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Abstract

Although Deep neural networks achieve human-like performance on a variety of per-
ceptual and decision-making tasks, they perform poorly when confronted with chang-
ing tasks or goals, and broadly fail to match the flexibility and robustness of human
intelligence. Additionally, artificial neural networks rely heavily on human-designed,
hand-programmed architectures for their remarkable performance. In this thesis, I
work towards achieving two goals: (i) development of a set of mathematical frame-
works inspired by facets of natural intelligence, to endow artificial networks with flex-
ibility and robustness, two key traits of natural intelligence; and (ii) inspired by the
development of the biological vision system, I propose an algorithm that can ‘grow’ a
functional, layered neural network from a single initial cell, with the aim of enabling
autonomous development of artificial networks akin to living neural networks.

For the first goal of endowing networks with flexibility and robustness, I propose
a mathematical framework to enable continuous training of neural networks on a
range of objectives by constructing path connected sets of networks, resulting in the
discovery of a series of networks with equivalent functional performance on a given
machine learning task. In this framework, I view the weight space of a neural network
as a curved Riemannian manifold and move a network along a functionally invariant
path in weight space while searching for networks that satisfy secondary objectives.
A path-sampling algorithm trains computer vision and natural language processing

networks with millions of weight parameters to learn a series of classification tasks
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without performance loss while accommodating secondary objectives including net-
work sparsification, incremental task learning, and increased adversarial robustness.
Broadly, for achieving this goal, I conceptualize a neural network as a mathematical
object that can be iteratively transformed into distinct configurations by the path-
sampling algorithm to define a sub-manifold of networks that can be harnessed to
achieve user goals.

For the second goal of ‘growing’ artificial neural networks in a manner similar to
living neural networks, I develop an approach inspired by the mechanisms employed
by the early visual system to wire the retina to the lateral geniculate nucleus (LGN),
days before animals open their eyes. I find that the key ingredients for robust self-
organization are (a) an emergent spontaneous spatiotemporal activity wave in the
first layer and (b) a local learning rule in the second layer that ‘learns’ the underlying
activity pattern in the first layer. As the bio-inspired developmental rule is adapt-
able to a wide-range of input-layer geometries and robust to malfunctioning units in
the first layer, it can be used to successfully grow and self-organize pooling architec-
tures of different pool-sizes and shapes. The algorithm provides a primitive procedure
for constructing layered neural networks through growth and self-organization. Fi-
nally, I also demonstrate that networks grown from a single unit perform as well
as hand-crafted networks on a wide variety of static (MNIST recognition) and dy-
namic (gesture-recognition) tasks. Broadly, the work in the second section of this
thesis shows that biologically inspired developmental algorithms can be applied to

autonomously grow functional ‘brains’ in-silico.
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Chapter 1

Introduction

Figure 1.1: Neuron-art: generated by text-to-image Al.

“The intelligence attributed to machines almost always relies on rendering

human skill invisible.”
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Section 1.1

Thesis statement

One of the biggest unresolved questions plaguing humanity to date, is the question of
the nature of the self, the nature of life, the reality (or illusion) of the world around us,
and ultimately our purpose (if there exists one). The questions concerning the nature
of the self or life are not ‘new’ or ‘modern’ by any stretch of imagination. Prior to
the availability of high-end experimental methods or technological tools, the primary
mode of addressing (or answering) such questions was through philosophy and logic.
However, in this thesis, [ attempt to address a facet of this question by engaging the
latest technological tools and developments in the fields of Artificial intelligence and
Machine learning.

To address the specific question concerning the nature of life, mankind has a
long history of attempting to recreate key symptoms of life (like movement, self-
organization, homeostasis, self-replication, natural intelligence) using the mechanics
of their contemporary technology. For instance, the earliest models were works of
art, that comprised of paintings and statuettes with articulated arms and legs to
capture the dynamic form of living beings. We also know that in ancient theatres (as
described in the epics of the Ramayana [Orenstein, 2006]), puppets were built and
controlled by human operators to mimic living beings and their social interactions.
On the front of mimicking the workings of nature, the earliest mechanical device built
by the Egyptians, called the Clepsydra [Hamilton, 1746] (Egyptian water clock), was
used for tracking the position of the sun by controlling the water flow from an orifice,
enabling an accurate measurement of time. In the same vein, I believe that endowing
"natural intelligence,” one of the key symptoms of life to artificial systems is one
among many strategies to understand the workings of the self, and ultimately would

assist in our understanding of the nature of life. Intelligence can be observed across
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most species of life, and it is not limited to humans. Different animals have evolved
different cognitive abilities and adaptations that allow them to survive and thrive
in their specific environments. For example, some animals, such as primates and
dolphins, have highly developed social intelligence and are able to communicate and
cooperate with others in sophisticated ways. Other animals, such as birds and some
insects, have developed advanced problem-solving and navigation abilities. From the
mud-wasps building their well-measured nests [Smith, 1978], the beavers that build
their dams [Zurowski, 1992], the song-birds that robustly sing their song [Wang et
al., 2022], to the humans that can flexibly adapt to different environments, build
technological tools, and finally strive to build Al systems that can ‘outsmart’ them,
we can identify features of natural intelligence across different species of life.

Although the field of Artificial Intelligence (AI) has made rapid progress towards
simulating natural intelligence in the last few years by outperforming humans on a
few tasks (like image recognition, number arithmetic, game playing), they still fail
to replicate many key principles of natural intelligence (like robustness, flexibility,
continual learning, to name a few).

My thesis has been geared towards decoding and deciphering some of the key
principles of natural intelligence with the goal of building artificial systems possessing
these principles. The key approach that I have adopted for addressing this question
during my PhD is to compare biological systems endowed with natural intelligence to
today’s modern Artificial Intelligence systems (primarily focused on systems built us-
ing artificial neural networks). Having identified gaps between the two by recognizing
principles of intelligence present in biological systems and lacking in today’s artificial
systems, I have developed algorithms and procedures to endow artificial systems with
those attributes of intelligence.

The advantages of developing artificial intelligence systems by closely examining

biological systems is two fold. Firstly, it catalyzes the next-generation of Al sys-
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tems moving one step closer to natural intelligence and secondly, it provides theories
regarding biological mechanisms and illuminates deep rooted principles at play in

natural systems.

Section 1.2

Background

I will review some of the previous work on this problem concerning the identification
of principles of intelligence and their successful integration into artificial systems. I
will begin by describing some of the very early ideas in this field as they are radically
different from our modern approach, and then continue to the description of modern

frameworks.

1.2.1. Ancients and Al

The residents of the Vedic civilization (going back more than 5000 years, circa 3000
BC) were one of the first to ponder the nature of life, and also, to my best knowledge,
were the first to present a literary record of a competition between artificial birds and
living birds. The statement has been recorded in the ancient text called the Srimad

Bhagavatam, written around 3000 BC in Sanskrit by Saint Vyasadeva.

BRI T MG | R A=A | TaHfeRanesd 4 |

Here, the author describes a King named "Kardama Muni” who lived in a large
palace that housed a multitude of live swans and pigeons, as well as artificial swans
and pigeons so lifelike that the real swans rose above them again and again, thinking
them live birds like themselves [Bhaktivedanta, 1976]. Although being the earliest
recorded evidence of the human society’s interest in building biologically-inspired
artificial systems, the text does not describe a mechanistic explanation of how this

may be built, or how it was built.
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Fast forward 3000 years to circa 250 BC, we find that the ancient Greek engi-
neers were building human-like robots (e.g. automatic servant of Philon) [Valavanis,
Vachtsevanos, and Antsaklis, 2007] to serve a jug of water, built using a complex
mechanism of springs, weights and air pressure. Additionally, the 2000-year old An-
tikythera mechanism, considered to be a precursor of the computer, was developed

by the Greeks to forecast astronomical events using gears and dials.

1.2.2. Modern ‘birth’ of Al

Figure 1.2: The ”Turk” and its influence on modern AI (a) Wolfgang von
Kempelen’s chess-playing “Turk.” (b) A human chess master concealed in the "Turk”
automaton machine. Images retrieved from https://en.wikipedia.org/wiki/Me
chanical_Turk and https://www.uh.edu/engines/epi2765.htm

In the year 1770, Hungarian author and inventor Wolfgang von Kempelen pre-
sented his invention, ‘The Turk’ [Stephens, 2022] at the court of the Austrian empress
Maria Theresa. Kempelen’s invention, ‘The Turk,” was a life-sized automaton carved
out of maple wood, dressed in Ottoman robes, sitting behind a wooden cabinet with
a chessboard on top (Fig. 1.2a). He claimed that his machine can defeat any member

of the court in the game of chess. When one of the empress’ advisors took up the
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challenge, he opened the doors of the cabinet and showed the intricate network of
levers and cogs, that functioned with a clockwork-like mechanism. He subsequently
inserted a key into the machine, wound it up and brought the automaton to life,
enabling it to lift its wooden arm to make the first move. Within 30 minutes, the
Turk defeated its opponent and became an instant sensation. Thereafter Kempelen
toured the Turk around Europe and it has been documented to have defeated many
formidable minds of that time, including Benjamin Franklin and Frederick the Great.

After Kempelen’s death, the Turk was taken on a tour to Britain, and was paired
to play with Charles Babbage. Although Babbage, the famed British mathematician
and inventor, lost twice to the Turk, he successfully figured out that the Turk was
not an ‘intelligent” automaton but concealed a human chess master who was able to
observe the chess board and controlled the Turk’s movements (Fig. 1.2b). Historians
suggest that the encounter with the Turk was the seed that led to the design of
the first mechanical computer, the “Difference engine.” Since then, there were many
theoretical and experimental attempts to design and engineer intelligent artificial
systems. One of the first designs and thought experiments, like the Analytical Engine,
was conceived to have numerical abilities to perform a wide range of mathematical
and logical operations, including addition, subtraction, multiplication, division, and
evaluation of functions.

However, the idea of using brain-inspired computation or “neuromorphic” archi-
tecture sprouted in the early 1940s and 1950s, when researchers began to study the

structure and function of neurons in the brain.

McCulloch-Pitts (MCP) neuron model. The MCP model was one of the first
models to derive detailed neurobiological inspiration from the connectivity structure
of the neurons in the brain to construct computing machines. The MCP model

[McCulloch and Pitts, 1990], also known as the threshold logic unit (TLU), is a type
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of artificial neuron developed in 1943 by Warren McCulloch and Walter Pitts. It is a
simple model of a biological neuron that is designed to mimic the way that biological
neurons process and transmit information. The MCP model consists of a set of inputs
and a single output, and it is able to produce an output based on whether the weighted
sum of its inputs exceeds a certain threshold. The MCP model is considered to be the
first model of an artificial neuron, paving the way for much complex artificial neural

networks.

Fukushima’s Neocognitron. In addition to deriving structural inspiration from
the brain (like the MCP model), Kunihiko Fukushima designed one of the first artifi-
cial neural network inspired by the Hubel and Weisel model [Hubel and Wiesel, 1959;
Hubel and Wiesel, 1963] of functional connectivity and receptive fields in the cat’s
striate cortex, namely the simple and complex cells, to recognize patterns in visual

images [Fukushima, 1980].

Deep networks. The McCullock-Pitts model [McCulloch and Pitts, 1990] of a sim-
ple neuron and the Neocognitron [Fukushima, 1980] architecture of simple and com-
plex cells in the visual cortex were groundbreaking at the time of their development
and played a key role in prompting the development of deep convolutional networks
(LeCun) [LeCun, Boser, et al., 1990; LeCun, Bottou, et al., 1998; LeCun, Haffner,
et al., 1999] and similar neural network architectures. The early 90s witnessed the
advent of deep neural networks and corresponding algorithms to train and optimize
neural networks on a large set of cognitive tasks. The first artificial neural networks
were developed for processing visual images and were trained by the (now ubiquitous)
back-propagation technique [Rumelhart, Hinton, and Williams, 1986]. In addition to
research investment in developing novel network architectures, training algorithms,

there was a push towards creating benchmarking datasets. One of the most popular

image datasets compiled were MNIST, CIFAR-10, Caltech-101, [LeCun, Boser, et al.,
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1990; Fei-Fei, Fergus, and Perona, 2004] which contained images of hand-written dig-
its (0 to 9), images of 10 classes of objects (like birds, ships, automobiles) and images

of 101 classes of objects (like faces, leopards, ceiling fans to name a few), respectively.

Deep Networks coupled with hardware engineering. Although deep network
architectures were powerful mathematical tools, they were very slow to train and
were not able to generalize very well to out-of-distribution datal. In 2012, AlexNet
[Krizhevsky, Sutskever, and Hinton, 2012] developed by Alex Krichevzky and Geoff
Hinton, was one of the first implementations of training neural networks on multiple
GPU’s (Graphical processing units), which increased the speed of training exponen-
tially, and enabled networks to be trained on large corpii of images (or data) endowing
them with better generalization capabilities.

Since then, a large number of deep network architectures have been developed
for processing images, text, and audio. Some of the prominent ones that are still
in use today are: AlexNet [Krizhevsky, Sutskever, and Hinton, 2012], ResNet [He
et al., 2016}, VGG [Simonyan and Zisserman, 2014}, DenseNet [Huang et al., n.d.],
MobileNet [Howard et al., 2017], SqueezeNet [landola et al., 2016], Variational Au-

toencoders [Kingma and Welling, 2013], to name a few.

Large language models. Most deep network architectures built until early 2010
were small networks with upto a million parameters. The implementation of networks
on multiple GPU’s propelled the advent of larger networks, with 100’s of millions of
parameters (e.g. AlexNet, ResNet, early transformers like BERT [Devlin et al., 2018],
GPT [Radford et al., 2018]).

Although deep networks developed between 2010 and 2015 were 2 orders of mag-

nitude larger than the ones developed in the early 2000’s, GPU hardware advances

! Generalization remains a big challenge today too, because the bar for generalization has signif-
icantly grown over the last 10-15 years.
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and access to very large training datasets, propelled the development of much larger
models, almost 3 orders of magnitude (with ~ 10 billion parameters) larger than
previous ones.

Most of these very large models (like GPT-3 [Brown et al., 2020], LaMDA [Thoppi-
lan et al., 2022], PaLM [Chowdhery et al., 2022]) are developed for natural language
tasks, like text generation, sentiment analysis, text summarization and have been
trained on very large text corpii, such as the entire wikipedia, C4 (Colossal, cleaned
version of Common Crawls’ web crawl corpus) [Dodge et al., 2021] with a raw size of
500 TiB.

We observe from Fig. 1.3 that we are currently (circa 2022) very close to engineer-
ing an artificial system as large as the human brain, with only 3 orders of magnitude
to go. The human brain has roughly 100 billion neurons, where each neuron makes
10,000 connections, resulting in a total of 1000 trillion synaptic connections in the

brain, while the largest artificial neural network built to-date has a trillion parameters.

Section 1.3

Are modern Al systems intelligent?

The unprecedented developments in the AI/ML field over the last 5 years (during my
PhD) make us wonder if we have succeeded (as a community) in building an artificial
system that is very life-like, endowed with intelligence?

To address this question, we need to define a set of key principles of intelligence

that a system must possess, before being recognized as an ‘intelligent’ system.

1.3.1. Key principles of intelligence

In this section, I lay out some of the key principles of intelligence that have been
inspired by my observation of natural intelligence at play across various species of

living beings, and principles that an ‘intelligent’ system must possess.
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Figure 1.3: Size of Al systems engineered over the last 60 years.

Flexibility: Living entities continuously gather new information by interacting
with their environment and ‘flexibly” update their internal hardware (biological
networks) and internal model of the environment. They update their biological
neural networks without abruptly forgetting all their past information learnt
and acquired before [Neumann and Ammons, 1957; Cichon and Gan, 2015;
Hayashi-Takagi et al., 2015; Yang, Pan, and Gan, 2009; Yang, Lai, et al., 2014].
On the other hand, current artificial neural networks developed in the AI/ML
community struggle to incrementally update their networks without abruptly
forgetting all their previous stored information, commonly referred to as catas-
trophic forgetting. Therefore, the ability to flexibly update their artificial net-
works as they interact with the environment is an important essential feature

of intelligence.

» Robustness: Biological neural networks have evolved to maintain functional
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performance despite significant circuit damage [Kitano, 2004; Félix and Bark-
oulas, 2015; Perez-Nieves et al., 2021]. Similarly, artificial intelligent systems
should be resistant to adversarial damage, both incidental and intentional, the
former being a random chance attack from the environment while the latter

being a targeted sabotage.

o Autonomous development: As all living entities grow and self-organize their
biological architecture from a single seed-cell, intelligent systems must not rely
on humans for their hand-programmed design and development, but must be

capable of autonomous development from a single “seed-cell.”?

The principles described above are not necessarily exhaustive, but they provide a
framework for understanding the key characteristics that systems should possess in

order to be termed ‘intelligent.

Section 1.4
What’s in this thesis?

The chapters that follow in this thesis will be a deep-dive into each of these principles
of intelligence. In each chapter, I will compare and contrast biological brains (natural
intelligence) with the latest artificial neural networks (ANN’s) to identify flaws in the
Al system. This will be followed by an in-depth treatment by reasoning mathemat-
ically and conceptually why current Al systems do not have a particular attribute.
Finally, the chapter will end with a systematic algorithm or a procedure to engineer
the intelligence attribute in the Al system (specifically focusing on artificial neural
networks).

The chapters that follow will heavily borrow from published, in-review and unpub-

lished content produced during my PhD. Specifically, Chapters 2 and 3 will borrow

2Although the entire development from the seed-cell can be made autonomous, the rules (or
meta-rules) governing development from the seed-cell continues to be designed by the human.
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heavily from the following papers:

o Chapter 2: Engineering flexible and robust machine learning systems
borrowed from Raghavan and Thomson, 2022 and Raghavan, Li, and Thomson,

2020.

o Chapter 3: Autonomous self-organization of neural networks from
noise borrowed from Raghavan and Thomson, 2019 and Raghavan, Lin, and

Thomson, 2020.

References

Bhaktivedanta, Abhay C. (1976). “Chapter 20.” In: Srimad Bhagavatam. Los Angeles,
CA, USA: Bhaktivedanta Book Trust (BBT).

Brown, Tom et al. (2020). “Language models are few-shot learners.” In: Advances in
Neural Information Processing Systems 33, pp. 1877-1901.

Chowdhery, Aakanksha et al. (2022). “Palm: Scaling language modeling with path-
ways.” In: arXiv preprint arXiv:2204.02311.

Cichon, Joseph and Wen-Biao Gan (2015). “Branch-specific dendritic Ca2+ spikes
cause persistent synaptic plasticity.” In: Nature 520.7546, pp. 180-185.

Devlin, Jacob et al. (2018). “Bert: Pre-training of deep bidirectional transformers for
language understanding.” In: arXiv preprint arXiv:1810.04805.

Dodge, Jesse et al. (2021). “Documenting large webtext corpora: A case study on the
colossal clean crawled corpus.” In: arXiv preprint arXiv:2104.08758.

Fei-Fei, Li, Rob Fergus, and Pietro Perona (2004). “Learning generative visual models
from few training examples: An incremental bayesian approach tested on 101 ob-
ject categories.” In: 2004 Conference on Computer Vision and Pattern Recognition

Workshop. IEEE, pp. 178-178.



1.4 WHAT’S IN THIS THESIS? 13

Félix, Marie-Anne and Michalis Barkoulas (2015). “Pervasive robustness in biological
systems.” In: Nature Reviews Genetics 16.8, pp. 483-496.

Fukushima, Kunihiko (1980). “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.” In: Bio-
logical Cybernetics 36.4, pp. 193-202.

Hamilton, Charles (1746). “XIV. A description of a clepsydra or water-clock.” In:
Philosophical Transactions of the Royal Society of London 44.479, pp. 171-174.

Hayashi-Takagi, Akiko et al. (2015). “Labelling and optical erasure of synaptic mem-
ory traces in the motor cortex.” In: Nature 525.7569, pp. 333-338.

He, Kaiming et al. (2016). “Deep residual learning for image recognition.” In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770-778.

Howard, Andrew G et al. (2017). “Mobilenets: Efficient convolutional neural networks
for mobile vision applications.” In: arXiv preprint arXiv:1704.04861.

Huang, G. et al. (n.d.). “Densely Connected Convolutional Networks. arXiv. 2016
doi: 10.48550.” In: arXiv preprint arXiv.1608.06993 1608 ().

Hubel and Wiesel (1959). “Receptive fields of single neurones in the cat’s striate
cortex.” In: The Journal of Physiology 148.3, p. 574.

— (1963). “Shape and arrangement of columns in cat’s striate cortex.” In: The Jour-
nal of Physiology 165.3, pp. 559-568.

landola, Forrest N. et al. (2016). “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and< 0.5 MB model size.” In: arXiv preprint arXiv:1602.07360.

Kingma, Diederik P. and Max Welling (2013). “Auto-encoding variational bayes.” In:
arXiv preprint arXiw:1312.6114.

Kitano, Hiroaki (2004). “Biological robustness.” In: Nature Reviews Genetics 5.11,

pp. 826-837.



1.4 WHAT’S IN THIS THESIS? 14

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “Imagenet classifica-
tion with deep convolutional neural networks.” In: Advances in Neural Information
Processing Systems 25.

LeCun, Yann, Bernhard E. Boser, et al. (1990). “Handwritten digit recognition with
a back-propagation network.” In: Advances in Neural Information Processing Sys-
tems, pp. 396-404.

LeCun, Yann, Léon Bottou, et al. (1998). “Gradient-based learning applied to docu-
ment recognition.” In: Proceedings of the IEEE 86.11, pp. 2278-2324.

LeCun, Yann, Patrick Haffner, et al. (1999). “Object recognition with gradient-based
learning.” In: Shape, Contour and Grouping in Computer Vision. Springer, pp. 319—
345.

McCulloch, Warren S. and Walter Pitts (1990). “A logical calculus of the ideas im-
manent in nervous activity.” In: Bulletin of Mathematical Biology 52.1, pp. 99—
115.

Neumann, Eva and Robert B. Ammons (1957). “Acquisition and long-term retention
of a simple serial perceptual-motor skill.” In: Journal of Experimental Psychology
53.3, p. 159.

Orenstein, Claudia (2006). “Puppetry: A world history.” In: Theatre Journal 58.2,
pp. 375-376.

Perez-Nieves, Nicolas et al. (2021). “Neural heterogeneity promotes robust learning.”
In: Nature Communications 12.1, pp. 1-9.

Radford, Alec et al. (2018). “Improving language understanding by generative pre-
training.” In: OpenAlI blog.

Raghavan, Guruprasad, Jiayi Li, and Matt W. Thomson (2020). “Geometric algo-
rithms for predicting resilience and recovering damage in neural networks.” In:

NeurIPS 2020 workshop on Deep Learning through Information Geometry.



1.4 WHAT’S IN THIS THESIS? 15

Raghavan, Guruprasad, Cong Lin, and Matt W. Thomson (2020). “Self-organization
of multi-layer spiking neural networks.” In: arXiv preprint arXiv:2006.06902.
Raghavan, Guruprasad and Matt W. Thomson (2019). “Neural networks grown and
self-organized by noise.” In: Advances in Neural Information Processing Systems
32. URL: https://proceedings.neurips.cc/paper_files/paper/2019/file/

1e6e0a04d20£50967c64dac2d639ab77-Paper . pdf.

— (2022). “Engineering flexible machine learning systems by traversing functionally
invariant paths in weight space.” In: In review at Nature Machine Intelligence
arXiv:2205.00354.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). “Learning
representations by back-propagating errors.” In: Nature 323.6088, pp. 533-536.
Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional networks

for large-scale image recognition.” In: arXiv preprint arXiv:1409.1556.

Smith, Andrew P. (1978). “An investigation of the mechanisms underlying nest con-
struction in the mud wasp Paralastor sp.(Hymenoptera: Eumenidae).” In: Animal
Behaviour 26, pp. 232-240.

Stephens, Elizabeth (2022). “The mechanical Turk: A short history of ‘artificial arti-
ficial intelligence’” In: Cultural Studies, pp. 1-23.

Thoppilan, Romal et al. (2022). “Lamda: Language models for dialog applications.”
In: arXiv preprint arXiv:2201.08239.

Valavanis, K., G. Vachtsevanos, and PJ Antsaklis (2007). “Technology and autonomous
mechanisms in the mediterranean: From ancient Greece to Byzantium.” In: 2007
European Control Conference (ECC). IEEE, pp. 263-270.

Wang, Bo et al. (2022). “Unsupervised Restoration of a Complex Learned Behavior
After Large-Scale Neuronal Perturbation.” In: bioRxiv, https://www.biorziv.org/con-

tent/10.1101/2022.09.09.507372v1.



1.4 WHAT’S IN THIS THESIS? 16

Yang, Guang, Cora Sau Wan Lai, et al. (2014). “Sleep promotes branch-specific for-
mation of dendritic spines after learning.” In: Science 344.6188, pp. 1173-1178.
Yang, Guang, Feng Pan, and Wen-Biao Gan (2009). “Stably maintained dendritic

spines are associated with lifelong memories.” In: Nature 462.7275, pp. 920-924.

Zurowski, Wirgiliusz (1992). “Building activity of beavers.” In: Acta Theriologica 37.4,

pp- 403-411.



Chapter 2

Engineering flexible Al systems by
traversing functionally invariant

paths (FIP)

Figure 2.1: Neural networks weight space manifold art: generated by text-
to-image Al.

17



2.1 INTRODUCTION 18

This chapter focuses on the “flexibility” and “robustness” attribute of intelligent
systems. As stated in section 1.3.1, I define ‘flexibility’ as the systems’ ability to
retain previous knowledge and experiences while gathering and incorporating new
information obtained by continuously interacting with the environment, and ‘robust-
ness’ as the ability to maintain functional performance when subjected either to an

intentional adversarial environment or a chance attack from the environment.

Section 2.1

ANN'’s suffer from catastrophic forgetting

Artificial neural networks out-perform humans on tasks ranging from image recog-
nition and game playing to protein structure prediction [Silver et al., 2017; Jumper
et al., 2021; Krizhevsky, Sutskever, and Hinton, 2012]. However, artificial neural net-
works fail to replicate the flexibility and robustness of human intelligence [Stinderhauf
et al., 2018; Smale, 1998; Lee and Mumford, 2003]. Humans can learn new tasks and
accommodate novel goals with minimal instruction and without loss of performance
on existing tasks. Unlike humans, deep neural networks suffer catastrophic forgetting
(CF) or significant performance decay, when trained to perform additional tasks or
integrate new information [McCloskey and Cohen, 1989; Ratcliff, 1990]. For example,
a network trained to recognize images of hand-written digits [Simard et al., 1998] will
‘forget’ the digit recognition task when trained to recognize additional objects like
letters or faces. In addition to well-known flexibility limits, deep neural networks have
other pathologies, like vulnerability to targeted corruption of input data or adversar-
ial fragility where small, imperceptible changes in the input data can cause complete

failure of network performance.
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2.1.1. A single optimal weight configuration susceptible to CF

In artificial neural networks, network function is encoded in the mathematical weights
that determine the strength of connections between neural units (Fig. 2.1, Fig. 2.2).
Deep learning procedures train multi-layered neural networks to solve problems by
adjusting the weights of a network based on an objective function that encodes the
performance of a network on a specific task. Standard learning methods, like back-
propagation and gradient descent [Rumelhart, Hinton, and Williams, 1986], adjust
network weights to define a single, optimal weight configuration to maximize perfor-
mance on a task specific objective function using training data. Training the network
on new tasks through the traditional paradigm of stepping along the gradient of the
task-specific objective function adjusts the networks’ weights, inevitably resulting in
the loss of information from previous tasks.

The weight adjustment problem underlies other challenges in modern machine
learning. For example, it is advantageous to prune or sparsify a network to minimize
the number of non-zero weights and thus reduce network memory and power con-
sumption. Just like multi-task learning, network sparsification requires the adjust-
ment of network weights while maintaining function, and sparsification procedures
often proceed through heuristic weight pruning strategies. For adversarial robust-
ness, a central goal is to identify ensembles of networks that perform a task with
distinct weight configurations and thus avoid vulnerabilities associated with a single

weight configuration.

2.1.2. Drifting in biological neural networks could enable flexibility

Unlike contemporary artificial neural nets, neural networks in the human brain per-
form multiple functions and can flexibly switch between different functional config-
urations based on context, goals or memory [Minxha et al., 2020]. Neural networks

in the brain are hypothesized to overcome the limitations of a single, optimal weight
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configuration and perform flexible tasks by continuously ‘drifting’ their neural firing
states and neural weight configurations, effectively generating large ensembles of de-
generate networks [Mau, Hasselmo, and Cai, 2020; Stringer et al., 2019]. Fluctuations
might enable flexibility in biological systems by allowing neural networks to explore

a series of network configurations while responding to sensory input.

Section 2.2

Mathematical framework

Broadly inspired by the ‘drifting’ observed in biological networks, we develop a geo-
metric framework and algorithm to construct path connected sets of neural networks
that solve a given machine learning task. Conceptually, we consider path-connected
sets of neural networks, rather than single-networks (isolated points in weight space)
to be the central objects of study and application. By building sets of networks rather
than single networks, we search within a sub-manifold of weight space for networks
that solve a given machine learning problem while accommodating a broad range of
secondary goals. We view a neural networks’ weight space as a Riemannian manifold
equipped with a distance metric that represents task performance. Our core algorithm
identifies functionally invariant paths in weight space that maintain network perfor-
mance while ‘searching-out’ for other networks that satisfy additional objectives like
sparsification or mitigating catastrophic interference. We demonstrate that the path
sampling algorithm achieves high performance on a series of meta-tasks: sequential
task learning, network sparsification, and adversarial robustness on a range of vision
and language networks with millions of parameters obtaining performance similar to

domain specific approaches.
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A Conventional Training Functionally Invariant Paths (FIP)
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Figure 2.2: Geometric Framework for constructing functionally invariant
paths (FIP) in weight space. (Left) Conventional training on a task finds a single
trained network (w) solution. (Right) The FIP strategy discovers a submanifold of
iso-performance networks (wy, ws, ...,wy) for a task of interest, enabling the efficient
search for networks endowed with adversarial robustness (ws), sparse networks with
high task performance (w3) and for learning multiple tasks without forgetting (wy).

Construction of functionally invariant paths in weight space

We develop a mathematical framework that allows us to define and explore path-
connected sets of neural networks that have divergent weight values but similar output
on training data. We view the weight-space of a neural network as a Riemannian
manifold equipped with a local distance metric [Amari, 2016; Benn and Tucker, 1987].
Using differential geometry, we construct paths through weight space that maintain
the functional performance of a neural network while adjusting network weights to
flow along a secondary goal. The secondary goal can be general, so that the framework
can be applied to train networks on new classification tasks, to sparsify networks, and
also to mitigate adversarial fragility.

The defining feature of a Riemannian manifold is the existence of a local distance
metric. We construct a distance metric in weight space that defines the distance
between two nearby networks to be their difference in output. We consider a neural

network to be a smooth function, f(x;w), that maps an input vector, x € R¥, to
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Figure 2.3: Geometric Framework for constructing functionally invariant
paths (FIP) in weight space. (Top) A trained convolutional neural network with
weight configuration (wy), represented by lines connecting different layers of the net-
work, accepts an input image, x, and produces a 10-element output vector, f(x,wy).
(Below) Perturbation of network weights by dw results in a new network with weight
configuration wy + dw with an altered output vector, f(x,w; + dw), for the same
input, x.
an output vector, f(x;w) =y € R™, where the map is parameterized by a vector
of weights, w € R", that are typically set in training to solve a specific task. We
refer to W = R"™ as the weight space of the network, and we refer to ) = R™ as
the output space as shown in Fig. 2.3B [Mache, Szabados, and Bruin, 2006]. For
pedagogical purposes, we will consider the action of f on a single input, x. In the
supplement we show that our results extend naturally to an arbitrary number of
inputs x;.

We initially ask how the output, f(x;w), of a given neural network changes for
small changes in network weights (Fig. 2.3). Given a neural network with weights

w;, a fixed input x, we can compute the output of the perturbed network, w; + dw

for an infinitesimal weight perturbation, dw as

f(x,we+dw) = f(x,wy) + Jy, dw, (2.1)
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Figure 2.4: Geometric Framework for constructing functionally invariant
paths (FIP) in weight space. The FIP algorithm identifies weight perturbations,
f* that minimize distance moved in output space while maximizing alignment with
gradient of a secondary objective function (VyL). The light-blue arrow indicates
e-norm weight perturbation that minimizes distance moved in output space, dark-
blue arrow is e-norm weight perturbation that maximizes alignment with gradient of
objective function, L(x, w). The secondary objective function L(x, w) is varied to solve
distinct machine learning challenges. (D) The path algorithm defines functionally
invariant paths, v(¢), through iterative identification of e-norm perturbations (6*(t))
in the weight space.

where Jy, is the Jacobian of f(x,wy) for a fixed x, J;; = %, evaluated at wy.
J

Thus, the total change in network output for a given weight perturbation dw is

[f (Wi 4+ dw) — f(x,we) [P = dw” (T ()" Ty (x)) dw (2.2)

|{(dw, dw>th 2 = dw’ gy, (x) dw

where gy, (x) = Jy,(x)7 Jy,(x) is the metric tensor evaluated at the point w; € W for
a single data point, x. The metric tensor is an n X n symmetric matrix that allows us
to compute the change in network output for a perturbation along any direction in
weight space as (dw,dw),, (x). The metric also allows us to compute the infinitesimal
change in network output while moving along a path 7(t) in weight space as the

tangent vector ¥(t) = dz—gt).
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At every point in weight space, the metric allows us to discover directions dw of
movement that have large or small impact on the output of a network. As we move

along a path, vy(t) C W, in weight space, we sample a series of neural networks over

df(x(1)

time, ¢. Using the metric we can define a notion of ‘output velocity,” v = ===,

that quantifies the distance a network moves in output space for each local movement
along the weight space path y(t). We seek to identify ‘Functionally invariant paths
(FIPs)’ in weight space along which the output velocity is minimized for a fixed

magnitude change in weight. To do so, we solve the following optimization problem

. . dy dy
v (1) = angmin(GL 5,
dt
L dy dy
h (=L =1y, = 2.
wit <dt’dt>l € (2.3)

where we attempt to find a direction to perturb the network, such that it is e units
away in the weight space (in the euclidean sense) “%7 Z—Z} ; = €) while minimizing

the distance moved in the networks’ output space, given by <d"* cal

T @e - Here, I'isan

& &y
dt’ dt

identity matrix, with the inner product ( )1 capturing the euclidean distance in
the weight space [Weisstein, 2014]. The optimization problem is a quadratic program
at each point in weight space. The metric g is a matrix that takes on a specific value
at each point in weight space, and we aim to identify vectors *(t) = dzl—(tt), that
minimize the change in functional output of the network.

We will often amend the optimization problem with a second objective function
L(x,w). We can enumerate paths that minimize the functional velocity in the output

space while moving along the gradient of the second objective (VyL). We define a

path-finding algorithm that captures the trade off between these two terms
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dy dy d'y
0*(t) = , VL
(6) = axgmin((, Te. o, + B VuLlh)
dt

Lo dy dy
th (—,—); = 2.4
with (G gl =€ (24)
where now the first term, (Ccll—z, %)WW identifies functionally invariant directions while

the second term, (% o, VL)1, biases the direction of motion along the gradient of a
second objective and [ weighs the relative contribution of the two terms. When
L = 0, the algorithm merely constructs paths in weight space that are approxi-
mately isofunctional (6*(t) = 1*(t)), i.e. the path is generated by steps in the weight
space comprising of networks with different weight configurations while preserving
the input-output map. L(x,w) can also represent the loss function of a second task,
for example a second input classification problem. In this case, we identify vectors
that simultaneously maintain performance on an existing task (via term 1) while also
improving performance on a second task by moving along the negative gradient of
the second task loss function, Vi L. We think of constructing FIPs with different
objective functions (L(x,w)) similar to applying different “operations” to neural net-
works that identify sub-manifolds in the weight space of the network that accomplish
distinct tasks of interest.

To approximate the solution to Eq-2.4, in large neural networks, we developed a
numerical strategy that samples points in an € ball around a given weight configura-
tion, and then performs gradient descent to identify vectors 6*(¢). In the appendix,
we extend the metric formulation to cases where we consider a set of N training data
points, X, and view g as the average of metrics derived from individual training ex-
amples. gy = gw(X) = ¥ g, (x;)/N. The metric, g, provides a local measure of
output distance on the Riemannian manifold (W, gy). At each point in weight space,

the metric defines the length, (dw, dw),, , of a local perturbation by its impact on the
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functional output of the network (Fig. 2.2).

Metric tensor eigenspectra reveals Sloppy/stiff directions
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Figure 2.5: Normalized Eigenvalues of the metric tensor (gy,) for various
trained neural network architectures. (Left) Eigenvalues are denoted by blue
lines. The eigenspectra of two network instances from 4 different network architec-
tures are presented here. The network architectures and the training dataset are
mentioned along the x-axis. (Right) Test accuracy of networks perturbed along first
400 eigendirections.

We use our geometric framework to construct a metric tensor for a range of neural
network architectures. The metric tensor is a device that provides information of how
infinitesimal movements in the weight space changes the networks’ functional mapping
between a set of inputs (images or text) to outputs.

The eigenspectra of the metric tensor provides us with a glimpse of the local ge-
ometry of the functional manifold near a trained neural network. The eigendirections
with high eigenvalues (stiff directions) correspond to network weight perturbations
that majorly impact the functional performance (or input — output mapping) of the
trained network. While eigendirections with low eigenvalues (sloppy directions) cor-
respond to weight perturbations that cause almost no change to the functional per-
formance. In Fig. 2.5(left), we find that ~95% of the eigendirections of the metric
tensor evaluated for a trained neural network are sloppy. We also observe that this

finding is consistent across multiple network architectures (multilayer perceptron and
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CNNs). For smaller networks, like LeNet-300-100 trained on MNIST, we construct
the metric tensor over all the weights in the network (266,610 weights), while the
larger networks (like, VGG16, ResNet-164) have been constructed using a subsam-
pled set of weights (wherein 250,000 weights are sampled randomly across all layers
of the network).

In Fig. 2.5(right), we find that networks perturbed along the stiff directions (first
10 eigendirections) incur a significant reduction in their test accuracy (from 98% to
88% in Lenet trained on MNIST, from 93% to 72% in VGG16 trained on CIFAR10).
On the other hand, perturbing networks along their sloppy eigendirections (eigendi-
rections: 20 and above) shows no profound drop in their test accuracy, remaining

constant at 98%, 93% on Lenet and VGG16, respectively.

— Section 2.3
Functionally invariant paths (FIP) alleviate

catastrophic forgetting

We first apply the FIP framework to perform continual learning tasks without catas-
trophic forgetting on a series of image classification tasks with neural networks of
increasing size. In catastrophic forgetting problems, we aim to modulate the weights
of an existing neural network to achieve high performance on additional image clas-
sification tasks without loss of performance on previously learned tasks. A series
of algorithms including the elastic weight consolidation (EWC) [Kirkpatrick et al.,
2017], Gradient Episodic memory (GEM) [Lopez-Paz and Ranzato, 2017], Optimal
Relevance Mapping (ORM)[Kaushik et al., 2021] have been developed to address
catastrophic forgetting.

To circumvent catastrophic forgetting while learning sequential tasks, we train a
neural network on a base task and modulate the weights in the network to accommo-

date additional tasks by solving the optimization problem in Eq-2.4, setting L(x, w)
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Figure 2.6: Networks learn sequential tasks without catastrophic forgetting
by traversing FIPs. (A)(i) Training neural networks on a 2 task paradigm, with
Task-1 being 10-digit recognition from MNIST and Task-2 being 10-item recognition
from Fashion-MNIST. (ii) Schematic to construct FIPs in weight space to train net-
works on two tasks sequentially. (B) 3D lineplot where dots are weight configurations
of 5-layered convolutional neural networks (CNNs) in PCA space. Training on two
tasks sequentially via conventional approach takes the black followed by red path to
reach N-FMNIST (traditional), while the path-finding algorithm takes the black fol-
lowed by purple path to reach N-FMNIST(FIP). Images of digits-3,6 are from MNIST
and sneaker, coat images are from Fashion-MNIST. Text labels above the image are
networks’ predictions and numbers below are the networks’ test accuracy on MNIST
and Fashion-MNIST.

as the classification loss function specified by the additional task while (Z—Z, %ngskl

measures distance moved in the networks’ output using the metric from the initial
task (in Eq-2.4 A(ii)). To accommodate the additional tasks, we append output nodes
to the base network and solve the optimization problem for a fixed value of 5 by simul-
taneously minimizing the distance moved in the networks’ output space (light-blue
arrow in Fig. 2.6A) corresponding to the first task while maximizing alignment with
the gradient of L(x,w) encoding the classification loss from the second task. In this
manner, we construct a Functionally invariant path (FIP) (purple dotted line in Fig.

2.6A) in weight space generating a network that performs both Task 1 and Task 2.
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Figure 2.7: Sequential learning of two image recognition tasks. Test accuracy
of networks learning two tasks sequentially by naive retraining on Fashion-MNIST
(i) and traversing FIP (ii). Heatmaps capture classification score on 10k test images
(bk images from each task) for networks obtained through FIP (iii) and traditional
retraining strategy (iv).

To demonstrate performance of the FIP, we applied the framework to perform a
canonical two-task sequential learning paradigm where a convolutional neural network
(CNN) trained to classify handwritten digits from MNIST (Task 1) is modulated
to also recognize ten classes of fashion apparel from the Fashion-MNIST dataset
(FMNIST) (Task 2) (Fig. 2.6A(i)). For this sequential learning task, we use a CNN
with 5 layers: 2 convolutional layers, with 32 and 64 convolutional filters each, and 3
fully connected layers - with 600, 120 and 20 nodes each. The network has a total of
1.4 million weights [LeCun, Haffner, et al., 1999; Krizhevsky, Sutskever, and Hinton,
2012]. The MNIST data set is a canonical data set representing 60,000 examples
of human hand written digits [LeCun, Bottou, et al., 1998] and the Fashion-MNIST
data contains 60,000 images of fashion items[Xiao, Rasul, and Vollgraf, 2017].

We initially trained the CNN to perform MNIST digit classification with ~ 98%
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accuracy using gradient descent based weight optimization (Fig. 2.6B, Fig. 2.7).
If we simply re-train the MNIST classification network to classify Fashion-MNIST
garments through gradient descent on FMNIST dataset, the network rapidly loses
accuracy on the MNIST task as accuracy increases on FMNIST (Fig. 2.7). In contrast
to gradient descent retraining, our FIP algorithm discovers a curved path of networks
that simultaneously retain performance on the first task (MNIST), maintaining 98%
to 96% test accuracy while reaching 89% performance on the second task (Fashion-
MNIST) (Fig. 2.7(ii)). The networks along the curved FIP path retain their ability to
recognize images of digits ‘3’ and ‘6,” while also classifying images of fashion-apparel

‘Sneaker” and ‘Coat’ from Fashion-MNIST (Fig. 2.6B).

Network’s weight changes along FIP during sequential task learning

So far, we have shown that traversing an FIP in weight space enables a 5-layered
CNN (2 convolutional layers and 3 fully connected layers) to continually learn two
sequential tasks (MNIST and Fashion-MNIST).

As the FIP discovers networks that simultaneously retain the previous task in-
formation while learning the new task, we are interested in understanding how the
networks’ weights change as we traverse the FIP. Most continual learning methods
that use regularization methods [Kirkpatrick et al., 2017] force the networks’ weights
to be similar to the network trained on task-1 while learning a new task (task-2).

However, we observe that traversing the FIP for continual learning applications
results in large changes to network weights (Fig. 2.8). For instance, we find that
weights across all layers (L1 to L5), barring the batchnorm layers, experience an
average weight update of 100% from their original weights, while the weights in the
batchnorm layers are updated by 25%. Additionally, we observe that the variance of
the weight update decreases from layer-1 to layer-3 and increases from layer 3 to layer

5, suggesting that most weights in the middle layers (layer 2 to layer 4) of the CNN
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Figure 2.8: Weight changes to networks along FIP during sequential learn-
ing. Density histogram captures percentage weight change incurred by weights across
all layers of a 5 layered CNN, while traversing an FIP constructed for sequential learn-
ing of MNIST and Fashion-MNIST.

encode features of the new task, while the weights in the first and last layer retain

information from the previous task.

2.3.1. FIPs alleviate CF in a 5-task paradigm

To demonstrate sequential task learning, we applied our framework to a Multi-layer
perceptron (MLP) with 2 hidden layers of 400 nodes each and 10 output classes, by
subjecting them to 5 sequential tasks derived from the MNIST dataset [Van de Ven
and Tolias, 2019]. As shown in Fig. 2.9A(i), each task is generated from different
subsets of image-classes from the MNIST dataset. Task-1 comprises of MNIST digits
0’s and 1’s, Task-2 comprises of MNIST digits 2’s and 3’s and so on.

To circumvent catastrophic forgetting in the 5 sequential task paradigm, we solve

the optimization problem in Eq-4 by setting L as the loss function specified by the new
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Figure 2.9: FIP alleviates CF in 5-sequential task paradigm for splitM-
NIST(A) (i) Neural network with 10 output classes are trained on 5 task paradigm,
with every task containing a different subset of MNIST digits. (ii) Schematic to con-
struct FIPs in weights space in order to train neural networks on 5 sequential tasks.
(B) (i) Test accuracy of networks while traversing FIPs to learn 5 sequential tasks.
The dashed lines indicate that the networks encounter a new task. (ii) Heatmap
displays classification score for networks along FIP on 5k images, with 1k images
sampled from every task. (C) FIP surpasses state-of-art methods in mitigating catas-
trophic forgetting in 5-task paradigm.

task (Task-i) represented by dark-blue arrows in Fig-2D(ii), while < 2, 9 >
is chosen to be the distance moved in output space for a small number of inputs
sampled from all previous tasks (from Task-1 to Task:i-1) represented by light-blue
arrows in Fig. 2.9A(ii).

We train the MLP on the first task (recognizing images of digits Os and 1s) by
gradient descent and get a network that performs at an accuracy of 98% on the first
task. In Fig. 2.9A(ii), the first point on the x-axis corresponds to the network trained
on the first task alone, and the blue line records test accuracy on the first task.

Having trained the MLP on the first task, we train the network on subsequent

tasks (e.g. recognizing images of digits 2s and 3s, recognizing digits 4s and 5s) by
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constructing FIPs in the weights space and obtain networks that simultaneously retain
performance on all previous tasks while learning a new task. In Fig. 2.9B(i), the
region corresponding to Task-2 (first 25 points along the x-axis) captures the test
accuracy of networks on the first two tasks (blue, yellow respectively) while traversing
the FIP in weights space beginning from N; (MLP trained on Task-1). The networks
along the path retain their performance on Task-1 (blue line) at 98% while increasing
their accuracy on Task-2 (yellow line) to 97%. The region corresponding to Task-
3 (subsequent 11 points, 26 to 36, on the x-axis) comprise of networks that retain
their performance on both Task-1 and Task-2 (at 97% and 95% respectively) while
increasing their accuracy on Task-3 (green line) to 97%. Finally, on introducing Task-
5, corresponding to points 47-58 on the x-axis in region labeled Task-5, we uncover
networks that perform at 96.74%, 88.64 %, 89.33 %, 94.36 % and 91.23 % on Tasks
1 to 5 respectively, with an average performance of 92.01% on the MNIST dataset
having shown 2 classes at a time.

The networks discovered along the FIP mitigate catastrophic forgetting while be-
ing trained on multiple tasks in sequence as they retain their classification score on
previous tasks while increasing their score on new tasks. In Fig. 2.9B(ii), the heatmap
captures the classification score by feeding 1000 images from each task to the network
(or 5000 images from 5 tasks). The first 24 networks (1-24) retain their classification
score on Task-1, while increasing their classification score on Task-2. The subse-
quent 11 networks (25-36) retain their classification score on both Task-1 and Task-2
while increasing its score on Task-3. The last segment of the path (corresponding to
network-47 to network-58) retain their score on Tasks 1 through 4, while increasing
their classification score on Task-5. Having presented all 5 tasks to the network, our
path-finding framework discovers networks that perform at 92.1+0.06% accuracy on
the 5 tasks, while the conventional method performs at 184+2% [Van de Ven and

Tolias, 2019].
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Our FIP approach performs better than current state-of-art methods to alleviate
catastrophic forgetting while learning sequential tasks, like Elastic Weight Consol-
idation (EWC) on the 5-task paradigm (FIP: 92.14+0.06%, EWC:20+0.08%) (Fig.
2.90).

Section 2.4

FIPs enable iterative continuous learning
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Figure 2.10: Sequential training of networks on 20 image recognition tasks.
(i) Neural network with 100 output classes are trained on 20 task paradigm, with every
task containing 5 non-overlapping classes of natural images sampled from CIFAR100
dataset. (ii) Schematic to construct FIPs in weight space to train neural networks on
20 sequential tasks.

Due to the generality of the framework, the FIP approach naturally scales to learn
a longer series of tasks without catastrophic forgetting through iterative application
of Eq-2.4. We applied the FIP to learn 20 sequential image recognition tasks using
subsets of the CIFAR100 image database 2.10(i) [Ven, Siegelmann, and Tolias, 2020].
At each round, we modulate a large CNN, ResNet18, to recognize an additional five
object categories in CIFAR100 (2.10(i)).

We first train ResNet18 network to obtain 78% accuracy on Task-1 by gradient

descent using the Xavier initialization [Glorot and Bengio, 2010] protocol. To learn
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Figure 2.11: FIP traversal of networks while being trained on 20 image
recognition tasks. (i) Average test accuracy of networks along FIP while learning
20 sequential tasks. The networks to the right of a dashed line encounter a new task
(T-i), referring to the i’th task. (ii) Heatmap displays classification score for networks
along FIP on 1k test images, with 50 images sampled from every task.

additional tasks without forgetting, we solve the optimization problem in Eq-2.4 by
setting L(x,w) as the loss function specified by the incoming new task (Task-i),
while (2, 41y, ... is set to be the distance moved in output space for a small
number of inputs sampled from all the previous tasks (from Task:1 to Task:i-1). In
this way, we iteratively construct FIPs in the weight space and obtain networks that
simultaneously retain performance on all previous tasks while learning a new task
(Fig. 2.10).

The FIP strategy achieves high accuracy on incremental tasks broadly across the
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Figure 2.12: FIP traversal alleviates catastrophic forgetting. FIP surpasses
state-of-art methods in mitigating catastrophic forgetting in 2-task paradigm (i) and
20-task CIFAR100 paradigm (ii). Error bars indicate standard deviation over 5 trials.

held-out testing set (Fig. 2.11) . Having presented all 20 tasks to the network,
the FIP algorithm discovers networks that perform at 82.54+0.17% accuracy while
naive re-training performs at 26.86+1.05%. The FIP approach outperforms other
methods that have been introduced to mitigate catastrophic forgetting, specifically
Elastic weight consolidation on the 2 task paradigm (Fig. 2.12(i)) (FIP: 91+1.1
%, EWC: 87+1.6%) and 20-task paradigm (FIP: 82.544+0.17%, EWC:44.9+0.01%)
(Fig. 2.12(ii)) and Gradient episodic memory (GEM) with a memory budget of 500
memories from each task previously encountered [Kirkpatrick et al., 2017; Lopez-
Paz and Ranzato, 2017]. While the FIP algorithm has conceptual similarities with
EWC, the mathematical generality of the FIP approach allows the approach to scale
to perform multiple iterative incremental learning tasks and to explicitly construct
functionally invariant paths that span long distances in the weight space. EWC tends
to find networks in the vicinity of a previously trained network by computing a local

Fisher Information metric.



2.5 NETWORK SPARSIFICATION VIA PATH-CONNECTED NETWORK SETS 37

. B LeNet-300-100 (MNIST) ¢ ResNet-20 (CIFAR-10)
84|l - — 92
) 08| ~=== i — — =t
N,: Dense, high = = —?éT
performance network % -_— . 90
/() T _ . -_—"T
Wy [ g Functionally o (t) = 96 = X 88 - =
NG “~\invariant path (FIP) Task 8 ‘U; —
7 VuL 3 £ e
\\ Sparse, high ; o <§ 8 i
Q performance network @ g —_
) .OO @ 92 LN
@ —p% . .
e @ gu‘f,;r;irﬁcfm B Functionally Invariant Path B Functionally Invariant Path
p % mm Lottery ticket hypothesis 801 mm Lottery ticket hypothesis

20 67 89 96 987 99 99.1 994 20 36 49 59 67 79 83 89 93 95
Sparsity (%) Sparsity (%)

Figure 2.13: Sparse networks discovered by traversing FIPs in the weight
space. (A) Schematic to construct FIP from N; to p% sparse submanifold. (B,
C) Performance of sparse networks discovered by FIPs (purple) and Lottery ticket
hypothesis (red) across a wide range of sparsities on MNIST (B) and CIFAR-10 (C).

— Section 2.5
Network sparsification via path-connected

network sets

The critical aspects of the FIP framework is that the framework generalizes beyond
sequential task training to address a broad range of machine learning meta-problems
by considering a more general set of secondary objective functions. In particular,
we next apply the FIP framework to perform sparsification, reducing the number of
non-zero weights, of neural networks, which is important for reducing the memory
and computational footprint of a network [Blalock et al., 2020]. To sparsify neural
networks, we solve Eq-2.4, the core FIP optimization problem, with a secondary loss
function L(wy, w,p) that measures the euclidean distance between a network and it’s
p-sparse projection obtained by setting p% of the networks’ weights to zero.

Using the framework, we discovered a series of sparsified LeNet-300-100 networks
with sparsities ranging from 20% to 99.4% that exhibit a high performance on MNIST
digit classification [LeCun, Bottou, et al., 1998]. LeNet-300-100 [LeCun, Haffner, et

al., 1999] is a multilayer perceptron with two hidden layers consisting of 300 and
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Figure 2.14: Visualizing sparse networks discovered by FIPs in the weight
space.(D) Scatterplot where the dots are weight configurations of LeNet-300-100
networks in PCA space. The FIP (purple line) beginning from N; (grey dot) discovers
high-performance LeNet’s in the 99.1% sparse submanifold (red dots). Blue dots are
random sparse networks in the 99.1% sparse submanifold. Digits-4,0,5,7 are from
MNIST, text-labels below the image are network predictions and the number below
is the networks’ test accuracy on MNIST. (E) Scatterplot where the dots are weight
configurations of ResNet-20 networks in PCA space. The FIP beginning at N; (grey
dot) discovers high-performance ResNet-20 networks in the 93% sparse submanifold
(red dots). Blue dots are random sparse networks in 93% sparse submanifold. Deer,
frog, plane, ship images are from CIFAR-10, text-labels below the image are network
predictions and the number adjacent is the networks’ test accuracy on CIFARI0.

100 nodes each, and a total of 484000 non-zero weights. Although most networks
randomly sampled from the 99.1% sparse submanifold in the weight space perform
poorly on the MNIST task (with test accuracies ranging from 6 to 10%), the FIP
algorithm finds a curved path in the weight space from densely connected LeNet
(with test accuracy of 98% on MNIST) to networks in the 99.1% sparse submanifold
that perform at test accuracies between 96.3% to 96.8% on the MNIST classification
task (Fig. 2.14D). The FIP-discovered networks have diverse inter-layer connectivity
structures (Fig. 2.15F) placing non-zero weights (black vertical bars) in distinct
locations. While the FIP solutions vary in their local architectures, there are also
patterns across networks. Specifically, across the space of sparse solutions 99.2+0.2%

and 98.44+0.3 % of the weights between layers 1-2 and 2-3, respectively, are zeroed ,
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Figure 2.15: Sparse network architectures discovered by traversing FIPs in
the weight space. (F) Sparse LeNet connectivity visualized by plotting vertical lines
in color-coded rows to represent non-zero weights. (Below) Boxplot shows sparsity
across LeNet’s layers. (G) Boxplot shows the sparsity across ResNet-20’s layers (over
n=6 sparsified ResNet’s). The cartoon below depicts the ResNet-20 architecture.

while only 524+4% of the weights between layers 3-4 are zeroed out. The differential
sparsification across different layers indicates that connections between the first few
layers may contain more redundancy than the later layers.

The sparse networks discovered by traversing FIPs have a higher task-performance
than the ones discovered through prune-retrain cycles employed within frameworks
like the lottery ticket hypothesis (LTH) [Frankle and Carbin, 2018](Fig. 2.13B).
Across a wide range of sparsities (from 20% to 99.4%), FIP discovers networks that
are comparable in test accuracy to those obtained by LTH. The FIP also discovers
extremely sparse networks with high-performance. The FIP method finds a 99.4%
sparse network performing at an accuracy of 96+0.6%, while the LTH strategy finds
a 99.4% sparse network performing at 914+3% on the MNIST dataset.

The FIP algorithm scales to discover sparse counterparts of CNN networks with
multiple layers and skip connections. We applied the FIP framework to sparsify the
ResNet-20 architecture [He et al., 2016] with twenty convolutional layers, trained to
recognize images of automobiles, animals and man-made structures from the CIFAR-

10 dataset. Although most networks sampled from the 93% sparse submanifold of
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ResNet20 networks perform at accuracies between 18 to 30% on CIFARI10, an FIP
constructed from a dense, trained ResNet20 network to the 93% sparse submanifold
identifies high performance sparse ResNet20 networks with accuracies between 82 to
84.7% on CIFARI0.

Like the LeNet example, the inter-layer connectivity of sparse ResNet-20 networks
are distinct locally, but have globally conserved patterns. For instance, the weights
between layers 2 to 19 have an average inter-layer sparsity of 85% while having a max-
imum sparsity of 99.2%, present between layers 18-19 (penultimate layer), across all
sparsified ResNet20 networks (in Fig. 2.15G) we find that while the weights between
layer 1-2 (first 2 layers) and the layers 19-20 (last 2 layers) are least sparsified (41%
and 24% sparse respectively). The differential sparsification across different layers
points to the fact that the redundancy in ResNet-20 architectures is encoded primar-
ily between layers 3 and 18. The FIPs discover high performance sparse ResNet20
networks on a wide range of sparse submanifolds (from 20% to 95%) that are at par
with the prune-retrain techniques like the lottery ticket hypothesis (LTH) [Frankle
and Carbin, 2018].

— Section 2.6
Path-connected sets of networks confer

robustness against adversarial attack

The path connected sets of networks generated by the FIP can also be applied to
perform inference and increase the robustness of inference tasks to data perturbation.
Although deep networks have achieved remarkable performance on image-recognition
tasks, human-imperceptible additive perturbations, known as adversarial attacks, can
be applied to an input image and induce catastrophic errors in deep neural networks
(Fig. 2.17). The FIP algorithm provides an efficient strategy to increase network

robustness and mitigate adversarial failure by generating path-connected sets of net-
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Figure 2.16: FIPs in weight space generate ensembles of networks that con-
fer adversarial robustness (A) Schematic to generate FIP ensemble (P,...,P4) by
sampling networks along FIP (purple dotted line) beginning at network-N;. FIP is
constructed by identifying a series of weight perturbations that minimize the distance
moved in networks’ output space.
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Figure 2.17: Adversarial images. Original CIFAR10 images (left) and Adversarial
CIFAR-10 images (right) are shown. The text-labels (left, right) above the images
are predictions made by a network trained on CIFAR-10. Trained networks’ accuracy
on the original and adversarial images are shown below.

works with diverse weights. We, then, apply the path connected network sets to
perform robust image classification by averaging their output.

To demonstrate that the FIP algorithm can mitigate adversarial attacks, we
trained a 16 layered CNN, VGG16 with 130 million parameters to classify CIFAR10
images with 92% test accuracy. We, then, generated adversarial test images using
the projected gradient descent attack strategy. On adversarial test images, the per-
formance of VGG16 dropped to 37% (Fig. 2.18C, Fig. 2.19D). To mitigate the
adversarial performance loss, we applied the FIP algorithm to generate an ensemble

of functionally invariant networks by setting L = 0 in the optimization problem in
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Figure 2.18: Adversarial robustness conferred by FIP-discovered ensembles
of networks (C) (Top) Line-plot (solid) shows the individual network performance
on adversarial inputs, (dashed) shows the joint ensemble accuracy on adversarial
inputs, for FIP ensemble (purple) and DeepNet ensemble (orange). (i,ii-Left) FIP
ensemble in purple (Py,Ps,....,P1y) and DeepNet ensemble in orange (N;,Na,....Nyg)
are visualized on weight space PCA. (i,ii-Right) Heatmaps depict classification score
of networks in FIP ensemble and DeepNet ensemble on 6528 adversarial CIFAR-10
examples.

Eqg-2.4 and setting (‘;—Z, ‘;—Z)wmwm to be the distance moved in the networks’ output
space for CIFAR-10 images.

Having constructed the FIP in the weight space, we introduce a selection-criteria
to sample diverse networks along the FIP to construct the FIP ensemble. As we want
the FIP ensemble to be robust to adversarial input perturbation, we generate random
perturbations in the image space (within an e-l,, ball) and compute the distance
moved in the networks’ output space for a small perturbation in the image-space. We
record the distance moved in the networks’ output space (across all networks in the
constructed FIP) and plot a distribution of the distance moved in the output space

for a small perturbation in the image-input space. In Fig. 2.20A, we find that some
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Figure 2.19: Comparing adversarial robustness across different benchmarks.
(D) Boxplot compares adversarial accuracy (over 10k adversarial examples) across dif-
ferent ensembling techniques (n=3 trials). (E) Histogram of coherence values for FIP
(purple) and DeepNet ensemble (orange). (F) Boxplot shows the ensemble diversity
score across VGG16 layers over n=1000 CIFAR10 image inputs. The cartoon below
depicts the VGG16 network architecture.

networks along the FIP exhibit smaller perturbation in the output space and have
a narrower distribution across 10k perturbed training inputs, while others exhibit
larger perturbation in the output space. We choose networks that exhibit a smaller
perturbation in the output space for constructing the FIP ensemble. We use the FIP
ensemble to classify images by summing the ‘softmaxed’ outputs of the ensemble.
Using an ensemble of ten networks sampled along an FIP, we achieve accuracy
of 55.61 £ 1.1 % surpassing the performance of the DeepNet ensemble performance
(composed of 10 independently trained deep networks) by 20.62% (Fig. 2.18C). The
FIP ensemble’s adversarial performance also surpasses other state of the art ensemble

approaches including Adaptive Diversity promoting (ADP, 43.84 + 7.8%) ensemble
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Figure 2.20: FIP ensemble construction (A) Distribution of distances moved in
networks’ output space over 10k image-inputs perturbed within e-1,, ball, for indi-
vidual networks along the FIP. (B) Comparing distribution of distances moved in
networks’ output space over 10k image-inputs perturbed within e-l,, ball, for indi-
vidual networks in the FIP ensemble (blue) and networks in the DN ensemble (red).
(C) Distribution of distances moved in networks’ output space over 10k image-inputs
perturbed within e-l,, ball, for the entire FIP ensemble (blue) and the entire DN
ensemble (red).

and the Fast Geometric Ensembling (FGE, 41.7 &+ 0.34) method. The two factors
contributing to the FIP ensemble’s robustness are (i) high intra-ensemble weight di-
versity, calculated by the representation diversity score (Supplementary) and (ii) low
coherence (Supplementary) with a trained surrogate network (used to generate ad-
versarial images) (Fig. 2.19EF). FIP Networks have a higher representation diversity
score in their early processing layers, from Layer 1 to layer 6, when compared to the
DeepNet ensemble, indicating that individual networks in the FIP ensemble extract
different sets of local features from the adversarial image, preventing networks to rely
on similar spurious correlations for image classification.

Generating a large diverse set of functionally similar networks enables us to
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identify networks that exhibit smaller perturbation in the output space for an e-
perturbation in the input space, when compared to the networks in the DeepNet
ensemble (composed of 10 independently trained deep networks), as seen in Fig.
2.20B,C. The blue histogram corresponds to the output distance distribution of net-
works in the FIP, while the red histogram corresponds to the output distance distri-

butions of networks in the DeepNet ensemble.

— Section 2.7
FIP endows flexibility to very large systems

(100s of millions of parameters)
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Figure 2.21: FIPs in large transformer based language model (BERT) weight
space. (A, B(left)) 3D lineplot where dots are weight configurations of 12-layered
BERT models with 12 attention heads per layer in PCA space. (A) FIP from pre-
trained dense BERT (black circle) discovers high-performance sparse counterparts
(labeled p% sparse BERT, where p € [20, 30, ...95] ). Table shows “Fill in the Mask”
training sample and sparse BERT predictions of the masked word alongside the con-
fidence score. (B, left) Yelp-BERT retrained on IMDB using FIP (purple) and naive
retraining (blue). (B, right) BERT performance on Yelp and IMDB.

Conceptually, the most important aspect of the FIP framework is that it unifies a
series of machine learning meta-tasks (continual learning, sparsification) into a single

mathematical framework, ultimately endowing flexibility to the system. Mathemati-

cally, when we solve Equation 2.4 with a given secondary loss function, we move an
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existing network w(0) along a path in weight space generating a new network w(t)
where the parameter ¢ increments the length of a path. Each additional loss function
generates a new transformation of a base network, for example, generating a network
adjusted to accommodate an additional data analysis problem or a secondary objec-
tive like sparsification. Network transformation maps can be iterated and applied to
generate a family of neural networks optimized for distinct sub-tasks. The resulting
path connected set of neural networks can then be queried for networks that achieve
specific user goals or solve additional machine learning problems.

The problem of customization is particularly important for transformer networks
that have recently emerged as state of the art architectures in natural language pro-
cessing [Vaswani et al., 2017; Brown et al., 2020; Liu et al., 2019; Wolf et al., 2020].
We applied the iterative FIP framework to generate a large number of natural lan-
guage processing networks customized for different sub-tasks and sparsification goals.
Transformer networks incorporate layers of attention heads that provide contextual
weight for positions in a sentence. Transformer networks are often trained on a
generic language processing task like sentence completion where the network must
infer missing or masked words in a sentence. Models are, then, fine tuned for spe-
cific problems including sentiment analysis, question answering, text generation, and
general language understanding [Vaswani et al., 2017]. Transformer networks are
large containing hundreds of millions of weights, and so model customization can be
computationally intensive.

We applied the FIP framework to perform a series of model customization tasks
through iterative application of FIP transformations on distinct goals. The BERT
network has a total of twelve layers, or transformer blocks, with 12 self-attention heads
in each layer and a total of 110 million parameters [Devlin et al., 2018]. Using the FIP
framework, we applied two operations (Continual Learning (CL), Compression (Co))

sequentially to BERT models trained on a range of language tasks, by constructing
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FIPs in the BERT weight space using different objective functions (L(x,w)) while
solving the optimization problem in Eq-2.4. We, first, demonstrated that the FIP
framework allowed us to generate versions of the base BERT model that are cus-
tomized for single-sub-tasks. For example, we sparsified BERT, generating networks
with 20 — 80% weights set to zero (Fig. 2.21A). Similarly, we applied the FIP to
adjust the base BERT model, trained on sentence completion, to perform sentiment

analysis on YELP and IMDB movie reviews.

FIP alleviates CF in large language models (BERT)

— Conventional Training — Yelp Reviews

| Yelp and IMDB

BERT trained on — Functionally invariant path (FIP) IMDB Reviews
Yelp reviews
80
-
BERT (Conventional) €0 Functionally
\ Yelp and IMDB g 40 invariant path
“ § 20 (FIP)
04 30
[ BERT (FIP) §
k7
il

Conventional
40 L/\ training
20

0 5 10 15 20 25 30
Training Step

05 IMDB review

Okay. This has been a favourite since | was
Yelp review 14. Granted, | don't watch it multiple times a
—_— year anymore, but... This is not a movie for an
Went to zoo lights for the first time and older generation who want a deeper meaning
can definitely see how great it is for or some brilliant message. This movie is FUN.  Pgsitive
kids! Went on a Thursday night and it It's pretty dated, almost passe, but Parker
was Packed! The whole zoo is lit up 4 stars Posey is so brilliant that it's unbelievable. If
and it is fun to walk around. Admission you want to be charmed by a 90's Breakfast at

is $10/adult. FYI most the animals are Tiffany's, attended 90's raves, or love Parker,
asleep so don't get your hopes up! this movie is for you. Otherwise, don't bother.

Figure 2.22: FIPs in large transformer based language model (BERT) weight
space. (Left) 3D lineplot where dots are weight configurations of 12-layered BERT
models with 12 attention heads per layer in PCA space. Training BERT (previously
trained on Yelp) on IMDB reviews via conventional training (blue) and via FIP
(purple). (Right) 2D lineplots show BERT performance on Yelp-reviews (blue) and
IMDB-reviews (orange) for FIP (above) and conventional training (below). Example
test sample from Yelp and IMDB dataset, with the prediction by BERT along FIP.

Training BERT to detect customer opinions of a product based on text reviews
left on websites like Yelp or IMDB, results in catastrophic forgetting, especially while
sequentially training on multiple user-review datasets (say, yelp-reviews followed by

IMDB). The line plots in Fig 2.22 (right) demonstrate that conventional training
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of BERT on IMDB reviews increases its performance on sentiment classification on
IMDB (from 0% to 92%, orange) while abruptly forgetting sentiment analysis on
Yelp-reviews (dropping from an accuracy of 69.9% to 17%, blue) within 30 training
steps. We circumvent CF in BERT by solving the optimization problem in Eq-2.4
by setting L(x,w) as the loss function specified by the new task (IMDB sentiment-
analysis) and ((2—1, Z_Z>gTask_1 as the distance moved in output space for a small fraction
of inputs (0.3%) sampled from the previous task (Yelp review-rating). The line plots
in Fig 2.22A (right) demonstrate that traversing the FIP maintains BERT perfor-
mance on Yelp-reviews (at 70%, blue) while increasing its accuracy on IMDB review
classification (from 0% to 92%, orange). The FIP in BERT weight space (Fig. 2.22A
(left), purple) is much longer than the route taken by conventional training (Fig. 2.22
(left), blue), enabling global exploration of the BERT weight-landscape to identify

networks that simultaneously maintain performance on Yelp-reviews while learning

the IMDB sentiment classification.

2.7.1. FIP used to apply ‘task’ arithmetic in sequence

C BERT : Train Yelp -> Train IMDB -> Sparsify BERT D BERT : Train Yelp -> Sparsify BERT -> Train IMDB

Train on Sparsify
IMDB Yelp + IMDB

50% IMDB %
oo 60% Yelp

i IMDB performance
£ Yelp performance

10% —40%
20% —50%
30% —60%

trained

onYelp __ FIP: Yelp to IMDB
FIP: To p% sparse

= submanifolds

) 20 0. 0 10 20 30 40
20 PCA-x FIP step PCAx FIP step

Figure 2.23: Visualizing FIPs in BERT weight space (C,D (left)) 3D lineplot
where dots are weight configurations of 12-layered BERT models with 12 attention
heads per layer in PCA space. (C, left) FIP initially identify high performance sparse
BERTs (for sparsities ranging from 10% to 80%) followed by re-training on IMDB.
(C, right) BERT accuracy on Yelp (solid) and IMDB (dashed) dataset along the FIP.
(D, left) FIP initially retrains BERT on new task (IMDB) and then discovers a range
of sparse BERTs. (D, right) BERT accuracy on Yelp (solid) and IMDB (dashed)
dataset along the FIP.

Next, we demonstrated that we could apply the operations CL and Co in sequence.
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Beginning with the BERT base model, we applied the FIP model to generate networks
that could perform YELP and IMDB sentiment analysis, and then compressed the
resulting networks to generate 6 distinct networks with sparsity ranging from 10—60%
where all sparsified networks maintained performance on the sentiment analysis tasks
(Fig. 2.23C). We, then, performed the same operations but changed the order of
operations. We, first, sparsified the base BERT model to the same six sparsifications
and, then, applied the CL operation to sub-train the resulting models on IMDB
sentiment analysis. The models generated through application of CL-Co(w) and Co-
CL(w) achieved similar functional performance in terms of sparsification and task

performance but had distinct weight configurations.

2.7.2. FIPs in BERT retains natural language understanding

In the main-text (Fig. 2.23), we demonstrated that we can compress a pre-trained
BERT to varying levels of sparsity on a sentence completion task (masked language
modeling task) by traversing FIPs in the BERT weight space. The line plot in Fig.
2.24C shows that sparser counterparts discovered by the FIP maintain their perplexity
score (methods) as a function of increasing sparsity, indicating that BERTs with 80%
of their weights (parameters) set to zero retain their ability to parse sentences and find
appropriate words for the fill-in-the-blanks task (Fig. 2.21A (table)). Additionally,
we find that the FIP length in weight space from the pre-trained BERT to its sparser
counterparts increases with the degree of sparsification. In Fig. 2.21A, we find that
the FIP length (methods) to the 80% sparse BERT is 96.95% longer than the FIP
length to the 20% sparse BERT.

FIP traversal discovers sparse BERTSs that retain their ability on general language
understanding tasks (GLUE) Wang et al., 2018. Originating from dense BERTS
fine-tuned on various GLUE tasks, the FIPs discover sparse BERTs that perform

within 15% accuracy of their dense counterparts as shown in barplot of Fig. 2.24D.



2.7 FIP FOR LARGE LANGUAGE MODELS 50

Sparsity (%)
75 7 79 81

Sparse BERT : Fill in the MASK

Sparse BERT
“=-* Dense BERT

10 20 30 40 50 60 70 80

Q@P sST2 RTE  ColA WMNLI QN MRPC
GLUE Tasks

Sparsity (in %)

Figure 2.24: FIPs in large transformer based language model (BERT) weight
space. (A) FIP from BERT’s fine-tuned on GLUE task to their p% sparse counter-
part. Dots in 3d lineplot are weight configurations of 12-layered BERT models with
12 attention heads per layer in PCA space. Legend abbreviations are the different
GLUE tasks and BERT sparsity, elaborated in the text. Table shows test example
from QQP task and the inference from a 90% sparse BERT. (B) Birds eyeview of
attention across all layers and attention heads for a specific input on an 80% sparse
BERT. Boxplot (right) shows sparsity distribution of attention heads in each layer
across all the BERT layers. Visualizing attention patterns of a single attention head
in a layer for a specific input "the cat sat on the mat.” (C) Perplexity score for sparse
BERT (solid blue) and dense BERT (dashed blue). (D) GLUE performance of dense
BERT (black) and p% sparse BERT (blue).

The QQP (Quora question pairs) task (Fig. 2.24A) that involves detecting if two
questions are paraphrased versions of each other can be performed by the 90% sparse
BERT, suggesting that QQP-like tasks have lower task-complexity than RTE-like
tasks (recognizing textual entailment).

In Fig. 2.24B, we find that the attention heads in each layer are equally uniformly
sparsified (see variance of the boxplot in Fig. 2.24B (right)) suggesting that all at-
tention heads within a layer are equally relevant for the considered language task. In
Fig. 2.24B, we find that attention heads across different layers in the 80% sparsified

BERT has subtly different attention mechanisms, as every word in the sentence at-
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tends to different segments of the input sentence incorporating different contextual
information. For instance, each word in the 2nd attention head of layer 2 attends to
its next word in the sentence, all the words in the 5th attention head of layer 7 attend
to the ‘subject’ (“cat”) of the input sentence, while the nouns (“cat,” “mat”) in the
6th attention head of layer 12 are attending to themselves, while the prepositions

(“on,” “the”) are indicating the presence of an end-of-statement.

Normalized Perplexity score

.
[ o2

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
WikiText query perplexity

IMDB query on BERT submanifold graph WikiText query on BERT submanifold graph

Figure 2.25: Graph-connected networks in BERT weight space (E) Graph con-
nected set of 300 BERT models trained on sentence completion on wikipedia and yelp
datasets, colored by perplexity scores evaluated using two new query datasets, wiki-
text and imdb. Nodes correspond to individual BERT models and edges correspond
to euclidean distance between BERT models in weight space. (E, rightmost) Scatter
plot of inverse perplexity scores for two queries—IMDB and WikiText datasets.

In total, we used the FIP framework to generate networks using a set of different
natural language tasks and compression tasks yielding a path-connected set of 300
BERT models. The 300 networks define a sub-manifold of weight space that contains
models customized for distinct sub-tasks (Fig. 2.25). The sub-manifold, then, pro-
vides a computational resource for solving new problems. We can query the resulting
FIP sub-manifold with unseen data by using perplexity (Supplementary) as a measure
of a networks intrinsic ability to separate an unseen data set. Using perplexity, we
queried the FIP sub-manifold of BERT networks with IMDB data and Wikitext data.

We found that the distinct language data sets achieve minimal perplexity on different



2.8 CONCLUSION 52

classes of networks. Wikitext obtains optimal performance on CoCL networks while
IMDB achieves optimal performance on CLCo networks. These results demonstrate
that the FIP framework can generate diverse sets of neural networks by transforming
networks using distinct meta-tasks. The sub-manifolds of weight space can, then, be
queried inexpensively to identify networks pre-optimized for new machine learning

problems.

Section 2.8

Conclusion

We have introduced a mathematical theory and algorithm for training path con-
nected sets of neural networks to solve machine learning problems. We demonstrate
that path connected sets of networks can be applied to diversify the functional be-
havior of a network, enabling the network to accommodate additional tasks, to prune
weights, or generate diverse ensembles of networks for preventing failure to adversar-
ial attack. More broadly, our mathematical framework provides a useful conceptual
view of neural network training. We view a network as a mathematical object that
can be transformed through iterative application of distinct meta operations. Meta-
operations move the network along paths within the weight space of a neural network.
Thus, we identify path connected sub-manifolds of weight space that are specialized
for different goals. These sub-manifolds can be enumerated using the FIP algorithm
and then queried as a computational resource and applied to solve new problems (Fig.
2.25E).

Fundamentally, our work exploits a parameter degeneracy that is intrinsic to large
mathematical models. Previous work has demonstrated that large statistical models
often contain significant parameter degeneracy [Machta et al., 2013] leading to ‘flat’
objective functions [Hochreiter and Schmidhuber, 1997; Hochreiter and Schmidhuber,

1994; Tsuzuku, Sato, and Sugiyama, 2020]. Recent work in physics has demonstrated
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that physical models with large numbers of parameters often contain parameter de-
generacy such that model parameters can be set to any value within a sub-manifold
of parameter space without loss of accuracy in predicting experimental data [Machta
et al., 2013]. Mathematically, in the supporting materials we show that the neural
networks that we analyze have mathematical signatures of parameter degeneracy after
training, through spectral analysis of the metric tensor. Modern deep neural networks
contain large numbers of parameters that are fit based on training data, and so are
related mathematical objects to physical models with large numbers of parameters
set by experimental data , and in fact, exact mappings between statistical mechan-
ics models and neural networks exist [Mehta and Schwab, 2014]. Spectral analysis
demonstrates that the weight space contains significant sub-spaces where movement
of parameters causes insignificant change in network behavior. Our FIP algorithm
explores these degenerate sub-spaces or sub-manifolds of parameter space. Implicitly
we show that exploration of the degenerate sub-space can find regions of flexibility
where parameters can accommodate a second task (a second image classification task)
or goal like sparsification. We apply basic methods from differential geometry to iden-
tify and traverse these degenerate sub-spaces. In the Supporting Materials we show
that additional concepts from differential geometry including the covariant derivative
along a weight space path can be applied to refine paths by minimizing not only the
velocity along a weight space path but also acceleration.

Broadly, our results shift attention from the study of single networks to the path-
connected sets of neural networks. Biological systems have been hypothesized to
explore a range of effective network configurations due to both fluctuation induced
drift and modulation of a given network by other sub-systems within the brain. By
shifting attention from networks as single configurations or points in weight space to
exploring sub-manifolds of the weight space, the FIP framework may help illuminate

a potential principle of flexible intelligence and motivate the development of mathe-
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matical methods for studying the local and global geometry of functionally invariant
solution sets to machine learning problems [Smale, 1998; Mumford and Desolneux,

2010).

Section 2.9

Appendix

In the main-text, we have introduced a geometric framework to solve three core chal-
lenges in modern machine learning, namely: (i) Alleviating Catastrophic forgetting,
(ii) Network sparsification and (iii) Increasing robustness against adversarial attacks.
We will describe the datasets, parameters/hyperparameters used for the algorithms

and the pseudocode for each of the core challenges addressed in the main-text.

Catastrophic Forgetting

Datasets and preprocessing:. The models were tested on two paradigms:

» 2-sequential task paradigm, where the model is exposed two tasks, sam-
pled from the MNIST and Fashion-MNIST dataset sequentially. The MNIST
training dataset contains 60,000 gray-scale images of 10 classes of hand-written
digits (0-9), and Fashion MNIST training dataset contains 60,000 gray-scale
images of 10 classes of fashion items (e.g., purse, pants, etc.). The test set con-
tains 10,000 additional images from each dataset. Together, the two datasets
contain 20 classes. The 10 digits in MNIST are labelled 0-9, and the 10 classes
in Fashion MNIST are labelled 10-19 in our experiments. Images and labels
corresponding to the first 10 classes (MNIST) are fed to the network as Task-1,
followed by the images and labels from the next 10 classes (Fashion-MNIST) as
Task-2.

o SplitCIFAR100: 20 sequential task paradigm, where the model is exposed
to 20 tasks, sampled from the CIFAR100 dataset. The CIFAR100 dataset
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contains 50,000 RGB images for 100 classes of real-life objects in the training
set, and 10,000 images in the testing set. Each task requires the network to

identify images from 5 non-overlapping CIFAR100 classes.

Network architecture:. All state-of-art methods for alleviating CF (presented in
the main-text) in the 2-task and 20-task paradigm used the same network architecture,

as described below.

o We use a 5-layered CNN with a total of 20 output classes (10 from MNIST
and 10 from Fashion-MNIST) for the 2 task paradigm. The first 2 layers are
convolutional layers, with 32 and 64 conv-filters with 3x3 kernel size, respec-
tively. The last three layers are fully connected layers with 600, 120 and 20
nodes in Layers 3, 4, and 5, respectively. Both the convolutional layers have a
2D batchnorm as well as a 2x2 MaxPool layer. All the layers (except layer 5)
has a ReLLU non-linearity. The 5 layer CNN has a total of 1.4 million trainable

parameters.

o We use a Reduced ResNet18 with a total of 100 output classes for the 20 task
paradigm from SplitCIFAR100. The Reduced ResNet18 has three times lesser
feature maps in each of the layers (as compared to ResNet18 He et al., 2016),
same as the architecture introduced in Lopez-Paz and Ranzato, 2017. Reduced

ResNet18 has a total of 1.1 million trainable parameters.

Pseudo-code: FIP construction for CF problems.

Code specifications. All the code was written in the PyTorch framework, and
the automatic-differentiation package was extensively used for constructing compu-
tational graphs and computing gradients for updating network parameters. The code

for constructing FIP’s for the 2-task and 20-task paradigm were run on Caltech’s
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Algorithm 1 FIP construction for CF problems

Require: )\, n: step-size hyperparameters, Nr: Number of sequential tasks
1: procedure FIP-CF(\, n, Nr)

2: random initialize wy
3: B; «+ {}Vi=1.2, .., Nr > Buffer with n,,., memories from previous tasks
for i + 1 to Ny do

4

end

Wi < Wi_1
5: (x, t) < Task-i > minibatch of images (x) and target labels (t) from task-i
6: B, + B;Ux > update buffer
7: CEloss < crossEntropy(f(x, w;), t) > Classification loss for new task
8: Yloss < 0 for j < 1 to i-1 do
9:

end

Yloss += Ydist(f(x, w;), f(B;, wi—1)) > Distance moved in output space (Y)
10:
11: S + CEloss + A*Yloss > Construct FIP with direction from loss gradient
12: w; < Wi — NV, S
13: Wi

14: end procedure

High-Performance computing cluster—using a single GPU for a total time of 1 hour

and 10 hours, respectively (for the 2-task, 20-task paradigm).

Parameters used. The parameters used for current state-of-art methods across
different models and datasets have been selected after grid-search to maximize accu-

racy.

o Functionally invariant path (FIP) for 2-task paradigm: n = 0.01, opti-
mizer used: Adam, weight decay = 2e-4, A = 1, n-memories from previous task

= 500/60000 (=0.8% previous dataset).

« Elastic weight consolidation (EWC) for 2-task paradigm: Optimizer
used = Adam, EWC regularization coefficient (A\)=5000, learning-rate = 0.001,
batch-size = 128, number of data samples from previous task to construct Fisher

metric = 500.
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e Functionally invariant paths (FIP) for 20-task paradigm: n = 0.01,
optimizer used: Adam, weight decay = 2e-4, A = 1, n-memories from previous

task = 250/2500 (=10% previous tasks).

« Gradient episodic memory (GEM) for 20-task paradigm: n-memories
from previous task = 250, learning-rate = 0.01, number of epochs (per task) =

20, memory-strength = 0.5, batch-size = 128.

« Elastic Weight consolidation (EWC) for 20-task paradigm: Optimizer
used = Adam, EWC++ alpha = 0.9, EWC regularization coefficient (\)=5000,
learning-rate = 0.001, Fisher metric update after 50 training iterations, batch-

size = 128.

Implementation of other CF methods:. We implemented the Elastic Weight
consolidation (EWC) method by adapting code from the repository: https://gith
ub.com/moskomule/ewc.pytorch. The Gradient episodic memory (GEM) method
was applied by adapting code from: https://github.com/facebookresearch/Grad

ientEpisodicMemory.

Network sparsification

Datasets and preprocessing:. The models were sparsified on two well-known

image datasets:

e MNIST: The MNIST training dataset contains 60,000 gray-scale images of 10
classes of hand-written digits (0-9). The test set contains 10,000 additional

images from the 10 digit classes.

o CIFAR-10: The CIFARI0 training dataset contains 50,000 RGB images of 10
classes of natural images (like trucks, horses, birds, ships, to name a few). The

test set contains 10,000 additional images from each of the 10 classes.
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Network architecture:. The networks used for demonstrating the strategy of con-

structing FIP in weight space for compression are:

o We used Multilayer perceptron (LeNet-300-100), which has 3 fully connected
layers for the MNIST task. The first layer (input) has 784 nodes, hidden layers
2, 3 have 300 and 100 nodes respectively. The last layer (output) has 10 nodes
(corresponding to 10 digit classes in the dataset). LeNet-300-100 has a total of
484000 trainable parameters (all non-zero, post training on MNIST). All the

layers (except output layer) has ReLLU non-linearity.

o We used ResNet20 with a total of 10 output classes for training and compression
on the CIFAR-10 dataset. The ResNet-20 network has 20 convolutional layers

with skip connections, with a total of 0.27 million trainable parameters.

Algorithm 2 FIP construction for network sparsification

Require: )\, n: step-size hyperparameters

Require: p: Final desired network sparsity (in %)

Require: w;: Network trained on MNIST or CIFAR-10 dataset
1. procedure FIP-SPARSE(\, 1, p, w;)
2: w < wywhile (||w||o/||W¢]lo) NOT (1 —p/100) do

end

Until w not in p% sparse submanifold
3: W, <— project(w, p) > Set p% of smallest weights to zero
£ L(w) W —wylla
5: x < Dataset (MNIST or CIFAR) > Sample minibatch of images from dataset
6: OPloss < odist(f(x,w), f(x,w;)) > Distance moved in output space
7 S < OPloss + X * L(w)
8: W< w—nVgS > Constructing FIP towards sparse submanifold
9: w

10: end procedure

Pseudo-code: FIP construction for network sparsification.

Code specifications. All the code was written in the PyTorch framework, and

the automatic-differentiation package was extensively used for constructing compu-
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tational graphs and computing gradients for updating network parameters. The code
for constructing FIP’s to the p% sparse submanifolds were run on Caltech’s High-
Performance computing cluster - using a single GPU for a total time ranging between
2-6 hours for final network sparsity’s below 80%, and between 24-30 hours for iden-

tifying high performance networks in submanifolds with larger than 80% sparsity.

Parameters used:.

« FIP for network sparsification: A = 1, = 0.01, optimizer used: Adam (f
= (0.9, 0.999)), final (desired) network sparsities for LeNet-300-100 on MNIST:
p = [20%, 67%, 89%, 96%, 98.7%, 99%, 99.1%, 99.4%)], final (desired) network
sparsities for ResNet-20 on CIFAR-10: p = [20%, 36%, 49%, 59%, 67%, 79%,
83%, 89%, 93%, 95%)].

« Lottery ticket hypothesis: (For LeNet-MNIST):= batch-size = 128, model-
init = kaiming-normal, batchnorm-init = uniform, pruning-strategy => sparse-
global, pruning-fraction = 0.2, pruning-layers-to-ignore = fc.weight, optimizer-
name = sgd, learning rate = 0.1, training-steps = 40 epochs. (For ResNet20-
CIFAR10): batch-size = 128, model-init = kaiming-normal, batchnorm-init =
uniform, pruning-strategy = sparse-global, pruning-fraction = 0.2, optimizer-
name = sgd, learning rate = 0.1, training-steps = 160 epochs, momentum =

0.9, gamma = 0.1, weight-decay => 0.0001.

Implementation of other sparsification methods. We implemented the Lot-
tery ticket hypothesis for sparsifying both, LeNet-300-100 trained on MNIST and
ResNet20 trained on CIFAR-10. To do so, we adapted code from the repository:

https://github.com/facebookresearch/open_lth.
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Adversarial robustness

Datasets and preprocessing. The models were trained on CIFAR-10 dataset and

the adversarial examples were generated on the same using the projected gradient

descent (PGD) method.

o CIFAR-10: The CIFARI10 training dataset contains 50,000 RGB images of 10
classes of natural images (like trucks, horses, birds, ships to name a few). The

test set contains 10,000 additional images from each of the 10 classes.

Network architecture. For the adversarial robustness section, we used the VGG-
16 network Simonyan and Zisserman, 2014, which has 16 layers, and a total of 138

million trainable parameters.

Generating an adversarial attack. We used the projected gradient descent
(PGD) method to generate CIFAR-10 data samples that are imperceptibly similar
to their original images for humans, but cause significant performance loss to deep
networks. The PGD attack computes the best direction (in image space) to per-
turb the image such that it maximizes the trained networks’ loss on the image while
constraining the L s norm of the perturbation.

The procedure for generating adversarial inputs are detailed below:

« Randomly initialize a VGG16 network and train it on CIFAR-10 (trained net-

work = wy)

« Take a single image-input (x) from the CIFAR-10 dataset and pass it through
the trained network, and calculate the gradient of the classification loss (cross-

entropy (C') with respect to the input (grad = ViC(wy, x,y)).

« Construct an adversarial input (x’) by taking multiple steps (5) in the image-

input space, wherein the adversary is within within an e-l,, bound. x*! =] +S
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(x' + a sgn(VyC(wy,x,y))). Here, we take as many steps (S) as required until
the adversarial input (x'*1) exits the e-1,, bound. We choose e=0.3 and a=2/255

for generating CIFAR10 adversarial examples against VGG16 networks.

Representation diversity score. We compute the representation diversity score
for both ensembles (FIP, DeepNet) by evaluating the standard deviation of the L
norm of the network’s activation across all networks in the ensemble along each layer

for a set of image-inputs.

Coherence between two models. We compute the overlap of the Adversarial
subspace between networks in the FIP ensemble and the trained surrogate network
by evaluating the cosine distance between the gradients of the loss function of the
FIP networks and the trained surrogate network with respect to an input (x).

Say, the gradient of loss function with respect to input (x) for the two models are:
Jo(0o, z,y) and J.(01,z,y). The cosine distance between the gradients is evaluated

as:
< V:BJO7 ijl >

The cosine distance between the gradients provides a quantitative measure for
how likely an adversarial input that affects the surrogate network would attack the
model sampled along an FIP.

To evaluate the coherence across all sampled models in the FIP and a trained
surrogate network, we measure the maximum cosine similarity between all pairs of

gradient vectors in the set.

maXaEl,..,NCS(vgchVsz)) (26)
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Here, J, refers to the gradient of "N’ networks sampled along the FIP for a single
input (x), while J; refers to the gradient of the trained surrogate network for the

input (x).

Algorithm 3 FIP for adversarially robust ensembles

Require: 7 : step-size, w; : Network trained on CIFAR-10 dataset, e: 1, of adversary
perturbation

Require: ¢ : permissible change in output distance, max-iter: number of steps in
the FIP

1: procedure FIP-ENSEMBLE(7, wy, §, €)
2 W < Wy
3: 11+ 0 > setting counter = 0
4 F+{} > List of networks in the FIP ensemble while i < max-iter do
5:

end

(x,y) < Dataset (CIFAR10) > Sample minibatch of images from dataset

S < odist(f(x,w), f(x,w¢)) > Output space distance for varying network’s
weights

7: W< W —nVyS > Construct undirected FIP

@

8: X x+ esgn(VyC(w,x,y))
9: H «+ odist(f(x,w), f(x',w))) > Output space distance for perturbed input if
H < ¢ then
10:
end
F+— FUw
11:
12: 1<+ 1
13: F > Returning FIP ensemble with adversarial robustness

14: end procedure

Pseudo-code: FIP for adversarial robust ensembles.

Code specifications. All the code was written in the PyTorch framework, and
the automatic-differentiation package was extensively used for constructing compu-
tational graphs and computing gradients for updating network parameters. The code
for constructing undirected FIPs in the weight space, followed by sampling a small
sub-set of networks along the FIP was run on Caltech’s High-Performance computing

cluster - using a single GPU for a total time ranging between 2-6 hours.
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Parameters used:. To generate ensembles of deep-networks, we selected parame-

ters after a grid-search to maximize robustness against adversarial failure.

o FIP ensemble: 1n=0.01, ¢=0.3, Mini-batch size = 100, §=35 (Inputs to the

FIP construction/ensemble pseudo-code detailed above).

« Adaptive diversity promoting (ADP) ensemble: alpha = 2, beta = 0.5,
(alpha, beta are parameters maximizing diversity of ensemble) optimizer used
= SGD, momentum = 0.9, learning rate = 0.05, weight-decay = 2e-4, batch-size

= 128, num-networks-per-ensemble = 3, 5, 10 (three different ensembles).

o Fast Geometric ensembling (FGE): model = VGG16, epochs = 40, weight-

decay = 3e-4, learning-rate-1 = 0.5e-2 learning-rate-2 = le-2, cycle = 2.

Implementation of other ensemble generation methods for adversarial
robustness:. We generated ensembles of deep networks (VGG16) using three state-
of-art methods. The first method, “DeepNet (DN) ensemble” are constructed by
training multiple independently initialized VGG16 networks. The second method
’Adaptive Diversity promoting (ADP)’ is obtained by adapting the code in this repos-
itory: https://github.com/P2333/Adaptive-Diversity-Promoting. The third
method ‘Fast geometric ensembling’ is obtained by adapting the code taken from this

repository: https://github.com/timgaripov/dnn-mode-connectivity.

FIP for multiple ‘operations’ on language model — BERT

We scale our FIP geometric framework to perform multiple operations (like, contin-
ual learning, compression) on BERT language models that are very large and are
capable of parsing large amounts of text scraped from different internet sources (like,

wikipedia, yelp reviews, imdb reviews to name a few).
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Datasets and preprocessing. We performed two operations, (i) network compres-
sion and (ii) continual learning on BERT, fine-tuned on different language datasets,

downloaded from the HuggingFace (HF) website.

o Wikipedia: The Wikipedia - English datasets are downloaded from this link:
https://huggingface.co/datasets/wikipedia. We used the Wikipedia

dataset on the masked learning model (MLM) task.

» Yelp reviews: The Yelp-reviews datasets is obtained from hugging-face, down-

loaded via this link: https://huggingface.co/datasets/yelp_review_full.

« IMDB reviews: The IMDB-reviews datasets is obtained from hugging-face,

downloaded via this link: https://huggingface.co/datasets/imdb.

« GLUE dataset: The GLUE dataset is obtained from hugging-face, down-
loaded from this link: https://huggingface.co/datasets/glue. The GLUE
tasks performed in this paper are: (i) Quora Question Pairs (QQP), (ii)Stanford
sentiment (SST-2), (iii) Corpus of linguistic acceptability (CoLA), (iv) Recog-
nizing textual entailment (RTE), (v) Multi-genre natural language inference
(MNLI), (vi) Microsoft research paraphrase corpus (MRPC), (vii) Question-

answering natural language inference (QNLI).

Network architecture. BERT is a popular transformer model with 12 layers
(transformer blocks), each with a hidden size of 768, 12 self-attention heads in each
layer with a total of 110 million parameters Devlin et al., 2018. BERT has been pre-
trained on 45GB of wikipedia, using the masked language model (MLM) task, and

next sentence prediction (NSP).

Sentence completion (Masking) tasks: For the masking tasks (wherein 15%

of the words in the input sentence are masked (or blanked)), the BERT network has
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an MLM head appended to the network. The MLM head produces a 3-dim tensor as
the output, wherein the dimensions correspond to (i) number of sentences in a single
batch (batch-size), (ii) number of blanked out words in a sentence, and (iii) number

of tokens in the BERT vocabulary: 30,000 tokens.

Sentence classification tasks: For the sentence classification task, a sentence clas-
sifier head was appended to the BERT architecture. Here, the classifier head produces
a 2-dim output tensor, wherein the dimensions correspond to (i) batch-size and (ii)

number of unique classes in the classification problem.

Code specifications. All the code was written in the PyTorch framework, and
the automatic-differentiation package was extensively used for constructing compu-
tational graphs and computing gradients for updating network parameters. The code
for constructing FIPs in the BERT weight space for continual learning on Yelp and
IMDB sentiment analysis, and for BERT sparsification were run on Caltech’s High-
Performance computing cluster - using two GPU’s for a total time of 2 hours, 6 to 30

hours (for the continual learning, sparsification operations respectively).

Parameters used:.

o Functionally invariant path (FIP) for continual learning: 7n = 2e-5,
A=1, n-memories from previous task = 2000/650000 = (0.8% previous dataset),

Optimizer used: AdamW.

o Functionally invariant path (FIP) for BERT sparsification: 7 = 2e-
5, A=1, Optimizer used: AdamW, Final (desired) network sparsities for the
GLUE task: Task (p% sparse): RTE (60% sparse), CoLA (50% sparse), STS-B
(50% sparse), QNLI (70% sparse), SST-2 (60% sparse), MNLI (70% sparse),
QQP (90% sparse), MRPC (50% sparse), Final (desired) network sparsities for
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Wikipedia sentence completion: [10%, 20%, ..., 90%].

FIP length. The FIP length is evaluated by sampling a large number of networks
along the FIP, and summing the euclidean distance between all consecutive pairs
of networks. Say, the weights of networks sampled along the FIP are denoted by:

Wi, Wa, W3, ..., Wy

FIP-length = 37, ||w; — Wi_q]|2.

Perplexity score: language models. Perplexity is an evaluation metric used to
measure how “surprised” a language model is when it encounters a new task. That is,
a higher perplexity implies more surprise, suggesting that the language model does
not have much insight into how language works. Mathematically, we define perplexity

as the exponential of the cross entropy loss on the evaluation dataset.

PPL(0) = exp[S7<,1(0, z;)]

where, 0 is the parameters of the BERT model, 1, x3, .., z,,, are the n. inputs from
the evaluation dataset. [(f,z;) evaluates the cross-entropy loss of a BERT model

parameterized by @ for a single input x;.

Section 2.10

Mathematical musings

In the main-text, we apply mathematical tools from differential geometry to study
the response of neural networks to weight perturbation. Our fundamental construc-
tion is that we consider weight space, W, to be a smooth manifold endowed with a
Riemannian metric, g, so that the pair (W, g) is a Riemannian manifold. We con-

struct the metric through a pullback procedure where we pullback a distance metric
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on the output space Y onto the weight space W. Following this construction, our
analysis of weight change follows naturally by using standard tools from differential
geometry including the tangent space, the covariant derivative and the geodesic to
analyze changes in network performance given changes in network weights.

An important aspect of our construction is that we proceed by considering the
weight space itself to be the manifold, and pull-back a distance metric onto W. The
construction allows us to isolate mathematical complexity concerning the definition
of the neural network within the construction of the metric itself. Following the
construction of the metric, we can conveniently analyze weight perturbation by simply
applying our non-Euclidean metric tensor to calculate distances within W where
W is homeomorphic to standard Euclidean space. In what follows we discuss the
construction of the Riemannian manifold and how the mathematical properties of g
as a positive (semi)-definite bilinear form arise.

A Riemannian manifold simply consists of a smooth topological manifold endowed
with a Riemannian metric [Loring W Tu, 2017]. A smooth topological manifold, M,
is a locally Euclidean space [Loring W. Tu, 2011]. By locally Euclidean, we mean
that around every point, p € M there is a function, ¢, that maps a neighborhood
of M, U where p € U C M, to R" (¢ : U — R™) so that the collection {(Uy, ¢u)},
known as an atlas, covers M . In the general case, we may need many different open
sets U, to cover M. The case of weight space is quite convenient in that a single map,
the identity map, gives us an atlas for W.

Our weight space W is trivially homeomorphic (and diffeomorphic) to R™ by the
identity map, and so therefore W is a smooth manifold. It is the simplicity of the
manifold that that gives our method much of its practical power.

Now, we introduce a metric onto W that endows the manifold with a notion of
distance that encapsulates the function properties of the underlying neural network.

Intuitively, we can think of W as becoming a curved space due to the influence of
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the functional properties of the neural network on the local structure of space. Our
approach has analogies with physical models where the path of a particle through an
ambient space can be influenced by a metric which is the manifestation of a physical
force like gravity [Thorne, Misner, and Wheeler, 2000]. We view neural networks as
dynamically moving along a smooth manifold whose notion of distance is functional.

Specifically, we consider a neural network to be a smooth, C*function f(x,w),
that maps an input vector, x € RX, to an output vector, f(x,w) = y € R™. The
function, f(x,w), is parameterized by a vector of weights, w € R", that are typically
set in training to solve a specific task. In general, several popular neural network
functions like the rectified linear unit (ReLLU) are not actually C*(do not have con-
tinuous derivatives of all orders). For example, the ReLLU function A(x) = max(z,0)
has a discontinuity at h’'(0). However, the function is commonly approximated by
the soft-plus function h(x) = log(l + exp(x)) which is C*, and so there is not a
fundamental problem.

The training data itself has an interesting and more subtle impact on our metric.
To construct a metric on W, we first consider the map generated by the network f

given a fixed data point x

f(x,w): W — R™. (2.7)

We call this map the functional map. A specific example of such a map is that x could
be a specific vector of image data from MNIST, and f maps this data to a m = 10
dimensional space that scores the image for each of the 10 possible handwritten digits.

Globally, we note that f in general will not be one-to-one or onto.
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Locally, we ask how the output of f changes for an infinitesimal weight change

f(x,w+dw) = f(w) + df (2.8)
dfi
= f(w)+ 8—dej (2.9)
afi

where we take dw; to be standard basis vectors in W, and J = is the Jacobian

ow;
matrix of partial derivatives. In general J will be an n X m matrix and, therefore,
rank(J) < min(n,m), so that the rank of J is obviously determined by the number of
weights and the number of output functions. A key difference between our framework
and classical settings in which differential geometry is applied is that, for us, n # m.
In fact, it will be a very special case that achieves an equality of weights and output
function.

To construct our metric, we use mean squared error to measure the distance

between network outputs generated by the unperturbed (w) and perturbed networks

(W+dw) as

diw,w+dw) = |f(x,w) — f(x,w +dw)|> = dw’ (J' J) dw (2.10)

= dw’ g, dw (2.11)

where we have used the local notion of distance to derive a metric, g, that converts
local weight perturbations into a distance. It is important to notice that J and g are
fields that vary across W. We can evaluate the metric at a position location in space
or as we move along a path through weight space.

Formally, we think of our metric as providing an inner product at every location
in weight space. For general manifolds, the mathematical construction is to consider
a tangent plane or tangent space at each point p € W, and to imagine a plane that
locally approximates a curved manifold at each point. In this case, the metric tensor

provides a local inner product and hence a local notion of distance.
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Therefore, we define an inner product on the tangent space at any point p € W

as

(u,0), = u" g (2.12)

where we take u, v to be vectors in the tangent space, and we use g, to indicate our
metric evaluated at the point p. Formally, tangent vectors are typically constructed
as local differential operators, but can be viewed intuitively as small arrows at p
[Loring W Tu, 2017; Thorne, Misner, and Wheeler, 2000].

A Riemannian metric is an inner product that satisfies a set of conditions. The
inner product must be symmetric, bilinear and positive definite. The positive definite
condition can be relaxed through construction of a pseudo-metric. The inner product
provides the familiar notions of distance that exist in classical Euclidean spaces.

In general, the notion of a metric is separate from its representation as a matrix,
but there is a natural map between inner products and matrices that we can exploit.
We can see that our metric satisfies symmetry and linearity through our definition
of the metric as a product of the Jacobian matrix and its transpose. Linearity is a
natural consequence of standard matrix operations. In the case of symmetry, (u,v), =
u' JT Jv = (Jo)T (u? JT)T = T JT Ju = (v,u),. Therefore, our metric is, in general,
both symmetric and linear in its arguments.

However, the positive definiteness of our metric is determined by the rank of the
Jacobian matrix, J. In the typical case n > m, and the rank of the Jacobian matrix
will be limited by m. Our metric, g when viewed as a local bilinear form or as an
n X n matrix will not be full rank and will be a pseudo-metric. We can analyze the a
metric by considering its representation as a matrix, and, thus, apply tools from linear
algebra. In general a matrix A € R™ " is positive definite if 27 Az > 0 Vo € R",x # 0
or equivalently eigenvalues of A \; > 0 Vi. Alternately, a positive semi-definite matrix

Ahas 2TAz > 0Vr e R” and A \; > 0 Vi.
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Since g is the product J7J, g has \; > 0 as can be seen simply by considering the
singular value decomposition of J. However, the matrix rank of g at a point on our
manifold is similarly bounded by the rank of J, and rank(g) = rank(J). Therefore, g
will have k eigenvalues that are identically zero A\; = 0 where k = n—rank(J) < n—m
, so that, in general, a metric constructed based on a single training example is not
positive definite but positive semi-definite. Our key results can be applied to both
Riemannian manifolds as well as pseudo-Riemannian manifolds.

We can increase the rank of the metric by extending our construction to multiple
data points. We can consider a set of data examples, X, so that x; € X. For a single
example, our neural network function f generates an output f(x,w) € R™. We call
the output space for a single example, ),., and we consider the direct sum of the

functional spaces generated from a set of training examples

y=PY.. (2.13)

z,€X
Each Y, is homeomorphic to R™ and ) is homeomorphic to a direct sum of p copies
of R™. In this case, dim())) = m x p where p = | X| is the number of data points used
in the construction and dim(Y,,) = m.
The construction generalizes our notion of functional distance, so that now func-

tional distance involves a sum over all x; € X as

dy(f(X;w), (X w) =D ) |fi(xiw) — fi(xi, W) (2.14)

i=1 j=1
where the sum is performed over a set of input vectors x; € X and over all components
j of the output.
The form of the metric tensor also has a natural generalization to the case of

multiple input data points, and simply becomes a sum
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P
g= Z x, (2.15)
i=1

where each g, is the metric tensor generate from a single data point x;. Intuitively,
our metric is, therefore, just a sum of the metrics generated for each input data point.
Even if each metric is a rank-1 matrix, the sum of a set of such rank-1 matrices has
increased rank.

Practically, the result is important in applications because the rank of g is influ-
enced by both inherent properties of the neural network at a point in weight space
and the number of training examples. When n > m x p, the Jacobian matrix is
not full rank, and so the rank of the metric is data limited. When m x p > n, the
Jacobian matrix can still contain degenerate directions due to the geometry of the
function f. In many practical cases, it is the curvature of f that we want to examine,
and so we want the option of saturating the rank of of metric. Numerically, we show

an example in Fig. 2.26 where we evaluate the rank of the metric tensor for network

MLP-1 trained on MNIST.
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Figure 2.26: Rank of metric tensor increases with the size of the training
data set. The rank of the metric tensor, g, for MLP-1 with 10 hidden nodes is

plotted using variable sizes of the MNIST training dataset. The rank of the metric
tensor increases with data set size.
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Output space distance metrics:

Many different functional metrics (and pseudo-metrics) are applied in machine learn-
ing to analyze the distance between network outputs f(X,w). Specifically, we have
found it useful to use both, the Bhattacharyya Distance [Bhattacharyya, 1943] and
Euclidean distance to quantify the distance between the function outputs (after the
softmax operation).

The Bhattacharyya Distance measures the similarity between two probability dis-
tributions [Bhattacharyya, 1943]. To get probability vectors as network outputs, we
construct the output space with softmax’ed neural network outputs.

The Bhattacharyya Distance between two softmax’ed network output vectors

(h1 = f(x,w1), he = f(x,W2)) is given by:

DB<h1, h2> = _ln(dOt(\/h<X7 Wl)? \/h(X7 Wz)))

Du(hi, he) = —In(\/B(x, w1) /I(x, w3)).

Here, f(x,w;) and f(x,w,) are neural network outputs passed through a softmax
function. For the MNIST, CIFAR-10 dataset, they are 10 element vectors, while for
CIFAR-100, they are 100 element vectors. dot(hy,hs) is the dot product of the two

probability vectors.

Local analysis, tangent space and tangent vectors

A central insight in differential geometry is that the structure of a manifold can be
analyzed by considering the tangent space at each point on the manifold and as well
as the properties of the Riemannian metric when restricted to that tangent space.
Intuitively, the tangent space is a local linear approximation of a manifold at a single
point. The Riemannian metric yields an inner product that allows us to calculate

the length of tangent vectors within the tangent plane or space. By calculating inner
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productions within weight space W we are able to determine the functional response
of a network to a local weight perturbation.

The tangent space of W, T,,(W) at a point, w, can be constructed by considering
a set of local tangent vectors at a point. Tangent spaces carry algebraic structure of
vector spaces. Tangent vectors can be intuitively viewed as tangent arrows anchored

at a specific point on the manifold, but are formally defined as a set of local differential

d

operators. For our weight space W, the set of local operators =, a basis for the

tangent space. The differential operators provide a basis:

B:{elzﬁl,...,eDZ@:)}

with

= 90,
We can think of these local differential operators as local perturbation operators
which carry information about how infinitesimal weight changes impact the functional
performance of a network. Formally, the Riemannian metric, g, then defines an

inner, (e;, e;),, product within the tangent plane

G ToW x T,2W — R (2.16)

(W, v)g, = Zgij Uj Vj. (2.17)
]

We calculate the inner product of a tangent vector (e;, €;)g, Which quantifies the total
change in functional performance across all training examples given a perturbation.
In our formulation of local movement in weight space, we analyze the response of a
neural network to weight perturbation by calculating the squared length of tangent

vectors which represent local functional perturbations using the metric tensor.
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Affine Connections and Covariant Differentiation

Given a manifold, the metric g provides a local definition of tangent vector length at
a single point on the manifold. To compare tangent vectors at different points w; and
w, or along a path y(t) we require a notion of differentiation. The covariant derivative
provides exactly this notion allowing us to express changes in the length of tangent
vectors given displacement in weight space. Specifically, the covariant derivative V,u
is a linear map, V : V x V — V that computes the local change in orientation of
a tangent vector v € V as the vector moves along a second tangent vector w € V.
Informally, the covariant derivative quantifies how translation of a vector transforms
(rotations, contractions) the tangent vector as measured by the basis provided by
other tangent vectors.

As a specific case, given a path v(t) € W, a tangent or velocity vector can be

defined at a point t = ¢’ as ag—gf) = 4/(t). The metric, at a point w, measures the

length of this tangent vector /(7/(t),7'(t))gw). In our context, the velocity vectors
measure the infinitesimal change in performance incurred by a network as it moves
along y(t) from (') — ~(t') + dt~'(¢).

To better describe the geometric objects on a manifold, we develop the concept
of differentiation on a manifold that is in independent of local charts, that is, we
would like to develop a derivative operator whose components transform like tensor.
In order to define a derivative operator, we need to be able to compare vectors and
tensors based at different points on the manifold. The machinery we use is called
“affine connection”.

In our mathematical framework, the tangent vector 4(t) = Bg_gt) measures the rate
of change in functional performance (or network output) along a path v(t) € W where
t is a time-like quantity that parameterizes distinct points along the path ~(¢).

The length of the tangent vector \/m measures the absolute scalar change

in functional performance over time. Our first order FIP framework focuses on the
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construction of paths v(¢) that move between points in weight space v(0) = w; and
v(1) = wp while minimizing the velocity (strictly) the speed of change in a network’s
output as the network is moved along the path. In some cases, it is useful to consider
both velocity of a network at a specific point, but also the change in velocity as a
function of time alone a path. For example, we might want to construct paths that
achieve a constant velocity along a path where the change in network output per fixed
step dt along the path ~(t).

For such paths we have \/(¥,7), = C and so that (7,%), = 0 and the acceleration
of the network must be in a direction orthogonal to the velocity vector along the path
7 [Loring W Tu, 2017].

Constant velocity paths are known as geodesic paths, and can be constructed as

follows [Loring W Tu, 2017]. Consider a path in weight space as y(t) = (71(¢), y2(t) . . . ya(t))

A~

and define the velocity vector of the network along the path as V = y(t) = 3, Lz,

Now we can derive an expression for % as

dr .
- = Z%(t)xi +7.

Consider a point P and a neighboring point ) on the weight manifold, where @ is
at a parameter distance At from P along curve . Let v(t) and v(t+ At) be members
of the vector field at P and (). We then define a new vector field vy which equals v()
at () and is parallel-transported along . The covariant derivative of v(t) at P can

be expressed as

() — it
Vawelt) = lim ==o =

Acceleration can also be calculated conveniently from the definition of the Riemannian
metric as an inner product [Loring W Tu, 2017] by considering a path, y(t) € W,

t € [0,1] and velocity vectors %Z‘tﬂf/ = v(t) calculated at different points in time.
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The break-down speed is defined along the path as the inner product of the tangent

vector:

s =(v,v) = Z Vi Vj Gij.

i=1,j=1
We note that speed is typically defined as \/m , but we define speed as above due
to our squared loss function which differs from the traditional euclidean distance that
provides the convention for speed.

In our definition, acceleration is

Acceleration of a tangent vector can be calculated using a finite difference of the

neural networks’ softmaxed output along the path (FIP).
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Having explored two key attributes of intelligence, namely flexibility and robust-
ness in the last chapter, in this chapter I will explore another important feature
of intelligence, namely the ability of intelligence systems to grow and self-organize
their intelligence-endowing machinery (aka their neural networks). Although artifi-
cial neural networks are very powerful and can be trained to perform a wide range of
tasks, they heavily rely on human-designed, hand-programmed architectures for their
remarkable performance. However on the other hand, we know that living neural
networks emerge through a process of growth and self-organization, beginning with
a single cell and ultimately resulting in a brain, an organized and functional compu-
tational device. In this chapter, my goal is to ask and address the question: ”"Can
we develop artificial computational devices that can grow and self-organize without
human intervention?” To engineer such an independently growing and self-organizing
system, we propose a biologically inspired developmental algorithm that can ‘grow’ a
functional, layered neural network from a single initial cell. The algorithm organizes
inter-layer connections to construct a convolutional pooling layer, a key constituent of
convolutional neural networks (CNN’s). Our approach is inspired by the mechanisms
employed by the early visual system to wire the retina to the lateral geniculate nu-
cleus (LGN), days before animals open their eyes. We find that the key ingredients for
robust self-organization are an emergent spontaneous spatiotemporal activity wave in
the first layer and a local learning rule in the second layer that ‘learns’ the underlying
activity pattern in the first layer. In addition to autonomous self-organization, we
discovered that the algorithm is adaptable to a wide-range of input-layer geometries,
robust to malfunctioning units in the first layer, and so can be used to successfully
grow and self-organize pooling architectures of different pool-sizes and shapes. The
algorithm provides a primitive procedure for constructing layered neural networks
through growth and self-organization. Broadly, this chapter demonstrates that bi-

ologically inspired developmental algorithms can be applied to autonomously grow
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functional ‘brains’ in-silico.

— Section 3.1
Neural inspiration for growing and

self-organizing artificial neural networks

Living neural networks in the brain perform an array of computational and informa-
tion processing tasks including sensory input processing [Glickfeld and Olsen, 2017;
Peirce, 2015], storing and retrieving memory [Tan, Wills, and Cacucci, 2017; Denny,
Lebois, and Ramirez, 2017], decision making [Hanks and Summerfield, 2017; Padoa-
Schioppa and Conen, 2017], and more globally, generate the general phenomena of
“intelligence.” In addition to their information processing feats, brains are unique be-
cause they are computational devices that actually self-organize their intelligence. In
fact brains ultimately grow from single cells during development. Engineering has yet
to construct artificial computational systems that can self-organize their intelligence.
In this paper, inspired by neural development, we ask how artificial computational
devices might build themselves without human intervention.

Deep neural networks are one of the most powerful paradigms in Artificial In-
telligence. Deep neural networks have demonstrated human-like performance in
tasks ranging from image and speech recognition to game-playing [Koch, Zemel, and
Salakhutdinov, 2015; Song and Cai, 2015; Silver et al., 2017]. Although the layered
architecture plays an important role in the success [Saxe et al., 2011] of deep neural
networks, the widely accepted state of art is to use a hand-programmed network ar-
chitecture [Krizhevsky, Sutskever, and Hinton, 2012] or to tune multiple architectural
parameters, both requiring significant engineering investment. Convolutional neural
networks, a specific class of DNNs, employ a hand programmed architecture that
mimics the pooling topology of neural networks in the human visual system.

In this chapter, we develop strategies for growing a neural network autonomously
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from a single computational “cell” followed by self-organization of its architecture
by implementing a wiring algorithm inspired by the development of the mammalian
visual system. The visual circuity, specifically the wiring of the retina to the lateral
geniculate nucleus (LGN) is stereotypic across organisms, as the architecture always
enforces pooling (retinal ganglion cells (RGC’s) pool their inputs to LGN cells) and
retinotopy. The pooling architecture (Fig. 3.2a) is robustly established early in
development through the emergence of spontaneous activity waves (Fig. 3.2b) that
tile the light insensitive retina [Meister et al., 1991]. As the synaptic connectivity
between the different layers in the visual system get tuned in an activity-dependent
manner, the emergent activity waves serve as a signal to alter inter-layer connectivity

much before the onset of vision.

VISUAL SYSTEM: BIOLOGICAL MODEL VISUAL SYSTEM:

WIRING SELF-ASSEMBLY / ~( >\
RETNAL

GANGLION \

CELL(RGC)

/- V///‘:

TRAVELING SPATIAL-WAVE
OF SPONTANEOUSLY ACTIVE
RGCS REFINES RGC-LGN CONNECTIVITY

@ ActiveRGC
Inactive RGC

Figure 3.2: Wiring of the visual circuitry (A) Spatial pooling observed in wiring
from the retina to LGN and in CNN’s. (B) Synchronous Spontaneous bursts (retinal
waves) in the light-insensitive retina serve as a signal for wiring retina to the brain.
The main contribution of this chapter is that we propose a developmental algo-
rithm inspired by visual system development to grow and self-organize a retinotopic
pooling architecture, similar to modern convolutional neural networks (CNNs). Once
a pooling architecture emerges, any non-linear function can be implemented by units
in the second layer to morph it into functioning as a convolution or a max/average
pooling. We show that our algorithm is adaptable to a wide-range of input-layer
geometries, robust to malfunctioning units in the first layer and can grow pooling

architectures of different shapes and sizes, making it capable of countering the key
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challenges accompanying growth. We also demonstrate that ‘grown’ networks are
functionally similar to that of hand-programmed pooling networks, on conventional
image classification tasks. As CNN’s represent a model class of deep networks, we be-
lieve the developmental strategy can be broadly implemented for the self-organization

of intelligent systems.

Section 3.2
Related work

Computational models for self-organizing neural networks dates back many years,
with the first demonstration being Fukushima’s neocognitron [Fukushima, 1988; Fukushima
and Wake, 1991], a hierarchical multi-layered neural network capable of visual pattern
recognition through learning. Although weights connecting different layers were mod-
ified in an unsupervised fashion, the network architecture was hard-coded, inspired
by Hubel and Wiesel’s [Hubel and Wiesel, 1963] description of simple and complex
cells in the visual cortex. Fukushima’s neocognitron inspired modern-day convolu-
tional neural networks (CNN) [LeCun et al., 1990]. Although CNN’s performed well
on image-based tasks, they had a fixed, hand-designed architecture whose weights
were altered by back-propagation. The use of a fixed, hand-designed architecture
for a neural network changed with the advent of neural architecture search [Elsken,
Metzen, and Hutter, 2018b], as neural architectures became malleable to tuning by
neuro-evolution strategies [Stanley and Miikkulainen, 2002; Real, Moore, et al., 2017;
Real, Aggarwal, et al., 2018], reinforcement learning [Zoph and Le, 2016 and multi-
objective searches [Elsken, Metzen, and Hutter, 2018a; Zhou and Diamos, 2018].
Neuro-evolution strategies have been successful in training networks that perform
significantly much better on CIFAR-10, CIFAR-100 and Image-Net datasets. As the
objective function being maximized is the predictive performance on a single dataset,

the evolved networks may not generalize well to multiple datasets. On the contrary,
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biological neural networks in the brain grow architecture that can generalize very
well to innumerable datasets. Neuroscientists have been very interested in how the
architecture in the visual cortex emerges during brain development. Meister et al
[Meister et al., 1991] suggested that spontaneous and spatially organized synchro-
nized bursts prevalent in the developing retina guide the self-organization of cortical
receptive fields. In this light, mathematical models of the retina and its emergent
retinal waves were built [Godfrey and N. V. Swindale, 2007], and analytical solutions
were obtained regarding the self-organization of wiring between the retina and the
LGN [Haussler, 1983; Willshaw and Von Der Malsburg, 1976; Eglen and Gjorgjieva,
2009; N. Swindale, 1996; N. Swindale, 1980]. Computational models have been essen-
tial for understanding how self-organization functions in the brain, but have not been
generalized to growing complex architectures that can compute. One of the most
successful attempts at growing a 3D model of neural tissue from simple precursor
units was demonstrated by [Zubler and Douglas, 2009] that defined a set of minimal
rules that could result in the growth of morphologically diverse neurons. Although
the networks were grown from single units, they weren’t functional as they were not
equipped to perform any task. To bridge this gap, in this chapter we attempt to grow

and self-organize functional neural networks from a single precursor unit.

Section 3.3

Bio-inspired developmental algorithm

In our procedure, the pooling architecture emerges through two processes, growth of
a layered neural network followed by self-organization of its inter-layer connections
to form defined ‘pools’ or receptive fields. As the protocol for growing a network
is relatively straightforward, our emphasis in the next few sections is on the self-
organization process, following which we will combine the growth of a layered neural

network with its self-organization in the penultimate section of this chapter.
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We first abstract the natural development strategy as a mathematical model
around a set of input sensor nodes in the first layer (similar to retinal ganglion cells)
and processing units in the second layer (similar to cells in the LGN).

Self-organization comprises of two major elements: (1) A spatiotemporal wave
generator in the first layer driven by noisy interactions between input-sensor nodes
and (2) A local learning rule implemented by units in the second layer to learn the
“underlying” pattern of activity generated in the first layer. The two elements are
inspired by mechanisms deployed by the early visual system. The retina generates
spontaneous activity waves that tile the light-insensitive retina; the activity waves
serve as input signals to wire the retina to higher visual areas in the brain [Wong,

1999; Anton-Bolanos et al., 2019].

3.3.1. Spontaneous spatio-temporal wave generator

The first layer of the network can serve as a noise-driven spatiotemporal wave gener-
ator when (i) its constituent sensor-nodes are modeled via an appropriate dynamical
system and (ii) when these nodes are connected in a suitable topology. In this paper,
we model each sensor node using the classic Izikhevich neuron model® [Izhikevich,
2003] (dynamical system model), while the input layer topology is that of local-
excitation and global-inhibition, a motif that is ubiquitous across various biological
systems [Kutscher, Devreotes, and Iglesias, 2004; Xiong et al., 2010]. A minimal dy-
namical systems model coupled with the local-excitation and global-inhibition motif
has been analytically examined in the supplemental materials to demonstrate that
these key ingredients are sufficient to serve as a spatio-temporal wave generator. The
Izhikevich model captures the activity of every sensor node (v;(t)) through time,
the noisy behavior of individual nodes (through 7;(¢)) and accounts for interactions

between nodes defined by a synaptic adjacency matrix (S; ;). The Izhikevich model

n section 3.6, we show that the self-organization is possible in a LIF (Linear Integrate and Fire)
neuron model as well.



3.3 BIO-INSPIRED DEVELOPMENTAL ALGORITHM 89

Figure 3.3: Emergent spatiotemporal waves tile the first layer. The red-nodes
indicate active-nodes (firing), black nodes refer to silent nodes and the arrows denote
the direction of time.

equations are elaborated in Box-1. The input layer topology (local excitation,
global inhibition) is defined by the synaptic adjacency matrix (S; ;). Every node in
the first layer makes excitatory connections with nodes within a defined local exci-
tation radius. S;; = 5, when distance between nodes ¢ and j are within the defined
excitation radius of 2 units; d;; < 2. Each node has decaying inhibitory connec-
tions with other nodes present above a defined global inhibition radius (S;; = -2
exp(-d;;/10), when distance between nodes ¢ and j are above a defined inhibition
radius of 4 units; d;; > 4) (see supporting information).

On implementing a model of the resulting dynamical system, we observe the
emergence of spontaneous spatiotemporal waves that tile the first layer for specific

parameter regimes (see Figure 3.3 and videos in supplemental materials).
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Dynamical model for input-sensor nodes in the lower layer (layer-I):

dUZ' a
5 = 0.0402 + 5v; 4 140 — u; + ; S;. ;M (v; — 30) + 7:(t) (3.1)
du

with the auxiliary after-spike reset:

v;(t) > 30, then :

where: (1) v; is the activity of sensor node i; (2) u; captures the recovery of
sensor node i; (3) S;; is the connection weight between sensor-nodes ¢ and j;
(4) N is the number of sensor-nodes in layer-I; (5) Parameters a; and b; are set
to 0.02 and 0.2 respectively, while ¢; and d; are sampled from the distributions
U(—65,—50) and U(2,8) respectively. Once set for every node, they remain
constant during the process of self-organization. The initial values for v;(0) and
u;(0) are set to -65 and -13 respectively for all nodes. These values are taken
from Izhikevich’s neuron model [Izhikevich, 2003]; (6) 7;(t) models the noisy
behavior of every node i in the system, where < 7;(t)n;(t') > = o2 6;;0(t — t').
Here, 6;;, 0(t — t') are Kronecker-delta and Dirac-delta functions respectively,

and 0% = 9; (7) H is the unit step function:
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3.3.2. Local learning rule

Having constructed a spontaneous spatiotemporal wave generator in layer-I, we im-
plement a local learning rule in layer-II that can learn the activity wave pattern in
the first layer and modify its inter-layer connections to generate a pooling architec-
ture. Many neuron inspired learning rules can learn a sparse code from a set of input
examples [Olshausen and Field, 1996]. Here, we model processing units as rectified
linear units (ReLU) and implement a modified Hebbian rule for tuning the inter-layer
weights to achieve the same. Individual ReLU units compete with one another in a
winner take all fashion.

LAYERTT

~>—UNIT 1 A UNIT1

SN~ 0.0 0.0 YN.0.0 Multile
SAY P OO - ursts.
0 000/
1 7

LAYER I
(input)

Random Spontaneous REINFORCE WEIGHTS Spatial pooling of
initialization of synchronous select Layer I nodes
Unit 1 in Layer IT burst in Layer T to Unit 1 in Layer IT

Figure 3.4: Spiking neural network learning rule.

Initially, every processing unit in the second layer is connected to all input-sensor
nodes in the first layer. As the emergent activity wave tiles the first layer, at most
a single processing unit in the second layer is activated due to the winner-take-all
competition. The weights connecting the activated unit in the second layer to the
input-sensor nodes in the first layer are updated by the modified Hebbian rule (Box-
2). Weights connecting active input-sensor nodes and activated processing units are
reinforced while weights connecting inactive input-sensor nodes and activated pro-
cessing units decay (cells that fire together, wire together). Inter-layer weights are
updated continuously throughout the self-organization process, ultimately resulting

in the pooling architecture (See Fig. 3.4 and supplemental materials).
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Modifying inter-layer weights

wi,j@) + nlearnH(Ui(t) - 30>y] (t =F 1) yj(t + 1) >0
wiy(t+1) =

w; (1) otherwise
where: (1) w;;(t) is the weight of connection between sensor-node i and
processing unit j at time ‘t’ (inter-layer connection); (2) Meqrm is the learning
rate; (3) H(v;(t) — 30) is the activity of sensor node ¢ at time ‘t’; and (4) y;(t)

is the activation of processing unit j at time ‘t.

Once all the weights w; ;(t+1) have been evaluated for a processing unit j, they
are mean-normalized to prevent a weight blow-up. Mean normalization ensures
that the mean strength of weights for processing unit j remains constant during

the self-organization process.

Having coupled the spontaneous spatiotemporal wave generator and the local
learning rule, we observe that an initially fully connected two-layer network (Fig.
3.5a) becomes a pooling architecture, wherein input-sensor nodes that are in close
proximity to each other in the first layer have a very high probability of connecting
to the same processing unit in the second layer (Fig. 3.5b & 3.5¢). More than 95%
of the sensor-nodes in layer-I connect to processing units in layer-II (higher layer)
through well-defined pools, ensuring that spatial patches of nodes connected to units
in layer-II tile the input layer (Fig. 3.5d). Tiling the input layer ensures that most
sensor nodes have an established means of sending information to higher layers after

the self-organization of the pooling layer.
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Layer-l Layer-|
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Figure 3.5: Self-organization of Pooling layers. (A) The initial configuration,
wherein all nodes in the lower layer are connected to every unit in the higher layer. (B)
After the self-organization process, a pooling architecture emerges, wherein every unit
in layer-II is connected to a spatial patch of nodes in layer-1. (A B) Here, connections
from nodes in layer-I to a single unit in layer-II (higher layer) are shown. (C) Each
contour represents a spatial patch of nodes in layer-I connected to a single unit in
layer-II. (D) More than 95% of the nodes in layer-I are connected to units in the
layer-1I through well-defined pools, as the spatial patches tile layer-I completely.

— Section 3.4
Minimal model for observing emergent

spatiotemporal waves

In this section, we provide an analytical solution for the emergence of a spatiotemporal
wave through noisy interactions between constituent nodes in the same layer. As
stated in the previous section, the key ingredients for having a layer of nodes function

as a spatiotemporal wave generator are:
o Each sensor-node should be modeled as a dynamical systems model,

« Sensor-nodes should be connected in a suitable topology (for e.g. local excita-

tion (r. < 2 and global inhibition (r; > 4).

On modeling all nodes in the system using a simple set of ordinary differential
equations (ODE’s), we highlight the conditions required for observing a stationary
bump in a network of spiking sensor-nodes and to observe instability of the stationary

bump resulting in a traveling wave.
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3.4.1. Sensor-nodes arranged in a line

We choose a configuration where N sensor-nodes are randomly arranged in a line (as
shown in Fig. 3.6).
L 1 IXX . N 1 ____ LN _X N ___J}N }]J

Figure 3.6: Sensor nodes arranged in a line.

The activity of NV sensor nodes, arranged in a line as in Fig. 3.6, are modeled

using a minimal ODE model as described below:

Td% = —x(u;t) + Z S(ug,uj)F(x(uj,t)) Viel, . ..,N. (3.3)
ujeU

Here, u; represents the position of nodes on a line; x(u;,t) defines the activity of
sensor node positioned at u; at time ¢; Sui,uj is the strength of connection between
nodes positioned at w; and u;; 74 controls the rate of decay of activity; U is the set
of all sensor nodes in the system (uj,us,...,uy) for N sensor nodes; and F is the non-
linear function required to convert activity of nodes to spiking activity. Here, F is

the heaviside function with a step transition at 0.
Each sensor-node has the same topology of connections, ie fixed strength of pos-

itive connections between nodes within a radius r., no connections from a radius r,

to r;, and decaying inhibition above a radius r;. This is depicted in Fig. 3.7

H

N

o

Connection strength

0 5 10 15
Distance between nodes (dij)

Figure 3.7: Strength of connections between sensor-nodes.
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Fized point analysis. We determine the stable activity states of nodes placed in
a line by a fixed point analysis, similar to what Amari developed in [Amari, 1977] for

the case when there are infinite nodes.

z(u;) = Z S(ui,u)F(z(uy)) Viel, ..., N. (3.4)
u]-GU
On solving this system of non-linear equations simultaneously, we get a fixed point,
i.e. a vector x* € RY, corresponding to the activity of NV sensor nodes positioned at

(u1,ug,...,un). To assess their spiking from the activity of sensor-nodes, we have
si=F(z(uw)) Yiel,.,N (3.5)

As the weight matrix (Sy,,.,) used incorporates the local excitation (r, < 2) and
global inhibition (r; > 4) ( Fig. 3.7), we get solutions with a single bump of activity
(Fig. 3.8a, 3.8b), two bumps of activity (Fig. 3.8¢c) or a state when all nodes are

active.

(a) (b) (c)

Figure 3.8: Fixed points: Multiple fixed points are obtained by solving N non-linear
equations simultaneously. Some of the solutions obtained are: (A) a single bump at
the center, (B) a single bump at one of the edges and (C) two bumps of activity.

Stability of fixed points. To assess the stability of these fixed points, we evaluate
the eigenvalues of the Jacobian for this system of differential equations. As there are

N differential equations, the Jacobian (J) is an Nx/N matrix.
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do(us,t)  —z(us,t) N Z S(ui, uy)F(z(uy))

dt Td = T
d i?t
M = fi(u1,ug, ..., un)
dt —x(u;) S (us, u)F(z(u;)) (3.6)
fi(ul7u2, ,UN) = v + Z iy Wy j
Td 'leEU Td
Sy Ofi(ur, ug, ..., un)
I6@.9) = Ox(uj)
On evaluating the Jacobian (J) at the fixed points obtained (x*), we get:
. Of;
o= O (u;)
. —1
J(i,i) = -
(1.5) = Slus ) F (o)) 22 1)

J(i, ) = S(u;, uj)o(z(uy))

J(i,7) = 0 Va(uj) # 0.

Here, F is the Heaviside function and its derivative is the dirac-delta(d); where,
d(z) =0, for z # 0 and 6(z) = oo for x = 0.

For a fixed point, where x*(uy) # 0, Yk € 1,..., N, the Jacobian is a diagonal
matrix with ;—dl in its diagonals. This implies that the eigenvalues of the Jacobian are

;—dl (14 >0), which assures that the fixed point zx € R” is a stable fixed point?.

Destabilizing the fized point. The addition of gaussian noise (whose amplitude
is appropriately scaled) to the ODE’s described earlier, we can effectively destabilize
the fixed point, resulting in a traveling wave. The equations with the addition of a

noise term are:

2If all the eigenvalues are negative, the fixed point is stable, however even if a single eigenvalue
is positive, the fixed point is unstable.
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Tddx(g:’t) x(u;, t) + Z (wiyu)F(z(uj,t)) +mi(t) Yiel,...,N. (3.8)
u; €U
Here, 1;(t) models the noisy behavior of every node i in the system, where < n;(¢)n;(t') >
= 0% 6;;0(t —t'). Here, &;;, 6(t —t’) are Kronecker-delta and Dirac-delta functions,
respectively, and o2 captures the magnitude of noise added to the system.

The network of sensor nodes is robust to a small amplitude of noise (0% € (0,4)),
while a larger amplitude of noise (62>5) can destabilize the bump, forcing the system
to transition to another bump in its local vicinity. Continuous addition of high
amplitudes of noise forces the bump to move around in the form of traveling waves.
The behavior is consistent with the linear stability analysis because noise can push

the dynamical system beyond the envelop of stability for a given fixed point solution.

3.4.2. Sensor nodes arranged in a 2-dimensional square

In this section, we arrange N sensor nodes arbitrarily on a 2-dimensional square
as shown in Fig. 3.9, with the same local structure (local excitation and global
inhibition).

The activity of these sensor nodes are modeled using the minimal ODE model

described earlier (in equation-3.3).

Figure 3.9: Sensor nodes placed arbitrarily on a square plane.

We obtain the fixed points (x* € RY), by solving N simultaneous non-linear
equations using BBsolve [Varadhan, Gilbert, et al., 2009] package in R-language. We

notice that the fixed point solutions have a variable number of activity bumps in the
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2D plane as shown in Fig. 3.10a, 3.10b & 3.10c.

Figure 3.10: Stable Fixed points: Multiple fixed points are obtained by solving N
non-linear equations simultaneously. Some of the solutions obtained are: (A) a single
bump, (B) two bumps and (C) three bumps of activity.

3.4.3. Sensor nodes arranged in a 2-dimensional sheet with arbitrary ge-

ometry

In this section, we arrange sensor nodes on a 2D sheet in any arbitrary geometry as
shown in Fig. 3.11. Although the macroscopic geometry of the sheet changes, the local
structure of sensor nodes in conserved (i.e. local excitation and global inhibition).
The fixed points are evaluated by simultaneously solving the non-linear system of
equations. We notice that the bumps are stable fixed points even when sensor nodes

are placed on a 2-dim sheet of arbitrary geometry.
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Figure 3.11: Stable Fixed points: Multiple fixed points are obtained by solving
N non-linear equations simultaneously. Some of the solutions obtained are: (A,B)
a single bump for a circular geometry (C,D) two bumps of activity for arbitrary
geometry.
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— Section 3.5
Modular SNN Tool-kit: Dynamical systems

framework

In the previous two sections, I have laid down the minimum components (namely,
spontaneous spatiotemporal waves and local learning rules) for self-organizing a two
layered neural network. In order to build a scalable multi-layer SNN, we propose
a dynamical systems framework for the self-organization algorithm. It utilizes the
following key concepts of (i) emergent spatio-temporal waves of firing neurons, (ii)
dynamic learning rules for updating inter-layer weights and (iii) non-linear activation
and input/output competition rules between layers to build a modular spiking sub-
structure. The modular spiking sub-structure can be stacked to form multi-layered
SNNs with an arbitrary number of layers that self-organize into a wide variety of
connectivity architectures. The following sections describe the tool-kit required to
build a single module that can be seamlessly stacked to self-organize multi-layer SNN
architectures. We describe our framework by discussing the SNN model that generates

waves and the learning/competition rules that achieve inter-layer connectivity.

3.5.1. Governing equations of “neuronal waves”

The essential building block for SNNs is a spiking neuron model that describes the
state of every single neuron over time, often represented by a dynamical system. Here,
we choose a modified version of the popular Leaky-Integrate-and-Fire (LIF)? model
with an additional adjacency matrix term and input term (from preceding layers),
coupled with a dynamical threshold equation. The vectorized governing equations for

each layer [ reads

3As LIF models are widely used on neuromorphic chips, we shifted our scale-up procedure from
Izhikevich to the LIF neuron model.
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e L SH(w—0) 1 S

dt Ty

" 1 (3.9)
Y9 — ——(Uth . 0) ® (1 _ H(U — 9)) —+ 9+H(’U — 0)

dt Ty

where v is the voltage, 6 is the variable firing threshold, « is the input signal to
this layer, H is the (element-wise) heavy-side function and ® denotes the Hadamard
product. S is the intra-layer adjacency matrix and S* is the spike input matrix. All
vectors and matrices are elements of R™ and R™*™  respectively, where n; is the
number of neurons in layer [.

A neuron i fires a spike when its voltage v; exceeds its threshold ;. After firing, the
neuron’s voltage is reset to v"****. The dynamic threshold equation for @ is governed by
a homoeostasis mechanism to ensure that no neuron can spike excessively. Concretely,
it increases 6 by a rate 67 whenever a neuron is spiking, until 6 exceeds v and the
neuron fires no more. It then decays  exponentially to a default threshold v**. All
additional hyper-parameters are summarized in the appendix.

S € R™*™ encodes the spatial-connectivity of neurons within the layer (that can
have arbitrary geometry [Raghavan and Thomson, 2019]) and is biologically inspired
[Kutscher, Devreotes, and Iglesias, 2004; Xiong et al., 2010]. Authors in [Laing
and Chow, 2001] have since used the intra-layer connectivity to prove the existence
of spatio-temporal wave states in both 1D and 2D geometries of connected spiking
neurons. In our multi-layer SNN, SH (v — 0) serves as a back-coupling term, crucial
for the development of coherent wave dynamics in subsequent layers. The optional
spike-input matrix S* € R™*™ can be used to further control the input received
from preceding layers. We encode the geometry of the layer and an isotropic kernel
with a tunable excitation and inhibition radius and amplitude factors into S. The
kernel leads to positive intra-layer neuronal connectivity inside the excitation radius
r* and decaying negative connections outside the inhibition radius r°. Concretely, the

adjacency matrix with kernel is given by
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CLiDZ'J, Di,j < T’i

—a%e(~Dui/10), D;;>r°
where D, ; € R™*™ is the matrix of spatial distances between each neuron and a‘/a°
are the excitation and inhibition amplitude factors. One can now vary the kernel
radii and other hyper-parameters to control the emergent wave properties and obtain

an array of wave phenomena with interesting shapes and dynamics. A few exemplary

wave regimes are depicted in Fig. 3.17(B).

3.5.2. Learning rules

Having constructed a spontaneous spatio-temporal wave generator across multiple
layers in the previous section, we implement a local STDP learning rule to update
inter-layer connectivity based on the patterns of the emergent waves, in order to self-
organize SNNs into a wide variety of architectures. STDP potentiates connections
between neurons that spike within a short interval to each other and provides lower
updates for those neurons that have distant spike-times. As a simple STDP rule, we
use the Hebbian rule to only link the synchronous pre- and post-synaptic firings of
neurons for the dynamic update of weights between the two connected layers. We
note that there are many types of sophisticated STDP rules such as additive STDP or
triplet STDP [Markram, Gerstner, and Sjostrom, 2011; Bichler et al., 2011], however,
we use a rather simple rule to only emphasize the effectiveness of our contribution.
The learning rule can be integrated into our dynamical system as the dynamical

matrix equation:
d a7 (i) (1) o g(l2)
GV = n(y" @ y''?) (3.11)

where 7 is the learning rate, y) € R™: and y2) € R™2 denote the spiking output

signals of the two layers that W) e R™i*ms connects and @ is the outer product
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of the two vectors. The specific variables coupled in Eq. 3.11 can be customized to

achieve various desired connectivity architectures.

3.5.3. Competition rules

In addition to the learning rules, we can also introduce various “competition rules” on
the layer inputs and outputs to further localize connections with different strengths,
to form pooling architectures. For instance, by coupling the spiking outputs in Eq.
3.11 with y?) filtered by a “winner-take-all” competition rule, one can enforce the
formation of pools from /; to the maximum spiking neuron in l,. An input spike
signal @ can similarly be filtered. The winner-take-all competition rule for a vector

x reads:

x; =0, Va; < max(zx)
fC(z) (3.12)
x; = max(z), otherwise.
The competition rule f¢ works on each neuron 7 within a layer [. From Eq. 3.12,

many variations like “k-best-performers” and other competition rules can be derived

and applied to achieve pools of different shapes and weightings throughout the layers.

3.5.4. Multi-layer SNN learning algorithm

With the three building blocks (Eq. 3.9, Eq. 3.11, Eq. 3.12) established, the algorith-
mic flow of an input signal ™) of a layer (I; = 1) to the input z® of the next layer
(Iy = 2) is elaborated in algorithm-4. In algorithm-4, LIF(-) stands shorthand for a
time-integration pass through Eq. 3.9 and Hf)lz is the respective spike vector. Fur-
thermore, fcz(fl) and fcﬂ(ﬂ2> are the (optional) competition rules for the output of [; and
input to [y respectively and g(-) denotes the activation function of the layer, which
is a rectified linear unit (ReLU) in our case. As one can see, the entire algorithm is

model-able as a large dynamical system —coupling the wave dynamics equations of
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Algorithm 4 Multi-layer SNN Dynamical System

Input : Signal 2(Y(¢) as input to input layer [ = 1.

Output: Weights W (t) & spiking outputs y®(t) for all layers [ > 1.
for t =1...N, in At time-steps do

for [ =1...N; in layers do

7-[7% LIFO (2O At)  integrate input with LIF by At

y? fcz(p(?-[ﬁ)g) apply output competition rule to spikes
if > 2 then
WD LR (=D 4D At) integrate learning rule of preceding weights

end
2D Wy multiply local weights to output signal
a+D g( z(l+1)) apply activation function

end

end

individual layers with the weight dynamics equations given by STDP learning rules
between the layers. We integrate all equations in time at the same time-level by using

a Runge-Kutta-4 time-stepping scheme for numerical integration.

— Section 3.6
Self-organizing multi-layer spiking neural

networks

The modular tool-kit introduced in the previous section enables the efficient, au-
tonomous self-organization of large multi-layer SNNs. The key ingredients required
for self-organization are (i) traveling waves that emerge simultaneously across multi-
ple layers and (ii) a dynamic learning rule that tunes the connectivity between any
two layers based on the properties of the waves tiling the layers. We demonstrate
the entire self-organization process in Fig. 3.12 (moving from left to right). The

two major components of the self-organization process are elaborated in the following

(1+1)
gD fC o (a,(”l)) apply input competition rule to obtain signal for next layer
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subsections.
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Figure 3.12: Self-organizing multi-layer spiking neural networks (A) Emergent
spatio-temporal waves in L; trigger neuronal waves in higher layers (Lo, L3). Black
nodes indicate the neuron positions within a layer and shades of red depict firing
nodes. The lighter red represents nodes that fired at an earlier time-point. Lighter
red to dark red captures the motion of the waves on each layer. (B) Tracking the
voltage v of a single neuron in each layer over time. The neuron ‘fires’” when the v
crosses its dynamic threshold (blue line). (C) Self-organization process transforms a
randomly wired inter-layer connectivity (left of the arrow) to a pooling architecture
(right), wherein units in higher layers (Lo, L3) are connected to a spatial patch of
nodes in its preceding layer. Each subplot displays the connectivity of a single unit
in a higher layer to all units in the preceding layer. Yellow/blue represent regions
with/without presence of connections. Connectivity of 4 units each in Lz and Ly are
depicted in C-i and C-ii, respectively. (D) 3D rendering of the final self-organized
architecture.

3.6.1. Emergent activity waves in multiple layers

Stochastic communication between spiking neurons in layer-1 arranged in a local-
excitation, global inhibition connectivity leads to the emergence of spontaneous trav-
eling activity waves within the layer. The waves in layer-1 trigger waves in layer-2
that subsequently initiates waves in layer-3. The traveling waves across the 3 layers

are depicted in Fig. 3.12A. We observe that the algorithm enables the motion of
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waves in higher layers without the need for a constant stimulation from the lower lay-
ers. In other words, the wave activity in higher layers, once triggered, can ‘stay alive’
even if there is no spiking activity in the lower layers. Another key property of the
traveling waves in the higher layers is that they have their own autonomy/‘curiosity’
to explore different regions within the layer. The level of ‘curiosity’ is dependent on
the input from the preceeding layer and the strength of intra-layer connectivity. This
forces the wave to not arbitrarily stray away from the source of the input-signal.

We also point out that waves in any layer are observed primarily due to the
spiking dynamics of individual neurons. In Fig. 3.12B, we show the voltage trace of
one neuron within each layer along with its spiking threshold. A neuron fires only
when its voltage surpasses the spiking threshold, and the spiking frequency within

each layer governs the dynamics of the activity wave.

3.6.2. Local learning rules leads to self-organization

The activity waves generated in each layer serve as a signal to modify their inter-layer
weights. Along with the ‘signal,” we need local learning rules to update inter-layer
connections. Here, we use Hebbian-based STDP rules (described in section 3.5.2) cou-
pled with competition rules (described in section 3.5.3) to update inter-layer weights.
In Fig. 3.12, we depict the simultaneous activity-wave driven self-organization across
multiple layers. The connectivity between the layers go from a random configuration
to pooling structures between the layers, guided by the dynamics of the activity wave.

A final self-organized multi-layer spiking network is rendered in 3D in Fig. 3.12D.

Section 3.7

Features of the developmental algorithm

In this section, we show that spatiotemporal waves can emerge and travel over layers

with arbitrary geometries and even in the presence of defective sensor-nodes. As the
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Figure 3.13: Self-organization of pooling layers for arbitrary input-layer
geometry. (A) The left most image is a snapshot of the traveling wave as it traverses
layer-I; Layer-I has sensor-nodes arranged in an annulus geometry; red nodes refer to
firing nodes. On coupling the spatiotemporal wave in layer-I to a learning rule in layer-
II, a pooling architecture emerges. The central image refers to the 3d visualization
of the pooling architecture, while each subplot in the right-most image depicts the
spatial patch of nodes in layer-I connected to a single processing unit in layer-11. (B)
Self-organizing pooling layers on a sphere. (B-ii) Upstream units connect to spatial
patches of nodes on the sphere. (C) Self-organizing networks on Poincare disks with
a hyperbolic distribution of input sensor nodes (C-ii) Snapshot of a traveling bump.
(C-iii) Receptive fields of units in layer-II.

local structure of sensor-node connectivity (local excitation and global inhibition) in
the input layer in conserved over a broad range of macroscale geometries (Fig. 3.13a-
c), we observe traveling activity waves on input layers with arbitrary geometries and
in input-layers that have defects or holes. The coupling of the traveling activity
wave in layer-I and a learning rule in layer-II results in the emergence of pooling
architecture.

Furthermore, we demonstrate that the size and shape of the emergent spatiotem-
poral wave can be tuned by altering the topology of sensor-nodes in the layer. Cou-
pling the emergent wave in layer-I with a learning rule in layer-II leads to localized
receptive fields that tile the input layer.

Together, the wave and the learning rule endow the developmental algorithm
with useful properties: (i) Flexibility: Spatial patches of sensor-nodes connected
to units in layer-II can be established over arbitrary input-layer geometries. In Fig.
3.13a, we show that an emergent spatiotemporal wave on a torus-shaped input layer
coupled with the local learning rule (section-3.3.2) in layer-1I, results in a pooling

architecture. We also show that the developmental algorithm can self-organize net-
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Activity of processing unit (A.U)

(d)

Figure 3.14: Self-organization of pooling layers for arbitrary input-layer
geometry. (D) The figure on the left depicts a self-organized pooling layer when
all input nodes are functioning. Once these inter-layer connections are established, a
small subset of nodes are damaged to assess if the pooling architecture can robustly
re-form. The set of nodes within the grey boundary, titled ‘DN’, are defective nodes.
The figure on the right corresponds to pooling layers that have adapted to the defects
in the input layer, hence not receiving any input from the defective nodes.(E) (E-i)
Tuning curve shows that units in layer-2 have a preferred orientation. (E-ii) Oriented
receptive fields of units in layer-II.

works on arbitrary curved surfaces (Fig. 3.13b). Flexibility to form pooling layers on
arbitrary input-layer geometries is useful for processing data acquired from unconven-
tional sensors, like charge-coupled devices that mimic the retina [Sandini et al., 1993].
The ability to self-organize pooling layers on curved surfaces makes it extremely use-
ful for spherical image analysis. Spherical images acquired by omnidirectional cam-
eras [Scaramuzza, 2014| placed on drones are becoming increasingly ubiquitous, and
their analysis necessitates neural networks that can tile 3-dimensional surfaces. (ii)
Robustness: Spatial patches of sensor-nodes connected to units in layer-II can be
established in the presence of defective sensor nodes in layer-I. As shown in Fig.
3.14d, we initially self-organize a pooling architecture for a fully functioning set of
sensor-nodes in the input-layer. To test robustness, we ablate a few sensor-nodes in
the input-layer (captioned ‘DN’). Following this perturbation, we observe that the
pooling architecture re-emerges, wherein spatial-pools of sensor-nodes, barring the
damaged ones, re-form and connect to units in layer-II. (iii) Reconfigurable: The
size and shape of spatial pools generated can be modulated by tuning the structure
of the emergent traveling wave (Fig. 3.15f & 3.15g). In Fig. 3.15h, we show that the

size of spatial-pools can be altered in a controlled manner by modifying the topology
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Figure 3.15: Pooling layers are reconfigurable. (F) By altering layer-1 topology
(excitation/inhibition radii), we can tune the size of the emergent spatial wave. The
size of the wave is 6 A.U (left) and 10 A.U (right). (G) Altering the size of the
emergent spatial wave tunes the emergent pooling architecture. The size of the pools
obtained are 4 A.U (left), obtained from a wave-size of 6 A.U and a pool-size of 7
A.U (right), obtained from a wave-size of 10 A.U. (H) A large set of spatial-pools
are generated for every size-configuration of the emergent wave. The distribution of
spatial-pool sizes over all pools generated by a specific wave-size are captured by a
kernel-smoothed histogram. Wave-4 in the legend corresponds to a histogram of pool-
sizes generated by an emergent wave of size 4 A.U (blue line). We observe that spatial
patches that emerge for every configuration of the wave have a tightly regulated size.

of layer-I nodes. Wave-z in the legend corresponds to an emergent wave generated in
layer-I when every node in layer-I makes excitatory connections to other nodes in its 2
unit radius and inhibitory connections to every node above x unit radius. This topo-
logical change alters the properties of the emergent wave, subsequently changing the
resultant spatial-pool size. The histograms corresponding to these legends capture
the distribution of spatial-pool sizes over all pools generated by a given wave-z. The
histogram also highlights that the size of emergent spatial-pools are tightly regulated
for every wave-configuration. (iv) Scaling to large layers: We also show that the
self-organization of pooling architectures can be scaled to large input layers. Large
layers are defined based on the number of sensor nodes in the layer. We observe that
enforcing a spatial bias on the initial set of connections from units in layer-1I to the
nodes in the input layer, enables us to speed up the process of self-organization. Our
simulations show that the self-organization of pooling layers can be scaled up to large
layers (upto 50000 nodes) without being very expensive, as an increase in number of
sensor-nodes results in multiple simultaneous waves tiling the input layer, effectively

forming pooling architectures in parallel. (v) Diverse multi-layer architectures:
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Finally, we demonstrate that designing the modular tool-kit in a dynamical systems
framework allows us to tune the emergent wave dynamics on each layer, ultimately re-
sulting in different self-organized architectures. The wave dynamics in each layer can
be tuned by varying (i) excitation/inhibition connectivity (r?, r°) between neurons
within every layer and (ii) by altering the time-constants and other hyper-parameters
governing the spiking dynamics of neurons in each layer. In Fig. 3.17B, we portray a

broad range of wave dynamics achievable on the layers of the network.
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(d) Time complexity for self-organization of pool-
ing layers

Figure 3.16: Developmental algorithm scales efficiently to very large input
layers: (A) Layer-I has 1500 nodes and layer-IT has 400 nodes. The emergent wave
in layer-I results in a single traveling wave that tiles layer-I. (B) Layer-I has 5000
nodes and layer-II has 400 nodes. The emergent wave in layer-I results in a single
traveling wave that tiles layer-I. (C) Layer-I has 10000 nodes and layer-II has 400
nodes. The emergent wave in layer-I results in a multiple traveling wave that tile
layer-1 simultaneously. This results in a single processing unit receiving pools from
different regions. (D) The histogram captures the time taken for a pooling layer to
form for variable number of input sensor nodes (1500, 5000, 10000, 25000 and 50000
nodes). With an increase in the number of sensor-nodes, the speed of self-organization
increases as multiple waves tile the input layer simultaneously.

Along with varying wave dynamics, modifying the size and shape of waves across
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Figure 3.17: Flexibility of the framework. (A) Self-organizing a variety of neural
architectures: (A-i) Pooling followed by expansion (autoencoder) (A-ii) Expansion
followed by pooling (A-iii) Consecutive pooling structures. Histograms capture the
sizes of emergent pooling and expansion structures in the self-organized network.
(B) Regimes of wave dynamics: (B-i) Stable single wave (B-ii) Unstable splitting
and merging waves (B-iii) Stable periodically rotating fluid-like wave.

different layers, and the number of nodes in each layer, we are able to self-organize
a wide variety of multi-layer neural network architectures (Fig. 3.17). Here, we
demonstrate efficient self-organization of three common neural architectures: (i) (Self-
organized autoencoder) Pooling followed by expansion, (ii) Expansion followed by a
pooling layer, (iii) Consecutive pooling operations (Self-organized retinotopic pooling
structure). The histograms in Fig. 3.17 capture the size of the self-organized pooling
and expansion structures between the layers. The size of a pooling structure from
Ly — L4 is the number of connections a single node in Ly makes with nodes in Ly,
while the size of the expansion structure from Ly — L3 is the number of connections
a single node in Ly makes with nodes in L3. As the pooling and expansion structures

follow a sharp uni-modal distribution, we infer that our algorithm imposes a tight

control over the size of the self-organized structures.
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— Section 3.8
Growth of a two-layered neural network from a

single cell

As the developmental algorithm (introduced in section 3) is flexible to varying scaffold
geometries and tolerant to malfunctioning nodes, it can be implemented for growing
a system, enabling us to push Al in the direction towards being more ‘life-like’ by
reducing human involvement in the design of complex functioning architectures. The
growth paradigm implemented in this section has been inspired by mechanisms that
regulate neocortical development [Rakic, 2000; Bystron, Blakemore, and Rakic, 2008].
The process of growing a layered neural network involves two major sub-processes.
One, every ‘node’ can divide horizontally to produce daughter nodes that populates
the same layer; two, every node can divide vertically to produce daughter processing
units that migrate upwards to populate higher layers. Division is stochastic and is
controlled by a set of random variables. Having defined the 3D scaffold, we seed
a single unit (Fig. 3.18a). As horizontal and vertical division ensues to form the
layered neural network, inter-layer connections are modified based on the emergent
activity wave in layer-I and a learning rule (section-3.2) in layer-II, to form a pooling
architecture. A detailed description of the growth rule-set coupled with a flow chart
governing the growth of the network is appended to the supplemental materials.
Having intertwined the growth of the system and self-organization of inter-layer
connections, we make the following observations: (1) spatiotemporal waves emerge
in the first layer much before the entire layer is populated (Fig. 3.18b), (2) self-
organization of inter-layer connections commences before the layered network is fully
constructed (Fig. 3.18¢c) and (3) Over time, the system reaches a steady state as
the number of ‘cells’ in the layered network remains constant and most processing

units in the second layer connect to a pool of nodes in the first layer, resulting in the
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Figure 3.18: Growing a layered neural network (A) A single computational “cell”
(black node) is seeded in a scaffold defined by the grey boundary. (B) Once this “cell”
divides, daughter cells make local-excitatory and global-inhibitory connections. As
the division process continues, noisy interactions between nodes results in emergent
spatiotemporal waves (red-nodes). (C) Some nodes within layer-I divide to produce
daughter cells that migrate upwards to form processing units (blue nodes). The
connections between the two layers are captured by the lines that connect a single
unit in a higher layer to nodes in the first layer (Only connections from a single unit
are shown).(D) After a long duration, the system reaches a steady state, where two
layers have been created with an emergent pooling architecture.

pooling architecture (Fig. 3.18d). Videos of networks growing on arbitrary scaffolds

are added to the supplemental materials.

— Section 3.9
Functionality of grown and self-organized

networks

In the previous section, we demonstrated that we can successfully grow multi-layered
pooling networks from a single unit. In this section, we show that these networks are

functional.

3.9.1. Unsupervised feature extraction

For the task of unsupervised feature extraction, we feed a stream of images as input
to the algorithm in real-time, with a frame rate of one image every 5 seconds, while
time-integrating the multi-layered SNN (Fig. 3.19).

As a structured image-input is available, the parameter regime for the input layer
(L) is chosen to ensure that noisy clusters of firing neurons shaped like the input

image (here, MNIST digits) with spatio-temporal oscillations appear. Although there



3.9 FUNCTIONALITY OF GROWN AND SELF-ORGANIZED NETWORKS 113

are no activity waves in Ly, we demonstrate that waves will still emerge in the

subsequent layers.
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Figure 3.19: Unsupervised learning of self-organized networks. (A) Schematic
of bio-inspired real-time learning: a 3-layered SNN learns on 2000 images, while being
forward-integrated in time; it tests on circa 8000 images. (B) Unsupervised feature
extraction forms pools that resemble MNIST digits: W weights of 10 exemplary
Ly neurons connecting to displayed L; neurons that form pools in shapes of digits.
The respective tuning curves of each Ly unit shows the (0-1-scaled) mean output
spike intensities to input spikes of all kinds of digits in the test set — demonstrating
the specialized Ly unit spiking most intensely for one specific digit. (C) Exemplary
connectivity pattern of the 3-layered network: pooling connection in shape of an ‘8’
(D) Coherent learning clusters in the Lo that each, as a local group, specialize on
learning/classifying a certain class of input digit.

The local learning rules coupled with competition rules enable many Ly neurons
to extract features from the input image (MNIST digits). Also, certain Lo units
specialize on a single class of MNIST digits. The specialization of L, units for
a single class of MNIST digits is clearly observed by visualizing its self-organized
connectivity to the input-layer and its tuning curves, both depicted in Fig. 3.19B.
The tuning curve for an Ly unit is generated by feeding 10 classes of MNIST digits
to the network and recording its spiking intensity. For instance, in Fig. 3.19B, Lo

unit #404 has a connectivity to the input-layer that resembles MNIST digit ‘1’ and
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its tuning curve (plotted below) confirms that Ly unit #404 maximally spikes when
MNIST digits of class ‘1’ are fed as input. Another interesting feature of our self-
organization algorithm is that the neurons in Ly that specialize for certain classes
of MNIST digits, also spatially cluster within the layer. The spatial clustering of
Ly units for different MNIST classes are shown in Fig. 3.19D. The different node-
colors correspond to neurons in L, that specialize to different MNIST classes. The
spatial clustering of input-classes in L, is a direct consequence of the emergent spatio-
temporal waves in L. Since the inter-layer connectivity is randomly initialized (mean:
w=1,std. dev. 0 = 0.5) at t = 0, even if a learning rule enabled the learning and
increased specialization of certain Lo units, one would not observe the formation
of any type of spatial clustering of input-classes, i.e., the distribution of specialized
neurons would be arbitrary, if it was not for the wave. The spatio-temporal wave in
L, enables the formation of spatially coherent connections that proceed to become

specialized coherent learning structures within L.

3.9.2. Supervised learning (MNIST)

We demonstrate functionality of networks grown and self-organized from a single unit
(Fig. 3.20¢) by evaluating their train and test accuracy on a classification task. Here,
we train networks to classify images of handwritten digits obtained from the MNIST
dataset (Fig. 3.20e). To interpret the results, we compare it with the train/test accu-
racy of hand-crafted pooling networks and random networks. Hand-crafted pooling
networks have a user-defined pool size for all units in layer-1I (Fig. 3.20b), while ran-
dom networks have units in layer-II that connect to a random set of nodes in layer-I
without any spatial bias (Fig. 3.20c), effectively not forming a pooling layer.

To test functionality of these networks, we couple the two-layered network with
a linear classifier that is trained to classify hand-written digits from MNIST on the

basis of the representation provided by these three architectures (hand-crafted, self-
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organized and random networks). We observe that self-organized networks classify
with a 90% test accuracy, are statistically similar to hand-crafted pooling networks
(90.5%, p-value = 0.1591) and are statistically better than random networks (88%,
p-value = 5.6 x 107°) (Fig. 3.20a). Performance is consistent over multiple self-
organized networks. These results demonstrate that self-organized neural networks
are functional and can be adapted to perform conventional machine-learning tasks,

with the additional advantage of being autonomously grown from a single unit.
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Figure 3.20: Networks grown from a single unit are functional. Three kinds of
networks are trained and tested on images obtained from the MNIST database. We
use 10000 training samples and 1000 testing samples. The 3 kinds of networks are: (i)
Hand-crafted, (ii) Self-organized networks and (iii) random networks. The training
procedure is run over n=11 networks to ensure that the developmental algorithm
always produces functional networks. (A) The box-plot captures the training and
testing accuracy of these 3 networks. We notice that the testing accuracy of self-
organized networks is comparable to that of to that of hand-crafted networks (p-value
= 0.1591>0.05) and are much better than random networks (p-value = 5.6 x 107°).
(B, C, D) Each unit in the second layer is connected to a set of nodes in the lower
layer. The set it is connected to are defined by the green, red or blue nodes in the
subplots shown. (B) Hand-crafted (C) Self-organized and (D) Random-basis.(E) Two
MNIST images as seen in the first layer.

3.9.3. Supervised learning (Gesture recognition)

In addition to static image recognition tasks, spiking neural networks can be used
for dynamic event learning, owing to their intrinsic time-dependent evolution of their

neural states (unlike most ReLU based artificial neural networks). In order to test
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Figure 3.21: Real time gesture capture with self-organized neural networks.
(A) We trained our networks on data from a benchmark American sign language
data set. Data consists of video rate images from an event based camera where
example gestures are shown in A. (B) Images showing two layers of our self-organized
neural network responding to gesture sequences. The sub-panel on the right of (B)
shows the network classifying the images into distinct categories (C) Our networks
achieve >90% accuracy after only 6 rounds of training. (D) Networks run on real-time
images streams making dynamic inferences (blue curve) to identify the gesture being
displayed (red curve indicates ground truth).

their prowess on dynamic tasks, we trained spiking networks on a gesture recognition
task.

We find that self-organized spiking networks can learn the gesture recognition
task within a small number of training examples (Fig. 3.21) learning the task within
a few seconds or minutes of training. Here, our training dataset has a total of six
different classes of (hand) gestures that have been captured using a DVS? camera

(Fig. 3.21A).

4DVS (Dynamic vision sensors) are functionally inspired by the biological retina, i.e., they only
capture and relay a difference in brightness and not the entire frame.
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Section 3.10

Discussion

In this chapter, we address a pertinent question of how artificial computational ma-
chines could be built autonomously with limited human intervention. Currently,
architectures of most artificial systems are obtained through heuristics and hours
of painstaking parameter tweaking. Inspired by the development of the brain, we
have implemented a developmental algorithm that enables the robust growth and
self-organization of functional layered neural networks.

Implementation of the growth and self-organization framework brought many cru-
cial questions concerning neural development to our attention. Neural development
is classically defined and abstracted as occurring through discrete steps, one proceed-
ing the other. However in reality, development is a continuous flow of events with
multiple intertwined processes [Arlotta and Vanderhaeghen, 2017]. In our work on
growing artificial systems, we observed the mixing of processes that control growth of
nodes and self-organization of connections between nodes. The mixing of growth and
connection processes got us interested in how timing can be controlled when processes
occur in parallel.

The work also reinforces the significance of brain-inspired mechanisms for initial-
izing functional architecture to achieve generalization for multiple tasks. A peculiar
instance in the animal kingdom is the presence of precocial species, animals whose
young are functional immediately after they are born (examples include domestic
chickens, horses). One mechanism that enables functionality immediately after birth
is spontaneous activity that assists in maturing neural circuits much before the ani-
mal receives any sensory input. Although we have shown how a layered architecture
(mini-cortex) can emerge through spontaneous activity in this paper, our future work

will focus on growing multiple components of the brain, namely a hippocampus and
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a cerebellum, followed by wiring these regions in a manner useful for an organism’s
functioning. This paradigm of growing mini-brains in-silico will allow us to (i) ex-
plore how different components in a biological brain interact with one another and
guide our design of neuroscience experiments and (ii) equip us with systems that can
autonomously grow, function and interact with the environment in a more ‘life-like’

manner.
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