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Chapter 2 

Ni-Catalyzed Enantioselective Reductive Cross-Coupling Reactions†  
 

 
 
 

2.1 INTRODUCTION 

 Transition metal catalysis has unlocked new modes of reactivity that have 

redefined the synthetic strategies used for the preparation of enantioenriched molecules. 

Cross-couplings constitute one subset of transition metal-catalyzed reactions and 

canonically refer to the coupling of an organic electrophile (typically an organic halide or 

pseudohalide) with an organometallic reagent. The use of Csp3 coupling partners has 

traditionally been limited by slow oxidative addition or transmetalation, as well as 

decomposition via rapid β-hydride elimination in the presence of palladium or other 

precious metals.1 Employing base metal catalysts, such as nickel, for sec-alkyl cross-

couplings can circumvent these challenges.2 

                                                
†This chapter was adapted from the following communication: Poremba, K. E.; Dibrell, 
S. E.; Reisman, S. E. ACS Catal. 2020, 10 (15), 8237–8246. 
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 Recently, Ni-catalyzed reductive cross-coupling (RCC) reactions, which join two 

electrophiles in the presence of a terminal reductant, have emerged as promising methods 

for the enantioselective coupling of Csp3 electrophiles (Figure 2.1).3 RCC reactions 

typically proceed under less basic conditions at ambient temperatures (between 0 and 40 

°C), which allows broad functional group tolerance and avoids racemization of newly 

formed stereocenters. Given that halide electrophiles are often used as precursors to the 

organometallic coupling partners for canonical cross-coupling reactions, and the wide 

commercial availability of the halogenated building blocks, the direct use of these 

electrophiles in RCCs is appealing.4 RCC reactions can be particularly advantageous for 

intramolecular C–C bond formation, because they obviate the need to install both an 

electrophile and an organometallic functional group in the same starting material.5 

Figure 2.1 Ni-catalyzed RCC reactions 

 

 Several challenges exist that hinder development of reductive cross-coupling 

reactions. Most methods require a stoichiometric amount of heterogeneous metal dust as 

a terminal reductant, which renders them sensitive to stir rates, in addition to metal purity 

and mesh size.6,7a The generation of metal salt byproducts, as well as the common use of 

amide solvents, reduces the sustainability of RCCs and can introduce reproducibility 

issues.8,9 Although RCCs are widely used by medicinal chemists, advances in reductant 

and solvent choices will be required for application of this technology in process 

chemistry.8,10,11 
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 In this chapter, we discuss the development of enantioselective RCCs catalyzed 

by nickel that employ a terminal reducing agent. We refer the interested reader to reviews 

of related reactions that are stereospecific,3e that utilize photoredox co-catalysis,12,13 or 

that involve 1,2-addition to polar π-systems (e.g. the Nozaki–Hiyama–Kishi coupling),14 

which have been reported elsewhere. The work presented in the following sections 

represents the state of the art at the time we commenced our own studies aiming to apply 

enantioselective Ni-catalyzed RCCs to natural product synthesis (Chapter 5); we note that 

additional studies (particularly with respect to mechanistic considerations) are available, 

and we discuss these in later chapters. 

2.2 HISTORICAL CONTEXT FOR RCC REACTIONS 

Figure 2.2 Seminal reports of Ni-mediated reductive homocoupling 
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form biaryl products (Figure 2.2). 18  However, extension of this reactivity from 

homocoupling to the cross-coupling of distinct partners remained elusive for several 

decades, due to the challenges associated with achieving cross-selectivity. 19  When 

employing two electrophilic coupling partners, a large excess of the less-reactive 

electrophile can be one way to outcompete the homocoupling process. A more efficient 

strategy is to sequence the reactions of the two electrophiles, such as by leveraging the 

different rates of oxidative addition of a Csp2 or Csp3 electrophile to different Ni species 

in the catalytic cycle.20,21 If the two electrophiles react selectively with distinct oxidation 

states of the Ni catalyst, then sequential oxidative addition events can afford the desired 

cross-coupled product and minimize homocoupled dimers. 22  Thus, optimization 

campaigns for these reactions often focus on how reaction parameters affect the 

distribution of the desired cross-coupled product to homodimers and reduction products. 

Figure 2.3 First reports coupling Csp2 and Csp3 electrophiles with metal reductants 

 

Much effort has focused on the Ni-catalyzed cross-selective couplings of sec-alkyl 
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reductant (Figure 2.3a).23 Weix and coworkers followed in 2010 with the RCC of a sec-

alkyl bromide and an aryl iodide, also utilizing a Ni(II) catalyst and bipyridine-based 

ligand (Figure 2.3b).24 Over the last decade, ongoing research has greatly expanded the 

scope of RCC reactions that use Mn0 or Zn0 as the terminal reductant to include many 

different sec-alkyl electrophiles, including those generated in situ from olefins.25,26 

2.3 MECHANISTIC CONSIDERATIONS 

 Before the last decade, all examples of Ni-catalyzed asymmetric cross-couplings 

fell into the category of redox-neutral transformations. Extensive methods development 

and mechanistic investigations by Fu and coworkers on the enantioconvergent cross-

coupling of sec-alkyl electrophiles demonstrated the feasibility of generating an alkyl 

radical through halide abstraction by a NiI complex and engaging this species in 

enantioselective catalysis. 27 , 28  That mechanistic similarities with enantioconvergent 

redox-neutral couplings could be leveraged toward the development of enantioselective 

RCC reactions thus represented a plausible hypothesis. 

 Investigations of Ni-catalyzed reductive cross-couplings have been conducted by 

several groups and can be organized into two limiting possibilities that are referred to as 

(1) the sequential reduction mechanism (or sequential oxidative addition) and (2) the 

radical chain mechanism (Figure 2.4).29,30 In a sequential reduction mechanism, it is 

proposed that the Csp2 electrophile (shown as aryl halide 8 for clarity) undergoes 

oxidative addition to a Ni0 species (9) to afford NiII–aryl complex 10,31 which is then 

reduced by a metal reductant to 11.32,33 The NiI–aryl complex (11) can then effect halide 

abstraction from a racemic sec-alkyl electrophile (12)34 to generate a prochiral radical 
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that undergoes recombination with the metal center to give a NiIII intermediate (13).35 

Subsequent reductive elimination affords the enantioenriched product (14) and NiI–halide 

complex 15, which can be reduced to regenerate the Ni0 catalyst (9) and close the 

catalytic cycle. 

Figure 2.4 Proposed mechanistic hypotheses 

 

 The second proposed mechanism involves a radical chain process.36 The Csp2 

electrophile (8) undergoes oxidative addition to Ni0 complex 9. The resulting NiII 

intermediate (10) then combines with a cage-escaped sec-alkyl radical (16) to give Ni(III) 

complex 13,37 which upon reductive elimination gives the enantioenriched product (14) 

and NiI–halide 15.27 The resulting NiI–halide species (15) can abstract a halide from the 

Csp3 electrophile (12) to generate long-lived sec-alkyl radical 16.38 Finally, the NiII–

dihalide species (17) can be reduced, regenerating the Ni0 catalyst (9) to close the 

catalytic cycle. 
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either reacts via a radical rebound process in the solvent cage (sequential reduction 

mechanism) or is long-lived and escapes the cage (radical chain reaction mechanism). 

Experimental and computational data support each mechanism in different systems, 

suggesting that the mechanism of Ni-catalyzed reductive cross-couplings varies with 

different substrates, ligands, and reaction conditions.21 It is also possible that similar 

mechanisms are operative where the Csp2 electrophile oxidatively adds to a NiI complex, 

and the cycle does not proceed through reduction of the catalyst to Ni0.7,26d,39 In any of 

these scenarios, the enantiodetermining step could be radical addition to a NiII complex to 

form a single diastereomer of a NiIII complex, followed by facile reductive elimination.28b 

Alternatively, if radical addition to NiII is reversible, then reductive elimination from the 

NiIII species could be the enantiodetermining step.13a,35 

2.4 ENANTIOCONVERGENT RCCs OF CSP2/CSP3 ELECTROPHILES 

Figure 2.5 First report of enantioconvergent RCC 
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homocoupling side-product formation. A mixed solvent system of DMA and THF 

provided the optimal balance of reactivity and selectivity. Importantly, it was found that 

the addition of dimethylbenzoic acid (DMBA) suppressed homocoupling of the Csp3 

electrophile. A variety of functional groups were tolerated on both coupling partners, 

providing the products in high yield and enantiomeric excess (ee). 

Figure 2.6 Enantioconvergent RCCs of alkenyl bromides 
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suggested to enhance reactivity in reductive cross-couplings through acceleration of 

electron transfer between Mn0 and Ni or by in situ formation of iodide electrophiles.42 In 

2018, this mode of reactivity was extended to chloro(arylmethyl)silanes, allowing access 

to enantioenriched allylic silanes (Figure 2.6b).43 Co-catalysis with cobalt phthalocyanine 

(CoPc) was required for efficient coupling of these bulky silyl electrophiles, presumably 

to facilitate radical generation.44 

Figure 2.7 Enantioconvergent reductive decarboxylative cross-coupling 
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catalyzed halide exchange process.50 This alkenyl chloride was inert in the cross-coupling 

reaction; thus, it was necessary to eliminate all sources of chloride in the catalyst and 

additives to improve the yield. 

Figure 2.8 Enantioconvergent RCC of α-chloronitriles 

 

Despite early success with activated Csp3 coupling partners, variation of the Csp2 
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mechanism (Figure 2.9b).54 Using L4, 2-arylphenethylamine products were formed with 

high levels of enantioselectivity. Multivariate analysis of the effect of chiral BiOX 

ligands on the reaction revealed that ligand polarizability influences the 

enantioselectivity, suggesting the presence of noncovalent interactions, such as dispersion 

forces or CH–π interactions, in the selectivity-determining transition state. 

Figure 2.9 Enantioconvergent RCCs with a novel BiOX ligand 
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tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) was proposed to turn over the Ni 

catalyst when Hantzsch ester (HEH) was employed as a soluble terminal reductant. Thus, 

strategic use of photoredox co-catalysts may preclude the generation of stoichiometric 

metal waste by Ni-catalyzed reductive cross-couplings. In 2021, we reported that the 

coupling of similar substrates using L4 with Mn0 as terminal reductant performed with a 

similar level of reactivity and enantioselectivity (Figure 2.9d).55b Notably, use of α-

chloroesters with β-branching substituents (not shown) could be cross-coupled with 

improved enantioselectivity (up to 98% ee) also using L4 as the ligand. In this case, a 

multi-linear regression model was developed that demonstrated the cooperative influence 

of the substrate and ligand steric profiles on enantioselectivity. 

Figure 2.10 Enantioconvergent RCC with Ni/Ti co-catalysis 
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2.5 ENANTIOSELECTIVE RCCs OF OLEFINS 

 Recently, olefins have been employed in enantioselective Ni-catalyzed reductive 

cross-couplings to forge two C–C bonds and a stereogenic center in one reaction. These 

dicarbofunctionalizations are advantageous in cases where alkyl (pseudo)halide 

electrophiles are unstable or require multiple steps to prepare, since the Csp3 electrophilic 

fragment is generated directly from an alkene and a Csp2 halide. Most of the methods to 

date involve an initial intramolecular addition of a Csp2 electrophile to an alkene. This 

represents a potential enantiodetermining step that distinguishes these reactions from 

non-conjunctive RCCs; in-depth mechanistic investigations will be instructive for future 

reaction development. 

 In 2018, Kong and coworkers disclosed the enantioselective 1,2-

dicarbofunctionalization of activated alkenes to access heterocycles bearing an all-carbon 

quaternary center (Figure 2.11a).58 This 1,2-diarylation required both Zn and B2pin2 as 

terminal reductants, as well as an iodide source (KI) to improve the yield. A 

phosphinoferrocenyloxazoline ligand (L6) induced high levels of enantioselectivity of the 

products, which featured various arene substitution and tolerance of a few sterically 

bulky groups at the benzylic position. Similar olefin substrates were found to undergo 

asymmetric 1,2-arylalkenylation with alkenyl bromide coupling partners (Figure 2.11b).59 

In this case, chiral BiOX L7 could be used in the absence of additives to provide 

oxindoles in good ee. 

In 2019, Shu and coworkers published a related reductive transformation able to 

couple unactivated olefins with alkenyl triflates (Figure 2.11c).60  Making use of a 

pyridyloxazoline ligand (PyOx, L8), Mn0 as the stoichiometric reductant, and each 
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electrophile in an equimolar amount, this reaction gives heterocyclic products in 

moderate to good yield and excellent ee. While this transformation successfully coupled a 

range of aryl substituents on the alkene partner, only 1,1-disubstitution of the alkene was 

tolerated. 

Figure 2.11 Enantioselective RCCs of olefins and Csp2 electrophiles 
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of the pendant alkene, which may be the enantiodetermining step. The NiI–alkyl species 

resulting from this 5-exo-trig cyclization is then poised to undergo oxidative addition of 

the Csp2 coupling partner (1 or 46) to furnish final product 43 or 47, respectively, with 

high levels of enantioselectivity. 

Figure 2.12 Enantioselective RCCs of olefins and Csp3 electrophiles 
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indicating the difficulty of 6-exo-trig cyclization. These limitations highlight an 

opportunity for development to access products featuring other ring sizes.  

Soon after, the Wang group demonstrated the ability to couple styrene-tethered acyl 

chlorides and Csp3 electrophiles (Figure 2.12c).63 The reaction, which proceeds with Mn0 

as terminal reductant, was found to tolerate groups of varying steric bulk at the benzylic 

position of 54. Competent coupling partners included primary and secondary alkyl 

iodides and benzyl chloride. Although the heterocyclic products were available in 

moderate to good yields with PyOx L9, morpholino-substituted PyOx L10 was necessary 

to obtain good levels of enantioselectivity. 

Figure 2.13 Enantioselective reductive intermolecular cross-coupling of olefins 
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experiments support a mechanism involving reversible homolysis of the Ni–alkyl bond 

resulting from olefin migratory insertion, which may precede enantiodetermining 

reductive elimination.  

 In the following year, Chu and coworkers reported the intermolecular reductive 

coupling of olefins with (hetero)aryl bromides and perfluorinated alkyl iodides (Figure 

2.13b).65  Use of a pendant directing group facilitated the regiospecific reaction of 

unactivated alkenes. Chiral BiOX ligands were found to be uniquely effective in this 

three-component reaction; while previously developed L4 promoted formation of the 1,2-

fluoroalkylarylated products in high yields, extending the alkyl chains of the ligand (L12) 

did not result in enhanced enantioselectivity. This transformation is an important advance 

from intramolecular olefin RCCs; the difunctionalization of olefins with distinct 

electrophiles will continue to be an interesting and significant extension of this 

intermolecular methodology. 

2.6 CONCLUDING REMARKS 

 Efficient C–C bond construction through Ni-catalyzed enantioselective RCC 

reactions affords valuable enantioenriched small molecules from simple electrophile 

precursors. We anticipate that addressing several remaining challenges will be required 

for further advances in the field. The development of new ligand scaffolds will likely be 

crucial to enhancing the yield and ee of new reactions. Importantly, techniques such as 

ligand parameterization with multivariate linear regression analysis may draw 

connections between seemingly scattered data to reveal important trends in reactivity and 

stereoselectivity. In addition, transitioning away from heterogenous metal reductants may 
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increase industrial use of reductive cross-couplings, as well as facilitate high-throughput 

screening for development and use of these transformations. 

 Activated alkyl coupling partners currently dominate the enantioselective RCCs of 

Csp2 and Csp3 electrophiles, and several limitations within this category remain. Ortho-

substituted and ortho,ortho-disubstituted benzylic electrophiles exhibit low reactivity, as 

do those featuring sterically bulky α-substituents, with few exceptions (see Fig. 2.9d).40 

The poor stability of electron-rich benzylic halides and α-heteroatom-substituted halides 

diminishes their utility.4 Unactivated and tertiary halides remain a significant challenge in 

enantioselective transformations. Thus, diversifying the pool of competent alkyl 

(pseudo)halide electrophiles is an important future focus. 

 To access a broader scope of Csp3 coupling partners that can serve as alkyl radical 

precursors, radical generation mechanisms other than halogen abstraction should be 

explored. For example, using synergistic photoredox/Ni catalysis for C–H 

functionalization is an exciting new direction; however, it has been challenging to render 

these reactions enantioselective.66,67 Ultimately, the development of new methods of Csp3 

radical generation will improve the accessibility and synthetic utility of enantioselective 

RCCs. 

 Reductive olefin dicarbofunctionalization reactions offer strategic 

complementarity to the RCC of (pseudo)halide electrophiles. In principle, unactivated 

olefins can be leveraged to forge stereocenters remote from α-stabilizing groups, which 

would diverge from the reactivity of activated halides. An advantage of using olefin 

coupling partners is the ability to access all-carbon quaternary centers, which has yet to 

be realized in enantioconvergent RCCs. Although current methods are restricted to 
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cyclization of five-membered rings as a strategy to effectively discriminate electrophiles, 

the recent development of intermolecular olefin RCCs suggests that this is not an intrinsic 

limitation. Further development of formally three-component couplings will rely on 

deeper mechanistic understanding to address challenges of electrophile differentiation. 

 Overall, transition metal-catalyzed cross-coupling reactions remain an invaluable 

tool for the synthesis of small molecules and natural products. In particular, Ni-catalyzed 

reductive cross-couplings have enabled the development of mild reaction conditions that 

give the desired products in good yields with high levels of enantioselectivity. We are 

confident that this field will continue to grow and revolutionize the way that carbon–

carbon bonds are constructed in an enantioselective manner. 
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