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ABSTRACT

Quantum science and technology provides new possibilities in processing informa-
tion, simulating novel materials, and answering fundamental questions beyond the
reach of classical methods. Realizing these goals relies on the advancement of phys-
ical platforms, among which superconducting circuits have been one of the leading
candidates offering complete control and read-out over individual qubits and the
potential to scale up. However, most circuit-based multi-qubit architectures only
include nearest-neighbor (NN) coupling between qubits, which limits the efficient
implementation of low-overhead quantum error correction and access to a wide
range of physical models using analog quantum simulation.

This challenge can be overcome by introducing non-local degrees of freedom. For
example, photons in a shared channel between qubits can mediate long-range qubit-
qubit coupling arising from light-matter interaction. In addition, constructing a
scalable architecture requires this channel to be intrinsically extensible, in which
case a one-dimensional waveguide is an ideal structure providing the extensible
direction as well as strong light-matter interaction.

In this thesis, we explore superconducting circuit architectures based on light-
matter interactions in waveguide quantum electrodynamics (QED) systems. These
architectures in return allow us to study light-matter interaction, demonstrating
strong coupling in the open environment of a waveguide by employing sub-radiant
states resulting from collective effects. We further engineer the waveguide dispersion
to enter the topological photonics regime, exploring interactions between qubits
that are mediated by photons with topological properties. Finally, towards the
goals of quantum information processing and simulation, we settle into a multi-
qubit architecture where the photon-mediated interaction between qubits exhibits
tunable range and strength. We use this multi-qubit architecture to construct a lattice
with tunable connectivity for strongly interacting microwave photons, synthesizing
a quantum many-body model to explore chaotic dynamics. The architectures in
this thesis introduce scalable beyond-NN coupling between superconducting qubits,
opening the door to the exploration of many-body physics with long-range coupling
and efficient implementation of quantum information processing protocols.
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C h a p t e r 1

INTRODUCTION

A little over a century ago, the efforts to address what Kelvin noted as a “cloud” in
the otherwise “beautiful and clear sky” of physical theory [1] introduced quantum
mechanics, a new pillar of physics. From the early study of black-body radiation
[2] and the photoelectric effect [3], to the progress over decades in testing Bell’s in-
equality and its generalizations [4–8], quantum mechanics has been shown to govern
the microscopic world. Although peculiar on its own, quantum mechanics under-
pins major branches of modern physics, including atomic, molecular, and optical
(AMO) physics, condensed matter physics, and high energy physics. Beyond these
areas, quantum mechanics has also deeply influenced and spawned new directions
in material science, electrical engineering, and chemistry.

Another paradigm shift happened in the 1970s and 1980s when people started to
view the quantum systems, traditionally as the object to understand, from a new
angle: as the object for us to design and control. In particular, the connection
to computer science and information theory has predicted the usage of quantum
systems in a broad range of tasks to achieve advantages beyond the capability of
classical systems [9]. This paradigm shift has stimulated the rapid development
of experimental techniques across various physical platforms, including supercon-
ducting circuits [10, 11], solid-state spin systems [12], trapped ions [13], ultracold
atoms or molecules [14–16], and quantum optical systems [17]. The experimental
advance has in turn presented intriguing questions for theorists to ponder. This
lively interaction has been pushing the frontier of quantum science and engineering,
especially in answering the questions at the heart of this field: (i) how to build
versatile and accurately controlled quantum systems on a large scale, and (ii) how
to use them to further our understanding of important subjects.

This introductory chapter provides an overview of the background and context for a
broad audience, setting the stage for our efforts in answering the above two questions.
More specifically, with the goal of quantum computation and quantum simulation in
mind, we focus on one of the most promising platforms—superconducting circuits.
We discuss the advantages of this platform and point out a gap between the con-
ventional superconducting circuit architectures and a large-scale versatile quantum
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system with good control. After the introduction of the tool—quantum light-matter
interactions—to fill this gap, we end this chapter by outlining our work of building
controlled quantum systems and using them to study questions that were out of
experimental reach before.

1.1 Quantum information science

Based on the principles of quantum mechanics, a quantum computer works differ-
ently compared to its classical counterpart. The building block of a typical classical
computer is a bit with the value of either “0” or “1”. In analogy, the most common
type of a discrete-variable quantum information processor is based on quantum bits
(qubits in short), which not only takes the value of |0⟩ or |1⟩ but also the superposi-
tion of the two states |ψ⟩ = α|0⟩+β|1⟩ where α, β are complex numbers satisfying
|α|2 + |β|2 = 1. Intuitively, a qubit carries a greater amount of information than a
bit (Fig. 1.1a). This advantage scales favorably for a quantum information processor
where the entanglement among the qubits exponentially extends the dimension of
the computational space. Lastly, we extract the result from quantum operations
via measurements that, for example, collapse a qubit into either |0⟩ or |1⟩. In the
end, we are back to the classical world. Nonetheless, the clever design of quantum
algorithms can utilize the quantumness, e.g., by quantum interference and mapping
the results to a state whose measurement outcome can be interpreted easily. Among
the best-known quantum algorithms are Shor’s algorithm for finding prime factors
of an integer that offers beyond-polynomial speedup [18] and the Grover’s search
algorithm with a more modest speedup [19]. Contemporary quantum algorithms
(a growing Quantum Algorithm Zoo can be found in [20]) have extended to areas
including approximation, optimization, and machine learning.

The grand vision of quantum information processing also comes with grand chal-
lenges. In addition to reliably controlling and reading out the quantum states, we
need to cope with errors in the process. On the one hand, the richer content of a qubit
|ψ⟩ gives rise to a broader range of errors than the classical bit-flip errors. On the
other hand, the quantum states, usually microscopic or residing at the bottom of the
energy landscape, are more susceptible to occasional random perturbations, even in
the form of slight changes in the nearby atomic arrangements or the presence of a
single photon. Therefore, error correction is necessary in order to process quantum
information faithfully. For example, the classical repetition code [24] encodes “x”
in, e.g., “xxx” with x = 0 or 1. The quantum version of this repetition code also



3

a

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Z

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

X
X

X

X

X
X

X

X
X

X

X

Z

Z

Z
Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

X

b

c

ï

Figure 1.1: Quantum information processing. a, Comparison between a classical
bit and a quantum bit. A classical bit takes the value of “0” (blue dot) or “1” (red
square), whereas a quantum bit |ψ⟩ (green arrow) can represent any point on a Bloch
sphere. This panel was generated using QuTiP [21]. b, Schematic of the surface
code [22]. Each white (black) circle represents a data (ancilla) qubit. The green and
yellow marks represent operations to check whether an error has happened. The
panel is adapted from [23], reprinted with permission from the copyright holder,
APS. c, Different developing stages of quantum information processing as a function
of error rate and the number of qubits. The panel is adapted from a presentation
by Dr. John Martinis in his tenure at Google, reprinted with permission from Dr.
Martinis.

uses redundancy to overcome bit-flip or/and sign-flip errors for a qubit [25, 26].
For a quantum error correction code, important metrics include n, the number of
physical qubits to implement the code, k, the number of error correctable logical
qubits, d, the code distance, i.e., the minimum number of errors needed to convert
one code word into another, and ϵ∗, the physical error rate threshold below which
the logical error rate can be suppressed by implementing the error correction code
(see, e.g., [27]). Considering the experimental realization, the topological quantum
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error correction codes epitomized by Kitaev’s toric code and surface code [22] have
received broad attention, due to their high threshold and compatibility with physical
platforms featuring only nearest-neighbor connectivity on a two-dimensional plane
(Fig. 1.1b). In the last decade or so, the technical advancement in controlling and
probing bosonic degrees of freedom with long coherence time (the time a quantum
state can retain its information) has spurred the development of bosonic quantum
error correction codes [28, 29]. This development has in turn led to the first few ex-
perimental achievements of the break-even point [30–32] where the logical error rate
is measured to be lower than the lowest physical error rate of the constituents. While
the basic quantum error correction only considers the errors happening through a
quantum channel and assumes the encoding and decoding operations are perfect,
this assumption is not valid for realistic physical implementations. Therefore, as
the realization of quantum error correction comes within reach, the concept of fault
tolerance [33, 34] is considered more important, where the entire process of en-
coding, error correction, logical operation, and measurement is under scrutiny and
protocols are devised to control the creation and propagation of errors. In general,
fault-tolerant quantum computation is the path towards building a large-scale uni-
versal quantum computer and realizing the powerful quantum algorithms mentioned
above.

While achieving fault tolerance remains the ultimate yet daunting goal (lower right
corner of Fig. 1.1c), current physical platforms already feature above 50 qubits with
imperfect, up to individual-level controllability. It is valuable to consider what
algorithms or tasks can be implemented on these noisy intermediate-scale quantum
(NISQ) devices without error correction [35] (between the blue and purple region
of Fig. 1.1c). One inspiration came from the well-known quote by Richard Feyn-
man [36]: “Nature isn’t classical, dammit, and if you want to make a simulation
of nature, you’d better make it quantum mechanical.” Within the reach of NISQ
devices, variational quantum algorithms [37] and analog or hybrid analog-digital
quantum simulation [38] have been implemented. Their applications cover a wide
range of fields, including quantum chemistry, optimization problems, condensed
matter physics, and high-energy physics. The recent development in physical plat-
forms steadily improves the qubit number and the control fidelity, at the same time
introducing higher levels of programmability and partial-system measurement in
the middle of a quantum simulation. These advancements are filling the gap before
we can achieve general-purpose quantum computing by showing potential quantum
advantages in tackling long-standing problems that are hard to simulate classically
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[38]. In addition to providing valuable information that is not readily accessible
in, e.g., a condensed matter sample, the quantum simulators also construct systems
beyond natural analogs [39] such as hyperbolic lattices [40] and time crystals [41,
42]. Specifically, synthesizing materials using quantum simulators, a bottom-up
approach, offers a complement to the top-down condensed matter approaches. For
example, ultracold atoms in optical lattices [14] offer single-site state read-out res-
olution to study strongly interacting fermions or bosons, the former of which is
deemed to be the foundation of high-temperature superconductivity. The tunability
and individual control of the trapped ion quantum simulators [13, 43] enable the
exploration of non-equilibrium many-body dynamics in quantum magnets, includ-
ing the non-local propagation of two-site correlations [44, 45] and various universal
dynamical classes [46]. The reservoir engineering using superconducting circuits
allows the study of the quantum dynamics of an open system [47] and the usage
of the reservoir to stabilize many-body ground state [48]. These examples, among
many experimental quantum simulation efforts, shed light on how current and future
NISQ devices contribute to answering questions intractable for both experiments on
natural systems and classical simulations.

1.2 Superconducting circuits

Towards the goals of quantum information science ranging from general-purpose
quantum computing to NISQ-era quantum simulation, superconducting circuits [10,
11] have become one of the leading physical platforms. For quantum devices with
more than 50 individually controllable qubits (see, e.g., [49–52]), the fidelity of
arbitrary single-qubit control is above 99.9%, the two-qubit entangling gate fidelity
is above 99.5%, and the fidelity to perform single-shot individual qubit read-out
is above 95%. The entangling gate time is typically below 50 ns compared to the
coherence time of tens or hundreds of micro-second. The multi-qubit devices have
been used to implement quantum error correction codes, including the quantum
repetition code and the surface code [50, 53–55], demonstrating modest improve-
ment in suppressing logic error as the size of the code scales. Using these devices,
various NISQ applications have also been explored, covering quantum many-body
simulation and material synthesis [39, 56, 57], quantum chemistry and variational
algorithms for optimizations [58–64], and machine learning [65]. Apart from the
multi-qubit devices, smaller-scale superconducting circuits centered on bosonic de-
grees of freedom excel as the first system to achieve and go beyond the break-even
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point in quantum error correction [30–32].
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Figure 1.2: Superconducting quantum components. a, Josephson junction: cir-
cuit symbol (upper panel) and schematics of a thin layer of an insulator sandwiched
by two superconductors (lower panel). The phase across the junction isφ = φ1−φ2.
b, Frequency tunable transmon qubit: circuit diagram (upper panel) and a false-
colored image (lower panel). The inset shows the zoomed-in view of the loop of
two parallel junctions (SQUID). The panel is adapted from [66], reprinted with
permission from the copyright holder, Springer Nature. c, Cartoon showing the
energy level structure of a transmon qubit with an anharmonic oscillator potential
and eigen-energies lying on an unevenly spaced ladder. The lowest two levels (|0⟩
and |1⟩) shaded in orange form the qubit subspace.

The key element enabling such a quantum platform is the Josephson junction, which
consists of a thin barrier or weak link connecting two superconductors (Fig. 1.2a).
In this structure, the Josephson effect [67, 68] dictates that the voltage V (t) and
current I(t) across the junction follow the relations:

I(t) = Ic sin (φ(t)) (1.1)
∂φ

∂t
=

2eV (t)

ℏ
, (1.2)

where Ic is a junction parameter called the critical current, φ is the superconducting
phase difference across the junction, and e is the charge of an electron. This set of
equations defines an effective nonlinear inductor, whose nonlinearity is so strong
that together with other dissipation-less circuit elements, Josephson junctions can
be used to construct mesoscopic artificial atoms. A prominent example is one of the
most mature types of superconducting qubits: the transmon qubit [69] (Fig. 1.2b),
which consists of a Josephson junction and its shunt capacitor. The Josephson
junction makes this parallel LC circuit an anharmonic oscillator whose lowest two-
level transition can be resolved from the higher transitions and thus can be controlled
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unambiguously (Fig. 1.2c). These two levels serve as the basis states |0⟩ and |1⟩
(also denoted as ground |g⟩ and excited |e⟩ states) discussed in Sec. 1.1 and form
the qubit subspace. This two-level system can be prepared in an arbitrary qubit state
|ψ⟩ via a microwave pulse resonant to this transition (XY control). Additionally,
the energy spacing of this qubit is tunable when the nonlinear inductor is composed
of two parallel Josephson junctions forming a loop (a superconducting quantum
interference device, also known as SQUID). In this case, the magnetic flux threading
the loop changes the total effective Ic and therefore the transition frequency of this
qubit (Z control). To read out the state of the qubit, the most common method is to
couple the qubit with a far-detuned microwave resonator. The weak hybridization
between the qubit and the resonator gives rise to a qubit-state-dependent resonator
frequency. Probing the read-out resonator frequency by sending in a microwave
tone allows us to deduce the state of the qubit.

Thanks to the above mature control and read-out toolkit and the long coherence time,
transmon qubits have been the dominant constituents for multi-qubit superconduct-
ing quantum devices. At the architecture level, the most popular way to construct
a general-purpose quantum computer keeping fault tolerance in mind is to place
the transmon qubits at the vertices of a two-dimensional (2D) lattice, e.g., a square
lattice (Fig. 1.3a and b). The qubits directly connected with an edge are coupled via
either direct near-field coupling or a coupler, realizing 2D nearest-neighbor connec-
tivity suitable for implementing the surface code [22]. This general architecture and
its one-dimensional version, which is natural and technically easy to implement, has
also been the mainstream for quantum simulation purposes.

However, the nearest-neighbor (NN) connectivity has its limitations. For example,
although the surface code has exceptionally high error threshold, it is also associated
with costly overhead. In fact, the family of quantum low-density parity-check
(LDPC) code [34, 71], which the surface code belongs to, exhibits the trade-off
between the number of logical qubits k and the code distance d introduced in
Sec. 1.1 as kd2 ∼ O(n) [72, 73], where n is the number of physical qubits in an
locally connected architecture. This constraint makes the realization of fault-tolerant
quantum computing an extremely daunting task requiring a formidable amount of
physical qubits due to the low code rate k/n. The recent development of high-rate
quantum LDPC codes show the potential of reducing the overhead by more than an
order of magnitude compared to the surface code [70, 74]. The major obstacle to
implement such high-rate codes lies in the lack of long-range connectivity (Fig. 1.3c)
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Figure 1.3: Superconducting quantum processors and architectures. a, Optical
image of the Sycamore quantum processor from Google. b, The layout schematics
of the Sycamore process. Panels a and b are adapted from [49], reprinted with
permission from the copyright holder, Springer Nature. c, The schematics of a
proposed architecture to implement high-rate quantum LDPC code. The qubits
are still on a 2D grid with additional long-range coupling between beyond-nearest-
neighbor qubits. The panel is adapted from [70], reprinted with permission from
the copyright holder, APS.

in mainstream architectures.

The limitation of NN connectivity is more profound in quantum simulations. An
important application of quantum technology is to simulate chemical or material
structures, reactions, and even dynamics, where the electrons are the basic con-
stituent [75, 76]. To simulate the electrons using superconducting qubits [59, 62,
77]—spin systems in nature, we need to perform the Jordan-Wigner transforma-
tion [78], which maps an electron to non-local combinations of spins. As a result,
the interaction between electrons translates to non-local interaction between spins,
which is inefficient to implement in an NN-connected architecture with finite error
rate in every operation. Moreover, the NN connectivity directly limits the analog or
analog-digital hybrid quantum simulations, where the Hamiltonian to study is emu-
lated by the quantum simulator. The NN constraint precludes the access to a broad
range of Hamiltonians, including the ones featuring fast spreading of entanglement
[44, 45, 79–82], the ones with exotic ground states as a result of frustration [83–91],
and the ones exhibiting non-equilibrium dynamics belonging to different universal
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classes [46]. Further, long-range connectivity also increases classical simulation
complexity [92], enabling easier access to the regime where NISQ devices exhibit
quantum simulation advantage over classical computers. These prospects in both
fault-tolerant quantum computation and NISQ-era quantum simulation have being
calling for a superconducting circuit architecture with beyond-NN connectivity.

1.3 Quantum light-matter interfaces

The study of light-matter interaction [93, 94] plays an essential role in major topics
of physics, ranging from the laser theory [95] in AMO physics to probing or imaging
techniques [96] in chemical or condensed matter physics. Especially, light-matter
interaction provides an indispensable toolbox to control a quantum system, driving
the experimental progress in quantum information science discussed in Sec. 1.1. A
strong light field driving a two-level transition in, e.g., an atom, can be formulated
by the driven two level system model and gives rise to the Rabi oscillation often
used for the XY control. In the other limit, when the quantized light fields are in
their ground state (i.e., the vacuum), the process of the atom starting from a higher-
energy (excited) state and emitting into its surrounding light fields can be described
by spontaneous emission (Fig. 1.4a). This process leads to exponential decay of the
excited state population, a basic form of decoherence and an important starting point
to study a quantum system in an open environment. In between the two limits where
bi-directional interaction between an atom and quantized light fields take place, the
key is to achieve the strong coupling regime where the interaction happens faster
than the ubiquitous spontaneous decay. The coupling strength g exhibits the relation
g ∝ |d|/

√
V [93], where d is the transition dipole moment and V is the mode

volume of the light field.

To enhance the light-matter interaction, a common approach is to confine the light
field in a cavity such that the mode volume is small enough (Fig. 1.4b). This
approach has led to the fruitful field of cavity quantum electrodynamics (QED). The
experimental realization of cavity QED was pioneered in the microwave domain by
the Haroche group using Rydberg atoms coupled to a superconducting cavity [97]
and in the optical domain by the Kimble group using low-loss Fabry-Pérot cavities
[98] and microtoroid cavities [99]. Cavity QED has enabled important techniques
such as the usage of a cavity to change the environment of a quantum emitter and
thus control its emission rate, as described by the Purcell effect [100]. The Purcell
effect has been widely used for both cold atoms and solid-state quantum emitters in
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Figure 1.4: Schematics of quantum light-matter interaction interfaces. a, A
quantum emitter (red ball) in free space (light blue shade). b, Cavity QED: a
quantum emitter couples to the cavity field (blue) with rate g. The orange wavy
arrow represents the spontaneous decay rate of the emitter and the blue arrow is for
the cavity. c, Waveguide QED: a quantum emitter couples to a waveguide (blue)
with the emission rate into the waveguide Γ1D and spurious emission rate Γ′.

applications such as the quantum network [101] and photonic quantum computing
[102]. Moreover, the cavity field shared by, e.g., atoms serves as a medium to induce
all-to-all coupling between the atoms, creating highly-entangled states valuable for
quantum sensing [103] and metrology [104]. For superconducting circuits, cavity
QED acts as the foundation of qubit state read-out via a microwave resonator in
the dispersive regime where the qubit and the resonator are far detuned [105].
Additionally, thanks to the large dipole moment |d| of the qubit and the confined
microwave field in the resonator, the qubit-resonator coupling is so strong that the set
of qubit frequencies depending on different resonator photon numbers is resolvable
[106]. This so-called strong dispersive regime has enabled fast quantum control over
resonators with long coherence time [107], opening up the field of bosonic quantum
computing and error correction mentioned in Sec. 1.2. Similar to the atomic physics
experiments, microwave resonators have also been employed to mediate all-to-all
coupling between qubits, facilitating multi-qubit entanglement [108, 109] and the
quantum simulation of many-body localization [110, 111] and dynamical phase
transitions [112].

Another approach with enhanced light-matter interaction is to couple quantum
emitters to the confined light field in a one-dimensional (1D) waveguide (Fig. 1.4c),
a burgeoning research area called waveguide QED [113]. Compared to cavity QED,
waveguide QED provides an intrinsically extensible degree of freedom, serving
as the basis of scalable architectures. Arguably, the pioneering waveguide QED
experiment with a single quantum emitter is the coupling of a quantum dot to a
nanowire plasmonic waveguide in 2007 [114]. Since then, waveguide QED has
been demonstrated across various platforms, including quantum dots coupled to
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photonic crystal waveguides [115] (Fig. 1.5a), cold atoms coupled to photonic crystal
waveguides or nano fibers [116, 117] (Fig. 1.5c), superconducting qubits coupled
to microwave transmission line waveguide or waveguide structures with engineered
dispersion [118–120] (Fig. 1.5b), and solid-state defects coupled to nanophotonics
platforms [121]. Among the platforms, superconducting circuits achieve the highest
Purcell factor P1D ≡ Γ1D/Γ

′, a key figure of merit in waveguide QED quantifying
the ratio of the emitter decay rate via the waveguide Γ1D versus that through other
spurious channelsΓ′ [100, 122]. The large Purcell factor in superconducting circuits,
indicating strong qubit-waveguide coupling, results from the large qubit dipole
moment |d| and the extremely strong waveguide confinement of the microwave
field perpendicular to the propagation direction (the width of a transmission line
waveguide is usually smaller than 0.2% of the microwave wavelength compared
to common optical feature sizes of greater than 10% wavelengths for photonic
crystals or nano fibers). This strong coupling even gives access to the ultra-strong
coupling regime where the qubit-waveguide coupling rate is comparable to the qubit
frequency [123].

1 µm
APCW

500 nm xy 
z 

a b c

Figure 1.5: Waveguide QED platforms. a, A single quantum dot (in the orange
area) coupled to the photonic crystal waveguide (unpatterned rectangle surrounded
by photonic crystals forming triangular lattice), adapted from [124], reprinted with
permission from the copyright holder, APS. b, A single superconducting flux qubit
(pink pentagon ring) couples to a microwave transmission line waveguide (pink
wire at the bottom). The blue and magenta arrows show the input and output waves,
respectively. The dashed thin arrows show the emission from the qubit into the
waveguide. This panel is adapted from [118], reprinted with permission from the
copyright holder, the AAAS. c, A few cesium atoms (the atomic cloud shown as the
elongated red ellipse) couple to the alligator photonic crystal waveguide (APCW,
shown as the grey structure). The inset shows an SEM image of an APCW section.
This panel is adapted from [116], reprinted with permission from the copyright
holder, APS.

Although relatively nascent, waveguide QED holds the potential in numerous appli-
cation regimes, which in general fall in two categories: (i) the quantum control of
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itinerant waveguide photons via the emitters and (ii) the interaction between quantum
emitters mediated by waveguide photons. The first category [125] includes single-
photon switches [122] and the creation of highly entangled photonic states [126,
127] as central resources for measurement-based quantum computing [128], where
quantum entanglement is prepared beforehand and the information processing takes
place by rounds of measurement on selected qubits. The second category introduces
interaction between distant emitters coupled to the same waveguide, serving as the
foundation of non-local entangling gates for gate-based quantum computing [129]
or quantum simulation of a wide range of many-body physics models [130].

1.4 Outline of the thesis

In this thesis, we use superconducting circuits as the platform to approach the
central goals of quantum information science. In particular, the thesis is centered
on exploring alternative superconducting circuit architectures to introduce beyond-
nearest-neighbor interaction between qubits, filling the current connectivity gap that
is limiting the efficient fault-tolerant quantum computation and NISQ-era quantum
simulation of a wide range of models. Here, we use the strong light-matter inter-
action in superconducting circuits to bring in non-local degrees of freedom. These
novel circuit architectures have in turn served as the playground to study novel light-
matter interactions, the ensuing non-trivial qubit-qubit interaction, and the resulting
quantum many-body dynamics. The structure of the thesis is also illustrated in
Fig. 1.6.

With this overview, we provide an outline of the rest of the thesis containing three
parts: background and methods (Chapter 2-3), main results (Chapter 4-6), and future
directions (Chapter 7).

In Chapter 2, we introduce the generic setting of quantum emitters coupled to a
waveguide. We focus on the theoretical description of this waveguide QED picture
and develop the formalism in two regimes categorized by the relative detuning
between the quantum emitters and the itinerant waveguide photonic modes. In each
regime, we study the effects of light-matter interaction and the photon-mediated
interaction between multiple quantum emitters.

In Chapter 3, we provide details of the key stages in waveguide QED experiments,
including design, fabrication, and measurement. Specifically, we highlight the
practice beyond common superconducting qubit experiments that has enabled our
work in this thesis.
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Figure 1.6: Structure of the thesis. Based on the platform of superconducting
circuits, we use light-matter interaction to construct waveguide QED architectures
featuring long-range connectivity, which serve as unique resources for NISQ-era
quantum simulation and the ultimate goal of fault-tolerant quantum computation.
Along the way, we have observed strong coupling and coherent dynamics in waveg-
uide QED (labeled "Magic" cavity) [47], explored photon-mediated interaction with
a topological waveguide [131], and built a quantum simulator to study many-body
dynamics influenced by long-range coupling [132].

In Chapter 4, we apply the knowledge and techniques from the previous chapters
to achieve strong coupling between qubits in the open environment of a waveguide.
This important step of waveguide QED is enabled by the long coherence time of
the sub-radiant states resulting from the collective effects of light-matter interaction.
The results in this chapter are published in [47].

In Chapter 5, we explore the intersection of light-matter interaction and topological
photonics using a dispersion-engineered waveguide. We observe novel qubit-qubit
interaction endowed by waveguide photons with topological properties in both the
passband and the bandgap. The results in this chapter are published in [133].

In Chapter 6, we move from simulating a topological photonics model in the previous
chapter to simulating a quantum many-body model. Specifically, the waveguide
QED architecture introduces long-range connectivity in a lattice that hosts strongly
interacting microwave photons and is formed by qubits coupled to a bus waveguide.
This long-range connectivity enables the study of quantum chaotic dynamics in the
many-body regime. The results in this chapter are published in [132].

Finally, in Chapter 7, we provide an outlook for the novel waveguide QED archi-



14

tectures. We focus on a few concrete directions that can extend our results in the
previous chapters and further the capabilities of the architectures towards NISQ-era
quantum simulation and the grand goal of fault-tolerant quantum computation.
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C h a p t e r 2

WAVEGUIDE QUANTUM ELECTRODYNAMICS

We have given a broad overview of light-matter interaction in Chapter 1 from
the perspective of spatial confinement of the light field for strong coupling. To
be more quantitative, recalling the connection between the Purcell effect [100]
and Fermi’s golden rule [134], we can arrive at the conclusion that the key to
engineering light-matter interaction is engineering the density of states (DOS). In
addition to the resulting smaller mode volume, the spatial confinement also provides
boundary conditions to shape the frequency distribution of states supported by the
structure. Free space supports the whole continuum of states whereas a cavity
supports a discrete set of resonances owing to the spatial confinement in all three
dimensions. A waveguide can be viewed as either free space confined in two
directions or a cavity elongated in 1D. Consequently, a waveguide also supports a
continuum of states in the passband frequency. As a result of the cut-off frequency or
dispersion engineering, a waveguide can also exhibit bandgaps, at which frequency
no propagating state is supported.

A pedagogical example of a waveguide is the rectangular hollow metal waveguide
with width w and height b (Fig. 2.1a). The dispersion of the TMm,n waveguide
mode is described by [135]

ω =

√(
km,n

c

)2

+
(mπ
b

)2
+
(nπ
w

)2
, (2.1)

where m,n = 1, 2, · · · , c is the speed of light, ω is the angular frequency, and km,n

is the wave vector. The dispersion of TM1,1 mode is shown in Fig. 2.1, exhibiting a
passband of close-to-linear dispersion at large k and a bandgap.

The interaction between quantum emitters and the waveguide photons is dependent
on the DOS, especially the DOS close to the transition frequency of the emitters.
In the following, we provide a theoretical description of the light-matter interaction
between quantum emitters and a waveguide in either the passband frequency or the
bandgap frequency. This description serves as the theoretical foundation for the rest
of this thesis.
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Figure 2.1: An example of a waveguide and its dispersion relation. a, Schematics
of a rectangular hollow metal waveguide with width w and height b. b, The
dispersion relation of the waveguide with w = b. The x and y axes are normalized.
The passband and the bandgap are shaded in blue and green, respectively.

2.1 Waveguide QED with linear dispersion

A single quantum emitter in the passband frequency

A generic quantum emitter can be modeled as a two-level system (Fig. 2.2a) with
transition frequency ωq and decay rate Γ′ into channels other than the waveguide,
yielding the non-Hermitian Hamiltonian Hq = 1

2
ℏ(ωq − i1

2
Γ′)σz where σz is the

Pauli Z operator associated with the emitter. On the other hand, a waveguide is
described by a collection of propagating photonic modes with wave vector k and
corresponding frequency ωk from the dispersion relation, giving the Hamiltonian
Hwg =

∑
k ℏωka

†
kak where ak (a†k) is the annihilation (creation) operator of photons

in mode k. Adding the interaction between the two parts gives the full Dicke
Hamiltonian [136]

H =
1

2
ℏ(ωq − i

Γ′

2
)σz +

∑
k

ℏωka
†
kak +

∑
k

ℏgk(a†k + ak)(σ+ + σ−), (2.2)

where gk is the coupling rate between the emitter and mode k. In this setting, the set
of immediate variables to calculate includes reflection and transmission amplitude
r and t. Assuming the rotating wave approximation (RWA) and that gk is a constant
g across photonic modes, we solve for the stationary solution in the single-photon
manifold at input photon frequency ω [122, 137, 138] and arrive at the following
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results

r(ω − ωq) =
Γ1D/2

i(ω − ωq)− (Γ1D + Γ′)/2
(2.3)

t(ω − ωq) = 1 + r(ω − ωq), (2.4)

where Γ1D ∝ g2 is the emitter decay rate into the waveguide.

R T

(ω - ω
q
)/Γ
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Figure 2.2: Photon scattering from a single quantum emitter coupled to a
waveguide. a, Schematics of a quantum emitter coupling to a waveguide with input
field, reflection (R), and transmission (T). b, ReflectanceR and transmittance T as a
function of light-emitter detuning at different P1D with weak input field. This panel
is adapted from [133]. c, On-resonance R (solid curves) and T (dashed curves) as
a function of input field strength at different P1D.

The observables in the experiment, reflectance R (transmittance T ), can be calcu-
lated using R ≡ |r|2 (T ≡ |t|2). The on-resonance result of R or T is determined
by the Purcell factor P1D ≡ Γ1D/Γ

′ introduced in Sec. 1.3:

R(ω = ωq) =

(
P1D

1 + P1D

)2

, T (ω = ωq) =

(
1

1 + P1D

)2

. (2.5)

By performing spectroscopy measurements of these observables at low input power,
we can calculate P1D. For strong coupling P1D ≫ 1, the on-resonance values are
R ≈ 1 and T ≈ 0, meaning the input light is almost perfectly reflected by the
emitter (see Fig. 2.2b for results at various P1D). Therefore, a quantum emitter
can be used as an efficient mirror for a single photon, inspiring the construction
of cavities from atom-like mirrors [139] and consequent cavity QED experiment
detailed in Chapter 4.
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The above single-photon picture involves only linear descriptions [137, 138], whereas
the nature of the two-level system can be revealed by sending in a multi-photon state,
yielding the nonlinear response [118, 122]

r(ω−ωq) = −Γ1D

2

i(ω − ωq) + Γ/2

(ω − ωq)2 + (Γ/2)2 + Ω2/2
, t(ω−ωq) = 1+r(ω−ωq), (2.6)

where Γ ≡ Γ1D + Γ′ and Ω is the Rabi frequency treating the multi-photon input
state as a classical drive. The on-resonance reflectance is modified to be (Fig. 2.2c)

R(ω = ωq) =

[
1

1 + 2(Ω/Γ)2

]2(
P1D

1 + P1D

)2

. (2.7)

We can understand the results as saturation and power-broadening of a driven two-
level system. Beyond the reflection and transmission, the multi-photon states also
exhibits non-trivial correlation due to the presence of a quantum emitter [122, 140,
141].

Photon-mediated coupling between quantum emitters

When multiple quantum emitters are coupled to the same waveguide, the photons
in the waveguide can mediate coupling between them. Starting from a general
case where N quantum emitters couple to the same waveguide at positions xj
(j = 1, 2, · · · , N ). The Hamiltonian Hq becomes

Hq =
∑
j

1

2
ℏωq,jσz,j, (2.8)

where we have ignored the decay into other channels for simplicity. The waveguide
Hamiltonian Hwg still contains the same set of propagating modes that we can
rearrange according to k < 0 (left propagating) and k > 0 (right propagating) for
the convenience of the interaction term. This gives us

Hwg =
∑
k

ℏωka
†
kak =

∑
k>0

ℏωk(a
†
R,kaR,k + a†L,kaL,k), (2.9)

where a†L/R,k (aL/R,k) is the creation (annihilation) operator for the left/right propa-
gating mode with wave vector ∓|k|. When writing down the light-matter interaction
term in the multi-emitter setting, it is important to keep track of the phase accumu-
lated during the photon propagation, yielding

HI =
∑
j

ℏgj(Ξ†
j + Ξj)(σ+,j + σ−,j), (2.10)
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where Ξj is the total field operator at position xj

Ξj =
∑
k>0

(aL,ke
−ikxj + aR,ke

ikxj). (2.11)

Here, the coupling between emitter j and each propagating mode is assumed to be
equal to gj . The multi-emitter version of Eq. 2.2 is now

H = Hq +Hwg +HI . (2.12)

Since we focus on the effective coupling between the emitters, we can trace out the
photon modes. In this process, the most important assumption is Markov approx-
imation, which can be intuitively understood as neglecting the retardation of light
propagating between emitters. Mathematically, it requiresωk(xj−xl)/(2πvg) ≪ 10

[142] between emitters j and l, where vg is the group velocity of light in the waveg-
uide. An apparent indication is that the distance between emitters cannot be too
large. Another important requirement is that vg ≡ dωk/dk cannot be too small,
requiring the emitter frequency to be away from the band-edge for the assumption to
hold. When Markov approximation breaks down, the system properties and dynam-
ics can still be computed using the Green function method [142, 143] or explored
experimentally [144].

In the following, we stay in the Markovian regime and arrive at the effective master
equation containing only the density operator ρ of quantum emitters [139, 145]

dρ

dt
= − i

ℏ
[Heff , ρ] + L[ρ], (2.13)

whereHeff is the effective Hamiltonian and L is the Liouvillian super-operator asso-
ciated with decoherence processes. The photon-mediated coupling between emitters
contains both a correlated decay term in L and a coherent exchange interaction term
in Heff .

The correlated decay term is described by

Lc[ρ] =
∑
j,l

Γj,l

[
σ−,jρσ+,l −

1

2
{σ+,lσ−,j, ρ}

]
, (2.14)

where
Γj,l =

√
Γ1D,jΓ1D,l cos (k|xj − xl|) (2.15)

and k|xj − xl| is the phase accumulated when a photon travels between emitters
j and l. Note that when j = l, this term captures the decay of the emitter j
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into the waveguide Γj,j = Γ1D,j . The correlated decay amplitude is maximized
when two emitters are separated by integer multiples of λ/2, where λ = 2π/k

is the wavelength. As an example, we can start with two emitters separated by
x1 − x2 = λ/2 with identical Γ1D,1/2 = Γ1D (Fig. 2.3a-b). To diagonalize the
correlated decay, we can transform the operators into a new set of basis

σ±,B =
σ±,1 − σ±,2√

2
(2.16)

σ±,D =
σ±,1 + σ±,2√

2
, (2.17)

which results in

Lc[ρ] =
∑

µ=B,D

Γ1D,µ

[
σ−,µρσ+,µ −

1

2
{σ+,µσ−,µ, ρ}

]
. (2.18)

Here, B (D) represents the bright (dark) state, as a consequence of Γ1D,B = 2Γ1D

and Γ1D,D = 0 (Fig. 2.3c-d). Intuitively, this can be explained by the interference
of the emission from the two emitters: the relative phase in the bright (dark) state
causes the light field from the two emitters to interfere constructively (destructively)
such that the emission is twice as strong (completely suppressed), see Fig. 2.3a (b).

Γ1D
Γ1D

λ/2

Γ1D
Γ1D

λ/2

|gg〉

|eg〉 |ge〉

Γ1D
Γ1D

Γ1,2

|gg〉

|B〉 |D〉

2Γ1D

a b

c d

Figure 2.3: Correlated decay of two emitters separated by half a wavelength. a
(b), Schematics of two emitters and their emission, shown in red (blue) sinusoidal
curves, in the bright (dark) state. c, Energy levels and their decay rate into the
waveguide of two emitters coupled to the same waveguide with correlated decay
Γ1,2. |g⟩ (|e⟩) represents the ground (excited) state of an emitter. d, Energy levels
and their decay rate into the waveguide in the bright/dark state basis.

Note that this bright and dark emission is viewed from the far end of the waveguide.
If we sit in between the two emitters on the waveguide, we would see that the electric
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field in this waveguide segment is enhanced for the dark state, which is the principle
behind using the dark state as a cavity [139] with the experimental effort detailed in
Chapter 4. In a slightly complicated case when the two emitters have unequal Γ1D,
the basis to diagonalize the correlated decay in Eqs. 2.16-2.17 takes different forms
but the bright and dark state can always be achieved. Although the emission of
the dark state is perfectly suppressed from the above derivation (rendering it a state
in the decoherence-free subspace), it is truly decoherence-free only if the spurious
decay Γ′ and the emitter dephasing rate are both zero [145]. The latter causes the
dark state population to leak into the bright state. A more detailed discussion of
the decoherence of the dark state can be found in Chapter 4. Beyond two quantum
emitters, the correlated decay in Eq. 2.18 in general leads to collective states with
various levels of brightness, also known as sub- and superradiance, for multiple
emitters [139, 146].

Γ1D
Γ1D

λ/2

Γ1D
Γ1D

λ/4

|gg〉

|eg〉 |ge〉
J +

J 


a b

c
  ∆
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Figure 2.4: Waveguide-mediated exchange interaction between two emitters.
a (b), Schematics of two emitters separated by λ/2 (λ/4) with the red or blue
wavy curve representing the virtual photon from the left emitter below or above
its frequency. c, Level diagram of the two emitters and a continuum of waveguide
modes (gray) showing the interaction J+ (J−) mediated by the mode colored in
blue (red) with opposite detuning ∆. This panel is inspired by [133].

Now let us turn to the exchange interaction in the coherent Hamiltonian Heff . The
exchange interaction has the same origin as the cavity-mediated interaction between
two emitters in cavity QED [145]. In the cavity QED case, the two emitters are
on resonance, both detuned from the cavity frequency by ∆. This cavity-mediated
exchange interaction can be viewed as the presence of one emitter modifying the
Lamb shift of the other, i.e., the emission of a virtual photon from one emitter into
the cavity mode being absorbed by the other emitter. This leads to the exchange
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interaction J = g1g2/∆ where gj is the coupling between emitter j to the cavity.
Coming back to waveguide QED, the exchange interaction is not just mediated by a
single mode, but a continuum of propagating modes in the waveguide except for the
ones resonant to the emitter frequency. The major difference is (i) the total exchange
interaction is a sum of the contributions from all the modes, and (ii) we should take
into account the field amplitude and phase when the virtual photons arriving at the
other emitter. This results in the following form of exchange interaction

Hex = ℏ
∑
j,l

Jj,lσ−,jσ+,l, (2.19)

where
Jj,l =

1

2

√
Γ1D,jΓ1D,l sin (k|xj − xl|). (2.20)

Note that when |xj − xl| equals integer multiples of λ/2, the exchange interaction
Jj,l vanishes. This can be explained by the cancellation of interaction mediated by
modes above and below the emitter frequency with opposite signs of ∆ (Fig. 2.4a,
c). The cancellation is perfect because the pair of modes with opposite ∆ have
identical field amplitude and phase owing to the specific separation. The absence
of exchange interaction allows the bright/dark states at a degenerate frequency to
diagonalize the entire master equation Eq. 2.13.

The situation is different for |xj − xl| = λ/4 + nλ/2 where n is an integer. Using
xj − xl = λ/4 as an example, the opposite-∆ mode pair now have the same field
amplitude but opposite sign, flipping the sign of J from the mode once more and
constructively adding up to the total Jj,l (Fig. 2.4b, c). As a result, Jj,l achieves the
largest amplitude at this set of emitter separations. In this case, the correlated decay
vanishes, and the basis set in Eqs. 2.16-2.17 still diagonalizes the master equation
Eq. 2.13. However, bright/dark state is no longer a proper name as each state has
the same decay rate of (Γ1D,j + Γ1D,l)/2.

The exchange interaction is infinite in its range [147, 148] as long as the Markov
approximation is valid. Nonetheless, the always-present decay rate, which is of
comparable strength as the exchange interaction rate in Eq. 2.20, hampers the
observation of coherent dynamics and strong coupling [149].

In the passband regime, we can still achieve strong coupling by using smart proto-
cols combining decoherence-free subspace and the exchange interaction [47, 139].
Another method, which is also a novel area for waveguide QED, is by using gi-
ant atoms easily implemented using superconducting qubits [150]. This method
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assumes that a quantum emitter couples to the waveguide at multiple points, thus
forming a decoherence-free state on its own when the coupling points are chosen
wisely. Braiding or nesting giant atoms such that their waveguide sections overlap
can induce coherent interaction between the giant atoms [151].

Another volume of research studying the passband regime is chiral waveguide QED
[152], which can be physically implemented by, e.g., quantum dots [153]. In
this case, instead of emitting into both left and right propagating modes of the
waveguide, the emitter only emits into one of the direction or exhibiting asymmetric
coupling gL,j and gR,j in Eqs. 2.10-2.11. This area gives rise to, e.g., photon routers
in quantum network applications, as well as the driven-dissipative preparation of
non-trivial many-body states.

2.2 Waveguide QED in the bandgap regime

In the end of the previous section (Sec. 2.1), we have pointed out the potential
difficulty of achieving strong coupling in the passband regime. Solutions such as the
atomic cavity protocol [47, 139] and giant atoms [150, 151] have been demonstrated.
However, these solutions rely on the states in the decoherence-free subspace, which
requires the distance between emitters to be precisely at a discrete set of values such
as nλ/2. In the case of superconducting circuits where the distance between the
emitters is determined in fabrication, the decoherence-free states require the qubit
frequencies to be fixed at specific values, thus limiting the flexibility of quantum
information processing tasks to implement. Instead of constantly combating the
decay into propagating photons in the passband, another way is to place the emitter
frequency inside the bandgap where DOS vanishes and radiative decay is suppressed.

In this section, we provide the derivation based on a waveguide with periodic
structure (Fig. 2.5a), a common way to engineer the dispersion relation and create
bandgaps, and examples include photonic crystals [154] and metamaterials [155].

A single quantum emitter in the bandgap frequency

In the bandgap frequency, there is no propagating mode for the emitter to decay
into. Intuitively, the light field will be exponentially localized around the quantum
emitter since the wave vector has non-zero imaginary part in the bandgap, giving
eikx = eik0xe−x/ξ where ξ = i/(k − k0) is the localization length and k0 is the real
part of the wave vector. The localized light field and the emitter form the emitter-
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Figure 2.5: A single emitter-photon bound state. a, Schematics of a quan-
tum emitter (red ball) coupled to a dispersion-engineered waveguide (blue wavy
structure) with unit cell size d. The coupling results in an exponentially localized
emitter-photon bound state (red shade) with localization length ξ. b, A quadratic
dispersion relation in the first Brillouin zone with k0 = 0. The passband is shaded
blue above the bandedge frequency ωe, and the bandgap below it is shaded in green.
An example frequency of a quantum emitter in the bandgap is indicated by the red
arrow. c, Level diagrams of the quantum emitter in the bandgap and the waveguide
modes. The left part shows the bare emitter and waveguide modes, as well as the
coupling gk between them. The right part shows the dressed level diagram with the
bound state |ϕb⟩ exhibiting a lower energy (solid line) than that of the bare emitter
(dashed line). Panels a-b is inspired by [133].

photon bound state, first discussed by John and Wang in 1990 [156]. Mathematically,
this picture is still captured by the Dicke Hamiltonian in Eq. 2.2 with the emitter
frequency ωq outside of possible ωk’s. In the following, we ignore the spurious
decay Γ′ for simplicity.

To describe the single-excitation emitter-photon bound state |ϕb⟩, we start with the
superposition of single-excitation basis without loss of generosity

|ϕb⟩ = cos θ|{0}⟩|e⟩+ sin θ
∑
k

cka
†
k|{0}⟩|g⟩, (2.21)

where |{0}⟩ is the vacuum state for the photonic modes, |g⟩ (|e⟩) is the ground
(excited) state of the quantum emitter, θ parameterizes the emitter or total photon
population and ck is the coefficient for the propagating photon mode with wave
vector k satisfying

∑
k |ck|2 = 1. To solve for the parameters, we note that |ϕb⟩ is

an eigenstate of the Hamiltonian in Eq. 2.2 H|ϕb⟩ = ℏωb|ϕb⟩ with ωb the angular
frequency of the bound state. Assuming RWA, the eigenstate equation yields [120,
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131, 156, 157]

ck =
gk

(ωb − ωk) tan θ
(2.22)

ωb = ωq +
∑
k

|gk|2
ωb − ωk

(2.23)

tan2 θ =
∑
k

|gk|2
(ωb − ωk)2

. (2.24)

Up to now, the result has been general with no assumption about the waveguide or its
dispersion relation. Moving forward, we consider the generic quadratic dispersion
relation (Fig. 2.5b) at the bandedge ωk = ωe+α(k−k0)2, where ωe is the bandedge
frequency, α is the band curvature, and k0 is the corresponding wave vector at the
bandedge. This is suitable to approximate bandedge dispersion with the quadratic
term as the leading order, such as the rectangular waveguide example in Eq. 2.1.
For the derivation below, we assume the bandgap is below the passband with α > 0

and the emitter frequency ωq < ωe. The opposite case is left as an exercise for the
readers. Assuming the quadratic dispersion relation and uniform coupling to each
mode k after changing the summation to integral1 [120, 133],

ωq − ωb =
g2d

2
√
α(ωe − ωb)

(2.27)

tan2 θ =
g2d

4
√
α(ωe − ωb)3

=
ωq − ωb

2(ωe − ωb)
. (2.28)

From Eq. 2.27, we can see that the bound state frequency is pushed below the bare
emitter frequency because of the Lamb shift (Fig. 2.5c). The shape of the bound
state can be deduced by the photonic mode coefficient in the real space, resulting in
an exponentially localized shape (Fig. 2.5a)

cx =
1√
N

∑
k

eikxck = − gd√
2α(ωq − ωb)

eik0(x−x0)e−|x−x0|/ξ, (2.29)

1This means
1

N

∑
k

→ d

2π

∫
dk, (2.25)

whereN is the number of unit cells, d is the size of a unit cell in the waveguide exhibiting translational
symmetry, and the integration covers the entire first Brillouin zone. This change from summation to
integral is valid when N → ∞, the thermodynamic limit. For example, the summation in Eq. 2.23
becomes

d

2π
g2
∫

dk

ωb − ωk
, (2.26)

where g2 = Ng2k.
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where the localization length is given by

ξ =

√
α

ωe − ωb

. (2.30)

This localization length is consistent with the result from the imaginary part of the
wave vector at frequency ωb

ωb = ωe + α(k − k0)
2, k = k0 +

i

ξ
. (2.31)

The properties of the bound state is determined by the detuning between the bound
state and the bandedge. Decreasing the detuning results in (i) a growing photonic
population in the bound state from Eq. 2.28, i.e., the bound state becoming less
emitter-like and more photon-like; and (ii) the spatial extend of the bound state
becoming more delocalized shown in Eq. 2.30. This tunability of the bound state
properties serves as the foundation of the tunable exchange interaction discussed in
the following subsection.

Exchange interaction between two bound states

Intuitively, when the two bound states spatially overlap with each other, there will
be interaction between them with the interaction strength and range determined by
the bound state properties. A more rigorous picture is that the virtual photons in
the passband modes mediates the interactions between the two emitters, similar to
the formalism in Sec. 2.1. The difference lies in the emitter frequency relative to
the passband. Now let us make it more quantitative by starting from the Hamilto-
nian in Eq. 2.12 that still holds in this case. Additionally, the expression for the
single-excitation eigenstate of the two-emitter interacting Hamiltonian can be found
analytically using a similar method as the one for a single bound state. We can
directly extract the interaction between the two bound states from the eigenstate
equation.

Let us rewrite the Hamiltonian Eq. 2.12 in a clearer way

H =
∑
j=1,2

ℏωq,j|e⟩⟨e|j +
∑
k

ℏωka
†
kak +

∑
j,k

ℏ
[
gk,ja

†
k|g⟩⟨e|j + h.c.

]
. (2.32)

The two-emitter-photon bound state in the single-excitation manifold is described
by

|ϕb⟩ = cos θ|{0}⟩ (cq,1|e⟩1|g⟩2 + cq,2|g⟩1|e⟩2) + sin θ
∑
k

cka
†
k|{0}⟩|g⟩1|g⟩2,

(2.33)
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where the additional parameters cq,j represents the relative population of the two
emitters, satisfying

∑
j |cq,j|2 = 1. Solving the eigenstate equationH|ϕb⟩ = ℏωb|ϕb⟩

gives [131]

ωb

(
cq,1

cq,2

)
=

(
ωq,1 + J1,1 J1,2

J2,1 ωq,2 + J2,2

)(
cq,1

cq,2

)
, (2.34)

where
Jj,l =

∑
k

g∗k,jgk,l

ωb − ωk

. (2.35)

For j = l, Jj,j is the single-emitter Lamb shift the same as the one in Eq. 2.23.
The cross-emitter term J1,2 represents the exchange interaction between the bound
states, exhibiting the form of virtual-photon-mediated interaction g1g2/∆. Using
similar techniques as deriving Eq. 2.29, we arrive at the expression by assuming
|gk,j| = |gk,l|

J1,2 = − g2d

2
√
α(ωe − ωb)

eik0(x1−x2)e−|x1−x2|/ξ, (2.36)

where the localization length is the same as the one in Eq. 2.30. Although the
single-emitter eigenstate equation always has a bound state solution, the existence
of two bound states in the two-emitter eigenstate equation is not guaranteed. Specif-
ically, because of the interaction between the single-emitter bound states, one of the
hybridized two-emitter bound state may be pushed into the passband frequency and
become delocalized [157].
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Figure 2.6: Two quantum emitters in the bandgap frequency. a, Schematics of
two emitter-photon bound states. The upper (lower) one shows a higher (lower)
emitter frequency ωq (ω′

q), resulting in larger (smaller) population in the photonic
envelope and a larger (smaller) spatial extend of the bound states. Consequently,
the interaction between the bound states exhibits larger (smaller) amplitude and a
longer (shorter) range. b, Dispersion relation showing the bandedge frequency ωe

and the different quantum emitter frequencies. This figure is adapted from [133].

The bound state interaction inherits the tunability of the bound state, exhibiting a
larger amplitude and more extended range when the emitter-bandedge detuning is
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smaller (Fig. 2.6). Although exponentially localized interaction is not considered
long range in the thermodynamic limit, the flexibility to tune the interaction range to
cover the entire physical device [158] acts as the foundation of long-range connec-
tivity in waveguide-based quantum architecture in the bandgap regime (Chapter 6).
This tunable interaction also gives access to a wide range of many-body Hamiltoni-
ans [159]. Moreover, with local control or additional levels, the interaction profile
can be engineered to exhibit beyond exponential decay, emulating, e.g., power-law
decay or even designed connectivity [158, 160] (see also Sec. 7.2).

Beyond the single-excitation manifold, bound states consisting of a quantum emitter
and multiple binding photons have also been explored showing intriguing properties
in quantum optics and many-body physics [157, 161, 162]. When the quantum
emitter is extended beyond a two-level system, such as the superconducting transmon
qubit, higher-excitation manifold have been studied using spectroscopic tools [163].
Lastly, the dispersion relation can be engineered to exhibit, e.g., multiple bands
or topological features, where the quadratic dispersion assumption no longer holds
[131, 164] (an example is discussed in detail in Chapter 5).
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C h a p t e r 3

ENGINEERING AND OPERATING A SUPERCONDUCTING
WAVEGUIDE QED SYSTEM

The previous chapter has provided the theoretical background for generic waveguide
QED systems. We can now focus on how to implement these concepts using super-
conducting circuits, which achieve among the strongest emitter-waveguide coupling
marked by the highest P1D (above a hundred [47, 165]) among different physical
platforms. It is also straightforward to control the position and the frequency of
quantum emitters—superconducting transmon qubits—relative to the waveguide,
which is crucial in realizing quantum information processing tasks based on waveg-
uide QED architectures. In this chapter, we lay out a practical guide on engineering
and operating a superconducting waveguide QED system. This guide is not designed
to be pedagogical or comprehensive. Instead, it builds upon the basic theoretical
knowledge, control and read-out principles, and measurement techniques of su-
perconducting circuits, which are nicely reviewed in [11, 133, 166–168]. In the
following, we will provide a general description of design, fabrication, and mea-
surement, highlighting the practice that enables the waveguide QED experiments
detailed in the rest of the thesis.

3.1 Circuit design

To design a circuit element to be fabricated using thin-film superconductors on a sub-
strate, we draw the 2D geometry of the superconductor and use the electromagnetic
(EM) analysis software Sonnet® to simulate key parameters such as capacitance,
inductance, and resonance frequency.

Superconducting qubit

In this thesis, we use the Xmon qubit [169], a member of the transmon family with
the ground acting as one of the metal island in the circuit diagram (Fig. 3.1a and b).
The shape of the center capacitor of an Xmon can be designed to achieve required
coupling with other elements. The XY control line is designed to capacitively couple
to the Xmon qubit with a small capacitance of tens of attofarad, enabling a π-pulse
on the order of 10 ns while keeping the XY-decay limited lifetime above 100µs. The
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Z control line provides the current for flux biasing the qubit frequency, where the
tuning rate is determined by a combination of Z-line-qubit distance, the area of the
SQUID loop, and the position of the air bridge to balance the asymmetric current.
We usually use the Z line design that provide a tuning of 1 mA per frequency sweep
period. Note that the qubit can also have radiative loss through the Z line if the qubit
shape does not exhibit reflection symmetry with respect to the axis along the Z line
[69] (Fig. 3.1c), which needs to be taken into account in the qubit design.

XY line

Z line

50 μm
a cb

Figure 3.1: Superconducting qubit and read-out resonator circuit design. a,
False colored optical image of an Xmon qubit (orange) and a lumped element read-
out resonator (green) with the XY line (pink) and Z line (navy). This panel is adapted
from [132] with reprint permission. The right panel shows the zoomed-in view of a
Z line before the junctions and airbridges are fabricated. b, Circuit diagram of the
Xmon qubit (upper panel) and the read-out resonator (lower panel). The metal island
of the qubit and the read-out resonator is colored orange and green, respectively.
c, Cartoon showing the inductive coupling with the Z line (represented by a “T”).
The green shading represents the desired coupling between the SQUID loop and the
Z line, and the red (blue) shading represents the spurious qubit coupling to the Z
line with positive (negative) amplitude. The spurious coupling vanishes for the left
panel, but is still present for the right panel.

Resonator

The commonly used resonator in the community is the λ/4 or λ/2 transmission
line resonator, where λ is the microwave wavelength. The fundamental mode
of standing-wave resonances formed by open/short-circuit boundary conditions is
employed as, e.g., the read-out mode. This type of resonator is easy to design and
predict its resonance frequency. The drawback of this design is the large footprint:
at 6 GHz, the wavelength λ ≈ 15mm on a high-resistance silicon substrate, meaning
a λ/4 resonator can take more than 600× 600 µm2.
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Another design for the resonator is the lumped element inductance-capacitance
(LC) resonator design, e.g., the ones used in [170]. The metal wing gives rise to
the capacitance to ground, and the thin meandering wire connected to the ground
provides the inductance (Fig. 3.1a and b). This design can reduce the footprint by
half, whereas the resonance frequency needs to be obtained from EM simulations.

Waveguide

Coplanar waveguide (CPW), shown in Fig. 3.2a, is the basic transmission line
waveguide used as on-chip control and read-out lines for superconducting circuits,
which also serves as the linearly-dispersioned waveguide in Chapter 4. The theoret-
ical modeling of a transmission line waveguide is an important subject, discussed
in detail in microwave engineering textbooks such as [171]. The key parameter in
design is the characteristic impedanceZ0 =

√
Lu/Cu, where Lu andCu are the unit

length inductance and capacitance of the waveguide. For a CPW, the impedance
is controlled by the width of the center trace (colored orange in Fig. 3.2a) as well
as the gap between the center trace and the ground (dark gray gap between the
orange and the light gray region in Fig. 3.2a). Usually, we design the CPW to
have impedance Z0 = 50Ω to achieve impedance matching to external transmission
lines, thus minimizing the reflection at the boundary.

500 μm100 μm

• • •• • •

d

• • • • • •

a b

Figure 3.2: Waveguide circuit design. a, False colored optical image (upper panel)
of a CPW waveguide (orange) and its circuit diagram (lower panel) showing elements
representing the distributed inductance and capacitance with the unit length value
of Lu and Cu. The optical image is adapted from [47] with reprint permission. b,
False colored optical image (upper panel) of a metamaterial waveguide (blue) with
the unit cell size of d connected via a tapering section (purple) to a CPW waveguide
(red). The circuit diagram of the metamaterial waveguide (lower panel) shows that a
unit cell (shaded in gray) consists of a lumped element LC resonator with capacitive
coupling to neighboring cells. The optical image is adapted from [132] with reprint
permission. In both optical images, the light grey area is the ground plane.
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To engineer the dispersion of a microwave waveguide, a simple way is to start from
a CPW, and periodically modulate the impedance [120], which realizes a photonic
crystal [154] in the microwave domain. Another method is to create periodic cells
of microwave structures much smaller than the microwave wavelength (see, e.g.,
Fig. 3.2b), i.e., a metamaterial [155]. For example, in [172], the metamaterial is
constructed by periodically loading a CPW waveguide with resonant structures to
create a waveguide with band-stop spectrum. Another example is a waveguide with
band-pass spectrum, which can be built by an array of coupled lumped element
resonators detailed in Chapter 5 and 6. Additionally, the metamaterial waveguide
can also be used to achieve both energy and momentum matching in traveling wave
amplifiers to achieve wide-band amplification gains [173, 174].

Coupling between circuit elements

The coupling between two capacitively-coupled LC resonators (Fig. 3.3a) is given
by

g =
Cg√

C1,ΣC2,Σ

√
ω1ω2

2
, (3.1)

where Cg is the coupling capacitance between the two resonators, Cj,Σ ≡ Cj + Cg

with j = 1, 2 is the total capacitance of each resonator, and ωj is the resonance
frequency. This formula can be obtained by writing down the Hamiltonian of the
circuit and performing the second quantization to extract the coupling coefficient g
(see, e.g., App. D of [175]). The formula is widely used to design the coupling
between a qubit and a read-out resonator, between a qubit and a waveguide resonator,
and between a read-out resonator and a waveguide resonator in Chapter 5 and 6. The
capacitance values can be extracted from EM simulations given the circuit geometry.

The coupling of a qubit/resonator to a waveguide can be quantified by the waveguide-
induced decay rate. The open environment of the waveguide can be modeled as a
50-Ω impedance on each end (Fig. 3.3b). The decay rate can be obtained from the
classical external Q factor of a parallel LC circuit

Qe = ω0
average energy stored in the resonator at ω0

average power lost to the external circuit
=

ω0C

Re[Y (ω0)]
, (3.2)

where ω0 = 1/
√
LC is the resonance frequency and Y (ω) is the admittance seen

from the external port (Fig. 3.3b). Assuming the external load can be treated as a
perturbation, i.e., Qe ≫ 1, the decay rate into a waveguide can be deduced as

Γ1D =

(
Cg

C

)2
Z0

2L
, (3.3)
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Figure 3.3: Coupling between circuit elements. a, Circuit diagram of two res-
onators with inductanceLj and capacitanceCj coupled via the coupling capacitance
Cg. b, Left: Circuit diagram of an LC resonator capacitively (Cg) coupled to an
open environment with frequency-dependent characteristic impedance Z(ω). The
admittance Y (ω) seen from the resonator is shaded in blue. Right: Examples of
Z(ω) showing the impedance of a double-ended waveguide (parallel Z0) and the
impedance of a single-ended waveguide (Z0).

where the resistance associated with the waveguide is Z0/2. In order to increase
Γ1D, we can raise the coupling capacitance by increasing the width of the waveguide
center trace or eliminating the ground plane between the Xmon capacitor and the
center trace, giving rise to Γ1D/2π ≈ 100MHz in Chapter 4. This formula can also
be used to estimate the decay rate into the XY line, in which case the associated
resistance is Z0 (Fig. 3.3b, single-ended waveguide).

System-level circuit design

Equipped with the above basic knowledge and formula, we are able to design the
geometry of the metal for each element, confirming that the parameters satisfy our
design goals in the EM simulation of the parts. However, it is inefficient to simulate
the entire waveguide QED system with geometry spreading over a 1 cm × 1 cm (or
2 cm) substrate. Especially, this hampers the design of the metamaterial waveguide
(Fig. 3.2b) where strong coupling between unit cells is assumed and the precise
dispersion relation requires the simulation of an infinite structure. A solution is
provided in [144]: we use the EM simulation of a single unit cell to extract the
S-parameters, convert it into the dispersion relation of an infinite structure [171],
and extract the lumped element inductance and capacitance values from fitting the
dispersion relation.

Another challenge lies in the finite number of unit cells we can fit on a physical device,
meaning the passband always consists of discrete modes instead of a continuum.
This becomes a problem if we perform waveguide QED experiments in the passband
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(Chapter 5) or use the passband as the feedline for reading out the qubits (Chapter 6).
We overcome the challenge by designing tapering sections [144] (purple section in
Fig. 3.2b), adapting the Bloch impedance of the periodic structure [171] to the 50-Ω
port impedance. Another way to view it is that the tapering section increases the
external coupling of each mode to the ports, thus creating a quasi-flat passband
by the overlap of modes with large linewidths. In the example of the waveguide
in Fig. 3.2b, this intuition leads to the design principle of gradually increasing
the coupling capacitance between the unit cells while maintaining the resonance
frequency of the cell by decreasing the capacitance to ground. To obtain the best
parameters, we start from the design of a bandpass filter (iFilterTM Module) in
Cadence® Microwave Office® which minimizes the ripples in the passband. Using
these initial values for the tapering section containing, e.g., 4 tapering cells, we
simulate the transmission from the waveguide and further optimize with the target
of passband transmission achieving unity. The optimization gives us the circuit
parameters we can use to design individual tapering cells.

Besides designing the tapering section, we also use Microwave Office® to extract
parameters involving the entire circuit, such as the decay rate into the metamaterial
waveguide by simulating the real part of the admittance in Eq. 3.2.

3.2 Device fabrication and packaging

Device fabrication

All the devices in this thesis are fabricated using electron-beam evaporated Alu-
minum on high-resistance Silicon substrates (525µm-thick, >10 kΩ·cm). The fab-
rication consists of four rounds of electron-beam lithography, defining the patterns
for Niobium markers, Aluminum ground plane, Al/AlOx/Al Josephson junctions
(JJ), and Aluminum air-bridges. The bandages used to electrically connect the JJs
to the ground plane are also fabricated in the air-bridge round, which includes an
argon milling step before the metal evaporation. Each lithographic round includes
the following steps (detailed in App. A): chip cleaning, spinning and baking the
resist, electron-beam lithography, development, electron-beam metal evaporation,
and lift-off.

In addition to the above common superconducting circuit fabrication practice, we add
an inspection and fix step for fabricating metamaterial waveguide systems, increasing
the device yield to almost 100%. The smallest feature size in the metamaterial
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Figure 3.4: Fixing a fabrication failure in a metamaterial waveguide. a (b),
Optical image before (after) the fix of a disconnected thin wire belonging to a
metamaterial resonator. The arrows in both panels point at the fabrication failure.

waveguide is 1µm or 2µm, and the metamaterial covers an area of around 600µm
× 15 mm. The majority of the failures originate from dusts landing on the patterned
resist before the metal evaporation, resulting in disconnected circuit wires. Any
failure in, e.g., the thin-wire inductor (Fig. 3.4a), will change the resonance frequency
of the waveguide resonator, thus creating defect states or even disturbing the band
structure. Therefore, after the lift-off step of the ground plane round, we inspect
the ground plane pattern using Keyence VHX-7000 digital microscope and generate
patterns of fixing patches to use in the air-bridge round to connect the failed wires.
Usually, a metamaterial waveguide of the size used in Chapter 6 have less than five
critical failures (an example is shown in Fig. 3.4). After the fix, we did not find
noticeable disorders in the waveguide or changes in read-out resonator frequency or
coherence.

Device packaging

The packaging used in this thesis is described in detail in Sec. 3.2 of [133]. In this
subsection, we report an additional recent observation.

The 26-port microwave enclosure housing a chip of 2 cm × 1 cm enables complete
individual control over 10 qubits (Chapter 6). However, the stability of the con-
nectors, especially under thermal cycling inside a dilution refrigerator, needs to be
improved. The mating of the SMPM connectors (Fig. 3.5a) degrades after thermal
cycling, causing the electrical connection of a few connectors to fail under cryogenic
temperature. Therefore, we have added a copper piece to clamp the PCB connec-
tors (Fig. 3.5b), which solved the electrical connection problem. We have recently
found that the clamping introduces another problem: if the clamping is too tight,
the SMPM connectors will be pushed into the PCB board, thus shorting the center
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a b

Figure 3.5: Clamping on the connectors. a, Photo showing four SMPM connectors
mated to cables that are free to rotate in the plane and even tilt at a small angle.
b, Photo showing a clamp added on top of the package to fix the position of the
connectors.

pin to the ground. The clamping force is usually not harmful at room temperature,
whereas during the thermal cycling, the clamp tend to be overtightened and damage
the connector-PCB joint permanently. This causes short for a few connectors after
warming up the device used in Chapter 6. In conclusion, we need to carefully
take into account the cryogenic operation and thermal cycling when designing the
packaging and choosing the connectors.

3.3 Experimental setup and operation

The experimental setup and operation used in this thesis follows common practice
in superconducting qubit experiments and is detailed in App. B-D and Sec. 3.3-3.4
of [133]. In the following, we highlight a few aspects that have played an important
role in improving the qubit coherence and performing multi-qubit operations.

Thermalization of the waveguide

The cryogenic setup used for experiments in this thesis follows the general rules
of cryogenic engineering [176]. In addition, for waveguide QED experiments,
especially the ones in the passband regime, minimizing the thermal photon number
in the waveguide is crucial to prevent extra dephasing of qubits [176–179] that
directly see the waveguide photons. Detailed in Chapter 4 and App. B, we have used
well-thermalized attenuators to achieve better thermal anchoring of the waveguide
to the mixing chamber plate. More specifically, we have used the cold attenuators
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from B. Palmer’s group [177] or commercial attenuators1, all of which have been
anchored to their cryogenic stage directly or via thick copper pieces for good thermal
conduction.

Grounding

In this subsection, we emphasize the importance of reducing the ground noise,
which has been the limitation on the qubit coherence in our setup. The ability to
tune the frequency of a qubit also introduces a channel for additional frequency
noise, i.e., dephasing. The Z line—responsible for tuning the qubit frequency via
the current—is shorted to the ground close to the SQUID (Fig. 3.1a), thus coupling
the ground noise to the qubit. As pedagogically elaborated in Chapter 3 of [180],
careless ground connections could result in ground noise from noisy instruments
and ground loops that can pick up noisy ground current or magnetic field.

The immediate ground a qubit sees in the dilution refridgerator (DF in short) is the
cryostat ground. The Bluefors LD-250 DF we use is designed to be electrically
floating (> 1MΩ), isolated from the gas handling unit and the DF frame, such that
it can be connected to a clean ground. During the DF installation and subsequent in-
stallations of new pieces especially on top of the DF, we need to be careful that metal
pieces including bolts and nuts2 do not make accidenta electrical connection. After
making changes to the cryostat connection, we should check whether the electrical
isolation is maintained. Besides connected to a clean ground, the cryostat ground is
connected to the power supply of high-electron-mobility transistor (HEMT) ampli-
fiers, in which case the use of low-noise power supply is necessary3. The majority
of the signal lines connected to the DF only carry high frequency signals, where
inner-outer DC blocks4 can be used to break the formation of ground loops at low
frequency. The DC connection to the DC voltage source for Z lines is necessary,
demanding careful electrical connection design5. The DC connection to arbitrary
waveform generator (AWG6) channels producing flux pulses is also unavoidable be-

1QMC-CRYOATT from Quantum Microwave or 4880-5523-XX-CRYO from XMA
2We use Polyethylene Terephthalate (PET) wraps for metal tubes and nylon bolts and nuts if

necessary.
3We avoid using switching mode power supplies that is noisier than their linear counterparts. In

out setup, we use LNF-PBA linear power block from Quantum Microwave.
4Inmet 8039 or CD9519 from Centric RF
5We mount the breakout board and the DC voltage source (QDAC from QDevil) to an instrument

rack via nylon bolts and nuts. In addition, we use a USB isolator (UH401 from B&B SmartWorx) to
break the electrical connection via the USB connection port.

6Quantum Machines OPX+
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cause rejecting the DC component of the flux pulses leads to severe pulse distortion.
We take care of the AWG ground by electrically isolating the instrument chassis
from the rack and using EM interference filtering units7 to connect the AWG to the
power strip.
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Figure 3.6: Ground loop and common-mode choke. a, Circuit diagram showing
a voltage supply providing tuning current for a Z line, whereas the connection to
ground at the Z line and the voltage supply creates a ground loop with the noise
voltage VG. b, Circuit diagram showing voltage supply VS creating a differential
mode current (arrow) to bias the Z line (LZ), which is not affected by the common
mode choke (L = M ). c, Circuit diagram showing the ground noise VG creating
common mode currents (arrows) that could influence the Z line current, which sees
the impedance jωL from the common mode choke (L =M ). This figure is inspired
from [180].

From the above analysis, we see that the cryostat ground is still inevitably con-
nected to the earth ground at multiple points, forming ground loops (Fig. 3.6a).
To reduce the noise from the ground loops, we use common-mode chokes to sup-
press the influence from ground noise [180]. A common-mode choke introduces
mutual inductance between the signal line and the return line, resulting in a large
impedance for the common-mode current from the ground noise while maintaining
zero impedance for the differential-mode current from the signal source (Fig. 3.6b-
c). In practice, the common-mode choke can be implemented by wrapping the
transmission line around a Ferrite ring or surrounding the transmission line with
Ferrite snap-on beads8.

To probe the noise level when implementing the above measures, we either measure
the spectrum by connecting a transmission line from the DF to a spectrum analyzer
or measuring the coherence time of a qubit. The spectrum analyzer measurement
is especially quick and useful when the device is at room temperature or when the
flux lines are not connected to the qubits. Using this method, we have observed

7AREC148FG-N515 from OnFilter
8We use both Mix 31 Ferrite covering 1-300 MHz and Mix 75 Ferrite covering 150 kHz-10 MHz.
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that the common-mode chokes play the role of lowering the noise power. The qubit
coherence is the ultimate target to optimize. For example, we have observed that
adding a single Ferrite snap-on bead9 on the flux pulse line improves the T ∗

2 from
733 ns to 938 ns, which is further improved to 1.1µs with 15 beads.

Multi-qubit system operation

Calibrating and operating a multi-qubit system requires systematic approaches, in-
volving individual-qubit-level up to system-level operations. It is not realistic to
manually specifying the dependencies among the operations and assigning param-
eters to all the tuning knobs for every experiment. To operate a multi-qubit or even
a NISQ device, we need both efficient infrastructure and strategies.

An efficient infrastructure in our case means a platform that registers and manages
resources for easy access from high-level users. The resources include hardware
resources, which can be categorized as classical hardware (such as the AWG and
the DC voltage supply) and quantum hardware (such as a quantum simulator). The
resources also include software ones such as the parameters for a control pulse.
In this thesis, we build the infrastructure based on the QUA language developed
by Quantum Machines that programs OPX+, which is in charge of qubit control
and read-out. The compatibility of the QUA language with the Python environ-
ment allows us to register and control other hardware in a single script. The QUA
language also provides the abstraction of low-level controls, e.g., wrapping the ar-
bitrary waveform of a π-pulse operation on Input line 1 into play(’pi’, ’q1’).
The parameters, such as the ones providing details for the pulses and the physical
connections are specified in the configuration. To achieve higher-level abstrac-
tion and include parameters specifying the status of the quantum hardware or control
over other classical hardware, we construct the quantum processing unit database
(qpu_db), which is based on the packages10 developed by Quantum Machines.

Equipped with the above infrastructure, we can develop strategies to operate the
multi-qubit system. The ultimate goal is to construct a routine that efficiently or
even automatically calibrates the system and performs the experiments we have
designed. Towards this goal, we use graph-based strategies [181] supported by
the Quantum Machines packages. In our case, an experiment consists of multiple
functional graphs, e.g., a graph for classical hardware calibration, a graph for

9Mix 75, SNO75-1/2 from Palomar Engineers
10entropylab and entropylab_qpudb. https://github.com/entropy-lab/entropy
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Figure 3.7: Multi-qubit system operation. An example experiment (Quan-
tum chaotic evolution) consists of three graphs: single-qubit calibration graph
(Single_Q_Cal), multi-qubit calibration graph (Multi_Q_Cal), and many-body
evolution graph (Many-body_Evol). The graph Single_Q_Cal consists of multi-
ple nodes with inter-dependency, including Qj spectroscopy (Qj_spec), multi-qubit
bias tuning (Multi_Qtuning), Qj Rabi (Qj_Rabi), and Qj read-out optimization
(Qj_readout_opti). The node Q10_spec takes the input parameters and the
qpu_db to prepare the control of classical hardware such as QDAC and the local
oscillators (LO), and generate the configuration (config) to feed into the QUA
program (Run_prog). The QUA program controls the OPX+, which both sends
signals into and collect information from the quantum simulator. The node then
analyzes and visualizes the data (Analyze_data), and updates the qpu_db for the
next node.

single-qubit calibration, and a graph for multi-qubit experiment. These graphs can
be run sequentially or individually depending on the users’ demand. Each graph
consists of multiple nodes which complete specific calibrations or operations such
as qubit spectroscopy, optimal read-out condition calibration, or tuning all qubits
on-resonance to interact under the Hamiltonian. Each node is defined in a relatively
generic way such that it can be used for different elements and parameters. More
specifically, when initializing a node, we pass input parameters such as the qubit
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label, the sweeping range, and the center frequency into a qubit spectroscopy node.
By specifying these node parameters and the dependency among the nodes, we
have constructed a graph. During the execution of nodes on the directed graph, it
is important to keep track of the parameters renewed from the calibrations, where
the infrastructure qpu_db plays the role of registering the most up-to-date status
of the system. Within each node, the program takes the input parameters and
the current qpu_db to update the status of classical hardware and construct the
configuration to control the OPX+. After the operation, the node is responsible
of collecting and analyzing the data, as well as updating the qpu_db if necessary. A
structural illustration of running an experiment is shown in Fig. 3.7.

The above infrastructure and graph-based strategies have enabled the automatic
experimental run starting from single-qubit calibration, multi-qubit calibration, to
chaotic quantum many-body evolution described in Chapter 6. The automatic run
can continue for more than 10 hours under the usual condition that the experimental
system is stable. Although not yet implemented, the running strategies can be
further developed to handle more complicated situations such as checking whether
a calibration remains valid and running partial calibrations as needed [181].
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C h a p t e r 4

CAVITY QUANTUM ELECTRODYNAMICS WITH ATOM-LIKE
MIRRORS

Equipped with the theoretical background of waveguide QED and the experimen-
tal techniques from design to measurement, we can put the pieces together and
tackle experimentally one of the major challenges of waveguide QED mentioned in
Sec. 2.1. This challenge—that the rapid decay of quantum emitters into the waveg-
uide hampers the observation and usage of any coherent interaction—is rooted in the
nature of waveguide-mediated interactions. Here, combining a smart protocol [139]
and careful engineering, we observe, for the first time, coherent waveguide-mediated
dynamics in an open environment. In this chapter, we start with an introduction
placing this experiment in a rich historical context of light-matter interaction with a
collective of quantum emitters. We then provide an intuitive picture of the experi-
ments followed by measurement results in spectroscopy and time domain. Finally,
we explore the higher excitation manifold and demonstrate the quantum nature of
the collective effects. This chapter is adapted from [47] with a method section at
the end of this chapter and the supplementary information in App. B.

4.1 Introduction

It has long been recognized that atomic emission of radiation is not an immutable
property of an atom, but rather is dependent on the electromagnetic environ-
ment [100], and in the case of ensembles, also on the collective interactions between
the atoms [136, 182–185]. In an open radiative environment, the hallmark of collec-
tive interactions is super-radiant spontaneous emission [136], with non-dissipative
dynamics largely obscured by rapid atomic decay [186]. Here, with precise position-
ing of artificial atoms in the form of transmon qubits [69] along a one-dimensional
waveguide, we observe dynamical exchange of excitations between a single artifi-
cial atom and an entangled collective state of an atomic array [139]. This collective
state is a dark state which traps radiation, creating a form of cavity with artificial
atoms acting as resonant mirrors in the otherwise open waveguide. The emergent
atom-cavity system is shown to achieve a large cooperativity (C ≳ 100), entering
the regime of strong coupling in which coherent interactions overwhelm all dissipa-
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tive and decoherence effects. Achieving strong coupling with interacting qubits in
an open waveguide provides an efficient means of synthesizing multi-photon dark
states, and more broadly, paves the way for exploiting correlated dissipation and
decoherence-free subspaces of quantum emitter arrays at the many-body level [146,
187–189].

Collective interaction of atoms in the presence of a radiation field has been stud-
ied since the early days of quantum physics. As first studied by Dicke [136], the
interaction of resonant atoms in such systems results in the formation of super-
and sub-radiant states in the spontaneous emission. While Dicke utilized his cen-
tral insight—that atoms interact coherently even through an open environment—to
understand the radiation properties of an idealized, point-like atomic gas, the dynam-
ical properties of ordered extended ensembles coupled to open environments exhibit
similarly elegant physics. In their most essential form, such systems can be stud-
ied within the canonical waveguide quantum electrodynamics (QED) model [125]:
atoms coupled to a one-dimensional (1D) continuum realized by an optical fiber or
a microwave waveguide [115, 119]. Within this model, a diverse and rich set of
phenomena await experimental study. For instance, one can synthesize an artificial
cavity QED system [139], distill exotic many-excitation dark states with fermionic
spatial correlations [146], and use classical light sources to generate entangled and
quantum many-body states of light [187–189].

A central technical hurdle common to these research avenues—reaching the so-
called “strong coupling” regime, in which atom-atom interactions dominate decay—
is of ubiquitous import and experimental difficulty in quantum science. This hurdle
is especially difficult to clear in waveguide QED, owing to the fact that while the
waveguide facilitates infinite-range interactions between the atoms [147, 148], it
also provides a dissipative channel [190]. Decoherence through this and other
sources destroys the fragile many-body states of the system, which has limited
the experimental state-of-the-art to spectroscopic probes of waveguide-mediated
interactions [149, 163, 191]. However, by utilizing the collective dark states of
precisely placed atoms whose overwhelming source of decoherence is emission into
the waveguide, the strong coupling limit is predicted to be within reach [139]. Addi-
tionally, if the timescale of single-atom emission into the waveguide is long enough
to permit measurement and manipulation of the system, the coherent dynamics can
be driven and probed at the single-atom level. Here, we clear all of these hurdles
with a waveguide QED system consisting of transmon qubits coupled to a common
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microwave waveguide, thereby unleashing the full toolbox of waveguide QED.

As a demonstration of these new tools, we construct the aforementioned emergent
cavity QED system and probe its linear and non-linear dynamics. This realization
features an ancillary probe qubit and a cavity-like mode formed by the dark state of
two single-qubit mirrors. Using waveguide transmission and individual addressing
of the probe qubit, we are able to observe spectroscopic and time-domain signatures
of the collective dynamics of the qubit array, including vacuum Rabi oscillations
between the probe qubit and the cavity-like mode. The latter provides direct evidence
of strong coupling between these modes as well as a natural method to efficiently
create and measure dark states that are inaccessible through the waveguide. In
contrast to traditional cavity QED, our cavity-like mode is itself quantum nonlinear,
as we show by characterizing the two-excitation dynamics of the array.

4.2 Theoretical formalism
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Figure 4.1: Schematics of atomic cavity QED. a, Schematic showing cavity config-
uration of waveguide-QED system consisting of an array ofN mirror qubits (N = 2
shown; green) coupled to the waveguide with an inter-qubit separation of λ0/2, with
a probe qubit (red) at the center of the mirror array. b, Schematic showing analogous
cavity-QED system with correspondence to waveguide parameters. c, Energy level
diagram of the system of three qubits (2 mirror, one probe). The mirror dark state
|D⟩ is coupled to the excited state of the probe qubit |e⟩p at a cooperatively enhanced
rate of 2J =

√
2Γ1DΓ1D,p. The bright state is decoupled from the probe qubit. This

figure is adapted from [47].

The collective evolution of an array of resonant qubits coupled to a 1D waveguide
can be formally described by a master equation of the form ˙̂ρ = −i/ℏ[Ĥeff, ρ̂] +∑

m,n Γm,nσ̂
m
ge ρ̂σ̂

n
eg [139, 145], where σ̂m

ge = |gm⟩⟨em|, and m and n represent
indices into the qubit array. Within the Born-Markov approximation, the effective
Hamiltonian can be written in the interaction picture as

Ĥeff = ℏ
∑
m,n

(
Jm,n − i

Γm,n

2

)
σ̂m

egσ̂
n
ge. (4.1)
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Figure 4.1 depicts the waveguide-QED system considered in this work. The system
consists of an array ofN qubits separated by distance d = λ0/2 and a separate probe
qubit centered in the middle of the array with waveguide decay rate Γ1D,p (λ0 = c/ω0

is the wavelength of a radiation field in the waveguide that is in resonance with the
qubits). In this configuration, the effective Hamiltonian can be simplified in the
single-excitation manifold to

Ĥeff = −iNℏΓ1D

2
Ŝ†

BŜB − iℏΓ1D,p

2
σ̂(p)

ee + ℏJ
(
σ̂(p)

ge Ŝ
†
D + h.c.

)
, (4.2)

where ŜB,D = 1/
√
N
∑

m>0(σ̂
m
ge ∓ σ̂−m

ge )(−1)m are the lowering operators of the
bright collective state and the fully-symmetric dark collective state of the qubit array
(as shown in Fig. 4.1a, m > 0 and m < 0 denote qubits to the right and left of
the probe qubit, respectively). As evident by the last term in the Hamiltonian, the
probe qubit is coupled to this dark state at a cooperatively enhanced rate 2J =√
N
√

Γ1DΓ1D,p. The bright state super-radiantly emits into the waveguide at a
rate of NΓ1D. The collective dark state has no coupling to the waveguide, and a
decoherence rate Γ′

D which is set by parasitic damping and dephasing not captured
in the simple waveguide-QED model (App. B.2). In addition to the bright and dark
collective states described above, there exist an additionalN − 2 collective states of
the qubit array with no coupling to either the probe qubit or the waveguide [139].

The subsystem consisting of coupled probe qubit and symmetric dark state of the
mirror qubit array can be described in analogy to a cavity-QED system [139]. In
this picture the probe qubit plays the role of a two-level atom and the dark state
mimics a high-finesse cavity with the qubits in the λ0/2-spaced array acting as
atomic mirrors (see Fig. 4.1b). In general, provided that the fraction of excited
array qubits remains small as N increases, ŜD stays nearly bosonic and the analogy
to the Jaynes-Cummings model remains valid. Mapping waveguide parameters to
those of a cavity-QED system, the cooperativity between probe qubit and atomic
cavity can be written as C = (2J)2/(Γ1D,p + Γ′

p)Γ
′
D ≈ NP1D. Here P1D = Γ1D/Γ

′
D

is the single qubit Purcell factor, which quantifies the ratio of waveguide emission
rate to parasitic damping and dephasing rates. Attaining C > 1 is a prerequisite
for observing coherent quantum effects. Referring to the energy level diagram of
Fig. 4.1c, by sufficiently reducing the waveguide coupling rate of the probe qubit
one can also realize a situation in which J > (Γ1D,p + Γ′

p),Γ
′
D, corresponding

to the strong coupling regime of cavity QED between excited state of the probe
qubit (|e⟩p|G⟩) and a single photon in the atomic cavity (|g⟩p|D⟩). This mapping
of a waveguide QED system onto a cavity QED analog therefore allows to use
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cavity-QED techniques to efficiently probe the dark states of the qubit array with
single-photon precision.

4.3 Experimental results

Device description and spectroscopy results
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Figure 4.2: Device and single-qubit spectroscopy. a, Optical image of the fab-
ricated waveguide-QED chip. Tunable transmon qubits interact via microwave
photons in a superconducting coplanar waveguide (CPW; false-color orange trace).
The CPW is used for externally exciting the system and is terminated in a 50-Ω load.
Insets: Scanning electron microscope image of the different qubit designs used in
our experiment. The probe qubit, designed to have Γ1D,p/2π = 1 MHz, is acces-
sible via a separate CPW (XY4; false-color blue trace) for state preparation, and is
also coupled to a compact microwave resonator (R4; false-color cyan) for dispersive
read-out. The mirror qubits come in two types: type-I with Γ1D/2π = 20 MHz
and type-II with Γ1D/2π = 100 MHz. b, Waveguide transmission spectrum across
individual qubit resonances (top: probe qubit (Q4) ; bottom: individual type-I (Q6,
green curve) and type-II (Q1, blue curve) mirror qubits). From Lorentzian line-
shape fit of the measured waveguide transmission spectra we infer Purcell factors
of P1D = 11 for the probe qubit and P1D = 98 (219) for the type-I (type-II) mirror
qubit. This figure is adapted from [47].

The fabricated superconducting circuit used to realize the waveguide-QED system
is shown in Fig. 4.2a. The circuit consists of seven transmon qubits (Qj for j = 1-
7), all of which are side-coupled to the same coplanar waveguide (CPW). Each
qubit’s transition frequency is tunable via an external flux bias port (Z1-Z7). We
use the top-center qubit in the circuit (Q4) as a probe qubit. This qubit can be
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independently excited via a weakly-coupled CPW drive line (XY4), and is coupled
to a lumped-element microwave cavity (R4) for dispersive read-out of its state. The
other six qubits are mirror qubits. The mirror qubits come in two different types
(I and II), which have been designed to have different waveguide coupling rates
(Γ1D,I/2π = 20 MHz and Γ1D,II/2π = 100 MHz) in order to provide access to a
range of Purcell factors. Type-I mirror qubits also lie in pairs across the CPW
waveguide and have rather large (∼ 50 MHz) direct coupling. We characterize
the waveguide and parasitic coupling rates of each individual qubit by measuring
the phase and amplitude of microwave transmission through the waveguide (see
Fig. 4.2b) [118]. In order to reduce thermal noise, measurements are performed in
a dilution refrigerator at a base temperature of 8 mK (see Methods Sec. 4.5). For
a sufficiently weak coherent drive the effects of qubit saturation can be neglected
and the on-resonance extinction of the coherent waveguide tone relates to a lower
bound on the individual qubit Purcell factor. Any residual waveguide thermal
photons, however, can result in weak saturation of the qubit and a reduction of the
on-resonance extinction. We find an on-resonance intensity transmittance as low
as 2 × 10−5 for the type-II mirror qubits, corresponding to an upper bound on the
CPW mode temperature of 43 mK and a lower bound on the Purcell factor of 200.
Further details of the design, fabrication, and measured parameters of probe and
each mirror qubit are provided in the section.

The transmission through the waveguide, in the presence of the probe qubit, can also
be used to measure spectroscopic signatures of the collective dark state of the qubit
array. As an example of this we utilize a single pair of mirror qubits (Q2, Q6 of type-
I), which we tune to a frequency where their separation along the waveguide axis
is d = λ0/2. The remaining qubits on the chip are decoupled from the waveguide
input by tuning their frequency away from the measurement point. Figure 4.3a shows
the waveguide transmission spectrum for a weak coherent tone in which a broad
resonance dip is evident corresponding to the bright state of the mirror qubit pair.
We find a bright state waveguide coupling rate of Γ1D,B ≈ 2Γ1D = 2π × 26.8 MHz
by fitting a Lorentzian lineshape to the spectrum. The dark state of the mirror qubits,
being dark, is not observable in this waveguide spectrum. The dark state becomes
observable, however, when measuring the waveguide transmission with the probe
qubit tuned into resonance with the mirror qubits (see Fig. 4.3b). In addition to
the broad response from the bright state, in this case there appears two spectral
peaks near the center of the bright state resonance (Fig. 4.3c). This pair of highly
non-Lorentzian spectral features result from the Fano interference between the broad
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Figure 4.3: Vacuum Rabi splitting. a, Transmission through the waveguide for two
mirror qubits (Q2,Q6) on resonance, with the remaining qubits on the chip tuned away
from the measurement frequency range. b, Transmission through the waveguide as
a function of the flux bias tuning voltage of the probe qubit (Q4). c, Waveguide
transmission spectrum for the three qubits tuned into resonance. d. Transmission
spectrum as measured between the probe qubit drive line XY4 and the waveguide
output as a function of flux bias tuning of the probe qubit. e, XY4-to-waveguide
transmission spectrum for the three qubits tuned into resonance. The dashed red
lines in (d) and solid black line in (e) show predictions of a numerical model with
experimentally measured qubit parameters. The prediction in (e) includes slight
power broadening effects. Legend: M1 and P denote type-I mirror qubits (Q2,Q6)
and the probe qubit (Q4), respectively. This figure is adapted from [47].

bright state and the hybridized polariton resonances formed between the dark state of
the mirror qubits (atomic cavity photon) and the probe qubit. The hybridized probe
qubit and atomic cavity eigenstates can be more clearly observed by measuring the
transmission between the probe qubit drive line (XY4) and the output port of the
waveguide (see Fig. 4.3d). As the XY4 line does not couple to the bright state due to
the symmetry of its positioning along the waveguide, we observe two well-resolved
resonances in Fig. 4.3e with mode splitting 2J/2π ≈ 6 MHz when the probe qubit
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is nearly resonant with the dark state. Observation of vacuum Rabi splitting in the
hybridized atomic cavity-probe qubit polariton spectrum signifies operation in the
strong coupling regime.

Time-domain measurements
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Figure 4.4: Vacuum Rabi oscillations. Measured population of the excited state of
the probe qubit for three different scenarios. (i) Probe qubit tuned to fp0 = 6.55GHz,
with all mirror qubits tuned away, corresponding to free population decay (red
curve). (ii) Probe qubit tuned into resonance with a pair of type-I mirror qubits
(Q2,Q6) at frequency fm1 = 6.6 GHz corresponding to dI = λ0/2 (green curve).
(iii) Probe qubit tuned in resonance with type-II mirror qubits (Q1,Q7) at frequency
fm2 = 5.826 GHz corresponding to dII = λ0/2 (blue curve). Inset: The sequence of
pulses applied during the measurement. Legends: P, M1, and M2 denote the probe
qubit, type-I, and type-II mirror qubits, respectively. This figure is adapted from
[47].

To further investigate the signatures of strong coupling we perform time domain
measurements in which we prepare the system in the initial state |g⟩p|G⟩ → |e⟩p|G⟩
using a 10 ns microwave π pulse applied at the XY4 drive line. Following excitation
of the probe qubit we use a fast (5 ns) flux bias pulse to tune the probe qubit into
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resonance with the collective dark state of the mirror qubits (atomic cavity) for a
desired interaction time, τ . Upon returning to its initial frequency after the flux
bias pulse, the excited state population of the probe qubit state is measured via
the dispersively coupled read-out resonator. In Fig. 4.4 we show a timing diagram
and plot three measured curves of the probe qubit’s population dynamics versus
τ . The top red curve corresponds to the measured probe qubit’s free decay, where
the probe qubit is shifted to a detuned frequency fp0 to eliminate mirror qubit
interactions. From an exponential fit to the decay curve we find a decay rate of
1/T1 ≈ 2π× 1.19 MHz, in agreement with the result from waveguide spectroscopy
at fp0. In the middle green and bottom blue curves we plot the measured probe qubit
population dynamics when interacting with an atomic cavity formed from type-I
and type-II mirror qubit pairs, respectively. In both cases the initially prepared
state |e⟩p|G⟩ undergoes vacuum Rabi oscillations with the dark state of the mirror
qubits |g⟩p|D⟩. Along with the measured data we plot a theoretical model where the
waveguide coupling, parasitic damping, and dephasing rate parameters of the probe
qubit and dark state are taken from independent measurements, and the detuning
between probe qubit and dark state is left as a free parameter (App. B.2). From the
excellent agreement between measurement and model we infer an interaction rate of
2J/2π = 5.64 MHz (13.0 MHz) and a cooperativity of C = 94 (172) for the type-I
(type-II) mirror system. For both mirror types we find that the system is well into the
strong coupling regime (J ≫ Γ1D,p+Γ′

p,Γ
′
D), with the photon-mediated interactions

dominating the decay and dephasing rates by roughly two orders of magnitude.
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Figure 4.5: Dark state coherence. a, Measurement of the population decay time
(T1,D) of the dark state of type-I (green curve) and type-II (blue curve) mirror qubits.
b, Corresponding Ramsey coherence time (T ∗

2,D) of the type-I and type-II dark states.
This figure is adapted from [47].
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The tunable interaction time in our measurement sequence also allows for performing
state transfer between the probe qubit and the dark state of the mirror qubits via an
iSWAP gate. We measure the dark state’s population decay in a protocol where we
excite the probe qubit and transfer the excitation into the dark state (see Fig. 4.5a).
From an exponential fit to the data we find a dark state decay rate of T1,D = 757 ns
(274 ns) for type-I (type-II) mirror qubits, enhanced by roughly the cooperativity over
the bright state lifetime. In addition to lifetime, we can measure the coherence time
of the dark state with a Ramsey-like sequence (see Fig. 4.5b), yielding T ∗

2,D = 435 ns
(191 ns) for type-I (type-II) mirror qubits. The collective dark state coherence time,
being slightly shorter than its population decay time, hints at correlated sources of
noise in the distantly entangled qubits forming the dark state (App. B.3).
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Figure 4.6: Beyond single-excitation manifold. a, Waveguide transmission spec-
trum through the atomic cavity without (brown data points) and with (orange data
points) pre-population of the cavity. Here the atomic cavity was initialized in a
single photon state by performing an iSWAP gate with the probe qubit followed
by detuning of the probe qubit away from resonance. In both cases the transmis-
sion measurement is performed using coherent rectangular pulses with a duration
of 260 ns and a peak power of P ≈ 0.03(ℏω0Γ1D). Solid lines show theory fits
from numerical modeling of the system. b, Energy level diagram of the 0 (|G⟩), 1
(|D⟩,|B⟩), and 2 (|E⟩) excitation manifolds of the atomic cavity indicating waveguide
induced decay and excitation pathways. c, Rabi oscillation with two excitations in
the system of probe qubit and atomic cavity. The shaded region shows the first
iSWAP step in which an initial probe qubit excitation is transferred to the atomic
cavity. Populating the probe qubit with an additional excitation at this point results
in strong damping of subsequent Rabi oscillations due to the rapid decay of state
|E⟩. Dashed brown curve is the predicted result for interaction of the probe qubit
with an equivalent linear cavity. The atomic cavity is formed from type-I mirror
qubits Q2 and Q6. This figure is adapted from [47].
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Our experiments so far have probed the waveguide and multi-qubit array with a single
excitation. While the cavity QED analog is helpful for understanding the response of
the system in this regime, this analogy is not fully accurate for understanding multi-
excitation dynamics. Driving the system beyond a single excitation, the quantum
nonlinear response of the qubits leads to a number of interesting phenomena. To
observe this, we populate the atomic cavity with a single photon via an iSWAP
gate and then measure the waveguide transmission of weak coherent pulses through
the system. Figure 4.6a shows transmission through the atomic cavity formed from
type-I mirror qubits before and after adding a single photon. The sharp change in
the transmissivity of the atomic cavity is a result of trapping in the long-lived dark
state of the mirror qubits. The dark state has no transition dipole to the waveguide
channel (see Fig. 4.6b), and thus it cannot participate in absorption or emission of
photons when probed via the waveguide. As a result, populating the atomic cavity
with a single photon makes it nearly transparent to incoming waveguide signals for
the duration of the dark-state lifetime. This is analogous to the electron shelving
phenomenon which leads to suppression of resonance fluorescence in three-level
atomic systems [192]. As a further example, we use the probe qubit to attempt to
prepare the cavity in the doubly excited state via two consecutive iSWAP gates. In
this case, with only two mirror qubits and the rapid decay via the bright state of the
two-excitation state |E⟩ of the mirror qubits (refer to Fig. 4.6b), the resulting probe
qubit population dynamics shown in Fig. 4.6c have a strongly damped response
(C < 1) with weak oscillations occurring at the vacuum Rabi oscillation frequency.
This is in contrast to the behavior of a linear cavity (dashed green curve of Fig. 4.6c),
where driving the second photon transition leads to persistent Rabi oscillations with
a frequency that is

√
2 larger than vacuum Rabi oscillations. Further analysis of the

nonlinear behavior of the atomic cavity is provided in App. B.4.

The waveguide-QED chip of Fig. 4.2a can also be used to investigate the spectrum
of sub-radiant states that emerge when N > 2 and direct interaction between
mirror qubits is manifest. This situation can be realized by taking advantage of the
capacitive coupling between co-localized pairs of type-I qubits (Q2 and Q3 or Q5

and Q6). Although in an idealized 1D waveguide model there is no cooperative
interaction term between qubits with zero separation along the waveguide, as shown
in Fig. 4.7a we observe a strong coupling (g/2π = 46 MHz) between the co-
localized pair of Q2 and Q3 mirror qubits. This coupling results from near-field
components of the electromagnetic field that are excluded in the simple waveguide
model. The non-degenerate hybridized eigenstates of the qubit pair effectively
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Figure 4.7: N = 4 compound atomic mirrors. a, Avoided mode crossing of
a pair of type-I mirror qubits positioned on the opposite sides of the CPW. Near
the degeneracy point, the qubits form a pair of compound eigenstates consisting
of symmetric (|S⟩) and anti-symmetric (|A⟩) states with respect to the waveguide
axis. b, Measured transmission through the waveguide with the pair of compound
atomic mirrors aligned in frequency. The two broad resonances correspond to
super-radiant states |B1⟩ and |B2⟩ as indicated. Tuning the probe qubit we observe
the (avoided-crossing like) signatures of the interaction of the probe qubit with the
dark states. c, Illustration of the single-excitation manifold of the collective states
of a N = 4 mirror qubits forming a pair of compound atomic cavities. The bright
(super-radiant) and dark (sub-radiant) states can be identified by comparing the
symmetry of the compound qubit states with the resonant radiation field pattern in
the waveguide. d, Probe qubit measurements of the two dark states, |D1⟩ and |D2⟩.
In these measurements the frequency of each dark state is shifted to ensure λ0/2
separation between the two compound atomic mirrors. This figure is adapted from
[47].
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behave as a compound atomic mirror. The emission rate of each compound mirror
to the waveguide can be adjusted by setting the detuning ∆ between the pair. As
illustrated in Fig. 4.7b, resonantly aligning the compound atomic mirrors on both
ends of the waveguide results in a hierarchy of bright and dark states involving
both near-field and waveguide-mediated cooperative coupling. Probing the system
with a weak tone via the waveguide, we identify the two super-radiant combinations
of the compound atomic mirrors (Fig. 4.7c). Similar to the case of a two-qubit
cavity, we can identify the collective dark states via the probe qubit. As evidenced
by the measured Rabi oscillations shown in Fig. 4.7d, the combination of direct
and waveguide-mediated interactions of mirror qubits in this geometry results in
the emergence of a pair of collective entangled states of the four qubits acting as
strongly-coupled atomic cavities with frequency separation of

√
4g2 +∆2.

4.4 Conclusion and outlook

In conclusion, we have realized a synthetic cavity QED system to observe and drive
the coherent dynamics that emerge from correlated dissipation in an open waveg-
uide. While our current work has reached single-qubit Purcell factors of 200—an
order-of-magnitude increase in the experimental state-of-the-art in planar supercon-
ducting quantum circuits and on par with the values achievable in less scalable 3D
architectures [165]—further improvement is possible. With better thermalization
to the waveguide [177] and coherence times in line with the best planar supercon-
ducting qubits [193], Purcell factors in excess of 104 should be achievable. In this
regime, with an already achieved system size of N = 4, a universal set of quantum
gates with fidelity above 0.99 can theoretically be realized by encoding information
in decoherence-free subspaces [129]. Even without improved Purcell factors, the
demonstrated control over the sub-radiant states of an atomic chain enables studying
formation of fermionic correlations between excitations, and the power-law decay
dynamics associated with a critical open system in a modestly-sized array (N =
10) [146]. Further, the demonstrated ability to measure the population decay time
and coherence time for the entangled states of multiple distant qubits provides a valu-
able experimental tool for understanding the sources of correlated decoherence in
circuit QED. Finally, reducing the frequency disorder of the transmon qubits beyond
the values measured in our system (δf ≈ 60 MHz) and using a slow-light metama-
terial waveguide [172], would allow chip-scale waveguide-QED experiments with
a much larger number of qubits, in the range N = 10–100, where the full extent of
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the many-body dynamics of large quantum spin chains can be studied [187–189].

4.5 Methods

Fabrication

The device used in this work is fabricated on a 1cm×1cm high resistivity 10 kΩ-cm
silicon substrate. The ground plane, waveguides, resonator, and qubit capacitors
are patterned by electron-beam lithography followed by electron beam evaporation
of 120 nm Al at a rate of 1 nm/s. A liftoff process is performed in N-methyl-2-
pyrrolidone at 80 ◦C for 1.5 hours. The Josephson junctions are fabricated using
double-angle electron-beam evaporation on suspended Dolan bridges, following
similar techniques as in Ref. [194]. The airbridges are patterned using grayscale
electron-beam lithography and developed in a mixture of isopropyl alcohol and
deionized water [195]. After 2 hours of resist reflow at 105 ◦C, electron-beam
evaporation of 140 nm Al is performed at 1 nm/s rate following 5 minutes of Ar ion
mill. Liftoff is done in the same fashion as in the previous steps.

Qubits

We have designed and fabricated transmon qubits in three different variants for
the experiment (see Fig. 4.8a-b): type-I mirror qubits (Q2, Q3, Q5, Q6), type-II
mirror qubits (Q1, Q7), and the probe qubit (Q4). The qubit frequency tuning range,
waveguide coupling rate (Γ1D), and parasitic decoherence rate (Γ′) can be extracted
from waveguide spectroscopy measurements of the individual qubits. The values for
all the qubits inferred in this manner are listed in Table 4.1. Note that Γ′ is defined
as due to damping and dephasing from channels other than the waveguide at zero
temperature. The inferred value of Γ′ from waveguide spectroscopy measurements
is consistent with this definition in the zero temperature waveguide limit (effects of
finite waveguide temperature are considered in App. B.1). The standard deviation
in maximum frequencies of the four identically designed qubits (type-I) is found as
61 MHz, equivalent to ∼ 1% qubit frequency disorder in our fabrication process.
Asymmetric Josephson junctions are used in all qubits’ superconducting quantum
interference device (SQUID) loops (Fig. 4.8c) to reduce dephasing from flux noise,
which limits the tuning range of qubits to ∼ 1.3 GHz. For Q4, the Josephson
energy of the junctions are extracted to be (EJ1, EJ2)/h = (18.4, 3.5) GHz, giving
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Figure 4.8: Scanning electron microscope of the fabricated device. a, Type-I (Q2,
Q3) and type-II (Q1) mirror qubits coupled to the coplanar waveguide (CPW). b,
The central probe qubit (Q4) and lumped-element read-out resonator (R4) coupled
to CPW. Inset: inductive meander of the lumped-element read-out resonator. c,
A superconducting quantum interference device (SQUID) loop with asymmetric
Josephson junctions used for qubits. d, An airbridge placed across the waveguide
to suppress slotline mode. This figure is adapted from [47].

junction asymmetry of d ≡ EJ1−EJ2

EJ1+EJ2
= 0.68. The anharmonicity was measured to

be η/2π = −272 MHz and EJ/EC = 81 at maximum frequency for Q4.

Read-out

We have fabricated a lumped-element resonator (shown in Fig. 4.8b) to perform
dispersive read-out of the state of central probe qubit (Q4). The lumped-element
resonator consists of a capacitive claw and an inductive meander of ∼ 1 µm pitch,
effectively acting as a quarter-wave resonator. The bare frequency of resonator and
coupling to probe qubit are extracted to be fr = 5.156 GHz and g/2π = 116 MHz,
respectively, giving dispersive frequency shift of χ/2π = −2.05 MHz for Q4 at
maximum frequency. The resonator is loaded to the common waveguide in the
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Q1 Q2 Q3 Q4 Q5 Q6 Q7

fmax (GHz) 6.052 6.678 6.750 6.638 6.702 6.817 6.175
fmin (GHz) 4.861 5.373 5.389 5.431 5.157 5.510 4.972
Γ1D/2π (MHz) 94.1 16.5 13.9a,b 0.91 18.4b 18.1 99.5
Γ′/2π (kHz) 430 < 341 < 760a,b 81 375b 185 998
a Measured at 6.6 GHz
b Measured without the cold attenuator

Table 4.1: Qubit characteristics. fmax (fmin) is the maximum (minimum) frequency
of the qubit, corresponding to “sweet spots” with zero first-order flux sensitivity. Γ1D
is the qubit’s rate of decay into the waveguide channel and Γ′ is its parasitic deco-
herence rate due to damping and dephasing from channels other than the waveguide
at 0 temperature. All reported values are measured at the maximum frequency of
each qubit, save for Q3 in which case the values were measured at 6.6 GHz (marked
with superscript a). With the exception of Q3 and Q5 (marked with superscript b),
all the values are measured with the cold attenuator placed in the input line of the
waveguide (App. B.1).

experiment, and its internal and external quality factors are measured to be Qi =

1.3 × 105 and Qe = 980 below single-photon level. It should be noted that the
resonator-induced Purcell decay rate of Q4 is ΓPurcell

1 /2π ∼ 70 kHz, small compared
to the decay rate into the waveguide Γ1D,p/2π ∼ 1 MHz. The compact footprint
of the lumped-element resonator is critical for minimizing the distributed coupling
effects that may arise from interference between direct qubit decay to the waveguide
and the the Purcell decay of the qubit via the resonator path.

Suppression of spurious modes

In our experiment we use a coplanar transmission line for realizing a microwave
waveguide. In addition to the fundamental propagating mode of the waveguide,
which has even symmetry with respect to the waveguide axis, these structures also
support a set of modes with the odd symmetry, known as the slotline modes. The
propagation of the slotline mode can be completely suppressed in a waveguide with
perfectly symmetric boundary conditions. However, in practice perfect symmetry
cannot be maintained over the full waveguide length, which unavoidably leads to
presence of the slotline mode as a spurious loss channel for the qubits. Crossovers
connecting ground planes across the waveguide are known to suppress propagation
of slotline mode, and to this effect, aluminum airbridges have been used in super-
conducting circuits with negligible impedance mismatch for the desired CPW mode
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[196].

In this experiment, we place airbridges (Fig. 4.8d) along the waveguide and control
lines with the following considerations. Airbridges create reflecting boundary for
slotline mode, and if placed by a distance d a discrete resonance corresponding to
wavelength of 2d is formed. By placing airbridges over distances smaller than λ/4
apart from each other (λ is the wavelength of the mode resonant with the qubits),
we push the slotline resonances of the waveguide sections between the airbridges
to substantially higher frequencies. In this situation, the dissipation rate of qubits
via the spurious channel is significantly suppressed by the off-resonance Purcell
factor ΓPurcell

1 ∼ (g/∆)2κ, where ∆ denotes detuning between the qubit transition
frequency and the frequency of the odd mode in the waveguide section between the
two airbridges. The parameters g and κ are the interaction rate of the qubit and the
decay rate of the slot-line cavity modes. In addition, we place the airbridges before
and after bends in waveguide, to ensure the fundamental waveguide mode is not
converted to the slot-line mode upon propagation [197].

Crosstalk in flux biasing

We tune the frequency of each qubit by supplying a bias current to individual Z
control lines, which controls the magnetic flux in the qubit’s SQUID loop. The bias
currents are generated via independent bias voltages generated by seven arbitrary
waveform generator (AWG) channels, allowing for simultaneous tuning of all qubits.
In practice, independent frequency tuning of each qubit needs to be accompanied
by small changes in the flux bias of the qubits in the near physical vicinity of the
qubit of interest, due to cross-talk between adjacent Z control lines.

In this experiment, we have characterized the crosstalk between bias voltage channels
of the qubits in the following way. First, we tune the qubits not in use to frequencies
more than 800 MHz away from the working frequency (which is set as either
5.83 GHz or 6.6 GHz). These qubits are controlled by fixed biases such that their
frequencies, even in the presence of crosstalk from other qubits, remain far enough
from the working frequency and hence are not considered for the rest of the analysis.
Second, we tune the remaining qubits in use to relevant frequencies within 100MHz

of the working frequency and record the biases v0 and frequencies f0 of these
qubits. Third, we vary the bias on only a single (j-th) qubit and linearly interpolate
the change in frequency (fi) of the other (i-th) qubits with respect to bias voltage
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vj on j-th qubit, finding the cross talk matrix component Mij = (∂fi/∂vj)v=v0 .
Repeating this step, we get the following (approximately linearized) relation between
frequencies f and bias voltages v of qubits:

f ≈ f0 +M(v − v0).

Finally, we take the inverse of the above relation to find bias voltages v that is
required for tuning qubits to frequencies f :

v ≈ v0 +M−1(f − f0).

An example of such crosstalk matrix between Q2, Q4, and Q6 near f0 = (6.6, 6.6, 6.6)GHz
used in the experiment is given by

M =

 0.2683 −0.0245 −0.0033

−0.0141 −0.5310 0.0170

0.0016 0.0245 0.4933

GHz/V.

This indicates that the crosstalk level between Q4 and either Q2 or Q6 is about 5%,
while that between Q2 and Q6 is less than 1%. We have repeated similar steps for
other configurations in the experiment.

Measurement setup

Fig. 4.9 illustrates the outline of the measurement chain in our dilution refrigerator.
The sample is enclosed in a magnetic shield which is mounted at the mixing chamber.
We have outlined four different types of input lines used in our experiment. Input
lines to the waveguide and XY4 go through a DC block at room temperature and are
attenuated by 20 dB at the 4 K stage, followed by additional 40 dB of attenuation at
the mixing chamber. The fast flux tuning lines (Z3, Z4) are attenuated by 20 dB and
are filtered with a low-pass filter with corner frequency at 225 MHz to minimize
thermal noise photons while maintaining short rise and fall time of pulses for fast
flux control. The slow flux tuning lines (Z1, Z2, Z5, Z6, Z7) are filtered by an
additional low-pass filter with 64 kHz corner frequency at the 4K stage to further
suppress noise photons. In addition, the waveguide signal output path contains a
high electron mobility transistor (HEMT) amplifier at the 4K plate. Three circulators
are placed in between the HEMT and the sample to ensure (> 70 dB) isolation of the
sample from the amplifier noise. In addition, we have a series of low-pass and band-
pass filters on the output line to suppress noise sources outside the measurement
spectrum.
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Figure 4.9: Schematic of the measurement chain inside the dilution refrigerator.
The four types of input lines, the output line, and their connection to the device inside
a magnetic shield are illustrated. Attenuators are expressed as rectangles with labeled
power attenuation and capacitor symbols correspond to DC blocks. The thin-film
attenuator and a circulator (colored red) are added to the waveguide input line and
output line, respectively, in a second version of the setup and a second round of
measurements to further protect the sample from thermal noise in the waveguide
line. This figure is adapted from [47].

A thin-film “cold attenuator”, developed by Palmer’s group at the University of
Maryland [177] is added to the measurement path in order to achieve better thermal-
ization between the microwave coaxial line and its thermal environment. Similarly,
an additional circulator is added to the waveguide measurement chain in later setups
to further protect the device against thermal photons (both attenuator and circulator
are highlighted in red in the schematic in Fig. 4.9). The effect of this change is
discussed in App. B.1.

Dark state characterization

We characterize the collective dark state of mirror qubits with population decay
time T1,D and Ramsey coherence time T ∗

2,D by utilizing the cooperative interaction
with the probe qubit. For each configuration of mirror qubits, we obtain the Rabi
oscillation curve (see Fig. 4.4 and Fig. 4.7d) using fast flux-bias pulse on the probe
qubit as explained in the main text. The half-period TSWAP of Rabi oscillation results
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in a complete transfer of probe qubit population to the collective dark state or vice
versa, and hence defines an iSWAP gate.

To measure the population decay time T1,D of dark state, we excite the probe qubit
with a resonant microwave π-pulse, followed by an iSWAP gate. This prepares the
collective dark state |g⟩p|D⟩ off-resonantly decoupled from the probe qubit. After
free evolution of dark state for a variable duration τ , another iSWAP gate is applied
to transfer the remaining dark state population back to the probe qubit. Finally,
we measure the state of the probe qubit and perform an exponential fitting to the
resulting decay curve.

Likewise, we measure Ramsey coherence time T ∗
2,D of dark state as follows. First,

we excite the probe qubit to a superposition (|g⟩ + |e⟩)p|G⟩ of ground and excited
states by applying a detuned microwave π/2-pulse. Next, application of an iSWAP
gate maps this superposition to that of dark state |g⟩p(|G⟩ + |D⟩). After a varying
delay time τ , another iSWAP gate is applied, followed by detuned π/2-pulse on
the probe qubit. Measurement of the state of the probe qubit results in a damped
oscillation curve, whose decay envelope gives the Ramsey coherence time of the
dark state involved in the experiment. Note that the fast oscillation frequency in this
curve is determined by detuning of dark state with respect to the frequency of the
microwave pulses applied to the probe qubit.
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C h a p t e r 5

QUANTUM ELECTRODYNAMICS IN A TOPOLOGICAL
WAVEGUIDE

The previous chapter enters a new regime of strong light-matter collective interac-
tion by overcoming the rapid decay into the waveguide using subradiant states in the
passband. In this chapter, we explore another territory of light-matter interaction
where the light exhibits topological characteristics. Topological physics, originally
employed to describe electrons in solid state materials, have played an important
role in modeling and predicting exotic phases of matter, including quantum hall
states [198] and topological insulators [199]. The recent realization of photons in
similar periodic environment as electrons in solid state materials opened up the
burgeoning field of topological photonics [200–202]. Combined with the advance-
ment of micro- and nano-fabrication technology, topological photonics gives rise
to novel phases of matter made of photons, as well as robustness in photon trans-
port and lasing. Here, we bring topological photonics into the quantum regime by
exploring the interaction between quantum emitters and topological photons in the
waveguides with engineered dispersion. In this chapter, we start by explaining the
construction of topological waveguides using microwave metamaterials, followed
by observations of exotic properties endowed by the topology of the waveguide,
including directional qubit-photon bound states in a bandgap and collective qubit
passband spectroscopy that reflects the waveguide topological configuration. Lastly,
we demonstrate population transfer between two distant qubits via the channel of
topological edge states. This chapter is adapted from [131] and the supplementary
information is in App. C.

5.1 Introduction

Harnessing the topological properties of photonic bands [200–202] is a burgeoning
paradigm in the study of periodic electromagnetic structures. Topological con-
cepts discovered in electronic systems [198, 199] have now been translated and
studied as photonic analogs in various microwave and optical systems [201, 202].
In particular, symmetry-protected topological phases [203] which do not require
time-reversal-symmetry breaking, have received significant attention in experimen-
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tal studies of photonic topological phenomena, both in the linear and nonlinear
regime [204]. One of the simplest canonical models is the Su-Schrieffer-Heeger
(SSH) model [205, 206], which was initially used to describe electrons hopping
along a one-dimensional dimerized chain with a staggered set of hopping ampli-
tudes between nearest-neighbor elements. The chiral symmetry of the SSH model,
corresponding to a symmetry of the electron amplitudes found on the two types
of sites in the dimer chain, gives rise to two topologically distinct phases of elec-
tron propagation. The SSH model, and its various extensions, have been used in
photonics to explore a variety of optical phenomena, from robust lasing in arrays
of microcavities [207, 208] and photonic crystals [209], to disorder-insensitive 3rd
harmonic generation in zigzag nanoparticle arrays [210].

Utilization of quantum emitters brings new opportunities in the study of topological
physics with strongly interacting photons [211–213], where single-excitation dy-
namics [214] and topological protection of quantum many-body states [215] in the
SSH model have recently been investigated. In a similar vein, a topological photonic
bath can also be used as an effective substrate for endowing special properties to
quantum matter. For example, a photonic waveguide which localizes and transports
electromagnetic waves over large distances, can form a highly effective quantum
light-matter interface [94, 115, 130] for introducing non-trivial interactions be-
tween quantum emitters. Several systems utilizing highly dispersive electromagnetic
waveguide structures have been proposed for realizing quantum photonic matter ex-
hibiting tailorable, long-range interactions between quantum emitters [120, 158,
160, 162, 163]. With the addition of non-trivial topology to such a photonic bath,
exotic classes of quantum entanglement can be generated through photon-mediated
interactions of a chiral [152, 216] or directional nature [164, 217].

With this motivation, here we investigate the properties of quantum emitters cou-
pled to a topological waveguide which is a photonic analog of the SSH model,
following the theoretical proposal in Ref. [164]. Our setup is realized by coupling
superconducting transmon qubits [69] to an engineered superconducting metama-
terial waveguide [144, 172], consisting of an array of sub-wavelength microwave
resonators with SSH topology. Combining the notions from waveguide quantum
electrodynamics (QED) [115, 119, 125, 130] and topological photonics [201, 202],
we observe qubit-photon bound states with directional photonic envelopes inside a
bandgap and cooperative radiative emission from qubits inside a passband depen-
dent on the topological configuration of the waveguide. Coupling of qubits to the
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waveguide also allows for quantum control over topological edge states, enabling
quantum state transfer between distant qubits via a topological channel.

5.2 Description of the topological waveguide
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Figure 5.1: Topological waveguide. a, Top: schematic of the SSH model. Each
unit cell contains two sites A and B (red and blue circles) with intra- and inter-cell
coupling J(1± δ) (orange and brown arrows). Bottom: an analog of this model in
electrical circuits, with corresponding components color-coded. The photonic sites
are mapped to LC resonators with inductance L0 and capacitance C0, with intra-
and inter-cell coupling capacitance Cv, Cw and mutual inductanceMv,Mw between
neighboring resonators, respectively (arrows). b, Optical micrograph (false-colored)
of a unit cell (lattice constant d = 592 µm) on a fabricated device in the topological
phase. The lumped-element resonator corresponding to sublattice A (B) is colored in
red (blue). The insets show zoomed-in view of the section between resonators where
planar wires of thickness (tv, tw) = (10, 2)µm (indicated with black arrows) control
the intra- and inter-cell distance between neighboring resonators, respectively. This
figure is adapted from [131].

The SSH model describing the topological waveguide studied here is illustrated
in Fig. 5.1a. Each unit cell of the waveguide consists of two photonic sites, A
and B, each containing a resonator with resonant frequency ω0. The intra-cell
coupling between A and B sites is J(1+ δ) and the inter-cell coupling between unit
cells is J(1 − δ). The discrete translational symmetry (lattice constant d) of this
system allows us to write the Hamiltonian in terms of momentum-space operators,
Ĥ/ℏ =

∑
k(v̂k)

† h(k) v̂k, where v̂k = (âk, b̂k)
T is a vector operator consisting of a

pair of A and B sublattice photonic mode operators, and the k-dependent kernel of
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the Hamiltonian is given by,

h(k) =

(
ω0 f(k)

f ∗(k) ω0

)
. (5.1)

Here, f(k) ≡ −J [(1+ δ)+ (1− δ)e−ikd] is the momentum-space coupling between
modes on different sublattice, which carries information about the topology of the
system. The eigenstates of this Hamiltonian form two symmetric bands centered
about the reference frequency ω0 with dispersion relation

ω±(k) = ω0 ± J
√

2(1 + δ2) + 2(1− δ2) cos (kd),

where the+ (−) branch corresponds to the upper (lower) frequency passband. While
the band structure is dependent only on the magnitude of δ, and not on whether δ > 0

or δ < 0, deformation from one case to the other must be accompanied by the closing
of the middle bandgap (MBG), defining two topologically distinct phases. For a
finite system, it is well known that edge states localized on the boundary of the
waveguide at a ω = ω0 only appear in the case of δ < 0, the so-called topological
phase [202, 206]. The case for which δ > 0 is the trivial phase with no edge states.
It should be noted that for an infinite system, the topological or trivial phase in the
SSH model depends on the choice of unit cell, resulting in an ambiguity in defining
the bulk properties. Despite this, considering the open boundary of a finite-sized
array or a particular section of the bulk, the topological character of the bands can
be uniquely defined and can give rise to observable effects.

We construct a circuit analog of this canonical model using an array of inductor-
capacitor (LC) resonators with alternating coupling capacitance and mutual induc-
tance as shown in Fig. 5.1a. The topological phase of the circuit model is determined
by the relative size of intra- and inter-cell coupling between neighboring resonators,
including both the capacitive and inductive contributions. Strictly speaking, this
circuit model breaks chiral symmetry of the original SSH Hamiltonian [202, 206],
which ensures the band spectrum to be symmetric with respect toω = ω0. Neverthe-
less, the topological protection of the edge states under perturbation in the intra- and
inter-cell coupling strengths remains valid as long as the bare resonant frequencies
of resonators (diagonal elements of the Hamiltonian) are not perturbed, and the ex-
istence of edge states still persists due to the presence of inversion symmetry within
the unit cell of the circuit analog, leading to a quantized Zak phase [218]. For de-
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tailed analysis of the modeling, symmetry, and robustness of the circuit topological
waveguide see Apps. C.1 and C.2.
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Figure 5.2: Band structure of the topological waveguide. a, Dispersion relation of
the realized waveguide according to the circuit model in Fig. 5.1a. Upper bandgap
(UBG) and lower bandgap (LBG) are shaded in gray, and middle bandgap (MBG) is
shaded in green. b, Waveguide transmission spectrum |S21| across the test structure
with 8 unit cells in the trivial (δ > 0; top) and topological (δ < 0; bottom) phase.
The cartoons illustrate the measurement configuration of systems with external ports
1 and 2 (denoted P1 and P2), where distances between circles are used to specify
relative coupling strengths between sites and blue (green) outlines enclosing two
circles indicate unit cells in the trivial (topological) phase. Black solid curves are
fits to the measured data (see App. C.1 for details) with parameters L0 = 1.9 nH,
C0 = 253 fF, coupling capacitance (Cv, Cw) = (33, 17) fF and mutual inductance
(Mv,Mw) = (−38,−32) pH in the trivial phase (the values are interchanged in
the case of topological phase). The shaded regions correspond to bandgaps in the
dispersion relation of panel a. This figure is adapted from [131].

The circuit model is realized using fabrication techniques for superconducting meta-
materials discussed in Refs. [144, 172], where the coupling between sites is con-
trolled by the physical distance between neighboring resonators. Due to the near-
field nature, the coupling strength is larger (smaller) for smaller (larger) distance
between resonators on a device. An example unit cell of a fabricated device in
the topological phase is shown in Fig. 5.1b (the values of intra- and inter-cell dis-
tances are interchanged in the trivial phase). We find a good agreement between
the measured transmission spectrum and a theoretical curve calculated from a LC
lumped-element model of the test structures with 8 unit cells in both trivial and
topological configurations (Fig. 5.2). For the topological configuration, the ob-
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served peak in the waveguide transmission spectrum at 6.636 GHz inside the MBG
signifies the associated edge state physics in our system.

5.3 Properties of quantum emitters coupled to the topological waveguide

The non-trivial properties of the topological waveguide can be accessed by coupling
quantum emitters to the engineered structure. To this end, we prepare Device I
consisting of a topological waveguide in the trivial phase with 9 unit cells, whose
boundary is tapered with specially designed resonators before connection to external
ports (see Fig. 5.3a). The tapering sections at both ends of the array are designed
to reduce the impedance mismatch to the external ports (Z0 = 50 Ω) at frequencies
in the upper passband (UPB). This is crucial for reducing ripples in the waveguide
transmission spectrum in the passbands [144]. Every site of the 7 unit cells in the
middle of the array is occupied by a single frequency-tunable transmon qubit [69]
(the device contains in total 14 qubits labeled Qα

i , where i =1-7 and α=A,B are the
cell and sublattice indices, respectively). Properties of Device I and the tapering
section are discussed in further detail in Apps. C.3 and C.4, respectively.

Directional qubit-photon bound states

For qubits lying within the middle bandgap, the topology of the waveguide manifests
itself in the spatial profile of the resulting qubit-photon bound states. When the qubit
transition frequency is inside the bandgap, the emission of a propagating photon from
the qubit is forbidden due to the absence of photonic modes at the qubit resonant
frequency. In this scenario, a stable bound state excitation forms, consisting of
a qubit in its excited state and a waveguide photon with exponentially localized
photonic envelope [156, 219]. Generally, bound states with a symmetric photonic
envelope emerge due to the inversion symmetry of the photonic bath with respect to
the qubit location [120]. In the case of the SSH photonic bath, however, a directional
envelope can be realized [164] for a qubit at the centre of the MBG (ω0), where the
presence of a qubit creates a domain wall in the SSH chain and the induced photonic
bound state is akin to an edge state (refer to App. C.5 for a detailed description).
For example, in the trivial phase, a qubit coupled to site A (B) acts as the last site
of a topological array extended to the right (left) while the subsystem consisting
of the remaining sites extended to the left (right) is interpreted as a trivial array.
Mimicking the topological edge state, the induced photonic envelope of the bound
state faces right (left) with photon occupation only on B (A) sites (Fig. 5.3b), while
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Figure 5.3: Directionality of qubit-photon bound states. a, Schematic of Device
I, consisting of 9 unit cells in the trivial phase with qubits (black lines terminated
with a square) coupled to every site on the 7 central unit cells. The ends of the array
are tapered with additional resonators (purple) with engineered couplings designed
to minimize impedance mismatch at upper passband frequencies. b, Theoretical
photonic envelope of the directional qubit-photon bound states. At the reference
frequency ω0, the qubit coupled to site A (B) induces a photonic envelope to the
right (left), colored in green (blue). The bars along the envelope indicate photon
occupation on the corresponding resonator sites. c, Measured coupling rate κe,p
to external port numbers, p = 1, 2, of qubit-photon bound states. Left: external
coupling rate of qubit QB

4 to each port as a function of frequency inside the MBG.
Solid black curve is a model fit to the measured external coupling curves. The
frequency point of highest directionality is extracted from the fit curve, and is
found to be ω0/2π = 6.621 GHz (vertical dashed orange line). Top (Bottom)-right:
external coupling rate of all qubits tuned to ω = ω0 measured from port P1 (P2).
The solid black curves in these plots correspond to exponential fits to the measured
external qubit coupling versus qubit index. This figure is adapted from [131].

across the trivial boundary on the left (right) there is no photon occupation. The
opposite directional character is expected in the case of the topological phase of the
waveguide. The directionality reduces away from the center of the MBG, and is
effectively absent inside the upper or lower bandgaps.

We experimentally probe the directionality of qubit-photon bound states by utilizing
the coupling of bound states to the external ports in the finite-length waveguide of
Device I (see Fig. 5.3c). The external coupling rate κe,p (p = 1, 2) is governed by the
overlap of modes in the external port p with the tail of the exponentially attenuated
envelope of the bound state, and therefore serves as a useful measure to characterize
the localization [120, 172, 220]. To find the reference frequency ω0 where the
bound state becomes most directional, we measure the reflection spectrum S11 (S22)
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of the bound state seen from port 1 (2) as a function of qubit tuning. We extract the
external coupling rate κe,p by fitting the measured reflection spectrum with a Fano
lineshape [221]. For QB

4 , which is located near the center of the array, we find κe,1

to be much larger than κe,2 at all frequencies inside MBG. At ω0/2π = 6.621 GHz,
κe,2 completely vanishes, indicating a directionality of the QB

4 bound state to the left.
Plotting the external coupling at this frequency to both ports against qubit index,
we observe a decaying envelope on every other site, signifying the directionality of
photonic bound states is correlated with the type of sublattice site a qubit is coupled
to. Similar measurements when qubits are tuned to other frequencies near the edge
of the MBG, or inside the upper bandgap (UBG), show the loss of directionality
away from ω = ω0 (App. C.6).

A remarkable consequence of the distinctive shape of bound states is direction-
dependent photon-mediated interactions between qubits (Fig. 5.4). Due to the
site-dependent shapes of qubit-photon bound states, the interaction between qubits
becomes substantial only when a qubit on sublattice A is on the left of the other
qubit on sublattice B, i.e., j > i for a qubit pair (QA

i ,QB
j ). From the avoided crossing

experiments centered at ω = ω0, we extract the qubit-qubit coupling as a function
of cell displacement i − j. An exponential fit of the data gives the localization
length of ξ = 1.7 (in units of lattice constant), close to the estimated value from
the circuit model of our system (see App. C.3). While theory predicts the coupling
between qubits in the remaining combinations to be zero, we report that coupling of
|gAA,BB

ij |/2π ≲ 0.66MHz and |gAB
ij |/2π ≲ 0.48MHz (for i > j) are observed, much

smaller than the bound-state-induced coupling, e.g., |gAB
45 |/2π = 32.9 MHz. We

attribute such spurious couplings to the unintended near-field interaction between
qubits. Note that we find consistent coupling strength of qubit pairs dependent only
on their relative displacement, not on the actual location in the array, suggesting that
physics inside MBG remains intact with the introduced waveguide boundaries. In
total, the avoided crossing and external linewidth experiments at ω = ω0 provide
strong evidence of the shape of qubit-photon bound states, compatible with the
theoretical photon occupation illustrated in Fig. 5.3b.

Topology-dependent photon scattering

In the passband regime, i.e., when the qubit frequencies lie within the upper or
lower passbands, the topology of the waveguide is imprinted on cooperative in-
teraction between qubits and the single-photon scattering response of the system.
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4 across QA
4 (fixed). An avoided crossing of 2|gAB
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4 across QA
5 (fixed),

indicating the absence of appreciable coupling. Inset to the right shows a zoomed-in
region where a small avoided crossing of 2|gAB

54 |/2π = 967 kHz is measured. The
bare qubit frequencies from the fit are shown with dashed lines. b, Coupling |gαβij |
(α, β ∈ {A,B}) between various qubit pairs (Qα

i ,Qβ
j ) at ω = ω0, extracted from

the crossing experiments similar to panel (d). Solid black curves are exponential
fits to the measured qubit-qubit coupling rate versus qubit index difference (spatial
separation). Error bars in all figure panels indicate 95% confidence interval, and are
omitted on data points whose marker size is larger than the error itself. This figure
is adapted from [131].

The topology of the SSH model can be visualized by plotting the complex-valued
momentum-space coupling f(k) for k values in the first Brillouin zone (Fig. 5.5a).
In the topological (trivial) phase, the contour of f(k) encloses (excludes) the origin
of the complex plane, resulting in the winding number of 1 (0) and the corresponding
Zak phase of π (0) [218]. This is consistent with the earlier definition based on the
sign of δ. It is known that for a regular waveguide with linear dispersion, the co-
herent exchange interaction Jij and correlated decay Γij between qubits at positions
xi and xj along the waveguide take the forms Jij ∝ sinφij and Γij ∝ cosφij [139,
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145], where φij = k|xi − xj| is the phase length.

In the case of our topological waveguide, considering a pair of qubits coupled
to A/B sublattice on i/j-th unit cell, this argument additionally collects the phase
ϕ(k) ≡ arg f(k) [164]. This is an important difference compared to the regular
waveguide case, because the zeros of equation

φij(k) ≡ kd|i− j| − ϕ(k) = 0 mod π (5.2)

determine wavevectors (and corresponding frequencies) where perfect Dicke super-
radiance [136] occurs. Due to the properties of f(k) introduced above, for a fixed
cell-distance ∆n ≡ |i − j| ≥ 1 between qubits there exists exactly ∆n − 1 (∆n)
frequency points inside the passband where perfect super-radiance occurs in the
trivial (topological) phase. An example for the ∆n = 2 case is shown in Fig. 5.5b.
Note that although Eq. (5.2) is satisfied at the band-edge frequencies ωmin and ωmax

(kd = {0, π}), they are excluded from the above counting due to breakdown of the
Born-Markov approximation (see App. C.7).

To experimentally probe signatures of perfect super-radiance, we tune the frequency
of a pair of qubits across the UPB of Device I while keeping the two qubits resonant
with each other. We measure the waveguide transmission spectrum S21 during this
tuning, keeping track of the lineshape of the two-qubit resonance as Jij andΓij varies
over the tuning. Drastic changes in the waveguide transmission spectrum occur
whenever the two-qubit resonance passes through the perfectly super-radiant points,
resulting in a swirl pattern in |S21|. Such patterns arise from the disappearance of
the peak in transmission associated with interference between photons scattered by
imperfect super- and sub-radiant states, resembling the electromagnetically-induced
transparency in a V-type atomic level structure [222]. As an example, we discuss
the cases with qubit pairs (QA

2 ,QB
4 ) and (QB

2 ,QA
5 ), which are shown in Fig. 5.5c.

Each qubit pair configuration encloses a three-unit-cell section of the waveguide;
however for the (QA

2 ,QB
4 ) pair the waveguide section is in the trivial phase, whereas

for (QA
2 ,QB

4 ) the waveguide section is in the topological phase. Both theory and
measurement indicate that the qubit pair (QA

2 ,QB
4 ) has exactly one perfectly super-

radiant frequency point in the UPB. For the other qubit pair (QB
2 ,QA

5 ), with waveguide
section in the topological phase, two such points occur (corresponding to ∆n = 2).
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This figure is adapted from [131].
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This observation highlights the fact that while the topological phase of the bulk in
the SSH model is ambiguous, a finite section of the array can still be interpreted
to have a definite topological phase. Apart from the unintended ripples near the
band-edges, the observed lineshapes are in good qualitative agreement with the
theoretical expectation in Ref. [164]. The frequency misalignment of swirl patterns
between the theory and the experiment is due to the slight discrepancy between the
realized circuit model and the ideal SSH model (see App. C.1 for details). Detailed
description of the swirl pattern and similar measurement results for other qubit
combinations with varying ∆n are reported in App. C.7.

5.4 Quantum state transfer via topological edge states

Finally, to explore the physics associated with topological edge modes, we fabricated
a second device, Device II, which realizes a closed quantum system with 7 unit cells
in the topological phase (Fig. 5.6a). We denote the photonic sites in the array by
(i,α), where i =1-7 is the cell index and α =A,B is the sublattice index. Due to
reflection at the boundary, the passbands on this device appear as sets of discrete
resonances. The system supports topological edge modes localized near the sites
(1,A) and (7,B) at the boundary, labeled EL and ER. The edge modes are spatially
distributed with exponentially attenuated tails directed toward the bulk. In a finite
system, the non-vanishing overlap between the envelopes of edge states generates
a coupling which depends on the localization length ξ and the system size L as
G ∼ e−L/ξ. In Device II, two qubits denoted QL and QR are coupled to the
topological waveguide at sites (2,A) and (6,B), respectively. Each qubit has a local
drive line and a flux-bias line, which are connected to room-temperature electronics
for control. The qubits are dispersively coupled to read-out resonators, which are
coupled to a coplanar waveguide for time-domain measurement. The edge mode EL

(ER) has photon occupation on sublattice A (B), inducing interaction gL (gR) with
QL (QR). Due to the directional properties discussed earlier, bound states arising
from QL and QR have photonic envelopes facing away from each other inside the
MBG, and hence have no direct coupling to each other. For additional details on
Device II and qubit control, refer to App. C.8.
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i
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j coupled at sites (i, α) = (2,A) and (j, β) = (6,B), respectively. EL

and ER are the left-localized and right-localized edge modes which interact with
each other at rate G due to their overlap in the center of the finite waveguide. b,
Chevron-shaped oscillation of QL population arising from interaction with edge
modes under variable frequency and duration of modulation pulse. The oscillation
is nearly symmetric with respect to optimal modulation frequency 242.5 MHz, apart
from additional features at (219, 275) MHz due to spurious interaction of unused
sidebands with modes inside the passband. c, Line-cut of panel b (indicated with a
dashed line) at the optimal modulation frequency. A population oscillation involving
two harmonics is observed due to coupling of EL to ER. d, Vacuum Rabi oscillations
between QL and EL when QR is parked at the resonant frequency of edge modes
to shift the frequency of ER, during the process in panel c. In panels c and d the
filled orange circles (black solid lines) are the data from experiment (theory). e,
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fit from theory, respectively. The light red (light blue) curve indicates the expected
population in EL (ER) mode, calculated from theory. This figure is adapted from
[131].
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We probe the topological edge modes by utilizing the interaction with the qubits.
While parking QL at frequency fq = 6.835 GHz inside MBG, we initialize the
qubit into its excited state by applying a microwave π-pulse to the local drive line.
Then, the frequency of the qubit is parametrically modulated [223] such that the
first-order sideband of the qubit transition frequency is nearly resonant with EL.
After a variable duration of the frequency modulation pulse, the state of the qubit is
read out. From this measurement, we find a chevron-shaped oscillation of the qubit
population in time centered at modulation frequency 242.5 MHz (Fig. 5.6b).

We find the population oscillation at this modulation frequency to contain two
harmonic components as shown in Fig. 5.6c, a general feature of a system consisting
of three states with two exchange-type interactions g1 and g2. In such cases, three
single-excitation eigenstates exist at 0,±gwith respect to the bare resonant frequency
of the emitters (g ≡

√
g21 + g22), and since the only possible spacing between the

eigenstates in this case is g and 2g, the dynamics of the qubit population exhibits
two frequency components with a ratio of two. From fitting the QL population
oscillation data in Fig. 5.6c, the coupling between EL and ER is extracted to be
G/2π = 5.05MHz. Parking QR at the bare resonant frequency ωE/2π = 6.601GHz
of the edge modes, ER strongly hybridizes with QR and is spectrally distributed at
±gR with respect to the original frequency (gR/2π = 57.3 MHz). As this splitting
is much larger than the coupling of ER to EL, the interaction channel EL↔ER is
effectively suppressed and the vacuum Rabi oscillation only involving QL and EL

is recovered (Fig. 5.6d) by applying the above-mentioned pulse sequence on QL.
The vacuum Rabi oscillation is a signature of strong coupling between the qubit
and the edge state, a bosonic mode, as described by cavity QED [94]. A similar
result was achieved by applying a simultaneous modulation pulse on QR to put its
first-order sideband near-resonance with the bare edge modes (instead of parking it
near resonance), which we call the double-modulation scheme. From the vacuum
Rabi oscillation QL↔EL (QR↔ER) using the double-modulation scheme, we find the
effective qubit-edge mode coupling to be g̃L/2π = 23.8MHz (g̃R/2π = 22.5MHz).

The half-period of vacuum Rabi oscillation corresponds to an iSWAP gate between
QL and EL (or QR and ER), which enables control over the edge modes with single-
photon precision. As a demonstration of this tool, we perform remote population
transfer between QL and QRthrough the non-local coupling of topological edge
modes EL and ER. The qubit QL (QR) is parked at frequency 6.829 GHz (6.835 GHz)
and prepared in its excited (ground) state. The transfer protocol, consisting of three
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steps, is implemented as follows: i) an iSWAP gate between QL and EL is applied
by utilizing the vacuum Rabi oscillation during the double-modulation scheme
mentioned above, ii) the frequency modulation is turned off and population is
exchanged from EL to ER using the interaction G, iii) another iSWAP gate between
QR and ER is applied to map the population from ER to QR. The population of
both qubits at any time within the transfer process is measured using multiplexed
read-out [224] (Fig. 5.6e). We find the final population in QR after the transfer
process to be 87 %. Numerical simulations suggest that (App. C.8) the infidelity in
preparing the initial excited state accounts for 1.6 % of the population decrease, the
leakage to the unintended edge mode due to ever-present interaction G contributes
4.9 %, and the remaining 6.5 % is ascribed to the short coherence time of qubits
away from the flux-insensitive point [T ∗

2 = 344 (539) ns for QL (QR) at working
point].

We expect that a moderate improvement on the demonstrated population transfer
protocol could be achieved by careful enhancement of the excited state preparation
and the iSWAP gates, i.e., optimizing the shapes of the control pulses [225–228].
The coherence-limited infidelity can be mitigated by utilizing a less flux-sensitive
qubit design [229, 230] or by reducing the generic noise level of the experimental
setup [180]. Further, incorporating tunable couplers [231] into the existing meta-
material architecture to control the localization length of edge states in situ will fully
address the population leakage into unintended interaction channels, and more im-
portantly, enable robust quantum state transfer over long distances [232]. Together
with many-body protection to enhance the robustness of topological states [215],
building blocks of quantum communication [101] under topological protection are
also conceivable.

5.5 Discussion and outlook

Looking forward, we envision several research directions to be explored beyond the
work presented here. First, the topology-dependent photon scattering in photonic
bands that is imprinted in the cooperative interaction of qubits can lead to new ways
of measuring topological invariants in photonic systems [233]. The directional
and long-range photon-mediated interactions between qubits demonstrated in our
work also opens avenues to synthesize non-trivial quantum many-body states of
qubits, such as the double Néel state [164]. Even without technical advances in
fabrication [234–236], a natural scale-up of the current system will allow for the
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construction of moderate to large-scale quantum many-body systems. Specifically,
due to the on-chip wiring efficiency of a linear waveguide QED architecture, with
realistic refinements involving placement of local control lines on qubits and com-
pact read-out resonators coupled to the tapered passband (intrinsically acting as
Purcell filters [237]), we expect that a fully controlled quantum many-body system
consisting of 100 qubits is realizable in the near future. In such systems, protocols
for preparing and stabilizing [48, 215, 238] quantum many-body states could be
utilized and tested. Additionally, the flexibility of superconducting metamaterial
architectures [144, 172] can be further exploited to realize other novel types of
topological photonic baths [152, 164, 217]. While the present work was limited to a
one-dimensional system, the state-of-the-art technologies in superconducting quan-
tum circuits [168] utilizing flip-chip methods [235, 236] will enable integration
of qubits into two-dimensional metamaterial surfaces. It also remains to be ex-
plored whether topological models with broken time-reversal symmetry, an actively
pursued approach in systems consisting of arrays of three-dimensional microwave
cavities [213, 239], could be realized in compact chip-based architectures. Alto-
gether, our work sheds light on opportunities in superconducting circuits to explore
quantum many-body physics originating from novel types of photon-mediated in-
teractions in topological waveguide QED, and paves the way for creating synthetic
quantum matter and performing quantum simulation [14, 39, 75, 240, 241].
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C h a p t e r 6

A SUPERCONDUCTING QUANTUM SIMULATOR BASED ON
A PHOTONIC-BANDGAP METAMATERIAL

The previous two chapters have focused on exploring the light-matter interaction
between superconducting qubits and microwave waveguides. In this chapter, we
employ this light-matter interaction, or waveguide QED, to build a quantum simula-
tor studying many-body dynamics. Specifically, we park the qubits in the bandgap
frequencies to protect them from rapid decay into the passband (Chapter 4). At
the same time, the tunable interaction between qubit-photon bound states in this
regime gives rise to beyond-nearest-neighbor connectivity for the lattice hosting
strongly interacting microwave photons—excitations on qubit-photon bound states.
Going beyond the single-particle simulation of topological photonics (Chapter 5),
we enter the many-body regime where the chaotic quantum evolution reveals the
effect of lattice connectivity. In the following, we start with the context of quan-
tum simulation, emphasizing the significance and difficulty in building a scalable
quantum simulator with long-range connectivity. We then explain how we realize
this goal using waveguide QED and how we characterize the native Hamiltonian
of the quantum simulator. Lastly, we study the many-body dynamics where the
beyond-nearest-neighbor connectivity enables the exploration of quantum chaos.
This chapter is adapted from [132] and the supplementary information is in App. D.

6.1 Introduction

Realizing a scalable architecture for quantum computation and simulation is a central
goal in the field of quantum information science. While architectures with nearest-
neighbor (NN) coupling between quantum particles on a lattice are prevalent, quan-
tum systems with long-range interactions can realize a richer set of computational
tasks and physical phenomena [242–245]. For instance, in the case of gate-based
quantum computation, coupling beyond the nearest-neighbor level enables non-local
gate operations between qubits which can reduce the overhead of quantum algorithms
and lift the restrictions on code rate and distance of local-interaction-based quantum
error-correcting codes [72, 246]. In the case of analog quantum simulation, the
inclusion of long-range interactions can alter the behavior of otherwise integrable
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many-body systems [44, 45], resulting in quantum chaotic dynamics, at the root of
such topics as quantum thermalization [247] and quantum information scrambling
[248]. Furthermore, control over the range of lattice connectivity grants access to
different physical regimes and the crossover between them, such as in many-body
quantum phase transitions [86, 249, 250] and the hydrodynamics of non-equilibrium
quantum states [46].

For engineered quantum systems consisting of interacting quantum particles on a
lattice, it is often challenging to scale to larger lattice sizes while maintaining a high
degree of lattice connectivity and single-site control. One common approach, de-
veloped for trapped-ion and neutral-atom systems, is to use resonant modes of either
vibrational [242] or optical [251] cavities as a quantum bus for mediating interac-
tions between the internal states of atoms across the lattice. Similar schemes have
been adopted in superconducting quantum circuits, realizing systems as large as 20
qubits with all-to-all coupling via a common microwave cavity [111]. Increasing the
number of lattice sites in this case, however, leads to either parasitic coupling arising
from dense placement of sites in a fixed-volume cavity or frequency-crowding ef-
fects stemming from the increased spectral density of cavity modes when increasing
the cavity size [252].

An alternative approach for connecting quantum particles on a lattice is to construct
a quantum bus from an intrinsically extensible structure, such as a waveguide. Along
this direction, engineered photonic-bandgap waveguides have been proposed as a
quantum bus that simultaneously protects quantum particles from radiative damping
through the waveguide while allowing for extended-range lattice connectivity [158].
The waveguide-bus concept has been investigated in the context of many-body sim-
ulation with cold atoms coupled to engineered nanophotonic waveguides [130, 158],
and recent experiments have explored qubit-photon bound states in superconducting
quantum circuits with microwave photonic-bandgap waveguides [120, 131, 163,
172, 253]. However, the realization of a scalable many-body quantum simulator,
with single-site quantum-particle control and a high level of lattice connectivity, has
remained an open challenge.

We demonstrate a scalable many-body quantum simulator consisting of a one-
dimensional (1D) lattice of superconducting transmon qubits coupled to a common
metamaterial waveguide. This system provides both tunable-range connectivity be-
tween qubits and full single-site control and state measurement of individual qubits.
The waveguide acts both as a bus for mediating exponentially decaying long-range
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interactions between qubits, and as a Purcell filter enabling multiplexed, rapid read-
out of the qubit states with high fidelity. This system realizes an extended version
of the Bose-Hubbard model with tunable hopping range and on-site interaction.
Utilizing our ability to efficiently collect measurement outcomes from many-body
quench dynamics—enabled by the fast experimental repetition rate of our system—
we perform direct analysis of outcome statistics to learn Hamiltonian parameters in
situ and study the effect of hopping range on the evolution of randomness across
the system. Specifically, we observe a distribution of outcome bit-string proba-
bilities reflecting the ergodic nature of the Hamiltonian with long-range hopping.
This result experimentally confirms the expectation from quantum chaos for inter-
acting many-particle systems, highlighting the connection between ergodic unitary
dynamics and its effective statistical description in terms of random matrix theory
[254].

6.2 Metamaterial-based quantum simulator

The backbone of the many-body quantum simulator in this work is a metamaterial
waveguide formed from a chain of lumped-element LC microwave resonators. The
waveguide can be described by a generic model (Fig. 6.1a) of a 1D cavity array
with NN coupling t [157, 255]. The corresponding dispersion relation (Fig. 6.1b)
is given by ωk = ωc + 2t cos (kd), exhibiting a passband centered around the cavity
frequency ωc with a bandwidth of 4t, where k is the wavevector and d is the lattice
constant of the array. The bandgap at frequencies below ωe,− = ωc − 2t (above
ωe,+ = ωc + 2t) is denoted as the lower (upper) bandgap, abbreviated as LBG
(UBG). Inside the bandgaps, the off-resonant coupling between a bare quantum
emitter and the waveguide modes gives rise to an emitter-photon bound state [156]
whose photonic tail is localized around the emitter. Localization follows a spatial
profile (∓1)∆xe−|∆x|/ξ in the LBG/UBG [157], where ∆x is the displacement in the
number of unit cells from the emitter and ξ is the localization length controlled by
the detuning ∆ between the band-edge frequency and the transition frequency of the
bound state. The overlap of two bound states results in photon-mediated coupling
with a range covering multiple unit cells, i.e., long-range coupling, exhibiting a
greater strength and a more extended range ξ at a smaller detuning |∆|, as displayed
in Fig. 6.1e.

The metamaterial waveguide consists of a 42-unit-cell array of capacitively coupled
lumped-element microwave resonators (Fig. 6.1c and Fig. 6.2), and is equipped
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Figure 6.1: Schematic of the metamaterial-based quantum simulator. a,
Schematic showing a 1D array of coupled cavities with nearest-neighbor coupling
t. Each cavity is occupied by a quantum emitter (orange ball) with coupling g to the
cavity. b, Dispersion relation of the coupled cavity array in panel a with a passband
between ωe,± centered at ωc (bandwidth of 4t). The LBG (UBG) below (above) the
passband is shaded in green (purple). c, Electrical circuit realization of in panel
a with capacitively coupled LC resonators and transmon qubits corresponding to
the cavity array and the quantum emitters, respectively. The coupling capacitors
are color coded in accordance with in panel a. d, Top (Bottom): Cartoon of two
emitter-photon bound states at small (large) detuning |∆|, indicated by dark (light)
orange arrows in panel b, exhibiting an extended (restricted) spatial range and large
(small) photonic component in the bound states. e, Transmission spectrum through
the metamaterial waveguide (red curve) with black arrows indicating the ten reso-
nances of the read-out resonators Ri. This figure is adapted from [132].

at both ends with engineered tapering sections, designed to reduce the impedance
mismatch to external 50-Ω input-output ports at frequencies lying within the pass-
band of the waveguide [131, 144]. Each of the middle ten metamaterial resonators
(unit cells labeled by i = 1–10) couples to a transmon qubit [69] serving as the
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quantum emitter. Individual addressing of each qubit is achieved by excitation (XY
control) from a charge drive line and frequency tuning (Z control) from a flux bias
line. Dispersive qubit read-out is enabled by capacitively coupling each qubit Qi to
a compact read-out resonator Ri, which itself is then coupled to the metamaterial
resonator of the same unit cell. The entire metamaterial and transmon qubit system
(the device) is fabricated using evaporated thin-film aluminum on a high-resistivity
silicon substrate, with fabrication procedures detailed in Refs. [144, 172]. Further
details of the device modelling and the experimental setup used to measure and test
the device, are discussed in App. D.1 and D.2, respectively.
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Figure 6.2: Optical image (false colored) of the metamaterial-based quantum
simulator. a, The false colored optical micrograph of the fabricated quantum
simulator with 42 metamaterial resonators (lattice constant d = 292µm) colored
blue connected to input-output ports (red) via tapering sections (purple). b, A
zoomed-in view of ten qubits (Qi, colored orange), controlled by individual charge
drive lines (pink) and flux bias lines (dark blue), and their read-out resonators (Ri,
colored green) coupling to the ten inner unit cells of the metamaterial waveguide.
c, Detailed view of the coupling region in panel b. Two auxiliary qubits (yellow)
are not used in this experiment. This figure is adapted from [132].

This realization of the device enables qubit read-out utilizing the passband of
the metamaterial waveguide with built-in protection against Purcell decay chan-
nels (App. D.3). The transmission spectrum through the waveguide, displayed in
Fig. 6.1d, shows a passband ranging from ωe,−/2π ≈ 5.01GHz to ωe,+/2π ≈
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7.08GHz with ripples smaller than 8 dB near the center. The extinction ratio of
the transmission between that measured in the passband and that measured in the
bandgaps is greater than 65 dB with a sharp transition in the transmission occurring
within 100 MHz of the band-edges. In the middle of the passband, resonances asso-
ciated with the read-out resonators are observed between 5.574 GHz and 6.328 GHz.
The average decay rate of ten read-out resonators is κRi

/2π = 11.8MHz, enabling
fast, high-fidelity multiplexed read-out while maintaining a low level of read-out
crosstalk. For details of read-out methods and characterization, refer to App. D.4.

6.3 Bose-Hubbard model with long-range hopping

The spatially extended bound-state excitations, formed between transmon-qubit
excitations and waveguide photons of the metamaterial-waveguide bus, creates a
lattice of interacting microwave photons [56]. This quantum system is described
by an extended version of the 1D Bose-Hubbard model with tunable long-range
hopping and on-site interaction. Specifically, each bound state formed from qubit
Qi, inheriting the level structure of an anharmonic oscillator from a transmon qubit
[69], serves as a bosonic site with local site energy ϵi = ω01,i and the on-site
interaction Ui = ω12,i − ω01,i. Here, ω01,i and ω12,i are the transition frequencies
of the bound state on site Qi from its ground state |0⟩ to the first excited state |1⟩
and that from the first to the second excited state |2⟩, respectively. In addition, the
long-range hopping Ji,j is enabled by the overlap between a pair of qubit-photon
bound states on sites Qi and Qj . The Hamiltonian of this model that captures the
basic processes mentioned above can be written as

Ĥ/ℏ =
∑
i,j

Ji,j b̂
†
i b̂j +

∑
i

Ui

2
n̂i(n̂i − 1) +

∑
i

ϵin̂i, (6.1)

where b̂†i (b̂i) is the creation (annihilation) operator and n̂i ≡ b̂†i b̂i is the number
operator on site Qi. The parameters of the Hamiltonian realized in this simulator
can be learned through experiments enabled by the precise, single-site-level control
over qubits.

We measure the on-site interaction Ui (Fig. 6.3a) by performing spectroscopy of
ω12 after initializing Qi in its first excited state |1⟩. From within either bandgap,
|Ui| decreases as ω01 approaches the closest band-edge due to dressing from the
passband modes of the metamaterial [163], i.e., the Lamb shift. In the UBG, a wide
tuning range of |Ui| is achievable from the strong hybridization between the |1⟩-|2⟩
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Figure 6.3: Hamiltonian parameter characterization. a, On-site interaction
|Ui| versus frequency ω01 with measured values indicated by colored circles. b,
Hopping amplitude |Ji,j| versus frequency with experimental data shown as markers
(errorbars indicate a standard deviation). Colors represent the distance |i − j|
between sites. Four gray-scale arrows specify frequencies in Fig. 6.5. c, Localization
length ξ extracted by fitting the exponential decay of measured hopping rate (results
of polynomial fitting of datapoints in (B)) as a function of distance |i− j| (insets) at
a few different frequencies. The darkness of a marker matches a fitting curve in the
inset at the same frequency. In all panels, green (purple) shading on the left (right)
corresponds to LBG (UBG), and theory curves (solid) are obtained from numerical
calculations using an identical circuit model. This figure is adapted from [132].

transition and the band-edge modes at (ω01−ωe,+)/2π < 300MHz. The magnitude
of hopping |Ji,j| is measured from vacuum Rabi oscillations between sites Qi and Qj

by initializing one site with a π-pulse and tuning ω01 of both sites on resonance for
a duration τ with fast flux pulses. As shown in Fig. 6.3b, for a fixed distance |i− j|,
|Ji,j| increases with a decreasing |∆|, resulting from larger photonic components
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of the bound states. Compared to the LBG, the UBG exhibits larger |Ji,j| at the
same |∆|, owing to a stronger coupling g of the bare qubits to the metamaterial at
higher frequencies and the breakdown of the tight-binding cavity array model in the
circuit realization (Fig. 6.1c; also see App. D.1). At a specific ω01, |Ji,j| decreases
exponentially as a function of distance |i− j|, resembling the profile of the photonic
tail in a qubit-photon bound state (Fig. 6.3c). From fitting the exponential decay
curve we extract the localization length ξ, which ranges from ξ = 1.4 to 4.2, with the
largest localization length occurring at the smallest achievable band-edge detunings.
For even smaller detunings, the eigenstate of the two interacting bound states merges
into the passband and becomes radiative to the waveguide.

6.4 Many-body Hamiltonian learning

Beyond the above single- and two-qubit measurements, we perform in situ many-
body characterization of Hamiltonian parameters [256, 257] which are otherwise
hard to access. For example, the sign of the hopping term Ji,j inherits the spatial
profile of the photonic component of the bound states. In the case of the bound
states in the UBG, the sign of the hopping terms are all uniform (positive), whereas
for bound states in the LBG the hopping terms alternate sign as the distance between
lattice sites increases by one (Fig. 6.4a). This is due to the photonic component of
the bound state behaving as a defect mode inside the bandgap, exhibiting a spatial
profile resembling the wavevector at the nearest band-edge (k = 0 at the upper band-
edge and k = π/d at the lower band-edge). Although insignificant in measurements
involving only two lattice sites, the sign of the hopping terms does alter the many-
body dynamics of the system. Here, we utilize a many-body fidelity estimator Fd

proposed in Ref. [257] to reveal this information. This fidelity estimator, which
closely tracks the true many-body fidelity, is obtained for ergodic quench evolution
of simple initial states (App. D.6).

We follow the sequence described in Fig. 6.4b to perform the many-body quench
evolution. The sequence consists of preparing a set of five randomly chosen sites
in their first excited state, followed by using flux pulses to align ω01 of all ten sites
for time τ , and then finally performing site-resolved single-shot measurement on
all lattice sites to obtain a ten-bit string z = n1 n2 · · · n10. The many-body fidelity
estimator Fd is calculated by comparing bit-string statistics of repeated measure-
ments with numerical simulation of the evolution assuming a set of Hamiltonian
parameters in Eq. 6.1. The maximum Fd is achieved at the parameter values closest
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c, Many-body fidelity estimator Fd at ω01/2π = 4.72GHz versus evolution time τ .
The Fd curves assume Ji,j’s from two-qubit measurement indicated by the dashed
line in Fig. 6.3b with alternating signs (orange) and all positive signs (green), and
from the numerical optimization (blue). The shading corresponds to a standard
deviation for 40 randomly chosen zinit’s in the five-excitation sector. Inset: Fd at
τ = 0.6µs versus J7,8 with optimized parameters on the remaining Ji,j’s, where
the brown and the black dashed lines indicates J7,8 extracted from Fig. 6.3b and
the numerical optimization, respectively. d, Comparison of |Ji,j| interpolated from
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τ = 0.6µs in panel c and the optimized J7,8 in the insets of panels c and d. This
figure is adapted from [132].
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to the Hamiltonian realized in the experiment. The fast repetition rate of this
experiment enables us to perform a large number of measurements (1.6 × 105 in
total), reducing statistical error and increasing sensitivity to small Hamiltonian
parameter variations (see App. D.5 for details of qubit control, pulse sequence, and
repetition rate).

We compare Fd at ω01/2π = 4.72GHz using three different parameter sets for Ji,j
in Fig. 6.4c: a first set with amplitudes derived from the two-qubit experiments in
Fig. 6.3b assuming alternating signs (Fig. 6.4a, left), a second set with the same
amplitudes as the first but all positive signs (Fig. 6.4a, right), and a third set of
optimized parameter values that maximize Fd. The optimized hopping terms are
restricted to be real-valued, with independent Ji,i+1 for each i = 1 − 9 and Ji,j for
each distance |i− j| > 1 (all qubit pairs of the same distance having the same Ji,j).
An alternating sign of Ji,j with distance is favored, yielding a higher many-body
fidelity compared to hopping terms with all positive signs. This is further evidenced
by the alternating signs of the resulting optimized parameter set. Although we find
small differences between the set of optimized hopping amplitudes and those from
the two-qubit experiments with alternating signs (see Fig. 6.4d), Fd of the optimized
parameter set is markedly better. The sensitivity of Fd to the hopping terms is
highlighted in the inset of Fig. 6.4c, where the variation of the fidelity versus J7,8
is shown. For details of the Fd calculation and parameter optimization, refer to
App. D.6.

6.5 Ergodic many-body dynamics with long-range hopping

We now utilize the platform to study the effect of long-range hopping on the many-
body dynamics. Specifically, the ergodicity of the 1D Bose-Hubbard model in the
hardcore limit (|U/J | ≫ 1) depends on the range of hopping, exhibiting integrable
behavior with NN hopping, and chaotic behavior with long-range hopping. We study
this crossover with various hopping ranges and investigate the resulting dynamics
using both conventional one- and two-site correlators, and the statistics of the global
bit-strings resulting from qubit-state measurement outcomes across the lattice. This
latter technique is particularly useful in identifying universal signatures of ergodicity
and the effect of decoherence at long evolution times.

The crossover between integrable and ergodic dynamics can be qualitatively visual-
ized by a two-particle quantum walk [258–260] with initial excitations on sites Q5

and Q6 using the sequence shown in Fig. 6.4b. The measured quantum walk at a
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evolution time Ji,i+1τ . The system is initialized in zinit = 0000110000 and the
evolution occurs at ω01/2π = 4.50GHz, 4.55 GHz, 4.72 GHz, and 4.80 GHz with
the longest evolution times of 904 ns, 781 ns, 430 ns, and 200 ns from left to right. b,
The second moment µ2 as a function of normalized evolution time Ji,i+1τ . Results
calculated from the data in panel a are shown in solid curves with gray scales
corresponding to frames in panel a and arrows in Fig. 6.3b. Result from numerical
simulation of the integrable Hamiltonian is shown as the dotted curve and µe

2 for a
generic ergodic system is indicated by the red dashed line. This figure is adapted
from [132].

few different ω01’s indicated by arrows in Fig. 6.3b is shown (Fig. 6.5a) as a function
of normalized evolution time Ji,i+1τ , where Ji,i+1 is the average NN hopping rate
(the corresponding numerical simulations are provided in App. D.7, showing that
the quantum walk patterns are not visibly affected by decoherence). The excitation
wave packets smear over the system when ω01 is close to the band-edge frequency.
More quantitatively, this trend can be probed by computing the probability pz of
measuring a certain bit-string z in the two-excitation sector at evolution time τ . For a
generic ergodic Hamiltonian, the second moment µ2 ≡

∑
z p

2
z [254], which reflects

the probability fluctuations, converges toµe
2 = 2/(D+1) after initial evolution [257]

due to the chaotic nature of its quantum dynamics (D = 45 is the dimension of the
two-excitation Hilbert space). No such convergence is expected in an integrable
Hamiltonian due to revivals associated with ballistic propagation of wave packets.
As an example, we show in Fig. 6.5b the results from the spin-1/2 XY model ob-
tained from modifying the Hamiltonian in Eq. 6.1 by keeping only NN hopping
terms in the hardcore limit. When ω01 is closer to the band-edge, the measured
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second moment deviates from the simulated integrable result and converges to µe
2 at

an earlier normalized evolution time Ji,i+1τ consistent with the breaking of integra-
bility due to the extended hopping range. We note that with |U/J | > 36 for all the
measurements illustrated in Fig. 6.5, finite on-site interactions of the Bose-Hubbard
model play a negligible role in the breaking of integrability (App. D.8).
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Figure 6.6: Ergodic many-body dynamics with long-range hopping at 4.72 GHz.
a, Second moment µ2 as a function of evolution time τ in our system from the
experiment (orange) and the theory with the optimized parameter set in Fig. 6.4c
(blue), compared to theoretical predictions of the integrable model (green). The
shading on each curve corresponds to a standard deviation of the mean second
moment for 20 randomly chosen initial bit-strings zinit in the two-particle sector,
and the red dashed line represents the ergodic value µe

2. b, Density histogram
P (pz) of the distribution of experimental bit-string probabilities {pz} with the 20
initializations zinit’s at evolution times τ = 16 ns, 360 ns, and 5.4µs from left to
right (indicated by the dotted lines in (A)). The solid lines show the PT distribution
and the dashed line in the right plot shows the value pz = 1/D of a classical uniform
distribution. This figure is adapted from [132].

To further probe this ergodic nature of Hamiltonian with long-range hopping, we
use the experimental evolution at ω01/2π = 4.72GHz as an example. At a short
time (τ = 16 ns), the excitations remain in their initial sites. This is visualized
for a quantum walk with initial excitations on sites Q5 and Q6 in the left panel of
Fig. 6.7a (evolution of population ⟨n̂i⟩) and in the bottom left panel of Fig. 6.7b
(two-site correlator ⟨n̂in̂j⟩). The histogram P (pz) of experimentally measured
bit-string probabilities {pz} at this early evolution stage (Fig. 6.6b, left) shows a
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distribution with a tail of large pz values, giving a large µ2 (Experiment curve in
Fig. 6.6a). This is associated with an insufficient scrambling of the initially localized
quantum information. At an intermediate time (τ = 360 ns), the excitations are
more spread out over the entire 1D lattice (middle left panel of Fig. 6.7a), forming a
“speckle” pattern with site-to-site fluctuation associated with quantum interference.
The quantitative signatures of this speckle pattern manifest in the histogram P (pz)

following the Porter-Thomas (PT) distribution [261] (Fig. 6.6b, middle) and in the
second moment µ2 settling to the ergodic value µe

2. The PT distribution results
from the randomness in the distribution of wavefunction magnitudes, which is
predicted by Berry’s conjecture [262] stating that the single-particle eigenstates of
a chaotic system behave like random superpositions of plane waves. Similarly, in
the many-body settings, the distribution of wavefunction magnitudes across basis
states also follow the PT distribution. Our observation is the first experimental
verification of this many-body version of Berry’s conjecture in a Bose-Hubbard
system, whose extension in the thermodynamic limit provides the modern theory
of quantum thermalization such as eigenstate thermalization hypothesis [263, 264].
This draws connection between quantum many-body chaos and random matrix
theory, leading to a deeper understanding of the randomness in many-body dynamics
[256]. Note that the randomness in our case originates from the ergodicity of the
time-independent Hamiltonian instead of the randomness inherent in random circuits
[49, 254]. In contrast to the experimental results, theoretical calculations at the same
evolution time using the integrable Hamiltonian shows aggregated excitations on a
few sites (Fig. 6.7c, middle) and the resulting larger value of µ2 (Integrable theory
curve in Fig. 6.6a). This comparison highlights the effect of long-range hopping in
probing the ergodic regime.

Finally, we study the impact of decoherence by juxtaposing the measurement results
and the decoherence-free theoretical calculation using the optimal learned Hamilto-
nian with long-range hopping. Before the evolution time of τ ≈ 1µs, the two cases
agree in the second moment µ2 (Experiment and Theory curves in Fig. 6.6a), the
quantum walk population (Fig. 6.7a, left and middle), and the two-site correlator
(middle panels of Fig. 6.7b), suggesting these results are not affected by decoher-
ence. After a long evolution time (τ = 5.4µs, larger than the averaged Ramsey
coherence time T ∗

2,i = 1.16µs), the second moment of the two cases deviates from
one another, and the experimental speckle pattern begins to wash out compared to
the theoretical modeling (top panels of Fig. 6.7b). Another probe of the decoherence
is the histogram P (pz) of the measured bit-string probabilities (Fig. 6.6b, right).
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Figure 6.7: Quantum walk under ergodic many-body dynamics. a, Evolution of
the population ⟨n̂i⟩ on sites Q1–Q10 as a function of time τ with zinit = 0000110000
in the cases of experiment, theory, and integrable theory from left to right. The
white dashed lines at the bottom (in the middle) indicates τ = 16 ns (360 ns). b–c,
Two-site correlator ⟨n̂in̂j⟩ with zinit = 0000110000 at evolution times τ = 16 ns,
360 ns, and 5.4µs from bottom to top in the cases of experiment (left column of
panel b), theory (right column of panel b), and integrable theory in panel c. This
figure is adapted from [132].

Here, the histogram deviates from the PT distribution, narrows substantially, and
approaches a uniform distribution corresponding to a completely decohered, max-
imally mixed state. Additional numerical simulations of µ2 and P (pz) for ergodic
and integrable systems can be found in App. D.8.
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6.6 Conclusion and outlook

Our many-body quantum simulator is based on a one-dimensional lattice of trans-
mon qubits connected together using a superconducting metamaterial, which ex-
hibits photonic bandgaps that protect qubit-photon bound states from decay and a
transmission passband used for high-fidelity multiplexed qubit-state read-out. Fur-
thermore, the metamaterial plays the role of a scalable photonic bus to mediate
tunable long-range coupling between qubit-photon bound states. This system of
interacting bound states realizes a Bose-Hubbard model with long-range hopping.
We characterize the system using conventional single- and two-qubit measurements
along with a sample-efficient many-body Hamiltonian learning protocol. Lastly, we
study the many-body quench dynamics of the system versus the range of the lattice
hopping, revealing the ergodic nature of the extended Bose-Hubbard model, distinct
from its nearest-neighbor-coupling counterpart. The major challenge in probing
long-time quantum evolution in our experiment is the short Ramsey coherence time
T ∗
2,i = 1.16µs, limited by flux-noise-induced dephasing. Incorporating a single

refocusing pulse has shown to increase the coherence time to T2E,i = 5.64µs at
the single-qubit level (see App. D.2). The extended quantum evolution times en-
abled by further dynamical decoupling, combined with the tunable-range coupling
investigated in this work, provide unique opportunities to explore non-equilibrium
dynamics with or without coupling to an environment and quantum phases of matter
in the presence of frustration.
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C h a p t e r 7

FUTURE DIRECTIONS

The previous three chapters have presented the development of superconducting
circuit architectures based on waveguide QED and their applications in studying
light-matter interactions and many-body physics. In this final chapter, we bring up
future directions for these architectures, especially the one detailed in Chapter 6
exhibiting the best controllability and coherence over multiple qubits. These future
directions are aligned with the grand goals of quantum information science and
engineering. For example, the programmability of the simulators is increasingly
emphasized [38, 43, 244, 250] in order to expand the realm of accessible Hamil-
tonians towards NISQ-era quantum simulations. The programmability covers not
only the amplitude and phase of the Hamiltonian parameters such as the interaction
strength, but also the connectivity and even the dimensionality of the lattice that
hosts interacting particles. Moreover, for both NISQ applications and fault-tolerant
quantum computing, scaling up to a large system size is the key to entering the
regime where classical computation becomes difficult. In the following, we detail
future directions starting from the quantum simulation of ground state properties of
the extended version of the Bose-Hubbard model (Chapter 6), followed by discus-
sions on increasing the programmability of the quantum simulators and scaling up
the systems based on waveguide QED architectures.

7.1 The extended version of the Bose-Hubbard model: ground state proper-
ties

The Bose-Hubbard (BH) model describes interacting bosons on a lattice, captured
by the Hamiltonian (similar to Eq. 6.1)

Ĥ/ℏ =
∑
i,j

Ji,j b̂
†
i b̂j +

U

2

∑
i

n̂i(n̂i − 1) + µ
∑
i

n̂i, (7.1)

where b̂†i (b̂i) is the bosonic creation (annihilation) operator and n̂i ≡ b̂†i b̂i is the
number operator on site i. As described in Sec. 6.3, the first two terms represent
the hopping between sites i-j and the on-site interaction (assuming uniform U over
sites), respectively. The third term, adapted from the site energy term

∑
i ϵin̂i
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in Eq. 6.1, assumes a uniform site energy that is parameterized by the chemical
potential µ.
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Figure 7.1: Ground states of the 1D standard BH model. a, Cartoon showing
a unity-filling Mott insulator (MI) phase with one boson (orange circle) occupying
each site (cosine-shaped well). b, Cartoon showing a superfluid (SF) phase with the
bosons delocalizing over the entire system. c, The ground state phase diagram of
the 1D standard BH model as a function of the normalized chemical potential µ/U
and the normalized hopping J/U .

The standard BH model considers nearest-neighbor (NN) hopping Ji,j = J (i, j are
NN sites) between sites and has been extensively studied theoretically and experi-
mentally, especially using transport measurements in Josephson junction arrays and
quantum gas microscope of ultracold atoms [14, 265, 266]. In these experiments,
the on-site interaction U is usually positive as a result of the repulsive interaction of
two particles on the same site.

The zero-temperature ground state of the standard BH model depends on the pa-
rameter regimes. Consider the unity filling (the particle number N is the same
as the number of lattice sites L), in the limit of |J/U | → 0, the energy penalty
of particles overlapping on the same site is so large that the particles are frozen
at their individual sites, forming the Mott insulator (MI) phase (Fig. 7.1a). In the
opposite limit of |J/U | → ∞, the kinetic energy associated with particle hopping
dominates and the particles tend to delocalize over the entire system in the ground
state, forming the superfluid (SF) phase (Fig. 7.1b). In between the limits, a critical
value (J/U)c marks the quantum phase transition. Away from the unity filling,
changing the chemical potential can add (subtract) a particle, thus creating a free
particle (hole) to hop in the system and resulting in the SF phase. Combining the
above analysis gives us the ground state phase diagram (shown in Fig. 7.1c is the
1D standard BH model phase diagram) featuring MI lobes surrounded by SF. In
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the MI phase at a fixed J/U , overcoming the on-site interaction penalty requires a
significant raise in the chemical potential µ represented by the MI gap (the height of
the MI lobe). Whereas in the SF phase, there is no energy penalty associated with
changing the particle number since all the particles are delocalized, meaning the SF
phase is compressible. The early experiments have explored both the MI and the
SF regime using site-resolved measurements that captures site-to-site correlations
and non-local order parameters, as well as exploring the quantum phase transition
described by an effectively relativistic theory [267–269].

However, the extended version of the BH model, where the beyond-nearest-neighbor
hopping is included, still remains to be explored largely due to the lack of experi-
mental controllability over the beyond-NN hopping. The quantum simulator with
individual site control and read-out detailed in Chapter 6 provides the playground in
this frontier. In this quantum simulator, the on-site interaction is negative as a result
of the transmon level structure (Fig. 7.2a). Therefore, the many-body ground state
of this BH model with attractive interaction is the superposition of aggregation of
all the particles on a single site [270, 271]. To regain the competition between the
hopping and the on-site interaction in repulsive BH models, we can study the highest
energy state instead, which corresponds to the ground state of −Ĥ (referred to as
the “ground state” below). The study of this extended version of the BH model may
provide insights into the effect of frustration from beyond NN hopping in quantum
phase transition and nontrivial correlations.

Numerical simulation

To access the unity-filling ground state of 10 or more sites efficiently, we use the
iTensor Julia package [272] that implements the density matrix renormalization
group (DMRG) technique1 [273, 274]. We simulate the 1D Hamiltonian −Ĥ where
Ĥ is specified in Eq. 7.1 with U normalized to −1 and Ji,j assuming the exponential
form |Ji,j| = Je−(|i−j|−1)/ξ(|i−j| ≥ 1) with the NN hopping rate J and localization
length ξ. The signs of the hopping terms are consistent with Sec. 6.4. We specify
the particle number in the initial state that is conserved during the simulation, which
effectively takes care of the chemical potential µ.

1We construct a spinless boson class containing 5 levels (enough for the ground state study) and
use the DMRG solver that conserves the total particle number to solve for the ground state energy
and wave function.
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Ground state phase diagram

We obtain the phase diagram at a certain localization length ξ following the methods
in [275]. More specifically, the boundary of the phase diagram corresponds to the
chemical potential µp(m) or energy needed to add (subtract) one particle, which can
be obtained from the ground state energy difference between the particle number
N = L and L + 1 (L − 1) in the system where L is the system size. The value of
µp(m) is always affected by finite system effect, which we overcome by simulating
L = 32, 64, 128, 256 and extrapolate the value toL→ ∞ (or equivalently, 1/L→ 0)
to find the value in the thermodynamical limit. From this process, we find the phase
diagram for the standard BH model that is consistent with earlier results [275].
Moreover, the phase diagrams for ξ = 1 in the UBG and LBG are drastically
different: the MI lobe is more restricted (extended) in the UBG (LBG) compared to
the standard BH model with NN hopping (Fig. 7.2b).
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Figure 7.2: Phase diagram and critical values of the extended version of the 1D
BH model. a, Cartoon showing a single lattice site realized by the qubit-photon
bound state introduced in Chapter 6. b, The ground state phase diagram of the 1D
extended BH model as a function of the normalized chemical potential µ/U and the
normalized hopping J/U for localization length ξ = 1 in the upper bandgap (UBG)
and the lower bandgap (LBG). The standard BH model phase diagram (nearest-
neighbor, or NN, coupling) is shown as a reference. c, The critical value (J/U)c as
a function of localization length ξ in the UBG and LBG.

This difference originates in the sign of hopping in the two bandgaps. In the standard
BH model, the sign of J is not important since the effect of J → −J is equivalent
to redefining b̂i → −b̂i where i is even. However, the sign of beyond-NN hopping
can not be gauged out in this way especially when |i− j| is an even number. The all
positive (alternating) sign in the UBG (LBG) further lowers (raises) the SF ground
state energy of −Ĥ , effectively stabilizing (creating frustration) for the SF phase
and causing the MI lobe to shrink (extend).
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Although the critical value (J/U)c is where the upper and lower boundaries of
the MI lobe overlap (the MI gap closes), it is hard to find the accurate critical
value in this way since the gap closes slowly, introducing large uncertainty in
the critical value. Following [275], we use the characteristic parameter K for a
Luttinger liquid2 [276–278], which describes the low-energy properties of 1D SF
phase, to determine the critical value. The parameter K can be extracted from
the correlation decay ⟨b̂†db̂0⟩ ∼ d−K/2. The parameter K = Kc = 1/2 represents
the unity-filling critical point of the constant-particle-number phase transition, the
Kosterlitz-Thouless transition [279–282], which we use to determine (J/U)c. Using
this method, we obtain the critical value as a function of ξ in the two bandgaps3
(Fig. 7.2c).

Correlation functions

In addition to the ground state energy, we also obtain the ground state wave function
from the DMRG simulations. Using the wave function, we can extract information
such as correlation function and non-local string-order parameters [283–285]. As an
example, we show the two-site number correlation function in the UBG for a system
with L = 64, C(d) = ⟨n̂in̂i+d⟩ − ⟨n̂i⟩⟨n̂i+d⟩ (Fig. 7.3). The on-site fluctuation
reflected in C(0) rises at a smaller J/U for smaller ξ as a result of entering the SF
phase. The correlation C(d) also exhibits a larger value for d > 2 at large ξ.

Plans for the experimental exploration

Parameter regimes

To see what ground state phase we can realize using, e.g., the quantum simulator
in Chapter 6, we can compare the result of (J/U)c versus ξ above (Fig. 7.2c) and

2The Hamiltonian can be written as

ĤL =
1

2π

∫
dx
{
(vK)[Π̂(x)]2 +

( v

K

)
[∂xΦ̂(x)]

2
}
,

where Π̂(x) and Φ̂(x) represent the density and phase fluctuations, respectively, in the relation
b†(x) =

√
ρ(x)eiΦ(x), v is the second sound velocity, and K describes the decay of the correlation

function ⟨b̂†db̂0⟩ ∼ d−K/2.
3To reduce the finite-size effect, K obtained from two largest system sizes are used [275]. The

simulation for UBG ends at small (J/U) and the largest system sizes are L = 128, 256 whereas LBG
simulation covers very large J/U value, making the simulation much harder, and thus the largest
system sizes are only L = 32, 64. This could cause error in the critical value and explain the smaller
value of (J/U)c at ξ = 0.1.
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Figure 7.3: Two-site correlations in the extended version of the BH model. The
two-site correlations in the UBG at different site separations (colored) as a function
of normalized J/U at ξ = 2.9 (the front panel) and ξ = 0.1 (the back panel). The
axes are of the same scale for both panels.

the experimental characterization (Fig. 6.3). In the LBG, the quantum simulator
exhibits ξ of 1.4 to 4.2 and (J/U) of 0.013 to 0.067, which is deep inside the MI
phase. In the UBG, ξ ranges from 1.8 to 4.1 with (J/U) of 0.188 to 1.33, which is
inside the SF phase. Therefore, this quantum simulator allows us to study the MI and
SF phase separately in the two bandgaps but the phase transition is not accessible.
It is difficult to approach the phase transition point in the LBG since increasing
(J/U) at smaller detuning also raises ξ, which drives (J/U)c to a higher value.
Changing parameters in the circuit design could help, whereas the qubit-waveguide
coupling needs to be comparable to the strength of the coupling between waveguide
resonators, which is challenging to realize. In contrast, the parameter trend in the
UBG is in favor of accessing the phase transition, and we can enter the MI phase at
large qubit-bandedge detuning4. On the design side, lowering the qubit-waveguide
coupling also helps to approach the MI phase in the UBG. For example, reducing the
qubit-waveguide coupling by half will lower J to 1/4 of its original value (Eq. D.21),
thus placing (J/U) below the critical value.

Accessing the ground states

In general, it is challenging to prepare an entangled many-body ground state. A
common method is the adiabatic preparation, where an easy-to-prepare ground state

4In the quantum simulator in Chapter 6, this is limited by the low upper sweet spot frequency
of about 7.5 GHz. The upper sweet spot frequency can be designed to be higher by changing the
Josephson junction parameters.
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such as a product state can be adiabatically transformed into the target ground state
by tuning the parameters of the Hamiltonian. This method is applicable in preparing
the ground state for the extended version of the BH model. The MI phase in the
limit of (J/U) → 0 is a product state |n = 1⟩

⊗
L in the position basis that we

can prepare using the sequence in Fig. 6.4b. We can first prepare the product
state at the smallest (J/U) accessible and ramp up this parameter (by reducing the
qubit-bandedge detuning) to the target value where the entangled MI state can be
prepared. Using this method, we can even ramp through the phase transition and
access the SF phase if we keep a small ramping rate compared to the many-body gap
that remains finite for an experimental system [286]. The fidelity of this preparation
protocol depends on how close the initial ground state is to the product state, which
exhibits an error ∼ O(J/U) in the wave function [287]. This error may influence
the observation of small correlations.

To overcome this error, we can use an adiabatic driving protocol [215] starting from
no excitation in the system, a true ground state of −Ĥ when the chemical potential
is negative. A drive term

Ĥd/ℏ =
Ωd

2

∑
i

(b̂†i + b̂i) (7.2)

can be added to the Hamiltonian such that in the rotating frame of the driving
frequency, the detuning between the drive and the qubit controls the chemical
potentialµ. In addition, the drive term also couples different particle-number sectors
of the original particle-number-conserving Hamiltonian to allow an adiabatic path
from a vacuum state to the unity-filling MI state.

Another ground-state preparation method is dissipative preparation [48], which can
also be used to stabilize a many-body state. This method relies on the incompress-
ibility of, e.g., the MI phase and achieves the balance between drive and dissipation
to stabilize the particle number to unity filling. We have designed two extra qubits
in the quantum simulator in Chapter 6 (Fig. 6.2a), which can act as stabilizer sites
to perform this preparation.

7.2 Engineering the coupling profile

The waveguide QED architectures open the door to beyond nearest-neighbor connec-
tivity for superconducting qubits. However, the architecture that provides wide-band
coherence protection only supports the native coupling profile of exponential decay
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in strength [288] (see also Chapter 6), which limits the realm of Hamiltonians to
implement and still belongs to short-range coupling in the thermodynamic limit.
Further engineering of the coupling profile and even the connectivity graph is valu-
able for both quantum simulation and computation.

Flux modulation of the qubit frequency

The tunability in the localization length allows us to combine the coupling profile of
different exponents to emulate new classes of coupling profiles [289], especially in
a physical device with a finite size. In [158], the authors proposed to use two sets of
Raman drives to generate an approximate power-law decay profile composed of the
summation of two exponentials. Although the transmon qubits do not support the
level structure to realize this proposal, we can combine multiple exponentials using
flux modulation of the qubit frequency.

The flux modulation creates sidebands around the major qubit frequency, usually
used to bridge the energy gap between two parties that are off-resonant [290–293]. In
our case, we start from qubits that are on-resonant with each other, which gives rise to
a single exponential decay profile. Additionally, we can flux modulate each qubit to
create sidebands that are resonant to each other. These sidebands, exhibiting different
detunings from the original qubit frequency, lead to decay profiles with different
exponents (Fig. 7.4). The strength of a sideband, controlled by the modulation
frequency and strength, determines the strength of the corresponding exponential
profile in the combination. Therefore, we can use the flux modulation to engineer
the coupling profiles.

More concretely, we start from the Hamiltonian describing multiple qubits coupled
to a waveguide, similar to Eq. D.13,

Ĥ/ℏ =
∑
k

ωkâ
†
kâk +

∑
n

ωqn(t)

2
σ̂z
n

+
∑
n,k

(
gk,nâ

†
kσ̂

−
n + g∗k,nâkσ̂

+
n

)
, (7.3)

where ωk is the frequency of the waveguide mode with wave vector k and creation
(annihilation) operator â†k (âk), ωqn(t) is the flux modulated n-th qubit frequency,
and gk,n is the coupling strength between the n-th qubit and mode k. We assume that
the flux modulation leads to the same time-dependent frequency for all the qubits

ωqn(t) = ω0 + ϵ cos (Ωt+ ϕ), (7.4)
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where ω0 is the averaged qubit frequency during the modulation, ϵ is the modulation
strength, Ω and ϕ represents the modulation frequency and phase, respectively
(a ϕ = 0 example is shown in Fig. 7.4a). By transforming the Hamiltonian in
Eq. 7.3 into the interaction picture and back to the lab frame, we obtain the effective
sideband-enabled interaction

Ĥ/ℏ =
∑
k

ωkâ
†
kâk +

∑
n

ω0

2
σ̂z
n

+
∑
n,k

∑
j

(
gk,nJj(

ϵ

Ω
)e−ij(Ωt+ϕ)â†kσ̂

−
n + h.c.

)
, (7.5)

where Jj(x) is the j-th order Bessel function of the first kind. For simplicity,
we define hk,n,j ≡ gk,nJj(

ϵ
Ω
)e−ijϕ. To address the time-dependent coupling terms

from the sidebands, we iteratively (i) apply the Schrieffer-Wolff transformation to
obtain the photon-mediated qubit-qubit interaction by the non-rotating coupling5

and (ii) transform to the frame where the next sideband-photon coupling is static.
By repeating the procedure for each sideband and keeping up to first order in g/∆,
where ∆ is the detuning between the sideband and a photonic mode, we arrive at
the photon-mediated interaction

ĤI/ℏ =
∑
n,m

∑
j

(∑
k

h∗k,n,jhk,m,j

∆k − jΩ
σ̂+
n σ̂

−
m + h.c.

)
. (7.6)

In the following, we show an example of using the flux modulation to emulate
the power-law profile Jn,m ∝ 1/|n−m| (Fig. 7.4b). Although the flux modulation
creates an infinite series of sidebands, the strength of higher-order sidebands is small
at weak modulation amplitude. The major contribution comes from the zeroth-
order (averaged qubit frequency) and the first-order sideband. Using the parameters
from Fig. 6.3, we choose the averaged qubit frequency to be ω0/2π = 4.7GHz
(localization length ξ ∼ 1.4), the modulation frequency Ω/2π = 258MHz, the
modulation amplitude ϵ/2π = 96MHz, and the modulation phase ϕ = 0. With the
formulas in App. D.1, we can calculate the localization length and coupling strength
associated with the sideband ω0 − Ω, ω0, and ω0 + Ω, resulting in the approximate
power-law profile Jn,m ∝ 1/|n −m| (Fig. 7.4c). The weak second order sideband
ω0+2Ω lands in the passband frequency, resulting in a radiative-decay-limited qubit
lifetime of about 11µs6.

5The fast-rotating qubit-qubit coupling proportional to hk,n,jh
∗
k,m,l

∆k
e−i(j−l)Ωt is ignored assum-
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Figure 7.4: Engineering the coupling profile using flux modulation. a, Time-
dependent qubit frequency ωq(t) in Eq. 7.4 resulting from the flux modulation with
the modulation amplitude ϵ, modulation frequency Ω, and the modulation phase in
this example ϕ = 0. b, Cartoon showing the qubit-photon bound states Qn and
Qm after flux modulation with the vertical (horizontal) direction representing the
frequency (position) space. The dominant component is the zeroth order sideband
or the average qubit frequency at ω0 (large orange arrow). The first-order sideband at
ω0+Ω (ω0−Ω) locates closer (farther) from the passband (the blue band), resulting
in a more extended (localized) bound state. The second-order sideband ω0 + 2Ω
lands inside the passband. The orange arrows and the photonic envelope reflects
qualitative relations, which are not exact in scale. c, An example of emulating
the power-law profile Jn,m ∝ 1/|n − m| (red solid curve) using the zeroth order
sideband (blue dashed curve) and the first order sideband (orange dashed curve).
The combination gives the black dash-dotted curve with the error from the power-
law profile shown in the green dotted curve. The ω0 − Ω sideband makes a small
contribution from its weak coupling strength with a profile similar to the blue dashed
curve.

In addition to engineering the coupling profile in 1D, the flux modulation also
enables synthetic higher-dimensional connectivity and magnetic field, which is
the basic building block for fractional quantum Hall states [294, 295]. We can
realize the higher-dimensional connectivity using the frequency space as synthetic
dimensions. To illustrate, we use the construction of a four-qubit plaquette as an
example (Fig. 7.5). At the averaged qubit frequencies, Q1 and Q2 (Q3 and Q4)
are on resonance at ωA (ωB) and ωA ̸= ωB. We modulate the qubits to create
the first-order sideband for Q1 and Q3 (Q2 and Q4) at ωC (ωD) with all ωi (i =

ing |(j − l)Ω| ≫ hk,n,jh
∗
k,m,l

∆k
, where ∆k = ω0 − ωk is the detuning between the averaged qubit

frequency and the mode k.
6The decay rate of Γ1D/2π = 46MHz calculated from the circuit design values is used to

estimate the sideband qubit decay. The second order sideband is proportional to J2(ϵ/Ω) < 0.018.
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Figure 7.5: Synthetic higher-dimensional connectivity and magnetic field. a,
Schematic showing an example of four-qubit plaquette constructed from flux modu-
lation. The vertical direction represents the frequency dimension and the horizontal
direction is the position space. The dashed orange line connects different sidebands
of the same bound state and the colored curves represent photon-mediated bound
state coupling. The passband of the waveguide is represented by the blue band.
b, The plaquette for microwave photons with a synthetic magnetic field and a total
accumulated hopping phase φp resulting from the flux modulation in panel a.

A,B,C,D) of distinct values. In this way, we employ the beyond-NN coupling and
the frequency dimension to create a 2D plaquette out of a 1D structure. Moreover,
the photon-mediated qubit exchange interaction exhibits a phase determined by the
flux modulation phaseφn,m = ϕn−ϕm from Eq. 7.6 where ϕn is the flux modulation
phase of the n-th qubit. By setting the modulation phase of the four qubits such that
the total plaquette phaseφp = φ1,3−φ2,4 ̸= 0, we can introduce a synthetic magnetic
field for microwave photons hopping around the plaquette [212] (Fig. 7.5b). This
method can be extended to even higher dimensions with more flux modulation tones.
The drawback of this method is the ultimate limit of the number of modulation tones
for a single qubit before we run into the frequency crowding problem. As we see
from the above example, each link connecting a qubit to another qubit occupies a
distinct frequency with a bandwidth proportional to the coupling strength of this
link. Two links without a common qubit may use the same frequency only if the
four qubits involved in the links are sufficiently separated on the waveguide.

When using the flux modulation, it is important to take into account higher order
sidebands even if we only use the first order ones. The higher order sidebands may
land in the passband or other unwanted frequencies to introduce spurious decay or
interaction, especially when we use a large modulation strength ϵ. This problem
may be overcome by engineering the time-dependent qubit frequency in Eq. 7.4 to
take more sophisticated forms [127, 296].
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Waveguide dispersion engineering

Engineering the dispersion of the waveguide can also change the coupling profile
with an example of the topological waveguide described in Chapter 5. In addition,
left-handed metamaterials [297, 298] and waveguides with flat dispersions [299]
can also introduce intruiguing waveguide QED phenomena. The construction of
2D metamaterials [300] will open the door to a richer set of physics, including the
hyperbolic space [40] and anisotropic coupling profiles [143]. Coupling qubits to
such metamaterials is also within reach by using standard flip-chip technique [235,
236].

7.3 Scaling up to a large system size

Scalability is an important motivation to move from cavity-QED-based architectures
to waveguide-QED-based architectures. The waveguide itself is intrinsically exten-
sible, i.e., its dispersion relation remains unchanged by adding extra length or unit
cells to the waveguide. Here, we discuss the scaling considerations when coupling
qubits to a waveguide.

In the passband regime, scaling to a large number of qubits will not change the
collective effects and protocols [129, 139, 145] assuming that the Markov approx-
imation remains valid (discussed in Sec. 2.1). This translates to the separation
between qubits ∆x ≪ 10λ [142], i.e., about 20 qubits given the separation of λ/2.
Beyond this limit, the theoretical modeling, including numerical simulation, is more
challenging and the formulas in Sec. 2.1 are not longer valid. Nonetheless, this
regime presents exciting opportunities for experimental exploration of collective
non-Markovian effects [143].

In the bandgap regime, we can scale up the system size without worrying about
frequency crowding thanks to the tunable range and strength of the photon-mediated
interactions. By choosing the qubit idle frequency to be away from the bandgap,
we can suppress the coupling between unwanted qubit pairs. Using the quantum
simulator in Chapter 6 as an example, the nearest-neighbor coupling is smaller than
1 MHz when the qubit frequency is below 4.3 GHz. With the localization length of
ξ = 1.4, the coupling strength decays below 1 kHz for qubit-qubit separation of 10
sites. This illustrates that the required bandwidth for qubit idle frequencies does not
grow with the number of qubits coupled to the waveguide.

The scaling of the number of read-out resonators in the passband is different. Owing
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to the infinite-range interacting nature of the passband and the requirement to prevent
read-out crosstalk by separating the frequencies of different read-out resonators, the
metamaterial waveguide Purcell filter cannot be simply extended to host a large
number of read-out resonators. Therefore, we propose a truly scalable waveguide
QED architecture by separating the quantum bus as the interaction media from the
metamaterial Purcell filter (Fig. 7.6). The quantum bus is shared among all qubits
to mediate long-range interactions while multiple metamaterial Purcell filters are
incorporated, each of which can host around 10 read-out resonators.
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Figure 7.6: Waveguide QED architecture for scaling up to large system sizes.
Cartoon showing a truly scalable waveguide QED architecture where the middle blue
structure represents the waveguide bus to mediate qubit-qubit interaction, the orange
rectangles represent the qubits, the colors of the read-out resonators represents
different frequencies, and the green structures are the read-out feedlines hosting 10
read-out resonators on a single feedline.

Beyond analog quantum simulation, we also consider using this architecture to con-
struct long-range gates that are valuable for low-overhead quantum error correction
[34, 70, 72–74] and fermionic quantum simulation [59, 62, 77]. The important factor
is the gate speed in the long-range limit, where the passband modes approaches con-
tinuum in frequency and the gate is mediated by a collection of the passband modes.
The interaction strength described in, e.g., Eq. 2.36 for the quadratic dispersion pre-
dicts that large qubit-waveguide coupling g and small qubit-bandedge detuning |∆|
gives a large interaction strength Ji,j . While the specific expression is dependent
on the exact dispersion relation, Ji,j usually diverges when |∆| → 0. However,
this limit is beyond the perturbative regime where Schrieffer-Wolff transformation,
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which assumes |g/∆| ≪ 1, is valid7. To calculate the interaction strength in this
limit, we need to use the Green function formalism, which gives a finite interaction
strength close to the bandedge [143, 164] as expected. In addition, to mediate the
interaction between distant qubits, the bound state needs to be extended in space,
which requires special care in the preparation process. Directly exciting the qubit
itself close to the bandedge is not effective since the wave-function overlap between
the bare qubit and the extended qubit-photon bound state is smaller at smaller qubit-
bandedge detunings [143, 301]. A viable solution is to excite the qubit at large |∆|
and tune it close to the bandedge adiabatically, which may slow down the entire
long-range-gate protocol. Therefore, when very-long-range gates are considered,
it may be beneficial to employ a hybrid protocol where shorter-range interaction
is performed in the bandgap with interaction meditaed by virtual photons and the
very-long-range gate is achieved using the pitch-and-catch method in the passband
[127, 252, 302, 303]. This protocol is ultimately limited by the loss of the waveg-
uide or the Anderson localization from the waveguide disorder, the former of which
is found to be the limiting factor of microwave propagation in the passband of a
metamaterial waveguide [127, 144]. The waveguide loss can be reduced by more
than two orders of magnitude via improved fabrication processes [304].

7Alternatively, the handling of the perturbation can also be viewed as the Born-Markov ap-
proximation where the photonic degrees of freedom are traced out, leaving the effective qubit-qubit
interaction [143].
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A p p e n d i x A

DEVICE FABRICATION DETAILS

In this appendix, we provide details of each fabrication step mentioned in Sec. 3.2.
The majority of the description is the same as App. A in [133] with minor updates.
The key parameters are summarized in Table A.1 with the footnotes providing
detailed information. The sequence of each step appearing in the table dictates the
sequence of performing each step in the fabrication.

1Trichloroethylene
2With sonication
3Isopropyl alcohol, with sonication
4PIE Tergeo Plus. Before running the recipe, clean the chamber for 5 min and condition the

chamber for another 10 min. This procedure is the same for all the O2 plasma processes.
5Buffered Oxide Etch: 15 sec in BOE, rinse with deionized water for 10 sec in beaker I, rinse

with deionized water for 10 sec in beaker II.
6SPTS uEtch
7Bilayer resist. Bake after each layer.
8Trilayer resist. Bake after each layer.
9(Spin speed in unit of rpm, acceleration in unit of rpm/s)

10Baking time: 3 min. There is a prebake before spinning any resist.
11Methyl isobutyl ketone
12Volume ratio 3:1
13Development temperature: 1.5◦C
14The plasma power is reduced by half.
15Before evaporating the metal, Titanium is first evaporated (0.2 nm/s for 3 min) to further lower

the chamber pressure. The device is not exposed at this point.
16This is double-angle evaporation. The first evaporation has tilt of 60◦ and rotation of 90◦,

followed by a 20-min oxidation at 5 mbar and the second evaporation with tilt of 20◦ and rotation of
180◦.

17The lift-off is always performed with two NMP (N-Methyl-2-pyrrolidone) beakers, both of
which are heated to 150◦C. Unless stated, the chip stays in beaker I for 1 hour, transferred to beaker
II, sonicated for 5 min, transferred to Acetone and sonicated for 2 min, transferred to IPA and
sonicated for 1 min. The process is described in detail in App. A.8 of [133]
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E-beam round Marker Ground JJ Air-bridge
Chip cleaning
TCE1 10 min, 80◦C - - -
Acetone 2 5 min 3 min - -
IPA3 3 min 2 min - -
O2 plasma4 2 min 2 min 2 min 2 min
BOE5 Yes Yes - -
Vapor HF6 - - Yes Yes
Spin/bake
Resist ZEP 520A ZEP 520A MMA(8.5)MAA

EL11,
950PMMA
A47

950PMMA A9,
MMA(8.5)MAA
EL11,
950PMMA
A98

Spinner
parameters9

(3k, 1.5k) (3k, 1.5k) (2.2k, 1.5k) (4k, 1.5k)

Baking
temperature10

180◦C 180◦C 170◦C 170◦C

Beamwrite
Current 10 nA 10 or 100 nA 0.18 nA 4 nA
Aperture 300µm 300µm 200µm 300µm
Dose (µC/cm2) 245 245 990 480
Development
(Developer,
Rinser)

(ZED-N50,
MIBK11)

(ZED-N50,
MIBK)

(IPA/DI water12,
IPA)13

(IPA/DI water,
IPA)

Time (2.5 min, 30 sec) (2.5 min, 30 sec) (10 min, 10 sec) (> 90 sec, 10
sec)

Resist reflow - - - 105◦C, 2 hr
O2 plasma 2 min 1 min 1 min14 2 min
BOE - Yes - -
Vapor HF - - Yes -
Evaporation15

Ar milling - - - 400 V, 21 mA,
6 min

Metal Nb Al Al Al
Rate 0.4 nm/s 1 nm/s 1 nm/s 0.2 nm/s
Thickness 150 nm 120 nm 60 nm, 120 nm16 200 nm
Oxidation - 10 mbar, 2 min 5 mbar for

20 min, 10 mbar
for 2 min

10 mbar, 2 min

Lift-off 17 3 hr in beaker I Gentle lift-off

Table A.1: Key parameters in device fabrication
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A p p e n d i x B

SUPPLEMENTARY INFORMATION FOR CHAPTER 4

B.1 Spectroscopic measurement of individual qubits

The master equation of a qubit in a thermal bath at temperature T , driven by a
classical field is given by ˙̂ρ = −i[Ĥ/ℏ, ρ̂] +L[ρ̂], where the Hamiltonian Ĥ and the
Liouvillian L is written as [305]

Ĥ/ℏ = −ωp − ωq

2
σ̂z +

Ωp

2
σ̂x, (B.1)

L[ρ̂] = (n̄th + 1)Γ1D[σ̂−]ρ̂+ n̄thΓ1D[σ̂+]ρ̂+
Γφ

2
D[σ̂z]ρ̂. (B.2)

Here, ωp (ωq) is the frequency of the drive (qubit), Ωp is the Rabi frequency of the
drive, n̄th = 1/(eℏωq/kBT − 1) is the thermal occupation of photons in the bath, Γ1

and Γφ are relaxation rate and pure dephasing rates of the qubit, respectively. The
superoperator

D[Â]ρ̂ = Âρ̂Â† − 1

2
{Â†Â, ρ̂} (B.3)

denotes the Lindblad dissipator. The master equation can be rewritten in terms of
density matrix elements ρa,b ≡ ⟨a|ρ̂|b⟩ as

ρ̇e,e =
iΩp

2
(ρe,g − ρg,e)− (n̄th + 1)Γ1ρe,e + n̄thΓ1ρg,g (B.4)

ρ̇e,g =

[
i(ωp − ωq)−

(2n̄th + 1)Γ1 + 2Γφ

2

]
ρe,g +

iΩp

2
(ρe,e − ρg,g) (B.5)

ρ̇g,e = ρ̇∗e,g; ρ̇g,g = −ρ̇e,e (B.6)

With ρe,e + ρg,g = 1, the steady-state solution ( ˙̂ρ = 0) to the master equation can be
expressed as

ρss
e,e =

n̄th

2n̄th + 1

1 + (δω/Γth
2 )

2

1 + (δω/Γth
2 )

2 + Ω2
p/(Γ

th
1 Γ

th
2 )

+
1

2

Ω2
p/(Γ

th
1 Γ

th
2 )

1 + (δω/Γth
2 )

2 + Ω2
p/(Γ

th
1 Γ

th
2 )
,

(B.7)

ρss
e,g = −i Ωp

2Γth
2 (2n̄th + 1)

1 + i δω/Γth
2

1 + (δω/Γth
2 )

2 + Ω2
p/(Γ

th
1 Γ

th
2 )
, (B.8)

where δω = ωp − ωq is the detuning of the drive from qubit frequency, Γth
1 =

(2n̄th + 1)Γ1 and Γth
2 = Γth

1 /2 + Γφ are the thermally enhanced decay rate and
dephasing rate of the qubit.
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Now, let us consider the case where a qubit is coupled to the waveguide with decay
rate of Γ1D. If we send in a probe field âin from left to right along the waveguide,
the right-propagating output field âout after interaction with the qubit is written as
[145]

âout = âin +

√
Γ1D

2
σ̂−.

The probe field creates a classical drive on the qubit with the rate of Ωp/2 =

−i⟨âin⟩
√

Γ1D/2. With the steady-state solution of master equation (B.8) the trans-
mission amplitude t = ⟨âout⟩/⟨âin⟩ can be written as

t(δω) = 1− Γ1D

2Γth
2 (2n̄th + 1)

1 + i δω/Γth
2

1 + (δω/Γth
2 )

2 + Ω2
p/(Γ

th
1 Γ

th
2 )
. (B.9)

At zero temperature (n̄th = 0) Eq. (B.9) reduces to [118, 306]

t(δω) = 1− Γ1D

2Γ2

1 + i δω/Γ2

1 + (δω/Γ2)2 + Ω2
p/(Γ1Γ2)

. (B.10)

Here, Γ2 = Γφ + Γ1/2 is the dephasing rate of the qubit in the absence of thermal
occupancy. In the following, we define the parasitic decoherence rate of the qubit as
Γ′ = 2Γ2 − Γ1D = Γloss + 2Γφ, where Γloss denotes the decay rate of qubit induced
by channels other than the waveguide. Examples of Γloss in superconducting qubits
include dielectric loss, decay into slotline mode, and loss from coupling to two-level
system (TLS) defects.

Effect of saturation

To discuss the effect of saturation on the extinction in transmission, we start with
the zero temperature case of Eq. (B.10). We introduce the saturation parameter
s ≡ Ω2

p/Γ1Γ2 to rewrite the on-resonance transmittivity as

t(0) = 1− Γ1D

2Γ2

1

1 + s
≈ 1− Γ1D

2Γ2

(1− s) =

(
1 + s

Γ1D

Γ′

)(
Γ′

Γ′ + Γ1D

)
, (B.11)

where the low-power assumption s ≪ 1 has been made in the last step. For
the extinction to get negligible effect from saturation, the power-dependent part
in Eq. (B.11) should be small compared to the power-independent part. This is
equivalent to s < Γ′/Γ1D. Using the relation

Ωp =

√
2Γ1DPp

ℏωq
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between the driven Rabi frequency and the power Pp of the probe and assuming
Γ′ ≪ Γ1D, this reduces to

Pp ≲
ℏωqΓ

′

4
. (B.12)

In the experiment, the probe power used to resolve the extinction was -150 dBm
(10−18 W), which gives a limit to the observable Γ′ due to our coherent drive of
Γ′/2π ≈ 150 kHz.

Effect of thermal occupation

To take into account the effect of thermal occupancy, we take the limit where the
saturation is very small (Ωp ≈ 0). On resonance, the transmission amplitude is
expressed as

t(0) = 1− Γ1D

[(2n̄th + 1)Γ1 + 2Γφ](2n̄th + 1)
≈ 1−Γ1D

2Γ2
+
(Γ1 + Γφ)Γ1D

Γ2
2

n̄th, (B.13)

where we have assumed the thermal occupation is very small, n̄th ≪ 1. In the limit
where Γ1D is dominating spurious loss and pure dephasing rates (Γ2 ≈ Γ1D/2), this
reduces to

t(0) ≈ t(0)|T=0 + 4n̄th (B.14)
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Figure B.1: Effect of thermal occupancy on extinction. The transmittance of Q1

is measured at the flux-insensitive point before and after installation of customized
microwave attenuator. We observe an order-of-magnitude enhancement in extinction
after the installation, indicating a better thermalization of input signals to the chip.
This figure is adapted from [47].
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and hence the thermal contribution dominates the transmission amplitude unless
n̄th < Γ′/4Γ1D.

Using this relation, we can estimate the upper bound on the temperature of the
environment based on our measurement of extinction. We have measured the
transmittance of Q1 at its maximum frequency (Fig. B.1) before and after installing
a thin-film microwave attenuator, which is customized for proper thermalization
of the input signals sent into the waveguide with the mixing chamber plate of the
dilution refrigerator [177]. The minimum transmittance was measured to be |t|2 ≈
1.7×10−4 (2.1×10−5) before (after) installation of the attenuator, corresponding to
the upper bound on thermal photon number of n̄th ≲ 3.3× 10−3 (1.1× 10−3). With
the attenuator, this corresponds to temperature of 43 mK, close to the temperature
values reported in Ref. [177].

B.2 Detailed modeling of the atomic cavity

|e〉p|G〉

|g〉p|G〉

|g〉p|D〉 |g〉p|B〉

|g〉p|E〉|e〉p|D〉

|e〉p|E〉

J

J

2Γ1D
ΩWGΓ1D,p

ΩXY

Γ1D,p
ΩXY
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ΩXY

2Γ1D ΩWG

Interaction
Decay
Drive

|e〉a|0〉

|g〉a|0〉

|g〉a|1〉

|g〉a|2〉|e〉a|1〉

|e〉a|2〉
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2κ

κ
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… …a b

Figure B.2: Level structure of the atomic cavity and linear cavity. a, Level
structure of the three-qubit system of probe qubit and atomic cavity. Γ1D,p and 2Γ1D
denotes the decay rates into the waveguide channel, ΩXY is the local drive on the
probe qubit, and ΩWG is the drive from the waveguide. The coupling strength J is
the same for the first excitation and second excitation levels, b, Level structure of an
atom coupled to a linear cavity. |e⟩a (|g⟩a) denotes the excited state (ground state) of
the atom, while |n⟩ is the n-photon Fock state of the cavity field. g is the coupling,
γ is the decay rate of the atom, and κ is the photon loss rate of the cavity. This figure
is adapted from [47].

In this section, we analyze the atomic cavity discussed in the main text in more detail,
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taking into account its higher excitation levels. The atomic cavity is formed by two
identical mirror qubits [frequency ωq, decay rate Γ1D (Γ′) to waveguide (spurious
loss) channel placed at λ/2 distance along the waveguide (Fig. 4.1a). From the λ/2
spacing, the correlated decay of the two qubits is maximized to −Γ1D, while the
exchange interaction is zero. This results in formation of dark state |D⟩ and bright
state |B⟩

|D⟩ = |eg⟩+ |ge⟩√
2

, |B⟩ = |eg⟩ − |ge⟩√
2

, (B.15)

which are single-excitation states of two qubits with suppressed and enhanced waveg-
uide decay rates Γ1D,D = 0, Γ1D,B = 2Γ1D to the waveguide. Here, g (e) denotes
the ground (excited) state of each qubit. Other than the ground state |G⟩ ≡ |gg⟩,
there also exists a second excited state |E⟩ ≡ |ee⟩ of two qubits, completing 22 = 4

eigenstates in the Hilbert space of two qubits. We can alternatively define |D⟩ and
|B⟩ in terms of collective annihilation operators

ŜD =
1√
2

(
σ̂
(1)
− + σ̂

(2)
−

)
, ŜB =

1√
2

(
σ̂
(1)
− − σ̂

(2)
−

)
(B.16)

as |D⟩ = Ŝ†
D|G⟩ and |B⟩ = Ŝ†

B|G⟩. Here, σ̂(i)
− de-excites the state of i-th mirror qubit.

Note that the doubly-excited state |E⟩ can be obtained by successive application of
either Ŝ†

D or Ŝ†
B twice on the ground state |G⟩.

The interaction of qubits with the field in the waveguide is written in the form of
ĤWG ∝ (ŜB + Ŝ†

B), and hence the state transfer via classical drive on the waveguide
can be achieved only between states of non-vanishing transition dipole ⟨f |ŜB|i⟩. In
the present case, only |G⟩ ↔ |B⟩ and |B⟩ ↔ |E⟩ transitions are available via the
waveguide with the same transition dipole. This implies that the waveguide decay
rate of |E⟩ is equal to that of |B⟩, Γ1D,E = 2Γ1D.

To investigate the level structure of the dark state, which is not accessible via the
waveguide channel, we introduce an ancilla probe qubit [frequency ωq, decay rate
Γ1D,p (Γ′

p) to waveguide (loss) channel] at the center of mirror qubits. The probe
qubit is separated by λ/4 from mirror qubits, maximizing the exchange interaction
to
√

Γ1D,pΓ1D/2 with zero correlated decay. This creates an interaction of excited
state of probe qubit to the dark state of mirror qubits |e⟩p|G⟩ ↔ |g⟩p|D⟩, while the
bright state remains decoupled from this dynamics.

The master equation of the three-qubit system reads ˙̂ρ = −i[Ĥ/ℏ, ρ̂] + L[ρ̂], where
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the Hamiltonian Ĥ and the Liouvillian L are given by

Ĥ = ℏJ
[
σ̂(p)
− Ŝ

†
D + σ̂(p)

+ ŜD

]
(B.17)

L[ρ̂] = (Γ1D,p + Γ′
p)D

[
σ̂(p)
−

]
ρ̂+ (2Γ1D + Γ′)D

[
ŜB

]
ρ̂+ Γ′ D

[
ŜD

]
ρ̂ (B.18)

Here, σ̂(p)
± are the Pauli operators for the probe qubit, 2J =

√
2Γ1D,pΓ1D is the

interaction between probe qubit and dark state, and D[·] is the Lindblad dissipator
defined in Eq. (B.3). The full level structure of the 23 = 8 states of three qubits and
the rates in the system are summarized in Fig. B.2a. Note that the effective (non-
Hermitian) Hamiltonian Ĥeff in the main text can be obtained from absorbing part
of the Liouvillian in Eq. (B.18) excluding terms associated with quantum jumps.

To reach the dark state of the atomic cavity, we first apply a local gate |g⟩p|G⟩ →
|e⟩p|G⟩ on the probe qubit (ΩXY in Fig. B.2a) to prepare the state in the first-excitation
manifold. Then, the Rabi oscillation |e⟩p|G⟩ ↔ |g⟩p|D⟩ takes place with the rate
of J . We can identify g = J , γ = Γ1D,p + Γ′

p, κ = Γ′ in analogy to cavity QED
(Fig. 4.1 and Fig. B.2b) and calculate cooperativity as

C =
(2J)2

Γ1,pΓ1,D
=

2Γ1D,pΓ1D

(Γ1D,p + Γ′
p)Γ

′ ≈
2Γ1D

Γ′ ,

when the spurious loss rate Γ′ is small. A high cooperativity can be achieved in
this case due to collective suppression of radiation in atomic cavity and cooperative
enhancement in the interaction, scaling linearly with the Purcell factor P1D =

Γ1D/Γ
′. Thus, we can successfully map the population from the excited state of

probe qubit to dark state of mirror qubits with the interaction time of (2J/π)−1.

Going further, we attempt to reach the second-excited state |E⟩ = (Ŝ†
D)

2|G⟩ of
atomic cavity. After the state preparation of |g⟩p|D⟩ mentioned above, we apply
another local gate |g⟩p|D⟩ → |e⟩p|D⟩ on the probe qubit and prepare the state in the
second-excitation manifold. In this case, the second excited states |e⟩p|D⟩ ↔ |g⟩p|E⟩
have interaction strength J , same as the first excitation, while the |E⟩ state becomes
highly radiative to waveguide channel. The cooperativity C is calculated as

C =
(2J)2

Γ1,pΓ1,E
=

2Γ1D,pΓ1D

(Γ1D,p + Γ′
p)(2Γ1D + Γ′)

< 1,

which is always smaller than unity. Therefore, the state |g⟩p|E⟩ is only virtually
populated and the interaction maps the population in |e⟩p|D⟩ to |g⟩p|B⟩ with the rate
of (2J)2/(2Γ1D) = Γ1D,p. This process competes with radiative decay (at a rate
of Γ1D,p) of probe qubit |e⟩p|D⟩ → |g⟩p|D⟩ followed by the Rabi oscillation in the
first-excitation manifold, giving rise to damped Rabi oscillation in Fig. 4.6c.
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Effect of phase length mismatch

Deviation of phase length between mirror qubits from λ/2 along the waveguide can
act as a non-ideal contribution in the dynamics of atomic cavity. The waveguide
decay rate of dark state can be written as Γ1D,D = Γ1D(1−| cosϕ|), where ϕ = k1Dd

is the phase separation between mirror qubits [145]. Here, k1D is the wavenumber
and d is the distance between mirror qubits.

We consider the case where the phase mismatch ∆ϕ = ϕ − π of mirror qubits is
small. The decay rate of the dark state scales as Γ1D,D ≈ Γ1D(∆ϕ)

2/2 only adding
a small contribution to the decay rate of dark state. Based on the decay rate of dark
states from time-domain measurement in Table B.2, we estimate the upper bound
on the phase mismatch ∆ϕ/π to be 5% for type-I and 3.5% for type-II.

Effect of asymmetry in Γ1D

So far we have assumed that the waveguide decay rate Γ1D of mirror qubits are
identical and neglected the asymmetry. If the waveguide decay rates of mirror
qubits are given by Γ1D,1 ̸= Γ1D,2, the dark state and bright state are redefined as

|D⟩ =
√
Γ1D,2|eg⟩+

√
Γ1D,1|ge⟩√

Γ1D,1 + Γ1D,2
, |B⟩ =

√
Γ1D,1|eg⟩ −

√
Γ1D,2|ge⟩√

Γ1D,1 + Γ1D,2
, (B.19)

with collectively suppressed and enhanced waveguide decay rates of Γ1D,D = 0,
Γ1D,B = Γ1D,1 + Γ1D,2, remaining fully dark and fully bright even in the presence of
asymmetry. We also generalize Eq. (B.16) as

ŜD =

√
Γ1D,2σ̂

(1)
− +

√
Γ1D,1σ̂

(2)
−√

Γ1D,1 + Γ1D,2
, ŜB =

√
Γ1D,1σ̂

(1)
− −

√
Γ1D,2σ̂

(2)
−√

Γ1D,1 + Γ1D,2
. (B.20)

With this basis, the Hamiltonian can be written as

Ĥ = ℏJD

(
σ̂(p)
− Ŝ

†
D + σ̂(p)

+ ŜD

)
+ ℏJB

(
σ̂(p)
− Ŝ

†
B + σ̂(p)

+ ŜB

)
, (B.21)

where

JD =

√
Γ1D,pΓ1D,1Γ1D,2√
Γ1D,1 + Γ1D,2

, JB =

√
Γ1D,p(Γ1D,1 − Γ1D,2)

2
√

Γ1D,1 + Γ1D,2
.

Thus, the probe qubit interacts with both the dark state and bright state with the ratio
of JD : JB = 2

√
Γ1D,1Γ1D,2 : (Γ1D,1 − Γ1D,2), and thus for a small asymmetry in the

waveguide decay rate, the coupling to the dark state dominates the dynamics. In
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addition, we note that the bright state superradiantly decays to the waveguide, and it
follows that coupling of probe qubit to the bright state manifest only as contribution
of

(2JB)
2

Γ1D,1 + Γ1D,2
= Γ1D,p

(
Γ1D,1 − Γ1D,2

Γ1D,1 + Γ1D,2

)2

to the probe qubit decay rate into spurious loss channel. In our experiment, the
maximum asymmetry d = |Γ1D,1−Γ1D,2|

Γ1D,1+Γ1D,2
in waveguide decay rate between qubits is

0.14 (0.03) for type-I (type-II) from Table B.1, and this affects the decay rate of
probe qubit by at most ∼ 2%.

Fitting of Rabi oscillation curves

The Rabi oscillation curves in Fig. 4.4 and Fig. 4.7d are modeled using a numer-
ical master equation solver [21]. The qubit parameters used for fitting the Rabi
oscillation curves are summarized in Table B.1. For all the qubits, Γ1D was found
from spectroscopy. In addition, we have done a time-domain population decay
measurement on the probe qubit to find the total decay rate of Γ1/2π = 1.1946 MHz
(95% confidence interval [1.1644, 1.2263] MHz, measured at 6.55 GHz). Using the
value of Γ1D/2π = 1.1881 MHz (95% confidence interval [1.1550, 1.2211] MHz,
measured at 6.6 GHz) from spectroscopy, we find the spurious population decay
rate Γloss/2π = Γ1/2π − Γ1D/2π = 6.5 kHz (with uncertainty of 45.3 kHz) for the
probe qubit. The value of spurious population decay rate is assumed to be identical
for all the qubits in the experiment. Note that the decaying rate of the envelope in
the Rabi oscillation curve is primarily set by the waveguide decay rate of the probe
qubit Γ1D,p, and the large relative uncertainty in Γloss does not substantially affect
the fit curve.

The dephasing rate of the probe qubit is derived from time-domain population decay
and Ramsey sequence measurements Γφ = Γ2 − Γ1/2. In the case of the mirror
qubits, the table shows effective single qubit parameters inferred from measurements
of the dark state lifetime. We calculate single mirror qubit dephasing rates that
theoretically yield the corresponding measured collective value. Assuming an
uncorrelated Markovian dephasing for the mirror qubits forming the cavity we find
Γφ,m = Γφ,D (App. B.3). Similarly, the waveguide decay rate of the mirror qubits is
found from the spectroscopy of the bright collective state as Γ1D,m = Γ1D,B/2. The
detuning between probe qubit and the atomic cavity (∆) is treated as the only free
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parameter in our model. The value of ∆ sets the visibility and frequency of the Rabi
oscillation, and is found from the the fitting algorithm.

Type Qubits in-
volved

Γ1D,p/2π
(MHz)

Γ1D,m/2π
(MHz)

Γφ,p/2π
(kHz)

Γφ,m/2π
(kHz)

∆/2π
(MHz)

I Q2, Q6 1.19 13.4 191 210 1.0
II Q1, Q7 0.87 96.7 332 581 5.9
Dark com-
pound Q2Q3, Q5Q6 1.19 4.3 191 146 0.9

Bright
compound Q2Q3, Q5Q6 1.19 20.2 191 253 1.4

Table B.1: Parameters used for fitting Rabi oscillation curves. The first and
second row are the data for 2-qubit dark states, the third and fourth row are the
data for 4-qubit dark states made of compound mirrors. Here, Γ1D,p (Γ1D,m) is the
waveguide decay rate and Γφ,p (Γφ,m) is the pure dephasing rate of probe (mirror)
qubit, ∆ is the detuning between probe qubit and mirror qubits used for fitting the
data.

B.3 Lifetime (T1) and coherence time (T ∗
2 ) of dark state

The dark state of mirror qubits belongs to the decoherence-free subspace in the
system due to its collectively suppressed radiation to the waveguide channel. How-
ever, there exists non-ideal channels that each qubit is coupled to, and such channels
contribute to the finite lifetime (T1) and coherence time (T ∗

2 ) of the dark state (See
Table B.2). In the experiment, we have measured the decoherence rate Γ2,D of the
dark state to be always larger than the decay rate Γ1,D, which cannot be explained by
simple Markovian model of two qubits subject to their own independent noise. We
discuss possible scenarios that can give rise to this situation of Γ2,D > Γ1,D, with
distinction of the Markovian and non-Markovian noise contributions.

Type Qubits involved Γ1,D/2π (kHz) Γ2,D/2π (kHz)
I Q2, Q6 210 366
II Q1, Q7 581 838
Dark compound Q2Q3, Q5Q6 146 215
Bright compound Q2Q3, Q5Q6 253 376

Table B.2: Decay rate and decoherence rate of dark states. The first and second
row are the data for 2-qubit dark states, the third and fourth row are the data for
4-qubit dark states made of compound mirrors. Here, Γ1,D (Γ2,D) is the decay
(decoherence) rate of the dark state.
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There are two major channels that can affect the coherence of the dark state. First,
coupling of a qubit to dissipative channels other than the waveguide can give rise to
additional decay rate Γloss = Γ1−Γ1D (so-called non-radiative decay rate). This type
of decoherence is uncorrelated between qubits and is well understood in terms of the
Lindblad form of master equation, whose contribution to lifetime and coherence time
of dark state is similar as in individual qubit case. Another type of contribution that
severely affects the dark state coherence arises from fluctuations in qubit frequency,
which manifest as pure dephasing rate Γφ in the individual qubit case. This can
affect the decoherence of the dark state in two ways: (i) By accumulating a relative
phase between different qubit states, this act as a channel to map the dark state into
the bright state with short lifetime, and hence contributes to loss of population in
the dark state; (ii) fluctuations in qubit frequency also induces the frequency jitter
of the dark state and therefore contributes to the dephasing of dark state.

In the following, we model the aforementioned contributions to the decoherence of
dark state. Let us consider two qubits separated by λ/2 along the waveguide on
resonance, in the presence of fluctuations ∆̃j(t) in the qubit frequency. The master
equation can be written as ˙̂ρ = −i[Ĥ/ℏ, ρ̂] + L[ρ̂], where the Hamiltonian Ĥ and
the Liouvillian L are given by

Ĥ(t) = ℏ
∑
j=1,2

∆̃j(t)σ̂
(j)
+ σ̂

(j)
− , (B.22)

L[ρ] =
∑

j,k=1,2

[
(−1)j−kΓ1D + δjkΓloss

](
σ̂
(j)
− ρ̂σ̂

(k)
+ − 1

2
{σ̂(k)

+ σ̂
(j)
− , ρ̂}

)
. (B.23)

Here, Γ1D (Γloss) is the decay rate of qubits into waveguide (spurious loss) channel.
Note that we have assumed the magnitude of fluctuation ∆̃j(t) in qubit frequency
is small and neglected its effect on exchange interaction and correlated decay. We
investigate two scenarios in the following subsections depending on the correlation
of noise that gives rise to qubit frequency fluctuations.

Markovian noise

If the frequency fluctuations of the individual qubits satisfy the conditions for Born
and Markov approximations, i.e. the noise is weakly coupled to the qubit and has
short correlation time, the frequency jitter can be described in terms of the standard
Lindblad form of dephasing [305].
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More generally, we also consider the correlation between frequency jitter of different
qubits. Such contribution can arise when different qubits are coupled to a single
fluctuating noise source. For instance, if two qubits in a system couple to a magnetic
fieldB0+B̃(t) that is global to the chip withDj ≡ ∂∆̃j/∂B̃, the correlation between
detuning of different qubits follows correlation of the fluctuations in magnetic field,
giving ⟨∆̃1(t)∆̃2(t+ τ)⟩ = D1D2⟨B̃(t)B̃(t+ τ)⟩ ≠ 0. The Liouvillian associated
with dephasing can be written as [307]

Lφ,jk[ρ̂] =
Γφ,jk

2

(
σ̂(j)
z ρ̂σ̂(k)

z − 1

2

{
σ̂(k)
z σ̂(j)

z , ρ̂
})

, (B.24)

where the dephasing rateΓφ,jk between qubit j and qubit k (j = k denotes individual
qubit dephasing and j ̸= k is the correlated dephasing) is given by

Γφ,jk ≡
1

2

∫ +∞

−∞
dτ ⟨∆̃j(0)∆̃k(τ)⟩. (B.25)

Here, the average ⟨·⟩ is taken over an ensemble of fluctuators in the environment.
Note that the correlated dephasing rate Γφ,jk can be either positive or negative
depending on the sign of noise correlation, while the individual pure dephasing rate
Γφ,jj is always positive.

After we incorporate the frequency jitter as the dephasing contributions to the
Liouvillian, the master equation takes the form

˙̂ρ =
∑

j,k=1,2

{[
(−1)j−kΓ1D + δjkΓloss

](
σ̂
(j)
− ρ̂σ̂

(k)
+ − 1

2
{σ̂(k)

+ σ̂
(j)
− , ρ̂}

)
+
Γφ,jk

2

(
σ̂(j)
z ρ̂σ̂(k)

z − 1

2

{
σ̂(k)
z σ̂(j)

z , ρ̂
})}

,

(B.26)

We diagonalize the correlated decay part of the Liouvillian describe the two-qubit
system in terms of bright and dark states defined in Eq. (B.15). From now on,
we assume the pure dephasing rate and the correlated dephasing rate are identical
for the two qubits, and write Γφ ≡ Γφ,11 = Γφ,22, Γφ,c ≡ Γφ,12 = Γφ,21. For
qubits with a large Purcell factor (Γ1D ≫ Γφ, |Γφ,c|,Γloss), we can assume that the
superradiant states |B⟩ and |E⟩ are only virtually populated [129] and neglect the
density matrix elements associated with |B⟩ and |E⟩. Rewriting Eq. (B.26) in the
basis of {|G⟩, |B⟩, |D⟩, |E⟩}, the dynamics related to dark state can be expressed as
ρ̇D,D ≈ −Γ1,DρD,D and ρ̇D,G ≈ −Γ2,DρD,G, where

Γ1,D = Γloss + Γφ − Γφ,c, Γ2,D =
Γloss

2
+ Γφ. (B.27)
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Note that if the correlated dephasing rate Γφ,c is zero, Γ1,D is always larger than Γ2,D,
which is in contradiction to our measurement result.

We estimate the decay rate into non-ideal channels to be Γloss/2π = 6.5 kHz from
the difference in Γ1 and Γ1D of the probe qubit, and assume Γloss to be similar for
all the qubits. Applying Eq. (B.27) to measured values of Γ2,D listed in Table B.2,
we expect that the pure dephasing of the individual qubit is the dominant decay and
decoherence source for the dark state. In addition, we compare the decay rate Γ1,D

and decoherence rate Γ2,D of dark states in the Markovian noise model and infer that
the correlated dephasing rate Γφ,c is positive and is around a third of the individual
dephasing rate Γφ for all types of mirror qubits.

Non-Markovian noise

In a realistic experimental setup, there also exists non-Markovian noise sources
contributing to the dephasing of the qubits, e.g. 1/f -noise or quasi-static noise [69,
308, 309]. In such cases, the frequency jitter cannot be simply put into the Lindblad
form as described above. In this subsection, we consider how the individual qubit
dephasing induced by non-Markovian noise influences the decoherence of dark state.
As shown below, we find that a non-Markovian noise source can lead to a shorter
coherence time to lifetime ratio for the dark states, in a similar fashion to correlated
dephasing. However, we find that the functional form of the visibility of Ramsey
fringes is not necessarily an exponential for a non-Markovian noise source.

We start from the master equation introduced in Eqs. (B.22)-(B.23) can be written
in terms of the basis of {|G⟩, |B⟩, |D⟩, |E⟩},

˙̂ρ = − i

ℏ
[Ĥ, ρ̂] + (2Γ1D + Γloss)D[ŜB]ρ̂+ ΓlossD[ŜD]ρ̂, (B.28)

where the Hamiltonian is written using the common frequency jitter ∆̃c(t) ≡
[∆̃1(t) + ∆̃2(t)]/2 and differential frequency jitter ∆̃d(t) ≡ [∆̃1(t)− ∆̃2(t)]/2

Ĥ(t)/ℏ = ∆̃c(t) (2|E⟩⟨E|+ |D⟩⟨D|+ |B⟩⟨B|) + ∆̃d(t) (|B⟩⟨D|+ |D⟩⟨B|) .
(B.29)

Here, ŜB and ŜD are defined in Eq. (B.16). From the Hamiltonian in Eq. (B.29),
we see that the common part of frequency fluctuation ∆̃c(t) results in the frequency
jitter of the dark state while the differential part of frequency fluctuation ∆̃d(t) drives
the transition between |D⟩ and |B⟩, which acts as a decay channel for the dark state.
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For uncorrelated low-frequency noise on the two qubits, the decoherence rate is
approximately the standard deviation of the common frequency jitter

√
⟨∆̃c(t)2⟩.

The decay rate in this model can be found by modeling the bright state as a cavity in
the Purcell regime, and calculate the damping rate of the dark state using the Purcell
factor as ⟨4∆̃d(t)

2/ΓB⟩. As evident, in this model the dark state’s population decay
rate is strongly suppressed by the large damping rate of bright state ΓB, while the
dark state’s coherence time can be sharply reduced due to dephasing.

B.4 Shelving

We consider the case of two identical mirror qubits of frequency ωq, separated by
distance λ/2 along the waveguide. In addition to free evolution of qubits, we include
a coherent probe signal from the waveguide in the analysis. In the absence of pure
dephasing (Γφ = 0) and thermal occupancy (n̄th = 0), the master equation in the
rotating frame of the probe signal takes the same form as Eq. (B.28), where the
Hamiltonian containing the drive from the probe signal is written as

Ĥ/ℏ =
∑
µ=B,D

[
−δω Ŝ†

µŜµ +
Ωµ

2

(
Ŝµ + Ŝ†

µ

)]
, (B.30)

where ŜB and ŜD are defined in Eq. (B.16), δω = ωp − ωq is the detuning of the
probe signal from the mirror qubit frequency, Ωµ is the corresponding driven Rabi
frequency. Note that due to the symmetry of the excitations with respect to the
waveguide, we see that ΩD = 0 and ΩB =

√
2Ω1, where Ω1 is the Rabi frequency

of one of the mirror qubits from the probe signal along the waveguide.

Let us consider the limit where the Purcell factor P1D = Γ1D/Γ
′ of qubits is much

larger than unity (equivalent to ΓD = Γ′ ≪ ΓB = 2Γ1D + Γ′) and the drive applied
to the qubits is weakΩB ≪ ΓB. Then, we can effectively remove some of the density
matrix elements 1,

ρE,E, ρB,E, ρE,B, ρG,E, ρE,G ≈ 0
1From the master equation, the time-evolution of part of the density matrix elements are approx-

imately written as

ρ̇E,E = −(ΓB + ΓD)ρE,E +
iΩB

2
(ρB,E − ρE,B),

ρ̇E,B =

[
iδω −

(
ΓB +

ΓD

2

)]
ρE,B +

iΩB

2
(ρB,B − ρE,E + ρE,G),

ρ̇E,G =

(
2iδω − ΓB + ΓD

2

)
ρE,G +

iΩB

2
(ρB,G + ρE,B),

ρ̇E,B = ρ̇∗B,E; ρ̇E,G = ρ̇∗G,E.
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and restrict the analysis to ones involved with three levels {|G⟩, |D⟩, |B⟩}. In
addition, the dark state |D⟩ is effectively decoupled from |G⟩ and |B⟩, acting as
a metastable state. Therefore, we only consider the following set of the master
equation:

ρ̇B,B ≈ −ΓB ρB,B +
iΩB

2
(ρB,G − ρG,B) (B.31)

ρ̇B,G ≈
(
iδω − ΓB

2

)
ρB,G +

iΩB

2
(ρB,B − ρG,G) (B.32)

ρ̇G,G ≈ −ρ̇B,B; ρ̇G,B = ρ̇∗B,G (B.33)

Using the normalization of total population ρG,G+ρD,D+ρB,B ≈ 1 with Eqs. (B.31)-
(B.33), we obtain the approximate steady-state solution

⟨ŜB⟩ ≈ ρB,G ≈ −iΩB(1− ρD,D)

ΓB − 2iδω
. (B.34)

The input-output relation [145] is given as

âout = âin +

√
Γ1D

2
σ̂
(1)
− −

√
Γ1D

2
σ̂
(2)
− = âin +

√
Γ1DŜB, (B.35)

where âin is the input field operator and âout is the operator for output field propagating
in the same direction as the input field (here, the input field is assumed to be incident
from only one direction). The transmission amplitude is calculated as

t =
⟨âout⟩
⟨âin⟩

= 1− (1− ρD,D)Γ1D

−iδω + ΓB/2
(B.36)

where the relation Ω1/2 = −i⟨âin⟩
√

Γ1D/2 has been used.

In the measurement, we use the state transfer protocol to transfer part of the ground
state population into the dark state. Following this, we drive the |G⟩ ↔ |B⟩ transition
by sending a weak coherent pulse with a duration 260 ns into the waveguide,
and recording the transmission spectrum. As a comparison, we also measure

In the steady state, it can be shown that

ρE,E ∼ O(x2)ρB,B +O(x3)(ρB,G − ρG,B)

ρB,E ∼ O(x)ρB,B +O(x2)ρG,B

ρG,E ∼ O(x2)ρB,B +O(x)ρG,B

to leading order in x ≡ ΩB/ΓB < 1, and hence we can neglect the contributions from ρE,E, ρB,E,
ρE,B, ρG,E, ρE,G from the analysis in the weak driving limit. The probe power we have used in the
experiment corresponds to x ∼ 0.15, which makes this approximation valid.
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the transmission spectrum when the mirror qubits are in the ground state, which
corresponds to having ρD,D = 0. The transmittance in the two cases (Fig. 4.6a)
are fitted with identical parameters for Γ1D and ΓB. The dark state population ρD,D

following the iSWAP gate is extracted from the data as 0.58, which is lower than the
value (0.68) found from the Rabi oscillation peaks (Fig. 4.4). The lower value of the
dark state population can be understood considering the finite lifetime of dark state
(757ns), which leads to a partial population decay during the measurement time (the
single-shot measurement time is set by the duration of the input pulse). It should be
noted that the input pulse has a transform-limited bandwidth of ∼ 3.8 MHz, which
results in frequency averaging of the spectral response over this bandwidth. For this
reason, the on-resonance transmission extinction measured in the pulsed scheme is
lower than the value found from continuous wave (CW) measurement (Fig. 4.2b).
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A p p e n d i x C

SUPPLEMENTARY INFORMATION FOR CHAPTER 5

C.1 Modeling of the topological waveguide

In this section we provide a theoretical description of the topological waveguide
discussed in the main text, an analog to the Su-Schrieffer-Heeger model [205].
An approximate form of the physically realized waveguide is given by an array of
coupled LC resonators, a unit cell of which is illustrated in Fig. C.1. Each unit
cell of the topological waveguide has two sites A and B whose intra- and inter-cell
coupling capacitance (mutual inductance) are given by Cv (Mv) and Cw (Mw). We
denote the flux variable of each node as Φα

n(t) ≡
∫ t

−∞ dt′ V α
n (t′) and the current

going through each inductor as iαn (α = {A,B}). The Lagrangian in position space
reads

L =
∑
n

{
Cv

2

(
Φ̇B

n − Φ̇A
n

)2
+
Cw

2

(
Φ̇A

n+1 − Φ̇B
n

)2
+
C0

2

[(
Φ̇A

n

)2
+
(
Φ̇B

n

)2]

− L0

2

[(
iAn
)2

+
(
iBn
)2]−Mvi

A
ni

B
n −Mwi

B
ni

A
n+1

}
. (C.1)

The node flux variables are written in terms of current through the inductors as

ΦA
n = L0i

A
n +Mvi

B
n +Mwi

B
n−1, ΦB

n = L0i
B
n +Mvi

A
n +Mwi

A
n+1. (C.2)

+

V A
n IAn

Cv

L0

iAn

C0

−

+

V B
n IBn

Cw

+

V A
n+1

L0

iBn

C0

− −

Mv Mw

Figure C.1: LC resonators of inductance L0 and capacitance C0 are coupled with
alternating coupling capacitance Cv, Cw and mutual inductance Mv, Mw. The
voltage and current at each resonator node A (B) are denoted as V A

n , I
A
n (V B

n , I
B
n ).
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Considering the discrete translational symmetry in our system, we can rewrite the
variables in terms of Fourier components as

Φα
n =

1√
N

∑
k

einkdΦα
k , iαn =

1√
N

∑
k

einkdiαk , (C.3)

whereα = A,B,N is the number of unit cells, andk = 2πm
Nd

(m = −N/2, · · · , N/2−
1) are points in the first Brillouin zone. Equation (C.2) is written as∑

k′

eink
′dΦA

k′ =
∑
k′

eink
′d
(
L0i

A
k′ +Mvi

B
k′ + e−ik′dMwi

B
k′

)
under this transform. Multiplying the above equation with e−inkd and summing over
all n, we get a linear relation between Φα

k and iαk :(
ΦA

k

ΦB
k

)
=

(
L0 Mv +Mwe

−ikd

Mv +Mwe
ikd L0

)(
iAk
iBk

)
.

By calculating the inverse of this relation, the Lagrangian of the system (C.1) can
be rewritten in k-space as

L =
∑
k

[
C0 + Cv + Cw

2

(
Φ̇A

−kΦ̇
A
k + Φ̇B

−kΦ̇
B
k

)
− Cg(k) Φ̇

A
−kΦ̇

B
k

− L0

2

(
iA−ki

A
k + iB−ki

B
k

)
−Mg(k) i

A
−ki

B
k

]
=
∑
k

[
C0 + Cv + Cw

2

(
Φ̇A

−kΦ̇
A
k + Φ̇B

−kΦ̇
B
k

)
− Cg(k) Φ̇

A
−kΦ̇

B
k

−
L0

2

(
ΦA

−kΦ
A
k + ΦB

−kΦ
B
k

)
−Mg(k)Φ

A
−kΦ

B
k

L2
0 −Mg(−k)Mg(k)

]
(C.4)

where Cg(k) ≡ Cv + Cwe
−ikd and Mg(k) ≡ Mv + Mwe

−ikd. The node charge
variables Qα

k ≡ ∂L/∂Φ̇α
k canonically conjugate to node flux Φα

k are(
QA

k

QB
k

)
=

(
C0 + Cv + Cw −Cg(−k)

−Cg(k) C0 + Cv + Cw

)(
Φ̇A

−k

Φ̇B
−k

)
.

Note that due to the Fourier transform implemented on flux variables, the canonical
charge in momentum space is related to that in real space by

Qα
n =

∂L
∂Φ̇α

n

=
∑
k

∂L
∂Φ̇α

k

∂Φ̇α
k

∂Φ̇α
n

=
1√
N

∑
k

e−inkdQα
k ,

which is in the opposite sense of regular Fourier transform in Eq. (C.3). Also,
due to the Fourier-transform properties, the constraint that Φα

n and Qα
n are real
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reduces to (Φα
k )

∗ = Φα
−k and (Qα

k )
∗ = Qα

−k. Applying the Legendre transformation
H =

∑
k,αQ

α
k Φ̇

α
k − L, the Hamiltonian takes the form

H =
∑
k

[
CΣ(Q

A
−kQ

A
k +QB

−kQ
B
k ) + Cg(−k)QA

−kQ
B
k + Cg(k)Q

B
−kQ

A
k

2C2
d(k)

+
L0(Φ

A
−kΦ

A
k + ΦB

−kΦ
B
k )−Mg(k)Φ

A
−kΦ

B
k −Mg(−k)ΦB

−kΦ
A
k

2L2
d(k)

]
,

where

CΣ ≡ C0 + Cv + Cw, C2
d(k) ≡ C2

Σ − Cg(−k)Cg(k), L2
d(k) ≡ L2

0 −Mg(−k)Mg(k).

Note that C2
d(k) and L2

d(k) are real and even function in k. We impose the
canonical commutation relation between real-space conjugate variables [Φ̂α

n, Q̂
β
n′ ] =

iℏδα,βδn,n′ to promote the flux and charge variables to quantum operators. This
reduces to [Φ̂α

k , Q̂
β
k′ ] = iℏδα,βδk,k′ in the momentum space [Note that due to the

Fourier transform, (Φ̂α
k )

† = Φ̂α
−k and (Q̂α

k )
† = Q̂α

−k, meaning flux and charge op-
erators in momentum space are non-Hermitian since the Hermitian conjugate flips
the sign of k]. The Hamiltonian can be written as a sum Ĥ = Ĥ0 + V̂ , where the
“uncoupled” part Ĥ0 and coupling terms V̂ are written as

Ĥ0 =
∑
k,α

[
Q̂α

−kQ̂
α
k

2Ceff
0 (k)

+
Φ̂α

−kΦ̂
α
k

2Leff
0 (k)

]
, V̂ =

∑
k

[
Q̂A

−kQ̂
B
k

2Ceff
g (k)

+
Φ̂A

−kΦ̂
B
k

2Leff
g (k)

+ H.c.

]
,

(C.5)

with the effective self-capacitance Ceff
0 (k), self-inductance Leff

0 (k), coupling capac-
itance Ceff

g (k), and coupling inductance Leff
g (k) given by

Ceff
0 (k) =

C2
d(k)

CΣ

, Leff
0 (k) =

L2
d(k)

L0

, Ceff
g (k) =

C2
d(k)

Cg(−k)
, Leff

g (k) = − L2
d(k)

Mg(k)
.

(C.6)

The diagonal part Ĥ0 of the Hamiltonian can be written in a second-quantized form
by introducing annihilation operators âk and b̂k, which are operators of the Bloch
waves on A and B sublattice, respectively:

âk ≡
1√
2ℏ

[
Φ̂A

k√
Zeff

0 (k)
+ i
√
Zeff

0 (k)Q̂A
−k

]
, b̂k ≡

1√
2ℏ

[
Φ̂B

k√
Zeff

0 (k)
+ i
√
Zeff

0 (k)Q̂B
−k

]
.

Here, Zeff
0 (k) ≡

√
Leff
0 (k)/Ceff

0 (k) is the effective impedance of the oscillator at
wavevector k. Unlike the Fourier transform notation, for bosonic modes âk and
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b̂k, we use the notation (âk)
† ≡ â†k and (b̂k)

† ≡ b̂†k. Under this definition, the
commutation relation is rewritten as [âk, â†k′ ] = [b̂k, b̂

†
k′ ] = δk,k′ . Note that the flux

and charge operators are written in terms of mode operators as

Φ̂A
k =

√
ℏZeff

0 (k)

2

(
âk + â†−k

)
, Q̂A

k =
1

i

√
ℏ

2Zeff
0 (k)

(
â−k − â†k

)
,

Φ̂B
k =

√
ℏZeff

0 (k)

2

(
b̂k + b̂†−k

)
, Q̂B

k =
1

i

√
ℏ

2Zeff
0 (k)

(
b̂−k − b̂†k

)
.

The uncoupled Hamiltonian is written as

Ĥ0 =
∑
k

ℏω0(k)

2

(
â†kâk + â−kâ

†
−k + b̂†kb̂k + b̂−kb̂

†
−k

)
, (C.7)

where the “uncoupled” oscillator frequency is given byω0(k) ≡ [Leff
0 (k)Ceff

0 (k)]−1/2,
which ranges between values

ω0(k = 0) =

√
L0CΣ

[L2
0 − (Mv +Mw)2][C2

Σ − (Cv + Cw)2]
,

ω0

(
k =

π

d

)
=

√
L0CΣ

(L2
0 − |Mv −Mw|2)(C2

Σ − |Cv − Cw|2)
.

The coupling Hamiltonian V̂ is rewritten as

V̂ = −
∑
k

[
ℏgC(k)

2

(
â−kb̂k − â−kb̂

†
−k − â†kb̂k + â†kb̂

†
−k

)
+
ℏgL(k)

2

(
â−kb̂k + â−kb̂

†
−k + â†kb̂k + â†kb̂

†
−k

)
+ h.c.

]
, (C.8)

where the capacitive coupling gC(k) and inductive coupling gL(k) are simply written
as

gC(k) =
ω0(k)Cg(k)

2CΣ

, gL(k) =
ω0(k)Mg(k)

2L0

, (C.9)

respectively. Note that g∗C(k) = gC(−k) and g∗L(k) = gL(−k). In the following,
we discuss the diagonalization of this Hamiltonian to explain the dispersion relation
and band topology.

Band structure within the rotating-wave approximation

We first consider the band structure of the system within the rotating-wave approx-
imation (RWA), where we discard the counter-rotating terms âb̂ and â†b̂† in the
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Hamiltonian. This assumption is known to be valid when the strength of the cou-
plings |gL(k)|, |gC(k)| are small compared to the uncoupled oscillator frequency
ω0(k). Under this approximation, the Hamiltonian in Eqs. (C.7)-(C.8) reduces
to a simple form Ĥ = ℏ

∑
k(v̂k)

†h(k)v̂k, where the single-particle kernel of the
Hamiltonian is,

h(k) =

(
ω0(k) f(k)

f ∗(k) ω0(k)

)
. (C.10)

Here, v̂k = (âk, b̂k)
T is the vector of annihilation operators at wavevector k and

f(k) ≡ gC(k)− gL(k). In this case, the Hamiltonian is diagonalized to the form

Ĥ = ℏ
∑
k

[
ω+(k) â

†
+,kâ+,k + ω−(k) â

†
−,kâ−,k

]
, (C.11)

where two bands ω±(k) = ω0(k)± |f(k)| symmetric with respect to ω0(k) at each
wavevector k appear [here, note that â†±,k ≡ (â±,k)

†]. The supermodes â±,k are
written as

â±,k =
±e−iϕ(k)âk + b̂k√

2
,

where ϕ(k) ≡ arg f(k) is the phase of coupling term. The Bloch states in the
single-excitation bands are written as

|ψk,±⟩ = â†±,k|0⟩ =
1√
2

(
±eiϕ(k)|1k, 0k⟩+ |0k, 1k⟩

)
,

where |nk, n
′
k⟩ denotes a state with n (n′) photons in mode âk (b̂k).

As discussed below in App. C.2, the kernel of the Hamiltonian in Eq. (C.10) has
an inversion symmetry in the sublattice unit cell which is known to result in bands
with quantized Zak phase [218]. In our system the Zak phase of the two bands are
evaluated as

Z = i

∮
B.Z.

dk
1√
2

(
±e−iϕ(k) 1

) ∂

∂k

[
1√
2

(
±eiϕ(k)

1

)]

= −1

2

∮
B.Z.

dk
∂ϕ(k)

∂k
.

The Zak phase of photonic bands is determined by the behavior of f(k) in the
complex plane. If the contour of f(k) for k values in the first Brillouin zone excludes
(encloses) the origin, the Zak phase is given by Z = 0 (Z = π) corresponding to
the trivial (topological) phase.
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Band structure beyond the rotating-wave approximation

Considering all the terms in the Hamiltonian in Eqs. (C.7)-(C.8), the Hamiltonian
can be written in a compact form Ĥ = ℏ

2

∑
k(v̂k)

†h(k)v̂k with a vector composed of

mode operators v̂k =
(
âk, b̂k, â

†
−k, b̂

†
−k

)T
and

h(k) =


ω0(k) f(k) 0 g(k)

f ∗(k) ω0(k) g∗(k) 0

0 g(k) ω0(k) f(k)

g∗(k) 0 f ∗(k) ω0(k)



= ω0(k)


1 ck−lk

2
0 −ck−lk

2
c∗k−l∗k

2
1

−c∗k−l∗k
2

0

0 −ck−lk
2

1 ck−lk
2

−c∗k−l∗k
2

0
c∗k−l∗k

2
1

 , (C.12)

where f(k) ≡ gC(k) − gL(k) as before and g(k) ≡ −gC(k) − gL(k). Here, lk ≡
Mg(k)/L0 and ck ≡ Cg(k)/CΣ are inductive and capacitive coupling normalized to
frequency. The dispersion relation can be found by diagonalizing the kernel of the
Hamiltonian in Eq. (C.12) with the Bogoliubov transformation

ŵk = Skv̂k, Sk =

(
Uk V∗

−k

Vk U∗
−k

)
(C.13)

where ŵk ≡ (â+,k, â−,k, â
†
+,−k, â

†
−,−k)

T is the vector composed of supermode oper-
ators and Uk, Vk are 2 × 2 matrices forming blocks in the transformation Sk. We
want to find Sk such that (v̂k)†h(k)v̂k = (ŵk)

†h̃(k)ŵk, where h̃(k) is diagonal. To
preserve the commutation relations, the matrix Sk has to be symplectic, satisfying
J = SkJ(Sk)

†, with J defined as

J =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 .

Due to this symplecticity, it can be shown that the matrices Jh(k) and Jh̃(k) are
similar under transformation Sk. Thus, finding the eigenvalues and eigenvectors of
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the coefficient matrix

m(k) ≡ Jh(k)
ω0(k)

=


1 ck−lk

2
0 −ck−lk

2
c∗k−l∗k

2
1

−c∗k−l∗k
2

0

0 ck+lk
2

−1 −ck+lk
2

c∗k+l∗k
2

0
−c∗k+l∗k

2
−1

 (C.14)

is sufficient to obtain the dispersion relation and supermodes of the system. The
eigenvalues of matrix m(k) are evaluated as

±

√√√√
1− lkc∗k + l∗kck

2
±
√(

1− lkc∗k + l∗kck
2

)2

− (1− |lk|2)(1− |ck|2)

and hence the dispersion relation of the system taking into account all terms in
Hamiltonian (C.12) is

ω̃±(k) = ω̃0(k)

√√√√1±
√

1− [L2
0 −Mg(−k)Mg(k)] [C2

Σ − Cg(−k)Cg(k)]{
L0CΣ − 1

2
[Mg(−k)Cg(k) + Cg(−k)Mg(k)]

}2
(C.15)

where

ω̃0(k) ≡ ω0(k)

√
1− Mg(k)Cg(−k) +Mg(−k)Cg(k)

2L0CΣ

.

The two passbands range over frequencies [ωmin
+ , ωmax

+ ] and [ωmin
− , ωmax

− ], where the
band-edge frequencies are written as

ωmin
+ =

1√
[L0 + p2(Mv −Mw)][CΣ − p2(Cv − Cw)]

ωmax
+ =

1√
[L0 + p1(Mv +Mw)][CΣ − p1(Cv + Cw)]

, (C.16a)

ωmin
− =

1√
[L0 − p1(Mv +Mw)][CΣ + p1(Cv + Cw)]

ωmax
− =

1√
[L0 − p2(Mv −Mw)][CΣ + p2(Cv − Cw)]

. (C.16b)

Here, p1 ≡ sgn[L0(Cv + Cw) − CΣ(Mv + Mw)] and p2 ≡ sgn[L0(Cv − Cw) −
CΣ(Mv −Mw)] are sign factors. In principle, the eigenvectors of the matrix m(k) in
Eq. (C.14) can be analytically calculated to find the transformation Sk of the original
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modes to supermodes â±,k. For the sake of brevity, we perform the calculation in
the limit of vanishing mutual inductance (Mv = Mw = 0), where the matrix m(k)

reduces to

mC(k) ≡


1 ck/2 0 −ck/2

c∗k/2 1 −c∗k/2 0

0 ck/2 −1 −ck/2
c∗k/2 0 −c∗k/2 −1

 . (C.17)

In this case, the block matrices Uk, Vk in the transformation in Eq. (C.13) are
written as

Uk =
1

2
√
2

(
e−iϕ(k)x+,k x+,k

−e−iϕ(k)x−,k x−,k

)
, Vk =

1

2
√
2

(
e−iϕ(k)y+,k y+,k

−e−iϕ(k)y−,k y−,k

)
,

wherex±,k =
4
√

1± |ck|+ 1
4
√

1±|ck|
, y±,k =

4
√

1± |ck|− 1
4
√

1±|ck|
, andϕ(k) = arg ck.

Note that the constants are normalized by relation x2±,k − y2±,k = 4.

The knowledge of the transformation Sk allows us to evaluate the Zak phase of
photonic bands. In the Bogoliubov transformation, the Zak phase can be evaluated
as [310]

Z = i

∮
B.Z.

dk
1

2
√
2

(
±e−iϕ(k)x±,k x±,k ±e−iϕ(k)y±,k y±,k

)
· J · ∂

∂k

 1

2
√
2


±eiϕ(k)x±,k

x±,k

±eiϕ(k)y±,k

y±,k




= i

∮
B.Z.

dk
1

8

[
i
∂ϕ(k)

∂k
(x2±,k − y2±,k) +

∂

∂k
(x2±,k − y2±,k)

]
= −1

2

∮
B.Z.

dk
∂ϕ(k)

∂k
,

identical to the expression within the RWA. Again, the Zak phase of photonic bands
is determined by the winding of f(k) around the origin in complex plane, leading
to Z = 0 in the trivial phase and Z = π in the topological phase.

Extraction of circuit parameters and the breakdown of the circuit model

As discussed in Fig. 5.2b, the parameters in the circuit model of the topological
waveguide is found by fitting the waveguide transmission spectrum of the test
structures. We find that two lowest-frequency modes inside the lower passband fail
to be captured according to our model with capacitively and inductively coupled
LC resonators. We believe that this is due to the broad range of frequencies (about
1.5 GHz) covered in the spectrum compared to the bare resonator frequency ∼
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Figure C.2: Band structure of the realized topological waveguide under various
assumptions discussed in App. C.2. The solid lines show the dispersion relation
in the upper (lower) passband, ω±(k): full model without any assumptions (red),
model within RWA (blue), and the final mapping to SSH model (black) in the weak
coupling limit. The dashed lines indicate the uncoupled resonator frequency ω0(k)
under corresponding assumptions.

6.6 GHz and the distributed nature of the coupling, which can cause our simple
model based on frequency-independent lumped elements (inductor, capacitor, and
mutual inductance) to break down. Such deviation is also observed in the fitting of
waveguide transmission data of Device I (Fig. C.7).

C.2 Mapping of the system to the SSH model and discussion on robustness of
edge modes

Mapping of the topological waveguide to the SSH model

We discuss how the physical model of topological waveguide in App. C.1 could be
mapped to the photonic SSH model, whose Hamiltonian is given as Eq. (5.1) in the
main text. Throughout this section, we consider the realistic circuit parameters ex-
tracted from fitting of test structures given in Fig. 5.1: resonator inductance and res-
onator capacitance,L0 = 1.9nH andC0 = 253fF, and coupling capacitance and par-
asitic mutual inductance, (Cv, Cw) = (33, 17) fF and (Mv,Mw) = (−38,−32) pH
in the trivial phase (the values are interchanged in the topological phase).

To most directly and simply link the Hamiltonian described in Eqs. (C.7)-(C.8) to
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the SSH model, here we impose a few approximations. First, the counter-rotating
terms in the Hamiltonian are discarded such that only photon-number-conserving
terms are left. To achieve this, the RWA is applied to reduce the kernel of the
Hamiltonian into one involving a 2× 2 matrix as in Eq. (C.10). Such an assumption
is known to be valid when the coupling terms in the Hamiltonian are much smaller
than the frequency scale of the uncoupled Hamiltonian Ĥ0 [311]. According to the
coupling terms derived in Eq. (C.9), this is a valid approximation given that∣∣∣∣gC(k)ω0(k)

∣∣∣∣ ≤ |Cv + Cw|
2CΣ

≈ 0.083,∣∣∣∣gL(k)ω0(k)

∣∣∣∣ ≤ |Mv|+ |Mw|
2L0

≈ 0.018.

and the RWA affects the dispersion relation by less than 0.3 % in frequency.

Also different than in the original SSH Hamiltonian, are the k-dependent diago-
nal elements ω0(k) of the single-particle kernel of the Hamiltonian for the circuit
model. This k-dependence can be understood as arising from the coupling be-
tween resonators beyond nearest-neighbor pairs, which is inherent in the canonical
quantization of capacitively coupled LC resonator array (due to circuit topology)
as discussed in Ref. [144]. The variation in ω0(k) can be effectively suppressed in
the limit of Cv, Cw ≪ CΣ and Mv,Mw ≪ L0 as derived in Eq. (C.6). We note
that while our coupling capacitances are small compared to CΣ (Cv/CΣ ≈ 0.109,
Cw/CΣ ≈ 0.056 in the trivial phase), we find that they are sufficient to cause the
ω0(k) to vary by ∼1.2 % in the first Brillouin zone. Considering this limit of small
coupling capacitance and mutual inductance, the effective capacitance and induc-
tance of (C.6) become quantities independent of k, Ceff

0 (k) ≈ CΣ, Leff
0 (k) ≈ L0, and

the kernel of the Hamiltonian under RWA reduces to

h(k) =

(
ω0 f(k)

f ∗(k) ω0

)
.

Here,

ω0 =
1√
L0CΣ

,

f(k) =
ω0

2

[(
Cv

CΣ

− Mv

L0

)
+

(
Cw

CΣ

− Mw

L0

)
e−ikd

]
.

This is equivalent to the photonic SSH Hamiltonian in Eq. (5.1) of the main text
under redefinition of gauge which transforms operators as (âk, b̂k) → (âk,−b̂k).
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Figure C.3: a, Resonant frequencies of a finite system with N = 40 unit cells,
calculated from eigenmodes of Eq. (C.20). The bandgap regions calculated from
dispersion relation are shaded in gray (green) for upper and lower bandgaps (middle
bandgap). The two data points inside the middle bandgap (mode indices 40 and 41)
correspond to edge modes. b, Frequency splitting ∆fedge of edge modes with no
disorder in the system are plotted against the of number of unit cells N . The black
solid curve indicates exponential fit to the edge mode splitting, with decay constant
of ξ = 1.76.

Here, we can identify the parameters J and δ as

J =
ω0

4

(
Cv + Cw

CΣ

− Mv +Mw

L0

)
, (C.18)

δ =
L0(Cv − Cw)− CΣ(Mv −Mw)

L0(Cv + Cw)− CΣ(Mv +Mw)
, (C.19)

where J(1 ± δ) is defined as intra-cell and inter-cell coupling, respectively. The
dispersion relations under different stages of approximations mentioned above are
plotted in Fig. C.2, where we find a clear deviation of our system from the original
SSH model due to the k-dependent reference frequency.

Robustness of edge modes under perturbation in circuit parameters

While we have linked our system to the SSH Hamiltonian in Eq. (5.1) of the main text,
we find that our system fails to strictly satisfy chiral symmetry Ch(k)C−1 = −h(k)

(C = σ̂z is the chiral symmetry operator in the sublattice space). This is due to
the k-dependent diagonal ω0(k) terms in h(k), resulting from the non-local nature
of the quantized charge and nodal flux in the circuit model which results in next-
nearest-neighbor coupling terms between sublattices of the same type. Despite this,
an inversion symmetry, Ih(k)I−1 = h(−k) (I = σ̂x in the sublattice space), still
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holds for the circuit model. This ensures the quantization of the Zak phase (Z) and
the existence of an invariant band winding number (ν = Z/π) for perturbations
that maintain the inversion symmetry. However, as shown in Refs. [312, 313], the
inversion symmetry does not protect the edge states for highly delocalized coupling
along the dimer resonator chain, and the correspondence between winding number
and the number of localized edge states at the boundary of a finite section of
waveguide is not guaranteed.

For weak breaking of the chiral symmetry (i.e., beyond nearest-neighbor coupling
much smaller than nearest neighbor coupling) the correspondence between winding
number and the number of pairs of gapped edge states is preserved, with winding
number ν = 0 in the trivial phase (δ > 0) and ν = 1 in the topological (δ < 0) phase.
Beyond just the existence of the edge states and their locality at the boundaries, chiral
symmetry is special in that it pins the edge mode frequencies at the center of the
middle bandgap (ω0). Chiral symmetry is maintained in the presence of disorder
in the coupling between the different sublattice types along the chain, providing
stability to the frequency of the edge modes. In order to study the robustness of the
edge mode frequencies in our circuit model, we perform a simulation over different
types of disorder realizations in the circuit illustrated in Fig. C.1. As the original
SSH Hamiltonian with chiral symmetry gives rise to topological edge states which
are robust against the disorder in coupling, not in on-site energies [206], it is natural
to consider disorder in circuit elements that induce coupling between resonators:
Cv, Cw, Mv, Mw.

The classical equations of motion of a circuit consisting ofN unit cells is written as

V A
n = L0

diAn
dt

+M (n)
v

diBn
dt

+M (n)
w

diBn−1

dt
,

iAn = −C(n)
Σ,A

dV A
n

dt
+ C(n)

v

dV B
n

dt
+ C(n−1)

w

dV B
n−1

dt

V B
n = L0

diBn
dt

+M (n)
w ,

diAn+1

dt
+M (n)

v

diAn
dt
,

iBn = −C(n)
Σ,B

dV B
n

dt
+ C(n)

v

dV A
n

dt
+ C(n)

w

dV A
n+1

dt
,

where the superscripts indicate index of cell of each circuit element and

C
(n)
Σ,A = C0 + C(n)

v + C(n−1)
w , C

(n)
Σ,B = C0 + C(n)

v + C(n)
w .
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The 4N coupled differential equations are rewritten in a compact form as

d

dt


u1

u2

...
uN

 = C−1


u1

u2

...
uN

 , un ≡


V A
n

iAn

V B
n

iBn

 , (C.20)

where the coefficient matrix C is given by

C ≡



0 L0 0 M
(1)
v

−C(1)
Σ,A 0 C

(1)
v

M
(1)
v 0 L0 0 M

(1)
w

C
(1)
v 0 −C(1)

Σ,B 0 C
(1)
w

M
(1)
w 0 L0 0 M

(2)
v

C
(1)
w 0 −C(2)

Σ,A 0 C
(2)
v

M
(2)
v 0 L0 0 M

(2)
w

C
(2)
v 0 −C(2)

Σ,B 0 C
(2)
w

. . .

M
(2)
w

. . . . . .

C
(2)
w

. . . . . . . . .
. . . . . . . . . M

(N)
v

. . . . . . C
(N)
v

. . . M
(N)
v 0 L0

C
(N)
v 0 −C(N)

Σ,B 0



.

Here, the matrix elements not specified are all zero. The resonant frequencies of the
system can be determined by finding the positive eigenvalues of iC−1. Considering
the model without any disorder, we find the eigenfrequencies of the finite system to
be distributed according to the passband and bandgap frequencies from dispersion
relation in Eq. (C.15), as illustrated in Fig. C.3. Also, we observe the presence of a
pair of coupled edge mode resonances inside the middle bandgap in the topological
phase, whose splitting due to finite system size scales as ∆fedge ∼ e−N/ξ with
ξ = 1.76.

To discuss the topological protection of the edge modes, we keep track of the set
of eigenfrequencies for different disorder realizations of the coupling capacitance
and mutual inductance for a system with N = 50 unit cells. First, we consider
the case when the mutual inductance Mv and Mw between resonators are subject
to disorder. The values of M (n)

v , M (n)
w are assumed to be sampled uniformly on an

interval covering a fraction ±r of the original values, i.e.,

M (n)
v =Mv

[
1 + rδ̃

(n)
Mv

]
, M (n)

w =Mw

[
1 + rδ̃

(n)
Mw

]
,
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Figure C.4: Eigenfrequencies of the system under 100 disorder realizations in
coupling elements. Each disorder realization is achieved by uniformly sampling
the parameters within fraction ±r of the original value. a, Disorder in mutual
inductance Mv and Mw between neighboring resonators with the strength r = 0.5.
b, Disorder in coupling capacitance Cv and Cw between neighboring resonators
with the strength r = 0.1. c, The same disorder as panel b with r = 0.5, while
keeping the bare self-capacitance CΣ of each resonator fixed (correlated disorder
between coupling capacitances and resonator C0).

where δ̃(n)Mv
, δ̃

(n)
Mw

are independent random numbers uniformly sampled from an inter-
val [−1, 1]. Figure C.4a illustrates an example with a strong disorder with r = 0.5

under 100 independent realizations, where we find the frequencies of the edge
modes to be stable, while frequencies of modes in the passbands fluctuate to a much
larger extent. This suggests that the frequencies of edge modes have some sort of
added robustness against disorder in the mutual inductance between neighboring
resonators despite the fact that our circuit model does not satisfy chiral symmetry.
The reduction in sensitivity results from the fact that the effective self-inductance
Leff
0 (k) of the resonators, which influences the on-site resonator frequency, depends

on the mutual inductances only to second-order in small parameter (Mv,w/L0). It
is this second-order fluctuation in the resonator frequencies, causing shifts in the
diagonal elements of the Hamiltonian, which results in fluctuations in the edge mode
frequencies. The direct fluctuation in the mutual inductance couplings themselves,
corresponding to off-diagonal Hamiltonian elements, do not cause the edge modes
to fluctuate due to chiral symmetry protection (the off-diagonal part of the kernel of
the Hamiltonian is chiral symmetric).

Disorder in coupling capacitance Cv and Cw are also investigated using a similar
model, where the values of C(n)

v , C(n)
w are allowed to vary by a fraction ±r of the
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original values (uniformly sampled), while the remaining circuit parameters are
kept constant. From Fig. C.4b we observe severe fluctuations in the frequencies
of the edge modes even under a mild disorder level of r = 0.1. This is due to
the fact that the coupling capacitance Cv and Cw contribute to the effective self-
capacitance of each resonator Ceff

0 (k) to first-order in small parameter (Cv,w/C0),
thus directly breaking chiral symmetry and causing the edge modes to fluctuate. An
interesting observation in Fig. C.4b is the stability of frequencies of modes in the
upper passband with respect to disorder in Cv and Cw. This can be explained by
noting the expressions for band-edge frequencies in Eqs. (C.16a)-(C.16b), where
the dependence on coupling capacitance gets weaker close to the upper band-edge
frequency ωmax

+ = 1/
√

(L0 +Mv +Mw)C0 of the upper passband.

Finally, we consider a special type of disorder where we keep the bare self-
capacitance CΣ of each resonator fixed. Although unrealistic, we allow Cv and
Cw to fluctuate and compensate for the disorder in CΣ by subtracting the deviation
in Cv and Cw from C0. This suppresses the lowest-order resonator frequency fluc-
tuations, and hence helps stabilize the edge mode frequencies even under strong
disorder r = 0.5, as illustrated in Fig. C.4c. While being an unrealistic model for
disorder in our physical system, this observation sheds light on the fact that the
circuit must be carefully designed to take advantage of the topological protection.
It should also be noted that in all of the above examples, the standard deviation in
the edge mode frequencies scale linearly to lowest order with the standard devia-
tion of the disorder in the inter- and intra-cell coupling circuit elements (only the
pre-coefficient changes). Exponential suppression of edge mode fluctuations due to
disorder in the coupling elements as afforded by the SSH model with chiral sym-
metry would require a redesign of the circuit to eliminate the next-nearest-neighbor
coupling present in the current circuit layout.

C.3 Device I characterization and Experimental setup

In this section, we provide a detailed description of elements on Device I, where
the directional qubit-photon bound state and passband topology experiments are
performed. The optical micrograph of Device I is shown in Fig. C.5.
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Figure C.5: Optical micrograph of Device I (false-colored). The device consists of a
topological waveguide with 9 unit cells (resonators corresponding to A/B sublattice
colored red/blue) in the trivial phase, where the intra-cell coupling is larger than
the inter-cell coupling. Qubits (cyan, labeled Qα

j where i=1-7 and α=A,B) are
coupled to every site of the seven inner unit cells of the topological waveguide, each
connected to on-chip flux-bias lines (orange) for individual frequency control. At
the boundary of the topological waveguide are tapering sections (purple), which
provide impedance matching to the external waveguides (green) at upper bandgap
frequencies. P1 (P2) denotes port 1 (port 2) of the device.

QA
1 QB

1 QA
2 QB

2 QA
3 QB

3 QA
4

Γ′/2π (kHz) 325.7 150.4 247.4 104.7a 268.2 183.2 220.6
QB

4 QA
5 QB

5 QA
6 QB

6 QA
7 QB

7

Γ′/2π (kHz) 224.4 193.3 263.2 206 332.69 88.1 346.8
a Measured in a separate cooldown

Table C.1: Qubit coherence in the middle bandgap. The parasitic decoherence rate
Γ′ of qubits on Device I at 6.621 GHz inside the MBG. The data for QB

2 was taken
in a separate cooldown due to coupling to a two-level system defect.

Qubits

All 14 qubits on Device I are designed to be nominally identical with asymmetric
Josephson junctions (JJs) on superconducting quantum interference device (SQUID)
loop to reduce the sensitivity to flux noise away from maximum and minimum
frequencies, referred to as “sweet spots”. The sweet spots of all qubits lie deep
inside the upper and lower bandgaps, where the coupling of qubits to external
ports are small due to strong localization. This makes it challenging to access
the qubits with direct spectroscopic methods near the sweet spots. Alternatively,
a strong drive tone near resonance with a given qubit frequency was sent into the
waveguide to excite the qubit, and a passband mode dispersively coupled to the
qubit is simultaneously monitored with a second probe tone. With this method,
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the lower (upper) sweet spot of QA
1 is found to be at 5.22 GHz (8.38 GHz), and

the anharmonicity near the upper sweet spot is measured to be 297 MHz (effective
qubit capacitance of Cq = 65 fF). The Josephson energies of two JJs of QA

1 are
extracted to be (EJ1, EJ2)/h = (21.85, 9.26) GHz giving the junction asymmetry
of d = EJ1−EJ2

EJ1+EJ2
= 0.405.

The coherence of qubits is characterized using spectroscopy inside the middle
bandgap (MBG). Here, the parasitic decoherence rate is defined as Γ′ ≡ 2Γ2−κe,1−
κe,2, where 2Γ2 is the total linewidth of qubit, and κe,1 (κe,2) is the external coupling
rate to port 1 (2) (see Supplementary Note 1 of Ref. [47] for a detailed discussion).
Here, Γ′ contains contributions from both qubit decay to spurious channels other
than the desired external waveguide as well as pure dephasing. Table C.1 shows the
parasitic decoherence rate of all 14 qubits at 6.621 GHz extracted from spectroscopic
measurement at a power at least 5 dB below the single-photon level (defined asℏωκe,p
with p = 1, 2) from both ports.

Utilizing the dispersive coupling between the qubit and a resonator mode in the
passband, we have also performed time-domain characterization of qubits. The
measurement on QB

4 at 6.605 GHz in the MBG gives T1 = 1.23 µs and T ∗
2 = 783 ns

corresponding to Γ′/2π = 281.3 kHz, consistent with the result from spectroscopy
in Table C.1. At the upper sweet spot, QB

4 was hard to access due to the small
coupling to external ports arising from short localization length and a large physical
distance from the external ports. Instead, QB

1 is characterized to be T1 = 9.197 µs
and T ∗

2 = 11.57 µs at its upper sweet spot (8.569 GHz).

Metamaterial waveguide and coupling to qubits

As shown in Fig. C.5, the metamaterial waveguide consists of a SSH array in the
trivial configuration and tapering sections at the boundary (the design of tapering
sections is discussed in App. C.4). The array contains 18 identical LC resonators,
whose design is slightly different from the one in test structures shown in Fig. 5.1b
of the main text. Namely, the “claw” used to couple qubits to resonators on each
site is extended to generate a larger coupling capacitance of Cg = 5.6 fF and the
resonator capacitance to ground was reduced accordingly to maintain the designed
reference frequency. On resonator sites where no qubit is present, an island with
shape identical to that of a qubit was patterned and shorted to ground plane in
order to mimic the self-capacitance contribution from a qubit to the resonator.
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Figure C.6: Schematic of the measurement setup inside the dilution refrigerator for
Device I. The meaning of each symbol in the schematic on the left is enumerated on
the right. The level of attenuation of each attenuator is indicated with number next
to the symbol. The cutoff frequencies of each filter is specified with numbers inside
the symbol. Small squares attached to circulator symbols indicate port termination
with Z0 = 50 Ω, allowing us to use the 3-port circulator as a 2-port isolator. The
input pump line for TWPA is not shown in the diagram for simplicity.

The fitting of the whole structure to the waveguide transmission spectrum results
in a set of circuit parameters similar yet slightly different from ones of the test
structures quoted in Fig. 5.1: (Cv, Cw) = (35, 19.2)fF, (Mv,Mw) = (−38,−32)pH,
C0 = 250 fF, L0 = 1.9 nH. Here, the definition of C0 includes contributions from
coupling capacitance between qubit and resonator, but excludes the contribution
to the resonator self-capacitance from the coupling capacitances Cv, Cw between
resonators in the array. With these parameters we calculate the corresponding
parameters in the SSH model to be J/2π = 356 MHz and δ = 0.256 following
Eq. (C.19), resulting in the localization length ξ = [ln(1+δ

1−δ
)]−1 = 1.91 at the

reference frequency. From the measured avoided crossing gAB
45 /2π = 32.9 MHz

between qubit-photon bound states facing toward each other on nearest-neighboring
sites together with J and δ, we infer the qubit coupling to each resonator site to be
g =

√
gAB
45 J(1 + δ) = 2π × 121.3 MHz [164], close to the value

Cg

2
√
CqCΣ

ω0 = 2π × 132 MHz



175

expected from designed coupling capacitance [175]. Note that we find an in-
consistent set of values J/2π = 368 MHz and δ = 0.282 (with ξ = 1.73 and
g/2π = 124.6 MHz accordingly) from calculation based on the difference in ob-
served band-edge frequencies, where the frequency difference between the highest
frequency in the UPB and the lowest frequency in the LPB equals 4J and the size
of the MBG equals 4J |δ|. The inconsistency indicates the deviation of our system
from the proposed circuit model (see App. C.1 for discussion), which accounts for
the difference between theoretical curves and the experimental data in Fig. 5.2b
and left sub-panel of Fig. 5.3c. The values of J, δ and g from the band-edge fre-
quencies are used to generate the theoretical curves in Fig. 5.5 in the main text
as well as in Fig. C.11. The intrinsic quality factor of one of the normal modes
(resonant frequency 6.158 GHz) of the metamaterial waveguide was measured to
be Qi = 9.8× 104 at power below the single-photon level, similar to typical values
reported in Refs. [144, 172].

Tapering section
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Figure C.7: Tapering section of Device I. a, The circuit diagram of the tapering
section connecting a coplanar waveguide to the topological waveguide. The coplanar
waveguide, first tapering resonator, and second tapering resonator are shaded in
purple, yellow, and green, respectively. b, Optical micrograph (false colored)
of the tapering section on Device I. The tapering section is colored in the same
manner as the corresponding components in panel a. c, Red: measured waveguide
transmission spectrum |S21| for Device I. Black: fit to the data with parameters
(Cv, Cw) = (35, 19.2) fF, (Mv,Mw) = (−38,−32) pH, (C1g, C2g) = (141, 35) fF,
(C1, C2) = (128.2, 230) fF, C0 = 250 fF, L0 = 1.9 nH.
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Experimental setup

The measurement setup inside the dilution refrigerator is illustrated in Fig. C.6. All
the 14 qubits on Device I are DC-biased with individual flux-bias (Z control) lines,
filtered by a 64 kHz low-pass filter at the 4K plate and a 1.9 MHz low-pass filter
at the mixing chamber plate. The Waveguide Input 1 (2) passes through a series
of attenuators and filters including a 20 dB (30 dB) thin-film attenuator developed
in B. Palmer’s group [177]. It connects via a circulator to port 1 (2) of Device I,
which is enclosed in two layers of magnetic shielding. The output signals from
Device I are routed by the same circulator to the output lines containing a series of
circulators and filters. The pair of 2×2 switches in the amplification chain allows
us to choose the branch to be further amplified in the first stage by a traveling-wave
parametric amplifier (TWPA) from MIT Lincoln Laboratories. Both of the output
lines are amplified by an individual high electron mobility transistor (HEMT) at the
4K plate, followed by room-temperature amplifiers at 300 K. All four S-parameters
Sij (i, j ∈ {1, 2}) involving port 1 and 2 on Device I can be measured with this
setup by choosing one of the waveguide input ports and one of the waveguide output
ports, e.g. S11 can be measured by sending the input signal into Waveguide Input 1
and collecting the output signal from Waveguide Output 2 with both 2×2 switches
in the cross (×) configuration.

C.4 Tapering sections on Device I

The finite system size of metamaterial waveguide gives rise to sharp resonances
inside the passband associated with reflection at the boundary (Fig. 5.2b of the main
text). Also, the decay rate of qubits to external ports inside the middle bandgap
(MBG) is small, making the spectroscopic measurement of qubits inside the MBG
hard to achieve. In order to reduce ripples in transmission spectrum inside the upper
passband and increase the decay rates of qubits to external ports comparable to their
intrinsic contributions inside the middle bandgap, we added two resonators at each
end of the metamaterial waveguide in Device I as tapering section.

Similar to the procedure described in Appendix C of Ref. [144], the idea is to in-
crease the coupling capacitance gradually across the two resonators while keeping
the resonator frequency the same as other resonators by changing the self capaci-
tance as well. However, unlike the simple case of an array of LC resonators with
uniform coupling capacitance, the SSH waveguide consists of alternating coupling
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capacitance between neighboring resonators and two separate passbands form as a
result. In this particular work, the passband experiments are designed to take place
at the upper passband frequencies and hence we have slightly modified the resonant
frequencies of tapering resonators to perform impedance-matching inside the upper
passband. The circuit diagram shown in Fig. C.7a was used to model the tapering
section in our system. While designing of tapering sections involves empirical trials,
microwave filter design software, e.g. iFilter module in AWR Microwave Office, can
be used to aid the choice of circuit parameters and optimization method.

Figure C.7b shows the optical micrograph of a tapering section on Device I. The
circuit parameters are extracted by fitting the normalized waveguide transmission
spectrum (S21) data from measurement with theoretical circuit models. We find a
good agreement in the frequency of normal modes and the level of ripples between
the theoretical model and the experiment as illustrated in Fig. C.7c. The level of
ripples in the transmission spectrum of the entire upper passband is about 8 dB
and decreases to below 2 dB near the center of the band, allowing us to probe the
cooperative interaction between qubits at these frequencies.

C.5 Directional shape of qubit-photon bound state

In this section, we provide detailed explanations on the directional shape of qubit-
photon bound states discussed in the main text. As an example, we consider a system
consisting of a topological waveguide in the trivial phase and a qubit coupled to
the A sublattice of the n-th unit cell (Fig. C.8a). Our descriptions are based on
partitioning the system into subsystems under two alternative pictures (Fig. C.8b,c),
where the array is divided on the left (Description I) or the right (Description II) of
the site (n,A) where the qubit is coupled to.

Description I

We divide the array into two parts by breaking the inter-cell coupling Jw = J(1−δ)
that exists on the left of the site (n,A) where the qubit is coupled to, i.e., between
sites (n − 1,B) and (n,A). The system is described in terms of two subsystems
S1 and S2 as shown in Fig. C.8b. The subsystem S1 is a semi-infinite array in the
trivial phase extended from the (n− 1)-th unit cell to the left and the subsystem S2

comprising a qubit and a semi-infinite array in the trivial phase extended from the
n-th unit cell to the right. The coupling between the two subsystems is interpreted to
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Figure C.8: Understanding the directionality of qubit-photon bound states. a,
Schematic of the full system consisting of an infinite SSH waveguide with a qubit
coupled to the A sublattice of the n-th unit cell and tuned to frequency ω0 in the
center of the MBG. Here we make the unit cell choice in which the waveguide is
in the trivial phase (δ > 0). a, Division of system in panel a into two subsystems
S1 and S2 in Description I. a, Division of system in panel (a) into three subsystems
[qubit (Q), S′

1, S′
2] in Description II. For panels b and c, the left side shows the

schematic of the division into subsystems and the right side illustrates the mode
spectrum of the subsystems and the coupling between them.

take place at a boundary site with coupling strength Jw. When the qubit frequency
is resonant to the reference frequency ω0, the subsystem S2 can be viewed as a semi-
infinite array in the topological phase, where the qubit effectively acts as an edge
site. Here, the resulting topological edge mode of subsystem S2 is the qubit-photon
bound state, with photon occupation mostly on the qubit itself and on every B site
with a decaying envelope. Coupling of subsystem S2 to S1 only has a minor effect
on the edge mode of S2 as the modes in subsystem S1 are concentrated at passband
frequencies, far-detuned from ω = ω0. Also, the presence of an edge state of S2

at ω = ω0 cannot induce an additional occupation on S1 by this coupling in a way
that resembles an edge state since the edge mode of S2 does not occupy sites on
the A sublattice. The passband modes S1 and S2 near-resonantly couple to each
other, whose net effect is redistribution of modes within the passband frequencies.
Therefore, the qubit-photon bound state can be viewed as a topological edge mode for
subsystem S2 which is unperturbed by coupling to subsystem S1. The directionality
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and photon occupation distribution along the resonator chain of the qubit-photon
bound state can be naturally explained according to this picture.
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Figure C.9: a, Upper (Lower) plots: external coupling rate of the qubit-photon
bound states to port 1 (2) at 6.72 GHz in the middle bandgap. Exponential fit
(black curve) on the data gives the localization length of ξ = 2. b, Upper (Lower)
plots: external coupling rate of the qubit-photon bound states to port 1 (2) at 7.485
GHz in the upper bandgap. Exponential fit (black curve) on the data gives the
localization length of ξ = 1.8. The localization lengths are represented in units of
lattice constant. For all panels, the error bars show 95% confidence interval and are
removed on data points whose error is smaller than the marker size.

Description II

In this alternate description, we divide the array into two parts by breaking the
intra-cell coupling Jv = J(1 + δ) that exists on the right of the site (n,A) where
the qubit is coupled to, i.e., between sites (n,A) and (n,B). We consider the
division of the system into three parts: the qubit, subsystem S′

1, and subsystem S′
2

as illustrated in Fig. C.8c. Here, the subsystem S′
1 (S′

2) is a semi-infinite array in
the topological phase extended to the left (right), where the last site hosting the
topological edge mode E′

1 (E′
2) at ω = ω0 is the A (B) sublattice of the n-th unit cell.

The subsystem S′
1 is coupled to both the qubit and the subsystem S′

2 with coupling
strength g and Jv = J(1 + δ), respectively. Similar to Description I, the result
of coupling between subsystem modes inside the passband is the reorganization of
modes without significant change in the spectrum inside the middle bandgap. On
the other hand, modes of the subsystems at ω = ω0 (qubit, E′

1, and E′
2) can be
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viewed as emitters coupled in a linear chain configuration, whose eigenfrequencies
and corresponding eigenstates in the single-excitation manifold are given by

ω̃± = ω0 ±
√
g̃2 + J̃2

v ,

|ψ±⟩ =
1√
2

 g̃√
g̃2 + J̃2

v

|100⟩ ± |010⟩+ J̃v√
g̃2 + J̃2

v

|001⟩

 ,

and
ω̃0 = ω0, |ψ0⟩ =

1√
g̃2 + J̃2

v

(
J̃v|100⟩ − g̃|001⟩

)
,

where |n1n2n3⟩ denotes a state with (n1, n2, n3) photons in the (qubit, E′
1, E′

2),
respectively. Here, g̃ (J̃v) is the coupling between edge mode E′

1 and the qubit
(edge mode E′

2), diluted from g (Jv) due to the admixture of photonic occupation
on sites other than the boundary in the edge modes. Note that in the limit of short
localization length, we recover g̃ ≈ g and J̃v ≈ Jv. Among the three single-
excitation eigenstates, the states |ψ±⟩ lie at frequencies of approximately ω0 ± J ,
and are absorbed into the passbands. The only remaining state inside the middle
bandgap is the state |ψ0⟩, existing exactly at ω = ω0, which is an anti-symmetric
superposition of qubit excited state and the single-photon state of E′

2, whose photonic
envelope is directed to the right with occupation on every B site. This accounts for
the directional qubit-photon bound state emerging in this scenario.

C.6 Coupling of qubit-photon bound states to external ports at different fre-
quencies

As noted in the main text (Fig. 5.3), the perfect directionality of the qubit-photon
bound states is achieved only at the reference frequency ω0 inside the middle
bandgap. In this section, we discuss the breakdown of the observed perfect direc-
tionality when qubits are tuned to different frequencies inside the middle bandgap
by showing the behavior of the external coupling κe,p (p = 1, 2) to the ports.

Inside the middle bandgap, detuned from the reference frequency

Figure C.9a shows the external coupling rate of qubits to the ports at 6.72 GHz, a
frequency in the middle bandgap close to band-edge. The alternating behavior of
external coupling rate is still observed, but with a smaller contrast than in Fig. 5.3 of
the main text. The dependence of external linewidth on qubit index still exhibits the
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Figure C.10: a, Zoomed-in view of the swirl feature near 6.95 GHz of the ex-
perimental data illustrated in Fig. 5.5c in the main text. b, Transmission spectrum
across two-qubit resonance for three different frequency tunings, corresponding to
line cuts marked with green dashed lines on panel a. The insets to panel b show
the corresponding level diagram with |gg⟩ denoting both qubits in ground states and
|B⟩ (|D⟩) representing the perfect bright (dark) state. The state notation with prime
(double prime) in sub-panel i. (iii.) denotes the imperfect super-radiant bright state
and sub-radiant dark state, with the width of orange arrows specifying the strength
of the coupling of states to the waveguide channel. The sub-panel ii. occurs at the
center of the swirl, where perfect super-radiance and sub-radiance takes place (i.e.,
bright state waveguide coupling is maximum and dark state waveguide coupling is
zero). The black and red curves correspond to experimental data and theoretical fit,
respectively.

remaining directionality with qubits on A (B) sublattice maintaining large coupling
to port 2 (1), while showing small non-zero coupling to the opposite port.
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Inside the upper bandgap

Inside the upper bandgap (7.485 GHz), the coupling of qubit-photon bound states to
external ports decreases monotonically with the distance of the qubit site to the port,
regardless of which sublattice the qubit is coupled to (Fig. C.9b). This behavior
is similar to that of qubit-photon bound states formed in a structure with uniform
coupling, where bound states exhibit a symmetric photonic envelope surrounding
the qubit. Note that we find the external coupling to port 2 (κe,2) to be generally
smaller than that to port 1 (κe,1), which may arise from a slight impedance mismatch
on the connection of the device to the external wiring.

C.7 Probing band topology with qubits

Signature of perfect super-radiance

Here we take a closer look at the swirl pattern in the waveguide transmission
spectrum – a signature of perfect super-radiance – which is discussed in Fig. 5.5c
of the main text. In Fig. C.10 we zoom in to the observed swirl pattern near
6.95 GHz, and three horizontal line cuts. At the center of this pattern (sub-panel ii. of
Fig. C.10b), the two qubits form perfect super-/sub-radiant states with maximized
correlated decay and zero coherent exchange interaction [145, 149]. At this point,
the transmission spectrum shows a single Lorentzian lineshape (perfect super-radiant
state and bright state) with linewidth equal to the sum of individual linewidths of
the coupled qubits. The perfect sub-radiant state (dark state), which has no external
coupling, cannot be accessed from the waveguide channel here and is absent in
the spectrum. Slightly away from this frequency, the coherent exchange interaction
starts to show up, making hybridized states |B′⟩, |D′⟩ formed by the interaction of
the two qubits. In this case, both of the hybridized states have non-zero decay rate
to the waveguide, forming a V-type level structure [164]. The interference between
photons scattering off the two hybridized states gives rise to the peak in the middle
of sub-panels (i.) and (iii.) in Fig. C.10b.

The fitting of lineshapes starts with the subtraction of transmission spectrum of
the background, which are taken in the same frequency window but with qubits
detuned away. Note that the background subtraction in this case cannot be perfect
due to the frequency shift of the upper passband modes under the presence of
qubits. Such imperfection accounts for most of the discrepancy between the fit
and the experimental data. The fit employs the transfer matrix method discussed
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in Refs. [137, 138, 314]. Here, the transfer matrix of the two qubits takes into
account the pure dephasing, which causes the sharp peaks in sub-panels (i.) and
(iii.) of Fig. C.10b to stay below perfect transmission level (unity) as opposed to the
prediction from the ideal case of electromagnetically induced transparency [222].
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Figure C.11: a, Schematic showing two qubits separated by ∆n unit cells in the
trivial configuration. b, Corresponding schematic for topological phase configura-
tion. c, Waveguide transmission spectrum |S21| when frequencies of two qubits are
resonantly tuned across the upper passband in the trivial configuration. d, Waveg-
uide transmission spectrum |S21| for the topological configuration. For both trivial
and topological spectra, the left spectrum illustrates theoretical expectations based
on Ref. [164] whereas the right shows the experimental data.
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QL

QR

300 μm

Figure C.12: The device consists of a topological waveguide with 7 unit cells
(resonators corresponding to A/B sublattice colored red/blue) in the topological
phase, where the inter-cell coupling is larger than the intra-cell coupling. Two
qubits QL (dark red) and QR (dark blue) are coupled to A sublattice of the second
unit cell and B sublattice of sixth unit cell, respectively. Each qubit is coupled to
a λ/4 coplanar waveguide resonator (purple) for dispersive read-out, flux-bias line
(orange) for frequency control, and charge line (yellow) for local excitation control.

Topology-dependent photon scattering on various qubit pairs

As mentioned in the main text, when two qubits are separated by ∆n (∆n > 0)
unit cells, the emergence of perfect super-radiance (vanishing of coherent exchange
interaction) is governed by Eq. (5.2). Although Eq. (5.2) is satisfied at the band-edges
it does not lead to additional point of super-radiance because the non-Markovianity
at these points do not lead to effective correlated decay [157]. Therefore, the
perfect super-radiance takes place exactly ∆n− 1 times in the trivial phase and ∆n

times in the topological phase across the entire passband. The main text shows the
case of ∆n = 2. Here we report similar measurements on other qubit pairs with
different cell distance ∆n between the qubits. Figure C.11 shows good qualitative
agreement between the experiment and theoretical result in Ref. [164]. The small
avoided-crossing-like features in the experimental data are due to coupling of one
of the qubits with a local two-level system defect. An example of this is seen near
6.85 GHz of ∆n = 3 in the topological configuration. For ∆n = 0, there is no
perfect super-radiant point throughout the passband for both trivial and topological
configurations. For all the other combinations in Fig. C.11, the number of swirl
patterns indicating perfect super-radiance agrees with the theoretical model.
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Qubit fmax
(GHz)

EC/h
(MHz)

EJΣ/h
(GHz)

gE/2π
(MHz)

fRO
(GHz)

gRO/2π
(MHz)

T1
(µs)

T ∗
2

(µs)
QL 8.23 294 30.89 58.1 5.30 43.5 4.73 4.04
QR 7.99 296 28.98 57.3 5.39 43.4 13.9 8.3

Table C.2: Qubit parameters on Device II. fmax is the maximum frequency (sweet
spot) and EC (EJΣ) is the charging (Josephson) energy of the qubit. gE is the
coupling of qubit to the corresponding edge state. The read-out resonator at fre-
quency fRO is coupled to the qubit with coupling strength gRO. T1 (T ∗

2 ) is the lifetime
(Ramsey coherence time) of a qubit measured at the sweet spot.

C.8 Device II characterization and experimental setup

In this section we provide a detailed description of the elements making up Device
II, in which the edge mode experiments are performed. The optical micrograph of
Device II is illustrated in Fig. C.12.

Qubits

The parameters of qubits on Device II are summarized in Table C.2. The two qubits
are designed to have identical SQUID loops with symmetric JJs. The lifetime and
Ramsey coherence times in the table are measured when qubits are tuned to their
sweet spot. Qubit coherence at the working frequency in the middle bandgap is
also characterized, with the lifetime and Ramsey coherence times of QL (QR) at
6.829 (6.835) GHz measured to be T1 = 6.435 (5.803) µs and T ∗

2 = 344 (539) ns,
respectively.

Metamaterial waveguide and coupling to qubits

The resonators in the metamaterial waveguide and their coupling to qubits are
designed to be nominally identical to those in Device I. The last resonators of the
array are terminated with a wing-shape patterned ground plane region in order to
maintain the bare self-capacitance identical to other resonators.

Edge modes

The coherence of the edge modes is characterized by using qubits to control and
measure the excitation with single-photon precision. Taking EL as an example, we
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Figure C.13: Schematic of the measurement setup inside the dilution refrigerator for
Device II. The meaning of each symbol in the schematic on the left is enumerated on
the right. The level of attenuation of each attenuator is indicated with number next
to the symbol. The cutoff frequencies of each filter is specified with numbers inside
the symbol. Small squares attached to circulator symbols indicate port termination
with Z0 = 50 Ω, allowing us to use the 3-port circulator as a 2-port isolator. The
pump line for the TWPA is not shown in the diagram for simplicity.

define the iSWAP gate as a half-cycle of the vacuum Rabi oscillation in Fig. 5.6d
of the main text. For measurement of the lifetime of the edge state EL, the qubit
QL is initially prepared in its excited state with a microwave π-pulse, and an iSWAP
gate is applied to transfer the population from QL to EL. After waiting for a variable
delay, we perform the second iSWAP to retrieve the population from EL back to QL,
followed by the read-out of QL. In order to measure the Ramsey coherence time, the
qubit QL is instead prepared in an equal superposition of ground and excited states
with a microwave π/2-pulse, followed by an iSWAP gate. After a variable delay, we
perform the second iSWAP and another π/2-pulse on QL, followed by the read-out
of QL. An equivalent pulse sequence for QR is used to characterize the coherence
of ER. The lifetime and Ramsey coherence time of EL (ER) are extracted to be
T1 = 3.68 (2.96) µs and T ∗

2 = 4.08 (2.91) µs, respectively, when QL (QR) is parked
at 6.829 (6.835) GHz. Due to the considerable amount of coupling gE between
the qubit and the edge mode compared to the detuning at park frequency, the edge
modes are hybridized with the qubits during the delay time in the above-mentioned
pulse sequences. As a result, the measured coherence time of the edge modes is
likely limited here by the dephasing of the qubits.



187

Experimental setup

The measurement setup inside the dilution refrigerator is illustrated in Fig. C.13.
The excitation of the two qubits is controlled by capacitively-coupled individual XY
microwave drive lines. The frequency of qubits are controlled by individual DC
bias (Z control DC) and RF signals (Z control RF), which are combined using a bias
tee at the mixing chamber plate. The read-out signals are sent into RO Waveguide
Input, passing through a series of attenuators including a 20 dB thin-film attenuator
developed in B. Palmer’s group [177]. The output signals go through an optional
TWPA, a series of circulators and a band-pass filter, which are then amplified by a
HEMT amplifier (RO Waveguide Output).

Details on the population transfer process

In step i) of the double-modulation scheme described in the main text, the frequency
modulation pulse on QR (control modulation) is set to be 2 ns longer than that on QL

(transfer modulation). The interaction strength induced by the control modulation is
21.1 MHz, smaller than that induced by the transfer modulation in order to decrease
the population leakage between the two edge states. For step iii), the interaction
strength induced by the control modulation on QL is 22.4 MHz, much closer to
interaction strength for the transfer than expected (this was due to a poor calibration
of the modulation efficiency of qubit sideband). The interaction strengths being too
close between QL ↔ EL and QR ↔ ER gives rise to unwanted leakage and decreases
the required interaction time in step ii). We expect that a careful optimization on
the frequency modulation pulses would have better addressed this leakage problem
and increase the transfer fidelity (see below).

The fit to the curves in Fig. 5.6e of the main text are based on numerical simulation
with QuTiP [21], assuming the values of lifetime (T1) and coherence time (T ∗

2 ) from
the characterization measurements. The free parameters in the simulation are the
coupling strengths g̃L, g̃R between qubits and edge states, whose values are extracted
from the best fit of the experimental data.

The detailed contributions to the infidelity of the as-implemented population transfer
protocol are also analyzed by utilizing QuTiP. The initial left-side qubit population
probability is measured to be only 98.4 %, corresponding to an infidelity of 1.6 %
in the π-pulse qubit excitation in this transfer experiment (compared to a previously
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calibrated ‘optimized’ pulse). In the following steps, we remove the leakage be-
tween edge modes and the decoherence process sequentially to see their individual
contributions to infidelity. First, we set the coupling strength between the two edge
modes to zero during the two iSWAP gates while keeping the above-mentioned ini-
tial population probability, coupling strengths, lifetimes, and coherence times. The
elimination of unintended leakage during the left and right side iSWAP steps be-
tween the edge modes gives the final transferred population probability of 91.9 %,
suggesting 91.9 % − 87 % = 4.9 % of the infidelity comes from the unintended
leakage between edge modes. Also, as expected, setting the population decay and
decoherence of the qubits and the edge modes to zero, the final population is found
to be identical to the initial value, indicating that 98.4 %− 91.9 % = 6.5 % of loss
arises from the decoherence processes.
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A p p e n d i x D

SUPPLEMENTARY INFORMATION FOR CHAPTER 6

D.1 Theoretical modeling of the quantum simulator

In this section, we describe the theoretical modeling of the metamaterial-based
quantum simulator used in the main text.

Analytical modeling

In the analytical modeling, we discuss the Hamiltonian description of our quantum
simulator by mapping its basic circuit model onto a tight-binding array of coupled
cavities with locally coupled qubits under various approximations. We derive the
effective Hamiltonian in the qubit subspace, resulting in an analytical form of the
metamaterial-mediated coupling between qubits described in the main text.

Approximate canonical quantization of the metamaterial waveguide

The metamaterial waveguide consists of an array of inductor-capacitor (LC) res-
onators with inductance L0 and capacitance C0 coupled with capacitance Ct illus-
trated in Fig. D.1. We denote the flux variable of each node of the metamaterial as
Φn(t) ≡

∫ t

−∞ dt′ Vn(t
′). The Lagrangian in the position space reads

L =
N∑

n=0

[
Ct

2

(
Φ̇n+1 − Φ̇n

)2
+
C0

2

(
Φ̇n

)2
− Φ2

n

2L0

]
(D.1)

where Φn=0 = Φn=N+1 ≡ 0. Starting from this Lagrangian, the canonical quantiza-
tion of the metamaterial waveguide can be performed approximately in the position
space. The node charge variable Qn conjugate to the node flux variable Φn is
evaluated as

Qn =
∂L
∂Φ̇n

= Cw0Φ̇n − Ct

(
Φ̇n+1 + Φ̇n−1

)
, (D.2)

where Cw0 = C0 + 2Ct is the effective self-capacitance of LC resonators forming
the metamaterial waveguide. Using a vector notation Φ ≡ (Φ1,Φ2, · · · ,ΦN)

⊤,
Q ≡ (Q1, Q2, · · · , QN)

⊤, the linear relation between node charges and voltages
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can be written in a compact form Q = CΦ̇, with the capacitance matrix C given
by

C = Cw0I − CtJ1. (D.3)

Here, I is an N ×N identity matrix and Jk is a matrix with components [Jk]n,n′ =

δn,k+n′ + δn+k,n′ , i.e., unity on the kth off-diagonal. Also, the Lagrangian in Eq. D.1
can be rewritten as L = 1

2
Φ̇⊤CΦ̇ − 1

2L0
Φ⊤Φ using this vector notation. The

Legendre transformation H =
∑

nQnΦ̇n − L [315] gives the Hamiltonian of the
metamaterial waveguide

H =
1

2
Q⊤C−1Q+

1

2L0

Φ⊤Φ. (D.4)

The first-order approximation to the inverse of capacitance matrix is given by

C−1 = [Cw0(I − rJ1)]
−1 = C−1

w0 (I + rJ1 + r2J2
1 + · · · )

≈ 1

Cw0

I +
Ct

C2
w0

J1 +O(r2), (D.5)

where r = Ct/Cw0 < 1 is the ratio of the coupling capacitance to the self capaci-
tance, which is assumed to be small. Using this, the Hamiltonian of the metamaterial
waveguide is evaluated as

H ≈
N∑

n=1

(
Q2

n

2Cw0

+
Φ2

n

2L0

+
Ct

C2
w0

QnQn+1

)
(D.6)

up to first order in r, where QN+1 ≡ 0. Note that higher-order approximations to
the inverse of capacitance matrix can be calculated using the matrix relations

J2
1 ≈ 2I + J2, J

3
1 ≈ 3J1 + J3, J

4
1 ≈ 6I + 4J2 + J4, · · · ,

under which the Hamiltonian exhibits long-range coupling beyond nearest neighbors.
Here, the magnitude of charge-charge coupling between a pair of resonators at sites
(i, j) scales as ∼ r|i−j|, exponentially decaying with the distance |i − j| between
resonators.

We promote the flux and charge variables to quantum operators by imposing the
canonical commutation relation [Φ̂n, Q̂n′ ] = iℏδn,n′ . The annihilation (creation)
operator ân (â†n), defined with

Φ̂n =

√
ℏZw

2

(
ân + â†n

)
, Q̂n =

1

i

√
ℏ

2Zw

(
ân − â†n

)
(D.7)
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· · ·
Ct

Vn

L0 C0

Cg

Vqn

Cq

EJ,n

Ct

Vn+1

L0 C0

Cg

Vqn+1

Cq

EJ,n+1

Ct

· · ·

Figure D.1: Basic circuit model of the metamaterial-based quantum simula-
tor. The metamaterial waveguide is described by an array of LC resonators with
inductance L0 and capacitance C0 capacitively coupled to nearest neighbors with a
capacitance Ct (colored blue). Superconducting transmon qubits, each represented
as a parallel circuit of a Josephson junction and a capacitor, are coupled to each
metamaterial resonator site with a capacitance Cg (colored green). The Josephson
energy and the capacitance of the qubit at the nth site is given by EJ,n and Cq,
respectively.

whereZw0 =
√
L0/Cw0, satisfies the commutation relation [ân, â†n′ ] = δn,n′ . Substi-

tuting Eq. D.7 into Eq. D.6, we obtain an approximate second-quantized Hamiltonian
of the metamaterial under the rotating-wave approximation (RWA), corresponding
to the Hamiltonian of an array of nearest-neighbor-coupled cavities [157, 255, 316]
illustrated in Fig. 6.1a of the main text. The Hamiltonian is written as

Ĥ = ℏ
N∑

n=1

[
ωcâ

†
nân + t

(
â†nân+1 + â†n+1ân

)]
, (D.8)

where the cavity frequency ωc and the coupling t between neighboring cavities are
given by

ωc =
1√

L0(C0 + 2Ct)
, t =

Ct

2(C0 + 2Ct)
ωc. (D.9)

Coupling of superconducting qubits to the metamaterial waveguide

We assume coupling a transmon qubit (in the schematic form of a Josephson junction
with energy EJ and parallel capacitance Cq) to each metamaterial resonator site via
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a capacitance Cg as illustrated in Fig. D.1. Following the procedures similar to the
above, the full Hamiltonian of the qubit-metamaterial system can be obtained up to
first order in the coupling capacitances Cg and Ct, written as

Ĥ ≈
∑
n

(
Q̂2

n

2CwΣ

+
Φ̂2

n

2L0

+
Ct

C2
wΣ

Q̂nQ̂n+1

+
Q̂2

qn

2CqΣ

− EJ,n cos
2πΦ̂qn

Φ0

+
Cg

CwΣCqΣ

Q̂nQ̂qn

)
. (D.10)

Here, Φ̂n (Q̂n) and Φ̂qn (Q̂qn) are the node flux (charge) operators of the metamaterial
resonator and the qubit at the nth unit cell, respectively, and Φ0 = h/2e is a
magnetic flux quantum. The self-capacitance of metamaterial resonators and qubits
are renormalized to CwΣ = Cw0 + Cg and CqΣ = Cq + Cg, respectively, redefining
the parameters of the cavity array in Eq. D.9 into

ωc =
1√

L0(C0 + Cg + 2Ct)
, t =

Ct

2(C0 + Cg + 2Ct)
ωc. (D.9′)

Introducing the annihilation and the creation operators following a procedure similar
to that of Eq. D.7 and restricting the subspace of qubits to their lowest two energy
levels, we obtain the Hamiltonian of the metamaterial-qubit system in a second-
quantized form

Ĥ = ℏ
∑
n

[
ωcâ

†
nân + t

(
â†nân+1 + â†n+1ân

)
+
ωqn

2
σ̂z
n + gn

(
â†nσ̂

−
n + ânσ̂

+
n

) ]
, (D.11)

where

gn =
Cg

2
√
CwΣCqΣ

√
ωcωqn (D.12)

is the coupling between a qubit and a metamaterial resonator at the nth unit cell.
Here, σ̂α

n (α ∈ {±, x, y, z}) denotes the Pauli operator of qubit at the nth unit cell.
We can use the annihilation operators âk = 1√

N

∑
n e

−ikndân in the momentum space
(satisfying the commutation relation [âk, â

†
k′ ] = δk,k′) to rewrite the Hamiltonian of

the metamaterial waveguide in terms of its normal modes, where d is the lattice
constant. In this case, the Hamiltonian is given by

Ĥ/ℏ =
∑
k

ωkâ
†
kâk +

∑
n

ωqn

2
σ̂z
n

+
∑
n,k

(
gk,nâ

†
kσ̂

−
n + g∗k,nâkσ̂

+
n

)
. (D.13)
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Here, ωk = ωc+2t cos (kd) is the dispersion relation of the metamaterial waveguide
(plotted in Fig. 6.1b of the main text) up to first order in Ct/CwΣ and gk,n ≡
gne

−iknd/
√
N is the coupling of a qubit at site n to a metamaterial mode with

wavevector k.

Effective Hamiltonian in the dispersive limit

The effective Hamiltonian Ĥeff of the system can be calculated by performing the
Schrieffer-Wolff transformation

Û = exp

(∑
k,n

g∗k,nâkσ̂
+
n − gk,nâ

†
kσ̂

−
n

∆n,k

)

on the original Hamiltonian in Eq. D.13, where ∆n,k = ωqn − ωk is the detuning
of the nth qubit from the metamaterial mode at wavevector k. The result of this
transformation is given by

Ĥeff/ℏ =
∑
k

ωkâ
†
kâk +

∑
n

ωqn

2
σ̂z
n

+
∑
n,n′

Jn,n′σ̂+
n σ̂

−
n′ +

∑
k,k′,n

Kk,k′,nσ̂
z
nâ

†
kâk′ , (D.14)

where Kk,k′,n denotes coupling between a pair of metamaterial modes (k, k′) de-
pendent on the state of the nth qubit, giving rise to qubit-state-dependent shift of
the metamaterial given by

Kk,k′,n =
gk,ng

∗
k′,n

2

(
1

∆n,k

+
1

∆n,k′

)
, (D.15)

and the exchange interaction Jn,n′ between a qubit pair (n, n′) is written as

Jn,n′ =
∑
k

gk,n′g∗k,n
2

(
1

∆n,k

+
1

∆n′,k

)
. (D.16)

We focus on this exchange interaction, the interaction between qubits mediated by
the virtual photons of the metamaterial, by evaluating the sum

Jn,n′ =
∑
k

gngn′

N

eik(n−n′)d

2

×
[

1

∆n − 2t cos (kd)
+

1

∆n′ − 2t cos (kd)

]
(D.17)
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where ∆n ≡ ωqn − ωc is the detuning of the nth qubit from the bare cavity fre-
quency ωc. In the discrete model consisting of a finite number of unit cells N , the
wavevectors of the metamaterial mode are equally spaced by ∆k = 2π/Nd. In the
continuum limit, the summation on the right-hand side of Eq. D.17 is cast into

gngn′

2

d

2π

∫ π/d

−π/d

dk

[
eik(n−n′)d

∆n − 2t cos (kd)
+

eik(n−n′)d

∆n′ − 2t cos (kd)

]
= −gngn′

4π

1

2t
[I (n− n′, an) + I (n− n′, an′)] ,

where an = −∆n/2J and I is the integral function defined and evaluated as

I(n, a) ≡
∫ π

−π

dk
eikn

a+ cos k

=

{
2π√
a2−1

(−1)|n|e−|n|/λ, if a > 1

− 2π√
a2−1

e−|n|/λ, if a < −1
. (D.18)

Here, λ = 1/arccosh(|a|) = 1/ ln
(
|a|+

√
a2 − 1

)
. In the following, we describe

the behavior of metamaterial-mediated coupling Jn,n′ between qubits in the bandgap
regime.

(a) Lower bandgap. When qubits are tuned to the lower bandgap, i.e., ∆n =

ωqn − ωc < −2t and an > 1, the exchange interaction Jn,n′ between the qubits
mediated by virtual photons of the metamaterial waveguide is calculated as

Jn,n′ = −(−1)|n−n′| gngn′

2

×
(
e−|n−n′|/λn√
∆2

n − 4t2
+

e−|n−n′|/λn′√
∆2

n′ − 4t2

)
, (D.19)

where λn is the localization length given by

1

λn
= arccosh

( |∆n|
2t

)
. (D.20)

Note that the diagonal components Jn,n = −g2n/
√

∆2
n − 4t2 corresponds to the

Lamb shift and takes negative values inside the lower bandgap as the metamate-
rial modes are located at frequencies higher than that of the qubit. Considering
the off-diagonal components, if the qubits at sites n and n′ are resonant with one
another (∆n = ∆n′), the coupling Jn,n′ falls off exponentially with the distance
|n − n′| at a length scale λn determined by the detuning ∆n of qubits and the
tunneling rate t. In addition, the coupling Jn,n′ alternates sign with a factor
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(−1)|n−n′| due to the fact that localized modes inside the lower bandgap have
quasi-wavevectors k with the real part of π/d. This is because the lowest fre-
quency of the band takes place at k = π/d according to the dispersion relation,
and any localized modes inside the lower bandgap must have a real part of the
wavevector that is an analytic continuation of the lowest-frequency point.

(b) Upper bandgap. When qubits are tuned to the upper bandgap, ∆n = ωqn−ωc >

2t and an < −1, the exchange interaction Jn,n′ is evaluated as

Jn,n′ =
gngn′

2

(
e−|n−n′|/λn√
∆2

n − 4t2
+

e−|n−n′|/λn′√
∆2

n′ − 4t2

)
, (D.21)

with the localization length λn having a form identical to Eq. D.20. The
diagonal components Jn,n = g2n/

√
∆2

n − 4t2 (i.e., the Lamb shift) takes positive
values inside the upper bandgap since the metamaterial modes are located at
frequencies lower than that of the qubits. Similar to the case of lower bandgap,
the coupling Jn,n′ between qubits at sites n and n′ inside the upper bandgap
falls off exponentially with the distance |n− n′| at a length scale λn. However,
the alternating sign factor is not present in the upper bandgap case due to the
fact that the quasi-wavevector inside the upper bandgap has real part of zero.
Therefore, the coupling Jn,n′ mediated by the metamaterial waveguide is always
positive inside the upper bandgap.

Numerical modeling

While the analytical modeling discussed in Sec. D.1 is useful for understanding
the basic processes in our quantum simulator, the presence of long-range coupling
between metamaterial resonators (due to large coupling capacitance values) and
parasitic coupling mechanisms in the realized device complicate the picture, causing
our experimental data to deviate significantly from the simplest analytical theory.
To resolve this, we come up with a theory for numerical modeling that allows us to
find realistic parameters of the device.

Derivation of Hamiltonian

We assume a general circuit model illustrated in Fig. D.2, extended from the one used
in the analytical modeling in Fig. D.1 which consists of an array of LC resonators with
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Vqn+2
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Figure D.2: General circuit model of the metamaterial-based quantum simu-
lator for numerical modeling. L0 (C0) is the self-inductance (self-capacitance)
of metamaterial resonators and EJ,n (Cq) is the Josephson energy (capacitance) of
qubit coupled to the nth unit cell. The capacitance between metamaterial resonators
(qubits) separated by a distance x = 1, 2, · · · is denoted as Ct,x (Cqq,x), colored
blue (red). The mutual inductance between inductors of metamaterial resonators
at a distance x = 1, 2, · · · , colored magenta, is denoted as Mx. The distributed
coupling of a qubit to the metamaterial is specified by capacitance Cg,x between
a qubit to a metamaterial resonator at a distance x = 0, 1, 2, · · · , colored green.
Opaque elements in the figure represent parasitic capacitive and mutual inductive
contributions, processes of which are shown only up to second order.

inductance L0 and capacitance C0 forming the metamaterial waveguide and qubits
with Josephson energy EJ,n and capacitance Cq. Here, the capacitance Ct,1 ≡ Ct

between nearest-neighboring metamaterial resonators and capacitance Cg,0 ≡ Cg
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between a qubit and a metamaterial resonator at each unit cell give rise to the desired
couplings in the system. In addition, this model includes parasitic capacitance Ct,x

(x = 2, 3, · · · ) and mutual inductance Mx (x = 1, 2, · · · ) between metamaterial
resonators not limited to nearest neighbors, parasitic long-range capacitance between
qubits Cqq,x (x = 1, 2, · · · ), and distributed capacitive coupling between qubits and
metamaterial resonators represented by capacitance Cg,x (x = 1, 2, · · · ).

The capacitive part LC of the Lagrangian contains terms that are quadratic in
time-derivatives of the node flux variables Φn(t) ≡

∫ t

−∞ dt′ Vn(t
′) and Φqn(t) ≡∫ t

−∞ dt′ Vqn(t
′), written as

LC =
∑
n

[
C0

2
Φ̇2

n +
∑
x>0

Ct,x

2
(Φ̇n+x − Φ̇n)

2

+
Cq

2
Φ̇2

qn +
∑
x>0

Cqq,x

2
(Φ̇qn+x − Φ̇qn)

2

+
∑
x

Cg,|x|

2
(Φ̇qn − Φ̇n+x)

2

]
. (D.22)

The node charge variables Qn = ∂LC/∂Φ̇n and Qqn = ∂LC/∂Φ̇qn canonically
conjugate to the flux variables are evaluated as

Qn =

(
C0 +

∑
x ̸=0

Ct,|x| +
∑
x

Cg,|x|

)
Φ̇n

−
∑
x ̸=0

Ct,|x|Φ̇n+x −
∑
x

Cg,|x|Φ̇qn+x , (D.23a)

Qqn =

(
Cq +

∑
x ̸=0

Cqq,|x| +
∑
x

Cg,|x|

)
Φ̇qn

−
∑
x ̸=0

Cqq,|x|Φ̇qn+x −
∑
x

Cg,|x|Φ̇n+x. (D.23b)

Equations D.23a-D.23b can be rewritten in a compact form by introducing a vector
of node charge variables Q = (Q1, Q2, · · · , Qq1 , Qq2 , · · · )⊤ and a vector of node
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flux variables Φ = (Φ1,Φ2, · · · ,Φq1 ,Φq2 , · · · )⊤, giving Q = CΦ̇ where

C =



CwΣ −Ct,1 −Ct,2 · · · −Cg,0 −Cg,1 · · ·
−Ct,1 CwΣ −Ct,1 · · · −Cg,1 −Cg,0 · · ·
−Ct,2 −Ct,1 CwΣ · · · −Cg,2 −Cg,1 · · ·

...
...

... . . . ...
... . . .

−Cg,0 −Cg,1 −Cg,2 · · · CqΣ −Cqq,1 · · ·
−Cg,1 −Cg,0 −Cg,1 · · · −Cqq,1 CqΣ · · ·

...
...

... . . . ...
... . . .


. (D.24)

Here, the effective self-capacitance CwΣ (CqΣ) of a metamaterial resonator (qubit)
is given by

CwΣ = C0 +
∑
x ̸=0

Ct,|x| +
∑
x

Cg,|x|, (D.25a)

CqΣ = Cq +
∑
x ̸=0

Cqq,|x| +
∑
x

Cg,|x|. (D.25b)

Note that the capacitance matrix C is symmetric, satisfying C⊤ = C.

The inductive part LL of the Lagrangian reads

LL =
∑
n

(
−1

2
L0I

2
n −

∑
x>0

MxInIn+x

)

= −1

2

∑
n

In

(
L0In +

∑
x ̸=0

M|x|In+|x|

)
, (D.26)

where In is the current flowing through the inductor of the nth metamaterial res-
onator. The node flux Φn and current In satisfies the relation

Φn = L0In +
∑
x ̸=0

M|x|In+x, (D.27)

which can be compactly written in terms of a vector of node flux variables of
metamaterial resonators Φw ≡ (Φ1,Φ2, · · · )⊤ and that of current variables Iw ≡
(I1, I2, · · · )⊤ as Φw = LwIw, where

Lw =



L0 M1 M2 M3 · · ·
M1 L0 M1 M2 · · ·
M2 M1 L0 M1 · · ·
M3 M2 M1 L0 · · ·
...

...
...

... . . .


(D.28)
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is a symmetric matrix, i.e., L⊤
w = Lw. This allows us to rewrite Eq. D.26 as

LL = −1

2
I⊤
wΦw = −1

2
Φ⊤

wL
−1
w Φw. (D.29)

The last part of the Lagrangian LJ comes from the Josephson junctions forming
qubits

LJ =
∑
n

EJ,n cos
2πΦqn

Φ0

. (D.30)

The Lagrangian of the system is given by sum of the three contributions mentioned
above, i.e., L = LC +LL +LJ . The Hamiltonian can be obtained by the Legendre
transformation

H =
∑
n

(
QnΦ̇n +QqnΦ̇qn

)
=

1

2
Q⊤C−1Q+

1

2
Φ⊤

wL
−1
w Φw −

∑
n

EJ,n cos
2πΦqn

Φ0

. (D.31)

Finally, we expand the cosine potential of the Josephson junctions according to

cos
2πΦqn

Φ0

≈ 1− 1

2

(
2πΦqn

Φ0

)2

+
1

24

(
2πΦqn

Φ0

)4

, (D.32)

which gives the final form of the Hamiltonian

H =
1

2
Q⊤C−1Q+

1

2
Φ⊤

wL
−1
w Φw

+
∑
n

EJ,n

2

(
2πΦqn

Φ0

)2

−
∑
n

EJ,n

24

(
2πΦqn

Φ0

)4

. (D.33)

Second quantization

We promote the node flux and charge variables to quantum operators by imposing
the canonical commutation relation [Φ̂n, Q̂n′ ] = [Φ̂qn , Q̂q′n ] = iℏδn,n′ . We also
decompose the inverse capacitance and inductance matrices into their diagonal (D)
and off-diagonal (O) parts, i.e., C−1 = (C−1)D + (C−1)O and L−1

w = (L−1
w )D +

(L−1
w )O. Then the Hamiltonian in Eq. D.33 can be rearranged into Ĥ = Ĥ0 + V̂ ,



200

where

Ĥ0 =
∑
n

[
(C−1)n,n

2
Q̂2

n +
(L−1

w )n,n
2

Φ̂2
n

+
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2

(
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(D.34a)

contains components associated with the diagonal part of the inverse matrices and
the cross coupling terms are described by

V̂ =
1

2
Q̂⊤(C−1)OQ̂+

1

2
Φ̂⊤

w(L
−1
w )OΦ̂w. (D.34b)

The second quantization can be performed by writing the canonical flux and charge
operators in terms of annihilation and creation operators by noting the form of Ĥ0

in Eq. D.34a:

Φ̂n =

√
ℏZn

2

(
ân + â†n

)
, (D.35a)

Q̂n =
1

i

√
ℏ

2Zn

(
ân − â†n

)
, (D.35b)

Φ̂qn =

√
ℏZqn

2

(
âqn + â†qn

)
, (D.35c)

Q̂qn =
1

i

√
ℏ

2Zqn

(
âqn − â†qn

)
, (D.35d)

where the effective impedance of the metamaterial resonator (qubit) at the nth unit
cell is given by

Zn =

√
(C−1)n,n
(L−1

w )n,n
, Zqn =

√
(C−1)qn,qn

(2π/Φ0)
2EJ,n

. (D.36)

Using the above expressions, Eq. D.34a can be rewritten under the RWA as

Ĥ0/ℏ =
∑
n

[
ωnâ

†
nân + ωqn â

†
qn âqn +

Uqn

2
(â†qn)

2(âqn)
2

]
, (D.37)
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where the bare resonator frequency ωn, the transition frequency ωqn and the anhar-
monicity Uqn of the bare qubit at the nth unit cell are given by

ωn =
√
(C−1)n,n(L−1

w )n,n (D.38a)

ωqn =

√
8EJ,nEC,n − EC,n

ℏ
(D.38b)

Uqn = −EC,n. (D.38c)

Here, EC,n = e2(C−1)qn,qn/2 is the charging energy of the qubit at the nth unit cell
where e is the electron charge. The coupling terms in Eq. D.34b can also be written
in the form of

V̂ /ℏ =
∑
n,n′

[
tn,n′

(
â†nân′ + â†n′ ân

)
+ gn,qn′

(
â†nâqn′ + â†qn′ ân

)
+ J ′

qn,qn′

(
â†qn âqn′ + â†qn′ âqn

)]
. (D.39)

where tn,n′ is the coupling between metamaterial resonators, gn,qn′ is the coupling
between a qubit and a metamaterial resonator, and J ′

qn,qn′ is the parasitic direct
coupling between qubits, given by

tn,n′ =
1

2

[
(C−1)n,n′√
ZnZn′

+ (L−1
w )n,n′

√
ZnZn′

]
, (D.40a)

gn,qn′ =
(C−1)n,qn′

2
√
ZnZqn′

, (D.40b)

J ′
qn,qn′ =

(C−1)qn,qn′

2
√
ZqnZqn′

. (D.40c)

Fitting based on the numerical model

With a set of electrical circuit parameters, we can perform numerical diagonalization
of the exact Hamiltonian in Eqs. D.37 and D.39, enabling us to calculate various
properties of our simulator and fit the experimental data. Assuming a qubit couples
to the middle unit cell of a 50-resonator metamaterial waveguide with an open
boundary condition, we numerically diagonalize the Hamiltonian in the single- and
two-excitation manifold to obtain the eigenfrequency ω01 (ω02) of the first (second)
excited state |1⟩ (|2⟩) relative to the ground state |0⟩ as a function ofEJ . The on-site
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Figure D.3: Comparison of the tight binding numerical modeling with the
experimental data. Magnitude of on-site interaction Ui (panel a), amplitude of
hopping Ji,j (panel b), and localization length ξ (panel c) as a function of frequency
with the solid curves in each panel showing the fitting based on numerical modeling.
The fitting curves are obtained from numerical optimization assuming the approx-
imate tight-binding Hamiltonian in Eq. D.10. The dotted curves are obtained from
fitting assuming the capacitive and inductive coupling beyond nearest neighbor ele-
ments, the full model of which shown in Fig. D.2. The experimental data (colored
or grayscale markers) and the fit curves of the full model are identical to the ones in
Fig. 6.3 of the main text.

interaction can be calculated by U = ω02 − 2ω01, which is shown in Fig. 6.3a of
the main text. The effective coupling Ji,j between two transmon sites Qi and Qj is
obtained by diagonalizing the Hamiltonian of two qubits coupled to two unit cells
separated by a distance |i − j| near the center of the 50-resonator metamaterial.
The two single-excitation eigenstates in the bandgaps correspond to the even and
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Figure D.4: Comparison of the NN-coupled circuit modeling with the experi-
mental data. Magnitude of on-site interaction Ui (panel a), amplitude of hopping
Ji,j (panel b), and localization length ξ (panel c) as a function of frequency with the
solid curves in each panel showing the fitting based on numerical modeling. The
fitting curves assume the nearest-neighbor-coupled circuit model with the form of
Hamiltonian in Eqs. D.37 and D.39. The dotted curves are obtained from fitting
assuming the capacitive and inductive coupling beyond nearest neighbor elements,
the full model of which shown in Fig. D.2. The experimental data (colored or
grayscale markers) and the fit curves of the full model are identical to the ones in
Fig. 6.3 of the main text.

odd superposition of the two bound states with the eigenenergy difference (sum)
of 2Ji,j (2ω01). This allows us to numerically calculate Ji,j as a function of ω01

shown in Fig. 6.3b of the main text. Fitting the exponential decay of Ji,j as a
function of distance |i − j| at a fixed frequency ω01 gives the localization length
ξ plotted in Fig. 6.3c of the main text. The solid curves in Fig. 6.3 are calculated
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from an identical set of circuit parameters, with L0 = 2.04 nH extracted from
electromagnetic simulation (Sonnet®), CqΣ = 92.7 fF calculated from the average
charging energy of EC/h = e2/(2hCqΣ) = 220MHz measured at the lower sweet
spot (see Table. D.1), and the free parameters obtained from numerical fitting
of the experimental data (Nelder-Mead optimization) given by C0 = 242.19 fF,
Ct,1 = 60.17 fF,Ct,2 = 0.542 fF,M1 = −18.1 pH,M2 = 13.5 pH,M3 = −1.09 pH,
M4 = 0.438 pH, Cg,0 = 9.19 fF, Cg,1 = 0.368 fF, and Cqq,1 = 10.1 aF. The long-
range coupling capacitance assumes the form C ∝ 1/r3 where r is the distance
between two planar electrodes [317], giving

Ct,|x| = Ct,2(2/|x|)3 (|x| ≥ 2)

and the form ofCqq,|x|, Cg,|x| (|x| > 1) following the physical distance on the device.
In addition, the long-range mutual inductance between metamaterial resonators
assumes M|x| ∝ (−1)x ln (1 + 1/|x|) for |x| ≥ 4, adapted from the form of mutual
inductance between two parallel wires [318].

The exact Hamiltonian in Eqs. D.37 and D.39 taking into account both the long-range
capacitance and mutual inductance was necessary to sufficiently explain the data in
Fig. 6.3 in both the LBG and the UBG. For example, assuming an approximate form
of Hamiltonian in Eq. D.10 with only nearest-neighbor coupling, we were not able
to reproduce the wide tuning range of Ui and large |Ji,j| in the UBG (Fig. D.3). This
indicates that the asymmetry between LBG and UBG partly originates from beyond-
nearest-neighbor coupling in the Hamiltonian. Additionally, the capacitance ratio
from the fitted parameters above isCt,1/(C0+2Ct,1+Cg,0) = 0.162, which suggests
the invalidity of the small-coupling approximation in Eq. D.5 in the derivation of this
analytically solvable model. Another numerical fitting using an exact Hamiltonian
in Eqs. D.37 and D.39 with zero capacitive and inductive coupling beyond nearest-
neighbor, corresponding to the circuit diagram in Fig. D.1 with inductive coupling
between adjacent resonators, also fails to fit the experimental data with a good
agreement. Although this model captures the behavior of |Ui|, Ji,j , and ξ inside
the UBG, as shown in Fig. D.4, the long-range part in Ji,j inside the LBG is
underestimated, resulting in a smaller ξ than the experimental results. Only when
the full circuit model in Fig. D.2 is assumed can we recover the trend in the LBG,
implying the importance of long-range capacitive and inductive coupling especially
when the hopping strength |Ji,j| is small.
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D.2 Device characterization and experimental setup

In this section, we summarize the details of the device and the experimental setup
used in our work.

Parameters Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Avg. Stdev.
Lower sweet spot ω01,min/2π (GHz) 3.738 3.520 3.601 3.513 3.743 3.467 3.671 3.532 3.557 3.396 3.574 0.108
Upper sweet spot ω01,max/2π (GHz) 7.636 7.506 7.650 7.577 7.575 7.494 7.584 7.573 7.578 7.483 7.566 0.053
Lifetime T1 (µs)

at ω01,min

7.56 75.4 – 73.0 5.13 74.2 22.4 54.3 24.9 39.1 41.8 26.9
Ramsey T ∗

2 (µs) 4.69 10.4 – 0.81 1.48 13.6 6.97 16.7 4.80 16.2 8.4 5.7
Hahn echo
T2E (µs)

10.8 70.1 – 51.7 7.34 82.5 24.8 52.4 20.4 32.2 39.1 24.9

Anharmonicity
U/2π (MHz)

−211 −222 – −223 −239 −220 −207 −221 −215 −224 −220 9

Lifetime T1 (µs)

at ω01/2π ≈
4.72GHz

4.89 31.0 22.6 25.0 14.5 33.8 11.3 32.7 12.1 28.0 21.6 9.7
Ramsey T ∗

2 (µs) 1.08 1.05 1.07 1.03 1.18 1.37 1.25 1.20 1.26 1.14 1.16 0.10
Hahn echo
T2E (µs)

4.67 5.87 6.84 6.20 5.64 6.83 4.83 5.35 5.48 4.73 5.64 0.76

Anharmonicity
U/2π (MHz)

−195 −203 −205 −194 −202 −199 −195 −203 −205 −198 −200 4

Lifetime T1 (µs)

at ω01/2π ≈
7.35GHz

3.37 2.47 2.22 3.18 3.39 5.95 6.45 4.83 4.74 3.74 4.03 1.34
Ramsey T ∗

2 (µs) 1.49 1.30 1.19 1.31 1.80 2.87 2.63 2.67 2.93 2.06 2.02 0.66
Hahn echo
T2E (µs)

3.18 1.89 1.31 1.73 3.28 4.53 6.26 4.83 5.56 3.28 3.59 1.59

Anharmonicity
U/2π (MHz)

−134 −126 −112 −131 −132 −125 −129 −118 −123 −134 −126 7

Lifetime T1 (µs)

at ω01,max

4.58 8.52 2.60 14.2 7.65 10.1 9.64 10.4 4.37 8.49 8.1 3.3
Ramsey T ∗

2 (µs) 5.53 5.78 3.02 12.0 7.34 5.67 9.54 10.6 6.09 10.5 7.6 2.7
Hahn echo
T2E (µs)

7.12 5.67 3.18 16.7 9.29 11.5 13.6 10.9 7.28 12.5 9.8 3.9

Anharmonicity
U/2π (MHz)

−181 −162 −177 −177 −170 −161 −176 −165 −168 −166 −170 7

Resonator frequency ωr/2π (GHz) 5.833 6.084 6.328 5.574 6.008 5.907 5.622 6.236 6.169 5.741 5.950 0.245
Resonator decay κr/2π (MHz) 11.47 8.38 16.95 14.08 9.85 8.09 10.46 10.57 21.95 6.16 11.80 4.46

Table D.1: Basic characterization of qubits and read-out resonators. Various
parameters of the qubits and the read-out resonators used in this work are summa-
rized. The last two columns of the table show the average and the standard deviation
of each parameter over all qubits or read-out resonators.
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Device details

Qubit

The ten transmon qubits in the device are designed to be nominally identical, with
asymmetric Josephson junctions on superconducting quantum interference device
(SQUID) loop to reduce sensitivity to flux noise while maintaining a tuning range
wide enough to cover both the lower bandgap (LBG) and the upper bandgap (UBG).
Each qubit is individually addressed by a charge drive line (XY control) with a
designed capacitance of Cd = 80 aF and a flux bias line (Z control) with a mutual
inductance of MΦ ≈ 1Φ0/mA ≈ 2 pH to the qubit’s SQUID loop. The staggered
qubit placement with respect to the metamaterial, i.e., Qi and Qi+1 located on the
opposite sides of the metamaterial waveguide, is employed in order to minimize
the parasitic near-field coupling between qubits. We perform basic characterization
of each qubit in its entire tuning range inside the bandgaps by sweeping over DC
current sent along its flux bias line while parking the remaining qubits inside the
opposite bandgap. We measure the lifetime T1, Ramsey coherence time T ∗

2 , Hahn
echo coherence time T2E , and anharmonicity U as a function of qubit frequency,
which are summarized in Table D.1 at a few different frequencies.

Read-out resonator

The compact read-out resonators in our device consists of a meander inductor of
1µm pitch and a planar capacitor. They are designed to have frequencies near
the center of the passband, enabling dispersive read-out when the qubits are tuned
inside the bandgaps. The resonant frequencies of read-out resonators, controlled
by the length of the meander inductor, are designed to have larger separation for
physically adjacent read-out resonators in order to avoid deleterious effects from
parasitic near-field coupling. The read-out resonator frequency ωr measured from
waveguide transmission spectroscopy and the decay rate κr extracted from ring-
down measurement are shown in Table D.1. The variations in the decay rates
originate from the dispersion of the metamaterial waveguide. To achieve a high-
fidelity read-out, we design the coupling between a qubit and its read-out resonator
to be gqr/2π = 250MHz, giving the dispersive shift of χ/2π ≈ 6MHz when the
qubit is parked at 4.5 GHz or 7.5 GHz.
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Figure D.5: Tapering section. a, Schematic diagram of the tapering section
consisting of four LC resonators coupled to an external input-output port on the left
indicated with a transmission line symbol and the regular metamaterial waveguide
section on the right. b, Optical micrograph (false colored) of the tapering section of
the fabricated device. Here, the metamaterial waveguide, the tapering section, and
the input-output port are colored blue, purple, and red, respectively.

Metamaterial waveguide

As mentioned in the main text, the metamaterial waveguide consists of an array
of nominally identical 42 compact resonators each formed by a meander inductor
of 2µm pitch and a planar capacitor. Each resonator of the ten inner unit cells
of the metamaterial waveguide (labeled by i = 1–10) is capacitively coupled to a
qubit Qi and simultaneously to its read-out resonator Ri. On each metamaterial
resonator without a qubit, we keep the capacitors of a qubit and a read-out resonator
to maintain the total capacitance of the metamaterial resonator and minimize the
discrepancy in resonator frequencies. The two metamaterial resonators close to
the auxiliary qubits (colored yellow in Fig. 6.2a of the main text) have capacitors
which are redesigned to compensate for the absence of qubit and read-out resonator
capacitors. The metamaterial waveguide is connected to external input-output ports
via tapering sections.
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Tapering section

The tapering section in our device is a network of inductors and capacitors designed
to reduce impedance mismatch between the metamaterial waveguide and the external
50-Ω input-output ports at the passband frequencies [131, 144]. This significantly
decreases the level of ripples in the transmission spectrum near the center of the
passband (shown in Fig. 6.1d of the main text), enabling the use of metamaterial
waveguide as a resource-efficient feedline for qubit read-out. We utilize a design
illustrated in Fig. D.5a where four LC resonators with an identical inductance
L0 are capacitively coupled to each other with gradually changing capacitance
values given by CT,t1 = 222.8 fF, CT1 = 51.0 fF, CT,t2 = 77.3 fF, CT2 = 210.7 fF,
CT,t3 = 53.8 fF, CT3 = 298.1 fF, CT,t4 = 65.3 fF, and CT4 = 293.1 fF. An optical
micrograph of the tapering section realized in our device is shown in Fig. D.5b.
Note that our tapering design becomes less efficient at frequencies close to the
band-edges, creating a dense spectrum of high-Q modes.

Experimental setup

Room-temperature electronics

The electronic setup at the room temperature for synthesis of qubit control signals
and processing of qubit read-out signals is illustrated in Fig. D.6. Static component
of qubit frequency control (slow Z) signal is generated by a stable DC voltage
source (QDevil, QDAC) passed through a 10 kΩ resistor. Dynamic qubit frequency
control (fast Z) is achieved by employing arbitrary waveforms generated from a
digital-to-analog converter (DAC) channel with an analog bandwidth of 400 MHz at
1 ns temporal resolution, sent through a 10 dB attenuator before entering the dilution
refrigerator. For microwave synthesis of drive signals on each qubit (XY), we prepare
a pair of intermediate frequency (IF) signals from DAC channels passed through
a low-pass filter with 400 MHz cutoff. The pair of IF signals are attenuated and
multiplied to a local oscillator (LO) signal generated by a microwave signal generator
(Rohde & Schwarz, SMB100A) by using a IQ mixer (Marki Microwave, MMIQ-
0218L) for upconversion, enabling synthesis of signals in approximately 800 MHz-
wide frequency band about the LO frequency. This is followed by attenuation and
filtering with a low-pass filter with 10 GHz cutoff (Mini-Circuits, ZXLF-K14+)
and a high-pass filter with 2.9 GHz cutoff (Mini-Circuits, VXHF-292M+) and a
subsequent low-noise amplification (Mini-Circuits, ZX60-83-LN-S+). Note that
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Figure D.6: Schematic of the room-temperature electronic setup outside the
dilution refrigerator. The diagram for synthesizing the signals for qubit frequency
control (slow and fast Z control, panel a, qubit drive (XY control, panel b, and
read-out input (panel c) are shown, together with the analog downconversion and
the filtering procedures for the output read-out signals (panel d). The manufacturers
and the model numbers of the parts and the instruments used in the diagram are
enumerated in Sec. D.2.

we distribute the LO signal generated from a single, common microwave signal
generator to multiple IQ mixers used for synthesis of qubit drive signals by using a
suitable combination of power splitters and amplifiers. Together with synchronized
DAC channels used on all qubits, this ensures that the phase relation between qubit
XY drive signals sent to different qubits is deterministic and constant over the
repetition of experiments. The read-out input signals are synthesized in a way
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similar to the XY signals by IQ mixing with a separate LO dedicated for read-
out. Each qubit XY and read-out input signals are optionally directed to a spectrum
analyzer by digitally controlled microwave switches, enabling calibration of each IQ
mixers to suppress their spurious LO and image leakage tones. The read-out output
signals from the refrigerator are passed through a room-temperature dual-junction
circulator (Fairview Microwave, FMCR1019) and a yttrium iron garnet (YIG)-tuned
band-reject filter (Micro Lambda Wireless, MLBFR-0212) to suppress leakage tones
at the JTWPA pump frequency. This signal is then amplified with a high-gain low-
noise amplifier (L3Harris Narda-MITEQ, LNA-40-04000800-07-10P), a tunable
attenuator (Vaunix, Lab Brick LDA-133), and a low-pass filter with 7.5 GHz cutoff
(Marki Microwave, FLP-0750). Then, the signals are downconverted to IF band by
using IQ mixers pumped by the same read-out LO used for upconversion of read-out
input signals and suitably filtered (Mini-Circuits, VLFX-400+ and VLFX-500+)
and amplified (Mini-Circuits, ZFL-500LN+) before digitization at analog-to-digital
converter (ADC) channels. The DAC and ADC channels used in this work are analog
output and analog input channels, respectively, of Quantum Machines OPX+. All
the microwave instruments used in our work are referenced to an external 10 MHz
reference from a Rubidium frequency standard (Stanford Research Systems, FS725).

Cryogenic setup

The experimental setup inside the cryogen-free dilution refrigerator (Bluefors, BF-
LD250) used in our work is illustrated in Fig. D.7. The refrigerator consists of mul-
tiple temperature stages named 50 K flange, 4 K flange, still flange, cold plate (CP),
and mixing chamber (MXC) flange with typical temperatures of 50 K, 3.6 K, 0.7 K,
60 mK, and under 7 mK, respectively, during normal operations. The frequency of
each qubit is controlled statically by a DC bias (slow Z) passing through a resistor-
capacitor-resistor (RCR) low-pass filter (Aivon Ltd., Therma-uD25-G) with 64 kHz
cutoff thermalized to the 4 K plate and dynamically by RF pulses (fast Z) passing
through a series of XMA cryogenic attenuators (2082-6418-□□-CRYO) with stain-
less steel enclosure whose attenuation values are given by 1 dB, 30 dB, 0 dB and 0 dB
at 50 K, 4 K, Still and CP stages, respectively. This is followed by reflective low-pass
filtering with a 400MHz filter (Mini-Circuits, VLFX-400+) and a 12 GHz “clean-up”
filter (K&L Microwave, 6L250-12000/T26000-OP/O) at the mixing chamber plate.
The DC bias and the RF pulses for Z control are then combined with a DC-coupled
bias tee obtained by shorting the capacitor of a Mini-Circuits ZFBT-4R2GW+ bias
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Figure D.7: Schematic of the experimental setup inside the dilution refrigerator.
The cryogenic setup consists of slow and fast Z lines for qubit frequency control, XY
lines for qubit drive, and RO input/output lines for qubit read-out. The meaning of
the symbols used in the diagram is enumerated at the bottom. The attenuation values
of cryogenic attenuators, cutoff frequencies of low-pass filters, and bandwidths of
circulators and amplifiers are shown next to the components. The input pump line
for JTWPA’s are not shown in the diagram for brevity. The manufacturers and the
model numbers of the parts used in the diagram are enumerated in Sec. D.2.

tee, followed by infrared filtering with an Eccosorb filter at the mixing chamber
before connecting to the flux bias line on the device. The microwave signals for XY
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drive of each qubit is attenuated by 1 dB, 20 dB, and 1 dB at the 50 K, 4 K, and Still
stages, respectively, using the XMA cryogenic attenuators. Also, 10 dB and 30 dB
cryogenic attenuators made with oxygen-free high-conductivity (OFHC) copper
enclosure (Quantum Microwave, QMC-CRYOATT-□□) are placed at the CP and
MXC stages, respectively, in order to achieve good thermalization at temperatures
below 100 mK (similar to the attenuators in Ref. [177]). This is followed by infrared
filtering by a 12 GHz K&L low-pass filter and an Eccosorb filter before entering the
device. A pair of read-out input lines go through the same attenuation and filtering
as the XY drive lines and connect to wideband dual-junction circulators (Low-Noise
Factory, LNF-CICIC4_12A). Each circulator connects to an input-output port of the
metamaterial waveguide via a 2×2 RF switch (Radiall, R577432000), playing the
role of both sending waveguide input signal into the device and directing waveguide
output signal to amplification chains of read-out output lines. The output signal is
amplified by a Josephson traveling-wave parametric amplifier (JTWPA) from MIT
Lincoln Laboratory sandwiched by two sets of dual-junction circulators at the mixing
chamber and then a high-electron-mobility transistor (HEMT) amplifier (Low-Noise
Factory, LNF-LNC4_8C and LNF-LNC0.3_14A for amplification in the 4–8 GHz
and 0.3–14 GHz bands, respectively) at the 4K flange before further amplification at
room temperature. The two external ports (1 and 2) of the metamaterial waveguide
connect to two individual sets of input-output line and amplification chain. With
four 2 × 2 RF switches in total, we can configure the setup to measure both trans-
mission (S21 and S12) and reflection (S11 and S22) from both waveguide ports with
an option to bypass JTWPA in transmission measurements. Also, with individual
amplification chains, the transmitted and the reflected signals can be measured si-
multaneously (e.g., S21 and S11). We place inner/outer DC blocks (Inmet, 8039
or Centric RF, CD9519) along all the cryogenic coaxial lines before connection to
room-temperature electronics to break ground loops, except for the qubit Z control
lines where a full bandwidth from DC to 400 MHz is necessary in order to minimize
pulse distortion.

D.3 Details of the metamaterial Purcell filter

Besides providing a frequency band for read-out, the metamaterial waveguide also
acts as a hardware-efficient Purcell filter. The dispersion of the metamaterial and
the large number of unit cells in this realization effectively prevent qubits at bandgap
frequencies from accessing the external ports, as evidenced by the large extinction
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Figure D.8: Metamaterial Purcell filter. a, General circuit model for dispersive
qubit read-out. A qubit, represented as a parallel circuit of a Josephson junction
(Josephson energy EJ ) and a capacitor (capacitance Cq), couples to an external
port with impedance Zext(ω) via a read-out resonator (inductance Lr and capaci-
tance Cr). The circuit elements in the shaded region is taken into account when
calculating the admittance Yq(ω) seen from the qubit node “q”. b, Qubit lifetime
T1 plotted against frequency. Calculated Purcell-limited lifetime is shown (with
read-out resonator frequency ωR5/2π = 6.01GHz, decay rate κR5/2π = 9.85MHz,
and qubit-resonator coupling of 250 MHz) when the read-out resonator couples to
an external port directly (dotted curve), via a single-pole Purcell filter with Q = 15
(dashed curve), and via the metamaterial Purcell filter in this device (solid curve).
The measured T1 of ten qubits are shown in colored circles. The lower and the upper
bandgaps of the metamaterial waveguide are shaded green and purple, respectively.

ratio and sharp transition at the band-edges illustrated in Fig. 6.1d of the main text.
Here, both the direct decay of qubits into the metamaterial and the Purcell decay
via read-out resonators are strongly suppressed. To show this, we compare in this
section the performance of our metamaterial Purcell filter with traditional circuit
QED settings [167, 168] where read-out resonators are coupled to external ports
directly or via a single-pole Purcell filter.
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Purcell decay

A general scheme for qubit read-out in circuit QED involves a qubit coupled to
a read-out resonator which could be accessed from an external port, an example
electrical circuit of which is illustrated in Fig. D.8a. In the dispersive regime
where the qubit-resonator coupling gqr is small compared to the magnitude of their
detuning ∆qr ≡ ω01 − ωr, the frequency of the read-out resonator depends on the
state of the qubit, enabling quantum non-demolition read-out [319, 320]. However,
this coupling simultaneously introduces an unwanted qubit decay channel into the
external port via the read-out resonator, known as the Purcell decay, which could
be mitigated by engineering a Purcell filter [237, 321, 322] that suppresses the
density of states at the qubit frequency. The rate of Purcell decay when the read-out
resonator is coupled to an external port with impedance Zext(ω) is given by [323]

ΓPurcell
1 =

g2qr
∆2

qr

Re[Zext(ω01)]

Re[Zext(ωr)]
κr, (D.41)

where κr is the decay rate of the read-out resonator.

Modeling of the metamaterial Purcell filter

In the case of a metamaterial waveguide, the external impedance Zext(ω) is highly
frequency-dependent with an impedance close to Z0 = 50Ω inside the passband
after tapering and in principle a purely imaginary Bloch impedance inside the
bandgaps [171]. As a result, the Purcell decay rate ΓPurcell

1 in Eq. D.41 is strongly
suppressed by the ratio of the real part of the external impedance at the qubit
transition frequency ω01 to that at the read-out resonator frequency ωr.

In our circuit construction, the real part Re[Zext(ω01)] of external impedance at the
qubit transition frequency is not zero due to finite number of unit cells. Taking into
account the direct coupling capacitance Cg between the qubit and the metamaterial
waveguide (see Fig. D.8a), we calculate the qubit decay rate into the external port
by using the relation [321, 322]

ΓPurcell
1 =

Re[Yq(ω01)]

CqΣ

, (D.42)

where Yq(ω) is the admittance seen from the qubit node “q” illustrated in Fig. D.8a.
To numerically evaluate the expression, we use the read-out resonator R5 as an
example with parameters Cr = 130.5 fF and Lr = 4.518 nH, together with meta-
material parameters from the numerical fit results discussed in Sec. D.1 and the
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designed coupling capacitance values Cqr = 10.3 fF, Crw = 6.8 fF. Note that the
admittance Yq(ω) also depends on the details of the tapering section, design pa-
rameters of which are enumerated in Sec. D.2. With the set of circuit parameters
listed above, we utilize AWR Microwave Office® to calculate the Purcell-limited
lifetime TPurcell

1 = 1/ΓPurcell
1 based on Eq. D.42, indicated by the black solid curve

in Fig. D.8b.

Comparison to traditional qubit read-out settings

For comparison, we also consider two conventional qubit read-out scenarios in
circuit QED where the read-out resonator is coupled to an external port directly or
via a single-pole Purcell filter (Cg = 0 is assumed in these cases).

Direct coupling

In the case of direct coupling of a read-out resonator to an external port, the external
impedance is simply given by Zext(ω) = Z0 = 50Ω with no frequency dependence
and hence Eq. D.41 recovers the basic form of the Purcell decay [319] at a rate of

ΓPurcell
1,direct =

(
gqr
∆qr

)2

κr, (D.43)

which is utilized to obtain the dotted curve in Fig. D.8b assuming the capacitance
values listed above.

Single-pole Purcell filter

In the case of a single-pole Purcell filter [237, 324] consisting of a resonator with
decay rate κr at frequency ωr, it can be shown that the external impedance is given
by the form [171]

Zext(ω) =
Z0

1 + 2j(ω − ωf )/κf
. (D.44)

Substituting Eq. D.44 into Eq. D.41 gives the Purcell decay rate of

ΓPurcell
1,single-pole =

g2qr
∆2

qr

1

1 + (2∆qf/κf )2
κ̃r, (D.45)

where ∆qf = ω01 − ωf is the detuning of the qubit from the filter resonator and
κ̃r = κr{1+ [2(ωr −ωf )/κf ]

2} is the decay rate of the read-out resonator modified
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by the presence of the filter resonator. Here, we need to choose a bandwidth of the
filter wide enough to accommodate ten read-out resonators, playing a role similar
to our metamaterial waveguide. As an example, we assume a filter quality factor of
Qf = ωf/κf = 15 (half the value used in Ref. [237]), corresponding to a full-width
half-maximum linewidth of κf/2π ≈ 400MHz, with the Purcell filter resonant
to the read-out resonator at ωR5/2π = 6.01GHz. The expected Purcell-limited
lifetime using this set of parameters for the single-pole Purcell filter is indicated by
the dashed curve in Fig. D.8b.

Discussion

In Fig. D.8b, the Purcell-limited qubit lifetime is shown to be below 1µs in the case
of direct coupling and approximately 10µs in the case of a single-pole Purcell filter
[237] with Q = 15, suggesting that such strategies for mitigating qubit decay are
incompatible with the desired rapid qubit read-out. However, with the metamaterial
waveguide acting as a Purcell filter, the expected decay rate of a qubit into the
external ports is suppressed by more than five orders of magnitude, lifting the
Purcell limitation on qubit lifetime. The measured lifetime T1 of qubits in our
device lies in the range of 10.3–47.2µs (3.6–9.8µs) at 4.5 GHz (7.45 GHz) in the
LBG (UBG), which surpasses the Purcell limit of the aforementioned traditional
settings but remains far below the ideal prediction due to other material-related
decay channels.

D.4 Qubit read-out methods and characterization

In this section, we provide details of the qubit read-out procedures used in this work
and additional read-out characterization results.

Qubit state discrimination

As discussed in the main text, we utilize both the reflected and the transmitted fields
from read-out resonators to perform qubit state discrimination in order to achieve
the best quantum efficiency available in our setup. In the simplest case of a read-out
resonator symmetrically coupled to a read-out feedline [169], qubit state information
from the read-out resonator is equally divided into the forward (transmitted) and
the backward (reflected) directions. Therefore, collection of both the reflected and
the transmitted fields is expected to give read-out signal-to-noise ratio (SNR) about
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3 dB larger than what could be obtained by using only one of the two fields. In our
device, however, we observe frequency-dependent asymmetric coupling of read-out
resonators to the two external input-output ports associated with the dispersion of the
metamaterial waveguide. Here, the transfer functions from a qubit to the external
ports becomes asymmetric away from the eigenfrequencies of the metamaterial.
While the tapering sections help mitigate this effect by reducing the sharpness of
the transmission response, the ratio of forward and backward decay rates of read-out
resonators is expected to be as large as ten at certain frequencies under numerical
modeling. For these reasons, it is essential to collect the read-out signals from both
input-output ports of the device for qubit state discrimination, which gives a smooth
experimental workflow with the highest read-out SNR without concerns about this
undesired asymmetry.

In order to achieve the highest read-out SNR from the addition of the two read-out
fields, we pass the two fields through independent analog signal processing branches
consisting of near-quantum-limited amplification, filtering, and downconversion,
which gives a pair of complex-valued IF signals sp(t) = ap(t)e

iωIFt from the ports
p = 1, 2. Here, ap(t) denotes the complex-valued baseband waveform and ωIF is
the IF frequency of the read-out. The pair of IF signals are independently digitized
into discrete-time waveforms sp(tm) (m = 0, 1, · · · ,M − 1), which undergo digital
demodulation

xp =
M−1∑
m=0

w∗
p(tm)sp(tm)e

−iωIFtm =
M−1∑
m=0

w∗
p(tm)ap(tm) (D.46)

weighted by complex-valued integration weights wp(tm). Here, the integration
weights wp(tm) can be chosen to be either a constant, e.g., wp(tm) = 1, or samples
optimized for maximum separability of qubit-state-dependent read-out signals [325,
326]. The demodulated complex scalar variables xp are then summed with weights
vp according to x =

∑
p v

∗
pxp, followed by thresholding to discriminate the state

of a qubit, which is based on a pre-calibrated distribution of x obtained with
initialization of the qubit in its standard basis states. The optimal values of the
weights vp maximizing the separability in x can be obtained from the distribution
of demodulated scalars xp of each port by performing linear discriminant analysis
(LDA) [327, 328]. Our method is superior to the approach used in Ref. [329]
where the placement of a power combiner before the first amplification stage led
to reduction in SNR by at least 3 dB, counteracting the 3 dB gain expected from
the addition. Also, our method of applying digital signal processing to combine
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the two signals takes into account the phase and gain imbalance of the independent
branches, allowing for noise-matched and phase-coherent addition of the read-out
signals, with the effective SNR being the sum of SNR available from each branch.

Utilizing a FPGA-based control architecture (Quantum Machines OPX+) to synthe-
size and analyze read-out signals, we carry out the digital signal processing proce-
dures mentioned above in real time, including weighted demodulation of digitized
IF waveforms, weighted sum of demodulated quadrature variables, and threshold-
ing. This allows us to perform low-latency (< 1µs) feedback control over qubits
conditioned on measurement outcomes, a demonstration of which in the form of
active qubit reset is described in Sec. D.5.

Read-out control parameter tune-up

An important prerequisite to high-fidelity single-shot read-out of a qubit is to find
a set of parameters that determine pulses sent to a read-out resonator. In a regular
setting [168], a frequency between the read-out resonator frequencies ω|0⟩

r = ωr+χ

and ω
|1⟩
r = ωr − χ under qubit preparation in states |0⟩ and |1⟩, respectively, is

chosen to maximize the |0⟩-|1⟩ signal separation at a fixed read-out power. This is
followed by a read-out power sweep at this frequency to find an optimal power that
maximizes the read-out fidelity while being unaffected by parasitic state transitions
associated with the measurement [330, 331]. In our experiment, however, the
dispersion of the metamaterial waveguide affects the validity of this method in two
ways. First, the colorful transmission response of the metamaterial waveguide on
the order of a few dB prohibits us from making a frequency sweep with a fixed
power arriving at the resonator, making it challenging to find the optimal read-out
frequency. Also, as noted in Sec. D.4, the dispersion of the metamaterial waveguide
causes the decay rate of read-out resonator to be highly frequency-dependent in cases
with a large dispersive shift χ. In this case, the intra-resonator photon occupation
nr ∝ 1/[∆2

r + (κr/2)
2] during the read-out [332] becomes highly asymmetric

between the qubit states |0⟩ and |1⟩, making the behavior associated with read-out-
induced state transition hard to predict.

Due to the challenges mentioned above, we devise a more general read-out tune-up
procedure based on a fast real-time sweep over both frequency and power of the
read-out. Given a read-out pulse envelope, we sweep over frequency and power of
read-out to find a combination that maximizes the read-out fidelity without para-
sitic qubit state transitions. This is achieved by repeating the qubit read-out under
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initialization of qubit in each standard basis state {|0⟩, |1⟩} for nrep times. From
the resulting distribution of demodulated quadrature variables xp in Eq. D.46, we
perform LDA [328] to extract the assignment fidelity and outlier counting for esti-
mating the probability of parasitic state transitions, similar to the method discussed
in Ref. [333], at each combination of read-out frequency and power. Specifically, we
choose the first nrep/2 samples in the dataset to train the LDA discriminator and the
remainder are used to determine the read-out fidelity with out-of-sample validation
at a low statistical error [334]. For outlier counting, we draw a 3σ-radius circle
with respect to the center of distribution calculated from the LDA and compute the
portion of datapoints lying outside the regions enclosed by the circles. We choose
a frequency and power combination that realizes the maximum read-out fidelity,
simultaneously having an outlier probability below a certain user-defined threshold.

Parameters Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Avg. Stdev.
Qubit frequency
ω01/2π (GHz)

4.02 4.78 4.44 4.20 4.42 4.48 3.80 – 4.78 4.50

Read-out
frequency
ωRO/2π (GHz)

5.845 6.122 6.339 5.615 6.047 5.935 5.687 – 6.196 5.788

Read-out fidelity
F1Q

0.983 0.980 0.974 0.991 0.983 0.985 0.984 – 0.968 0.989 0.982 0.007

Table D.2: Characterization of rapid single-qubit read-out. The highest read-
out fidelity achieved for each qubit, utilizing a rapid read-out method described in
Sec. D.4, is summarized with corresponding qubit and read-out frequencies used for
the characterization. The calibration of Q8 was interrupted by an unforeseen issue
of the dilution refrigerator, and hence was excluded from comparison with other
qubits under the same condition.

This sweep is first coarsely performed with a small number of repetitions nrep ∼ 102,
where reset is performed by waiting about 400µs for the qubit to relax between pulse
sequences. The next round of the sweep is performed with a larger number of rep-
etition nrep ∼ 104 at a much higher repetition rate to reduce statistical fluctuations,
efficiently implemented by employing active reset (see Sec. D.5) based on the single-
shot read-out calibrated from the first round of the sweep. Optionally, an additional
round of a finer version of the sweep is performed to find a condition that achieves
the highest read-out fidelity. The total time spent on this tune-up procedure is about
2–4 minutes, limited by communication latency associated with data retrieval from
the stream processor of OPX+.
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For multiplexed read-out, we follow a similar tune-up procedure involving simul-
taneous real-time sweep over the frequency and power sent into all ten read-out
resonators, whose sweep ranges are centered at the optimal condition determined
from the single-qubit read-out calibration described above. Such multiplexed read-
out calibration helps avoid spurious processes associated with parasitic near-field
coupling between read-out resonators and qubits as well as mitigate the decrease in
read-out fidelity due to the non-linearity of the measurement chain.

Read-out characterization

Here, we summarize the characterization results of single-shot read-out achieved in
our system.

Rapid single-qubit read-out

We quantify the performance of single-shot read-out of each qubit with its assign-
ment fidelity F1Q, which is obtained by preparing the qubit in its standard basis
states {|0⟩, |1⟩} followed by measurement, repeated over nrep ∼ 105 experimental
counts. A rapid read-out is achieved by employing a 148 ns-long square pulse with
an initial 20 ns kick with two times large amplitude for fast ring-up [335], convolved
with a Gaussian envelope of 10 ns standard deviation. The resulting output read-out
signals are demodulated and integrated with optimal weights [325, 326]. Here, we
use a 100 ns-longer integration window to collect transient read-out signals associ-
ated with ring-up and ring-down of the read-out resonator, timescales of which are
about 1/κRi

≈ 13.5 ns (see Table D.1).

The characterization results of the highest read-out fidelity achieved on each qubit,
on par with the state-of-the-art performance achieved in superconducting quantum
circuits [336, 337], are summarized in Table D.2.

Multiplexed read-out

We characterize multiplexed read-out when the qubits are parked at their idle fre-
quencies shown in Fig. D.11. Here, we use 400 ns-long square pulses, convolved
with a Gaussian envelope of 10 ns standard deviation, sent to all read-out resonators
by frequency multiplexing (calibrated using the tune-up procedures discussed in
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Figure D.9: Characterization of multiplexed read-out of qubits. a, Assignment
probability matrix P (z|ζ) of prepared bit-strings ζ and assigned bit-strings z ar-
ranged in the ascending order. b, The diagonal elements P (z|z) of the assignment
probability matrix, indicated by the dark red arrows in panel a, is plotted as a func-
tion of 10-bit strings z in the ascending order. The dashed line indicates the average
of diagonal elements over all bit-strings, corresponding to the 10-qubit read-out
fidelity F10Q = 0.7626. c, Single-qubit bit-flip error rate e1(si) during the read-out,
given by the average of assignment probability matrix elements corresponding to
preparation of a state si and assignment of the flipped state ¬si on qubit Qi while
the states of the remaining qubits are fixed. d, Two-qubit bit-flip error rate e2(si, sj)
during the read-out, corresponding to the average of assignment probability matrix
elements corresponding to preparation of states (si, sj) and assignment of the flipped
states (¬si,¬sj) on qubits (Qi,Qj) while the states of the remaining qubits are fixed.

Sec. D.4). The output signals from read-out resonators are demodulated and in-
tegrated with constant weights in 100 ns-longer integration window. The charac-
terization is performed by initializing the system in a state of random 10-bit-string
by a choice of local gates (I or X) on all qubits sent in parallel followed by the
multiplexed read-out, repeated over nrep > 106 experimental realizations.

The performance of the multiplexed read-out is quantified by the probability P (z|ζ)
of assigning a bit-string z when the system is prepared in a bit-string ζ , known
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as the assignment probability matrix, which is illustrated in Fig. D.9a. The aver-
age probability of correct assignment, i.e., mean of diagonal elements P (z|z) of the
assignment probability matrix, gives the fidelity of multiplexed read-out for discrim-
inating 210 standard basis states of 10 qubits, which is calculated to beF10Q = 0.7626

(see Fig. D.9b). In the absence of correlated multi-qubit read-out errors, this corre-
sponds to an average single-qubit read-out fidelity of (F10Q)

1/10 ≈ 0.9733, which is
slightly lower than the average of best single-qubit rapid read-out fidelity shown in
Table D.2.

The sources of infidelity can be qualitatively understood by noting the non-zero off-
diagonal elements of the assignment probability matrix. For example, the dominant
infidelity components of the assignment matrix in Fig. D.9a, on the order of 10−2,
form a fractal pattern situated in the lower triangular part of the matrix. This
corresponds to a single-qubit decay error, where a bit of a bit-string prepared in state
1 is assigned to be in state 0 while the remaining bits of the assigned bit-string are
identical to the originally prepared ones. In order to perform a quantitative analysis
of the errors during the multiplexed read-out, we define bit-flip error rates calculated
from the infidelity components of the assignment probability matrix (see Fig. D.9c
and d). The single-qubit bit-flip error rate is written as

e1(si) ≡ P (· · · ¬si · · · | · · · si · · · ), (D.47)

which is the average of assignment probability matrix elements corresponding to
preparation of a state si and assignment of the flipped state ¬si on qubit Qi while
the assigned bits of the remaining qubits are identical to the prepared ones. It is
observed in Fig. D.9c that the single-qubit decay |1⟩ → |0⟩ (few percent on average)
is the dominant contributor to the infidelity of the read-out, which is believed to be
associated with the limited lifetimes T1 of qubits resulting in non-negligible decay
during the on-time of read-out pulses. Similarly, the two-qubit bit-flip error rate is
defined as

e2(si, sj) ≡ P (· · · ¬si · · · ¬sj · · · | · · · si · · · sj · · · ), (D.48)

which is the average of assignment probability matrix elements corresponding to
preparation of states (si, sj) and assignment of the flipped states (¬si,¬sj) on
qubits (Qi,Qj) while the other bits remain identical between the preparation and
the assignment. We find that the two-qubit error rates shown in Fig. D.9d are
dominated by two-qubit decay process |11⟩ → |00⟩ in most cases with error rates
an order of magnitude smaller than the single-qubit error rates in Fig. D.9c. Such
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behavior is expected in a system with independent single-qubit error sources. We
also note the prevalence of non-trivial two-qubit error processes in few combinations
of qubit pairs, e.g., two-qubit excitation |00⟩ → |11⟩ on (Q4,Q6) and population swap
|01⟩ → |10⟩ on (Q9,Q10). We attribute these processes to state preparation errors
associated with always-on qubit-qubit couplings and frequency collision in our
system as well as parasitic read-out-induced state transitions, which are under active
investigation. We observe that the higher-order error processes make negligible
contributions to the 10-qubit read-out fidelity F10Q.

Discussion

We note that although the implementation of hardware-efficient qubit read-out
through the metamaterial bus waveguide is feasible for 10 qubits, the current scheme
of coupling all the read-out resonators to the same bus waveguide is not scalable.
Instead, for constructing large-scale quantum processors based on metamaterials—
extensions of this work—we envision creating a single bus waveguide dedicated
to mediating long-range qubit-qubit interactions while utilizing separate read-out
metamaterial feedlines [127] allocated for every ten qubits.

D.5 Qubit control methods

In this section, we provide details about single- and multi-qubit control methods,
including qubit XY and Z control methods, qubit reset procedures, and experimental
pulse sequences described in the main text.

Qubit XY control

The XY control of a qubit is realized by sending a microwave pulse on the qubit’s
charge drive line at the transition frequency. Throughout the experiments described
in this work, we use 40-ns-long Gaussian pulses with a standard deviation of 10 ns,
corrected with the derivative removal by adiabatic gate (DRAG) method [226]. The
pulses are calibrated following the procedures outlined in Ref. [166].

Qubit Z control

The transition frequency of a qubit is controlled by current sent into its flux-bias
line, which generates magnetic field threading the qubit’s SQUID loop. The DC flux
bias (slow Z) sets the static frequency while the flux bias pulses (fast Z) dynamically



224

Bias site
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Ta
rg

et
 s

ite
Q

10
Q

9
Q

8
Q

7
Q

6
Q

5
Q

4
Q

3
Q

2
Q

1

0.075

0.050

0.025

0.000

-0.025

-0.050

-0.075

1
1

1
1

1
1

1
1

1
1

Bias site
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Ta
rg

et
 s

ite
Q

10
Q

9
Q

8
Q

7
Q

6
Q

5
Q

4
Q

3
Q

2
Q

1

0.02

0.01

0.00

-0.01

-0.02

1
1

1
1

1
1

1
1

1
1

τ (μs)
0.0 0.5 1.0 1.5

580

560

540

520

500

480
D

et
un

in
g 

(M
H

z)

Before correction
After correction
Ideal
0.2% margin

b

a

c

Figure D.10: Flux bias corrections. a, Qubit detuning by a flux pulse as a function
of pulse duration τ . The detuning is plotted for the flux pulse before distortion
correction (blue), after distortion correction (orange), and for the ideal pulse at the
qubit (black). The margin of ±0.2% around the ideal pulse is shown in dashed gray
lines. The inset gives a magnified view of the initial part of the pulses. b/c, The
crosstalk matrix for the slow/fast flux bias with the diagonal elements equal to unity
and values of off-diagonal elements indicated by colors.

tune the qubit to, e.g., the interaction frequency during an experimental sequence.
Here, we provide details on the corrections applied on the flux bias of the qubits.

Pulse distortion

A flux pulse is distorted after passing through microwave components along a flux
bias line, which introduces a significant error in the frequency control of qubits.
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Figure D.11: Experimental pulse sequence. a, Detailed illustration of pulses
on site Qi for the sequence shown in Fig. 6.4b of the main text. The flux bias
pulse, the charge drive pulse, and the read-out pulse are shown in black, blue, and
green, respectively. The dashed lineshape during the initialization represents either
a π-pulse or a wait applied to the qubit. b, Frequencies of sites during the pulse
sequence and the frequency alignment calibration. The idle frequencies of qubits
and the interaction frequency ωint/2π = 4.72GHz for the 10-qubit experiments in
the main text are indicated by circles and a solid line, respectively. The frequencies
used during the frequency alignment calibration are shown in dashed gray lines
together with two frequency configurations to align Q1 to interaction frequency,
indicated by square and diamond markers.

Here, we characterize the pulse distortion utilizing an in situ method involving a
Ramsey-like sequence [338] and perform correction by using pre-distorted wave-
forms. To show the effectiveness of the correction, we measure the frequency
detuning of a qubit during the on-time of a square flux pulse with and without
correction, which are illustrated in Fig. D.10a. We observe a low-pass response
in the uncorrected pulse and a response close to the ideal step function after the
correction. The rise time of the remaining low-pass response of the corrected pulse
is 6 ns with approximately 2 ns-long overshoot originating from the finite bandwidth
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of the waveform generator to faithfully implement the pre-distortion. The deviation
of the corrected pulse remains mostly within the±0.2%margin of the ideal response
for short pulses, while a larger fluctuation is observed at pulse durations greater than
1µs limited by the coherence of the qubit during the characterization.

Flux crosstalk

For a multi-qubit device, the flux crosstalk, i.e., the flux bias on one qubit affecting
the frequency of another qubit, poses challenges on precise simultaneous control
over the frequency of multiple qubits. To compensate for the flux crosstalk, we
characterize a crosstalk matrix CV defined by Veff = CVVapp, where Veff (Vapp)

is a vector of effective (applied) flux bias voltages on all the qubits. Assuming
that the diagonal components of the crosstalk matrix are close to the unity, i.e.,
[CV ]i,i = ∆Veff,i/∆Vapp,i ≈ 1, we characterize each off-diagonal crosstalk element
[CV ]i,j (i ̸= j) by measuring the ratio of flux tuning rates of a target site Qi from
biasing the sites Qj and Qi, giving

[CV ]i,j ≡
∆Veff,i
∆Vapp,j

≈ ∆Vapp,i
∆Vapp,j

=
∆ω01,i/∆Vapp,j
∆ω01,i/∆Vapp,i

. (D.49)

The measurement of flux tuning rate ∆ω01,i/∆Vapp,j is performed at biases where
the frequency of a qubit is nearly linear in the flux bias. During the characterization
of [CV ]i,j , sites other than the target site Qi is detuned by at least 3 GHz to minimize
the influence of coupling between sites. In the DC flux crosstalk characterization, the
target qubit frequency tuning ∆ω01,i is calibrated from Ramsey fringes experiments,
yielding an average magnitude of crosstalk elements of 0.059 (see Fig. D.10b). For
the fast flux pulse crosstalk, ∆ω01,i is measured from a Ramsey sequence with a flux
pulse of increasing duration (up to 1µs) between two π/2 pulses. The resulting flux
pulse crosstalk matrix is shown in Fig. D.10c with the average magnitude of crosstalk
elements calculated as 0.004, more than an order of magnitude smaller than its DC
flux counterpart. The crosstalk matrices can then be used for calculating the bias
voltage to apply in order to achieve the effective ideal bias by Vapp = C−1

V Veff . We
iterate the crosstalk calibrations based on existing corrections until the remainder of
the crosstalk element exhibits no further decrease in magnitude, giving the crosstalk
level below 1× 10−4 for the majority of elements.
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Qubit reset

Before the start of an experimental sequence, the qubits are required to be in the
ground state, which is achieved by qubit reset. The traditional way to reset a qubit is
to wait for a time much longer than its lifetime to ensure the population decay. For the
qubits on this device, wait time around 1 ms is necessary, limiting the repetition rate
of the experiment below 103 counts per second. In most experiments, we utilize the
ability of real-time feedback operations with an FPGA-based controller (Quantum
Machines OPX+) to perform active reset of the qubits. The single-qubit reset is
achieved by measuring the state of the qubit and applying a subsequent π pulse if it
is detected to be in state |1⟩ [339]. Similarly, the active reset of multiple qubits is
implemented by performing multiplexed read-out and applying subsequent π pulses
on the qubits measured to be in state |1⟩. The procedure is deemed successful once
we measure the single qubit or all qubits to be in the ground state forNr consecutive
rounds of repeated read-out and reset. Typically, we use Nr = 2 or 6 for single-
qubit or 10-qubit experiments, respectively. The duration of a round of active reset
includes the read-out time (about 500 ns) and the feedback latency (below 1µs).
The active reset significantly reduces the reset time and enables the fast repetition
rate of our experiments, which is essential for efficiently analyzing the bit-string
statistics with low statistical fluctuations.

Experimental pulse sequence

The experimental pulse sequence shown in Fig. 6.4b of the main text is detailed
in Fig. D.11a for a single qubit. We park the qubit at its idle frequency during
the initialization stage where a local XY gate is utilized to prepare the qubit in its
standard basis states |0⟩ or |1⟩, realized by waiting or by applying a microwave π-
pulse, respectively. A square flux pulse is then used to dynamically tune the qubit to
the interaction frequency for time τ followed by the read-out after the qubit returns
to its idle frequency. At the end of the sequence, we apply a flux balancing pulse to
achieve zero-average flux on the bias line during the whole sequence.

The idle frequencies are chosen to achieve high-fidelity multiplexed read-out (see
Sec. D.4) and decrease frequency collision of both ω01 and ω12 between sites with
strong coupling. The set of idle frequencies used in Figs. 6.5, 6.6, and 6.7 of the main
text is shown in Fig. D.11b. During the interaction stage, all ten sites are aligned
to the same frequency by flux pulses whose amplitudes are calibrated using the
following procedures. First, we perform a coarse tuning using the crosstalk matrices
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and the pre-calibrated tuning curve (site frequency vs. bias voltage) for individual
sites. To obtain the precise flux pulse amplitude for tuning a qubit to the interaction
frequency ωint and account for remaining crosstalk, we perform a fine tuning by
pulsing a target site Qi to ωint and other sites to ωint ± 2π × 88MHz (calibration
frequency), measuring the frequency of Qi by Ramsey sequence, and adjusting
the pulse amplitude on Qi to compensate for deviations. We repeat the above
procedures until the measured frequency ω01,i of the target qubit is sufficiently close
to the desired interaction frequency ωint. To minimize the frequency shift induced
by the coupling between Qi and other sites, we have the calibration frequencies
staggered in two configurations illustrated in Fig. D.11b. Then we use the average
of the pulse amplitudes on Qi achieving ω01,i = ωint in the two configurations for the
multi-qubit interaction stage, which effectively cancels the influence from possible
residual flux crosstalk.

D.6 Hamiltonian learning using a many-body fidelity estimator

The goal of Hamiltonian learning is to find the set of parameters of an estimated
Hamiltonian Ĥ ′ that is closest to the many-body Hamiltonian Ĥ realized in an ex-
periment [340]. Here, we learn the Hamiltonian by comparing the measurement
outcomes from evolving the experimental system under its Hamiltonian and the
numerical results from simulating the evolution of an estimated Hamiltonian. We
experimentally prepare an initial state |Ψ0⟩ and evolve it for time τ under a Hamilto-
nian Ĥ realized in the experiments, which results in a state represented by a density
matrix ρ̂(τ). Assume we can classically simulate the same process for a guessed
Hamiltonian Ĥ ′ and obtain the time-evolved state e−iĤ′τ/ℏ|Ψ0⟩. The many-body
fidelity is the overlap between the experimental and guessed states:

F (τ, Ĥ ′) ≡ ⟨Ψ0|eiĤ
′τ/ℏρ̂(τ)e−iĤ′τ/ℏ|Ψ0⟩. (D.50)

If the fidelity can be efficiently estimated, the Hamiltonian can then be learned by
maximizing F (τ, Ĥ ′) over a family of trial Hamiltonians {Ĥ ′}. It is numerically
found [257] that this approach remains robust even in the presence of small errors
from state preparation and measurement (SPAM) and decoherence processes. In
such scenarios, the optimized many-body fidelity F is smaller than one, but is
maximized at approximately the correct Hamiltonian parameter values.
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Many-body fidelity estimator Fd

In practice, it is cumbersome to obtain the many-body fidelity F by either directly
measuring non-local observables in the expression of F [341–343] or character-
izing the experimental density matrix ρ̂(τ) via quantum state tomography [344].
Recently, Ref. [257] introduced the estimator Fd to approximate the many-body
fidelity between simulated and experimental time evolution in Eq. D.50. Crucially,
this estimator only requires measurements in a fixed basis—here the computational
z-basis—and requires a relatively small number of measurement samples. Based
on universal statistical fluctuations and operator spreading, this estimator works in
a variety of quantum devices, including bosonic and fermionic itinerant particles on
optical lattices, trapped ions, and arrays of Rydberg atoms. Through Fd, the fidelity
F can be estimated with a small number of samples for different parameter sets in
{Ĥ ′}, yielding parameter values that are most likely to generate the observed data.
To illustrate the effectiveness of this estimator in our system, we show in Fig. D.12
that the Fd closely tracks the many-body fidelity F in a numerical simulation of our
system Hamiltonian shown in Eq. 6.1 of the main text in the presence of random
phase-flip errors.

Fd calculation with experimental data

We describe the procedure used to calculateFd and obtain the optimized Hamiltonian
parameters shown in Fig. 6.4 of the main text. This procedure is adapted from the
protocol detailed in Ref. [257].

On the experimental side, following the pulse sequence illustrated in Fig. D.11a,
we prepare a randomly chosen five-excitation initial state, e.g., zinit = 1001101010,
evolve the system for time τ , and read out the states of ten sites to get a bit-string z.
Repeating the sequence M = 4000 times for the same zinit gives the probability of
measuring each bit-string. We use the assignment probability matrix obtained from
Sec. D.4 to mitigate the effect of read-out error, and only keep the bit-strings with
five excitations considering the excitation-number-conserving Hamiltonian. This
gives an estimate of the bitstring probability pz(τ).

In the numerical simulation, we compute the theoretical probability p(T)
z (τ, Ĥ ′) of

measuring the bit-string z after evolution under Ĥ ′ for a time τ

p(T)
z (τ, Ĥ ′) ≡ |⟨z|exp(−iĤ ′τ/ℏ)|Ψ0⟩|2 , (D.51)
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and its time-average p(T)
z (Ĥ ′)

p(T)
z (Ĥ ′) ≡ lim

T →∞

1

T

∫ T

0

p(T)
z (τ, Ĥ ′)dτ (D.52)

where |Ψ0⟩ = |zinit⟩.

Combining the results from experiments, the many-body fidelity estimator is given
by

Fd(τ, Ĥ
′) = 2

∑
z pz(τ)p

(T)
z (τ, Ĥ ′)/p(T)

z (Ĥ ′)∑
z p

(T)
z (τ, Ĥ ′)2/p(T)

z (Ĥ ′)
− 1. (D.53)

To reduce possible systematic errors, we repeat the above procedure for Minit = 40

different initial states. In Fig. 6.4c of the main text, we plot the average and standard
deviation over different initial states for Fd(τ, Ĥ

′) with different parameter values
of {Ĥ ′}.
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Figure D.12: Numerical simulation of many-body fidelity F and its estimator Fd

under dephasing errors. The many-body fidelity F is calculated using Eq. D.50
for an evolution under the system Hamiltonian described in Eq. 6.1 of the main text,
with injected phase-flip errors. The initial state is chosen to be zinit = 1100100101
at random. The corresponding fidelity estimator Fd is shown for comparison, which
is obtained from Eq. D.53 with the bit-string probabilities pz and p(T)

z obtained from
the numerical simulations of evolution with and without errors, respectively.

Parameter optimization

To address the complexity of optimizing over a large parameter space, a greedy
algorithm was introduced in Ref. [257] for multi-parameter estimation. We follow
the same procedure to obtain the optimized values for hopping terms {Ji,j}, in-
cluding the nearest-neighbor hopping Ji,i+1 with i = 1, · · · , 9 and the longer-range
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hopping Ji,i+k with k = 2, · · · , 9, averaged over qubits i. We compute Fd(τ, Ĥ
′)

at a fixed evolution time τ , for the family of Hamiltonians Ĥ ′({Ji,j}) in Eq. 6.1
of the main text. Here, we use the measured on-site interactions Ui (Fig. 6.3a of
the main text) and assume a constant site energy ϵi/2π = 4.72GHz. To avoid
systematic errors, we use the averaged estimated fidelity Fd(Ĥ

′) over several times
τ ∈ {76, 148, 260, 420, 600, 780} ns. For each guess of {Jl}, we randomly choose
one element l ∈ {1, · · · , 17}, then maximize Fd(Ĥ

′) over a single Jl while keep-
ing other parameters fixed. After optimizing for all 17 parameters, we repeat this
process multiple times over distinct random permutations of {1, · · · , 17}. After 11
rounds, both Fd and the optimized {Ji,j} converge and are displayed in Fig. 6.4c
and d in the main text.

Confidence intervals of fitted distributions

The confidence intervals for our estimated parameters were calculated with an ana-
lytic expression. The analytic expression is obtained under the following assump-
tions: (1) Fd is a good estimator for the many-body fidelity F , (2) our estimated
fidelity exhibits independent Gaussian additive statistical errors, and (3) our esti-
mated parameters are sufficiently close to their true values. In such cases, one can
evaluate the covariance of the errors in estimated parameters, from which one can
compute the confidence interval (the full derivation will appear in upcoming work).

In general, given a set of data of M randomly drawn samples, the fitted parameters
θθθ will have random fluctuations, expressed as θθθ = θθθ∗ + δθδθδθ. Here, θθθ∗ is the true
parameter value and δθδθδθ is a random vector with a mean of zero and covariance given
by

cov(θθθ) =
2

M
HHH
[
F̃d(θθθ

∗)
]−1

, (D.54)

with the HessianHHH[F̃d(θ)]µν ≡ ∂2F̃d(θ)
∂θµ∂θν

. Knowledge of cov(θθθ) gives the confidence
intervals of our extracted parameters.

In our setting, we wish to learn the parameters θθθ of an unknown Hamiltonian. We
express our family of Hamiltonians as H(θθθ) ≈ H0 +

∑
µ(θµ − θ∗µ)V

(µ), where
H0 ≡ H(θθθ∗) is the true Hamiltonian and V (µ) ≡ ∂µH(θθθ)|θθθ=θθθ∗ . While the Hessian
HHH[Fd] is difficult to evaluate, we approximate it with the Hessian of the fidelity
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HHH[F ], whose analytical expression can be calculated using

∂µ∂νF (θθθ)

= ⟨Ψ0|eiH0t∂µ∂ν
[
e−iH(θθθ)t|Ψ0⟩⟨Ψ0|eiH(θθθ)t

]
e−iH0t|Ψ0⟩

≈ −2t2
[∑

j

|⟨Ej|Ψ0⟩|2 V (µ)
jj V

(ν)
jj (D.55)

−
∑
j

|⟨Ej|Ψ0⟩|2 V (µ)
jj

∑
k

|⟨Ek|Ψ0⟩|2 V (ν)
kk

]
.

Here, {|Ej⟩} are the eigenstates of H0 and V (µ)
jj ≡ ⟨Ej|V (µ)|Ej⟩.

We have verified that our expression is in agreement with Monte Carlo simulations of
finite sets of samples. Note that the Monte Carlo sampling becomes computationally
infeasible with a large number of parameters, while our analytic expression can be
readily evaluated.

Influence of decoherence

A unitary time evolution of a quantum state under a Hamiltonian cannot capture the
effect of decoherence present in experimental systems. In the context of Hamiltonian
learning, the dominant decoherence channels in our system—population decay and
dephasing—can affect the processes discussed in the previous sections by lowering
the estimated many-body fidelity value from its decoherence-free counterpart. Here,
we explain possible mitigation strategies in the processing of experimental data and
discuss how these effects can be taken into account in numerical simulations.

The population decay lowers the excitation number in the system, leading to a finite
lifetime T1. Given the experimental Hamiltonian that conserves excitation numbers,
we post-select the measured bit-strings z with the excitation numbers the same as the
initial bit-string zinit. The purpose of this post-selection is to analyze the outcomes
without quantum jump events [345, 346], thus mitigating the influence of population
decay processes. However, if the lifetimes of different qubits exhibit a large variance,
the post-selection will favor states with excitations on long-lived qubits at evolution
times longer than the qubit lifetimes, failing to mitigate the population decay.

On the other hand, the dephasing errors can destroy the phase coherence within the
same excitation number sector and cannot be corrected by post-selection, which re-
sults in a lower many-body fidelityF . This can be numerically simulated by injecting
random phase-flip errors during the state evolution under the system Hamiltonian,
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which is shown in Fig. D.12. Here, the rate of phase-flip errors is chosen such that
the resulting single-qubit coherence time is T ∗

2 = 1.14µs, close to the measured
coherence time at ω01/2π = 4.72GHz shown in Table D.1. We note that the opti-
mized Fd in Fig. 6.4c of the main text exhibits similar decay rate as the numerical
simulation result illustrated in Fig. D.12, suggesting that dephasing is the dominant
mechanism for the fidelity decay during the evolution. The offset between the two
curves is a signature of SPAM errors independent of the evolution time. Possible
sources of SPAM errors in our system include qubit XY crosstalk and pulse distor-
tion, error in the read-out assignment probability matrix due to the infidelity of state
preparation, and imperfect correction of the flux pulse distortion.

D.7 Numerical simulation of quantum walk at different interaction frequen-
cies

To corroborate the observations in Fig. 6.5 of the main text, we numerically simulate
the same set of evolutions using QuTiP [21]. We obtain the on-site interaction Ui

from Fig. 6.3a of the main text, assume the evolution at the interaction frequency
of ω01/2π = 4.50GHz, 4.55 GHz, 4.72 GHz, and 4.80 GHz, and use the hopping
terms Ji,j from the parameter optimization procedure described in Sec. D.6 to
simulate the quantum walk dynamics (Fig. D.13a). The probability of measuring
the bit-string z with excitations on sites Qi and Qj (i ̸= j) is pz = ⟨n̂in̂j⟩, which
is used to calculate the second moment µ2 =

∑
z p

2
z shown in Fig. D.13b. The

decoherence-free simulation results exhibit good agreement with the experimental
results in Fig. 6.5 of the main text, confirming that (i) Hamiltonians with longer
hopping ranges will converge to the ergodic limit µe

2 = 2/(D + 1) at earlier times
and (ii) decoherence does not visibly affect the quantum walk patterns.

D.8 Probing ergodic dynamics from global bit-string statistics

Integrability of 1D Bose-Hubbard models

In this section, we discuss the integrability of 1D Bose-Hubbard models in different
parameter regimes. The standard 1D Bose-Hubbard model with only nearest-
neighbor (NN) hopping corresponds to the spin-1/2 XY model in the limit of
diverging on-site interaction |U | → ∞, where the Hilbert space of a site is truncated
to only |0⟩ and |1⟩, i.e., the hard-core limit. This model is known to be integrable
and can be solved exactly with the Bethe ansatz [347]. The integrability of the
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Figure D.13: Numerical simulation of two-particle quantum walk with increas-
ing hopping range. a, Evolution of the population ⟨n̂i⟩ on sites Q1–Q10 as a function
of normalized evolution time Ji,i+1τ . The system is initialized in zinit = 0000110000
and the evolution occurs at ω01/2π = 4.50GHz, 4.55 GHz, 4.72 GHz, and 4.80 GHz
from left to right. b, The second moment µ2 as a function of normalized evolution
time Ji,i+1τ . Results calculated from the numerical simulation in panel a and the
corresponding measurement in Fig. 6.5a of the main text are shown in gray-scale
solid and dotted curves, respectively. The result from numerical simulation of the
integrable Hamiltonian is shown as the gray dashed curve. The expected final value
of the second moment µe

2 for a generic ergodic system is indicated by the red dashed
line.

hard-core Bose-Hubbard model can be broken by either adding long-range hopping
terms or taking a finite on-site interaction strength.

Here, we emphasize that, in our system, finite on-site interaction |U | is not the
major factor that induces ergodicity. This is because the experiments illustrated
in Figs. 6.5, 6.6, and 6.7 of the main text are performed at ω01/2π ≤ 4.80GHz,
featuring a finite |U/J | > 36, much greater than unity. To further illustrate the effect
of finite |U/J |, we simulate the standard Bose-Hubbard model with finite |U/J |
and without long-range hopping, where the Hamiltonian is obtained by removing
the long-range hopping terms in Eq. 6.1 of the main text while using the on-site
interaction Ui from Fig. 6.3a of the main text. In this case, while the simulated
model is ergodic in a strict sense, the resulting second moment µ2 is the same as the
numerical simulation of the integrable model at evolution times τ < 2µs, gradually
approaching the ergodic limit at long evolution times τ > 5µs (see the purple curve
of Fig. D.14). Therefore, we conclude that the experimentally observed ergodic
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behavior, which emerges at an intermediate evolution time of τ ≈ 360 ns, originates
from the long-range hopping terms.

Porter-Thomas distribution

In this section, we first introduce the Porter-Thomas (PT) distribution [254, 261] and
then explain why we expect the PT distribution in our system. The PT distribution
can be obtained from the distribution of overlap probabilities pz = |⟨z|Φ⟩|2 between a
particular measurement outcome |z⟩ and a state |Φ⟩ drawn from the Haar ensemble,
the distribution of states on a Hilbert space that is invariant under any unitary
operations. Specifically, in a Hilbert space of dimension D, the distribution of pz
takes the form [256, 261]

P (pz) dpz = (D − 1)(1− pz)
D−2 dpz, (D.56)

which converges to the PT distribution in the limit of large D

P (pz)
D→∞−−−→ D exp (−Dpz). (D.57)

Note that the second moment of {pz} from this distribution is given by

µ2 ≡
∑
z

p2z = D

∫ 1

0

dpz p
2
zP (pz) =

2

D + 1
,

which is identical to the ergodic value µe
2 described in the main text.

The PT distribution reflects the randomness of the measured wavefunction and
has been shown to occur in Bose-Hubbard model with time-dependent random
parameters [348] and deep random unitary circuits [49, 254]. Additionally, a large
class of time-independent Hamiltonian is also shown to exhibit the normalized
probability distribution p̃z ≡ pz/pz following the PT distribution [257], where pz is
the time-averaged probability defined in Eq. D.52. This includes the ergodic Bose-
Hubbard model with long-range hopping realized in our system. Although our
Hamiltonian in Eq. 6.1 of the main text conserves excitation number, the dynamics
exhibits this universal randomness within the two-excitation, hard-core sector1 with
a Hilbert space dimension of D = 45.

1We verify that the doublon states have a population of ≲ 1% using numerical simulations,
confirming that we are in the hard-core limit.
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Figure D.14: Additional results of bit-string statistics at 4.72 GHz. a, Second
moment µ2 as a function of evolution time τ in our system from the experiment
(orange) and the theory with the optimized parameter set in Fig. 6.4d of the main
text (blue), compared to theoretical predictions of the integrable model (green)
and the Bose-Hubbard model with NN hopping (purple). The shading on each
curve corresponds to a standard deviation of the mean second moment for 20
randomly chosen initial bit-strings zinit in the two-excitation sector, and the red
dashed line represents the ergodic value µe

2. b (c), Density histogram P (pz) of
the distribution of theory (integrable theory) bit-string probabilities {pz} with the
20 initializations zinit’s at evolution times τ = 16 ns, 360 ns, and 5.4µs from left
to right (indicated by the dotted lines in panel a). The solid lines show the PT
distribution. d, Density histogram P (pz) of the distribution of experimental bit-
string probabilities {pz} with a two-excitation initial state zinit = 0000110000 at
evolution times τ = 16 ns, 360 ns, and 5.4µs from left to right. e, Density histogram
P (pz) of the distribution of experimental bit-string probabilities {pz} with a five-
excitation initial state zinit = 0100111010 at evolution times τ = 16 ns and 360 ns in
the left and right panels, respectively.
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Furthermore, we claim that the time-averaged probability pz is approximately con-
stant due to the effective infinite temperature2 of the initial and measurement states,
and thus the unnormalized {pz} follows the PT distribution at intermediate evolution
times, following the arguments below.

The notion of the effective temperature of a state is conventionally used to understand
its local properties [349]: it is believed that an initial state, when quench-evolved
under an ergodic Hamiltonian, will quickly thermalize such that its expectation
value of a local observable Â is very close to the value ⟨Â(t)⟩ ≈ Tr(Âρ̂β) of
a corresponding thermal state ρ̂β . In particular, the thermal state with infinite
effective temperature ρ̂β=0 gives the expectation value ⟨Â(t)⟩ ≈ Tr(Â)/D. Here,
we extend the above expectation beyond local quantities to the time-average of
a global quantity pz and expect this normalization factor pz to be approximately
constant since our initial state and measurement states are at infinite temperature.
Consequently, we expect the raw, unnormalized {pz} to follow the PT distribution
at intermediate evolution times, as shown in the middle panel of Fig. 6.6b in the
main text.

Additional results of bit-string distribution

In this section, we provide additional results of numerical simulations and experi-
mental data as a supplement to the bit-string distributions shown in Fig. 6.6b of the
main text.

Numerical simulations of bit-string distributions

In addition to the experimental bit-string distribution shown in Fig. 6.6b, we present
the results from numerical simulations of the system Hamiltonian in Eq. 6.1 of
the main text and the integrable (nearest-neighbor and hard-core) Bose-Hubbard
Hamiltonian in Fig. D.14b and c, respectively. After a short evolution time of
τ = 16 ns, the distribution is similar in the three cases of experiment (Fig. 6.6b
of the main text, left), theory (Fig. D.14b, left), and integrable theory (Fig. D.14c,
left), exhibiting a large probability pz of bit-strings close to zinit. At intermediate
evolution times (e.g. τ = 360 ns), both the experimental (Fig. 6.6b in the main

2In detail, the effective temperature is infinite because in the rotating frame of ω = ω01, the
computational z-basis states have zero averaged energy ⟨Ĥ⟩z = 0 [see Eq. 6.1 of the main text].
It is the same as the averaged energy of a thermal state ρ̂β at infinite temperature Tr(Ĥρ̂β=0) =

Tr(ĤI)/D = 0, where β = 1/T ∗ is the inverse effective temperature and ρ̂β=0 = I/D.
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text, middle) and the theoretical (Fig. D.14b, middle) bit-string distributions follow
the PT distribution while the integrable theory predicts more bitstrings with large
pz, resulting in a larger second moment µ2. Due to the absence of decoherence
processes, the distributions stay the same for the numerical simulations at long
evolution times, e.g. τ = 5.4µs (right panels of Fig. D.14b and c).

Experimental bit-string distribution from a single, two-excitation initial state

The probability distributions shown in Fig. D.14b and c and in Fig. 6.6b of the main
text are obtained by combining the results from 20 randomly chosen initial states zinit
to reduce statistical errors. Here, we show that the experimental results from a single
initial state (zinit = 0000110000), displayed in Fig. D.14d, obey the same trend as
predicted by the ergodic evolution. Due to the limited counts N(pz) = D = 45 of
pz’s, the tail of PT distribution is not very clear in the middle panel of Fig. D.14d.
Nonetheless, the distinction among the three panels in Fig. D.14d is obvious, with
pz aggregating towards 1/D in the right panel due to decoherence. Note that the
effect of limited Hilbert space dimension is negligible for the combined statistics in
Fig. 6.6b of the main text.

Experimental bit-string distribution from a five-excitation initial state

To illustrate that the bit-string distribution during ergodic evolution is univer-
sal for various excitation numbers, we show the experimental bit-string distri-
bution obtained from preparing a randomly chosen five-excitation initial state
zinit = 0100111010 in Fig. D.14e. The left panel displays the initial evolution
stage at τ = 16 ns and the right panel shows a histogram at τ = 360 ns that is closer
to the PT distribution than the middle panel of Fig. D.14d owing to the larger Hilbert
space dimension D = 252.

Effect of decoherence

In the measurement and data processing of bit-string statistics, we use the same pulse
sequence and post-select the sector that conserves the excitation number discussed
in Sec. D.6, which mitigates the effects of population decay. To illustrate the effect
of dephasing on bit-string statistics, we calculate the second moment µ2 and the
histogram of bit-string probability distribution {pz} using data from the numerical
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Figure D.15: Numerical simulation of bit-string statistics under dephasing
errors. a, The evolution of second moment µ2 of a five-excitation initial state
zinit = 1100100101 assuming the error-free model (blue) and the model with added
phase-flip errors (orange). The red (black) dashed line shows the ergodic (classical)
limit µe

2 (µc
2) of the second moment and the dotted curve shows the decay of the

second moment predicted by the many-body fidelity as µ2 ≈ (1 + F 2)/D. b,
The histogram of bit-string probability distribution {pz} obtained at evolution time
τ = 3µs in panel a. The error-free result and the result with dephasing are shown
in blue and orange, respectively. The solid line represents the PT distribution and
the dashed line shows the uniform classical distribution pz = 1/D.

simulation of the system Hamiltonian without errors and with added phase-flip errors
that generates Fig. D.12. Here, we find that the second moment of the error-free
simulation converges to the ergodic limit µe

2 after the quench while µ2 obtained from
the simulation with phase-flip errors keeps decreasing (see Fig. D.15a). The second
moment eventually converges to the classical limit

µc
2 =

∑
z

p2z =
∑
z

1

D2
=

1

D
. (D.58)

The corresponding histogram at a long evolution time τ = 3µs, displayed in
Fig. D.15b, follows the PT distribution for the error-free simulation and approaches
the classical distribution for the simulation with dephasing. The above numerical
simulations qualitatively reproduce the experimental results shown in Fig. 6.6a and
b of the main text and in Fig. D.14a.

We also provide a heuristic argument to show that the decay of the second moment
µ2 can be predicted by a quantity (1 + F 2)/D involving the many-body fidelity F
under certain error models. This can be understood by utilizing an ansatz

pz = Fqz + (1− F )q⊥z (D.59)

introduced in Refs. [257, 350], which relates the empirical distribution of pz in the
presence of noise with the ideal PT distribution of qz and a classical distribution
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of q⊥z ≈ 1/D, uncorrelated with qz, with a second moment close to 1/D, i.e.,∑
z(q

⊥
z )

2 ≈ µc
2 = 1/D. Using this ansatz, the second moment is predicted to be

µ2 =
∑

z p
2
z ≈ (1 + F 2)/D, which is supported by our numerical simulations with

dephasing errors3 in Fig. D.15a.

3However, we note that this result depends on the specific error model. For example, if the
dominant error source is qubit decay from the |1⟩ to |0⟩ state, the term q⊥z will favor bit-strings with
0’s, converging over time to a single bit-string 00 · · · 0. This limiting distribution has a large second
moment

∑
z δ

2
z=0···0 = 1, hence the overall second moment µ2 grows over time.
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