DEVELOPMENT OF OXIDATION AND TRANSITION METAL-MEDIATED REACTIONS AND APPLICATION TO NATURAL PRODUCT SYNTHESIS

Thesis by

Sara E. Dibrell

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2023

(Defended March 1, 2023)

© 2023

Sara Elise Dibrell

ORCID: 0000-0003-0332-1101

All Rights Reserved

To Him who made all things

ACKNOWLEDGEMENTS

First and foremost, I thank my parents for their unwavering support and encouragement; they have never doubted me, and this means the world to me. They instilled in me a faith in God and an appreciation for His creation, and they taught me to rely on His strength, rather than my own. These truths have driven my intellectual pursuits and allowed me to arrive at this point.

To the many teachers and mentors who were integral to my educational foundation, thank you; your support stretches the 1384 miles from Seguin, TX, to Caltech. From an early age, Pam Krippner instilled in me the joys of thinking outside the box and solving problems. My high school chemistry teacher, Kimberley Shupe Copeland, helped focus that excitement on science. Although I didn't realize it at the time, she planted the seed that has since blossomed into a real passion for chemistry. I will always be inspired by her sincere commitment to education and dedicate this work to her memory. And to Modi and Janelle, my lifelong friends who have been there for everything, who would I be today without you? We may be scattered across the country, but you're both close to my heart.

I am indebted to my UTSA Top Scholar family. I was fortunate to have found my way into a talented group of people whose successes in school and life have motivated me since the first day of college. Thank you especially to brilliant and grounded Cory Nguyen for your steady friendship and our many adventures. For the shenanigans that broke the tedium of studying, I am grateful to our entire cohort and the one-and-only Oscar Cantua. Special thanks to Kristi Meyer, who encouraged me and challenged me and opened so many doors for me. She was the force that propelled me into academic research.

I cannot express enough my gratitude for Prof. Doug Frantz, a chemist, mentor, and person I strive to emulate. Since he welcomed me, a naïve undergrad, into his lab, his generous support and advice has been unfailing. In the Frantz lab, I first learned how challenging but incredibly rewarding organic chemistry research can be; I was hooked. I owe that to the inspiring women of the group who I still look up to: Marie (could there ever be a kinder or more patient mentor?), Charissa, Ana Cristina, Bobbi, and Melissa. I would also like to thank Dr. Hector Aguilar, an excellent teacher whose organic chemistry lessons were not only digestible but memorable. I'm not likely to forget modeling molecular orbitals with balloons.

Thank you to Prof. Jefferson Chan for the opportunity to spend a summer in your lab. What a smart and fun group! Thomas, Nick, Chris, Hailey, and Effie: thank you for the great times in and out of lab. For another decisive summer research experience, I extend my gratitude to Merck. The joy I found in working with the Discovery Chemistry team at West Point, with Dr. Valerie Shurtleff in particular, has been strong motivation throughout my time in graduate school. I am so humbled and excited to call you colleagues in a few months.

I am thankful for the intense love for science I encountered within the Caltech community. Thank you to my entire committee, for your commitment to my growth as a scientist: Profs. Sarah Reisman, Brian Stoltz, Max Robb, and Jonas Peters. I am beyond grateful for the opportunity to pursue my PhD in Sarah's lab. I value the flexibility to investigate a wide variety of interesting chemistry that Sarah provides her students and that she always has a good idea, no matter the problem. I am amazed by Sarah's ability to clearly articulate science and appreciate being able to learn from her.

Since the beginning, our 2018 cohort has bonded over challenging problem sets, board game nights, and the daily struggles of lab. I would be lost without Jeff Kerkovius, Ray Turro, and Yujia Tao. It has been a pleasure to spend the last several years working and learning alongside you.

Yujia, thank you for the brief but formative experience of sharing a fume hood. I am continually in awe of your creativity and experimental skill. I also thank Kelsey Poremba for lending her hood to me in the early days, because it provided the opportunity to work next to Skyler Mendoza. How can one person know exactly what to do to keep the lab from falling apart, be game for a middle-of-the-night hike into Eaton Canyon, and genuinely care about everyone? My friendships with Yujia and Skyler have been critical to survival both in and out of lab, and I treasure you both.

Thank you to Karli Holman, who was also generous with her lab space — and whose upmost organization, aptitude, and kindness are an inspiration to me. A special note of gratitude goes to the best bay mates I could have asked for. I had such a fun time in lab conversing with Drs. Michael Rombola and David Hill, who both possess a captivating combination of genius and gab. I also had the great pleasure of working next to the equally helpful and fun Dr. Dave Charboneau, and I can only hope to one day match the wit of Dr. Sven Richter. Thank you also to my long-time bay mate, office mate, and Big Sib, Alex Shimozono; what a treat to have such a candid and hard-working friend.

One of the best parts of graduate school has been working with extraordinarily talented project partners. From day one, Mike Maser gave so much of his time and effort as my mentor, and I am deeply appreciative of all he taught me. Thank you to the whole #cylindrocyclofam: Kelsey, Chris, Cedric, and Stephanie. This project forced me to grow in so many ways, and I am very grateful for each of you in the various roles you played in this journey. Travis DeLano and Caitlin Lacker: I am so glad that I teamed up with you both. Travis, thank you for being a clear-headed and enthusiastic leader. Caitlin, thank you for being a consistent force for good. I truly value your rare ability to be both the hardest worker and the nicest person. Tackling the problem of N–N bonds has been another highlight of my time at Caltech. I appreciate the support of Drs. Martin Walsh and Tejas Shah and Corteva. For their patience and perseverance, I sincerely thank Jay Barbor, Dr. Trevor Lohrey, Dr. Vaishnavi Nair, and Kim Sharp; I have learned so much from each of your approaches to problem solving.

I would also like to express my appreciation for the newer and vivacious members of the Reisman group. Emily Chen, Jordan Thompson, and Kate Gallagher have infused my time in the group with fresh energy, for which I am grateful. I have thoroughly enjoyed watching Kate hit the ground running in lab and am excited for her bright future.

Outside of 315 Schligner, there are many people to whom I owe a great deal. Brooke Versaw and the Robb group have generously taught me about polymers and provided GPC help (and been great friends!). Dr. Scott Virgil has gone above and beyond in helping me, whether handling tough separations with ease, putting in countless hours of instrument upkeep/improvement, or being always at the ready to answer a question. He and Silva have opened their home and hearts to all of us with unparalleled generosity. I am grateful for Dr. David VanderVelde and Dr. Mona Shahgholi for their invaluable assistance with NMR and mass spectrometry, respectively. Thank you also to Beth Marshall, who is such a delight to interact with; to Alison Ross, for all that she does to keep things running smoothly; to Nate Siladke, for keeping everyone safe and sound; to Nate Hart, for fixing my Schlenk line too many times; and to Joe Drew, without whom the whole of Schlinger Laboratory would rapidly fall into disarray. For providing near-daily sustenance — and, more importantly, the friendliest smiles — thank you to the entire team at Broad Café.

I also acknowledge the generous support from BMS and Merck (and the ACS Women Chemists Committee) during my graduate studies. These awards provided the opportunity to connect with two amazing mentors: Dr. Alyssa Antropow and Dr. Phieng Siliphaivanh. They have been a consistent source of advice and encouragement, instrumental in this last phase of graduate school.

Finally, I thank those whose love and prayers have sustained me throughout my time at Caltech. I thank God for sending the late Pastor Chuck Ryor into my life and for my church community. I have been blessed with so many godly role models; Glenn and Rita Biasi, Pat and Macall Horan, Jon and Bella Thomasson, and Isaiah and Aubree Lin, to name a few, have faithfully reminded me to turn my eyes above. To our Thursday night crew: I will dearly miss the constancy of studying, laughing, praying, and eating together.

No amount of words is sufficient to express the depth of my love for Michael Zott, "my dime piece straight hottie mega boyfriend baller super chemist" and soon-to-be husband. From orientation onwards, you have not ceased to care for me, to push me, to

love me, and to inspire me. How exciting that the life we've been building together here is just the beginning! I am and forever will be grateful for you.

ABSTRACT

Expedient access to complex molecules via chemical synthesis is important for assessing their biological activity and medicinal properties. In one approach, convergent joining of fragments of similar size and complexity is followed by minimal scaffold tailoring steps to rapidly access natural products. This strategy hinges on the ability to (1) tailor peripheral oxidation, ideally via creative redox transformations, and (2) forge strategic bonds within a complex scaffold through C–C bond formation. We disclose efforts to address these aims by developing broadly useful chemical tools and applying them to the preparation of bioactive natural products.

Toward the first aim, we investigated unusual oxidative reactivity mediated by selenium dioxide. To address the second aim, we developed nickel-catalyzed reductive cross-coupling reactions to study: catalyst-controlled enantioselectivity in the preparation of medicinally relevant small molecules, substrate-controlled stereoselectivity, and selectivity for ring formation. The latter studies enabled the exploration of transition metal-mediated cyclization as a convergent annulation strategy toward the rearranged isoryanodane diterpene (+)-cassiabudanol A, as well as the formal synthesis of the macrocyclic cytotoxin (–)-cylindrocyclophane F.

PUBLISHED CONTENT AND CONTRIBUTIONS

Portions of the work described herein were disclosed in the following communications:

Dibrell, S. E.; Tao, Y.; Reisman, S. E. *Acc. Chem. Res.* 2021, *54* (6), 1360–1373.
 DOI: 10.1021/acs.accounts.0c00858. Copyright © 2021 American Chemical Society.

S.E.D. contributed to writing of the manuscript.

Poremba, K. E.; Dibrell, S. E.; Reisman, S. E. *ACS Catal.* 2020, *10* (15), 8237–8246.
 DOI: 10.1021/acscatal.0c01842. Copyright © 2020 American Chemical Society.

S.E.D. contributed to writing of the manuscript.

- Dibrell, S. E.;[‡] Maser, M. R.;[‡] Reisman, S. E. J. Am. Chem. Soc. 2020, 142 (14), 6483–6487. DOI: 10.1021/jacs.9b13818. Copyright © 2020 American Chemical Society.
- S.E.D. contributed to the reaction development, conducted experiments, and participated in preparation of the supporting data and writing of the manuscript.

TABLE OF CONTENTS

CHAPTER 1	1
Synthetic Design Guided by Oxidation Pattern Analysis	
1.1 INTRODUCTION	1
1.1.1 Overview of Oxidized Diterpene Syntheses	3
1.2 ADDRESSING DISSONANT CHARGE AFFINITY PATTERNS	4
1.2.1 <i>ent</i> -Kauranoid Diterpenes	4
1.2.2 Pleuromutilin	8
1.3 COMPLEX OXIDATION TOPOLOGY	12
1.3.1 Ryanodane Diterpenes	12
1.3.1 Isoryanodane Diterpenes	18
1.4 CONCLUDING REMARKS	24
1.5 REFERENCES	25
CHAPIER 2	36
Ni-Catalyzed Enantioselective Reductive Cross-Coupling Reactions	
2.1 INTRODUCTION	36
2.2 HISTORICAL CONTEXT FOR RCC REACTIONS	

2.3 M	1ECHANISTIC CONSIDERATIONS	10
2.4 EN	NANTIOCONVERGENT RCCs OF CSP ² AND CP ³ ELECTROPHILES	12
2.5 EN	NANTIOSELECTIVE RCCs OF OLEFINS	18

2.6 CONCLUDING REMARKS	52
2.7 REFERENCES	54

CHAPTER 3

69

3.1 INTRODUCTION	69
3.2 DEVELOPMENT OF DIOXIDATION REACTION	71
3.2.1 Optimization of Reaction Conditions	71
3.2.2 Reaction Scope	73
3.3 MECHANISTIC INVESTIGATION OF DIOXIDATION	75
3.3.1 Proposed Reaction Pathways	75
3.3.2 Investigation of Cycloaddition Pathway	77
3.3.3 Investigation of Stepwise Pathway	79
3.3.4 Expansion of Dioxidation Scope	82
3.4 DEVELOPMENT OF TRIOXIDATION REACTION	83
3.4.1 Optimization of Reaction Conditions	83
3.4.2 Reaction Scope	84
3.5 STEREOCHEMICAL ANALYSIS OF DI- AND TRIOXIDATIONS	85
3.5.1 Investigation of Di- to Trioxidation Conversion	85
3.5.2 Investigation of Alternative Trioxidation Pathway	90
3.5.3 Mechanistic Conclusion: Water-Dependent Product Distribution	93
3.6 SYNTHETIC APPLICATIONS	94
3.7 CONCLUDING REMARKS	96
3.8 EXPERIMENTAL SECTION	96
3.8.1 Materials and Methods	96

3.8.2 Substrate Preparation	
3.8.3 Reaction Optimization	
3.8.4 Dioxidation	
3.8.5 Kinetic Analysis	147
3.8.6 Trioxidation	
3.8.7 Stereochemical Analysis	
3.8.8 Product Functionalization	
3.9 REFERENCES	

CHAPTER 4

Progress Toward the Synthesis of (+)-Cassiabudanol A

4.1 INTRODUCTION	188
4.1.1 Structural Variety and Proposed Biosynthesis	190
4.1.2 Medicinal Properties and Biological Activity	193
4.1.3 Synthetic Studies	194
4.1.3.1 Application of Ryanodol Synthesis by Inoue	194
4.1.3.2 Ensley Approach to Cinncassiol D ₁	195
4.1.3.3 Reisman Synthesis of Perseanol	196
4.2 CONCEPTUAL SYNTHETIC DESIGN	197
4.3 FIRST GENERATION STRATEGY	198
4.3.1 Retrosynthetic Analysis	198
4.2.2.To starts Associated December 1.4.4.1.5.1.4.4.Chilles and	
4.3.2 Tartrate Acetonide: Precedent and Anticipated Challenges	200
4.3.2 Tartrate Acetonide: Precedent and Anticipated Challenges 4.3.3 Forward Synthetic Efforts	200 202
4.3.2 Tartrate Acetonide: Precedent and Anticipated Challenges4.3.3 Forward Synthetic Efforts4.3.4 B-Ring Cyclization via Decarboxylative Conjugate Addition	200 202 205
 4.3.2 Tartrate Acetonide: Precedent and Anticipated Challenges 4.3.3 Forward Synthetic Efforts	200 202 205 208
 4.3.2 Tartrate Acetonide: Precedent and Anticipated Challenges 4.3.3 Forward Synthetic Efforts	200 202 205 208 208

188

4.4.2 Preparation and Coupling of the Revised Diol Fragment	210
4.4.3 Exploration of Transition Metal-Mediated B-Ring Formation	213
4.4.3.1 Redox Relay Heck Cyclization	213
4.4.3.2 Interrupted Heck cyclization: Anion Capture	216
4.4.3.3 Steric Hypothesis: Targeting (E)-Substrate	219
4.4.4 Development of Stereodivergent Reductive Coupling	220
4.4.5 Optimization of Redox Relay Heck Cyclization	228
4.4.5.1 Investigation of Catalytic Systems: Addressing Byproducts	230
4.4.5.2 Investigation of Catalytic Systems: Catalyst Optimization	234
4.4.5.3 Stoichiometric Studies	237
4.4.6 Toward <i>cis</i> -Fused Ring System	242
4.4.7 Decarboxylative Enol Addition Toward A Ring	246
4.5 THIRD GENERATION STRATEGY	249
4.5.1 Alternative Conceptual Synthetic Design and Retrosynthesis	249
4.5.2 Proton Series: (Z)-Substrate	251
4.5.3 Proton Series: (E)-Substrate	253
4.5.3.1 Silyl Enol Ether Generation via Cyclization	254
4.5.3.2 Ketone Generation via Cyclization	256
4.5.4 Analysis and Comparison to Ester Series	262
4.5.5 Route Optimization	265
4.5.6 Oxidative Enolate Coupling Toward A Ring	268
4.6 CONCLUDING REMARKS	271
4.7 EXPERIMENTAL SECTION	272
4.7.1 Materials and Methods	272
4.7.2 First Generation Strategy	274
4.7.3 Second Generation Strategy	295
4.7.4 Third Generation Strategy	350
4.8 REFERENCES	

CHAPTER 5

5.1 INTRODUCTION	
5.1.1 Natural Paracyclophanes	410
5.1.2 Synthetic Efforts	413
5.1.2.1 Cylindrocyclophanes: Macrocyclization	414
5.1.2.2 Cylindrocyclophanes: Stereocenter Installation	418
5.2 CONCEPTUAL SYNTHETIC DESIGN AND RETROSYNTHESIS	421
5.3 SINGLE REDUCTIVE CROSS-COUPING: MODEL REACTION	
5.3.1 Investigation Using BiOX Ligands	425
5.3.2 Investigation Using BOX Ligands	
5.4 SYNTHESIS OF DIMERIZATION SUBSTRATES	441
5.4.1 Toward Cylindrocyclophane F	
5.4.2 Toward Unsubstituted Paracyclophanes	454
5.4.3 Toward Cylindrocyclophane A	455
5.5 DOUBLE REDUCTIVE CROSS-COUPLING	457
5.5.1 Guiding Mechanistic Design	457
5.5.2 Cyclodimerization versus Polymerization	
5.5.3 Macrocyclization via Depolymerization	470
5.6 REVISED APPROACH AND FORMAL SYNTHESIS	476
5.7 CONCLUDING REMARKS	
5.8 EXPERIMENTAL SECTION	
5.8.1 Materials and Methods	
5.8.2 Single Reductive Cross-Coupling	
5.8.3 Synthesis of Dimerization Substrates	504
5.8.4 Double Reductive Cross-Coupling	540

408

5.8.5 Revised Approach and Formal Synthesis	555
5.9 REFERENCES	578
APPENDIX 1	600
Spectra Relevant to Chapter 3	
APPENDIX 2	737
Spectra Relevant to Chapter 4	
APPENDIX 3	961
Spectra Relevant to Chapter 5	
ABOUT THE AUTHOR	1100

xvii

LIST OF ABBREVIATIONS

[α] _D	angle of optical rotation of plane-polarized light
Å	angstrom(s)
Ac	acetyl
acac	acetylacetonate
aq.	aqueous
atm	atmosphere(s)
bpy	2,2'-bipyridine
Bn	benzyl
BOM	benzyloxymethyl
bp	boiling point
br	broad
Bu	butyl
ⁱ Bu	iso-butyl
ⁿ Bu	norm-butyl
′Bu	<i>tert</i> -butyl
c	concentration of sample for measurement of optical rotation
¹³ C	carbon-13 isotope
°C	degrees Celcius
calcd	calculated
CAN	ceric ammonium nitrate
Cbz	benzyloxycarbonyl

cf.	consult or compare to (Latin: confer)
cis	on the same side
cm ⁻¹	wavenumber(s)
СМ	cross-metathesis
СО	carbon monoxide
COD	1,5-cyclooctadiene
conv.	conversion
COSY	homonuclear correlation spectroscopy
CSA	camphor sulfonic acid
Δ	heat or difference
δ	chemical shift in ppm
d	doublet
d	deutero or dextrorotatory
D	deuterium
dba	dibenzylideneacetone
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	N,N'-dicyclohexylcarbodiimide
DCE	1,2-dichloroethane
DCM	dichloromethane
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
de novo	starting from the beginning; anew
DIBAL	diisobutylaluminum hydride
diglyme	bis(2-methoxyethyl) ether

DMA	N,N-dimethylacetamide
DMAP	4-(dimethylamino)pyridine
DME	1,2-dimethoxyethane
DMF	N,N-dimethylformamide
DMPU	1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone
DMSO	dimethylsulfoxide
dppf	1,1'-bis(diphenylphosphino)ferrocene
dr	diastereomeric ratio
dtbbpy	4,4'-di-tert-butyl-2,2'-dipyridyl
ee	enantiomeric excess
Ε	trans (entgegen) olefin geometry
EDC	<i>N</i> -(3-dimethylaminopropyl)- <i>N</i> '-ethylcarbodiimide hydrochloride
e.g.	for example (Latin: exempli gratia)
EI	electron impact
ent	enantiomer of
epi	epimeric
equiv	equivalent(s)
ESI	electrospray ionization
Et	ethyl
et al.	and others (Latin: et alii)
FAB	fast atom bombardment
FD	field desorption
FI	field ionization

FTIR	fourier transform infrared spectroscopy
g	gram(s)
glyme	dimethoxyethane
h	hour(s)
$^{1}\mathrm{H}$	proton
[H]	reduction
HFIP	hexafluoroisopropanol
НМВС	heteronuclear multiple-bond correlation spectroscopy
HMDS	hexamethyldisilazide
HMPA	hexamethylphosphoramide
hυ	irradiation with light
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrometry
HSQC	heteronuclear single quantum coherence spectroscopy
Hz	hertz
i.e.	that is (Latin: <i>id est</i>)
in situ	in the reaction mixture
iso	isomeric
J	coupling constant in Hz
k	rate constant
kcal	kilocalorie(s)
L	liter
l	levorotatory

LCMS	liquid chromatography-mass spectrometry
LDA	lithium diisopropylamide
m	multiplet or meter(s)
М	molar or molecular ion
т	meta
μ	micro
Me	methyl
МеОН	methanol
MeCN	acetonitrile
mg	milligram(s)
MHz	megahertz
min	minute(s)
mL	milliliter(s)
mol	mole(s)
MOM	methoxymethyl
Ms	methanesulfonyl (mesyl)
m/z	mass-to-charge ratio
NBS	N-bromosuccinimide
nm	nanometer(s)
nM	nanomolar
NMO	<i>N</i> -methylmorpholine <i>N</i> -oxide
NMR	nuclear magnetic resonance
nOe	nuclear Overhauser effect

NOESY	nuclear Overhauser enhancement spectroscopy
0	ortho
[O]	oxidation
OMe	methoxy
р	para
PCC	pyridinium chlorochromate
Ph	phenyl
рН	hydrogen ion concentration in aqueous solution
PhH	benzene
PhMe	toluene
pin	pinacol
p <i>K</i> _a	acid dissociation constant
pm	picometer(s)
PMB	para-methoxybenzyl
ppm	parts per million
PPTS	pyridinium para-toluenesulfonate
Pr	propyl
ⁱ Pr	isopropyl
^{<i>n</i>} Pr	propyl or <i>norm</i> -propyl
psi	pounds per square inch
pyr	pyridine
q	quartet
quant.	quantitative

R	generic group
R	rectus
RCM	ring-closing metathesis
ref	reference
R_f	retention factor
rgt.	reagent
rr	regioisomeric ratio
rt	room temperature
sat.	saturated
S	singlet or seconds
S	sinister
SAR	structure-activity relationship
sat.	saturated
SFC	supercritical fluid chromatography
t	triplet
TBACl	tetra-n-butylammonium chloride
TBAF	tetra-n-butylammonium fluoride
TBAI	tetra-n-butylammonium iodide
TBS	tert-butyldimethylsilyl
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography

TMS	trimethylsilyl
TOF	time-of-flight
Tol	tolyl
trans	on the opposite side
Ts	para-toluenesulfonyl (tosyl)
UV	ultraviolet
vide infra	see below
vide supra	see above
w/v	weight per volume
Х	anionic ligand or halide
XS	excess
Ζ	cis (zusammen) olefin geometry