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ABSTRACT

New physics and novel applications in various fields ranging from biology and
spectroscopy, to manipulation of quantum systems are driven by the availability of
coherent light sources including frequency combs in the visible and mid-infrared
spectral regimes. Nonlinear optical systems, that are parametrically driven by
technologically mature near-infrared lasers, are leveraged in this regard to access
challenging wavelengths where conventional lasers may be unavailable. It is of
paramount importance to miniaturize these systems and replace the traditional bulky
setups thereby paving the way for a plethora of applications. Optical parametric
oscillators are among the most prominent examples of such nonlinear systems and
beyond their indispensable usage as light sources (both classical and quantum) their
unique non-equilibrium dynamics can endow a wealth of functionalities absent
in their linear counterparts. These properties can be engineered and utilized for
realizing highly sensitive sensors as well as special-purpose computing hardware
that may outperform conventional digital computers. A network of these coupled
parametric oscillators can be made to interact leading to emergent behaviors that
are not expected from the individual constituents.

In this work, we experimentally and theoretically study the dynamics of individual
and coupled optical parametric oscillators towards sensing and computing
applications. We explore a previously avoided regime of operation for generating
ultra-short pulses from these parametrically driven nonlinear resonators that lead
to extreme pulse compression. We engineer the nonlinear dynamics of these
systems to realize all-optical spectral phase transitions (both first-order and
second-order) that behave as highly-sensitive sensors. We show how these critical
phenomena can be utilized to enhance the solution accuracy of physics-based
solvers in finding optimum solutions to combinatorial optimization problems in the
context of coherent Ising machines. We also realize optical parametric oscillators
in integrated lithium-niobate nanophotonic platform and demonstrate a
mid-infrared frequency comb source that is widely tunable over an octave
accompanied by visible frequency comb generation. We develop a comprehensive
description to investigate the noise properties of optical parametric oscillators that
provide new insights into the phase noise behavior of optical parametric oscillators
in their various operating regimes. Finally, we propose a system of parametrically
driven resonators as a synthetic medium with highly reconfigurable interactions
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that can host a plethora of emergent phenomena ranging from topological
behaviors to non-Hermitian dynamics. These networks of nonlinear resonators
display intriguing dynamical properties in contrast to their static counterparts in
condensed-matter physics with implications in quantum sensing and robust device
functionality.
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C h a p t e r 1

INTRODUCTION

In this age of artificial intelligence and intelligent cyber-physical systems, there is
an ever-increasing demand for the acquisition and processing of multi-dimensional
data. The key constituents of these cyber-physical systems involve sensors,
actuators, controllers, and computing units. There exist several sensing modalities
leveraging multi-physical effects originating from the interplay of electrical,
thermal, mechanical, and chemical processes. Optical technology based
approaches enjoy several advantages in terms of specificity (spectroscopy),
resolution (diffraction limit in the order of wavelength), remote sensing capability
(label-free and non-invasive), low-latency signal acquisition, and so on. Thus the
exploration of sensitivity enhancement of these optics-based sensing mechanisms
and exploring means of new regimes of sensing and their fundamental limits is of
paramount importance.

Laser is the enabling technology that is powering most optics-based applications.
Lasers are sources of coherent radiation that have over the course of years ushered
in unprecedented possibilities ranging from long-distance communications to
spectroscopy and imaging. However, lasers are available at selected wavelength
ranges corresponding to the transition energy levels of the material constituting the
gain medium. In order to access coherent radiation at arbitrary wavelengths one
has to use nonlinear optical processes to either up-convert or down-convert existing
laser frequencies. One of the most ubiquitous devices used in this regard is the
optical parametric oscillator (OPO). Although immensely successful these OPOs
traditionally have been very bulky and power-hungry. It is extremely valuable to
miniaturize these devices in line with the nanophotonic revolution. This can open
possibilities for countless consumer applications relying on OPOs requiring widely
tunable coherent radiation sources in the technologically important visible and
mid-infrared frequency regimes. We are going to witness the rapid incorporation
of lasers and LEDs in smart devices for continuous health monitoring and one can
envision the integration of OPOs in these devices as well to increase the gamut of
possible applications. Apart from the miniaturization focus, we are also interested
in making these OPOs more efficient, and one can exploit the rich nonlinear
dynamics to choose a suitable operating point to achieve the same. A continuing
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pursuit has been to generate ultra-short pulses (orders of several 10s of
femtoseconds) from these OPOs. Ultra-short pulses will enable resolving
light-matter interactions at ultra-fast time scales thereby informing the design of
next-generation detectors and modulators enabling peta-Hertz scale electronics in
the future. An ultra-short pulse train also corresponds to a broadband frequency
comb source which has found a plethora of applications ranging from precision
measurements to microwave synthesis, massively-parallel coherent
communication, and so on. There is an outstanding demand to be able to generate
a stable-phase locked optical frequency comb at arbitrary wavelengths which can
unveil a host of applications.

Next, we introduce the various themes central to our work.

1.1 𝜒(2) based nonlinear optics
When an intense laser field is incident on a medium the induced polarization of the
medium on account of the dipole reorientation no longer responds linearly [1, 4].
The linear response is due to the linear susceptibility (𝜒(1)) which is responsible
for the linear polarization component (𝑃(1)), where 𝑃(1) (𝜔) = 𝜖0𝜒

(1) (𝜔)𝐸 (𝜔). In
addition to the induced linear polarization component, there will be nonlinear
contributions of higher orders, and the net polarization of the medium can be
expressed as: 𝑃(𝜔) = 𝑃(1) (𝜔) + 𝑃(2(𝜔) + 𝑃(3) (𝜔) + . . . . The higher order terms
arise due to nonlinear susceptibility that is associated with the underlying
phenomena of distortion of electronic cloud among others. The second-order
susceptibility (𝜒(2)) represents the coupling of three waves. One of these
second-order effects (alternatively quadratic nonlinear effects) can be expressed by
the following induced polarization component at the sum-frequency:
𝑃(2) (𝜔 = 𝜔1 + 𝜔2) = 𝜖0𝜒

(2) (𝜔1, 𝜔2)𝐸 (𝜔1)𝐸 (𝜔2). Similarly, the third-order
susceptibility (𝜒(3)) represents the coupling of four waves. One of these
third-order effects (alternatively Kerr nonlinear effects) can be expressed by the
following induced polarization component at the sum-frequency:
𝑃(3) (𝜔 = 𝜔1 + 𝜔2 + 𝜔3) = 𝜖0𝜒

(3) (𝜔1, 𝜔2, 𝜔3)𝐸 (𝜔1)𝐸 (𝜔2)𝐸 (𝜔3).

These nonlinearities involve virtual transitions instead of real resonant light-matter
interactions. Inevitably they are weak in nature and require intense fields (dependent
on the peak electric field) to produce any substantial nonlinear phase shift. The
higher the order of this nonlinearity in the perturbative expansion the weaker it is
and approximately follows the scaling: |𝜒 (𝑛) |

|𝜒 (𝑛−1) | ∼
1
𝐸0

, where |𝐸0 | is of the order of
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magnitude of the average electric field strength in an atom. However, the effect of
nonlinearity is dictated by the induced polarization instead of the susceptibilities
themselves. Even in terms of induced polarization, the ratio of polarizations of
successive orders can be given by: 𝑃 (𝑛)

𝑃 (𝑛−1) ∼ |𝐸 |
|𝐸0 | , which is typically « 1 for laser

intensities that can be realized in chip-scale integrated platforms. Thus it is of great
interest to realize nonlinear processes with quadratic nonlinearities which promise
to be less power-hungry than their Kerr counterpart.

In a centro-symmetric medium (no surface/interface effects considered) all even
order nonlinear coefficients 𝜒(2𝑛) vanishes. Therefore, a non-centrosymmetric
medium is required to display second-order nonlinear phenomena. The material
we are interested in this work is lithium niobate. However, other materials that can
also be used include lithium tantalate, Potassium titanyl phosphate, aluminum
gallium arsenide, beta-barium borate, gallium phosphide, gallium arsenide, and so
on.

1.2 Parametric devices
Parametric devices refer to systems where the device parameters are temporally
modulated by a driving source. The energy is transferred from the driving agent to
the system of interest. It typically involves a resonant system with a characteristic
frequency (𝜔0), and is driven periodically at a different frequency. The canonical
example of a parametric device is a parametrically driven mechanical pendulum
where the point of suspension is periodically modulated. Such devices are ubiquitous
in several domains ranging from piezo-electric devices to micro-electro-mechanical
devices, and high-frequency electrical circuits. In the context of electrical circuits,
they appear as resonant circuits constituting a varactor where the capacitance of
the varactor is parametrically modulated. These parametric devices are now used
routinely in superconducting quantum circuits as parametric amplifiers [26]. For
the purpose of this work, we are interested in optical parametric devices.

1.3 Optical parametric amplification and oscillation
Optical parametric devices involve the parametric modulation of the refractive
index of the constituting nonlinear medium. The induced nonlinear polarization of
the medium is responsible for the modulation of the refractive index. A
consequence of parametric driving is the possibility to do frequency conversion.
Thus, the frequency of the input radiations can be combined to create output
photons with higher frequencies leveraging the nonlinear up-conversion processes
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Figure 1.1: Schematic of an optical parametric oscillator.

like sum-frequency generation, second-harmonic generation, high-harmonic
generation, etc. Similarly, the frequency of the input radiations can be combined to
create output photons with lower frequencies leveraging the nonlinear
down-conversion processes like difference frequency generation, optical
rectification, etc.

These can also be employed as amplifiers useful for amplifying the signal by
transferring the energy from the pump. This constitutes the class of phase-sensitive
amplifiers whereby the amplification is phase-sensitive. If the phase relations are
not set correctly then instead of amplification one obtains de-amplification. The
phase-sensitive amplification process has markedly different characteristics
compared to its phase-insensitive counterpart which is ubiquitously used in
conventional optical amplifiers. Phase-insensitive amplifiers inherently add extra
noise in the due process of amplification (dictated by quantum mechanical
principles) and the noise figure of such amplifiers can be at best 3 dB in the limit of
large amplification [12]. On the other hand, parametric amplifiers can be made to
operate below the 3 dB noise figure limit and are indispensable for quantum
applications [6]. Ideally, the amplification process can be shown to be noiseless.

The parametric amplifier in combination with a cavity can constitute an oscillator
also known as an optical parametric oscillator (OPO). This will be the central device
under consideration in our work. A schematic representation of it is shown in Fig.
1.1. Here, the vacuum fluctuations can be amplified by the driving pump to produce
a coherent signal.

1.4 Degenerate and non-degenerate optical parametric oscillators
Optical parametric oscillators operating in the down-conversion regime can be
classified into two categories, namely the degenerate and the non-degenerate OPOs.
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Figure 1.2: Degenerate and non-degenerate oscillation regimes of an OPO. a)
The degenerate regime is characterized by the binary phase states, while b) in the
non-degenerate regime the OPO signal is free to occupy any phase, as long as the
idler phase is its conjugate.

In a degenerate OPO, a single pump photon (2𝜔0) is converted into two degenerate
signal photons (𝜔0). Degenerate OPO is associated with phase and frequency
locking which is detailed further in the next section. While in a non-degenerate
OPO, a single pump photon (2𝜔0) is converted into a signal photon (𝜔0 + Δ𝜔) and
an idler photon (𝜔0−Δ𝜔). Non-degenerate OPOs in general do not inherit the phase
and frequency locking properties from the pump (except in special circumstances
like divide by 3 OPOs [8]) and are mostly useful to generate tunable sources of
coherent radiation that can extend into the mid-infrared starting from a near-infrared
pump. The phase and frequency relations for OPOs operating in the degenerate and
non-degenerate regimes are illustrated in Fig. 1.2.

1.5 Binary phase states and degenerate optical parametric oscillators
Degenerate OPOs exhibit several unique properties owing to their phase and
frequency locking with respect to the pump. This can be understood by analyzing
the following set of simplified equations for an OPO only considering the
parametric amplifier region.
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𝑑𝐸𝑠

𝑑𝑧
= ^𝐸𝑝𝐸

∗
𝑠 (1.1a)

𝑑𝐸𝑝

𝑑𝑧
= −^𝐸2

𝑠 (1.1b)

where, we assume the pump (𝐸𝑝) phase as a reference, and the signal complex
electric field (𝐸𝑠) is denoted in the magnitude phase representation as 𝐸𝑠 = |𝐸𝑠 |ei\𝑠 .
Here, ^ is the effective nonlinear coefficient and z denotes the propagation axis along
the parametric interaction length.

In the undepleted pump approximation, the dynamics can be approximated as:

𝑑 |𝐸𝑠 |
𝑑𝑧

= ^𝐸𝑝 |𝐸𝑠 |cos(2\𝑠) (1.2a)

𝑑\𝑠

𝑑𝑧
= −^𝐸𝑝sin(2\𝑠). (1.2b)

The above equations reveal that the two binary phases 0 and 𝜋 experience the
maximum gain and both these phase solutions are stable.

They exhibit binary phase states which are 𝜋 phase shifted with respect to each other
and of equal intensity. This property of degenerate OPOs has been used for random
number generation [20] since an OPO randomly selects one of the two phases as it
transitions from below to above threshold. These binary phase states are the fixed
points of a degenerate OPO and can be mapped to behave as classical analogs of
Ising spins. Thus, a network of coupled OPOs has been utilized to realize a coherent
Ising machine where the ground state of the system corresponds to the solution of
the combinatorial optimization problem (like MAXCUT) [21, 22]. The behavior of
degenerate OPOs below and above the oscillation threshold is depicted in Fig. 1.3.

However, in the non-degenerate regime, the signal phase is unconstrained as long
as it is conjugate to the idler phase. This phase degree of freedom is denoted as
U(1) symmetry which is reduced to being 𝑍2 symmetry in the degenerate oscillation
regime.
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Figure 1.3: Binary phase states of a degenerate OPO above the threshold.
Below the threshold the OPO exists in a squeezed state. Spontaneous symmetry
breaking occurs at the threshold followed by the OPO occupying one of the two
binary phase states (coherent states).

1.6 Triply, doubly, and singly resonant optical parametric oscillators
Resonant systems are associated with resonant phenomena that correspond to
particular frequencies. A detuning from the exact resonance frequency will weaken
the resonant enhancement. Thus mechanisms that critically depend on resonant
interactions are inherently narrowband. In order to realize widely tunable devices
one has to resort to non-resonant architectures. However, the trade-off is incurred
in terms of increased power requirement (reflected in terms of the threshold).

OPOs can be realized in different configurations ranging from being completely
resonant to being partially so. Triply-resonant configurations require all the signal,
idler, and pump waves to be resonant. These configurations enjoy the minimum
thresholds/ power requirements, but at the same time suffer from strict resonance
constraints [2]. They are generally narrowly tunable and face stability issues.
Tunability requires multiple degrees of freedom such that the simultaneous
resonance condition is satisfied.

Doubly-resonant configurations only require the signal and the idler to be resonant.
This class of OPOs has intermediate thresholds and higher tunability [11, 24, 25].
Degenerate and near-degenerate OPO tend to be doubly resonant by nature. On the
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other hand, singly-resonant conditions only involve either the signal or the idler to
be resonant. They have the highest threshold requirement and at the same time the
maximum tunability [9, 18]. We are mainly interested in the dynamics of doubly
and singly resonant OPOs and the ensuing applications for the purpose of this work.

1.7 Phase-matching and optical parametric oscillation bandwidth
The parametric interaction involves waves of disparate frequencies which has to
satisfy the energy conservation relation. Additionally, it has to satisfy the
momentum conservation condition as well for efficient parametric energy transfer.
The momentum of the waves is related to the propagation constant and is given by
𝑘 (𝜔) =

𝑛eff (𝜔)𝜔
𝑐

, where 𝜔 is the frequency, 𝑐 is the velocity of light in free space, and
𝑛eff is the effective index of the medium at that frequency. The vector sum of the
momentum of the input waves has to be equal to the corresponding sum for the
output waves, otherwise, a phase accumulation happens which beyond a
propagation distance exceeding the coherence length (inversely proportional to the
residual momentum mismatch) leads to energy back conversion. The coherence
length here refers to the mutual coherence between the waves participating in the
parametric process. The residual momentum mismatch in the case of QPM is
canceled by the periodic poling and is given as:

𝑘 𝑝 (𝜔𝑝) − 𝑘𝑠 (𝜔𝑠) − 𝑘𝑖 (𝜔𝑖) = 𝐾 =
2𝜋
Λ

(1.3)

where we considered the parametric interaction between the input pump (𝑝), and
the output signal (𝑠) and idler (𝑖) waves.

To realize phase-matching, i.e., to cancel the residual phase mismatch we resort to
periodic poling. The periodic poling periodically inverts the ferroelectric domains
of lithium niobate thereby altering the sign of the nonlinearity coefficient
periodically. This is known as quasi-phase-matching (QPM). Lithium niobate can
sustain the poling pattern as long as the operating temperature is below the Curie
temperature. QPM allows very efficient nonlinear interaction while the nonlinear
conversion efficiency is limited by the coherence length in a phase-mismatched
scenario. Perfect phase matching can only be satisfied at particular frequencies and
modal geometries and leads to constraints that may not allow the independent
tuning of dispersion engineering. QPM decouples the dispersion engineering from
the phase-matching criterion only at the cost of a reduction of the effective
nonlinear coefficient by a factor of 2

𝜋
.
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The periodic-poling-induced QPM can ensure phase-matching at a particular set of
frequencies (unless it is chirped), and hence there is a finite phase-matching
bandwidth imposed by the dispersion. This dispersion is contributed both by the
inherent material dispersion (frequency-dependent refractive index which can be
modeled by Sellmeier equation) as well as the geometric dispersion that is imposed
by the waveguide boundary conditions. Away from the quasi-phase-matched
frequency (𝜔), the momentum mismatch accrued as a function of frequency
deviation (Ω) is given by:

Δ𝑘 (Ω) = 𝑘 (2𝜔 + 2Ω) − 2𝑘 (𝜔 +Ω) − 2𝜋
Λ

(1.4)

which can be approximated by a Taylor series expansion as:

Δ𝑘 (Ω) = Δ𝑘0 + 2Δ𝑘
′
Ω + (2𝑘 ′′

2𝜔 − 𝑘 ′′
𝜔)Ω2 + . . . (1.5)

Here we have considered the simplified situation of a degenerate frequency
conversion where only the pump (2𝜔) and signal 𝜔 are involved. Δ𝑘0 is the zeroth
order mismatch which can be completely nullified by the appropriate poling
period. The first-order correction is related to the first derivative Δ𝑘

′ also referred
to as the walk-off parameter/ group-velocity-mismatch (GVM) parameter and can
also be expressed as the difference of the inverse of group-velocity of the
participating waves Δ𝑘

′
= 1

𝑣𝑔,2𝜔
− 1

𝑣𝑔,𝜔
. In the next order appears the second

derivative which is also termed the group-velocity dispersion (GVD) parameter.
Higher-order correction involves third-order dispersion (TOD) and so on.

To ensure a broad bandwidth for the parametric interaction, small dispersion
coefficients (GVM, GVD, TOD, etc) are desired. The ability to perform dispersion
engineering by varying the geometric parameters of the waveguide can allow one
to operate in a small dispersion regime characterized by near-zero GVM and
near-zero GVD. This regime is known also referred to as the stationary regime or
the quasi-static regime [14, 15, 19]. Traditionally, the stationary regime has been
sought after especially in the context of femtosecond optical parametric oscillators.
In contrast, the non-stationary regime is characterized by a large GVM parameter.
Counter-intuitively, we show in Chapter 2 that we can leverage the unique
nonlinear dynamics in this regime to obtain extreme pulse compression.
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1.8 Modeling of synchronously pumped optical parametric oscillators
Synchronously pumped OPOs represent a class of OPOs that is driven by a pulsed
pump [16]. The pulsed nature of the pump enables the utilization of the temporal
confinement of the pulses to access the peak intensities required for nonlinear
interactions. The peak power to average power ratio of a pulsed source is much
higher than a continuous wave source and is related to the ratio between the repetition
time period and the pulse width. The nonlinear interactions rely on the peak value
of the electric fields (correspondingly the peak power), while the damaging effects
(material breakdown, thermal damage), etc. are related to the average power.

The modeling of dynamics of a sync-pumped OPO is described below. The
nonlinear interaction inside the periodically-poled lithium niobate (PPLN)
waveguide is governed by:

𝜕𝑎

𝜕𝑧
=

[
−𝛼

(𝑎)

2
− 𝑖
𝛽
(𝑎)
2
2!

𝜕2

𝜕𝑡2
+ . . .

]
𝑎 + 𝜖𝑎∗𝑏 (1.6a)

𝜕𝑏

𝜕𝑧
=

[
−𝛼

(𝑏)

2
− 𝑢 𝜕

𝜕𝑡
− 𝑖
𝛽
(𝑏)
2
2!

𝜕2

𝜕𝑡2
+ . . .

]
𝑏 − 𝜖𝑎2

2
. (1.6b)

The evolution of the signal(𝑎) and the pump(𝑏) envelopes in the slowly varying
envelope approximation are dictated by equations 1.6a and 1.6b, respectively [11].
The effects of higher-order group velocity dispersions (GVD) 𝛽2, 𝛽3, group velocity
mismatch (GVM) (𝑢), and the back-conversion from the signal to the pump is
included. The round-trip feedback is given by:

𝑎 (𝑛+1) (0, 𝑡) = F −1
{
𝐺

− 1
2

0 𝑒𝑖𝜙F
{
𝑎 (𝑛) (𝐿, 𝑡)

}}
(1.7a)

𝜙 = Δ𝜙 + 𝑙_
(𝑎)

2𝑐
(𝜔 − 𝜔0) +

𝜙2
2!

(𝜔 − 𝜔0)2 + . . . (1.7b)

Eq. 1.7 takes into consideration the round-trip loss which is lumped into an
aggregated out-coupling loss factor 𝐺0, the GVD (𝜙2) of the feedback path, and the
detuning (Δ𝜙) (Δ𝜙 = 𝜋𝑙 + 𝜙0, 𝑙 is the cavity length detuning in units of signal
half-wavelengths in vacuum) of the circulating signal from the exact synchrony
with respect to the pump. The effective second-order nonlinearity co-efficient (𝜖)
is related to the SHG efficiency [11]. The round-trip number is denoted by 𝑛 and
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the cavity length by 𝐿. The equations are numerically solved by adopting the
split-step Fourier algorithm [1].

Other modeling techniques include nonlinear envelope equation, where a single
envelope is solved instead of coupled wave equations as mention in eq. 1.6 [7].
For analytical studies one can resort to investigating the Mathieu equation [27] and
soliton perturbation equations [1].

1.9 Reverse proton exchange waveguide based optical parametric oscillators
with fiber feedback

This platform is characterized by guided modes possessing low confinement. The
mode area is of the order of ∼ 10`m2. Thus it is difficult to realize sharp bends
in this platform. However, we can realize directional couplers that are capable of
wavelength filtering, thereby separating the signal and the pump wavelengths in
distinct ports. Since the mode area of the waveguides matches closely with the
fiber modes, a very low-loss interface is realizable without resorting to tapering or
multi-layered structuring. Typical second-harmonic generation efficiency expected
in these waveguides are of the order of ∼ 100%W−1cm−2 [23]. Details of the
fabrication process can be obtained from [17]. An image of the reverse proton
exchange waveguide used in our experiments is shown in Fig. 1.4. The name
“reverse proton exchange” refers to the fabrication process which involves doping
followed by the reverse-proton-exchange step in order to realize buried waveguides
for reduced propagation loss.

Figure 1.4: Fiber-coupled reverse proton exchange periodically poled lithium
niobate waveguide. Credits: Dr. Carsten Langorck, and Prof. Martin Fejer.
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1.10 Thin-film lithium niobate based integrated optical parametric oscillators
Thin-film lithium niobate on insulator platform provides access to waveguides with
a much smaller mode area (∼ 1`m2), thanks to the high confinement provided by
ridge waveguides [5, 10, 13, 19]. Typical second-harmonic generation efficiency
expected in these waveguides are of the order of ∼ 1000%W−1cm−2 [29]. Now,
it is possible to realize very sharp waveguide bends (limited by bending loss) and
one can envision implementing large-scale integrated circuits on lithium niobate.
We use X-cut LNOI (lithium niobate on insulator) wafer where silica forms the
cladding underneath. Other possible variations include Z-cut lithium niobate and/or
using sapphire as the oxide layer. A sapphire-based cladding layer will have a
wider transparency window extending into the mid-infrared thereby allowing the
operation of integrated devices over the entire transparency range of lithium niobate
which extends from approximately 400 nm to 4.5 `𝑚 [3, 25]. Lithium niobate is an
anisotropic medium with uniaxial anisotropy featuring ordinary and extraordinary
refractive indices. Thus an X-cut wafer allows the utilization of the strongest
electro-optic co-efficient with TE (transverse electric) mode. However, a Z-cut
crystal will potentially allow a continuous poling region along the circumference of
the ring which is only constrained to be oriented linearly in an X-cut configuration.
Apart from strong second-order nonlinearity (∼ 27 pm/V which is also frequency-
dependent), Lithium niobate exhibits various other useful properties namely the
electro-optic effect, the piezoelectric, and the ferroelectric effects. This opens up
the possibility of realizing active photonic devices that can be tuned at fast time
scales (exceeding 100s of GHz) [28, 30]. At the same time, lithium niobate can
potentially suffer from pyroelectric and/or photo-refractive effects. To alleviate
some of these issues we resort to MgO-doped lithium niobate wafers. Figure 1.5
shows images for etched waveguides and poling profiles used in our integrated
nanophotonics experiment.
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Figure 1.5: Thin-film lithium niobate nanophotonics platform. a) SEM image
of a ridge waveguide, b) second harmonic microscope image of the poled region
showing the periodic poling. Credits: Nonlinear Photonics Group, Caltech.

1.11 Overview of chapters
In this dissertation, we will explore several applications of nonlinear optics in the
context of sensing and computing. The overarching goal of the thesis is to investigate
how nonlinear dynamics can be engineered to endow photonic devices with enhanced
functionalities. These functionalities can be further amplified by enhancing the
nonlinear interactions underlying these dynamics. Parametric nonlinear interactions
rely on the peak electric field magnitudes and therefore the generation of ultra-short
pulses is of paramount importance. Chapter 2 discusses the generation of ultra-
short pulses (∼ 100 of fs) from picosecond long pulses, representing an efficient
mechanism of extreme pulse compression. To achieve the same, we operated the
degenerate OPO in an unconventional dispersion regime characterized by a large
value of the walk-off parameter.

In Chapter 3, we discuss the first realization of synchronously pumped OPOs in
an integrated lithium niobate nanophotonic platform. This represents a promising
mechanism to generate ultra-short pulses (alternatively broadband frequency combs)
at arbitrary wavelengths ranging from the visible to the mid-IR. We demonstrate the
widely tunable source of coherent radiation that can pave the way for the realization
of a universal frequency comb source for interfacing with molecules in the mid-
infrared for spectroscopy as well as with atoms in the visible for their applications
related to precision measurements.

Chapters 4 and 5 deal with leveraging nonlinear dynamics for sensing
applications requiring very high sensitivity. We resort to critical phenomena
related to spectral phase transitions in OPOs in this regard. We note that sensing
protocols should optimize the overall signal-to-noise ratio that is concerned with
measurement precision and not merely sensitivity. We explore the class of
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parametrically driven critical phenomena in this regard. We discuss the occurrence
of second-order spectral phase transitions in OPOs in Chapter 4. We demonstrate
the enhanced sensitivity (akin to exceptional points in terms of scaling) to
perturbations (reflected in terms of detunings) when the OPO is biased at the
critical point by leveraging the continuous spectral splitting corresponding to a
degenerate to non-degenerate transition. Chapter 5 is concerned with its
discontinuous counterpart the first-order spectral phase transition that emerges
when two OPOs are coupled to each other dispersively. We show how these
spectral transitions can be exploited to endow high sensitivity to the underlying
linear system which otherwise features low-Q properties associated with low
sensitivities. This can potentially allow us to relax the strict fabrication
requirements of linear photonic devices and instead utilize nonlinear enhancement.

Chapter 6 describes how we can utilize the second-order spectral phase transition
for improving the accuracy of physics-based optimization solvers in the context
of finding optimal solutions to hard combinatorial optimization problems. Here
we leverage the symmetry unbroken phase of non-degenerate OPOs (XY phase)
to explore the optimization energy landscape via the Kuramoto synchronization
mechanism. The subsequent steps involve spontaneous symmetry breaking by
traversing the spectral phase transition and collapsing into the Ising Hamiltonian
adiabatically. Our method represents a distinct protocol in the context of coherent
Ising machines consisting of a network of coupled OPOs with potential advantages
in terms of solution accuracy for certain problem classes.

Chapter 7 is concerned with the investigation of noise characteristics in OPOs. We
provide a comprehensive description of noise behavior in OPOs operating in various
regimes (ranging from degenerate to non-degenerate on one hand, and doubly-
resonant to singly-resonant on the other). In stark contrast to the rich literature
involving phase-noise in lasers, a comprehensive model for OPOs encompassing
these various operating regimes is lacking. Our results highlight among others the
potential to generate a highly coherent signal from a noisy pump in a singly-resonant
OPO. We also bring forth the concept of linewidth enhancement in OPOs associated
with phase-mismatched operation. Our formalism provides important insights into
the use of optical parametric oscillators as frequency dividers that can inform the
design and operation of next-generation OPOs.

Next in Chapter 8, we explore the possibility of replacing the gain/loss dynamics
exhibited by the conventional gain medium which amounts to phase-insensitive
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gain by phase-sensitive amplification/de-amplification that arises in parametrically
driven systems. Our motivation is to get rid of the unavoidable fluctuations that
accompany phase-insensitive gain in the measurement quadrature of interest. In
particular, we explore the interplay of squeezing dynamics and exceptional points
for enhancing sensitivity without accompanying noise amplification. In Chapter 9
we discuss the prospects of topological phenomena in a network of coupled OPOs.
We show that these systems exhibit dynamics compared to their linear topological
photonic counterparts with important implications in the quantum regime as well.
Finally, we conclude by envisioning some of the important research directions that
can be pursued in near future.
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C h a p t e r 2

TEMPORAL WALK-OFF INDUCED DISSIPATIVE QUADRATIC
SOLITONS IN OPTICAL PARAMETRIC OSCILLATORS

Roy, Arkadev, Rajveer Nehra, Saman Jahani, Luis Ledezma, Carsten Langrock,
Martin Fejer, and Alireza Marandi. Temporal walk-off induced dissipative
quadratic solitons. Nature Photonics, 16(2):162–168, 2022. doi: https://doi.
org/10.1038/s41566-021-00942-4.
A.R. performed the experiments, executed numerical simulations alongside
associated formulations, and participated in the writing of the manuscript.

2.1 Abstract
A plethora of applications has recently motivated extensive efforts on the
generation of Kerr solitons and coherent frequency combs. However, the Kerr
(cubic) nonlinearity is inherently weak, and in contrast, strong quadratic
nonlinearity in optical resonators is expected to provide a promising alternative
means for soliton formation. Here, we demonstrate dissipative quadratic soliton
formation via non-stationary optical parametric amplification in the presence of
significant temporal walk-off between pump and signal leading to half-harmonic
generation accompanied by a substantial pulse compression (exceeding a factor of
40) supported at low pump pulse energies (∼ 4 picojoules). The quadratic soliton
forms in a low-finesse cavity in both normal and anomalous dispersion regimes.
We present a route to significantly improve the performance of the demonstrated
quadratic soliton when extended to an integrated platform to realize
highly-efficient extreme pulse compression leading to the formation of few-cycle
soliton pulses starting from ultra-low energy picosecond scale pump pulses.

2.2 Introduction
Formation of dissipative solitons in nonlinear resonators has become a versatile
mechanism for stable femtosecond sources [15, 22]. In the frequency domain it
corresponds to a broadband frequency comb which, when self-referenced, leads to
a myriad of applications in precision measurements spanning from spectroscopy
[10, 37], astro-combs [41, 50], atomic clocks [48], ranging [49, 52], and imaging
[20], to name a few. Recently, the ambit of frequency combs has expanded to
cover promising avenues including massively parallel data communication [33],
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and the realization of machine learning accelerators [54]. To cater to this increasing
list of technologically important applications there lies the outstanding challenges
of attaining low-power operation [30], high pump to soliton conversion efficiency
[3, 4, 40, 55, 56], broadband (octave-spanning and widely tunable) comb formation in
a compact platform [46, 47], reliable fabrication and operation of high-Q resonators
which need to be addressed.

In the past decade, there has been extensive research on Kerr-based frequency
combs where a 𝜒(3) nonlinear resonator is coherently driven by a continuous wave
(CW) laser to excite temporal solitons [15]. However, the Kerr nonlinearity, being
a cubic nonlinearity, is inherently weak, and so requires the use of high Q
resonators to reach the threshold of parametric oscillation with reasonable pump
power. The frequency comb forms around the driving CW laser, and it requires
precise dispersion engineering and in some cases, the use of multiple pump lasers
[34] to extend the comb to its harmonics and sub-harmonics. These issues can be
alleviated by operating with quadratic nonlinearity which can typically cause
significant nonlinear mixing at power levels that are orders of magnitude lower
than its cubic counterpart [5]. With the ability to perform harmonic conversion
through properly phase-matched quadratic nonlinear interactions, 𝜒(2) nonlinear
media promise an ideal platform to realize widely tunable self-referenced
frequency combs. Although frequency comb generation through quadratic
nonlinearity [28, 35, 36, 38, 39, 42] and femtosecond optical parametric oscillators
[27] have been the subject of several theoretical and experimental investigations,
demonstration of quadratic soliton formation remains sparse [5, 17].

Fundamental limits on the efficiency (pump to soliton conversion) of CW-pumped
Kerr solitons [3, 55] have motivated the study of their pulsed-pump driven
arrangements [40, 41]. Modulated pumps also provide additional control on the
dynamics of the temporal solitons [7, 12, 16]. Another route to achieve high
conversion efficiency is to use low finesse cavities with large outcoupling, where
the round-trip loss is compensated by proportionate amplification [11]. Thus
soliton formation in a synchronously pumped low-finesse quadratic nonlinear
resonator represents a viable route to realize highly efficient widely tunable
broadband frequency combs [17].

We demonstrate walk-off induced temporal solitons in a degenerate optical
parametric oscillator (OPO) based on pure quadratic nonlinearity. We follow the
notion of the dissipative solitons as defined in [2]. We show that the quadratic
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soliton can be supported in both normal and anomalous group-velocity dispersion
regimes. We also show that this quadratic soliton exists in a low-finesse optical
cavity which can lead to high conversion efficiency. We achieved giant pulse
compression exceeding a factor of 40 at picojoule level pump energy. We
investigate the dynamics of this quadratic soliton and characterize its different
regimes of operation. Furthermore, we define a figure of merit that can act as the
design guideline for achieving extreme pulse compression and optimum soliton
formation in a dispersion-engineered cavity that can be accessed through
integrated platforms. Our results pave the way for the generation of
energy-efficient dissipative quadratic solitons breaking some of the barriers for the
generation of Kerr solitons which demand high Q cavities, feature limited
conversion efficiency, require anomalous dispersion for bright soliton formation,
and possess limited wavelength tunability.

2.3 Results
We consider a degenerate OPO [14] as illustrated in Fig. 2.1(a) (see Supplementary
Section 2.5.1 for a detailed schematic). The OPO is driven synchronously by a
pump pulse with a temporal width of several picoseconds. The quadratic nonlinear
interaction takes place in a periodically poled lithium niobate waveguide [24, 32]
providing parametric interactions between the pump at the fundamental frequency
and the signal at the half-harmonic frequency. The cavity is completed with a
combination of polarization-maintaining fibers and a suitable free-space section to
ensure that the pump repetition rate is approximately equal to multiples of the cavity
free-spectral range.

The walk-off induced quadratic soliton formation is supported by a non-stationary
optical parametric amplification (OPA) process [1, 21]. The temporal soliton at
the half-harmonic (1550 nm) walks through the pump (775 nm) due to the group
velocity mismatch (GVM) (see Supplementary Section 2.5.2 ). This allows a signal
pulse that is much shorter than the pump pulse to extract most of the pump energy. In
contrast, in a stationary OPA process (with negligible temporal walk-off between the
pump and signal), the signal gets amplified without considerable pulse compression
as shown in Fig. 2.1(a) [25]. Figure 2.1(b) shows the mechanisms contributing to
the nonlinear dynamics of the OPO which are responsible for this quadratic soliton
formation. The dissipative soliton loses energy via different dissipation pathways
of the low-finesse cavity which include intrinsic cavity round-trip loss and the
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Figure 2.1: Walk-off induced quadratic soliton formation process. a) Schematic
of the doubly-resonant half-harmonic synchronously pumped OPO with resonant
signal and non-resonant pump. The quadratic nonlinear interaction happens in the
periodically poled region and, owing to the large GVM between the signal and the
pump, significant pulse compression occurs due to the non-stationary OPA process
as the signal walks off through the pump. This is contrasted with the stationary OPA
case which features negligible temporal walk-off, where the signal amplification
is not accompanied by considerable pulse compression. b) The dissipative soliton
is sustained in the OPO by a triple balance of energy, temporal broadening, and
timing. The energy loss through dissipation is balanced by the parametric gain
through the OPA process, while the temporal broadening due to the group-velocity
dispersion is arrested by the temporal gain-clipping mechanism. Finally, timing
synchronization is achieved by the delicate balance between linear cavity detuning,
nonlinear acceleration due to gain saturation, and gain-clipping mechanism. c)
Illustration of the temporal gain-gating mechanism, i.e., the dependence of gain on
the relative delay between the pump and signal pulses, which is responsible for the
gain-clipping. The signal pulse that experiences maximum temporal overlap with
the pump pulse throughout the non-stationary OPA process extracts the highest gain.
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Figure 2.2: Cavity detuning dependence of doubly-resonant OPO and its
impact on synchronization. Mode-locking range of doubly-resonant sync pumped
OPO as a function of cavity detuning obtained a) experimentally and b) via numerical
simulation. OPO oscillation occurs around discrete peaks centered at integer values
of detuning parameter 𝑙. The zoomed-in view of a single peak is shown in the inset.
c) Evolution of the intra-cavity OPO field from random noise to the approximate
sech-shaped signal soliton pulses in the steady state. (top panel: Non-normalized
intensity; bottom panel: Normalized intensity to highlight different dynamical
regimes). d) Evolution of the intra-cavity OPO field in the case of large cavity
detuning (𝑙 = 50) highlighting the importance of gain-saturation and gain-clipping
in timing balance/ synchronization (top panel: Non-normalized intensity; bottom
panel: Normalized intensity to highlight different synchronization regimes in the
large detuning scenario).

out-coupling. This energy loss is counterbalanced by the parametric amplification
process. The OPO oscillation threshold occurs when the parametric gain overcomes
the loss, and the quadratic soliton is supported near the threshold.

The group-velocity dispersion (GVD) of the medium (waveguide + cavity) leads
to temporal pulse broadening. This GVD-induced broadening is prevented by the
temporal gain-clipping mechanism (see Supplementary Section 2.5.2 ) [14]. The
pulsed pumping scheme in the synchronously driven OPO leads to a temporal gain
window which is responsible for the time gating of the parametric gain and is
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expressed by the gain-clipping effect. In Fig. 2.1(c) we consider the unsaturated
amplification of several signal pulses with different temporal positions on the fast
time scale with respect to the pump pulse. The signal pulse which undergoes the
maximal overlap with the pump in the entire non-stationary OPA process experiences
the maximum gain. This gain gradually decreases on either side of this optimal
temporal position on the fast-time axis, thereby enforcing a temporal gating of the
gain. This gain window progressively broadens as the pump power is increased above
the threshold. A signal pulse that experiences GVD-induced temporal broadening
and extends beyond this temporal gain window will experience a less net gain.
This competition between GVD and this gain-clipping mechanism gives rise to the
temporal balance.

Finally, the timing balance (synchronization) is determined by the mutual interplay
between the linear cavity detuning, gain saturation, and gain clipping. The cavity
detuning causes a timing mismatch from exact synchrony with the pump repetition
rate. Doubly-resonant OPOs can only oscillate around cavity detunings where the
round-trip phase accumulation are integer multiples of 𝜋 [14]. The cavity detuning
phase can be expressed as Δ𝜙 = 𝜋𝑙, where integer values of 𝑙 represent the center of
these discrete OPO peaks as shown in Fig. 2.2(a,b). A zoomed-in view of a single
peak structure is shown in the inset of Fig. 2.2(a). Within a peak, the OPO can
oscillate in degenerate or non-degenerate regimes [44]. We operate at the cavity
detuning which corresponds to the degenerate mode of operation in order to access
the dissipative quadratic soliton. The timing mismatch (detuning induced delay with
respect to the synchronous pumping) can be expressed as Δ𝑇 = _𝑙

2𝑐 , where 𝑐 is the
group velocity of the half-harmonic signal with wavelength _ in the cavity.

The gain saturation arises due to pump depletion. As the signal walks through the
pump (due to the group velocity mismatch) the leading edge of the soliton
experiences a larger gain than the trailing edge since the trailing edge experiences
the depleted pump. This causes a pulse centroid shift in response to this underlying
nonlinear acceleration [17]. The gain-clipping on the other hand is aligned with
the pump’s temporal position on the fast-time scale and also contributes to the
timing balance. The synchronization of the quadratic soliton supported in the
synchronously pumped OPO can be expressed in terms of 𝐹𝐶𝐸𝑂 (Carrier Envelope
Offset Frequency) locking, and 𝐹𝑅𝐸𝑃 (Repetition Frequency) locking to the pump.
While the doubly-resonant OPO can have multiple modes of operation (see
Supplementary Section 2.5.8 ), the quadratic soliton in the steady state exists in the
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Figure 2.3: Spectral and temporal characteristics of the quadratic soliton.
The spectrum of the soliton (signal at half-harmonic centered around 193.9 THz
represented by red solid line) obtained a) experimentally and b) through numerical
simulation. The pump spectrum is represented in blue solid lines centered around
387.8 THz. c) The degenerate half-harmonic quadratic soliton formation is
accompanied by significant temporal pulse compression as can be visualized from
the intensity cross-correlation trace. The flat-top pump temporal profile (∼ 13.2ps)
is shown as the blue dotted line and is obtained by numerical simulation.

𝐹𝑅𝐸𝑃 and 𝐹𝐶𝐸𝑂 locked synchronized state. Thus the demonstrated quadratic
soliton is capable of transferring the frequency comb stability properties of the
pump in addition to the coherent spectral broadening (i.e., the pulse shortening)
mechanism. The spontaneous evolution of these solitonic pulses from background
noise obtained via numerical simulation is shown in Fig. 2.2(c). The
non-normalized version (top panel of Fig. 2.2(c)) and normalized version (bottom
panel of Fig. 2.2(c), where the intra-cavity intensity of each round-trip is
normalized to itself) of the round-trip evolution highlights the several dynamical
regimes of the quadratic soliton formation. The nonlinear dynamics is initiated by
spatio-temporal gain competition, followed by gradual building up of the
signal/soliton pulse which eventually becomes intense enough to undergo
gain-saturation leading to pulse centroid shift/nonlinear acceleration. Finally, the
soliton reaches the steady state and maintains synchronization with the pump.
Figure 2.2(d) shows the time evolution of the OPO in the case of large cavity
detuning. This exemplifies the role of gain-saturation and gain-clipping in timing
balance/synchronization. Large cavity detuning is also associated with timing
mismatch (from exact synchrony) which results in a pulse delay/ advance each
round-trip, as shown in the initial evolution cycles in the bottom panel of
Fig. 2.2(d). The slope of this pulse delay is represented by the dotted lines and
corresponds to the cavity detuning-induced timing delay (Δ𝑇). Below the
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threshold, this large timing mismatch cannot be completely compensated by the
gain-clipping mechanism leading to an 𝐹𝐶𝐸𝑂 unlocked state, where the signal still
maintains 𝐹𝑅𝐸𝑃 locking. Above the threshold, the onset of gain-saturation takes
place, and the combined effect of gain-saturation and gain-clipping leads to the
timing balance resulting in the soliton maintaining synchronization (𝐹𝐶𝐸𝑂 and
𝐹𝑅𝐸𝑃 locked ) with the pump. The combination of these balancing effects can be
elucidated using the semi-analytical variational formalism which expresses the
pulse parameters (energy, temporal width, and centroid) in terms of the cavity and
driving parameters (see Supplementary Section 2.5.2 ) [14].

Figure 2.3 shows the measured and simulated spectral and temporal characteristics
of the quadratic soliton. Significant spectral broadening of the signal compared
to the pump is shown in Fig. 2.3(a,b). The soliton pulse is characterized using
an intensity cross-correlation technique as shown in Fig. 2.3(c) overlaid with the
pump pulses at the output of the waveguide. The OPO operation at degeneracy is
confirmed by the radio-frequency (RF) beat-note measurement (see Supplementary
Section 2.5.4 ).

The quadratic soliton is formed near the oscillation threshold of the OPO. The OPO
threshold is associated with a phase transition in the spatiotemporal correlation
properties of the quadrature fluctuations and the accompanying symmetry breaking
[13]. As the pump power (expressed in the normalized form 𝑝 denoting the number
of times above the threshold) increases further above the threshold, the temporal
width of the gain-clipping region increases, and the soliton transitions into the box-
pulse regime (see Supplementary Section 2.5.3 ) [14]. In the box-pulse regime, gain-
clipping dominates over the cavity GVD, and the pulse assumes a box-pulse shape,
deviating from the approximate sech profile in the near-threshold soliton regime. In
the soliton regime, the effect of group-velocity dispersion is counterbalanced by the
gain-clipping, and the soliton exhibits characteristic pulse-width variation with a
power law dependence on the total cavity dispersion (GDD, group delay dispersion)
(scale to the 2/5 power of the GDD, see Supplementary Section 2.5.2 ), while in
the box pulse regime, the pulse length is almost invariant with GDD. This distinct
pulse-width scaling is shown in Fig. 2.4(a). Figure 2.4(b) shows an illustrative
diagram of the region of existence of different pulse regimes in the parameter space
of pump power and dispersion. The soliton regime is accessed close to the threshold.
When the pump power is far above the threshold, the system enters the box-pulse
regime for large values of dispersion, while multi-pulsing occurs for small values of
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Figure 2.4: Soliton and Box-pulse regimes. a) Pulse width scaling as a function
of dispersion in the soliton and box-pulse regimes. The soliton pulse width scales
linearly (in log-scale) with dispersion, while the pulse width in the box-pulse regime,
which is dominated by gain-clipping, is almost independent of dispersion. b)
Illustrative phase diagram in the parameter space of pump power and dispersion
indicating the region of existence of various pulse regimes (soliton, box-pulse, multi-
pulse). c) Temporal profiles and d) spectrum of the OPO in the soliton and box-pulse
regimes, respectively. The doubly-resonant OPO supports quadratic soliton near the
threshold, and it transits to box-pulse-shaped pulses as the pump power is raised
above the threshold. e) Spectral narrowing as the OPO enters further in the box-
pulse regime as is evident by the decreasing OPO 3 dB bandwidth. The shading
represents the 3dB portion of the spectra. f) The associated temporal broadening
reflected in terms of temporal full-width half maximum obtained from the intensity
cross-correlation data as the pump power is increased above the threshold. The
solid curves represent fit according to the gain-clipping variation. The error bars
represent uncertainty associated with the intensity cross-correlation technique.
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dispersion. Typical spectral and temporal characteristics of the OPO in the solitonic
and box-pulse regimes are shown in Fig. 2.4(c,d). The 3 dB spectral bandwidth of
the OPO decreases with increasing pump power as shown in Fig. 2.4(e), and the
corresponding variation of the measured full-width at half-maximum of the pulses
in the time domain is shown in Fig. 2.4(f). This scaling of the pulse width is distinct
from the temporal simultons, which are bright/dark soliton pairs in a quadratic media
(see Supplementary Section 2.5.7 ) [51].
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Figure 2.5: Dispersion engineering and efficient half-harmonic soliton pulse-
compression. a) Variation of the soliton bandwidth as a function of cavity
dispersion. Different dispersion configurations are realized in the experiment
by altering the combinations of normal (dispersion compensating polarization
maintaining fibers) and anomalous dispersion (polarization maintaining fibers)
fibers. The blue and green circles refer to the scenarios corresponding to net
normal and anomalous cavity dispersion, respectively. The error bars represent
variations due to the uncertainty in the number of times above threshold operation
in different GDD scenarios. b) Fine control in dispersion engineering is possible
in thin-film integrated waveguide-based devices by choosing appropriate etch depth
and waveguide width. The FOM defined in (Eq. 2.1) is plotted, where high values of
FOM indicate large attainable pulse compression. Here, 𝐿 is assumed to be 6 mm.
c) Numerical simulation corresponding to the optimum FOM showing significant
spectral broadening in the soliton formation, corresponding to a pulse compression
by a factor of ∼ 60.

The soliton pulse width can be obtained from the semi-analytical variational
calculations (see Supplementary Section 2.5.2 ), and its dependence on the cavity

parameters can be expressed as: 𝜏𝑠𝑒𝑐ℎ =

(
7

15

(
𝜙
′
2

)2
𝑇𝑝

ln(𝐺0)ln(2)

) 1
5

, where 𝜙′

2 is the cavity

GDD, (1 − 𝐺−1
0 ) represents the round-trip loss, and 𝑇𝑝 is the pump pulse width.

We have assumed the optimum pump pulse width (𝑇𝑝 = 𝐿𝑢, where 𝐿 is the
waveguide length and 𝑢 is the walk-off parameter) where the pulse width matches
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the walk-off length in the waveguide. Also, the contribution of higher-order
dispersions has been neglected in deriving this expression. In the limit of GDD →
0, the above GDD-dependent approximation of the pulse width breaks down, and
the pulse width is instead determined by the higher-order dispersion coefficients
(see Supplementary Section 2.5.2 ). The pulse compression factor can then be
expressed as 𝑇𝑝/𝜏𝑠𝑒𝑐ℎ. We define a figure of merit (FOM) which is indicative of the
amount of pulse compression attained and can serve as the design guidelines for
achieving optimum soliton compression. The FOM in a non-zero GDD scenario
for a given length (𝐿) of the phase-matched quadratically nonlinear region is
defined as (see Supplementary Section 2.5.2 ):

𝐹𝑂𝑀 =

����𝑢2𝐿

𝛽2

���� . (2.1)

A large value of GVM and a small value of GVD (𝛽2) (either normal or anomalous)
favors efficient soliton compression. Figure 2.5(a) shows the experimental results
of variation of soliton spectral bandwidth with changing cavity dispersion that has
been realized by combining different lengths of normal and anomalous GVD fibers.
Some of these fiber combinations yield net normal cavity GVD (blue circles in
Fig. 2.5(a)), and the rest experiences net anomalous cavity GVD (green circles in
Fig. 2.5(a)). The quadratic soliton can exist irrespective of the sign of the cavity
second order GVD coefficient. Extensive dispersion engineering capability can be
accessed through an integrated nanophotonics platform which can be designed to
maximize the FOM [18, 19, 25]. Fig 2.5(b) shows the plot of the FOM as the
width and etch depth of a typical lithium niobate ridge waveguide are varied (see
Supplementary Section 2.5.5 ). If we now consider a point corresponding to a large
value of the FOM, we predict (using numerical simulation) a pulse compression
in excess of a factor of 60 for a 6-mm-long parametric gain section (dispersion
parameters are reported in Supplementary Section 2.5.5 ), leading to the generation
of few optical cycles pulses starting from picosecond pump pulses as shown in
Fig. 2.5(c). Further improvement can be obtained by utilizing longer gain sections
and engineering a flat dispersion profile while taking higher-order GVD coefficients
into consideration [9].
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Figure 2.6: Comparison of existing approaches of quadratic and cubic
nonlinearity mediated pulse compression. The ♦ (Kerr nonlinearity driven) and
• (quadratic nonlinearity driven) refer to the data points in the space of the amount
of pulse compression attained against the average pump power used as obtained
from the corresponding references. A desirable operating condition is the top-left
corner of the plot. Here only pulse-driven systems have been considered and the
CW-driven soliton generation process has not been included in this comparison.

2.4 Discussion
Figure 2.6 presents an overview of the existing approaches of pulse compression
in the parameter space of compression factor and pump pulse energy utilized.
Prevailing popular approaches include, but are not limited to, pulse-pumped Kerr
solitons [40, 41], Kerr solitons in enhancement cavities [29], Kerr solitons in active
cavities [11], singly resonant synchronously pumped OPOs [26], and soliton
compression in waveguides [6, 8]. It is highly desirable to attain large compression
factors with low pump pulse energy (top-left corner of the landscape in Fig. 2.6).
In our work, we have achieved a pump-to-signal pulse-compression factor of ∼ 42
which compressed a ∼ 13.2 ps flat-top pulse at 775 nm, to ∼ 316 fs at 1550 nm
corresponding to a 3 dB spectral bandwidth of 8.3 nm. The pump average power
was close to 1 mW, which amounts to 4 picojoules of pulse energy. This presents
our work as a significant advancement over the existing approaches and elucidates
the opportunities associated with soliton generation in quadratic nonlinear
resonators. The experimental conversion efficiency is estimated to be near 10%
(after considering the effect of insertion losses in the interfaces of the setup), which
is consistent with our numerical simulation (see Supplementary Section 2.5.6 ).
Additionally, an extension of the demonstrated concept to integrated nano-photonic



31

platforms will allow ultra-low power operation with soliton formation possible at
several femtojoules of pump pulse energy [18, 25, 30]. The low-finesse operation
relaxes fabrication requirements for the on-chip realization of quadratic solitons,
and the picosecond pump pulses can be generated using integrated electro-optic
modulators [53], thereby paving the way for the complete system integration.

The dissipative quadratic soliton under consideration is reliant on pump pulses,
which is unlike CW-driven Kerr solitons but shares similarities to other variants of
solitons where a trigger pulse is required [11]. However, the soliton exhibits only a
weak dependence on the exact temporal structure of the pump pulse because of the
importance of all the balancing mechanisms for the soliton formation.

We should also note that the presented soliton formation is in stark contrast with
previous demonstrations of pulse compression in bulk OPOs, where only the non-
degenerate signal oscillates [21, 26]. While non-stationary OPA is a common
element, the presented soliton formation in doubly-resonant OPOs is rooted in
the interplay between phase-sensitive amplification and degenerate signal resonant
condition, which is absent in their singly resonant counterparts. This demarcation
is further accentuated by the synchronization of both the CEO frequency and the
repetition rate to the pump, fixed output wavelength, and low-power operation.

Various modes of operation of degenerate OPOs (DOPO) provide a rich landscape
that can cater to the diverse requirements in ultra-short pulse sources in different
wavelength ranges [17, 45]. The walk-off induced soliton represents the giant
pulse-compression regime of operation of DOPO. In this solitonic regime, the
pulse width scales with GDD, and good conversion efficiencies can be achieved on
account of low finesse cavity operation. However, due to the gain-clipping
dominated box-pulse scaling behavior, the bandwidth decreases with increasing
pump power, which prevents it to achieve even higher conversion efficiencies. The
simulton regime represents another solitonic mode of operation of DOPOs [17]. In
this regime, GVD-free scaling of pulse width is observed, and thanks to the
favorable trend of increasing bandwidth with pump power, higher conversion
efficiency can be attained. However, the simulton regime requires that the
detuning-induced timing mismatch and gain-clipping window are of comparable
timescale along with some minimum third-order dispersion for its existence. This
leads to a trade-off in terms of the attainable pulse compression and pump power
(threshold requirement) (see Supplementary Section 2.5.7). Proper dispersion
engineering of an OPO can lead to the formation of simultons in a dispersion
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regime where large pulse compression is expected to be accompanied by high (
> 50%) conversion efficiencies, (see Supplementary Section 2.5.7 ).

2.5 Supplementary
2.5.1 Experimental Details
The detailed schematic of the experimental setup is shown in Fig. 2.7. Here,
red solid lines (with glows) refer to the free space optical path, blue/orange/red
solid lines represent polarization maintaining (PM) fiber-guided optical path (1550
nm/ 780nm/ PM-DCF), and black solid lines represent electrical connections. The
wavelength of the light is represented as 775 (775 nm) or 1550 (1550 nm) at various
places in the schematic.

The pump at 775 nm which is approximately 13 ps long is prepared by Second
Harmonic Generation (SHG) of 1550 nm light coming from mode-locked Menlo
optical frequency comb via a 40 mm long Periodically Poled Lithium Niobate
(PPLN) bulk crystal. The pump power is controlled by a combination of a Half-
wave plate and a polarizer which acts as a Variable Optical Attenuator (VOA). The
pump wavelength is controlled by temperature tuning of the PPLN SHG crystal.

The OPO consists of a 40 mm long PPLN reverse-proton exchange waveguide with
fiber pigtails [24]. The rest of the cavity is composed of various lengths of
polarization-maintaining single-mode fibers and polarization-maintaining
dispersion compensating fibers (DCF) to engineer the cavity dispersion. A
free-space portion terminated by fiber collimators is incorporated in order to
ensure the cavity round-trip time is approximately equal to an integer multiple of
the inverse of the mode-locked laser pulse repetition rate (4ns/ 250 MHz). A fiber
phase shifter (FBS) is used to lock the cavity via the Pound-Drever-Hall (PDH)
locking technique, and a Piezo Transducer (PZT) is used to dither the cavity for the
locking purpose. The OPO is sampled using a Pellicle Beam Splitter (BS) having
45% reflectivity. The round-trip loss of the cavity is ∼ 12 dB.

The OPO output is filtered by a long pass filter ensuring that there is no residual
775 nm light. The OPO spectrum is characterized by an Optical Spectrum Analyser
(OSA). Beat-note measurement (green dashed rectangle) with Local Oscillator (LO)
has been performed to monitor the OPO operation at degeneracy/ non-degeneracy.
Here the LO is delayed by a suitable amount to ensure temporal overlap between the
LO pulses and OPO pulses at the PM fiber coupler. An Electrical Spectrum Analyzer
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(ESA) measures the beat-note from the signal received using a fast photo-detector
(FPD). Temporal characterization of the OPO pulses has been performed using the
intensity non-collinear cross-correlation measurement technique. The OPO output
power was not high enough to perform auto-correlation. Instead, we performed SHG
cross-correlation on a 0.5 mm thick BBO crystal (angle phase-matched) using an
ultra-short (much shorter than the OPO pulses) auxiliary pulse/LO (Menlo Comb
output). To enhance the Signal to Noise ratio a lock-in detection scheme was
employed using a mechanical chopper and the SHG up-converted signal was detected
using an avalanche silicon photo-detector. The LO was scanned using a motorized
delay stage.

Figure 2.7: Detailed schematic of the experimental setup. Abbreviations used are:
OPA- Optical Parametric Amplification, SHG- Second Harmonic Generation, VOA-
Variable Optical Attenuator, LO- Local Oscillator, OC- Optical Collimator, BS-
Beam Splitter, TBP- Tunable Band-pass Filter, ESA- Electrical Spectrum Analyser,
OSA- Optical Spectrum Analyser, BBO- Beta-Barium Borate Crystal, FPS- Fiber
Phase Shifter, PZT- Piezo Transducer, PDH-Pound Drever Hall, DCF- Dispersion
Compensating Fiber, PM- Polarization Maintaining.
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2.5.2 Analytical Expression for Soliton Pulse Parameters
Governing Equations

Here, we show the derivation of the dependence of the pulse parameters on the OPO
dynamics. The formalism follows the approach in [14]. The evolution of the signal
and pump envelopes in the 𝜒(2) nonlinear waveguide is given by:

𝜕𝑎(𝑧, 𝑡)
𝜕𝑧

=

[
−1

2
𝛼𝑎 − i

𝛽𝑎2
2
𝜕2

𝜕𝑡2
+
𝛽𝑎3
6
𝜕3

𝜕𝑡3
+ . . .

]
+ 𝜖𝑎∗𝑏 (2.2a)

𝜕𝑏(𝑧, 𝑡)
𝜕𝑧

=

[
−1

2
𝛼𝑏 − 𝑢

𝜕

𝜕𝑡
− i
𝛽𝑏2
2
𝜕2

𝜕𝑡2
+
𝛽𝑏3
6
𝜕3

𝜕𝑡3
+ . . .

]
− 1

2
𝜖𝑎2 (2.2b)

where, 𝑎 and 𝑏 represents the signal and pump envelopes, with
∫
|𝑎 |2𝑑𝑡,

∫
|𝑏 |2𝑑𝑡

represents the corresponding photon number in the pulse. 𝛼𝑎, 𝛼𝑏 are the attenuation
co-efficient which we neglect henceforth, since we will be dealing with low Q
cavities, and the cavity loss (outside the waveguide) is much higher than the loss in
the waveguide propagation. 𝛽2, 𝛽3 denotes the second-order and third-order group
velocity dispersion parameters. 𝑢 represents the walk-off parameter and is given by:
𝑢 = 1

𝑣𝑏𝑔
− 1

𝑣𝑎𝑔
as the difference of the inverse of the group-velocities. The effective

nonlinear coupling is given by 𝜖 which is expressed as 𝜖 =
2𝜔𝑎Y𝑏𝑑𝑒 𝑓 𝑓

∫ ∫
𝐸2
𝑇,𝑎

𝐸𝑇,𝑏𝑑𝑥𝑑𝑦

𝑛𝑎𝑐
,

with Y =

√︃
ℏ𝜔𝑏

2𝑛𝑛𝜖0𝑐
, and 𝐸𝑇 are the normalized transverse mode-profile. We assume

a flat-top pump profile and will neglect the pump dispersion terms henceforth. The
dynamics of the signal outside the waveguide (feedback path) are given by:

𝑎𝑛+1
𝑤 (0, 𝑡) = F −1

[
𝐺

− 1
2

0 exp−i𝜙F
[
𝑎𝑛𝜔 (𝐿, 𝑡)

] ]
. (2.3)

Here, (1 − 𝐺−1
0 ) is the round-trip cavity loss (including the out-coupling loss and

propagation loss/ insertion loss of components), and 𝐿 is the length of the PPLN
waveguide. 𝜙 is given by: 𝜙 = Δ𝜙 + 𝑙𝜔_𝑎

2𝑐 + 𝜙2
2 𝜔

2, where Δ𝜙 = 𝜋𝑙 is the cavity
detuning, with 𝑙 when changed in integers results in the cavity being detuned by
_𝑎/2 and denotes the peak number in the doubly-resonant OPO scanning peak
structure. 𝜙2 represents the cavity group-velocity dispersion contribution. The
pump is non-resonant, so no feedback contribution.

The CW threshold of the OPO is given by the pump amplitude 𝑏0 = 1
2𝜖𝐿 ln(𝐺0).

The applied pump amplitude is expressed as 𝑏 = 𝑝𝑏0, where 𝑝 is the number of
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times above the threshold. The pump is a flat-top pulse with amplitude 𝑏 and width
𝑇𝑝. The optimum pulse width is given by 𝑇𝑝 = 𝐿𝑢, i.e., when the pump pulse length
matches the walk-off length.

The OPO dynamics in each round-trip can be divided into two steps akin to the
split-step approach. The first is the Dispersion step where the effect of dispersion is
included and the pump is assumed to be CW, and the other step is the Dispersion-less
step where the finite extent of the pump is considered, but the effect of dispersions
are neglected.

In the Dispersion step the round-trip pulse evolution can be expressed as:
𝑎(𝜔; 𝑛 + 1) = Δ(𝜔)𝑎(𝜔; 𝑛), where 𝑛 is the round-trip number. We define,
𝐷 (𝛿𝜔) = ln

(
Δ(𝛿𝜔)
Δ𝑚𝑎𝑥

)
.

In the Dispersion-less step the round-trip pulse evolution can be expressed as:
𝑎(𝑡; 𝑛 + 1) = Γ𝑎(𝑡; 𝑛). We define, 𝐺 (𝑡) = ln(Γ).

Combining we get: 𝑎(𝑡; 𝑛 + 1) = Γ(𝑡)Δ(i 𝑑
𝑑𝑡
)𝑎(𝑡; 𝑛). We can approximate Δ ≃

Δ𝑚𝑎𝑥 (1 + 𝐷) and Γ ≃ 1 + 𝐺. This leads to the following OPO master equation:

𝑎(𝑡; 𝑛 + 1) = Δ𝑚𝑎𝑥

[
1 + 𝐺 (𝑡) + 𝐷 (i 𝑑

𝑑𝑡
)
]
𝑎(𝑡; 𝑛). (2.4)

Dispersion step: We assume the signal is located at frequency 𝜔𝑎 + 𝛿𝜔 and its
counterpart idler is located at 𝜔𝑎 − 𝛿𝜔. We can write the coupled evolution of the
signal and the idler in the nonlinear waveguide in the frequency domain as:

[
𝑎𝑠 (𝐿)
𝑎𝑖 (𝐿)∗

]
= exp

([
i 𝛽

𝑎
2

2 (𝛿𝜔)2 + i 𝛽
𝑎
3

6 (𝛿𝜔)3 𝜖𝑏

𝜖𝑏 −i 𝛽
𝑎
2

2 (𝛿𝜔)2 + i 𝛽
𝑎
3

6 (𝛿𝜔)3

]
𝐿

) [
𝑎𝑠 (0)
𝑎𝑖 (0)∗

]
.

(2.5)

Including the cavity feedback path we get:[
𝑎𝑛+1
𝑠

𝑎∗
𝑛+1
𝑖

]
= 𝐺

− 1
2

0 exp
i
(
𝛽𝑎3 𝐿

6 (𝛿𝜔)3+ 𝜙3
6 (𝛿𝜔)3+ 𝑙 𝛿𝜔_𝑎

2𝑐

) 
expi

(
𝜙2
2 (𝛿𝜔)2+𝜋𝑙

)
0

0 exp−i
(
𝜙2
2 (𝛿𝜔)2+𝜋𝑙

)
exp

([
i 𝛽

𝑎
2

2 (𝛿𝜔)2 𝜖𝑏

𝜖𝑏 −i 𝛽
𝑎
2

2 (𝛿𝜔)2

]
𝐿

) [
𝑎𝑛𝑠

𝑎∗
𝑛

𝑖

]
. (2.6)
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The gain is given by the larger eigenvalue which is given by:

Δ(𝛿𝜔) ≃ Δ𝑚𝑎𝑥cos

(
𝜋𝑙 +

𝜙
′

2
2
(𝛿𝜔)2

)
(2.7)

where, 𝜙′

2 = 𝜙2 + 𝛽𝑎2𝐿 and Δ𝑚𝑎𝑥 = 𝐺
𝑝−1

2
0 . Thus we get:

𝐷 (𝛿𝜔) = ln
(
Δ(𝛿𝜔)
Δ𝑚𝑎𝑥

)
≃ −

𝜙
′

2
2

tan(𝜋𝑙) (𝛿𝜔)2 −
(𝜙′

2sec(𝜋𝑙))2

8
(𝛿𝜔)4. (2.8)

Dispersion-less step: Eq. 2.2(b) (neglecting the dispersions and propagation loss)
can be solved using the method of characteristics which gives:

𝑏(𝑧, 𝑡) = 𝑏𝑖𝑛 (𝑡 − 𝑢𝑧) −
𝜖

2

∫ 𝑧

0
𝑎(𝑧′ , 𝑡 + 𝑢(𝑧′ − 𝑧))2𝑑𝑧

′
. (2.9)

We invoke the gain-without-distortion ansatz. This implies we assume: 𝑎(𝑧′ , 𝑡) =
exp

𝑔 (𝑧
′
−𝑧)

2 𝑎(𝑧, 𝑡), where 𝑔𝐿 = ln(𝐺0). Substituting 𝑡 ′ = 𝑡 + 𝑢(𝑧′ − 𝑧) and in the limit,
where the walk-off length is much greater than signal pulse width (regime of pulse
compression) (𝐿𝑢 ≫ 𝜏), we can replace the lower limit 𝑡 − 𝑢𝑧 to −∞.

𝑏(𝑧, 𝑡) = 𝑏𝑖𝑛 (𝑡 − 𝑢𝑧) −
𝜖

2𝑢

∫ 𝑡

−∞
exp

𝑔 (𝑡
′
−𝑡 )

𝑢 𝑎(𝑧, 𝑡 ′)2𝑑𝑡
′

(2.10)

This when substituted in Eq. 2.2(a) eliminates the pump in the dispersion-less step:

𝜕𝑎(𝑧, 𝑡)
𝜕𝑧

= 𝜖𝑎∗𝑏𝑖𝑛 (𝑡 − 𝑢𝑧) −
𝜖2

2𝑢
𝑎∗(𝑧, 𝑡)

∫ 𝑡

−∞
exp

𝑔 (𝑡
′
−𝑡 )

𝑢 𝑎(𝑧, 𝑡 ′)2𝑑𝑡
′
. (2.11)

Now removing the DC component of the pump to prevent double-counting in both
steps we get:

𝜕𝑎(𝑧, 𝑡)
𝜕𝑧

= 𝜖𝑎∗ (𝑏𝑖𝑛 (𝑡 − 𝑢𝑧) − 𝑏𝑚𝑎𝑥) −
𝜖2

2𝑢
𝑎∗(𝑧, 𝑡)

∫ 𝑡

−∞
exp

𝑔 (𝑡
′
−𝑡 )

𝑢 𝑎(𝑧, 𝑡 ′)2𝑑𝑡
′
. (2.12)

First, we consider the dispersion-less step without gain saturation. We have:

𝜕𝑎(𝑧, 𝑡)
𝜕𝑧

= 𝜖𝑎∗ (𝑏𝑖𝑛 (𝑡 − 𝑢𝑧) − 𝑏𝑚𝑎𝑥) . (2.13)

This leads to:
𝑎𝑛+1(𝑡) → 𝑎𝑛 (𝑡)exp

∫ 𝐿

0 𝜖 (𝑏𝑖𝑛 (𝑡−𝑢𝑧)−𝑏𝑚𝑎𝑥)𝑑𝑧. (2.14)

Here, we have assumed 𝑎(𝑡) is real resulting from the phase-sensitive amplification.
Thus, we get: 𝐺 (𝑡) =

∫ 𝐿

0 𝜖 (𝑏𝑖𝑛 (𝑡 − 𝑢𝑧) − 𝑏𝑚𝑎𝑥) 𝑑𝑧. For a flat-top pulse with pulse
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width, 𝑇𝑝 = 𝐿𝑢, we have: 𝐺 (𝑡) ≃ − 𝜖𝑏𝑚𝑎𝑥 |𝑡 |
𝑢

= − 𝑝ln(𝐺0) |𝑡 |
2𝑇𝑝 . 𝐺 (𝑡) is known as the

gain-clipping function.

Now, we consider the dispersion-less step with gain saturation. Near the threshold,
we can approximate Eq. 2.10 as:

𝑏(𝑧, 𝑡) = 𝑏𝑖𝑛 (𝑡 − 𝑢𝑧) −
𝜖

2𝑢

∫ 𝑡

−∞
𝑎(𝑧, 𝑡 ′)2𝑑𝑡

′
. (2.15)

This leads to:
𝜕𝑎(𝑧, 𝑡)
𝜕𝑧

= 𝜖𝑎∗ (𝑏𝑖𝑛 (𝑡 − 𝑢𝑧) − 𝑏𝑚𝑎𝑥) −
𝜖2

2𝑢
𝑎∗(𝑧, 𝑡)

∫ 𝑡

−∞
𝑎(𝑧, 𝑡 ′)2𝑑𝑡

′
. (2.16)

Sech Ansatz

We assume that the quadratic soliton near the threshold can be expressed as a sech
pulse assuming the form:

𝑎(𝑧, 𝑡) = 𝐴(𝑧)
√

2𝜏
sech

(
𝑡 − 𝑇 (𝑧)
𝜏(𝑧)

)
. (2.17)

Here, the pulse parameters are: |𝐴|2 represents the photon number in the pulse, 𝑇
represents the centroid of the pulse, and 𝜏 represents the width of the pulse. We
obtain the evolution of the pulse parameters using the manifold projection method,
where the equation of motion given by Eq. 2.16 is projected on the space of sech-
shaped pulses of the form given by Eq. 2.17. According to the projection method,
the evolution of the pulse parameters b, b ∈ {𝐴,𝑇, 𝜏} is given by:

𝑑b

𝑑𝑧
=

∫
𝜕𝑎
𝜕b

𝜕𝑎
𝜕𝑧
𝑑𝑡∫

𝜕𝑎
𝜕b

𝜕𝑎
𝜕b
𝑑𝑡

(2.18)

where, 𝜕𝑎
𝜕b

is calculated using Eq. 2.17 and 𝜕𝑎
𝜕𝑧

is calculated using Eq. 2.16.

Along with the evolution governed by Eq. 2.16, perturbations are incorporated due
to dispersion and detuning. In the near-threshold limit, this leads to the following
equations for the pulse parameters:

𝑑𝐴

𝑑𝑛
=

[
𝑝 − 1

2
ln(𝐺0) −

ln(𝐺0)
2𝑇𝑝

ln
[
2cosh

(
𝑇

𝜏

)]
𝜏 − 1

3
𝜙

′

2tan(𝜋𝑙)
2𝜏2

]
𝐴

− 7
15

(
𝜙

′

2sec(𝜋𝑙)
)2

8𝜏4 𝐴 − 𝛽𝐴3 (2.19a)
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𝑑𝑇

𝑑𝑛
=
_𝑎𝑙

2𝑐
− 𝜏𝛽𝐴2 − 3𝜏2

4𝑇𝑝
ln(𝐺0)tanh

(
𝑇

𝜏

)
(2.19b)

𝑑𝜏

𝑑𝑛
=

18
3 + 𝜋2

ln(𝐺0)
2𝑇𝑝

[
𝑇

𝜏
tanh

(
𝑇

𝜏

)
− ln

[
2cosh

(
𝑇

𝜏

)] ]
𝜏2

+ 12
3 + 𝜋2

𝜙
′

2tan(𝜋𝑙)
2𝜏

+ 168
5(3 + 𝜋2)

(
𝜙

′

2sec(𝜋𝑙)
)2

8𝜏3

(2.19c)

where, 𝛽 =
𝐺0−1
8𝑁𝑏,0

.

In Eq. 2.19(a), the first term on the right represents the CW gain, the O(𝜏) represents
gain-clipping, while O(𝜏−1),O(𝜏−3) represents dispersion terms. The pulse width
at zero detuning (Δ𝜙=0), can be calculated by balancing the gain-clipping and
dispersion terms. Also, at threshold 𝑇 ≃ 0. We get:

𝜏sech =

(
7

15

(
𝜙

′

2
)2
𝑇𝑝

ln(𝐺0)ln(2)

) 1
5

. (2.20)

This leads to the characteristic slope of 2
5 in the log scale plot of pulse width with

respect to GDD. Note that, while deriving Eq. 2.20 we have neglected the effect
of third-order group-velocity dispersion. When 𝜙′

2 → 0, the contributions from
third-order dispersion should be included.

For, 𝑙 ≠ 0, (in the degenerate regime), the 𝜏−1 term in Eq. 2.19(c) dominates and
the pulse width in steady state is given by:

𝜏sech =

(
2
3
𝜙

′

2𝑇𝑝tan(𝜋𝑙)
ln(𝐺0)ln(2)

) 1
3

. (2.21)

This will lead to the characteristic slope of 1
3 in the log scale plot of pulse width

with respect to GDD.

The agreement between the semi-analytical method described here and the full
numerical simulations are shown in Fig. 2.8.

Effect of higher-order dispersion

When the second-order dispersion (GVD) goes to zero, the effect of higher-order
dispersions has to be accounted for. The total third order dispersion (TOD) can be
expressed as 𝜙′

3 = 𝜙3 + 𝛽3𝐿, where 𝜙3 is the total TOD of the feedback path, and 𝛽3
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Figure 2.8: Comparison of semi-analytical calculation and numerical results.
a) Photon-number, b) Centroid, and c) Pulse-width. The red dotted lines represent
the steady-state values obtained using numerical simulations. Parameters used are:
𝑝 = 1.05, 𝐺0 = 3.3. The cavity detuning is zero and zero cavity dispersion (𝜙2 = 0).
The two approaches agree closely in the near-threshold regime.

is the TOD co-efficient of the waveguide in the OPA region. The TOD influences
the pulse centroid. In the presence of TOD, Eq. 2.8 is modified as:

𝐷 (𝛿𝜔) = ln
(
Δ(𝛿𝜔)
Δ𝑚𝑎𝑥

)
≃ −

𝜙
′

2
2

tan(𝜋𝑙) (𝛿𝜔)2 −
(𝜙′

2sec(𝜋𝑙))2

8
(𝛿𝜔)4 + i

𝜙
′

3
6
(𝛿𝜔)3.

(2.22)

With this modification, Eq. 2.19(b) is re-written as:

𝑑𝑇

𝑑𝑛
=
_𝑎𝑙

2𝑐
− 𝜏𝛽𝐴2 − 3𝜏2

4𝑇𝑝
ln(𝐺0)tanh

(
𝑇

𝜏

)
+

7𝜙′

3
30𝜏2 . (2.23)

Assuming, the GDD approaches zero, and the operation close to zero detuning, the
governing equations for the soliton parameters can be expressed as:

𝑑𝐴

𝑑𝑛
=

[
𝑝 − 1

2
ln(𝐺0) −

ln(𝐺0)
2𝑇𝑝

ln
[
2cosh

(
𝑇

𝜏

)]
𝜏

]
𝐴 − 𝛽𝐴3 (2.24a)
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𝑑𝑇

𝑑𝑛
= −𝜏𝛽𝐴2 − 3𝜏2

4𝑇𝑝
ln(𝐺0)tanh

(
𝑇

𝜏

)
+

7𝜙′

3
30𝜏2 (2.24b)

𝑑𝜏

𝑑𝑛
=

18
3 + 𝜋2

ln(𝐺0)
2𝑇𝑝

[
𝑇

𝜏
tanh

(
𝑇

𝜏

)
− ln

[
2cosh

(
𝑇

𝜏

)] ]
𝜏2. (2.24c)

In this case, close to the threshold, the pulse width will approximately vary as:

𝜏sech ∝
(
𝜙

′

3𝑇𝑝

ln(𝐺0)

) 1
4

. (2.25)

Thus, near zero GDD the effect of TOD has to be taken into consideration. The
simplified formula for FOM defined previously breaks down and one has to consider
the effect of higher-order dispersions. The design can then be aided by solving the
semi-analytical dynamical equations or resorting to full numerical simulations.

2.5.3 Soliton to Box-pulse transition
In Section 3, we have shown the behavior of the OPO in the soliton regime near
the threshold i.e., 𝑝 ∼ 1. Here, we study the behavior of the OPO in the box-pulse
regime, i.e., 𝑝 > 1. The formalism follows the approach in [14].

In this regime, the pulse dynamics is dominated by the gain-clipping and gain
saturation. The effects of dispersion are negligible. We ignore the dispersion and
only have to analyze the dispersion-less step to obtain the pulse properties in the box-
pulse regime. We consider the signal envelope to be slowly varying and decompose
it as: 𝑎(𝑧, 𝑡) = exp

𝑔𝑧

2 �̄�(𝑧, 𝑡). The evolution of �̄�(𝑧, 𝑡) can be obtained from Eq. 2.12
as:

𝜕�̄�(𝑧, 𝑡)
𝜕𝑧

= 𝜖 �̄� (𝑏𝑖𝑛 (𝑡 − 𝑢𝑧) − 𝑏0) −
𝜖2

2𝑢
exp𝑔𝑧 �̄�(𝑧, 𝑡)

∫ 𝑡

−∞
exp

𝑔 (𝑡
′
−𝑡 )

𝑢 �̄�(𝑧, 𝑡 ′)2𝑑𝑡
′
.

(2.26)

The solution of Eq. 2.26 can be written as:

�̄�𝑛+1 = �̄�𝑛exp

[
𝐹 (𝑡)−

𝜖 2(exp𝑔𝐿−1)
2𝑔𝑢

∫ 𝑡

−∞ exp
𝑔 (𝑡

′
−𝑡 )

𝑢 �̄�(𝑡′ )2𝑑𝑡
′
]

(2.27)

where 𝐹 (𝑡) = 𝐺 (𝑡) + 𝑝−1
2 ln(𝐺0). 𝐺 (𝑡) is the usual gain-clipping function. Now, at a

steady state, the argument of the exponential should vanish. Clearly, the second term
is negative. So, for non-trivial solution 𝐹 (𝑡) > 0. Also, 𝐹 (𝑡) should be increasing.
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This leads to: �̄�(𝑡) ≠ 0, when−𝑇𝑝 (1 − 𝑝−1) < 𝑡 < 0, and �̄�(𝑡) = 0, elsewhere. Now,
at steady state we can put the argument of the exponent as well as its derivative (Eq.
2.27) to zero yielding:

�̄�(𝑡)2 =
2𝑔𝑢

𝜖2 (
exp𝑔𝐿 − 1

) [
𝐹

′ (𝑡) + 𝑔
𝑢
𝐹 (𝑡)

]
=

2𝑔𝑢
𝜖2 (

exp𝑔𝐿 − 1
) [

ln(𝐺0)
2𝑇𝑝

𝑝 + ln2(𝐺0)
2𝑇𝑝

(
(𝑝 − 1) − 𝑝 |𝑡 |

𝑇𝑝

)]
=

4𝑁𝑏,0
(𝐺0 − 1)𝑇𝑝

[
𝑝 + ln(𝐺0)

(
𝑝 − 1 − 𝑝 |𝑡 |

𝑇𝑝

)]
.

(2.28)

Eq. 2.24 gives �̄�(𝑡) for −𝑇𝑝 (1 − 𝑝−1) < 𝑡 < 0, and �̄�(𝑡) = 0 elsewhere.

Figure 2.9: Variation of pulse-width with pump power. a) Experimentally
obtained cross-correlation traces, with the color plot representing the FWHM
variation with increasing pump power. b) Pulse shapes obtained from the box-
pulse theory using Eq. 2.23.

2.5.4 Beat-note measurement, degenerate and non-degenerate oscillation
Beat-note measurement helps to identify the OPO oscillation regime: degenerate/
non-degenerate. Doubly resonant OPO can oscillate both in degenerate/
non-degenerate regimes, which is a function of the cavity detuning and the cavity
dispersion [43]. When the OPO oscillates at degeneracy then the OPO consists of
a single signal frequency comb which is phase-locked to the pump. If the OPO
oscillates in the non-degenerate regime, then the OPO output consists of both a
signal and idler frequency comb having different carrier envelope offset
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frequencies. This will give rise to two beat-notes when the OPO output beats with
an LO frequency comb.

Degenerate doubly resonant OPO oscillates in a bi-phase state, with a phase that can
be denoted as 0 and 𝜋. This bi-phase solution is the basis for the operation of coherent
Ising machine [31]. Synchronously pumped degenerate OPO can undergo oscillation
around different cavity detunings that are separated by pump wavelength [14]. This
leads to the well-known doubly resonant degenerate OPO peak structure centered
around peak number 𝑙, where the cavity detuning is given by Δ𝜙 = 𝜋𝑙. 𝑙 can be odd
or even. In a usual synchronously pumped degenerate OPO, where the cavity Free
Spectral Range (FSR) is set close to the pump repetition rate, the signal frequency
comb can assume two possible comb structures [23]. They are 𝑓𝑛 =

𝑓𝑐𝑒𝑜,𝑝
2 +𝑛 𝑓𝑟𝑒𝑝, or

𝑓𝑛 =
𝑓𝑐𝑒𝑜,𝑝

2 + 𝑓𝑟𝑒𝑝
2 + 𝑛 𝑓𝑟𝑒𝑝, where the former is associated with peaks corresponding

to even 𝑙, whereas the later is associated with peaks corresponding to odd 𝑙. Here,
𝑓𝑟𝑒𝑝 is the pump repetition frequency of the mode-locked laser, and 𝑓𝑐𝑒𝑜,𝑝 is the
carrier envelope frequency of the pump frequency comb. This implies that in the
degenerate regime, the half-harmonic OPO frequency comb is phase-locked to the
pump frequency comb. When 𝑓𝑛 =

𝑓𝑐𝑒𝑜,𝑝
2 + 𝑛 𝑓𝑟𝑒𝑝 i.e., 𝑙 is even, the signal envelope

assumes a phase of either 0 or 𝜋 in successive round-trips. When 𝑙 is odd, the signal
envelope assumes a phase of 0 and 𝜋 that alternates every other round-trip.

In our experimental configurations, the cavity FSR is a sub-multiple of the repetition
rate. Here we consider the case where 𝐹𝑆𝑅 =

𝑓𝑟𝑒𝑝
3 . In the degenerate regime, we

observe beat-notes as shown in Fig. 2.10(a,b). In Fig. 2.10(a), the signal envelope
can acquire phase: for example 0, 0, 𝜋 every 𝑓𝑟𝑒𝑝

3 . While in the case of Fig. 2.10(b)
the signal envelope can assume a phase of 0, 𝜋, 0, 𝜋, 0, 𝜋 every 𝑓𝑟𝑒𝑝

6 . Clearly, these
two cases correspond to odd and even 𝑙.

However, in the non-degenerate regime, the OPO doesn’t operate in the phase-locked
regime and shows a typical beat-note like that shown in Fig. 2.10(c). A typical
optical spectrum of non-degenerate OPO is shown in Fig. 2.10(d).

2.5.5 Dispersion engineering
The quadratic soliton bandwidth is a function of cavity dispersion. Here, we
present the optical spectrum for different cavity Group Velocity Dispersion (GVD)
corresponding to data points in Fig. 2.44(a). These spectra are acquired close to
the threshold where the OPO is in the soliton regime and displayed in Fig. 2.11.
Different cavity GVD was realized by combining varying lengths of anomalous
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Figure 2.10: Beat-note characterization of the degenerate and non-degenerate
oscillation regime of the OPO. a) Beat-note spectrum for degenerate OPO for a
particular family of 𝑙, b) Beat-note spectrum for degenerate OPO for a different
family of 𝑙, c) Beat-note spectrum for non-degenerate OPO, d) A typical optical
spectrum corresponding to a doubly resonant OPO oscillating in non-degeneracy.

PM fiber (GVD ∼ −25 ∗ 10−3ps2/mm ) and normal PM-DCF fiber (GVD
∼ +128 ∗ 10−3 ps2/mm).

As we have already seen, the temporal walk-off induced soliton’s bandwidth can
be increased by deploying larger values of temporal walk-off (GVM) and smaller
values of group velocity dispersion (GVD), thereby maximizing the Figure of Merit
(FOM). Thin film Lithium niobate platform provides such dispersion engineering
capability. Fig. 2.12 shows the dispersion engineering landscape.

The dispersion parameters for the case studied in Fig. 2.5(c) are presented here.
The parameters at the pump wavelength (775 nm) are: second-order group velocity
dispersion (𝛽𝑏2 = 40.6 fs2/mm), third order dispersion (𝛽𝑏3 = 25.1 fs3/mm). The
parameters at the signal wavelength (1550 nm) are: second-order group velocity
dispersion (𝛽𝑎2 = 0.5 fs2/mm), third order dispersion (𝛽𝑎3 = 3.09 fs3/mm). The
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group velocity mismatch between the pump and the signal is 𝑢 = 170 fs/mm.

Figure 2.11: Soiton spectrum as a function of cavity dispersion. a) Optical
spectrum with a 3dB bandwidth of 8.3 nm for cavity GVD ∼ −4 ∗ 10−3 ps2/mm b)
Optical spectrum with a 3dB bandwidth of 7 nm for cavity GVD ∼ 10∗10−3 ps2/mm
c) Optical spectrum with a 3dB bandwidth of 6.1 nm for cavity GVD ∼ 20 ∗ 10−3

ps2/mm d) Optical spectrum with a 3dB bandwidth of 5.1 nm for cavity GVD
∼ 40 ∗ 10−3 ps2/mm.

Figure 2.12: Dispersion engineering possibility on integrated thin film lithium
niobate platform. a) cross-section of a waveguide with the varying width (𝑤),
varying etch depth (ℎ𝑟𝑖𝑑𝑔𝑒), and a thin-film thickness of ℎ𝑟𝑖𝑑𝑔𝑒 + ℎ𝑠𝑙𝑎𝑏 = 700 nm
of X-cut Lithium niobate. The cladding underneath is SiO2. b) GVD calculated
at 1550 nm for 𝑇𝐸00 mode for varying parameters c) GVM calculated between the
signal at 1550 nm and pump at 775 nm for varying parameters.

2.5.6 Route to high conversion efficiency
Quadratic soliton formation can be supported in the low-finesse cavity. The round-
trip loss is to be compensated with parametric gain from the optical parametric
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amplification process. When the round-trip loss is dominated by the out-coupling,
it is possible to extract high pump-to-soliton conversion efficiency. In the current
experiment, however, the roundtrip loss ( 15 dB) is dominated by coupling losses at
the interfaces of the waveguides and fibers while the output coupling is only ∼45%.
The measured output power at this output coupler is about 1%. When considering
the power lost at the interfaces, the total conversion efficiency in the experiment is
estimated to be 10%. In numerical simulations, 15 dB of output coupling leads to
nearly 10% of conversion efficiency as shown in Fig. 2.13. Note, that even higher
parametric gain is achievable in the integrated platform.

Figure 2.13: High pump to half-harmonic soliton conversion efficiency achieved
with 15 dB round-trip out-coupling. The plots show the steady state signal and
pump temporal profiles at the end of the round-trip. The pump pulse was assumed
to be flat-top.

2.5.7 Operating in the simulton regime
Reference [17] has demonstrated the simulton regime of operation, where the timing
mismatch (cavity detuning induced delay) is balanced by the gain saturation induced
nonlinear acceleration. This regime is accessed when the timing mismatch is in the
same order of magnitude as the width of the gain-clipping region. Under this
condition, the increase in pump power causes a broadening of the gain-clipping
window as well as the amount of nonlinear acceleration which are comparable in
magnitude. The amount of nonlinear acceleration should compensate for the timing
mismatch for timing balance/ synchronization. If the nonlinear acceleration is very
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small as compared to the width of the gain-clipping window, then the gain-clipping
dominates, and the OPO follows the box-pulse scaling with the increase in pump
power. On the other hand, when the nonlinear acceleration is significant, it leads
to an increase in OPO bandwidth with pump power, which is the simulton scaling.
Nonlinear acceleration is enhanced with increased pump power and larger OPO
pulse width. Thus, to maintain the timing synchronization, the OPO pulse width
decreases with increasing pump power. However, this scaling does not continue for
ever-increasing pump power. After some point, the gain-clipping contribution will
dominate over the nonlinear acceleration component, and this simulton scaling will
cease.

In our case, we have been considering a small timing mismatch (several fs), while the
gain-clipping window temporal width rapidly grows to picoseconds. This is due to
the large pump pulse width (∼ 13𝑝𝑠) and large gain per round-trip. In order to access
the simulton regime where the timing mismatch is in the order of picoseconds or
fraction thereof, we have to operate at large cavity detuning (𝑙 ∼ 100) or more. At the
same time, we have to operate at low GVD values. There is another requirement in
terms of the minimum amount of third-order dispersion (TOD) required to support
simulton operation [9]. For simulton operation, we need to operate in the long
detuned cavity region (𝑙 > 0), so that the nonlinear acceleration can compensate
for it. This can be attained by ensuring a minimum amount of positive TOD in
the cavity. In this scenario, we can access the simulton regime, as shown in Fig.
2.14. Here, the bandwidth increases with pump power, as opposed to the case of
Fig. 2.4(e,f).

Operation in the simulton regime can give access to even higher conversion
efficiency. Conversion efficiency exceeding 50% can be achieved. A typical soliton
formation in simulton regime is shown in Fig. 2.15. However, the amount of pulse
compression will be limited due to the stringent requirement of the TOD.

In the walk-off-induced soliton discussed in this work, the pump depletion is not
significant near the threshold. As the soliton walks through the pump, it continuously
depletes it. However, in the simulton regime, there is significant pump deletion.
Moreover, the signal induces a 𝜋 phase-shifted pump through second harmonic
generation. This creates a bright-dark simulton pair that propagates simultaneously.
This is illustrated in Fig. 2.16.



47

Figure 2.14: Bandwidth scaling when operated in the simulton regime obtained
via numerical simulation. Here, with an increase in pump power, the OPO
bandwidth increases. Parameters used in the simulation are: 𝑙 = 80, GDD =
0.0045 ps2, TOD= 0.0091ps3. Other parameters are kept unchanged.

Figure 2.15: Soliton pulse in simulton regime. It is characterized by high
conversion efficiency. Parameters are the same as in Fig. 2.14.

2.5.8 Effect of Cavity Detuning
Doubly resonant OPO when operating at degeneracy is phase-locked to the pump,
and thus its 𝐹𝐶𝐸𝑂 and 𝐹𝑅𝐸𝑃 are locked with respect to the pump. However, there
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Figure 2.16: Pump depletion in near-threshold walk-off induced soliton (a,b)
and simulton (c,d) regimes. (a,c) corresponds to the field profiles in the middle
of the waveguide, while (b,d) corresponds to the field profiles at the end of the
waveguide. The real part of the field profiles for the signal and the pump are plotted.

Figure 2.17: Different modes of synchronization in doubly resonant OPO. a) via
a limit cycle, when the detuning is large. b) operation at non-degeneracy.

are other modes of operation, where the OPO synchronization is enabled by a limit
cycle as shown in Fig. 2.17(a). Here, the 𝐹𝑅𝐸𝑃 is locked, while the 𝐹𝐶𝐸𝑂 is
unlocked. This occurs when the OPO operates at large detuning, and the combined



49

effect of gain saturation and gain-clipping is not enough to counterbalance the
effect of cavity detuning-induced drift. Thus the OPO’s phase rotates as its spectral
components periodically switch between degeneracy and non-degeneracy to
maintain synchronization. Similar behavior is also expected for OPO operating at
near degeneracy. OPO operating at non-degeneracy also features locked 𝐹𝑅𝐸𝑃 and
unlocked 𝐹𝐶𝐸𝑂 as shown in Fig. 2.17(b).
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C h a p t e r 3

VISIBLE-TO-MID-IR TUNABLE VISIBLE COMBS FROM
NANOPHOTONIC OPTICAL PARAMETRIC OSCILLATORS

Roy, Arkadev∗, Luis Ledezma∗, Luis Costa, Robert Gray, Ryoto Sekine, Qiushi
Guo, Mingchen Liu, Ryan M. Briggs, and Alireza Marandi. Visible-to-mid-
IR tunable frequency comb in nanophotonics. arXiv preprint arXiv:2212.08723,
2022. doi: https://doi.org/10.48550/arXiv.2212.08723.
∗ denotes equal contribution. Parts of this work appeared as post-deadline
presentations at the following conferences: CLEO 2022 and Advanced Photonics
Congress 2022. A.R. contributed to the experiments, performed numerical
simulations, and participated in the writing of the manuscript.

3.1 Abstract
Optical frequency comb is an enabling technology for a multitude of applications
from metrology to ranging and communications. The tremendous progress in
sources of optical frequency combs has mostly been centered around the near-
infrared spectral region while many applications demand sources in the visible
and mid-infrared, which have so far been challenging to achieve, especially in
nanophotonics. Here, we report frequency combs tunable from visible to mid-
infrared on a single chip based on ultra-widely tunable optical parametric oscillators
in lithium niobate nanophotonics. Using picosecond-long pump pulses around 1 `m
and tuning of the quasi-phase matching, we show sub-picosecond frequency combs
tunable beyond an octave extending from 1.5 `m up to 3.3 `m with femtojoule-level
thresholds. We utilize the up-conversion of the infrared combs to generate visible
frequency combs reaching 620 nm on the same chip. The ultra-broadband tunability
and visible-to-mid-infrared spectral coverage of our nanophotonic source can be
combined with an on-chip picosecond source as its pump, as well as pulse shortening
and spectral broadening mechanisms at its output, all of which are readily available
in lithium niobate nanophotonics. Our results highlight a practical and universal path
for the realization of efficient frequency comb sources in nanophotonics overcoming
their spectral sparsity.
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3.2 Introduction
Optical frequency combs consisting of several spectral lines with accurate
frequencies are at the core of a plethora of modern-day applications [7, 22],
including spectroscopy [4], optical communication [32], optical computing [53],
atomic clocks [45], ranging [46, 49], and imaging [21]. Many of these applications
demand optical frequency combs in the technologically important mid-infrared
[8, 43] and visible [37, 47] spectral regimes. Accessing optical frequency comb
sources in integrated photonic platforms is of paramount importance for the
translation of many of these technologies to real-world applications and devices
[44]. Despite outstanding progress in that direction in the near-infrared, there is a
dearth of widely tunable frequency comb sources, especially in the highly desired
mid-infrared and visible spectral regimes.

Notable efforts on miniaturized mid-IR comb sources typically rely on
supercontinuum generation, and/or intra-pulse difference frequency generation
[12, 23]. Not only do these nonlinear processes usually require a femtosecond
pump as an input (which has its own challenges for efficient on-chip
manifestation), but their power is also distributed over a wide frequency range
including undesired spectral bands. Engineered semiconductor devices like
quantum cascade lasers have successfully been demonstrated as mid-infrared
frequency comb sources [19], however, they are not tunable over a broad
wavelength range and are still difficult to operate in the ultrashort pulse regime
[52, 55]. The situation is exacerbated by the lack of a suitable laser gain medium
that is amenable to room temperature operation in the mid-IR. Kerr nonlinearity
can lead to tunable broadband radiation [11, 42, 57] but is contingent on satisfying
demanding resonator quality factor requirements and typically relies on a mid-IR
pump to begin with for subsequent mid-infrared frequency comb generation.
Similar challenges exist for Raman-based mid-IR frequency comb generation [48].

On the other hand, optical parametric oscillators (OPOs) based on quadratic
nonlinearity have been the predominant way of accessing tunable coherent
radiation in the mid-IR spectral region enjoying broadband tunability through
appropriate phase matching of the three-wave mixing [8]. However, their
impressive generation of tunable frequency combs in the mid-infrared have been
limited to bulky free-space configurations pumped by femtosecond lasers [1, 31].
Recently, integrated quadratic OPOs are realized in the near-IR, using high-Q
resonators with pump-resonant designs [3, 16, 29], which have not been able to
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access the broad tunability of phase matching and mid-IR frequency comb
generation.

We demonstrate ultra-widely tunable frequency comb generation from on-chip
OPOs in lithium niobate nanophotonics. Leveraging the ability to control the
phase-matching via periodic poling combined with dispersion engineering, we
show an on-chip tuning range that exceeds an octave. We pump the OPOs with
picosecond pulses from an electro-optic frequency comb source in the near-IR,
which is already demonstrated to be compatible with nanophotonic lithium niobate
[18, 58, 59]. The demonstrated frequency combs cover the typical communication
bands and extend into the mid-infrared spectral region beyond 3 `m with
instantaneous bandwidths supporting sub-picosecond pulse durations.
Additionally, the same chip produces tunable frequency combs in the visible
resulting from up-conversion processes. Tunable visible frequency comb
realization has been challenging owing to the absence of a suitable broadband gain
medium and the typical large normal dispersion at these wavelengths in most
integrated photonic platforms [14, 30].

3.3 Results
To achieve broadband and widely-tunable frequency combs, we design a
doubly-resonant OPO [15, 24, 40] based on nano-waveguides etched on X-cut
700-nm-thick MgO-doped lithium niobate, which is illustrated in Fig. 3.1(a).
Unlike the previous triply-resonant designs [3, 16, 29], our design provides access
to the wide tunability of quasi-phase-matching (QPM) and avoids stringent
requirements such as ensuring the resonance of the pump [9]. Doubly resonant
operation is achieved by controlling the precise spectral response of the OPO
resonator using two spectrally selective adiabatic couplers (highlighted in
Fig. 3.1(a)) that only let the long wavelengths (signal and idler) to resonate in the
OPO while allowing the short wavelengths (pump and up-converted light) to leave
the cavity (see Supplementary Section 3.6.2). This is not only important for
achieving a broad tuning range for the signal and the idler, but it also enables
non-resonant broadband and widely tunable up-conversion into the visible, which
is in stark contrast with previous parametric sources in that range [14, 30]. Another
important aspect of the on-chip OPO design is the dispersion engineering of the
main interaction waveguide of the OPO, which in combination with periodic
poling leads to broad spectral coverage of the QPM tuning. Engineering the
dispersion of the remainder of the resonator is another important design degree of



59
(b)

Molecular ro-vibrational levels

(a)

1040 1050 1060

100

150

250

300

350

400

450

O
ut

pu
t (

T
H

z)

Pump wavelength (nm)

O
ut

pu
t (

nm
)

Id
le

r
S

ig
na

l
Id

le
r 

S
H

S
ig

na
l S

H
Id

le
r 

S
F

S
ig

na
l S

F

SHG

OPO

SFG

3000

1500

1000

750

600

666

856

1200

2000

5.61 �m
5.60 �m
5.59 �m 5.56�m

5.57 �m
5.58 �m

Poling Period:

Pump

Idler Signal

LN
SiO2

Si

Pump + Signal
&

Pump + Idler

� Adiabatic coupler

Depleted 
Pump

Output

A
bs

or
pt

io
n 

co
ef

fic
ie

nt
 (

cm
-1

) NH
3

CO
2

CO

CH
4

H
2
O

10-1

100

101

10-2

35003000250020001500
Wavelength (nm)

Electronic transition levels

800750700650600

Sr

NV SiV
Yb

Ba

Ca

Li

O

Wavelength (nm)

(c)

500

200

Figure 3.1: Ultra-widely tunable frequency combs from nanophotonic
parametric oscillators. a) Schematic of a doubly resonant optical parametric
oscillator fabricated on an X-cut thin-film lithium niobate consisting of a periodically
poled region for efficient parametric nonlinear interaction. The waveguides
(dimensions: width of 2.5 `m, etch depth of 250 nm) support guided modes
in the mid-infrared corresponding to the idler wave. b) Quasi-phase matched
parametric gain tuning from visible-to-mid-IR. Phase-matching curves leading to
tunable mid-infrared idler emission enabled by optical parametric oscillator devices
with slightly different poling periods (Λ) integrated on the same chip. The same
chip is capable of producing tunable visible frequency combs thanks to the sum
frequency generation (SFG) process between the pump with the signal and idler
waves. Other accompanying up-conversion processes include the second-harmonic
(SH) of the signal and the idler. Some second-harmonic phase-matching curves
have been omitted for better clarity. c) The emission from the chip overlaps with
strong molecular absorption lines in the mid-infrared covering a spectral window
important for molecular spectroscopy. The spectral coverage in the visible includes
atomic transition wavelengths corresponding to commonly used trapped ions/ neutral
atoms/ color centers.

freedom that can be further utilized for achieving quadratic solitons and pulse
compression mechanisms [41].

Quadratic parametric nonlinear interactions take place in a 5-mm-long poled
waveguide region, which has a fixed poling period (Λ) for each OPO on the chip.
The periodic poling phase matches parametric nonlinear interaction between the
pump, the signal, and the idler waves which can be tuned from degeneracy to far
non-degeneracy. The chip consists of multiple OPOs with poling periods for
type-0 phase matching of down-conversion of a non-resonant pump at around 1 um
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to an octave-spanning range of resonant signal and idler wavelengths, i.e., the OPO
output. The QPM tuning curves are shown in Fig. 3.1(b). In addition to these OPO
outputs, the poled waveguide also provides additional parametric up-conversion
processes, notably the second-harmonic of the signal/idler, and the sum-frequency
generation from the pump and signal/idler. The overall tuning range of the chip
overlaps with many molecular and atomic transitions as illustrated in Fig. 3.1(c).
The strong spatiotemporal confinement of the interacting waves in the waveguide
guarantees substantial up-conversion efficiencies which can be further enhanced
with the addition of proper poling periods and tailoring to specific applications
(see Supplementary Section 3.6.1).

As shown in Fig. 3.1(b), to continuously cover the visible to the mid-infrared, we
focus on tuning the QPM by coarsely switching the poling period as well as
fine-tuning the pump wavelength over ∼25 nm. It is worth noting that this tuning
range for the pump is compatible with the existing semiconductor lasers [50].
Moreover, the coarse switching of the poling period can be achieved without
mechanical movements for instance by means of electro-optic routing (see
Supplementary Section 3.6.8). In addition, temperature tuning of the poled region
can provide another substantial tuning mechanism (see Supplementary Section
3.6.9). The emission from the OPO chip covers important wavelengths
corresponding to atomic transitions in the visible as well as molecular absorption
lines in the mid-infrared (Fig. 3.1(c)).

The OPO is synchronously pumped [27, 36, 40] by ∼ 1-ps-long pulses operating
at a repetition rate of approximately 19 GHz. The repetition rate was tuned close
to the OPO cavity free spectral range or its harmonics (see Supplementary Section
3.6.5). The octave-wide tunability of the parametric oscillation from the OPO chip
is obtained by tuning the pump central wavelength between 1040 nm and 1065
nm only. The pump is generated from an electro-optic frequency comb [39] (see
Supplementary Section 3.6.3 ). The schematic of the experimental setup is shown
in Fig. 3.2(a). The spectral and temporal characteristics of the near-infrared pump
are shown in Fig. 3.2(b).

Figure 3.2(c) shows the broad spectral coverage of the OPO output extending up to
3.3 `m in the mid-infrared obtained from a single chip. The comb lines can be
resolved by the optical spectrum analyzer (OSA) and can be seen in the inset,
where the separation of the peaks corresponds to the pump repetition rate. The
on-chip threshold amounts to approximately 1 mW of average power (∼ 50 mW of
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Figure 3.2: Near-IR to mid-IR frequency combs from nanophotonic OPOs on
a single chip. a) Schematic of the experimental setup used to pump and measure
the synchronously pumped optical parametric oscillator chip. The image of the
OPO chip is shown alongside, b) Experimental measurements of the spectral and
temporal characteristics (intensity auto-correlation trace) of the electro-optic pulsed
pump showing a pulse-width of ∼ 1 ps, c) Broadband infrared spectral coverage of
the OPO chip showing the signal and the idler spectrum as its operation is tuned
from degeneracy to far non-degeneracy. Separate colors represent outputs from
different OPO devices on the same chip with distinct poling periods. Zoomed-in
versions display the comb line structure.

peak power, and ∼ 100 femtojoules of pulse energy) for the near-degenerate OPOs.
The signal conversion efficiency approaches ∼ 5% for the near-degenerate OPOs,
while the mid-infrared (3.3 `m) idler conversion efficiency exceeds 1% for the far
non-degenerate OPOs (see Supplementary Section 3.6.2). This corresponds to an
estimated ∼ 25 mW of peak power and ∼ 5 `W of power per comb line in the
mid-infrared.
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Figure 3.3: Characteristics of the frequency comb generated from the
synchronously pumped on-chip OPOs. a) Resonance peak structure obtained
by sweeping the pump central wavelength which is typical of doubly-resonant OPO
operation. A zoomed-in view of a single peak is shown in the inset, b) Range of
existence of the synchronously pumped OPO for a fixed pump power as the pump
repetition rate is varied, c) Fine tuning of the OPO frequency comb output enabled by
tuning the pump central wavelength, d) Spectral broadening of the OPO operating at
degeneracy corresponding to a sub-picosecond transform-limited duration of ∼ 400
fs, e) Verification of the coherence of the OPO output as evident from the existence
of interference fringes (see inset) in the electric-field cross-correlation trace, f) The
close agreement between the spectra obtained from an optical spectrum analyzer
measurement and that obtained by Fourier transforming the field cross-correlation
corroborates the coherence of the OPO output.

The doubly-resonant operation of the OPO is also confirmed by the appearance
of the resonance peak structure with the variation of the pump central wavelength
as shown in Fig. 3.3(a). Figure 3.3(b) shows the tolerance of the synchronous
pumping repetition rate mismatch with respect to the optimum OPO operating
point. The fine tunability of the OPO output spectra as offered by tuning the
pump wavelength is depicted in Fig. 3.3(c). The combination of fine tunability
and course tunability potentially enables continuous spectral coverage across the
accessible spectral region. The OPO output at degeneracy (Fig. 3.3(d)) corresponds
to a sub-picosecond transform-limited temporal duration (∼ 400 fs), representing a
pulse compression factor exceeding 2 with respect to the pump (see Supplementary
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section 3.6.6). We further evaluate the coherence of the output frequency comb
by performing a linear field cross-correlation of the output signal light as shown
in Fig. 3.3(e), where each OPO pulse is interfered with another pulse delayed by
10 roundtrips. The presence of the interference fringes (see inset of Fig. 3.3(e)),
combined with the consistency of the Fourier transform of the cross-correlation
trace and the signal spectrum obtained using an OSA, serve as evidence for the
coherence of the output frequency comb over the entire spectrum (see Fig. 3.3(f)).
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Figure 3.4: Visible frequency comb generation from the integrated optical
parametric oscillator chip. a) The complete emission spectrum of an OPO
(Spectra obtained from different optical spectrum analyzers/ spectrometers are
stitched together). Apart from the emission of the signal and the idler waves,
the OPO also produces output in the visible spectra owing to the auxiliary nonlinear
processes namely the second-harmonic generation (SHG) and the sum-frequency
generation (SFG). b) Optical microscope image capturing the visible light emission
from various regions of the periodically poled section of the OPO device, c) Tunable
visible frequency comb generation from the integrated OPO chip, where different
colors indicate spectra obtained from OPOs with distinct poling periods.

The occurrence of other quadratic nonlinear processes, namely second harmonic
generation (SHG) and sum-frequency generation (SFG), leads to frequency comb
formation in the visible spectral region. The complete emission spectrum of an
OPO consisting of the second harmonic of the pump and the signal waves, the sum
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frequency components between the pump and the signal/idler waves along with the
usual signal/idler is shown in Fig. 3.4(a). The scattered visible light emanating from
the chip is captured by the optical microscope image (see Fig. 3.4(b)) showing the
emission of the pump second harmonic (green) and the sum frequency components
(red). Note that in the poling region, green dominates at the input side, which
progressively is overpowered by the sum-frequency red component. The SFG
between the pump and the signal waves leads to tunable visible frequency comb
generation between 600 nm and 700 nm as shown in Fig. 3.4(c). Tuning the OPO
farther from degeneracy leads to idler emission further into the mid-IR as well as
the SFG component that lies to the bluer side of the visible spectrum.

3.4 Discussion
The pump, which is a near-IR electro-optic comb, can be incorporated into the
lithium niobate chip in the future [6, 59]. With proper dispersion engineering, our
OPO design can additionally achieve large instantaneous bandwidth accompanied
by significant pulse compression [41], enabling the generation of femtosecond
mid-infrared frequency combs in nanophotonics. Efficient supercontinuum
generation requiring only a couple of picojoules of pulse energy can then be
performed using periodically-poled lithium niobate waveguides on these
femtosecond pulses for subsequent f-2f self-referencing/comb stabilization [20].
Future work will involve the integration of electro-optic modulators for active
locking of the OPO frequency comb. The on-chip OPO threshold can be reduced
further by improving waveguide losses and enhancing the effective nonlinear
co-efficient by separately optimizing the modal overlap between the pump and the
signal/idler fields for each OPO device catering to dedicated spectral bands. We
estimate that an on-chip threshold for operation near degeneracy with an average
power less than 500 `W (for 10 GHz repetition rate operation) is feasible. The low
power requirement combined with the need for a relatively narrow pump tunability
range opens the door for pumping the OPO chip with butt-coupled near-infrared
diode lasers. This paves the way for a fully integrated solution for mid-IR
frequency comb generation based on lithium niobate nanophotonics
[13, 18, 25, 58] (see supplementary section 3.6.8).

Optimizing the coupler design can enable OPO operation with lower thresholds
and higher mid-infrared comb conversion efficiency. Advanced coupler designs
like the ones inspired by inverse design [35] can satisfy the simultaneous
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requirements of low coupling for the pump, high coupling for the signal, and
optimum coupling for the idler waves, leading to conversion efficiencies even
exceeding 30 %. Realizing OPO devices in lithium niobate on sapphire will give
access to a wider transparency window, leading to frequency comb generation
deeper into the mid-infrared [34]. Thanks to the strong parametric nonlinear
interaction, it is possible to realize frequency combs with lower repetition rates
(∼ 1 GHz) using spiral waveguides [26] in the feedback arm of the OPO resonator
which will be useful for on-chip dual-comb spectroscopy applications. The
emission in the mid-infrared overlaps with important molecular rovibrational
absorption lines and paves the way for novel integrated spectroscopic solutions.

3.5 Methods
The devices are fabricated on a 700 nm thick X-cut MgO-doped lithium niobate on
silica die (NANOLN). Periodic poling is performed by first patterning electrodes
using e-beam lithography, followed by e-beam evaporation of Cr/ Au, and
subsequently metal lift-off. Ferroelectric domain inversion is undergone by
applying high voltage pulses, and the poling quality is inspected using
second-harmonic microscopy. The waveguides are patterned by e-beam
lithography and dry-etched with Ar+ plasma. The waveguide facets are polished
using fiber polishing films. The OPO-chip consists of multiple devices with poling
periods ranging from 5.55 `m to 5.7 `m (in 10-nm increments) that provides
parametric gain spanning over an octave.

Optical spectra were recorded using a combination of a near-infrared optical
spectrum analyzer (OSA) (Yokogawa AQ6374), mid-infrared OSAs (Yokogawa
AQ6375B, AQ6376E), and a CCD spectrometer (Thorlabs CCS200). The OPOs
are synchronously driven at either the fundamental repetition rate (∼ 9.5 GHz) or
its harmonic (∼ 19 GHz). The optical spectrum results are obtained with the
harmonic repetition rate operation as it leads to wider instantaneous bandwidth
owing to shorter electro-optic pump pulses. The OPOs operating at longer
wavelengths have higher thresholds (because of increased effective area, increased
coupler loss corresponding to the signal wave, and larger mismatch between the
relative walk-off parameters of the signal and the idler wave) and therefore, we
operate them intermittently in what we call “quasi-synchronous” operation, as a
way to reduce the average power and avoid thermal damage (see Supplementary
Section 3.6.4). This limitation is mainly attributed to the avoidable input insertion
loss (∼ 12 dB) of our current setup. With the aid of better fiber-to-chip coupling
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design/mechanisms (insertion loss of the order of 1 dB has been reported in the
context of thin-film lithium niobate) the mid-IR OPOs can be operated in a steady
state sync-pumped configuration [17].

3.6 Supplementary
3.6.1 Single-envelope simulation and visible frequency comb

Figure 3.5: SEM image of the adiabatic coupler region. a) The waveguides
(dimensions: width of 2.5 `m, etch depth of 250 nm) support guided-modes in
the mid-infrared corresponding to the idler wave, the electric field distribution
(fundamental TE mode) of which is shown. b) The SEM image of the fabricated
device showing the coupler region.

To capture the process of the generation of the second-harmonic and sum-frequency
generation signals (responsible for the generation of the visible frequency comb), we
resort to single nonlinear envelope simulation [5]. The numerically obtained results
are shown in Fig. 3.6(a), which alludes to the existence of the visible frequency
comb components. We have assumed the presence of non-idealities in the poling
period in our simulation. We note that these second-harmonic and sum-frequency
generation components are generated due to parasitic phase-matching owing to
duty-cycle errors and/or higher-order phase-matching for the visible components.

In order to enhance the efficiency of the visible frequency comb generation process
one can add an additional phase matching section at the output waveguide of the
OPO. This would boost the conversion efficiency for the phase-matched component,
and can also be designed to be broadband using chirped poling periods. Such a
scenario where the efficiency of the SFG component between the pump and the
signal is boosted is simulated in Fig. 3.6(b). Similarly, it can also be designed for
the other components, namely the SFG of the idler and the pump, or the second
harmonic frequency combs. We note that these visible frequency combs are single-
pass due to the long-pass nature of the spectral response of the adiabatic couplers.
The visible components inherit their wide tunability for their parent signal/idler
frequency combs.
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The fine tunability of the visible frequency comb (sum frequency generation between
the signal and the pump) can also be performed using pump wavelength control as
shown in Fig. 3.6(c). The up-conversion resulting from the second-harmonic
generation of the signal also leads to near-infrared frequency comb generation. The
phase-matching curves are shown in Fig. 3.7(a). The coarse tuning and fine-tuning
of the second-harmonic signal comb as obtained experimentally are shown in Fig.
3.7(b) and Fig. 3.7(c), respectively.

3.6.2 Signal/Idler conversion efficiency
We plot the signal power as a function of the pump power as shown in Fig. 3.8(a).
The OPO conversion efficiency is a function of the escape efficiency, number of
times above threshold operation, etc.. [2].

The escape efficiency is determined by the OPO-cavity output coupling, which is
given by the frequency response of our adiabatic coupler. The schematic of the
geometry of our coupler is shown in Fig. 3.8(b). The geometrical parameters are
mentioned in the caption of figure 4. The simulated performance from the coupler is
shown in Fig. 3.8(c). The coupler response is also characterized experimentally by
illuminating with a super-continuum source. The results are overlaid in Fig. 3.8(d).

We measure an off-chip mid-infrared power of ∼ 300 nW. The spectrum is shown
in Fig. 3.9. The corresponding on-chip average power is ∼ 3 `W. The estimated
pulse width for the idler is ∼ 500 fs (transform-limited). This indicates a peak
power of ∼ of 25 mW. The power per comb line is ∼ 5 `W. Note that we have
multiplied the power levels with the quasi-pulse duty cycle of 100. The threshold
of the extreme mid-infrared OPO is estimated to be approximately 10 times that of
the near-degenerate OPO (possessing a threshold of ∼ 1 mW of average power).

3.6.3 Pump preparation/ Electro-optic frequency comb generation
The OPO is pumped by an electro-optic frequency comb whose repetition rate is
tuned close to the cavity FSR. The pump pulse width is approximately 1 ps long
and based on the available electronics in our current version the repetition rate can
be tuned from 5 GHz to 20 GHz (the upper limit is dictated by the bandwidth of
the RF amplifiers). The electro-optic frequency comb generation scheme closely
follows the approach demonstrated in [33, 39]. The center frequency can be tuned
from 1040 nm to 1065 nm (the upper limit is determined by the operating range of
the waveshaper, while the lower limit is chosen to ensure the safe operation of the
YDFA).
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Figure 3.6: Visible frequency comb generation. a), b), c) Experimentally obtained
tunable visible frequency comb (sum frequency generation between the signal and
the pump) via pump frequency tuning.

The schematic of the pump preparation setup is shown in Fig. 3.10(a). The output
of the CW laser is modulated by a series of modulators. The modulators are driven
by an RF signal generator followed by an RF amplifier. The Intensity modulator
(IM) bias is chosen such that pulses can be carved out from the continuous wave.
At this stage (Stage 1) the time domain output resembles the simulated waveform
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Figure 3.7: Second harmonic generation of the signal frequency comb. a) Phase
matching curves for different poling periods corresponding to the second-harmonic
generation of the signal frequency comb. b) Coarse tuning of the second harmonic
of the signal frequency combs as obtained from the OPO chip. c) Fine tuning of the
second harmonic of the signal frequency combs as obtained from a single OPO via
pump wavelength tuning.

shown in Fig. 3.10(b). Next, a cascade of 3 Phase modulators (PM) enables the
addition of spectral sidebands which are separated by the repetition rate. The Phase
modulators are driven in sync by adjusting the electronic delay lines. At this stage
(Stage 2) the spectrum will be similar to the one shown in Fig. 3.10(c). The resultant
signal is amplified with the help of a semiconductor optical amplifier (SOA) and
then sent to a waveshaper. The programmable waveshaper allows the compression
of the pulses by de-chirping the input temporal waveform through the application
of suitable dispersion. At this stage (Stage 3), the time domain waveform will look
like the one shown in Fig. 3.10(d), where both the compressed pulses as well as
the pre-compressed chirped pulses are shown. Finally, the electro-optic frequency
comb is characterized in the frequency domain using an optical spectrum analyzer
(OSA), and in the time domain using an intensity auto-correlator.
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Figure 3.8: Coupler response and OPO conversion efficiency. a) Signal
conversion efficiency as a function of on-chip pump power. The experimental
data fit well with the analytically expected scaling of

√
𝑁−1
𝑁

, where 𝑁 , is the number
of times above threshold operation. b) Schematic of the adiabatic coupler with
the following parameters: w1 = 2.3`m, w2 = 2.5`m, gap = 1`m, and length
𝐿 = 500`m. c) Simulated Response of the adiabatic coupler, showing that it
transmits most of the pump wavelengths (around 1`𝑚) while coupling the majority
of the power contained in the longer wavelengths (> 2`𝑚) d) Measured transmission
of a supercontinuum source through the OPO resonators containing the couplers (red
curve). The response for the case of transmission through a straight waveguide is
shown for reference (blue curve). It can be seen that at longer wavelengths the
transmission through the OPO resonators dips on account of the coupling response
of the couplers.

3.6.4 Quasi-sync pumping
The thresholds of the far non-degenerate OPOs are higher owing to a combination
of multiple reasons. The adiabatic coupler is not tailor-designed for each OPO,
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Figure 3.9: Measurement data for average power per comb line. Mid-infrared
frequency comb (Idler frequency comb) spectrum obtained using optical spectrum
analyzer that is used for the calculation of power per comb line. Optical spectrum
analyzer settings: Resolution bandwidth 1 nm, sampling interval 0.05 nm, and
frequency comb repetition rate ∼ 19 GHz.

instead, a uniform coupler has been implemented in this first-generation chip
design. As a result, the far non-degenerate operation of the OPOs leads to signals
experiencing higher round-trip losses (due to progressively larger out-coupling for
smaller wavelengths). Moreover, the effective nonlinear coefficient which takes
into consideration the effective area of the modes, and the field overlap between the
pump, signal, and idler modes also degrades.

The higher threshold requirement demands more pump power which is currently
on the higher side due to the rather high input coupling loss/ insertion loss
(approximately between 10 to 12 dB). There have been several proposals and
demonstrations to bring this number down to a few dBs [54, 56]. In the scenario of
the availability of low insertion loss, the required external pump power can be
dramatically reduced by approximately 10 dB. Under these circumstances, the
threshold requirement for far non-degenerate operations can be easily accessible
even with sub-optimum design.

However, in our present implementation, we, unfortunately, do suffer from excess
insertion loss, which results in the required off-chip average power exceeding 60
mW. At these power levels, we are prone to burning/ damaging the connectors and
affecting the YDFA in the presence of undesired back-reflected power. To ensure
safe operation we resort to quasi-sync pumping, whereby the average power is
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Figure 3.10: Electro-optic comb generation setup. a) Schematic of the setup
for electro-optic comb generation that is used for the sync-pumping of the OPO.
Arbitrary Waveform Generator (AWG), Semiconductor Optical Amplifier (SOA),
Intensity Modulator (IM), Phase Modulator (PM), Ytterbium Doped Fiber Amplifier
(YDFA), Optical Spectrum Analyzer (OSA). b,c,d) Simulated waveforms in the time
and frequency domain at different stages of the pump preparation setup.

reduced by pulsing the pump. This can be achieved by driving the semiconductor
optical amplifier (SOA) using an arbitrary waveform generator (AWG) leading to
microsecond scale pulses at a repetition rate varying from 1 to 20 KHz (Duty cycle
of 1000 to 50). The schematic is shown in Fig. 3.11(a), which is the same as the
pump preparation setup with the addition of an AWG-driven SOA. The time domain
traces captured using a slow detector for the pump and signal pulses are shown
in Fig. 3.11(b). We note that the slow detector could not resolve the individual
picosecond scale pulses within each quasi-pulse. In fact, there are of the order of
thousands of pulses within each quasi-pulse.
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Measurements
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     AWG
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Figure 3.11: Quasi sync-pump OPO setup. a) Schematic of the setup for electro-
optic comb generation that is used for the sync-pumping of the OPO in the quasi-
mode of operation. Arbitrary Waveform Generator (AWG), Semiconductor Optical
Amplifier (SOA), Intensity Modulator (IM), Phase Modulator (PM), Ytterbium
Doped Fiber Amplifier (YDFA), Optical Spectrum Analyzer (OSA). b) Measured
time domain trace of the quasi pulses for the pump (blue) and the signal (red) quasi
pulses using a slow detector.

3.6.5 Estimating the cavity free spectral range
Estimating the free spectral range of the cavity (FSR) is central to determining
the repetition rate of the synchronously pumped OPO. This is absolutely necessary
since the sync pump (EO comb) cannot be tuned continuously to search for the right
FSR. Each setting of the EO comb requires a specific combination of the electronic
phase delay line parameters and the waveshaper dispersion parameter, adjusting
which is an arduous task. The design of our OPO precludes the use of a tunable
CW source around 1 `𝑚 to scan through multiple cavity resonances. The situation
is exacerbated in the absence of a high-power tunable CW source of around 2 `m
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at our disposal. Under these circumstances, we estimate the cavity FSR using a
measurement setup as shown in Fig. 3.12.

In this approach, we have to operate the OPO in CW mode. We apply a variable
modulation on top of the CW using an intensity modulator (IM). The frequency of
modulation is varied using an arbitrary waveform generator. The output of the OPO
will be maximized in the vicinity of the correct cavity FSR. This setup unlike the
EO comb can be continuously tuned.

Measurements

 Tunable
CW laser

FPC

Lensed fiberFluoride fiber

YDFA

OPO chip

IM

      RF
Generator

~

SOA

 AWG

Figure 3.12: Schematic of the setup for estimating cavity FSR. Arbitrary
Waveform Generator (AWG), Semiconductor Optical Amplifier (SOA), Intensity
Modulator (IM), Ytterbium Doped Fiber Amplifier (YDFA).

3.6.6 Spectral broadening/ Pulse compression in the degenerate OPO
The measured pump pulse width (assuming a Gaussian pulse as extracted from the
intensity auto-correlation trace) is ∼ 1 ps. The estimated transform-limited pulse
width for the OPO operating at degeneracy is 380 fs. The experimental spectrum of
both the pump and signal are translated in frequency and overlaid on top of each other
as shown in Fig. 3.13(a). The numerical simulation results obtained from a dual-
envelope equation simulation are shown in Fig. 3.13(b-e), which closely agrees with
the measured data. By proper dispersion engineering (group velocity dispersion and
group velocity mismatch) [41], it is possible to generate OPO frequency comb with
broad instantaneous bandwidth, leading to few optical cycle pulses.

3.6.7 Coherence verification using field cross-correlation technique
In order to evaluate the coherence of the spectrum, we perform a linear field cross-
correlation (FCCR) of the output signal light, where each OPO pulse is interfered
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Figure 3.13: Spectral broadening and associated pulse compression in the
degenerate regime of OPO operation. a) Experimentally obtained spectrum
plotted in the frequency axis after spectral translation showing the effect of spectral
broadening in the signal compared to the pump. b) Spectrum obtained from the
numerical simulation showing the spectral broadening effect (assuming a sech-
shaped pump pulse). c) Pump and signal pulses in the time domain as obtained from
the numerical simulation. d) The numerically obtained signal pulse when fitted with
a sech shaped pulse denotes a pulse compression by a factor of approximately 2. e)
The normalized roundtrip evolution of the signal pulses that are initiated from the
vacuum field till it reaches the steady state.

with another pulse delayed by 10 roundtrips. This can be thought of being a modified
FTIR measurement, where instead of performing auto-correlation we are executing
cross-correlation. The schematic of the setup used for this purpose is shown in
Fig. 3.14(a). The delay line corresponds to a delay of 10 OPO pulses, and thus
the coherence property evaluation is limited by the applied delay duration. The
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scanning stage nonlinearity is corrected using a reference HeNe laser beam. This
is important to match the optical spectrum obtained through the optical spectrum
analyzer and which is calculated by performing the Fourier transform of the FCCR
trace.

We also detect a sharp RF beat-frequency corresponding to the applied repetition
rate of the sync-pumped OPO (Fig. 3.14(b)). The signal is obtained by measuring
the OPO output pulses using a fast photo-detector. The pump is rejected using a
wavelength de-multiplexer.

Figure 3.14: [Coherence verification setup. a) Schematic of the setup used to
verify the coherence of the OPO output. b) Measured RF beat-note frequency
corresponding to the applied repetition rate of the sync-pumped OPO.

3.6.8 Full system integration and a universal frequency comb source
We envision a complete integrated solution for frequency comb generation based on
lithium niobate nanophotonics in conjunction with a laser chip. With several design
enhancements, it is possible to lower the threshold for frequency comb generation
substantially which can allow the pumping with commercially available DFB laser
chips. Alternatively, an integrated external cavity along with a semiconductor gain
chip can also be deployed for this purpose [28]. The other crucial building blocks
are: a) near-IR picosecond pump pulse generation [18, 58], b) Mach Zehnder
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interferometer mesh for routing the pump light to the desired OPO [51], c) an array
of OPOs, and d) periodically poled lithium niobate waveguides supporting ultra-
low power supercontinuum generation for f-2f based frequency comb stabilization
[20, 38]. Our present work focuses on part c, while the rest has already been
demonstrated in lithium-niobate nanophotonics.

Figure 3.15: Envisioned full integration of an universal frequency comb source.
a) Illustration of a lithium niobate nanophotonics-based near-IR picosecond pump
source consisting of a cascade of intensity and phase modulators followed by a de-
chirping spiral waveguide. b) Illustration of a lithium niobate OPO chip consisting
of an array of OPOs dedicated to cover different spectral regions which can be
programmatically pumped with the help of the MZI routing circuit preceding it.

3.6.9 Temperature tuning of the phase-matching curves
The fine-tuning of the quasi-phase-matching (QPM) in the present work has been
performed by tuning the pump wavelength. The same can be achieved with the
help of temperature tuning while keeping the pump wavelength fixed. Figure 3.15
shows the phase-matching curves as a function of temperature which is calculated
by evaluating the effective index of the waveguides taking into consideration the
temperature-dependent Sellmeier equation [10]. Temperature tuning can either be
attained globally by placing the chip on top of a TEC heater element, or locally by
implementing resistive heater elements close to the periodically poled regions. We
note that the expected tuning curves (obtained from simulations) are more tunable
than what is observed in experiments. We anticipate that it may be attributed to
the presence of thermal resistance between the heater element and the nanophotonic
chip, and/or the mismatch in the thermal expansion coefficients between the insulator
layer and the thin-film lithium niobate layer. This is a subject of an ongoing
investigation.
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Figure 3.16: Temperature tuning of the quasi-phase-matching. Temperature
tuning of the quasi-phase-matching obtained from simulation for the a) signal and
the idler waves and b) their corresponding up-conversion with the pump leading to
visible frequency combs. The pump wavelength is kept fixed at 1060 nm.
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C h a p t e r 4

SPECTRAL PHASE TRANSITIONS IN OPTICAL PARAMETRIC
OSCILLATORS

Roy, Arkadev, Saman Jahani, Carsten Langrock, Martin Fejer, and Alireza
Marandi. Spectral phase transitions in optical parametric oscillators. Nature
Communications, 12(1):835, 2021. doi: https://doi.org/10.1038/s41467-021-
21048-z.
A.R. contributed to the conception of the project, executed the experiments,
performed numerical simulations, and participated in the writing of the manuscript.

4.1 Abstract
Driven nonlinear resonators provide a fertile ground for phenomena related to phase
transitions far from equilibrium, which can open opportunities unattainable in their
linear counterparts. Here, we show that optical parametric oscillators (OPOs) can
undergo second-order phase transitions in the spectral domain between degenerate
and non-degenerate regimes. This abrupt change in the spectral response follows
a square-root dependence around the critical point, exhibiting high sensitivity to
parameter variation akin to systems around an exceptional point. We experimentally
demonstrate such a phase transition in a quadratic OPO. We show that the divergent
susceptibility of the critical point is accompanied by spontaneous symmetry breaking
and distinct phase noise properties in the two regimes, indicating the importance of a
beyond nonlinear bifurcation interpretation. We also predict the occurrence of first-
order spectral phase transitions in coupled OPOs. Our results on non-equilibrium
spectral behaviors can be utilized for enhanced sensing, advanced computing, and
quantum information processing.

4.2 Introduction
Photonic resonators appearing in myriad forms ranging from macro-scale to nano-
scale have been the mainstay of light-based fundamental studies and applications
[51]. The ability to engineer the resonant spectral features of these cavities unveils
tremendous possibilities in sensing and light-matter interactions. The interplay
of gain/loss and coupling in coupled linear photonic resonators can lead to the
occurrence of a multitude of intriguing phenomena ranging from Fano resonance,
electromagnetically induced transparency, [33] and exceptional point associated
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with parity-time symmetry breaking [39, 43].

Strong nonlinearities in photonic resonators can lead to a variety of rich
phenomena. Nonlinear driven dissipative systems existing in non-equilibrium
steady states exhibit self-organization [44], pattern formation [3, 35, 42, 49, 52],
and emergent phase and dynamical phase transitions [7]. Other salient examples
include behaviors in laser systems [21, 28, 37] at threshold [10] and around
mode-locking transitions [17, 20, 32], soliton-steps in Kerr micro-resonators [24],
and in polaritonic quantum fluids [4]. Similar phenomena are also explored
outside photonics for instance in the form of Rayleigh-Benard convection and
Faraday waves [2, 14]. Specific to the parametric oscillation regime, a variety of
nonlinear dynamical behaviors has been predicted and demonstrated such as
bi-stability, self-pulsation, limit-cycles [11], pattern formation [3, 35, 42, 49, 52]
and phase transitions [8, 12], albeit not explicitly in the spectral domain.

Phase transition marks a universal qualitative regime change in system properties as
the control parameter is varied around a critical/transition point [47]. The behavior
of the system around the critical point is characterized by the order parameter
(OP). Second-order phase transitions display continuity in the OP while exhibiting
a discontinuity in the derivative of the OP. On the other hand, a first-order transition
is known to possess a discontinuous OP around the transition point.

Realizing phase transitions based on the optical parametric processes can provide
unique opportunities for sensing. For instance, in phase-transition-based detectors
and transition-edge sensors [19], the reset time (return time to the critical bias
point) can be significantly reduced using an ultrafast nonlinear process compared
to thermodynamic transitions. Moreover, similar to the exceptional points in
optical systems [39, 43], an enhanced sensitivity [25, 29] can be realized using a
driven dissipative-based phase transition. However, in contrast to exceptional
points in PT-symmetric systems, this enhancement is not accompanied by
eigenvectors non-orthogonality and can potentially provide high sensitivity
combined with high precision [31, 53]. The noiseless nature of parametric
amplification [5] can be another unique resource for enhancing the signal-to-noise
ratio; a property that is not readily available in current implementations of
exceptional points. Divergent susceptibility of the critical point supported by the
parametric gain in a driven-dissipative setting can open unexplored avenues in the
context of non-Hermitian sensing.
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We exploit the rich dynamics of nonlinear driven-dissipative systems in OPOs to
formulate and engineer their spectral behaviors as phase transitions. We demonstrate
second-order spectral phase transition in quadratic OPOs and identify the critical
point demarcating the degenerate and non-degenerate oscillation regimes and the
associated spontaneous symmetry breaking. We mapped the OPO dynamics to the
universal Swift-Hohenberg equation [9, 34] and extend it to Kerr OPOs. We predict
the occurrence of complex collective behavior like first-order phase transitions in
coupled OPOs. Our results on non-equilibrium spectral behaviors can be utilized
for enhanced sensing that leverages the diverging susceptibility of the critical point,
and advanced computing paradigms exploiting the criticality of the spectral phase
transition.

4.3 Results

Figure 4.1: Spectral phase transition in nonlinear photonic resonators. a) OPO
with the resonant signal and idler in the cavity with variable detuning (Δ𝜙) and
second-order group-velocity dispersion (𝛽2). The nonlinearity can be provided by
a quadratic (𝜒(2)) or a Kerr (𝜒(3)) medium. b) A second-order phase transition
occurs at the critical detuning that marks the transition between the degenerate and
the non-degenerate spectrum. c) This transition is characterized by a continuous
order parameter, but a discontinuous derivative of the order parameter at the critical
point (CP).
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We consider a doubly-resonant OPO [22, 50] as a driven-dissipative system in a
non-equilibrium steady state. The OPO driving is accomplished by the
synchronous pulsed pump centered around the frequency 2𝜔0, while the resonant
signal and the idler constitute the longitudinal modes of the resonator centered
around the half-harmonic frequency (𝜔0).The interaction among the modes is
engendered by the quadratic non-linearity (Fig. 4.1(a)). The inherent coupled
nature of the signal and idler in a doubly-resonant OPO gives rise to rich nonlinear
dynamics including the appearance of bi-phase states around degeneracy [36]. The
mutual interplay between the cavity detuning and the temporal group velocity
dispersion provides another degree of freedom, which governs the dynamics of
signal/idler in synchronously pumped doubly resonant OPOs. This leads to
discontinuities typical of a second-order phase transition around the critical cavity
detuning (Fig. 4.1(b) and 4.1(c)). This spectral phase transition demarcates the
sharp boundary between the degenerate and non-degenerate parametric oscillation.

In the CW-driven high-finesse limit, the OPO is governed by the mean-field evolution
equation:

𝜕𝑎

𝜕b
= (−𝛼 + 𝑖Δ𝜙)𝑎 + 𝑔𝑎∗ − 𝑖 𝛽2

2
𝜕2𝑎

𝜕𝑡2
−

[
𝜖2

2𝑢2

∫ 𝐿𝑢

0
(𝐿𝑢 − 𝜏)𝑎(𝑡 − 𝜏)2𝑑𝜏

]
𝑎∗ (4.1)

where 𝑎 describes the signal envelope under the slowly varying envelope
approximation limit. Here b, 𝑡 refers to the slow time and the fast time, respectively
[6]. 𝛼, Δ𝜙, 𝛽2, and 𝑔 denote the loss, detuning, group-velocity dispersion (GVD),
and the phase-sensitive parametric gain, respectively. 𝑔 in the CW-limit is
expressed as 𝜖𝑏𝐿, where 𝑏 is the pump amplitude. 𝐿 refers to the cavity round trip
length where the nonlinear interaction is encountered, 𝜖 includes the strength of the
nonlinear interaction and 𝑢 is the walk-off parameter. The last term to the right of
the equation is responsible for the gain saturation. Each of these terms is
normalized by suitable normalization factors (see Supplementary section 4.5.2).

We assume a perturbation in the field (signal/idler) around the half-harmonic
frequency (𝜔0) to be of the form: 𝑎 = 𝑎+𝑒𝑖𝛿𝜔𝑡 + 𝑎−𝑒−𝑖𝛿𝜔𝑡 . We perform linear
stability analysis (neglecting gain saturation) to determine the most unstable
longitudinal mode, which is given as:

𝑑

𝑑b

[
𝑎+

𝑎∗−

]
=

[
−𝛼 + 𝑖Γ 𝑔

𝑔∗ −𝛼 − 𝑖Γ

] [
𝑎+

𝑎∗−

]
(4.2a)
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_± = −𝛼 ±
√︃
|𝑔 |2 − Γ2 (4.2b)

where Γ = Δ𝜙 + 𝛽2
2 (𝛿𝜔)2. Analyzing the eigenvalue (growth rate) (Eq. (4.2b)) of

the linear stability matrix we arrive at two scenarios. First, when
sgn(Δ𝜙) =sgn(𝛽2), we find that the most unstable frequency of oscillation is
𝛿𝜔 = 0, and the corresponding threshold (i.e., when _+ = 0) is
|𝑔 |th =

√︁
𝛼2 + (Δ𝜙)2, leaving the OPO in the degenerate phase. However, when

sgn(Δ𝜙) = −sgn(𝛽2), the most unstable frequency of oscillation is given by
𝛿𝜔 = | 2Δ𝜙

𝛽2
| 1

2 , and the associated threshold is |𝑔 |th = 𝛼, leaving the OPO in the
non-degenerate phase. This can be understood as cavity detuning (Δ𝜙)
counterbalancing the GVD-induced detuning in the non-degenerate regime. This
can happen for positive cavity detuning in the anomalous regime, where
GVD-induced detuning is negative and they cancel exactly at 𝜔0 ± 𝛿𝜔, thereby
experiencing more gain in the non-degenerate phase resulting in OPO selecting
non-degeneracy over degenerate oscillation. This proves the existence of the
spectral phase transition which is demonstrated in Fig. 4.2. The spectral phase
transition takes place around the detuning, Δ𝜙 = 0. The behavior in the normal
GVD regime (Fig. 4.2(d)) is reversed as compared to the anomalous GVD scenario
(Fig. 4.2(b)). Results obtained experimentally (Fig. 4.2(c), Fig. 4.2(e)) agree well
with the simulation.

The spectral transition can be interpreted as an order-disorder transition whereby the
OPO transits from an ordered bi-phase state in the degenerate regime, to a disordered
phase state in the non-degenerate regime with the signal assuming random phases
and the idler following it. Thus the critical point marks the onset of the spontaneous
U(1) symmetry breaking. In our context, we define OP as, 𝑂𝑃 =

𝑑_max
𝑑Δ𝜙

, which
represents the derivative of the gain with respect to the detuning. The phase-
dependent parametric gain is sensitive to detuning-induced phase accumulation
more acutely in the degenerate regime as opposed to the non-degenerate regime
where it varies slowly with detuning. The order-disorder transition has important
implications for the phase noise and coherence properties of the OPO. While the
phase noise of OPO operating at degeneracy is dominated by the driving pump,
in the non-degenerate regime phase diffusion leads to Schawlow-Townes limit for
each of the signal and the idler [40], albeit with anti-correlation in their phases and
potential phase-sum quadrature squeezing [15]. The phase transition description
reveals interesting correlation properties in the dis-ordered regime, i.e., the non-
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degenerate regime. The phase difference diffusion follows a power-law dependence
as a function of detuning (i.e., distance from the critical point) which mimics the
behavior of correlation functions in continuous phase transitions.

Figure 4.2: Second-order spectral phase transition in an OPO. a) Schematic
of the experimental setup, which implements the spectral phase transition in a
guided-wave OPO based on PPLN. Beam Splitter (BS), Output Coupler (OC),
Slow Photo-detector (SPD), Fast Photo-detector (FPD), and Second Harmonic
Generation (SHG). Spectrum (SP) as a function of detuning obtained through
numerical simulation b) in anomalous dispersion regime (dotted line plots the
theoretically expected spectral splitting, which in the non-degenerate regime is
given by: 𝛿𝜔 =

√︃
−2Δ𝜙
𝛽2

, d) in the normal dispersion regime. Experimental results
capturing the second-order critical point c) in anomalous dispersion regime, e) in
normal dispersion regime. It closely follows the square-root behavior (dotted line)
in the non-degenerate regime. Colorbar represents power spectral density in dB.

We further characterize the quadratic OPO around the phase transition point (Fig.
4.3). The critical point coincides with the maximum output power of the OPO as
observed numerically and experimentally (Fig. 4.3(a) and 4.3(b)). This behavior



90

can be explained by the gain calculations (inset of Fig. 4.3(c)). The threshold
is a function of detuning and dispersion (see Supplementary section 4.5.3). The
order parameter displays characteristics (Fig. 4.3(c)) typical of second-order phase
transitions or soft transitions [48]. Additionally, in the pulsed regime as the OPO
undergoes the phase transition the signal and idler combs split and interfere with
each other with a beat frequency equal to the difference of their respective carrier-
envelope offset frequencies. This leads to the spontaneous emergence of beat notes
as shown in the measurement results of Fig. 4.3(d). This is a manifestation of a
critical slowing-down phenomenon, where the time period of the beat-note tends to
infinity as we approach the critical point from the non-degenerate regime. Note that,
the detuning range of the parametric oscillation, as well as the ratio of degenerate
and non-degenerate regimes above the threshold, is determined by the gain, which
is a function of the pump power and cavity dispersion.

When two OPOs are coupled, the transition from degenerate to non-degenerate
operation can occur as a first-order phase transition. Figure 4.4(a) depicts a
schematic representation of the coupled OPO configuration. In the presence of the
coupling, the competition between the two second-order phase transitions (as
shown by the gain curve in Fig. 4.4(d)) results in the emergence of a first-order
spectral phase transition (Fig. 4.4(e)). This first-order transition point causes a
sudden discontinuity/hard transition in the spectrum (Fig. 4.4(b), Fig. 4.4(c)) as
the coupled OPO transits from the non-degenerate to the degenerate spectral
regime (Fig. 4.4(e)). The coupling in the linear regime induces a mode splitting
which is expected to introduce a second-order phase transition around the split
resonances as evident from the plot of OP in Fig. 4.4(d). This can be understood by
the argument that a positive cavity detuning applied to individual cavities can
appear both as a positive or a negative detuning in the coupled basis depending on
the relative magnitude of the cavity detuning and the coupling strength. Further
details regarding the modeling of coupled OPOs are presented in the
supplementary section 5.5.2.

The demonstrated spectral phase transitions can be described by the universal Swift-
Hohenberg equation which is also known to govern nonlinear pattern formation
dynamics [9, 34] see Supplementary section 4.5.5. The same equation we derived
in this context can describe degenerate four-wave mixing dynamics contingent on
certain conditions. Thus, spectral phase transitions are also expected to occur in Kerr
OPOs (Fig. 4.5(a)). For the Kerr OPO, we consider a conservative system governed
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Figure 4.3: Characterization of the second-order critical point. OPO
average output power as a function of cavity detuning obtained numerically (a)
and experimentally (b) using a slow detector. This demonstrates the maximum
conversion efficiency at the critical point. c) continuous order parameter but
discontinuous derivative typical of a second order phase transition. The inset shows
the gain curve as a function of cavity detuning, which has its maximum at the critical
point. d) Spontaneous emergence of beat-note around the critical point. Measured
RF spectrum (SP) captured using a fast detector in a multi-heterodyne measurement
showing the co-existence of the signal and idler combs in the non-degenerate regime
and their offset tuning.

by the nonlinear Schroedinger equation. 𝜕𝐴
𝜕𝑧

= −𝑖 𝛽2
2
𝜕2𝐴
𝜕𝜏2 + 𝑖𝛾 |𝐴|2𝐴. 𝛾 represents

the effective third-order nonlinear co-efficient and 𝛽2 stands for the second order
GVD co-efficient. Degenerate parametric oscillation can be realized in a Kerr
medium using dual pumps (Fig. 4.5(b) and 4.5(c)) [26, 41]. We represent the
dual pumps as having amplitudes 𝐴1 and 𝐴2 and assume that they have equal power
(𝑃 = |𝐴1 |2 = |𝐴2 |2) and possesses a detuning of Δ from the center of degeneracy.
Owing to the symmetry, we assume the parametrically generated signal (𝐴𝑠) and
idler (𝐴𝑖) to be detuned by 𝛿𝜔 from the center of degeneracy. We express the field
as given by the following expansion: 𝐴(𝑧, 𝜏) = 𝐴1𝑒

𝑖Δ𝜏 + 𝐴2𝑒
−𝑖Δ𝜏 + 𝐴𝑠 (𝑧)𝑒𝑖𝛿𝜔𝜏 +

𝐴𝑖 (𝑧)𝑒−𝑖𝛿𝜔𝜏. Parametric gain at the onset of the phase conjugation parametric
process can be determined via a linear stability analysis. The growth rate due to the
phase conjugation parametric process can be expressed as 𝑒_𝑧 where _ is given by
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Figure 4.4: First-order spectral phase transition in coupled OPOs. a) Schematic
configuration of a coupled OPO (coupling factor (^)). b,c) Simulated spectrum
(SP) as a function of cavity detuning b) in the normal dispersion regime, c) in the
anomalous dispersion regime. d) Order parameter as a function of detuning showing
the discontinuity at the location of the first-order transition point. The gain curve
is also plotted alongside. The OPO selects the gain maximum and therefore does
not follow the dashed portion of the gain curve. This gain competition between
two second-order critical points gives rise to the first-order transition point. e) The
spectrum considering the wavelength experiencing the maximum gain around which
the signal/idler is centered. At the first-order transition, there is a discontinuous jump
from the non-degenerate spectrum to the degenerate spectrum.

[41]:
_ =

√︃{
6𝛾𝑃 − 𝛽2(Δ2 − (𝛿𝜔)2)

} {
2𝛾𝑃 + 𝛽2(Δ2 − (𝛿𝜔)2)

}
. (4.3)

The spectral phase transition is shown in Fig. 4.5(d). The fact that the associated
critical point is second-order is established by analyzing the OP as depicted in
Fig. 4.5(e).
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Figure 4.5: Spectral phase transition in dual-pump four-wave mixing. a)
Illustration of the two pump fields getting converted to the signal and idler. b) The
phase conjugation parametric instability gain (_) (Eq. 4.3) curve in the normal
dispersion regime as the pump power is varied. The maximum of the gain where the
signal/idler is supposed to oscillate is marked by the black lines. Degenerate and
non-degenerate oscillations are both expected in this case. c) The phase conjugation
parametric process gain curve in the anomalous dispersion regime. Only non-
degenerate oscillation is expected in this case. d) spectral phase transition (normal
dispersion regime) as the pump separation (Δ) is varied. A degenerate to non-
degenerate transition happens across the critical point. e) The critical point is
characterized to be a second-order which displays continuous behavior in order-
parameter but exhibits discontinuity in its derivative. Parameters used in the
simulation are taken from [41].

4.4 Discussion
The abrupt frequency splitting around the critical point in these spectral phase
transitions can be utilized for enhanced sensing. A sensor can be based on the
second-order spectral phase transition biased at the critical point, that will exhibit
a scaling of 𝛿𝜔 ∼ Y

1
2 , where Y is the small perturbation (e.g., in detuning) under

consideration, similar to a second-order exceptional point [25]. However, if we
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leverage the first-order spectral phase transition for a critical detector, we can utilize
the discontinuity in the spectrum for highly enhanced sensitivity [19, 54]. The
proportionality constant in the scaling law is a function of the cavity group-velocity
dispersion. The smaller the dispersion, the higher the sensitivity (see Supplementary
section 4.5.4). Spectral phase transitions in OPOs can also open opportunities for
computing and quantum information processing. Phase transition occurring at the
oscillation threshold of OPOs has been utilized as a promising computing resource
in optical Ising machines [23, 36]. Phase transition occurring in the spectral domain
can provide additional computing capabilities. For example, in the OPO-based
Ising machines, which have been strictly operating at degeneracy so far [23, 36],
the spectral phase transition can act as an additional search mechanism leveraging
the symmetry breaking and additional phase noise in the non-degenerate regime.
Moreover, our results on spectral phase transition can extend the foundation for
phase-transition-based computing platforms [27].

Tuning the spectrum of parametric oscillation between degeneracy and
non-degeneracy is a well-known concept, and the same is achieved by
manipulating the phase matching curve via temperature, voltage control, etc. [13].
Distinctively, the presented spectral phase transition occurs as a multi-mode
co-operative phenomenon [21] triggered by cavity phase detuning, where
dispersion plays a crucial role, while the phase-matching enabled by the
periodically poled waveguide remains unaltered.

The presented spectral phase transition is in sharp contrast to intensity-dependent
bifurcation ubiquitous in nonlinear optical systems. The spectral bifurcation does
not arise due to the gain saturation-induced nonlinearity. This is also corroborated by
the existence of the quantum image of this above-threshold phenomenon below the
threshold (where gain saturation is absent) which is consistent with the theoretical
predictions in the spatial domain [18].

4.5 Supplementary
4.5.1 Experimental details
The OPO pump is derived from the mode-locked laser through second harmonic
generation (SHG) in a quasi-phase-matched periodically poled lithium niobate
(PPLN) crystal. The pump is centered around 775 nm. The main cavity is
composed of a PPLN waveguide (reverse proton exchange, 40 mm long,
periodically poled to phase-match 775-1550 nm interaction) [30] with



95

fiber-coupled output ports, fiber phase shifter, free-space section (to adjust the
pump repetition rate to be multiple of the free spectral range of the cavity.),
additional fiber segment to engineer the cavity dispersion, and a beam splitter
which provides the output coupling.

To obtain the optical spectrum in scanning mode we used a tunable filter (1 nm
bandwidth). The round-trip loss of the cavity amounts to approximately 9 dB. All
fibers and devices existing in the optical path are single modes, polarization
maintaining and connectors are angle polished. A tunable band-pass filter
(Agiltron FOTF) is used as a monochromator. A combination of a Fast Detector
(Menlo Systems FPD-510) and RF-Spectrum Analyser is used to measure the
radio-frequency spectrum after beating the OPO output with that of the fully
stabilized frequency comb (Menlo Systems FC1500-250-WG). In our
configuration, we have 4 pulses circulating per round-trip.

The threshold in our setup is observed to be 680 `W of average power. The
measurement is taken at a pump average power of 820 `W. This implies 𝑝 ≈ 1.1.
The pump is centered around 775 nm (approximately 12 ps long pulses, 250 MHz
repetition rate ). The pigtail of the PPLN waveguide measures ∼2 m in length and
is made up of single mode, polarization maintaining (PM) fiber. Additionally, we
have another PM fiber of length 15 cm. The combination of the pigtail, non-poled
portion of the waveguide, fiber section of the phase shifter, and the additional fiber
contribute to 𝜙2.

We measure the radio-frequency spectrum/beat-note by beating the OPO output
with that of the broadband fully stabilized frequency comb (Menlo Comb). On
account of the pulsed nature, we had to adjust the delay line in order to temporally
overlap the OPO output and the fully stabilized frequency comb output.

4.5.2 Derivation of high Finesse limit OPO mean-field evolution equation
In the high finesse limit, we consider the doubly resonant OPO to be governed
by parametric nonlinear interaction, group velocity dispersion (cavity averaged)
induced chirp, round-trip loss, and detuning of the cavity. The quadratic nonlinear
interaction considered is given by Eq. 4.4. Eq. 4.4b can be integrated by the method
of characteristics to yield Eq. 4.5a. This when substituted in Eq. 4.4a gives Eq.
4.5b. The resultant nonlinear interaction is summarized in Eq. 4.6a, while the effect
of GVD is included in Eq. 4.6b. Combining all the relevant cavity effects we get
the evolution of the signal field on a round-trip basis as given in Eq. 4.7a. Under
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Figure 4.6: Detailed experimental schematic showing all optical pathways,
electrical connections, and locking arrangement. Components included inside the
dashed boundary are deployed for locking arrangement. OSC: Oscilloscope, SG:
Signal Generator, TF: Tunable Band-pass filter, OSA: Optical Spectrum Analyser,
ISO: Isolator, OC: Output Coupler, FPS: Fiber phase shifter(General Photonics-
FPS-001), ML Laser: Mode-Locked Laser (Menlo Systems FC1500-250-WG, 250
MHz repetition rate, 1550 nm), SHG: Second Harmonic Generation (Covesion
MSHG1550-1.0-40), SPD: Slow Photo Detector, FPD: Fast Photo Detector, TC:
Temperature Controller(Covesion OC2 Temperature Controller), BS: Beam Splitter,
VOA: Variable Optical Attenuator, PZT: Piezo Transducer, PDH: Pound Drever Hall
Lock Box, TL CW: Tunable Continous Wave Laser.

the assumptions of the high finesse cavity, we convert the difference equation to
a partial differential equation (Eq. 4.7b). We define several normalization factors
(Eq. 4.8) and express the signal evolution in the mean-field approximation by Eq.
4.9.

𝜕𝑎

𝜕𝑧
= 𝜖𝑎∗𝑏 (4.4a)

𝜕𝑏

𝜕𝑧
= −𝑢 𝜕𝑏

𝜕𝑡
− 𝜖

2
𝑎2 (4.4b)

𝑏(𝑧, 𝑡) = 𝑏0(𝑡 − 𝑢𝑧) −
𝜖

2𝑢

∫ 𝑡

𝑡−𝑢𝑧
𝑎(𝑧 − 𝑡 − 𝑡

′

𝑢
, 𝑡

′)2𝑑𝑡
′

(4.5a)

𝜕𝑎(𝑧, 𝑡)
𝜕𝑧

= 𝜖𝑏0(𝑡 − 𝑢𝑧)𝑎(𝑧, 𝑡)∗ −
𝜖2

2𝑢
𝑎(𝑧, 𝑡)∗

∫ 𝑡

𝑡−𝑢𝑧
𝑎(𝑧 − 𝑡 − 𝑡

′

𝑢
, 𝑡

′)2𝑑𝑡
′

(4.5b)
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𝑎𝑜𝑢𝑡 (𝑡) = 𝑎𝑖𝑛 (𝑡) +
[
𝜖

𝑢

∫ 𝐿𝑢

0
𝑏0(𝑡 − 𝜏)𝑑𝜏

]
𝑎∗𝑖𝑛 (𝑡)

−
[
𝜖2

2𝑢2

∫ 𝐿𝑢

0
(𝐿𝑢 − 𝜏)𝑎𝑖𝑛 (𝑡 − 𝜏)2𝑑𝜏

]
𝑎∗𝑖𝑛 (𝑡) (4.6a)

𝑑𝑎

𝑑𝑡
=

[
−𝑖 𝛽2

2!
𝜕2

𝜕𝑡2
+ 𝛽3

3!
𝜕3

𝜕𝑡3

]
𝑎(𝑡) (4.6b)

𝑎𝑛+1(𝑡) − 𝑎𝑛 (𝑡) = (−𝛼 + 𝑖Δ𝜙)𝑎𝑛 (𝑡) +
[
−𝑖 𝛽2

2!
𝜕2

𝜕𝑡2
+ 𝛽3

3!
𝜕3

𝜕𝑡3

]
𝑎𝑛 (𝑡)

+
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𝜖

𝑢

∫ 𝐿𝑢

0
𝑏0(𝑡 − 𝜏)𝑑𝜏 −

𝜖2

2𝑢2

∫ 𝐿𝑢

0
(𝐿𝑢 − 𝜏)𝑎𝑛 (𝑡 − 𝜏)2𝑑𝜏

]
𝑎∗𝑛 (𝑡) (4.7a)

𝑇𝑅
𝜕𝑎(b, 𝑡)
𝜕b

= (−𝛼 + 𝑖Δ𝜙)𝑎(b, 𝑡) +
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−𝑖 𝛽2
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𝜕2
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+ 𝛽3
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𝜕3

𝜕𝑡3

]
𝑎(b, 𝑡)

+
[
𝜖

𝑢

∫ 𝐿𝑢

0
𝑏0(𝑡 − 𝜏)𝑑𝜏 −

𝜖2

2𝑢2

∫ 𝐿𝑢

0
(𝐿𝑢 − 𝜏)𝑎(𝑡 − 𝜏)2𝑑𝜏

]
𝑎∗(b, 𝑡) (4.7b)

b
′
=
b

𝑇𝑅
, 𝑔 =

𝜖

𝑢

∫ 𝐿𝑢

0
𝑏0(𝑡 − 𝜏)𝑑𝜏 (4.8)

𝜕𝑎

𝜕b
= (−𝛼 + 𝑖Δ𝜙)𝑎 + 𝑔𝑎∗ −

[
𝜖2

2𝑢2

∫ 𝐿𝑢

0
(𝐿𝑢 − 𝜏)𝑎(𝑡 − 𝜏)2𝑑𝜏

]
𝑎∗ − 𝑖 𝛽2

2
𝜕2𝑎

𝜕𝑡2
(4.9)

4.5.3 CW gain limit of OPO (without mean-field approximation)
While Eq. 4.9 predicts the occurrence of the spectral phase transition in the high-Q
limit, it also occurs in the low Q limit (where the mean-field approximation is not
valid and lumped interaction is to be considered) as well. In fact, our experimental
realization deals with low Finesse cavity. In such scenarios where the mean-field
equation is no more valid, we present a model that captures the spectral phase
transition assuming that the pump is CW. Note that, the analysis for the pulsed
pumping case is not trivial, and one has to resort to full numerical simulation.
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Reference [22] suggest that the CW gain approximation can predict the frequency
of oscillation with a good agreement. However, one has to include the gain clipping
component as well to obtain the signal/idler pulse shapes, and power spectrum in the
case of synchronously pumped OPO. Thus for studying spectral phase transition,
the CW gain limit is a reliable approach. In any case, one can always perform a full
spatiotemporal simulation to judge if the approximation holds good or not.

We assume signal (𝑎𝑠) to be centered at frequency𝜔0+𝛿𝜔, and idler (𝑎𝑖) at𝜔0−𝛿𝜔,
when the pump frequency is 2𝜔0. We define: 𝑎+ =

(𝑎𝑠+𝑎∗𝑖 )
2 , and 𝑎− =

(𝑎𝑠−𝑎∗𝑖 )
2 . In the

near-threshold limit, we neglect the effect of gain saturation. We obtain:

[
¤𝑎+
¤𝑎−

]
=


−𝛼 (𝑎)

2 + 𝜖𝑏 𝑖
𝛽
(𝑎)
2 (𝛿𝜔)2

2

𝑖
𝛽
(𝑎)
2 (𝛿𝜔)2

2 −𝛼 (𝑎)

2 − 𝜖𝑏


[
𝑎+

𝑎−

]
. (4.10)

Eq. 4.10 describes the interaction within the PPLN waveguide. After exiting the
gain medium, the signal/idler fields encounter cavity dispersion, out-coupling loss,
and round-trip feedback. This leads to: 𝑎𝑠 −→ 𝐺

− 1
2

0 𝑒𝑖(𝜙+𝜓)𝑎𝑠, 𝑎𝑖 −→ 𝐺
− 1

2
0 𝑒𝑖(𝜙−𝜓)𝑎𝑖,

where 𝜙 = Δ𝜙 + 1
2𝜙2(𝛿𝜔)2 (symmetric phase shift) and 𝜓 = 𝑙_ (𝑎)

2𝑐 𝛿𝜔 (asymmetric
phase shift).

[
𝑎+

𝑎−

]
𝑛+1

−→ 𝐺
− 1

2
0 𝑒−

𝛼(𝑎) 𝐿
2 𝑒𝑖𝜓

[
cos(𝜙) 𝑖sin(𝜙)
𝑖sin(𝜙) cos(𝜙)

]
exp ©«


𝜖𝑏 𝑖

𝛽
(𝑎)
2 (𝛿𝜔)2

2

𝑖
𝛽
(𝑎)
2 (𝛿𝜔)2

2 −𝜖𝑏

 𝐿ª®¬
[
𝑎+

𝑎−

]
𝑛

(4.11)

The round-trip evolution of 𝑎± is dictated by Eq. 4.11. This equation has two
eigenvalues: _±. The larger of them (_+) denotes the round-trip gain. The frequency
of oscillation (𝛿𝜔) will be determined by _𝑚𝑎𝑥 .

One can posit that this essentially happens when the phase shift (Δ𝜙) is compensated
by the total GVD (waveguide + cavity) contribution (𝛽2 = 𝜙2 + 𝛽(𝑎)2 𝐿) and is given
by:

Δ𝜙 + 𝛽2
2
(𝛿𝜔)2 = 𝑛𝜋. (4.12)

The zeroth order resonance condition gives Δ𝜙 + 𝛽2
2 (𝛿𝜔)2 = 0. This means in the

non-degenerate regime: 𝛿𝜔 =

√︃
−2Δ𝜙

𝛽2
. When the perturbation is caused by the
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critical point (Δ𝜙 = 0), we can write Δ𝜙 = 𝜖 , where 𝜖 is the small perturbation.
This gives the square-root dependence of frequency splitting (similar to second-
order exceptional point) for sensors based on second-order spectral phase transition,
biased at the critical point.

4.5.4 Effect of group velocity dispersion
The spectral splitting in the non-degenerate regime that accompanies the spectral
phase transition can be engineered. Here, we study how spectral splitting is
dependent on cavity dispersion.

From Eq. 4.12 it is evident that the spectral splitting in the non-degenerate regime
is a function of the second order (𝛽2) group velocity dispersion (GVD) for a fixed
detuning. The sensitivity of sensors based on this spectral phase transition will be
higher in cavities with lower 𝛽2. At the same time, we also find, that GVD influences
the gain and thereby the order parameter in the non-degenerate phase. The change in
slope of the order parameter for different values of GVD also highlights the variation
of the sensitivity.

To investigate the effect of GVD on the spectral splitting, we assume that the cavity
is homogeneous with finite 𝛽2. Higher-order dispersions are neglected. Fig. 4.7(a)
suggests that the spectral splitting diverges as it approaches zero GVD. However,
in practice, higher-order dispersions will contribute to the limit of near zero 𝛽2.
Also, the dispersion of nonlinearity needs to be accounted for distantly separated
signal/idler peaks. In the near-zero GVD limit the lumped assumption of 𝛽(𝑎)2 and
𝜙2 contributing to net GVD 𝛽2 breaks down, and Eq. 4.12 cease to be valid. One
has to resort to numerical simulation to study this scenario. For Fig. 4.7(b) and Fig.
4.7(c) we are operating away from near zero GVD, and the lumped approximation
is valid. We thus change the net GVD by varying 𝜙2.

4.5.5 Swift- Hohenberg Equation/ Order Parameter Description
Diverse nonlinear systems in laser physics although being described by distinct
equations, sometimes exhibit identical nonlinear dynamics. All these systems can
be reduced to a normal form under certain assumptions, which is also known as
the order parameter description or the Swift-Hohenberg equation (SHE) [46]. SHE
provides a generalized framework to study pattern formation/ localized structures.

𝜕𝐴

𝜕𝑡
= `𝐴 − 𝑞𝐴3︸      ︷︷      ︸

super-critical
pitchfork bifurcation

− 𝑟 (∇2 +Ω2
0)

2𝐴︸           ︷︷           ︸
SPT

(4.13)
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Figure 4.7: Effect of GVD on spectral phase transition. a) Spectral splitting as
a function of cavity GVD. The detuning is kept fixed at Δ𝜙 = 0.3. The dependence
of gain (b) and order parameter (c) as the GVD is varied. These results are obtained
from numerical simulation.

We provide the derivation for the real SHE here. Here we assume a crude
approximation of the gain saturation term and represent it by 𝑞 |𝑎 |2𝑎. Therefore,
the mean-field equation (Eq. 4.9) reduces to the simpler form (Eq. 4.13).

𝜕𝑎

𝜕b
= (−𝛼 + 𝑖Δ𝜙)𝑎 + 𝑔𝑎∗ − 𝑞 |𝑎 |2𝑎 − 𝑖 𝛽2

2
𝜕2𝑎

𝜕𝑡2
(4.14)

We introduce a small parameter 𝜖 . We express the signal field as 𝑎 =
∑
𝑛
𝜖𝑛𝑎𝑛. The

gain parameter is expanded about the threshold value at zero detuning as:
𝑔 = 𝛼 + 𝑝𝜖2. We assume (Δ𝜙 − 𝛽2

2
𝜕2

𝜕𝑡2
) = 𝜖Φ. We introduce the slow time scale:

𝑇 = 𝜖2b. Substituting these in Eq. 4.14, segregating terms with different orders of
𝜖 , satisfying the solvability conditions in successive orders we obtain the order
parameter equation/ real SHE as follows:
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𝑂 (𝜖): −𝑎1 + 𝑎∗1 = 0. This implies to the first order the signal field is a real quantity.

𝑂 (𝜖2): −𝛼𝑎2 + 𝛼𝑎∗2 + 𝑖Φ𝑎1=0

𝑂 (𝜖3): 𝜕𝑎1
𝜕𝑇

= −𝛼𝑎3 + 𝑖Φ𝑎2 + 𝛼𝑎∗3 + 𝑝𝑎
∗
1 − 𝑞 |𝑎1 |2𝑎1. Taking a conjugate of this and

adding it to itself, we get: 𝜕𝑎1
𝜕𝑇

= 𝑝𝑎1 − 𝑞𝑎3
1 −

(Φ)2

2𝛼 𝑎1.

We define 𝐴 = 𝜖𝑎1. We get the resultant real SHE as:

𝜕𝐴

𝜕b
= (𝑔 − 𝛼)𝐴 − 𝑞𝐴3 − 1

2𝛼

(
Δ𝜙 − 𝛽2

2
𝜕2

𝜕𝑡2

)2

𝐴. (4.15)

4.5.6 Degenerate optical parametric oscillator in Kerr nonlinear medium
Phase-sensitive phase conjugation process occurring in a Kerr nonlinear medium in
the presence of two pumps can emulate the quadratic OPO behavior. We obtain the
parametric gain associated with the phase conjugation process in such a scenario.

We can realize degenerate parametric oscillation in Kerr medium if dual pumps
are employed [38]. Let us assume we inject two CW pumps of equal power in a
non-resonant Kerr nonlinear medium. Our analysis can be extended to resonant
cases easily. We represent pump 1 as 𝐴1 =

√
𝑃𝑒𝑖(𝜙1 (𝑧)−𝜔1𝑡) , where 𝜔1 = 𝜔0 − Δ,

such that Δ is the detuning from the center of degeneracy (𝜔0). Pump 2 is given by:
𝐴2 =

√
𝑃𝑒𝑖(𝜙2 (𝑧)−𝜔2𝑡) , where 𝜔2 = 𝜔0 + Δ.

If a small signal perturbation is considered, then it can undergo the following
nonlinear interactions, namely modulation instability (MI), four-wave mixing Bragg
Scattering, and phase conjugation. These processes are depicted in Fig. 4.8.
For parametric oscillation that mimics a second-order nonlinear down conversion
process, we are interested in the phase conjugation interaction. MI does not appear
in the normal GVD regime, which is the dispersion of interest to observe spectral
phase transition. However, in the anomalous dispersion regime, the generated MI
sidebands are also transferred by the Kerr interaction to higher-order FWM (four-
wave mixing) sidebands. This leads to the collective behavior of the instability
[1, 16].

We consider a signal of the form: 𝐴𝑠 = 𝐵𝑠 (𝑧)𝑒𝑖(𝜙2 (𝑧)−𝜔𝑠𝑡) , where𝜔𝑠 = 𝜔0+𝛿𝜔, such
that 𝛿𝜔 is the detuning from the center of degeneracy (𝜔0). Another idler counterpart
is assumed to be: 𝐴𝑖 = 𝐵𝑖 (𝑧)𝑒𝑖(𝜙1 (𝑧)−𝜔𝑖𝑡) , where 𝜔𝑖 = 𝜔0 − 𝛿𝜔. Clearly, 𝛿𝜔 = 0
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implies degenerate parametric oscillation. The signal and idler are considered to be
small signals such that it is amenable to linearization/ linear stability analysis.

The evolution of the optical fields in the non-resonant Kerr nonlinear medium is
governed by the Schrodinger equation which is given by:

𝜕𝐴

𝜕𝑧
= 𝑖𝛽(𝑖 𝜕

𝜕𝑡
)𝐴 + 𝑖𝛾 |𝐴|2𝐴 (4.16)

where, 𝛽(𝜔) is the Taylor expansion of the dispersion function, incorporating all
orders of GVDs, and 𝛾 is the nonlinearity coefficient. The total complex optical
field at the input is given by: 𝐴 = 𝐴1 + 𝐴2 + 𝐴𝑖 + 𝐴𝑠. The leading order expansion
in the undepleted pump approximation yields: 𝜙1(𝑧) = 𝛽(𝜔1)𝑧 + 𝛾(3𝑃)𝑧, and
𝜙2(𝑧) = 𝛽(𝜔2)𝑧 + 𝛾(3𝑃)𝑧.

The evolution of the signal and idler will be governed by:

𝑑

𝑑𝑧

[
𝐵𝑖

𝐵∗
𝑠

]
=

[
𝑖[𝛽(𝜔𝑖) − 𝛽(𝜔1) + 𝛾𝑃] 𝑖2𝛾𝑃

−𝑖2𝛾𝑃 −𝑖[𝛽(𝜔𝑠) − 𝛽(𝜔2) + 𝛾𝑃]

] [
𝐵𝑖

𝐵∗
𝑠

]
. (4.17)

Considering only second order GVD, we have 𝛽(𝜔𝑖) − 𝛽(𝜔1) = 𝛽(𝜔𝑠) − 𝛽(𝜔2) =
𝛽2
2

(
(𝛿𝜔)2 − Δ2) . The larger eigenvalue of the linear stability matrix determines the

gain and is given by:

_ =

√︃{
6𝛾𝑃 − 𝛽2(Δ2 − (𝛿𝜔)2)

} {
2𝛾𝑃 + 𝛽2(Δ2 − (𝛿𝜔)2)

}
. (4.18)

It should be noted that the complete dynamics of the dual-pump mediated
interactions in a Kerr medium cannot be described by the incoherently coupled
nonlinear Schrodinger equations which neglect the multiple FWM interactions
[45].
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Figure 4.8: Dual pumped Kerr nonlinear medium. Nonlinear interactions can
be classified as: a) Modulation Instability b) Four-wave Mixing Bragg Scattering c)
Phase Conjugation.
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C h a p t e r 5

FIRST-ORDER SPECTRAL PHASE TRANSITION IN COUPLED
OPTICAL PARAMETRIC OSCILLATORS

Roy, Arkadev, Rajveer Nehra, Carsten Langrock, Martin Fejer, and Alireza
Marandi. Non-equilibrium spectral phase transitions in coupled nonlinear optical
resonators. Nature Physics, pages 1–8, 2023. doi: https://doi.org/10.1038/s41567-
022-01874-8.
A.R. contributed to the conception of the project, executed the experiments,
performed numerical simulations alongside associated analytical results, and
participated in the writing of the manuscript.

5.1 Abstract
Coupled systems with multiple interacting degrees of freedom provide a fertile
ground for emergent dynamics, which is otherwise inaccessible in their solitary
counterparts. Here we show that coupled nonlinear optical resonators can undergo
self-organization in their spectrum leading to a first-order phase transition. We
experimentally demonstrate such a spectral phase transition in time-multiplexed
coupled optical parametric oscillators. We switch the nature of mutual coupling
from dispersive to dissipative and access distinct spectral regimes of the parametric
oscillator dimer. We observe abrupt spectral discontinuity at the first-order transition
point. Furthermore, we show how non-equilibrium phase transitions can lead to
enhanced sensing, where the applied perturbation is not resolvable by the underlying
linear system. Our approach could be exploited for sensing applications that use
nonlinear driven-dissipative systems, leading to performance enhancements without
sacrificing sensitivity.

5.2 Introduction
Coupled systems are omnipresent ranging from neuronal connections in biological
brains, artificial neural networks, social networks, power grids, circadian rhythms,
and reaction-diffusion chemical systems [53]. The nonlinear dynamics and the
ensuing collective behaviors of coupled systems are remarkably richer than isolated
individual ones [13, 34, 36, 41, 46, 58, 60, 61]. These networks are endowed
with complex physics that can have profound consequences in sensing [15] and
computing [31, 32].
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Emergent phenomena in complex systems are ubiquitous and some paradigmatic
examples of these non-equilibrium phenomena include synchronization [9, 20],
and pattern formation [1, 16, 37, 40, 42, 45, 49]. Gain competition/ energy
exchange among the components of a many-body system in the microscopic scale
can lead to emergent macroscopic behaviors [56] including the appearance of
Turing patterns [47], coherent oscillation [3], and mode-locking [12, 55].
Understanding and engineering phase transitions in driven-dissipative systems
constitute a new frontier of many-body physics and non-equilibrium dynamics
[38, 44]. Non-equilibrium driven-dissipative systems open new possibilities and
opportunities that are not present in their equilibrium counterparts. For instance,
time crystal is a non-equilibrium phase of matter that is believed to be realizable in
out-of-equilibrium settings [8, 54]. Photonics provides a congenial platform to
engineer the drive and the dissipation for the exploration of non-equilibrium
emergent phases and dynamical phase transitions [2, 7, 24, 42, 46].

Phase transition is associated with the qualitative change in the system behavior as
a control parameter is varied across a critical/transition point. An order parameter
is often used to characterize systems exhibiting critical behaviors. Discontinuity in
the order parameter (its derivative) is a universal signature of first-order (second-
order) phase transitions [44]. Such abrupt discontinuities have been leveraged in
transition-edge sensors to perform ultra-sensitive measurements down to single-
photon levels [11]. Engineering such discontinuities in driven-dissipative systems
are highly desirable to develop high-sensitivity transition-edge sensors that are
governed by non-equilibrium dynamics and thereby are not impaired by the slow
dynamics that limit their counterparts based on thermodynamic equilibrium phase
transitions [59]. A promising approach to quantum sensing involves the exploitation
of quantum fluctuations in the vicinity of a critical point to improve measurement
precision. Theoretical studies indicate that sensors based on driven-dissipative
phase transitions in parametric nonlinear resonators can be a useful resource in this
regard [5].

Nonlinearity can potentially endow superior sensing capabilities that can attain
orders of magnitude performance enhancement over those that rely on linear
dynamics alone [4, 22, 51]. For instance, nonlinearity-induced non-reciprocity can
amplify the Sagnac effect in the vicinity of a symmetry-breaking instability [22].
Similarly, it has been proposed that operating close to the region of bistability can
lead to a strong enhancement to refractive-index sensitivity [50]. However,
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experimental demonstrations of the aforementioned nonlinear advantage remain
scarce.

We exploit the rich dynamics of coupled optical parametric oscillators (OPOs) to
realize non-equilibrium phase transitions. We demonstrate first-order spectral phase
transition and observe abrupt discontinuity at the transition point corresponding
to the system’s sudden self-organization between degenerate and non-degenerate
oscillation regimes. We show that the system of coupled OPOs exhibits qualitatively
different behavior with the alteration of their mutual coupling from dispersive to
dissipative. We also present nonlinearly enhanced sensing in the driven-dissipative
system under consideration where the applied perturbation remains unresolved by
the underlying linear system. Our results on non-equilibrium behavior in a system
of coupled nonlinear resonators can have far-reaching consequences in the domains
of sensing and computing.

5.3 Results
The building block of our coupled system is a doubly resonant OPO which is
parametrically driven by a pulsed pump centered around 2𝜔0 (see Fig. 5.1(a)) [17].
The cavity hosts multiple longitudinal frequency modes around the half-harmonic
frequency (𝜔0), where the signal/ idler resides. The distribution of these frequency
modes is determined by the cavity group velocity dispersion (GVD, 𝛽2), while
the interaction between them is facilitated by the quadratic nonlinearity (𝜒(2)).
The energy exchange between the pump and the signal (𝜔0 + 𝛿𝜔) and the idler
(𝜔0 − 𝛿𝜔) modes is governed by the energy and momentum conservation relations.
The OPO exists in a trivial state (zero mean field) below the threshold, which loses
stability leading to parametric oscillation as the gain is increased above the oscillation
threshold. The oscillation proceeds via the modulational instability, and the OPO
assumes a temporal frequency (fast-time scale dynamics) (Ω = 𝛿𝜔, centered around
the half-harmonic), corresponding to the maximum growth-rate of perturbations.
𝛿𝜔 = 0 corresponds to the degenerate oscillation, while 𝛿𝜔 ≠ 0 corresponds to the
non-degenerate oscillation regime. The temporal mode with zero effective detuning
experiences the maximum parametric gain. This can happen even in the presence
of non-zero cavity detuning, where the GVD-induced detuning counterbalances
the linear cavity detuning Δ𝜙. This mutual interplay of cavity detuning and GVD
leads to a second-order spectral phase transition as shown in Fig. 5.1(b) [42]. The
critical detuning (Δ𝜙 = 0) marks a soft transition between the degenerate and the
non-degenerate parametric oscillation regimes.
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Figure 5.1: Non-equilibrium phase transitions in single and coupled OPOs.
a) Schematic of a single OPO showing the non-resonant pump (2𝜔) and the
resonant signal/idler (𝜔) interacting via phase-matched quadratic (𝜒(2)) nonlinearity
alongside the detuning (Δ𝜙) element and the intra-cavity dispersion 𝛽2. b) Existence
of a second-order spectral phase transition in a single OPO where at the critical
detuning the OPO transits between the degenerate and the non-degenerate oscillation
regimes. c) Schematic of a coupled OPO system with the mutual coupling ^. d)
Existence of a first-order spectral phase transition in coupled OPOs featuring an
abrupt spectral discontinuity at the first-order transition point. e) Time-multiplexed
implementation of the coupled OPOs consisting of a main OPO cavity (with a
roundtrip time of 4𝑇𝑅) that is twice as long as the linear coupling cavity. The cavity
detuning is controlled using a detuning element (Δ𝜙) in the main cavity, while the
detuning element in the coupling cavity affects the coupling phase \. f) Illustration
of the pulses circulating in the time-multiplexed implementation where the pulse-
to-pulse separation is given by the repetition period of the driving pump laser, and
the coupling exists between alternate pulses, thereby constituting a coupled OPO
system.

However, this rich spectral behavior observed in a single OPO does not extend
linearly with the increase in system size, i.e., to a network of coupled OPOs (see
Fig. 5.1(c)). It is well known that in the realm of parity-time symmetric non-
Hermitian systems, increasing the system size, increases the order of the exceptional
point [19]. Strikingly, we show that it is possible to realize a hard transition (first-
order transition) in a system of coupled OPOs, where a single OPO is only capable
of featuring a soft transition (second-order transition). Our system of coupled
OPOs represents a complex system enabling a rich interplay of nonlinearity, linear
coupling (^), multimode dynamics, dispersion, drive, and dissipation. This can
lead to an abrupt spectral discontinuity between the degenerate and non-degenerate
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Figure 5.2: First-order spectral phase transition in coupled OPOs. a) Numerical
simulation of the optical spectrum of coupled OPOs as a function of cavity detuning
featuring the second-order phase transitions at the mode-splitting locations as well
as the first-order phase transition. b) Experimentally obtained optical spectrum
as a function of cavity detuning highlighting the abrupt spectral discontinuity
at the first-order transition point. The idler part of the spectrum is constructed
by mirror reflection about the half-harmonic line. c) Radio-frequency beat-note
spectrum indicating the distinct degenerate and non-degenerate oscillation regimes
demarcated by the second-order critical points and the first-order transition point.
d) Numerical simulation of the OPO power as a function of the detuning. The power
contained in the degenerate part of the spectrum (1 nm of bandwidth around the half-
harmonic frequency 𝜔) is also plotted alongside showing two distinct degenerate
oscillation regimes flanked by non-degenerate oscillation regimes. e) Coupled OPOs
power as a function of detuning obtained experimentally. The power contained in
the degenerate regime has been extracted using a bandpass filter centered around
the half-harmonic frequency. f) Order parameter (derivative of the gain function)
shows a discontinuity at the transition point suggesting the existence of a first-order
phase transition.

oscillation regimes (see Fig. 5.1(d)). We note that the phase transition considered
here is of non-equilibrium nature which is distinct from the typical thermodynamic
transitions.

We implement coupled OPOs using time multiplexing [27, 31, 32] (see
Fig. 5.1(e)). This represents a synthetic dimension implementation where the
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discrete-time dimension provided by the equidistant pulses of a mode-locked laser
has been utilized to realize a coupled OPO system without increasing the spatial
complexity of realizing OPOs in two different cavities. In this two-cavity
configuration, the main-cavity is twice as long as the coupling cavity. Specifically,
in our experiments, we chose the main cavity round-trip time to be four times the
repetition period of the mode-locked laser (𝑇𝑅). This ensures that the coupling
cavity executes coupling between alternate pulses. Thus pulses occurring at time
instants given by (4𝑛 + 1)𝑇𝑅 and (4𝑛 + 3)𝑇𝑅 or (4𝑛)𝑇𝑅 and (4𝑛 + 2)𝑇𝑅 (where n is
an integer) constitutes two sets of coupled OPOs (see Fig. 5.1(f)). Moreover, our
time-multiplexed implementation allows us to mimic different types of coupling
(dispersive, dissipative, or hybrid) [6] because the phase of the coupling path can
be altered by modifying the detuning of the coupling cavity. The detuning
elements in the main cavity and the coupling cavity control the cavity detuning
parameter (Δ𝜙) and the coupling phase \ independently.

The first-order phase transition in coupled OPOs emerges from the interplay of the
supermodes of the coupled cavities and parametric gain. The dispersive coupling
^ leads to mode-hybridization. These supermodes can be either symmetric when
the resonant fields are in phase, or anti-symmetric when they are out-of-phase.
The frequency separation between them depends on the coupling strength ^. At a
given excitation frequency, there exists a range of cavity detunings where one of
the supermodes is close to resonance, while the other one is off-resonant. In those
circumstances, we can consider the dominant supermode only, and the dynamics
of the coupled system resemble a single OPO, albeit now in the supermode basis.
This results in second-order phase transitions around the mode-splitting points
as shown in Fig. 5.2(a). However, in the range of cavity detunings where the
contribution from the supermodes is comparable, there occurs a competition between
the two second-order spectral phase transitions (one centered around the symmetric
supermode and the other centered around the asymmetric supermode). This gain
competition enforces spectral self-organization of the coupled OPOs leading to
a sharp transition between non-degenerate and degenerate oscillation regimes as
shown in Fig. 5.2(a). This proceeds via a first-order phase transition when the gain
of the non-degenerate branch of the symmetric super-mode ceases to be greater than
the gain experienced by the degenerate branch of the asymmetric supermode (see
Supplementary section 5.5.2, 5.5.3). The experimental results (Fig. 5.2(b)) of the
optical spectrum corroborate the theory and the numerical simulations (the coupling
factor realized experimentally is lower than the value assumed in the simulation).
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Figure 5.3: Supermodes of the coupled OPOs. a) Illustration of the supermodes
and their associated manifestation in the time-multiplexed implementation. b)
Radio-frequency beat-note spectrum as a function of detuning in the presence of
dispersive coupling with coupling phase \ = 𝜋/2. c) Corresponding pulse pattern
at the output of a single-pulse delayed Mach-Zehnder interferometer. The OPO
power in the degenerate band is also plotted alongside. d) Interferometric pulse
pattern in the degenerate regime (marked as 1) shows that the OPO pulses are in-
phase representing the symmetric super-mode. e) Pulse pattern in the degenerate
regime (marked as 2) shows that the OPO pulses are out of phase representing the
anti-symmetric super-mode. Similarly, the case with the dispersive coupling and
coupling phase \ = 3𝜋/2 is considered, where the radio-frequency spectrum and
the interferometer pulse pattern are displayed in f) and g), respectively. h) The
degenerate regime (marked as 1) shows the OPO pulses constituting the coupled
OPO are out-of-phase implying the anti-symmetric super-mode, while i) shows the
degenerate regime (marked as 2) with OPO pulses in-phase indicating the symmetric
super-mode.

The non-equilibrium phase transitions in coupled OPOs are further characterized
by the radio-frequency (RF) measurements (see Fig. 5.2(c)). A sync-pumped
doubly-resonant OPO in the non-degenerate regime generates a signal and an idler
frequency comb with two carrier-envelope offset frequencies which can be
measured through beating with a local oscillator. The abrupt spectral discontinuity
of this beat-note measurement unequivocally confirms the occurrence of the
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first-order phase transition. For non-degenerate (near-degenerate) doubly resonant
OPO, the 𝑓𝐶𝐸𝑂 can be deterministically estimated based on the OPO cavity
detuning [26]. The doubly resonance condition is satisfied simultaneously for the
signal and the idler to achieve the maximum parametric gain. This fixes the carrier
phase velocity, leaving the 𝑓𝐶𝐸𝑂 to be determined by the effective group velocity
of the signal and idler envelopes. The effective group velocity comprises of the
linear component that arises due to the material dispersion, as well as the
contribution due to the nonlinear acceleration of the pulses arising due to the
cavity nonlinear dynamics. The constraint to satisfy 𝑓𝐶𝐸𝑂,𝑝 = 𝑓𝐶𝐸𝑂,𝑠 + 𝑓𝐶𝐸𝑂,𝑖

along with the fixed frequency splitting relationship (maximum gain principle
described above) hinges the respective 𝑓𝐶𝐸𝑂 of the signal and idler pulses uniquely
to the cavity detuning. The output power of the coupled OPOs as a function of
detuning is representative of the parametric gain and leads to maximum conversion
efficiencies at the second-order critical points where the supermodes are resonant.
This can be seen from the simulation and experimental results in Fig. 5.2(d,e). The
power contained in the spectrum centered around degeneracy is indicative of the
degenerate regime of operation. The OPO output after passing through a band-pass
filter centered around the half-harmonic frequency is also shown in Fig. 5.2(d,e)
which indicates the presence of two distinct degenerate regimes of operation
separated by the non-degenerate oscillation regime. The order parameter (defined
as the derivative of the gain parameter with respect to the detuning) exhibits
behavior typical of a first-order phase transition with the characteristic
discontinuity at the first-order transition point (see Fig. 5.2(f)). The gain parameter
(_) reveals the underlying gain competition between the two supermodes.

The eigenvector composition of the supermodes can be unveiled from the pulse-
pattern measurements in the time domain as illustrated in Fig. 5.3(a). When the
coupling phase (\) equals 𝜋/2, the anti-symmetric eigenmode has a higher frequency
(corresponding to larger detuning) than its symmetric counterpart. The symmetric
and the anti-symmetric supermodes have distinct carrier envelope offset frequencies
as evident from the RF spectrum (see Fig. 5.3(b)). The pulse pattern is measured
using a one-pulse delayed Mach-Zehnder interferometer (see Fig. 5.3(c)) to infer the
phases of the OPO pulses constituting the coupled OPOs. The coupled OPOs in the
symmetric supermode dominated degenerate regime (1) features OPO pulses that
are in phase (see Fig. 5.3(d)). In the anti-symmetric supermode degenerate regime
(2), the OPO pulses comprising the coupled OPOs are out of phase (see Fig. 5.3(e)).
When the coupling phase is 3𝜋/2, the frequency spectrum of the supermodes is
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Figure 5.4: Dispersive vs dissipative coupling. a) Dispersive coupling between
coupled resonators results in the splitting of the real part of the eigenvalue
(spectrum), where both the super-modes experience identical dissipation. b)
The existence of mode-hybridization in the real part of the spectrum enables the
observation of two second-order spectral phase transitions centered around the
mode-splitting and the associated first-order transition point. c) OPO power as
a function of detuning along with the power contained in the degenerate regime
corroborates the existence of the underlying mode-splitting. d) In the presence of
dissipative coupling the super-modes experience different dissipation while their
real part remains identical. e) The absence of mode-hybridization in the real part of
the spectrum precludes the observation of the first-order phase transition and only
leads to features representative of the spectral behavior of a single OPO. f) OPO
power as a function of detuning showing the existence of a single degenerate regime
confirming the absence of mode-splitting with dissipative coupling.

reversed, with the symmetric supermode now associated with larger detuning. This
is revealed in the corresponding measurements shown in Fig. 5.3(f,g,h,i). This
agrees with the results obtained from numerical simulation.

The spectral behavior of the coupled OPOs drastically differs with the alteration of
the nature of mutual coupling (^). Modification of the coupling phase (\) enables
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us to mimic dispersive (𝜋/2 or 3𝜋/2), dissipative (0 or 𝜋), or hybrid (intermediate
phases) (see supplementary section 5.5.4). Dispersive coupling results in splitting
in the real part of the eigenvalues (i.e., mode-splitting) where the supermodes
experience identical rates of dissipation (the imaginary part of the eigenvalue is the
same) (see Fig. 5.4(a)). This leads to spectral and temporal features resembling the
aforementioned discussions (see Fig. 5.4(b,c)). In stark contrast, dissipative
coupling leads to splitting in the imaginary part of the eigenvalue where the
supermodes experience disparate dissipation [6]. This property of the dissipative
coupling is at the heart of the operation of optical coherent Ising machines [31],
and recent demonstrations of topological dissipation [27]. Consequently, the
absence of mode-splitting is also reflected in the spectral (Fig. 5.4(e)) and the
power (Fig. 5.4(f)) characteristics of dissipatively coupled OPOs. Dissipative
coupling precludes the occurrence of a first-order spectral phase transition and
shows the mere presence of a second-order phase transition.

The presence of non-equilibrium phase transitions with characteristic
discontinuities opens up new opportunities in the domain of sensing. High
quality-factor optical resonators have been utilized for highly sensitive refractive
index perturbation measurements [23]. However, the requirement of a high quality
factor for enhanced sensitivity results in an unavoidable trade-off with the
bandwidth and hence limits the sensing speed. The non-equilibrium phase
transition in coupled OPOs can circumvent this trade-off. Figure 5.5(a) shows the
transmission of coupled optical resonators with different round-trip losses. The
mode-splitting is observed in the regime of high-Q (lower round-trip loss), while
low-Q (high-bandwidth) resonators cannot resolve the mode-splitting structure.
Remarkably, this mode-splitting can be revealed even in the low-Q regime in the
nonlinear case where the coupled resonators are parametrically driven as coupled
OPOs (see Fig. 5.5(b)). The sensing parameter can be the phase detuning in the
coupling cavity of the time-multiplexed architecture leading to perturbation (𝛿\) in
the coupling phase (\). In the presence of this coupling phase perturbation,
coupled high-Q linear resonators will respond with asymmetric mode-splitting,
where the degree of the asymmetry depends on the strength of the perturbation
(see Fig. 5.5(c)). The asymmetry also reflects the sign of the phase perturbation
which is an added advantage over high-Q linear cavity based simple sensing
arrangements where the sensors can suffer from directional ambiguity [18]. This
asymmetric mode-splitting behavior cannot be resolved by low-Q coupled linear
resonators. However, low-Q coupled OPOs can extract these features which are
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Figure 5.5: Enhanced sensing using non-equilibrium phase transitions. a)
Transmission through coupled linear resonators with varying round-trip loss. With
lower loss values (high-Q) the mode-splitting is conspicuous, which disappears in
the low-Q regime. b) Power contained in the degenerate regime of the coupled OPO
as a function of detuning for various values of round-trip loss. In contrast to the
linear case, this nonlinear regime could resolve the mode-splitting even in the low-Q
regime. c) Transmission in coupled linear resonators (high-Q regime) in the presence
of applied perturbation expressed as the perturbation in the coupling phase (𝛿\). The
perturbation renders the coupling to be a hybrid of dispersive and dissipative leading
to asymmetric mode-splitting. The power contained in the degenerate regime of
the coupled OPO with varying perturbation in the low-Q regime obtained through
d) numerical simulation, e) experiments. Despite operating in the low-Q regime
the nonlinear dynamics could resolve the underlying asymmetric mode-splitting in
response to small coupling-phase perturbation.
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shown in Fig. 5.5(d,e) by displaying the power contained in the degenerate part
(using a band-pass filter). Results obtained from our low-Q (high gain and
bandwidth) experimental setup agree well with the simulation.

We quantify the sensitivity of the system using a normalized sensitivity metric
and benchmark its performance in comparison with linear high-Q resonator-based
sensors. Our sensing protocol is described in Fig. 5.6(a), which constitutes a photo-
detector that registers the band-pass filtered (centered around degeneracy) output
signal. The system should be biased near the spectral phase transition critical
points to exploit the maximum sensitivity, which can be ensured by active locking
means [39]. The change of detected power 𝑦 in the response of a detuning (Δ𝜙)
perturbation 𝜖 can be drastically enhanced in the vicinity of the spectral phase
transition point owing to the transition from degeneracy to the non-degenerate
regime which lies outside the spectral acceptance bandwidth of the bandpass filter.
Our simplified sensing scheme is compatible with high-bandwidth measurements
and does not involve the complex process of laser frequency scanning/sweeping.
The normalized sensitivity is defined as: 𝑆 = 1

𝑦max

𝑑𝑦

𝑑Δ𝜙
. The sensitivity at the

first-order transition point (Fig. 5.6(c)) is much higher as compared to its second-
order counterpart (Fig. 5.6(b)) [59]. The enhanced sensitivity near the first-order
transition point comes at a cost of drastically reduced dynamic range as compared
to that based on the second-order critical point. Our simulation agrees with the data
obtained experimentally (Fig. 5.6(d)). We provide further details on the experimental
approaches to access such sensitivities in the supplementary section (supplementary
section 5.5.6). The observed sensitivity enhancement is equivalent to a critically-
coupled linear high-Q cavity based sensor with a Finesse of approximately 250
(Quality factor of 1 million at 1550 nm with a cavity of 50 GHz free-spectral range
). This represents a dramatic enhancement of more than three orders of magnitude
in terms of sensitivity compared to the cold-cavity system which had a Finesse of
∼ 0.5. The sensitivity for a linear high-Q based sensor is shown in Fig. 5.6(e)
as a reference. With a combination of proper dispersion engineering and system
design it is possible to exhibit sensitivity that is equivalent to a linear high-Q based
system with a Finesse exceeding 104. This is extremely important in circumventing
the difficulties associated with achieving high quality factor cavities in integrated
platforms when interfacing with sensing technologies. Our work highlights the
possibility of achieving sensitivity levels that are at par with state-of-art sensing
systems using easily accessible low-Q based systems. The other alternative in
terms of the sensing scheme is to resort to radio-frequency domain measurements
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Figure 5.6: Sensitivity near the spectral phase transition points. a) Schematic
depicting the sensing protocol involving the detection of the coupled OPOs output on
a photodetector (PD) after passing through a bandpass filter (BPF) centered around
degeneracy. b) Detected power (𝑦) as a function of detuning (Δ𝜙) perturbation from
the second-order critical point. The normalized sensitivity (𝑆) is shown alongside
as obtained from numerical simulation. c) Same as in (b), but for perturbations
around the first-order transition point, showing enhanced sensitivity compared to
its second-order counterpart. d) Normalized sensitivity obtained experimentally for
operation near both the second-order critical point and the first-order transition point.
This does not include the sharp discontinuity at the first-order transition point. e)
Sensitivity that can be obtained from a critically-coupled linear high-Q cavity based
sensor is shown for reference. The bandpass filter bandwidth is assumed to be 1 nm.

(Fig. 5.2(c)) where the SNR can be improved by performing coherent averaging
at the cost of reduced sensing bandwidth. These results indicate the potential of
non-equilibrium spectral phase transitions for enhanced sensing (see supplementary
section 5.5.5).

5.4 Discussion
The results presented here can be directly relevant to other systems including
Faraday waves in hydrodynamics and parametrically forced mechanical or
chemical systems. With the recent progress in the nanophotonic lithium niobate
platform [14, 21, 30], exploration of extended lattices can become feasible, paving
the way towards the study of emergent nonlinear phenomena in soliton networks
and higher dimensional lattices [48]. The demonstrated phase transition can be
modeled using the universal coupled Swift-Hohenberg equation and can be
implemented in Kerr nonlinear resonators as well [29, 35]. The semi-classical
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regime considered in this work can be probed below the oscillation threshold [57],
where a quantum image of the above threshold spectral phase transition exists,
which may lead to the co-existence of a quantum phase transition [10]. Our study
mainly focuses on the adiabatic regime where the control parameter is varied
gradually. The introduction of non-adiabaticity can lead to the Floquet dynamics
with enriched phase diagrams [28]. Intriguing dynamics is also expected in the
case of nonlinearly coupled resonators [33]. Analysis of noise mechanisms that
could possibly constrain the achievable precision will be the subject of future work.
Our work lays the foundation for the exploration of emergent dynamics and critical
phenomena beyond the single-particle description and insinuates potential
advances in sensing and computing.

5.5 Supplementary
5.5.1 Experimental schematic
The detailed schematic of the experimental setup is shown in Fig. 5.7. Here, red
solid lines (with glows) refer to the free space optical path, blue//red solid lines
represent polarization maintaining (PM) fiber guided optical path (PM/ PM-DCF),
and black solid lines represent electrical connections. The wavelength of the light is
represented as 775 (775 nm) or 1550 (1550 nm) at various places in the schematic.
The pump at 775 nm is prepared by Second Harmonic Generation (SHG) of 1550 nm
light coming from a mode-locked Menlo optical frequency comb via a Periodically
Poled Lithium Niobate (PPLN) bulk crystal. The pump power is controlled by a
combination of a Half-wave plate and a polarizer which acts as a Variable Optical
Attenuator (VOA). The pump wavelength is controlled by temperature tuning (TC)
of the PPLN SHG crystal.

The OPO consists of a 40 mm long PPLN reverse-proton exchange waveguide with
fiber pigtails [25]. The rest of the main cavity is composed of a combination of
polarization-maintaining single-mode fibers and polarization-maintaining
dispersion compensating fibers (DCF) to keep the cavity dispersion close to zero
GVD. A free-space portion terminated by fiber collimators (OC) is incorporated in
order to ensure the cavity round-trip time is approximately equal to four times
(4𝑇𝑅) the inverse of the mode-locked laser pulse repetition rate (4 ns/ 250 MHz). A
Piezo Transducer (PZT) is used to scan the cavity length, and to change the cavity
detuning. The OPO is sampled using a Pellicle Beam Splitter (BS) having 45%
reflectivity.
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The coupling cavity is made up of six unprotected gold mirrors. Unprotected gold
mirrors were used to minimize the dispersion. This is completely a free-space
resonator with plane mirrors. The cavity is marginally stable, and thus multiple
round-trip buildup is unlikely. A single round-trip interference was enough for our
purpose. The total length of the cavity was adjusted to ensure that it amounts to
twice (2𝑇𝑅) the inverse of the mode-locked laser pulse repetition rate. The coupling
between the main cavity and the coupling cavity was implemented using another
pellicle beam splitter with 45% reflectivity. The Piezo transducer attached to the
coupling cavity allowed alteration of the phase of the coupling, thereby switching
between the dispersive and dissipative coupling. Perturbation to this PZT was also
used for obtaining the sensing results. The coupling cavity can be locked using an
auxiliary laser launched from the opposite direction while placing an isolator in the
main cavity such that the auxiliary signal does not see the main cavity.

The OPO output is filtered by a long-pass filter ensuring that there is no residual
775 nm light. Beat-note measurement (green dashed rectangle) has been performed
by mixing the OPO output with the 1550 nm local oscillator (LO). Here the LO
is delayed by a suitable amount to ensure temporal overlap between the LO pulses
and OPO pulses at the PM fiber coupler. An Electrical Spectrum Analyzer (ESA)
measures the beat-note from the signal received using a fast photo-detector (FPD).

The pulse pattern measurement (red dashed rectangle) was performed using a self-
delayed Mach-Zehnder Interferometer (MZI). The delay was equal to the repetition
rate of the mode-locked laser. The MZI was locked using the auxiliary LO signal
that was injected from the opposite direction. PDH locking was used for the locking
purpose.

The detuning-dependent optical spectrum and OPO output measurements were
performed using a pair of slow photo-detectors (blue dashed rectangle). One photo-
detector received the unfiltered OPO output, while the filtered OPO output was sent
to the other. The filter employed was a tunable bandpass filter with 1 nm bandwidth.

5.5.2 First order spectral phase transition in coupled OPO
Additional to the dynamics of individual OPOs, the OPO fields experience the effect
of the coupling every roundtrip.

𝑎
′

1 =
√︁

1 − |^ |2𝑎1 + |^ |ei\𝑎2 (5.1a)

𝑎
′

2 =
√︁

1 − |^ |2𝑎2 + |^ |ei\𝑎1 (5.1b)
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Figure 5.7: Detailed schematic of the experimental setup. Abbreviations used
are: OPA- Optical Parametric Amplification, SHG- Second Harmonic Generation,
VOA- Variable Optical Attenuator, LO- Local Oscillator, OC- Optical Collimator,
BS- Beam Splitter, TF- Tunable Band-pass Filter, ESA- Electrical Spectrum
Analyser, PZT- Piezo Transducer, PDH-Pound Drever Hall, DCF- Dispersion
Compensating Fiber, SPD- Slow Photo-detector, FPD- Fast Photo-detector, GM-
Gold Mirror, MZI- Mach Zehnder Interferometer, PM- Polarization Maintaining.

where the subscripts (1,2) refer to the OPO1 and the OPO2 comprising the coupled
OPO. The coupling strength is denoted by |^ |, and \ is the coupling phase.

CW gain limit (Without mean-field approximation)

We consider low Finesse lumped cavity scenario. Our experiment is reflective of
this case. We assume signal (𝑎𝑠) to be centered at frequency 𝜔0 + 𝛿𝜔, and idler
(𝑎𝑖) at 𝜔0 − 𝛿𝜔, when the pump frequency is 2𝜔0. We define: 𝑎+ =

(𝑎𝑠+𝑎∗𝑖 )
2 , and

𝑎− =
(𝑎𝑠−𝑎∗𝑖 )

2 . In the near-threshold limit, we neglect the effect of gain saturation.
We obtain:
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[
¤𝑎+
¤𝑎−

]
=


−𝛼 (𝑎)

2 + 𝜖𝑏 𝑖
𝛽
(𝑎)
2 (𝛿𝜔)2

2

𝑖
𝛽
(𝑎)
2 (𝛿𝜔)2

2 −𝛼 (𝑎)

2 − 𝜖𝑏


[
𝑎+

𝑎−

]
. (5.2)

Eq. 5.2 describes the interaction within the PPLN waveguide. After exiting the gain
medium, the signal/idler fields encounter cavity dispersion, out-coupling loss, and
round-trip feedback. This leads to: 𝑎𝑠 −→ 𝐺

− 1
2

0 𝑒𝑖(𝜙+𝜓)𝑎𝑠, 𝑎𝑖 −→ 𝐺
− 1

2
0 𝑒𝑖(𝜙−𝜓)𝑎𝑖, where

𝜙 = Δ𝜙 + 1
2𝜙2(𝛿𝜔)2 (symmetric phase shift) and 𝜓 = 𝑙_ (𝑎)

2𝑐 𝛿𝜔 (asymmetric phase
shift) .

[
𝑎+

𝑎−

]
𝑛+1

−→ 𝐺
− 1

2
0 𝑒−

𝛼(𝑎) 𝐿
2 𝑒𝑖𝜓

[
cos(𝜙) 𝑖sin(𝜙)
𝑖sin(𝜙) cos(𝜙)

]
exp ©«


𝜖𝑏 𝑖

𝛽
(𝑎)
2 (𝛿𝜔)2

2

𝑖
𝛽
(𝑎)
2 (𝛿𝜔)2

2 −𝜖𝑏

 𝐿ª®¬
[
𝑎+

𝑎−

]
𝑛

(5.3)

The round-trip evolution of 𝑎± is dictated by Eq. 5.3. Now we consider two identical
OPOs (A and B) coupled with each other via conservative coupling.

We assume signal (𝐴𝑠, 𝐵𝑠) to be centered at frequency 𝜔0 + 𝛿𝜔, and idler (𝐴𝑖, 𝐵𝑖) at
𝜔0 − 𝛿𝜔, when the pump frequency is 2𝜔0. We define: 𝐴+ =

(𝐴𝑠+𝐴∗𝑖 )
2 , 𝐴− =

(𝐴𝑠−𝐴∗𝑖 )
2 ,

𝐴+ =
(𝐴𝑠+𝐴∗𝑖 )

2 , and 𝐴− =
(𝐴𝑠−𝐴∗𝑖 )

2 . Apart from the usual effects of parametric gain,
out-coupling loss, cavity feedback, and cavity dispersion that is encountered in a
single OPO configuration, there exists the effect of conservative coupling (^) which
is given by Eq. 5.4. The round-trip evolution of 𝐴±, 𝐵± is dictated by Eq. 5.5.
We are interested in the eigenvalues of this evolution equation to find the oscillation
threshold and the frequency of oscillation.

𝐴𝑠

𝐴𝑖

𝐵𝑠

𝐵𝑖


−→



√
1 − ^2 0 𝑖^ 0

0
√

1 − ^2 0 𝑖^

𝑖^ 0
√

1 − ^2 0
0 𝑖^ 0

√
1 − ^2



𝐴𝑠

𝐴𝑖

𝐵𝑠

𝐵𝑖


(5.4)
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𝐴+

𝐴−

𝐵+

𝐵−

𝑛+1

−→ 𝐺
− 1

2
0 𝑒−

𝛼(𝑎) 𝐿
2 𝑒𝑖𝜓



√
1 − ^2 0 0 𝑖^

0
√

1 − ^2 𝑖^ 0
0 𝑖^

√
1 − ^2 0

𝑖^ 0 0
√

1 − ^2


cos(𝜙) 𝑖sin(𝜙) 0 0
𝑖sin(𝜙) cos(𝜙) 0 0

0 0 cos(𝜙) 𝑖sin(𝜙)
0 0 𝑖sin(𝜙) cos(𝜙)


exp

©«



𝜖𝑏 𝑖
𝛽
(𝑎)
2 (𝛿𝜔)2

2 0 0

𝑖
𝛽
(𝑎)
2 (𝛿𝜔)2

2 −𝜖𝑏 0 0

0 0 𝜖𝑏 𝑖
𝛽
(𝑎)
2 (𝛿𝜔)2

2

0 0 𝑖
𝛽
(𝑎)
2 (𝛿𝜔)2

2 −𝜖𝑏


𝐿

ª®®®®®®®¬


𝐴+
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𝑛
(5.5)

Mean-field approximation
Here we present the mean-field version of the modeling of coupled OPO. However,
it must be noted that the CW-driven, high finesse limit leading to the mean-field
approximation is unable to predict the occurrence of the first-order phase transition.
This is because, in the mean-field limit, it is assumed that the detuning is very small,
and only a truncated approximation of the detuning is included in the modeling.
However, it is able to predict the existence of two second-order phase transitions
each centered around the split-mode resonance. First-order transition happens as a
result of the interplay between these two second-order phase transitions.

Here, 𝑎 and 𝑏 denote the signal amplitude of the OPOs comprising the coupled OPO.
They are assumed to have identical detuning (Δ𝜙), GVD (𝛽2). b and 𝑡 represent
the slow time and fast time, respectively. The parametric gain term is given by
𝑝. The coupling term is designated as ^. 𝐿𝑢 represents the product of the length
of parametric interaction (𝐿), and the walk-off parameter (𝑢). Equal detuning and
parametric gain can be easily implemented in the time-multiplexed architecture.
The system of coupled equations describing the coupled OPO is given by [42]:

𝜕𝑎

𝜕b
= (−𝛼 + 𝑖Δ𝜙)𝑎 + 𝑝𝑎∗ −

[
𝜖2

2𝑢2

∫ 𝐿𝑢

0
(𝐿𝑢 − 𝜏)𝑎(𝑡 − 𝜏)2𝑑𝜏

]
𝑎∗ − 𝑖 𝛽2

2
𝜕2𝑎

𝜕𝑡2
+ 𝑖^𝑏
(5.6a)
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𝜕𝑏

𝜕b
= (−𝛼 + 𝑖Δ𝜙)𝑏 + 𝑝𝑏∗ −

[
𝜖2

2𝑢2

∫ 𝐿𝑢

0
(𝐿𝑢 − 𝜏)𝑏(𝑡 − 𝜏)2𝑑𝜏

]
𝑏∗ − 𝑖 𝛽2

2
𝜕2𝑏

𝜕𝑡2
+ 𝑖^𝑎.
(5.6b)

We assume a perturbation of the form as given in Eq. 5.7a. We perform the linear
stability analysis (Eq. 5.7b), where the gain saturation term has been neglected. We
define Γ = Δ𝜙 + 𝛽2

2 (𝛿𝜔)2. We obtain the most unstable eigenvalue that determines
the oscillation frequency and the corresponding threshold in Eq. 5.7e.

𝑎 = 𝑎+𝑒
𝑖𝛿𝜔𝑡 + 𝑎−𝑒−𝑖𝛿𝜔𝑡 , 𝑏 = 𝑏+𝑒

𝑖𝛿𝜔𝑡 + 𝑏−𝑒−𝑖𝛿𝜔𝑡 (5.7a)

𝑑

𝑑b


𝑎+

𝑎∗−
𝑏+

𝑏∗−


=

(
𝑀1 𝑀2

𝑀2 𝑀1

) 
𝑎+

𝑎∗−
𝑏+

𝑏∗−


(5.7b)

𝑀1 =

[
−𝛼 + 𝑖(Δ𝜙 + 𝛽2

2 (𝛿𝜔)2) 𝑝

𝑝∗ −𝛼 − 𝑖(Δ𝜙 + 𝛽2
2 (𝛿𝜔)2)

]
(5.7c)

𝑀2 =

[
𝑖^ 0
0 −𝑖^

]
(5.7d)

(_𝑚𝑎𝑥 + 𝛼)2 = |𝑝 |2 − Γ2 − ^2 ± 2^Γ. (5.7e)

Clearly, we can obtain the presence of two second-order spectral phase transition
points: one located at Δ𝜙 = ^ and the other at Δ𝜙 = −^.

For Δ𝜙 = ^, the dominant eigenvector is given by [−1,−1, 1, 1]𝑇 . This is the anti-
symmetric eigenvector. While, when Δ𝜙 = −^, the dominant eigenvector is given
by [1, 1, 1, 1]𝑇 . This is the symmetric eigenvector.

The situation is reversed, when the coupling phase in the dispersive coupling is 3 𝜋2 .
Then the system of coupled equations will be given by:
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𝜕𝑎

𝜕b
= (−𝛼 + 𝑖Δ𝜙)𝑎 + 𝑝𝑎∗ −

[
𝜖2

2𝑢2

∫ 𝐿𝑢

0
(𝐿𝑢 − 𝜏)𝑎(𝑡 − 𝜏)2𝑑𝜏

]
𝑎∗ − 𝑖 𝛽2

2
𝜕2𝑎

𝜕𝑡2
− 𝑖^𝑏
(5.8a)

𝜕𝑏

𝜕b
= (−𝛼 + 𝑖Δ𝜙)𝑏 + 𝑝𝑏∗ −

[
𝜖2

2𝑢2

∫ 𝐿𝑢

0
(𝐿𝑢 − 𝜏)𝑏(𝑡 − 𝜏)2𝑑𝜏

]
𝑏∗ − 𝑖 𝛽2

2
𝜕2𝑏

𝜕𝑡2
− 𝑖^𝑎.
(5.8b)

In this case, for Δ𝜙 = ^, the dominant eigenvector is given by [1, 1, 1, 1]𝑇 . This
is the symmetric eigenvector. While, when Δ𝜙 = −^, the dominant eigenvector is
given by [−1,−1, 1, 1]𝑇 . This is the anti-symmetric eigenvector.

5.5.3 Effect of group velocity dispersion and coupling
Now we investigate the effect of group velocity dispersion (GVD) and coupling
strength on the first-order spectral phase transition. With increasing dispersion, the
gain in the non-degenerate regime is a slow function of detuning. This is shown in
Fig. 5.8(a). Thus the non-degenerate regime of one branch crosses over the
degenerate regime of the other branch earlier for low values of GVD. The
first-order phase transition is more pronounced for low values of GVD. Therefore,
we kept the GVD of the main cavity very low, by a proper combination of
polarization maintaining anomalous fiber, and normal dispersion compensating
fiber. The dispersion in the coupling cavity was kept at a minimum, by using an
uncoated gold mirror. It should be noted that in the presence of large cavity GVD,
the first-order dispersion may be difficult to observe. The spectral splitting is also a
function of dispersion [42]. For lower values of GVD, the spectral splitting is
wider as shown in Fig. 5.8(b). The coupling between the OPOs (^) determines the
location of the critical point corresponding to the second-order spectral phase
transition. With the increasing value of the coupling the separation between the
critical points increases as shown in Fig. 5.8(c). The variation of the order
parameter with dispersion and cavity detuning is shown in Fig. 5.8(d).

The spectral phase transition is reversed with respect to detuning in the normal and
anomalous dispersion regimes as shown in Fig. 5.9.

5.5.4 Dispersive vs dissipative coupling
Coupling between optical cavities can be either purely dispersive, purely dissipative,
or a hybrid admixture of both. In the presence of dispersive coupling, resonance
frequency hybridization takes place, resulting in mode-splitting/ avoided mode-
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Figure 5.8: Effect of cavity GVD and coupling factor on the first order spectral
phase transition. a) The gain variation with detuning between the degenerate and
non-degenerate regime is more pronounced at low GVD values. The first-order
phase transition will be more conspicuous for low GVD values. b) spectral splitting
as a function of GVD. The splitting in the non-degenerate regime is more for lower
values of GVD. c) Effect of varying coupling factor on the spectral phase transition.

Figure 5.9: Optical spectrum as a function of detuning in a) anomalous
dispersion regime and b) normal dispersion regime.

crossing. While in the presence of dissipative coupling, the resonance frequencies
remain unaltered, while the energy in terms of loss and gain is modified. One
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supermode will be lossier than the other. This is the basis of the coherent Ising
machine, where the optically realized Ising spins interact via dissipative coupling.

The dispersive coupling will allow the observation of first-order spectral phase
transition. This is shown in Fig. 5.10(a). In the presence of dissipative coupling,
first-order spectral phase transition will not occur, and only second-order spectral
phase transition can be observed. This is shown in Fig. 5.10(b). It is to be noted
that in the time-multiplexed implementation, the first-order spectral phase transition
is only observed in the alternate peaks.

Figure 5.10: Coupled OPO response in the time-multiplexed implementation in
the presence of a) dispersive coupling, and b) dissipative coupling.

The coupling can be modified from dispersive to dissipative coupling, by changing
the phase of the coupling cavity.

The coupled OPO threshold is also a function of the coupling phase. The threshold
is minimum when the coupling is dissipative (both ferromagnetic and
anti-ferromagnetic). The threshold is the maximum for purely dispersive coupling.
This is shown in terms of the OPO output modulation as the coupling phase is
varied using PZTB as shown in Fig. 5.11.

This can be seen using a simplified CW mean field model of coupled OPO in the
linearized form:

𝑑𝑎

𝑑𝑡
= −𝛼𝑎 + 𝑔𝑎∗ + i^ei\𝑏 (5.9a)

𝑑𝑏

𝑑𝑡
= −𝛼𝑏 + 𝑔𝑏∗ + i^ei\𝑎 (5.9b)



130

where 𝛼, 𝑔, ^, and \ are the loss, parametric gain, coupling strength, and coupling
phase, respectively.

𝑑

𝑑𝑡


𝑎

𝑎∗

𝑏

𝑏∗


=


−𝛼 𝑔 i^ei\ 0
𝑔 −𝛼 0 −i^ei\

i^ei\ 0 −𝛼 𝑔

0 −i^ei\ 𝑔 −𝛼



𝑎

𝑎∗

𝑏

𝑏∗


(5.10)

The threshold is determined by the maximum eigenvalue. _𝑚𝑎𝑥 is given by: _𝑚𝑎𝑥 +
𝛼 =

√︁
𝑔2 − e2i\^2. Clearly, for the dissipative coupling \ = 𝜋

2 (anti-ferromagnetic)
and \ = 3𝜋

2 (ferromagnetic) the threshold is lowest. The threshold is highest for
purely dispersive coupling \ = 0 and \ = 𝜋.

Figure 5.11: Variation of the coupled OPO threshold as a function of coupling
phase.

5.5.5 Advantage of parametrically driven spectral phase transition based
sensing
Advantages: Our sensing system is also advantageous over linear enhancement
techniques due to the following reasons:
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• Our sensing system does not require a high-Q cavity (cold-cavity) to begin
with. Despite being low-Q it can exhibit sensitivity comparable to its high-Q
counterparts. This is very important in light of system integration. High-Q
cavities can be made with due fabrication diligence. However, these cavities
remain high-Q when kept in isolation, and may be extremely challenging
to retain their high-quality nature when integrated with sensing platforms
like micro-fluidic systems/ micro-scale vacuum cells that may be utilized to
deliver the analyte/sample to the sensor. On the other hand, our system can
still operate with low Q, albeit with higher thresholds/power requirements.
This will not be an issue in integrated optical parametric oscillators, where
the thresholds are relatively low (can be less than 1 mW) [24].

• The system response is tunable. Aggregation of loss due to interaction with
the sample can be compensated by increasing the pump power (adjustment
due to the changing threshold). This is in stark contrast with high-Q cavity
based systems where the sensitivity drops significantly with an accumulation
of loss (degradation of Q factor).

• The system is expected to enhance the signal-to-noise ratio of sensing and not
just the sensitivity. While in high-Q-based systems the SNR can be enhanced
by increasing the pump power, novel sensing mechanisms based on exceptional
points [19] can suffer from SNR performance owing to enhanced fluctuations
near the vicinity of exceptional point [52]. Our system behaves differently
thanks to the phase-sensitive gain mechanism which exhibits quadrature-
dependent fluctuations behavior. Although the fluctuations diverge in the
phase quadrature, the fluctuation in the amplitude quadrature can be restricted
[43].

• We have also shown that the spectral phase transition can not only be used to
measure the magnitude of perturbation but can also be leveraged to identify
the sign of the phase perturbation (please refer to Fig. 5.5 and the discussion
thereof).

Boosting the sensitivity with proper dispersion engineering and its use as
transition-edge sensor:

The sensitivity that we have observed experimentally can be boosted by several
means:
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• The bandwidth of the bandpass filter (centered around the degeneracy point)
can be made narrower. In the experiment, we used a bandwidth of 1 nm.
Using a bandpass filter with lower bandwidth (0.1 nm) will further boost the
sensitivity, owing to higher spectral selectivity between the degenerate and
non-degenerate regimes. This is shown in Fig. 5.12(a,b).

• The sensitivity of the system based on second-order spectral transition is a
function of the intra-cavity dispersion. The sensitivity is expected to improve
with minimizing second-order dispersion co-efficient 𝛽2 [42]. Thus, the
smaller the intra-cavity dispersion, the higher the sensitivity. The flexibility
to design the dispersion in integrated platforms will enable to realization
of very low dispersion systems, thereby boosting the sensitivity [25]. The
scaling with varying intra-cavity dispersion is shown in Fig. 5.12(c). In the
experiment, we attempted to minimize the dispersion by using a combination
of standard and dispersion-compensating fibers. However, it is still much
higher than what can be achieved on an integrated platform.

We also mention that instead of using a bandpass filter centered exactly around the
degenerate point of operation, one could also use a bandpass filter centered around
the non-degenerate end of the spectrum. This configuration applies to detecting the
sensitivity around the first-order transition point, and will not work for measurements
around the second-order critical point. Around the first-order transition point, the
non-degenerate bandpass filter can discriminate the abrupt transition from far non-
degeneracy to exact degeneracy as shown in Fig. 5.13.

5.5.6 Observation of spectral discontinuity using a combination of slow-detector
and band-pass filter
Our experimental design was motivated by the fact that larger spectral splitting
would lead to a more conspicuous spectral discontinuity at the first-order transition
point. Here, larger spectral splitting refers to more non-degenerate oscillation. As
shown in Fig. 5.14(a), this translates to a higher coupling coefficient (^). In our
experiment, the coupling coefficient is close to ^ =0.5. This helped us in observing
the clear discontinuity in the radio-frequency spectrum for the carrier-envelope
frequency beat-notes. The discontinuity is also apparent in the optical spectrum
measurements. This dependence on coupling co-efficient is however conflicting
when one considers the measurement protocol using a slow photo-detector
preceded by a band-pass filter. In this case, we need a large jump in the registered
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First-order

Figure 5.12: Effect of varying filter bandwidth. Numerical simulation showing
a) the normalized filtered output power with varying filter bandwidth, b) and the
corresponding sensitivity. Narrower bandwidth of the bandpass filter results in a
more abrupt jump (when normalized to the maximum power) leading to higher
sensitivity enhancement at the first-order transition point. A similar trend follows in
the case of second-order critical points as well. c) Sensitivity for operation around
the second-order critical point is plotted for various dispersion parameters. The
normalized sensitivity enhances with smaller intra-cavity integrated dispersion.

power, when the coupled OPO transitions from non-degeneracy to degeneracy at
the first-order transition point. This means that the coupled OPO should oscillate
at higher power (corresponding to higher degenerate gain) when it transitions to
degeneracy so that the abrupt change in power between extreme non-degenerate
and degenerate operation is apparent. This translates to lower values of coupling
co-efficient as shown in Fig. 5.14(b). As can be seen from the results obtained
through numerical calculations (Fig. 5.14(b)), the one with the least value of
coupling co-efficient starts oscillating with higher gain in the degenerate mode
near the first-order transition point.
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Figure 5.13: Non-degenerate filtering based sensing protocol. a) Using a
bandpass filter located towards the extreme end of the non-degenerate spectrum
instead of using one that is centered around the degeneracy point for the sensing
configuration. b) Measured data showing a similar sensitivity enhancement can
be captured using the configuration based on a bandpass filter (BPF) around the
non-degenerate end of the spectrum.

(a) (b)�

Figure 5.14: Effect of the coupling co-efficient on the spectral splitting. a) Effect
of the coupling co-efficient on the spectral splitting (^). b) Behavior of the gain
parameter with varying coupling coefficient.

This behavior is confirmed by performing numerical simulations for the dynamics
of coupled OPOs for various values of the coupling coefficient at a fixed pump
power. Figure 5.15(a) shows that indeed lower values of the coupling coefficient
lead to a more abrupt jump in the normalized OPO output power. Unfortunately, for
the case of higher coupling co-efficient (^ = 0.5, which is close to the experimental
scenario), the jump corresponding to the discontinuity is not conspicuous when the
coupled OPO is operated near the threshold. This has precluded us from observing
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the sharp discontinuity corresponding to the first-order transition point using this
protocol. The associated normalized sensitivity is shown in Fig. 5.15(b), where
higher sensitivity is expected for lower values of coupling co-efficient.

(a) (b)

0.25
0.30
0.40
0.50

0.25
0.30
0.40
0.50

Figure 5.15: Effect of coupling co-efficient (^) on the observation of sharp
discontinuity in the power recorded through a band-pass filter at the first-order
transition point. a) shows the normalized power, b) shows the corresponding
normalized sensitivity for various values of ^. The pump power is fixed at 1.50
𝑃0, where 𝑃0 is a single OPO threshold.

We note that this discontinuity in the power recorded through a band-pass filter is
also a function of the pump power, i.e., number of times above threshold operation.
Higher pump powers result in more abrupt discontinuity (Fig. 5.16(a)) and lead
to higher sensitivity (Fig. 5.16(b)). For the case of higher coupling, co-efficient
one can still operate at higher pump powers and observe some discontinuity too.
However, in the experiment, we were limited by other effects (photo-refractive
damage) that prevented us to operate at those higher pump power levels. We note
here that, the threshold for coupled OPOs increases with an increase in the value of
coupling co-efficient.

Imperfections in the experimental setup (imperfect locking and associated phase
instability of the coupling cavity) have also contributed to lower values of the SNR,
which made the observation of the abrupt discontinuity using this protocol difficult.
The realization of coupled OPOs in an integrated photonics platform will most
likely help alleviate this issue. Moreover, we should follow the design guideline of
deploying a lower value of coupling co-efficient in this approach. However direct
spectral domain measurements would benefit from a higher value of coupling co-
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efficient. Thus one has to tweak the coupled OPO design based on the specific
requirement.

The discontinuity corresponding to the first-order transition point exists irrespective
of how fine of a grid in detuning we consider in the simulations. The derivative is
technically ill-defined at that point and the sensitivity quantification at the first-order
transition point is a representation for the ease of comparison.

(a) (b)

0.25 0.35 0.450.150.25 0.35 0.450.15

Figure 5.16: Effect of pump power (number of times above threshold operation)
on the observation of sharp discontinuity in the power recorded through a
band-pass filter at the first-order transition point. Here, 𝑃0 represents the
threshold pump power for a single OPO. a) shows the normalized power, b) shows
the corresponding normalized sensitivity for various values of pump power. The
coupling coefficient is chosen to be ^ =0.30.
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C h a p t e r 6

ISING-KURAMOTO MACHINE: COMPUTATION AT THE
SPECTRAL PHASE TRANSITION

6.1 Abstract
Several combinatorial optimization problems are of utmost importance with regard
to their connections to a plethora of applications ranging from portfolio
optimization, scheduling, and routing to solving physics-based problems. Some of
them are computationally hard belonging to the NP complexity class, and efficient
algorithms to find the solution to these problems are absent to date. Several
heuristics-based approaches promise to provide near-optimal solutions and many
of which are inspired by dynamics in physical systems like simulated annealing,
quantum annealing, adiabatic Hamiltonian engineering, stimulated bifurcation, etc.
Thus physics-based analog machines are more suitable for the implementation of
these algorithms compared to their digital von-Neumann-based counterparts. A
coherent Ising machine composed of a network of coupled optical parametric
oscillators has been investigated in this regard to simulate the Ising Hamiltonian
which corresponds to the steady-state phase configuration of the constituent
parametric oscillators. Several enhancements have been proposed to improve the
solution accuracy of these coherent Ising machines ranging from amplitude
homogenization to the application of error correction feedback, etc. In this work,
we propose a new protocol for these coherent Ising machines involving a
dimensional relaxation that relaxes the dynamics of the Ising Hamiltonian to the
XY problem. We show that we can leverage the spectral phase transition that
occurs in optical parametric oscillators to adiabatically switch from the XY
dynamics dictated by the Kuramoto synchronization of nonlinear oscillators to the
Ising dynamics that corresponds to the combinatorial optimization problem of
interest. We leverage the additional phase degree of freedom for OPOs operating
in the non-degenerate regime displaying the XY dynamics to explore the energy
landscape. Our simulations indicate enhanced solution accuracy for Mobius ladder
based graphs as well as broader solution distribution for several benchmark
problems. We map the dynamics to a physical platform comprising synchronously
pumped optical parametric oscillators apart from developing a simplified model for
investigating the stability of the fixed points. Our results highlight a new protocol
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for coherent Ising machines paves the way for achieving improved optimal
solutions by leveraging the new degrees of freedom provided by the proposed
Ising-Kuramoto model.

6.2 Introduction
Several combinatorial optimization problems belonging to the NP-hard complexity
class lack an efficient classical algorithm. The time complexity grows
exponentially with the problem size which soon becomes intractable for real-life
problems of interest. Some of these problems when formulated in the quantum
domain also remain hard to solve for a potential fault-tolerant quantum computer
and are described by the corresponding QMA-hard complexity class. There exist
deterministic classical algorithms that can guarantee a solution that is no worse
than the optimal solution by a factor. However, the cost between the optimal
solution and the obtained approximate result can be enormous from a practical
standpoint. Consequently, there is huge interest in developing heuristics-based
algorithms and/or physics-inspired algorithms to obtain a near-optimal solution
[2, 22].

Many of these hard optimization problems can be recast into spin Hamiltonians
where the optimal solutions correspond to the ground state configuration of the
Hamiltonian [14]. The Ising Hamiltonian that describes the dynamics of binary
spins can be directly mapped to a wide range of combinatorial optimization problems
[24]. Thus physics-based analog hardware is a natural candidate for realizing these
solvers. Possible hardware implementation range from superconducting circuits,
trapped ions, cold atoms, a system of nonlinear oscillators in CMOS/ spin-torque
based devices [3, 23], coupled optical parametric oscillators [5, 6, 12, 13, 20],
polaritonic oscillators [10], photonic devices [15, 16], etc. Here, we will be focusing
on the optics-based platform using networks of coupled parametric oscillators also
known as coherent Ising machines.

Degenerate optical parametric oscillators (OPO) can occupy one of the two binary
phase states above the threshold. Thus these two phase configurations that are offset
by 𝜋, can be mapped to the binary spin states in the Ising Hamiltonian and can form
the nodes of the so-called coherent Ising machines (CIM). The coupling between the
OPOs (dissipative coupling) is engineered according to the graph adjacency matrix.
Several successful demonstrations of large-scale CIMs have shown the promise that
exploits the potential of all-to-all connectivity and high-clock speed.
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However, these systems do not always converge to the optimum solution in the
steady state and oftentimes get stuck in local minima that exist in the complex
energy landscape [19]. This may be explained by several reasons including the
issue of amplitude heterogeneity. Several improvements have been suggested with
regard to the operation of CIMs to alleviate this problem. This includes among
other chaotic amplitude control [11], application of error correction feedback [8],
etc. It is of active research interest to investigate protocols that lead to improving
the solution accuracy of these CIMs.

One viable route in this regard is to increase the degrees of freedom of the CIM
which can allow one to explore the energy landscape more effectively. The XY
Hamiltonian represents the rank 2 relaxations of the Ising problem [4] where the
phase degree of freedom is unconstrained. This introduces the phase of the nonlinear
oscillators as an additional degree of freedom that can be exploited. However, the
combinatorial optimization problem is related to the Ising Hamiltonian and thus
dimensional annealing leading to binarization (can also be thought of as rounding
procedure) of the spin is warranted at the end of the computation. Motivated by this
concept, we propose the Ising-Kuramoto protocol for CIM.

In this work, we propose to utilize the spectral phase transition phenomena
occurring in a network of coupled optical parametric oscillators to realize the
Ising-Kuramoto machine. We show that the system of coupled OPOs in their
non-degenerate oscillation regime undergoes the Kuramoto synchronization and
minimizes the XY Hamiltonian. BY traversing the spectral phase transition
[17, 18] we undergo dimensional annealing [1] from the XY phase to the Ising
phase whereby the OPOs transition into degenerate oscillation regime and
approximates the Ising Hamiltonian. We perform numerical simulations of our
proposed protocol on Mobius ladder based graphs and observe enhancements in
solution accuracy. We investigate a simplified model to analyze the dynamics
including the stability of fixed points and report the computational results on
benchmark problems that exhibit a broader distribution of the optimal solutions
compared to the Ising-only counterpart. We also explore the possibility of multiple
annealing schedules involving the transition between the XY and the Ising phases
and investigate the resultant improvements.
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6.3 Results
The CIM is programmed to solve the Ising Hamiltonian where one needs to find N
binary spins 𝑠𝑖 ∈ −1, 1, that minimize:

𝐻Ising = −1
2

𝑁∑︁
𝑖, 𝑗=1

𝐽𝑖, 𝑗 𝑠𝑖𝑠 𝑗 −
𝑁∑︁
𝑖=1

ℎ𝑖𝑠𝑖 (6.1)

where 𝐽𝑖, 𝑗 is the real coupling matrix and ℎ𝑖 represents external fields. This maps
to the MAXCUT problem belonging to the NP-hard complexity class with
minimum overhead. CIMs realized with degenerate OPOs can faithfully replicate
this dynamics thanks to the binary phase solutions in the steady state. Here we will
be mostly concerned with unweighted, undirected (bi-directional) graphs. The
antiferromagnetic interaction represented by the real 𝐽𝑖, 𝑗 matrix can be easily
realized using dissipative coupling in a network of degenerate OPOs. Although
complex 𝐽𝑖, 𝑗 matrix can also be realized via a combination of dispersive and
dissipative coupling.

The conventional operation principle of CIMs composed of degenerate OPOs is
described in Fig. 6.1(a). It involves gradually ramping up the pump power of the
OPOs from below to above the threshold [24]. The rate at which the pump power is
increased has to be judiciously chosen to prevent getting stuck at local minima [25].
The OPOs start below the threshold in a squeezed state with an undetermined phase.
As the system approaches the oscillation threshold, they undergo a spontaneous
symmetry breaking to occupy one of the binary phase states. The degenerate
OPOs get classified into clusters of two spins (with unequal amplitude in general)
corresponding to one of the minimum energy configurations. On account of the
amplitude heterogeneity, this configuration may not correspond to the optimum
solution of the combinatorial optimization problem.

We propose a new protocol for operating these CIMs, in the Ising-Kuramoto
regime as illustrated in Fig. 6.1(b). Here instead of leveraging the spontaneous
symmetry breaking at the threshold transition, we utilize the spontaneous
symmetry breaking at the spectral phase transition. This spectral transition
corresponds to a symmetry breaking from 𝑈 (1) symmetry to 𝑍2 symmetry [17].
This corresponds to a rank 2 relaxation of the Ising problem. Further details
regarding the spectral phase transition and their connection to OPO dynamics are
discussed in the next subsection.
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Figure 6.1: Comparison of protocol between the conventional CIM operation
and our proposed approach. a) Conventional operation of a CIM involves
gradually ramping the pump power from below to above the threshold. Individual
OPOs operating in the degenerate regime start from being in the squeezed state
to occupying one of the two possible coherent states (bi-phase states) as it crosses
the spontaneous symmetry breaking at the threshold, b) our proposed operation of
Ising-Karamoto machine where the governing dynamics are gradually tuned from
being XY to being Ising. This maps directly to the non-degenerate and degenerate
regime of operation of OPOs, respectively.

The𝑈1 symmetry in the XY regime provides the phase degree of freedom. While in
the regime, two stable fixed solutions exist as shown by the potential picture in Fig.
6.2(a), the fixed points in the XY regime can occupy any phase and can lie on the
circle centered around the origin. This is illustrated by the potential diagram in Fig.
6.2(b). Now, we assume the dynamics of two OPOs operating above the threshold,
and the coupling is switched on. In the Ising case, if the spins of the OPOs happen
to be wrongly oriented, they have to crossover the potential barrier (or in other
words traverse a trajectory crossing the zero amplitude) and flip over to the desired
phase. This is shown as the color plot in the bottom panel of Fig. 6.2(a) where the
variation of color from blue to red represents propagation in time. In contrast to the
XY regime of operation, the OPOs can adopt a detoured trajectory whereby instead
of crossing the potential barrier it utilizes the phase degree of freedom to reorient
itself to the correct phase configuration which is shown in the bottom panel of Fig.
6.2(b).
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Figure 6.2: Phase degree of freedom for non-degenerate OPO operation. a)
Potential landscape for degenerate OPOs characterized by two stable fixed points
segregated by a potential barrier centered around zero amplitude. In this case,
spin-flip has to occur by passing through zero amplitude. b) Potential landscape for
non-degenerate OPOs characterized by the phase degree of freedom allowing the
spin-flip without traversing the trajectory that passes through zero amplitude.

Spectral phase transition in synchronously pumped OPOs
Synchronously pumped OPOs are used in time-multiplexed configuration to realize
large-scale CIMs [6, 13]. Sync-pumped OPOs exhibit intriguing spectral dynamics
thanks to the multimode behavior characterized by temporal super-modes [17].
They can undergo a continuous spectral phase transition when the cavity detuning
is varied. The OPO switches between the non-degenerate and degenerate
oscillation regimes across the transition point. In the non-degenerate regime, the
OPO signal enjoys the 𝑈1 symmetry which is spontaneously broken to 𝑍2

symmetry in the degenerate oscillation regime owing to phase and frequency
locking. The dynamics of a network of non-degenerate OPOs are dictated by the
XY Hamiltonian involving phase synchronization a.k.a Kuramoto synchronization
[21]. Thus in our proposed protocol the cavity detuning is adiabatically varied
similar to its pump power counterpart in the conventional mode of operation of
CIMs.
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Figure 6.3: Spectral phase transition and a simple case of geometric frustration.
a) A 3-spin configuration displaying geometric frustration when the spins are
constrained to be binary. The ground state degeneracy is broken when the spin
constraint is relaxed. b) Evolution of the phase of individual OPOs as the detuning
is varied through the spectral phase transition. It features both the XY (before the
spectral phase transition) and the Ising phase (after the spectral phase transition). c)
corresponding evolution of the average OPO power. d) The evolution of the energy
of the spin configuration featuring lower energy in the XY ground state compared to
the Ising case. The color plots represent the temporal (e) and spectral (f) evolution
of the OPOs across the spectral phase transition.
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The rich dynamics exhibited by sync-pumped OPOs in the presence of detuning
variation is illustrated by a simple example of 3 connected spins that displays
geometric frustration. If the spins are constrained to be binary then the ground-state
becomes degenerate in the 3-spin triangular arrangement as shown in Fig. 6.3(a).
However, if the spins have the 𝑈1 phase degree of freedom then they can occupy
the minimum energy configuration represented by the spins being 120 degrees apart
from each other. This energy cost incurred by the spin constraint can be captured by
sync-pumped OPOs undergoing the spectral phase transition. We assume 3 sync-
pumped OPOs with the coupling matrix reflecting the all-to-all coupling. The OPOs
are initiated in the non-degenerate oscillation regime and the detuning is gradually
varied in 1000 roundtrips (roundtrip number 1000 to 2000) until the spectral phase
transition happens and the OPOs are forced to oscillate in the degenerate regime.
Figures 6.3(b) and (c) shows the evolution of the phases and the average power of
the individual OPOs as the detuning is varied. We can identify that during the
XY dynamics (i.e., the non-degenerate oscillation regime) the phases of the OPOs
are 120 degrees apart from each other, and they display geometric frustration as
soon as they enter the Ising regime (i.e., the degenerate oscillation regime). The
corresponding variation of the energy of the spin configuration is shown in Fig.
6.3(d) which also highlights that the XY energy minimum was lower than the Ising
one. The color plots for the temporal and spectral evolution of the OPOs through the
spectral phase transition are shown in Fig. 6.3(e) and (f), respectively. The spectral
phase transition is apparent in Fig. 6.3(f).

Simplified Model of the XY-Ising dynamics
The complete temporal dynamics of sync-pumped OPOs involving dispersion and
nonlinearity (coupling dynamics between the signal/idler and the pump) are dictated
by systems of coupled partial differential equations. This is not only analytically
intractable but also the computational resource requirements also become huge for
a decent problem size consisting of the order of 100 OPOs only. In view of this,
we develop a simplified model that is capable of capturing the essential dynamics
which is given by:

¤𝑎𝑖 = −𝛼𝑎𝑖 + 𝑔([𝑎𝑖 + (1 − [)𝑎∗𝑖 ) − |𝑎𝑖 |2𝑎𝑖 +
∑︁
𝑗

𝐽𝑖, 𝑗𝑎 𝑗 (6.2a)
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𝑉 (𝑥, 𝑦) = 1
2

∑︁
𝑖

(
(𝛼 − 𝑔)𝑥2

𝑖 + [𝛼 − 𝑔(2[ − 1)] 𝑦2
𝑖 +

1
2
(𝑥2
𝑖 + 𝑦2

𝑖 )2
)

− 1
2

∑︁
𝑖, 𝑗

𝐽𝑖, 𝑗 (𝑥𝑖𝑥 𝑗 + 𝑦𝑖𝑦 𝑗 ). (6.2b)

Here, the non-degenerate oscillation regime is substituted with phase-insensitive
gain dynamics while the degenerate oscillation regime is replaced by the phase-
sensitive gain. The term [ interpolates between the phase-sensitive and phase-
insensitive gain where [ = 1 corresponds to complete phase-insensitive gain. 𝑔 is
the overall gain factor, which has to be large enough to operate above the threshold
which in turn is dependent on the loss factor 𝛼. The signal envelope of individual
OPOs is denoted by 𝑎𝑖, and the graph connectivity is encoded using 𝐽𝑖, 𝑗 . The
gain saturation term resulting from pump depletion is also included. The potential
function 𝑉 (𝑥, 𝑦) is given in eq. 6.2b is used to investigate the linear stability of the
Ising fixed points under XY dynamics.

Numerical Findings
We put to test our protocol by investigating the success probability in Mobius ladder
type graphs. The Mobius graph connectivity is displayed in Fig. 6.4(a). Although,
the Mobius ladder graph is an easy instance [9], it serves as a good testbed since it
allows us to compare the performance with previously reported experimental results.
We have also verified our protocol with benchmark problems as well as rewired
Mobius ladder instances. We explore various annealing routines. The simplest
of them is a single annealing schedule between the non-degenerate and degenerate
regimes (alternatively the phase-insensitive to phase-sensitive dynamics). Other
annealing protocols involve multiple iterations. These protocols are schematically
shown in Fig. 6.4(b) and (c), respectively.

We note that the computation in our protocol happens above the oscillation threshold.
This is distinct from the convention CIM operation whereby the threshold symmetry
breaking is integral to the solution capability of CIMs. We show the results on
the Mobius ladder graph for various protocols using the simplified model in Fig.
6.4(d). Figure 6.4(e) shows the corresponding results by taking the full dynamics
(governed by coupled partial differential equations) under consideration. We can
see the multiple iterations of annealing do help in the success rate albeit at the cost
of increased time consumption. Multiple iterations of annealing may be vaguely
thought of as shaking the potential landscape multiple times.
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Figure 6.4: Numerical results on the Mobius ladder graph in various annealing
routines. a) Mobius ladder graph configuration with 16 nodes. Schematic
representation of different annealing schedules featuring a single annealing in b) and
multiple annealing iterations in c). d) Numerical results for Mobius ladder graph
problems using the simplified model and various annealing routines. Probabilities
are calculated based on 100 runs of each graph. e) Numerical results for Mobius
ladder graph problems using the complete model and various annealing routines.
Probabilities are calculated based on 10 runs of each graph.

6.4 Discussion
Our proposed protocol will most likely require an all-optical version of CIM [12].
Measurement-feedback-based optoelectronic architectures [13] may not be able to
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faithfully replicate the dynamics around the spectral phase transition. It will be very
interesting to investigate the dynamics of the first-order spectral phase transition
that occurs in a network of dispersively coupled OPOs [18]. Note that, it has
been reported that dispersively coupled OPOs can exhibit dynamics reminiscent of
spiking neurons[7]. Based on the simplified model, one may think of an alternative
implementation based on phase-insensitive gain provided by gain amplifiers and
gradually decreasing the phase-insensitive gain magnitude while increasing the
phase-sensitive gain associated with degenerate OPOs. This may allow one to
completely get rid of the non-degenerate OPO dynamics. However, one has to
take into account that non-degenerate OPO provides ultra-fast phase-insensitive
dynamics while a phase-insensitive gain provided by gain amplifiers may not be
ultra-fast leading to an undesired coupling between neighboring pulses owing to
gain-saturation nonlinearity.
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C h a p t e r 7

NOISE ANALYSIS IN ABOVE-THRESHOLD OPTICAL
PARAMETRIC OSCILLATORS

7.1 Abstract
Understanding the noise characteristics in coherent frequency sources is of
paramount importance for applications ranging from precision measurements to
high-capacity telecommunication. Optical parametric oscillators are a ubiquitous
source of coherent radiation providing access to spectral regions that lie outside the
gain window of laser sources. Here, we provide a comprehensive description of
noise behavior in optical parametric oscillators including the effect of the pump
phase noise which constitutes the dominant contribution in most scenarios. We
introduce the concept of linewidth enhancement factor in optical parametric
oscillators, arising from the intensity-phase coupling analogous to the case of
lasers. We extend our analysis to include the case of synchronously pumped
oscillators and investigate the fundamental limitations to timing jitter noise. Our
formalism provides important insights into the use of optical parametric oscillators
as frequency dividers with far-reaching consequences in precision spectroscopy
and atomic clock applications.

7.2 Introduction
Low-noise lasers are an important constituent in a multitude of scientific and
technological applications, ranging from precision atomic clocks [22, 32], and
coherent ranging [26], to high-capacity coherent telecommunication [33]. Lasers
without adequate phase-noise suppression often contribute to infidelities in
quantum computing protocols that rely on light-matter interactions [7]. There are
significant ongoing efforts in realizing integrated low-phase noise lasers that
promise to unlock a lot of opportunities involving coherent optical systems
[21, 44]. While the phase noise of lasers dictates the performance of coherent
communication systems, the relative intensity noise (RIN) determines the
performance metrics of direct detection-based protocols.

The fundamental limit of laser phase noise arises due to the presence of unavoidable
vacuum fluctuations and is dictated by the celebrated Schawlow-Townes limit [41].
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More often than not lasers operate above the aforementioned fundamental limit, and
careful consideration of these noise contributions are pivotal for the mitigation of
the same. For instance, the linewidth enhancement factor [16, 45] resulting from
the intensity-phase crosstalk in the context of semiconductor lasers represents an
additional source of noise beyond the fundamental limit. Several techniques have
been developed over the years to reduce the laser phase noise in the pursuit of
reaching close to the fundamental limit. This includes among others the use of
external cavities possessing a high-quality factor [44] and detuned cavity operation
[46]. Engineering the semiconductor gain medium itself in the form of quantum-
dot-based design also aids in achieving a low linewidth enhancement coefficient
[42]. The importance of investigating the noise characteristics is also elucidated in
the fact that one can extract the relevant device parameters from noise measurements
[11]. Phase noise of lasers also impacts the spectral purity of the optically generated
radio-frequency signals and investigating the noise transfer characteristics is key to
the design of optimal microwave-photonic systems [29].

Lasers however span a limited spectral window depending on the bandwidth of the
constituent gain medium. For accessing coherent radiation outside the typical
spectral window where lasers operate, one has to rely on nonlinear optical sources.
Optical parametric oscillators (OPOs) based on second-order nonlinear optical
medium have been the mainstay for accessing tunable coherent radiation in these
unconventional spectral bands extending into the mid-infrared [9, 23, 38].
Understanding the noise characteristics of OPOs is therefore of paramount interest
which will not only allow us to probe the fundamental limits of intensity and phase
noise but also to engineer the device design in order to minimize the same. Most of
the prior theoretical works that considered the noise behavior of OPOs have
focused only on the quantum noise source arising from vacuum fluctuations
[6, 10, 13, 48]. This however neglects the contribution of pump phase noise which
represents the dominant contribution of parametrically driven sources in practice
[5, 12, 19, 30, 47]. Apart from the continuous mode of operation, lasers operating
in pulsed mode, i.e., the mode-locked lasers have their own associated nose
characteristics that also include the timing jitter/ repetition rate fluctuations
[15, 34]. Noise analysis of these pulsed sources is crucial for optimizing the
performance of frequency combs [2, 25, 28]. The pulsed counterpart in OPOs
appears in the context of synchronous pumping [14, 39]. There is a lack of
analytical studies that investigates the noise behavior in synchronously pumped
OPOs. We develop a comprehensive noise formalism for OPOs operating above
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the oscillation threshold. We consider different regimes of OPO operation ranging
from degeneracy to non-degeneracy which includes both the doubly-resonant and
singly-resonant cases. We introduce the analogous linewidth enhancement factor
in OPOs arising from the phase-mismatched operation. We develop the noise
analysis for synchronously-pumped OPOs and highlight the role of the
group-velocity mismatch parameter that is unique to OPOs and does not arise in
the context of mode-locked lasers. Our results provide crucial insights and design
guidelines for engineering OPOs in the landscape of trade-offs comprising
conversion efficiency, linewidth, and oscillation threshold thereby informing the
development of next-generation integrated parametric oscillator-based devices.

7.3 Results
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Figure 7.1: Phase noise of optical parametric oscillators operating above-
threshold. a) Schematic of an optical parametric oscillator consisting of a 𝜒(2)
nonlinear medium that facilitates the parametric interaction between the pump,
signal, and the idler waves. Noise enters the system from both the drive and
the dissipation. b) Phase noise spectrum of a degenerate OPO showing the 3 dB
reduction in the phase noise compared to the pump. The low-pass filtering effect
arising due to the cold-cavity linewidth is also apparent.

The schematic of the OPO device is shown in Fig. 7.1(a). The OPO consists of a
second-order nonlinear medium placed inside a cavity that is parametrically driven
by a pump (at frequency 𝜔𝑝). The nonlinear medium can be engineered to phase-
match parametric interactions either at degeneracy (signal photons with frequency
𝜔𝑠 = 𝜔𝑝/2) or at non-degeneracy (signal photons with frequency 𝜔𝑠 and idler
photons with frequency 𝜔𝑖, such that 𝜔𝑠 + 𝜔𝑖 = 𝜔𝑝 ). The noise introduced in
the system is contributed both by quantum vacuum fluctuations (associated with
various dissipation mechanisms) and by the noise contained in the driving laser. In
some cases, the driving pump can also be derived from another OPO as well [27].
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We note that here we neglect noise contributions resulting from thermomechanical,
photorefractive effects, etc.. that operate on a slow-time scale, and the effects of
which can be eliminated via active feedback [17].

We begin by analyzing the case of OPOs operating in the continuous mode.

𝑑𝑎

𝑑𝑡
= −𝛼𝑎 + iΔ𝑎 + ^𝑏𝑎∗ (7.1)

where 𝑎 and 𝑏 denote the complex envelope of the signal and pump fields,
respectively, such that |𝑎 |2 represents the signal photon number and 𝑡 is normalized
with respect to the cavity roundtrip time (𝑇𝑅). The other parameters are the
intra-cavity loss (𝛼), and the detuning (Δ) for the resonant signal, while ^ is the
effective nonlinear coupling coefficient. ^ can be expressed in terms of the
second-harmonic efficiency ([ expressed in units of W−1mm−2) as ^ =

√︃
2ℎ 𝑓 [
𝑇𝑅

𝐿,
where L is the length of the parametric interaction region (in mm), ℎ is the
Planck’s constant, and 𝑓 is the frequency of the signal photon. We consider the
pump to be non-resonant and its dynamics can be adiabatically eliminated to
obtain the approximate expression for the pump field as: 𝑏 = 𝐹ei𝜓 − ^

2𝑎
2. Here, 𝐹

is the strength of the driving pump and 𝜓 is its instantaneous phase. Substituting
this in Eq. 7.1, and expanding the complex signal field envelope as 𝑎 =

√
𝑛ei\ ,

where 𝑛 represents the intracavity signal photon number, and \ is the phase
corresponding to the signal field, we obtain:

𝑑𝑛

𝑑𝑡
= −2𝛼𝑛 + 2^𝐹𝑛cos(𝜓 − 2\) − ^2𝑛2 + 2

√︁
𝐷1𝑛b1(𝑡) (7.2a)

𝑑\

𝑑𝑡
= Δ + ^𝐹sin(𝜓 − 2\) +

√︂
𝐷1
𝑛
b2(𝑡) (7.2b)

𝑑𝜓

𝑑𝑡
=

√︁
𝐷 𝑝b3(𝑡) (7.2c)

where b𝑖 (𝑡) 𝑖 ∈ {1, 2, 3} are zero mean, unity variance random gaussian noise, and
the correlation between these fluctuations satisfies < b𝑖 (𝑡)b 𝑗 (𝑡

′) >= 𝛿𝑖, 𝑗𝛿(𝑡 − 𝑡
′).

The diffusion coefficient corresponding to the dissipation experienced by the
resonant signal is given by 𝐷1 = 2𝛼 [4], and the diffusion coefficient (𝐷 𝑝) related
to the pump phase noise is related as 𝐷 𝑝 = Δ𝜔𝑝, where Δ𝜔𝑝 is the linewidth of the
driving pump laser. We have assumed the pump phase as a reference. We have
ignored the pump intensity noise, whose effect on the OPO linewidth is of higher
order and can also be incorporated into our formalism. The OPO signal at
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degeneracy experiences sub-harmonic entrainment as revealed by Eq. 7.2b, which
bears resemblance with the Adler equation of injection locking, albeit in this case
the signal is locked to its harmonic. This leads to a 3 dB suppression of OPO phase
noise (or 6 dB in terms of power spectral density) compared to the pump as shown
in Fig. 7.1(b). The roll-off at higher frequencies is attributed to the low-pass
filtering effect of the cold cavity.

The pump non-resonant design is less constrained than the triply-resonant scenario
(all three waves signal, idler, and the pump are resonant) [1] and is more amenable
towards wider tunability and higher stability [23, 24, 38]. The doubly-resonant
case for a non-degenerate OPO involves both the resonant signal and the idler and
the equations governing the dynamics are described in the supplementary section
7.5.1. Distinct from the degenerate case, the signal and the idler waves diffuse
randomly with characteristic diffusion coefficients and correlation properties,
assuming the pump is noiseless (see supplementary section 7.5.4). The signal and
the idler phases remain anti-correlated and the sum of their phases can be a
squeezed observable. In the presence of a noisy pump, the pump noise gets
transferred to the signal and the idler waves and is distributed according to their
respective losses (see supplementary section 7.5.4). This can be expressed as:
a𝑠
a𝑖

=
𝛼2
𝑠

𝛼2
𝑖

, where a𝑠 and a𝑖 are the signal and idler linewidth, respectively, and 𝛼𝑠 and
𝛼𝑖 are their corresponding losses. This is depicted in Fig. 7.2(a). Figure 7.2(b)
shows an evolution of the instantaneous frequencies for the signal and idler waves.
The singly-resonant case, whereby only the signal is resonant, can be considered
the extreme version of the doubly-resonant scenario. Here, 𝛼𝑖 >> 𝛼𝑠, leading to
the pump noise getting transferred entirely to the non-resonant idler, leaving
behind the resonant signal which is unaffected by the pump noise [5]. The resonant
signal follows phase-insensitive gain dynamics akin to lasers and is subject to
fundamental noise-limited performance dictated by Schawlow-Townes linewidth
[41] (see supplementary section 7.5.2). The continuum which represents a gradual
transition from the doubly-resonant to the singly-resonant mode of operation is
shown in Fig. 7.2(c). Thus singly-resonant OPO-based design provides an
attractive solution to realize widely tunable sources of ultra-coherent radiation
starting from a noisy near-infrared source. As shown in Fig. 7.2(d), when the idler
is much lossier than the signal (emulating a close to singly-resonant scenario) the
pump noise can be almost entirely transferred to the non-resonant idler leaving
behind the resonant signal that experiences low phase noise. This may open
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exciting possibilities for applications demanding tunable narrow-width coherent
light sources in the mid-infrared. A caveat to be noted in this context is that the
threshold for singly-resonant OPOs is considerably higher than their
doubly-resonant counterparts.
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Figure 7.2: Phase noise characteristics of a non-degenerate OPO a) Phase
noise spectrum in the doubly-resonant scenario where the pump noise is distributed
between the signal and the idler waves according to their corresponding loss
coefficients. Parameters used are: 𝛼𝑖 = 2𝛼𝑠 and cold-cavity linewidth for the
signal and pump are 10 MHz and 10 KHz, respectively, b) The evolution of the
instantaneous frequency of the signal and the idler showing their anti-correlation.
c) The non-degenerate OPO transitions from doubly-resonant to singly-resonant as
the loss corresponding to the idler component increases. Less proportion of the
pump noise is transferred to the signal as the OPO becomes more singly-resonant
like, d) Phase noise spectrum in an extreme doubly-resonant scenario (resembling
a singly-resonant case) where the pump noise is mostly transferred to the idler,
leaving behind a low-phase noise resonant signal component. Parameters used are:
𝛼𝑖 = 50𝛼𝑠 and cold-cavity linewidth for the signal and pump are 10 MHz and 10
KHz, respectively.

We explore the origin of an analogous linewidth-enhancement factor in the context
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of OPOs. We consider a degenerate OPO with a slight phase-mismatch ([). The
phase dynamics of the doubly-resonant degenerate OPO, in this case, is modified as
(see supplementary section 7.5.3):

𝑑\

𝑑𝑡
= ^𝐹sinc

([
2

)
sin (𝜓 − 2\) + Δ + ^2 1 − sinc([)

[
𝑛︸             ︷︷             ︸

Amplitude-phase coupling

+
√︂
𝐷

𝑛
b2. (7.3)

We can identify the appearance of an effective Kerr-like term in the dynamics [31].
This induces a coupling between the intensity and the phase of the OPO signal
which contributes to the excess phase noise. This excess phase noise that arises in
phase-mismatched OPOs is highlighted in Fig. 7.3(a).

Similar to lasers, the phase fluctuations in the OPO signal are suppressed by the
corresponding intra-cavity photon number as can be seen from the dynamics in Eq.
7.2b. Thus the OPO signal linewidth can be significantly smaller than the OPO cold-
cavity linewidth corresponding to the signal frequency. Apart from the instances
either involving very low intra-cavity photon numbers or ultra-low linewidth of the
pump laser, the OPO phase noise will be primarily dominated by the classical phase
noise in the pump over the quantum fluctuations. Their relative contribution in the
case of a non-degenerate OPO is highlighted in Fig. 7.3(b). The variation of the
OPO conversion efficiency and the phase noise behavior as a function of the number
of times above the threshold is depicted in Fig. 7.3(c). We can identify that while the
OPO external efficiency is maximized at 4 times above the threshold, the linewidth
diverges at the threshold.

We now proceed to analyze the noise behavior of synchronously pumped OPOs
which is schematically represented in Fig. 7.4(a). Here, in contrast to the CW case,
the OPO is driven by a periodic pump pulse sequence, where the pump repetition
rate closely matches the cavity free spectral range [14, 39]. The dynamics of a
sync-pumped OPO resemble that of an active mode-locked laser where the
periodic pump provides an external reference for the temporal location of the OPO
signal pulses along the fast time scale. This can be analytically described by an
equivalent gain-clipping function that defines a temporal gain window within
which the OPO pulses can oscillate [14, 39] (see Fig. 7.4(b)). We analyze the
timing-jitter performance of sync-pumped OPOs that is limited by quantum
fluctuations (see supplementary section 7.5.7). While deriving the results we



164
(a)

(b) (c)

 

105 106 107 108 109

Signal cold-cavity linewidth (Hz)

10-15

10-10

10-5

100

105

O
P

O
 s

ig
na

l l
in

ew
id

th
 (

H
z)

classical noise
quantum noise

2 4 6 8 10
Number of times above threshold

0

5

10

15

20

25

O
P

O
 e

ffi
ci

en
cy

 (
si

gn
al

) 
%

10-11

10-10

10-9

O
P

O
 s

ig
na

l l
in

ew
id

th
 (

H
z)

Figure 7.3: Linewidth enhancement in OPOs and scaling properties of OPO
phase noise. a) Enhanced phase noise in a phase-mismatched ([ = 𝜋

2 ) degenerate
OPO as compared to a phase-matched one ([ = 0), b) Scaling of quantum-limited
(only considering fluctuations from dissipation) OPO linewidth and classically
(considering a noisy pump) imposed OPO linewidth as a function of cold-cavity
linewidth corresponding to the signal. The OPO is assumed to be maintained at
4 times above the threshold throughout. It highlights the dominance of classical
noise contribution even assuming a pump with 100 Hz linewidth, c) Scaling of the
OPO output efficiency and the quantum-limited OPO linewidth as a function of the
number of times above threshold operation. While the OPO external efficiency is
maximized at 4 times above the threshold, the linewidth diverges at the threshold
and monotonically decreases.

assumed a noiseless pump both in terms of the phase noise and the repetition rate
noise. The timing jitter is related to the dynamics of the centroid of the OPO pulse
(see supplementary equation 7.13b). We can identify the presence of a restoring
force arising from the gain-clipping mechanism akin to active mode-locking
[18, 35]. Thus we can draw a parallel between the terms 3𝜏2

4𝑇𝑝 ln(𝐺0)tanh
(
𝑇
𝜏

)
and

𝜋2

4 𝑀𝜔
2
𝑀
𝜏2𝑇 that arise in the context of sync-pumped OPOs and active

mode-locked lasers, respectively. Here, 𝜏, 𝑇 refers to the pulse width and the
centroid, respectively, 𝑇𝑝 denotes the pump pulse width, 𝑀,𝜔𝑀 describes the
modulation index and the modulation frequency in the context of a mode-locked



165

laser, and 𝐺0 is related to the OPO roundtrip loss. The existence of this restoring
force arising due to the gain-clipping prevents the OPO pulse from drifting away
from the gain-clipping region which is manifested by the absence of divergent
behavior of the timing-jitter power spectral density (Fig. 7.4(c)) at low frequencies
in stark contrast with passively mode-locked laser. The group-velocity-mismatch
(GVM) parameter is unique to OPOs since it involves parametric interaction
between waves with disparate frequencies [39]. GVM can be engineered to
facilitate the exotic case of incoherently pumped OPO operation, whereby all the
pump noise is dumped in the idler and a coherent signal ensues [36]. We
investigate the effect of varying this GVM parameter on the timing jitter spectral
density as shown in Fig. 7.4(c). Although an increase in the walk-off parameter can
potentially allow the generation of ultra-short pulses starting with longer
(picosecond scale) pump pulses [39], it also broadens the gain-clipping window
[14] which results in the enhanced timing-jitter spectral density at low frequencies.
Similarly, we also study the effect of increasing the pump power on the timing jitter
(Fig. 7.4(d)), and the observed behavior can be explained by the dependence of the
width of the gain-clipping window on the number of times above the threshold
parameter.
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Figure 7.4: Noise behavior of a synchronously-pumped OPO a) Schematic of a
doubly resonant sync-pumped OPO showing that the system is driven by a periodic
train of pulses, b) Gain-clipping, i.e., the temporal gain window function for a
sync-pumped OPO. The temporal width of the gain window increases with pump
power, c) The timing jitter power spectral density for a sync-pumped OPO shows the
flattening of the noise spectral density curve at low frequencies. This behavior akin to
active mode-locked lasers arising from the restoring force prevents the divergence
of fluctuations related to the pulse centroid at long times. Also highlighted is
the variation of the jitter spectral density curves as a function of changing GVM
parameter (𝑢). The trend is attributed to the widening of the gain-clipping window
with increasing GVM parameter, d) Dependence of the jitter spectral density curves
as a function of changing pump power (parameter 𝑝 represents the number of times
above threshold).

7.4 Discussion
Nonlinear dynamical systems with parametric nonlinearity and featuring phase-
sensitive gain can be deployed for highly sensitive sensing [8, 37]. These systems
have to be engineered to maximize the signal-to-noise ratio to reap the benefits of
enhanced sensitivity. Our OPO noise analysis can be extended to these systems
consisting of a network of OPOs [40]. It will also be interesting to explore the case
of a more complex and enriched noise phenomenon involving non-markovianity and
structured noise [3]. Our formalism can be easily modified to encompass the case of
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𝜒(3)-based OPO [43]. Understanding the noise characteristics in wavelength-scale
OPOs [20] and their unique behaviors is also an exciting direction to pursue [49].
The noise characteristics investigated above for the intra-cavity field can be extended
to the output field depending on the specific coupling configuration (add-through or
add-drop types) [4].

7.5 Supplementary
7.5.1 Doubly-resonant non-degenerate OPO

𝑑𝑛𝑠

𝑑𝑡
= −2𝛼𝑠𝑛𝑠 + 2^1𝐹

√
𝑛𝑠𝑛𝑖cos(𝜓 − \𝑠 − \𝑖) − ^1^3𝑛𝑠𝑛𝑖 + 2

√︁
𝑛𝑠𝐷𝑠b1 (7.4a)

𝑑𝑛𝑖

𝑑𝑡
= −2𝛼𝑖𝑛𝑖 + 2^2𝐹

√
𝑛𝑠𝑛𝑖cos(𝜓 − \𝑠 − \𝑖) − ^2^3𝑛𝑠𝑛𝑖 + 2

√︁
𝑛𝑖𝐷𝑖b2 (7.4b)

𝑑\𝑠

𝑑𝑡
= Δ𝑠 + ^1𝐹

√︂
𝑛𝑖

𝑛𝑠
sin(𝜓 − \𝑠 − \𝑖) +

√︂
𝐷𝑠

𝑛𝑠
b3 (7.4c)

𝑑\𝑖

𝑑𝑡
= Δ𝑖 + ^2𝐹

√︂
𝑛𝑠

𝑛𝑖
sin(𝜓 − \𝑠 − \𝑖) +

√︂
𝐷𝑖

𝑛𝑖
b4 (7.4d)

where 𝑛𝑠 and 𝑛𝑖 represent photon numbers corresponding to the signal and idler
fields, respectively. \𝑠 and \𝑖 denote the phase of the signal and the idler fields,
respectively. The respective loss coefficients are 𝛼𝑠 and 𝛼𝑖, and the detunings from
the cold-cavity resonances are given by Δ𝑠 and Δ𝑖, which in general is different
because of the presence of group velocity dispersion of the resonant medium. The
frequencies of the signal, idler, and pump photons are represented as 𝑓1, 𝑓2, and 𝑓3,
respectively. The effective nonlinear coefficients are ^1 =

√︃
ℎ 𝑓3 𝑓2[
𝑓1𝑇𝑅

𝐿, ^2 =

√︃
ℎ 𝑓3 𝑓1[
𝑓2𝑇𝑅

𝐿,

and ^3 =

√︃
ℎ 𝑓1 𝑓2[
𝑓3𝑇𝑅

𝐿, where [ is the sum-frequency generation efficiency of the signal
and idler photons into pump photons.

where b𝑖 (𝑡) 𝑖 ∈ {1, 2, 3, 4} are zero mean, unity variance random gaussian noise, and
the correlation between these fluctuations satisfies< b𝑖 (𝑡)b 𝑗 (𝑡

′) >= 𝛿𝑖, 𝑗𝛿(𝑡−𝑡
′). The

diffusion coefficient corresponding to the dissipation experienced by the resonant
signal and the resonant idler is given by 𝐷𝑠 = 2𝛼𝑠 and 𝐷𝑖 = 2𝛼𝑖, respectively.

7.5.2 Singly-resonant non-degenerate OPO
The doubly-resonant case reduces to the singly-resonant one when the idler is non-
resonant. Assuming, 𝛼𝑖 >> 𝛼𝑠, the dynamics of the idler can be adiabatically
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eliminated. The above governing equations can then be approximated for the signal
field as:

𝑑𝑛𝑠

𝑑𝑡
= −2𝛼𝑠𝑛𝑠 +

2^1^2 |𝐹 |2𝑛𝑠
𝛼𝑖 + ^2^3𝑛𝑠

−
2^1^3^

2 |𝐹 |2𝑛2
𝑠

(𝛼𝑖 + ^2^3𝑛𝑠)2 + 2
√︁
𝑛𝑠𝐷𝑠b1 (7.5a)

𝑑\𝑠

𝑑𝑡
= Δ𝑠 +

√︂
𝐷𝑠

𝑛𝑠
b2. (7.5b)

For more accurate modeling of the dynamics of singly-resonant OPOs, one can refer
to the formalism in reference [43].

7.5.3 Phase-mismatch and effective 𝜒(3)

Phase mismatch can arise due to residual momentum mismatch between the
participating waves in the nonlinear process along with the contribution of the
periodic poling. We represent the phase-mismatch parameter as [ = Δ𝑘𝐿, where
Δ𝑘 is the momentum mismatch and 𝐿 is the length of the parametric interaction
region.

The evolution equation for the signal field in the presence of phase-mismatch
(considering the degenerate case where the pump is non-resonant) is given by Eq.
7.6a [31]:

𝑑𝑎

𝑑𝑡
= −𝛼𝑎 + iΔ𝑎 + ^𝐹ei𝜓sinc

([
2

)
𝑎∗ − ^2

4
sinc2

([
2

)
|𝑎 |2𝑎︸                ︷︷                ︸

effective TPA coefficient

+ i^2 1 − sinc ([)
[

|𝑎 |2𝑎︸                    ︷︷                    ︸
effective Kerr coefficient

(7.6a)
𝑑𝑛

𝑑𝑡
= −2𝑛𝛼 + 2𝑛^𝐹cos(𝜓 − 2\)sinc

([
2

)
− ^2

2
sinc2

([
2

)
𝑛2 + 2

√
𝑛𝐷b1 (7.6b)

𝑑\

𝑑𝑡
= ^𝐹sinc

([
2

)
sin (𝜓 − 2\) + Δ + ^2 1 − sinc([)

[
𝑛︸             ︷︷             ︸

Amplitude-phase coupling

+
√︂
𝐷

𝑛
b2. (7.6c)

The phase-mismatch gives rise to the effective Kerr co-efficient (^2 1−sinc([)
[

) and a
modified two-photon absorption (TPA) loss term ( ^2

4 sinc2 ( [
2
)
). The effective Kerr-

coefficient leads to coupling between the intensity and the phase variables as shown
in Eq. 7.6b and 7.6c. This is responsible for the additional linewidth broadening in
the presence of phase-mismatch.
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7.5.4 Validation of the numerical simulation
The noise in OPO is a result of the contribution from the pump noise as well as
the quantum fluctuations accompanying the linear losses. To understand different
regimes where either of these noise sources dominates we decouple these noise
sources and study the OPO noise behavior for doubly-resonant non-degenerate
OPO:

In the limit of zero pump phase noise

Here we assume a noiseless pump and only consider noise from
dissipation-induced fluctuations. This will define the fundamental limit of OPOs
driven by classical pump sources. The signal and the idler phases will diffuse
randomly with characteristic diffusion coefficients, where the corresponding
spectral linewidths are expressed in Eq. 7.7a and Eq. 7.7b, respectively [6, 12, 48].
This agrees with the results of our numerical simulation as shown in Fig. 7.5(a).

Δa𝑠 =
𝛼2
𝑖

(𝛼𝑠 + 𝛼𝑖)2
𝛼𝑠

𝑛𝑠
(7.7a)

Δa𝑖 =
𝛼2
𝑠

(𝛼𝑠 + 𝛼𝑖)2
𝛼𝑖

𝑛𝑖
(7.7b)

While the signal and the idler phases diffuse randomly, they are not independent and
their cross-correlation is given by Eq. 7.8 [48]. This agrees with the results of our
numerical simulation as shown in Fig. 7.5(b).

𝐷𝑠,𝑖 = 2
(𝛼𝑠𝛼𝑖)

3
2

(𝛼𝑠 + 𝛼𝑖)2
1

√
𝑛𝑠𝑛𝑖

(7.8)

Above the threshold, the intensity of the signal and idler waves (doubly-resonant
OPO), satisfies 𝛼𝑠𝑛𝑠 = 𝛼𝑖𝑛𝑖. Therefore we have Δa𝑠 ≃ Δa𝑖.

In the limit of neglecting dissipation-induced fluctuations, i.e., only pump
noise

Next, we hypothetically assume the absence of dissipation-induced fluctuation, i.e.,
𝐷𝑠 = 𝐷𝑖 = 0 in Eq. 7.4. In this limit, only the pump phase noise related to the pump
linewidth (Δa𝑝) contributes to the OPO phase noise. The spectral linewidth of the
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Figure 7.5: Quantum-limited phase diffusion of non-degenerate OPO assuming
no pump-noise. a) Variance of the phase noise for the signal and the idler waves
in a non-degenerate OPO. Parameters used are: cold-cavity linewidth for the signal
and idler are 1 and 2.5 MHz respectively. b) Correlation between the phases of the
signal and the idler waves.

signal and the idler waves in this limit is given by Eq. 7.9a and 7.9b, respectively
[12].

Δa𝑠 = Δa𝑝
𝛼2
𝑠

(𝛼𝑠 + 𝛼𝑖)2 (7.9a)

Δa𝑖 = Δa𝑝
𝛼2
𝑖

(𝛼𝑠 + 𝛼𝑖)2 (7.9b)

Here, we have Δa𝑠
Δa𝑖

=
𝛼2
𝑠

𝛼2
𝑖

. Thus, more phase noise is transferred from the pump to the
wave experiencing larger intra-cavity loss. The extreme limit is the singly-resonant
case where the idler is almost non-resonant and therefore the bulk of the pump phase
noise is dumped in the non-resonant idler leaving the signal unaffected [5]. This
agrees with the results of our numerical simulation as shown in Fig. 7.6(a). The limit
for the degenerate OPO can be obtained by assuming 𝛼𝑠 = 𝛼𝑖 = 𝛼. The agreement
between the numerical simulation and the analytical results for a degenerate OPO is
shown in Fig. 7.6(b).

7.5.5 Transition in the noise characteristics between degenerate and
non-degenerate (doubly-resonant) OPOs in the limit of zero pump phase noise

If we assume the absence of classical noise sources (pump noise, etc.), and only
consider the noise that is entering the system to be of quantum origin
(dissipation-induced fluctuations) that will determine the fundamental limit when
driving the OPO with a classical pump. In this limit of operation for a
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Figure 7.6: Phase diffusion of OPOs in the presence of noisy pump and
assuming no noise contributions from dissipation. a) Variance of the phase noise
for the signal and the idler waves in a non-degenerate OPO. Parameters used are:
cold-cavity linewidth for the signal and idler are 1 and 2.5 MHz, respectively. b)
Variance of the phase noise for the degenerate OPO, highlighting a factor of 4
reductions in the slope (diffusion coefficient) of the random walk. Parameters used
are: pump linewidth 10 KHz.

non-degenerate OPO, the signal and idler will diffuse randomly with a defined
correlation that is governed by equations 7.7 and 7.8. However, in the case of
degenerate OPO, owing to the subharmonic locking the signal will not diffuse
randomly and in turn, will be locked to the pump. Since we assumed the pump to
be noiseless, the degenerate signal will also follow likewise. This hypothetical
scenario is depicted in Fig. 7.7(b). This is contrasted with the behavior of the
non-degenerate OPO that still exhibits random walk even in the presence of a
noiseless pump which is shown in Fig. 7.7(a).

The expressions that are used to generate the plots in Fig. 7.3 are presented below.
The quantum-limited OPO signal linewidth (assuming no classical pump noise) is
given by:

Δa𝑠 =
𝛼𝑠𝛼𝑖

(𝛼𝑠 + 𝛼𝑖)2
^2

2(
√
𝑁 − 1)

(7.10)

where 𝑁 is the number of times above the threshold (in terms of power) operation.
We have assumed that the non-degenerate OPO is near-degenerate so that we can
assume ^1 ≃ ^2 ≃ ^, and 𝜔𝑠 ≃ 𝜔𝑖 ≃

𝜔𝑝

2 . Relaxing these simplifications will make
the expressions more complicated, but the qualitative trend will remain similar.

The expression for the OPO signal efficiency (outside the cavity) is given by:
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[𝑒 𝑓 𝑓 =

√
𝑁 − 1
𝑁

. (7.11)
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Figure 7.7: Phase diffusion of OPOs in the presence of noiseless pump. a)
Variance of the phase noise for the signal and the idler waves in a non-degenerate
OPO. b) Variance of the phase noise for the signal in the degenerate case.

7.5.6 Relative Intensity Noise
The relative intensity noise of the OPO which captures the power fluctuations is
shown in Fig. 7.8. Note that we have ignored the intensity noise in the pump.
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Figure 7.8: RIN noise spectrum for a degenerate OPO.

7.5.7 Synchronously pumped OPO dynamics including Noise terms
We add the effect of noise by modifying the derivation in section 2.5.2 as:

𝑎𝑛+1(0, 𝑡) = F −1
[
𝐺

− 1
2

0 exp−i𝜙F
[
𝑎𝑛𝜔 (𝐿, 𝑡)

] ]
+ 𝐹 (𝑡) (7.12)
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where F(t) is the noise term and is given by
〈
𝐹 (𝑡)𝐹 (𝑡 ′)

〉
=

(1− 1
𝐺0

)
1
2𝑇𝑅

𝑑𝑡
𝛿(𝑡 − 𝑡 ′).

Here, 𝑇𝑅 is the cavity roundtrip time, and 𝑑𝑡 is the temporal resolution of the fast-

time window. We describe the diffusion coefficient as 𝐷 =
(1− 1

𝐺0
)

1
2𝑇𝑅

𝑑𝑡
for brevity.

Projecting the noise term into the space of the pulse parameters we get:

𝑑𝐴

𝑑𝑛
=

[
𝑝 − 1

2
ln(𝐺0) −

ln(𝐺0)
2𝑇𝑝

ln
[
2cosh

(
𝑇

𝜏

)]
𝜏 − 1

3
𝜙

′

2tan(𝜋𝑙)
2𝜏2

]
𝐴

− 7
15

(
𝜙

′

2sec(𝜋𝑙)
)2

8𝜏4 𝐴 − 𝛽𝐴3 + 𝐹𝐴 (7.13a)

𝑑𝑇

𝑑𝑛
=
_𝑎𝑙

2𝑐
− 𝜏𝛽𝐴2 − 3𝜏2

4𝑇𝑝
ln(𝐺0)tanh

(
𝑇

𝜏

)
+ 𝐹𝑇 (7.13b)

𝑑𝜏

𝑑𝑛
=

18
3 + 𝜋2

ln(𝐺0)
2𝑇𝑝

[
𝑇

𝜏
tanh

(
𝑇

𝜏

)
− ln

[
2cosh

(
𝑇

𝜏

)] ]
𝜏2

+ 12
3 + 𝜋2

𝜙
′

2tan(𝜋𝑙)
2𝜏

+ 168
5(3 + 𝜋2)

(
𝜙

′

2sec(𝜋𝑙)
)2

8𝜏3 + 𝐹𝜏

(7.13c)

where the correlation properties of the projected noise terms are expressed as:

< 𝐹𝐴 (𝑡)𝐹𝐴 (𝑡
′) >= 𝐷𝛿(𝑡 − 𝑡 ′) (7.14a)

< 𝐹𝑇 (𝑡)𝐹𝑇 (𝑡
′) >= 𝜏2

3𝐴2𝐷𝛿(𝑡 − 𝑡
′) (7.14b)

< 𝐹𝜏 (𝑡)𝐹𝜏 (𝑡
′) >= 2𝜏2

𝐴2
18

3 + 𝜋2𝐷𝛿(𝑡 − 𝑡
′) (7.14c)

< 𝐹𝑖 (𝑡)𝐹𝑗 (𝑡
′) >= 0 for 𝑖 ≠ 𝑗 . (7.14d)

These noise dynamics are derived by only taking into consideration the quantum-
limited performance, i.e., the contribution from the dissipation-induced fluctuations.
We have assumed the pump is noiseless. In practice, there will be repetition rate
noise of the sync-pump arising due to the phase noise in the microwave oscillator to
which it is entrained. Additionally, it will also possess phase noise/ carrier-envelope
offset noise. We have also neglected the presence of cavity length fluctuations which
in principle can be compensated using an active servo-locking mechanism.
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We present the results obtained numerically for the timing jitter power spectral
density in Fig. 7.9(a). The numerical simulation is performed using the split-step
Fourier algorithm. Although the results obtained numerically do not match exactly
with the semi-analytical model-based results (Fig. 7.9(b)), they agree qualitatively.
The most striking feature to note is the flattening of the noise power spectral
density curve at low frequencies. This is markedly different from results obtained
via numerical simulation for passively mode-locked lasers cases which exhibit
divergence at low frequencies. More investigation is needed to establish a close
agreement between the two models.
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Figure 7.9: Timing jitter power spectral density for a sync-pumped OPO
obtained a) numerically, b) semi-analytically.
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C h a p t e r 8

NON-DISSIPATIVE NON-HERMITIAN DYNAMICS AND
EXCEPTIONAL POINTS IN COUPLED OPTICAL

PARAMETRIC OSCILLATORS

Roy, Arkadev, Saman Jahani, Qiushi Guo, Avik Dutt, Shanhui Fan, Mohammad-
Ali Miri, and Alireza Marandi. Nondissipative non-Hermitian dynamics and
exceptional points in coupled optical parametric oscillators. Optica, 8(3):415–
421, 2021. doi: https://doi.org/10.1364/OPTICA.415569.
A.R. contributed to the conception of the project, developed the modeling,
performed numerical simulations, and participated in the writing of the manuscript.

8.1 Abstract
Engineered non-Hermitian systems featuring exceptional points can lead to a host
of extraordinary phenomena in diverse fields ranging from photonics, acoustics,
optomechanics, and electronics, to atomic physics. In optics, non-Hermitian
dynamics are typically realized using dissipation and phase-insensitive gain which
are accompanied by unavoidable fluctuations. Here we introduce and present
non-Hermitian dynamics of coupled optical parametric oscillators (OPOs) arising
from phase-sensitive amplification and de-amplification, and show their distinct
advantages over conventional non-Hermitian systems relying on laser gain and
loss. OPO-based non-Hermitian systems can benefit from the instantaneous nature
of the parametric gain, noiseless phase-sensitive amplification, and rich quantum
and classical nonlinear dynamics. We show that two coupled OPOs can exhibit
spectral anti-PT symmetry and an exceptional point between their degenerate and
non-degenerate operation regimes. To demonstrate the distinct potentials of the
coupled OPO system compared to conventional non-Hermitian systems, we present
higher-order exceptional points with two OPOs, tunable Floquet exceptional points
in a reconfigurable dynamic non-Hermitian system, and generation of squeezed
vacuum around exceptional points, all of which are not easy to realize in other
non-Hermitian platforms. Our results show that coupled OPOs are an outstanding
non-Hermitian setting with unprecedented opportunities in realizing nonlinear
dynamical systems for enhanced sensing and quantum information processing.
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8.2 Introduction
Non-Hermitian systems with engineered gain and dissipation have attracted a lot of
attention thanks to their remarkable properties and functionalities which are absent
in their counterparts based on closed Hermitian setups [34, 37]. A plethora of
phenomena have spawned out by judiciously manipulating these non-Hermitian
physical systems namely, spontaneous parity-time symmetry breaking [34],
unidirectional invisibility [26], coherent perfect absorption and lasing [27, 45],
single-mode lasing [14], generation of structured light with a controllable
topological charge of the orbital angular momentum mode [32], to name a few.

Non-Hermitian systems are often characterized by the presence of an exceptional
point (EP), where the eigenvalues and eigenvectors simultaneously coalesce
(non-Hermitian degeneracies), and have been explored in the context of parity-time
symmetric systems with balanced gain/loss and even in purely dissipative
arrangements. The presence of an EP leads to several counter-intuitive phenomena
including loss-induced lasing [12, 38], breakdown of adiabaticity [10, 17], lasing
without inversion [11]. However, most non-Hermitian optical systems realize
gain/dissipation by deploying laser gain which limits its viability in certain spectral
regions [39].

Here we utilize parametric amplification and de-amplification in coupled OPOs to
implement EP in parametric non-Hermitian systems [2, 13, 44], thereby presenting
a system that can exhibit unique phenomena not observed in their laser-gain based
counterparts. Parametric non-Hermitian systems can extend beyond the spectral
coverage of laser gain [33], and the instantaneous nature of parametric gain also
enables the realization of tunable/reconfigurable non-Hermitian systems that are
otherwise difficult to achieve in conventional optics based non-Hermitian setups. We
leverage this tunable aspect of parametric gain to realize interesting functionalities.
Fundamentally, the presented OPO-based non-Hermitian system is in sharp contrast
with conventional optical systems and can enable unique opportunities for sensing,
non-Hermitian nonlinear dynamics, and quantum information processing.

EPs in non-Hermitian systems have been extensively studied for potentially
enhanced sensing capabilities [7, 18, 22]. In spite of the underlying high sensitivity
near an EP, these class of sensors relying on the resonant frequency splitting are
not capable of improving the SNR (Signal-to-Noise Ratio) owing to the
non-orthogonality of eigenvectors near an EP [6, 23, 24]. This leads to Peterman
factor limited sensing [43] where the noise is enhanced proportional to the signal
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enhancement, thereby limiting the efficacy of this class of sensors for
quantum-limited sensing [9]. Fluctuations accompanying the gain/dissipation in
conventional non-Hermitian systems limit the achievable precision. In fact, it has
been shown that any linear reciprocal sensor is bounded in terms of SNR
performance, and conventional EP-based sensing cannot surpass this limit [24].
Recently, a sensing protocol that does not measure the eigenfrequency splitting but
rather measures the superposition of output quadratures using heterodyne detection
has shown the possibility of alleviating the problem of noise enhancement and
realizing EP-enhanced sensing when operated near the lasing threshold [49]. The
noiseless nature of phase-sensitive degenerate parametric amplification motivates
studying non-Hermitian dynamics of coupled OPOs for sensing. In this regard, we
explore the possibility of reduced uncertainty of fluctuations manifested in the form
of squeezed noise in the vicinity of parametric EP to leverage the high sensitivity
of EP in the pursuit of obtaining high SNR. It must be noted that phase-sensitive
parametric gain-based systems are not bounded by the limit outlined in Ref. [24].

Non-Hermitian dynamics of coupled OPOs can be extended to the nonlinear
regime which can lead to several intriguing possibilities. It has been previously
shown that the interplay of nonlinearity and gain/loss in conventional
non-Hermitian systems can result in unidirectional transport [40], one parameter
family of solitons [1] (in contrast to an isolated attractor based dissipative solitons)
in parity-time symmetric systems, robust wireless power transfer [3]. Previous
studies implementing parametric amplification to realize non-Hermitian systems
have focused on the linear dynamics only [2, 13, 44]. We exploit rich nonlinear
dynamics in our parametric non-Hermitian system (operating in the parametric
oscillator regime) arising from the interplay of phase-sensitive gain and the gain
saturation owing to the signal to pump back-conversion.

The presented coupled OPO system is also an appealing platform to investigate
quantum non-Hermitian physics. Previous studies of the quantum behavior in non-
Hermitian systems have identified the criticality of information flow between the
system and environment around the EP in a parity-time symmetric system [20], a shift
of the position of Hong-Ou-Mandel dip [21], and delaying of entanglement sudden
death near an EP [4]. Opto-mechanical systems provide a versatile testbed to study
non-Hermitian dynamics in the quantum regime [19]. We demonstrate non-classical
behavior including quadrature squeezing and tunable squeezing of parametric EP.
These behaviors may also be extended to the non-Gaussian regime[36].
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8.3 Results
We consider a system of evanescently coupled degenerate OPOs as illustrated in
Fig. 8.1(a). The coupled-mode equations governing our system are given by:

𝑑𝑎

𝑑𝑡
= −𝛾1𝑎 + 𝑖Δ1𝑎 + 𝑔𝑎∗ − 𝑔𝑠1 |𝑎 |2𝑎 + 𝑖^𝑏 (8.1a)

𝑑𝑏

𝑑𝑡
= −𝛾2𝑏 + 𝑖Δ2𝑏 + 𝑓 𝑒𝑖𝜙𝑏∗ − 𝑔𝑠2 |𝑏 |2𝑏 + 𝑖^𝑎. (8.1b)

The OPOs considered are phase matched to oscillate around the half-harmonic
frequency [15]. The continuous-wave (CW) pump is non-resonant and its dynamics
is adiabatically eliminated. The signal field envelopes in the two resonators are
designated by 𝑎 and 𝑏, respectively. The signal in the first resonator experiences a
round-trip loss (intrinsic+out-coupling) of 𝛾1, a detuning of Δ1, and a parametric
gain of 𝑔 provided by the non-resonant pump. The gain can be assumed constant for
the frequency range of interest around the half-harmonic frequency. The parametric
gain is phase-sensitive, and the phase of the pump driving the first resonator is taken
as a reference. The gain saturation term is denoted by 𝑔𝑠1 which originates from
the signal to pump back-conversion due to second-harmonic generation which is the
reverse of the down-conversion process. The strength of the dispersive coupling is
represented by ^. Similar terms appearing in Eq.(8.1b) describe associated quantities
in the second resonator. The pump driving the parametric interaction in the second
resonator is phase shifted by 𝜙 as compared to the first pump. The parametric gain
is proportional to the pump strength and is given by 𝑓 . Both the pumps are at
2𝜔0, where 𝜔0 is the half harmonic frequency. The time scale is normalized to the
round-trip time.

We assume that the resonators are identical in terms of the loss (𝛾) and gain-
saturation (𝑔𝑠) terms for simplicity. This can be achieved by accessing the two
degrees of freedom of a single resonator namely the clockwise and counter-clockwise
propagation modes. In the absence of these assumptions, the results discussed in
this work will still hold true, albeit with some quantitative differences.

There are two regimes of parametric oscillation, namely the non-degenerate regime
and the degenerate regime [41]. In the degenerate regime, the system oscillates at
𝜔0, while in the non-degenerate regime owing to energy conservation constraint the
system oscillates with symmetric sidebands centered around 𝜔0. First, we consider
that both the half-harmonic signals are on resonance, i.e. Δ1 = Δ2 = 0.
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Figure 8.1: Schematic depicting the concept of parametric EP. a) Coupled
OPO with evanascent coupling ^, driven by non-resonant pumps at 2𝜔0. The
strength of the drive in the first OPO is 𝑔 and the strength of the drive in the
second OPO is 𝑓 . The pumps can be phase (PM)/amplitude (AM) modulated,
and the resonant signals at half-harmonic (𝜔0) are extracted from the respective
out-couplers. b) The appearance of an EP as the parametric gain parameter 𝑔 is
varied at a fixed coupling rate ^. In the vicinity of this EP apart from enhanced
responsivity due to the branch point singularity nature of EP, there exists squeezed
noise which can reduce the uncertainty of the output field below the standard noise
limit in a suitable quadrature. c) Conventional non-Hermitian systems employ
phase-insensitive amplification (PIA) mechanism and thus the noise figure of the
system under consideration cannot go below 3dB. d) We leverage the phase sensitive
amplification (PSA) in the realization of parametric EP which can ideally approach
noiseless amplification. We map the usual gain-loss coupling in the conventional
non-Hermitian systems to phase-sensitive quadrature parametric amplification and
de-amplification and represent the equivalent process in synthetic resonators.
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In the non-degenerate regime (under the scope of linearized analysis, i.e., ignoring
gain saturation) we can consider the following ansatz for the signal envelopes in the
two resonators as:

𝑎 = 𝐴𝑒(_𝐼−𝑖_𝑅)𝑡 + 𝐵𝑒(_𝐼+𝑖_𝑅)𝑡 (8.2a)

𝑏 = 𝐶𝑒(_𝐼−𝑖_𝑅)𝑡 + 𝐷𝑒(_𝐼+𝑖_𝑅)𝑡 (8.2b)

where 𝐴 and 𝐵 represent the complex envelopes for the symmetric primary sidebands
for resonator 1, and 𝐶 and 𝐷 represent the same for resonator 2. Here, the real part
of eigenvalues (_𝑅) corresponds to the spectral splitting, while the imaginary part
(_𝐼) is related to the growth/decay rate. 𝐴,𝐶 can also be read as the signals and
𝐵, 𝐷 as the idlers. The eigenvalues can be obtained from the following equation:

(_𝑅 + 𝑖_𝐼)


𝐴

𝐵∗

𝐶

𝐷∗


=


−𝑖𝛾 𝑖𝑔 −^ 0
𝑖𝑔 −𝑖𝛾 0 ^

−^ 0 −𝑖𝛾 𝑖 𝑓 𝑒𝑖𝜙

0 ^ 𝑖 𝑓 𝑒−𝑖𝜙 −𝑖𝛾



𝐴

𝐵∗

𝐶

𝐷∗


. (8.2c)

The underlying Hamiltonian of the coupled OPO system exhibits spectral anti-PT
symmetry [2]. The Hamiltonian governs the dynamics as: 𝑖 𝑑�̃�

𝑑𝑡
= 𝐻�̃� , where

�̃� =
[
�̃�, �̃�∗, �̃�, �̃�∗]𝑇 , �̃� = 𝐴𝑒(_𝐼−𝑖_𝑅)𝑡 , �̃� = 𝐵𝑒(_𝐼+𝑖_𝑅)𝑡 , �̃� = 𝐶𝑒(_𝐼−𝑖_𝑅)𝑡 , and

�̃� = 𝐷𝑒(_𝐼+𝑖_𝑅)𝑡 . The discrete symmetry of the system can be expressed as:
𝑃1𝑃2𝑇𝐻 = −𝐻𝑃1𝑃2𝑇, where 𝑇 is the time reversal operator, and the parity
operators action in the spectral domain are defined by: 𝑃1 = {𝐴 ↔ 𝐵∗} and
𝑃2 = {𝐶 ↔ 𝐷∗}. The system dynamics is also unitarily equivalent to a

PT-symmetric system, where the unitary transformation U = 1√
2


1 −1 0 0
0 0 1 −1
1 1 0 0
0 0 1 1


,

such that 𝐻PT = U𝐻U†. This mapping is shown schematically in Fig. 8.1(c) and
8.1(d). The signals of the two OPOs are coupled by the evanescent linear coupling
^, and so do the idlers. While the signal and the idler within the same OPO are
coupled nonlinearly by the nonlinear phase-sensitive coupling engendered by 𝜒(2) .
Under the said unitary transformation (U), this process can be mapped to a
PT-symmetric system of coupled synthetic resonators with the positive
superposition of the signal and the idler conjugated fields experiencing
amplification, while the negative superposition of the signal and idler fields get
de-amplified. It should be noted that due to the onset of nonlinearity arising due to
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back conversion (𝑔𝑠) additional sidebands will appear in the complete nonlinear
solution.

0 200 400
t

0

0.2

0.4

0.6

0.8

In
te

ns
ity

500300100
t

(a) (c)

(d)(b)

0 100 200 300 400 500
0

0.5

1

1.5

In
te

ns
ity

-1 0 1
Normalized Frequency

-30

-20

-10

0

P
S

D
 (

dB
)

-1 0 1
Normalized Frequency

-30

-20

-10

0

P
S

D
 (

dB
)

ND DD

EP EP

OPO 1
OPO 2

Figure 8.2: Parametric Oscillation in Coupled OPO in the presence of EP. a,b)
Coupled OPO system initiates parametric oscillation in the non-degenerate (ND)
phase at the threshold. The parameters used are: 𝑓 = 0.4, ^ = 1, 𝑔𝑠 = 0.3, and
𝛾 = 0.25. At higher values of 𝑔 above the threshold, the system operates in the
degenerate (D) phase. In a) the real and imaginary part of the eigenvalues (_) are
shown that emanates from the linearized analysis. The threshold is indicated by
the dashed black line. The time domain profile of the intra-cavity intensity (for
𝑔 = 1.5) in both the resonators is shown in b). The corresponding spectral domain
information appearing in the inset confirms the non-degenerate oscillation phase.
c,d) Coupled OPO system initiates parametric oscillation in the degenerate phase at
the threshold. The parameters used are: 𝑓 = 1.5, ^ = 1, and 𝛾 = 0.75. There is no
occurrence of non-degenerate oscillation. In c) the real and imaginary part of the
eigenvalues are shown that emanates from the linearized analysis. The time domain
profile of the intra-cavity intensity (for 𝑔 = 1) in both the resonators is shown in d).
The corresponding spectral domain information appearing in the inset confirms the
degenerate oscillation phase.
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In the degenerate regime, the signals in both resonators are half harmonics. Here
we can express the signal evolution in terms of their quadrature components. We
define 𝑋1 = (𝑎 + 𝑎∗), 𝑌1 = 𝑎−𝑎∗

𝑖
and 𝑋2 = (𝑏 + 𝑏∗), 𝑌2 = 𝑏−𝑏∗

𝑖
. These quadrature

components evolve as 𝑒_𝐼 𝑡 . The eigenvalues can be obtained from the following
evolution equation:

𝑖_𝐼


𝑋1

𝑌1

𝑋2

𝑌2


=


−𝑖𝛾 + 𝑖𝑔 0 0 −𝑖^

0 −𝑖𝛾 − 𝑖𝑔 𝑖^ 0
0 −𝑖^ −𝑖𝛾 + 𝑖 𝑓 cos(𝜙) 𝑖 𝑓 sin𝜙
𝑖^ 0 𝑖 𝑓 sin𝜙 −𝑖𝛾 − 𝑖 𝑓 cos𝜙



𝑋1

𝑌1

𝑋2

𝑌2


. (8.3)

The transition from the non-degenerate oscillation regime to the degenerate
oscillation regime is marked by the presence of an exceptional point. This point in
the parameter space is characterized by the simultaneous collapse of eigenvectors
and the coalescence of the eigenvalues. The disparity between the geometric and
the algebraic multiplicity at the exceptional point is determined by the order of the
exceptional point.

The threshold for parametric oscillation in the coupled OPO is determined by
the linear eigenvalues, i.e., _𝐼 = 0, with oscillation occurring for _𝐼 > 0 (see
Supplementary section 8.5.1). This extra caution is because of the possibility of
the occurrence of oscillation self-termination analogous to laser self-termination
[12, 38]. Just above the threshold, the system of coupled OPOs can oscillate either
in non-degenerate (Fig. 8.2(a) and 8.2(b)) or in degenerate mode (Fig. 8.2(c)
and 8.2(d)). However, far above the threshold the effect of nonlinearity becomes
significant and the system is no longer governed by the linearized dynamics (Eq.
8.2,8.3). In this regime, nonlinearity can induce a phase transition from non-
degeneracy to degeneracy as shown in Fig. 8.3(b) and 8.3(c), similar to laser
systems [16, 28]. This transition resembles a soft/ super-critical bifurcation.

The phase-sensitive nature of parametric gain provides an additional tuning knob in
the form of a phase difference between the two driving pumps (𝜙) that do not exist in
the conventional phase-insensitive gain/loss-based non-Hermitian systems. Figure
8.3(a) illustrates the solution space as the phase difference is varied, identifying the
degenerate and the non-degenerate oscillation regimes.

The order of exceptional points determines the rate of eigenvalues splitting in the
presence of a perturbation away from EP [34]. If the perturbation appears in the
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(a)
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Non-Degenerate

(c)(b)

PT

dB=���� �=�

Figure 8.3: Occurrence of nonlinearity induced phase transition. a) Phase
diagram of coupled OPO driven with a pump of similar strength 𝑔 with a relative
phase difference 𝜙. The phase diagram clearly shows the presence of two phases
of oscillation above the threshold, namely the non-degenerate and degenerate. The
white region indicates that the coupled OPO system is below the threshold. The
phase diagram is obtained by solving the coupled nonlinear equations for the OPOs
(Eq. 8.1) including the gain saturation. b) Linearized analysis predicts the possibility
of non-degenerate oscillation only, however, a phase transition into a degenerate
phase can be engendered when accounting for the back-conversion nonlinearity.
Two representative cases for 𝜙 = 𝜋/4 and 𝜙 = 𝜋 are shown. c) Nonlinearity-induced
phase transition from non-degenerate to degenerate (for 𝜙 = 𝜋) highlighting the
soft/super-critical nature of phase transition. The colorbar represents the spectral
intensity in the dB scale.

form of detuning (𝛿Δ), then the splitting depends as: 𝛿(𝑅𝑒(_)) = (𝛿Δ) 1
𝑛 , where 𝑛 is

the order of EP. This leads to enhanced sensitivity in the proximity of an EP, which
is given by 𝑑 (𝛿(𝑅𝑒(_)))

𝑑 (𝛿Δ) ∼ (𝛿Δ) 1−𝑛
𝑛 . This sensitivity function diverges at EP, which is

the basis for enhanced sensitivity of EP-based sensors [7, 18, 22]. This scaling law
arising due to the branch point singularity nature of non-Hermitian degeneracies
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(a) (c)

(d)(b)

2ndEP 4thEP

Slope=1/2 Slope=1/4

Figure 8.4: Different orders of EP realized in coupled OPO. a) Second order
EP. Parameters used are 𝑓 = 𝑔, ^ = 1, and 𝛾 = 0.25. b) Dependence of the spectral
splitting (𝛿𝑅𝑒(_))in the vicinity of EP, when a perturbation in the form of detuning
(Δ1 = 𝛿Δ)is applied. It varies as 𝛿𝑅𝑒(_) = (𝛿Δ) 1

2 . c) Fourth order EP. Parameters
used are 𝑓 = 2𝑔, ^ = 1, Δ1 = 0.1501 and 𝛾 = 0.25. d) Dependence of the spectral
splitting (𝛿𝑅𝑒(_)) in the vicinity of EP, which varies as 𝛿𝑅𝑒(_) = (𝛿Δ) 1

4 .

does not arise in the case of Hermitian degeneracies characterized by diabolical
points. We present the occurrence of both a second-order EP and a higher-order EP
(4th-order) in the coupled OPO system. Second-order EP is accompanied by the
collapse of eigenvalues and eigenvectors in pairs and is shown in Fig. 8.4(a) and
8.4(b) by considering 𝑓 = 𝑔,Δ1 = Δ2 = 0. We identify a family of higher-order
exceptional points (see Supplementary section 8.5.3), by biasing the coupled OPOs
at suitable detuning. In Fig. 8.4(c) and 8.4(d) we considered 𝑓 = 𝑚𝑔,Δ2 = 0, where
𝑚 is the parameter describing the family of exceptional points which determines the
critical 𝑔 andΔ1 for the occurrence of the 4th order EP. In this case, four eigenvectors



189

and eigenvalues coalesce resulting in higher order dependence of sensitivity. This
enhanced sensitivity of the 4th-order EP is reflected in the slope of the log-log plot in
Fig. 8.4(d) as compared to the case in Fig. 8.4(b) corresponding to a second-order
EP.

The instantaneous nature of parametric gain and the ability to modulate the gain by
applying phase/ amplitude modulation to the pump opens unprecedented avenues
in exploring time-modulated dynamic non-Hermitian systems in the coupled OPO
arrangement. Time periodic Floquet non-Hermitian systems have been utilized to
tailor the EP and realize re-configurable non-Hermitian systems with an enriched
phase space depending on the amplitude and frequency of the modulation [8, 25, 29].
Previous demonstrations relied on periodically modulating the coupling to realize
Floquet-driven systems. Parametric non-Hermitian systems enable us to modulate
the gain instead of the coupling, by modulating the pump and realizing tunable
Floquet EP. In Fig. 8.5(a) and 8.5(b), we explore Floquet control of EP when the
pump is amplitude modulated as: 𝑔 = 𝑔0+𝐹sin(𝜔𝑡). The eigenvalues of the Floquet
periodic system can be extracted by analyzing the associated Monodromy matrix.
As shown in Fig. 8.5(b) with increasing values of the pump amplitude modulation
parameter 𝐹, the EP is progressively shifted to higher values of 𝑔0.

Similarly, we can dynamically encircle the EP by periodically modulating the
parametric gain. Dynamical encirclement involves adiabatically tracing a close
path in the parameter space enclosing an EP, which has been utilized to realize
robust and asymmetric switching [10], non-reciprocal energy transfer [47] and
omni-polarizer [17]. However these promising results have only been
demonstrated in lossy systems [10, 48], due to the stringent requirement of
non-Hermitian system tunability. Here we propose that the tunable nature of the
parametric gain provides a very promising platform to realize these chiral
dynamics that is contingent on the topological structure of the EP. We perform
adiabatic encirclement in the parametric space (Fig. 8.5(c) and 8.5(d)) of
detuning and gain by undergoing the following adiabatic evolution:
𝑓 = 𝑔 = 𝑔0 + 𝑟cos(𝜔𝑡) and Δ1 = 𝑟sin(𝜔𝑡), where 𝑟 is the radius of encirclement,
and 𝑔0 = ^ is the EP. Due to the breakdown of adiabaticity in the non-Hermitian
system, we obtain an asymmetric/ chiral behavior, where the final state at the end
of the encirclement, depends on the direction of the loop and is independent of the
starting point. The distinct outcome by parametrically traversing a loop enclosing
the EP counter-clockwise (Fig. 8.5(c)) and clockwise (Fig. 8.5(d)) is shown.
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Figure 8.5: Periodically modulated coupled OPO. a) Floquet control of EP.
Real and Imaginary parts (solid lines) of the Floquet exponent of the associated
monodromy matrix. Floquet EP (F-EP) can be tuned from the static EP (dotted
lines represent the eigenvalues for the static system without periodic modulation).
Parameters for the pump amplitude modulation used are 𝐹 = 5, 𝜔 = 10. b) Tuning
the F-EP by varying 𝐹, the amplitude modulation depth. The threshold in the
coupled OPO system can be varied by changing 𝐹 (white region corresponds to
below threshold). The color-bar represents gain (Im(_) + 𝛾). c) Adiabatically
encircling the EP, and the emergence of chirality. Counter-clockwise encirclement
and the system ends up in a different final state. d) Clockwise encirclement where an
abrupt jump occurs during the evolution, and the system returns to the initial state at
the end of the encirclement. Highlighted is shown the Riemann eigen-surfaces. The
dotted loop represents the encirclement trajectory on the Δ1 − 𝑔 parameter space.
The black solid line indicates the eigen-frequency splitting for Δ1 = 0. Parameters
used are: 𝑟 = 0.2, 𝜔 = 2𝜋

3000 .

OPOs have been the workhorse for generating quantum states of light for decades
[46], and coupled OPOs have also been predicted to exhibit nonclassical properties
[35]. When we approach the EP from below the threshold the vacuum fluctuations
in the quadratures of the intra-cavity field can be squeezed below the standard noise
limit. We assume the vacuum fluctuations entering the cavity from different open
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channels, to be delta-correlated white Gaussian noise and obtain the power spectral
density of the output quadrature fields via a linearized analysis of the Langevin
equations [5]. The formalism including the relevant noise operators is derived in
(see Supplementary Section 9.5.5). Figures 8.6(a) and 8.6(b) show that there
exists a bandwidth where the intra-cavity field is squeezed as we approach the
EP. The reduced noise in one quadrature is accompanied by increased uncertainty
(anti-squeezing) in the conjugate quadrature. Although the maximum squeezing
attainable in the vicinity of EP is 3dB (see Supplementary 8.5.6), it can potentially
allow combining the high sensitivity of EP and the reduced uncertainty in parametric
EP, to realize unparalleled sensing capabilities in an optimum sensing arrangement.
The amount of squeezing depends on the OPO escape efficiency, which is the
ratio between the out-coupling loss and the total round-trip loss, with the higher
squeezing attainable with larger escape efficiency. More so, one can tune the
squeezing response by changing ^ in coupled OPO as shown in Fig. 8.6(b), thereby
operating at a frequency where the external/technical noise of the sensing system is
minimum. In response to a perturbation in the form of detuning, only the optimum
quadrature for squeezing is rotated, still preserving the noise reduction property (see
Supplementary section 8.5.6). In this regard, our parametric EP can pave the way for
ultra-sensitive detection with high SNR in shot noise-limited detection scenarios.
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Figure 8.6: Squeezing near the parametric EP in coupled OPO. a) Quadrature
squeezing spectrum as we approach the EP by varying 𝑔. There exists a bandwidth
where the squeezing is below the standard noise limit indicated by the black-shaded
region and bounded by the black dotted line. A zoomed-in version of the same is
shown right below. b) The squeezing spectrum can be tuned by varying the coupling
strength ^ in the coupled OPO system. 𝑔 is kept equal to 0.5^. Below is shown the
squeezing and anti-squeezing in the conjugate quadratures for ^ = 1, 𝑔 = 0.9, 𝛾 =

0.1, 𝜌 = 0.9.

8.4 Discussion
Recent developments in the realization of large-scale time-multiplexed OPO
networks [30] and integrated lithium niobate-based devices [42] can be ideal
candidates for experimental realization of the presented concept. Entanglement
can be used as a resource for increasing the sensor performance [9] based on
parametric EP. An optimum sensing arrangement guided by Quantum Fischer
information calculations needs to be designed in order to obtain high SNR sensing
from parametric EP [24, 49]. Also, the enhancement provided by higher order
parametric EP and the limits of sensors based on them including their dynamic
range is worth exploring and will be subjects for future investigations. It will be
interesting to extend it to the case of a lattice of parametric oscillators, where
interesting non-equilibrium dynamics is expected [31].
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8.5 Supplementary
8.5.1 Threshold
The threshold for parametric oscillation can be obtained from the linearized analysis.

The threshold for degenerate oscillation occurs when the following equality is
satisfied:

−𝛾+ 1
√

2

√︂
𝑓 2 + 𝑔2 − 2^2 +

√︃
𝑓 4 + 𝑔4 − 4𝑔2^2 − 4 𝑓 2^2 − 2𝑔2 𝑓 2 + 8^2 𝑓 𝑔cos(𝜙) = 0.

(8.4)
The threshold for non-degenerate oscillation occurs when the following equality is
satisfied:

−𝛾 + max [Im(𝐸+), Im(𝐸−)] = 0 (8.5a)

where,

𝐸± = ± 1
√

2

√︂
2^2 − 𝑓 2 − 𝑔2 −

√︃
𝑓 4 + 𝑔4 − 4𝑔2^2 − 4 𝑓 2^2 − 2𝑔2 𝑓 2 + 8^2 𝑓 𝑔𝑐𝑜𝑠(𝜙)

(8.5b)
provided, Re(𝐸) ≠ 0.

Below the oscillation threshold, the linearized analysis determines the system
dynamics and the properties can be accessed experimentally by probing it with a
tunable laser.

[rad]

Figure 8.7: Threshold as a function of the phase difference 𝜙 between the pumps.
The curve is obtained using Eq. 8.4 which matches that of the numerical simulation.
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Figure 8.8: Gain-induced oscillation suppression and revival of oscillation. a)
Eigenvalues from the linear analysis. Parameters used are: 𝑓 = 0.9, 𝛾 = 0.25, ^ = 1.
b) Coupled OPO above the threshold and oscillating in the non-degenerate phase for
𝑔 = 0.3 c) Oscillation is suppressed as the gain is increased to 𝑔 = 0.75 indicating
the occurrence of gain-induced oscillation suppression. d) Oscillation again re-
emerges as the gain parameter is further increased (𝑔 = 1.5), signifying the revival
of oscillation.

8.5.2 Nonlinearity induced Phase Transition
We analytically demonstrate the phenomenon of nonlinearity-induced phase
transition in a simple case although a representative one, when 𝑓 = 𝑔 and 𝜙 = 𝜋.
The linearized analysis suggests that the system of coupled OPOs under this set of
conditions will oscillate in the non-degenerate regime. However, we find that
beyond a critical 𝑔 the system oscillates in degenerate mode.

Under this set of conditions when the system oscillates in the degenerate mode
beyond a critical 𝑔, the signal envelopes can be assumed as: 𝑎 = 𝑥 and 𝑏 = 𝑖𝜌𝑥,
where 𝜌 determines the intensity contrast in the two resonators at steady state, and
𝑥 is real. Substituting this ansatz in Eq. 8.1, we obtain at steady state:

𝐺 − 𝑔𝑠𝑥2 − ^𝜌 = 0 (8.6a)
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𝐺𝜌 − 𝑔𝑠𝜌3𝑥2 + ^ = 0 (8.6b)

where, G= g-𝛾. Solving these systems of equations yields:

𝑥 =
1

√
𝑔𝑠

√√√
3𝐺
4

+
√
𝐺2 − 8^2

4
+ ^

2

√√
2 + 𝐺2

2^2 − ^
𝐺3

^3 − 8𝐺
^

2
√
𝐺2 − 8^2

(8.6c)

𝜌 =
𝐺

4^
−
√
𝐺2 − 8^2

4^
− 1

2

√√
2 + 𝐺2

2^2 − ^
𝐺3

^3 − 8𝐺
^

2
√
𝐺2 − 8^2

. (8.6d)

The critical value of 𝑔 beyond which the oscillation enters into a degenerate regime
is given by: 𝑔 = 𝛾 +

√
8^2. This analytical result matches the critical value of 𝑔

obtained numerically.

8.5.3 Higher Order Exceptional Point
Here, we derive the conditions to obtain the family of higher-order (fourth-order)
exceptional points.

(_𝑅 + 𝑖_𝐼)


𝐴

𝐵∗

𝐶

𝐷∗


=


−𝑖𝛾 − Δ 𝑖𝑔 −^ 0
𝑖𝑔 −𝑖𝛾 + Δ 0 ^

−^ 0 −𝑖𝛾 𝑖𝑚𝑔

0 ^ 𝑖𝑚𝑔 −𝑖𝛾



𝐴

𝐵∗

𝐶

𝐷∗


(8.7a)

𝑔 =

√︄
−^2

𝑚3 + ^2

𝑚2 +
√︁
^4𝑚2(1 − 2𝑚 + 2𝑚2)

𝑚4 (8.7b)

Δ = ±

√︄
−^2 − ^2

𝑚3 + ^2

𝑚2 − ^2

𝑚
+

√︁
^4𝑚2(1 − 2𝑚 + 2𝑚2)

𝑚4 +
√︁
^4𝑚2(1 − 2𝑚 + 2𝑚2)

𝑚2

(8.7c)
with, 𝑚 ≠ {0, 1}.

8.5.4 Floquet Control of Exceptional Point
We show the time domain and frequency domain picture of the Floquet modulated
parametric non-Hermitian system in Fig. 8.9. The Floquet phase diagram is shown
in Fig. 8.10.

8.5.5 Fixed Points of Coupled OPO
We plot the steady-state fixed point solutions of the quadratures of coupled OPO in
Fig. 8.11 and Fig. 8.12.
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Figure 8.9: Floquet control of EP. Parameters used for the amplitude modulation
are 𝐹 = 5, 𝜔 = 10. a) System of coupled OPO below the threshold for 𝑔0 = 1.25.
The time domain intra-cavity intensity waveforms are shown. b) However in the
absence of periodic modulation, i.e., 𝐹 = 0, the system oscillates above the threshold
in the degenerate phase. This demonstrates that the Floquet control can tune the
exceptional point and thereby the oscillation threshold. c) The modulated Floquet
system goes above the threshold for 𝑔0 = 1.3. The time domain intra-cavity intensity
waveforms are shown. d) Spectral domain representation for the waveforms in c,
depicting the presence of sidebands at the modulating frequency.

8.5.6 3 dB quadrature squeezing limit in the vicinity of EP in coupled OPO
The squeezing spectrum for the quadrature (𝑌 ), is obtained from (Eq S.12) as
𝑆(𝜔) = 𝐶𝑜𝑢𝑡3,3 . We are interested in the squeezing that is achievable at the EP.
Assuming, ^ = 1 and 𝑔 = ^ (EP), we get:

𝑆(𝜔) = 𝛾4 − 4𝛾3𝜌 − 4𝛾𝜌𝜔2 + 𝜔4 + 2𝛾2(4𝜌 + 𝜔2)
(𝛾2 + 𝜔2)2 . (8.8)

Maximum, squeezing is obtained in the limit, 𝜌 = 1. The function 𝑆(𝜔) reaches its
minimum at 𝜔 =

√︁
4𝛾 − 𝛾2, if 0 ≤ 𝛾 ≤ 4. The maximum attainable squeezing is

3dB below the shot noise level. If 𝛾 > 4, the minimum is obtained at 𝜔 = 0.

Various aspects of the quadrature squeezing near the exceptional point are shown in
Fig. 8.13.
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Figure 8.10: Floquet phase diagram. Multiple regions of below and above
threshold regions (related to the anti-PT symmetry breaking) reflect the usual
resonance-like behavior of periodically modulated systems. Plotted is the imaginary
part of the eigenvalue shifted by the constant loss (𝛾). Here, the modulation
amplitude 𝐹 and the coupling factor ^ are varied, with 𝜔 = 10.

Figure 8.11: Bifurcation diagram of coupled OPO. Steady states appear as stable
fixed points for the coupled OPO system when the gain parameter is varied. It
displays features of a super-critical bifurcation at the threshold. Plotted are the
quadratures of the complex field of one OPO in the coupled OPO system.
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Figure 8.12: Fixed points of coupled OPO. Multiple steady states appear as stable
fixed points for the coupled OPO system above the threshold. The parameters
involved are: 𝑓 = 𝑔 = 1.25, 𝛾 = 0.1, ^ = 1, and 𝑔𝑠 = 0.3. These steady states have
different in-phase and out-of-phase quadrature components. They can be accessed
with suitable initial conditions lying in their domain of attraction. Red-filled circles
represent the field in the first OPO, while open blue circles represent the same for
the second OPO. Dotted lines depict X=0, Y=0, Y=X, and Y=-X.
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Figure 8.13: Quadrature squeezing near EP. a) The squeezing spectrum is plotted
in log scale. The quadrature variance at DC diverges as we approach the exceptional
point. Parameters used are: 𝑓 = 𝑔, 𝛾 = 0.1, ^ = 1, and 𝜌 = 0.9. b) Squeezing
spectrum as the parameter 𝜌 is varied. Best squeezing performance is ideally
obtained for 𝜌 = 1. c) Divergence of the variance (PSD) at DC for different values
of total round-trip loss 𝛾. 𝜌 = 0.9 is kept constant. d) Rotation of the optimum
quadrature for squeezing. Parameters used are 𝑓 = 𝑔 = 1, 𝛾 = 0.1, 𝜌 = 0.9, and
Δ1 = 0.1. \ are measured in radians.
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C h a p t e r 9

TOPOLOGICAL OPTICAL PARAMETRIC OSCILLATION

Roy, Arkadev, Midya Parto, Rajveer Nehra, Christian Leefmans, and Alireza
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the manuscript.

9.1 Abstract
Topological insulators possess protected boundary states which are robust against
disorders and have immense implications in both fermionic and bosonic systems.
Harnessing these topological effects in non-equilibrium scenarios is highly desirable
and has led to the development of topological lasers. The topologically protected
boundary states usually lie within the bulk bandgap, and selectively exciting them
without inducing instability in the bulk modes of bosonic systems is challenging.
Here, we consider topological parametrically driven nonlinear resonator arrays that
possess complex eigenvalues only in the edge modes in spite of the uniform pumping.
We show parametric oscillation occurs in the topological boundary modes of one
and two dimensional systems as well as in the corner modes of a higher-order
topological insulator system. Furthermore, we demonstrate squeezing dynamics
below the oscillation threshold, where the quantum properties of the topological
edge modes are robust against certain disorders. Our work sheds light on the
dynamics of weakly nonlinear topological systems driven out-of-equilibrium and
reveals their intriguing behavior in the quantum regime.

9.2 Introduction
Topological invariance and its consequences on material properties originally
studied in condensed matter physics has expanded its ambit and has been
investigated in diverse fields [18, 21, 22, 32, 36, 40]. Of prime interest is the
presence of topologically protected edge modes which inherit their robustness
from the non-trivial topology of the bulk. The introduction of topology in
photonics promises a number of functionalities that leverage backscatter-free
unidirectional light transport of such modes[17].
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Topologically protected edge states usually lie within the bulk bandgap. Topological
consequences in particle-conserving fermionic Hamiltonians are manifested when
the Fermi energy level lies within this bandgap. Under these circumstances, the
near-equilibrium dynamics are dictated by the degrees of freedom associated with
the boundary/edge modes of the system. On the contrary, for bosonic systems,
particles tend to condense in the lowest bulk band, resulting in the system dynamics
being largely unaffected by the edge states. Thus ensuring selective participation of
edge modes in bosonic topological insulators requires special attention, and most
experimental investigations for these systems involved directly exciting bosons into
these edge modes [18].

The topological insulator laser is a bosonic system driven out of equilibrium where
lasing happens preferentially in the edge modes. These topologically protected lasers
can outperform their topologically trivial counterpart in terms of slope efficiency,
coherence, and robustness against disorders [2, 4, 19, 47]. To suppress the bulk
modes in the topological lasing, the edge modes should be unstable while the bulk
bands maintain stability. One potential approach in this regard is non-Hermitian
PT-symmetric Hamiltonian engineering of 1D systems [37]. However, this cannot
be extended in general to higher dimensions to realize chiral propagating edge states.
Non-Hermitian coupling engineering has been proposed to realize robust and stable
lasing [28, 29]. Another approach involves selective pumping of the edge sites to
realize topological lasing [4, 19]. Nonetheless, it is highly desirable to achieve
topological edge-gain effect under uniform pumping [3, 46].

Recently, much attention has been devoted to the rich interplay between optical
nonlinearities and topology [23, 45]. The addition of nonlinearity leads to a variety
of intriguing possibilities such as nonlinearity-driven topological phase transitions
[33] and self-localization [26]. Incorporating parametrically driven quadratic
nonlinearity into a topological system can result in topologically protected
parametric amplification and chiral inelastic transport [5, 11, 38, 39]. Owing to the
particle non-conserving nature of these parametric interactions, it can cause
exponentially growing bosonic occupation, which in the suitable regime of
operation can lead to edge-only dynamic instability [6, 15]. This parametric gain
being inherently instantaneous is devoid of slow carrier dynamics that can cause
deleterious effects in the case of topological lasers based on semiconductor gain
medium [30]. Exploiting the squeezing dynamics in these quadratic nonlinear
systems also opens new avenues for leveraging topological effects in the quantum
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regime. The topological insulating phenomenon when applied to the quantum
states can result in the topological protection of quantum statistics and quantum
correlations [9, 41, 49].

We show topological optical parametric oscillation in a network of quadratic
nonlinear resonators where the underlying linear Hamiltonian is topological. We
drive the system in a parameter regime where it exhibits edge instability under
uniform excitation. We demonstrate edge mode parametric oscillation in both 1D
and 2D topological insulating systems as well as corner mode parametric
oscillation in a higher-order topological insulator. We show the presence of
squeezed quantum state below the oscillation threshold which is robust against
perturbations arising from symmetry-preserving disorders.

9.3 Results
We aim to achieve the topological edge-gain effect using parametric interactions
induced by quadratic nonlinearity. To illustrate the scenario, we begin with the 1D
Su-Schrieffer-Heeger (SSH) model, which was originally proposed for the
explanation of mobile neutral defects in polyacetylene [48]. The SSH model
consists of a chain of coupled sites with intra-cell coupling (^1 = 𝐽 (1 − 𝜖)) and
inter-cell coupling (^2 = 𝐽 (1 + 𝜖)), where 𝜖 denotes the asymmetry in the hopping
strengths. Provided ^1 < ^2, the 1D lattice hosts topological edge modes. In the
Hermitian case, the edge mode lies within the bulk bandgap as shown in
Fig. 9.1(c), and the application of uniform laser gain leads to bulk instability. To
ensure edge-only lasing, non-Hermitian PT-symmetric Hamiltonian can be
engineered with alternate gain and loss as shown in Fig. 9.1(a) [37, 53]. Figure
9.1(d) shows that under the application of this non-uniform phase-insensitive laser
gain, the edge mode selectively experiences instability while the bulk modes
remain stable (Im(_) = 0). Alternatively, we can exploit the unitary
correspondence between non-Hermitian dynamical systems and the Heisenberg
equations of motion governing parametrically driven quadratically nonlinear
systems to achieve the topological edge-gain effect [42, 50]. The system resembles
a lattice of coupled nonlinear resonators that experience uniform parametric gain
as shown in Fig. 9.1(b). The parametric amplification/ de-amplification can
replicate the dynamics of the non-Hermitian PT-symmetric SSH model in a
non-dissipative setting as shown in Fig. 9.1(b) and Fig. 9.2(a).
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Figure 9.1: Topological edge-gain induced by parametric interaction. a)
Conventional topological edge-gain realized with alternate phase-insensitive laser
gain and loss arrangement in an SSH chain of resonators. b) Similar edge-gain can be
implemented with uniform parametric gain in an SSH chain of nonlinear resonators,
where the quadratic nonlinearity (𝜒(2)) couples the pump (2𝜔) and the signal (𝜔)
waves. c) Eigenvalue diagram (real part (top) and imaginary part (bottom)) for a
Hermitian SSH model showing the topologically protected edge mode lying within
the bandgap. Edge-only instability is not possible in this case. d) Eigenvalue diagram
for a non-Hermitian setting realized either utilizing phase-insensitive gain (left) as
shown in (a) or using the phase-sensitive parametric gain as shown in (b). The
eigenvalue diagram depicts the edge-gain effect where the topologically protected
mode has non-zero while the bulk modes have zero imaginary parts, respectively.
The momentum space (𝑘) Hamiltonian (𝐻0) for the 1D Hermitian SSH and phase
insensitive gain (𝑔) with PT symmetry SSH are also shown. Here, Index refers to
a sequential label for the eigenvalues corresponding to the number of interacting
resonators/ OPOs (𝑁).
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We consider quadratic (𝜒(2)) nonlinear resonators with phase-matched parametric
interaction between the pump at 2𝜔 and signal at 𝜔. The nonlinear part of the
Hamiltonian is given by:

Ĥ𝑁𝐿 =
∑︁
𝑛

𝑔

2
(�̂�𝑛�̂�𝑛 + 𝐻.𝑐.) (9.1)

where 𝑔 is the strength of the parametric interaction that depends on the effective
𝜒(2) nonlinearity and the incident pump power. �̂�, �̂�†, represents the annihilation
and the creation operators, respectively. The saturation effects of the parametric
gain (assuming a non-resonant pump) are discussed in 9.5.4 of the Supplementary
section. The linear part of the Hamiltonian according to the SSH model is given by:

Ĥ𝐿 = 𝐽
∑︁
𝑛

(1 + 𝜖 (−1)𝑛)
(
�̂�†𝑛�̂�𝑛+1 + 𝐻.𝑐.

)
. (9.2)

For a lattice of N sites, the full Hamiltonian can be expressed as Ĥ = 1
2𝜓

†𝐻𝜓, where
𝜓 = (�̂�1, . . . �̂�𝑁 , �̂�

†
1, . . . �̂�

†
𝑁
)𝑇 , and Ĥ = Ĥ𝐿 + Ĥ𝑁𝐿 . 𝐻 is the 2N × 2N Bogoliubov-

de Gennes (BdG) Hamiltonian. The dynamics of the system is determined by the
eigenvalues of the BdG equation: 𝜎𝑧𝐻𝜓𝑛± = ±𝐸𝑛𝜓𝑛±, where 𝜎𝑧 is the Pauli matrix,
𝜓𝑛± is a 2N dimensional eigenvector [6]. 𝐸𝑛 are the eigenenergies. Because of
the particle-hole symmetry of the BdG Hamiltonian, the eigenvalues ±𝐸𝑛 appear in
pairs. For each pair of real eigenvalues, we can identify the eigenvector as being
a particle with a positive norm 𝜓

†
𝑛+𝜎𝑧𝜓𝑛+ > 0, and the other being a hole with a

negative norm 𝜓
†
𝑛−𝜎𝑧𝜓𝑛− < 0 [15].

If 𝑔 < 2𝐽𝜖 , then we can ensure that the parametric gain will only induce instability
in the edge modes, while the bulk will remain stable (see Supplementary Section
9.5.1). The eigenvalue distribution in such a scenario is shown in Fig. 9.1(d, right).
When the parametric gain experienced by the edge modes exceeds the net loss,
there will be a growth of photon number in the edge eigenmode. However, the
onset of gain saturation prevents exponential growth and the parametric oscillation
reaches a steady state (see Supplementary Section 9.5.4). The steady-state
intensity distribution of the oscillating supermode is shown in Fig. 9.2(b). The
intensity distribution bears the characteristics of the edge mode as evident from the
alternate site occupation. However, if 𝑔 > 2𝐽𝜖 , the bulk modes will also become
dynamically unstable (see Supplementary Section 9.5.1). Various non-Hermitian
phase transitions characterizing the system (regions of instability) can also be
revealed from the discontinuities in the derivatives of the imaginary part of the
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complex Berry phase (see Supplementary section 9.5.7). The steady-state intensity
distribution in this scenario is shown in Fig. 9.2(c).

Figure 9.2: Non-propagating topological parametric oscillation. a) Schematic of
1D SSH model of quadratic nonlinear resonators hosting 0D localized edge modes,
where the intra-cell coupling (^1, thin lines) is weaker than the inter-cell coupling
(^2, thick lines). b) parametric oscillation when only the edge modes experience
instability, while the bulk modes are stable. c) oscillation when the parametric gain
also induces instability in the bulk modes. d) Schematic of 2D lattice of quadratic
nonlinear resonators hosting corner modes. Thick and thin lines indicate strong
and weak coupling, respectively, while green and blue color represents positive and
negative couplings. e) Eigenvalue diagram (the real part (left) and the imaginary
part (right)) showing the corner states lying within the bandgap with the non-zero
imaginary part while the bulk modes are stable. f) parametric oscillation in the
corner modes of the 2D lattice.

Next, we consider a 2D lattice of quadratic nonlinear resonators with quantized
quadrupole moment [7, 8, 35]. The higher-order topological insulator can host
localized corner states. The schematic of the 2D lattice featuring couplings with
different hopping strengths and phases is shown in Fig. 9.2(d). These couplings can
be realized in a photonic platform using auxiliary non-resonant coupling cavities
[18]. Under uniform parametric pumping, it is possible to induce selective instability
in the corner states, while the bulk modes remain stable. The eigenvalue distribution
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Figure 9.3: Chiral topological parametric oscillation. a) Schematic of an
anomalous quantum Hall effect topological insulator arranged in the form of Kagome
lattice. The zoomed-in view shows the nonlinear resonators with parametric gain
and the gauge flux (𝜙). b) parametric oscillation in the chiral edge state of a one-
dimensional strip of the 2D Kagome lattice (finite in y, and periodic boundary
condition along x). c) Band diagram (the real part (left) and the imaginary part
(right)) showing the edge modes experiencing gain. The edge states confined on the
top and bottom edges are marked in red and green, respectively.

in such a scenario is shown in Fig. 9.2(e). When the parametric gain is above the
oscillation threshold, the system can undergo parametric oscillation in the corner
modes as shown by the lattice intensity distribution in Fig. 9.2(f).

So far we have considered parametric oscillation in localized topological edge
states. Now we explore parametric oscillation in chiral propagating edge states.
We consider an infinite strip of nonlinear resonators (finite in Y, infinite/ periodic
boundary condition in X) arranged in the form of a Kagome lattice as shown in
Fig. 9.3(a). A gauge flux of 𝜙 is enclosed in each triangular plaquette. The system
corresponds to an anomalous quantum Hall topological insulator [34]. The linear
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part of the Hamiltonian is given by:

Ĥ𝐿 = 𝐽
∑︁
𝑛

Δ�̂�†𝑛�̂�𝑛 +
∑︁
<𝑛,𝑛

′
>

^𝑛,𝑛′ �̂�
†
𝑛�̂�𝑛′ (9.3)

where n=(𝑛𝑥 , 𝑛𝑦, 𝑠) is the vector site index, with 𝑛𝑥 , 𝑛𝑦 indicating the position
of the unit cell in the 2D lattice, while the index 𝑠 ∈ (𝐴, 𝐵, 𝐶) indicates the
component of the sublattice. < 𝑛, 𝑛′ > denotes the sum of the contributions over
nearest neighbours. Δ is the on-site detuning. The hopping term ^𝑛,𝑛′ is given by
^𝑛,𝑛′ = 𝐽e

i𝜙
𝑠,𝑠

′ where 𝜙𝐴𝐵 = 𝜙𝐵𝐶 = 𝜙𝐶𝐴 =
𝜙

3 . The nonlinear part of the Hamiltonian
(Ĥ𝑁𝐿) is the same as before. This nonlinear topological insulator is characterized by
the symplectic Chern numbers [11]. With appropriate values of the detuning (Δ) and
the gauge flux (𝜙) the particle and hole bands cross each other (see Supplementary
Section 9.5.2). Thus, it creates a bandgap where the chiral edge states cross the zero
energy. In the presence of non-zero parametric interactions, the chiral edge states can
develop instability. This is displayed in the band diagram shown in Fig. 9.3(c). The
parametric oscillation obtained in this case is confined along the edge as depicted
in the lattice intensity distribution in Fig. 9.3(b). The corresponding edge states
in the band diagram (Fig. 9.3(c)) are shown in green (bottom edge) and red (top
edge). It is to be noted that the particle and hole edge states are mirror images in
the band diagram. The chiral nature can be observed in the dynamic evolution of
the parametric oscillation (see Supplementary Section 9.5.2).

Below the oscillation threshold, optical parametric oscillators (OPOs) can display
quadrature squeezing, where the noise in one quadrature is squeezed below the
shot noise limit, and the excess noise is accumulated in the orthogonal quadrature
[51]. Squeezed quantum states are an important resource in sensing [1]. However,
preserving the squeezing in the quadrature of interest is challenging. The occurrence
of detuning or any other disorder can rotate the optimum squeezing quadrature and
the squeezing in the original quadrature can be degraded due to the mixing of the
anti-squeezed component. Here, we investigate the behavior of the topological
quantum squeezed state in the presence of disorders. We consider the 1D SSH
model (Fig. 9.2(a)), whose dynamics is modeled using the Heisenberg Langevin
equations [12]. The quadrature squeezing spectrum of the topological edge mode is
shown in Fig. 9.4(a). The edge mode is mostly confined to the boundary resonator.
Thus the squeezing obtained in the edge/boundary OPO is close to that contained in
the edge mode. Thus by accessing the boundary OPO, we can harness the benefits



213

Figure 9.4: Topological protection in the quantum regime. a) Quadrature
squeezing observed in the topological edge mode of the 1D SSH model of the
quadratic nonlinear resonators when the parametric gain is below the oscillation
threshold. The edge super mode spans over multiple resonators (inset of (b) showing
the edge eigenvector), while the edge OPO refers to the boundary resonator only.
SNL represents the shot noise limit. b) Entanglement between the first and the
third resonator of the edge mode as evident from the Duan criterion, where the sum
of the variances is less than 4. Eigenvalue diagram c) real part and d) imaginary
part showing the robustness of the edge mode to the coupling disorders. Multiple
eigenvalue diagrams corresponding to different coupling disorder realizations are
overlaid together. e) Protection of the quadrature squeezing in the presence of
coupling disorders in the topological case (^1 < ^2). f) The trivial case (^1 > ^2)
is more susceptible to squeezing degradation in the presence of coupling disorders.
Multiple squeezing spectra calculated in the fixed quadrature under different disorder
realizations are overlaid together. The black dotted line corresponds to the squeezing
spectrum in the absence of disorder. The X axis (𝜔) of all these sub-figures refers
to the analysis frequency of the signal corresponding to the homodyne detection.
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of topological protection in the quantum regime. The edge eigenvector spans over
multiple resonators, with occupations in only one of the sublattices, and alternate
in sign (𝜋 staggered) as shown in the inset of Fig. 9.4(b). The adjacent A sites of
the edge mode, i.e., (resonators 1 and 3) are entangled as confirmed by the Duan
inseparability criterion [13]. The entanglement is reflected in the sum of quadrature
component variances as shown in Fig. 9.4(b).

The bulk bands are affected by the presence of random disorders in the coupling
strengths, while the edge mode exhibit robustness. This is shown in the variation
of the eigenvalue diagram over multiple disorder realizations in Fig. 9.4(c,d).
Consequently, the quadrature squeezing is protected in the topological case
(Fig. 9.4(e)). In contrast, the non-topological case is more susceptible to squeezing
degradation in the presence of coupling disorders as shown in Fig. 9.4(f) (see
Supplementary Section 9.5.3). The 1D SSH model cannot provide protection from
detuning disorders which do not preserve the chiral symmetry (see Supplementary
Section 9.5.3).

9.4 Discussion
Our proposed system consisting of a lattice of OPOs can be realized in thin-film
lithium niobate on insulator platform [10, 16, 31]. In order to realize a 1D SSH
lattice, the OPOs have to be coupled with each other [43] which can be executed via
evanescent coupling based directional couplers.

Nanoscale OPOs can also be a promising route to realize the same [20]. Zigzag
arrays comprising of 𝜒(2) dielectric nanoparticles under uniform illumination
could be engineered to realize the edge-mode parametric oscillation [23, 44].
Alternatively, one can exploit synthetic dimensions to construct a lattice of OPOs
in the time/ frequency domain [14, 25]. Arrays of polaritonic oscillators can
potentially be designed to realize this phenomenon as well [24].

9.5 Supplementary
9.5.1 Parametric Oscillation in 1D SSH model
The SSH model consists of N-coupled quadratic nonlinear resonators where
^1 < ^2. If N is odd, there will be one edge mode, while if N is even there will be
two edge modes on either side. The parametric oscillation steady state intensity
distribution in both cases is shown in Fig. 9.5(a,b).
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Now, we derive the condition for bulk instability. For this case, we can assume
periodic boundary conditions, thereby no existence of edge modes. The linear
Hamiltonian in the momentum domain (𝑘) is given by:

𝐻𝐿 =

[
0 ^1+^2e−i𝑘

2
^1+^2ei𝑘

2 0

]
(9.4)

where, we assume ^1 = 𝐽 (1−𝜖) and ^2 = 𝐽 (1+𝜖). We assume 𝐽 = 1. All parameters
are normalized with respect to 𝐽. The Bogoliubov- de Gennes Hamiltonian is given

as:𝐻𝐵𝑑𝐺 =

[
𝐻𝐿 𝐻𝑁𝐿

𝐻𝑁𝐿 𝐻𝐿

]
, where 𝐻𝑁𝐿 is given by:

𝐻𝑁𝐿 =

[
𝑔/2 0
0 𝑔/2

]
. (9.5)

The eigenvalues determining the dynamical stability of the system are given the
eigenvalues of 𝜎𝑧𝐻𝐵𝑑𝐺 which can be expressed as:

_ = ±
√︂

1 + 𝜖2

2
+ 1 − 𝜖2

2
cos(𝑘) − 𝑔2

4
. (9.6)

Therefore, bulk instability will occur for 𝑔 > 2𝜖 , when the eigenvalues will be
imaginary. Such a distribution of eigenvalues in such a scenario is given in Fig.
9.5(c,d).

9.5.2 Parametric oscillation in 2D Lattice
Topologically trivial case

We consider a scenario where the gauge field is zero in the 2D Kagome lattice. This
is the topologically trivial case. In this case, in the presence of quadratic parametric
interactions bulk instability will occur. The band diagram is shown in Fig. 9.6(a,b).
The intensity distribution of the OPOs arranged in the lattice is shown in Fig. 9.6(c),
showing the oscillation occurs throughout the lattice.

Topologically non-trivial case

In the presence of a gauge field, and the appropriate parameters we obtain
topologically protected chiral edge states. We are considering the non-positive
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Figure 9.5: Parametric oscillation in the edge mode for 1D SSH model when a)
N is odd and b) N is even. Eigenvalue diagram when bulk instability occurs c)
the real part and d) the imaginary part. Parameters used in the simulation are:
𝐽 = 1, 𝜖 = 0.5, 𝑔 = 1.1, and 𝑁 = 30.

definite case of the bosonic pairing Hamiltonians [11]. Here the particle and hole
bands cross each other. The particle bands are identified as: 𝑉†𝜎𝑧𝑉 > 0, and the
hole bands as: 𝑉†𝜎𝑧𝑉 < 0, where 𝑉 is the eigenvector. The band diagram with the
particle and hole bands is shown in Fig. 9.7(a).

In the presence of a defect in the form of a missing lattice unit cell, the edge is
modified around the defect, but still, the chirality is retained in the topologically
non-trivial case. The intensity distribution of the OPOs arranged in the lattice is
shown in Fig. 9.7(b), showing the oscillation occurring along the edge surrounding
the defect.
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Figure 9.6: Parametric oscillation in the topologically trivial case. Band
diagram of the Kagome lattice strip with a) showing the real and b) the imaginary
part of the eigenvalues. c) The intensity distribution of the OPOs in the lattice in
the topologically trivial case.

The time domain evolution of the intra-cavity intensity of an OPO lying on the edge
is shown in Fig. 9.8(a,b). The spectral domain power distribution is shown in Fig.
9.8(c). The intra-cavity field of the OPOs on the edge are phase-locked with respect
to each other.

9.5.3 1D SSH lattice in the quantum regime
In order to compare the protection of squeezed quantum state from coupling
disorders between topologically non-trivial and trivial cases, we consider the
following. We consider a topologically trivial SSH lattice where ^1 > ^2. We
select the gain parameter such that one mode undergoes instability (non-zero
imaginary part). This is shown in Fig. 9.9. The eigenvector is mostly localized in
the Nth resonator. We compare the quadrature squeezing in this resonator with the
edge OPO of the topologically non-trivial case in the main text. Both cases are
taken to be equal times below the oscillation threshold, and same out-coupling
efficiency.
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Figure 9.7: Parametric oscillation in the topologically non-trivial case. a) Particle
and the hole bands in the band diagram. Parameters used in the simulation are
Δ = 1.4, 𝜙 = 0.6𝜋, 𝑔 = 0, 𝐽 = 1. b) The intensity distribution of the OPOs in the
lattice in the topologically non-trivial case in the presence of a defect.

The squeezed quantum state in the 1D SSH model is robust to coupling disorders
when the coupling disorder strength is small compared to the bandgap. However,
it is not protected from detuning-induced disorder. The detuning disorder does not
preserve the chiral symmetry of the SSH model. In the presence of detuning disorder,
the optimum squeezed quadrature gets rotated and the squeezing is degraded due to
the influence of the anti-squeezed quadrature. Fig. 9.10(a) shows that the squeezed
quantum state is susceptible to the detuning-induced disorder.

When we ensure that the edge mode only experiences gain, and all other modes are
stable. This causes a gap in the imaginary part of the eigenvalue spectrum. With
the increasing value of the gain parameter (𝑔), this gap increases. Increasing this
gap results in the less deleterious effects of the detuning disorder. The dependence
of the degradation of squeezing in the presence of detuning disorder as a function
of the gain parameter is shown in Fig. 9.10(b). The error bar indicates the standard
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Figure 9.8: Temporal evolution of an OPO lying on the edge in the 2D Kagome
lattice. a) Time domain evolution of the intra-cavity intensity of an OPO lying on
the edge in the 2D Kagome lattice. b) The zoomed-in view of (a). c) Power spectral
density. Parameters used in the simulation are: Δ = 1.4, 𝜙 = 0.6𝜋, 𝑔 = 0.015, 𝐽 =

1, 𝛼 = 0.002, 𝑔𝑠 = 0.1

deviation of the squeezing variation for each gain parameter value where 5 sets of
100 realizations of the disorder are considered. However, this is not a topological
effect.

9.5.4 Model of the OPO in the classical regime
We model the OPO using a simplified governing equation that takes into account
the parametric gain and the gain saturation (due to the second harmonic generation
of the signal back to the pump). We assume the OPO to operate at degeneracy. The
parametric oscillation occurs in a high Q cavity and is oscillating in a CW mode.

Non-resonant pump configuration

The quadratic nonlinear interaction happening in the phase-matched 𝜒(2) region is
given by:

𝑑𝑎

𝑑𝑧
= 𝜖𝑏𝑎∗ (9.7a)
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Figure 9.9: Eigenvalue diagram for topologically trivial SSH lattice with gain
experienced by a single mode. a) the real part. b) the imaginary part. The
parameters used in the simulation are : 𝑔 = 1.005, 𝛼 = 1.206, 𝜌 = 0.9, 𝜖 = 0.5, 𝐽 =

1, 𝑁 = 11.

𝑑𝑏

𝑑𝑧
= −𝜖

2
𝑎2 (9.7b)

where 𝑎 and 𝑏 represent the signal and pump field envelopes, respectively. 𝜖 is
the effective nonlinear coefficient. Let, 𝐿 be the length of the nonlinear interaction
region. In the high Q limit, we can assume that the field does not change significantly
within a round-trip. So, Eq. 9.7b can be expressed in the 𝑛𝑡ℎ round-trip as:

𝑏𝑛 = 𝑏0 −
𝜖

2
𝐿𝑎2

𝑛 (9.8)

where, 𝑏0 is the input pump. We can express the evolution of the signal field on a
round-trip basis as:

𝑎𝑛+1 = 𝑎𝑛 + 𝜖𝑏0𝐿𝑎
∗
𝑛 −

1
2
𝜖2𝐿2 |𝑎𝑛 |2𝑎𝑛. (9.9)

The loss in each round-trip can be included as:

𝑎𝑛+1 = 𝑎𝑛𝑒
−𝛾𝑇 . (9.10)

The detuning in each round-trip can be included as:

𝑎𝑛+1 = 𝑎𝑛𝑒
iΔ𝑇 (9.11)

where Δ𝑇 is the total detuning per round-trip. where, 𝛾 is the loss per unit time, and
𝑇 is the round-trip time. In the high Q limit, we can convert the difference equation
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Figure 9.10: Effect of detuning-induced disorder. a) Absence of robustness in
the quadrature squeezing for the edge OPO, in the presence of detuning disorder.
Multiple squeezing spectra corresponding to different disorder realizations are
overlaid on top of each other. The black dotted line refers to the squeezing
in the absence of detuning and coupling disorder. SNL refers to the shot
noise limit. The parameters used in the simulation are: 𝑔 = 1, 𝛼 = 1.2, 𝜌 =

0.9(out-coupling efficiency), 𝜖 = 0.5, 𝐽 = 1, 𝑁 = 11. b) effect of the eigenvalue
gap (in the imaginary component of the eigenvalue) on the quadrature squeezing
degradation in the presence of detuning disorder. The gap is varied by changing
the gain parameter (𝑔). The disorder is assumed to be normally distributed with a
standard deviation of 0.05. c) The effect of coupling disorder in the anti-squeezed
quadrature.
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in a differential form as:

𝑇
𝑑𝑎

𝑑𝑡
= −𝛾𝑇𝑎 + iΔ𝑇𝑎 + 𝜖𝑏0𝐿𝑎

∗ − 1
2
𝜖2𝐿2 |𝑎 |2𝑎. (9.12)

This reduces to:

𝑑𝑎

𝑑𝑡
= −𝛾𝑎 + iΔ𝑎 + 𝜖𝑏0

𝐿

𝑇
𝑎∗ − 1

2𝑇
𝜖2𝐿2 |𝑎 |2𝑎. (9.13)

Thus, we define 𝑔 = 𝜖𝑏0
𝐿
𝑇

which denotes the parametric gain, and 𝑔𝑠 = 1
2𝑇 𝜖

2𝐿2

which denotes the gain saturation co-efficient.

The dynamics of a single degenerate OPO are governed by the following simplified
equation:

𝑑𝑎

𝑑𝑡
= −𝛼𝑎 + iΔ𝑎 + 𝑔𝑎∗ − 𝑔𝑠 |𝑎 |2𝑎 (9.14)

where 𝑎 is the amplitude of the intra-cavity field, 𝛼 is the loss parameter (arising
due to propagation loss/ out-coupling loss), Δ represents the detuning parameter
(detuning between the subharmonic 𝜔 and the resonance frequency of the cavity), 𝑔
represents the parametric gain that depends on the effective quadratic nonlinearity
and the pump power, and 𝑔𝑠 is the gain saturation nonlinearity co-efficient. The gain
saturation arises due to pump depletion. The lattice of OPOs represents coupled
OPOs, where the coupling is determined by the linear part of the Hamiltonian.

9.5.5 Model of the coupled OPO system (SSH Lattice) in the quantum regime:
Langevin equations
Here we develop the input-output formalism of the coupled OPO system for analysis
of the quantum behavior. This formalism has been used to obtain the results of the
Quantum Regime discussion.

The signal fields �̂�𝑖, 𝑖 ∈ 1 . . . 𝑁 (where 𝑁 is the number of OPOs in the finite
SSH lattice) in the resonators constituting the OPOs experience a roundtrip loss (𝛾)
consisting of two contributions: out-coupling loss (`) and round-trip propagation
loss (𝛼). We define (𝜌) as, 𝜌 =

`

𝛾
, which is the ratio between out-coupling and total

loss. The OPOs operate below the threshold. Also, the pump is non-resonant and
the pumps driving the OPOs are not coupled to each other. So we can adiabatically
eliminate the pump dynamics and represent the pump field with a coherent field.
We assume all OPOs experience identical loss, coupling, and pump drives.

We include the loss arising from different mechanisms and the accompanying
fluctuations (�̂�) using the input-output formalism of open quantum systems. We
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can write the Heisenberg-Langevin equations for the intra-cavity field as [12]:

¤̂𝑎𝑖 = −𝛾�̂�𝑖 + 𝑔�̂�†𝑖 +
∑︁
𝑗≠𝑖

i^𝑖, 𝑗 �̂� 𝑗 +
√

2𝛼�̂�𝛼,𝑎𝑖 +
√︁

2`�̂�`,𝑎𝑖 (9.15a)

where, ^𝑖, 𝑗 = 𝐻𝐿 (𝑖, 𝑗) is the (i,j) the term of the linear Hamiltonian (𝐻𝐿) given in
Eq. 9.1, expressed in the matrix (NxN) form.

The respective output field can be mapped to the intra-cavity field as:

�̂�𝑖,𝑜𝑢𝑡 =
√︁

2`𝑎𝑖 − �̂�`,𝑎𝑖 . (9.15b)

We assume that the fluctuations have zero mean fields and are delta-correlated
Gaussian noise sources. Noise from independent channels is non-correlated. These
fluctuations which provide the Langevin forces follow the following commutation
relations: 〈

�̂�𝑙, 𝑗 (𝑡)�̂�†
𝑙
′
𝑗
′ (𝑡

′)
〉
= 𝛿𝑙𝑙′ 𝛿 𝑗 𝑗 ′ 𝛿(𝑡 − 𝑡

′)〈
�̂�
†
𝑙, 𝑗
(𝑡)�̂�𝑙′ 𝑗 ′ (𝑡

′)
〉
=

〈
�̂�𝑙, 𝑗 (𝑡)�̂�𝑙′ 𝑗 ′ (𝑡

′)
〉
=

〈
�̂�
†
𝑙, 𝑗
(𝑡)�̂�†

𝑙
′
𝑗
′ (𝑡

′)
〉
= 0

(9.16a)

where 𝑙 ∈ {`, 𝛼} and 𝑗 ∈ 𝑎𝑖, 𝑖 ∈ 1 . . . 𝑁 . We define the Fourier transform as:
�̃� (𝜔) = 1√

2𝜋

∫ ∞
−∞ 𝑑𝑡�̂� (𝑡)𝑒

𝑖𝜔𝑡 . Therefore in the spectral domain, the noise correlations
appear as: 〈

�̃�𝑙, 𝑗 (𝜔)�̃�†
𝑙
′
𝑗
′ (𝜔

′)
〉
= 𝛿𝑙𝑙′ 𝛿 𝑗 𝑗 ′ 𝛿(𝜔 − 𝜔′)〈

�̃�
†
𝑙, 𝑗
(𝜔)�̃�𝑙′ 𝑗 ′ (𝜔

′)
〉
=

〈
�̃�𝑙, 𝑗 (𝜔)�̃�𝑙′ 𝑗 ′ (𝜔

′)
〉
=

〈
�̃�
†
𝑙, 𝑗
(𝜔)�̃�†

𝑙
′
𝑗
′ (𝜔

′)
〉
= 0.

(9.16b)

We define the amplitude and phase quadratures as follows: �̂�𝑖 = 𝑎𝑖 + 𝑎𝑖†, 𝑌𝑖 =

−𝑖
(
𝑎𝑖 − 𝑎𝑖†

)
.

Below the threshold, the mean values of the fields are zero. The fluctuations of the
quadratures can be studied by analyzing the following linearized dynamics:

¤[
�̂�

�̂�

]
= 𝐽

[
�̂�

𝑌

]
+
√

2𝛼

[
�̂�𝛼

0
�̂�𝛼
𝜋/2

]
+

√︁
2`

[
�̂�
`

0
�̂�
`
𝜋
2

]
(9.17)

where, �̂� = [𝑋1 . . . 𝑋𝑁 ]𝑇 , 𝑌 = [𝑌1 . . . 𝑌𝑁 ]𝑇 , 𝑊 𝑗

𝑖
= [ ˆ
𝑊

𝑗 ,𝑎1
0 . . .

ˆ
𝑊

𝑗 ,𝑎𝑁
0 ] for 𝑗 ∈ {`, 𝛼}

and 𝑖 ∈ {0, 𝜋2 }.
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𝐽 = −𝛾𝐼2𝑁 + 𝑔
[
𝐼𝑁 0
0 −𝐼𝑁

]
+

[
0 −𝐻𝐿
𝐻𝐿 0

]
(9.18)

𝐼𝑁 is an identity matrix of order N. 𝐼2𝑁 is an identity matrix of order 2N. 𝐽 is matrix
of 2N x 2N.

The other terms in Eq. 9.17 are defines as: �̂� 𝑙
𝑗 ,0 = �̂�𝑙, 𝑗 + �̂�†

𝑙, 𝑗
, �̂� 𝑙

𝑗 ,𝜋/2 =

−i
(
�̂�𝑙, 𝑗 − �̂�†

𝑙, 𝑗

)
, 𝑙 ∈ {`, 𝛼} and 𝑗 ∈ {𝑎1 . . . 𝑎𝑁 }. The respective output field

can be mapped to the intra-cavity field as:[
�̂�𝑜𝑢𝑡

𝑌𝑜𝑢𝑡

]
=

√︁
2`

[
�̂�

𝑌

]
−

[
�̂�
`

0
�̂�
`
𝜋
2

]
. (9.19)

In the spectral domain, we get,[
�̃�𝑜𝑢𝑡 (𝜔)
𝑌𝑜𝑢𝑡 (𝜔)

]
= −

√︁
2` [𝐽 + i𝜔𝐼2𝑁 ]−1

(
√

2𝛼

[
�̂�𝛼

0 (𝜔)
�̂�𝛼

𝜋
2
(𝜔)

]
+

√︁
2`

[
�̂�
`

0 (𝜔)
�̂�
`
𝜋
2
(𝜔)

])
−

[
�̂�
`

0 (𝜔)
�̂�
`
𝜋
2
(𝜔)

]
.

(9.20)

The output correlation matrix can be written as:

𝐶𝑜𝑢𝑡 (𝜔) =
∫ ∞

−∞
𝑑𝜔

′

〈[
�̃�𝑜𝑢𝑡 (𝜔)
𝑌𝑜𝑢𝑡 (𝜔)

] [
�̃�𝑜𝑢𝑡 (𝜔

′)
𝑌𝑜𝑢𝑡 (𝜔

′)

]𝑇〉
(9.21)

where 𝑇 stands for matrix transpose operation.

𝐶𝑜𝑢𝑡 (𝜔) =
(
2` [𝐽 + i𝜔𝐼2𝑁 ]−1 + 𝐼2𝑁

)
𝐶𝑖𝑛 (𝜔)

(
2` [𝐽 − i𝜔𝐼2𝑁 ]−1 + 𝐼2𝑁

)𝑇
+ 4`𝛼 (𝐽 + i𝜔𝐼2𝑁 )−1𝐶𝑖𝑛 (𝜔)

(
(𝐽 − i𝜔𝐼2𝑁 )−1

)𝑇
(9.22)

The input correlation matrix is:

𝐶𝑖𝑛 (𝜔) =
[
𝐼𝑁 i𝐼𝑁
−i𝐼𝑁 𝐼𝑁

]
. (9.23)

9.5.6 Ring of exceptional point
We explore the 2D Kagome lattice of parametrically driven quadratic nonlinear
resonators. If we vary the detuning of the resonators we can drive the bulk into
the PT-broken regime. At the critical detuning, the eigenvalues become complex
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conjugate pairs. The eigenstates where the PT symmetry is broken occupy a ring-
like structure in the momentum space [46, 52]. At large values of detuning all
the bulk modes are in the PT unbroken regime as shown in Fig. 9.11(a,b,c).
At detuning values less than the critical detuning (that is characterized by the
exceptional point), some of the eigenmodes undergo PT phase transition and assume
imaginary eigenvalue with zero real part. This is shown in Fig. 9.11(d,e,f).

Figure 9.11: Band structure of the 2D lattice in the PT-unbroken and PT-broken
regime. Band structure of the 2D lattice in the PT-unbroken regime. a) the real part
projected in the XZ plane, b) the real part projected in the YZ plane, c) the imaginary
part. Parameters used in the simulation are: Δ = 4, 𝜙 = 0.6𝜋, 𝑔 = 0.1, 𝐽 = 1. Band
structure of the 2D lattice in the PT broken regime. d) the real part projected in
the XZ plane, e) the real part projected in the YZ plane, f) the imaginary part.
Parameters used in the simulation are: Δ = 3.3, 𝜙 = 0.6𝜋, 𝑔 = 0.1, 𝐽 = 1.

9.5.7 Non-Hermitian transitions from the Imaginary part of the complex Berry
phase
The complex Berry phase of a non-Hermitian Hamiltonian is given by [27]:

𝜙 =

∮ 〈
𝐿 (𝑘) |i 𝑑

𝑑𝑘
𝑅(𝑘)

〉
𝑑𝑘 (9.24)
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where the integral is calculated on a close path in the momentum space [−𝜋, 𝜋].
|𝑅(𝑘) > and |𝐿 (𝑘) > are the right and left eigenvectors of 𝜎𝑧H(k), respectively.
We just focus on 𝜙−, which describes the Berry phase for the lower bulk band of
the 1D SSH coupled system of OPOs.

𝐻 (𝑘) is given by:

𝐻 (𝑘) =
[
𝐻1(𝑘) 𝐻2(𝑘)
𝐻2(−𝑘)∗ 𝐻1(−𝑘)∗

]
. (9.25)

𝐻1(𝑘) is expressed as:

𝐻1(𝑘) =
[

Δ ^1 + ^2e−i𝑘

^1 + ^2ei𝑘 Δ

]
(9.26)

where Δ is the detuning, ^1 = 𝐽 (1 − 𝜖) and ^2 = 𝐽 (1 + 𝜖).

𝐻2(𝑘) is expressed as:

𝐻2(𝑘) =
[
𝑔 0
0 𝑔

]
. (9.27)

The right eigenvector of the lower band is given by:

|𝑅(𝑘) >= [− 𝜌

𝑔
+

√︃
𝜌

𝜌∗
Δ−
√

(Δ−|𝜌 |)2−𝑔2

𝑔
,−Δ−|𝜌 |−

√
(Δ−|𝜌 |)2−𝑔2

𝑔
,−

√︃
𝜌

𝜌∗ , 1]
𝑇 .

where 𝜌 = ^1 + ^2e−i𝑘 .

The left eigenvector of the lower band is given by:

|𝐿 (𝑘) >= [ 𝜌
∗

𝑔
+

√︃
𝜌∗

𝜌

−Δ+
√

(Δ−|𝜌 |)2−𝑔2

𝑔
,−−Δ+|𝜌 |+

√
(Δ−|𝜌 |)2−𝑔2

𝑔
,−

√︃
𝜌∗

𝜌
, 1]𝑇 .

In Figure 9.12(a,d), we plot the imaginary part of the complex Berry phase as
a function of the on-site detuning. The discontinuities in the derivative of the
imaginary part of the Berry phase align with the underlying non-Hermitian phase
transitions (Fig. 9.12(b,e)). This agrees with the trend of the imaginary part of the
eigenvalues obtained from the numerical simulation of a finite 1D SSH lattice (Fig.
9.12(c,f)).
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Figure 9.12: Complex Berry phase. For g=0.5 a) Imaginary part of the complex
Berry phase b) Double derivative of the imaginary part of the Berry phase, c)
Imaginary part of the Eigenvalue distribution (Im (_) 0) obtained numerically for a
finite 1D SSH lattice for N=99. For g=0.3 d) Imaginary part of the complex Berry
phase e) Double derivative of the imaginary part of the Berry phase, f) Imaginary
part of the Eigenvalue distribution (Im (_) 0) obtained numerically fr a finite 1D
SSH lattice for N=99. Parameters used in the simulation are: 𝜖 = 0.5, 𝐽 = 1.

9.5.8 Topological protection of the edge mode eigenvalue in the presence of
symmetry protected disorder
The eigenvalue corresponding to the edge mode in the 1D SSH coupled OPO arrays
is not perturbed by a small amount of symmetry-preserving disorders. Here, the
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disorder is considered in the coupling co-coefficients (^1 and ^2) which still preserves
the chiral symmetry. The real part of the eigenvalue distribution is plotted in Fig.
9.13(a). We can see that the edge mode is not affected, while the bulk modes are
affected by the introduction of the detuning disorder. The imaginary part of the
eigenvalue distribution is shown in Fig. 9.13(b).

Figure 9.13: Eigenvalue sensitivity to disorder in a 1D SSH coupled OPO arrays.
a) The real part of the eigenvalue distribution of 1D SSH coupled OPO arrays. The
edge mode is unperturbed by the disorder, while the bulk modes are affected by the
disorder. b) imaginary part of the eigenvalue distribution. Parameters used in the
simulation are: 𝜖 = 0.5, 𝐽 = 1, 𝑁 = 11, 𝑔 = 0.5. The coupling disorder is assumed
to be normally distributed with a standard deviation of 0.1. 10 different disorder
realizations are overlaid on top of each other.
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C h a p t e r 10

OUTLOOK

This dissertation summarized an attempt towards advancing the understanding of
optical parametric oscillators and their networks in the context of applications related
to sensing and computing. Nonlinear photonics is a rapidly evolving field and several
improvements to the demonstrations in the present work as well as new research
directions can be identified, a few of which are discussed below.

10.1 Fully-stabilized self-referenced frequency comb source
The use of frequency combs as a tool for precision metrology is crucially dependent
on the stability properties of the comb. A locked comb with both its carrier-
envelope-offset frequency ( 𝑓ceo) and repetition rate 𝑓rep locked can provide a very
accurate grid that can serve as a frequency ruler. One technique to achieve a
locked frequency comb is the so-called f-2f based self-referencing [4, 15], where
the instantaneous carrier-envelope frequency is detected via a second-harmonic
generation of an octave-spanning comb followed by locking the same.

The strong nonlinearity available in the lithium niobate based integrated
nanophotonics platform enables super-continuum generation at very low pulse
energies (∼ picoJoules) [8]. The platform also allows very efficient
second-harmonic generation [18] and electro-optic modulation [19] for feedback
and locking. Thus these ingredients required for full stabilization of a frequency
comb can all be integrated monolithically, paving the way for disrupting several
applications contingent on frequency combs with a small form factor.

Another valuable pursuit in this regard is to investigate CW-driven quadratic solitons
[1, 14]. These solitons will have a much-enriched design space owing to the
group-velocity mismatch parameter that is absent in their Kerr soliton counterpart.
However, pulsed pump-based approaches may be more efficient, and our proposal
of walk-off induced solitons (see Chapter 2) whereby one can generate ultrashort
pulses starting with picosecond pulses can be a more practical alternative.
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10.2 Mid-infrared spectroscopy
Mid-infrared spectral region is technologically very important owing to the
existence of unique fingerprints of several molecules in terms of optical absorption
corresponding to several rovibrational energy levels. The lithium niobate based
platform provides access to a wide transparency window extending up to 4.5`𝑚.
The samples under test can also be integrated with the photonics chip for compact
lab-on-chip applications. This may involve bringing the samples in close proximity
to the evanescent field of the waveguides. If the sample under test is interrogated
within the cavity, i.e., the OPO cavity very large sensitivity enhancement is
expected [5].

In these mid-infrared OPOs, the idler exists in the mid-infrared while the signal lies
in the near-infrared which is easier to detect. One can deploy intriguing approaches
along the lines of imaging with undetected photons, to perform spectroscopy with
undetected photons by leveraging the inherent correlations between the signal and
idler photons.

10.3 Further miniaturization of OPOs towards nanoscale
The ultimate miniaturization of the nonlinear devices can be achieved when the
device dimensions approach the wavelength scale. However, the associated trade-
offs emerge in the form of reduced quality factors and subsequently an increased
threshold. Ingenuous device design approaches that optimize the field overlap
[6, 7, 12] can potentially help us realize this ambitious goal [10]. Inverse-design-
based approaches can also assist in informing the optimum device configuration
[9]. Apart from using well-engineered Mie resonance modes, one can also deploy
plasmonics-based devices as well in this regard. Materials with strong nonlinearity
like aluminum gallium arsenide.

10.4 Incoherently pumped OPOs
The lasers that are used for most applications are predominantly pumped either
electrically or by optical means with sources having low coherence. Lasers produce
extremely coherent output with narrow linewidth which is a prerequisite for several
applications. The adoption of OPOs for several photonic devices can be accelerated
if we can pump the OPOs with low coherence sources and get outputs with high
coherence [13, 16, 36]. The singly resonant OPOs represent a very promising
route to achieve the same (see Chapter 7). This approach can also be extended
for parametric amplifiers as well. The underlying principle relies on the convection
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between the waves (pump, signal, and idler) and proper dispersion engineering
(in terms of designing suitable walk-off parameters) enabled by the nanophotonics
platform makes it ideal in this regard.

10.5 Investigating spectral phase transitions and parametric exceptional
points in the strongly nonlinear regime

Our work has been centered around weak nonlinearities whereby the participation
of a large number of photons (in the order of millions) is necessary to trigger the
nonlinear interactions. Strong nonlinearity that operates at a few photons level can
unveil a host of associated rich phenomena in the quantum regime. Superconducting
circuit QED, trapped-ion, and cold atoms can be very promising platforms for the
exploration of these phenomena. Important applications in this regard are related to
enhanced sensing in the context of critical parametric sensors [2, 3], transition edge
sensors, and parametric non-Hermitian sensors [11]. Getting into a deterministic
strongly nonlinear regime all-optically is the holy grail [17, 20].
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