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ABSTRACT

Practical robotic assistive devices have the potential to transform many as-
pects of our society, from enabling locomotive autonomy to facilitating reha-
bilitation. However, as is typically the case when having autonomous systems
interact closely with humans, one must simultaneously solve multiple grand
challenges. My work focuses specifically on 1) leveraging hybrid system theory
to achieve stable and robust walking that generalizes well across various human
models and environmental conditions, and 2) developing an online learning
strategy to customize the experimental walking for individual user comfort.
The presented methodology is grounded in realizing lower-body exoskeleton
locomotion for subjects with motor complete paraplegia, with extensions to
other robotic applications. The contributions are broken down as follows.

First, by leveraging tools from nonlinear control theory, I propose techniques
for systematically addressing locomotive robustness. These techniques include:
using saltation matrices to generate robust gaits with experimental demonstra-
tions on the Atalante lower-body exoskeleton; and developing an input-to-state
stability perspective to certify robustness to uncertain impact events. Impor-
tantly, these methods aim to better understand the mathematical conditions
underlying robust locomotion—a necessary step towards realizing safe loco-
motion across varying human models and environmental conditions. Second,
I develop a preference-based learning framework to explicitly optimize user
comfort during exoskeleton locomotion (achieved using the aforementioned
nonlinear control methodology) by learning directly from subjective feedback.
This framework is implemented in real-world settings, including the clinical
realization of user-preferred locomotion for two subjects with motor complete
paraplegia. Third, the extensibility of this framework is demonstrated through
three general robotic applications: tuning constraints of the gait generation op-
timization problem with demonstrations on a planar biped; tuning Lyapunov-
based controller gains on a 3D biped; and tuning control barrier function
parameters for performant yet safe exploration on a quadrupedal platform.
Lastly, I discuss other relevant clinical considerations for lower-body assis-
tive devices including how exoskeleton locomotion influences metabolic cost of
transport, the study of latent factors underlying user-preferred walking, and
embedding musculoskeletal models directly in the gait generation process.
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C h a p t e r 1

INTRODUCTION

Achieving stable, robust, and natural robotic bipedal locomotion in the real
world is a challenging endeavor [160], especially when interacting closely with
humans. This application is particularly relevant for the field of lower-body
assistive devices such as powered prostheses [69, 209] and lower-limb exoskele-
tons [19, 114]. Specifically, one of the primary challenges when considering
robotic assistive devices is that the system must be able to generalize robustly
across a diverse set of human models [69], yet also be customized to individual
users to maximize potential clinical benefits [175]. These considerations are
exceedingly important for translating assistive devices to commercial settings.

Overall, my work approaches the challenges of generalization and customiza-
tion by developing systematic methods for improving locomotive robustness
via hybrid system theory and enabling fast user-customization via preference-
based learning. Importantly, in the quest for a full-stack solution, my work
integrates learning and control to take advantage of theoretical guarantees,
informed by knowledge of the underlying dynamics, as well as a human’s nat-
ural ability to judge good experimental behavior. Also, to ensure that the
framework is practical, several real-world experiments are conducted, with the
experiments involving humans being conducted across various subjects.

Concretely, the contributions of this thesis are four-fold: Chapter 2 presents
an approach for systematically synthesizing robust walking gaits and proposes
a theoretical perspective towards certifying locomotive robustness; Chapter 3
introduces a novel preference-based learning framework that leverages three
forms of subjective human feedback to both optimize and characterize hu-
man preference with various demonstrations towards optimizing user com-
fort during exoskeleton locomotion; Chapter 4 extends the proposed learning
framework towards three additional robotic applications to demonstrate its
extensibility; and Chapter 5 presents three additional studies towards better
understanding the clinical implications of lower-body assisted locomotion.

While the thesis is aimed generally at systematically realizing bipedal locomo-
tion in the real world, the proposed methodologies are grounded in achieving
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locomotive autonomy on the Atalante lower-body exoskeleton for subjects with
complete motor paraplegia [114] (illustrated in Figure 1.1); this application is
particularly important as lower-body exoskeletons have the potential of restor-
ing autonomy to millions of individuals with ambulatory disabilities, thereby
improving quality of life. Additional details and motivation for research in-
volving lower-body exoskeleton control are provided later. Extensions of the
presented work are also demonstrated for additional robotic applications. In
general, by addressing locomotive robustness through hybrid system theory
and user-customization through preference-based learning, my research works
towards accelerating clinical implementation of robotic assistive technologies
and enabling the use of these devices in everyday life.

Motivation for Research on Lower-Body Exoskeletons

While there is extensive literature on the biomechanics surrounding non-disabled
human locomotion [225], it is poorly understood how to translate the ideas of
natural and efficient walking to robotic platforms, especially in the context of
robotic assistive devices which necessitate cooperation with human users. Of
particular interest in this work are powered lower-body exoskeletons, which
promise to augment our physical capabilities and restore mobility [85, 233].
For people with complete motor paraplegia, the benefits extend much fur-
ther, including pressure relief, increased circulation, improved bone density,
improved bowel and bladder function, and other general benefits associated
with standing and walking [72, 105, 227].

Specifically, individuals who experience a spinal cord injury (SCI) often have
a diminished ability to perform and benefit from regular exercise, which over
time causes physical deconditioning [105]. In turn, this can lead to multisys-
tem medical complications including respiratory, cardiovascular, urinary, and
bowel complications, as well as spasticity, pressure ulcurs, osteoporosis, and
worsened bone density [36, 62, 119, 144, 169]. Consequently, SCI rehabilita-
tion is often aimed at facilitating physical exercise in a clinical setting [145],
with two of the most common strategies being clinician-led mobility exercises
[148, 177] and electrical stimulation [83, 86]. Throughout this thesis, specific
interest is placed in the advancement of lower-body exoskeletons for full weight-
bearing locomotion since it is a widely unexplored technology that has several
promising health benefits associated with standing and walking [72, 105, 227].
It is even hypothesized that regular use of a lower-body exoskeleton for gait
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training can promote changes in the nervous or muscular systems, and lead to
activation of the neuromuscular system below the level of lesion [28].

Despite the clear motivation, existing lower-body exoskeletons for people with
complete motor paraplegia have limited capabilities due to the challenge in
tackling the issue of locomotive stability. Specifically, existing lower-body
exoskeletons are either only capable of walking at slow speeds [25], or are reliant
on either forearm crutches [27, 66] or overhead weight support [24, 30, 210]
to maintain stability. These modifications result in locomotion that is either
restricted to a clinical setting or that prevents proper arm motions during
walking.

Even with the use of forearm-crutches, an intensive training period [115] with
as many as 24 training sessions is often required to achieve independent loco-
motion [211]. During this training phase exoskeleton users learn how to shift
their body weight to maintain stability during the walking. Instead, recent
work leverages techniques from the bipedal robotics community [8] to achieve
dynamic crutch-less exoskeleton walking [3, 79, 85], which reduces stress placed
on the upper body and allows for proper arm motions during walking. The
first clinical evaluation of this crutch-less exoskeleton locomotion reported only
6-12 training sessions required for most subjects to achieve independent lo-
comotion [114]. Therefore, this thesis is dedicated to developing systematic
methods of achieving robust and user-customized dynamically stable walking
in an attempt to bring the benefits of crutch-less exoskeleton locomotion out
of clinical settings and into the real world.

The Atalante Lower-Body Exoskeleton

The exoskeleton used in this work, Atalante, was developed by the company
Wandercraft. This novel lower-body exoskeleton has 12 actuated joints as
shown in Figure 1.1. Each leg of the exoskeleton consists of three actuated
joints controlling the spherical motion of the hip, a single actuated joint for the
flexion/extension motion of the knee, and two actuated joints for the hinge mo-
tion (inversion/eversion, dorsiflexion/plantarflexion) at the ankle. The joints
controlling the motion of the hip and the knee are each actuated by brushless
DC motors. The ankle joints have a more complex actuation mechanism that
provides rotation in the sagittal plane and about the Henke axis. The posi-
tion and velocity of each actuated joint is measured using a digital encoder.
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Figure 1.1: The Atalante lower-body exoskeleton designed by Wandercraft:
(a) A breakdown of the Atalante exoskeleton components including patient-
harnesses and electronics; (b) A patient inside the exoskeleton; and (c) A
depiction of the locations of the 12 actuated joints.

Additionally, the exoskeleton has six Inertial Measurement Units (IMUs) that
are positioned on the torso, the pelvis, the left/right shank, and the left/right
foot. These IMUs are used to provide additional information about the atti-
tude of the robot with respect to the world. To detect ground contact, four
single-axis force sensors are attached to the bottom of each foot. All of the
actuator and sensors are controlled by an embedded computer unit running a
real-time operating system.

Other components of the exoskeleton indicated in Figure 1.1 include secure
loops for mounting the exoskeleton to an overhead hoist, buttons to change
the operating mode of the exoskeleton, a connection port to connect the ex-
oskeleton to a computer, handles on either side of the exoskeleton for the
operator to assist the exoskeleton if needed, thigh and shank harnesses to
secure a patient to the exoskeleton, thigh and shank length adjustments to
change the dimensions of the exoskeleton to match that of a patient, and a
torso harness that a patient wears to secure their torso to the exoskeleton.

Thesis Overview

First, Chapter 2 begins by introducing the Hybrid Zero Dynamics method of
gait generation and its application to realizing dynamically stable crutch-less
exoskeleton locomotion on the Atalante exoskeleton. Then, two theoretical
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tools are proposed for addressing the robustness of the resulting locomotion
to model and environmental uncertainties. The first methods introduces a
framework for improving the robustness of generated gaits by minimizing the
induced matrix norm of the saltation matrix by including it in the objective
function of the gait generation optimization problem. The second method
offers an input-to-state stability perspective on locomotion with uncertain
terrain, thereby providing mathematical certificates of forward invariance for
nominal walking gaits to given distributions of ground heights.

Following, Chapter 3 presents the details of the proposed preference-based
learning framework, which systematically optimizes exoskeleton walking for
user comfort while characterizing the underlying reward function. This ap-
proach is advantageous compared to traditional numerical learning techniques
since it only relies on subjective user feedback, which has been found to be more
reliable than numerical mechanisms and does not require explicitly defining a
reward function. The framework also addresses several challenges associated
with human-in-the-loop learning, including learning from limited data due to
time-intensive human subject experiments, ensuring user comfort and safety,
accounting for noisy feedback, and exploring the large search space of param-
eterized walking gaits. The end-to-end solution is experimentally deployed
on the Atalante lower-body exoskeleton to realize user-preferred exoskeleton
locomotion for two subjects with complete motor paraplegia, illustrating the
success of the approach towards addressing subjective human metrics such as
user comfort.

In Chapter 4, the preference-based learning framework is extended to three
additional robotic applications: identifying constraint bounds of the gait gen-
eration optimization problem to realize stable, efficient, and natural bipedal
locomotion on the planar biped AMBER-3M; identifying controller gains for
stable and robust walking on AMBER-3M and the 3D biped Cassie; and tuning
parameters of a control barrier function for both performant and safe naviga-
tion of the Unitree quadrupedal platform A1. In general, these applications
demonstrate that the proposed methodology is a powerful tool for leveraging
a human’s natural ability to judge performant robotic behavior.

Finally, in Chapter 5, three additional clinical considerations for lower-body
assistive devices are explored. These considerations include: the effect of vari-
able assistance of the Atalante exoskeleton on human users’ metabolic cost of
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transport; the study of potential latent factors underlying user-preferred ex-
oskeleton locomotion; and the directly enforcement of musculoskeletal model
constraints in the gait generation procedure to experimentally realize both
stable and natural robotic-assisted locomotion on a dual-actuated prosthesis.
Ultimately, all three studies aim to better understand the criteria underlying
clinically beneficial lower-body assisted locomotion.

Related Work

Here I will briefly underscore how the thesis contributes to existing work.

Achieving Robust Bipedal Locomotion. A common approach towards achiev-
ing robust bipedal locomotion is to develop controllers and online planning
methods that are capable of reacting to changes in the environment [82, 151].
While these methods successfully yield robust locomotion, I choose to focus on
improving the robustness of the nominally generated reference gait since the
existing work has shown that optimizing the robustness of nominal trajectories
improves overall performance regardless of the chosen method of online stabi-
lization [60, 141], and that online planning strategies can have unpredictable
behavior without the use of a reference trajectory [49, 231].

Existing work towards robust gait synthesis includes evaluating metrics of
robustness in the gait generation process such as the infinite-horizon cost-to-
go resulting from early and late impact events [60]. However, these existing
methods can be computationally expensive and do not scale easily to high-
dimensional systems. Thus, in my work, I develop a method of generating
robust limit cycles in a way that is scalable to high-dimensional systems (such
as the 18 degree-of-freedom (DOF) Atalante exoskeleton shown in Fig. 1.1).

Specifically, my work towards robust gait synthesis leverages saltation matri-
ces. These matrices, originally used in the field of non-smooth analysis, have
been receiving growing attention and have been recently demonstrated towards
state estimation for hybrid systems [121, 152] and hybrid event shaping [240].
Inspired by this recent research, our work similarly utilizes saltation matrices
to generate stable periodic walking gaits that lead to robust behavior in the
real world, even for high-dimensional systems; specifically, we propose includ-
ing the induced norm of the extended saltation matrix in the HZD optimization
problem.
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Theoretical Certificates of Locomotive Robustness. One of the most common
methods for analyzing the stability of nominal limit cycles is the method of
Poincaré sections for systems with impulse effects [77]. However, in prac-
tice it can be computationally expensive to evaluate the Poincaré section for
high-dimensional systems. Moreover, the Poincaré method of analysis is only
informative for impact events infinitesimally close to the fixed point of the
limit cycle. Thus, this method is not informative about real-world behavior
since the timing of impact events for real-world systems is noisy.

Other existing work towards mathematically describing robust locomotion in-
cludes the development of numerical metrics such as the gait sensitivity norm
[95] and the transverse linearization [137]. However, these tools do not pro-
vide theoretical certificates. As a step in this direction, input-to-state stability
(ISS) [179] has been effectively leveraged in the context of robotic walking and
running for uncertain dynamics [120, 134], but framing the robustness of walk-
ing gaits to uncertain environments remains an open problem.

Thus, the work presented in this thesis formulates a notion of robust walking
that quantifies the gap between stability and robustness mathematically. The
main result is the formulation of robust Lyapunov functions that certify the
robustness of periodic orbits to given disturbances in the environment. These
results are also extended to handle stochastic terrain.

User-Customization. Existing work towards user-customization in the context
of lower-body assistive devices includes optimizing numerical factors such as
body parameters and targeted walking speeds [162, 230], minimizing known
numerical objective function terms such as metabolic cost [117, 236], and op-
timizing human preference during prosthesis locomotion [200] and spinal cord
stimulation [183, 184]. While all of these existing techniques help to inform our
approach towards lower-body exoskeleton user-customization, we will briefly
discuss here why they are not immediately applicable.

First, most existing techniques towards optimizing numerical factors cannot
be translated to subjective evaluations such as human preference. Moreover,
it is important to note that several of these numerical factors are not appro-
priate for evaluating exoskeleton locomotion for patients with complete motor
paraplegia. For example, while it is hypothesized that the metabolic cost of
transport is a major factor underlying non-assisted walking preferences [31],
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this metric is not appropriate for exoskeleton users since metabolic cost of
transport remains constant unless variable assistance methods [80] are intro-
duced as discussed in Section 5.

Most similar to the learning framework presented later in Chapter 3 is [200],
which is also aimed at optimizing parameters of a lower-limb device for user
comfort using a preference-based human-in-the-loop framework. However, our
work differs from [200] in that we model the underlying utility function as a
Gaussian process that is informed by up to three subjective feedback mech-
anisms. In comparison, [200] defined each action’s objective value using the
Copeland Score: the number of other actions that each action was preferred
to on average. There is also existing work on characterizing the objective
function underlying non-assisted human walking [31], but unfortunately, this
understanding cannot be applied to exoskeleton locomotion since the addition
of the exoskeleton alters the users perception of safety and exertion.

Lastly, the preference-based learning framework presented in Chapter 3 builds
upon two existing algorithms. CoSpar and LineCoSpar build upon the Self-
Sparring algorithm [185], a Bayesian dueling bandits approach that enjoys both
competitive theoretical convergence guarantees and empirical performance.
The dueling bandits setting [234] is an extension of the bandit setting in which
only the comparative preference between two sampled actions is known. In
comparison, the bandits setting is one in which the reward of the sampled ac-
tion is known, along with that of the previously sampled actions. Self-Sparring
learns a Bayesian posterior over each action’s utility to the user and leverages
Thompson sampling to draw multiple samples from the model’s posterior to
“duel” or “spar” via preference elicitation. To improve the sample efficiency of
the algorithm, we modify it to include coactive feedback and ordinal labels.

The final algorithm presented in Chapter 3, ROIAL, builds upon the sampling
strategy proposed in [34], in which preference queries that are easy for users to
answer accurately are prioritized [33, 34, 98]. Our framework further adapts
this acquisition function to only consider actions within a region of interest
(ROI) in order to avoid sampling actions with low utilities. In the exoskeleton
setting, the ROI is defined as all actions that do not make the user feel unsafe
or uncomfortable. Notably, the ROIAL algorithm is the first to tackle such a
region of interest active learning task.
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C h a p t e r 2

REALIZING STABLE AND ROBUST LOCOMOTION

Achieving stable and robust locomotion on legged systems is a challenging con-
trol task due to underactuation, power limitations, and ground impacts [160].
Two main approaches that have proven successful towards mitigating these
challenges in the real world include: 1) generating stable reference trajectories
[47, 149, 150, 159] and modifying these behaviors online using regulators (such
as modifying the swing foot location based on lateral velocity [156, 160]); and
2) determining the desired behavior of the robot in real time using online plan-
ning via model predictive control [68, 75, 116, 176] or reinforcement learning
[65, 129, 166, 172].

In this work, we utilize the Hybrid Zero Dynamics method of gait generation—
a mathematical framework that has been repeatedly demonstrated towards
experimentally realizing dynamically stable walking gaits on bipedal robots,
encoded by stable periodic orbits. The HZD method [77, 220] guarantees
that if there exists an exponentially stable periodic orbit on the zero dynam-
ics submanifold of the full hybrid model, termed the zero dynamics surface,
then the corresponding periodic orbit on the full model of an underactuated
system is exponentially stabilizable [14]. In the case of full-actuation (as is
the case for the exoskeleton Atalante with flat-foot walking), an extension of
the HZD method, termed the partial hybrid zero dynamics (PHZD), can be
used that provides several advantages. The PHZD method has also been ex-
perimentally demonstrated on numerous robotic platforms [13, 90, 133, 158],
including prostheses [238].

However, it is important to note that even though the HZD and PHZD meth-
ods have provable guarantees of stability, real-world disturbances and modeling
errors void these guarantees and interfere with the resulting locomotive sta-
bility. Moreover, when a human is introduced into the system, the accuracy
of the human-robot model is relatively low. This leads to the need for either
extensive user tuning [208] or subject training [114] for stable locomotion in
real world applications. For example, a clinical study that investigated the
HZD method applied to the Atalante exoskeleton for 12 subjects with motor
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complete paraplegia found that only 63.6% of the subjects who participated 12
training sessions were able to successfully completed the 10-meter Walk Test at
Session 12 [114]. This 10-meter walk test consisted of 10 meters of exoskeleton
walking without any assistance from clinicians or external devices. While this
percentage is low, it is important to note that all 12 of the subjects were able
to walk in the exoskeleton for at least 10 meters at some point throughout the
12 clinical sessions but with varying levels of assistance from clinicians.

Thus, a critical step towards improving locomotion in cases when a human
is part of the system, such as the case with the Atalante exoskeleton, is to
better define the theoretical conditions underlying provably robust and stable
locomotion in the presence of real-world disturbances and uncertainties. Once
we better understand these notions, we can develop systematic methods of
achieving robust and stable locomotion on a variety of bipedal platforms. In
this chapter, I will first present the preliminaries on the HZD and PHZD
methods. Then, I will present two approaches towards better understanding
and improving the robustness of nominal periodic orbits. Mainly, I consider
robustness in terms of uncertain impact events, caused by either uncertain
terrain or model uncertainties.

2.1 Preliminaries on the Hybrid Zero Dynamics Method

In this section, the fundamental concepts associated with the HZD method of
gait generation are outlined [220], along with the details of extending to the
PHZD method in the case of the Atalante exoskeleton.

Discrete Structure. As walking is comprised of alternating sequences of contin-
uous dynamics followed by intermittent discrete impact events, it is naturally
modeled as a hybrid system [11, 12, 78, 131, 132, 220, 221]. Moreover, since
steady state bipedal walking is naturally periodic, it can be represented us-
ing a temporal ordering of events (changes in contact) [100]. This temporal
ordering is modeled as a hybrid system in which the domain graph is a di-
rected cycle; a cyclic oriented graph with a set of nodes and a set of edges.
The discrete structure can be simplified even further by assuming flat-foot
symmetric walking, which reduces the system to a single continuous domain
and a single discrete impact phase. Thus, the directed graph is reduced to
one node (the swing phase) and one edge (swing foot ground impact). In the
following discussion we will only consider this simplified directed graph, but
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it is important to note that the presented methodology can be extended to
more complex walking behaviors with diverse collections of contact sequences,
including natural heel-toe roll during walking [159, 174, 237]. This extension
only requires the introduction of a directed graph describing how the contin-
uous and discrete domains are related. In Chapter 5 a multi-domain HZD
framework will be leveraged to realize multi-contact walking on the AMRPO3
prosthesis.

Hybrid Systems. Consider a hybrid control system with states x ∈ X ⊂ Rn

and a control input u ∈ U ⊂ Rm. Given a continuously differentiable function1

h : X → R, let D ⊂ X denote the admissible domain on which the continuous-
time dynamics evolve and S ⊂ D denote the guard (also commonly called the
switching surface), defined as:

D = {x ∈ X | h(x) ≥ 0}, (2.1)

S = {x ∈ X | h(x) = 0, ḣ(x) < 0}. (2.2)

For states x− ∈ S, a discrete impact map ∆ : S → D, termed the reset map
is applied. Thus, the complete hybrid system can be modeled as:

HC =

{
ẋ = f(x) + g(x)u x ∈ D \ S, (2.3)

x+ = ∆(x−) x− ∈ S, (2.4)

where (2.3) and (2.4) denote the continuous-time and discrete-time dynamics,
respectively. Note that the continuous-time dynamics are assumed to be con-
trol affine with continuously differentiable functions f : Rn → Rn (termed the
drift vector) and g : Rn → Rn×m (termed the actuation matrix). It is assumed
(as is typical) that all quantities in HC are locally Lipshitz continuous, e.g.,
the impact map ∆ is locally Lipschitz. This follows from the assumption of
perfectly plastic impacts [73]. Importantly, note that for impact maps based
on rigid-body contacts [99], the impact map does not depend on the ground
height.

Generalized Coordinates. For a robotic system with n degrees of freedom,
the system state is described using configuration coordinates q ∈ Q ⊂ Rn,
with the full system state x = (qT , q̇T )T ∈ X ⊂ TQ. Moreover, for a robotic
system modeled as a floating-base model, the configuration coordinates are be

1Note that h must be selected such that it does not lie within the null space of the
actuation matrix, i.e., Lgh(x) 6= 0
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further broken down as q = (p, φ, qb) ∈ Q ⊂ Rn. Here, (p, φ) ∈ SE(3) denotes
the Cartesian position p ∈ R3, and orientation φ ∈ SO(3), of the floating-
base frame relative to the world frame for a robot navigating the 3D world.
Alternatively, for a planar robot, the floating-base frame would instead live
in SE(2) with p ∈ R2 and φ ∈ SO(2). The remaining coordinates describe
the local coordinates of the robot, qb ∈ Qb ⊂ Rnb . Commonly, the local
coordinates represent joint angles of the robotic. It is also possible to model
the robot using a pinned model whereby the holonomic constraints enforcing
contact with the ground are imposed at the contact locations [221].

Hybrid Zero Dynamics and Virtual Constraints. The dynamics of walking can
be separated into those that can be controlled using actuation, and those
that are uncontrollable – termed the zero dynamics. The main idea of the
HZD method is that exponentially stable periodic orbits of the zero dynamics
correspond to exponentially stabilizable orbits of the full hybrid system model
[220]. This lower-dimensional surface, termed the zero dynamics surface [104],
follows from classic results in nonlinear control which state that, with the
proper choice of coordinates, the ordinary differential equations that model
the natural continuous dynamics of a system can be represented on the zero
dynamics surface. When this approach is extended to systems with discrete
impacts, the surface is termed a hybrid zero dynamics surface.

Consider the zero dynamics surface:

Zα , {x ∈ D | yα(x) = 0, ẏα(x) = 0},

where yα : X → Rm denotes the set of outputs (also called virtual constraints).
When enforced, the virtual constraints regulate the behavior of the system to
some desired motion. Importantly, the choice of virtual constraints yα also
determines the shape of the manifold Zα, i.e., the underactuated coordinates
can be indirectly shaped through the virtual constraints. Specifically, the
virtual constraints are defined as:

yα(x) = ya(x)− ydα(τ(x)), (2.5)

with ya : X → Rm denoting the actual measured outputs of the system and ydα :

R→ Rm denoting the desired outputs parameterized by some function τ(x) :

X → R that is monotonically increasing across the limit cycle. The desired
outputs are enforced on the system by driving yα → 0 exponentially through
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the use of a stabilizing controller u∗(x), e.g., given by feedback linearization
or control Lyapunov functions [14, 16, 221]. The end result is the closed-loop
dynamics : ẋ = fcl(x) = f(x) + g(x)u∗(x).

Note that we intentionally use the subscript α to denote the specific choice of
desired outputs (and thus also the corresponding zero dynamics surface) since
a popular and convenient approach towards designing ydα is through the use of
Bézier polynomials parameterized by the set of Bézier coefficients α ∈ Rno×B+1

with n0 ∈ N denoting the total number of outputs. Note that the number
of outputs depends on both the degrees of freedom of the system and the
holonomic constraints defined in each domain of the hybrid system. Briefly,
the total number of outputs and holonomic constraints must be less than or
equal to the total degrees of freedom of the system. The number of outputs
must also not exceed the degrees of actuation.

The desired behavior for each output (indexed by v ∈ [1, . . . , no]) is described
by an Bth order Bézier polynomial:

b(τ, αv) ,
B∑
k=0

αv[k]
B!

k!(B − k!)
τ k(x)(1− τ(x))B−k, (2.6)

where αv = [αv[0], . . . , αv[B]] ∈ RB+1 denotes the set of Bézier control points.
Advantages of Bézier polynomials include their ability to describe smooth mo-
tions using a finite set of control points, the property that the trajectories
are bounded by the control points, and the explicit representation of their
derivatives [1, 165]. Furthermore, τ is typically defined as:

τ(x) ,
θ(x)− θ+

θ− − θ+
, (2.7)

with θ : X → R being a monotonically increasing phase variable (for example,
θ is later selected to be the linearized horizontal hip position), and θ+ , θ(x+)

and θ− , θ(x−) respectively denoting the phase variable evaluated at the
beginning and end of the limit cycle. Using this definition, the function τ is
restricted to the range [0, 1], i.e., τ : X → [0, 1].

Hybrid Invariance Condition. To guarantee stability of a hybrid system, the
virtual constraints must be specifically chosen such that when enforced, dis-
crete impact events do not cause the system to be thrown off the zero dynamics
surface. In other words, the system must be impact invariant. This condition
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is encoded by the following hybrid invariance condition (also known as the
HZD condition):

∆(S ∩ Zα) ⊂ Zα. (2.8)

Trajectory Optimization. The final step of the HZD method is to select α
such that when the virtual constraints are driven to zero (yα → 0), the closed-
loop dynamics are stable, the system is hybrid invariant, and the physical
constraints are satisfied. To obtain α, we use a direct collocation based opti-
mization algorithm, FROST [87], which has been previously utilized for effi-
cient gait generation of walking [160], running [134], and quadrupedal locomo-
tion [136]. Direct collocation is an implicit Runge–Kutta method to approxi-
mate the numerical solution of certain dynamical systems, namely differential-
algebraic equations and partial differential equations. The trajectory optimiza-
tion problem is stated as:

HZD Optimization:

{α∗, X∗} = argmin
α,X

Φ(X) (2.9)

s.t. ẋ = fcl(x) (Closed-loop Dynamics)
∆(S ∩ Zα) ⊂ Zα (HZD Condition)
Xmin � X � Xmax (Decision Variables)
cmin � c(X) � cmax (Physical Constraints)

where X = (x0, ..., xN , T ) ∈ Rnd is the collection of nd ∈ N decision variables
with xi ∈ X denoting the ith discretization of the state and T ∈ R>0 denoting
the limit cycle duration, Φ : Rnd → R≥0 is the cost function, and c : Rnd →
Rnp is the set of np ∈ N physical constraints. These physical constraints are
included in every gait generation framework to encode the physical laws of
real-word, such as the friction cone condition, workspace limit, and motor
capacity [159]. The end result of the optimization problem is a stable periodic
solution to the walking dynamics that is parameterized by some static set of
Bézier coefficients α∗ ∈ Rno×B+1.

In practice, the optimization problem can be solved using any nonlinear pro-
gramming (NLP) solver such as IPOPT [214]. Additionally, a convenient way
to formulate the optimization problem is using the MATLAB toolkit FROST
[87]. In general, FROST uses a direct collocation-based gait optimization to
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design periodic gaits for a hybrid system model. Other methods of solving
the nonlinear optimization problem also exist, such as direct shooting meth-
ods [89]. However, direct collocation was found to be the fastest and most
computationally inexpensive way of solving optimization problem [91].

Extension to the Partial Hybrid Zero Dynamics. As mentioned earlier, in the
case of full-actuation, the Partial Hybrid Zero Dynamics (PHZD) method [8]
is leveraged. This approach utilizes a specific choice of nonlinear control to
drive the system to a partial zero dynamics surface that is both attractive and
forward invariant. The impact invariance of this surface results in a theoretical
guarantee that a stable periodic orbit must exist on the reduced-order PHZD
surface and therefore the full-order dynamics (i.e., there must exist a stable
walking gait). The PHZD method also enables the regulation of forward pro-
gression via the velocity regulating outputs. This specific choice of nonlinear
control will be outlined next for the Atalante exoskeleton.

The PHZD Method applied to the Atalante exoskeleton

The procedure for obtaining stable locomotion on the Atalante exoskeleton
is illustrated in Figure 2.1. As discussed earlier, a unique aspect of achieving
stable locomotion on the Atalante exoskeleton is that the model of the human-
exoskeleton system changes for each individual user. Thus, we will first discuss
how we obtain this patient-specific model. Following, we will discuss details of
the PHZD method applied to the Atalante exoskeleton, and how the obtained
periodic orbits are enforced on the physical robot.

Patient-Exoskeleton Model Generation. A model of each patient is generated
to account for each person’s unique physical characteristics. Key measure-
ments of each patient are made: height, mass, thigh length, and shank length.
The thigh length is approximated by the measurement between the gluteus
maximus and the patella when the patient is in a seated position. The shank
length is approximated as the measurement between the femoral condyles and
the ground when the patient is in a seated position. The measured thigh length
and shank length are used to adjust the leg lengths of the exoskeleton to match
that of the patient. The patient model is then created as follows. First, the
total height of the patient is used to extrapolate the length of each segment
of the patient model. The segments were chosen to be: head, arms and trunk
(HAT); Pelvis; Left Thigh; Left Shank; Left Foot; Right Thigh; Right Shank;
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Figure 2.1: The diagram illustrates the procedure for achieving dynamically
stable crutch-less exoskeleton locomotion using the Partial Hybrid Zero Dy-
namics (PHZD) framework. First, a model of the fused patient-exoskeleton
system is constructed, along with a directed graph describing the hybrid sys-
tem. Then, a nominal walking gait is generated using a nonlinear optimization
problem. Lastly, the desired behavior is enforced on the physical robot using
joint-level tracking with blending to remove discontinuities due to early impact
events.

Right Foot. These extrapolations were first derived by Drillis and Contini
[64]. Using these segment lengths, the center of mass (COM) and inertia for
each body segment are then calculated using anthropometric data [225]. The
inertia and COM of each segment is given with respect to the proximal end of
that segment. The inertia and COM of each segment are then combined with
those of the corresponding segments of the rigid body exoskeleton model to
form the patient-exoskeleton model.

This combined human-exoskeleton model can be mathematically represented
as a rigid-body system with configuration coordinates q = (p, φ, qb) ∈ Q ⊂ R18.
Note that for Atalante, q ⊂ R18 since the system has 18 degrees of freedom, and
qb ⊂ R12 denoting the 12 actuated joint angles. The system is fully actuated
when one foot is flatly in contact with the ground, as enforced by holonomic
constraints [78].

Constructing the Hybrid Control System. Given the mass and inertia prop-
erties of each rigid link in the patient-exoskeleton model, the continuous dy-
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namics can be expressed as solution to the Euler-Lagrange equations:

ẋ =

[
q̇

−D(q)−1H(q, q̇)

]
︸ ︷︷ ︸

f(x)

+

[
0

D(q)−1B

]
︸ ︷︷ ︸

g(x)

u. (2.10)

where D : Q → R18×18 is the mass-inertia matrix, H : TQ → R18 contains the
Coriolis and gravity terms, B ∈ R18×12 is the actuation matrix, and u ∈ R12

is the control input.

Next, we define the guard function for the guard defined in (2.2) as h(x) ,

pzsw(x), with pzsw : X → R denoting the vertical position of the swing foot.
Thus, the guard can be interpreted as the set of states when the swing foot
strikes the ground with a negative velocity. As the system flows into the guard,
nc ∈ N holonomic constraints ηst : Q → Rnc are enforced in the continuous
domain succeeding the impact event. For 3D flat-foot exoskeleton walking,
there are six individual holonomic constraints (nc = 6) which are described as:

ηst(q) =

[
pst(q)

φst(q)

]
= constant, (2.11)

where pst(q) ∈ R3 denotes the euclidean position of the stance foot and φst(q) ∈
SO(3) denotes the orientation.

As the system flows into the guard, it also undergoes a discrete jump in the
state that can be expressed using the momentum transfer equation [99]:

D(q−)(q̇+ − q̇−) = Jc(q
−)>δF (2.12)

where (q−T , q̇−T )T ∈ TQ and (q+T , q̇+T )T ∈ TQ, respectively, represent the
state just before and after impact, δF ∈ Rnc is the impulse force of the impact
event, and Jc : Q → Rnc×18 is the Jacobian of the holonomic constraints.

Enforcing the holonomic constraints through impacts can equivalently be rep-
resented as Jc(q−)q̇+ = 0. With this, we can rewrite the impact equation [73]
as: [

D(q−) −Jc(q−)>

Jc(q
−) 0

][
q̇+

δF

]
=

[
D(q−)q̇−

0

]
. (2.13)

Noting that the configuration is continuous through impact, solving for q̇+ in
(2.13) allows us to explicitly define the reset map, i.e., the map describing the
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discrete event at footstrike [78], as:

x+ = ∆(x−) ,

[
Rq−

R(−D−1J>c (JcD
−1J>c )−1Jc + I)q̇−

]
(2.14)

where the dependence of D and Jc on q− is suppressed and R ∈ R18×18 denotes
the relabeling matrix which is used to maintain state consistency between
domains. Explicitly, for symmetric walking on the Atalante exoskeleton, the
relabeling matrix is:

R ,



1
−1

1
−1

1
−1

06×12

012×6

06×6

−1
−1

1
1

1
−1

−1
−1

1
1

1
−1

06×6



, (2.15)

in the case where the local coordinates qb are defined using the following joint
ordering (abbreviations are provided in the caption of Figure 2.2): LFH, LTH,
LSH, LSK, LSA, LHA, RFH, RTH, RSH, RFK, RSA, RHA. Note here that
the non-negative entries only apply to joints in the sagittal plane.

We are now fully equipped to mathematically describe the hybrid system HC
as defined in (2.3) and (2.4) using the continuous-time dynamics provided in
(2.10) and the impact map provided in (2.14).

Selecting Virtual Constraints. As mentioned, since the Atalante exoskeleton is
fully actuated, it leverages an extension of the HZD method called the PHZD
method. Thus, as is typical for the PHZD method, the virtual constraints are
defined using a specific form that includes both relative degree 1 and relative
degree 2 outputs:

yα(x) ,

[
y1(x)

y2(x)

]
=

[
ya1(q, q̇)− vd

ya2(q)− yd2(τ(x), α)

]
∈ Rm (2.16)
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Figure 2.2: An example gait for the Atalante exoskeleton. The gait is encoded
via periodic joint-level trajectories, plotted here as phase portraits. Each nom-
inal gait consists of 12 trajectories, one for each actuated joint: left frontal
hip (LFH), left transverse hip (LTH), left sagittal hip (LSH), left sagittal knee
(LSK), left sagittal ankle (LSA), left ankle aligned with the Henke axis (LHA).
The corresponding joints are also labeled for the right leg as: RFH, RTH, RSH,
RSK, RSA, and RHA.

where y1(x) regulates the forward velocity and y2(x) regulates the positions
of the robot to move in a synchronous fashion. More specifically, ya1(q, q̇)

is the forward hip velocity, while ya2(q) consists of the angular positions of
the exoskeleton joints and torso as listed in [3]. The output ya1 is driven to
a constant desired velocity vd, while ya2(q) is driven to a vector of desired
trajectories, yd2(τ(x), α). The trajectories yd2 : [0, 1] × R12×M+1 → R12 are
represented using a Bézier polynomial as defined in (2.6) with coefficients
α ∈ R12×M+1:

yd2(τ(x), α) , [b(τ(x), α1), . . . , b(τ(x), α12)]T ,

with the state-based timing variable as defined in (2.7) with the phase variable
selected to be θ(x) , δphip(x). Here, δphip : X → R returns the horizontal hip
position relative to the stance foot position in the sagittal plane.

Driving the Virtual Constraints to Zero.. The continuous control objective for
the system is formulated as driving the virtual constraints to zero (yα(x)→ 0).
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This is typically accomplished using a feedback linearizing controller [12]. This
control law, under the conditions given in [78], drives the virtual constraints to
zero exponentially. Concretely, the virtual constraints are first differentiated
along solutions of the continuous dynamics until the control input appears,
as explained in [9]. First, noting that phip(x) can be computed only using
the configuration coordinates, it will be written as phip(q) for the following
derivation. Also, noting that ya1(q, q̇) =

∂δphip(q)

∂q
q̇, differentiating y1 yields:

ẏ1(x) =

∂

∂q

(∂δphip(q)
∂q

q̇
)
q̇ +

∂δphip(q)

∂q

[
−D−1(q)H(q, q̇)

]
︸ ︷︷ ︸

Lfy1(x)

+
∂δphip(q)

∂q
D−1(q)B︸ ︷︷ ︸

Lgy1(x)

u

(2.17)

where Lfy1(x) and Lgy1(x) denote Lie derivatives of y1 with respect to the
vector field (f, g). Differentiating y2(x) (twice) until the control input appears
results in:

ÿ2(x) =

∂

∂q

(∂y2(x)

∂q
q̇
)
q̇ +

∂y2(x)

∂q

[
−D−1(q)H(q, q̇)

]
︸ ︷︷ ︸

L2
fy2(x)

+
∂y2(x)

∂q
D−1(q)B︸ ︷︷ ︸

LgLfy2(x)

u (2.18)

Combining these expressions yields:[
ẏ1(x)

ÿ2(x)

]
=

[
Lfy1(x)

L2
fy2(x)

]
︸ ︷︷ ︸

Lfyα(x)

+

[
Lgy1(x)

LgLfy2(x)

]
︸ ︷︷ ︸

A(q,q̇)

u. (2.19)

Thus, to drive yα to zero, consider the nonlinear feedback linearizing controller:

u∗(x) = A(x)−1

(
−Lfyα(x) +

[
−1
ε
y1(x)

−Kp
ε2
y2(x) + Kd

ε
ẏ2(x)

])
. (2.20)

Applying this controller to the system yields the output dynamics:ẏ1(x)

ẏ2(x)

ÿ2(x)


︸ ︷︷ ︸

η̇α

=

−
1
ε

0 0

0 0 I

0 −Kp
ε2
−Kd

ε


︸ ︷︷ ︸

Acl

y1(x)

y2(x)

ẏ2(x)


︸ ︷︷ ︸

ηα

, (2.21)
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which is a stable linear system. Therefore, achieves the desired objective of
driving y1, y2 and ẏ2 to zero exponentially, i.e., the virtual constraints are
driven to zero. As a result, the (continuous) dynamics of the system are
driven to the partial hybrid zero dynamics surface defined by:

PZα = {x ∈ D | y2(x) = 0, ẏ2(x) = 0}. (2.22)

Additionally, this surface is rendered forward invariant by the nonlinear con-
troller.

Finding an attractive and forward invariant periodic orbit. In the case of ex-
oskeleton walking, a stable periodic solution is a trajectory that yields con-
tinuous walking in the presence of swing foot impacts. Similar to the HZD
condition, the orbit is impact invariant if it stays on the partial zero dynamics
surface PZα after an impact event, i.e.:

∆(S ∩ PZα) ⊂ PZα. (2.23)

To solve for the Bézier coefficients α∗ that yield an impact invariant periodic
orbit, we formulate an optimization problem as in (2.9) but with the replace-
ment of the PHZD condition (2.23) and the closed-loop dynamics taken to be
η̇α = Aclηα (2.21). Additionally, the cost function Φ(X) is typically taken to
be the mechanical cost of transport [159]. Lastly, examples of physical con-
straints c(X) for the Atalante exoskeleton are provided in Appendix III of
[3] and additional details on the formulation of the optimization problem are
provided in [79, 91].

Trajectory tracking on the Atalante exoskeleton. In practice, the walking be-
havior as encoded by the generated trajectories (such as the ones illustrated
in Figure 2.2) is enforced on the exoskeleton using the following control struc-
ture. At the low level, PD control of the joints is implemented to track the
desired joint angles and velocities as obtained from the generated gaits. This
low-level control is responsible for translating these desired joint angles and
velocities into motor torque commands. The high-level controller is responsi-
ble for adjusting the joint targets based on key features such as torso angle and
foot contact, e.g., if the foot strikes early or late, the current configuration is
smoothly transitioned into the target configuration of the next step. Finally,
the lowest level of control uses a feedback control loop to generate current
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commands at the joint level based on the motor torque commands. These
current commands are sent to the motor controllers that handles the low level
control of the motors.

2.2 Improving Robustness via Saltation Matrices

The ability to generate robust walking gaits on bipedal robots is key to their
successful realization on hardware. To this end, the first part of my thesis
extends the method of (Partial) Hybrid Zero Dynamics (HZD)—which tradi-
tionally only accounts for locomotive stability via periodicity constraints under
perfect impact events—through the inclusion of the saltation matrix with a
view toward synthesizing robust walking gaits. The proposed approach is mo-
tivated by previous research, which has shown that optimizing the robustness
of nominal trajectories improves overall performance regardless of the chosen
method of online stabilization [60, 141], and that online planning strategies can
have unpredictable behavior without the use of a reference trajectory [49, 231].

As mentioned in Chapter 1, existing work towards generating robust limit
cycles [60] does not scale easily to high-dimensional systems. Thus, a particular
goal of the work presented in this section is to develop a method that is
scalable to high-dimensional systems. Briefly, by jointly minimizing the norm
of the extended saltation matrix and the torque of the robot directly in the
gait generation process, we demonstrate that the synthesized gaits are more
robust than gaits generated with either term alone. These results are shown in
simulation and on hardware for the 7-DOF AMBER-3M planar biped and the
18-DOF Atalante lower-body exoskeleton (both with and without a human
subject). The end result is experimental validation that combining saltation
matrices with HZD methods produces more robust bipedal walking in practice.

Preliminaries on Saltation Matrices

The saltation matrix is a standard tool used in the field of non-smooth analysis
that describes a systems sensitivity to discontinuities (otherwise called ‘salta-
tions’ or ‘jumps’) [125]. Typically, the saltation matrix S(ti, x(ti)) ∈ R2n×2n is
defined at time ti ∈ R+ for states in the guard x(ti) ∈ S, by the relationship:

δx(ti+1) = S(ti, x(ti))δx(ti), (2.24)

where x(ti+1) ∈ ∆(S) denotes the post-transition state. Since we are interested
in evaluating the saltation matrix for pre-computed gaits with a known impact
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time T ∈ R>0, we will specifically derive the saltation matrix S , S(T, x−)

for the relationship:

δx+ = Sδx−, (2.25)

where δx−, δx+ ∈ R2n define the variation in the pre- and post- impact states,
respectively, at the time of impact T . A visualization of these variations are
provided in Figure 2.3. Explicitly, these state variations are defined as:

δx+ , x̃+ − x+, δx− , x̃− − x−, (2.26)

where x̃−, x̃+ ∈ R2n denote the perturbed states. Let F−, F+ ∈ R2n, respec-
tively, denote the vector fields of the linearized closed-loop dynamics evaluated
at the pre-impact state x− and post-impact state x+, defined as:

F− , fcl(x
−), F+ , fcl(x

+). (2.27)

As explained in [125], the derivation of the saltation matrix approximates the
perturbed states by flowing the system along F−, F+ for some duration of time
δt ∈ R. Specifically, without loss of generality, the post-impact state can be
represented as:

x+ = ∆(x−) + F+δt, (2.28)

and the perturbed states as:

x̃+ , ∆(x̃−), (2.29)

x̃− , x− + δx− + F−δt. (2.30)

By substituting these approximations into (2.26) and taking the first-order
Taylor series expansion, we obtain:

δx+ = ∆(x− + δx− + F−δt)−∆(x−)− F+δt, (2.31)

≈ J∆δx
− + J∆F

−δt− F+δt. (2.32)

Here, J∆ , ∂
∂x

∆(x−) ∈ R2n×2n denotes the Jacobian of the reset map evaluated
at the pre-impact state x−. Note that because this work exclusively utilizes the
reset map shown in (2.14), we continue the derivation using the assumption
that the reset map has no dependence on time, i.e., ∂∆

∂t
= 02n×2n.

Lastly, we can represent δt in terms of the pre-impact state error δx− by ob-
serving the perturbed guard condition. For generality, we will denote the guard
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Guard Uncertainty

Figure 2.3: Illustration of a perturbed flow (blue) with uncertain guard con-
ditions (illustrated by the grey region) compared to a nominal periodic orbit
(red) which assumes a known guard (illustrated by the black vertical line).
The perturbed initial condition x̃0 ∈ ∆(S) results in pre-impact state error
δx− and post-impact state error δx+. In general, saltation matrices capture
the relationship between these errors: δx+ = Sδx−.

condition as h : X → R, but note that as mentioned before, we specifically
define h(x) , pzsw(x). Applying a first-order Taylor series expansion to the
perturbed guard condition, we obtain:

0 = h(x̃−), (2.33)

≈ h(x−)︸ ︷︷ ︸
=0

+J>h (δx− + F−δt). (2.34)

Here, Jh , ∂
∂x
h(x−) ∈ R2n denotes the Jacobian of the guard condition with

respect to x−. Similar to before, we assume that the guard condition has
no dependence on time, i.e., ∂h

∂t
= 0; such reset maps are termed autonomous

switching boundary functions. For information on deriving the saltation matrix
for non-autonomous switching boundaries (i.e., h(x, t)) refer to [125]. Through
the manipulation of (2.34), we arrive at our expression of δt in terms of δx−:

δt =
−J>h δx−

J>h F
− . (2.35)

Using this relationship, we can substitute (2.35) into (2.32) to obtain the
“traditional saltation matrix,” S ∈ R2n×2n:

δx+ ,

(
J∆ +

(F+ − J∆F
−)J>h

J>h F
− ,

)
︸ ︷︷ ︸

S

δx−. (2.36)
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Accounting for Guard Uncertainty. Recently, Payne et al. [152] extended the
traditional saltation matrix to also account for guard uncertainty. This is
accomplished by adapting (2.33) to also account for perturbations in the guard
location along the normal direction, denoted as δh ∈ R (shown in Figure 2.3):

δh = h(x̃−) (2.37)

δh ≈ J>h (δx− + F−δt) (2.38)

δt =
−J>h δx− + δh

J>h F
− . (2.39)

Then, substituting (2.39) into (2.32), we arrive at the expression:

δx+ = Sδx− +

(
J∆F

− − F+

J>h F
−

)
︸ ︷︷ ︸

Sg

δh, (2.40)

where S is the same as in (2.36), and Sg ∈ R2n×1 is termed the guard saltation
matrix. Together, these matrices can be combined together to obtain the
extended saltation matrix, Se ∈ R2n+1×2n+1, which is defined by the expression:[

δx+

δh

]
=

[
S Sg

0 1

]
︸ ︷︷ ︸

Se

[
δx−

δh

]
. (2.41)

Robust Gait Generation

Now that we have presented the preliminaries on saltation matrices, we will
discuss how and why we incorporate the saltation matrix evaluation in the
HZD gait generation framework. First, to address the question of why eval-
uating the saltation matrix improves the robustness of generated gaits, we
refer to the field of contraction theory. As first noted by Lohmiller in 1988,
discussing stability alone does not capture the behavior of a system relative
to a nominal motion [130]. Instead, Lohmiller proposed a new field of analy-
sis – contraction analysis – which explores how trajectories evolve relative to
nearby trajectories. Specifically, a system is defined as contractive if all tra-
jectories converge to some nominal trajectory. In this work, we leverage the
notion of contractivity to define robust walking behaviors as those that are
more contractive. In other words, when disturbed, a robust gait will converge
to a nontrivial periodic orbit faster than a non-robust gait.
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Moreover, Burden et al. [40] recently leveraged saltation matrices to induce
contractivity of a hybrid system through discrete events. Motivated by this,
we propose optimizing the contractivity of discrete events by minimizing the
induced matrix norm of the extended saltation matrix; the induced matrix
norm is equivalent to the largest singular value of the extended saltation matrix
(i.e., ‖Se‖2 ,

√
λmax(S>e Se) ∈ R). Lastly, since the HZD gait generation

framework relies heavily on the cost function, we propose adding the induced
norm of the extended saltation matrix directly to the cost.

To investigate the influence of including the saltation matrix in the optimiza-
tion problem, the remainder of this section compares gaits generated with
different weightings of the commonly used cost function torque-squared and
the induced matrix norm of the extended saltation matrix:

Φ(X) = w1‖U‖2
2 + w2‖Se‖2

2. (2.42)

Here, w1, w2 ∈ R≥0 denote constant weighting terms, U ∈ Rm×N denotes
the vectorized torques throughout the nominal gait (assuming a decision vari-
able with N ∈ R discretizations) and Se ∈ R2n+1×2n+1 denotes the extended
saltation matrix evaluated at the pre-impact state of the generated nominal
gait. The extended saltation matrix is again computed as in (2.41), with the
traditional saltation matrix and guard saltation matrix explicitly computed
as:

S = J∆ +
(ẋ+ − J∆ẋ

−)J>h
J>h ẋ

− , Sg =
J∆ẋ

− − ẋ+

J>h ẋ
− . (2.43)

To preview the experimental results, it was found that increasing w2 in (2.42)
relative to w1 improves robustness of the generated gaits, but also results in
increased torque (this is illustrated in Figure 2.4). This trade-off between
performance (characterized by successful implementation on hardware) and
robustness (characterized by a systems ability to return to nominal periodic
orbits in the presence of disturbances) is further explored in the experimental
results.

Lastly, we would like to note that computing the Jacobian of the reset map, J∆,
can be computationally expensive for high-dimensional systems because the
reset map (2.14) requires several matrix inversions. Thus, for implementation
purposes, we numerically approximate the Jacobian of the reset map. However,
future work could more efficiently obtain these terms using autodiff or other
tools for computing efficient analytical derivatives [173].
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Figure 2.4: This figure illustrates the simulated behavior of three gaits for
AMBER-3M, where each gait was generated with different weighting terms w1

and w2. The behavior is illustrated using the zero dynamics coordinates of
the linearized hip position and velocity (phip, ṗhip ∈ R), across three different
environment conditions: flat ground as captured by the nominal guard (left); 1
degree slope (middle); and 2cm step height (right). The phase portraits show
that the robustness of the walking behavior increases as w2 increases relative
to w1, but the gait with w1 = 0 results in significantly increased torque.

Experimental Results

We demonstrate the application of saltation matrices towards robust gait gen-
eration on two robotic platforms: the AMBER-3M planar biped, and the
Atalante exoskeleton. As illustrated in Figure 2.4, three gaits were generated
for each robotic platform: 1) a nominal gait with the cost function equal to
torque squared; 2) a gait with the cost function being a weighting of both
torque squared and the induced matrix norm of the extended saltation matrix
at impact; and 3) a gait with the cost function only including the saltation ma-
trix. For AMBER-3M, the three compared gaits were generated with weight
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values of2: w1 = 1, w2 = 0; w1 = 1, w2 = 1; w1 = 0, w2 = 1. For Ata-
lante, the weights were selected as: w1 = 1e−6, w2 = 0; w1 = 1e−6, w2 = 1e6;
w1 = 0, w2 = 1e6. Note that for each robotic platform, the remaining con-
straints and bounds of the HZD gait generation framework were held constant;
only the weights w1 and w2 varied. All gaits were generated using the FROST
toolbox [87]. The presented experimental results are best demonstrated via
the supplemental video [192].

AMBER-3M Simulation Results. The AMBER-3M planar biped3 is a custom
planar robot [7] with four motorized joints (left hip, left knee, right hip, right
knee). The measured joint positions are denoted as qa ∈ R4 and are selected as
the outputs of the generated gaits, i.e., ya(q) , qa ∈ R4. The phasing variable
τ(x) ∈ R is selected to be the linearized forward hip position, and the desired
outputs are described using a 5th-order Bézier polynomial (α ∈ R4×6). The
generated joint-level trajectories are enforced using PD control.

The three aforementioned gaits were first demonstrated in a planar RaiSim
[101] simulation environment with randomly generated terrain. As shown in
Figure 2.4, both gaits generated with the inclusion of the saltation matrix
(w2 = 1) were able to walk on rough terrain, while the gait generated with only
torque-squared (w2 = 0) failed. The figure also compares three environmental
guard conditions: flat ground (as captured by the nominal guard condition),
a 1deg slope, and a 2cm step. As illustrated by the phase portraits of the
zero dynamics (selected as linearized forward hip position and velocity), the
gaits with w2 = 1 again show improved robustness. However, it is interesting
to note that the gait with w1 = 0 suffers from significantly increased torque
while the gait with both terms (w1, w2 = 1) only has a moderate increase in
required torque.

AMBER-3M Experimental Results. Once demonstrated in simulation, the
three gaits were also demonstrated on hardware, as shown in Figure 2.5. The
generated joint-level trajectories are enforced on AMBER-3M using an off-
board joint-level PD controller that computes desired torques and sends them
to the on-board motor controllers via UDP communication. The motor driver

2The purpose of scaling w1 and w2 is to ensure that the platform-specific torque-squared
term ‖U‖22 has a similar magnitude to that of ‖Se‖22, thus preventing either term from heavily
dominating the NLP objective.

3In this work, we specifically utilize the point-foot configuration of AMBER-3M, termed
AMBER3M-PF.
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Figure 2.5: Gait tiles demonstrating the experimental performance of all three
gaits on the AMBER-3M planar biped (left), and the empty Atalante exoskele-
ton (right). For both platforms, only the gait generated with both torque and
the saltation matrix in the cost function (w1, w2 > 0) was able to sustain sta-
ble locomotion. The experimental data is also visualized via phase diagrams
of the linearized hip position and velocity (phip, ṗhip ∈ R) for AMBER-3M and
the forward position and velocity of the floating-base frame (ptorso, ṗtorso ∈ R)
relative to the stance foot for the exoskeleton. The black line shows the av-
erage zero dynamics across a single step, with the blue region illustrating the
1-sigma tube.

communication and control logic run at approximately 1kHz. As shown in
Figure 2.5, the gait generated using only torque-squared (w2 = 0), and the
gait generated using only the extended saltation matrix (w1 = 0) were unsta-
ble, while the gait generated with the inclusion of both torque-squared and the
extended saltation matrix (w1, w2 > 0) in the cost function was independently
stable.

To further demonstrate the performance of the gait generated with w1, w2 > 0,
several robustness tests were also performed, as shown in Figure 2.6. For these
experiments, random wooden objects were placed on the treadmill in front of
AMBER-3M. These experiments highlight the robustness of the gait generated
with the inclusion of both torque-squared and the extended saltation matrix
in the cost function.

Atalante Simulation Results. The second set of experiments demonstrated the
framework on the Atalante exoskeleton, with sets of three gaits generated for
the exoskeleton with various human-subject models, as well as for the empty
exoskeleton. As before, all constraints and bounds of the gait generation frame-
work were held constant except for w1 and w2, and the generated joint-level
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Figure 2.6: Gait tiles demonstrating robustness of the AMBER-3M gait gen-
erated with both the saltation matrix and torque in the objective function
(w1, w2 > 0).

trajectories were enforced using PD control. As with AMBER, the outputs are
again selected as the positions of the motorized joints, i.e., ya(q) , qa ∈ R12.
The gaits are described using 7th-order Bézier polynomials (α ∈ R12×8) and
are parameterized using time as the phasing variable. It is important to note
that by using time as a phase-variable, the theoretical guarantees of stability
are no longer valid. For this reason, many results using periodic orbits on 3D
robots also incorporate regulators to stabilize the walking [159]. However, in
this work, since we are interested in how robust the periodic gaits are inde-
pendent of regulators, no additional regulators were used (aside from desired
output filtering to prevent discontinuities caused by early impacts). The gen-
erated joint-level trajectories are enforced on the Atalante exoskeleton using
an on-board PD controller which sends current commands to the low-level
motor drivers.

First, sets of three gaits were generated and deployed for six human mod-
els in a 3D simulation environment. As with prior work [79, 80, 206, 207],
a human-exoskeleton model is synthesized by collecting the human’s height,
mass, thigh length, and shank length and using this information to approx-
imate the remaining human segment inertia and remaining segment lengths
based on anthropomorphic models from [225]. The simulation results, illus-
trated in Figure 2.7, found that the gaits with w2 > 0 resulted in more stable
steps being taken before the exoskeleton fell (characterized by the COM verti-
cal height falling below 0.4 meters). However, the gait generated with only the
saltation matrix resulted in significantly increased torque. In contrast, using
both the saltation matrix and torque-squared in the cost function resulted in
increased robustness with only a small increase in torque.

Atalante Experimental Results. Once demonstrated in simulation, a set of
three gaits was also generated for the empty Atalante exoskeleton and de-
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Figure 2.7: Simulation results on the Atalante exoskeleton for 6 random ex-
oskeleton subject models. Each marker indicates an individual simulation with
the corresponding time until failure (defined as the COM height falling below
0.4 meters) and nominal torque-squared evaluation. Each simulation was lim-
ited to 20 seconds total. The results for each gait condition are highlighted by
ellipses constructed using 2-sigma fits to the data.

ployed on hardware. The motivation for conducting experiments with the
empty exoskeleton is to isolate the effects of the generated gaits independent
of the human-subject’s motion inside of the exoskeleton. The performance of
the generated gaits was evaluated by whether or not the exoskeleton could
locomote without operator interference for 3 meters. As shown in Figure 2.5,
only the gait generated with both torque-squared and the saltation matrix
(w1, w2 > 0) was able to successfully and independently walk for the full 3-
meter test. Lastly, a set of gaits was also generated and deployed on the
Atalante exoskeleton for a human subject. Again, only the gait generated
with the inclusion of both cost function terms (w1, w2 > 0) was able to suc-
cessfully complete the 3-meter walk test. These results are shown in Figure
2.6 and in the supplemental video [192].

2.3 Input to State Stability Perspective on Uncertain Terrain

While adding the saltation matrix to the gait synthesis optimization prob-
lem successfully demonstrated improved locomotive robustness in real-world
experiments, there is still a lack of theoretic tools to formally asses the ro-
bustness of the resulting behavior, i.e., characterizing the domain on which
behaviors are stable. Similarly, as discussed in Chapter 1, while there exist
various metrics for the robustness of limit cycles [95, 137], these metrics do not
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Uncertain Guard ConditionNominal Guard Condition

Figure 2.8: A depiction of (left) the configuration coordinates for a seven-link
walker and (right) the uncertain guard condition.

provide theoretical certificates of robustness. Towards certifying robustness,
input-to-state stability (ISS) [179] has been effectively leveraged in the context
of robotic walking and running for uncertain dynamics [120, 134], but has yet
to be framed in the context of uncertain terrain.

Thus, the second contribution of this chapter is a notion of robust walking that
quantifies the gap between stability and robustness mathematically. Explicitly,
the goal of this work is to define what it means for a periodic orbit to be cer-
tifiably robust to uncertain terrain as illustrated in Figure 2.8. Towards this,
we define the δ-robustness of periodic orbits in hybrid systems by leveraging
input-to-state stability of the Poincaré return map. Specifically, δ-robustness
is defined as the maximum disturbance in the guard condition (commonly se-
lected to be the ground height) that can be accommodated while remaining
stable to a neighborhood. The main result is the formulation of robust Lya-
punov functions that certify the robustness of periodic orbits to disturbances
in the environment. The leads to an algorithm for certifying the δ-robustness
of walking gaits, as demonstrated in simulation with a seven-link bipedal robot
walking on uneven terrain.

Preliminaries on Poincaré return maps

Given a locally Lipschitz feedback controller u∗ : D → Rm, such as a feedback
linearizing controller, the result of applying this to the hybrid control system
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is a hybrid system:

H =

{
ẋ = fcl(x) , f(x) + g(x)u∗(x) x ∈ D \ S, (2.44)

x+ = ∆(x−) x− ∈ S. (2.45)

The local Lipschitz continuity of the continuous dynamics (2.44) implies that
solutions exist and are unique locally. We will use the flow notation for these
solutions, ϕt(x0), which is the solution to the continuous dynamics at time
t ∈ R≥0 with initial condition x0 ∈ D. Under the assumption of non-Zenoness,
the flow of the hybrid system is given by:

ϕt(x0) = ϕt−τk(x
+
k ), t ∈ [τk, τk+1), (2.46)

where τk are the “impact” times and x+
k the post-impact states, determined by

the consistency conditions:

x+
k = ∆(x−k ), x−k = ϕτk−τk−1

(x+
k−1) ∈ S, (2.47)

for k ≥ 1, with τ0 = 0 and x0 ∈ D the initial condition. When x0 ∈ S one
trivially takes x−1 = x0 and τ1 = τ0.

The flow ϕt(x0) of (2.44) is periodic with period T ∈ R≥0 if there exists a
point x∗ ∈ S satisfying ϕT (∆(x∗)) = x∗. The periodic orbit associated with
this periodic flow is denoted:

O , {ϕt(∆(x∗)) ∈ D | 0 ≤ t ≤ TI(x
∗) = T}, (2.48)

with TI : S̃ → R being the time-to-impact function:

TI(x) = inf{t ≥ 0 | ϕt(∆(x)) ∈ S}. (2.49)

As proven in Lemma 3 of [77], the time-to-impact function is continuous at
points x ∈ S̃ satisfying the conditions S̃ , {x ∈ S | 0 < TI(x) < ∞}. Thus,
TI is well-defined for S̃. The periodic orbit, O, is exponentially stable if it is
exponentially stable as a set: for x0 ∈ D:

‖ϕt(x0)‖O ≤Me−at‖x0‖O, (2.50)

where ‖x‖O = infy∈O ‖x− y‖ is the set distance.

The exponential stability of this periodic orbit O can be analyzed via the
Poincaré map. In particular, S is a Poincaré section (and well-defined as
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such due to the assumption that ḣ(x) < 0), and associated with this Poincaré
section is the Poincaré map P : S̃ → S defined as:

P (x−) , ϕTI(x−)

(
∆(x−)

)
. (2.51)

The Poincaré map describes the evolution of the hybrid system as a discrete-
time system:

x−k+1 = P (x−k ), k = 0, 1, . . . , (2.52)

wherein x−k is just given as in (2.47). In [143] (see also [146], Theorem 2.1),
it was proven that a periodic orbit O is exponentially stable if and only if
x∗ ∈ O ∩ S is an exponentially stable fixed point of the discrete-time system
(2.52). This is summarized in the following:

Theorem 1 ([143]). A periodic orbit O is exponentially stable if and only if
for the corresponding fixed point P (x∗) = x∗ ∈ S, there existM > 0, a ∈ (0, 1),
and some δ > 0 such that:

∀ x ∈ Bδ(x
∗) ∩ S̃ =⇒

‖P i(x)− P (x∗)‖ ≤Mai‖x− x∗‖,

with P i(x) denoting the Poincaré map applied i ∈ N≥0 = {0, 1, . . . , n, . . . }
times.

The Extended Poincaré Map. It is important to note that the Poincaré map
can be extended such that it is defined on a neighborhood4 of the fixed point
x∗. In particular, the time-to-impact function exists as a result of the implicit
function theorem applied to the implicit function (of time) h(ϕt(∆(x))) which
therefore satisfies: h(ϕT (∆(x∗))) = 0, and ḣ(ϕT (∆(x∗))) < 0, for x∗ ∈ O ∩ S.
Thus, there exists an explicit function Te : Bρ(x

∗) ⊂ D → R, for some ρ > 0,
termed the extended time-to-impact function satisfying:

h(ϕTe(x)(∆(x))) = 0, ∀ x ∈ Bρ(x
∗). (2.53)

It follows that TI in (2.49) is just TI = Te|S, wherein the Poincaré map is given
by considering only x ∈ Bρ(x

∗) ∩ S. Yet, this restriction is not necessary—
which leads to the notion of the extending the Poincaré map so its domain

4We assume throughout that for all ρ > 0 of interest, the domain D of the continuous
dynamics is appropriately chosen so that Bρ(x∗) ⊂ D.
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of definition is Bρ(x
∗) (see [153]). In particular, define the extended Poincaré

map:

P0 : Bρ(x
∗) ⊂ D → S (2.54)

x 7→ ϕTe(x)(∆(x)).

The importance of extending the domain of definition of the Poincaré map will
be seen in the context of set theoretic notions of robust walking.

An ISS Perspective on Walking: δ-Robustness

We will now provide the key formulation of robustness considered in this
section—that of δ-robustness. The core concept behind this definition is sta-
bility in and of itself is not a sufficiently rich concept to capture robustness,
since it is purely local. Thus, we define a notion of robustness leveraging the
extended Poincaré map and input-to-state stability, wherein the inputs are the
disturbances associated with uncertain guard conditions.

Practically, the stability of periodic orbits can be analyzed by evaluating the
eigenvalues of the Poincaré return map linearized around the fixed point.
Specifically, if the magnitude of the eigenvalues of DP (x∗) = ∂P

∂x
(x∗) is less

than one (i.e., max |λ(DP (x∗))| < 1), then the fixed point is stable [143, 153].
Since it is often difficult to compute the Poincaré map analytically, it is com-
monly numerically approximated. Each row of the Jacobian is successively
computed by applying small perturbations to each state and forward simulat-
ing one step to obtain P (x∗ + δ). This implicitly implies that the Poincaré
map is robust to δ perturbations—as long as δ is sufficiently small. Yet, this
small amount of robustness inherent in stable gaits is often confounded with
the eigenvalues themselves. That is, it is sometimes assumed that the magni-
tude of the eigenvalues of the Poincaré map say something deeper about the
broader robustness of the periodic orbit to perturbations. This is not the case,
as the following example illustrates.

Example 1. Consider a seven-link bipedal robot as shown in Figure 2.8. To
illustrate how the eigenvalues associated with the linearization fail to tell the
whole story, we will consider the robustness of two gaits to differing ground
height conditions. As illustrated in Figure 2.9, the classic Poincaré analysis
does not accurately reflect the robustness of periodic orbits to local distur-
bances in the guard condition. That is, the gait with the smaller maximum
eigenvalue (magnitude) is more fragile to changing ground heights.
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Figure 2.9: The phase portraits at the top of the figure illustrate the walking
for uncertain guard conditions Sdk with dk ∼ Uniform(−δ, δ) (in this example,
δ = 1.5cm) for k = 500 steps. Visualizations of the walking gaits for three step
conditions are provided at the bottom. The results demonstrate that a periodic
orbit with max |λ(DP0(x∗))| < 1 (on the left) is not robust to variations in the
guard condition (the orbit diverged after only 13 steps), while a periodic orbit
with a larger |λ| (on the right) is comparatively more robust. This motivates
the need for an ISS perspective.

Uncertain Guard Conditions. To formulate a notion of robustness of the ex-
tended Poincaré map, uncertain guard conditions are considered—this, for
example, captures uncertain ground height for walking robots. Specifically,
we consider the general guard (as defined in [82]):

Sd = {x ∈ X | h(x) = d, ḣ(x) < 0}, (2.55)

with d ∈ D and D , [d−, d+] ⊂ R for some d− < 0 < d+. Using this general
guard definition, the previous guard (2.2) is now denoted as S0. Under the
assumption that Sd ⊂ D for all d ∈ D, we have a corresponding hybrid system:

Hd =

{
ẋ = fcl(x) , f(x) + g(x)k(x) x ∈ D \ Sd, (2.56)

x+ = ∆(x−) x− ∈ Sd. (2.57)

Consider the extended time-to-impact function Te : Bρ(x
∗) → R defined im-

plicitly in (2.53). This function can be further extended (as a partial function)
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to account for varying guards: Te : Bρ(x
∗)× D⇀ R:

Te(x0, d) , inf{t ≥ 0 | ϕt(∆(x0)) ∈ Sd}. (2.58)

Importantly, this is a partial function because (by the implicit function the-
orem) it is only well-defined for d = 0 and by continuity sufficiently small
d− and d+. Using this extended time-to-impact function, we can redefine the
extended Poincaré map as a partial function: Pd : Bρ(x

∗) ⇀ Sd:

Pd(x
−) , ϕTe(x−,d)(∆(x−)). (2.59)

This allows us to frame walking with uncertain guards as a discrete-time con-
trol system.

Connections with Input-to-State Stability. It is important to note that we
can view (2.59) as a dynamical system evolving with an “input” given by the
guard height: d = h(x). In particular, this leads to the discrete-time dynamical
system:

xk+1 = P(xk, dk) , Pdk(xk), (2.60)

for some sequence of dk ∈ [d−, d+] ⊂ R, k ∈ N≥0, determining the guard height
specific to step k ∈ N≥0 such that xk+1 ∈ Sdk . The result is a partial function:

P : Bρ(x
∗)× [d−, d+] ⇀ S[d−,d+] :=

⋃
d∈[d−,d+]

Sd,

wherein we assume that Bρ(x
∗) ⊂ S[d−,d+] (or a smaller ρ is chosen so that

this holds). The partial function nature of P implies that solutions may not
exist for all time, i.e., the solution xk might leave the ball Bρ(x

∗) on which P

is well-defined.

Given the discrete-time system (2.60), and the fact that we view the input d as
a disturbance, there are obvious connections with input-to-state stability [108].
Input-to-State Stability (ISS) is fundamental in mathematically quantifying
how stability degrades in the presence of bounded disturbances. If a system is
ISS, its trajectories will remain bounded, and will converge to a neighborhood
of an equilibrium of the undisturbed system. This graceful degradation of
stability in the presence of disturbances describes a variety of real-world control
implementations.
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In our setting, the discrete-time system xk+1 = P(xk, dk) (with dk viewed as
an input) is input-to-state stable (ISS) if:

‖xk − x∗‖ ≤ β(‖x0 − x∗‖, k) + γ(‖d‖∞), (2.61)

for k ∈ N≥0, β a class KL function, and γ a class K function. Note that here
‖d‖∞ = max{−d−, d+} since d : N≥0 → [d−, d+] is scalar valued and takes
values in an interval. Also note that, in the context of locomotion, we are
especially interested in exponential stability. To certify exponential ISS, the
class KL function becomes: β(r, k) = Makr for M > 0 and a ∈ (0, 1). The
end result is the exponential ISS (E-ISS) condition:

‖xk − x∗‖ ≤Mak‖x0 − x∗‖+ γ(max{−d−, d+}). (2.62)

This allows us to formulate a notion of robustness.

δ-Robustness. We now have the necessary components to present the key
concept of this section: δ-robustness. The goal in formulating this notion of
robustness is to find a single scalar constant, δ ≥ 0, that characterizes the
robustness of a periodic orbit O in the context of uncertain guard height. In
this context, we wish to leverage (2.62)—yet the class K function γ gives a
degree of freedom that is undesirable in designing a metric for robustness. This
observation leads to:

Definition 1. The periodic orbit O is δ-robust for a given δ > 0 if for the
discrete-time dynamical system in (2.60) with d− = −δ and d+ = δ, that is:

P :Bρ(x
∗)× [−δ, δ]→ S[−δ,δ]

xk+1 = P(xk, dk), dk ∈ [−δ, δ], (2.63)

there exists a forward invariant set W ⊂ Bρ(x
∗) and for all x0 ∈ W :

‖xk − x∗‖ ≤Mak‖x0 − x∗‖+ γδ, ∀k ∈ N≥0, (2.64)

for some γ > 0, M > 0, and a ∈ (0, 1). The periodic orbit is robust if it is
δ-robust for some δ > 0, and the largest scalar δ such that O is δ-robust is the
robustness of O.

This seemingly simple definition encodes a surprising amount of information.
First, the forward invariance ofW ⊂ Bρ(x

∗) implies that P : Bρ(x
∗)×[−δ, δ]→
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Figure 2.10: On the left, the non-robust periodic orbit (as illustrated on the
left of Figure 2.9) does not satisfy the conditions for δ-robustness for δ = 0.015
(specifically, there does not exist a forward invariant set W ). In comparison,
the robust orbit (as illustrated on the right of Figure 2.9) satisfies the definition
of δ-robustness with γ = 36.8 and δ = 0.015m.

S[−δ,δ] is a function (rather than a partial function) when restricted to the set
W . Additionally, the actual δ-robustness condition (2.64) is an ISS condition,
albeit slightly stronger to remove the dependence on the class K function
and replace this with the constant γ. Even so, the connections with ISS are
important since the associated machinery can be leveraged.

To provide an example of how ISS can inform our thinking on δ-robustness,
consider the case when O is exponentially stable, i.e., xk+1 = P(xk, 0) has
an exponentially stable fixed point: x∗ = P0(x∗), i.e., the 0-input system is
exponentially stable. There are no guarantees that O is thus δ-robust (see
[108] where a counter example shows that stability does not imply ISS). That
is, stability does not imply robustness.

Example 2. Returning to the example of the seven-link walker, we can heuris-
tically calculate the δ-robustness associated with the two gaits. Specifically,
Figure 2.10 illustrates the ISS-perspective of δ-robustness for the orbits first
illustrated in Figure 2.9. As shown, the orbit that was robust in Figure 2.9
satisfies the condition thatW ⊂ Bρ(x

∗) is forward invariant (δ = 1.5cm in this
example), and ‖xk − x∗‖ remains bounded for γ = 36.8. Comparatively, the
orbit that was not robust in Figure 2.9 experienced a pre-impact state that
was outside of Bρ(x

∗) and therefore W was not forward invariant.
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Lyapunov Conditions for δ-robustness

In this section we present the main theoretic result: Lyapunov conditions
for the δ-robustness of periodic orbits. These conditions, and constructions,
follow naturally from the ISS perspective employed in defining δ-robustness.
But care is needed given the complexity of the Poincaré map. Importantly,
these conditions will lead to an approach for the verification of δ-robustness,
as presented in the next section.

Definition 2. Consider the discrete-time dynamical system in (2.63). A func-
tion V : Bρ(x

∗) → R≥0, for Bρ(x
∗) as in (2.54), is a robust Lyapunov

function if:

k1‖x− x∗‖c ≤ V (x) ≤ k2‖x− x∗‖c (2.65)

‖x− x∗‖ ≥ χd =⇒ (2.66)

∆V (x, d) , V (P(x, d))− V (x) ≤ −k3‖x− x∗‖c

for χ, k1, k2, k3, c > 0 and all x ∈ Bρ(x
∗).

Remark 1. Note that the condition (2.66) can be equivalently restated as:

V (P(x, d))− V (x) ≤ −k4‖x− x∗‖c +
1

2
σ|d|c, (2.67)

where σ > 0. In particular, the corresponding quantities are related via:
k3 = 1

2
k4 and χ = k

− 1
c

4 σ
1
c .

Main result. We can now state the main result of the section. To do so, recall
that a Lyapunov sublevel set is given by:

Ωr = {x ∈ Rn | V (x) ≤ r}. (2.68)

This will be essential in establishing:

Theorem 2. Consider the discrete-time dynamical system xk+1 = P(xk, dk)

in (2.63) with associated periodic orbit O. If there exists a robust Lyapunov
function, V : Bρ(x

∗)→ R≥0, and:

δ < δmax ,

(
k1

χck2

) 1
c

ρ, (2.69)

then the periodic orbit O is δ-robust with:

W = Ωr(δ), for r(δ) , k2(χδ)c (2.70)

γ =

(
k2

k1

) 1
c

χ, M =

(
k2

k1

) 1
c

, a =

(
1− k3

k2

) 1
c

.
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This theorem is, overall, a variation on Lemma 3.5 in [108]. The proof here
follows a similar overall arc, although there are key differences made necessary
by the fact that P is only a partial function. This motivates the first Lemma.

Lemma 1. The function P : Bρ(x
∗)× [−δ, δ]→ S[−δ,δ] given in (2.63) is well-

defined for all x ∈ Bρ(x
∗), i.e., for all x ∈ Bρ(x

∗), P(x, d) exists and satisfies
P(x, d) ∈ S[−δ,δ].

Proof. By the construction of the extended Poincaré map, P0 is well-defined on
Bρ(x

∗), i.e., for all x ∈ Bρ(x
∗) it follows that P(x, 0) ∈ S0, i.e., h(ϕTe(x,0)(∆(x))) =

0. Therefore:

h(ϕt(∆(x))) =

∫ t

Te(x,0)

ḣ(ϕτ (∆(x)))dτ.

But ḣ(x) < 0 for all x ∈ S[−δ,δ] by definition. Therefore, on the closed set
defined by−δ ≤ h(x) ≤ δ, ḣ takes a minimum and maximum value: h < h < 0.
This implies that:

h(t− Te(x, 0)) ≤ h(ϕt(∆(x))) ≤ h(t− Te(x, 0)).

Thus, there exists a t (possibly negative) such that h(ϕt(∆(x))) = d. This
t = Te(x, d).

Since P is well-defined, we can now find a set such that xk+1 = P(xk, dk)

is defined for all k, i.e., a forward invariant set contained in Bρ(x
∗), using

Lyapunov sublevel sets.

Lemma 2. If δ < δmax, with δmax in (2.69), then for r(δ) , k2(χδ)c it follows
that:

Bχδ(x
∗) ⊂ Ωr(δ) ⊂ Bρ(x

∗).

Moreover, the set Ωr(δ) is forward invariant.

Proof. For x ∈ Bχδ(x
∗):

‖x− x∗‖ < χδ ⇒ V (x) ≤ k2‖x− x∗‖c < k2(χδ)c = r(δ)

and therefore Bχδ(x
∗) ⊂ Ωr(δ). Now if r(δ) < k1ρ

c (which is equivalent to the
condition (2.69)) it follows that:

V (x) ≤ r(δ) ⇒ k1‖x− x∗‖c ≤ V (x) ≤ r(δ) < k1ρ
c
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and therefore Ωr(δ) ⊂ Bρ(x
∗). Finally, since for δ < δmax we have Bχδ(x

∗) ⊂
Ωr(δ), it follows that on the boundary of Ωr(δ), namely ∂Ωr(δ), condition (2.66)
is active and therefore: ∆V (x, d) < 0. The forward invariance of Ωr(δ) follows.

Lemma 2 gives an upper bound on the δ-robustness of a given periodic orbit
O, namely δmax, based upon the domain of definition of P. It also establishes
the forward invariance of Ωr(δ). Leveraging this, we can prove the main result.

Proof of Theorem 2. Let x0 ∈ Ωr(δ), wherein the forward invariance of Ωr(δ)

(Lemma 2) implies xk ∈ Ωr(δ) ⊂ Bρ(x
∗) for all k ∈ N≥0. Thus both P and V

are well-defined. We consider two cases: x0 /∈ Bχδ(x
∗) and x0 ∈ Bχδ(x

∗).

‖x0 − x∗‖ ≥ χδ: In this case the implication (2.66) is active:

∆V ≤ −k3

k2

V =⇒ V (xk) ≤
(

1− k3

k2

)k
V (x0)

where the implication follows from applying the inequality on the right recur-
sively (see also the comparison lemma [109]). Therefore, using the inequalities
in (2.65) we have:

‖xk − x∗‖ ≤
(
k2

k1

) 1
c

︸ ︷︷ ︸
M

(
1− k3

k2

) k
c

︸ ︷︷ ︸
ak

‖x0 − x∗‖. (2.71)

Finally, note that k3/k2 < 1 as otherwise V (xk) would be negative for k = 1

which is impossible. Therefore, a < 1.

‖x0 − x∗‖ < χδ: While the implication in (2.66) no longer holds, we still have
xk ∈ Ωr(δ). As a result:

k1‖xk − x∗‖c ≤ V (xk) ≤ r(δ) =k2(χδ)c

=⇒ ‖xk − x∗‖ ≤
(
k2

k1

) 1
c

χ︸ ︷︷ ︸
γ

δ. (2.72)

Therefore, for M , a in (2.71) and γ in (2.72) we have:

‖xk − x∗‖ ≤ max{Mak‖x0 − x∗‖, γδ}

≤ Mak‖x0 − x∗‖+ γδ

as desired, i.e., δ-robustness is established withW = Ωr(δ) the required forward
invariant set.
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Algorithmic Verification of δ-Robustness

This section seeks to answer the question: How do we check δ-robustness of
a given periodic orbit O? To answer this question we derive conditions for δ-
robustness through the use of robust Lyapunov functions (as introduced in the
previous section). In particular, we will synthesize an optimization framework
for verifying δ-robustness.

Problem Setup. Assume the existence of a stable periodic orbit O and so
xk+1 = P(xk, 0) has an exponentially stable fixed point x∗. For simplicity
we will take x∗ = 0 (achieved via the simple coordinate transformation x 7→
x− x∗). As a result, the linearization:

xk+1 = Axk , DP(0, 0)xk

is exponentially stable. Next, the Lyapunov matrix P = PT > 0 is obtained
by solving the discrete-time Lyapuov equation:

ATPA−P = −Q

for Q = QT > 0. The end result is that the discrete-time Lyapunov function
V (x) = xTPx satisfies:

λmin(P)‖x‖2 ≤ V (x) ≤ λmax(P)‖x‖2 (2.73)

V (Ax)− V (x) ≤ −λmin(Q)‖x‖2 (2.74)

and thereby establishes exponential stability of the linear system (and the non-
linear system locally). Unlike stability, it is not guaranteed that this Lyapunov
function can be used to establish robustness. Yet we will use it as a “guess”
for a robust Lyapunov function in order to develop an algorithm to establish
the robustness of a given gait O.

Optimization Problem. Recall that the invariant set used to establish δ ro-
bustness was defined in Lemma 2, namely Ωr(δ). In this case:

Ωr(δ) = {x ∈ Rn|V (x) = xTPx ≤ r(δ) , k2(χδ)c}. (2.75)

Per the proof of Lemma 2 we therefore have:

Br1(0) ⊂ Ωr(δ) ⊂ Br2(0), (2.76)
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Figure 2.11: Results of the algorithmic approach to Opt. (2.78) for the gaits
shown in Figure 2.9 with the maximum allowable χ set to 50. As shown, the
gaits were determined to be δ-robust for δ∗ = 0 and δ∗ = 6mm, respectively.

with:

r1 , χδ, r2 ,

(
λmax(P)

λmin(P)

) 1
2

χδ. (2.77)

Then with the goal of finding the largest δ∗ > 0 such that O is δ robust, we
formulate the following optimization problem:

(δ∗, χ∗) = argmax
δ,χ>0

δ (2.78)

s.t. V (P(x, d))− V (x) ≤ −k‖x‖2

∀ r1 < ‖x‖ < r2, ∀ d ∈ [−δ, δ],

where k ∈ (0, 1) is a user-defined variable, and we take Q = I (wherein
λmin(Q) = 1) to remove decision variables. This optimization problem can be
solved algorithmically by slowly increasing χ for each candidate δ and checking
the Lyapunov condition in (2.78) for random samples x ∈ Br1(0).

We demonstrate this algorithmic approach for each of the two gaits illustrated
in Figure 2.9 with the results5 provided in Figure 2.11. As expected, the second
gait illustrated in Figure 2.9 and Figure 2.10 was verified to be δ-robust, with
δ∗ = 6mm. A visualization of the Lyapunov condition for 100 random samples
of x ∈ Br1(0) is provided in Figure 2.12 with the corresponding ISS bound
illustrated in Figure 2.13.

Overall, the work presented in this section contributes a novel notion of ro-
bustness, δ-robustness, from the perspective of input-to-state stability. This

5The implementation of the algorithm, as well as its application towards evaluating the
δ-robustness of bipedal walking gaits, is provided in the repository: https://github.com/
maegant/deltaRobustness.git

https://github.com/maegant/deltaRobustness.git
https://github.com/maegant/deltaRobustness.git
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Figure 2.12: Illustration of the Lyapunov condition in (2.78) for 100 random
samples x ∈ Br1(0) with d ∼ Uniform(−6mm, 6mm). As shown, the Lyapunov
condition is satisfied for the gait identified as being δ-robust for δ = 6mm with
χ = 34 (the corresponding ISS bound is illustrated in Figure 2.13).

Figure 2.13: Verification of δ-robustness for δ∗ = 6mm and χ∗ = 34 (selected
based on the algorithm results shown in Figure 2.11). As shown in the figure,
Gait 1 was not δ-robust while Gait 2 was δ-robust with M , γ, and a defined
using the relationships derived in Theorem 2 and V (x) = xTPx.

definition differs from classic notions of stability by instead quantifying the
magnitude of perturbations a periodic orbit can withstand while remaining sta-
ble. Robust Lyapunov conditions were also derived to certify δ-robustness for a
nominal periodic orbit. Future work includes directly evaluating δ-robustness
in the gait generation process to systematically generate periodic orbits that
are robust to uncertain terrain. Additionally, in the next section we will discuss
how the discrete-time Lyapunov condition can be translated to a stochastic
condition in order to obtain more realistic (albeit probabilistic) estimates of
the δ-robustness.

2.4 Extension to Input-to-State Stability in Probability

Despite the utility of input-to-state stability, this property requires the dis-
turbance to be bounded and provides invariance and stability guarantees only
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Figure 2.14: Input-to-state stability in probability (ISSp) generalizes input-to-
state stability (ISS) to systems with unbounded disturbances. When applied to
a seven-link walker traversing stochastic terrain, the presented work finds that
the ISSp approach yields more reasonable estimates for the tolerable set of step
heights. (Top): ISS-based guarantees must hold for any (bounded) disturbance
signal; even for worst-case terrain (e.g., stairs) the walker must be able to
remain stable. (Bottom): ISSp reasons instead about how systems behave
over finite horizons. While the stochastic step heights (shown as gradients)
can sometimes be large, their distribution is concentrated near zero, and thus
the walker has a high probability of remaining upright.

with respect to this worst-case bound, as illustrated in Figure 2.14. Thus,
the final thesis contribution in this chapter is the concept of ISS in probability
(ISSp), which generalizes ISS to discrete-time systems subject to unbounded
stochastic disturbances. Using tools from martingale theory, we provide Lya-
punov conditions for a system to be exponentially ISSp, and connect ISSp to
stochastic stability conditions found in literature. We exemplify the utility of
this method through its application to the seven link walker confronted with
step heights sampled from a truncated Gaussian distribution.

Preliminaries and Notation

Consider a general discrete-time autonomous system,

xk+1 = f(xk,dk) (2.79)
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with k ∈ N≥0, state xk ∈ X ⊆ Rn, equilibrium point (x∗,d∗) = (0,0), random
disturbance dk ∈ Rd, and continuous dynamics f : X × Rd → Rn. We assume
each disturbance dk

i.i.d.∼ D from some disturbance distribution D.

Definition 3 (Input-to-State Stability [108]). The system (2.79) is input-to-
state stable (ISS) if there exist functions6 β ∈ KL and γ ∈ K such that, for
each deterministic disturbance input dk ∈ Rm and each x0 ∈ Rn, it holds that

‖xk‖ ≤ β(‖x0‖, k) + γ

(
sup
k∈N≥0

‖dk‖

)
(ISS)

for each k ∈ N≥0 and some p ≥ 1.

Intuitively, the bound on the state trajectory is a function of a sequence which
converges to zero in time, β(‖x0‖, k) and a term which grows with respect to
the disturbance bound, γ

(
supk∈N≥0

‖dk‖
)
. If ‖dk‖ = 0 for all k, then ISS

systems are asymptotically stable. Note that a similar inequality regarding an
essentially bounded disturbance distribution D:

‖xk‖ ≤ β(‖x0‖, k) + γ (ess sup‖D‖) , (2.80)

can be employed to achieve ISS almost surely, where ess sup is the essential
supremum of the distribution D, also written as the L∞-norm of D.

The general form of ISS-Lyapunov functions will now be presented. Note that
in the preceeding section, the robust Lyapunov function was restricted to using
constant constants k1, k2, k3 > 0, while here the more general case with class
K functions is presented.

Definition 4 (ISS-Lyapunov Function [108]). A continuous function V : Rn →
R≥0 is an ISS Lyapunov function for (2.79) if there exist κ1, κ2, κ3 ∈ K∞ and
κ4 ∈ K such that:

κ1(‖x‖) ≤ V (x) ≤ κ2(‖x‖) (2.81)

V (f(x,d))− V (x) ≤ −κ3(‖x‖) + κ4(‖d‖) (2.82)

6A continuous function γ : [0, a)→ [0,∞) for a > 0 is said to belong to class K (γ ∈ K)
if it is strictly monotonically increasing and γ(0) = 0. If additionally a =∞ and γ(r)→∞
as r →∞ then γ belongs to K∞. A continuous function β : [0, a)× [0,∞)→ [0,∞) is said
to belong to class KL if for each fixed s ≥ 0 the function β(·, s) is class K and for each r ≥ 0
the function β(r, ·) is decreasing and β(r, s)→ 0 as s→∞.
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for all x ∈ Rn and all d ∈ Rd. V is exponential-ISS (E-ISS) Lyapunov function
if there exist constants a, b, c > 0 and a ∈ (0, 1) such that κ1(r) = arc, κ2(r) =

brc, κ3(r) = arc.

The existence of an ISS-Lyapunov function is used to verify that the system
is ISS via Lemma 3.5 in [108] (restated below).

Theorem 3 ([108]). If there exists an ISS Lyapunov Function for system
(2.79), then system (2.79) is ISS.

Next, a brief discussion of random variables, martingales, and other tools
are presented at a level necessary to communicate these concepts clearly and
accessibly. These tools will be used to generalize ISS to the case of unbounded,
stochastic disturbances. Readers are referred to [76] for a precise measure-
theoretic presentation of these ideas.

Consider disturbance signals which are sequences of random variables. A con-
tinuous random variable y sampled from a distribution Y (denoted y ∼ Y)
is a quantity that takes on values in Ry according to a probability density
py(y) ≥ 0, with P{y ∈ A} ,

∫
A
py(υ)dυ. By definition

∫
Ry py(υ)dυ = 1 and

the expectation of a random variable is given by E [y] ,
∫
Ry υpy(υ)dυ.

Definition 5 (Lp Space [222]). A random variable y ∼ Y belongs to Lp

(denoted as y ∈ Lp), for p > 0, if

‖y‖Lp , E [‖x‖p]
1
p <∞. (2.83)

We call ‖·‖Lp the p-norm of a random variable, which is finite for any random
variable in Lp. Intuitively, for 0 < p ≤ q, Lq ⊆ Lp [222, Thm. 8.2] since random
variables in Lq have tails that decay faster than those in Lp; additionally, L∞ is
the smallest Lp space and only contains random variables that are essentially
bounded. Note that any norm ‖·‖ appearing without a subscript defines a
typical norm on Rn.

We can also reason about a random variable’s conditional probability, i.e.,
its distribution given that another random variable has taken on a particular
value. For two random variables X, Y the density of X given Y = y is:

pX|Y (x | y) =
pX,Y (x, y)

pY (y)
, (2.84)
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where pX,Y (x, y) is the joint probability density of X, Y . The conditional
expectation of X given Y = y is E [X | Y ] .

The key tool used to reason about Lypaunov functions for our probabilisitc
notion of ISS is a nonnegative supermartingale, a specific type of expectation-
governed random process:

Definition 6. Let xk be a sequence of random variables that take values in
Rn, W : X × N≥0 → R, and suppose that W (xk, k) ∈ L1 for k ∈ N≥0. The
process Wk , W (xk, k) is a supermartingale if:

E[Wk+1 | x0:k] ≤ Wk almost surely for all k ∈ N≥0, (2.85)

where x0:k indicates the random variables {x0, x1, . . . , xk}. If, additionally,
Wk ≥ 0 for all k ∈ N≥0, Wk is a nonnegative supermartingale. If the process
is non-decreasing in expectation, the process Wk is a submartingale. If the
inequality (2.85) holds with equality, the process Wk is a martingale.

An important result from martingale theory that we will use is Ville’s inequal-
ity, which bounds the probability that a nonnegative supermartingale rises
above a certain value:

Theorem 4 (Ville’s Inequality [212]). Let Wk be a nonnegative supermartin-
gale. Then for all λ ∈ R>0,

P
{

sup
k∈N

Wk > λ

}
≤ E[W0]

λ
. (2.86)

Intuitively, Ville’s inequality can be compared with Markov’s inequality for
nonnegative random variables; since the process Wk is nonincreasing in expec-
tation, Ville’s inequality allows us to reason about the probability the process
instead reaches some value above λ.

Stability of Stochastic Discrete-Time Systems

Traditional notions of stability may not necessarily apply to stochastic systems.
For example, asymptotic stability to a point or forward invariance of a bounded
set may be impossible in the presence of unbounded, stochastic disturbances.
Thus more nuanced notions of stability are required [123]. In this section we
provide an abridged discussion of three existing stability notions for stochastic
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systems: recurrence, boundedness of trajectories in probability, and input-to-
state stability for distributions with bounded support.

Recurrence. Recurrence is an important notion of stability used in the analysis
of Markov chains. A bounded set A ⊂ X is recurrent if trajectories enter A in
finite time and visitA infinitely often with probability 1 for all initial conditions
x0 ∈ X .

Definition 7 (Recurrence). For some bounded set A ⊂ X let the hitting time
τA(x) , inf{k ∈ N≥0 s.t. xk ∈ A, x0 = x}. A set A is recurrent if for every
x ∈ X , P{τA(x) <∞} = 1. We say a system (2.79) is recurrent if there exists
a recurrent set A.

Recurrence relates to the notion of stability for deterministic systems where
trajectories remain within a set for all time, a property which is guaranteed
for ISS systems. We refer the reader to [140] for a more thorough treatment
of Markov chain stablity, recurrence, and ergodic theory.

Boundedness in Probability. Another notion of stability for stochastic systems
is the probability that the state remains in a bounded region. Since it is
often impossible to keep trajectories of (2.79) bounded for all time [181], it is
common to discuss these probabilities over some finite horizon k ∈ {0, . . . , K}
for some K ∈ N≥0.

Definition 8 (Bounded in Probability). The system (2.79) is bounded in
probability for some K ∈ N≥0 if there exists an M > 0 and ε ∈ (0, 1) such
that:

P
{

max
k≤K
‖xk‖ ≤M

}
≥ 1− ε. (2.87)

This notion of stability is central to Harold Kushner’s work on on stochastic
stability [122] which is drawn on for the later proposed definition of ISSp, and
which formed the basis for recent martingale-based approaches to finite-time
stability [181] and safety [57, 167, 168] for systems with unbounded uncertainty.
This relates directly to the forward invariant region guaranteed to exist around
the equilibrium point of ISS systems.

ISS for Bounded Disturbance Distributions. If the disturbance distribution
D for system (2.79) is only supported on a bounded set, then the essential
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supremum ‖D‖L∞ is well defined; thus if a system satisfies the ISS condition,
it is said to be stable in the ISS sense. Several authors have worked to extend
ISS to the setting of unbounded stochastic disturbances. [204] proposed an
ISS condition for continuous-time systems with unbounded disturbances, but
required the disturbance magnitude to be upper bounded by a class-K of the
state norm (thus, the disturbance vanishes at the equilibrium, a common but
restrictive assumption). [139, 197] also study stochastic variants of ISS, but
only require that the (ISS) condition hold for the expected trajectory (which
does not guarantee boundedness of any trajectories).

Input-to-State Stability for Unbounded Random Disturbances

In this section, we seek to generalize the notion of input-to-state stability to
systems that are subject to unbounded random disturbances. Specifically, two
issues arise when the support of D is unbounded: (i) the essential supremum
‖D‖L∞ does not exist, rendering the ISS condition inapplicable, and (ii) the
probability that xk remains in any bounded set for all k ∈ N is generally zero.

This second point is somewhat non-intuitive; however, consider a system with
additive Gaussian noise, xk+1 = f(xk) + dk, with dk ∼ Normal(µ,Σ). Then,
since the tails of d are unbounded, for any B > 0, P {‖d‖ > 2B} = ε > 0.
This means, with probability ε, ‖f(x,d)‖ ≥ ‖d‖ − ‖f(x)‖ > 2B − B = B.7

Thus, for any K ∈ N≥0,

P{‖xk‖ < B, ∀k ≤ K} ≤ P{‖dk‖ ≤ 2B, ∀k ≤ K} (2.88)

= (1− ε)K , (2.89)

since all dk are independent. Thus, as K → ∞, the probability of the state
remaining bounded goes to zero. Therefore, when generalizing ISS to the case
of unbounded disturbances, we should expect weaker guarantees than those
provided by the typical condition (ISS). With this in mind, we now define
the main result of this section, Input-to-State Stability in Probability (ISSp),
which is well-defined for systems subject to unbounded noise.

Definition 9 (Input-to-State Stable in Probability). The system (2.79) is
input-to-state stable in probability (ISSp) with repect to Lp if, for any ε ∈ (0, 1),
K ∈ N≥0 and distribution D such that ‖D‖Lp , there exist functions β ∈ KL,

7We must have ‖f(xk)‖ ≤ B for ‖xk‖ ≤ B; otherwise deterministic trajectories starting
at xk would leave the set in one step.
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and γ ∈ K such that:

P
{
‖xk‖ ≤ β(‖x0‖ , k) + γ

(
‖D‖Lp

)
,∀k ≤ K

}
≥ 1− ε. (2.90)

If this holds for β(‖x0‖ , k) = Mak ‖x‖ , for M > 0, a ∈ (0, 1), the system is
exponentially input-to-state stable in probability (ISSp).

ISSp is a generalization of ISS to systems with (unbounded) stochastic dis-
turbances. Intuitively, a system is ISSp if, for any disturbance in Lp, the ISS
condition (ISS) (with the L∞ norm relaxed to the Lp) holds over a finite hori-
zon with a probability arbitrarily close to 1. As with ISS, we now relate ISSp
to Lyapunov functions which can be used to verify this property.

Definition 10 (ISSp Lyapunov Function). A continuous function V : Rn →
R≥0 is an ISSp Lyapunov Function for the system (2.79) if there exist functions
κ1, κ2, κ3 ∈ K∞ and κ4 ∈ K such that,

κ1(‖x‖) ≤ V (x) ≤ κ2(‖x‖) (2.91)

E[V (f(x,d)− V (x)] ≤ −κ3(V (x)) + κ4(‖D‖Lp) (2.92)

for all x ∈ X and ‖D‖Lp <∞. If there exist constants a, b, c > 0 and a ∈ (0, 1)

such that κ1(r) = arc, κ2(r) = brc, and κ3(r) = ar, then V is an Exponential
ISSp (E-ISSp) Lyapunov Function.

Remark 2. As in the typical ISS definition (ISS), since max{a, b} ≤ a + b ≤
max{2a, 2b}, for suitable choices of β, γ, the ISSp condition (2.90) is equivalent
to:

P
{
‖xk‖ ≤ max

{
β(‖x0‖ , k), γ

(
‖D‖Lp

)}
, ∀k ≤ K

}
≥ 1− ε. (2.93)

In this work, for simplicity of exposition, we will consider exponential ISSp.
Note that the results presented apply in the more general case, but the proofs
become more complex.

Lyapunov Conditions for E-ISSp

As for ISS, there exist Lyapunov conditions for E-ISSp. To this end, we will
use tools from martingale theory (in particular, Ville’s inequality) to demon-
strate that the existence of a Lyapunov function satisfying a drift condition in
expectation implies a system is E-ISSp.
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Theorem 5. If there exists an E-ISSp Lyapunov function for system (2.79),
then system (2.79) is E-ISSp.

Proof. We begin by constructing a nonnegative supermartingale W (xk, k) via
a time-varying, affine transform of the Lyapunov function V (xk). Rearranging
the Lyapunov drift condition (2.92) with κ3(r) = ar for some a ∈ (0, 1) , we
can see that V (xk) almost resembles a supermartingale8,

E [V (xk+1) | xk] ≤ (1− a)V (xk) + ϕ (2.94)

where we define ϕ , κ4(‖D‖Lp). However, this is not exactly a supermartin-
gale due to the (1− a) scaling and the additive constant ϕ.

Thus, for a particular horizon K ∈ N≥0, we construct W (xk, k) by undoing
this scaling and translation. Letting Wk , W (xk, k) for simplicity, this con-
struction is:

Wk = θkV (xk)︸ ︷︷ ︸
rescale

−ϕ
k∑
i=1

θi︸ ︷︷ ︸
translate

+ ϕ
K∑
i=1

θi︸ ︷︷ ︸
ensure Wk≥0

, (2.95)

with θ , 1
1−a and the constant term ϕ

∑K
i=1 θ

i added to ensure Wk ≥ 0.

Next we now show Wk is a nonnegative supermartingale. We have Wk ≥ 0 for
any xk ∈ X , since V (xk) ≥ 0 by definition, and θ, ϕ ≥ 0. Further, we have:

E
[
Wk+1 | xk

]
= E

[
θk+1V (xk+1) + ϕ

K∑
i=k+2

θi

]
(2.96)

≤ θk+1 ((1− a)V (xk) + ϕ) + ϕ
K∑

i=k+2

θi (2.97)

= θkV (xk) + ϕ

K∑
i=k+1

θi = Wk, (2.98)

where the inequality (2.97) follows from the drift condition (2.92) and (2.98)
uses the fact that θ = 1

1−a .

Since Wk is a nonnegative supermartingale, we can apply Ville’s inequality
(2.86) to bound the probability Wk that remains below any λ > 0 for all
k ≤ K. Specifically,

P
{
W (xk) ≤ λ, ∀k ≤ K

}
≥ 1− W (x0)

λ
. (2.99)

8Note that E [V (xk+1) | xk] = E [V (xk+1) | x0:k] since system (2.79) is Markovian.
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We also note that, using the geometric series identity
∑k

i=1 θ
i−1 = θk−1

θ−1
, we

can write Wk as:

Wk = θkV (xk) +
θϕ(θK − θk)

θ − 1
. (2.100)

Examining the structure of Wk, if for all k ≤ K we have Wk ≤ λ, rearranging
(2.100) results in:

V (xk) ≤
(
λ− θK+1ϕ

θ − 1

)
θ−k +

θ

θ − 1
ϕ (2.101)

≤ (λ− ϕ)θ−k +
θ

θ − 1
ϕ (2.102)

, (M ‖x0‖c + ηϕ) θ−k +
θ

θ − 1
ϕ (2.103)

≤M ‖x0‖c θ−k + ηϕ+
θ

θ − 1
ϕ. (2.104)

Inequalities (2.102) and (2.104) follows from θ > 1 and ϕ ≥ 0. Equality (2.103)
follows from choosing λ = M ‖x0‖c + (1 + η)ϕ for some M, η ≥ 0 and c > 0 .

Further, using the lower bound (2.91) on V (xk) and the definition of θ, we can
write:

a ‖xk‖c ≤M ‖x0‖c (1− a)k +

(
η +

1

a

)
ϕ (2.105)

for some a > 0 which, rearranging, and raising both sides to the power of 1
c

(which preserves order since c > 0), yields:

‖xk‖ ≤
(
M

a
‖x0‖c (1− a)k +

(η + 1
a
)

a
ϕ

) 1
c

(2.106)

≤
(
M

a

) 1
c

ζ ‖x0‖ (1− a)
k
c + ζ

(
(η + 1

a
)ϕ

a

) 1
c

(2.107)

, M̃ ãk ‖x0‖ + γη(‖D‖Lp), (2.108)

for M̃ > 0, ã ∈ (0, 1), some ζ > 0 as needed, and γη(r) , ζ
(
η+ 1

a

a

)
κ4(r)

1
c

which is a class K function for all η ≥ 0.

Thus, we now must ensure there exists a suitable choice of M, η such that the
probability that this bound holds for all k ∈ {1, . . . , K} is greater than 1− ε.
By Ville’s inequality,

P
{
‖xk‖ ≤ M̃ ãk ‖x0‖ + γη(‖D‖Lp), ∀k ≤ K

}
≥ 1− W0

λ
= 1−

V (x0) + ϕ
a
((1− a)−K − 1)

M ‖x0‖c + (1 + η)ϕ
, (2.109)
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with W0 ≥ 0 by definition. Thus, as long as ‖x0‖c , ‖D‖Lp are not both zero,
we can choose M, η large enough to have

P
{
‖xk‖ ≤ M̃ ãk ‖x0‖+γη(‖D‖Lp), k ≤ K

}
≥ 1− ε, (2.110)

for any ε ∈ (0, 1), so the system must be E-ISSp.

Remark 3. The variables M ≥ 0 and η ≥ 0 are free parameters which can be
varied to analyze the probability of convergence and boundedness, respectively.
Also, we note that the bound in (2.110) may be very weak; stronger bounds
can be achieved by removing the bounding steps in (2.102) and (2.104), but
clarity was chosen over tightness for this proof.

Connections to Other Stability Notions

Here we discuss connections between ISS, ISSp, and other notions of stability
for stochastic systems.

Corollary 1. If the system (2.79) is ISS, then it is ISSp with respect to L∞.

Proof. By definition, if a system is ISS, then for all k ∈ N≥0, there exist
β ∈ KL, γ ∈ K such that:

‖xk‖ ≤ β(‖x0‖ , k) + γ (ϑ) (2.111)

for all ϑ ≥ supk∈N≥0
‖dk‖.

Thus, since the L∞-norm (equivalently, the essential supremum) is finite for
all random variables in L∞, for any d ∼ D with d ∈ L∞, we have:

P
{
‖xk‖ ≤ β(‖x0‖ , k) + γ(‖D‖L∞), ∀k ∈ N

}
= 1.

Thus trivially, for any K ∈ N≥0, ε ∈ (0, 1), we have β ∈ KL, γ ∈ K such that
(2.90) holds for all distributions D with d ∈ L∞. Therefore, the system is
ISSp w.r.t. L∞.

Corollary 1 provides a clear connection between ISS and ISSp: if a system
is ISS, it by definition is ISSp for disturbances in L∞. Next, we discuss the
relationship between ISS and ISSp w.r.t. L2 which is a much larger class of
unbounded random variables.
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Corollary 2. If the system (2.79) is additive with respect to its disturbance and
admits a twice-continuously differentiable, convex E-ISS Lyapunov function
V : Rn → R≥0 such that supx∈X ‖∇2V (x)‖2 ≤ λmax for some λmax ≥ 0, then it
is E-ISSp for d ∈ Lp with E [d] = 0 for p ≥ 2.

Proof. The dynamics are additive with respect to the disturbance so system
(2.79) can be rewritten as:

xk = f(xk,d) , f̂(xk) + d. (2.112)

The function V is a E-ISS Lyapunov function for (2.112) so it satisfies:

V
(
f̂(x) + d

)
− V (x) ≤ −aV (x) + κ4(‖D‖L∞) (2.113)

for all x ∈ X , some a ∈ (0, 1), σ ∈ K, and any d ∈ L∞.

The expected value of the left side of this inequality is:

E
[
V
(
f̂(x) + d

)
− V (x)

]
= E

[
V
(
f̂(x) + d

)]
− V (x)

≤ V
(
f̂(x) + E [d]

)
− V (x) +

λmax

2
tr(cov(d)) (2.114)

= V
(
f̂(x) + 0

)
− V (x) +

λmax

2
tr(cov(d)) (2.115)

≤ −aV (x) +
λmax

2
tr(cov(d)), (2.116)

where (2.114) accounts for Jensen’s inequality as in [57, Lemma 1], (2.115) is
due to the assumption that the E [d] = 0, and (2.116) is an application of the
E-ISS bound (2.113).

Since bounded covariance implies boundedness in L2, if d ∈ L2 then V is an
E-ISSp Lyapunov function for (2.112). Furthermore, since L2 ⊇ Lp for p ≥ 2,
V is an E-ISSp Lyapunov function for d ∈ Lp for all p ≥ 2.

Next, we discuss the relationship between ISSp and trajectories that are bounded
in probability.

Corollary 3. If system (2.79) is ISSp w.r.t. Lp, then for any d ∈ Lp, the
system’s trajectories are bounded in probability.

Proof. If the system is ISSp w.r.t. Lp, then for any K ∈ N≥0 and ε ∈ (0, 1),
there exist β ∈ KL and γ ∈ K such that:

P {‖xk‖ ≤ β(‖x0‖ , k) + γ (‖D‖Lp) , ∀k ≤ K} ≥ 1− ε. (2.117)
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Then, since β is decreasing in k, we have that for B0 , β(‖x0‖ , 0)+γ (‖D‖Lp):

P {‖xk‖ ≤ B0, ∀k ≤ K} ≥ 1− ε. (2.118)

Thus the system trajectories are bounded in probability.

Like with traditional ISS, the ISSp condition 2.90 is equivalent to system
trajectories remaining in a ball whose radius scales with the initial condition
and the norm of the disturbance. Thus, if a system is ISSp, its trajectories
(over a finite horizon) must be bounded in probability.

Finally, we look to discuss the relationship between ISSp and recurrence. To
do this we, first restate an important result from drift analysis (see [126] for a
detailed survey).

Theorem 6 (Variable Drift [126]). Suppose there exists some function V :

X → R≥0, with γ-sublevel set Vγ , {x ∈ X | V (x) ≤ γ} such that for all
x ∈ X \ Vγ:

E [V (f(x,d))− V (x)] ≤ −h(V (x)), (2.119)

for some increasing function h : R>0 → R>0. Then, for any trajectory with
initial state x0, the hitting time τγ(x0) = inf{k | V (xk) ≤ γ} is bounded in
expectation by:

E [τγ(x0)] ≤ γ

h(γ)
+

∫ V (x0)

γ

1

h(σ)
dσ. (2.120)

Using this result, we can show that, if a system admits an E-ISSp Lyapunov
function, then any Lyapunov sublevel set (above a particular value) must be
recurrent.

Theorem 7. If there exists an E-ISSp Lyapunov function w.r.t. Lp for system
(2.79), then (2.79) is recurrent.

Proof. Suppose there exists an E-ISSp Lyapunov function V for the system
(2.79). Then, for h(V (xk)) = aV (xk)− ϕ, with ϕ , κ4(‖D‖Lp), we have:

E [V (xk+1)− V (xk) | xk] ≤ −h(V (xk)). (2.121)

For any γ > ϕ
a
, h(V (x)) > 0 for all x ∈ X \ Vγ; thus our system meets the

variable drift condition (2.119).
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Thus, consider some trajectory with an initial state x0 ∈ X \ Vγ. Then, by
Theorem 6, we have

E [τγ(x0)] ≤ γ

aγ − ϕ
+

∫ V (x0)

γ

1

aσ − ϕ
dσ (2.122)

≤ γ

aγ − ϕ
+

1

a
log

(
aV (x0)− ϕ
aγ − ϕ

)
<∞. (2.123)

Since E [τγ(x0)] <∞, we must have P{τγ(x0) <∞} = 1. Thus, for any γ > a
ϕ
,

the sublevel set Vγ is recurrent. Since κ1 is radially unbounded, Vγ must be
bounded for all γ ≥ 0, thus the system is recurrent.

Application to Walking

Finally, to obtain more reasonable estimates of the maximum step heights a
given periodic gait can withstand, we will consider step heights drawn from
some distribution dk ∼ D and apply the ISSp methodology. Specifically, we
takeD , Normal(0, δ2

p) such that δp > 0 now represents the standard deviation
of the distribution. Note that due to the partial nature of the P, we will
truncate D at 3δp to ensure that there exists some δp such that E[∆V ] < +∞,
we will denote this truncated Gaussian as Normal(·, ·,±a) where a denotes the
truncation interval [76].

Consider the seven-link walker as shown in Figure 2.8 and Figure 2.14. As
detailed in Section 2.3, walking can be distilled down to the discrete-time
dynamical system described by the Poincaré return map:

P :Bρ(x
∗)× [d−, d+] ⇀ S[d−,d+] :=

⋃
d∈[d−,d+]

Sd,

xk+1 = P(xk, dk), dk ∈ [d−, d+], (2.124)

for some sequence of step heights dk ∈ [d−, d+] ⊂ R, and k ∈ N≥0.

Also recall that in Section 2.3, a candidate robust Lyapunov function was
synthesized by approximating the exponentially stable discrete-time system
using the linearization of the Poincaré return map for dk = 0:

xk+1 = Axk := DP(0, 0)xk. (2.125)

Then, the Lyapunov matrix P = PT > 0 was obtained by solving the discrete-
time Lyapuov equation (ATPA − P = −Q) for Q = QT > 0 which provides
a discrete-time Lyapunov function V (x) = xTPx.
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Figure 2.15: Algorithmic results of stochastic ISSp compared to deterministic
ISSp. As shown, the stochastic ISSp condition yields much more realistic
predictions of the tolerable step heights for two gaits (the same gaits as those
compared in Figure 2.12).

Consider the ISSp Lyapunov condition from Def. (10):

E[V (P(x, d))− V (x) | x] ≤ −ãV (x) + σ̃, (2.126)

with ã = 2kλmax(P), and σ̃ = k(χδp)
c, where k ∈ (0, 1) is a user-defined

variable dictating the convergence of the Lyapunov condition. Note that this
condition can be equivalently expressed in the form:

‖x− x∗‖ ≥ χδp =⇒

E[V (P(x, d))− V (x) | x] ≤ −k‖x− x∗‖c. (2.127)

This ISSp Lyapunov function can be utilized with the algorithmic approach
introduced earlier for (2.78) to solve the following optimization problem:

(δ∗p, χ
∗
p) = argmax

δp,χp>0
δp (2.128)

s.t. Ed∼D[V (P(x, d))− V (x) | x] ≤ −k‖x‖2

∀ ‖x‖ = χpδp, d ∼ Normal(0, δ2
p,±3δp),

As shown in Figure 2.15, the algorithmic approach to the updated optimization
(2.128) results in more reasonable estimates of the maximum tolerable step
height for each of the two gaits considered in [205].

Probabilistic Guarantees for ISSp. While relaxing the Lyapunov condition to
the one in (2.78) yields more realistic estimates of δ∗, this relaxed condition
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Figure 2.16: The probabilistic bound, evaluated for Gait 2, quickly decreases
as δ increases. However, the simulation results show that the walking is able
to remain periodic for all values determined to be δ-robust in Opt. 2.78,
highlighting that ISSp yields more reasonable estimates of δ compared to the
strict ISS condition presented in Equation 2.66.

no longer satisfies the assumptions needed to be provably ISS. Instead, we can
use probabilistic bounds to assert that the system is ISSp.

To do this, we first need to approximate a reasonable estimate of the Lyapunov
level set that bounds the evolution of the system after K steps. Rearranging
the Lyapunov condition (2.126) for the largest χ∗p and δ∗p identified by Opt.
(2.78), and using the fact that the forward invariant set is defined in Theorem
2 as the set such that V (x) ≤ κ2(χδ)c, we obtain the Lyapunov bound:

V (xK) ≤ ρ̃ , (1− a)Kλmax(P)(χ∗pδ
∗
p)

2 + k(χ∗pδ
∗
p)

2.

The probabilistic bound associated with remaining within this Lyapunov level
set can be obtained from Kushner [122]. Importantly, when your Lyapunov
level set ρ̃ is less than σ̃/a, the bound is extremely conservative. Following
Kushner, it is possible to find a better choice of Wk that yields a better prob-
ability bound. Specifically, one can use the bound:

P(V (xK) ≤ ρ̃), ∀k ≤ K}

≥


ρ̃−V (x0)

ρ̃

(
ρ̃−σ̃
ρ̃

)K
, ρ̃ ≥ σ̃

a

1− V (x0)(1−a)K+σ̃
∑K
i=1(1−a)i−1

ρ̃
, otherwise

(2.129)

with σ̃ determined for each evaluated δp using a sampling technique such as
Monte Carlo sampling.

In Figure 2.16, the probabilistic bound is illustrated for the values (χ∗p, δ
∗
p)

obtained using (2.78) for Gait 2. To verify the probabilistic bound, Monte
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Carlo sampling was implemented to estimate the true probability that the
system remains within ρ̃ after K = 10 steps. We simulate the system for this
horizon and report both the fraction of trajectories remaining stable, as well
as the fraction of trajectories remaining in the Lyapunov sublevel set ρ̃.

2.5 Summary

In summary, while the HZD method of gait generation produces nominal refer-
ence trajectories that enjoy mathematical guarantees of stability, these certifi-
cates are only valid when the robot has a pre-impact state infinitesimally close
to the fixed point of the generated limit cycle. Thus, to improve the robustness
of nominal gaits, impact uncertainty must be accounted for. This thesis pre-
sented two mathematical approaches towards addressing impact uncertainty.
First, by maximizing the induced matrix norm of the saltation matrix directly
in the gait generation optimization problem, it was found that the generated
gaits led to more robust locomotion on both the Atalante exoskeleton and
the AMBER-3M planar biped. Second, a new definition of locomotive robust-
ness was proposed – δ-robustness – which leverages input-to-state stability for
disturbances to the guard condition (taken to be ground height). Using this
new definition of robustness, Lyapunov conditions can be synthesized to cer-
tify robustness of nominal gaits to bounded disturbances. This definition was
also extended to input-to-state stability in probability (ISSp). This stochastic
notion of robustness was shown to yield more realistic estimates of robustness.
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C h a p t e r 3

USER-CUSTOMIZATION VIA SUBJECTIVE FEEDBACK

As discussed in the preceding chapter, the partial hybrid zero dynamics (PHZD)
method of gait generation has been successfully demonstrated towards realiz-
ing dynamically stable crutch-less exoskeleton locomotion on the Atalante ex-
oskeleton. While this method, originally designed for bipedal robots [3, 79, 85],
generates stable bipedal locomotion, there is no existing framework for opti-
mizing the walking for user comfort; yet, user comfort should be a critical
objective of gait optimization for exoskeleton walking. Notably, there exist
methods capable of generating human-like walking gaits for bipedal robots [8],
but it is unlikely that these methods fulfill the preferences of individuals using
robotic assistance.

With the goal of user comfort in mind, the scientific question becomes “how
can we systematically realize exoskeleton walking that optimizes user com-
fort?” This question can be further distilled into short-term and long-term
objectives. The short-term objective, which we term preference optimization,
is to directly optimize exoskeleton walking for each individualized user comfort
via human-in-the-loop learning. This provides an immediate method of ob-
taining optimal exoskeleton walking for an individual user. While this method
is ideal for gait personalization, it requires a series of human-in-the-loop ex-
oskeleton trials for each user. This motivates the long-term objective, which
we term preference characterization. This second objective aims to better un-
derstand the relationship between exoskeleton gait features and user comfort
by learning the entire preference landscape of an exoskeleton user through
human-in-the-loop, while avoiding gaits that make the user feel unsafe or un-
comfortable. The main benefit of preference characterization is that it would
provide a mechanism to understand user preference landscapes such that in
the future, with enough data, a generalized model of user comfort could be
obtained and leveraged to predict which gait features optimize user comfort.
This generalized model would reduce the need for extensive human-in-the-loop
learning.

Major challenges of accomplishing both objectives include: 1) ensuring safety
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Figure 3.1: Illustration of the preference-based learning framework applied to
exoskeleton gait optimization and characterization. The learning framework
consists of four main components: 1) collecting subjective user feedback from
exoskeleton users; 2) using the collected feedback to model the underlying
preference landscape as a Gaussian Process and selecting new actions to sample
from this GP; 3) translating the selected actions into a corresponding walking
gait; and 4) allowing the user to experience the walking gait on the Atalante
exoskeleton.

and comfort of the human user; 2) the time-intensive nature of human sub-
ject trials; 3) obtaining reliable user feedback; and 4) exploring the vast space
of possible exoskeleton walking behaviors. Addressing these challenges, this
chapter develops a human-in-the-loop preference-based learning framework (il-
lustrated in Figure 3.1) that offers a promising alternative to pure numeric op-
timization by instead optimizing and characterizing user comfort. The overall
benefits of the proposed learning framework include: 1) ensuring the user’s
comfort and safety via preference-based learning and the partial hybrid zero
dynamics method, 2) achieving sample-efficient data collection via Gaussian
process modeling, 3) obtaining feedback by asking users for qualitative infor-
mation, which humans can provide more reliably than numerical scores, and 4)
exploring high-dimensional spaces of possible exoskeleton walking behaviors.

As illustrated in Fig. 3.1, human-in-the-loop online learning refers to the iter-
ative process of querying a human for feedback and utilizing this feedback to
select new actions. Concretely, the proposed framework balances preference
optimization and characterization by the choice of acquisition function. If the
objective is preference optimization, then the framework selects actions using
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Thompson sampling, a regret minimization technique where regret is defined
as the cumulative gap between the utility to the user of the optimal gait and
of gaits selected by the algorithm. If the objective is preference characteriza-
tion, the framework selects actions using information gain. Importantly, we
restrict the information gain to a region of interest (ROI), which we define
to be the region of actions excluding the gaits that make user feel unsafe or
uncomfortable.

This chapter introduces the following three algorithms which comprise the
preference-based learning framework: CoSpar for preference optimization [207];
LineCoSpar for preference optimization in high-dimensional action spaces [206];
and ROIAL for preference characterization constrained to a region of interest
[128]. Moreover, the unification of these three algorithms is presented to ob-
tain a single holistic framework. In this chapter, we will discuss the unified
preference-based learning framework, followed by several experimental demon-
strations of the framework towards preference optimization and characteriza-
tion on the Atalante exoskeleton. In the subsequent chapter the methodology
will be extended towards additional applications on other robotic platforms.

3.1 Preference-Based Learning Framework

Problem Setup

Consider a robotic system with v ∈ N adjustable parameters. The possible
range of each parameter is assumed to be upper and lower bounded, with
these bounds defined as amax

i , amin
i ∈ R, respectively, for each parameter i =

{1, . . . , v}. Also, since humans cannot easily distinguish between parameters
with very similar values (often characterized as the minimum detectable change
or just noticeable difference [23]), we restrict each parameter to belong to a
discretized set with step sizes defined by di ∈ R>0. This restriction also helps
with computational tractability.

Using the above notation, each individual dimension of the entire space of
possible parameter combinations is defined as:

Ai = {amin
i + ndi | n ∈ N≥0 and amin

i + ndi ≤ amax
i }, (3.1)

for i = {1, . . . , v}. We refer to the entire space of discrete parameter combi-
nations as the action space A with with cardinality |A| =

∏v
i=1 |Ai|. Each

unique vector of parameter values is referred to as an action, denoted as
a := [a1, . . . , av] ∈ Rv. Lastly, we assume that there exists some unknown
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Figure 3.2: The preference-based learning framework aims to modify exoskele-
ton behavior through the selection of various gait parameters, such as those
illustrated in the figure. The presented experiments demonstrate the method-
ology across three separate action spaces: a) the action space for experiments
with non-disabled subjects; b) the action space for experiments with subjects
with paraplegia; and c) the action space for exoskeleton turning experiments.
Here, amin

i and amax
i are the minimum and maximum bounds, respectively, for

each action space parameter, with di being the interval between neighboring
actions.

reward function r : Rv → R which maps each action a to a latent reward, i.e.,
the human’s valuation of the action. The restriction of r to A is denoted as
the vectorized utility function r ∈ R|A|.

In the context of exoskeleton walking, the action space consists of all possible
gaits within a pre-computed gait library that is parameterized by the following
gait features: step length (m), step cadence (steps/min), step width (m), max-
imum step height (m), maximum pelvis roll (deg), and maximum pelvis pitch
(deg). The action space definitions for the gait libraries used throughout this
chapter are outlined in Figure 3.2. Importantly, an additional gait parameter
on the center of mass offset (m) of the combined patient-exoskeleton model
is used for experiments with subjects with paraplegia since the weight distri-
butions for those subjects are not well-approximated by the anthropomorphic
data used to construct the patient models [225]. For all action spaces, the cor-
responding gait library is constructed using gaits generated from the Partial
Hybrid Zero Dynamics method [8] described in Chapter 2. Thus, each gait
is represented as a unique composition of exoskeleton joint-level trajectories,
comprising the angular positions and velocities of each joint from one heel
strike to the next heel strike.
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Learning Objectives

The first learning objective, preference optimization, aims to minimize the
regret, or the gap between the reward of selected actions and the true optimal
action a∗ = argmaxa∈A r(a). We formalize this optimization objective as
follows:

Preference Optimization Objective:
Sequentially sample N actions, {a1, . . . ,aN}, to minimize cumulative regret:

Regret(a1, . . . ,aN) =
N∑
t=1

(r(a∗)− r(at)) .

Algorithms with finite-bounded regret result in r(aN)→ r(a∗) as N →∞.

To minimize regret in sequential online learning, in which an algorithm only
receives feedback on iteratively-sampled actions, the algorithm must balance
between exploration and exploitation [187]. Algorithms exploit by selecting
actions that are expected to have high utility, while they explore the action
space to avoid being trapped in local optima.

The second learning objective, preference characterization, aims to minimize
error between the true underlying reward function, r, and the reward function
learned after N iterations, r̂N . Importantly, unlike with regret minimization,
characterization alone does not encourage avoiding low-utility actions. This
is problematic for exoskeleton experiments because low-utility actions could
make the user feel unsafe or uncomfortable. Thus, we modify the second
learning objective to prioritize characterization within a Region of Interest
(ROI). In the exoskeleton setting, we define the ROI as consisting of exoskele-
ton walking gaits that do not correspond to a user-provided label of “very
bad,” which the user is instructed to give when experiencing a gait that makes
them feel unsafe or uncomfortable. The region of the action space A corre-
sponding to the label “very bad” is termed the Region of Avoidance (ROA),
and is the complement of the ROI. We formalize this ROI-based preference
characterization problem as follows:
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Preference Characterization Objective:
Sequentially sample N actions, {a1, . . . ,aN}, to minimize the reward function
estimation error defined as:

Error(a1, . . . ,aN) := κ>|r − r̂N |,

where κ ∈ {0, 1}|A| is a binary vector denoting which actions lie within the
ROI, and r, r̂ ∈ R|A| are the true and learned utilites for all actions.

Modeling User Feedback

For exoskeleton gait generation, as in many real-world settings involving hu-
mans [18, 20, 26], it is challenging for people to reliably specify numerical
scores or provide demonstrations. As such, we take advantage of three sub-
jective feedback mechanisms: pairwise preferences, coactive suggestions, and
ordinal labels. Here, we formally define and compare how each of these mech-
anisms is modeled. The process of querying the user for feedback is detailed
in Alg. 1.

Preference Feedback. Preferences are defined as pairwise comparisons (i.e.,
“Does the user prefer action a or action b?”). Previous studies have found
preferences to be more reliable than numerical scores in a range of domains,
including information retrieval [48] and autonomous driving [26]. A preference
between two actions a1 and a2, is denoted as p = a1 � a2 if action a1 is
preferred, or p = a2 � a1 if action a2 is preferred. The probability of a user
giving a pairwise preference a1 � a2 given an underlying reward function r is
modeled using the likelihood function [51]:

P(a1 � a2 | r(a1), r(a2)) =

 1 if r(a1) ≥ r(a2),

0 otherwise,
(3.2)

which captures the preference relations given ideal noise-free preference feed-
back. However, user preferences are expected to be corrupted by noise. Thus,
we model the preferences as being contaminated by noise through the likeli-
hood function:

P(a1 � a2 | r(a1), r(a2)) = ψ

(
r(a1)− r(a2)

cp

)
, (3.3)

where ψ(·) : R → (0, 1) can be any monotonously-increasing activation func-
tion, and cp > 0 quantifies noisiness in the preferences. The effect of cp had
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Algorithm 1 Obtain User Feedback (During Iteration i)

1: ns := num. of samples per iter.
2: nb := num. of past samples in user’s memory buffer
3:
(
ns+nb

2

)
:= number of pairwise comparisons per iteration

4: for j = 1, . . . ,
(
ns+nb

2

)
do

5: if User prefers first action (aj1) in comparison j then
6: Record pairwise preference as pj = (aj1 � aj2)
7: else if User prefers second action (aj2) in comparison j then
8: Record pairwise preference as pj = (aj2 � aj1)
9: else if No preference then
10: pj = ∅
11: end if
12: Append feedback to dataset: Dp = Dp ∪ pj
13: end for
14: for j = 1, . . . , ns do
15: if User has a suggestion regarding sampled action aji then
16: Record coactive action as āji
17: Append feedback to dataset: Dc = Dc ∪ (āji � a

j
i )

18: end if
19: end for
20: for j = 1, . . . , ns do
21: if User has an ordinal label regarding sampled action aji then
22: Record ordinal label as oji
23: Append feedback to dataset: Dc = Dc ∪ (aji , o

j
i )

24: end if
25: end for

on the preference likelihood function is illustrated in Figure 3.3a. Two exam-
ple activation functions include the standard normal cumulative distribution
function and the sigmoid function:

ψGaus(x) :=

∫ x

− inf

Normal(γ; 0, 1)dγ, (3.4)

ψsig(x) :=
1

1 + exp(−x)
. (3.5)

We empirically found that using ψsig(x) resulted in improved performance
because of its heavier-tailed distribution. The preference likelihood function
with ψsig is illustrated in Figure 3.3a for preference noise parameters cp. Note
that the choice of cp depends both on the expected preference noise as well as
the range of the underlying utility function r.

A collection of pairwise preferences is denoted as:

Dp := {ak1 � ak2 | k = 1, . . . , K}, (3.6)
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(a) (b)

Figure 3.3: Illustration of the effect of the noise parameter on the likelihood
function for a) preference and coactive feedback (cp and cc), and b) ordinal
feedback (co).

where ak1 and ak2 denote the two actions corresponding to the kth pairwise
preference in a set of K ∈ N≥0 total comparisons. The likelihood function for
the entire setDp is then calculated as the product of each individual likelihood:

P(Dp | r) =
K∏
k=1

P(ak1 � ak2 | r(ak1), r(ak2)). (3.7)

This function is known as the preference likelihood function and is used later
to approximate the posterior distribution.

Coactive Feedback. User suggestions, also known as coactive feedback, can
be incorporated into the learning framework by treating user suggested im-
provements as implicit preferences. In this context, coactive feedback can
be thought of as preference feedback between an action ā suggested by the
user and the sampled action a. In other words, the underlying assumption of
coactive feedback is that r(ā) > r(a). This approach resembles the coactive
learning framework [171], first proposed in [170], in which the user identifies
an improved action as feedback to each presented action. The combination of
preference and coactive feedback is termed mixed-initiative learning [127, 228].
Coactive learning has been applied to robot trajectory planning [106, 178], but
was only first, to our knowledge, applied with preference learning in [207].

We denote a single user suggestion as c = ā � a. As with preferences, coactive
feedback is modeled with the assumption that it is corrupted by noise:

P(ā � a | r(ā), r(a)) = ψ

(
r(ā)− r(a)

cc

)
, (3.8)
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where ψ(·) : R → (0, 1) is the same activation function as with preference
feedback, and cc > 0 quantifies noisiness in the coactive suggestions. The
hyperparameter cc has an identical effect on the coactive likelihood function
as cp had on the preference likelihood function, illustrated in Figure 3.3a.

We recommend setting cc > cp since in general, coactive feedback is more
prone to noise compared to preference feedback. For example, in the case
of exoskeleton user feedback, a user may provide a suggestion (i.e., “I would
prefer a faster gait.”) that would no longer be true once they experienced the
walking (i.e., “Actually, I feel uncomfortable with the faster gaits.”). However,
incorporating suggestions increases the amount of information obtained from
the same number of sampled actions, thus increasing the sample-efficiency of
the algorithm.

A collection of user suggestions can either be stored with the preference dataset,
or in their own dataset. For clarity, we will use the latter and define a set of
user suggestions as:

Dc := {āl � al | l = 1, ....., L},

where ā1 is the suggested action being compared to the sampled action al, with
this comparison being the lth suggestion in a set of L ∈ N≥0 total suggested
actions. As with user preferences, the coactive likelihood function is calculated
as the product of each likelihood function for L user suggestions:

P(Dc | r) =
L∏
l=1

P(āl � al | r(āl), r(al)). (3.9)

Ordinal Feedback. Ordinal feedback assigns an ordered label to each sampled
action, with the ordinal labels corresponding to one of h ∈ N ordinal categories.
These labels partition the set of all possible actions into h sets denoted as Oi

for i = 1, . . . , h. We define the boundaries between ordinal categories using
thresholds −∞ = b0 < b1 < · · · < bh =∞. Thus, in the case of ideal noise-less
feedback, ordinal labels are determined by the likelihood function:

P
(
(a, o) | r(a)

)
=

 1 if bo−1 ≤ r(a) < bo,

0 otherwise,
(3.10)

where we denote (a, o) as the ordinal label o ∈ {1, . . . , h} ⊂ N provided for
the sampled action a. As with preference and coactive feedback, we modify



71

this simplified likelihood function to account for noise as in [52]:

P
(
(a, o) | r(a)

)
= ψ

(
bo − r(a)

co

)
− ψ

(
bo−1 − r(a)

co

)
, (3.11)

with ψ(·) : R→ (0, 1) an activation function as before, and co > 0 quantifying
noisiness in the ordinal labels. The effect of co on the likelihood function is il-
lustrated in Figure 3.3b. Since previous work has shown numerical scores (such
as ordinal labels) to be less reliable than pairwise preferences for subjective
human feedback, we set co > cc > cp [110, 187].

We define a dataset of M ordinal labels as:

Do := {(am, om) | m = 1, .....,M}, (3.12)

with each ordinal label om given for the corresponding action am in a set
of M ∈ N≥0 total user-provided labels. As with the preference and coactive
likelihood functions, the ordinal likelihood function is calculated as the product
of the M individual likelihoods:

P(Do | r) =
M∏
m=1

P
(
(am, om) | r(am)

)
. (3.13)

Approximating the Utility as a Gaussian Process

The second component of the learning framework is to use the obtained user
feedback to estimate the vectorized underlying utility function, r ∈ R|A|, as
r̂ ∈ R|A|. We compute r̂, as the maximum a posteriori (MAP) estimate:

r̂ = rMAP := argmax
r∈R|A|

P(r | D), (3.14)

where P(r | D) is the posterior distribution of r given the collection of user
feedback D = Dp ∪Dc ∪Do. We choose to approximate r̂ as a Gaussian pro-
cess because it enables r to be modeled as a Bayesian posterior over a class of
smooth, non-parametric functions. We approximate P(r | D) as the Gaussian
distribution Normal(µ,Σ), which is derived from the preference-based Gaus-
sian process model of [51]. This allows us to approximate r̂ = µ.

In this section, we will first discuss how we model the Bayesian posterior
P(r | D), followed by how we approximate this distribution as Gaussian. The
end result is an optimization problem which can be computationally expensive
depending on the number of actions in A over which r ∈ R|A| inferred. Thus,
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to remain tractable in high-dimensional action spaces, we only infer the reward
function over a subset of actions, denoted rS ∈ R|S| for some S ⊂ A. We will
discuss this restriction at the end of this section.

Modeling the Posterior Probability

By assuming conditional independence of the feedback mechanisms, we can
use Bayes rule to model the posterior of the utilities r as proportional to the
product of the individual likelihood terms and the Gaussian prior:

P(r|D) ∝ P(Dp|r)P(Dc|r)P(Do|r)P(r), (3.15)

with each likelihood calculated as described in the Modeling User Feedback
section. We define a Gaussian prior over r as:

P(r) =
1

(2π)
|A|
2 |Σpr| 12

exp

(
−1

2
r>(Σpr)−1r

)
, (3.16)

where Σpr ∈ R|A|×|A| is the prior covariance matrix with [Σpr]ij = K(ai,aj)

and K being a kernel of choice. In our work, we select K to be the squared
exponential kernel:

KSE(a,a′) = σ2 exp

(
−(a− a′)2

2l2

)
, (3.17)

where σ ∈ R is the output variance hyperparameter and l ∈ Rv is a vector
of lengthscales for each dimension of A. The output variance σ dictates the
expected average distance the underlying function is away from its mean. The
lengthscales li for i = 1, . . . , v are hyperparameters that dictate the expected
“wiggliness” of the underlying function in each dimension.

Approximating the Posterior Distribution as Gaussian

Since we leverage more types of feedback than just pairwise preferences, we
extend the method introduced in [51] towards approximating P(r | D). This
extension redefines the Gaussian distribution Normal(µ,Σ) as:

µ = rMAP := argmax
r

P(r | D), (3.18)

Σ = ((Σpr)−1 + ΛMAP)−1, (3.19)
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where ΛMAP is the matrix Λ ∈ R|A|×|A| evaluated at rMAP, with the composi-
tion of Λ extended to:

[Λ]ij :=
K∑
k=1

−∂2 lnP (ak1 � ak2 | r(ak1), r(ak2))

∂r(ai)r(aj)

+
L∑
l=1

−∂2 lnP(āl � al | r(āl), r(al))

∂r(ai)r(aj)

+
M∑
m=1

−∂2 lnP((am, om) | r(am))

∂r(ai)r(aj)
. (3.20)

Here, [Λ]ij denotes the ijth element of Λ for i = 1, . . . , |A| and j = 1, . . . , |A|.

Solving for the MAP estimate using convex programming. Approximating P(r |
D) as a Gaussian distribution centered on rMAP with the covariance matrix Σ

is equivalent to the Laplace approximation of the functional:

F(r) =−
K∑
k=1

lnP(ak1 � ak2 | r(ak1), r(ak2))

−
L∑
l=1

lnP(āl � al | r(āl), r(al))

−
M∑
m=1

lnP((am, om) | r(am)) +
1

2
r>(Σpr)−1r. (3.21)

The MAP estimate rMAP is computed as the minimizer of F(r) using a convex
program as outlined next.

Convex Program for Computing the MAP estimate. The convex program to
solve for rMAP is constructed as:

rMAP = argmin
r∈R|A|

F(r), (3.22)

with the first derivative terms of F(r) being:

∂ − lnP(ak1 � ak2 | r(ak1), r(ak2))

∂r(ai)
=
−sk(ai)
cp

ψ̇(zk)

ψ(zk)
, (3.23)

∂ − lnP(āl � al | r(āl), r(al))

∂r(ai)
=
−sl(ai)
cc

ψ̇(zl)

ψ(zl)
, (3.24)

∂ − lnP((am, om) | r(am))

∂r(ai)
=

1

co

ψ̇(zm1)− ψ̇(zm2)

ψ(zm1)− ψ(zm2)
, (3.25)
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and the second derivative terms:

∂2 − lnP(ak1 � ak2 | r(ak1), r(ak2))

∂r(ai)r(aj)
=
sk(ai)sk(aj)

c2
p

(
ψ̇(zk)

2

ψ(zk)2
− ψ̈(zk)

ψ(zk)

)
,

(3.26)

∂2 − lnP(āl � al | r(āl), r(al))

∂r(ai)r(aj)
=
sl(ai)sl(aj)

c2
c

(
ψ̇(zl)

2

ψ(zl)2
− ψ̈(zl)

ψ(zl)

)
, (3.27)

∂2 − lnP((am, om) | r(am))

∂r(ai)r(aj)
= . . . (3.28)

1

c2
o

((
ψ̇(zm1)− ψ̇(zm2)

ψ(zm1)− ψ(zm2)

)2

−
(
ψ̈(zm1)− ψ̈(zm2)

ψ(zm1)− ψ(zm2)

))
, (3.29)

where ψ : R → (0, 1) represents any activation function with first derivative
ψ̇(·) and second derivative ψ̈(·). The activation function terms are defined as:

zk =

(
r(ak1)− r(ak2)

cp

)
, (3.30)

zl =

(
r(āl)− r(al)

cc

)
, (3.31)

zm1 =
bom − r(am)

co
, (3.32)

zm2 =
bom−1 − r(am)

co
. (3.33)

Lastly, the indicator functions are defined as:

sk(a) =


+1 a = ak1

−1 a = ak2

0 otherwise

, (3.34)

sl(a) =


+1 a = āl

−1 a = al

0 otherwise

. (3.35)

Restricting the posterior distribution to a subset S

Solving for r̂ is computationally-expensive and can even be intractable for
high-dimensional action spaces. Existing preference-based approaches opti-
mize over the action space A by discretizing the entire space before beginning
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the learning process. This results in mv combinations from m ∈ N uniformly-
spaced points (corresponding to actions) in each of the v dimensions of A. The
cardinality of this set is |A| = mv; larger m enables finer-grained search at
a higher computational cost. The Bayesian preference model is updated over
all |A| points during each iteration. This is intractable for settings with lots
of parameters (large v) since computing the posterior over |A| points involves
expensive matrix operations, such as inverting Σpr

t ,Σt ∈ R|A|×|A|.

Moreover, we cannot leverage existing work with high-dimensional Gaussian
process learning since it requires quantitative feedback [113, 218]. Thus, to
maintain computational tractability in high-dimensional action spaces, we sim-
ply restrict the posterior to only a subset of the discrete action space A, de-
noted as the set S ⊂ A. The restricted utility function is denoted rS ∈ R|S|.
Note that the specific composition of the subset S depends on the sampling
strategy of the framework, and will thus be discussed in the next section.

Computing r̂S has some slight modifications which we will present here. First,
the likelihood functions are calculated only considering a ∈ S. Second, the
Gaussian prior is redefined over rS:

P(rS) =
1

(2π)
|S|
2 |Σpr

S |
1
2

exp

(
−1

2
r>S (Σpr

S )−1rS

)
, (3.36)

where Σpr
S ∈ R|S|×|S| is the prior covariance matrix with [Σpr

S ]ij = K(aiS,a
j
S) for

the restricted set of actions aS in S. Using these restricted likelihood terms
and Gaussian prior, the posterior over S is modeled as:

P(rS|D) ∝ P(Dp|rS)P(Dc|rS)P(Do|rS)P(rS), (3.37)

and again approximated using the same procedure as presented in the Approx-
imating the Utility as a Gaussian Process section to obtain Normal(µS,ΣS),
where µS and ΣS denote the posterior mean and covariance over the subset S.
Lastly, r̂S is computed as the solution to the minimization:

r̂S = argmin
r∈R|S|

F(r). (3.38)

Selecting New Actions

Since human-in-the-loop frameworks only collect user feedback for sampled
actions, the process of selecting these actions is critical to the learning per-
formance. In this section we will outline each of the two sampling techniques
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used in the proposed preference-based learning framework: Thompson sam-
pling and information gain across a region of interest.

Sampling method for regret minimization

There are many existing sampling methods aimed at regret minimization,
including Thompson sampling [201] and upper confidence bound (UCB) al-
gorithms [124]. Existing work has explored extending UCB algorithms for
settings with relative feedback (such as pairwise preferences), aptly named
Relative Upper Confidence Bound (RUCB) [241]. However, in our work we
utilize Thompson Sampling since it slightly favors exploitation compared to
RUCB in the presence of relative feedback [207].

The general concept of Thompson sampling is to determine ns ∈ N actions
to query by drawing ns samples from a given distribution. Specifically, the
probability of selecting any given action corresponds with its probability of
maximizing the underlying utility function. Thus, as the uncertainty of the
distribution shrinks, the action maximizing the mean of the distribution P(r |
D) has a higher probability of being selected.

Thompson sampling is conducted using the following procedure. In each iter-
ation i ∈ N, ns samples are drawn from the distribution:

rki ∼ Normal(µ,Σ) ∀k = 1, . . . , ns. (3.39)

Then, the sampled actions {a1
i , . . . ,a

ns
i } are selected to be the actions maxi-

mizing the drawn samples:

aki = argmax
a∈A

rki (a) ∀k = 1, . . . , ns. (3.40)

Note here that Thompson sampling can be performed identically when using
the dimensionality reduction technique by limiting the selection of actions to
a ∈ S and considering µS and ΣS.

Dimensionality reduction for regret minimization. While the restriction of the
posterior to a subset S ⊂ A addresses the issue of computational tractability, it
is critical to construct S in a way that preserves regret minimization. Inspired
from [118], we construct S := L∪V as the union of a one-dimensional subspace
L ⊂ A with all previously sampled actions V. Importantly, L is generated
such that it intersects the most recent estimate of the optimal action (a∗ =
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argmaxa∈S µS). While this dimensionality reduction technique limits the set
of possible sampled actions to those within S, [118] found that it yields state-
of-the-art performance with significantly reduced computational complexity.
Concretely, this approach reduces the model’s covariance matrices Σpr

t ,Σt from
size |A| × |A| to |L ∪V| × |L ∪V|. Rather than growing exponentially in v,
which is impractical for online learning, LineCoSpar’s complexity is constant
in the dimension v and linear in the number of iterations. Since queries are
expensive in many human-in-the-loop robotics settings, the number of total
iterations is typically low.

Sampling method for preference characterization

While there are many existing sampling approaches aimed at characterizing
the latent reward function, we utilize a custom sampling approach [128] in
order to: 1) prioritize sample efficiency; 2) utilize subjective feedback; 3) avoid
low-utility actions; and 4) select actions that lead to easy to answer questions
and reliable feedback. This custom acquisition function resembles information
gain but limited to actions within a “Region of Interest” (ROI). This set of
actions is denoted as SROI ∈ S ⊆ A and will be discussed more later.

Information gain selects actions that maximize the mutual information be-
tween the underlying utility function and the users feedback, thus learning the
underlying utility function as efficiently as possible. It has been shown that
selecting an entire sequence of actions to optimize this mutual information is
NP-hard [4]. However, previous work has shown that state-of-the-art perfor-
mance can be achieved via a greedy approach which only optimizes one action
to compare with already sampled past actions. Thus, in our work we also only
select one action at a time using information gain which is compared with past
actions. It is possible to extend this method to more than one action sampled
in each iteration but the problem quickly becomes intractable.

Information gain is conducted using the following procedure. In iteration
i ∈ N, ns new actions are selected to be the solutions to the maximization
problem:

aki = argmax
a∈SROI

I(r; oki ,p
k
i |Dp,Do,a), ∀k = 1, . . . , ns, (3.41)

where oki is the ordinal label associated with the sampled action aki , and pki =

{p1
i , . . . , p

ns+nb−1
i } is the set of pairwise preferences between aki and each action
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within the set {{{a1
i , . . . ,a

ns
i } \ aki } ∪ abuffer}, where abuffer represents the set

of nb ∈ N≥0 previously sampled actions stored in a “buffer.” This set of buffer
actions can be interpreted as the previously sampled actions that the user can
reliably remember.

This maximization problem can be equivalently written in terms of information
entropy:

aki = argmax
a∈SROI

H(oki ,p
k
i |Dp,Do,a)

− E [r|DpDo] [H(oki ,p
k
i |Dp,Do,a, r)], ∀k = 1, . . . , ns. (3.42)

In this expression, the first term can be interpreted as the model’s uncertainty
about a given action’s ordinal label and preferences. The sampled action
is aimed at maximizing this term because an action with high uncertainty
regarding its feedback yields potentially valuable information regarding the
underlying utility function. The second term can be interpreted as the user’s
expected uncertainty regarding the feedback. Therefore, the sampled action is
aimed at yielding pairwise comparisons that are easy for the user to provide.
By combining both terms, the sampled actions result in queries that are both
informative and easy for users.

Limiting exploration to a region of interest. The region of interest (ROI) is
defined as the set of actions SROI ∈ S ⊆ A, restricted to the set S over which
the posterior Normal(µS,ΣS) is constructed, that satisfy the criteria:

µS(a) + λΣS(a) > bROI. (3.43)

The constant bROI ∈ R is the user-selected threshold that separates the ordinal
categories belonging to the ROA and the ordinal categories belonging to the
complement of the ROA. We term this complement the region of interest
(ROI). The user also defines λ ∈ R, a hyperparameter that determines the
algorithm’s conservatism in estimating the ROI. Smaller values of λ lead to
more conservative estimates of the ROA.

3.2 Experimental Results: Low-Dimensional Preference Optimiza-
tion

The first set of experiments deployed preference optimization across low-dimensional
action spaces (gait libraries consisting of one or two gait parameters) and
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Algorithm 2 CoSpar
1: procedure CoSpar(A = action set, ns = number of actions to select at each

iteration, nb = buffer size, (Σ, σ) = utility prior parameters)
2: D = ∅ . Initialize feedback dataset
3: Obtain prior (µ0,Σ0) over A from (Σ, σ)
4: for all t = 1, 2, . . . do
5: for all j = 1, . . . , ns do
6: Sample utility function fj from Normal(µt−1,Σt−1)
7: Select action aj(t) = argmaxx∈Afj(x)
8: end for
9: Execute ns actions
10: Collect feedback using Algorithm 1
11: Update Bayesian posterior over D to obtain Normal(µt,Σt)
12: end for
13: end procedure

leveraged pairwise preference feedback and coactive feedback. This specific
combination of user feedback and sampling was termed the CoSpar (Coactive
Self-Sparring) algorithm [207]. CoSpar is a mixed-initiative approach, which
both queries the user for preferences and allows the user to suggest improve-
ments. For clarity, the algorithmic procedure is outlined in Alg. 2.

Simulation Results

The performance of CoSpar is first evaluated in two sets of simulations: (1)
the compass-gait (CG) biped’s COT,1 and (2) a set of synthetic optimiza-
tion objective functions.2 In both cases, CoSpar efficiently converges to the
optimum.

First, the results of the compass-gait simulations are illustrated in Figure 3.4.
These simulations aim to identify the optimal step length with the underlying
utility being the mechanical cost of transport, using only synthetic preference
feedback. These synthetic preferences are determined by comparing MCOT
values, calculated by simulating gaits for multiple step lengths, each at a fixed
forward hip velocity of 0.2 m/s. These simulated gaits were synthesized via a
single-point shooting partial hybrid zero dynamics method [221].

CoSpar is deployed for the CG biped with ns = 2, nb = 0, and without coactive
1Bayesian model’s kernel: squared exponential with lengthscale = 0.025, signal variance

= 0.0001, noise variance = 1e-8; preference noise (σ) = 0.01.
2Kernel: squared exponential with lengthscale = [0.15, 0.15], signal variance = 0.0001,

noise variance = 1e-5; preference noise (σ) = 0.01.
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Figure 3.4: Illustration of preference-based learning applied towards identi-
fying the optimal step length that maximizes MCOT for the CG biped in
simulation. Leftmost: MCOT for the CG biped at different step lengths
and a fixed 0.2 m/s velocity. Remaining plots: posterior utility estimates
of CoSpar (ns = 2, nb = 0; without coactive feedback) after varying iterations
of learning (posterior mean +/- 2 standard deviations). The plots each show
3 posterior samples, which lie in the high-confidence region (mean +/- 2 stds)
with high probability.

(a) Objective function (b) Model posterior

Figure 3.5: Demonstration of preference-based learning in simulation. a) Ex-
ample synthetic 2D objective function. b) Utility model posterior learned after
150 iterations of CoSpar in simulation (ns = 1; nb = 1; coactive feedback).
CoSpar prioritizes identifying and exploring the optimal region, rather than
learning a globally-accurate utility landscape.

feedback. Note that without a buffer or coactive feedback, CoSpar reduces to
Self-Sparring [185]. At each iteration, two new samples are drawn from the
Bayesian posterior, and the resultant two step lengths are compared to elicit a
preference. Using the new preferences, CoSpar updates its posterior over the
utility of each step length. Figure 3.4 depicts the evolution of the posterior
preference model, where each iteration corresponds to a preference between
two new trials. With more preference data, the posterior utility increasingly
peaks at the point of lowest COT. These results suggest that CoSpar can
efficiently identify high-utility actions from preference feedback alone.
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Second, CoSpar is demonstrated on synthetic 2D utility functions, such as
the one shown in Figure 3.5a. Each utility function was generated from a
Gaussian process prior on a 30-by-30 grid. These experiments evaluate the
potential to scale CoSpar to higher dimensions and the advantages of coactive
feedback. We compare three settings for CoSpar’s (n, b) parameters: (2, 0),
(3, 0), (1, 1). For each setting—as well as with and without coactive feedback—
we simulate CoSpar on each of the 100 random objective functions. In each
case, the number of objective function evaluations, or experimental trials, was
held constant at 150.

Coactive feedback is simulated using a 2nd-order differencing approximation
of the objective function’s gradient. If CoSpar selects a point at which both
gradient components have magnitudes below their respective 50th percentile
thresholds, then no coactive feedback is given. Otherwise, we consider the
higher-magnitude gradient component, and depending on the highest threshold
that it exceeds (50th or 75th), simulate coactive feedback as either a 5% or 10%

increase in the appropriate direction and dimension.

Figure 3.6 shows the simulation results. In each case, the mixed-initiative
simulations involving coactive feedback improve upon those with only pref-
erences. Learning is slowest for ns = 2, nb = 0 (Figure 3.6), since that case
elicits the fewest preferences. Figure 3.5b depicts the utility model’s posterior
mean for the objective function in Figure 3.5a, learned in the simulation with
ns = 1, nb = 1, and mixed-initiative feedback. In comparing Figure 3.5b to
Figure 3.5a, we see that CoSpar learns a sharp peak around the optimum, as
it is designed to converge to sampling preferred regions, rather than giving the
user undesirable options by exploring elsewhere.

Human Subject Experiments on the Atalante Exoskeleton

After its validation in simulation, CoSpar was deployed on a lower-body ex-
oskeleton, Atalante, in two personalized gait optimization experiments with
human subjects (video: [190]). Both experiments aim to determine gait pa-
rameter values that maximize user comfort, as captured by preference and
coactive feedback. The first experiment,3 repeated for three able-bodied sub-
jects, used CoSpar to determine the user’s preferred step length, i.e., opti-

3Kernel: squared exponential with lengthscale = 0.03, signal variance = 0.005, noise
variance = 1e-7; preference noise (σ) = 0.02.
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Figure 3.6: CoSpar simulation results on 2D synthetic objective functions,
comparing CoSpar with and without coactive feedback for three parameter
settings ns and nb. Mean +/- standard error of the objective values achieved
over 100 repetitions. The maximal and minimal objective function values are
normalized to 0 and 1. We see that coactive feedback always helps, and that
ns = 2, nb = 0—which receives the fewest preferences—performs worst.

mizing over a one-dimensional feature space. The second experiment4 demon-
strates CoSpar’s effectiveness in two-dimensional feature spaces, and optimizes
simultaneously over two different gait feature pairs. Importantly, CoSpar op-
erates independently of the choice of gait features. The subjects’ metabolic
expenditure was also recorded via direct calorimetry, but this data was unin-
formative of user preferences, as users are not required to expend effort toward
walking.

One-Dimensional Action Space. In the first experiment, all three subjects
walked inside the Atalante exoskeleton, with CoSpar selecting the gaits. We
considered 15 equally-spaced step lengths between 0.08 and 0.18 meters, each
with a precomputed gait from the gait library. Feature discretization was
based on users’ ability to distinguish nearby values. The users decided when
to end each trial, so as to be comfortable providing feedback. Since users have
difficulty remembering more than two trials at once, we used CoSpar with ns =

1 and nb = 1, which corresponds to asking the user to compare each current
4Same parameters as in 3 except for step duration lengthscale = 0.08 and step width

lengthscale = 0.03.
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Figure 3.7: Experimental results for optimizing step length with three sub-
jects (one row per subject). Columns 1-4 illustrate the evolution of the prefer-
ence model posterior (mean +/- standard deviation), shown at various trials.
CoSpar converges to similar but distinct optimal gaits for different subjects.
Column 5 depicts the subjects’ blind ranking of the 3 gaits sampled after 20
trials. The rightmost column displays the experimental trials in chronological
order, with the background depicting the posterior preference mean at each
step length. CoSpar draws more samples in the region of higher posterior
preference.

trial with the preceding one. Additionally, we query the user for coactive
feedback: after each trial, the user can suggest a longer or shorter step length
(±20% of the range), a slightly longer or shorter step length (±10%), or no
feedback.

Each participant completed 20 gait trials, providing preference and coactive
feedback after each trial. Figure 3.7 illustrates the posterior’s evolution over
the experiment. After only five exoskeleton trials, CoSpar was already able
to identify a relatively-compact preferred step length subregion. After the 20
trials, three points along the utility model’s posterior mean were selected: the
maximum, mean, and minimum. The user walked in the exoskeleton with each
of these step lengths in a randomized ordering, and gave a blind ranking of
the three, as shown in Figure 3.7. For each subject, the blind rankings match
the preference posterior obtained by CoSpar, indicating effective learning of
individual user preferences.

Two-Dimensional Action Spaces. We further demonstrate CoSpar’s practi-
cality to personalize over multiple features, by optimizing over two different
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Figure 3.8: Experimental results from two-dimensional feature spaces (top
row: step length and duration; bottom row: step length and width). Columns
1-4 illustrate the evolution of the preference model’s posterior mean. Column
4 also shows the subject’s blind ranking of the 3 gaits sampled after 20 tri-
als. Column 5 depicts the experimental trials in chronological order, with the
background as in Figure 3.7. CoSpar draws more samples in the region of
higher posterior preference.

Figure 3.9: Experimental phase diagrams of the left leg joints over 10 seconds
of walking. The gaits shown correspond to the maximum, mean, and mini-
mum preference posterior values for both of subject 1’s 2D experiments. For
instance, subject 1 preferred gaits with longer step lengths, as shown by the
larger range in sagittal hip angles in the phase diagram.

feature pairs: 1) step length and step duration and 2) step length and step
width. The protocol of the 1D experiment was repeated for subject 1, with step
lengths discretized as before, step duration discretized into 10 equally-spaced
values between 0.85 and 1.15 seconds (with 10% and 20% modifications un-
der coactive feedback), and step width into 6 values between 0.25 and 0.30
meters (20% and 40%). After each trial, the user was queried for both a
pairwise preference and coactive feedback. Figure 3.8 shows the results for
both feature spaces. The estimated preference values were consistent with a
3-sample blind ranking evaluation, suggesting that CoSpar successfully identi-
fied user-preferred parameters. Figure 3.9 displays phase diagrams of the gaits
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Algorithm 3 LineCoSpar
1: procedure LineCoSpar(Utility prior parameters; m = granularity of dis-

cretization)
2: D = ∅, V = ∅ . D: preference data, V: visited actions
3: Set a∗1, a0 to uniformly-random actions
4: for t = 1, 2,. . . , T do
5: Lt = random line through a∗t , discretized via m
6: St = Lt ∪V . Points over which to update posterior
7: Normal(µt,Σt) = posterior over points in St, given D
8: Sample utility function ft ∼ Normal(µt,Σt)
9: Execute action at = argmaxa∈Stft(a)
10: Add pairwise preference between at and at−1 to D
11: Add coactive feedback a′t to D
12: Set V = V ∪ {at} ∪ {a′t} . Update actions in V
13: Set a∗t+1 = argmaxa∈Vt

µt(a)
14: end for
15: end procedure

with minimum, mean, and maximum posterior utility values to illustrate the
difference between preferred and non-preferred gaits.

3.3 Experimental Results: High-Dimensional Preference Optimiza-
tion

Optimizing lower-body exoskeleton walking gaits for user comfort requires un-
derstanding users’ preferences over a high-dimensional gait parameter space.
However, the CoSpar algorithm only explored low-dimensional domains due
to computational limitations. To learn user preferences in high dimensions, my
thesis work also developed the LineCoSpar algorithm [206] outlined in Alg.
3, a human-in-the-loop preference-based framework that enables optimization
over many parameters by iteratively exploring one-dimensional subspaces. Ad-
ditionally, these experiments identify gait attributes that characterize broader
preferences across users. In simulations and human trials, we empirically verify
that LineCoSpar is a sample-efficient approach for high-dimensional prefer-
ence optimization.

Simulation Results

We validate the performance of LineCoSpar in simulation using both stan-
dard Bayesian optimization benchmarks and randomly-generated polynomi-
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als.5 The simulations show that LineCoSpar is sample-efficient, converges to
sampling higher-valued actions, and learns a preference relation function such
that actions with higher objective values have high posterior utilities.

Standard Bayesian Optimization Benchmarks. We evaluated the performance
of LineCoSpar on the standard Hartmann3 (H3) and Hartmann6 (H6)
benchmarks (3 and 6 dimensions, respectively). We do not compare LineCoSpar to
other optimization methods because there are no other preference-based Gaus-
sian process methods that are tractable in high dimensions. As discussed,
we focus on Gaussian process methods because they model smooth, non-
parametric utility functions. We validate LineCoSpar with noiseless pref-
erences and then demonstrate its robustness to noisy user preferences. Pref-
erences are generated in simulation by comparing objective function values.

Under ideal preference feedback, ak1 � ak2 if r(ak1) > r(ak2). The true
objective values r are invisible to the algorithm, which observes only the pref-
erence dataset D. Compared to CoSpar, LineCoSpar converges to sampling
actions with higher objective values at a faster rate (Figure 3.10). Thus,
LineCoSpar not only enables higher-dimensional optimization, but also im-
proves speed and accuracy of learning.

Since human preferences may be noisy, we tested the algorithm’s robustness
to noisy preference feedback. In simulation, this is modeled via:

P(ak1 � ak2) = (1 + e
− sk
cp )−1, (3.44)

where sk = r(ak1) − r(ak2) and cp is the hyperparameter for the preference
noise level. As cp → ∞, the preferences approach uniform randomness (i.e.,
become noisier). Also, actions become less distinguishable when the distance
between r(ak1) and r(ak2) decreases. This reflects human preference gener-
ation since it is more difficult to give consistent preferences between actions
with similar utilities. By simulating noisy preferences, we demonstrate that
LineCoSpar is robust to noisy feedback (see Figure 3.11).

Randomly-Generated Functions. We also tested LineCoSpar using randomly-
generated v-dimensional polynomials (for v = 6) as objective functions: r(a) =

5The code is at https://github.com/myracheng/linecospar. All experiments use the
squared exponential kernel with lengthscale 0.15 in every dimension, signal variance 1e−4,
noise variance 1e−5, and preference noise 0.005.

https://github.com/myracheng/linecospar
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Figure 3.10: Convergence to higher values on standard benchmarks. Mean
objective value ± SD using H3 and H6, averaged over 100 runs. The sampled
actions converge to higher objective values at a faster rate with LineCoSpar,
which has an improved sampling approach and activation function. It is in-
tractable to run CoSpar on a 6-dimensional space.

Figure 3.11: Robustness to noisy preferences. Mean objective value ± SD of
the action amax with the highest posterior utility. This is averaged over 100
runs using LineCoSpar on H6 with varying preference noise, as quantified
by cp. Higher performance correlates with less noise (lower cp). The algorithm
is robust to noise to a certain degree (cp ≤ 0.5).
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Figure 3.12: Coactive feedback improves convergence. Mean objective value ±
SD of the sampled actions using random functions. This is averaged over 1000
runs using LineCoSpar on 100 randomly-generated six-dimensional functions
(v = 6). The sampled actions converge to high objective values in relatively
few iterations, and coactive feedback accelerates this process.

Figure 3.13: Curse of dimensionality for CoSpar. Average time per itera-
tion of CoSpar vs. LineCoSpar. The y-axis is on a logarithmic scale. For
LineCoSpar, the time is roughly constant in the number of dimensions v,
while the runtime of CoSpar increases exponentially. For v = 4, the duration
of a CoSpar iteration is inconvenient in the human-in-the-loop learning setting,
and for v ≥ 5, it is intractable.

∑v
i=1 ci

∑v
j=1 djaj, where aj denotes the j

th element of a, and ci, di, i ∈ {1, . . . , v}
are sampled independently from the uniform distribution Uniform(−1, 1). The
dimensions’ ranges and discretizations match those in the exoskeleton exper-
iments, so that these simulations approximate the number of human trials
needed to find optimal gaits.
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Table 3.1: Gait parameters identified by LineCoSpar as optimizing for user
comfort for six able-bodied subjects.

Sub. Height
(m)

Mass
(kg)

SL
(m)

SD
(s)

SW
(m)

SH
(m)

PR
(deg)

PP
(deg)

Validation
Accuracy (%)

1 1.85 89.9 0.0835 0.943 0.278 0.0674 6.38 10.9 75
2 1.668 69.2 0.136 1.04 0.285 0.0679 6.41 12.4 100
3 1.635 51.2 0.137 0.922 0.279 0.0688 8.56 11.4 100
4 1.795 73.6 0.127 0.989 0.268 0.065 6.68 12.7 25
5 1.625 55.9 0.161 1.05 0.258 0.0689 7.32 13.2 100
6 1.66 65 0.177 1.11 0.256 0.0663 7.71 13.5 100

Coactive feedback was simulated for each sampled action at by finding an
action a′t with a higher objective value that differs from at along only one
dimension. The action a′t is determined by randomly choosing a dimension
in {1, . . . , v} and direction (positive or negative), and taking a step from at

along this vector. If the resulting action a′t has a higher objective value, it is
added to the dataset D as a′t � at. This is a proxy for the human coactive
feedback acquired in the exoskeleton experiments described below, in which
the user can suggest a dimension and direction in which to modify an action
to obtain an improved gait.

Figure 3.12 displays LineCoSpar’s performance over 100 randomly-generated
polynomials (10 repetitions each) with computation time shown in Figure 3.13.
The results demonstrate that LineCoSpar samples high-valued actions within
relatively few iterations (≈ 20 with coactive feedback).

Human Subject Experiments on the Atalante Exoskeleton

After the performance of LineCoSpar was demonstrated in simulation, the
algorithm was experimentally deployed on the lower-body exoskeleton Atalante
to optimize six gait parameters for six able-bodied users (see Table 3.1 for
results and [188] for a video).

Experimental Procedure. LineCoSpar optimized exoskeleton gaits for six
self-identified able-bodied subjects over six gait parameters: step length, step
duration, step width, maximum step height, pelvis roll, and pelvis pitch. These
parameters were chosen from the pre-computed gait library because they are
relatively intuitive for users to understand when giving coactive feedback. The
parameter ranges, respectively, are: 0.08-0.18 meters, 0.85-1.15 seconds, 0.25-
0.3 meters, 0.065-0.075 meters, 5.5-9.5 degrees, and 10.5-14.5 degrees.
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Figure 3.14: Exploration vs. exploitation in human trials. Each row depicts
the distribution of a particular gait parameter’s values across all gaits that
the subject tested. Each dimension is discretized into 10 bins. Note that
the algorithm explores different parts of the action space for each subject.
These visitation frequencies exhibit a statistically-significant correlation with
the posterior utilities across these regions (Pearson’s p-value = 1.22e-10).

All subjects were volunteers without prior exoskeleton exposure. For each sub-
ject, the testing procedure lasted approximately two hours, with one hour of
setup and one hour of exoskeleton testing. The setup consisted of explaining
the procedure (including how to provide preference and coactive feedback),
measuring subject parameters, and adjusting the thigh and shank length of
the exoskeleton to the subject. During the testing, the subjects had control
over initiating and terminating each instance of exoskeleton walking and were
instructed to try each walking gait until they felt comfortable giving a pref-
erence. The subjects could choose to test each gait multiple times to confirm
their preference. They could also specify “no preference” between two gait
trials, in which case no new information was added to the dataset D.

After completing 30 trials (including trials with no preference, but not in-
cluding voluntary gait repetitions), the subject began a set of “validation”
trials; for consistency, the subject was not informed of the start of the val-
idation phase. Validation consisted of six additional trials and yielded four
pairwise preferences, each between the posterior-maximizing action amax and
a randomly-generated action. This validation step verifies that amax is pre-
ferred over other parameter combinations across the search space.
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Algorithm 4 ROIAL Algorithm
Require: Utility prior parameters; ordinal thresholds b1, . . . , br−1; subset size M ;

confidence parameter λ
1: D0 = ∅, . Di: user feedback dataset including iteration i
2: Select an action a1 at random
3: Add ordinal feedback to dataset to obtain D1

4: for i = 2,. . . , N do
5: Update the model posterior P(r | Di−1)
6: Determine S(i) by randomly selecting M actions
7: Determine S

(i)
ROI ⊂ S(i)

8: ai ← arg max
a∈S(i)

ROI

I(r; oi,pi | Di−1,a)

9: Add preference and ordinal feedback to data to obtain Di

10: end for

Experimental Results. Figure 3.14 shows that the LineCoSpar algorithm
both explores across the gait parameter space and exploits regions with higher
posterior utility. Over time, LineCoSpar increasingly samples actions con-
centrated in regions of the search space that are preferred based on previous
feedback. This results in a significant correlation between visitation frequen-
cies and posterior utilities across these regions (Pearson’s p-value = 1.22e-10).

For each subject, Table 3.1 lists the parameters of the predicted optimal gaits,
amax, identified by LineCoSpar. Table 3.1 also illustrates the results of the
validation trials for each subject. These results show that amax was predomi-
nantly preferred over the randomly-selected actions during validation. For four
of the six subjects, all four validation preferences matched the posterior, while
the other subjects matched three and one of the four preferences, respectively.

3.4 Experimental Results: Preference Characterization

Since optimizing every exoskeleton user’s comfort from scratch would be time-
consuming and inefficient, the final presented algorithm, termed ROIAL (Re-
gion of Interest Active Learning) [128], is aimed at preference characterization.
For clarity, the procedure is outlined in Alg. 4.

Simulation Results

We evaluate ROIAL’s performance on the Hartmann3 (H3) function—which
is a standard benchmark for learning non-convex, smooth functions—and on
3-dimensional synthetic functions, sampled from a Gaussian process prior over
a 20 × 20 × 20 grid. As evaluation metrics, we use the algorithm’s errors in
preference and ordinal label prediction; these allow us to quantify performance
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(a) Iteration 1 (b) Iteration 3 (c) Iteration 5 (d) Iteration 20

Figure 3.15: 1D posterior illustration. The true objective function is shown in
orange, and the algorithm’s posterior mean is blue. Blue shading indicates the
confidence region for λ = 0.5. The solid grey line indicates the true ordinal
threshold b1: the ROI is above this threshold, while the ROA is below it. The
dotted grey line is the algorithm’s b1 hyperparameter. The actions queried so
far are indicated with “x”s. Utilities are normalized in each plot so that the
posterior mean spans the range from 0 to 1.

when the true utility function is unknown. The average ordinal prediction error
is defined as Error(N) := 1

N

∑N
k=1 |o

pred
k − otruek |, and all simulations use h = 5

ordinal categories.6

Figure 3.15 illustrates the algorithm for a 1D objective function. Initially,
ROIAL samples widely across the action space (Figure 3.15a-3.15c). As seen
by comparing iterations 5 and 20 (Figure 3.15c-3.15d), the algorithm stops
querying points in the ROA (actions in O1) because the upper confidence
bound (top of the blue shaded region) there falls below the hyperparameter b1

(dotted gray line).

To characterize the impact of the random subset size on algorithmic perfor-
mance, we compare performance of different sizes in simulation for both the H3
and synthetic functions. We calculate the posterior over the entire action space
only every 10 steps to reduce computation time, and then use this posterior to
evaluate the algorithm’s error in predicting preference and ordinal labels. Fig
3.16a provides an example of a 3D posterior, Figure 3.16b depicts the average
performance for H3 over 10 simulation repetitions, and Figure 3.16c shows the
average performance over a set of 50 unique synthetic functions. We find that
a subset size of at least 5 yields performance close to using all points.

We demonstrate the effect of the confidence parameter λ on the number of ac-
tions sampled from the ROA and on prediction error in the ROI. Figure 3.17a
demonstrates that across various values of λ, visits to the ROA decrease as λ
decreases. To confirm that restricting queries to the estimated ROI does not

6Unless otherwise stated, hyperparameters are held constant across simulations and
experiments, and their values can be found in https://github.com/kli58/ROIAL.

https://github.com/kli58/ROIAL
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(a) Synthetic func-
tion posterior

(b) Hartmann3 prediction error (c) Synthetic function prediction
error

Figure 3.16: Impact of random subset size on algorithm performance. a) Ex-
ample 3D synthetic objective function and posterior learned by ROIAL with
subset size = 500 after 80 iterations. Values are averaged over the 3rd dimen-
sion and normalized to range from 0 to 1. b-c) Algorithm’s error in predicting
preferences and ordinal labels (mean ± std). Each simulation evaluated per-
formance at 1000 randomly- selected points; the model posterior was used to
predict preferences between consecutive pairs of points and ordinal labels at
each point.

harm performance, we also compare label prediction error in the ROI across
values of λ. When λ = −0.45, ROIAL achieves similar preference prediction
accuracy and slightly-improved ordinal label prediction within the ROI com-
pared to λ =∞, which permits sampling over the entire action space (Figure
3.17a). Additionally, the confusion matrix (Figure 3.17b) shows that the algo-
rithm usually predicts either the correct ordinal label or an adjacent ordinal
category. The ROI prediction accuracy (green text in Figure 3.17b) indicates
that ROIAL predicts whether points belong to the ROI with relatively-high
accuracy.

Since user feedback is expected to be noisy, we evaluate the algorithm’s ro-
bustness to noisy feedback generated from the distributions P((a, o) | r) =

ψo

(
b̃o−r(a)

c̃o

)
− ψo

(
b̃o−1−r(a)

c̃o

)
and P(a1 � a2 | r) = ψp

(
r(a1)−r(a2)

c̃p

)
for ordi-

nal and preference feedback, respectively, with true ordinal thresholds {b̃j|j =

1, . . . , h−1} and simulated noise parameters c̃p and c̃o. We set c̃o > c̃p because
we expect ordinal labels to be noisier than preferences, as they require users to
recall all past experience to give consistent feedback, whereas a preference only
involves the previous and current action. The algorithm learns more slowly
with noisier feedback (Figure 3.18).
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(a) Number of samples in the ROA and prediction
error in the ROI

(b) Confusion matrices

Figure 3.17: Effect of the confidence interval. All simulations are run over
50 synthetic functions with a random subset size of 500. a) Left: cumulative
number of actions in the ROA (O1) queried at each iteration (mean ± std).
Note that as λ increases, more samples are required for the confidence interval
to fall below the ROA threshold, at which point ROIAL starts avoiding the
ROA. Middle and right: error in predicting preference and ordinal labels for
different values of λ; predictions are over 1,000 random actions (mean ± std).
b) Confusion matrices (column-normalized) of ordinal label prediction over the
entire action space at iterations 80 and 240 with λ = -0.45. The 2 × 2 con-
fusion matrices for ROI prediction accuracy are outlined in green. Prediction
accuracy increases with the number of iterations.

Human Subject Experiments on the Atalante Exoskeleton

After demonstrating ROIAL’s performance in simulation, we experimentally
deployed it on the Atalante exoskeleton7 (video: [193]).

Four gait library parameters were selected for these experiments: step length
(SL) in meters, step duration (SD) in seconds, maximum pelvis roll (PR)
in degrees, and maximum pelvis pitch (PP) in degrees. These parameters
were selected because exoskeleton users frequently suggested modifications to
SL, SD, and PR in the preference optimization experiments presented earlier,
and we wanted to further study the relationship between PR and PP. We
discretized these parameters into bins of sizes 10, 7, 5, and 5, respectively,
resulting in 1,750 actions within a 4D action space. ROIAL randomly selected
500 actions in each iteration and used λ = 0.45 to estimate the ROI.

The experimental procedure was conducted for three non-disabled subjects and
consisted of 40 trials divided into a training phase (30 trials) and a validation
phase (10 trials). Subjects were not informed of when the validation phase
began. Subjects provided ordinal labels for all 40 gaits, and optional pairwise

7Hyperparameters can be found in the repository https://github.com/kli58/ROIAL

https://github.com/kli58/ROIAL
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Figure 3.18: Effect of noisy feedback. The ordinal and preference noise pa-
rameters, c̃0 and c̃p, range from 0.1 to 0.3 and 0.02 to 0.06, respectively. All
cases use a random subset size of 500 and λ = −0.45, and each simulation
uses 1,000 random actions to evaluate label prediction. Plots show means ±
standard deviation.

preferences between the current and previous gaits for all but the first trial.
Four ordinal categories were considered and described to the users as:

1. Very Bad (O1): User feels unsafe or uncomfortable to the point that
the user never wants to repeat the gait.

2. Bad (O2): User dislikes the gait but does not feel unsafe or uncomfort-
able.

3. Neutral (O3): User neither dislikes nor likes the gait and would be
willing to try the gait again.

4. Good (O4): User likes the gait and would be willing to continue walking
with it for a long period of time.

While including additional ordinal categories could increase the potential in-
formation gain from each query, it also increases the cognitive burden for the
users and thus makes the labels less reliable. Validation actions were selected
so that at least two samples were predicted to belong to O2,O3, and O4, with
the remaining four validation actions sampled at random. Actions predicted
to belong in O1 were excluded because they are likely to make the user feel
uncomfortable or unsafe, and actions sampled during the training phase were
explicitly excluded from the validation trials.

Figure 3.19 depicts the results of the validation phase for all three subjects.
These results show a reliable correlation between the predicted categories and
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Figure 3.19: Confusion matrix of the validation phase results for all three
subjects. The first column is grey because actions in the ROA (O1) were pur-
posefully avoided to prevent subject discomfort. Percentages are normalized
across columns. Parentheses show the numbers of gait trials in each case.

the users’ reported ordinal labels, in which the majority of the predicted or-
dinal labels are within one category of the true ordinal labels. Since less than
2% of the action space was explored during the experiment, we expect that
the prediction accuracy would increase with additional exoskeleton trials as
observed in simulation (Fig 3.17b). Overall, these results suggest that ROIAL
can yield reliable preference landscapes within a moderate number of samples.

Figure 3.20 depicts the final posterior mean for each of the subjects. These
utility functions highlight both regions of agreement and disagreement among
the subjects. For example, all subjects strongly dislike gaits at the lower bound
of PP and lower bound of PR. However, all subjects disagree in their utility
landscapes across SL and SD. This type of insight could not be derived from
direct gait optimization, which mostly obtains information near the optimum.

We also evaluated the effect of each gait parameter on the posterior utility
using the permutation feature importance metric. The results of this test for
each respective subject across the four gait parameters (SL, SD, PR, PP) are:
(0.20, 0.30, 0.33, 0.27), (0.26, 0.36, 0.38, 0.29), and (0.23, 0.16, 0.21, 0.45).
These values suggest that the preferences of more experienced users (Subjects
1 and 2) may be most influenced by SD and PR, while the least-experienced
user’s feedback may be most weighted by PP (Subject 3). The code for this test
is available on GitHub8. These results demonstrate that ROIAL is capable of
obtaining preference landscapes within relatively-few exoskeleton trials while
avoiding gaits that make users feel unsafe or uncomfortable.

8GitHub Repo: https://github.com/kli58/ROIAL

https://github.com/kli58/ROIAL
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Figure 3.20: 4D posterior mean utility across exoskeleton gaits. Utilities are
plotted over each pair of gait space parameters, with the values averaged over
the remaining 2 parameters in each plot. Each row corresponds to a subject:
Subject 1 is the most experienced exoskeleton user, Subject 2 is the second-
most experienced user, and Subject 3 never used the exoskeleton prior to the
experiment.

3.5 Experimental Results: Patients with Paraplegia

Having evaluated the preference-based learning framework across both learning
objectives with non-disabled participants, we demonstrate the entire preference-
based learning framework for two subjects with complete motor paraplegia.
These subjects will be referred to as Subject 9 and 10 since there was a to-
tal of eight non-disabled subjects. On the AISA impairment scale[163], the
subjects both classify as completely impaired (AISA A), but differ in that Sub-
jects 9 and 10 have T10 and T5 levels of injury, respectively. The subjects also
differed in their prior experience with the Atalante exoskeleton, with Subject
9 having over 300 hours of prior experience and Subject 10 having fewer than
30.

As discussed earlier, these experiments explore a slightly different gait library
than that considered in the first set of experiments. It is parameterized by
three gait features: step length (cm), step cadence (steps/min), and center of
mass offset (% offset), which shifts the user’s center of mass either forward
or backward during walking. We explore this gait library because it has CE
certification in Europe for use in clinical settings. Figure 3.2 provides the
action space definition associated with this gait library.

Unlike the experiments with non-disabled subjects, five minute breaks were
taken every 20 minutes to prevent subjects from developing pressure sores.
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Due to the longer total duration, these experiments were broken over two days
of testing. During the first session, the ROIAL algorithm was deployed for
15 learning iterations to coarsely characterize user comfort across the action
space. As before, the subjects provided ordinal labels of “very bad,” “bad,”
“neutral,” and “good,” with the “very bad” label defining the ROA. The pref-
erence landscapes learned in these first sessions are illustrated in the top row
of Figure 3.21.

In the second session, we continued the learning process using the LineCoSpar
algorithm to learn the parameters optimizing user comfort, with the final pref-
erence landscapes shown in the middle row of Figure 3.21 and the gaits iden-
tified as optimal illustrated via gait tiles in the bottom row. These second
experimental sessions were conducted for 15 and 25 iterations for Subjects
9 and 10, respectively. Sessions terminated when the operator felt that the
algorithm had identified an exoskeleton gait that sufficiently optimized user
comfort. With additional iterations, it is likely that the algorithm would con-
tinue to converge to optimal behavior, but at a slower rate.

Since experiment time with the subjects was limited, we only conducted one
evaluation trial at the conclusion of each second session. During this trial,
the subject was unknowingly given the gait that optimized the final posterior
mean. The subjects were queried for feedback as usual, and both labeled the
optimal gait as “good” (the highest ordinal category). This feedback indicates
that after obtaining a general preference landscape across the entire gait li-
brary, the framework could successfully learn to identify gaits that optimized
user comfort.

3.6 Experimental Results: Exoskeleton Turning

To emphasize the application-agnostic nature of the preference-based learning
framework, it is further applied towards optimizing user-comfort during ex-
oskeleton turning. Similar to walking, turning is achieved by generating stable
joint-level trajectories via the PHZD method. In this work, turning behavior
consists of rotating the exoskeleton about its vertical axis through two distinct
steps, with each step lifting and rotating either the left or right foot. As in
the walking experiments, we define each unique turning behavior via several
user-defined parameters. In our experiment, we chose six parameters to ex-
plore: rotation angle (degrees), duration of the first step (seconds), duration
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Figure 3.21: Experimental results of unified framework during exoskeleton
walking for subjects with paraplegia. We illustrate the experimental results
from applying the learning framework towards preference characterization and
preference optimization for two subjects with complete motor paraplegia. Pref-
erence characterization experiments were first conducted via two-hour exper-
imental sessions with the ROIAL algorithm. The landscapes obtained after
these first sessions, shown in the top row, indicate that the two subjects have
similar relationships between gait parameters and comfort. To identify the
gait optimizing user comfort for each subject, we continued learning in addi-
tional two-hour experimental sessions using the LineCoSpar algorithm. The
landscapes obtained after these second sessions are shown in the middle row
of the figure. These updated landscapes indicate that while the subjects had
similar gait characterization results, the gaits optimizing user comfort differ
between these users. The step length (SL), step cadence (SC), and center of
mass offset (CO) for the gaits identified as optimal, as depicted in the gait
tiles in the bottom row, were [0.11 cm, 74 steps/min, 0.5 cm] and [0.13 cm,
80 steps/min, 0cm]. Lastly, it can be seen that actions are sampled more uni-
formly during preference characterization (sampled actions are marked with a
black circle), and actions with higher underlying utility values were sampled
more frequently during preference optimization.

of the second step (seconds), center of mass offset (mm), height of the first
step (cm), and height of the second step (cm). This action space definition is
detailed in Figure 3.2, and illustrated in the top row of Figure 3.22.

First, we conducted a preference characterization phase using ROIAL, in which
50 learning iterations were performed over a coarse action space to obtain
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a general preference landscape. This rough landscape is illustrated for four
two-dimensional cross-sections in the top row of Figure 3.22. Following these
initial 50 iterations, an additional 10 iterations of preference optimization were
conducted over the coarse action space, with the resulting posteriors illustrated
in the middle row of Figure 3.22. Finally, to fine-tune the action predicted to
maximize user comfort, we conducted an additional 40 iterations of preference
optimization over a more finely discretized action space. The final posterior
over user utilities learned from all 100 iterations is illustrated in the bottom
row of Figure 3.22.

To evaluate the experimental results, we compared the parameters identified
as optimizing user comfort to hand-tuned parameters. The optimal action
identified by the learning framework after completion of the 100 iterations
was [20 deg, 0.9 s, 0.875 s, 15 mm, 5 cm, 5 cm]. In comparison, the optimal ac-
tion identified by the expert operator after approximately 2 months of manual
tuning was [22.5 deg, 0.92 s, 0.86 s,−80 mm, 0 cm, 0 cm]. Aside from center
of mass offset (CO), these actions are very close, especially considering the
wide action space range outlined in Figure 3.2. This is striking, considering
that the action space (defined in Figure 3.2) contains a total of 275,400 dis-
crete parameter combinations. Notably, the CO values likely differ because
the action space only included CO values between -20 and 20 mm; since these
values of CO are small, the effect of CO was negligible on the final turning
behavior. The expert operator also noted that the algorithm-identified pa-
rameters and the manually-tuned parameters resulted in comparable turning
behaviors. This indicates that the learning framework successfully identified
user-preferred parameters. While this success demonstrates the extensibility
of our method, it is important to note that this extension relies on the ability
to parameterize the desired behavior. For locomotive behaviors, gait libraries
are a common method of parameterization. However, for other human-robot
interactive behaviors, our framework requires defining a parameterization that
describes the space of all desired behaviors.

3.7 Summary

To systematically explore the space of possible gaits, a preference-based learn-
ing framework was developed to both directly optimize user comfort (pref-
erence optimization) and characterize the underlying preference landscape
(preference characterization). Importantly, this framework leverages subjec-
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tive feedback mechanisms (pairwise preferences, user suggestions, and ordinal
labels), which have been shown to be more reliable compared to numerical
scores. This framework was demonstrated towards preference optimization
and characterization for non-disabled subjects on the Atalante lower-body ex-
oskeleton, as well as for two subjects with complete motor paraplegia.
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Figure 3.22: Experimental results of unified framework during exoskeleton
turning for a non-disabled subject. To demonstrate the learning framework’s
application-agnostic nature, we applied it to sequentially characterize and op-
timize user comfort during exoskeleton turning. First, we defined the action
space over five parameters of exoskeleton turning behavior: rotation angle
(RA) in seconds, duration of the first and second steps (DS1, DS2) in seconds,
and height of the first and second steps (HS1, HS2) in centimeters. The exper-
iment was conducted in three separate phases. The ROIAL algorithm was first
deployed to characterize user preferences for 50 iterations. Then, we used the
LineCoSpar algorithm to find the optimal gait within a coarse action space for
an additional 10 iterations. Finally, we fine-tuned the predicted optimal action
by using LineCoSpar for another 40 iterations with a more finely-discretized
action space.
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C h a p t e r 4

EXTENDING APPLICATIONS OF PREFERENCE-BASED
LEARNING

Potential applications of preference-based learning extend beyond optimizing
user comfort during exoskeleton locomotion. This extension comes from gen-
eralizing the previously presented learning framework, shown in Figure 3.1,
to the procedure illustrated below in Figure 4.1. Overall, the work presented
in this chapter discovers that the generalized preference-based learning frame-
work is extremely powerful towards optimizing robotic behavior for any situ-
ation where the underlying reward function is difficult to characterize numer-
ically. Specifically, throughout this chapter, my work experimentally demon-
strates the generalized learning framework towards three robotic applications.
Importantly, the robotic behaviors are still realized using theoretically-motivated
methods from nonlinear control theory, with the learning merely shaping the
experimental behavior. This provides a systematic approach towards realiz-
ing experimentally stable, robust, and performant behaviors without relying
heavily on heuristics. Also, by leveraging only subjective feedback, we take
advantage of a human operator’s natural ability to recognize good robotic
behavior—something that is challenging to capture numerically.

Translate Action 

into Robotic 

Behavior

Update Model and 

Select New Actions

Obtain 

Subjective 

Human 

Feedback

Execute Robotic Behavior

Figure 4.1: Generalized procedure for applying preference-based learning to
robotic applications.
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Figure 4.2: Configuration of the 22 DOF (using an unpinned model) Cassie
robot[164] (left) and configuration of the 5 DOF (using a pinned model) planar
robot AMBER-3M[7] (right).

First, I present the results of applying preference-based learning towards achiev-
ing stable and robust locomotion on the planar biped AMBER-3M (illustrated
in Figure 4.2) by directly tuning the essential constraints of the HZD opti-
mization problem [208]. Second, I will demonstrate preference-based learn-
ing for tuning low-level control parameters of a control Lyapunov function
based quadratic program (CLF-QP), resulting in stable and robust bipedal
locomotion on both AMBER-3M and Cassie (also illustrated in Figure 4.2)
[59]. Lastly, I will discuss the application of preference-based learning towards
tuning the performance/safety trade-off of a control barrier function with ex-
perimental demonstrations on the Unitree quadrupedal platform A1 [56].

Related Work. The “last-mile mission” of realizing bipedal locomotion in the
real world was historically solved by intensive parameter tuning. This param-
eter tuning process is typically arduous and nonintuitive, thereby inevitably
affecting the scalability of translating theory to hardware in a practical set-
ting. To circumvent this engineering empiricism, the field of machine learning
has approached bipedal locomotion from different perspectives, including re-
inforcement leaning and imitation learning. Reinforcement learning simplifies
the process of “learning to walk” [147] without prior knowledge [46, 81, 92, 142],
but because this methodology relies on a carefully crafted reward function,
the behavior is exclusively determined by its construction. This motivates the
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second method, imitation learning, which infers the underlying reward func-
tion from expert demonstrations [102, 202, 232]. While both methods have
demonstrated promising results, they heavily rely on physical engines such as
Bullet [58], MuJoCo [203], and RaiSim [101]. As realistic as these rigid-body-
dynamics based simulation environments have become, they still struggle with
rough-terrain dynamics such as elastic impacts, slipping contacts, and granular
media. These differences become more apparent when transferred to real-world
systems.

Instead of relying on just one field, my research explores combining the suc-
cesses of both: the formality of stability from control theory and the ability
to learn the relationship between complex parameter combinations and their
resulting locomotive behavior from machine learning. This is accomplished by
integrating preference-based learning with control theoretic approaches such
as the HZD method of gait generation, CLF-QP based controllers, and con-
trol barrier function controllers. The result is optimal walking on hardware,
shaped by pairwise preferences from the operator (i.e., the user prefers gait
A over gait B). Preferences are a particularly useful feedback mechanism for
parameter tuning because they are able to capture the notion of “general good-
ness” without a predefined reward function. This is particularly important for
bipedal locomotion due to the lack of commonly agreed upon numerical metric
of good or even stable walking in the community [78, 154, 213, 223].

4.1 PBL for User-Guided Gait Generation

During the HZD trajectory optimization parameter tuning process, expert op-
erators typically tune amin ∈ Rv and amax ∈ Rv, denoting the bounds of the
essential constraints, in the hopes of guiding the HZD optimization towards
a solution that maximizes the operators’ subjective metric of “good” walking.
Since the construction of these constraints is often essential towards achieving
experimental robustness, we term them essential constraints. Traditionally, es-
sential constraints consist of gait features such as average velocity, step length,
foot clearance, and impact velocity.

Often, practitioners derive intuition on how to shape essential constraints from
years of experience. One example of how this intuition relates to stability
is Raibert-type controllers [157], which tune the relationship between step
length and walking velocity based on a simplified model. Instead of relying on
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Table 4.1: Action Space Definition: HZD optimization problem essential con-
straint bounds.

Essential Constraint Bounds [amin
i , amax

i ] Disc. di
Average Forward Velocity (m/s) [0.3, 0.6] 0.05

Clearance Tau (·) [0.4, 0.7] 0.1
Minimum Foot Clearance (m) [0.05, 0.19] 0.02

Impact Velocity (m/s) [−0.8,−0.2] 0.1
Step Length (m) [0.2, 0.4] 0.05

this manual tuning process, this section explores the use of preference-based
learning to systematically tune the essential constraints. To do so, we express
the essential constraints as:

a− ε � e(X) � a+ ε, (4.1)

where a ∈ Rv consists of v ∈ N constraint values, and ε ∈ Rv defines the
equality tolerance for each constraint. The associated learning objective is
thus preference optimization, with the underlying utility function denoted as
before by r : Rv → R. For the specific application of preference-based learning
presented in this section, the components of a are selected to be: 1) average
forward velocity of the torso (m/s); 2) phase variable value at which to enforce
minimum foot clearance, τc; 3) minimum nonstance foot clearance enforced at
τc (m); 4) downward velocity enforced at impact (m/s); and 5) step length,
i.e., the forward distance between swing foot and stance foot at impact (m).
These constraints define the search space of possible parameter combinations
A, a discretization of Rv, as given in Table 4.1.

Benefits of Preference-Based Learning towards Gait Generation

The traditional hand-tuning process requires a human operator to make as-
sumptions about the underlying utility function r, which is difficult given the
following: the non-intuitive relationship between parameter combinations and
the resulting experimental behavior; and the need to account for numerous
factors including stability, robustness to perturbations/model uncertainty, and
visual appearance. Additionally, r admits no obvious mathematical descrip-
tion; eliminating the use of reward-based tuning methods.

Alternatively, preference-based learning mainly relies on pairwise preferences,
thereby taking advantage of a human’s natural ability to combine many fac-
tors into a single judgment of “better” or “worse.” Although this requires the
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human to provide feedback, there are two major benefits of this approach: 1)
the duration of the tuning process is reduced significantly compared to hand-
tuning; and 2) pairwise preferences are much easier for a naïve user to provide
compared to manually navigating the complex search space of parameter com-
binations.

In this section, the LineCoSpar algorithm is experimentally deployed (open-
source code1) to tune the 5 essential constraints outlined in Table 4.1 on the
planar robot AMBER-3M [6]. This custom research platform has three in-
terchangeable lower-limb configurations: flat-foot, point-foot, and spring-foot.
We specifically selected this platform because of its engineering reliability [135],
enabling consistent data collection to isolate the effects of various gaits in the
learning process. The controller for AMBER-3M is implemented on an off-
board i7-6700HQ CPU @ 2.6GHz with 16 GB RAM, which computes desired
torques and communicates them with the motor drivers. The motor driver
communication and the control logic run at ∼1kHz, each on a separate core.

Experimental Procedure

In the experiments, walking gaits are generated by the HZD-based method
presented in Chapter 2. We take ya(q) , qa ⊂ R4 as the position of the
four motorized joints of AMBER-3M, τ(q) to be the linearized forward hip
position, and use a 5th-order Bézeir polynomial (α ∈ R4×6) to describe the
desired output trajectories. Additionally, the cost function is selected to be
the mechanical cost of transport (MCOT), a common metric for locomotion
efficiency:

MCOT =

∫ tf

t0

P (t)

mgv
dt, (4.2)

where P (t) =
∑4

i=1 |ui(t)q̇ai (t)| is the 2-norm sum of power.

The average optimization run time is 0.1 second per iteration, with each gait
averaging 160 iterations. The experimental procedure is illustrated in Figure
4.3. In our experiments, the learning was conducted for ns = 2 and nb =

0, corresponding to two gaits being compared in each iteration. This was
chosen because we empirically found that operators sometimes had difficulty
remembering the details of more than two gaits at a time, leading to the most

1Repository found at: https://github.com/maegant/ICRA2021-LearningHZD

https://github.com/maegant/ICRA2021-LearningHZD
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Figure 4.3: The experimental procedure is illustrated in terms of each itera-
tion i with ns denoting the number of gaits compared in each iteration. The
experiments presented in this work used ns = 2. Using this notation, the set
of ns actions given to the HZD optimization is denoted: ai = {a1

i , . . . , a
ns
i }.

The resulting ns sets of Bézier coefficients given to the controller are denoted
αi = {α1

i , . . . , α
ns
i }.

reliable preference feedback when ns = 2. Note that other applications may
benefit in a higher ns, which would increase the rate of learning.

Each trial began by initializing AMBER-3M in a static double-support con-
figuration, starting the treadmill, and attempting to push the robot into the
designed periodic orbit. If the resultant dynamics were not stable, extra pre-
caution was taken to give the gait the best chance at succeeding. Once the
gait reached its orbit, the robot was released and the robustness of the gait to
various disturbances was investigated. After both gaits were executed on the
physical robot, a preference was collected from the human operator observ-
ing the physical realization of the walking. In some iterations, video footage
was also reviewed before giving a preference. The criteria used to determine
preferences between gaits were the following (in order of prioritization): 1)
Capable of walking; 2) Robust to perturbations in treadmill speeds; 3) Robust
to external disturbance; 4) Does not exhibit harsh noise (e.g., during impact);
and 5) Is visually appealing (intuitive judgment from operator).

The entire experimental procedure was completed for two configurations of the
robot: 1) the point-foot configuration, AMBER3M-PF (1.373 m, 21.3 kg); and
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2) the spring-foot configuration, AMBER3M-SF (1.430 m, 23.5 kg) [6]. The
learning framework is first demonstrated on AMBER3M-PF, with the corre-
sponding rigid point-foot model used in the gait generation. To emphasize the
scalability of the method, the exact procedure is repeated on AMBER3M-SF,
but while intentionally not accounting for changes in the robot model and in-
stead still generating gaits assuming the rigid-body model. Furthermore, the
gaits are executed on AMBER3M-SF using the same controller with unmodi-
fied gains. Historically, robots with compliance are difficult to generate gaits
for because of the resulting complexities which include: increased degrees of
freedom of the system; the addition of a double support domain to the hybrid
dynamics; and increased stiffness of the dynamics. Past success with compli-
ant bipeds has relied on sophisticated models [88]. Therefore, the fact that the
method yields stable walking despite the unmodeled compliance highlights its
effectiveness.

Experimental Results

A summary of the experimental results2 is illustrated in the supplementary
video [191]. A visualization of the gait tuning process is provided in Figure
4.4).

The experiment with AMBER3M-PF was run for 30 iterations and sampled
27 unique gaits. The final posterior over the 27 executed actions is illustrated
in the top row of Figure 4.5. Since gaits quickly met the first criterion of being
able to walk, preferences were mainly dictated based on the robustness and
appearance of the experimental walking. The initial gaits tried on hardware,
although optimal subject to the imposed constraints, resulted in inferior tra-
jectory tracking and power consumption. As the algorithm progressed, the
gaits became significantly smoother, more robust to disturbance, and energy
efficient. This is exemplified in Figure 4.6 which illustrates the gaits corre-
sponding to the minimum, a middle, and the maximum posterior utility; the
iterations corresponding to when these gaits were first sampled is 1, 21, and 26,
respectively. In Figure 4.6, we note significantly lower velocity overshoot for
all of the limbs and tighter tracking shown in the phase portraits for the gaits
with higher posterior utility. It is also interesting to note the framework’s suc-

2Additional videos and material available at https://maegant.github.io/ICRA2021-
LearningHZD/ and the final obtained posterior provided with the framework code in the
repository https://github.com/raisimTech/raisimlib.

https://maegant.github.io/ICRA2021-LearningHZD/
https://maegant.github.io/ICRA2021-LearningHZD/
https://github.com/raisimTech/raisimlib
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Figure 4.4: Through 50 iterations of experiments, the proposed combination
of preference-based learning and HZD optimization transforms failed gaits into
robust walking on the AMBER-3M robot with a pair of compliant legs.

cess at improving the efficiency of the experimental walking: a latent property
which is discernible to the human operator even though it is not immediately
measured. This improvement is demonstrated by the MCOT values of the
three gaits in Figure 4.6: 0.74, 0.95, and 0.26, respectively.

When the procedure was repeated on AMBER3M-SF, many of the initial gaits
were unable to walk due to the unmodeled compliance. Thus, gaits exhibit-
ing periodic walking were strongly preferred. This second experiment was
conducted for 50 iterations and sampled 37 unique gaits with the obtained
posterior illustrated in the bottom row of Figure 4.5. Again, three gaits are
selected for further discussion corresponding to the minimum, a middle, and
the maximum posterior utility values. Gait tiles and phase portraits for these
are again shown in Figure 4.6. The iterations when these gaits were first sam-
pled are 4, 10, and 42. Once again, the algorithm converges to gaits with
superior trajectory tracking and lower MCOT (1.16, 0.38, and 0.33, respec-
tively).
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Figure 4.5: The final obtained utilities for the visited actions for the rigid model
(top row) and spring model (bottom), with the posterior utility functions aver-
aged over the two dimensions not shown on each subplot. The optimal action
is illustrated by the yellow star ([0.4399, 0.5425, 0.0759,−0.6040, 0.3190] for
AMBER3M-PF and [0.4105, 0.5930, 0.0833,−0.7020, 0.3504] for AMBER3M-
SF). The other two actions depicted in Figure 4.6 are denoted with a red circle
(worst gait) and a blue square (middle gait).

4.2 PBL for User-Guided Gain Tuning of a CLF-QP Controller

Experimental demonstration of complex robotic behaviors also relies on find-
ing the correct controller gains. As with tuning essential constraint bounds,
this painstaking process is typically completed by a domain expert, requiring
deep knowledge of the relationship between parameter values and the resulting
behavior of the system. Even when such knowledge is possessed, it can take
significant effort to navigate the nonintuitive landscape of possible parameter
combinations. To combat this challenge, researchers have developed system-
atic ways to tune gains for specific controller types [93, 94, 226, 239]. However,
for controllers where the input/output relationship between parameters and
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Figure 4.6: Gait tiles with increasing posterior utility values from left to right
are shown for the the rigid model (top) and spring model (bottom). The phase
portraits of the hip (qh) and knee (qk) of the stance leg (blue) and swing leg
(yellow) are shown below each corresponding gait, plotted over 10 seconds of
data. The phase portraits clearly indicate that for both AMBER3M-PF and
AMBER3M-SF the gaits evolved to be more experimentally robust.

the resulting behavior is unclear, this can be prohibitively difficult. These
difficulties are especially prevalent in the setting of bipedal locomotion, due to
the extreme sensitivity of the stability of the system with respect to controller
gains.

Recently, machine learning techniques have been implemented to alleviate the
process of hand-tuning gains in a controller agnostic way by systematically nav-
igating the entire parameter space [32, 111, 138]. More specifically, Bayesian
optimization techniques have been applied to learning gait parameters and con-
troller gains for various bipedal systems [43, 155]. However, these techniques
rely on a carefully constructed predefined reward function. Furthermore, it
is often the case that different desired properties of the robotic behavior are
conflicting and therefore cannot be simultaneously optimized.

To alleviate the gain tuning process and enable the use of complex controllers
for naïve users, this section explores the use of preference-based learning
to systematically searching the controller parameter space and realize stable
and robust experimental walking. Specifically, the general PBL methodol-
ogy is demonstrated towards tuning gains of a CLF-QP+ controller on the
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AMBER bipedal robot, as well as an ID-CLF-QP+ controller on the Cassie
bipedal robot, requiring the learning framework to operate in a much higher-
dimensional space.

Nominal Controller

It was shown in [10] that control Lyapunov functions (CLFs) are capable of
stabilizing locomotion through the hybrid zero dynamics (HZD) framework,
with [67] demonstrating how this can be implemented as a quadratic program
(QP), allowing the problem to be solved in a pointwise-optimal fashion even in
the face of feasibility constraints. However, achieving robust walking behavior
on physical bipeds can be an arduous process due to complexities such as
compliance, under-actuation, and narrow domains of attraction. One such
controller that has recently demonstrated stable locomotion on the 22 degree
of freedom (DOF) Cassie biped, as shown in Figure 4.2, is the ID-CLF-QP+

[161]. A brief introduction of this controller is presented in this subsection.

Overall, the desired outputs were optimized using the FROST toolbox [87],
where stability of the gait was ensured in the sense of Poincaré via HZD theory
[220]. This was done first for AMBER, in which one walking gait was designed
using a pinned model of the robot [7], and then on Cassie for 3D locomotion
using the motion library found in [161] consisting of 171 walking gaits for
speeds in 0.1 m/s intervals on a grid for sagittal speeds of vx ∈ [−0.6, 1.2] m/s
and coronal speeds of vy ∈ [−0.4, 0.4] m/s.

CLFs, and specifically rapidly exponentially stabilizing control Lyapunov func-
tions (RES-CLFs), were introduced as methods for achieving (rapidly) expo-
nential stability on walking robots [14]. This control approach has the benefit
of yielding a control framework that can provably stabilize periodic orbits for
hybrid system models of walking robots, and can be realized in a pointwise
optimal fashion. In this section, we consider only outputs which are vector
relative degree 2. Specifically, the virtual constraints, or outputs are of the
form as in (2.16):

yα(x) = ya2(x)− yd2(τ(x), α) (4.3)

with the goal of driving yα → 0. Thus, differentiating (4.3) twice with respect
to the dynamics results in:

ÿα(x) = L2
fyα(x) + LgLfyα(x)u,
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where L2
fyα(x) : TQ → Rno and LgLfy(x) : TQ → Rno represent the Lie

derivatives of the outputs with respect to the vector fields f(x) and g(x). As-
suming that the system is feedback linearizeable, we can invert the decoupling
matrix, LgLfy(x), to construct a preliminary control input:

u = (LgLfyα(x))−1 (ν − L2
fyα(x)

)
, (4.4)

which renders the output dynamics to be ÿα = ν. With the auxiliary input ν
appropriately chosen, the nonlinear system can be made exponentially stable.
Assuming the preliminary controller (4.4) has been applied to our system, and
defining η = [y, ẏ]> we have the following output dynamics [103]:

η̇ =

[
0 I

0 0

]
︸ ︷︷ ︸

F

η +

[
0

I

]
︸︷︷︸
G

v. (4.5)

With the goal of constructing a CLF using (4.5), we evaluate the continuous
time algebraic Ricatti equation (CARE):

F>P + PF + PGR−1G>P + Q = 0, (CARE)

which has a solution P � 0 for any Q = Q> � 0 and R = R> � 0. From the
solution of (CARE), we can construct a rapidly exponentially stabilizing CLF
(RES-CLF) [14]:

V (η) = η>IεPIεη, Iε =

[
1
ε
I 0

0 I

]
, (4.6)

where 0 < ε < 1 is a tunable parameter that drives the (rapidly) exponential
convergence. Any feedback controller, u, which can satisfy the convergence
condition:

V̇ (η) = LfV (η) + LgV (η)u ≤ −1

ε

λmin(Q)

λmax(P)︸ ︷︷ ︸
γ

V (η), (4.7)

will then render rapidly exponential stability for the output dynamics (4.3). To
enforce (4.7), a quadratic program (CLF-QP) [67], with (4.7) as an inequality
constraint can be posed.

Implementing this controller on physical systems, which are often subject to
additional constraints such as torque bounds or friction limits, suggests that
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relaxation for the inequality constraint should be used. The introduction of
relaxation and the need to reduce torque chatter on physical hardware lead
to the following relaxed (CLF-QP) with incentivized convergence in the cost
[161]:

CLF-QP+:

u∗ = argmin
u∈Rm

‖L2
fyα(x) + LgLfyα(x)u‖2 + wV̇ V̇ (x, u) (4.8)

s.t. umin � u � umax

In order to avoid computationally expensive inversions of the model sensitive
mass-inertia matrix, and to allow for a variety of costs and constraints to
be implemented, a variant of the (CLF-QP) termed the (ID-CLF-QP) was
introduced in [161]. This controller is used on the Cassie biped, with the
decision variables X = [q̈>, u>, λ>c ]> ∈ R39:

ID-CLF-QP+:

X∗ = argmin
X∈Xext

‖A(x)X − b(x)‖2 + V̇ (q, q̇, q̈) (4.9)

s.t. D(q)q̈ +H(q, q̇) = Bu+ Jc(q)
>λc

umin � u � umax

λc ∈ AC(X) (4.10)

where λc ≥ 0 is a vector of constraint wrenches corresponding to the forces
arising from the holonomic constraint Jc(q)q̈ + J̇c(q, q̇)q̇ = 0. Notably, the
holonomic constraint has been moved into the cost with terms A(x) and b(x)

as a weighted soft constraint, in addition to a feedback linearizing cost, and
a regularization for the nominal X∗ from the HZD optimization. Interested
readers are referred to [161] for the full (ID-CLF-QP+) formulation.

Parameterization of CLF-QP

As with the previous applications of preference-based learning, each action is
defined as a = [a1, ..., av] ∈ A ⊂ Rv for a v−dimensional parameter space. In
this specific application, let Q = Q(a), ε = ε(a), and wV̇ = wV̇ (a) denote a
parameterization of our control tuning variables, which will subsequently be
learned. Each gain ai for i = 1, . . . , v is discretized into di values, leading to
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Table 4.2: Action Space Definition: (ID-)CLF-QP+ control parameter bounds.

CASSIE
Pos. Bounds Vel. Bounds

Q Pelvis Roll (φx) a1:[2000, 12000] a7:[5, 200]
Q Pelvis Pitch (φy) a2:[2000, 12000] a8:[5, 200]
Q Stance Leg Length (‖φst‖2) a3:[4000, 15000] a9:[50, 500]
Q Swing Leg Length (‖φsw‖2) a4:[4000, 20000] a10:[50, 500]
Q Swing Leg Angle (θswhp ) a5:[1000, 10000] a11:[10, 200]
Q Swing Leg Roll (θswhr ) a6:[1000, 8000] a12:[5, 150]

AMBER
Pos. Bounds Vel. Bounds Bounds

Q Knees a1:[100, 1500] a3:[10, 300] ε a5:[0.08, 0.2]
Q Hips a2:[100, 1500] a4:[10, 300] wV̇ a6:[1, 5]

an overall search space of actions given by the set A with cardinality |A| =∏v
i=1 di. For the AMBER robot, v = 6 with discretizations d = [4, 4, 5, 5, 4, 5],

resulting in the following parameterization:

Q(a) =

[
Q1 0

0 Q2

]
,

Q1 = diag([a1, a2, a2, a1]),

Q2 = diag([a3, a4, a4, a3]),

ε(a) = a5, wV̇ (a) = a6,

which satisfies Q(a) � 0, 0 < ε(a) < 1, and wV̇ (a) > 0 for the choice of
bounds, as summarized in Table 4.2. Because of the simplicity of AMBER,
we were able to tune all associated gains for the CLF-QP+ controller. For
Cassie, however, the complexity of the ID-CLF-QP+ controller warranted only
a subset of parameters to be selected. Namely, v = 12 with di = 8, resulting
in:

Q =

[
Q1 0

0 Q2

]
,

Q1 = diag([a1, . . . , a12]),

Q2 = Q̄,

with Q̄, ε, and wV̇ remaining fixed and predetermined by a domain expert.
From this definition of Q, we can split our output coordinates η = (ηt, ηnt) into
tuned and not-tuned components, where ηt ∈ R12 and ηnt ∈ R6 correspond to
the Q1 and Q2 blocks in in Q.

In this section, the LineCoSpar algorithm is leveraged, but with the addition
of ordinal labels as an additional feedback mechanism to improve sample-
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Figure 4.7: Simulated results averaged over 10 runs, demonstrating the capa-
bility of preference-based learning to optimize over large action spaces, specifi-
cally the one used for experiments with Cassie. Shaded region depicts standard
error.

Table 4.3: (ID-)CLF-QP+ control parameters identified by the learning frame-
work as optimal.

AMBER [750, 100, 300, 100, 0.125, 2]

Cassie [2400, 1700, 4200, 5600, 1700, 1200, 27, 40, 120, 56, 17, 7]

efficiency. As mentioned earlier, this algorithm is aimed at regret minimization,
with r : A → R denoting the underlying utility function of the human operator
mapping each action to a subjective measure of “good,” and a∗ denoting the
action maximizing r.

To demonstrate the learning, a simple example was constructed of the same di-
mensionality as the parameter space being investigated on Cassie (v = 12, d =

8), where the utility was modeled as r(a) = ‖a − a∗‖2 for some a∗. Feed-
back was automatically generated for both ideal noise-free feedback as well as
for noisy feedback (correct feedback given with probability 0.9). The results
of the simulated algorithm, illustrated in Figure 4.7, show that the learning
framework quickly samples actions near a∗, even for an action space as large
as the one used in the experiments with Cassie. The simulated results also
show that ordinal labels improve convergence, motivating their use in the final
experiment.
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Figure 4.8: The experimental procedure, notably the communication between
the controller, physical robot, human operator, and learning framework.

Experimental Results

Preference-based learning was applied to the realization of optimization-based
control on two separate robotic platforms: the planar biped AMBER, and
the 3D biped Cassie, as can be seen in the video [189]. As illustrated in Fig-
ure 4.8, the experimental procedure had four main components: the physical
robot (either AMBER or Cassie), the controller running on a real-time PC, a
human operator providing feedback, and a secondary PC running the learn-
ing algorithm. Each action was tested for approximately one minute, during
which the behavior of the robot was evaluated in terms of both performance
and robustness. User feedback in the form of pairwise preferences and ordinal
labels was obtained after testing each action via the respective questions: “Do
you prefer this behavior more or less than the last behavior?” and “Would you
give this gait a label of very bad, neutral, or very good?”. After user feedback
was collected for the sampled controller gains, the posterior was inferred over
all of the uniquely sampled actions, which took up to 0.5 seconds. The experi-
ment with AMBER was conducted for 50 iterations, lasting one hour, and the
experiment with Cassie was conducted for 100 iterations, lasting two hours.
The duration of the experiments was scaled based on the size of the respec-
tive action spaces, and trials were terminated when satisfactory behaviors had
been sampled.
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(a) (b)

Figure 4.9: Gait tiles illustrating the experimental results of the preference-
based learning framework towards tuning CLF-QP based controller gains using
subjective operator feedback: (a) gaits corresponding to low (top) and high
(bottom) underlying utilities on AMBER and (b) the gait identified as optimal
as demonstrated by robustness testing (top) and good tracking (bottom) on
Cassie.

Results with AMBER – CLF-QP+. The CLF-QP+ controller was implemented
on an off-board i7-6700HQ CPU @ 2.6GHz with 16 GB RAM, which solved for
desired torques and communicated them with the ELMO motor drivers on the
AMBER robot at 2kHz. During the first half of the experiment, the algorithm
sampled a variety of gains causing behavior ranging from instantaneous torque
chatter to induced tripping due to inferior output tracking. It is important
to note that none of the initial sampled values led to unassisted walking. By
the end of the experiment however, the algorithm had sampled 3 gains which
were deemed "very good,” which resulted in stable walking. The final learned
best actions found by the algorithm are reported in Table 4.3. Gait tiles for
an action deemed “very bad,” as well as the learned best action are shown in
Figure 4.9a. Additionally, tracking performance for the two sets of gains is
seen in Figure 4.10a, where the learned best action tracks the desired behavior
to a better degree.

Results with Cassie – ID-CLF-QP+. To test the capability of the learning
method towards tuning more complex controllers, the preference-based learn-
ing method was applied for tuning the gains of the ID-CLF-QP+ controller for
the Cassie bipedal robot. The ID-CLF-QP+ controller was implemented on the
on-board Intel NUC computer, which was running a PREEMPT_RT kernel.
The software runs on two ROS nodes, one of which communicate state infor-
mation and joint torques over UDP to the Simulink Real-Time xPC, and one
of which runs the controller. Each node is given a separate core on the CPU,
and is elevated to real-time priority. Preference-based learning was run on an
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(a) (b)

Figure 4.10: Comparison of the (ID-)CLF-QP+ controller performance for
gaits identified by the preference-based learning framework as corresponding
to the lowest (denoted as a “Very Bad” Action) and highest (denoted as the
“Learned Best Action”) values of the posterior mean. Specifically, the compar-
isons are illustrated via (a) phase portraits for the AMBER experiments and
(b) output Error of ηt (left) and ηnt (right) for the Cassie experiment.

external computer and was connected to the ROS master over WiFi. Actions
were updated in real-time; once an action was selected, it was sent to Cassie
via a rosservice call, where, upon receipt, the robot immediately updated the
corresponding gains. As rosservice calls are blocking, multithreading their
receipt and parsing was necessary in order to maintain real-time performance.

To demonstrate repeatability, the experiment was conducted twice on Cassie:
once with a domain expert, and once with a naïve user. In both experiments,
a subset of the Q matrix from (CARE) was tuned with coarse bounds given by
a domain export, as reported in Table 4.2. These specific outputs were chosen
because they were deemed to have a large impact on the performance of the
controller. Some metrics used to determine preferences were the following: no
torque chatter, no drift in the floating base frame, responsiveness to desired
directional input, no violent impacts, no harsh noise, and naturalness of walk-
ing. At the start of the experiments, there was significant torque chatter and
wandering, with the user having to regularly intervene to recenter the global
frame. As the experiments continued, the walking noticeably improved. At
the conclusion of 100 iterations, the posterior was inferred over all uniquely
visited actions. The action corresponding with the maximum utility – believed
by the algorithm to result in the most user preferred walking behavior – was
further evaluated for tracking and robustness. In the end, this learned best
action coincided with the walking behavior that the user preferred the most.

Features of this optimal action, compared to a worse action sampled in the
beginning of the experiments, are outlined in Figure 4.10. In terms of quantifi-
able improvement, the difference in tracking performance is shown in Figure
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Figure 4.11: Phase plots and torques commanded by the ID-CLF-QP+ in the
naïve user experiments with Cassie. For torques, each colored line corresponds
to a different joint, with the black dotted lines being the feedforward torque.
The gains corresponding to a “very bad” action (top) yield torques that exhibit
poor tracking on joints and torque chatter. On the other hand, the gains
corresponding to the learned optimal action (bottom) exhibit much better
tracking and no torque chatter.

4.10b. The magnitude of the tuned parameters, ηt, illustrates the improvement
that preference-based learning attained in tracking the outputs it intended to.
At the same time, the tracking error of the constant parameters, ηnt, shows
that the outputs that were not tuned remained unaffected by the learning pro-
cess. This quantifiable improvement is further illustrated by the commanded
torques in Figure 4.11, which show that the optimal gains result in much less
torque chatter and better tracking as compared to the other gains.

Limitations and Future Work

The main limitation of the current formulation of preference-based learning
is that the action space must be predefined with set bounds. In the con-
text of controller gains, these bounds are difficult to know a priori since the
relationship between the gains and the resulting behavior is unpredictable.
Future work to address this problem involves modifications to the learning
framework to shift action space based on the user’s preferences. Furthermore,
the current framework limits the set of potential new actions to the set of
actions discretized by di for each dimension i. As such, future work also in-
cludes adapting the granularity of the action space based on the uncertainty
in specific regions.
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4.3 PBL for User-Guided Gain Tuning of a Control Barrier Func-
tion

Modern robotics strives to develop safe and performant systems. Yet con-
trollers designed to provide robust safety guarantees often result in conserva-
tive behavior, and tuning these controllers to find the ideal trade-off between
performance and safety typically requires domain expertise or a carefully con-
structed reward function. Thus, the final application of preference-based learn-
ing explores how to systematically balance performance and robust safety by
integrating safety-aware Preference-Based Learning (PBL) with Control Bar-
rier Functions (CBFs). The overall procedure is illustrated in Figure 4.12.

For complex safety-critical systems, Control Barrier Functions (CBFs) have
become a popular tool for the constructive synthesis of model-based controllers
that endow nonlinear systems with rigorous guarantees of safety [15, 17, 96].
As these safety guarantees are susceptible to inaccuracies in the models of a
system’s dynamics, actuators, and sensors, approaches have been proposed to
deal with model uncertainty [45, 198, 199, 217], disturbances [5, 50, 54, 107,
120, 167], and measurement errors [55, 61, 196]. These approaches can work
well when deployed independently, but can be extremely conservative systems
when used in conjunction. In practice, achieving performant behaviors with
these methods is accomplished by conceding theoretical safety guarantees and
tuning controller robustness parameters.

To reduce the burden on experts in controller tuning, we seek to incorpo-
rate the preference-based learning (PBL) framework into the design of safety-
critical control systems. For applications with actions that may be classified
as safe or unsafe, safety-critical PBL algorithms have been demonstrated to

Figure 4.12: An overview of the Safety-Aware Preference-Based Learning de-
sign paradigm. Safety-Aware LineCoSpar is used to generate actions which
are rolled out in experiments as parameters of the CBF-based safety filter to
obtain user preferences and safety ordinal labels which are then used to update
the user’s estimated utility and generate new actions.
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Figure 4.13: A comparison of SA-LineCoSpar and standard LineCoSpar
on a synthetic utility function (drawn from the Gaussian prior) averaged over
50 runs with standard error shown by the shaded region. The safety-aware
criteria reduces the number of sampled unsafe actions with a minimal effect
on the prediction error, defined as |â∗i − a∗| with â∗i , argmaxa r̂Si and a∗ ,
argmaxa r(a).

prevent unsafe actions from being sampled [29, 184, 186]. However, these
safety-critical algorithms require worst-case approximations which may cause
performant and safe actions to be characterized as catastrophically unsafe.
Thus, this section also formulates a safety-aware approach to PBL that gen-
erally avoids unsafe actions without being overly conservative.

Accounting for Safety in Learning Framework

It is important to avoid unsafe actions during sequential decision making in
certain applications, such as learning robotic controllers on hardware, where
low-reward actions might lead to physical damage of the platform. Safe explo-
ration algorithms [29, 184, 186] considered the setting where actions below a
prespecified safety threshold are catastrophic and must be avoided at all cost.
In this section, since the utilized controllers account for safety, we adopt a
more optimistic learning approach called safety-aware. In this case, actions la-
beled by a human as “unsafe” are not catastrophic but undesirable. Thus, the
algorithm avoids these actions; whereas the safe exploration algorithms guar-
antee that no such actions are sampled which can be sometimes exceedingly
conservative in settings like ours.

To achieve this safety-awareness, the ROIAL algorithm is leveraged (presented
earlier in Chapter 3), which uses ordinal labels to identify a region of interest
(ROI) in A. In this section, the ROI is defined to be the actions labeled as
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Algorithm 5 SA-LineCoSpar

1: s uniform random actions (V1 ⊂ A), corresponding feedback (D1),
2: for i = 2, . . . , N do
3: Update posterior over Vi−1

4: â∗i−1 ← argmaxa∈Vi−1
r̂Vi−1(a)

5: Li ← New linear subspace intersecting â∗i−1

6: Construct subspace Si = Li ∪Vi−1

7: Update the model posterior over Si
8: Determine region of interest SROI

i

9: for j = 1, . . . , s do
10: r(j) ∼ N (r̂Si ,ΣSi)

11: a
(j)
i ← argmaxa∈SROI

i
r(j)

12: end for
13: Deploy {a(1)

i , . . .a
(s)
i } on system

14: Vi ← Vi−1 ∪ {a(1)
i , . . .a

(s)
i }

15: Di ← Di−1 ∪ new prefs. ∪ new ord. labels
16: end for

“safe.” In each iteration i we estimate an ROI within the set Si as:

SROI
i = {a ∈ Si | r̂Si(a) + λσSi(a) > βROI}, (4.11)

where r̂Si(a) and σSi(a) are the posterior mean and standard deviation, re-
spectively, evaluated at the action a ∈ Si. As before, the variable λ ∈ R
determines how conservative the algorithm would be in estimating the safety
region, as illustrated in Figure 4.13. We see that lower values of λ result
in fewer unsafe actions being sampled, with only a slight effect on sample-
efficiency. The restriction to SROI

i is added to LineCoSpar by only considering
actions in SROI

i during Thompson sampling. We refer to this as Safety-Aware
LineCoSpar (SA-LineCoSpar), with the full algorithm outlined in Alg. 5.

Integrating Safety-Aware Preference-Based Learning with Safety-
Critical Control

The nominal safety-critical controller used in this section is synthesized using
Control Barrier Functions (CBFs). Notably, the specific formulation of the
CBF yields parameters are able to be modified with SA-LineCoSparto tune
the overall performance-robustness trade off. In this subsection, we will out-
line the utilized controller before presenting the results of the overall learning
framework towards tuning its parameters.

Consider the following nonlinear control-affine system:

ẋ = f(x) + g(x)(v + d(t)), (4.12)
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with state x ∈ Rn, input v ∈ Rm, functions f : Rn → Rn and g : Rn → Rn×m

assumed to be locally Lipschitz continuous on their domains, and piecewise
continuous disturbance signal d : R≥0 → Rm for which we define ‖d‖∞ ,

supt≥0 ‖d(t)‖. Specifying the input via a controller k : Rn → Rm that is
locally Lipschitz continuous on its domain yields the closed-loop system:

ẋ = f(x) + g(x)(k(x) + d(t)). (4.13)

We assume for any initial condition x(0) = x0 ∈ Rn and disturbance d, this
system has a unique solution x(t) for all t ∈ R≥0. We consider this system
safe if its state x(t) remains in a safe set C ⊂ Rn, defined as the 0-superlevel
set of a continuously differentiable function h : Rn × Rp → R:

C = {x ∈ Rn : h(x,ρ) ≥ 0}, (4.14)

where ρ ∈ Rp are constant application-specific parameters. We say the set
C ⊂ Rn is forward invariant if for every x0 ∈ C the solution x(t) to (4.13)
satisfies x(t) ∈ C for all t ≥ 0. The system (4.13) is safe with respect to C
if C is forward invariant. Ensuring the safety of the set C in the absence of
disturbances and measurement error can be achieved through Control Barrier
Functions (CBFs):

Definition 11 (Control Barrier Functions (CBF) [15]). The function h is a
Control Barrier Function (CBF) for (4.12) on C if there exists α ∈ Ke

∞
3 such

that for all x ∈ Rn:

sup
v∈Rm

∂h

∂x
(x,ρ)f(x)︸ ︷︷ ︸
Lfh(x,ρ)

+
∂h

∂x
(x,ρ)g(x)︸ ︷︷ ︸
Lgh(x,ρ)

v > −α(h(x,ρ)). (4.15)

While it may be possible to synthesize controllers that render a given set C safe
in the presence of disturbances [107], this may result in overly-conservative be-
havior. Instead, we consider how safety properties degrade with disturbances
via the following definition.

3We say that a continuous function α : R≥0 → R≥0 is class K∞ (α ∈ K∞) if α(0) = 0,
α is strictly monotonically increasing, and limr→∞ α(r) = ∞. We say that a continuous
function α : R→ R is class Ke

∞ (α ∈ Ke
∞) if α(0) = 0, α is strictly monotonically increasing,

limr→∞ α(r) =∞, and limr→−∞ α(r) = −∞.
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Definition 12 (Input-to-State Safety [120]). The system (4.13) is Input-to-
State Safe (ISSf) with respect to C if there exists γ ∈ K∞ such that for all
δ ∈ R≥0 and disturbances d : R≥0 → Rm satisfying ‖d‖∞ ≤ δ, the set Cδ ⊂ Rn

defined as:

Cδ = {x ∈ Rn : h(x,ρ) ≥ −γ(δ)}, (4.16)

is forward invariant. The function h is an Input-to-State Safe Control Barrier
Function (ISSf-CBF) for (4.12) on C with parameter ϕ ∈ R≥0 if there exists
α ∈ Ke

∞ such that for all x ∈ Rn:

sup
v∈Rm

Lfh(x,ρ) + Lgh(x,ρ)v − ϕ‖Lgh(x,ρ)‖2 > −α(h(x,ρ)). (4.17)

The parameter ρ ∈ Rp contains information about the system’s environment
that affects safety, such as the location and size of obstacles. In novel environ-
ments the system may need to generate estimates of ρ denoted by ρ̂ ∈ Rp from
complex measurements, such as camera data. The process of converting com-
plex measurements to environmental parameters ρ̂ is often imperfect, leading
to error between the estimated and true values (i.e., ρ̂ 6= ρ), which can cause
safety violations. In this setting, safety can be achieved via Measurement-
Robust Control Barrier Functions (MR-CBFs):

Definition 13 (Measurement-Robust Control Barrier Functions [61]). The
function h is a Measurement-Robust Control Barrier Function (MR-CBF) for
(4.12) on C with parameters a, b ∈ R≥0 if there exists α ∈ Ke

∞ such that for
all ρ̂ ∈ Rp and x ∈ Rn:

sup
v∈Rm

Lfh(x, ρ̂) + Lgh(x, ρ̂)v − a− b‖v‖ > −α(h(x, ρ̂)). (4.18)

The following theorem summarizes the safety results achieved with these var-
ious types of CBFs:

Theorem 8. Consider the set C defined in (4.14).

1. If h is a CBF for (4.12) on C, d(t) = 0 for t ∈ R≥0 and ρ̂ = ρ, then
there exists a controller k such that (4.13) is safe with respect to C.

2. If h is an ISSf-CBF for (4.12) on C with parameter ϕ and ρ̂ = ρ, then
there exists a controller k such that (4.13) is ISSf with respect to C with
γ(δ) = −α−1(−δ2/(4ϕ)) where α−1 ∈ Ke

∞.
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3. Assume Lfh, Lgh, and α ◦ h are Lipschitz continuous on their domains,
and assume that ‖ρ̂ − ρ‖ ≤ ε for some ε ∈ R≥0. Then there exists
a, b ∈ R≥0 such that if h is an MR-CBF for (4.12) on C with parameters
a, b ∈ R≥0 satisfying a ≥ a and b ≥ b, and d(t) = 0 for t ∈ R≥0, then
there exists a controller k such that (4.13) is safe with respect to C.

In particular, consider the following cascaded nonlinear control-affine system
resulting as a modification of (4.12):

ẋ = f(x) + g(x)κ(ξ), ξ̇ = fξ(x, ξ) + gξ(x, ξ)u, (4.19)

with additional states ξ ∈ Rnξ , control input u ∈ Rmξ and functions κ : Rnξ →
Rm, fξ : Rn ×Rnξ → Rnξ , and gξ : Rn ×Rnξ → Rnξ×mξ assumed to be locally
Lipschitz continuous on their domains. We note that the input v from (4.12)
was replaced by κ(ξ). These dynamics may represent Euler-Lagrange systems
such as robots, where x reflects base position, ξ captures base velocities and
joint positions and velocities, and the input u reflects the torques applied to
the joints.

Given this cascaded system, we utilize the low-dimensional subsystem to en-
sure that C is ISSf by making two assumptions. First, we assume the safe set
C can be described as in (4.14), such that it only depends on the states x and
parameters ρ, and not the states ξ. For example, in the context of a robotic
system, this assumption is justified if safety is described as keeping the base
position of the robot away from obstacles. Second, we assume there exists a
controller π : Rn×Rnξ×Rm → Rmξ and µ ∈ R≥0 such that for any continuous,
bounded signal s : R≥0 → Rm, the closed-loop system:

ξ̇ = fξ(x, ξ) + gξ(x, ξ)π(x, ξ, s(t)), (4.20)

satisfies the following implication:

‖κ(ξ(0))− s(0)‖ ≤ µ =⇒ ‖κ(ξ(t))− s(t)‖ ≤ µ, t ∈ R≥0. (4.21)

This assumption reflects that a separate controller may be designed for the
high-dimensional dynamics to track well-behaved reference signals synthesized
via the low-dimensional model. In particular, if a continuous controller k :

Rn → Rm is designed for the low-dimensional system (4.12) and ‖κ(ξ(0)) −
k(x(0))‖ ≤ µ, then we have that the controller π ensures ‖κ(ξ(t))−k(x(t))‖ ≤
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µ for t ∈ R≥0. With this assumption in mind, we may study the ISSf behavior
of the closed-loop system:

ẋ = f(x) +g(x)(k(x) +d(t)), ξ̇ = fξ(x, ξ) +gξ(x, ξ)π(x, ξ,k(x)), (4.22)

with the disturbance defined as d(t) = κ(ξ(t))−k(x(t)) satisfying ‖d‖∞ ≤ µ.

Combined Robust CBFs for PBL. We now combine the robustness properties
of MR-CBFs and ISSf-CBFs to account for measurement uncertainty and the
disturbance, d, allowing us to make robust safety guarantees for the full system
(4.22). This is formalized in the following theorem:

Theorem 9. Given the set C defined in (4.14), suppose the functions Lfh,
Lgh, ‖Lgh‖2, and α◦h are Lipschitz continuous on their domains, and assume
that ‖ρ̂− ρ‖ ≤ ε for some ε ∈ R≥0. Then there exists a, b ∈ R≥0 such that if
h satisfies:

sup
v∈Rm

Lfh(x, ρ̂)+Lgh(x, ρ̂)v−ϕ‖Lgh(x, ρ̂)‖2−a−b‖v‖ > −α(h(x, ρ̂)), (4.23)

for all x ∈ Rn and some a, b ∈ R≥0 satisfying a ≥ a and b ≥ b, then there
exists a controller k : Rn → Rm such that (4.22) is ISSf with respect to C with
γ(δ) = −α−1(−δ2/(4ϕ)).

The proof of this theorem can be found in the extended version of the cor-
responding publication4. As in [79], (4.23) can be incorporated as a con-
straint into a safety filter on a locally Lipschitz continuous nominal controller
knom : Rn → Rm. We call this filter the Tunable Robustified Optimization
Program (TR-OP) with tunable parameters α, ϕ, a, and b.

k(x) = argmin
v∈Rm

‖v − knom(x)‖2 (TR-OP)

s.t. Lfh(x, ρ̂i) + Lgh(x, ρ̂i)v − ϕ‖Lgh(x, ρ̂i)‖2 − a− b‖v‖ ≥ −αh(x, ρ̂i),

∀i ∈ {1, . . . , No}.

Here we use a linear class Ke
∞ function with coefficient α ∈ R>0. If we

wish to enforce multiple safety constraints, such as in obstacle avoidance with
several obstacles, ρ̂i can be used to indicate the measured parameters of the
ith obstacle, with No ∈ N being the total number of obstacles. Enforcing this
constraint for No > 1 can be viewed as Boolean composition of safe sets [74].

4Extended Version: https://arxiv.org/abs/2112.08516.

https://arxiv.org/abs/2112.08516
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hyperparameter value
λ −0.5
β 0

name min. max. ∆
α 0.5 5 0.5
ϕ 0 1 0.1
a 0 1 0.1
b 0 0.05 0.005

Table 4.4: Preference-based learning setup. (Left) Hyperparameters dictating
the algorithmic conservativeness when estimating if actions are within the
region of interest. (Right) Control barrier function parameter bounds and
discretizations (∆) used to define the action space.

Additionally, this safety filter is a Second-Order Cone Program (SOCP) [37]
for which an array of solvers exist including ECOS [63].

Integrating Learning to Tune the Control Barrier Function. The parameter se-
lection process of TR-OP is particularly important, since the parameters a and
b guaranteed to exist by Theorem 9 are worst-case approximations of the un-
certainty generated using Lipschitz constants. Such approximations often lead
to undesired conservatism and may render the system incapable of perform-
ing its goal (as seen in Figure 4.14). Thus, as illustrated in Figure 4.12, we
propose utilizing SA-LineCoSpar to identify user-preferred parameters of
TR-OP. This relaxes the worst-case over-approximation to experimentally re-
alize performant and safe behavior. This design paradigm relies on the tunable
construction of TR-OP, allowing us to define the actions for SA-LineCoSpar

to a = (α, ϕ, a, b). We note the construction of TR-OP assures that unsafe ac-
tions are not necessarily catastrophic, as any α, ϕ, a, b > 0 endows the system
with a non-zero degree of robustness to disturbances and measurement error.
This assurance allows us to utilize a safety-aware approach where unsafe ac-
tions are considered undesirable as opposed to more conservative safety-critical
approach to learning where unsafe actions are considered catastrophic.

Experimental Results on Unitree A1
Ultimately, the application of SA-LineCoSpar applied towards tuning the
parameters of TR-OP was demonstrated for perception-based obstacle avoid-
ance task with a Unitree A1 quadrupedal robot (Figure 4.12) in simulation
and on hardware for both indoor and outdoor environments (see video: [195]).
The action space A and learning hyperparameters are defined in Table 4.4.
A unicycle model was used as the simplified model (4.12) with the nominal
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controller knom:ẋẏ
φ̇


︸︷︷︸
ẋ

=

0

0

0


︸︷︷︸
f(x)

+

cosφ 0

sinφ 0

0 1


︸ ︷︷ ︸

g(x)


[
v

ω

]
︸︷︷︸
v

+d(t)

 , knom(x) =

[
Kvdg + C

−Kω(sinφ− (yg − y)/dg)

]
,

(4.24)

where (x, y) is the planar position of the robot, φ is the yaw angle, (xg, yg) is
the goal position of the robot, dg = ‖(xg − x, yg − y)‖ is the distance to the
goal, and Kv, Kω, and C are positive constants. Obstacle avoidance is encoded
via the 0-superlevel set of the function:

h(x,ρi) = dobs,i − robs − ζ cos(φ− θi), (4.25)

where ρi = [xobs,i, yobs,i] is the location of the ith obstacle, dobs,i = ‖(xobs,i −
x, yobs,i − y)‖ and θi = arctan((yobs,i − y)/(xobs,i − x)) are the distance and
angle from the ith obstacle, robs is the sum of the radii of the obstacle and
robot, and ζ > 0 determines the effect of the heading angle on safety. The
controller used to drive the system is the TR-OP with the nominal controller
knom from (4.24). In practice, infeasibilities of this safety filter were considered
unsafe and the inputs were saturated such that v ∈ [−0.2, 0.3]m/s and ω ∈
[−0.4, 0.4] rad/s. The velocity command v is computed at 20 Hz and error
introduced by this sampling scheme is captured by the tracking error d(t).
Tracking of v is performed by an inverse dynamics quadratic program (ID-
QP) walking controller designed using the concepts in [39], which realizes a
stable walking gait for (4.22) at 1 kHz.

Simulation results. We simulated the quadruped executing the proposed con-
troller with parameters provided by SA-LineCoSpar. The resulting trajec-
tories and the position of the obstacles are shown in Figure 4.14. We ran 30
iterations, with 3 new actions sampled in each iteration (s = 3), and obtained
user preferences and ordinal labels in between each set of actions. To simulate
perception error, the measurements of the obstacles were shifted by −0.1 m in
the y-direction. The parameters found with SA-LineCoSpar allow the robot
to navigate between obstacles. For comparison, a conservative action is also
shown, which is safe but fails to progress towards the goal. SA-LineCoSpar
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Figure 4.14: Illustration of the robotic behavior throughout the learning pro-
cess. (Left) Actions sampled during simulation in 30 iterations with 3 new
actions in each iteration. The preferred action, â30 = (3, 0.6, 0.5, 0.015), is
shown in black and white. A conservative action, a = (2, 0.5, 0.0651, 0.485),
is indicated by the black circle, where a and b were determined by estimating
the Lipschitz coefficients present in the proof of Theorem 9. The conserva-
tive action fails to progress whereas LineCoSpar provides an action which
successfully navigates between obstacles. (Center) The minimum value of h
that occurred in each iteration. Triangles, diamonds, and squares represent
actions that are sampled randomly, by PBL in simulation and on hardware
in an indoor setting, respectively. Colors correlate to iteration number. The
lower bound −γ(δ) for the expanded set Cδ with δ = 1 is plotted. The pre-
ferred actions for simulation and hardware experiments are circled. (Right)
Seven additional iterations of 3 actions executed indoors. The preferred action,
â∗37 = (4, 0.6, 0.4, 0), successfully traverses between the obstacles.

eliminates this conservatism with only minor safety violations and determines
a parameter set which is both safe and performant.

Hardware results. After simulation, we continued learning on hardware ex-
periments in a laboratory setting for 7 additional iterations until the user
was satisfied with the experimental behavior. The robot and obstacle posi-
tions were estimated using Intel RealSense T265 and D415 cameras to perform
SLAM and segmentation. Centroids of segmented clusters in the occupancy
map were used as the measured obstacle positions ρ̂i. The true robot and
obstacle positions were obtained for comparison using an OptiTrack motion
capture system. The results of these experiments can be seen in Figure 4.14.
Afterwards, three additional iterations were conducted outdoors on grass until
again the user was satisfied with the experimental behavior. The resulting best
trajectory can be seen in Figure 4.15. The preferred action was also tested on
a variety of other obstacle arrangements to confirm its generalizability. The
performance of the final preferred action for these obstacle configurations can
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Figure 4.15: The preferred action, â∗40 = (5, 0.1, 0.4, 0.02), after simulation,
indoor experiments, and 3 additional iterations of 3 actions in an outdoor
environment is shown alongside views from the onboard camera.

be seen in the supplementary video [195].

4.4 Summary

In this chapter, the preference-based learning framework was demonstrated
towards three extending robotic applications. First, it was applied to tuning
constraint bounds directly in the HZD gait generation process, resulting in
stable, robust, and efficient walking on the AMBER-3M robot with both rigid
and compliant point feet. Second, it was applied towards tuning control pa-
rameters of an ID-CLF-QP+ controller, which yielded performant locomotion
on the AMBER-3M biped and the 22-DOF Cassie platform. Lastly, the learn-
ing framework was demonstrated towards systematically selecting parameters
of a control barrier function to yield both performant and safe locomotion on
the Unitree A1 quadruped.
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C h a p t e r 5

CLINICAL CONSIDERATIONS FOR LOWER-BODY
ASSISTIVE DEVICES

The final chapter of my thesis explores three clinical considerations for lower-
body assistive devices: 1) How can variable assistance be achieved on lower-
body exoskeletons (such as the Atalante exoskeleton) for subjects with motor
incomplete paraplegia and how does this mode of control influence the users
associated metabolic expenditure; 2) How can we study potential latent factors
underlying user-preferred exoskeleton locomotion; and 3) How can we utilize
musculoskeletal models in the gait generation process to systematically gener-
ate motions that naturally align with that of humans. The goal of addressing
these questions is to better understand the clinical benefits associated with
robotic assistive devices and their associated control methods.

These considerations are each individually motivated. First, towards variable
assistance, existing work has shown that providing some freedom of move-
ment around a nominal gait, instead of rigidly following it, accelerates the
spinal learning process of people with a walking impediment when using a
lower body exoskeleton. Moreover, since physical deconditioning is a common
symptom of SCI, many SCI rehabilitation techniques are aimed at facilitat-
ing physical exercise [105]. As such, an important clinical consideration that
has yet to be sufficiently explored is how variable assistance and their cor-
responding controllers influence metabolic expenditure. Second, as discussed
in Chapter 3, better understanding the factors underlying user-preferred ex-
oskeleton locomotion would reduce the burden on user-customization. Instead,
prior information could be leveraged to predict exoskeleton gaits that are com-
fortable for new users. Thus, in the second section of this chapter we explore
how to study potential latent factors underlying user-preferred locomotion.
Lastly, there exists prior work towards leveraging musculoskeletal models to
synthesize natural walking motions [70]. However, these techniques are often
heuristic, so instead we explore how to integrate muscle model constraints di-
rectly in the gait generation optimization problem to systematically synthesize
stable and natural walking gaits.
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5.1 Studying Metabolic Expenditure during Variable Assistance

While the full assistance approach to dynamically stable exoskeleton locomo-
tion (as presented in Chapter 2) enables crutch-less exoskeleton walking, it is
no longer optimal when exoskeleton technology is extended to patients who
are recovering muscle functionality. For patients who are trying to strengthen
recovering muscles, partial assistance would be more appropriate than full
assistance. A previous study showed that permitting partial assistance and
variability during step training enhanced stepping recovery after a complete
spinal cord transection in adult mice [42]. The study also hypothesized that
a fixed trajectory training strategy would drive the spinal circuitry toward a
state of learned helplessness. These “assist-as-needed” algorithms, which have
also been explored in other publications [41, 180, 235], utilize velocity field con-
trol to provide gentle guidance at a constant rate towards the desired walking
trajectory.

In [80], a novel framework was presented for variable assistance on lower body
exoskeletons, based upon safety-critical control methods. This method lever-
ages tools from controlled set invariance [22, 35]—in particular, control barrier
functions [16, 17]—to enable assist-as-needed strategies while guaranteeing co-
herence of the walking pattern. The method allows users to control their own
motions when they are performing well (i.e., staying in a tube around a nomi-
nal trajectory) but intervene when they are not, so as to maintain a functional
walking pattern. This approach, therefore, takes motivation from the grow-
ing area of safety-critical control [2, 17, 216], and extends its application to
exoskeletons with experimental demonstration with multiple subjects.

While the details of the variable assistance method are omitted in this the-
sis, the experimental results demonstrating how variable assistance influences

Figure 5.1: Photos of the eight non-disabled subjects who participated in the
experimental evaluation.
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Figure 5.2: Metabolic expenditure experimental setup. (Top) Variable assis-
tance testing procedure. (Bottom) Metabolic rates as aligned with the testing
procedure.

metabolic expenditure for exoskeleton users is presented. Specifically, the vari-
able assistance controller was demonstrated in three separate experiments.
First, the entire framework was tested with eight non-disabled human sub-
jects of masses and heights from 58kg to 91kg and 1.62m to 1.93m (shown in
Figure 5.1). Then, the framework was tested over a larger set of assistance
factors for a single subject.

Experimental Results Across Eight Subjects

The experimental testing conducted for non-disabled subjects consisted of
walking trials lasting five minutes each. The format of each trial is shown in
Figure 5.2 and is as follows. First, 90 seconds of walking with full assistance,
then 30s of transitioning to the desired level of assistance and finally 180s of
walking at that desired assistance factor. “Full Assistance” corresponds to an
assistance factor Ξ = 1, which is equivalent to the baseline controller without
the variable assistance controller. “Partial Assistance” corresponds to Ξ = 0.5,
i.e., qbound = ±4deg where qbound denotes the range of motion allowed in the
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Figure 5.3: Comparison between tracking accuracy and subject power con-
sumption. The passive data correspond to the subject not doing anything.
The active data correspond to the subject trying to follow the nominal gait.
Full assist correspond to nominal PID control around the gait, whereas partial
assist corresponds to ±4deg wide virtual guides.

hip and knee joints (around the nominal gait trajectory) of the lower-body
exoskeleton before the variable assistance controller takes over the motion of
the exoskeleton. Beside the subject model parameters, the gait parameters
were the same for all subjects. The step length and duration were chosen to
be 0.16m and 0.8s, respectively.

In order to demonstrate the effectiveness of the variable assistance framework,
four trials were conducted per subject. The first two trials were one with Full
Assistance and one with Partial Assistance, where the subjects were asked to
be completely passive and let the exoskeleton do the work. The same two
trials were then repeated but this time asking the subjects to: “Do whatever
feels necessary to track the nominal gait.”

Human metabolic expenditure was recorded for all subjects as it provides
critical insight into how much effort the user is exerting. The metabolic rate
was determined from oxygen and carbon dioxide exchange rates as measured
by a COSMED K4b2. The exchange rates were converted to a metabolic rate
using the equation developed by Brockway et al. [38]. When calculating the
metabolic rate, the average metabolic rate recorded over the baseline part of
every trial was subtracted from the average rate of the exercise part to isolate
the part of the total metabolic power used for compensating for the varying
levels of assistance.

The results for all eight subjects are summarized in Figure 5.3. This figure
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Figure 5.4: Raw metabolic rate and tracking error in chronological order for
the baseline and exercise segments as defined in Figure 5.2. The step length
and duration, respectively, are 0.16m and 0.8s.

shows that when the subject was passive, the metabolic rate remained consis-
tent between full assistance and partial assistance. The metabolic rate when
passive also is consistently lower than the metabolic rate of the subjects when
active at partial assistance. An interesting observation is that the metabolic
rate of the subjects when active at full assistance is not much different from
that of the subjects when passive. This suggests that the subjects do not
feel the need to provide more energy than necessary when the exoskeleton is
already providing full assistance. On the other hand, partial assistance in-
centivises users to contribute to the tracking of the gait which translates into
an increase in metabolic rate as expected. Finally, note that on average, the
subjects were able to improve the accuracy of tracking in Partial Assist when
actively trying.

Experimental Results of Varying the Assistance Factor for One Sub-
ject

The testing procedure for the final experiment was the same as discussed
previously and shown in Figure 5.2 but was repeated with a larger set of
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Figure 5.5: Comparison between tracking accuracy and subject normalized
power consumption.

assistance factors. The trials were done, in order, with assistance factors Ξ ∈
{1.0, 0.75, 0.5, 0.25, 0.0, 0.25, 0.5, 0.75, 1.0}. A five minute break was taken in
between each trial to let the subject return to a resting metabolic rate. The
subject also completed one five minute trial while walking on the treadmill at
the same velocity as during the trials to compare the subject’s nominal walking
metabolic rate with that of the exoskeleton testing. This entire procedure was
repeated on three consecutive days with the same subject.

The metabolic power consumption as well as the average tracking error for each
segment is reported in Figure 5.4. The subject’s average resting oxygen and
carbon dioxide exchange rates, measured at the start of testing, are subtracted
from the recorded exchange rates of each trial. Interestingly, it can be seen that
the baseline metabolic rate is relatively consistent between all trials and that
the data is symmetric around the 0.00 assistance factor trial. This confirms
that the increase in exercise metabolic rate for lower assistance factors is due
to the lowered assistance and not exhaustion of the subject.

Figure 5.5 presents the metabolic rates of the exercise part normalized by
the baseline ones for the different values of assistance factor, as well as the
corresponding tracking errors. These normalized values indicate a clear trend:
The normalized metabolic rate and the normalized tracking error increase as
the assistance factor decreases.
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5.2 Analysis of User-Preferred Exoskeleton Locomotion

In addition to optimizing exoskeleton walking gaits for individual user com-
fort, as discussed in Chapter 3, a clinical consideration towards lower-body
exoskeleton locomotion is to better understand the utility functions underly-
ing human preferences. As such, my work aims to derive insight from obtained
user preferences and apply this knowledge towards improving gait synthesis.

As discussed throughout the thesis, the cost function Φ(X) of the gait genera-
tion optimization problem largely influences the behavior of the walking gaits
that it generates; however, the user’s cost function Φhuman underlying her pref-
erences is poorly-understood. This section aims to describe the relationship be-
tween gaits and user preferences through the underlying cost function Φhuman,
so that future gait synthesis can be streamlined towards user-preferred walk-
ing. Thus, we aim to identify key terms in Φhuman that numerically account
for the preferences captured during the preference-based learning procedure
conducted in [206].

In the experiments conducted in [206], all walking gaits that were executed
on the exoskeleton were flat-footed. Thus, by analyzing the center of mass
(CoM) and center of pressure (CoP), the patient-exoskeleton system can be
approximated by a Linear Inverted Pendulum Model (LIPM). This allows
us to analyze the underlying utility function Φhuman using the cost structure
from [182]. However, before discussing the structure of Φhuman, we will first
introduce the concepts of Zero Moment Point (ZMP) and LIPM.

Zero Moment Point. The Zero Moment Point (ZMP) is a widely-used notion
of stability for bipedal robots that is defined as the point on the ground at which
the net moment of the inertial forces and the gravity forces has no component
along the horizontal axes [213]. When the ZMP exists outside of the “support
polygon,” i.e., the convex hull of the stance foot (or stance feet in the double-
support domain), the robot experiences foot roll.

Static and Dynamic Stability. For a full discussion, refer to pg. 7 of [221].
In general, static stability is the condition in which the CoM and CoP never
leave the support polygon. In contrast, quasi-static stability relaxes this con-
dition on the CoM and only requires that the CoP remains inside the support
polygon. For dynamic stability, the CoP lies on the boundary of the support
polygon for a portion of the gait.
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Figure 5.6: Illustration of a single step with the overlayed LIPM model.

Linear Inverted Pendulum Model (LIPM). The LIPM is a low-dimensional
dynamical system for reduced-order gait generation. The LIPMmodel assumes
constant height of the center of mass, as well as zero angular momentum. The
dynamics of the LIPM [112] are:

mẍCoM =
mg

z0

(xCoM − xCoP), (5.1)

mÿCoM =
mg

z0

(yCoM − yCoP), (5.2)

where {x, y}CoM are the x and y positions of the CoM at constant height z0,
and {x, y}CoP denote the x and y positions of the CoP. For planar horizontal
ground walking, the ZMP is mathematically equivalent to the CoP. The CoP
was experimentally obtained using the four 3-axis force sensors on the bottom
of the exoskeleton’s feet.

Fitting the LIPM Cost Function to User Preferences

Since flat-foot level-ground walking is well captured by the Linear Inverted
Pendulum Model (LIPM), the cost function used in the LIPM to generate
desirable walking behavior may explain the users’ utility functions underlying
their exoskeleton gait preferences. As defined in [182], the LIPM cost function
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is:

ΦLIPM = w1||xgoalCoM − xCoM||
2 + w2||ẋCoM||2+

w3||ẋCoP||2 + w4||pgoalx − px||2+

w1||ygoalCoM − yCoM||
2 + w2||ẏCoM||2+

w3||ẏCoP||2 + w4||pgoaly − py||2, (5.3)

where {x, y}goalCoM denotes the CoM goal position in the x and the y directions,
{ẋ, ẏ}CoP denotes the velocity of the CoP in the x and y directions, {ẋ, ẏ}CoM
is the velocity of the CoM, pgoal{x,y} denotes the next stance foot position in the
x and y directions, and p{x,y} denotes the x and y positions of the swing foot
(Figure 5.6).

We hypothesize that Φhuman(w) can be captured as a function of the weights
w := {wi}, i ∈ {1, . . . , 4}. Therefore, we fit the weights w of ΦLIPM to the
validation-stage preference data collected in [206], i.e., the preferences between
the most-preferred gaits (gaits with parameters amax) and each of the random
gaits presented during the validation phase1. The weights w were optimized
via the quadratic program:

w∗ = argmin
w

||w||

s.t.


δ

(1)
1 δ

(1)
2 δ

(1)
3 δ

(1)
4

...
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(n)
1 δ

(n)
2 δ

(n)
3 δ

(n)
4



w1

w2

w3

w4

 < 0, (5.4)

where n denotes the number of pairwise preferences, and:

δi =
(
||xpref(i,x)||2 + ||xpref(i,y)||2

)
−
(
||xnot pref(i,x) ||2 + ||xnot pref(i,y) ||2

)
(5.5)

x(1,x) = xgoalCoM − xCoM x(1,y) = ygoalCoM − yCoM
x(2,x) = ẋCoM x(2,y) = ẏCoM

x(3,x) = ẋCoP x(3,y) = ẏCoP

x(4,x) = pgoalx − px x(4,y) = pgoaly − py.

We use subject-wise holdout (leave-one-out) cross-validation across the sub-
jects to verify the reliability of the fit. The average weights across all six
holdout fits are: w1 = −0.1266, w2 = 0.1363, w3 = −0.0944, and w4 = 1.0662.

1Cost function fitting and CoP/CoM plotting code can be found at:
https://github.com/myracheng/linecospar/tree/master/gaitAnalysis

https://github.com/myracheng/linecospar/tree/master/gaitAnalysis
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Table 5.1: Predictive power of each cost function term on the obtained ex-
oskeleton user preferences.

Cost Function Correctly predicted preferences per subject (%)
1 2 3 4 5 6

ΦLIPM (holdout) 75 100 62.5 75 12.5 87.5
ΦLIPM 75 87.5 62.5 75 62.5 100

Φdynamic 100 100 50 75 12.5 37.5
Φstatic 50 75 37.5 50 100 75

We quantify the predictive power of each fitted cost function on the users’
utility functions using the rank consistency between the cost function values
and the preference data. Table 5.1 shows the predictive power of ΦLIPM on the
preferences, as well as the predictive power of two other cost functions, Φstatic

and Φdynamic, respectively, defined as:

Φstatic = ||{x, y}CoM − {x, y}CoP||2, (5.6)

Φdynamic = ||pgoal{x,y} − p{x,y}||
2. (5.7)

These two metrics are directly opposed: while Φdynamic is the term from ΦLIPM

that promotes dynamic stability, Φstatic penalizes dynamic stability in favor
of static stability. This is because in the LIPM dynamics, the acceleration
of {x, y}CoM approaches zero as Φstatic approaches zero. We find that ΦLIPM

and Φdynamic capture the preferences of five of the six subjects, while Φstatic

completely predicts the preferences of the single outlier, subject 5.

Figure 5.7 further illustrates this difference. The largest discrepancy between
Φdynamic and Φstatic is that of subject 1 and subject 5. The preferences of sub-
ject 1 align with dynamic stability, while the preferences of subject 5 align with
static stability. The diametric opposition between the cost function terms pre-
dicting these users’ preferences reflects inconsistencies across users’ gait utility
functions. This suggests that there is most likely no single metric that entirely
captures all users’ underlying utilities. Thus, it is important to generate a
variety of gaits that satisfy the cost functions reflecting different users’ prefer-
ences.



143

Figure 5.7: Contrasting preferences across two subjects regarding the trade-off
between more and less dynamically-stable gaits. While all of the exoskeleton
gaits are dynamically stable, both the least preferred gait (amin) of subject
1 and the most preferred gait (amax) of subject 5 exhibit behavior closer to
statically-stable gaits. Subject 1 preferred dynamic gaits with a large difference
between xCoP and xCoM; in contrast, subject 5 preferred gaits in which xCoP
closely followed the center of mass. Rectangles represent the exoskeleton feet.
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Figure 5.8: A complete gait cycle from right heel strike to right heel strike. The
gait cycle is described using the directed cycle Γ = (V,E) with the vertices
V = {v1, . . . , v8} and edges E = {e1, . . . , e8} illustrated in the figure. The
naming convention is based on the stance leg of the step and the number of
contact points. If both legs are in contact, the domain is considered as a double
support domain.

5.3 Incorporating Musculoskeletal Models into the Gait Genera-
tion Optimization Problem

Lastly, this section explores the addition of musculoskeletal models directly
into the gait generation process to intuitively shape the resulting behavior.
Specifically, a multi-domain hybrid system model (as illustrated in Figure 5.8)
is constructed that combines the system dynamics with muscle models to rep-
resent natural multicontact walking. Provably stable walking gaits can then
be generated for this model via the hybrid zero dynamics (HZD) method.
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In this section, the integrated framework is specifically applied towards achiev-
ing multicontact locomotion on a dual-actuated transfemoral prosthesis, AM-
PRO3, for two subjects. The results demonstrate that enforcing muscle model
constraints produces gaits that yield natural locomotion (as analyzed via com-
parison to motion capture data and electromyography). Moreover, gaits gener-
ated with our framework were strongly preferred by the non-disabled prosthetic
users as compared to gaits generated with the nominal HZD method, even with
the use of systematic tuning methods. We conclude that the novel approach
of combining robotic walking methods (specifically HZD) with muscle models
successfully generates anthropomorphic robotic-assisted locomotion.

Related Work

Existing approaches towards realizing natural walking include modifying the
HZD method to obtain gaits that resemble walking recorded by motion capture
[8, 237] and optimizing joint-level trajectories for experimental metrics such as
electromyography (EMG) signals and metabolic expenditure [84, 236]. While
these methods yield natural behavior, they are data-driven and thereby heavily
rely on the quality and quantity of the data. Moreover, such data is behavior-
specific and not always accessible. A separate approach that does not rely
on gait generation is to directly control the walking based on real-time EMG
feedback [21, 53, 97, 215, 229]. While this methodology also successfully yields
natural locomotion, it has no theoretical guarantees of stability and relies on
careful tuning of the musculoskeletal model.

This section instead presents an alternative approach based upon hybrid sys-
tem models of locomotion that utilize musculoskeletal models—to the best of
my knowledge, this is the first time these two modeling paradigms have been
combined. This proposed integrated framework both enjoys the theoretical
guarantees of stability via the HZD method, while also achieving natural loco-
motion via the musculoskeletal models. Since humans usually self-select gaits
that are physiologically and mechanically energy efficient [219], the hypoth-
esis made in this section is that generating stable gaits that satisfy muscle
model constraints would naturally lead to more anthropomorphic and efficient
behavior that respects physiological limits.

This hypothesis will be evaluated by first generating multicontact walking gaits
utilizing the HZD method coupled with musculoskeletal models, followed by
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Figure 5.9: Experimental setup. a) AMPRO3 prosthesis, b) Non-disabled
subject wearing the device during multicontact locomotion, c) placement of
the surface mount electrodes for electromyography (EMG).

the experimental implementation on a dual-actuated transfemoral prosthesis,
AMPRO3, shown in Figure 5.9. The experimental results demonstrate that
the novel combination of muscluloskeletal models with HZD results in natural
multicontact locomotion, as quantified by comparisons with motion capture
data and via electromyography (EMG).

Muscle Model

First, we introduce how a single muscle-tendon unit (MTU) is modeled. Later,
details will be provided on how to extend these muscle models to multiple
muscles and incorporate them into the Hybrid Zero Dynamics (HZD) gait
generation framework.

Muscle-tendon Unit (MTU). Each muscle is modeled as a two-element Hill-
type muscle-tendon unit [71] with a contractile element (CE) and a series
elastic element (SE) as shown in Figure 5.10a. The constant parameters of
each muscle are defined in [70, 71].

MTU Length. The length of an individual MTU, denoted by lmtu ∈ R, is
modeled as lmtu = lse + lce, where lce ∈ R is the length of the contractile
element (CE), and lse ∈ R is the length of the series elasticity element (SE).
Since the relative change of lmtu depends on the individual joint angle θ ∈ R,
with the collection of d joint angles denoted q ∈ Rd, in practice we model the
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Figure 5.10: Musculoskeletal modeling setup. a) A single muscle tendon unit
(MTU) consists of a contractile element (CE) and a series elasticity element
(SE). The length of CE and SE is denoted by lce and lse. At the reference angle
(θref ), these lengths are equal to lce = lopt and lse = lslack. b) Human-prosthesis
system with the following seven labeled muscles on the intact leg: gluteus
(GLU), hamstrings (HAM), gastrocnemius (GAS), soleus (SOL), hip flexors
(HFL), and vastus (VAS), and tibialis anterior (TA). Three muscles (GLU,
HAM, HFL) are also considered on the prosthetic leg side. c) Illustration of
system coordinates, including the base and world frames.

MTU length as a function of q:

lmtu(q) = lopt + lslack −
jN∑
j=1

∆lmtu(θj), (5.8)

where lopt, lslack ∈ R are, respectively, the reference lengths of CE and SE at
the reference angle θref ∈ R. These reference parameters are constants taken
from [70]. We use

∑jN
j=1 ∆lmtu(θj) to denote the total change in length of the

MTU based on the joint angles of each joint spanned by the MTU, out of a
total of jN ∈ {1, 2} joints. The joints spanned by each MTU are illustrated in
Fig.5.10b. The individual change in length due to a single joint, ∆lmtu(θ) ∈ R,
is given by:

∆lmtu(θ) =


ρr0(θ − θref ), for hip

ρr0

[
sin(θ − θmax)

− sin(θref − θmax)
]
, otherwise.

(5.9)

The constant ρ ∈ R is a parameter that ensures the fiber length is within
the physiological limits and accounts for muscle pennation angles (the angle
between the longitudinal axis of the entire muscle and its fibers that increases
as the tension increases in the muscle), and r0 ∈ R is a parameter denoting
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the constant contribution of the MTU lever-arm. For the MTUs that span two
joints, ∆lmtu(θ) is calculated separately with different reference angles θref for
each joint.

MTU Force-Length and Force-Velocity Relationships. The velocity of the CE
contraction is denoted by vce ∈ R and is constrained to satisfy the relationship
lce =

∫
vcedt. Depending on an MTU’s instantaneous value of lce and vce, the

amount of force the MTU is capable of exerting differs. This is described by
the following force-length (fl) and force-velocity (fv) relationships:

fl(lce) = exp

(
log(c)

∣∣∣∣ lce − loptloptw

∣∣∣∣3
)
, (5.10)

fv(vce) =

 vmax−vce
vmax+Kvce

, if vce < 0

N + (N−1)(vmax+vce)
7.56Kvce−vmax , if vce ≥ 0

(5.11)

where the residual force factor c = 0.05 and N, vmax, w, K ∈ R are all muscle-
dependent constants. Specifically, N is the eccentric force enhancement (mod-
eling the increase in muscle force during active stretch), vmax is the maximum
contractile velocity, and w and K are parameters that shape the force-length
and force-velocity curves, respectively.

Similarly, the MTU force also depends on lse. This is modeled using an addi-
tional force-length relationship:

fse(lse) =


(

lse−lslack
lslack(εref )

)2

, if lse ≥ lslack

0, otherwise
(5.12)

where the εref ∈ R is a constant parameter denoting the MTU strain when
fse(lse) = 1. Note that in the actual implementation, we used a continuous
function, fitted via least squares regression, to replace the piece-wise functions
for fse and fv since continuous functions are required for the implementation
of a nonlinear optimization program.

MTU Force. Because the SE and CE are in series, we model their respective
forces, Fse ∈ R and Fce ∈ R, as equal to the total force exerted by the MTU,
denoted by Fm ∈ R. Explicitly, we enforce Fm = Fse = Fce. We independently
model the individual element forces as depending on the previously defined
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force-length and force-velocity relationships:

Fce(lce, vce, s) = s Fmax fl(lce) fv(vce), (5.13)

Fse(lse) = Fmax fse(lse), (5.14)

where s ∈ [0, 1] is the activation level of the muscles, and Fmax ∈ R is a
constant parameter dictating the maximum allowable force of the MTU. Note
that muscle activation is assumed to be instantaneous.

MTU Force-Torque Relationship. The torque provided by the MTU, denoted
by um ∈ R, is calculated individually for each joint it spans using the following
equations:

um = r(θ)Fm, (5.15)

r(θ) =

 r0, for hip

r0 cos(θ − θmax), otherwise
(5.16)

where r(θ) ∈ R is the length of the MTU lever-arm based on r0 (previously
defined in Eq. 5.9), and θmax ∈ R is the reference angle at maximum lever
contribution. For MTUs that span two joints, the muscle torque of each joint
is calculated using different muscle-specific maximum lever contribution refer-
ence angles θmax. For details see [70].

Gait Generation with the Integrated Framework

Next, an integrated framework is proposed that enforces the various muscle-
tendon unit properties (introduced in the preceding subsection) directly into
the HZD gait generation framework introduced in Chapter 2. First, we will
present the details of the integrated framework. Then, its effect on the gait
generation process is demonstrated by comparing gaits obtained with and
without the inclusion of the musculoskeletal model.

Integrated Framework. To generate stable impact-invariant periodic orbits,
with the inclusion of the muscle models presented earlier, we construct a non-



149

linear optimization problem of the form:

{α∗, X∗} = argmin
α,X

ΦmCoT(X)

s.t. C1. (Closed-loop Dynamics)

C2. (Impact-Invariance Conditions)

C3. (Decision Variable Bounds)

C4. (Physical Constraints)

C5-C12. (Muscle Model Constraints)

where α = {αv | v = 1, . . . , 8} is our collection of Bézier coefficients for each
domain, and X is the collection of all decision variables X = [XNLP, XMUSC]>

separated into the nominal variables, XNLP, and the additional muscle model
decision variables, XMUSC. The nominal decision variables are constructed
as XNLP = (x0, . . . , xN , T ) with xi being the system state at the ith dis-
cretization for the duration T . The muscle model decision variables are sim-
ilarly defined for the muscle states xmusc as XMUSC = (xmusc

0 , . . . , xmusc
N , T ).

Here, the muscle states include the MTU variables for each muscle xmusc =

{[l(i)ce , l(i)se , F (i)
ce , v

(i)
ce , s(i)]> | i = 1, . . . , 10}.

While the objective function can be arbitrarily defined, we intentionally select
ours to be the mechanical cost of transport (mCoT), ΦmCoT =

∫ P (t)
mgv

dt, since
prior work has found it to yield natural and efficient locomotion [90].

The first four constraints (C1-C4) of our framework are standard to the HZD
method: C1 enforces the closed-loop dynamics of the system; C2 enforces
the impact-invariance conditions described by (2.8); C3 constrains the deci-
sion variables as Xmin � X � Xmax; and C4 enforces real world constraints
such as contact constraints, as well as joint and torque limits. The remaining
constraints (C5-C12) are muscle model constraints, explicitly defined as:
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Muscle Model Constraints:

C5. {F (i)
m = F (i)

ce (l(i)ce , v
(i)
ce , l

(i)
se , s

(i)), ∀i = 1, . . . , 10}
C6. {F (i)

m = Fse(l
(i)
se ), ∀i = 1, . . . , 10}

C7. {l(i)ce + l(i)se = lmtu(q)(i), ∀i = 1, . . . , 10}

C8. {l(i)ce =

∫
v(i)
ce dt, ∀i = 1, . . . , 10}

C9. uLhip = u(1h)
m + u(2)

m + u(3)
m

C10. uLknee = u(1k)
m + u(4k)

m − u(5)
m

C11. uLankle = u(4a)
m + u(6)

m − u(7)
m

C12. uRhip = u8
m + u9

m − u10
m

where i = 1, . . . , 10 denotes a specific muscle out of the ten muscles we consider,
illustrated in Figure 5.10b. These muscles consist of seven muscles on the
intact leg (hamstring (HAM), glutes (GLU), hip flexor (HFL), gastrocnemius
(GAS), vastus (VAS), soleus (SOL), tibialis anterior (TA)), and three muscles
on the prosthetic leg (HAM, GLU, HFL).

The first four muscular constraints (C5-C8) can be interpreted as dynamic
and kinematics constraints acting on each MTU. The final four constraints
(C9-C12) ensure that the actual human joint torque is equal to the sum of
individual muscle torques. Depending on whether it is an extensor or flexor
muscle, the torque is either applied towards the positive or negative direction.
Note that since the HAMmuscle span both the hip and knee joints, we use u(1h)

m

and u(1k)
m to denote the torque HAM has on the these two joints, respectively.

Similarly, we use u(4k)
m and u

(4a)
m to denote the knee and ankle joint torques

resulting by GAS muscle. The explicit calculation can be found in Eq. 5.15
with different reference angles in Eq. 5.16.

Evaluation of the Integrated Framework

Optimization setup. To evaluate the hypothesis that enforcing muscle model
constraints would naturally lead to more anthropomorphic behavior, we syn-
thesized two variants of the optimization problem for comparison: 1) with
muscles, which includes constraints C1-C12; and 2) without muscles, which
only includes constraints C1-C4. In both variants, the optimization problem
is constructed using FROST [87].
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Figure 5.11: Results of gait generated with and without the muscle models. a)
Gait generation and tuning procedure. Note that the MoCap data are taken
from [44] and matched to subjects by height and weight. b) Gait RMSE of the
optimal action identified by the algorithm at each iteration. c) The summed
human joints angles of final gaits obtained after tuning.

We evaluated the naturalness of the gaits generated by the two variants via a
custom metric defined as:

Gait RMSE =
5∑
i=1

√
avg

(
q̂

(i)
h − q

(i)
h

)
, (5.17)

where q(i)
h denotes the angles of the ith joint of the human coordinates and q̂(i)

h

the corresponding joint angles recorded by MoCap. Specifically, the MoCap
data used here are from [44] and matched to subjects by height and weight.

Constraint Tuning via Preference-Based Learning. The bounds of C3 and C4
are commonly tuned in order to sufficiently constrain the optimization prob-
lem for convergence and to achieve desired behavior. Thus, to fairly compare
gaits generated with and without the inclusion of the musculoskeletal model,
we leverage preference-based learning to systematically identify the constraints
that lead to the lowest Gait RMSE. The procedure of this framework is illus-
trated in Figure 5.11a. Specifically, the LineCoSpar algorithm is used since
it can navigate high-dimensional spaces and is robust to noisy feedback, but
other Bayesian optimization techniques could also be used.

In each iteration, the optimization is warm-started with the solution from the
current best action according to the learning algorithm. To streamline the
process, two types of feedback are automatically given to the algorithm. First,
an ordinal label corresponding to either ‘converged’ or ‘non-converged’ is given
based on the algorithm convergence status. Second, a pairwise preference is
determined based on the Gait RMSE, where a lower RMSE gait would be
preferred. The search space of the algorithm is constructed with the muscle
model parameters outlined in Table 5.2.
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Table 5.2: Action Space Definition: Musculoskeletal model and gait generation
optimization problem constraints.

Constraint Name Constraint Values lengthscales
|ẋ| < a1 a1:[15, 20] 5
|ẍ| < a2 a2:[70,80,90] 10
vhip > a3 a3:[0.3,0.4,0.5] (m/s) 0.1
vhip < a4 a4:[1.2,1.3,1.4] (m/s) 0.1
Min. Foot Clearance a5:[0, 0.013, 0.026, 0.039] (m) 0.013
|θtorso| < a6 a6:[0,0.1,0.2,0.3,0.4,0.5] (rad.) 0.1
|θhip| < a7 a7:[20,35,50] (deg.) 15
|θankle| < a8 a8:[20,30,40] (deg.) 10

Comparison of generated gaits. This learning procedure was repeated for two
subjects: subject 1 (Female, 172.7cm 65.7kg), subject 2 (Male, 180.3cm, 75kg).
We plotted the Gait RMSE of gaits generated by the current best constraint
parameters according to the algorithm at each iteration in Figure 5.11b. The
inclusion of muscle models led to a smaller Gait RMSE compared with the ones
generated by the non-muscle version throughout the tuning process (Figure
5.11b-c). This highlights the advantage of including muscle models in the gait
generation, as it guided the optimization to find more natural solutions.

Experimental Demonstration on AMPRO3

The two gaits obtained in the automated tuning procedure as having the low-
est gait RMSE (with and without the inclusion of muscle model constraints)
were experimentally deployed on the dual-actuated transfemoral prosthesis,
AMPRO3. This experiment was conducted for each of the two subjects, with
the results highlighted in the supplemental video [194].

Experiment Procedure. During the experiments, a non-disabled human user
wore AMPRO3 using an adapter on the right leg (Figure 5.9b). The joint-level
trajectories of the gaits were tracked on the prosthesis with a PD controller.
For an in-depth presentation of the hardware and control, see [237].

First, the subject was asked to walk without the prosthesis over a self-selected
speed, followed by walking with the prosthesis for the two prosthetic gaits. At
the end of the testing, the subject was queried for a single pairwise preference.
Note that the order of the gaits was randomized and the subject was not
informed of the order. During all tests, electromyography (EMG) signals were
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Figure 5.12: Gait tiles of experimental demonstration on AMPRO3 for gaits
generated without or with muscle model constraints for two subjects.

Generated w/ Muscles Actual w/o MusclesActual w/ Muscles 

a) Subject 1 b) Subject 2

Generated w/o Muscles

Figure 5.13: Limit cycles illustrating the periodic stability achieved during
experimental multicontact locomotion (10s of data plotted).

recorded. Before recording, the subject was given enough time to adjust to the
walking. In total, the activity of four muscles on the left leg, including rectus
femoris (RF), tibialis anterior (TA), bicep femoris (BF), and gastrocnemius
(GAS), and two muscles on the left leg (RF and BF) was recorded with the
Trigno wireless biofeedback system (Delsys Inc.), as illustrated in Figure 5.9c.

Experiment Results. A visualization of the experimental behaviors is provided
in Figure 5.12 via gait tiles spanning a complete gait cycle. Both subjects
strongly preferred the gait generated with the inclusion of the musculoskeletal
model. The stability of the executed gaits is portrayed in Figure 5.13 by the
periodicity of the limit cycles. It is important to note that achieving this
experimentally stable multicontact locomotion is a direct result of leveraging
the HZD method to formally generate impact-invariant output trajectories.

The average EMG data over one gait cycle for each muscle after preprocessing
is shown in Figure 5.14. We also calculated the RMSE between the EMG
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Figure 5.14: EMG activity normalized over a full gait cycle for normal walking,
prosthetic walking with gaits generated with or without the muscle model.

activity of the generated gaits and normal walking, defined as:

EMG RMSE =
6∑
i=1

√
avg

(
ŝ

(i)
EMG − s

(i)
EMG

)
, (5.18)

where s(i)
EMG denotes the muscle activation reflected by EMG signals for the

ith muscle during the prosthetic walking and ŝ(i)
EMG denotes the corresponding

muscle activation during normal unassisted walking. The EMG RMSE are
1.58 and 1.84 for the gaits generated with muscles, and 1.80 and 2.34 for the
gaits generated without muscles, for subject 1 and subject 2, respectively. The
lower EMG RMSE suggests that the inclusion of the muscle model led to more
natural behavior. In addition, the inclusion of muscle model also results in
less muscle activation on average. Lastly, we observe that all prosthetic gaits
yielded higher muscle activity than normal walking, which could be caused by
factors such as the extra weight of the prosthesis or the misaligned knee joints.
However, when designing gaits for an amputee user, the human-prosthesis
system would be more symmetric, which would likely to result in even more
natural muscle activation.

5.4 Summary

Throughout the thesis, locomotive stability and user-customization are con-
sidered to be two of the most important clinical considerations. However,
there exist many other important factors, including the three explored in this
chapter. First, metabolic cost of transport was analyzed on the Atalante ex-
oskeleton using a method of control that enabled variable assistance. This
work found that metabolic cost of transport was only influenced when ex-
oskeleton users had the ability to contribute to the walking motion. Second,
features of user-preferred exoskeleton gaits were extracted in an attempt to
understand the mechanisms dictating user comfort. Specifically, two oppos-
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ing measures of dynamicity were identified, implying that exoskeleton users
either prefer walking gaits that are dynamically or statically stable. These
considerations help to inform the synthesis of new exoskeleton gaits that di-
rectly maximize user comfort. Lastly, musculoskeletal model constraints were
directly enforced in the HZD framework to experimentally realize both sta-
ble and natural robotic-assisted locomotion on the dual-actuated prosthesis
AMPRO3 with two non-disabled users. It was found that incorporating the
muscle model guides the optimization problem towards uncovering periodic
orbits that resemble natural bipedal locomotion.
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C h a p t e r 6

CONCLUSIONS

In conclusion, this dissertation seeks to improve lower-body assistive devices
by systematically approaching locomotive robustness and user-customization.
The individual contributions of the presented work are as follows:

• Systematic approaches towards achieving and certifying stable
and robust bipedal locomotion. Chapter 2 presented two overall
approaches towards addressing robustness of nominal walking gaits to
uncertain impact events due to either uncertain human-robot models
or environments. Overall, the first approach (minimizing the induced
matrix norm of the saltation matrix directly in the gait generation pro-
cess) demonstrated improved experimental robustness compared to the
baseline gait generation methodology. Further, the second approach (an
input-to-state stability perspective on walking) provided theoretic cer-
tificates of locomotive robustness to uncertain impact events. Both of
these approaches help to better understand the theoretical conditions
underlying provably robust walking.

• A preference-based learning framework for optimizing user com-
fort during exoskeleton locomotion. Chapter 3 proposed a princi-
pled, sample-efficient preference-based learning framework for optimizing
and characterizing individual exoskeleton user comfort. The details of
this learning framework were provided, along with simulation and exper-
imental demonstrations of the corresponding algorithms.

• Extending demonstrations for how the preference-based learn-
ing framework can be utilized for additional robotic applica-
tions. Chapter 4 applies the preference-based learning framework to-
wards general robotic applications which illustrate the efficacy of the
methodology towards tasks that relies on expert operator tuning. These
applications include tuning constraint bounds directly in the HZD gait
generation process, tuning control parameters of an ID-CLF-QP+ con-
troller, and tuning control barrier function parameters. The experimen-
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tal demonstrations of these applications were performed on a planar
biped, a 3D biped, and a quadrupedal biped. Overall, the chapter
demonstrates that preference-based learning is an efficient method for
quickly translating complex robotic behaviors to the real world by lever-
aging a human’s natural ability to judge good behavior.

• Experimental insight into additional clinical considerations for
realizing beneficial locomotion on lower-body assistive devices.
Finally, Chapter 5 presented three tangential clinical considerations for
lower-body assistive devices: variable assistance and its effect on metabolic
expenditure; latent factors underlying user-preferred locomotion; and the
embedding of musculoskeletal model constraints in the gait generation
process. Overall, all three of these considerations are important for the
clinical viability of lower-body assistive devices.

6.1 Future Work

Future work for the contributions of this thesis are summarized as follows.
First, future work towards better understanding the mathematical conditions
underlying locomotive robustness includes directly evaluating δ-robustness in
the gait generation process to systematically generate periodic orbits that are
robust to uncertain terrain. Moreover, one could apply the stochastic notion
of ISS (ISSp) to the gait synthesis framework to systematically generate nom-
inal walking trajectories that have probabilistic guarantees of robustness for
reasonable estimates of uncertain terrain. Additionally, since the probabilis-
tic guarantees associated with ISSp are currently loose, it is also likely that
tighter bounds may be obtained by exploiting particular structure in the dis-
turbance distribution and dynamics. An important question here is how to
choose Lyapunov function V, and the supermartingaleW, to obtain the tightest
probabilistic bound possible.

Second, towards user-customization, future steps include incorporating in-
creasingly fine-grained subjective feedback mechanisms into the learning frame-
work such as scaled preference feedback [224]. The hypothesis is that this
fine-grained feedback would improve the sample-efficiency. Also, as user pref-
erences may change over time, creating a learning framework that accounts
for these adaptations is also an important future research direction. Lastly,
more extensive studies are needed involving subjects with paraplegia, whose
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preferences likely differ from those of able-bodied subjects. Such future clinical
trials would not only improve user comfort during exoskeleton rehabilitation,
but would provide the data required to unlock a deeper understanding of the
science of walking. For example, given a large set of preference data, one could
apply tensor decomposition techniques to discover invariant subspaces among
the gait parameters. Such knowledge could accelerate learning of personalized
gaits by guiding exploration.

Finally, there are several next steps for investigating clinical considerations
associated with assisted locomotion. First, while the work presented in this
thesis studied how variable assistance influences metabolic cost of the exoskele-
ton user, further studies are needed to determine how assisted locomotion
influences muscle activity directly. This can be accomplished by recording ex-
oskeleton users’ electromyography during variable assistance. However, care
is needed towards insuring that the electrical motor noise does not influence
the accuracy of the electromyographic signals, and that the results are repeat-
able regardless of placement error. Second, the aforementioned exhaustive
studies on user-preference would provide sufficient data to make conclusive
claims about attributes of preferred exoskeleton walking gaits. Lastly, the
musculoskeletal models presented in this thesis leveraged physiological param-
eters (reference lengths, angle, etc.) from [70], which was intended for a non-
disabled subject with different height and weight. Thus, it might be beneficial
to calibrate these parameters of the muscle model to account for individual
differences (especially for amputee users) and improve the prediction accuracy
of the embedded muscle models, using methods similar to those in [200]. Such
prediction accuracy would further allow for targeted muscle behavior of the
user for rehabilitation applications.
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