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Doctor of Philosophy

Abstract

Direct numerical simulations are performed to investigate the stability of com-

pressible flow over three-dimensional open cavities for future control applications.

First, the typical self-sustained oscillations, commonly referred as “shear-layer

(Rossiter) modes,” are characterized for two-dimensional cavities over a range of

flow conditions. A linear stability analysis is then conducted to search for three-

dimensional global instabilities of the 2D mean flow for cavities that are homoge-

neous in the spanwise direction. The presence of such instabilities is reported for

a range of cavity configurations. For cavities of aspect ratio (length to depth) of 2

and 4, the three-dimensional mode has a spanwise wavelength of approximately 1

cavity depth and oscillates with a frequency about one order of magnitude lower

than two-dimensional Rossiter (flow/acoustics) instabilities. A steady mode of

smaller spanwise wavelength is also identified for square cavities. The linear re-

sults indicate that the instability is hydrodynamic (rather than acoustic) in na-

ture and arises from a generic centrifugal instability mechanism associated with

the mean recirculating vortical flow in the downstream part of the cavity. These

three-dimensional instabilities are related to centrifugal instabilities reported in

flows over backward-facing steps, lid-driven cavity flows, and Couette flows.

Results from three-dimensional simulations of the nonlinear compressible Navier–

Stokes equations are also reported. The formation of oscillating (and, in some
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cases, steady) spanwise structures is observed inside the cavity. The spanwise

wavelength and oscillation frequency of these structures agree with the linear anal-

ysis predictions. When present, the shear-layer (Rossiter) oscillations experience a

low-frequency modulation that arises from nonlinear interactions with the three-

dimensional mode. These results are consistent with observations of low-frequency

modulations and spanwise structures in previous experimental and numerical stud-

ies on open cavity flows.
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Chapter 1

Introduction

1.1 Motivation and review of previous work

From the canonical rectangular cut-out to more complicated shapes with internal

structures, resonant cavity instabilities are endemic to a number of aircraft com-

ponents including weapon bays, landing gear wells, and instrumentation cavities.

Self-sustained oscillations and intense acoustic loading inside the cavity can lead

to structural damage, optical distortion, and store separation problems. In partic-

ular, weapons bay noise suppression has been a major motivation for recent work

on cavity flow, including active flow control to replace traditional passive devices

such as spoilers, ramps, rakes, etc.

1.1.1 Rossiter mode

Dating back to the early work of Rossiter (1964), cavity oscillations in compressible

flow are typically described as a flow-acoustic resonance mechanism, as shown

in figure 1.1: small instabilities in the shear layer interact with the downstream

corner of the cavity and generate acoustic waves, which propagate upstream and

create new disturbances in the shear layer. For incompressible flow, the upstream

influence is instantaneous, while there is an acoustic delay for compressible flow.

Resonance occurs at a given frequency when the disturbances lead to reinforcement

and ultimately saturation. This type of instability is referred to as shear-layer (or
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Figure 1.1: Schematic of open cavity oscillations in compressible flows

Rossiter) mode, and can be distinguished from pure acoustic resonance where

frequency selection depends only on the sound speed and geometrical parameters.

Rossiter (1964) performed an extensive set of experiments for two-dimensional

rectangular cavities of different length to depth ratio, at different Mach numbers,

which identified a series of discrete frequencies of oscillation. He used the idea of

the feedback process to develop a semi-empirical formula to predict the resonant

frequencies:

Stn =
fnL

U
=

n − α

M + 1

κ

n = 1, 2, 3... (1.1)

where Stn is the Strouhal number corresponding to the n-th mode frequency, fn.

The empirical constants κ and α correspond to the average convection speed of the

vortical disturbances in the shear layer, and a phase delay (typically 1/κ = 1.75

and α = 0.25), respectively.

Data from a large number of experiments and simulations over the years show

reasonable agreement with equation 1.1, but with significant scatter. The scatter-

ing is mainly due to the discrepancies between experimental conditions, as differ-

ent cavity and flow parameters (L/D, L/θ0, Reθ) were used. These parameters
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can have a significant influence on the resonant frequencies and do not appear

in Rossiter’s formula. Additionally, equation 1.1 does not give any indication of

whether such self-sustained oscillations do occur and, if so, which of several possible

modes are present and if a particular mode (if any) is dominant.

1.1.2 Wake mode

Apart from the instability mechanism proposed by Rossiter, other modes of oscilla-

tion have been observed in cavity flows. In their incompressible experiment for an

axisymmetric cavity, Gharib & Roshko (1987) observed a significant change in the

behavior of the cavity oscillation when the ratio of the cavity length relative to the

upstream boundary layer momentum thickness was increased. Direct numerical

simulations by Rowley et al. (2002b) showed similar results for a two-dimensional

rectangular cavity. In this mode, the flow is characterized by a large-scale vortex

shedding from the cavity leading edge, similar to that observed behind bluff bod-

ies, hence the term “wake mode” used to describe the resulting flow regime. As

the large vortex (dimension of the cavity depth) forms near the leading edge, free

stream fluid enters the cavity and impinges on the cavity bottom. The vortex is

then shed from the leading edge and is violently ejected from the cavity, the all

process resulting in a drastic increase in drag.

The wake mode transition has been observed in several two-dimensional numer-

ical simulations (e.g., Fuglsang & Cain, 1992; Cain et al., 2000; Rowley et al., 2002b;

Larsson et al., 2004), but experimental evidence of this mode is fairly limited.

Three-dimensionality has been shown to play a role in suppressing the wake mode.

Large eddy simulations by Shieh & Morris (2000) showed that two-dimensional cav-

ities in wake mode return to shear-layer mode when three-dimensional disturbances

are present in the incoming boundary layer. Similarly, recent work by Suponitsky

et al. (2005) showed that the development of a three-dimensional flow field, gener-

ated by the introduction of the random inflow disturbance into a two-dimensional

cavity oscillating in wake mode, yielded the transition to the shear-layer mode,

regardless of the amplitude and shape of the inflow disturbance. These studies
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highlight how a better understanding of the fundamental three-dimensional fea-

tures of cavity flows is crucial to accurately connect numerical results, experiments

and practical applications.

1.1.3 Self-sustained versus forced oscillations

There are additional acoustic resonances of typical cavity geometries that lead,

especially at lower Mach numbers and in confined laboratory experiments (e.g.,

wind tunnel resonance) to additional complications in the identification of cavity

resonance mechanisms. Purely acoustic resonance can lead to a “detuning” and/or

reinforcement of the flow/acoustic shear layer modes. Rowley et al. (2006) showed

that oscillations observed in experiments are not always of the self-sustaining type

envisioned by Rossiter . Indeed, in many cases it appears that the cavity oscilla-

tions are actually forced by boundary layer turbulence or other external sources

of noise. This clarification has major implications for the design of feedback con-

trollers (e.g., Rowley et al., 2002a). Recent models by Alvarez et al. (2004; 2005)

showed that there can be strong interactions with wind tunnel resonances, and

confirm analytically that oscillations are not always self-sustaining.

1.1.4 Flow control

Over the past decades, two-dimensional cavity flows have received significant atten-

tion (see for instance review articles from Rockwell & Naudascher, 1978; Colonius,

2001; Rowley & Williams, 2006), including several experimental and numerical

studies at the California Institute of Technology (e.g., Krishnamurty, 1956; Saro-

hia, 1975; Gharib, 1983; Rowley, 2001). Aside from numerical benchmarking, the

main motivations for studying cavity flow are noise reduction and flow control.

Fundamental research has been conducted recently to examine how active (open-

and closed-loop) flow control can be use to replace traditional passive devices such

as spoilers, ramps and rakes (e.g., Cattafesta III et al., 1999; Alvarez et al., 2004;

Rowley et al., 2006; Rowley & Williams, 2006). Model-based closed-loop control,

in particular, promises efficient (low energy input) tone suppression, while passive
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devices may be more effective for broadband noise reductions.

In analyzing the behavior of the shear layer oscillations, most investigators

have implicitly assumed that the shear layer behavior can be described in isola-

tion, i.e., as if it were a free shear layer. In recent refinements to this model,

Alvarez et al. (2004; 2005) have developed linear theory that couples the shear

layer dynamics and acoustic behavior of the cavity (essentially using an unsteady

Kutta condition at the cavity leading and trailing edges), but non-parallel shear

layer effects and, in particular, the coupling of the flow inside the cavity have not

been studied.

An alternative analysis of the global instability modes is to consider the basic,

steady flow as two- or even three-dimensional. This viewpoint requires high-fidelity

steady flow solutions of the Navier-Stokes equations as input, and then solves a

partial-derivative eigenvalue problem for 2D and 3D instabilities of the basic flow.

The underlying theory and methodology for extracting these bi- and tri-global

instabilities are described by Theofilis (2003) in a recent review paper. Early efforts

have concentrated on incompressible flows, including backward-facing step, lid-

driven cavities, laminar separation bubbles, etc. A significant accomplishment of

the present work has been to extend this effort to compressible flows where in many

cases (including the cavity) small amplitude acoustic radiation is an important

aspect of the instabilities and must be treated with high-order-accurate numerics

in order to avoid spurious oscillations or numerical dissipation of the relevant

instabilities.

1.1.5 Three-dimensionality in cavity flow

Recently, some aspects of the three-dimensional cavity flow have been investi-

gated using Large Eddy Simulation (LES) methods (Rizzetta & Visbal, 2003;

Larchevêque et al., 2004; Chang et al., 2006) and Proper Orthogonal Decomposi-

tion (POD) (Podvin et al., 2006). These studies have been mainly focused on the

frequencies of oscillation and coherence of the (two-dimensional) Rossiter modes,

and the extent to which there is agreement with experimental measurements of
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mean flow and spectra. Some observations regarding the three-dimensionality of

the large-scale turbulent structures are also reported but do not figure promi-

nently in these studies. Such LES data could be useful in future to examine the

instabilities identified in this study at higher values of Reynolds number.

Likewise, three-dimensional experimental data is fairly limited but several re-

searchers have reported observations of three-dimensionality in cavity flows. Ahuja

& Mendoza (1995) conducted an extensive set of experiments on the effect of cav-

ity dimensions, boundary layer, and temperature on cavity noise for subsonic flows

with turbulent boundary layer upstream of the cavity. They determined that the

parameter L/W , the cavity length to width ratio, provided a transition between

two- and three-dimensional flow. For L/W < 1, the cavity is classified as two-

dimensional, as the flow was found to be uniform over much of the span, with a

coherent shear layer spanning most of the cavity width. The cavity is said to be

three-dimensional for L/W > 1, as the flow cannot maintain a coherent shear layer

across its width because of the end-effects that cause significant spillage of flow over

the cavity side into the cavity. In that case, they reported three-dimensionality

in the mean flow, and much lower (about 15 dB) acoustic loads than the pre-

dominately two-dimensional flow. However, Ahuja and Mendoza’s classification of

wide cavities as two-dimensional is based on a time-averaged view of the flow field,

and the three-dimensionality is not related to the 3D instability we identify in our

present work.

Three-dimensional flow features have also been observed for wide cavities in

early wind tunnel experiments at low subsonic velocities by Maull & East (1963).

Using oil flow visualisation of surface streamlines at the bottom of the cavity

and surface static-pressure distributions, they showed the existence, under certain

conditions, of nearly steady spanwise cellular pattern within the cavity. They

observed that the width of each cell remained essentially independent of the total

cavity span but that the most regular pattern existed when the cavity span was an

integral number of preferred cell-width. Rockwell & Knisely (1980) also observed

three-dimensional pattern in a water channel experiment for a wide rectangular
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cavity with laminar boundary layer upstream. A hydrogen bubble technique was

used to visualise the spanwise structure in the cavity. More evidence of three-

dimensional structures in cavity flows have been presented in the recent work of

Faure et al. (2007). The physics of these features has yet to be fully understood.

In conclusion, while observations of three-dimensionality in cavity flow have

been reported, the physics of these features has yet to be fully understood. As

a result, past efforts on cavity flow control have typically ignored non-parallel

and three-dimensional effects. These approaches may, on one hand, reduce the

effectiveness of model-based control, or on the other hand disregard important

three-dimensional mechanisms that could be exploited in passive ways to reduce

broadband noise.

1.2 Overview of present work

The focus of the present work is therefore to characterize the basic instabilities of

three-dimensional open cavity flows. Because the basic (steady or time-averaged)

cavity flow is complex and non-parallel, our stability analysis is focused on ex-

tracting global instabilities from Direct Numerical Simulations (DNS) of the full

and linearized compressible Navier–Stokes equations.

From the start, it must be acknowledged that accurate computation of realistic,

unsteady, three-dimensional aircraft cavities, at realistic flight Reynolds numbers,

is well beyond current computer resources. While realizable parameter regimes (es-

pecially small scale experiments) may be reached with LES, such computations are

sufficiently time consuming that they prohibit a significant portion of parameter

space from being investigated. By focusing our attention on low Reynolds number

direct numerical simulations of 2D and 3D spanwise periodic flows, we are able

to examine a large parameter space (Mach number, cavity dimensions, boundary

layer thickness). In inflectional shear layers, the instabilities of compressible flows

are inviscid. This observation has led, for example, to modeling of two-dimensional
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shear layer oscillations in cavity flows using inviscid parallel flow stability. Models

and computations at low Reynolds numbers display the same instabilities as the

inviscid analysis.

As we show that the principle effect of the Reynolds number is to damp the

instabilities, any instabilities observed here are likely to be at play at full-scale

Reynolds numbers. Thus the low Reynolds number analysis and simulations can

bracket the behaviors that exist in experiments and flight conditions, and at the

same time understand in detail the instabilities and their parametric variations.

In general, simulations of simpler (even two-dimensional) flows can lead to insights

into the flow physics that directly carry over to full-scale complex flows, and provide

data for control and modeling efforts.

In the present work, we consider two- and three-dimensional instabilities to

basic cavity flows that are homogeneous in the spanwise direction, for low to mod-

erate Reynolds numbers. Chapter 2 gives an overview of the numerical methods

and the linear stability theory used in this study.

First, the onset of two-dimensional cavity instability is characterized as a func-

tion of Reynolds number, Mach number, cavity aspect ratio, and incident shear-

layer thickness. The two-dimensional modes are consistent, both in terms of oscilla-

tion frequency and eigenfunction structure with the typical Rossiter flow/acoustic

resonant modes that have been observed in many cavity experiments and flight

tests. For basic cavity flows that are two-dimensionally stable, we then search

for three-dimensional instabilities of the steady base flow, and identify, for the

first time, the presence of such instabilities. The 2D and 3D modes, and their

properties, are discussed in chapter 3.

For cavity length-to-depth ratios of 1, 2, and 4 considered here, the instability

appears to arise from a generic centrifugal instability mechanism associated with

the internal recirculation vortical flow that occupies the downstream part of the

cavity. The three-dimensional instabilities are related to centrifugal instabilities

reported in flows over backward-facing steps, lid-driven cavity flows, and Couette

flows. The instability mechanism is presented in chapter 4.
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A few selected three-dimensional numerical simulations of the full compressible

Navier–Stokes equations are then performed. To our knowledge, this is the first

time that strict DNS of three-dimensional compressible cavity flows have been

reported. The results, in chapter 5, exhibit three-dimensional features in good

agreement with the linear analysis predictions, both in terms of spanwise structures

and oscillation frequencies.

In chapter 6, we discuss the connections between the 3D instabilities we report

here and observations of three-dimensionality in previous numerical studies and

experiments. Our numerical results are consistent with low-frequency modulations

and spanwise structures reported in previous studies on open cavity flows. In

particular, visual evidence of the 3D mode is found in recent low Reynolds number

experiments.
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Chapter 2

Numerical Methods and Stability Theory

2.1 Direct numerical simulations

Following previous work of Rowley et al. (2002b) on cavity flows, we develop a

DNS code to solve the full compressible Navier–Stokes (NS) equations and study

the flow over three-dimensional open cavities. The equations are solved directly,

meaning that no turbulence model is used and all the scales of the flow are re-

solved. The Navier–Stokes equations are written in conservative form as follows:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0

∂ρui

∂t
+

∂

∂xj
(ρuiuj + Pδij) =

1

Re

∂

∂xj
(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk

δij)

∂e

∂t
+

∂

∂xj
((e + P )uj) =

1

Re

∂

∂xj
(ui(

∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk

δij)) +
1

Re

1

Pr

∂2T

∂xk∂xk

(2.1)

with the equation of state

P =
γ − 1

γ
ρT,

where ρ, P , and T are the density, pressure, and temperature, and ui is the

velocity in the direction of the Cartesian coordinate xi. The energy e is defined

by e = ρ(E + |u|2/2), where E is the internal energy per unit mass. The usual

compressible formulation is used to nondimensionalise these equations, where the

superscript d refers to the dimensional quantity, and the subscript ∞ denotes the
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freestream property.

ρ =
ρd

ρ∞
P =

P d

ρ∞a2
∞

T =
T dcp

a2
∞

e =
ed

ρ∞a2
∞

ui =
ud

i

a∞
xi =

xd
i

D
t =

tda∞
D

Here, γ is the ratio of specific heats, cp the specific heat at constant pressure, a the

speed of sound, and D the cavity depth. The Prandtl number and the Reynolds

numbers are defined respectively as

Pr =
cpµ∞

k
Re =

ρ∞a∞D

µ∞

Reθ =
ρ∞U∞θ0

µ∞

,

where k is the thermal conductivity, µ the dynamic viscosity and θ0 the initial

boundary layer momentum thickness at the cavity leading edge.

A linearized version of the equations is also implemented: we assume that the

flow field q = [ρu, ρv, ρw, ρ, e]T can be decomposed into q = q̄ + q′, where q̄ is

a steady solution of the equations and the perturbation field q′ verifies q′ � q̄.

The Navier–Stokes equations are then linearised about q̄ by neglecting higher-

order terms in q′ to give a first-order approximation. The perturbation field now

satisfies

∂ρ′

∂t
+

∂

∂xj
(ρ̄u′

j + ρ′ūj) = 0

∂

∂t
(ρ̄u′

i + ρ′ūi) +
∂

∂xj
(ρ̄(ūiu

′

j + u′

iūj) + ρ′ūiūj + P ′δij) =
1

Re

∂

∂xj
(
∂u′

i

∂xj
+

∂u′

j

∂xi
− 2

3

∂u′

k

∂xk

δij)

∂e′

∂t
+

∂

∂xj
((ē + P̄ )u′

j + (e′ + P ′)ūj) =
1

Re

∂

∂xj
(ūi(

∂u′

i

∂xj
+

∂u′

j

∂xi
− 2

3

∂u′

k

∂xk

δij)

+ u′

i(
∂ūi

∂xj
+

∂ūj

∂xi
− 2

3

∂ūk

∂xk

δij))

+
1

Re

1

Pr

∂2T ′

∂xk∂xk

(2.2)
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The existing DNS code can solve linear or nonlinear NS equations for both two-

dimensional and three-dimensional flows. The equations are solved on a structured

mesh, using a sixth-order compact finite-difference scheme for spatial discretization

in the x- and y-direction (Lele, 1992), and a fourth-order Runge-Kutta algorithm

for time-marching. The cavity is supposed homogeneous (periodic) in the span-

wise direction (z-direction) and the derivatives are computed using Fast Fourier

Transform (FFT) method with subroutines provided by the FFTW library (Frigo

& Johnson, 1997-2007). The boundary conditions are non-reflective for the inflow

and outflow, no slip, and constant temperature (T = T∞) at the walls (Thompson,

1990; Poinsot & Lele, 1992). In addition, a buffer zone is implemented at the in-

flow, outflow, and normal computational boundaries to reduce acoustic reflections

(Colonius et al., 1993; Freund, 1997). Unless stated otherwise, the simulations are

initiated with a Blasius flat-plate boundary layer spanning the cavity and zero flow

within the cavity.

The code can handle any type of block geometry and is fully parallelized us-

ing Message-Passing Interface (MPI). The simulations were performed on high-

performance Beowulf clusters at the California Institute of Technology. Additional

computer resources were provided by the Air Force Office of Scientific Research

(AFOSR) and the Army Research Laboratory (ARL).

The cavity configuration and flow conditions are controlled by the following

parameters: the cavity aspect ratio L/D and spanwise extent Λ/D, the ratio of

the cavity length to the initial boundary layer momentum thickness at the leading

edge of the cavity L/θ0, the Reynolds number Reθ = Uθ0/ν, and the freestream

Mach number M = U/a∞ (see figure 2.1). As temperature differences are expected

to remain small, the transport properties are assumed constant: we set Pr = 0.7

and γ = 1.4, the values for air.

Typical grid sizes ranged from a few hundred thousand to several million grid

points. Each spanwise wavenumber is discretized on a stretched Cartesian grid,

with clustering of points near the walls and the shear layer spanning the cavity.

Numerical probes are set up to record all the flow field variables u, v, ρ, P (and
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Figure 2.1: Basic configuration of the computational domain

w in 3D) at every time step. For 2D simulations, three approximately equi-spaced

probes are located in the shear layer at y = 0, and three more at the same stream-

wise positions inside the cavity at y = −0.5D. Additional probes in the spanwise

cross-section z = 0.5Λ and equally spaced along the span in the shear layer at

(x, y) = (0.5L, 0) are considered for 3D simulations. Figure 2.2 shows a typical 3D

grid and the location of the probes.

On a side note, we also report that the numerical code we developed has been

successfully used to investigate other problems than cavity flows. Gudmundsson

& Colonius (2006) adapted the code to study jet noise and the linear stability

characteristics of the mean velocity profiles produced by chevron nozzles. Burnes

& Colonius (2007) are implementing a Large Eddy Simulation version of the code

to investigate the mixing and flame-holding characteristics of cavity flows at high

Reynolds numbers. Future applications of the code also include simulations of

ultrasonically absorptive coating for hypersonic laminar flow control.
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Figure 2.2: Visualisation of the computational grid. Only the mesh in the spanwise

cross-section z = 0 is represented (shown every other point). The red spheres

indicate the location of the probes inside the cavity and in the shear layer.
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2.2 Linear stability theory

Based on the assumption that the shear layer may be decoupled from the acoustic

scattering and recirculating flow in the cavity, the classical approach to study the

stability of cavity flow uses the theory of linear stability of parallel shear flow.

The equations of motions are linearized about a parallel mean flow (known basic

flow, only function of one spatial direction) and the fluctuations are written in

normal mode form. In general, this formulation leads to an eigenvalue problem

and a dispersive relation, which relates frequencies of the perturbations to their

corresponding wavenumber. For the classical approach, non-parallel effects are

only included through the introduction of a quasi-parallel (or Parabolized) stability

approach that cannot account for the effects of the leading and trailing cavity edges

(and their acoustic coupling to the hydrodynamic disturbances). Recent work

by Alvarez et al. (2004; 2005) has extended the parallel flow stability analysis

to include the scattering/receptivity/acoustic feedback by using a Weiner-Hopf

technique, but non-parallel and three-dimensional effects have not been considered.

An alternative analysis, called bi-global linear stability theory, has been used

for non-parallel flows (Theofilis & Colonius, 2003; Theofilis et al., 2004; Theofilis,

2003). In this approach, the transient solution of the equations of motion q =

[ρu, ρv, ρw, ρ, e]T is decomposed into

q(x, y, z, t) = q̄(x, y) + q′(x, y, z, t), (2.3)

where q̄(x, y) is the unknown steady two-dimensional basic flow and q′(x, y, z, t)

an unsteady three-dimensional perturbation with ||q′|| � ||q̄|| . As the domain is

homogeneous in the spanwise direction, a general perturbation can be decomposed

into Fourier modes with spanwise wavenumbers β. At linear order, modes with

different wavenumbers are decoupled and the following eigenmode Ansatz can be

introduced:

q′(x, y, z, t) =
∑

n

q̂n(x, y)exp[i(βz − Ωnt)] + c.c., (2.4)
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where the parameter β is taken to be a real and prescribed spanwise wavenumber,

related to a spanwise wavelength in the cavity by λ = 2π/β, q̂n and Ωn = ωn + iσn

are the unknown complex eigenmodes and corresponding complex eigenvalues,

both dependent on β. Complex conjugation is required in equation (2.4) since

q′ is real. The frequency and the growth/damping rate of the mode are given

by ωn and σn, respectively. The long-time behavior of the linear solution will be

dictated by the mode with the eigenvalue Ω = ω + iσ of largest imaginary part.

The flow is said to be subcritical (stable) if σ is strictly negative, neutrally stable

if σ = 0, and supercritical (unstable) if σ > 0.

Eventually, the determination of the least damped (or most unstable) modes

for a given wavelength β amounts to finding the eigenvalue Ω and corresponding

eigenvector by integrating the governing equations directly in the time domain.

2.3 Residual method and L2 fitting routines

To determine the least-damped eigenvalue practically, a least-squares fitting method

(Press et al., 1992) is applied to the data time history when exponential decay or

growth was reached: given the long-time evolution of the vector field q ′ at any

location (x0, y0, z0) and an initial guess for the unknown parameters q̄(x0, y0, z0),

q̂r(x0, y0, z0), q̂i(x0, y0, z0), ω, and σ, a set of “best-fit” parameters is computed

such that the “merit function” χ, which measures the agreement between the data

and the model (with a particular choice of parameters), is minimized. In our case,

the model depends nonlinearly on a set (ak, k = 1, 2, ..., M) of unknown parame-

ters and the “merit function” χ is defined as

χ2 =

Nfit
∑

i=1

[

datai − X(a1, a2, ..., aM , ti)

σi

]2

,

where (datai, ti) is the set of Nfit data point to fit, X is a fixed function of t

and the parameters ak, and σi is the measurement error (standard deviation) on

the i-th data point. Since the measurement errors are not known, σi is set to 1.
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Following equation (2.4), the “merit function” takes the form

χ2 =
N

∑

i=1

[

q′(x0, y0, z0, ti) − (a1 + (a4 cos a2ti − a5 sin a2ti)e
a3ti

]2

.

Note that the method is sensitive to the initial guess (same order of magnitude

as the “best-fit” parameters needed for accurate results) and the length of data

to fit (namely, if N is too large and the data still contains transient components,

the fit may not be successful). Upon convergence, the mode frequency ω = a2 and

growth/damping rate σ = a3, which are independent of the location (x0, y0, z0),

can be recovered.

With the eigenvalue determined, equation (2.4) may be written at three differ-

ent times, t1, t2 = t1 +∆t, and t3 = t1 +2∆t as a linear system of three unknowns

q̄, q̂r, and q̂i. With the transient solution qn = q(x, y, z, tn) available at these

times, the system can be solved to deliver the steady-state solution q̄ and the

spatial structure (q̂r, q̂i) of the linear eigenmode:

q̄ =
q1e

2σ∆t − 2q2e
σ∆t cos ω∆t + q3

e2σ∆t − 2eσ∆t cos ω∆t + 1
(2.5)

q̂r =
s1(q2 − q̄) − s2(q1 − q̄)

c2s1 − c1s2

(2.6)

q̂i =
c1(q2 − q̄) − c2(q1 − q̄)

c2s1 − c1s2

(2.7)

where

c1 = eσt1 cos ωt1 c2 = eσt2 cos ωt2 s1 = eσt1 sin ωt1 s2 = eσt2 sin ωt2.

2.4 ARPACK

To validate the linear stability results, a direct approach was also considered,

where the eigenmodes are directly searched for using an Arnoldi method devel-

oped in the ARPACK software (Lehoucq et al., 1996–2007), rather then isolated
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through long-time integration. Following the nomenclature introduced in § 2.2,

for a given wavenumber β, the three-dimensional linearized NS equations can be

written symbolically in matrix notation as

∂q′

∂t
= A

(

∂

∂x
,

∂

∂y
, q̄

)

q′, (2.8)

where q′ is the vector of the perturbed conservative variables and A is a spatial

differential operator depending on the base flow and cavity parameters (aspect ra-

tio, spanwise wavenumber, Re, etc.). Once the equations are spatially discretized,

we may represent this equation as:

∂q′

∂t
= Aq′, (2.9)

where now q′ is the discretized solution vector (length 5N where N is the number

of grid points), and A is a constant real 5N by 5N matrix. In this discrete ap-

proach, the matrix A is a function of the (discretized) known steady flow q̄ and the

simulation parameters. The stability of this ordinary differential equation depends

on the eigensystem of A. The eigenvalues (λn, n = 1, N) are N not necessarily dis-

tinct solutions of det(A − λI) = 0, and the corresponding eigenvectors xn are the

linearly independent solutions of Axn = λnxn. For the non-defective cases where

there are N linearly independent eigenvectors, X−1 = [x1, x2, ..., xN ]−1 exists and

the solution can be written symbolically as

q′ = eAtq′

0, (2.10)

where q′

0 is the initial perturbation and

eAt = Xdiag[eλ1t, eλ2t, ..., eλN t]X−1. (2.11)

Therefore, for any initial condition, the long-time decay or growth of the solu-

tion will be dictated by the eigenvalue λm with the largest real part, and the same
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Figure 2.3: Contours of the streamwise velocity u′/U for the dominant eigenmode

of spanwise wavelength λ/D = 1 for run 2M0325: ( ) ARPACK solution;

( ) Linear stability result; (a) real part; (b) imaginary part

conclusion stands if the system is defective. Comparison of equations (2.4) and

(2.11) reveals that the continuous and discrete formalisms are simply related by

λm = −iΩ. Given a cavity configuration and flow conditions, the eigenvalue of A

with largest real part (i.e., the least damped or fastest growing three-dimensional

mode) could theoretically be directly computed using ARPACK, as well as the

corresponding eigenvector, to visualise the shape of the instability.

In practice, the use of ARPACK was significantly limited by the size and com-

plexity of our problem. The software was therefore only used here to validate our

time-domain methods. As expected, the dominant eigenmode and corresponding

eigenvalue computed with ARPACK for the same test case were in excellent agree-

ment with the results of the linear stability analysis, as shown in figure 2.3. Both

methods predicted three-dimensional instabilities with less than 1% difference on

the mode growth rate and frequency.

2.5 Validation

Throughout this study, several test cases were set to validate the method and its

implementation. The DNS code was successfully tested through comparison with
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simple acoustic problems and previous validated numerical results from Rowley

et al. (2002b). The two-dimensional basic flow calculations are performed on fine

grids (about half a million to a million grid points) and for supercritical cases, the

oscillation frequencies are in good agreement with Rossiter mode frequencies, as

further discussed in § 3.1.2).

Additionally, the 2D simulation 2M06-K reproduces one of the experimental

configurations of Krishnamurty (1956) with laminar incoming boundary layer. The

flow parameters (L/D = 2, M = 0.6, L/θ0 = 80, ReD = 1500) match the condi-

tions of the experiment (apart from the Reynolds, which is higher by about a factor

20 in the experiment). We find good qualitative agreement between the structure

of the radiated acoustic field and schlieren pictures from the experiment. The

measured frequency is f ≈ 29 000 Hz, which corresponds to a Strouhal number

StL = fL/U ≈ 0.73. This result matches the oscillation frequency StL = 0.723 in

our numerical simulation (see appendix A). Using optical interferometry, Krish-

namurty (1956) estimated the sound pressure levels (SPL) to approximately 163

dB for different cavity configurations. This value is similar to the SPL we measure

and report in chapter 5.

For the stability analysis, it is particularly important to verify that the modes

observed are physical and not generated by any numerical artifact. Several initial

conditions with disturbances at different locations in the cavity were considered

in order to perturb the linear equations and study the flow response. Similarly,

to demonstrate grid convergence of the three-dimensional stability computations,

simulations were performed on a finer grid for the same test case. As expected for

a global instability, the dominant three-dimensional mode is independent of the

initial perturbation and grid spacing, as both the nondimensionalised frequency

StD = ωD/(2πU) and growth rate σD/U are identical in all cases.
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Chapter 3

Linear Stability Results

As described in chapter 2, the three-dimensional linear stability analysis relies on

the existence of subcritical conditions with a steady two-dimensional basic flow

q̄(x, y), an exact solution of the 2D NS equations. However, for most experiments

and realistic flight conditions, the flow parameters would be such that Rossiter

modes do occur and eventually saturate into a periodically oscillating flow. It

must be acknowledged that the presence of three-dimensional instabilities is likely

to alter the two-dimensional basic flow on which the present linear analysis is based.

With this in mind, our approach here is to investigate the three-dimensional linear

stability of a given base flow, regardless of potential interactions. Such approach

has been widely used to predict the stability and growth rate of boundary layers,

for instance. As discussed in chapter 5 and chapter 6, the features observed in the

linear results are in fact relevant to full nonlinear simulations and experiments.

Potential extension of the linear stability analysis to supercritical conditions is

presented in appendix C.

3.1 Two-dimensional simulations

The first step of the linear stability analysis is to characterize the onset of two-

dimensional cavity instability. We review here the general properties of the shear-

layer (Rossiter) oscillations in compressible flows over open cavities.
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3.1.1 Shear-layer mode

As discussed in the introduction, the shear-layer (Rossiter) mode is characterized

by a flow-acoustic feedback process. Small disturbances in the shear layer are

amplified as they advect downstream through the shear layer and generate acoustic

waves upon impingement on the downstream edge of the cavity. These acoustic

waves propagate back upstream and interact with the shear layer to excite further

instabilities.

This mechanism is clearly observed in the 2D simulations. The vorticity, veloc-

ity and acoustic fields for run 2M06 (L/D = 2, L/θ0 = 52.8, M = 0.6, ReD = 1500)

are shown in figures 3.1, 3.2, and 3.3 respectively. They are representative of all

the simulations with shear-layer mode oscillations. As mentioned in the validation

section in § 2.5, good qualitative agreement is obtained between the density fluc-

tuations observed in the simulations and schlieren pictures from experiments (e.g.,

Krishnamurty, 1956). In the present case, the roll-up of vorticity in the shear

layer can be observed, but there is no shedding of vortical disturbances before

impingement at the downstream cavity edge. In general, the velocity magnitude

inside the cavity is only a fraction of the freestream velocity (less than 10% for

subcritical conditions and up to 30% for supercritical conditions) and the internal

flow is relatively weak.

One important feature of the cavity flow is the recirculating vortical flow (also

commonly referred as primary vortex) in the downstream half of the cavity. This

vortex is present in the steady state for subcritical conditions and in a time-

averaged sense for supercritical conditions. Figure 3.4 shows the 2D steady base

flow for different cavity configurations. As further discussed in § 3.2, the recirculat-

ing region plays a key role in the development of the three-dimensional instabilities.
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Figure 3.1: Vorticity field for the shear-layer mode (run 2M06) at four different

times (a-d) corresponding to approximately a quarter of a period of oscillation; 21

equi-spaced contours of the vorticity are shown between ωzD/U = −5 and 5.
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Figure 3.2: Velocity field for the shear-layer mode (run 2M06) at four different

times (a-d) (same times as in figure 3.1); 19 equi-spaced contours of the velocity

magnitude are shown between ||u||/U = 0.05 and 0.95.
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Figure 3.3: Visualisation of the acoustic field for the shear-layer mode (run 2M06)

at four different times (a-d) (same times as in figure 3.1); 21 equi-spaced contours

of the dilatation are shown between ∇uD/U = −0.05 and 0.05.
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Figure 3.4: Vorticity contours and streamlines of the two-dimensional steady base

flow; Ten equally-spaced contours between ωzD/U = −1 and 1 are shown: (a) run

H1Re200; (b) run 2M03; (b) run TK4M03Re65. In each case, the shear-layer and the

primary vortex within the cavity are clearly identified.

3.1.2 Neutral stability curves

While Rossiter’s formula in equation 1.1 provides reasonable predictions for the

frequency of oscillations that occur in self-sustained oscillations, it says nothing

about whether such oscillations do occur and, if they do, which of many possible

unstable modes is selected, and at what amplitude such oscillations would saturate.

For the most part, it can be presumed that at realistic flight-values the parame-

ters M , Reθ, L/D, and L/θ would be such that oscillations do indeed occur. The

critical values of, for example, the Reynolds at which the flow first becomes un-

stable is quite low. Nevertheless, it turns out that understanding the behaviour of

the instability near this critical transition has important consequences for cavity

oscillations at realistic Reynolds numbers.

The parameters for the different runs and the stability results are tabulated in

appendix A. Given a cavity configuration and different flow conditions, several two-

dimensional simulations are performed to construct the estimated neutral stability

curve for the two-dimensional instabilities of the basic cavity flow (e.g., figures 3.5,

3.6, 3.7, and 3.8(a)). The DNS results are classified according to whether the flow

is two-dimensionally stable (and thus a steady-state solution can be obtained) or

whether the flow results in self-sustaining oscillations. The oscillation frequencies

are computed for all the runs in shear-layer mode and are shown in these figures.
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Figure 3.5: Results for cavity run series H1 (L/D = 1, L/θ0 = 23.2): (a) Schematic

of the neutral stability curve from 2D nonlinear simulations (2D stable ( � ) and

unstable ( � )) and from the 3D linear analysis in § 3.2 (3D stable ( ◦ ) and unstable

( • )); (b) Strouhal numbers StL = fL/U for the supercritical conditions in (a),

compared to equation 1.1. Only one dominant mode ( N ) is present in this case.

The results of the three-dimensional linear stability analysis from § 3.2 are also

presented in figures 3.5, 3.6, 3.7, and 3.8(a). The different shaded regions indicate

the approximate stability transitions. The critical conditions are estimated by

linear interpolation between stable and unstable conditions. Here, it must be

acknowledged that these figures represent a general stability trend rather than

precise computation of critical conditions. Also, the 3D stability is based on linear

results and is therefore not available for supercritical conditions (i.e., the region

of 2D instability). However, the results of our nonlinear simulations, discussed

in chapter 5, tend to indicate that the critical conditions for the onset of the 3D

instability are similar on both sides of the 2D stability transition.

The two-dimensional results are consistent with the typical flow/acoustic res-

onant modes that have been observed in many cavity experiments (e.g., Krishna-

murty, 1956; Rossiter, 1964; Sarohia, 1975; Heller & Bliss, 1975; Tam & Block,

1978; Ahuja & Mendoza, 1995) and numerical simulations (e.g., Fuglsang & Cain,

1992; Rowley et al., 2002b; Gloerfelt et al., 2003). In all the cases, the two-
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Figure 3.6: Results for cavity run series 2M (L/D = 2, L/θ0 = 52.8): (a) Schematic

of the neutral stability curve from 2D nonlinear simulations (2D stable ( � ) and

unstable ( � )) and from the 3D linear analysis in § 3.2 (3D stable ( ◦ ) and unstable

( • )); (b) Strouhal numbers StL = fL/U for the supercritical conditions in (a),

compared to equation 1.1: ( N ) dominant mode, ( × ) subdominant mode

dimensional instability is essentially of the Rossiter type, wherein Kelvin-Helmholtz

instabilities in the shear layer spanning the cavity are coupled to acoustic feed-

back and receptivity at the trailing and leading edges, respectively. Frequencies

of oscillation are found to be predicted by Rossiter’s formula to within the exper-

imental scatter of measurements that have been made over the years for cavities

with laminar and turbulent boundary layers.

The onset of Rossiter mode as a function of the parameters is typically summa-

rized qualitatively as follows: there is a critical value of M , Reθ, and L/θ beyond

which oscillations occur. There does not appear to be any critical value of L/D

in the range of parameters considered 1 < L/D < 6. The stability results from

the two-dimensional simulations are consistent with these general trends. For low

Reynolds number and Mach number, the flow is subcritical and ultimately reaches

a steady state. As these parameters, or the ratio of the cavity length to the ini-

tial boundary layer momentum thickness L/θ0, are increased, the flow becomes

supercritical and oscillates in shear-layer (Rossiter) mode.
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Figure 3.7: Results for cavity run series TK2 (L/D = 2, L/θ0 = 30.12): (a)

Schematic of the neutral stability curve from 2D nonlinear simulations (2D sta-

ble ( � ) and unstable ( � )) and from the 3D linear analysis in § 3.2 (3D stable ( ◦ )

and unstable ( • )); (b) Strouhal numbers StL = fL/U for the supercritical condi-

tions in (a), compared to equation 1.1. Only one dominant mode ( N ) is present

in this case.
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Figure 3.8: Results for cavity run series TK4 (L/D = 4, L/θ0 = 60.24): (a)

Schematic of the neutral stability curve from 2D nonlinear simulations (2D sta-

ble ( � ) and unstable ( � )) and from the 3D linear analysis in § 3.2 (3D stable ( ◦ )

and unstable ( • )); (b) Strouhal numbers StL = fL/U for the supercritical condi-

tions in (a), compared to equation 1.1: ( N ) dominant mode, ( × ) subdominant

mode
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As mentioned in the previous section, the parameters L/D, L/θ0, and Reθ

affect the oscillation frequencies, and in particular the selection of a particular

resonant frequency. For instance, in figure 3.6, the flow is stationary for run 2M03

at M = 0.3 and ReD = 1500. The regime of shear-layer oscillations can be reached

by either increasing the Reynolds number (i.e., run 2M03Re80) or the Mach number

(i.e., run 2M04). Here, the resonant frequency corresponds to a Rossiter mode II

in the first case and mode I in the latter. In general, higher Rossiter modes are

observed for larger L/θ0 and higher Mach number (see appendix A).

3.2 Three-dimensional linear stability

The neutral stability curves presented in the previous section (3.1) are the starting

point of the three-dimensional linear stability analysis: the goal here is to investi-

gate whether or not 3D instability takes place before the onset of 2D instabilities.

For subcritical cases, the two-dimensional steady flow q̄ is extracted from the

DNS and used as base flow for the linear three-dimensional simulations: as initial

condition, a perturbation of given wavelength λ (therefore looking at one β-mode

at a time) is added to q̄ and the 3D linearised Navier–Stokes equations are solved.

The least damped (or most unstable) eigenmode (e.g., figure 3.14) and the corre-

sponding eigenvalue Ω = ω+iσ are then determined from the long-time response of

the cavity (e.g., figure 3.9) . The nondimensionalised growth/damping rate σD/U

and Strouhal number StD = ωD/2πU are computed in each case for a set a discrete

spanwise wavelength (e.g., figure 3.10) and the stability of the three-dimensional

mode is reported back on the stability curve.

3.2.1 Three-dimensional mode properties

Figures 3.10, 3.11, and 3.12 show the growth/damping rate and frequency of the

dominant three-dimensional mode as a function of the spanwise wavelength, for

different cavity configurations and flow conditions. The plots in these three figures

have much the same character and are representative of the results for cavities of
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Figure 3.9: Long-time linear response of the cavity to three-dimensional pertur-

bations of different spanwise wavelengths for run 2M0325 at (x, y, z) = (L/2, 0, 0):

( ) λ/D = 0.5, ( ) λ/D = 1, ( � ) λ/D = 1.5, ( 4 ) λ/D = 2. This

figure is a typical output of the linear stability simulations. Here, the disturbance

of spanwise wavelength λ/D = 1 is growing exponentially while the disturbances

at other wavelengths are damped.

aspect ratio L/D = 1, L/D = 2, and L/D = 4 considered here (see appendix A)

For a band of spanwise wavelengths around the size of the cavity depth (λ/D ≈
1), the dominant mode has a positive growth rate under certain conditions. This

unstable mode (referred as Mode ii) is unsteady and the oscillation frequency

based on the cavity depth D are comparable in all cases. This suggests that D,

rather than L or θ0, is the most appropriate length scale to characterize the three-

dimensional instability. By contrast, the two-dimensional unstable Rossiter mode

has frequency fL/U scaling with the cavity length: in this feedback process, the

resonant frequencies are directly connected to the times for vortical structures and

radiated sound to travel downstream and upstream across the cavity of length

L. For the three-dimensional instabilities, the frequency is found to be strongly

associated with the two-dimensional base flow and its recirculating vortical flow

within the cavity, which is about dimension D in all cases. Details about the

recirculating flow and the mode frequency are further discussed in § 3.2.3.
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Aside from this oscillatory mode, the presence of other three-dimensional modes

is suggested in figures 3.10, 3.11, and 3.12. In particular, the linear stability of the

shortest cavity L/D = 1 differs from the other cases. As the Reynolds number is

increased, the first mode to become unstable is steady (StD = 0) and has a smaller

spanwise wavelength (λ/D ≈ 0.5). A similar steady mode (referred as Mode i) is

observed for cavities of larger aspect ratio but is not amplified. We argue that the

specific properties of the three-dimensional mode for the square cavity are related

to the recirculating vortical flow that occupies the whole cavity in that particular

configuration. These features are discussed in more detail in chapter 4.

Finally, the linear stability results also suggest the presence of another unsteady

mode of larger spanwise wavelength λ/D ≥ 1.5. However, this mode iii does not

have the largest linear growth rate at any of the conditions considered here, and

is not observed in the three-dimensional nonlinear simulations we performed. For

several cases, a more extensive set of spanwise wavelength was also considered

(0.1 ≤ λ/D ≤ 32), but did not lead to any additional instabilities.

3.2.2 Parameter dependence

As mentioned previously, the parameters L/D, L/θ0, ReD, and M control the on-

set of the shear-layer (Rossiter) oscillation and whether the steady two-dimensional

flow needed for the linear analysis exists or not. Within the domain of 2D stabil-

ity, our linear results show that the flow parameters affect the properties of the

three-dimensional modes in four aspects. First, as discussed above, the cavity as-

pect ratio controls which mode (namely i or ii) is the dominant mode; secondly,

the Reynolds number has a direct effect on the growth rate as viscosity plays a

stabilizing role; thirdly, a change in certain parameters (e.g., L/θ0 and Re) mod-

ifies the strength of the recirculating region in the two-dimensional base flow and

indirectly the mode growth rate and frequency; and finally, the Mach number has

little influence on the mode properties.
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Figure 3.10: 3D linear stability results for run series 2M (L/D = 2, L/θ0 = 52.8)

as a function of the spanwise wavelength λ/D, for increasing Reynolds number

(as indicated by the arrow) and different Mach numbers: 0.1 < M < 0.38 for

runs 2M01 ( × ), 2M0325 ( O ), 2M035 ( ◦ ) and 2M038Re50 ( ♦ ); M = 0.3

for runs 2M03Re35 ( • ), 2M03 ( N ) and 2M03Re65 ( � ). The thick solid line

represents the stability transition σD = 0 and the region of positive growth rate

is shaded; different modes of instability are suggested. (a) Growth/damping rate,

(b) Frequency
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Figure 3.11: 3D linear stability results for run series TK2M (L/D = 2, L/θ0 = 30.12)

as a function of the spanwise wavelength λ/D, for increasing Reynolds number (as

indicated by the arrow). Two sets of Mach numbers are considered: M = 0.6

for runs TK2M06 ( ◦ ), TK2M6Re80 ( 4 ) and TK2M06Re140 ( � ); M = 0.325 for

runs 2M0325 ( • ), 2M0325Re80 ( N ), 2M0325Re100 ( � ) and 2M0325Re140 ( �

). The thick solid line represents the stability transition σD = 0 and the region

of positive growth rate is shaded; different modes of instability are suggested. (a)

Growth/damping rate, (b) Frequency
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Figure 3.12: 3D linear stability results for run series H1 (L/D = 1, L/θ0 = 23.2)

as a function of the spanwise wavelength λ/D, for increasing Reynolds number (as

indicated by the arrow). Two sets of Mach numbers are considered: M = 0.6 for

runs H1 ( O ), H1Re110 ( 4 ) , H1Re140 ( ◦ ) and H1Re200 ( ♦ ); M = 0.3 for runs

H1M03Re150 ( • ) and H1M03Re300 ( � ). The thick solid line represents the stability

transition σD = 0 and the region of positive growth rate is shaded; different modes

of instability are suggested. (a) Growth/damping rate, (b) Frequency
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Reynolds number

As indicated by the arrows in figures 3.10, 3.11, and 3.12, an increase in Reynolds

number has two effects on the properties of the instability: it significantly increases

the growth rate and moderately decreases the oscillation frequency (see details

in § 3.2.3). To fully ascertain the effect of Re on the onset of three-dimensional

mode, we performed a set of numerical experiments in which the base flow was

artificially held constant as Re was increased (for details, see appendix B). The

results confirmed that the growth rate of the dominant mode is directly driven

by the Reynolds number. Viscosity damps the instability and there is a critical

Reynolds number, above which the flow becomes three-dimensionally unstable.

Since the Reynolds numbers considered in this study are low, the three-dimensional

unstable modes are likely to exist for high Reynolds number flows in practical

applications.

Additionally, for the run series TK4M06 with a cavity of aspect ratio L/D = 4

(see appendix A), three-dimensional instabilities do not occur before the onset

of the two-dimensional shear-layer oscillation. These results can be interpreted

also in terms of critical Reynold number; that is, the Rossiter mode has a lower

critical Reynolds number than the three-dimensional mode for L/D = 4 under

these conditions, and vice versa for shorter cavities.

Boundary layer thickness

Our results show that the parameter L/θ0 controls whether the base flow permits

three-dimensional instability, and impacts the oscillation frequency (see details

in § 3.2.3). A closer inspection of the three-dimensional linearized Navier–Stokes

equations reveals that the influence of this parameter should be limited to its

effect on the base flow. Comparisons between the subcritical runs TK2M0325Re100

(figure 3.13(a)) and 2M0325 (figure 3.13(b)) show that, when the initial boundary

layer momentum thickness is reduced while keeping the other parameters ReD, M

and L/D constant, the strength of the recirculating region in the 2D base flow

increases. In the latter case, three-dimensional instabilities eventually develop.
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Figure 3.13: Vorticity contours for 2D steady and time-averaged base flows.

Equally spaced contours between ωzD/U = −5 and 1 are shown. Positive con-

tours are dashed; (a) run TK2M0325Re100. The thick initial boundary layer leads

to a weaker recirculating vortical flow within the cavity and no three-dimensional

mode; (b) ( ) run 2M01, ( ) run 2M0325. The difference between the two

solutions is less than 1%. Both simulations exhibit identical three-dimensional

instabilities; (c) run 2M06. The supercritical case exhibits a similar base flow in a

time-averaged sense.

These observations suggest again that a critical strength of recirculating flow in

the two-dimensional steady base flow needs to be reached for the presence of 3D

instabilities.

Mach number

From figures 3.10 and 3.11, it is clear that properties of the dominant three-

dimensional mode are essentially independent of the Mach number for subcrit-

ical conditions over subsonic speed up to 0.6. A set of numerical experiments,

presented in appendix B, confirmed this result. This is a substantially different

behaviour than the Rossiter modes. It indicates that the instability is unrelated

to acoustic waves and other effects of compressibility. It is also consistent with the

observation that the 3D instability is active in the recirculating region within the

cavity where the flow speed is much lower than the freestream value.

As a result, the critical conditions for the onset of the 3D instability are ex-

pected to be nearly independent of the Mach number, at least up to M = 0.6.
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In figure 3.6, the critical Reynolds number ReD ≈ 1300 is estimated at M = 0.3

from the run series 2M03, and is assumed to remain constant for the range of Mach

number 0 < M < 0.4, up to the limit of two-dimensional stability.

These results also suggest that the proper scaling for the velocity may not be

the freestream velocity but rather some characteristic velocity inside the cavity.

Alternate scalings are considered in § 4.2.

3.2.3 Eigenmode structure

The unstable eigenfunction for run 2M0325 is depicted in figure 3.14 and is repre-

sentative of all the three-dimensional unsteady instabilities. A cycle of growth and

decay of the disturbance can be observed, as it rotates around the primary vortex

of the two-dimensional base flow in the downstream half of the cavity. Starting

from the cavity trailing edge, a zone of strong growth exists near the downstream

wall where the shear layer impinges the cavity corner. As the fluid in the cav-

ity recirculates upstream and towards the bottom of the cavity, the disturbance

amplitude decays slightly, before growing again when moving away from the bot-

tom wall and toward the shear layer. In the shear layer, the perturbation is then

damped and convected downstream until it reaches the cavity corner and starts

this cycle again. Overall, a larger growth rate then decay rate in this process leads

to reinforcement of the disturbance and ultimately instability.

For visualisation purposes, two spanwise periods of the unstable mode of wave-

length λ/D = 1 are shown in figure 3.15. The perturbation velocity in the z-

direction w′/U is represented by the iso-surfaces. In general, the spanwise struc-

ture of the flow is reminiscent of the cellular pattern observed in experiments and

in oil flow visualisations (e.g., Maull & East, 1963).

Another distinctive characteristic of the three-dimensional instability is that

the oscillation frequency is about an order of magnitude smaller than the typical

frequency of the two-dimensional shear-layer (Rossiter) mode. A detailed inspec-

tion of the base flow properties shows that the mode frequency is related to the

closed streamlines in the primary vortex. The time for a disturbance to advect
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around the recirculating flow is computed for a discrete set of streamlines, and

the corresponding nondimensionalised frequencies are compared to the instability

frequency from the linear stability analysis. Under most conditions, there is a

region in the primary vortex where the frequency computed from the streamline

matches the mode frequency. Such streamline is presented in figure 3.14 and shows

good agreement with the motion of the disturbances. The smaller average velocity

along these streamlines (typically 5 to 10% of the freestream velocity, as shown in

figure 4.2(b)) also accounts for the low frequency measured.

This feature of the base flow also sheds light on the dependence of the predicted

instability frequency with the flow parameters. In figures 3.10, 3.11, and 3.12, sim-

ilar trends are observed when the base flow is modified through an increase of the

Reynolds number or of the incoming boundary layer thickness: that is, the oscil-

lation frequency decreases for higher Re or smaller L/θ0. In all these cases, the

strength of the recirculating region in the cavity decreases, so the travel time of

disturbances in the primary vortex increases, leading to higher 3D mode frequen-

cies. We note that this effect is, however, moderate and it is not expected that the

oscillation frequency would be significantly altered for supercritical conditions. In

the range of conditions considered, the properties of the two-dimensional steady

and time-averaged base flow for sub- and supercritical cases were comparable.

Additionally, our linear results suggest that there could be a significant inter-

action between the shear layer and the three-dimensional instabilities in practical

flows. In figure 3.14, it is clear that the three-dimensional disturbances affect a

large portion of the shear layer, even beyond the cavity downstream corner, as

the dotted line represents the limit of the shear-layer thickness in the base flow.

The extent of these nonlinear interactions in high Reynolds number flows is largely

unknown at this stage. Nevertheless, one can speculate that they could potentially

be used to design a controller that would tap into the three-dimensional instability

to control the shear-layer mode oscillation.
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Figure 3.14: Contours of the linearized perturbation velocity u′/U for the unstable

eigenfunction of spanwise wavelength λ/D = 1 for run 2M0325. Six times (a-f) are

shown, corresponding to half a time period of the 3D instability. The velocity

levels are arbitrary and the negative contours are dashed. The red flooded region

indicates the zone of potential centrifugal instability discussed in chapter 4. Other

features of the 2D base flow: (→) streamline, ( ) shear-layer thickness
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Figure 3.15: 3D visualisation of three periods of the unstable mode of spanwise

wavelength λ/D = 1 for run 2M0325. For visualization purposes, the amplitude of

the 3D linear mode is increased to approximately 20% of the freestream amplitude

and was added to the basic steady state flow. The color contours represent the

total (steady flow and perturbation) velocity magnitude, and velocity vectors are

shown on the streamwise cross section at z = 0 and on the bottom of the cavity. On

each plot, two spanwise periods of the unstable mode are shown and the spanwise

perturbation velocity w′/U is represented by the iso-surfaces. One time period of

the instability is shown on each column, with time increasing from top to bottom,

and left to right.
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Chapter 4

Centrifugal Instability

4.1 Instability mechanism

We now address the mechanisms of three-dimensional instability. The linear results

indicate that the instability depends on the strength of the recirculating region in

the downstream half of the cavity. We argue here that the instability mechanism

is the generic centrifugal instability associated with the closed streamlines in the

recirculating vortical flow near the downstream cavity wall.

4.1.1 Rayleigh’s circulation criterion

The centrifugal instability problem was first considered for swirling inviscid flow

by Rayleigh, who derived the now celebrated Rayleigh’s circulation criterion for

stability (e.g., Drazin & Reid, 1981). The classical theory for circular streamlines

was generalized to two-dimensional inviscid flow by Bayly (1988). For the cen-

trifugal instability to occur, a sufficient condition is that the magnitude of the

angular velocity decreases outward in some region of the flow with closed stream-

lines. Barkley et al. (2002) applied this theory to three-dimensional instability

in the flow over a backward-facing step. Following their notation, the Rayleigh

discriminant is defined as

η(x, y) = −∂||r(x, y) × ū(x, y)||2
∂r

, (4.1)
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where r(x, y) = (x − xc, y − yc), with (xc, yc) the center about which the angular

velocity is defined, and r = ||r(x, y)||. The velocity is simply ū(x, y) = (ū, v̄). In

practice, the center (xc, yc) was chosen to be the approximate location of the min-

imum velocity inside the recirculating region inside the cavity. The discriminant η

is actually only weakly dependent on the choice of the center of rotation: computa-

tions with ±10% error on (xc, yc) lead to similar results. The flow is centrifugally

unstable in the inviscid limit where η > 0.

4.1.2 Rayleigh discriminant

Figure 4.1 shows the Rayleigh discriminant of the 2D steady (or time-averaged)

base flow for different cavity configurations. The contours represent only the region

where η is greater than 5% of its maximum value. Additionally, the streamlines

are plotted to visualise the flow. The zone where the angular velocity decreases

radially corresponds to the downstream part of the recirculating flow near the cav-

ity wall. It also corresponds to the region of maximum growth of the disturbance,

as discussed in the previous section. The fluid in the recirculating flow experi-

ences a regime similar to solid-body rotation, with velocity and circulation along

the streamlines increasing linearly with the distance to the center of rotation (see

figure 4.2). Intuitively, the presence of the downstream and bottom walls forces

a rapid decrease in momentum at the outer streamlines. Because of the wall, the

fluid is driven in the spanwise direction to form the structures observed in fig-

ure 3.15. As the walls are an intrinsic part of all configurations, any cavity flow

should be inherently unstable because of the centrifugal instability mechanism,

and our simulations do show regions of positive Rayleigh discriminant even for

three-dimensional stable cases. However, the centrifugal stability criterion is only

a sufficient condition for inviscid flow. As the parametric study of the Reynolds

number effect showed, viscosity plays a stabilizing role. In general, simulations

with a higher Re lead to larger values and broader zones of positive Rayleigh

discriminant. This result is consistent with the higher linear growth rate of the

instability measured in these cases.



45

PSfrag replacements

0

0

1

1
2 4

-

x

(a) y

(b)
y
(c)

y

PSfrag replacements

0

0

1

1
2 4

-

x(a
)

y

(b) y

(c)
y

PSfrag replacements

0

0

1

1
2 4

-

x

(a
)

y
(b)

y
(c) y

Figure 4.1: Streamlines and Rayleigh discriminant of two-dimensional steady (or

time-averaged) base flow. The red flooded region indicates where η is greater than

5 % of its maximum value. (a) run H1Re200; (b) run 2M06; (c); run TK4M03Re65.

Cases (a),(c) are 2D subcritical and (b) is supercritical.
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Likewise, two-dimensional time-averaged base flows at supercritical conditions

exhibit similar regions of potential centrifugal instability. Comparison of the

Rayleigh discriminant between the subcritical run 2M0325 in figure 3.14 and the

supercritical run 2M06 in figure 4.1(b) shows comparable results, with a slight in-

crease in the levels and extent of the instability zone in the latter case. This

observation suggests again that the centrifugal instability mechanism is relevant

for cavity flow vortices (in a time-averaged sense) at higher Reynolds numbers.

As mentioned previously, cavities with aspect ratio L/D = 1 feature slightly

different characteristics. The recirculating vortical flow now occupies the whole

cavity and the motion of disturbances in that vortex is affected not only by the

downstream and bottom walls, but by the upstream wall as well. The computation

of the Rayleigh discriminant reflects these distinctive features. It is clear in figure

4.1(a) that the region of potential centrifugal instability is much larger, covering the

outward streamlines of the primary vortex from the trailing edge of the downstream

wall all the way around back to the shear layer. The influence of the upstream

wall is believed to be the main explanation for the differences in the instability

spanwise wavelength and oscillation frequency observed between cavities of smaller

and larger aspect ratio.

Rayleigh’s circulation criterion can also be interpreted in terms of circulation

along the closed streamlines. In that case, the flow is centrifugally unstable if

the circulation magnitude decreases in the outward direction. To validate our

results, the circulation on the closed streamlines around the primary vortex were

computed as a function of the distance to the center of rotation. Both independent

methods lead to the same result: in the inviscid limit, the flow will develop a three-

dimensional centrifugal instability in the primary recirculating vortical flow inside

the cavity near the downstream wall.
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4.2 Connection with other centrifugal instabilities

While this is the first time, to our knowledge, that three-dimensionality connected

to centrifugal instabilities has been reported for open cavity flows, past studies of

global instabilities did shed some light on that mechanism for similar flow config-

urations. Most of these studies focused on critical flow conditions for the onset of

centrifugal instability and the properties of the resulting three-dimensional mode.

To enable direct comparison with our linear results for cavity flows, the criti-

cal parameters are linearly interpolated whenever conditions of both sides of the

three-dimensional stability transition are available.

4.2.1 Flow past a backward-facing step

Barkley et al. (2002) considered incompressible flow over a spanwise homogeneous

backward-facing step geometry, which can be related with that of a wide cavity

at appropriate parameter ranges. The run series TK4M03 for our longest cavity

of aspect ratio L/D = 4 at low Mach number M = 0.3 are set up to match the

range of Reynolds number and the laminar boundary layer momentum thickness

of the step simulations. Barkley et al. (2002) discovered the existence of amplified

large-scale spanwise-periodic vortical structures in this flow. They argued that

the source of the three-dimensionality was the centrifugal instability mechanism

within the closed recirculation bubble formed between the lip and the downstream

floor of the backward-facing step. Much like our linear stability analysis of the

cavity flow, they showed that the flow was linearly unstable to three-dimensional

disturbances over a finite range of spanwise wavelengths. The reported critical

Reynolds number for the instability Reh = Uh/ν = 748 is of the same order as

ReD = 960 for the run series TK4M03 (here h is the step height similar to the

cavity depth D). However, their critical three-dimensional mode is steady with a

spanwise wavelength λ/h = 6.9, and therefore quite different from the cavity flow

result (see table 4.1).

As the three-dimensionality in both cases is believed to arise from the recir-
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culating flows in the step separation zone and downstream half of the cavity, a

possible source of these discrepancies is the differences between the closed stream-

lines in both flows. For the run series TK4M03, the characteristic dimension of the

recirculation vortical flow inside the cavity is again the cavity depth D and, for

the most part, the closed streamlines are approximately circular. In contrast, the

streamlines in the step separation zone in the simulations by Barkley et al. (2002)

are elliptical, with minor axis of dimension h = D and a much larger major axis

13h corresponding approximately to the reattachment point of the flow, which is

a linearly increasing function of the Reynolds. This significant change of geometry

could be the cause of the variations in the 3D mode properties.

4.2.2 Lid-driven cavity flows

The lid-driven cavity (LDC) also features three-dimensional centrifugal instabil-

ities (e.g., Albensoeder et al., 2001). While cavity flows exhibit a much richer

variety of fluid dynamic processes (shear-layer instabilities, vortex-surface interac-

tion, acoustic waves propagation) compared to traditional incompressible bounded

lid-driven flows, the two-dimensional steady base flows obtained from simulations

of subcritical cavity flows are in fact similar to the corresponding LDC basic flow.

Numerous representations of the two-dimensional streamlines in lid-driven cavity

configurations at different Reynolds numbers are available in the literature (see

Ramanan & Homsy (1994); Ding & Kawahara (1999) for square cavity; and Al-

bensoeder et al. (2001) for cavity of aspect ratio 4). These results can be related

to the basic cavity flows in figure 4.1. Because of the presence of a comparable

recirculating region in both flows, similar trends can be expected for the stabil-

ity of LDC and cavity flows. Several experimental and numerical studies have

reported three-dimensional modes in square LDC flow and measured the corre-

sponding critical conditions. Additionally, for lid-driven cavities of aspect ratio 1,

2, and 4, detailed linear stability analysis were conducted by Albensoeder et al.

(2001) and Theofilis et al. (2004). All the results are presented in table 4.1.

However, since there is no direct correspondence between the Reynolds number
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ReD = UD/ν defined for the cavity flow and Relid = UlidD/ν for the lid-driven

flow, comparisons remain qualitative. A different scaling than the freestream ve-

locity is considered here, to enable a closer comparison with LDC results. The

average streamwise velocity along the cavity mouth at y = 0 is computed for

each two-dimensional steady basic flow field, and is interpolated from the critical

conditions. The critical Reynolds numbers and frequencies are then rescaled us-

ing that average velocity Ulid and are shown in table 4.1. While the traditional

nondimensionalisation leads to a range of critical conditions strongly dependent

on the cavity aspect ratio and the initial boundary layer momentum thickness,

the rescaled results have the same order of magnitude, independently of the cavity

configuration. The average velocity Ulid is typically 5 to 15% of the freestream

velocity, which accounts for the lower critical Reynolds number Relid and higher

corresponding frequency Stlid. There is also a closer agreement between the LDC

and cavity flow results.

4.2.3 Couette flow

Another alternative scaling for the velocity is based on the observation that the

recirculating vortical flow inside the cavity exhibits characteristics similar to a

solid-body rotation away from the walls (as confirmed by PIV measurements from

Chatellier et al., 2006). This feature suggests that the cavity flow could be com-

pared to the special case of Couette flows where the inner cylinder of radius R1

rotates with constant angular velocity Ω1 while the outer cylinder of radius R2 is

at rest. This is particularly relevant for the square cavity, where the recirculating

flow occupies the whole cavity and plays the role of the inner cylinder while the

cavity walls correspond to the stationary outer cylinder. The stability of such flow

has been widely studied and is often mentioned as a classical example of centrifugal

instabilities.

DiPrima et al. (1984) computed the critical values of the Reynolds number

and corresponding axial wavenumber as a function of the radius ratio R1/R2 for

axisymmetric stationary modes. Note that their results were made dimensionless
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by scaling length with the gap width d = R2 − R1 and velocity with the inner

cylinder velocity Ω1R1. To enable comparison with the Couette flow stability re-

sults, closed streamlines inside the recirculating flow are extracted and the average

velocity along each streamline is computed. From figure 4.2(b), it is clear that the

fluid in the vortex rotates with nearly constant angular velocity, as the average

velocity along the inner streamlines is proportional to the distance from the center

of rotation until the influence of the solid wall is felt, leading to the approximate

definition of the convective velocity scale UC = Ω1R1. Note that the objective here

is only to achieve qualitative comparison, as it is not possible to unambiguously

define R1 and R2 for the cavity flow.

We estimated the radius ratio for run H1Re140, which is the last available con-

dition from our linear stability analysis before the stationary mode of wavelength

λ = 0.5 becomes unstable. From DiPrima et al. (1984), the corresponding critical

Reynolds number and wavenumber are 317 and 0.46 respectively, in units of D

and UC . These values are comparable to the square cavity flow data in table 4.1,

highlighting once more the centrifugal character of the 3D instabilities. Similarly

to the previous nondimensionalisation inspired by the LDC flows, the rescaled re-

sults for the different cavity configurations have the same order of magnitude.

The stability results for the LDC and Couette flow also shed light on the

particular properties of the instability in cavities of aspect ratio 1, that is the

critical conditions correspond to a stationary mode of smaller spanwise wavelength,

about 0.5D. Based on the Couette flow analogy, these results suggest that this

stationary mode is amplified in the particular configuration where the recirculating

region occupies the whole cavity and interacts with all the cavity walls. Hence the

unstable non-oscillatory mode of wavelength 0.4 reported in our linear stability

analysis for L/D = 1 cavities, and not for cavities of larger aspect ratio.

Finally, while this analysis makes clear the role of centrifugal instability in cav-

ity flows, we note that it is not predictive in the sense that Ulid, UC , R1, and R2

have to be estimated from the 2D steady (or time-averaged) base flow.
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Figure 4.2: Properties of the 2D steady base flow in run H1Re140 for comparison

with Couette flow:(a) Streamlines (only one streamline out of 5 is shown); (b)

Magnitude of the average velocity |u|/U along the streamline going through (xc =

0.55, y); ( • ) end of the solid-body rotation regime. The corresponding Couette

flow cylinder radius R1 and R2, as well as the new velocity scale UC , are shown.
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L/D = 1 λ/D Re Relid ReC StD Stlid StC

LDC Albensoeder et al. (2001) 0.408 - 786 - - 0 -

Albensoeder et al. (2001)† 0.398 - 810 - - 0 -

Theofilis et al. (2004) 0.409 - 782 - - 0 -

Couette DiPrima et al. (1984) 0.46 - - 317 - - 0

OC run series H1 0.5 4120 382 209 0 0 0

run series H1M03 0.4 4060 377 208 0 0 0

LDC Aidun et al. (1991)†‡ ≈ 1 - 875 - - 0.111 -

Ramanan & Homsy (1994) 1.047 - 730 - - 0.100 -

Ding & Kawahara (1999) 0.849 - 920 - - 0.079 -

Albensoeder et al. (2001) 0.848 - 933 - - 0.078 -

Theofilis et al. (2004) 0.849 - 922 - - 0.079 -

OC run series H1M03 1 5900 452 277 0.010 0.130 0.213

L/D = 2 λ/D Re Relid ReC StD Stlid StC

LDC Albensoeder et al. (2001) 1.182 - 353 - - 0.092 -

Theofilis et al. (2004) 1.102 - 360 - - 0.093 -

OC run series 2M03 1 1300 200 144 0.026 0.169 0.235

run series TK2M0325 1 2000 198 133 0.016 0.160 0.237

run series TK2M06 1 1990 198 140 0.017 0.166 0.235

continued on next page
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L/D = 4 λ/D Re Relid ReC StD Stlid StC

LDC Albensoeder et al. (2001) 1.220 - 288 - - 0.091 -

Theofilis et al. (2004) 1.257 - 290 - - 0.090 -

OC run series 4M03 1.25 2370 176 118 0.012 0.158 0.236

run series TK4M03 1.25 960 146 110 0.026 0.172 0.229

BFS Barkley et al. (2002) 6.9 750 - - 0 - -

Table 4.1: Critical conditions of the 3D centrifugal instability for flows over a

backward-facing step (BFS), lid-driven cavity (LDC), Couette and open cavity

(OC) flows for different aspect ratio. For L/D = 1, critical conditions for both

steady and unsteady modes are reported. The Reynolds number and nondimen-

sionalised frequency are defined as U∗D/ν and fD/U∗, where different velocity

scales U∗ are considered for the cavity flows: the freestream velocity U , the aver-

age velocity Ulid along the cavity at y = 0, and the maximum average velocity UC

along the closed streamlines of the two-dimensional base flow vortex, as defined

in § 4.2.3. † Experimental results ‡ Mode frequency estimated by Benson & Aidun

(1992).
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Chapter 5

Nonlinear Three-Dimensional Simulations

To investigate the effect of these instabilities on real flows, full three-dimensional

nonlinear simulations are performed. Both subcritical (run 2M0325-3D) and su-

percritical conditions (runs 2M06-3D and H1Re300-3D) are considered. For the 3D

simulations, the steady (or time-averaged) basic state q̄(x, y) extracted from the

two-dimensional DNS data is perturbed by small disturbances of spanwise wave-

length λ/D = 2 and λ/D = 1, corresponding to the first two spanwise wavenum-

bers in the 3D simulation. The full NS equations are then numerically solved on a

homogeneous three-dimensional cavity of spanwise extent Λ/D = 2. As the linear

stability results suggest that the spanwise wavelength of the dominant 3D mode is

in the range 0.4 ≤ λ/D ≤ 1.25, such cavity aspect ratio is expected to be sufficient

to capture all the flow physics.

For the cavity of aspect ratio L/D = 2, the grid contains about seven and

a half million grid points, with (Nx = 120, Ny = 60, Nz = 128) points across

the cavity in the streamwise, depth and spanwise directions, respectively. The

grid size is reduced to about three million grid points, with (Nx = 60, Ny = 60,

Nz = 128) for the cavity of smaller aspect ratio L/D = 1. In each case, the

computational domain extends several cavity depths upstream, downstream, and

above the cavity. For validation purposes, some cases were also performed on a

coarser mesh with different initial conditions, and led to identical results.
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5.1 Subcritical conditions

5.1.1 3D mode oscillation

The first configuration considered is again the subcritical run 2M0325, for a cavity

of aspect ratio L/D = 2 at low Mach and Reynolds number (M = 0.325, ReD =

1500, L/θ0 = 53). The two-dimensional simulation shows that the flow is initially

oscillating at a frequency StD = fD/U = 0.241 close to Rossiter first mode, with

exponentially decaying amplitude, and ultimately converges to a steady state.

This result is confirmed by the stability analysis. By setting β = 0 in equation 2.4,

the linear stability of the steady base flow can be investigated for perturbation of

spanwise wavelength λ/D = ∞ (i.e., two-dimensional perturbations). In that case,

the linear growth/damping rate and frequency of the dominant Rossiter mode are

recovered. For run 2M0325, the mode is damped and the frequency is StD = 0.240

(see table 5.1).

Figure 5.1 shows a portion of the time-history of the velocity v/U for both

two- and three-dimensional simulations at approximately the same location in the

middle of the cavity. Initially, the three-dimensional flow oscillates at a frequency

corresponding to the 2D Rossiter mode. This frequency and its first harmonic are

evident in the spectrum in figure 5.2. After a transition period, the 2D modes

decay while the 3D mode grows and saturates. The final frequency of oscillation is

StD = 0.025 corresponding to the frequency of the most unstable three-dimensional

mode from the linear stability analysis (see table 5.1).

5.1.2 Flow structure

The visualisation of the flow structures over half a time-period is presented in fig-

ures 5.3 and 5.16. As the shear-layer oscillations are damped and eventually die

out, the three-dimensional instability associated to the centrifugal mechanism is

the only unsteady feature remaining in the flow: the growth and decay of distur-

bances rotating around the primary vortex can be observed in the cavity, as can the

formation of a cellular pattern similar to the linear stability results. As predicted,
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Run 2M0325 2M06

2D subcritical 2D supercritical

L/D 2 2

ReD 1500 1500

L/θ0 52.3 52.3

M 0.325 0.6

StD Mode λ/D StD Mode λ/D

Rossiter prediction 0.181 I ∞ 0.160 I ∞
0.422 II ∞ 0.372 II ∞

2D DNS 0.241† I ∞ 0.204 I ∞

3D Linear Stability 0.025 ii 1 n.a.

0.240† I ∞ n.a.

3D DNS 0.025 ii 1 0.026 ii 1

0.240† I ∞ 0.352 II ∞

Table 5.1: Comparison of the dominant mode prediction for 2D and 3D runs

with L/D = 2. Only the most energetic frequencies StD = fD/U for the cavity

flows are presented, along with the spanwise wavelength λ/D of the instability.

The original values from Rossiter (1/κ = 1.75, α = 0.25) were used in the semi-

empirical formula. † For subcritical conditions, the Rossiter modes are damped

but the oscillation frequency can still be measured from the early times. The linear

stability results are not available (n.a.) for supercritical conditions.
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the spanwise wavelength of the three-dimensional instability is equal to one cavity

depth. Spectral analysis in the spanwise direction shows that the energy spreads

to all the other wavelengths (including harmonics) because of the nonlinear terms

in the NS equations, but λ/D = 1 remains the dominant wavelength.

Most of the three-dimensionality is confined to the internal flow inside the cav-

ity, where the velocities remain small (up to 10% and 15% of the freestream value

for the streamwise and normal velocities, respectively). The spanwise velocities

in figure 5.3 correspond to only 1% of the freestream velocity. The instantaneous

maxima of w/U are located near the downstream wall inside the cavity and reach

about 2.5%. Even smaller levels of spanwise velocity are mesured in the shear

layer, which remains mostly two-dimensional and stationary, despite the presence

of the centrifugal instability. The shear-layer spreading rates for run 2M0325 and

2M0325-3D are shown in figure 5.11: both 2D and 3D simulations exhibit iden-

tical linear growth along the whole cavity. The shear layer properties and the

measurement of the spreading rate are discussed in more details in § 5.2.3.

5.1.3 Time-averaged flow

Because the three-dimensional mode is oscillating about the mean flow, its contri-

bution cancels out in a time-averaged sense: that is, the time-averaged flow does

not exhibit the spanwise modulation of wavelength λ/D = 1 like the instantaneous

flow field does. Figure 5.4 compares the time-averaged velocity field of the 2D run

2M0325 and 3D run 2M0325-3D (also spanwise-averaged). Here, the 3D results

deviate from the two-dimensional predicted steady state by less than 2% of the

freestream quantities.

In conclusion, the three-dimensional mode predicted by the linear stability

analysis is observed in the nonlinear simulation. Under the present conditions, the

instability remains weak and is mainly active in the recirculating region within the

cavity. The interaction with the shear layer is also weak and mostly limited to a

low-frequency, small-amplitude oscillation.
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Figure 5.3: Visualisation of the spanwise structures in 3D run 2M0325-3D. Six

different times (a-f) are shown, corresponding to approximately one-sixth phase

intervals of a half-period of the 3D instability. The iso-surfaces represent the

spanwise velocity levels w/U = −0.01 and w/U = 0.01. The whole spanwise

extent of the cavity is shown and the wavelength λ/D = 1 of the instability can

clearly be observed. The velocity vectors in the streamwise cross-section at z = 0

are shown inside the cavity and once in the freestream for comparison.
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5.2 Supercritical conditions

Supercritical conditions were obtained from the previous simulations by simply

increasing the Mach number from M = 0.325 to M = 0.6 while keeping the other

parameters constant. In run 2M06, the two-dimensional flow exhibits disturbances

of growing amplitude and eventually saturates into a periodic oscillating flow of

frequency corresponding to the Rossiter mode I. In this case, a time-averaged

steady state q̄ is extracted by averaging the periodic data and the 3D nonlinear

simulation is performed following the same procedure as the subcritical case.

5.2.1 Unsteady flow structure

The flow structure is shown in figure 5.5 for comparison with the subcritical case

2M0325-3D. Both flows exhibit identical three-dimensional features in terms of cel-

lular pattern inside the cavity and oscillation frequency (see § 5.2.2). The velocity

field in the cavity is stronger in this case: the maxima of the instantaneous velocity

magnitude are between 15 and 25% of the freestream value for the streamwise and

normal velocities, and up to 10% for the spanwise velocity. This increase leads to

larger iso-surfaces in figure 5.5 compared to figure 5.3, but the dominant spanwise

wavelength is still λ/D = 1. Here, the 3D instability can again be identified with

mode ii.
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(a) (d)

(b) (e)

(c) (f)

Figure 5.5: Visualisation of the spanwise structures for 3D run 2M06-3D. Six differ-

ent times (a-f) are shown, corresponding to approximately one-sixth phase intervals

of a half-period of the 3D instability. The iso-surfaces represent the same spanwise

velocity levels as in figure 5.3 (w/U = −0.01 and 0.01).
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For these supercritical conditions, shear-layer oscillations are also present in the

3D simulations and the interaction between the three-dimensional instabilities and

the shear layer is significant. In the downstream half of the cavity, the spanwise

structures enter the shear layer and impinge on the downstream edge. Part of

the disturbances is swept downstream while the other part goes back into the

recirculating flow inside the cavity. In general, the spanwise wavelength λ/D = 1

of these structures can still be observed as they are convected downstream of the

cavity.

5.2.2 Oscillation frequencies

The time-history of the streamwise velocity u/U and the pressure P −P∞ for runs

2M06 and 2M06-3D are compared in figures 5.6 and 5.7. It is interesting to note

that both Rossiter modes I and II are initially unstable in the two-dimensional

simulation, but through a process of nonlinear amplification and saturation, mode

I is selected, while mode II is damped and vanishes. In the three-dimensional

simulation, after some transient exhibiting both Rossiter modes I and II, the self-

sustained oscillations in the flow saturate into a periodic regime where the Rossiter

mode II and the three-dimensional instability can be observed simultaneously. The

different mode frequencies are reported in table 5.1.

In figure 5.6, it is clear that the shear-layer oscillations exhibit a low-frequency

modulations related to the 3D mode. Similar results are obtained in figure 5.8 for

the spanwise velocity inside the shear-layer at 0.5L and 0.9L from the leading edge.

The interaction between the two modes increases near the downstream wall of the

cavity, where the oscillation amplitude is larger and the centrifugal instability

stronger. The low-frequency peaks are observed in the power spectra in figures

5.9(a) and 5.10, respectively. Apart from harmonics, additional peaks are present

at the frequencies fII − fii and fII + fii , corresponding to nonlinear interactions

between the Rossiter mode II and the 3D mode ii. For the spanwise velocity, these

two frequencies are particularly energetic and the peak at fII is noticeably absent

in the spectra in figure 5.10. We suspect that there is no peak associated with
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Figure 5.6: (a) Time trace of streamwise velocity at (x, y) = (0.5L, 0) for 2D run

2M06 ( ) and 3D run 2M06-3D ( ) at z = 0.25D; (b) Details of the

signal in the boxes in (a). To show all the data clearly, the bottom and left axes

correspond to the 3D simulation, and the top and right axes to the 2D run.
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Figure 5.7: (a) Time trace of pressure at (x, y) = (0.9L, 0) for 2D run 2M06 ( )

and 3D run 2M06-3D ( ) at z = 0; (b) Details of the signal in the boxes in

(a). To show all the data clearly, the bottom and left axes correspond to the 3D

simulation, and the top and right axes to the 2D run.
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Figure 5.8: (a) Time trace of spanwise velocity at (x, y, z) = (0.9L, 0, 0) for 3D run

2M06-3D, (b) Details of the signal ( ) in the box in (a) and of the spanwise

velocity at (x, y, z) = (0.5L, 0, 0) ( )

the Rossiter mode here because there is no mean spanwise velocity in the time-

averaged flow. This can be contrasted with the results presented in section § 5.3

where the peak is observed when a steady 3D mode is present.

For the present conditions, the peak associated with the 3D mode is in general

about the same energy level or higher than the one for the Rossiter mode in the

power spectra of the velocity field components. The low-frequency modulation is

less evident in the time trace of the pressure in figure 5.7 and the Rossiter modes

are significantly more energetic than the 3D mode in the spectra of the pressure

in figure 5.9(b). Here, we argue that the interaction between the Rossiter mode

and the three-dimensional instability is stronger for the velocity field than for the

acoustic field because of the hydrodynamic nature of the 3D mode. Overall, these

results are consistent with the present hypothesis that the 3D modes are related

to the centrifugal instability mechanism.

Since the 2D flow is supercritical, linear results for run 2M06 are not avail-

able for direct comparison with the three-dimensional mode frequency observed

here. However, the low frequency measured here matches the predicted result

from the linear stability analysis of run 2M0325 and the 3D mode frequency from

run 2M0325-3D. There is no contradiction here, since we showed in § 3.2.1 that the
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run 2M06 ( ); 3D run 2M06-3D ( ). The different modes are identified

and their harmonics can also be observed. (a) Streamwise velocity, (b) Pressure
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Figure 5.10: Power Spectra of the spanwise velocity presented in figure 5.8 for 3D

run 2M06-3D:(a) measurements at (x, y, z) = (0.5L, 0, 0) ( ), (b) measure-

ments at (x, y, z) = (0.9L, 0, 0) ( )

Mach number has little influence on the characteristics of the three-dimensional

mode. This result is encouraging, as it tends to indicate that linear results from

subcritical cases (if such stable conditions exist) could deliver useful insight on the

3D stability at higher Mach number for corresponding supercritical conditions.

5.2.3 Shear-layer spreading rate

Another key feature is that the shear-layer oscillation frequency now corresponds to

the Rossiter mode II, rather than mode I as is selected in strictly two-dimensional

simulations. The higher oscillation frequency of the 3D simulation is clearly ob-

served in figure 5.7(b).

To better assess the instability properties of the shear layer, the vorticity thick-

ness δω(x) = U/(dū(x, y)/dy)max is computed, where ū(x, y) is the time (and

spanwise) average of the streamwise velocity. The vorticity thickness and its slope

dδω/dx are typically used to measure the shear-layer spreading rate. Most re-

searchers report that shear layer over open cavities exhibits approximately linear
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( • ) and H1Re300-3D ( ◦ ); runs 2M0325 ( ) and 2M0325-3D ( � ); runs 2M06 ( N )

and 2M06-3D ( 4 ). For the latter two cases, data for x/D > 1 was not considered

in the calculation of dδω/dx.

growth, much like free shear layers. However, the basic physics of these flows dif-

fers in two main aspects: that is, the shear layer is subject to a strong acoustic

feedback, and the presence of the recirculating vortical flow in the downstream

part of the cavity affects the entrainment and alters the shear-layer thickness.

The comparison of the spreading rates in figure 5.11 highlights these key fea-

tures: for supercritical conditions (such as run 2M06-3D), the shear-layer oscilla-

tions lead to a higher initial spreading rate and a sharp increase around x/δ0 ≈ 6

(i.e., x/D ≈ 1), which corresponds to the location of the recirculating region and

the region of larger amplitude oscillations. In contrast, for the subcritical run

2M0325-3D with the same initial boundary layer momentum thickness, the spread-

ing rate is approximately linear over the whole cavity and its value is about 25%

lower. Also, the influence of the downstream wall is clearly shown for x/δ0 > 10

(i.e., x/D > 1.85).

In both runs 2M06 and 2M06-3D, the shear layer initially exhibits linear growth

for x/δ0 < 6, but there is a 15% decrease in the spreading rate between the 2D
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(dδω/dx ≈ 0.08) and 3D (dδω/dx ≈ 0.07) simulations. These results are of the

same order as the spreading rates measured in experiments (Sarohia, 1975) and

numerical simulations (Rowley et al., 2002b). Sarohia’s measurements are based

on the momentum thickness θ and can be related to vorticity thickness by δω ≈ 4θ

(exact equivalence for hyperbolic tangent profiles). As L/θ0 is increased from 52.5

to 105.2, Sarohia (1975) observed that the spreading rate dθ/dx increased from

0.006 to 0.022, and the cavity oscillation switched from mode I to mode II. Other

experimental (e.g., Gharib & Roshko, 1987) and numerical (e.g., Rowley et al.,

2002b) studies on open cavity flows also report that larger shear-layer spreading

rates are obtained as L/θ0 is increased, and ultimately lead to higher dominant

mode. In the present case, an increase in shear-layer spreading rate does not seem

to be the cause of the higher mode observed in the three-dimensional simulation,

as the opposite trend can be observed in figure 5.11.

5.2.4 Time-averaged flow properties

The shear-layer measurements are consistent with other observations in the flow

field. Here, we argue that the decrease in shear-layer spreading rate is related

to the smaller oscillation amplitude and weaker recirculating region in the three-

dimensional simulations. As shown in figures 5.6 and 5.7, the oscillation amplitude

of the limit cycle slightly decreases between the 2D and 3D simulations. All the

other probes located in the shear layer and inside the cavity exhibit the same trend.

Likewise, a decrease in all the Reynolds stresses is observed, especially in the

shear layer. Figure 5.12 shows urms =
√

u′u′/U , vrms =
√

v′v′/U , and wrms =
√

w′w′/U for the runs 2M06 and 2M06-3D. Here, the superscripts “ ¯ ” and “ ′ ”

denote the time averaging and the fluctuating component of the flow variable with

respect to the corresponding time-averaged quantity (i.e., u′ = u−u). The highest

levels of urms are found in the shear layer in the downstream half of the cavity

where the amplitude of oscillation is larger. For vrms, the highest levels are located

near the downstream edge of the cavity because of the impingement process. The

maximum amplitude of the rms velocity components are respectively 0.13 and
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Figure 5.12: Reynolds stresses
√

u′u′/U ,
√

v′v′/U and
√

w′w′/U (from top to

bottom): (a) 2D run 2M06; (b) 3D run 2M06-3D. Five equi-spaced contours between

0.02 and 0.1 are represented. The spanwise average is shown for the 3D case.



70

PSfrag replacements

x

y

0 2

-1

0

1

0 0.01

Figure 5.13: Reynolds stress u′v′/U2 for 2D run 2M06 ( ) and 3D run 2M06-3D

( ). The actual value can be measured from the corresponding dashed line

at each location, where the major tick on the horizontal top scale represents 0.01.

The other Reynolds stresses u′w′/U2 and v′w′/U2 (not shown) are about three

orders of magnitude smaller.

0.17 in the streamwise and normal direction for the 2D simulation. These maxima

decrease to 0.1 and 0.12 in the 3D simulation. The quantity wrms has smaller

values than the other rms velocities. The maximum amplitude is approximately

0.04 near the downstream wall because of the centrifugal instability mechanism.

Figure 5.13 shows u′v′/U2 for runs 2M06 and 2M06-3D. Again, it is clear that

the 2D simulation overestimates the amplitude of the shear-layer oscillations. The

mean velocity field inside the cavity is also overestimated: for the three-dimensional

computation, the spanwise-averaged velocity magnitude of the primary vortex is

less than half of the two-dimensional prediction (see figure 5.14). Overall, the

flow variables in the cavity are overestimated by about 5 to 10% of the freestream

quantities. Note that, much like the previous case, the contribution of three-

dimensional mode cancels out in a time-averaged sense and the time-averaged flow

is approximately constant in the spanwise direction.
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The sound pressure levels (SPL) for the acoustic field above and inside the

cavity in runs 2M06 and 2M06-3D are shown in figure 5.15. While the sound di-

rectivity is similar in both cases, with a peak radiation in the far field at about

135◦ from the downstream direction, the levels are in general lower for the 3D

simulation. A noise reduction of about 5 dB can be observed in the far field,

and up to 12 dB inside the cavity. This result is related to the decrease in oscil-

lation amplitude previously mentioned. It is also in agreement with the general

experimental observation that two-dimensional cavities are slightly louder than

their three-dimensional counterparts. The weakened shear-layer coherence caused

by turbulence is typically viewed as the key point to explain this experimental

trend. A similar argument can be made here, even at lower Reynolds number.

As the three-dimensional centrifugal instability establishes itself inside the cavity,

the shear layer above develops the same spanwise fluctuations. This result can be

seen in the contours of the vorticity magnitude presented in figure 5.17. Spanwise

modulations are present in the shear-layer, starting around x = D. The resulting

reduced spanwise coherence of the vortical structures traveling downstream in the

shear layer affects the receptivity of the cavity trailing edge, which, in turn, re-

duces the acoustic scattering, the leading edge reinforcement of disturbances, and

the overall effectiveness of the feedback process.
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The spanwise average of the SPL is shown in this case.
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5.2.5 Discussion of the change in oscillation frequency

The change in mode frequency still needs to be addressed. A closer inspection at

the spanwise vorticity ωz = ∂v/∂x − ∂u/∂y for the two-dimensional simulation

2M06 shows that only one vortex is present at a time in the shear layer across the

cavity in agreement with the predicted Rossiter mode I. In contrast, two vortices

can in general be observed simultaneously in the vorticity contours along the cav-

ity, in any streamwise cross-section of the three-dimensional simulation 2M06-3D.

Looking at the evolution in time of the vorticity in both cases, it appears that

the existence of the additional vortex, and therefore the shift in Rossiter mode, is

caused by the presence of the three-dimensional instability. Disturbances rotat-

ing around the primary vortex in the downstream half of the cavity interact with

the shear layer around x = 0.5L, likely leading to the change in the streamwise

wavelength from λx/L = 1 to λx/L = 0.5.

In conclusion, both shear-layer oscillations and 3D mode are observed in the

nonlinear simulation for the supercritical conditions of run 2M06-3D. Much like the

previous case 2M0325-3D, spanwise structures of wavelength λ/D = 1 form inside

the cavity and the three-dimensional mode corresponds to mode ii predicted by

the linear stability analysis. These features can be clearly seen by comparing

the flow inside the cavity in figures 5.16 and 5.17. Overall, the 2D simulation

overestimates the amplitude of the shear-layer oscillations and of the flow field

inside the cavity. Also, the shear-layer oscillations switch from Rossiter mode I

(in the 2D simulations) to mode II, and experience a low-frequency modulation

caused by the presence of the 3D mode. The results suggest that the interactions

between the 2D and 3D modes seem to lead to the selection of that particular

Rossiter frequency. Such observation could potentially be used to shed some light

on the physics of mode selection in self-sustained oscillations.



74

(a) (d)

(b) (e)

(c) (f)

Figure 5.16: Vorticity field for 3D run 2M0325-3D. Six different times (a-f) are

shown, corresponding to approximately one-sixth phase intervals of a half-period

of the 3D instability (same times as in figure 5.3). Five equi-spaced translucent

iso-surfaces of the vorticity magnitude are represented for ||ω||D/U = 1 to 5.
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(a) (d)

(b) (e)

(c) (f)

Figure 5.17: Vorticity field for 3D run 2M06-3D. Six different times (a-f) are shown,

corresponding to approximately one-sixth phase intervals of a half-period of the 3D

instability (same times as in figure 5.5). Five equi-spaced translucent iso-surfaces

of the vorticity magnitude are represented for ||ω||D/U = 1 to 5.



76

5.3 Multiple three-dimensional modes

As mentioned in § 3.2.1, the linear stability the cavity of aspect ratio L/D = 1 is

different: that is, the critical conditions correspond to the steady mode i of smaller

spanwise wavelength (λ/D ≈ 0.5). While the unstable oscillatory mode ii is still

present at higher Reynolds numbers, it is less amplified than the steady mode for

the conditions considered (see figure 3.12). From the linear analysis results, it is

not possible to determine which mode (or modes) will be amplified in a real flow.

To investigate this question, we consider the run H1Re300 for a cavity of aspect

ratio L/D = 1 (M = 0.6, ReD = 6960, L/θ0 = 23.2). This case corresponds

again to supercritical conditions, as the two-dimensional flow oscillates in Rossiter

mode I. The 3D nonlinear simulation H1Re300-3D is then performed. According

to the linear stability results in table 4.1, both mode i and ii should be unstable,

as ReD = 6960 is higher than their respective critical Reynolds number.

5.3.1 Oscillation frequencies

Figure 5.18 shows the time-history of the streamwise velocity u/U for runs H1Re300

and H1Re300-3D. Unlike the previous supercritical conditions in § 5.2, there is

no change in the shear-layer oscillation mode: the frequency is StD ≈ 0.31 in

both cases, corresponding to Rossiter mode I. A low-frequency modulation is also

observed and measured in the power spectrum of the 3D simulation, presented in

figure 5.19. This low frequency StD = 0.008 matches the linear stability prediction

for mode ii (see table 5.2).

The same features are observed in figure 5.20 for the spanwise velocity at 0.5L

and 0.9L from the leading edge. In the power spectra in figure 5.21, peaks at the

frequencies fI − fii and fI + fii corresponding to nonlinear interactions between

the Rossiter mode I and the 3D mode ii can be identified. Here, it is interesting

to note that these frequencies are less energetic than in the previous supercritical

case presented in § 5.2.2 and that the peak associated with the Rossiter mode I is

also present. These results are further discussed in § 5.3.3.
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Figure 5.18: (a) Time trace of streamwise velocity at (x, y) = (0.5L, 0) for 2D run

H1Re300 ( ) and 3D run H1Re300-3D ( ) at z = 0; (b) Details of the

signal in the boxes in (a). To show all the data clearly, the bottom and left axes

correspond to the 3D simulation, and the top and right axes to the 2D run.
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identified and their harmonics can also be observed
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Run H1M03Re300 H1Re300

2D subcritical 2D supercritical

L/D 1 1

ReD 6960 6960

L/θ0 23.2 23.2

M 0.3 0.6

StD Mode λ/D StD Mode λ/D

Rossiter prediction 0.366 I ∞ 0.319 I ∞
0.854 II ∞ 0.745 II ∞

2D DNS 0.357† I ∞ 0.310 I ∞

3D Linear Stability 0 i 0.4 n.a.

0.007 ii 1 n.a.

0.361† I ∞ n.a.

3D DNS not computed 0 i 0.4

0.008 ii 0.4

0.307 I ∞

Table 5.2: Comparison of the dominant mode prediction for 2D and 3D runs

with L/D = 1. † For subcritical conditions, the Rossiter modes are damped but

the oscillation frequency can still be measured from the early times. The linear

stability results are not available (n.a.) for supercritical conditions.
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Figure 5.20: (a) Time trace of spanwise velocity at (x, y, z) = (0.9L, 0, 0) for 3D

run H1Re300-3D; (b) Details of the signal ( ) in the box in (a) and of the

spanwise velocity at (x, y, z) = (0.5L, 0, 0) ( )
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Figure 5.21: Power spectra of the spanwise velocity presented in figure 5.20 for 3D

run H1Re300-3D:(a) measurements at (x, y, z) = (0.5L, 0, 0) ( ); (b) measure-

ments at (x, y, z) = (0.9L, 0, 0) ( )
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5.3.2 Evidence of the steady three-dimensional mode

The formation of spanwise structures is again observed inside the cavity, with span-

wise wavelength λ/D = 0.4. Spectral analysis in the spanwise direction confirms

this particular wavelength.

In figure 5.22, it is clear that two different instabilities can be identified: first,

a steady instability leading to the formation of stationary cellular pattern near the

upstream and bottom walls; and on top of it, an unsteady instability leading to

the growth and decay of disturbances rotating inside the primary vortex. Here,

because of the similarity in spanwise wavelength, we identified the steady mode

with mode i from the linear analysis results. As for the unsteady mode, in addition

to its matching frequency, it is also visually similar to mode ii from run 2M0325-3D

in figure 5.3, but its wavelength is 0.4 rather than the anticipated λ/D = 1.

As our linear analysis only captures the leading eigenvalue at a given spanwise

wavelength, it is possible that mode ii does have a positive linear growth rate at

λ/D = 0.4 that is not measured because the growth rate of mode i is larger. Under

the present conditions, we suspect that both mode i and ii are selected.

5.3.3 Time-averaged flow

As a result of the presence of the steady mode, the time-averaged flow exhibits the

same spanwise modulation of wavelength 0.4. This result can be clearly observed

in the time-averaged velocity and vorticity fields presented in figure 5.23. The

velocity magnitude inside the cavity remains small and its spanwise average is

comparable to the result of the 2D simulation (less than 1% difference).

We can now interpret the peak at fI in the spectra of the spanwise velocity

in figure 5.21 as fI − fi , corresponding to the nonlinear interactions between the

Rossiter mode I and the 3D steady mode i of frequency fi = 0. This frequency is

also more energetic than the frequencies fI − fii and fI + fii associated with the

3D steady mode i. This observation tends to confirm the linear stability results

that mode i, rather than mode ii, is the dominant mode at these conditions.
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Figure 5.22: Visualisation of the spanwise structures in 3D run H1Re300-3D. Six

different times (a-f) are shown, corresponding to approximately one-sixth phase

intervals of a period of the 3D instability. The iso-surfaces represent the spanwise

velocity levels w/U = −0.005 and w/U = 0.005. The whole spanwise extent of

the cavity is shown and the wavelength λ/D = 0.4 of the instability is clear. The

upstream parts of the cavity walls has been removed to show the data clearly.

The velocity vectors in the streamwise cross-section at z = 0 are shown inside the

cavity and once in the freestream for comparison
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(a) (b)

Figure 5.23: Time-averaged flow field for run H1Re300-3D:(a) Iso-surfaces of the

spanwise velocity w/U = −0.005 and w/U = 0.005; (b) Four equi-spaced translu-

cent iso-surfaces of velocity magnitude between ||u||/U = 0.025 and 0.1 inside the

cavity, and five between ||u||/U = 0.1 and 0.9 above the cavity

Overall, the amplification caused by the steady mode is weak but we suspect

that it accounts for the small increase in amplitude of shear-layer oscillations, as

seen in figure 5.18.

In conclusion, for the supercritical conditions of run H1Re300-3D, the non-

linear 3D simulation shows again the coexistence of shear-layer oscillations and

three-dimensional instabilities. In this case, both oscillatory and non-oscillatory

3D modes are present in the flow. This steady mode is consistent with mode i iden-

tified in our linear stability analysis, and is reminiscent of instabilities reported in

square lid-driven cavity flows and discussed in § 4.2.2. The unsteady 3D mode cor-

responds again to mode ii but its spanwise wavelength is λ/D = 0.4, the dominant

wavelength for the steady mode, rather than 1 as previously observed. Also, the

presence of the 3D steady mode causes a spanwise modulation of the time-averaged

flow of the same wavelength 0.4, and an increase in oscillations amplitude. These

features are not captured by the 2D simulation.
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Chapter 6

Connection with Previous Experimental and

Numerical Results

6.1 General remarks on cavity flow experiments

Measurements of the three-dimensional mode in cavity flow experiments face sev-

eral challenges. The first difficulty arises from the influence of the side walls and

end effects inherent to any experimental configuration. Ahuja & Mendoza (1995)

conducted an extensive set of cavity experiments and suggested that the parame-

ter L/W , the cavity length to width ratio, provided a transition between two- and

three-dimensional flow. For L/W < 1 they classified the cavity as two-dimensional,

as the flow was found to be uniform over much of the span with a coherent shear

layer spanning most of the cavity width, and for L/W > 1 as three-dimensional.

However, their classification was based on the observation of three-dimensionality

in the mean flow for L/W > 1, most likely caused by end-effects and significant

spillage of flow over the sides into the cavity, and therefore not related to the

three-dimensional instability we identify.

Additionally, the presence of so-called “wall jet” and “sidewall-induced three-

dimensional vortices” has also been reported in backward-facing step flows in both

experimental (e.g., Armaly et al., 1983) and numerical studies (e.g., Williams &

Baker, 1997). While these flow structures are generated by the three-dimensional

nature of the experimental setup and are not representative of any global instability
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of the two-dimensional base flow, their effect was shown to stretch up to several

step heights in the spanwise direction away from the sidewalls. In their most

recent work on lid-driven cavities, Albensoeder & Kuhlmann (2006) established

the extent of the sidewall effect both numerically and experimentally. For a square

lid-driven cavity of spanwise aspect ratio 6.55, they showed that the presence of

the sidewall suppressed the three-dimensional instability except for a symmetric

region of span approximately 2 at the center of the cavity.

For wider cavities, experimental evidence of three-dimensionality have been ob-

served by several researchers. In water channel experiments, Rockwell & Knisely

(1980) identified a spanwise wavy structure emerging in the shear layer near the

cavity trailing edge. A hydrogen bubble technique was used to visualise the span-

wise structure in the cavity, shown in figure 6.1. Under the experiment conditions,

they observed self-sustained oscillations in the streamwise direction (corresponding

to Rossiter modes) as well as “severe but relatively ordered spanwise distortion,”

which makes this case a typical supercritical condition as discussed in § 5.2. They

associated the three-dimensional structure with the “large-scale recirculation vor-

tex between the free shear layer and the walls of the cavity.” Precise values of

the spanwise wavelengths are not reported. This experiment is discussed in more

detail in appendix C.

In another water channel experiment, Ward (1973) investigated the inception of

cavitation in a rectangular cavity as a function of the aspect ratio L/D. Cavitation

can occur when the local pressure is less than the saturation pressure of the liquid,

which leads to the formation of vapor bubbles in the flow. Under certain conditions,

three-dimensional flows were observed within the cavity, as shown in figure 6.2.

For a cavity of aspect ratio 1.27, a steady periodic wave form develops inside the

cavity, and is sketched in figure 6.3 as type II. In this case, three and a half periods

are present in the experiment, which corresponds to a spanwise wavelengths of

λ/D ≈ 2.9. This value is larger than our typical results of 0.4 ≤ λ/D ≤ 1.

also, the side-view of the cavitation shows “an oval shape” that does not appear

to be strongly related with the recirculating vortical flow near the downstream
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Figure 6.1: Experimental visualisation of the spanwise structures. This corre-

sponds to figure 8 in the article by Rockwell & Knisely (1980), “Sequence showing

evolution of cells in sheet of timelines caused by longitudinal vortices.” Reprinted

with permission from D. Rockwell and C. Knisely, Observations of the three-

dimensional nature of unstable flow past a cavity, 23(3) 425-431 1980. Copyright

1980, American Institute of Physics.
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corner of the cavity. A different instability, referred as type III in figure 6.3,

is observed when the aspect ratio is decreased to L/D ≈ 1. In this case, the

cavitation is centered inside the primary vortex. This location corresponds to

the zone of minimum pressure in our simulations, where cavitation could occur.

From the bottom picture in figure 6.2, we estimated the number of periods in the

experiment to 12, which leads to spanwise wavelengths of λ/D ≈ 0.6, similar to

our results for the L/D = 1 cavity.

Likewise, the high Reynolds number wind tunnel experiments by Maull &

East (1963) show, under certain conditions, regular “cells” across the span of the

internal cavity flow at low Mach numbers. They did not report any Rossiter mode

oscillation, so their results could be considered representative of the subcritical

conditions discussed in § 5.1. For their cavity of aspect ratio L/D = 2, the cells

are found to be steady in time and have a larger wavelength of about 4D, compared

to our oscillating structure of wavelength D. Their conclusions are drawn from

oil flow visualisations of surface streamlines at the bottom of the cavity and the

spanwise static pressure distribution measurements.

While there is qualitative agreement with our findings, the results from these

early experiments highlight some of the additional challenges related to the mea-

surement of the three-dimensional instability. That is, the three-dimensional mode

is in general weaker than the Rossiter mode and mainly active within the cavity,

while most measurements focus on the shear layer. Also, the unsteady three-

dimensional mode can be difficult to capture in the mean measurements because

of its oscillatory nature about the mean flow.

6.2 Interpretation of low-frequency modulation in ex-

periments

One characteristic feature of the unsteady three-dimensional mode that has ac-

tually been measured in experiment is its oscillation frequency. As previously

discussed, this frequency is about an order of magnitude lower than the typical
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Figure 6.2: Visualisation of the slot cavitation. This corresponds to figure 1 in the

article by Ward (1973), “Slot cavitation.” Here, d/b = D/L and σIM is the mean

value of the incipient cavitation index.
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Figure 6.3: Schematic of the different flow types in the slot cavitation experiment.

This corresponds to figure 4 in the article by Ward (1973), “Flow types. Flow

direction right to left.”

Rossiter mode frequencies. As a result, the low-frequency components in the spec-

trum of oscillating flows are often not measured because of lack of resolution, and

when they are, we believe these frequencies tend to be overlooked or misinter-

preted as caused by the experimental setup (such as fan noise, etc.). Based on our

results, we present here a different interpretation of the low-frequency modulation

observed in experiments: namely, that it is caused by the centrifugal instability.

6.2.1 Water channel experiments

Neary & Stephanoff (1987) performed a set of water channel experiments for a

three-dimensional cavity of aspect ratios L/D = 3.5 and W/D = 21, with laminar

incoming boundary layer (L/θ0 ≈ 80). These conditions are comparable to our run

series TK4M03. Indeed, the visualisation (in their figure 3) of the steady base flow

for subcritical conditions at Reynolds number ReD = 908 shows striking resem-

blances with our results in figure 4.1(c) obtained at ReD = 980 and L/θ0 = 60.

Under certain flow regime, their experimental results showed the presence of a

transverse wave on the primary vortex of the cavity prior to the development of

a fully turbulent state. As the Reynolds number is increased, stronger interac-
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tions between the shear layer and primary vortex are observed, with rapid growth

and decay of the pressure oscillations. This feature indicates a Reynolds number

dependence of the three-dimensional mode similar to our linear results.

Confirmation of the low frequency of the three-dimensional oscillation we ob-

tain is also suggested by their observations. In their work, they identify a primary

frequency f1 that corresponds to the (Rossiter) shear-layer structures and a sec-

ondary frequency f2 that they associate with the three-dimensional waviness. The

frequency f2 is close to f1, but a reexamination of time-histories of pressure actu-

ally show long-period modulation of the frequency f1. Thus it would appear to us

that the f2 frequency is really just an interaction between a low frequency f3D and

the primary frequency f1. From the reported frequencies values for their so-called

“regime II,” the frequency f3D ≈ f1 − f2 was estimated to f3DD/U = 0.023. The

value obtained here at ReD = 2560 is in excellent agreement with the frequency

StD = 0.026 of the three-dimensional instability identified in the linear analysis of

run TK4M03Re65.

6.2.2 Moderate Mach number experiments

More recently, Cattafesta III et al. (1998) and Kegerise et al. (2004) investigated

the presence of multiple distinct peaks in the pressure spectrum of oscillating

cavity flows, in particular at low frequency. They performed an extensive set of

experimental measurements for two cavity configurations: L/D = 2, M = 0.4

and L/D = 4, M = 0.6. The other parameters were fixed at L/W = 3, ReL =

1.5 106, and the incoming boundary layer was turbulent with L/θ0 ≈ 275 (private

communication with the authors). For both conditions, their detailed frequency

analysis of the unsteady pressure signals inside the cavity showed the presence of

multiple Rossiter modes, in good agreement with expected frequencies.

More importantly, they reported that the Rossiter modes experienced low-

frequency amplitude modulation. While they were able to interpret other peaks

in the spectrum as quadratic nonlinear interactions between Rossiter modes, they

concluded that these interactions were not the cause of the low-frequency compo-
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nent, as they showed that the low-frequency mode was not significantly coupled

with the Rossiter modes. Based on their conclusions and our results, we argue

here that the low-frequency mode observed in their experiment corresponds to the

three-dimensional centrifugal instability identified in our work. The reported fre-

quency for the cavity L/D = 2 at M = 0.4 is f3D ≈ 20Hz, or f3DD/U ≈ 0.011.

Keeping in mind that an increase in Reynolds number was shown to cause mod-

erate decrease of the three-dimensional mode frequency, and that the boundary

layer properties had little effect on the mode features, this result compares well

with the range of frequencies 0.015 ≤ StD ≤ 0.026 obtained for cavities with the

same aspect ratio at M = 0.325.

6.3 Visual evidence of the three-dimensional mode

While these comparisons are encouraging, the most convincing experimental evi-

dence of the three-dimensional centrifugal instability we identified in our simula-

tions is the recently published work from Faure et al. (2007). Independently and

simultaneous with our numerical studies, they performed low speed experiments

for open cavities of aspect ratio L/D = 0.5 to 2 at medium range Reynolds num-

bers, with laminar incoming boundary layers (D/θ ≈ 35, approximately constant,

according to a private communication with the authors). Smoke is used for flow

visualisations. The cases with cavities of aspect ratio 1 and 2 are of particular

interest since their experiment conditions (apart from the Mach number) match

the range of parameters in our study with (fortuitously) striking accuracy.

For L/D = 1 (R = 1 in their notation), they report weak shear-layer oscillations

and a single vortex filling the whole cavity (figure 6.4). As the Reynolds number

is increased (through an increase of the external velocity Ue), they observe the

formation of “mushroom-like counter-rotating cells” near the upstream wall and

symmetrically at the downstream wall. Their visualisation of the flow (presented in

figure 6.5), at a horizontal cross-section inside the cavity clearly shows a periodic

spanwise pattern similar to our results. The inner spanwise flow caused by the
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sidewalls is also detected, but the cavity span to depth ratio W/D = 6 is large

enough that the central section of the experiment exhibits periodic structures away

from the sides.

They report that these structures were not stationary and could not be iden-

tified for an external velocity below a certain critical value corresponding to Re =

4030. This result matches the critical conditions Re = 4060 we estimated for

cavities with L/D = 1 at low Mach number (see table 4.1). Additionally, for an

external velocity Ue = 2.09 m/s (Re = 6960 matching exactly the Reynolds num-

ber used in our simulations), their measure of the distance between two pairs of

structures gives a spanwise wavelength λ = 0.022 m or λ/D = 0.44, again match-

ing our conclusions from the linear analysis (λ/D = 0.4 for run H1M03Re300) and

the full three-dimensional simulation (λ/D = 0.4 for run H1Re300-3D). The exper-

imental flow field at these conditions is not shown, but good qualitative agreement

is obtained between our 3D numerical results in figure 6.6 and their visualisations

at lower Reynolds number in figure 6.5.

Similar results are reported for the L/D = 2 cavity, but the structures are very

unsteady in that case and the wavelength was not measured. The visualisation of a

cross-section of the flow suggests a larger wavelength than for the previous case, as

fewer structures are present. These observations are consistent with our findings

that only an oscillatory three-dimensional mode is present for longer cavity. Cou-

pled with larger oscillations of the shear layer, the mode is more difficult to capture

accurately. In contrast, the weaker shear-layer oscillation and the presence of both

steady and oscillatory modes in smaller cavities lead to a clearer visualisation of

the instability.

As for the instability mechanism, Faure et al. (2007) did relate the three-

dimensional structures to the primary vortex inside the cavity, and interpreted

them in terms of Görtler vortices. Görtler problem is a classical example of cen-

trifugal instability (e.g., Drazin & Reid, 1981), and is typically studied for the

onset of instability in boundary layers along a concave wall. While the two mecha-

nisms are related, we argue here that the origin of three-dimensional modes is the
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Figure 6.4: Experimental visualisation of the primary vortex for the L/D = 1

cavity. This corresponds to figure 10 in the article by Faure et al. (2007), “Visu-

alization in two parallel vertical planes (left z = 0, right: z = 30mm) for the same

time and R = 1. a) Ue = 0.69 m/s (Re = 2300); a) Ue = 1.21 m/s (Re = 4030);

a) Ue = 1.60 m/s (Re = 5330).” Reproduced with the authors’ permission.
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Figure 6.5: Experimental visualisation of the spanwise structures for the L/D = 1

cavity. This corresponds to figure 11 in the article by Faure et al. (2007), “Visu-

alization in a horizontal plane for R = 1 and y = −15 mm. a) Ue = 0.69 m/s

(Re = 2300); a) Ue = 1.21 m/s (Re = 4030); a) Ue = 1.60 m/s (Re = 5330).”

Reproduced with the authors’ permission. The white lines are the vertical visual-

isation planes in figure 6.4.
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Figure 6.6: Visualisation of the spanwise structures of run H1Re300-3D in the

cross section y/D = −0.6 for comparison with figure 11 by Faure et al. (2007).

The gray shadings represent equally spaced contours of the velocity magnitude

between ||u||/U = 0.005 and 0.06. The in-plane velocity vectors are also shown.

generic centrifugal instability connected with the recirculating vortical flow inside

the cavity, rather than instabilities in the boundary layers on the cavity walls.

6.4 Connection with previous numerical simulations

Evidence of the three-dimensional centrifugal instability is also found in recent

numerical work by Podvin et al. (2006) and Chang et al. (2006) for incompressible

flows over open cavities. Similar to our work, both studies focused on a cavity

of aspect ratio L/D = 2 with laminar incoming boundary layer and periodic

conditions in the spanwise direction. In both cases, the formation of spanwise

structures and the low-frequency modulation are reported.

6.4.1 Large eddy simulations

Chang et al. (2006) performed Large Eddy Simulations (LES) at ReD = 3360, with

L/θ0 = 69.5. Under these conditions, they reported that the shear layer oscillates

with frequency StD = 0.51, corresponding to the second mode, and that “very
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low-frequency modulations are clearly observed” in time history of the velocity.

From the time series in their figure 6, we estimated the modulation frequency

to StD = fD/U ≈ 0.025 − 0.03. These values are similar to the results in our

compressible simulations at M = 0.6 with comparable conditions (i.e., run 2M06-3D

at ReD = 1500, with L/θ0 = 52.8): that is, a Rossiter mode II of frequency

0.35 (compressibility effects account for the decrease in frequency) and a three-

dimensional mode of frequency 0.026. They also observed a small peak associated

with these low-frequency oscillations in the power spectra (in their figure 7) for

approximately the same Strouhal numbers. The measurements are made for the

vertical velocity in the shear layer near the downstream corner, which could account

for the relatively low energy levels of the mode compared to the fundamental shear-

layer mode. While they suspected these features were “a consequence of the shear

layer interaction with the trailing-edge and with the recirculating motions inside

the cavity,” we identify the centrifugal instability mechanism as the cause of the

low-frequency modulation.

Spanwise coherent structures, referred as “spanwise vortices,” are also observed

in their work, but values of the spanwise wavelength are not reported. Based on the

visualisation of these structures in their figure 8(b), (c), and (d), approximately

six pairs of these spanwise vortices can be accounted for along the cavity span,

which is W/D = 6 in their case. Therefore, the estimated spanwise wavelength of

the instability is λ/D ≈ 1 and agrees with our results.

6.4.2 Proper orthogonal decomposition results

Podvin et al. (2006) investigated a cavity of width to depth ratio W/D = 4 at

ReD = 4000, with L/θ0 ≈ 75, using proper orthogonal decomposition (POD).

They related the first two most energetic POD modes to the shear-layer instabili-

ties, and the next three modes (significantly less energetic) to “fluctuating vortex

motions inside the cavity.” The visualisation of these latter modes in their fig-

ure 4 shows strong similarity with the three-dimensional eigenmode in figure 3.14.

They reported that all five modes exhibit a spanwise fluctuation of wavelength
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λ/D ≈ 1.4, which is comparable to our results. They suggested this particu-

lar wavelength corresponds to a secondary instability of the shear layer. Here,

we again interpret the wavelength selection in terms of the centrifugal instability

mechanism.

The oscillation frequency for the first two shear-layer modes was measured at

13.5 Hz, which corresponds to a second mode with fD/U = 0.56. The higher-

order modes have an identical low oscillation frequency, and the precise value is

not reported. From the time spectra in their figure 8, we estimated the frequency

to 0.5 Hz or fD/U = 0.021, again in agreement with the three-dimensional mode

frequency.
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Chapter 7

Concluding Remarks

7.1 Summary

Two- and three-dimensional global instabilities of compressible flow over open cav-

ities were studied using Direct Numerical Simulations (DNS). We consider cavities

that are homogeneous in the spanwise direction (corresponding to cavities that

are wide compared to their depth or length) at subsonic Mach numbers. A DNS

code was developed to solve the full compressible linear or nonlinear Navier–Stokes

equations for both 2D and 3D flows.

First, the onset of self-sustained oscillations is characterized for two-dimensional

cavities over a large portion of the parameter space (varying Reynolds number,

Mach number, cavity aspect ratio, and incident shear-layer thickness). These in-

stabilities, commonly referred to as shear-layer modes, correspond to the typical

flow/acoustic feedback mechanism originally described by Rossiter (1964). For 2D

stable flows, a linear stability analysis was conducted and identified for the first

time, three-dimensional instabilities taking the form of disturbances growing in

the recirculating vortical flow within the cavity. It should be noted that these

instabilities would not be accessible to classical linear stability theory of parallel

flows.

For cavities of aspect ratio L/D = 2 and 4, the three-dimensional instability

has a spanwise wavelength scaling with D, the cavity depth, and a frequency
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of oscillation about an order of magnitude smaller than typical two-dimensional

shear-layer (Rossiter) oscillations. We showed that the three-dimensional mode

frequency is related to the time for disturbances to advect around the recirculating

region.

A steady mode of smaller spanwise wavelength 0.4D was also identified for

a shorter cavity with L/D = 1. We argued that the specific properties of the

three-dimensional mode for the square cavity are related to the primary vortex

that occupies the whole cavity in that particular configuration.

The mode properties are, by and large, unaffected by Mach number over a

subsonic range up to 0.6. It is not expected that they would be significantly altered

by compressibility even for cavities with much larger M , since the instability is

active within the cavity where the flow speed is much lower than the freestream

value. In contrast, the influence of the Reynolds number is significant, as the

growth rate of the three-dimensional mode increases with Re. Critical conditions

for the onset of the three-dimensional instability were estimated.

Rayleigh’s circulation criterion was computed for the two-dimensional steady

base flow and showed that, in the inviscid limit, the flow will develop a three-

dimensional centrifugal instability in the primary vortex inside the cavity. There-

fore, we argued that the main mechanism behind these global three-dimensional

instabilities is the generic centrifugal instability associated with the closed stream-

lines in the recirculating vortical flow near the downstream cavity wall. Such vor-

tices are ubiquitous in both the low Reynolds number flows considered here and

also (in a time-averaged sense) at much higher Reynolds numbers. The centrifugal

instability is similar to the one previously identified in flows over a backward-

facing step, lid-driven cavity, and Couette flows. Inspired by the specific features

of these flows, different scalings for the properties of the centrifugal instabilities

are considered. The results show reasonable agreement of the rescaled data.

Direct numerical simulations of the full Navier–Stokes equations were per-

formed and confirmed the three-dimensional features of the flow. Oscillating (and,

for the square cavity, steady) cellular patterns formed in the recirculating zone
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inside the cavity. These observations were in agreement with the results of linear

stability analysis, both in terms of spanwise structure and oscillation frequency.

Comparison with recent experiments by Faure et al. (2007) at low Reynolds num-

ber also confirmed our findings.

For supercritical conditions, the (Rossiter) shear-layer oscillations exhibit a

low-frequency modulation due to the presence of the three-dimensional instability.

Similar modulation and low-frequency components in the spectrum of oscillating

cavity flows are reported in both incompressible and compressible experiments.

Evidence of that low frequency was also found in previous numerical studies. We

argue that these observations are related to the centrifugal instability we identified.

7.2 Potential applications for flow control

As different distinctive properties of the three-dimensional centrifugal instability

have been observed in both high Reynolds number flows and experiments with

subsonic speed up to M = 0.6, we conclude that three-dimensional modes are

likely to exist in open cavity flows for practical applications and be relevant in the

area of cavity control.

Currently, there are two different approaches being advocated for control of

cavity oscillations. The first (e.g., Stanek, 2005) attempts to reduce broadband

noise in cavity oscillations in an open-loop way by forcing the flow near the cavity

leading edge at relatively high frequency. If there are three-dimensional instabilities

in the flow, then information about the wavelength and growth rates of these

structures could be used (with appropriate scaling arguments) to suggest optimal

spanwise variation of actuator inputs in order to excite the instabilities or suppress

them.

The second area of application to cavity control is in the suppression of tones.

Here the basic 2D instabilities are the target for tonal noise reduction via closed-

loop control. Three-dimensional instabilities are, however, relevant, since they

could represent a limiting factor in the efficacy of such control effects. In addition,
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sensors are sometimes placed within cavities and thus knowledge of additional

large-scale unsteadiness will help guide sensor placement and data processing.

Thus it appears that there may be an untapped potential to inherently three-

dimensional effects in cavity flows. It is our hope that the results presented here

will help future work on control to exploit these effects.
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Appendix A

Simulation Parameters

The flow parameters and stability results of the different 2D and 3D linear simu-

lations are presented in tables A.1, A.2, A.3, A.4 and A.5.

For supercritical conditions (i.e., shear-layer mode), the oscillation frequency

StL = fL/U of the dominant mode is reported. Recall that the linear stability

results are not available for such conditions.

For the three-dimensional centrifugal instability, the spanwise wavelength λ/D

and the oscillation frequency StD = ωD/2πU of the mode with the largest linear

growth rate are reported.
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Run Parameter Stability

nonlinear linear

L/D M L/θ0 Reθ ReD 2D StL 3D λ/D StD

H1M03Re150 1 0.3 23.2 150 3480 NO NO

H1M03Re300 1 0.3 23.2 300 6960 NO CI 0.4 0

H1M04Re300 1 0.4 23.2 300 6960 NO –

H1M04Re450 1 0.4 23.2 450 10440 NO –

H1M05Re300 1 0.5 23.2 300 6960 NO –

H1M05Re450 1 0.5 23.2 450 10440 SL 0.330

H1 1 0.6 23.2 86.3 2000 NO NO

H1Re110 1 0.6 23.2 110 2550 NO NO

H1Re140 1 0.6 23.2 140 3250 NO NO

H1Re200 1 0.6 23.2 200 4640 NO CI 0.5 0

H1Re300 1 0.6 23.2 300 6960 SL 0.310

Table A.1: Parameters and stability for the run series H1. Abbreviations for sta-

bility are: NO = No Oscillations, SL = Shear-Layer mode, CI = three-dimensional

Centrifugal Instability, – = not computed.
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Run Parameter Stability

nonlinear linear

L/D M L/θ0 Reθ ReD 2D StL 3D λ/D StD

2M01 2 0.1 52.8 56.8 1500 NO CI 1 0.025

2M01Re80 2 0.1 52.8 80 2110 NO CI 1 0.023

2M03Re35 2 0.3 52.8 35 925 NO NO

2M03 2 0.3 52.8 56.8 1500 NO CI 1 0.025

2M03Re65 2 0.3 52.8 65 1715 NO CI 1 0.025

2M03Re80 2 0.3 52.8 80 2110 SL 0.799

2M0325 2 0.325 52.8 56.8 1500 NO CI 1 0.025

2M033Re60 2 0.33 52.8 60 1585 NO –

2M035 2 0.35 52.8 56.8 1500 NO CI 1 0.026

2M035Re60 2 0.35 52.8 60 1585 SL 0.475

2M0365 2 0.365 52.8 56.8 1500 SL 0.470

2M038Re50 2 0.38 52.8 50 1320 NO CI 1 0.025

2M04Re50 2 0.4 52.8 50 1320 SL 0.457

2M04 2 0.4 52.8 56.8 1500 SL 0.462

2M045Re50 2 0.45 52.8 50 1320 SL 0.438

2M05Re35 2 0.5 52.8 35 925 SL 0.426

2M06 2 0.6 52.8 56.8 1500 SL 0.407

2M06-K† 2 0.6 80 37.5 1500 SL 0.723

Table A.2: Parameters and stability for the run series 2M. Abbreviations for stabil-

ity are: NO = No Oscillations, SL = Shear-Layer mode, CI = three-dimensional

Centrifugal Instability, – = not computed †These particular flow parameters match

the conditions of the experiment by Krishnamurty (1956), apart from the Reynolds

number. The simulation is performed for validation purposes.
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Run Parameter Stability

nonlinear linear

L/D M L/θ0 Reθ ReD 2D StL 3D λ/D StD

TK2M0325 2 0.325 30.1 56.8 855 NO NO

TK2M0325Re80 2 0.325 30.1 80 1205 NO NO

TK2M0325Re100 2 0.325 30.1 100 1505 NO NO

TK2M0325Re140 2 0.325 30.1 140 2110 NO CI 1 0.015

TK2M0325Re200 2 0.325 30.1 200 3010 NO –

TK2M0325Re400 2 0.325 30.1 400 6025 NO –

TK2M04Re300 2 0.4 30.1 300 4520 NO –

TK2M04Re400 2 0.4 30.1 400 6025 SL 0.402

TK2M05Re200 2 0.5 30.1 200 3010 NO –

TK2M05Re300 2 0.5 30.1 300 4520 SL 0.383

TK2M05Re400 2 0.5 30.1 400 6025 SL 0.379

TK2M06 2 0.6 30.1 56.8 855 NO NO

TK2M06Re80 2 0.6 30.1 80 1205 NO NO

TK2M06Re140 2 0.6 30.1 140 2110 NO CI 1 0.016

TK2M06Re200 2 0.6 30.1 200 3010 NO –

TK2M06Re300 2 0.6 30.1 300 4520 SL 0.362

TK2M06Re400 2 0.6 30.1 400 6025 SL 0.366

Table A.3: Parameters and stability for the run series TK2. Abbreviations for sta-

bility are: NO = No Oscillations, SL = Shear-Layer mode, CI = three-dimensional

Centrifugal Instability, – = not computed.
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Run Parameter Stability

nonlinear linear

L/D M L/θ0 Reθ ReD 2D StL 3D λ/D StD

TK4M03 4 0.3 60.2 50 755 NO NO

TK4M03Re65 4 0.3 60.2 65 980 NO CI 1.25 0.026

TK4M03Re80 4 0.3 60.2 80 1205 SL 0.814

TK4M04Re40 4 0.4 60.2 40 600 NO –

TK4M04 4 0.4 60.2 50 755 SL 0.784

TK4M04Re65 4 0.4 60.2 65 980 SL 0.780

TK4M05Re30 4 0.5 60.2 30 450 NO –

TK4M05 4 0.5 60.2 50 755 SL 0.743

TK4M06Re30 4 0.6 60.2 30 450 NO NO

TK4M06Re40 4 0.6 60.2 40 600 SL 0.712

TK4M06 4 0.6 60.2 50 755 SL 0.708

Table A.4: Parameters and stability for the run series TK4. Abbreviations for sta-

bility are: NO = No Oscillations, SL = Shear-Layer mode, CI = three-dimensional

Centrifugal Instability, – = not computed.

Run Parameter Stability

nonlinear linear

L/D M L/θ0 Reθ ReD 2D StL 3D λ/D StD

4M03Re200 4 0.3 30.1 200 1505 NO NO

4M03Re400 4 0.3 30.1 400 3010 NO CI 1.25 0.011

Table A.5: Parameters and stability for the run series 4M. Abbreviations for stabil-

ity are: NO = No Oscillations, SL = Shear-Layer mode, CI = three-dimensional

Centrifugal Instability, – = not computed.
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Appendix B

Linear Stability Experiments

To fully ascertain the effect of Mach number and Reynolds number on the three-

dimensional instability, we perform a set of numerical experiments to assess the

differing influence of the basic (steady) two-dimensional flow and the Reynolds

and Mach numbers. To do this, we focus on cavities of aspect ratio L/D = 2 and

construct different cases as follows:

1. Using the methods outlined in chapter 2, we vary the Reynolds and Mach

numbers in both computing the steady base flow (from 2D DNS) and in

solving for the three-dimensional disturbances. This is the default procedure

for the linear stability analysis.

2. We artificially increase the Reynolds and/or Mach number acting on the

disturbances only, while holding the steady base flow constant. While these

simulations are non-physical, they are useful in assessing the flow physics.

For the cases where we change the disturbance Reynolds number, the base

flow is held strictly constant. For the cases where we change the Mach

number, we also rescale the basic cavity flow by assuming that the base flow

is essentially incompressible, and rescaling the flow velocity to the higher

Mach number.
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B.1 Influence of the Mach number

As the Mach number is varied over the range 0.1 < M < 0.6 for subcritical

conditions, we observe only minor changes in the 2D (steady) base flow, and the

linear stability results for the three-dimensional flow are similar. To verify that

the mode properties are in fact independent of the Mach number, we performed

3D linear simulations with a fixed base flow q̄ = q̄2M01 obtained for run 2M01

at M = 0.1. Under the conditions of run 2M01, the flow is 3D unstable, with

growth rate and frequency reported in table B.1. Before a perturbation at a Mach

number M ′ different than M = 0.1 can be added to the base flow q̄2M01, it must

be appropriately rescaled to q̄′

2M01
as follow:

ū′ = ū
M ′

M
v̄′ = v̄

M ′

M
ρ̄′ = (ρ̄ − 1)

M ′

M
+ 1 P̄ ′ = (P̄ − 1

γ
)
M ′

M
+

1

γ
.

The three-dimensional stability analysis is then conducted for 3D disturbances

at Mach number M ′ = 0.3 and M ′ = 0.6, with the corresponding modified base

flow q̄′

2M01
. These simulations are denoted 2M01toM03 and 2M01toM06 and all

the parameters used are summarized in table B.1. The comparison with run 2M01

shows that the Mach number has no influence on the three-dimensional instability:

the flow remained 3D unstable with the results of the rescaled simulations matching

the initial run in term of growth rate and frequency.

A similar parametric study was conducted for 3D stable flow conditions. The

2D basic (steady) flow q̄2M03Re35 of run 2M03Re35 (M = 0.3) was modified to get

q̄′

2M03Re35. Perturbations at M ′ = 0.6 and M ′ = 0.8 were then added, for a cavity

of spanwise wavelength λ/D = 1. Again the rescaled simulations 2M03Re35toM06

and 2M03Re35toM08 exhibit the same features as the original run even at these

high Mach numbers and remain stable with similar damping rate and frequency

as run 2M03Re35. Note that, under all the conditions considered here, the flows at

Mach number M ′ = 0.6 and M ′ = 0.8 would already be two-dimensional unstable.
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2D parameters 2D base 3D parameter Eigenvalue

flow modified

run L/D M L/θ0 Reθ q̄ M ′ σD St

2M01 2 0.1 52.8 56.8 q̄2M01 0.0083 0.0255

2M01toM03 - - - q̄′

2M01
0.3 0.0085 0.0254

2M01toM06 - - - q̄′

2M01
0.6 0.0084 0.0254

2M03Re35 2 0.3 52.8 35 q̄2M03Re35 -0.0151 0.0280

2M03Re35toM06 - - - q̄′

2M03Re35
0.6 -0.0152 0.0280

2M03Re35toM08 - - - q̄′

2M03Re35
0.8 -0.0155 0.0280

Table B.1: Results of the parametric study of the Mach number influence on the

linear stability of 3D perturbations of spanwise wavelength λ/D = 1. Here the

superscript “ ’ ” indicates that the 2D base flow has been rescaled to the modified

Mach number M ′

B.2 Influence of the Reynolds number

Unlike the Mach number, the Reynolds number does affect the basic (steady)

2D flow and the properties of the three-dimensional mode, in terms of both

growth/damping rate and oscillation frequency. To separate the Reynolds num-

ber effect from the influence of the basic flow, a similar analysis is performed. In

this parametric study, a perturbation at a different Reynolds number (denoted by

the superscript “ ’ ”) is added to the two-dimensional base flow q̄2M03 obtained

for run 2M03 (L/D = 2, M = 0.3, L/θ0 = 52.8, Reθ = 56.8). Three different

Reynolds numbers (Re′θ = 65, Re′θ = 50 and Re′θ = 35) are considered and the

spanwise wavelength of these perturbations is λ/D = 1. Rescaling is not needed

in this case, and the resulting simulations are denoted 2M03toRe65, 2M03toRe50,

and 2M03toRe35.

The growth/damping rates and frequency of the corresponding three-dimensional

instabilities are reported in table B.2. Here, the flow is artificially stabilized/amplified

by reducing/increasing the Reynolds number. For these test cases, it is interesting
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2D parameters 2D base 3D parameter Eigenvalue

flow modified

run L/D M L/θ0 Reθ q̄ Re′
θ

σD St

2M03Re35 2 0.3 52.8 35 q̄2M03Re35 -0.0151 0.0280

2M03 2 0.3 52.8 56.8 q̄2M03 0.0079 0.0249

2M03Re65 2 0.3 52.8 65 q̄2M03Re65 0.0124 0.0247

2M03toRe35 - - - q̄2M03 35 -0.0244 0.0252

2M03toRe50 - - - q̄2M03 50 0.0007 0.0250

2M03toRe65 - - - q̄2M03 65 0.0148 0.0248

Table B.2: Results of the parametric study of the Reynolds number influence on

the linear stability of 3D perturbations of spanwise wavelength λ/D = 1

to note that, while the Reynolds number significantly affects the stability of the

dominant mode by changing the growth rate, the frequencies remained identical

and similar to the original case 2M03. This feature has to be contrasted with the

observations from figures 3.10 3.11, and 3.12 that the frequency decreases with

Reynolds number, when full 3D linear stability analysis simulation are conducted

with the appropriate corresponding 2D base flow q̄. However, there is no con-

tradiction there. This indicates that the mode frequency is strongly connected to

the 2D steady base flow q̄ and is only indirectly affected by the Reynolds number

through the dependence of q̄ on Re.

To clarify this point, the results from the run 2M03Re35 are compared to the

experimental run 2M03toRe35 in table B.2. Again, It is important to point out here

that the only difference between these two runs is the use of a different 2D base

flow (q̄2M03Re35 versus q̄2M03) for the 3D linear stability analysis. Both simulations

lead to the same stability result: the flow is 3D stable. The differences in damping

rate and frequency are then caused by the difference in 2D base flow. Similar

observations can be made with runs 2M03Re65 and 2M03toRe65 in table B.2.

The following conclusions can then be drawn from these numerical experiments:

Firstly, the growth/damping rate of the dominant mode is directly driven by the
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Reynolds number and is, to some lesser extent, dependent on the base flow. Sec-

ondly, the Reynolds number influences the mode frequency only through its effect

on the two-dimensional base flow q̄. Finally, within the domain of 2D stability,

the three-dimensional mode is essentially independent of the Mach number.
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Appendix C

Extension of the Linear Stability to

Supercritical Conditions

As previously mentioned, one limitation of the three-dimensional linear stability

analysis described in chapter 2 is that it relies on the existence of a 2D steady base

flow q̄(x, y). In most experimental conditions and practical application, such time-

independent flow does not exist, as self-sustained oscillations develop and eventu-

ally saturate. However, the recirculating vortical flow in the downstream part

of the cavity is still present for these supercritical conditions, in a time-averaged

sense. In an attempt to extend the present methods to such supercritical flows,

we examine the linear stability of q̄ defined as the time-averaged two-dimensional

base flow.

C.1 Two-dimensional simulation of Rockwell experi-

ment

We consider the water channel experiments by Rockwell & Knisely (1980) for a

three-dimensional cavity of aspect ratio L/D = 1.08 and W/D = 3.76. This par-

ticular case is chosen here for two reasons. Firstly, it corresponds to supercritical

conditions where three-dimensional structures have been reported, as discussed

in § 6.1. Secondly, the experimental conditions are within the parameter range of

our direct numerical simulations, in terms of Reynolds number.
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A low Mach number (M = 0.3) two-dimensional simulation is performed, with

the other flow parameters matching the experimental conditions (L/D = 1, Reθ =

106 and L/θ0 = 142). In this case, the Reynolds number based on the cavity depth

is ReD ≈ 15000 and a fine mesh is required to resolve all of the flow structure.

The grid is increased from 96 to 576 points along the cavity length and depth, for

a total of about 1.1 million grid points.

The resulting two-dimensional flow is presented in figure C.1. As expected at

this relatively high Reynolds number, a wide range of small-scale structures are

present in the flow. Unlike the supercritical conditions at ReD = 1500 presented in

figure 3.1, the shear-layers breaks down at approximately x = 0.25L and periodic

shedding of vortical disturbances can be observed. The time trace of the pressure,

streamwise and normal velocity at (x, y) = (0.5L, 0) are shown in figure C.2(a),

(b) and (c) respectively. After some transient, the self-sustained oscillations in

the flow saturate into a periodic regime with dominant frequency St = 1.526.

This frequency corresponds approximately to the Rossiter mode III (St = 1.341

in equation 1.1 with n = 3). In general, the visualisation of the vorticity contours

confirms the presence of three vortices along the cavity length simultaneously.

Precise values of the oscillation frequencies in the experiment are not reported,

but the numerical results are consistent with the side-view illustration in figure

C.5.

From figure C.1, it is clear that a recirculating vortical flow similar to the

one observed in subcritical conditions is present in the cavity. The time-averaged

velocity field for run Rkw is shown in figure C.3. Much like the square cavities

considered in chapters 3 and 4, the primary vortex occupies the whole cavity in

the present case and has properties similar to a solid-body rotation away from the

walls.



113

0 1
-1

0y

0 1
-1

0

(a) (d)

0 1
-1

0y

0 1
-1

0

(b) (e)

0 1
-1

0y

x
0 1

-1

0

x

(c) (f)

Figure C.1: Vorticity field for the run Rkw at six different times (a-f) corresponding

to approximately a one sixth of a period of oscillation; 30 equi-spaced contours of

the vorticity magnitude between ωzD/U = −15 and 15 are shown.
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Figure C.2: Time trace at (x, y) = (0.5L, 0) for run Rkw: (a) pressure; (b) stream-

wise velocity; (c) normal velocity



115

PSfrag replacements

x

y

0 1
-1

0

Figure C.3: Time-averaged velocity field for run Rkw. Nineteen equi-spaced con-

tours of the velocity magnitude between ||u||/U = 0.05 and 0.95 are represented.

C.2 Linear stability results

Figure C.4 shows the streamlines and Rayleigh discriminant of the two-dimensional

time-averaged base flow for run Rkw. The region of potential centrifugal instability

covers all the outward streamlines of the primary vortex inside the cavity and is

comparable to the results for the subcritical run H1Re200 in figure 4.1,

The linear stability of this time-averaged base flow is then investigated. In this

case, perturbations of spanwise wavelength ranging from λ/D = 0.05 to 16 are

considered. We find that all the disturbances have a positive linear growth rate

and are therefore unstable. However, the perturbation with λ/D = 0.125 has a

growth rate larger than for the other wavelength and is designated as the most

unstable mode. Unlike the steady mode i of wavelength 0.4 previously identified

as the dominant mode for square cavities, this mode is oscillatory with frequency

St = 0.046. These properties are significantly different from characteristics of the

centrifugal modes discussed in chapter 3.

In their water channel experiments, Rockwell & Knisely (1980) identified a

spanwise wavy structure and estimated the spanwise wavelengths λz to “approxi-
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Figure C.4: Streamlines and Rayleigh discriminant of 2D time-averaged base flow

for run Rkw. The red flooded region indicates where η is greater than 5% of its

maximum value.

mately 1 to 0.5 streamwise wavelength” depending on the location in the cavity.

Precise values of the wavelengths or the frequencies are not reported. Since the 2D

simulation shows that the flow oscillates in Rossiter mode III, the streamwise wave-

length is approximately D/3, leading to a spanwise wavelength of λz = 0.333D to

0.167D for the three-dimensional instabilities. Therefore, there is some qualita-

tive agreement between the experimental data and our linear results. The three-

dimensional nonlinear simulation was not performed because the flow parameters

considered here, while matching the experimental conditions, are beyond the limit

of current computer resources for DNS.

We also consider the linear stability of the two-dimensional time-averaged base

flow for the supercritical runs 2M06 and H1Re300, as both linear and nonlinear

data is available for direct comparison in these cases. The results match for run

H1Re300, but are significantly different for run 2M06, in terms of both spanwise

wavelength of instability and oscillation frequency.

Overall, our attempt to extend the linear stability analysis to supercritical flows
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Figure C.5: Schematics of the shear-layer oscillations and spanwise structures.

This corresponds to figure 3 in the article by Rockwell & Knisely (1980), “Illus-

tration of mechanism of interaction between primary and secondary (longitudi-

nal) vorticity.” Here, the term “primary vortices” corresponds to vortical distur-

bances in the shear layer, and not the recirculating vortical flow inside the cavity.

Reprinted with permission from D. Rockwell and C. Knisely, Observations of the

three-dimensional nature of unstable flow past a cavity, 23(3) 425-431 1980. Copy-

right 1980, American Institute of Physics.
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lead to mixed results. Some cases showed good agreement while others did not

predict the correct instability. Here, the Navier–Stokes equations are linearised

with respect to the two-dimensional time-averaged base flow q̄ that is not an

exact solution of the equations. We suspect that this approximation may not be

appropriate to identify the 3D instabilities accurately. As discussed in chapter

5, the linear stability results from corresponding subcritical cases (if such stable

conditions exist) seem more reliable for delivering the properties of the 3D modes

for supercritical conditions.
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Appendix D

Preliminary Results on 3D Wake Mode

As mentioned in the introduction, another mode of cavity flow oscillation, com-

monly referred to as “wake mode,” has been observed in a few experiments (e.g.,

Gharib & Roshko, 1987) and several two-dimensional numerical simulations (e.g.,

Fuglsang & Cain, 1992; Cain et al., 2000; Rowley et al., 2002b; Larsson et al.,

2004). Since experimental evidence of the wake mode is limited for the classical

3D rectangular cavity typically used to model practical applications, this mode is

not the main focus of the present work. However, it is of interest here because

three-dimensionality has been shown to play a role in suppressing it. For instance,

Shieh & Morris (2000) and Suponitsky et al. (2005) showed that two-dimensional

cavity flows oscillating in wake mode return to shear-layer mode when random

three-dimensional inflow disturbances are introduced. We present here some pre-

liminary results from ongoing work on the connections between the 3D centrifugal

instabilities and the presence/suppression of the wake mode.

D.1 Two-dimensional wake mode

The wake mode is characterized by the periodic shedding of a large vortex (about

the size of the cavity) from the cavity leading edge, resulting in a significant increase

in drag. Detailed description of the wake mode properties can be found in the

article by Rowley et al. (2002b).

As they predict the flow transition to wake mode for longer cavities and larger
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Figure D.1: Time trace at (x, y) = (0.5L, 0) for run 4M06wake: ( ) streamwise
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Mach and Reynolds number, we consider run 2M06 and increase the aspect ratio to

L/D = 4 while keeping the other parameters constant. As expected, the resulting

simulation 4M06wake (L/D = 4, M = 0.6, L/θ0 = 105.6, ReD = 1500) shows

that the 2D flow oscillates in wake mode. The time-trace of the pressure, the

streamwise and normal velocities are presented in figure D.1, and are significantly

different from the typical shear-layer mode results. The amplitude of oscillation is

larger and the frequency is lower. The power spectrum in figure D.2 shows that

the oscillation frequency is StD = 0.063. This value is identical to those obtained

by Rowley et al. (2002b) for L/D = 4 cavities with Mach number within the range

0.4 < M < 0.8. In particular, StD = 0.064 for their run L4 with similar flow

conditions. The power spectrum levels are about two orders of magnitude higher

in this case, compare to the shear-layer mode. Overall, the large-scale shedding in

the wake mode is a more violent event than the shear-layer oscillations.

The increase in drag is also observed. The instantaneous drag coefficient Cd

(figure D.3) is computed by integrating the skin friction drag over the bottom of

the cavity, and the pressure drag over the vertical walls at the leading and trailing

edges of the cavity. The usual nondimensionalisation by 1/2ρU 2A is used, where
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Figure D.2: Spectrum of the normal velocity for run 4M06wake. The wake mode

frequency is identified and the harmonics can also be observed

A is the area of integration. As anticipated, the main contribution comes from

the pressure drag, resulting in an estimated average drag coefficient of Cd ≈ 0.3.

This result is similar to the value Cd = 0.227 reported by Rowley et al. (2002b)

for run L4. This value is about 15 times higher than the average drag computed

for a cavity of same aspect ratio 4 with the flow oscillating in shear-layer mode.

The time-averaged flow (figure D.4) for the wake mode in run 4M06wake con-

trasts with the typical 2D base flow discussed throughout the present work. On

average, there is no recirculating vortical flow in the downstream part of the cav-

ity. The same conclusion actually holds for the instantaneous flow field. The mean

flow above the cavity is significantly deflected upward and the maximum velocity

magnitude inside the cavity reaches approximately 40% of the freestream value.
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Figure D.3: Time trace of the drag coefficient: ( ) 2D run 4M06wake in wake

mode, ( ) 2D run TK4M06Re40 in shear-layer mode

D.2 Three-dimensional simulations

The same procedure described in chapter 5 is followed here to performed the

full three-dimensional nonlinear simulations. The initial condition is the time-

averaged flow field extracted from run 4M06wake by averaging the periodic data.

Two homogeneous 3D cavity of spanwise extent Λ/D = 2 and Λ/D = 1.25 are

considered. In the first configuration, the mesh contains about 11 million grid

points, with (Nx = 240, Ny = 60, Nz = 128) points across the cavity in the

streamwise, depth, and spanwise directions, respectively. The number of points in

the span is reduce by half in the second configuration.

D.2.1 Flow field without spanwise disturbances

First, a three-dimensional simulation is performed on the small grid without any

spanwise disturbances (run 4M06wake-3D). As expected, the 3D flow remains uni-

form in the spanwise direction and oscillates in wake mode. The mode frequency

and properties are identical to the results of the 2D simulation. The visualisation

of the flow field is presented in figure D.5.
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Figure D.4: Time-averaged velocity field and streamlines for L/D = 4 cavities:

(a) 2D run 4M06wake in wake mode, (b) 2D run TK4M06Re40 in shear-layer mode.

Nine equi-spaced contours of the velocity magnitude between ||u||/U = 0.1 and

0.9 are represented.
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Figure D.5: Visualisation of the wake mode in 3D run 4M06wake-3D. Six different

times (a-f) are shown, corresponding to approximately one-sixth phase intervals

of a period of the instability. The iso-surfaces represent ten equi-spaced levels of

the spanwise component of vorticity between ωzD/U = −5 and 5. The whole

spanwise extent of the cavity is shown and the flow is clearly uniform in the

spanwise direction.
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D.2.2 Flow field with spanwise disturbances

Small perturbations of spanwise wavelength λ/D = 1.25 are added to the time-

averaged flow field from run 4M06wake. This particular wavelength is chosen be-

cause it corresponds to the most unstable mode for L/D = 4 cavities, according to

the linear stability analysis presented in chapter 3. The 3D simulation, referred to

as 4M06-3D, is performed on both large and small grids, and lead to similar results.

With the initial spanwise disturbances, the flow does not oscillate in wake

mode but instead transitions to the classical Rossiter mode. Figure D.6 shows the

evolution of the vorticity field for run 4M06-3D. The shear-layer oscillations and

the formation of the recirculating vortical flow near the downstream wall of the

cavity can be observed.

The time trace of the velocities and pressure are presented in figure D.7: the

smaller oscillation amplitude and higher frequency contrast with the wake mode

results in figure D.1. The corresponding power spectra (in figure D.9(a)) show

that the dominant frequency is StD = 0.186. This value matches the prediction

from Rossiter’s formula for mode II (StD = 0.186 with n=2 in equation 1.1). It

is also consistent with the observation that, in general, two vortices are present

simultaneously in the shear layer along the cavity (see figure D.6).

Unlike the previous cases in chapter 5, a dominant spanwise wavelength for the

3D instability cannot be clearly identified: a wide range of small-scale structures

are present in the flow in figure D.6. Likewise, a low-frequency modulation of the

shear-layer oscillation is not evident. However, the time trace in figure D.8 and

the power spectrum in D.9(b) do suggest the presence of 3D mode of frequency

StD ≈ 0.01. This value is similar to the prediction StD ≈ 0.011 from the linear

stability analysis for the run series 4M03 (see appendix A). Here, we suspect that

the 3D simulation needs to be continued, as the flow has not reached a periodic

limit cycle yet.

Different initial conditions may need to be considered as well. In retrospect,

the choice of the time-averaged flow field of the wake mode as initial condition

can be reexamined. Because the time-averaged field is significantly different from
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(a) (b)

(c) (d)

(e) (f)

Figure D.6: Visualisation of the 3D run 4M06-3D. Six different times (a-f) are

shown, corresponding to approximately one-sixth phase intervals of a period of

the instability. The iso-surfaces represent five equi-spaced levels of the vorticity

magnitude between ||ω||D/U = 1 and 5.
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Figure D.9: Spectra at (x, y, z) = (0.5L, 0, 0) for run 4M06-3D: (a) normal velocity

v/U , (b) spanwise velocity w/U . The Rossiter wake mode frequency is identified

and the possible peak of the 3D mode is suggested.

any instantaneous solution of the flow equations, it introduces additional distur-

bances that can possibly increase the duration of a transient flow and delay the

development of the different modes. Future works include 3D simulations with

perturbations added to the flow field in wake mode from run 4M06wake-3D. Sim-

ulations with an incoming boundary layer nonuniform in the spanwise direction

(and zero flow inside the cavity) will also be performed.

Overall, the results are consistent with the conclusions of previous numerical

studies that 3D disturbances seem to suppress the wake mode for rectangular

homogeneous cavities. The resulting flow oscillates in the typical shear-layer mode

but is highly three-dimensional. At this stage, it is not possible to conclude whether

the 3D centrifugal instability is present or not, and if it causes the transition from

wake to shear-layer mode. Additional three-dimensional simulations are underway

to give more conclusive answers to these questions.



129

Bibliography

Ahuja, K. K. & Mendoza, J. 1995 Effects of cavity dimensions, boundary layer

and temperature on cavity noise with emphasis on benchmark data to validate

computational aeroacoustic codes. Tech. Rep. CR-4653. NASA.

Aidun, C. K., Triantafillopoulos, N. G. & Benson, J. D. 1991 Global

stability of a lid-driven cavity with throughflow: Flow visualization studies.

Phys. Fluids A 3, 2081–2091.

Albensoeder, S. & Kuhlmann, H. C. 2006 Nonlinear three-dimensional flow

in the lid-driven square cavity. J. Fluid Mech. 569, 465–480.

Albensoeder, S., Kuhlmann, H. C. & Rath, H. J. 2001 Three-dimensional

centrifugal-flow instabilities in the lid-driven-cavity problem. Phys. Fluids

13 (1), 121–135.

Alvarez, J. & Kerschen, E. 2005 Influence of wind tunnel walls on cavity

acoustic resonances. AIAA Paper 2005-2804.

Alvarez, J., Kerschen, E. & Tumin, A. 2004 A theoretical model for cavity

acoustic resonances in subsonic flow. AIAA Paper 2004-2845.

Armaly, B.F, Durst, F., Pereira, J. C. F. & Schönung, B. 1983 Experi-

mental and theoretical investigation of backward-facing step flow. J. Fluid Mech.

127, 473–496.

Barkley, D., .Gomes, G. M & Henderson, R. D. 2002 Three-dimensional

instability in flow over a backward-facing step. J. Fluid Mech. 473, 167–190.



130

Bayly, B. J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-

dimensional flows. Phys. Fluids 31 (1), 56–64.

Benson, J. D. & Aidun, C. K. 1992 Transition to unsteady nonperiodic state

in a through-flow lid-driven cavity. Phys. Fluids A 4, 2316–2319.

Burnes, R. & Colonius, T. 2007 Cavity-enhanced mixing and flame-holding in

high Reynolds number flows. work in progress.

Cain, A., D., Rubio A., Bortz, D. M., Banks, H. T. & Smith, R. C. 2000

Optimizing control of open bay acoustics. AIAA Paper 2000-1928.

Cattafesta III, L. N., Garg, S., Kegerise, M. S. & Jones, G. S. 1998

Experiments on compressible flow-induced cavity oscillations. AIAA Paper 98-

2912.

Cattafesta III, L. N., Shukla, D., Garg, S. & Ross, J. A. 1999 Develop-

ment of an adaptive weapons-bay suppression system. AIAA Paper 99-1901.

Chang, K., Constantinescu, G. & Park, S. 2006 Analysis of the flow and

mass transfer processes for the incompressible flow past an open cavity with

a laminar and a fully turbulent incoming boundary layer. J. Fluid Mech. 561,

113–145.

Chatellier, L., Laumonier, J. & Gervais, Y. 2006 Theoretical and exper-

imental investigation of low Mach number turbulent cavity flows. Experiments

in Fluids 36, 728–740.

Colonius, T. 2001 An overview of simulation, modeling, and active control of

flow/acoustic resonance in open cavities. AIAA Paper 2001-0076.

Colonius, T., Lele, S. K. & Moin, P. 1993 Boundary conditions for direct

computation of aerodynamic sound. AIAA J. 31(9), 1547–1582.



131

Ding, Y. & Kawahara, M. 1999 Three-dimensional linear stability of incom-

pressible viscous flow using the finite element method. Int. J. Num. Meth. Fluids

31, 451–479.

DiPrima, R.C., Eagles, P.M. & Ng, B.S. 1984 The effect of radius ratio on

the stability of Couette flow and Taylor vortex flow. Phys. Fluids 27 (10),

2403–2411.

Drazin, P.G. & Reid, W.H. 1981 Hydrodynamic stability . Cambridge University

Press.

Faure, T. M., Adrianos, P., Lusseyran, F. & Pastur, L. 2007 Visualiza-

tions of the flow inside an open cavity at medium range Reynolds numbers.

Experiments in Fluids 42, 169–184.

Freund, J.B. 1997 Proposed inflow/outflow boundary condition for direct com-

putation of aerodynamic sound. AIAA J. 35(4), 740–742.

Frigo, M. & Johnson, S. G. 1997-2007 FFTW library http://www.fftw.org.

Fuglsang, D. F. & Cain, A. B. 1992 Evaluation of shear layer cavity resonance

mechanisms by numerical simulation. AIAA Paper 92-0555.

Gharib, M. 1983 The effect of flow oscillations on cavity drag, and a technique

for their control. PhD thesis, California Institute of Technology.

Gharib, M. & Roshko, A. 1987 The effect of flow oscillations on cavity drag.

J. Fluid Mech. 177, 501–530.

Gloerfelt, X., Bailly, C. & Juve, D. 2003 Direct computation of the noise

radiated by a subsonic cavity flow and application of integral methods. J. Sound

Vib. 266, 119–146.

Gudmundsson, K. & Colonius, T. 2006 Linear stability analysis of chevron jet

profiles. In Proceedings of FEDSM 2006-98485 .



132

Heller, H. H. & Bliss, D. B. 1975 The physical mechanism of flow induced

pressure fluctuations in cavities and concepts for their suppression. AIAA Paper

75-491.

Kegerise, M.A., Spina, E.F., Garg, S. & Cattafesta III, L. N. 2004 Mode-

switching and nonlinear effects in compressible flow over a cavity. Phys. Fluids

16 (3), 678–687.

Krishnamurty, K. 1956 Sound radiation from surface cutouts in high–speed

flow. PhD thesis, California Institute of Technology.
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