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ABSTRACT 

This thesis describes the strategic application of electrochemistry in the development 

of catalytic systems for two challenging processes: alkyl halide reduction and ammonia 

oxidation. In the case of alkyl halide reduction, the ability to precisely tune electrochemical 

potential favored the use of electrochemistry as compared to chemical reagents. By contrast, 

for ammonia oxidation, electrochemistry was specifically targeted due to motivations in the 

eventual development of ammonia fuel cell technology. The first chapter introduces these 

and other advantages of electrochemistry, as well as details regarding the thermodynamic 

potentials and kinetic barriers associated with alkyl halide reduction or ammonia oxidation. 

The second chapter details our development of photoelectrochemical methodology to 

employ a strongly luminescent dicopper system for outer-sphere, single-electron transfer 

reduction of benzyl chlorides. The third chapter marks the beginning of our work in 

molecular iron-mediated ammonia oxidation catalysis, in which we develop our hypothesis 

that catalyst structures featuring cis-labile coordination sites should mediate ammonia 

oxidation. We disclose the first iron electrocatalyst ([(TPA)Fe(MeCN)2]
2+) as well as a 

framework for the analysis of metrics such as overpotential, catalytic rate, and catalyst 

stability. The fourth chapter introduces a hypothesis for catalyst improvement—favoring 

low-spin electronic structures—and a model system for testing: ([(BPM)Fe(MeCN)2]
2+). 

Using this second-generation catalyst, improved stability, enhanced activity, and lowered 

overpotential were observed. The fifth chapter explores the validity of the cis-labile and low-

spin hypotheses via Hammett-type substituent studies on both the [(TPA)Fe(MeCN)2]
2+ and 

the [(BPM)Fe(MeCN)2]
2+ platforms. This study resulted in the development of a further 

enhanced molecular electrocatalyst for ammonia oxidation and revealed mechanistic 

information pertinent to the development of future catalytic systems.  
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Introduction  
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1.1 Opening Remarks 

Electron transfer is a common mechanistic step in a wide range of chemical 

reactions.1 This step is so prevalent that its appearance is seen in contexts as diverse as 

pharmaceutical synthesis,2 qubit engineering,3 biosensing,4 sustainable fuels,5,6 and many 

others. This is unsurprising given that, at least in our current conceptualization of physical 

reality, electrons are one of the primary subatomic particles, and their precise energies and 

arrangements in both atoms and molecules—the electronic structures—dictate chemical 

reactivity. Thus, by combining synthetic strategies to tune chemical structure with 

electrochemical methods that permit precise control over chemical potential, chemical 

reactions can be tuned in a well-controlled manner.7,8,9,10 In this thesis, I develop reactions 

that follow this framework: carefully selected electrocatalyst structures are synergistically 

paired with an electrode at precisely tuned electrochemical potentials to address the specific 

challenges of enabling single-electron reduction of alkyl halides and multi-electron oxidation 

of ammonia (Scheme 1.1). 

 

  

Scheme 1.1. Electron transfer in alkyl halide reduction and ammonia oxidation.  
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1.2 Electron Transfer Methods 

To physically mediate electron transfer, numerous strategies exist, of which I 

highlight three prevalent in synthesis and sustainability chemistry: (1) chemical electron 

transfer, (2) photocatalysis, and (3) electrochemical bias.2,11,12 Each strategy is distinct with 

respect to factors such as ease of tunability, electron transfer kinetics, and chemical 

compatibility, all of which can be influenced by characteristics such as the redox potential 

and the spatiotemporal availability of the electron transfer agent. We will first establish a 

framework for considering these principles using chemical reagents as an example, and then 

discuss the advantages and disadvantages of each strategy.  

Chemical electron transfer reagents can be organic, inorganic, or organometallic in 

nature and typically promote either single- or multi-electron transfer in an irreversible 

fashion. Thus, they are commonly employed as stoichiometric reagents. As a simple 

example, an alkali metal such as lithium reacts via single-electron transfer with a proton, 

forming a lithium cation and a hydrogen atom (eventually released in the form of elemental 

hydrogen; Equation 1.1). To quantify the propensity of reagents to donate or receive 

electrons, their electrochemical potential can be analyzed versus a reference reaction, 

establishing a thermodynamic scale.13 One such reference is the half-reaction describing 

reduction of protons to hydrogen, a component of Equation 1.1, which comprises the 

standard hydrogen electrode (SHE) that determines the potential reference of 0 V vs SHE. 

Since the reduction potential for Li+/Li vs SHE is −3.1 V,14 the reaction is highly favorable.  

2 Li + 2 H+ ⟶ 2 Li+ + H2 (Equation 1.1) 
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The thermodynamic driving force can be related to the reaction kinetics for electron 

transfer. For example, several models, such as Marcus theory, exist to quantify this 

relationship.1 Kinetic factors that can be categorized as spatiotemporal strongly influence the 

experimentally observable reaction rates. For a heterogeneous reductant like lithium, the 

reaction rate is a function of surface area, with higher surface area resulting in higher reaction 

rate due to mass transfer effects. Furthermore, the reacting substrate (for Equation 1.1, H+) 

must be brought within close proximity to the electron transfer agent. With soluble reaction 

components, this difficulty is obviated when the redox reagent is uniformly dispersed. 

Electron transfer is generally very fast, but temporal limitations can result in significantly 

reduced rates. For example, inner-sphere electron transfers that rely on complexation of the 

redox reagent and the substrate are regulated by the equilibrium between complexed and 

uncomplexed states.  

An extensive discussion on advantages and disadvantages of chemical redox 

reagents, as well as details regarding their preparation and use, has been reviewed by 

Connelly and Geiger.11 In brief, some advantages include superior applicability to large-scale 

reactions, compatibility with non-polar solvents, and, when soluble, extremely fast reaction 

rates. However, the greatest limitation of chemical redox reagents is their limited tunability, 

since any change in redox potential requires synthetic modifications. Such modifications 

may be challenging experimentally, and the resultant shifts in redox potential are discrete. 

While shifts can occasionally be brought about in a narrow capacity via solvent or electrolyte 

effects, more commonly, covalent modification via attachment of electron-donating or -

withdrawing groups is required. Considering compatibility, chemical reagents can also be 
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problematic given that they are used in a stoichiometric fashion. Thus, for a reductant such 

as lithium or an oxidant such as a nitrosonium salt, the product species (lithium cation or 

nitric oxide) can interact chemically with other reaction components.    

Electrochemical methods are the most developed alternatives to chemical reagents. 

Unlike chemical reagents that have discrete redox potentials, the electrochemical potential 

can be continuously tuned using a potentiostat. This allows for modifications to reaction 

driving force, small or large, to be readily interrogated. Furthermore, electrochemical cells 

can be engineered such that the byproducts of electron transfer do not come in contact with 

the reaction components of interest by utilizing a multi-compartment cell, since inert 

electrodes can serve solely as a conduit for electrons rather than as reagents themselves. This 

permits extensive engineering of the electrode surface to promote compatibility.15 Since the 

potentiostat records both potential and current, a large number of electroanalytical methods 

exist for mechanistic investigations, and even extremely fast reactions can routinely be 

studied using voltametric methods. Some limitations of electrochemistry include the 

requirement of electrolyte, the typical reliance on polar solvents, and the difficulty of reaction 

setup.  

Finally, photocatalysis is a growing strategy for effecting electron transfer in both 

redox-neutral and net-reductive or -oxidative transformations. Photocatalysis, like chemical 

redox strategies, relies on chemical compounds with unique redox properties and excited 

state lifetimes. The primary advantages of photocatalysis are the ability to access extreme 

redox potentials without jeopardizing compatibility, as well as the ease of favoring single-

electron over multi-electron transfer. Since photon energies are high—blue light (440 nm) is 
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equivalent to 65 kcal/mol (2.8 eV)—substrates that would typically be challenging to 

selectively activate using chemical reagents become accessible. The preference for single-

electron transfer arises from the fact that most photocatalyst structures are only photoactive 

in an oxidative or reductive capacity in a single oxidation state; upon gaining or losing an 

electron, their redox and photochemical properties become dramatically altered. This 

facilitates the generation of substrate-derived radical intermediates that are rapidly consumed 

in subsequent chemical steps. This prevents additional redox chemistry from occurring, since 

the photocatalyst must be turned over before an electron transfer of the same polarity occurs. 

One dual advantage/disadvantage is that in the quenched (i.e., post electron-transfer) state, 

the photocatalyst can again absorb energy via light and photosensitize a reaction of the 

opposite polarity. This establishes the basis for redox-neutral photocatalysis, an important 

and broad field, but can be detrimental to promoting purely reductive or oxidative 

transformations. Photocatalysts share the challenge of discrete redox potentials with 

chemical reagents but face the additional challenge that leveling effects are often observed 

when attempting to make a given photosensitizer more potent. That is, changing the ground 

state potential often compensatorily moves the excitation energy in the opposite direction, 

resulting in minimal perturbation of the net excited state redox potential. Additionally, the 

mass-transfer phenomena governing reaction rates with heterogeneous redox reagents find a 

parallel in photosensitizers in that photosensitizers are only active in the excited state, and 

excited state lifetimes are often short (less than several microseconds). While this can 

promote selectivity, it also challenges reaction scaleup and limits overall reaction rate.     
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1.3 Reaction-Specific Considerations 

The specific reactions of interest, single-electron alkyl halide reduction and multi-

electron ammonia oxidation (AO), feature distinct thermodynamic and kinetic challenges. 

Both reactions typically incur high overpotential (the amount of input energy required in 

excess of the thermodynamic minimum), but the origin of the overpotential is distinct. In this 

section, we discuss the fundamental reaction-specific challenges and considerations for alkyl 

halide reduction and ammonia oxidation. 

1.3.1 Alkyl halide reduction  

The research objective of single-electron alkyl halide reduction to produce alkyl 

radicals (Equation 1.2) is substantially motivated by synthetic utility as the resultant radicals 

can be employed in a wide variety of transformations.16,17,18 As such, the primary constraints 

include chemoselectivity; amenability to primary, secondary, and tertiary alkyl halides; and 

compatibility with other reaction components (e.g., catalysts, other reagents, additives).  

R–X + e− ⟶ R• + X− (Equation 1.2) 

While large overpotential is a challenge inherent to the reaction class, it is limiting 

only insofar as it affects chemoselectivity, substrate applicability, and compatibility. 

Overpotential, and the requisite applied potential, vary dramatically depending on the precise 

structure of the alkyl halide.19,20,21 

Factors that contribute to the effective reduction potential of alkyl halides include 

halide identity, conjugation, and substitution pattern (Scheme 1.2). In general, reduction is 
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easier (i.e., E° is less negative) in the order I > Br > Cl > F. Thus, fluorides and chlorides are 

more challenging to reduce than are analogous bromides and iodides. When the halogen-

bearing carbon is in conjugation with π-bonds, as in allylic or benzylic systems, or with 

electron-withdrawing groups, the reduction event also becomes easier. Finally, increased 

substitution at the halogen-bearing carbon makes reduction easier in the order tertiary > 

secondary > primary. Generally, the effect of these factors on E° is in the range of 100–1000 

mV, with halide identity being the most influential factor. Thus, the exact reaction outcome 

can be subject to many, potentially competing, factors. 

 

The reaction outcome of electron transfer to alkyl halides is further complicated by 

the presence of two closely spaced redox events: single electron reduction of the alkyl halide 

to the alkyl radical (EI) and subsequent single electron reduction of the alkyl radical to an 

alkyl anion (EII; Equation 1.3).19,22 Net, these are single-electron and two-electron reduction 

processes, respectively. For easily reduced alkyl halides, such as alkyl iodides, precise 

control over the electrochemical potential can readily afford selective single-electron 

reduction for production of alkyl radicals since often EI > EII (both values are negative). 

However, the more negative reduction potentials of some bromide and most chloride or 

Scheme 1.2. Effects of alkyl halide structure on reduction potential.  
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fluoride substrates is such that a potential inversion is observed, i.e., the reduction of the alkyl 

halide bond is more challenging than is the reduction of the resultant alkyl radical, EI < EII. 

Therefore, additional controls must be employed to favor single-electron transfer and 

mitigate two-electron reduction.  

R• + e− ⟶ R − (Equation 1.3) 

For alkyl halides susceptible to two-electron reduction, the primary means to control 

single- versus two-electron transfer is via the electron transfer method (see Sec 1.2). In direct 

electrolyses (i.e., without any electron transfer mediator), two-electron reduction to alkyl 

anions is almost always observed for bromide and chloride electrophiles that are not 

stabilized by conjugation due to the extremely negative potentials required for activation. 

Chemical reagents vary in their propensities to effect single- versus two-electron transfer. 

Simple, strongly reducing reagents such as alkali or alkaline metals or their adducts with 

polyaromatics (e.g., lithium napthalenide) generally promote two-electron reduction. Some 

specially designed reagents/catalysts that typically rely on inner-sphere Lewis-acid 

activation of the alkyl-halides can favor single-electron reduction by operating at lower 

reduction potentials, disfavoring reduction of the alkyl radical produced by the initial alkyl 

halide reduction.23,24,25 However, the most developed method by which to produce alkyl 

radicals from alkyl halides is photochemistry. Photocatalysts by design favor single-electron 

transfer processes, and a variety of complex transformations exist wherein alkyl iodide and 

bromide substrates are transformed into reactive alkyl radical intermediates. Unfortunately, 

photocatalysts are typically insufficiently reducing to activate alkyl chloride or fluoride 

substrates that are not adjacent to conjugated systems or electron-withdrawing groups. Thus, 
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the most efficacious method for alkyl radical generation is typically unsuitable for one of the 

broadest and most economical/environmentally friendly class of alkyl halides, chloride 

electrophiles.  

The dearth of photocatalytic methodologies for single-electron reduction of chloride 

electrophiles motivated our group and others to explore electrophotocatalysis.26 

Electrophotocatalysis takes advantage of the benefits of electrochemistry and 

photochemistry. For single-electron processes, a photochemical electron-transfer mediator 

can be paired with an electrode; the photocatalyst provides the means to favor single-electron 

processes, and the electrode provides a convenient means to precisely tune the 

electrochemical potential. While most photocatalysts rely on both reductive and oxidative 

quenching cycles to effect redox neutral transformations, the use of an electrode to turn the 

photocatalyst over, rather than an additional quenching cycle, permits net-reductive or net-

oxidative transformations to be readily performed at extreme redox potentials (Scheme 1.3). 

Considering the hypothesis that chloride electrophiles were generally inert due to inadequate 

photocatalyst redox potentials, the advantages of electrophotocatalysis promised a solution 

to this chemical challenge. 



11 

 

 

Indeed, electrophotocatalytic activation of challenging to reduce chloride 

electrophiles was reported for the first time in 2020.27,28 Concurrently, in independent 

publications from the Wickens group and collaboratively the Lin and Lambert groups, 

protocols to convert aryl chlorides into aryl radicals were disclosed (Scheme 1.4A). Aryl 

chlorides incur similar challenges as discussed for alkyl chlorides, such as extremely negative 

Scheme 1.3. Redox properties of various strongly reducing photocatalysts and their 

associated lifetimes. Redox neutral systems are highlighted in gray boxes, net-reductive or -

oxidative systems are highlighted in blue boxes. Potentials of oxidative quenching (−) and 

reductive quenching (+) are marked with − and +, respectively.  
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reduction potentials and the potential for two-electron reduction. In both examples, organic 

photocatalysts (N-arylmaleimide, NpMI; dicyanoanthracene, DCA) were made more 

reducing by single-electron cathodic reduction followed by photoexcitation, reaching 

excited-state potentials in excess of −3.2 V vs SCE, albeit with short lifetimes on the scale 

of 1 ns or lower. While the precise mechanistic course of the reactions (namely, the identity 

of the photoreductant) has been brought under question by the Nocera group as a result of 

short photoexcited state lifetimes,29 products characteristic of aryl radicals can be generated 

in synthetically useful quantities by reaction with common radical trapping agents. 

Subsequent work by the Barham group using NpMI revealed that similar protocols effect C–

O cleavage in phosphinated alcohols, although alkyl (benzylic) chlorides were not reduced 

(Scheme 1.4B).30 One potential factor responsible for the inertness of alkyl chlorides to 

NpMI is that aryl chlorides have lower free energies of activation for reduction than do alkyl 

chlorides as a result of a stepwise reduction pathway, and the associated kinetic penalty may 

prevent the use of photocatalysts with short lifetimes. Thus, we became interested in 

developing a protocol for alkyl chloride reduction via electrophotocatalysis, the details of 

which comprise Chapter 2.  



13 

 

 

1.3.2 Ammonia oxidation 

Interest in ammonia oxidation, specifically the conversion of two equivalents of 

ammonia to dinitrogen, is burgeoning given recent appreciation for its capacity to serve as a 

method for carbon-free energy production.31,32,33,34,35 The notably high volumetric energy 

density of ammonia (13.6 GJ·m−3) bests methanol, a comparable fuel that can also be readily 

produced in a carbon-neutral fashion, and it is more readily condensed and safer to transport 

than hydrogen.36 Under a unified set of conditions, a complete technoeconomical analysis 

for hydrogen, methanol and ammonia produced using renewable energy found ammonia to 

feature the lowest source-to-tank cost (Scheme 1.5A).37 While these beneficial attributes 

augur well for the future development of ammonia fuel technologies, high combustion 

temperatures for ammonia pose challenges to its immediate and widespread adoption. 

Scheme 1.4. Carbon radical generation via activation of challenging to reduce (A) aryl 

chloride and (B) alkyl phosphinate substrates under electrophotocatalysis.  
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A solution that promises to efficiently facilitate use of ammonia as fuel is 

electrochemical oxidation in a fuel cell. The theoretical potential for ammonia oxidation is 

very low, 0.09 V vs SHE (pH = 0) in aqueous conditions and −0.94 V vs Fc/Fc+ in acetonitrile 

using ammonia as base (Scheme 1.5B).38 Thus, when ammonia oxidation is paired with 

oxygen reduction, the maximum cell potential is comparable to a hydrogen fuel cell. 

Unfortunately, highly efficacious catalysts are required for ammonia oxidation since anodic 

oxidation on inert electrodes typically incurs an overpotential in excess of 1 V. The 

overpotential often observed for ammonia oxidation is unsurprising given the complexity of 

this six-electron, six-proton process. By analyzing the overall reaction in one- or two-electron 

steps, key contributors to the overpotential become apparent.  

Scheme 1.5. Sustainable fuel economic and thermodynamic metrics. (A) Source-to-tank 

costs for various fuels generated under carbon-neutral conditions with renewable energy. (B) 

Frost-Latimer diagram illustrating ammonia oxidation thermodynamics in acetonitrile using 

ammonia as base (pKa = 16.5) with Fc/Fc+ as the reference potential. 
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The first one-electron oxidation of ammonia can be considered in two cases wherein 

electron-transfer is coupled to, or independent of, electron transfer. Experimental 

thermodynamic data indicates a gas-phase bond-dissociation free energy value of 99.4 

kcal/mol.39 Thus, the N–H bonds in ammonia are extremely strong; as an example, this value 

exceeds the C–H bond-dissociation free energy of methane. Under non-aqueous 

(acetonitrile) electrochemical conditions, the mechanism of the first electron transfer from 

ammonia has been extensively investigated by Manthiram and coworkers.40 Their analysis 

indicated that the first electron transfer occurs without coupled proton transfer, and this 

electron transfer is the rate-determining step in ammonia oxidation at inert electrodes such 

as glassy carbon. From DFT calculations, this step occurs at a potential of 1.77 V vs the 

computational hydrogen electrode, a theoretical electrode that is analogous to the 

experimental SHE. This potential is notably above the thermodynamic potential for the entire 

six-electron ammonia oxidation reaction. 

The oxidation of ammonia by two- or four-electrons is more challenging to study 

experimentally in a direct fashion, but available thermodynamic data allows for the 

construction of a Frost-Latimer diagram (Scheme 1.5B).38 Looking at the Frost-Latimer 

diagram, the slope of a line between any two chemical intermediates gives the 

thermodynamic potential vs Fc/Fc+ for the given transformation. Thus, the line between NH3 

and N2 has a slope of −0.94 V as previously discussed. Since most chemical processes 

proceed via one- or two-electron steps, it is interesting to consider the available two-electron 

pathways. The first available two-electron oxidation, the conversion of NH3 to N2H4, has a 

potential of −0.08 V. Similar to the case of one-electron oxidation, this potential is 
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substantially above that of the overall six-electron process; therefore, it is expected that 

proceeding via this pathway would incur a substantial overpotential. For each subsequent 

two-electron transformation (N2H4 to N2H2 and N2H2 to N2), oxidation becomes easier, 

which can be rationalized by the ability of the increasing N–N bond order to facilitate 

reactivity. If any of these N–N bond containing intermediates were generated, it is more 

easily oxidized than is ammonia. This motivates research into catalyst designs that lower the 

activation barrier for N–N formation.  

The interplay of these thermodynamic factors can be integrated into an analysis of 

the available experimental data governing the mechanism of ammonia oxidation under 

catalytic conditions. Electrochemical ammonia oxidation underwent its first wave of intense 

interest in the 1960s, and the mechanistic hypotheses then established that persist to this 

day.41,42,43,44 Namely, the reaction course is proposed to follow either the Oswin-Salomon41 

or the Gerischer-Mauerer42 mechanisms (Scheme 1.6). The Oswin-Salomon mechanism 

proposes that N–N bond formation during electrocatalytic ammonia oxidation with platinum 

electrodes proceeds via the coupling of two metal nitrides. By contrast, the Gerischer-

Mauerer mechanism proposes that N–N formation proceeds prior to removal of all hydrogen 

atoms from the ammonia-derived nitrogen. The Gerischer-Mauerer mechanism is now 

widely accepted to be correct, i.e., early N–N coupling of nitrogenous, ammonia-derived 

fragments that still contain hydrogen is most efficient. If ammonia-derived nitrides are 

produced, these are instead considered catalyst poisons.45 Unfortunately, even heterogeneous 

catalysts using the most recent, carefully designed platinum alloys incur high overpotential 

despite decades of concerted research into improving overpotential.46,47,48 Furthermore, 
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surface coverage by metal-nitrides still remains a substantial problem insofar as its 

contributes to catalyst poisoning that limits catalyst durability.  

 

The dearth of suitable catalysts and associated design principles thus motivates 

research into homogeneous complexes that catalyze ammonia oxidation. This would 

facilitate mechanistic studies, permitting validation of previous mechanisms—r the 

uncovering of new mechanisms. These fundamental discoveries would then inspire 

mechanistically directed development of more efficient heterogeneous catalysts. 

Furthermore, such molecular complexes could serve as active catalysts in their own right.  

Given this context, at the onset of our research in 2018, it was striking that there were 

no reported transition metal systems that catalyzed ammonia oxidation over multiple cycles. 

In a stoichiometric fashion, Mayer demonstrated in 1981 that ruthenium polypyridyl 

complexes (Scheme 1.7A) can convert ammonia into nitrite and nitrate under oxidative 

electrochemical conditions.49 Importantly, this work provided the first mechanistic insight 

into pathways that may be operative for ammonia oxidation in molecular systems: a 

disproportionation mechanism was proposed to furnish a high-valent RuIV=NH imido 

Scheme 1.6. Oswin-Salomon (slow) and Gerischer-Mauerer (fast) mechanisms of ammonia 

oxidation on platinum electrodes. The arrows represent N–N formation and, if necessary, 

further oxidation, to ultimately produce N2. 
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complex that exhibited electrophilic character at nitrogen. Thus, water could serve as a 

nucleophile to generate an N–O bond. In 2019, Smith and coworkers developed this 

chemistry into the first example of electrocatalytic ammonia oxidation mediated by a 

Scheme 1.7. Early precedent in molecular ammonia oxidation using ruthenium catalysts. (A) 

Generation of an electrophilic imide that captures a water nucleophile and (B) ammonia 

oxidation catalysts inspired thereof. (C) Additional ruthenium catalysts featuring alternative 

designs.  
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molecular catalyst by working in anhydrous conditions, wherein N–N formation was 

proposed to follow an analogous mechanism (Scheme 1.7B).50 Thus, at an applied potential 

of 0.2 V vs Fc/Fc+, two equivalents of N2 relative to ruthenium could be produced after 3 h. 

Within a short time period throughout 2019, two additional ruthenium catalysts (Scheme 

1.7C) were reported using both electrochemical and chemical oxidation strategies, reaching 

a maximum of up to 14 equiv. N2 under chemical catalysis (i.e., not electrocatalysis).51,52,53  

Contemporaneous with the development of these early ammonia oxidation molecular 

catalysts, we were pursuing a catalyst design strategy that emulated the proposed mechanism 

for highly active ammonia oxidation heterogeneous catalysis: early coupling of NHx and NHy 

fragments (see Scheme 1.6). We became interested in a class of iron(II) water oxidation 

catalysts featuring neutral tetradentate ligands that enforce a coordination geometry marked 

by cis disposed, non-chelated coordination sites.54 Using weakly coordinating triflate 

counterions in a high dielectric solvent such as acetonitrile, the triflate anions are completely 

displaced by acetonitrile.55 Thus, we hypothesized that such a coordination sphere may be 

amenable to binding two ammonia-derived ligands cis to one another at an electrophilic 

metal, potentially allowing intramolecular N–N formation upon loss of protons following 

oxidation (Scheme 1.8). Since intermediates containing N–N bonds (e.g., hydrazine, 

diazene) are more readily oxidized than is ammonia, we considered it critical to intentionally 

design catalysts that feature properties capable of facilitating N–N coupling, the step that 

presumably would be rate- or potential-determining. 
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Initially analyzing a panel of iron(II) complexes (Scheme 1.8), we found that 

[(TPA)Fe(MeCN)2]
2+ exhibited the most promising activity for ammonia oxidation. The 

details of our studies into cis-ammonia coordination, electrocatalytic ammonia oxidation and 

mechanistic studies thereof are found in Chapter 3. Further development of 

[(TPA)Fe(MeCN)2]
2+ inspired ammonia oxidation catalysts is the subject of Chapters 4 and 

5.  

  

Scheme 1.8. Our motivation for investigating iron complexes featuring potential cis 

coordination sites for ammonia binding, and structures of our initial panel of proposed 

iron(II) ammonia-oxidation precatalysts.  
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