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4.1 Introduction

Ammonia is produced at industrial scale for use in fertilizer and chemical syrthesis,
but could become a promising carbioee fuel if its selective and efficient catalytic oxidation
to nitrogen can be achieved. Catalysts sufficiently active and stable for fuel cell applications
are still needed?* Platinumbased materials, perhaps the current best current canditiates,
suffer from low current densities due to side reactions that can result at moderate applied

bias.

Molecular systems offer several advantages with respect to fundamental studies that

address both activity and selectivity in AThe first molecular AO catalysts were reported

in 2019910111213 Thys far, ruthenium catalysts have shown the highest turnowvelpet*

(TON; ~120 for [(TMP)Ru(NH)2]?* using phenoxyl HAA reagent),and the lowest
demonstrated onset potential for electrocataly$is.s¢ = 0.04 V vs Fc/Ft for
[(bpydma)(tpy)Ru(NH)]?*; TON = 2)? We reported a distinct example of a firstv metal
electrocatalyst, [(TPA)Fe(Ngjb|OTf2, with a TON of 16 and a comparatively very fast rate
(10" M~ *s™ ¥, but requiring a substantiBbnsetbias of 0.7 V (all potentials are reported vs

Fc/Fc).12

To improve on the AO activity of [(TPA)Fe(Nh1]OTf2, we targeted an iron system
that would display enhanced catalyst stability while showing higher activity at a lower
applied bias. Catalyst degradation with [(TPA)FefNIDTf> appearsto initiate from
substitution of the TPA ligand, an equilibrium process under the catalytic conditions that is

likely favored by the presence of a large excess of. NHe extent of TPA displacement
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from [(TPA)Fe(NH)2]JOTf. is likely increased by the cohpe x ° s d o mspim a n t

population §= 2) at RT, which results in more labile-Mbonds.

For the present system, given that the initial iron species in bulk solution during
catalysis is [(TPA)Fe(NEJ2]JOTf2, we explored whether modifying the auxiliary ligand
(Lauwy in such a fashion so as to support a-Epin (LauyFe(I-NHsz adduct might limit
substitution by NH and hence enhance overall stability, while maintaining high catalyst
activity. We decided to replace the wdahd tertiary amine donor of TPA, alongtWwione
of its pyridyl arms, with a bipyridine ligand (Schedh&¢ ) ; bi py r i d-domaingh a s
properties t o p-gcceptingprogertidSift’ Weatstsaught te shaintain
the cislabile sites present in [(TPA)Fe(NH|OTf,,18192021 which may facilitate
intramolecular NN bond formation. A rigid ligand containing each of these characteristics,
bpyPyMe (Scheme 4.1), has been reportéd, as has its iron(ll) complex,
[(bpyPy:Me)Fe(MeCN)|OTf>. The latter has been studied in tlentext of alkane

oxidation?!

Scheme4.1. Targeting enhanced Feediated AO via an alternative auxiliary lig:
strategy
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4.2 Results and Discussion

We first compared the electronic structure of both [(JFAMeCN}|OTf, and
[(bpyPy:Me)Fe(MeCN)]OTf, in the presence of NHn solution by the Evans method,
using trimethoxybenzene as an inert reference signal. At room temperature in the absence of
NHs, both systems display NMR spectra with resonances tygieal diamagnetic window,
and bulk magnetic moments of 00/8us (see Sl), indicating a dominant lespin
population. In the presence of 75 equivalentssNHD.8 M at NMR concentrations),
however, the solution prepared with [(TPA)Fe(MeglQ)f. gives rie to a spironly
magnetic moment of 5.8, indicative of a fully populate® = 2 state. By contrast, under
identical conditions, a solution prepared with [(bpyN?g)Fe(MeCN)]OTf, produces a bulk
magnetic moment of 1@&. Assuming a mixture o6 = 0 andS = 2 species at spionly
values, this moment corresponds to a 94:6 mixture in favor of thegowderivative in the

presence of Nk

To assess the stability of [(bpyRje)Fe(MeQN);]JOTf2 to substitution by Nklin
MeCN, we monitored its speciation by bNs spectroscopy while titrating in NHA
monotonic decrease in the absorbance for [(bgyByFe(Lp]OTf. (L = MeCN, NH), as
well as a loss of isosbestic behavior, becomes digokrnin the presence of 680
equivalents NH (see Sl). By contrast, [(TPA)Fe(MeGlQTf. begins showing

demetallation with 3200 equivalents N2

We next assessed catalytic AO by [(bpy¥g)Fe(MeCN)]OTf, via cyclic
voltammetry (CV) and controlled potential coulometry (CPC) using bdaped diamond

(BDD) working electrodes. CV of [(bpyRPye)Fe(MeCN)|OTf, with added NH as
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substrate shows a predgte oneelectron featur&; at 0.24 V and an irreversible multi

electronEz> wave at 0.79 V (Figre4.1; see Sl for DPV data), which replace the reversible
oneelectron wave observed in the absence of (. = 0.82 V); this behavior mirrors that

of [(TPA)Fe(NHs)]JOTf..?2 The catalytic onset potential of 045 V for
[(bpyPy:Me)Fe(MeCN)]OTf2 is ~250 mV cathodic of that for [(TPA)Fe(MeCI)Tf>,

ard the catalytic current is ~fourfold higher. By contrast, applying less potential bias most

typically results in a concomitant decrease in catalytic cufféht.

0.25 F —— NH; only
—— [(TPA)Fe(MeCN),]OTf, with NH,
020 | — L(bPyPy,Me)Fe(MeCN)JOTf, with NH;
<
Eop1st
€
o
50.10 F
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Figure 4.1. CV of MeCN solutions containing 0.2 M NH400 equivalents), 0.05
NH4OTf, and 0.5 mM [(TPA)Fe(MeCN])OTf2 or [(bpyPyMe)Fe(MeCN)]OTf. with BDD
working, Pt counter, and 5 mM Ag/AgOTf reference electrodes.

CPC confirms that [(bpyRWe)Fe(MeCN}|OTf2 is a highly active AO catalyst.
With a 0.05 mM [(bpyP3Me)Fe(MeCN)]OTf2 solution containing 400 equivalents Blid

MeCN with NHOTf supporting electrolyte (0.05 M), holding the bias at 0.85 V produces
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N2 with a high faradaic efficiency (FE) of 87%. Afia4 h, a TON of 93 (average of 4 runs;

STD = 8) was measured. Furthermore, active catalyst remains after 24 h; a reload experiment
was performed in which the BDD electrode was cleaned and thedvigentration was reset

to its original value; after an adidinal 24 h, another 56 equivalents Were detected
(average of 2 runs), resulting in a net TON of 149. With respect to TON, this value is a
marked improvement on both the previously reported Ru AO electrocatalyst (TON of 2) and
[(TPA)Fe(MeCN}]OTf2 (TON of 16)22CPC with'>*NHs (**N = 99%) praluces >90%°N>

by GGMS, indicating NH as the source of nitrogen in the liberated Rostcatalysis, a
thoroughly rinsed electrode showed no catalytic activity, under the same conditions but

without added [(bpyP¥e)Fe(MeCN}|OTf2.2°

To probe mechanist issues for the [(bpyRWe)Fe(MeCN)JOTf, system, we
further investigated thE; process. By CV, as the concentration ofNgHincreased, thE;
potential shifts cathodically. This is characteristic of an EC mechanism (single electron
transfer followed by a chemical ste&ff’ For an EC mechanism in the observed kinetic
regime (KE), the peak potential of such a process obeys Eq. 1 (Sét®nmievo plausible
stoichiometries are provided, involving either one or two molecules afiiNthe forward
reaction (Schemd.2a and4.2b, respectively). Plotting: versus either [Ng or [NH4']
(Schemet.2c and4.2d, respectively), the respective slopes supgtoichiometries of two
NHs in the forward reaction and one bfth the backward reaction, matching Schehab.
Taking the iron species to be [(bpyMe)Fe(MeCN)(NH)]OTf,, we thus propose that the
product of this EC reaction is [(bpyRe)Fe(NH)(NH3)]OTf2, formed via substitution and
net hydrogen atom abstraction. This behavior parallels [(TPA)F84]IH f2, which follows

Schemet.2a at a nearly identical potenttal.
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Scheme 4.2. Evidence supporting an EC mechanism at He potential. Possib
stoichiometries of th&;: potential are shown in (a) and (b). PlotEopotential versus t
natural logarithm of (c) Nklor (d) NH* concentration for [(bpyPiMe)Fe(MeCN)]OTf>.
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The iron speciation deduced from the above electrochemical data, favoring
[(bpyPy:Me)Fe(MeCN)(NH)]OTf2 prior to Ej, is notionally consistent with solid-state

XRD study of a crystal grown from an ammoniacal MeCN solutioru(€ig2). The short
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Fe-Nppy bond lengthtrans to MeCN of 1.89 A also underscores tight binding of the

bpyPyMe ligand.

Figure 4.2. Solid-state crystal structure of [(bpye)Fe(MeCN)(NH)]JOTf, at 100 K
with select bond lengths labeled in angstroms. Thermal ellipsoids are shown
probability. Triflate counterions andilx hydrogen atoms are omitted for clarity.

To understandhe character of the turnovimiting E> step, we studied the rate
dependence on [Fe] and [MNH concentrations. [(bpyRie)Fe(MeCN)(NR)]JOTf,
demonstrates firsdbrder behavior for both [Fe] and [NH(SI). The concentration ranges
studied ([Fe] = 0.082 mM, [NH3s] = 0-0.5 M) span the conditions employed for both CV
and CPC experiments. Using the fodtthe-wave analysis with a standard &&cheme to
simplify the multielectron, multiproton wave?32° the firstorder dependence on iron was

recapitulatd; however, while a clear dependence on {Nidl evident from the FOWA,
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ascertaining the quantitative dependence ors[M+hindered by uncertainty E°caat high

NHs concentrations. Still, we are able to compare the intrinsic AO reaction rates for
[(TPA)Fe(NHs)2]%* and [(bpyPyMe)Fe(MeCN)(NH)]?*. We previously reported a secend
order rate constant '¢k) of 3.7x 10’ M~ % s~ for [(TPA)Fe(NH)2]?*;*? for the present
catalyst [(opyPyMe)Fe(MeCN)(NH)]?*, the average ‘s is 1.8x 1°M~ L s ! Thus,
[(opyPy:Me)Fe(MeCN)(NH)]?>* is ca. 1.5 orders of magnitude faster than

[(TPA)Fe(NH)2]?.

The aforementioned electrochemical data are limited in mechanistic utility with
respect to the various steps that folleyy governing the pathway for-Nl bond formation.
Literature precedent for NN formation in systems applied to AO, whether mono
bimolecular in nature with respect to the metal complex, suggests two broad scenarios for
consideration: (1) interaction of two nitrogen ligands (12N), as via nftfith3332 imide, or
amide®®34 coupling, or (2) ammonia nucleophilic attack (ANA) on an electrophilic nitrido or
imido ligand®'° To begin to explore these issues foe tpresent iron system, we have
undertaken a theoretical study (Sched8, 4.4, using density functional theory due to the

size of the present system, and the TPSS functional owing to its minimal bia& faerBas

Fe** states>36

As an initial pont of calibration, our chosen method reliably predicts thedpin
ground state of [(bpyRi¥le)Fe(MeCN)(NH)]?* and also itE: potential (0.24 V calcd; see
Sl), which is analogous to that experimentally observed at 0.2 b Ni¢ latter result is
encouraging as it involves both a change in oxidation state and a chemical step (to produce

[(bpyPy:Me)Fe(NH)(NH3)]?*, in accordance ith our electrochemical data).
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Scheme 4.3PossibleE: steps and calculated E (V) values. DffEdicted ground spistate

valuesare shown
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From theE: product, [(bpyPyMe)Fe(NH)(NHs)]?*, one can consider a subsequent

1-electron oxidation step that determines Hagootential (0.79 V by DPV). Calculations
suggest oxidation to [(bpyBYle)Fe(NH)(NHs)]** requires a potential of 1.10 V, well above
0.79 V. However, a protecoupled oxidationstep to instead generatecs-bis-amido
complex, [(bpyPyMe)Fe(NH)(NH2)]?*, occurs at 0.81 V (Scherde, (a)). Alternatively,

a protoncoupled oxidation to generate the imido complex [(bpyRyFe(NH)(NH)2]?*
occurs at 0.91 V (Schen?e3, (b)), from which a subsequent protooupled oxidation to
produce the nitride species [(bpyMe)Fe(N)(NH)]?* can occur at much lower potential
(0.24 V, Schemd.3, (c)). On thermodynamic grounds, both scenarios remainilgiirs

working towards a mechanistic model.

We have also probed subsequeriNNbond formation steps. For example, we
investigated both reductive elimination (I2N) from ttis-bissamido and ANA from the
imido/nitrido species; the first scenario highligha cis-labile catalyst design, as in
[(bpyPy:Me)Fe(MeCN}|OTf.. From [(bpyPyMe)Fe(NH)(NH2)]?*, N-N reductive
el i mi nat i o Ahydrazinefadductf(bpgyPye ) fP-&N4HN)]>* (Schemed.4, (d))
is exergonic by 6.3 kcal/mol. Alternatively, ANA attait the imido or nitrido (Schende4,

(e) and (f)) is exergonic by 16.0 or 28.7 kcal/mol, respectively, affording another plausible
path towards NN bond formation. Other pathways, such as those including bimolecular N
N coupling (e.g., from NE NH, or Nintermediates), may also be plausible (see SI for

additional details).
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Scheme 4.4Possible NN coupl i ng r e ac DFTgnedcted gfod ¢pi
statevaluesare shown.
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4. 3 Concl usi on

In conclusion, [(bpyPMe)Fe(MeCN)(NR)]JOTf2 is an effective AO catalyst,
yielding a net TON of 149 after 48 h, which is the highest TON value reported to date for a
molecular catalyst. Compared to its related iron congener, [(TPA)RR|SHTf,,

[(bpyPy:Me)Fe(MeCN)(NH)]OTf2is substantially more able and operates at a higher rate
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at significantly lower overpotential. While a number of mechanistic insights have been

discussed, including a netédom abstraction &; to furnish [(bpyPyMe)Fe(NH)(NH3)]?*
prior to the onset of catalysisi&, future efforts are needed to probe mechanistic aspects of
the N-N bondforming step(s), guided by the thermodynamic considerations from the

experiments and theory discussed herein.
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