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Abstract 

We use our hands constantly in our everyday lives. This seemingly simple ability is disrupted in 

individuals with cervical spinal cord injuries. By circumventing injured signal pathways, brain-

computer interfaces (BCIs) promise to enable such individuals to control artificial limbs for everyday 

use. However, existing BCI limb control remains coarse and inflexible, because we do not 

understand how the recorded neural activity relates to dexterous movement. As a result, BCI control 

in physical settings remains frustratingly difficult for paralyzed users. To improve dexterous BCI 

control, I studied the neural coding of individual finger movements in the posterior parietal cortex 

and motor cortex of tetraplegic participants. These regions are directly involved in dexterous hand 

movements and are candidates for BCI recording implants. Finger coding matched the correlation 

structure and dynamics of able-bodied usage, reflecting preserved motor circuits even after paralysis. 

Individual finger movements of each hand were coded in a factorized, correlated manner that still 

allowed decoding. Participants controlled artificial fingers with state-of-the-art accuracy. Finally, we 

studied the temporal dynamics of neural control to understand how existing models of neural activity 

extend to BCI control. These findings contribute to the understanding of human hand movements 

and advance the development of dexterous BCIs. 
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Nomenclature 

BA: Brodmann Area 

BCI: brain-computer interface, also known as a brain-machine interface (BMI) 

calibrate/train: calculate decoding algorithm’s parameters based on a dataset 

closed-loop: online 

contralateral: side of the body opposite to the implant or condition 

crossnobis: cross-validated squared Mahalanobis dissimilarity 

decode: predict a variable from recorded neural activity 
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factorized: explained by multiple independent factors, without their interaction effects 
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geometry: organization / distance structure of neural representations 

ipsilateral: side of the body same as the implant or condition 

JJ: one participant in our studies 

M1: primary motor cortex 

MC: motor cortex 

neuroprosthetics: prosthetics using brain signals 

NHP: non-human primate 

NS: one participant in our studies 

offline: analyzed after the experiment 

online: decoded or analyzed in real-time during the experiment, often with visual feedback 

open-loop: performed without direct feedback of the neural activity 

PC-IP: junction of the postcentral (PC) and intraparietal (IP) sulci. 

plasticity: ability of the nervous system to change or reorganize 

population: a group of related neurons, often the group being recorded 

PPC: posterior parietal cortex 

RDM: representational dissimilarity matrix 

representation: pattern of neural activity correlated with given content, and hypothesized to cause 

behavior 

RSA: representational similarity analysis 

SCI: spinal cord injury 

SD: standard deviation 

SEM: standard error of the mean 

spike: action potential 

spike sort: identify and cluster action potentials into putative single neurons 

tetraplegia: paralysis affecting all limbs 

tuned: hypothesized to represent specific information 

unit: neuron 

voxel: pixel in a three-dimensional space
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1 Introduction 

1.1 Neural prostheses to restore movement 

Many of us take for granted our ability to interact and move through our physical surroundings. 

However, for more than 5 million Americans and millions more people globally, paralysis impairs 

this ability (Singh et al., 2014; Armour et al., 2016). Many of these cases stem from stroke, spinal 

cord injury, multiple sclerosis, or cerebral palsy. For many people living with paralysis, activities of 

daily living, such as feeding yourself or getting out of bed, are challenging or impossible without 

assistance (Anderson, 2004; Snoek et al., 2004; Collinger et al., 2013a). 

One emerging class of medical devices that could assist paralyzed individuals are brain-

machine interfaces (BMI), also known as brain-computer interfaces (BCI) or neural prostheses. 

BMIs record neural activity and decode motor intent to actuate an output device, such as a robotic 

arm. This technology could improve the quality of life of paralyzed individuals by restoring motor 

function and communication.  

Early preclinical studies with non-human primate subjects have used BMIs to control 

computer cursors (Gilja et al., 2012) and robotic limbs (Carmena et al., 2003; Velliste et al., 2008). 

Since then, human tetraplegic participants in preliminary clinical trials have provided a number of 

case-study applications, including: keyboard typing (Jarosiewicz et al., 2015; Pandarinath et al., 

2017; Nuyujukian et al., 2018; Willett et al., 2021), speech generation for people with anarthria 

(Anumanchipalli et al., 2019; Moses et al., 2021; Sarah K Wandelt et al., 2022; Willett et al., 2023)f, 

robotic arm control (Hochberg et al., 2012; Collinger et al., 2013c; Wodlinger et al., 2015), and 

controlling the individual’s own paralyzed limb (Ajiboye et al., 2017). This wide range of 

applications and customizability will be necessary to match the diversity of BCI users’ motor 

abilities and lifestyles. 

Neural prostheses work with many underlying disability causes, in large part because they 

work by bypassing injured regions. In the example of spinal cord injuries, volitional motor 

commands from the brain no longer reach the intended effectors. However, motor regions of the 

brain remain intact, allowing neural prosthetic systems to record from the brain and output to a 

prosthetic limb. This brain-effector interface creates a distinct signal path, bypassing the injured 

spinal cord. Other motor disabilities may require circumventing different injured areas, such as a 

specific brain region for stroke patients. 

1.2 Components of neural prosthetic systems 

A neural prosthetic system consists of three core components: acquisition of neural activity 

(“recording”), translating neural activity to motor intent (“decoding”), and the output effector. My 

work has focused on neural decoding, understanding how the brain commands movement, and then 

designing algorithms to best separate that signal from the noise. Much of this dissertation is devoted 

to advances in this domain. 

For the other two components, recording and output, my experiment design follows standard 

setups in this field. Regarding recording technology, here, I focus only on neuron action potentials 

recorded by intracortical microelectrode arrays. Action potentials and their consequent 
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neurotransmitter release are the main form of communication in the nervous system. Action 

potentials provide informative, low-latency input features and have controlled the most impressive 

typing and arm BMIs to date (Wodlinger et al., 2015; Willett et al., 2021). With regard to the design 

of the output effector, I demonstrate control of a keyboard interface and a discrete-selection robot 

hand, as well as the computer cursor task that has become a de facto standard in this field (Gilja et 

al., 2012; Jarosiewicz et al., 2015). Although I do not push the boundaries of recording and output 

effector technologies here, I hope that improved decoding can inspire more effective output designs 

in the future. These areas pose important challenges and are the work of many promising 

interdisciplinary collaborations, as reviewed elsewhere (Collinger et al., 2013b, 2018; Bockbrader, 

2019; Kleinfeld et al., 2019; Luan et al., 2020). 

1.3 Barriers to clinical usage 

Despite impressive proof-of-concept demonstrations, neural prostheses face a number of barriers to 

clinical adoption. These issue categories range from scientific or technological to affordability and 

ethics. Here, I describe existing limitations and the scientific studies working to overcome them. 

One of the core limitations is the relatively short usable device lifetime, a few years. This is 

a particular issue because the Utah array, the most widely available BMI implant with high signal 

quality, requires expensive, invasive neurosurgery. Signal quality degrades over time, so occasional 

reimplantation surgery would be necessary to keep recording quality at an operable level for longer 

periods. Ongoing materials science enhancements, such as flexible electrodes, may improve the 

electrodes’ lifetimes while also reducing the foreign body response that obstructs the recorded 

neurons (Luan et al., 2020). In the meantime, neurotech companies are attempting to minimize 

surgery risk and cost through precise robotic surgery (Musk and Neuralink, 2019) or minimally 

invasive procedures (Ho et al., 2022).  

A second limitation of existing BMIs is their relatively burdensome (re-)calibration 

requirements. Neural prosthetic systems are calibrated by learning a mapping from neural activity to 

intended movement. Calibration can take more than 5 minutes for 2-D point-and-click (Jarosiewicz 

et al., 2015) and up to 25 minutes for a prosthetic arm (Collinger et al., 2013c; Wodlinger et al., 

2015). Calibration time quickly multiplies if we also want to dissociate confounding factors like 

hand position or visual responses from intended movement velocity, as described above. Moreover, 

the relationship between neural activity to intended movement can change over the time-scale of 

hours or days, due to electrodes shifting or changes in neurons' baseline firing rates and tuning 

properties (Chestek et al., 2011; Perge et al., 2013; Nuyujukian et al., 2014). The change in mapping, 

from neural activity to intent, degrades the performance of previously calibrated decoders. Without 

recalibration, neural prosthetics become less usable for patients over time. However, recalibration 

disrupts usage, limiting BMI usefulness (Huggins et al., 2015). To minimize disruption, it is 

imperative to shorten the calibration routine while still learning an accurate, long-term mapping from 

neural activity to intended movement. BMI researchers have proposed methods to extend the time 

between recalibrations, including: self-supervised retraining (Jarosiewicz et al., 2015), manifold 

alignment (Degenhart et al., 2020; Dabagia et al., 2022; Karpowicz et al., 2022; Ma et al., 2022), 

and extracting longer-lasting features from broadband data (Flint et al., 2013; Haghi et al., 2021). 

A final limitation is the lack of control over physical effectors. Despite the field’s interest in 

communication (Moses et al., 2021; Willett et al., 2021) and arm reaching (Hochberg et al., 2012; 
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Collinger et al., 2013c), no studies have developed prosthetic controllers that can interact with 

physical objects robustly enough to assist patients in their day-to-day activities. Restoring hand 

function is a top priority for people with tetraplegia (Anderson, 2004; Snoek et al., 2004; Collinger 

et al., 2013a). In particular, dexterous control of individual fingers is essential for daily activities 

such as opening doors, feeding oneself, and dressing. However, control of BMI hands remains coarse 

(Collinger et al., 2013c; Hotson et al., 2016), because we do not yet understand how the recorded 

brain signals relate to intended hand movements. To compare with another movement category, 

reaching studies have described how multiple factors can modulate neural activity (Omrani et al., 

2017): movement direction (Georgopoulos et al., 1982), posture (Aflalo and Graziano, 2006), 

sensory feedback (Scott, 2016), and effector dynamics (Shadmehr et al., 2010; McNamee and 

Wolpert, 2019; Kalidindi et al., 2021). Hand movements involve different neural processes from arm 

reaching (Suresh et al., 2020; Sobinov and Bensmaia, 2021), so we are just beginning to understand 

how the brain integrates the multitude of factors for hand movements. Some work has been done to 

understand grasping in preclinical non-human primate models (Schaffelhofer and Scherberger, 2016; 

Michaels et al., 2020) and even basic human grasps (Gallivan and Culham, 2015; Klaes et al., 2015; 

Sarah K Wandelt et al., 2022). These studies usually narrowed their scope to offline analysis of a 

few basic grasp templates, limiting their applicability to everyday settings. Future studies should 

eventually allow flexible control to pick up and manipulate a diverse array of objects. To improve 

dexterous decoding, we need to better understand the neural principles of hand movements, and this 

challenge motivates my dissertation research. 

1.4 Dissertation outline 

In this dissertation, I study the cortical coding of finger movements and apply these findings to 

improve neuroprosthetic control. By understanding the fundamentals of dexterous movements, I 

believe that we can advance neural decoding to the point that BMIs can substantially improve quality 

of life of tetraplegic individuals. This dissertation is organized as follows: 

The remainder of Chapter 1 summarizes the relevant prior research on the neural control of 

hand movements. 

Chapter 2 examines whether and how individual finger movements are encoded in the 

posterior parietal cortex. The neural coding principles followed the kinematics of able-bodied natural 

hand use, even years after the participant was paralyzed. These representations are stable after 

paralysis and throughout BMI usage, allowing us to tap into the pre-existing neural code. 

Chapter 3 extends our study of finger movements to include both the posterior parietal 

cortex and motor cortex. A participant used neural signals in both regions to control finger 

movements at a state-of-the-art level. I compare the information content of both regions, calculating 

what improvements in recording quality would be necessary to control prosthetic fingers with high 

accuracy. Furthermore, I analyze finger movements of both hands and describe how their neural 

codes are correlated and factorized, which has important implications for bilateral neuroprosthetic 

control. 

Chapter 4 considers the temporal dynamics of BCI finger movements. To better understand 

how short, corrective movements might differ from their sustained counterparts, I extended BMI 

movement durations to dissociate the movement-onset dynamics from the relatively stationary 

movement intent. I found that we could separate BCI movements into phases: initial onset, sustained 
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intent, and offset. This work merges the classical understanding of movement parameter 

representations with modern concepts of the brain as a dynamical system. 

Chapter 5 concludes with a summary of our results and their broader impacts. I discuss 

promising future directions that could improve the functional utility of BMIs. These directions take 

advantage of both our improved neuroscientific understanding and parallel technological advances. 

1.5 Neural coding of hand movements 

1.5.1 Manual dexterity 

The human hand is unique in its dexterity (Sobinov and Bensmaia, 2021). Humans can learn to solder 

microscopic components to a circuit board or execute hundreds of video game actions per minute. 

Even everyday hand movements require complex coordination. We make take these skills for 

granted, but the difficulty of everyday actions is clear when we try to teach a robot to handle objects 

(Billard and Kragic, 2019) or when observing a young toddler trying to pick up a grain of rice. Our 

dexterity is further highlighted by the fact that humans can move individual fingers more 

independently than other primates (Schieber, 1991; Häger-Ross and Schieber, 2000). This feature, 

along with our fully opposable thumbs, allows flexible control over a variety of objects. 

Despite this unique flexibility, hand movements do exhibit structure as well. Although the 

thumb moves quite independently, the other fingers tend to move in a coordinated manner (Schieber, 

1991; Häger-Ross and Schieber, 2000). This in part reflects biomechanical coupling, both passive 

and active, between the other fingers (Lang and Schieber, 2004a). These biomechanical patterns can 

also be reflected in neural patterns, as I discuss further in Section 1.5.2 and Chapter 2. 

1.5.2 Neural control of hand movements 

Our impressive hand dexterity requires a coordinated effort across neural systems. Volitional hand 

movements involve the motor cortex, parietal cortex, cerebellum, basal ganglia, corticospinal tracts, 

and peripheral nerves, as well as sensory regions. Here, we specifically review the roles of the motor 

cortex and posterior parietal cortex, given their central roles in hand dexterity. 

The primary motor cortex (M1) plays a crucial role in dexterous hand control, as 

demonstrated by several lines of evidence. More than 20% of M1 generates finger movements in 

response to electrical stimulation, even though M1 contains representations for the entire body and 

the hand only weighs 0.6% of body mass (Sobinov and Bensmaia, 2021). Functional magnetic 

resonance imaging (fMRI) studies find selective activation of the primary motor cortex and primary 

somatosensory cortex (S1) in response to finger movements (Allison et al., 2000; Ejaz et al., 2015). 

Lesions of M1 or its descending pyramidal tracts disrupt grasping and permanently disrupt individual 

finger movements (Lawrence and Kuypers, 1968; Lang and Schieber, 2003, 2004b). In addition, the 

corticomotoneuronal cells, a subpopulation of M1, synapse directly onto spinal motoneurons 

innervating upper limb muscles, connecting M1 directly to fine muscle control (Rathelot and Strick, 

2009). This evidence positions M1 as a central node for dexterous hand control. 

M1 is known to be coarsely somatotopic, with overlapping regions of M1 controlling 

movements of specific body parts. In the hand area, the somatotopy is even more coarse, with small 

cortical areas mixing between different fingers and even control of the wrist (Schieber and Hibbard, 

1993; Schieber, 2001). Neurons in the hand region of M1 code for a combination of finger posture 
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(Goodman et al., 2019) and velocity signals (Nason et al., 2021), although other factors could also 

influence their modulation. 

Our understanding of human M1 largely comes from studies of non-human primate subjects, 

and we are still in the early stages of understanding how these studies translate to human M1. The 

commonly cited hand region of human M1 is the precentral gyrus area known as the “hand knob,” 

due to its common visual similarity to the Greek letter Ω (Yousry et al., 1997). However, a recent 

study found that the hand knob codes movements in a manner more consistent with the premotor 

cortex, arguing that the hand region of M1 may lie deeper in the sulcus (Willett et al., 2020). An 

alternative explanation may be that the hand knob is more heterogeneous than originally thought 

(Simone et al., 2021), with certain areas still homologous to the non-human primate M1. 

Primate manual dexterity is supported by a distributed set of nervous systems beyond M1, 

such as the posterior parietal cortex (PPC). The posterior parietal cortex (PPC) plays a central role 

in sensorimotor integration, with PPC regions representing visual stimulus locations (Andersen et 

al., 1985), eye movements (Andersen et al., 1987), task context (Gail et al., 2009), planned reaches 

(Snyder et al., 1997), and object grasping (Murata et al., 2000; Schaffelhofer and Scherberger, 2016). 

Lesions of different PPC subregions can lead to diverse behavioral deficits, including optic ataxia 

(inability to grasp objects under visual guidance) (Andersen et al., 2014) and loss of awareness of 

body parts (Whitlock, 2017). The PPC is also involved in fine finger dexterity. Electrical stimulation 

of PPC subregions can induce individual finger movements (Cooke et al., 2003; Rathelot et al., 2017; 

Baldwin et al., 2018), and single neurons respond to tactile stimuli at individual fingers (Seelke et 

al., 2012). 

The PPC transforms information from the visual cortex into motor plans. Visual processing 

is essential to interacting with the world, to know where and how to move. The anterior intraparietal 

area (AIP) within PPC has been identified as important for hand dexterity for non-human primates. 

AIP processes visual information about object shape and position and transforms that information 

into grip type (Schaffelhofer and Scherberger, 2016) to send it to the ventral premotor cortex (PMv) 

and onto M1 (Figure 1.1). Reaching is processed through a separate pathway: the parietal reach 

region (PRR), then to the dorsal premotor cortex (PMd), and then to M1. Consequently, when AIP 

is inactivated, subjects can still reach normally, but they fail to preshape grasps (Gallese et al., 1994). 

Recent work has found that some AIP corticospinal neurons synapse onto spinal interneurons that 

connect directly to hand motor neurons (Rathelot et al., 2017). Furthermore, electrical 

microstimulation of AIP elicits wrist and finger movements (Rathelot et al., 2017; Baldwin et al., 

2018), indicating that AIP supports fine manual control. Functional magnetic resonance imaging 

(fMRI) studies have identified a potential homolog in humans in the anterior intraparietal sulcus 

(aIPS) (Gallivan and Culham, 2015). Human electrophysiology studies, including my own, usually 

record only the gyri around aIPS. These studies find slightly different coding schemes from AIP and 

find that the usual anatomical markers (intersection between postcentral and intraparietal sulci, here 

abbreviated PC-IP) can vary by subject. Therefore, it remains unclear exactly how NHP studies 

inform the coding principles of the area around human aIPS. 
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Figure 1.1 Cortical control of visually guided hand movements. 
The anterior intraparietal area (AIP) transforms object information from the visual cortex (V1) into the appropriate 

grasp type to send on to the ventral premotor area (PMv) and then to the primary motor cortex (M1). The parietal 

reach region (PRR) transforms object location into a reach plan to send on to the dorsal premotor area (PMd) and then 

to M1. These regions have been studied most thoroughly in non-human primates, but their putative homologs are 

highlighted on this human brain. 

Adapted from Frank Gaillard, Radiopaedia.org, used under CC BY-NC-SA. 

1.5.3 Somatosensory feedback for object manipulation 

Precise object manipulation relies on sensory feedback. Loss of proprioception, which tracks our 

own posture and movements, impairs multi-joint movements like reaching, especially when vision 

is obstructed (Ghez et al., 1995; Sainburg et al., 1995). Loss of touch, which describes the objects 

we interact with, impairs fine manipulation, such as striking a match (Johansson and Flanagan, 

2009). Here, we review somatosensory feedback and how it relates to hand dexterity and BMIs. 

Tactile sensation is generated by four sets of mechanoreceptors in the palm of the hand, 

responding to skin vibrations, texture, pressure, and stretch. Proprioception mainly emerges from 

thousands of muscle spindles that convey posture and Golgi tendon organs that convey force 

(Sobinov and Bensmaia, 2021). These signals are sent via nerve fibers to cuneate nucleus in the 

brainstem, on to the ventral posterolateral nucleus of the thalamus, and then to the primary 

somatosensory cortex. 

The primary somatosensory cortex (S1) is located on the postcentral gyrus, just posterior to 

M1 and just anterior to PPC. S1 is somatotopic, forming a defined map of body parts each 

subpopulation responds to. Like in M1, the hand area of S1 takes up a large area (20%) of the primary 

somatosensory cortex (Sobinov and Bensmaia, 2021), underscoring the utility of rich tactile 

feedback for manual dexterity. Within S1's hand region, finger representations are separate to allow 

distinct percepts per finger (Pons et al., 1985). These tactile signals are tightly coupled with M1 

https://radiopaedia.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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circuits, with strong tactile connections to the hand area of M1, while the arm region receives 

stronger proprioceptive signals (Friel et al., 2005). 

Tactile feedback is essential for manual dexterity during all phases of object manipulation 

(Johansson and Flanagan, 2009; Sobinov and Bensmaia, 2021). First, when reaching to grasp an 

object, initial contact starts the transition from reaching to grasping. Second, when lifting the object, 

information on mass and friction enables us to apply the appropriate grip force. This force margin 

allows us to hold the object securely without crushing it (Billard and Kragic, 2019). Third, tactile 

signals provide quick information on perturbations and how to accommodate them, such as an 

accidental bump into the table when feeding. Fourth, sensory input informs our predictive model of 

object dynamics, so that we can lift the object more precisely next time. To support manual dexterity, 

tactile processing is enhanced during active object manipulation, when compared to passive 

perception (Pruszynski et al., 2018). 

For individuals with spinal cord injuries, sensory signals from the hand do not reach the 

cortex. Most existing BMI systems cannot provide somatosensory input, so BMI users must rely on 

visual feedback. While vision provides some utility, it does not replace the richness and speed of 

tactile and proprioceptive feedback (Ghez et al., 1995). This is clear when observing individuals with 

intact motor control yet disrupted sensory pathways, who are unable to perform many simple actions 

(Miall et al., 2019). Additionally, touch provides far more robust information about contact timing, 

texture, mass, and vibration than vision does. 

To overcome this barrier, bidirectional BMI systems aim to restore both motor control and 

somatosensory input (Collinger et al., 2018). The most promising directions currently use 

intracortical microstimulation (ICMS) in S1 to elicit isolated sensations in the arm, hand, or fingers 

(Flesher et al., 2016; Armenta Salas et al., 2018). The localized sensory input improves grasping by 

signaling object contact (Flesher et al., 2021). However, multiplexing touch input and preventing 

interference with motor decoding have been difficult. These challenges remain for future studies to 

tackle, and they may also inspire alternative paradigms of overcoming the lack of somatosensory 

feedback. 

Sometimes, the lack of sensory feedback can actually benefit basic neuroscience studies; we 

can decouple motor control and sensory feedback, allowing us to dissociate these processes in our 

experiments (Golub et al., 2016). In Chapter 4, I use this paradigm to study how motor control 

changes over the time course of a movement. We can use these paradigms to better understand the 

motor and sensory systems, tuning these parameters in a way not possible with able-bodied subjects, 

to advance design of neuroprosthetic systems. 
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2 Stability of motor representations after paralysis 

2.1 Summary 

Neural plasticity allows us to learn skills and incorporate new experiences. What happens when our 

lived experiences fundamentally change, such as after a severe injury? To address this question, we 

analyzed intracortical population activity in the posterior parietal cortex (PPC) of a tetraplegic adult 

as she controlled a virtual hand through a brain-computer interface (BCI). By attempting to move 

her fingers, she could accurately drive the corresponding virtual fingers. Neural activity during finger 

movements exhibited robust representational structure similar to fMRI recordings of able-bodied 

individuals’ motor cortex, which is known to reflect able-bodied usage patterns. The finger 

representational structure was consistent throughout multiple sessions, even though the structure 

contributed to BCI decoding errors. Within individual BCI movements, the representational structure 

was dynamic, first resembling muscle activation patterns and then resembling the anticipated sensory 

consequences. Our results reveal that motor representations in PPC reflect able-bodied motor usage 

patterns even after paralysis, and BCIs can re-engage these representations to restore lost motor 

functions. 

 

2.2 Introduction 

A central question in neuroscience is how experience affects the nervous system. Studies of this 

phenomenon, plasticity, were pioneered by Hubel and Wiesel, who found that temporary visual 

occlusion in kittens can induce lifelong reorganization of the visual cortex (Hubel and Wiesel, 1970). 

Their results demonstrated that the developing brain, rather than being genetically preprogrammed, 

is surprisingly malleable to external inputs. 

Subsequent studies showed that other brain regions are also plastic during early development, 

but it is unclear how plastic the nervous system remains into adulthood. Visual occlusion in adult 

cats does not reorganize the visual cortex, and lesion studies of the adult visual cortex have arrived 

at competing conclusions of reorganization and stability (Gilbert and Wiesel, 1992; Smirnakis et al., 

2005; Keck et al., 2008; Baseler et al., 2011). A similar discussion continues regarding the primary 

somatosensory cortex (S1). Classical studies posited that amputation and spinal cord injury modify 

the topography of body parts in S1, with intact body parts taking over cortical areas originally 

dedicated to the amputated part (Merzenich et al., 1984; Pons et al., 1991; Qi et al., 2000; Jain et al., 

2008). However, recent human neuroimaging studies (Makin and Bensmaia, 2017; Kikkert et al., 

2021) and sensory BCI studies (Flesher et al., 2016; Armenta Salas et al., 2018) have challenged the 

extent of this remapping, arguing that sensory topographies largely persist even after complete 

sensory loss. Thus, the level of plasticity in the adult nervous system is still an ongoing investigation. 

Understanding plasticity is necessary to develop brain-computer interfaces (BCIs) that can 

restore sensorimotor function to paralyzed individuals (Orsborn et al., 2014). First, paralysis disrupts 

movement and blocks somatosensory inputs to motor areas, which could cause neural reorganization 

(Pons et al., 1991; Jain et al., 2008; Kambi et al., 2014). Second, BCIs bypass supporting cortical, 

subcortical, and spinal circuits, fundamentally altering how the cortex affects movement. Do these 
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changes require paralyzed BCI users to learn fundamentally new motor skills (Sadtler et al., 2014), 

or do paralyzed participants use a preserved, pre-injury motor repertoire (Hwang et al., 2013)? 

Several paralyzed participants have been able to control BCI cursors by attempting arm or hand 

movements (Hochberg et al., 2006, 2012; Collinger et al., 2013c; Gilja et al., 2015; Bouton et al., 

2016; Ajiboye et al., 2017; Brandman et al., 2018), hinting that motor representations could remain 

stable after paralysis. However, the nervous system’s capacity for reorganization (Pons et al., 1991; 

Jain et al., 2008; Kambi et al., 2014; Kikkert et al., 2021) still leaves many BCI studies speculating 

whether their findings in tetraplegic individuals also generalize to able-bodied individuals (Flesher 

et al., 2016; Armenta Salas et al., 2018; Stavisky et al., 2019; Willett et al., 2020; Fifer et al., 2021). 

A direct comparison, between BCI control and able-bodied neural control of movement, would help 

address questions about generalization. 

Temporal dynamics provide another lens to investigate neural organization and its changes 

after paralysis. Temporal signatures can improve BCI classification (Willett et al., 2021) or provide 

a baseline for motor adaptation studies (Stavisky et al., 2017a; Vyas et al., 2018). Notably, motor 

cortex activity exhibits quasi-oscillatory dynamics during arm reaching (Churchland et al., 2012). 

More generally, the temporal structure can depend on the movement type (Suresh et al., 2020) and 

the recorded brain region (Schaffelhofer and Scherberger, 2016). In this study, we recorded from the 

posterior parietal cortex (PPC), which is thought to compute an internal forward model for 

sensorimotor control (Wolpert et al., 1998; Desmurget and Grafton, 2000; Mulliken et al., 2008a; Li 

et al., 2022). A forward model overcomes inherent sensory delays to enable fast control by predicting 

the upcoming states. If PPC activity resembles a forward model even after paralysis, this would 

suggest that even the temporal details of movement are preserved after injury. 

Here, we investigate the neural representational structure of BCI finger movements in a 

tetraplegic participant. In able-bodied individuals, the cortical representational structure of finger 

movements follows the natural statistics of movements (Lillicrap and Scott, 2013; Ejaz et al., 2015). 

In a BCI task, the experimenter can instruct movement patterns unrelated to biomechanics or before-

injury motifs. In this study, we tested whether the neural representational structure of BCI finger 

movements by a tetraplegic individual matches that of able-bodied individuals performing similar, 

overt movements, or whether the structure follows the task’s optimal representational structure 

(Bonnasse-Gahot and Nadal, 2008). If the BCI finger organization matches that of able-bodied 

movement, participants likely activated pre-injury motor representations, indicating that motor 

representations were preserved after paralysis. 

We report that the neural representational structure of BCI finger movements in a tetraplegic 

individual matches that of able-bodied individuals. This match was stable across sessions, even 

though the measured representational structure contributed to errors in the BCI task. Furthermore, 

the neural representational dynamics matched the temporal profile expected of a forward model in 

able-bodied individuals, first resembling muscle activation patterns and then resembling expected 

sensory outcomes. Our results suggest that adult motor representations in PPC remain even after 

years without use. 
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2.3 Results 

2.3.1 Intracortical recordings during finger flexion 

We recorded single and multi-neuron activity (95.8 +/- s.d. 6.7 neurons per session over 10 sessions) 

from participant NS while she attempted to move individual fingers of the right hand. We recorded 

from a microelectrode array implanted in the left (contralateral) posterior parietal cortex (PPC) at 

the junction of the postcentral and intraparietal sulci (PC-IP, Supplementary Figure 2.1). This region 

is thought to specialize in the planning and monitoring of grasping movements (Orban and Caruana, 

2014; Gallivan and Culham, 2015; Klaes et al., 2015; Andersen et al., 2019). 

Each recording session started with an initial calibration task (Supplementary Figure 2.2, 

Methods). On each trial, we used a computer screen to present a text cue (e.g., “T” for thumb), and 

the participant immediately attempted to flex the corresponding finger, as though pressing a key on 

a keyboard. Because participant NS previously suffered a C3-C4 spinal cord injury resulting in 

tetraplegia (AIS-A), her movement attempts did not generate overt motion. Instead, participant NS 

attempted to move her fingers as though she was not paralyzed. 

These attempted movements resulted in distinct neural activity patterns across the electrode 

array. To enable BCI control, we trained a linear classifier (Methods) to identify finger movements 

from neural firing rates. The participant subsequently performed several rounds of a similar finger 

flexion task, except that 1) the trained classifier now provided text feedback of its predicted finger 

and 2) the task randomized the visual cue location (Figure 2.1a and Methods). We repeated this 

online-control finger flexion task over multiple sessions (408 +/- s.d. 40.8 trials/session over 10 

sessions) and used this data for our offline analyses. Participant NS also performed a control task, 

identical in structure except that she attended to cues without performing the instructed movements. 

2.3.2 Accurately decoding fingers from PPC single-neuron activity 

High classification accuracy during online control (86% +/- s.d. 4% over 10 sessions; chance = 17%) 

(Figure 2.1b) and offline cross-validated classification (92% +/- s.d. 2%; Supplementary Figure 2.3a) 

demonstrated that the finger representations were reliable and linearly separable. During the 

calibration task, cross-validated classification was similarly robust (accuracy = 96% +/- s.d. 3%; 

Supplementary Figure 2.3b). 

At the single-neuron level, most (89%) neurons were significantly tuned to individual finger 

press movements (significance threshold: P < 0.05, FDR corrected) (Supplementary Figure 2.4). The 

example neurons in Figure 2.1c-f show that neurons could be tuned to one or more fingers and that 

tuning profiles could change in time. 

To confirm that the observed neural responses could not be explained by visual confounds, 

we verified that we could not discriminate between fingers during the control task (Supplementary 

Figure 2.5). Furthermore, we could not decode the gaze location during the finger classification time 

window in the standard online-control task (Supplementary Figure 2.5). Thus, reliable finger 

representations emerged from the participant’s movement attempts. 
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Figure 2.1 Robust brain-computer interface (BCI) control of individual fingers. 
(a) Main finger flexion task. When a letter was cued by the red crosshair, the participant looked at the cue and 

immediately attempted to flex the corresponding digit of the right (contralateral) hand. We included a null condition 

"X," during which the participant looked at the target but did not move her fingers. Visual feedback indicated the 

decoded finger 1.5 seconds after cue presentation. To randomize the saccade location, cues were located on a grid (3 

rows, 4 columns) in a pseudorandom order. The red crosshair was jittered to minimize visual occlusion. 

(b) Confusion matrix showing robust in-session BCI finger control (86% overall accuracy, 4016 trials aggregated over 

10 sessions). Each entry (i, j) in the matrix corresponds to the ratio of movement i trials that were classified as 

movement j. 

(c-f) Mean firing rates for 4 example neurons, color-coded by attempted finger movement. Shaded areas indicate 95% 

confidence intervals (across trials of one session). Gaussian smoothing kernel (50-ms SD). 
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2.3.3 Finger representational structure matches the structure of able-bodied individuals 

Having discovered that PC-IP neurons modulate selectively for finger movements, we next 

investigated how these neural representations were functionally organized and how this structure 

related to pre-injury movements. Here, we turned to the framework of representational similarity 

analysis (RSA) (Kriegeskorte et al., 2008a; Diedrichsen and Kriegeskorte, 2017). RSA quantifies 

neural representational structure by the pairwise distances between each finger's neural activity 

patterns (Figure 2.2a). These pairwise distances form the representational dissimilarity matrix 

(RDM), a summary of the representational structure. Importantly, these distances are independent of 

the original feature types (for example, electrode or voxel measurements), allowing us to compare 

finger organizations across subjects and across recording modalities (Kriegeskorte et al., 2008b).  

We used RSA to test three hypotheses: 1) the BCI finger representational structure could 

match that of able-bodied individuals (Ejaz et al., 2015; Kieliba et al., 2021) (Figure 2.2b and 

Supplementary Figure 2.6), which would imply that motor representations did not reorganize after 

paralysis. This hypothesis would be consistent with recent fMRI studies of amputees, which showed 

that sensorimotor cortex representations of phantom limb finger movements match the same 

organization found in able-bodied individuals (Kikkert et al., 2016; Wesselink et al., 2019). We note 

that our able-bodied model was recorded from human PC-IP using fMRI, which measures 

fundamentally different features (millimeter-scale blood oxygenation) than microelectrode arrays 

measure (sparse sampling of single neurons). Another possibility is that 2) the participant’s pre-

injury motor representations had de-specialized after paralysis, such that finger activity patterns are 

unstructured and pairwise-independent (Figure 2.2c). However, this hypothesis would be 

inconsistent with results from fMRI studies of amputees’ sensorimotor cortex (Kikkert et al., 2016; 

Wesselink et al., 2019). Lastly, 3) the finger movement representational structure might optimize for 

the statistics of the task (Lillicrap and Scott, 2013; Clancy et al., 2014). Our BCI task, as well as 

previous experiments with participant NS, involved no correlation between individual fingers, so the 

optimal structure would represent each finger independently to minimize confusion between fingers. 

In other words, the task-statistics hypothesis (3) would predict that, with BCI usage, the 

representational structure would converge towards the task-optimal, unstructured representational 

structure (Figure 2.2c). 

Does the finger representational structure in a tetraplegic individual match that of able-

bodied individuals? We quantified the finger representational structure by measuring the cross-

validated Mahalanobis distance (Methods) between each finger pair, using the firing rates from the 

same time window used for BCI control. The resulting RDMs are shown in Figure 2.2d (average 

across sessions) and Supplementary Figure 2.7 (all sessions). For visual intuition, we also projected 

the representational structure to two dimensions in Figure 2.2e, which shows that the thumb is 

distinct, while the middle, ring, and pinky are close in neural space. We then compared the measured 

RDMs against the able-bodied fMRI and unstructured models, using the whitened unbiased RDM 

cosine similarity (WUC) (Diedrichsen et al., 2021). The measured representational structure matched 

the able-bodied representational structure significantly over the unstructured model (P = 5.7 × 10–5, 

two-tailed t-test) (Figure 2.2f), ruling out the de-specialization hypothesis (2). Our findings were 

robust to different choices of distance and model-similarity metrics (Supplementary Figure 2.8). 

We note that we constructed the able-bodied fMRI model from the mean of PC-IP fMRI 

RDMs across multiple able-bodied participants (N = 29). Participant NS’s average PC-IP RDM was 
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also statistically typical among the RDM distribution of individual able-bodied participants 

(permutation shuffle test, P = 0.55), in part because PC-IP fMRI RDMs were relatively variable 

across participants (Supplementary Figure 2.9). 

We also compared the PC-IP BCI RDM with able-bodied fMRI motor cortex (MC) RDMs, 

which have been previously shown to match the patterns of natural hand use (Ejaz et al., 2015). The 

able-bodied MC and PC-IP fMRI finger organizations are similar in that they represent the thumb 

distinctly from the other fingers, but PC-IP represents each of the non-thumb fingers similarly while 

MC distinguishes between all five fingers (Supplementary Figure 2.6). Interestingly, PC-IP BCI 

finger representations matched the able-bodied fMRI finger representational structure in the motor 

cortex (MC) even better than that of able-bodied PC-IP (Supplementary Figure 2.10). The WUC 

similarity with the MC RDM was close to the noise ceiling (Methods), indicating that the MC RDM 

matches participant NS’s data better than almost any other model (see Discussion). 
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Figure 2.2. Representational structure during BCI finger control matches the structure of 

able-bodied individuals. 
(a) To construct the representational dissimilarity matrix (RDM), a vector of firing rates was constructed for each trial. 

Repetitions were collected for each condition. Then, pairwise distances were estimated between conditions using a 

cross-validated dissimilarity metric. This process was repeated to generate an RDM for each session. We drop the No-

Go condition (X) here to match previous finger studies (Ejaz et al., 2015; Kikkert et al., 2016). 

(b) Representational structure hypothesized by the preserved-representation hypothesis: average PC-IP RDM for a 

finger-press task using fMRI in 36 able-bodied individuals (Ejaz et al., 2015; Kieliba et al., 2021). Max-scaled to [0, 

1]. 



 

 

15 

(c) Representational structure hypothesized by the de-specialization and task-optimal hypotheses: pairwise-equidistant 

RDM. Max-scaled to [0, 1]. 

(d) Finger representational structure measured in tetraplegic participant NS: cross-validated Mahalanobis distances 

(Methods) between neural activity patterns, averaged across 10 recording sessions. Max-scaled to [0, 1]. 

(e) Intuitive visualization of the distances in (d) using multidimensional scaling (MDS). Ellipses show mean +/- s.d. 

(10 sessions) after Generalized Procrustes alignment (without scaling) across sessions. 

(f) Measured RDMs (d) match the able-bodied PC-IP fMRI RDM (b) better than they match the task-optimal, 

unstructured model (c), as measured by the whitened unbiased cosine similarity (Diedrichsen et al., 2021) (WUC) 

(Methods). Mean differences were significant (able-bodied vs unstructured, P = 5.7 × 10–5; two-tailed t-test, 1000 

bootstrap samples over 10 sessions). Violin plot: solid horizontal lines indicate the median WUC over bootstrap 

samples, and dotted lines indicate the first and third quartiles. Noise ceiling: gray region estimates the best possible 

model fit (Methods). For convenience, a similar figure using a correlation-based similarity metric is shown in 

Supplementary Figure 2.8. 

2.3.4 Representational structure did not trend towards task optimum 

Next, we investigated whether the BCI finger representational structure matched that of able-bodied 

individuals consistently or whether the representational structure changed over time to improve BCI 

performance. The task-optimal structure hypothesis (3) predicted that the BCI RDMs would trend to 

optimize for the task statistics (unstructured model, Figure 2.2c) as the participant gained experience 

with the BCI task. However, we did not find conclusive evidence for a trend from the able-bodied 

model towards the unstructured model (linear-model session × model interaction: t(6) = 0.50, one-

tailed t-test P = 0.32, Bayes factor (BF) = 0.66) (Figure 2.3a). Indeed, participant NS’s finger RDMs 

were largely consistent across different recording sessions (average pairwise correlation, excluding 

the diagonal: r = 0.90 +/- s.d. 0.04, min 0.83. max 0.99). 

We considered whether learning, across sessions or within sessions, could have caused 

smaller-scale changes in the representational structure. The observed representational structure, 

where middle-ring and ring-pinky pairs had relatively small distances, was detrimental to 

classification performance. The majority (70%) of the online classification errors were middle-ring 

or ring-pinky confusions (Figure 2.1b). Due to these systematic errors, one might reasonably predict 

that plasticity mechanisms would improve control by increasing the inter-finger distances between 

the confused finger pairs. Contrary to this prediction, the middle-ring and ring-pinky distances did 

not increase over the course of the experiment (across sessions: t(8) = –4.5, one-tailed t-test P > 0.99, 

BF = 0.03; across runs within sessions: t(82) = –0.45, one-tailed t-test P = 0.67, BF = 0.12) (Figure 

2.3b). When analyzing all finger pairs together, the inter-finger distances also did not increase (across 

sessions: t(8) = –4.0, one-tailed t-test P = 0.98, BF = 0.01; across runs within sessions: t(74) = –2.4, 

one-tailed t-test P = 0.99, BF = 0.02), as visualized by the similarity between the average early-half 

RDM and the average late-half RDM (Figure 2.3c). These analyses demonstrate that the 

representational structure did not trend towards the task optimum (Figure 2.2c) with experience, 

ruling out the task-statistics hypothesis (3). 
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Figure 2.3. Hand representation changed minimally after weeks of BCI control 
(a) Slope comparison shows that the model fit did not trend towards the unstructured model over sessions (P = 0.32). 

(b) The distance between high-error finger pairs (middle-ring and ring-pinky) did not increase across sessions or runs 

(within sessions), as shown by partial regression plots. Distance metric: cross-validated Mahalanobis, averaged across 

runs (for the session plot) or averaged across sessions (for the run plot). The black line indicates linear regression. The 

gray shaded region indicates a 95% confidence interval. Each run consisted of 8 presses per finger. 

(c) Minimal change in representational structure between early and late sessions or between early and late runs. Mean 

RDM, when grouped by sessions (top row) or individual runs (bottom row). Grouped into early half (left column) or 

late half (center column). MDS visualization (right column) of early (opaque) and late (translucent) representational 

structures after Generalized Procrustes alignment (without scaling, to allow distance comparisons). 

2.3.5 Finger representational structure is motor-like and then somatotopic 

PPC is hypothesized to overcome inherent sensory delays by computing an internal forward model 

for rapid sensorimotor control (Wolpert et al., 1998; Desmurget and Grafton, 2000; Mulliken et al., 

2008a). The forward model integrates an efference copy of motor signals and delayed sensory 

feedback to dynamically predict the state of the body. The hypothesized forward-model role would 

predict that the representational structure changes over the time course of each movement, with an 
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early motor-command-like component during movement initiation. To investigate this temporal 

evolution, we modeled the representational structure of digit movements at each time point as a non-

negative linear combination (Kietzmann et al., 2019) of potentially predictive models (Figure 2.4a). 

We considered three models (Ejaz et al., 2015) that could account for representational 

structure: hand usage, muscle activation, and somatotopic. The hand-usage model (Figure 2.4b) 

predicts that the neural representational structure should follow the correlation pattern of finger 

kinematics during natural hand use. The muscle activation model (Figure 2.4c) predicts that the 

representational structure should follow the coactivation patterns of muscle activity during individual 

finger movements. The somatotopic model (Figure 2.4d) predicts that the representational structure 

should maintain the spatial relationship between fingers, with neighboring fingers represented 

similarly to each other (Ejaz et al., 2015; Schellekens et al., 2018). At the neural population level, 

the somatotopic model is analogous to Gaussian receptive fields (Schellekens et al., 2018). 

Because the hand usage model is nearly multicollinear with the muscle and somatotopic 

models (variance inflation factor: VIFusage,OLS = VIFusage,NNLS = 20.9, Methods), we first reduced the 

number of component models. Through a model selection procedure (Methods), we found that the 

hand-usage+somatotopy and muscle+somatotopy model combinations matched the data best 

(Supplementary Figure 2.12), with the muscle+somatotopy model matching the data marginally 

better. Thus, in the main text, we present our temporal analysis using the muscle and somatotopy 

component models. 

Figure 2.4e shows the decomposition of the representational structure into the muscle and 

somatotopic component models. The results show a dynamic structure, with the muscle model 

emerging 170ms earlier than the somatotopic model (P = 0.002, two-sided Wilcoxon signed-rank 

test). This timing difference was consistent across individual sessions (Supplementary Figure 2.13) 

and task contexts, such as the calibration task (Supplementary Figure 2.14). Indeed, the transition 

from the muscle model (Figure 2.4c) to the somatotopic model (Figure 2.4d) is visually apparent 

when comparing the average RDMs at 600ms (muscle-model-like) and 1200ms (somatotopic) 

(Figure 2.4e). 

These temporal dynamics were robust to our feature selection procedure, demonstrating a 

similar timing difference for the hand-usage+somatotopy model combination (Supplementary 

Figure 2.14). 
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Figure 2.4. Representational dynamics analysis (RDA) dissociates neural processes over 

time. 
(a) RDA performs representational similarity analysis (RSA) in a sliding window across time. Here, we model the 

measured representational structure as a nonnegative linear combination of component model RDMs. 

(b-d) Hypothesized explanatory component RDMs: usage, muscle, and somatotopic (Ejaz et al., 2015). Max-scaled 

to [0, 1]. 

(e) RDA of the measured RDM over time shows an early fit to the muscle model and a late fit to the somatotopic 

model. Confidence intervals indicate +/- s.e.m. bootstrapped across 10 sessions. Gray shaded region indicates the 

approximate onset time of the saccade to cue (interquartile range across trials). Difference in model start-time (170ms, 

Methods) was significant (P = 0.002, two-sided Wilcoxon signed-rank test). RDM snapshots (bottom, each max-scaled 

to [0, 1]) intuitively visualize the change in representational structure over time from muscle-like to somatotopic. 
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2.4 Discussion 

2.4.1 Neural prosthetic control of individual fingers using recordings from PC-IP 

We found that participant NS could robustly control the movement of individual fingers using a 

neural prosthetic in a variety of contexts (Figure 2.1 and Supplementary Figure 2.3), even after years 

of paralysis. Her brain-computer interface (BCI) control accuracy exceeded the previous best of 

other five-finger, online BCI control studies (Hotson et al., 2016; Jorge et al., 2020). These results 

establish PC-IP as a candidate implant region for dexterous neural prostheses. 

2.4.2 Connecting brain-computer interface studies to basic neuroscience 

Although previous studies have shown that the anterior intraparietal area (AIP) of PPC is involved 

in whole-hand grasping (Murata et al., 2000; Klaes et al., 2015; Schaffelhofer and Scherberger, 

2016), our work is the first to show individual finger representations in PPC (Supplementary Figure 

2.4). Likewise, many other BCI studies with tetraplegic participants have contributed novel 

discoveries to basic neuroscience, deepening our understanding of the human cortex (Zhang et al., 

2017; Rutishauser et al., 2018; Stavisky et al., 2019; Aflalo et al., 2020; Willett et al., 2020; 

Chivukula et al., 2021). A frequent (Flesher et al., 2016; Armenta Salas et al., 2018; Stavisky et al., 

2019; Willett et al., 2020; Chivukula et al., 2021; Fifer et al., 2021; Andersen and Aflalo, 2022) 

discussion question is: how well do these findings generalize to the brains of able-bodied 

individuals? Specifically, do the observed phenomena result from partial reorganization (Nardone et 

al., 2013; Kambi et al., 2014) after spinal cord injury, or do they reflect intact motor circuits, 

preserved from before injury (Makin and Bensmaia, 2017)? 

Early human BCI studies (Hochberg et al., 2006; Collinger et al., 2013c) recorded from the 

motor cortex and found that single-neuron directional tuning is qualitatively similar to that of able-

bodied non-human primates (NHPs) (Georgopoulos et al., 1982; Hochberg et al., 2006). Many 

subsequent human BCI studies have also successfully replicated results from other classical NHP 

neurophysiology studies (Hochberg et al., 2012; Collinger et al., 2013c; Aflalo et al., 2015; Gilja et 

al., 2015; Bouton et al., 2016; Ajiboye et al., 2017; Brandman et al., 2018), leading to the general 

heuristic that the sensorimotor cortex retains its major properties after spinal cord injury (Andersen 

and Aflalo, 2022). This heuristic further suggests that BCI studies of tetraplegic individuals should 

generalize to able-bodied individuals. However, this generalization hypothesis has so far lacked 

direct, quantitative comparisons between tetraplegic and able-bodied individuals. Thus, as human 

BCI studies expand beyond replicating results and begin to challenge conventional wisdom, 

neuroscientists have questioned whether cortical reorganization could influence these novel 

phenomena (see Discussions of (Flesher et al., 2016; Armenta Salas et al., 2018; Stavisky et al., 

2019; Willett et al., 2020; Chivukula et al., 2021; Fifer et al., 2021; Andersen and Aflalo, 2022)). As 

an example of a novel discovery, a recent BCI study found that the hand knob of tetraplegic 

individuals is directionally tuned to movements of the entire body (Willett et al., 2020), challenging 

the traditional notion that primary somatosensory and motor subregions respond selectively to 

individual body parts (Penfield and Boldrey, 1937). Given the brain’s capacity for reorganization 

(Jain et al., 2008; Kambi et al., 2014), could these BCI results be specific to cortical remapping? 

Detailed comparisons with able-bodied individuals, as shown here, may help shed light on this 

question. 
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2.4.3 Matching finger organization between tetraplegic and able-bodied participants 

We asked whether participant NS’s BCI finger representations resembled that of able-bodied 

individuals or whether her finger representations had reorganized after paralysis. Single-neuron 

recordings of PC-IP during individuated finger movements are not available in either able-bodied 

human participants or non-human primates. However, many fMRI studies have characterized finger 

representations (Yousry et al., 1997; Ejaz et al., 2015; Kikkert et al., 2016, 2021), and 

representational similarity analysis (RSA) has previously shown RDM correspondence between 

fMRI and single-neuron recordings of another cortical region (inferior temporal cortex) 

(Kriegeskorte et al., 2008b). This match was surprising because single-neuron and fMRI recordings 

differ fundamentally; single-neuron recordings sparsely sample 102 neurons in a small region, while 

fMRI samples 104 – 106 neurons/voxel (Kriegeskorte and Diedrichsen, 2016; Guest and Love, 2017). 

The correspondence suggested that RSA might identify modality-invariant neural organizations 

(Kriegeskorte et al., 2008b), so here we used fMRI recordings of human PC-IP as an able-bodied 

model. 

We found that participant NS exhibited a consistent finger representational structure across 

sessions, and this representational structure matched the able-bodied fMRI model better than the 

task-optimal, unstructured model. When compared with individual able-bodied participants, 

participant NS’s finger organization was also quite typical, in part due to the relative variability in 

PC-IP fMRI representational structure across able-bodied participants. 

The motor cortex (MC) fMRI finger representation is well-studied and has been shown to 

reflect the patterns of natural hand use (Ejaz et al., 2015; Kikkert et al., 2016; Wesselink et al., 2019), 

so we also considered a model constructed from MC fMRI recordings. Compared to the PC-IP fMRI 

finger representation, MC represents the non-thumb fingers more distinctly from each other 

(Supplementary Figure 2.6). Interestingly, participant NS’s finger RDMs more strongly matched the 

able-bodied MC fMRI model, reaching similarities close to the theoretical maximum 

(Supplementary Figure 2.8 and Supplementary Figure 2.10). This result does obscure a 

straightforward interpretation of the RSA results—why does our recording area match MC better 

than the corresponding implant location? Several factors might contribute, including differing 

neurovascular sensitivity to the early and late phases of the neural response (Figure 2.4e), 

heterogeneous neural organizations across the single-neuron and voxel spatial scales (Kriegeskorte 

and Diedrichsen, 2016; Guest and Love, 2017; Arbuckle et al., 2020), or mismatches in functional 

anatomy between participant NS and standard atlases (Eickhoff et al., 2018). Furthermore, fMRI 

BOLD contrast is thought to reflect cortical inputs and intracortical processing (Logothetis et al., 

2001). Thus, the match between PC-IP spiking output and MC fMRI signals could also suggest that 

PC-IP sends signals to MC, thereby driving the observed MC fMRI structure. 

Even so, it is striking that participant NS’s finger representation matches the neural and hand 

use patterns (Figure 2.4b and Supplementary Figure 2.12) of able-bodied individuals. Despite the 

lack of overt movement or biomechanical constraints (Lang and Schieber, 2004a), the measured 

finger representation still reflected these usage-related patterns. This result matches recent 

sensorimotor cortex studies of tetraplegic individuals, where MC decoding errors (Jorge et al., 2020) 

and S1 finger somatotopy (Kikkert et al., 2021) appeared to reflect able-bodied usage patterns. Taken 

together with our dynamics analyses (see below Discussion), the evidence supports the interpretation 
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that motor representations are preserved after paralysis. Comparisons with single-neuron recordings 

from able-bodied participants would validate this interpretation but may be difficult to acquire. 

2.4.4 Able-bodied-like finger representation is not explained by learning 

Hand use patterns shape neural finger organization (Ejaz et al., 2015; Kikkert et al., 2016; Wesselink 

et al., 2019), so we considered the possibility that participant NS’s able-bodied-like representational 

structure also emerged from BCI usage patterns after paralysis. Contrary to this hypothesis, her BCI 

finger representational structure changed minimally over weeks (Figure 2.3). Furthermore, even 

though participant NS’s representational structure contributed to BCI errors (Figure 2.1b) and she 

was anecdotally cognizant of which fingers would get confused, she did not increase the neural 

distance between fingers with experience. This relative stability suggests that the measured 

representational structure has been stable after paralysis, rather than emergent from BCI learning. 

The stability of finger representations here suggests that BCIs can benefit from the pre-

existing, natural repertoire (Hwang et al., 2013), although learning can play an important role under 

different experimental constraints. In our study, the participant received only a delayed, discrete 

feedback signal after classification (Figure 2.1a). Because we were interested in understanding 

participant NS’s natural finger representation, we did not artificially perturb the BCI mapping. When 

given continuous feedback, however, participants in previous BCI studies could learn to adapt to 

within-manifold perturbations to the BCI mapping (Ganguly and Carmena, 2009; Sadtler et al., 

2014; Vyas et al., 2018; Sakellaridi et al., 2019). BCI users can even slowly learn to generate off-

manifold neural activity patterns when the BCI decoder perturbations were incremental (Oby et al., 

2019). Notably, learning was inconsistent when perturbations were sudden, indicating that learning 

is sensitive to specific training procedures. 

So far, most BCI learning studies have focused on two-dimensional cursor control. To further 

understand how much finger representations can be actively modified, future studies could benefit 

from perturbations (Oby et al., 2019; Kieliba et al., 2021), continuous low-latency neurofeedback 

(Ganguly and Carmena, 2009; Vyas et al., 2018; Oby et al., 2019), and additional participants. Time-

variant BCI decoding algorithms, such as recurrent neural networks (Sussillo et al., 2012; Willett et 

al., 2021), could also help facilitate learning specific to different time windows of finger movement. 

2.4.5 Representational dynamics are consistent with PPC as a forward model 

In able-bodied individuals, PPC is thought to maintain a forward estimate of movement state 

(Wolpert et al., 1998; Desmurget and Grafton, 2000; Mulliken et al., 2008a; Aflalo et al., 2015; 

McNamee and Wolpert, 2019). As such, PPC receives delayed multimodal sensory feedback and is 

hypothesized to receive efference copies of motor command signals (Andersen et al., 1997; Mulliken 

et al., 2008a). This hypothesized role predicts that PPC houses multiple functional representations, 

each engaged at different time points of motor production. 

To dissociate these neural processes, we performed a time-resolved version of 

representational similarity analysis (Figure 2.4). We considered three component models: muscle, 

usage, and somatotopic (Ejaz et al., 2015). Our temporal analysis showed a consistent ordering: early 

emergence of the muscle model followed by the somatotopic model. 

This ordering was consistent when exchanging the muscle and hand-usage component 

models (Figure 2.4 and Supplementary Figure 2.14), as hand-usage and muscle activation patterns 
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are strongly correlated for individual finger movements (Overduin et al., 2012). Therefore, we group 

these two models under the single concept of motor production. In the future, more complex multi-

finger movements (Ejaz et al., 2015) would help distinguish between muscle and hand-usage models. 

The somatotopic model predicts that neighboring fingers will have similar cortical activity 

patterns (Ejaz et al., 2015). We note that prior fMRI studies described this representational structure 

as “somatotopic” and captured the spatial relationship between fingers using equidistant Gaussian 

receptive fields (Ejaz et al., 2015; Schellekens et al., 2018). Gaussian receptive fields have been 

useful tools for understanding digit topographies within the sensorimotor cortex  (Schellekens et al., 

2018, 2021). In another study with participant NS, we found that the same PC-IP population encodes 

actual touch (Chivukula et al., 2021) with Gaussian-like receptive fields. Based on these results, the 

somatotopic model can be thought of as a sensory-consequence model. However, because participant 

NS has no sensation below her shoulders, we interpret the somatotopic model as the preserved 

prediction of the sensory consequences of a finger movement. These sensory outcome signals could 

be the consequence of internal computations within the PPC or could come from other structures 

important for body-state estimation, such as the cerebellum (McNamee and Wolpert, 2019). 

The 170ms timing difference we found roughly matches the 60ms + 60ms delay between 

feedforward muscle activation and somatosensory afferents (Scott, 2016; Sollmann et al., 2017) in 

able-bodied individuals. Given PPC’s hypothesized role as a forward model, PPC likely integrates 

motor planning and production signals to predict sensory outcomes at such a timing (Wolpert et al., 

1998; Desmurget and Grafton, 2000; Mulliken et al., 2008a; McNamee and Wolpert, 2019). 

Alternatively, because participant NS cannot move overtly, the sensory-consequences model could 

instead reflect the error between the internal model’s expected sensory outcomes and the actual (lack 

of) sensory feedback (Adams et al., 2013). In either scenario, the match in timing between BCI 

control and able-bodied individuals provides further evidence that the recorded motor circuits have 

preserved their functional role. 

2.4.6 Preserved motor representations in PC-IP after paralysis 

A persistent question in neuroscience has been how experience shapes the brain, and to what extent 

existing neural circuits can be modified. Early studies by Merzenich, Kaas, and colleagues showed 

that the primary somatosensory cortex reorganized after amputation, with intact body parts invading 

the deprived cortex (Merzenich et al., 1984; Pons et al., 1991; Qi et al., 2000). However, the authors 

also recognized that the amputated body part might persist in latent somatosensory maps. Since then, 

preserved, latent somatosensory representations have been demonstrated in studies of amputation 

(Kikkert et al., 2016; Bruurmijn et al., 2017; Makin and Bensmaia, 2017; Wesselink et al., 2019) and 

even paralysis (Flesher et al., 2016; Armenta Salas et al., 2018; Fifer et al., 2021; Kikkert et al., 

2021). Overall, deafferentation appears to expand the remaining regions slightly, even while the pre-

injury structure persists in the deafferented cortex (Makin and Bensmaia, 2017). Fewer studies have 

investigated sensorimotor plasticity beyond the primary somatosensory and motor cortex, but our 

results in PC-IP indicate that association areas can also remain stable after paralysis. 

The topic of cortical reorganization has long been significant to the development of BCIs, 

particularly when deciding where to implant recording electrodes. If, as previously thought, sensory 

deprivation drives cortical reorganization and any group of neurons can learn to control a prosthetic 

(Fetz, 1969; Moritz and Fetz, 2011), the specific implant location would not affect BCI performance. 
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However, our results and others (Smirnakis et al., 2005; Hwang et al., 2013; Kikkert et al., 2016, 

2021; Bruurmijn et al., 2017; Makin and Bensmaia, 2017; Wesselink et al., 2019) suggest that the 

pre-injury properties of brain regions do affect BCI performance. Even though experience shapes 

neural organization (Merzenich et al., 1984; Ejaz et al., 2015; Wesselink et al., 2019), representations 

may be remarkably persistent once formed (Wesselink et al., 2019; Kikkert et al., 2021). Thus, even 

though BCIs bypass limbs and their biomechanical constraints (Lang and Schieber, 2004a), BCIs 

may still benefit from tapping into the preserved, natural (Hwang et al., 2013) movement repertoire 

of motor areas. 

As BCIs enable more complex motor skills, such as handwriting (Willett et al., 2021), future 

studies could investigate whether these complex skills also retain their pre-injury representational 

structure. For example, does a tetraplegic participant’s BCI handwriting look like their physical, pre-

injury handwriting? These results will have important implications for the design of future neural 

prosthetics. 

2.5 Methods 

2.5.1 Data collection 

2.5.1.1 Study participant 

The study participant NS has an AIS-A spinal cord injury at cervical level C3-C4 that she sustained 

approximately ten years before this study. Participant NS cannot move or feel her hands. As part of 

a BCI clinical study (ClinicalTrials.gov identifier: NCT01958086), participant NS was implanted 

with two 96-channel Neuroport Utah electrode arrays (Blackrock Microsystems model numbers 

4382 and 4383). She consented to the surgical procedure as well as to the subsequent clinical studies 

after understanding their nature, objectives, and potential risks. All procedures were approved by the 

California Institute of Technology, Casa Colina Hospital and Centers for Healthcare, and the 

University of California, Los Angeles Institutional Review Boards. 

2.5.1.2 Multielectrode array implant location 

The recording array was implanted over the hand/limb region of the left PPC at the junction of the 

intraparietal sulcus (IPS) with the postcentral sulcus (PCS) (Supplementary Figure 2.1; Talairach 

coordinates [−36 lateral, 48 posterior, 53 superior]). We previously (Aflalo et al., 2015; Klaes et al., 

2015; Zhang et al., 2017) referred to this brain area as the anterior intraparietal area (AIP), a region 

functionally defined in non-human primates (NHPs). Here we describe the implanted area 

anatomically, denoting it the postcentral-intraparietal area (PC-IP). More details regarding the 

methodology for functional localization and implantation can be found in (Aflalo et al., 2015).   

2.5.1.3 Neural data preprocessing 

Using the NeuroPort system (Blackrock Microsystems), neural signals were recorded from the 

electrode array, amplified, analog bandpass-filtered (0.3 Hz to 7.5 kHz), and digitized (30 kHz, 250 

nV resolution). A digital high-pass filter (250 Hz) was then applied to each electrode. 

 Threshold crossings were detected at a threshold of –3.5 x RMS (root-mean-square of an 

electrode’s voltage time-series). Threshold crossings were used as features for in-session BCI 
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control. For all other analyses, we used k-medoids clustering on each electrode to spike-sort the 

threshold crossing waveforms. The first 𝑛 ∈ {2, 3, 4} principal components were used as input 

features to k-medoids, where 𝑛 was selected for each electrode to account for 95% of waveform 

variance. The gap criteria (Tibshirani et al., 2001) was used to determine the number of waveform 

clusters for each electrode.  

2.5.2 Experimental setup 

2.5.2.1 Recording sessions 

Experiments were conducted in 2–3-hour recording sessions at Casa Colina Hospital and Centers 

for Healthcare. All tasks were performed with participant NS seated in her motorized wheelchair 

with her hands resting prone on the armrests. Participant NS viewed text cues on a 27-inch LCD 

monitor that occupied approximately 40 degrees of visual angle. Cues were presented using the 

psychophysics toolbox (Brainard, 1997) for MATLAB (Mathworks). 

The data were collected on 9 days over 6 weeks. Almost all experiment days were treated as 

individual sessions (i.e., the day’s recordings were spike-sorted together). The second experiment 

day (2018-09-17) was an exception, with data being recorded in a morning period and an afternoon 

period with a sizable rest in between. To reduce the effects of recording drift, we treated the two 

periods as separate sessions (i.e., spike-sorted each separately) for a total of 10 sessions. Each session 

can thus be considered a different resampling of a larger underlying neural population, with both 

unique and shared neurons each session. We did not re-run the calibration task for the afternoon 

session, resulting in 9 sessions of the calibration task for Supplementary Figure 2.3b. 

Each session consisted of a series of 2–3 minute, uninterrupted “runs” of the task. The 

participant rested for a few minutes between runs as needed.  

2.5.2.2 Calibration task 

At the beginning of each recording session, the participant performed a reaction-time finger flexion 

task (Supplementary Figure 2.2; denoted “calibration task” in the Results) to train a finger classifier 

for subsequent runs of the primary task. On each trial, a letter appeared on the screen (e.g., “T” for 

thumb). The participant was instructed to immediately flex the corresponding finger on the right 

hand (contralateral to the implant), as though pressing a key on a keyboard. The condition order was 

block-randomized, such that each condition appeared once before repetition. The classifier was then 

calibrated according to the Finger Classification section. 

2.5.2.3 Finger flexion grid task 

In the primary task, movement cues were arranged in a 3 x 4 grid of letters on the screen (Figure 

2.1a). Each screen consisted of two repetitions each of T (thumb), I (index), M (middle), R (ring), P 

(pinky/little), and X (No-Go) arranged randomly on the grid. Each trial lasted three seconds. At the 

beginning of each trial, a new cue was randomly selected with a crosshairs indicator, which jittered 

randomly to prevent letter occlusion. Each cue was selected once (for a total of 12 trials) before the 

screen was updated to a new arrangement. Each run consisted of 3–4 screens. 

On each trial, the participant was instructed to immediately 1) saccade to the cued target, 2) 

fixate, and 3) attempt to press the corresponding finger. During both movement and No-Go trials, 



 

 

25 

the participant was instructed to fixate on the target at least until the visual classification feedback 

was shown. The cue location randomization was used to investigate whether cue location would 

affect movement representations. 

On each trial, 1.5 seconds after cue presentation, the classifier decoded the finger movement 

and presented its prediction via text feedback overlaid on the cue. 

2.5.2.4 No-movement control task 

The control task was like the primary task, except that the subject was instructed to saccade to each 

cued letter and fixate without attempting any finger movements. No classification feedback was 

shown. 

2.5.3 Statistical analysis 

2.5.3.1 Unit selection 

Single-unit neurons were identified using the k-medoids clustering method, as described in the 

Neural Data Preprocessing section. Analyses in the main text used all identified units, regardless of 

sort quality. With spike-sorting, there is always the possibility that a single waveform cluster 

corresponds to activity from multiple neurons. To confirm that potential multi-unit clustering did not 

bias our results, we repeated our analyses using only well-isolated units (Supplementary Figure 

2.15). 

Well-isolated single units were identified using the L-ratio metric (Schmitzer-Torbert et al., 

2005). The neurons corresponding to the lowest third of L-ratio values (across all sessions) were 

selected as “well-isolated.” This corresponded to a threshold of 𝐿𝑟𝑎𝑡𝑖𝑜 = 10−1.1 dividing well-

isolated single units and potential multi-units (Supplementary Figure 2.15). 

2.5.3.2 Single-unit tuning to finger flexion 

We calculated the firing rate for each neuron in the window [0.5, 1.5] seconds after cue presentation. 

To calculate significance for each neuron (Supplementary Figure 2.4), we used a two-tailed t-test 

comparing each movement’s firing rate to the No-Go firing rate. A neuron was considered 

significantly tuned to a movement if P < 0.05 (after FDR correction). We also computed the mean 

firing rate change between each movement and the No-Go condition. If a neuron was significantly 

tuned to at least one finger, we denoted the neuron’s “best finger” as the significant finger with the 

largest effect size (mean firing rate change). For each neuron and finger, we also calculated the 

discriminability index (d', RMS standard deviation) between the baseline (No-Go) firing rate and the 

firing rate during finger movement. 

In Supplementary Figure 2.4, neurons were pooled across all 10 sessions. Neurons with mean 

firing rates less than 0.1 Hz were excluded to minimize sensitivity to discrete spike-counting. 

2.5.3.3 Finger classification 

To classify finger movements from firing rate vectors, we used linear discriminant analysis (LDA) 

with diagonal covariance matrices (Dudoit et al., 2002) (a form of regularization); diagonal LDA is 

also equivalent to Gaussian Naive Bayes (GNB) when GNB assumes that all classes share a 

covariance matrix. 
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We used data from the calibration task to fit the BCI classifier. Input features (firing rate 

vectors) were calculated by counting the number of threshold crossings on each electrode during a 

1-second time window within each trial’s movement execution phase. The exact time-window was 

a hyperparameter for each session and was chosen to maximize the cross-validated accuracy on the 

calibration dataset. Electrodes with mean firing rates less than 1 Hz were excluded to prevent low-

firing rate discretization effects. This classifier was then used in subsequent online BCI control for 

the main task (finger flexion grid). 

During online control of the finger flexion grid task, input features were similarly constructed 

by counting the threshold crossings from each electrode in a 1-second time window. This time 

window was fixed to [0.5, 1.5] seconds after cue presentation. The window start-time was chosen 

based on the estimated saccade latency in the first experimental session. The saccade latency was 

estimated by taking the median latency for the subject to look > 80% of the distance between targets. 

The analysis window was a priori determined to be 1 second; this choice was supported post-hoc by 

a sliding window analysis (not shown), which confirmed that finger movements could be accurately 

classified up to 1.6 seconds after cue. The online classifier was occasionally retrained using data 

from this main task, usually every 4 run-blocks. 

Offline classification accuracy (Supplementary Figure 2.3) was computed using leave-one-

out cross-validation (within each session). We used features from the same time window as the 

online control task. However, offline analyses used firing rates after spike-sorting, instead of raw 

threshold crossings. 

In the Results section, reported classification accuracies aggregate trials over all sessions (as 

opposed to averaging the accuracies across sessions with different numbers of trials). Reported 

standard deviations indicate variability across sessions, weighted by the number of trials in each 

session. To visualize confusion matrices, trials were pooled across sessions. Confusion matrix counts 

were normalized by row sum (true label) to display confusion percentages. 

In the first session (2018-09-10), the No-Go condition (X) was not cued in the calibration task, so 

the classifier did not output No-Go predictions during that session. However, No-Go conditions were 

cued in the main task; these 84 No-Go trials were thus excluded from the online control accuracy 

metrics (Figure 2.1b), but they were included in the offline cross-validated confusion matrix 

(Supplementary Figure 2.3). 

2.5.3.4 Cross-validated neural distance 

We quantified the dissimilarity between the neural activity patterns of each finger pair (𝑗, 𝑘), using 

the cross-validated (squared) Mahalanobis distance (Nili et al., 2014; Schütt et al., 2019): 

𝑑𝑗𝑘
2 = (𝑏𝑗 − 𝑏𝑘)

𝐴
(

𝛴𝐴 +  𝛴𝐵

2
 )

−1

(𝑏𝑗 − 𝑏𝑘)
𝐵

𝑇
 / 𝑁  

Equation 2.1 

where 𝐴 and 𝐵 denote independent partitions of the trials, Σ are the partition-specific noise 

covariance matrices, (𝑏𝑗, 𝑏𝑘) are the trial measurements of firing rate vectors for conditions (𝑗, 𝑘), 

and 𝑁 normalizes for the number of neurons. The units of 𝑑𝑗𝑘
2  are unitless2/neuron. 
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The cross-validated Mahalanobis distance, also referred to as the “crossnobis” distance 

(Schütt et al., 2019), measures the separability of multivariate patterns, analogous to LDA 

classification accuracy (Nili et al., 2014). To generate independent partitions 𝐴 and 𝐵 for each 

session, we stratified-split the trials into 5 non-overlapping subsets. We then calculated the 

crossnobis distance for all combinations of subsets (𝐴, 𝐵) and averaged the results. Cross-validation 

ensures that the (squared) distance estimate is unbiased; 𝐸[𝑑𝑗𝑘
2 ] = 0 when the underlying 

distributions are identical (Walther et al., 2016). The noise covariance Σ was regularized (Ledoit and 

Wolf, 2003) to guarantee invertibility. 

Similar results were also obtained when estimating neural distances with the cross-validated 

Poisson symmetrized KL-divergence (Schütt et al., 2019) (Supplementary Figure 2.8). 

2.5.3.5 Representational models 

We used representational dissimilarity matrices (RDMs) to describe both the type and format of 

information encoded in a recorded population. To make these RDMs, we calculated the distances 

between each pair of finger movements and organized the 10 unique inter-finger distances into a 

[𝑛𝑓𝑖𝑛𝑔𝑒𝑟𝑠, 𝑛𝑓𝑖𝑛𝑔𝑒𝑟𝑠]-sized representational dissimilarity matrix (RDM) (Figure 2.2d). Conveniently, 

the RDM abstracts away the underlying feature types, enabling direct comparison with RDMs across 

brain regions (Kietzmann et al., 2019), subjects, or recording modalities (Kriegeskorte et al., 2008b). 

We also used RDMs to quantify hypotheses about how the brain might represent different 

actions. In Figure 2.2b, we generated an able-bodied model RDM using fMRI data from two 

independent studies: (Kieliba et al., 2021) (N = 29, pre-intervention, right hand, 3T scans) and (Ejaz 

et al., 2015) (N = 7, no intervention, right hand, 7T scans). The fMRI ROI was selected to match 

participant NS’s anatomical implant location (PC-IP). Specifically, a 4mm geodesic distance around 

vertex 7123 was initially drawn in fs_LR_32k space, then resampled onto fsaverage. The RDM for 

each subject was then calculated using the cross-validated (squared) Mahalanobis distance between 

fMRI activity patterns. Based on a permutation shuffle test, RDMs were similar between the studies’ 

groups of participants, so we aggregated the RDMs into a single dataset here. The MC RDMs 

(Supplementary Figure 2.6) used data from the same scans (Ejaz et al., 2015; Kieliba et al., 2021), 

with ROIs covering Brodmann area 4 near the hand knob of the precentral gyrus. 

In Figure 2.4 and its supplemental figures, we decomposed the data RDMs into model RDMs 

borrowed from (Ejaz et al., 2015). The hand usage model was constructed using the velocity time 

series of each finger's MCP joint during everyday tasks (Ingram et al., 2008). The muscle activity 

model was constructed using EMG activity during single- and multi-finger tasks. The somatotopic 

model is based on a cortical sheet analogy and assumes that finger activation patterns are linearly 

spaced Gaussian kernels across the cortical sheet. The somatotopic model is based on a cortical sheet 

analogy and assumes that finger activation patterns are linearly spaced Gaussian kernels across the 

cortical sheet. Further modeling details are available in the methods section of (Ejaz et al., 2015). 

2.5.3.6 Comparing representational structures 

We used the rsatoolbox Python library (Schütt et al., 2019) to calculate data RDMs and compare 

them with model RDMs (representational similarity analysis (Kriegeskorte et al., 2008a), RSA). 
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To quantify model fit, we used the whitened unbiased RDM cosine similarity (WUC) metric 

(Diedrichsen et al., 2021), which (Diedrichsen et al., 2021) recommend for models that predict 

continuous real values. We used WUC instead of Pearson correlation for two reasons (Diedrichsen 

et al., 2021). First, cosine similarity metrics like WUC properly exploit the informative zero point; 

we used an unbiased distance estimate, so 𝑑𝑗𝑘
2 = 0 indicates that the distributions (𝑗, 𝑘) are identical. 

Second, Pearson correlation assumes that observations are independent, but the elements of each 

RDM covary (Diedrichsen et al., 2021) because the underlying dataset is shared. For example, the 

(thumb, middle)-pairwise dissimilarity uses the same thumb data as the (thumb, ring)-pairwise 

dissimilarity. 

Like correlation similarities, a larger WUC indicates a better match, and the maximum WUC 

value is 1. However, cosine similarities like WUC are often larger than the corresponding correlation 

values or are even close to 1 (Diedrichsen et al., 2021). Thus, while correlation values can be 

compared against a null hypothesis of 0-correlation, WUC values should be interpreted by 

comparing against a baseline. The baseline is usually (Diedrichsen et al., 2021) chosen to be a null 

model where all conditions are pairwise-equidistant (and would thus correspond to 0-correlation). In 

this study, this happens to correspond to the unstructured model. For more details about interpreting 

the WUC metric, see (Diedrichsen et al., 2021). 

To demonstrate that our model comparisons were robust to the specific choice of RDM 

similarity metric, we also show model fits using whitened Pearson correlation in Supplementary 

Figure 2.8. Whitened Pearson correlation is a common alternative to WUC (Diedrichsen et al., 2021). 

2.5.3.7 Noise ceiling for model fits 

Measurement noise and behavioral variability cause data RDMs to vary across repetitions, so even 

a perfect model RDM would not achieve a WUC similarity of 1. To estimate the noise ceiling (Nili 

et al., 2014) (the maximum similarity possible given the observed variability between data RDMs), 

we assume that the unknown, perfect model resembles the average RDM. Specifically, we calculated 

the average similarity of each individual-session RDM (Supplementary Figure 2.7) with the mean 

RDM across all other sessions (i.e., excluding that session): 

𝐶̂  =  
1

𝐷
∑ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑟𝑑 , 𝑟̅𝑗≠𝑑)

𝐷

𝑑=1

 

𝑟̅𝑗≠𝑑 =
1

𝐷 − 1
∑ 𝑟𝑗

𝑗≠𝑑

 

Equation 2.2 

where similarity is the WUC similarity function, 𝐷 is the number of RDMs, 𝑟𝑑 refers to a single 
RDM from an individual session, and 𝐶̂ is the “lower” noise ceiling. This noise ceiling is analogous 

to leave-one-out-cross-validation. If a model achieves the noise ceiling, the model fits the data well 

(Nili et al., 2014). 
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2.5.3.8 Measuring changes in the representational structure 

To assess the effect of BCI task experience on the inter-finger distances, we performed a linear 

regression analysis (Figure 2.3b and Supplementary Figure 2.11). We first subdivided each session’s 

dataset into individual runs and calculated separate RDMs for each (session, run) index. We then 

used linear regression to predict each RDM’s (squared) inter-finger distances from the session index, 

run index, and finger pair: 

𝑑𝑗𝑘
2 = 𝛽𝑗𝑘 + 𝛽𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠 + 𝛽𝑟𝑢𝑛𝑟 + 𝛽0 

Equation 2.3 

where 𝛽0 is the average inter-finger distance, 𝛽𝑗𝑘 is the coefficient for finger-pair (𝑗, 𝑘),  𝑠 is the 

session index, and 𝑟 is the run index. |𝛽𝑠𝑒𝑠𝑠𝑖𝑜𝑛| > 0 would suggest that RDMs are dependent on 

experience across sessions. |𝛽𝑟𝑢𝑛| > 0 would suggest that RDMs depend on experience across runs 

within a session. For t-tests, we conservatively estimated the degrees-of-freedom as the number of 

RDMs, because the individual elements of each RDM covary and thus are not independent 

(Diedrichsen et al., 2021). The effect sizes for the session-index predictor and the run-index predictor 

were quantified using Cohen’s 𝑓2 (Cohen, 1988),  comparing against the finger-pair-only model as 

a baseline. 

For t-tests without significant differences, we also calculated Bayes factors (BF) to determine 

the likelihood of the null hypothesis, using the common threshold that Bayes factor < 1/3 

substantially supports the null hypothesis (Dienes, 2014). Bayes factors were computed using the R 

package BayesFactor (Morey et al., 2015) with default priors. To calculate Bayes factors for one-

sided t-tests (for example, 𝛽 > 0), we sampled (N = 106) from the posterior of the corresponding 

two-sided t-test (|𝛽| > 0), calculated the proportion of samples that satisfied the one-sided 

inequality, and divided by the prior odds 
𝑃(𝛽>0)

𝑃(|𝛽|>0)
 =  

1

2
  (Morey and Wagenmakers, 2014). 

2.5.3.9 Linear combinations of models 

We modeled the finger RDM (in vector form) as a zero-intercept, non-negative linear combination 

(Jozwik et al., 2016) of potentially predictive model RDMs: usage, muscle, and somatotopic (Figure 

2.4). 

First, we used the variance inflation factor (VIF) to assess multicollinearity between the 

hypothesized models. For each model (e.g., usage), we calculated the standard, ordinary least squares 

(OLS)-based VIF (VIFusage,OLS), and we also calculated a modified VIF (VIFusage,NNLS) based on non-

negative least squares (NNLS). 

VIF𝑗,OLS =
1

1 − 𝑅𝑀𝑗|𝑀−𝑗

2  

Equation 2.4 

where 𝑅𝑀𝑗|𝑀−𝑗

2  is the 𝑅2 from an OLS regression predicting RDM 𝑀𝑗 from all other RDMs 𝑀−𝑗. 

VIFOLS values above a threshold indicate that multicollinearity is a problem; VIF>5 or VIF>10 are 
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common thresholds (James et al., 2013). Here, we constrained the linear combination coefficients to 

be non-negative, which can sometimes mitigate multicollinearity. Thus, we also calculated VIFNNLS, 

which follows the same equation above, except that we use NNLS to predict 𝑀𝑗 from 𝑀−𝑗. 

Because multicollinearity was a problem here, we next determined the best subset of model 

RDMs to use. We used NNLS to predict the data RDM from the model RDMs. We estimated the 

model fits using leave-one-session-out cross-validation. To estimate model-fit uncertainty, we 

bootstrapped RDMs (sessions) over the cross-validation procedure (Schütt et al., 2019). We then 

used the “one-standard error” rule (James et al., 2013) to select the best parsimonious model, 

choosing the simplest model within one standard error of the best model fit. 

2.5.3.10 Representational dynamics analysis 

To investigate how the finger movement representational structure unfolds over time, we used a 

time-resolved version of representational similarity analysis (Kietzmann et al., 2019) (Figure 2.4a). 

At each timepoint within a trial, we computed the instantaneous firing rates by binning the spikes in 

a 200ms time window centered at that point. These firing rates were used to calculate cross-validated 

Mahalanobis distances between each pair of fingers and generate an RDM. Snapshots (Figure 2.4e) 

show single-timepoint RDMs averaged across sessions. 

The temporal sequence of RDMs constitutes an RDM movie (size 

[𝑛𝑓𝑖𝑛𝑔𝑒𝑟𝑠, 𝑛𝑓𝑖𝑛𝑔𝑒𝑟𝑠, 𝑛𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡𝑠]) that visualizes the representational trajectory across the trial 

duration. RDM movies were computed separately for each recording session. At each time point, we 

linearly decomposed the data RDM into the component models using nonnegative least squares. 

Because the component models were multicollinear, component models were limited to the subsets 

chosen in the previous model reduction step. Each component RDM was normalized by its vector 

length (ℓ2-norm) before decomposition to allow comparison between coefficient magnitudes. We 

used bootstrapped sampling of RDMs across sessions and decomposed the bootstrap-mean RDM to 

generate confidence intervals on the coefficients. 

We computed the start-time of each model component as the time at which the corresponding 

mixture coefficient exceeded 0.2 (about 25% of the median peak-coefficient across models and 

sessions). 

2.5.4 Data availability 

Data is available on the BRAIN Initiative DANDI Archive at: 

https://dandiarchive.org/dandiset/000147 

2.5.5 Code availability 

Analysis code is available on GitHub at: 

https://github.com/AndersenLab-Caltech/fingers_rsa 
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2.7 Supplementary Material 

 

Supplementary Figure 2.1. Multielectrode array implant location. Figure and legend text 

have been reproduced from Figure S1 of (Aflalo et al., 2020) (CC BY-NC 4.0) 
We used fMRI to identify cortical regions involved in imagined reaching and grasping actions. The participant 

performed two complementary tasks to ensure activation was robust across paradigms. 

(a) Event-related task design. Following an intertrial interval, the subject was cued to perform a specific imagined 

movement (precision grasp, power grasp, or reach without hand shaping). Following the cue, a cylindrical object was 

displayed. If the object was intact, the subject imagined performing the cued movement. If the object was broken, the 

subject withheld movement. 

(b) Block task design. Eight blocks were presented for 30 seconds per run. During the first 15 seconds of each block, 

common objects were presented every three seconds in varying spatial locations. Before each run, the subject was 

instructed to either imagine pointing at, imagine reaching and grasping, or look naturally at the object. During the last 

15 seconds of each block, scrambled images were presented, and the subject was instructed to guess the identity of 

the object. 

(c) Statistical parametric map showing voxels with significant activity for grasping (“Go” versus “No-Go”) (p < 0.01, 

FDR-corrected), based on task (a). Array location and cortical landmarks are depicted in the legend. 

(d) Statistical parametric map showing voxels with significant activation (P < 0.01, FDR-corrected) for grasping 

versus looking, based on task (b). 

https://creativecommons.org/licenses/by-nc/4.0/
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Supplementary Figure 2.2. Calibration task. 
Task structure, single trial. Each trial consisted of an intertrial interval (ITI) and a reaction-time Go phase. During the 

Go phase, green text specified which digit to flex. All letters were overlaid in gray to minimize visual differences 

between ITI and Go phases. 

(Legend) T = thumb, I = index, M = middle, R = ring, P = pinky, X = no movement 
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Supplementary Figure 2.3. Robust cross-validated finger classification during main and 

calibration tasks. 
(a) Confusion matrix of offline finger classification, cross-validated within single sessions. 4080 trials of the main 

task aggregated over 10 sessions. 

(b) Confusion matrix of offline finger classification, cross-validated within single sessions. 530 trials of the calibration 

task aggregated over 9 sessions. 

(Legend) T = thumb, I = index, M = middle, R = ring, P = pinky, X = no movement. Each entry (i, j) in the matrix 

corresponds to the ratio of movement i trials that were classified as movement j. 
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Supplementary Figure 2.4. Single-neuron encoding of individual fingers. 
All five fingers of the right (contralateral) hand were encoded within the population during movement execution. 

(a) Percentage of the population tuned significantly (P < 0.05, FDR-corrected) to flexion of each digit. Positive 

percentages indicate neurons that increased firing rate during digit movement and negative percentages bar indicate 

neurons that decreased firing rate. Error bars indicate a 95% bootstrap confidence interval. 

(b) Percentage of the population tuned best to each digit. 

(c) Cumulative distribution function of the population’s tuning significance p-values. 

(d) Histogram of d' (discriminability index) values across neurons. 

(a-d) Neurons were pooled across sessions.  
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Supplementary Figure 2.5. Gaze location did not affect finger decoding during the 

attempted-movement period. 
(a) Linear regression could not decode target location [x, y] coordinates from the neural activity during the attempted-

movement period. Violin plot shows that cross-validated regression r2 values are close to 0 across sessions, with each 

circle marking a single session. 

(b) A linear classifier (diagonal LDA) could not classify the gaze location from neural activity during the attempted-

movement period. Confusion matrix depicts cross-validated classifications of cue location.  

(c) Cross-validated classification accuracy for main and control tasks: a linear classifier (diagonal LDA) could not 

classify finger movements from neural activity during passive observation (orange) of the digit flexion task. Sliding 

bin width: 200ms. The shaded region indicates +/- s.e.m. (6 sessions passive viewing, 10 sessions attempted flexion). 
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Supplementary Figure 2.6. fMRI representational structure for finger movements, from 

(Kieliba et al., 2021) 
fMRI representational dissimilarity matrices (RDMs) for 3 individual subjects and the group mean (N = 29). Intuitive 

visualization of distances using multidimensional scaling (MDS) and Generalized Procrustes alignment (without 

scaling); ellipses show mean +/- s.d. across subjects. Regions of interest (ROIs): motor cortex (MC, top row) and 

junction of the postcentral and intraparietal sulci (PC-IP, bottom row). 
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Supplementary Figure 2.7. Individual representational dissimilarity matrices for each 

session. 
Representational dissimilarity matrices across all sessions, using the cross-validated Mahalanobis distance. “Average” 

RDM matches Figure 2.2d. 
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Supplementary Figure 2.8. Representational structure during BCI finger control matches 

the structure of able-bodied individuals when using alternative analysis parameters. 
(a) RDMs calculated with an alternative dissimilarity metric: cross-validated Poisson KL-divergence (Schütt et al., 

2019). Units: nats / neuron. Related to Supplementary Figure 2.7a and Figure 2.2d. 

(b) Fit between measured RDMs and motor-intact BOLD data using alternative metrics. Distance metric: cross-

validated Poisson KL-divergence. Similarity metric: whitened RDM Pearson correlation (Diedrichsen et al., 2021). 

Similar to Figure 2.2f.  

(c) Representational dynamics calculated with an alternative dissimilarity metric: cross-validated Poisson KL-

divergence. Similar to Figure 2.4e. 
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Supplementary Figure 2.9. fMRI finger RDMs are more consistent across able-bodied 

participants in MC than in PC-IP 

Gardner-Altman estimation plot (Ho et al., 2019) of the WUC similarity between same-ROI pairs of RDMs (N = 630 

pairs between 36 subjects). Each circle on the swarm plot (left) marks the similarity for a pair of subjects. Horizontal 

black lines mark the mean pairwise similarity within each ROI. The curve (right) indicates the resampled (N = 5000) 

distribution of the effect size between ROIs, as measured by Cohen’s d. Cohen's d of PC-IP minus MC: –2.1 (95% 

CI: [–2.22, –1.99]). 
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Supplementary Figure 2.10. PC-IP finger representational structure of tetraplegic individual 

matches fMRI RDMs from MC even better than fMRI RDMs from PC-IP. 
(a) Measured RDMs match the able-bodied MC fMRI RDM better than they match the able-bodied PC-IP fMRI RDM 

(P = 1.9 × 10–6; two-tailed t-test, 1000 bootstrap samples over 10 sessions), as measured by the whitened unbiased 

cosine similarity (Diedrichsen et al., 2021) (WUC) (Methods). Violin plot: solid horizontal lines indicate the median 

WUC over bootstrap samples, and dotted lines indicate the first and third quartiles. Noise ceiling: gray region estimates 

the best possible model fit (Methods). Similar to Figure 2.2f. 

(b) Paired Gardner-Altman estimation plot (Ho et al., 2019) of the similarity (WUC) between participant NS (average 

RDM across sessions) and individual MC and PC-IP RDMs from able-bodied fMRI participants. The slopegraph’s 

connected points (left) show each fMRI participant’s (N = 36) MC and PC-IP similarities with participant NS’s mean 

finger RDM. Mean difference between PC-IP and MC similarities (right) presented as Cohen’s d (N = 5000 bootstrap 

samples). 
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Supplementary Figure 2.11. Inter-finger distances did not increase across sessions or within 

sessions. 
BCI classification errors could have encouraged inter-finger distances to increase to improve separability, but this did 

not occur. Inter-finger distances instead decreased slightly (across sessions: t(8) = –4.0, two tailed t-test P = 0.004; 

across runs within sessions: t(82) = –2.4, two-tailed t-test P = 0.019), although the effect size was very small (across 

sessions: Cohen’s 𝑓2 = 0.008; across runs within sessions: = 0.005). Markers indicate average pairwise distance for 

each finger pair and session (top) or run-within-session (bottom). 
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Supplementary Figure 2.12. Fit between measured RDM and linear combinations of models. 
Violin plot of WUC similarity between the measured RDM (N = 1000 bootstrap samples over 10 sessions) and the 

corresponding model combination. Violin plot: solid horizontal lines indicate the mean WUC over bootstrap samples, 

and dotted lines indicate the first and third quartiles. Horizontal lines (above) indicate significance groups, where the 

circle-indicated model is significant over the vertical-tick-indicated models (two-tailed t-test, q < 0.01, FDR-corrected 

for 28 model-pair comparisons). For example, the muscle+somatotopy combined model is significant over the 

individual muscle, hand usage, somatotopic, combined muscle+hand-usage, and pairwise-equidistant/unstructured 

(null) models. 
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Supplementary Figure 2.13. Temporal delays between component models are consistent 

across single sessions. 
When linear modeling within single sessions, the muscle model (blue) consistently preceded the somatotopic model 

(orange). Time difference: 170ms +/- 66ms (s.d. across sessions) (P = 0.002, two-sided Wilcoxon signed-rank test). 

Line styles indicate session. Related to Figure 2.4e. 
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Supplementary Figure 2.14. Representational dynamics are robust across tasks and model 

combination choices. 
(a) Representational dynamics analysis shows an early fit to the hand-usage model and a late fit to the somatotopic 

model. Confidence intervals indicate +/- s.e.m. across sessions. Related to Figure 2.4e. 

(b) Representational dynamics analysis shows a consistent delay between models during the calibration task. Note: 

the absolute timing differs from the main task because the calibration task does not require an initial saccade to read 

the cue. Related to Figure 2.4e.  
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Supplementary Figure 2.15. Well-isolated single neurons of the tetraplegic participant match 

the finger representational structure of able-bodied individuals. 
(a) Histogram of L-ratio, a spike-sorting cluster metric. Threshold for well-isolated units: 33% quantile (Lratio < 10–

1.1). 

(b) Representational dissimilarity matrices calculated only using well-isolated units, using the cross-validated 

Mahalanobis distance. Similar to Figure 2d and Supplementary Figure 2.7a. 

(c) Whitened unbiased similarity (WUC) between measured (b) RDMs (using only well-isolated units) and model 

predictions (Figure 2b-c), showing that the measured RDMs match the able-bodied fMRI RDM significantly better 

than they match the unstructured model (P = 3.1 × 10–10, two-tailed t-test) and the SPLa fMRI RDM (P = 1.7 × 10–8). 

Error bars indicate +/- s.e.m. Noise ceiling: gray region estimates the best possible model fit (Methods). Gray 

downward semicircle indicates that the noise ceiling is significantly higher (P < 0.001) than the fit of the SPLa fMRI 

RDM and the unstructured model. Similar to Figure 2.2f. 

(d) Representational dynamics analysis, repeated using only well-isolated units, shows an early fit to the muscle model 

and a late fit to the somatotopic model. Confidence intervals indicate +/- s.e.m. across sessions. Similar to Figure 2.4e. 
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3 Decoding and geometry of ten finger movements in human 

posterior parietal cortex and motor cortex 

3.1 Summary 

Objective. Enable neural control of individual prosthetic fingers for participants with upper-limb 

paralysis. 

Approach. Two tetraplegic participants were each implanted with a 96-channel array in the left 

posterior parietal cortex (PPC). One of the participants was additionally implanted with a 96-channel 

array near the hand knob of the left motor cortex (MC). Across tens of sessions, we recorded neural 

activity while the participants attempted to move individual fingers of the right hand. Offline, we 

classified attempted finger movements from neural firing rates using linear discriminant analysis 

(LDA) with cross-validation. The participants then used the neural classifier online to control 

individual fingers of a brain-machine interface (BMI). Finally, we characterized the neural 

representational geometry during individual finger movements of both hands. 

Main Results. The two participants achieved 86% and 92% online accuracy during BMI control of 

the contralateral fingers (chance = 17%). Offline, a linear decoder achieved ten-finger decoding 

accuracies of 70% and 66% using respective PPC recordings and 75% using MC recordings (chance 

= 10%). In MC and in one PPC array, a factorized code linked corresponding finger movements of 

the contralateral and ipsilateral hands. 

Significance. This is the first study to decode both contralateral and ipsilateral finger movements 

from PPC. Online BMI control of contralateral fingers exceeded that of previous finger BMIs. PPC 

and MC signals can be used to control individual prosthetic fingers, which may contribute to a hand 

restoration strategy for people with tetraplegia. 

3.2 Introduction 

Tetraplegic individuals identify hand function as a high-impact priority for improving their quality 

of life (Anderson, 2004; Snoek et al., 2004; Collinger et al., 2013a). Neuroprosthetics research has 

enabled control of basic grasp shapes (Hochberg et al., 2012; Collinger et al., 2013c; Klaes et al., 

2015; Wodlinger et al., 2015), an important step towards empowering paralyzed individuals to 

perform daily activities. However, these predefined grasp templates constrain the range of motion 

and thus limit the usefulness of existing neural prosthetics. 

The complexity of human motor behavior is largely enabled by our versatile, dexterous hands 

(Sobinov and Bensmaia, 2021). The human hand can weave intricate crafts, sign expressive 

languages, and fingerpick guitar solos. Even everyday manual behaviors, like turning a door handle, 

require volitional control over many degrees of freedom (Yan et al., 2020). Indeed, humans can 

move individual fingers much more independently than other animals, including monkeys (Schieber, 

1991; Häger-Ross and Schieber, 2000). To better restore autonomy to people with tetraplegia, neural 

prosthetics would benefit from enabling dexterous finger control. 

Intracortical brain-machine interface (BMI) research has largely focused on control of 

computer cursors and robotic arms, rather than dexterous hand control. Building off foundational 
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studies of non-human primates (Wessberg et al., 2000; Serruya et al., 2002; Taylor et al., 2002; Wu 

et al., 2004; Mulliken et al., 2008b; Ethier et al., 2012; Gilja et al., 2012), several clinical studies 

have implemented continuous decoders for cursor control (Hochberg et al., 2006; Kim et al., 2008; 

Wang et al., 2013; Aflalo et al., 2015; Gilja et al., 2015). Leveraging this cursor control, (Jarosiewicz 

et al., 2015; Pandarinath et al., 2017; Nuyujukian et al., 2018) subsequently developed on-screen 

keyboard typing interfaces for tetraplegic participants. (Hochberg et al., 2012; Collinger et al., 2013c; 

Wodlinger et al., 2015; Ajiboye et al., 2017) extended continuous decoding to arm control, with 

(Ajiboye et al., 2017) controlling the user's own muscles. Recent work has also decoded speech from 

sensorimotor cortex (Anumanchipalli et al., 2019; Moses et al., 2021; Sarah K. Wandelt et al., 2022; 

Willett et al., 2023). However, relatively few BMI studies have focused on hand control (Bouton et 

al., 2016; Hotson et al., 2016; Irwin et al., 2017; Jorge et al., 2020; Nason et al., 2021; Willett et al., 

2021), and previous studies frequently combine the ring and little fingers or leave them out 

altogether. Individuated finger control would be useful for applications like keyboard typing or 

object manipulation. 

Most motor BMIs record neural activity from the motor cortex (MC), although areas of the 

posterior parietal cortex (PPC) have also been used successfully for BMI control of reaching 

(Mulliken et al., 2008b; Aflalo et al., 2015) and grasping (Klaes et al., 2015). The PPC plays a central 

role in sensorimotor integration, with regions of PPC representing visual stimulus locations and eye 

movements (Andersen et al., 1987), task context (Gail et al., 2009), planned reaches (Snyder et al., 

1997), and object grasping (Murata et al., 2000; Schaffelhofer and Scherberger, 2016). PPC uses 

partially mixed selectivity to simultaneously encode many motor variables (Zhang et al., 2017), 

which can be useful for versatile neural decoding. 

Despite PPC's clearly demonstrated role in grasping (Gallese et al., 1994; Schaffelhofer and 

Scherberger, 2016; Sobinov and Bensmaia, 2021), less is known about PPC responses during 

individual finger movements. With fMRI, lesion, and anatomical evidence situating primary motor 

cortex as core to fine finger movements (for review, see (Sobinov and Bensmaia, 2021)), most 

electrophysiological studies of finger movements have focused on the primary motor (M1) and 

primary somatosensory cortex (S1) (Schieber and Hibbard, 1993; Schieber and Poliakov, 1998; 

Flesher et al., 2016; Hotson et al., 2016; Goodman et al., 2019; Fifer et al., 2021; Nason et al., 2021; 

Willsey et al., 2022). Nevertheless, non-human primate mapping studies (Seelke et al., 2012) and 

stimulation studies (Rathelot et al., 2017; Baldwin et al., 2018) have identified PPC sub-regions that 

are likely involved in fine finger movements. These results imply that fine finger movements are 

supported by a broad neuronal network, which should be investigated to improve dexterous BMI 

control. 

Here, we recorded intracortical activity from the PPC of two tetraplegic participants while 

they attempted to press individual fingers. Across task contexts, we could classify individual finger 

movements during planning and attempted-execution periods. We connected this neural decoder to 

drive a neural prosthetic hand, with accuracies exceeding recent intracortical BMI studies (Jorge et 

al., 2020; Guan et al., 2022b). Furthermore, we characterize both the neural tuning and 

representational geometry (Kriegeskorte and Wei, 2021) during attempted finger movements of 

either hand. The neural code factorized into finger type and laterality components, leading to finger 

representations that were simultaneously discriminable and similar across contralateral/ipsilateral 
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pairs of fingers. These findings contribute to the understanding of human hand movements and 

advance the development of hand neuroprosthetics for people with paralysis. 

3.3 Methods 

3.3.1 Study participants 

Experiments were conducted with two volunteer participants enrolled in a brain-machine interface 

(BMI) clinical study (ClinicalTrials.gov Identifier: NCT01958086). All procedures were approved 

by the respective Institutional Review Boards of California Institute of Technology, Casa Colina 

Hospital and Centers for Healthcare, and University of California, Los Angeles. Each participant 

consented to this study after understanding the nature, objectives, and potential risks. 

Participant NS is a right-handed, tetraplegic woman. Approximately 10 years before this 

study, she sustained an AIS-A spinal cord injury at cervical level C3-C4. NS can move her deltoids 

and above, but she cannot move or feel her hands. 

Participant JJ is a right-handed, tetraplegic man. Approximately 3 years before this study, he 

sustained a spinal cord injury at cervical level C4-C5. He has residual movement in his upper arms, 

but he cannot move or feel his hands. 

Because both participants could not move or feel their hands, we instructed them, during the 

behavioral tasks, to attempt finger movements as if their fingers were not paralyzed. We often 

abbreviate these finger movement attempts as “finger movements.” 

3.3.2 Tasks 

3.3.2.1 Alternating-cues finger press task with delay 

Each participant performed an instructed-delay finger movement task (Figure 3.1). They were seated 

in front of a computer monitor display, with their hands prone on a flat surface. Each trial began with 

a cue specifying a finger of the right hand. The finger cue then disappeared during a delay period. A 

cue-invariant go-icon appeared, instructing the participant to attempt to press the cued finger as 

though pressing a key on a keyboard. This instructed-delay task format temporally separates the 

visual stimulus from the planning and execution epochs. 

Supplementary Table 3.1 documents the phase durations for each task, and Supplementary 

Table 3.2 lists the date ranges for each task. 

Some regions of the posterior parietal cortex (PPC) are modulated by non-motor variables 

like visual stimulus location (Andersen et al., 1987) and task context (Gail et al., 2009). To ensure 

that the recorded neural signals reflected movement type (rather than, e.g., visual memory), we 

varied the cueing method between runs (Figure 3.1). In the Spatial-Cue variant, five circles 

corresponded to the five fingers. In the Text-Cue variant, the finger cue was a letter abbreviation. A 

brief Pre-Cue phase in each trial indicated what cue variant the trial would be. 

http://clinicaltrials.gov/
https://clinicaltrials.gov/ct2/show/NCT01958086
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Figure 3.1. Alternating-cues, instructed-delay finger press task 
Trial structure. Each rectangle represents the computer monitor display at each phase. Two cue variants, text and 

spatial, were trial-interleaved. In the spatial variant, the location of the highlighted circle corresponded to the cued 

finger. Trials without a highlighted circle indicated a No-Go cue. In the text variant, a highlighted letter (for example, 

“M” for the middle finger) cued each finger. In both variants, the finger cue disappeared before the movement phase 

(Go) to separate planning and execution periods. Phase durations are listed in Supplementary Table 3.1. 

3.3.2.2 Finger press task with randomized cue location (reaction-time) 

Letters, corresponding to each movement type, were arranged in a 3 x 4 grid across the screen. Each 

grid consisted of two repetitions each of T (thumb), I (index), M (middle), R (ring), P (pinky), and 

X (No-Go). Letters were arranged in a random order to dissociate eye gaze signals from movement 

representations. On each trial, a single letter cue was indicated with a crosshairs symbol, which was 

jittered to minimize systematic effects of letter occlusion. Each cue was selected once (for a total of 

12 trials) before the screen was updated to a new arrangement. Each run-block consisted of 4 screens 

for a total of 48 trials. 

On each trial, the participant was instructed to immediately saccade to the cued target and 

fixate, then attempt to press the corresponding finger of the right hand. A trained classifier decoded 

the finger movement from neural signals and displayed the classified finger movement 1.5 seconds 

after the start of the trial. The participant pressed the instructed finger and fixated on the cue until 

the visual classification feedback was shown. 

Data from participant NS performing this task was previously analyzed in (Guan et al., 

2022b). Data from participant JJ have not been reported previously. During 3 sessions, participant 

JJ also performed this task using his left hand. 
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Figure 3.2. Reaction-time finger-press task with randomized cue location. Figure adapted 

from (Guan et al., 2022b) (CC BY-NC 4.0). 
Main finger press task. When a letter was cued by the red crosshair, the participant looked at the cue and immediately 

attempted to flex the corresponding digit of the right (contralateral) hand. We included a No-Go condition “X,” during 

which the participant looked at the target but did not move their fingers. Visual feedback indicated the decoded finger 

1.5 seconds after cue presentation. To randomize the saccade location, cues were located on a grid (3 rows, 4 columns) 

in a pseudorandom order. The red crosshair was jittered to minimize visual occlusion. 

3.3.2.3 Ten-finger press task 

Each participant also performed an instructed-delay finger press task with fingers from both hands. 

The task was like the Text-Cue variant of the Alternating-cues finger press task with delay, except 

without a Pre-Cue phase. All ten fingers were interleaved in trials within the same run-block (Figure 

3.3). Phase durations are documented in 

Supplementary Table 3.1. 
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Figure 3.3. Text-cued finger movement task with instructed-delay. 
Trial structure. Text cues indicate the hand (“R” or “L”) and the finger (e.g., “m” for middle finger). After a delay 

period, a cue-invariant Go-icon instructs movement execution. 

3.3.3 Implant location 

Participant NS was implanted with two 96-channel NeuroPort Utah electrode arrays 6 years after 

injury (about 4 years before this study). The implant locations were determined using anatomical 

priors and preoperative functional magnetic resonance imaging (fMRI) (Guan et al., 2022b). One 

array (denoted NS-PPC) was implanted over the hand/limb region of PPC at the junction of the 

intraparietal sulcus (IPS) with the postcentral sulcus (PCS). This region is thought to be involved in 

the planning of grasp movements (Klaes et al., 2015; Schaffelhofer and Scherberger, 2016; Cavina-

Pratesi et al., 2018). In this report, we refer to this brain area as PC-IP (postcentral-intraparietal), 

although it is sometimes also referred to as the anterior intraparietal sulcus (aIPS) region (Gallivan 

et al., 2013). A second array was in Brodmann's area (BA) 5d. In the weeks following implantation, 

it was found that the BA 5d array did not function, so only the PC-IP array was used in this study. 

Participant JJ was implanted with two 96-channel NeuroPort Utah electrode arrays about 20 

months after injury (about 35 months before this study). The first array (denoted JJ-PPC) was 

implanted in the superior parietal lobule (SPL) of the left PPC. The second array (denoted JJ-MC) 

was implanted near the hand knob of the left motor cortex (MC) (Supplementary Figure 3.1). PPC 

and MC activity were recorded simultaneously. 

3.3.4 Neural signal recording and preprocessing 

Neural signals were acquired, amplified, bandpass-filtered (0.3 Hz - 7.5 kHz) and digitized (30 kHz, 

16-bits/sample) from the electrodes using NeuroPort Neural Signal Processors (NSP) (Blackrock 

Microsystems Inc.). 

Action potentials (spikes) were detected by high-pass filtering (250Hz cut-off) the full-

bandwidth signal, then thresholding at –3.5 times the root-mean-square (RMS) voltage of the 

respective electrode. Although one or more source neurons may generate threshold crossings, we 

used raw threshold crossings for online control and only sorted spikes for offline analyses. Single 

neurons were identified using the k-medoids clustering method. We used the gap criteria (Tibshirani 

et al., 2001) to determine the total number of waveform clusters. Clustering was performed on the 

first n ∈ {2, 3, 4} principal components, where n was selected to account for 95% of waveform 

variance.  
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3.3.5 Feature Extraction 

Except when otherwise specified, we used a 500-millisecond (ms) window of neural activity to 

calculate firing rates (counted spikes divided by the window duration). The firing rate was then used 

as the input features to each analysis or classification model. 

For cross-validation classification analyses, neurons with an average firing rate on the 

training fold < 1 Hz were discarded as noisy features. For single-neuron analyses, a looser threshold 

of < 0.5 Hz, averaged over the entire recording, was used to exclude neurons from significance and 

effect size tests. 

Behavioral epochs: the movement execution (“Go” or “move”) analysis window was defined 

as the 500-ms window starting 200 ms after the Go cue. For applicable tasks, the movement planning 

(“Delay” or “plan”) analysis window was defined as the 500-ms window starting 200 ms after the 

Delay screen. The Cue analysis window was defined as the 500-ms window starting 200 ms after 

the Cue screen. The intertrial interval (ITI) analysis window was defined as the last 500 ms of the 

ITI phase. 

3.3.6 Single-neuron selectivity for finger movements 

In the section “Single-neuron modulation to individual finger presses,” we used a one-way ANOVA 

to determine whether neurons distinguished firing rates between attempted finger movements. A 

neuron was considered discriminative if p < 0.05 after false discovery rate (FDR) correction for 

multiple comparisons using the Benjamini–Hochberg procedure; we also denoted this FDR-adjusted 

p-value as q. We corrected for m=N comparisons, where N is the number of neurons for each 

participant. Following Cohen's rules of thumb (Cohen, 1988), we denoted the ANOVA effect size 

as “large” if η2 > 0.14. As the ANOVA post hoc test, we used Dunnett's multiple comparison test 

(Dunnett, 1964) to determine which fingers had significantly different firing rates than the No-Go 

baseline. 

To quantify the effect size of firing-rate changes against the No-Go baseline (Figure 3.4a), 

we used Hedges' g, which is similar to Cohen's d but bias-corrected for small sample sizes. We 

calculated and visualized Hedges' g values using the Data Analysis using Bootstrap-Coupled 

Estimation Python library (Ho et al., 2019).  

For visual simplicity, we pooled neurons across sessions when calculating and visualizing 

single-neuron metrics (percentage selective, number of fingers discriminable from No-Go, empirical 

cumulative distribution functions). 

To visualize firing rates, spike rasters were smoothed with a Gaussian kernel (50-ms 

standard-deviation [S.D.]), then averaged across trials to create a peristimulus time histogram 

(PSTH). 

3.3.7 Offline classification with cross-validation 

We trained a separate linear classifier for each session to predict attempted finger movements from 

the neural features. We used diagonal-covariance linear discriminant analysis (diagonal LDA) 

(Dudoit et al., 2002); Diagonal LDA is equivalent to Gaussian Naive Bayes (GNB) when GNB 

shares a single covariance matrix across classes. 
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For offline classification and parameter sweeps, we estimated the generalization error using 

stratified K-Folds cross-validation (with K = 8) within each session. Reported classification 

accuracies indicate the number of correct trials (summed across sessions) divided by the total number 

of trials (summed across sessions). Across-session standard deviations of classification accuracy are 

weighted by the number of trials in each session. 

Learning curves (Figure 3.5b) were generated by using subsets of the training set during each 

Stratified K-Fold split. Window duration sweeps (Figure 3.5d) varied the size of the firing-rate 

estimation window while fixing the start time at 200ms after the Go cue. Neural decode time-courses 

(Figure 3.5e) used 500ms bins centered at different times of the trial. 

To visualize neuron-dropping curves (Figure 3.5c, Supplementary Figure 3.11), we first 

aggregated neurons across sessions into a pseudo-population. Specifically, we combined trials from 

different sessions based on their within-finger order. For example, each session’s first right-thumb 

trial was combined into a single trial for the pseudo-population. For the Alternating-cues finger press 

task with delay, Participant JJ performed 96 trials in 1 session and 120 trials in 2 sessions, so we 

used only the first 96 trials from each session. Finally, we randomly sampled (without replacement) 

an M-neuron subpopulation from the pseudo-population. We calculated the cross-validated accuracy 

when decoding from this subpopulation. We varied M to create a neuron-dropping curve, and we 

repeated the subpopulation sampling 40 times for each M to generate confidence intervals. 

3.3.8 Online brain-machine interface (BMI) discrete control 

Each BMI control session started with a run of the open-loop calibration task. For participant NS, 

this was the Alternating-cues finger press task, modified to not have a delay. For participant JJ, this 

was the finger press task with randomized cue location, modified to not provide classifier output. 

The neural activity and finger movement cues from the calibration task served as training 

data for the online BMI classification model. Neural features were composed of the threshold 

crossing rates of each electrode during a 1-second window for each trial. The window start-time, 𝑡𝑠, 

was a hyperparameter chosen to maximize the cross-validated classification accuracy on the 

calibration task. The online BMI classifier was then fit to the calibration task without cross-

validation. Labels consisted of the finger movement cues, and features consisted of the firing rates 

during each trial’s window [𝑡𝑠, 1 +  𝑡𝑠]. Electrodes with mean firing rates < 1 Hz were excluded to 

minimize sensitivity to discretization. 

During online control of the finger grid task, the classifier predicted a single finger movement 

for each trial. Input neural features consisted of the threshold crossing rates from each electrode in 

the time window [0.5, 1.5] seconds after cue presentation. The BMI classifier was occasionally 

recalibrated between run blocks using data from this task. 

3.3.9 Neural distance between fingers 

We quantified the neural activity differences between finger movements using the cross-validated 

(squared) Mahalanobis distance (Walther et al., 2016). The Mahalanobis distance is a continuous, 

non-saturating analogue of LDA classification accuracy (Nili et al., 2014). Cross-validation removes 

the positive bias of standard distance metrics, such that 𝐸[𝑑𝑗𝑘
2 ] = 0 when two activity patterns are 

statistically identical. 
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To calculate population distances, we used the representational similarity analysis Python 

toolbox (Schütt et al., 2019). The toolbox slightly modifies the cross-validated Mahalanobis 

equation, incorporating the noise covariances of both folds to improve robustness: 

𝑑𝑗𝑘
2 = (𝑏𝑗 − 𝑏𝑘)

𝐴
(

𝛴𝐴 +  𝛴𝐵

2
 )

−1

(𝑏𝑗 − 𝑏𝑘)
𝐵

𝑇
 / 𝑁  

Equation 3.1 

where 𝐴 and 𝐵 indicate independent partitions of the trials, Σ is the noise covariance matrix, (𝑏𝑗, 𝑏𝑘) 

are the firing rate vectors for finger movements (𝑗, 𝑘) stacked across trials, and 𝑁 normalizes for the 

number of neurons. The units of 𝑑𝑗𝑘
2  are unitless2/neuron. 

3.3.10 Shared representations across hands 

To quantify whether finger representations were similar across hands, we compared the pairwise 

distances between matching finger pairs and the pairwise distances between non-matching finger 

pairs (Figure 3.8b). We denoted a finger pair as matching if the hands differed and the finger-types 

were the same ([Lt, Rt], [Li, Ri], [Lm, Rm], [Lr, Rr], [Lp, Rp]). We denoted a finger pair as non-

matching if the hands differed and the finger-types also differed ([Lt, Ri], [Lt, Rm], [Lt, Rr], [Lt, 

Rp], [Li, Rt], [Li, Rm], etc.). We described a neural population as sharing representations across 

hands if the average distance between matching finger pairs was smaller than the average distance 

between non-matching finger pairs. 

3.3.11 Factorized finger representations 

Factorized coding refers to representations that can be decomposed into simpler explanatory factors 

(Kobak et al., 2016; Kim and Mnih, 2018; Bernardi et al., 2020; Frankland and Greene, 2020; Aflalo 

et al., 2022). We assessed whether finger representations could be linearly decomposed into the sum 

of finger-type and laterality components. 

We first visualized the representational geometry in Figure 3.8d using 2-D multidimensional 

scaling (MDS). MDS projects the finger movements into a low-dimensional space while attempting 

to preserve pairwise neural distances (Figure 3.8a). We performed MDS on data from individual 

sessions and then used Generalized Procrustes Analysis (GPA) with scaling to normalize and align 

MDS projections across sessions. In the NS-PPC MDS plot, ellipses show standard error (S.E.) 

across sessions. The JJ-PPC and JJ-MC MDS plots show the mean values without any S.E. ellipses, 

because the 2 sessions with participant JJ are not sufficient to estimate the S.E. 

We used leave-one-group-out cross-validation to determine whether hand- and finger-

dimensions generalize to left-out movements (Supplementary Figure 3.8). If finger representations 

are factorized, then hand classifiers (left vs. right) should generalize when trained on a subset of 

finger types and evaluated on left-out finger types. Additionally, finger-type classifiers should 

generalize when trained on one hand and tested on the other hand (Figure 3.8e). This metric is often 

called cross-condition generalization performance (CCGP) (Bernardi et al., 2020). We pooled 

neurons across sessions (NS: 10 sessions; JJ: 2) into a pseudo-population. We used a permutation 

test to assess whether CCGP was significantly above chance, shuffling the labels repeatedly 
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(N=1001) to generate a null distribution. Standard cross-validation accuracy provides a best-case 

upper bound on CCGP. Reaching this upper bound implies perfect factorization. We matched 

training dataset sizes when comparing CCGP and within-condition cross-validation accuracy. 

 

3.4 Results 

3.4.1 Single-neuron modulation to individual finger presses 

We first sought to determine whether PPC single neurons discriminate between individual finger 

movements. We quantified single-neuron modulation to attempted finger presses of the right 

(contralateral to the implant) hand while the participant performed the Alternating-cues finger press 

task with delay (participant NS: 120 trials per session for 4 sessions; participant JJ: 112 trials per 

session [min: 96; max: 120] for 3 sessions). We recorded 118 neurons per session (min: 111; max: 

128) over 4 sessions from NS-PPC, 103 neurons per session (min: 92; max: 116) over 3 sessions 

from JJ-PPC, and 93 neurons per session (min: 90; max: 95) from JJ-MC. For each neuron, we 

calculated firing rates during the attempted movement period and compared firing rates across finger 

movements (Figure 3.4a, Supplementary Figure 3.2, Supplementary Figure 3.3). 

Like results from finger studies of the motor cortex hand area (Schieber and Hibbard, 1993; 

Schieber and Poliakov, 1998), PPC neurons were not anatomically segregated by finger selectivity. 

A large portion of neurons (NS-PPC: 54%; JJ-PPC: 30%; JJ-MC: 78%; Figure 3.4c) varied their 

firing rates between attempted finger movements (q < 0.05), and selective neurons were often 

selective for multiple finger movements (mean number of significant fingers, NS-PPC: 2.1; JJ-PPC: 

1.9; JJ-MC: 2.7). Moreover, many neurons discriminated between movements with large effect sizes 

(percentage of neurons with η2 > 0.14, NS-PPC: 40%; JJ-PPC: 25%; JJ-MC: 64%; Figure 3.4d, 

Supplementary Figure 3.2d, Supplementary Figure 3.3d). 
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Figure 3.4. PPC single neurons discriminate between attempted finger movements. 
a) Single-trial firing rates for an example NS-PPC neuron during attempted movements of different fingers. (top) Markers 

correspond to the firing rate during each trial. Gapped vertical lines to the right of markers indicate ± S.D., and each gap 

indicates the mean firing rate. (bottom) Firing rates during thumb (T) and index (I) presses were higher than the No-go (X) 

baseline. Vertical bars indicate bootstrap 95% confidence intervals (CI) of the effect size versus No-go baseline. Half-violin 

plots indicate bootstrap distributions. 

b) Mean smoothed firing rates for each finger movement for two example NS-PPC neurons, which respectively modulated for 

thumb/index movements (left) and fingers versus No-Go (right). Shaded areas indicate 95% CI. 

c) Percentage of NS-PPC neurons that discriminated between finger movements in each analysis window (q < 0.05, FDR-

corrected for 466 neurons). Line (blue) indicates mean across sessions. Markers (gray) indicate individual sessions. 

d) Complementary empirical cumulative distribution function (cECDF) visualizing the proportion of NS-PPC neurons with 

ANOVA effect sizes (η2) above the corresponding x-axis value. Line colors indicate analysis epoch. Vertical lines (gray) 

indicate Cohen’s thresholds (Cohen, 1988) for small (η2=0.01), medium (η2=0.06), and large (η2=0.14) effect sizes. 

e) Overlap of NS-PPC neurons that modulated significantly (q < 0.05) with large effect sizes (η2 > 0.14) during movement 

preparation (plan) and movement execution (move). 

We also quantified single-neuron modulation during movement preparation. Preparatory 

activity discriminated between finger movements with reasonable effect sizes (Figure 3.4d). 

Consistent with reaching studies of PPC (Aflalo et al., 2015), slightly fewer NS-PPC neurons had 

strong tuning (q < 0.05 and η2 > 0.14) during movement preparation (percentage of neurons: 24%) 

than during movement execution (percentage of neurons: 43%) (Figure 3.4e). JJ-PPC neurons 

modulated at similar rates during preparation (percentage of neurons with q < 0.05 and η2 > 0.14: 

23%) versus during execution (24%) (Supplementary Figure 3.2e). 
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3.4.2 Classifying finger presses from neural activity 

Since single neurons were tuned to finger movements, we evaluated whether attempted finger 

movements could be classified (offline) from the population neural activity. Using data from the 

same task, we trained linear classifiers and assessed finger classification accuracy on held-out trials 

using cross-validation (Methods). Classification accuracies substantially exceeded chance (accuracy, 

NS-PPC: 86%; JJ-PPC: 64%; JJ-MC: 84%; chance: 17%). The majority (NS-PPC: 75%; JJ-PPC: 

42%; JJ-MC: 67%) of errors misclassified an adjacent finger (Figure 3.5a, Supplementary Figure 

3.4, Supplementary Figure 3.5). 

Classification accuracy can depend on the neural signal quality and prediction window. To 

better understand how finger classification varies over dataset and classifier parameters, we 

quantified cross-validated accuracy across different training dataset sizes, neuron counts, and 

window durations (Figure 3.5b-d, Supplementary Figure 3.4, Supplementary Figure 3.5). 

Cross-validated accuracy increased with more training data, reaching 80% accuracy when 

training on about 40 trials (2.7 minutes) for NS-PPC. Higher neuron counts provide more finger 

information and thus improved classification accuracy, reaching 80% accuracy at about 70 neurons 

for NS-PPC. These results indicate that a single electrode array in PPC provides sufficient 

information to control a discrete finger-press prosthetic. 

Accuracy also increased when using longer window durations, reaching 80% at durations 

above 350ms. Longer window durations average out firing rates and thereby reduce the impact of 

measurement noise and behavioral variability on classification, but they directly mandate longer 

control delays. In some cases, it may be useful to minimize BMI control latency even at the expense 

of accuracy (Shanechi et al., 2017). 



 

 

59 

 

Figure 3.5. Offline classification of finger movement from population activity. 
a) Cross-validated confusion matrix for classifying attempted finger movement from NS-PPC neural activity during the 

movement execution epoch. 86% accuracy, 480 trials over 4 sessions. 

b) Learning curve showing cross-validated accuracy as a function of the training dataset size. About 40 trials (less than 7 trials 

per finger) are needed to achieve 80% accuracy. Shaded area indicates 95% CI over folds/sessions. 

c) Neuron-dropping curve (NDC) showing cross-validated accuracy as a function of recorded neurons. Neurons were aggregated 

across sessions. About 70 neurons are needed to achieve 80% accuracy. Shaded area indicates 95% interval over subpopulation 

resamples. 

d) Hyperparameter sweep showing cross-validated classification accuracy as a function of decode window size. Input features 

were the average firing rates in the window [200ms, 200ms + window size] after Go-cue. Window durations of about 350ms 

are necessary to achieve 80% accuracy. Shaded area indicates 95% CI over folds/sessions. 

e) Cross-validated classification accuracy across the trial duration (500-ms sliding window). Shaded area indicates 95% CI over 

folds/sessions. 

Finger movements could also be decoded from PPC during the planning period (Figure 

3.5e)), although classification accuracy was lower (NS-PPC: 66%; JJ-PPC: 61%; chance: 17%) than 

during movement execution. 

3.4.3 Brain-machine interface control of finger movements 

We next mapped neural activity to finger movements to control an online finger BMI, where 

our participants would tap each finger and their attempted movement would be decoded. For this 
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section, we replicated a usage scenario where a prosthetic user could decide to move a finger and 

immediately execute the movement, without needing a delay period. 

We started each session with an open-loop calibration task where the participant attempted 

to press fingers according to visual cues (Methods). Using only a short calibration period (8 

repetitions per finger, totaling about 2.5 minutes), each participant was able to use a classifier to 

accurately control individual fingers of the BMI. 

The confusion matrix for participant NS (Figure 3.6a) shows that she achieved high online 

control accuracies (86%; chance: 17%). These finger representations were robust across contexts 

and could be used in a range of environments (Guan et al., 2022b). 

Participant JJ achieved even higher accuracies during BMI control (92% ± S.D. 3% over 8 

sessions; chance: 17%) (Figure 3.6b). However, we note that participant JJ's BMI decoder used 

threshold crossings from both MC and PPC electrode arrays, thus doubling the number of electrodes 

compared to participant NS. While we cannot retrospectively replicate the BMI experiment with an 

isolated array, we can approximate the results by training the same classification algorithm on early 

runs, using recordings only from a single array; we can then apply this classifier to the subsequent 

test trials (accuracy, JJ-PPC: 83%; JJ-MC: 87%; chance: 17%; Supplementary Figure 3.6). 

 

Figure 3.6. Online BMI classification of individual finger movements. 
a) Confusion matrix for participant NS (PPC), right-hand finger presses. 86% accuracy ± S.D. 4% over 10 sessions, 4016 total 

trials. Reprinted from (Guan et al., 2022b) (CC BY-NC 4.0). 

b) Confusion matrix for participant JJ (PPC+MC), right-hand finger presses. 92% accuracy ± S.D. 3% over 8 sessions, 1440 total 

trials. 

On a few separate runs, participant JJ also performed the calibration and BMI control tasks 

with his left hand (ipsilateral to the implant). He achieved high accuracies (94% ± S.D. 4% over 3 

sessions; chance: 17%) at a similar level to right-hand finger decoding (Supplementary Figure 3.7). 

3.4.4 Classifying individual finger presses from both hands 

We next investigated whether all ten finger movements could be classified from a single array. 

Cerebral hemispheres primarily control movement on the opposite side of the body, and we have 

only implanted electrode arrays in each participant's left hemisphere. However, the ability to classify 

https://creativecommons.org/licenses/by/4.0/
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movements of both sides would reduce the number of implants necessary for bilateral BMI 

applications. 

We examined single-neuron activity during interleaved, attempted finger presses of the 

contralateral (right) and ipsilateral (left) hands (Methods; participant NS: 100 trials / session for 10 

sessions; participant JJ: 100 trials / session for 2 sessions). We recorded 111 neurons per session 

(min: 102; max: 119) from NS-PPC, 160 neurons per session (min: 159; max: 160) from JJ-PPC, 

and 130 neurons per session (min: 120; max: 130) from JJ-MC. Similarly to the contralateral-only 

results, most neurons (NS-PPC: 66%; JJ-PPC: 57%; JJ-MC: 78%) discriminated firing rates across 

fingers (q < 0.05). 

We then evaluated whether these signals could be used for a neural prosthetic by classifying 

(offline) the attempted finger movement from the population neural activity. A linear classifier 

(Methods) was able to discriminate between all ten fingers (cross-validated classification accuracy, 

NS-PPC: 70%; JJ-PPC: 66%; JJ-MC: 75%; chance: 10%). The majority (NS-PPC: 76%; JJ-PPC: 

66%; JJ-MC: 68%) of classification errors were adjacent-finger-confusion or matching-across-hand-

confusion (Figure 3.7c-e). 
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Figure 3.7. Offline classification of finger presses from both hands. 
a) Mean firing rates for each finger movement for an example NS-PPC neuron, which increases its firing rate for thumb 

movements. Shaded areas indicate 95% confidence intervals (CI). 

b) Same as (a) for a second example NS-PPC neuron, which increases it firing rate for index movements. 

c) Cross-validated confusion matrix for classifying right- and left-hand finger movements from NS-PPC neural activity. 70% 

accuracy, 1000 trials over 10 sessions. 

d) Same as (c) using recordings from JJ-PPC. 66% accuracy, 200 trials over 2 sessions. 

e) Same as (c) using recordings from JJ-MC. 75% accuracy, 200 trials over 2 sessions. 
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3.4.5 Factorized representation of finger type and laterality 

To characterize how NS-PPC simultaneously represents contralateral and ipsilateral finger 

movements, we calculated the cross-validated neural distances between pairs of attempted finger 

movements. Figure 3.8a visualizes these distances in a representational dissimilarity matrix (RDM) 

(Kriegeskorte and Wei, 2021) that is row- and column-indexed by finger. Visual inspection shows 

that neural distances are small between right/left pairs of fingers (anti-diagonal of Figure 3.8a), 

suggesting that movement representations are partially shared across hands. On average, matching 

right/left finger pairs were 1.56 distance-units (95% CI: [1.33, 1.78], Figure 3.8b) closer to each 

other than non-matching fingers were. Matching fingers were also represented more similarly than 

non-matching fingers in JJ-MC (mean difference: 4.30, 95% CI: [2.74, 5.46], Supplementary Figure 

3.9b), but this result was not conclusive in JJ-PPC (mean difference: 0.27, 95% CI: [–0.17, 0.64], 

Supplementary Figure 3.10b). 

What representational geometry allows downstream readout of all ten fingers (Figure 3.7) 

while sharing information across hands (Figure 3.8b)? Studies of human motor cortex (Diedrichsen 

et al., 2013; Bundy et al., 2018; Downey et al., 2020; Willett et al., 2020) have also found correlated 

representations across sides, with (Willett et al., 2020) linearly decomposing population activity into 

simpler factors: laterality, arm-versus-leg, and motion pattern. 

Do laterality and finger-type also form a factorized code in PPC and MC? In a perfectly 

factorized representation (Figure 3.8c), vectors between neural representations are simply the 

summation of the vectors between their respective components. For example, the vector Lm->Ri can 

be decomposed into generic left->right and middle->index vectors. Geometrically, these generic 

vectors would form parallelograms between relevant groups of conditions (Figure 3.8c) (Fu et al., 

2022). In other words, a factorized code would have a consistent hand subspace and a consistent 

finger-type subspace, although these subspaces need not be orthogonal. 

We used 2-D multidimensional scaling to visualize the geometric relationship between NS-

PPC finger representations (Figure 3.8d), limiting to the index, middle, and ring fingers for visual 

clarity. We found that inter-finger vectors were similar across hands, with the index finger relatively 

distinct from the middle and ring fingers, consistent with previous studies of contralateral finger 

movements (Ejaz et al., 2015; Guan et al., 2022b). Additionally, the left->right vector appeared 

identical across all matching left/right finger pairs. 

Factorized coding generalizes across the axes of the simpler building blocks. Since individual 

left->right vectors are nearly identical to each other, linear decoders trained to differentiate left-vs-

right on a subset of finger types (Lt-vs-Rt; Li-vs-Ri, Lm-vs-Rm, Lr-vs-Rr) should generalize to held-

out, hypothetically equivalent vectors (Lp-vs-Rp) (Supplementary Figure 3.8). We aggregated 

neurons across different sessions into a pseudo-population (Methods). Consistent with the factorized 

coding hypothesis, cross-condition hand-decoding generalization performance (hand CCGP) was 

nearly perfect (accuracy using 1111 neurons: 99%, chance = 50%, p < 0.001, permutation test). Next, 

we applied cross-decoding to the finger dimension, training a classifier to discriminate between 

fingers of the right hand and then testing on the left hand (and vice-versa). The finger-type dimension 

also generalized well across hands (accuracy: 93%, chance = 20%, p < 0.001), and finger-type CCGP 

was close to the standard cross-validation accuracy (98%) evaluated using within-condition cross-

validation (Figure 3.8e); this within-condition cross-validation accuracy is a best-case upper bound 

on CCGP. The close match between finger-type CCGP and cross-validation accuracy indicated that 
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the finger-type dimension robustly generalized across hands. This result demonstrates that NS-PPC 

finger representations can be decomposed linearly into hand and finger-type building blocks. 

Comparable results held for JJ-MC recordings, with robust factorization of the neural code 

into hand and finger-type components (hand CCGP using 259 neurons: 86%, chance = 50%, p < 

0.001; standard hand cross-validation accuracy: 87%) (finger-type CCGP: 75%, chance = 20%, p < 

0.001; standard finger-type cross-validation accuracy: 89%) (Supplementary Figure 3.9). 

Interestingly, JJ-PPC finger representations were less factorized. While above chance (p < 0.001), 

the finger-type CCGP (36%, using 319 neurons) was much lower than the within-condition cross-

validation accuracy (65%) (Supplementary Figure 3.10). Even when accounting for differences in 

neural population size, finger-type CCGP for JJ-PPC was lower than finger-type CCGP for NS-PPC 

and JJ-MC (Supplementary Figure 3.11).  
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Figure 3.8. Representational geometry of contralateral and ipsilateral finger movements. 
a) Cross-validated squared Mahalanobis distances between NS-PPC activity patterns during the contralateral/ipsilateral finger 

press task. Distances were averaged over the 10 sessions. 

b) Non-matching (different finger-type, different hand) finger pairs have larger distances than matching (same finger-type, 

different hand) finger pairs. Each circle is one element of the dissimilarity matrix of an individual session, aggregated across 

10 sessions. 

c) Example schematic of perfect factorization along hand and finger-type components. Line styles indicate groups of parallel, 

identical vectors. A factorized code generalizes linearly across each component axis. For example, the Rm population activity 

can be constructed from the summation: Li + left->right + index->middle. For visual clarity, figure only shows three finger-

types (index, middle, ring). 

d) Representational geometry of finger movements corresponding to NS-PPC distances (a), visualized in 2-D using 

multidimensional scaling (MDS). We used Generalized Procrustes analysis (with scaling) to align across 10 sessions. Ellipses 

show standard error (S.E.) across sessions. Scale bars shown. Vectors with matching line-styles match each other, suggesting 

that the neural code is factorized. 

e) Linear decoders generalized (Supplementary Figure 3.8) across finger-type to classify hand (left) and across hand to classify 

finger-type (right) (p < 0.001, permutation test), indicating that movement representations were factorized across finger-type 

and hand dimensions. 
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3.5 Discussion 

Human dexterity is characterized by our ability to quickly reach-and-grasp, as well as our ability to 

move individual fingers volitionally beyond basic grasp templates (Yan et al., 2020). Individual 

finger movements are generally considered to be the domain of the motor cortex (MC) hand knob, 

while the posterior parietal cortex (PPC) complements via higher-level computations, such as 

transforming object shape to grip type (Schaffelhofer and Scherberger, 2016). This perception is 

supported by a wide range of evidence (Sobinov and Bensmaia, 2021); for example, fMRI studies 

find topographic finger activation maps in MC (Allison et al., 2000; Ejaz et al., 2015) but not in PPC 

(Ariani et al., 2022). Despite the lack of coarse finger topography in PPC, here we found that neurons 

in two grasp-related regions of PPC were discriminative for attempted finger movements. Population 

tuning was robust enough for human participants to control finger BMIs in a variety of applications. 

These results demonstrate that detailed information about finger movements is more distributed than 

is commonly thought. 

Our study adds to a growing number of finger BMI demonstrations. Previously, (Hotson et 

al., 2016) demonstrated the first online neural decoding of all-five individual finger movements in 

human participants, using a high-density ECoG grid over the sensorimotor cortex. Like our study, 

(Jorge et al., 2020) implanted intracortical arrays in the motor cortex of a tetraplegic participant and 

decoded attempted finger movements, achieving an offline accuracy of 67%. Recently, (Nason et 

al., 2021; Willsey et al., 2022) achieved high-performance continuous control of flexion and 

extension of two finger groups. Our results contribute to prior studies by showing that simultaneous 

PPC+MC recordings can improve online finger decoding accuracies (Figure 3.6). Considering that 

PPC and MC usually fulfill different functions for able-bodied sensorimotor control (Sobinov and 

Bensmaia, 2021), an interesting future direction will be to understand to what degree PPC and MC 

complement each other across more diverse BMI control paradigms. 

Algorithmic advances may further improve finger decoding performance. For example, 

hierarchical classifiers might be useful for classifying finger direction and finger movement (Hotson 

et al., 2016). Additionally, with larger data quantities or with data augmentation strategies, time-

varying and nonlinear classifiers like recurrent neural networks can improve neural decoding (Inoue 

et al., 2018; Gruenwald et al., 2019; Willett et al., 2021; Willsey et al., 2022). Performance 

improvements may also come from decoding non-traditional variables, such as handwriting (Willett 

et al., 2021) or goals (Aflalo et al., 2015). State-machine control (common in other assistive 

technologies like myoelectric prostheses (Fougner et al., 2012) or Dwell) and AI-assisted hybrid 

control (Katyal et al., 2014; Downey et al., 2016) may further improve BMI usability. In combination 

with somatosensory intracortical microstimulation (ICMS) to generate fingertip sensations (Flesher 

et al., 2016; Fifer et al., 2021), such methods could enable a functional hand prosthetic. 

After demonstrating BMI control of the contralateral fingers, we studied representations of 

ipsilateral finger movements. We found that a linear classifier could discriminate between 

movements of all ten fingers (Figure 3.7). Given that descending corticospinal tracts primarily cross 

to control the contralateral side, it was interesting to find that ipsilateral decoding was relatively 

robust. On some sessions, ipsilateral decoding accuracies were even comparable to contralateral 

decoding (Supplementary Figure 3.7). An important follow-up would be to understand how 

individual finger representations mix to construct multi-finger movements, both within and across 

hands. fMRI studies of sensorimotor cortex suggest that same-hand movements would be organized 
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by their natural usage patterns (Ejaz et al., 2015), while both-hand movements would exclusively 

represent the contralateral fingers (Diedrichsen et al., 2013). An open question is whether these 

patterns also extend to single-neuron recordings and to PPC. 

Even as the ten finger movements were discriminable, activity patterns for NS-PPC and JJ-

MC were similar across corresponding finger pairs on opposite hands (Figure 3.8a-b). Our results 

match other studies that have also found shared-yet-separable hand representations in macaque 

anterior intraparietal area (AIP) (Michaels and Scherberger, 2018) and human motor cortex 

(Diedrichsen et al., 2013; Willett et al., 2020). This pattern of cross-condition generalization has 

previously been described as partially mixed selectivity (Zhang et al., 2017), abstract or factorized 

representations (Bernardi et al., 2020), or compositional coding (Willett et al., 2020; Aflalo et al., 

2022). Here, the NS-PPC and JJ-MC finger codes could be factorized into finger-type and laterality 

subspaces (Figure 3.8d-e), resembling the partial compositionality described by (Willett et al., 2020) 

for arm and leg movements. Compositional and factorized coding have been speculated to play a 

number of different computational functions, from skill transfer to general cognition (Zhang et al., 

2017; Downey et al., 2020; Frankland and Greene, 2020; Willett et al., 2020; Aflalo et al., 2022). 

For neuroprosthetic applications, factorized coding simplifies decoder calibration. Because neural 

coding generalizes across conditions, decoders can train on only the underlying factors, rather than 

every combination. 

Surprisingly, JJ-PPC population activity was not factorized to the same extent as NS-PPC 

and JJ-MC. The difference between JJ-PPC and NS-PPC results might stem from neuroanatomical 

variability (Scheperjans et al., 2008; Gallivan and Culham, 2015) or differences in implant location. 

The NS-PPC implant was located at the junction of the postcentral and intraparietal sulci (PC-IP), 

an area involved in grasping and fine finger movements (Binkofski et al., 1998; Gallivan and 

Culham, 2015; Klaes et al., 2015). PC-IP receives inputs from neighboring somatosensory cortex 

(Scheperjans et al., 2008; Rolls et al., 2022), suggesting that it may facilitate state estimation of the 

hand (Shadmehr and Krakauer, 2008; Tunik et al., 2008; Guan et al., 2022b). We could not implant 

the JJ-PPC recording array in the center of the PPC grasping area, functionally localized near PC-IP 

(Supplementary Figure 3.1), because blood vessels obstructed the cortical surface. Thus, we 

implanted the JJ-PPC array in the superior parietal lobule (SPL), medial and posterior compared to 

the NS-PPC implant. Medial and posterior areas of PPC tend to receive stronger visual inputs 

(Scheperjans et al., 2008; Wang et al., 2015; Rolls et al., 2022) and are more involved in reaching 

than grasping (Mars et al., 2011), so the recorded JJ-PPC population could be more involved in 

calculating visuomotor transforms (Buneo and Andersen, 2006; Rolls et al., 2022) for visually 

guided reaching (Scheperjans et al., 2008; Mars et al., 2011). It is possible that the difference in 

implant location also contributed to differences in contralateral finger tuning between NS-PPC 

(Figure 3.4) and JJ-PPC (Supplementary Figure 3.2). However, it is difficult to precisely compare 

implant locations, because the anatomical location of individual functional areas can vary widely 

between participants (Scheperjans et al., 2008; Gallivan and Culham, 2015). Future comparisons 

may benefit from multi-modal preoperative neuroimaging to map implant locations onto standard 

parcellations (Glasser et al., 2016). 

The posterior parietal cortex (PPC) has long been known to be involved in the reaching and 

grasping of objects, but less is known about its contribution to individual finger movements. Here, 

two tetraplegic participants controlled individual fingers through BMIs recording from the posterior 
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parietal cortex and motor cortex (MC). Ipsilateral finger coding was strong in all three recorded 

neural populations, and two of the populations exhibited factorized coding that enabled decoders to 

simultaneously generalize across and discriminate between hands. Our results demonstrate that PPC 

and MC can provide complementary control signals for assistive neuroprosthetics. 
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3.7 Supplementary Material 

 

Supplementary Figure 3.1. Electrode array implant locations in participant JJ. 
Microelectrode array locations overlaid on participant JJ’s left cerebral hemisphere. Color scale indicates fMRI 

activation for grasp>look/point (task described in Figure S1b of (Aflalo et al., 2020)). One array (denoted JJ-PPC) 

was implanted in the superior parietal lobule (SPL) of the left PPC. Another array (denoted JJ-MC) was implanted 

near the hand knob of the left motor cortex (MC).  
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Supplementary Figure 3.2. PPC single neurons discriminate between attempted finger 

movements (JJ-PPC). 
Similar to Figure 3.4 for JJ-PPC recordings. 

a) Single-trial firing rates for an example JJ-PPC neuron during attempted movements of different fingers. (top) Markers 

correspond to the firing rate during each trial. Gapped vertical lines to the right of markers indicate ± S.D., and each gap 

indicates the mean firing rate. (bottom) Firing rates during thumb (T), index (I), and pinky (P) presses were higher than the 

No-go (X) baseline. Vertical bars indicate bootstrap 95% confidence intervals (CI) of the effect size versus No-go baseline. 

Half-violin plots indicate bootstrap distributions. 

b) Mean smoothed firing rates for each finger movement for two example JJ-PPC neurons, which respectively modulated for 

thumb/pinky movements (left) and ring movements (right). Shaded areas indicate 95% CI. 

c) Percentage of JJ-PPC neurons that discriminated between finger movements in each analysis window (q < 0.05, FDR-corrected 

for 308 neurons). Line (blue) indicates mean across sessions. Markers (gray) indicate individual sessions. 

d) Complementary empirical cumulative distribution function (cECDF) visualizing the proportion of JJ-PPC neurons with 

ANOVA effect sizes (η2) above the corresponding x-axis value. Line colors indicate analysis epoch. Vertical lines (gray) 

indicate Cohen’s thresholds (Cohen, 1988) for small (η2=0.01), medium (η2=0.06), and large (η2=0.14) effect sizes. 

e) Overlap of JJ-PPC neurons that modulated significantly (q < 0.05) with large effect sizes (η2 > 0.14) during movement 

preparation (plan) and movement execution (move). 
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Supplementary Figure 3.3. MC single neurons discriminate between attempted finger 

movements (JJ-MC). 
Similar to Figure 3.4 for JJ-MC recordings. 

a) Single-trial firing rates for an example JJ-MC neuron during attempted movements of different fingers. (top) Markers 

correspond to the firing rate during each trial. Gapped vertical lines to the right of markers indicate ± S.D., and each gap 

indicates the mean firing rate. (bottom) Firing rates during middle (M) and ring (R) presses were higher than the No-go (X) 

baseline. Vertical bars indicate bootstrap 95% confidence intervals (CI) of the effect size versus No-go baseline. Half-violin 

plots indicate bootstrap distributions. 

b) Mean smoothed firing rates for each finger movement for two example JJ-MC neurons, which respectively modulated for 

middle/ring movements (left) and pinky movements (right). Shaded areas indicate 95% CI. 

c) Percentage of JJ-MC neurons that discriminated between finger movements in each analysis window (q < 0.05, FDR-corrected 

for 278 neurons). Line (blue) indicates mean across sessions. Markers (gray) indicate individual sessions. 

d) Complementary empirical cumulative distribution function (cECDF) visualizing the proportion of JJ-MC neurons with 

ANOVA effect sizes (η2) above the corresponding x-axis value. Line colors indicate analysis epoch. Vertical lines (gray) 

indicate Cohen’s thresholds (Cohen, 1988) for small (η2=0.01), medium (η2=0.06), and large (η2=0.14) effect sizes. 

e) Overlap of JJ-MC neurons that modulated significantly (q < 0.05) with large effect sizes (η2 > 0.14) during movement 

preparation (plan) and movement execution (move).  
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Supplementary Figure 3.4. Offline classification of finger movement from PPC population 

activity (JJ-PPC). 
Similar to Figure 3.5 for JJ-PPC population recordings. 

a) Cross-validated confusion matrix for classifying attempted finger movement from JJ-PPC neural activity during the movement 

execution epoch. 64% accuracy, 336 trials over 3 sessions. 

b) Learning curve showing cross-validated accuracy as a function of the training dataset size. Shaded area indicates 95% CI over 

folds/sessions. 

c) Neuron-dropping curve (NDC) showing cross-validated accuracy as a function of recorded population size. Shaded area 

indicates 95% interval over subpopulation resamples. 

d) Hyperparameter sweep showing cross-validated classification accuracy as a function of decode window size. Input features 

were the average firing rates in the window [200ms, 200ms + window size] after Go-cue. Shaded area indicates 95% CI over 

folds/sessions. 

e) Cross-validated classification accuracy across the trial duration (500-ms sliding window). Shaded area indicates 95% CI over 

folds/sessions. 
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Supplementary Figure 3.5. Offline classification of finger movement from MC population 

activity (JJ-MC). 
Similar to Figure 3.5 for JJ-MC population recordings. 

a) Cross-validated confusion matrix for classifying attempted finger movement from JJ-MC neural activity during the movement 

execution epoch. 84% accuracy, 336 trials over 3 sessions. 

b) Learning curve showing cross-validated accuracy as a function of the training dataset size. Shaded area indicates 95% CI over 

folds/sessions. 

c) Neuron-dropping curve (NDC) showing cross-validated accuracy as a function of recorded population size. Shaded area 

indicates 95% interval over subpopulation resamples. 

d) Hyperparameter sweep showing cross-validated classification accuracy as a function of decode window size. Input features 

were the average firing rates in the window [200ms, 200ms + window size] after Go-cue. Shaded area indicates 95% CI over 

folds/sessions. 

e) Cross-validated classification accuracy across the trial duration (500-ms sliding window). Shaded area indicates 95% CI over 

folds/sessions. 
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Supplementary Figure 3.6. Retrospective BMI accuracy when decoding from a single 

electrode array. 
a) Offline approximation of single-array BMI accuracy. We trained the linear classifier on earlier run-blocks [0, 1, ..., M – 1] 

and evaluated on run-block M, repeating for all run-blocks in each session. 83% accuracy ± S.D. 7% (chance 17%), 1440 

trials over 8 sessions. 

b) Same as (a) using JJ-MC population activity. 87% accuracy ± S.D. 8% (chance 17%), 1440 trials over 8 sessions. 
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Supplementary Figure 3.7. Left-hand BMI classification of individual finger movements. 
a) Confusion matrix for participant JJ (PPC+MC), left-hand finger presses. 94% ± S.D. 4% over 3 sessions (chance = 17%), 288 

total trials. 

b) Offline approximation of single-array BMI accuracy for left-hand finger presses. We trained the linear classifier on earlier 

run-blocks [0, 1, ..., M – 1] and evaluated on run-block M, repeating for all run-blocks in each session. 86% accuracy ± S.D. 

3%. 

c) Same as (b) using JJ-MC population activity. 92% accuracy ± S.D. 5%. 
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Supplementary Figure 3.8. Cross-condition generalization paradigm to assess the factorized 

coding hypothesis. 
Factorized coding enables a linear decoder to generalize to unseen test conditions. (left) A left-vs-right-hand decoder 

was trained on 4 pairs of fingers, then evaluated on the held-out finger-type. Cross-condition generalization accuracies 

(CCGP) were averaged over all folds of hold-one-finger-type-out. (right) A 5-class finger-type decoder was trained 

on the right hand and evaluated on the left hand (and vice versa). (both) Plot only shows markers for the right and left 

index, middle, and ring fingers, but the actual procedure included all ten fingers.  
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Supplementary Figure 3.9. Representational geometry of contralateral and ipsilateral finger 

movements (JJ-MC)  
Similar to Figure 3.8 for JJ-MC population recordings. 

a) Cross-validated squared Mahalanobis distances between JJ-MC activity patterns during the contralateral/ipsilateral finger 

press task. Distances were averaged over the 2 sessions. 

b) Non-matching finger pairs have larger distances than matching finger pairs. Each circle is one pairwise distance, aggregated 

across 2 sessions. 

c) Example schematic of perfect factorization along hand and finger-type components. Line styles indicate groups of parallel, 

identical vectors. A factorized code generalizes linearly across each component axis. For example, the Rm population activity 

can be constructed from the summation: Li + left->right + index->middle. For visual clarity, only three finger-types (index, 

middle, ring) are shown. 

d) Representational geometry of finger movements corresponding to JJ-MC distances (a), visualized in 2-D using 

multidimensional scaling (MDS). We used Generalized Procrustes analysis (with scaling) to align across 2 sessions. Markers 

indicate mean across sessions. Scale bars shown. 

e) Linear decoders generalized (Supplementary Figure 3.8) across finger-type to classify hand (left) and across hand to classify 

finger-type (right) (p < 0.001, permutation test), indicating that movement representations were factorized across finger-type 

and hand dimensions. 
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Supplementary Figure 3.10. Representational geometry of contralateral and ipsilateral 

finger movements (JJ-PPC) 
Similar to Figure 3.8 for JJ-PPC population recordings. 

a) Cross-validated squared Mahalanobis distances between JJ-PPC activity patterns during the contralateral/ipsilateral finger 

press task. Distances were averaged over the 2 sessions. 

b) Comparison of distances between matching finger pairs and non-matching finger pairs. Each circle is one pairwise distance, 

aggregated across 2 sessions. 

c) Example schematic of perfect factorization into hand and finger-type components. Line styles indicate groups of parallel, 

identical vectors. A factorized code generalizes linearly across each component axis. For example, the Rm population activity 

can be constructed from the summation: Li + left->right + index->middle. For visual clarity, only three finger-types (index, 

middle, ring) are shown. 

d) Representational geometry of finger movements corresponding to JJ-PPC distances (a), visualized in 2-D using 

multidimensional scaling (MDS). We used Generalized Procrustes analysis (with scaling) to align across 2 sessions. Markers 

indicate mean across sessions. Scale bars shown. 

e) (left) Linear decoders generalized (Supplementary Figure 3.8) across finger-type to classify hand (left; p < 0.001, permutation 

test). (right) Finger-type cross-condition generalization performance (CCGP; blue circle) was lower than standard decoding 

accuracy (orange triangle).  
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Supplementary Figure 3.11. Neuron-dropping curve for cross-condition generalization 

performance (CCGP). 
Neuron dropping curves show generalization accuracy as a function of neural population size. Panel columns 

correspond to the variable predicted (left: hand; right: finger-type). Panel rows correspond to the recorded neural 

population. Shaded area indicates 95% interval over subpopulation resamples. Hand CCGP matched standard 

decoding accuracy in all recorded neural populations. Finger-type CCGP matched standard decoding accuracy for 

NS-PPC and JJ-MC, but finger-type decoders trained on JJ-PPC activity did not generalize well across hands (bottom 

right panel). 1111 NS-PPC neurons were recorded across 10 sessions, but we truncated the dropping curve at 500 

neurons to match scales across participants. 
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  Phase      

Task Participant Pre-Cue Cue Delay Go ITI Feedback 

Alternating Cues NS 1 sec  0.75 sec 1.25 - 2 sec 1 sec 2 sec  

Alternating Cues JJ 0.5 sec 1.5 sec 0.5 - 1 sec 1 sec 0.5 - 1 sec  

Reaction time, 

randomized location 

NS and JJ    1.5 sec  1.5 sec 

Ten-finger NS  1.5 or 1 sec 1 or 1–1.5 

sec 

1 sec 2 or 1.5 sec  

Ten-finger JJ  1 or 1.5 sec 1–1.5 or 

0.75–1 sec 

1 or 2 sec 1.5 or 2 sec  

 

Supplementary Table 3.1. Phase durations for each task. 
Table of phase durations for the different tasks and participants. Blank cells indicate that the task did not include that 

phase. Ranges indicate a uniform-random distribution per trial.  
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Participant Task Number of 

sessions 

First 

session 

(days after 

implant) 

Last 

session 

(days after 

implant) 

NS Alternating Cues 

 

4 909 948 

 Reaction time, 

randomized 

location 

10 1476 1518 

 Ten-finger 10 351 636 

JJ Alternating Cues 3 1046 1179 

 Reaction time, 

randomized 

location 

8 107 249 

 Ten-finger 2 78 389 

 

Supplementary Table 3.2. Date ranges for each task. 
Dates of first and last session for each task. 

Although the Alternating Cues data was presented first in the Results section, this data was collected from participant 

JJ later than the reaction-time data. The drop in neural yield between these dates affected classification performance. 
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4 Neural population dynamics during brain-computer interface 

control 

4.1 Summary 

The motor cortex (MC) is often described as an autonomous dynamical system during movement 

execution. In an autonomous dynamical system, flexible movement generation depends on 

reconfiguring the initial conditions, which then unwind along known dynamics. An open question is 

whether these dynamics govern MC activity during brain-computer interface (BCI) control. We 

investigated MC activity during BCI cursor movements of multiple durations, ranging from 

hundreds of milliseconds to sustained over seconds. These durations were chosen to cover the range 

of movement durations necessary to control modern BCIs under varying precision levels. 

Movements of different durations shared their MC initial condition with other movements in the 

same direction. However, sustained movements resulted in sustained MC activity, effectively 

pausing the neural population dynamics until each movement goal was reached. The difference in 

MC population trajectories can be attributed to external inputs. Our results highlight the role of inputs 

to MC during BCI control and potentially hint that MC likely integrates inputs even during able-

bodied movement.  

4.2 Introduction 

The motor cortex (MC) is plays a central role in volitional movement, yet its precise mechanism is 

still debated (Omrani et al., 2017). Inspired by feature coding in the visual cortex, MC studies from 

the 1980s to early 2000s focused on representational modeling (RM), identifying movement 

parameters that correlate directly with neural activity. Studies discovered a wide range of represented 

parameters, including movement direction, speed, force, muscle activity, and posture (Evarts, 1968; 

Georgopoulos et al., 1986, 1992; Kakei et al., 1999; Moran and Schwartz, 1999; Paninski et al., 

2004; Aflalo and Graziano, 2006). Multiple movement parameters were often represented 

simultaneously, however, and these representations shifted across task contexts (Aflalo and 

Graziano, 2007; Scott, 2008; Omrani et al., 2017) or even within a single movement (Churchland 

and Shenoy, 2007), challenging the notion of a literal movement parameter representation. 

Researchers began to voice that this parameter search was misleading (Fetz, 1992; Scott, 2008; 

Omrani et al., 2017). Perhaps MC neurons did not represent literal movement parameters, and a 

different framework was necessary. 

A now-prominent framework emerged to replace representational modeling: the autonomous 

dynamical system hypothesis (aDSH). The aDSH states that the motor cortex comprises a pattern 

generator, where preparatory activity sets the initial condition and movement execution activity 

unfolds along predictable dynamics (Churchland et al., 2012; Shenoy et al., 2013; Pandarinath et al., 

2015, 2018a, 2018b; Sussillo et al., 2015; Vyas et al., 2020). The aDSH has been demonstrated most 

comprehensively with able-bodied non-human primate subjects performing a prepared-reach task 

(Churchland et al., 2010, 2012; Kaufman et al., 2014; Elsayed et al., 2016). In this task, the initial 

preparatory state comprises a sufficient statistic to predict quasi-oscillatory MC activity during reach 
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execution (Pandarinath et al., 2018b). Recurrent neural network models indicate that local recurrence 

could implement MC’s brief oscillations (Sussillo et al., 2015; Pandarinath et al., 2018b; Russo et 

al., 2018; O’Shea et al., 2022; Saxena et al., 2022), which provide a basis set for generating 

multiphasic muscle activity (Churchland et al., 2012; Sussillo et al., 2015).  

Mathematically, a dynamical system can be described by a function 𝑓 mapping the system 

state 𝑥 and external inputs 𝑢 to the instantaneous change in state 
𝑑𝑥

𝑑𝑡
 : 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑢(𝑡)) 

Equation 4.1 

where 𝑡 indicates time. Frequently (Shenoy et al., 2013; Sauerbrei et al., 2020), the system state is 

defined as the MC firing rate vector 𝒓, and 𝑓 is constrained to be an additive linear function ℎ that 

models local recurrence. The input 𝒖 can include external stimuli and the firing rates of other brain 

areas. In this simplification, Equation 4.1 can be written as: 

𝑑𝒓

𝑑𝑡
= ℎ(𝒓(𝑡)) +  𝒖(𝑡). 

Equation 4.2 

The autonomous dynamical systems hypothesis posits that the system (MC) is self-contained 

during execution of prepared movements. That is, 𝒖 is negligible during movement execution, 

further simplifying Equation 4.2 into: 

𝑑𝒓

𝑑𝑡
= 𝐴𝒓(𝑡) +  𝑏 

Equation 4.3 

where 𝐴 is the dynamics matrix and 𝑏 is an offset vector. 

The autonomous dynamical systems hypothesis explained phenomena that had puzzled the 

RM framework. For example, neurons appear to change representational tuning with time, because 

they generate a temporal basis rather than directly driving the output (Shenoy et al., 2013; 

Pandarinath et al., 2018a). And apparent modulation by multiple movement parameters was not 

literal parameter representation, but rather a basis set for downstream muscle read-out.  

Three related claims follow from the autonomous dynamical systems hypothesis. First, 

because the local MC dynamics ℎ are stable (Gallego et al., 2020) and the external inputs 𝑢 are 

hypothesized to be negligible, generating different neural trajectories 𝒓(𝑡) is solely determined by 

specifying different initial conditions 𝒓(0) (Churchland et al., 2012; Pandarinath et al., 2018b; Vyas 

et al., 2020). Second, these dynamics cause movement; that is, neural perturbations disrupt 

movement if and only if the perturbation alters the task dynamics subspace (O’Shea et al., 2022). 

Third, because external inputs like sensory feedback are hypothesized to be negligible, errors cannot 

be easily detected and then corrected, so pattern generation must be robust to noise. Noise-robust 

autonomous dynamical systems exhibit low tangling (described in MC by (Russo et al., 2018)) (i.e., 
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smooth flow fields) and low divergence (described in supplementary motor area, but notably not in 

MC, by (Russo et al., 2020)).  

An important open question is whether these same autonomous dynamical principles govern 

MC activity during brain-computer interface (BCI) control. BCIs aim to restore movement to people 

with motor disabilities by decoding motor intent directly from neural activity (Hochberg et al., 2006, 

2012; Collinger et al., 2013c; Aflalo et al., 2015; Gilja et al., 2015; Wodlinger et al., 2015; Bouton 

et al., 2016; Ajiboye et al., 2017). BCI cursor control has long been considered analogous to able-

bodied reaching (Serruya et al., 2002; Taylor et al., 2002; Hochberg et al., 2006; Hwang et al., 2013; 

Golub et al., 2016; Inoue et al., 2018). Given the success of aDSH in explaining MC activity during 

able-bodied reaching, this analogy suggests that aDSH-based modeling could improve human BCI 

control of assistive devices (Kao et al., 2015; Pandarinath et al., 2018a). Such modeling has even 

extended successfully to movements beyond arm reaching (Hall et al., 2014; Stavisky et al., 2019; 

Kalidindi et al., 2021). 

The applicability of the autonomous dynamical systems hypothesis is not a given, however. 

The aDSH has received various critiques, ranging from other explanations for the observed data’s 

structure (Lebedev et al., 2019; Kalidindi et al., 2021) to aDSH’s lack of generalization to dexterous 

movements (Sauerbrei et al., 2020; Suresh et al., 2020) or stopping movements (Russo et al., 2020). 

From the perspective of applying aDSH to BCI control, a core limitation is the assumption that 

feedback is negligible. Compared to the arm movements usually modeled by aDSH, current BCIs 

read out from a miniscule number of neurons, so BCI control is slower and less precise (Shanechi, 

2016; Willett et al., 2017a) and prone to nonstationarities (Jarosiewicz et al., 2015). As a result, high-

performance BCI control benefits from rapid real-time feedback (Gilja et al., 2012; Shanechi et al., 

2016, 2017; Willett et al., 2018, 2019). During able-bodied movement, motor cortex reflects 

proprioceptive signals that are missing during BCI control (Stavisky et al., 2018). Taken together, 

behavioral dynamics and sensory inputs differ substantially between BCI control and able-bodied 

arm reaching. 

Dynamical systems modeling promises to improve neural decoding performance (Kao et al., 

2015; Pandarinath et al., 2018a; Gallego et al., 2020; Karpowicz et al., 2022). Given the difference 

in behavioral dynamics between able-bodied reaching and BCI control, an open question is how well 

the aDSH applies to BCI movements across different applications. In order to probe the relative 

contributions of autonomous dynamics, initial conditions, sensory inputs, and non-sensory inputs to 

MC activity, we adapted variants of the common BCI cursor tasks that dissociated the various 

components of a dynamical system. When the BCI participant attempted ballistic reaches analogous 

to previous aDSH studies, MC activity reproduced the previously described rotational dynamics. 

When the BCI participant sustained cursor movement for longer durations, the initial conditions 

were similar, yet the neural trajectories paused along that of ballistic movements. This divergence in 

neural trajectories would have required inputs from outside MC, inconsistent with the autonomous 

dynamical systems hypothesis. These inputs to MC were present even in the absence of sensory 

feedback, indicating that MC receives inputs from other brain areas during relatively simple 

behavior. Although autonomous dynamics may exist during able-bodied movement, MC is not 

constrained by such dynamics when a task requires otherwise. 
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4.3 Results 

4.3.1 Intracortical brain-computer interface (BCI) cursor control 

We recorded neural activity from microelectrode arrays implanted in participant JJ’s hand knob of 

left motor cortex (MC) and posterior parietal cortex (PPC) while he completed different brain-

computer interface (BCI) 2-D cursor tasks. To calibrate a BCI decoder, participant JJ observed a 

computer-controlled cursor perform the center-out-and-back task with 8 targets. Simultaneously, 

participant JJ attempted to move his right thumb as though he was controlling the cursor via a thumb 

joystick. Because participant JJ previously suffered a C4-C5 spinal cord injury, he cannot feel or 

move his fingers. Instead, participant JJ attempted to move his thumb as though he was not paralyzed. 

Using data from this calibration task, we trained a decoder to map predicted cursor velocity from 

electrode threshold crossing rates. Participant JJ then performed the same center-out-and-back task 

under BCI control, usually with partial computer assistance (Methods, weighted average assistance). 

He used the same attempted movement strategy (thumb joystick) during online BCI control; we use 

the terms “BCI control” and “movement” interchangeably here. We used the online BCI data to 

recalibrate the BCI decoder, because this recalibration procedure improves subsequent control 

(Jarosiewicz et al., 2013). 

4.3.2 Ballistic and sustained BCI movements 

The autonomous dynamical systems hypothesis (aDSH) is typically studied in non-human primates 

performing ballistic arm reaches, with movement durations on the order of 400ms (Churchland et 

al., 2012; Pandarinath et al., 2018b), but analogous BCI movements can take several seconds for 

comparably precise reaches (Willett et al., 2017a). BCI-useful models of MC activity should apply 

to movements of both timescales. To replicate both ballistic and sustained reaches, participant JJ 

performed the center-out BCI task under two decoder gain parameters. For sustained reaches, we 

limited the decoder gain to 25% or 30% of its normal value. For ballistic reaches, decoder gain was 

either set at its normal value or 300% of its normal value. BCI control is imprecise at high decoder 

gains (Willett et al., 2017a), but we wanted to investigate reaches analogous to well-practiced, able-

bodied reaching, where corrections are small. Therefore, we partially assisted ballistic cursor control 

(Methods, error rail assistance), at a small enough level that cursor movement was primarily driven 

by neural activity. Additionally, participant JJ was not required to hold the cursor at the target, but 

was rather instructed to relax when the target hit. Sustained and ballistic reaches were grouped into 

respective trial blocks and block-interleaved. 

Under both gain parameters, Participant JJ acquired the targets consistently (Figure 4.1; 

Supplementary Figure 4.1). As designed, ballistic (BCI) movement trials took a roughly similar 

amount of time as previous non-human primate studies (acquisition time, session 2: 0.45s ± SD 

0.19s; Figure 4.1d). As designed, sustained movement trials were substantially longer (mean 

acquisition time, session 2: 2.34s; 95% CI of mean difference sustained-vs-ballistic: [1.77, 2.05]s). 

These patterns were consistent across sessions (Supplementary Figure 4.1). 
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Figure 4.1. Ballistic and sustained brain-computer interface (BCI) cursor movements. 
(a) Example single-trial cursor trajectories during BCI center-out task for ballistic and sustained movements. 

(b) Distance to the target, as a function of time. Each line corresponds to a trial from session 2. Additional sessions 

visualized in Supplementary Figure 4.1. 

(c) Time to reach target. Each marker corresponds to a trial from session 2. Box plot lines indicate lower quartile, 

median, and upper quartile, respectively. 

 

4.3.3 Sustained single-neuron and population activity in motor cortex (MC) during sustained 

BCI movements is shared with ballistic movement encoding 

We visualized single-neuron activity across sustained and ballistic trials (Figure 4.2a-c). Because 

our focus was to better understand the autonomous dynamical systems hypothesis (aDSH), which 

describes MC, here, we focus on analyzing MC recordings. During ballistic movements, many 

neurons exhibited phasic firing rate modulation, usually rising with movement onset and falling with 

target acquisition. During sustained movements, many neurons exhibited the same onset firing rate 

increase (Figure 4.2a) but instead sustained their firing rate throughout the entire movement (Figure 

4.2b-c). 

Next, we visualized population activity using principal component analysis (PCA) (Figure 

4.2d). Similarly to a previous study (Kaufman et al., 2016), the largest-variance principal component 

(PC) was largely condition-invariant and reflected movement onset timing. Interestingly, the second- 

and third-largest-variance PCs corresponded directly to movement direction, regardless of the 

decoder gain parameter. In other words, population activity during sustained and ballistic movements 

to the same target took the same initial neural trajectory before diverging. The same projection matrix 

was used for both conditions, and thus similar responses suggest that ballistic and sustained 

movements share a common neural substrate. 
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Figure 4.2. Neural responses in motor cortex (MC) during BCI cursor movements. 
(a) Mean firing rate of an example neuron, aligned to Go (left panel) and target acquisition (right panel). Example 

neuron increased firing rate during movement onset. Most neurons appeared to modulate during movement onset, 

sustain firing rates during sustained movements, or some combination of onset and sustained preferred direction. 8 

targets were used, but only 4 target conditions are shown. 

(b) Mean firing rate of an example neuron, which activated during movements to target 5 and sustained firing for 

sustained movements. 

(c) Mean firing rate of an example neuron, which activated during movements to target 3 and sustained firing for 

sustained movements. 

(d) Principal component analysis (PCA) of MC population activity. 
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4.3.4 Comparing ballistic and sustained BCI movements reveals input-driven dynamics 

During movement execution, the initial aDSH study described (quasi-)oscillatory dynamics, akin to 

a pendulum (Pandarinath et al., 2018a) or spring-mass system (Figure 4.3a). In this hypothetical limit 

of the system not receiving external inputs, the initial condition and dynamics should fully determine 

the neural trajectory. They used jPCA, a rotated variant of PCA, to uncover quasi-oscillatory 

dynamics in the neural activity (Churchland et al., 2012). Briefly, jPCA is a rotated version of PCA 

first reduces the recording dimensionality to the first 𝑘 = 6 PCs. Within this subspace, a new 

orthonormal basis of 𝑘 jPCs is calculated, such that the top two jPCs maximize the rotational 

component. This is mathematically equivalent to fitting the constrained dynamical system: 

𝑿̇(𝑡, 𝑐) =  𝑀𝑠𝑘𝑒𝑤𝑿(𝑡, 𝑐) 

Equation 4.4 

where 𝑿(𝑡, 𝑐) is the 𝑘-dimensional PCA reduction of the population firing rate vectors at time 𝑡 and 

condition 𝑐. 𝑀𝑠𝑘𝑒𝑤 is a skew-symmetric matrix, whose eigenvectors correspond to the jPCs.A 

corollary to oscillatory dynamics is that ‖𝑿̇(𝑡, 𝑐)‖
2
the neural speed should be constant throughout 

the movement duration (Figure 4.3a). We applied jPCA to MC activity during ballistic BCI 

movements (Figure 4.3b). 

Consistent with ballistic arm reach studies (Churchland et al., 2012), jPCA revealed clear 

rotational dynamics in the top jPC plane. We compared the jPCA fit to null distribution with the 

same neural/temporal covariance structure. We generated the covariance-constrained null 

distribution using tensor maximum entropy (TME) (Elsayed and Cunningham, 2017) and applied to 

jPCA to the samples. The jPCA fit was significantly better on the true data than the null distribution 

(p<0.001). Consistent with these results, the cross-validated (Methods) neural population speed 

‖𝑿̇(𝑡, 𝑐)‖
2
 was large across the duration of the movement (Figure 4.3c).  

Next, we applied the neural speed and jPCA analyses to MC activity during sustained BCI 

movements (Figure 4.3c). Cross-validated neural speed high was during movement onset but 

returned to baseline levels (close to the ITI baseline) indicating that the neural activity is maintaining 

a constant stationary representation of intent while sustaining the BCI movement. In the jPCA 

visualization, this sustained activity appears as a “pause” in the rotational trajectory. 

Finally, in Figure 4.3d, we compare directional tuning properties between three windows of 

time; one from the initial dynamic period (250–450ms after target presentation) and two from the 

sustained movement period chosen to equate duration and spacing between the three windows. In 

MC, the within- and across- time window comparisons show different tuning profiles between the 

early and sustained windows, but consistent coding in the sustained windows. Thus, MC sustained 

motor intent appears to consist of an initial dynamic phase and a subsequent sustained phase until 

the target is reached. 
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Figure 4.3. MC population dynamics during ballistic and sustained BCI movements. 
(a) A simple example of an autonomous dynamical system: a spring-mass system. 

(b) jPCA shows rotational dynamics begins similarly for ballistic and sustained movements, but freezes in place during 

sustained movement intent. 

(c) Cross-validated neural speed is high at movement initiation and offset. During sustained movement intent, neural 

speed is slow. 

(d) Within- and across-time regression shows changing directional coding dependent on temporal context.  
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4.4 Discussion 

4.4.1 Rigid dynamics versus flexible control of motor cortex activity 

The motor cortex’s precise mechanisms have been debated for decades. Recent studies have 

highlighted how the motor cortex (MC) can be modeled as an autonomous pattern generator during 

arm movement (Churchland et al., 2012; Shenoy et al., 2013; Pandarinath et al., 2015, 2018a, 2018b; 

Sussillo et al., 2015; Vyas et al., 2020). Given the similarities between able-bodied movements and 

brain-computer interface (BCI) control (Hochberg et al., 2006; Hwang et al., 2013; Golub et al., 

2016; Guan et al., 2022b), an open question was whether autonomous dynamics would also dictate 

MC activity during BCI control. BCI control provides a unique opportunity to study MC activity, 

and the results have important implications for decoder design. 

We found that participant JJ could produce MC activity during BCI control beyond the 

constraints of the autonomous dynamical systems hypothesis. During able-bodied-like ballistic 

movements, MC activity reproduced previously described oscillatory dynamics (Figure 4.3) 

(Churchland et al., 2012). When necessary for sustained BCI movements, participant JJ could easily 

sustain MC activity (Figure 4.2) rather than strictly following autonomous dynamics. Interestingly, 

the MC activity was shared between the onsets of both the ballistic and sustained movements, despite 

the aDSH hypothesis that different initial conditions would lead to different movements (Shenoy et 

al., 2013; Vyas et al., 2020). The sustained MC activity effectively paused the dynamics until the 

target was reached, at which point the offset dynamics continued (Figure 4.3). We summarize these 

results in Figure 4.4. 
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Figure 4.4. Summary diagram  
(a) Example cursor trajectories for ballistic (opaque lines) and sustained (translucent lines) movements to targets in 

the up (blue) and down (orange) direction.  

(b) Initial neural trajectories are shared between ballistic (opaque lines) and sustained (translucent lines) BCI 

movements to each target (blue and orange), but sustained movements generate sustained neural activity. 

(c) jPCA visualization of neural trajectories to two targets (blue and orange). When compared to ballistic movements 

(opaque lines), population activity during sustained movements (translucent lines) pauses the dynamics (visualized as 

squiggles halfway along trajectory). 

 

Our results indicate that an autonomous dynamical system is too strict a model for the wide temporal 

scales of possible BCI movements. Similar results and interpretations have been reported anecdotally 
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(Stavisky, 2016), although we did not find any other preprints or published reports that directly 

studied this. 

These results should not be construed to mean that MC has absolutely no constraints on 

neural activity. A series of studies have examined how the covariance structure of MC during natural 

movement (also known as a “neural manifold”) constrains one’s ability to generate arbitrary activity 

(Sadtler et al., 2014; Golub et al., 2018; Oby et al., 2019). Neural activity patterns within this natural 

covariance structure are much easier to generate than outside it. However, our results indicate that 

there are not constraints on the dynamical trajectories to reach the different points on this manifold. 

Our results raises the question that autonomous neural dynamics during reaching are partially 

a function of the behavioral task and its timescales, rather than an innate property of motor cortex. 

What may seem like intrinsic dynamics may appear more like behavioral dynamics at different 

timescales. As shown here, dynamics learned from one behavioral timescale may not apply to similar 

behaviors performed at shorter or longer timescales. This was also one of the original pitfalls of 

standard representational modeling (RM); RM found neurons tuned to as many variables as were 

tested, because oftentimes variables are highly correlated. Similarly, without joint behavioral-neural 

dynamics modeling (Sani et al., 2021) or without higher-dimensional tasks (Gao et al., 2017), it can 

be difficult to disentangle intrinsic neural dynamics from behavioral dynamics. 

4.4.2 Switching decoders for brain-computer interfaces 

Most previous demonstrations of neural prosthetics have used stationary algorithms like linear 

regression to decode movement velocity (Collinger et al., 2013c). Our results both explain the 

success of stationary algorithms, like linear regression, as well as outline paths forward for better 

decoding. Due to the difficulty of controlling modern BCIs, BCI trajectory control often spans 

multiple seconds, in which the sustained neural activity takes precedent over shorter dynamical 

transients. In this regime, real-time sensitivity (Shanechi et al., 2016, 2017) and fast error correction 

(Even-Chen et al., 2017) are more important than perfect first-time decoding. As BCIs begin to better 

approximate able-bodied precision (Sussillo et al., 2016; Willett et al., 2021; Willsey et al., 2022), 

the sustained-component of neural activity becomes shorter, and the dynamical transients take up 

larger proportions of the movement duration. 

To further improve decoding, decoders may want to take temporal structure into account, for 

example explicitly modeling the different phases of BCI movement as motor intent switches from a 

resting state to a moving state (Sachs et al., 2016; Dekleva et al., 2021). Our results suggest that 

decoders should be sensitive to a minimum of 3 temporal contexts during movement execution: 

movement onset, sustained intent, and movement offset. An additional hold state (Sachs et al., 2016; 

Inoue et al., 2018) and rest state (Velliste et al., 2014) may also be useful for certain applications.  

4.4.3 Sensory and non-sensory inputs to motor cortex 

Under a dynamical systems framework, the divergence in dynamics between sustained and ballistic 

movements indicates that the recorded population receives different inputs between the two 

movement conditions. An open question is where these inputs originate from. During able-bodied 

reaches, the motor cortex receives rich proprioceptive inputs from S1, which can exhibit similar 

rotational dynamics (Kalidindi et al., 2021), as well as transformed visual information (Eisenberg et 

al., 2011) potentially from the posterior parietal cortex (PPC). 
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Other recent studies have also challenged the autonomous dynamical systems hypothesis by 

showing that somatosensory input can drive much of the motor cortical activity observed during 

movement execution (Suresh et al., 2020; Kalidindi et al., 2021). For BCI users moving a cursor 

with a paralyzed effector, as in our study, somatosensory feedback is severed. Are the observed 

inputs to motor cortex during sustained activity the direct result of visual feedback or something 

else? A BCI perturbation study found that visuomotor feedback is initially isolated from the BCI in 

an output-orthogonal dimension (Stavisky et al., 2017b), suggesting that such inputs would occupy 

a different subspace until the movement goal was updated otherwise. Furthermore, visual feedback 

of cursor position only weakly affects MC activity in the absence of movement (Stavisky et al., 

2018). However, a more targeted study would be necessary to rule out visual feedback as the direct 

modulation for MC activity. 

To fully determine whether the observed MC inputs are visually driven, we have collected 

preliminary data where the BCI participant attempted to general similar movements, but where visual 

feedback was removed by a mask. Our preliminary analysis indicates that MC dynamics and 

sustained activity are shared between baseline and masked trials. This suggests that the inputs to MC 

that distinguish sustained from ballistic movements originate from some non-sensory area. 

These inputs could from a few candidate areas. First, the thalamus provides time-varying 

inputs to the motor cortex in mice to enable reaching (Sauerbrei et al., 2020). Second, the 

supplementary motor area (SMA) tracks timing and context signals that indicate when to start or 

stop a movement (Gámez et al., 2019; Russo et al., 2020). Finally, the cerebellum and posterior 

parietal cortex (PPC) compute internal models for sensorimotor control (Mulliken et al., 2008a; 

Shadmehr and Krakauer, 2008; Franklin and Wolpert, 2011; Guan et al., 2022b), and these may 

input to MC for goal-directed movements. 

4.4.4 Unifying neural dynamics and flexible feedback 

Feedback is a core part of flexible movement generation, but the aDSH largely disregards feedback 

(in the form of external inputs). A complementary framework, optimal feedback control (OFC) 

(Todorov and Jordan, 2002; Scott, 2004; Shadmehr and Krakauer, 2008; Franklin and Wolpert, 

2011), has highlighted the importance of feedback for flexible movement generation. Whereas aDSH 

asserts that movement execution is predetermined by the initial state and intrinsic dynamics, OFC 

computes movement controls on-the-fly, taking into account the difference between the current and 

desired state of effectors. This helps us understand behavior for movements that cannot be predicted 

at preparation time, such as controlling a new effector (Collinger et al., 2013c; Wodlinger et al., 

2015), rapidly adapting to visual target and obstacle modifications (Dimitriou et al., 2013; Nashed 

et al., 2014; Stavisky et al., 2017b) or load perturbations (Nashed et al., 2014; Cluff and Scott, 2015). 

Many OFC models posit MC as a feedback controller that integrates information from 

somatosensory, cerebellar and other areas to achieve the behavioral goal (Scott, 2016). OFC is often 

formulated as a cost minimization (Diedrichsen et al., 2010). 

OFC and the dynamical systems literature have often stood in opposition to or in isolation 

from each other. However, given both the prevalence of dynamical system tools and the importance 

of feedback to BCI control, clearly both frameworks provide utility to understanding motor control. 

A recent review has made an interesting effort to unify OFC and neural dynamical systems (NDS) 

under the idea of dynamical feedback control (DFC) (Versteeg and Miller, 2022). Additional 
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experiments may help determine whether this framework can better explain observed phenomena 

and improve BCI decoding for neuroprosthetic applications.  

 

4.5 Methods 

4.5.1 Data collection 

4.5.1.1 Study participant 

The study participant JJ is a right-handed, tetraplegic man. Approximately 3 years before this study, 

he sustained a spinal cord injury at cervical level C4-C5. He has residual movement in his upper 

arms, but he cannot move or feel his hands. As part of a BCI clinical study (ClinicalTrials.gov 

Identifier: NCT01958086), participant JJ was implanted with two 96-channel Neuroport Utah 

electrode arrays (Blackrock Microsystems Inc.). He consented to this study after understanding its 

nature, objectives, and potential risks. All procedures were approved by the Institutional Review 

Boards of California Institute of Technology, Casa Colina Hospital and Centers for Healthcare, and 

the University of California, Los Angeles. 

4.5.1.2 Multielectrode array implant location 

Participant JJ was implanted with two 96-channel NeuroPort Utah electrode arrays about 20 months 

after injury. One array was implanted near the hand knob of the left motor cortex (MC). A second 

array was implanted in the superior parietal lobule (SPL) of the left posterior parietal cortex (PPC). 

Both arrays were used for online BCI decoding, although our analyses here only describe data from 

the MC implant. More details regarding the methodology for functional localization and 

implantation can be found in (Guan et al., 2022a). 

4.5.1.3 Neural data preprocessing 

Using the NeuroPort system (Blackrock Microsystems), neural signals were recorded from the 

electrode arrays, amplified, analog bandpass-filtered (0.3 Hz to 7.5 kHz), and digitized (30 kHz, 250 

nV resolution). A digital high-pass filter (250 Hz) was then applied to each electrode. 

Threshold crossings were detected at a threshold of –3.5 x RMS (root-mean-square of an electrode’s 

voltage time-series). Threshold crossings were used as features for in-session BCI control for the 

Ballistic-Sustained task. For in-session BCI control during the Radial-Grid and Masked-Radial-Grid 

tasks, we used neural network-extracted features per electrode (Haghi et al., 2021). For offline 

analyses, we used k-medoids clustering on each electrode to spike-sort the threshold crossing 

waveforms. The first 𝑛 ∈ {2, 3, 4} principal components were used as input features to k-medoids, 

where 𝑛 was selected for each electrode to account for 95% of waveform variance. The gap criteria 

(Tibshirani et al., 2001) was used to determine the number of waveform clusters for each electrode. 

4.5.2 Experimental setup 

4.5.2.1 Recording sessions 

Experiments were conducted in recording sessions at Casa Colina Hospital and Centers for 

Healthcare. All tasks were performed with participant JJ seated in his motorized wheelchair with his 

http://clinicaltrials.gov/
https://clinicaltrials.gov/ct2/show/NCT01958086
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hands resting on his lap or an adjacent armrest. Participant JJ viewed text cues on a 27-inch LCD 

monitor that occupied approximately 40 degrees of visual angle. 

Each session consisted of a series of 2–5 minute, uninterrupted “runs” of the task. The participant 

rested for a couple minutes between runs as needed.  

4.5.2.2 Center-out-and-back calibration task 

The center-out-and-back task (e.g. (Jarosiewicz et al., 2013; Kao et al., 2015)) was used to calibrate 

the decoder for each session. First, a computer controlled the cursor as it moved out to targets and 

back to the center. The participant simultaneously attempted to move his thumb as though he was 

controlling the cursor via a thumb joystick. Using this calibration data, we trained a decoder to 

predict cursor velocity from neural activity. 

After open-loop calibration, the participant performed the center-out-and-back task with a 

relatively low gain. Partial computer assistance was sometimes applied to the cursor trajectories. The 

purpose of this follow-up task was to collect more data to train the decoder, as recommended by 

(Jarosiewicz et al., 2013). 

On some sessions, the participant repeated the task with a small number of repetitions, so he 

could familiarize himself with the decoder behavior (Willett et al., 2017b). 

4.5.2.3 Center-out brain-computer interface task with variable gain-scaling 

The subject used a cursor BCI to complete the center-out task (Georgopoulos et al., 1982; 

Jarosiewicz et al., 2013) under two decoder gain parameters: high gain for ballistic reaches, and low 

gain for sustained reaches. The reach duration was tuned to approximately 500 ms (ballistic) or 2 

seconds (sustained) using a velocity gain parameter of the neural decoder (Willett et al., 2017b). The 

ballistic-movement condition is designed to resemble prior NHP reaching experiments. Since 

closed-loop decoders cannot match the speed and accuracy of NHP behavior, we add computer 

assistance (error rail, see below Methods) to allow ballistic movements without the need for online 

corrections.  

4.5.2.4 Near-Far center-out brain-computer interface task 

We performed an additional center-out task variant to simulate sustained versus ballistic reaches. In 

the Near-Far variant, targets were positioned at different distances from the center (Supplementary 

Figure 4.2). The participant was instructed to move the cursor to the target as soon as the target 

appeared and then relax once the target was reached. Near targets resulted in shorter movement 

durations (ballistic). Far targets resulted in longer movement durations (sustained). This is 

functionally similar to modulating the decoder gain directly (Willett et al., 2017a), as was done in 

the previous Sustained-Ballistic task. 

4.5.2.5 Near-Far with mask/delay center-out brain-computer interface task 

During able-bodied movement, it can be difficult to dissociate neural activity related to motor output 

from neural activity related to sensory input (Golub et al., 2015; Kalidindi et al., 2021). When using 

a paralyzed effector, brain-computer interface control decouples somatosensory feedback from the 
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motor output. However, visual feedback is still present and could influence motor-related activity, 

albeit indirectly (Stavisky et al., 2017b). 

To isolate the effects of motor intent, we re-ran the Near-Far center-out BCI task with masked 

trials interleaved (Supplementary Figure 4.3). During the intertrial interval (ITI), the cursor was fixed 

at the center. A cue indicated the target, during which the participant remained resting. A Delay 

period separated the visual input in time. The participant was instructed to not (attempt to) move up 

to this point. Next, the movement phase differed between standard and masked trials. The Go phase 

of standard trials were like the Go phase in the standard Near-Far task, with participants moving 

when the target was re-selected, and relaxing once reached (Supplementary Figure 4.2). During 

masked trials, the participant moved the cursor similarly to trials where he had no visual feedback, 

relaxing when he had acquired the target. The participant reported that he paced his masked reaches 

by internally counting to the same intervals as in the standard reaches. 

4.5.2.6 Target grid task 

The Target Grid task (Nuyujukian et al., 2015) consisted of 5 × 5 targets arranged in a square grid, 

resembling an on-screen keyboard interface. Targets were selected randomly one at a time (without 

replacement within a block), and the participant moved the cursor to each target as fast as possible. 

The participant was required to hold the cursor within the target acceptance region for 0.5 seconds 

to complete each trial. The next target was cued immediately after. This task paradigm generates a 

variety of movement directions and distances (when compared to the standard 8-target center-out 

task). 

4.5.2.7 Computer-assisted control: weighted average 

Weighted-average computer assistance blends the decoded velocity with a vector directly towards 

the target. This type of computer assistance has previously described as “attraction assistance” 

(Velliste et al., 2008). Assistance values ranged from 0 (full BCI control) to 0.5 (assisted BCI 

control), where a value of 1 corresponds to full computer control. 

4.5.2.8 Computer-assisted control: error rail 

Error rail attenuates the components of the decoded velocity that are not directly towards the target. 

Denoting the direct cursor-target vector as 𝑑, This is accomplished by decomposing the decoding 

cursor velocity 𝑣⃗ into the component parallel to the target direction 𝑣⃗∥ and the component orthogonal 

to the target direction 𝑣⃗⊥. With assistance value 𝐾, the assisted cursor velocity 𝑣 is: 

𝑣⊥ = (1 − 𝐾) 𝑣⃗⊥ 

𝑣∥ = {
𝑣⃗∥    if     𝑣⃗∥ ∙  𝑑 > 0

(1 − 𝐾)𝑣⃗∥    otherwise
 

𝑣 = 𝑣⊥ + 𝑣∥ . 

Equation 4.5 
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The assistance value 𝐾 was specified for each run and ranged from 0 (full BCI control) to 0.3, where 

a value of 1 restricts the decoder to motion directly towards the target. Error rail is similar in some 

ways to orthoimpedance (Collinger et al., 2013c; Wodlinger et al., 2015). But also attenuated 

parallel-component velocities in the reverse direction  

 

4.5.3 Statistical analysis 

4.5.3.1 jPCA analysis of rotational structure 

We applied jPCA to the spike-sorted neural recordings to uncover oscillatory dynamics, as described 

previously in (Churchland et al., 2012). We used the ballistic movement window to fit the pre-

processing parameters (soft normalization and mean-centering) and jPCA parameters (PCA and axis 

rotation). Based on known visual system delays , the movement window was assumed to start 150ms 

after target presentation. We selected the movement window to ended near the average target 

acquisition time (Figure 4.1), 600ms after target presentation. We then applied jPCA (with the 

previously fit parameters) to visualize entire trials, including the latter part of sustained movements 

or the movement relaxation phase. 

We tested our jPCA results against the null hypothesis that the rotational dynamics are a byproduct 

of the population firing rate’s smoothness and tuning properties. We used tensor maximum entropy 

(TME) (Elsayed and Cunningham, 2017) to generate surrogate datasets with the same covariances 

across neurons, conditions (i.e., targets), and time. jPCA was applied to each surrogate dataset to 

generate a null distribution for testing statistical significance.  

4.5.3.2 Neural population speed 

A related study (Kao et al., 2015) defines neural population speed as ‖𝒓𝑘+1 − 𝒓𝑘‖2 . We use a 

similar definition here while addressing one statistical drawback in the original formulation: noise 

biases Euclidean distances upward (Walther et al., 2016). In other words, adding independent 

Gaussian noise to the firing rates increases ‖𝒓𝑘+1 − 𝒓𝑘‖2, even when the true neural population 

speed does not change otherwise. To find an unbiased estimate of the neural speed, it is useful to 

cross-validate speed estimates across independent partitions of trial repetitions (Walther et al., 2016): 

‖𝑟̇‖𝑐𝑣
2 ≔  (𝒓𝑘+1 − 𝒓𝑘)𝐴 (

𝛴𝐴 + 𝛴𝐵

2
 )

−1

(𝒓𝑘+1 − 𝒓𝑘)𝐵
𝑇   

Equation 4.6 

where 𝐴 and 𝐵 indicate independent partitions of the trials, Σ is the (regularized (Ledoit and Wolf, 

2003)) noise covariance matrix, 𝒓𝑘 are the firing rate vectors for time index 𝑘 stacked across the 

respective partition’s trials. This is sometimes normalized by the number of neurons. The units of 

‖𝑟̇‖𝑐𝑣
2  are (Hz / 𝑠)2. 

The cross-validated squared neural speed ‖𝑟̇‖𝑐𝑣
2  estimates the noise-normalized magnitude 

of the neural velocity that is consistent across trial repetitions. Here, we often abbreviate this metric 

as “neural speed,” although it is often referred to as the cross-validated Mahalanobis distance 

elsewhere (Walther et al., 2016). 
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4.5.4 Closed-loop decoding pipelines 

4.5.4.1 Neural dynamical filter (NDF) 

During the sustained and ballistic BCI cursor task, we preprocessed the neural activity by binning 

spike counts at non-overlapping 30-ms bins, z-scoring the firing rates for each channel, and reducing 

the dimensionality to the first 15 principal components. We decoded movement intent from the 

reduced-dimensionality population activity using the neural dynamical filter (NDF) (Kao et al., 

2015) with a 10-dimensional latent state. NDF learns a latent-state linear dynamical system of the 

neural population activity. For online decoding, NDF linearly predicts kinematics from the 

dynamics-filtered latent states. The NDF is described in detail in (Kao et al., 2015). 

4.5.4.2 Linear regression with neural-network-extracted broadband features  

In later tasks, recordings yielded few high-SNR waveforms, so we switched from threshold-crossing 

rates to broadband features. We used a temporal convolutional neural network (denoted “FENet”) to 

extract features from 30kHz-sampled raw voltage timeseries (Haghi et al., 2021). These features can 

intuitively be thought of as highly-processed local field potentials (LFPs). 

Before inputting to the linear decoder, we preprocessed FENet features in a series of steps. First, we 

z-scored input features. Next, to prevent unexpected channel noise from disproportionately 

degrading decoding, we bound the z-scored values between [–3, 6] (). Because FENet generates 

multiple (K=8) features per electrode, we used partial-least squares regression to reduce this number 

to (K=2) informative features for each electrode. Next, we reduced feature dimensionality by using 

partial least squares to predict the input features smoothed by an 800-ms minimum-jerk kernel; this 

is analogous to a linear autoencoder and helps to denoise data that is expected to be autocorrelated. 

Finally, the firing rates were smoothed with an exponential filter (time-constant = 585ms). 
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4.7 Supplementary Material 

 

Supplementary Figure 4.1. Behavioral kinematics for all sessions of ballistic and sustained 

BCI cursor movements. 
(a) Example single-trial cursor trajectories for each session. 

(b) Target acquisition time. Each circle indicates a single trial, and box-plot lines indicate the lower quartile, median, 

and upper quartile, respectively. 

(c) Distance-to-target in normalized screen units. Each line indicates a single trial.  
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Supplementary Figure 4.2. Near and far center-out task 
Task that emulates ballistic and sustained reaches through targets near and distant from the center-start. Dashed arrow 

visualizes intended movement direction for reference but was not shown during the actual task. 
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Supplementary Figure 4.3. Near and far center-out task with instructed delay and 

interleaved masking. 
This task included different distances for sustained and ballistic reaches. On interleaved trials, a target / cursor mask 

Dashed arrow visualizes the instructed movement direction for reference, although it was not shown in the actual 

experiment. The cursor was fixed at the center during the ITI, Cue, and Delay phases, and the participant was instructed 

to not move during these periods. During the baseline Go variant, the participant moved the cursor to the target and 

relaxed once the target was acquired. During the masked Go variant, the participant moved the cursor to the 

remembered target and relaxed based on self-pacing. 
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5 Conclusions 

Dexterous hand movements are important for everyday tasks (Yan et al., 2020), and restoring hand 

function is a top priority for people with tetraplegia (Anderson, 2004; Snoek et al., 2004; Collinger 

et al., 2013a). In this dissertation, we demonstrate that brain-computer interfaces could help to restore 

fine motor function. Finger-related cortical circuits in two tetraplegic participants remained 

functional even years after paralysis, allowing neural decoding of finger movements in a variety of 

tasks. Decoding performance was strong even in the grasping areas of the posterior parietal cortex 

(PPC), outside of the primary sensorimotor cortex. These findings suggest that manual dexterity may 

be supported by a broader neuronal network than is commonly thought. By combining signals from 

both the motor cortex and posterior parietal cortex, we were able to achieve state-of-the-art finger 

classification accuracies. We further studied the temporal structure of neural activity during BCI 

control. External inputs, such as sensory feedback, are important for robust BCI control during 

everyday usage. 

5.1 Next steps: a neuroprosthetic assistant through hybrid control 

To fully benefit tetraplegic people, neuroprosthetic systems will need the ability to manipulate 

objects for everyday tasks, such as eating. Unfortunately, this kind of dexterity (Yan et al., 2020) far 

exceeds current decoding capabilities. Without substantial advancements in recording yield, hand 

decoding may be limited to only two fingers for continuous control (Nason et al., 2021; Willsey et 

al., 2022) or only discrete control for all ten fingers, as described here. Even after recording yields 

improve, BCIs lack the spinal cord circuitry that implements important control loops, such as 

regulating contact forces for grasping fragile objects (Downey et al., 2017; Weiler et al., 2019). 

In the past decade, several studies have taken a parallel, hybrid approach to augment 

neuroprosthetic control. Building off advances in computing, (Katyal et al., 2014; Downey et al., 

2016; Muelling et al., 2017) blended BCI control with vision-guided autonomous robotics. In these 

demonstrations, BCIs commanded the high-level trajectory while computer assistance inferred target 

objects and stabilizes the robotic arm during grasping. This approach can be further integrated with 

eye-tracking for sensor fusion with neuroprosthetic control (McMullen et al., 2014). Since these 

initial demonstrations, real-time computer vision algorithms have improved substantially. It may 

soon be possible for computer vision assistance to infer a library of grasp options for each object, 

which can be combined with BCI control for real-time dexterous control. 
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