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ABSTRACT 

 

 Expedient access to complex molecules via chemical synthesis is important for 

assessing their biological activity and medicinal properties. In one approach, convergent 

joining of fragments of similar size and complexity is followed by minimal scaffold 

tailoring steps to rapidly access natural products. This strategy hinges on the ability to (1) 

tailor peripheral oxidation, ideally via creative redox transformations, and (2) forge 

strategic bonds within a complex scaffold through C–C bond formation. We disclose 

efforts to address these aims by developing broadly useful chemical tools and applying 

them to the preparation of bioactive natural products. 

Toward the first aim, we investigated unusual oxidative reactivity mediated by 

selenium dioxide. To address the second aim, we developed nickel-catalyzed reductive 

cross-coupling reactions to study: catalyst-controlled enantioselectivity in the preparation 

of medicinally relevant small molecules, substrate-controlled stereoselectivity, and 

selectivity for ring formation. The latter studies enabled the exploration of transition 

metal-mediated cyclization as a convergent annulation strategy toward the rearranged 

isoryanodane diterpene (+)-cassiabudanol A, as well as the formal synthesis of the 

macrocyclic cytotoxin (–)-cylindrocyclophane F.  
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