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Abstract

We use our hands constantly in our everyday lives. This seemingly simple ability is disrupted in
individuals with cervical spinal cord injuries. By circumventing injured signal pathways, brain-
computer interfaces (BCIs) promise to enable such individuals to control artificial limbs for everyday
use. However, existing BCI limb control remains coarse and inflexible, because we do not
understand how the recorded neural activity relates to dexterous movement. As a result, BCI control
in physical settings remains frustratingly difficult for paralyzed users. To improve dexterous BCI
control, I studied the neural coding of individual finger movements in the posterior parietal cortex
and motor cortex of tetraplegic participants. These regions are directly involved in dexterous hand
movements and are candidates for BCI recording implants. Finger coding matched the correlation
structure and dynamics of able-bodied usage, reflecting preserved motor circuits even after paralysis.
Individual finger movements of each hand were coded in a factorized, correlated manner that still
allowed decoding. Participants controlled artificial fingers with state-of-the-art accuracy. Finally, we
studied the temporal dynamics of neural control to understand how existing models of neural activity
extend to BCI control. These findings contribute to the understanding of human hand movements
and advance the development of dexterous BCls.
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Nomenclature

BA: Brodmann Area

BCI: brain-computer interface, also known as a brain-machine interface (BMI)
calibrate/train: calculate decoding algorithm’s parameters based on a dataset
closed-loop: online

contralateral: side of the body opposite to the implant or condition
crossnobis: cross-validated squared Mahalanobis dissimilarity

decode: predict a variable from recorded neural activity

dynamics: temporal structure of neural activity patterns

factorized: explained by multiple independent factors, without their interaction effects
firing rate: frequency of action potentials

fMRI: functional magnetic resonance imaging

geometry: organization / distance structure of neural representations
ipsilateral: side of the body same as the implant or condition

JJ: one participant in our studies

M1: primary motor cortex

MC: motor cortex

neuroprosthetics: prosthetics using brain signals

NHP: non-human primate

NS: one participant in our studies

offline: analyzed after the experiment

online: decoded or analyzed in real-time during the experiment, often with visual feedback
open-loop: performed without direct feedback of the neural activity

PC-IP: junction of the postcentral (PC) and intraparietal (IP) sulci.

plasticity: ability of the nervous system to change or reorganize

population: a group of related neurons, often the group being recorded

PPC: posterior parietal cortex

RDM: representational dissimilarity matrix

representation: pattern of neural activity correlated with given content, and hypothesized to cause
behavior

RSA: representational similarity analysis

SCI: spinal cord injury

SD: standard deviation

SEM: standard error of the mean

spike: action potential

spike sort: identify and cluster action potentials into putative single neurons
tetraplegia: paralysis affecting all limbs

tuned: hypothesized to represent specific information

unit: neuron

voxel: pixel in a three-dimensional space



1 Introduction

1.1 Neural prostheses to restore movement

Many of us take for granted our ability to interact and move through our physical surroundings.
However, for more than 5 million Americans and millions more people globally, paralysis impairs
this ability (Singh et al., 2014; Armour et al., 2016). Many of these cases stem from stroke, spinal
cord injury, multiple sclerosis, or cerebral palsy. For many people living with paralysis, activities of
daily living, such as feeding yourself or getting out of bed, are challenging or impossible without
assistance (Anderson, 2004; Snoek et al., 2004; Collinger et al., 2013a).

One emerging class of medical devices that could assist paralyzed individuals are brain-
machine interfaces (BMI), also known as brain-computer interfaces (BCI) or neural prostheses.
BMIs record neural activity and decode motor intent to actuate an output device, such as a robotic
arm. This technology could improve the quality of life of paralyzed individuals by restoring motor
function and communication.

Early preclinical studies with non-human primate subjects have used BMIs to control
computer cursors (Gilja et al., 2012) and robotic limbs (Carmena et al., 2003; Velliste et al., 2008).
Since then, human tetraplegic participants in preliminary clinical trials have provided a number of
case-study applications, including: keyboard typing (Jarosiewicz et al., 2015; Pandarinath et al.,
2017; Nuyujukian et al., 2018; Willett et al., 2021), speech generation for people with anarthria
(Anumanchipalli et al., 2019; Moses et al., 2021; Sarah K Wandelt et al., 2022; Willett et al., 2023)f,
robotic arm control (Hochberg et al., 2012; Collinger et al., 2013c; Wodlinger et al., 2015), and
controlling the individual’s own paralyzed limb (Ajiboye et al., 2017). This wide range of
applications and customizability will be necessary to match the diversity of BCI users’ motor
abilities and lifestyles.

Neural prostheses work with many underlying disability causes, in large part because they
work by bypassing injured regions. In the example of spinal cord injuries, volitional motor
commands from the brain no longer reach the intended effectors. However, motor regions of the
brain remain intact, allowing neural prosthetic systems to record from the brain and output to a
prosthetic limb. This brain-effector interface creates a distinct signal path, bypassing the injured
spinal cord. Other motor disabilities may require circumventing different injured areas, such as a
specific brain region for stroke patients.

1.2 Components of neural prosthetic systems

A neural prosthetic system consists of three core components: acquisition of neural activity
(“recording”), translating neural activity to motor intent (“‘decoding”), and the output effector. My
work has focused on neural decoding, understanding how the brain commands movement, and then
designing algorithms to best separate that signal from the noise. Much of this dissertation is devoted
to advances in this domain.

For the other two components, recording and output, my experiment design follows standard
setups in this field. Regarding recording technology, here, I focus only on neuron action potentials
recorded by intracortical microelectrode arrays. Action potentials and their consequent
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neurotransmitter release are the main form of communication in the nervous system. Action
potentials provide informative, low-latency input features and have controlled the most impressive
typing and arm BMIs to date (Wodlinger et al., 2015; Willett et al., 2021). With regard to the design
of the output effector, I demonstrate control of a keyboard interface and a discrete-selection robot
hand, as well as the computer cursor task that has become a de facto standard in this field (Gilja et
al., 2012; Jarosiewicz et al., 2015). Although I do not push the boundaries of recording and output
effector technologies here, I hope that improved decoding can inspire more effective output designs
in the future. These areas pose important challenges and are the work of many promising
interdisciplinary collaborations, as reviewed elsewhere (Collinger et al., 2013b, 2018; Bockbrader,
2019; Kleinfeld et al., 2019; Luan et al., 2020).

1.3 Barriers to clinical usage

Despite impressive proof-of-concept demonstrations, neural prostheses face a number of barriers to
clinical adoption. These issue categories range from scientific or technological to affordability and
ethics. Here, I describe existing limitations and the scientific studies working to overcome them.

One of the core limitations is the relatively short usable device lifetime, a few years. This is
a particular issue because the Utah array, the most widely available BMI implant with high signal
quality, requires expensive, invasive neurosurgery. Signal quality degrades over time, so occasional
reimplantation surgery would be necessary to keep recording quality at an operable level for longer
periods. Ongoing materials science enhancements, such as flexible electrodes, may improve the
electrodes’ lifetimes while also reducing the foreign body response that obstructs the recorded
neurons (Luan et al., 2020). In the meantime, neurotech companies are attempting to minimize
surgery risk and cost through precise robotic surgery (Musk and Neuralink, 2019) or minimally
invasive procedures (Ho et al., 2022).

A second limitation of existing BMIs is their relatively burdensome (re-)calibration
requirements. Neural prosthetic systems are calibrated by learning a mapping from neural activity to
intended movement. Calibration can take more than 5 minutes for 2-D point-and-click (Jarosiewicz
et al., 2015) and up to 25 minutes for a prosthetic arm (Collinger et al., 2013¢c; Wodlinger et al.,
2015). Calibration time quickly multiplies if we also want to dissociate confounding factors like
hand position or visual responses from intended movement velocity, as described above. Moreover,
the relationship between neural activity to intended movement can change over the time-scale of
hours or days, due to electrodes shifting or changes in neurons' baseline firing rates and tuning
properties (Chestek et al., 2011; Perge et al., 2013; Nuyujukian et al., 2014). The change in mapping,
from neural activity to intent, degrades the performance of previously calibrated decoders. Without
recalibration, neural prosthetics become less usable for patients over time. However, recalibration
disrupts usage, limiting BMI usefulness (Huggins et al., 2015). To minimize disruption, it is
imperative to shorten the calibration routine while still learning an accurate, long-term mapping from
neural activity to intended movement. BMI researchers have proposed methods to extend the time
between recalibrations, including: self-supervised retraining (Jarosiewicz et al., 2015), manifold
alignment (Degenhart et al., 2020; Dabagia et al., 2022; Karpowicz et al., 2022; Ma et al., 2022),
and extracting longer-lasting features from broadband data (Flint et al., 2013; Haghi et al., 2021).

A final limitation is the lack of control over physical effectors. Despite the field’s interest in
communication (Moses et al., 2021; Willett et al., 2021) and arm reaching (Hochberg et al., 2012;
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Collinger et al., 2013c¢), no studies have developed prosthetic controllers that can interact with
physical objects robustly enough to assist patients in their day-to-day activities. Restoring hand
function is a top priority for people with tetraplegia (Anderson, 2004; Snoek et al., 2004; Collinger
et al., 2013a). In particular, dexterous control of individual fingers is essential for daily activities
such as opening doors, feeding oneself, and dressing. However, control of BMI hands remains coarse
(Collinger et al., 2013c; Hotson et al., 2016), because we do not yet understand how the recorded
brain signals relate to intended hand movements. To compare with another movement category,
reaching studies have described how multiple factors can modulate neural activity (Omrani et al.,
2017): movement direction (Georgopoulos et al., 1982), posture (Aflalo and Graziano, 2006),
sensory feedback (Scott, 2016), and effector dynamics (Shadmehr et al., 2010; McNamee and
Wolpert, 2019; Kalidindi et al., 2021). Hand movements involve different neural processes from arm
reaching (Suresh et al., 2020; Sobinov and Bensmaia, 2021), so we are just beginning to understand
how the brain integrates the multitude of factors for hand movements. Some work has been done to
understand grasping in preclinical non-human primate models (Schaffelhofer and Scherberger, 2016;
Michaels et al., 2020) and even basic human grasps (Gallivan and Culham, 2015; Klaes et al., 2015;
Sarah K Wandelt et al., 2022). These studies usually narrowed their scope to offline analysis of a
few basic grasp templates, limiting their applicability to everyday settings. Future studies should
eventually allow flexible control to pick up and manipulate a diverse array of objects. To improve
dexterous decoding, we need to better understand the neural principles of hand movements, and this
challenge motivates my dissertation research.

1.4 Dissertation outline

In this dissertation, I study the cortical coding of finger movements and apply these findings to
improve neuroprosthetic control. By understanding the fundamentals of dexterous movements, |
believe that we can advance neural decoding to the point that BMIs can substantially improve quality
of life of tetraplegic individuals. This dissertation is organized as follows:

The remainder of Chapter 1 summarizes the relevant prior research on the neural control of
hand movements.

Chapter 2 examines whether and how individual finger movements are encoded in the
posterior parietal cortex. The neural coding principles followed the kinematics of able-bodied natural
hand use, even years after the participant was paralyzed. These representations are stable after
paralysis and throughout BMI usage, allowing us to tap into the pre-existing neural code.

Chapter 3 extends our study of finger movements to include both the posterior parietal
cortex and motor cortex. A participant used neural signals in both regions to control finger
movements at a state-of-the-art level. I compare the information content of both regions, calculating
what improvements in recording quality would be necessary to control prosthetic fingers with high
accuracy. Furthermore, I analyze finger movements of both hands and describe how their neural
codes are correlated and factorized, which has important implications for bilateral neuroprosthetic
control.

Chapter 4 considers the temporal dynamics of BCI finger movements. To better understand
how short, corrective movements might differ from their sustained counterparts, I extended BMI
movement durations to dissociate the movement-onset dynamics from the relatively stationary
movement intent. I found that we could separate BCI movements into phases: initial onset, sustained
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intent, and offset. This work merges the classical understanding of movement parameter
representations with modern concepts of the brain as a dynamical system.

Chapter 5 concludes with a summary of our results and their broader impacts. I discuss
promising future directions that could improve the functional utility of BMIs. These directions take
advantage of both our improved neuroscientific understanding and parallel technological advances.

1.5 Neural coding of hand movements
1.5.1 Manual dexterity

The human hand is unique in its dexterity (Sobinov and Bensmaia, 2021). Humans can learn to solder
microscopic components to a circuit board or execute hundreds of video game actions per minute.
Even everyday hand movements require complex coordination. We make take these skills for
granted, but the difficulty of everyday actions is clear when we try to teach a robot to handle objects
(Billard and Kragic, 2019) or when observing a young toddler trying to pick up a grain of rice. Our
dexterity is further highlighted by the fact that humans can move individual fingers more
independently than other primates (Schieber, 1991; Higer-Ross and Schieber, 2000). This feature,
along with our fully opposable thumbs, allows flexible control over a variety of objects.

Despite this unique flexibility, hand movements do exhibit structure as well. Although the
thumb moves quite independently, the other fingers tend to move in a coordinated manner (Schieber,
1991; Héager-Ross and Schieber, 2000). This in part reflects biomechanical coupling, both passive
and active, between the other fingers (Lang and Schieber, 2004a). These biomechanical patterns can
also be reflected in neural patterns, as I discuss further in Section 1.5.2 and Chapter 2.

1.5.2  Neural control of hand movements

Our impressive hand dexterity requires a coordinated effort across neural systems. Volitional hand
movements involve the motor cortex, parietal cortex, cerebellum, basal ganglia, corticospinal tracts,
and peripheral nerves, as well as sensory regions. Here, we specifically review the roles of the motor
cortex and posterior parietal cortex, given their central roles in hand dexterity.

The primary motor cortex (M1) plays a crucial role in dexterous hand control, as
demonstrated by several lines of evidence. More than 20% of M1 generates finger movements in
response to electrical stimulation, even though M1 contains representations for the entire body and
the hand only weighs 0.6% of body mass (Sobinov and Bensmaia, 2021). Functional magnetic
resonance imaging (fMRI) studies find selective activation of the primary motor cortex and primary
somatosensory cortex (S1) in response to finger movements (Allison et al., 2000; Ejaz et al., 2015).
Lesions of M1 or its descending pyramidal tracts disrupt grasping and permanently disrupt individual
finger movements (Lawrence and Kuypers, 1968; Lang and Schieber, 2003, 2004b). In addition, the
corticomotoneuronal cells, a subpopulation of M1, synapse directly onto spinal motoneurons
innervating upper limb muscles, connecting M1 directly to fine muscle control (Rathelot and Strick,
2009). This evidence positions M1 as a central node for dexterous hand control.

M1 is known to be coarsely somatotopic, with overlapping regions of M1 controlling
movements of specific body parts. In the hand area, the somatotopy is even more coarse, with small
cortical areas mixing between different fingers and even control of the wrist (Schieber and Hibbard,
1993; Schieber, 2001). Neurons in the hand region of M1 code for a combination of finger posture
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(Goodman et al., 2019) and velocity signals (Nason et al., 2021), although other factors could also
influence their modulation.

Our understanding of human M1 largely comes from studies of non-human primate subjects,
and we are still in the early stages of understanding how these studies translate to human M1. The
commonly cited hand region of human M1 is the precentral gyrus area known as the “hand knob,”
due to its common visual similarity to the Greek letter Q (Yousry et al., 1997). However, a recent
study found that the hand knob codes movements in a manner more consistent with the premotor
cortex, arguing that the hand region of M1 may lie deeper in the sulcus (Willett et al., 2020). An
alternative explanation may be that the hand knob is more heterogeneous than originally thought
(Simone et al., 2021), with certain areas still homologous to the non-human primate M1.

Primate manual dexterity is supported by a distributed set of nervous systems beyond M1,
such as the posterior parietal cortex (PPC). The posterior parietal cortex (PPC) plays a central role
in sensorimotor integration, with PPC regions representing visual stimulus locations (Andersen et
al., 1985), eye movements (Andersen et al., 1987), task context (Gail et al., 2009), planned reaches
(Snyder et al., 1997), and object grasping (Murata et al., 2000; Schaffelhofer and Scherberger, 2016).
Lesions of different PPC subregions can lead to diverse behavioral deficits, including optic ataxia
(inability to grasp objects under visual guidance) (Andersen et al., 2014) and loss of awareness of
body parts (Whitlock, 2017). The PPC is also involved in fine finger dexterity. Electrical stimulation
of PPC subregions can induce individual finger movements (Cooke et al., 2003; Rathelot et al., 2017;
Baldwin et al., 2018), and single neurons respond to tactile stimuli at individual fingers (Seelke et
al., 2012).

The PPC transforms information from the visual cortex into motor plans. Visual processing
is essential to interacting with the world, to know where and how to move. The anterior intraparietal
area (AIP) within PPC has been identified as important for hand dexterity for non-human primates.
AIP processes visual information about object shape and position and transforms that information
into grip type (Schaffelhofer and Scherberger, 2016) to send it to the ventral premotor cortex (PMv)
and onto M1 (Figure 1.1). Reaching is processed through a separate pathway: the parietal reach
region (PRR), then to the dorsal premotor cortex (PMd), and then to M 1. Consequently, when AIP
is inactivated, subjects can still reach normally, but they fail to preshape grasps (Gallese et al., 1994).
Recent work has found that some AIP corticospinal neurons synapse onto spinal interneurons that
connect directly to hand motor neurons (Rathelot et al, 2017). Furthermore, electrical
microstimulation of AIP elicits wrist and finger movements (Rathelot et al., 2017; Baldwin et al.,
2018), indicating that AIP supports fine manual control. Functional magnetic resonance imaging
(fMRI) studies have identified a potential homolog in humans in the anterior intraparietal sulcus
(aIPS) (Gallivan and Culham, 2015). Human electrophysiology studies, including my own, usually
record only the gyri around alPS. These studies find slightly different coding schemes from AIP and
find that the usual anatomical markers (intersection between postcentral and intraparietal sulci, here
abbreviated PC-IP) can vary by subject. Therefore, it remains unclear exactly how NHP studies
inform the coding principles of the area around human alPS.



Figure 1.1 Cortical control of visually guided hand movements.

The anterior intraparietal area (AIP) transforms object information from the visual cortex (V1) into the appropriate
grasp type to send on to the ventral premotor area (PMv) and then to the primary motor cortex (M1). The parietal
reach region (PRR) transforms object location into a reach plan to send on to the dorsal premotor area (PMd) and then
to M1. These regions have been studied most thoroughly in non-human primates, but their putative homologs are
highlighted on this human brain.

Adapted from Frank Gaillard, Radiopaedia.org, used under CC BY-NC-SA.

1.5.3 Somatosensory feedback for object manipulation

Precise object manipulation relies on sensory feedback. Loss of proprioception, which tracks our
own posture and movements, impairs multi-joint movements like reaching, especially when vision
is obstructed (Ghez et al., 1995; Sainburg et al., 1995). Loss of touch, which describes the objects
we interact with, impairs fine manipulation, such as striking a match (Johansson and Flanagan,
2009). Here, we review somatosensory feedback and how it relates to hand dexterity and BMIs.

Tactile sensation is generated by four sets of mechanoreceptors in the palm of the hand,
responding to skin vibrations, texture, pressure, and stretch. Proprioception mainly emerges from
thousands of muscle spindles that convey posture and Golgi tendon organs that convey force
(Sobinov and Bensmaia, 2021). These signals are sent via nerve fibers to cuneate nucleus in the
brainstem, on to the ventral posterolateral nucleus of the thalamus, and then to the primary
somatosensory cortex.

The primary somatosensory cortex (S1) is located on the postcentral gyrus, just posterior to
M1 and just anterior to PPC. S1 is somatotopic, forming a defined map of body parts each
subpopulation responds to. Like in M1, the hand area of S1 takes up a large area (20%) of the primary
somatosensory cortex (Sobinov and Bensmaia, 2021), underscoring the utility of rich tactile
feedback for manual dexterity. Within S1's hand region, finger representations are separate to allow
distinct percepts per finger (Pons et al., 1985). These tactile signals are tightly coupled with M1
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circuits, with strong tactile connections to the hand area of M1, while the arm region receives
stronger proprioceptive signals (Friel et al., 2005).

Tactile feedback is essential for manual dexterity during all phases of object manipulation
(Johansson and Flanagan, 2009; Sobinov and Bensmaia, 2021). First, when reaching to grasp an
object, initial contact starts the transition from reaching to grasping. Second, when lifting the object,
information on mass and friction enables us to apply the appropriate grip force. This force margin
allows us to hold the object securely without crushing it (Billard and Kragic, 2019). Third, tactile
signals provide quick information on perturbations and how to accommodate them, such as an
accidental bump into the table when feeding. Fourth, sensory input informs our predictive model of
object dynamics, so that we can lift the object more precisely next time. To support manual dexterity,
tactile processing is enhanced during active object manipulation, when compared to passive
perception (Pruszynski et al., 2018).

For individuals with spinal cord injuries, sensory signals from the hand do not reach the
cortex. Most existing BMI systems cannot provide somatosensory input, so BMI users must rely on
visual feedback. While vision provides some utility, it does not replace the richness and speed of
tactile and proprioceptive feedback (Ghez et al., 1995). This is clear when observing individuals with
intact motor control yet disrupted sensory pathways, who are unable to perform many simple actions
(Miall et al., 2019). Additionally, touch provides far more robust information about contact timing,
texture, mass, and vibration than vision does.

To overcome this barrier, bidirectional BMI systems aim to restore both motor control and
somatosensory input (Collinger et al., 2018). The most promising directions currently use
intracortical microstimulation (ICMS) in S1 to elicit isolated sensations in the arm, hand, or fingers
(Flesher et al., 2016; Armenta Salas et al., 2018). The localized sensory input improves grasping by
signaling object contact (Flesher et al., 2021). However, multiplexing touch input and preventing
interference with motor decoding have been difficult. These challenges remain for future studies to
tackle, and they may also inspire alternative paradigms of overcoming the lack of somatosensory
feedback.

Sometimes, the lack of sensory feedback can actually benefit basic neuroscience studies; we
can decouple motor control and sensory feedback, allowing us to dissociate these processes in our
experiments (Golub et al., 2016). In Chapter 4, I use this paradigm to study how motor control
changes over the time course of a movement. We can use these paradigms to better understand the
motor and sensory systems, tuning these parameters in a way not possible with able-bodied subjects,
to advance design of neuroprosthetic systems.



2 Stability of motor representations after paralysis

2.1 Summary

Neural plasticity allows us to learn skills and incorporate new experiences. What happens when our
lived experiences fundamentally change, such as after a severe injury? To address this question, we
analyzed intracortical population activity in the posterior parietal cortex (PPC) of a tetraplegic adult
as she controlled a virtual hand through a brain-computer interface (BCI). By attempting to move
her fingers, she could accurately drive the corresponding virtual fingers. Neural activity during finger
movements exhibited robust representational structure similar to fMRI recordings of able-bodied
individuals’ motor cortex, which is known to reflect able-bodied usage patterns. The finger
representational structure was consistent throughout multiple sessions, even though the structure
contributed to BCI decoding errors. Within individual BCI movements, the representational structure
was dynamic, first resembling muscle activation patterns and then resembling the anticipated sensory
consequences. Our results reveal that motor representations in PPC reflect able-bodied motor usage
patterns even after paralysis, and BCIs can re-engage these representations to restore lost motor
functions.

2.2 Introduction

A central question in neuroscience is how experience affects the nervous system. Studies of this
phenomenon, plasticity, were pioneered by Hubel and Wiesel, who found that temporary visual
occlusion in kittens can induce lifelong reorganization of the visual cortex (Hubel and Wiesel, 1970).
Their results demonstrated that the developing brain, rather than being genetically preprogrammed,
is surprisingly malleable to external inputs.

Subsequent studies showed that other brain regions are also plastic during early development,
but it is unclear how plastic the nervous system remains into adulthood. Visual occlusion in adult
cats does not reorganize the visual cortex, and lesion studies of the adult visual cortex have arrived
at competing conclusions of reorganization and stability (Gilbert and Wiesel, 1992; Smirnakis et al.,
2005; Keck et al., 2008; Baseler et al., 2011). A similar discussion continues regarding the primary
somatosensory cortex (S1). Classical studies posited that amputation and spinal cord injury modify
the topography of body parts in S1, with intact body parts taking over cortical areas originally
dedicated to the amputated part (Merzenich et al., 1984; Pons et al., 1991; Qi et al., 2000; Jain et al.,
2008). However, recent human neuroimaging studies (Makin and Bensmaia, 2017; Kikkert et al.,
2021) and sensory BCI studies (Flesher et al., 2016; Armenta Salas et al., 2018) have challenged the
extent of this remapping, arguing that sensory topographies largely persist even after complete
sensory loss. Thus, the level of plasticity in the adult nervous system is still an ongoing investigation.

Understanding plasticity is necessary to develop brain-computer interfaces (BCls) that can
restore sensorimotor function to paralyzed individuals (Orsborn et al., 2014). First, paralysis disrupts
movement and blocks somatosensory inputs to motor areas, which could cause neural reorganization
(Pons et al., 1991; Jain et al., 2008; Kambi et al., 2014). Second, BCIs bypass supporting cortical,
subcortical, and spinal circuits, fundamentally altering how the cortex affects movement. Do these
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changes require paralyzed BCI users to learn fundamentally new motor skills (Sadtler et al., 2014),
or do paralyzed participants use a preserved, pre-injury motor repertoire (Hwang et al., 2013)?
Several paralyzed participants have been able to control BCI cursors by attempting arm or hand
movements (Hochberg et al., 2006, 2012; Collinger et al., 2013c; Gilja et al., 2015; Bouton et al.,
2016; Ajiboye et al., 2017; Brandman et al., 2018), hinting that motor representations could remain
stable after paralysis. However, the nervous system’s capacity for reorganization (Pons et al., 1991;
Jain et al., 2008; Kambi et al., 2014; Kikkert et al., 2021) still leaves many BCI studies speculating
whether their findings in tetraplegic individuals also generalize to able-bodied individuals (Flesher
et al., 2016; Armenta Salas et al., 2018; Stavisky et al., 2019; Willett et al., 2020; Fifer et al., 2021).
A direct comparison, between BCI control and able-bodied neural control of movement, would help
address questions about generalization.

Temporal dynamics provide another lens to investigate neural organization and its changes
after paralysis. Temporal signatures can improve BCI classification (Willett et al., 2021) or provide
a baseline for motor adaptation studies (Stavisky et al., 2017a; Vyas et al., 2018). Notably, motor
cortex activity exhibits quasi-oscillatory dynamics during arm reaching (Churchland et al., 2012).
More generally, the temporal structure can depend on the movement type (Suresh et al., 2020) and
the recorded brain region (Schaffelhofer and Scherberger, 2016). In this study, we recorded from the
posterior parietal cortex (PPC), which is thought to compute an internal forward model for
sensorimotor control (Wolpert et al., 1998; Desmurget and Grafton, 2000; Mulliken et al., 2008a; Li
etal., 2022). A forward model overcomes inherent sensory delays to enable fast control by predicting
the upcoming states. If PPC activity resembles a forward model even after paralysis, this would
suggest that even the temporal details of movement are preserved after injury.

Here, we investigate the neural representational structure of BCI finger movements in a
tetraplegic participant. In able-bodied individuals, the cortical representational structure of finger
movements follows the natural statistics of movements (Lillicrap and Scott, 2013; Ejaz et al., 2015).
In a BCI task, the experimenter can instruct movement patterns unrelated to biomechanics or before-
injury motifs. In this study, we tested whether the neural representational structure of BCI finger
movements by a tetraplegic individual matches that of able-bodied individuals performing similar,
overt movements, or whether the structure follows the task’s optimal representational structure
(Bonnasse-Gahot and Nadal, 2008). If the BCI finger organization matches that of able-bodied
movement, participants likely activated pre-injury motor representations, indicating that motor
representations were preserved after paralysis.

We report that the neural representational structure of BCI finger movements in a tetraplegic
individual matches that of able-bodied individuals. This match was stable across sessions, even
though the measured representational structure contributed to errors in the BCI task. Furthermore,
the neural representational dynamics matched the temporal profile expected of a forward model in
able-bodied individuals, first resembling muscle activation patterns and then resembling expected
sensory outcomes. Our results suggest that adult motor representations in PPC remain even after
years without use.
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2.3 Results

2.3.1 Intracortical recordings during finger flexion

We recorded single and multi-neuron activity (95.8 +/- s.d. 6.7 neurons per session over 10 sessions)
from participant NS while she attempted to move individual fingers of the right hand. We recorded
from a microelectrode array implanted in the left (contralateral) posterior parietal cortex (PPC) at
the junction of the postcentral and intraparietal sulci (PC-IP, Supplementary Figure 2.1). This region
is thought to specialize in the planning and monitoring of grasping movements (Orban and Caruana,
2014; Gallivan and Culham, 2015; Klaes et al., 2015; Andersen et al., 2019).

Each recording session started with an initial calibration task (Supplementary Figure 2.2,
Methods). On each trial, we used a computer screen to present a text cue (e.g., “T” for thumb), and
the participant immediately attempted to flex the corresponding finger, as though pressing a key on
a keyboard. Because participant NS previously suffered a C3-C4 spinal cord injury resulting in
tetraplegia (AIS-A), her movement attempts did not generate overt motion. Instead, participant NS
attempted to move her fingers as though she was not paralyzed.

These attempted movements resulted in distinct neural activity patterns across the electrode
array. To enable BCI control, we trained a linear classifier (Methods) to identify finger movements
from neural firing rates. The participant subsequently performed several rounds of a similar finger
flexion task, except that 1) the trained classifier now provided text feedback of its predicted finger
and 2) the task randomized the visual cue location (Figure 2.1a and Methods). We repeated this
online-control finger flexion task over multiple sessions (408 +/- s.d. 40.8 trials/session over 10
sessions) and used this data for our offline analyses. Participant NS also performed a control task,
identical in structure except that she attended to cues without performing the instructed movements.

2.3.2  Accurately decoding fingers from PPC single-neuron activity

High classification accuracy during online control (86% +/- s.d. 4% over 10 sessions; chance = 17%)
(Figure 2.1b) and offline cross-validated classification (92% +/- s.d. 2%; Supplementary Figure 2.3a)
demonstrated that the finger representations were reliable and linearly separable. During the
calibration task, cross-validated classification was similarly robust (accuracy = 96% +/- s.d. 3%;
Supplementary Figure 2.3b).

At the single-neuron level, most (89%) neurons were significantly tuned to individual finger
press movements (significance threshold: P <0.05, FDR corrected) (Supplementary Figure 2.4). The
example neurons in Figure 2.1c-f show that neurons could be tuned to one or more fingers and that
tuning profiles could change in time.

To confirm that the observed neural responses could not be explained by visual confounds,
we verified that we could not discriminate between fingers during the control task (Supplementary
Figure 2.5). Furthermore, we could not decode the gaze location during the finger classification time
window in the standard online-control task (Supplementary Figure 2.5). Thus, reliable finger
representations emerged from the participant’s movement attempts.
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Figure 2.1 Robust brain-computer interface (BCI) control of individual fingers.

(a) Main finger flexion task. When a letter was cued by the red crosshair, the participant looked at the cue and
immediately attempted to flex the corresponding digit of the right (contralateral) hand. We included a null condition
"X," during which the participant looked at the target but did not move her fingers. Visual feedback indicated the
decoded finger 1.5 seconds after cue presentation. To randomize the saccade location, cues were located on a grid (3
rows, 4 columns) in a pseudorandom order. The red crosshair was jittered to minimize visual occlusion.

(b) Confusion matrix showing robust in-session BCI finger control (86% overall accuracy, 4016 trials aggregated over
10 sessions). Each entry (7, j) in the matrix corresponds to the ratio of movement i trials that were classified as
movement j.

(c-f) Mean firing rates for 4 example neurons, color-coded by attempted finger movement. Shaded areas indicate 95%
confidence intervals (across trials of one session). Gaussian smoothing kernel (50-ms SD).
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2.3.3 Finger representational structure matches the structure of able-bodied individuals

Having discovered that PC-IP neurons modulate selectively for finger movements, we next
investigated how these neural representations were functionally organized and how this structure
related to pre-injury movements. Here, we turned to the framework of representational similarity
analysis (RSA) (Kriegeskorte et al., 2008a; Diedrichsen and Kriegeskorte, 2017). RSA quantifies
neural representational structure by the pairwise distances between each finger's neural activity
patterns (Figure 2.2a). These pairwise distances form the representational dissimilarity matrix
(RDM), a summary of the representational structure. Importantly, these distances are independent of
the original feature types (for example, electrode or voxel measurements), allowing us to compare
finger organizations across subjects and across recording modalities (Kriegeskorte et al., 2008b).

We used RSA to test three hypotheses: 1) the BCI finger representational structure could
match that of able-bodied individuals (Ejaz et al., 2015; Kieliba et al., 2021) (Figure 2.2b and
Supplementary Figure 2.6), which would imply that motor representations did not reorganize after
paralysis. This hypothesis would be consistent with recent fMRI studies of amputees, which showed
that sensorimotor cortex representations of phantom limb finger movements match the same
organization found in able-bodied individuals (Kikkert et al., 2016; Wesselink et al., 2019). We note
that our able-bodied model was recorded from human PC-IP using fMRI, which measures
fundamentally different features (millimeter-scale blood oxygenation) than microelectrode arrays
measure (sparse sampling of single neurons). Another possibility is that 2) the participant’s pre-
injury motor representations had de-specialized after paralysis, such that finger activity patterns are
unstructured and pairwise-independent (Figure 2.2c). However, this hypothesis would be
inconsistent with results from fMRI studies of amputees’ sensorimotor cortex (Kikkert et al., 2016;
Wesselink et al., 2019). Lastly, 3) the finger movement representational structure might optimize for
the statistics of the task (Lillicrap and Scott, 2013; Clancy et al., 2014). Our BCI task, as well as
previous experiments with participant NS, involved no correlation between individual fingers, so the
optimal structure would represent each finger independently to minimize confusion between fingers.
In other words, the task-statistics hypothesis (3) would predict that, with BCI usage, the
representational structure would converge towards the task-optimal, unstructured representational
structure (Figure 2.2c¢).

Does the finger representational structure in a tetraplegic individual match that of able-
bodied individuals? We quantified the finger representational structure by measuring the cross-
validated Mahalanobis distance (Methods) between each finger pair, using the firing rates from the
same time window used for BCI control. The resulting RDMs are shown in Figure 2.2d (average
across sessions) and Supplementary Figure 2.7 (all sessions). For visual intuition, we also projected
the representational structure to two dimensions in Figure 2.2e, which shows that the thumb is
distinct, while the middle, ring, and pinky are close in neural space. We then compared the measured
RDMs against the able-bodied fMRI and unstructured models, using the whitened unbiased RDM
cosine similarity (WUC) (Diedrichsen et al., 2021). The measured representational structure matched
the able-bodied representational structure significantly over the unstructured model (P =5.7 x 107,
two-tailed t-test) (Figure 2.2f), ruling out the de-specialization hypothesis (2). Our findings were
robust to different choices of distance and model-similarity metrics (Supplementary Figure 2.8).

We note that we constructed the able-bodied fMRI model from the mean of PC-IP fMRI
RDMs across multiple able-bodied participants (N = 29). Participant NS’s average PC-IP RDM was
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also statistically typical among the RDM distribution of individual able-bodied participants
(permutation shuffle test, P = 0.55), in part because PC-IP fMRI RDMs were relatively variable
across participants (Supplementary Figure 2.9).

We also compared the PC-IP BCI RDM with able-bodied fMRI motor cortex (MC) RDMs,
which have been previously shown to match the patterns of natural hand use (Ejaz et al., 2015). The
able-bodied MC and PC-IP fMRI finger organizations are similar in that they represent the thumb
distinctly from the other fingers, but PC-IP represents each of the non-thumb fingers similarly while
MC distinguishes between all five fingers (Supplementary Figure 2.6). Interestingly, PC-IP BCI
finger representations matched the able-bodied fMRI finger representational structure in the motor
cortex (MC) even better than that of able-bodied PC-IP (Supplementary Figure 2.10). The WUC
similarity with the MC RDM was close to the noise ceiling (Methods), indicating that the MC RDM
matches participant NS’s data better than almost any other model (see Discussion).
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Figure 2.2. Representational structure during BCI finger control matches the structure of
able-bodied individuals.

(a) To construct the representational dissimilarity matrix (RDM), a vector of firing rates was constructed for each trial.
Repetitions were collected for each condition. Then, pairwise distances were estimated between conditions using a
cross-validated dissimilarity metric. This process was repeated to generate an RDM for each session. We drop the No-
Go condition (X) here to match previous finger studies (Ejaz et al., 2015; Kikkert et al., 2016).

(b) Representational structure hypothesized by the preserved-representation hypothesis: average PC-IP RDM for a
finger-press task using fMRI in 36 able-bodied individuals (Ejaz et al., 2015; Kieliba et al., 2021). Max-scaled to [0,

1.
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(¢) Representational structure hypothesized by the de-specialization and task-optimal hypotheses: pairwise-equidistant
RDM. Max-scaled to [0, 1].

(d) Finger representational structure measured in tetraplegic participant NS: cross-validated Mahalanobis distances
(Methods) between neural activity patterns, averaged across 10 recording sessions. Max-scaled to [0, 1].

(e) Intuitive visualization of the distances in (d) using multidimensional scaling (MDS). Ellipses show mean +/- s.d.
(10 sessions) after Generalized Procrustes alignment (without scaling) across sessions.

(f) Measured RDMs (d) match the able-bodied PC-IP fMRI RDM (b) better than they match the task-optimal,
unstructured model (c), as measured by the whitened unbiased cosine similarity (Diedrichsen et al., 2021) (WUC)
(Methods). Mean differences were significant (able-bodied vs unstructured, P = 5.7 x 107; two-tailed t-test, 1000
bootstrap samples over 10 sessions). Violin plot: solid horizontal lines indicate the median WUC over bootstrap
samples, and dotted lines indicate the first and third quartiles. Noise ceiling: gray region estimates the best possible
model fit (Methods). For convenience, a similar figure using a correlation-based similarity metric is shown in
Supplementary Figure 2.8.

2.3.4  Representational structure did not trend towards task optimum

Next, we investigated whether the BCI finger representational structure matched that of able-bodied
individuals consistently or whether the representational structure changed over time to improve BCI
performance. The task-optimal structure hypothesis (3) predicted that the BCI RDMs would trend to
optimize for the task statistics (unstructured model, Figure 2.2¢) as the participant gained experience
with the BCI task. However, we did not find conclusive evidence for a trend from the able-bodied
model towards the unstructured model (linear-model session < model interaction: #(6) = 0.50, one-
tailed t-test P = 0.32, Bayes factor (BF) = 0.66) (Figure 2.3a). Indeed, participant NS’s finger RDMs
were largely consistent across different recording sessions (average pairwise correlation, excluding
the diagonal: r = 0.90 +/- s.d. 0.04, min 0.83. max 0.99).

We considered whether learning, across sessions or within sessions, could have caused
smaller-scale changes in the representational structure. The observed representational structure,
where middle-ring and ring-pinky pairs had relatively small distances, was detrimental to
classification performance. The majority (70%) of the online classification errors were middle-ring
or ring-pinky confusions (Figure 2.1b). Due to these systematic errors, one might reasonably predict
that plasticity mechanisms would improve control by increasing the inter-finger distances between
the confused finger pairs. Contrary to this prediction, the middle-ring and ring-pinky distances did
not increase over the course of the experiment (across sessions: #(8) =—4.5, one-tailed t-test P > 0.99,
BF = 0.03; across runs within sessions: t(82) = —0.45, one-tailed t-test P = 0.67, BF = 0.12) (Figure
2.3b). When analyzing all finger pairs together, the inter-finger distances also did not increase (across
sessions: #(8) =—4.0, one-tailed t-test P = 0.98, BF = 0.01; across runs within sessions: t(74) =-2.4,
one-tailed t-test P = 0.99, BF = 0.02), as visualized by the similarity between the average early-half
RDM and the average late-half RDM (Figure 2.3c). These analyses demonstrate that the
representational structure did not trend towards the task optimum (Figure 2.2c) with experience,
ruling out the task-statistics hypothesis (3).
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Figure 2.3. Hand representation changed minimally after weeks of BCI control

(a) Slope comparison shows that the model fit did not trend towards the unstructured model over sessions (P = 0.32).
(b) The distance between high-error finger pairs (middle-ring and ring-pinky) did not increase across sessions or runs
(within sessions), as shown by partial regression plots. Distance metric: cross-validated Mahalanobis, averaged across
runs (for the session plot) or averaged across sessions (for the run plot). The black line indicates linear regression. The
gray shaded region indicates a 95% confidence interval. Each run consisted of 8 presses per finger.

(¢) Minimal change in representational structure between early and late sessions or between early and late runs. Mean
RDM, when grouped by sessions (top row) or individual runs (bottom row). Grouped into early half (left column) or
late half (center column). MDS visualization (right column) of early (opaque) and late (translucent) representational
structures after Generalized Procrustes alignment (without scaling, to allow distance comparisons).

2.3.5 Finger representational structure is motor-like and then somatotopic

PPC is hypothesized to overcome inherent sensory delays by computing an internal forward model
for rapid sensorimotor control (Wolpert et al., 1998; Desmurget and Grafton, 2000; Mulliken et al.,
2008a). The forward model integrates an efference copy of motor signals and delayed sensory
feedback to dynamically predict the state of the body. The hypothesized forward-model role would
predict that the representational structure changes over the time course of each movement, with an
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early motor-command-like component during movement initiation. To investigate this temporal
evolution, we modeled the representational structure of digit movements at each time point as a non-
negative linear combination (Kietzmann et al., 2019) of potentially predictive models (Figure 2.4a).

We considered three models (Ejaz et al., 2015) that could account for representational
structure: hand usage, muscle activation, and somatotopic. The hand-usage model (Figure 2.4b)
predicts that the neural representational structure should follow the correlation pattern of finger
kinematics during natural hand use. The muscle activation model (Figure 2.4c) predicts that the
representational structure should follow the coactivation patterns of muscle activity during individual
finger movements. The somatotopic model (Figure 2.4d) predicts that the representational structure
should maintain the spatial relationship between fingers, with neighboring fingers represented
similarly to each other (Ejaz et al., 2015; Schellekens et al., 2018). At the neural population level,
the somatotopic model is analogous to Gaussian receptive fields (Schellekens et al., 2018).

Because the hand usage model is nearly multicollinear with the muscle and somatotopic
models (variance inflation factor: VIFysge0rs = VIFusagennLs = 20.9, Methods), we first reduced the
number of component models. Through a model selection procedure (Methods), we found that the
hand-usage+somatotopy and muscle+somatotopy model combinations matched the data best
(Supplementary Figure 2.12), with the muscle+somatotopy model matching the data marginally
better. Thus, in the main text, we present our temporal analysis using the muscle and somatotopy
component models.

Figure 2.4e shows the decomposition of the representational structure into the muscle and
somatotopic component models. The results show a dynamic structure, with the muscle model
emerging 170ms earlier than the somatotopic model (P = 0.002, two-sided Wilcoxon signed-rank
test). This timing difference was consistent across individual sessions (Supplementary Figure 2.13)
and task contexts, such as the calibration task (Supplementary Figure 2.14). Indeed, the transition
from the muscle model (Figure 2.4c) to the somatotopic model (Figure 2.4d) is visually apparent
when comparing the average RDMs at 600ms (muscle-model-like) and 1200ms (somatotopic)
(Figure 2.4e).

These temporal dynamics were robust to our feature selection procedure, demonstrating a
similar timing difference for the hand-usaget+somatotopy model combination (Supplementary
Figure 2.14).
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Figure 2.4. Representational dynamics analysis (RDA) dissociates neural processes over
time.

(a) RDA performs representational similarity analysis (RSA) in a sliding window across time. Here, we model the
measured representational structure as a nonnegative linear combination of component model RDMs.

(b-d) Hypothesized explanatory component RDMs: usage, muscle, and somatotopic (Ejaz et al., 2015). Max-scaled
to [0, 1].

(e) RDA of the measured RDM over time shows an early fit to the muscle model and a late fit to the somatotopic
model. Confidence intervals indicate +/- s.e.m. bootstrapped across 10 sessions. Gray shaded region indicates the
approximate onset time of the saccade to cue (interquartile range across trials). Difference in model start-time (170ms,
Methods) was significant (P =0.002, two-sided Wilcoxon signed-rank test). RDM snapshots (bottom, each max-scaled
to [0, 1]) intuitively visualize the change in representational structure over time from muscle-like to somatotopic.
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2.4 Discussion
2.4.1 Neural prosthetic control of individual fingers using recordings from PC-IP

We found that participant NS could robustly control the movement of individual fingers using a
neural prosthetic in a variety of contexts (Figure 2.1 and Supplementary Figure 2.3), even after years
of paralysis. Her brain-computer interface (BCI) control accuracy exceeded the previous best of
other five-finger, online BCI control studies (Hotson et al., 2016; Jorge et al., 2020). These results
establish PC-IP as a candidate implant region for dexterous neural prostheses.

2.4.2 Connecting brain-computer interface studies to basic neuroscience

Although previous studies have shown that the anterior intraparietal area (AIP) of PPC is involved
in whole-hand grasping (Murata et al., 2000; Klaes et al., 2015; Schaffelhofer and Scherberger,
2016), our work is the first to show individual finger representations in PPC (Supplementary Figure
2.4). Likewise, many other BCI studies with tetraplegic participants have contributed novel
discoveries to basic neuroscience, deepening our understanding of the human cortex (Zhang et al.,
2017; Rutishauser et al., 2018; Stavisky et al., 2019; Aflalo et al., 2020; Willett et al., 2020;
Chivukula et al., 2021). A frequent (Flesher et al., 2016; Armenta Salas et al., 2018; Stavisky et al.,
2019; Willett et al., 2020; Chivukula et al., 2021; Fifer et al., 2021; Andersen and Aflalo, 2022)
discussion question is: how well do these findings generalize to the brains of able-bodied
individuals? Specifically, do the observed phenomena result from partial reorganization (Nardone et
al., 2013; Kambi et al., 2014) after spinal cord injury, or do they reflect intact motor circuits,
preserved from before injury (Makin and Bensmaia, 2017)?

Early human BCI studies (Hochberg et al., 2006; Collinger et al., 2013c) recorded from the
motor cortex and found that single-neuron directional tuning is qualitatively similar to that of able-
bodied non-human primates (NHPs) (Georgopoulos et al., 1982; Hochberg et al., 2006). Many
subsequent human BCI studies have also successfully replicated results from other classical NHP
neurophysiology studies (Hochberg et al., 2012; Collinger et al., 2013c; Aflalo et al., 2015; Gilja et
al., 2015; Bouton et al., 2016; Ajiboye et al., 2017; Brandman et al., 2018), leading to the general
heuristic that the sensorimotor cortex retains its major properties after spinal cord injury (Andersen
and Aflalo, 2022). This heuristic further suggests that BCI studies of tetraplegic individuals should
generalize to able-bodied individuals. However, this generalization hypothesis has so far lacked
direct, quantitative comparisons between tetraplegic and able-bodied individuals. Thus, as human
BCI studies expand beyond replicating results and begin to challenge conventional wisdom,
neuroscientists have questioned whether cortical reorganization could influence these novel
phenomena (see Discussions of (Flesher et al., 2016; Armenta Salas et al., 2018; Stavisky et al.,
2019; Willett et al., 2020; Chivukula et al., 2021; Fifer et al., 2021; Andersen and Aflalo, 2022)). As
an example of a novel discovery, a recent BCI study found that the hand knob of tetraplegic
individuals is directionally tuned to movements of the entire body (Willett et al., 2020), challenging
the traditional notion that primary somatosensory and motor subregions respond selectively to
individual body parts (Penfield and Boldrey, 1937). Given the brain’s capacity for reorganization
(Jain et al., 2008; Kambi et al., 2014), could these BCI results be specific to cortical remapping?
Detailed comparisons with able-bodied individuals, as shown here, may help shed light on this
question.
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2.4.3 Matching finger organization between tetraplegic and able-bodied participants

We asked whether participant NS’s BCI finger representations resembled that of able-bodied
individuals or whether her finger representations had reorganized after paralysis. Single-neuron
recordings of PC-IP during individuated finger movements are not available in either able-bodied
human participants or non-human primates. However, many fMRI studies have characterized finger
representations (Yousry et al, 1997; Ejaz et al., 2015; Kikkert et al., 2016, 2021), and
representational similarity analysis (RSA) has previously shown RDM correspondence between
fMRI and single-neuron recordings of another cortical region (inferior temporal cortex)
(Kriegeskorte et al., 2008b). This match was surprising because single-neuron and fMRI recordings
differ fundamentally; single-neuron recordings sparsely sample 10 neurons in a small region, while
fMRI samples 10* — 10° neurons/voxel (Kriegeskorte and Diedrichsen, 2016; Guest and Love, 2017).
The correspondence suggested that RSA might identify modality-invariant neural organizations
(Kriegeskorte et al., 2008b), so here we used fMRI recordings of human PC-IP as an able-bodied
model.

We found that participant NS exhibited a consistent finger representational structure across
sessions, and this representational structure matched the able-bodied fMRI model better than the
task-optimal, unstructured model. When compared with individual able-bodied participants,
participant NS’s finger organization was also quite typical, in part due to the relative variability in
PC-IP fMRI representational structure across able-bodied participants.

The motor cortex (MC) fMRI finger representation is well-studied and has been shown to
reflect the patterns of natural hand use (Ejaz et al., 2015; Kikkert et al., 2016; Wesselink et al., 2019),
so we also considered a model constructed from MC fMRI recordings. Compared to the PC-IP fMRI
finger representation, MC represents the non-thumb fingers more distinctly from each other
(Supplementary Figure 2.6). Interestingly, participant NS’s finger RDMs more strongly matched the
able-bodied MC f{MRI model, reaching similarities close to the theoretical maximum
(Supplementary Figure 2.8 and Supplementary Figure 2.10). This result does obscure a
straightforward interpretation of the RSA results—why does our recording area match MC better
than the corresponding implant location? Several factors might contribute, including differing
neurovascular sensitivity to the early and late phases of the neural response (Figure 2.4e),
heterogeneous neural organizations across the single-neuron and voxel spatial scales (Kriegeskorte
and Diedrichsen, 2016; Guest and Love, 2017; Arbuckle et al., 2020), or mismatches in functional
anatomy between participant NS and standard atlases (Eickhoff et al., 2018). Furthermore, fMRI
BOLD contrast is thought to reflect cortical inputs and intracortical processing (Logothetis et al.,
2001). Thus, the match between PC-IP spiking output and MC fMRI signals could also suggest that
PC-IP sends signals to MC, thereby driving the observed MC fMRI structure.

Even so, it is striking that participant NS’s finger representation matches the neural and hand
use patterns (Figure 2.4b and Supplementary Figure 2.12) of able-bodied individuals. Despite the
lack of overt movement or biomechanical constraints (Lang and Schieber, 2004a), the measured
finger representation still reflected these usage-related patterns. This result matches recent
sensorimotor cortex studies of tetraplegic individuals, where MC decoding errors (Jorge et al., 2020)
and S1 finger somatotopy (Kikkert et al., 2021) appeared to reflect able-bodied usage patterns. Taken
together with our dynamics analyses (see below Discussion), the evidence supports the interpretation
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that motor representations are preserved after paralysis. Comparisons with single-neuron recordings
from able-bodied participants would validate this interpretation but may be difficult to acquire.

2.4.4 Able-bodied-like finger representation is not explained by learning

Hand use patterns shape neural finger organization (Ejaz et al., 2015; Kikkert et al., 2016; Wesselink
et al., 2019), so we considered the possibility that participant NS’s able-bodied-like representational
structure also emerged from BCI usage patterns after paralysis. Contrary to this hypothesis, her BCI
finger representational structure changed minimally over weeks (Figure 2.3). Furthermore, even
though participant NS’s representational structure contributed to BCI errors (Figure 2.1b) and she
was anecdotally cognizant of which fingers would get confused, she did not increase the neural
distance between fingers with experience. This relative stability suggests that the measured
representational structure has been stable after paralysis, rather than emergent from BCI learning.

The stability of finger representations here suggests that BCIs can benefit from the pre-
existing, natural repertoire (Hwang et al., 2013), although learning can play an important role under
different experimental constraints. In our study, the participant received only a delayed, discrete
feedback signal after classification (Figure 2.1a). Because we were interested in understanding
participant NS’s natural finger representation, we did not artificially perturb the BCI mapping. When
given continuous feedback, however, participants in previous BCI studies could learn to adapt to
within-manifold perturbations to the BCI mapping (Ganguly and Carmena, 2009; Sadtler et al.,
2014; Vyas et al., 2018; Sakellaridi et al., 2019). BCI users can even slowly learn to generate off-
manifold neural activity patterns when the BCI decoder perturbations were incremental (Oby et al.,
2019). Notably, learning was inconsistent when perturbations were sudden, indicating that learning
is sensitive to specific training procedures.

So far, most BCI learning studies have focused on two-dimensional cursor control. To further
understand how much finger representations can be actively modified, future studies could benefit
from perturbations (Oby et al., 2019; Kieliba et al., 2021), continuous low-latency neurofeedback
(Ganguly and Carmena, 2009; Vyas et al., 2018; Oby et al., 2019), and additional participants. Time-
variant BCI decoding algorithms, such as recurrent neural networks (Sussillo et al., 2012; Willett et
al., 2021), could also help facilitate learning specific to different time windows of finger movement.

2.4.5 Representational dynamics are consistent with PPC as a forward model

In able-bodied individuals, PPC is thought to maintain a forward estimate of movement state
(Wolpert et al., 1998; Desmurget and Grafton, 2000; Mulliken et al., 2008a; Aflalo et al., 2015;
McNamee and Wolpert, 2019). As such, PPC receives delayed multimodal sensory feedback and is
hypothesized to receive efference copies of motor command signals (Andersen et al., 1997; Mulliken
et al., 2008a). This hypothesized role predicts that PPC houses multiple functional representations,
each engaged at different time points of motor production.

To dissociate these neural processes, we performed a time-resolved version of
representational similarity analysis (Figure 2.4). We considered three component models: muscle,
usage, and somatotopic (Ejaz et al., 2015). Our temporal analysis showed a consistent ordering: early
emergence of the muscle model followed by the somatotopic model.

This ordering was consistent when exchanging the muscle and hand-usage component
models (Figure 2.4 and Supplementary Figure 2.14), as hand-usage and muscle activation patterns
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are strongly correlated for individual finger movements (Overduin et al., 2012). Therefore, we group
these two models under the single concept of motor production. In the future, more complex multi-
finger movements (Ejaz et al., 2015) would help distinguish between muscle and hand-usage models.

The somatotopic model predicts that neighboring fingers will have similar cortical activity
patterns (Ejaz et al., 2015). We note that prior fMRI studies described this representational structure
as “somatotopic” and captured the spatial relationship between fingers using equidistant Gaussian
receptive fields (Ejaz et al., 2015; Schellekens et al., 2018). Gaussian receptive fields have been
useful tools for understanding digit topographies within the sensorimotor cortex (Schellekens et al.,
2018, 2021). In another study with participant NS, we found that the same PC-IP population encodes
actual touch (Chivukula et al., 2021) with Gaussian-like receptive fields. Based on these results, the
somatotopic model can be thought of as a sensory-consequence model. However, because participant
NS has no sensation below her shoulders, we interpret the somatotopic model as the preserved
prediction of the sensory consequences of a finger movement. These sensory outcome signals could
be the consequence of internal computations within the PPC or could come from other structures
important for body-state estimation, such as the cerebellum (McNamee and Wolpert, 2019).

The 170ms timing difference we found roughly matches the 60ms + 60ms delay between
feedforward muscle activation and somatosensory afferents (Scott, 2016; Sollmann et al., 2017) in
able-bodied individuals. Given PPC’s hypothesized role as a forward model, PPC likely integrates
motor planning and production signals to predict sensory outcomes at such a timing (Wolpert et al.,
1998; Desmurget and Grafton, 2000; Mulliken et al., 2008a; McNamee and Wolpert, 2019).
Alternatively, because participant NS cannot move overtly, the sensory-consequences model could
instead reflect the error between the internal model’s expected sensory outcomes and the actual (lack
of) sensory feedback (Adams et al., 2013). In either scenario, the match in timing between BCI
control and able-bodied individuals provides further evidence that the recorded motor circuits have
preserved their functional role.

2.4.6 Preserved motor representations in PC-IP after paralysis

A persistent question in neuroscience has been how experience shapes the brain, and to what extent
existing neural circuits can be modified. Early studies by Merzenich, Kaas, and colleagues showed
that the primary somatosensory cortex reorganized after amputation, with intact body parts invading
the deprived cortex (Merzenich et al., 1984; Pons et al., 1991; Qi et al., 2000). However, the authors
also recognized that the amputated body part might persist in latent somatosensory maps. Since then,
preserved, latent somatosensory representations have been demonstrated in studies of amputation
(Kikkert et al., 2016; Bruurmijn et al., 2017; Makin and Bensmaia, 2017; Wesselink et al., 2019) and
even paralysis (Flesher et al., 2016; Armenta Salas et al., 2018; Fifer et al., 2021; Kikkert et al.,
2021). Overall, deafferentation appears to expand the remaining regions slightly, even while the pre-
injury structure persists in the deafferented cortex (Makin and Bensmaia, 2017). Fewer studies have
investigated sensorimotor plasticity beyond the primary somatosensory and motor cortex, but our
results in PC-IP indicate that association areas can also remain stable after paralysis.

The topic of cortical reorganization has long been significant to the development of BCls,
particularly when deciding where to implant recording electrodes. If, as previously thought, sensory
deprivation drives cortical reorganization and any group of neurons can learn to control a prosthetic
(Fetz, 1969; Moritz and Fetz, 2011), the specific implant location would not affect BCI performance.
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However, our results and others (Smirnakis et al., 2005; Hwang et al., 2013; Kikkert et al., 2016,
2021; Bruurmijn et al., 2017; Makin and Bensmaia, 2017; Wesselink et al., 2019) suggest that the
pre-injury properties of brain regions do affect BCI performance. Even though experience shapes
neural organization (Merzenich et al., 1984; Ejaz et al., 2015; Wesselink et al., 2019), representations
may be remarkably persistent once formed (Wesselink et al., 2019; Kikkert et al., 2021). Thus, even
though BCIs bypass limbs and their biomechanical constraints (Lang and Schieber, 2004a), BCIs
may still benefit from tapping into the preserved, natural (Hwang et al., 2013) movement repertoire
of motor areas.

As BCls enable more complex motor skills, such as handwriting (Willett et al., 2021), future
studies could investigate whether these complex skills also retain their pre-injury representational
structure. For example, does a tetraplegic participant’s BCI handwriting look like their physical, pre-
injury handwriting? These results will have important implications for the design of future neural
prosthetics.

2.5 Methods
2.5.1 Data collection
2.5.1.1 Study participant

The study participant NS has an AIS-A spinal cord injury at cervical level C3-C4 that she sustained
approximately ten years before this study. Participant NS cannot move or feel her hands. As part of
a BCI clinical study (ClinicalTrials.gov identifier: NCT01958086), participant NS was implanted
with two 96-channel Neuroport Utah electrode arrays (Blackrock Microsystems model numbers
4382 and 4383). She consented to the surgical procedure as well as to the subsequent clinical studies
after understanding their nature, objectives, and potential risks. All procedures were approved by the
California Institute of Technology, Casa Colina Hospital and Centers for Healthcare, and the
University of California, Los Angeles Institutional Review Boards.

2.5.1.2  Multielectrode array implant location

The recording array was implanted over the hand/limb region of the left PPC at the junction of the
intraparietal sulcus (IPS) with the postcentral sulcus (PCS) (Supplementary Figure 2.1; Talairach
coordinates [—36 lateral, 48 posterior, 53 superior]). We previously (Aflalo et al., 2015; Klaes et al.,
2015; Zhang et al., 2017) referred to this brain area as the anterior intraparietal area (AIP), a region
functionally defined in non-human primates (NHPs). Here we describe the implanted area
anatomically, denoting it the postcentral-intraparietal area (PC-IP). More details regarding the
methodology for functional localization and implantation can be found in (Aflalo et al., 2015).

2.5.1.3 Neural data preprocessing

Using the NeuroPort system (Blackrock Microsystems), neural signals were recorded from the
electrode array, amplified, analog bandpass-filtered (0.3 Hz to 7.5 kHz), and digitized (30 kHz, 250
nV resolution). A digital high-pass filter (250 Hz) was then applied to each electrode.

Threshold crossings were detected at a threshold of —3.5 x RMS (root-mean-square of an
electrode’s voltage time-series). Threshold crossings were used as features for in-session BCI
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control. For all other analyses, we used k-medoids clustering on each electrode to spike-sort the
threshold crossing waveforms. The first n € {2, 3,4} principal components were used as input
features to k-medoids, where n was selected for each electrode to account for 95% of waveform
variance. The gap criteria (Tibshirani et al., 2001) was used to determine the number of waveform
clusters for each electrode.

2.5.2 Experimental setup
2.5.2.1 Recording sessions

Experiments were conducted in 2—3-hour recording sessions at Casa Colina Hospital and Centers
for Healthcare. All tasks were performed with participant NS seated in her motorized wheelchair
with her hands resting prone on the armrests. Participant NS viewed text cues on a 27-inch LCD
monitor that occupied approximately 40 degrees of visual angle. Cues were presented using the
psychophysics toolbox (Brainard, 1997) for MATLAB (Mathworks).

The data were collected on 9 days over 6 weeks. Almost all experiment days were treated as
individual sessions (i.e., the day’s recordings were spike-sorted together). The second experiment
day (2018-09-17) was an exception, with data being recorded in a morning period and an afternoon
period with a sizable rest in between. To reduce the effects of recording drift, we treated the two
periods as separate sessions (i.e., spike-sorted each separately) for a total of 10 sessions. Each session
can thus be considered a different resampling of a larger underlying neural population, with both
unique and shared neurons each session. We did not re-run the calibration task for the afternoon
session, resulting in 9 sessions of the calibration task for Supplementary Figure 2.3b.

Each session consisted of a series of 2—3 minute, uninterrupted “runs” of the task. The
participant rested for a few minutes between runs as needed.

2.5.2.2 Calibration task

At the beginning of each recording session, the participant performed a reaction-time finger flexion
task (Supplementary Figure 2.2; denoted “calibration task™ in the Results) to train a finger classifier
for subsequent runs of the primary task. On each trial, a letter appeared on the screen (e.g., “T” for
thumb). The participant was instructed to immediately flex the corresponding finger on the right
hand (contralateral to the implant), as though pressing a key on a keyboard. The condition order was
block-randomized, such that each condition appeared once before repetition. The classifier was then
calibrated according to the Finger Classification section.

2.5.2.3 Finger flexion grid task

In the primary task, movement cues were arranged in a 3 x 4 grid of letters on the screen (Figure
2.1a). Each screen consisted of two repetitions each of T (thumb), I (index), M (middle), R (ring), P
(pinky/little), and X (No-Go) arranged randomly on the grid. Each trial lasted three seconds. At the
beginning of each trial, a new cue was randomly selected with a crosshairs indicator, which jittered
randomly to prevent letter occlusion. Each cue was selected once (for a total of 12 trials) before the
screen was updated to a new arrangement. Each run consisted of 3—4 screens.

On each trial, the participant was instructed to immediately 1) saccade to the cued target, 2)
fixate, and 3) attempt to press the corresponding finger. During both movement and No-Go trials,
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the participant was instructed to fixate on the target at least until the visual classification feedback
was shown. The cue location randomization was used to investigate whether cue location would
affect movement representations.

On each trial, 1.5 seconds after cue presentation, the classifier decoded the finger movement
and presented its prediction via text feedback overlaid on the cue.

2.5.2.4 No-movement control task

The control task was like the primary task, except that the subject was instructed to saccade to each
cued letter and fixate without attempting any finger movements. No classification feedback was
shown.

2.5.3 Statistical analysis
2.5.3.1 Unit selection

Single-unit neurons were identified using the k-medoids clustering method, as described in the
Neural Data Preprocessing section. Analyses in the main text used all identified units, regardless of
sort quality. With spike-sorting, there is always the possibility that a single waveform cluster
corresponds to activity from multiple neurons. To confirm that potential multi-unit clustering did not
bias our results, we repeated our analyses using only well-isolated units (Supplementary Figure
2.15).

Well-isolated single units were identified using the L-ratio metric (Schmitzer-Torbert et al.,
2005). The neurons corresponding to the lowest third of L-ratio values (across all sessions) were
selected as “well-isolated.” This corresponded to a threshold of L4, = 10711 dividing well-
isolated single units and potential multi-units (Supplementary Figure 2.15).

2.5.3.2 Single-unit tuning to finger flexion

We calculated the firing rate for each neuron in the window [0.5, 1.5] seconds after cue presentation.
To calculate significance for each neuron (Supplementary Figure 2.4), we used a two-tailed t-test
comparing each movement’s firing rate to the No-Go firing rate. A neuron was considered
significantly tuned to a movement if P < 0.05 (after FDR correction). We also computed the mean
firing rate change between each movement and the No-Go condition. If a neuron was significantly
tuned to at least one finger, we denoted the neuron’s “best finger” as the significant finger with the
largest effect size (mean firing rate change). For each neuron and finger, we also calculated the
discriminability index (d', RMS standard deviation) between the baseline (No-Go) firing rate and the
firing rate during finger movement.

In Supplementary Figure 2.4, neurons were pooled across all 10 sessions. Neurons with mean
firing rates less than 0.1 Hz were excluded to minimize sensitivity to discrete spike-counting.

2.5.3.3 Finger classification

To classify finger movements from firing rate vectors, we used linear discriminant analysis (LDA)
with diagonal covariance matrices (Dudoit et al., 2002) (a form of regularization); diagonal LDA 1is
also equivalent to Gaussian Naive Bayes (GNB) when GNB assumes that all classes share a
covariance matrix.
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We used data from the calibration task to fit the BCI classifier. Input features (firing rate
vectors) were calculated by counting the number of threshold crossings on each electrode during a
I-second time window within each trial’s movement execution phase. The exact time-window was
a hyperparameter for each session and was chosen to maximize the cross-validated accuracy on the
calibration dataset. Electrodes with mean firing rates less than 1 Hz were excluded to prevent low-
firing rate discretization effects. This classifier was then used in subsequent online BCI control for
the main task (finger flexion grid).

During online control of the finger flexion grid task, input features were similarly constructed
by counting the threshold crossings from each electrode in a 1-second time window. This time
window was fixed to [0.5, 1.5] seconds after cue presentation. The window start-time was chosen
based on the estimated saccade latency in the first experimental session. The saccade latency was
estimated by taking the median latency for the subject to look > 80% of the distance between targets.
The analysis window was a priori determined to be 1 second; this choice was supported post-hoc by
a sliding window analysis (not shown), which confirmed that finger movements could be accurately
classified up to 1.6 seconds after cue. The online classifier was occasionally retrained using data
from this main task, usually every 4 run-blocks.

Offline classification accuracy (Supplementary Figure 2.3) was computed using leave-one-
out cross-validation (within each session). We used features from the same time window as the
online control task. However, offline analyses used firing rates after spike-sorting, instead of raw
threshold crossings.

In the Results section, reported classification accuracies aggregate trials over all sessions (as

opposed to averaging the accuracies across sessions with different numbers of trials). Reported
standard deviations indicate variability across sessions, weighted by the number of trials in each
session. To visualize confusion matrices, trials were pooled across sessions. Confusion matrix counts
were normalized by row sum (true label) to display confusion percentages.
In the first session (2018-09-10), the No-Go condition (X) was not cued in the calibration task, so
the classifier did not output No-Go predictions during that session. However, No-Go conditions were
cued in the main task; these 84 No-Go trials were thus excluded from the online control accuracy
metrics (Figure 2.1b), but they were included in the offline cross-validated confusion matrix
(Supplementary Figure 2.3).

2.5.3.4 Cross-validated neural distance

We quantified the dissimilarity between the neural activity patterns of each finger pair (j, k), using
the cross-validated (squared) Mahalanobis distance (Nili et al., 2014; Schiitt et al., 2019):

Zi+ 2\t
dh = (b= ), (P52)  (b=be)y /N

Equation 2.1

where A and B denote independent partitions of the trials, ¥ are the partition-specific noise
covariance matrices, (bj, by) are the trial measurements of firing rate vectors for conditions (j, k),

and N normalizes for the number of neurons. The units of djzk are unitless®/neuron.



27

The cross-validated Mahalanobis distance, also referred to as the “crossnobis” distance
(Schiitt et al., 2019), measures the separability of multivariate patterns, analogous to LDA
classification accuracy (Nili et al., 2014). To generate independent partitions A and B for each
session, we stratified-split the trials into 5 non-overlapping subsets. We then calculated the
crossnobis distance for all combinations of subsets (A4, B) and averaged the results. Cross-validation
ensures that the (squared) distance estimate is unbiased; E [djzk] =0 when the underlying

distributions are identical (Walther et al., 2016). The noise covariance X was regularized (Ledoit and
Wolf, 2003) to guarantee invertibility.

Similar results were also obtained when estimating neural distances with the cross-validated
Poisson symmetrized KL-divergence (Schiitt et al., 2019) (Supplementary Figure 2.8).

2.5.3.5 Representational models

We used representational dissimilarity matrices (RDMs) to describe both the type and format of
information encoded in a recorded population. To make these RDMs, we calculated the distances
between each pair of finger movements and organized the 10 unique inter-finger distances into a
[Nfingers: Nringers]-sized representational dissimilarity matrix (RDM) (Figure 2.2d). Conveniently,
the RDM abstracts away the underlying feature types, enabling direct comparison with RDMs across
brain regions (Kietzmann et al., 2019), subjects, or recording modalities (Kriegeskorte et al., 2008b).

We also used RDMs to quantify hypotheses about how the brain might represent different
actions. In Figure 2.2b, we generated an able-bodied model RDM using fMRI data from two
independent studies: (Kieliba et al., 2021) (N = 29, pre-intervention, right hand, 3T scans) and (Ejaz
et al., 2015) (N = 7, no intervention, right hand, 7T scans). The fMRI ROI was selected to match
participant NS’s anatomical implant location (PC-IP). Specifically, a 4mm geodesic distance around
vertex 7123 was initially drawn in fs_ LR 32k space, then resampled onto fsaverage. The RDM for
each subject was then calculated using the cross-validated (squared) Mahalanobis distance between
fMRI activity patterns. Based on a permutation shuffle test, RDMs were similar between the studies’
groups of participants, so we aggregated the RDMs into a single dataset here. The MC RDMs
(Supplementary Figure 2.6) used data from the same scans (Ejaz et al., 2015; Kieliba et al., 2021),
with ROIs covering Brodmann area 4 near the hand knob of the precentral gyrus.

In Figure 2.4 and its supplemental figures, we decomposed the data RDMs into model RDMs
borrowed from (Ejaz et al., 2015). The hand usage model was constructed using the velocity time
series of each finger's MCP joint during everyday tasks (Ingram et al., 2008). The muscle activity
model was constructed using EMG activity during single- and multi-finger tasks. The somatotopic
model is based on a cortical sheet analogy and assumes that finger activation patterns are linearly
spaced Gaussian kernels across the cortical sheet. The somatotopic model is based on a cortical sheet
analogy and assumes that finger activation patterns are linearly spaced Gaussian kernels across the
cortical sheet. Further modeling details are available in the methods section of (Ejaz et al., 2015).

2.5.3.6 Comparing representational structures

We used the rsatoolbox Python library (Schiitt et al., 2019) to calculate data RDMs and compare
them with model RDMs (representational similarity analysis (Kriegeskorte et al., 2008a), RSA).
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To quantify model fit, we used the whitened unbiased RDM cosine similarity (WUC) metric
(Diedrichsen et al., 2021), which (Diedrichsen et al., 2021) recommend for models that predict
continuous real values. We used WUC instead of Pearson correlation for two reasons (Diedrichsen
et al., 2021). First, cosine similarity metrics like WUC properly exploit the informative zero point;
we used an unbiased distance estimate, so d]-zk = 0 indicates that the distributions (j, k) are identical.

Second, Pearson correlation assumes that observations are independent, but the elements of each
RDM covary (Diedrichsen et al., 2021) because the underlying dataset is shared. For example, the
(thumb, middle)-pairwise dissimilarity uses the same thumb data as the (thumb, ring)-pairwise
dissimilarity.

Like correlation similarities, a larger WUC indicates a better match, and the maximum WUC
value is 1. However, cosine similarities like WUC are often larger than the corresponding correlation
values or are even close to 1 (Diedrichsen et al., 2021). Thus, while correlation values can be
compared against a null hypothesis of 0-correlation, WUC values should be interpreted by
comparing against a baseline. The baseline is usually (Diedrichsen et al., 2021) chosen to be a null
model where all conditions are pairwise-equidistant (and would thus correspond to O-correlation). In
this study, this happens to correspond to the unstructured model. For more details about interpreting
the WUC metric, see (Diedrichsen et al., 2021).

To demonstrate that our model comparisons were robust to the specific choice of RDM
similarity metric, we also show model fits using whitened Pearson correlation in Supplementary
Figure 2.8. Whitened Pearson correlation is a common alternative to WUC (Diedrichsen et al., 2021).

2.5.3.7 Noise ceiling for model fits

Measurement noise and behavioral variability cause data RDMs to vary across repetitions, so even
a perfect model RDM would not achieve a WUC similarity of 1. To estimate the noise ceiling (Nili
et al., 2014) (the maximum similarity possible given the observed variability between data RDMs),
we assume that the unknown, perfect model resembles the average RDM. Specifically, we calculated
the average similarity of each individual-session RDM (Supplementary Figure 2.7) with the mean
RDM across all other sessions (i.e., excluding that session):

D
R 1 o -
C = BZ Slmllarlty(rd,rj;:d)

a=1
_ 1
Tj=a = mz 7j

j=d
Equation 2.2

where similarity is the WUC similarity function, D is the number of RDMs, r,; refers to a single
RDM from an individual session, and C is the “lower” noise ceiling. This noise ceiling is analogous

to leave-one-out-cross-validation. If a model achieves the noise ceiling, the model fits the data well
(Nili et al., 2014).
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2.5.3.8 Measuring changes in the representational structure

To assess the effect of BCI task experience on the inter-finger distances, we performed a linear
regression analysis (Figure 2.3b and Supplementary Figure 2.11). We first subdivided each session’s
dataset into individual runs and calculated separate RDMs for each (session, run) index. We then
used linear regression to predict each RDM’s (squared) inter-finger distances from the session index,
run index, and finger pair:

djzk = .Bjk + BsessionS T Brun” + Bo
Equation 2.3

where f is the average inter-finger distance, B is the coefficient for finger-pair (j, k), s is the

session index, and r is the run index. |Bgession| > 0 would suggest that RDMs are dependent on
experience across sessions. |fS,n| > 0 would suggest that RDMs depend on experience across runs
within a session. For t-tests, we conservatively estimated the degrees-of-freedom as the number of
RDMs, because the individual elements of each RDM covary and thus are not independent
(Diedrichsen et al., 2021). The effect sizes for the session-index predictor and the run-index predictor
were quantified using Cohen’s f2 (Cohen, 1988), comparing against the finger-pair-only model as
a baseline.

For t-tests without significant differences, we also calculated Bayes factors (BF) to determine
the likelihood of the null hypothesis, using the common threshold that Bayes factor < 1/3
substantially supports the null hypothesis (Dienes, 2014). Bayes factors were computed using the R
package BayesFactor (Morey et al., 2015) with default priors. To calculate Bayes factors for one-
sided t-tests (for example, B > 0), we sampled (N = 10°) from the posterior of the corresponding

two-sided t-test (|| > 0), calculated the proportion of samples that satisfied the one-sided

inequality, and divided by the prior odds % = % (Morey and Wagenmakers, 2014).

2.5.3.9 Linear combinations of models

We modeled the finger RDM (in vector form) as a zero-intercept, non-negative linear combination
(Jozwik et al., 2016) of potentially predictive model RDMs: usage, muscle, and somatotopic (Figure
2.4).

First, we used the variance inflation factor (VIF) to assess multicollinearity between the
hypothesized models. For each model (e.g., usage), we calculated the standard, ordinary least squares
(OLS)-based VIF (VIFusage,0Ls), and we also calculated a modified VIF (VIFysagennis) based on non-

negative least squares (NNLS).

1
VIF',OLS =
J 1—-Ri M,

Equation 2.4

where R,%,,J,' M_j is the R* from an OLS regression predicting RDM M; from all other RDMs M_;.
VIFoLs values above a threshold indicate that multicollinearity is a problem; VIF>5 or VIF>10 are
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common thresholds (James et al., 2013). Here, we constrained the linear combination coefficients to
be non-negative, which can sometimes mitigate multicollinearity. Thus, we also calculated VIFxnts,
which follows the same equation above, except that we use NNLS to predict M; from M_;.

Because multicollinearity was a problem here, we next determined the best subset of model
RDMs to use. We used NNLS to predict the data RDM from the model RDMs. We estimated the
model fits using leave-one-session-out cross-validation. To estimate model-fit uncertainty, we
bootstrapped RDMs (sessions) over the cross-validation procedure (Schiitt et al., 2019). We then
used the “one-standard error” rule (James et al., 2013) to select the best parsimonious model,
choosing the simplest model within one standard error of the best model fit.

2.5.3.10 Representational dynamics analysis

To investigate how the finger movement representational structure unfolds over time, we used a
time-resolved version of representational similarity analysis (Kietzmann et al., 2019) (Figure 2.4a).
At each timepoint within a trial, we computed the instantaneous firing rates by binning the spikes in
a 200ms time window centered at that point. These firing rates were used to calculate cross-validated
Mahalanobis distances between each pair of fingers and generate an RDM. Snapshots (Figure 2.4¢)
show single-timepoint RDMs averaged across sessions.

The temporal sequence of RDMs constitutes an RDM movie (size
[Nfingers: Nringerss Ntimepoints]) that visualizes the representational trajectory across the trial
duration. RDM movies were computed separately for each recording session. At each time point, we
linearly decomposed the data RDM into the component models using nonnegative least squares.
Because the component models were multicollinear, component models were limited to the subsets
chosen in the previous model reduction step. Each component RDM was normalized by its vector
length (£>-norm) before decomposition to allow comparison between coefficient magnitudes. We
used bootstrapped sampling of RDMs across sessions and decomposed the bootstrap-mean RDM to
generate confidence intervals on the coefficients.

We computed the start-time of each model component as the time at which the corresponding
mixture coefficient exceeded 0.2 (about 25% of the median peak-coefficient across models and
sessions).

2.5.4 Data availability

Data is available on the BRAIN Initiative DANDI Archive at:
https://dandiarchive.org/dandiset/000147

2.5.5 Code availability

Analysis code is available on GitHub at:
https://github.com/AndersenLab-Caltech/fingers_rsa
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2.7 Supplementary Material

fMRI localization tasks
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Supplementary Figure 2.1. Multielectrode array implant location. Figure and legend text
have been reproduced from Figure S1 of (Aflalo et al., 2020) (CC BY-NC 4.0)

We used fMRI to identify cortical regions involved in imagined reaching and grasping actions. The participant
performed two complementary tasks to ensure activation was robust across paradigms.

(a) Event-related task design. Following an intertrial interval, the subject was cued to perform a specific imagined
movement (precision grasp, power grasp, or reach without hand shaping). Following the cue, a cylindrical object was
displayed. If the object was intact, the subject imagined performing the cued movement. If the object was broken, the
subject withheld movement.

(b) Block task design. Eight blocks were presented for 30 seconds per run. During the first 15 seconds of each block,
common objects were presented every three seconds in varying spatial locations. Before each run, the subject was
instructed to either imagine pointing at, imagine reaching and grasping, or look naturally at the object. During the last
15 seconds of each block, scrambled images were presented, and the subject was instructed to guess the identity of
the object.

(c) Statistical parametric map showing voxels with significant activity for grasping (“Go” versus “No-Go”) (p <0.01,
FDR-corrected), based on task (a). Array location and cortical landmarks are depicted in the legend.

(d) Statistical parametric map showing voxels with significant activation (P < 0.01, FDR-corrected) for grasping
versus looking, based on task (b).
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Rest Go
1.5-2.25s Reaction Time

Supplementary Figure 2.2. Calibration task.

Task structure, single trial. Each trial consisted of an intertrial interval (ITI) and a reaction-time Go phase. During the
Go phase, green text specified which digit to flex. All letters were overlaid in gray to minimize visual differences
between ITI and Go phases.

(Legend) T = thumb, I = index, M = middle, R = ring, P = pinky, X = no movement
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Supplementary Figure 2.3. Robust cross-validated finger classification during main and

calibration tasks.

(a) Confusion matrix of offline finger classification, cross-validated within single sessions. 4080 trials of the main

task aggregated over 10 sessions.

(b) Confusion matrix of offline finger classification, cross-validated within single sessions. 530 trials of the calibration

task aggregated over 9 sessions.

(Legend) T = thumb, I = index, M = middle, R = ring, P = pinky, X = no movement. Each entry (7, ) in the matrix
corresponds to the ratio of movement i trials that were classified as movement ;.



35

a . . b o
Action Responsive Best Condition
o 401 )
5 5
S 20¢ 5
) )
c c
w 0 Y—
O o
=R 20 2
p value, Population CDF
c . FDR=821% HBf=64.8% d 400 -
o .
s -
/7 390/ [
w 08 % 300 | [V
: 2 | =t
§ 0.6 o o 250
< g 5
o // 5 200 |
S04 7 .|
7
e 100 |
0.2 //
Ve 50 r
7
0 0
0 02 04 06 08 1 2 0 2 4 6
p value d-prime

Supplementary Figure 2.4. Single-neuron encoding of individual fingers.

All five fingers of the right (contralateral) hand were encoded within the population during movement execution.

(a) Percentage of the population tuned significantly (P < 0.05, FDR-corrected) to flexion of each digit. Positive
percentages indicate neurons that increased firing rate during digit movement and negative percentages bar indicate
neurons that decreased firing rate. Error bars indicate a 95% bootstrap confidence interval.

(b) Percentage of the population tuned best to each digit.

(¢) Cumulative distribution function of the population’s tuning significance p-values.

(d) Histogram of d' (discriminability index) values across neurons.

(a-d) Neurons were pooled across sessions.
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Supplementary Figure 2.5. Gaze location did not affect finger decoding during the

attempted-movement period.

(a) Linear regression could not decode target location [x, y] coordinates from the neural activity during the attempted-
movement period. Violin plot shows that cross-validated regression r? values are close to 0 across sessions, with each
circle marking a single session.

(b) A linear classifier (diagonal LDA) could not classify the gaze location from neural activity during the attempted-
movement period. Confusion matrix depicts cross-validated classifications of cue location.

(¢) Cross-validated classification accuracy for main and control tasks: a linear classifier (diagonal LDA) could not
classify finger movements from neural activity during passive observation (orange) of the digit flexion task. Sliding
bin width: 200ms. The shaded region indicates +/- s.e.m. (6 sessions passive viewing, 10 sessions attempted flexion).
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fMRI representational dissimilarity matrices (RDMs) for 3 individual subjects and the group mean (N = 29). Intuitive
visualization of distances using multidimensional scaling (MDS) and Generalized Procrustes alignment (without
scaling); ellipses show mean +/- s.d. across subjects. Regions of interest (ROIs): motor cortex (MC, top row) and
junction of the postcentral and intraparietal sulci (PC-IP, bottom row).
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Supplementary Figure 2.7. Individual representational dissimilarity matrices for each

session.
Representational dissimilarity matrices across all sessions, using the cross-validated Mahalanobis distance. “Average”
RDM matches Figure 2.2d.
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Supplementary Figure 2.8. Representational structure during BCI finger control matches

the structure of able-bodied individuals when using alternative analysis parameters.

(a) RDMs calculated with an alternative dissimilarity metric: cross-validated Poisson KL-divergence (Schiitt et al.,
2019). Units: nats / neuron. Related to Supplementary Figure 2.7a and Figure 2.2d.

(b) Fit between measured RDMs and motor-intact BOLD data using alternative metrics. Distance metric: cross-
validated Poisson KL-divergence. Similarity metric: whitened RDM Pearson correlation (Diedrichsen et al., 2021).
Similar to Figure 2.2f.

(¢) Representational dynamics calculated with an alternative dissimilarity metric: cross-validated Poisson KL-
divergence. Similar to Figure 2.4e.
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Supplementary Figure 2.9. fMRI finger RDMs are more consistent across able-bodied
participants in MC than in PC-IP

Gardner-Altman estimation plot (Ho et al., 2019) of the WUC similarity between same-ROI pairs of RDMs (N = 630
pairs between 36 subjects). Each circle on the swarm plot (left) marks the similarity for a pair of subjects. Horizontal
black lines mark the mean pairwise similarity within each ROI. The curve (right) indicates the resampled (N = 5000)

distribution of the effect size between ROIs, as measured by Cohen’s d. Cohen's d of PC-IP minus MC: -2.1 (95%
CL: [-2.22,-1.99)).
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Supplementary Figure 2.10. PC-IP finger representational structure of tetraplegic individual
matches fMRI RDMs from MC even better than fMRI RDMs from PC-IP.

(a) Measured RDMs match the able-bodied MC fMRI RDM better than they match the able-bodied PC-IP fMRI RDM
(P = 1.9 x 1075; two-tailed t-test, 1000 bootstrap samples over 10 sessions), as measured by the whitened unbiased
cosine similarity (Diedrichsen et al., 2021) (WUC) (Methods). Violin plot: solid horizontal lines indicate the median
WUC over bootstrap samples, and dotted lines indicate the first and third quartiles. Noise ceiling: gray region estimates
the best possible model fit (Methods). Similar to Figure 2.2f.

(b) Paired Gardner-Altman estimation plot (Ho et al., 2019) of the similarity (WUC) between participant NS (average
RDM across sessions) and individual MC and PC-IP RDMs from able-bodied fMRI participants. The slopegraph’s
connected points (left) show each fMRI participant’s (N = 36) MC and PC-IP similarities with participant NS’s mean

finger RDM. Mean difference between PC-IP and MC similarities (right) presented as Cohen’s d (N = 5000 bootstrap
samples).
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Supplementary Figure 2.11. Inter-finger distances did not increase across sessions or within
sessions.

BCI classification errors could have encouraged inter-finger distances to increase to improve separability, but this did
not occur. Inter-finger distances instead decreased slightly (across sessions: t(8) = —4.0, two tailed t-test P = 0.004;
across runs within sessions: #(82) = —2.4, two-tailed t-test P = 0.019), although the effect size was very small (across
sessions: Cohen’s f2 = 0.008; across runs within sessions: = 0.005). Markers indicate average pairwise distance for
each finger pair and session (top) or run-within-session (bottom).
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Supplementary Figure 2.12. Fit between measured RDM and linear combinations of models.
Violin plot of WUC similarity between the measured RDM (N = 1000 bootstrap samples over 10 sessions) and the
corresponding model combination. Violin plot: solid horizontal lines indicate the mean WUC over bootstrap samples,
and dotted lines indicate the first and third quartiles. Horizontal lines (above) indicate significance groups, where the
circle-indicated model is significant over the vertical-tick-indicated models (two-tailed t-test, q < 0.01, FDR-corrected
for 28 model-pair comparisons). For example, the muscle+somatotopy combined model is significant over the
individual muscle, hand usage, somatotopic, combined muscle+hand-usage, and pairwise-equidistant/unstructured
(null) models.
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Supplementary Figure 2.13. Temporal delays between component models are consistent
across single sessions.

When linear modeling within single sessions, the muscle model (blue) consistently preceded the somatotopic model
(orange). Time difference: 170ms +/- 66ms (s.d. across sessions) (P = 0.002, two-sided Wilcoxon signed-rank test).
Line styles indicate session. Related to Figure 2.4e.



45

a
10 —— Usage
= Somatotopy
i3]
2
o
Q
©05
O]
]
o]
S
0.0 , , , . . ‘
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time [s]
b
—— Muscle
‘qc:‘J 4 Somatotopy
(3]
2
O
Q
(&)
T 2
o
o
(S
0 _—

00 02 04 06 08 10 12 14
time [s]

Supplementary Figure 2.14. Representational dynamics are robust across tasks and model
combination choices.

(a) Representational dynamics analysis shows an early fit to the hand-usage model and a late fit to the somatotopic
model. Confidence intervals indicate +/- s.e.m. across sessions. Related to Figure 2.4e.

(b) Representational dynamics analysis shows a consistent delay between models during the calibration task. Note:

the absolute timing differs from the main task because the calibration task does not require an initial saccade to read
the cue. Related to Figure 2.4e.
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Supplementary Figure 2.15. Well-isolated single neurons of the tetraplegic participant match
the finger representational structure of able-bodied individuals.

(a) Histogram of L-ratio, a spike-sorting cluster metric. Threshold for well-isolated units: 33% quantile (Lraio < 10~
1.1).

(b) Representational dissimilarity matrices calculated only using well-isolated units, using the cross-validated
Mahalanobis distance. Similar to Figure 2d and Supplementary Figure 2.7a.

(¢) Whitened unbiased similarity (WUC) between measured (b) RDMs (using only well-isolated units) and model
predictions (Figure 2b-c), showing that the measured RDMs match the able-bodied fMRI RDM significantly better
than they match the unstructured model (P = 3.1 x 107'°, two-tailed t-test) and the SPLa fMRI RDM (P = 1.7 x 107%).
Error bars indicate +/- s.e.m. Noise ceiling: gray region estimates the best possible model fit (Methods). Gray
downward semicircle indicates that the noise ceiling is significantly higher (P < 0.001) than the fit of the SPLa fMRI
RDM and the unstructured model. Similar to Figure 2.2f.

(d) Representational dynamics analysis, repeated using only well-isolated units, shows an early fit to the muscle model
and a late fit to the somatotopic model. Confidence intervals indicate +/- s.e.m. across sessions. Similar to Figure 2.4e.
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3 Decoding and geometry of ten finger movements in human

posterior parietal cortex and motor cortex

3.1 Summary

Objective. Enable neural control of individual prosthetic fingers for participants with upper-limb
paralysis.

Approach. Two tetraplegic participants were each implanted with a 96-channel array in the left
posterior parietal cortex (PPC). One of the participants was additionally implanted with a 96-channel
array near the hand knob of the left motor cortex (MC). Across tens of sessions, we recorded neural
activity while the participants attempted to move individual fingers of the right hand. Offline, we
classified attempted finger movements from neural firing rates using linear discriminant analysis
(LDA) with cross-validation. The participants then used the neural classifier online to control
individual fingers of a brain-machine interface (BMI). Finally, we characterized the neural
representational geometry during individual finger movements of both hands.

Main Results. The two participants achieved 86% and 92% online accuracy during BMI control of
the contralateral fingers (chance = 17%). Offline, a linear decoder achieved ten-finger decoding
accuracies of 70% and 66% using respective PPC recordings and 75% using MC recordings (chance
=10%). In MC and in one PPC array, a factorized code linked corresponding finger movements of
the contralateral and ipsilateral hands.

Significance. This is the first study to decode both contralateral and ipsilateral finger movements
from PPC. Online BMI control of contralateral fingers exceeded that of previous finger BMIs. PPC
and MC signals can be used to control individual prosthetic fingers, which may contribute to a hand
restoration strategy for people with tetraplegia.

3.2 Introduction

Tetraplegic individuals identify hand function as a high-impact priority for improving their quality
of life (Anderson, 2004; Snoek et al., 2004; Collinger et al., 2013a). Neuroprosthetics research has
enabled control of basic grasp shapes (Hochberg et al., 2012; Collinger et al., 2013c¢; Klaes et al.,
2015; Wodlinger et al., 2015), an important step towards empowering paralyzed individuals to
perform daily activities. However, these predefined grasp templates constrain the range of motion
and thus limit the usefulness of existing neural prosthetics.

The complexity of human motor behavior is largely enabled by our versatile, dexterous hands
(Sobinov and Bensmaia, 2021). The human hand can weave intricate crafts, sign expressive
languages, and fingerpick guitar solos. Even everyday manual behaviors, like turning a door handle,
require volitional control over many degrees of freedom (Yan et al., 2020). Indeed, humans can
move individual fingers much more independently than other animals, including monkeys (Schieber,
1991; Héger-Ross and Schieber, 2000). To better restore autonomy to people with tetraplegia, neural
prosthetics would benefit from enabling dexterous finger control.

Intracortical brain-machine interface (BMI) research has largely focused on control of
computer cursors and robotic arms, rather than dexterous hand control. Building off foundational
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studies of non-human primates (Wessberg et al., 2000; Serruya et al., 2002; Taylor et al., 2002; Wu
et al., 2004; Mulliken et al., 2008b; Ethier et al., 2012; Gilja et al., 2012), several clinical studies
have implemented continuous decoders for cursor control (Hochberg et al., 2006; Kim et al., 2008;
Wang et al., 2013; Aflalo etal., 2015; Gilja et al., 2015). Leveraging this cursor control, (Jarosiewicz
et al., 2015; Pandarinath et al., 2017; Nuyujukian et al., 2018) subsequently developed on-screen
keyboard typing interfaces for tetraplegic participants. (Hochberg et al., 2012; Collinger et al., 2013c;
Wodlinger et al., 2015; Ajiboye et al., 2017) extended continuous decoding to arm control, with
(Ajiboye et al., 2017) controlling the user's own muscles. Recent work has also decoded speech from
sensorimotor cortex (Anumanchipalli et al., 2019; Moses et al., 2021; Sarah K. Wandelt et al., 2022;
Willett et al., 2023). However, relatively few BMI studies have focused on hand control (Bouton et
al., 2016; Hotson et al., 2016; Irwin et al., 2017; Jorge et al., 2020; Nason et al., 2021; Willett et al.,
2021), and previous studies frequently combine the ring and little fingers or leave them out
altogether. Individuated finger control would be useful for applications like keyboard typing or
object manipulation.

Most motor BMIs record neural activity from the motor cortex (MC), although areas of the
posterior parietal cortex (PPC) have also been used successfully for BMI control of reaching
(Mulliken et al., 2008b; Aflalo et al., 2015) and grasping (Klaes et al., 2015). The PPC plays a central
role in sensorimotor integration, with regions of PPC representing visual stimulus locations and eye
movements (Andersen et al., 1987), task context (Gail et al., 2009), planned reaches (Snyder et al.,
1997), and object grasping (Murata et al., 2000; Schaffelhofer and Scherberger, 2016). PPC uses
partially mixed selectivity to simultaneously encode many motor variables (Zhang et al., 2017),
which can be useful for versatile neural decoding.

Despite PPC's clearly demonstrated role in grasping (Gallese et al., 1994; Schaffelhofer and
Scherberger, 2016; Sobinov and Bensmaia, 2021), less is known about PPC responses during
individual finger movements. With fMRI, lesion, and anatomical evidence situating primary motor
cortex as core to fine finger movements (for review, see (Sobinov and Bensmaia, 2021)), most
electrophysiological studies of finger movements have focused on the primary motor (M1) and
primary somatosensory cortex (S1) (Schieber and Hibbard, 1993; Schieber and Poliakov, 1998;
Flesher et al., 2016; Hotson et al., 2016; Goodman et al., 2019; Fifer et al., 2021; Nason et al., 2021;
Willsey et al., 2022). Nevertheless, non-human primate mapping studies (Seelke et al., 2012) and
stimulation studies (Rathelot et al., 2017; Baldwin et al., 2018) have identified PPC sub-regions that
are likely involved in fine finger movements. These results imply that fine finger movements are
supported by a broad neuronal network, which should be investigated to improve dexterous BMI
control.

Here, we recorded intracortical activity from the PPC of two tetraplegic participants while
they attempted to press individual fingers. Across task contexts, we could classify individual finger
movements during planning and attempted-execution periods. We connected this neural decoder to
drive a neural prosthetic hand, with accuracies exceeding recent intracortical BMI studies (Jorge et
al., 2020; Guan et al.,, 2022b). Furthermore, we characterize both the neural tuning and
representational geometry (Kriegeskorte and Wei, 2021) during attempted finger movements of
either hand. The neural code factorized into finger type and laterality components, leading to finger
representations that were simultaneously discriminable and similar across contralateral/ipsilateral
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pairs of fingers. These findings contribute to the understanding of human hand movements and
advance the development of hand neuroprosthetics for people with paralysis.

3.3 Methods
3.3.1 Study participants

Experiments were conducted with two volunteer participants enrolled in a brain-machine interface
(BMI) clinical study (ClinicalTrials.gov Identifier: NCT01958086). All procedures were approved
by the respective Institutional Review Boards of California Institute of Technology, Casa Colina
Hospital and Centers for Healthcare, and University of California, Los Angeles. Each participant
consented to this study after understanding the nature, objectives, and potential risks.

Participant NS is a right-handed, tetraplegic woman. Approximately 10 years before this
study, she sustained an AIS-A spinal cord injury at cervical level C3-C4. NS can move her deltoids
and above, but she cannot move or feel her hands.

Participant JJ is a right-handed, tetraplegic man. Approximately 3 years before this study, he
sustained a spinal cord injury at cervical level C4-C5. He has residual movement in his upper arms,
but he cannot move or feel his hands.

Because both participants could not move or feel their hands, we instructed them, during the
behavioral tasks, to attempt finger movements as if their fingers were not paralyzed. We often
abbreviate these finger movement attempts as “finger movements.”

3.3.2 Tasks
3.3.2.1 Alternating-cues finger press task with delay

Each participant performed an instructed-delay finger movement task (Figure 3.1). They were seated
in front of a computer monitor display, with their hands prone on a flat surface. Each trial began with
a cue specifying a finger of the right hand. The finger cue then disappeared during a delay period. A
cue-invariant go-icon appeared, instructing the participant to attempt to press the cued finger as
though pressing a key on a keyboard. This instructed-delay task format temporally separates the
visual stimulus from the planning and execution epochs.

Supplementary Table 3.1 documents the phase durations for each task, and Supplementary
Table 3.2 lists the date ranges for each task.

Some regions of the posterior parietal cortex (PPC) are modulated by non-motor variables
like visual stimulus location (Andersen et al., 1987) and task context (Gail et al., 2009). To ensure
that the recorded neural signals reflected movement type (rather than, e.g., visual memory), we
varied the cueing method between runs (Figure 3.1). In the Spatial-Cue variant, five circles
corresponded to the five fingers. In the Text-Cue variant, the finger cue was a letter abbreviation. A
brief Pre-Cue phase in each trial indicated what cue variant the trial would be.


http://clinicaltrials.gov/
https://clinicaltrials.gov/ct2/show/NCT01958086
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Figure 3.1. Alternating-cues, instructed-delay finger press task

Trial structure. Each rectangle represents the computer monitor display at each phase. Two cue variants, text and
spatial, were trial-interleaved. In the spatial variant, the location of the highlighted circle corresponded to the cued
finger. Trials without a highlighted circle indicated a No-Go cue. In the text variant, a highlighted letter (for example,
“M?” for the middle finger) cued each finger. In both variants, the finger cue disappeared before the movement phase
(Go) to separate planning and execution periods. Phase durations are listed in Supplementary Table 3.1.

3.3.2.2 Finger press task with randomized cue location (reaction-time)

Letters, corresponding to each movement type, were arranged in a 3 x 4 grid across the screen. Each
grid consisted of two repetitions each of T (thumb), I (index), M (middle), R (ring), P (pinky), and
X (No-Go). Letters were arranged in a random order to dissociate eye gaze signals from movement
representations. On each trial, a single letter cue was indicated with a crosshairs symbol, which was
jittered to minimize systematic effects of letter occlusion. Each cue was selected once (for a total of
12 trials) before the screen was updated to a new arrangement. Each run-block consisted of 4 screens
for a total of 48 trials.

On each trial, the participant was instructed to immediately saccade to the cued target and
fixate, then attempt to press the corresponding finger of the right hand. A trained classifier decoded
the finger movement from neural signals and displayed the classified finger movement 1.5 seconds
after the start of the trial. The participant pressed the instructed finger and fixated on the cue until
the visual classification feedback was shown.

Data from participant NS performing this task was previously analyzed in (Guan et al.,
2022b). Data from participant JJ have not been reported previously. During 3 sessions, participant
JJ also performed this task using his left hand.
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Figure 3.2. Reaction-time finger-press task with randomized cue location. Figure adapted
from (Guan et al., 2022b) (CC BY-NC 4.0).

Main finger press task. When a letter was cued by the red crosshair, the participant looked at the cue and immediately
attempted to flex the corresponding digit of the right (contralateral) hand. We included a No-Go condition “X,” during
which the participant looked at the target but did not move their fingers. Visual feedback indicated the decoded finger
1.5 seconds after cue presentation. To randomize the saccade location, cues were located on a grid (3 rows, 4 columns)
in a pseudorandom order. The red crosshair was jittered to minimize visual occlusion.

3.3.2.3 Ten-finger press task

Each participant also performed an instructed-delay finger press task with fingers from both hands.
The task was like the Text-Cue variant of the Alternating-cues finger press task with delay, except
without a Pre-Cue phase. All ten fingers were interleaved in trials within the same run-block (Figure
3.3). Phase durations are documented in

Supplementary Table 3.1.
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Delay

Figure 3.3. Text-cued finger movement task with instructed-delay.
Trial structure. Text cues indicate the hand (“R” or “L”) and the finger (e.g., “m” for middle finger). After a delay
period, a cue-invariant Go-icon instructs movement execution.

3.3.3  Implant location

Participant NS was implanted with two 96-channel NeuroPort Utah electrode arrays 6 years after
injury (about 4 years before this study). The implant locations were determined using anatomical
priors and preoperative functional magnetic resonance imaging (fMRI) (Guan et al., 2022b). One
array (denoted NS-PPC) was implanted over the hand/limb region of PPC at the junction of the
intraparietal sulcus (IPS) with the postcentral sulcus (PCS). This region is thought to be involved in
the planning of grasp movements (Klaes et al., 2015; Schaffelhofer and Scherberger, 2016; Cavina-
Pratesi et al., 2018). In this report, we refer to this brain area as PC-IP (postcentral-intraparietal),
although it is sometimes also referred to as the anterior intraparietal sulcus (alPS) region (Gallivan
et al., 2013). A second array was in Brodmann's area (BA) 5d. In the weeks following implantation,
it was found that the BA 5d array did not function, so only the PC-IP array was used in this study.

Participant JJ was implanted with two 96-channel NeuroPort Utah electrode arrays about 20
months after injury (about 35 months before this study). The first array (denoted JJ-PPC) was
implanted in the superior parietal lobule (SPL) of the left PPC. The second array (denoted JJ-MC)
was implanted near the hand knob of the left motor cortex (MC) (Supplementary Figure 3.1). PPC
and MC activity were recorded simultaneously.

3.3.4 Neural signal recording and preprocessing

Neural signals were acquired, amplified, bandpass-filtered (0.3 Hz - 7.5 kHz) and digitized (30 kHz,
16-bits/sample) from the electrodes using NeuroPort Neural Signal Processors (NSP) (Blackrock
Microsystems Inc.).

Action potentials (spikes) were detected by high-pass filtering (250Hz cut-off) the full-
bandwidth signal, then thresholding at —3.5 times the root-mean-square (RMS) voltage of the
respective electrode. Although one or more source neurons may generate threshold crossings, we
used raw threshold crossings for online control and only sorted spikes for offline analyses. Single
neurons were identified using the k-medoids clustering method. We used the gap criteria (Tibshirani
et al., 2001) to determine the total number of waveform clusters. Clustering was performed on the
first n € {2, 3, 4} principal components, where n was selected to account for 95% of waveform
variance.
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3.3.5 Feature Extraction

Except when otherwise specified, we used a 500-millisecond (ms) window of neural activity to
calculate firing rates (counted spikes divided by the window duration). The firing rate was then used
as the input features to each analysis or classification model.

For cross-validation classification analyses, neurons with an average firing rate on the
training fold < 1 Hz were discarded as noisy features. For single-neuron analyses, a looser threshold
of < 0.5 Hz, averaged over the entire recording, was used to exclude neurons from significance and
effect size tests.

Behavioral epochs: the movement execution (“Go” or “move”) analysis window was defined
as the 500-ms window starting 200 ms after the Go cue. For applicable tasks, the movement planning
(“Delay” or “plan”) analysis window was defined as the 500-ms window starting 200 ms after the
Delay screen. The Cue analysis window was defined as the 500-ms window starting 200 ms after
the Cue screen. The intertrial interval (ITI) analysis window was defined as the last 500 ms of the
ITI phase.

3.3.6 Single-neuron selectivity for finger movements

In the section “Single-neuron modulation to individual finger presses,” we used a one-way ANOVA
to determine whether neurons distinguished firing rates between attempted finger movements. A
neuron was considered discriminative if p < 0.05 after false discovery rate (FDR) correction for
multiple comparisons using the Benjamini—-Hochberg procedure; we also denoted this FDR-adjusted
p-value as g. We corrected for m=N comparisons, where N is the number of neurons for each
participant. Following Cohen's rules of thumb (Cohen, 1988), we denoted the ANOVA effect size
as “large” if n> > 0.14. As the ANOVA post hoc test, we used Dunnett's multiple comparison test
(Dunnett, 1964) to determine which fingers had significantly different firing rates than the No-Go
baseline.

To quantify the effect size of firing-rate changes against the No-Go baseline (Figure 3.4a),
we used Hedges' g, which is similar to Cohen's d but bias-corrected for small sample sizes. We
calculated and visualized Hedges' g values using the Data Analysis using Bootstrap-Coupled
Estimation Python library (Ho et al., 2019).

For visual simplicity, we pooled neurons across sessions when calculating and visualizing
single-neuron metrics (percentage selective, number of fingers discriminable from No-Go, empirical
cumulative distribution functions).

To visualize firing rates, spike rasters were smoothed with a Gaussian kernel (50-ms
standard-deviation [S.D.]), then averaged across trials to create a peristimulus time histogram
(PSTH).

3.3.7 Offline classification with cross-validation

We trained a separate linear classifier for each session to predict attempted finger movements from
the neural features. We used diagonal-covariance linear discriminant analysis (diagonal LDA)
(Dudoit et al., 2002); Diagonal LDA is equivalent to Gaussian Naive Bayes (GNB) when GNB
shares a single covariance matrix across classes.
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For offline classification and parameter sweeps, we estimated the generalization error using
stratified K-Folds cross-validation (with K = 8) within each session. Reported classification
accuracies indicate the number of correct trials (summed across sessions) divided by the total number
of trials (summed across sessions). Across-session standard deviations of classification accuracy are
weighted by the number of trials in each session.

Learning curves (Figure 3.5b) were generated by using subsets of the training set during each
Stratified K-Fold split. Window duration sweeps (Figure 3.5d) varied the size of the firing-rate
estimation window while fixing the start time at 200ms after the Go cue. Neural decode time-courses
(Figure 3.5e) used 500ms bins centered at different times of the trial.

To visualize neuron-dropping curves (Figure 3.5¢, Supplementary Figure 3.11), we first
aggregated neurons across sessions into a pseudo-population. Specifically, we combined trials from
different sessions based on their within-finger order. For example, each session’s first right-thumb
trial was combined into a single trial for the pseudo-population. For the Alternating-cues finger press
task with delay, Participant JJ performed 96 trials in 1 session and 120 trials in 2 sessions, so we
used only the first 96 trials from each session. Finally, we randomly sampled (without replacement)
an M-neuron subpopulation from the pseudo-population. We calculated the cross-validated accuracy
when decoding from this subpopulation. We varied M to create a neuron-dropping curve, and we
repeated the subpopulation sampling 40 times for each M to generate confidence intervals.

3.3.8 Online brain-machine interface (BMI) discrete control

Each BMI control session started with a run of the open-loop calibration task. For participant NS,
this was the Alternating-cues finger press task, modified to not have a delay. For participant JJ, this
was the finger press task with randomized cue location, modified to not provide classifier output.

The neural activity and finger movement cues from the calibration task served as training
data for the online BMI classification model. Neural features were composed of the threshold
crossing rates of each electrode during a 1-second window for each trial. The window start-time, ¢,
was a hyperparameter chosen to maximize the cross-validated classification accuracy on the
calibration task. The online BMI classifier was then fit to the calibration task without cross-
validation. Labels consisted of the finger movement cues, and features consisted of the firing rates
during each trial’s window [t;, 1 + t]. Electrodes with mean firing rates < 1 Hz were excluded to
minimize sensitivity to discretization.

During online control of the finger grid task, the classifier predicted a single finger movement
for each trial. Input neural features consisted of the threshold crossing rates from each electrode in
the time window [0.5, 1.5] seconds after cue presentation. The BMI classifier was occasionally
recalibrated between run blocks using data from this task.

3.3.9 Neural distance between fingers

We quantified the neural activity differences between finger movements using the cross-validated
(squared) Mahalanobis distance (Walther et al., 2016). The Mahalanobis distance is a continuous,
non-saturating analogue of LDA classification accuracy (Nili et al., 2014). Cross-validation removes
the positive bias of standard distance metrics, such that E [djzk] = 0 when two activity patterns are

statistically identical.
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To calculate population distances, we used the representational similarity analysis Python
toolbox (Schiitt et al., 2019). The toolbox slightly modifies the cross-validated Mahalanobis
equation, incorporating the noise covariances of both folds to improve robustness:

i+ Zpn\t
dh = (b= b), (52) (=b)y /N

Equation 3.1

where A and B indicate independent partitions of the trials, X is the noise covariance matrix, (b}, by)
are the firing rate vectors for finger movements (J, k) stacked across trials, and N normalizes for the
number of neurons. The units of djzk are unitless? /neuron.

3.3.10 Shared representations across hands

To quantify whether finger representations were similar across hands, we compared the pairwise
distances between matching finger pairs and the pairwise distances between non-matching finger
pairs (Figure 3.8b). We denoted a finger pair as matching if the hands differed and the finger-types
were the same ([Lt, Rt], [Li, Ri], [Lm, Rm], [Lr, Rr], [Lp, Rp]). We denoted a finger pair as non-
matching if the hands differed and the finger-types also differed ([Lt, Ri], [Lt, Rm], [Lt, Rr], [Lt,
Rp], [Li, Rt], [Li, Rm], etc.). We described a neural population as sharing representations across
hands if the average distance between matching finger pairs was smaller than the average distance
between non-matching finger pairs.

3.3.11 Factorized finger representations

Factorized coding refers to representations that can be decomposed into simpler explanatory factors
(Kobak et al., 2016; Kim and Mnih, 2018; Bernardi et al., 2020; Frankland and Greene, 2020; Aflalo
et al., 2022). We assessed whether finger representations could be linearly decomposed into the sum
of finger-type and laterality components.

We first visualized the representational geometry in Figure 3.8d using 2-D multidimensional
scaling (MDS). MDS projects the finger movements into a low-dimensional space while attempting
to preserve pairwise neural distances (Figure 3.8a). We performed MDS on data from individual
sessions and then used Generalized Procrustes Analysis (GPA) with scaling to normalize and align
MDS projections across sessions. In the NS-PPC MDS plot, ellipses show standard error (S.E.)
across sessions. The JJ-PPC and JJ-MC MDS plots show the mean values without any S.E. ellipses,
because the 2 sessions with participant JJ are not sufficient to estimate the S.E.

We used leave-one-group-out cross-validation to determine whether hand- and finger-
dimensions generalize to left-out movements (Supplementary Figure 3.8). If finger representations
are factorized, then hand classifiers (left vs. right) should generalize when trained on a subset of
finger types and evaluated on left-out finger types. Additionally, finger-type classifiers should
generalize when trained on one hand and tested on the other hand (Figure 3.8¢). This metric is often
called cross-condition generalization performance (CCGP) (Bernardi et al., 2020). We pooled
neurons across sessions (NS: 10 sessions; JJ: 2) into a pseudo-population. We used a permutation
test to assess whether CCGP was significantly above chance, shuffling the labels repeatedly
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(N=1001) to generate a null distribution. Standard cross-validation accuracy provides a best-case
upper bound on CCGP. Reaching this upper bound implies perfect factorization. We matched
training dataset sizes when comparing CCGP and within-condition cross-validation accuracy.

3.4 Results
3.4.1 Single-neuron modulation to individual finger presses

We first sought to determine whether PPC single neurons discriminate between individual finger
movements. We quantified single-neuron modulation to attempted finger presses of the right
(contralateral to the implant) hand while the participant performed the Alternating-cues finger press
task with delay (participant NS: 120 trials per session for 4 sessions; participant JJ: 112 trials per
session [min: 96; max: 120] for 3 sessions). We recorded 118 neurons per session (min: 111; max:
128) over 4 sessions from NS-PPC, 103 neurons per session (min: 92; max: 116) over 3 sessions
from JJ-PPC, and 93 neurons per session (min: 90; max: 95) from JJ-MC. For each neuron, we
calculated firing rates during the attempted movement period and compared firing rates across finger
movements (Figure 3.4a, Supplementary Figure 3.2, Supplementary Figure 3.3).

Like results from finger studies of the motor cortex hand area (Schieber and Hibbard, 1993;
Schieber and Poliakov, 1998), PPC neurons were not anatomically segregated by finger selectivity.
A large portion of neurons (NS-PPC: 54%; JJ-PPC: 30%; JJ-MC: 78%; Figure 3.4c) varied their
firing rates between attempted finger movements (q < 0.05), and selective neurons were often
selective for multiple finger movements (mean number of significant fingers, NS-PPC: 2.1; JJ-PPC:
1.9; JJ-MC: 2.7). Moreover, many neurons discriminated between movements with large effect sizes
(percentage of neurons with n? > 0.14, NS-PPC: 40%; JJ-PPC: 25%; JJ-MC: 64%; Figure 3.4d,
Supplementary Figure 3.2d, Supplementary Figure 3.3d).
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Figure 3.4. PPC single neurons discriminate between attempted finger movements.

a)

b)

<)

d)

e)

Single-trial firing rates for an example NS-PPC neuron during attempted movements of different fingers. (top) Markers
correspond to the firing rate during each trial. Gapped vertical lines to the right of markers indicate + S.D., and each gap
indicates the mean firing rate. (bottom) Firing rates during thumb (T) and index (I) presses were higher than the No-go (X)
baseline. Vertical bars indicate bootstrap 95% confidence intervals (CI) of the effect size versus No-go baseline. Half-violin
plots indicate bootstrap distributions.

Mean smoothed firing rates for each finger movement for two example NS-PPC neurons, which respectively modulated for
thumb/index movements (left) and fingers versus No-Go (right). Shaded areas indicate 95% CI.

Percentage of NS-PPC neurons that discriminated between finger movements in each analysis window (q < 0.05, FDR-
corrected for 466 neurons). Line (blue) indicates mean across sessions. Markers (gray) indicate individual sessions.
Complementary empirical cumulative distribution function (cECDF) visualizing the proportion of NS-PPC neurons with
ANOVA effect sizes (n?) above the corresponding x-axis value. Line colors indicate analysis epoch. Vertical lines (gray)
indicate Cohen’s thresholds (Cohen, 1988) for small (n>=0.01), medium (n?=0.06), and large (n?=0.14) effect sizes.

Overlap of NS-PPC neurons that modulated significantly (q < 0.05) with large effect sizes (n? > 0.14) during movement
preparation (plan) and movement execution (move).

We also quantified single-neuron modulation during movement preparation. Preparatory

activity discriminated between finger movements with reasonable effect sizes (Figure 3.4d).
Consistent with reaching studies of PPC (Aflalo et al., 2015), slightly fewer NS-PPC neurons had
strong tuning (q < 0.05 and > > 0.14) during movement preparation (percentage of neurons: 24%)
than during movement execution (percentage of neurons: 43%) (Figure 3.4e). JJ-PPC neurons
modulated at similar rates during preparation (percentage of neurons with q < 0.05 and n? > 0.14:
23%) versus during execution (24%) (Supplementary Figure 3.2¢e).
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3.4.2 Classifying finger presses from neural activity

Since single neurons were tuned to finger movements, we evaluated whether attempted finger
movements could be classified (offline) from the population neural activity. Using data from the
same task, we trained linear classifiers and assessed finger classification accuracy on held-out trials
using cross-validation (Methods). Classification accuracies substantially exceeded chance (accuracy,
NS-PPC: 86%; JJ-PPC: 64%; JJ-MC: 84%; chance: 17%). The majority (NS-PPC: 75%; JJ-PPC:
42%; JJ-MC: 67%) of errors misclassified an adjacent finger (Figure 3.5a, Supplementary Figure
3.4, Supplementary Figure 3.5).

Classification accuracy can depend on the neural signal quality and prediction window. To
better understand how finger classification varies over dataset and classifier parameters, we
quantified cross-validated accuracy across different training dataset sizes, neuron counts, and
window durations (Figure 3.5b-d, Supplementary Figure 3.4, Supplementary Figure 3.5).

Cross-validated accuracy increased with more training data, reaching 80% accuracy when
training on about 40 trials (2.7 minutes) for NS-PPC. Higher neuron counts provide more finger
information and thus improved classification accuracy, reaching 80% accuracy at about 70 neurons
for NS-PPC. These results indicate that a single electrode array in PPC provides sufficient
information to control a discrete finger-press prosthetic.

Accuracy also increased when using longer window durations, reaching 80% at durations
above 350ms. Longer window durations average out firing rates and thereby reduce the impact of
measurement noise and behavioral variability on classification, but they directly mandate longer
control delays. In some cases, it may be useful to minimize BMI control latency even at the expense
of accuracy (Shanechi et al., 2017).
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Figure 3.5. Offline classification of finger movement from population activity.

a)
b)

<)

d)

Cross-validated confusion matrix for classifying attempted finger movement from NS-PPC neural activity during the
movement execution epoch. 86% accuracy, 480 trials over 4 sessions.

Learning curve showing cross-validated accuracy as a function of the training dataset size. About 40 trials (less than 7 trials
per finger) are needed to achieve 80% accuracy. Shaded area indicates 95% CI over folds/sessions.

Neuron-dropping curve (NDC) showing cross-validated accuracy as a function of recorded neurons. Neurons were aggregated
across sessions. About 70 neurons are needed to achieve 80% accuracy. Shaded area indicates 95% interval over subpopulation
resamples.

Hyperparameter sweep showing cross-validated classification accuracy as a function of decode window size. Input features
were the average firing rates in the window [200ms, 200ms + window size] after Go-cue. Window durations of about 350ms
are necessary to achieve 80% accuracy. Shaded area indicates 95% CI over folds/sessions.

Cross-validated classification accuracy across the trial duration (500-ms sliding window). Shaded area indicates 95% CI over
folds/sessions.

Finger movements could also be decoded from PPC during the planning period (Figure

3.5¢)), although classification accuracy was lower (NS-PPC: 66%; JJ-PPC: 61%; chance: 17%) than
during movement execution.

3.4.3  Brain-machine interface control of finger movements

We next mapped neural activity to finger movements to control an online finger BMI, where

our participants would tap each finger and their attempted movement would be decoded. For this
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section, we replicated a usage scenario where a prosthetic user could decide to move a finger and
immediately execute the movement, without needing a delay period.

We started each session with an open-loop calibration task where the participant attempted
to press fingers according to visual cues (Methods). Using only a short calibration period (8
repetitions per finger, totaling about 2.5 minutes), each participant was able to use a classifier to
accurately control individual fingers of the BML

The confusion matrix for participant NS (Figure 3.6a) shows that she achieved high online
control accuracies (86%; chance: 17%). These finger representations were robust across contexts
and could be used in a range of environments (Guan et al., 2022b).

Participant JJ achieved even higher accuracies during BMI control (92% =+ S.D. 3% over 8
sessions; chance: 17%) (Figure 3.6b). However, we note that participant JJ's BMI decoder used
threshold crossings from both MC and PPC electrode arrays, thus doubling the number of electrodes
compared to participant NS. While we cannot retrospectively replicate the BMI experiment with an
isolated array, we can approximate the results by training the same classification algorithm on early
runs, using recordings only from a single array; we can then apply this classifier to the subsequent
test trials (accuracy, JJ-PPC: 83%; JJ-MC: 87%; chance: 17%; Supplementary Figure 3.6).
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Figure 3.6. Online BMI classification of individual finger movements.

a) Confusion matrix for participant NS (PPC), right-hand finger presses. 86% accuracy + S.D. 4% over 10 sessions, 4016 total
trials. Reprinted from (Guan et al., 2022b) (CC BY-NC 4.0).

b) Confusion matrix for participant JJ (PPC+MC), right-hand finger presses. 92% accuracy + S.D. 3% over 8 sessions, 1440 total
trials.

On a few separate runs, participant JJ also performed the calibration and BMI control tasks
with his left hand (ipsilateral to the implant). He achieved high accuracies (94% = S.D. 4% over 3
sessions; chance: 17%) at a similar level to right-hand finger decoding (Supplementary Figure 3.7).

3.4.4 Classifying individual finger presses from both hands

We next investigated whether all ten finger movements could be classified from a single array.
Cerebral hemispheres primarily control movement on the opposite side of the body, and we have
only implanted electrode arrays in each participant's left hemisphere. However, the ability to classify
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movements of both sides would reduce the number of implants necessary for bilateral BMI
applications.

We examined single-neuron activity during interleaved, attempted finger presses of the
contralateral (right) and ipsilateral (left) hands (Methods; participant NS: 100 trials / session for 10
sessions; participant JJ: 100 trials / session for 2 sessions). We recorded 111 neurons per session
(min: 102; max: 119) from NS-PPC, 160 neurons per session (min: 159; max: 160) from JJ-PPC,
and 130 neurons per session (min: 120; max: 130) from JJ-MC. Similarly to the contralateral-only
results, most neurons (NS-PPC: 66%; JJ-PPC: 57%; JJ-MC: 78%) discriminated firing rates across
fingers (q < 0.05).

We then evaluated whether these signals could be used for a neural prosthetic by classifying
(offline) the attempted finger movement from the population neural activity. A linear classifier
(Methods) was able to discriminate between all ten fingers (cross-validated classification accuracy,
NS-PPC: 70%; JJ-PPC: 66%; JI-MC: 75%:; chance: 10%). The majority (NS-PPC: 76%; JJ-PPC:
66%:; JJ-MC: 68%)) of classification errors were adjacent-finger-confusion or matching-across-hand-
confusion (Figure 3.7c-e).
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