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ABSTRACT 

Crops not only feed the world’s human population and livestock but also impact 

the global carbon cycle. The intensification of agriculture has allowed much greater 

crop yields by hybridization, irrigation, and fertilization in the five most recent 

decades. However, the increased frequency and severity of extreme weathers (e.g., 

heat wave, drought, flood) caused by global warming have led to large yield and 

economic losses. Thus, the monitoring of crop growth in a changing climate is of 

paramount importance to improve food security and alleviate poverty. It is via 

photosynthesis that crops use the energy of sunlight to reduce carbon dioxide (CO2) 

into carbohydrates. An accurate quantification of plant photosynthesis is a key step 

towards estimating crop yield and understanding the carbon exchange between the 

biosphere and atmosphere. Satellite remote sensing has emerged as one promising 

solution for measuring photosynthesis from regional to global scales. In the thesis, 

first, we show the potential of solar-induced chlorophyll (SIF) signals emitted by 

the chlorophyll a of plants to track photosynthesis. Compared to traditional 

reflectance-based vegetation indices (VIs), SIF can better capture photosynthetic 

down-regulation under drought and heat stresses due to its physiological linkages 

with photosynthetic processes. Second, we demonstrate that SIF can be used to 

estimate crop yield. At field sites, we find a high correlation between SIF and crop 

photosynthesis measurements. Scaling up this relationship to the large scale, we 

show that crop yield estimates using satellite-derived SIF agree well with the 

United States Department of Agriculture (USDA) reported annual crop yield. Third, 

we examine how crops respond to climate change and air quality in China. We 

develop a crop yield prediction model, based on a large volume of historical crop 

data, as well as climate and pollution records. Our finding demonstrates the co-

benefit of the recent air pollution control policy from an agriculture and food 

perspective. However, such a benefit will be significantly offset or even outweighed 

by continuing global warming. Fourth, we focus on how different ecosystems, 

especially intensified agriculture, has reshaped the seasonality of atmospheric CO2. 
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Our satellite-derived global terrestrial carbon fluxes capture the observed CO2 

seasonal cycle amplitude (SCA) trends at surface sites very well. We further find 

that CO2 SCA trends at mid latitude sites around the Midwest United States are 

mainly impacted by intensified agriculture, whereas high latitude sites are mainly 

driven by increasingly productive natural ecosystems. The approaches, findings 

and datasets developed through the thesis will contribute to agro-ecosystems 

management in the face of climate change and contribute to equitable solutions to 

climate challenges. 
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INTRODUCTION 

1.1 Background 

Nearly 24% of the Earth's land surface is covered by croplands (Cassman et al., 

2005). Croplands not only provide sustenance for the world's human population 

and livestock, but also have a major impact on local climate and the global carbon 

cycle. The green revolution, which is associated with agricultural intensification, 

has greatly increased food grains per planted area by hybridization, irrigation, and 

fertilization beginning in the mid-20th century. However, the increased frequency 

and severity of extreme weathers (e.g., heat wave, drought, flood) caused by global 

warming have led to large yield and economic losses. With climate change, 

agricultural regions will likely experience more heat and water stresses, which leads 

to great threats to future global food security. Therefore, timely and accurate 

monitoring of crops and understanding crop yield responses to the changing climate 

is of paramount importance to meet the burgeoning food demand and achieve “zero 

hunger”, one on the top 17 Sustainable Development Goals (SDGs) of the 2030 

Agenda for Sustainable Development. 

Crop productivity is reliant upon its ability to convert light energy into sugar via 

photosynthesis. Therefore, a reliable measure of gross primary production (GPP) is 

a key step toward crop monitoring. Previous studies relied on field experiment to 

study crop yield responses to surrounding environmental factors, which mainly 

focus on four main crops grown in developed countries, including maize, rice, 

wheat, and soybeans, which cover almost 50% of global farmland. However, crops 

grown in developing countries are significantly overlooked, e.g., sorghum and 

millets, and are major contributors to nutrient intake in the global south such as in 

African countries.  A similar issue exists for using crop models to estimate crop 

yield. The model performance largely depends on parameterization of soil types 
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and biochemical parameters, which leads to large uncertainties in upscaling these 

conditions from local to regional and global scales. 

Earth-observing satellites have provided an unprecedented view of the land surface. 

With recent advances in satellite sensors, spatially and temporally continuous 

surface features can be derived from remotely sensed observations, which can be 

used to quantify crop photosynthesis and estimate crop yield. Traditionally, 

vegetation indices (VIs) have been designed to assess whether the target being 

observed contains live green vegetation. One commonly used vegetation index, the 

normalized difference vegetation index (NDVI), quantifies vegetation by 

measuring the surface spectral reflectance differences between near-infrared (NIR) 

and red light. Live vegetation usually reflects strongly at NIR and absorbs at red 

bands, resulting in a high NDVI value. NDVI can thus be used to differentiate 

vegetated from non-vegetated areas, as well as monitor vegetation growth. To 

reduce atmospheric and soil background impacts, the Enhanced Vegetation Index 

(EVI) was later proposed with the additional information of spectral reflectance at 

green and blue bands. In agriculture, NDVI and EVI has been an indispensable part 

of precision farming that inform farmers of crop health and yield.  

Previous studies have found that these spectral reflectance-based VIs usually 

capture changes in canopy structures but are usually insensitive to heat and water 

stresses, which hinders accurate tracking of vegetation health and growth. Solar-

induced chlorophyll fluorescence (SIF), a by-product of photosynthesis, is a 

reemitted near-infrared light within the range of 650 to 850nm from chlorophyll-a 

molecules. Since it emanates during the light-reactions, i.e. the initial steps in 

photosynthesis, it has the potential to offer physiologically based photosynthesis 

estimates. Recent global satellite products of SIF from the Greenhouse Gases 

Observing Satellite (GOSAT) (Frankenberg et al., 2011; Guanter et al., 2012; 

Joiner et al., 2011), Global Ozone Monitoring Experiment-2 (GOME-2) (Joiner et 

al., 2013; Köhler et al., 2015), SCanning Imaging Absorption spectroMeter for 
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Atmospheric CHartographY (SCIAMACHY) (Köhler et al., 2015), Orbiting 

Carbon Observatory-2 (OCO-2) (Frankenberg et al., 2014; Sun et al., 2017, 2018), 

Chinese global carbon dioxide monitoring satellite (TanSat) (Liu et al., 2018), and 

TROPOspheric Monitoring Instrument (TROPOMI) (Guanter et al., 2015; Köhler 

et al., 2018) have shown promise to estimate regional to global scale photosynthesis 

from space (Li, Xiao & He, 2018; MacBean et al., 2018; Song et al., 2018; Sun et 

al., 2015, 2017; Zhang et al., 2016). However, it is still less well known to what 

extent SIF can track GPP changes under varying water and heat stresses. A holistic 

analysis with the combination of field measurements, satellite observations and 

photosynthesis models would serve as an important step to answer this question.  

Some efforts have been made to explore the potential of satellite SIF in estimating 

crop yields. Guanter et al. (2014) find that the highest SIF values observed by the 

Global Ozone Monitoring Experiment-2 (GOME-2) satellite are located in the Corn 

Belt in the United States (US) Midwest. Furthermore, it was shown that SIF 

captures the photosynthetic activity over highly productive croplands, while VIs, 

such as NDVI and EVI, show saturation effects over these dense canopies. Thus, 

SIF has its own unique advantage to track crop photosynthesis over VIs. Guan et 

al. (2016) used GOME-2 SIF to constrain photosynthetic electron transport rate 

(ETR) to derive crop yield, which has shown a significant improvement in county-

level crop yield estimates in the US. However, a single GOME-2 footprint (80 km 

× 40 km) thus covers several counties, making it challenging to compare SIF with 

the benchmark of USDA county-level annual crop statistics. Therefore, high 

spatially and temporally resolved remote sensing SIF datasets are encouraged to 

achieve robust SIF measurements to improve the estimate and understanding of 

crop yields at every piece of farmland on Earth. 

More frequent extreme weather events influenced by climate change has led to 

larger interannual variations of crop yield. Globally, climate variability accounts 

for roughly a third (~32–39%) of the observed yield variability (Ray et al., 2015), 
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which is the primary driver of food system instability (IPCC, 2019). Assessing the 

effects of climate change on yield variability is critical to understanding the impact 

of climate change on food security (FAO, 2019). Crop yields are strongly 

influenced by both regional climate and air quality (Wang et al., 2020). Many 

previous studies have focused on climate factors, such as temperature and 

precipitation, on crop yield. For example, temperature increase usually leads to crop 

respiration enhancement, which leads to a global yield loss in recent decades 

(Lobell et al., 2011; Zhao et al., 2017). Precipitation exerts impacts on crop yield 

by altering soil and air moisture (Kimm et al., 2020) but in a non-monotonic manner 

(Li et al., 2019; Rosenzweig et al., 2002). Meanwhile, atmospheric pollutants such 

as anthropogenic aerosols and near-surface ozone exert detectable impacts on 

regional crop yields by changing physical, biochemical, and physiological 

processes during plant growth (Ainsworth, 2017; Chameides et al., 1999). However, 

limited understanding has been established on how crop yields respond to air 

quality, particularly in rapidly developing countries, where high levels of aerosol 

and ozone pollution are always collocated with croplands. A better understanding 

of how air pollution and climate change compete or work together on crop yield 

can then help to assess future crop yield and develop adaptation strategies. 

The intensified agriculture may also contribute to reshape the seasonality of 

atmospheric CO2. An increase in the seasonal cycle amplitude (SCA) of 

atmospheric CO2 since the 1960s has been observed in the Northern Hemisphere 

(NH). However, dominant drivers of the amplified CO2 seasonality are still debated. 

Current earth system models generally underestimate the CO2 SCA increase and 

disagree on the underlying mechanisms of such an increase (Bastos et al., 2019; 

Graven et al., 2013; Piao et al., 2018; Thomas et al., 2016; Zhao et al., 2016). This 

suggests that some key biophysical or biochemical processes are missing or 

underrepresented in these models. Satellite remote sensing has the potential to track 

spatial and temporal changes in global ecosystem carbon fluxes. These flux 

estimates can then be coupled with an atmospheric transport model to explain 
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relative contributions from different ecosystems to explain the observed CO2 SCA 

trends. 

1.2 Scientific questions 

In this thesis, we aim to answer the following scientific questions with the 

integration of in-situ measurements, satellite remote sensing, machine learning and 

earth system models: 

(i) How well can SIF track GPP changes especially under different 

environmental conditions? Does SIF have better performance than 

traditional VIs to track seasonal and interannual variations of GPP? 

(ii) How well can SIF be used to estimate crop yield? What are relationships 

between SIF and GPP (or crop yield) for different crop species? 

(iii) How does crop yield respond to climate and air quality? How will crop 

yield change under future climate and pollution scenarios? 

1.3 Thesis outline 

The thesis is composed of four chapters. The first chapter demonstrates the potential 

of solar-induced chlorophyll (SIF) signals emitted by chlorophyll-a of green plants 

to track photosynthesis. I compared satellite-derived SIF with traditional 

reflectance-based vegetation indices and show that SIF can better capture 

photosynthetic down-regulation under drought and heat stresses due to its 

physiological linkages with plant photosynthetic processes. My second chapter 

assesses the relationship between SIF and crop yields. I developed a mechanism 

understanding between SIF and crop photosynthesis using ground measurements at 

corn and soybean experimental sites. Then I applied the mechanism into county-

level crop yield estimates with satellite-derived SIF in the United States. I showed 

that these estimates agree well with the United States Department of Agriculture 

(USDA) reported annual crop statistics. The third chapter examines how three 
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dominant crops in China, including rice, corn, and wheat, respond to climate change 

and air quality. I developed a crop yield prediction model, based on a large volume 

of historical crop yield datasets in China since 1980. Using the developed crop 

model, I quantified the sensitivity of crop yields to four climate and air pollution 

factors. Using global climate models, I further predicted the crop yield variations 

under future warming scenarios by 2050. My fourth chapter disentangles the drivers 

of different ecosystems in contributing to the enhanced atmospheric CO2 seasonal 

amplitude. I developed a 20-year global photosynthesis dataset based on satellite 

observations. Then I used an atmospheric transport model to examine the 

contribution of the individual ecosystem (e.g., forest, cropland, grassland) to 

reshape the atmospheric CO2 seasonality at NOAA surface CO2 sites. 
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TRACKING SEASONAL AND INTERANNUAL VARIABILITY IN 

PHOTOSYNTHETIC DOWNREGULATION IN RESPONSE TO WATER 

STRESS AT A TEMPERATE DECIDUOUS FOREST 

He, L., Wood, J.D., Sun, Y., Magney, T., Dutta, D., Köhler, P., Zhang, Y., Yin, Y. 

and Frankenberg, C., 2020. Tracking seasonal and interannual variability in 

photosynthetic downregulation in response to water stress at a temperate deciduous 

forest. Journal of Geophysical Research: Biogeosciences, 125(8), 

p.e2018JG005002. DOI: https://doi.org/10.1029/2018JG005002 

 

2.1 Abstract 

The understanding and modeling of photosynthetic dynamics affected by climate 

variability can be highly uncertain. In this paper, we examined a well-characterized 

eddy covariance site in a drought-prone temperate deciduous broadleaf forest 

combining tower measurements and satellite observations. We find that an increase 

in spring temperature usually leads to enhanced spring gross primary production 

(GPP), but a GPP reduction in late growing season due to water limitation. We 

evaluated how well a coupled fluorescence-photosynthesis model (SCOPE) and 

satellite datasets track the interannual and seasonal variations of tower GPP from 

2007 to 2016. In SCOPE, a simple stress factor scaling of Vcmax as a linear 

function of observed predawn leaf water potential (ψpd) shows a good agreement 

between modeled and measured interannual variations in both GPP and solar-

induced chlorophyll fluorescence (SIF) from the Global Ozone Monitoring 

Experiment-2 (GOME-2). The modeled and satellite-observed changes in SIFyield 

are ~30% smaller than corresponding changes in light use efficiency (LUE) under 
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severe stress, for which a common linear SIF to GPP scaling would underestimate 

the stress reduction in GPP. Overall, GOME-2 SIF tracks interannual tower GPP 

variations better than satellite vegetations indices (VIs) representing canopy 

“greenness”. However, it is still challenging to attribute observed SIF variations 

unequivocally to greenness or physiological changes due to large GOME-2 

footprint. Higher resolution SIF datasets (e.g., TROPOMI) already shows the 

potential to well capture the downregulation of late-season GPP and could pave the 

way to better disentangle canopy structural and physiological changes in the future. 

2.2 Introduction 

Accurate estimates of gross primary production (GPP) are important for tracking 

the response of plants to environmental stress and have important applications for 

crop and forest management (Beer et al., 2010). In recent decades, growing-season 

length and peak vegetation growth have increased due to the global climate change 

and human activities, which have a potential positive impact on terrestrial carbon 

uptake (Chen et al., 2019; Park et al., 2019; Huang et al., 2018; Zhu et al., 2016; 

Buitenwerf et al., 2015). However, late growing-season photosynthesis is highly 

uncertain and sensitive to climate (Zhang et al., 2020; Buermann et al., 2018; Wolf 

et al., 2016). In a warming climate, water availability plays an increasingly 

important role as a limiting factor for late growing-season terrestrial photosynthesis 

(Lian et al., 2020; Zhang et al., 2020). Therefore, it is crucial to evaluate the impact 

of water availability on photosynthesis, and how well observations and 

photosynthesis models can track late growing-season photosynthesis, with a 

particular focus on responses to water stress. 

Satellite observations have been widely used to monitor vegetation growth status 

and estimate GPP at global scales (Schimel et al., 2015). Traditional reflectance-

based vegetation indices (VIs) such as the Normalized Difference Vegetation Index 

(NDVI) (Tucker, 1979) and Enhanced Vegetation Index (EVI) (Huete et al., 2002) 

are appropriate for tracking canopy “greenness”, but are sometimes insensitive to 
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environmental stress on diurnal and/or short time scales (e.g. heat waves and water 

stress) (Rossini et al., 2015; Dobrowski et al., 2005). At longer time-scales, changes 

in pigment composition associated with environmental stress can be detected from 

space, such as the carotenoid:chlorophyll index (CCI, Gamon et al., 2016), but it is 

unclear how responsive this signal is to rapid changes in photosynthesis. A potential 

solution to track dynamic and reversible adaptation of plants to stress is to monitor 

changes in the chlorophyll a fluorescence yield, which typically decreases 

following a rapid increase in non-photochemical quenching (NPQ) and reduction 

in photosynthetic efficiency.  

To model GPP from greenness indices, the light use efficiency (LUE) based 

model (Monteith, 1972) with remote sensing observations of absorbed light has 

been developed to derive GPP (Running et al., 2004): 

,-- = -/0 × 1-/0 × 234 = /-/0 × 234                                                                    (1) 

where PAR is incident photosynthetically active radiation, fPAR is the fraction of 

photosynthetically active radiation absorbed by plants (usually inferred by VIs) and 

LUE is the efficiency of the plant’s conversion of absorbed radiation to CO2 uptake, 

which responds dynamically to changes in temperature, water stress and/or the light 

environment. Calculating LUE mostly relies on simple scaling functions based on 

air temperature and vapor pressure deficit (VPD) (Myneni et al., 2015; Yuan et al., 

2007; Turner et al., 2006; Running et al., 2004), which is associated with large 

uncertainties. 

Another strategy to relate remote sensing measurements to photosynthetic 

efficiencies arises from the light reactions of photosynthesis. There are three 

primary dissipation pathways for the energy absorbed by chlorophyll molecules in 

the antenna system  (Porcar-Castell et al. 2014): photochemical quenching (PQ), 

fluorescence and heat dissipation.  
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At scales relevant to satellite remote sensing, the emission of steady-state 

fluorescence illumination is referred to as solar-induced chlorophyll fluorescence 

(SIF), the emission of red and near-infrared light in the 650 to 850 nm spectral 

range. Recent global satellite products of SIF from the Greenhouse Gases 

Observing Satellite (GOSAT) (Guanter et al., 2012; Frankenberg et al., 2011; Joiner 

et al., 2011), Global Ozone Monitoring Experiment-2 (GOME-2) (Joiner et al., 

2013; Köhler et al., 2015), SCanning Imaging Absorption spectroMeter for 

Atmospheric CHartographY (SCIAMACHY) (Köhler et al., 2015), Orbiting 

Carbon Observatory-2 (OCO-2) ( Sun et al., 2018; Sun et al., 2017; Frankenberg et 

al., 2014), Chinese global carbon dioxide monitoring satellite (TanSat) (Liu et al., 

2018) and TROPOspheric Monitoring Instrument (TROPOMI) (Köhler et al., 2018; 

Guanter et al., 2015) have shown promise to constrain large-scale carbon fluxes 

from space (Li et al., 2018; MacBean et al., 2018; Song et al., 2018; Sun et al., 2017; 

Zhang et al., 2016; Sun et al., 2015). 

Analogous to the LUE model for GPP, SIF emission from the canopy can be 

described  according to: 

567 = -/0 × 1-/0 × Ф! × Ω = /-/0 × 567"#$%&                                                         (2) 

where Ф! is the actual fluorescence yield, defined as the emitted fluorescence per 

unit of radiation absorbed, neglecting potential re-absorption of far-red light within 

the canopy; Ω is the probability of fluorescence photons escaping the canopy; and 

SIFyield is the effective fluorescence yield (Guanter et al., 2014) and is computed as 

the product of actual fluorescence yield and escape probability.  

Since SIF is emanating from the light reaction centers during photosynthesis, it is 

expected to be related to the electron transport rate, and thus a proxy of 

photosynthesis (Gu et al., 2019; Perez-Priego et al., 2015). Recent studies show 

robust empirical linear scaling between GPP and SIF for different vegetation types 

at the canopy scale (He et al., 2020; Magney et al., 2019; Li et al., 2018; Sun et al., 



 

 

11 
2018; Smith et al., 2018; Song et al., 2018; Verma et al., 2017; Wood et al., 2017; 

Guan et al., 2016; Zhang et al., 2016; Guanter et al., 2014; Frankenberg et al., 2011). 

The primary reason for such strong relationships is that APAR acts as a common 

variable in both equations, driving GPP and SIF. The 2nd order effect is that the 

SIFyield correlates with LUE at the canopy scale in most cases (Magney et al., 2019; 

Yang et al. 2015). This indicates that SIF not only contains information on light 

interception, but also physiological responses to environmental stress, which are 

reflected in changes in photosynthetic yields. Therefore, SIF is expected to correlate 

better with GPP than VIs. However, the SIFyield–LUE relationship is complex, 

causing deviations from a simple linear scaling and is only empirically represented 

in models (van der Tol et al., 2014). Positive relationships between SIFyield and LUE 

have been reported at the canopy scale across different ecosystems (Song et al., 

2018; Zhang et al., 2016; Yang et al., 2015; Porcar-Castell et al., 2014; van der Tol 

et al., 2014), but there is limited understanding of the covariation of the SIFyield and 

LUE under different environmental conditions. 

The potential of satellite SIF to track drought has been reported in some recent 

papers. For example, Sun et al. (2015) explored the potential of GOME-2 SIF to 

monitor the drought spatial and temporal dynamics; Verma et al. (2016) showed 

that the relationship between OCO-2 SIF and GPP is robust at canopy scale under 

different environmental conditions in grasslands; Yoshida et al. (2015) found that 

SIFyield and fPAR both decline during the drought, and GPP losses in mixed forest 

is mainly due to LUE reduction, while GPP losses in croplands and grasslands are 

mostly driven by changes in fPAR. However, few studies have focused on 

evaluating the performance of photosynthesis models and long-term satellite SIF 

and VI observations to track flux tower GPP during the late growing-season, when 

vegetation is exposed to varying stress intensities. Also, it remains unclear how the 

SIFyield–LUE relationship responds to different levels of water stress in forest 

ecosystem. 
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Here, we address this knowledge gap by using long-term observations at the 

Missouri Ozark AmeriFlux site (US-MOz), a drought-prone, temperate deciduous 

forest site located in central Missouri, to examine the relationships among eddy 

covariance GPP, satellite SIF and VIs, as well as LUE based satellite GPP products 

and a detailed coupled photosynthesis and SIF modeling exercise. The study site 

regularly experiences seasonal drought in later summer, allowing us to investigate 

the complex relationship between SIFyield and GPP under varying degrees of stress. 

The US-MOz site also provides a unique set of predawn leaf water potential (ψpd) 

measurements, which enable us to link efficiency changes directly to plant water 

status. Our main questions are: 1) What are the drivers of interannual variations in 

late growing-season GPP and are these related to systematic changes in the seasonal 

cycle? 2) How well does a biophysical process-based model track the interannual 

variations in both flux tower GPP and measured SIF? 3) How well can SIF track 

the seasonal and interannual variation of GPP compared with MODIS VIs and the 

MODIS GPP product? 

2.3 Materials and methods 

2.3.1 Field Site and Measurements 

The AmeriFlux site US-MOz (38.744 N, 92.200 W) is a second growth upland oak-

hickory forest, located in the transitional zone between the central hardwood and 

central grassland regions in the United States (Wood et al., 2018; Gu et al., 2016a; 

Gu et al., 2015). The dominant tree species at the site are white oak (Quercus alba 

L.), black oak (Q. velutina Lam.), shagbark hickory (Carya ovata (Mill.) K. Koch), 

sugar maple (Acer saccharum Marsh.) and eastern redcedar (Juniperus virginiana 

L.). The site lies in a warm, humid and continental climate zone, with an average 

annual temperature of about 13 °C, and average annual precipitation around 1140 

mm. Physiological water stress is common during the growing season (Gu et al., 

2015) and is tightly controlled by within-season precipitation variability (Gu et al., 

2016b), because plant available water in the comparatively shallow soils can be 



 

 

13 
quickly depleted. Water stress is therefore a strong regulator of ecosystem carbon 

and water fluxes (Wood et al., 2018; Gu et al., 2016a; Yang et al., 2010), the 

partitioning of available energy into sensible and latent heat (Gu et al., 2006), and 

is related to tree mortality (Wood et al., 2018; Gu et al., 2015).  

In this study, we used half-hourly net ecosystem exchange (NEE), GPP and 

evapotranspiration (ET) derived from continuous eddy covariance measurements 

from 2007 to 2016. The reader is referred to Gu et al. (2012, 2016a) for a more 

complete description of the instrumentation on the 32 m walk-up tower used to 

observe ecosystem fluxes and the eddy covariance flux calculations. Briefly, the 

moving point threshold test developed by Gu et al. (2005), was used to objectively 

estimate friction velocity thresholds for screening nighttime NEE data for periods 

of low turbulence. Data gaps were filled using the mean diurnal variation approach 

(Gu et al., 2016a). GPP was estimated by subtracting daytime observations of NEE 

from soil respiration measured using flow through non-steady state chambers 

(Yang et al. 2010), noting that soil respiration is often the largest component of 

ecosystem respiration (Li et al., 2012; Hermle et al., 2010; Tang et al., 2008). We 

also point out that there are uncertainties and potential biases with any partitioning 

method (Wohlfahrt and Gu, 2015), and indeed, recent evidence points to potentially 

large biases in the common NEE partitioning methods (Keenan et al., 2019; Wehr 

et al., 2016). 

We also used records of incident photosynthetically active radiation (PAR), air 

temperature (Ta), vapor pressure deficit (VPD), precipitation, volumetric soil water 

content (SWC) at 10 cm depth, and ψpd. Predawn leaf water potential is measured 

before sunrise and is a useful indicator of plant and ecosystem physiological water 

stress, as it reflects the root zone soil water potential and the degree to which leaves 

are able to rehydrate overnight (Wood et al., 2018; Gu et al., 2016b; Gu et al., 2015). 

At weekly to stem abundance before dawn and ψpd was determined using the 
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pressure chamber technique (Pallardy et al., 2008, 1991). An overview of the long-

term GPP, Ta and precipitation can be found in Supplementary Figure S1. 

2.3.2 Satellite datasets 

2.3.2.1 GOME-2 SIF 

We used GOME-2 SIF (~ 80 km × 40 km footprint before July 2013, ~ 40 km x 40 

km after) at 740 nm retrieved using a statistical approach (Köhler, Guanter, and 

Joiner, 2015), and applied a daily correction factor to convert the instantaneous SIF 

signal to a daily average SIF. GOME-2 SIF soundings with center 

longitudes/latitudes within 0.75° from the US-MOz were extracted from 2007 to 

2016. Figure 2.1(a) shows an example of extracted footprint on 16 June, 2013 in 

the direct vicinity of the tower. SIF observations were filtered by removing 

soundings with cloud fractions larger than 20%, and then aggregated to monthly 

averages.  

2.3.2.2 MODIS NDVI, EVI, NIRv, fPAR and GPP 

We derived commonly used VIs (including NDVI, EVI and near infrared 

reflectance of terrestrial vegetation (NIRv)) from the MODIS MCD43A4 v006 

using the following formulas (Badgley et al., 2017; Didan et al., 2015; Huete et al., 

1997; Liu & Huete, 1995):  

:;<6 = '()*)
'()+)

                                                                                                                  (3) 

4<6 = , × '()*)
'()+,!×)*,"×.+/

                                                                                               (4) 

:60$ = :60 × :;<6                                                                                                      (5) 

where NIR, R and B stand for the spectral reflectance acquired in the near-infrared, 

red and blue bands, respectively; G is a scaling factor; C1 and C2 are constants to 
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account for atmospheric scattering; L is the coefficient of canopy background 

adjustment. For MODIS EVI derivation, G, C1, C2 and L are set to 2.5, 6, 7.5 and 

1. MCD43A4 provides daily “nadir” 500 m pixel size reflectance data corrected by 

using a bidirectional reflectance distribution function model, which minimizes the 

bias in reflectance measurements introduced by different illumination and 

observation geometries. The MODIS MCD15A3H fPAR product, a 4-day 

composite dataset with 500 m spatial resolution, was also used in this study to 

estimate the relative contribution of fPAR to the GPP–SIF relationship. We also 

included the MODIS MYD17A2H V006 8-day GPP product with 500 m spatial 

resolution in the analysis to evaluate its performance compared to flux tower GPP 

and SIF. MODIS products were aggregated at 0.02° within the flux tower in the 

study, which contain a large proportion of homogeneous forests (Figure 2.1(b)). 

2.3.2.3 GOSIF dataset 

To reconcile the large footprint of GOME-2 SIF, we also used the machine-learning 

generated GOSIF dataset at 0.05° spatial resolution, aggregated at monthly 

averages from 2007 to 2016. GOSIF is trained using OCO-2 SIF and co-located 

MODIS MCD43C4 (Collection 6, 0.05°) BRDF-corrected EVI, and meteorology 

variables (including PAR, VPD and Ta) obtained from the NASA reanalysis 

MERRA-2 dataset (Li et al., 2019).  

2.3.2.4 TROPOMI SIF 

To explore the potential of new satellite SIF at higher spatiotemporal resolution in 

the drought monitoring, we also evaluated the performance of TROPOMI SIF, with 

~7 km × 3.5 km spatial resolution and near‐global daily coverage (Köhler et 

al., 2018). The TROPOMI instrument onboard the European Sentinel‐5 Precursor 

satellite was launched on 13 October 2017. As for GOME-2, the daily correction 

factor was also applied to TROPOMI SIF to convert instantaneous SIF to a daily 
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average. In this study, we aggregated TROPOMI SIF monthly at 0.05° in 2018 to 

investigate its seasonal variation at US-MOz. 

2.3.2.5 Spatial aggregation of the remote sensing data 

In the fine-scale analysis, we tried to make the raw satellite data (at native resolution) 

comparable to the flux tower GPP. Therefore, we used the GOME-2 SIF footprints 

with the central longitude/latitude 0.75° nearby the flux tower, as well as MODIS 

data 0.02° within the flux tower. Note that the footprints of GOME-2 are quite large 

and composed of different landcovers other than forests, such as croplands and 

grasslands. This makes it hard to fairly compare the GOME-2 SIF and MODIS 

products. To deal with this problem, we also conducted an analysis gridding both 

GOME-2 and MODIS products at 0.25°, and then examined these two at the same 

spatial aggregation.  

 

Figure 2.1: An example of a GOME-2 footprint relative to MODIS aggregation 
used in the analysis: (a) The transparent light blue polygon represents a GOME-2 
footprint from an overpass on 16 Jun 2013. All GOME-2 footprints with the 
distance between central longitude/latitude and US-MOz less than 0.75° are used 
in the analysis. Red boundaries indicate the 0.02° fine-resolution of MODIS 
products aggregated in this study. (b) The enlarged map shows the location of the 
flux tower and surrounding land cover. The 30-m Cropland Data Layer (CDL) by 
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United States Department of Agriculture (USDA) in 2016 is used for land cover 
classification. 

2.3.3 GPP and SIF simulations 

The Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model 

is a 1D integrated radiative transfer and energy balance model, which simulates 

photosynthesis, fluorescence, the surface energy balance and reflectance/emission 

spectra (van der Tol et al., 2009). Within SCOPE, empirical models of the rate 

coefficients of NPQ and SIFyield are used, which are based on leaf level experiments 

(van der Tol et al., 2014), and parameterized as a function of the photosynthetic 

PSII yield (ΦP) computed by the Farquhar, von Caemmerer, Berry (FvCB) model 

(Farquhar et al., 1980). SCOPE provides two different parameterizations of the 

leaf-level SIFyield (ΦF)–ΦP relationship. The first (SCOPE 1) is derived from 

measurements of leaves of various species experiencing progressive drought 

(Flexas et al. 2002), and the second, (SCOPE 2) is derived from cotton leaves with 

less exposure to stress (van der Tol et al. 2014). The parameterizations diverge 

towards lower photosynthetic yields (i.e. at high light and generally more stressed 

conditions) (Magney et al. 2017; van der Tol et al. 2014). We used half-hourly 

meteorological variables measured at the US-MOz from 2007 to 2016 for the 

SCOPE simulations. The important meteorological drivers include incoming 

shortwave and longwave radiation, air temperature, atmospheric pressure, actual 

vapor pressure and wind speed. Leaf area index (LAI) measured at the site, as well 

as typical values of leaf biochemical parameters (e.g. Vcmax25 = 80u mol m−2 s−1  

mol m−2 s−1 and Chl content =100u mol m−2 s−1 g/cm2) are used for the simulations. 

The key biochemical parameter Vcmax is scaled by a stress factor ([0-1]), which is 

a common way of implementing soil moisture stress in land surface models (Oleson 

et al., 2013). Further, the model also incorporates detailed calculation of 

temperature dependence of the photosynthetic biochemical parameters (Dutta et al., 

2019). The rationale for using SCOPE simulations is to 1) model GPP and SIF 

changes at the canopy level with proper parameterization of Vcmax; 2) compare 
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the measured SIFyield–LUE at the canopy level with expectations from the SCOPE 

parameterization ΦF–ΦP at the leaf level, with an emphasis on the fractional 

change of each term under stress (LUE, SIFyield, ΦF, ΦP). 

2.3.4 Singular value decomposition (SVD) analysis 

To extract the coherent patterns contributing to the seasonal and interannual 

variations of GPP, we perform an SVD analysis to obtain the principal components 

(PCs) that explain the time series of eddy covariance GPP. We assemble monthly 

flux tower GPP from 2007 through 2016 into matrix A with m rows and n columns, 

where m=10 is the number of years and n=12 is the number of months. Using SVD, 

we factorize A into three matrices A = USVT, where the columns of U (m by m) 

and V (n by n) are left and right singular vectors, and S (m by n) is a diagonal matrix 

with non-negative real numbers in descending order. The matrix A with both 

seasonal and interannual information can then be reconstructed by 

/ = ∑ (# × !# × $#
01

#23                                                                                                        (3) 

where (# is the >45 singular vector with length m, containing temporal loadings for 

individual year; $#  is the >45  singular vector with length n, containing the >45 

principal component (PCi, equivalent to seasonal dynamics of GPP); and !# is the 

singular value of >45 component. In other words, monthly GPP of each year can be 

reconstructed as the linear combination of PCs weighted by the corresponding 

temporal loadings. In our study, we found that the first three PCs are sufficient to 

explain most of the variance (around 90%). 
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2.4 Results 

2.4.1 Long-term analysis of flux tower observations and satellite remote sensing 

2.4.1.1 Interannual variations of GPP, NDVI, EVI, NIRv, fPAR and SIF 

 

Figure 2.2: Average flux tower GPP, MODIS EVI, NDVI and NIRv, and GOME-
2 SIF during JJA from 2007 to 2016. (a) MODIS products are aggregated at 0.02° 
and native GOME-2 SIF footprints of the central longitude and latitude within 0.75° 
from the flux tower are used. (b) MODIS products and GOME-2 SIF are aggregated 
at 0.25°. All variables are scaled by the corresponding maximum value. RMSE and 
R2 between flux tower GPP and SIF, NDVI, EVI, NIRv, fPAR, MODIS GPP, 
NDVI*PAR, EVI*PAR, NIRv*PAR and fPAR *PAR are reported in Table 2-1. 
Raw data of flux tower GPP, SIF, MODIS GPP, NDVI, EVI, NIRv, fPAR are 
reported in Table 2-2. 

To evaluate the performance of MODIS VIs, MODIS GPP, and GOME-2 SIF in 

tracking interannual variation (IAV) of flux tower GPP during JJA, we normalized 

each variable by its maximum value (Figure 2.2). At both fine and coarse 

aggregations, MODIS GPP and GOME-2 SIF capture the magnitude of the IAV of 

flux tower GPP better than NDVI, EVI and NIRv. In 2012 U.S. Drought (Parazoo 

et al., 2015; Sun et al., 2015; Hoerling et al., 2014; Boyer et al., 2013; Mallya et al., 

2013; Karl et al., 2012), flux tower GPP decreased by nearly 70% compared to 

2008, the most productive year. Meanwhile, MODIS GPP decreased by around 55% 

and SIF dropped by around 33%, whereas only a 10% decline of VIs and fPAR 

were observed at the fine scale 0.02° aggregation (Figure 2.2(a)). Little fluctuation 
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in VIs and fPAR in JJA from 2007 to 2016 indicates that this ecosystem maintains 

a relatively stable canopy structure during the peak growing season, which is 

supported by measurement of LAI in the field (Supplementary Figure 2.18). 

Therefore, a substantial part of the summer interannual GPP variations can be 

attributed to changes in LUE, which are better reflected in MODIS GPP and 

GOME-2 SIF observations.  

We also recognize a larger decrease of VIs and fPAR found at the coarser 

aggregation at 0.25° (Figure 2.2(b)) in 2012, implying that the structure of non-

forest ecosystems in the vicinity (crops and grasslands) might be influenced more 

strongly than forest ecosystems during the drought. This confounding factor makes 

it difficult to evaluate whether the stronger reduction in observed SIF is supporting 

the claim that SIF reacts more strongly to dynamic environmental stress or whether 

the large GOME-2 pixels just include more information from crops and grasslands, 

which reacted more strongly. Therefore, we studied the spatial pattern of the 

anomalies of GOME-2 SIF, MODIS NDVI and NIRv at 0.25° to in 2012 drought 

from the normal years. The fractional anomaly at each grid was computed as: 

?67816%" =
?99:"#!"
?99:$%&'

 

where X represents the variable (such as SIF, NIRv and NDVI). ?99:"#!"  is the 

average of X during JJA in 2012, while ?99:$%&' is the multi-year average of X 

during JJA from 2007 to 2016. 

This analysis was necessary to: 1) examine whether the spatial pattern of SIF and 

NDVI/NIRv anomalies is consistent using the dataset aggregated at the same 

resolution; and 2) explore SIF–NDVI/NIRv relation across different types of 

biomes during the drought.  
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The CDL 30-meter landcover map around Ozark is shown in Figure 2.3(a). Figure 

2.3(c) and (e) show the spatial pattern of NIRvanomaly and NDVIanomaly at native fine 

resolution (500m), whereas Figure 2.3(b), (d) and (f) are based on coarse resolution 

(0.25°). At the fine resolution, only a few areas actually show enhancements, 

mostly aligned along rivers. In general, we find a larger reduction of NIRv 

compared to NDVI in most regions. At the coarse resolution (0.25°), around 30% 

reduction was observed for SIF and NIRv at the Ozark grid cell, while only a 10% 

reduction was found for NDVI, which could be due to NDVI saturation effects.  
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Figure 2.3: (a) The landcover map based on the USDA CDL dataset in 2016. The 
spatial distributions of NIRv and NDVI anomalies at native fine resolution (500 m) 
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are shown in (c) and (e). The spatial distributions of SIF, NIRv and NDVI 
anomalies at coarse resolution (0.25°) are shown in (b), (d) and (f). 

 

Figure 2.4: The anomalies of (a) SIF–NIRv (b) SIF–NDVI during 2012 drought. 
Different colors represent different land types. 

We also quantified the relationship of SIFanomaly–NIRvanomaly and SIFanomaly–

NDVIanomaly corresponding to different land covers using all the data in the state of 

Missouri gridded at 0.25° (Figure 2.4). In general, the spatial patterns in the IAV 

of all remotely sensed datasets are tightly correlated. However, we find that the 

relationship also depends on the land cover, with more fractional reduction 

observed for SIF than NIRv and NDVI in forests during the 2012 drought, which 

corroborates that some of the stress related reduction in GPP over forests is captured 

by SIF. This analysis underscores the importance of considering the spatial 

heterogeneity in the complex natural ecosystem when interpreting remote sensing 

data. 



 

 

24 
2.4.1.2 Seasonal variations of GPP, NDVI, EVI, NIRv, fPAR and SIF 

 

Figure 2.5: Seasonal cycles of monthly mean flux tower GPP, MODIS GPP, 
GOME-2 SIF, MODIS EVI, NDVI, NIRv and fPAR, EVI*PAR, NDVI*PAR, 
NIRv*PAR and fPAR*PAR with the shadow regions representing ±1 standard 
deviation from 2007 to 2016. In (a), (c) and (e), MODIS products are aggregated at 
0.02°, and native GOME-2 SIF footprints of the central longitude and latitude 
within 0.75° from the flux tower are used. In (b), (d) and (f), MODIS products and 
GOME-2 SIF are gridded at 0.25°. All variables are linearly normalized based on 
min-max scaling to fall in [0,1]. RMSE and R2 between flux tower GPP and SIF, 
NDVI, EVI, NIRv, fPAR, MODIS GPP, NDVI*PAR, EVI*PAR, NIRv*PAR and 
fPAR *PAR are reported in Table 2-3. 

Figure 2.5(a), (c) and (e) show the seasonal variations at the fine spatial scale, with 

MODIS products aggregated at 0.02°, and GOME-2 SIF of the central longitude 

and latitude within 0.75° from the flux tower. Figure 2.5(b), (d) and (f) show the 

seasonal variations with MODIS products and GOME-2 SIF gridded at 0.25°. All 

variables are normalized based on min-max scaling from [0,1]. For both spatial 

aggregations, NDVI and fPAR do not track the GPP seasonality during the mid-to-
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late growing season (i.e., Jul, Aug and Sep). Flux tower GPP decreases by 50% 

from Jul to Sep, however, NDVI and fPAR remain almost constant. To evaluate 

whether this discrepancy can be caused by changes in available light, we used PAR 

measured at the flux tower to scale the vegetation indices to estimate APAR, which 

was calculated as fPAR*PAR (Figure 2.5(e) and (f)). We found a closer agreement 

between NIRv*PAR and EVI*PAR with flux tower GPP seasonality. This indicates 

that in general, the seasonal cycle of GPP at the US-MOz site is mostly dominated 

by changes in absorbed light and not photosynthetic efficiencies, and thus the 

accurate estimate of absorbed light is important to obtain the accurate GPP estimate 

at the seasonal scale. Using NDVI, the relationship is weaker, with a pronounced 

broadening in the seasonal cycle compared to GPP. The MODIS fPAR algorithm 

is similar to NDVI, only considering the reflectance at red and near infrared bands 

(Myneni et al., 2015), thus showing strong similarity to NDVI. Other VIs, such as 

the EVI, reduce the saturation problem and the effects of atmospheric interferences 

and soil background brightness (Huete et al., 2002). In addition, NIRv contains the 

information of the pixel reflectance attributed to vegetation and mitigates the 

mixed-pixel problem (Badgley, Field, and Berry, 2017). Here, NIRv and EVI 

perform best at the seasonal scale, while SIF increases earlier than reflectance-

based VIs at the onset of growing season. An explanation for this could be that 

GOME-2 observations are obtained with large footprints that are influenced by the 

mixed forest and crops or grasslands in the vicinity of the flux tower.  

Interestingly, MODIS GPP appears to closely follow GOME-2 SIF in the early part 

of the season but deviates from a typical seasonality in July and August, with 

persistent reductions in GPP. This is mainly related to the LUE parameterization in 

the MODIS model, which appears to strongly overestimate the sensitivity to VPD 

or temperature. In fact, the LUE parameterization in MODIS GPP appears to 

worsen the agreement compared to the raw vegetation indices multiplied by PAR.  
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2.4.1.3 Diurnal variations of LUE 

Diurnal LUE changes may introduce bias when we intend to estimate daily average 

SIF (and GPP) using an instantaneous SIF signal. Here we evaluate the potential 

bias in the daily GPP estimate using the LUE at GOME-2 and OCO-2 overpass 

times. The average diurnal cycle of LUE in the summer period (DOY 150-240) 

from 2007 through 2016 is shown in Figure 2.6(a). Here, the apparent LUE is 

approximated by GPP/PAR, with the assumption that fPAR is almost constant 

within the growing season and not changing within a day, which is supported by 

fPAR measurements in the field. LUE is higher in the morning and late afternoon, 

and lower around solar noon. A diurnal hysteresis in LUE was observed, with 

higher LUE in the morning than afternoon for the same Earth-Sun geometry. This 

is usually caused by increases in temperature and vapor pressure deficit during the 

day, causing an LUE asymmetry in the diurnal cycle. This temporal variation of 

LUE may cause a bias for upscaling instantaneous GPP (GPPinst) to daily GPP 

(GPPdaily), which depends on the time chosen to infer daily GPP. In a similar fashion, 

there may be similar biases when scaling instantaneous satellite SIF observations 

to daily averages. This analysis gives insights into interpreting SIF observations at 

different times of satellite overpasses, as well as quantifying bias of temporal 

scaling of SIF from snapshots taken at a certain time of a day to an estimate of daily 

average.  

Then, we evaluated the reconstructed diurnal GPP pattern based on the LUE at 9:30 

and 13:30 local time, the overpass times of GOME-2 and OCO-2, respectively. The 

reconstruction was performed by multiplying the instantaneous LUE by an average 

diurnal PAR pattern in the summer period including both sunny and cloudy 

observations. The reconstructed GPP and flux tower GPP measurements in summer 

using different instantaneous LUE are shown in Figure 2.6(b) and (c). There was 

no significant bias in upscaling GPP based on LUE at 9:30 because the 

instantaneous value was a good estimator of the daily average. However, daily GPP 
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was largely underestimated when using LUE at 13:30, since the instantaneous value 

was almost at the minimum daily value. Therefore, based on the seasonal averaged 

diurnal shape of GPP at this site, we expect less bias in the GOME-2 daily 

normalized SIF compared to OCO-2 under the assumption that i) the SIFyield is 

correlated with LUE; and ii) instantaneous SIF is scaled to daily SIF using the 

Earth-Sun geometry. However, we have to consider that the variability of SIFyield 

is dampened compared to LUE, which might reduce this bias at mid-day.  

  

Figure 2.6: (a) Average diurnal GPP/PAR pattern during JJA including both sunny 
and cloudy observations from 2007 to 2016. The red dashed lines represent 
different GOME-2 and OCO-2 overpasses, ~ 9:30 and 13:30at local time, 
respectively. In (b) and (c), the diurnal patterns of GPP from measurements and the 
LUE upscaling approach are represented by the red and blues lines, respectively. 
Blue and red shaded regions represent overestimation by upscaled and measured 
GPP, respectively. 

2.4.2 Impact of spring temperature on annual GPP 

Here, we investigated the control of late growing-season GPP at the US-MOz site. 

Specifically, we aim to isolate specific variations of GPP seasonality that might be 

related to the interannual variability of GPP. The SVD analysis of eddy covariance 

GPP provides us with a pattern of three leading PCs scaled by corresponding 

singular values, i.e. computed as !3 × $3
0, !; × $;

0 and !< × $<
0 in Figure 2.7(a)-(c). 

The first three PCs explain 90% of the seasonal variability across 10 years. As 

expected, the shape of !3 × $3
0  reflects the mean seasonal GPP cycle, while the 
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following PCs reflect deviations from the mean. !; × $;

0 increases rapidly in early 

spring, and remains positive until summer, representing a “trade-off” between 

spring gain and summer loss. !< × $<
0 follows a “W” pattern (see Fig 7 (c)) and can 

be interpreted as a widening or narrowing of the overall growth period. Total GPP 

(the integration of GPP over 12 months) of the three PCs is 124.0, 4.0 and -3.2, 

respectively, and denoted as @3, @;, 	@<. Total annual GPP can thus be approximated 

by the sum of (3@3,	(;@; and (<@<. Since @3 is significantly larger than @; and @<, 

annual total GPP is mainly controlled by (3.  

 

Figure 2.7: Three leading PCs scaled by corresponding singular value !3 × $3
0 , 

!; × $;
0 and !< × $<

0 are shown in (a), (b) and (c), explaining 72%, 12% and 6% of 
variability in monthly GPP. Negative correlation between temporal loading 
(3 and (;  is shown in (d) and positive correlation between average spring 
temperature and temporal loading (;  is shown in (e), with different color 
representing different years. 

A strong negative correlation is observed for (3 and (; (Figure 2.7(d)). Meanwhile, 

(; is strongly correlated with annual spring temperature (Figure 2.7(e)), even if the 

more extreme drought years of 2007 and 2012 are excluded. This indicates that in 
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years with higher spring temperature, !; × $;

0 captures the seasonal change with an 

increase in spring GPP but a decrease in the summer. As this feature correlates 

negatively with (3, there is an overall decrease in annual GPP during all years with 

an early spring.  

We found that spring GPP, SIF and NEE are strongly driven by spring temperature 

(Figure 2.8 (a) and (b)). Larger spring GPP, SIF and more net ecosystem CO2 

uptake (i.e., more negative NEE) are observed for years with warmer spring (Figure 

2.8(c) and (d)). However, warmer springs do not guarantee an increase in annual 

GPP and net ecosystem CO2 uptake (e.g., in 2007 and 2012), which is due to higher 

evapotranspiration during the onset of the growing season or low precipitation 

throughout the growing season. In addition, higher spring temperature is 

consistently associated with lower net ecosystem CO2 uptake and GPP in the 

summer (Figure 2.8(e) and (f)), which might be attributed to less photosynthetic 

efficiency due to water limitation as well as more active respiratory processes at 

higher temperature and will be discussed in Section 4.1. 
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Figure 2.8: The relationship between spring temperature with spring mean NEE, 
GPP and SIF (a and b), annual mean NEE, GPP and SIF (c and d), and summer 
NEE, GPP and SIF (e and f). Different colors represent different years. Spring 
months are defined as March, April and May. 

To investigate whether the other parameters follow similar principal components 

in the SVD decomposition, we performed the same SVD analysis for flux tower ET 
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measurements, satellite VIs and SIF (Figure 2.9). The analysis including tower 

measurements and satellite observations consistently shows that the second PC is 

similar to the one for GPP, especially for SIF and ET. Since ET is linked with 

stomatal conductance and water use efficiency, it is expected to covary with GPP, 

explaining strong correlations among all the three PCs of ET and GPP. For remote 

sensing data, SIF performs most similar to the tower GPP in higher orders, with 

three leading PCs explaining 78%, 8% and 5% of variability, and all shapes having 

high similarity to the PCs for GPP. In contrast, NDVI is largely dominated by the 

first PC, which explains 92% variability, and only 4% and 2% variability can be 

explained by the second and third PC. This implies that SIF is more sensitive in 

capturing the signal of stress-induced GPP “seasonal-shifted” dynamics than VIs, 

and thereby helps better estimate the inter-annual GPP change patterns. 
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Figure 2.9: Three leading PC’s of SIF, EVI, NDVI, NIRv and ET (top to bottom 
rows, respectively) scaled by corresponding singular value !3 × $3

0 , !; × $;
0  and 

!< × $<
0, with the fraction of explained variance shown for each. 

2.4.3 SCOPE modeled GPP and SIF track flux tower GPP 

 

Figure 2.10: a) The ratio of flux tower GPP (bi-weekly average) to GPP modeled 
by SCOPE (bi-weekly average) with no scaling factor (SF) introduced as the 
function of ψpd (MPa). (b) Average of flux tower GPP, GPP modeled by SCOPE 
with/without SF during JJA from 2007 to 2016. All variables are scaled by the 
corresponding maximum value. 

To better understand the underlying mechanisms, we simulate the interannual 

variations of GPP and SIF using the SCOPE model and evaluate how well SCOPE 

captures flux tower GPP variations with proper parameterization. During drought, 

plants may experience a combination of both canopy structural changes and 

physiological stress, imposed by atmospheric conditions such as elevated 

temperature and VPD but also through soil moisture deficits. Usually, the structural 

change is reflected in VIs, however, capturing physiological changes is challenging. 

Disentangling these two effects is important to determine the information SIF can 

provide for quantifying physiological stress beyond canopy structural changes. In 

this section, we show the effects of incorporating physiological stress on both 

primary production and fluorescence with SCOPE simulations. In SCOPE, 

environmental stress affects photosynthesis and fluorescence purely through 

changes in humidity and temperature, as a soil moisture model is missing. As in 

many models, the drought stress through soil moisture variations is incorporated 
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through a stress factor [0, 1] (SF) to scale the maximum carboxylation rate (Vcmax 

at 25 °C) effectively reducing photosynthesis and thus also stomatal conductance, 

which is equivalent to the soil water stress parameter (BTRAN) in the Community 

Land Model (Oleson et al., 2013). We performed two simulations: 1) without any 

soil moisture stress (SF =1), and 2) with variable SF as a time series computed as a 

function of pre-dawn leaf water potential ψpd (Figure 2.10(a)). We found that the 

ratio of observed flux tower GPP to the GPP modeled using SCOPE (case 1), 
48=$>?@@

?@@18&$%$&=#4578A!
, is correlated with ψpd (Figure 2.10(a)), and proportional to the 

stress experienced by the plant. The SF is calculated from this relationship based 

on the first order linear regression of 
48=$>?@@

?@@18&$%$&=#4578A!
 and ψpd, which is used for 

the simulations of case 2. In both cases, we used LAI and meteorological data 

(including air temperature, VPD, radiation, wind speed, etc.) collected at the flux 

tower to drive the model. Thus, a basic inter-annual variation of stress due to 

changing atmospheric conditions is already included in simulation 1.  

The 1st case (green line in Figure 2.10(b)), with no soil moisture driven 

physiological stress, can be interpreted as the GPP of plants around Ozark, only 

considering atmospheric variations across different years. The 2nd case (red line in 

Figure 2.10(b)), with SF, indicates the effect of soil moisture availability on GPP. 

In the 2012 drought, higher air temperature and larger VPD only account for a 20% 

reduction in GPP. However, we found an additional 35% reduction in GPP upon 

introduction of SF in the model, leading to a 55% total reduction in GPP, close to 

the 65% reduction in GPP observations, underlining that our ad-hoc SF 

parameterization worked well. Overall, comparing the two cases (with and without 

the stress factor) using the SCOPE model provides a good way to decouple canopy 

structural changes and physiological stress on GPP. The latter was found to 

contribute more in the 2012 drought, which underscores the importance of a 

physiology related signal to monitor terrestrial GPP changes using remote sensing. 
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To evaluate how SIF might change within a modeling framework, we look into the 

IAV of modeled SIF (with and without SF introduced) at three different timescales 

(daily average, 9:30 and 13:30), and compare its magnitude against the 

corresponding IAV of GPP. In the SCOPE framework, GPP and ΦP are first 

simulated by the FvCB model (Farquhar et al., 1980), and then ΦF is derived based 

on the leaf-level empirical ΦF–ΦP relationship (Lee et al., 2015; van der Tol et al., 

2014). Finally, SIF is computed based on the ΦF and APAR estimated from the 

multi-layer canopy radiative transfer model within SCOPE. The goal of this section 

is to 1) evaluate the IAV of SIF using different ΦF–ΦP and SF parameterizations; 

2) examine the IAV magnitude of modeled SIF and modeled GPP; 3) compare the 

IAV of modeled instantaneous SIF at different overpass times with the daily 

average. The analysis including the daily average, as well as sampling at other times 

of day is necessary, because it helps to evaluate theoretically how well the IAV of 

daily-averaged GPP and SIF can be captured from instantaneous satellite 

observations at different overpass times. 

Figure 2.11(a) shows the IAV of modeled daily average GPP and SIF with/without 

SF using the two different SCOPE versions. When SF is introduced as a ψpd, SIF 

modeled by SCOPE 1 can capture the 2012 drought to some extent, with a 17% 

decrease in SIF; whereas no reduction is observed for SIF modeled by SCOPE 2. 

This underscores the significance of choosing between two ΦF–ΦP options, which 

may lead to very different IAV patterns of SIF. When SF is fixed to 1, the IAV of 

SIF with both parameterizations hardly reflect the 2012 drought. 

Figure 2.11(b) and (c) show the IAV of modeled GPP and SIF with different 

parameterizations of ΦF–ΦP and SF sampled at 9:30 and 13:30, respectively. 

During both times, SIF modeled by SCOPE 1 with SF introduced captures the 2012 

drought best. A reduction of around 18% was observed at 9:30 in 2012, the 

magnitude of which is similar to the reduction observed for daily averages in Figure 
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2.11(a), while a reduction over 25% was simulated at 13:30 since plants are usually 

more stressed in the afternoon due to higher VPD.  

The magnitude of modeled SIF reductions (18%) in 2012 gives a theoretical 

reference, which we can compare against the observed SIF reductions of around 

33%. We thus conclude that the large footprint of GOME-2 caused an over-

estimation for the forest SIF reductions because of the presence of non-forest cover 

within the footprints.  However, the SCOPE simulations underline that we expect 

reductions in SIF owing to dynamic variations in plant stress, which are also 

comparable with the observed changes in GOME-2 SIF (about half of the 

reduction). It should be noted that the modeled SIF variations are always smaller 

than the modeled GPP variations during the 2012 drought, which is in line with our 

observations. A linear scaling approach for SIF–GPP would thus largely 

underestimate interannual variations in GPP, which is an important caveat for using 

SIF to study stress driven IAV in GPP. In addition, our findings underline the need 

to better represent the stress impact on the ΦF, as we find that the SCOPE 2 

parameterization can lead to increases in ΦF at low photosynthetic yields, which is 

unlikely to happen for plants adapted to their environment, which we will outline 

in the following LUE–SIFyield section.  
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Figure 2.11: Average of GPP, SIF modeled by SCOPE with/without SF using two 
different parameterizations of ΦF vs ΦP during JJA from 2007 to 2016. All 
variables are scaled by the corresponding maximum value. Note that SCOPE 1 
refers to empirical leaf-level ΦF–ΦP relationship based on various leaf samples 
experienced progressive drought (Flexas et al., 2002) and SCOPE 2 refers to ΦF–
ΦP relationship experimented on healthy cotton leaves (van der Tol et al., 2014). 

2.4.4 Smaller variations in SIFyield than LUE 

Both satellite and SCOPE modeled SIF showed a significant decrease in the 2012 

drought, but with a smaller fractional change in SIF compared to GPP. This 
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addresses the question of the covariation between LUE and SIFyield across different 

stress levels. As we observed low inter-annual variability in VIs during JJA, we can 

use this time-period to better understand the connection between LUE and SIFyield 

because these two terms should have a larger impact on overall GPP and SIF than 

changes in APAR. fPAR aggregated at 0.02° shows little variation across JJA from 

2007 to 2016 (Figure 2.2(a)), indicating that the interannual GPP-SIF relationship 

in JJA is indeed mainly driven by SIFyield changes, not APAR. Consequently, we 

approximated LUE and SIFyield as GPP/PAR and SIF/PAR. In Figure 2.12(a), we 

found that there is a positive correlation between LUE and SIFyield (R2=0.66, Figure 

2.12(a)), whereas fPAR shows little variations across different LUE levels. Color 

coded by ψpd, both LUE and SIFyield decrease in water-stressed period when ψpd is 

low. We also evaluated whether the SIFyield–LUE changes observed at the canopy 

are consistent with leaf-level ΦF–ΦP employed in the SCOPE model. We found 

that the SCOPE 1 agrees well with our canopy measurements, with positive 

SIFyield–LUE pattern and very similar changes in terms of magnitude. However, the 

negative SIFyield–LUE relationship at high stress levels shown by SCOPE 2 is not 

observed with GOME-2. This suggests that the extreme behavior at low ΦP 

modeled in SCOPE 2 might be rarely observed in nature, as it would require stress 

levels that greatly exceed the capacity of NPQ for plants. Under this condition, 

SIFyield would have to increase at higher stress levels when NPQ is saturated. This 

might have to do with the experimental setup, where leaf data have been used under 

stress conditions that go beyond what they typically experience in nature. Under 

these conditions, plants might lack the dissipative pathways for enhanced NPQ, 

which results in longer excited state lifetimes and thus higher SIFyields at lower 

photosynthetic yields. For global modeling, the use of SCOPE 2 parametrization 

might thus lead to erroneous results. In the future, more studies on ΦF–ΦP 

relationships under different environmental stresses across a variety of plant species 

will be important to achieve more accurate estimate of SIF. 
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In Figure 2.12(b), we found both LUE and SIFyield are positively correlated with ψpd 

(R2=0.83 and R2=0.60, respectively). However, the relative change is not the same 

for LUE and SIFyield. For example, when ψpd dropped from −0.5 MPa (unstressed 

periods) to nearly −3.5 MPa (severe drought in 2012), LUE dropped from 0.0175 

to 0.0025 — an 85% decrease — while we only see a 42% decrease from 0.00225 

to 0.0013 for SIFyield. This indicates that the SIFyield is not as sensitive as LUE to 

water stress; and consequently, a ~40% fractional difference is missing with the 

assumption of linear SIFyield−LUE relationship. One potential reason might be that 

GOME-2 SIF is measured at 9:30 am when plants tend to be subjected to 

comparatively less stress versus the afternoon. The other reason is attributed to the 

systematic lower fractional reduction in SIF than GPP under the stress, which is 

confirmed by the SCOPE in Section 3.3. Therefore, the latter one should be 

considered as the dominant factor explaining the smaller relative changes in the 

observed SIF compared to GPP. Additionally, as was previously noted, we have to 

bear in mind that the SIF yield changes are likely overestimated due to the large 

GOME-2 footprints.   

 

Figure 2.12: (a) Relative changes in LUE (or GPP/PAR) and SIFyield (or SIF/PAR) 
in JJA from 2007 to 2016 overlain with modeling results of ΦF–ΦP relationship 
from the SCOPE 1 and SCOPE 2. To better compare the canopy scale observations 
with the modeled leaf scale, we normalize SIFyield by its maximum and normalize 
LUE with the maximum at 0.6, which is the largest photochemical yield for plants 
exposed at normal light range. The color of the circular symbols represents ψpd 
(MPa), with red indicating more water stressed conditions. MODIS fPAR 
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aggregated at 0.02° is shown and also normalized by its maximum. (b) GPP/PAR 
or SIF/PAR as a function of ψpd. Black and red dashed lines represent least squares 
linear fits to the observations. 

 

2.5 Discussion 

2.5.1 Seasonal compensation of warm spring 

A warmer spring would lengthen the photosynthetically active period, and thus 

increase annual GPP (Sippel et al., 2017; Keenan et al., 2014; Richardson et al., 

2013; Buermann et al., 2013; Grippa et al., 2005). However, we observed the 

opposite at the Ozarks: an early spring tends to enhance productivity and thus 

depletion of the soil water storage that available for the later growing season, 

leading to increased reliance on precipitation and higher probability of water stress 

and vulnerability of GPP in summer (Ummenhofer et al., 2017; Wolf et al., 2016). 

Here we compared the water budget in 2008 (the most productive year) and 2012 

(the most water stressed year) by accumulated precipitation, accumulated 

evapotranspiration, accumulated precipitation – accumulated evapotranspiration, 

and soil moisture in Figure 2.13. Compared to 2008, the evapotranspiration 

increases much more rapidly in 2012 due to the warmer spring, leading to a 

significant decrease of precipitation – evapotranspiration as well as soil moisture in 

the beginning of summer (~ DOY 150) , indicating that there is less water available 

for plants in the late growing season.  
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Figure 2.13: The water budget in (a) 2008 and (b) 2012. The black dotted line, 
dashed line and solid line represent accumulated precipitation, accumulated 
evapotranspiration, and accumulated precipitation – accumulated 
evapotranspiration in the unit of millimeter (left-axis). The red line represents soil 
moisture in the unit of percentage (right-axis). 

The 2008 and 2012 cases help to explain the “spring GPP gain” and “summer GPP 

loss” pattern shown in Figure 2.7, and both compensate each other in terms of 

annual total GPP (Figure 2.8(d)). This points to a strong coupling of the carbon and 

water cycles, as well as a climate–carbon feedback. Higher spring temperature with 

moderate VPD is accompanied with an increase in GPP and ET, which can rapidly 

deplete soil water available for the summer (Buermann et al., 2018; Grippa et al., 

2005; Sippel et al., 2017). Therefore, during the subsequent summer, GPP is 

significantly reduced due to less water availability, and is accompanied with a 

decrease in latent heat and increase in sensible heat fluxes, which ultimately leads 

to larger VPD and higher air temperature. This can act as a positive feedback loop, 
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exacerbating the water and heat stress in summer. There is also a possibility that 

land-atmosphere coupling (Koster et al., 2006) could cause the correlation of 

spring-time temperature (and associated ET increases) and water deficits in summer. 

Although answering the question of causality of this intriguing correlation is 

beyond the scope of the current study, at least we found a strong correlation 

between spring temperature and ψpd (R2=0.52). 

With regard to changes in the seasonal cycle driven by spring-time temperature, it 

should be noted that the sensitivity of assimilatory and respiratory processes to 

spring temperature change differs by ecosystem type (Caignard et al., 2017; Wang 

et al., 2011; Welp et al., 2007). For example, deciduous forests are found to be more 

sensitive to increased spring temperature and summer drought than evergreen 

forests (Welp et al., 2007). More flux tower-based analyses are needed to fully 

understand the response of different kinds of vegetation to temperature changes. In 

a warming climate, there are two competing effects: increasing temperature and 

vapor pressure deficits, as well as increased water use efficiency of photosynthesis 

due to CO2 fertilization (Yuan et al., 2019; Keenan et al., 2013). On the other hand, 

reduced transpiration due to CO2 fertilization can also result in positive feedback, 

further amplifying surface temperature increases and heat stress (Swann et al., 

2016). For future projections, it will be important to understand the site-specific 

response and how it scales spatially. Also, process-based carbon cycle models need 

to better estimate the response of the ecosystem to changes in spring temperature, 

and the consequent energy partitioning later in the summer. 

2.5.2 Less reduction in SIF than GPP in drought events 

Both observations and SCOPE simulations show less variations in the SIFyield than 

in LUE across different water stress levels (Figure 2.12), which explains the 

reduced IAV observed in SIF compared to GPP (Figure 2.2 and 2.11). Some recent 

studies suggest that SIF is more linked with chlorophyll APAR than GPP since SIF 

directly emanates from the light reactions of photosynthesis (Li et al., 2020; Gu et 
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al., 2019; Yang et al., 2018; Porcar-Castell et al., 2014). In a drought period, it is 

expected that plants will absorb more light due to increased downwelling radiation. 

Meanwhile, plants are more likely to experience stomatal closure due to higher 

VPD and less soil water, which strongly depresses the photosynthetic efficiency. 

This would lead to a strong reduction in LUE  while reductions in the SIFyield are 

muted.  

2.5.3 Promises of high-resolution SIF products 

Current long-term SIF studies are challenged by relatively large footprints of 

GOME-2, especially in heterogeneous landscapes. Recently, some machine-

learning based SIF products of high spatiotemporal resolution have been generated 

(e.g., CSIF, GOSIF, RSIF, SIFoco2) based on satellite SIF, high-resolution spectral 

information, and meteorology data (Gentine et al., 2018; Yu et al., 2018; Zhang et 

al., 2018; Li et al., 2019; Turner et al., 2020; Wen et al., 2020). In addition, 

TROPOMI SIF, with both high spatial and temporal resolution has been available 

since early 2018 (Köhler et al., 2018). All of these datasets show promise to better 

understand long-term GPP:SIF relationships in different ecosystems.  

We used 0.05°-monthly aggregated GOSIF and extract 2×2 pixels (as shown by 

the red boundary in Figure 2.14(a) and (b)) around the US-MOz which cover 70% 

forests, 5% croplands and other landcovers (mainly grass/savannas). The choice of 

using four nearby pixels rather than the single pixel where the flux tower lies is that 

i) uncertainties will be reduced, and ii) more importantly, the US-MOz site is 

dominated by southeast wind in the summer period (see 

https://ameriflux.lbl.gov/sites/siteinfo/US-MOz#windroses). Figure 2.14(c) shows 

the interannual variations of GOSIF vs. flux tower GPP from 2007 to 2016. We 

observe a 30% reduction in GOSIF during the 2012 drought, which is similar to the 

33% decrease in GOME-2 SIF. 
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Figure 2.14: (a) Forest and (b) crop fraction based on the USDA CDL dataset. (c) 
Interannual flux tower GPP, and GOSIF during JJA scaled by the corresponding 
maximum value from 2007 to 2016. The red boxes in (a) and (b) represent the 
domain for GOSIF results in (c).  

We also leveraged 0.05°-monthly aggregated TROPOMI SIF in 2018 and 2019 

over the same region to explore its seasonal and interannual variations. The Ozarks 

experience strong water stress in 2018 as the ψpd dropped to ~ −3.5 MPa in mid-

Aug (Supplementary Figure 2.19), as compared to a more normal year, 2019. 

Figure 2.15 shows the seasonality of TROPOMI SIF, GOSIF, MODIS NDVI, EVI, 

NIRv and flux tower GPP in 2018. TROPOMI SIF tracks the seasonality of flux 

tower GPP much better than GOSIF and all MODIS VIs, with a significant decrease 

in July and August. As for the interannual comparison, we visualized the fractional 

difference of TROPOMI SIF and MODIS NDVI, EVI and NIRv in July 2018 and 

2019 (Figure 2.16). It shows that TROPOMI SIF over forest regions is more 
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sensitive to water stress than all VIs, while nearby crops actually increased, either 

due to the proximity to rivers or watering.  

 

Figure 2.15: Monthly averaged flux tower GPP, TROPOMI SIF, GOSIF and 
MODIS NDVI, EVI and NIRv in 2018. All variables are linearly normalized based 
on min-max scaling to fall in [0,1]. 
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Figure 2.16: The spatial distributions of TROPOMI SIF, NDVI, EVI and NIRv 
fractional differences in July 2018 and 2019 at 0.05° are shown in (b), (d) and (f). 
The full seasonal cycle for all remote sensing variables averaged over the red 
boundary in 2018 and 2019 is reported in Figure 2.20. 
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Figure 2.17: Time series of 30-min flux tower observations from Jan 2007 to Dec 
2016. Ozark Site lies in a typical subtropical climate zone, with hot summer and 
cold winter. Plants largely relies on summer precipitation for the growth. Large 
interannual precipitation is consistent and robust under different stress levels.  
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Figure 2.18: (a) Time series of monthly LAI and (b) the 2012 seasonal cycle 
compared to the ensemble mean (+/- 1SD) seasonal cycle LAI data from years 2007 
through 2015 are summarized. On each day that observations were made the 
following was done: 1) LAI measured non-destructively on 5 transects, each with 
5 plots except for one transect with 4 (24 plots total); 2) the mean LAI for each 
transect based on 4 sub-canopy measurements on each plot; 3) transect means were 
averaged to obtain a grand mean for the forest; 4) monthly mean LAI was then 
calculated.  

 

  

(a) (b) 
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Figure 2.19: Predawn leaf water potential of different species measured at the US-
MOz during the growing season in 2018. 
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Figure 2.20: Monthly averaged TROPOMI SIF in 2018 and 2019. Larger reduction 
in SIF than MODIS VIs from peak to late growing season in 2018 is observed. 
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Table 2-1: RMSE and R2 between flux tower GPP and SIF, MODIS GPP, NDVI, 
EVI, NIRv, fPAR at the inter-annual scale corresponding to Figure 2. PAR is also 
included here for comparison. 

a) At native fine resolution 

 

SIF (mW m-2 

sr-1 nm-1) 
NDVI EVI NIRv fPAR 

MODIS 

GPP (umol 

m-2 s-1) 

Tower PAR 

(umol m-2 s-1) 

RMSE 0.11 0.05 0.12 0.13 0.17 0.10 0.17 

R2 0.62 0.93 0.56 0.49 0.16 0.72 0.15 

 

b) At coarser resolution of 0.25° 

 

SIF (mW m-2 

sr-1 nm-1) 
NDVI EVI NIRv fPAR 

MODIS 

GPP (umol 

m-2 s-1) 

Tower PAR 

(umol m-2 s-1) 

RMSE 0.12 0.05 0.07 0.07 0.10 0.09 0.17 

R2 0.55 0.91 0.86 0.85 0.69 0.77 0.15 
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Table 2-2: Raw data of flux tower GPP, SIF, MODIS GPP, NDVI, EVI, NIRv, 
fPAR used in Figure 2.2. PAR is also included here for comparison. These variables 
were computed as the average during JJA in the individual year. 

a) At native fine resolution 

 
Tower GPP 

(umol m-2 s-1) 

SIF (mW m-2 

sr-1 nm-1) 

MODIS 

GPP (umol 

m-2 s-1) 

NDVI EVI NIRv fPAR 
Tower PAR 

(umol m-2 s-1) 

2007 7.06 1.16 6.43 0.84 0.49 0.33 0.86 521.03 

2008 9.47 1.29 7.90 0.85 0.48 0.32 0.83 503.60 

2009 9.36 1.21 7.80 0.86 0.49 0.33 0.84 485.62 

2010 8.69 1.17 7.97 0.85 0.47 0.31 0.84 519.99 

2011 8.72 1.20 5.96 0.85 0.48 0.32 0.87 532.72 

2012 3.16 0.86 3.14 0.78 0.44 0.29 0.81 539.13 

2013 8.08 1.14 8.16 0.85 0.48 0.32 0.83 499.61 

2014 7.54 1.04 7.05 0.85 0.49 0.33 0.80 486.01 

2015 7.67 0.99 8.19 0.84 0.45 0.29 0.81 451.79 

2016 9.04 1.03 8.78 0.85 0.48 0.32 0.83 492.67 
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b) At coarse resolution of 0.25° 

 
Tower GPP 

(umol m-2 s-1) 

SIF (mW m-2 

sr-1 nm-1) 

MODIS 

GPP (umol 

m-2 s-1) 

NDVI EVI NIRv fPAR 
Tower PAR 

(umol m-2 s-1) 

2007 7.06 1.14 5.61 

 

0.73 0.53 0.27 0.66 521.03 

2008 9.47 1.08 6.46 0.75 0.54 0.28 0.66 503.60 

2009 9.36 1.17 6.49 0.77 0.56 0.29 0.66 485.62 

2010 8.69 1.23 6.65 0.76 0.55 0.28 0.68 519.99 

2011 8.72 1.16 5.29 0.74 0.53 0.27 0.69 532.72 

2012 3.16 0.81 3.17 0.65 0.45 0.22 0.59 539.13 

2013 8.08 1.11 6.62 0.75 0.55 0.29 0.65 499.61 

2014 7.54 1.04 5.74 0.75 0.55 0.29 0.63 486.01 

2015 7.67 0.88 6.58 0.75 0.52 0.27 0.62 451.79 

2016 9.04 1.09 6.64 0.76 0.55 0.29 0.68 492.67 
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Table 2-3: RMSE and R2 between flux tower GPP and SIF, NDVI, EVI, NIRv, 
fPAR, MODIS GPP, NDVI*PAR, EVI*PAR, NIRv*PAR and fPAR *PAR at the 
seasonal scale corresponding to Figure 2.5. PAR is also included here for 
comparison.  

a) At native fine resolution 

 

SIF (mW m-2 

sr-1 nm-1) 
NDVI EVI NIRv fPAR 

MODIS GPP 

(umol m-2 s-1) 

RMSE 0.07 0.13 0.05 0.04 0.13 0.11 

R2 0.96 0.88 0.98 0.99 0.88 0.91 

 

 

Tower PAR 

(umol m-2 s-1) 
NDVI*PPFD EVI*PAR NIRv*PAR fPAR*PAR 

RMSE 0.14 0.07 0.04 0.03 0.07 

R2 0.85 0.97 0.99 0.99 0.96 
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b) At coarse resolution of 0.25° 

 

SIF (mW m-2 

sr-1 nm-1) 
NDVI EVI NIRv fPAR 

MODIS GPP 

(umol m-2 s-1) 

RMSE 0.08 0.17 0.10 0.08 0.15 0.11 

R2 0.96 0.79 0.93 0.95 0.84 0.92 

 

 

Tower PAR 

(umol m-2 s-1) 
NDVI*PAR EVI*PAR NIRv*PAR fPAR*PAR 

RMSE 0.14 0.08 0.06 0.05 0.08 

R2 0.85 0.95 0.97 0.98 0.95 
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CHLOROPHYLL FLUORESCENCE (SIF) TO ESTIMATE CROP 

PRODUCTIVITY 
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and manuscript writing. All co-authors contributed to the writing of the paper. 

3.1 Abstract 

Timely and accurate monitoring of crops is essential for food security. Here we 

examine how well solar-induced chlorophyll fluorescence (SIF) can inform crop 

productivity across the United States. Based on tower-level observations and 

process-based modeling, we find highly linear GPP:SIF relationships for C4 crops, 

while C3 crops show some saturation of GPP at high light when SIF continues to 

increase. C4 crops yield higher GPP:SIF ratios (30~50%) primarily because SIF is 

most sensitive to the light reactions (does not account for photorespiration). Scaling 

to the satellite, we compare SIF from the TROPOspheric Monitoring Instrument 

(TROPOMI) against tower-derived GPP and county-level crop statistics. 

Temporally, TROPOMI SIF strongly agrees with GPP observations upscaled 

across a corn and soybean dominated cropland (R2 = 0.89). Spatially, county-level 

TROPOMI SIF correlates with crop productivity (R2 = 0.72; 0.86 when accounting 

for planted area and C3/C4 contributions), highlighting the potential of SIF for 

reliable crop monitoring. 

C h a p t e r   3
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3.2 Introduction 

Cropping systems not only provide sustenance for the world's human population 

and livestock but they also have a major impact on both local climate (Mueller et 

al., 2016) and the carbon cycle (Peters et al., 2007). Hence, large-scale crop 

monitoring and yield forecasting is necessary to support food security, and to 

quantify the overall impact on the climate and carbon cycle.  

Crop productivity is reliant upon its ability to convert light energy into sugar via 

photosynthesis. Therefore, a reliable measure of gross primary production (GPP) is 

a key step towards crop monitoring. Satellite observations have the potential to 

provide GPP estimates from regional to global scales (Running et al., 2004; Zhao 

et al., 2005; Turner et al., 2006; Yuan et al., 2007; Ryu et al., 2019). Most remote-

sensing based GPP estimates use spectral information in the visible and near 

infrared (NIR) regions that are related to greenness (Huete et al., 2002) or thermal 

(Anderson et al., 2012), and microwave bands, which are sensitive to 

vegetation/soil water content (Konings et al., 2016; Guan et al., 2017). In most 

cases, predicting GPP largely depends on empirical estimates of light use efficiency 

(LUE, efficiency with which absorbed light is used for CO2 fixation), which is 

highly uncertain. 

The emission of red and far-red light from excited chlorophyll-a molecules, denoted 

solar-induced chlorophyll fluorescence (SIF), offers a physiologically based GPP 

proxy, potentially avoiding the need for LUE parameterizations. In fact, an 

empirical linear scaling between SIF and GPP across various vegetation types under 

different environmental conditions has already been shown in many studies 

(Frankenberg et al., 2011; Guanter et al., 2014; Guan et al., 2016; Zhang et al., 2016; 

Verma et al., 2017; Wood et al., 2017; Li et al., 2018; Sun et al., 2018; Smith et al., 

2018; Song et al., 2018; Zuromski et al., 2018; Magney et al., 2019a), revealing the 

potential of SIF to monitor GPP across all spatial scales. 
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The rationale of linking SIF with crop productivity can be shown using the 

following equations (Guan et al., 2016): 

å!""	 = 	å%"" − å'( = )*+ ⋅ å%""                    (1) 

)-./	"-.012345436	 = å!"" ⋅ 78% ⋅ 9:                   (2) 

å;:< ∼ å%""                                       (3) 

where å means the temporal integration of the variable over the growth period. 

:-- refers to net primary production, calculated as GPP minus the amount of 

carbon consumed by plants by autotrophic respiration (0C ), which includes 

maintenance and growth respiration. During the growing period, we can assume 

that growth respiration dominates the 0C term, which in theory should scale with 

,-- . D34  is the carbon use efficiency, which varies across species and 

environmental conditions (Amthor, 1989; DeLUCIA et al., 2007). 1/,  is the 

fraction of the aboveground to total biomass and E6 is the harvest index — the mass 

of harvested grain divided by total aboveground biomass. Both 1/, and E6 are 

related to the crop type and environmental conditions but are usually treated as 

constant parameters for individual crops. These equations exhibit the underlying 

relationship among SIF, NPP, GPP and crop productivity and show that even if 

GPP and SIF are perfectly correlated, variations in D34 , 1/,  and E6  can still 

impact the relationship of SIF to crop productivity.  

Some efforts have been made to explore the potential of satellite SIF in estimating 

crop productivity. Guanter et al. (2014) found that the highest SIF values observed 

from the Global Ozone Monitoring Experiment-2 (GOME-2) satellite are 

associated with the Corn Belt in the United States (US) Midwest. In addition, SIF 

captured the photosynthetic activity over highly productive croplands, while 

traditional VIs show saturation effects in dense canopies. In some cropping systems, 

however, the use of NIRv (Badgeley et al., 2017) might track productivity quite 
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well (Dechant et al., 2019), but may be less sensitive to rapid changes in PSII 

operating efficiency. Thus, SIF has its own unique advantage to track crop 

photosynthesis over vegetation indices (VIs). Guan et al. (2016) used GOME-2 SIF 

as an approximation of photosynthetic electron transport rate (ETR)  to derive GPP 

and crop yield, which has shown a significant improvement in county-level crop 

yield estimates. Zhang et al. (2014) proposed the utility of space-based SIF 

measurements, combined with a process-based model, to estimate the 

photosynthetic capacity over six crop flux sites in the US. However, direct 

comparisons of SIF and crop yields have been restricted by the coarse spatial 

resolution of available satellite SIF measurements. In the US, the average area of 

counties that are predominantly agricultural is ~1700 km2, with the smallest one 

~430 km2. A single GOME-2 footprint (80 km x 40 km) thus covers several 

counties, making it challenging to compare SIF with the benchmark of county-level 

annual crop statistics from the National Agricultural Statistics Service (NASS) of 

the US Department of Agriculture (USDA). Fine spatial resolution (1.3 km x 2.25 

km) SIF data from the Orbiting Carbon Observatory (OCO-2) has been available 

since September 2014 (Frankenberg et al., 2014, Sun et al., 2018), but does not 

provide contiguous spatial coverage. To fill this knowledge gap, we leverage SIF 

inferred from measurements of the TROPOspheric Monitoring Instrument 

(TROPOMI), with an unprecedented spatial resolution (up to 7 km × 3.5 km) and 

near-global daily coverage (Köhler et al., 2018), which allows us to achieve robust 

SIF averages for individual counties.  

A thorough understanding of the relationship between SIF and GPP, and how it 

might vary depending on photosynthetic pathway (C3, C4) is important to achieve 

accurate estimates of crop photosynthesis from SIF. Some studies found stronger 

relationships between SIF and absorbed light by chlorophyll, than GPP (Yang et 

al., 2018; Li et al., 2020). As SIF emanates from the light reactions of 

photosynthesis, it is expected to be more closely related to the electron transport 

rate in photosystem II than to GPP (Frankenberg et al. 2011; Porcar-Castell et al., 
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2014; Gu et al., 2019). Thus, the GPP:SIF ratio should vary between C3 and C4 

photosynthetic pathways (Porcar-Castell et al., 2014; Guan et al., 2016; Gu et al., 

2019), because it is important to know how efficiently electrons from the light 

reactions are used for carbon fixation. This is fundamentally different for C3 and 

C4 plants, with the latter inhibiting photorespiration, which generally leads to a 

higher and less variable efficiency. Typical C3 crops include soybeans, wheat, 

barley, oats and rice, whereas typical C4 crops include corn, sugarcane and 

sorghum. Several recent studies point to a different GPP:SIF ratio for C3 and C4 

plants (Liu et al., 2017; Wood et al., 2017; Liu et al., 2017; Li et al., 2018); however, 

there is still limited understanding of how exactly these mechanisms influence the 

GPP:SIF relationship across time and space. To fill this knowledge gap, we include 

both field measurements and a biophysical model to explain the discrepancies of 

GPP:SIF of C3 and C4 crops, and use this to inform our interpretation of the 

satellite data. 

In this paper, the objectives are to (i) compare observed and modeled GPP:SIF 

relationships for C3 and C4 crops at site level, (ii) examine whether aggregated 

TROPOMI SIF at local (10 km) scales can represent the seasonality of GPP 

observations over homogenous croplands, and (iii) evaluate how well aggregated 

TROPOMI SIF at the county level can be used to estimate crop productivity and 

NPP in the US. 

3.3 Data and Methods 

3.3.1 Site-level SIF and GPP observations 

3.3.1.1 Eddy-covariance (EC) GPP 

In this paper, EC data were collected at long-term and well characterized USDA 

agricultural flux towers within C3 (soybeans, Glycine max L. Merr.) and C4 (corn, 

Zea mays L.) cropping systems in central Iowa. Specific sites are Brooks field 

(41.974536°N, -93.693711°W) and Coles field (42.488414°N, -93.522582°W) for 

the PhotoSpec comparison in 2017 as well as two nearby towers at Coles field 



 

 

61 
covering soy (42.488414°N, -93.522582°W) and corn (42.481677°N, -

93.523521°W) for the TROPOMI comparison in 2018. These farming systems are 

typical for those in the Upper Midwest corn belt (more details in Dold et al., 2017, 

2019). Data were excluded under unfavorable weather conditions (e.g., rainfall, low 

wind turbulence and high humidity) (Baker el al., 2015), screened for outliers (Dold 

et al., 2017), and gap-filled. Turbulent CO2 fluxes were computed using the EC 

method (Burba, 2013), and then net ecosystem exchange (NEE) was partitioned 

into GPP and ecosystem respiration (Re). Note that we do not have overlapping 

datasets of TROPOMI, PhotoSpec and EC systems, thus the EC to PhotoSpec 

comparison is limited to 2017 and the EC to TROPOMI comparison to 2018. 

3.3.1.2 PhotoSpec SIF 

We installed two PhotoSpec instruments in a soybean (Brooks field, 41.974203°N, 

-93.695839°W) and corn field (Coles field, 42.48655°N, -93.52641°W) in central 

Iowa following planting in late May 2017 and measured SIF until harvest in 

September 2017 (Magney et al., 2019b). PhotoSpec consists of a 2D scanning 

telescope to guide reflected radiances into a set of high resolution spectrometers 

(Grossmann et al., 2018) to infer SIF using the solar Fraunhofer line in-filling 

technique, similar to all current satellite retrievals. The scanning telescope was 

placed atop a 7-m tower and we calculate a “canopy average” of all viewing angles 

at an hourly time step to match the temporal resolution of flux tower data (following 

Magney et al., 2019b). Because the scanning telescope revisits every measuring 

point within an hour, this canopy average is more representative of a hemispherical 

sensor with a footprint of a few meters around the tower (an average of all viewing 

directions). Due to the narrow field-of-view of PhotoSpec, we can isolate between 

vegetation and non-vegetation signals, where we have determined NDVI at 0.6 to 

be sufficient for the definition of the peak growing season — when our analysis was 

conducted (as can be seen in Supplementary Figure 3.5, where the rows can be 

seen early in the season). Notably, while the escape ratio and angular dependencies 
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are an important consideration for tower-based SIF measurements (Zeng et al., 

2019), this makes little difference in our study for the canopy structure is relatively 

stable during the peaking growing season. More details on PhotoSpec retrievals and 

instrument specifications can be found in Grossmann et al. (2018) and Magney et 

al. (2019b).  

3.3.2 TROPOMI SIF 

On October 13, 2017, the TROPOMI instrument onboard the European Sentinel-5 

Precursor satellite was launched. TROPOMI is a multi-band push-broom imaging 

grating spectrometer, which also covers the far-red part of the SIF emission 

spectrum (Köhler et al. 2018). The SIF retrieval window ranges from 743 to 758 

nm, a subset of TROPOMI's band 6 (725-775 nm). A daily correction factor is 

applied to convert instantaneous SIF to a daily average (following Frankenberg et 

al., 2011).  

For the comparison with GPP observations, we extracted TROPOMI SIF within +/-

10 km of two nearby flux towers, and applied a +/-4 day moving average, sampled 

every 4 days. The agricultural cover is quite homogeneous within +/-10 km, with 

~58% corn and ~30% soybeans derived from the 30-meter cropland data layer 

(CDL; https://nassgeodata.gmu.edu/CropScape/) (Supplementary Figure 3.6). 

Since TROPOMI SIF represents an average of all crops within the sampling area, 

we assume a ⅔:⅓ weighted average of flux tower GPP for corn and soy, 

respectively.  

For the comparison with county-level crop statistics reported by USDA NASS, we 

aggregated SIF at the county scale, yielding on average 700 TROPOMI soundings 

per month for counties with > 45% planted areas. The planted ratio of each county 

is shown in Supplementary Figure 3.7. 

3.3.3 Crop statistics from USDA NASS 
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We obtained the county-level total crop production and planted area for individual 

crop types from the USDA NASS Quick Stats Database (quickstats.nass.usda.gov). 

In most studies, crop yield refers to the amount of grain per unit of harvested land 

area per crop (Fischer, 2014). Therefore, it is associated with accumulated NPP 

weighted by aboveground biomass during the crop growth season (Lobell et al., 

2002). Thus, NPP acts as a bridge to link crop statistics with satellite observations 

(Smith et al., 2014).  

We used crop production and acreage for individual crop types to calculate county-

level crop productivity as 
4846%	C>8D	D>8&EC4#87
4846%	C8E74"	6>$6

. From a physical perspective, this 

definition is more comparable with the county-level aggregated satellite TROPOMI 

SIF, since satellite SIF records represent the entire footprint, regardless of land type.  

Following Lobell et al. (2002), Guan et al. (2016) and Guan et al. (2017), we 

converted crop productivity to NPP at the county level:  
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																				= ∑
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	+

O((	⋅	P:?(
'
#23                                (5) 

where >  represents the crop type (dominated by corn and soybean here), -		the 

reported crop production, Q0-  the mass per unit of report production, QD  the 

moisture content, and R the crop productivity based on the definition given before. 

The list of 1/, and E6 of common crops can be found in Lobell et al. (2002) and 

Guan et al. (2016) (see Supplementary Table S1).  

3.3.4 Site-level GPP and SIF modeling 

We use the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) 

model, a 1D integrated radiative transfer and energy balance model, to simulate 

photosynthesis, fluorescence, the surface energy balance and reflectance/emission 
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spectra at leaf and canopy scales (van der Tol et al., 2009). This mechanistic model 

helps to understand the connection between SIF, GPP, quantum yield of 

photosystem II (PSII) (PSIIyield) and actual electron transport rate (Ja) under 

different environmental conditions for C3 and C4 plants. We modeled GPP and SIF 

at nadir viewing using SCOPE at two flux tower sites with concurrent PhotoSpec 

and GPP observations. We used available meteorological data from the flux tower 

(i.e., incoming shortwave and longwave radiation, air temperature, ambient 

atmospheric pressure, vapor pressure and wind speed), and optimized canopy 

parameters (LAI, VCMAX, Chl content) via a Bayesian inversion system (Dutta et 

al., 2019).  

3.4 Results and Discussion 

3.4.1 Observed and modeled GPP:SIF for C3 and C4 at the site level 

We compared ground-based PhotoSpec SIF measurements throughout the peak 

growing season in both C3 (soybean) and C4 (corn) crops with flux tower GPP as 

well as PAR (Figure 3.1(a), (b) and (c)). The peak growing season is defined as 

DOY 210-235 for soybean and DOY 175-190 for corn. Here, hourly SIF is linearly 

correlated with PAR for soybean (R2=0.87) and corn (R2=0.84), with negligible 

differences in the SIF:PAR ratio (Figure 3.1(a)). This indicates that during the peak 

growing season in both agricultural sites, SIF is mostly driven by incident radiation 

and exhibits negligible differences due to the fluorescence yield. To first order, we 

expect SIF to be tightly related to PAR in systems where there is little stress (i.e. 

low variations in SIFyield), which can be expected in highly efficient agricultural 

areas. Little apparent stress is also indicated by the canopy-scale light response 

curve of GPP vs. PAR (Figure 3.1(b)), with a near-linear relationship for corn and 

some saturation effects for soybean at higher light levels. Consequently, we found 

that hourly averaged SIF is strongly correlated with GPP in both soybean (R2=0.51) 

and corn (R2=0.64), however, with a larger GPP:SIF ratio observed for corn - 

leading to roughly a 30% higher GPP per unit SIF in corn at higher light levels 
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(Figure 3.1(c)). This implies that the light-use efficiency of corn is higher than that 

of soybean, due to the evolved mechanism to concentrate CO2 at the rubisco site 

and thereby minimize photorespiration as well as the occurrence of carboxylation 

limited photosynthetic rates in C4 plants.  

 

Figure 3.1: Canopy-scale relationships in the peak growing season (DOY 175-190 
for corn and 210-235 for soybean) based on hourly averaged data from PhotoSpec 
for soybean (gold) and corn (green): (a) SIF:PAR, (b) GPP:PAR, (c) GPP:SIF for 
both soybeans and corn. SCOPE modeled relationships are for the same time-
periods and based on hourly averaged data for soybean and corn: (d) SIF:PAR, (e) 
GPP:PAR and (f) GPP:SIF. The results of Photospec-measured relative SIF, which 
is normalized by incoming NIR reflected radiance to reduce the effects of structural 
and bidirectional reflectance of the signal (Yang et al., 2018), is shown in Figure 
3.8. 

To test whether the GPP:SIF relationship observed in the field is consistent with 

what is expected from biophysical models, we compared the simulated far-red SIF 

at 740nm and GPP against PAR using SCOPE (Figure 3.1(d), (e) and (f)). For both 
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soybean and corn, the PAR:SIF relationship is highly linear, yet with slightly 

different slopes (Figure 3.1(d)). In the light response curve for GPP (Figure 3.1(e)), 

soybean GPP saturates at higher light levels, when the rate of photosynthesis is 

limited by the carboxylation rate. Corn remains highly linear even at high light 

levels, resulting in a more linear GPP:SIF relationship. Apart from the high SIF 

values modeled for corn leading to diverging SIF:PAR relationships between corn 

and soy, these simulations are broadly consistent with our observational evidence. 

We found that the high SIF to PAR slope for C4 is likely related to how SCOPE 

computes the PSIIyield for C4 plants, which are in the range of a maximum SIFyield 

given by the PSIIyield:SIFyield parameterization (van der Tol et al., 2014). Our canopy 

spectrometer data supports this, as we observe similar SIF yields for C3 and C4 

crops. The overly high modeled SIF values as well as the inconsistency with our 

field measurements point to an overestimation in the SIFyield for C4 plants in the 

SCOPE model. Apart from that, the measurement and modeling perspective agree 

very well.  

Both our observations at the site level as well as the SCOPE modeling results 

showed that the GPP:SIF relationship is more linear for C4 than C3 plants. It is well 

established that SIF is a better proxy for the actual electron transport rate (Ja) than 

for GPP, which requires us to separate C3 and C4 photosynthetic mechanisms if we 

use Ja to estimate GPP. The explicit relationships among the four variables, SIF, Ja, 

PSIIyield and SIFyield can be described as follows (Gu et al., 2019; Porcar-Castell et 

al., 2014): 

SC = T@A(( ⋅ V ⋅ /-/0F>$$7           (6) 

567 = TA(! ⋅ V ⋅ W ⋅ /-/0F>$$7        (7) 

where T@A((  and TA(! 	 is the quantum yield of PSII and SIF, respectively; 

/-/0F>$$7  is absorbed photosynthetically active radiation by green elements 

(Gitelson & Gamon, 2015); V is the fraction of /-/0F>$$7 allocated to PSII; W is 
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the escape probability of fluorescence from the canopy (Zeng et al., 2019). Here, 

we neglect variations in the canopy structure and thus W as we focus on the peak 

growing season, where we observe little structural change (Supplementary Figure 

3.5). 

Combing (6) and (7) we obtain: 

96
A(!

∼ R,-..
R-./

             (8) 

which demonstrates that Ja:SIF is determined by T@A((  and TA(! , which is 

dependent on environmental conditions (e.g., light intensity, drought and heat 

stress). The less T@A(( 	is varying — as is often the case for highly efficient crops — 

the more constant and linear the SIF to Ja relationship is. Leaf-level measurements 

have been used to derive the empirical relationship between T@A(( and TA(! 	(Lee et 

al., 2013; van der Tol et al., 2014). For example, Flexas et al. (2002) found that for 

under stress, T@A((  and TA(!  are usually positively correlated if substantial non-

photochemical quenching (NPQ) exists. At the canopy level, T@A((  and TA(!  are 

mostly positively correlated at the seasonal scale (Song et al., 2018; Verma et al., 

2017; Zhang et al., 2016; Yang et al., 2015; Porcar-Castell et al., 2014), mainly due 

to averaging effects of the canopy, which integrates over a variety of T@A((  and 

TA(! 	values for all leaves (similar to our PhotoSpec observations).  

The linkage between GPP and Ja depends on the photosynthetic pathway (Farquhar 

et al., 1980; Collatz et al., 1992):  

,-- = 96	⋅	(,0	*	S∗)
M,0	+	TS∗

  for C3                      (9) 

,-- ≈ 96	
U

   for C4                            (10) 

where DC  is chloroplast CO2 partial pressure and Z∗  is chloroplastic 

photorespiratory CO2 compensation point. Comparing (9) and (10), for C3 plants, 
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an additional nonlinearity in GPP:Ja arises, which is attributed to the varying 

fraction of electrons used in photorespiration. Due to the lack of photorespiration 

in C4 plants, the relationship between Ja and GPP is strictly linear. For the same 

reason, the conversion factor from Ja to GPP is mostly higher for C4 than C3 plants, 

as about ⅓ of the electron transport rate is wasted in photorespiration in C3 plants. 

Since SIF is mostly proportional to Ja, (9) and (10) directly explain the more linear 

behavior and steeper GPP:SIF slope for C4 versus C3 plants. It should be noted that 

at high	DC values, the slope for C3 plants can be steeper (e.g., at low light levels). 

In general, variations in the GPP:SIF scaling at the leaf scale can thus be attributed 

to two different effects: i) variations in the ratio of T@A((  and TA(!  in the light 

reactions as well as ii) the scaling from Ja to GPP, which depends on the 

photosynthetic pathway. 

3.4.2 Consistent seasonal cycle seen by TROPOMI SIF and field GPP 

measurements 

Here, we evaluate how well TROPOMI SIF represents local GPP patterns in a 

corn/soybean dominated area in Iowa during the growing season of 2018. The 

seasonal cycle of footprint-level TROPOMI SIF and flux tower GPP at both 

soybean and corn sites is shown in Figure 3.2. Corn GPP increases more rapidly 

and reaches its maximum of  ~25 gC/m2/day around July 10, while soybean GPP 

approaches maximum of ~15g C/m2/day more gradually, around July 20. As 

mentioned in Section 3.3, TROPOMI SIF represents an average of all crops in the 

area, for which we calculate the weighted average of GPP assuming a ⅔:⅓ 

contribution of corn and soy, respectively. There is strong agreement between 

TROPOMI SIF and the weighted area-averaged GPP estimate (R2=0.89) (Figure 

3.2), motivating our use of TROPOMI SIF in large-scale crop monitoring. In 

particular, the GPP:SIF ratio at both satellite and flux tower scales is consistent — 

around 12 (gC/m2/d)/(W/m2/µm/sr). While there is close correspondence between 

SIF and GPP during senescence, there is a small mismatch early in the growing 
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season, which could be explained by 1) fewer TROPOMI observations due to 

increased cloud cover during this time of year (see Supplementary Figure 3.9), 2) 

different planting and emergence dates within the satellite footprint and 3) 

potentially higher SIF escape probabilities at the beginning of the season as the 

canopy is more open at that stage. We also did not find any apparent viewing angle 

dependent behavior in the TROPOMI datasets (see Supplementary Figure 3.9). 

Importantly, it should be noted that this is the first time that satellite-based SIF can 

be compared with GPP at weekly temporal resolution and ~10km spatial scales — 

a significant improvement over previous satellites providing monthly data at 0.5-

degree resolution.  

 

Figure 3.2: The 2018 seasonal cycle of flux tower GPP for soybeans and corn in 
Iowa and TROPOMI SIF (within +/-0.1° latitude and longitude, shaded area 
showing 2sigma uncertainty range). A moving average of +/- 4 days and 4 day 
sampling interval is applied to both datasets. The upscaled GPP (green) is 
approximated by a weighted average of ⅔ corn and ⅓ soy contributions, determined 
by computing crop fraction within +/-0.1° (in total, 88% of this area is covered by 
either corn and soybean). 
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Tower-level SIF was not included in this comparison as there was no temporal 

overlap between tower SIF data and TROPOMI in 2018. In recent years, more 

ground-based SIF measurements  have become available (Yang et al., 2015; Miao 

et al., 2018; Grossmann et al., 2018; Yang et al., 2018; Dechant et al. 2019; Du et 

al., 2019; Magney et al., 2019b; Zhang et al., 2019; Li et al., 2020), which will help 

disentangle various factors (e.g., view angles, canopy structure and overpass times) 

that might also impact the SIF to GPP relationship.  

3.4.3 Spatial correlation between county-level TROPOMI SIF and crop 

productivity 

Here we focus on the county level in the US to evaluate the capability of using 

TROPOMI SIF to predict crop productivity. We define the growth period for each 

county as the period in which SIF exceeds 10% of its peak value within the year. 

The spatial pattern of crop productivity and the average growing-season TROPOMI 

SIF of 2018 is shown in Figure 3.3(a) and (c). The SIF map closely matches the 

NASS yield-based NPP pattern in the Corn Belt, the most dominant region of 

corn/soybean staple crop production in the US. For counties with > 45% planted 

areas, we found that crop productivity and converted NPP are both highly correlated 

with SIF, with R2=0.72 and R2=0.71, respectively (Figure 3.3(b) and (d)). As 

discussed previously, crop productivity:SIF and NPP:SIF relationships are not 

identical for C3 and C4 crops. At the same level of SIF, higher crop productivity 

and NPP are observed for counties with more C4, which is expected based on the 

ground-based measurements and modeling results (Sections 3.4.1). In contrast to 

the nonlinear pattern observed for temporal variations at the site level, spatial 

variations in the county-level analysis are more linear. The main reason is that the 

non-linear pattern is only apparent at high light levels. In contrast, the spatial 

correlation is discussed for seasonal averages, in which the impact of high light 

levels is smoothed out.  
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In theory, crop productivity is associated with temporally integrated net 

photosynthesis over the growing season. Therefore, we also tested the correlation 

between crop productivity and the corresponding NPP against integrated SIF over 

the growing period. We found that the crop productivity:integrated SIF and 

NPP:integrated SIF correlations are still consistent and robust, yet weaker than 

when using the average growing season SIF (see supplementary Figure 3.11).  

 

Figure 3.3: Spatial pattern of county-scale (a) crop productivity derived from USDA NASS and (c) 
average TROPOMI SIF during the growth period of 2018. In counties with planted 
area >45%, the relationship of (b) crop productivity:SIF and (d) NPP:SIF. The color 
scheme represents the relative fraction of C3 crops, with blue meaning more C3 and red 
means more C4. The maps of C3 and C4 crops distributions are shown in Figure 3.10. The 
growth period here is defined as the time when SIF exceeds 10% of Max(SIF) within a 
year. The results are robust with different thresholds defining the growing season (see 
Figure 3.11) and TROPOMI relative SIF (see Figure 3.12). 

Overall, the crop productivity (NPP):SIF relationship at the county level is almost 

linear. This is likely due to the high efficiency of crops (generally high 

photosynthetic yields) as well as large contributions from C4 crops, where the 

relationship is more linear. In addition, crop productivity (NPP):SIF ratio is 25~50% 

higher for C4 than C3, which is consistent with ground-based measurements and 
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modeling outputs in Sections 3.2. Including results from field measurements 

(PhotoSpec) and a biophysical model (SCOPE) gives us more confidence in 

explaining the discrepancies between C3 and C4 crops and the associated GPP:SIF 

relationship. A more detailed understanding of the GPP:SIF slope for different 

crops at different environmental conditions based on field-level measurements 

would help us to better estimate NPP:SIF for a variety of crops, and ultimately 

improve the prediction of crop productivity at the global scale, where ground based 

measurements are lacking. 

3.4.4 Improving the productivity prediction performance using additional 

information 

Although crop productivity can be estimated with SIF observations alone, we can 

further improve the performance by adding two other explanatory variables, which 

are easily accessible: planted area fraction per county (Cropfraction) and fraction of 

C3 plants per county (C3ratio). The SIF signal from crops will be dampened if the 

planted area fraction is low and a correction factor should be considered between 

C4 and C3, since higher productivity is expected for C4 at the same level of SIF. 

Here, we fit the two multiple linear regression models for crop productivity based 

on (i) SIF and Cropfraction (ii) SIF, Cropfraction and C3ratio, (Figure 3.4). With the 

added information of Cropfraction, R2 improved from 0.72 to 0.79, and adding the 

C3ratio, R2 improved to 0.86 (Figure 3.3 and 3.4), which also converges into a more 

normal distribution of the residuals for C3 and C4 dominated counties around the 

line of best fit. This behavior is consistent with our field-level measurements and 

modeling, giving us mechanistic confidence in such an approach.  
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Figure 3.4: The relationships between true crop productivity and predicted crop 
productivity using multiple linear regression based on variables (a) SIF and crop 
fraction per county (b) SIF, crop fraction and relative C3 ratio per county.  

It should be noted that we currently use several assumptions and do not use any 

model information for this upscaling approach. For instance, we assume that 

respiration scales with GPP, which results in a linear scaling of GPP to NPP. 

Notably, other growing season environmental conditions (temperature, VPD, soil 

moisture) as well as canopy structure and associated variations in the escape 

probability of SIF could have an impact on our interpretation of the SIF signal. 

Theoretically, however, SIF contains the information on environmental conditions 

and tracks GPP variations better than traditional reflectance-based vegetation 

indices (e.g., NDVI), though its response to stress is weaker than for GPP (or LUE) 

(Magney et al., 2017; van der Tol et al., 2014). Additionally, HI, the process of 

plant NPP converting to ultimate grain yield, which is also controlled by 

reproductive processes and environmental conditions during grain fill, is an 

important consideration. Despite this, it is hard to justify adding more complexity 

to the analysis given the already strong empirical linear relationship between crop 

NPP and SIF.  

3.4.5 Towards finer-resolution crop productivity estimates 

Our SIF-only based crop productivity proxy approach achieved robust and reliable 

performance over agriculture dominated counties in the US. To fully exploit the 

potential of this approach in other regions of the world, especially for small-scale, 
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diverse, and fragmented agricultural fields, high spatially and temporally resolved 

remote sensing datasets will be required. This is still challenging for current satellite 

SIF products (e.g., short record of TROPOMI, sparse spatiotemporal sampling of 

OCO-2 and large footprint of GOME-2). Recently, some machine-learning based 

long-term SIF products of high spatio-temporal resolution have been developed 

(e.g., CSIF, GOSIF, RSIF, SIFoco2) based on satellite SIF, high-resolution spectral 

information, and meteorology data (Gentine et al., 2018; Yu et al., 2018; Zhang et 

al., 2018; Li et al., 2019; Turner et al., 2020). Future work across all scales will be 

needed to test the long-term performance of SIF products on the global scale, 

particularly as we link these measurements to photosynthesis (Ryu et al., 2019). A 

combination of high-resolution reflectance based remote sensing products and crop 

models (Lobell et al., 2015; Jin et al., 2017) have already shown great potential in 

fine-scale yield estimates.  

3.5 Conclusions 

We investigated the GPP:SIF relationship of crops from ground-based 

measurements and validated the biophysics with model runs for C3 and C4 crops 

at two field sites in the Upper Midwest corn belt of the US during the 2017 growing 

season. Generally, we find a linear GPP:SIF relationship except for high-light levels 

when GPP starts to saturate whereas SIF still increases, especially for C3 crops. 

This is attributed to two effects: 1) 
@A((2(%34
A(!2(%34

 of crops varies less than in other 

ecosystems, since crops in this region rarely experienced severe stress conditions, 

which would lead to a strong reduction of 
@A((2(%34
A(!2(%34

. Thus, the correspondence 

between SIF and actual electron transport rate Ja is highly linear for crops; 2) 

Ja:GPP varies between C3 and C4, which is determined by the number of electrons 

required for carboxylation. The latter consideration also results in a different 

GPP:SIF relationship between C3 and C4 crops, with a steeper GPP:SIF slope for 

C4 plants — an important consideration when using SIF as a proxy for crop 
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productivity. A direct comparison of satellite SIF measurements against two flux 

tower sites in a highly agricultural area in Iowa further supports this finding at 

larger spatial scales. At the county scale, we found that SIF is highly correlated 

with crop productivity derived from the USDA NASS database (R2=0.72). Using 

ancillary information on crop-planted fraction and relative C3 crop ratio per county, 

we can further improve our estimate using a multiple linear regression model to 

R2=0.86. Our model-free SIF-based crop productivity estimation framework 

appears promising and can provide insights to monitor the crop productivity 

globally outside the US, especially in developing agricultural countries. A 

validation approach against well documented productivity estimates in the US 

represented a necessary proof of concept before applying the method to less well 

monitored agricultural areas. 
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3.7 Appendix 

Table 3-1: The conversion factors used for NPP (g C/m2 ) for individual crop type 
(modified based on Guan el al., (2016)). Light grey represents the ones involved in 
our analysis after the filtering of total crop planted area > 45% per county. 

Crop Published 

production 

unit 

kg per 

production 

unit 

Moisture 

content (%) 

Harvest 

Index 

Fraction of 

production 

allocated to 

abovegroun

d (fAG) 

Corn for Grain Bushel 25.401 11 0.45 0.85 

Soybean Bushel 27.216 10 0.4 0.87 

Hay (other) Ton 907 15 1 0.53 

Wheat Bushel 27.216 11 0.4 0.83 

Hay (alfalfa) Ton 907 15 1 0.53 

Cotton Lb 0.453 8 0.4 0.8 

Sorghum for 

grain 

Bushel 25.401 10 0.4 0.8 

Corn for silage Ton 907 65 1 0.85 

Barley Bushel 21.772 12 0.4 0.67 
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Durum Wheat Bushel 27.216 12 0.4 0.83 

Sunflowers Lb 0.453 10 0.35 0.94 

Oats Bushel 14.515 11 0.4 0.71 

Peanuts Lb 0.453 9 0.4 0.8 

Sugarbeets Ton 907 85 0.4 0.8 

Canola Lb 0.453 10 0.35 0.94 

Rice Lb 0.453 9 0.4 0.8 

Potatoes Hundred 

Weight 

50.8 80 0.5 0.8 
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Figure 3.5: The impact of viewing geometry on both (a) soybean and (b) corn sites. 
Note that NDVI is invariant when NDVI > 0.6, which can be used as the indicator 
of the peak growth season, whereas far-red SIF at 740nm shows dynamic response 
during the same period.  
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Figure 3.6: The location of USDA flux towers of C3 (42.488414°N, -93.522582°W; 
soybeans, Glycine max L. Merr.) and C4 (42.481677°N, -93.523521°W; corn, Zea 
mays L.), surrounded by homogeneous soybean and corn fields used in the 2018 
satellite/flux tower comparison. Green represents soybean and yellow represents 
corn. Within +/-10 km from the flux towers, there are ~58% corn and ~30% 
soybeans derived from the 30-meter crop-specific land cover data layer (CDL; 
https://nassgeodata.gmu.edu/CropScape/).  
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Figure 3.7: The fraction of total planted area of each county in 2018. The planted 
area for individual crop type in each county is obtained from USDA NASS Quick 
Stats Database (quickstats.nass.usda.gov), and the total area of each county is 
obtained from the United States Census Bureau (https://factfinder.census.gov/). 
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Figure 3.8: Canopy-scale relationships in the peak growing season based on hourly 
averaged data from PhotoSpec for soybean (gold) and corn (green): (a) relative 
SIF:PAR, (b) GPP:PAR, (c) GPP:relative SIF for both soybeans and corn. Relative 
SIF cancels out radiation and can be considered as a proxy of SIF yield. Thus, there 
is no obvious correlation with PAR or GPP. Since relative SIF is quite stable, this 
implies that the canopy structure is quite stable and PAR we used in the peak 
growing season is almost chlorophyll-absorbed APAR.  
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Figure 3.9: Footprint-level TROPOMI time series colored by the phase angle within 
+/-10 km from the flux towers used in Figure 3.2. Fewer TROPOMI observations 
are due to increased cloud cover at the beginning of the growing season. In addition, 
there is no apparent viewing angle dependent behavior in the TROPOMI datasets 
over the growing season.  
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Figure 3.10: The fraction of (a) C3 and (b) C4 crops over the total planted areas for 
agricultural dominated counties, which have > 45% planted areas. 

 

  



 

 

84 

 

Figure 3.11: In counties with planted area > 45%, the relationship of crop 
productivity and NPP against average TROPOMI SIF during the growth period of 
2018. The growth period for each county is defined when SIF is larger than some 
proportion of its maximum SIF. In the main text, we choose the threshold as 0.1, 
and here we represent the results with the varying threshold from 0.2 to 0.5. The 
color scheme represents the relative fraction of C3 crops, where blue means more 
C3 and red means more C4.  
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Figure 3.12: Spatial pattern of county-scale (a) crop productivity derived from 
USDA NASS and (c) average TROPOMI SIF during the growth period of 2018. In 
counties with planted area >45%, the relationship of (b) crop productivity:relative 
SIF and (d) NPP:relative SIF. The color scheme represents the relative fraction of 
C3 crops, where blue meaning more C3 and red means more C4.  
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Figure 3.13: In counties with planted area > 45%, the relationship of crop 
productivity and NPP against integrated TROPOMI SIF during the growth period 
of 2018. The growth period for each county is defined as the time when SIF is larger 
than some percentile (from 60% to 80%) of the total observations. The color 
scheme represents the relative fraction of C3 crops, where blue means more C3 and 
red means more C4. 
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4.1 Abstract 

Plant growth and crop harvest are impacted by both climate change and air pollution. 

However, their relative importance in crop yields remains elusive, especially in 

heavily polluted regions. Here we develop a crop yield prediction model, based on 

a large volume of historical crop data, as well as climate and pollution records in 

China since 1980. A long-term surface ozone concentration dataset is developed 

from a machine-learning model and various observations. An assessment of four 

climate and pollution factors reveals the critical role of particulate and ozone 

pollution in regulating interannual variations of crop yields in China. During 2010-

2018, we find that the particulate pollution mitigation outweighs the negative 

impacts of concurrent climate change, resulting in 0.5-1.9% net yield increases 

nationwide, despite of the ozone increases in the North China Plain. Looking to the 

future, the impacts of climate change, particularly from surface temperature 

increase, will dominate over pollution factors and profoundly reduce future maize 

and rice yields by −0.6 to −2.8% 10yr-1 by 2050. Our findings call for the attention 

on the threat to future global food security from the absence of pollution mitigation 

and the persistence of global warming.  

4.2 Introduction 

C h a p t e r   4
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Crop yields are strongly influenced by regional climate and air quality (Wang et al., 

2020). Temperature increase and resultant enhancement of the crop respiration have 

caused a global yield loss in recent decades (Lobell et al., 2011; Zhao et al., 2017), 

and such a trend is expected to be amplified over the next century as air temperature 

exceeds the tipping point in the crop-temperature relationship (Schlenker & Roberts, 

2009). Precipitation exerts impacts on crop yield by altering soil and air moisture 

(Kimm et al., 2020) but in a non-monotonic manner (Li et al., 2019; Rosenzweig et 

al., 2002). Meanwhile, atmospheric pollutants such as anthropogenic aerosols and 

near-surface ozone exert detectable impacts on regional crop yields by changing 

physical, biochemical, and physiological processes during plant growth (Ainsworth, 

2017; Chameides et al., 1999). Two of the pronounced aerosol effects on crop 

yields are the decrease in total solar radiation reaching the ground for plant 

photosynthesis (Gerstl & Zardecki, 1982) as well as the increase in diffuse radiation 

and light use efficiency (Hemes et al., 2020). The former is generally more 

significant, leading to a net negative effect (Tie et al., 2016). As a strong oxidant, 

ozone near the surface reduces photosynthesis by entering leaves via the stomata, 

producing damaging radicals, and consequently accelerating plant senescence 

(Felzer et al., 2007). Tropospheric ozone is mainly produced by photochemical 

reactions between nitrogen oxides (NOx) and volatile organic compounds (VOCs) 

in the presence of sunlight. Both precursor gases are of significant anthropogenic 

origin. On the global scale, regions with high levels of aerosol and ozone pollution 

are always collocated with croplands in rapidly developing countries. Therefore, 

effective controls of pollutant emissions in these regions have the great potential of 

alleviating crop yield loss due to air pollution (Burney & Ramanathan, 2014; 

Chameides et al., 1999). Meanwhile, it remains highly uncertain how air pollution 

and climate change compete or work together over the world’s pollution centers 

with characteristic pollution evolutions in the past few decades (Wang et al., 2015). 

China produces the largest amounts of rice and wheat in the world, and contributes 

approximately 28% and 17% of global production, respectively (Deng et al., 2019; 



 

 

89 
Li et al., 2019). China is also the second-largest maize producer behind the United 

States, with more than an 18% share of production in the world maize economy 

(Meng et al., 2016). In the recent four decades, yields for staple crops in China have 

experienced decades of increases, mainly owing to technological innovation. 

Nevertheless, during the same period, there was about a 1°C increase in growing-

season temperature over major crop regions globally, reducing relative yields by 

several percent (Zhao et al., 2017). The rapid urbanization, industrialization, and 

economic growth also led to serious regional haze in the majority of the country 

(Huang et al., 2015; Le et al., 2020). However, the recent decade starting from 2010 

witnessed an unprecedented reduction in particulate pollution after a series of 

emission control policies and environmental protection laws by the Chinese 

government (Li, 2020; Sogacheva et al., 2018; Tie et al., 2016; Zhao et al., 2018). 

Particularly in 2013, China issued the nation’s most stringent policy named as “Air 

Pollution Prevention and Control Action Plan”. Since then, the particulate matter 

(PM) concentration has dropped by up to 50% (Wei et al., 2021; Zhang et al., 2019). 

Several studies using ground observations and crop models showed that yields 

significantly suffered from climate warming and increasing aerosols and surface 

ozone in northern and eastern China (Tie et al., 2016; Wang et al., 2007; Yi et al., 

2018; Yi et al., 2020; Zhao et al., 2020). However, a systematic understanding of 

the crop yield response to climate and air pollution is limited due to the sparse and 

short records of ground observations.  

This paper assesses the individual and joint impacts of climate and air pollution on 

both historical and future crop yields. We focus on three most important staple 

crops in China, including rice, maize, and wheat. A robust statistical model is 

established that accounts for the spatiotemporal variations of surface air 

temperature, precipitation, aerosol optical depth (AOD), and surface ozone (O3) 

exposure, aiming to estimate the relative yield change (RYC) due to the individual 

and joint effects of those four factors. Similar yield models have also been used to 

study the response of yield to climate or pollution (Burney & Ramanathan, 2014; 
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Butler et al., 2018; Hong et al., 2020; Lobell et al., 2011, 2020; McGrath et al., 

2015; Tack et al., 2015). To our best knowledge, this study is the first effort to 

assess the yield benefit due to effective emission controls in China after 2010. We 

use long-term province-level yield annual reports with climate variables and air 

pollution data from various sources from 1980 to 2018. Lack of long-term surface 

ozone measurements has been an outstanding issue faced by large-scale data 

analysis studies. Here we employ the recently developed surface ozone dataset in 

China, which is derived from a machine learning model that takes in ozone surface 

monitor data since 2013 as well as long term climate, emissions, and other auxiliary 

dataset. Future yield changes by 2050 are assessed by feeding predicted climate and 

air pollution variations from the ensemble climate model projections to the 

established crop prediction models.  

4.3 Materials and Methods 

4.3.1 Observational data 

The annual crop production, harvested area, and yield data are from the National 

Bureau of Statistics of China (http://data.stats.gov.cn/). We use historical monthly 

temperature and total precipitation of 0.25° ×	 0.25° obtained from the fifth 

generation ECMWF reanalysis for the global climate and weather (ERA5) from 

1980 to 2018 (Bell et al., 2019 a&b). The monthly surface maximum daily average 

8 hours (MDA8) O3 product of 0.1° ×	0.1° is obtained from the China High Air 

Pollutants (CHAP) dataset, which was predicted from the solar radiation intensity 

and surface temperature, together with other big data including observations, 

satellites, and models, by employing the space-time extremely randomized trees 

(STET) machine learning model (Wei et al., 2021). For surface ozone, we adopt a 

widely used MDA8 index to reflect ozone exposures on crops over the growing 

season. Such an index is highly correlated with the ozone cumulative index AOT40, 

which is a cumulative indicator of hourly ozone concentrations exceeding 0.04 ppm. 

Based on the ground-based observations, MDA8 are highly correlated with AOT40 
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on the monthly basis, with R2 of 0.92 (SI Appendix, Figure 4.6). The historical 

monthly AOD at 550 nm data of 0.625° ×	0.5° is obtained from the Modern-Era 

Retrospective analysis for Research and Applications version 2 (MERRA-2) 

(Global Modeling and Assimilation Office, 2015), as there is no satellite record 

providing continuing AOD measurements on the monthly basis since 1980. We 

validate the MERRA2 AOD by the retrieved AOD from AVHRR (Advanced Very 

High Resolution Radiometer) which is one of the earliest satellite instruments, 

whenever the product is available (SI Appendix, Figure 4.7). AOD measures the 

extinction of solar radiation by aerosol particles, e.g., smoke, pollution, and dust. 

We hypothesize that aerosols exert impacts on crops mainly through the 

interference with atmospheric radiative fluxes, so the column-integrated quantity 

AOD is appropriate to be used in our analysis. The planted distribution of each crop 

is generated by Spatial Production Allocation Model for 2010 (SPAM 2010) 

(International Food Policy Research Institute, 2019). Province-level temperature, 

precipitation, AOD, and surface ozone are averaged over grids with planted fraction 

greater than 2.5% of each crop. 

4.3.2 Statistical yield model 

To explore crop responses to the various factors, we develop a statistical yield 

model for each crop using the following panel regression approach (Equation 1):  

logA2-./	64BC0!,#D = E$ + E%&'( ∙ 3BH/!,# + E()&*!( ∙ /-B24/!,# + E+,- ∙ 8IJ!,# 

+ E,! ∙ I.!,# + 7/(6) + 70(4) + M!,#    (Equation 1) 

where JP[\ , \@PM>\ , /];  and ]<  are the growing-season averaged 2-m 

temperature, daily precipitation, AOD, and MDA8 O3, respectively, during 1980-

2018 (SI Appendix, Figure 4.8). Following the crop calendar for China reported by 

the United States Department of Agriculture (USDA), the growing season is 

defined as three months before the harvest season, which refers to June – August 
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for single-season rice, July – September for maize and January – April for winter 

wheat. The subscripts >	and O are indices for province and year. V4$1D , VD>$C#D , 

V:WX  and VW5  are slope coefficients for each corresponding variable. E$  is the 

regression intercept. We use the growing-season averaged climate and pollution 

variables instead of monthly averages to avoid the collinearity among monthly 

variables, which will lead to large uncertainty in the model fitting. There are steady 

increases in yearly yields throughout recent decades, which is likely due to the 

technological innovation in seeding, irrigation, and planting skills, as well as policy 

practices (SI Appendix, Figure 4.9). To account for the abovementioned time-

varying factors contributing to the increasing yields, we introduce a set of yearly 

variables 7/(6).	 In addition, to account for the spatial heterogeneity of some other 

impacts (e.g., soil and water qualities),  provincial variables 70(4) are used. W is the 

residual term.  

We use linearmodels package in Python to fit the yield model, which also reports 

the significant levels (p-value) of regression coefficients and the model 

performance (R2) (See details in SI Appendix, Table S1). The predicted crop yields 

by the regression models generally agree well with the reported yield (Figure 4.1), 

with the correlation coefficient square (R2) being 0.79, 0.81, and 0.89 for rice, 

maize, and winter wheat, respectively. There are no obvious patterns between 

residuals versus fitted values, which validates the good performance of the chosen 

model (SI Appendix, Figure 4.10). It should be noted that our model assumes equal 

weight to different provinces regardless of their share in the national crop 

production. Therefore, our estimation is interpreted as an overall average impact. 
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Figure 4.1: The correlation between predicted yield vs. observed yield for maize 
(left), single-season rice (middle) and winter wheat (right). 

We calculate 90% confidence intervals (CIs) of each coefficient are derived from 

the 5th and 95th percentiles by repeating the model 1,000 times using 75% bootstrap 

sampling of provinces for each year. We also use dominance-analysis package in 

Python to calculate the fractional contribution of different factors based on the 

residuals of the base model, which only includes yearly and provincial dummies. 

Dominance analysis calculates the dominance of one predictor over another by 

comparing their additional contributions to model performance in terms of R2 

across all subset models (Budescu, 1993). 

4.3.3 Relative yield changes due to climate and pollution factors 

We estimate relative yield changes (RYC, unit: %) in 2006-2010 (or 2014-2018) 

compared to 1980-1984 (or 2006-2010) due to individual factors for the largest 10 

production provinces of each crop. We choose 2010 as a breakpoint because of the 

increasing trend of AOD before 2010 and the reversed pattern afterward, which 

motivates us to quantify the different impacts of aerosol pollutants to crop yields 

before and after 2010. RYC is derived from the modeled yield difference between 

the predictors using the averaged historical level during 2006-2010 (or 2014-2018) 

and the hypothetical scenario with the same level during 1980-1984 (or 2006-2010). 

The 90% CIs of these RYC estimates are the 5th and 95th percentiles determined 

using the bootstrapping method, with 1,000 crop models generated from 75% 

observations each year.  

The country-averaged yield predictions are estimated by the statistical yield model 

holding at the current technology stage, which is denoted as S0. To evaluate the 

contribution of a certain factor, we simulate the yield by fixing this factor at the 

same level as in 2015-2020, represented by S1. Then, we can isolate the 

corresponding contribution using the difference S1-S0. The uncertainty of future 
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projections is obtained by resampling 1,000 times the yield model with 

bootstrapping from historical observations.  

4.3.4 Possible interaction terms and non-linear fitting in the statistical model 

Previous literatures have demonstrated that there may exist interactive relationships 

among the variables in our model (Burney & Ramanathan, 2014; Hong et al., 2020). 

For example, the change of temperature may positively affect the level of O3, while 

AOD could decrease when precipitation increases due to the wash-out effect. 

Therefore, we add interaction terms in our base model (Equation 2), and the results 

are shown in SI Appendix, Table S2. There is no significant increase in R2 after 

adding interaction terms across all three crops in Equation 2, implying the 

predictability cannot be enhanced by considering the two interactive relationships 

mentioned above. 

logA2-./	64BC0!,#D = E$ + 	E%&'( ∙ 3BH/!,# + E()&*!( ∙ /-B24/!,# +  E+,- ∙ 8IJ!,# 

+ E,! ∙ I.!,# +	E!1%&)/ ∙ A8IJ!,#	 ×	/-B24/!,#D + 

E!1%&)0 ∙ OI.!,# ×	3BH/!,#P +  7/(6) + 70(4) + M!,#  (Equation 2) 

The second alternative model we choose is to add nonlinear trend variables into the 

regression (Equation 3). Instead of using yearly dummy variables, we test the model 

performance of representing the technological innovation and other time-varying 

effect as a combination of 1st and 2nd order of polynomials regarding to OPC@. The 

rationale is that these time-varying impacts may not be linear across years. When 

new technology is adopted to crop planting, its positive impact on RYC usually 

increases at first couple of years and then saturates. The corresponding results are 

presented in SI Appendix, Table S3. We find that the 1st order polynomial year 

variable is positive, indicating that the yield is increasing along the time. The 

quadratic year variable is negative for all crops, which implies that the increasing 

rate of the yield is becoming leveled off. 



 

 

95 
logA2-./	64BC0!,#D = E$ + 	E%&'( ∙ 3BH/!,# + E()&*!( ∙ /-B24/!,# +  E+,- ∙ 8IJ!,# 

+ E,! ∙ I.!,# + E#&3) ∙ 6 +  E#&3)0 ∙ 60 +  7(4) +	M!,# (Equation 3) 

We find that these two alternative models do not make a significant difference in 

the model’s predicting capability, lending support to the robustness of the modeled 

crop responses. To reduce the arbitrariness of the fitting form and to better interpret 

the result, we keep one variable in one term of the regression model. 

4.4 Results 

4.4.1 Historical yield response to climate and pollution factors 

Annual production and yields (production per area) of the three most important 

staple crops are analyzed in the thirty-one provinces of China from 1980 to 2018. 

There are two rice cropping systems in China, single-season, and double-season. 

The single-rice system (referred to as rice hereafter), which accounts for more than 

65% of total rice production in China, is the main focus of our study. Figure 4.2A 

shows that a high planted fraction of rice is concentrated in southeastern China, 

particularly in the Yangtze River Basin. During 1980-2018, there is a quasi-linear 

increase in the rice production in China, which is believed to be mainly driven by 

the technological advancement (Peng et al., 2009). Maize is mainly planted in the 

North China Plain and Northeast of China (Figure 4.2A). The time evolution of 

total maize production exhibits two stages, and it experienced a faster increase in 

maize production after 2005 than before. Both spring wheat and winter wheat are 

planted in China, and winter wheat production accounts for around 90% of total 

China wheat production (Sun et al., 2018). The North China Plain is the major 

wheat planted area (Figure 4.2A), which produces more than 60% of total national 

wheat production (Lu & Fan, 2013). Even though the winter wheat total production 

also increased along with time, the earlier time period in the 1980s had an even 

larger increase rate than in recent years. There was even a decline of production in 
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the early 2000s, due to the reduction in harvest area for winter wheat after 2000 (SI 

Appendix, Figure 4.9).   

 

Figure 4.2: Geospatial maps and interannual trends of different crop types and 
corresponding pollution levels for peak growing seasons in China. (A) Planted 
fraction (unit: %) of each 10km x 10km cell for rice (left), maize (middle) and 
wheat (right). (B) The climatology of MERRA2 aerosol optical depth (AOD) at 
550 nm for peak growing seasons during 2006 to 2010. (C) The climatology of the 
surface ozone MDA8 for peak growing seasons during 2006 to 2010. The peak 
growing season is defined as June-August for rice, July-September for maize and 
January-April for winter wheat. The inserts show the times series of the total crop 
production (unit: × 10	Megatonnes) (A), AOD (B), and near surface ozone (C) for 
individual crop type during the peak growing season from 1980 to 2018. The time 
series of peak growing-season temperature, precipitation and annual total harvested 
area and country-averaged yields for three crops can be found in SI Appendix, 
Figure 4.8 and Figure 4.9. 

We further analyze spatial maps and temporal evolutions of the AOD and surface 

O3 during the growing season of each crop type during 1980-2018. As shown in 

Figure 4. 2B, the areas of high crop fractions are always accompanied by high AOD, 
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such as the Yangtze River Basin for rice, North China Plain and Northeast China 

for maize, and central East China for wheat. The mean AOD during the growing 

season is 0.34, 0.35, and 0.42 for rice, maize, and wheat, respectively. Similarly, 

surface O3 and crop fraction covary spatially, implying the potential influence of 

pollution on crop production. The mean daily maximum 8-hour surface ozone 

concentration (MDA8) during the growing season is 47.1, 49.7, and 37.8 ppbv for 

rice, maize, and wheat, respectively. The historical changes of AOD over different 

crop-dominant regions share the same key feature: a general increasing trend during 

1980-2010, followed by a reduction in the recent decade. Such an AOD evolution 

characteristic reflects the implementations of emission control policies at different 

time periods in China. The trends of surface ozone are complicated (Figure 4.2C). 

Generally, there are small increasing trends before 2013, followed by an abrupt and 

steep increase since 2014. The most recent abrupt increases have been well 

observed (Lobell & Burney, 2021), but the main cause remains elusive, owing to 

the fact that O3 production involving non-linear atmospheric chemistry can be at 

different regimes in urban and rural areas, and O3 formation has a complex 

relationship with aerosols (Wu et al., 2020).  

The crop yield models (Equation 1) derived from historical data show significant 

impacts from both air pollution and climate change (Figure 4.3). The crop yield is 

reduced by 1.7-5.9% per 0.1 increase in AOD (Figure 4.3A), corroborating the 

hypothesis that particulate pollution reduces the solar radiation reaching the surface 

and lowers plant photosynthesis (Lobell & Burney, 2021; Tie et al., 2016). The 

winter wheat exhibits the largest sensitivity to particulate pollution, likely because 

northern China is more polluted in the wintertime when AOD variation is larger. 

Both maize and rice show significant yield reduction by ozone, and the reduction 

rate per 5ppbv MDA8 ozone increase is larger for maize. The response of wheat to 

ozone bears a large uncertainty bar, likely due to the fact that the NCP, where wheat 

is mainly planted, experienced dramatic ozone change in recent years. A warmer 

near-surface air temperature results in yield loss for all crop types, with the largest 
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response for winter wheat and the smallest and least significant sensitivity for rice. 

Our predicted magnitude of crop yield responses to temperature increase are 

consistent with previous assessments based on field warming experiments in China 

(Zhao et al., 2016) as well as a chemistry-crop-climate coupled model (Zhang et al., 

2021). The crop responses to precipitation are complicated. Our result shows that 

every 1 mm precipitation per day can result in about 5.4% winter wheat yield loss 

during the growing season. Further analyses reveal that there are diverse responses 

of winter wheat to precipitation in the top six provinces in term of total yield. Our 

reduced regression models ran on individual provinces with time-fixed effects 

removed (SI Appendix, Table S4) show that, in the relatively wet provinces such 

as Anhui and Jiangsu in southern China, the precipitation has significantly negative 

impact on winter wheat yield (Li et al., 2010; Song et al., 2019). Precipitation 

provides moisture in the air and soil needed by plants, but is also accompanied with 

enhanced cloud cover and reduced radiation reaching the surface. Excessive 

precipitation can further cause devastating fungal pathogens for winter wheat near 

the end of the growing season (Wiik & Ewaldz, 2009). Such effects can be profound 

in Eastern China, since the end of the winter wheat growing season overlaps with 

the onset of the East Asian Summer Monsoon (Li et al., 2016).  In contrast, maize 

and rice are less sensitive to precipitation changes, showing a small enhancement 

in yields. 
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Figure 4.3: (A) Crop yield responses to air pollution and climate variables. The 
average yield response to unit change, i.e., 0.1 increase of AOD, 5 ppbv increase of 
surface zone, 1 °C warming and 1mm increase of daily precipitation over the peak 
growing season from 1980 to 2018. The bar chart is plotted with diamond symbols 
(median estimates) and error bars (90% confidence intervals, CIs) by bootstrap 
resampling the model 1,000 times. (B) The percentage contribution of AOD, 
surface ozone, temperature, and precipitation to the spatial variation of yields for 
each crop using the dominance analysis. Blue, orange, and green color corresponds 
to maize, winter wheat, and rice, respectively. 

To further reveal the relative importance of each factor with respect to the 

interannual variation of each crop, we conduct a dominance analysis and calculate 

the percentage contributions of different factors of interest to the residual of the 

base model. Among four targeted factors, precipitation is the most important one 

for maize and rice, accounting for about 50% of interannual variability in the 

detrended yield data (Figure 4.3B). The large fluctuation of precipitation over the 

agricultural regions in China are closely linked with the characteristics of East Asia 

Summer Monsoon, whose intensity is subject to many climate variabilities, such as 

El Niño–Southern Oscillation. Aerosol is the predominant factor for the winter 

wheat yield by explaining 63.4% of the interannual variability in the detrended data. 

Temperature and ozone pollution are relatively less important factors. Together, 
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they can explain the rest 20-25% variability. The results reinforce the notion that 

air pollution, particularly through anthropogenic aerosols, is crucial for crop 

production. 

4.4.2 Agricultural benefits from pollution mitigation after 2010 

The year 2010 apparently represents a tipping point of particulate pollution in China 

because of the increasing/decreasing trend of AOD before/after that year. We focus 

on this recent pollution transition period and estimate RYC by different factors for 

the whole nation as well as the largest ten production provinces of each crop. We 

group the responses to surface temperature and precipitation into the climate effect 

and the responses to AOD and ozone concentration into the pollution effect. RYC 

is calculated by the predicted yields under different hypothetical climate and 

pollution scenarios in our panel regression models. For example, to assess the 

influence of the recent pollution mitigation, we contrast the predicted crop yields 

using different AOD and ozone concentrations between two time periods, 2014-

2018 and 2006-2010 and hold all other variables unchanged at the 2006-2010 levels. 

As shown in Figure 4.4, from 1980 to 2010, both climate and pollution factors 

resulted in the reduction of the yields, but the impact of pollution is more 

pronounced than that of climate variations. Three crop types generally share the 

same responses. Nationwide, pollution caused by the RYC is -4.8%, -8.5%, and 

-17.1% for rice, maize, and winter wheat, respectively, while climate induced RYC 

is only -1.4%, -1.8%, and -1.6% for three crops accordingly. The top ten 

productive provinces for each crop also agree with each other on the signs of the 

effects but differ slightly in magnitude. In contrast, the effects of both pollution and 

climate were drastically changed in the second decade of the 21st century.  
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Figure 4.4: Relative yield change (RYC) attributed to climate and pollution changes 
for (A) rice, (B) maize and (C) winter wheat. The climate change is the net effect 
of temperature and precipitation variations, and the pollution change concerns 
AOD and surface ozone together. For left panels, RYC is calculated as (Model2006–

2010 avg − Baseline2006–2010 avg)/Baseline2006–2010 avg. Model2006–2010 avg is the estimated 
crop yield from the panel regression model using the historical 2006-2010 averaged 
climate and pollution records, and Baseline2006–2010 avg is estimated from the actual 
pollution (climate) levels but held with the same climate (pollution) scenario in 
1980-1984. Nationwide estimates are calculated as the sum of province values 
weighted by harvested area. RYC is plotted as black diamonds (median estimates), 
with dark 5-95% percentile error bars calculated by bootstrapping the model 1,000 
times. 

 

Owing to the effective emission control in China, the particulate pollution level 

significantly dropped in the growing seasons of three crops, resulting in increases 

in the national crop yield when comparing 2014-2018 to 2006-2010. However, due 

to the deteriorated ozone pollution after 2013 in the North China Plain, the crop 

yield gain by the PM mitigation was largely offset. Nationwide, the RYC induced 
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by pollution mitigation is still positive, about 1.1%, 1.3%, and 2.4% for rice, maize, 

and wheat, respectively. For those provinces located in the North China Plain, such 

as Henan, Shandong, and Shanxi, a net reduction of maize yield by pollution factors 

is found after 2010, as the ozone pollution impacts outweigh that of the PM 

reduction. Climate-induced changes in crop yield during the same periods are 

insignificant for rice and winter wheat regions, leaving the pollution mitigation 

effects to dominate the crop yield variations. Most wheat-prevalent provinces 

experienced a moderate reduction in yield under climate change during 2006-2018, 

but the corresponding RYC is generally smaller than 2%. Overall, the reduction in 

aerosols in recent years stands out as a key driver of the crop variations on the 

interannual time scale.    

4.4.3 Predicted yield changes by 2050 

Capitalizing on the crop prediction models, we assess the impacts of future climate 

and pollution variations on the crop yields by 2050. Global climate simulations with 

various emission scenarios have been widely used to assess the societal and 

economic impacts by climate change (Shindell et al., 2021). Here the ensemble 

means of different models of Coupled Model Intercomparison Project (Phase 6, 

CMIP6) with the emission scenario SSP5-8.5 are used to reflect the future climate 

and pollution scenarios (SI Appendix, Figure 4.11-4.13 & Table 4-5). The SSP5-

8.5 represents the scenario with rapid and unconstrained growth with a fossil fuel-

based economy, and will lead to ~2 °C increase in global temperature in the 2050s 

compared to 1995-2014 (Li et al., 2018). The future projections aim to isolate the 

effects of temperature, precipitation, aerosol, and surface ozone levels on future 

yields under the assumption that the technology is held as equivalent to the current 

years (2015–2020). Note that hourly surface O3 concentrations are not available 

from the CMIP6 models to calculate MDA8. According to the ground-based 

observations, O3 MDA8 is linearly correlated with the O3 monthly mean with R2 at 

about 0.92 (SI Appendix, Figure 4.14), so we convert the O3 monthly mean (MM) 
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in the CMIP6 model outputs to MDA8 following the empirical relationship:  MDA8 

= MM×1.3+6.2.  

 

Figure 4.5: The projected future changes in country-level yield of rice, maize and 
winter wheat in response to four individual factor changes as well as their total 
effects under RCP8.5. The future change in yield is estimated from the difference 
between projected growing-season climate or pollution scenarios in 2021-2050 and 
the averaged scenarios in 2015-2020. The yield change is plotted as points (median 
estimates), with dark and light shaded areas (25-75% and 5-95% percentile 
estimates) calculated by bootstrapping the model 1,000 times.  

 

Anthropogenic aerosols are projected to be continuously reduced in China by 2050. 

Thus, three crops all show a significant increasing trend in response to the aerosol 

variations (Figure 4.5A). Surface ozone level is projected to increase in the near 
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future (Figure 4.5B), likely due to the reduction in the ozone precursor NOx and 

consequent ozone enhancement via the non-linear ozone chemistry (Le et al., 2020) 

as well as the effect of temperature increase. For rice by 2050, the ozone-induced 

yield loss (-1.1%) is close to the aerosol-induced yield gain (+1.9%). Future 

temperature increase is found to be the most critical factor for all three crop types 

(Figure 4.5C). It can cause trends of -0.8% 10yr-1, -2.5% 10yr-1, and -0.6% 10yr-1 

for rice, maize, and wheat, respectively. Future precipitation changes will not 

impose a noticeable influence on the crops (Figure 4.5D). Taking four factors 

together, for rice and maize, the temporal evolutions and trends under the total 

effects largely resemble those of the temperature changes during 2020-2050 (Figure 

4.5E). Therefore, the regime shifts after 2020 in the way that the climate variability, 

particularly the global warming, dominates over the pollution factors and 

profoundly determines the future rice and maize yields. For winter wheat, as it 

exhibits large sensitivity to aerosols (Figure 4.3B), its net yield trend during 2020-

2050 is positive, mainly determined by the future aerosol reduction.    

4.5 Conclusion and Discussion 

In the present study, we develop a robust statistical model to predict three 

predominant crops in China, i.e., rice, maize, and winter wheat. Four key factors 

are taken into account when predicting crop yields, including the temperature, 

precipitation, AOD, and surface ozone over the growing seasons. To overcome the 

sparsity of the ground-level ozone observations over the 40-year time period, we 

employ a machine learning model and multiple sources of ozone, meteorological 

factors, as well as emissions since 1980. The ozone prediction from the ML model 

is reliable according to the cross-evaluation by the reserved ozone measurements. 

The statistical model exhibits high fidelity in reproducing the yields of three 

prevalent crops in China. With moderate uncertainty, the model helps us quantify 

the crop yield responses to different climate and pollution factors during different 

time periods in the past and future. We find the critical role of particulate pollution 
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in regulating interannual variations of crop yields in China. Moreover, the recent 

abatement of anthropogenic emission results in a net crop gain, which masks the 

crop loss due to the increased temperature and precipitation.  

The findings of alternative models with different mathematical formats are 

consistent with our main conclusions derived from previous model. Moreover, we 

assessed the collinearity of all variables in SI Appendix, Table 4-6. These 

correlations are not strong to undermine our conclusions. Overall, our findings in 

this alternative model are consistent with previous models, AOD and O3 negatively 

affect RYC for all three crops.  

Some other factors related to crop yield deserve further investigations, such as CO2 

fertilization effect and nitrogen deposition. With the elevated atmospheric CO2 

concentrations, plant photosynthesis and crop yield is expected to increase 

(Ainsworth & Long, 2004). Meanwhile, C3 crops (i.e., rice and wheat) typically 

show larger increase in water use efficiency than C4 crops (i.e., maize) with higher 

surrounding CO2 concentrations. Meanwhile, nitrogen deposition is also likely to 

increase crop yields to a lesser extent (Lombardozzi et al., 2018). Additional 

reactive nitrogen has been created due to human activities and contributed to the 

increase of terrestrial carbon sink (Wang et al., 2017). Since CO2 concentrations 

and regional nitrogen availability has increased with time in the recent four decades, 

the yield benefit due to CO2 fertilization and nitrogen deposition can then be 

captured by 13(O) in our statistical model. However, it remains unclear how the rate 

of CO2 fertilization and nitrogen deposition will change in different regions in the 

future. Therefore, a better understanding of both effects in different cropping 

systems under various environmental conditions are needed to constrain our future 

predictions.  

Our future predictions are based on historical response of crop yield to pollution 

and climate changes. Some papers have reported that the sensitivity of yield is 

becoming larger to drought accompanied with higher planting density under global 
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warming (Lobell et al., 2020; Lobell & Burke, 2008). Meanwhile, the uncertainties 

in the future yield response to the warming is expected to be larger than 

precipitation due to the greater magnitude of temperature change relative to the 

year-to-year variations in precipitation (Lobell & Burke, 2008). Future studies are 

needed to combine yield and temperature data of different scales, i.e., site and 

region, to explore explicitly the relationships between warming and yield to close 

the yield gap in the changing climate. 

In summary, our finding demonstrates the co-benefit of the recent air pollution 

control policy from an agriculture and food perspectives. However, such a benefit 

will be significantly offset or even outweighed by the exacerbated global warming. 

Hence, it will pose a great threat to global food security in the future, along with 

the growth of the world population. Our study calls for full consideration of air 

pollution impacts on the agriculture and crop yield on both interannual and decadal 

time scales when projecting future food production. Additionally, accurate long-

term projections of particulate and ozone pollution are also in a pressing need to 

assess the future crop yield and to develop adaptation strategies. 
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4.7 Appendix 

 

Figure 4.6: Relationship between monthly AOT40 and monthly MDA8 O3 from 
ground-based observations. 
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Figure 4.7: MERRA2 monthly AOD validation by AVHRR AOD during1982-2005. 
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Figure 4.8: Trend of growing-season averaged AOD, surface O3, temperature, and 
precipitation for maize, single-season rice, and winter wheat. 
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Figure 4.9: Trend of growing-season average annual total harvested area and 
country-averaged yields for maize, single-season rice and winter wheat. 
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Figure 4.10: Residuals versus model fitted values for  maize (left), single-season 
rice (middle) and winter wheat (right). 
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Figure 4.11: Trend of growing-season averaged AOD, surface O3, temperature and 
precipitation for maize of individual CMIP6 model (Table. S4) up to 2050. 
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Figure 4.12: Trend of growing-season averaged AOD, surface O3, temperature and 
precipitation for single-season rice of individual CMIP6 model (Table. S4) up to 
2050. 
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Figure 4.13: Trend of growing-season averaged AOD, surface O3, temperature and 
precipitation for winter wheat of individual CMIP6 model (Table. S4) up to 2050. 
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Figure 4.14: Monthly MDA8 vs. monthly mean O3 from ground-based 
observations in China. 
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Table 4-1: Regression specifications based on the default models 

 
 Dependent Variable: ln(yield) 

 Maize Rice Winter Wheat 

Temperature -0.039***(0.013) -0.016*(0.010) -0.010(0.013) 

Precipitation 0.003(0.006) 0.001(0.004) -0.054***(0.020) 

AOD -0.364***(0.090) -0.175***(0.068) -0.594***(0.115) 

O3 -0.009*** (0.002) -0.003(0.002) -0.006(0.006) 

Year 0.574**(0.048) 0.401***(0.040) 0.760***(0.062) 

Province 0.007(0.074) -0.047*(0.048) -0.393*(0.099) 

Constant 9.282***(0.380) 8.969***(0.283) 8.199***(0.212) 

R2 0.812 0.786 0.893 

Observations 939 938 795 

Year Dummies Y Y Y 

Province Dummies Y Y Y 

Notes: Standard errors are presented in parentheses; ***P < 0.01, **P < 0.05, *P < 0.1. The year(province) 

variable in this table is an average across of all yearly (provincial) dummies. The 1st year (1980) in our 

sample is the base year for yearly dummies, and the base entity for provincial dummies is randomly selected 

by the software. The key coefficients will not change regardless of the dummy variable base year and 

province selection in the model. 
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Table 4-2: Regression specifications based on the model (1) with interaction terms 

 
 Dependent Variable: ln(yield) 

 Maize Rice Winter Wheat 

Temperature -0.135***(0.035) -0.037(0.032) -0.053*(0.028) 

Precipitation -0.021**(0.011) 0.011(0.007) -0.013(0.032) 

AOD -0.691***(0.153) -0.042(0.107) -0.318**(0.162) 

O3 -0.055***(0.015) 0.022(0.014) -0.007 (0.007) 

AOD: Precipitation 0.059**(0.025) -0.021(0.016) -0.096**(0.051) 

O3: Temperature 0.002***(0.001) -0.001*(0.0006) -0.002***(0.0007) 

Year 0.569**(0.048) 0.405**(0.038) 0.739***(0.062) 

Province -0.020(0.075) -0.036*(0.051) -0.384*(0.100) 

Constant 11.761***(0.880) 7.555***(0.854) 7.631***(0.282) 

R2 0.815 0.787 0.894 

Observations 939 938 795 

Year Dummies Y Y Y 

Province Dummies Y Y Y 

Notes: Standard errors are presented in parentheses; ***P < 0.01, **P < 0.05, *P < 0.1. The year variable in 

this table is an average across of all yearly dummies. The 1st year (1980) in our sample is the base year for 

yearly dummies, and the base entity for provincial dummies is randomly selected by the software. The key 

coefficients will not change regardless of the dummy variable base year and province selection in the model. 
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Table 4-3: Regression specifications based on the models (2) with nonlinear 

 
 Dependent Variable: ln(yield) 

 Maize Rice Winter Wheat 

Temperature -0.021**(0.010) -0.004(0.008) -0.008(0.008) 

Precipitation 0.006(0.005) 0.005(0.003) -0.023(0.016) 

AOD -0.217***(0.064) -0.191***(0.048) -0.251***(0.085) 

O3 -0.008***(0.002) -0.003*(0.002) -0.002(0.004) 

Year 1.979***(0.181) 1.651***(0.149) 1.406***(0.257) 

Year2 -0.0005***(0.00005) -0.0004***(0.00004) -0.0003***(0.00006) 

Province 0.085(0.059) -0.027*(0.044) -0.340*(0.077) 

Constant -1990.2***(181.07) -1654.5***(148.80) -1417.3***(256.41) 

R2 0.797 0.767 0.876 

Observations 939 938 795 

Year Dummies N N N 

Province Dummies Y Y Y 

Notes: Standard errors are presented in parentheses; ***P < 0.01, **P < 0.05, *P < 0.1. The year variable in this 

table is an average across of all yearly dummies. Instead of dummies, we directly use the year and its quadratic 

term as of our explanatory variables. The base entity for provincial dummies is randomly selected by the software. 

The key coefficients will not change regardless of the dummy variable base province selection in the model. 
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Table 4-4: The growing-season (January-April) averaged daily total precipitation 
(unit: mm) and relative yield change (RYC, unit: %) corresponded to 1mm increase 
of daily total precipitation. 

Province daily precipitation (mm) RYC (%) 

Hebei 0.47 0.7% 
Shanxi 0.76 8.4% 
Jiangsu 1.86 -12%*** 
Anhui 2.02 -17%*** 

Shandong 0.72 -2% 
Henan 1.03 -9%*** 
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Table 4-5: CMIP6 monthly models and experiments using in this study. 

Variable  Modelling 
Group 

ESM Model 
Variant 

Experiment 
ID 

Nominal 
Resolution  

Table 
ID  

Surface 
Temperature 

(ts) 

MRI ESM2-0 r1i1p1f1 ssp585 100km Amon  

MIROC MIROC6 r1i1p1f1 250km 

CCCma CanESM5 r11i1p1f1 500km 

BCC CSM2-MR r1i1p1f1 100km 

CESM2 WACCM r1i1p1f1 100km 

GFDL ESM4 r1i1p1f1 100km 

Precipitation 
flux (pr) 

BCC CSM2-MR r1i1p1f1 100km 

CAMS CSM1-0 r1i1p1f1 100km 

CESM2 WACCM r2i1p1f1 100km 

FGOALS fe-L r1i1p1f1 100km 

GFDL ESM4 r1i1p1f1 100km 

MRI ESM2-0 r1i1p1f1 100km 

AOD at 
550nm 

(od550aer) 

TaiESM1 TaiESM1 r1i1p1f1 100km 

CMCC CM-2-SR5 r1i1p1f1 100km 

MRI ESM2-0 r1i1p1f1 100km 

CNRM CM6-1 r1i1p1f2 250km 

CESM2 WACCM r2i1p1f1 100km 

INM CM4-8 r1i1p1f1 100km 

GFDL CM4 r1i1p1f1 100km 

ozone (o3) BCC CSM2 r1i1p1f1 100km 

GISS E2-1 r1i1p3f1 250km 

GFDL ESM4 r1i1p1f1 100km 
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Table 4-6: Variables Correlations of maize, rice and winter wheat from 1980 to 
2018. 

 

  

Maize 

 Year ln(yield) Temperature Precipitation AOD O3 

Year 1      

ln(yield) 0.582 1     

Temperature 0.083 -0.139 1    

Precipitation -0.168 -0.416 0.179 1   

AOD 0.438 0.319 0.478 -0.013 1  

O3 0.108 0.424 -0.339 -0.395 0.522 1 
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Rice 

 Year ln(yield) Temperature Precipitation AOD O3 

Year 1      

ln(yield) 0.517 1     

Temperature 0.075 0.186 1    

Precipitation -0.109 -0.210 -0.184 1   

AOD 0.449 0.451 0.187 -0.283 1  

O3 0.094 0.451 -0.148 -0.512 0.601 1 

  

Winter Wheat 

 Year ln(yield) Temperature Precipitation AOD O3 

Year 1      

ln(yield) 0.430 1     

Temperature 0.096 -0.200 1    

Precipitation -0.070 -0.315 0.664 1   

AOD 0.380 0.195 0.727 -0.489 1  

O3 0.338 0.311 -0.236 -0.085 -0.212 1 
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MARKED IMPACTS OF POLLUTION MITIGATION ON CROP YIELDS IN 

CHINA 

He, L., Byrne, B., Yin, Y., Liu, J. and Frankenberg, C., 2022. Remote‐Sensing 
Derived Trends in Gross Primary Production Explain Increases in the CO2 
Seasonal Cycle Amplitude. Global Biogeochemical Cycles, 36(9), 
p.e2021GB007220. DOI:  https://doi.org/10.1029/2021GB007220 

5.1 Abstract 

An increase in the seasonal cycle amplitude (SCA) of atmospheric CO2 since the 

1960s has been observed in the Northern Hemisphere (NH). However, dominant 

drivers of the amplified CO2 seasonality are still debated. The peak of CO2 uptake 

by vegetation is critical in shaping the seasonality of atmospheric CO2. Using 

satellite-upscaled gross primary production (GPP) from both FLUXCOM and 

satellite-derived near-infrared reflectance of vegetation (NIRV) since 2001, we 

demonstrate that peak season GPP has increased across the northern extratropics 

over the last two decades. We relate this productivity increase to changes in the 

SCA of CO2 using an atmospheric chemical transport model. This increased 

photosynthesis carbon uptake has strongly contributed to CO2 SCA trends, but with 

substantial latitudinal and longitudinal variations. Despite a general increase in the 

CO2 SCA across the NH, there are distinct regional differences. These differences 

are mainly controlled by regional biosphere carbon fluxes, and the remainder 

explained by non-biome factors, which include large-scale atmospheric transport, 

changes in fossil fuel combustion, biomass burning and oceanic fluxes. Using the 

global network of flask and in situ CO2 measurement sites, we find that SCA trends 

at high latitude sites, such as Barrow (BRW) and Alert (ALT), are mainly driven 

by increasingly productive natural ecosystems, whereas mid latitude sites around 

the Midwest United States are mainly impacted by intensified agriculture as well 

as atmospheric transport. Averaging across the 15 long-term surface CO2 sites, 

C h a p t e r   5
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forests contribute 26% (7%) to the SCA trends, while crops contribute 17% (24%) 

and the combined shrubland, grassland and wetland regions contribute 23% (37%) 

for simulations driven by NIRv (FLUXCOM) ecosystem fluxes. Our findings 

demonstrate that satellite inferred trends of ecosystem fluxes can capture the 

observed CO2 SCA trend. 

5.2 Introduction 

The seasonal cycle of atmospheric CO2 in the Northern Hemisphere (NH) is mainly 

driven by seasonal changes in the net ecosystem change (NEE), which is the 

difference between photosynthetic carbon uptake (gross primary production, GPP) 

and ecosystem respiration (TER) (Randerson et al., 1997). Surface and air-borne 

measurements have shown a 30~50% increase in the seasonal cycle amplitude 

(SCA) of lower tropospheric CO2 north of 45°N since the 1960s (Bacastow et al., 

1985; Keeling et al., 1996; Forkel et al., 2016; Graven et al., 2013). The amplified 

CO2 seasonality has been suggested to be driven by increasing productivity of high-

latitude forests in the Northern Hemisphere, mainly from Arctic and boreal regions 

(Forkel et al., 2016; Graven et al., 2013; Lin et al., 2020; J. Liu et al., 2020; Piao et 

al., 2018; Yin et al., 2018). Meanwhile, Gray et al. (2014) and Zeng et al. (2014) 

reported that increasing cropland productivity linked with land use change and 

management has a non-negligible impact on the CO2 seasonality trend. Despite a 

general SCA increase observed at most surface sites across the NH, the magnitude 

and range of trends and interannual variations differ from site to site (Forkel et al., 

2016; Graven et al., 2013; Piao et al., 2018; Yuan et al., 2018). This suggests that 

both atmospheric circulation and heterogeneity in regional fluxes play an important 

role in trends at different locations. 

Current earth system models generally underestimate the CO2 SCA increase and 

disagree on the underlying mechanisms of whether rising CO2, climate change, land 

use change or atmospheric transport is the dominant factor of such an increase 

(Bastos et al., 2019; Graven et al., 2013; Piao et al., 2018; Thomas et al., 2016; 
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Yuan et al., 2018; Zhao et al., 2016). This suggests that some key biophysical or 

biochemical processes are missing or underrepresented in these models.  

In this study, we employ space-based remote sensing to track spatial and temporal 

changes in peak season GPP and then, using a chemical transport model, examine 

whether these changes can explain the observed SCA trends at surface CO2 

measurement sites across the northern extratropics. Remote sensing of reflectance-

based vegetation indices (VIs) has been widely used to track regional to global 

changes in ecosystem productivity. Previous studies have found that most regions 

of the global lands show a persistent and widespread increase of VIs (greenness) 

during the growing season since the 1980s, while only limited regions exhibit 

browning (Anav et al., 2015; Chen et al., 2019; Zhu et al., 2016). This greening 

trend is consistent with increased peak growing season uptake (Huang et al., 2018), 

which might explain CO2 SCA changes. In this study, we aim to directly link 

remote sensing-based vegetation trends to atmospheric CO2. Remote sensing-based 

variations in ecosystem uptake can be coupled with an atmospheric transport model 

to explain variations in atmospheric CO2 (Fung et al., 1987), but only now are 

space-based GPP datasets long enough to examine long-term trends in the SCA 

amplitude. 

The Normalized Difference Vegetation Index (NDVI)-weighted near-infrared 

reflectance of vegetation (NIRV), has shown great potential to capture global 

photosynthesis changes (Badgley et al., 2017, 2019), especially over crop regions, 

which are likely underestimated in process-based photosynthesis models (Guanter 

et al., 2014; Sun et al., 2021). Meanwhile, semi-empirical data-driven approaches 

have been established to upscale GPP from eddy-covariance fluxes to the globe. 

For example, the state-of-art global GPP product FLUXCOM (GPPFluxcom) is 

upscaled from flux tower observations, driven by a variety of machine learning 

methods and remote sensing observations, such as NDVI and the Enhanced 

Vegetation Index (EVI) (Jung et al., 2020). Hence, GPPFluxcom is considered to 
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predict GPP well in regions with representative flux tower observations. Combined 

with FLUXCOM TER (TERFLUXCOM) datasets, these two novel datasets provide 

bottom-up NEE estimates at high spatiotemporal resolutions and allow us to track 

interannual changes of land biosphere carbon fluxes.  

Seasonal NEE changes drive variations in atmospheric CO2, and consequently the 

CO2 seasonal amplitude. Here, we test whether the NIRv-based and FLUXCOM 

NEE datasets, when applied in an atmospheric transport model, are capable of 

tracking changes in atmospheric CO2, including trends and interannual variations 

in the observed CO2 SCA. To test our hypothesis, we first investigate the trend of 

peak growing season FLUXCOM GPP and satellite NIRv during the 2001-2018 

period. Then we simulate surface CO2 seasonality with a global atmospheric 

transport model, driven by NIRv-based and FLUXCOM NEE of individual 

ecosystems (e.g., cropland, forest, and other vegetation types) and other flux 

components (e.g., fossil fuel, biomass burning and air-sea fluxes). Then we 

compare the simulated CO2 seasonal amplitude with observations at 15 surface CO2 

sites (including 5 coastal sites and 10 continental sites) of 12-year or longer records 

in the NH, and further quantify the relative contribution of different land cover 

types at these sites. Previous studies have mostly relied on limited remote coastal 

stations located primarily offshore, which are far away from large terrestrial signals 

and reflect well-mixed air masses, mainly to avoid the complexities of atmospheric 

boundary layer dynamics and topography in transport modeling (Forkel et al., 2016; 

Graven et al., 2013; Keeling et al., 1996). With more continuous in-situ CO2 

measurements available across the globe, as well as the improvement of 

atmospheric transport models and meteorological reanalysis data, we can now 

better understand the spatiotemporal pattern of CO2 signals (Bauer et al., 2015; 

Gaubert et al., 2019; Gelaro et al., 2017). In this study, we aim to incorporate both 

long-run coastal and continental sites to explore the dominant fluxes on the 

observed CO2 signal changes at different locations. 
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5.3 Materials and Method 

5.3.1 Bottom-up biosphere carbon flux estimate 

For bottom-up estimates of spatially and temporally resolved biosphere carbon 

fluxes, we use two Moderate Resolution Imaging Spectroradiometer (MODIS) 

reflectance-based datasets, FLUXCOM (Jung et al., 2020) and NIRv-based NEE 

estimates (as explained in detail later). 

5.3.1.1 FLUXCOM carbon fluxes 

FLUXCOM uses machine learning to merge carbon flux measurements from 

FLUXNET eddy covariance (EC) towers with remote sensing and meteorological 

data to estimate net ecosystem exchange, gross primary productivity, and terrestrial 

ecosystem respiration and their uncertainties. Here, we use the 8-day 0.083° 

FLUXCOM remote sensing-based (RS) GPP and TER products, which have been 

found to have more realistic interannual variations in GPP than FLUXCOM remote 

sensing and meteorological -based (RS+METEO) products (Jung et al., 2020). The 

ensemble products of FLUXCOM-RS encompass estimates of different machine 

learning estimates and flux partitioning variants for GPP and TER (Jung et al., 

2020). For each ensemble member, fluxes are estimated from MODIS NDVI and 

EVI, land surface temperature, plant functional type and incoming global radiation 

(Jung et al., 2020). NEE is calculated as the difference between TER and GPP. 

5.3.1.2 NIRv-based carbon fluxes 

The NIRv-based global GPP estimate is derived from the relationship between GPP 

and NIRv at 105 EC towers covering a variety of vegetation types across different 

climate zones (Table 5-2), using the FLUXNET2015 dataset (Pastorello et al., 

2020). We calculate daily tower GPP values (GPPsite) as the mean of both daytime 

(Lasslop et al., 2010) and night-time partition (Reichstein et al., 2005) approaches. 

NIRv was computed from MODIS MCD43A4 v006 BRDF corrected reflectance. 
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For training against flux tower measurements, we aggregate MODIS data within a 

1km radius of the flux tower, deriving site-level NIRv (NIRvsite). 

Some field experiments have found that taking incoming radiation into account 

further improves NIRv-based GPP estimates, especially for croplands (Dechant et 

al., 2020; Liu et al., 2020; Wu et al., 2020). Consequently, a new proxy, NIRv-

radiance (NIRvRad), is defined as the product of NIRv and photosynthetically 

active radiation (PAR). Recent effort has been made to develop a high 

spatiotemporal resolution of the GPP dataset covering the Contiguous United States 

based on NIRvRad (Jiang et al., 2020). To account for changes in radiation, we use 

PAR estimates from the Breathing Earth System Simulator (BESS, Ryu et al., 2018). 

Here, we use site-level PAR (PARsite) extracted from BESS for the corresponding 

grid cell that the selected tower falls in. Then, site-level NIRvRad (NIRvRadsite) 

can be derived using NIRvsite and PARsite. 

Here, we propose a biome-specific relationship between GPPsite with NIRvsite and 

PARsite as follows: 

 

where Bsoil is a NIRv adjustment parameter for the soil background; a and b 

represent slope and intercept of the regression, respectively. We then derive biome 

specific regression parameters (a, b and Bsoil) based on 16-day aggregated flux 

measurements and remote sensing datasets at 105 EC sites. Figure 5.7 shows that 

our NIRv-based GPP estimates generally perform well with R2 from 0.6 to 0.9 to 

capture tower GPP variation across different species. We find that the slope of 

croplands is larger compared to other vegetation types, underlining higher light use 

efficiency of crops, which can be related to the C4 photosynthetic pathway as well 
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as fertilization and irrigation. For comparison, we extract FLUXCOM GPP at these 

sites and find it agrees well with EC GPP observations (Figure 5.8).  

We upscale the NIRv-GPP relationships derived at the site level to generate 8-day 

0.083° global NIRv-based GPP estimates. First, we grid both daily 500-meter 

MODIS NIRv and daily 0.083° BESS PAR to 8-day 0.083°. Second, we calculate 

biome fractions at each 0.083° grid cell using the MODIS MCD12Q1 V6 data 

product, which provides the International Geosphere-Biosphere Programme (IGBP) 

biome type classification at 500-meter resolution after 2001. Third, we derive an 

averaged GPP at each grid cell using site-level NIRv-GPP relationships weighted 

by the corresponding biome fractions. The latitudinal distribution of NIRv-inferred 

GPP and FLUXCOM GPP are shown in Figure 5.9, both with peaks in tropics and 

regions around 50°N. NIRv-based NEE is obtained as the difference between 

FLUXCOM TER and NIRv-based GPP.  

5.3.1.3 Trend of peak season vegetation growth 

Here we look at the trend of peak values of annual FLUXCOM GPP and MODIS 

NIRv from 2001 to 2018. We aggregate daily 500-m MODIS NIRv to 8-day 

averages with a spatial resolution of 0.083° to match the spatial and temporal 

resolution of the FLUXCOM dataset. The annual peak season FLUXCOM GPP 

(GPPpeak) and MODIS NIRv (NIRvpeak) are defined as the 95%-percentile value of 

the same year for each grid cell. We calculate the spatial patterns of the long-term 

trend (Trendabsolute) from 2001 to 2018 of GPPpeak and NIRvpeak using ordinary least 

squares linear regression for each grid. We derive the long-term relative trend 

(Trendrelative, unit: % year-1) by normalizing Trendabsolute by the 5-year average GPP 

(GPPpeak) or NIRv (NIRvpeak) over 2001 to 2005. 

We also calculate the frequency of the greening/browning trends north of 15°N 

grouped by land cover, including forest, crop, the combination of shrubland, 

grassland and wetland north of 23°N (SGW>23°) and all biomes south of 23°N 



 

 

131 
(Veg<23°). For each 0.083° grid cell, different vegetation fractions are calculated 

based on the MODIS MCD12Q1 V6 IGBP data product of 500-meter resolution in 

2018. The definition of each land cover is followed in Table 5-1. We use a latitude 

threshold of 23°N here, mainly to separate tropical regions and south from other 

NH ecosystems. Then, for each pixel at 0.083°, the dominant vegetation type is 

identified, and the spatial distribution of land cover is shown in Figure 5.1. 

Table 5-1: Definition of different land cover based on MODIS MCD12Q1 V6 IGBP 
data product. 

Label Biome Extent 

Cropland cropland + cropland/natural veg mosaics 
North of 23° with 

India cropland 

Forest 

evergreen needle + evergreen broadleaf + deciduous needle + 

deciduous broadleaf + mixed forest + savannas + woody 

savannas 

North of 23° 

SGW>23° open shrubland + closed shrubland + grassland + wetland North of 23° 

Veg<23° all biomes  
South of 23° except 

for India cropland 
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Figure 5.1: Spatial distribution of cropland, forest, SGW>23° and Veg<23° 
followed by the definition in Table 1. 

5.3.2 Bottom-up biosphere carbon flux estimate Simulations of atmospheric CO2 

To relate trends in ecosystem carbon fluxes to atmospheric CO2, we use an 

atmospheric chemical transport model (CTM) (Sec 5.3.2.1) to model 3D global 

CO2 distributions in time. We sample modeled CO2 at the times and locations of 

surface observations (Sec 5.3.2.2). The SCA trends are then calculated for 

collocated simulations and measurements (Sec 5.3.2.3). Comparing observed 

versus simulated SCA trends allows us to evaluate whether modeled GPP variations 

can explain the observed SCA trends and major factors drive the observed trends 

at different sampling sites (Sec 5.3.2.4). 

5.3.2.1 Atmospheric transport model 

NEE can be related to atmospheric CO2 measurements through a CTM. Here we 

simulate atmospheric CO2 fields and measurements using the Greenhouse Gas 

Framework - Flux (GHGF-Flux) transport model. GHGF-Flux is a flux inversion 

system developed under the NASA Carbon Monitoring System Flux (CMS-Flux) 

project (https://cmsflux.jpl.nasa.gov) and is based on the GEOS-Chem atmospheric 

chemistry transport model (Henze et al., 2007; Liu et al., 2014). Atmospheric 

transport is driven by the Modern Era Retrospective Analysis for Research and 

Applications, Version 2 (MERRA-2) meteorology produced with version 5.12.4 of 

the Goddard Earth Observing System (GEOS) atmospheric data assimilation 

system (Gelaro et al., 2017). To perform tracer transport, these fields are regridded 
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to 2° latitude by 2.5° horizontal resolution and archived with a temporal resolution 

of three hours except for surface quantities and mixing depths, which have a 

temporal resolution of one hour. Transport is performed with a 15‐min dynamical 

time step from 2001 to 2018.   

Several different surface flux datasets are utilized for the experiments performed 

here. Fossil fuel emissions are obtained from the "Miller" emissions dataset 

(Jacobson et al., 2020). The Miller emission dataset maps country total fossil fuel 

emissions from CDIAC (Boden et al., 2017) onto a 1x1 degree map according to 

the spatial patterns from EDGAR v4.2 inventories (Janssens-Maenhout et al., 2011). 

As Boden et al. (2017) only covers emissions through 2014, fossil fuel emissions 

are estimated through 2018 by extrapolating the percentage change for each fuel 

type for each country from British Petroleum (Ersoy et al., 2019). Biomass burning 

(BB) emissions of CO2 (including small fires) are obtained from version 4 of the 

Global Fire Emissions Database (GFED4.1s) (Giglio et al., 2013; Randerson et al., 

2012; Van Der Werf et al., 2017). GFED4.1s provides estimates of biomass burning 

using MODIS 500 m burned area (Giglio et al., 2013), 1 km thermal anomalies, and 

500 m surface reflectance observations to statistically estimate burned area 

associated with small fires (Randerson et al., 2012). We incorporate the diurnal 

cycle in biomass burning based on Mu et al. (2011). Daily ocean fluxes spanning 

2001-2019 are obtained from the ECCO‐Darwin‐V4 model (Brix et al., 2015; 

Dutkiewicz et al., 2009; Menemenlis et al., 2008). ECCO‐Darwin‐V4 model is an 

ocean biogeochemistry general circulation model based on combining the 

following components: (i) a full-depth, eddying, global-ocean configuration of the 

Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an 

adjoint-method-based estimate of ocean circulation from the Estimating the 

Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT 

ecosystem model “Darwin”, and (iv) a marine carbon chemistry model. 
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To separate the impact of atmospheric transport, we generate a climatological 

seasonal cycle of NEE that is annually repeated over 2001-2018 (NEEseasonality). 

These climatological experiments are calculated as the mean of 2010-2015 NEE 

for the three GOSAT+surface+TCCON inversions of (Byrne et al., 2020a&b). The 

anomalies of FLUXCOM GPP (+GPPFluxom), NIRv-inferred GPP (+GPPNIRv) and 

FLUCOM TER (+TERFluxcom) are deseasonalized by subtracting the corresponding 

averaged seasonality during 2001 to 2018. We only incorporate anomalies of these 

fluxes rather than their mean seasonality because FLUXCOM NEE overestimates 

the magnitude of global annual total NEE significantly (-17 Pg C year-1), suggesting 

a bias in spatial sampling of flux towers, some missing components related to 

carbon release from ecosystem to the atmosphere and large uncertainties in scaling 

(Jung et al., 2020; Keenan & Williams, 2018). 

Seven forward simulations are performed over the 2001-2018 period by applying 

different sets of surface fluxes. A one-year spin-up simulation was performed over 

2000. This spin up was run from the optimized CO2 fields for Jan 1, 2015, from 

Byrne et al. (2020a). The global mean difference between the one-year spin-up and 

in situ measurements was then subtracted. SBaseline is driven by time-varying FF, BB 

and ocean fluxes, but with constant NEE seasonality. This simulation estimates 

changes in the SCA amplitude in the absence of trends in NEE. When variations in 

biosphere carbon fluxes are taken into account, we include anomalies (or 

deseasonalized, with the removal of the mean seasonal cycle from 2001 to 2018) of 

GPPFluxcom, TERFluxom and GPPNIRv for the baseline run, named as SFluxcom and SNIRv, 

respectively. Figure 5.2 shows a more detailed illustration of constructing SBaseline, 

SFluxcom and SNIRv based on CO2 fluxes from multiple sources. 
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Figure 5.2: Diagram of the SBaseline, SFluxcom and SNIRv simulations based on CO2 
fluxes from multiple sources. [CO2] represents the atmospheric CO2 concentrations. 
Mathematically, [CO2] simulated in SBaseline, SFluxcom and SNIRv can be formulated 
as H(FF) + H(BB) + H(Ocean) + H(NEEseasonality), H(FF) + H(BB) + H(Ocean) + 
H(NEEseasonality) + H(+TERFluxcom) + H(+GPPFluxcom) and H(FF) + H(BB) + 
H(Ocean) + H(NEEseasonality) + H(+TERFluxcom) + H(+GPPNIRv), where H(X) 
denotes the application of a forward atmospheric model to simulate CO2 
concentrations driven by fluxes X. 

5.3.2.2 Surface atmospheric CO2 measurements 

To examine whether trends in FLUXCOM and NIRv-GPP can explain measured 

SCA trends, we use atmospheric CO2 measurements at 15 surface sites, which have 

12-year or longer records, including 5 coastal sites and 10 continental sites in the 

NH. The list of selected sites can be found in Table 5-3. We extracted the hourly 

surface CO2 observations at the selected sites from Observation Package (ObsPack) 

data (Schuldt et al., 2020). For sites other than MLO and IZO, we filter the data by 

using afternoon measurements from 12pm to 4pm local time to ensure that the 

boundary layer is well mixed. 

5.3.2.3 SCA trend calculations 
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The seasonal cycle amplitude (SCA) is defined as the magnitude of the peak to 

trough of the detrended seasonal cycle, after detrending the timeseries using the 

NOAA fitting package “ccgcrv” (Thoning & Tans, 1989). Daily gridded output and 

in-situ observations are aggregated into 14-day averages before curve-fitting. 

For the CO2 SCA calculation at each site, we conduct an uncertainty analysis of the 

derived SCA by applying the perturbation to the measurements as follows:  

 

where t represents the index of time step;W follows a standard uniform distribution; 

CO2pseudo, CO2 and CO2uncertainty refer to the perturbed CO2 measurements, simulated 

(including SBaseline, SFluxcom and SNIRv) CO2 measurements and the uncertainties of 

modeled CO2, respectively. CO2uncertainty is an estimate of observation, model 

transport, and representation errors.  In other words, it is the standard deviation of 

the data-model mismatch for CarbonTracker CT2019B simulation (Jacobson et al. 

2020), which is a widely used estimate of the error in assimilating these data into a 

transport model (e.g., OCO-2 MIP inversions). CO2uncertainty is usually small in 

coastal sites compared to continental sites. We run the curve-fitting algorithm 1,000 

times with sampling W from the standard normal distribution. Then we have the 

ensemble mean and standard deviation, which represents uncertainties in the 

derived SCA for each year. The SCA of observed and simulated CO2 time series at 

15 sampling sites is shown in Figure 5.10. 

For individual runs, we calculate the SCA trend using 75% samples over the 

observed period using ordinary least squares linear regression. To make sure that 

the derived trend is not influenced by the sampling bias at the beginning of the 

measurement, we drop the SCA in the first year which does not cover the whole 

growing season. Then we compute ensemble mean and standard deviation of the 

SCA trend across all 1,000 samples, which also provides an uncertainty estimate of 
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the derived SCA trend. We apply a similar procedure to gridded GEOS-Chem 

outputs to derive the spatial pattern of CO2 SCA trend of simulations SBaseline, 

SFluxcom and SNIRv. 

5.3.2.4 Separate different factors on CO2 SCA trends 

To identify the contribution of the observed CO2 SCA trend from different regions, 

we separate the global terrestrial ecosystems into four tagged regions defined in 

Table 5-1 and run GHGF-Flux driven by anomalies of GPPFluxom, GPPNIRv and 

TERFluxcom in each region independently. This enables the separation of regional 

CO2 tracers, which can be summed to derive the total CO2 response to all impact 

factors. The effects of transport, FF, BB, ocean, cropland, forest, SGW>23° and 

Veg<23° on seasonal CO2 changes are differentiated by designing the following five 

transport simulations. S1 uses time-varying wind patterns with constant NEE 

seasonality, so that it can be interpreted as the effect of wind. Then, time-varying 

non-biome fluxes of BB, FF and air-sea fluxes are added to S1 in order to separate 

their individual contributions, with corresponding simulations named as S2, S3 and 

S4, respectively. Then, anomalies of biome fluxes including SGW>23° and Veg<23°, 

forest and cropland are added in order to S4 to disentangle their individual 

contributions, named as S5, S6, S7 and S8, respectively. Differences between 

simulations can thus be used to quantify the contribution of various factors.  

5.4 Results 

5.4.1 Widespread increase of peak growing season vegetation growth across the 

Northern Hemisphere 

Here we investigate the trend of peak growing season vegetation activity using 

photosynthesis estimate and proxy, namely GPPFluxcom and MODIS NIRv 

respectively. We derive the 95%-percentile of seasonal variations of both datasets 

at 8-day intervals in each year to represent annual peak photosynthesis, which is 

denoted as GPPpeak and NIRvpeak. Overall, both GPPpeak and NIRvpeak exhibit a 
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consistent widespread increase across the NH over 2001-2018 (Figure 5.3). A 

positive trend in GPPpeak is observed in most regions, with a large trend in croplands 

and some Arctic regions (Figure 5.3A). The mean GPPpeak trend for crops is 

0.7 %/year. This trend is dominated by strong increases for croplands in North 

America (mean 1.1 %/year), northern China (mean 1.0 %/year) and India (mean 

0.71 %/year), while a more modest trend is found for Europe (mean 0.5 %/year). 

The SGW>23° biomes, composed primarily of high-latitude shrublands and mid-

latitude grasslands also show a strong positive mean trend of 0.7 %/year despite a 

strong decrease in Kazakhstan. Subdividing these, this is a result of a strong trend 

in high-latitude shrublands (mean 0.7 %/year), mid-latitude grasslands (mean 

0.8 %/year), and modest trends elsewhere (mean 0.4 %/year). The trend of NIRvpeak 

(Figure 5.3B) has similar spatial patterns with large increases in croplands, but also 

shows some differences, such as a large positive trend in Southeast China (mean 

1.0 %/year) and less positive or even browning in high-latitude shrublands (mean 

0.1 %/year).  

The peak season TER also increases (Figure 5.11), with mean trends of 0.4, 0.1, 

0.3 and 0.6 %/year for crops, forests, high-latitude shrublands and mid-latitude 

grasslands, respectively. The magnitude of these increases is smaller compared to 

that of GPP and NIRv, which implies an increasing maximum rate of carbon 

sequestration due to increased photosynthesis over the past two decades.   
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Figure 5.3: The trend of 95%-percentile 8-day Fluxcom GPP (A) and MODIS NIRv 
(B) (unit: % year-1) from 2001 to 2018, including the spatial pattern, latitudinal 
distributions, and frequency plots. The grids are grouped into cropland, forest and 
SGW>23°, and the definition can be found in Table 5-1 and Figure 5.1. The 
difference between these two maps is shown in Figure 5.12. The trend of 95%-
percentile 8-day Fluxcom GPP (unit: gC m-2 year-1) from 2001 to 2018 is shown in 
Figure 5.13. The trend of annual mean 8-day Fluxcom GPP (unit: % year-1) from 
2001 to 2018 is shown in Figure 5.14. 

5.4.2 Temporal changes of biosphere carbon fluxes shape the spatial pattern of 

the increase in CO2 SCA 

To test whether the observed enhancement of peak season vegetation growth has 

changed the CO2 seasonal amplitude we examine the CO2 trends from the model 

simulations. The baseline simulation, SBaseline, which intends to isolate the CO2 SCA 

trend that is not due to changes in NEE by using a climatological NEE seasonal 

cycle but time-varying BB, FF, and ocean fluxes, shows a wide-spread negative 

trend of the simulated CO2 SCA across the NH (Figure 5.4A). The most negative 

trend with around -0.3ppm/year is observed in Central Europe due to reductions in 

fossil fuel emissions (Figure 5.15), as well as in central Siberia likely driven by 

increased biomass burning during spring and summer (Bondur et al., 2020; Kharuk 

et al., 2008, 2021; Kukavskaya et al., 2016; Ponomarev et al., 2016, 2019). In 

contrast, East China exhibits strong positive trends of approximately +0.3ppm/year. 

This is mainly due to increased fossil fuel emissions especially in winter, and hence 

enhanced seasonal cycle amplitude (Fig. S9). The zonal mean trend in SBaseline is 

most negative at higher latitudes, with a trend below -0.07 ppm/year between 60°N 

and 70°N.  

Including changes in NEE, both SFluxcom and SNIRv show a predominantly positive 

trend of the CO2 SCA across the NH (Figure 5.4B & 5.4C). The Midwest of the 

United States (US) exhibits more than +0.3ppm/year due to the enhanced peak 

season crop productivity (Figure 5.3). In India, SNIRv results in a larger CO2 SCA 

trend compared to SFluxcom, mainly because NIRv has a more pronounced increase 
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than FLUXCOM GPP over these regions (Figure 5.3). Clearly, temporal changes 

of biosphere carbon fluxes play an important role in shaping the spatial patterns of 

CO2 SCA trends across the NH. Without these, SCA trends would even have been 

mostly negative in the northern hemisphere. 

 

Figure 5.4: Spatial pattern and latitudinal distribution of simulated CO2 SCA trend 
based on SBaseline (A), SFluxcom (B) and SNIRv (C) (unit: ppm/year). In the spatial map, 
the selected 15 surface sites are overlaid and colored by the observed trend. The 
latitudinal distribution shows the median of the simulated CO2 SCA in bins of 1° 
latitude, with the shaded area representing 25–75% percentile trend estimates. 
Black and red triangles represent the simulated and observed CO2 SCA trend at 5 
coastal sites, including MLO, IZO, MHD, BRW and ALT, from low to high latitude. 

5.4.3 Simulated GPP-driven CO2 SCA trends consistent with observations 

In comparison to SBaseline, the SFluxcom and SNIRv runs show much better agreement 

with the observed CO2 SCA. Compared against coastal background sites, SFluxcom 

and SNIRv capture an increase in the SCA trend with latitudes, which is in fact 
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negative for the baseline simulation. SBaseline  only agrees well with observations at 

the two low latitude coastal sites, MLO and IZO (Figure 5.4). For mid-high latitude 

coastal sites, MHD, BRW and ALT, a significant positive CO2 SCA trend of +0.11 

to +0.14 ppm/year is observed (p-value < 0.01). However, SBaseline trends are 

negative at these sites, with -0.01 to -0.04 ppm/year, which shows that additional 

flux changes are required to explain observed positive changes in the CO2 SCA. In 

contrast, SFluxcom and SNIRv provide estimates much closer to the observations, 

which underscores the important role of ecosystem flux variations in driving the 

observed increasing CO2 SCA trend at mid-high latitude sites in the NH. 

The coastal sites capture large-scale variations while continental sites are more 

influenced by regional fluxes. Here we investigate whether the simulated trends in 

the CO2 SCA across 15 surface sites, including both continental and coastal sites, 

are consistent with observed trends. Figure 5.5A shows the simulated CO2 SCA 

trends against observed trends. Across the sites, the observed CO2 SCA trend 

ranges from -0.1 to +0.3 ppm/year. SBaseline largely underestimated the SCA trend 

with a slope of 0.49, with a range across sites of -0.20 to +0.15 ppm/year (R2 = 0.5). 

According to Figure 5.5B & 5.5C, SFluxcom and SNIRv better capture the observed 

CO2 SCA trend with linear regression slopes of 0.80 and 0.99, respectively (both 

with R2 = 0.71), explaining the overall magnitude of observed SCA trends. Overall, 

SFluxcom and SNIRv reproduce the observed CO2 SCA trend across both coastal and 

continental sites well, whereas SBaseline consistently underestimates the trend. This 

suggests that the bottom-up estimates of FLUXCOM and NIRv-based NEE are 

capable of tracking changes in atmospheric CO2, including the trend magnitude in 

the observed CO2 SCA, in particular for NIRv-based NEE. 
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Figure 5.5: The comparison between observed and simulated CO2 SCA trend 
derived from SBaseline (A), SFluxcom (B) and SNIRv (C). Filled (open) circles represent 
continental (coastal) surface CO2 sites. Coastal sites include MLO, IZO, MHD, 
BRW and ALT. The point with error bars represents the ensemble mean and 
standard deviation of the derived CO2 SCA trend using the bootstrapping the model 
uncertainties 1,000 times. Table 5-4 reports the ensemble mean, median, standard 
deviation, 5%-tile and 95%-tile of the derived CO2 SCA trend using the 
bootstrapping the model uncertainties 1,000 times. The time series of observed and 
simulated CO2 SCA at individual sites can be found in Figure 5.10. The 
comparison between the observed and simulated CO2 SCA at each sampling site 
and year can be found in Figure 5.16. 

5.4.4 Regional contributions to the site-level CO2 SCA trend 

The peak season GPP trends show remarkable differences between regions and 

ecosystem, with particularly strong trends in croplands and Arctic ecosystems, for 

both the GPP and NIRv estimate (Figure 5.3). Here we examine the contribution 

of different regions and ecosystems to SCA trends.  

Figure 5.6 shows the contributions of individual factors to the observed CO2 SCA 

trend. For both SFluxcom and SNIRv, all biome types produce positive trends (bar 

above the zero-line), except for the forest impact on Lac La Biche, Alberta, Canada 

(LLB) with SNIRv. Positive trends in the mid-latitudes are primarily constituted by 

croplands, forests and SGW>23°. Although the estimated CO2 SCA trends from 

SFluxcom and SNIRv are comparable with observations, the source regions driving 

these trends are quite different. SNIRv generally has a larger estimate of agricultural 

contributions while SFluxcom has a larger contribution from forests. For mid-latitude 

sites near the Northern America cropland (e.g., SGP and LEF), agricultural 
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contributions are comparable or even larger than other vegetation types. Forests and 

SGW>23° also have quite strong impacts on mid-high latitude sites, whereas the 

relative importance of the two depends on the bottom-up ecosystem fluxes used.   

In addition to biome driven trends, SCA trends from biomass burning emissions, 

fossil fuel emissions, and the mean seasonal cycle of NEE coupled with interannual 

variations (IAV) in transport had non-trivial impacts on the inferred trends in SCA. 

For mid-latitude sites, atmospheric circulation has comparable or even larger 

impacts than NEE changes. For example, atmospheric transport can explain around 

50% CO2 SCA trends at MLO, LEF and PAL. This highlights the potential impact 

of changes in atmospheric circulation patterns on observed trends in CO2 SCA.  

Biomass burning has a consistent negative impact on all sampling sites (more 

pronounced for sites north of 50°), which is related to increasing wildfires over 

boreal regions during summer in recent decades and hence reducing CO2 drawdown 

in the peak growing season (Wang et al., 2021). Fossil fuel can exert either positive 

or negative influences, depending on the site location and assumed timing of fossil 

fuel emissions. Ocean has generally a small negative impact on most sites, except 

for BRW and ALT, with around -0.04 ppm/year.  
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Figure 5.6: The contribution of individual drivers to CO2 SCA trend at the surface 
CO2 sites based on flux anomalies inferred from FLUXCOM (A) and MODIS NIRv 
(B). The average contribution of individual drivers is also calculated using 15 
selected surface CO2 sites. The drivers include wind, fossil fuel, biomass burning, 
ocean, cropland, forest, SGW>23° and Veg<23°. The sites are ordered in latitude. 
Hatched bars are used to represent non-biome drivers. The simulated observed and 
SBaseline CO2 SCA trends are also overlaid for reference. Table 5-5 reports the value 
of individual drivers. 

 

5.5 Discussion 

Our results show a broad increase in peak growing season and annual GPP across 

the northern extratropics from 2001 to 2018, suggesting that a variety of factors — 

both through direct human management of crop systems and natural response to 

climate change — are driving trends in GPP. In crop regions, changes in agricultural 
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practices, such as hybridization, irrigation or fertilization, are main drivers of 

increased yields (Chen et al., 2019; Huang et al., 2018; Zeng et al., 2014), whereas 

inter-annual climate variations accounts for roughly a third of the observed yield 

variability (Ray et al., 2015). Positive trends in high-latitude shrublands may be due 

to warming. High-latitude shrublands are usually temperature limited, so that 

warming in recent decades has increased their productivity (Liu et al., 2020). Mid-

latitude grasslands usually lie in arid regions with strong water limitation, so that 

the enhancement of water use efficiency induced by CO2 fertilization is likely to 

play a role in the strong trend in these areas (Winkler et al., 2021). Forests show 

more varied responses, with temperate forest showing increasing productivity, 

possibly related to CO2 fertilization and reforestation, whereas boreal forests can 

exhibit either greening or browning, owing to mixed effects of climate change and 

more frequent and intense disturbances such as droughts and wildfires (Goetz et al., 

2005; Seidl et al., 2017; Verbyla, 2011; Winkler et al., 2021).  

Despite major differences in biome specific NEE trends between FLUXCOM and 

NIRv-GPP, both datasets, the simulated CO2 SCA trends driven by these datasets 

performed well in capturing observations across the surface sites examined in this 

study. Despite a general increase in the CO2 SCA across the NH, there are distinct 

regional differences due to different dominant drivers. By averaging the 15 surface 

CO2 sites, we estimate that forest, crop, and SGW>23° contribute +0.01-0.04 

ppm/year (7-26%), +0.02-0.04 ppm/year (17-24%) and +0.03-0.06 ppm/year (23-

37%) on SCA trends. However, there are still limitations of a sparse network of 

surface sites in unambiguously distinguishing specific regions and biomes for the 

large-scale trends. The recent expansion of the number of surface sites and 

introduction of satellite missions retrieving total-column dry-air mole fractions of 

CO2 (XCO2), such as GOSAT (2009-present) and OCO-2 (2014-present), has 

dramatically increased the spatial extent of CO2 measurements in recent years 

(Jacobs et al., 2021; Ishizawa et al., 2016; Parazoo et al., 2013; Peiro et al., 2022), 

however, we are limited in examining SCA trends with these data due to the short 
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records. Still, this expanded observational coverage will be critical for isolating 

biome-specific contributions to the CO2 SCA changes. 

Most previous studies have attributed the amplified CO2 seasonality to the 

enhanced photosynthesis of temperate and boreal forests of the NH due to warming 

effects and CO2 fertilizations (Barnes et al., 2016; Forkel et al., 2016; Graven et al., 

2013; Lin et al., 2020; Liu et al., 2020; Piao et al., 2018). However, current 

terrestrial biosphere models generally underestimate the CO2 SCA trend by solely 

adjusting vegetation fluxes in high latitudes, which implies that such mechanisms 

cannot explain the full range and magnitude of the observed increasing CO2 SCA 

trend (Zeng et al., 2014). The inability of models to reproduce the trend of the CO2 

seasonal amplitude could be due to the inaccurate sensitivity to CO2 fertilization 

and climate changes (Rollinson et al., 2017; Schimel et al., 2015; Smith et al., 2016), 

underrepresentation of land use change, and underestimate of cropland flux 

seasonality in mid-latitudes in the NH (Ito et al., 2016; Piao et al., 2018; Sun et al., 

2021; Zeng et al., 2014; Zhao et al., 2016). Our spatial pattern of CO2 SCA trends 

(Figure 5.4) shows that crop regions, including North America, north China and 

India have experienced large CO2 SCA increases since 2001. In addition, our site-

level analysis reveals a strong impact of cropland fluxes on surface sites, especially 

around 40°N to 50°N near the Midwest United States. Though these point to the 

importance of agricultural activities in amplifying the CO2 seasonality, different 

studies still disagree on their roles (Forkel et al., 2016; Piao et al., 2018; Lin et al., 

2020). An improved implementation of land use management and crop-specific 

flux simulations is needed to fully understand their role on the seasonal 

characteristics of CO2. 

It should be noted that inferred GPP trends from both NIRv and FLUXCOM are 

based on MODIS surface spectral reflectance. Instead of using NIRv as a predictor 

of vegetation absorbed photosynthetic solar radiation, FLUXCOM uses MODIS 

NDVI to estimate spatiotemporal patterns of GPP. Therefore, these two GPP 
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datasets inherited similar deficiencies from MODIS surface reflectance 

measurements. GPP is determined by both absorbed photosynthetic solar radiation 

linked with canopy structural changes and light use efficiency (LUE) related to 

physiological changes (Bradford et al., 2005; Coops et al., 2010; Running et al., 

2000; Turner et al., 2003). The reflectance-based GPP estimates are primarily 

sensitive to canopy structural changes in ecosystems, but are less sensitive to 

physiological changes induced by environmental changes, such as variations in air 

temperature, soil moisture, vapor pressure deficit, and atmospheric rising CO2 

(Dobrowski et al., 2005; Gamon et al., 1995; He et al., 2020a&b; Huete et al., 2002; 

Rossini et al., 2015; Song et al., 2018; Sun et al., 2017; Frankenberg et al., 2021). 

This could partially explain the weaker trends seen in forest ecosystems. It is also 

noticeable that the MODIS instrument was first on board the Terra satellite, 

launched in December 1999. Then a similar instrument was launched on the Aqua 

satellite in May 2002. To avoid any artificial trend introduced when only the 

MODIS Terra data are available, we examine the trend starting in 2003 for 

FLUXCOM and NIRv (Figure 5.17), and its spatiotemporal pattern is consistent 

with the trend starting in 2001(Figure 5.3).  

The interpretation of measured spectral vegetation indices from satellite sensors is 

challenging at high latitudes. Measurements in these regions are often influenced 

by patchy snow, cloud covers, and shadows caused by low sun angles (Myers-

Smith et al., 2020), which makes accurate GPP estimates difficult. Satellite-derived 

vegetation indices have revealed divergent responses of high-latitude ecosystems 

in the NH in the warming climate (Myers-Smith et al., 2020; Alcaraz-segura et al., 

2010). Depending on vegetation indices from different satellite products, the high 

latitude ecosystems have experienced greening (Forbes et al., 2010; Jia et al., 2003; 

Jia et al., 2009; Macias-Fauria et al., 2012; Zhang et al., 2017; Zhu et al., 2016; 

Arndt et al., 2019; Berner et al., 2020; Keenan & Riley, 2018; Myneni et al., 1997; 

Zhang et al., 2008) or browning (Bhatt et al., 2013; Phonex et al., 2016; Lara et al., 

2018; Miles et al., 2016; Parent & Verbyla, 2010; Verbyla, 2011). Fire disturbances 
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may explain ecological variability and regional differences of vegetation 

productivity (Goetz et al., 2005; Beck & Goetz, 2011). Satellite-based models 

mostly do not explicitly consider the difference in photosynthetic capacity between 

moss and higher plants when estimating regional GPP in the boreal region, resulting 

in a substantial overestimation. With a lower photosynthetic capacity, mosses can 

generate only about one-third of the GPP that vascular plants at the same NDVI 

(Yuan et al., 2014). In addition, the sparse network of flux tower sites at high 

latitudes in the NH results in high uncertainties in ecosystem carbon flux estimates 

(Jung et al., 2020; Schimel et al., 2015). Some efforts have been made to improve 

observational coverage for these high latitudes. For example, Virkkala et al. (2021) 

develops a standardized monthly database of Arctic-Boreal carbon fluxes based on 

chamber, snow diffusion and eddy covariance measurements. This can be used to 

improve understanding of the regional and temporal variations of ecosystem carbon 

fluxes. 

Observed CO2 SCA trends are found to be consistent with the modeled trends 

driven by NEE anomalies from FLUXCOM and NIRv, but with some 

underestimation at mid-high latitude sites. Residual biases could be due to several 

factors. First, this could be due to an underestimate of trends and interannual 

variations of global GPP and NEE in the underlying fluxes. As most remote sensing 

based GPP estimates, FLUXCOM and NIRv-derived GPP are driven by climate 

and greenness, and do not account for direct physiological benefits on plants via 

CO2 fertilization effects (Jung et al., 2020). This may lead to an underestimate of 

GPP trends, especially in mid-high arid and semi-arid regions. FLUXCOM 

products have also been found to underestimate interannual variations in NEE and 

GPP compared to inversions and process-based global dynamic vegetation models 

(Jung et al., 2020). Second, systematic errors in the transport model could 

contribute to residual biases. GEOS-Chem (from which GHGF-Flux inherits 

transport) has been found to systematically underestimate vertical transport in the 

northern extratropics (Schuh et al., 2019; Stanevich et al., 2020; Yu et al., 2018). 
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Third, biases in the in meteorological reanalysis used to drive the transport have 

been noted (Parazoo et al., 2012). However, quantifying the impact of these biases 

on the simulations presented here is challenging. The impact of these errors could 

be better characterized by re-running these experiments with a different chemical 

transport model, such as TM5, but this is computationally expensive and beyond 

the scope of the current study.  

5.6 Conclusion 

Atmospheric CO2 measurements provide powerful tools to understand biosphere-

atmosphere carbon interactions. The variations in the CO2 SCA indicate underlying 

changes in biosphere carbon fluxes. Our study illustrates that the observed 

increasing CO2 SCA trend in the last two decades is mainly driven by the 

widespread enhanced vegetation carbon uptake over the NH. Both FLUXCOM and 

NIRv-based terrestrial carbon flux estimates better account for trends in SCA across 

a range of in situ sites (slope of 0.80 and 0.99) relative to climatological NEE (slope 

of 0.49). 

Trends in FLUXCOM and NIRv-based GPP are widespread across the northern 

extratropics, with positive trends found in many biomes. Agricultural areas have 

among the strongest positive trends in GPP, suggesting changes in agricultural 

practices, such as hybridization, irrigation or fertilization, are significantly 

increasing the productivity of these regions. However, strong positive trends are 

also found across a mosaic of natural ecosystems, particularly high-latitude 

shrublands and mid-latitude grasslands, but also in many forest regions. These 

positive trends in natural ecosystems are likely due to both CO2 fertilization and 

warming, in high latitude regions. 

Although these large-scale features are captured by both FLUXCOM and NIRv-

based GPP, these datasets show regional and biome-specific differences. Despite 

this, both datasets perform well in simulation SCA CO2 trends for 15 surface sites. 
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Furthermore, the SCA trends at individual surface sites are strongly impacted by 

interannual variations in transport, as well as trends in biomass burning, ocean 

fluxes, and fossil fuel emissions. This suggests that the relatively sparse sampling 

of surface sites over 2001-2018 is insufficient to distinguish between NEE trends 

produced by FLUXCOM and NIRv. 
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5.8 Appendix 

 

Figure 5.7: The relationship among GPP, NIRv and PAR across different 
vegetation types. In each subplot, individual points represent a 16-day average of 
corresponding measurements. Due to limited sites in CSHR, the derived slope 
seems an outlier compared to other vegetation types. Therefore, we apply the slope 
and intercept derived from OSHR into CSHR when we estimate the spatiotemporal 
patterns of GPP from MODIS NIRv datasets. 
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Figure 5.8: The comparison between 8-day 0.083° FLUXCOM and eddy 
covariance GPP across different vegetation types. Eddy covariance GPP is 
aggregated at 8-day to match the temporal resolution of FLUXCOM products. 
Please note that FLUXCOM has empty value at the grid cell that the CSHR site 
falls in. The CSHR site used in this study is IT-Noe (8.15°E, 40.61°N).   
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Figure 5.9: Averaged latitudinal distribution of NIRv-inferred GPP and 
FLUXCOM GPP during 2001 to 2018. 
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Figure 5.10: The time series of CO2 SCA (unit: ppm) at 15 selected sites. The 
ensemble mean with standard deviation is shown using the bootstrapping the model 
uncertainties 1,000 times. 
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Figure 5.11: Peak season (95%-tile) 8-day Fluxcom TER trend from 2001 to 2018. 
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Figure 5.12: Difference between 95%-tile 8-day Fluxcom GPP trend and 95%-tile 
8-day MODIS NIRv trend in Fig. 3. 
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Figure 5.13: The actual trend of 95%-percentile 8-day Fluxcom GPP (unit: gC m-2 
d-1  year-1) from 2001 to 2018 is shown. 
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Figure 5.14: The trend of annual mean 8-day Fluxcom GPP (unit: % year-1) from 
2001 to 2018.  
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Figure 5.15: Weekly fossil fuel emissions since 2000 in East China and Europe. 
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Figure 5.16: The comparison between the observed and simulated CO2 SCA at 
each sampling site and year can be found in Fig. S3. 

  



 

 

161 

 

Figure 5.17: The trend of 95%-percentile 8-day Fluxcom GPP (A) and MODIS 
NIRv (B) (unit: % year-1) from 2003 to 2018. 
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Table 5-2: Sites used to derive NIRv-GPP relationships. 

Site Longitude Latitude IGBP 

BE-Lon 4.7461 50.5516 CRO 

CH-Oe2 7.7343 47.2863 CRO 

DE-Geb 10.9143 51.1001 CRO 

DE-Kli 13.5224 50.8931 CRO 

FR-Gri 1.9519 48.8442 CRO 

IT-BCi 14.9574 40.5238 CRO 

IT-CA2 12.026 42.3772 CRO 

US-ARM -97.4888 36.6058 CRO 

US-Ne1 -96.4766 41.1651 CRO 

US-Ne2 -96.4701 41.1649 CRO 

US-Ne3 -96.4397 41.1797 CRO 

US-Tw2 -121.6433 38.1047 CRO 

US-Tw3 -121.6467 38.1159 CRO 

US-Twt -121.6526 38.1071 CRO 

IT-Noe 8.1512 40.6062 CSHR 

CA-TPD -80.5577 42.6353 DBF 

DE-Hai 10.453 51.0792 DBF 

DE-Lnf 10.3678 51.3282 DBF 

DK-Sor 11.6446 55.4859 DBF 

IT-CA1 12.0266 42.3804 DBF 

IT-CA3 12.0222 42.38 DBF 

IT-Col 13.5881 41.8494 DBF 

US-Ha1 -72.1715 42.5378 DBF 

US-MMS -86.4131 39.3232 DBF 

US-Oho -83.8438 41.5545 DBF 

US-UMB -84.7138 45.5598 DBF 

US-UMd -84.6975 45.5625 DBF 

US-WCr -90.0799 45.8059 DBF 

RU-SkP 129.168 62.255 DNF 

AU-Cum 150.7236 -33.6152 EBF 

AU-Whr 145.0294 -36.6732 EBF 

AU-Wom 144.0944 -37.4222 EBF 

FR-Pue 3.5957 43.7413 EBF 

GF-Guy -52.9249 5.2788 EBF 
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IT-Cp2 12.3573 41.7043 EBF 

AU-ASM 133.249 -22.283 ENF 

CA-TP1 -80.5595 42.6609 ENF 

CA-TP3 -80.3483 42.7068 ENF 

CA-TP4 -80.3574 42.7102 ENF 

CH-Dav 9.8559 46.8153 ENF 

CZ-BK1 18.5369 49.5021 ENF 

DE-Obe 13.7213 50.7867 ENF 

DE-Tha 13.5652 50.9624 ENF 

FI-Hyy 24.2948 61.8474 ENF 

FI-Let 23.9595 60.6418 ENF 

FI-Sod 26.6386 67.3624 ENF 

IT-Lav 11.2813 45.9562 ENF 

IT-Ren 11.4337 46.5869 ENF 

IT-SR2 10.291 43.732 ENF 

IT-SRo 10.2844 43.7279 ENF 

NL-Loo 5.7436 52.1666 ENF 

RU-Fyo 32.9221 56.4615 ENF 

US-GLE -106.2399 41.3665 ENF 

US-Me2 -121.5574 44.4523 ENF 

US-Me6 -121.6078 44.3233 ENF 

US-NR1 -105.5464 40.0329 ENF 

AT-Neu 11.3175 47.1167 GRA 

AU-Emr 148.4746 -23.8587 GRA 

AU-Rig 145.5759 -36.6499 GRA 

AU-Stp 133.3502 -17.1507 GRA 

AU-Ync 146.2907 -34.9893 GRA 

CH-Cha 8.4104 47.2102 GRA 

CH-Fru 8.5378 47.1158 GRA 

CN-Sw2 111.8971 41.7902 GRA 

CZ-BK2 18.5429 49.4944 GRA 

DE-Gri 13.5126 50.95 GRA 

DE-RuR 6.3041 50.6219 GRA 

IT-Tor 7.5781 45.8444 GRA 

NL-Hor 5.0713 52.2404 GRA 

RU-Sam 126.4958 72.3738 GRA 

US-AR2 -99.5975 36.6358 GRA 
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US-IB2 -88.241 41.8406 GRA 

US-Var -120.9507 38.4133 GRA 

BE-Vie 5.9981 50.305 MF 

CA-Gro -82.1556 48.2167 MF 

CH-Lae 8.365 47.4781 MF 

US-SRC -110.8395 31.9083 MF 

US-Syv -89.3477 46.242 MF 

AU-TTE 133.64 -22.287 OSHR 

ES-Amo -2.2523 36.8336 OSHR 

ES-LJu -2.7521 36.9266 OSHR 

RU-Cok 147.4943 70.8291 OSHR 

US-Whs -110.0522 31.7438 OSHR 

AU-Cpr 140.5891 -34.0021 SAV 

AU-DaS 131.3881 -14.1593 SAV 

AU-Dry 132.3706 -15.2588 SAV 

AU-GWW 120.6541 -30.1913 SAV 

SN-Dhr -15.4322 15.4028 SAV 

CZ-wet 14.7704 49.0247 WET 

DE-Akm 13.6834 53.8662 WET 

DE-Spw 14.0337 51.8923 WET 

DE-Zrk 12.889 53.8759 WET 

DK-NuF -51.3861 64.1308 WET 

NO-Adv 15.923 78.186 WET 

SE-St1 19.0503 68.3542 WET 

US-Los -89.9792 46.0827 WET 

US-Myb -121.7651 37.05 WET 

US-Tw1 -121.6469 38.1074 WET 

US-Tw4 -121.6414 38.103 WET 

US-WPT -82.9962 41.4646 WET 

AU-Gin 115.7138 -31.3764 WSAV 

AU-How 131.1523 -12.4943 WSAV 

AU-RDF 132.4776 -14.5636 WSAV 

US-SRM -110.8661 31.8214 WSAV 

US-Ton -120.966 38.4316 WSAV 
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Table 5-3: Surface CO2 sites used in this study. Coastal sites are highlighted in red. 

Station name Station Code Latitude Longitude 

Mauna Loa, Hawaii, United States MLO 19.54 -155.6 

Izana, Tenerife, Canary Islands, Spain IZO 28.31 -16.5 

Moody, Texas, United States WKT 31.31 -97.33 

Southern Great Plains, Oklahoma, United 

States 
SGP 36.62 -97.48 

Niwot Ridge, Colorado, United States NWR 40.05 -105.6 

Storm Peak Laboratory (Desert Research 

Institute), United States 
SPL 40.45 -106.7 

Argyle, Maine, United States AMT 45.03 -68.68 

Park Falls, Wisconsin, United States LEF 45.95 -90.27 

Fraserdale, Canada FSD 49.88 -81.57 

Mace Head, County Galway, Ireland MHD 53.33 -9.9 

East Trout Lake, Saskatchewan, Canada ETL 54.35 -105 

Lac La Biche, Alberta, Canada LLB 54.95 -112.5 

Pallas-Sammaltunturi, GAW Station, Finland PAL 67.97 24.12 

Barrow Atmospheric Baseline Observatory, 

United States 
BRW 71.32 -156.6 

Alert, Nunavut, Canada ALT 82.45 -62.51 
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Table 5-4: Ensemble mean, median, standard deviation (std), 5%-tile and 95%-tile 
of the derived CO2 SCA trend using the bootstrapping the model uncertainties 1,000 
times. 

unit 
(ppm /yr) 

MLO IZO WKT SGP NWR SPL AMT LEF FSD MHD ETL LLB PAL BRW ALT 

Mean of 
Obs 

0.05 0.01 -0.02 0.21 0.04 -0.04 0.23 0.21 0.1 0.11 0.08 -0.07 0.28 0.1 0.14 

Mean of 
SBaseline 

0.02 -0.03 -0.08 -0.02 -0.09 -0.08 -0.06 0.08 -0.04 -0.01 -0.04 -0.19 0.13 -0.05 -0.04 

Mean of 
SFluxcom 

0.04 -0.01 -0.07 0.05 -0.04 -0.09 0.02 0.24 0.09 0.08 0.09 -0.09 0.23 0.04 0.06 

Mean of 
SNIRv 

0.07 0.03 -0.06 0.08 0.01 -0.09 0.08 0.36 0.08 0.1 0.07 -0.13 0.23 0.05 0.07 

Median of 
Obs 

0.05 0.01 -0.02 0.2 0.05 -0.03 0.23 0.21 0.1 0.11 0.09 -0.12 0.28 0.1 0.14 

Median of 
SBaseline 

0.02 -0.03 -0.07 -0.02 -0.09 -0.08 -0.06 0.08 -0.04 -0.01 -0.04 -0.19 0.13 -0.04 -0.04 

Median of 
SFluxcom 

0.05 -0.01 -0.06 0.05 -0.04 -0.08 0.02 0.24 0.09 0.08 0.09 -0.1 0.23 0.04 0.07 

Median of 
SNIRv 

0.07 0.03 -0.06 0.08 0.01 -0.09 0.08 0.36 0.07 0.1 0.07 -0.13 0.24 0.05 0.07 

Std of 
Obs 

0.02 0.02 0.06 0.13 0.04 0.09 0.05 0.05 0.04 0.02 0.06 0.15 0.05 0.02 0.02 

Std of 
SBaseline 

0.01 0.02 0.09 0.07 0.05 0.07 0.09 0.07 0.09 0.04 0.11 0.18 0.09 0.04 0.02 

Std of 
SFluxcom 

0.02 0.02 0.09 0.07 0.05 0.07 0.1 0.07 0.08 0.04 0.12 0.19 0.1 0.04 0.02 

Std of 
SNIRv 

0.02 0.02 0.09 0.09 0.05 0.07 0.1 0.07 0.09 0.04 0.13 0.19 0.09 0.05 0.02 

5%-tile of 
Obs 

0.02 -0.02 -0.11 0.02 -0.03 -0.24 0.15 0.13 0.03 0.09 -0.03 -0.25 0.19 0.07 0.11 

5%-tile of 
SBaseline 

0 -0.06 -0.22 -0.13 -0.18 -0.2 -0.2 -0.04 -0.17 -0.07 -0.22 -0.49 -0.03 -0.11 -0.07 

5%-tile of 
SFluxcom 

0.02 -0.03 -0.21 -0.07 -0.12 -0.21 -0.14 0.12 -0.04 0.01 -0.11 -0.4 0.06 -0.03 0.02 

5%-tile of 
SNIRv 

0.03 -0.01 -0.21 -0.07 -0.07 -0.21 -0.09 0.24 -0.07 0.03 -0.16 -0.44 0.07 -0.02 0.03 

95%-tile 
of Obs 

0.07 0.04 0.09 0.44 0.1 0.09 0.32 0.28 0.18 0.14 0.16 0.23 0.35 0.13 0.17 

95%-tile 
of SBaseline 

0.05 0 0.06 0.1 -0.01 0.02 0.08 0.2 0.1 0.06 0.15 0.12 0.27 0.02 -0.01 

95%-tile 
of SFluxcom 

0.07 0.02 0.07 0.17 0.04 0.02 0.18 0.36 0.24 0.15 0.29 0.22 0.37 0.11 0.1 

95%-tile 
of SNIRv 

0.1 0.07 0.07 0.24 0.09 0.02 0.25 0.47 0.23 0.16 0.28 0.21 0.38 0.13 0.1 
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Table 5-5: The contribution of individual drivers to the simulated CO2 SCA trend 
(ppm/yr).  

unit 
(ppm/yr) 

MLO IZO WKT SGP NWR SPL AMT LEF FSD MHD ETL LLB PAL BRW ALT average 

Wind 0.03 -0.01 -0.07 -0.04 -0.06 -0.08 0.05 0.12 -
0.04 0.04 -0.02 -0.19 0.12 0.01 0.02 -0.01 

Ocean -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.03 -0.01 0.00 -0.02 -0.01 -0.01 -
0.01 -0.04 -0.03 -0.02 

Fossil Fuel 
(FF) 

0.03 0.00 0.01 0.02 0.03 0.04 -0.03 -0.01 0.02 0.00 0.01 0.00 0.04 0.00 0.00 0.01 

Biomass 
Burning 

(BB) 
0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01 -

0.01 -0.01 -0.02 0.00 0.00 -0.01 -0.02 -0.01 

SFluxcom: 
Veg<23N° 

0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SFluxcom: 
SGW>23N° 

0.01 0.01 -0.02 0.04 0.03 -0.01 0.05 0.06 0.05 0.04 0.05 0.03 0.05 0.05 0.05 0.03 

SFluxcom: 
Forest 

0.01 0.02 0.01 0.01 0.02 0.02 0.04 0.06 0.07 0.04 0.06 0.05 0.05 0.04 0.05 0.04 

SFluxcom: 
Crop 

0.01 0.01 0.02 0.04 0.02 0.01 0.03 0.07 0.03 0.02 0.05 0.03 0.01 0.01 0.01 0.02 

SNIRv: 
Veg<23N° 

0.00 -0.02 -0.01 -0.01 0.00 -0.04 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 0.00 -0.01 

SNIRv: 
SGW>23N° 

0.03 0.04 -0.01 0.07 0.06 0.00 0.08 0.10 0.07 0.07 0.08 0.07 0.08 0.07 0.08 0.06 

SNIRv: 
Forest 

0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.06 0.01 0.01 0.00 -0.03 0.03 0.02 0.01 0.01 

SNIRv: Crop 0.02 0.02 0.03 0.07 0.04 0.02 0.05 0.13 0.05 0.03 0.06 0.00 0.02 0.02 0.03 0.04 
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FINDINGS AND CLOSING THOUGHTS 

Traditionally, field experiments are the standard way to study cause-and-effect 

relationships in biogeochemistry. However, a deluge of earth system data has 

become available with a higher density observation network, increased number of 

satellite missions and more advanced earth system models. Novel developments in 

statistics and computer science also allow machine learning approaches to reveal 

the underlying nonlinear physical patterns and important factors behind these huge 

volumes of datasets. In this thesis, I leveraged multi-source datasets (e.g., in-situ 

measurements, satellite remote sensing and reanalysis datasets), process-based 

models, and data-driven methods to conduct systematic research towards 

understanding cropping systems under climate change. Specifically, my 

dissertation integrates theories and methods from satellite remote sensing, 

ecological science, atmospheric science, and statistics to (i) measure plant 

photosynthesis, (ii) estimate crop yields, (iii) understand yield responses to climate 

change, and (iv) quantify intensified agriculture in reshaping atmospheric CO2 

seasonal cycle. 

First, I developed a new approach for estimating crop yields from space using 

satellite solar-induced fluorescence (SIF) signals. In Chapter 2, I demonstrated that 

SIF can better capture plant photosynthesis downregulation than commonly used 

reflectance-based vegetation indices, such as NDVI and EVI, in tracking plant 

photosynthesis during water stress. In Chapter 3, I used satellite SIF to estimate 

crop yield benchmarked by USDA reported annual crop statistics. I also found 

different plants show varying SIF: photosynthesis (or crop yield) relationships, 

which implies crop species should be considered in accurate yield estimate. Second, 

I used data-driven approaches to understand how the crop yield is affected by 

climate change and air quality. In Chapter 4, I quantified the yield responses to 

C h a p t e r   6
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climate and air pollution factors based on a yield prediction model using historical 

records of crop yield. Using the established model, I further predicted future yield 

changes using climate and air pollution scenarios. Third, I investigated how 

intensified agriculture in recent decades influence atmospheric CO2 seasonality. In 

Chapter 5, I developed a 20-year remote sensing-based ecosystem carbon flux 

dataset by integrating satellite and in-situ flux measurements. Using this dataset, I 

attributed the contribution of different ecosystems, such as cropland, forests, and 

grasslands to the observed increased atmospheric CO2 seasonality in the Northern 

Hemisphere. 

The approaches developed in the thesis have great potential to estimate and 

understand yield variations in developing countries (e.g., China, India, sub-Saharan 

African countries), in which yields are most vulnerable to climate change and 

poorly measured. With an improved estimate and understanding of crop yields at 

every piece of farmland on Earth, effective efforts can then be made to evaluate and 

target productivity-enhancing interventions. Therefore, the findings in my 

dissertation are relevant to agro-ecosystem management in the face of climate 

change and contribute to equitable solutions to climate challenges.  
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