trend rather than
precise computation of critical conditions. Also, the 3D stability is based on linear
results and is therefore not available for supercritical conditions (i.e., the region
of 2D instability). However, the results of our nonlinear simulations, discussed
in chapter 5, tend to indicate that the critical conditions for the onset of the 3D
instability are similar on both sides of the 2D stability transition.

The two-dimensional results are consistent with the typical flow/acoustic res-
onant modes that have been observed in many cavity experiments (e.g., Krishna-
murty, 1956; Rossiter, 1964; Sarohia, 1975; Heller & Bliss, 1975; Tam & Block,
1978; Ahuja & Mendoza, 1995) and numerical simulations (e.g., Fuglsang & Cain,
1992; Rowley et al., 2002b; Gloerfelt et al., 2003). In all the cases, the two-
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Figure 3.6: Results for cavity run series 2M (L/D = 2, L/0y = 52.8): (a) Schematic
of the neutral stability curve from 2D nonlinear simulations (2D stable ( O ) and
unstable (M )) and from the 3D linear analysis in § 3.2 (3D stable ( o ) and unstable
(®)); (b) Strouhal numbers St;, = fL/U for the supercritical conditions in (a),

compared to equation 1.1: ( A ) dominant mode, ( x ) subdominant mode

dimensional instability is essentially of the Rossiter type, wherein Kelvin-Helmholtz
instabilities in the shear layer spanning the cavity are coupled to acoustic feed-
back and receptivity at the trailing and leading edges, respectively. Frequencies
of oscillation are found to be predicted by Rossiter’s formula to within the exper-
imental scatter of measurements that have been made over the years for cavities
with laminar and turbulent boundary layers.

The onset of Rossiter mode as a function of the parameters is typically summa-
rized qualitatively as follows: there is a critical value of M, Rey, and L/ beyond
which oscillations occur. There does not appear to be any critical value of L/D
in the range of parameters considered 1 < L/D < 6. The stability results from
the two-dimensional simulations are consistent with these general trends. For low
Reynolds number and Mach number, the flow is subcritical and ultimately reaches
a steady state. As these parameters, or the ratio of the cavity length to the ini-
tial boundary layer momentum thickness L/, are increased, the flow becomes

supercritical and oscillates in shear-layer (Rossiter) mode.
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Figure 3.7: Results for cavity run series TK2 (L/D = 2, L/6y = 30.12): (a)
Schematic of the neutral stability curve from 2D nonlinear simulations (2D sta-
ble () and unstable (M )) and from the 3D linear analysis in § 3.2 (3D stable (o)
and unstable ( e )); (b) Strouhal numbers St;, = fL/U for the supercritical condi-
tions in (@), compared to equation 1.1. Only one dominant mode ( A ) is present

in this case.
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Figure 3.8: Results for cavity run series TK4 (L/D = 4, L/0y = 60.24): (a)
Schematic of the neutral stability curve from 2D nonlinear simulations (2D sta-
ble () and unstable (M )) and from the 3D linear analysis in § 3.2 (3D stable (o)
and unstable ( e )); (b) Strouhal numbers Sty = fL/U for the supercritical condi-
tions in (a), compared to equation 1.1: ( A ) dominant mode, ( x ) subdominant

mode
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As mentioned in the previous section, the parameters L/D, L/6y, and Rey
affect the oscillation frequencies, and in particular the selection of a particular
resonant frequency. For instance, in figure 3.6, the flow is stationary for run 2M03
at M = 0.3 and Rep = 1500. The regime of shear-layer oscillations can be reached
by either increasing the Reynolds number (i.e., run 2M03Re80) or the Mach number
(i.e., run 2M04). Here, the resonant frequency corresponds to a Rossiter mode II
in the first case and mode I in the latter. In general, higher Rossiter modes are

observed for larger L/6y and higher Mach number (see appendix A).

3.2 Three-dimensional linear stability

The neutral stability curves presented in the previous section (3.1) are the starting
point of the three-dimensional linear stability analysis: the goal here is to investi-
gate whether or not 3D instability takes place before the onset of 2D instabilities.

For subcritical cases, the two-dimensional steady flow ¢ is extracted from the
DNS and used as base flow for the linear three-dimensional simulations: as initial
condition, a perturbation of given wavelength A\ (therefore looking at one -mode
at a time) is added to ¢ and the 3D linearised Navier—Stokes equations are solved.
The least damped (or most unstable) eigenmode (e.g., figure 3.14) and the corre-
sponding eigenvalue {2 = w410 are then determined from the long-time response of
the cavity (e.g., figure 3.9) . The nondimensionalised growth/damping rate oD /U
and Strouhal number Stp = wD /27U are computed in each case for a set a discrete
spanwise wavelength (e.g., figure 3.10) and the stability of the three-dimensional

mode is reported back on the stability curve.

3.2.1 Three-dimensional mode properties

Figures 3.10, 3.11, and 3.12 show the growth/damping rate and frequency of the
dominant three-dimensional mode as a function of the spanwise wavelength, for
different cavity configurations and flow conditions. The plots in these three figures

have much the same character and are representative of the results for cavities of
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0 100 200 300 400 500

tU/D
Figure 3.9: Long-time linear response of the cavity to three-dimensional pertur-
bations of different spanwise wavelengths for run 2M0325 at (z,y,2) = (L/2,0,0):
(--=—=)A/D=05,(——)AND=1,(0)ND=15 (A ) \ND =2 This
figure is a typical output of the linear stability simulations. Here, the disturbance
of spanwise wavelength \/D = 1 is growing exponentially while the disturbances

at other wavelengths are damped.

aspect ratio L/D =1, L/D = 2, and L/D = 4 considered here (see appendix A)
For a band of spanwise wavelengths around the size of the cavity depth (A/D =
1), the dominant mode has a positive growth rate under certain conditions. This
unstable mode (referred as Mode i) is unsteady and the oscillation frequency
based on the cavity depth D are comparable in all cases. This suggests that D,
rather than L or 6y, is the most appropriate length scale to characterize the three-
dimensional instability. By contrast, the two-dimensional unstable Rossiter mode
has frequency fL/U scaling with the cavity length: in this feedback process, the
resonant frequencies are directly connected to the times for vortical structures and
radiated sound to travel downstream and upstream across the cavity of length
L. For the three-dimensional instabilities, the frequency is found to be strongly
associated with the two-dimensional base flow and its recirculating vortical flow
within the cavity, which is about dimension D in all cases. Details about the

recirculating flow and the mode frequency are further discussed in § 3.2.3.
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Aside from this oscillatory mode, the presence of other three-dimensional modes
is suggested in figures 3.10, 3.11, and 3.12. In particular, the linear stability of the
shortest cavity L/D = 1 differs from the other cases. As the Reynolds number is
increased, the first mode to become unstable is steady (Stp = 0) and has a smaller
spanwise wavelength (A\/D = 0.5). A similar steady mode (referred as Mode 1) is
observed for cavities of larger aspect ratio but is not amplified. We argue that the
specific properties of the three-dimensional mode for the square cavity are related
to the recirculating vortical flow that occupies the whole cavity in that particular
configuration. These features are discussed in more detail in chapter 4.

Finally, the linear stability results also suggest the presence of another unsteady
mode of larger spanwise wavelength A\/D > 1.5. However, this mode 7 does not
have the largest linear growth rate at any of the conditions considered here, and
is not observed in the three-dimensional nonlinear simulations we performed. For
several cases, a more extensive set of spanwise wavelength was also considered

(0.1 < \/D < 32), but did not lead to any additional instabilities.

3.2.2 Parameter dependence

As mentioned previously, the parameters L/ D, L/0y, Rep, and M control the on-
set of the shear-layer (Rossiter) oscillation and whether the steady two-dimensional
flow needed for the linear analysis exists or not. Within the domain of 2D stabil-
ity, our linear results show that the flow parameters affect the properties of the
three-dimensional modes in four aspects. First, as discussed above, the cavity as-
pect ratio controls which mode (namely i or i) is the dominant mode; secondly,
the Reynolds number has a direct effect on the growth rate as viscosity plays a
stabilizing role; thirdly, a change in certain parameters (e.g., L/6y and Re) mod-
ifies the strength of the recirculating region in the two-dimensional base flow and
indirectly the mode growth rate and frequency; and finally, the Mach number has

little influence on the mode properties.
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Figure 3.10: 3D linear stability results for run series 2M (L/D = 2,L/6y, = 52.8)
as a function of the spanwise wavelength A\/D, for increasing Reynolds number
(as indicated by the arrow) and different Mach numbers: 0.1 < M < 0.38 for
runs 2M0O1 ( x ), 2M0325 ( V ), 2M035 ( o ) and 2MO38Re50 ( ¢ ); M = 0.3
for runs 2MO3Re35 ( o ), 2MO3 ( A ) and 2MO3Re65 ( M ). The thick solid line
represents the stability transition op = 0 and the region of positive growth rate
is shaded; different modes of instability are suggested. (a) Growth/damping rate,
(b) Frequency
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Figure 3.11: 3D linear stability results for run series TK2M (L/D = 2, L/6y = 30.12)
as a function of the spanwise wavelength \/D, for increasing Reynolds number (as
indicated by the arrow). Two sets of Mach numbers are considered: M = 0.6
for runs TK2MO6 ( o ), TK2M6Re80 ( A ) and TK2MO6Re140 ( O ); M = 0.325 for
runs 2M0325 ( e ), 2M0325Re80 ( A ), 2M0325Re100 ( 4 ) and 2M0325Re140 ( M
). The thick solid line represents the stability transition op = 0 and the region
of positive growth rate is shaded; different modes of instability are suggested. (a)

Growth/damping rate, (b) Frequency
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Figure 3.12: 3D linear stability results for run series H1 (L/D = 1, L/0y = 23.2)
as a function of the spanwise wavelength \/D, for increasing Reynolds number (as
indicated by the arrow). Two sets of Mach numbers are considered: M = 0.6 for
runs H1 ( V ), H1Re110 ( A ) , H1Re140 ( o ) and H1Re200 ( ¢ ); M = 0.3 for runs
H1MO3Re150 ( @ ) and H1MO3Re300 ( M ). The thick solid line represents the stability
transition op = 0 and the region of positive growth rate is shaded; different modes

of instability are suggested. (a) Growth/damping rate, (b) Frequency
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Reynolds number

As indicated by the arrows in figures 3.10, 3.11, and 3.12, an increase in Reynolds
number has two effects on the properties of the instability: it significantly increases
the growth rate and moderately decreases the oscillation frequency (see details
in §3.2.3). To fully ascertain the effect of Re on the onset of three-dimensional
mode, we performed a set of numerical experiments in which the base flow was
artificially held constant as Re was increased (for details, see appendix B). The
results confirmed that the growth rate of the dominant mode is directly driven
by the Reynolds number. Viscosity damps the instability and there is a critical
Reynolds number, above which the flow becomes three-dimensionally unstable.
Since the Reynolds numbers considered in this study are low, the three-dimensional
unstable modes are likely to exist for high Reynolds number flows in practical
applications.

Additionally, for the run series TK4MO6 with a cavity of aspect ratio L/D = 4
(see appendix A), three-dimensional instabilities do not occur before the onset
of the two-dimensional shear-layer oscillation. These results can be interpreted
also in terms of critical Reynold number; that is, the Rossiter mode has a lower
critical Reynolds number than the three-dimensional mode for L/D = 4 under

these conditions, and vice versa for shorter cavities.

Boundary layer thickness

Our results show that the parameter L/0y controls whether the base flow permits
three-dimensional instability, and impacts the oscillation frequency (see details
in §3.2.3). A closer inspection of the three-dimensional linearized Navier—Stokes
equations reveals that the influence of this parameter should be limited to its
effect on the base flow. Comparisons between the subcritical runs TK2M0325Re100
(figure 3.13(a)) and 2M0325 (figure 3.13(b)) show that, when the initial boundary
layer momentum thickness is reduced while keeping the other parameters Rep, M
and L/D constant, the strength of the recirculating region in the 2D base flow

increases. In the latter case, three-dimensional instabilities eventually develop.
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Figure 3.13: Vorticity contours for 2D steady and time-averaged base flows.
Equally spaced contours between w,D/U = —5 and 1 are shown. Positive con-
tours are dashed; (a) run TK2M0325Re100. The thick initial boundary layer leads
to a weaker recirculating vortical flow within the cavity and no three-dimensional
mode; (b) (—— ) run 2M01, (—— ) run 2M0325. The difference between the two
solutions is less than 1%. Both simulations exhibit identical three-dimensional
instabilities; (¢) run 2M06. The supercritical case exhibits a similar base flow in a

time-averaged sense.

These observations suggest again that a critical strength of recirculating flow in
the two-dimensional steady base flow needs to be reached for the presence of 3D

instabilities.

Mach number

From figures 3.10 and 3.11, it is clear that properties of the dominant three-
dimensional mode are essentially independent of the Mach number for subcrit-
ical conditions over subsonic speed up to 0.6. A set of numerical experiments,
presented in appendix B, confirmed this result. This is a substantially different
behaviour than the Rossiter modes. It indicates that the instability is unrelated
to acoustic waves and other effects of compressibility. It is also consistent with the
observation that the 3D instability is active in the recirculating region within the
cavity where the flow speed is much lower than the freestream value.

As a result, the critical conditions for the onset of the 3D instability are ex-

pected to be nearly independent of the Mach number, at least up to M = 0.6.
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In figure 3.6, the critical Reynolds number Rep = 1300 is estimated at M = 0.3
from the run series 2M03, and is assumed to remain constant for the range of Mach
number 0 < M < 0.4, up to the limit of two-dimensional stability.

These results also suggest that the proper scaling for the velocity may not be
the freestream velocity but rather some characteristic velocity inside the cavity.

Alternate scalings are considered in §4.2.

3.2.3 Eigenmode structure

The unstable eigenfunction for run 2M0325 is depicted in figure 3.14 and is repre-
sentative of all the three-dimensional unsteady instabilities. A cycle of growth and
decay of the disturbance can be observed, as it rotates around the primary vortex
of the two-dimensional base flow in the downstream half of the cavity. Starting
from the cavity trailing edge, a zone of strong growth exists near the downstream
wall where the shear layer impinges the cavity corner. As the fluid in the cav-
ity recirculates upstream and towards the bottom of the cavity, the disturbance
amplitude decays slightly, before growing again when moving away from the bot-
tom wall and toward the shear layer. In the shear layer, the perturbation is then
damped and convected downstream until it reaches the cavity corner and starts
this cycle again. Overall, a larger growth rate then decay rate in this process leads
to reinforcement of the disturbance and ultimately instability.

For visualisation purposes, two spanwise periods of the unstable mode of wave-
length A/D = 1 are shown in figure 3.15. The perturbation velocity in the z-
direction w’/U is represented by the iso-surfaces. In general, the spanwise struc-
ture of the flow is reminiscent of the cellular pattern observed in experiments and
in oil flow visualisations (e.g., Maull & East, 1963).

Another distinctive characteristic of the three-dimensional instability is that
the oscillation frequency is about an order of magnitude smaller than the typical
frequency of the two-dimensional shear-layer (Rossiter) mode. A detailed inspec-
tion of the base flow properties shows that the mode frequency is related to the

closed streamlines in the primary vortex. The time for a disturbance to advect
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around the recirculating flow is computed for a discrete set of streamlines, and
the corresponding nondimensionalised frequencies are compared to the instability
frequency from the linear stability analysis. Under most conditions, there is a
region in the primary vortex where the frequency computed from the streamline
matches the mode frequency. Such streamline is presented in figure 3.14 and shows
good agreement with the motion of the disturbances. The smaller average velocity
along these streamlines (typically 5 to 10% of the freestream velocity, as shown in
figure 4.2(b)) also accounts for the low frequency measured.

This feature of the base flow also sheds light on the dependence of the predicted
instability frequency with the flow parameters. In figures 3.10, 3.11, and 3.12, sim-
ilar trends are observed when the base flow is modified through an increase of the
Reynolds number or of the incoming boundary layer thickness: that is, the oscil-
lation frequency decreases for higher Re or smaller L/fj. In all these cases, the
strength of the recirculating region in the cavity decreases, so the travel time of
disturbances in the primary vortex increases, leading to higher 3D mode frequen-
cies. We note that this effect is, however, moderate and it is not expected that the
oscillation frequency would be significantly altered for supercritical conditions. In
the range of conditions considered, the properties of the two-dimensional steady
and time-averaged base flow for sub- and supercritical cases were comparable.

Additionally, our linear results suggest that there could be a significant inter-
action between the shear layer and the three-dimensional instabilities in practical
flows. In figure 3.14, it is clear that the three-dimensional disturbances affect a
large portion of the shear layer, even beyond the cavity downstream corner, as
the dotted line represents the limit of the shear-layer thickness in the base flow.
The extent of these nonlinear interactions in high Reynolds number flows is largely
unknown at this stage. Nevertheless, one can speculate that they could potentially
be used to design a controller that would tap into the three-dimensional instability

to control the shear-layer mode oscillation.
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Figure 3.14: Contours of the linearized perturbation velocity u’/U for the unstable
eigenfunction of spanwise wavelength \/D = 1 for run 2M0325. Six times (a-f) are
shown, corresponding to half a time period of the 3D instability. The velocity
levels are arbitrary and the negative contours are dashed. The red flooded region
indicates the zone of potential centrifugal instability discussed in chapter 4. Other

features of the 2D base flow: (—) streamline, ( —-— ) shear-layer thickness
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Figure 3.15: 3D visualisation of three periods of the unstable mode of spanwise
wavelength A/D = 1 for run 2M0325. For visualization purposes, the amplitude of
the 3D linear mode is increased to approximately 20% of the freestream amplitude
and was added to the basic steady state flow. The color contours represent the
total (steady flow and perturbation) velocity magnitude, and velocity vectors are
shown on the streamwise cross section at z = 0 and on the bottom of the cavity. On
each plot, two spanwise periods of the unstable mode are shown and the spanwise
perturbation velocity w’/U is represented by the iso-surfaces. One time period of
the instability is shown on each column, with time increasing from top to bottom,

and left to right.
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Chapter 4

Centrifugal Instability

4.1 Instability mechanism

We now address the mechanisms of three-dimensional instability. The linear results
indicate that the instability depends on the strength of the recirculating region in
the downstream half of the cavity. We argue here that the instability mechanism
is the generic centrifugal instability associated with the closed streamlines in the

recirculating vortical flow near the downstream cavity wall.

4.1.1 Rayleigh’s circulation criterion

The centrifugal instability problem was first considered for swirling inviscid flow
by Rayleigh, who derived the now celebrated Rayleigh’s circulation criterion for
stability (e.g., Drazin & Reid, 1981). The classical theory for circular streamlines
was generalized to two-dimensional inviscid flow by Bayly (1988). For the cen-
trifugal instability to occur, a sufficient condition is that the magnitude of the
angular velocity decreases outward in some region of the flow with closed stream-
lines. Barkley et al. (2002) applied this theory to three-dimensional instability
in the flow over a backward-facing step. Following their notation, the Rayleigh
discriminant is defined as

r(x X u(x 2
oy = - A xSl 1)
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where r(z,y) = (. — ¢,y — y¢), with (z¢,y.) the center about which the angular
velocity is defined, and r = ||r(z,y)||. The velocity is simply a(z,y) = (@,v). In
practice, the center (z.,y.) was chosen to be the approximate location of the min-
imum velocity inside the recirculating region inside the cavity. The discriminant 7
is actually only weakly dependent on the choice of the center of rotation: computa-
tions with £10% error on (z.,y.) lead to similar results. The flow is centrifugally

unstable in the inviscid limit where 1 > 0.

4.1.2 Rayleigh discriminant

Figure 4.1 shows the Rayleigh discriminant of the 2D steady (or time-averaged)
base flow for different cavity configurations. The contours represent only the region
where 7 is greater than 5% of its maximum value. Additionally, the streamlines
are plotted to visualise the flow. The zone where the angular velocity decreases
radially corresponds to the downstream part of the recirculating flow near the cav-
ity wall. It also corresponds to the region of maximum growth of the disturbance,
as discussed in the previous section. The fluid in the recirculating flow experi-
ences a regime similar to solid-body rotation, with velocity and circulation along
the streamlines increasing linearly with the distance to the center of rotation (see
figure 4.2). Intuitively, the presence of the downstream and bottom walls forces
a rapid decrease in momentum at the outer streamlines. Because of the wall, the
fluid is driven in the spanwise direction to form the structures observed in fig-
ure 3.15. As the walls are an intrinsic part of all configurations, any cavity flow
should be inherently unstable because of the centrifugal instability mechanism,
and our simulations do show regions of positive Rayleigh discriminant even for
three-dimensional stable cases. However, the centrifugal stability criterion is only
a sufficient condition for inviscid flow. As the parametric study of the Reynolds
number effect showed, viscosity plays a stabilizing role. In general, simulations
with a higher Re lead to larger values and broader zones of positive Rayleigh
discriminant. This result is consistent with the higher linear growth rate of the

instability measured in these cases.
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Figure 4.1: Streamlines and Rayleigh discriminant of two-dimensional steady (or
time-averaged) base flow. The red flooded region indicates where 7 is greater than
5 % of its maximum value. (a) run H1Re200; (b) run 2M06; (c¢); run TK4MO3Re65.

Cases (a),(c) are 2D subcritical and (b) is supercritical.
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Likewise, two-dimensional time-averaged base flows at supercritical conditions
exhibit similar regions of potential centrifugal instability. Comparison of the
Rayleigh discriminant between the subcritical run 2M0325 in figure 3.14 and the
supercritical run 2M06 in figure 4.1(b) shows comparable results, with a slight in-
crease in the levels and extent of the instability zone in the latter case. This
observation suggests again that the centrifugal instability mechanism is relevant
for cavity flow vortices (in a time-averaged sense) at higher Reynolds numbers.

As mentioned previously, cavities with aspect ratio L/D = 1 feature slightly
different characteristics. The recirculating vortical flow now occupies the whole
cavity and the motion of disturbances in that vortex is affected not only by the
downstream and bottom walls, but by the upstream wall as well. The computation
of the Rayleigh discriminant reflects these distinctive features. It is clear in figure
4.1(a) that the region of potential centrifugal instability is much larger, covering the
outward streamlines of the primary vortex from the trailing edge of the downstream
wall all the way around back to the shear layer. The influence of the upstream
wall is believed to be the main explanation for the differences in the instability
spanwise wavelength and oscillation frequency observed between cavities of smaller

and larger aspect ratio.

Rayleigh’s circulation criterion can also be interpreted in terms of circulation
along the closed streamlines. In that case, the flow is centrifugally unstable if
the circulation magnitude decreases in the outward direction. To validate our
results, the circulation on the closed streamlines around the primary vortex were
computed as a function of the distance to the center of rotation. Both independent
methods lead to the same result: in the inviscid limit, the flow will develop a three-
dimensional centrifugal instability in the primary recirculating vortical flow inside

the cavity near the downstream wall.
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4.2 Connection with other centrifugal instabilities

While this is the first time, to our knowledge, that three-dimensionality connected
to centrifugal instabilities has been reported for open cavity flows, past studies of
global instabilities did shed some light on that mechanism for similar flow config-
urations. Most of these studies focused on critical flow conditions for the onset of
centrifugal instability and the properties of the resulting three-dimensional mode.
To enable direct comparison with our linear results for cavity flows, the criti-
cal parameters are linearly interpolated whenever conditions of both sides of the

three-dimensional stability transition are available.

4.2.1 Flow past a backward-facing step

Barkley et al. (2002) considered incompressible flow over a spanwise homogeneous
backward-facing step geometry, which can be related with that of a wide cavity
at appropriate parameter ranges. The run series TK4MO3 for our longest cavity
of aspect ratio L/D = 4 at low Mach number M = 0.3 are set up to match the
range of Reynolds number and the laminar boundary layer momentum thickness
of the step simulations. Barkley et al. (2002) discovered the existence of amplified
large-scale spanwise-periodic vortical structures in this flow. They argued that
the source of the three-dimensionality was the centrifugal instability mechanism
within the closed recirculation bubble formed between the lip and the downstream
floor of the backward-facing step. Much like our linear stability analysis of the
cavity flow, they showed that the flow was linearly unstable to three-dimensional
disturbances over a finite range of spanwise wavelengths. The reported critical
Reynolds number for the instability Rep, = Uh/v = 748 is of the same order as
Rep = 960 for the run series TK4MO3 (here h is the step height similar to the
cavity depth D). However, their critical three-dimensional mode is steady with a
spanwise wavelength A/h = 6.9, and therefore quite different from the cavity flow
result (see table 4.1).

As the three-dimensionality in both cases is believed to arise from the recir-
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culating flows in the step separation zone and downstream half of the cavity, a
possible source of these discrepancies is the differences between the closed stream-
lines in both flows. For the run series TK4M03, the characteristic dimension of the
recirculation vortical flow inside the cavity is again the cavity depth D and, for
the most part, the closed streamlines are approximately circular. In contrast, the
streamlines in the step separation zone in the simulations by Barkley et al. (2002)
are elliptical, with minor axis of dimension h = D and a much larger major axis
13h corresponding approximately to the reattachment point of the flow, which is
a linearly increasing function of the Reynolds. This significant change of geometry

could be the cause of the variations in the 3D mode properties.

4.2.2 Lid-driven cavity flows

The lid-driven cavity (LDC) also features three-dimensional centrifugal instabil-
ities (e.g., Albensoeder et al., 2001). While cavity flows exhibit a much richer
variety of fluid dynamic processes (shear-layer instabilities, vortex-surface interac-
tion, acoustic waves propagation) compared to traditional incompressible bounded
lid-driven flows, the two-dimensional steady base flows obtained from simulations
of subcritical cavity flows are in fact similar to the corresponding LDC basic flow.
Numerous representations of the two-dimensional streamlines in lid-driven cavity
configurations at different Reynolds numbers are available in the literature (see
Ramanan & Homsy (1994); Ding & Kawahara (1999) for square cavity; and Al-
bensoeder et al. (2001) for cavity of aspect ratio 4). These results can be related
to the basic cavity flows in figure 4.1. Because of the presence of a comparable
recirculating region in both flows, similar trends can be expected for the stabil-
ity of LDC and cavity flows. Several experimental and numerical studies have
reported three-dimensional modes in square LDC flow and measured the corre-
sponding critical conditions. Additionally, for lid-driven cavities of aspect ratio 1,
2, and 4, detailed linear stability analysis were conducted by Albensoeder et al.
(2001) and Theofilis et al. (2004). All the results are presented in table 4.1.

However, since there is no direct correspondence between the Reynolds number
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Rep = UD/v defined for the cavity flow and Rejq = UjjgD/v for the lid-driven
flow, comparisons remain qualitative. A different scaling than the freestream ve-
locity is considered here, to enable a closer comparison with LDC results. The
average streamwise velocity along the cavity mouth at y = 0 is computed for
each two-dimensional steady basic flow field, and is interpolated from the critical
conditions. The critical Reynolds numbers and frequencies are then rescaled us-
ing that average velocity Uy and are shown in table 4.1. While the traditional
nondimensionalisation leads to a range of critical conditions strongly dependent
on the cavity aspect ratio and the initial boundary layer momentum thickness,
the rescaled results have the same order of magnitude, independently of the cavity
configuration. The average velocity Uy is typically 5 to 15% of the freestream
velocity, which accounts for the lower critical Reynolds number Rej;; and higher
corresponding frequency St;;q. There is also a closer agreement between the LDC

and cavity flow results.

4.2.3 Couette flow

Another alternative scaling for the velocity is based on the observation that the
recirculating vortical flow inside the cavity exhibits characteristics similar to a
solid-body rotation away from the walls (as confirmed by PIV measurements from
Chatellier et al., 2006). This feature suggests that the cavity flow could be com-
pared to the special case of Couette flows where the inner cylinder of radius R,
rotates with constant angular velocity €21 while the outer cylinder of radius Rs is
at rest. This is particularly relevant for the square cavity, where the recirculating
flow occupies the whole cavity and plays the role of the inner cylinder while the
cavity walls correspond to the stationary outer cylinder. The stability of such flow
has been widely studied and is often mentioned as a classical example of centrifugal
instabilities.

DiPrima et al. (1984) computed the critical values of the Reynolds number
and corresponding axial wavenumber as a function of the radius ratio Ry/Ry for

axisymmetric stationary modes. Note that their results were made dimensionless
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by scaling length with the gap width d = Ry — R; and velocity with the inner
cylinder velocity €21 R1. To enable comparison with the Couette flow stability re-
sults, closed streamlines inside the recirculating flow are extracted and the average
velocity along each streamline is computed. From figure 4.2(b), it is clear that the
fluid in the vortex rotates with nearly constant angular velocity, as the average
velocity along the inner streamlines is proportional to the distance from the center
of rotation until the influence of the solid wall is felt, leading to the approximate
definition of the convective velocity scale Ucs = 21 R1. Note that the objective here
is only to achieve qualitative comparison, as it is not possible to unambiguously
define Ry and Ry for the cavity flow.

We estimated the radius ratio for run H1Re140, which is the last available con-
dition from our linear stability analysis before the stationary mode of wavelength
A = 0.5 becomes unstable. From DiPrima et al. (1984), the corresponding critical
Reynolds number and wavenumber are 317 and 0.46 respectively, in units of D
and Uc. These values are comparable to the square cavity flow data in table 4.1,
highlighting once more the centrifugal character of the 3D instabilities. Similarly
to the previous nondimensionalisation inspired by the LDC flows, the rescaled re-

sults for the different cavity configurations have the same order of magnitude.

The stability results for the LDC and Couette flow also shed light on the
particular properties of the instability in cavities of aspect ratio 1, that is the
critical conditions correspond to a stationary mode of smaller spanwise wavelength,
about 0.5D. Based on the Couette flow analogy, these results suggest that this
stationary mode is amplified in the particular configuration where the recirculating
region occupies the whole cavity and interacts with all the cavity walls. Hence the
unstable non-oscillatory mode of wavelength 0.4 reported in our linear stability
analysis for L/D =1 cavities, and not for cavities of larger aspect ratio.

Finally, while this analysis makes clear the role of centrifugal instability in cav-
ity flows, we note that it is not predictive in the sense that U4, Uc, R1, and Ro

have to be estimated from the 2D steady (or time-averaged) base flow.
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Figure 4.2: Properties of the 2D steady base flow in run HiRe140 for comparison

ull/U

with Couette flow:(a) Streamlines (only one streamline out of 5 is shown); (b)
Magnitude of the average velocity |u|/U along the streamline going through (z. =
0.55,9); (e ) end of the solid-body rotation regime. The corresponding Couette

flow cylinder radius R; and Rs, as well as the new velocity scale Ug, are shown.
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L/D=1 )\/D Re Rejq Reco Stp  Stiua Ste
LDC Albensoeder et al. (2001)  0.408 - 786 - - 0 -
Albensoeder et al. (2001)7 0.398 - 810 - - 0 -
Theofilis et al. (2004) 0.409 - 782 - - 0 -
Couette DiPrima et al. (1984) 0.46 - - 317 - - 0
oC run series H1 0.5 4120 382 209 0 0 0
run series HIMO3 0.4 4060 377 208 0 0 0
LDC Aidun et al. (1991)11 R~ - 875 - - 0111 -
Ramanan & Homsy (1994) 1.047 - 730 - - 0100 @ -
Ding & Kawahara (1999)  0.849 - 920 - - 0.079 -
Albensoeder et al. (2001)  0.848 - 933 - - 0078 -
Theofilis et al. (2004) 0.849 - 922 - - 0079 -
0oC run series HIMO3 1 5900 452 277 0.010 0.130 0.213
L/D=2 A/D Re Rejiq Reco Stp  Stiua Ste
LDC Albensoeder et al. (2001)  1.182 - 353 - - 0.092 -
Theofilis et al. (2004) 1.102 - 360 - - 0.093 -
0C run series 2M03 1 1300 200 144  0.026 0.169 0.235
run series TK2M0325 1 2000 198 133 0.016 0.160 0.237
run series TK2MO06 1 1990 198 140  0.017 0.166 0.235

continued on next page
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L/D =4 A/D Re Repq Rec Stp Stuqa Stc
LDC Albensoeder et al. (2001) 1.220 - 288 - - 0091 -
Theofilis et al. (2004) 1.257 - 290 - - 0090 -
ocC run series 4M03 1.25 2370 176 118 0.012 0.158 0.236
run series TK4MO03 1.25 960 146 110 0.026 0.172 0.229
BFS Barkley et al. (2002) 6.9 750 - - 0 - -

Table 4.1: Critical conditions of the 3D centrifugal instability for flows over a
backward-facing step (BFS), lid-driven cavity (LDC), Couette and open cavity
(OC) flows for different aspect ratio. For L/D = 1, critical conditions for both
steady and unsteady modes are reported. The Reynolds number and nondimen-
sionalised frequency are defined as U,D/v and fD/U,, where different velocity
scales U, are considered for the cavity flows: the freestream velocity U, the aver-
age velocity U4 along the cavity at y = 0, and the maximum average velocity Uc
along the closed streamlines of the two-dimensional base flow vortex, as defined
in §4.2.3. t Experimental results I Mode frequency estimated by Benson & Aidun
(1992).
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Chapter 5

Nonlinear Three-Dimensional Simulations

To investigate the effect of these instabilities on real flows, full three-dimensional
nonlinear simulations are performed. Both subcritical (run 2M0325-3D) and su-
percritical conditions (runs 2M06-3D and H1Re300-3D) are considered. For the 3D
simulations, the steady (or time-averaged) basic state g(z,y) extracted from the
two-dimensional DNS data is perturbed by small disturbances of spanwise wave-
length A\/D = 2 and A\/D = 1, corresponding to the first two spanwise wavenum-
bers in the 3D simulation. The full NS equations are then numerically solved on a
homogeneous three-dimensional cavity of spanwise extent A/D = 2. As the linear
stability results suggest that the spanwise wavelength of the dominant 3D mode is
in the range 0.4 < A\/D < 1.25, such cavity aspect ratio is expected to be sufficient
to capture all the flow physics.

For the cavity of aspect ratio L/D = 2, the grid contains about seven and
a half million grid points, with (Nz = 120, Ny = 60, Nz = 128) points across
the cavity in the streamwise, depth and spanwise directions, respectively. The
grid size is reduced to about three million grid points, with (Nz = 60, Ny = 60,
Nz = 128) for the cavity of smaller aspect ratio L/D = 1. In each case, the
computational domain extends several cavity depths upstream, downstream, and
above the cavity. For validation purposes, some cases were also performed on a

coarser mesh with different initial conditions, and led to identical results.
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5.1 Swubcritical conditions

5.1.1 3D mode oscillation

The first configuration considered is again the subcritical run 2M0325, for a cavity
of aspect ratio L/D = 2 at low Mach and Reynolds number (M = 0.325, Rep =
1500, L/6y = 53). The two-dimensional simulation shows that the flow is initially
oscillating at a frequency Stp = fD/U = 0.241 close to Rossiter first mode, with
exponentially decaying amplitude, and ultimately converges to a steady state.
This result is confirmed by the stability analysis. By setting 8 = 0 in equation 2.4,
the linear stability of the steady base flow can be investigated for perturbation of
spanwise wavelength A\/D = oo (i.e., two-dimensional perturbations). In that case,
the linear growth/damping rate and frequency of the dominant Rossiter mode are
recovered. For run 2M0325, the mode is damped and the frequency is Stp = 0.240
(see table 5.1).

Figure 5.1 shows a portion of the time-history of the velocity v/U for both
two- and three-dimensional simulations at approximately the same location in the
middle of the cavity. Initially, the three-dimensional flow oscillates at a frequency
corresponding to the 2D Rossiter mode. This frequency and its first harmonic are
evident in the spectrum in figure 5.2. After a transition period, the 2D modes
decay while the 3D mode grows and saturates. The final frequency of oscillation is
Stp = 0.025 corresponding to the frequency of the most unstable three-dimensional

mode from the linear stability analysis (see table 5.1).

5.1.2 Flow structure

The visualisation of the flow structures over half a time-period is presented in fig-
ures 5.3 and 5.16. As the shear-layer oscillations are damped and eventually die
out, the three-dimensional instability associated to the centrifugal mechanism is
the only unsteady feature remaining in the flow: the growth and decay of distur-
bances rotating around the primary vortex can be observed in the cavity, as can the

formation of a cellular pattern similar to the linear stability results. As predicted,
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Run 2M0325 2M06
2D subcritical 2D supercritical
L/D 2 2
Rep 1500 1500
L/6q 52.3 52.3
M 0.325 0.6
Stp  Mode A/D Stp Mode A/D
Rossiter prediction 0.181 1 o0 0.160 I 0
0.422 II 6%) 0372 1I 00
2D DNS 0.241% I 6] 0.204 I 00
3D Linear Stability 0.025 i 1 n.a.
0.240¢ I 00 n.a.
3D DNS 0.025 i1 1 0.026 1 1
0.240% I 00 0.352 1II 00

Table 5.1: Comparison of the dominant mode prediction for 2D and 3D runs
with L/D = 2. Only the most energetic frequencies Stp = fD/U for the cavity
flows are presented, along with the spanwise wavelength A/D of the instability.
The original values from Rossiter (1/k = 1.75, a = 0.25) were used in the semi-
empirical formula.  For subcritical conditions, the Rossiter modes are damped
but the oscillation frequency can still be measured from the early times. The linear

stability results are not available (n.a.) for supercritical conditions.
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Figure 5.2: Spectrum of the normal velocity presented in figure 5.1: 2D run 2M0325

(----); 3D run 2M0325-3D (
harmonics can also be observed
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the spanwise wavelength of the three-dimensional instability is equal to one cavity
depth. Spectral analysis in the spanwise direction shows that the energy spreads
to all the other wavelengths (including harmonics) because of the nonlinear terms
in the NS equations, but A/D = 1 remains the dominant wavelength.

Most of the three-dimensionality is confined to the internal flow inside the cav-
ity, where the velocities remain small (up to 10% and 15% of the freestream value
for the streamwise and normal velocities, respectively). The spanwise velocities
in figure 5.3 correspond to only 1% of the freestream velocity. The instantaneous
maxima of w/U are located near the downstream wall inside the cavity and reach
about 2.5%. Even smaller levels of spanwise velocity are mesured in the shear
layer, which remains mostly two-dimensional and stationary, despite the presence
of the centrifugal instability. The shear-layer spreading rates for run 2M0325 and
2M0325-3D are shown in figure 5.11: both 2D and 3D simulations exhibit iden-
tical linear growth along the whole cavity. The shear layer properties and the

measurement of the spreading rate are discussed in more details in §5.2.3.

5.1.3 Time-averaged flow

Because the three-dimensional mode is oscillating about the mean flow, its contri-
bution cancels out in a time-averaged sense: that is, the time-averaged flow does
not exhibit the spanwise modulation of wavelength A\/D = 1 like the instantaneous
flow field does. Figure 5.4 compares the time-averaged velocity field of the 2D run
2M0325 and 3D run 2M0325-3D (also spanwise-averaged). Here, the 3D results
deviate from the two-dimensional predicted steady state by less than 2% of the
freestream quantities.

In conclusion, the three-dimensional mode predicted by the linear stability
analysis is observed in the nonlinear simulation. Under the present conditions, the
instability remains weak and is mainly active in the recirculating region within the
cavity. The interaction with the shear layer is also weak and mostly limited to a

low-frequency, small-amplitude oscillation.
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Figure 5.3: Visualisation of the spanwise structures in 3D run 2M0325-3D. Six
different times (a-f) are shown, corresponding to approximately one-sixth phase
intervals of a half-period of the 3D instability. The iso-surfaces represent the
spanwise velocity levels w/U = —0.01 and w/U = 0.01. The whole spanwise
extent of the cavity is shown and the wavelength \/D = 1 of the instability can
clearly be observed. The velocity vectors in the streamwise cross-section at z =0

are shown inside the cavity and once in the freestream for comparison.
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Figure 5.4: Time-averaged velocity field for 2D run 2M0325 (color contours) and 3D
run 2M0325-3D ( ---- ). Nineteen equi-spaced contours of the velocity magnitude
between ||u||/U = 0.05 and 0.95 are represented. The spanwise average of the field

is shown for the 3D case.

5.2 Supercritical conditions

Supercritical conditions were obtained from the previous simulations by simply
increasing the Mach number from M = 0.325 to M = 0.6 while keeping the other
parameters constant. In run 2M06, the two-dimensional flow exhibits disturbances
of growing amplitude and eventually saturates into a periodic oscillating flow of
frequency corresponding to the Rossiter mode I. In this case, a time-averaged
steady state ¢ is extracted by averaging the periodic data and the 3D nonlinear

simulation is performed following the same procedure as the subcritical case.

5.2.1 Unsteady flow structure

The flow structure is shown in figure 5.5 for comparison with the subcritical case
2M0325-3D. Both flows exhibit identical three-dimensional features in terms of cel-
lular pattern inside the cavity and oscillation frequency (see §5.2.2). The velocity
field in the cavity is stronger in this case: the maxima of the instantaneous velocity
magnitude are between 15 and 25% of the freestream value for the streamwise and
normal velocities, and up to 10% for the spanwise velocity. This increase leads to
larger iso-surfaces in figure 5.5 compared to figure 5.3, but the dominant spanwise
wavelength is still A\/D = 1. Here, the 3D instability can again be identified with

mode 7.
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Figure 5.5: Visualisation of the spanwise structures for 3D run 2M06-3D. Six differ-
ent times (a-f) are shown, corresponding to approximately one-sixth phase intervals
of a half-period of the 3D instability. The iso-surfaces represent the same spanwise

velocity levels as in figure 5.3 (w/U = —0.01 and 0.01).
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For these supercritical conditions, shear-layer oscillations are also present in the
3D simulations and the interaction between the three-dimensional instabilities and
the shear layer is significant. In the downstream half of the cavity, the spanwise
structures enter the shear layer and impinge on the downstream edge. Part of
the disturbances is swept downstream while the other part goes back into the
recirculating flow inside the cavity. In general, the spanwise wavelength \/D =1
of these structures can still be observed as they are convected downstream of the

cavity.

5.2.2 Oscillation frequencies

The time-history of the streamwise velocity u/U and the pressure P — P, for runs
2M06 and 2M06-3D are compared in figures 5.6 and 5.7. It is interesting to note
that both Rossiter modes I and II are initially unstable in the two-dimensional
simulation, but through a process of nonlinear amplification and saturation, mode
I is selected, while mode II is damped and vanishes. In the three-dimensional
simulation, after some transient exhibiting both Rossiter modes I and II, the self-
sustained oscillations in the flow saturate into a periodic regime where the Rossiter
mode IT and the three-dimensional instability can be observed simultaneously. The
different mode frequencies are reported in table 5.1.

In figure 5.6, it is clear that the shear-layer oscillations exhibit a low-frequency
modulations related to the 3D mode. Similar results are obtained in figure 5.8 for
the spanwise velocity inside the shear-layer at 0.5L and 0.9L from the leading edge.
The interaction between the two modes increases near the downstream wall of the
cavity, where the oscillation amplitude is larger and the centrifugal instability
stronger. The low-frequency peaks are observed in the power spectra in figures
5.9(a) and 5.10, respectively. Apart from harmonics, additional peaks are present
at the frequencies fr; — fi and fr7 + fii, corresponding to nonlinear interactions
between the Rossiter mode IT and the 3D mode #. For the spanwise velocity, these
two frequencies are particularly energetic and the peak at fj; is noticeably absent

in the spectra in figure 5.10. We suspect that there is no peak associated with
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350 400

(a) (b)
Figure 5.6: (a) Time trace of streamwise velocity at (z,y) = (0.5L,0) for 2D run

2M06 ( ---- ) and 3D run 2M06-3D ( —— ) at z = 0.25D; (b) Details of the

signal in the boxes in (a). To show all the data clearly, the bottom and left axes

correspond to the 3D simulation, and the top and right axes to the 2D run.

400
oo
1-0.04
tD/U 700
()
Figure 5.7: (@) Time trace of pressure at (z,y) = (0.9L, 0) for 2D run 2M06 ( ---- )
and 3D run 2M06-3D ( —— ) at z = 0; (b) Details of the signal in the boxes in

(a). To show all the data clearly, the bottom and left axes correspond to the 3D

simulation, and the top and right axes to the 2D run.
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Figure 5.8: (a) Time trace of spanwise velocity at (x,y, z) = (0.9L, 0, 0) for 3D run

| !

2M06-3D, (b) Details of the signal ( —— ) in the box in (a) and of the spanwise
velocity at (z,y,z) = (0.5L,0,0) (——)

the Rossiter mode here because there is no mean spanwise velocity in the time-
averaged flow. This can be contrasted with the results presented in section §5.3
where the peak is observed when a steady 3D mode is present.

For the present conditions, the peak associated with the 3D mode is in general
about the same energy level or higher than the one for the Rossiter mode in the
power spectra of the velocity field components. The low-frequency modulation is
less evident in the time trace of the pressure in figure 5.7 and the Rossiter modes
are significantly more energetic than the 3D mode in the spectra of the pressure
in figure 5.9(b). Here, we argue that the interaction between the Rossiter mode
and the three-dimensional instability is stronger for the velocity field than for the
acoustic field because of the hydrodynamic nature of the 3D mode. Overall, these
results are consistent with the present hypothesis that the 3D modes are related
to the centrifugal instability mechanism.

Since the 2D flow is supercritical, linear results for run 2M06 are not avail-
able for direct comparison with the three-dimensional mode frequency observed
here. However, the low frequency measured here matches the predicted result
from the linear stability analysis of run 2M0325 and the 3D mode frequency from

run 2M0325-3D. There is no contradiction here, since we showed in § 3.2.1 that the
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Figure 5.9: Power Spectra of the periodic data presented in figures 5.6 and 5.7: 2D
run 2M06 ( ---- ); 3D run 2M06-3D ( —— ). The different modes are identified

and their harmonics can also be observed. (a) Streamwise velocity, (b) Pressure
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Figure 5.10: Power Spectra of the spanwise velocity presented in figure 5.8 for 3D

w/U (Power spectrum magnitude)

run 2M06-3D:(a) measurements at (z,y,z) = (0.5L,0,0) ( —— ), (b) measure-
ments at (z,y,z) = (0.9L,0,0) (—— )

Mach number has little influence on the characteristics of the three-dimensional
mode. This result is encouraging, as it tends to indicate that linear results from
subcritical cases (if such stable conditions exist) could deliver useful insight on the

3D stability at higher Mach number for corresponding supercritical conditions.

5.2.3 Shear-layer spreading rate

Another key feature is that the shear-layer oscillation frequency now corresponds to
the Rossiter mode II, rather than mode I as is selected in strictly two-dimensional
simulations. The higher oscillation frequency of the 3D simulation is clearly ob-
served in figure 5.7(b).

To better assess the instability properties of the shear layer, the vorticity thick-
ness 0y(x) = U/(du(z,y)/dy)maez is computed, where u(x,y) is the time (and
spanwise) average of the streamwise velocity. The vorticity thickness and its slope
dd,,/dx are typically used to measure the shear-layer spreading rate. Most re-

searchers report that shear layer over open cavities exhibits approximately linear
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5 /8 10

Figure 5.11: Vorticity thickness §,, along the shear layer nondimensionalised by
the initial vorticity thickness dg, and average slope dd,, /dz ( ---- ); runs H1Re300
() and H1Re300-3D ( o ); runs 2M0325 (= ) and 2M0325-3D ( J ); runs 2M06 ( A )
and 2M06-3D ( A ). For the latter two cases, data for /D > 1 was not considered

in the calculation of dd,, /dz.

growth, much like free shear layers. However, the basic physics of these flows dif-
fers in two main aspects: that is, the shear layer is subject to a strong acoustic
feedback, and the presence of the recirculating vortical flow in the downstream
part of the cavity affects the entrainment and alters the shear-layer thickness.

The comparison of the spreading rates in figure 5.11 highlights these key fea-
tures: for supercritical conditions (such as run 2M06-3D), the shear-layer oscilla-
tions lead to a higher initial spreading rate and a sharp increase around z/dy ~ 6
(i.e., /D =~ 1), which corresponds to the location of the recirculating region and
the region of larger amplitude oscillations. In contrast, for the subcritical run
2M0325-3D with the same initial boundary layer momentum thickness, the spread-
ing rate is approximately linear over the whole cavity and its value is about 25%
lower. Also, the influence of the downstream wall is clearly shown for x/dy > 10
(i.e., /D > 1.85).

In both runs 2M06 and 2M06-3D, the shear layer initially exhibits linear growth

for x/dp < 6, but there is a 15% decrease in the spreading rate between the 2D
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(dd,/dx ~ 0.08) and 3D (dd,/dx ~ 0.07) simulations. These results are of the
same order as the spreading rates measured in experiments (Sarohia, 1975) and
numerical simulations (Rowley et al., 2002b). Sarohia’s measurements are based
on the momentum thickness 6 and can be related to vorticity thickness by d,, =~ 460
(exact equivalence for hyperbolic tangent profiles). As L/ is increased from 52.5
to 105.2, Sarohia (1975) observed that the spreading rate df/dz increased from
0.006 to 0.022, and the cavity oscillation switched from mode I to mode II. Other
experimental (e.g., Gharib & Roshko, 1987) and numerical (e.g., Rowley et al.,
2002b) studies on open cavity flows also report that larger shear-layer spreading
rates are obtained as L/f is increased, and ultimately lead to higher dominant
mode. In the present case, an increase in shear-layer spreading rate does not seem
to be the cause of the higher mode observed in the three-dimensional simulation,

as the opposite trend can be observed in figure 5.11.

5.2.4 Time-averaged flow properties

The shear-layer measurements are consistent with other observations in the flow
field. Here, we argue that the decrease in shear-layer spreading rate is related
to the smaller oscillation amplitude and weaker recirculating region in the three-
dimensional simulations. As shown in figures 5.6 and 5.7, the oscillation amplitude
of the limit cycle slightly decreases between the 2D and 3D simulations. All the
other probes located in the shear layer and inside the cavity exhibit the same trend.

Likewise, a decrease in all the Reynolds stresses is observed, especially in the
shear layer. Figure 5.12 shows upms = \/ﬁ/U, vpMmS = \/ﬁ/U, and w,ms =
Vu'w' /U for the runs 2M06 and 2M06-3D. Here, the superscripts “ ~” and “ ' ”
denote the time averaging and the fluctuating component of the flow variable with
respect to the corresponding time-averaged quantity (i.e., v’ = u—u). The highest
levels of u,.,s are found in the shear layer in the downstream half of the cavity
where the amplitude of oscillation is larger. For v,.,,s, the highest levels are located
near the downstream edge of the cavity because of the impingement process. The

maximum amplitude of the rms velocity components are respectively 0.13 and
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(a) (b)

Figure 5.12: Reynolds stresses Vu'u//U, Vu'v//U and Vw'w'/U (from top to
bottom): (a) 2D run 2M06; (b) 3D run 2M06-3D. Five equi-spaced contours between

0.02 and 0.1 are represented. The spanwise average is shown for the 3D case.
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Figure 5.13: Reynolds stress u/v’/U? for 2D run 2M06 ( ---- ) and 3D run 2M06-3D
(—— ). The actual value can be measured from the corresponding dashed line

at each location, where the major tick on the horizontal top scale represents 0.01.
The other Reynolds stresses u/w’/U? and v/w’/U? (not shown) are about three

orders of magnitude smaller.

0.17 in the streamwise and normal direction for the 2D simulation. These maxima
decrease to 0.1 and 0.12 in the 3D simulation. The quantity w;.,s has smaller
values than the other rms velocities. The maximum amplitude is approximately
0.04 near the downstream wall because of the centrifugal instability mechanism.
Figure 5.13 shows u/v//U? for runs 2M06 and 2M06-3D. Again, it is clear that
the 2D simulation overestimates the amplitude of the shear-layer oscillations. The
mean velocity field inside the cavity is also overestimated: for the three-dimensional
computation, the spanwise-averaged velocity magnitude of the primary vortex is
less than half of the two-dimensional prediction (see figure 5.14). Overall, the
flow variables in the cavity are overestimated by about 5 to 10% of the freestream
quantities. Note that, much like the previous case, the contribution of three-
dimensional mode cancels out in a time-averaged sense and the time-averaged flow

is approximately constant in the spanwise direction.
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Figure 5.14: Time-averaged velocity field for 2D run 2M06 (color contours) and 3D
run 2M06-3D ( ---- ). Nineteen equi-spaced contours of the velocity magnitude
between ||u||/U = 0.05 and 0.95 are represented. The spanwise average of the field

is shown for the 3D case.

The sound pressure levels (SPL) for the acoustic field above and inside the
cavity in runs 2M06 and 2M06-3D are shown in figure 5.15. While the sound di-
rectivity is similar in both cases, with a peak radiation in the far field at about
135° from the downstream direction, the levels are in general lower for the 3D
simulation. A noise reduction of about 5 dB can be observed in the far field,
and up to 12 dB inside the cavity. This result is related to the decrease in oscil-
lation amplitude previously mentioned. It is also in agreement with the general
experimental observation that two-dimensional cavities are slightly louder than
their three-dimensional counterparts. The weakened shear-layer coherence caused
by turbulence is typically viewed as the key point to explain this experimental
trend. A similar argument can be made here, even at lower Reynolds number.
As the three-dimensional centrifugal instability establishes itself inside the cavity,
the shear layer above develops the same spanwise fluctuations. This result can be
seen in the contours of the vorticity magnitude presented in figure 5.17. Spanwise
modulations are present in the shear-layer, starting around x = D. The resulting
reduced spanwise coherence of the vortical structures traveling downstream in the
shear layer affects the receptivity of the cavity trailing edge, which, in turn, re-
duces the acoustic scattering, the leading edge reinforcement of disturbances, and

the overall effectiveness of the feedback process.
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Figure 5.15: Sound pressure levels (SPL): (a) 2D run 2M06; (b) 3D run 2M06-3D.
The spanwise average of the SPL is shown in this case.
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5.2.5 Discussion of the change in oscillation frequency

The change in mode frequency still needs to be addressed. A closer inspection at
the spanwise vorticity w, = dv/dx — du/dy for the two-dimensional simulation
2M06 shows that only one vortex is present at a time in the shear layer across the
cavity in agreement with the predicted Rossiter mode I. In contrast, two vortices
can in general be observed simultaneously in the vorticity contours along the cav-
ity, in any streamwise cross-section of the three-dimensional simulation 2M06-3D.
Looking at the evolution in time of the vorticity in both cases, it appears that
the existence of the additional vortex, and therefore the shift in Rossiter mode, is
caused by the presence of the three-dimensional instability. Disturbances rotat-
ing around the primary vortex in the downstream half of the cavity interact with
the shear layer around x = 0.5L, likely leading to the change in the streamwise
wavelength from A\, /L =1 to A\;/L = 0.5.

In conclusion, both shear-layer oscillations and 3D mode are observed in the
nonlinear simulation for the supercritical conditions of run 2M06-3D. Much like the
previous case 2M0325-3D, spanwise structures of wavelength A\/D = 1 form inside
the cavity and the three-dimensional mode corresponds to mode i predicted by
the linear stability analysis. These features can be clearly seen by comparing
the flow inside the cavity in figures 5.16 and 5.17. Overall, the 2D simulation
overestimates the amplitude of the shear-layer oscillations and of the flow field
inside the cavity. Also, the shear-layer oscillations switch from Rossiter mode 1
(in the 2D simulations) to mode II, and experience a low-frequency modulation
caused by the presence of the 3D mode. The results suggest that the interactions
between the 2D and 3D modes seem to lead to the selection of that particular
Rossiter frequency. Such observation could potentially be used to shed some light

on the physics of mode selection in self-sustained oscillations.



74

Figure 5.16: Vorticity field for 3D run 2M0325-3D. Six different times (a-f) are
shown, corresponding to approximately one-sixth phase intervals of a half-period
of the 3D instability (same times as in figure 5.3). Five equi-spaced translucent

iso-surfaces of the vorticity magnitude are represented for ||w||D/U =1 to 5.
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Figure 5.17: Vorticity field for 3D run 2M06-3D. Six different times (a-f) are shown,
corresponding to approximately one-sixth phase intervals of a half-period of the 3D
instability (same times as in figure 5.5). Five equi-spaced translucent iso-surfaces

of the vorticity magnitude are represented for ||w||D/U =1 to 5.
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5.3 Multiple three-dimensional modes

As mentioned in §3.2.1, the linear stability the cavity of aspect ratio L/D =1 is
different: that is, the critical conditions correspond to the steady mode ¢ of smaller
spanwise wavelength (A/D = 0.5). While the unstable oscillatory mode i is still
present at higher Reynolds numbers, it is less amplified than the steady mode for
the conditions considered (see figure 3.12). From the linear analysis results, it is
not possible to determine which mode (or modes) will be amplified in a real flow.

To investigate this question, we consider the run H1Re300 for a cavity of aspect
ratio L/D =1 (M = 0.6, Rep = 6960, L/0y = 23.2). This case corresponds
again to supercritical conditions, as the two-dimensional flow oscillates in Rossiter
mode I. The 3D nonlinear simulation H1Re300-3D is then performed. According
to the linear stability results in table 4.1, both mode ¢ and 4 should be unstable,

as Rep = 6960 is higher than their respective critical Reynolds number.

5.3.1 Oscillation frequencies

Figure 5.18 shows the time-history of the streamwise velocity u/U for runs H1Re300
and H1Re300-3D. Unlike the previous supercritical conditions in §5.2, there is
no change in the shear-layer oscillation mode: the frequency is Stp ~ 0.31 in
both cases, corresponding to Rossiter mode I. A low-frequency modulation is also
observed and measured in the power spectrum of the 3D simulation, presented in
figure 5.19. This low frequency Stp = 0.008 matches the linear stability prediction
for mode i (see table 5.2).

The same features are observed in figure 5.20 for the spanwise velocity at 0.5L
and 0.9L from the leading edge. In the power spectra in figure 5.21, peaks at the
frequencies f;r — fi; and fr + fi corresponding to nonlinear interactions between
the Rossiter mode I and the 3D mode i can be identified. Here, it is interesting
to note that these frequencies are less energetic than in the previous supercritical
case presented in §5.2.2 and that the peak associated with the Rossiter mode I is

also present. These results are further discussed in §5.3.3.
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Figure 5.18: (a) Time trace of streamwise velocity at (x,y) = (0.5L,0) for 2D run
H1Re300 ( ---- ) and 3D run H1Re300-3D ( —— ) at z = 0; (b) Details of the
signal in the boxes in (a). To show all the data clearly, the bottom and left axes

correspond to the 3D simulation, and the top and right axes to the 2D run.
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Figure 5.19: Power spectra of the streamwise velocity presented in figure 5.18; 2D
run H1Re300 ( ---- ): 3D run HI1RE300-3D ( —— ). The different modes are

identified and their harmonics can also be observed
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Run H1MO3Re300 H1Re300
2D subcritical 2D supercritical
L/D 1 1
Rep 6960 6960
L/6y 23.2 23.2
M 0.3 0.6
Stp  Mode M/D Stp  Mode A\/D
Rossiter prediction 0.366 I o0 0.319 I o0
0.854 IT 00 0.745 II 00
2D DNS 0.357F I 00 0.310 I 00
3D Linear Stability 0 1 0.4 n.a.
0.007 i 1 n.a.
0.361% I 00 n.a.
3D DNS not computed 0 i 0.4

0.008 1 0.4
0.307 I 00

Table 5.2: Comparison of the dominant mode prediction for 2D and 3D runs
with L/D = 1. } For subcritical conditions, the Rossiter modes are damped but
the oscillation frequency can still be measured from the early times. The linear

stability results are not available (n.a.) for supercritical conditions.
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Figure 5.20: (a) Time trace of spanwise velocity at (x,y,z) = (0.9L,0,0) for 3D
run H1Re300-3D; (b) Details of the signal ( —— ) in the box in (@) and of the
spanwise velocity at (z,y,z) = (0.5L,0,0) ( ——)
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Figure 5.21: Power spectra of the spanwise velocity presented in figure 5.20 for 3D

run H1Re300-3D:(a) measurements at (z,y,z) = (0.5L,0,0) ( —-—); (b) measure-

ments at (z,y,z) = (0.9L,0,0) (—— )
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5.3.2 Evidence of the steady three-dimensional mode

The formation of spanwise structures is again observed inside the cavity, with span-
wise wavelength \/D = 0.4. Spectral analysis in the spanwise direction confirms
this particular wavelength.

In figure 5.22, it is clear that two different instabilities can be identified: first,
a steady instability leading to the formation of stationary cellular pattern near the
upstream and bottom walls; and on top of it, an unsteady instability leading to
the growth and decay of disturbances rotating inside the primary vortex. Here,
because of the similarity in spanwise wavelength, we identified the steady mode
with mode 7 from the linear analysis results. As for the unsteady mode, in addition
to its matching frequency, it is also visually similar to mode % from run 2M0325-3D
in figure 5.3, but its wavelength is 0.4 rather than the anticipated A\/D = 1.

As our linear analysis only captures the leading eigenvalue at a given spanwise
wavelength, it is possible that mode 4 does have a positive linear growth rate at
A/D = 0.4 that is not measured because the growth rate of mode i is larger. Under

the present conditions, we suspect that both mode ¢ and 47 are selected.

5.3.3 Time-averaged flow

As a result of the presence of the steady mode, the time-averaged flow exhibits the
same spanwise modulation of wavelength 0.4. This result can be clearly observed
in the time-averaged velocity and vorticity fields presented in figure 5.23. The
velocity magnitude inside the cavity remains small and its spanwise average is
comparable to the result of the 2D simulation (less than 1% difference).

We can now interpret the peak at f; in the spectra of the spanwise velocity
in figure 5.21 as f;r — f;, corresponding to the nonlinear interactions between the
Rossiter mode I and the 3D steady mode i of frequency f; = 0. This frequency is
also more energetic than the frequencies f; — fi;; and fr + fi; associated with the
3D steady mode i. This observation tends to confirm the linear stability results

that mode ¢, rather than mode i, is the dominant mode at these conditions.
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Figure 5.22: Visualisation of the spanwise structures in 3D run H1Re300-3D. Six
different times (a-f) are shown, corresponding to approximately one-sixth phase
intervals of a period of the 3D instability. The iso-surfaces represent the spanwise
velocity levels w/U = —0.005 and w/U = 0.005. The whole spanwise extent of
the cavity is shown and the wavelength A/D = 0.4 of the instability is clear. The
upstream parts of the cavity walls has been removed to show the data clearly.
The velocity vectors in the streamwise cross-section at z = 0 are shown inside the

cavity and once in the freestream for comparison
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Figure 5.23: Time-averaged flow field for run H1Re300-3D:(a) Iso-surfaces of the
spanwise velocity w/U = —0.005 and w/U = 0.005; (b) Four equi-spaced translu-
cent iso-surfaces of velocity magnitude between ||u||/U = 0.025 and 0.1 inside the

cavity, and five between ||u||/U = 0.1 and 0.9 above the cavity

Overall, the amplification caused by the steady mode is weak but we suspect
that it accounts for the small increase in amplitude of shear-layer oscillations, as

seen in figure 5.18.

In conclusion, for the supercritical conditions of run H1Re300-3D, the non-
linear 3D simulation shows again the coexistence of shear-layer oscillations and
three-dimensional instabilities. In this case, both oscillatory and non-oscillatory
3D modes are present in the flow. This steady mode is consistent with mode 7 iden-
tified in our linear stability analysis, and is reminiscent of instabilities reported in
square lid-driven cavity flows and discussed in §4.2.2. The unsteady 3D mode cor-
responds again to mode 4 but its spanwise wavelength is \/D = 0.4, the dominant
wavelength for the steady mode, rather than 1 as previously observed. Also, the
presence of the 3D steady mode causes a spanwise modulation of the time-averaged
flow of the same wavelength 0.4, and an increase in oscillations amplitude. These

features are not captured by the 2D simulation.
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Chapter 6

Connection with Previous Experimental and

Numerical Results

6.1 General remarks on cavity flow experiments

Measurements of the three-dimensional mode in cavity flow experiments face sev-
eral challenges. The first difficulty arises from the influence of the side walls and
end effects inherent to any experimental configuration. Ahuja & Mendoza (1995)
conducted an extensive set of cavity experiments and suggested that the parame-
ter L/W, the cavity length to width ratio, provided a transition between two- and
three-dimensional flow. For L/W < 1 they classified the cavity as two-dimensional,
as the flow was found to be uniform over much of the span with a coherent shear
layer spanning most of the cavity width, and for L /W > 1 as three-dimensional.
However, their classification was based on the observation of three-dimensionality
in the mean flow for L/W > 1, most likely caused by end-effects and significant
spillage of flow over the sides into the cavity, and therefore not related to the
three-dimensional instability we identify.

Additionally, the presence of so-called “wall jet” and “sidewall-induced three-
dimensional vortices” has also been reported in backward-facing step flows in both
experimental (e.g., Armaly et al., 1983) and numerical studies (e.g., Williams &
Baker, 1997). While these flow structures are generated by the three-dimensional

nature of the experimental setup and are not representative of any global instability
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of the two-dimensional base flow, their effect was shown to stretch up to several
step heights in the spanwise direction away from the sidewalls. In their most
recent work on lid-driven cavities, Albensoeder & Kuhlmann (2006) established
the extent of the sidewall effect both numerically and experimentally. For a square
lid-driven cavity of spanwise aspect ratio 6.55, they showed that the presence of
the sidewall suppressed the three-dimensional instability except for a symmetric
region of span approximately 2 at the center of the cavity.

For wider cavities, experimental evidence of three-dimensionality have been ob-
served by several researchers. In water channel experiments, Rockwell & Knisely
(1980) identified a spanwise wavy structure emerging in the shear layer near the
cavity trailing edge. A hydrogen bubble technique was used to visualise the span-
wise structure in the cavity, shown in figure 6.1. Under the experiment conditions,
they observed self-sustained oscillations in the streamwise direction (corresponding
to Rossiter modes) as well as “severe but relatively ordered spanwise distortion,”
which makes this case a typical supercritical condition as discussed in §5.2. They
associated the three-dimensional structure with the “large-scale recirculation vor-
tex between the free shear layer and the walls of the cavity.” Precise values of
the spanwise wavelengths are not reported. This experiment is discussed in more
detail in appendix C.

In another water channel experiment, Ward (1973) investigated the inception of
cavitation in a rectangular cavity as a function of the aspect ratio L/D. Cavitation
can occur when the local pressure is less than the saturation pressure of the liquid,
which leads to the formation of vapor bubbles in the flow. Under certain conditions,
three-dimensional flows were observed within the cavity, as shown in figure 6.2.
For a cavity of aspect ratio 1.27, a steady periodic wave form develops inside the
cavity, and is sketched in figure 6.3 as type II. In this case, three and a half periods
are present in the experiment, which corresponds to a spanwise wavelengths of
A/D =~ 2.9. This value is larger than our typical results of 0.4 < A/D < 1.
also, the side-view of the cavitation shows “an oval shape” that does not appear

to be strongly related with the recirculating vortical flow near the downstream
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Figure 6.1: Experimental visualisation of the spanwise structures. This corre-
sponds to figure 8 in the article by Rockwell & Knisely (1980), “Sequence showing
evolution of cells in sheet of timelines caused by longitudinal vortices.” Reprinted

with permission from D. Rockwell and C. Knisely, Observations of the three-

dimensional nature of unstable flow past a cavity, 23(3) 425-431 1980. Copyright
1980, American Institute of Physics.
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corner of the cavity. A different instability, referred as type III in figure 6.3,
is observed when the aspect ratio is decreased to L/D =~ 1. In this case, the
cavitation is centered inside the primary vortex. This location corresponds to
the zone of minimum pressure in our simulations, where cavitation could occur.
From the bottom picture in figure 6.2, we estimated the number of periods in the
experiment to 12, which leads to spanwise wavelengths of \/D ~ 0.6, similar to
our results for the L/D =1 cavity.

Likewise, the high Reynolds number wind tunnel experiments by Maull &
East (1963) show, under certain conditions, regular “cells” across the span of the
internal cavity flow at low Mach numbers. They did not report any Rossiter mode
oscillation, so their results could be considered representative of the subcritical
conditions discussed in §5.1. For their cavity of aspect ratio L/D = 2, the cells
are found to be steady in time and have a larger wavelength of about 4D, compared
to our oscillating structure of wavelength D. Their conclusions are drawn from
oil flow visualisations of surface streamlines at the bottom of the cavity and the
spanwise static pressure distribution measurements.

While there is qualitative agreement with our findings, the results from these
early experiments highlight some of the additional challenges related to the mea-
surement of the three-dimensional instability. That is, the three-dimensional mode
is in general weaker than the Rossiter mode and mainly active within the cavity,
while most measurements focus on the shear layer. Also, the unsteady three-
dimensional mode can be difficult to capture in the mean measurements because

of its oscillatory nature about the mean flow.

6.2 Interpretation of low-frequency modulation in ex-
periments
One characteristic feature of the unsteady three-dimensional mode that has ac-

tually been measured in experiment is its oscillation frequency. As previously

discussed, this frequency is about an order of magnitude lower than the typical
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Figure 6.2: Visualisation of the slot cavitation. This corresponds to figure 1 in the
article by Ward (1973), “Slot cavitation.” Here, d/b = D/L and orjs is the mean

value of the incipient cavitation index.
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Figure 6.3: Schematic of the different flow types in the slot cavitation experiment.
This corresponds to figure 4 in the article by Ward (1973), “Flow types. Flow

direction right to left.”

Rossiter mode frequencies. As a result, the low-frequency components in the spec-
trum of oscillating flows are often not measured because of lack of resolution, and
when they are, we believe these frequencies tend to be overlooked or misinter-
preted as caused by the experimental setup (such as fan noise, etc.). Based on our
results, we present here a different interpretation of the low-frequency modulation

observed in experiments: namely, that it is caused by the centrifugal instability.

6.2.1 Water channel experiments

Neary & Stephanoff (1987) performed a set of water channel experiments for a
three-dimensional cavity of aspect ratios L/D = 3.5 and W/D = 21, with laminar
incoming boundary layer (L/6y =~ 80). These conditions are comparable to our run
series TK4MO03. Indeed, the visualisation (in their figure 3) of the steady base flow
for subcritical conditions at Reynolds number Rep = 908 shows striking resem-
blances with our results in figure 4.1(¢) obtained at Rep = 980 and L/6y = 60.
Under certain flow regime, their experimental results showed the presence of a
transverse wave on the primary vortex of the cavity prior to the development of

a fully turbulent state. As the Reynolds number is increased, stronger interac-



89

tions between the shear layer and primary vortex are observed, with rapid growth
and decay of the pressure oscillations. This feature indicates a Reynolds number
dependence of the three-dimensional mode similar to our linear results.
Confirmation of the low frequency of the three-dimensional oscillation we ob-
tain is also suggested by their observations. In their work, they identify a primary
frequency f; that corresponds to the (Rossiter) shear-layer structures and a sec-
ondary frequency fs that they associate with the three-dimensional waviness. The
frequency fs is close to f1, but a reexamination of time-histories of pressure actu-
ally show long-period modulation of the frequency fi. Thus it would appear to us
that the f5 frequency is really just an interaction between a low frequency fs3p and
the primary frequency fi. From the reported frequencies values for their so-called
“regime II,” the frequency fsp =~ fi — fo was estimated to fspD/U = 0.023. The
value obtained here at Rep = 2560 is in excellent agreement with the frequency
Stp = 0.026 of the three-dimensional instability identified in the linear analysis of

run TK4MO3Re65.

6.2.2 Moderate Mach number experiments

More recently, Cattafesta III et al. (1998) and Kegerise et al. (2004) investigated
the presence of multiple distinct peaks in the pressure spectrum of oscillating
cavity flows, in particular at low frequency. They performed an extensive set of
experimental measurements for two cavity configurations: L/D = 2, M = 0.4
and L/D = 4, M = 0.6. The other parameters were fixed at L/W = 3, Rey, =
1.5 10%, and the incoming boundary layer was turbulent with L /0y =~ 275 (private
communication with the authors). For both conditions, their detailed frequency
analysis of the unsteady pressure signals inside the cavity showed the presence of
multiple Rossiter modes, in good agreement with expected frequencies.

More importantly, they reported that the Rossiter modes experienced low-
frequency amplitude modulation. While they were able to interpret other peaks
in the spectrum as quadratic nonlinear interactions between Rossiter modes, they

concluded that these interactions were not the cause of the low-frequency compo-
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nent, as they showed that the low-frequency mode was not significantly coupled
with the Rossiter modes. Based on their conclusions and our results, we argue
here that the low-frequency mode observed in their experiment corresponds to the
three-dimensional centrifugal instability identified in our work. The reported fre-
quency for the cavity L/D = 2 at M = 0.4 is fsp ~ 20Hz, or fspD/U ~ 0.011.
Keeping in mind that an increase in Reynolds number was shown to cause mod-
erate decrease of the three-dimensional mode frequency, and that the boundary
layer properties had little effect on the mode features, this result compares well
with the range of frequencies 0.015 < Stp < 0.026 obtained for cavities with the

same aspect ratio at M = 0.325.

6.3 Visual evidence of the three-dimensional mode

While these comparisons are encouraging, the most convincing experimental evi-
dence of the three-dimensional centrifugal instability we identified in our simula-
tions is the recently published work from Faure et al. (2007). Independently and
simultaneous with our numerical studies, they performed low speed experiments
for open cavities of aspect ratio L/D = 0.5 to 2 at medium range Reynolds num-
bers, with laminar incoming boundary layers (D /6 = 35, approximately constant,
according to a private communication with the authors). Smoke is used for flow
visualisations. The cases with cavities of aspect ratio 1 and 2 are of particular
interest since their experiment conditions (apart from the Mach number) match
the range of parameters in our study with (fortuitously) striking accuracy.

For L/D =1 (R = 1 in their notation), they report weak shear-layer oscillations
and a single vortex filling the whole cavity (figure 6.4). As the Reynolds number
is increased (through an increase of the external velocity U.), they observe the
formation of “mushroom-like counter-rotating cells” near the upstream wall and
symmetrically at the downstream wall. Their visualisation of the flow (presented in
figure 6.5), at a horizontal cross-section inside the cavity clearly shows a periodic

spanwise pattern similar to our results. The inner spanwise flow caused by the
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sidewalls is also detected, but the cavity span to depth ratio W/D = 6 is large
enough that the central section of the experiment exhibits periodic structures away
from the sides.

They report that these structures were not stationary and could not be iden-
tified for an external velocity below a certain critical value corresponding to Re =
4030. This result matches the critical conditions Re = 4060 we estimated for
cavities with L/D = 1 at low Mach number (see table 4.1). Additionally, for an
external velocity U, = 2.09 m/s (Re = 6960 matching exactly the Reynolds num-
ber used in our simulations), their measure of the distance between two pairs of
structures gives a spanwise wavelength A = 0.022 m or A/D = 0.44, again match-
ing our conclusions from the linear analysis (A\/D = 0.4 for run H1MO3Re300) and
the full three-dimensional simulation (A/D = 0.4 for run H1Re300-3D). The exper-
imental flow field at these conditions is not shown, but good qualitative agreement
is obtained between our 3D numerical results in figure 6.6 and their visualisations
at lower Reynolds number in figure 6.5.

Similar results are reported for the L/D = 2 cavity, but the structures are very
unsteady in that case and the wavelength was not measured. The visualisation of a
cross-section of the flow suggests a larger wavelength than for the previous case, as
fewer structures are present. These observations are consistent with our findings
that only an oscillatory three-dimensional mode is present for longer cavity. Cou-
pled with larger oscillations of the shear layer, the mode is more difficult to capture
accurately. In contrast, the weaker shear-layer oscillation and the presence of both
steady and oscillatory modes in smaller cavities lead to a clearer visualisation of
the instability.

As for the instability mechanism, Faure et al. (2007) did relate the three-
dimensional structures to the primary vortex inside the cavity, and interpreted
them in terms of Gortler vortices. Gortler problem is a classical example of cen-
trifugal instability (e.g., Drazin & Reid, 1981), and is typically studied for the
onset of instability in boundary layers along a concave wall. While the two mecha-

nisms are related, we argue here that the origin of three-dimensional modes is the
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Figure 6.4: Experimental visualisation of the primary vortex for the L/D = 1
cavity. This corresponds to figure 10 in the article by Faure et al. (2007), “Visu-
alization in two parallel vertical planes (left z = 0, right: z = 30mm) for the same
time and R = 1. a) U, = 0.69 m/s (Re = 2300); a) U, = 1.21 m/s (Re = 4030);
a) Ue = 1.60 m/s (Re = 5330).” Reproduced with the authors’ permission.
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flow direction

Figure 6.5: Experimental visualisation of the spanwise structures for the L/D = 1
cavity. This corresponds to figure 11 in the article by Faure et al. (2007), “Visu-
alization in a horizontal plane for R = 1 and y = —15 mm. a) U, = 0.69 m/s
(Re = 2300); a) U, = 1.21 m/s (Re = 4030); a) U, = 1.60 m/s (Re = 5330).”
Reproduced with the authors’ permission. The white lines are the vertical visual-

isation planes in figure 6.4.
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Figure 6.6: Visualisation of the spanwise structures of run H1Re300-3D in the
cross section y/D = —0.6 for comparison with figure 11 by Faure et al. (2007).
The gray shadings represent equally spaced contours of the velocity magnitude

between ||u||/U = 0.005 and 0.06. The in-plane velocity vectors are also shown.

generic centrifugal instability connected with the recirculating vortical flow inside

the cavity, rather than instabilities in the boundary layers on the cavity walls.

6.4 Connection with previous numerical simulations

Evidence of the three-dimensional centrifugal instability is also found in recent
numerical work by Podvin et al. (2006) and Chang et al. (2006) for incompressible
flows over open cavities. Similar to our work, both studies focused on a cavity
of aspect ratio L/D = 2 with laminar incoming boundary layer and periodic
conditions in the spanwise direction. In both cases, the formation of spanwise

structures and the low-frequency modulation are reported.

6.4.1 Large eddy simulations

Chang et al. (2006) performed Large Eddy Simulations (LES) at Rep = 3360, with
L/6y = 69.5. Under these conditions, they reported that the shear layer oscillates

with frequency Stp = 0.51, corresponding to the second mode, and that “very
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low-frequency modulations are clearly observed” in time history of the velocity.
From the time series in their figure 6, we estimated the modulation frequency
to Stp = fD/U ~ 0.025 — 0.03. These values are similar to the results in our
compressible simulations at M = 0.6 with comparable conditions (i.e., run 2M06-3D
at Rep = 1500, with L/6y = 52.8): that is, a Rossiter mode II of frequency
0.35 (compressibility effects account for the decrease in frequency) and a three-
dimensional mode of frequency 0.026. They also observed a small peak associated
with these low-frequency oscillations in the power spectra (in their figure 7) for
approximately the same Strouhal numbers. The measurements are made for the
vertical velocity in the shear layer near the downstream corner, which could account
for the relatively low energy levels of the mode compared to the fundamental shear-
layer mode. While they suspected these features were “a consequence of the shear
layer interaction with the trailing-edge and with the recirculating motions inside
the cavity,” we identify the centrifugal instability mechanism as the cause of the
low-frequency modulation.

Spanwise coherent structures, referred as “spanwise vortices,” are also observed
in their work, but values of the spanwise wavelength are not reported. Based on the
visualisation of these structures in their figure 8(b), (¢), and (d), approximately
six pairs of these spanwise vortices can be accounted for along the cavity span,
which is W/D = 6 in their case. Therefore, the estimated spanwise wavelength of

the instability is A/D =~ 1 and agrees with our results.

6.4.2 Proper orthogonal decomposition results

Podvin et al. (2006) investigated a cavity of width to depth ratio W/D = 4 at
Rep = 4000, with L/6y ~ 75, using proper orthogonal decomposition (POD).
They related the first two most energetic POD modes to the shear-layer instabili-
ties, and the next three modes (significantly less energetic) to “fluctuating vortex
motions inside the cavity.” The visualisation of these latter modes in their fig-
ure 4 shows strong similarity with the three-dimensional eigenmode in figure 3.14.

They reported that all five modes exhibit a spanwise fluctuation of wavelength
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A/D = 1.4, which is comparable to our results. They suggested this particu-
lar wavelength corresponds to a secondary instability of the shear layer. Here,
we again interpret the wavelength selection in terms of the centrifugal instability
mechanism.

The oscillation frequency for the first two shear-layer modes was measured at
13.5 Hz, which corresponds to a second mode with fD/U = 0.56. The higher-
order modes have an identical low oscillation frequency, and the precise value is
not reported. From the time spectra in their figure 8, we estimated the frequency
to 0.5 Hz or fD/U = 0.021, again in agreement with the three-dimensional mode

frequency.
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Chapter 7

Concluding Remarks

7.1 Summary

Two- and three-dimensional global instabilities of compressible flow over open cav-
ities were studied using Direct Numerical Simulations (DNS). We consider cavities
that are homogeneous in the spanwise direction (corresponding to cavities that
are wide compared to their depth or length) at subsonic Mach numbers. A DNS
code was developed to solve the full compressible linear or nonlinear Navier—Stokes
equations for both 2D and 3D flows.

First, the onset of self-sustained oscillations is characterized for two-dimensional
cavities over a large portion of the parameter space (varying Reynolds number,
Mach number, cavity aspect ratio, and incident shear-layer thickness). These in-
stabilities, commonly referred to as shear-layer modes, correspond to the typical
flow /acoustic feedback mechanism originally described by Rossiter (1964). For 2D
stable flows, a linear stability analysis was conducted and identified for the first
time, three-dimensional instabilities taking the form of disturbances growing in
the recirculating vortical flow within the cavity. It should be noted that these
instabilities would not be accessible to classical linear stability theory of parallel
flows.

For cavities of aspect ratio L/D = 2 and 4, the three-dimensional instability

has a spanwise wavelength scaling with D, the cavity depth, and a frequency
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of oscillation about an order of magnitude smaller than typical two-dimensional
shear-layer (Rossiter) oscillations. We showed that the three-dimensional mode
frequency is related to the time for disturbances to advect around the recirculating
region.

A steady mode of smaller spanwise wavelength 0.4D was also identified for
a shorter cavity with L/D = 1. We argued that the specific properties of the
three-dimensional mode for the square cavity are related to the primary vortex
that occupies the whole cavity in that particular configuration.

The mode properties are, by and large, unaffected by Mach number over a
subsonic range up to 0.6. It is not expected that they would be significantly altered
by compressibility even for cavities with much larger M, since the instability is
active within the cavity where the flow speed is much lower than the freestream
value. In contrast, the influence of the Reynolds number is significant, as the
growth rate of the three-dimensional mode increases with Re. Critical conditions
for the onset of the three-dimensional instability were estimated.

Rayleigh’s circulation criterion was computed for the two-dimensional steady
base flow and showed that, in the inviscid limit, the flow will develop a three-
dimensional centrifugal instability in the primary vortex inside the cavity. There-
fore, we argued that the main mechanism behind these global three-dimensional
instabilities is the generic centrifugal instability associated with the closed stream-
lines in the recirculating vortical flow near the downstream cavity wall. Such vor-
tices are ubiquitous in both the low Reynolds number flows considered here and
also (in a time-averaged sense) at much higher Reynolds numbers. The centrifugal
instability is similar to the one previously identified in flows over a backward-
facing step, lid-driven cavity, and Couette flows. Inspired by the specific features
of these flows, different scalings for the properties of the centrifugal instabilities
are considered. The results show reasonable agreement of the rescaled data.

Direct numerical simulations of the full Navier—Stokes equations were per-
formed and confirmed the three-dimensional features of the flow. Oscillating (and,

for the square cavity, steady) cellular patterns formed in the recirculating zone
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inside the cavity. These observations were in agreement with the results of linear
stability analysis, both in terms of spanwise structure and oscillation frequency.
Comparison with recent experiments by Faure et al. (2007) at low Reynolds num-
ber also confirmed our findings.

For supercritical conditions, the (Rossiter) shear-layer oscillations exhibit a
low-frequency modulation due to the presence of the three-dimensional instability.
Similar modulation and low-frequency components in the spectrum of oscillating
cavity flows are reported in both incompressible and compressible experiments.
Evidence of that low frequency was also found in previous numerical studies. We

argue that these observations are related to the centrifugal instability we identified.

7.2 Potential applications for flow control

As different distinctive properties of the three-dimensional centrifugal instability
have been observed in both high Reynolds number flows and experiments with
subsonic speed up to M = 0.6, we conclude that three-dimensional modes are
likely to exist in open cavity flows for practical applications and be relevant in the
area of cavity control.

Currently, there are two different approaches being advocated for control of
cavity oscillations. The first (e.g., Stanek, 2005) attempts to reduce broadband
noise in cavity oscillations in an open-loop way by forcing the flow near the cavity
leading edge at relatively high frequency. If there are three-dimensional instabilities
in the flow, then information about the wavelength and growth rates of these
structures could be used (with appropriate scaling arguments) to suggest optimal
spanwise variation of actuator inputs in order to excite the instabilities or suppress
them.

The second area of application to cavity control is in the suppression of tones.
Here the basic 2D instabilities are the target for tonal noise reduction via closed-
loop control. Three-dimensional instabilities are, however, relevant, since they

could represent a limiting factor in the efficacy of such control effects. In addition,
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sensors are sometimes placed within cavities and thus knowledge of additional

large-scale unsteadiness will help guide sensor placement and data processing.
Thus it appears that there may be an untapped potential to inherently three-

dimensional effects in cavity flows. It is our hope that the results presented here

will help future work on control to exploit these effects.
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Appendix A

Simulation Parameters

The flow parameters and stability results of the different 2D and 3D linear simu-
lations are presented in tables A.1, A.2, A.3, A.4 and A.5.

For supercritical conditions (i.e., shear-layer mode), the oscillation frequency
Str, = fL/U of the dominant mode is reported. Recall that the linear stability
results are not available for such conditions.

For the three-dimensional centrifugal instability, the spanwise wavelength \/D
and the oscillation frequency Stp = wD/27wU of the mode with the largest linear

growth rate are reported.
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Run Parameter Stability
nonlinear linear
L/D M L/0y Rey Rep 2D St 3D M\/D Stp
H1MO3Re150 1 03 23.2 150 3480 NO NO
H1MO3Re300 1 0.3 23.2 300 6960 NO CI 04 O

H1MO4Re300 1 04 23.2 300 6960 NO -
H1MO4Re450 1 04 23.2 450 10440 NO -

H1MO5Re300 1 0.5 23.2 300 6960 NO -
H1MO5Re450 1 0.5 23.2 450 10440 SL 0.330

H1 1 0.6 23.2 86.3 2000 NO NO
H1Re110 1 0.6 23.2 110 2550 NO NO
H1Re140 1 0.6 23.2 140 3250 NO NO
H1Re200 1 0.6 23.2 200 4640 NO CI 05 0
H1Re300 1 0.6 23.2 300 6960 SL 0.310

Table A.1: Parameters and stability for the run series H1. Abbreviations for sta-
bility are: NO = No Oscillations, SL. = Shear-Layer mode, CI = three-dimensional

Centrifugal Instability, — = not computed.
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Run Parameter Stability
nonlinear linear
L/D M L/8y Rey Rep 2D St 3D A/D Stp
2M01 2 0.1 528 56.8 1500 NO CI 1 0.025
2MO01Re80 2 0.1 528 80 2110 NO CI 1 0.023
2MO3Re35 2 03 528 35 925 NO NO
2M03 2 0.3 52.8 56.8 1500 NO CI 1 0.025
2MO3Re65 2 03 528 65 1715 NO CI 1 0.025
2M03Re80 2 0.3 528 80 2110 SL 0.799

2M0325 2 0.325 52.8 56.8 1500 NO CI 1 0.025

2M033Re60 2 0.33 52.8 60 1585 NO -

2M035 2 035 52.8 56.8 1500 NO CI 1 0.026
2M035Re60 2 0.35 52.8 60 1585 SL 0.475

2M0365 2 0.365 52.8 56.8 1500 SL 0.470
2M038Re50 2 038 528 50 1320 NO CI 1 0.025
2M04Re50 2 0.4 52.8 50 1320 SL 0.457
2M04 2 0.4 52.8 56.8 1500 SL 0.462

2M045Re50 2 0.45 52.8 50 1320 SL 0.438

2MO5Re35 2 0.5 528 35 925 SL 0.426
2M06 2 0.6 52.8 56.8 1500 SL 0.407
2M06-KT 2 0.6 80 37.5 1500 SL 0.723

Table A.2: Parameters and stability for the run series 2M. Abbreviations for stabil-
ity are: NO = No Oscillations, SL. = Shear-Layer mode, CI = three-dimensional
Centrifugal Instability, — = not computed {These particular flow parameters match
the conditions of the experiment by Krishnamurty (1956), apart from the Reynolds

number. The simulation is performed for validation purposes.
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Run Parameter Stability
nonlinear linear
L/D M L/6y Rey Rep 2D St;p 3D A/D Stp
TK2M0325 2 0.325 30.1 56.8 855 NO NO
TK2M0325Re80 2 0.325 30.1 80 1205 NO NO
TK2M0325Re 100 2 0.325 30.1 100 1505 NO NO
TK2M0325Re 140 2 0.325 30.1 140 2110 NO CI 1 0.015
TK2M0325Re200 2 0.325 30.1 200 3010 NO -
TK2M0325Re400 2 0.325 30.1 400 6025 NO -
TK2M04Re300 2 04 30.1 300 4520 NO -
TK2M04Re400 2 0.4 30.1 400 6025 SL 0.402
TK2MO5Re200 2 0.5 30.1 200 3010 NO -
TK2MO5Re300 2 0.5 30.1 300 4520 SL 0.383
TK2MO5Re400 2 0.5 30.1 400 6025 SL 0.379
TK2M06 2 0.6 30.1 56.8 855 NO NO
TK2MO6Re80 2 0.6 30.1 80 1205 NO NO
TK2MO6Re140 2 0.6 30.1 140 2110 NO CI 1 0.016
TK2MO06Re200 2 0.6 30.1 200 3010 NO -
TK2MO6Re300 2 0.6 30.1 300 4520 SL 0.362
TK2MO6Re400 2 0.6 30.1 400 6025 SL 0.366

Table A.3: Parameters and stability for the run series TK2. Abbreviations for sta-
bility are: NO = No Oscillations, SL = Shear-Layer mode, CI = three-dimensional
Centrifugal Instability, — = not computed.
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Run Parameter Stability
nonlinear linear

L/D M L/6y Rey Rep 2D St 3D A/D Stp

TK4MO03 4 0.3 60.2 50 755 NO NO

TK4MO3Re65 4 03 60.2 65 980 NO CI 1.25 0.026

TK4MO3Re80 4 0.3 60.2 80 1205 SL 0.814

TK4M04Re40 4 04 60.2 40 600 NO -

TK4M04 4 04 60.2 50 755 SL 0.784

TK4MO4Re65 4 0.4 60.2 65 980 SL 0.780

TK4MO5Re30 4 0.5 60.2 30 450 NO —

TK4MO5 4 0.5 60.2 50 755 SL 0.743

TK4MO6Re30 4 0.6 60.2 30 450 NO NO

TK4MO6Re40 4 0.6 60.2 40 600 SL 0.712

TK4MO06 4 0.6 60.2 50 755 SL 0.708

Table A.4: Parameters and stability for the run series TK4. Abbreviations for sta-

bility are: NO = No Oscillations, SL = Shear-Layer mode, CI = three-dimensional

Centrifugal Instability, — = not computed.
Run Parameter Stability
nonlinear linear
L/D M L/6y Rey Rep 2D St;, 3D A/D Stp
4MO3Re200 4 0.3 30.1 200 1505 NO NO
4MO3Re400 4 0.3 30.1 400 3010 NO CI 1.25 0.011

Table A.5: Parameters and stability for the run series 4M. Abbreviations for stabil-

ity are: NO = No Oscillations, SL = Shear-Layer mode, CI = three-dimensional

Centrifugal Instability, — = not computed.
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Appendix B

Linear Stability Experiments

To fully ascertain the effect of Mach number and Reynolds number on the three-
dimensional instability, we perform a set of numerical experiments to assess the
differing influence of the basic (steady) two-dimensional flow and the Reynolds
and Mach numbers. To do this, we focus on cavities of aspect ratio L/D = 2 and

construct different cases as follows:

1. Using the methods outlined in chapter 2, we vary the Reynolds and Mach
numbers in both computing the steady base flow (from 2D DNS) and in
solving for the three-dimensional disturbances. This is the default procedure

for the linear stability analysis.

2. We artificially increase the Reynolds and/or Mach number acting on the
disturbances only, while holding the steady base flow constant. While these
simulations are non-physical, they are useful in assessing the flow physics.
For the cases where we change the disturbance Reynolds number, the base
flow is held strictly constant. For the cases where we change the Mach
number, we also rescale the basic cavity flow by assuming that the base flow
is essentially incompressible, and rescaling the flow velocity to the higher

Mach number.
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B.1 Influence of the Mach number

As the Mach number is varied over the range 0.1 < M < 0.6 for subcritical
conditions, we observe only minor changes in the 2D (steady) base flow, and the
linear stability results for the three-dimensional flow are similar. To verify that
the mode properties are in fact independent of the Mach number, we performed
3D linear simulations with a fixed base flow @ = qaps01 obtained for run 2M01
at M = 0.1. Under the conditions of run 2M01, the flow is 3D unstable, with
growth rate and frequency reported in table B.1. Before a perturbation at a Mach
number M’ different than M = 0.1 can be added to the base flow G201, it must
be appropriately rescaled to b, as follow:

7, ﬂ%’ , M’ M’
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The three-dimensional stability analysis is then conducted for 3D disturbances
at Mach number M’ = 0.3 and M’ = 0.6, with the corresponding modified base
flow @fys0;- These simulations are denoted 2MO1toMO3 and 2MO1toMO06 and all
the parameters used are summarized in table B.1. The comparison with run 2M01
shows that the Mach number has no influence on the three-dimensional instability:
the flow remained 3D unstable with the results of the rescaled simulations matching
the initial run in term of growth rate and frequency.

A similar parametric study was conducted for 3D stable flow conditions. The
2D basic (steady) flow Q2ar03Re35 of run 2M03Re35 (M = 0.3) was modified to get
Qb rr03Re35- Perturbations at M’ = 0.6 and M’ = 0.8 were then added, for a cavity
of spanwise wavelength A/D = 1. Again the rescaled simulations 2M03Re35toM06
and 2MO3Re35toM08 exhibit the same features as the original run even at these
high Mach numbers and remain stable with similar damping rate and frequency
as run 2MO03Re35. Note that, under all the conditions considered here, the flows at

Mach number M’ = 0.6 and M’ = 0.8 would already be two-dimensional unstable.



108

2D parameters 2D base 3D parameter Eigenvalue
flow modified

run L/D M L/0y Reg q M’ op St
2M01 2 0.1 52.8 56.8 d2M01 0.0083 0.0255
2M01t0MO3 - - - dor 0.3 0.0085 0.0254
2M01toM06 - - - Q501 0.6 0.0084 0.0254
2MO3Re35 2 03 52.8 35 Q2mM03Ress -0.0151 0.0280
2MO3Re35toM06 - - = T3p03Ress 0.6 -0.0152 0.0280
2MO3Re35toM08 - - - Q9p03Ress 0.8 -0.0155 0.0280

Table B.1: Results of the parametric study of the Mach number influence on the
linear stability of 3D perturbations of spanwise wavelength A\/D = 1. Here the
superscript “’ 7 indicates that the 2D base flow has been rescaled to the modified

Mach number M’

B.2 Influence of the Reynolds number

Unlike the Mach number, the Reynolds number does affect the basic (steady)
2D flow and the properties of the three-dimensional mode, in terms of both
growth/damping rate and oscillation frequency. To separate the Reynolds num-
ber effect from the influence of the basic flow, a similar analysis is performed. In
this parametric study, a perturbation at a different Reynolds number (denoted by
the superscript “ ’ ”) is added to the two-dimensional base flow Qanz03 obtained
for run 2M03 (L/D = 2, M = 0.3, L/6y = 52.8, Rey = 56.8). Three different
Reynolds numbers (Rej, = 65, Re, = 50 and Rej, = 35) are considered and the
spanwise wavelength of these perturbations is A/D = 1. Rescaling is not needed
in this case, and the resulting simulations are denoted 2M03toRe65, 2M03toRe50,
and 2MO3toRe35.

The growth/damping rates and frequency of the corresponding three-dimensional
instabilities are reported in table B.2. Here, the flow is artificially stabilized /amplified

by reducing/increasing the Reynolds number. For these test cases, it is interesting
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2D parameters 2D base 3D parameter Eigenvalue
flow modified

run L/D M L/6, Reg q Re), op St
2MO3Re35 2 03 528 35 Qam03Re3s -0.0151 0.0280
2M03 2 03 528 56.8 Qgamos 0.0079 0.0249
2MO3Re65 2 03 528 65 Qam03Re65 0.0124 0.0247
2MO3toRe35 - - - QA20103 35 -0.0244 0.0252
2M03toRe50 - - - 42003 50 0.0007 0.0250
2MO3toRe65 - - - Qd2003 65 0.0148 0.0248

Table B.2: Results of the parametric study of the Reynolds number influence on

the linear stability of 3D perturbations of spanwise wavelength A\/D =1

to note that, while the Reynolds number significantly affects the stability of the
dominant mode by changing the growth rate, the frequencies remained identical
and similar to the original case 2M03. This feature has to be contrasted with the
observations from figures 3.10 3.11, and 3.12 that the frequency decreases with
Reynolds number, when full 3D linear stability analysis simulation are conducted
with the appropriate corresponding 2D base flow q. However, there is no con-
tradiction there. This indicates that the mode frequency is strongly connected to
the 2D steady base flow q and is only indirectly affected by the Reynolds number
through the dependence of q on Re.

To clarify this point, the results from the run 2MO3Re35 are compared to the
experimental run 2M03toRe35 in table B.2. Again, It is important to point out here
that the only difference between these two runs is the use of a different 2D base
flow (Q2r103Re35 versus Qanros) for the 3D linear stability analysis. Both simulations
lead to the same stability result: the flow is 3D stable. The differences in damping
rate and frequency are then caused by the difference in 2D base flow. Similar
observations can be made with runs 2M03Re65 and 2M03toRe65 in table B.2.

The following conclusions can then be drawn from these numerical experiments:

Firstly, the growth/damping rate of the dominant mode is directly driven by the
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Reynolds number and is, to some lesser extent, dependent on the base flow. Sec-
ondly, the Reynolds number influences the mode frequency only through its effect
on the two-dimensional base flow q. Finally, within the domain of 2D stability,

the three-dimensional mode is essentially independent of the Mach number.
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Appendix C

Extension of the Linear Stability to

Supercritical Conditions

As previously mentioned, one limitation of the three-dimensional linear stability
analysis described in chapter 2 is that it relies on the existence of a 2D steady base
flow @(x, y). In most experimental conditions and practical application, such time-
independent flow does not exist, as self-sustained oscillations develop and eventu-
ally saturate. However, the recirculating vortical flow in the downstream part
of the cavity is still present for these supercritical conditions, in a time-averaged
sense. In an attempt to extend the present methods to such supercritical flows,
we examine the linear stability of q defined as the time-averaged two-dimensional

base flow.

C.1 Two-dimensional simulation of Rockwell experi-

ment

We consider the water channel experiments by Rockwell & Knisely (1980) for a
three-dimensional cavity of aspect ratio L/D = 1.08 and W/D = 3.76. This par-
ticular case is chosen here for two reasons. Firstly, it corresponds to supercritical
conditions where three-dimensional structures have been reported, as discussed
in §6.1. Secondly, the experimental conditions are within the parameter range of

our direct numerical simulations, in terms of Reynolds number.
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A low Mach number (M = 0.3) two-dimensional simulation is performed, with
the other flow parameters matching the experimental conditions (L/D = 1, Rey =
106 and L/6y = 142). In this case, the Reynolds number based on the cavity depth
is Rep = 15000 and a fine mesh is required to resolve all of the flow structure.
The grid is increased from 96 to 576 points along the cavity length and depth, for
a total of about 1.1 million grid points.

The resulting two-dimensional flow is presented in figure C.1. As expected at
this relatively high Reynolds number, a wide range of small-scale structures are
present in the flow. Unlike the supercritical conditions at Rep = 1500 presented in
figure 3.1, the shear-layers breaks down at approximately x = 0.25L and periodic
shedding of vortical disturbances can be observed. The time trace of the pressure,
streamwise and normal velocity at (z,y) = (0.5L,0) are shown in figure C.2(a),
(b) and (c) respectively. After some transient, the self-sustained oscillations in
the flow saturate into a periodic regime with dominant frequency St = 1.526.
This frequency corresponds approximately to the Rossiter mode III (St = 1.341
in equation 1.1 with n = 3). In general, the visualisation of the vorticity contours
confirms the presence of three vortices along the cavity length simultaneously.
Precise values of the oscillation frequencies in the experiment are not reported,
but the numerical results are consistent with the side-view illustration in figure
C.5.

From figure C.1, it is clear that a recirculating vortical flow similar to the
one observed in subcritical conditions is present in the cavity. The time-averaged
velocity field for run Rkw is shown in figure C.3. Much like the square cavities
considered in chapters 3 and 4, the primary vortex occupies the whole cavity in
the present case and has properties similar to a solid-body rotation away from the

walls.
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Figure C.1: Vorticity field for the run Rkw at six different times (a-f) corresponding
to approximately a one sixth of a period of oscillation; 30 equi-spaced contours of

the vorticity magnitude between w,D/U = —15 and 15 are shown.
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Figure C.2: Time trace at (z,y) = (0.5L,0) for run Rkw: (a) pressure; (b) stream-

wise velocity; (¢) normal velocity
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Figure C.3: Time-averaged velocity field for run Rkw. Nineteen equi-spaced con-

tours of the velocity magnitude between ||u||/U = 0.05 and 0.95 are represented.

C.2 Linear stability results

Figure C.4 shows the streamlines and Rayleigh discriminant of the two-dimensional
time-averaged base flow for run Rkw. The region of potential centrifugal instability
covers all the outward streamlines of the primary vortex inside the cavity and is
comparable to the results for the subcritical run H1Re200 in figure 4.1,

The linear stability of this time-averaged base flow is then investigated. In this
case, perturbations of spanwise wavelength ranging from A\/D = 0.05 to 16 are
considered. We find that all the disturbances have a positive linear growth rate
and are therefore unstable. However, the perturbation with \/D = 0.125 has a
growth rate larger than for the other wavelength and is designated as the most
unstable mode. Unlike the steady mode 4 of wavelength 0.4 previously identified
as the dominant mode for square cavities, this mode is oscillatory with frequency
St = 0.046. These properties are significantly different from characteristics of the
centrifugal modes discussed in chapter 3.

In their water channel experiments, Rockwell & Knisely (1980) identified a

spanwise wavy structure and estimated the spanwise wavelengths A\, to “approxi-
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Figure C.4: Streamlines and Rayleigh discriminant of 2D time-averaged base flow
for run Rkw. The red flooded region indicates where 7 is greater than 5% of its

maximum value.

mately 1 to 0.5 streamwise wavelength” depending on the location in the cavity.
Precise values of the wavelengths or the frequencies are not reported. Since the 2D
simulation shows that the flow oscillates in Rossiter mode III, the streamwise wave-
length is approximately D/3, leading to a spanwise wavelength of A, = 0.333D to
0.167D for the three-dimensional instabilities. Therefore, there is some qualita-
tive agreement between the experimental data and our linear results. The three-
dimensional nonlinear simulation was not performed because the flow parameters
considered here, while matching the experimental conditions, are beyond the limit
of current computer resources for DNS.

We also consider the linear stability of the two-dimensional time-averaged base
flow for the supercritical runs 2M06 and H1Re300, as both linear and nonlinear
data is available for direct comparison in these cases. The results match for run
H1Re300, but are significantly different for run 2M06, in terms of both spanwise
wavelength of instability and oscillation frequency.

Overall, our attempt to extend the linear stability analysis to supercritical flows



117

W7222272772222222272722

Side View b Top View l

S ——
r Vartices

Field of
Wiew

1— Primary

Vartices

|deatized

Streamwise t Ty e - of Section C-C
Varticity i a4 o 1

Uindeformed Deformed
Timeling Sheet Timeline Sheet
{Cose 1} (Case I}

LT o
I;F.. aapdd | TILL ram et S
(Case 2}f' s {Cose 2)

Figure C.5: Schematics of the shear-layer oscillations and spanwise structures.
This corresponds to figure 3 in the article by Rockwell & Knisely (1980), “Illus-
tration of mechanism of interaction between primary and secondary (longitudi-
nal) vorticity.” Here, the term “primary vortices” corresponds to vortical distur-
bances in the shear layer, and not the recirculating vortical flow inside the cavity.
Reprinted with permission from D. Rockwell and C. Knisely, Observations of the
three-dimensional nature of unstable flow past a cavity, 23(3) 425-431 1980. Copy-
right 1980, American Institute of Physics.
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lead to mixed results. Some cases showed good agreement while others did not
predict the correct instability. Here, the Navier—Stokes equations are linearised
with respect to the two-dimensional time-averaged base flow g that is not an
exact solution of the equations. We suspect that this approximation may not be
appropriate to identify the 3D instabilities accurately. As discussed in chapter
5, the linear stability results from corresponding subcritical cases (if such stable
conditions exist) seem more reliable for delivering the properties of the 3D modes

for supercritical conditions.



119

Appendix D

Preliminary Results on 3D Wake Mode

As mentioned in the introduction, another mode of cavity flow oscillation, com-
monly referred to as “wake mode,” has been observed in a few experiments (e.g.,
Gharib & Roshko, 1987) and several two-dimensional numerical simulations (e.g.,
Fuglsang & Cain, 1992; Cain et al., 2000; Rowley et al., 2002b; Larsson et al.,
2004). Since experimental evidence of the wake mode is limited for the classical
3D rectangular cavity typically used to model practical applications, this mode is
not the main focus of the present work. However, it is of interest here because
three-dimensionality has been shown to play a role in suppressing it. For instance,
Shieh & Morris (2000) and Suponitsky et al. (2005) showed that two-dimensional
cavity flows oscillating in wake mode return to shear-layer mode when random
three-dimensional inflow disturbances are introduced. We present here some pre-
liminary results from ongoing work on the connections between the 3D centrifugal

instabilities and the presence/suppression of the wake mode.

D.1 Two-dimensional wake mode

The wake mode is characterized by the periodic shedding of a large vortex (about
the size of the cavity) from the cavity leading edge, resulting in a significant increase
in drag. Detailed description of the wake mode properties can be found in the
article by Rowley et al. (2002b).

As they predict the flow transition to wake mode for longer cavities and larger
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Figure D.1: Time trace at (z,y) = (0.5L, 0) for run 4MO6wake: ( ---- ) streamwise
velocity u/U, ( —— ) normal velocity v/U, ( - ) pressure P — Py

Mach and Reynolds number, we consider run 2M06 and increase the aspect ratio to
L/D = 4 while keeping the other parameters constant. As expected, the resulting
simulation 4MO6wake (L/D = 4, M = 0.6, L/0y = 105.6, Rep = 1500) shows
that the 2D flow oscillates in wake mode. The time-trace of the pressure, the
streamwise and normal velocities are presented in figure D.1, and are significantly
different from the typical shear-layer mode results. The amplitude of oscillation is
larger and the frequency is lower. The power spectrum in figure D.2 shows that
the oscillation frequency is Stp = 0.063. This value is identical to those obtained
by Rowley et al. (2002b) for L/D = 4 cavities with Mach number within the range
0.4 < M < 0.8. In particular, Stp = 0.064 for their run L4 with similar flow
conditions. The power spectrum levels are about two orders of magnitude higher
in this case, compare to the shear-layer mode. Overall, the large-scale shedding in
the wake mode is a more violent event than the shear-layer oscillations.

The increase in drag is also observed. The instantaneous drag coefficient Cy
(figure D.3) is computed by integrating the skin friction drag over the bottom of
the cavity, and the pressure drag over the vertical walls at the leading and trailing

edges of the cavity. The usual nondimensionalisation by 1/2pU?A is used, where



121

10 2
-— Wake mode

101 4

109 |

v/U (Power spectrum magnitude)

1071 N | N N S —
0 02 04 06 0.8 1
Stp

Figure D.2: Spectrum of the normal velocity for run 4M0O6wake. The wake mode

frequency is identified and the harmonics can also be observed

A is the area of integration. As anticipated, the main contribution comes from
the pressure drag, resulting in an estimated average drag coefficient of Cy ~ 0.3.
This result is similar to the value C; = 0.227 reported by Rowley et al. (2002b)
for run L4. This value is about 15 times higher than the average drag computed
for a cavity of same aspect ratio 4 with the flow oscillating in shear-layer mode.
The time-averaged flow (figure D.4) for the wake mode in run 4MO6wake con-
trasts with the typical 2D base flow discussed throughout the present work. On
average, there is no recirculating vortical flow in the downstream part of the cav-
ity. The same conclusion actually holds for the instantaneous flow field. The mean
flow above the cavity is significantly deflected upward and the maximum velocity

magnitude inside the cavity reaches approximately 40% of the freestream value.
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Figure D.3: Time trace of the drag coefficient: ( —— ) 2D run 4MO6wake in wake
mode, ( ---- ) 2D run TK4MO6Re40 in shear-layer mode

D.2 Three-dimensional simulations

The same procedure described in chapter 5 is followed here to performed the
full three-dimensional nonlinear simulations. The initial condition is the time-
averaged flow field extracted from run 4MO6wake by averaging the periodic data.
Two homogeneous 3D cavity of spanwise extent A/D = 2 and A/D = 1.25 are
considered. In the first configuration, the mesh contains about 11 million grid
points, with (Nx = 240, Ny = 60, Nz = 128) points across the cavity in the
streamwise, depth, and spanwise directions, respectively. The number of points in

the span is reduce by half in the second configuration.

D.2.1 Flow field without spanwise disturbances

First, a three-dimensional simulation is performed on the small grid without any
spanwise disturbances (run 4MO6wake-3D). As expected, the 3D flow remains uni-
form in the spanwise direction and oscillates in wake mode. The mode frequency
and properties are identical to the results of the 2D simulation. The visualisation

of the flow field is presented in figure D.5.
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Figure D.4: Time-averaged velocity field and streamlines for L/D = 4 cavities:
(a) 2D run 4MO6wake in wake mode, (b) 2D run TK4MO6Re40 in shear-layer mode.
Nine equi-spaced contours of the velocity magnitude between ||u||/U = 0.1 and

0.9 are represented.
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Figure D.5: Visualisation of the wake mode in 3D run 4MO6wake-3D. Six different
times (a-f) are shown, corresponding to approximately one-sixth phase intervals
of a period of the instability. The iso-surfaces represent ten equi-spaced levels of
the spanwise component of vorticity between w,D/U = —5 and 5. The whole
spanwise extent of the cavity is shown and the flow is clearly uniform in the

spanwise direction.
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D.2.2 Flow field with spanwise disturbances

Small perturbations of spanwise wavelength A/D = 1.25 are added to the time-
averaged flow field from run 4MO6wake. This particular wavelength is chosen be-
cause it corresponds to the most unstable mode for L/D = 4 cavities, according to
the linear stability analysis presented in chapter 3. The 3D simulation, referred to
as 4M06-3D, is performed on both large and small grids, and lead to similar results.

With the initial spanwise disturbances, the flow does not oscillate in wake
mode but instead transitions to the classical Rossiter mode. Figure D.6 shows the
evolution of the vorticity field for run 4M06-3D. The shear-layer oscillations and
the formation of the recirculating vortical flow near the downstream wall of the
cavity can be observed.

The time trace of the velocities and pressure are presented in figure D.7: the
smaller oscillation amplitude and higher frequency contrast with the wake mode
results in figure D.1. The corresponding power spectra (in figure D.9(a)) show
that the dominant frequency is Stp = 0.186. This value matches the prediction
from Rossiter’s formula for mode II (Stp = 0.186 with n=2 in equation 1.1). It
is also consistent with the observation that, in general, two vortices are present
simultaneously in the shear layer along the cavity (see figure D.6).

Unlike the previous cases in chapter 5, a dominant spanwise wavelength for the
3D instability cannot be clearly identified: a wide range of small-scale structures
are present in the flow in figure D.6. Likewise, a low-frequency modulation of the
shear-layer oscillation is not evident. However, the time trace in figure D.8 and
the power spectrum in D.9(b) do suggest the presence of 3D mode of frequency
Stp ~ 0.01. This value is similar to the prediction Stp ~ 0.011 from the linear
stability analysis for the run series 4M03 (see appendix A). Here, we suspect that
the 3D simulation needs to be continued, as the flow has not reached a periodic
limit cycle yet.

Different initial conditions may need to be considered as well. In retrospect,
the choice of the time-averaged flow field of the wake mode as initial condition

can be reexamined. Because the time-averaged field is significantly different from
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Figure D.6: Visualisation of the 3D run 4M06-3D. Six different times (a-f) are
shown, corresponding to approximately one-sixth phase intervals of a period of
the instability. The iso-surfaces represent five equi-spaced levels of the vorticity

magnitude between ||w||D/U =1 and 5.
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Figure D.8: Time trace of the spanwise velocity at (z,y) = (0.5L,0,1.5D) for run
4M06-3D
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Figure D.9: Spectra at (z,y,z) = (0.5L,0,0) for run 4M06-3D: (@) normal velocity
v/U, (b) spanwise velocity w/U. The Rossiter wake mode frequency is identified
and the possible peak of the 3D mode is suggested.

any instantaneous solution of the flow equations, it introduces additional distur-
bances that can possibly increase the duration of a transient flow and delay the
development of the different modes. Future works include 3D simulations with
perturbations added to the flow field in wake mode from run 4MO6wake-3D. Sim-
ulations with an incoming boundary layer nonuniform in the spanwise direction
(and zero flow inside the cavity) will also be performed.

Overall, the results are consistent with the conclusions of previous numerical
studies that 3D disturbances seem to suppress the wake mode for rectangular
homogeneous cavities. The resulting flow oscillates in the typical shear-layer mode
but is highly three-dimensional. At this stage, it is not possible to conclude whether
the 3D centrifugal instability is present or not, and if it causes the transition from
wake to shear-layer mode. Additional three-dimensional simulations are underway

to give more conclusive answers to these questions.
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